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Preface

The starting point for any analysis in finance involves assigning a cur-
rent price to a future stream of uncertain payoffs. This is the basic notion
behind any asset-pricing model. Take, for example, the price of a share
to a competitive firm. Since the share entitles the owner to claims for the
future profits of the firm, a central problem is to assign a value to these
future profits. Take another asset – a house. This provides housing ser-
vices in all states of nature and at all dates. Consequently, the value of the
house today must reflect the value of these future services. Other examples
include the pricing of durable goods or investment projects based on their
future expected marginal products. One approach to monetary economics
also follows this basic principle – if money as an asset has value in equilib-
rium (in the absence of any legal restrictions), then this value must reflect
the stream of services provided by this asset.

Our approach is to derive pricing relationships for different assets by
specifying the economic environment at the outset. One of the earliest
examples of this approach is Merton [342]. However, Merton does not
relate the technological sources of uncertainty to the equilibrium prices of
the risky assets. Alternatively, he assumes a given stochastic process for the
returns of different types of assets and then prices them given assumptions
about consumer preferences. Consequently, the supply side is not explic-
itly considered by Merton. The asset-pricing model of Lucas [317] is fully
general equilibrium but it is an endowment economy, so that consumption
and investment decisions are trivial. Brock [76] develops an asset-pricing
model with both the demand and supply side fully specified and links it
up to Ross’s [369] arbitrage pricing model.

In this book, we will start from an explicit economic environment and
deduce the implications for asset prices, and the form of the asset-pricing
function from the equilibrium in these environments. To study the prob-
lem of asset pricing, we could also follow another approach: we could
take a very general and abstract approach, viewing asset pricing as the
valuation of a future stream of uncertain payoffs from the asset accord-
ing to a general pricing function. Given a minimal set of assumptions
about the set of payoffs, we could try to characterize the properties of
this abstract pricing function. This is the approach taken by Ross [371],

xiii



xiv Preface

Harrison and Kreps [240], Chamberlain and Rothschild [100], amongst
others. One general point to note about the relationship between the two
approaches to asset pricing is that the former abstract approach acquires
economic content when interpreted in terms of the equilibrium approach.
In fact, the benchmark payoff in the pricing function used to price streams
of uncertain payoffs turns out to be the intertemporal marginal rate of
substitution function for consumption. Depending on the nature of het-
erogeneity among consumers, the existence of complete contingent claims
markets, and the role of money for acquiring consumption goods, the form
of this intertemporal marginal rate of substitution function changes.

The purpose of this book is to provide an integrated treatment of a
variety of dynamic equilibrium frameworks and to examine their empiri-
cal implications. The book is organized in four main parts. In Part I, we
present material that constitutes the basis for much thinking in dynamic
macroeconomics and finance. We begin by describing a simple version of
the Arrow-Debreu contingent claims model, which is one of the building
blocks of asset pricing. We also present the basics of arbitrage and asset
valuation, expected utility analysis, CAPM and APT, and consumption/
savings decisions under uncertainty. In Part II, we present a more fully
developed set of results for dynamic economies under uncertainty using a
recursive approach. In this part, we describe a pure exchange, representative
consumer economy as well as economies with production. This framework
allows us to derive the form of the asset-valuation function and to examine
such issues as the effects of taxation on asset returns, the optimal finan-
cial structure of a firm, and the role of uncertainty in determining asset
pricing and equilibrium allocations. Part III is devoted to cash-in-advance
models, which allow us to examine the effects of inflation and exchange
rate risk. Part IV presents material at a slightly more advanced level. In
this part, we examine questions related to market incompleteness and the
effects of frictions such as transactions costs. We consider the effects of bor-
rowing constraints on equilibrium allocations and prices in a model with
consumer heterogeneity and idiosyncratic risk. The stochastic overlapping
generations model has been suggested as a convenient framework for ana-
lyzing issues related to “bubbles” in asset prices and the determinants of
savings decisions with intergenerational heterogeneity among consumers.
We examine a variety of issues using the stochastic overlapping generations
framework. In many recent empirical applications of dynamic models,
numerical solution methods have been combined with simulation or esti-
mation procedures to assess quantitatively the importance of alternative
model features. In this book, we also describe how numerical dynamic pro-
gramming methods and other numerical methods can be used for solving
and simulating a variety of dynamic economic problems.

There are many excellent texts in macroeconomics and finance that also
cover material that is presented in this text. Cochrane’s [109] text is an
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excellent reference that covers all of the standard issues in finance, updated
using the modern approach to asset pricing. The texts by Darell Duffie
[159, 161] also present the modern general equilibrium approach to finance
but they are more technical in nature and help to serve as useful references,
especially for advanced graduate students. The texts by Ingersoll [261],
Huang and Litzenberger [256], Jarrow [263], Copeland and Weston [127],
Hull [259], amongst others, present many of the standard issues of finance
at differing levels of abstraction. They are recommended for students who
(i) either lack a more traditional knowledge of finance and financial mar-
kets, or (ii) wish to obtain more detailed knowledge of some of the issues
that we cover in this book. There is also some overlap between the topics we
consider in this book and other texts dealing with dynamic general equi-
librium modeling or macroeconomics such as Sargent [384] or Ljungqvist
and Sargent [325].

A unifying feature of our discussion is that many of the dynamic equilib-
rium models that we consider can be formulated as dynamic programming
problems and solved using a contraction mapping approach. Rather than
introduce explicit measure-theoretic considerations for analyzing dynamic
stochastic models, we describe uncertainty in terms of Markov uncertainty
in a discrete-time setting. In Chapter 6, we provide a review of some results
from functional analysis that we use in later chapters. For a review of basic
results from functional analysis, we refer the reader to Kreyszig [290] and
Naylor and Sell [351], and to Papoulis [356] for a review of probability
theory and stochastic processes.

We have provided a set of detailed exercises at the end of each chap-
ter and their solutions as a separate file. These exercises are intended to
introduce some new topics at the same time that they allow the student
to apply the methods described earlier. We developed this book from our
teaching of finance, graduate financial economics and macroeconomics at
the University of York, Duke University, the University of Minnesota, the
University of Wisconsin, and Columbia University. It reflects our desire
to provide a unified treatment of material that we could not find in one
place. For teaching purposes, this text can be used as the basis for a gradu-
ate macroeconomics or financial economics course. We hope that this text
will also prove useful to students and practitioners in the fields of macro-
economics, finance, applied general equilibrium modeling, and structural
econometrics.

Paul Soderlind gave many useful comments that helped to improve
the current version of this text. We have also received helpful comments
from various colleagues for the first edition of the text, including Erdem
Başci, Thomas Cooley, Scott Freeman, Christian Gilles, Jeremy Green-
wood, Steve LeRoy, Bruce Smith, Allan Stockman, the participants of the
International Workshop at the University of Rochester, and of a series of
seminars at Bilkent University in Ankara, Turkey. We thank Zhenyu Wang
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for many helpful comments and the numerical calculations. Finally, we are
grateful to Irem Demirci and Muharrem Yeşilırmak from Koç University
for reading through the chapters and providing editorial comments, for
writing exercises and solutions to various chapters, and assisting with other
aspects of the production of this manuscript.
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C H A P T E R 1

Complete contingent claims

In competitive asset markets, consumers make intertemporal choices in an
uncertain environment. Their attitudes toward risk, production opportu-
nities, and the nature of trades that they can enter into determine equilib-
rium quantities and the prices of assets that are traded. The intertemporal
choice problem of a consumer in an uncertain environment yields restric-
tions for the behavior of individual consumption over time as well as
determining the form of the asset-pricing function used to price random
payoffs.

We begin by describing the simplest setup in which consumer choices
are made and asset prices are determined, namely, a complete contingent
claims equilibrium for a pure endowment economy. In such an equilib-
rium, a consumer can trade claims to contracts with payoffs that depend
on the state of the world, for all possible states. As a precursor of the mate-
rial to follow, we discuss the relationship of the complete contingent claims
equilibrium to security market equilibrium and describe its implications
for asset pricing.

The complete contingent claims equilibrium can also be used to derive
restrictions for the behavior of consumption allocations. In this context,
we discuss the relationship between the contingent claims equilibrium
and Pareto optimality, and show the existence of a “representative con-
sumer” that can be constructed by exploiting the Pareto optimality of the
contingent claims equilibrium. Some conclusions follow.

1.1. A O N E - P E R I O D M O D E L

We initially consider economies with one date and a finite number of
states. To understand the nature of the trades that take place in a com-
plete contingent claims equilibrium, imagine that all agents get together at
time 0 to write contracts that pay off contingent on some state occurring
next period. The realization of the states is not known at the time the con-
tracts are written, although agents know the probabilities and the set of all
possible states. Once the contracts are signed, the realization of the state is
observed by all agents, and the relevant state-dependent trade is carried out.

3



4 Asset Pricing for Dynamic Economies

We assume the following setup:
• There is a set of I consumers, {1, 2, . . . , I }
• Each consumer associates the probability π i

s to state s occurring, where
0<π i

s < 1 and

S∑
s=1

π i
s = 1.

• There are M commodities.
• The notation ci

s,m denotes the consumption of agent i in state s of
commodity m.

• A consumption vector for agent i is

ci ≡ {ci
1,1, . . . , ci

S,1, ci
1,2, . . . , ci

S,2, . . . ci
1,M , . . . , ci

S,M },
which is a vector of length S ×M . Consumption is always non-negative
and real so that ci

s,m ∈ �+. The commodity space is �SM
+ . The com-

modity space is the space over which consumption choices are made.
When there is a finite number of states (or dates) and a finite number of
commodities at each state (or date), we say that the commodity space is
finite-dimensional.

• The endowment of agent i is a vector of length S × M ,

ωi = {ωi
1,1, . . . ,ωS,M }

The utility of consumer i is a function ui : �SM
+ → �,

ui(ci) =
S∑

s=1

π i
s Ui(ci

s,1, . . . , ci
s,M ) (1.1)

Notice that we assume that utility is additive across states, which is the
expected utility assumption.

Here are some definitions.
• An allocation is a vector (c1, . . . , cI ).
• An allocation is feasible if

I∑
i=1

[ci
s,m − ωi

s,m] ≤ 0 (1.2)

for s = 1, . . . , S and m = 1, . . . , M . This holds for each commodity and
for each state.

• An allocation (c1, . . . , cI ) is Pareto optimal if there is no other feasible
allocation (ĉ1, . . . , ĉI ) such that

ui(ĉi) ≥ ui(ci) for all i (1.3)
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and

ui(ĉi) > ui(ci) for some i. (1.4)

1.1.1. Contingent claims equilibrium

Imagine now that agents trade contingent claims – which are agreements
of the form that, if state s occurs, agent i will transfer a certain amount
of his endowment of good m to agent j. Since there are S states and M
commodities in each state, a total of S × M contingent claims will be
traded in this economy. For each state and commodity, let ps,m denote the
price of a claim to a unit of consumption of the mth commodity to be
delivered contingent on the s’th state occurring. The set of prices p ∈ �SM

+
is a price system. The price function p assigns a cost to any consumption ci

and a value to any endowment ωi; in our application p : �SM
+ → �+ has

an inner product representation:

p · c ≡
S∑

s=1

M∑
m=1

ps,mcs,m =
S∑

s=1

(
ps,1cs,1 + · · · + ps,M cs,M

)
. 1

The markets for contingent claims open before the true state of the world
is revealed. Afterwards, deliveries of the different commodities are made
according to the contracts negotiated before the state is realized and then
consumption occurs.

A complete contingent claims equilibrium (CCE) is a non-zero price
function p on �SM

+ and a feasible allocation (c1, . . . , cI ) such that ci solves

max
ci

ui(ci)

subject to

p · ci ≤ p · ωi (1.5)

for all i. The complete contingent claims equilibrium allows us to specify
a competitive equilibrium under uncertainty by assuming that prices exist
for consumption in each possible state of the world.

We can state the following results.
• The First Welfare Theorem: A complete contingent claims equilibrium

is Pareto optimal.
• The Second Welfare Theorem: A Pareto optimal allocation can be

supported as an equilibrium.
To prove the First Welfare Theorem, suppose (c1, c2, . . . , cI , p) is an

equilibrium which is not Pareto optimal. Then there exists an allocation

1 Notice that p · (αx + βy) =α(p · x) + β(p · y) for any α,β ∈ � and x, y ∈ �SM so that the price
function is linear.



6 Asset Pricing for Dynamic Economies

(ĉ1, ĉ2, . . . , ĉI ) and a non-zero price vector p̂ such that ui(ĉi) ≥ ui(ci) for
all i and uj(ĉ j)> u j(c j) for some j. Since the utility function is strictly
increasing and continuous on �SM

+ , then it can be easily proved that p· ĉi ≥
p · ci for all i with strict inequality for agent j. This implies

p ·
I∑

i=1

ĉi > p ·
I∑

i=1

ωi,

which contradicts the feasibility of (ĉ1, ĉ2, . . . , ĉI ).
The existence of equilibrium and the welfare theorems are discussed

by Debreu [142], who provides an introduction to competitive equilib-
rium when the commodity space is finite-dimensional. Early proofs of the
existence of a competitive equilibrium are by Arrow and Debreu [33] and
McKenzie [338]. Duffie [159, 161] provides a textbook treatment.

1.1.2. Computing the equilibrium

What is the problem of a consumer in a contingent claims equilibrium?
Let ci

s = (ci
s,1, . . . , ci

s,M )′. The problem in Equation (1.5) can be written as

max
{ci

s }S
s=1

S∑
s=1

π i
s Ui(ci

s )

subject to

S∑
s=1

M∑
m=1

ps,m[ωi
s,m − ci

s,m] ≥ 0.

Thus, consumer i chooses a vector of length S × M to maximize his utility
subject to a budget constraint.

To analyze the consumer’s problem, we make the following assumption
on the utility function Ui(c).

Assumption 1.1 Let Ui : �S×M
+ → � be concave, increasing, and twice

continuously differentiable and

lim
c→0

U ′
i (c) = +∞, lim

c→∞ U ′
i (c) = 0.

By the Kuhn–Tucker Theorem, there exists a positive Lagrange multiplier
λi such that ci solves the consumer’s problem:

max
ci∈�SM+

ui(ci) + λi(p · ωi − p · ci).
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We can write this equivalently as:

max
ci∈�SM+

S∑
s=1

π i
s Ui(ci

s ) + λi

[
S∑

s=1

M∑
m=1

ps,mω
i
s,m − ps,mci

s,m

]
.

Notice that the λi for i = 1, . . . , I are not state dependent. The first-order
condition is

0 = π i
s

(
�Ui(ci)

�ci
s,m

)
− λips,m for each s, m and i.

This can be written as

π i
s (�Ui(ci)/�ci

s,m)

λi
= ps,m for each s, m and i. (1.6)

To illustrate the solution procedure, assure that the utility function Ui is
separable across states s and across commodities m.

Define the functions

gi(x) = (U ′
i )−1(x).

These exist since marginal utility is strictly decreasing. Hence, given
λips,m/π

i
s , we can use the Implicit Function Theorem to show there is a

solution

ci
s,m = gi(λips,m/π

i
s ) (1.7)

for s = 1, . . . , S, m = 1, . . . , M , and i = 1, . . . , I . The functions gi( · ) are
known as the Frisch demands, and they express consumption allocations in
terms of the product of the individual-specific Lagrange multipliers and
the probability-weighted contingent claims prices.

How do we solve for the competitive equilibrium? Now go back to the
initial budget constraint and substitute the solution for ci

s,m. This yields

S∑
s=1

M∑
m=1

ps,m[ωi
s,m − gi(λips,m/π

i
s )] = 0. (1.8)

For each i, this is an equation in the unknown λi, given the price system.
Notice that the left side is strictly increasing in λi. Hence, by the Implicit
Function Theorem, there exists the solutions λ�

i = hi(p) for i = 1, . . . , I .
Given the solution for λi as a function of the prices p, the market-clearing
conditions can be used to solve for the prices as:

I∑
i=1

gi(hi(p)ps,m/π
i
s ) =

I∑
i=1

ωi
s,m, s = 1, . . . , S, m = 1, . . . , M .

(1.9)
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slope = − 
π(1) U ′(c1) 

U ′(c2) π(2) 

ω/p2 

c2 

ω/p1 c1 

Figure 1.1. The consumer’s optimum in an economy with two states

Example 1.1 Suppose that consumer i has preferences given by

Ui(ci) = (ci)1−γ − 1

1 − γ
γ ≥ 0, γ �= 1. (1.10)

Also specialize to the case of two states, two consumers, and one commod-
ity per state, S = 2, I = 2 and M = 1, and assume that π i

s =πs.
The first-order conditions in (1.6) are now given by:

πsU ′(ci
s ) = λips, s = 1, 2, i = 1, 2. (1.11)

Taking the ratios of these conditions across the two states,

π2

π1

U ′(ci
2)

U ′(ci
1)

= p2

p1
, i = 1, 2. (1.12)

Figure 1.1 depicts the consumer’s optimum.
Under the preferences given above, U ′(c) = c−γ and gi(x) = x− 1

γ . We
can substitute for the utility function to evaluate the four first-order
conditions in Equation (1.11) as:

ci
s = (λips/πs)

− 1
γ , s = 1, 2, i = 1, 2. (1.13)
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Notice that there are four unknowns – λ1, λ2, p1, p2 – and four equations –
the budget constraints for consumers i = 1, 2 and the market-clearing con-
ditions for states s = 1, 2. Normalize the price of consumption in state
1 as p1 = 1. We can substitute the solutions for ci

s from (1.13) into the
individual-specific budget constraints in (1.8) as:

2∑
s=1

ps[ω
i
s − (λips/πs)

− 1
γ ] = 0, i = 1, 2. (1.14)

These equations yield the solution for λi as

λi =
⎧⎨
⎩π

1
γ

1 + p
γ−1
γ

2 (1 − π1)
1
γ

ωi
1 + p2ωi

2

⎫⎬
⎭

γ

, i = 1, 2. (1.15)

We can substitute these conditions into the market-clearing conditions in
(1.14) to solve for the relative price of consumption in state 2, p2.

Following this approach, the market-clearing conditions for states 1 and
2 with the solutions for ci

s substituted in are given by

(λ1/π1)
− 1

γ + (λ2/π1)
− 1

γ = ω1,

(λ1p2/(1 − π1))
− 1

γ + (λ2p2/(1 − π1))
− 1

γ = ω2,

where ωs =ω1
s +ω2

s . Now substitute for λ1 and λ2 using (1.15). Taking
the ratio of the two market-clearing conditions yields the solution for the
equilibrium price as

p2 =
(

1 − π1

π1

)(
ω1

ω2

)γ

, (1.16)

where ωs =ω1
s +ω2

s for s = 1, 2. This says that the price of consumption
in state 2 relative to consumption in state 1 is a function of the ratio of
the probabilities and endowments across the two states. This price also
depends on consumers’ willingness to substitute consumption across states
described by the parameter γ . Notice that p2 is inversely related to the
probability of state 1 and the endowment in state 2. If either π1 is high or
ω2 is large, then there will be less demand for goods delivered contingent
on state 2 occurring, and p2 will be small.
• If the aggregate endowment varies across states but the probability of

state 1 equals the probability of state 2, then

p2 =
(
ω1

ω2

)γ

, (1.17)

which varies monotonically with the ratio of the total endowment in
each state. If γ = 0 so that consumers are indifferent between con-
sumption in each state, then p2 = 1. For values of γ > 0, p2 decreases
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(increases) with γ for ω1 <ω2 (ω1 >ω2). In other words, as consumers
become less willing to substitute consumption across states, the relative
price of consumption across states 1 and 2 adjusts to make their demands
consistent with the total endowment in each state.

• If the aggregate endowment is equal across states, ω1 =ω2, then

p2 = 1 − π1

π1
. (1.18)

Thus, the contingent claims price just equals the ratio of the probability
of the two states, and it is independent of consumer preferences.2

We can also solve for the consumption allocations in each state by sub-
stituting for λi and p2 from (1.15) and (1.16) into the Frisch demands in
(1.13). However, a simpler approach is to consider the conditions in (1.12).
Under the assumption for preferences, these simplify as:

ci
1 =

[
1 − π1

π1

1

p2

]− 1
γ

ci
2. (1.19)

If we substitute the expression for ci
1 obtained from equation (1.19) into the

budget constraint, we obtain the solutions for ci
1 and ci

2 as

ci
1 =

[
(1 − π1)/(π1p2)

]− 1
γ (ωi

1 + p2ω
i
2)[

(1 − π1)/(π1p2)
]− 1

γ + p2

, (1.20)

ci
2 = ωi

1 + p2ω
i
2[

(1 − π1)/(π1p2)
]− 1

γ + p2

. (1.21)

Notice that even if the aggregate endowment is equal across states, individ-
ual consumers’ allocations will depend on the value of their endowments
in states 1 and 2.
• Perfectly negatively correlated endowments across consumers.

ω1
1 = 0 ω1

2 = 1
ω2

1 = 1 ω2
2 = 0.

In this case, the total endowment does not vary across states so
that the only uncertainty is individual-specific. Since the aggregate
endowment equals one in each state, the relative price is p2 =
(1 −π1)/π1, as argued earlier. Using (1.20–1.21), we have that c1

s = 1 − π1

2 This result depends, however, on assuming that consumers have identical preferences. If consumers
have different utility functions, then the equilibrium price will depend not only on the aggregate
endowment in each state but also on how this endowment is split between individuals 1 and 2. In
this case, p2 will vary with γ even if the aggregate endowment is equal across states. See Exercise 2.
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and c2
s =π1. If the probability of state 1 is low, the individual

who receives endowment in state 1 also receives low consump-
tion in each state. Suppose π1 = 0. 5. Then the equilibrium price
in each state is p1 = p2 = 1 and ci

s = 0. 5 for i = 1, 2 and s = 1, 2 so
that consumption allocations are identical across consumers for all
states.

• Positively correlated endowments across consumers.

ω1
1 = 0. 5 ω1

2 = 1

ω2
1 = 1 ω2

2 = 2.

Notice that the ratio of the aggregate endowment in states 1 versus
2 equals 1/2, that is, ω1/ω2 = 1/2. It is straightforward to show that
c2
s = 2c1

s , that is, the second consumer always consumes twice as much as
the first regardless of the probabilities of the states. Furthermore, this
result does not depend on the parameter γ . The impact of changes
in the endowment in this case is merely to adjust the relative price of
consumption in state 2.

1.1.3. Pareto optimal allocations

In this section, we show the equivalence between the competitive equilib-
rium and Pareto optimal allocations. In later chapters, we describe how
this equivalence can be exploited to characterize competitive equilibrium
in a variety of settings.

Assume that Ui are strictly increasing and concave for all i. The social
planner assigns weights ηi ∈ �+ to each consumer i and chooses alloca-
tions ci ∈ �SM

+ for i = 1, . . . , I to maximize the weighted sum of individual
utilities subject to a set of resource constraints for each state s and each
commodity m:

max
c1,...,cI

I∑
i=1

ηi

S∑
s=1

π i
s Ui(ci

s ) s. t.
I∑

i=1

ci =
I∑

i=1

ωi. (1.22)

First, notice that a feasible allocation that is Pareto optimal solves the
problem in Equation (1.22) with a set of positive weights η ∈ �I

+ and
c1 + · · · + cI =ω. This follows as an application of the Separating Hyper-
plane Theorem. (See Exercise 1.) Second, notice that if (c1, . . . , cI ) solves
the problem in Equation (1.22), then it is Pareto optimal.
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Let μs,m denote the Lagrange multiplier for the resource constraint in
each state and for each commodity. The first-order conditions for this
problem are

ηiπ
i
s

(
�Ui

�ci
s,m

)
= μs,m for each s, m and i. (1.23)

Suppose we set

ηi = 1

λi
, i = 1, . . . , I , (1.24)

and

ps,m = μs,m, s = 1, . . . , S, m = 1, . . . , M , (1.25)

where λi are the agent-specific Lagrange multipliers and ps,m are the con-
tingent claims prices. Under these assumptions, the first-order conditions
above are identical to those for a complete contingent claims equilibrium.
(See the conditions in Equation (1.6).) Since the allocations achieved under
the contingent claims equilibrium and the social planning problem both
satisfy the resource constraints, they must be equal.

1.2. S E C U R I T Y M A R K E T E Q U I L I B R I U M

In actual asset markets, we observe individuals trading in securities that are
claims to random payoffs denominated in units of account, not in com-
modities. We now describe how to formulate an equilibrium with such
securities.

1.2.1. Definition

The primitives for a security market equilibrium are as follows:
• There are N securities.
• Each security n has the payoffs (denominated in the unit of account, say

dollars) xn,s for s = 1, . . . , S.
• We define X as the N × S matrix of payoffs and q = (q1, . . . , qN )T in

�N
+ denotes the vector of security prices.

• Securities are sold before the state s is realized so that their prices are
independent of the realized state.

• After the security markets close, agents trade in spot markets for the M
commodities.

• Let p̄s,m denote the unit price of the m’th commodity in state s and define
p̄s in �M

+ as the vector of spot prices in state s.
A portfolio is a vector θ i ≡ (θ i

1 , . . . , θ i
N ) in �N which has the market

value θ · q and the S × 1 payoff vector X T θ showing the payoff on the
portfolio in each state s. Some of the elements of θ may be negative. When
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the total expenditure or portfolio weight on a security is negative (θk < 0),
we say that security k has been sold short. If the portfolio weights are
required to satisfy θn ≥ 0 for n = 1, . . . , N , then we say that short selling
is ruled out. In the security market equilibrium, we will not rule out short
sales on any of the securities.

The i’th agent chooses a portfolio θ i ≡ (θ i
1 , . . . , θ i

N ) in �N of securities
to purchase and a consumption vector ci in �SM

+ . Given the security and
spot prices (q, p̄), the i’th agent solves the problem

max
ci ,θ i

ui(ci) =
S∑

s=1

π i
s Ui(ci

s )

subject to

θ i · q ≤ 0, (1.26)

p̄s · ci
s ≤ p̄s · ωi

s + θ i · xs, s = 1, . . . , S, (1.27)

where θ i · xs is the dollar payoff on the portfolio in state s and ci
s in �M

+ is
the consumption vector in state s.

Notice that the consumer faces a separate budget constraint for each
state of the world. The consumer’s wealth in each realized state s is given
by his endowment ωi

s in that state plus the payoff on his portfolio of assets.
Unlike the complete contingent claims equilibrium, the consumer cannot
purchase claims to consumption for each possible state subject to a single
budget constraint that constrains the value of his consumption to be less
than the value of his endowment across all possible states. Instead, his feasi-
ble consumption in state s is constrained by his realized wealth at that state.
Notice also that the consumer’s utility does not depend on consumption
in period 0. Hence, without loss of generality, the value of his endowment
at date 0 is also taken as zero. This means that purchases of some securities
are financed by sales of others. This is known as a self-financing portfolio.

We define a security market equilibrium (SME) as a collection

((θ 1, c1), . . . , (θ I , cI ), (q, p̄))

such that (i) given prices (q, p̄), the allocation (θ i, ci) solves the problem
for agent i; and (ii) markets clear:

I∑
i=1

θ i
n = 0, n = 1, . . . , N , (1.28)

I∑
i=1

(ci
s,m − ωi

s,m) = 0, s = 1, . . . , S, m = 1, . . . , M . (1.29)
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Note also that the securities are in net zero supply in the economy. We
could instead assume that securities are in net positive supply and that con-
sumers have initial holdings of the securities denoted θ̄ i

n for n = 1, . . . , N .
In this case, consumers choose security holdings to satisfy

q · θ i ≤ q · θ̄ i

and the securities market-clearing condition becomes

I∑
i=1

θ i =
I∑

i=1

θ̄ i.

For simplicity let the number of commodities in each state equal one,
M = 1, and normalize the spot price of consumption in each state as ps = 1.
For the SME, each consumer solves the problem

max
ci ,θ i

S∑
s=1

πsU (ci
s )

subject to

N∑
n=1

θ i
nqn ≤ 0,

ci
s ≤ ωi

s +
N∑

n=1

θ i
nxn,s, s = 1, . . . , S.

Let λi
s denote the state- and individual-specific multiplier on the goods

market constraint and μi denote the multiplier on the security market
constraint. The FOCs with respect to ci

s and θ i
n are as follows:

πsU ′(ci
s ) = λi

s ,

μiqn =
S∑

s=1

λi
sxn,s, n = 1, . . . , N ,

for s = 1, . . . , S, i = 1, . . . , I .
Market clearing requires that

I∑
i=1

θ i
n = 0, n = 1, . . . , N (1.30)

I∑
i=1

ci
s =

I∑
i=1

ωi
s , s = 1, . . . , S. (1.31)

To solve for the allocations and the security price in the SME, substitute
for λi

s in the first-order conditions with respect to θ i
n as
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μiqn =
S∑

s=1

πsU ′(ci
s )xn,s, n = 1, . . . , N . (1.32)

By the goods market clearing condition, ci
s =ω − ∑I

j = 1, j �=i cj
s where

ω=ωi
s + ∑I

j = 1, j �=i ω
j
s . Now substitute for cj

s using the goods market
budget constraints

qn =
S∑

s=1

πsU ′(ωi
s − ∑I

j=1, j �=i

∑N
n=1 θ

j
nxn,s)xn,s

μi
,

for n = 1, . . . , N , i = 1, . . . , I . Given μi and qn, these are N + I equa-
tions in the N + I unknowns – θ i

n for n = 1, . . . , N , i = 1, . . . , I . Observe
that the right-side of each of these expressions is strictly increasing in θ i

n.
Hence, by the Implicit Function Theorem, there exists a solution denoted
θ i

n = gi
n(μ, q) where μ ≡ (μ1, . . . ,μI )′ and q ≡ (q1, . . . , qN )′. Given this

solution, we can use the security market budget constraints to solve for μi

as a function of the unknown security prices q as μi = hi(q):

N∑
n=1

θ i
nqn =

N∑
n=1

gi
n(μ, q)qn = 0, i = 1, . . . , I . (1.33)

Finally, we can use the security market-clearing conditions to solve for qn

I∑
i=1

θ i
n =

I∑
i=1

gi
n(h(q), q) = 0, n = 1, . . . , N , (1.34)

where h(q) ≡ (h1(q), . . . , hI (q))′.3 The consumption allocations can be
found by evaluating the goods market budget constraints at the optimal
values of θ i

n. Recall that the contingent claims prices in the CCE are defined
for each state. By contrast, the security price in the SME in determined
before the state is revealed and, hence, is expressed as an expectation of its
future payoffs.

We can make this point more explicitly by re-writing the price of
security n as

qn =
S∑

s=1

πsU ′(ci)

μi
xn,s

= E
[

U ′(ci)

μi
xn

]
, (1.35)

3 The existence of solutions for μi and q based on Equations (1.33) and (1.34) can also be shown as an
application of the Implicit Function Theorem.
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where the expectation is evaluated with respect to the probabilities πs. This
expression shows that the price of security n is derived as the expected
discounted value of its payoffs, the discounting being done by the weighted
marginal utilities for each consumer i. In the next section, we provide an
alternative representation of the security price that is independent of i.

1.2.2. Attaining a CCE by an SME

In the complete contingent claims equilibrium, consumers choose allo-
cations subject to a single budget constraint. In the security market
equilibrium, they must choose consumption in each state subject to a
budget constraint for that state. This suggests that the consumption allo-
cation in a security market equilibrium may differ from the allocation in a
complete contingent claims equilibrium. In a singularly important result,
Arrow [31] has shown that if the number of securities equals the number
of states, then the allocation in a complete contingent claims equilibrium
can be attained in a security market equilibrium.

Denote the allocation and prices in a complete contingent commodity
markets equilibrium by (c1, . . . , cI , p). Suppose that N = S and that the
columns of the payoff X are linearly independent. Then without loss of
generality we can define the dividend or payoff vector as

xn,s =
{

1 if s = n
0 otherwise,

(1.36)

for s = 1, . . . , S and n = 1, . . . , S. Define the price of the sth security such
that

qsp̄s,m = ps,m ∀s, m. (1.37)

Then notice that the consumer confronted with these prices has the same
range of alternatives that are available under the contingent claims equi-
librium. Define the portfolio weights so that the number of units of the
s’th security that is held by consumer i is equated to the cost of the net
consumption choice by i in state s:

θ i
s = p̄s · (ci

s − ωi
s ). (1.38)

If the prices and allocations defined in this manner constitute a security
market equilibrium, then (θ i, ci) must be feasible for consumer i in the
security market equilibrium. Thus,
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θ i · q =
S∑

s=1

M∑
m=1

(
ps,m

p̄s,m

)
p̄s,m(ci

s,m − ωi
s,m)

=
S∑

s=1

M∑
m=1

ps,m(ci
s,m − ωi

s,m) ≤ 0,

since (c1, . . . , cI , p) constitutes a contingent claims equilibrium. Likewise,

p̄s · ci
s = p̄s · ωi

s + θ i
s = p̄s · ωi

s + θ i · xs for s = 1, . . . , S

since xn,s = 1 only if s = n. Hence, given the prices (q, p̄), (θ i, ci) satisfy
consumers’ budget constraints in the security market equilibrium.

To show that (θ i, ci) solves the consumer’s problem, assume that (φi, ĉi)
also satisfies the budget constraints and ui(ĉi)> ui(ci). Since ci is optimal
for consumer i in the complete contingent claims equilibrium, we have
that p·ĉi > p·ci; otherwise ci would not have been chosen. If (φi, ĉi) satisfies
the consumer’s budget constraints, then φi

s =φi · xs ≥ p̄s · (ĉi
s − ωi

s ) and
φi · q ≥ ∑S

s = 1 ps · (ĉi
s −ωi

s ) since qsp̄s,m = ps,m. But p · ĉi > p · ci implies that
φi · q > 0 which contradicts Equation (1.26). Spot markets clear because
(c1, . . . , cI ) is feasible. Security markets clear since

I∑
i=1

θ i
s =

I∑
i=1

p̄s · (ci
s − ωi

s )

= p̄s ·
I∑

i=1

(ci
s − ωi

s ) = 0, s = 1, . . . , S

since (c1, . . . , cI ) is feasible for the contingent claims equilibrium.

Example 1.2 Now consider the problem of supporting the CCE in
Example 1.1 with a security market equilibrium (SME). For simplicity, con-
sider the case with perfectly negatively correlated endowments. To support
the consumption allocations, notice that we assumed xn,s = 1, if n = s; zero
otherwise. This simplifies the first-order conditions with respect to θ i

n as

μiqs = λi
s , s = 1, 2.

Thus we can re-write the first-order conditions in the SME as

πs(ci
s )

−γ

μi
= qs, s = 1, 2. (1.39)

If we combine the two sets of FOCs under these assumptions, then we can
write ci

1 in terms of ci
2 such that

ci
1 =

[
q1

q2

1 − π1

π1

]− 1
γ

ci
2. (1.40)
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Suppose that qs = ps for s = 1, 2. Then equation (1.40) is identical to
equation (1.19). Hence, provided the prices in the SME are set so as to
replicate the prices in the CCE described in Example 1.1, the consumption
allocations in the SME are identical to the allocations in the CCE. To
support the consumption allocations for the CCE, we set

θ 1
1 = c1

1 − 1

θ 1
2 = c1

2,

and

θ 2
1 = c2

1

θ 2
2 = c2

2 − 1.

Since the CCE allocations are feasible, the market clearing conditions in
the goods market hold. To show that the portfolio shares sum to zero, we
note that c1

s = 1 − π1 and c2
s =π1 for s = 1, 2. Hence,

θ 1
1 + θ 2

1 = c1
1 − 1 + c2

1

= 1 − π1 − 1 + π1 = 0,

and

θ 1
2 + θ 2

2 = c1
2 + c2

2 − 1

= 1 − π1 + π1 − 1 = 0.

We can determine the security prices as

qn = p1xn,1 + p2xn,2, n = 1, 2. (1.41)

This shows that the security price is a discounted sum of the random
payoffs, the discounting being done with the contingent claims prices.

In Section 1.1.2, we showed that the product of the individual-specific
Lagrange multipliers and contingent claims price in state s is equal to the
probability-weighted marginal utilities of consumption for each consumer
in that state:

λips = πsU ′(cs) ∀s and ∀i.

When N = S, the asset payoffs are normalized so that xn,s = 1 is n = s and
zero otherwise, and qs = ps, then the state-specific Lagrange multiplier in
the SME equals the product of the individual-specific Lagrange multiplier
and the contingent claims price in the CCE:

λi
s = μiqs = λips.
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This can be verified by comparing equations (1.11) with (1.39). Now define

ms ≡ U ′(cs)

λi
.

Then the asset pricing equation in (1.41) can be re-written as

qn =
S∑

s=1

πsmsxn,s = E[mxn], (1.42)

where the expectation is evaluated under the probabilities πs. Based on the
representation in equation (1.42), the variable ms is sometimes called the
stochastic discount factor. This is a random variable whose properties depend
on preferences, endowments, and the nature of trades that agents can enter
into. The multiplier λi (or μi) has the interpretation of the marginal value
of current consumption or wealth.

Example 1.3 Now suppose that there is only one asset, a risk-free bond
that consumers trade in equilibrium. We assume that these are pure dis-
count bonds which have a payoff of 1 and which sell for q ≤ 1. Bonds are in
net zero supply in the economy:

I∑
i=1

θ i = 0.

Consumer i’s problem is now to solve

max
ci ,θ i

2∑
s=1

πsU (ci
s )

subject to

θ iq ≤ 0,

ci
s ≤ ωi

s + θ i, s = 1, 2.

Let λi
s and μi denote the multipliers on the goods market and security

market constraints, respectively. The first-order conditions with respect to
ci
s and θ i are as follows:

πsU ′(ci
s ) = λi

s , (1.43)

μiq = λi
s . (1.44)

Solving these conditions, we obtain

πsU ′(ci
s )

μi
= q, (1.45)
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which is independent of s! That is, when consumers can only trade a
risk-free bond, there is no possibility of setting security prices to replicate
the CCE.

Recall that we defined each security to have a unit payoff if state
s = n occurs and zero otherwise. More generally, a CCE allocation can be
attained in an SME with an arbitrary payoff matrix X whose columns
are linearly independent. When the columns of X span �S , we say that
markets are complete. With such spanning securities, a security market
equilibrium can be converted into a contingent claims equilibrium. We
illustrated this fact in Examples 1.1–1.2. Since the complete contingent
claims equilibrium allocation is Pareto optimal, the allocation in the secu-
rity market equilibrium will also be Pareto optimal. In the absence of
spanning, markets are incomplete and a security market equilibrium may
exist but the equilibrium allocation is not necessarily Pareto optimal. This
is the situation in Example 1.3. In this case, there is a single security
which has a payoff of one in each state. Thus, there is no way to repli-
cate the CCE with an SME by constructing state-contingent securities
whose payoffs are one in each state and zero otherwise. There is, how-
ever, a simple way to complete this economy. That involves introducing a
stock that has different payoffs in each state. In this case, the payoff matrix
will involve the payoffs on the risk-free bond and the stock so that its
columns will be linearly independent. This is typically the situation con-
sidered in the binomial model of securities markets, which we examine
in Chapter 2.

1.2.3. The Pareto optimum and the representative consumer

In the economies we examined so far, individuals can differ with respect to
their beliefs, their tastes, and their initial endowment or wealth. We refer to
such differences as ex ante heterogeneity. One approach to deriving asset-
pricing relations in the presence of population heterogeneity is to construct
a so-called “representative” consumer, as suggested by Constantinides [116]
and others. The existence of this representative consumer is based on the
Pareto optimality of the complete contingent claims equilibrium.

The preferences of the “representative” consumer can be defined as:

Uη(ω) ≡ max
(c1,...,cI )

I∑
i=1

ηiui(ci)

subject to (1.46)

c1 + · · · + cI ≤ ω1 + · · · + ωI ≡ ω. (1.47)
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Assume that the single-period utility functions depend on consumption
and leisure as

Ui(ci, l i) = γ−1
0 δ(zi)(ci)γ0 (l i)γ1 , max (γ0, γ1) ≤ 1 (1.48)

where δ(zi) is a household-specific utility index that is a function of a set
of exogenous characteristics of the household. Define the marginal utility
of consumption for the “representative” consumer in the social planner’s
problem by:

�Uη(ω)

�cs
=
∑

i

πsηi
�Ui(ci

s , l i
s )

�ci
s

, (1.49)

where ηi is consumer i’s weight in the social planning problem and cs ≡
(c1

s , . . . , cI
s )′. Recall that in a complete contingent claims equilibrium, we

have that πsδ(zi
s )(c

i
s )
γ0−1(l i

s )
γ1 = λips. Hence, we find that

�Uη(ω)

�cs
=
∑

i

πsηiδ(zi
s )(c

i
s )
γ0−1(l i

s )
γ1 = ps, (1.50)

where ηi = 1/λi as argued in Section 1.1.3. Hence, the marginal utility
of consumption for the “representative” consumer is just equal to the
contingent claims price in state s

�Uη(ω)

�cs
= ps, (1.51)

where we have normalized p0 = 1. Substituting back into Equation (1.41)
shows that security prices can also be written solely as a function of the
preferences of the representative consumer.

In the macroeconomics literature, the existence of such a “representa-
tive” consumer has been used to justify ignoring heterogeneity throughout
the population in a complete markets setting. However, to determine
how we can give content to such an approach, we note that the indirect
preferences of the “representative” consumer depend on the entire distri-
bution of individual characteristics (as captured by the agent weights ηi),
the individual utility functions Ui, and the equilibrium distribution of
the consumption allocation. Recall that one of the elements of the con-
sumption vector is leisure, and that the equilibrium allocation may entail
corner solutions for the leisure allocation for a subset of the population.
Specifically, if γ1 �= 0 or the states in which households participate in
the labor market do not coincide exactly or the function δ(zi

s ) is not con-
stant over time, then individual preferences do not aggregate in terms of
the preferences of a “representative” consumer evaluated using aggregate
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consumption data. If, however, γ1 = 0 and the utility index δ(zi) is con-
stant over time, then the security price can be expressed as a function of
aggregate consumption alone.4

These results show that the distribution of exogenous and endogenous
forms of heterogeneity throughout the population may matter. In the
financial economics literature, Rubinstein [377] has shown that there exist
some sets of homogeneity conditions on individual beliefs, preferences,
and wealth such that the asset-pricing relations depend on per capita con-
sumption and some composites of individual characteristics.5 However,
these conditions are typically more restrictive than the observed types of
heterogeneity in the population, suggesting that the assumption of a “rep-
resentative consumer” in asset-pricing models may be far from innocuous.
We discuss these issues in later chapters.

1.3. C O N C L U S I O N S

A complete contingent claims equilibrium provides a natural starting point
for studying the behavior of allocations and prices in an environment
under uncertainty. If there are as many securities as states, we have shown
that there exists a security market equilibrium to support the contingent
claims equilibrium. The equivalence between a contingent claims equi-
librium and Pareto optimum is a result that is also widely exploited to
construct a “representative” or composite consumer. These results con-
stitute important benchmarks that we will repeatedly refer to in our
subsequent discussion.

1.4. E X E R C I S E S

1. This exercise illustrates the application of the Separating Hyperplane
Theorem. We state a version that is applicable in �n. Define a linear
functional F on �n as a function F : �n → � satisfying

F (αx + βy) = αF (x) + βF (y), x, y ∈ �n, α,β ∈ �.

We have the following theorem.

Theorem 1.1 (Separating Hyperplane Theorem) Suppose A and B are
convex, disjoint sets in �n. There is some linear functional F such that
F (x) ≤ F (y) for each x in A and y in B. Moreover, if x is in the interior of
A or y is in the interior of B, then F (x)< F (y).

4 See Exercise 3.
5 Earlier results on the specification of preferences that admit exact aggregation to a representative

consumer are due to Gorman [209].
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For a more general version that is applicable in arbitrary vector spaces,
see Luenberger [326, p.133].
Use this result to show that a feasible allocation (c1, . . . , cI ) that is Pareto
optimal solves the problem in Equation (1.22) with a set of positive
weights η ∈ �I

+ and c1 + · · · + cI =ω.

Hint: Assume that the utility functions ui are strictly increasing
and concave for all i. Define the set A = {a ∈ �I : ai = ui(xi) −
ui(ci), x ≤ω} and A′ = {a ∈ �I

+ : a �= 0}. Show that A ∩ A′ is empty.
Show that A is a convex set and that 0 ∈ A.

2. Complete Markets and Consumption Inequality6

Consider an economy with two consumers. Each consumer lives for
two periods. Consumer a has preferences over consumption ct as:

2∑
t=1

U a(ca
t ) =

2∑
t=1

(ca
t )1−γ − 1

1 − γ
, γ > 1.

Consumer b is less risk averse than consumer a and has preferences:
2∑

t=1

U b(cb
t ) =

2∑
t=1

ln (cb
t ).

Each consumer receives the same endowment in each period, denoted
ωt . There is growth in the economy in that ω1 <ω2.
(a) Find the solution for each consumer’s problem.
(b) Show that if γ > 1, then p<ω1/ω2, ca

1 > cb
1 , and ca

2 < cb
2 .

(c) Conclude that consumption inequality is increasing in period 2,
that is,

| ca
1 − cb

1 |<| ca
2 − cb

2 |.
What is the intuition for these results?

3. Consider a two-period version of the model under uncertainty with one
commodity in which the state is revealed in the second period. Let ci

0
represent units of consumption in the first period and ci

s represent units
of consumption contingent on the state s occurring, s ∈ {1, . . . , S} in
the second period. Suppose preferences satisfy expected utility

ui(ci) = Ui(ci
0) +

S∑
s=1

π i
s Vi(ci

s ), (1.52)

where π i
s > 0 denotes the probability of state s occurring and Ui and Vi

are strictly increasing, strictly concave, and differentiable functions.

6 For a further discussion of complete markets and consumption inequality, see Deaton and
Paxson [140].
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(a) Characterize the contingent claims equilibrium allocations and
prices.

(b) Characterize the security market equilibrium.
(c) Under which conditions will the SME replicate the CCE?
(d) Suppose preferences in each period are of the form:

U (c) = V (c) = c1−γ − 1

1 − γ
, γ ≥ 0, γ �= 1.

Suppose also that the conditions exist under which the SME can
be used to replicate the CCE. Show that the asset prices in the
security market equilibrium can be expressed in terms of average
consumption data defined as

c̄s = 1

I

I∑
i=1

ci
s .



C H A P T E R 2

Arbitrage and asset valuation

In the theoretical finance literature, the absence of arbitrage opportunities
in securities trading has been exploited by Ross [371], Harrison and Kreps
[240], Chamberlain and Rothschild [100], and others to show the existence
of a pricing function that is used to value random payoff streams and to
characterize its properties. We now illustrate their approach for the simple
setup that we have been studying.

As part of the material for this chapter, we define notions of arbitrage.
We then establish the equivalence between the absence of arbitrage and
the existence of a strictly positive state-price vector that can be used to
value random payoffs on any security. We show that in a complete markets
setting, such a state-price vector will be unique.

We begin our analysis by examining the implications of the absence of
arbitrage for investors’ portfolios. We define such concepts as the law of
one price and arbitrage opportunities of the first and second kind.

2.1. A B S E N C E O F A R B I T R A G E : S O M E D E F I N I T I O N S

We assume that there is one date, S states, and one commodity in each
state. As a consequence, spot commodity prices can be normalized as unity.
As before, we assume that there are S states of the world, and N securities
where N ≤ S. Hence, the number of securities may be less than the number
of states.

The N × S matrix of payoffs of the N securities is given by:

X =

⎡
⎢⎣ x11 x12 · · · x1S

...
...

...
xN 1 xN 2 · · · xNS

⎤
⎥⎦ . (2.1)

Recall that θn is the units purchased of security n, and qn is the price of
security n.

Example 2.1 Consider an economy with one date and three states. Sup-
pose there are three securities. Security 1 pays 1 in state 1 and zero otherwise.

25
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Security 2 pays 1 in state 2 and zero otherwise. Suppose that the third
security is a risk-free bond. What is the payoff matrix?

X1 =
⎡
⎣1 0 0

0 1 0
1 1 1

⎤
⎦ . (2.2)

Markets are complete since the rank of X is 3. The reason is that hold-
ing the first two securities allows the consumer to obtain consumption
contingent on states 1 and 2. To attain consumption contingent on state
3 occurring, consider a portfolio that involves short selling the first two
assets and buying the third. This portfolio has a payoff of one contin-
gent on state 3. Hence, by trading in the first two assets and portfolios
involving the third, consumers can achieve any pattern of state-contingent
consumption.

Now suppose that there are only two states. In this case, one of the
securities is a redundant security, that is, a security whose payoff structure
can be constructed by using the other securities in the market. In this case,
the payoff matrix becomes

X2 =
⎡
⎣1 0

0 1
1 1

⎤
⎦ . (2.3)

The consumer can attain a consumption of 1 in each state i) by holding
one unit each in the first two securities, or (ii) by holding a unit of the
risk-free bond. In the first case, the portfolio satisfies θ 1 = (1, 1, 0)′ whereas
in the latter case it is given by θ 2 = (0, 0, 1)′. A redundant security is thus a
security whose payoffs can be generated by holding a portfolio of the other
securities. In this case, holding the first portfolio yields exactly the same
payoff as holding the second portfolio.

We can also consider the case with three states and two securities. Sup-
pose, in particular, that only the two risky securities are available. The
payoff matrix is

X3 =
[

1 0 0
0 1 0

]
. (2.4)

Now there is no way for consumers to trade in securities to obtain con-
sumption in state 3. Hence, markets are incomplete as the number of
securities is less than the number of states.

To characterize behavior in securities markets, we need to make further
assumptions regarding the price of a portfolio and its payoff. These issues
are discussed next.
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2.1.1. The law of one price

Recall that for any vector of security prices q in �N , a portfolio θ has
market value q · θ and payoff X T θ . We now make some additional assump-
tions. The first has to do with the notion of a payoff space. For the case of
complete markets with S states, the payoff space consists of �S . In this
case, N = S and investors can attain any payoff in �S by forming port-
folios based on the S linearly independent columns of X . When markets
are incomplete, there are only N < S linearly independent columns of X
and the set of payoffs that investors can obtain is X ⊂ �S . It is also possi-
ble to allow investors to trade in securities that are non-linear functions of
the basis payoffs such as options. In this case, the payoff space X becomes
infinite dimensional.

We now make two additional assumptions regarding portfolio payoffs
and their prices.

Assumption 2.1 (Free portfolio formation)

X T
1 θ ∈ X , X T

2 φ ∈ X ⇒ X T
1 θ + X T

2 φ ∈ X .

This means that if investors can attain the payoff X T
1 θ ∈ X and the payoff

X T
2 φ ∈ X , then they can also attain the payoff X T

1 θ + X T
2 φ ∈ X . For

the case of complete markets, X =�S , implying that the assumption is
satisfied. Notice that the assumption is not without content. For example,
it rules out short sales constraints, bid-ask spreads, and transactions costs
of various types. We discuss the impact of such frictions below.

Assumption 2.2 (Law of one price)

(aθ + bφ) · q = a(θ · q) + b(φ · q).

This says that the value of the new portfolio aθ + bφ, where a and b are
constants, must equal the value of its parts. Notice that these assumptions
rule out arbitrage opportunities of various types. As an example, suppose
there are N securities, with the first N − 1 assets denoting stocks and the
N th asset a nominally risk-free Treasury bill. Consider two investment
strategies. The first involves investing in a portfolio with one unit of the
first stock, say IBM stock, while the second involves investing in a port-
folio with 100 units of a one-month Treasury bill. Thus, θ = (1, 0, . . . , 0)′
and φ = (0, 0, . . . , 100)′, and the value of each portfolio is θ · q = q1 and
φ · q = 100qN . Assumption 2.1 says an investor cannot make an instanta-
neous profit by re-bundling the assets in the two portfolios and selling the
assets in the new portfolio for a higher price. That is, the value of (θ+φ)·q
cannot be greater than θ · q + φ · q.
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Assumptions 2.1 and 2.2 also imply that the zero payoff must be available
and must have zero price, that is, 0 ∈ X and q(0) = 0. Otherwise, any
payoff could be obtained at any price. To see this, suppose that the law of
one price does not hold. Then note that the zero payoff can be purchased
at any price because any portfolio of the zero payoff is also the zero payoff.
If the zero payoff can be purchased at any price, then any payoff can be
purchased at any price.

We now consider two examples in which these assumptions may fail.
The first involves a case with a bid-ask spread and the second the presence
of a short sales constraint.

Example 2.2 Suppose there are two assets. Let qb be the buying price of
asset 1 and qs be its selling price with qb > qs. For asset 2, the buying and
selling prices are assumed to be equal, q2. Also consider two portfolios,
θ = ( − 1, 1)′ and φ = (1, −1)′. According to the first portfolio, an investor
sells one unit of asset 1 and buys a unit of asset 2, while with portfolio φ he
does the opposite. The value of the sum of the two portfolios is:

θ · q + φ · q = −qs + q2 + qb − q2 = qb − qs > 0.

By contrast, the combination of the two portfolios is equivalent to owning
zero units of each asset

(θ + φ) · q = 0,

since we know that the price of the zero payoff must be zero. Otherwise,
any asset could be obtained at any price. Thus, we find that θ · q +φ · q >

(θ +φ) · q, implying that the law of one price does not hold.

Example 2.3 Suppose that the investor faces a short sales constraint for
asset 1 such that θ1 ≥ − 5. Purchases and sales of asset 2 are unrestricted.
Consider the two portfolios θ = ( − 5, 4)′ and φ = ( − 1, 3)′. The market
value of the individual portfolios is:

θ · q + φ · q = −5q1 + 4q2 − q1 + 3q2 = −6q1 + 7q2.

Now consider a new portfolio that is the sum of the individual portfolios,
θ + φ. To impose the short sales constraint, we can express the market
value of this portfolio as:

(θ + φ) · q = max (θ1 + φ1, −5)q1 + (θ2 + φ2)q2

= −5q1 + 7q2

> θ · q + φ · q = −6q1 + 7q2.

Hence, we find that the law of one price does not hold. In later chapters
we discuss the role of frictions such as borrowing constraints and transac-
tions costs in determining equilibrium asset returns, and allocations. Our
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discussion here shows that in the presence of such frictions, the pricing
function does not satisfy the simple linearity that is implied by the law of
one price.

Now consider the relationship between the existence of a discount fac-
tor used to price payoffs and the law of one price. Suppose an equilibrium
exists. Notice that if S = N so that markets are complete, the price of
any security n is expressed as the discounted value of its payoffs using the
contingent claims prices ps.

Equivalently, if markets are complete, the price of any payoff can be
expressed as the expectation of the payoff times the stochastic discount
factor, which is linear since the expectation operator is linear. Hence, the
law of one price holds. If markets are not complete, there may not exist
a unique discount factor. Nevertheless, the equilibrium pricing function
still exhibits the linearity property, which implies that the law of one price
holds.

It is also possible to prove the converse of this result, namely, if the
law of one price holds, then there is a discount factor that can be used to
price payoffs. We have already demonstrated that under Assumption 2.2,
the pricing function is linear. The existence of a discount factor based on
the law of one price derives from the fact that any linear function on a
payoff space X can be represented as an inner product.1 In other words,
the pricing function that is used to value any payoff x ∈ X is a linear
function and has the representation q = E[x�x] for x� ∈ X . The exis-
tence of the discount factor x� is guaranteed by means of a projection
argument. Following a more general approach described by Hansen and
Richard [234], Hansen and Jagannathan [232] consider a payoff space X
that can be expressed in terms of N basis payoffs. Organize the basis payoffs
into the vector x = (x1, x2, . . . , xN ) and also their prices. They show that the
discount factor x� ∈ X that satisfies the law of one price has the form

x� = q′E(xx′)−1x, (2.5)

where q denotes the price of the basis payoffs under x�, that is, q = E[x�x].
To show this, notice that the payoff space is generated as X ={c′x}.

The discount factor that we are seeking must be in the payoff space.
Hence, x� = c′x. Define c so that x� = c′x prices the basis payoffs. Hence,
we require that q = E(x�x) = E(xx′c). Hence, c = E(xx′)−1q provided the
inverse E(xx′)−1 exists. But this is guaranteed by the law of one price.

1 Let X be a linear space. An inner product on X is a mapping that associates to each ordered
pair of vectors x, y a scalar denoted (x, y) that satisfies the following properties: (i) (x +
y, z) = (x, z) + (y, z) (Additivity); (ii) (αx, y) =α(x, y) (Homogeneity); (iii) (x, y) = (y, x) (Symme-
try); (iv) (x, x)> 0 for x �= 0 (Positive Definiteness).

To see how this result applies in the case we have considered, suppose that X is the space of all
random variables x̃ with finite variance. That is, if μ= E(x̃) is finite, then σ 2 = E(|x̃ −μ|2) is finite.
An inner product on X is given by (x, y) = E(x̃ỹ).
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In other words, if the inverse of E(xx′) does not exist, there are multi-
ple solutions for c satisfying the relation c = E(xx′)−1q. Since c defines the
price of any payoff through the linear pricing function, this would mean
that there are different prices for the same payoff x ∈ X . But this would
violate the law of one price. Hence, the discount factor is defined as in
Equation (2.5). The discount factor is a linear combination of x so it is in
the payoff space X . By construction it prices the basis payoffs and it also
prices any x ∈ X :

E[x�(x′c)] = E
[
q′E(xx′)−1xx′c

] = q′c.

Finally by linearity we have that q(c′x) = c′q(x).
Note, however, that the discount factor is not guaranteed to be strictly

positive. For that we need to define stronger forms of the notion of absence
of arbitrage.

2.1.2. Arbitrage opportunities

Stronger forms of arbitrage opportunities can also be defined. We have two
definitions.

An arbitrage of the first kind is a portfolio θ in �N with

q · θ ≤ 0 and X T θ > 0. (2.6)

An arbitrage of the second kind is a portfolio θ in �N with

q · θ < 0 and X T θ ≥ 0. (2.7)

Examples of economies with arbitrage opportunities of the first and
second types are as follows:

Example 2.4 Suppose there are three states of the world, S = 3, and two
securities, N = 2. Let the prices of the securities be q = (1, 1)′. Let

X =
[

1 −1 1
0 −1 1

]
. (2.8)

Notice that for any vector (θ1, θ2)′ where θ1 > 0, the payoff on the portfolio
is given by

X T θ =
⎡
⎣ 1 0

−1 −1
1 1

⎤
⎦[

θ1

θ2

]
=
⎡
⎣ θ1

−θ1 −θ2

θ1 +θ2

⎤
⎦ . (2.9)

Thus, X T θ ≥ 0 only if θ1 + θ2 = 0, which is just the definition of an arbi-
trage opportunity of the first type. Hence, choosing θ1 > 0 and θ1 = − θ2,
the initial outlay for the portfolio is zero but it yields positive profits in
some state of nature.
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Example 2.5 Suppose that there are two states of the world, S = 2, and
two securities, N = 2. Let the matrix of payoffs be equal to:

X =
[

4 −4
1 −1

]
. (2.10)

Suppose that the vector of total purchases on the two assets is given by
θ = (1, −4). Then

X T θ =
[

4 1
−4 −1

] [
1

−4

]
=
[

0
0

]
. (2.11)

Notice that the payoff on the portfolio is zero in all states of nature. Let the
price of security 1 be equal to 1. As long as the price of security 2 is greater
than 1/4, the initial outlay is negative. For example, if q2 = 1, then,

q · θ = (1 1)

[
1

−4

]
= −3,

which means that the investor receives funds to hold the portfolio.
Clearly, the existence of such arbitrage opportunities cannot be consis-

tent with a security market equilibrium in which the utility function of
all agents is strictly increasing in consumption. From the definition of the
agent’s problem in the security market equilibrium, we see that an arbi-
trage of the first kind implies that a zero endowment yields a non-negative,
non-zero consumption allocation. Consider the problem in Section 1.2.1
where the consumer maximizes date 1 utility by choosing a portfolio of
assets subject to the budget constraints in (1.26) and (1.27). If

q · θ ≤ 0,

then

p̄s · cs ≤ θ · xs

is satisfied with cs > 0 for some s if X T θ > 0, which is equivalent to
θ · xs > 0 for some s.

Thus, we can show that if utility functions are strictly increasing (so
that there is at least one non-satiated consumer), an arbitrage cannot exist
in a competitive equilibrium. Recall that in a security market equilibrium,
security prices can be expressed as the discounted value of their payoffs,
where the discounting is done using a strictly positive discount factor m.
Hence, the existence of a competitive equilibrium in which agents’ utility
functions are strictly increasing implies the existence of a strictly positive
stochastic discount factor that can be used to price any payoff. In the
next section, we examine the converse statement, namely, the absence of
arbitrage implies the existence of a strictly positive state-price vector.
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2.2. E X I S T E N C E O F A S T A T E - P R I C E V E C T O R

The proof that there exists a strictly positive price vector that can be used
to price the payoffs on any security based solely on the absence of arbitrage
arguments is due to Ross [369]. In this section, we provide a simple proof
for an economy with a single date and a finite number of states.2

Define a state-price vector as a vector ψ in �S
++ with q = Xψ . Notice

that it is a strictly positive price vector that is used to assign a price to the
random payoffs paid by each security n. If a complete contingent claims
equilibrium exists, then the state-price vector is defined as the price func-
tion p. Clearly, if a state-price vector exists, then there is no arbitrage. We
can also prove the converse.

Theorem 2.2 There is no arbitrage if and only if there is a state-price vector.

P R O O F

Partition the matrix X as

X =
⎡
⎣X1

· · ·
X2

⎤
⎦ (2.12)

such that the payoffs of the first N1 securities are linearly independent with
payoff matrix X1 and the payoffs on the other N2 = N − N1 securities
are linear combinations of the first N1 securities with payoff matrix X2.
Then there exists an N2 × N1 matrix K such that X2 = KX1. Thus, we can
decompose the payoff matrix X as

X = (X T
1 , X T

1 K T )T .

Let q1 be the price vector associated with the first N1 securities and q2 the
price vector associated with the other N2 securities. Then

q = (qT
1 , qT

2 )T .

First, we prove that if there is no arbitrage, then there must be a state-
price vector ψ ∈ �S

++ such that q1 = X1ψ . Suppose not. We define

A ≡ {X1ψ : ψ ∈ �S
++} (2.13)

and

B ≡ {λq1 : λ ∈ �+}, (2.14)

2 See Kreps [287] for a proof with continuous time and a continuum of states.
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then A ∩ B is empty. It follows from the Separating Hyperplane Theorem3

that there exists a non-zero θ1 ∈ �N1 such that

λθT
1 q1 ≤ θT

1 X1ψ ∀λ ∈ �+, ψ ∈ �S
++. (2.15)

This implies that θT
1 q1 ≤ 0 and θT

1 X1 ≥ 0. Since X1 has full rank, there
is no θ1 �= 0 such that θT

1 X1 = 0 and thus we must have θT
1 X1 > 0. Let

θT = (θT
1 , 0)T , then

θT q = θT
1 q1 ≤ 0 and θT X = θT

1 X1 > 0, (2.16)

which implies that θ is an arbitrage.
Second, we prove that q2 = X2ψ , where ψ was proven to exist in the

previous paragraph. Suppose q2 �= X2ψ , then there exists a θ2 ∈ �N2 such
that θT

2 (q2 − X2ψ) < 0. Let θ1 = − K T θ2 and θT = (θT
1 , θT

2 ), then

θT X = θT
1 X1 + θT

2 KX1 = 0 and θT q = θT
2 (q2 − X2ψ) < 0.

(2.17)

Thus, θ is an arbitrage.
Therefore, we have proved that q = Xψ with ψ ∈ �S

++. Finally
it is easy to check that if a state-price vector exists, then there is no
arbitrage.

This theorem shows the existence of a strictly positive state-price vector
ψ .4 However, it says nothing about uniqueness. If N = S so that mar-
kets are complete, then we know that the state-price vector is unique, and
satisfies the equation

q = Xψ = Xp,

where p = (p1 . . . pS)′ is the vector of contingent claims prices. Hence, the
state-prices ψs may be obtained as the (unique) solution to a set of S linear
equations in S unknowns. However, if N < S, there may be many solu-
tions for ψ satisfying q = Xψ . We can interpret the solutions that are
strictly positive as state prices for some underlying complete markets econ-
omy that is differentiated by the nature of its preferences, probabilities, or
endowment process. However, given information only on a set of secu-
rities that does not span the random states, we cannot uniquely identify
the underlying economy corresponding to the strictly positive state prices.
Likewise, when N < S, some of the solutions for the state-price vector
may not be strictly positive. In the case of solutions for ψ which are not
strictly positive, that is, which have some elements that are zero or nega-
tive, then we know that there will exist arbitrage of the first or second kind.

3 See the statement of Exercise 1 in Chapter 1.
4 An alternative proof of this result relies on Stiemke’s Lemma. See LeRoy and Werner [306] or Duffie

[161].
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In other words, portfolios of securities which have strictly positive payoffs
may have zero prices or portfolios with zero payoffs in some states will
have negative prices. In general, when N < S, depending on the nature of
market incompleteness characterizing the underlying economy, the prices
attached to payoffs in different states of the world may differ from the
state prices in a complete contingent claims equilibrium. In later chap-
ters, we discuss economies with alternative forms of market incompleteness
and study the nature of the equilibrium prices and allocations that arise
in them.

2.2.1. Risk-free asset

Suppose that a risk-free asset exists, say asset 0. Such an asset has the same
payoff in all states of the world, i.e. x0,s is independent of s, or x0,s = x ∀s.
Hence, the price of such an asset today is given by

p f =
S∑

s=1

ψsx

= x
S∑

s=1

ψs. (2.18)

Otherwise, there would exist an arbitrage opportunity. For x = 1, the price
of an asset today that pays off one unit in all states of nature next period is
given by

p f =
S∑

s=1

ψs. (2.19)

Suppose p f >
∑

ψs. Then an investor could sell the security at date 0 and
receive p f . At date 1, s/he would deliver 1 regardless of the state s. Since the
cost today of delivering 1 next period regardless of the state s is

∑
s ψs, the

investor would make a profit of pf −∑
s ψs > 0. Conversely, if p f <

∑
s ψs,

investors could make a profit by buying the security at date zero for pf and
obtaining the strictly positive payoff

∑
s ψs − p f irrespective of the state

next period. A similar argument implies that the risk-free rate of return rf

is given by

r f = 1

p f

= 1∑S
s=1 ψs

. (2.20)
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2.2.2. Risk-neutral pricing

Notice that we can use the state-price vector to derive an alternative rep-
resentation of security prices. Given a state-price vector ψs, we can define
the risk-adjusted probability of state s as

π�
s = 1∑S

s=1 ψs

πs

(
ψs

πs

)

= ψs∑S
s=1 ψs

(2.21)

where πs > 0 is the probability of state s occurring. The risk-neutral or
risk-adjusted probabilities differ from the objective probabilities by incor-
porating consumers’ attitudes toward risk as captured by the state prices.
Recall that the state prices show the valuation of consumption in alterna-
tive states of nature whereas the objective probabilities show the likelihood
of each state occurring. By contrast, the risk-neutral or risk-adjusted prob-
abilities show the probability of each state occurring, adjusted for the
riskiness of that state.

We can use the risk-adjusted probabilities to express the price of security
n as

qn =
S∑

s=1

xn,sψs

= 1

r f

S∑
s=1

rf πs

(
ψs

πs

)
xn,s

= 1

rf

S∑
s=1

π�
s xn,s. (2.22)

Using the definition of the risk-adjusted probabilities, we can write this
last relation as

qn = 1

rf
E�(xn), (2.23)

where the expectation E�(·) is taken with respect to the risk-adjusted prob-
abilities π�

s for s = 1, . . . , S. This asset valuation formula says that security
prices are determined as the expected discounted value of future payoffs,
with the risk-adjusted probabilities being used to evaluate the expectation
of the random payoffs for each security n = 1, . . . , N . In this formula,
consumers’ attitudes to risk are accounted for using the risk-neutral prob-
abilities so that “pricing” turns into the problem of evaluating random
payoffs with these probabilities and discounting by the risk-free rate.
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The relation in (2.23) can be interpreted as a certainty equivalent
approach to asset pricing. In other words, E�(xn) computes the market-
adjusted certainty equivalent of the payoff xn. In general, different under-
lying economic environments will assign different certainty equivalents to
the same risk embodied in the random set of payoffs X . Equivalently, as
we have seen in Chapter 1, different preferences, endowment streams, and
probability vectors will, in general, imply a different set of state prices,
which will lead to different valuations for the same set of security payoffs
summarized by {xn,s}S

s = 1. Finally, since the price of the asset is determined
as a certainty equivalent, the time discounting is done using the risk-free
rate. This type of valuation is known as risk-neutral valuation, and it pro-
vides a convenient approach for pricing assets without having to specify
some underlying structural model of consumption and asset allocation.

Example 2.6 Suppose there are two securities and two states of the econ-
omy. Security 1 pays off 2 in state 1 and 1 in state 2 while security 2 pays
off 1 in state 1 and 2 in state 2. For simplicity, suppose that the prices are
unity for securities 1 and 2, that is, qi = 1 for i = 1, 2. The security prices
and payoffs satisfy the relation

q = Xψ ⇔
[

1
1

]
=
[

2 1
1 2

] [
ψ1

ψ2

]
. (2.24)

Since the number of securities equals the number of states, we can solve
uniquely for the state prices as

ψ =
[
ψ1

ψ2

]
= X −1q = 1

3

[
2 −1

−1 2

] [
1
1

]
=
[

1
3
1
3

]
. (2.25)

Given the state prices, the risk-adjusted probabilities are defined as

π�
1 = ψ1∑

s ψs
= 1/3

2/3
= 1

2
and π�

2 = 1

2
. (2.26)

We can also compute the risk-free interest rate for this economy as

rf = 1

pf
= 1

ψ1 + ψ2
= 3

2
, (2.27)

which implies that the (net) real interest rate is rf − 1 = 1. 5 − 1 = 0. 5.
Suppose instead that there are three states of the economy. Assume that

security 1 pays off 1 in state 3 while security 2 pays off 2. Now the payoff
matrix becomes:

X =
[

2 1 1
1 2 2

]
. (2.28)
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The state prices satisfy the set of equations:

1 = 2ψ1 + ψ2 + ψ3 (2.29)

1 = ψ1 + 2ψ2 + 2ψ3. (2.30)

Since the number of states exceeds the number of securities, there exist
multiple solutions for the state prices. Solving for ψ1 = 1−2ψ2 −2ψ3 from
the second equation and substituting the result into the first shows that any
set of ψ2 and ψ3 that satisfies the relation 3ψ2 + 3ψ3 = 1 is a solution for
the state prices. One set of strictly positive state prices that satisfies these
conditions is given by ψ1 = 1

3 , ψ2 = 1
6 and ψ3 = 1

6 . Associated with these
prices are the risk-adjusted probabilities:

π�
1 = ψ1∑

s ψs
= 1/3

4/6
= 1

2
(2.31)

π�
2 = ψ2∑

s ψs
= 1/6

4/6
= 1

4
(2.32)

π�
3 = ψ3∑

s ψs
= 1/6

4/6
= 1

4
. (2.33)

The risk-free rate for this economy is given by:

r f = (p f )−1 =
(∑

s

ψs

)−1

= 1. 5 (2.34)

as before. However, this is not the unique solution. Another set of state
prices is obtained by setting ψ3 = 0 and ψ1 =ψ2 = 1

3 . However, we know
by Theorem 2.2 that such a set of state prices would admit arbitrage.

2.2.3. The stochastic discount factor

Returning to the results of the previous chapter, we can use the existence
of the state-price vector to give an alternative representation for security
prices. For this purpose, define:

ms = ψs

πs
, (2.35)

where πs is the probability of state s. (Notice that this definition is con-
sistent with the existence of a complete contingent claims equilibrium in
which the contingent claims prices are equal to the probability-weighted
intertemporal MRS for any consumer i.)

Example 2.7 Consider the economy with two dates and two states in
Example 2.6. For the prices and payoff matrix given in Equation (2.24), the
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state prices are ψ1 =ψ2 = 1
3 . Suppose the objective probabilities of state 1

and state 2 are given by π1 = 0. 1 and π2 = 0. 9. Then the unique (strictly
positive) stochastic discount factor is

m1 = ψ1

π1
= 1/3

1/10
= 10

3
(2.36)

m2 = ψ2

π2
= 1/3

9/10
= 10

27
. (2.37)

If the state prices are not uniquely defined, there also exist multiple solu-
tions for the stochastic discount factor and some of them may not be
strictly positive.

Using the definition for ms, we can derive an expression for security
prices as

qn =
S∑

s=1

ψsxn,s

=
S∑

s=1

πsmsxn,s

= E[mxn]. (2.38)

Notice that ms is the ratio of the state price of state s to the probability
of state s; hence, it is positive because state prices and probabilities are
both positive. As before, we refer to ms as the stochastic discount factor
for state s. We note that if ms is small, then state s is “cheap” in the sense
that investors are unwilling to pay a high price to receive wealth in that
state. If we define the risk-neutral probabilities, then the price of the asset
is also proportional to the expected value of the random payoffs. However,
we note that the existence of the stochastic discount factor as defined in
Equation (2.35) does not depend on the existence of any specific asset-
pricing model but only on the absence of arbitrage opportunities.

2.3. B I N O M I A L S E C U R I T Y M A R K E T S

The concepts that we have developed in this chapter have found applica-
tion in markets that are assumed to have very simple structure. Following
Cox, Ross, and Rubinstein [129], these markets are known as binomial
security markets. In such markets, the prices or payoffs of securities are
assumed to display either “up” or “down” movements.
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2.3.1. An economy with two dates

Let’s begin with an economy with two dates, date 0 and date 1. Suppose
that there are two securities. Let one of the securities be a pure discount
bond that matures at date 1 and pays 1 at maturity. The price of the bond
at date 0 is qb(s0) = r−1 where r > 0. Let the other security be a stock or
equity and assume that at each date the equity price can move either “up”
or “down.” Hence, starting from a strictly positive initial price qe(s0), the
price of the stock at date 1 is given by

qe(s1) =
{

qe(s0)u if s1 = u
qe(s0)d if s1 = d ,

(2.39)

where u > 1 and d < 1. Notice that the one-period return on the stock
is u or d depending on the event that occurs at date 1. For simplicity, let
qe(s0) = 1. Notice that the payoff matrix denoted X at date 1 is given by

X =
[

1 1
u d

]
.

Since u > d , this matrix has full rank. Hence, the rank of the payoff
matrix equals the number of states, implying that markets are complete.
Given q(s0) = (qb(s0), qe(s0))′, we can solve for the state-prices for the states
“up” and “down” as:

p(s1) =
[

p(s0, u)
p(s0, d )

]
= X −1

[
qb(s0)
qe(s0)

]
.

Given X , the state prices have a particularly simple form as:

p(s0, u) = r − d
r(u − d )

(2.40)

p(s0, d ) = u − r
r(u − d )

. (2.41)

Now suppose that we are interested in pricing a non-traded security in
this economy. Consider an option. This is a security whose payoff depends
on the value of an underlying security, say a stock. The option has a matu-
rity date and a strike price, say K . A call option is the right to purchase
the stock at the maturity date at the strike price. Notice that the investor
will exercise the option if the price of the stock rises above the strike price.
Otherwise, the option will not be exercised. For the simple two-period
economy, the maturity date of the option is date 1, and the payoffs on the
option at date 1 satisfy:

xu = qe(s0)u − K if qe(s0)u − K > 0

xd = 0 if qe(s0)d − K < 0.
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The issue is to find the current price of the option, qo(s0).
Notice that we have solved for the state prices for this model. Since

markets are complete, the option is a redundant security in the sense that
we can achieve the payoffs associated with the option by using our bond
and stock. You can think about the option as a portfolio of one stock
bought at date 0 and K bonds shorted at date 0, which pays only if the
state is “up.” Hence, its price at date 0 is just the sum of its date-1 payoffs
times the state prices for date 1 events:

qo(s0) = [qe(s0)u − K ] · r − d
r(u − d )

+ 0 · u − r
r(u − d )

= [qe(s0)u − K ]
r − d

r(u − d )
. (2.42)

Recall that we can give an alternative representation for the price of
the option by making use of the risk-adjusted probabilities defined in
Equation (2.21) as:

π� = p(s0, u)

p(s0, u) + p(s0, d )
= r − d

u − d

1 − π� = p(s0, d )

p(s0, u) + p(s0, d )
= u − r

u − d
.

Notice that the risk-adjusted probabilities sum to unity:

π� + (1 − π�) = r − d
u − d

+ u − r
u − d

= u − d
u − d

= 1.

Given the risk-adjusted or risk-neutral probabilities, we can price a risky
asset such as a derivative instrument using risk-neutral valuation, whereby
the price of the derivative today is determined as the expected discounted
value of its future payoffs. The discounting is done by the risk-free rate.
Hence, we can equivalently obtain its price at date 0 as:

qo(s0) = 1

r

[
π�xu + (1 − π�)xd

]
,

which is the same expression as in Equation (2.42).
Recall that under risk-neutral valuation, the return on all assets should

equal the risk-free rate of return r. The return on the stock or equity
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Figure 2.1. Three-period binomial tree

is given by re(s1) = qe(s1)/qe(s0). Using the risk-neutral probabilities, the
expected return of the stock price at date 1 is:

E�[re(s1)] = [
π�u + (1 − π�)d

]
=
[

r − d
u − d

u + u − r
u − d

d
]

= r, (2.43)

which equals the risk-free rate as claimed.

2.3.2. A multi-period economy

Now suppose there are T dates and at each date t there are only two possi-
ble states: “up” or “down.” Let the variable st denote the state at t. Hence, st
can take on the values “up” or “down.” We can define an event at date t as
the sequence of “up”s and “down”s that have been realized up to that date,
st = (s0, s1, . . . , st)′. Let S t denote the set of possible events at t. Figure 2.1
provides a representation of the event st in terms of an event tree.
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Let us continue to assume that there are two securities that can be
traded in this economy, a pure discount bond maturing at date T and
a stock whose price can move “up” or “down” in each period. The bond
has a payoff of 1 at date T , and its price along the event tree is defined
as qb(st) = r−(T−t). Assume that the price of the stock at date 0 is 1, that
is, qe(s0) = 1. Recall that the price of the stock can move either up or
down in each period. Hence, starting from its initial price, its price in
an event st such that the number of “down”s between period 0 and t is n is
given by:

qe(st) = ut−ndn, 0 ≤ n ≤ t.

Using the same reasoning the payoff on the stock at the terminal date is
just equal to its price at that date and equal to uT−ndn in the event sT that
the number of “down”s is n.

This type of economy allows us to consider the notion of dynamically
complete economies.5 Notice at each date t there are 2t events st depending
on the sequence of “up”s and “down”s that has occurred up to that date.
In a complete markets setting, agents can trade claims at date 0 to achieve
consumption conditional on any event st occurring at date t. In Chapter 7,
we discuss further economies with multi-period contingent claims such
that there exist time-0 prices for consumption contingent on the event st

occurring at t. In that chapter, we will also consider the equivalence of
equilibria with trading at time 0 in a full set of complete contingent claims
versus sequential trading in an alternative set of assets.

In this chapter, we consider a related but slightly different issue, namely,
under what conditions we can replicate the contingent claims prices at each
date t conditional on the history st by trading sequentially in a given set
of securities. In other words, when can we “complete” a security market
by such sequential trades? It turns out that the answer depends on how
well the payoffs on the existing set of securities “span” the set of states at
each date. Let p(st) denote the time t price of a history of shocks denoted
st .6 To see how we can generate a set of strictly positive event prices by
sequential trades in the existing securities at each date, consider the strategy
of purchasing security at date t and selling it at date t + 1. The payoff on
this strategy for any security with price q(st) at t is given by q(st+1)+x(st+1).

5 This issue is analyzed more generally by LeRoy and Werner [306] and by Duffie [161]. The latter
author also considers the issue of dynamic spanning in economies with infinite-dimensional state
spaces.

6 In the parlance of Chapter 7, these prices will correspond to the contingent claims prices with
sequential trading. The time-0 contingent claims can be obtained as the product of these prices,
starting from p(s0) = 1.
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If contingent claims prices exist, it must be the case that the value of this
strategy is given by:

−p(st)q(st) +
∑

st+1∈St

p(st+1)
[
q(st+1) + x(st+1)

] = 0, (2.44)

starting from any p(s0) = 1. Otherwise, there would exist an arbitrage
opportunity. For the simple binomial model, we have two securities – a
bond and a stock. Using the expressions for the prices in each event st and
st+1, the condition for the bond is:

p(st)r−(T−t) = r−(T−(t+1))p(st , u) + r−(T−(t+1))p(st , d ),

where p(st , u) and p(st , d ) denote the events at t + 1 such that the history
of “up”s and “down”s is summarized by the history st up to period t and
either “up” (u) or “down” (d ) occurs at t + 1. We can simplify this further
as:

p(st) = rp(st , u) + rp(st , d ). (2.45)

For the stock, the relevant condition is:

p(st)ut−ndn = ut+1−ndnp(st , u) + ut−ndn+1p(st , d ), 0 ≤ n ≤ t,

or

p(st) = up(st , u) + dp(st , d ). (2.46)

Now stack the resulting conditions in equations (2.46) and (2.47) as:[
p(st)
p(st)

]
=
[

r r
u d

] [
p(st , u)
p(st , d )

]
. (2.47)

Notice immediately that we can solve for the vector of event prices
p(st+1) = (p(st , u), p(st , d ))′ starting from p(s0) = 1 if and only if the rank
of the payoff (or equivalently, return) matrix for the existing securities is
equal to the number of states. Since u > d , this condition is satisfied for
the binomial model. Using the relation in Equation (2.47), we can find
the event prices for each st such that the number of “down”s preceding t
is n by:

p(st
n) =

[
u − r

r(u − d )

]n [ r − d
r(u − d )

]t−n

, 0 ≤ n ≤ t. (2.48)

The event prices are strictly positive if u> r > d , which requires the
risk-free rate is between the high and low returns on the stock.

We can also price an option using the state prices or equivalently, the
risk-neutral probabilities along the event tree. Recall that the number of
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events with n “down”s between dates 0 and T is given by
(

T
n

)
. Hence, the

price of an option at date 0 that matures at date T is given by:

qo(s0) =
T∑

n=0

(
T
n

)
max (uT−ndd − K , 0)p(st

n). (2.49)

Example 2.8 Suppose there are four dates, 0, 1, 2, 3, and at each date
t there are two states. There are two securities that can be traded in this
economy, a pure discount bond maturing at date 3 and a stock whose price
can move “up” or “‘down” in each period. The price of the stock at date
0 is $20, that is qe(s0) = 20. In the first period, from date 0 to 1, the stock
price can go up by 10% and go down by 10%. Over time, the stock price
volatility decreases so that “up” and “down” movements are expected to be
8% for the second period and 5% for the last period. The risk-free interest
rate is 1% per period. The investor holds 100 units of the bond.

We will use the binomial model of securities markets to find the value
of a European call option with a strike price of $21 that will expire at
date 3. First, we will calculate the evolution of the stock price given the
assumptions above. In the first period, the stock price can increase by 10%
or decrease by 10%, leading to the two nodes of $22 or $18. In the second
period, it can now increase or decrease by 8%. Thus, if the stock price was
$22 and it increased in the second period, we obtain the node of $23.76
and so on. To price the option, we need to find the final nodes for which
the option has a positive payoff. Since the call option gives the holder
the right to buy the stock at the exercise price, the call option will have
a positive payoff when the stock price at t = 3 is greater than the exercise
price. With an exercise price of $21 for the option, Table 2.1 shows that
there are only three final nodes in which the option will be exercised. These
nodes correspond to the histories (s0, u, u, u)′, (s0, u, u, d )′, and (s0, u, d , u)′.
Denote the payoffs for these histories by:

x(s0, u, u, u) = 24. 948 − 21 = 3. 948

x(s0, u, u, d ) = 22. 572 − 21 = 1. 572

x(s0, u, d , u) = 21. 252 − 21 = 0. 252

Finding the state prices for the set of histories that leads to these nodes is
enough to determine the current price of this option.

Here we will use a backwards solution to solve for the relevant state-
prices using (2.47). Recall that the state price at each date “discounts” the
future payoffs to the current price of an asset, that is,

q(st) = x(st , u)p(st , u) + x(st , d )p(st , d ) (2.50)
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Table 2.1. An economy with four dates and two states

Option 
payoff 

t = 0 t = 1 t = 2 t = 3 

24.948 

22.572 
23.76 

22 

20.24
0.252 

19.228 0 

0 

0 

0 

0 

20.412 

18.468 

17.388 

15.732 
16.56 

19.44 

18 

20 

21.252 

3.948 

1.572 

for any asset, where st denotes the history at date t. At time 1, the possible
histories of the shocks are (s0, u)′ and (s0, d )′. Denote the prices associated
with these histories by p(s0, u) and p(s0, d ). These state prices satisfy the
following conditions:

101p(s0, u) + 101p(s0, d ) = 100

22p(s0, u) + 18p(s0, d ) = 20,

where the (gross) payoff on the bond that is worth $100 at time 0 is $101
at time 1, and likewise the (gross) payoffs on the stock that is worth $20 at
time 0 are $22 and $18, respectively. The solution is

p(s0, u) = 0. 5446, p(s0, d ) = 0. 4455. (2.51)

In the second period, we are interested only in the histories (s0, u, u)′ and
(s0, u, d )′. The state prices for these histories satisfy:

102. 01p(s0, u, u) + 102. 01p(s0, u, d ) = 101

23. 76p(s0, u, u) + 20. 24p(s0, u, d ) = 22

The solution is

p(s0, u, u) = 0. 5538, p(s0, u, d ) = 0. 4368. (2.52)
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For the third period, we are interested in the histories (s0, u, u, u)′,
(s0, u, u, d )′, (s0, u, d , u)′, and (s0, u, d , d )′. The state prices for these his-
tories satisfy:

103. 03p(s0, u, u, u) + 103. 03p(s0, u, u, d ) = 102. 01

24. 948p(s0, u, u, u) + 22. 572p(s0, u, u, d ) = 23. 76

and

103. 03p(s0, u, d , u) + 10. 03p(s0, u, d , d ) = 102. 01

21. 252p(s0, u, d , u) + 19. 228p(s0, u, d , d ) = 20. 24

which yield:

p(s0, u, u, u) = p(s0, u, d , u) = 0. 594, (2.53)

p(s0, u, u, d ) = p(s0, u, d , d ) = 0. 396. (2.54)

So, the price of the call option at t = 1 and conditional on the event s0, u,
is given by:

qc(s0, u) = p(s0, u, u)qc(s0, u, u) + p(s0, u, d )qc(s0, u, d )

= p(s0, u, u)[x(s0, u, u, u)p(s0, u, u, u) + x(s0, u, u, d )p(s0, u, u, d )]

+ p(s0, u, d )[x(s0, u, d , u)p(s0, u, d , u) + x(s0, u, d , d )p(s0, u, d , d )]

= 0. 5538 [3. 948(0. 594) + 1. 572(0. 396)] + 0. 4368 [0. 252(0. 594)]

= 1. 7088.

Discounting back the price at time 1, the price of the option at time 0 is

qc(s0) = p(s0, u)qc(s0, u) = 0. 5446(1. 7088)

= 0. 9306. (2.55)

We can also find the value of a American call option with a strike
price of $21 that will expire at date 3. [American options give the right
to exercise the option early so that the holder of the option can buy or
sell (depending on the type of the option) the underlying stock before
the option expires, whereas European options can be exercised only at the
maturity.] Note that the European and American call options have the
same current value because early exercise is never profitable compared
with the value of waiting. In order to see this, one should compare the
value of the option and its payoff at all nodes of the tree. Notice that
in states (s0, u) and (s0, u, u), exercising the option has a positive payoff
since qe(s0, u) = 22> 21 and qe(s0, u, u) = 23. 76> 21. However, the value
of waiting until the option expires is greater than instantaneous exercise.
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To see this, notice that for t = 2 in state s0, u, u, the value of early exercise
is 23. 76 − 21 = 2. 76, which is smaller than the value of waiting, given by
[3. 948(0. 594)+ 1. 572(0. 396)] = 2. 9676. Similarly, the value of the option
at time t = 1 in state s0, u is 1.7088, whereas exercising this option at this
point will give a payoff of 22−21 = 1, which is smaller than waiting. In this
example, there is no node at which early exercise is preferred to waiting so
that the value of the European option is equal to that of the American.

2.4. C O N C L U S I O N S

In this chapter, we showed that the existence of a strictly positive discount
factor can be derived from relatively weak assumptions, namely, various
assumptions regarding the absence of arbitrage in securities markets. We
also showed that the existence of the discount factor does not depend on
the assumption of complete markets. Under incomplete markets, however,
while a strictly positive discount factor can be shown to exist, it is not
unique. In Chapter 1, we characterized the pricing function for economies
with a complete set of contingent claims by studying the equilibrium for
those economies explicitly. In later chapters, we will illustrate the pricing
function for economies with incomplete markets. In this chapter, we have
abstracted from other frictions such as bid-ask spreads or short sales con-
straints. We discuss the impact of these factors in Part IV where we consider
transactions costs.

This chapter also serves to illustrate the role of the absence of arbitrage
in securities markets more generally. The approach that we have outlined
here has found much use in the pricing of derivative instruments such as
forward and future contracts and options. Absence of arbitrage arguments
has also been used to develop an asset-pricing approach by putting further
structure on the payoffs of primary assets, which are assets in net positive
supply to the public, or equivalently which are part of the market portfo-
lio. We discuss this approach, which has become known as the arbitrage
pricing theory (APT), in Chapter 4 alongside another well-known asset-
pricing model, the capital asset-pricing model (CAPM). The notions of
the absence of arbitrage that we have developed in this chapter will prove
useful when analyzing the implications of these models for pricing a variety
of assets.

2.5. E X E R C I S E S

1. Suppose there is one date and two states in the economy. The traded
securities are two stocks. The current prices of the stocks are given by
q = (q1, q2)′ = ($80, $88)′ and their prices next period for each possible
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state satisfy:[
$120 $80
$160 $60

]
.

A replicating portfolio is a portfolio which allows us to obtain a given
set of payoffs in the existing states of nature.
(a) What is a replicating portfolio that will yield $100 in each state of

nature?
(b) What is the value of this portfolio today? What is the risk-free rate

in this economy?
(c) Find the state prices and the risk-neutral probabilities.
(d) A put option gives the owner the right to sell a stock at a given strike

price. Find the value of a put option today written on the second
stock with an exercise price of $80.

2. Suppose there is one date and three states of nature. Suppose also that
there exists a portfolio of stocks that has the payoffs 5, 8, and 15 in the
three states. Such a portfolio is sometimes known as a state index security.
(a) Show how you can complete this market with the addition of two

options. What are the exercise prices of the options?
(b) Assume that there are two individuals in the economy. Individual 1

receives the endowments (1, 0, 1) in the three states and individual
2 receives the endowments (1, 1, 0). Can consumers insure against
endowment risk? If so, which asset allocation should each individual
make to achieve this?

(c) Now suppose that there are six states of the economy. The overall
economic conditions may be “good,” “normal,” or “bad.” Depend-
ing on overall conditions, individuals receive two different values of
their endowment, high (H ) or low (L). Let s denote the aggregate
state of the economy, and let j denote the individual state. Hence,
individual i receives the endowment ωi

j,s for s = 1, 2, 3 and j = 1, 2.
Suppose that the portfolio of stocks pays off the amounts xs in each
aggregate state, regardless of the realization of the individual states.
Can individuals insure against endowment risk in this economy?

3. A collateral constraint is a constraint to ensure that an investor’s endow-
ment is sufficient to cover the value of his borrowings (or short sales) in
a given state of nature. Suppose there are S states of the economy and
J traded securities. The agent’s endowment in state s is denoted ωs. Let
xj,s denote the payoff on the jth security in state s. Purchases (or sales) of
the first J ′ securities are subject to a collateral constraint as:

θjxj,s + fjωs ≥ 0, j ∈ J ′,

where fj is a number strictly between 0 and 1.
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(a) Show that the collateral constraints can equivalently be written as
short sales constraints restricting the holdings of security j as:

θj ≥ −bj, j ∈ J ′.

(b) Assume that there are three states of nature, and suppose that one of
the securities that is subject to a short sales constraint is a stock.
Assume that the payoff on the stock is its price in the different
states with x1,1 = $80, x1,2 = $100, and x1,3 = $125. Let ω1 = $500,
ω2 = $1, 500, and ω3 = $5, 000. What is the maximum amount of
borrowing that the investor can engage in at date 0?

4. Short Sales Constraints and the Law of One Price
There are two countries, Home and Foreign, in the world economy.

Representative agents in these countries both maximize their two-period
lifetime utilities, where there are two states of nature in the second
period. The expected lifetime utility of each representative agent is
given by:

Ui = ln (ci
1) + β

2∑
s=1

π (s) ln[ci
2(s)] for i = 1, 2.

Agents are able to trade Arrow-Debreu securities for consumption in
each state. The budget constraint for the first period is given by:

p(1)zi(1) + p(2)zi(2) + p(3)zi(3) = yi
1 − ci

1, i = 1, 2,

and for the second period:

ci
2(s) = yi

2(s) + zi(s) + zi(3), s = 1, 2,

where zi(s) denotes the number of claims that country i holds for con-
sumption in state s and zi(3) denotes the holdings of a risk-free asset that
pays off one unit of consumption in each state. The output of each coun-
try in each period is y1 = (2, 4, 0) for Home and y2 = (2, 0, 4) for Foreign.
Assume that states are equally likely such that π (1) =π (2) = 1/2 and
β = 3/4.
(a) Suppose that there are no frictions in this economy (i.e. short sales

constraints, transaction costs, etc.). Find the equilibrium consump-
tion allocations and prices that solve each representative agent’s
maximization problem.

(b) Now, assume that agents are subject to short sales constraint such
that zi(s) ≥ − 1. Show that under the short sales constraint, the law
of one price does not hold.

5. Put-call parity
A European call option gives the holder the right to buy one share of a
stock for a certain price denoted the strike price or exercise price X at
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the maturity date T . A European put option gives the holder the right
to sell one share of the stock for X at the maturity date T . Let c denote
the price of the call option and p denote the price of the put option at
date t and let r denote the real risk-free return on cash holdings.

Consider the following two portfolios:
• Portfolio A: one European call option plus an amount of cash equal

to X /rT−t .
• Portfolio B: one European put option plus one share.

Show that the price of the call and put options are related as:

c + X /rT−t = p + St , (2.56)

where St denotes the share price.



C H A P T E R 3

Expected utility

In a stochastic environment, consumer preferences reflect their attitudes
toward risk. These attitudes affect equilibrium asset prices and the nature
of the equilibrium allocations. In this chapter, we describe expected utility
preferences, which are additive across possible states of the world. We also
define alternative measures of risk aversion and show their relationship to
consumers’ optimal portfolio choices.

Alternative utility functions imply different attitudes to risk by con-
sumers. We examine the implications of risk aversion for a commonly used
set of utility functions. We also discuss such concepts of increasing risk as
stochastic dominance and a mean-preserving spread. These notions make
precise the idea that a given situation under uncertainty is more risky rela-
tive to another, and allow us to examine the impact of increases in risk on
consumer choices.

3.1. E X P E C T E D U T I L I T Y P R E F E R E N C E S

The vast majority of consumer choice under uncertainty assumes expected
utility maximization by consumers. In our previous analysis, we merely
postulated the existence of expected utility preferences.

3.1.1. Some definitions

Expected utility preferences may be derived in an axiomatic way in a man-
ner that is similar to the derivation of standard utility functions. According
to the approach followed by von Neumann and Morgenstern [439], agents
are assumed to have preferences over lotteries which are specified in terms
of a set of payoffs and their probabilities. Under an alternative deriva-
tion of expected utility preferences due to Savage [386], the choices are
modeled over state-contingent outcomes directly and the existence of the
probabilities together with the utility function forming the expected util-
ity representation are derived based on an axiomatic approach. Hence, this
latter approach allows the subjective beliefs of agents to differ from some
objectively defined probabilities.

51
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We start with a definition. Suppose there are S states of nature, and
denote by π = (π1, . . . ,πS)′ with πs ≥ 0 and

∑S
s = 1 πs as the associated

probability distribution on S.

Definition 3.1 A function u : �S
+ →� provides an expected utility

representation for preferences if for any state-contingent consumption vector
c ∈�S

+, c is preferred to c′ if and only if E[u(c)] = ∑S
s = 1 πsu(cs) ≥ E[u(c′)]

= ∑S
s = 1 πsu(c′

s).

This definition shows that expected utility preferences are state indepen-
dent: that is, expected utility E[u(c)] depends on cs only through the
probability distribution πs, and not through any changes in the underlying
utility index u as a function of the state s.

The expected utility model implies that for a given set of prizes, indif-
ference curves are linear in the underlying probabilities. By construction
of expected utility, u( · ) is an increasing and continuous function. Sup-
pose that there are three prizes, c1, c2, c3. Then the indifference curve is
given by:

ū =
3∑

i=1

πiu(ci) = π1u(c1) + (1 − π1 − π3)u(c2) + π3u(c3),

where we have imposed the fact that
∑3

i = 1 πi = 1. This can be written as

π3 = u(c2) − u(c1)

u(c3) − u(c2)
π1 + ū − u(c2)

u(c3) − u(c2)
. (3.1)

Under the assumption that u( · ) is an increasing function, the slope of the
indifference curve is positive so that the direction of increasing preference
in Figure 3.1 is northwest.

Next, consider the relation between indifference curves and iso-expected
lines in terms of the underlying probabilities. Considering the same three
prizes as before, these are given by

c̄ = π1c1 + (1 − π1 − π3)c2 + π3c3,

or

π3 = c2 − c1

c3 − c2
π1 + c̄ − c2

c3 − c2
. (3.2)

Consider a change in the probabilities that leaves the expected value c̄ the
same but increases the probabilities of the first and third outcomes. This is
known as a mean-preserving spread, and it is an example of an increase in
risk in the sense of Rothschild and Stiglitz [374, 375]. Such a shift implies
a northeast move along the iso-expected value line. If u11 < 0 so that the
function u( · ) is concave, then its indifference curve will be steeper than
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1

1

π3

π1

u =
3

Σ
s = 1

πsu (cs)
––

Figure 3.1. Expected utility indifference curves

the iso-expected line, and conversely if u11 > 0 so that u( · ) is convex. That
is, whenever c1 < c2 < c3,

u(c2) − u(c1)

u(c3) − u(c2)
>

c2 − c1

c3 − c2
if u( · ) is concave,

and conversely if u( · ) is convex. Thus, such increases in risk will lead to
lower (higher) utility if u( · ) is concave (convex). We discuss the impact of
increases in risk further in Section 3.3.

One of the most important axioms for deriving expected utility based on
this approach is the independence axiom, which says that it is the utility of
the subsequent reward that matters and not the mechanism for obtaining
it. When this axiom is violated, the indifference curves become non-linear
in the underlying probabilities. This axiom has been the source of several
challenges to expected utility theory. One set of challenges derives from
experimental evidence on individuals’ choices over alternative lotteries.
The famous challenge is known as the Allais paradox based on Allais [14].
Consider an individual who faces the prospect of three different monetary
prizes as:

First prize : $2, 500, 000

Second prize : $500, 000

Third prize : $0.
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Suppose the decision-maker is confronted with the following choices:
choose $500,000 with certainty or face the lottery which yields $2,500,000
with probability 0.1, $500,000 with probability 0.89 and 0 with proba-
bility 0.01. We can represent these choices as choices between the lotter-
ies L1 = (0, 1, 0)′ and L′

1 = (0. 1, 0. 89, 0. 01)′. The second choice involves
choosing between another set of lotteries: choose between receiving
$2,500,000 with probability 0.1 and 0 with probability of 0.9 or receiving
$500,000 with probability 0.11 and 0 with 0.89. We can represent these
lotteries as: L2 = (0. 1, 0, 0. 9) and L′

2 = (0, 0. 11, 0. 89).
In an experimental context, it is common for individuals to choose L1

over L′
1, that is, choosing the sure prize of $500,000 over a lottery with

a slightly greater expected reward, and L2 over L′
2, that is, choosing the

possibility of a very large gain over the possibility of a gain that is five
times less with a slightly higher probability. However, it turns out these
choices are inconsistent with expected utility theory. To show this, suppose
that there is a von Neumann–Morgenstern expected utility function u( · ).
Let u25, u05, and u0 denote the utility associated with the three outcomes.
Notice that L1 being preferred to L′

1 implies that the following must hold:

u05 > 0. 1u25 + 0. 89u05 + 0. 01u0.

Now add the quantity 0. 89u0 − 0. 89u05 to both sides of this relation:

0. 89u0 + 0. 11u05 > 0. 1u25 + 0. 9u0,

implying that if the expected utility model is correct, L′
2 should be preferred

to L2. However, the experimental evidence indicates that when confronted
with two different lotteries in which the non-zero reward in one is five-
fold higher than the other lottery but the probability of gain is negligibly
lower, individuals opt for the lottery with the higher prize. One way of
interpreting these results is that it is not just the lottery over an outcome
that governs individual choices but rather considerations outside of the
domain of expected utility analysis, such as the regret of having passed up
the sure reward of a large sum in the first case whereas no such considera-
tions exist in the second case. Machina [329] discusses the evidence against
the expected utility model. Chew [102] and Dekel [144] derive a class of
non-expected utility preferences that does not rely on the independence
axiom. With non-expected utility preferences, the indifference curves in
the underlying probability space become non-linear. (See Exercise 4.)

3.2. R I S K A V E R S I O N

Suppose we establish a gamble between two prospects, ε1 and ε2. Let the
gamble be represented by the random variable ε̃ such that the gamble yields
ε1 units of wealth with probability p and ε2 units with probability (1 − p).



Expected utility 55

The question is whether the consumer will prefer the actuarial value of the
gamble (or its expected average value) with certainty or the gamble itself.

The actuarial value of the gamble is its expected value:

E(ε̃) = pε1 + (1 − p)ε2. (3.3)

An actuarially fair gamble satisfies

E(ε̃) = pε1 + (1 − p)ε2 = 0, (3.4)

which requires that p/(1 − p) = − ε2/ε1.
Suppose that the consumer has a strictly increasing and continuous

utility function U defined on wealth W .1 Using the definition of the actu-
arially fair gamble, the expected utility of receiving W plus the expected
value of an actuarially fair gamble is:

U [W + E(ε̃)] = U [W + pε1 + (1 − p)ε2].

We say that a consumer is strictly risk averse (risk loving) if she is unwilling
(prefers) to accept an actuarially fair gamble. When the consumer is risk
averse (risk loving), the utility of receiving the sure thing W + E(ε̃) is
greater (less) than the utility of receiving W + ε1 with probability p and
W + ε2 with probability 1 − p:

U [W + E(ε̃)] > (<)pU (W + ε1) + (1 − p)U (W + ε2). (3.5)

Under the assumption that the utility function has only one argument,
strict risk aversion (risk loving) implies that the utility function is strictly
concave (convex).

We can use Jensen’s Inequality to show the converse, namely, that con-
cavity (convexity) of the utility function implies risk aversion (risk loving).

Definition 3.2 Jensen’s Inequality: For a random variable x with mean E(x)
and a concave (convex) function g( · ),

E[g(x)] < g[E(x)] (E[g(x)] > g[E(x)]).

Because U is concave (convex), it follows that

E[U (W + ε̃)] < (>)U [W + E(ε̃)] = U (W ). (3.6)

1 The monotonicity of the utility function reflects stochastic dominance preference, which is the stochas-
tic analogue of “more is better than less.” A lottery is said to stochastically dominate another lottery
if it is obtained from the first by shifting the probability from lower to higher outcomes. We discuss
this notion further in the next section.
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Figure 3.2. Attitudes toward risk

Hence, under the assumption that utility is a function of a single argument,
strict concavity (convexity) implies that the agent is risk averse (risk loving),
using Jensen’s Inequality. If

E[U (W + ε̃)] = U [W + E(ε̃)] = U (W ), (3.7)

then we say the consumer is risk neutral. Figure 3.2 shows that when
U [W ] is strictly concave (convex), U [E(W )] is strictly greater (less) than
E[U (W )].

3.3. O N E - P E R I O D E X P E C T E D U T I L I T Y A N A L Y S I S

A consumer has a choice of holding a risk-free asset with a constant return
of rf and a risky asset with a return of r, where r is a random variable with
mean μ and variance σ 2. Assume that μ= r f .
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Suppose that there are two possible outcomes r1 and r2 with probabilities
π1 and π2. Then, for a fair gamble,

E(r − rf ) = π1(r1 − rf ) + π2(r2 − rf ) = 0.

For future reference, we can also calculate the variance of the return as

V (r) = E[r − E(r)]2

= π1(r1 − μ)2 + π2(r2 − μ)2 = σ 2.

Consider the decision regarding whether to take part in the fair gamble
or not, i.e. whether to hold the risky asset versus the risk-free asset, where
E(r) − r f = 0. Suppose the consumer’s initial wealth is W0.
• If the consumer holds the risk-free asset, then end-of-period wealth is

W1 = W0(1 + rf ), and

E(W1) = W0(1 + rf ) and V (W1) = 0.

• If the consumer holds the risky asset, then W1 = W0(1 + r), and

E(W1) = W0[1 + E(r)] and V (W1) = W 2
0 V (r).

Suppose the investor’s objective is to maximize the expected utility of
wealth, E[U (W )]. The expected utilities from the alternative investment
strategies are

E[U (W )] =
{

U [W0(1 + rf )] if invest in the risk-free asset
E[U (W0(1 + r))] if invest in the risky asset.

We can approximate U (x) around x0 = E(x) as

U (x) ≈ U (x0) + (x − x0)U ′(x0) + (x − x0)2

2
U ′′(x0).

Consider x = W1 = W0(1 + r), and approximate around x0 = E(x). Taking
expectations of both sides yields

E[U (W1)] = U [W0(1 + rf )] + W0E(r − rf )U ′[W0(1 + rf )]

+ W 2
0 E(r − rf )2

2
U ′′[W0(1 + rf )]

= U [W0(1 + rf )] + W 2
0

V (r)

2
U ′′[W0(1 + rf )]

< U [W0(1 + rf )], (3.8)

if U ′′ < 0. This result shows that the expected utility of the gamble is
less than the utility of the risk-free asset if investors are risk-averse. If
U ′′ = 0, we say that the investor is risk neutral, in which case the investor
is indifferent between taking the gamble and the risk-free strategy.
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3.3.1. The risk premium

Consider a slightly more general setup such that the consumer’s end-of-
period wealth can take on s = 1, . . . , S values. Let Ws denote the consumer’s
wealth if state s occurs and define

ε̃ ≡ Ws − E(Ws)

as the difference between the realized and expected value of wealth.
Implicitly define the quantity ρ > 0 by

U [E(Ws) − ρ] = E[U (Ws)]. (3.9)

Intuitively, ρ measures the amount by which certain wealth must be
decreased to attain the same expected utility when wealth is risky, or the
risk premium.

Expand both sides of the equation around E(Ws). For the left side, we
obtain

U [E(Ws) − ρ] ≈ U [E(Ws)] − ρU ′[E(Ws)]. (3.10)

For the right side, we approximate U (W ) around E(Ws) by making use of
the definition of ε̃ and take expectations of the resulting expression as

E[U (Ws)] ≈ E
{

U [E(Ws)] + ε̃U ′[E(Ws)] + 1

2
ε̃2U ′′[E(Ws)]

}
= U [E(Ws)] + 1

2
E(ε̃2)U ′′[E(Ws)] (3.11)

since E(ε̃) = 0. Noting that E(ε̃2) = Var(Ws), setting these approximations
equal and solving for ρ, we have

ρ = Var(Ws)

2

(
−U ′′[E(Ws)]

U ′[E(Ws)]

)
. (3.12)

Thus, the risk premium ρ will be larger a) the larger is Var(Ws), and b)
the larger is the curvature of the utility function. Note that for a risk-
neutral investor, U ′′ = 0 and ρ = 0. If the risk premium is measured as a
proportion of wealth, then we obtain the relationship

ρ� = Var(Ws)

2

(
−WsU ′′[E(Ws)]

U ′[E(Ws)]

)
. (3.13)

3.3.2. Measures of risk aversion

We can use the expression for the risk premium to define alternative mea-
sures of risk aversion. In Equation (3.12), the coefficient of absolute risk
aversion A(W ) is defined as

A(W ) = −U ′′(W )

U ′(W )
. (3.14)
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The quantity A measures risk aversion for a given level of wealth. The
measure of absolute risk aversion will most likely fall as wealth increases.
For example, a $1000 gamble would be trivial for a billionaire, but a poor
person would be very averse toward it. For U concave and increasing,
A(W ) ≥ 0. Absolute risk aversion is:
• decreasing if A′(W ) < 0,
• constant if A′(W ) = 0,
• increasing if A′(W ) > 0.

Differentiating A(W ) with respect to W , we find that

dA(W )

dW
= (U ′′(W ))2 − U ′′′(W )U ′(W )

(U ′(W ))2
. (3.15)

Hence, the third derivative of the utility function determines whether abso-
lute risk aversion is decreasing, constant, or increasing. If U ′′′ > 0 and
(U ′′(W ))2 < U ′′′(W )U ′(W ) so that A′(W ) < 0, the implication is that
as an agent’s wealth increases, her aversion to risk decreases, which is intu-
itively plausible. This is a measure that was first defined by Arrow [32]. The
properties of the coefficient of absolute risk aversion are described by Pratt
[362].

We can multiply the coefficient of absolute risk aversion by wealth to
obtain the coefficient of relative risk aversion R(W ) as

R(W ) ≡ −U ′′(W )W
U ′(W )

. (3.16)

The coefficient of relative risk aversion implies that an individual may have
constant risk aversion to a proportionate loss in wealth even though abso-
lute risk aversion decreases. We can derive this function using the same
steps described above by considering risks ε̃ that are measured as a pro-
portion of assets. As in the case of absolute risk aversion, relative risk
aversion is:
• decreasing if R′(W ) < 0,
• constant if R′(W ) = 0,
• increasing if R′(W ) > 0.

We can examine attitudes toward risk implied by various utility func-
tions as follows:
1. Quadratic utility:

U (W ) = aW − bW 2 for W ≤ a/2b. (3.17)

A(W ) = −U ′′(W )

U ′(W )
= − −2b

a − 2bW
= 2b

a − 2bW
> 0,

and

R(W ) = −WU ′′(W )

U ′(W )
= − −2bW

a − 2bW
= 2bW

a − 2bW
> 0.
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Thus, both the measure of absolute risk aversion and relative risk aver-
sion are increasing in wealth, which does not make intuitive sense. For
example, an individual with increasing R(W) would be more averse to
a proportionate loss in wealth as wealth increases. Thus, a billionaire
who loses half his wealth would lose more utility than someone who
started out with $20,000 and lost $10,000.

2. Power utility:

U (W ) = W 1−γ − 1

1 − γ
, γ ≥ 0. (3.18)

Now we have that

A(W ) = −−γW −γ−1

W −γ
= γ

W
,

and

R(W ) = −−W γW −γ−1

W −γ
= γ .

Now we have that the measure of absolute risk aversion is decreasing in
wealth, and the coefficient of relative risk aversion is constant. This is
consistent with evidence obtained using data on individuals’ portfolios,
which shows that absolute risk aversion is decreasing and the relative
risk aversion is around 2.

3. Logarithmic utility:

U (W ) = ln (W ). (3.19)

We obtain using L’Hospital’s Rule as

lim
γ→1

[
W 1−γ − 1

1 − γ

]
= lim

γ→1

[−W 1−γ ln (W )

−1

]
= ln (W ).

For the logarithmic utility function,

A(W ) = −−1/W 2

1/W
= 1

W
,

and

R(W ) = −−1/W
1/W

= 1.

This demonstrates that the results for the log utility function follow as
a special case for the power utility function.
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4. Negative exponential:

U (W ) = − exp ( − θW ), θ > 0. (3.20)

A(W ) = −−θ 2 exp ( − θW )

θ exp ( − θW )
= θ ,

R(W ) = −−W θ 2 exp ( − θW )

θ exp ( − θW )
= θW .

Whereas the power utility function displays constant relative risk
aversion, the negative exponential has constant absolute risk aversion.

5. Hyperbolic absolute risk aversion (HARA):

U (W ) = 1 − σ

σ

[
αW

1 − σ
+ β

]σ
, α > 0,β > 0, 0 < σ < 1.

(3.21)

A(W ) = α

(αW )/(1 − σ ) + β
,

R(W ) = αW
(αW )/(1 − σ ) + β

.

All of the utility functions are special cases of the HARA class. We
obtain the quadratic utility function for σ = 2, the negative exponential
for σ = − ∞ and β = 1, power utility with β = 0 and σ = 1 − γ < 1,
and logarithmic utility with β = σ = 0. The HARA class of preferences
admit conditions for the exact aggregation of asset-pricing relations.
They also provide a tractable representation of risk preferences, and as
a consequence, they have been used in many applications in the recent
asset-pricing literature.

3.3.3. Risk aversion in a portfolio choice problem

We now demonstrate the effects of risk aversion on a consumer’s optimal
portfolio choices. For this purpose, we consider an economy with two dates
and S states at each date. The consumer has preferences over current and
future consumption c0 and c1. In period 1, she can allocate her current
wealth denoted W0 among current consumption, a risk-free security, and
a risky security. In period 2, she consumes her end-of-period wealth. The
risk-free security has the rate of return r f and the risky security has the
rate of return rs if the state s is realized. Let β denote the quantity of initial
wealth net of consumption allocated to the risk-free security and δ the
quantity allocated to the risky security. The budget constraint in period 1 is

c0 + β + δ = W0.
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Then the consumer’s end-of-period wealth in state s is

Ws = (W0 − c0)(1 + rf ) + δ(rs − rf ).

The consumer has expected utility preferences,

U (c0) + E[V (Ws)], (3.22)

so that utility is additively separable over consumption and future wealth.
We assume that U and V are strictly increasing and strictly concave. We
denote by πs > 0 the probability that the consumer attaches to the occur-
rence of state s. Substituting for Ws in preferences, the first-order necessary
and sufficient conditions for an optimum with respect to c0 and δ include
the conditions:

U ′(c0) = (1 + rf )E[V ′(Ws)], (3.23)

E[V ′(Ws)(rs − rf )] = 0. (3.24)

We can use the solution to the consumer’s portfolio choice problem to
examine the demand for the risky asset and to relate the properties of an
agent’s absolute risk aversion to this demand. When utility is a function of
one argument, Pratt [362] and Sandmo [382] have shown that decreasing
absolute risk aversion is a sufficient condition for the risky asset to be a nor-
mal good. To show this result, we totally differentiate first-order condition
in Equation (3.24) as:

(1 + rf )E[V ′′(Ws)(rs − rf )]dW0 + E[V ′′(Ws)(rs − rf )2]dδ = 0.

Solving for dδ/dW0 yields

dδ
dW0

= − E[V ′′(Ws)(rs − rf )]

E[V ′′(Ws)(rs − rf )2]
(1 + rf ). (3.25)

In this expression, the denominator is clearly negative since V is a con-
cave function. It turns out that the sign of the numerator depends on
whether absolute risk aversion is decreasing or not. To determine the sign
of dδ/dW0, we prove the following lemma.

Lemma 3.1

�

�Ws

(
−V ′′(Ws)

V ′(Ws)

)
≤ 0

implies E[V ′′(Ws)(rs−rf )] ≥ 0 if δ ≥ 0 and E[V ′′(Ws)(rs−rf )] ≤ 0 if δ ≤ 0.

P R O O F

Recall that

Ws = (W0 − c0)(1 + rf ) + δ(rs − rf ).
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Define

W 0
s = (W0 − c0)(1 + rf ).

Since Ws = W 0
s + δ(rs − rf ) and −V ′′(Ws)/V ′(Ws) is decreasing in Ws, we

have that

−V ′′(Ws)

V ′(Ws)
≤ −V ′′(W 0

s )

V ′(W 0
s )

if rs ≥ rf and δ ≥ 0. (3.26)

Trivially,

−V ′(Ws)(rs − rf ) ≤ 0 if rs ≥ rf . (3.27)

Multiply Equation (3.26) by −V ′(Ws)(rs − rf ). The inequality is reversed:

V ′′(Ws)(rs − rf ) ≥
(

V ′′(W 0
s )

V ′(W 0
s )

)
V ′(Ws)(rs − rf ) (3.28)

if rs ≥ rf and δ ≥ 0. Suppose rs ≤ rf . Then the inequalities in both (3.26)
and (3.27) are reversed, and the inequality (3.28) holds for all rs. Since
V ′′(W 0

s )/V ′(W 0
s ) is not a random variable, we can take expectations of

both sides of the above relation to obtain

E[V ′′(Ws)(rs − rf )] ≥
(

V ′′(W 0
s )

V ′(W 0
s )

)
E[V ′(Ws)(rs − rf )]. (3.29)

But the right side is zero because of the first-order condition in Equation
(3.24). Hence, the result is proved if δ ≥ 0. A similar proof with δ ≤ 0
(which allows for short sales) can be used to prove the second part of the
lemma.

Returning now to the condition in Equation (3.25) and using the result
in Lemma 3.1, we find that the consumer will demand more of the risky
asset when her wealth increases if absolute risk aversion is decreasing in
wealth. Thus, as stated above, decreasing absolute risk aversion is a suffi-
cient condition for the risky asset to be a normal good. From our examples
of utility functions, we note that the class of power utility functions dis-
plays decreasing absolute risk aversion in wealth, and hence satisfies the
conditions in the lemma. We also note that the sign of absolute risk aver-
sion depends on the sign of the third derivative of utility, which determines
whether marginal utility is concave or convex. The concavity or convexity
of marginal utility has also been studied by Kimball [276], who defines
a measure of “prudence” which shows how precautionary savings vary as
wealth increases. We discuss precautionary savings in Chapter 5.

3.4. M E A S U R E S O F I N C R E A S I N G R I S K

In this section, we formalize the concepts of increasing risk that we
presented in Section 3.1. We begin with some definitions.
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Figure 3.3. First-order stochastic dominance

The first concept is first-order stochastic dominance (FSD). Consider a
family of probability distribution functions F (x, θ ) for a random variable
x : � → X where X ≡ [x, x̄] and θ is a parameter.

Definition 3.3 For any non-decreasing function u : � → �, F (x, θ2) is
said to have first-order stochastic dominance over F (x, θ1) if∫

X
u(x)dF (x, θ2) ≥

∫
X

u(x)dF (x, θ1).

Suppose θ2 > θ1 and F (x, θ2) is derived from F (x, θ1) such that

F (x, θ1) = F (x, θ2) = 0, (3.30)

F (x̄, θ1) = F (x̄, θ2) = 1, (3.31)

F (x, θ2) ≤ F (x, θ1), (3.32)

for all x ∈ X . Then it can be shown that F (x, θ2) FSD dominates F (x, θ1).
See Figure 3.3.

A second concept of increasing risk is a mean-preserving spread, which
describes an increase in the riskiness of a random variable, holding its mean
constant. We consider the family of CDFs F (x, θ ) indexed by the para-
meter θ defined earlier and suppose that F (x, θ2) is derived from F (x, θ1)
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by taking probability mass from the center of the probability density func-
tion and shifting it to the tails in such a way that the mean is unchanged.
Intuitively, F (x, θ2) represents a riskier situation than F (x, θ1).

Definition 3.4 For any two distributions F (x, θ1) and F (x, θ2) with the
same mean, F (x, θ1) second-order stochastic dominance (SSD) dominates
F (x, θ2) if for any non-decreasing, concave function u : � → �,∫

X
u(x)dF (x, θ1) ≥

∫
X

u(x)dF (x, θ2).

An example of an SSD shift is a mean-preserving spread (MPS). Suppose
the distributions F (x, θ1) and F (x, θ2) satisfy the following conditions:∫

X
[F (x, θ2) − F (x, θ1)] = 0, (3.33)

which ensures that the processes have the same mean, and there exists an x̂
such that

F (x, θ2) − F (x, θ1) ≤ ( ≥ ) 0 when x ≥ ( ≤ ) x̂, (3.34)

which ensures that the two distributions cross only once. Then we say that
the distribution F (x, θ2) is an MPS over F (x, θ1). To ensure that the mean
of the two distributions remains the same, the areas A and B are equal in
Figure 3.4. A mean-preserving increase in risk is defined and applied by
Rothschild and Stiglitz [374, 375]. The effects of a mean-preserving spread
on the behavior of risk-averse consumers are discussed by Diamond and
Stiglitz [153].

Now consider the effect of an increase in the random variable θ that
satisfies the conditions for first-order stochastic dominance. We consider
the problem of a consumer who lives for two periods and starts the initial
period with wealth W0 and receives no exogenous wealth in the second
period. All consumption in the second period is financed by savings, which
pay a random return r̃ that takes values on R ≡ [r, r̄] where r > 0 and
r̄ < ∞, and has a probability distribution function F (r, θ ) parameterized
by θ . The associated probability density function is denoted f (r, θ ). The
consumer solves the problem:

max
c0

{
U (c0) +

∫
R

V [(W0 − c0)(1 + r)]f (r, θ )dr
}

(3.37)

where the budget constraint c1 = S0(1 + r) with S0 = W0 − c0 has already
been substituted into the objective function. Assume that U and V are
increasing and strictly concave. The first-order condition is

0 = U ′(c0) −
∫

R
V ′(c1)(1 + r)f (r, θ )dr (3.38)
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Figure 3.4. Mean-preserving spread

Notice that U ′(c0) is strictly decreasing and that V ′(c1) is strictly increasing
in c0 so that there is a solution to this equation, c�0 ≡ c�(W0, θ ).

To start, implicitly differentiate Equation (3.38) with respect to θ and
solve for �c�/�θ to result in

�c�(W0, θ )

�θ
=

∫
R V ′(c1)(1 + r)fθ (r, θ )dr

U ′′(c0) + E[V ′′(c1)(1 + r)2]
. (3.39)

We are assuming that the probability density function is differentiable in
the parameter θ . The denominator of the right side is negative so that the
sign of the left side is the same as the sign of the numerator on the right
side. Using integration by parts on the numerator, we have∫

R
V ′(c1)(1 + r)fθ (r, θ )dr = V ′(c1)(1 + r)Fθ (r, θ ) |r̄r

−
∫

R
[V ′′(c1)c1 + V ′(c1)]Fθ (r, θ )dr

= −
∫

R
[V ′′(c1)c1 + V ′(c1)]Fθ (r, θ )dr,

where Fθ (r, θ ) is the derivative of the probability distribution function for
r̃ with respect to the parameter θ . Notice that

Fθ (r̄, θ ) = Fθ (r, θ ) = 0
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by Equations (3.30) and (3.31). Hence the sign depends on the sign of
V ′′(c1)c1 + V ′(c1), which can be expressed as V ′(c1)[V ′′(c1)c1/V ′(c1) + 1].
We can use the coefficient of relative risk aversion to express this as:

V ′′(c1)c1 + V ′(c1) = −V ′(c1)[R(c) − 1].

Hence the effect of a parametric change that displays FSD on first-period
consumption depends on the size of the coefficient of relative risk aversion.
If relative risk aversion is less than 1, then current consumption increases,
while it remains unchanged when relative risk aversion is equal to 1. Finally,
current consumption decreases when relative risk aversion is greater than 1.

3.5. C O N C L U S I O N S

In this chapter, we have discussed expected utility analysis for simple static
economies, and examined notions of risk aversion and increasing risk. In
the next chapter, we will discuss notions of intertemporal substitution.
We will initially consider preferences that are additively separable over
time as well as over states. The focus on such preferences is not without
merit because much of the recent macroeconomics literature has employed
additively-separable preferences to describe consumers’ choices over states
and over time.

Nevertheless, it is worth considering deviations from these assump-
tions. Preferences may not be separable over states. In a multi-period
context, agents may not be indifferent to the resolution of uncertainty
over time. It may also be the case that agents do not have a single proba-
bility assessment over the alternative rewards but entertain a set of possible
probabilities. In this case, the agent’s objective function will involve min-
imizing expected utility over the set of possible probability measures. We
provide a simple example of these preferences in Exercise 5 in this chapter
in terms of the Gilboa–Schmeidler [202] preferences. These preferences
exhibit uncertainty aversion in that the consumer’s utility is increasing with
greater information about the underlying probabilities. We discuss the
implications of alternative preference specifications further in Chapter 9.

3.6. E X E R C I S E S

1. Deriving a von Neumann–Morgenstern (VNM) utility function.
Expected utility preferences of the VNM variety are based on con-

sumers’ rankings over alternative gambles or “lotteries.” Let L denote
a lottery that is characterized by a set of rewards (x1, . . . , xm) and
the associated probabilities (π1, . . . ,πm)′. As in standard utility the-
ory the axioms of completeness, reflexivity, transitivity, and continuity
are assumed to hold for the pre-ordering over underlying rewards.
To derive an ordinal utility function over “lotteries” or distributions,
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the pre-ordering over lotteries is also required to satisfy the axioms of
completeness, reflexivity, and transitivity.

These are given by:

Axiom 3.1 (Completeness) For every pair of lotteries, either L1 � L2 or
L2 � L1.

Axiom 3.2 (Reflexivity) For every lottery, L � L.

Axiom 3.3 (Transitivity) If L1 � L2 and L2 � L3, then L1 � L3.

Some additional axioms are necessary to obtain a cardinal utility
function.

Axiom 3.4 (Independence) Let L1 = ((x1, . . . , xm),π ). If xξ ∼ u, then
L1 ∼ L2. If u is a lottery such that u = (xξ1 , . . . , xξn ,πξ ), then

L1 ∼ L2 ∼ [(x1, . . . , xξ−1, xξ1 , . . . , xξn , xξ+1, . . . , xm),

(π , . . . ,πξ−1,πξπ
ξ
1 , . . . ,πξπ

ξ
n ,πξ+1, . . . ,πm)′].

Axiom 3.5 (Continuity) If x1 � x2 � x3, then there exists a probability
π such that x2 ∼ ((x1, x3),π , (1 − π )). The probability is unique unless
x1 ∼ x3.

Axiom 3.6 (Dominance) Let L1 = ((x1, x2), (π1, 1 − π1)) and L2 =
((x1, x2), (π2, 1 − π2)). If x1 � x2, then L1 � L2 if and only if π1 > π2.

Show that there exists a utility function u which satisfies Definition 3.1.
2. Consider an investor who maximizes the expected utility of end-of-

period wealth by choosing how much to hold of a risky asset versus
a risk-free asset. Let x denote the proportion of initial wealth W0 held
in the risky asset. Then, end-of-period wealth W1 is given by

W1 = W0
[
x(1 + r) + (1 − x)(1 + rf )

]
= W0

[
(1 + rf ) + x(r − rf )

]
,

where r, rf denotes the returns on the risky and risk-free assets.
The investor’s problem is to solve:

max
x

E[U (W1)] = E
[
U
(
W0(1 + rf + x(r − rf ))

)]
.

(a) Find the first-order condition with respect to x. Can you solve for
the optimal x denoted x�?
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(b) Consider a first-order Taylor approximation to U ′(W1)(r − rf )W0

around x = 0. Take the expectation of the resulting expression to
solve for x�.

(c) Interpret the expression for x�. How does x� vary with:
i. E(r − rf )

ii. Var(r)
iii. the investor’s coefficient of relative risk aversion?

3. A certainty equivalent approach to risk.
Suppose there are S states of nature. Let U denote a function that

yields the utility of state-contingent consumption as:

U ({c(s)}) = U [c(1), c(2), . . . , c(S)].

Consider the certain value of consumption or the certainty equivalent μ
that yields the same utility as a given consumption stream:

U [μ,μ, . . . ,μ] = U [c(1), c(2), . . . , c(S)].

Suppose that U is increasing in all its arguments. Then we can solve for
the certainty equivalent function as μ({c(s)}).
(a) Suppose we have expected utility preferences as:

U ({c(s)}) =
S∑

s=1

p(s)u(c(s)),

where 0 < p(s) < 1,
∑

s p(s) = 1 and u( · ) is strictly increasing and
strictly concave.
Find an expression for the certainty equivalent of a given consump-
tion stream {c(s)}S

s = 1. What is the appropriate measure of risk in
this case?

(b) Suppose the utility function has the form:

u(c) = c1−γ − 1

1 − γ
, γ = 1

2
.

Assume that S = 2 and p(1) = 1
4 and p(2) = 3

4 . Find the certainty
equivalent for the consumption stream {1, 4}.

4. A risk aggregator.
An alternative specification for preferences under uncertainty that

allows us to relax the independence assumption can be expressed as:

μ =
S∑

s=1

p(s)M [c(s),μ],

where the function M has the following properties: (i) M (m, m) = m
(the certainty equivalent of a sure stream is itself ); (ii) M is increasing
in its first argument (stochastic dominance); (iii) M is concave in its
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first argument (risk aversion, see below); (iv) M (kc, km) = kM (c, m) for
k > 0 (linear homogeneity).
(a) Suppose

M (c, m) = cαm1−α

α
+ m

(
1 − 1

m

)
, α ≤ 1.

i. Derive the form of the certainty equivalent function μ. What
class of models does this function belong to?

ii. Suppose that the agent is risk averse so that

μ = u−1 {E(u(c))} > E(c)

holds. Show that this is equivalent to having M concave in its
first argument.

(b) Consider two alternative specifications of non-expected utility
preferences:
i. Weighted utility

M (c, m) = (c/m)γ cαm1−α

α
+ m

(
1 − (c/m)γ

α

)
,

with (i) 0 < γ < 1 and α + γ < 0 or

(ii) γ < 0 and 0 < α + γ < 1.

ii. Disappointment aversion

M (c, m) =

⎧⎪⎪⎨
⎪⎪⎩

cαm1−α

α
+ m

(
1 − 1

m

)
c ≥ m

cαm1−α

α
+ m

(
1 − 1

m

)
+ δ

(cαm1−α − m)

α
c ≤ m,

with δ ≥ 0.
Derive the form of the certainty equivalent function μ for each
specification. Interpret these functions. How do they differ from
the standard expected utility formulation?

(c) Are the indifference curves linear in the probabilities? Try drawing
the indifference for weighted utility and disappointment aversion
when S = 2.

5. Max-min expected utility.
Gilboa and Schmeidler [202] provided an axiomatic derivation for

preferences that allow for multiple probability assessments over state-
contingent consumption. Suppose there are s = 1, . . . , S states of nature.
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Let � denote the set of prior probability distributions across consump-
tion in the different states, cs for s = 1, . . . , S. The Gilboa–Schmeidler
max-min preferences are defined as:

U = min
π∈�

S∑
s=1

πsu(cs) = min
π∈�

Eπu(c). (3.40)

In this setup, agents maximize preferences that have been minimized
over alternative probability distributions or priors; hence the name
“max-min.”

Suppose there are two states of the world. States 1 and 2 are uncertain
or ambiguous: the probability that state 2 occurs is given in the interval
π1 = 1

2 − γ and π2 = 1
2 + γ for − 1

4 ≤ γ ≤ 1
4 . Suppose the utility of

state-contingent consumption is given by u(c) = c.
(a) Suppose there are two securities, and assume that security i pays off

one unit of the consumption in state i and nothing otherwise. Find
the expected utility from owning each security.

(b) Compare the payoff from the securities (evaluated in utils) under
the assumption that the probability of the two states is 1

2 , 1
2 .
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CAPM and APT

In Chapters 1 and 2, we introduced the general equilibrium approach
to asset pricing, and presented a rationalization of the implied asset-
pricing relations based on much weaker notions of the absence of arbitrage.
Whereas these theoretical approaches provide intellectually appealing and
elegant characterizations of asset pricing, the empirical finance literature
has been dominated by two other approaches. These are the capital asset-
pricing model (CAPM) of Sharpe [389], Lintner [311], and others, and
the arbitrage pricing theory (APT) proposed by Ross [369]. The for-
mer approach exploits a risk-return relationship for the pricing of assets
whereas the latter imposes a factor structure. These approaches also have
implications for the theory of portfolio choice.

As is well known, the CAPM prices the riskiness of an individual asset
in terms of its covariance with the market portfolio. By contrast, the APT
prices assets in terms of an underlying set of risk factors. The CAPM
typically exploits the implications of expected utility maximization with
respect to end-of-period wealth whereas the APT has been derived based on
absence of arbitrage arguments. We describe the alternative sets of assump-
tions under which these approaches can be derived, and compare their
implications with the general equilibrium approach to asset pricing.

4.1. T H E C A P I T A L A S S E T- P R I C I N G M O D E L

The CAPM has gained widespread use because it provides restrictions for
investors’ portfolios and asset prices and returns that appear to be validated
by data on a variety of securities. The CAPM formulation can be derived
in different ways. One approach is to start from the consumer’s expected
utility maximization problem by choice of risky and risk-free assets, given
an initial wealth level. In what follows, we consider a derivation based on
the stochastic discount factor approach.

4.1.1. The discount factor

Recall that the problem of asset pricing can be expressed in terms of the
existence of a stochastic discount factor that prices any risky payoff. The

72
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implications of the CAPM can be illustrated very simply by assuming that
the stochastic discount factor in the CAPM is given by:

mt+1 = c − dRW
t+1, (4.1)

where RW
t+1 denotes the return on the aggregate wealth portfolio and c, d

are variables to be determined. To derive the CAPM representation, note
that the price of the risk-free rate rf is one:

1 = E
[
mrf ] ,

or

rf = 1/E[m]. (4.2)

To find the values of c and d , let qW = θW · q denote the market value
of the portfolio, and xW = X T θW its payoff. Notice that both qW and xW

are scalars. Hence, RW = xW /qW . Using the pricing function derived in
Chapters 1 and 2, we can write:

qW = E
[
mxW ] ⇒ 1 = E

[
m
(
xW /qW )]

,

or

1 = E
[
mRW ]

(4.3)

A useful result that we will exploit throughout this book is the covariance
decomposition:

Cov(X , Y ) = E(XY ) − E(X )E(Y ),

where X , Y are any two random variables. Using this decomposition, we
can write the right side of (4.3) as:

E
[
mRW ] = Cov(m, RW ) + E(m)E(RW ),

or

E(RW ) = 1

E(m)

(
1 − Cov

(
m, RW ))

. (4.4)

Substituting the expression m = c − dRW into Equations (4.2) and (4.4),
we obtain:

c = 1

rf
+ dE(RW ) (4.5)

d = E(RW ) − rf

rf Var(RW )
. (4.6)

Now consider pricing any asset l with this stochastic discount factor. Let
Rl denote the return on the asset. Notice that it must satisfy the relation:

1 = E[mRl ].
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Using a covariance decomposition on the right side of this expression and
substituting for m, we obtain

E(Rl ) = rf − rf Cov[c − dRW , Rl ]

= rf + drf Cov[RW , Rl ],

which implies that

E(Rl ) − rf = E(RW ) − rf

Var(RW )
Cov[RW , Rl ].

According to this representation, the expected excess return on any security
l is proportional to the covariance of the security return with the return on
the wealth portfolio. This is known as the beta of the security:

βl = Cov(RW , Rl ). (4.7)

Also define the term that multiplies the security’s beta as the price of risk:

price of risk = E(RW ) − rf

Var(RW )
, (4.8)

which shows the excess return on the wealth portfolio for each unit of risk.
Hence, the CAPM prices the return on any security as the risk-free rate
plus the product of the security’s beta and the price of risk as:

E(Rl ) = rf + βl

(
E(RW ) − rf

Var(RW )

)
. (4.9)

We now show that this representation for the stochastic discount factor
is consistent with expected utility maximization over end-of-period wealth.

4.1.2. Expected utility maximization

There are several alternative sets of assumptions on preferences and the dis-
tribution of returns that can yield a CAPM representation for asset returns.
One set of sufficient conditions is to assume the joint normality of returns.
Another sufficient condition involves the assumption that the utility func-
tion is quadratic. However, unlike the general equilibrium framework that
we described in Chapter 1, the consumer’s or investor’s expected utility is
defined over end-of-period wealth. In many utility maximizing formula-
tions of the CAPM, the real interest rate is also taken as constant and labor
income is ruled out.

Suppose that there are N securities where securities 1, . . . , N −1 are risky
and security N is risk-free. Define the return on the N ’th security by rf .
Also suppose that there are I different investors, each with initial wealth
W i

0, who maximize the expected value of utility from end-of-period wealth
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W i
s . Let xn,s be the payoff on security n in state s and θ i = (θ i

1 , . . . , θ i
N )

denote the portfolio of securities held by investor i. Then we can express
the wealth for consumer i in state s as

W i
s =

N∑
n=1

θ i
nxn,s.

Let the price in the current period for security n be denoted by qn.
Investor i solves

max
{θ i

n}N
n=1

E

[
U

(
N∑

n=1

θ i
nxn

)]

subject to
N∑

n=1

qnθ
i
n ≤ W i

0.

Let λ denote the Lagrange multiplier on the budget constraint. The first-
order conditions with respect to θ i

n can be expressed as:

λql = E

[
U ′

(
N∑

n=1

θ i
nxn

)
xl

]
, l = 1, . . . , N . (4.10)

To put further structure on this problem, assume that utility is
quadratic or

U (W ) = aW − bW 2, W ≤ a/2b.

Define the portfolio weights wi
n ≡ (θ i

nqn)/W i
0 and let Rn,s ≡ xn,s/qn equal

the return on security n in state s. Recall that the N ’th security is the risk-
free asset with return rf . Then we can express the first-order conditions as:

E

[(
a − 2bW i

0

N∑
n=1

wi
nRn

)
(Rl − rf )

]
= 0, l = 1, . . . , N − 1.

(4.11)

Now write Equation (4.11) as

E

[(
N∑

n=1

wi
nRn

)
(Rl − rf )

]
= [E(Rl ) − rf ]

a
2bW i

0

n = 1, . . . , N − 1.

(4.12)
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Let the return on the wealth portfolio in state s be defined as:

RW
s ≡

I∑
i=1

N∑
n=1

wi
nRn,s. (4.13)

To write the first-order condition in terms of the return on the aggregate
wealth portfolio, sum over the investors i = 1, . . . , I . Then the first-order
condition can be written as:

E
[
RW (Rl − rf )

] = [
E(Rl ) − rf ] I∑

i=1

(
a

2bW i
0

)
l = 1, . . . , N−1.

Using the covariance decomposition, the first-order conditions can be
rewritten as:

Cov(RW , Rl − rf ) = [
E(Rl ) − rf ] [ I∑

i=1

(
a

2bW i
0

)
− E(RW )

]

(4.14)

for l = 1, . . . , N − 1. Define one of the securities as the wealth portfolio, in
which case equation (4.14) becomes

Var(RW ) = [
E(RW ) − rf ] [ I∑

i=1

(
a

2bW i
0

)
− E(RW )

]
, (4.15)

where we have made use of the fact that Var(RW ) = Cov(RW , RW − rf ).
Taking the ratio of the conditions in equations (4.14) and (4.15) yields the
CAPM representation as:

E(Rl − rf ) = E(RW ) − rf

Var(RW )
Cov(RW , Rl ). (4.16)

This representation is identical to the representation that we obtained
when we priced the excess return Rl−rf using the stochastic discount factor
m = c−dRW and the pricing function 1 = E(mR). Notice that the expected
return depends on the risk-free rate and the covariance with the return on
the wealth portfolio. Hence this model is known as the two-factor CAPM.

Figure 4.1 depicts the return on a security for different values of the beta
of a security, given the risk-free rate rf .1 In Figure 4.1, asset A lies above
the security market line (SML) and asset B below it. This means that
A has a higher return and B has a lower return compared to assets with
similar risk. In this case, we say that A is underpriced and B is overpriced.

1 Notice we have graphed the relation in (4.16) by defining βi = Cov(RW , Rl )
Var(RW )

.
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Figure 4.1. Security market line

Thus, the CAPM representation provides a way for pricing securities based
on the covariance with the market portfolio. While the CAPM is widely
used in the empirical finance literature to describe asset returns, it has been
criticized on the grounds that the return on the wealth portfolio RW is
not observable. (See Roll [366].) In empirical applications, RW is typi-
cally taken as the return on some stock market index such as the NYSE
Composite Index.

4.1.3. Alternative derivations

The conditions under which the CAPM can be derived have been the
topic of much controversy. The CAPM has received favor as an asset-
pricing model because it express returns as linear functions of the return
on the market portfolio, which is taken as a proxy for the wealth portfolio.
Recall from Section 4.1 that the stochastic discount factor for the CAPM
is given by:

mt+1 = c − dRW
t+1.

One problem with this discount factor is that it is not guaranteed to be
strictly positive. However, in Theorem 2.2 we showed that absence of arbi-
trage is equivalent to the existence of a strictly positive state-price vector or
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pricing function. Dybig and Ingersoll [165] discuss the relation of mean-
variance pricing to a complete markets equilibrium and provide examples
of arbitrage that can arise with the CAPM pricing function. To see how
the CAPM leads to an arbitrage opportunity, consider the representation
in equation (4.9). Recall that a return Ri is defined as Ri = xi/pi. Hence,
we can write

E
(
xi/pi

) − rf = Cov
(
xi/pi, RW )

λ,

where λ= [E(RW ) − rf ]/Var(RW ). Since pi is known at the time of the
security trade and is non-random, the price of an asset that has the payoff
xi can be expressed as:

pi = E(xi) − λCov(xi, RW )

rf

= E(xi) − λ
[
E(xiRW ) − E(xi)E(RW )

]
rf

= E
[
xi
(
1 − λ(RW − E(RW ))

)]
/rf . (4.17)

To see how an arbitrage arises, consider the payoff that is positive in some
states in which RW > E(RW ) + 1/λ and zero otherwise. Specifically,
consider

z =
{[

λ
(
RW − E(RW )

) − 1
]−1

if RW > E(RW ) + 1/λ
0 otherwise.

(4.18)

Using the pricing relation in equation (4.17), the price of a security that
has the payoff z is given by

pz = E
(−1|RW > E(RW ) + 1/λ

)
/rf

= −Prob(RW > E(RW ) + 1/λ)/rf .

Hence, provided that the probability on the last line is strictly positive
(implying that the return on the wealth portfolio can achieve sufficiently
high levels), the price of any asset with payoff z has a negative price. But
this is equivalent to the existence of an arbitrage opportunity. One such
opportunity is to purchase, at a negative price, the asset that has a payoff
of z. This investment does not require any current cash outflow. Instead
it generates a positive cash flow this period and possibly a positive cash
outflow next period. Hence, it is an arbitrage. In the derivation leading
up to equation (4.9), we assumed that investors have quadratic utility. In
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this case, it is possible to have unbounded payoffs (as described by equa-
tion (4.18)) and not have consumers capitalize on arbitrage opportunities
as consumers with quadratic utility will be satiated. However, in all other
derivations of mean-variance pricing that do not rely on quadratic utility,
the presence of such unbounded returns will lead to arbitrage opportu-
nities which are not consistent with equilibrium. Hence, to rule out such
arbitrage, we need to generate a strictly positive discount factor that has the
CAPM structure. One known case which accomplishes this is the log util-
ity CAPM of Rubinstein [378]. This generates a strictly positive stochastic
discount factor that depends only on the return on the aggregate wealth
portfolio, RW , where the wealth portfolio is defined as a claim to all future
consumption.2 We describe this approach more fully in Chapter 5.

In our discussion in Section 4.2, we provided a derivation of the CAPM
based on the assumption of quadratic utility. However, an alternative
derivation assumes that returns are jointly normal. (See Exercise 4 at the
end of the chapter.) However, the normality assumption is typically inap-
propriate for derivative assets such as options, forward or future contracts.
As a specific example, consider an option that is written on a stock whose
payoff has a normal distribution given by x ∼ N (μ, σ 2) with μ= 1 and
σ 2 = 1. Define a derivative asset as a call option with a strike price of $1 on
one share of the stock. The payoff on the option may be expressed as:

z = max (x − 1, 0).

Thus, the payoff on the option follows a truncated normal distribution.
Since E(x) = 1, the non-zero part of z is the right half of the normal
distribution with mean 0 and variance 1. Notice that

Prob(z > 0) = 1 − �(0) ,

and f (z|z > 0), which denotes the density for a truncated normal
distribution, is given by

f (z|z > 0) = f (z)

1 − �(0)
= (2πσ 2)−1exp( − z2/2σ 2)

1 − �(0)
= (1/σ )φ

(
z
σ

)
1 − �(0)

,

where φ( · ) is the standard normal pdf. Hence, we can characterize the
statistical properties of the option by making use of standard results on the
truncated normal distribution as:

E(z|z > 0) = σλ(0)

Var(z|z > 0) = σ 2[1 − δ(0)]

2 See Rubinstein [378].
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where λ(0) =φ(0)/[1−�(0)] and δ(0) = λ(0).3 In our application, λ(0) =
σ/

√
2π , and δ(0) = σ 2/(2π ). Using these results, we obtain

E(z) = σ/
√

2π and Var(z) = 1 − 1/(2π ).

Thus, even if all assets in the economy are jointly normally distributed,
derivative securities will not have normal distributions. This raises the issue
of the pricing of derivative securities in a CAPM framework. Dybig and
Ingersoll [165] show if all investors have quadratic utility preferences, the
CAPM may still be used to price derivative assets even if their distribu-
tions are not normal. However, in the absence of the assumption that all
investors have quadratic utility preferences, the introduction of derivative
assets that are in net zero supply may even cause mispricing of the original
assets. These results show that unless we are willing to make the assump-
tion that investors’ preferences are quadratic, alternative methods need to
be found for pricing derivative assets.4

4.2. A R B I T R A G E P R I C I N G T H E O R Y

The arbitrage pricing theory proposed by Ross [369] was motivated by the
finding that security returns can be represented in terms of a set of risk
factors common across different securities or portfolios plus a security- or
portfolio-specific idiosyncratic risk term.

The APT assumes that the excess returns on assets that are in net zero
supply or that are claims to the dividends of N technologies have the factor
structure

Ri,s = R̄i +
K∑

k=1

βi,kδk,s + εi,s, i = 1, . . . , N , (4.19)

where Ri,s denotes the return on the i’th security in state s, δk,s is systematic
risk from factor k, εi,s is unsystematic or idiosyncratic risk specific to asset
i, and R̄i and βi,k are constants. We assume the following:

E(δk) = 0, E(εi) = 0, Var(δk) = σ 2
k , Var(εi) = σ 2

i .

This states that the random variables denoting systematic and idiosyn-
cratic risk have mean zero and finite variance. We also assume that random
variables denoting the systematic and idiosyncratic risks are uncorrelated:

E(εiδk) = 0 for each k and i, (4.20)

and that the idiosyncratic risks are mutually independent:

E(εiεj) = 0 for each i, j = 1, . . . , N . (4.21)

3 See, for example, Greene [214, p. 759].
4 One approach that we outlined in Chapter 2 is based on the absence of arbitrage and the notion of

risk-neutral pricing.
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The notion behind the APT is that asset returns can be explained in terms
of a small number of factors so that K < N .

Notice that R̄i,s is the expected return on asset i. Let the N ’th security be
the risk-free security so that RN ,s = rf for all s. If we substitute the expres-
sion for returns into the first-order condition E[U ′(W )(Ri − rf )] = 0,
we have

E

[
U ′(Ws)

(
R̄i +

K∑
k=1

βi,kδk + εi − rf

)]
= 0, (4.22)

where Ws ≡
∑N

j = 1 θjxj,s = W0
∑N

j = 1 wjRj,s denotes end-of-period wealth
and wj = θjqj/W0 and Rj,s = xj,s/qj. This can be rewritten as:

R̄i − rf =
K∑

k=1

{
E[−U ′(Ws)δk]

E[U ′(Ws)]

}
βi,k + E[−U ′(Ws)εi]

E[U ′(Ws)]
. (4.23)

If all diversifiable risk is eliminated, then the εi term drops out. The excess
return on any asset i relative to the risk-free rate is linear in the factor
loadings, βi,k, k = 1, . . . , K .

The APT was originally promoted as a way of obtaining an asset-pricing
model without relying on the economic structure imposed by the CAPM
or the general equilibrium approach described in Chapter 1. The approach
to deriving pricing relationships is to rely on the law of one price. Suppose
that an exact factor structure characterizes payoffs. Consider the payoff on
the ith asset:

xi = E(xi) × 1 + β ′
i f ,

where f is a vector of factors. We may view this equivalently as a statisti-
cal decomposition that expresses payoffs on different assets in terms of a
lower dimensional set of factors or as a statement that the payoff xi can be
expressed as a portfolio of the risk-free payoff and the factors. In the latter
case, the law of one price states that the price of the payoff must be a linear
combination of the price of the risk-free payoff and the factors:

q(xi) = E(xi)q(1) + β ′
i q(f ).

We can also derive a representation that is similar to the one in Equation
(4.19) by considering returns Ri in place of payoffs:

1 = E(Ri)q(1) + β ′
i q(f ).

Notice that the risk-free rate is defined as rf = 1/q(1) so that we can write:

E(Ri) = rf + β ′
i [−rf q(f )]. (4.24)

Hence, we derive a representation for the return on the ith asset that is a
linear function of the risk-free return and a term that is proportional to the



82 Asset Pricing for Dynamic Economies

prices of the factors. This is similar to the one in Equation (4.23) except
that the factor representation holds exactly.

The literature on arbitrage pricing has investigated the conditions under
which an approximate version of the APT, that is, one in which expected
returns satisfy equation (4.23) even when the exact factor structure for
returns does not hold exactly, can be derived.5 First, our derivation of
the APT makes clear that for given discount factor that prices the fac-
tors, the price of any security can be obtained as the price of the factors
times the security-specific factor loadings as the number of securities gets
arbitrarily large. More specifically, let the security payoffs be expressed as:

xi = E(xi) × 1 + β ′
i f + εi, i = 1, . . . , N

where εi satisfy conditions (4.20) and (4.21). In a well-diversified portfolio,
the idiosyncratic risk will be eliminated and the risk of the portfolio will
depend on the risk emanating from the factors. Let xp denote an equally
weighted portfolio of the asset payoffs. Then

xp = 1

N

N∑
i=1

xi

= 1

N

N∑
i=1

E(xi) + 1

N

N∑
i=1

β ′
i f + 1

N

N∑
i=1

εi

= E(xp) + β ′
pf + εp,

where

Var(εp) → 0 as N → ∞
since the εi are mutually uncorrelated and have finite variance. Hence,
under appropriate assumptions, we find that the payoff on an equally
weighted portfolio can be priced using the factor representation. How-
ever, the content of the APT comes from assuming a specific form for the
pricing function, m = a + b′f where b is a K × 1 vector. In the absence of a
specific assumption regarding the pricing function m and for any finite-size
economy with fixed N , a pricing function that prices the factors may not
uniquely price the payoffs based solely on the law of one price. This is the
notion behind Shanken’s [387] original criticism of the so-called “empirical
APT” model, and the basis for much further discussion on the issue. (See,
for example, Shanken [388] or Dybig and Ross [166].)

5 In the finance literature, a distinction is also made between a situation in which the factor structure is
assumed to hold in the presence of idiosyncratic errors that are mutually uncorrelated (a strict factor
structure) and one in which there is correlation between the idiosyncratic errors (an approximate
factor structure). In our analysis, we ignore this distinction.
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4.3. C O N C L U S I O N S

In this chapter, we have reviewed some alternative ways of deriving the
CAPM and the APT. These models have served as the workhorses of
empirical financial modeling despite various criticisms leveled at their
underlying assumptions. The CAPM has been judged non-verifiable
because the return on the aggregate wealth portfolio is difficult to measure.
For the APT, the main criticism has to do with finding conditions under
which exact factor pricing will hold for a finite economy. In his original
contribution, Ross [369] advocated restricting the volatility of the discount
factor in the APT pricing equation. There are other approaches that have
been used to rationalize the APT for finite economies.6 While the con-
ditions under which the CAPM and APT can be derived as asset-pricing
theories have generated much controversy, both models have provided use-
ful frameworks for modeling risk. In the CAPM, the notion of risk is the
covariance with the market or wealth portfolio. Likewise, the APT has led
to alternative ways of thinking about the sources of macroeconomic or
aggregate risk in the economy.

4.4. E X E R C I S E S

1. Mean-Variance Frontier with Two Risky Assets
Let ri denote the return on risky asset i, and assume that returns are
normally distributed as ri ∼ N (μi, σ 2

i ) and Cov(r1, r2) = ρ12σ1σ2. Let x
denote the proportion of the first risky asset held by the investor and rp

denote the return on the portfolio as

rp = xr1 + (1 − x)r2.

Then

E(rp) = xE(r1) + (1 − x)E(r2), (4.25)

and

Var(rp) = x2Var(r1) + (1 − x)2Var(r2) + 2x(1 − x)σ12. (4.26)

(a) Find the optimal value of x that minimizes Var(rp). Denote this
value by x∗. What is the value of Var(rp) evaluated at x∗?

(b) Define the correlation coefficient as

ρ12 = σ12

σ1σ2
.

6 See, for example, Connor [115].
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What are the optimal values of x and Var(rp) for
– perfectly positively correlated returns (ρ12 = 1)
– perfectly negatively correlated returns (ρ12 = − 1)
– uncorrelated returns (ρ12 = 0)?

2. The Capital Market Line
The problem is to allocate wealth to n risky assets with returns ri,t+1

and a risk-free asset with certain return rf
t . We consider a two-period

problem, and index the current period by t and the future period by t +
1. Suppose an investor invests xit in each risky asset i and the proportion
xf

t in the risk-free asset such that
n∑

i=1

xit + xf
t = 1.

The consumer’s wealth in period t is Wt , and wealth next period is

Wt+1 = Wt

[
n∑

i=1

xit(1 + ri,t+1) + xf
t (1 + rf

t )

]

= Wt(1 + rp
t+1),

where rp
t+1 is the return on the portfolio. In matrix notation, let rt

denote the vector of the returns on the risky assets, and xt denote the
vector of portfolio weights on the risky assets where

rt =

⎡
⎢⎢⎣

r1t

r2t
...

rnt

⎤
⎥⎥⎦ and xt =

⎡
⎢⎢⎣

x1t

x2t
...

xnt

⎤
⎥⎥⎦ .

The conditional covariance matrix for the vector of risky returns given
information at time t is then given by

Vart (rt+1) = Et
[
(rt+1 − Et(rt+1))(rt+1 − Et(rt+1))

′] .

Define l to be the n × 1 vector of ones, i.e., l = (1, 1, . . . , 1)′.
(a) Find an expression for the investor’s end-of-period wealth using

these definitions.
(b) Suppose that the consumer maximizes the expected utility of next

period’s wealth Et[U (Wt+1)]. Show that maximizing expected util-
ity is equivalent to maximizing a function of expected return and
the variance of returns, where the two are traded off.

(c) Derive the first-order conditions with respect to xt .
(d) Find an expression for the excess return on the optimal portfolio

relative to the risk-free return.
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(e) Assuming that all market investors have identical beliefs, in equi-
librium the return on the portfolio rp will be the market return rm.
Use this condition to characterize the risk and return on efficient
portfolios, namely, those that have the lowest variance for a given
return.

3. Deriving the CAPM
Consider the portfolio choice problem outlined in Exercise 2.
(a) Show that for a single asset the solution for this problem implies

the risk-return relationship

Et(ri,t+1) − rf
t = [Et(rm

t+1 − rf
t ]

Covt (ri,t+1, rm
t+1)

Vt(rm
t+1)

= Et(rm
t+1 − rf

t )βit ,

where βit is called the market beta for asset i.
(b) What is the beta for the risk-free asset?
(c) What is the beta for the market portfolio?

4. The Joint Normality Assumption
Suppose that all traded assets are jointly normally distributed. A CAPM
representation for expected returns can be obtained using Stein’s lemma:

Lemma 4.1 (Stein’s lemma) If x, y are bivariate normal, g(x) is differen-
tiable, and E |g ′(x)| < ∞, then

Cov[g(x), y] = E[g ′(x)]Cov(x, y).

Use equation (4.11) with an arbitrary utility function to derive an
expected return-beta model that has the CAPM representation.



C H A P T E R 5

Consumption and saving

Consumption and saving decisions affect asset and credit markets and are
an important variable in determining investment. In this chapter, we will
describe some key aspects of saving and consumption in a deterministic
setting. We will then turn to uncertainty.

In the recent literature, there has been more emphasis placed on exam-
ining consumption and saving decisions and asset-pricing relations in a
unified manner. As we have described in earlier chapters, the general equi-
librium asset-pricing approach implies that random payoff streams are
priced with respect to consumption risk. Thus, an asset is considered risky
if it yields low returns in states when consumption is also low. The choice
of consumption and saving in an environment with multiple assets is also
a portfolio choice problem. Hence, it appears crucial to provide a sim-
ple framework to link these issues before proceeding to the more formal
models considered in later parts of this book.

In this chapter, we provide an introduction to the study of optimal con-
sumption and saving decisions in an intertemporal context. As part of this
analysis, we define the notion of consumption smoothing and illustrate
the role of saving in the consumer’s intertemporal choice problem. We also
generalize the simple portfolio choice problem that we used to derive the
CAPM, and consider the joint determination of consumption and asset
choices with labor income. Finally, we use the consumer’s intertemporal
choice problem under uncertainty to examine the role of uncertainty and
precautionary saving.

5.1. A D E T E R M I N I S T I C E C O N O M Y

To start, let’s consider a simple two-period world where a household sup-
plies one unit of labor inelastically and receives wage income, which it can
consume or save at a constant interest in period 1. In period 2, consumption
satisfies c′ = (1 + r)S. The household’s problem is

max
c,S

{
U (c) + W (c′)

}
subject to

86
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S S∗ 

(1  + r)W ′(S(1  + r)) 

U ′, W ′

U ′(w − S) 

(1 + r)W ′(S∗(1  + r)) = U ′(w − S∗) 

Figure 5.1. Consumer’s first-order conditions

c + S ≤ w (5.1)

c′ ≤ (1 + r)S. (5.2)

In this expression, U , W are the first- and second-period utility functions,
both assumed to be continuous, twice continuously differentiable, and
strictly concave. The variable w is the real wage, r is the interest rate, S
is saving, and c and c′ are consumption in periods 1 and 2, respectively. We
also have the Inada conditions,

lim
c→0

U ′(c) → ∞ and lim
c→0

W ′(c) → ∞,

lim
c→∞ U ′(c) → 0 and lim

c→∞ W ′(c) → 0.

With this assumption, we can rule out zero consumption at the consumer’s
optimum.

We can use this problem to examine the effect of an increase in the
interest rate. Assuming that the budget constraints hold with equality, the
consumer’s problem can be expressed as

max
S

[U (w − S) + W (S(1 + r))] . (5.3)

The first-order condition is

−U ′(w − S) + W ′(S(1 + r))(1 + r) = 0.

Figure 5.1 provides a graphical depiction of the first-order condition.
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Define the function V (S, r) = −U ′(w−S)+W ′(S(1+r))(1+r). Taking
the derivative of V (S, r) with respect to S yields:

�V (S, r)

�S
= U ′′(w − S) + W ′′(S(1 + r))(1 + r)2 < 0.

By assumption the second derivatives of U and W exist so that V (S, r) is
strictly decreasing in S. Applying the inverse function theorem, there is a
solution for saving, S, denoted

So = S(r, w) (5.4)

solving the maximization problem. We refer to this as the saving function.
Notice that the solution can be characterized as the value of S that sets the
function V (S, r) equal to zero.

5.1.1. Properties of the saving function

To determine how saving responds to a change in the interest rate,
substitute the solution function into the first-order condition and then
differentiate with respect to r to obtain

�S
�r

= [W ′′(1 + r)S + W ′]
−(U ′′ + (1 + r)2W ′′)

. (5.5)

The denominator is positive because both U and W are concave. The sign
of the numerator depends on the relative curvature of the second-period
utility function. Recall that an increase in the real rate r has both a sub-
stitution and an income effect. When r increases, consumption in period
1 becomes more expensive relative to consumption in period 2, and the
household tends to save more. However, there is also an income effect in
that an increase in r will reduce the household’s present value of income,
or wealth. If the numerator is positive, then the substitution effect out-
weighs the income effect and saving increases with r. If it is negative,
then the wealth effect outweighs the substitution effect and saving falls
with r.

Suppose that the utility function is of the form

W (c) = U (c) = c1−γ − 1

1 − γ
, γ ≥ 0.

How does optimal saving respond to changes in the interest rate for differ-
ent values of γ ? To answer this question, we use the result in Equation (5.5).
Evaluating the partial derivative of U and W with respect to c, we have that
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W ′(c) = c−γ and W ′′(c) = U ′′(c) = −γ c−γ−1. Substitute these values into
the equation (5.5). This yields

�S
�r

= c−γ
2 − γ c−γ−1

2

c2︷ ︸︸ ︷
(1 + r)S

−[−γ c−γ−1
1 − γ c−γ−1

2 (1 + r)2]
= (1 − γ )c−γ

2

γ c−γ−1
1︸ ︷︷ ︸
>0

+ γ c−γ−1
2 (1 + r)2︸ ︷︷ ︸

>0

.

We observe that the sign of �S/�r depends on γ . If γ < 1, the numerator
of the above result is positive; correspondingly �S/�r > 0. If γ > 1, the
numerator is negative, and �S/�r < 0. Finally, if γ = 1, numerator is zero
and �S/�r = 0.

To interpret these results, we note that the elasticity of intertemporal
substitution in consumption is defined as

EITS = −
(

� ln (c1/c2)

� ln (MU1/MU2)

)
where c1 and c2 denote consumption in periods 1 and 2, and MU1 and MU2

the marginal utility of consumption in the two periods. The intertem-
poral substitution elasticity shows consumers’ attitudes toward smoothing
consumption over time. To calculate the intertemporal elasticity:

MUi = �U (ci)

�ci
= c−γ

i , i = 1, 2.

Hence,

MU1

MU2
=
(

c1

c2

)−γ

,

or

ln

(
MU1

MU2

)
= −γ ln

(
c1

c2

)
.

Therefore,

−
(

� ln (c1/c2)

� ln (MU1/MU2)

)
= 1

γ
. (5.6)

These results show that when γ < 1, the intertemporal elasticity is
greater than 1 and consumers are more willing to substitute consumption
across periods. Hence, the substitution effect of an increase in the interest
rate dominates the wealth effect. Thus, saving increases in response to an
increase in the interest rate. By contrast, when γ > 1, consumers prefer a
smooth consumption profile. In this case, the wealth effect dominates the
substitution effect, and saving falls when the interest rate rises. For the case
with γ = 1 which corresponds to logarithmic utility, we find that the sub-
stitution effect equals the wealth effect and saving does not change with
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changes in r. Hence, we find that optimal saving behavior can vary as a
function of consumers’ attitudes toward intertemporal substitution in the
economy.

5.1.2. Optimal consumption over time

Suppose first that the household lives for T periods and has the preferences:

T∑
t=0

β tU (ct), 0 < β < 1. (5.7)

The household receives the exogenous labor income y ∈ (0, ȳ] where
ȳ <∞ in each period of its life. Also assume that it can borrow and lend
at the interest rate r ∈ ( − 1, ∞). Then it faces the sequence of budget
constraints:

ct + St+1 ≤ yt + (1 + r)St , t ≥ 0, (5.8)

given initial saving S0. Notice that in a finite horizon economy, savings
in the last period of life must be zero, ST+1 = 0. As a consequence, con-
sumption at date T must equal income at date T plus savings from
T − 1,

cT = yT + (1 + r)ST−1.

Let λt denote the Lagrange multiplier on the per-period budget constraint.
The first-order conditions with respect to ct and St+1 for t = 0, . . . , T − 1
are

U ′(ct) = λt ,

λt = βλt+1(1 + r).

Combining these equations to eliminate the Lagrange multiplier yields the
condition:

U ′(ct) = β(1 + r)U ′(ct+1). (5.9)

Suppose the utility function is given by u(c) = (c1−γ − 1)/(1 − γ ), γ ≥ 0.
Then this condition can be expressed as:

c−γ
t = β(1 + r)c−γ

t+1,

or

ct+1 = (β(1 + r))
1
γ ct ,

⇒ ct = (β(1 + r))
t
γ c0, t = 0, . . . , T − 1. (5.10)
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The per-period budget constraints can be simplified recursively as:

ct + St+1 = yt + (1 + r)St

ct + ct+1 + St+2 − yt+1

1 + r
= yt + (1 + r)St

... = ...

T−t∑
j=0

ct+j

(1 + r)j
+ ST+1

(1 + r)T−t
=

T−t∑
j=0

yt+j

(1 + r)j
+ (1 + r)St .

Setting t = 0 in the above equation and noticing that ST+1 = 0 yields the
lifetime budget constraint as

T∑
t=0

ct

(1 + r)t
=

T∑
t=0

yt

(1 + r)t
+ (1 + r)S0. (5.11)

Substituting for ct using the left side of (5.10) yields

T∑
t=0

ct

(1 + r)t
=

T∑
t=0

(β(1 + r))
t
γ c0

(1 + r)t
.

Provided η ≡ (β(1 + r))
1
γ /(1 + r)< 1, we can simplify this last result as

T∑
t=0

ηt c0 = 1

1 − η
(1 − ηT+1)c0.

Therefore,

c0 = 1 − η

1 − ηT+1

[
T∑

t=0

yt

(1 + r)t
+ (1 + r)S0

]
,

which implies that

ct = [(β(1 + r))
t
γ ]

1 − η

1 − ηT+1

[
T∑

t=0

yt

(1 + r)t
+ (1 + r)S0

]
. (5.12)

Thus, we find that the optimal consumption policy involves consuming a
fraction of lifetime income at each date t. This condition allows us to make
predictions regarding the optimal consumption policy over time.
1. A consumer who lives longer will consume a smaller fraction of his

lifetime income, i.e.

[(β(1 + r))
t
γ ]

1 − η

1 − ηT̃ +1
< [(β(1 + r))

t
γ ]

1 − η

1 − ηT+1
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for T̃ >T since ηT+1 is decreasing in T .
2. Recall that subjective discount factor can be written as β = 1/(1 + ρ),

where ρ is the subjective discount rate. The optimal consumption pol-
icy states that if the subjective rate of time preference ρ is greater than
the interest rate r, then the consumer will consume more today relative
to tomorrow, ct > ct+1 whereas if ρ < r, then the consumer will pre-
fer to delay consumption so that ct < ct+1. If ρ = r, then the optimal
consumption path is constant, ct = c̄. (See Equation 5.10.) Thus, the
consumption profile depends on how patient consumers are.

3. The optimal consumption profile also depends on the real interest rate.
The higher is r, the higher will be consumption growth.

4. In the case with ρ = r, the consumer consumes a fixed fraction of his
lifetime in each period denoted (1 − η)/(1 − ηT+1).
Now suppose that T goes to infinity. We can iterate the one-period

budget constraint forward to obtain the lifetime budget constraint as:

∞∑
t=0

ct

(1 + r)t
=

∞∑
t=0

yt

(1 + r)t
, (5.13)

assuming S0 = 0. To obtain this budget constraint, we also impose the
condition that the discounted value of last-period savings goes to zero as
the horizon gets longer:

lim
T→∞

ST+1

(1 + r)T
→ 0.

Suppose also that a household’s income follows a known sequence
{yl , yh, yl , yh, . . .}, where yl < yh. The relative frequency of yl and yh is 0. 5
(so that half of the time income is yh and the other half, it is yl ). See
Figure 5.2. Suppose that the household just consumes its endowment each
period, so in low periods utility is U (yl ) and in high periods it is U (yh).
By Jensen’s Inequality for concave functions, average utility is below the
utility function evaluated at the average level of income, ȳ = 0. 5yh + 0. 5yl .
That is,

0. 5U (yl ) + 0. 5U (yh) < U (ȳ).

The household is much better off, in terms of higher utility, in smoothing
consumption over time. How does it do this? By allowing saving to increase
or decrease to maintain optimal consumption.

To further illustrate these results, suppose that real interest rate satisfies
that β(1 + r) = 1. Then

U ′(ct) = U ′(ct+1), (5.14)
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Figure 5.2. Alternating deterministic endowment

which implies that ct = ct+1 = c̄ for all t. The present value of lifetime
income is:

PVt(y) =
∞∑

i=0

(
1

1 + r

)i

yt+i,

where yt = yl if t is odd and equal to yh if t is even. This can be
simplified as:

PV0(y) =
∞∑
t=1

(
1

1 + r

)2t

yh +
∞∑
t=1

(
1

1 + r

)2t−1

yl

= yh

(
1

1 − 1/(1 + r)2

)
+ yl

(
1

1 + r

)(
1

1 − 1/(1 + r)2

)

= (1 + r)2

r(2 + r)
yh + (1 + r)

r(2 + r)
yl .

The present value of consumption expenditures is:

PV0(c) = c̄
∞∑

t=0

(
1

1 + r

)t

=
(

1 + r
r

)
c̄.
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Setting this equal to the PV of income, we can solve for c̄ as:

c̄ = r
1 + r

PV0(y) = yh(1 + r) + yl

2 + r
.

Notice that if yh = yl = ȳ, the consumer merely consumes c̄ = ȳ in each
period and saving is zero. By contrast, if there are variations in income, then
saving adjusts to provide a constant consumption stream to the household.
Assuming that the household’s initial saving is zero, saving under a constant
consumption policy evolves as

St+1 =
{

yl + (1 + r)St − c̄ if t is odd
yh + (1 + r)St − c̄ if t is even,

given S1 = yl − c̄. Hence, saving is the residual that fluctuates so that
consumption can be constant. We discuss the properties of optimal con-
sumption and saving further after we introduce uncertainty.

5.2. P O R T F O L I O C H O I C E U N D E R U N C E R T A I N T Y

We can extend this framework to allow for random variation in the next
period’s wealth. In what follows, we first consider a portfolio choice prob-
lem with a risky and risk-free asset. In a later section, we consider a more
general saving-consumption problem under uncertainty.

Now suppose that the return on one of the assets that the agent holds
is uncertain. In particular, suppose that there are two assets, A and B, and
that A pays a certain return of ra while B pays an uncertain return rb. The
consumer lives two periods, and obtains consumption c = w − sa − sb in
the first period and c′ = rasa + rbsb in the second period. The consumer
solves

max
sa,sb

U (w − sa − sb) + E[W (rasa + rbsb)]. (5.15)

The first-order conditions with respect to sa, sb are

U ′(w − sa − sb) = E[W ′(rasa + rbsb)ra] (5.16)

U ′(w − sa − sb) = E[W ′(rasa + rbsb)rb]. (5.17)

Divide both sides of each equation by U ′ to obtain

1 = E[W ′(rasa + rbsb)ra]

U ′(w − sa − sb)
= E[W ′(rasa + rbsb)rb]

U ′(w − sa − sb)
. (5.18)

Hence each asset is held so that the expected weighted return is equalized
across assets. The weight is the intertemporal marginal rate of substitution
in consumption:

mt+1 = W ′(ct+1)/U ′(ct),
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This is the stochastic discount factor that we defined in Chapter 1. It is the
rate at which future (random) income is discounted.

We will use the covariance decomposition property to rewrite our first-
order conditions. Recall that for two random variables x, y, the covariance
decomposition is Cov(x, y) = E(xy)−E(x)E(y) where E( · ) is the uncondi-
tional expectations operator. Recall that the return to asset A is known with
certainty so that we can move ra from the expectations operator, so that

ra =
[

E(W ′(c′))
U ′(c)

]−1

. (5.19)

According to the covariance property, the first-order condition for holdings
of asset B can be expressed as:

Cov

(
W ′(c′)
U ′(c)

, rb

)
= 1 − E

(
W ′(c′)
U ′(c)

)
E(rb),

This can be rewritten as:

E[W ′(c′)]
U ′(c)

E(rb) = 1 − Cov

(
W ′(c′)
U ′(c)

, rb

)
. (5.20)

Divide both sides by E[W ′(c′)]/U ′(c) and re-arrange

E(rb) − ra = −raCov

(
W ′(c′)
U ′(c)

, rb

)
. (5.21)

The left side is the risk premium, E(rb) − ra – the excess return over
the certain return that the agent needs to be compensated to hold the
risky asset. Hence, the portfolio choice problem under uncertainty yields
a representation for the risk premium based on the covariance of the risky
return with the intertemporal marginal rate of substitution. By contrast,
the static CAPM yields a representation for the risk premium in terms
of the covariance of the return with the wealth portfolio, RW . It is this
feature which separates much of the new literature of asset pricing from
the earlier empirical literature. We will discuss these issues further in later
chapters.

5.3. A M O R E G E N E R A L P R O B L E M

At the beginning of period t, the agent has an endowment yt that can
be allocated between consumption ct or borrowing and lending, bt+1.
Assume that the endowment and the (net) return to borrowing or lending
is stochastic. In particular, let s ∈ S be a state variable. The endowment
process is a function y : S → Y where Y = (0, ȳ]. The return process,
which is determined endogenously in a general equilibrium model but
which we will treat as exogenous, is function r : S → ( − 1, ∞). Assume
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that s follows a first-order Markov process. Assume for convenience that
the state space is continuous.

The consumer’s objective function at time t is:

E0

{ ∞∑
t=0

β tU (ct)

}
, (5.22)

where 0<β < 1 is the subjective discount factor. Here the expectation
operator is written as conditional on information at time t. Notice that
as we go forward in time, the household will continuously update this
information set, conditioning on all information available at the time
the decision is made. The utility function U : �+ → � is bounded,
strictly increasing, strictly concave, and continuously differentiable with
limc→0 U ′(c) = ∞ and limc→∞ U ′(c) → 0. The budget constraints are:

ct + bt+1 = y(st) + bt(1 + r(st)), (5.23)

for all t ≥ 0.
The consumer’s problem involves choosing sequences for consumption

and bond holdings denoted {ct}∞t = 0 and {bt+1}∞t = 0 to maximize Equa-
tion (5.22) subject to a sequence of budget constraints and given initial
bond holdings, b0, and the initial state, s0. In the next chapter, we show
how to formulate this problem using a recursive approach and examine
the conditions under which it has a solution. For now assume a solution
exists. Let {λt}∞t = 0 denote the sequence of Lagrange multipliers corre-
sponding to the one-period budget constraints. The first-order conditions
characterizing the optimal consumption and bond-holding choices are as
follows:

U ′(ct) = λt , (5.24)

λt = Et(λt+1(1 + r(st+1))) (5.25)

for t ≥ 0. Substituting for λt using the first condition yields:

U ′[ct] = βEt{U ′[ct+1](1 + r(st+1))}. (5.26)

We now examine the implications of Equation (5.26) for some special cases.
(i) Constant real interest rate with β(1 + r) = 1. In this case, the only

randomness in the consumer’s problem derives from income fluctuations
whereas the interest rate is risk free, meaning that it is constant over time.
Furthermore, the real interest rate is given by

(1 + r) = 1

β
= 1 + ρ or r = ρ,
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where ρ > 0 is the subjective rate of time preference. Making these
substitutions in the first-order condition yields

U ′(ct) = Et[U ′(ct+1)]. (5.27)

Thus, we have that the marginal utility of consumption follows a martin-
gale. This means that the best predictor of next period’s marginal utility is
this period’s marginal utility.

(ii) Independently and identically distributed income shocks. If the random
shocks st are independently and identically distributed each period, then
the first-order condition (5.26) can be written as:

U ′(ct) = βE[U ′(ct+1)(1 + r(st+1))]. (5.28)

If the random state st is distributed as i.i.d. each period, then the expec-
tation does not depend on which state is considered. In this case, current
realizations of the state st are not useful for predicting future realizations.

(iii) Constant interest rate with β(1 + r) = 1 and i.i.d. income shocks.
Now conditions (i) and (ii) hold together. In this case the expectation of
marginal utility is a constant, and so is optimal consumption:

U ′(ct) = E[U ′(ct+1)] ⇒ c = c̄. (5.29)

Let Ū = E[U ′(ct+1)]. Setting this equal to U ′(ct) and solving for ct yields
c̄ = (U ′)−1(Ū ). As in Section 5.1, the consumer borrows at the constant
interest rate to smooth income shocks, so that optimal saving evolves as:

bt+1 = y(st) + (1 + r)bt − c̄, (5.30)

given an initial b0.
(iv) Quadratic utility and β(1 + r) = 1. Let the utility function have

the form U (c) = ac − bc2/2 so that marginal utility is linear in con-
sumption, U ′(c) = a − bc. The optimal consumption sequence satisfies
Equation (5.27) with

ct = Et[ct+1]. (5.31)

This is referred to as the random walk of consumption due to Hall [223]
and Flavin [187]. It has the strong implication that the best predictor
of next period’s consumption is this period’s consumption. Thus, future
consumption will vary only as a function of news or unanticipated shocks.

Let us use the sequence of budget constraints in (5.23) to derive an
alternative representation by recursively substituting for next period’s bond
holdings into the current budget constraint:

ct + bt+1 = y(st) + bt(1 + r(st)),
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which implies

ct + ct+1

(1 + r(st+1))
+ bt+2

(1 + r(st+1))
=

y(st) + y(st+1)

(1 + r(st+1))
+ bt(1 + r(st)).

Iterating forward up to period t+h and defining the discount factor γt+i as

γt = 1, γt+i ≡ 1∏i
j=1 (1 + r(st+j))

for i > 0,

we have:
h∑

i=0

γt+ict+i + γt+hbt+h+1 =
h∑

i=0

γt+iy(st+i) + bt(1 + r(st)).

Taking the limit as h → ∞ implies the consumer’s intertemporal budget
constraint:

∞∑
i=0

γt+ict+i =
∞∑

i=0

γt+iy(st+i) + bt(1 + r(st)), (5.32)

where we have imposed the limiting condition:

lim
h→∞

γt+hbt+h+1 → 0. (5.33)

This says that the present value of the consumer’s expenditures must equal
the present value of the consumer’s income plus any initial wealth bt(1 +
r(st)) for any given realization of the shocks {st+i}∞i = 0. Thus, consumers are
required to have a balanced budget for each history of the shocks.

Now take expectations of both sides of the present value budget con-
straint conditional on information at time t. Also use the first-order
condition which states that Et(ct+i) = ct , assuming that the real interest
rate is a constant:

∞∑
i=0

ct

(1 + r)i
= Et

{ ∞∑
i=0

y(st+i)

(1 + r)i

}
+ bt(1 + r). (5.34)

Notice that we can simplify this expression as:

ct = r
1 + r

{
Et

[ ∞∑
i=0

y(st+i)

(1 + r)i

]
+ bt(1 + r)

}
. (5.35)

The expression on the right side of this relation is called the consumer’s
permanent income and the relationship summarized by this equation is
referred to as the permanent income hypothesis following Friedman [190],
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who argued that consumers would choose their consumption as a function
of their permanent income or wealth. Hence, under the assumption that
utility is quadratic and that the real interest rate is a constant and equal
to the consumer’s rate of subjective time preference, we find that optimal
consumption is proportional to permanent income or wealth.

One implication of this representation is that permanent changes in
income lead to permanent changes in consumption. We can show this
using the solution for the model in case (iv). Suppose, in particular,
that income at all dates increases by �y. Then notice from the expres-
sion on the right side of Equation (5.35) that the change in permanent
income is:

r
1 + r

�y
∞∑

i=0

1

(1 + r)i
= �y.

Hence, it must be the case that consumption also responds by the same
amount at each date t.

We can use the framework of this section to examine the response of
consumption to permanent versus temporary shocks. First, assume that
households face income shocks that are transitory (temporary) and per-
manent. If households can easily borrow and save, then they will do so to
smooth over transitory income shocks. The case with identically and inde-
pendently distributed income shocks corresponds to a situation in which
income shocks are purely transitory. If we assume that the real interest rate
is constant and for simplicity satisfies β(1 + r) = 1, then Equations (5.29)–
(5.30) imply that all income shocks will be smoothed away, and the optimal
consumption sequence will be constant through time. If income shocks
are permanent, then consumption will respond to permanent income
shocks because consumption expenditures cannot exceed the income
stream in discounted present value (so lifetime budget constraints must
hold). Hence the empirical implications are clear: consumption does not
respond to transitory income shocks while it does respond to permanent
shocks.

The permanent income/life cycle hypothesis has been subject to much
empirical testing. In the data, consumption typically responds strongly to
permanent income shocks and this response tends to be much stronger
than the response of consumption to transitory shocks. However, the
response to transitory shocks is much larger than we would predict from
the consumption smoothing model (sometimes called the life-cycle model).
(See, for example, Flavin [187].) Such findings have been taken to be
evidence against the consumption smoothing model. According to one
view, the assumption that capital markets are perfect, specifically that
consumers can easily borrow against future income, is not correct and
consumers are subject to liquidity constraints. Others have argued that
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some of the findings may be explained by the presence of precautionary
saving effects. (See, for example, Zeldes [452].) Pemberton [359] reviews
the performance of multi-period stochastic dynamic programming mod-
els of household consumption and savings, and concludes that another
problem with the application of such models for modeling actual behav-
ior lies in their sheer complexity. He argues more attention should be
paid to issues of consumers’ ignorance or uncertainty and to learning. In
later chapters, we address some of the criticisms leveled against the sim-
ple model by considering models with borrowing constraints and market
incompleteness.

5.3.1. Precautionary saving

To extend our analysis of the previous section, we now examine the
response of consumption and saving to income and interest rate uncer-
tainty. We are interested in answering the following question: How does
the solution for saving under uncertainty differ from the solution under
certainty? In particular, does saving increase or decrease with uncertainty?
It may be that the greater risk about the return to saving or about future
income may lead the consumer to substitute away from consumption
tomorrow by saving less and consuming more today. Or the increased
uncertainty next period may lead to reduced consumption today and
increased saving. Fearful of a very low return or income, the consumer may
respond by increasing saving today to insure against a bad outcome tomor-
row. When the latter occurs, we say that households have a precautionary
motive to save.

This issue was considered by Leland [304] in a two-period model with
income risk. Leland showed that the standard Arrow-Pratt measures of risk
aversion did not suffice to determine the impact of greater uncertainty on
the optimal saving decision. Instead he showed that the answer depends
on the concavity or the convexity of the marginal utility function. Notice
that the concavity or convexity of the utility function does not tell any-
thing about whether marginal utility is concave or convex. Leland showed
that whereas the Arrow-Pratt measures of risk aversion depend on the sec-
ond derivative of the utility function, the notion of precautionary saving
depends on its third derivative.

Returning to our simple two-period example in Section 5.1, we found
that the solution was a saving function So that depends on the real interest
rate and real wage. Now suppose that the return is stochastic, r(s) and for
simplicity, that it is i.i.d. Also define the gross rate of interest by R(s) = 1 +
r(s) and assume that w is constant. The first-order condition is:

U ′(w − S) = E
[
W ′(R(s)S)R(s)

]
, (5.36)
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where E( · ) denotes unconditional expectation. Let Ŝ = S(w, R(s)) denote
the solution to Equation (5.36). Likewise, the first-order condition under
certainty can be written as:

U ′(w − S) = W ′(RS)R, (5.37)

where R = 1 + r and w are both non-stochastic. Write the solution under
certainty as So = S(w, R).

To illustrate the impact of uncertainty about the interest rate on the
optimal saving decision, assume further that R = E(R(s)) and multiply
both sides of Equations (5.36) and (5.37) by saving, S. Then the first-order
conditions become:

U ′(w − S)S = E
[
W ′(R(s)S)R(s)S

]
, (5.38)

and

U ′(w − S)S = W ′(RS)RS. (5.39)

We are interested in whether the marginal (utility) cost of additional sav-
ing in period 1 evaluated under the certainty solution So is less than
the expected marginal benefit of this saving when there is interest rate
uncertainty:

U ′(w − So)So = W ′(RSo)RSo < E
[
W ′(R(s)So)R(s)So] . (5.40)

If this is the case (and the second-order condition holds for the case with
uncertainty), then utility can be increased by increasing saving above the
case with certainty. In this case, we say that there exists a precautionary
motive in the face of interest rate uncertainty. To determine the condi-
tion under which this is true, evaluate the right side of Equation (5.38) at
the certainty solution So as E

[
W ′(R(s)So)R(s)So

]
. Define x = R(s)So and

xo = RSo and evaluate E[W ′(x)x] by expanding W ′(x)x around xo as:

E
[
W ′(x)x

] = E
{

W ′xo

+ (x − xo)
[
W ′′xo + W ′] + (x − xo)2

2

[
W ′′′xo + 2W ′′]} .

Substituting back for x = R(s)So and xo = RSo and taking expectation of
the right side, we obtain the result

E
[
W ′(R(s)So)R(s)So] = W ′(RSo)RSo

+ (So)2Var(R(s))
2

[
W ′′′(RSo)(RSo) + 2W ′′(RSo)

]
. (5.41)
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Equation (5.41) implies that there exists a precautionary saving motive, or
equivalently, Equation (5.40) holds, provided

(So)2Var(R(s))
2

[
W ′′′(RSo)RSo + 2W ′′(RSo)

]
> 0.

Since the term (So)2Var(R(s)) is always positive, this condition
simplifies as:

W ′′′(RSo)RSo > −2W ′′(RSo).

Assuming the strict concavity of the utility function, we have that W ′′ < 0.
Hence, a necessary (but not sufficient) condition for saving to be increas-
ing in interest rate uncertainty is that the third derivative of the utility be
positive, W ′′′ > 0.

In a related analysis, Kimball [276] has defined measures of “prudence”
that allow us to determine the impact of second-period uncertainty on the
optimal first-period consumption decision. It is easier to illustrate Kim-
ball’s results using measures of income uncertainty. For simplicity, consider
a two-period version of the problem with varying income. Assume that
the consumer has labor income in the first and second periods of his life.
Let the real interest be constant and equal to zero, r = 0. Define A as the
sum of first-period assets plus first-period income and denote by y(s) as
the second-period income, where y(s) is a random variable that varies as a
function of the state s. Let consumption in period 1 be defined as c. We
can define saving as S = A − c. Hence, consumption in period 2 is given
by A − c + y(s). We are interested in the impact of uncertainty on the con-
sumer’s optimal saving choice. The first-order condition under uncertainty
is given by:

U ′(c) = E
[
W ′(A − c + y(s))

]
. (5.42)

Proceeding in a manner similar to the derivation of the risk premium,
Kimball defines the compensating precautionary premium to satisfy

W ′(A − c + y) = E[W ′(A − c + y(s) + ψ∗)]. (5.43)

Thus, if there exists some quantity ψ∗ that can compensate for the effect
of income risk on second-period consumption, then the optimal solution
for consumption (or saving) in period 1 would remain unaltered. Likewise,
the equivalent precautionary premium satisfies

W ′(A − c + y − ψ) = E[W ′(A − c + y(s))]. (5.44)

In this case, the existence of the quantity ψ that eliminates the effect of
income risk on second-period consumption at a given cost to the consumer
would leave first-period consumption (or saving) unchanged.

To find ψ∗ or ψ , we proceed as before and solve for these quantities by
taking approximations to the functions that appear on the left and right
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sides of (5.43) or (5.44). Also assume that the constant income in the cer-
tainty solution is equal to the mean of the stochastic income, E(y(s)) = y,
and consider Equation (5.44). Approximating the left side around ψ = 0,
we have

W ′(A − c + y) − ψW ′′(A − c + y).

Approximating the function on the right side around y(s) = y and taking
expectation, we have

W ′(A − c + y) + Var(y(s))
2

W ′′′(A − c − y).

Solving for ψ we obtain

ψ = Var(y(s))
2

(
−W ′′′

W ′′

)
. (5.45)

The second term denotes the index of absolute prudence, and it shows how
the cost of reducing uncertainty to the consumer varies. It plays an analo-
gous role as the coefficient of absolute risk aversion. Notice that W ′′′ < 0
if W ′ is concave, and W ′′′ > 0 if W ′ is convex. If W ′ is convex, then the
consumer is willing to pay a positive premium to reduce uncertainty in
the second period. If W ′′′ = 0 (which occurs for quadratic utility), then we
have that ψ = 0 and E

[
W ′(A − c + y(s))

] = W ′(A − c + y). We say that
the certainty equivalent property holds when this is the case. (See Exercise 1.)

5.4. C O N C L U S I O N S

In this chapter we have established properties of optimal consumption and
saving decisions, taking as given the interest rate and the income pro-
cesses. Our results suggest that the desire to smooth consumption over
time, whether in a deterministic or stochastic environment, has some
strong implications. We have also shown how the consumption and sav-
ing model can be interpreted in terms of the consumer’s portfolio choice
problem. The consumption and saving model provides both an asset-
pricing theory and a theory of risk. Furthermore, in a general equilibrium
framework, rates of return on alternative assets are jointly determined with
consumption and savings allocations. Hence, consumers’ desire to smooth
consumption affects the return on alternative assets. Production and cap-
ital accumulation aid in fulfilling consumption smoothing and provide
an additional mechanism through which assets returns are affected. Such
factors are further highlighted depending on the nature of market incom-
pleteness in the economy. We defer discussion of some of these issues to
Parts II and IV.
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5.5. E X E R C I S E S

1. Certainty Equivalent Solution
Consider the simple two-period model with income uncertainty and
saving. Suppose that the two-period utility function is given by:

U (c1) + βU (c2),

where 0<β < 1 is the subjective discount rate. Assume further that U
is quadratic:

U (c) = ac − bc2/2, c < a/2b.

Let the constant interest rate be equal to r, and define the consumer’s
budget constraints in periods 1 and 2 by:

c1 + S ≤ y1

c2 ≤ y2 + (1 + r)S,

where S denotes saving.
Show that the optimal choice of consumption and saving exhibits the
certainty equivalent property, that is, the solution under uncertainty can
be obtained from the solution under certainty by replacing random
variables with their expectations.

2. Log Utility CAPM
Suppose that an infinitely lived consumer has preferences over random
consumption streams defined as:

∞∑
i=0

β i ln (ct+i).

(a) What is the intertemporal MRS or stochastic discount factor?
(b) Consider a claim to all future consumption. This may be defined

as the wealth portfolio. The price of the wealth portfolio at date t
satisfies:

pW
t = Et

⎡
⎣ ∞∑

j=1

β jU ′(ct+j)

U ′(ct)
ct+j

⎤
⎦ .

Find pW
t .

(c) Define the return on the wealth portfolio as:

RW
t+1 = pW

t+1 + ct+1

pW
t

.
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Show that the intertemporal MRS for the log utility model is the
inverse of the return on the wealth portfolio:

mt+1 = 1

RW
t+1

.

3. An Intertemporal Model of the Current Account
Consider a small open economy that is populated by an infinitely lived
representative consumer with preferences given by

E0

{ ∞∑
t=0

β tU (ct)

}
, (5.46)

where E0 is the expectations operator conditional on information at
date zero, β is a subjective discount factor with 0<β < 1, U ( · ) is
a strictly increasing, strictly concave utility function, and ct denotes
private consumption.

The country can borrow or lend at the constant real interest r with
the rest of the world. Let bt denote net foreign liabilities at t, yt denote
gross domestic product, it real investment, and gt government expen-
ditures. The following equation characterizes the accumulation of net
foreign liabilities by the country:

�bt+1 = ct + it + gt − yt + rbt , t ≥ 0. (5.47)

The current account (CA) for the country is given by

CAt = nft − ct − rbt ,

where nft denotes national cash flow nft = yt − it − gt .
(a) Assuming a quadratic utility function and imposing the terminal

condition that the discounted value of borrowing goes to zero as t
goes to infinity, find the optimal value of consumption denoted c∗

t
that maximizes Equation (5.46) subject to the budget constraint:

bt+1 + yt = ct + it + gt + (1 + r)bt , t ≥ 0.

(b) Using your answer to part (a), find the optimal consumption-
smoothing current account CA∗

t .
(c) Discuss the impact of permanent versus transitory changes in (i)

gross domestic product, (ii) investment, (iii) government expendi-
tures on CA∗

t .
4. A household solves

max
{ct ,lt ,St }

∞∑
t=0

β tU (ct , lt) (5.48)
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where ct is consumption and lt is leisure, subject to the time constraint

lt + nt = 1 (5.49)

and the budget constraint

wtnt + (1 + r)St = ct + St+1 (5.50)

where nt is the labor supply, {wt} is a known sequence of wage rates,
r is the real and constant interest rate, St is savings, and S0 is given.
The function U is continuous, increasing, and strictly concave in
both arguments. Consumption and leisure are normal goods. House-
holds maximize the discounted present value of utility by choosing
consumption and leisure.
(a) Set up the maximization problem and derive the first-order con-

ditions using the sequential approach with Lagrange multipliers.
Demonstrate that optimal labor supply can be expressed as a
function:

nt = H (ct , wt).

Describe the properties of the function H .
(b) Assume that β(1 + r) = 1. Describe the behavior of consumption

and savings over time, given the sequence of wages.
(c) Suppose that the utility function takes the form

α1 ln (ct) + α2 ln (lt).

Find the optimal consumption, savings, leisure, and labor supply
expressed as a function of wages and past savings.

(d) Suppose that the wage rate follows a specific pattern: in even periods
let wt = wh and in odd periods wt = wl where wh >wl . Describe
how consumption, saving, and labor move over time.
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Recursive models





C H A P T E R 6

Dynamic programming

In this chapter, we provide a brief description of the dynamic program-
ming approach. We consider the consumption/saving problem that we
introduced in Chapter 5 and a deterministic growth problem. We illustrate
the Principle of Optimality and introduce methods for solving a dynamic
stochastic optimization problem using a recursive approach. In later chap-
ters, we illustrate the dynamic programming approach in a variety of
applications.

6.1. A D E T E R M I N I S T I C G R O W T H P R O B L E M

Suppose there is a representative infinite-lived household with time
additive preferences over infinite consumption sequences {ct}∞t = 0. The
consumer maximizes

∞∑
t=0

β tU (ct)

where 0 < β < 1 is the constant discount factor used to evaluate future
utility. The utility function U ( · ) is increasing, strictly concave, and twice-
continuously differentiable. The Inada conditions are assumed to hold.

Suppose that output is produced according to the production
technology:

yt = θ f (kt), (6.1)

where f ( · ) is strictly increasing, strictly concave, and twice-continuously
differentiable and θ is a known productivity parameter. Assume that house-
holds own the capital stock and that the resource constraint facing a
household is

ct + kt+1 = θ f (kt) + (1 − δ)kt , (6.2)

where δ denotes the depreciation on capital with 0 < δ < 1.
The problem of the consumer can be expressed as:

(SS) max
{ct }∞t=0,{kt+1}∞t=0

∞∑
t=0

β tU (ct)

109
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subject to the sequences of constraints

ct + kt+1 = θ f (kt) + (1 − δ)kt , t ≥ 0,

ct ≥ 0, kt+1 ≥ 0,

given the initial capital stock k0.
Suppose we could solve the problem in (SS) for all possible values of k0.

Then we could define a function

V : � → �
by taking V (k0) as the maximized value of the objective function in (SS)
for all t, given k0. The function V is known as the value function. If the
function V were known for each state (k), we could evaluate the maximum
utility that can be attained with the initial capital stock k1 by V (k1). Define
the set of feasible consumption and capital stock allocations at time 0 by:

�(k0) ≡ {(c0, k1) : c0 + k1 ≤ θ f (k0)}.
Given the function V , we can replace the dynamic optimization problem
described by (SS) with the problem:

maxc0,k1∈�(k0){U (c0) + βV (k1)}. (6.3)

If the function V were known, we could use Equation (6.3) to define the
policy functions for the optimal choice of consumption and saving by:

g :� → �+

h :� → �+.

Thus, for each k0, c0 = g(k0) and k′ = h(k0) show the values of consump-
tion and capital that attain the maximum in Equation (6.3). The policy
functions describe the optimal choice of consumption and capital as a
function of the state variable, k0.1 Given the functions g and h, we can
describe the evolution of the consumer’s consumption and capital choices
as ct = g(kt) and kt+1 = h(kt) and for all t ≥ 0, given k0.

We assumed above that V shows the maximized value of the objective
function for the problem in (SS) for the initial state (k0). If the function V
in Equation (6.3) also solves that problem for (k1), then it must be the case
that

(FE) V (k0) = max
c0,k1∈�(k0)

{U (c0) + βV (k1)}.

1 In many applications, it is sufficient to restrict attention to stationary policies, specifically policies
that do not have the time index as an argument and that is what we assume here.
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This equation is known as the Bellman equation and it is a functional
equation in the unknown function V . The study of dynamic optimiza-
tion problems through the analysis of such functional equations is termed
dynamic programming.

We motivate the study of the problem in (FE) by noting that the solu-
tion to this functional equation is the supremum function for the sequence
space problem. The main issue that must be answered is the relation
between the solutions for the sequence space problem denoted (SS) and
the recursive formulation of the problem denoted (FE). Specifically, the
value function V which solves the functional equation in (FE) yields the
supremum for the sequence space problem described by (SS), for a given
initial state (k0), and conversely, sequences {c�t }∞t = 0 and {k�t+1}∞t = 0 attain the
supremum (or maximum) for (SS) if and only if they satisfy the functional
equation in (FE):

V (k�t ) = U (c�t ) + βV (k�t+1), t = 0, 1, . . .

where c�t = yt + (1 − δ)k�t − k�t+1. These ideas are known as the Princi-
ple of Optimality due to R. Bellman, and they constitute the basis for the
dynamic programming approach.

The conditions under which the Principle of Optimality holds are
studied more formally by Stokey and Lucas [418], Chapters 4 and 9.
In a deterministic setting, the supremum function for the problem
in (SS) satisfies the functional equation in (FE) under some relatively
mild assumptions. These require that the set of feasible allocations are
non-empty and that all feasible allocations can be evaluated using the
objective function in (6.34). Proving the converse statement requires
that a certain boundedness property for the value function V holds.
The issue is now to find the unknown function V . In what follows,
we describe two simple methods for doing this. In the next section,
we describe a more formal method for showing the existence of a
function V satisfying Bellman’s equation and for numerically solving
for it.

6.1.1. Guess-and-verify

Under some configurations for preferences and the production function,
we can use a guess-and-verify technique and solve for the unknown value
using the method of undetermined coefficients. This approach is useful for
solving models in which preferences are of the CRRA variety and the pro-
duction technology is Cobb-Douglas or models with quadratic objective
functions and linear constraints.
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Suppose preferences and the production technology satisfy:

U (c) = ln (c), (6.4)

θ f (k) = θkα, α < 1. (6.5)

Also assume that capital depreciates 100% each period so that δ = 1.
Notice that the capital stock and the technology parameter enter multi-

plicatively. Hence, instead of k, we take the state variable to be y and guess
that the value function has the form:

V (y) = G + F ln (y).

Bellman’s equation is given by:

V (y) = max
c,k′

{
ln (c) + β[G + F ln (y′)]

}
subject to c + k′ ≤ θkα. Let λ denote the multiplier for the resource
constraint. The first-order conditions are given by:

1

c
= λ,

λ = β

[
Fαθ ′(k′)α−1

y′

]
.

Combining these conditions yields the optimality condition:

1

c
= β

[
Fαθ ′(k′)α−1

y′

]
.

Substitute for the resource constraint and for output into this equation:

1

θkα − k′ = β

[
Fαθ ′(k′)α−1

θ ′(k′)α

]
= β

[
Fα
k′

]
.

Solving this equation for k′ and making use of the resource constraint, we
can write the optimal policy functions as:

k′ = αβFkαθ
1 + αβF

c = θkα

1 + αβF
.

Now substitute these results back into the definition of the value
function as:

G + F ln (y) = ln

(
y

1 + αβF

)
+ β[G + F ln (y′)].
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Equating the coefficients on the constant term and on ln (y) allows us to
solve for F and G as:

F = 1

1 − αβ
(6.6)

G = ln (1 − αβ)

1 − β
+ αβ ln (αβ)

(1 − β)(1 − αβ)
+ β ln (θ )

(1 − β)(1 − αβ)
. (6.7)

Substituting the result for F back into the expressions for k′ and c yields:

k′ = h(y) = αβy,

c = g(y) = (1 − αβ)y.

Since consumption must be strictly positive, we have the restriction that
αβ < 1. Notice that the process of solving for the value function also yields
the optimal policy functions.

The solution also illustrates a well-known result, namely, that an agent
with logarithmic preferences will consume (and invest) a fixed fraction
of her wealth. The higher is β (so that consumers are more patient), the
lower is the current consumption and the higher investment. Likewise, as
α increases (so that the production technology becomes more productive),
investment and output increase.

6.1.2. Finite horizon economies

Another approach to deriving a solution to the infinite horizon problem
is to consider the solution to a finite horizon version of the problem and
to let the time period go to infinity. This approach is known as backward
induction. There may also be independent interest in finding the solution
to finite horizon economies. We consider economies with the paramet-
ric class of preferences and production technologies given in the previous
section.

Consider a deterministic optimal growth problem where the objective
of the social planner is to maximize:

T∑
t=0

β tU (ct),

where β < 1. The resource constraint for the social planner is given by

ct + kt+1 ≤ θ f (kt) + (1 − δ)kt .

As before, we assume that there is 100% depreciation such that δ = 1
and the technology shock θ is non-random. Also preferences and the
production technology satisfy (6.4) and (6.5).
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In the finite horizon setup, we solve the social planner’s problem starting
with the last period, and work backwards from period T .

At time t = T , the value function at time T has the form:

V (kT ) = max
kT+1

{ln (cT ) + βV (kT+1)} . (6.8)

Since the world ends at time T , the value of capital at date T+1 is zero:

V (kT+1) = 0. (6.9)

Thus, the problem at time t = T reduces to:

V (kT ) = ln (cT ) = ln[θkαT − kT+1].

The capital stock that solves this maximization problem is kT+1 = 0 and
the value function at time T is

V (kT ) = ln (θkαT ). (6.10)

The optimal consumption behavior is to consume the whole output
cT = θkαT .

At time t = T − 1 the social planner solves

V (kT−1) = max
kT

{ln (cT−1) + βV (kT )} . (6.11)

Substituting for V (kT ) and feasibility constraints yields:

V (kT−1) = max
kT

{
ln[θkαT−1 − kT ] + β ln[θkαT ]

}
.

The first-order condition with respect to kT is:

1

θkαT−1 − kT
= αβ

kT
.

Solving for kT yields:

kT = αβθ

1 + αβ
kαT−1. (6.12)

Using the feasibility constraint, the optimal consumption is given by:

cT−1 = θ

1 + αβ
kαT−1. (6.13)

Substituting for kT yields an expression for the value function at time
T − 1 as:

V (kT−1) = α(1 + αβ) ln (kT−1) + (1 + αβ) ln

(
θ

1 + αβ

)
+ αβ ln (αβ) + β ln θ . (6.14)
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Continuing in this way, at t = T − 2 the Bellman equation is:

V (kT−2) = max
kT−1

{ln (cT−2) + βV (kT−1)} . (6.15)

Substituting for V (kT−1) and taking the derivative with respect to kT−1

yields:

kT−1 = θαβ(1 + αβ)

1 + αβ(1 + αβ)
kαT−2. (6.16)

The optimal consumption policy is:

cT−2 = θ

1 + αβ(1 + αβ)
kαT−2. (6.17)

Now we can generalize these results for all t as:

kt+1 = θαβ
∑T−t−1

i=0 (αβ)i

1 + αβ
∑T−t−1

i=0 (αβ)i
kαt , (6.18)

ct = θ

1 + αβ
∑T−t−1

i=0 (αβ)i
kαt . (6.19)

Now consider the limit of the optimal policies as T goes to infinity:

lim
T→∞

kF
t+1 = lim

T→∞
θαβ

∑T−t−1
i=0 (αβ)i

1 + αβ
∑T−t−1

i=0 (αβ)i
kαt

=
θαβ 1

1−αβ
kαt

1 + αβ 1
1−αβ

= αβθkαt = kI
t+1, (6.20)

and

cF
t = lim

T→∞
θ

1 + αβ
∑T−t−1

i=0 (αβ)i
kαt

= θkαt
1 + αβ 1

1−αβ

= (1 − αβ)θkαt = cI
t . (6.21)

Hence, the decision rules as the horizon goes to infinity will be identical
to those found for the infinite horizon case. However, in a finite hori-
zon context, the form of these decision rules will not be time-invariant or
stationary.

6.2. M A T H E M A T I C A L P R E L I M I N A R I E S

In the next section, we will describe a simple consumption-saving exam-
ple in which the agent’s endowment or income and the return to saving
is random. We will assume that the uncertainty in the economy evolves
a Markov process and study the formulation of the agent’s dynamic opti-
mization problem as a dynamic programming problem. However, since the
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notion of Markov processes is used throughout this book, we will begin
with a discussion of Markov processes. We will then provide a discussion
of vector space methods and the contraction mapping approach.

6.2.1. Markov processes

A discrete parameter stochastic process {X (t), t = 0, 1, 2, . . .} is said to be a
Markov process if, for any set of n points t1 < t2 < · · · tn, the conditional
distribution of X (tn), for given values of X (t1), . . . , X (tn−1) depends only
on X (tn−1), the most recent value; more precisely, for any real numbers
x1, . . . , xn,

Pr(X (tn) ≤ xn | X (t1) = x1, . . . , X (tn−1) = xn−1)

= Prob(X (tn) ≤ xn | X (tn−1) = xn−1). (6.22)

Discrete Markov chains are a special case of Markov processes. Consider
a discrete parameter Markov process denoted by {st , t = 0, 1, 2, . . .}. Then
each st is assumed to take on integer values in the set S ={1, . . . , k} and we
say that {st}∞t=0 follows a Markov chain if

Pr(st+1 = j | st = i, . . . , s0 = k) = Pr(st+1 = j | st = i). (6.23)

A Markov chain is said to be time-invariant if

Pr(st+1 = j | st = i) = Prob(st+l+1 = j | st+l = i) ∀t, l and i, j ∈ S.

For any i and j, let pij ∈ [0, 1] denote the (constant) probability that st+1 = j
will occur at t + 1 conditional on st = i having occurred at date t:

Prob(st+1 = j|st = i) = pij.

For each i, pi1+pi2+· · · pik = 1. Also for the state of the system at time zero,
we have that Prob(s0 = i) = π0i for i = 1, . . . , k, with

∑k
i=1 π0i = 1. The

transition matrix for the first-order discrete Markov chain can be written as:

� =

⎡
⎢⎢⎣
π11 π12 . . . π1k

π21 π22 . . . π2k
...

... . . .
...

πk1 πk2 . . . πkk

⎤
⎥⎥⎦ .

Thus, row i, column j gives the transition probability pij.

Example 6.1 Suppose that the random variable st ∈ {1, 2, 3} follows a
three-state first-order Markov process with transition matrix:

� =
⎡
⎣1/3 1/3 1/3

1/5 2/5 2/5
1/2 1/6 1/3

⎤
⎦ .
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Suppose s0 = 1. Find the probability that the history of shocks s̃3 =
(s1 = 3, s2 = 1, s3 = 1), conditional on s0 = 1.

Notice that

Pr(s̃3|s0) = Pr(s3 = 1|s2 = 1)Pr(s2 = 1|s1 = 3)Pr(s1 = 3|s0 = 1)

= π11π31π13 = (1/3)(1/2)(1/3) = 1/18.

Markov chains may be reducible or irreducible. A reducible Markov chain
is one in which should the process enter a given state, the probability
of remaining in that state is unity. Formally, a Markov chain is said to
reducible if the transition matrix can be written as:

� =
[

�0 | �1

0 | �2

]
,

where �0 and �2 are square matrices. Consider a two-state Markov chain
with transition matrix:

� =
[

π11 1 − π11

1 − π22 π22

]
.

Suppose that π22 = 1. Then should state 2 occur, the probability of transit-
ing back to state 1 is zero. State 2 is known as an absorbing state, and the
Markov process is said to be reducible.

A Markov chain is said to be irreducible if it is not reducible. An irre-
ducible Markov chain has transition probability matrix with elements
that are strictly between 0 and 1. In the two-state case, we require that
0 < π11 < 1 and 0 < π22 < 1. Consider an irreducible Markov chain
with transition matrix �. Only an irreducible Markov chain has a unique
stationary distribution. This is known as the Perron-Frobenius Theorem. To
motivate the derivation of the stationary distribution further, notice that
the rows of the transition matrix must sum to 1:

�1 = 1, (6.24)

where 1 denotes a k×1 vector of 1’s. Hence, the relation �1 = 1 implies that
1 is an eigenvalue of �, and the vector of 1’s the associated eigenvector.2

Suppose that the transition matrix � has one eigenvalue equal to 1 and
all the other eigenvalues less than 1. Then the Markov chain is said to be
ergodic. The k × 1 vector of ergodic probabilities satisfies:

�′π = π , (6.26)

2 Recall that the eigenvalues and eigenvectors of a k × k matrix satisfy:

Ax = λx ⇔ (A − λIk)x = 0, (6.25)

where Ik is the k × k identity matrix.
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where π is an eigenvector which has been normalized so that 1′π = 1. Fur-
thermore, if � is the transition matrix for an ergodic Markov chain, then

lim
m→∞ (�′)m = π1′. (6.27)

Example 6.2 The stationary probabilities associated with the matrix �

defined above are found from the relation:

�′π =
⎡
⎣ 1/3 1/5 1/2

1/3 2/5 1/6
1/3 2/5 1/3

⎤
⎦
⎡
⎣ π1

π2

π3

⎤
⎦ =

⎡
⎣ π1

π2

π3

⎤
⎦ ,

with 1′π = 1. This yields two equations in two unknowns as:

(1/3)π1 + (1/5)π2 + (1/2)(1 − π1 − π2) = π1,

(1/3)π1 + (2/5)π2 + (1/6)(1 − π1 − π2) = π2.

This yields the solution π1 =π3 = 6/17 and π2 = 5/17.

6.2.2. Vector space methods

A (real) vector space X is a set of elements (vectors) together with two oper-
ations, addition and multiplication, such that for all x, y ∈ X , x + y ∈ X
and for any α ∈ � and x ∈ X , αx ∈ X , where the operations obey the
usual algebraic laws. A metric space is a set X , together with a metric or
distance function ρ : X × X → � such that for all x, y, z ∈ X :

(i) Positivity : ρ(x, y) ≥ 0 with equality if and only if x = y;

(ii) Symmetry : ρ(x, y) = ρ(y, x);

(iii) Triangle Inequality : ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Some examples of metric spaces are as follows:

Example 6.3 The set of all ordered n-tuples (x1, . . . , xn)′ with distance
function

ρ(x, y) =
(

n∑
k=1

(xk − yk)2

) 1
2

.

is a metric space known as �n and denoted n-dimensional Euclidean space.

Example 6.4 The set of bounded infinite sequences of real numbers

(x1, x2, . . . , xk, . . . )′

with distance function ρ(x, y) = supt |xt − yt |.
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Example 6.5 The set of all infinite sequences satisfying the convergence
criterion

∞∑
k=1

x2
k < ∞,

with the distance function

ρ(x, y) =
( ∞∑

k=1

(xk − yk)2

) 1
2

is denoted by l2. This space figures in applications involving stationary
economic time series.

We can use the distance function ρ to define concepts of continuity
and convergence for elements of the space X . We say that a sequence
{xn}∞n = 0 in X converges to x ∈ X if for each ε > 0, there exists Nε

such that

ρ(xn, x) < ε for n ≥ Nε ,

and that {xn}∞n=0 is a Cauchy sequence if for each ε > 0, there exists Nε

such that

ρ(xn, xm) < ε for n, m ≥ Nε .

We say that a mapping T : X → X is continuous at the point x0 ∈ X if for
every real number ε > 0, there exists a real number δ > 0 such that

ρ(Tx, Tx0) < ε whenever ρ(x, x0) < δ.

We say that a metric space (X , ρ) is complete if every Cauchy sequence in
(X , ρ) converges to an element in that space.3

The following two examples show that not every metric space will be a
complete metric space. The key is that a Cauchy sequence in a given metric
space converges to an element of that space.

Example 6.6 A complete metric space
Let {xn(t)} be a Cauchy sequence in the function (and metric) space

C [a, b], the set of all continuous functions defined on the closed interval
[a, b], with distance ρ[f (t), g(t)] = maxa ≤ t ≤ b |f (t) − g(t)|. Then, given
any ε > 0, there is an Nε such that

|xn(t) − xn′(t)| < ε for n, n′ > Nε and all t ∈ [a, b].

3 For a further discussion of metric spaces, see Naylor and Sell [351, Chapters 3 and 5].
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It follows that the sequence {xn(t)} is uniformly convergent. Let x(t) denote
the limit function. By uniform convergence,

|xn(t1) − x(t1)| < ε for n > Nε and t1 ∈ [a, b]

|xn(t0) − x(t0)| < ε for n > Nε and t0 ∈ [a, b].

We want to show that the limit function x(t) ∈ C [a, b]. By the Triangle
Inequality,

|x(t) − x(t0)| ≤ |x(t) − xn(t)| + |xn(t) − xn(t0)| + |xn(t0) − x(t0)|.
It follows by uniform convergence that

|x(t) − xn(t)| < ε/3 for n > Nε (6.28)

|xn(t0) − x(t0)| < ε/3 for n > Nε (6.29)

and by continuity of xn(t), there exists a δ > 0 such that

|xn(t) − xn(t0)| < ε/3 for |t − t0| < δ. (6.30)

Then, combining (6.28), (6.29) and (6.30) yields

|x(t) − x(t0)| < ε for |t − t0| < δ

Therefore, x(t) is continuous on the interval [a, b], and C [a, b] is a
complete metric space.

Example 6.7 An incomplete metric space
Consider the space C 2[−1, 1] of continuous functions on the interval

[−1, 1] with the metric:

ρ(f , g) =
(∫ 1

−1
[f (t) − g(t)]2dt

) 1
2

.

Let {ϕn(t)} be a sequence in C 2[−1, 1], whose elements are defined by:

ϕn(t) =
⎧⎨
⎩

−1 if −1 ≤ t ≤ − 1
n

nt if − 1
n ≤ t ≤ 1

n
1 if 1

n ≤ t ≤ 1

See Figure 6.1. Then, {ϕn(t)} is a Cauchy sequence since,∫ 1

−1
[ϕn(t) − ϕn′(t)]2 dt =

∫ min
(
− 1

n ,− 1
n′
)

−1
( − 1 + 1)2dt

+
∫ max

(
− 1

n ,− 1
n′
)

min
(
− 1

n ,− 1
n′
) [1 − min (n, n′)t]2dt +

∫ min
(

1
n , 1

n′
)

max
(
− 1

n ,− 1
n′
) (n − n′)2t2dt
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t

f (t)

1

−1

−1 −1/3−1/2

11/21/3

Figure 6.1. Plots of ϕn(t) for n = 2, 3

+
∫ max

(
1
n , 1

n′
)

min
(

1
n , 1

n′
) [1 − min (n, n′)t]2dt +

∫ 1

max
(

1
n , 1

n′
) ( − 1 + 1)2dt

= 2
∫ max

(
1
n , 1

n′
)

min
(

1
n , 1

n′
) [1 − min (n, n′)t]2dt + 2

∫ min
(

1
n , 1

n′
)

0
(n − n′)2t2dt

≤ 2

min (n, n′)
.

We want to show that {ϕn(t)} cannot converge to a function in
C 2[−1, 1]. Let

ψ(t) =
{

−1 if t < 0
1 if t ≥ 0

be a discontinuous function. Then, for any function f ∈ C 2[−1, 1], the
Triangle Inequality suggests that

(∫ 1

−1
[f (t) − ψ(t)]2dt

) 1
2

≤
(∫ 1

−1
[f (t) − ϕn(t)]2dt

) 1
2

+
(∫ 1

−1
[ϕn(t) − ψ(t)]2dt

) 1
2

(6.31)
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By the continuity of f , the integral on the left is different from zero. Notice
that∫ 1

−1
[ϕn(t) − ψ(t)]2dt =

∫ 0

− 1
n

(nt + 1)2dt +
∫ 1

n

0
(nt − 1)2dt

=
(

n2t3

3
− nt2 + t

) ∣∣∣ 1
n
0 +

(
n2t3

3
+ nt2 + t

) ∣∣∣ 1
n
0

It is easy to see that in the limit, the value of this integral goes to zero as n
goes to infinity such that

limn→∞
∫ 1

−1
[ϕn(t) − ψ(t)]2dt = 0.

Substituting this back into the Equation (6.31), we conclude that {ϕn(t)}
cannot converge in C 2[−1, 1],

limn→∞
∫ 1

−1
[f (t) − ϕn(t)]2dt �= 0.

Hence, C 2[−1, 1] is not a complete metric space.
For vector spaces, metrics are usually defined such that the distance

between any two points is equal to the distance of their difference from the
zero point. Notice that for any x, y ∈ X , the point x − y ∈ X also. Hence,
the metric on the vector space X is defined such that ρ(x, y) = ρ(x − y, 0).
This yields the concept of a norm.

A normed vector space is a vector space X together with a norm ‖ · ‖ :
X → � such that for all x, y ∈ X and α ∈ �:

(i) ‖x‖ ≥ 0 with equality if and only if x = 0;
(ii) ‖αx‖ = |α|‖x‖;

(iii) ‖x + y‖≤‖x‖ + ‖y‖.
Define C(S) as the space of continuous and bounded functions {f : S→�}
equipped with the sup norm ‖f ‖ ≡ sups∈S |f (s)|. An important property
of the space of bounded, continuous, real-valued functions equipped with
the sup norm is that it is a complete normed, vector space or a Banach space.
This space figures importantly in applications of the Contraction Mapping
Theorem, to which we turn next.

6.2.3. Contraction mapping theorem

We now study a particular type of operator known as a contraction mapping.
Let (X , ρ) be a metric space and T be an operator that maps elements of
X into itself, T : X → X . We say that T is a contraction or a contraction
mapping of modulus β if there is a real number β, 0 ≤β < 1, such that

ρ(Tf , Tg) ≤ βρ(f , g) for all f , g ∈ X . (6.32)
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Tx 

x b x*

Tx*

Tx 

b 

a 

45°

Figure 6.2. A fixed point on the real line

Example 6.8 Suppose that the set X is the closed interval [a, b] and
ρ(x, y) = |x − y|. Then we say that T : X → X is a contraction if for
some 0 < β < 1,

|Tx − Ty|
|x − y| ≤ β < 1 for all x, y ∈ X , with x �= y.

Thus, T is a contraction if it has slope uniformly less than one in absolute
value.

The fixed points of T are those elements of X such that Tx = x. For
this simple example above, they can be found as the intersections of Tx
with the 45-degree line, which implies that the fixed point of a contraction
T defined on the interval [a, b] is unique. See Figure 6.2.

The following theorem shows that this result holds more generally.

Theorem 6.1 (Contraction Mapping Theorem [326, p. 272]) Let (X , ρ) be
a complete metric space and let T : X → X be a contraction with modu-
lus β. Then (i) T has exactly one fixed point v ∈ X , (ii) for any v0 ∈ X ,
ρ(T nv0, v) ≤βnρ(v0, v), n = 1, 2, . . .

P R O O F

To prove part (i), we define the iterates of T , which are the sequence of
mappings {T n}, by T 0X = X and T nX = T (T n−1X ), n = 1, 2, . . . Choose
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v0 ∈ X and define {vn}∞n=0 by vn = Tvn−1 so that vn = T nv0. Since T is a
contraction,

ρ(v2, v1) = ρ(Tv1, Tv0) ≤ βρ(v1, v0).

Continuing by induction, we have

ρ(vn+1, vn) ≤ βnρ(v1, v0), n = 1, 2, . . . . (6.33)

Hence for any m > n,

ρ(vm, vn) ≤ ρ(vm, vm−1) + · · · + ρ(vn+2, vn+1) + ρ(vn+1, vn)

≤ [βm−1 + · · · + βn+1 + βn]ρ(v1, v0)

= βn[βm−n−1 + · · · + β + 1]ρ(v1, v0)

≤ βn

1 − β
ρ(v1, v0),

where the first line uses the Triangle Inequality and the second follows
from Equation (6.33). Notice that {vn} is a Cauchy sequence. Since X is a
complete metric space, there exists a v ∈ X such that vn → v as n → ∞.

To show that Tv = v, notice that for all n and all v0 ∈ X ,

ρ(Tv, v) ≤ ρ(Tv, T nv0) + ρ(T nv0, v)

≤ βρ(v, T n−1v0) + ρ(T nv0, v).

But we showed that both terms in the second line converge to zero as
n → ∞; therefore, ρ(Tv, v) = 0 or Tv = v.

To show that the fixed point is unique, suppose to the contrary that
v̂ �= v is another solution. Then

0 < a = ρ(v̂, v) = ρ(T v̂, Tv) ≤ βρ(v̂, v) = βa,

which cannot hold since β < 1. This proves part (i).
To prove part (ii), notice that for any n ≥ 1,

ρ(T nv0, v) = ρ[T (T n−1v0), Tv] ≤ βρ(T n−1v0, v),

so that (ii) follows by induction.
There are some useful corollaries to the Contraction Mapping Theorem.

One additional result we can prove is this: suppose T : C(S) → C(S) is
a contraction with a fixed point v, where C(S) is the space of bounded,
continuous functions with the sup norm defined earlier. Suppose C ′(S) is
the space of bounded, continuous, concave functions. Notice that C ′(S)
is a closed subset of C(S) and it is a complete normed linear space. If T
is a contraction on C(S) and T maps the space of bounded, continuous,
concave functions into itself, then the fixed point v is an element of the
smaller space. We have the following corollary.
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Corollary 6.1 Let (X , ρ) be a complete metric space and T : X → X be a
contraction mapping with fixed point v ∈ X . If X ′ is a closed subset of X and
T (X ′) ⊆ X ′ (where T (X ′) is the image of X ′ under T ), then v ∈ X ′.

P R O O F

Choose v0 ∈ X ′. Notice that {T nv0} is a sequence in X ′ converging to v.
Since X ′ is closed, it follows that v ∈ X ′.

This result is useful for verifying some additional properties of the value
function, such as concavity. We apply this result in applications described
in Chapters 8 and 10. A second corollary of the Contraction Mapping
Theorem is given as follows.

Corollary 6.2 (N -Stage Contraction Mapping Theorem [326, p. 275]) Let
(X , ρ) be a complete metric space, let T : X → X and suppose that for
some integer N , T N : X → X is a contraction mapping with modu-
lus β. Then (i) T has exactly one fixed point in X , (ii) for any v0 ∈ X ,
ρ(T kN v0, v) ≤βkρ(v0, v), k = 0, 1, 2, . . ..

P R O O F

We show that the unique fixed point of T N is also the fixed point of T .
Notice that

ρ(Tv, v) = ρ[T (T N v), T N v] = ρ[T N (Tv), T N v] ≤ βρ(Tv, v).

Since 0 < β < 1, this implies that ρ(Tv, v) = 0 so v is a fixed point of T .
To show uniqueness, note that any fixed point of T is also a fixed point of
T N . Part (ii) is established as in the previous theorem.

To apply these results, we need to verify whether a mapping or an oper-
ator defines a contraction. We can do this by verifying the condition in
Equation (6.32) directly. An alternative method that turns out to be use-
ful in many applications is to verify Blackwell’s Sufficient Conditions for a
Contraction Mapping [67].

Theorem 6.2 (Blackwell’s Conditions for a Contraction Mapping) Let B(S)
be the space of bounded functions f : S →� with the sup norm. Let T :
B(S) → B(S) be an operator defined on B(S) satisfying
(i) (Monotonicity) Let f , g ∈ B(S). For each s ∈ S, f (s) ≥ g(s) implies that

Tf (s) ≥ Tg(s);
(ii) (Discounting) Let 0 < a < ∞ be a constant. There is some 0 < β < 1

such that, for f ∈ B(S), T (f + a)(s) ≤ Tf (s) + βa.
If T : B(S) → B(S) and satisfies (i)–(ii), then T is a contraction with
modulus β.
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P R O O F

If f (s) ≤ g(s) for all s ∈ S, then we say that f ≤ g. For any f , g ∈ B(S),
notice that by definition of the metric ‖ · ‖, f ≤ g + ‖f − g‖. Using
properties (i) and (ii),

Tf ≤ T
(
g + ‖f − g‖) ≤ Tg + β‖f − g‖.

Reversing the roles of f and g yields

Tg ≤ T
(
f + ‖f − g‖) ≤ Tf + β‖f − g‖.

Combining these inequalities, ‖Tf − Tg‖ ≤β‖f − g‖, as was to
be shown.

6.3. A C O N S U M P T I O N - S A V I N G P R O B L E M U N D E R

U N C E R T A I N T Y

Now consider the consumption-saving problem described in Chapter 5.
At the beginning of period t, the agent has an endowment yt that can
be allocated between consumption ct or borrowing and lending, bt+1. We
assume that the endowment and the (net) return to borrowing or lending
is stochastic. In particular, let s ∈ S ={1, . . . , n} be a random shock. The
endowment process is a function y : S → Y where Y = (0, ȳ]. The return
process, which is determined endogenously in a general equilibrium model
but which we will treat as exogenous, is a function r : S → ( − 1, ∞). We
assume that s follows a discrete first-order Markov process or a Markov
chain. According to this specification, to make a prediction of y and r next
period, we need to make a prediction of st+1. The only information we
need from the current period to make that prediction is st . This suggests
that st is a good candidate for a state variable.

Consider the problem:

max{ct ,bt+1}∞t=0E0

{ ∞∑
t=0

β tU (ct)

}
, (6.34)

subject to

ct + bt+1 ≤ y(st) + (1 + r(st))bt , t ≥ 0 (6.35)

given the initial conditions b0 and s0. We assume that U ( · ) is strictly
increasing, strictly concave, twice differentiable, and bounded. In this
expression, the expectation of the objective function, which is conditional
on the realization of the state s0 at date zero, is evaluated using the transi-
tion probabilities for st . Notice that savings can be positive (if the consumer
is a lender) or negative (if the consumer is a borrower). For simplicity, we
assume that bt+1 ∈ �. By contrast, ct ∈ �+.
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Define the set of feasible consumption and saving allocations at
time 0 by:

�(b0, s0) ≡ {(c0, b1) : c0 + b1 ≤ y0 + (1 + r0)b0}.
Following the approach that we outlined in Section 6.1, the Bellman
equation for the consumer’s problem is given by:

V (bt , st) = max
ct ,bt+1∈�(bt ,st )

{U (c) + β
∑

st+1∈S

π (st+1 | st)V (bt+1, st+1)}.

(6.36)

Given the recursive representation of the problem, drop the time subscripts
on all variables because the problem has now been reduced to a two-period
problem. We let variables without primes denote current state or choice
variables and primed variables denote future values. We will analyze the
problem in (6.36) using the contraction mapping approach.

Define a fixed point to this mapping as a function V � such that

V � = TV �, (6.37)

which means that if we apply T to the function V �, we obtain the same
function V �. We would like to know under what conditions such a fixed
point exists and whether it is unique. What are some methods for deter-
mining the existence and uniqueness of a fixed point to the operator
or mapping defined by T ? One way is to show that the mapping is a
contraction.

Define Z ≡ � × S and notice that V : Z → �+. Denote C(Z ) as the
space of bounded, continuous, real-valued functions equipped with the
sup norm. For V ∈ C(Z ), define an operator or mapping T from the right
side of the functional equation in Equation (6.36) as:

(TV )(b, s) ≡ max
c,b′∈�(b,s)

{U (c) + β
∑
s′∈S

π (s′ | s)V (b′, s′)} (6.38)

For any function V ∈ C(Z ), (TV )(b, s) assigns a value to the maximum
utility that can be attained for each value of (b, s). In the current context,
recall that bond holdings are not restricted to be positive. However, the
utility function U is bounded and the constraint set �(b, s) is continuous
in (b, s). Hence, (TV )(b, s) is well defined for any (b, s), i.e. a maximum
exists. Since U (c) is bounded and V (b′, s′) is bounded, the maximum
function TV is bounded and by the Theorem of the Maximum4, it is
continuous. Thus, T maps bounded, continuous functions into the same
space, T : C(Z ) → C(Z ).

4 See the Mathematical Appendix.
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Next, notice that T is monotone. Given any two functions u ∈ C(Z ),
w ∈ C(Z ) such that u(b, s) ≥ w(b, s) for all b, s ∈ Z ,∑

s′∈S

π (s′|s)u(b′, s′) ≥
∑
s′∈S

π (s′|s)w(b′, s′)

so that (Tu)(b, s) ≥ (Tw)(b, s). To verify discounting, for any constant a,
notice that

T (V + a)(b, s) = max
c,b′

{
U (c) + β

∑
s′∈S

π (s′|s)[V (b′, s′) + a]

}

= max
c,b′

{
U (c) + β

∑
s′∈S

π (s′|s)V (b′, s′)

}
+ βa

= (TV )(b, s) + βa.

Hence, T satisfies Blackwell’s conditions for a contraction. Since C(Z )
is a complete, normed, linear space, the Contraction Mapping Theorem
implies that T has a unique fixed point and limn→∞ T nV0 = V � for any
V0 ∈ C(Z ).

Recall that if the mapping T is a contraction, then the fixed point
function V ∗ can be found by repeated iterations on T as:

V n+1(b, s) = (TV n)(b, s)

= max
c,b′∈�(b,s)

{U (c) + β
∑
s′∈S

π (s′ | s)V n(b′, s′)},

starting from V 0 = 0, or limn→∞ T nV0. This is known as value iteration
and it provides the basis for numerically calculating the solution to the
dynamic programming problem.

The process of iteratively finding the optimal policy functions denoted
c = g(b, s) and b′ = h(b, s) is known as policy iteration. Just as we set up
operators to iteratively find the value function V �, we can also set up a
recursive scheme to derive the optimal policy functions. For this purpose,
define

V n+1 = TV n,

gn(b, s) = argmaxc∈�(b,s){U (c) + β
∑
s′∈S

π (s′ | s)V n(b′, s′)},

hn(b, s) = argmaxb′∈�(b,s){U (c) + β
∑
s′∈S

π (s′ | s)V n(b′, s′)}.
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Thus, the policy functions at stage n are found as the feasible values of c and
b′ that attain the maximum for the value function at that stage, V n, con-
ditional on the state (b, s). We illustrate how these approaches can be used
to numerically solve dynamic programming problems in later chapters.

Once the fixed-point function V � has been found, the problem involves
solving a simple calculus problem. To further characterize the policy func-
tions g and h, suppose that the value function is differentiable. Since
the utility function is strictly increasing, the budget constraint holds
with equality. Substituting for c in the utility function using the budget
constraint, the first-order condition evaluated at the optimal policy is:

U ′[g(b, s)] = βEs

{
�V �[h(b, s), s′]

�b′

}
. (6.39)

Our final task is to find an expression for �V �/�b′. Using Equa-
tion (6.36) evaluated at the optimal policy, we have

�V �(b, s)
�b

= U ′[g(b, s)](1 + r(s))

−
{

U ′[g(b, s)] − βEs

(
�V �(b′, s′)

�b′

)}
�h(b, s)

�b

= U ′[g(b, s)](1 + r(s)),

where the term in braces equals zero using the first-order condition. This
is the envelope condition. Given the definition of g�(b, s), this can be used
to express the first-order condition at the fixed point as:

U ′[c(s)] = βEs{U ′[c(s′)](1 + r(s′))}. (6.40)

This is identical to the first-order condition that we derived the Chapter 5,
Section 5.3.

6.4. E X E R C I S E S

1. Consider the framework in Section 6.1.2, where the technology shock
θt is deterministic and the depreciation rate is 100%.
(a) Find the optimal consumption and investment policies when

U (c) = c1−γ − 1

1 − γ
, γ ≥ 0,

θ f (k) = θk.

(b) Consider the finite horizon version of this problem. Using the
same preferences and production technology as in part a), solve
the social planner’s problem in the finite horizon setup using the
dynamic programming approach. Find the optimal capital stock
and consumption policies.
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(c) Show that when we take a limiting case as T → ∞, the optimal
policy function for the finite horizon case approaches to ones in the
infinite horizon case.

2. A Discrete State, Discrete Control Problem5

Let Xi, i = 1, . . . , r denote the set of states and ui, i = 1, . . . , m the
set of controls. We assume that there is also a random disturbance in
the model that takes on the finite values defined in terms of the set
�= {θ1, . . . , θk} and that is identically and independently distributed
over time. Let π l

i,j denote the transition probability for the state variable
defined as:

π l
i,j ≡ Prob(Xt+1 = Xj|Xt = Xi, ut = ul ).

The problem is to solve:

max
{ut }t=0

E0

{ ∞∑
t=0

β t v(Xt , ut)

}
, 0 < β < 1,

subject to the law of motion, Xt+1 = f (Xt , ut , θt), t = 0, 1, . . . and
given X0. To make the problem well defined, we assume that
0 ≤ v(Xt , ut) ≤ M < ∞ for all Xt and ut .
(a) Find an expression for π l

i,j using the law of motion for the state vari-
able and the known probability distribution for the random shock,
G(θt).

(b) Let Vi ≡ V (Xi) and vi,l ≡ v(Xi, ul ). Show that the value function
satisfies the equation:

Vi = max
l

[vi,l + β

r∑
j=1

π l
i,jVj] ≡ (TV )i. (6.41)

(c) Suppose that when the state is Xi, the optimal control is:

Ui ∈ argmaxul
[vi,l + β

r∑
j=1

π l
i,jVj] ≡ (UV )i. (6.42)

If Ui is the control in state Xi, then the return in that state is Si ≡
v(Xi, Ui). Let V ≡ (V1, . . . , Vn)′ and S ≡ (S1, . . . , Sn)′ and define
the n × n matrix � as the matrix of transition probabilities such
that �i,j =π l

i,j if and only if Ui = ul . Show that the solution for V
is given by

V = (1 − β�)−1S.

(d) Describe how you would do value function iteration in this problem.

5 This exercise is derived from Judd [269].
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(e) Policy function iteration is implemented as follows:

(i) U n+1 = UV n,
(ii) Sn+1

i = v(Xi, U n+1
i ),

(iii) �n+1 = PU n+1,
(iv) V n+1 = (1 − β�n+1)−1Sn+1,

where the map PU is defined as �i,j =π l
i,j if and only if Ui = ul

and the remaining maps are defined from the left sides of Equa-
tions (6.41) and (6.42). Describe the nature of this algorithm and
compare it with value function iteration.

3. Error Bounds for Value Iteration
Let T denote a mapping defined on the space of bounded, continuous
functions C(S) where S is some bounded set. Define the norm on C(S)
as the sup norm, ‖ · ‖ ≡ sups∈S |V (s)| for all V ∈ C(S).
(a) Show that if T is a contraction of modulus β, then

‖V n − V∞‖ ≤ (1 − β)−1‖V n+1 − V n‖, (6.43)

where V n = T n(V0) for some V0 ∈ C(S) and V n converges
uniformly to V∞ as n → ∞.

(b) Describe how you would use the result in Equation (6.43) to deter-
mine the error in approximating the true value function V∞ by V n.
How would you compute the error bounds during the successive
approximation or value iteration algorithm?

4. Approximating a Continuous Markov Process
Tauchen [428] proposes a simple method for approximating a contin-
uous Markov process for some exogenous state variable by a discrete
Markov model. Suppose the real-valued exogenous state variable st
follows a first-order autoregressive process:

st = ρst−1 + εt , |ρ| < 1, (6.44)

where εt is a white noise process with variance σ 2
ε and distribution func-

tion given by Pr[εt ≤ u] = F (u/σ ). Here F is a cumulative distribution
with unit variance.

Let s̃t denote the discrete-valued process that approximates {st}. Sup-
pose the N discrete values that s̃t may take are defined to a multiple
m of the unconditional standard deviation σs = (σ 2

ε /(1 − ρ2))1/2. Then
let s̄1 = − s̄N and let the remaining be equispaced over the interval



132 Asset Pricing for Dynamic Economies

[s̄1, s̄N ]. The transition probabilities πj,k = Pr[s̃t = s̄k|s̃j
t−1] are calculated

as follows. Let w = s̄k − s̄k−1. For each j, if k is between 2 and N − 1, set

πj,k = Pr[s̄k − w/2 ≤ ρ s̄j + εt ≤ s̄k + w/2]

= F
[
σ−1
ε (s̄k − ρ s̄j + w/2)

] − F
[
σ−1
ε (s̄k − ρ s̄j − w/2)

]
,

otherwise,

πj,1 = F
[
σ−1
ε (s̄1 − ρ s̄j + w/2)

]
,

and

πj,N = 1 − F
[
σ−1
ε (s̄N − ρ s̄j − w/2)

]
.



C H A P T E R 7

Intertemporal risk sharing

In our earlier analysis of models with complete markets we have considered
simple one- or two-period economies with a discrete number of states and
commodities. We now consider complete contingent claims equilibrium
in economies with an infinite number of dates. We describe how to price
claims that have payoffs for all possible events and discuss the implications
of perfect risk sharing for such economies.

We start with a complete contingent claims market in which all trad-
ing is done at time zero, before any events have occurred. The purpose
is to illustrate an important property of contingent claims markets that
are complete, namely that the resulting consumption path depends only
on the current state and not on the history of the system. We examine
an economy where there is aggregate uncertainty: the total endowment
is stochastic and exogenous. In these types of economies, aggregate risk
in output cannot be diversified away by the economy as a whole, but
there are implications for optimal risk sharing that emerge from the con-
tingent claims prices. Next we take the same economy, but now assume
that trading is done sequentially over time, as we actually observe. We
find remarkably that the consumption allocation chosen when all state-
contingent trades are executed at time zero is identical to the consumption
allocation under sequential trading.

We then turn to idiosyncratic risk – risk that is individual-specific.
Under certain circumstances, agents can face idiosyncratic risk even though
there is no aggregate risk. We derive the properties of optimal risk sharing
in this setting. The next topic looks at models in which both aggregate and
individual risk are present. The final section of the chapter is devoted to
constructing assets such as equities and risk-free bonds that we observe in
the market place using the contingent claims prices.

7.1. M U L T I - P E R I O D C O N T I N G E N T C L A I M S

We first consider the role of aggregate uncertainty, and then examine
models in which there is only idiosyncratic risk.

133
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7.1.1. Aggregate uncertainty

Assume agents live an infinite number of periods and that there is only
one commodity. Uncertainty is defined in terms of a random variable st
that can take on S possible values in the set S ={s̄1, . . . , s̄S}. Thus, st ∈ S
at each period. We assume that st follows a first-order Markov process so
that the conditional distribution of st+1 depends only on st , that is,

Prob(st+1 | st , st−1, . . . , s0) = Prob(st+1 | st) (7.1)

for all t. Let the transition function for st be denoted by π (st+1|st) and
the initial distribution as π̄ (s0). The state of the economy is given by the
history st of realizations of the random variable sr for r ≤ t, defined as

st ≡ (s0, s1, . . . , st) = (st−1, st).

Let πt(st) ∈ [0, 1] denote the probability that st ∈ S t occurs. Notice that∑
st∈S t

πt(st) = 1 ∀t.

Then

πt(st) = π (st | st−1)π (st−1 | st−2) . . . π (s2 | s1)π (s1 | s0) (7.2)

is the probability of a time path st = (s0, s1, . . . , st), conditional on the
initial state s0. If the initial state s0 is also taken as random, then

πt(st) = π (st | st−1)π (st−1 | st−2) . . . π (s2 | s1)π (s1 | s0)π̄ (s0). (7.3)

Since the Markov process for the state st is stationary, the transition prob-
abilities π (st+i|st+i−1) are time-invariant, and so is the probability of the
history st , πt(st).

The endowment good is non-storable. Let ωi(st) denote the endow-
ment of agent i in state st , where the process is stationary and ω(st) is
non-negative (so it might equal zero in some periods). Notice that we are
allowing agents to have different endowments but we are assuming that all
agents are affected by the same aggregate shock. The consumption of agent
i at time t with history st is denoted ci

t (s
t). The t subscript is added to show

that st is a t-dimensional vector. Let p0
t (st) denote the time-0 price of a unit

of consumption at time t in history st and define p0 ≡{p0
t (st)}∞st∈S t ,t = 0 as

the price system. Given p0, agent i ∈ I chooses ci ≡ {ci
t (s

t)}∞t = 0,st∈S t , to
maximize

∞∑
t=0

∑
st∈S t

β tπt(st)U (ci
t (s

t)) (7.4)
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subject to

∞∑
t=0

∑
st∈S t

p0
t (st)[ωi(st) − ci(st)] = 0. (7.5)

What this means is that, for each time period t, there are S possi-
ble values that the state st can realize. Hence for each period t, there
is a history of realizations up to that point in time, ŝt−1, for example.
Given the history ŝt−1, an agent picks ct(s1, ŝt−1), . . . , ct(sS , ŝt−1), where
the optimal consumption choice at time t is allowed to depend on
the history of past states. Hence at time 0, the agent is picking con-
sumption for each time period over all of the possible histories of the
state. All of these choices are state-contingent, and at time 0 all possi-
ble future time paths for the state variable, as well as the conditional
probabilities, are known. Agents make these trades such that the bud-
get constraint holds. Notice that the budget constraint for the consumer
requires that the expected discounted present value of lifetime expenditures
must equal the expected discounted present value of lifetime endowment.
It does not require that the agent’s budget be balanced for a particular
history st .

A time-0 contingent claims equilibrium is a price system p0 and an allo-
cation (c1, . . . , cI ) such that (i) given prices p0, ci solves agent i’s problem;
and (ii) markets clear:

I∑
i=1

ci
t (s

t) =
I∑

i=1

ωi(st), st ∈ S, t = 0, 1, . . .

To solve the consumer’s problem, let λi denote the Lagrange mul-
tiplier for the lifetime budget constraint for consumer i. Notice that
the Lagrange multiplier is not indexed by time or state. The first-order
condition is:

β tπt(st)U ′(ci
t (s

t))

λi
= p0

t (st) ∀t, ∀st ∈ S t , t ≥ 0. (7.6)

For two agents, i, j ∈ I such that i �= j, we have:

β tπt(st)U ′(ci
t (s

t))

λi
= p0

t (st) = β tπt(st)U ′(cj
t(st))

λj

This can be rewritten as:

p0
t (st)

β tπt(st)
= U ′(ci

t (st))
λi

= U ′(cj
t(st))
λj

. (7.7)
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This condition says that the weighted marginal utility of consumption is
equated across consumers, where the weights are the Lagrange multipliers.
Equivalently,

U ′(ci
t (s

t))

U ′(cj
t(st))

= λi

λj
∀i, j (7.8)

Hence, for any history st , any time period t and any two distinct agents,
the ratio of the marginal utilities of the agents is equal to a constant for
all t, st . This condition illustrates a property of efficient risk sharing that
the marginal rate of substitution across agents is equal to a constant across
states. We refer to this feature of the complete contingent claims equilib-
rium as complete risk sharing or full insurance. Wilson [449] was one of the
first to note that optimal sharing of risk by members of a risk-averse group
is equivalent to the existence of a set of individual-specific weights such
that individuals’ marginal utility satisfies a version of Equation (7.7).1

The perfect risk-sharing hypothesis has been used in a variety of appli-
cations in the recent literature. These include the role of risk sharing in
international business cycles (see Heathcote and Perri [247]), the inter-
action of risk sharing with specialization (see Kalemli-Ozcan, Sorensen,
Yosha [270]), and the role of social security in aggregate risk sharing under
incomplete markets (see Krueger and Kubler [291]). A variety of papers has
also empirically examined the perfect risk-sharing hypothesis. Altug and
Miller [18], [19] make use of this hypothesis to provide panel data esti-
mates and tests of intertemporal models of consumption and labor supply
with aggregate shocks. Cochrane [108], Mace [328], and Townsend [432]
have used regressions of consumption growth on income growth to test
the full risk-sharing hypothesis. Altonji, Hayashi, and Kotlikoff [15] test
for full risk-sharing within families using a similar approach.

Idiosyncratic risk
Idiosyncratic risk refers to the situation in which any variation in individual
endowments can be diversified away through trading among individuals
in an economy. To examine the impact of idiosyncratic risk, suppose that
there are only two types of agents, A and B. Let the endowment satisfy

ω = ωa(st) + ωb(st), (7.9)

where ω is constant for any date or state. Hence, there is no aggregate risk
in this economy, which would occur if the aggregate endowment ω(st) were
to vary as a function of the history st . Nevertheless, individuals experience
variation in their endowment as a function of the state of the economy. Let
π (st), the probability of the state st , equal the quantity of output that goes

1 See Wilson [449, pp. 123–24].
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to agent A, so that ωa(st) =π (st) and so ωb(st) = 1 − π (st). For simplicity,
we are assuming that the probability is i.i.d. However, there is no difficulty
in assuming that it is Markov. Hence, the only uncertainty in this economy
is how the total endowment is split between the two types of agents, and
this is independent of the history of the economy at any date t.

The first-order condition is:

β tπt(st)U ′(ca
t (st))

λa
= p0

t (st) = β tπt(st)U ′(cb
t (st))

λb
. (7.10)

The goods market-clearing condition is:

ω = ca
t (st) + cb

t (st). (7.11)

Using this condition in the first-order condition and rewriting,

U ′(ca
t (st))

U ′(ω − ca
t (st))

= λa

λb
. (7.12)

Notice that the right side is constant over time and states. Also, since
the total endowment is fixed, the solution to this equation, if λa/λb

were known, has constant consumption c̄a. We can solve for the constant
consumption using the inverse function theorem as:

ca
t (st) = (U ′)−1

(
λa

λb
U ′ (ω − ca

t (st)
)) = c̄a.

It follows from the feasibility condition that the consumption of type B is
also constant, and equal to

cb
t (st) = c̄b = ω − c̄a.

Hence, if the only risk is idiosyncratic and if markets are complete, then
agents can completely insure against endowment risk.

Aggregate risk
Of course the aggregate economy cannot diversify away aggregate risk. The
best that can be done is to shift risk to those best able to bear it. Our
model predicts that the marginal rate of substitution across agents at each
point in time and in each state will be equal to a constant. Suppose that
the aggregate endowment fluctuates randomly but that type A’s fraction of
output is constant. In particular, assume that

ωa(st) = δω(st), 0 < δ < 1.

Then using Equation (7.12), we can solve for the consumption of agent A
for any given history of the shocks st as:

ca
t (st) = (U ′)−1

(
λa

λb
U ′ (cb

t (st)
))

,
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and

cb
t (st) = ω(st) − ca

t (st).

Hence, we observe that the aggregate economy is affected. Even with
complete risk sharing, the allocations of individual agents vary with fluc-
tuations in the aggregate economy. If, as we have assumed, output is
non-storable, the economy cannot insure against aggregate fluctuations.
The best it can do is to share the risk efficiently, which is achieved when
the marginal rate of substitution across agents is equal to a constant for all
states.

Finding a solution
Now return to the version with I consumers. Choose one of the consumers
as a numeraire – say consumer 1 – and define the ratio of the Lagrange
multipliers as:

λ̂i ≡ λi

λ1
, i = 2, . . . , I .

Notice that we can write the consumption allocation of consumer i as:

ci
t (s

t) = (U ′)−1
(

U ′ (c1
t (s

t)
)
λ̂i
)

i = 2, . . . , I . (7.13)

Now substitute this relation into the goods market-clearing condition to
obtain:

I∑
i=1

(U ′)−1
(

U ′ (c1
t (s

t)
)
λ̂i
)

=
I∑

i=1

ωi(st). (7.14)

Notice that the right side of Equation (7.14) depends only on the current
realization of st . Hence, so must the consumption allocation:

ci
t (s

t) = ci(st) st ∈ S t . (7.15)

This says that in a stationary environment, consumption allocations in a
complete contingent claims equilibrium are not history dependent.

To further characterize the solution, notice that the left side of
(7.14) is strictly increasing in c1. Hence, there exists a solution for
c1(st) and using (7.13), for ci(st), i = 2, . . . , I as a function of the ratio
of the Lagrange multipliers λ̂i, i = 2, . . . , I and the aggregate endow-
ment, ω(st) = ∑I

i = 1 ω
i(st). Define λ̂= (λ̂2, . . . , λ̂I )′. The solution for the

optimal consumption allocation can be written as ci(st) = c�i (λ̂,ω(st)),
i = 1, . . . , I . Substituting for these functions in the individuals’ budget
constraints, using the definition of the contingent claims prices in (7.6),



Intertemporal risk sharing 139

and multiplying the resulting expression through by λi allows us to solve
for the ratio of the individual-specific Lagrange multipliers as:

∞∑
t=0

∑
st∈S t

β tπ (st)U ′(c�i (λ̂,ω(st))[ωi(st) − c�i (λ̂,ω(st))] = 0, i = 1, . . . , I .

We will use these results in what follows when examining further the prop-
erties of competitive equilibrium with a complete set of contingent claims
markets.

7.1.2. Central planning problem

It is useful to relate the competitive equilibrium allocation to the Pareto
optimal allocation. We can determine the Pareto optimal allocation by set-
ting Pareto weights 0 < φi for each i ∈ I . The central planning problem
is to maximize∑

i∈I

φi

∞∑
t=0

∑
st∈St

β tπt(st)U (ci
t (s

t)) (7.16)

subject to the resource constraint∑
i

[ωi(st) −
∑

i

ci
t (s

t)] ≤ 0. (7.17)

Let �t(st) denote the Lagrange multiplier for the resource constraint. The
first-order condition is:

φiβ
tπt(st)U ′ (ci

t (s
t)
) = �t(st) (7.18)

Stationary solutions can be determined by assuming that

�̂(st) ≡ �t(st)

β tπt (st)

is stationary: we make this assumption. In this case,

U ′(ci
t (s

t)) = �̂(st)
φi

.

Notice that this equation can be used to define consumption as a function
of (�̂, st ,φ). Then the consumption for each agent can be substituted into
the resource constraint, which is now an equation in the unknown variable
�̂. In this case, for agents i, j ∈ I such that i �= j,

U ′(ci(st))
U ′(cj(st))

= φj

φi
. (7.19)
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Recall in the competitive equilibrium, we showed that

U ′(ci(st))
U ′(cj(st))

= λi

λj
. (7.20)

Hence, we have an application of the First Welfare Theorem, which states
that a competitive equilibrium is Pareto optimal. Notice that, if the Pareto
weights are determined such that

φj

φi
= λi

λj
,

then the competitive equilibrium allocation coincides with the allocation
under the central planning problem.

For an arbitrary set of Pareto weights, the Pareto optimal allocation
can be determined as described above. According to the Second Welfare
Theorem, under certain conditions the Pareto optimal allocation can be
decentralized as a competitive equilibrium with a price system, assuming
that transfers can be implemented. To understand this, suppose that the
Pareto weights have the property that

φi = φ

so that all agents are treated identically by the central planner. Then,
returning to our competitive allocation, for this allocation to be the solu-
tion to our contingent claims problem, it must be the case that the λ are
equal across agents. This occurs if the expected discounted present value of
lifetime endowment is equal across agents. Since we did not impose that,
a set of endowment transfers is necessary for a Pareto optimal allocation
with equal Pareto weights to be supported as a competitive equilibrium.

7.1.3. Sequential trading

The discussion above assumes that all of the contracts are negotiated at
time 0. Once time progresses and the economy moves along a sample path
st , there will be no need to renegotiate a contract and the state-contingent
trades are carried out. This is not to say that we rule out any renegotiation,
but rather to say that, given an opportunity to renegotiate, agents will
choose the same state-contingent contracts.

Suppose now that consumers can trade one-period contingent claims
at each date. One could ask whether the resulting equilibrium is identical
to the one that is obtained with a time-0 trading scheme. To answer this
question, we examine the case with sequential trading.

The aggregate endowment fluctuates randomly and the uncertainty fol-
lows a Markov process, as described in (7.1). We define q(st+1, st) as the
time t price in state st of a unit of consumption to be delivered in state
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st+1 at time t + 1. Hence, q(st+1, st) denotes the price of a one-period con-
tingent claim. Likewise, let zi(st+1, st) denote the number of units of the
consumption good that agent i receives (zi > 0) or pays out (zi < 0) if
state st+1 occurs. This has been written as a function of both st+1 and st .
However, to carry out the state-contingent trades, it will suffice to know
the trade (amount and the sign – plus or minus) that must be transferred in
each state. Hence, a vector {zi(1), . . . , zi(S)} summarizes the trades. Notice
that this vector is independent of the state which occurred last period. So
henceforth, we drop the additional state variable. Agent i has a budget
constraint in period t:

ci(st) +
∑

st+1∈S
q(st+1, st)zi(st+1) ≤ zi(st) + ωi(st). (7.21)

Let zi
t denote the S-dimensional vector of contingent claims.

In the sequential version of the complete contingent claims equilibrium,
we need to impose some debt limits to rule out Ponzi schemes. This rules
out a situation in which the consumer can obtain unlimited consumption
by infinitely rolling his/her existing debt. Observe that conditional on his-
tory ŝt , the agent’s expected discounted present value of lifetime income is

Ai
t (ŝ

t) =
∞∑
τ=t

∑
sτ |ŝt

βτ−tpt
τ (sτ )ωi(sτ ), (7.22)

where pt
τ (sτ ) denotes the time-t contingent claims price for history sτ .2

Thus, At(ŝt) shows the maximum amount an agent can repay at time t,
conditional on the history ŝt . In this sense, we can view Ai

t(ŝ
t) as a natural

debt limit for consumer i conditional on history ŝt . Any borrowing by the
agent at time t must be below the expected discounted present value of
future endowment, which is Ai

t(ŝ
t+1). If the agent borrows Ai

t (ŝ
t+1) at time

t, then consumption in period t + 1 and all subsequent periods is equal
to zero. Hence, in the sequential interpretation of the complete markets
equilibrium, we also have the constraint:

−zi(st+1) ≤ Ai
t+1(s

t+1). (7.23)

A contingent claims equilibrium with sequential trading is a sequence
of one-step-ahead contingent claim prices, q ≡ {q(st+1, st)}∞t = 0 and con-
sumption and portfolio allocations, {ci(st)}∞t = 0 and {zi(st+1)}∞t = 0 for all

2 The relationship between time-0 and time-t contingent claims prices is as follows:

pt
τ (sτ ) = p0

τ (sτ )

p0
t (st )

= βτ U ′(cτ (sτ ))π (sτ )

βt U ′(ct (st ))π (st )
= βτ−t U ′(cτ (sτ ))

U ′(ct (st ))
π (sτ | st ).

Notice that pt
t (s

t ) = 1 for all t ≥ 0.
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st , st+1 ∈ S, i ∈ I such that (i) given prices q, {ci(st)}∞t = 0 and {zi(st+1)}∞t = 0
maximize

∞∑
t=0

∑
st∈S t

β tπt(st)U
(
ci(st)

)
(7.24)

subject to the sequence of budget constraints in (7.21) and the borrowing
constraints in (7.23); and (ii) the goods and asset markets clear:

I∑
i=1

ci(st) =
I∑

i=1

ωi(st), (7.25)

I∑
i=1

zi(st+1) = 0 (7.26)

for all st , st+1 ∈ S, t = 0, 1, . . . ,.
To solve the consumer’s problem, form the Lagrangian function:

L =
∞∑

t=0

∑
st∈S t

β tπt(st)

{
U (ci(st))

+ λi(st)

⎡
⎣zi(st) + ωi(st) − ci(st) −

∑
st+1∈S

q(st+1, st)zi(st+1)

⎤
⎦
⎫⎬
⎭ ,

where λi(st) denotes the Lagrange multiplier for the period-by-period
budget constraints.3 The first-order conditions are:

U ′(ci(st)) = λi(st) (7.27)

πt(st)λi(st)q(st+1, st) = βπt+1(st+1)λi(st+1). (7.28)

Notice that we are picking state-contingent trades, so that there is no
expectations operator in the second equation. Eliminating the Lagrange
multiplier and making use of the fact that πt+1(st+1)/πt(st) =π (st+1 | st)
yields

U ′(ci(st))q(st+1, st) = βπ (st+1 | st)U ′(ci(st+1)). (7.29)

Rewriting, observe that

q(st+1, st) = βπ (st+1 | st)U ′(ci(st+1))

U ′(ci(st))
(7.30)

for all agents.

3 Given the Markov structure of uncertainty, it is more natural to formulate the sequential version of
the complete markets equilibrium in a recursive fashion. We follow this approach in Section 7.2.
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How is this price, which is the price of a unit of consumption to be
delivered at time t + 1 in state st+1 determined in time t, conditional on
the state st occurring, related to the time 0 price in (7.6)? To answer this,
solve (7.6) for U ′(ci(st)) and substitute into (7.30) and then update by one
time period and substitute for U ′(ci(st+1)) to obtain

q(st+1, st) =
[
βπ (st+1 | st)p0

t+1(s
t+1)λi

β t+1πt+1(st+1)

] [
p0

t (st)λi

β tπt(st)

]−1

= p0
t+1(s

t+1)

p0
t (st)

. (7.31)

Hence, we find that the one-period contingent claims price for state st+1

conditional on st occurring in period t is a ratio of the contingent claims
prices that are negotiated at time zero for the histories st+1 and st . Under
this representation for prices, it follows that the first-order conditions for
the time-0 version of the problem are equal to the first-order conditions
for the problem with sequential trading. To show that the allocations for
the sequential version of the problem are equivalent to those for the time-0
problem, we also need to show that the former allocations satisfy the time-
0 version of the consumer’s budget constraint evaluated at these prices. For
this purpose, define

�i
t (s

t) =
∑
τ=t

∑
sτ |st

pt
τ (sτ )[ci(sτ ) − ωi(sτ )] (7.32)

as consumer i’s wealth, or the value of all its current and future net claims,
expressed in units of the date t, history st consumption good. The proof
of the equivalence of the time-0 and sequential versions of the contin-
gent claims equilibrium hinges on two conjectures. The first requires that
the distribution of initial asset holdings satisfies zi(s0) = 0 for all i ∈ I ,
implying that consumers must finance their consumption allocations in
the problem with sequential trading based on their lifetime income just as
in the time-0 version of the problem. The second requires that the con-
sumer’s asset holdings in the equilibrium with sequential trading satisfy:

zi(st+1) = �i
t+1(s

t+1). (7.33)

Consider the budget constraint at time-0 for the model with sequential
trading and use the relation among the prices for the sequential versus
time-0 version of the problem in Equation (7.31) to write this as:

ωi(s0) − ci(s0) − zi(s0) =
∑
s1∈S

q(s1, s0)zi(s1)

⇒ ωi(s0) − ci(s0) − zi(s0) =
∑
s1∈S

p0
1 (s1)

p0
0(s0)

zi(s1).
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Normalizing p0
0(s0) = 1 and substituting for zi(s1) from Equation (7.33)

yields:

zi(s0) +
∞∑

j=0

∑
sj∈S j

p0
j (sj)[ωi(sj) − ci(sj)] = 0. (7.34)

Thus, the allocations of the problem with sequential trading solve the time-
0 budget constraint under the distribution on initial wealth zi(s0) = 0. For
periods t > 0, observe that∑
st+1∈S

q(st+1, st)zi(st+1) = pt
t+1(s

t+1)

pt
t(st)

∑
τ=t+1

∑
sτ |st+1

pt+1
τ (sτ )[ci(sτ ) − ωi(sτ )]

= pt
t+1(s

t+1)
∑
τ=t+1

∑
sτ |st+1

pt+1
τ (sτ )[ci(sτ ) − ωi(sτ )]

=
∑
τ=t+1

∑
sτ |st+1

pt
τ (sτ )[ci(sτ ) − ωi(sτ )]

= �i
t (s

t) − [ci(st) − ωi(st)]. 4 (7.35)

Recall that the budget constraints for the model with sequential trading
can be written as:

ci(st) +
∑

st+1∈S

q(st+1, st)zi(st+1) = ωi(st) + zi(st).

Now substitute for the initial asset holdings as zi(st) =�i
t (s

t) and use the
result in (7.35), implying that the period-by-period budget constraint holds
identically. Thus, the optimal asset allocation evaluated at the value of
lifetime wealth based on the time-0 consumption allocation satisfies the
period-by-period budget constraints. Hence, we conclude that the con-
sumption allocation based on time-0 versus sequential trading is identical,
ci
t (s

t) = ci(st) for all dates and all histories.
To complete our argument, we also need to show that the consumer does

not have an incentive to increase current consumption in the sequential
equilibrium by reducing some component of the proposed asset alloca-
tion. This, in turn, depends on the existence of the debt limits imposed by
the condition in (7.23). Suppose that the consumer wishes to attain a con-
sumption stream {ci(sτ )}∞τ = t+1 for all possible future events sτ ∈ Sτ. Then

4 To obtain this result, we have used the fact that

pt
t+1(s

t+1)pt+1
τ (sτ ) = p0

t+1(s
t+1)

p0
t (st )

p0
τ (sτ )

p0
t+1(s

t+1)
= pt

τ (sτ ), τ > t.



Intertemporal risk sharing 145

it should subtract the value of this stream from the natural debt limit in
(7.23) as:

−zi(st+1) ≤ Ai(st+1) −
∞∑

τ=t+1

∑
sτ |st+1

qt+1
τ (sτ )ci(sτ )

= −�i
t+1(s

t+1),

which implies that

zi(st+1) ≥ �i
t+1(s

t+1).

But this says that the consumer should not increase current consump-
tion by reducing next period’s wealth below �i

t+1(s
t+1) because that would

prevent him from obtaining the optimal consumption plan satisfying the
first-order conditions in (7.30).

These arguments show that the allocations which satisfy the first-order
conditions and sequence of budget constraints for the time-0 problem also
satisfy the first-order conditions and budget constraint for the sequen-
tial problem under the conjectured initial distribution of wealth and the
state-by-state asset allocation. An important implication is that, after the
contingent trades have been made at time 0, there is no interest in rene-
gotiating any trades. This is despite the fact that the economy is moving
along a particular sample path, whereas in the time-0 trading model, the
lifetime budget constraint holds in present value over all sample paths.

7.1.4. Implications for pricing assets

In Section 1.2, we showed how a contingent claims equilibrium could be
replicated by a security market equilibrium. The results of that section
show that the prices of all assets will be a bundle of contingent claims
prices. We can illustrate this result using the sequential interpretation of
the contingent claims equilibrium.

Consider the price of a claim to one unit of the consumption good with
certainty next period. Let bt denote the amount of the asset you buy and let
Q(st) denote the price. Let us emphasize that we are not restricting bt > 0.
In particular, an agent can issue debt as a form of borrowing. The budget
constraint is:

bt−1 + ωt ≥ ct + Q(st)bt .

The first-order condition is:

U ′(ct)Q(st) = β
∑

st+1∈S
π (st+1 | st)U ′(ct+1).
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Using the results of this section, we can express the price of the asset as:

Q(st) =
∑

st+1∈S
q(st+1, st)

=
∑

st+1∈S
βπ (st+1 | st)

U ′(ci(st+1))

U ′(ci(st))

= E
[
β

U ′(ci(st+1))

U ′(ci(st))
| st

]
, (7.36)

where we have used the result in (7.30) to evaluate q(st+1, st) in terms of
the intertemporal MRS for any consumer i. To show that the allocation
in this economy in which agents trade a one-period debt security bi

t is not
state contingent, observe that if the consumption sequence in the complete
contingent claims equilibrium is c�i (s) for any agent i, then solving the
budget constraint for contingent claims,

ci
�(s) = zi(s) + wi(s) −

∑
s′

q(s′ | s)zi(s′).

If

bi
t−1 − Q(st)bi

t = zi(st) + wi(st) −
∑
st+1

q(st+1 | st)zi(st+1),

then the allocations are identical. The point of this example is to show
that, if markets are complete, then the securities prices are closely linked to
the contingent claims prices. Hence, even though the menu of assets that
we observe in markets looks very different from the contingent claims, the
contingent claims prices are the basic building blocks for asset pricing in
any complete market.

7.2. I D I O S Y N C R A T I C E N D O W M E N T R I S K

Idiosyncratic risk is risk that is faced by an individual agent, for example
risk to an agent’s health, and is risk that is not driven by a common shock
to the economy. It is important to differentiate between risk sharing of
idiosyncratic risk and risk-sharing arrangements for aggregate risk. We start
with a pure endowment model in which all agents are ex ante identical.
While agents face idiosyncratic endowment risk, aggregate endowment is
deterministic. In this section, we study the role of ex post heterogeneity
among individuals under alternative trading arrangements. Specifically, we
consider the complete contingent claims equilibrium.
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7.2.1. Notation

Each period, an agent draws a random endowment that is assumed to fol-
low a first-order Markov chain. Let θ ∈ �, with �≡ {θ , . . . , θ̄}, be a
discrete random variable such that θ ≥ 0 and θ̄ is finite. Let g(θ ′ | θ )
denote the probability of moving from state θ to θ ′ in one period. Define
φ(θ ) as the unconditional probability of θ :

φ(θ ′) =
∑
θ∈�

g(θ ′ | θ ). (7.37)

We have the following definition.

Definition 7.1 The Markov process with transition probability function g :
� × � → �+ and unconditional probability function φ : � → �+ is said
to be stationary if

φ(θ ′) =
∑
θ∈�

g(θ ′ | θ )φ(θ ),

and invariant if

φ(θ ) =
∑
θ ′∈�

g(θ ′ | θ )φ(θ ′).

Using these definitions, we can also define the following moments for the
endowment process:

unconditional mean θm =
∑
θ∈�

φ(θ )θ ,

conditional mean θm(θ ) =
∑
θ ′∈�

g(θ ′ | θ )θ ′.

Also define

gj(θj | θ0) =
j∏

h=1

∑
θh∈�

g(θh | θh−1) (7.38)

as the j-step ahead probability, specifically the probability of θ = θj in j
periods when the current θ is θ0. For example, the two-step probability
function is given by:

g2(θj | θi) =
∑
θh∈�

g(θj | θh)g(θh | θi)

Finally, define

θ j
m(θ ) ≡

∑
θj∈�

gj(θj | θ )θj (7.39)
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as the j-step ahead conditional mean. As j increases, θ
j
m(θ ) tends to θm

because the Markov process for θ is stationary and hence, exhibits mean
reversion.

7.2.2. The economy

Assume there is a countable infinity of agents who receive a random
endowment in each period. The reason that we make this assumption
is that we wish to appeal to the Law of Large Numbers in our results.
The idea is that if we have an infinite dimensional sample (here a count-
able infinity of agents), then the sample moments of the infinite sample
are identical to the population moments of the distribution. This type of
assumption is standard in the literature, although it is often assumed that
there is a continuum of agents. There are certain technical issues with mea-
surability that we wish to avoid so we assume there is a countable infinity
of agents, but the assumptions basically serve the same purpose, namely to
use the Law of Large Numbers.

The endowment process is a first-order Markov chain. Each agent
receives an endowment drawn from � in every period so the history for
agent i is denoted θ t

i ={θ1,i, . . . , θt,i}. An agent is characterized by his his-
tory θ t ∈ �t . The fraction of agents with history θ t is identical to the
probability of observing the history of the endowment shocks θ t , and this
is equal to gt(θ t) = g(θt |θt−1)g(θt−1|θt−2) · · · g(θ1|θ0), given θ0. The uncon-
ditional probability of observing θt in the general population is φ(θt) and,
with a countable infinity of agents, the fraction of agents with θ is φ(θ ).
To compute the aggregate endowment of the economy, observe that, with
a countable infinity of agents, a fraction φ(θ ) of the agents have realized θ .
The total endowment per capita of the economy each period is

θm =
∑
θ∈�

φ(θ )θ =
∑
θ∈�

∑
θj∈�

g(θ | θj)φ(θj)θ , (7.40)

so there is no aggregate uncertainty.
The commodity space for this economy consists of history-dependent

sequences {ct(θ t)}∞t = 0, where each element of the sequence denoted
ct(θ t ) ∈ �+ is indexed by the history of endowment shocks up to that
date, θ t ∈ �t . Unlike the static model that we considered in Chapter 1,
the commodity space is now infinite dimensional. The representative agent
has lifetime preferences:

∞∑
t=0

∑
θ t∈�t

β t gt(θ
t)U (ci,t(θ

t)). (7.41)

Agents are identical at the beginning of time and become differentiated
over time because of different endowment realizations.
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The market-clearing conditions require that∑
θt∈�

∑
θt−1∈�

g(θt | θt−1)φ(θt−1)[θt − ct(θ
t)] = 0. (7.42)

7.2.3. Complete contingent claims

As a baseline case, we start with the complete contingent claims solution
and present both the time-0 and the dynamic programming versions of the
problem.

Assume that agents can purchase contingent claims – in particular let
qt(θ t) denote the time 0 price of a contingent claim paying one unit
of the endowment good at time t conditional on history θ t , so that
qt : �t → �++. The representative agent at time zero faces a lifetime
budget constraint:

0 ≤
∞∑

t=0

∑
θ t∈�t

qt(θ
t)[θt − ct(θ

t )]. (7.43)

Let λ denote the Lagrange multiplier for this constraint. Notice that λ

is not indexed by an individual because all agents are identical at time
0, including in initial asset holdings, which are assumed to equal 0. The
first-order conditions take the form:

β t gt(θ
t)U ′(ci(θ

t)) = λqt(θ
t ) for all θ t ∈ �t , i = 1, 2, . . . . (7.44)

As written, the price depends on the entire history θ t
i for each i. An

agent with history θ̃ t faces a price qt(θ̃ t) while an agent with history θ̂ t

faces price qt(θ̂ ). Observe that the price depends on a growing sequence
of histories, which varies across agents. This suggests that over time, the
number of different prices is growing rapidly.

Given the stationary Markov property for the endowment process, how-
ever, we can examine a stationary solution to this problem without loss of
generality. This will simplify considerably the space over which prices are
defined. Under the Markov property, notice that given θt−1, the history
of shocks θ t−2 is irrelevant for predicting θt . With this in mind, consider
solutions in which consumption and prices depend only on the current θi,t

and recent past θi,t−1 endowments for agent i. Let qt(θt , θt−1) denote the
time 0 price of a unit of consumption conditional on θt at time t and θt−1

at time t − 1. If we sum the first-order condition over all possible histories
up to time t − 2 for agent i, then conditional on (θt , θt−1) the first-order
condition becomes:∑

θ t−2∈�t−2

β t gt(θ
t)U ′(ci(θt , θt−1)) = λqt(θt , θt−1). (7.45)
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This result says that for all possible histories that reach θt−1 at t − 1 and θt

at t, the price will be q(θt , θt−1). If the contingent claims prices are set to
satisfy

qt(θt , θt−1) = β t g(θt | θt−1),

then the first-order condition reduces to

U ′(c(θt , θt−1)) = λ,

which implies consumption is constant, (U ′)−1(λ) = c. Using the resource
constraint,∑

θj

∑
θi

g(θj | θi)φ(θi)[θj − c] = θm − c = 0,

observe that a solution for the constant level of c is given by

c = θm. (7.46)

This is the optimal consumption whether the individual’s endowment
follows an i.i.d. process or a Markov process.

The lifetime budget constraint for the representative agent then
becomes:

0 =
∞∑

t=0

∑
θt∈�

∑
θt−1∈�

β t g(θt | θt−1)[θt − θm],

where we have substituted for qt(θt , θt−1) =β t g(θt | θt−1). Notice that bor-
rowing or saving over time, given by θt − c = θt − θm, is the deviation of
the endowment from its unconditional mean.

We can also define a measure of net wealth for each consumer i as
the expected value of future consumption claims net of all liabilities.
Conditional on a particular history θ̂ t

i for agent i up to time t, observe
that the agent’s expected future net claims under the consumption policy
c = θm are:

�i
t(θ̂

t
i ) =

∞∑
τ=t+1

∑
θτ |θ̂ t

i

βτ−t gτ (θτ | θ̂ t
i )[θm − θτ ]. (7.47)

In lieu of the market-clearing conditions, we have that∑
θ t∈�t

gt(θ
t )�t(θ

t ) = 0. (7.48)

Observe that conditional on history θ̂ t , the agent’s expected discounted
present value of lifetime income is

At(θ̂
t
i ) =

∞∑
τ=t

∑
θτ |θ̂ t

i

βτ−t gτ (θτ | θ̂ t
i )θτ . (7.49)
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For τ > t in the i.i.d. case, the expected discounted present value of lifetime
income is identical across agents. Fluctuations in expected lifetime income
are due entirely to temporary deviations from the unconditional mean θm

in the current period.

7.2.4. Dynamic programming

To describe this problem, let q(θ ′, θ ) denote the time-t price of a one-
period contingent claim that pays off contingent on all possible states θ ′ ∈
� next period.

c +
∑
θ ′∈�

q(θ ′, θ )z(θ ′, θ ) ≤ θ + z, (7.50)

where z(θ ′, θ ) is the claim to a unit of consumption in the event that θ ′
occurs, conditional on θ . In the sequential version of the complete con-
tingent claims equilibrium, we need to impose some debt limits to rule
out Ponzi schemes. Any borrowing by the agent at time t with history θ̂ t

i
must be below the expected discounted present value of current and future
endowment At (θ̂ t

i ), which is the maximum amount an agent can repay at
time t, conditional on the history θ̂ t

i . If the agent borrows At (θ t
i ) at time

t, then consumption in period t + 1 and all subsequent periods is equal to
zero. In this sense, we can view At(θ̂ t

i ) as a natural debt limit for consumer
i conditional on history θ̂ t . Hence, in the sequential interpretation of the
complete markets equilibrium, we also have the constraint:

z(θt+1) ≥ −At+1(θ
t+1). (7.51)

The Bellman equation for the dynamic programming version of the
problem is:

V (z, θ ) = max
c,z′

[U (c) + β
∑
θ ′∈�

g(θ ′ | θ )V (z′, θ ′)] (7.52)

subject to (7.50), (7.51), and c ≥ 0. Let λ(θ ) denote the Lagrange multi-
plier on the budget constraint. The first-order and envelope conditions are
given by:

U ′(c) = λ(θ ), (7.53)

λ(θ )q(θ ′, θ ) = βg(θ ′|θ )Vz(z′, θ ′), (7.54)

Vz(z, θ ) = λ(θ ). (7.55)

The simplified first-order condition is:

q(θ ′, θ )U ′(c) = βg(θ ′|θ )U ′(c′). (7.56)

As before, if q(θ ′, θ ) =βg(θ ′|θ ), then consumption is constant, that is,
U ′(c) = U ′(c′) implies that c = c′ = c̄.
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Suppose that c = θm. Under this consumption policy, the agent’s budget
constraint can be expressed as

z(θt) = θm − θt + β
∑

θt+1∈�
g(θt+1 | θt)z(θt+1, θt). (7.57)

Solving this equation forward in z(θ ), observe that

z(θt) = θm − θt + β
∑

θt+1∈�
g(θt+1 | θt)[(θm − θt+1)

+ β
∑

θt+2∈�
g(θt+2 | θt+1)z(θt+2, θt+1)]

= θm − θt +
∞∑
j=1

β j
∑

θt+j∈�
gj(θt+j | θt)[θm − θt+j], (7.58)

where gj(θt+j|θt) is the j-step ahead probability, conditional on θt . There
are two cases.

i.i.d. endowment
Assume that θ is i.i.d. with probability g(θ ). In this case, forecasts of future
endowment equal θm, regardless of the current θt . Consider the expression
for z(θt) from Equation (7.58) under this assumption:

z(θt) = θm − θt +
∞∑
j=1

β j
∑

θt+j∈�
gj(θt+j | θt)[θm − θt+j]

= θm − θt ,

where the last term on the first line is zero because the j-step ahead con-
ditional mean of θt+j is just equal to the unconditional mean, θm. Hence,
the distribution of wealth is just equal to the deviation of the endowment
from the unconditional mean, {z(θ i

t )}i∈I = {θm − θ i
t }i∈I . An agent’s wealth

over time is thus uncorrelated since θm −θ i
t−1 and θm −θ i

t are uncorrelated.
Notice that the agent’s permanent income, that is, the level of income nec-
essary to yield a constant consumption path, is θm. Consumption is equal
to θm, and all fluctuations in wealth are transitory.

If the endowment process is i.i.d., then for any τ > t, the expected value
of θm − θτ is equal to 0. Hence, for this case, the distribution of wealth
is determined by the distribution of the deviation from the unconditional
mean θm −θ i

t . The probability of achieving a given level of wealth, θm −θ i
t ,

is identical across agents at a point in time and over time. This is not true
if the endowment process is Markov.
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Markov endowment
Now assume that θt is Markov. Observe that

z(θt ) = θm − θt +
∞∑
j=1

β j
∑

θt+j∈�
gj(θt+j | θt)[θm − θt+j]

= θm − θt +
∞∑
j=1

β j[θm − θ j
m(θt)]. (7.59)

The discounted present value of future net claims, defined in (7.47) is

�i
t(θ̂

t
i ) =

∞∑
τ=t+1

∑
θτ |θ̂ t

i

βτ−t gτ (θτ | θ̂ t
i )[θm − θτ ].

Thus, the distribution of wealth depends on the entire path of the devia-
tion of the conditional mean θ

j
m(θt) from θm, that is, {z(θ i

t )}i∈I defined in
Equation (7.59). This implies that the wealth distribution for the Markov
economy is much richer over time. However, observe that the distribution
is still a function of only the current endowment shock θ i

t . The distri-
bution of an agent’s wealth next period will be determined only by the
endowment realization θ i

t+1. Furthermore, while the distribution of wealth
varies across agents due to different realizations of θ i

t at a point in time, the
cross-sectional distribution is unchanged over time. This occurs because
the cross-sectional distribution of wealth is indexed by different realizations
of θ i

t , which come from the same distribution in each period. In models
with incomplete markets, we will see that the cross-section distribution of
wealth may also change over time.

7.3. R I S K S H A R I N G W I T H I D I O S Y N C R A T I C

A N D A G G R E G A T E R I S K

We end this chapter with an example that we think illustrates one feature in
the relationship between idiosyncratic and aggregate risk. In our discussion
so far we have treated two extreme versions: all risk is aggregate or all risk
is idiosyncratic with no aggregate uncertainty. In reality, the relationship is
more complicated. The example below illustrates some of the issues.

As before, assume there is a countable infinity of agents. Instead of
assuming that they are identical, we now assume that there are J types of
agents. A fraction αj of the population is a type j agent where αj ≥ 0 and

J∑
j=1

αj = 1.

Typically in the discussion below, J = 2.



154 Asset Pricing for Dynamic Economies

Uncertainty is introduced through an endowment shock that is corre-
lated across agents. Let S = {s, . . . , s̄} such that there are N possible values
of s. Let s ∈ S be a discrete random variable such that s ≥ 0 and s̄ is finite.
Let π (s′ | s) denote the probability of moving from state s to s′ in one
period. Define �(s) as the unconditional probability of s

�(s′) =
∑

s

π (s′ | s)�(s). (7.60)

The Markov process is assumed to be stationary and invariant. A type j
agent has endowment θj(s) when the aggregate state is s. Total endowment
in state s is

y(s) ≡
J∑

j=1

αjθj(s). (7.61)

Hence, total endowment is possibly stochastic, depending on the proper-
ties of s.

Agents are assumed to have identical preferences, regardless of type. An
agent of type j has preferences

∞∑
t=0

∑
st∈St

β tπ (st )U (cjt(st)). (7.62)

An agent of type j faces a lifetime budget constraint

∞∑
t=0

∑
st∈St

qt(st)[θj(st) − cjt(st)] = 0. (7.63)

Hence, agents differ only because of the impact of the aggregate state s on
their endowment.

Finally, the market-clearing conditions require that

J∑
j=1

αjcjt(st) =
J∑

j=1

θj(st) = y(st). (7.64)

7.3.1. First-best solution

The representative type j agent maximizes (7.62) subject to the budget
constraint (7.63). Let λj denote the Lagrange multiplier for the budget
constraint. The first-order condition takes the form

β tπ (st)U ′(cj,t(st)) = λjqt(st). (7.65)
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Solve this for the price qt(st) and observe for two types of agents i �= j, that

qt(st)

β tπ (st)
= U ′(cj,t(st))

λj
= U ′(ci,t(st))

λi
. (7.66)

This condition says that the weighted marginal utilities of consumption are
equated across individuals but consumption allocations need not be, as the
aggregate risk may affect individuals differently. To study the implications
of aggregate risk further, re-write the above condition as

λj

λi
= U ′(cj,t(st))

U ′(ci,t(st))
. (7.67)

Choose a numeraire consumer – say type 1 – and define

λ̂j = λj

λ1
.

If the endowment process is stationary, say follows a stationary first-order
Markov process, then the consumption of each type of agent is also sta-
tionary. Define the consumption of a representative type 1 agent as c1(s) for
all s ∈ S. Next, define the function ĉ : S × �+ → �+ as the solution
cj = ĉ(c1(s), λ̂j) to

λ̂j = U ′(cj)

U ′(c1(s))
, j = 2, . . . , J . (7.68)

The next step is to substitute for cj = ĉ(c1(s), λ̂j) into the resource con-
straints

J∑
j=1

αjθj(s) =
J∑

j=2

αj ĉ(c1, λ̂j) + α1c1(s) (7.69)

for each s ∈ S. Notice that the right side is strictly increasing in c1. Let c�1
denote the solution. Since the solution for c1 depends on the total endow-
ment y(s) = ∑J

j = 1 αjθj(s) and the ratio of multipliers λ̂≡ (λ̂2, . . . , λ̂J )′, so
do the solutions for cj. Now use the type j’s budget constraint and multiply
both sides of the equation by λj to eliminate λj from the denominator.

0 =
∞∑

t=0

∑
st∈S

β tπ (st)U ′(ĉ(c1(st), λ̂j))[θj(st) − ĉ(c1(st), λ̂j)] (7.70)

Notice that the right side is strictly increasing in λ̂j. Let λ̂�
j denote

the solution. Thus, the optimal consumption allocations are given by
c�j = ĉ(λ̂�, y(s)) for j = 1, . . . , J .

We now describe how to compute the complete contingent claims
allocations and prices using this approach. For discussion’s sake, assume
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that J = 2 and S = 1, 2. Furthermore, for simplicity, assume that aggre-
gate endowment shocks in each period are identically and independently
distributed such that Pr(st = 1) =π and Pr(st = 2) = 1 − π for all t. If
s = 1, assume that θ1(1) = 0 and θ2(1) = 1 while if s = 2, then θ1(2) = 1 and
θ2(2) = 0. Hence the idiosyncratic endowment shocks are negatively cor-
related: if agent 1 has a high endowment realization then agent 2 has a low
endowment realization and conversely. The resource constraint for s = 1, 2
becomes:

y(st) ≡ αθ1(st)+(1−α)θ2(st) = α1c1(st)+α2c2(st), st = 1, 2. (7.71)

We consider some special cases.
• Case 1: π (1) =π (2) = 1/2 and α = 1/2: Under this assumption, each

period, half of the agents are productive and each type of agent expects
to be productive with the same probability as any other agent. The
resource constraints in Equation (7.71) become:

y(1) = 1 = c1(1) + c2(1)

y(2) = 1 = c1(2) + c2(2).

Notice that the aggregate endowment is constant over time and across
states, so that there is no uncertainty at the aggregate level. Hence, the
history of shocks is irrelevant for prices and decisions at time t. Thus,
the first-order condition in Equation (7.66) can be written as:

q(st)
β tπ (st)

= U ′(c1(st))
λ1

= U ′(c2(st))
λ2

. (7.72)

Since agents are ex ante alike in all respects, including their preferences
and their probabilities of receiving different endowments, it seems nat-
ural to seek a stationary solution to the problem with λ1 = λ2. Notice
that this implies that the time-0 price of consumption in state st is
equal to the (discounted) probability of consumption in that state,
q(st) =β tπ (st). Also, using the first-order conditions evaluated under
these assumptions, we have that

U ′(c1(st)) = U ′(c2(st)) ⇒ c1(st) = c2(st) = c̄, st = 1, 2, ∀t.

In this case, both individuals consume a constant amount equal to c̄ at
all dates and in all states. Since there are an equal number of productive
and unproductive individuals at each date, with identical preferences
across agents, productive agents end up insuring unproductive agents so
that all agents can consume a constant amount in each state. Output
is constant and equal to 2c̄ = 1. This is the case of complete insurance
in which the opportunities to pool risks enable all agents to consume a
fixed amount regardless of the particular realization st which determines
their earnings stream.
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• Case 2: π (1) = 2/3, π (2) = 1/3 and α = 1/2: In this second case, one
half of the agents are productive just as before. The resource constraint
is the same and given by:

y(1) = 1 = c1(1) + c2(1)

y(2) = 1 = c1(2) + c2(2)

so that the aggregate endowment is certain, which is a result that follows
from α = 1/2. Now suppose that preferences satisfy U ′(cj(s)) = cj(s)−γ

for j = 1, 2. In a complete contingent claims equilibrium, we know that
the ratio of weighted marginal utility of consumers is equated across
states for all dates:

U ′(c1(st))
U ′(c2(st))

= λ1

λ2
, ∀t, st = 1, 2.

Using the approach described earlier, we can simplify this expression as:

c1(st) = c2(st)
(
λ1

λ2

)−1/γ

= c2(St)k, ∀t and st = 1, 2.

Substituting this back into the feasibility constraint yields:

c1(st) = c̄1 = k
1 + k

and c2(st) = c̄2 = 1

1 + k
, ∀t, st = 1, 2.

Again, agents prefer to smooth out their consumptions over time and
across states. Since the consumption of each agent is constant across
states, the ratio of the first-order conditions in Equation (7.72) shows
that the price system should satisfy:

q(1)

β tπ (1)
= q(2)

β tπ (2)
,

or

q(1) = 2q(2) ∀t. (7.73)

Using the lifetime budget constraints evaluated at these prices yields:

c̄1 = 1 − π = 1

3
and c̄2 = π = 2

3
.

In this case, consumption is not equated across agents at a point in time.
Instead the agent with a lower probability of being productive at each
date also receives a lower consumption. However, agents experience a
constant consumption stream over time, and aggregate output is also
constant over time. There is no market incompleteness here and risks
are pooled.
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• Case 3: π (1) =π (2) = 1/2 and α = 2/3: Now, let us analyze the case
when any individual agent expects to be productive with the same
probability as any other agent but the proportion of agents that are pro-
ductive varies so that aggregate output fluctuates across states because of
the concentration of the productivity shock. In this case, the aggregate
endowment in each state is given by:

y(1) = 1 − α = αc1(1) + (1 − α)c2(1)

y(2) = α = αc1(2) + (1 − α)c2(2),

where the economy experiences uncertainty both at an aggregate and at
individual level. As in the previous case, consumption of agent 1 in state
st satisfies

c1(st) = c2(st)
(
λ1

λ2

)−1/γ

.

Substituting this result into the feasibility conditions yields:

1 − α = αc2(1)

(
λ1

λ2

)−1/γ

+ (1 − α)c2(1)

α = αc2(2)

(
λ1

λ2

)−1/γ

+ (1 − α)c2(2).

Solving for ci(st) yields:

ci(1) =
(

1 − α

α

)
ci(2), i = 1, 2. (7.74)

Hence, consumption in the first state for each agent is proportional
to consumption in the second state, with the factor of proportionality
reflecting the fraction of agents who receive an endowment in each state.
Substituting this result into the first-order conditions for consumer 1 (or
equivalently, consumer 2) yields:

q(1)

β tπ (1)
=

((
1−α
α

)
c1(2)

)−γ

λ1

q(2)

β tπ (2)
= (c1(2))−γ

λ1

Dividing each side of these conditions, we can solve for the ratio of the
state prices as:

q(1)

q(2)
=
(

1 − α

α

)−γ

=
(

α

1 − α

)γ

. (7.75)



Intertemporal risk sharing 159

For α = 2/3, we find that ci(1) = 1
2 ci(2) and q(1) = 2γ q(2). If we sub-

stitute these findings into lifetime budget constraints, we can solve for
consumption allocations as:

∞∑
t=0

β t [q(2)2γ ( − c1(1)) + q(2)(1 − 2c1(1))
] = 0

∞∑
t=0

β t [q(2)2γ (1 − c2(1)) − q(2)2c2(1)
] = 0,

which implies that

c1(1) = 1

2 + 2γ
, c2(1) = 2γ

2 + 2γ
, ci(2) = 2ci(1). (7.76)

When agents have the same discounted present value of labor income,
then they can borrow and lend to smooth consumption to an extent
that the agent’s consumption is no longer dependent on the particular
time path of his wealth. When agents are no longer identical in expected
present value, agents can no longer guarantee an identical consumption
stream. When π = 2/3, agent 1 receives a lower consumption than agent 2
compared with the case where π = 1/2. This occurs because consumer 1’s
lifetime income is lower relative to consumer 2’s. A similar result holds if
π = 1/2 and α = 2/3. In that case, although any individual agent expects
to be productive with the same probability as any other agent, the pro-
portion of agents that are productive varies so that agents’ consumption
fluctuates because of the concentration of the productivity shocks across
the population. Hence, we find that an aggregate shock can cause vari-
ation in consumption allocations across agents. In our analysis up to
this point, we have not considered variation in the aggregate shocks over
time. Typically, this will also lead to variation in the individual allocations
over time.

7.4. C O N C L U S I O N S

In this chapter, we have examined several versions of complete contin-
gent claims markets and the implications for risk sharing. The material
in this chapter is particularly useful in understanding what happens
when markets are incomplete. In Chapter 16 on borrowing constraints,
we discuss the implications of market frictions such as trading frictions
and borrowing constraints. This chapter serves as a useful benchmark
to understanding the implications for risk sharing when markets are
incomplete.
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7.5. E X E R C I S E S

1. Multi-period Contingent Claims
Consider an economy under uncertainty such that there are T dates
and S possible events at each date. Suppose there exists only one type of
commodity. Assume that there are I individuals. Agents are identical in
every way except their endowment.

Uncertainty is defined in terms of a random variable st that can
take on S possible values at each date (this means st ∈ (x1, . . . xS) ≡S
at each period). The state of the economy is given by the his-
tory st of realizations of the random variable sr for r ≤ t, defined as
st ≡ (s1, . . . , st) = (st−1, st). Let πt(st) ∈ [0, 1] denote the probability that
st ∈ S t occurs. Let π (st+1 = xj | st = xi) denote the probability of
moving from state xi to state xj in one period. Then

πt(st) = π (st | st−1)π (st−1 | st−2) . . . π (s2 | s1)

is the probability of a time path st = (s1, . . . , st).
The endowment good is non-storable. Let wi(st) denote the endow-

ment of agent i in state st , where the process is stationary and w(s)
is non-negative (so it might equal 0 in some periods). Agent i ∈ I
maximizes

T∑
t=1

∑
st∈S t

β tπt(st)U (ci(st)). (7.77)

(a) Define the commodity space.
(b) Let pt(st) denote the price of a contingent claim that pays one unit

of the consumption good, conditional on the history st occurring.
Assume that all trading takes place at time 0. Define a complete
contingent claims equilibrium.

i. Along a particular time path ŝT , does an agent have a balanced
budget at time T ? Specifically, does

T∑
t=1

pt(ŝt)[wi(ŝt) − ci(ŝt)] = 0?

ii. If an agent can expire at the end of date T in debt, then what
can we say about the asset position of some other agent j �= i
in the economy?

iii. What is the expected value of total endowment in this econ-
omy? Is it finite?

2. Now compare the allocations with the contingent claims solution (all
trading at time 0) with the sequential trading.
(a) Under what condition on prices and interest rates will the two

allocations be equivalent?
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(b) In this part of the problem, you are asked to examine the no-Ponzi
game solution. First write the sequential budget constraints as a sin-
gle lifetime constraint. (Hint: Let ai

t−1 denote the savings of agent i
at the beginning of period t. The constraint will contain a term ai

t ,
which is savings at the end of period t – solve for ai

t−1 and solve the
equation forward.)

(c) Use your answer to the previous part of this question. Now sup-
pose that T → ∞. What is the no-Ponzi scheme condition in this
model? What is the restriction on the interest rate process?

3. Formulate the social planning problem for this economy. The social
planner maximizes a weighted sum of individual utilities subject to an
aggregate feasibility constraint.
Compare the first-order conditions for the social planning problem
with the optimality conditions in the complete contingent claims
equilibrium.

4. There are two consumers. Type A receives endowment yt in period t
while type B receives endowment xt . The endowments are exogenous
and stochastic. Assume that the mean of y is greater than the mean of
x. Both types have the same utility function and maximize

∞∑
t=0

β tU (ct).

Assume that the initial wealth of each agent equals 0.
(a) Assume that each agent can borrow by issuing contingent claims

and save by purchasing contingent claims from the other type of
agent. Derive the contingent claims equilibrium.

(b) Suppose that xt , yt are negatively correlated. What type of trading
would you expect?

(c) Suppose they are positively correlated. How does that affect the
trading?

(d) Which agent has higher permanent income?



C H A P T E R 8

Consumption and asset pricing

In this part we turn our attention to the analysis of dynamic economies
using a recursive equilibrium approach. We begin our analysis with the
consumption-based capital asset-pricing model of Lucas [319], Breeden
[74], and others. We assume that there is a representative consumer and
output evolves according to an exogenous Markov process. There is a rich
array of assets traded in economies with well-developed capital markets.
We show how this framework can be used for pricing such assets as equi-
ties which yield a random dividend stream, bonds of different maturities,
and options on various underlying assets.

The remainder of this chapter is organized as follows. First, we demon-
strate the existence of a recursive competitive equilibrium for a pure
endowment economy based on Lucas [319]. We show the existence of a
value function and the equilibrium asset-pricing function, and examine
their properties. Second, we use this framework to derive the prices for a
variety of assets, including pure-discount bonds of various maturities and
derivative instruments such as options and forward contracts. Third, we
describe asset pricing in a non-stationary environment when the aggre-
gate endowment is growing. We also introduce a diagnostic tool known
as volatility bounds for intertemporal MRSs or stochastic discount factors
that allow a convenient way for examining the implications of alternative
asset-pricing models.

8.1. T H E C O N S U M P T I O N - B A S E D C A P M

In this chapter we consider a pure endowment economy in which there
is a representative consumer and output is exogenous. The issue is to
derive equilibrium allocations and pricing functions under alternative
assumptions about preferences and the stochastic properties of output.

Uncertainty is introduced by assuming that there are m exogenous
shocks, st ∈ S ⊂ �m in each period. The endowment is a function of the
shocks or exogenous state variables. The vector of shocks, st , follows a first-
order Markov process with transition function F . The set S is assumed to

162
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be compact and F : S × S → [0, 1] such that F (s, s′) ≡ Pr(st+1 ≤ s′|st = s).
We have the following assumption.

Assumption 8.1 The transition function F has the Feller property so
that for any bounded, continuous function h : S → �, the func-
tion Th(s) = ∫

S h(s′)F (s, ds′) is continuous. The process defined by F has a
stationary distribution �.

The endowment is a time-invariant function of the shocks, yt ≡ y(st).
Thus, the endowment also follows a stationary first-order Markov process
and the evolution of yt can be described in terms of the transition function
F for st . The next assumption ensures that the endowment takes values in
a compact set.

Assumption 8.2 Define Y ≡ [y, ȳ] with y > 0 and ȳ < ∞. The function
y : S → Y is a continuous function that is bounded away from zero.

The preferences of the representative consumer over sequences of
consumption {ct}∞t = 0 are given by:

E0

{ ∞∑
t=0

β tU (ct)

}
, (8.1)

where 0 < β < 1 denotes the subjective discount factor and E0 is
expectation conditional on information available at time zero. Notice that
preferences are additively separable with respect to consumption at dif-
ferent dates. The following assumption characterizes the utility function.

Assumption 8.3 The utility function U : S → �+ is continuous, con-
tinuously differentiable, strictly increasing, strictly concave with U (0) = 0 and
limc→0 U ′(c) =∞.

Next, consider the nature of securities trading. In this economy, con-
sumers trade in shares to the exogenous output process and also buy and
sell real risk-free bonds that are in zero net supply. Let qe

t denote the price
of a share after the dividends on the share have been paid. This price is
referred to as the ex-dividend price. Let Q 1

t denote the price at time t of
a bond that pays off a sure unit of output at time t + 1. This is typically
referred to as a pure discount bond; hence, Q 1

t ≤ 1. Let zt denote a con-
sumer’s beginning-of-period share holdings and bt the beginning-of-period
bond holdings. Also assume that there is one perfectly divisible outstanding
share.

The consumer faces the following sequence of budget constraints:

ct + qe
t zt+1 + Q 1

t bt+1 ≤ (yt + qe
t )zt + bt , t = 0, 1, . . . , (8.2)
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where yt denotes dividends paid in period t and z0 and b0 are given. Prior
to any securities trading in period t, the consumer observes the current
value of output. She also knows all past values of output, yr for r < t. The
consumer takes the sequences for the prices of equities and bonds as given
and chooses sequences for consumption and equity and bond holdings to
maximize the objective function in (8.1) subject to the sequence of budget
constraints (8.2) and the constraints that ct ≥ 0, 0 ≤ zt+1 ≤ z̄ where z̄ > 1
and bt+1 ≥ 0 for all t.

The market-clearing conditions for t = 0, 1, . . . , are:

ct = yt , (8.3)

zt+1 = 1, (8.4)

bt+1 = 0. (8.5)

8.1.1. Recursive competitive equilibrium

We follow the approach in Lucas [319] for showing the existence of a
recursive competitive equilibrium in which prices can be expressed as time-
invariant functions of variables that summarize the current state of the
economy. In equilibrium, consumption equals the exogenous output at
each date.

Note first that the consumer’s expected discounted utility is well defined
and finite under this allocation.

Lemma 8.1 Under Assumptions 8.1 through 8.3, for any consumption
sequence {ct}∞t = 0 such that ct ≤ yt , then

E0

{ ∞∑
t=0

β tU (ct)

}
≤ U < ∞.

P R O O F

Notice that for any feasible ct , ct ∈ [0, ȳ] where yt ≤ ȳ. Since U is con-
tinuous and takes a compact set into �+, we can define an upper bound
U ≡ ∑∞

t = 0 β
tU (ȳ) < ∞.

The Markov nature of uncertainty allows us to formulate the consumer’s
problem as a stationary dynamic programming problem. The consumer’s
state is summarized by its beginning-of-period equity holdings, zt , its
beginning-of-period bond holdings bt , and the current shock st . Note that
the consumer’s choices take values in a compact set. Because there is one
equity share outstanding, zt+1 will equal exactly one in equilibrium and so
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define an interval Z = [0, z̄] where z̄ > 1 such that zt+1 ∈ Z . In equilib-
rium, bt+1 = 0 and so defines an interval B = [−b, b] where b > 0 such
that bt+1 ∈ B.

We will seek an equilibrium in which the price of equities and the
price of the risk-free asset are continuous, strictly positive functions of the
exogenous shocks,

qe :S → �++ (8.6)

Q 1 :S → �++. (8.7)

To emphasize the recursive nature of the problem, let variables without
primes denote current state or decision variables and variables with primes
denote future values. Define v(z, b, s) as the expected discounted utility of
the consumer, given initial equity holdings z, bond holdings b, and the
current shock s. By Lemma 8.1, this is well defined and finite. Given the
price functions qe( · ) and Q 1( · ), the value function for the consumer’s
problem satisfies the Bellman equation:

v(z, b, s) = max
c,z′,b′

{
U (c) + β

∫
S

v(z′, b′, s′)F (s, ds′)
}

(8.8)

subject to

c + qe(s)z′ + Q 1(s)b′ ≤ [y(s) + qe(s)]z + b, (8.9)

c ≥ 0, z′ ∈ Z , b′ ∈ B. (8.10)

Definition 8.1 A recursive competitive equilibrium is a set of price functions
qe : S → �++ and Q 1 : S → �++ and a value function v : Z × B × S →
�+ such that (i) given qe(s) and Q 1(s), v(z, b, s) solves the consumer’s problem;
(ii) markets clear.

Notice that the price functions that the consumer takes as given are iden-
tical to the equilibrium price functions. This is the property of rational
expectations which imposes a consistency between subjective beliefs about
prices and the objective distributions for prices that arise in equilibrium.

Consider first the consumer’s problem for given price behavior. Define
the set S ≡ Z ×B ×S. Let C(S) denote the space of bounded, continuous
functions {v : S → �+} equipped with the sup norm:

‖u‖ ≡ sup
z,b,s∈S

|u(z, b, s)| for any u ∈ C(S).

Proposition 8.1 Under Assumptions 8.1 through 8.3, there exists a unique
solution v� ∈ C(S) to the functional equation defined by Equation (8.8). The
function v� is concave, increasing in (z, b).
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P R O O F

For v ∈ C(S), define the operator T by:

(Tv)(z, b, s) = max
c,z′,b′

{
U (c) + β

∫
S

v(z′, b′, s′)F (s, ds′)
}

subject to the constraints (8.9) and (8.10). Since 0 ≤ c ≤ y, z′ ∈ Z and b′ ∈
B, the constraint set is compact. By Assumption 8.3, the utility function U
is continuous in c and the function v is jointly continuous in (z, b, s) since
v ∈ C(S). Hence, Tv involves maximizing a continuous function over a
compact set so that it is well defined; that is, a maximum exists. Since U (c)
is bounded for 0 ≤ c ≤ y and v(z′, b′, s′) is bounded, the maximum function
Tv is bounded and by the Theorem of the Maximum, it is continuous.
Thus, T maps bounded, continuous functions into the same space, T :
C(S) → C(S).

Next, notice that T is monotone. Given any two functions u ∈ C(S),
w ∈ C(S) such that u(z, b, s) ≥ w(z, b, s) for all z, b, s ∈ S ,∫

S
u(z′, b′, s′)F (s, ds′) ≥

∫
S

w(z′, b′, s′)F (s, ds′)

so that (Tu)(z, b, s) ≥ (Tw)(z, b, s). To verify discounting, for any constant
a, notice that

T (v + a)(z, b, s) = max
c,z′,b′

{
U (c) + β

∫
S
[v(z′, b′, s′) + a]F (s, ds′)

}

= max
c,z′,b′

{
U (c) + β

∫
S

v(z′, b′, s′)F (s, ds′)
}

+ βa

= (Tv)(z, b, s) + βa.

Hence, T satisfies Blackwell’s conditions for a contraction. Since C(S)
is a complete, normed, linear space, the Contraction Mapping Theorem
implies that T has a unique fixed point and limn→∞ T nv0 = v� for any
v0 ∈ C(S).

To show that v� is increasing, let C ′(S) be the space of continuous,
bounded, increasing, and concave real-valued functions defined on S
equipped with the sup norm. Notice that C ′(S) is a closed subset of C(S)
and it is a complete, normed, linear space. Choose some w ∈ C ′(S). Notice
that for any w(z1, b, s) < w(z2, b, s) for z1 < z2 implies Tw(z1, b, s) <

Tw(z2, b, s) and similarly for b.
To show that T preserves concavity, let (z0, b0) and (z1, b1) be given, let

0 ≤ θ ≤ 1, and define zθ = θz0 + (1 − θ )z1 and bθ = θb0 + (1 − θ )b1. Let
(ci, z′

i , b′
i) attain (Tw)(zi, bi, s), i = 0, 1. Now, (cθ , z′

θ , b′
θ ) satisfies the budget

constraint because (c0, z′
0, b′

0) and (c1, z′
1, b′

1) are both feasible. Therefore,



Consumption and asset pricing 167

(Tw)(zθ , bθ , s) ≥ U (cθ ) + β

∫
S

w(z′
θ , b′

θ , s′)F (s, ds′)

≥ θU (c0) + (1 − θ )U (c1) + θβ

∫
S

w(z′
0, b′

0, s′)F (s, ds′)

+ (1 − θ )β
∫

S
w(z′

1, b′
1, s′)F (s, ds′)

≥ θ (Tw)(z0, b0, s) + (1 − θ )(Tw)(z1, b1, s).

The second line follows by the concavity of U and w while the third line
follows since (ci, z′

i , b′
i) attains (Tw)(zi, bi, s) for i = 0, 1. Hence, (Tw)(z, b, s)

is concave in (z, b).
Because C ′(S) is a closed subset of C(S) and we have shown that T is a

contraction on C(S) (so that, for any initial guess v0 ∈ C(S), repeated
applications of T result in v�), we can conclude that v� is an element
of C ′(S).

These results establish the existence of a solution to the consumer’s prob-
lem, given the price functions qe and Q 1. They also show that the value
function is concave, increasing in shares and bond holdings. Intuitively,
increases in number of shares and bonds increase the consumer’s wealth
and hence the maximum utility that can be achieved.

8.1.2. Asset-pricing functions

To derive further results about the nature of the price functions, consider
the optimality conditions for this problem, given the fixed point v�. Define
v�z and v�b as the partial derivative of v� with respect to z and b, respectively.1

Let λ(s) denote the Lagrange multiplier for the representative consumer’s
budget constraint. The first-order conditions with respect to c, z′, and b′
and envelope conditions with respect to z and b are given by:

U ′(c) = λ(s) (8.11)

qe(s)λ(s) = βEs[vz(z′, b′, s′)] (8.12)

Q 1(s)λ(s) = βEs[vb(z′, b′, s′)] (8.13)

vz(z, b, s) = U ′(c)[y(s) + qe(s)] (8.14)

vb(z, b, s) = U ′(c). (8.15)

1 For a proof of the differentiability of the value function, see Lucas [317, pp. 1433–1434]. Benveniste
and Scheinkman [56] have shown that under fairly general conditions the value function is once
differentiable. For a further discussion of this issue, see Stokey and Lucas [418, pp. 84–85 and 266].
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Define the policy functions c�(z, b, s), z�(z, b, s), and b�(z, b, s) that are
associated with the value function v�(z, b, s). In equilibrium, z′ = 1, b′ = 0,
and consumption equals output so that we need to determine the price
functions such that the associated policy functions satisfy c�(1, 0, s) = y(s),
z�(1, 0, s) = 1, and b�(1, 0, s) = 0. To determine these price functions, we
study the first-order conditions together with the envelope conditions
when markets clear as:

U ′(y(s))qe(s) = β

∫
S

U ′(y(s′))[y(s′) + qe(s′)]F (s, ds′), (8.16)

U ′(y(s))Q 1(s) = β

∫
S

U ′(y(s′))F (s, ds′). (8.17)

These equations are known as the intertemporal Euler equations and they
are satisfied for the optimal choice of consumption and equity and bond
holdings. Many recent tests of the consumption-based asset-pricing model
have been based on such optimality conditions.

Notice that Equation (8.16) defines a functional equation for the
unknown equity price qe(s). To complete the proof of the existence of a
recursive competitive equilibrium, we need to show that given the con-
sumer’s value function v, there exists a unique solution for the equity
price qe(s). Let Cq(S) denote the space of bounded, continuous func-
tions {φ : S → �+} equipped with the sup norm. Define the function
γ : S → �+ by:

γ (s) ≡ β

∫
S

U ′(y(s′))y(s′)F (s, ds′).

Instead of seeking a solution for the function qe(s), define the function
φ(s) ≡ U ′(y(s))qe(s). Notice that y(s) is exogenous and U is strictly increas-
ing so that finding φ is equivalent to finding qe. Notice that for any
φ ∈ Cq(S), we can define an operator Tq from the right side of Equation
(8.16) as:

(Tqφ)(s) = γ (s) + β

∫
S
φ(s′)F (s, ds′). (8.18)

We have the following proposition.

Proposition 8.2 There is a unique, continuous and bounded solution φ� to
Tqφ =φ. For any φ0 ∈ Cq(S), limn→∞ T n

q φ0 =φ�.

P R O O F

The first expression on the right side of Equation (8.18) is non-negative
since U is an increasing function and y(s) > 0 for all s ∈ S. Since y(s)
takes values in the compact set Y and U is continuous, we know that U is
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bounded. We first show that if U is bounded on Y , then γ (s) is bounded.
By the concavity of U , we have

U (y) − U (0) ≥ U ′(y)(y − 0) = U ′(y)y.

Thus, there exists a Ū such that U ′(y)y ≤ Ū for all y ∈ Y , which implies
that γ (s) =β

∫
S U ′(y(s′))y(s′)F (s, ds′) ≤βŪ . Since φ is bounded, Tq maps

bounded functions into bounded functions. Assumption 8.1 implies that
both terms on the right side of Equation (8.18) are continuous. Thus, the
operator Tq maps elements of the space of bounded, continuous functions
into itself, Tq : Cq(S) → Cq(S).

Notice that Tq is monotone since given any ψ ≥φ, Tqψ ≥ Tqφ. For
any constant a, notice that

Tq(φ + a)(s) = γ (s) + β

∫
S
[φ(s′) + a]F (s, ds′)

= (Tqφ)(s) + βa

so that Tq discounts. Thus, Tq satisfies Blackwell’s conditions to be a
contraction. Since Cq(S) is a complete normed, linear space, the Contrac-
tion Mapping Theorem implies that Equation (8.18) has a unique fixed
point.

Define the fixed point function by φ�. The equilibrium equity price is
determined as:

qe(s) = φ�(s)
U ′(y(s))

. (8.19)

The pricing function in this model depends on consumers’ attitudes
toward risk, their rate of time preference, and the stochastic properties of
output or consumption.

There are different methods for finding the unknown asset-pricing func-
tions. In some cases, we can generate exact solutions for various asset
prices under CRRA preferences and a joint log-normality assumption. We
provide examples of this approach in Exercises 2 and 3. The method of
successive approximation allows us to numerically compute the asset-pricing
functions by making use of the contraction property underlying the asset-
pricing equations. This approach can also be used in cash-in-advance type
models to derive the form of the inverse velocity function, an issue that we
describe in Chapter 13. We illustrate this method in the context of i.i.d.
shocks for the random endowment.

Example 8.1 Independently and Identically Distributed Shocks
Let {yt}∞t = 0 be a sequence of independent and identically distributed

random variables with cumulative distribution function �(y) defined on
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the set Y . Recall that the equity price satisfies Equation (8.16). Under the
assumption of i.i.d. shocks, this simplifies as

U ′(y)qe = β

∫
Y

[
U ′(y′)(y′ + (qe)′)d�(y′)

]
.

To solve this equation for the unknown function qe, define the new
function φ̄ as

φ̄ ≡ βE[y′U ′(y′)] (8.20)

where φ̄ is a constant. Also define the mapping:

φn(y) = (Tqφn−1)(y) = φ̄ + β

∫
φn−1(y′)d�(y′), (8.21)

where φ(y) = U ′(y)qe. In Proposition 8.2, we showed the mapping Tq

is a contraction. Consequently, by the Contraction Mapping Theorem,
repeated iterations on Tq will converge to the true solution for φ. Hence,
beginning with φ0(y) = 0, consider

φ1(y) = (Tqφ0)(y) = φ̄ + β

∫
0 · d�(y′) = φ̄,

φ2(y) = (Tqφ1)(y) = φ̄ + β

∫
φ̄d�(y′) = φ̄(1 + β)

... = ...

φn(y) = (Tqφn−1)(y) = φ̄ + β

∫
φ̄(1 + β + . . . βn−2)d�(y′)

= φ̄

n−1∑
i=0

β i.

Notice that we can also write φn(y) = (T n−1
q φ0)(y). Thus, letting n → ∞,

we have

φ∗(y) = lim
n→∞ (T n−1

q φ0)(y)

= lim
n→∞ φ̄

n−1∑
i=0

β i = φ̄/(1 − β).

Using the definition of φ∗, the solution for the equity price can be obtained
as U ′(y)qe = φ̄/(1 − β) or

U ′(y)qe = β

1 − β
E[y′U ′(y′)]. (8.22)
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We can use this solution to determine how the equity price varies
with current output. For this purpose, totally differentiate both sides of
Equation (8.22) as

U ′′(y)qedy + U ′(y)dqe = β

1 − β
dE[y′U ′(y′)] = 0

since E[y′U ′(y′)] is independent of y. Thus,

dqey
dyqe

= −U ′′(y)y
U ′(y)

. (8.23)

This expression shows that the elasticity of the equity price with respect to
output depends on the consumer’s relative risk aversion. If the utility func-
tion is of the constant relative risk aversion variety, then this elasticity is also
constant. Otherwise, the response of the equity price to current changes in
output will reflect changes in the consumer’s degree of risk aversion.

8.1.3. Risk premia

Define the (gross) real return on the equity by

rt+1 ≡ (qe
t+1 + yt+1)/qe

t .

Define the intertemporal marginal rate of substitution (MRS) in consump-
tion between periods t and t + 1 evaluated at the equilibrium quantities as

mt+1 = β
U ′(yt+1)

U ′(yt)
. (8.24)

Reverting to time subscripts in Equation (8.16), the real return on the
equity satisfies

1 = Et [mt+1rt+1] , (8.25)

where Et(·) denotes expectation conditional on st . Similarly, the bond price
is given by:

Q 1
t = Et [mt+1] . (8.26)

These conditions show that the intertemporal marginal rate of substitu-
tion (MRS) in consumption for the representative consumer is used to
price payoffs on all securities traded in this economy. Using our earlier
definition, we denote this MRS as the stochastic discount factor.

Recall that the bond is a security that guarantees a sure unit of output
in each period. Hence, we can define the (gross) risk-free return as

r1
t = 1

Q 1
t

= 1

Et(mt+1)
. (8.27)
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Thus, the risk-free return is equal to the inverse of expected value of the
stochastic discount factor or the intertemporal marginal rate of substitu-
tion in consumption (MRS). If the MRS is high (so that consumption is
low in period t + 1 relative to period t), then consumers will still choose
to save in equilibrium by holding the risk-free asset even if the real interest
rate is low. By contrast, if the MRS is low (so that consumption is high in
period t + 1 relative to period t), then the real interest rate must be high to
induce consumers to undertake any saving in period t.

Using a covariance decomposition, we can rewrite Equation (8.25) as:

Et(rt+1) = r1
t [1 − Covt (mt+1, rt+1)] . (8.28)

We can use the expressions in Equation (8.28) to evaluate the conditional
equity premium defined as:

Et(rt+1) − r1
t = −r1

t Covt (mt+1, rt+1) . (8.29)

This equation relates the excess expected return on a risky asset relative to
the risk-free return to the covariance between the stochastic discount factor
and the gross return on the risky asset. The right side of this expression is
the risk premium.

How is the risk premium determined in the model with the stochastic
discount factor? Notice that for the risk premium to be positive, we need
Covt (mt+1, rt+1) < 0. Thus, the risk premium for an asset is positive if
the random return on the asset rt+1 covaries negatively with the stochastic
discount factor mt+1, which is defined as the intertemporal marginal rate
of substitution (MRS) in consumption. Hence, the notion of risk implied
by Equation (8.29) states that it is the covariance of returns with future
consumption that is important. This is the concept of riskiness suggested
by Breeden [74]. Since the relevant pricing function that we have derived
depends on the MRS in consumption, this asset-pricing model is referred
to as the consumption-based capital asset pricing (C-CAPM) model.

In this model, we say that an asset is risky if for states of nature in which
returns are low, the intertemporal marginal rate of substitution in con-
sumption mt+1 is high. Since mt+1 will be high if future consumption is
low, a risky asset is one which yields low returns in states for which con-
sumers also have low consumption. To ensure that consumers are willing to
hold such a risky asset, it must have an expected return that is higher than
that of the risk-free asset, which has the same return in all states of nature.
According to the C-CAPM, an ideal risky asset is one which pays a high
return when consumption (or income) is low and future marginal utility is
high. This asset would then provide insurance against bad income shocks.
Such an asset would have a return whose covariance with the intertemporal
MRS is low or even positive. Thus, the consumer would even be willing
to incur a cost to hold such an asset in order to take advantage of its insur-
ance properties. Notice also that the volatility of the asset (Var(rt+1)) is not
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the quantity that gets “priced” in the asset-pricing formula. Rather it is its
covariance with the intertemporal MRS. An asset that has a large idiosyn-
cratic component that is uncorrelated with the intertemporal MRS would
have only its “systematic” component priced in equilibrium.

A joint log-normality assumption
In certain situations, we can obtain a more convenient representation of
asset-pricing relations under a joint log-normality assumption. We illus-
trate the basic approach, and employ versions of it in different applications
to follow.

A random variable X is said to be log-normally distributed if ln (X )
follows a normal distribution with mean μ and variance σ 2. If ln (X ) is
distributed as N (μ, σ 2) then the expected value and variance of X are given
by

E(X ) = exp (μ + σ 2/2) ,

Var(X ) = exp (2μ + 2σ 2) − exp (2μ + σ 2).

The basic asset-pricing equation is given by

Et[Mt+1Rt+1] = 1, (8.30)

where Mt+1 is the intertemporal MRS. Under the joint log-normality
assumption, Mt+1 ≡ ln (Mt+1) and rt+1 = ln Rt+1 are jointly normally dis-
tributed. [Note that ln (1+rt+1) ≈ rt+1 for small rt+1.] Let Xt+1 = Mt+1Rt+1.
Then ln (Xt+1) = mt+1 + rt+1. Thus

Et[ln (Xt+1)] = Et(mt+1) + Et(rt+1)

and

Vart [ln (Xt+1)] = Vart (mt+1) + Vart (rt+1) + 2Covt (mt+1, rt+1).

Therefore, the asset-pricing equation can be written as

Et(Xt+1) = exp
[
Et(mt+1) + Et(rt+1) + 1

2
Vart (mt+1)

+ 1

2
Vart(rt+1) + Covt (mt+1, rt+1)

]
= 1.

Take the natural logarithm of both sides to obtain:

Et(mt+1) + Et(rt+1) + 1

2
Vart (mt+1)

+ 1

2
Vart(rt+1) + Covt(mt+1, rt+1) = 0. (8.31)

This is the equation that we obtain under the joint log-normality assump-
tion for intertemporal MRS and asset returns. The conditional variance of



174 Asset Pricing for Dynamic Economies

the intertemporal MRS and returns appears because of the Jensen effect.
[The Jensen effect is due to the fact that E[f (x)] �= f [E(x)] unless f (x) is
linear.]

This equation is valid for all assets. Thus, let rt+1 = rf
t . Then Equa-

tion (8.31) becomes:

Et(mt+1) + rf
t + 1

2
Vart (mt+1) = 0.

Solving for rf
t yields rf

t = − Et(mt+1) − 1
2 Vart(mt+1). Substitute this back

into Equation (8.31) to obtain:

Et(rt+1) − rf
t + 1

2
Vart(rt+1) = −Covt (mt+1, rt+1). (8.32)

This expression says that the expected excess return plus the variance of
returns (due to the Jensen effect) equals the risk premium.

The intertemporal MRS or the stochastic discount factor (SDF) is
given by

Mt+1 = βU ′(ct+1)

U ′(ct)
. (8.33)

We cannot evaluate the SDF unless we make specific assumptions about
the utility functions. However, we can use a first-order Taylor approxima-
tion of U ′(ct+1) about ct to obtain a linear expression for Mt+1. It is worth
noting that this is a useful method for obtaining log-linear pricing equa-
tions. We will illustrate this approach in the next chapter when we consider
preferences that are non-separable over time or states.

Using the first-order Taylor series approximation, we obtain:

U ′(ct+1) ≈ U ′(ct) + U ′′(ct)(ct+1 − ct). (8.34)

This yields:

Mt+1 ≈ β
[U ′(ct) + U ′′(ct)(ct+1 − ct)]

U ′(ct)

= β

[
1 + U ′′(ct)ct

U ′(ct)

�ct+1

ct

]
≈ β[1 − CRRAt� ln (ct+1)]. (8.35)

Using the fact that β = 1/(1 + ρ) and taking the logarithm of both sides of
the above expression yields

ln (Mt+1) = − ln (1 + ρ) + ln (1 − CRRAt� ln (ct+1))

≈ − [
ρ + CRRAt� ln (ct+1)

]
. (8.36)
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Thus, the intertemporal CAPM implies that the stochastic discount factor
depends on consumption growth rate � ln (ct+1). Using the expression for
the risk premium in Equation (8.32) implied by the log-normal model, the
excess return on the risky asset relative to the risk-free asset is given by

Et(rt+1−rf
t )+ 1

2
Vart (rt+1) = CRRAtCovt

[
� ln (ct+1), rt+1

]
. (8.37)

This relation implies that the greater the correlation between consumption
growth and the risky return, the higher the risk premium, e.g. low returns
are associated with lower future consumption growth.

An alternative way of giving content to the asset pricing relation summa-
rized by (8.31) is to assume that the logarithm of the intertemporal MRS is
a linear function of some known state variables plus a random error term.
The Vasicek [437] model is an example of this approach which assumes a
normally distributed, homoscedastic error term to the intertemporal MRS.
The Cox, Ingersoll, and Ross [128] model modifies the Vasicek model by
assuming that the variance of the error term is conditionally heteroscedas-
tic. These models are widely used for empirically characterizing the term
structure of interest rates, a topic that we discuss below.

8.1.4. Volatility bounds for intertemporal MRSs

Suppose that we would like to further characterize the behavior of the
risk premium. Notice that the risk premium depends on the conditional
covariance of the intertemporal MRS and assets returns. The intertempo-
ral MRS is, in general, an unknown function unless we are willing to make
further assumptions about the form of preferences. Likewise, the condi-
tional covariance depends on the joint distribution for the intertemporal
MRS and assets returns.

In the earlier literature, asset pricing was typically phrased in terms of
restrictions for investors’ portfolios. However, the modern theory of asset
pricing is based on the behavior of the intertemporal marginal rate of sub-
stitution (MRS) for consumption. Recently Hansen and Jagannathan [232]
have shown how the restrictions of alternative asset-pricing models may
be examined by constructing a mean-variance frontier for intertemporal
MRSs. This mean-variance frontier is related to the mean-variance fron-
tier for asset returns derived by Chamberlain and Rothschild [100]. The
following derivation assumes that there are no short sales constraints, trans-
actions costs, and other frictions. Volatility bounds with such frictions are
studied by Luttmer [327] and He and Modest [246].

In our previous analysis, we showed that the expected return on a risky
asset in excess of the risk-free return is given by

Et(rt+1 − rf
t ) = −rf

t Covt (mt+1, rt+1).
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Figure 8.1. Mean-variance frontier for MRSs

However, using the definition of the correlation coefficient between mt+1

and rt+1, ρt(mt+1, rt+1), we can express

Covt (mt+1, rt+1)
2 = ρ2

t (mt+1, rt+1)Vart (mt+1)Vart (rt+1).

Hence,

Et(rt+1) = rf
t − ρt(mt+1, rt+1)

SDt(mt+1)

E(mt+1)
SDt(rt+1), (8.38)

where SDt(Xt) denotes the conditional standard deviation of Xt . Since
−1 ≤ ρt(mt+1, rt+1) ≤ 1,

−SDt(mt+1)

Et(mt+1)
≤ Et(rt+1 − rf

t )

SDt(rt+1)
≤ SDt(mt+1)

Et(mt+1)
, (8.39)

Figure 8.1 graphs the relation in Equation (8.38) in E(r), SD(r) space.
This figure shows that the means and standard deviations of all asset

returns must lie in the wedge-shaped area. The boundary of this area is
known as the mean-variance frontier. The slope of the frontier is given by
the ratio SDt(mt+1)/E(mt+1). All asset returns on the frontier satisfy the
relation |ρt(mt+1, rt+1)| = 1. Hence, they are perfectly correlated with the
intertemporal MRS. Assets that lie on the upper portion of the frontier are
risky assets in that their covariance with the intertemporal MRS is negative.
Thus, their expected return exceeds the risk-free rate. Assets that lie on
the lower portion of the frontier have returns that are positively correlated
with the intertemporal MRS. Thus, they provide insurance against low
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consumption states and have expected returns that are less than the risk-
free rate.2 We can also consider assets that lie in the interior of the wedge-
shaped region. Notice that an asset that has the same mean for a greater
standard deviation contains idiosyncratic risk. We argued earlier that it is
only the part of risk that is correlated with the intertemporal MRS, namely,
the systematic part of risk, that gets priced in equilibrium. Hence, the
idiosyncratic risk is just the horizontal distance between the frontier return
and the actual return. The frontier returns have the property that they span
the space of all mean-variance efficient returns. Also, all frontier returns are
perfectly correlated with each other since they are perfectly correlated with
the discount factor. Hence, any frontier return can be generated at the
linear combination of the frontier return and the risk-free asset (which also
lies on the mean-variance frontier). Suppose rm lies on the mean-variance
frontier. Then all frontier returns must satisfy:

rφ,m = rf + a(rm − rf )

for some a. Since the discount factor m is perfectly correlated with each
point on the mean-variance frontier, the discount factor itself may be gen-
erated from any frontier return and the risk-free rate. Since the stochastic
discount factor is used to price any asset, mean-variance efficient returns
contain all information that is relevant for pricing any asset.

Using the relation in Equation (8.39), it is also true that

SDt(mt+1) ≥
[

Et(rt+1 − rf
t )

SDt(rt+1)

]
1

rf
t

(8.40)

where the quantity

Et(rt+1 − rf
t )

SDt(rt+1)

is known as the Sharpe ratio for asset returns. To understand this quantity,
consider an investment strategy where you borrow money at the risk-free
rate and invest in the risky security. The mean return on your invest-
ment increases but so does the standard deviation. Hence, the Sharpe ratio
remains constant. Returning to Equation (8.40), we find that the standard
deviation of the intertemporal MRS must be at least as great as a quan-
tity that is proportional to the Sharpe ratio for risky assets. Recall that the
stochastic discount factor mt+1 is not observable unless we make additional
assumptions on consumers’ utility functions. The bounds that we obtained
in (8.39) and (8.40) can be used to characterize the stochastic behavior of
mt+1 without specifying an explicit utility function.

2 For a similar discussion with N risky assets and a risk-free asset, see Exercise 2 in Chapter 4.
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8.1.5. The “equity premium puzzle”

The behavior of the observed equity premium has been studied by Mehra
and Prescott [341], among others. These authors assume CRRA prefer-
ences and growing endowment to determine if a representative consumer
model can generate an average equity premium that matches the aver-
age equity premium observed in the data. The mean-variance frontier
for intertemporal MRSs allows a clear statement of the “equity premium
puzzle.”

Recall that the relation in Equation (8.40) places a lower bound on
the standard deviation of the stochastic discount factor. Consider the
model with time-separable preferences and power utility function. Sup-
pose also that consumption growth is distributed as i.i.d. log-normal with
E[ln (ct+1/ct)] = g and Var[ln (ct+1/ct)] = σ 2. The intertemporal MRS is
given by:

mt+1 = β

(
ct+1

ct

)−γ

.

Using the formula for mt+1, we can express the Hansen-Jagannathan
bounds for the intertemporal MRS as:

Et(rt+1 − rf
t )

SDt(rt+1)
≤ SDt(mt+1)

Et(mt+1)

= [exp ( − 2γ g + 2γ 2σ 2) − exp ( − 2γ g + γ 2σ 2)]1/2

exp ( − γ g + γ 2σ 2/2)

= [exp (γ 2σ 2 − 1)]1/2 ≈ γ σ . (8.41)

Mehra and Prescott estimated the annual rate of return on the Stan-
dard and Poor’s composite stock index for the 1889–1978 period to have
mean 9.8% and standard deviation 16.54%. Likewise, they estimated the
mean annual return on a relatively risk-free security to be around 1%, and
the mean of the annual growth rate of per capita consumption for non-
durables and services for the years 1889–1978 to be 1.83% with a standard
deviation of 3.57% for the US economy. Substituting these values in the
above relation, we obtain a Sharpe ratio (the left side of the above relation)
of 0.3636. Substituting for the remaining values and solving for the value of
the risk aversion parameter γ that satisfies the inequality in Equation (8.41)
yields:

0. 3636 ≤ 0. 0357γ ⇔ 10. 186 ≤ γ .

Thus, we find that the coefficient of relative risk aversion must be at least 10
for the volatility bound implied by the time-separable model to hold. This
is the equity premium “puzzle,” that is, the return on equity relative to the
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return on the risk-free rate can be reconciled in a representative consumer
model with a time-separable utility specification only for high values of the
risk aversion parameter γ .

For the CRRA utility function, the coefficient of intertemporal substi-
tution is the inverse of the coefficient of relative risk aversion.3 Thus, a
high value of γ (which is needed to reconcile the equity premium puz-
zle) implies that the risk-free rate will be very high unless the value of β is
set to be greater than unity. Using the expression for the risk-free rate, we
have that

rf
t = 1

β exp ( − γ g + γ 2σ 2/2)
.

For example, with a γ = 10, we need a β = 1. 115 to get a real interest rate

of 1% (or rf
t = 1. 01). To understand this result, notice that a high value

of γ implies that individuals are not willing to intertemporally substi-
tute consumption. Thus, it is difficult to reconcile positive consumption
growth with a low value of the real interest rate – unless consumers are
also very patient. This is known as the “risk-free rate puzzle.” In both
cases, the problem arises from the fact that the variablity of non-durable
consumption expenditures plus services is too low relative to stock return
variability. Hence, a high relative risk-aversion parameter is necessary to
make the smoothness of consumption expenditures consistent with the his-
torical equity premium. Cochrane [109] and Campbell and Cochrane [93]
show that for a shorter post-war sample of 50 years for the US, real stock
returns have been around 9% with a standard deviation of 16% while the
return on Treasury bills has been around 1%. This leads to a Sharpe ratio
of 0.50. Likewise, the mean and standard deviation of aggregate consump-
tion expenditures on non-durables and services have both been around 1%.
Under these assumptions, the value of the risk aversion parameter that sat-
isfies the volatility bound is around 50. For this value of γ , the value of the
discount factor that satisfies the expression for the real risk-free rate is also
much greater than unity.

The “equity premium puzzle” has led to a wide variety of studies seeking
to explain it. One possible resolution is to drop the assumption of time-
additive preferences in favor of preferences displaying habit persistence,
consumption durability, or to assume a version of non-expected utility.
We describe such preferences in the next chapter. An alternative direction
is to introduce another source of uncertainty such as inflation risk. We
study the role of inflation risk in Chapter 13. Another possible resolution
is to assume that agents are heterogeneous and subject to borrowing con-
straints, limiting their ability to smooth consumption. There are several

3 See Chapter 5.
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other explanations that have been offered to explain this puzzle. We dis-
cuss potential resolutions of the “equity premium puzzle” in subsequent
chapters.

8.2. P R I C I N G A L T E R N A T I V E A S S E T S

In actual capital markets, we observe many other types of assets being
traded, including derivative instruments such as options, futures contracts,
and forward contracts. We begin by describing the pricing of risk-free debt
instruments and by defining some of the returns and premiums that are
associated.

8.2.1. Discount bonds and the yield curve

The simplest type of debt instrument is a zero-coupon discount bond,
which we defined above. This type of bond pays a fixed amount, which we
assume is one unit of the consumption good, at some maturity date, and
there are no coupons paid before the maturity date. Because there are no
payments made to the bondholder before the maturity date, the bond sells
for a real price that is below the real amount paid at the maturity date, or
the bond sells at a discount. We can also price a coupon bond, which pays a
coupon of c at regular intervals and the principal at maturity. Likewise, we
could introduce a perpetuity or consol bond, which is a coupon bond with
an infinite maturity date. There are many other types of debt instruments
traded in actual capital markets.4

We now determine the prices for a variety of maturity lengths of zero-
coupon discount bonds that are risk free. The household’s initial wealth
consists of the endowment and its portfolio of discount bonds bj,t , where
bj,t denotes the number of bonds held at the beginning of period t that
mature in j periods and pay one unit of the endowment at time t + j and
Qj

t is the price of a bond at time t which will mature in j periods. The
agent’s real wealth constraint at the beginning of period t is:

ct +
N∑

j=1

bj,t+1Q
j
t ≤ yt +

N−1∑
j=0

bj+1,tQ
j
t ,

where N is the longest maturity issue and Q0
t = 1. We assume that the

discount bonds are in zero net supply so that, in equilibrium, bj,t+1 = 0

4 These are typically differentiated in terms of default risk, convertibility provisions (providing the
option to convert to another financial instrument), call provisions (allowing debt to be paid off
before the maturity date), and other features.



Consumption and asset pricing 181

for all j and t. We also have that ct = yt so that the equilibrium first-order
conditions with respect to bond holdings bj,t+1 are:

U ′(yt)Q
j
t = βEt

[
U ′(yt+1)Q

j−1
t+1

]
, j = 1, . . . , N . (8.42)

Re-write this condition as

Qj
t = βEt

[
U ′(yt+1)

U ′(yt)
Qj−1

t+1

]
.

Define

mt,τ = βτ

[
U ′(yt+τ )

U ′(yt)

]
as the intertemporal MRS between periods t and τ . Substituting recur-
sively in this condition, we can express the equilibrium price of an indexed
discount bond maturing in τ periods by:

Qτ
t = Et[mt,τ ], τ = 1, . . . , N (8.43)

where we have used the fact that Q0
t = 1. Define the real return on this

bond as rτt ≡ 1/Qτ
t .

The returns to the bonds at various maturity dates are not directly com-
parable because the number of periods over which the bond is held is not
the same. One way to make the returns comparable is to compute the yield
to maturity, iτt , and a particularly convenient way to do this is to define the
continuously compounded yield:

iτt = − 1

τ
log Qτ

t . (8.44)

Given the price Qτ
t , the yield to maturity iτt at time t on a discount bond

maturing τ periods later is the steady rate at which the price should increase
if the bond is to be worth one unit of output at t + τ . Thus, iτt satis-
fies the relation Qτ

t exp ( − τ iτt ) = 1. 00, which yields Equation (8.44). An
alternative method is to define the yield as

iτt = (Qτ
t )−

1
τ . (8.45)

By defining the yield for bonds of various maturities, we can construct a
yield curve or term structure by varying τ . The slope of the yield curve (or
the yield spread) is iτt − iτ−1

t .
We can also derive the prices of forward contracts on pure-discount

bonds of various maturities. A forward contract on a τ -period pure-
discount bond to be delivered at date t + n where n ≤ τ is an agreement
to buy or sell the bond at that date, which is called the maturity date.
We denote the price at date t of such a forward contract by F τ

t,n, which is
called the delivery price. At the time the contract matures, an agent hold-
ing the contract must buy or sell the bond at the delivery price. Entering
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into a forward contract at date t which is to be delivered at some time
in the future has no effect on the agent’s time t budget constraint. If the
agent must deliver the bond (so he has a short position), then he must
purchase the bond at the current spot price. He profits if the spot price
is less than the delivery price. Similarly, the agent in the long position is
obligated to purchase the bond at the delivery price. He profits if the spot
price is greater than the delivery price. The net profit of the short and long
positions is zero.

The spot price on the bond at time t + n is Qτ−n
t+n . The payoff on a long

position in a forward contract on one unit of the discount bond at time
t + n is

Qτ−n
t+n − F τ

t,n.

In equilibrium, the expected discounted present value of that payoff is
equal to zero, or

0 = Et
[
mt,n(Qτ−n

t+n − F τ
t,n)

]
. (8.46)

Notice that the equilibrium delivery price satisfies

F τ
t,n = Et(mt,n)−1Et(mt,nQτ−n

t+n ) = Qτ
t /Qn

t , (8.47)

where we have made use of Equations (8.42) and (8.43) to obtain the sec-
ond equality. Notice also that F τ

t,n and mt,n are independent because the
forward price F τ

t,n is determined at time t.
The forward price provides information about the expected spot price.

To see this, use Equation (8.47) and the conditional covariance decompo-
sition to express the forward rate as:

F τ
t,τ−1 = Et(mt,τ−1)

−1Et(mt,τ−1Q 1
t+τ−1)

= Et(mt,τ−1)
−1
[
Covt (mt,τ−1Q 1

t+τ−1) + Et(mt,τ−1)Et(Q 1
t+τ−1)

]
= rτ−1

t Covt
(
mt,τ−1, Q 1

t+τ−1

) + Et(Q 1
t+τ−1). (8.48)

Clearly, if the conditional covariance between the marginal utility at time
t + τ − 1 and the spot price at time t + τ − 1 is positive (negative), then
the forward price is greater than (less than) the expected spot price. The
forward premium is defined as the difference between the expected spot
price and the forward price, or

Et(Q 1
t+τ−1) − F τ

t,τ−1

so that the forward premium is the negative of the conditional covariance
times rτ−1

t in Equation (8.48).5

5 This is the premium in the forward price. The premium on the implied return is 1/F τ
t,τ−1 −

Et (r1
t+τ−1), where r1 is the spot return. Notice that if the conditional covariance in Equation (8.48)
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We now turn to the one-period expected holding return. This is the
expected return to holding a bond for one period and then selling it in
the secondary market. The (gross) return to holding a bond maturing in τ

periods for one period and selling is:

hτ
t+1 ≡ Qτ−1

t+1 /Qτ
t . (8.49)

From the first-order condition and using the conditional covariance
decomposition, the expected one-period holding return satisfies

Et(hτ
t+1) − r1

t = −r1
t Covt(mt,1, hτ

t+1)

where r1
t is the certain return on a one-period bond. If the conditional

covariance is non-zero, then there exists a term risk premium. Since the
real payoff to the one-period bond is certain, this bond provides a conve-
nient benchmark for measuring riskiness. A bond is risky relative to the
benchmark bond if its risk premium is positive. Since the risk premium
is proportional to the conditional covariance between the MRS and the
bond’s return, this measure of riskiness refers to the usefulness of the payoff
in smoothing consumption over time. If a payoff is high when next period’s
consumption is high (so that mt,1 is low), then the covariance is negative
and the risk premium is positive because the bond is a poor instrument for
smoothing consumption over time.

The (gross) return to holding a bond maturing in τ periods for n periods
and selling is:

hτ
t+n ≡ Qτ−n

t+n /Qτ
t for 0 < n < τ . (8.50)

This satisfies the relation:

1 = Et
(
mt,nhτ

t+n

)
, 0 < n < τ .

Using the conditional covariance decomposition, we have

Et(hτ
t+n) − rn

t = −rn
t Covt

(
mt,n, hτ

t+n

)
, (8.51)

where once again, if the conditional covariance on the right side is zero,
then expected holding returns on all assets are equalized. Otherwise, there
exists a term risk premium and this premium depends on the holding
period n as well as the time to maturity τ . We discuss the implications
of real and nominal equilibrium asset-pricing models in reconciling the
observations on the term structure of interest rates in Chapter 13.

is zero, then the forward premium on the return is negative because of Jensen’s inequality. Hence,
in the case where the covariance is negative, there may be some indeterminacy about the sign of the
premium.
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Expectations theory of the term structure
A long-standing hypothesis about the way interest rates of different maturi-
ties are determined is given by the expectations theory of the term structure
of interest rates. This theory says that the slope of the term structure or
yield curve depends on changing expectations for future interest rates.
Loosely speaking, downward-sloping term structures are taken to indicate
expectations of a decline in interest rates and upward-sloping ones of a
rise. Shiller [399] describes empirical evidence that has been obtained on
the term premium. Many of these tests assume that term risk premia are
constant.

To provide a simple derivation of the expectations hypothesis, consider
an investment strategy of rolling over a sequence of one-period bonds over
n periods. Proceeding analogously as above, the return on this strategy is

ht+n ≡ 1

Q 1
t

1

Q 1
t+1

. . .
1

Q 1
t+n−1

. (8.52)

This return satisfies the condition:

1 = Et
(
mt,nht+n

)
. (8.53)

Using a covariance decomposition,

rn
t = Et [ht+n] + rn

t Covt (mt,nht+n), (8.54)

where rn
t = 1/Et(mt,n). Suppose that the term risk premium is zero, that

is, rn
t Covt (mt,nht+n) = 0. Then the return on a n-period bond can be

written as:

rn
t = Et [ht+n]

= Et

[
1

Q 1
t

1

Q 1
t+1

. . .
1

Q 1
t+n−1

]

= r1
t Et(r1

t+1 . . . r1
t+n−1), (8.55)

where we have made use of the fact that (Q 1
t+i)

−1 = r1
t+i. To further simplify

this expression, note that ln (rh
t ) = ln (1 + r̃h

t ) ≈ r̃h
t where r̃h

t is the net real
interest rate.

We derive a linear pricing relationship by making an assumption that
can be used in a variety of contexts. This is the joint log-normality assump-
tion. Specifically, we assume that conditional on information at date
t, the one-period interest rates ri

t+1, i = 1, . . . , n are jointly log-normally
distributed. Define the constant conditional variances and covariances of
the net one-period interest rates as:
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σ 2
i ≡ Vart(r̃1

t+i)

σij ≡ Covt(r̃1
t+i, r̃1

t+j), i �= j.

Now evaluate the expectation in (8.55) as:

Et

[
n−1∏
i=1

r1
t+i

]
= exp

⎡
⎣ n−1∑

i=1

(Et r̃1
t+i + σ 2

i /2) +
n−1∑

i,j=1,i �=j

σij

⎤
⎦ .

Taking logarithms of both sides of (8.55) then yields

r̃n
t − r̃1

t =
n−1∑
i=1

Et(r̃1
t+i) + r̄, (8.56)

where r̄ = ∑n−1
i = 1 σ

2
i /2 + ∑n−1

i,j = 1,i �=j σij. This relation says that the spread
between the current long- and short-term rates should predict future
changes in the short-term rate. Let us illustrate this relation with a simple
example. Let r̃2

t denote the current yield on a two-year bond and similarly,
r̃1
t the current yield on a one-year bond. The expectations theory predicts

that the spread between the one-year and the two-year bonds should be
equal to the expectation of the yield on the one-year bond next period,
E0(r̃1

t+1) plus some constant. If the expectations theory holds, then the cur-
rent yield on the two-year bond should be determined by the average of
returns on the current and future short-term bonds.

Campbell and Shiller [97], Fama and Bliss [179], and others have used
different econometric methods in order to test the empirical validity of
the expectations theory. In most of these studies, the expectations the-
ory of the term structure is statistically rejected, but some of them find
evidence on the predictive power of the spread between long- and short-
term rates for future interest rate movements. Fama and Bliss [179] showed
that when the short-term yield is one year, as the maturity of the long-
term yield increases, the forecasting power of the term structure improves.
Shiller, Campbell, and Schoenholtz [400] used bonds with maturity less
than a year and found that the spread between 3- and 6-month Treasury bill
rates helps to forecast the change in the 3-month bill rate. Finally, Camp-
bell and Shiller [97] find that for different pairs of long- and short-term
yields, varying from one month to ten years, a relatively high spread is
followed by rising short-term interest rates over the life of the long-term
bond, in accordance with the expectations theory. On the other hand, they
show that the yield on the long-term bond tends to fall over the life of
the short-term bond, which is in contradiction to the predictions of the
expectations theory.
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8.2.2. Pricing derivative instruments

A derivative security has a value that depends on other underlying securities
such as forward contracts, stocks, and bonds. We examine just a few of the
derivative securities that are now traded in the market.6

We begin by describing options pricing. There are two types of options:
• The call option gives the holder the right to buy the asset by a certain

date for a certain price.
• The put option gives the holder the right to sell the underlying asset by

a certain date for a certain price.
The price of the option is known as the exercise price or strike price and the
date at which the option is exercised is known as the expiration date. There
are two categories of options: the American option and the European option.
The American option can be exercised any time up to the expiration date.
The European option can be exercised only on the expiration date. Most
of the options that are traded are American. Unlike futures or forward
contracts where the holder is obligated to buy or sell, the holder of the
option does not have to exercise the option; he may simply hold it until
it expires. Entering into a futures or forward contract does not affect the
current budget constraint of the agent while buying or selling an option
does affect the current budget constraint.

A stock option entitles the holder to buy (or sell) an equity at a cer-
tain date for a certain price. To determine the price of a one-period stock
option, we have to determine the price at time t that someone would pay
to buy an equity at a price q̄ at time t + 1. In equilibrium, the stock price
satisfies:

qe(st) = β

∫
S

U ′(y(st+1))

U ′(y(st))
[qe(st+1) + y(st+1)]F (st , dst+1).

What is the price that someone would pay for the option of buying the
equity next period for the price q̄ – the price of a one-period call option? If
the price next period is greater than the strike price qe(st+1) > q̄, then the
agent will exercise the option, while if qe(st+1) < q̄, the agent will not. The
equilibrium price of a call option is:

Pc
s,t = β

∫
q̄≤qe(st+1)

U ′(y(st+1))

U ′(y(st))
[qe(st+1) − q̄]F (st , dst+1)

+ β

∫
q̄≥qe(st+1)

U ′(y(st+1))

U ′(y(st))
· 0 · F (st , dst+1)

= Et
[
mt,1 · max (0, qe

t+1 − q̄)
]

. (8.57)

6 Useful books on derivative securities include Rubinstein and Cox [380], Hull [259], and Stoll and
Whaley [421]. Some of our discussion is based on Turnbull and Milne [434]. A useful book on
futures markets is by Duffie [160].
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The price of the put option is then equal to

Pp
s,t = Et

[
mt,1 · max (0, q̄ − qe

t+1)
]

. (8.58)

In Chapter 2, we described the binomial model of option pricing that
allows us to find the option price using a certainty equivalent approach to
asset pricing. In that approach, we were able to circumvent the problem of
evaluating the non-linear second moment that appears in Equations (8.57)
and (8.58).

We can also price interest rate options using the same approach. Consider
now the price of a European option on a pure discount bond that matures
in τ periods. Suppose that the expiration date is t + n where n ≤ τ and the
strike price is Q̄ . A European option can be exercised only at time t + n.
The price of a call option at time t when the expiration date is time t +n is:

Pc
d ,t (n, τ ) = Et

[
mt,n · max (0, Qτ−n

t+n − Q̄)
]

, (8.59)

where Qτ−n
t+n is the price at time t + n of a discount bond that matures in

τ − n periods.
Now consider an American call option on a pure discount bond that

matures in τ periods. This is much more complicated for the obvious rea-
son that the holder can exercise the option at any time up to and including
the expiration date. At time t + n − 1 when there is one period until the
option expires, the price of the American option and the European option
are the same, or

Sc
1,t+n−1 = Et+n−1

[
mt+n−1,1 · max (0, Qτ−n

t+n − Q̄)
]

.

Now consider the choices of the holder of an American call option at time
t + 1. These are as follows: (i) The agent can continue to hold the option,
which has the value Sc

n−1,t+1. (ii) He can exercise the option to buy a bond
that matures at time t + τ at the exercise price of Q̄ instead of paying the
current price Qτ−1

t+1 . The value of an n-period call option on a discount
bond maturing in τ periods is:

Sc
n,t = Et

[
mt,1 · max (Sc

n−1,t+1, Qτ−1
t+1 − Q̄)

]
. (8.60)

Comparing the expressions for European versus American options, we note
that for the latter the options price Sc

n,t satisfies an nth order non-linear
difference equation.

It is also possible to price options on derivative instruments such as a
forward or futures contract. Consider the price of an m-period European
call option on an n-period forward contract where the underlying asset on
which the contract is written is a τ -period discount bond. We have shown
that the price of the n-period forward contract written on a discount bond
maturing in τ periods at time t+m is F τ

t+m,n = Qτ
t+m/Qn

t+m. The European
call option on the forward contract gives the holder the right to buy the
n-period contract in m periods (m ≤ n) at the strike price F̄ . Because the
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only time at which the option can be exercised is period t + m, the price
of the call option is:

Sc
f ,t(m, n) = Et

[
mt,m · max (0, F τ

t+m,n − F̄ )
]

. (8.61)

Because the European option cannot be exercised before the date t + m, it
is straightforward to price.

8.2.3. The Black-Scholes options pricing formula

One of the best known results in the finance literature has to do with the
Black-Scholes options pricing formula. The original derivation relied on
absence of arbitrage arguments with continuous time diffusion processes
for the stock price and a constant interest rate. In this section, we show
how the discrete time consumption-based asset-pricing model can be used
to derive an exact solution for the options price under some additional
assumptions.

Recall that the price of a call option satisfies the relation:

Pc
s,t = Et

[
mt,1 · max (0, qe

t+1 − q̄)
]

, (8.62)

where qe
t is the price of the underlying stock, q̄ is the exercise or strike

price and mt,1 =βU ′(yt+1)/U ′(yt). To derive the Black-Scholes formula,
we make some additional assumptions.

Assumption 8.4 Preferences are of the CRRA variety:

U (c) = c1−γ − 1

1 − γ
, γ ≥ 0. (8.63)

Assumption 8.5 (ct , qe
t ) are jointly log-normally distributed.

Under the first assumption, the intertemporal MRS can be evaluated as:

mt,1 = β

(
ct+1

ct

)−γ

. (8.64)

Hence, the options price can be evaluated as

Pc
s,t = βEt

[(
ct+1

ct

)−γ

max (0, qe
t+1 − q̄)

]
. (8.65)

Under the second assumption, ln (qe
t+1) and ln (ct+1) are normally dis-

tributed with means μ̄q, μ̄c and covariance matrix

�̄ =
[

σ 2
q ρσqσ̄c

ρσqσ̄c σ̄ 2
c .

]
,
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where ρ is the correlation coefficient between ln (qe
t+1) and ln (ct+1). Hence,

conditional on information at t, qe
t+1/qe

t and β(ct+1/ct)−γ are jointly log-
normally distributed with means

[
μq

μc

]
=
[

μ̄q − ln (qe
t )

ln (β) − γ μ̄c + γ ln (ct)

]

and covariance matrix

� =
[

σ 2
q ρσqσc

ρσqσc σ 2
c .

]
=
[

σ 2
q −γρσqσ̄c

−γρσqσ̄c γ 2σ̄ 2
c .

]
.

Now we can write Equation (8.65) as

Pc
s,t = qe

∫ ∞

−∞

∫ ∞

ln (q̄/qe)

(
exp (z) − q̄/qe) exp (y)f (z, y)dzdy, (8.66)

where f (z, y) is the joint density function for z ≡ ln ((qe)′/qe) and
y ≡ ln (β(c′/c)−γ ). This last relation may be expressed as the difference
between two indefinite integrals as:

Pc
s,t = qe

∫ ∞

−∞

∫ ∞

ln (q̄/qe)
exp (z + y)f (z, y)dzdy

− q̄
∫ ∞

−∞

∫ ∞

ln (q̄/qe)
exp (y)f (z, y)dzdy. (8.67)

Rubinstein [378] shows the two integrals may be evaluated as:

∫ ∞

−∞

∫ ∞

ln (q̄/qe)
exp (y)f (z, y)dzdy

= exp

[
μc + σ 2

c

2

]
�

(− ln (q̄/qe) + μq

σq
+ ρσc

)
,

and∫ ∞

−∞

∫ ∞

ln (q̄/qe)
exp (z + y)f (z, y)dzdy

= exp

[
μq + μc +

(
σ 2

q + 2ρσqσc + σ 2
c

2

)]
�

(− ln (q̄/qe) + μq

σq
+ ρσc + σq

)
,



190 Asset Pricing for Dynamic Economies

where �( · ) is the distribution function of a standard normal variable and
φ( · ) is the standard normal density.

�(z) ≡ 1√
(2π )

∫ z

−∞
e−v2

dv,

φ(z) ≡ 1√
(2π )

e−z2
.

Under the distributional assumptions for consumption, we have that

E

[
β

(
c′

c

)−γ
]

= exp (μc + σ 2
c /2), (8.68)

and

E

[
β

(
c′

c

)−γ (qe)′

qe

]
= exp[μq + μc + (σ 2

q + 2ρσqσc + σ 2
c )/2].

(8.69)

But the left side of Equation (8.68) is equal to the inverse of the risk-free
rate according to C-CAPM. Likewise, the left-side of (8.69) is just equal to
1 by the optimality condition characterizing the return for a risky security:

exp[μc + σ 2
c /2] = (

rf )−1
, (8.70)

and

exp[μq + μc + (σ 2
q + 2ρσqσc + σ 2

c )/2] = 1. (8.71)

Using these results, we can express the price of the call option as

Pc
s,t = qe�(A + σq) − (

rf )−1
q̄�(A), (8.72)

where

A ≡ ln (qe/q̄) + (μq + ρσqσc)

σq
.

Likewise, taking the logarithm of both sides of Equations (8.70) and (8.71)
and equating, we obtain:

μq + ρσqσc = ln (rf ) − 1

2
σ 2

q .

Using this result, we obtain

A = ln (qe/q̄) + ln (rf )

σq
− 1

2
σq.
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If we substitute this result back into (8.72), we obtain the Black-Scholes
options pricing formula, which has found wide use in options pricing.

8.3. A G R O W I N G E C O N O M Y

In many applications, we need to allow for growth in the underlying
variables. In this section, we consider a version of the basic asset-pricing
model with unbounded utility and growing endowment. Since expected
discounted utility becomes unbounded in this case, the approach for prov-
ing the existence and uniqueness of the representative consumer’s value
function and the equilibrium asset price functions must be modified.

There is a vector of exogenous shocks to the economy that satisfies
Assumption 8.1. The law of motion for the endowment is

yt = λ(st)yt−1. (8.73)

Notice that in general, the growth rate of the endowment depends on the
shock.

Assumption 8.6 Define L ≡ [λ, λ̄] where λ > 0 and λ̄ < ∞. The set S is
compact and the function λ : S → L is a continuous function that is bounded
away from zero.

The following assumption characterizes the utility function.

Assumption 8.7 The utility function is given by

U (c) = (c1−γ − 1)/(1 − γ ) for γ ≥ 0.

If γ = 1, U (c) = ln (c). When γ ≤ 1, the utility function is unbounded
above on �++ and unbounded below when γ ≥ 1. Notice that there is an
unbounded return function and unbounded endowment process. We have
an additional restriction on endowment growth.

Assumption 8.8 For all s ∈ S, β
∫

S λ(s′)1−γ F (s, ds′) < 1, γ �= 1.

The restriction is on the conditional expectation of λ(s′) so that it holds
for each s ∈ S. In later chapters, we describe how this assumption can be
weakened so that discounted utility is less than one on average and not for
every realization of the shock. Because endowment is growing and prices
are measured in units of the endowment good, prices are also growing.
In general, the equity price qe is a function of the endowment level y ∈
�++ and the current shock s ∈ S. We will restrict our attention to price
functions such that the price-dividend ratio and risk-free bond price defined
respectively as

qe(y, s)/y and Q 1(s)
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are functions of s only. Further, we assume that they are elements of the
space of continuous and bounded real-valued functions defined on S,

qe(y, s)/y ∈ Cq(S) and Q 1(s) ∈ Cq(S),

and that qe is continuous with respect to y.
The representative consumer’s problem is identical to that described in

Section 8.1 aside from the fact that the equity price depends on both the
level of the endowment y and the current shock s, qe(y, s). Feasible con-
sumption levels are those that satisfy 0 ≤ c ≤ y. The discounted expected
utility from consuming the endowment process by setting ct = yt for all t
is given by:

W (y0) ≡ 1

1 − γ
E0

[ ∞∑
t=0

β t y1−γ
t

]

= 1

1 − γ
y1−γ

0 E0

[
1 +

∞∑
t=1

β t

(
t∏

i=1

λi

)1−γ]
, (8.74)

where the constant term −1/[(1 − γ )(1 − β)] has been omitted. Using an
iterated expectation argument, notice that:

E0

{
β t

(
t∏

i=1

λi

)1−γ}
= E0

{
βλ1−γ

1 · · · Et−1
{
βλ1−γ

t

}} ≤ αt ,

where

α = sup
s∈S

{
β

∫
S
λ(s′)1−γ F (s, ds′)

}
.

Since α < 1 by Assumption 8.8, this result shows that the term in square
brackets in Equation (8.74) is finite. Consequently, W (y0)/y1−γ

0 is finite
even though total expected discounted utility is not.

For this application, the value function depends on the level of the
endowment. More precisely, given the price functions qe(y, s) and Q 1(s),
the consumer’s value function satisfies:

V (z, b, s, y) = max
c,z′,b′

{
U (c) + β

∫
S

V (z′, b′, s′, y′)F (s, ds′)
}

subject to

c + qe(y, s)z′ + Q 1(s)b′ ≤ [y + qe(y, s)]z + b, (8.75)

0 ≤ c ≤ y, z′ ∈ Z , b′ ∈ B. (8.76)

Since the endowment is growing, we cannot choose the value function
V to be an element of the space of bounded, continuous functions
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on Z × B × S. Instead the result in Equation (8.74) suggests that we
should restrict our attention to value functions V that grow no faster
than y1−γ .

To describe the space of such functions, let Z = Z × B × S × �++ and
define B as the space of functions g : Z → � that are jointly continuous
in the arguments (z, b, s, y). Notice that Z , B, S are compact and y ∈ �++.
Define the norm for elements of B by:

‖g‖ϕ = sup
z,b,s,y∈Z

∣∣∣∣g(z, b, s, y)

ϕ(y)

∣∣∣∣ < ∞,

where ϕ ∈ B; in our case, we choose ϕ(y) = y1−γ . This function is still an
element of B even though it is not an explicit function of (z, b, s). We say
that a function g ∈ B is ϕ-bounded if the ϕ-norm ‖g‖ϕ is finite. We can
show that the space B is a complete, normed, linear space.

To show the existence of a fixed point to the functional equation above,
we use a modification of the Contraction Mapping and Blackwell’s condi-
tions, known as the Weighted Contraction Mapping Theorem (see Boyd
[71]). Suppose T is an operator that maps the space B into itself, where
B is a complete, normed, linear space. According to this theorem, if (i) T
is monotone (f ≥ g implies that Tf ≥ Tg for f , g ∈ B); (ii) T discounts
(T (g + aϕ) ≤ Tg + δaϕ for some constant 0 < δ < 1 and a > 0); and (iii)
T (0) ∈ B, then T has a unique fixed point in B.

To apply this result for our problem, for V ∈ B define the operator
T by:

(TV )(z, b, s, y) = max
c,z′,b′

{
U (c) + β

∫
S

V (z′, b′, s′, y′)F (s, ds′)
}
(8.77)

subject to Equations (8.75) and (8.76). We have the following proposition.

Proposition 8.3 Under Assumptions 8.1, 8.6, 8.7, and 8.8, there exists a
unique solution V � ∈ B to Equation (8.77).

P R O O F

First, we need to show that the operator T maps the space of bounded,
continuous functions with the ϕ-norm into itself. This requires that for
any V ∈ B, TV is bounded (so that ‖(TV )‖ϕ < ∞) and that it is jointly
continuous in its arguments.

From the budget constraint, notice that

c
y

≤ b
y

+ z
(

qe(s, y)

y
+ 1

)
− z′ q

e(s, y)

y
− Q(s)b′

y
.
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We have restricted b′ ∈ B, z′ ∈ Z and feasible c such that 0 ≤ c ≤ y.
For any c such that 0 ≤ c ≤ y, current utility (which is continuous in c)
is also ϕ-bounded and continuous. If V ∈ B, then βEs[V (z′, b′, s′, y′)] is
ϕ-bounded because

ϕ(y)

ϕ(y)
β

∫
S
ϕ(y′)

V (z′, b′, s′, y′)
ϕ(y′)

F (s, ds′)

= ϕ(y)β
∫

S
λ(s′)1−γ V (z′, b′, s′, y′)

ϕ(y′)
F (s, ds′)

≤ ϕ(y)B̄β
∫

S
λ(s′)1−γ F (s, ds′) ≤ ϕ(y)B̄

since V is ϕ-bounded and β
∫

S λ(s′)1−γ F (s, ds′) < 1. Furthermore, the
function βEs[V (z′, b′, s′, y′)] is continuous since V is continuous and the
transition function has the Feller property. Hence, TV involves maximiz-
ing a continuous function over a compact set so that it is well defined;
that is, a maximum exists and it is bounded, and by the Theorem of the
Maximum, it is continuous. Thus, T : B → B.

Next, notice that T is monotone. Given any two functions u ≥ w, it
is straightforward to verify that Tu ≥ Tw. Furthermore, for any constant
a > 0,

T (V + aϕ)(z, b, s, y) ≤ max
c,z′,b′

{
y1−γ

[
c1−γ − 1

y1−γ (1 − γ )

+ β

∫
S
λ(s′)1−γ V (z′, b′, s′) + aϕ(y′)

ϕ(y′)
F (s, ds′)

]}
≤ (TV )(z, b, s, y) + δaϕ(y),

where δ =β
∫

S λ(s′)1−γ F (s, ds′) < 1 by Assumption 8.8 so that T dis-
counts. Finally, notice that T (0) ∈ B since U is ϕ-bounded and
continuous for 0 ≤ c ≤ y. Hence, T satisfies the conditions for a weighted
contraction mapping and has a unique fixed point V � ∈ B.

In equilibrium, c = y, z′ = 1, and b′ = 0. The equilibrium first-order
conditions are given by:

qe(s, y)U ′(y) = β

∫
S

U ′(y′)[qe(s′, y′) + y(s′)]F (s, ds′), (8.78)

Q 1(s)U ′(y) = β

∫
S

U ′(y′)F (s, ds′). (8.79)

We can use the fact that U ′(y) = y−γ to derive a functional equation
for the equilibrium price-dividend ratio, defined as ψ(s) ≡ qe(s, y)/y.
Equation (8.78) can be rewritten as:
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ψ(s) = β

∫
S
λ(s′)1−γ

[
1 + ψ(s′)

]
F (s, ds′). (8.80)

Notice that ψ : S → �+. When endowment is growing, the equity is a
claim to a growing dividend and it is not a stationary variable. However,
the price-dividend ratio ψ(s) is a function only of endowment growth λ(s)
and it is stationary. Under Assumptions 8.1, 8.6, 8.7, and 8.8, it is straight-
forward to demonstrate that for any ψ ∈ Cq(S) an operator Tqψ defined
from the right side of Equation (8.80) maps the space of bounded, contin-
uous, real-valued functions into itself and satisfies Blackwell’s conditions
for a contraction. By the Contraction Mapping Theorem, we can show
that there exists a unique fixed point to Equation (8.80) denoted ψ∗. It
also follows from the equilibrium first-order conditions that the risk-free
bond price is:

Q 1(s) = βEs[λ(s′)−γ ]. (8.81)

8.3.1. Cointegration in asset-pricing relations

An implication of the model with a growing endowment is that the stock
price and dividends form a cointegrated process, that is, both the stock price
and the dividend process are stationary in first differences but there exists at
least one linear combination of them, which is stationary. In the literature,
cointegration in asset-pricing relations has been studied in the context of
present value models. Such models have been used to formalize the expec-
tations theory for interest rates, the present value model of stock prices,
and permanent income theory of consumption. The present value model
is used, amongst others, by Shiller [398, 392], LeRoy and Porter [305], and
West [448] to study the relation between stock prices and dividends and
by Singleton [404] and Shiller, Campbell, and Schoenholtz [400] to model
the behavior of long- and short-term bonds.

The general form of the model is given by:

ζt = θ (1 − β)
∞∑

i=0

β iEt(yt+i) + c (8.82)

where θ is the coefficient of proportionality, β is the discount factor and c is
a constant. In this model, ζt can denote the long-term bond yield, current
stock price or current consumption, depending on the model of interest.
Similarly, yt is the one-period (or short-term) bond yield, payments of divi-
dend or current income.7 To illustrate the cointegration approach, suppose
that {yt}∞t = 0 follows a non-stationary process. In this case, {ζt} also becomes
non-stationary. Thus, while the model is simple, the non-stationarity of yt

7 In the context of our framework, the present value model of stock prices can be obtained under the
assumption of risk neutrality. In this case, future dividends yt are discounted with constant discount
factor β = 1/(1 + r), yielding a representation similar to (8.82). See Exercise 1.
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and ζt requires some transformations. Campbell and Shiller [95] test the
present value model by defining the variable St = ζt − θyt , which denotes
the spread between the long- and short-term interest rates in the case of
term structure, and the difference between the stock price and a multi-
ple of dividends when the stock price is of interest.8 Hence, a test of the
present value model can be obtained by using the theory of cointegrated
vectors. Campbell and Shiller [95] find evidence for cointegration between
stock prices and dividends but it is weaker than the evidence found for the
cointegration between long- and short-time interest rates. They also find
evidence against the present-value model for both bonds and stocks. How-
ever, while the deviations from the present-value model for bonds appear
transitory, they find that the spread between stocks and dividends moves
too much and that the deviations from the present value model are quite
persistent.

Campbell and Shiller [96] provide an alternative representation for the
logarithm of the price-dividend ratio in terms of the logarithm of future
dividends and future returns. For simplicity, define variables in capital let-
ters to be measured as levels and small letters to be measured in logs. To
derive this model, notice that we can write log returns

ln (Rt+1) = ln (1 + rt+1) ≈ rt+1 = ln (Qe
t+1 + Dt+1) − ln (Qe

t ).

Then

rt+1 = ln (Qe
t+1) − ln (Qe

t+1) + ln (Qe
t+1 + Dt+1) − ln (Qe

t )

= qe
t+1 − qe

t + ln

[
Qe

t+1 + Dt+1

Qe
t+1

]

= qe
t+1 − qe

t + ln

[
1 + exp

(
ln

(
Dt+1

Qe
t+1

))]
. (8.83)

Next, approximate the last term in (8.83) using a first-order Tay-
lor series approximation around the average log dividend-price ratio,
d − qe = ln (D/Qe) as

8 To obtain the present value model of stock prices, we take θ =β/(1 − β). Notice that

St = ζt − β

1 − β
yt = β

∞∑
i=0

βiEt (yt+i) + c − β

1 − β
yt

= β

∞∑
i=0

βiEt (yt+i − yt ) + c,

which is stationary.
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ln
(
1 + exp (dt+1 − qe

t+1)
)

≈ κ + (1 − ρ)dt+1 − (1 − ρ)qe
t+1,

where

ρ ≡ 1

1 + exp (d − qe)

κ = − ln (ρ) − (1 − ρ) ln

(
1

ρ
− 1

)
.

Thus, we can write rt+1 as

rt+1 = κ + ρqe
t+1 + (1 − ρ)dt+1 − qe

t . (8.84)

When the dividend-price ratio is constant, then ρ = 1/(1 + D/Qe), which
equals the reciprocal of one plus the dividend-price ratio. For the US over
the period 1926–1994, the average dividend-price ratio has been around
4%, implying that ρ = 0. 96 for annual data or around 0.997 for monthly
data. Thus, the approximation in (8.84) assigns a weight that is close to
one to the log price, and a weight close to zero to log dividends because
dividends are much smaller than the stock price. The approximation in
(8.84) will be accurate provided the variation in the log dividend-price ratio
is not too great. In general, a comparison of actual returns and the returns
implied by (8.84) are very close, implying that the approximation is, in
general, very accurate.

Now solve the relation in (8.84) forward by imposing the terminal
condition

limj→∞ρ jqe
t+j = 0.

This yields

qe
t = κ

1 − ρ
+

∞∑
j=0

ρ j [(1 − ρ)dt+1+j − rt+1+j
]

. (8.85)

This is a dynamic accounting condition which has been obtained by solv-
ing forward an identity and imposing a terminal condition. It holds ex post
but it also holds ex ante as

qe
t = κ

1 − ρ
+ Et

⎡
⎣ ∞∑

j=0

ρ j[(1 − ρ)dt+1+j − rt+1+j]

⎤
⎦ . (8.86)

This condition says that if the stock price is high, then investors must
be expecting some combination of future high dividends and low future
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returns. Notice that we obtain the present value model with constant dis-
count factors by setting rt+1+j = r, where r is a constant. In the model
summarized by (8.86), stock prices are high when dividends are expected
to grow or when they are discounted at a low rate.

We can also express (8.86) in terms of the log dividend-price ratio as

dt − qe
t = − κ

1 − ρ
+ Et

⎡
⎣ ∞∑

j=0

ρ j[−�dt+1+j + rt+1+j]

⎤
⎦ . (8.87)

This relation says that the dividend-price ratio is high when dividends are
expected to grow only slowly or when future stock returns are expected to
be high. This relation is also convenient because the dividend-price ratio
is a stationary random variable if dividends follow a log-linear unit-root
process and returns are stationary. In this case, log stock prices and div-
idends are cointegrated, and the stationary linear combination of these
variables involves no unknown parameters. Another reason for consider-
ing the model with time-varying stock returns is that the dividend-price
ratio appears to be a good predictor of long-term real stock returns. (See,
for example, Campbell and Shiller [96].) The relation in (8.87) can be
used to rationalize the second set of findings under the assumption that
expectations of future dividend growth are not too variable. Since the
expectations on the right-hand side of (8.87) are over the infinite hori-
zon, the log dividend-price ratio will, in general, be a better proxy over
longer horizons. Finally, the relation in (8.87) can also be used to exam-
ine the implications of alternative theoretical models for the stochastic
discount factor by linking rt+1+j to observables implied by the theory.
Campbell [90] provides a discussion of this approach in the context of
accounting for alternative asset pricing anomalies, including the “equity
premium puzzle.”

8.4. C O N C L U S I O N S

In this chapter, we have set out the basic asset pricing for an endow-
ment economy, and outlined the pricing of a variety of assets based on
this model. We have also described solution procedures that can be used
to examine numerically or quantitatively the implications of the model.
The modern approach to asset pricing and dynamic macroeconomic anal-
ysis has made much use of this framework. In later chapters, we extend
the basic framework to allow for non-separable preferences, production,
investment, money, to name a few.
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8.5. E X E R C I S E S

1. Risk-Neutral Pricing
Suppose output evolves as a stationary Markov process with transi-

tion function F (s, s′) and consumers are risk neutral, U (c) = ac. Show
that the equilibrium price function satisfies:

qe(y) =
∞∑
s=1

β sE(yt+s|yt = y). (8.88)

Suppose yt evolves as yt+1 =μy+ρyt+εt+1 where |ρ| < 1 and E(εt) = 0,
E(ε2

t ) = σ 2, and E(εtεt−s) = 0 for s > 0. Show that the equity price is
given by

qt = βρyt/(1 − βρ).

Interpret these results.
2. Consider the version of the model with CRRA preferences and growing

endowment.
(a) Show that Equation (8.80) can be solved forward to yield an

expression for the price-dividend ratio as:

qe
t

yt
= Et

⎡
⎣ ∞∑

i=1

β i

⎛
⎝ i∏

j=1

λ
1−γ
t+j

⎞
⎠
⎤
⎦ .

(b) Suppose that dividend growth satisfies:

λt = exp (μ + εt), εt ∼ N (0, σ 2) {εt} i. i. d .

Show that the price-dividend ratio is given by:

qe
t

yt
= �

1 − �
,

where

� = β exp[(1 − γ )μ + (1 − γ )2(σ 2/2)].

(c) Show that the condition for the existence of a recursive compet-
itive equilibrium with growing endowment is equivalent to the
condition that � < 1.

3. The Effects of a Mean-Preserving Spread
We now study the effects of a mean-preserving spread in the dis-

tribution of dividend growth on the equilibrium price-dividend ratio.
Consider the version of the model with CRRA preferences and a
growing endowment. Suppose that dividend growth satisfies:

λt = exp (μ + εt), εt ∼ i. i. d . N (0, σ 2).
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(a) Show that if the variance of dividend growth Var(λt) changes, the
mean of dividend growth E(λt) also changes.

(b) Let μ be a function of a parameter ξ and similarly let σ 2 be a func-
tion also of ξ . Define a mean-preserving spread as a change in ξ

such that

−�μ(ξ )/�ξ = �(σ 2(ξ )/2)/�ξ .

Show that a mean-preserving spread satisfying the preceding con-
dition decreases the price-dividend ratio if γ > 1 and increases it
if γ < 1.

4. Pricing Coupon Bonds
Suppose that a coupon bond matures in τ periods at which time it

pays one unit of the consumption good. It also pays a coupon equal to
c in periods t + 1, . . . , t + τ − 1. Show that the price of such a bond
satisfies:

Qτ
c,t = c

τ−1∑
i=1

Qi
t + Qτ

t ,

where Qi
t is the price of a pure discount bond with maturity i for

i = 1, . . . , τ .
5. Pricing a Forward Contract on Equity

The owner of an n-period forward contract purchases one share of
the equity at the forward price where the forward price has been set
such that the initial value of the contract is equal to zero. Let S̄ denote
the delivery price. The ex-dividend price of the equity at time t + n
is qe(st+n). Derive an expression for the delivery price on the forward
contract.

6. Discount Bonds and the Yield Curve
Assume that the utility function is given by:

U (c) = c1−γ − 1

1 − γ
, γ ≥ 0.

Suppose the endowment follows two different time series models.
The first time series model is termed the trend-stationary model and
it assumes that the logarithm of endowment follows a first-order
autoregressive stationary process around a deterministic trend:

yt = exp (δ0 + δ1t + εt), εt = δ2εt−1 + et with |δ2| < 1.

The disturbance {et} is assumed to be an i.i.d. normally distributed
process with mean zero and variance σ 2

e .
The second model is termed the difference-stationary model and it

assumes that the difference of the logarithm of the endowment is a
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stationary autoregressive process. The endowment evolves according to
Equation (8.73) while endowment growth has the law of motion:

log λt = ρ0 + ρ1 log λt−1 + ut with |ρ1| < 1.

The innovation {ut} is assumed to be an i.i.d. normally distributed
process with mean zero and variance σ 2

u .9

Find expressions for τ -period pure discount bond for each time-
series model. Backus, Gregory, and Zin [41] show that the yield curve
has a negative slope when the endowment process has a unit root.
Demonstrate this result using your answer above. Suppose you use the
trend-stationary model for the dividend growth. Does the yield curve
have a positive or a negative slope?

7. Using the Black-Scholes option-pricing method, show that the price of
a put option is given by:

Pp
t = q̄(rf )−1�( − A) − qe�( − A − σq), (8.89)

where q̄ is the exercise price, rf is the (gross) risk-free rate, qe is the
current price of the stock, and σq is the standard deviation of the stock.

9 Campbell and Mankiw [94], Eichenbaum and Christiano [168], and Stock [412], among others,
discuss the adequacy of these time-series models for describing aggregate GNP or output. For
an application of these models in an asset-pricing context, see Campbell [88].



C H A P T E R 9

Non-separable preferences

In our framework the stochastic discount factor plays a key role in deter-
mining asset-pricing relations. Our analysis up to this point has examined
models with preferences that are separable over time and over states. A
number of recent studies have proposed alternative preference specifica-
tions that allow for non-separabilities. Non-expected utility preferences
imply that preferences are non-additive over alternative states of the
world. Models with habit persistence and consumption durability allow
for non-separabilities over time.

Constantinides [118] and Ferson and Constantinides [183] among others
consider models with habit persistence for explaining asset-pricing puzzles.
Habit persistence captures the notion that consumers’ well-being appears
to depend on recent changes in consumption rather than its level. Abel [3]
allows for the phenomenon of “keeping up with the Joneses” by model-
ing habit as being external to the household. Campbell and Cochrane [93]
argue that many recent asset puzzles can be explained by allowing for mod-
els with an external habit. In a related literature, models with consumption
durability have been used by Eichenbaum, Hansen, and Singleton [171],
Dunn and Singleton [164], and Eichenbaum and Hansen [169] to model
the behavior of consumption and leisure choices, to examine the impli-
cations of the term structure of interest rates, and to derive implications
for durable goods prices. In this chapter we examine the role of prefer-
ences that are non-separable across time and states for explaining a variety
of phenomena in the recent macroeconomics literature. These phenomena
include asset-pricing puzzles.

9.1. N O N - T I M E - A D D I T I V E P R E F E R E N C E S

When current utility depends on past consumption, we say that pref-
erences are non-additive over time. Habit persistence and consumption
durability are alternative ways of modeling the effect of past consump-
tion choices on current utility. Consumption durability states that new
consumption goods acquisitions at time t produce a flow of consumption

202
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services at time t + τ . Habit persistence implies that the consumer’s utility
at time t depends on an internal or external level of “habit.”

9.1.1. Habit persistence and consumption durability

Assume that the consumer has preferences over consumption services as:

E0

{ ∞∑
t=0

β tU
(
c�t − x�t

)}
, (9.1)

where c�t denotes consumption from services of durable goods and x�t
denotes the internal habit level of consumption services. To illustrate the
impact of consumption durability and habit persistence, we start with
some simple cases.
• Consumption durability but no habit persistence. In this case, x∗

t = 0. Also
suppose that services from consumption at time t depend positively on
current and one lagged value of acquisitions of consumption goods:

c�t = (1 − b)ct + bct−1, b > 0. (9.2)

We can calculate the intertemporal MRS under this specification as:

MRSt,t+1 = β
(1 − b)U ′(c�t+1) + βbU ′(c�t+2)

(1 − b)U ′(c�t ) + βbU ′(c�t+1)
.

Hence, we find that the marginal utility of consumption at any date is
a weighted average of current and future (discounted) marginal utility.
Furthermore, the intertemporal MRS depends on a finite number of
leads and lags of consumption choices.

• Habit persistence but no consumption durability. Now c∗
t = ct . Suppose

also that the habit can simply be represented by past consumption:

x�t = hct−1, h > 0. (9.3)

The habit parameter h shows the fraction of lagged consumption
services that establishes a subsistence level of consumption.

The intertemporal MRS can be written as:

MRSt,t+1 = β
U ′(ct+1 − x�t+1) − βhU ′(ct+2 − x�t+2)

U ′(ct − x�t ) − βhU ′(ct+1 − x�t+1)
.

When consumption is lower relative to habit, the curvature of the utility
function is higher compared with the case without a habit. Furthermore,
the intertemporal MRS may fall if next period’s consumption relative to
habit is lower compared to this period’s consumption relative to habit,
that is, if ct+i − x�t+i < ct+i−1 − x�t+i−1 for i ≥ 1. This yields the possibility
for greater variation in the intertemporal MRS compared to the case
with time-separable preferences.
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9.1.2. A more general specification

Ferson and Constantinides [183] analyze the impact of consumption and
habit persistence on asset prices by considering a more general specification
for c�t and x�t :

c�t =
∞∑

s=0

bsct−s (9.4)

x�t = h
∞∑
s=1

asc�t−s. (9.5)

In these expressions,
∑∞

s = 1 as = 1,
∑∞

s = 0 bs = 1 and as ≥ 0, bs ≥ 0 for all
s ≥ 0. The consumer’s preferences can be written as a function of ct only
by noting that

c�t − x�t =
∞∑

s=0

bsct−s − h
∞∑
τ=1

∞∑
s=0

aτbsct−s−τ

= b0

∞∑
s=0

δsct−s, (9.6)

where

δ0 = 1 (9.7)

δs =
(

bs − h
s∑

i=1

aibs−i

)/
b0. (9.8)

Suppose bs = (1−b)bs for 0 ≤ b< 1 and as = (1−a)as−1 for 0 ≤ a< 1. Then
we can write:

δs =
(

1 − (1 − a)h
b − a

)
bs + (1 − a)h

b − a
as, s ≥ 1. (9.9)

If there is habit persistence but no consumption durability (b = 0), then

δs = −(1 − a)has−1 (9.10)

and the coefficients δs are negative for s ≥ 1. In the absence of habit
persistence but with consumption durability (h = 0),

δs = bs (9.11)

and δs are positive for s ≥ 1.
When both habit persistence and consumption durability are present,

the coefficients δs are positive or negative depending on the relative
magnitudes of the durability parameter b and the habit parameters h and a.
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• If b ≥ a + h(1 − a), the coefficient δs is positive for all s. To show this
result, re-write the coefficient δs as

δs =
(

b − a − h(1 − a)

b − a

)
bs + (1 − a)h

b − a
as, s ≥ 1.

It follows immediately that δs > 0 whenever b ≥ a + h(1 − a).
• If b ≤ h(1 − a) then δs is negative for all s. To demonstrate this result,

notice that δs can be equivalently written as:

δs = bs − h(1 − a)

[
bs − as

b − a

]
, s ≥ 1.

Notice that the term bs − as can be factored as:

bs−as = (b−a)(bs−1+abs−2+a2bs−3+· · · as−3b2+as−2b+as−1).

Therefore:

δs = bs − (1 − a)h[bs−1 + abs−2 + · · · + as−2b + as−1]

= bs−1[b − h(1 − a)] − h(1 − a)[abs−2 + · · · + as−2b + as−1].

Since the second term in square brackets is always positive, we have that
δs < 0 provided b< (1 − a)h.

• Finally, if h(1 − a)< b< a + h(1 − a), then δs is positive for recent
lags and negative for distant ones. To understand this result, notice that
δ1 = b−h(1− a)> 0 but the remaining coefficients are positive or nega-
tive depending on whether habit persistence or consumption durability
is dominant. If, however, δτ < 0 for some τ , then δs < 0 for s >τ . That
is, there is some threshold value τ such that whenever δτ is negative, then
all the subsequent coefficients are also negative. To see this, consider the
definition of δs and notice that δs < 0 is equivalent to the statement that

bs ≤ h(1 − a)

(
bs − as

b − a

)
.

Using the definition for δs, we can write:

δs+1 = bs+1 − h(1 − a)

(
bs+1 − as+1

b − a

)

≤ b
[

h(1 − a)

(
bs − as

b − a

)]
− h(1 − a)

(
bs+1 − as+1

b − a

)

= −ash(1 − a)

(
b − a
b − a

)
= −ash(1 − a) < 0.

In all of these cases, a change in consumption at date t has an effect
on utility infinitely far out into the future. Whether this effect is positive
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or negative depends on which of the cases that we have described holds.
Furthermore, the intertemporal MRS depends on an infinite number of
leads and lags of consumption. We will examine the impact of these issues
on asset-pricing relations in the next sections.

9.1.3. A recursive framework

We now analyze models with preferences that are non-additive over time
using a recursive approach. We begin with a generalization of the first case
above where purchases of past consumption goods lead to current con-
sumption services. In this case, the effect of past consumption choices on
current utility is always positive. We then describe how our approach can
be extended to deal with the case when the effect of past consumption on
current utility is negative and when it is positive or negative depending on
the lag.

There are multiple consumption goods, and consumption services are
produced using a vector of household capital stocks. Let kt−1 denote the
m-dimensional vector of household capital stocks brought into period t.
Given purchases of m new consumption goods at time t, kt evolves as:

kt = �kt−1 + �ct , (9.12)

where � is an m × m matrix whose eigenvalues are strictly less than one.
Consumption services c�t are produced as:

c�t = �kt , (9.13)

for an m × m matrix �. This is a dynamic version of the household service
technology proposed by Gorman [210] and Lancaster [303], which views
consumption goods as claims to future consumption services. In this more
general setup, a vector of consumption goods at time t provides consump-
tion services ��τ�ct at time t + τ . To simplify the matter further, we
assume that �, �, and � are diagonal matrices with diagonal elements δj,
θj and γj for j = 1, . . . , m and that 0<δj < 1 and θj > 0 and γj > 0.

The output of consumption goods evolves as an exogenous stochastic
process defined by:

yt ≡ (y1,t , . . . , ym,t)
′.

As before, we assume that each yj,t is a function of an m-dimensional vector
of exogenous shocks st ∈ S ⊆ �m, namely,

yj,t ≡ yj(st) j = 1, . . . , m.

The exogenous shocks st have a transition function F that satisfies Assump-
tion 8.1. The endowment of each consumption good takes values in a
compact set. Let

Y ≡ [y, ȳ]



Non-separable preferences 207

where y > 0 and ȳ < ∞. We assume that yj : S → Y are continuous
functions that are bounded away from zero for j = 1, . . . , m.

The representative consumer has preferences over sequences of con-
sumption services {c�t }∞t = 0 given by:

E0

{ ∞∑
t=0

β tU (c�t )

}
, (9.14)

where 0<β < 1 and E0 denotes expectation conditional on information
available at time zero. The utility function U : S → �+ is continu-
ous, continuously differentiable, strictly increasing, and strictly concave in
c�. For all c� ≥ 0, assume that U (c�) ≥ 0. Define MUj(c�) ≡ �U (c�)/�c�j
and assume that limc�j →0 MUj(c�)/MUi(c�) = ∞ for all i and j. This
ensures that all goods are consumed in equilibrium. Finally, the restric-
tions that θj > 0 and γj > 0 imply that past consumption choices have a
positive effect on current utility. An alternative expression for the vector of
household capital stocks can be derived as:

kt = �ct +
∞∑
s=1

�s�ct−s. (9.15)

This is well defined since the diagonal elements of � are less than one. The
feasible consumption goods purchases satisfy

0 ≤ cj,t ≤ yj,t , j = 1, . . . , m.

Since each yj,t is bounded above by ȳ, the vector of capital stocks takes
values in the compact set:

K ≡ [0, (1 − δ1)
−1θ1ȳ] × · · · × [0, (1 − δm)−1θmȳ].

Consumers can trade in the market for used capital goods as well as
make new purchases of consumption goods. The first consumption good
is the numeraire so that its price is normalized as one. The consumer can
also purchase equities that pay off in terms of each consumption good and
a risk-free bond that pays off in terms of the numeraire good. For each j,
denote by

pc
j,t : the price of new capital goods

pk
j,t : the price of used capital goods

kd
j,t : the consumer’s purchases of used capital goods

qe
j,t : the equity price that pays off in units of good j

Q 1
t : the price of the risk-free bond that pays off in units

of the numeraire good

κt−1 : the vector of aggregate or per capita capital holdings.
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The consumer’s state is summarized by its beginning-of-period capital
stocks kt−1, its equity holdings zt , its beginning-of-period bond holdings
bt , the value of per capita capital stock κt−1, and the current shock st . The
state of the economy is summarized by the current shock st and the per
capita capital holdings, κt−1.

We seek an equilibrium in which all prices and the law of motion for
the per capita capital stock can be expressed as time-invariant functions
of the current state, s and κ . Define the strictly positive, continuous price
functions pc : S × K → �m

++, pk : S × K → �m
++, qe : S × K → �m

++,
and Q 1 : S × K → �++. Assume that the per capita capital stock evolves
according to

κ ′ = κ̄(s, κ),

where κ̄ : S×K → K are strictly positive, continuous functions and define
the set of functions P ≡ (pc, pk, qe, Q 1). Given P and the law of motion
for capital κ̄ , the value function for the consumer’s problem satisfies:

V (k, z, b, κ , s) = maxc,kd ,z′,b′

{
U (c�) + β

∫
S

V (k′, z′, b′, κ ′, s′)F (s, ds′)
}

subject to

pc(s, κ) · c + pk(s, κ) · kd + qe(s, κ) · z′ + Q 1(s, κ)b′

≤ pk(s, κ) · �k + [y(s) + qe(s, κ)] · z + b, (9.16)

k′ = kd + �c, (9.17)

c� = �k′, (9.18)

c ≥ 0, z′ ∈ Z , b′ ∈ B, kd ∈ K. (9.19)

We can use the approach in Proposition 8.1 to show that there exists a
bounded, continuous function V : K× Z × B ×K× S → �+ that solves
the consumer’s problem.

The market-clearing conditions require that the goods market clears,
cj = yj for j = 1, . . . , m, the used capital goods market clears, kd

j = δjkj for
j = 1, . . . , m, all shares are held z′ = 1, and all bonds are held, b′ = 0. A
recursive competitive equilibrium for this economy is a set of price functions
P ≡ (pc, pk, qe, Q 1), a value function V , and a law of motion for the per
capita capital stock κ̄ such that (i) given P and κ̄ , V solves the consumer’s
problem; (ii) markets clear; (iii) the law of motion for the individual cap-
ital stock is equal to the law of motion for the per capita capital stock,
k′

j = κ̄j(κ , s) for j = 1, . . . , m.
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Let λ(s, κ) be the multiplier on the budget constraint. Now substitute
the envelope conditions into the first-order conditions for c, kd , z′ and b′
to obtain:

λ(s, κ)pc
j (s, κ) = γjθjMUj(c�) + βEs[θjδjλ(s′, κ ′)pk

j (s′, κ ′)],
(9.20)

λ(s, κ)pk
j (s, κ) = γjMUj(c�) + βEs[δjλ(s′, κ ′)pk

j (s′, κ ′)], (9.21)

λ(s, κ)qe
j (s, κ) = βEs{λ(s′, κ ′)[yj(s′) + qe

j (s
′, κ ′)]}, (9.22)

λ(s, κ)Q 1(s, κ) = βEs[λ(s′, κ ′)]. (9.23)

9.1.4. Pricing durable consumption goods

We can use this framework to derive the prices of durable consump-
tion goods and consumption services. The conditions in Equations (9.20)
and (9.21) imply that the price of used capital goods is proportional to the
price of durable consumption goods:

pk
j (s, κ) = 1

θj
pc

j (s, κ), j = 1, . . . , m.

We can use Equation (9.20) to show that the durable consumption goods
prices satisfy:

λ(s, κ)pc
j (s, κ) = MUj(c�)γjθj + βδjEs[λ(s′, κ ′)pc

j (s
′, κ ′)]

for j = 1, . . . , m. These are functional equations in λ(s, κ)pc
j (s, κ). The

vector of capital stocks k′ carried into the next period is given once
cj = yj(s) and kd

j = δjk are determined. Therefore, solving for an equi-
librium involves solving for the asset-price functions. Since MUj(c�) is
bounded for any 0< c� ≤�k′ where k′ ∈ K and βδjEs[λ(s′, κ ′)pc

j (s
′, κ ′)] is

bounded and continuous for any bounded, continuous λ(s, κ)pc
j (s, κ) for

j = 1, . . . , m, we can find a fixed point for this equation using the Con-
traction Mapping Theorem. Assuming the fixed point has been found, we
revert to time subscripts and solve this forward as:

λtpc
j,t = γjθjEt

[ ∞∑
s=0

(βδj)
sMUj(c�t+s)

]
.

The price of the first consumption is normalized as one so that

λt = γ1θ1Et

[ ∞∑
s=0

(βδ1)
sMU1(c�t+s)

]
.
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Substituting for λt from the previous expression yields the price of the jth
consumption good as:

pc
j,t = γjθjEt

[∑∞
s=0 (βδj)sMUj(c�t+s)

]
γ1θ1Et

[∑∞
s=0 (βδ1)sMU1(c�t+s)

] (9.24)

for j = 1, . . . , m. Notice that the price of the jth durable consumption good
is defined in terms of the future discounted value of the services from that
good, expressed in units of the numeraire good.

We can also use this framework to derive the implicit price of consump-
tion services. We can write the price of the jth durable good as:

pc
j,t = γjθjpc�

j,t + βδjEt

(
λt+1

λt
pc

j,t+1

)
.

This expression says that the price of the jth durable good is equal to value
of the services from that good obtained in period t plus the expected resale
value of the durable good at date t + 1, taking into account that 1 − δj

units of the durable good are lost between t and t + 1 due to depreciation.
Hence, the price of a unit of services from the jth durable good is given by:

pc�
j,t = 1

γjθj

[
pc

j,t − βδjEt

(
λt+1

λt
pc

j,t+1

)]
, (9.25)

Another way of understanding this result is to note that a claim to the
jth durable consumption good for one period contributes γjθj units of
services at date t so the value of a unit of services denoted pc�

j,t is given by
the expression in (9.25).

9.1.5. Asset-pricing relations

This framework can also be used to yield an asset-pricing formula. Con-
sider first the rate of return on real risk-free bonds. From Equation (9.23),
we have that

Q 1(s, κ) = βEs

[
λ(s′, κ ′)
λ(s, κ)

]
. (9.26)

Likewise, the equity prices satisfy the relation:

qe
j (s, κ) = βEs

{
λ(s′, κ ′)
λ(s, κ)

[yj(s′) + qe
j (s

′, κ ′)]
}

, j = 1, . . . , m.

(9.27)

The relevant stochastic discount factor used to price payoffs on any secu-
rity in this framework is the marginal rate of substitution for the numeraire
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consumption good, λt+1/λt . Using the expressions derived earlier, the
stochastic discount factor is defined as:

mt+1 ≡ βEt+1
[∑∞

s=0 (βδ1)sMU1(c�t+s+1)
]

Et
[∑∞

s=0 (βδ1)sMU1(c�t+s)
] . (9.28)

The relevant pricing function that is used to value risky payoffs depends
on the discounted utility of all future services from consumption goods.

We can consider some variations of this framework. Suppose that m = 1
and the household capital stock kt evolves as:

kt = bkt−1 + ct , 0 < b < 1. (9.29)

Using the representation in Equation (9.6), consumption services are
proportional to the household capital stock as:

c�t = (1 − b)kt = (1 − b)
∞∑

s=0

bsct−s. (9.30)

This is just the first case that we described in Section 9.1. Hence, the
stochastic discount factor when there is only consumption durability has
the form:

mt+1 ≡ βEt+1
[∑∞

s=0 (βb)sMU(c�t+s+1)
]

Et
[∑∞

s=0 (βb)sMU(c�t+s)
] . (9.31)

Since the coefficient b is strictly positive, an increase in consumption ct

at date t has a strictly positive but decaying effect on future consump-
tion services. Hence, the marginal utility of consumption expenditures is
equal to the discounted value of marginal utility from future consumption
services, the discounting being done with the strictly positive coefficients
(βb)s for s ≥ 1.

Now suppose that there is only habit persistence. Then we can re-
formulate the model with habit persistence by defining:

kt = akt−1 + ct , 0 < a < 1, (9.32)

and

x�t = h(1 − a)kt−1. (9.33)

Then

ct − x�t = ct − h(1 − a)kt−1

= ct − h(1 − a)[akt−2 + ct−1] (9.34)

= ct − h(1 − a)
∞∑
s=1

as−1ct−s. (9.35)
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Hence, past values of consumption lead to consumption disservices through
the effect of the habit variable. In this case, the stochastic discount factor
has the form:

mt+1 ≡ βEt+1
[
MUt+1 − (h/a)(1 − a)

∑∞
s=1 (βa)sMUt+s+1

]
Et
[
MUt − (h/a)(1 − a)

∑∞
s=1 (βa)sMUt+s

] .

(9.36)

Thus, an increase in consumption expenditures at date t reduces future
consumption relative to habit by increasing the future habit level of con-
sumption, x�t+s for s ≥ 1. As a consequence, we see that an increase in
current consumption has a negative effect on the future marginal utility
of consumption net of the habit.

The third case analyzed in Section 9.1 involves both habit persistence
and consumption durability. Recall that consumption services net of the
habit evolve as:

c�t − x�t =
∑∞

s=0
bsct−s − h

∑∞
τ=1

∑∞
s=0

aτbsct−s−τ

= b0

∑∞
s=0

δsct−s.

In this case, an increase in current consumption will have a positive or neg-
ative effect on future consumption services depending on the sign of the
coefficients on MUt+s. Now the stochastic discount factor has the form:

mt+1 ≡ βEt+1
[∑∞

s=0 β
sδsMU(c�t+s+1)

]
Et
[∑∞

s=0 β
sδsMU(c�t+s)

] . (9.37)

We cannot analyze this model using the simple recursive framework
described above because it does not possess a finite number of state vari-
ables. However, if there is a finite number of lags for both consumption
durability and the habit, then dynamic programming methods are still
valid.

Models with intertemporal inseparabilities provide an important exten-
sion to the standard time-separable model because they break the link
between intertemporal substitution and risk aversion.1 By contrast, the
time-separable model with CRRA preferences implies that the parame-
ter that governs (relative) risk aversion is the inverse of the elasticity of
intertemporal substitution. For this reason, non-separable preferences have
been proposed in the recent asset-pricing literature for the purpose of
rationalizing the “equity premium puzzle.” We discuss the implications

1 See Exercise 3.
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of models with preferences that are non-separable over time and states at
later points in the chapter.

9.1.6. Log-linear asset-pricing formulas

In the previous chapter, we described the role of the joint log-normality
assumption in deriving log-linear pricing relations. In this section, we illus-
trate this approach when there exist time non-separabilities in preferences.
We first illustrate a situation in which there exists an exact solution under
a specific functional form for the single-period utility function. We also
derive a solution based on a Taylor-series approximation to the utility
function.

Consider the pricing of a strip asset. A strip is an asset that has a
single-period payoff. Such assets are useful because they can be used as
the basis for more complex assets such as equities. In a pure endow-
ment economy, the dividend process {Dt} on a stock is just equal to the
exogenous endowment {Yt}. We seek to find the price of a strip that
pays off the dividend Dt+k at date t + k. Following our earlier nota-
tion, we will assume that the services from current consumption are
denoted C �

t , and that the single-period utility function is of the CRRA
variety:

U (C�) = (C �)1−γ − 1

1 − γ
, γ ≥ 0.

We also assume that the marginal utility of consumption, MU (Ct+k), and
dividends, Dt+k, are conditionally jointly lognormally distributed.

We can set up the household’s problem as:

max
Ct

Et

{ ∞∑
t=0

β tU (Ct)

}

subject to the budget constraint:

PtSt + Ct ≤ DtSt−k,

where St denotes the amount of strip purchased and Pt is the price of strip
at time t that will pay k periods later. The first-order condition is given by:

βkEt[Dt+kMU (Ct+k)] − PtMU (Ct) = 0,

and the price of a strip that pays off the dividend at date t + k is:

Pt = βkEt[Dt+kMU (Ct+k)]

MU (Ct)
. (9.38)
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Example 9.1 Time-separable Utility
Suppose that C �

t = Ct . For convenience, define MU (Ct+k) ≡ C−γ

t+k,
ln (MU (Ct+k)) = − γ ln (Ct+k) = −γ ln (ct+k), and dt+k ≡ ln (Dt+k) for
k ≥ 0. Under the assumption of log-normality, we can evaluate the price of
a strip as:

Pt = βk exp (Et[ln (MUt+k) − ln (MUt) + ln (Dt+k)]

+Vart [ln (MUt+k) − ln (MUt) + ln(Dt+k)]/2)

= βk exp (Et[−γ (ct+k − ct) + dt+k]

+Vart [−γ (ct+k − ct) + dt+k]/2)

Taking logarithms of both sides and denoting pt = ln (Pt) yields:

pt = k ln (β) − γEt[(ct+k − ct)] + Et(dt+k) + γ 2Vart [(ct+k − ct)]/2

+ Vart (dt+k)/2 − γCovt [(ct+k − ct), dt+k]. (9.39)

Thus, under time-separable preferences, we can obtain a closed-form
solution for the strip.

Example 9.2 Habit Persistence
Now suppose that C �

t = Ct − hCt−1. In this case, the marginal utility of
consumption becomes:

MU (ct+k) = U ′(C �
t+k) − hβU ′(C �

t+k+1) k ≥ 0.

Then, the price of strip is given by:

Pt = βk Et[Dt+k(U ′(C �
t+k) − hβU ′(C �

t+k+1))]

Et[U (C �
t ) − hβU ′(C �

t+1)]
. (9.40)

To evaluate the price of the strip in terms of consumption growth, we
evaluate the marginal utility of consumption using the power utility
function as:

MU (Ct) = U ′(C �
t ) − hβU ′(C �

t+1)

= (Ct − hCt−1)
−γ − hβ(Ct+1 − hCt)

−γ .

However, this is non-linear in consumption. Hence, we cannot use log-
linear pricing formulas as in the case with time-separable utility. Notice
that we can write ln (MU (Ct)) as:

ln (MU (Ct)) = ln[(Ct − hCt−1)
−γ − hβ(Ct+1 − hCt)

−γ ]

= ln
[
( exp ( ln (Ct)) − h exp ( ln (Ct−1)))

−γ

−hβ( exp ( ln (Ct+1)) − h exp ( ln (Ct)))
−γ
]

.
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Define ct+i = ln (Ct+i) for i = − 1, 0, 1. Hence, we can linearize this
expression around ct+i = c̄ for i = − 1, 0, 1 using a first-order Taylor
approximation as:

ln (MU (Ct)) = γ h( exp (c̄) − h exp (c̄))−γ−1 exp (c̄)
(1 − βh)( exp (c̄) − h exp (c̄))−γ

(ct−1 − c̄)

+
[

( − γ − βγ h2)( exp (c̄) − h exp (c̄))−γ−1 exp (c̄)
(1 − βh)( exp (c̄) − h exp (c̄))−γ

]
(ct − c̄)

+ γβh( exp (c̄) − h exp (c̄))−γ−1 exp (c̄)

(1 − βh)( exp (c̄) − h exp (c̄))−γ
(ct+1 − c̄).

Hence,

ln (MU (Ct)) = γ hct−1 − γ (1 + βh2)ct + βγ hct+1

(1 − h)(1 − βh)
,

Now we can proceed to apply the log-normal distribution to evaluate the
price of the strip.

Jermann [264] uses such log-linear pricing functions in a model with
production. As in many recent applications, he linearizes the decision rules
of the original growth model, and evaluates the log-linear pricing formulas
that we developed above under these solutions. In Chapters 10 and 12, we
discuss alternative numerical solution methods for determining optimal
allocations and asset-pricing relations.

9.2. N O N - E X P E C T E D U T I L I T Y

In the recent macroeconomics and finance literature, a set of recursive pref-
erences has been proposed that relaxes the assumptions of the standard
time- and state-separable specification. In this section, we provide a brief
description of these preferences in deterministic and stochastic settings.2

This class of preferences includes non-expected utility preferences, which
have found widespread use in different applications.

9.2.1. Recursive preferences under certainty

Consider first a deterministic setting. Let c̄ ≡ {ct}∞t = 0 denote an arbitrary
consumption sequence. In the absence of any restrictions on preferences,
the utility from the consumption sequence c̄ is defined as:

U (c̄) = U ({ct}) = U (c0, c1, c2, . . . ). (9.41)

2 For further discussion, see Backus, Routledge, and Zin [42].
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In general, the marginal rate of substitution between consumption at any
two dates t, t + 1 can depend on consumption at all past, present, and
future dates. That is,

MRSt,t+1 = �U ({ct})/�ct+1

�U ({ct})/�ct

= f ( . . . , ct−1, ct , ct+1, . . . ), (9.42)

where f ( · ) is an arbitrary function. Typically a number of restrictions are
placed on (9.41) to give content to economic relations. These restrictions
also have implications for the form of the intertemporal MRS.

In the traditional time-separable case, we have that

U ({ct}) =
∞∑

t=0

β tU (ct)

and

MRSt,t+1 = βU ′(ct+1)

U ′(ct)
.

For a constant consumption path with ct = c for all t, note that

MRSt,t+1(c) = β

also defines the subjective discount factor.
Koopmans [284] derives a class of stationary recursive preferences

for a multi-dimensional consumption vector by imposing conditions
on U . Let the consumption sequence starting at date t be defined by
tc = (ct , ct+1, . . . ). Preferences are assumed to be dynamically consistent
in that preferences at all dates come from U :

U (0c) = U (c0, 1c). (9.43)

Koopmans [284] makes three additional assumptions. The first assump-
tion involves history-independence, which means that choices over tc do
not depend on consumption at dates prior to t. (Notice that this class of
preferences does not accommodate the types of temporal dependencies that
we discussed in Section 9.1.) Hence, the utility function can be expressed
in the form

U (0c) = V [c0, U1(1c)] (9.44)

for some time aggregator V . In the time-separable case, we have that
V (u, U ) = u + βU . The second assumption requires that preferences over
ct do not depend on t+1c. This implies

U (0c) = V [u(c0), U1(1c)]. (9.45)
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Third, preferences are required to be stationary:

U (tc) = V [u(ct), U (t+1c)] (9.46)

for all t. In this class of preferences, time preference is defined as a property
of the aggregator function V . To see this, note that

MRSt,t+1 = β�U (tc)/�ct+1

�U (tc)/�ct

= βV2(ut , Ut+1)V1(ut+1, Ut+2)

V1(ut , Ut+1)
, (9.47)

where we have made use of the relation Ut = V (ut , Ut+1) = V [ut , V (ut+1,
Ut+2)]. For a constant consumption path with period utility u,
U = V [u, U ], which implies that U = g(u) = V [u, g(u)]. Hence,

β(c) = V2[u, g(u)]. (9.48)

Thus, in contrast to the time-separable case, discounting depends on the
level of the period utility function, u. Typically, preferences are assumed to
be increasing in consumption. This implies that u is increasing in c and
that V is increasing in both its arguments, u and U . For consumption
paths with constant consumption, U must be increasing in u. Therefore,

g ′(u) = V1(u, g(u)) + V2(u, g(u))g ′(u)

= V1(u, g(u))

1 − V2(u, g(u))
> 0.

Since V1 > 0, 0<V2(u, g(u))< 1. Thus, the discount factor is between zero
and one, and depends, in general, on u.

9.2.2. The role of temporal lotteries

Kreps and Porteus [288, 289] have shown that the Koopmans recursive
preferences can be generalized to admit risk and uncertainty, and that this
generalization leads to non-expected utility preferences. They motivate this
class of preferences by noting that preferences for random income streams
induced from preferences for random consumption streams have two prop-
erties. The first is that the resolution of uncertainty may be important in an
intertemporal setting, and the second that induced preferences for random
income streams may not satisfy the von Neumann-Morgenstern axioms.

To illustrate these results, we consider some simple examples from Kreps
and Porteus [289]. The consumer has preferences over consumption at
dates 0 and 1 given by:

U (c0, c1) = ln (c0) + ln (c1),
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Figure 9.1. Early versus late resolution of uncertainty

and can borrow or lend at the zero interest rate. Suppose that the con-
sumer’s endowment is random and described by the random vector (y0, y1),
which equals (0. 5, 0. 5) or (0. 5, 1. 5) with equal probabilities. Figure 9.1
depicts the lotteries available to the consumer.

Suppose first that uncertainty resolves before the time 0 consumption
decision must be made. That is, the consumer knows for sure which ran-
dom consumption vector he will be facing when making his period 0
consumption decision. In this case, we can solve the consumer’s decision
problem conditional on the state as:

max
c0,c1

{ln (c0) + ln (c1)}

subject to

c0 + S ≤ y0

c1 ≤ y1 + S,

where S denotes the saving decision. Substituting for c0 and c1 in the utility
function and taking the derivative with respect to S yields the condition:

1

c0
= 1

c1
⇒ c0 = c1.

For the first income vector, this yields the solution c0 = c1 = 0. 5 and for the
second random vector, c0 = c1 = 1. Hence, expected utility is 0. 5[ln (0. 5)+
ln (0. 5)] + 0. 5[ln (1) + ln (1)] = − 0. 693.

Now suppose that uncertainty resolves after the time 0 consumption
decision must be made. Now the consumer knows for certain that the
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time zero endowment is equal to y0 = 0. 5 but he must choose c1 condi-
tional on y1 equal to 0.5 and 1.5 with probability 0.5 each. We can write the
consumer’s problem as:

max
c0,c11,c12

{ln (c0) + 0. 5 ln (c11) + 0. 5 ln (c12)}

subject to:

c0 + S ≤ y0

c11 ≤ y11 + S

c12 ≤ y12 + S,

where c1i and y1i, i = 1, 2 denotes consumption and income conditional on
state i occurring in period 1. Evaluating the utility function in terms of S
using the budget constraints and differentiating yields the conditions:

− 1

0. 5 − S
+ 0. 5

0. 5 + S
+ 0. 5

1. 5 + S
= 0.

This yields a quadratic equation in S which has the solution S = −0. 1096.
Note that the solution, c0 = 0. 6096, differs from the case when uncer-
tainty resolves before the time 0 consumption decision. We can also
show that c11 = 0. 3904 and c12 = 1. 3904. Evaluating expected utility under
this assumption, we find that it equals ln (0. 6096) + 0. 5 ln (0. 3904) +
0. 5 ln (1. 3904) = − 0. 8004. Thus, the consumer prefers early resolution
of uncertainty to late because it allows the consumer to adapt his choice of
c0 to the realization of his income at date 1.

The second property that Kreps and Porteus stress has to do with the
violation of the von Neumann-Morgenstern independence axiom. To see
this, consider again the situation where uncertainty resolves after c0 is cho-
sen. Assume that the time zero endowment is fixed at y0 = 0. 5 and suppose
that the consumer faces the lotteries (y0, y1) = (0. 5, 0. 1) or (0. 5, 6. 202),
each with probability 0.5. Following the same steps above, the consumer’s
choices at each date and state are given by c0 = 0. 3957, c11 = 0. 2043, and
c12 = 6. 3063. In contrast to the former case, the consumer is now a saver
instead of a borrower. The expected utility from this consumption alloca-
tion is −0. 8004. Hence, the consumer is indifferent between the income
lottery that yields (0. 5, 0. 5) and (0. 5, 1. 5) with probability 0.5 and the one
that yields (0. 5, 0. 1) and (0. 5, 6. 202) again with probability 0.5. If the
induced preferences of random income streams had the expected utility
representation, then the consumer would also be indifferent between these
lotteries and the lottery with prizes (0. 5, 0. 5), (0. 5, 1. 5), (0. 5, 0. 1) and
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(0. 5, 6. 202) each with probability one-quarter. Let pi = 1
4 . The solution

for the consumer’s problem under this lottery is given by:

max
c0,c1i ,i=1,...,4

{ln (c0) +
∑

i

pi ln (c1i)}

subject to

c0 + S ≤ y0

c1i ≤ y1i + S, i = 1, . . . , 4.

The solution for S is 0.05596 and the expected utility of the compound
lottery is −0. 85415. Hence, the consumer strictly prefers the former two
lotteries to the latter (compound) lottery, thereby violating one of the main
axioms of VNM expected utility.

9.2.3. Properties of non-expected utility preferences

In the standard expected utility model, preferences over random consump-
tion streams are formulated in terms of an atemporal von Neumann-
Morgenstern utility function. As our discussion in the previous section
has shown, the assumption underlying the expected utility model is that
individuals are indifferent to the timing of resolution of uncertainty for
temporal lotteries. Furthermore, the axiomatic derivation of expected util-
ity preferences assumes that the consumer cares only about the compound
probability of each prize. When these assumptions are relaxed, preferences
can be represented recursively as:

Ut = V (ut , Et [Ut+1]) , (9.49)

where Ut denotes lifetime utility at time t, V is an aggregator func-
tion (through which utility from current consumption and future utility
are aggregated), and Et( · ) denotes expectation conditional on informa-
tion available at time t. We say that consumers exhibit a preference for
early (late) resolution of uncertainty over temporal lotteries depending
on whether V (c, ·) is convex (concave) in its second argument. When V
is linear, we obtain the standard time and state-additive formulation of
preferences.

Epstein and Zin [175] and Weil [445] have proposed a parametric class
of preferences that satisfies the recursive structure of Equation (9.49). This
class of preferences allows us to parameterize risk aversion and aversion to
intertemporal substitution as two distinct aspects of a consumer’s tastes.
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Weil’s specification
We first present the parameterization in Weil [445], which nests a variety
of special cases.

Ut = W [ct , EtUt+1]

=
{

(1 − β)c
1− 1

σ
t + β[1 + (1 − β)(1 − γ )EtUt+1]

1−1/σ
1−γ

} 1−γ
1−1/σ − 1

(1 − β)(1 − γ )

=
{

(1 − β)c
1− 1

σ
t + β[1 + (1 − β)(1 − γ )EtUt+1]

1
θ

}θ
− 1

(1 − β)(1 − γ )
, (9.50)

where γ ≥ 0, σ ≥ 0, and 0 ≤β ≤ 1 and θ = (1 − γ )/(1 − 1/σ ).
This class of preferences allows us to separate attitudes towards risk over

temporal lotteries versus intertemporal substitution in consumption.
• The parameter σ represents the elasticity of intertemporal substitution

for deterministic consumption paths. To show this, we note that the
elasticity of intertemporal substitution (EITS) is given by:

σ = EITS = − d ln (ct/ct+1)

d ln (MUt/MUt+1)

∣∣
U=U0 (9.51)

To interpret this quantity, notice that in a deterministic economy
in which the time prices of consumption are given pt for t ≥ 0,
the ratio of the marginal utilities will equal the ratio of the time
prices, MUt/MUt+1 = pt/pt+1. This result shows that the elasticity of
intertemporal substitution in consumption along a deterministic con-
sumption path measures how changes in relative prices affect the relative
magnitudes of current versus future consumption.
In our application,

MUt = �Ut

�ct

MUt+1 = �Ut

�ct+1
= �Ut

�Ut+1

�Ut+1

�ct+1
.

Thus,

MUt

MUt+1
= �Ut/�ct

(�Ut/�Ut+1) (�Ut+1/�ct+1)
.

Next, we note that

[1 + (1 − β)(1 − γ )Ut]
1−1/σ
1−γ

= (1 − β)c1−1/σ
t + β[1 + (1 − β)(1 − γ )Ut+1]

1−1/σ
1−γ . (9.52)
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Thus,

(1 − β)(1 − γ )

(
1 − 1/σ

1 − γ

)
[1 + (1 − β)(1 − γ )Ut]

1−1/σ
1−γ

−1 �Ut

�ct

= (1 − β)
(

1 − 1

σ

)
c
− 1

σ
t ,

which implies that

�Ut

�ct
= c

− 1
σ

t [1 + (1 − β)(1 − γ )Ut]
1− 1−1/σ

1−γ . (9.53)

Next, we have that

(1 − β)(1 − γ )
1 − 1/σ

1 − γ
[1 + (1 − β)(1 − γ )Ut]

1−1/σ
1−γ

−1 �Ut

�Ut+1

= β(1 − β)(1 − γ )
1 − 1/σ

1 − γ
[1 + (1 − β)(1 − γ )Ut+1]

1−1/σ
1−γ

−1 ,

which implies that

�Ut

�Ut+1
= β [1 + (1 − β)(1 − γ )Ut+1]

1−1/σ
1−γ

−1

× [1 + (1 − β)(1 − γ )Ut]
1− 1−1/σ

1−γ . (9.54)

Therefore,

MUt

MUt+1
= 1

β

(
ct

ct+1

)− 1
σ

, (9.55)

or

ln

[
MUt

MUt+1

]
= − ln (β) − 1

σ
ln

(
ct

ct+1

)
.

Hence,

− d ln (ct/ct+1)

d ln (MUt/MUt+1)
= σ . (9.56)

• The parameter γ is the constant coefficient of relative risk aversion
over timeless gambles. It also represents the elasticity of the indirect
marginal utility of wealth. (See Exercise 4.) Another way of interpret-
ing the parameter γ is that the proportional premium that a consumer
would be willing to pay to undertake a fair gamble on a permanent
change in consumption is proportional to γ , with the proportionality
factor reflecting the variance of the lottery.

• As γ → 1 and σ → 1, we obtain the logarithmic risk preferences and
logarithmic intertemporal substitution preferences, respectively:

ln (Ut) = ln (ct) + βEt ln (Ut+1).
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Some further properties of these preferences are as follows. The param-
eter β is the subjective discount factor. To see this, use Equation (9.55)
evaluated for a constant consumption path ct = c for all t as

MRSt,t+1(c) = MUt+1(c)

MUt(c)
= β. (9.57)

When θ = 1, we get γ = 1/σ . In this case, the coefficient of relative risk
aversion for timeless gambles is equal to the inverse of the EITS. This
implies standard additively separable preferences as:

Ut = Et

{ ∞∑
s=0

β s c
1− 1

σ
t+s − 1

1 − 1/σ

}
.

When γ = 0, we get a constant elasticity of substitution (CES) repre-
sentation for Ut as:

[(1 − β)Ut + 1]1− 1
σ = (1 − β)c

1− 1
σ

t + β [1 + (1 − β)EtUt+1]
1− 1

σ .

This reflects the fact that σ is the elasticity of intertemporal substitution
for deterministic consumption paths, a result that we have demonstrated
more generally above.

When β = 0, we get the myopic preferences:

Ut = c1−γ
t − 1

1 − γ
.

Hence, γ is associated with the curvature of the utility function and reflects
consumers’ attitudes toward risk over timeless gambles. When γ = 0, we
get risk neutrality.

9.2.4. Optimal consumption and portfolio choices

Epstein and Zin [175] have considered a parametric class of non-expected
utility preferences that satisfies the recursive structure of Equation (9.49).
As in Weil’s formulation, this class of preferences allows us to param-
eterize risk aversion and aversion to intertemporal substitution as two
distinct aspects of a consumer’s tastes. Unlike the time-separable model
with expected utility preferences, these preferences allow for preferences
over early versus late resolution of uncertainty. To define these preferences,
let the aggregator function, W , be defined to be of the CES form:

W (c, z) = [
(1 − β)cδ + βzδ

]1/δ
, 0 �= δ < 1, (9.58)

W (c, z) = (1 − β) log (c) + β log (z), δ = 0, (9.59)
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where c, z ≥ 0 and β = 1/(1 + ρ), ρ > 0. When future consumption paths
are deterministic, this aggregator function results in an intertemporal con-
stant elasticity of substitution utility function with elasticity of substitution
1/(1 − δ) and rate of time preference ρ.

Recall that in Chapter 3 we introduced the notion of a certainty equiv-
alent function which shows the certain value of a random consumption
stream. The certainty equivalent function μ[Ut+1], which shows the cer-
tain value of the random utility stream Ut+1 conditional on information
available at time t, is specified to be a constant relative risk aversion
expected utility function. For some random variable x, μ is given by:

μ[x] = [
Exα

]1/α
, 0 �= α < 1, (9.60)

log (μ) = E
[
log (x)

]
, α = 0, (9.61)

where E( · ) is the expectation operator. In the current application, the
random variable is the utility from consuming the uncertain consumption
stream {c̃t+1, c̃t+2, . . .}. Thus, we can derive a recursive specification for
intertemporal utility as:

Ut = [
(1 − β)cδt + β(EtU α

t+1)
δ/α

]1/δ
, α �= 0, δ �= 0, (9.62)

where Et( · ) is expectation conditional on information available at time
t. If α < δ then a consumer who satisfies the Kreps-Porteus axioms prefers
early resolution of uncertainty to late and the opposite if α > δ. Notice that
when α = δ, Equation (9.62) specializes to the expected utility specification

U α
t = (1 − β)Et

{∑∞
j = 0 β

jcαt+j

}
.3

Consider the problem of some representative consumer who makes opti-
mal consumption and portfolio choices and whose preferences can be
represented by Equation (9.62). The consumer is endowed with an ini-
tial stock of the consumption good, A0, which can either be consumed
or invested in assets traded on competitive markets. Suppose there are N
assets available for trade. Let rt denote an N -vector of returns with typical
element rj,t which shows the gross, real return on an asset held throughout
period t. Let ωjt be the fraction of wealth invested in the jth asset. Each

3 Notice that this specification can be obtained by considering a transformation of the non-expected
utility preferences proposed by Weil as:

ut = [1 + (1 − β)(1 − γ )Ut ]
1

1−γ (1 − β)1/σ−1,

which implies that

ut =
{

(1 − β)c
1− 1

σ
t + β

(
Et u1−γ

t+1

) 1−1/σ
1−γ

} 1
1−1/σ

.

Letting δ = 1 − 1/σ and α = 1 − γ yields Equation (9.62) in the text.
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rj,t has support [r, r̄], r > 0. We assume that (rt , st) follows a first-order sta-
tionary Markov process with transition function F where st are variables
that help to predict the future. The random vector (rt , st) is observed at the
beginning of period t before decisions are made.

When (rt , st) follows a first-order Markov process, the state of the econ-
omy is summarized by ht ≡ (rt , st). The state variables for the individual
are her initial wealth and the current state of the economy. The consumer’s
problem can be formulated as a dynamic programming problem as follows:

V (At , ht) ≡ max
ct ,ωt

{
(1 − β)cδt + β

[
EtV (At+1, ht+1)

α
] δ
α

} 1
δ

subject to

At+1 = (At − ct)ω
′
t rt

N∑
j=1

ωj,t = 1.

The solution for this problem is a plan that expresses consumption
and portfolio choices as a function of the state variables (At , ht). Suppose
there exists a solution that expresses (ct , At+1) as homogeneous functions of
the state variables; that is, for all (At , ht), gt(1, ht) = (ct , At+1) implies that
gt(At , ht) = (ctAt , At+1). In this case, the consumer’s value function is given
by:

V (At , ht) = φ(ht)At ≡ φtAt ,

where

φtAt = max
ct ,ωt

{
(1 − β)cδt + β

[
Et(φt+1At+1)

α
] δ
α

} 1
δ

(9.63)

subject to At+1 = (At − ct)ω′
t rt and

∑N
j = 1 ωj,t = 1. Substituting for At+1 in

Equation (9.63) and taking the derivative with respect to ct yields:

δ(1 − β)cδ−1
t − βδ(At − ct)

δ−1μδ = 0, (9.64)

where

μ = [
Et(φt+1RM

t )α
] 1
α ,

and RM
t is the gross return on the optimal portfolio, RM

t =ω′
t rt . Recall

that consumption is proportional to wealth ct =ψtAt . Using this result in
Equation (9.64), we can write the first-order condition as:

(1 − β)(ψtAt )
δ−1 = β(At − ψtAt )

δ−1μδ. (9.65)
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Now solve for μδ and substitute for it in Eq. (9.63) to obtain:

(φtAt)
δ = (1 − β)cδt + β(At − ct)

δ

(
1 − β

β

)(
ψt

1 − ψt

)δ−1

(φtAt)
δ = (1 − β)

[
(ψtAt )

δ + (At − ψtAt)
δ

(
ψt

1 − ψt

)δ−1
]

φδ
t = (1 − β)[ψδ

t + (1 − ψt )ψ
δ−1
t ].

Thus,

μδ = 1 − β

β

(
ψt

1 − ψt

)δ−1

φt = (1 − β)
1
δ ψδ−1

t = (1 − β)
1
δ

(
ct

At

) δ−1
δ

.

We can re-write the Euler equation defined by Equation (9.65) by using
the solution for μδ as:

(1 − β)(ψtAt )
δ−1 = β(At − ψtAt )

δ−1
[
Et (φt+1RM

t )α
] δ

α

(1 − β)ψδ−1
t = β(1 − ψt )

δ−1

{
Et

[
(1 − β)

α
δ

(
ct+1

At+1

) α(δ−1)
δ

(RM
t )α

]} δ
α

.

Substituting for ψt = ct/At and simplifying yields

(
ct

At

)δ−1

= β

(
At − ct

At

)δ−1
{

Et

[(
ct+1

At+1

) α(δ−1)
δ

(RM
t )α

]} δ
α

⇒ cδ−1
t = β

{
Et

[
c
α(δ−1)

δ
t+1 (RM

t )
α
δ

]} δ
α

,

where we have substituted for At+1 = (At − ct)RM
t in the first line. Sim-

plifying the last expression yields the consumption optimality equation as:

1 = β
α
δ Et

[(
ct+1

ct

) α(δ−1)
δ

(RM
t )

α
δ

]
α �= 0, δ �= 0. (9.66)
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The optimal portfolio weights ωt can be obtained by solving the
problem:

max
ωt

[
Et(φt+1ω

′
t rt)

α
] 1
α subject to

N∑
j=1

ωj,t = 1.

Let λ equal the Lagrange multiplier on the portfolio weight constraint.
The first-order conditions with respect to ωj,t are:

1

α

[
Et(φt+1ω

′
t rt)

α
] 1
α
−1

Et
[
(φt+1ω

′
t rt)

α−1φt+1rjt
] + λ = 0,

for j = 1, . . . , N . Using one of these conditions to eliminate λ yields:

Et
[
(φt+1ω

′
t rt)

α−1φt+1(rjt − r1t)
] = 0, j = 2, . . . , N .

Substituting for φt+1, we obtain:

Et

[(
ct+1

At+1

) α(δ−1)
δ

(RM
t )α−1(rjt − rit )

]
= 0

Et

[(
ct+1

(At − ct)RM
t

) α(δ−1)
δ

(RM
t )α−1(rjt − rit)

]
= 0

Et

[(
ct+1

ct

) α(δ−1)
δ

(RM
t )

α
δ
−1(rjt − r1t)

]
= 0, j = 2, . . . , N .

Multiplying the last expression by ωj,t , summing over j, and substituting
from Equation (9.66) yields:

E

[
β

α
δ

(
ct+1

ct

) (δ−1)α
δ

(RM
t )

α
δ
−1rjt

]
= 1, j = 1, . . . , N . (9.67)

Notice that the intertemporal MRS or the stochastic discount factor that
is used to price uncertain payoffs in this model is defined as:

mt+1 ≡
[
β

(
ct+1

ct

)δ−1
] α

δ ( 1

RM
t

)1− α
δ

, (9.68)

which is a geometric average of the intertemporal MRS from the standard
expected utility model and the intertemporal MRS from the logarithmic
expected utility model.

If α = δ, then these first-order conditions become:

Et

[
β

(
ct+1

ct

)δ−1

rjt

]
= 1, j = 1, . . . , N ,
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which correspond to the first-order conditions for the expected utility
model with constant relative aversion preferences. Hence, consumption
growth is sufficient for discounting future payoffs as in the intertempo-
ral asset-pricing model with time-additive preferences. Hence, the non-
expected utility model yields similar implications as the expected utility
model except that the elasticity of intertemporal substitution is no longer
forced to be the inverse of the coefficient of relative risk aversion.

Another specialization that is of interest is logarithmic risk prefer-
ences, which occurs when α = 0 but δ �= 0. Then the counterpart to
Equation (9.67) is:

Et
[
(RM

t )−1rjt
] = 1, j = 1, . . . , N .

In this case, the market return is sufficient for discounting uncertain pay-
offs as in the simple static CAPM. Notice that this specification imposes
the same restrictions as those implied by the expected utility problem with
logarithmic preferences.4 One problem with this specification is that when
α = 0 (which corresponds to logarithmic risk preferences), the parameter
δ (which governs intertemporal substitutability) cannot be identified from
these equations. However, it can be identified from Equation (9.66). Write
this equation as:

Et

[{β(ct+1/ct)δ−1RM
t }γ − 1

γ

]
= 0.

As α goes to zero, γ goes to zero and the above expression converges to:

log (β) + (δ − 1)Et[log (ct+1/ct)] + Et[log (RM
t )] = 0,

which can be used to differentiate between the logarithmic expected utility
model (α = δ = 0) and the non-expected utility model with logarithmic
risk preferences (α = 0, δ �= 0).

9.3. T E S T S O F A S S E T- P R I C I N G R E L A T I O N S

One of the most important applications of preferences that are non-
additive over time or states has been in asset pricing. Initial tests of
asset-pricing relations were based on the standard time-separable, expected
utility model. The inability of this model to rationalize the joint behav-
ior of consumption and asset returns led to the consideration of other
specifications.

The influential study by Hansen and Singleton [237] provided esti-
mates and tests for a single good, representative consumer model with
time-additive preferences. These authors assume CRRA preferences with

4 See Exercise 2 in Chapter 5.
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U (c) = (c1−γ − 1)/(1 − γ ), γ ≥ 0, and considered one-period returns.
Two measures of consumption are used: non-durables plus services and
non-durables. The return series consists of the equally weighted average
returns on all stocks listed on the New York Stock Exchange (NYSE), the
value-weighted average return on stocks on the NYSE, and the equally
weighted returns on the stocks of three two-digit SEC industries.5 The
sample period is from February, 1959 to December, 1978. The model is esti-
mated by Generalized Method of Moments (GMM) using value-weighted
and equally weighted stock returns separately and also by using the combi-
nations of returns consisting of value-weighted and equally weighted stock
returns, value-weighted returns and nominal risk-free bond returns, and
the returns on three industry-average stock returns. The authors report
greater evidence against the model when equally weighted returns were
used. However, when the model is estimated with multiple returns, the
orthogonality conditions are rejected at the 5% level for all sets of returns
except for two sets of industry averages.

Tests of the representative consumer asset-pricing model have also been
conducted by allowing for consumption and leisure choices (see Mankiw,
Rotemberg, and Summers [332]), structural breaks (see Ghysels and Hall
[199, 200]), alternative sample periods (Brown and Gibbons [82]), and
the use of seasonally adjusted data (see Ferson and Harvey [184]). The
results of these tests indicate that the single good, consumption-based
asset-pricing model with time-additive preferences could not rationalize
the joint time-series behavior of stock and bond returns. In particular, the
strong rejections of the model involving stock returns and bond returns
have been typically taken to imply that the common stochastic discount
factor defined as the representative consumer’s MRS cannot capture the
relative risk structure of stocks versus bonds. In a related literature, Backus,
Gregory, and Zin [41] and others demonstrate that the standard time-
separable model cannot account for the risk premia in forward prices and
holding returns on real and nominal risk-free bonds.

Partly in response to these results, models with preferences that are
non-separable over time and states were put forward to account for var-
ious asset-pricing anomalies. Eichenbaum, Hansen, and Singleton [171],
Eichenbaum and Hansen [169], and Dunn and Singleton [164] consid-
ered models with consumption durability, and estimated a positive impact
of lagged consumption in Euler equations with monthly consumption
data. Notice that under consumption durability, consumption expendi-
tures are likely to exhibit negative autocorrelation. The reason is that a
consumer who has purchased a durable consumption good in one period is

5 In their revised estimates (published as “Errata” in 1984), they also use observations on a one-
month, nominal risk-free bond return, converted to real returns by dividing by the implicit deflator
associated with the measure of consumption.
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unlikely to purchase another in following periods. By contrast, Ferson and
Constantinides [183] find evidence for habit persistence using a broader
instrument set and by measuring consumption at monthly, quarterly, and
annual frequencies. These authors note that factors such as measurement
error could induce negative autocorrelation in monthly consumption data
and thereby lead to erroneous conclusions of consumption durability. They
also find that the model with habit persistence is less likely to lead to rejec-
tions of the intertemporal Euler equations describing the joint behavior
of consumption and asset returns. Various authors also estimated mod-
els with non-expected utility preferences. Epstein and Zin [177] use the
framework described in Section 9.2.4 to provide tests of the intertemporal
capital asset-pricing model. Although they obtained some favorable results
with non-expected utility preferences, they find that these results are sen-
sitive to the measure of consumption and the instrument set. Gregory
and Voss [213] examine habit persistence and non-expected utility mod-
els to explain the term structure of interest rates. Braun, Constantinides,
and Ferson [73] allow for both habit persistence and consumption durabil-
ity for explaining asset returns and consumption data on an international
basis.

These findings are related to the “equity premium puzzle” that we
described earlier as well as the average real “risk-free rate puzzle” and the
behavior of the term premia that have been studied using the approach pro-
posed by Mehra and Prescott [341]. For example, the average real “risk-free
rate puzzle” due to Weil [444] states that the average real risk-free return
implied by a representative consumer model is too high relative to that
in the data, a finding that also accounts for the “equity premium puzzle.”
The common cause of these findings is due to the fact that in the stan-
dard time-separable model, risk aversion and intertemporal substitution
of consumption cannot be separately parameterized. As a consequence,
the time-separable model that is calibrated using the observed moments
for consumption growth and asset returns generates a consumption path
that is too smooth to rationalize the variation in stock returns unless risk
aversion is very high.

In the previous sections, we provided alternative specifications that relax
the assumption that preferences are additive over time or states. These
specifications go some way towards reconciling the puzzle. For example,
Constantinides [118] shows that a habit that is 80% of normal consump-
tion is sufficient to explain the equity premium puzzle. The intuition is
straightforward: when there is a small drop in consumption, consumption
net of the habit falls a lot, thus leading to a large drop in the intertemporal
MRS. This type of variation makes it possible to explain the variation in
the rates of return on equity relative to the risk-free asset without relying
on high risk aversion. In other words, even though the observed con-
sumption series is quite smooth, what matters for individuals’ utility is not
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consumption per se but consumption relative to habit. Under the assump-
tion of habit persistence in consumption, Constantinides [118] is able to
generate a simulated equity premium that is in line with its observed
magnitude for values of the risk aversion parameter around 2 or even
lower. Another way of understanding this result is to note that preferences
that are not additively separable over time or states break the relationship
between risk aversion and intertemporal substitution in consumption.6 As
a consequence, the model with habit persistence can generate substan-
tial variation in consumption growth even for low degrees of relative risk
aversion.7

9.4. A M O D E L W I T H A N E X T E R N A L H A B I T

Campbell and Cochrane [93] argue that many existing asset-pricing phe-
nomena can be explained using a model with an external habit. They also
make use of the bounds on intertemporal MRSs.

In their model, the agent’s utility function has the form:

U (Ct , Xt) = (Ct − Xt)1−γ − 1

1 − γ
, γ > 0. (9.69)

where Xt denotes the level of the external habit. Define the surplus
consumption ratio by:

St = Ct − Xt

Ct
.

Thus, St increases with consumption Ct . The situation with St = 0 cor-
responds to a situation when actual consumption is equal to habit. As
consumption rises above habit, the surplus consumption ratio approaches
one. It is also possible to show that the curvature of the utility function is
related to the surplus consumption ratio. To show this, consider:

6 Consider a simple habit persistence model where current utility depends positively on current
consumption and negatively on one lagged value of consumption with a coefficient 0< h< 1. As
Exercise 4 shows, the product of the elasticity of intertemporal substitution ε and the coefficient of
relative risk aversion CRRA is given by:

ε × CRRA = 1 − hR−1

in the deterministic steady state. Under the restriction that R > h, it is easy to see that with habit
persistence, this product may be substantially below one.

7 However, this “resolution” may also have problems because the habit persistence model has unrea-
sonable implications for consumption smoothing and optimal fiscal policy. See, for example, Lettau
and Uhlig [308] or Ljungqvist and Uhlig [313].
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−CU ′′(C , X )

U ′(C , X )
= γC (C − X )−γ−1

(C − X )−γ

= γC
C − X

= γ

S
.

Hence, the lower is consumption relative to habit, the higher is the cur-
vature of the utility function. Intuitively, a low surplus consumption ratio
indicates a “recession” and a high surplus consumption ratio indicates a
“boom.”

The intertemporal MRS or stochastic discount factor for this model is
given by:

mt+1 = βU1(Ct+1, Xt+1)

U1(Ct , Xt)
= β

(
St+1

St

Ct+1

Ct

)−γ

. (9.70)

The intertemporal MRS varies not only with consumption growth but
also with changes in the surplus consumption ratio, St+1/St . This feature
of the model allows it to capture the impact of upturns and downturns in
economic activity, as we discuss below.

The model is specified so that the habit is determined as a function of
the history of aggregate consumption, Ca

t :

Sa
t = Ca

t − Xt

Ca
t

.

However, for a representative consumer economy, individual consumption
allocations equal the aggregate. Hence, we assume Sa

t = St and Ct = Ca
t

in what follows. Let small-case letters denote the logarithm of the vari-
able, c = ln (C ), x = ln (X ) and similarly for the other variables. To derive
the empirical implications of this model, aggregate consumption growth is
assumed to be an i.i.d. log-normal process, and the logarithm of the surplus
consumption ratio is modelled as a first-order autoregressive conditionally
heteroscedastic process:

�ct+1 = g + vt+1, vt+1 ∼ i. i. d , N (0, σ 2)

st+1 = (1 − φ)s̄ + φst + λ(st)(ct+1 − ct − g),

where s̄,φ, and g are parameters. These expressions show that the condi-
tional variance of sa

t+1 varies with its own past:

Vart(st+1) = λ(st)2Var(ct+1 − ct − g) = λ(st)2σ 2.
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Using these processes, the stochastic discount factor is expressed as:

mt+1 = β

(
St+1

St

Ct+1

Ct

)−γ

= βG−γ exp ( − γ (st+1 − st + vt+1))

= βG−γ exp (−γ (φ − 1)(st − s̄) + [1 + λ(st)]vt+1) ,

where G = exp (g).
Recall from the previous section that the slope of the mean-standard

deviation frontier is given by:

Et(Re
t+1)

σt (Re
t+1)

≤ σt(mt+1)

Et(mt+1)
,

where Re denotes the excess return on any asset. Using the log-normality
for mt+1, we can express:

max
Et(Re

t+1)

σt (Re
t+1)

= [exp (γ 2σ 2(1 + λ(st))2 − 1]1/2 ≈ γ σ [1 + λ(st)].

This relation is used to specify the model. In the data, the Sharpe ratios
vary with time in that the conditional variance of returns changes but not
on a one-for-one with the conditional means. This requires that λ(s) must
vary with s. Furthermore, there is evidence that risk premia increase in bad
times. This requires that λ(s) and hence, the volatility of s must increase as
s falls. Notice that the conditional volatility in st is crucial in differentiating
this model from the standard time-separable CRRA model. In particular, if
1 + λ(st) is a constant, then the implications of the model with an external
habit are very similar to the time-separable model except that γ (1 + λ) is
substituted for γ .

The expression for the risk-free rate is also used to calibrate the model.
Campbell and Cochrane [93] observe that the real risk-free rate is essen-
tially constant over long horizons. Using the expression for the stochastic
discount factor, the real interest rate is calculated as:

rf
t = 1

Et(mt+1)

= − ln (β) + γ g − γ (1 − φ)(st − s̄) − γ sσ 2

2
[1 + λ(st)]2.

This equation shows the different factors that determine the real interest
rate. The term st − s̄ represents intertemporal substitution: when the sur-
plus consumption ratio is significantly below its mean, the marginal utility
of consumption is high, implying that consumers would like to borrow to
consume more. However, as they do so, the real interest rate also rises. The
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second term reflects the effect of precautionary saving: as uncertainty (cap-
tured by the variable λ(st)) increases, consumers prefer to save, implying
that the real interest rate falls. To generate a real interest rate with little or
no variation over time, it must be the case that the intertemporal substi-
tution effect in the real interest rate be offset by the precautionary saving
effect.

Campbell and Cochrane [93] model the sensitivity function λ(st) to
ensure that i) the risk-free rate is a constant, ii) that habit is predetemined
at the steady state, (dxt/dct)|st = s̄, and iii) the habit moves positively every-
where with consumption, d/ds (dxt/dct) |st = s̄. These authors consider two
data sets. The first is comprised of the postwar (1947–95) value-weighted
New York Stock Exchange stock index returns, three-month Treasury bill
rate, and per capita non-durables and services consumption while the
second is a long annual data set of Standard and Poor’s 500 stock and com-
mercial paper returns (1871–1993) and per capita consumption (1889–1992).
They use the framework described above to price a consumption claim and
a dividend claim, where the latter is assumed to evolve as an i.i.d. process.
Their results indicate that both the price-dividend ratio for the dividend
claim and the consumption claim rise with the surplus consumption ratio,
St . When St is low (as in a “recession”), consumption is low relative to
habit, implying that the curvature of the utility function is high. This
tends to lower the intertemporal MRS, or pricing function, and to depress
prices relative to dividends. Similarly, a decline in the surplus consumption
ratio causes the expected return of the dividend and consumption claim to
rise dramatically above the risk-free rate, and the conditional volatility of
returns to rise.

Campbell and Cochrane [93] also discuss the resolution of the equity
premium and the risk-free “puzzles” in the context of their model. As in
the model with an internal habit or with non-expected utility preferences,
the presence of the external habit breaks the relationship between risk aver-
sion and intertemporal substitution in consumption. As we have discussed
above, the curvature of the utility function in the model with an external
habit is γ /S. Hence, a low value of γ is consistent with greater volatility
in the intertemporal MRS. Likewise, in the time-separable model, a reso-
lution of the risk-free rate “puzzle” requires a value of the discount factor
β that exceeds one. By contrast, the model in Campbell and Cochrane
[93] is able to generate a low risk-free rate with a low value of β. Unlike
the specifications that we have described above, the model with an external
habit implies that changes in current consumption do not have the effect of
raising the future habit. Furthermore, the habit in their model adapts non-
linearly to consumption and hence, consumption never falls below habit
whereas this is not the case with the simpler linear specifications considered
in earlier sections.
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9.5. C O N C L U S I O N S

Models with preferences that are non-separable over time and states have
received increased attention in macroeconomics and finance in recent
years. Such preferences allow for a richer specification of time and risk pref-
erences than the standard case. As a consequence, they have featured in a
variety of applications, including growth, consumption and saving, asset
pricing, to name a few. In this chapter, we have provided a discussion of
some commonly used preference specifications that allow for inseparabili-
ties over time and states. Our discussion has highlighted some issues that
are often important from the viewpoint of applied work, such as methods
for measuring consumers’ attitudes towards uncertain gambles over wealth
versus their propensity to substitute consumption across different dates.

In this chapter, we have also described recursive frameworks for pricing
durable consumption goods and characterized the representative con-
sumer’s portfolio choice problem under non-expected utility preferences.
These results extend the basic asset-pricing model that we introduced in
Chapter 8. However, in common with our discussion in Chapter 8, the
frameworks analyzed in this chapter still pertain to a simple endowment
economy. In the subsequent chapters, we introduce production and capital
accumulation decisions. We also consider economies with incomplete mar-
kets, borrowing constraints, and other frictions. The consideration of such
environments raises a variety of new issues such as the role of habit forma-
tion in an environment with production or the construction of volatility
bounds with borrowing or short sales constraints. The groundwork that
we have laid in this chapter provides the basis for considering such issues
subsequently.

9.6. E X E R C I S E S

1. Portfolio Separation
Suppose that the consumer lives for two periods and has preferences

of the form:

U (c) = −A exp ( − c/A), A > 0.

The consumer faces a complete set of contingent claims markets and
maximizes the utility from current consumption c0 and next period’s
state-contingent wealth Ws as:

max
c0,{Ws}S

s=1

U (c0) + β

S∑
s=1

πsU (Ws)
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subject to

c0 +
S∑

s=1

psWs ≤ W0,

where ps are the state-contingent prices, 0 < πs < 1 are the probabilities
of each state, and W0 is initial wealth that is given at date 0.
(a) Derive the following expression for next period’s wealth:

Ws = (1 + rf )

{
(φ − 1){W0 − A

∑S
s=1 ps log (πsβ/ps)}

φ

}

+
∑S

s=1 log (πsβ/ps)∑S
s=1 ps log (πsβ/ps)

{
A

S∑
s=1

ps log (πsβ/ps)

}

where φ = 1 + ∑S
s = 1 ps and 1 + rf ≡ (

∑S
s = 1 ps)−1.

(b) Show that the terms in braces sum to W0 − c0. Using this result,
argue that the consumer holds her portfolio in two assets, one of
which is risk free.

2. Consider a deterministic economy in which the representative con-
sumer’s preferences are given by:

∞∑
t=0

β t (ct − hct−1)1−γ

1 − γ
, γ ≥ 0, 0 < h < 1, 0 < β < 1.

The consumer has no labor income at any date. Let the consumer’s
initial wealth equal W0 and the rate of return on wealth be R. Then:

Wt = (Wt−1 − ct−1)R.

Further assume that initial wealth satisfies W0 − [hRc−1/(R − h)] ≥ 0
and

1 < (βR)1/γ < R, h < R.

(a) Write down the value function for the consumer’s problem. What
are the state variables for the consumer’s problem?

(b) What is the optimal consumption plan as a function of the state
variables? Find an expression for the value function evaluated at the
optimal consumption policy.

(c) Use the optimal consumption policy to solve for steady-state
consumption.

(d) What is the coefficient of relative risk aversion (RRA) along an
optimal path? In the steady state?
Hint: Use the expression for the value function evaluated at the
optimal consumption policy.
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(e) Find the elasticity of consumption with respect to the interest
rate, i.e.:

ε = �ct

� ln (R)

1

ct

along the optimal consumption path and in the steady state.
(f ) How does the presence of habit persistence affect the value of RRA

and ε?
3. Suppose that preferences are described according to the Weil specifica-

tion in Equation (9.50). Suppose that the consumer’s wealth evolves as:

At+1 = Rt(At − ct),

where {Rt}∞t = 0 is the stochastic interest rate which is distributed i.i.d.
(a) Show that the consumer’s value function and optimal consumption

policy can be written as:

V (At) = (ψAt)1−γ − 1

(1 − β)(1 − γ )
,

ct = μAt ,

where

μ = 1 − βσ
[
(E(R1−γ

t )1/(1−γ )
]σ (1−1/σ )

,

ψ = [(1 − β)μ−1/σ ]1/(1−1/σ ).

(b) What is the coefficient of relative risk aversion for wealth in this
framework?

4. Let ct denote purchases of non-durable consumption goods and dt

purchases of durable consumption goods, as defined in the National
Income and Product Accounts, respectively. The service flow from
non-durable consumption goods is given by:

c�t = α0ct + . . . + αmct−m, m < ∞, (9.71)

where αj ≥ 0 and α0 = 1. Services from durable consumption goods are
proportional to the sum of the stock of durable consumption goods at
the beginning of period t (kt−1) and durable goods purchases during
period t (dt):

d �
t = θ (kt−1 + dt), 0 < θ < 1. (9.72)

The representative consumer owns the capital stock so that capital car-
ried over into the next period kt is equal to kt−1 + dt less the amount
used to produce services:

kt = (1 − θ )(kt−1 + dt). (9.73)
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Preferences over sequences of consumption services c�t and d �
t are

given by:

E0

∞∑
t=0

β tU (c�t , d �
t )

E0

{ ∞∑
t=0

β t

(
c�δt d �(1−δ)

t

)1−γ − 1

1 − γ

}
, 0 < δ < 1, γ ≥ 0.(9.74)

Let pd ,t denote the price of durable consumption goods expressed in
units of the numeraire good and bj,t+1 the quantity of real risk-free
bonds that are purchased at date t which mature in j periods. The
longest maturity date is N and Q0

t = 1. The budget constraint for the
representative consumer is given by:

ct + pd ,tdt +
N∑

j=1

bj,t+1Q
j
t ≤ yt +

N∑
j=1

bj,tQ
j
t , (9.75)

where yt is the endowment of the numeraire consumption good.
The representative consumer chooses sequences for ct , dt , and bj,t+1,

j = 1, . . . , N and t ≥ 0 to maximize the objective function in Equa-
tion (9.74) subject to the constraints in Equations (9.71), (9.72), (9.73),
and (9.75), given an initial capital stock k−1.
(a) Formulate this problem as a dynamic programming problem.
(b) Let {ξt} denote the sequence of Lagrange multipliers on the

sequence of budget constraints in Equation (9.75). Derive the
first-order conditions.

(c) Consider investment strategies that involve holding one-month
Treasury bills for one month, holding three-month and six-month
Treasury bills for three months, and rolling over a sequence of three
one-month bills for three months. Let hk

t,n denote the gross holding
return from following the kth investment strategy from date t to
t + n, denominated in terms of the numeraire consumption good.
Find expressions for hk

t,n.
(d) Find expressions characterizing the behavior of the returns hk

t,n and
the durable goods price pd ,t in terms of observable measures of ct

and dt , assuming the preferences in Equation (9.74).
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Economies with production

In the economies that we have studied up to this point, output has been
taken as exogenous and no explicit consideration has been given to opti-
mal investment decisions. Yet asset-pricing models such as the APT seek
to model asset returns as a function of economy-wide sources of uncer-
tainty, one of which may be technological uncertainty. There is also a large
literature that seeks to link firms’ investment decisions with their optimal
financial structure. To address these issues, we now study investment and
production decisions in an uncertain environment.

The one-sector optimal growth model has become the mainstay of
dynamic macroeconomic modeling. Cass [99] and Koopmans [285] stud-
ied the long-run behavior of the deterministic one-sector optimal growth
model, and showed the existence of a steady-state solution. This model was
extended to the uncertainty case by Brock and Mirman [78], [79] and Mir-
man and Zilcha [344], who derived the optimal policy functions and the
invariant distribution for capital stocks characterizing the stochastic steady
state.

In Section 10.1, we provide a competitive equilibrium interpretation
of the one-sector optimal growth model under uncertainty by consid-
ering first a setup where households own the capital stocks and make
all investment decisions and second where they rent capital to firms
on a period-by-period basis. This is similar to the approach in Brock
[76], [77], who integrated the asset-pricing model with production, and
Mehra and Prescott [340], who describe how to analyze dynamic compet-
itive equilibrium models under uncertainty using a recursive approach. In
this framework, the optimal allocations can be derived by exploiting the
equivalence between the competitive equilibrium and the social planner’s
problem. However, when there are taxes, public goods, externalities, or
other forms of distortions, this equivalence breaks down. In Section 10.2,
we consider some extensions of the basic framework. First, we briefly
describe some methods for solving for the competitive equilibrium in the
presence of such distortions. We also analyze the model with correlated
productivity shocks and examine the impact of changes in the current
productivity shock on optimal savings behavior.

239
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In Section 10.4, we show how the standard framework can be embedded
in a more traditional and realistic setting in which firms own the capi-
tal stock and finance new investment by issuing equity and bonds. This
framework allows us to analyze the optimal financial structure of a firm. If
markets are complete and there are no other distortions, then we show that
the Modigliani-Miller theorem holds and the corporate financial structure
is irrelevant. In the presence of distortionary taxes, this result is no longer
true. We use a version of the asset-pricing model with distortionary taxes
to derive the latter result, and to show the nature of the firm’s cost of cap-
ital variable. Our discussion follows Brock and Turnovsky [80]. Using this
framework, we also derive the firm’s optimal financial policy and show how
it yields a version of Miller’s [343] equilibrium with debt and taxes.

10.1. R E C U R S I V E C O M P E T I T I V E E Q U I L I B R I U M

W I T H P R O D U C T I O N

Suppose there exists a representative infinite-lived household with time
additive preferences which supplies labor inelastically at one unit. The
household maximizes

E0

{ ∞∑
t=0

β tU (ct)

}
, 0 < β < 1, (10.1)

where ct denotes consumption of the single good and E0( · ) denotes expec-
tation conditional on information at time zero. The following assumption
characterizes the utility function.

Assumption 10.1 The utility function U : �+ →�+ is strictly concave,
strictly increasing, and continuously differentiable with U (0) = 0, U ′(0) =∞
and U ′(∞) = 0.

There is a single good that can be consumed or invested to produce new
capital next period. Output of the single good is produced using the
production technology:

yt = f (kt , θt), (10.2)

where θt is a random productivity shock and kt is the capital stock.
Uncertainty is introduced by assuming that there are random shocks to

productivity in each period. The following assumption characterizes the
technology shock.

Assumption 10.2 The technology shock takes values in the set � ≡ [θ , θ̄ ]
with θ > 0 and θ̄ <∞ and follows a first-order Markov process with tran-
sition function F . The function F : � × � → [0, 1] is defined such
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that F (θ , θ ′) ≡ Pr(θt+1 ≤ θ ′|θt = θ ). The transition function F satisfies
Assumption 10.1.

10.1.1. Households own the capital stock

Suppose first that the household owns the capital stock and makes all
investment decisions. Let it denote gross investment and define 0<δ ≤ 1
as the depreciation rate of capital. The law of motion for the capital
stock is:

kt+1 = (1 − δ)kt + it . (10.3)

The per capita resource or feasibility constraint states that total output is
allocated between consumption and investment as:

ct + it ≤ f (kt , θt). (10.4)

We can substitute for investment it using the law of motion to express the
constraint facing a household as:

ct + kt+1 − kt ≤ f (kt , θt ) − δkt . (10.5)

In this expression,
• kt denotes the per capita capital stock at the beginning of period t,
• kt+1 − kt = it − δkt denotes net investment in the capital stock;
• f (kt , θt ) − δkt is output net of depreciation.
We make the following assumption.

Assumption 10.3 (i) The function f (·, θ ) is continuously differentiable,
strictly increasing, and strictly concave on �+ with f (0, θ ) = 0, f ′(0, θ ) = ∞,
and f ′(∞, θ ) = 0. (ii) f (k, θ ) − f ′(k, θ )k > 0 for all k > 0.

The second part of this assumption ensures that profits are always positive.
Notice that this assumption is consistent with a production function that
displays constant returns to scale (CRTS) in capital and labor, where y and
k are interpreted as the output per labor and capital per labor:

Yt = F (Kt , nt , θt)

= ntF (Kt/nt , 1, θt)

= nt f (kt , θt).

Hence, yt = f (kt , θt) where yt = Yt/nt and kt = Kt/nt .
The household chooses (ct , kt+1) for t = 0, 1, . . . to solve

max
{ct ,kt+1}

{
E0

∞∑
t=0

β tU (ct)

}
, (10.6)
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Figure 10.1. Configurations of capital stocks

subject to

ct + kt+1 ≤ f (kt , θt) + (1 − δ)kt , (10.7)

ct , kt+1 ≥ 0, (10.8)

given the fixed initial stock k0 and the current realization of the technology
shock θ0. Notice that investment is reversible in this model because kt+1

may be less than (1 − δ)kt , implying that the household can consume the
old capital stock. We drop this assumption in Chapter 11 when we consider
a model with irreversible investment.

We now describe how to formulate this problem as a stationary dynamic
programming problem. This approach yields solutions that are time-
invariant functions of a finite set of state variables. We begin by showing
that the set of feasible allocations �(kt , θt), defined as pairs (ct , kt+1)
satisfying Equation (10.7) is a compact set. Define M (θ ) as

M (θ ) ≡ max
k

[
f (k, θ ) − δk

]
and let k̂(θ ) be the unique solution to

f (k, θ ) = δk.

Notice that f is increasing and strictly concave so that such a maximum
exists. Define k̂ ≡ maxθ k̂(θ ) and M ≡ maxθ M (θ ). These quantities are
well defined because f is continuous and θ takes on values in the compact
set [θ , θ̄ ]. Figure 10.1 illustrates the different quantities.
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We have the following lemma.

Lemma 10.1 If {kt , ct} is any feasible plan for the problem in (10.6), then
0 ≤ kt ≤ B and 0 ≤ ct ≤ B + M, where B = max (k̂ + M , k̄0).

P R O O F

First, kt ≥ 0 and kt+1 ≥ 0 by assumption. Suppose kt > k̂, then kt+1 < kt .
This follows from the fact that k̂ is the maximum sustainable capital stock.
Using the budget constraint, it is also the case that:

kt+1 ≤ f (kt , θt) − δkt + kt ≤ kt + M .

Define B = max (k̂ + M , k̄0) and k̄0 = k0. Clearly, k0 = k̄0 ≤ B. Suppose
kt ≤ B. If kt ≤ k̂, then kt+1 ≤ kt + M ≤ k̂ + M ≤ B. If instead kt > k̂,
then kt+1 < kt ≤ B by assumption. Hence, kt ≤ B for all t. Then it is
straightforward to show that:

0 ≤ ct ≤ f (kt , θt) − δkt + kt ≤ M + B ∀t.

We can also prove the following.

Lemma 10.2 Under Assumptions 10.1–10.3, for any sequence {ct , kt+1} such
that (ct , kt+1) satisfy Equation (10.7) and the initial condition k0, then

E0

{ ∞∑
t=0

β tU (ct)

}
≤ U < ∞. (10.9)

P R O O F

Define C̄ = M + B and note that, for any feasible ct , ct ∈ [0, C̄ ]. Because
U is continuous and takes a compact set into �+, we can define an upper
bound U ≡ ∑∞

t = 0 β
tU (C̄ ) < ∞.

In the following discussion, we drop the time subscripts on time t vari-
ables and let variables with primes, z′, for example, denote variables at
time t + 1. This notation emphasizes the recursive structure of the prob-
lem. The state variables for the problem consist of the current realization
of the shocks θ and the beginning-of-period capital stock k. Since there is
an upper (and lower) bound on the expected discounted present value of
utility, the household’s problem is well defined. Let K= [0, B]. The valu-
ation function V : K × � → �+ for a dynamic programming problem
satisfies the functional equation:

V (k, θ ) = max
(c,k′)∈�(k,θ )

{
U (c) + β

∫
�

V (k′, θ ′)dF (θ , θ ′)
}

. (10.10)
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The maximization problem is to choose consumption and next period’s
capital stock subject to the aggregate resource constraint. Define Y ≡ K×
�. Let C(Y) denote the space of continuous, bounded functions {V :
Y → �} equipped with the sup norm. Define the operator T by:

(TV )(k, θ ) = max
(c,k′)∈�(k,θ )

{
U (c) + β

∫
�

V (k′, θ ′)dF (θ , θ ′)
}

.

(10.11)

We have the following theorem.

Theorem 10.1 Let T : C(Y) → C(Y) be defined by Equation (10.11).
Under Assumptions 10.1–10.3, the operator is a contraction with unique fixed
point V �, which is bounded, increasing, and concave. Further, there exist
unique, bounded, and increasing optimal policy functions,

c = g(k, θ ), (10.12)

k′ = h(k, θ ), (10.13)

that satisfy

V �(k, θ ) = U (g(k, θ )) + β

∫
�

V �(h(k, θ ), θ ′)dF (θ , θ ′). (10.14)

such that g(k, θ ) + h(k, θ ) = y = f (k, θ ) + (1 − δ)k.

P R O O F

Notice that U is continuous and
∫
�

V (k′, θ ′)dF (θ , θ ) is continuous for
continuous V . Thus, applying T involves maximizing a continuous func-
tion over a compact set so that TV is well defined for any V ∈ C(Y).
Since U (c) is bounded because c is bounded and U is continuous, TV is
bounded and hence continuous. Thus, for any V ∈ C(Y), the operator T
takes continuous, bounded functions into continuous, bounded functions.
The operator T is monotone; for any V1, V2 ∈ C(Y) such that if V1 >V2,
then TV1 ≥ TV2. Because 0<β < 1, the operator T also discounts, that is,
T (V +a) ≤ TV +βa for a ≥ 0. Hence, T satisfies Blackwell’s conditions for
a contraction. Thus, there exists a unique solution, V �(k, θ ) = (TV �)(k, θ ).

To prove that V � is increasing and concave, choose some V̄ ∈ C(Y)
that is increasing and concave. Denote the space of continuous, bounded,
increasing, and concave functions defined on Y by C ′(Y). Applying the
operator T to V̄ notice that T preserves these properties so that T :
C ′(Y) → C ′(Y). Because the space of continuous, bounded, increasing,
and concave functions C ′(Y) is a subspace of the space of continuous
and bounded functions C(Y) and we have shown that T is a contraction,
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Figure 10.2. Optimal consumption and capital stocks

we can conclude that V � is increasing and concave. This follows as an
application of Corollary 6.1 in Chapter 6.

Because V � is concave and U is strictly concave by assumption,
we can conclude that the optimal policy (defined by the functions g
and h) is unique and, by the Theorem of the Maximum, it is con-
tinuous and bounded. Finally, by the envelope theorem, we have that
V �

k (k, θ ) = U ′(g(k, θ ))> 0.
Since the valuation function V � is strictly concave, the necessary and

sufficient conditions for an optimum are given by:

U ′(c) = β

∫
�

U ′(c′)
[
f ′(k′, θ ′) + (1 − δ)

]
dF (θ , θ ′),

c + k′ = y = f (k, θ ) + (1 − δ)k.

Define F (k, θ ) = f (k, θ ) + (1 − δ)k and subsume β in the definition of
V ( · ). Figure 10.2 illustrates the first-order condition for the household’s
(interior) optimum.

Reverting to time subscripts, we can re-write these conditions as

U ′(ct) = βEt
{
U ′(ct+1)

[
f ′(kt+1, θt+1) + (1 − δ)

]}
, (10.15)

where ct = f (kt , θt) + (1 − δ)kt − kt+1.
Notice that the optimal policy function for the capital stock provides a

way for describing the evolution over time of next period’s capital, given
this period’s capital stock and the current shock. However, it does not allow
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us to make unconditional probability statements about the future capital
stock. For this purpose, we need to derive the stationary distribution of the
capital stock and to characterize this distribution. The characterization of
this distribution is particularly important for non-linear models in which a
deterministic steady state cannot be calculated explicitly. A formal deriva-
tion of the stationary distribution of the capital stock is in the appendix to
this chapter.

10.1.2. Households lease capital to firms

We begin by solving the problem for the representative firm. In this formu-
lation, we use the form of the CRTS production function F that depends
on capital and labor. We assume that there is a firm that hires labor at real
wage wt and rents capital from households, paying a rental rate of rt . The
firm returns the undepreciated part of the capital denoted by (1 − δ)Kt to
the household at the end of period t.

The representative firm has profits each period determined by:

max
{Kt ,nt }

F (Kt , nt , θt) − wtnt − rtKt

The first-order conditions are:

F1(Kt , nt , θt ) = rt , (10.16)

F2(Kt , nt , θt ) = wt , (10.17)

which says that all factors are utilized up to the point where their marginal
products equal the relevant factor prices.

The household supplies labor and rents capital to firms. Hence, it has
the budget constraint:

ct + Kt+1 ≤ wtnt + rtKt + (1 − δ)Kt . (10.18)

This equation says that the household’s consumption ct and investment in
new capital Kt+1 − (1 − δ)Kt must equal the sum of its wage income wtnt

and rental income rtKt . The Bellman equation is:

V (Kt , θt) = max
{ct ,Kt+1}

[U (ct) + βEtV (Kt+1, θt+1)] (10.19)

subject to the budget constraint in Equation (10.18). Let λt denote the
Lagrange multiplier for the budget constraint. The first-order conditions
with respect to ct and Kt+1 are:

U ′(ct) = λt , (10.20)

λt = βEt [Vk(Kt+1, θt+1)] . (10.21)
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The envelope condition is:

Vk(Kt , θt ) = λt[rt + (1 − δ)] (10.22)

We can derive the first-order condition that optimal consumption choices
must satisfy by solving (10.20) for λt , substituting into (10.21) and (10.22).
Increasing the time subscript by one unit in (10.22) and then substituting
into (10.21) yields:

U ′(ct) = βEt
{
U ′(ct+1)[rt+1 + (1 − δ)]

}
. (10.23)

There are three market-clearing conditions:
the goods market

ct + Kt+1 − (1 − δ)Kt = F (Kt , nt , θt )

where output produced in period t is allocated to consumption plus
investment;

the labor market

wt = F2(Kt , 1, θt)

where the fixed labor supply nt = 1 has been incorporated;
the capital market

rt = F1(Kt , 1, θt)

where households rent out all of their capital. Note that the firm returns
the undepreciated capital to the households.

To construct the equilibrium, we combine the household’s and firm’s
first-order conditions and the market-clearing conditions. We substitute
the market-clearing conditions for the labor market and capital rental
market into the household’s budget constraint and use the property of
a CRTS production function to show that total factor payments equal
output,

wtnt + rtkt = F (kt , nt , θt).

Writing the real rental rate and the real wage in terms of the capital per
labor production function, we also find that:

rt = f ′(kt , θt)

wt = f (kt , θt ) − f ′(kt , θt)kt .

Hence, the budget constraint is identical to the one in Equation (10.5).
Equation (10.23) is now

U ′(ct) = βEt
{
U ′(ct+1)[f ′(kt+1, θt+1) + (1 − δ)]

}
, (10.24)

which is equivalent to the case when households own the capital
stock.
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10.2. E X T E N S I O N S

In the economies that we examined in the previous sections, the com-
petitive equilibrium allocations could be characterized by exploiting the
equivalence between competitive equilibrium and Pareto optimum. When
there are distortions such as non-lump sum taxes, money, imperfectly com-
petitive markets, borrowing constraints, or transaction costs, it is necessary
to devise other methods for characterizing the equilibrium. This is the first
topic that we address in this section. Second, we use the growth model to
examine the role of expectations in determining optimal consumption and
capital stock allocations.

10.2.1. Economies with distortions

In this section, we discuss the approach of constructing an equiva-
lent social planner’s problem whose allocations mimic those of the non-
optimal competitive equilibrium. This discussion allows us to examine
the impact of taxation on capital accumulation decisions. It also allows
us to analyze the impact of distortionary taxation on equity prices. (See
Exercise 2.) Danthine and Donaldson [134] provide a comprehensive
discussion of the alternative approaches to finding equilibria in non-
optimal economies. Under some circumstances, it may be possible to
use a contraction-based approach for solving the intertemporal Euler
equation. We illustrated this approach for the solution of the Lucas
asset-pricing model in Chapter 8, and we will describe variants of it
when we introduce monetary models. We will also describe a method
for directly computing the equilibrium for an economy with borrowing
constraints.

Consider an economy with a distortionary tax on capital income. The
assumptions are identical to those in Section 10.1. The production function
has the multiplicative form f (kt)θt , where kt is the capital stock. Second,
the stochastic technology shock θt follows a first-order Markov process that
is characterized by Assumption 10.2. Finally, capital depreciates 100% each
period.

Firms take the rental rate on capital rt as given and choose how much
capital to rent from households. Their problem is defined as:

max
kt

πt = f (kt)θt − rtkt .

The first-order condition for the firm’s problem is given by:

f ′(kt)θt = rt . (10.25)

Since firms solve a static problem, they choose how much capital to rent
by maximizing one-period profits each period.
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Households own the stocks of capital which they rent to firms. They are
taxed on their capital income at the rate τ and receive a lump-sum transfer
from the government. Their problem can be expressed as follows:

max
{ct ,kt+1}∞t=0

E0

{ ∞∑
t=0

β tU (ct)

}

subject to c0 + k1 = y0 where y0 is given, and

ct + kt+1 = (1 − τ )rtkt + gt ,

where (1 − τ )rtkt denotes rental income net of taxes. Here kt denotes the
household’s holdings of capital at the beginning of period t.

Let Kt denote the per capita aggregate capital stock. The government
taxes capital and then redistributes its revenue in a lump-sum fashion:

gt = τ rtKt . (10.26)

The per capita or aggregate capital stock is taken as given by households.
Let λt denote the Lagrange multiplier on the household’s budget

constraint. The first-order conditions with respect to ct and kt+1 are
given by:

U ′(ct) = λt , (10.27)

λt = β(1 − τ )Et[rt+1λt+1], (10.28)

In equilibrium the individual holdings of capital equal the per capita hold-
ings so that kt = Kt . Furthermore, consumption plus investment equal
total output, ct + Kt+1 = f (Kt)θt . Recall that we are using the per capita
form of the production function so that nt = 1.

Using the market-clearing conditions in the household’s and firm’s
problem, the optimal policy functions satisfy the condition:

U ′(ct) = β(1 − τ )Et
[
U ′(ct+1)f ′(Kt+1)θt+1

]
, (10.29)

where ct + Kt+1 = f (Kt)θt

Now consider the following social planning problem:

max
{ct ,Kt+1}∞t=0

E0

{ ∞∑
t=0

β t(1 − τ )tU (ct)

}

subject to

ct + Kt+1 = f (Kt)θt , K0 given.

It is straightforward to see that the first-order conditions for the equivalent
social planner’s problem satisfy Equation (10.29). Since the allocations in
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the social planner’s problem must be feasible, they also satisfy the market-
clearing conditions. Hence, this approach shows that the equivalent social
planner’s problem provides a convenient way for obtaining the competitive
equilibrium allocations for non-optimal economies. In this application, the
distortionary tax has the effect of reducing the discount factor. As a result,
investment is lower and the mean values of consumption, capital stock, and
output are lower compared with an otherwise identical but untaxed econ-
omy. This is despite the fact that the government returns the tax proceeds
in a lump-sum manner to the household.

Example 10.1 Assume that the model with a capital income tax has an
i.i.d. technology shock {θt}∞t = 0. Suppose the utility function is of the log-
arithmic variety, U (c) = ln (c), and that the production function satisfies
f (k, θ ) = kαθ with α < 1. Suppose that firms take the rental rate on capital
rt as given and choose how much capital to rent from households. House-
holds own the stocks of capital which they rent to firms. They also trade
in claims to the output produced by firms. They are taxed on their capital
income at the rate τ and receive a lump-sum transfer from the government.

The firm’s problem is defined as:

max
kt

πt = kαt θt − rtkt .

The first-order condition is:

αkα−1
t θt = rt . (10.30)

The household’s problem can be expressed as follows:

max
{ct ,kt+1}∞t=0

E

{ ∞∑
t=0

β t ln (ct)

}

subject to

ct + kt+1 + qtzt+1 = (1 − τ )rtkt + (qt + dt)zt + gt , t ≥ 0,

where qt is the ex-dividend price of the equity, dt is the dividend, gt is the
lump-sum transfer from the government, and y0 is given. Here kt denotes
the household’s holdings of capital at the beginning of period t and zt and
zt+1 are its share holdings at the beginning of t and t + 1, respectively. We
assume that the total number of shares in each period is one.

Let Kt denote the per capita aggregate capital stock. The government
taxes capital and then redistributes its revenue in a lump-sum fashion:

gt = τ rtKt = ταK α
t θt . (10.31)

In equilibrium the individual holdings of capital equal the per capita hold-
ings so that kt = Kt . Furthermore, zt+1 = zt = 1 and consumption plus
investment equal total output, ct + Kt+1 = f (Kt)θt .
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The optimal policy functions satisfy the first-order condition:

1

ct
= β(1 − τ )E

[
1

ct+1
αK α−1

t+1 θt+1

]
. (10.32)

Notice that this example falls within the class of problems described in
Chapter 6. Hence, we guess that the policy functions for consumption and
investment have the form, ct =φyt and Kt+1 = (1−φ)yt , where yt = f (Kt)θt

and φ is a constant to be determined. By our hypothesis,

ct+1 = φK α
t+1θt+1 = φ[(1 − φ)yt]

αθt+1.

Substituting these expressions in Equation (10.32) yields:

1

φyt
= (1 − τ )βE

{
α[(1 − φ)yt]

α−1θt+1
1

φ[(1 − φ)yt]αθt+1

}
.

This can be solved for φ = 1 − αβ(1 − τ ), yielding the solutions for ct and
Kt+1 as:

ct = [1 − αβ(1 − τ )]yt , (10.33)

Kt+1 = αβ(1 − τ )yt . (10.34)

To derive an expression for the equity price, we substitute for profits equal
to πt+i = (1 − α)K α

t+iθt+i and ct+i =φyt+i into the equilibrium condition
for shares. This yields:

qt

yt
= βE

[
(1 − α) + qt+1

yt+1

]
. (10.35)

We guess that the solution has the form, qt =ψyt . Equating coefficients
on both sides of Equation (10.35) yields ψ =β(1 − α) + βψ , or ψ = (1 −
β)−1β(1 − α). Thus, the equity price is given by:

qt = β

1 − β
(1 − α)θtK α

t . (10.36)

Notice that consumption, investment, output, and the equity price exhibit
persistence because they depend on current capital. The capital tax rate
also affects the entire time path of the endogenous variables although its
effect on the equity price is indirectly through output and capital.

In the above framework, the tax rate is deterministic. Other studies
that analyze the effects of distortionary taxation on capital accumulation
include Judd ([267, 268]). Dotsey [158] studies the effect of production
taxes in a stochastic growth model. In his model, the stochastic tax is
assessed on the firm’s profits and the tax rate is the only source of ran-
domness. Coleman [113] studies the effect of a state-dependent income
tax on the capital accumulation process. Bizer and Judd [66] also discuss
the effects of distortionary taxation in a general equilibrium model. They
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show that the volatility of the investment tax credit around a constant
mean induces substantial variability in investment, thus giving rise to a
large welfare cost.

10.2.2. The role of expectations

The role of expectations in determining macroeconomic outcomes and
equity prices is a topic of much recent interest. Even in the simple growth
model that we considered in Section 10.1.1. with correlated shocks, there
may exist interesting dynamics arising from the fact that the current realiza-
tion of the shock conveys information as to future realizations. Donaldson
and Mehra [155] have used such a framework to derive further implications
of the model with correlated technology shocks. The role of expecta-
tions in mitigating or exacerbating the impact of changes in a stochas-
tic investment credit on investment is studied by Altug, Demers, and
Demers [21].

To simplify the model, we also assume that the technology shock has
the multiplicative form as:

yt = f (kt)θt .

We characterize the distribution with the following two assumptions.

Assumption 10.4 Let F : � × � → [0, 1] denote the transition for
the technology shock where �= [θ , θ̄ ] where 0<θ < θ̄ <∞. For fixed θt ,
F (θt+1; θt) denotes the probability distribution for next period’s shock. Thus,
for all θt ,

F (θt+1; θt) = 0, θt+1 ≤ θ

F (θt+1; θt) = 1, θt+1 ≥ θ̄ .

The density function dF (·; ·) is continuous on � × �, strictly positive, and
there exists an L> 0 such that for all θ1, θ2 ∈ �,∫

�

|dF (θ ; θ2) − dF (θ ; θ1)| < L|θ2 − θ1|.

Assumption 10.5 F (θt+1; θ ′
t ) stochastically dominates F (θt+1; θt) in the first

degree (in the sense of Rothschild and Stiglitz) whenever θ ′
t >θt .

This assumption captures the notion that it is more likely that tomorrow
will be similar to today rather than different.

Consider the problem of solving

max
{ct ,kt+1}∞t=0

E0

{ ∞∑
t=0

β tU (ct)

}
(10.37)
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subject to

ct + kt+1 ≤ yt = f (kt)θt , (10.38)

given y0. The state variables of the model are given by the beginning-
of-period capital stock k and the current realization of the technology
shock, θ . However, knowing k and θ also implies knowledge of current
output y. Hence, we can equivalently choose the state variables as yt and
θt . Dropping time subscripts and denoting current values with unprimed
variables and future values with primed variables, the associated dynamic
programming problem can be written as:

V (y, θ ) = max
c,k′

{
U (c) + βEθ [V (y′, θ ′)]

}
subject to (10.38) where Eθ ( · ) denotes conditional expectation.

Let ξ denote the Lagrange multiplier on the aggregate resource con-
straint. The first-order and envelope conditions are:

U ′(c) = ξ , (10.39)

ξ = βEθ

[
�V (y′, θ ′)

�k

]
, (10.40)

�V (y, θ )

�k
= U ′(c)f ′(k)θ . (10.41)

The optimal policy is given by the functions c = g(y, θ ) and k′ = h(y, θ ).
The issue to be investigated is the impact of changes in θt on the opti-

mal consumption and capital accumulation (or saving) decisions. Such an
effect is predicted because the current realization of θt conveys informa-
tion about its future values. Consider the first-order condition in which
the policy functions have been substituted as:

U ′(g(y, θ )) =βf ′(k′)
∫

V1(f (k′)θ ′, θ ′)θ ′dF (θ ′; θ ).

We consider a specialization of the model by assuming the preferences
are of the constant relative risk aversion variety:

U (c) = (c1−γ − 1)/(1 − γ ), γ > 0, (10.42)

and the technology displays diminishing returns to scale:

f (k, θ ) = kαθ , 0 < α < 1. (10.43)

The first-order condition becomes:

g(y, θ )−γ = βα(k′)α−1
∫

V1((k′)αθ ′, θ ′)θ ′dF (θ ′; θ ). (10.44)
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We are interested in determining the effect of changes in the current
realization of the technology shock θ on optimal consumption and sav-
ings behavior. For this purpose, differentiate the first-order condition with
respect to θ using the fact that k′ = y − g(y, θ ):

(
−�g(y, θ )

�θ

)[
−γ g(y, θ )−γ−1 + βα(α − 1)(k′)α−2

∫
V1((k′)αθ ′, θ ′)θ ′dF (θ ′; θ )

+βα2(k′)2(α−1)
∫

V11((k′)αθ ′, θ ′)(θ ′)2dF (θ ′; θ )

]

+ lim
ε→0

β

ε
α(k′)α−1

∫
V1((k′)αθ ′, θ ′)θ ′ [dF (θ ′; θ + ε) − dF (θ ′; θ )

] = 0.

To see the impact of changes in the current technology shock on optimal
consumption and saving, write this condition as:

[
−γ c−γ−1 + βα(α − 1)(k′)α−2

∫
V1((k′)αθ ′, θ ′)θ ′dF (θ ′; θ )

+βα2(k′)2(α−1)
∫

V11((k′)αθ ′, θ ′)(θ ′)2dF (θ ′; θ )

]
�g(y, θ )

�θ

= lim
ε→0

β

ε
α(k′)α−1

∫
V1((k′)αθ ′, θ ′)

[
dF (θ ′; θ + ε) − dF (θ ′; θ )

]
.

(10.45)

Recall that the value function V is increasing and concave in y so that
the sign of �c/�θ depends on the sign of the term on the right side of
equation (10.45). If this term is negative, then �c/�θ > 0 and if this term is
positive, then �c/�θ < 0. Assuming the limit exists and ignoring the term
βα(k′)α−1, we can integrate this expression by parts to obtain:

∫
V1((k′)αθ ′, θ ′)θ ′dFθ (θ ′; θ )

= V1((k′)αθ ′, θ ′)θ ′F (θ ′; θ )|θ̄θ −
∫

V1θ ((k′)αθ ′, θ ′)θ ′F (θ ′; θ ).

(10.46)

Notice that �c/�θ < 0 if V1θ < 0. To determine the sign of this cross-
partial derivative, it is necessary to examine the behavior of the limit of
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the sequence of approximating functions {V n
1 } to V1.1 We can illustrate the

nature of the results by defining V n(y, θ ) to satisfy:

V n(y, θ ) = max
c,k′

{
c1−γ − 1

1 − γ
+ β

∫
V n−1((k′)αθ ′, θ ′)dF (θ ′; θ )

}
subject to

c + k′ ≤ y.

To give a flavor of the results that can be obtained, we consider the case
with n = 1. In this case, we have that V 1

1 (y, θ ) = (kαθ )−γ so that

�V 1
1 (kαθ , θ )θ

�θ
= −γ (kαθ )−γ−1kαθ + (kαθ )−γ

= (kαθ )−γ [−γ + 1] < 0

if and only if γ > 1. While the impact of θ on ct is more complicated for
V n

1 , we can nevertheless show that consumption will be increasing in the
current realization of the technology shock provided the consumer displays
“sufficient” risk aversion. The interpretation of these results is noteworthy.
In economies where consumers are sufficiently risk averse, optimal sav-
ing behavior will tend to stabilize output and consumption. In a situation
when a low current value of the technology shock signals a low future value,
a highly risk-averse agent saves more the lower is the shock. This mitigates
the effects of any future output declines. By contrast, less risk-averse con-
sumers save less in response to a low realization of the technology shock.
Since a low value of the shock today signals a low value of the shock tomor-
row, this type of saving behavior tends to exacerbate the effects of future
output declines by reducing investment today. In the case of logarithmic
preferences, the optimal consumption/saving policies depend only on the
current realization of the capital stock (or current output), implying no
role for the current shock.

10.3. S O L V I N G M O D E L S W I T H P R O D U C T I O N

Up to this point, we have characterized the solutions for models with
production. However, many recent applications also derive numerical solu-
tions for dynamic equilibrium models, and examine how their predictions
match up with the data. One approach to solving such models is to
implement a log-linearization around a deterministic steady state to the
first-order conditions of the model. However, this approach is not feasible

1 See Danthine and Donaldson [155] or Altug, Demers, and Demers [21] for a similar proof in the
context of an irreversible investment model with a stochastic investment tax credit.
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if there exist non-negativity constraints for some of the choice variables.
Another approach is to replace the original non-linear objective func-
tion with one which is quadratic around a deterministic steady state. We
illustrate this approach in Chapter 12.

A more general approach is to employ numerical dynamic programming
methods. This method has also been used for solving dynamic discrete
choice models. Numerical dynamic programming is motivated by the fact
that the valuation function characterizing agents’ or the social planner’s
optimum typically satisfies a contraction mapping. The underlying the-
ory is well understood.2 One problem with this approach, however, is the
so-called “curse of dimensionality.” Typically, numerical dynamic program-
ming involves discretizing the state space. As the number of state variables
gets larger, it becomes impracticable, if not impossible, to implement this
technique. Judd [269] and others have proposed alternative numerical
solutions to circumvent this problem, such as those based on polynomial
approximations.

In this section, we provide an illustration of numerical dynamic pro-
gramming for a simple application based on value function iteration with
a discretized state space. We consider a simple parametric example from
Danthine, Donaldson and Mehra [135] that has been widely studied in
this literature. This application allows us to numerically determine the
impact of changes in shock persistence on optimal consumption and
investment allocations, an issue that we discussed in more theoretical terms
in Section 10.2.2.

10.3.1. A parametric model

Preferences are assumed to be of the constant relative risk variety,

U (ct) = c1−γ
t − 1

1 − γ
, γ ≥ 0

and the production function displays constant returns to scale with

zt f (kt) = Aztkαt , 0 < α < 1,

where zt represents a technology shock. Among others, the following
parameter values are considered:
• γ ∈ {0. 5, 1, 3} where γ = 1 is the case U (c) = ln (c);
• A = 2/3;
• α = 0. 25;
• β = 0. 9.

2 See Bertsekas [62] and Bertsekas and Shreve [63].
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In this example, the productivity shock zt is correlated and follows a first-
order Markov process. Suppose that the technology takes on n discrete
values. Define the n × n transition probability matrix for zt by �:

� =

⎡
⎢⎣ φ11 · · · φ1n

...
...

φn1 · · · φnn

⎤
⎥⎦ ,

where a typical element of � is given by:

φi,j = Prob(zt+1 = zj|zt = zi), i, j = 1, . . . , n.

We describe below how the distribution for zt is parameterized.
In this problem, the state variables are the per capita capital stock kt and

the current value of the technology shock, zt . Both variables take values
on continuous intervals. To implement value function iteration, we need
to discretize or partition the state space into a finite set of points. This
implies that the control variables also take on a finite number of values. In
their application, Danthine, Donaldson and Mehra [135] assume that the
technology shock takes values in the set zt ∈ Z ≡ {0. 5, 1. 0, 1. 5}. They
incorporate the persistence of the technology shock by assuming that � is
symmetric (φi,j =φj,i) and that φi,i = a and φi,j = (1 − a)/2 for i �= j. The
identical diagonal elements of the matrix � take values from the set φi,i ∈
{0. 333, 0. 5, 0. 7, 0. 9}. As φi,i increases, the correlation of the shocks over
time increases. Notice that this procedure substitutes a discrete Markov
chain for the continuous Markov process for zt .3

The remaining issue is how to discretize the endogenous state variable
kt . Because this is a recursive model, choosing a set of possible values
for kt also specifies the set of values from which the decision variable
kt+1 at time t can be chosen; we will call this set K . To determine this
set, we first determine the maximum sustainable capital stock. Using the
resource constraint, optimal consumption and capital stocks must satisfy
ct + kt+1 ≤ supz∈Z Azkαt , which implies that the steady-state capital stock
satisfies the equation: km = Aztkαm. Recall that A = 2/3 and the maximum
value of z = 1. 5. Hence, km = (2/3)kαm(1. 5). We know that α ≤ 1; hence the
solution is km = 1. Hence we can conclude that capital takes values on [0, 1].
The next step is to define a partition of this range, such as ki+1 −ki = 0. 01.
This creates an evenly spaced grid of 100 possible values for the capital
stock and defines our feasible set K .

3 See Exercise 4 in Chapter 6.
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The problem now becomes one of solving the functional equation:

V n(ki, zr) = max
kj∈K

[
U (Akαi zr − kj) + β

3∑
s=1

φr,sV n−1(kj, zs)

]

(10.47)

subject to kj ≤ Akαi zr , where ki ∈ K and zr , zs ∈ Z . A computer program
can be written along the following lines.
1. Formulate an initial guess of the function V 0. For example, set V 0 = 0.
2. For each pair (ki, zr), compute the value function for each point k in the

feasible set K that satisfies the constraint kj ≤ Akαi zr ; this will limit the
set over which the value function must be computed. Given the initial
guess V 0, choose the point k0

j ∈ K that maximizes the right side of
Equation (10.47); call this new value function V 1(ki, zr).

3. Evaluate the value function for all pairs (ki, zr) ∈ (K ×Z ). There are 3×
100 points in the range of V 1(ki, zr) and the associated policy function
is k1

j = h1(ki, zr).
4. Repeat steps 2. and 3. until |V n+1(ki, zr)−V n(ki, zr)| ≤ εc for all ki ∈ K

and all zr ∈ Z where εc is a convergence criterion.
There are different ways of choosing the convergence criterion. One

possible convergence criterion is to choose εc = b‖K ‖ where b is a small
positive constant and ‖K ‖ is the norm of the capital partition (equal to
0.01 in our example). The convergence criterion should be small but there
is a tradeoff in terms of computation time. Notice that the set (K × Z )
is compact so that the value function iteration described above is well
defined. One problem with this procedure is that we run into the “curse
of dimensionality.” The accuracy of the solution can be increased by parti-
tioning the state space in terms of a finer grid but at the cost of increased
computing time.

In Table 10.1, we report decision rules for the optimal choice of capital
accumulation or saving kt+1 for values of γ = 0. 5, 1, 3 and φii = 0. 33, 0. 7.
The decision rule shows the value of kt+1 for all possible (kt , zt) pairs.
Notice that the current value of the technology shock z determines the
current productivity of capital through the production function, and if it
is serially correlated, through its impact on the expectation of future pro-
ductivity. Considering initially the i.i.d. case (with φii = 0. 33), we note
that higher values of the shock and/or the capital stock lead to higher
saving. When the shock is serially correlated, Table 10.1 shows that the
optimal saving behavior depends on whether γ < 1 or γ > 1. For the case
with γ < 1, an increase in persistence leads to lower saving for low val-
ues of zt and to increased saving for high values of zt . By contrast, we
see the opposite behavior for the case with γ > 1. When γ = 1 which
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Table 10.1. Optimal savings levels as a function of (k, z)

γ = 0. 5

φ = 0. 33 φ = 0. 7

k z1 z2 z3 z1 z2 z3

k10 0.0600 0.0900 0.1100 0.0500 0.0900 0.1200
k20 0.0600 0.1000 0.1200 0.0500 0.1000 0.1400
k30 0.0700 0.1000 0.1300 0.0600 0.1000 0.1500
k40 0.0700 0.1100 0.1400 0.0600 0.1100 0.1500
k50 0.0700 0.1100 0.1400 0.0600 0.1100 0.1600
k60 0.0700 0.1100 0.1500 0.0600 0.1100 0.1600
k70 0.0800 0.1200 0.1500 0.0600 0.1200 0.1700
k80 0.0800 0.1200 0.1500 0.0700 0.1200 0.1700
k90 0.0800 0.1200 0.1500 0.0700 0.1200 0.1800
k100 0.0800 0.1200 0.1600 0.0700 0.1200 0.1800

γ = 1

φ = 0. 33 φ = 0. 7

k z1 z2 z3 z1 z2 z3

k10 0.0400 0.0900 0.1300 0.0400 0.0900 0.1300
k20 0.0500 0.1100 0.1600 0.0500 0.1100 0.1600
k30 0.0600 0.1200 0.1700 0.0600 0.1200 0.1700
k40 0.0600 0.1300 0.1900 0.0600 0.1300 0.1900
k50 0.0700 0.1300 0.2000 0.0700 0.1300 0.2000
k60 0.0700 0.1400 0.2100 0.0700 0.1400 0.2100
k70 0.0700 0.1500 0.2200 0.0700 0.1500 0.2200
k80 0.0700 0.1500 0.2200 0.0700 0.1500 0.2200
k90 0.0800 0.1500 0.2300 0.0800 0.1500 0.2300
k100 0.0800 0.1600 0.2400 0.0800 0.1600 0.2400

γ = 3

φ = 0. 33 φ = 0. 7

k z1 z2 z3 z1 z2 z3

k10 0.0300 0.1200 0.2200 0.0400 0.1100 0.2000
k20 0.0500 0.1500 0.2900 0.0600 0.1500 0.2600
k30 0.0600 0.1800 0.3300 0.0700 0.1700 0.3000
k40 0.0700 0.2000 0.3700 0.0800 0.1900 0.3400
k50 0.0700 0.2200 0.4000 0.0900 0.2100 0.3700
k60 0.0800 0.2300 0.4300 0.0900 0.2300 0.3900
k70 0.0800 0.2500 0.4500 0.1000 0.2400 0.4200
k80 0.0900 0.2600 0.4700 0.1100 0.2500 0.4300
k90 0.0900 0.2800 0.4900 0.1100 0.2600 0.4500
k100 0.0900 0.2900 0.5100 0.1200 0.2800 0.4700



260 Asset Pricing for Dynamic Economies

corresponds to the logarithmic utility case, changes in persistence have
no effect on optimal saving behavior. To understand these results, notice
that the expected return on saving is f (k)E(z) and the variance of the
return to saving is [f ′(k)]2Var(z). Evaluating these quantities, we have
that E(z′ | z = z1) = 0. 7(0. 5) + 0. 15(1) + 0. 15(1. 5) = 0. 7250 < E(z′) = 1
where E(z′) denotes the expectation of the technology shock in the i.i.d.
case, and E(z′)<E(z′ | z = z3) = 0. 15(0. 5) + 0. 15(1) + 0. 7(1. 5) = 1. 2750.
We also have that Var(z′ | z = z1) = Var(z′ | z = z3) = 0. 1369 and
Var(z′) = 0. 1667. Combining these results with the form of the optimal
decision rule for savings shows that an increase in the persistence of the
shock on saving decreases the expected return to saving when z is low
and increases its variance, and conversely when z is high. The effect of an
increase in persistence is the sum of these two effects, as demonstrated by
the numerical results.

10.3.2. The stationary distribution

We can also calculate the unconditional moments for consumption, sav-
ing, and output by generating the stationary distribution for the capital
stock-technology shock pairs (k, z). The interest in generating such uncon-
ditional moments is that they have been used to match the model with
the data in the RBC literature. To derive the unconditional moments, we
first generate the conditional distribution for (k′, z′) given (k, z) by mak-
ing use of the decision rule for the optimal capital stock k′ = g(k, z) and
the transition probability matrix for the technology shock. Define Kj as
the 100 × 100 matrix which has a one in the (l , i) position if g(ki, zj) = l
for i, l = 1, . . . , 100 and j = 1, . . . , 3. In other words, Kj shows the capital
stock states that can be reached next period conditional on being in the
state k = ki, z = zj today. Now define P as

P =
⎡
⎣ φ11K1 φ12K1 φ13K1

φ21K2 φ22K2 φ23K2

φ31K3 φ32K3 φ33K3

⎤
⎦ .

Notice that P is a 300 × 300 matrix with typical element given
by Prob(k′ = kl , z′ = zm | k = ki, z = zj) for i, l = 1, . . . , 100 and
j, m = 1, . . . , 3. The stationary distribution for (k, z) satisfies the relation

P ′� = �,

where πl ,m = Prob(k′ = kl , z′ = zm) for l = 1, . . . , 100 and m = 1, . . . , 3. In
practice, the probability of many of the (kl , zm) pairs will be zero as
the ergodic set for the joint distribution of the long-run capital stock
and technology shock will be a strict subset of K × Z . The stationary
distribution for the (k, z) pairs is obtained by iterating on the relation
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Figure 10.3. Stationary distribution for the capital stock

P ′�n =�n+1 beginning with �0. The invariant distribution for the cap-
ital stock is then obtained by summing πij over the possible realizations

of z as π k
l =

3∑
m = 1

πl ,m. Figure 10.3 displays this distribution for the case of

γ = 0. 25 and φ = 0. 33.

The stationary distribution for the capital stock allows us to exam-
ine the unconditional moments of consumption, capital, and output.
These are reported in Table 10.2. For the logarithmic utility case, an
increase in variance leads to greater variability of all three series. Recall
that there is no effect of changes in persistence on the optimal decision
rule. Hence, changes in persistence affect the underlying moments only
through changes in the stationary distribution for the economy. In con-
trast to the i.i.d. case, when there is a realization of a high productivity
state, this will tend to last longer the more persistent is the shock. Conse-
quently, the economy will continue to accumulate capital until the capital
stock reaches the upper bound of the ergodic state. Similarly, when the
economy experiences a low realization of the shock, the longer is the series
of low shocks, the lower will be the values of capital, consumption, and
output. When γ < 1, recall that saving is increased for high realizations
of z and decreased for low realizations. This has the effect of reinforcing
the direct effect of increased correlation, leading to higher variability in all
three series as persistence is increased. By contrast, the impact of increased
persistence on output, consumption, or capital volatility is not monotonic
for the case with γ > 1.
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Table 10.2. Unconditional moments of consumption, capital stock
and output

γ = 0. 5

φ Consumption Capital Output
0.33 mean 0.2737 0.0814 0.3552

var 0.0157 0.0005 0.0217
coeff. var. 0.4575 0.2746 0.4147

0.7 mean 0.2773 0.0845 0.3618
var 0.0180 0.0012 0.0283
coeff. var. 0.4840 0.4045 0.4648

γ = 1

φ Consumption Capital Output
0.33 mean 0.2702 0.0848 0.3551

var. 0.0133 0.0013 0.0228
coeff. var. 0.4265 0.4219 0.4249

0.7 mean 0.2759 0.0858 0.3617
var. 0.0173 0.0018 0.0304
coeff. var. 0.4771 0.4985 0.4818

γ = 3

φ Consumption Capital Output
0.33 mean 0.2518 0.1281 0.3799

var 0.0075 0.0080 0.0306
coeff. var. 0.3434 0.6998 0.4608

0.7 mean 0.2644 0.1342 0.3987
var 0.0132 0.0087 0.0429
coeff. var. 0.4344 0.6966 0.5195

10.4. F I N A N C I A L S T R U C T U R E O F A F I R M

In Section 10.1, we assumed that households own the stocks of capital and
make investment decisions and firms rent or buy capital from households
on a period-by-period basis. In this section, we assume that firms own
the physical stocks of capital and formulate the present-value maximiza-
tion problem that they solve. Firms finance new investment by retained
earnings, equity issue, and debt issue which we assume takes the form
of one-period bonds. There is a single production process that uses labor
and capital and that depends on the random technology shock. We use
this framework to discuss the financial structure of a firm, to derive a
Modigliani-Miller theorem about the irrelevance of debt versus equity
financing, and to study market returns and risk. Our discussion is based
on Brock and Turnovsky [80], who work with a continuous time version
of the one-sector growth model.



Economies with production 263

The household supplies labor inelastically and chooses sequences for
consumption, and bond and share holdings to solve:

max
{ct ,zt+1,bd

t+1}
E0

{ ∞∑
t=0

β tU (ct)

}
(10.48)

subject to

ct + qtzt+1 + bd
t+1 ≤ wtns

t + (1 + rt)bd
t + zt(qt + dt), (10.49)

and the restriction that 0 ≤ ns
t ≤ 1. The household treats the stochastic pro-

cesses for prices wt , rt , qt , and dividends dt as given. In this expression, the
price of the bond being sold is assumed to be one for all periods. The left
side of the household budget constraint in (10.49) gives total expenditures
on consumption and payments on purchases of bond and stock. The right
side denotes the total wealth accumulated during the period, which con-
sists of labor income, the face value plus return of the bond purchased at
the beginning of the period, and dividends plus resale value of the stock
purchased at the beginning of the period.

Let λt denote the multiplier for the constraint in Equation (10.49). The
first-order conditions with respect to ct , zt+1 and bd

t+1 are:

λt = U ′(ct), (10.50)

qtλt = βEt[λt+1(qt+1 + dt+1)], (10.51)

λt = βEt[λt+1(1 + rt+1)]. (10.52)

Define mt+i ≡ β iU ′(ct+i)/U ′(ct) as the intertemporal marginal rate of
substitution in consumption. We assume that 0 ≤ ns

t ≤ 1 and because labor
causes no disutility, ns

t = 1 at the consumer’s optimum.
On the production side, the firm owns the capital stock and chooses

how much labor to hire, how much to produce, and how much to invest.
The production function is given by F (Kt , nt , θt) and it displays constant
returns to scale. The technology shock is i.i.d. and has a distribution that
satisfies the conditions of Assumption 10.6.

Assumption 10.6 The technology shock θ : � → � where � = [θ , θ̄ ] is
i.i.d. with stationary distribution function G. The function G has the proper-
ties that G(θ ) = 0 for θ ≤ θ and G(θ ) = 1 for θ ≥ θ̄ . Also dG > 0 and dG is
continuous.

The firm sells output to consumers and to other firms for investment. In
the absence of adjustment costs, irreversibilities in investment, and other
frictions, the relative price of old and new capital equals one. Thus, the
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gross profit of the firm equals total sales (which we assume equals its output
so that no inventories are held) minus its wage bill, or

πt = F (Kt , nt , θt) − wtnd
t . (10.53)

The receipts πt are disbursed in various ways: either paid out as dividends,
ztdt , as payments on bonds (1 + rt )bt , or held as retained earnings, REt .
The following accounting identity holds:

πt = REt + dtzt + (1 + rt)bt . (10.54)

Because a firm is the owner of the capital stock, it must decide not only
how much to invest but also how to finance this investment. A firm can
finance investment by:
• issuing new bonds bt+1;
• issuing new equity shares qt(zt+1 − zt); or
• its retained earnings, REt .
Hence, the firm’s investment, Kt+1 − (1 − δ)Kt , satisfies:

Kt+1 − (1 − δ)Kt = bt+1 + (zt+1 − zt)qt + REt (10.55)

Define net cash flow (NCF) from the firm to households as:

Nt = πt − Kt+1 + (1 − δ)Kt , (10.56)

which is the gross profit net of investment. By substituting the equations
for πt and investment in (10.54) and (10.55) into the definition of NCF
above, we obtain:

Nt = dtzt + (1 + rt )bt + qt(zt − zt+1) − bt+1. (10.57)

Thus, the net cash flow to households equals the sum of dividend and
interest payments on outstanding shares and debt minus new share and
debt issues. We will relate the firm’s net cash flow to the value of the firm
momentarily.

The ex-dividend value of the firm, or the value of the firm at the end of
the period after all dividend and debt payments have been made, is defined
as the value of its equity shares, qtzt+1, plus the value of its outstanding
debt, bt+1.

W e
t ≡ qtzt+1 + bt+1. (10.58)

We can also define the ex-dividend value as the total claims of shareholders
and debtholders on the firm. The value of the firm at the beginning of
period t is the sum of net cash flow in period t and the ex-dividend value:

Wt ≡ Nt + W e
t

= Nt + qtzt+1 + bt+1. (10.59)
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We now show that the value of the firm can be expressed as the expected
discounted value of its future cash flows. Now

W e
t ≡ qtzt+1 + bt+1

= Et{mt+1[(qt+1 + dt+1)zt+1 + (1 + rt+1)bt+1]}, (10.60)

where we have substituted for qtzt+1 and bt+1 after multiplying Equa-
tions (10.51) and (10.52) by zt+1 and bt+1, respectively. Now add and
subtract qt+1zt+2 and bt+2 to the right side of Equation (10.60). Using the
definition of W e

t+1 and NCF in Equation (10.57), we have:

W e
t = Et

{
mt+1

[
W e

t+1 + dt+1zt+1 + (1 + rt+1)bt+1

+qt+1(zt+1 − zt+2) − bt+2
]}

= Et
[
mt+1(W e

t+1 + Nt+1)
]

. (10.61)

We can use this expression and solve Equation (10.61) forward to express
the (ex-dividend) value of the firm as:

W e
t = Et

[ ∞∑
i=1

mt+iNt+i

]
(10.62)

assuming that the discounted value limi→∞ Et[mt+iW e
t+i] → 0. This

shows that the ex-dividend value of the firm is the expected discounted
value of future cash flows.

The present-value maximization problem of the firm involves choosing
next period’s capital stock and the labor input to maximize the firm’s value
today. At the beginning of period t, the firm solves:

Wt = max
{Kj+1,nd

j }∞j=t

{
Nt + Et

[ ∞∑
i=1

mt+iNt+i

]}
, (10.63)

subject to the law of motion for capital Kt+1 = (1 − δ)Kt + it , given the
expression for net cash flows Nt = F (Kt , nt , θt ) − wtnd

t − it and the initial
capital stock Kt .

The discount rate is treated parametrically by the firm although it
depends on the representative household’s behavior in equilibrium. Hence,
we can model a firm as maximizing its value, defined as its expected dis-
counted cash flow. This result holds more generally; if there exist complete
contingent claims markets, the discount factor for the firm’s problem is also
given parametrically but it can be evaluated in terms of the intertemporal
MRS in consumption for any consumer in the economy, which equals the
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ratio of the contingent claims prices.4 We now demonstrate that the ver-
sion of the problem in which firms own the capital stock is equivalent to
the previous two versions studied in Sections 10.1.1 and 10.1.2. The firm
solves the problem defined in Equation (10.63) subject to the constraints.
The first-order conditions for the firm’s problem are:

wt = F2(Kt , nt , θt ), (10.64)

1 = Et {mt+1 [F1(Kt+1, nt+1, θt+1) + (1 − δ)]} . (10.65)

Observe that the household’s budget constraint can be rewritten as:

ct = wtns
t + Nt

= wtns
t + F (Kt , nt , θt) − wtnd

t − [Kt+1 − (1 − δ)Kt]

= F (Kt , nt , θt) − [Kt+1 − (1 − δ)Kt ]

Making use of the CRTS property of the production function and the fact
that quantity of labor in equilibrium is one, nd

t = ns
t = 1, the first-order

condition for the firm with respect to its choice of capital can be expressed:

U ′(ct) = βEt
{
U ′(ct+1)[f ′(kt+1, θt+1) + (1 − δ)]

}
. (10.66)

Hence, we have shown that different versions of the problem with produc-
tion and capital accumulation in which households own the capital stocks,
where they lease this capital to firms, or where firms own the capital stocks,
yield equivalent solutions.

10.4.1. The irrelevance of debt versus equity financing

The Modigliani-Miller theorem says that if markets are complete, then
firms are indifferent between debt and equity financing, so the debt-
equity ratio is indeterminate. We can derive the Modigliani-Miller theorem
regarding the irrelevance of the firm’s financing decisions using this frame-
work. (See Modigliani and Miller [345].) Notice that the firm’s cash flow
depends only on the firm’s production decisions, such as how much labor
to hire, how much to produce, and how much to invest. Under the assump-
tion of constant returns to scale, gross profits are equal to πt = f ′(kt , θt)kt ,
or the value of capital, which is the marginal product of capital times the
capital stock per capita. Hence, the net cash flow is:

Nt = f ′(kt , θt)kt − [kt+1 − (1 − δ)kt].

4 This is just a restatement of the implications of complete contingent claims equilibrium that we
derived in Chapter 1. In the absence of a representative consumer or the complete markets assump-
tion, we run into the problem of shareholder unanimity explored by Hart [241], Radner [364], and
others in terms of determining the criterion function for the firm.
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Hence, the firm’s cash flow does not depend on the financing decisions
made by the firm. In particular, it does not depend on the amount of equity
issued, the debt-equity ratio, nor on the amount of retained earnings.

To show this result in a different way, add and subtract qt+1zt+2 and bt+2

from the right side of Equation (10.60) and use the definition of Nt+1 to
obtain:

W e
t = [

qtzt+1 + bt+1
]

= Et
{
mt+1[qt+1zt+2 + bt+2 + Nt+1]

}
.

This expression shows that a person who owns all the equity and debt of
the firm, simply someone who owns the firm, has a claim on next period’s
cash flow and the value of debt and equity. Re-writing this shows that the
debt-equity ratio is irrelevant:

W e
t = Et

{
mt+1[qt+1zt+2 + bt+2 + Nt+1]

}
=
[

qt + bt+1

zt+1

]
zt+1. (10.67)

Recall that qt depends on the agent’s intertemporal marginal rate of substi-
tution. Thus, as long as the ex-dividend value of the firm W e

t remains fixed,
the division of this quantity between debt and equity is irrelevant. Con-
sequently, if there are no other distortions such as taxation, bankruptcy,
et cetera, the financing decisions do not affect the value of the firm.

10.4.2. The equity price and the equity premium

We now derive expressions for the equity price, equilibrium dividends,
and the equity premium. Since there are no taxes or other distortions, the
equilibrium allocation is optimal and can be found by solving the social
planning problem. Let the solution take the form of time-invariant policy
functions ct = g(kt , θt) and kt+1 = h(kt , θt ). We will construct supporting
prices for the implied optimal allocations. In equilibrium, all shares are
held, zt+1 = 1, all bonds are purchased, bd

t+1 = bt+1, and consumption plus
investment exhaust output, ct +kt+1 = f (kt , θt)+ (1−δ)kt . Notice that the
net cash flow, Nt , is equal to the cash that flows from the business sector
to the household sector.

If we solve Equation (10.55) for retained earnings and substitute into
Equation (10.54) and then solve for dt , we have:

dt = f ′(kt , θt)kt − [kt+1 − (1 − δ)kt] + bt+1 − (1 + rt)bt . (10.68)
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Increasing the time subscript by one in the preceding equation and then
substituting for dt+1 into Equation (10.51), the equity price satisfies:

qt = Et
{
mt+1

[
qt+1 + f ′(kt+1, θt+1)kt+1

−kt+2 + (1 − δ)kt+1 + bt+2 − (1 + rt+1)bt+1]} . (10.69)

Now multiply the first-order condition for the firm’s choice of investment
described by Equation (10.65) by kt+1 and use the resulting expression
to substitute for the term mt+1f ′(kt+1, θt+1)kt+1 in Equation (10.69). This
yields:

qt = Et
[
mt+1(qt+1 + bt+2 − (1 + rt+1)bt+1 − kt+2)

] + kt+1.

Now add bt+1 to both sides of this equation and use the fact that
bt+1 = Et[mt+1(1 + rt+1)bt+1] by the first-order for bond holdings in
Equation (10.52) to obtain:

qt + bt+1 = Et
[
mt+1(qt+1 + bt+2 − kt+2)

] + kt+1. (10.70)

This is a stochastic difference equation which has the solution:

qt + bt+1 = kt+1 ∀t. (10.71)

(To verify this statement, substitute this solution into both sides of Equa-
tion (10.70).) Hence, we can express the (ex-dividend) value of the firm as
the value of the capital stock at the end of the period, or:

W e
t = qt + bt+1 = kt+1. (10.72)

Under the assumptions that (i) the firm finances investment by retained
earnings; (ii) there is no borrowing (bt+1 = 0); (iii) there are no new equity
shares issued; and (iv) production displays constant returns to scale, the
ex-dividend value of the firm is:

W e
t = qt = kt+1. (10.73)

The expression for equity prices in Equation (10.69) implies that:

qt = Et
{
mt+1

[
f ′(kt+1, θt+1)kt+1 + (1 − δ)kt+1

]}
, (10.74)

where we have used qt+1 = kt+2 together with bt = 0 for all t.
Define the equity return as 1+re

t+1 ≡ (qt+1+dt+1)/qt . The equity return
satisfies:

1 = Et
[
mt+1(1 + re

t+1)
]

1 = Et
{
mt+1

[
f ′(kt+1, θt+1) + (1 − δ)

]}
. (10.75)

Using Equation (10.52), we can show that the risk-free rate of return is

given by 1+rf
t+1 = 1/Et(mt+1). Thus, the conditional equity premium, which
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shows the expected value of the difference between the equity return and
the return on the risk-free bond, is:

Et(re
t+1) − rf

t+1 = − 1

Et(mt+1)
Covt

[
mt+1, f ′(kt+1, θt+1)

]
. (10.76)

Hence, the equity premium depends on the conditional covariance
between the intertemporal MRS in consumption and the marginal produc-
tivity of capital. Notice that if the restrictions on equilibrium consumption
and returns are not imposed, then the model with production has essen-
tially the same predictions as the consumption-based asset-pricing model
in terms of defining risk premia as the covariance of the intertemporal
MRS and the asset return. However, if we recognize that, unlike the pure
exchange model in which consumption is exogenous, the intertemporal
MRS or stochastic discount factor depends on factors that affect both con-
sumption and investment, then the asset-pricing model with production
acquires content.

10.4.3. Empirical implications

In a fully-specified asset-pricing model with production, a variety of factors
affect the magnitude of the equity premium. These include:
• consumers’ attitudes toward risk;
• the variability and persistence of productivity shocks;
• the marginal product function for capital.
Using an asset-pricing model with production, Donaldson and Mehra
[156] derive a variety of comparative dynamics results for the behavior
of the risk-free rate, the equity return, and the equity premium. They
first compute the decisions rules for consumption and the capital stock
based on a parameterization that is identical to the one that we described
in Section 10.3.1. Together with the stationary distribution for the cap-
ital stock, they then numerically evaluate the asset-pricing functions to
compute unconditional risk premia and returns. First, they show that the
unconditional equity premium rises as agents become more risk averse and
the risk-free rate declines. They also find that the average or unconditional
equity return first rises and then declines with greater risk aversion. The
reason for the eventual decline in the equity return is that the reduced vari-
ation in consumption due to increased risk aversion is accompanied by the
increased variation in output. Since the equity return is the marginal prod-
uct of capital, the average equity return falls when the economy operates at
higher levels of capital. Finally, increases in the discount factor reduce both
the risk-free rate and the equity return. The equity return falls because con-
sumers with higher discount factors invest a larger fraction of output. The
risk-free rate falls because consumers who value the future more are willing
to pay a higher price for a certain payoff in the future. The links among
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risk aversion, production, and the equity premium are also discussed in
Benninga and Protopapadakis [55].

Cochrane [107] uses a version of Equation (10.75) to discuss the asset-
pricing implications of the model with production. Unlike our approach,
he does not fully specify the consumer’s side of the economy. Instead he
derives a version of Equation (10.75) using the present-value maximization
problem of the firm under the assumption that cash flows in different states
of the world or events are discounted using the contingent claims prices
for those states. This is equivalent to our framework because in a fully
specified equilibrium model, the stochastic discount factor mt+1 equals the
ratio of the contingent claims prices. Cochrane [107] also assumes the exis-
tence of adjustment costs in investment, an issue that we will discuss in the
next chapter. However, this feature of his model is not important for our
purposes. To understand Cochrane’s approach, we note that the quantity

f ′(kt+1, θt+1) + (1 − δ) (10.77)

is the rate of return to:
• buying a unit of capital in period t;
• obtaining the marginal product of capital in period t + 1 and;
• selling off the undepreciated part in period t + 1.
Cochrane [107] notes that the return to investment is equal to the return
on owning a claim to the firm or a stock. In our earlier analysis, we
showed that the value of the firm W e

t is equal to the value of the capital
stock kt+1, which under the assumption that the firm finances investment
only through retained earnings, also equals to the equity price. (See Equa-
tion (10.73).) Cochrane [107] uses these relations to link forecasts of stock
returns and investment returns to a set of business-cycle related variables.
In his framework, investment returns as defined by (10.77) are computed
using actual data on the investment-capital ratio and hence reflect real
investment decisions in the economy.

Cochrane [107] reports the following. First, investment returns and
stock returns are positively correlated at both quarterly and annual fre-
quencies. Second, in regressions of stock returns and investment returns on
variables known to forecast stock returns such as the term premium, the
corporate premium, the lagged real stock return, the dividend-price ratio,
and the investment-capital stock ratio, the hypothesis that with the excep-
tion of the dividend-price ratio the determinants of both stock returns
and investment returns are identical cannot be rejected at conventional
significance levels. This suggests that with the exception of the dividend-
price ratio, all variables used in these forecasting equations have a common
“business cycle” component that forecasts both types of returns. Third,
regressions of stock returns and investment returns on current, lagged, and
future investment-capital stock ratios suggest that forecasts of both types of
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returns from investment-capital stocks are essentially the same. Finally, the
paper examines the forecastability of GDP growth from stock returns and
investment returns, and again fails to reject the hypothesis that both sets
of forecasts are the same. These results provide some evidence in favor of
the production-based asset-pricing model, which suggests that investment
returns and stocks returns should be equal. Cochrane’s [107] analysis is
different from other analyses of the production-based asset-pricing model
because it abstracts from factors that jointly determine consumption and
capital stock allocations with asset returns. However, it nevertheless helps
to illustrate the implications of the model for the association between stock
returns and investment returns and their relationship to future economic
activity.

Jehrmann [264] considers a fully specified equilibrium model with
a production side. He solves the production-based model by first log-
linearizing the first-order conditions and then applying the log-linear
asset-pricing functions that we derived in Chapters 8 and 9. To provide
another example of a solution method, we illustrate the method of log-
linearizing the optimality conditions of the growth model considered in
section 10.1 around a deterministic steady state. Our procedure follows
Uhlig [435].

Example 10.2 Assume that preferences are of the CRRA variety and the
production function is Cobb-Douglas. Also assume that the depreciation
rate is 100%. Also assume that the logarithm of the technology shock fol-
lows a stationary first-order autoregressive process as ln (θt+1) = (1 − ρ) +
ρ ln (θt) + εt+1, 0<ρ < 1 and εt ∼ N (0, σ 2

ε ) and i.i.d. The optimality
conditions can be written as

β

[(
Ct+1

Ct

)−γ

αθt+1K α−1
t+1

]
= 1, (10.78)

Ct + Kt+1 = θtK α
t (10.79)

where γ > 0, γ �= 1 and 0<α< 1. Denote the steady-state values of the
variables by C̄ and K̄ . These allocations satisfy:

K̄ = β
1

1−α , (10.80)

C̄ = θ̄ K̄ α − K̄ . (10.81)

Define c̃t ≡ ln (Ct) − ln (C̄ ) and k̃t ≡ ln (Kt) − ln (K̄ ) as the percentage
deviation of each variable from its steady state. Thus, c̃t = 0. 05 means that
consumption in levels is 5% above its steady state. Now write:

Ct = C̄ exp (c̃t) ≈ C̄ (1 + c̃t),

Kt = K̄ exp (k̃t) ≈ K̄ (1 + k̃t).
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First evaluate the left side of the resource constraint under this
approximation:

Ct + Kt+1 = C̄ exp (c̃t) + K̄ exp (k̃t+1)

≈ C̄ (1 + c̃t) + K̄ (1 + k̃t+1)

= C̄ + K̄ + C̄ c̃t + K̄ k̃t+1.

Now evaluate the right side:

θtK α
t = θ̄ K̄ α exp (θ̃t + αk̃t)

≈ θ̄ K̄ α(1 + θ̃t + αk̃t ).

Substituting for the steady-state relations, the resource constraint becomes:

C̄ c̃t + K̄ k̃t+1 = θ̄ K̄ α(θ̃t + αk̃t).

The consumption Euler equation can be written:

1 = β

[(
C̄ exp (c̃t − c̃t+1)

C̄

)γ

αθ̄ K̄ α−1 exp (θ̃t + (α − 1)k̃t+1)

]
,

0 ≈ β
[
αθ̄ K̄ α−1(γ (c̃t − c̃t+1) + θ̃t + (α − 1)k̃t+1)

]
,

0 = β
[
(γ (c̃t − c̃t+1) + θ̃t + (α − 1)k̃t+1)

]
.

Thus, the log-linearized conditions are:

c̃t + K̄

C̄
k̃t+1 = Ȳ

C̄
(θ̃t + αk̃t), (10.82)

β
[
(γ (c̃t − c̃t+1) + θ̃t + (α − 1)k̃t+1)

]
= 0, (10.83)

θ̃t+1 = ρθ̃t + εt+1. (10.84)

The resulting system can be further simplified by substituting for θ̃t and
also for c̃t and c̃t+1 in terms of the current and future capital stocks. This
will typically yield a linear second-order difference equation for k̃t+1 which
can be solved using methods for solving difference equations.5 Once we
obtain a solution to this difference equation, this solution can be simulated
for different histories of the technology shocks and the log-linear asset-
pricing equations can be evaluated for those histories.

5 See, for example, Uhlig [435], Section 4.7.
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Jermann [264] follows this approach and presents a calibration of his
model to determine the parameter values entering preferences, the produc-
tion function, and the technology process. He shows that the introduction
of production does not necessarily help in resolving the equity premium
“puzzle.” If households can save through capital accumulation, they can
alter their consumption streams to reduce fluctuations in consumption
over time. Thus, consumption becomes even smoother as agents become
more risk averse. Jermann argues that it is necessary to introduce additional
frictions which will prevent such consumption smoothing in equilibrium
and which will lead to sufficient variation in the intertemporal MRSs to
account for the equity premium. For this purpose, he introduces adjust-
ment costs in investment and habit formation in preferences following
Constantinides [118] and others. We discuss his results further in the next
chapter.

Akdeniz and Dechert [13] use a version of Brock’s asset-pricing model
with production to re-examine the “equity premium puzzle.” They con-
sider a version of the one-sector optimal growth model with multiple risky
technologies. They argue that it is not necessary to change preferences to
obtain a higher equity premium but that including production is sufficient.
They also argue that the equity premium in a simple model with produc-
tion is state-dependent; that is, if one defines a business cycle in terms of the
possible realizations of output, in their framework, the equity premium
is higher at the bottom of a business cycle than it is at the top. By con-
trast, most discussions of the equity premium are based on unconditional
moments which average over the business cycle. To obtain these results,
they consider both systematic and idiosyncratic shocks to the firm-specific
technologies. They use the approach of approximating the policy functions
for consumption (or capital) by Chebeychev polynomials as described by
Judd [269].

10.4.4. Taxes and the debt-equity ratio

The effect of taxation on optimal capital structure has been widely stud-
ied in the financial economics literature. In the US tax code, corporations
can deduct the interest payments on debt but not dividend payments from
taxable corporate income. The “balancing theory” of corporate financial
structure states that firms balance the tax advantage of debt against vari-
ous costs associated with “financial distress.”6 Yet Miller [343] has noted
that the usual arguments for the tax advantage of corporate debt relative
to corporate equity would be offset by the tax on interest income paid by
holders of corporate debt. We now use a version of the model in Brock

6 See the discussion and references in Kim [275].
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and Turnovsky [80] with distortionary taxes to demonstrate Miller’s equi-
librium with debt and taxes and to describe the effects of distortionary
taxes on the firm’s cost of capital.

The government assesses a proportional income tax equal to τy on
households so that a household’s budget constraint becomes:

ct +qtzt+1 +bt+1 ≤ (1− τy)[wtlt + rtbt + ztdt]+bt + ztqt . (10.85)

Notice that only interest income and dividend income are taxed; a capital
gains tax is studied by Brock and Turnovsky [80].

The representative household maximizes the objective function in Equa-
tion (10.48) subject to the constraint in Equation (10.85) by choosing
sequences for ct , zt+1, and bt+1. The first-order conditions are:

U ′(ct) = λt , (10.86)

qtλt = βEt
{
λt+1[(1 − τy)dt+1 + qt+1]

}
, (10.87)

λt = βEt
{
λt+1[1 + rt+1(1 − τy)]

}
. (10.88)

We will use these conditions later to determine the value of the firm.
The firm pays taxes on its gross profits but is allowed to deduct inter-

est payments on debt. We assume constant returns to scale in production
for convenience. Since the household supplies labor inelastically, the firm’s
gross profits are:

πt = f (kt , θt) − wt . (10.89)

The accounting identity in Equation (10.54) is now modified to
include tax payments and deductions; the other accounting identity in
Equation (10.55) remains unchanged. The gross profits of a firm are
distributed as:

(1 − τp)πt = REt + dtzt + (1 + rt)bt − τprtbt . (10.90)

In this expression, the term τprtbt reflects the deduction of interest pay-
ments on debt and τpπt is the amount of tax paid by the firm. Define the
after-tax net cash flow as N τ

t :

N τ
t ≡ (1 − τp)πt − [kt+1 − (1 − δ)kt ]. (10.91)

Solving Equations (10.90) and (10.55) for retained earnings, equating the
results, and using the definition of net cash flows, we have:

N τ
t = dtzt + (1 + rt)bt − τprtbt + qt(zt − zt+1) − bt+1. (10.92)

Note that the net cash flow defined above differs from the one in equa-
tion (10.57) only in the deduction of interest payments on debt. Define
mt+1 =βλt+1/λt .
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The (ex-dividend) value of the firm, W e
t , is defined as:

W e
t ≡ qtzt+1 + bt+1 (10.93)

= Et
{
mt+1[

(
(1 − τy)dt+1 + qt+1

)
zt+1 + (1 + rt+1(1 − τy))bt+1]

}
,

where we have substituted for zt+1qt and bt+1 after multiplying Equa-
tion (10.87) by zt+1 and Equation (10.88) by bt+1. Adding and subtracting
qt+1zt+2 and bt+2 from the right side of Equation (10.93), we have:

W e
t = Et

{
mt+1[((1 − τy)dt+1 + (1 + rt+1(1 − τy))bt+1

+qt+1(zt+1 − zt+2) − bt+2 + W e
t+1]

}
. (10.94)

Increasing the time subscripts by 1 in Equation (10.92), solving this expres-
sion for qt+1(zt+1 − zt+2) − bt+2, substituting into Equation (10.94) and
simplifying, we obtain:

W e
t = Et

{
mt+1[(τp − τy)rt+1bt+1 − τydt+1zt+1 + N τ

t+1 + W e
t+1]

}
.

Define the debt-equity ratio and the dividend-price ratio by:

Dt ≡ bt+1/qtzt+1

�t+1 ≡ dt+1/qt ,

respectively. This implies that qtzt+1 = W e
t /(1 + Dt). The first-order

condition in Equation (10.88) can be expressed as Et(mt+1rt+1) = [1 −
Et(mt+1)]/(1 − τy). Substituting these definitions and the re-written first-
order condition into the above expression results in:

W e
t = (τp − τy)

1 − τy
[1 − Et(mt+1)]

W e
t Dt

1 + Dt

+Et

{
mt+1

[
−τy

W e
t �t+1

1 + Dt
+ N τ

t+1 + W e
t+1

]}

= Et
[
�t+1(N τ

t+1 + W e
t+1)

]
, (10.95)

where

�t+1 ≡

⎡
⎢⎣ mt+1

1 + Dt
1 + Dt

τy − τp
1 − τy

(1 − Etmt+1) + τy

1 + Dt
Et(mt+1�t+1)

⎤
⎥⎦ .

Notice that if τy = τp = 0, then �t+1 = mt+1. Generally, �t+1 <mt+1

which indicates that the cost of capital to the firm, defined as ρ = 1/�− 1
when there is taxation and ρ = 1/m − 1 when there is not, increases with
distortionary taxation. Notice that the cost of capital now depends on
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the firm’s financial decisions such as the debt-equity ratio and the price-
dividend ratio. The cost of capital with distortionary taxation can be
expressed as:

ρt+1 = 1

mt+1

[
1 + bt+1

W e
t

τy − τp

1 − τy
[1 − Et(mt+1)]

+τyqtzt+1

W e
t

Et (mt+1�t+1) − mt+1

]
, (10.96)

which is a weighted average of the cost of debt capital and the cost of
equity capital. So, as long as the costs of debt and equity are not equal,
the cost of capital of the firm will depend on how much is financed with
debt and equity. The Modigliani-Miller theorem no longer holds because
clearly the discount rate now depends on the financing decisions made
by firms. We can incorporate the effects of distortionary taxation on the
value of the firm and the equity return following the steps in Section 10.4.2
and 10.4.3.

The firm maximizes the present value of future cash flows, Wt = N τ
t +

W e
t , in two steps. First, it minimizes its cost of capital by choosing the opti-

mal debt-equity ratio Dt and the optimal dividend policy. Second, given
the minimum cost of capital, it determines the optimal capital and labor
sequences {kt+s, nd

t+s}∞s = 0. The optimization can be performed in this way
because �t+1 depends only on the financial variables Dt and �t+1 while net
cash flow N τ

t depends on the real production variables, kt and nd
t . Brock

and Turnovsky [80] study the firm’s optimization problem and show that
the optimal dividend policy and optimal capital structure will involve a
corner solution: either all debt financing or all equity financing. To demon-
strate this result, we differentiate the expression for ρt+1 with respect to Dt

and �t+1:

sgn
�ρt+1

�Dt
= sgn

{
τy − τp

1 − τy
[1 − Et(mt+1)] − τyEt (mt+1�t+1)

}
,

sgn
�ρt+1

��t+1
= sgn

{
τyEt (mt+1)

}
.

These conditions are similar to those derived by Brock and Turnovsky.
Since τy is positive, the firm minimizes its cost of capital by minimiz-
ing the value of the dividend payout ratio, Et(mt+1�t+1). Brock and
Turnovsky note that in the absence of any constraints, this would involve
repurchase of shares. However, this is discouraged under the US tax
code. Instead of modeling the legal constraints faced by firms, we assume
that the firm minimizes the value of its dividend payments by setting
Et(mt+1�t+1) = Et(mt+1�̃), where �̃ is the minimum payout rate, or the
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ratio of dividends to the earnings per share, taken to be exogenous. Then,
the optimal financial mix is determined as follows:

if
τy − τp

1 − τy
[1 − Et(mt+1)] < τyEt

(
mt+1�̃

)
, set Dt = ∞,

(10.97)

if
τy − τp

1 − τy
[1 − Et(mt+1)] > τyEt

(
mt+1�̃

)
, set Dt = 0. (10.98)

Notice that Dt = ∞ implies all bond financing while Dt = 0 involves all
equity financing.

We can also derive versions of Equations (10.97) and (10.98) that allow
for a capital gains tax τc on equities. In this case, if the net after-tax income
on bonds exceeds the net after-tax income from equity, where the latter
are taxed twice, first as corporate profits and second as personal income to
shareholders, no investor will wish to hold stocks and the firm must engage
in all debt financing. Otherwise, the firm will engage in equity financing.
A sufficient condition for the former to hold is that the corporate profit
tax rate τp exceeds the personal income tax rate τy.

Other explanations of corporate capital structure that are based on con-
flicts of interest among shareholders, bondholders, and managers have been
provided by Myers [350], Jensen and Meckling [265], and others. Firms’
financial structure and dividend policy have also been explained in terms
of signaling models. In Ross’s [369] signaling model, the debt-equity ratio
serves as a signaling mechanism to outsiders about the firm’s risk and prof-
itability. Likewise, Bhattacharya [65] uses a signaling model to rationalize
why firms pay dividends despite the fact that dividends are taxed at a higher
rate than capital gains. Although private information considerations and
incentive problems are potentially important ways for explaining corporate
capital structure and other observed contractual arrangements, the papers
cited above do not derive the form of the proposed arrangements as part
of an optimal contract.

10.5. C O N C L U S I O N S

In this chapter, we have reviewed a variety of results regarding the one-
sector optimal growth model. As we have shown, this model constitutes
the workhorse for dynamic general equilibrium models. It can be used to
analyze growth and capital accumulation, the impact of taxation on capital
accumulation, asset pricing with production, investment and the financial
structure of a firm, to name a few. The neoclassical growth model also
constitutes the basis for “real business cycle” analysis, a topic that we discuss
in Chapter 12. In this chapter, we have omitted a discussion of endogenous
growth models considered by Romer [368], Lucas [320], and others. In
contrast to the neoclassical model, these models allow for sustained growth
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from the existence of externalities and increasing returns in production
(Romer [368]) or from human capital accumulation (Lucas [320]).

A P P E N D I X : T H E I N V A R I A N T D I S T R I B U T I O N

In this appendix, we provide a formal proof of the existence of the station-
ary distribution of the capital stock. Our discussion is based on Danthine
and Donaldson [132] and Stokey and Lucas [418], Chapters 8 and 11.

To study the existence of the stationary distribution for the capital stock,
we consider a simple version of the one-sector optimal growth model in
which the technology has the multiplicative form:

yt = f (kt)θt .

We assume that the technology shock is i.i.d. with distribution function
defined by Assumption 10.6. The solution is a pair of policy functions:

c = g(y),

k′ = h(y) = y − g(y).

We now use the policy functions, the production function, and the distri-
bution function of the technology shock G to determine the distribution
for the output process; we denote this undetermined function as Ḡ.

The basic issue can now be described. We know that output is bounded
above, say by B, so that there is some feasible range of the capital stock
[0, B]. Our goal is to determine whether there is a range [y, ȳ] where 0< y
and ȳ <B such that Pr(y ≤ yt ≤ ȳ) = 1 for y ∈ [y, ȳ]. Also if y �∈ [y, ȳ],
we want to show that the probability that y moves into [y, ȳ] in a finite
number of periods is 1.

The set [y, ȳ] is called the ergodic set and the set of points in [0, B] dis-
joint from [y, ȳ] is called the transient set. To study the properties of the
ergodic set [y, ȳ], we study the fixed points of the deterministic difference
equations:

yt+1 = f (h(yt))θ

yt+1 = f (h(yt))θ̄ .

We will show that the fixed point of

yt+1 = f (h(yt))θ for θ ∈ [θ , θ̄ ], (10.99)

or the set of points for which y = f (h(y))θ for θ ∈ [θ , θ̄ ], is contained in
the interval [y, ȳ]. The basic approach is to rule out certain configurations
of fixed points so that the only remaining configurations are ones such that
the deterministic difference equations are stable.
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We know that

Pr(yt+1 ≤ y′|yt = y) = Pr(f (y − g(y))θ ′ ≤ y′)

= Pr

(
θ ′ ≤ y′

f (y − g(y))

)

= G
(

y′

f (y − g(y))

)
. (10.100)

Define the stochastic kernel as:

Q(y′, y) ≡ G
(

y′

f (y − g(y))

)
. (10.101)

The stochastic kernel takes Y ×Y ′ → [0, 1] where y ∈ Y and y′ ∈ Y ′. The
transition probability function, F (y′, y), that we studied in the context of
the Lucas asset-pricing model is a stochastic kernel with Y = Y ′.

To consider a specific example, suppose that U (c) = (c1−γ − 1)/(1 −
γ ), γ ≥ 0 and y = θkα, θ i.i.d. and θ ∈ [θ , θ̄ ]. Then

Pr(yt+1 ≤ y′|yt = y) = Pr((y − g(y))αθ ′ ≤ y′)

= Pr

(
θ ′ ≤ y′

(y − g(y))α

)

= G
(

y′

(y − g(y))α

)
.

What we would like to find is the unconditional or invariant distribution
for yt denoted Ḡ such that

Ḡ(y′) =
y∫

y

Q(y′, y)dḠ(y) (10.102)

such that the probability is one for yt ∈ [y, ȳ] and zero if yt �∈ [y, ȳ] . For
this purpose, we define an operator from the relation in Equation (10.102).

Given an initial output equal to y, the probability that output will be
less than or equal to y′ is equal to the last expression in Equation (10.100).
The stochastic kernel defines an operator T which we use in the following
way. If output is distributed at time t according to Ḡ(y), then output at
time t + 1 is distributed as:

T Ḡ(y) =
∫ ȳ

y
G
(

y′

f (y − g(y))

)
dḠ(y) (10.103)

where [y, ȳ] were defined above and are the objects to be determined. We
have the following theorem.



280 Asset Pricing for Dynamic Economies

Theorem 10.2 Under Assumptions (10.1), (10.3) and (10.6), the oper-
ator T defined by (10.103) has a unique solution G� and for any Ḡ,
limn→∞ T nḠ = G�. Furthermore, G� has a unique continuous density func-
tion dG which is strictly positive on the closed subset [y, ȳ] where

ȳ ≡ min
y

{y : dG(y − g(y))θ̄ = y},

y ≡ max
y

{y : dG(y − g(y))θ = y}.

First, we prove two properties of the stochastic kernel.

Lemma 10.3 Under Assumption (10.6), the stochastic kernel Q is regular.
This means that Q has a continuous density function, denoted q(y, y′), and the
family of transforms νt( · ), defined by

νt(y′) =
∫

q(y, y′)νt−1(y)dy

where ν0 = ν and ν is continuous and bounded, is equicontinuous whenever
ν0 is uniformly continuous.

P R O O F

Let By = maxy∈[y,ȳ] |ν0(y)|. Then by definition of νt , |νt(y)| ≤ By so that

|νt(y) − νt(y′)| =
∣∣∣∣
∫

q(α, y)νt−1(α)dα −
∫

q(α, y′)νt−1(α)dα

∣∣∣∣
≤
∫

|ψ(α, y) − ψ(α, y′)| |νt−1(α)dα|

< ε

for some δ sufficiently small such that |y − y′| < δ ⇒ |ψ(α, y) −
ψ(α, y′)| < ε/By for all ν. There is such a δ if q is uniformly continuous
on [y, ȳ].

This lemma is used to show that there exists a probability measure
satisfying limn→∞ T n�̄ =� for any G.

We use some properties of the policy functions in the next lemma.

Lemma 10.4 Let b,d be such that f (h(b))θ̄ = b and f (h(d ))θ = d. Then
b ≥ d.
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P R O O F

The optimal policy functions satisfy

U ′(g(b)) = βf ′(h(b))
∫

U ′(g(f (h(b))θ ′))θ ′dG(θ ′),

U ′(g(d )) = βf ′(h(d ))
∫

U ′(g(f (h(d ))θ ′))θ ′dG(θ ′).

For some θ , b > βf ′(h(d ))θ or U ′(g(b)) < U ′(g(f (h(b))θ )). Therefore
1 > βf ′(h(b))

∫
θ ′dG(θ ′) and conversely 1 < βf ′(h(d ))

∫
θ ′dG(θ ′). Hence

f ′(h(d )) > f ′(h(b)) or d < b.

Lemma 10.5 The set [y, ȳ] is the ergodic set of the Markov process with
transition probability Q(y, y′); the complement of [y, ȳ] is the transient set of
the process.

P R O O F

First, once the process has entered the set [y, ȳ] there is zero probability of
leaving it. This follows from

y ≤ f (h(y))θ ≤ ȳ

so that for any A �∈ [y, ȳ], and y ∈ [y, ȳ],

ψ(y, A) = d�(A/f (h(y))) = 0.

Second, we show that any subset of [y, ȳ] has positive measure. Because
f , g , dG are continuous and, for all y ∈ [y, ȳ], there exists an interval of
positive length around y, defined !(y), such that q(y, !(y))> 0.

We need to show that any interval [y1, y2] disjoint from [y, ȳ] is a tran-
sient set so that there is a positive probability of leaving the interval and
0 probability of reentering it. We can use Lemma 10.4 to show that all
fixed points of f (h(y))θ are less than the fixed points of f (h(y))θ̄ . An inter-
val [y1, y2] to the right of and disjoint from [y, ȳ] that is characterized by
f (h(y))θ < y for all θ and all y ∈ [y1, y2] will generate a y process that
will leave the interval in a finite number of steps for all possible realiza-
tions. Consider an interval [y1, y2] to the right of and disjoint from [y, ȳ]
such that y1 = f (h(y1))θ and y2 = f (h(y2))θ . By the continuity of f and h,
there exists a θ̂ > θ such that for all θ ∈ [θ , θ̂ ] and y ∈ [y1, y2] such that
f (h(y))θ < y. Hence there exists an n ≥ N such that T nf (h(y))θ < y1. We
can show that the expected number of visits to the interval [y1, y2] is strictly
less than infinity, hence [y1, y2] is a transient set. The same type of argument
applies to intervals below y.

It is straightforward to show that ȳ is finite because f is bounded. To
show that y > 0, assume that for some ε > 0, f (h(y))θ < y for all θ and
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y ∈ [0, ε]. Suppose that there is a sequence {yt , . . . , yt+n} such that yt <ε

so that the sequence is tending to 0. The first-order condition is:

U ′(g(at+n)) = βf ′(h(at+n))
∫ θ̄

θ

U ′(g(f (yt+n)θ ))θdG(θ )

But U ′(g(at+n)) < U ′(g(f (yt+n)θ )) because f (h(y))θ < y. This implies that
1>βf ′(h(yt+n)) which cannot hold if yt+n is tending to infinity because by
assumption f ′(0) = ∞.

There are several reasons for studying the properties of this distribution.
First, one can ask how differences in discount rates, attitudes toward risk,
and technological productivity affect the mean, variance, or range of the
stationary distribution of consumption, investment, and output. (See, for
example, Danthine and Donaldson [132].) Second, the stationary distribu-
tion can be used to compute unconditional moments for these variables,
and describe how such moments vary across different economies. This is
one of the principal ways in which the performance of real business cycle
models has been judged in the recent literature.

10.6. E X E R C I S E S

1. Consumption/Leisure Choices with Distortionary Taxation
Let preferences depend on government consumption so that the repre-
sentative agent maximizes:

E

[ ∞∑
t=0

β tU (ct + πgt , lt)

]
(10.104)

where gt is real government expenditures and lt is leisure. Assume that:

U (ct + πgt , lt) = ln (ct + πgt ) + γ lt .

Households have three sources of income. The first is rental income on
capital rtkt , the second is labor income wtnt , and the third is a lump-
sum transfer from the government ψt . The law of motion for the capital
stock is:

kt+1 = (1 − δ)kt + it , (10.105)

where it is investment.
Households also pay distortionary taxes. Taxes are assessed on capital

income at rate τ so capital income tax paid is τ (rt − δ)kt and labor
income is taxed at rate φ so that tax paid is φwtnt . The household’s
budget constraint is:

ct + it ≤ rtkt + ntwt + ψt − φwtnt − τ (rt − δ)kt . (10.106)
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Labor-leisure choices are constrained to satisfy:

lt + nt ≤ 1. (10.107)

Firms rent capital from households, hire labor and are price takers.
The production function is:

yt = λtkθt n(1−θ )
t , (10.108)

where λt is an exogenous productivity shock. The firm maximizes:

�t = λtkθt n(1−θ )
t − rtkt − wtnt (10.109)

given wt and rt .
Government expenditures gt are exogenous and stochastic. The

government’s budget constraint is:

gt + ψt = τ (rt − δ)κt + φwtNt (10.110)

where κt is the aggregate capital stock and Nt is aggregate labor.
(a) Derive the first-order conditions for the household assuming that

the household takes as given the prices, government expenditures,
and transfers. Set up the Bellman equation and be explicit about
the state variables.

(b) Derive the first-order conditions for the profit-maximizing firm.
(c) What is the aggregate state vector? What are the feasibility condi-

tions? Write down the equilibrium conditions.
(d) Derive the solution under the assumptions that π = τ =φ = 0.
(e) Set π = 0 but assume that τ =φ > 0 and describe the equilibrium.

2. Suppose the firm is all debt-financed, which means that debt-to-equity
ratio is Dt = ∞, or the share of debt in firm’s value bt+1/W e

t = 1.
(a) Show that when there are no taxes or any other frictions, the cost

of capital equals the cost of debt.
(b) Assuming that the interest payment on debt is tax deductible, show

that when there is corporate tax τp > 0 and income tax τy > 0, the
cost of capital does not equal the cost of debt. The cost of capital
when there is the tax payment is lower than without the tax. How
would you explain this?

(c) Solve the problem in part b) assuming that the interest payment on
debt is NOT tax deductible. Does the cost of capital of the firm
equal to cost of debt now? Why? Is the cost of capital higher or
lower now?

3. Suppose households maximize

max
{ct ,bt+1,zc

t+1,z
p
t+1}∞t=0

E0

{ ∞∑
t=0

β tU (ct)

}



284 Asset Pricing for Dynamic Economies

where zc
t+1, zp

t+1 denotes the holdings of common and preferred stock,
respectively. Households pay a proportional income tax equal to τy > 0
so that the budget constraint is given by:

ct + qc
t z

c
t+1 + qp

t zp
t+1 + bt+1 ≤ (1 − τy)[wtlt + rtbt + zc

t d
c
t ]

+ bt + zc
t q

c
t + zp

t qp
t ,

where we assume that the firm does not make any dividend payments
for the preferred stock. The firm’s gross profits are given by:

πt = f (kt , θt) − wt .

The firm pays τp > 0 on its gross profits and is allowed to deduct its
interest payments on debt.
(a) Find the first-order conditions with respect to ct , bt+1, zc

t+1, zp
t+1.

(b) Find the ex-dividend value of the firm.
(c) Find the cost of capital of the firm.
(d) Now suppose the households pay a capital gains tax τc > 0 on the

preferred equities they hold. Determine the sufficient condition for
the firm’s cost of capital under the capital gains tax to be higher
than it is without it (compare it with the result you found in c).

4. Human Capital Accumulation in a Deterministic Economy
A representative consumer has preferences given by:

U =
∞∑

t=0

β t c1−σ
t − 1

1 − σ
, σ > 0.

The production of the single good depends on physical and human
capital denoted Kt and Ht , respectively. The resource constraint and
the law of motion for human capital are given by:

ct + Kt+1 − (1 − δ)Kt = AK α
t ((1 − st)Ht)

1−α, 0 < α < 1,

Ht+1 = θHtst + (1 − δ)Ht ,

where θHtst , st ∈ [0, 1] and θ > 0, is new investment in human capital.
Show that along a balanced growth path the growth rates for con-

sumption, physical and human capital satisfy:

γC = γK = γHθ s − δ.
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Investment

Investment theory typically distinguishes between the desired capital stock
and the actual capital stock. According to the neoclassical model of
Jorgenson [266] and Hall and Jorgenson [222], the desired capital stock
is determined as a function of output and input prices, technology, and
interest rates, and an exogenous partial adjustment model is stipulated to
yield the adjustment of the actual capital stock to the desired capital stock.
Following Lucas [313], Treadway [433], Gould [211], an alternative approach
postulates that firms face costs of adjusting when undertaking investment
decisions. Proponents of this view argue that it costs time and resources to
put in new machinery, to integrate it into the production process, and to
train new workers. Various authors including Abel [1] and Hayashi [243]
have shown that the adjustment-cost model under perfect competition and
constant returns to scale yields a Q-theory of investment. This states that
the firm’s demand for new capital goods, as captured by its investment
expenditures, should be increasing in the price of existing capital relative
to new capital, a relative price that is called “Tobin’s Q.”

A number of authors have emphasized irreversibility and uncertainty as
important factors in the gradual adjustment of the capital stock. The irre-
versible model of investment under uncertainty leads to an option value of
waiting. If the decision to invest in fixed capital today cannot be undone
by the firm next period, then the firm may prefer to wait today instead of
undertaking an investment that it may wish to reverse in the face of new
information received after the fact. The adjustment-cost model and the
irreversible-investment model under uncertainty may be viewed as com-
peting rather than complementary theories of investment. As shown by
Demers [148], the irreversible-investment model under uncertainty leads
to an endogenous marginal cost of adjustment that depends on information
about the future profitability or costs of investment.

Investment theory has typically been developed from the viewpoint of
the individual firm or industry. Lucas and Prescott [322] provide an analy-
sis of industry equilibrium under uncertainty. Yet our analysis up to this
point has been based on simple dynamic general equilibrium frameworks.
Sargent [383] provides an early example of a general equilibrium model of

285
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investment under uncertainty with irreversibility. He uses a version of the
one-sector optimal growth model with irreversible investment to study the
relationship between Q and investment. Dow and Olson (1992) analyse
a two-sector stochastic growth model where aggregate investment is sub-
ject to a non-negativity constraint. Coleman (1997) examines the impact
of investment irreversibility in a multi-sector, stochastic growth model
where there is no exogenous aggregate uncertainty, but where each sector
is subject to an idiosyncratic productivity shock and to an irreversibility
constraint. Kogan [281], [282] uses an equilibrium model with irreversible
investment to study the relationship between stock returns, investment and
Q. He considers a two-sector model in which the irreversibility constraint
affects only one of the sectors. In this chapter, we describe alternative
models of investment and link them to asset-pricing phenomena.

11.1. T H E N E O C L A S S I C A L M O D E L O F I N V E S T M E N T

The neoclassical model of investment has formed the mainstay of mod-
ern investment theory. The basis for this theory can be found in the
concept of the cost of capital. To describe the implications of this theory,
we return to the optimality condition for the one-sector growth model in
Equation (10.15). This is given by:

U ′(ct) = βEt
{
U ′(ct+1)[f1(kt+1, θt+1) + (1 − δ)]

}
, (11.1)

where ct = f (kt , θt) + (1 − δ)kt − kt+1. Now suppose that the gross real
interest rate is a constant, that is:

1 + rf
t = 1

Et(mt+1)
= 1

βEt[U ′(ct+1)/U ′(ct)]
= R̄.

Some conditions under which this can occur are if ct = ct+1 = c̄ or U ′(c)
is constant. Then 1 + rf = 1/β, which implies that the net interest rate is
given by rf = R − 1 = ρ, the consumer’s subjective rate of time preference.
Substituting this result into Equation (11.1) yields:

1 + rf = Et[f1(kt+1, θt+1) + (1 − δ)],

or:

rf + δ = Et[f1(kt+1, θt+1)]. (11.2)

The quantity rf + δ is typically called the user cost of capital. Recall that
kt+1 is chosen in period t based on information at time t. Suppose

f (k, θ ) = kαθ .
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Then we can use this condition to solve for the desired stock of capital to
be carried over into period t + 1 as:

kd
t+1 =

[
αEt(θt+1)

rf + δ

]1/(1−α)

. (11.3)

This expression shows that the desired capital stock depends positively on
expected productivity, Et(θt+1), and the share of capital in production, α,
and negatively on the real interest rate, r, and the depreciation rate, δ.
Notice that we have not made any assumptions regarding the time series
properties of the technology shock. If {θt} is i.i.d., then the desired capital
stock is a constant; otherwise, kd

t+1 varies with current realization of the
technology shock.

In the above discussion, no explicit account was made of the impact
of various tax provisions on capital accumulation. Suppose, for simplicity,
that there is a corporate income tax τ that is collected as a fraction of a
firm’s output. Also assume that there is an investment tax credit such that
the firm gets back γ of the price of the investment good. Then assuming
that firms own the capital stock and make all investment decisions, we can
write their problem as:

max
{nt+i , kt+1+i}

Et

{ ∞∑
i=0

(
1

1 + rf

)i

[(1 − τ )F (kt+i, nt+i, θt+i)

− wt+int+i − (1 − γ )It+i]

}
,

subject to the law of motion for the capital stock, kt+1 = (1−δ)kt + It . The
first-order conditions are:

(1 − τ )F2(kt , nt , θt) = wt ,

(1 − τ )Et[F1(kt+1, nt+1, θt+1)] = (1 − γ )(rf + δ).

In this case, the cost of capital includes the effect of the investment tax
credit, and the corporate income tax affects the future (after-tax) marginal
product of capital.

One problem with the neoclassical model of investment is that it does
not lead to a determinate level of investment. In this model, firms choose
the level of the capital stock. Thus, as the cost of capital changes, firms
should instantaneously adjust their capital stock to the “desired” level. For
instance, if r increases (or δ increases), the desired capital stock should
decrease to ensure that the expected marginal product of capital equals the
higher capital cost. The problem is that in this model there is no mecha-
nism which tells us how much the capital stock will decrease. In practice,
investment adjusts gradually to changes in the determinants of the cost
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of capital. To account for this empirical phenomenon, typically a partial
adjustment mechanism is added to the theory of the desired capital stock
to yield a model of investment.

11.2. T H E Q T H E O R Y A D J U S T M E N T- C O S T M O D E L

O F I N V E S T M E N T

An alternative way of obtaining a determinate investment function is to
postulate the existence of adjustment costs. Various authors including Abel
[1] and Hayashi [243] have shown that the adjustment-cost model under
perfect competition and constant returns to scale yield a Q theory of
investment. We now formulate a model with adjustment costs and relate
it to the Q theory of investment.

11.2.1. The Q theory of investment

An alternative theory of investment was developed by Tobin [430] that
does not rely on the notion of the desired capital stock. Tobin stipulated
that investment should be an increasing function of the ratio of the firm’s
market value to the replacement cost of its capital stock. Recall that the
ex-dividend value of the firm is denoted W e

t and denote the price of new
investment goods by pIt . Average Q can be expressed as:

Qa = market value of the firm

the replacement cost of capital
= W e

t

pItkt+1
.

Tobin’s Q theory of investment states that firms will invest if Qa exceeds
unity, and will disinvest if Qa falls below unity. Put differently, the firm
will invest as long as the firm’s market value is large enough to cover the
cost of replacing its existing capital. Unlike the neoclassical model, Tobin’s
approach uses stock market data to capture firms’ expectations with respect
to future profitability.

We can also define a measure of Q as the ratio of the marginal value of
an additional unit of capital (or its shadow value) to its replacement cost.
Let pkt denote the price of existing capital. Marginal Q is defined as:

Qm = marginal value of an additional unit of capital

its replacement cost
= pkt

pIt
.

In what follows, we will examine the relationship between average Q and
marginal Q.

11.2.2. Adjustment costs

Adjustment costs in investment arise because installing new capital goods
is disruptive, with the installation or adjustment costs increasing in the
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amount of new capital installed. Holding factor inputs fixed, the adjust-
ment cost model assumes that the cost of the investment good in terms of
the consumption good is increasing as the rate of investment increases. Let
it/Kt be the ratio of investment to the beginning of period capital stock.
Assume that the resources or output required to install it units of new
capital are given by:

it[1 + h(it/Kt)].

Let x ≡ i/K be the rate of investment relative to the capital stock.
The function h(·) is denoted the adjustment cost function. We have the
following assumption.

Assumption 11.1 (i) h(0) = 0; (ii) h′(x) ≥ 0; (iii) 2h′(x) + xh′′(x) > 0 for
all x > 0.

The first part of this assumption says that adjustment costs are zero at
zero investment. The second and third parts of this assumption show that
adjustment costs are increasing and convex.

Output in this economy is produced according to a constant-returns-to-
scale production function with a multiplicative technology shock:

yt = f (Kt)θt , (11.4)

where the aggregate capital stock Kt is measured as per capita. In equi-
librium it turns out that nt = 1. Hence, under constant returns to
scale this causes no problems. The production function satisfies f ′ > 0,
f ′′ < 0, f ′(0) =∞, and f ′(∞) = 0. The technology shock is i.i.d. and has
a distribution that satisfies Assumption 10.6.

The per capita capital stock evolves according to:

Kt+1 = it + (1 − δ)Kt , (11.5)

where 0<δ ≤ 1 is the depreciation rate. The resource or feasibility con-
straint for this economy is given by:

ct + it[1 + h(it/Kt)] ≤ f (Kt)θt . (11.6)

Notice that this is a one-sector model so that the output of the single
good can be consumed or invested in capital. However, unlike the standard
one-sector growth model, the feasibility constraint also accounts for the
resources expended due to the adjustment costs. In a later section, we will
also consider a two-sector model in which one sector produces investment
goods.

11.2.3. The social planner’s problem

The social planner’s problem allows us to characterize the optimal alloca-
tions in the presence of adjustment costs.
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The social planner solves:

V (Kt , θt) = max
ct ,it

{U (ct) + βEt[V (Kt+1, θt+1)]} (11.7)

subject to the resource constraint in Equation (11.6) and given the law of
motion for capital in Equation (11.5) and the fixed initial capital stock, Kt .
Let λp

t denote the multiplier for the resource constraint in Equation (11.6).
Define

H (x) ≡ 1 + h(x) + xh′(x) (11.8)

as the derivative of the term it[1 + h(xt)] with respect to it , or the marginal
cost of new investment at time t. The existence of a solution to the
functional equation in (11.7) can be demonstrated using the approach in
Chapter 10.

Substituting for the law of motion for capital, the first-order conditions
with respect to ct and it are:

U ′(ct) = λ
p
t , (11.9)

λ
p
t H (xt) = βEt[V1(Kt+1, θt+1)]. (11.10)

The envelope condition is:

V1(Kt , θt) = λ
p
t [f ′(Kt)θt + (xt)

2h′(xt)]

+ (1 − δ)βEt[V1(Kt+1, θt+1)]. (11.11)

Using the first-order condition with respect to it in Equation (11.11) yields:

V1(Kt , θt) = λ
p
t [f ′(Kt)θt + (xt)

2h′(xt) + (1 − δ)H (xt )]. (11.12)

The optimal allocation for the social planner’s problem can be determined
using the standard methods for solving dynamic programming problems.
Define mt+1 =βU ′(ct+1)/U ′(ct). Making use of the first-order conditions
and the envelope condition, we have that

1 = Et

[
mt+1

f ′(Kt+1)θt+1 + (xt+1)2h′(xt+1) + (1 − δ)H (xt+1)

H (xt)

]
.

(11.13)

subject to ct + xtKt[1 + h(xt)] ≤ f (Kt)θt .
The solution for the model with adjustment costs differs from the solu-

tion for the frictionless neoclassical model that we analyzed in Chapter 10
in several ways. First, the aggregate feasibility constraint accounts for the
resources expended due to the adjustment costs. Second, the return on
capital includes the reduction in the opportunity cost of installation made
possible by the extra capital available at date t + 1 due to new investment
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at time t, (xt+1)2h′(xt+1), plus the value of the undepreciated part of the
capital stock carried over from period t evaluated at the marginal cost of
new capital at time t + 1, (1 − δ)H (xt+1). Thus, the condition in Equa-
tion (11.13) equates the marginal cost of new investment at time t, H (xt),
to the expected discounted benefit of this new investment at t + 1, where
the discounting is done using the intertemporal MRS.

11.2.4. The market economy

Next, we describe the market economy. We assume that the firm is the
owner of the capital stock and is a price-taker. The firm not only par-
ticipates in the goods market where it sells consumption goods and new
capital goods, it also participates in the used capital good market. In the
frictionless neoclassical model of investment, new and used capital goods
are perfect substitutes. Hence, the price of used capital is equal to the price
of new capital, which equals one in a model with a single consumption
good. When there are adjustment costs, irreversibilities, and other frictions,
however, this price may differ from the price of new capital.

We now assume that used capital sells for a price of pk,t . Hence, the
value of the capital stock that the firm can sell at the end of the period is
pk,t(1−δ)kt . The firm also purchases used capital with a value of pk,tkd

t . The
firm’s receipts from selling its output consist of sales of the consumption
good, cs

t , and used capital, pk,t(1 − δ)kt . The firm pays wages wt , buys used
capital pk,tkd

t , and buys new investment goods id
t . The law of motion for

the firm’s capital stock is:

kt+1 = id
t + kd

t , (11.14)

which says that next period’s capital stock is equal to purchases of new and
used capital. The firm’s gross profits are:

πt = f (kt)θt − wtnt − id
t [1 + h(id

t /kt)], (11.15)

where the cost of installing new capital h(id
t /kt) is included. Notice that

this is a one-sector model so that the relative price of new investment
goods, pIt , is normalized as one. Gross profits are disbursed according to

πt = REt + dtzt + (1 + rt)bt .

Purchases of used capital (net of the receipts from sales of existing capital
carried from the previous period) are financed by retained earnings, by new
equity issues or by new debt as:

pk,tkd
t − pk,t(1 − δ)kt = REt + qt(zt+1 − zt) + bt+1.
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The net cash flow from the firm to the household is defined as:

Nt ≡ πt − pk,tkd
t + pk,t(1 − δ)kt

= f (kt)θt − wtnt − id
t [1 + h(id

t /kt)] − pk,tkd
t + pk,t(1 − δ)kt

= REt + dtzt + (1 + rt)bt + qt(zt − zt+1) − bt+1 − REt

= dtzt + (1 + rt )bt + qt(zt − zt+1) − bt+1. (11.16)

The household’s problem is standard and identical to the problem in
Section 10.4. It consists of choosing sequences for ct , zt+1, and bt+1 to
maximize the objective function in Equation (10.48) subject to the wealth
constraint in Equation (10.49) and given the restriction that 0 ≤ ns

t ≤ 1.
The first-order conditions are identical to Equations (10.50)–(10.52).

The firm maximizes

W (kt , θt ) = Nt + Et[mt+1W (kt+1, θt+1)] (11.17)

given kt by choosing nt , kd
t , id

t , where we have substituted for the constraint
(11.14). The first-order conditions are:

wt = f (kt)θt − f ′(kt)θt , (11.18)

pk,t = Et[mt+1W1(kt+1, θt+1)], (11.19)

H (id
t /kt) = Et[mt+1W1(kt+1, θt+1)]. (11.20)

The envelope condition is:

W1(kt , θt) = f ′(kt)θt + (
id
t /kt

)2
h′ (id

t /kt
) + (1 − δ)pk,t . (11.21)

Recall that marginal Q is defined as the ratio of the marginal value of
an additional unit of capital (or its shadow value) to its replacement cost.
In this model, the firm invests until the shadow value of capital equals
the price of an additional unit of used capital. (See Equation (11.19).) The
replacement cost of capital net of the adjustment cost is pIt . However, in a
one-sector model, pIt equals the price of output, which equals one. Hence,
we find that marginal Q is given by:

Qm = pkt

pIt
= pkt . (11.22)

Equations (11.19) and (11.20) imply that:

H (id
t /kt) = pk,t . (11.23)

The left side of this expression equals the marginal cost of investment and
the right-side is the shadow price of installed capital, which also equals
marginal Q. Since H is strictly increasing, we can solve Equation (11.23) for
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it/kt as an increasing function of the shadow price of capital or marginal
Qm, as hypothesized by Tobin:

it/kt = H−1(pk,t) = H−1(Qm). (11.24)

An equivalent way of examining the implications of the Q theory-
adjustment cost model is through present value relations. Using the first-
order condition in Equation (11.19) together with the envelope condition
in Equation (11.21), we can obtain an expression for pk,t as:

pk,t = Et
{
mt+1

[
f ′(kt+1)θt+1 + (xt+1)

2h′(xt+1) + (1 − δ)pk,t+1
]}

= Et

{ ∞∑
i=0

(1 − δ)imt+i+1[f ′(kt+i+1)θt+i+1 + (xt+i+1)
2h′(xt+i+1)]

}
,

where we have obtained the expression on the second line by recursively
substituting for pk,t+i and using the fact that limh→∞ Et[mt+h+1 pk,t+h+1]
→0. This expression shows that the price of an additional unit of existing
capital is equal to the expected discounted value of the future total marginal
product of capital, where the term (xt+i)2h′(xt+i) represents the reduction
in the opportunity cost of installation made possible by the additional unit
of capital at time t + i. The discount factor is the product of one minus the
depreciation rate and the intertemporal MRS for consumption between
periods t and t + i to account for the fact a unit of existing capital at time
t depreciates at the rate (1 − δ)i at time t + i.

Now consider the value of installed capital at the end of the period,
pk,tkt+1. To find an expression for this, multiply the expression for pk,t by
kt+1 to obtain:

pk,tkt+1 = Et
{
mt+1

[
f ′(kt+1)θt+1kt+1 + (1 − δ)pk,t+1kt+1

+ (
(id

t+1)
2/kt+1

)
h′(id

t+1/kt+1)
]}

= Et
{
mt+1

[
f (kt+1)θt+1 − wt+1 + (1 − δ)pk,t+1kt+1

−id
t+1[1 + h(id

t+1/kt+1)] − it+1H (id
t+1/kt+1)

]}
= Et

{
mt+1

[
f (kt+1)θt+1 − wt+1 + (1 − δ)pk,t+1kt+1

−id
t+1[1 + h(id

t+1/kt+1)] − pk,t+1kd
t+1 + pk,t+1kt+2

]}
,

where the second line follows by the homogeneity of degree one of
the production function and the installation cost functions. Thus, by
the latter property and using the definition of H (x), we can substitute
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(i2/k) h′ (i/k) = − i[1 + h(i/k)] − H (i/k)i. The third line follows by not-
ing that H (it+1/kt+1) = pk,t+1 and by using the law of motion for capital
kt+2 = id

t+1 +kd
t+1 to substitute for id

t+1. Iterating the last expression forward
and using the definition of net cash flows Nt+i yields:

pk,tkt+1 = Et

{ ∞∑
i=1

mt+i
[
f (kt+i)θt+i − wt+i + (1 − δ)pk,t+ikt+1+i

−it+i[1 + h(xt+i)] − pk,t+ikt+i
]}

= W e
t ,

where nt+i = 1 for all i. The ratio W e
t /kt+1 is identical to average Q, which

shows the ratio of the market value of capital to its replacement cost:

Qa = W e
t

pItkt+1
= W e

t

kt+1
= pk,t , (11.25)

since pIt = 1. Recall that marginal Q equals the price of existing capital,
that is, Qm = pkt . Hence, we find that average Q is equal to marginal Q,
Qm =Qa. This is just the result that Hayashi [243] derives, that is, for a
competitive firm that faces a constant returns to scale production func-
tion and a linearly homogeneous installation cost function, average Q and
marginal Q are equal.

Abel [1] tests a version of the Q theory using quadratic costs of adjust-
ment in investment. Abel and Blanchard [5] construct a measure of
marginal Q that does not rely on stock market data. They find that regress-
ing investment on their measure of marginal Q implies that a large, serially
correlated fraction of investment is left unexplained, similar to results from
regressions of investment on average Q. This analysis can be extended to
other models of investment. Altug [17] derives restrictions between the
price of new and used capital goods and the term structure of real interest
rates for the time-to-build model of investment. Although the empirical
work described above is implemented with aggregate data, the theoreti-
cal framework constrains the behavior of individual firms. A few recent
papers have employed panel data on firms to exploit both cross-sectional
and time series variation in prices and quantities. Hayashi and Inoue [245]
and Blundell, Bond, Devereux, and Schiantarelli [70] estimate Q models
of investment using panel data on firms from Japan and the UK, respec-
tively. The former find that a tax-adjusted measure of Q is a significant
determinant of investment but cash flow variables are also significant in
some years while the latter find that the coefficient on Q is significant
but small.
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11.2.5. Asset-pricing relations

We can also derive a relationship involving the return to investing defined
as RI ,t+1. Using the first-order condition in Equation (11.19) together with
the envelope condition yields:

1 = Et
[
mt+1RI ,t+1

]
= Et

[
mt+1

f ′(kt+1)θt+1 + (xt+1)2h′(xt+1) + (1 − δ)pk,t+1

pk,t

]

= Et

[
mt+1

f ′(kt+1)θt+1 + (xt+1)2h′(xt+1) + (1 − δ)H (xt+1)

H (xt)

]
.

In the absence of adjustment costs, H (xt) = 1 and h′(xt) = 0 which implies
that the price of capital goods is equal to the price of output, which
equals unity. Hence, we have that pk,t = 1 and the return to investment
simplifies to the case that we analyzed in Chapter 10 for the one-sector
optimal growth model where RI ,t+1 = f ′(kt+1)θt+1 + (1 − δ). When there
are adjustment costs, the cost of investing today is pk,t . The payoff from
this investment is the expected marginal value of capital, which equals
the marginal product of the installed capital plus two other terms. In
Cochrane’s [107] asset-pricing model with production, these additional
terms also appear because he assumes the existence of adjustment costs.
The first term, (xt+1)2h′(xt+1), represents the reduction in the opportunity
cost of installation it[1 + h(it/kt)] made by the additional unit of capital at
time t +1. The second term represents the resale value of the undepreciated
part of the period t + 1 capital stock evaluated at the price of new capital
at date t + 1. In a model with adjustment costs, the price of capital goods,
pk,t , equals one plus marginal adjustment cost, or H (xt).

Suppose that adjustment costs are quadratic:

h(x) = α

2
(x)2,

where x = i/k.
Then we can express the investment return as:

RI ,t+1 = f ′(kt+1)θt+1 + α(xt+1)3 + (1 − δ)[1 + (3/2)αx2
t+1]

1 + (3/2)αx2
t

.

This expression shows that if the investment-capital stock ratio at time t is
high, the return is low because investment leads to large adjustment costs.
When the investment-capital stock ratio at time t + 1 is high, the return
is high both because the resale value and the reduction in the opportunity
cost of installation due to the existence of additional capital at time t + 1
are high.
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Cochrane [107] argues that stock prices may drift away from the
relation based on the predicted investment-capital ratios for the Q theory-
adjustment cost model. By contrast, stock returns may be better modeled
by the investment return. As discussed in Chapter 10, he provides a set
of empirical results suggesting that stock returns and investment returns
are essentially equal. Jermann [264] models the behavior of stock returns
using a model with an internal habit and adjustment costs in investment.
He solves the model by log-linearizing the Euler equations and calculates
expressions for asset returns under a joint log-normality assumption. Jer-
mann finds that the model with habit formation and capital adjustment
costs makes it possible to match the standard business cycle facts. (See,
for example, Cooley and Prescott [124].) However, neither model fea-
ture alone serves to do this. The reason is that habit formation implies
a strong aversion to intertemporal substitution. Hence, in the absence of
capital adjustment costs, consumers can optimally choose their consump-
tion paths to be very smooth, thereby counteracting the effects of the habit
on the equity premium. Capital adjustment costs make it more costly to
smooth consumption so that consumers end up taking more consump-
tion risk. However, as Jermann notes, the model with habit formation and
adjustment costs also implies that interest rates vary a lot. Ironically, this is
also due to aversion to intertemporal substitution together with the capital
adjustment costs. Likewise, he finds that the premium for long-term bonds
is close to the equity premium in the model whereas long-term bonds dis-
play a much smaller premium in the data. One solution that he proposes to
this problem is financial leverage, which increases the equity premium rela-
tive to the premium on long-term bonds by making dividends more risky
but at the same much more volatile than observed dividends. These results
provide new intuition about the determinants of risk premia on alternative
assets and show that much new research is needed to reconcile such asset-
market phenomena with models that deal explicitly with the “real” side of
the economy.

11.3. I R R E V E R S I B L E I N V E S T M E N T

An alternative theory of investment is provided by the theory of “irre-
versible” investment. Irreversibility refers to the fact that the resale value of
a firm’s capital stocks may not be equal to its initial purchase price. This
may occur because the capital stock is highly firm-specific. Alternatively,
the capital stock may be industry-specific, but industry-level uncertainty
may affect all firms similarly and hence prevent firms from selling their
excess capital stocks in response to an adverse demand shock. Even for less
firm- or industry-specific capital goods, there may exist a “lemons” prob-
lem of adverse selection in the market for used capital that may similarly
prevent firms from disinvesting.
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Much of the irreversible investment literature has evolved on the notion
of determining the timing of a given investment project. See, for exam-
ple, Cukierman [130], Bernanke [57], or Brennan and Schwartz [75],
amongst others. Authors such as Brennan and Schwartz apply financial
options pricing to the analysis of irreversible investment decisions, lead-
ing this approach to the analysis of corporate investment to be called
the “real options” approach. A number of authors have also emphasized
irreversibility and uncertainty as important factors underlying the grad-
ual adjustment of the capital stock. In particular, Nickell [352], [353]
focuses on delivery lags and timing uncertainty as an explanation of the
gradual adjustment of the capital stock and shows that the irreversibil-
ity constraint strengthens the need for caution.1 Demers, Demers, and
Altug [149] provide an extensive review and discussion of the investment
literature with a particular emphasis on irreversible investment mod-
els. In what follows, we present a model with partial irreversibility and
expandability.

11.3.1. A model with partial irreversibility and expandability

Expandability refers to the possibility for the firm to put off its investment
decision. The cost of delaying its investment decision is the price differen-
tial it may have to pay to acquire the same capital stock in the future. The
firm also faces irreversibility in the sense that the resale price for its excess
capital stock is lower than the price at which the stock was purchased. The
lower the resale price, the greater is the degree of irreversibility faced by
the firm.

The household’s problem is identical to the problem in Section 10.4.
It consists of choosing sequences for ct , zt+1, and bt+1 to maximize the
objective function in Equation (10.48) subject to the wealth constraint in
Equation (10.49) and given the restriction that 0 ≤ ns

t ≤ 1. The first-order
conditions are identical to Equations (10.50)–(10.52).

Define:
• pkH

t as the purchase price of new capital goods;
• pkL

t as the resale price of used capital goods.
Also assume that the price of used capital goods is less than the price of
new capital goods:

pkH
t ≥ pkL

t . (11.26)

1 Demers [148] introduces the learning behavior of a firm, and shows how output price uncertainty
reduces the investment of a Bayesian firm facing irreversibility, while Pindyck [361], Bertola and
Caballero [61], Dixit and Pyndick [154] and others characterize the optimal investment decision
with Brownian motions for the relevant stochastic variables.
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Perfect expandability occurs when the future purchase price of new capital
goods is equal to the current purchase price:

pkH
t = pkH

t+1.

However, the higher the future purchase price of capital, the less the
expandability of the firm. An infinite future purchase price for the capi-
tal stock implies the total lack of expandability. In this case the firm faces
a “now or never” situation vis-a-vis its current investment decision. By
contrast, the firm faces total irreversibility when resale markets are absent,
which is equivalent to assuming that the resale price is zero:

pkL
t = 0.

In this case, once the firm invests, it cannot get rid of the additional capital
stock even if economic conditions warrant a lower desired capital stock.
Because it cannot access resale markets, it can only allow its excess capital
stock to depreciate through time.

Define the short-run profit function for the firm at time t by
π (Kt , θt) as:

π (Kt , θt) = max
nt>0

{F (Kt , nt , θt) − wtnt} = f ′(kt)θtkt , (11.27)

where the second result follows by CRTS. Notice that this problem
involves static maximization under certainty. Assume that it is the firm’s
rate of gross investment (measured in physical units) if it > 0 and its sales
of capital goods if it < 0. The firm’s net cash flow at time t, Nt , is defined as:

Nt = π (Kt , θt) − pkH
t max{it , 0} − pkL

t min{it , 0}. (11.28)

Let primed variables denote future values and unprimed variables denote
current values. Define the vector of capital good prices as hk ≡ (pkH , pkL)′
and Gθ (θ ′|θ ) denote the distribution function of θ ′ conditional on θ . The
optimization problem of the firm now becomes:

W (k, θ , hk) = max
i

{N + E[m′W (k′, θ ′, (hk)′)|θ , hk]}

subject to pkH ≥ pkL and the law of motion for the capital stock k′ = (1 −
δ)k + i. If resale markets were perfect the model would be identical to
the neoclassical model since there are no costs of adjustment. However,
when we assume partial irreversibility, the investment decision of the firm
becomes dynamic, contrary to the neoclassical model.
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The first-order conditions are given by:

−pkH+E[m′W1(k′, θ ′, (hk)′)|θ , hk] = 0 (11.29)

if E[m′W1((1 − δ)k, θ ′, (hk)′)|θ , hk] > pkH

−pkL+E[m′W1(k′, θ ′, (hk)′)|θ , hk] = 0 (11.30)

if E[m′W1((1 − δ)k, θ ′, (hk)′)|θ , hk] < pkL

k′ = (1 − δ)k

if pkL ≤ E[m′W1((1 − δ)k, θ ′, (hk)′)|θ , hk] ≤ pkH . (11.31)

To understand these conditions, notice that the value function is con-
cave in k. First assume that there is no investment in the current period
so that next period’s capital stock is k′ = (1 − δ)k. If at this point the
expected marginal value of capital exceeds the price of new capital, then
the firm should invest until the expected marginal value of capital equals
pkH . While the inequalities above determine whether the firm should invest
or not, the first-order conditions give the optimum amount of investment.
Similarly, if the expected marginal value of existing capital carried over
from period t to period t + 1 is below the resale price, the firm would
increase its expected marginal value by decreasing next period’s capital
stock, k′ < (1 − δ)k. Finally, the firm should do nothing if the expected
marginal value of existing capital at t + 1 falls in the interval [pkL, pkH ].

For any given value of the inherited capital stock, k, and for any pair
of capital goods prices (pkL, pkH ), there are critical values of θH and θL

such that the expected marginal value of capital conditional on θH is equal
to pkH with zero investment and the expected marginal value of capital
conditional on θL is equal to pkL with zero capital sales. Hence, we can
define θH and θL respectively by:

pkH =
∫ ∞

0
m′W1[(1 − δ)k, θ ′, (hk)′]dG(θ ′|θH ) (11.32)

pkL =
∫ ∞

0
m′W1[(1 − δ)k, θ ′, (hk)′]dG(θ ′|θL). (11.33)

The first-order conditions indicate the following;
• If pkH <E[m′W1((1 − δ)k, θ ′, (hk)′)|θ , hk], the firm chooses a positive

level of investment, i� > 0, and the first-order condition in Equation
(11.29) holds with equality. In other words, for high states of productivity
θ ≥ θH , the firm invests.

• If pkL > E[m′W1((1 − δ)k, θ ′, (hk)′)|θ , hk], the firm chooses i� < 0, and
(11.30) holds with equality. Hence, for low states of productivity θ ≤ θL,
the firm sells used capital.
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• For intermediate states of productivity θL ≤ θ ≤ θH , the firm finds itself
in a zone of inaction where it neither invests nor disposes of its used
capital.
Define Ct(kt+1, pkH

t+1) as the call option of investing an additional unit of
capital at time t + 1:

Ct(kt+1, pkH
t+1) = −

∫ ∞

θH
t+1

Et+1{mt+2[W ((1 − δ)kt+1 + it+1, θt+2, hk
t+2)

− W ((1 − δ)kt+1, θt+2, hk
t+2)] − pkH

t+1it+1}dG(θt+1|θt).
(11.34)

Similarly, define Pt(kt+1, pkL
t+1) as the put option of selling a unit of capital

at time t + 1:

Pt(kt+1, pkL
t+1) =

∫ θL
t+1

0
Et+1{mt+2[W ((1 − δ)kt+1 + it+1, θt+2, hk

t+2)

− W ((1 − δ)kt+1, θt+2, hk
t+2)] − pkL

t+1it+1}dG(θt+1|θt).
(11.35)

The call option is the discounted value of making a positive investment
at t + 1. Recall that a call option gives the right to the owner to purchase
an asset at some future date for some pre-specified price denoted the exer-
cise price. The put option is the discounted value of selling capital goods at
t + 1. To provide interpretations of the call and put options, notice that in
addition to this period’s investment decision, the firm should think about
next period’s investment. After the realization of θt , the firm has three pos-
sibilities. Either it will make a positive investment today or it will sell some
capital or else it will do nothing. Suppose that the purchase price of capital
next period is less than the expected value of capital at that date. Then the
firm will be making positive investment at t +1. Likewise, if the resale price
of capital is greater than the expected marginal value of capital, then the
firm will sell capital at t + 1.

First suppose that the firm expects to be investing next period. If the
price of new capital at time t is lower than it is expected to be at t + 1, why
would the firm wait to buy capital goods it will need next period? However,
if the purchase price is expected to decrease, the firm would prefer to wait.
The call option gives the value of waiting to invest or to purchase new
capital goods until t+1. Of course, this is only valid for values of θt+1 >θH

t+1
where Et+1 {mt+2[W ((1 − δ)kt+1 + it+1)]} > Et+1 {mt+2[W ((1 − δ)kt+1)]}.
We can therefore interpret the term:

Et+1 {mt+2[W ((1 − δ)kt+1 + it+1)]} − Et+1 {mt+2[W ((1 − δ)kt+1)]}
as the benefit of making an investment at t + 1, given that θt+1 > θH

t+1, and
pH

t+1it+1 as the total cost of investment. The difference between them is the
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value of waiting and making the investment at t + 1. Thus, higher values
of pkH

t+1, that is, higher values of the future purchase price of capital, lower
the value of waiting and, as will be shown, induce the firm to invest at t.

Now suppose that the firm expects to sell capital at time t + 1. If the
firm expects to be disposing of capital next period, and if the resale price of
capital at time t is greater than it is expected to be at t + 1, why would the
firm wait to sell capital goods until next period? However, if the resale price
is expected to increase, the firm would prefer to wait. The put option gives
the value of waiting to sell used capital goods at t + 1. The firm will choose
to exercise this option only if θt+1 ≤ θL

t+1. Referring to Equation (11.35), the
expression on the right side is the value of the option to sell capital at t + 1
at a price of pkL

t+1. Lower values of pkL
t+1, that is, lower values of the resale

price of capital, decrease the value of the put option and as will be shown,
cause the firm to invest less at time t.

The expected valuation function can be expressed as:

Et[mt+1W (kt+1, θt+1, hk
t+1)]

= Et
{
mt+1

[
Nt+1 + Et+1

(
mt+2W (kt+2, θt+2, hk

t+2)
)]}

. (11.36)

Remember the definition of net cash flows:

Nt+1 = π (Kt+1, θt+1) − pkH
t+1 max{it+1, 0} − pkL

t+1 min{it+1, 0}.
Making use of the fact that when θL

t+1 ≤ θt+1 ≤ θH
t+1, there will be no invest-

ment or sales of capital and the firm’s only cash flow is its profits at time
t + 1, we can re-write this as:

Nt+1 = π (Kt+1, θt+1) −
∫ ∞

θH
t+1

pkH
t+1it+1dG(θt+1|θt)

−
∫ θL

t+1

0
pkL

t+1it+1dG(θt+1|θt). (11.37)

Now consider the expected valuation function conditional on t + 1:

Et+1(mt+2W (kt+2, θt+2, hk
t+2))

=
∫ θL

t+1

0
Et+1[mt+2W ((1 − δ)kt+1 + it+1, θt+2, hk

t+2)]dG(θt+1|θt )

+
∫ θH

t+1

θL
t+1

Et+1[mt+2W ((1 − δ)kt+1, θt+2, hk
t+2)]dG(θt+1|θt )

+
∫ ∞

θH
t+1

Et+1[mt+2W ((1 − δ)kt+1 + it+1, θt+2, hk
t+2)]dG(θt+1|θt ).

(11.38)
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Notice that when θt+1 < θL
t+1, the firm sells capital and when θt+1 > θH

t+1,
the firm purchases capital. Hence, investment is either negative or positive
and the value function takes the form of W ((1 − δ)kt+1 + it+1, θt+2, hk

t+2).
By contrast, if the firm expects to be in the zero-investment region, that
is, if θL

t+1 ≤ θt+1 ≤ θH
t+1, then it+1 is zero and the value function becomes

W ((1 − δ)kt+1, θt+2, hk
t+2). We will focus on the second term in the right

side of Equation (11.38):∫ θH
t+1

θL
t+1

Et+1mt+2[W ((1 − δ)kt+1, θt+2, hk
t+2)]dG(θt+1|θt)

= Et+1[mt+2W ((1 − δ)kt+1, θt+2, hk
t+2)]

−
∫ θL

t+1

0
Et+1[mt+2W ((1 − δ)kt+1, θt+2, hk

t+2)]dG(θt+1|θt)

−
∫ ∞

θH
t+1

Et+1[mt+2W ((1 − δ)kt+1, θt+2, hk
t+2)]dG(θt+1|θt).

Then the second term on the right side of Equation (11.36) becomes:

Et+1[mt+2W (kt+2, θt+2, hk
t+2)] = Et+1[mt+2W ((1 − δ)kt+1, θt+2, hk

t+2)]

+
∫ θL

t+1

0
Et+1mt+2[W ((1 − δ)kt+1 + it+1, θt+2, hk

t+2)

− W ((1 − δ)kt+1, θt+2, hk
t+2)]dG(θt+1|θt)

+
∫ ∞

θH
t+1

Et+1mt+2[W ((1 − δ)kt+1 + it+1, θt+2, hk
t+2)

− W ((1 − δ)kt+1, θt+2, hk
t+2)]dG(θt+1|θt).

Combining the equation above with the equation we have found for the
net cash flow in (11.37), taking the expectation conditional on time t,
using the definition of the call and put options, and substituting into the
expected valuation function in (11.36) yields:

Et[mt+1W (kt+1, θt+1, hk
t+1)] = Et {mt+1 [π (kt+1, θt+1)

+Et+1[mt+2W ((1 − δ)kt+1, θt+2, hk
t+2)]

]}
+ Pt(kt+1, pkL

t+1) − Ct(kt+1, pkH
t+1)}, (11.39)

Hence, the expected value of the firm is the sum of next period’s
expected profit, the discounted future value assuming the firm does not
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invest next period, and a put and call option. From Equation (11.39) after
differentiating with respect to kt+1 we obtain:

Et[mt+1W1(kt+1,θt+1, hk
t+1)] = Et{mt+1πK (kt+1, θt+1) (11.40)

+ (1 − δ)Et+1[mt+2W1((1 − δ)kt+1, θt+2, hk
t+2)]}

+ PKt(kt+1, pkL
t+1) − CKt(kt+1, pkH

t+1),

where CKt and PKt are the marginal call and put options respectively.

CKt (kt+1, pkH
t+1) = −

∫ ∞

θH
t+1

(1 − δ)Et+1{mt+2[W1((1 − δ)kt+1 + it+1, θt+2, hk
t+2)

− W1((1 − δ)kt+1, θt+2, hk
t+2)]}dG(θt+1|θt )

=
∫ ∞

θH
t+1

(1 − δ)[−pkH
t+1 + Et+1mt+2W1((1 − δ)kt+1, θt+2, hk

t+2)]dG(θt+1|θt )

= (1 − δ)Et max{0, Et+1[mt+2W1((1 − δ)kt+1, θt+2, hk
t+2) − pkH

t+1]} ≥ 0.

Using the optimality conditions for optimal purchases and sales of capi-
tal equipment at t + 1, we find that the marginal call option is positive
since, for θt+1 ≥ θH

t+1 it is optimal to invest. That is, CKt ≥ 0 provided that
G(θH

t+1|θt) < 1. Furthermore, since

�CKt(kt+1, pkH
t+1)/�pkH

t+1 = −(1 − δ)[1 − G(θH
t+1|θt)] ≤ 0,

a higher future purchase price for machinery and equipment which limits
the firm’s expandability options lowers the marginal call option. In other
words, as the purchase price of future capital increases, the firm is less likely
to wait to invest at t + 1, implying that the marginal value of the call option
falls with pkH

t+1.
We can obtain PKt similarly as:

PKt (kt+1, pkL
t+1)

=
∫ θL

t+1

0
(1 − δ)Et+1{mt+2[W1((1 − δ)kt+1 + it+1, θt+2, hk

t+2)

− W1((1 − δ)kt+1, θt+2, hk
t+2)]}dG(θt+1|θt )

=
∫ θL

t+1

0
(1 − δ){pkL

t+1 − Et+1[mt+2W1((1 − δ)kt+1, θt+2, hk
t+2)]}dG(θt+1|θt )

= (1 − δ)Et max{0, pkL
t+1 − Et+1mt+2[W1((1 − δ)kt+1, θt+2, hk

t+2)]} ≥ 0.
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Using the optimality conditions for optimal sales of capital equipment at
t + 1, we find that the marginal put option is positive since for θt+1 ≤ θL

t+1
it is optimal to sell capital goods at t + 1. In addition, noting that

�PKt(kt+1, pkL
t+1)/�pkL

t+1 = (1 − δ)G(θL
t+1|θt) ≥ 0,

a higher future resale price for capital goods raises the marginal put option.
Hence, the firm will choose to invest more today as the resale price of
capital increases in the future.

Assuming θt ≥ θH
t so that it is optimal to invest at time t and sub-

stituting for Et[mt+1W1(kt+1, θt+1, hk
t+1)] from (11.40) we can express the

optimality condition (11.29) as:

pkH
t + CKt(kt+1, pkH

t+1) − PKt(kt+1, pkL
t+1) = Et{mt+1π (kt+1, θt+1)

+ (1 − δ)Et+1[mt+2W1((1 − δ)kt+1, θt+2, hk
t+2)]}. (11.41)

The cost of investing consists of the market price for capital goods and the
discounted marginal call option. By investing one additional unit at t, the
firm loses the opportunity to invest that unit in the future and incurs a loss
of a call option. That is, the firm loses the option to wait and invest that
unit at t + 1. This additional cost tends to discourage investment. On the
other hand, the marginal put option lowers the current cost of investing.
That is, the marginal put option stimulates investment since an additional
unit of investment raises the value of the put option.

Similarly, assume θt ≤ θL
t so that it is optimal to sell capital at time t

and substituting for Et[mt+1W1(kt+1, ht+1, hk
t+1)] from (11.40), we can write

(11.30) as:

pkL
t + CKt(kt+1, pkH

t+1) − PKt(kt+1, pkL
t+1) = Et{mt+1π (kt+1, θt+1)

+ (1 − δ)Et+1[mt+2W1((1 − δ)Kt+1, θt+2, hk
t+2)]} (11.42)

Now the left side of this expression shows the benefits of selling capital. By
selling capital today, the firm loses the opportunity to sell capital tomorrow.
Hence, the marginal put option reduces the benefits from selling capital
today. By contrast, the firm gains the marginal value of the call option by
selling capital today because it maintains the ability to invest in additional
capital at time t + 1.

We can relate optimal investment to Q theory as follows. On the
right-hand side of (11.41) add and subtract βEt

∑∞
j = 1 mt+j(1 − δ)jπK

((1 − δ)jKt+1, θt+j+1). We obtain:

pkH
t + CKt(kt+1, pkH

t+1) − PKt(kt+1, pkL
t+1) = Qt + ϒt (11.43)
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where:

Qt = βEt

∞∑
j=0

mt+j(1 − δ)jπK ((1 − δ)jKt+1, θt+j+1). (11.44)

ϒt = β2(1 − δ)Et+1[mt+1W1((1 − δ)Kt+1, θt+2, hk
t+2)]

− βEt

∞∑
j=1

mt+j(1 − δ)jπK ((1 − δ)jkt+1, θt+j+1). (11.45)

The first term on the right-hand side of Equation (11.45) represents the
expected marginal value of capital from time t + 2 onward given that the
firm does not invest at time t + 1, but may invest or disinvest in future peri-
ods. The second term represents the expected marginal value of capital if
the firm never invests or disinvests from t + 2 onward. Thus, ϒt represents
the increase in the expected marginal value of capital due to future marginal
call and put options available to the firm. Qt in Equation (11.44) is Tobin’s
Q, and represents the expected marginal value of capital if the firm never
invests or disinvests from t + 1 onward and simply allows its capital stock to
depreciate. The first term on the right-hand side of Equation (11.44) thus
represents the “naive net present value” of an additional unit of capital.
Thus, firms which make their investment decisions according to the naive
NPV rule would be behaving sub-optimally since they would be ignoring
the availability of the future marginal call and put options that is captured
by the term ϒt .2

11.3.2. A model of irreversible investment

In the sequel, we will focus on irreversible investment. The short-run profit
function for the firm continues to satisfy Equation (11.27). Now, however,
the firm’s net cash flow described by Equation (11.28) is modified as:

Nt = π (kt , θt) − pkH
t it , (11.46)

where investment satisfies the irreversibility constraint

it ≥ 0. (11.47)

Another way of understanding the effects of (full) irreversibility is to note
that the resale price of capital is zero, pkL

t = 0.

2 It is also possible to derive a modified cost-of-capital for the model with partial irreversibility and
expandability. See Abel and Eberly [6] in the context of a continuous time model of the firm
which faces a stochastic demand shock that follows a geometric Brownian motion. See also Demers,
Demers, and Altug [149] for a similar discussion in a discrete time context.
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The optimization problem of the firm now becomes:

W (k, θ , pkH ) = max
i

{N + E[m′W (k′, θ ′, (pkH )′)|θ , pkH ]}

subject to the law of motion for the capital stock k′ = (1 − δ)k + i and the
irreversibility constraint i ≥ 0. Demers [148] uses a dynamic programming
approach to show the existence of the unknown value function W for an
imperfectly competitive firm that faces a constant returns to scale produc-
tion technology. Substituting for k′ using the law of motion for capital and
denoting the Lagrange multiplier on irreversibility constraint by μ, the
first-order and envelope conditions are given by:

E[m′W1(k′, θ ′, (pkH )′)|θ , pkH ] = pkH − μ, (11.48)

W1(k, θ , pkH ) = πK (k, θ ) + (1 − δ)(pkH − μ). (11.49)

To evaluate the first-order condition in (11.48), consider the version of the
envelope condition that holds at time t + 1:

W1(kt+1, θt+1, pkH
t+1) = πK (kt+1, θt+1) + (1 − δ)(pkH

t+1 − μt+1).

There are two cases depending on whether the irreversibility constraint is
binding at time t + 1 or not. Using the first-order condition, these are given
by:

μt+1 = 0 ⇔ Et+1[mt+2W1(kt+2, θt+2, pkH
t+2)] = pkH

t+1.

μt+1 > 0 ⇔ Et+1[mt+2W1((1 − δ)kt+1, θt+2, pkH
t+2)] < pkH

t+1,

where we have obtained the last condition by evaluating the first-order
condition at i�t + 1 = 0. Hence, following Demers [148] and Altug, Demers,
and Demers [20], we can write the envelope condition compactly as:

W1(kt+1, θt+1, pkH
t+1) = πK (kt+1, θt+1)

+ (1 − δ)min[pkH
t+1, Et+1(mt+2W1((1 − δ)kt+1, θt+2, pkH

t+2))]. (11.50)

Now, using the definition of μt , the optimality conditions characterizing
irreversible investment are given by:

Et[mt+1W1(kt+1, θt+1, pkH
t+1)] = pkH

t ⇔ i�t > 0,

Et[mt+1W1(kt+1, θt+1, pkH
t+1)] < pkH

t ⇔ i�t = 0,
(11.51)

where i�t is the optimal level of investment and W1(kt+1, θt+1, pkH
t+1) is

evaluated using (11.50).
Let us examine the implications of the model under some additional

assumptions. First suppose that the stochastic discount factor is constant
and equal to the subjective discount factor of consumers, mt+1 =β = 1/r
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for all t. Suppose also that the irreversibility condition does not bind at
time t. Then the first-order condition can be written as:

EtπK (kt+1, θt+1) = ct + �t (11.52)

where

ct ≡ (r + δ)pkH
t − (1 − δ)(EtpkH

t+1 − pkH
t )

is the traditional Jorgensonian cost of capital. The term

�t = (1 − δ)Et
{
pkH

t+1 − min[pkH
t+1,βEt+1W1((1 − δ)kt+1, θt+2, pkH

t+2)]
}

is an endogenous risk premium or endogenous cost of adjustment, and it arises
due to irreversibility. If investment were reversible, (11.52) would reduce to:

pkH
t = βEtπK (kt+1, θt+1) + β(1 − δ)EtpkH

t+1, (11.53)

just as in the frictionless neoclassical model described in Section 11.1.
We define the firm’s desired stock of capital, k�t+1, as follows: If i�t > 0,

k�t+1 solves (11.52) and if i�t = 0, k�t+1 = (1 − δ)kt . The existence of the
endogenous risk premium or adjustment cost implies that the desired cap-
ital stock with irreversibility, k�t+1, is smaller than the desired stock without

any frictions, kf
t+1, which solves (11.53). Nevertheless, if low values of θt

are realized the firm may find itself with excess capital because it cannot
disinvest. Therefore, the actual capital stock of a firm facing irreversible
investment may be larger than when investment is reversible.

11.4. A N A S S E T- P R I C I N G M O D E L W I T H

I R R E V E R S I B L E I N V E S T M E N T

In this section, we develop a two-sector discrete-time general-equilibrium
model of a production economy with irreversible investment. Our discus-
sion derives from Kogan [281, 282]. This model allows us to examine the
relationship among stock returns, investment, and Q. It also allows us to
examine the existence of a solution to the dynamic optimization problem
under the assumption of a production technology that is linear in capital.

11.4.1. The model

In this two-sector model, there are two representative firms, which produce
two different goods, called good 1 and good 2. The only input for the pro-
duction in the first sector is capital denoted by K1t , which is rented from
the households. The production technology of the first sector is constant
returns to scale given by y1t = (α + θt)K1t , where θt denotes the techno-
logy shock. Notice that the production function is linear in its parameters.
Firms in the first sector use the first capital good to produce the first
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consumption good and to invest in the production in the second sector.
It is assumed that the first capital good depreciates at the constant rate δ,
0 < δ < 1.

Firms in the second sector make investment decisions to maximize the
present value of their firms. They produce the consumption good 2 and sell
their output at the spot market at a price of St . The production technology
for the second sector is given by y2t = K2t , where K2t denotes the second
capital good and is supplied by the first sector. The second capital good
is also assumed to depreciate at a constant rate of 0<δ< 1. Therefore,
between t and t + 1, the second capital depreciates by δK2t and since the
output of the second sector cannot be converted back into physical capital,
the capital stock in the second sector can be increased only by investment
from the first sector into the second.

There exists a spot market, where the consumption good 2 is traded
against the numeraire good, good 1, at the spot price St . Households pur-
chase good 2 for consumption at the spot market and have access to two
financial assets. The first asset is the bond, which earns riskless rate of inter-
est r f

t . The price of the bond is expressed in units of consumption good 1
and it is assumed to be in zero net supply such that bt = 0 (for all t), where
bt denotes the amount of bond holdings at time t. The second asset, the
equity issued by firms, is a claim on the total stream of cash flows generated
by the second sector. Each period, the stock earns a dividend, dtSt in units
of good 1. Let qt denote the stock price at time t and zt be the amount
of share holdings at time t. We assume that there exists single share out-
standing, zt = 1 for all t. The feasibility condition for sector 1 requires that
consumption of goods in sector 1, c1t , plus investment in capital goods for
sectors 1 and 2, Iit for i = 1, 2, are less than or equal to output produced in
sector 1, that is, c1t + I1t + I2t ≤ y1t = (α + θt)K1t . Likewise, consumption
of sector 2 goods exhausts sector 2 output, c2t ≤ y2t = K2t .

Households own the entire stock of the first capital good and rent it
to firms in the first sector at the rental price of rt . Households obtain
utility from the consumption of both goods and maximize the expected
discounted value of utility derived from consumption of goods 1 and 2
denoted by c1t , c2t , respectively, and by holdings of new capital, bonds, and
shares of the firm in the second sector.

11.4.2. The social planner’s problem

We begin by considering a centralized version of this economy. We show
the existence of a solution to the social planner’s problem and characterize
the properties of this solution. We then show how the allocations to the
social planner’s problem can be supported in a competitive equilibrium.

We have the following assumptions.
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Assumption 11.2 The utility function is given by:

U (c1, c2) =
{

1
1−γ

c1−γ
1 + b

1−γ
c1−γ
2 , γ > 0, γ �= 1,

ln (c1) + b ln (c2), γ = 1

Assumption 11.3 The technology shock θ ∈ [0, ∞] is i.i.d. with stationary
distribution function G. The function G has the properties that G(θ ) = 0 for
θ ≤ 0 and G(θ ) = 1 for θ → ∞. Also dG > 0 and dG is continuous.

The social planner chooses consumption allocations in goods 1 and 2
and decides how much to invest in sector 1 versus sector 2 to maximize
the utility of a representative consumer. Recall that the first capital good
is not subject to an irreversibility constraint. However, once investment in
the second capital good has been made, it cannot be costlessly converted
back into output of sector 1. We can write the social planner’s problem as
follows:

max
{c1t ,c2t ,I1t ,I2t }

E0

{ ∞∑
t=0

β tU (c1t , c2t)

}
, 0 < β < 1, (11.54)

subject to the set of constraints:

c1t ≤ (α + θt)K1t − I1t − I2t , (11.55)

c2t ≤ K2t , (11.56)

K1t+1 = (1 − δ)K1t + I1t , (11.57)

K2t+1 = (1 − δ)K2t + I2t , (11.58)

I2t ≥ 0, (11.59)

given K10 and K20.
To analyze the problem further, note that for γ = 1, U (c) = ln (c).

When γ ≤ 1, the utility function is unbounded from above on �++ and
unbounded from below when γ ≥ 1. Recall that the production technology
in both sectors is linear in capital. Hence, we have an unbounded return
function and an unbounded state space. To deal with this problem, we fol-
low the approach in Stokey and Lucas [418] and restrict the growth rate
of the capital stocks. Notice that the capital stock in sector 2 depends on
output and hence, the capital stock in sector 1. Hence, if we can bound
the expected growth rate of capital in sector 1, the consumption-capital
ratio, C1t/K1t , and the ratio of the capital stocks, κt = K2t/K1t , will also
be stationary variables. Note that K1t > 0 because the marginal utility of
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consumption of the first good is infinite for c1t equal to zero. Likewise,
by the irreversibility constraint K2t ≥ (1 − δ)tK20 > 0 for K20 > 0. Hence,
κt > 0. To further characterize the behavior of capital in sector 1, substi-
tute the laws of motion for the capital stocks into the aggregate feasibility
constraint for the first sector to obtain:

c1

K1
+ K ′

1

K1
+ K ′

2

K1
≤ (α + θ ) + (1 − δ) + (1 − δ)

K2

K1
,

or

K ′
1

K1
≤ (α + θ ) + (1 − δ)(1 + κ) − c1

K1
− K ′

2

K2
κ

≤ (α + θ ) + (1 − δ)(1 + κ),

where we have made use of the fact that c1/K1 and K ′
2/K2 are bounded

below by 0 and (1 − δ), respectively. We will seek an equilibrium in which
E[K ′

1 /K1] ≤ E[α + θ + 1 − δ]. We restrict the expected growth rate of K1t

further as follows:

Assumption 11.4 βE[(α + θ ′ + 1 − δ)1−γ ] < 1 for γ �= 1 and βE [ln
(α + θ ′ + 1 − δ)] < 1 for γ = 1

We consider two cases:
• γ �= 1. Since θ is i.i.d., we can equivalently replace conditional expecta-

tions with unconditional expectations. We can write the absolute value
of the supremum function for the social planner’s problem as:

∣∣∣Ṽ (K10)
∣∣∣ ≡

∣∣∣∣∣ 1

1 − γ
E

{ ∞∑
t=0

β tK 1−γ
1t

[(
c1t

K1t

)1−γ

+ bκ 1−γ
t

]}∣∣∣∣∣
≤
∣∣∣∣ 1

1 − γ

∣∣∣∣K 1−γ
10

∞∑
t=0

E

{
β t�t

[(
c1t

K1t

)1−γ

+ bκ 1−γ
t

]}
,

where

�t =
t−1∏
i=0

(α + θi + 1 − δ)1−γ , �0 = 1.
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Now consider a term in the infinite sum above. Using an iterated
expectations argument, we can write

β tE

{
�t

[(
c1t

K1t

)1−γ

+ bκt

]}

= βE
{
(α + θ0 + 1 − δ)1−γ βE0

{
(α + θ1 + 1 − δ)1−γ . . .

βEt−2

{
(α + θt−1 + 1 − δ)1−γ βEt−1

[(
c1t

K1t

)1−γ

+ bκt

]}}}

≤ βE
{
(α + θ0 + 1 − δ)1−γ βE0

{
(α + θ1 + 1 − δ)1−γ . . .

βEt−2
{
(α + θt−1 + 1 − δ)1−γ B

}}} ≤ φtB.

This result follows because Et−1
[
(c1t/K1t)

1−γ + bκ 1−γ
t

]
is finite and

βE[(α + θt − δ)1−γ ] = φ < 1 by Assumption 11.4. Hence,

∣∣∣Ṽ (K10)
∣∣∣ ≤

∣∣∣∣ 1

1 − γ

∣∣∣∣K 1−γ
10

∞∑
t=0

φtB.

Therefore,
∣∣∣Ṽ (K10)

∣∣∣ /K 1−γ
10 is bounded for K10 ∈ �++ even though total

expected discounted utility is not.
• γ = 1. In this case,

∣∣∣Ṽ (K10)
∣∣∣ ≡

∣∣∣∣∣E
{ ∞∑

t=0

β t [ln (K1t) + ln (c1t/K1t) + b ln (κt)
]}∣∣∣∣∣

≤
∣∣∣∣∣E

{ ∞∑
t=0

β t [�t + ln (K10) + ln (c1t/K1t) + b ln (κt)
]}∣∣∣∣∣ ,

where

�t =
t−1∏
i=0

ln (α + θi + 1 − δ), �0 = 1.

As before, βE[ln (α + θt + 1 − δ)] < 1 and E
[
ln (c1t/K1t) + b ln (κt)

]
is

finite. Hence, using an iterated expectations argument as in the previous
case to evaluate β tE(�t), |Ṽ (K10)| − |ln (K10)| /(1 − β) is bounded for
any K10 ∈ �++.

Also notice that the supremum function Ṽ (K10) is homogeneous of degree
1 − γ in K1t and K2t .
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In this application, the value function depends on the levels of the cap-
ital stocks in sectors 1 and 2. We can write the value function for the social
planner’s problem as:

V (K1, K2) = max
c1,c2,I1,I2

{
U (c1, c2) + β

∫ ∞

0
V (K ′

1 , K ′
2 )dG(θ ′)

}
(11.60)

subject to the resource constraints in (11.55) and (11.56), the irreversibil-
ity constraint in (11.59), given the laws of motion for the capital stocks
in (11.57–11.58). Since the capital stocks are growing, we chose the value
function to be from the space of functions that are growing no faster than
K 1−γ

1 , that are homogeneous of degree 1 − γ in K1 and K2, and that are
jointly continuous in their arguments. Define the space of such functions
by B; define the norm of the elements of B by:

‖g‖ϕ = sup
K1,K2∈�++

∣∣∣∣g(K1, K2)

ϕ(K1)

∣∣∣∣ < ∞,

where ϕ ∈ B; in our case, ϕ(K1) = K 1−γ
1 . This function is still an element

of B even though it is not an explicit function of K2. We can show that the
space B is a complete, normed linear space.

Proposition 11.1 Under Assumptions 11.2, 11.3, and 11.4, there exists a
unique solution V � ∈B to Equation (11.60). The fixed point function V � is
increasing and concave in K1 and K2.

P R O O F

Apply the approach for the proof of Proposition 8.3 in Chapter 8.
Let λit for i = 1, 2 and μt denote the multipliers for resource constraints

and the irreversibility constraint, respectively. The first-order conditions
with respect to c1t , c2t , I1t and I2t are given by:

U1t = λ1t , (11.61)

U2t = λ2t , (11.62)

λ1t = βEt[V1(K1t+1, K2t+1)] (11.63)

λ1t = βEt[V2(K1t+1, K2t+1)] + μt , (11.64)
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where V1(K1t+1, K2t+1) and V2(K1t+1, K2t+1) denote the derivative of the
value function with respect to K1t+1 and K2t+1. The envelope conditions
are given by:

V1(K1t , K2t) = λ1t(1 − δ + α + θt), (11.65)

V2(K1t , K2t) = (λ1t − μt)(1 − δ) + λ2t . (11.66)

The first-order conditions in Equations (11.61) and (11.63) imply the
optimal consumption rule at time t as:

U1t = βEt[V1(K1t+1, K2t+1)]. (11.67)

Likewise, the first-order conditions in Equations (11.63) and (11.64) imply
the following simple rule for optimal investment at time t:

Et[V2(K1t+1, K2t+1)] = Et[V1(K1t+1, K2t+1)] ⇔ I �2t > 0;

Et[V2(K1t+1, K2t+1)] < Et[V1(K1t+1, K2t+1)] ⇔ I �2t = 0. (11.68)

In words, if the expected shadow price of capital in the second sector at
time t + 1 is greater than or equal to that of capital in the first one, then
the second sector should receive a positive level of investment. If, how-
ever, the expected shadow price of capital in the second sector falls short
of the one in the first sector, it is better for the economy not to make any
investments in the second sector. The value function V ( · ) is increasing
and concave in both K1 and K2 because it inherits these properties from
the utility function. This implies that the investment decision rule given
by Et[V2(K1,t+1, K2,t+1)] ≥ Et[V1(K1,t+1, K2,t+1)] can also be represented by
K2,t+1 ≤ K �

2 (K1,t+1), where K �
2 denotes the optimal level of the second cap-

ital stock written as a function of the first capital stock. We discuss the
implications of this statement further below.

Following our earlier discussion, the envelope condition for the shadow
value of capital in the second sector can be written as:

V2(K1t , K2t) = U2t + (1 − δ) min[U1t ,βEtV2(K1t+1, (1 − δ)K2t )],

(11.69)

where the term (1 − δ)K2t in the derivative of the value function with
respect to K2t is used to denote that there is no investment into the
second sector for the next period. Now, suppose that the firm makes a
positive investment decision at time t such that I �2t > 0. To further charac-
terize the optimal interior choice of investment, define V2t+2 ≡ V2(K1t+2,
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(1 − δ)K2t+1). Iterate on the envelope condition and substitute it into the
first-order condition given in (11.61) to obtain:

U1t = βEt [U2t+1 + (1 − δ) min [U1t+1,βEt+1V2t+2]] . (11.70)

Dividing and multiplying the right side of this equation by U1t+1 and
simplifying yields:

Et

{
m1t+1

[
U2t+1

U1t+1
+ (1 − δ) min

(
1,βEt+1

V2t+2

U1t+1

)]}
= 1, (11.71)

where m1t+1 =βU1t+1/U1t . The conditions in (11.67), (11.68) and by (11.70)
together with feasibility constraint in (11.55) fully characterize the solu-
tion for the social planner’s problem. We return to these conditions when
discussing the competitive equilibrium for this economy.

11.4.3. The competitive equilibrium

Households
Suppose that there exists a representative household. The household solves
the problem:

max
{c1t ,c2t ,bt+1,K1t+1,zt+1}

E0

{ ∞∑
t=0

β tU (c1t , c2t)

}
, 0 < β < 1, (11.72)

subject to the budget constraint

c1t + Stc2t + bt+1 + K1t+1 + qtzt+1 ≤

+ rtK1t + (1 − δ)K1t + (qt + dtSt)z + (1 + r f
t )bt .

The household receives the rental income rtK1t from firms in the first sector
together with the undepreciated part of the capital stock at the end of the
period, (1 − δ)K1t .3 Let λt denote the Lagrange multiplier on the budget
constraint. The first-order conditions with respect to c1t , c2t , bt+1, Kt+1, zt+1

are given by:

3 We omit a discussion of the existence of a solution for the household’s problem and the problem of
firms in sector 2. However, we note that the approach that we followed in the previous section to
demonstrating existence must be used in these problems as well.
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U1t = λt , (11.73)

U2t = λtSt , (11.74)

λt = βEt[λt+1(1 + rf
t )], (11.75)

λt = βEt[λt+1(rt+1 + 1 − δ)], (11.76)

λtqt = βEt[λt+1(qt+1 + dt+1St+1)], (11.77)

where Uit ≡ �U (c1t , c2t)/�cit for i = 1, 2. It follows from the first-order
conditions in (11.73) and (11.74) that the spot price for consumption 2 is
given by:

St = U2t

U1t
. (11.78)

This expression shows that the spot price is determined by the intratem-
poral marginal rate of substitution between the first and the second
consumption goods. Define the intertemporal MRS for consumption goods
1 and 2 by:

mit+1 ≡ β
Uit+1

Uit
, i = 1, 2

and use these definitions and the equation for the spot price St we have
found above to re-write the first-order condition given in (11.77) as follows:

qt = Et[m1t+1(qt+1 + dt+1St+1)]

= Et

[
m1t+1

(
qt+1 + dt+1

U2t+1

U1t+1

)]
.

Dividing and multiplying the second term on the right-side of the equation
above with U2t and re-arranging yields:

qt = Et
[
m1t+1qt+1 + m2t+1dt+1St

]
. (11.79)

Notice that the current stock price is given by the discounted value of the
next period’s price plus dividend. While m2t+1 discounts dt+1 in units of
good 2, St converts this discounted value into units of good 1.

Define the gross real risk-free rate by R f
t . Using the first-order condition

in Equation (11.75) together with (11.73), it follows that:

1 = Et

[
m1t+1(1 + rf

t )
]

≡ Et

[
m1t+1R

f
t

]
(11.80)

which implies that

Rf
t = [Et(m1t+1)]

−1 .
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Thus, the real risk-free rate is just equal to the inverse of the expected
intertemporal MRS for consumption of good 1. Likewise, for the (gross)
real return on capital, we have the condition:

1 = Et [m1t+1(1 + rt+1 − δ)] ≡ Et [m1t+1Rt+1] . (11.81)

Note that in equilibrium, the expected discounted return from capital and
the return from the riskless bond are equal. Equation (11.81) says that the
household will undertake investment in the first capital good until the
expected discounted value of the return from this investment equals unity.
We could use a dynamic programming approach to provide an alternative
interpretation of this condition. According to this approach, the right-side
of this expression is the expected shadow value of additional capital which
at the consumer’s optimum, equals the price of new capital, defined here
as unity.

Firms
Firms in sector 1
The first sector is a perfectly competitive sector, in which all firms are profit
maximizing. Firms rent capital from households, paying a rental rate of
rt , and return the undepreciated part of the capital to the households at
the end of each period. Since households own the entire stock of the first
capital and invest directly into the production of the first sector, firms’
problem is to maximize a static one-period profit function. Assume that
there is a large number of identical firms in the economy and consider the
problem of a typical firm.

Each firm is endowed with a technology that enables the firm to produce
a single output according to a production function that is linear in K1t :

F (K1t , θt ) = (α + θt)K1t .

Here, K1t denotes the stock of capital 1, θt is a random shock to technology
and α is a constant parameter. In this representation, {θt}∞t = 0 is i.i.d. with
cumulative distribution function G that satisfies Assumption 11.3.

Investment in the first sector follows the simple neoclassical assump-
tions, where one unit of investment in period t, denoted by I1t yields an
additional unit of capital in period t + 1, without any investment frictions
(i.e. irreversibility, adjustment cost, etc.). Therefore, production at time
t + 1 relies on the stock of capital determined at time t. The capital stock
evolves in the classical way:

K1t+1 = I1t + (1 − δ)K1t . (11.82)

The typical firm in the first sector chooses the capital input to maximize
current period profits given by:

πt = (α + θt )K1t − rtK1t .
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The result of this static maximization problem of the firm is the well-
known competitive market equilibrium result, which is to produce at the
level where the marginal product of capital equals its marginal cost:

rt = α + θt .

Combining the above equation resulting from the profit-maximization
problem of the firm with the one in (11.81) yields:

Et[m1t+1Rt+1] = Et[m1t+1(1 + α + θt+1 − δ)] = 1.

Firms in sector 2
Firms in the second sector have a different production technology. In con-
trast to firms in the first sector, firms in the second sector own the stock of
the second capital and use it to produce consumption good 2. As a simple
device for deriving the relationship between average Q and marginal Q,
assume that the used capital sells for a price of pk,t . Hence, the firm is able
to sell the undepreciated part of its used capital and purchase used capital
at the end of the period. The firm also buys new capital, denoted by I d

t .
The law of motion for capital is given by:

K2t+1 = I d
2t + K d

2t ,

where K d
2t denotes the demand for the used capital at the end of period t.

So, the level of capital in period t + 1 is determined by the demand for new
and used capital. The gross profit of the firm is given by StK2t − I d

2t and
net cash flow from the firm to households is:

Nt = StK2t − I d
2t − pk,tK d

2t + pk,t(1 − δ)K2t . (11.83)

Recall that the replacement cost of capital is normalized to one. I d
2t and

pk,tK d
2t denote expenditures on new and used capital, respectively and

pk,t(1 − δ)K2t is the receipts from sale of (undepreciated) used capital.
Notice that in equilibrium, the net supply of capital is zero, that is,
K d

2t = (1 − δ)K2t .
The firm’s problem involves maximizing the present value of net cash

flows by choosing new investment expenditures and by purchases of used
capital. Recall that firms in the first sector rent physical capital from house-
holds in an amount that is not bounded by any constraints other than
K1t ≥ 0 for all t. However, in the second sector once firms decide to make
a fixed amount of investment (or decide to convert a fixed amount of good
1 into physical capital 2), this amount of capital is stuck within the sector.
Because of the irreversibility constraint (I2t ≥ 0), physical capital can be
eliminated only through depreciation over time. Thus, K2t+1 ≥ (1 − δ)K2t

must hold for all t.
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We know that the firm’s ex-dividend value is given by:

W e
t = Et

[ ∞∑
t=1

m1t+iNt+i

]

So, the firm chooses how much to invest in new capital and the pur-
chases of used capital to maximize its value. Using a dynamic programming
approach, the firm’s problem is given by:

W (K2t) = max
I d
2t ,K

d
2t

{Nt + Et[m1t+1W (K2t+1)]}

subject to

K2t+1 = (1 − δ)K d
2t + I d

2t , (11.84)

I d
2t ≥ 0, (11.85)

given K2t . Let μt denote the Lagrange multiplier on the irreversibility con-
straint. Imposing the market-clearing condition that K d

2t = (1 − δ)K2t , the
first-order and envelope conditions are given by:

Et[m1t+1W ′(K2t+1)] = 1 − μt (11.86)

Et[m1t+1W ′(K2t+1)] = pk,t (11.87)

W ′(K2t ) = St + (1 − δ)(1 − μt), (11.88)

where W ′( · ) denotes the partial derivative of W ( · ) with respect to k.
Iterating the envelope condition one period further and recalling our dis-
cussion of Section 11.3.2, we can write the envelope condition compactly
as:

W ′(K2t+1) = St+1

+ (1 − δ) min[1, Et+1(m1t+2W ′((1 − δ)K2t+1))].
(11.89)

Returning to the first-order condition in (11.73), the irreversibility condi-
tion given by I2t ≥ 0 imposes two possibilities for μt : either the irreversibil-
ity condition is not binding for the current period (μt = 0) or it is binding
(μt > 0). If it does not bind, then the optimal level of investment I �2t > 0
and if it is, then I �2t = 0. Hence, we can characterize the optimal investment
decision as:

Et[m1t+1W ′(K2t+1)] = 1 ⇔ I �2t > 0

Et[m1t+1W ′(K2t+1)] < 1 ⇔ I �2t = 0. (11.90)
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As long as the expected discounted marginal effect of capital on firm value
in the second sector is less than one, the irreversibility condition is binding.
If it is greater or equal to one, then firms in the second sector should invest
into physical capital, so that the condition is not binding. Notice that
the boundary condition for investment is given by Et[m1t+1W ′(K2t+1)] = 1,
which says that the minimum level of expected marginal benefit should be
equal to unity for the firm to make a positive investment.

Suppose that the firm chooses to undertake a positive level of investment
today so that I �2t > 0. Using the envelope condition in Equation (11.89),
we can write the first-order condition for the optimal interior choice of
investment as:

Et
{
m1t+1(St+1 + (1 − δ) min[1, Et+1(m1t+2W ′((1 − δ)K2t+1))])

} = 1.

(11.91)

Thus, how much investment that will be undertaken today depends on
the firm’s expectation of whether the irreversibility condition will be
binding in the next period. Otherwise, if the firm invests too much
today, it will be stuck with excess capital which it cannot costlessly
dispose of tomorrow. Thus, the irreversibility constraint induces a grad-
ual adjustment of the capital stock compared to a situation without
irreversibility.

11.4.4. The value of the firm and Q
Recall that average Q is defined as the ratio of the ex-dividend value of
the firm to the replacement cost of the whole existing capital stock while
marginal Q is defined as the marginal value of an additional unit of capital
to its replacement cost. If the production exhibits constant returns to scale,
average Q and marginal Q are expected to be equal.

Returning to the firm’s problem in Section 11.4.3, recall that used capital
sells for the price pkt . Substitute the first-order condition in (11.87) into the
envelope condition and iterate one period further to obtain:

pk,t = Et[m1t+1W ′(K2t+1)] = Et[m1t+1(St+1 + (1 − δ)pk,t+1)].

(11.94)

Iterating on this condition, we can show that the shadow price of existing
capital is just equal to the expected discounted marginal product of the
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second capital good which, given the linear production technology, is the
relative price of good 2 in terms of good 1.

pk,t = Et

{ ∞∑
i=0

(1 − δ)imt+1+iSt+1+i

}
. (11.95)

Since the replacement cost of capital is unity in this model, we also have
that pkt is equal to marginal Q, that is, pkt =Qm.

We follow the approach in Section 10.2.4 to deriving average Q. Recall
that the equity price for firms in sector 2 satisfies the relation:

qt = Et[m1t+1(qt+1 + dt+1St+1)].

As in Section 10.2.4, we assume that the purchases of used capital are
financed by retained earning or by new equity issues:

pk,tK d
2t − pk,t(1 − δ)K2t = REt + qt(zt+1 − zt),

and that gross profits are disbursed as dividends or held as retained
earnings:

StK2t − I d
2,t = REt + dtStzt .

Thus, using the expression for net cash flows, we have that:

Nt = StK2t − I d
2,t − pk,tK d

2t + pk,t(1 − δ)K2t

= REt + dtStzt + qt(zt − zt+1) − REt

= dtStzt + qt(zt − zt+1).

But in equilibrium zt+i = 1 for all i ≥ 0. Therefore, we have that
dt = Nt/St . Substituting this expression for dt into the expression for the
equity price, we obtain:

qt = Et
[
m1t+1

(
qt+1 + St+1K2t+1 − I d

2,t+1 − pk,t+1K d
2,t+1

+ pk,t+1(1 − δ)K2,t+1
)]

= pk,tK2,t+1 + Et
[
m1t+1

(
qt+1 − I d

2,t+1 − pk,t+1K d
2,t+1

)]
= pk,tK2,t+1 + Et

[
m1t+1

(
qt+1 − μt+1I d

2,t+1 − pk,t+1K2,t+2
)]

,

where we obtained the second line by using the relation in Equation (11.94)
and the third line by using the law of motion for capital and the first order-
conditions to substitute for K d

t+1 = Kt+2 − I d
2,t+1 and 1 − pk,t+1 =μt+1. To

complete our derivation, we note that μt+iI d
2,t+i = 0 for i ≥ 0. This follows
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from the fact that either the irreversibility constraint is not binding so that
μt+i = 0 or it is, in which case I d

2,t+i = 0. Hence, we find that

qt = pk,tK2,t+1 + Et
[
m1t+1

(
qt+1 − pk,t+1K2,t+2

)]
.

But this is a stochastic difference that has the solution:

qt+i = pk,t+iK2,t+1+i, i ≥ 0. (11.96)

Recalling that in equilibrium the ex-dividend value of the firm equals the
equity price, we find that:

qt+1 = W e
t = pk,tK2,t+1,

which implies that average Q and marginal Q are equal, Qm =Qa.

11.4.5. The relation among stock returns, investment, and Q
One of the reasons for studying this model has been to understand the
relationship among stock returns, investment, and Q. The model seeks to
capture the idea that stock return variability will be high when the invest-
ment is low in the economy. Remember that in equilibrium, the stock price
is given by:

qt = Et[mt+1(qt+1 + St+1K2t+1 − I2t+1)]

for the baseline model. Define the stock return as:

Rt+1 = qt+1 + St+1K2t+1 − I2,t+1

qt
,

and notice that the excess return satisfies:

1 = Et[m1t+1Rt+1].

We can apply a covariance decomposition to the expression for the excess
return as:

Et(Rt+1) − R f
t = −R f

t+1Covt

(
m1t+1,

St+1K2t+1 − I2t+1

qt
+ qt+1

qt

)
(11.97)

where Rf
t = Et[m1t+1]−1. Since Cov(X + Z , Y ) = Cov(X , Y ) + Cov(Z , Y ),

we obtain:

Et(Rt+1) − Rf
t

Rf
t+1

= − 1

qt
[Covt (m1t+1, St+1K2t+1 − I2t+1)

+ Covt
(
m1t+1, qt+1

)
].
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Recall that qt+i = pkt+iK2t+1+i. Since investment occurs only when
pkt+i = 1, we can further simplify this equation as:

Et(Rt+1) − Rf
t

Rf
t+1

= − 1

pktK2t+1
[Covt (m1t+1, St+1K2t+1)

+ Covt
(
m1t+1, pkt+1K2t+2

)
]. (11.98)

The left side of this equation is the excess return on the stock relative to
the risk-free return, which is referred to by Hall [226] as valuation residual.
For a given level of pk,t Equation (11.98) shows that the valuation residual
depends on both the covariance between the gross profits for firms in sector
2 and the MRS, and the covariance between Q and the MRS.

The main implications of the model are summarized in Equation (11.98).
The first term shows the impact of variation in profitability for firms on
the stock return. Notice that firm profitability is affected by the irreversibil-
ity in investment. Since industry demand is typically a downward-sloping
function of output which, in turn, depends on the amount of capital accu-
mulation, irreversibility affects the market price of output and hence, firms’
profitability. Second, irreversibility has a more direct effect on the stock
return through variation in the second term. Suppose there occurs a pos-
itive shock to investment demand, in our case, a more favorable shock to
productivity. If the shadow price of existing capital, i.e. pkt , is much lower
than its replacement cost, firms will not choose to invest and hence, the
productivity shock must be absorbed by prices, implying that the stock
return will be variable.

Now consider two regimes.
Non-binding irreversibility constraint (pkt ≈ 1): In this case, the magni-

tude of the last term in (11.98) is expected to be small since a small increase
in marginal Q will cause firms to invest. Hence, variation in profitability
will lead to changes mostly in the supply of capital and not in the price of
capital. This regime will correspond to low conditional volatility in stock
returns.

Binding irreversibility constraint (pkt < 1): Firms will not choose to invest
in the immediate future and irreversibility will prevent the costless disposal
of capital. Hence, the supply of capital will be relatively inelastic, implying
instead that the price of existing capital will respond to the shock. In this
case, the stock return will be relatively more volatile.

Thus, the model delivers predictions regarding the conditional volatil-
ity of stock returns and Q. It also implies that the conditional expected
return will respond negatively to Q. Kogan [282] provides a simple test
of this hypothesis by proxying Q with the market-to-book ratio, and by
regressing the absolute excess returns on various specifications involving
the market-to-book ratio for industry portfolios based on the two-digit
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SIC code industries. He considers a specification that includes the market-
to-book ratio and its square and another specification that is piecewise
linear in the market-to-book ratio. He finds that real investment frictions
which operate through the variable Q are significant determinants of stock
return volatility.

11.5. C O N C L U S I O N S

In this chapter, we have provided an overview of the modern theory of
investment and derived its asset pricing implications. Investment theory
has remained one of the most challenging areas in the macroeconomics
literature, not only because investment is one of the key determinants of
growth but also because accounting for the cross-sectional and time series
properties of real investment has proved far from simple or conclusive.
(For a further discussion, see the review of Caballero [85].) Among the
topics that we have not studied in this chapter are the impact of such
factors as changes in tax policy, productivity, market structure or risk, and
uncertainty on investment behavior. For a thorough review and discussion
of this issue, see Demers, Demers, and Altug [149]. Nevertheless, we have
provided a consistent theoretical framework and discussed how it can be
analyzed under alternative assumptions.

11.6. E X E R C I S E S

1. The neoclassical growth model assumes that investment can be negative.
This implies that existing capital can be costlessly converted into the
consumption good. Assume that households maximize:

∞∑
t=0

β tU (ct)

subject to

yt = kαt n1−α
t ,

Kt+1 = (1 − δ)kt + it ,

yt = ct + it ,

it ≥ 0.

Let nt = 1.
(a) Derive the Bellman equation, the first-order conditions and the

envelope condition when investment is constrained to be non-
negative.



324 Asset Pricing for Dynamic Economies

(b) Derive the solution for this problem under the assumption that
investment can be negative. How does the solution differ from the
solution in part (a)?

2. Consider the version of the model described in Section 11.2.2 with-
out adjustment costs but with irreversibility. Assume that the firm can
purchase used capital goods at the price pkt .
(a) Derive the firm’s net cash flow for this problem and formulate its

problem as a stationary dynamic programming problem.
(b) Derive the first-order conditions and the envelope condition.
(c) Show that an appropriately defined measure of Tobin’s Q satisfies

the following relation under irreversibility:

Q = 1 if it > 0

Q < 1 if it = 0.
(11.99)

(d) Sargent [383] derives a similar result between investment expendi-
tures and the ratio of the shadow price of existing capital to its
replacement cost. He interprets this as a version of the Q theory
of investment although he notes that the implied relationship is
an equilibrium relationship between two endogenously determined
variables. Interpret Sargent’s statement.

3. Time-to-Build
Suppose there exists a representative firm, and assume that today’s
investment resources are distributed among J projects, each with a life-
time J . All projects are the same in that they generate one unit of
capital when they are completed. However, the time-to-maturity of each
project depends on the period in which the project is initiated. Let sj,t
denotes the number of projects with j periods to maturity at time t.
Each period, investment resources are distributed among J projects with
different maturities such that investment demand at time t is given by:

I d
t =

J∑
j=1

φj sj,t , sj,t ≥ 0 ∀j,

where 0 < φj < 1, for j = 1, . . . , J and
∑J

j = 1 φj = 1. The share of each
project in investment expenditures is constant for all periods and given
by φj, for a project that will be completed in j periods.
The law of motion for the existing capital stock is given by:

Kt+1 = (1 − δ)Kt + It , 0 < δ < 1.

The incomplete capital stocks evolve as:

sj,t+1 = sj+1,t , j = 1, . . . , J − 1.
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The firm chooses the demand for used capital, denoted by K d
t , and the

new projects that will be initiated at time t and that will be finished
within J periods, denoted by sJ ,t . There exists a market for used capital,
where capital is sold at a price of pk,t . Here, we impose the condition
that a market for unfinished projects does not exist.
(a) Write down the representative firm’s net cash flows and derive

present value of the firm.
(b) Re-write the firm’s value problem using a dynamic programming

approach. Specify the law of motion for capital.
(c) Solve the firm’s maximization problem and show that the value of

capital is equal to the expected discounted sum of its costs. Specify
the first-order and envelope conditions explicitly.



C H A P T E R 12

Business cycles

The notion that economies are subject to recurring fluctuations dates back
to Kondratiev [283]. In his framework, cyclical fluctuations were modeled
as periodic movements or “long waves” in economic variables. Schumpeter
[393, 394] advanced the notion that both growth and business cycles could
be ascribed to technological innovations. A different line of thought is due
to Ragnar Frisch [192], who created the conceptual basis for much think-
ing regarding business cycles by formulating the notions of impulse and
propagation mechanisms. In Frisch’s model, business cycles arise through
the response of a second-order dynamic system to random shocks. Slutsky’s
[407] contribution was to note that the sum of a number of uncorrelated
shocks is capable of producing smooth movements in the generated series.
Concurrent with these developments, the work of Burns and Mitchell
[83] laid the groundwork for business cycle methodology at the National
Bureau of Economic Research (NBER). This research involves the dating
of business cycles and the development of leading indicators for the US
economy which continues to this day.1

Following the early work of Burns and Mitchell, interest waned in the
study of business cycles as the post World War II focus shifted to stabi-
lization policy. Keynes’s General Theory [274] laid the foundations for the
analysis of short-run economic fluctuations. During the post World War
II period, the Keynesian framework was interpreted as a model of out-
put determination at a point in time. The oil shocks of the 1970s and the
policy experience regarding the failure of stabilization policy during that
period led to the revival of interest in examining aggregate economic activ-
ity as recurrent phenomena characterizing the functioning of economies
with optimizing agents. In his paper “Understanding Business Cycles,”
Lucas [316] catalogued the remarkable conformity in a set of economic
series and set forth an agenda for explaining these facts using an equi-
librium approach. During this period, monetary models of the business
cycle beginning with Phelps [360], Lucas [314, 315], and others focused on
the impact of informational frictions as a way of providing a consistent

1 See also Zarnovitz [451].
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theoretical foundation for the impact of changes in money on output. In
Lucas’ framework, a significant role was assigned to unexpected shocks to
money in generating economic fluctuations. (See Lucas [314].) Following
Long and Plosser [312] and Kydland and Prescott [297], the more recent
“real business cycle”(RBC) approach has emphasized the role of technol-
ogy shocks in generating cyclical phenomena. The key idea of the RBC
theory is that business cycles can arise in frictionless, perfectly competi-
tive and complete markets in which there are real or technology shocks. It
is notable because its micro foundations are fully specified and it links
the short-run with the neoclassical growth model. More recently, New
Keynesian theories have revived interest in business cycle models that are
capable of producing short-run economic fluctuations based on the types
of forces that Keynes had initially postulated. Focus has also shifted to
understanding the factors behind international business cycles (see, for
example, Backus and Kehoe [39]) or business cycles in an international
historical context (see Basu and Taylor [48]).

In this chapter, we will address the analysis of business cycles from sev-
eral viewpoints. First, we will catalogue a set of stylized facts regarding
business cycles. Second, we will discuss the issue of modeling business
cycles. While there are many different models available, there is no sin-
gle accepted model that can explain all the so-called stylized facts of business
cycles. Third, we will discuss the empirics of business cycles.

12.1. B U S I N E S S C Y C L E F A C T S

The term “business cycle” refers to the joint behavior of a wide range
of macroeconomic variables such as output, employment, prices, and
investment. A business cycle exhibits two important features:
• When the variable is measured as deviations from trend, the ups and

downs in a series display a great deal of persistence. More formally, the
correlations of the observations one period apart are large and positive.

• Outputs in different sectors move together.
We will call these two features persistence and comovement. A business cycle
is a recurrent fluctuation of output or employment. The duration of a
cycle is the number of months from peak to peak (or trough to trough)
of the cycle. The amplitude of a cycle is the deviation from trend. See
Figure 12.1.

Time series are categorized into three categories: procyclical, counter-
cyclical, or acyclical. Variables that move in the same direction over the
cycle as real output are procyclical. Examples are consumption and invest-
ment. Variables that move in the opposite direction (rise during recessions
and fall in expansions) are countercyclical. An example is unemployment.
Variables that display little correlation with output over the cycle are called
acyclical. An example is agricultural output. Some time series are out of
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Figure 12.1. Amplitude and duration of a business cycle

phase with real GDP. For example, a leading indicator reaches a peak
before real GDP reaches its peak and bottoms out (reaches a trough) before
real GDP. Leading indicators are useful for predicting subsequent changes
in real GDP. Coincident indicators reach a peak or a trough at roughly
the same time as real GDP. Finally, lagging indicators reach a peak or
trough after real GDP.

The literature on business cycles has been concerned with generating
the stylized facts regarding cyclical fluctuations. The work of Burns and
Mitchell [83] provides a convenient reference for describing the main fea-
tures of business cycles based on the post-war US experience. More recently
Stock and Watson [413] have presented a methodology for describing
business cycles in terms of the cyclical time series behavior of the main
macroeconomic series and their co-movement with cyclical output. One
difference between the NBER approach to identifying business cycles and
the approach in Stock and Watson is that the former is based on the
(absolute) downturn of the level of output whereas the latter considers
the decline in the series measured as a deviation from its long-run trend.
Following the terminology in Zarnovitz [451], Stock and Watson refer to
such cycles as growth cycles.2

2 There is an issue of how to identify the cyclical component of a given series. For this purpose, Stock
and Watson make use of the so-called band-pass filter in Baxter and King [51] which filters out both
the long-run trend and the high-frequency movements by making use of spectral techniques.
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We can group the stylized facts of business cycles in several areas. The
first set of facts refers to the cyclical behavior of the main components
of GDP. Real output across virtually all sectors of the economy moves
together. Put differently, the contemporaneous correlation of output in
different sectors of the economy is large and positive. Exceptions are
production of agricultural goods and natural resources, which are not espe-
cially procyclical. Consumption, investment, inventories, and imports are
all strongly procyclical. Consumption of durables is much more volatile
than consumption of non-durable goods and services. Consumption of
durable goods fluctuates more than GDP whereas non-durables fluctuate
considerably less. Investment in equipment and non-residential structures
is procyclical with a lag. Investment in residential structures is procyclical
and highly volatile. Government spending tends to be acyclical. The cor-
relation between government expenditures and output is nearly zero. Net
exports are countercyclical. The correlation of output is generally negative,
but weakly so. Since imports are more strongly procyclical than exports,
the trade balance tends to be countercyclical.

Labor market fluctuations emphasize the cyclical behavior of employ-
ment, wages, and productivity. Total employment, employee hours, and
capacity utilization are all strongly procyclical. The employment series
lag the business cycle by a quarter while capacity utilization tends to
be coincident. Employment fluctuates almost as much as output and
total hours of work while average weekly hours fluctuate much less. The
implication is that most fluctuations in total hours result from move-
ments in and out of the work force rather than adjustments in average
hours of work. Real wages are procyclical or acyclical. They have not dis-
played a steady pattern in terms of variability to GDP or in terms of
leading/coincident/lagging indicators. Productivity is slightly procyclical
but both real wages and productivity vary considerably less than out-
put. This set of facts has proven to be among the most challenging
facts to be reconciled with current business cycles models, as we discuss
below.

The behavior of asset prices and returns has also received much scrutiny
in the business cycle literature. In this regard, profits are highly volatile.
Second, nominal interest rates tend to be procyclical. The yield curve
which shows the rates of return on bonds of different maturities tends to be
upward sloping during an expansion and downward sloping at the onset
of a recession. That is, an expansion is characterized by expectations of
higher interest rates at longer horizons whereas a recession typically signals
a decline in long-term interest rates relative to short, namely, an inverted
yield curve. Velocity and the money supply are procyclical. The risk pre-
mium for holding private debt, or the yield spread between corporate paper
and Treasury bills with six month maturity, tends to shrink during expan-
sions and increase during recessions. The reason for this countercyclical
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behavior is likely to be changes in default risk. The stock market is pos-
itively related to the subsequent growth rate of real GDP. In this sense,
changes in stock prices have been taken as providing information about
the future course of the real economy. Between 1945 and 1980, the stock
market fell in the quarter before each of the eight recessions, although it
is important to emphasize that the market has fallen without a subsequent
recession.

The behavior of monetary aggregates and their relationship to real out-
put has implications for alternative models of business cycles. Money (M2)
is procyclical and tends to be a leading indicator of output. However, the
procyclicality of M2 has diminished since the 1980s. The behavior of infla-
tion has appeared to change over time. In the pre-World War I period and
interwar period, inflation was procyclical with a very low mean. Since the
early 1980s, inflation appears to be countercyclical. The standard devia-
tion of inflation is lower than that of real GDP. Inflation is a coincident
indicator. There is also a marked increase in the persistence of inflation
after World War II. Finally, contemporaneous correlations between out-
put fluctuations in different countries were highest in the interwar period,
reflecting the common experience of the Great Depression, with the excep-
tion of Germany and Japan. The correlation is typically larger in the
post-war period than in the pre-war period.

The literature on cataloguing business cycle regularities is too vast to be
summarized in the current context. Nevertheless we can cite some papers
that have extended this literature in alternative ways. The European busi-
ness cycle has been well studied. See, for example, Artis, Kontolemis, and
Osborn [35]. Artis and Zhang [34] investigate the relationship of the Euro-
pean Exchange Rate Mechanism (ERM) to the international business cycle
in terms of the linkage and synchronization of cyclical fluctuations between
countries. Their findings suggest the emergence of a group-specific Euro-
pean business cycle since the formation of the ERM, which is independent
of the US cycle. Stock and Watson [414] find that the volatility of business
cycles has moderated in most G7 countries over the past 40 years, and pro-
vide further evidence on the emergence of two cyclically coherent groups,
the Euro-zone and English-speaking countries including Canada, the UK,
and the US, respectively. Köse, Otrok, and Whiteman [286] consider the
issue of a world business cycle, and use data on 60-odd countries covering
seven regions of the world to determine factors underlying cyclical fluctu-
ations that are common to all aggregates across all countries and regions
and to countries and aggregates separately.

Basu and Taylor [48] examine business cycles within an international
historical perspective. They consider the time series behavior of output,
prices, real wages, exchange rates, total consumption, investment and the
current account for 15 countries including the US, the UK, and other Euro-
pean countries plus Argentina for the period since 1870. They divide this
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period into four periods that also reflect the monetary and capital account
regimes prevailing in them. The first period from 1870 to 1914 represents
the era of the classic gold standard, which featured fixed exchange rates and
worldwide capital market integration. In the second period from 1919 to
1939, the world economy went from a globalized regime to one which was
nearly autarkic. This is also the period corresponding to the Great Depres-
sion. The third regime is the Bretton Woods era from 1945 to 1971, which
corresponds to the post-World War II era of reconstruction and a resump-
tion of global trade and capital flows. Finally, the fourth period corresponds
to the period since the early 1970s to the present with a floating exchange
rate regime. Basu and Taylor [48] argue that considering such a break-
down allows for the analysis of the impact of different regimes on cyclical
phenomena, and also provides a way to identify the importance of demand
versus supply-side factors or shocks and the role of alternative propaga-
tion mechanisms such as price rigidity. For example, most explanations of
the Great Depression attribute the source of this massive downturn which
simultaneously occurred in a number of countries to monetary phenom-
ena. We return to controversies regarding the source of cyclical fluctuations
in a later section.

12.2. S H O C K S A N D P R O P A G A T I O N M E C H A N I S M S

A business cycle model may be described in terms of impulses and a propa-
gation mechanism. An impulse is the event that causes a variable to deviate
from its steady state. A propagation mechanism is the mechanism causing
deviations from the steady state to persist. The impulses may be real or
monetary shocks.

Technology shocks alter the economy’s production possibilities set.
Permanent improvements in technology make it possible to reach higher
combinations of outputs for a given level of inputs. Equivalently, new tech-
nologies may be viewed as cost-reducing, reducing the cost of attaining
a given level of output. The introduction of computer technology is an
example of this type of shift, as the costs of producing a myriad set of goods
and services have fallen due to the availability of information technology.
Historically, we may view the transition to settled agriculture as a form of
technological progress as well as the adoption of more advanced agricul-
tural technologies such as irrigation, cross-breeding and so on. Technology
shocks may also be transitory such as increases in oil prices.

Political shocks and government expenditures shocks are another
source of output fluctuations. Shocks associated with wars may be viewed
as a form of temporary shock. Between 1700 and 1920, the British Empire
fought eight major wars (treating the wars with France during the period
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1793 to 1815 as one war).3 Changes in political regimes or political parties
may also have effects on an economy’s production possibility set through
the impact of tax policy, regulation policy, market access, rent-seeking and
the like.

Natural disasters and weather are often responsible for large declines
in output and aggregate economic activity. The hurricane that hit New
Orleans and the Gulf states in the US in 2005 was responsible for sub-
stantial declines in output. Droughts, frosts, flooding, and other types of
natural disasters are other examples of “weather” shocks.

That monetary shocks can have real effects is one of the enduring
hypotheses in economics. The treatise by Friedman and Schwartz [191]
examining the relation between money and output growth remains as an
important set of facts to be accounted for by macroeconomists of different
persuasions.

Taste shocks may also be responsible for various sorts of fluctuations.
The positivist approach to economics advocated by Friedman and others
has typically precluded changes in taste based on the idea that allowing
for shifts in preferences is a convenient way to “explain anything.” Never-
theless, changes in culture may affect the consumption of variety of goods.
Coffee culture originated in 16th-century Turkey (or the Ottoman Empire)
and spread from there to many other parts of the world. The interest in
world culture and goods has led to the growth of stores or chains such
as Starbucks that market international coffees and teas and ethnically-
inspired stores that sell Asian and African-style housewares, clothing and
accessories.

Suppose a shock does occur. How is it transmitted to the rest of the
economy?
• Real business cycle models emphasize the role of intertemporal substitu-

tion motives. Agents typically respond to a temporary negative shock by
lowering savings and also by working less. The impact of these changes is
to induce fluctuations in labor supply and employment as well as invest-
ment. Furthermore, if the economy experiences a period with lower
investment, it will have a lower capital stock in the future, implying
that the effect of the shock persists. Long and Plosser [312] provide an
early example of a real business cycle model. See Exercise 2.

• Keynesian and New Keynesian models stress the role of frictions such
as price stickiness. In a simple labor market model, if real wages do
not adjust downward when there is a negative shock to demand, the
result is unemployment and larger declines in output relative to a situ-
ation with flexible prices. Prototypical New Keynesian models such as
Rotemberg and Woodford [373] allow for imperfect competition and

3 See Barro [45].
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markups to capture alternative propagation mechanisms in response to
technology shocks or shocks to government expenditures. Limited par-
ticipation models also allow alternative mechanisms for the propagation
of real and monetary shocks.4

• The recent crises in East Asia and the experience of the Great Depres-
sion also point to the importance of credit market frictions, with shocks
originating in various financial markets, leading to a widening circle of
bankruptcies and bank failures and large and negative effects on real
output. Bernanke and Gertler [58] employ a model with such frictions
to try to account for the experience of the Great Depression in the US.

12.3. R E A L B U S I N E S S C Y C L E M O D E L S

The recent analysis of business cycles is notable for the fact that it has
wed growth theory with business cycle theory. The proto-typical RBC
model has the structure of a standard neoclassical growth model with a
labor/leisure choice incorporated. We start with the standard production
function:

Yt = AtK α
t H 1−α

t , 0 < α < 1. (12.1)

Under constant returns to scale and perfect competition in the product
and factor markets, the Solow residual is defined as the difference between
the growth of output and the share-weighted growth rates of the inputs.
To derive the Solow residual, take the logarithm and then take the first
differences:

� ln Yt+1 = � ln At+1 + α� ln Kt+1 + (1 − α)� ln Ht+1,

which can be rewritten in growth rates as:

�yt+1 = �at+1 + α�kt+1 + (1 − α)�ht+1,

where �x denotes log-differences of X . To derive an observable measure
of the Solow residual, the parameter α is typically measured as the share
of capital in real output defined as sKt = rtKt/PtYt , where rt denotes the
competitively determined rental rate on capital and Pt denotes the product
price. Under constant returns to scale, sKt + sHt = 1, where sHt = wtHt/PtYt

denotes the share of labor in national income. Under these assumptions,
the growth in the total factor productivity (TFP) is measured as a residual:

�at+1 = �yt+1 − sKt�kt+1 − (1 − sKt)�ht+1.

The importance of the Solow residual has been demonstrated in a num-
ber of empirical studies. Solow [410] showed that the residual accounts
for about one-half of the US GDP growth between 1909–1949. Similarly,

4 For a review and discussion of these models, see Christiano, Eichenbaum, and Evans [105].
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according to Denison [151], 40% of GNP growth in the USA between 1929
and 1957 resulted from technical development. Using this representation,
the growth in output per worker is

�yt+1 − �ht+1 = �at+1 + sKt[�kt+1 − �ht+1].

The Solow residual is typically treated as exogenous. In terms of its statistical
properties, it appears to be a random walk with drift.

The empirical behavior of the Solow residual also has implications for
the source of cyclical fluctuations. Observed productivity or the Solow
residual is procyclical. According to the RBC approach, the observed
procyclical movements in productivity should merely be a response to
exogenous technology shocks. (See Prescott [363].) In a series of papers,
Hall [224], [225] has argued persuasively that there may be endogenous
components to the cyclical movement of productivity arising from imper-
fect competition at the firm level and internal increasing returns to scale in
production. To see these results, consider a production function for gross
output for the ith firm or productive unit Yit as:

Yit = F i(Hit , Kit , Mit , Ait), (12.2)

where Hit denotes man-hours, Kit denotes services from capital, Mit

denotes materials inputs, and Ait is a technology shock.5 The function
F i is assumed to be homogeneous of degree γi in H , K , and M , and
homogeneous of degree one in A. Suppose that the output price includes a
(possibly) time-varying markup over marginal cost as:

Pit

MCit
= μit , (12.3)

where μit ≥ 1. Also define the cost shares of the inputs by:

c J
it = P J

it Jit∑
J Pj

it Jit

, J = H , K , M

where PJ
it denotes the price of the J th input. The first-order conditions for

the firm’s cost minimization are given by PJ
it = λitFJ (Hit , Kit , Mit , Ait) for

J = H , K , M , where λit is a Lagrange multiplier that has the interpretation
of marginal cost and FJ is the derivative of the production function with
respect to the J th input. Making use of the expression for the markup, it
follows that

FJ Jit

Yit
= μit

(
P J

it Jit

PitYit

)
= μit s

J
it . (12.4)

5 As is typical of this literature, we differentiate between a production function for gross output and
value-added at the firm level of analysis. See, for example, Basu [47].
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Using the fact that γi =μit
∑

J s J
it together with the definition of the cost

shares ci
Jt yields an expression for the growth rate of output in sector i as:

�yi,t+1 = γi
[
cH
it �hi,t+1 + cK

it �ki,t+1 + cM
it �mi,t+1

] + �ai,t+1.

(12.5)

Subtracting the quantity �xi,t+1 ≡ [cH
it �hi,t+1 + cK

it �ki,t+1 + cM
it �mi,t+1]

from both sides of this expression yields:

�yi,t+1 − �xi,t+1 = (γi − 1)�xi,t+1 + �ai,t+1. (12.6)

Since γi ≥ 1, observed productivity (defined from the left side of this
expression) can be procyclical even in the absence of positive shocks to
technology. For example, a demand shock that stimulates output can
be associated with increases in productivity by leading to endogenous
increases in efficiency. Similarly, if there is cyclical variation in factor
utilization rates, then the conventional Solow residual inappropriately
includes a component due to unobserved variation in capital and/or labor
utilization rates due to labor hoarding, for example. In what follows, we
examine the implications of the standard RBC approach which assumes
perfect competition, CRTS in production, and full utilization of all factors.
In later sections, we discuss deviations from these assumptions.

12.3.1. An RBC model

The standard RBC model is a one-sector growth with a labor-leisure
choice. The representative agent has time-separable preferences over con-
sumption and leisure choices given by:

U = E0

{ ∞∑
t=0

β tu(ct , lt)

}
, (12.7)

where 0<β < 1 is the discount factor. The time constraint requires that
the sum of leisure and labor hours sum to one:

lt + ht = 1. (12.8)

There is a representative firm with a CRTS production function that is
affected by a stochastic technology shock each period:

yt = exp (zt)kαt h1−α
t , 0 < α < 1. (12.9)

Assume that the technology shock follows an AR(1) process:

zt+1 = μ + ρzt + εt+1, 0 < ρ < 1, ε ∼ i. i. d . and N (0, σ 2
e ).

(12.10)
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Capital evolves according to

kt+1 = (1 − δ)kt + it , (12.11)

where it denotes economy-wide investment and 0<δ< 1 is the deprecia-
tion rate. The aggregate feasibility constraint is defined as:

ct + it = yt . (12.12)

We can show the existence of a value function for the social planner’s
problem for this model using the recursive approach that we introduced
earlier. Assuming a solution exists, let λt denote the Lagrange multiplier
on the resource constraint. The first-order conditions with the envelope
conditions substituted in with respect to ct , kt+1 and lt are as follows:

U1(ct , lt ) = λt , (12.13)

λt = βEt{λt+1[exp (zt+1)αkα−1
t+1 h1−α

t+1 + (1 − δ)]}, (12.14)

U2(ct , lt ) = λt exp (zt)(1 − α)h−α
t kαt . (12.15)

These conditions can be rewritten as
U2t

U1t
= exp (zt)(1 − α)(kt/ht)

α (12.16)

βEt

{
U1,t+1

U1t
[exp (zt+1)α(kt+1/ht+1)

α−1 + (1 − δ)]

}
= 1. (12.17)

The first equation shows that the marginal rate of substitution between
consumption and leisure is equal to the marginal product of labor. The sec-
ond equation is the intertemporal Euler equation. Observe that the ratio
U2/U1 is a function of the capital-labor ratio, kt/ht . There is no unem-
ployment in the model as time not spent working is (optimally) taken as
leisure. This means that the capital accumulation process will also be a
function of the capital-labor ratio.

To show this more explicitly, suppose that the utility function has the
form:

U (ct , lt ) = cθt l 1−θ
t , 0 < θ < 1.

The intratemporal MRS between consumption and leisure can be
expressed as:

U2(ct , lt)
U1(ct , lt)

= (1 − θ )cθt l−θ
t

θcθ−1
t l 1−θ

t
= 1 − θ

θ

ct

lt
.

Using this result to evaluate the MRS between consumption and leisure in
Equation (12.16), we obtain:

(1 − θ )ct

θ lt
= exp (zt)(1 − α)(kt/ht)

α. (12.18)
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Likewise, we can re-write the intertemporal Euler equation by not-
ing that U1(ct+i, lt+i) = θ (ct+i/lt+i)θ−1 for i ≥ 0 and using the result in
Equation (12.18). This yields:

βEt

{[
exp (zt+1)

(
kt+1

ht+1

)α]θ−1
[
α exp (zt+1)

(
kt+1

ht+1

)α−1

+ 1 − δ

]}

=
[

exp (zt)

(
kt

ht

)α]θ−1

. (12.19)

Observe that this is a non-linear stochastic difference equation in kt/ht

with forcing process given by the technology shock. It can be solved for
the optimal {kt/ht}∞t = 0 sequence using methods for solving stochastic dif-
ference equations. Given a solution for kt/ht , Equation (12.18) can be used
together with the feasibility constraint and the time constraint to solve
for ht .6

Kydland and Prescott [297] introduced an influential and much-cited
version of an RBC model. In their framework, the random technology
shock is the sole impulse. The main propagation mechanisms are that:
• risk-averse agents smooth consumption over time using capital;
• lags in investment (time-to-build) cause shocks to propagate;
• agents substitute leisure in response to transitory changes in wages (or

changes in the marginal product of labor);
• inventories are used to meet unexpected changes in demand. (See

Christiano [103].)
In the “real business cycle” literature, the model is then calibrated with

the data. Calibration refers to the practice of the determining the param-
eters of the models based on its steady state properties and the results of
other studies, given particular functional forms for the production func-
tion and the utility function. (See Cooley and Prescott [124].) A stochastic
process for zt is also specified and a random number generator is used
to simulate the total factor productivity time series. The simulated series
are used to generate time series for consumption, output, investment and
labor. Trends in the data are removed using a given filter. The means, vari-
ances, covariances, and cross correlations for the simulated time series are
compared with the comparable statistics in the data. The model is then
judged to be close or not based on this comparison, so the approach dif-
fers significantly from standard econometrics. One of the problems with
the RBC approach is that the model is constructed so that all variability in
output is explained by shocks to TFP.

6 An alternative way to find the solution for the basic RBC model is to log-linearize the optimality con-
ditions around the deterministic steady state following the approach in Uhlig [435]. See Example 10.3
in Chapter 10.
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Kydland and Prescott use this approach to analyze the properties of a real
business cycle model in which preferences are not separable over time with
respect to leisure and there exists a time-to-build feature in investment for
new capital goods. The production function displays constant returns to
scale with respect to hours worked and a composite capital good. The only
exogenous shock to their model is a random technology shock which fol-
lows a stationary first-order autoregressive process. They use the quadratic
approximation procedure to obtain linear decision rules for a set of aggre-
gate variables and generate time series for the remaining series by drawing
realizations of the innovation to the technology shock.

They calculate a small set of moments associated with each series to
match the model with the data. When calibrating their model, Kydland
and Prescott choose the variance of the innovation to the technology shock
to make the variability of the output series generated by their model equal
to the variability of observed GNP. As McCallum [336] notes, this fea-
ture of their analysis makes it difficult to judge whether “technology shocks
are adequate to generate output . . . fluctuations of the magnitude actually
observed.” More generally, the RBC approach faces the problem of identify-
ing technology shocks that can generate cyclical fluctuations of magnitudes
that are observed in the data (see Summers [424]). Despite these problems,
the surprising aspect of RBC modeling, in the first instance, is that it is
capable of delivering many of the stylized facts of business cycles. Specif-
ically, the model predicts that consumption fluctuates less than output
whereas investment fluctuates more. Consumption, investment, and hours
are all strongly procyclical, as they are in the data. In terms of the varia-
tion accounted by the technology shocks, the technology shock explains
much but not all of the variation in output. We illustrate numerically the
behavior of a proto-typical RBC model in Section 12.4. Thus, the RBC
model can generate cycles endogenously and clearly has some economic
significance even if the calibration method is controversial.

12.3.2. A model with indivisible labor supply

One of the main problems with the standard RBC model, as we have
outlined above, is that it cannot capture the variation in the aggregate
labor input. (See, for example, Kydland [296].) In the data, employment
is strongly procyclical and almost as variable as output while real wages are
weakly procyclical. In the standard model, a productivity shock shifts the
marginal product of labor so that the observed variations in employment
can only occur if the labor supply curve is relatively elastic. Yet micro stud-
ies find that wage elasticity of labor supply is quite low. In this case, the
marginal productivity shock should lead to most of the adjustment in real
wages and less in the quantity of labor. Furthermore, in the data, hours of
work per worker adjusts very little over the cycle. About two-thirds of the
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variability in total hours worked comes from movements into and out of
the labor force, and the rest is due to adjustment in the number of hours
worked per employee.

The indivisible labor, lottery models studied by Gary Hansen [228] and
Rogerson [365] were devised to explain the stylized fact that aggregate hours
vary more than productivity. Their framework provides a way for recon-
ciling large labor supply elasticities at the aggregate level with low labor
supply elasticities at the individual level. This is accomplished by assuming
that individuals can work all the time or not at all. To account for the non-
convexities introduced by the work/non-work decision, it is assumed that
individuals choose the probability of working πt . A lottery then determines
whether an individual actually works. This economy is one in which indi-
viduals and a firm trade a contract that commits the household to work
h0 hours with probability πt . Since what is being traded is the contract,
the individual gets paid regardless of whether he works or not. We now
describe a version of the RBC model due to Richard Rogerson [365] and
Gary Hansen [228] that allows for fixed costs and non-convexities in labor
supply.

Suppose that workers are constrained to work either zero or ĥ hours
where

0 < ĥ < 1. (12.20)

The main idea is that there are non-convexities or fixed costs that make
varying the number of employed workers more efficient than varying hours
per worker. Let πt denote the probability that a given agent is employed in
period t so that per-capita hours worked is given by:

Ht = πt ĥ. (12.21)

Let c0,t denote the consumption of an unemployed worker and c1,t denote
the consumption of an employed agent. Then the expected utility of the
representative consumer, taking into account the work versus non-work
decision, is given by:

E[u(ct , lt)] = πtu(c1,t , 1 − ĥ) + (1 − πt)u(c0,t , 1).

Assume that the individual utility function has the form:

u(c, l) = ln (c) + A ln (l). (12.22)

The social planner solves the problem:

max
πt ,c0,t ,c1,t

E[u(ct , lt)] s. t. πt c1,t + (1 − πt)c0,t = ct .

Notice that the social planner chooses the consumption allocations of each
agent plus the probability of their working. When agents do work, they
must supply ĥ hours of work so that there is no choice over hours of work
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directly. Let λt denote the Lagrange multiplier on the feasibility constraint
for consumption. Omitting the work-leisure decision for the moment, the
first-order conditions with respect to (c0,t , c1,t) are:

πt

c0,t
= πtλt , (12.23)

1 − πt

c1,t
= (1 − πt)λt . (12.24)

It follows that c0,t = c1,t = ct so that the agent consumes the same amount
whether or not he is working. Hence the unemployed worker enjoys higher
utility since working causes disutility. In this model, ex ante all individu-
als are alike but ex post they differ because some work while others enjoy
leisure. With complete insurance and identical preferences that are separa-
ble with respect to consumption and leisure, all individuals have the same
consumption but the unemployed are better off. This is a feature that is
counterfactual to the working of actual labor markets. Nevertheless, as we
show below, the model delivers predictions that are more in line with the
data than the standard RBC framework.

Notice that the agent will consume ct whether or not he is working.
Hence expected utility (where the expectation is over whether or not you
work) is:

ln (ct) + πtA ln (1 − ĥ) + (1 − πt)A ln (1), (12.25)

where A is a positive constant. Using the definition of Ht , πt = Ht/ĥ. Now
substitute for πt in (12.25) and use ln (1) = 0 to obtain:

E[u(ct , lt)] = ln (ct) + πtA ln (1 − ĥ)

= ln (ct) − BHt . (12.26)

where

B = −A ln (1 − ĥ)

ĥ
.

Comparing Equation (12.22) with Equation (12.26) shows the effect of
the lottery assumption. The former specification for preferences implies
a low intertemporal elasticity of substitution in labor supply, which is
consistent with assumptions about individual behavior. By contrast, the
latter specification – which is linear in total hours Ht – implies a high
intertemporal elasticity at the aggregate level.

The preferences can now be written as:

U = E0

{ ∞∑
t=0

β tu(ct , Ht)

}
,
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where u(ct , Ht) = ln (ct)−BHt . We now solve the model subject to the time
constraint, resource constraint, production function and law of motion for
the capital stock described in Section 12.3. The problem is:

max
{ct ,Ht ,kt+1}

E0

{ ∞∑
t=0

β t [ln (ct) − BHt + λt[exp (zt)kθt H 1−θ
t

+(1 − δ)kt − ct − kt+1]
] }

.

The first-order conditions are:
1

ct
= λt (12.27)

B = λt exp (zt)(1 − θ )kθt H−θ
t (12.28)

λt = βEtλt+1[exp (zt+1)θkθ−1
t+1 H 1−θ

t+1 + (1 − δ)] (12.29)

Notice that (12.28) can be used to solve for Ht as:

Ht =
(

Bct

exp (zt)(1 − θ )

)−1/θ

kt

=
(

− A ln (1 − ĥ)ct

exp (zt)(1 − θ )ĥ

)−1/θ

kt . (12.30)

Equations (12.27) and (12.29) yield the intertemporal Euler equation as:

1 = β

{
ct

ct+1
[exp (zt+1)θkθ−1

t+1 H 1−θ
t+1 + (1 − δ)]

}
, (12.31)

where the term in square brackets shows the rate of return to investing in
the aggregate production technology. With Ht determined in (12.30), we
can use the resource constraint to solve for ct and then substitute for ct into
the intertemporal Euler equation to obtain a non-linear stochastic in kt+1

with forcing process {zt}.
Hansen calibrates this model by specifying values for the unknown

parameters θ , δ, β, A, and the stochastic process for the technology shock
using the approach in Kydland and Prescott. Hansen argues that the
model with indivisibilities can generate a variability of hours relative to
productivity around 2.7 compared with the model without indivisibilities
which implies a value near unity. The purpose of the framework that Gary
Hansen and Rogerson consider is to generate the stylized fact with respect
to the relative variability of hours versus productivity and it is not intended
to incorporate the microeconomic foundations of the labor market.
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12.3.3. Other “puzzles”

Despite its apparent success, the RBC model has produced a variety
of “puzzles.” These puzzles have constituted the basis of much further
research in the area. One of these puzzles is known as the productivity
puzzle regarding the relationship between productivity and output. The
second has to do with the issue of reverse causality from output to money.

The productivity puzzle
In the data, we find that the correlation between productivity and hours
is near zero or negative, while the correlation between productivity and
output is positive and around 0. 5. See, for example, Christiano and
Eichenbaum [104], who measure hours worked and productivity based
on both household and establishment-level surveys conducted by the US
Department of Labor. Christiano and Eichenbaum [104] note that as long
as there is a single shock that drives the behavior of both hours and produc-
tivity, the standard model cannot deliver the strong procyclical response of
hours without procyclical behavior in productivity. By contrast, the RBC
model, which is driven entirely by productivity shocks, generates correla-
tions that are large and positive in both cases. Another problem that arises
in matching the model and the data is that in the data, labor’s share of
income moves countercyclically whereas in the RBC model labor’s share is
fixed.

One way of improving the model’s ability to match the data is to intro-
duce home production. Following Benhabib, Rogerson, and Wright [54],
consider a decision-maker who has preferences:

∞∑
t=0

β tu(cmt , cht , hmt , hht),

where 0<β < 1. In this expression, cmt is the consumption of a market
good; cht is consumption of the home-produced good; hmt is labor time
spent in market work; and hht is labor time spent in home work. Assume
that u1 > 0, u2 > 0, u3 < 0, and u4 < 0. The total amount of time available
to the household is normalized as unity, and leisure is defined as time not
spent working in the market or at home:

lt = 1 − hmt − hht .

At each date, the household can purchase market goods cmt , market capital
goods kmt and household capital goods kht . Household capital goods are
used in home production but market capital goods are rented to firms at
the competitive rental rate rt . Letting wt denote the wage rate and δm and
δh denote the depreciation rates on market and home capital, respectively,
the household’s budget constraint is:

cmt + km,t+1 + kh,t+1 ≤ wthmt + rtkmt + (1 − δm)kmt + (1 − δh)kht .
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Home goods are produced according to the home production function:

cmt = g(hht , kht , zht),

where zht is a shock to home production and g is increasing and concave
in labor and capital. Alternative measures put home production to be in
the range of 20–50% of GDP. In the model, home production is used to
produce a non-tradeable consumption good. A rise in market productivity
may induce households to substitute away from home production towards
market production. This gives us another margin on which to substitute
market labor and improves the model’s predictions. Unlike the standard
model, the labor supply curve also shifts in response to a good productivity
shock, thereby leading to greater variability in labor. However, one criti-
cism of the home production theory is that it suggests that all movements
out of the labor force (toward home production) are voluntary.

A second way to resolve the productivity puzzle is through a labor
hoarding argument. This says that the effective labor input can be altered
even though the total number of workers is fixed. The firm may not alter
its work force every time there is a productivity shock (which would occur
through a shift in the marginal product of labor curve). However, if there
are costs to hiring or laying off workers, firms may retain workers even
though they are not exerting much effort. Hence labor effort is likely to be
adjusted first in response to a productivity shock. Eventually more workers
may be hired or fired, but only after longer periods of time. Labor effort is
likely to be procyclical. As a variety of authors have noted, movements in
the Solow residual are thus likely to reflect, in part, unmeasured changes
in effort. To show these results in the context of a simple example, con-
sider a production function for aggregate output Yt which depends on an
exogenous technology shock At , capital Kt , and a labor input that reflects
variations in work effort following Burnside, Eichenbaum, and Rebelo
[84]. Specifically, let f denote a fixed shift length, Nt the total number
of workers, and Wt the work effort of each individual. Thus,

Yt = AtK α
t [f NtWt]

1−α, 0 < α < 1.

In the standard model, the production function can be written as:

Yt = StK α
t [Ht]

1−α,

where Ht denotes the total hours worked. In the absence of variations
in work effort, Ht = fNt . Notice that the conventionally measured Solow
residual St is related to true technology shock At as:

ln (St) = ln (At) + α ln (Kt) + (1 − α)[ln (f ) + ln (Nt) + ln (Wt)]

− α ln (Kt) − (1 − α)[ln (f ) + ln (Nt)]

= ln (At) + (1 − α) ln (Wt).
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Decisions to alter effort levels will be the outcome of a maximizing
decision, so that the movements in the Solow residual are not entirely
exogenous. If labor hoarding is added into the model, then the produc-
tivity/hours correlation is reduced and more closely matches the data. The
comments made about fluctuations in the effort level of labor also apply
to capital. The measured capital in the Solow residual does not take into
account optimal fluctuations in capital utilization rates. This can lead to
variation in the Solow residual that is not related to changes in productivity
or technology.

Reverse causality
The stylized facts of business cycles state that money, especially M2,
appears to be a leading indicator of aggregate output. However, this is
inconsistent with the notion that TFP shocks are the driving force behind
business cycle activity. The conventional wisdom regarding the money-
output correlation, summarized by Friedman and Schwartz [191] in their
study of monetary history, is that the causality goes from money to output
but with “long and variable lags.” One approach to dealing with this crit-
icism is to introduce money and banking into the standard RBC model
following King and Plosser [277]. These authors observe that transactions
services (as provided by money and the banking sector) can be viewed as an
intermediate input that reduces the cost of producing output and hence,
can be treated as a direct input into the aggregate production function.
To briefly describe their framework, suppose the final good is produced
according to the production technology:

yt = f (kft , nft , dft)φt , (12.32)

where kft is the amount of capital, nft is the amount of labor services, and
dft is the amount of transactions services used in the final goods industry.
In this expression, φt is a shock to production of the final good at time
t. The financial industry is assumed to provide accounting services that
facilitate the exchange of goods by reducing the amount of time that would
be devoted to market transactions. The production of the intermediate
good is given by:

dt = g(ndt , kdt)λt , (12.33)

where ndt and kdt denote the amounts of labor and capital allocated to the
financial sector, and λt captures technological innovations to the financial
services industry. Households maximize the expected discounted value of
utility from consumption ct and leisure lt as:

E0

{ ∞∑
t=0

β tU (ct , lt)

}
, 0 < β < 1, (12.34)
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Households are assumed to own the capital stock and to make investment
decisions it subject to the resource constraint ct + it ≤ yt + (1 − δ)kt where
0 < δ < 1 is the depreciation rate on capital. By contrast, firms rent labor,
capital, and transactions services to maximize profits on a period-by-period
basis. Households are also assumed to combine time and transactions ser-
vices to accomplish consumption and investment purchases. The time
required for this activity is:

nτ t = τ (dht/(ct + it))(ct + it), (12.35)

where τ ′ < 0, τ ′′ < 0. The household chooses an amount of transactions
services dht so as to minimize the total transactions costs, wtnτ t + ρtdht ,
where wt is the real wage and ρt is the rental price of transactions services.
This implies a demand for transactions services that can be obtained from
the first-order condition

ρt = wtτ
′(dht/(ct + it)) (12.36)

as d �
ht = h(ρt/wt)(ct + it) where h = (τ ′)−1. Likewise, hours allocated to

producing transactions services is n�
τ t = τ (h(ρt/wt))(ct + it). Finally, we

require that the household’s time allocated to the different activities sums
to one, nt = nft + ndt + nτ t .

This framework can be used to rationalize the observations regard-
ing money and output. Specifically, inside money, or a broad measure of
money that includes commercial credit, is more closely related to output
than outside money. Suppose a shock to the production of final goods or
equivalently, a positive shock to productivity occurs. Then consumption
and leisure of the representative consumer will rise but so will investment
demand as consumers seek to spread the extra wealth over time. If the
substitution effect of an increase in the marginal product of labor out-
weighs the wealth effect of the productivity shock, then hours of work will
also rise. As a consequence, investment demand rises and also output will
increase in response to the additional hours worked, so firms will wish to
finance a greater volume of goods in process. As a result, commercial credit,
or inside money, responds to the positive productivity shock. The increase
in output will also stimulate the demand for transactions services by house-
holds and firms. Hence, the causality runs from the productivity shock to
money even though the increase in money occurs before the increase in
output.

Ahmed and Murthy [9] provide a test of this hypothesis using a small
open economy such as Canada to evaluate the impact of exogenously given
terms of trade and real interest rates versus domestic aggregate demand
and supply disturbances. Their results are derived from a structural VAR
(vector autoregression) with long-run restrictions to identify the alterna-
tive structural shocks. Consistent with the RBC view, they find that an
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important source of the money-output correlation is output shocks affect-
ing inside money in the short-run. Another possibility is that the central
bank uses accommodative monetary policy.7 During an expansion, if inter-
est rates are rising and firms wish to invest more in anticipation of higher
expected profits, the central bank may expand the money supply to keep
interest rates from rising too rapidly.

The policy implications of the RBC model are simple – the business
cycle fluctuations are Pareto optimal and there is no role for the govern-
ment to try to smooth or mitigate the fluctuations. In fact, such policy
efforts are inefficient. The strengths of the RBC model are its strong
microeconomic foundations and the link that it provides between the long-
run and the short-run. An important criticism of the model is that there
is no evidence of large, economy-wide disturbances. The only exception
would be the oil price shocks, and it is no coincidence that this model
was developed after the price shocks of the 1970s. But what are some other
examples of big shocks? If shocks are concentrated in a particular sector,
what is the mechanism by which these shocks are transmitted to other
sectors? One needs to consider multi-sector models since the one-sector
growth model does not allow for a consideration of these issues.8

12.4. S O L V I N G B U S I N E S S C Y C L E M O D E L S

In Chapter 10, we described the approach of numerical dynamic program-
ming for solving growth models. Another approach is to use a quadratic
approximation around the deterministic steady state for the model, as pro-
posed by Kydland and Prescott [297]. A third method is to log-linearize the
necessary conditions or Euler equations for the dynamic stochastic opti-
mization problem and to use the method of undetermined coefficients to
solve for the optimal decision rules directly. This approach derives from the
work of Blanchard and Kahn [68], Campbell [89] and others. Uhlig [435]
generalizes this methodology and provides a software toolkit for solving a
variety of problems. (See Exercise 5.)

12.4.1. Quadratic approximation

One approach to solving growth models is to use quadratic approximation
around a deterministic steady state. This method has been used because it
facilitates the computation of decision rules for models that have mul-
tiple choice variables and a high-dimensional state space. According to

7 See Sims [402].
8 Nevertheless, multi-sector models may also suffer from some problems because they typically imply

that overall expansions in the economy are associated with contractions in one sector. See, for
example, Benhabib and Farmer [53].
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this method, we replace the non-linear optimization problem described
in Section 12.3.1 by a linear-quadratic dynamic optimization problem. The
relationship between the solutions of the original non-linear problem and
the linear-quadratic problem is generally not established. Although the
decision rules or optimal policy functions for the linear-quadratic dynamic
optimization problem are also obtained iteratively, the corresponding value
function and the optimal policy functions can be expressed as known func-
tions of coefficient matrices that enter the quadratic objective function and
the linear laws of motion for the state variables. However, this approach can
be implemented in situations where the deterministic steady state can be
obtained directly and there are no non-linear constraints such as borrowing
constraints or irreversibility.

We now return to the standard business cycle model described in
Section 12.3. We assume that capital depreciates at the rate 0<δ< 1 and
the technology shock follows the process in Equation (12.10). Since the
utility function is strictly increasing, consumption plus investment equals
output at the optimum. Using this fact, we can substitute for consumption
in the utility function to obtain u(ct) = u( exp (zt)kαt h1−α

t − it , 1 − h). Let
u(ct , 1 − ht) = (1 − θ ) ln (ct) + θ ln (1 − ht), 0<θ < 1. The problem now
becomes:

max
{it ,ht }∞t=0

E0

{ ∞∑
t=0

[
(1 − θ ) ln ( exp (zt)kαt h1−α

t − it) + θ ln (1 − ht)
]}

subject to

kt+1 = (1 − δ) + it , (12.37)

zt+1 = μ + ρzt + εt+1 (12.38)

ct ≥ 0, 0 ≤ ht ≤ 1. (12.39)

The quadratic approximation procedure is implemented as follows.
Step 1 Compute the deterministic steady state for the model. This is

obtained by setting the exogenous technology shock equal to its mean
value and evaluating the conditions (12.18) and (12.19) together with the
feasibility conditions at constant values for ct , kt , and ht . Let z̄ =μ/(1−ρ)
denote the unconditional mean for the (log of ) technology process. Using
Equation (12.19), we can solve for the steady-state capital-labor ratio as:

k̄

h̄
=
(
α

exp (z̄)

r + δ

)1/(1−α)

. (12.40)

Next, note that in the deterministic steady state, investment is equal to
depreciation:

ī = δk̄. (12.41)
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Simplifying the result in Equation (12.18), we obtain:

1 − θ

θ

h̄

1 − h̄
= (1 − α)

ȳ
c̄
, (12.42)

where the aggregate feasibility constraint c̄ + δk̄ = ȳ ≡ exp z̄k̄α h̄1−α is
also assumed to hold. To find an explicit expression for h̄ in terms of the
underlying parameters, use the relation in Equation (12.42) as:

(1 − θ )h̄c̄ = (1 − α)θ (1 − h̄)ȳ.

Re-arranging, substituting for c̄ first and then dividing through by ȳ, we
obtain:

(1 − θ )h̄

[
1 − δ

k̄
ȳ

]
+ θ (1 − α)h̄ = θ (1 − α).

Now note that:

k̄
ȳ

= k̄

exp (z̄)k̄α h̄1−α
= (k̄/h̄)1−α

exp (z̄)
= α

r + δ
.

Substituting back into the equation defining h̄ and simplifying yields:

h̄
[

(1 − θ ) + θ (1 − α) − (1 − θ )δ
α

r + δ

]
= θ (1 − α),

or

h̄ = θ (1 − α)(r + δ)

(r + δ)(1 − θα) − (1 − θ )δα
. (12.43)

Step 2 Approximate the original utility function by a quadratic function
around the deterministic steady state. For this purpose, let s ≡ (1, k, z, i, h)
and s̄ ≡ (0, z̄, k̄, ī, h̄). Approximate u(s) near the deterministic steady state s̄
using a second-order Taylor series approximation as:

u(s) = u(s̄) + (s − s̄)′
�u(s)

�s
+ 1

2
(s − s̄)′

�2u(s)
�s�s′

(s − s̄).

Define e as the 5 × 1 vector with a 1 in the first row and zeros elsewhere.
Notice that the utility function can be written as

u(s) = (s − s̄)′T (s − s̄),

where

T = e
[

u(s̄) + 1

2
s̄′

�2u(s)
�s�s′

s̄
]

e′ + 1

2

(
�u(s)

�s
e′ + e

�u(s)′

�s

)
+ 1

2

(
�2u(s)
�s�s′

)
,

where all partial derivatives are evaluated at s̄.
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Define the vector of state variables as xt = (1, kt − k̄, zt − z̄)′ and the
vector of control variables as ut = (it − ī, ht − h̄)′. We can write the law of
motion for the state variables as:⎡

⎣ 1
kt+1

zt+1

⎤
⎦ =

⎡
⎣ 1 0 0

0 (1 − δ) 0
μ 0 ρ

⎤
⎦
⎡
⎣ 1

kt

zt

⎤
⎦+

⎡
⎣0 0 0

1 0 0
0 0 0

⎤
⎦
⎡
⎣0

it
0

⎤
⎦+

⎡
⎣ 0

0
εt+1

⎤
⎦ .

Notice that s − s̄ = (x, u)′. Thus, the quadratic form (s − s̄)′T (s − s̄) can be
written as

(s − s̄)′T (s − s̄) =
[

x
u

]′ [
T11 T12

T21 T22

] [
x
u

]

=
[

x
u

]′ [
R W

W ′ Q

] [
x
u

]
.

Step 3 Convert the original dynamic optimization problem into a prob-
lem with linear constraints and a quadratic objective function. Using the
definition of T , xt and ut , the dynamic optimization problem can now be
written as:

max
{ut }∞t=0

E0

{ ∞∑
t=0

β t[x′
tRxt + u′

tQut + 2x′
tWut]

}
(12.44)

subject to the linear law of motion

xt+1 = Axt + But + εt+1, t ≥ 0, (12.45)

where E(εt+1) = 0 and E(εtε
′
t) =�. This is now an optimal control prob-

lem with a quadratic objective and linear constraints. Such problems can
be solved using the methods for solving dynamic optimization problems
that satisfy a certainty equivalence property, namely, that the solution for
the stochastic optimal control problem is identical to the solution for the
deterministic version of the problem with the shocks εt+1 replaced by their
expectation E(εt+1). This class of problems is known as optimal linear
regulator problems. Ljungqvist and Sargent [325] and Anderson, Hansen,
McGrattan, and Sargent [30] provide further discussion of the formulation
and estimation of linear dynamic economic models.

Bellman’s equation for this problem is given by:

V (xt) = max
ut

{
x′

tRxt + u′
tQut + 2u′

tWxt + βE[V (xt+1)]
}

subject to xt+1 = Axt + But + εt+1. Given the structure of the problem,
notice that the value function will be a quadratic function in the state
variables,

V (x) = x′Px + d ,
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where d and P are quantities to be determined. Substituting for next
period’s state variables and using this expression for the value function,
Bellman’s equation becomes:

x′Px + d = max
u

{
x′Rx + u′Qu + 2x′Wu

+βE
[
(Ax + Bu + ε)′P(Ax + Bu + ε) + d

]}
.
(12.46)

The first-order conditions with respect to u are:

Qu + W ′x + β[B′PAx + B′PBu] = 0. 9 (12.47)

Solving for u yields:

u = −(Q + βB′PB)−1(W ′x + βB′PAx) = −Fx, (12.48)

where

F = (Q + βB′PB)−1(βB′PA + W ′). (12.49)

Notice that the shocks εt+1 do not affect the optimal choice of ut .
Substituting for u back into the definition of V (x) yields

P = R + βA′PA − (βA′PB + W )(Q + βB′PB)−1(βB′PA + W ′)

d = (1 − β)−1[βE(ε′Pε)].

The equation for P is known as the algebraic matrix Riccati equation for
so-called optimal linear regulator problem.10 The solution for P can be
obtained by iterating on the matrix Riccati difference equation:

Pn+1 = R + βA′PnA − (βA′PnB + W )(Q + βB′PnB)−1(βB′PnA + W ′),

starting from P0 = 0. The policy function associated with Pn is

Fn+1 = (Q + βB′PnB)−1(βB′PnA + W ′).

We now illustrate this solution method for the standard RBC model
with a labor-leisure choice presented at the beginning of this section. Con-
sider the parameter values β = 0. 95,α = 1/3, θ = 0. 36, δ = 0. 10, ρ = 0. 95
and σ = 0. 028. The steady values for the variables are given by k̄ = 1. 1281,

9 To derive this result, we have used the rules for differentiating quadratic forms as:

�u′Qu
�u

= [Q + Q ′]u = 2Qu,
�x′Tu

�u
= T ′x and

�u′Tx
�u

= Tx.

10 Notice that the matrices R, Q , A, and B must be further restricted to ensure the existence of a
solution to the matrix difference equation defining Pn. One condition that suffices is that the
eigenvalues of A are bounded in modulus below unity.
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ī = 0. 1128, ȳ = 0. 4783, c̄ = 0. 3655, and h̄ = 0. 2952. The values of the R, Q ,
and W matrices corresponding to these parameter values are:

R =
⎡
⎣ −0.9522 0.2784 0.4362

0.2784 −0.1371 −0.0430
0.4362 −0.0430 −0.1346

⎤
⎦ ,

Q =
[−2. 4955 2. 5880

2. 5880 −4. 1730

]
,

W =
⎡
⎣−1. 8241 1. 7543

0. 3809 −0. 0932
1. 1936 −0. 2919

⎤
⎦ .

The solution for the value function and optimal policy functions is found
by iterating on the matrix Riccati equation. The convergence criterion is
10−6 and the number of iterations required to get a solution is 640. The
solution for the P matrix is given by:

P =
⎡
⎣ −0.5115 1.3157 5.3900

1.3157 −0.5319 −0.4836
5.3900 −0.4836 0.8660

⎤
⎦ ,

and the optimal decision rule u�
t = Fxt by:

[
i�t
h�

t

]
=
[

0.3681 −0. 0943 0. 4127
0.6487 −0. 0808 0. 1860

]⎡⎣ 1
kt

zt

⎤
⎦ .

To derive linear representations for consumption ct and output yt , we
linearize the production function as:

yt = ȳ + ak(kt − k̄) + ah(h�
t − h̄) + az(zt − z̄)

= 0. 4783 + 0. 1526(kt − k̄) + 1. 0371(h�
t − h̄) + 0. 4783(zt − z̄).

Then consumption is given by:

ct = yt − i�t

= 0. 4783 + 0. 1526(kt − k̄) + 1. 0371(h�
t − h̄) + 0. 4783(zt − z̄) − i�t .

Evaluating the expressions for yt and ct at the optimal decision rules for i�t
and h�

t yields the linearized solution for output and consumption.
We first calculate a set of unconditional moments that have been used in

the RBC literature to match the model with the data. These are obtained
by simulating the behavior of the different series across a given history of
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Table 12.1. Cyclical properties of key variables

Standard deviation (in %) Correlation with output

Output 8.8616 1
Consumption 8.1134 0.9163
Investment 12.9238 0.9807
Hours 1.6684 0.4934
Productivity 7.7496 0.9840

the shock sequence.11 Specifically, we draw a sequence of shocks {ε̂t+1}2999
t = 0

that are normally distributed with mean zero and standard deviation 0.028,
and generate a sequence of technology shocks beginning from some initial
value z0 as ẑt+1 = ρzt + ε̂t+1. We then use the linear decision rules for all
variables to simulate for the endogenous variables based on the same his-
tory of shocks. Finally, following the approach in Danthine, Donaldson,
and Mehra [136], we calculate unconditional moments for the different
series after dropping the first one thousand observations. The typical set
of unconditional moments used in the RBC literature are displayed in
Table 12.1. We find consumption varies slightly less than output and invest-
ment significantly more. Likewise, productivity is also almost as variable as
output. By contrast, we find that the variation in hours is typically quite
low. In terms of the correlation of each series with output, we find that all
series are procyclical, with hours showing the least procyclicality. Thus, as
discussed earlier, the model delivers some of the salient features of the data.

Finally, Figure 12.2 illustrates the response of all the variables to a 1%
shock to technology starting from the steady state capital stock. We note
that hours and output both increase and then fall back to a lower level.
The percentage change in output exceeds the percentage change in the
technology shock because optimal hours also shows a positive response
to the technology shock. By contrast, capital and consumption show a
humped-shaped response, rising first and then declining back to a lower
level. Consumption shows a gradual positive response because investment
is initially high. These responses have been widely documented in the RBC
literature (see, for example, Uhlig [435]).

12.5. B U S I N E S S C Y C L E E M P I R I C S

Business cycle models seek to explain the joint covariation of a set of key
aggregate variables. In the modern literature, a variety of approaches have
been used for empirically analyzing the implications of business models.

11 See also Danthine, Donaldson, and Mehra [136] for a similar procedure.
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Figure 12.2. Impulse responses to a shock in technology

One approach that has found much favor in the business cycle literature
is the method of unobservable index models or dynamic factor analysis
due to Geweke [197], Geweke and Singleton [198], and others. Following
Sims [403], vector autoregressions (VARs) and structural VARs (SVARs)
have also proven to be a favored technique in empirical macroeconomic
research. While both models allow for rich dynamic interrelationships
among a set of endogenous favorables and an examination of business cycle
dynamics based on impulse response functions, structural VARs (SVARs)
also permit an identification of shocks. More recently, dynamic stochastic
general equilibrium (DSGE) models have been developed for the pur-
pose of identifying shocks and propagation mechanisms of business cycles
models. See, for example, Smets and Wouters [408, 409]. Canova [98] is
an excellent source on the quantitative and empirical analysis of dynamic
stochastic general equilibrium models. In this section, we describe some of
the results obtained in the empirical business cycle literature in matching
the model with the data using these techniques.

12.5.1. Dynamic factor analysis

Dynamic factor analysis seeks to describe the joint cyclical behavior of a
key set of time series in terms of a low-dimensional vector of unobservable
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factors and a set of idiosyncratic shocks that are mutually uncorrelated and
uncorrelated with the factors. To describe how to formulate unobservable
index models let {w̃t}∞t = 0 denote an n-dimensional mean zero, covariance
stationary stochastic process used to describe observations on the (possibly
detrended) values of a set of variables. A k-factor unobservable index model
for w̃t is given by:

w̃t =
∞∑

s=−∞
H̃ (s)f̃t−s + ν̃t , (12.50)

where {H̃ (s)}∞s = −∞ is a sequence of n×k-dimensional matrices, f̃t is a k× 1
vector of common factors, and ν̃t is an n × 1 vector of idiosyncratic shocks
that are mutually uncorrelated and uncorrelated with the common factors.
More precisely, we require that:

E(f̃t ν̃i,t) = 0 for i = 1, . . . , n (12.51)

E(ν̃i,t ν̃j,t) = 0 for i �= j. (12.52)

Both the common factors and the idiosyncratic factors may be serially cor-
related, that is, E(f̃t f̃t−s) �= 0 for t �= s and E(ν̃i,t ν̃i,t−s) �= 0 for all i, j and
t �= s. According to this model, covariation among the elements of wt can
arise because they are functions of the same common factor or because
they are functions of different factors which are themselves correlated at
different leads and lags.

Under these assumptions, the variances and autocovariances of the
observed series {w̃t} can be decomposed in terms of the variances and auto-
covariances of a low-dimensional set of unobserved common factors and
the idiosyncratic shocks. Let

Rw(r) = E(w̃t w̃t+r)
′, r = . . . , −1, 0, 1, . . .

be the autocovariance function of {wt}. Under the assumptions underlying
(12.50),

Rw(r) = E

[( ∞∑
s=−∞

H̃ (s)f̃t−s + ν̃t

)( ∞∑
v=−∞

H̃ (v)f̃t+r−v + ν̃t+r

)′]

= E
[ (

. . . H̃ ( − 1)f̃t+1 + H̃ (0)f̃t + H̃ (1)f̃t−1 + . . .
)

(
. . . H̃ ( − 1)f̃t+r+1 + H̃ (0)f̃t+r + H̃ (1)f̃t+r−1 + . . .

)′]
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=
∞∑

s=−∞
H̃ (s)

∞∑
v=−∞

E(f̃t−s f̃t+r−v)H̃ (v)′ + E(ν̃t ν̃t+r)

=
∞∑

s=−∞
H̃ (s)

∞∑
v=−∞

Rf (r + s − v)H̃ (v)′ + Rν(r)

An alternative representation of the autocovariance function is provided by
the spectral density function:

Sw(ω) =
∞∑

r=−∞
Rw(r)e−irω, |ω| ≤ π . 12 (12.53)

Assuming that Sw(ω) is non-singular at each frequency ω, notice that the
off-diagonal elements of Sw(ω) are, in general, complex numbers. How-
ever, since Rxl xh(r) = Rxl xh( − r), the diagonal elements of Sw(ω) are real.
Substituting for Rw(r) into (12.53) yields:

Sw(ω) =
∞∑

r=−∞

∞∑
s=−∞

H̃ (s)
∞∑

v=−∞
Rf (r + s − v)(H̃ )(v)′ exp ( − iωr)

+
∞∑

r=−∞
Rν(r) exp ( − iωr)

=
∞∑

s=−∞
H̃ (s) exp ( − iωs)

∞∑
u=−∞

Rw(u) exp ( − iωu)×

∞∑
z=−∞

H̃ (z)′ exp ( − iωz) + Sν(ω)

= H̃ (ω)Sw(ω)H̃ (ω)′ + Sν(ω),

where H̃ (ω) denotes the Fourier transform of H̃ (s). Hence, the dynamic
factor model provides decomposition at each frequency that is analogous
to the decomposition of variance in the conventional factor model. The
dynamic factor model can be estimated and its restrictions tested across
alternative frequencies using a frequency domain approach to time series
analysis. The unrestricted version of the dynamic factor model does not
place restrictions on the matrices H̃ (s), which describe how the common
factors affect the behavior of the elements of wt at all leads and lags. Nor
is it possible to identify the common factors with different types of shocks
to the economy.

The use of the dynamic factor model in business cycle analysis dates
to the work of Sargent and Sims [385]. As these authors observe, dynamic

12 This function is well defined as long as
∑∞

r = −∞ R2
xl xh

(r)<∞ for each l , h = 1, . . . , n.
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factor analysis may be linked to the notion of a “reference cycle” under-
lying the methodology of Burns and Mitchell [83] and the empirical
business cycle literature they conducted at the National Bureau of Eco-
nomic Research. Another well-known application of this approach is due
to Altug [16], who derives an unobservable index model for a key set of
aggregate series by augmenting the approximate linear decision rules for a
modified version of the Kydland and Prescott [297] model with i.i.d. error
terms. Altug also uses this representation to estimate the model using max-
imum likelihood (ML) estimation in the frequency domain. The restricted
factor model makes use of the cross-equation restrictions across the lin-
ear decision rules implied by the original model. The common factor is
identified as the innovation to the technology shock and the idiosyncratic
shocks are interpreted as i.i.d. measurement errors or idiosyncratic com-
ponents not captured by the underlying real business cycle model. Unlike
the unrestricted factor model which can be estimated frequency by fre-
quency, this model must be estimated jointly across all frequencies because
the underlying economic model constrains the dynamic behavior of the
different series as well as specifying the nature of the unobserved factor.13

Altug [16] initially estimates an unrestricted dynamic factor model for the
level of per capita hours and the differences of per capita values of durable
goods consumption, investment in equipment, investment in structures,
and aggregate output. She finds that the hypothesis of a single unob-
servable factor cannot be rejected at conventional significance levels for
describing the joint time-series behavior of the variables. However, when
the restrictions of the underlying model are imposed, the model cannot
explain the cyclical variation in per capita hours worked.

Watson [443] extends the approach in Altug [16] to show how to derive
measures of fit for an underlying economic model which depends on a
low-dimensional vector of shocks by adding errors to the stochastic pro-
cess generated by a theoretical model. Forni and Reichlin [189] use the
dynamic factor model to describe business cycle dynamics for large cross
sections. They examine the behavior of four-digit industrial output and
productivity for the US economy for the period 1958 to 1986 and find evi-
dence in favor of least two economy-wide shocks, both having a long-run
effect on sectoral output. However, their results also indicate that sector-
specific shocks are needed to explain the variance of the series. Giannone,
Reichlin and Sala [201] show how more general classes of equilibrium busi-
ness cycle models can be cast in terms of the dynamic factor representation.
They also describe how to derive impulse response function for time series
models which have reduced rank, that is, ones for which the number of
exogenous shocks is less than the number of series.

13 For further discussion of maximum likelihood estimation in the frequency domain, see Hansen
and Sargent [235].
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12.5.2. ML and GMM estimation approaches

Other papers have employed non-linear estimation and inference tech-
niques to match equilibrium business models with the data. Christiano
and Eichenbaum [104] consider the hours-productivity puzzle and use the
Generalized Method of Moments approach (see Hansen [229]) to match
a selected set of unconditional first and second moments implied by their
model. Their approach may be viewed as an extension of the standard
RBC approach which assesses the adequacy of the model based on the
behavior of the relative variability and comovement of a small set of time
series. Christiano and Eichenbaum [104] generate the negative correlation
between hours worked and real wages or productivity by introducing gov-
ernment consumption shocks. These lead to shifts in the labor supply
curve so that even in the absence of technology shocks, hours of work
can increase along a downward-sloping labor demand curve. The key
assumption in their model is that private and government consumption
are not perfect substitutes. Hence, an increase in government consumption
leads to a negative wealth effect for consumers through the economy-
wide resource constraint. If leisure is a normal good, we observe increases
in hours and a decline in average productivity in response to a positive
government consumption shock.

Christiano and Eichenbaum [104] consider a proto-typical RBC model
with a labor-leisure choice, and utilize the solution of the social planner’s
problem to derive the competitive equilibrium allocations. Let N̄ denote
the time endowment of the representative household per period. The social
planner ranks alternative consumption-leisure streams according to

E0

{ ∞∑
t=0

β t[ln (ct) + γV (N̄ − nt)]

}
, (12.54)

where ct denote consumption and N̄ − nt denotes leisure of the represen-
tative household. Consumption services ct are related to private and public
consumption as follows:

ct = cp
t + αgt , (12.55)

where cp
t is private consumption, gt is public consumption, and α is a

parameter that governs the impact of government consumption on the
marginal utility of private consumption. They consider two different
specifications for the labor/leisure choice, one which is based on a time-
separable logarithmic specification with preferences and a second which
incorporates the Hansen indivisible labor assumption, namely,

V (N̄ − nt) =
{

ln (N̄ − nt)
N̄ − nt

(12.56)
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for all t. Per capita output is produced according to the Cobb-Douglas
production function:

yt = (ztnt)
1−θkθt , 0 < θ < 1, (12.57)

where zt is a technology shock which evolves according to the process

zt = zt−1 exp (λt). (12.58)

In this expression, λt is an independent and identically distributed process
with mean λ and standard deviation σλ. The aggregate resource constraint
stipulates that consumption plus investment cannot exceed output in each
period:

cp
t + gt + kt+1 − (1 − δ)kt ≤ yt . (12.59)

Following Exercise 1, notice that the technology shock follows a logarith-
mic random walk. Hence, the solution for the social planner’s problem
can be more fruitfully expressed in terms of the transformed variables
k̄t+1 = kt+1/zt , ȳt = yt/zt , c̄t = ct/zt and ḡt = gt/zt . The specification of the
model is completed by assuming a stochastic law of motion for ḡt as:

ln (ḡt) = (1 − ρ) ln (ḡ) + ρ ln (ḡt−1) + μt , (12.60)

where ln (ḡ) is the mean of ln (ḡt), |ρ|< 1, and μt is the innovation to
ln (ḡt) with standard deviation σμ.

Christiano and Eichenbaum derive a solution for the social planner’s
problem by following the approach that we described in Section 12.4.2,
namely, by implementing a quadratic approximation to the original non-
linear problem around the deterministic steady states. Since there is a
stochastic trend in this economy arising from the nature of technology
shock process, the deterministic steady states are derived for the trans-
formed variables. Their estimation strategy is based on a subset of the
first and second moments implied by their model. To describe how their
approach is implemented, let �1 denote a vector of parameters determin-
ing preferences, technology, and the exogenous stochastic processes. Some
of the parameters included in �1 may be the depreciation rate of capi-
tal δ and the share of capital in the neoclassical production function θ .
More generally, �1 = (δ, θ , γ , ρ, ḡ , σμ, λ, σλ)′. As in the standard RBC
approach, the parameters in �1 are estimated using simple first-moment
restrictions implied by the model. For example, the depreciation rate δ is
set to reproduce the average depreciation on capital as:

E
{
δ −

[
1 − it

kt
− kt+1

kt

]}
= 0,
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given data on gross investment it and the capital stock kt+1. Likewise, the
share of capital satisfies the Euler equation:

E
{
β

[
θ

(
yt+1

kt+1

)
+ 1 − δ

]
ct

ct+1
− 1

}
= 0.

(See, for example, Equation (10.24) in Chapter 10.) Proceeding in this way,
the elements of �1 satisfy the unconditional moment restrictions:

E [H1t(�1)] = 0. (12.61)

The elements of �2 consist of the standard RBC second moment restric-
tions as:

E
[
y2

t (σx/σy)
2 − x2

t

] = 0, x = ct , it , gt , (12.62)

E
[
n2

t − σ 2
n

] = 0, (12.63)

E
{
(y/n)2

t

(
σn/σy/n

)2 − n2
t

} = 0, (12.64)

E
{[
σ 2

n/(σn/σy/n)
]

corr(y/n, n) − (y/n)tnt
} = 0, (12.65)

where ct denotes private consumption, gt public consumption, nt labor
hours and (y/n)t the average productivity of labor. The unconditional sec-
ond moments are obtained through simulating the model’s solution based
on the linear decision rules obtained from the approximate social planner’s
problem. The restrictions of the model can be summarized as:

E [H2t(�2)] = 0. (12.66)

Christiano and Eichenbaum [104] are interested in testing restrictions for
the correlation between hours and productivity corr(y/n, n) and the rel-
ative variability of hours versus average productivity σn/σy/n. To do this,
they use a Wald-type test based on the orthogonality conditions implied
by the relevant unconditional moments which we now describe. For any
parameter vector �1 let

f (�1) = [f1(�1), f2(�1)]
′ (12.67)

represent the model’s restrictions for corr(y/n, n) and σn/σy/n. Let
� = [�1,�2]′ denote the k × 1 vector containing the true values of the
parameters and second moments for the model. Also let A be a 2 × k
matrix of zeros and ones such that

A� = [corr(y/n, n), σn/σy/n]′, (12.68)

and

F (�) = f (�1) − A�. (12.69)



360 Asset Pricing for Dynamic Economies

Under the null hypothesis that the model is correctly specified,

F (�) = 0. (12.70)

In practice there is sampling error in estimating � from a finite data set
containing T observations. Letting �̂T denote the estimated value of �,
the test statistic for the second moment restrictions is based on the distri-
bution of F (�̂T ) under the null hypothesis. Using this distribution, they
show that the statistic

J = F (�̂T )′Var[F (�̂T )]−1F (�̂T ) (12.71)

is asymptotically distributed as a χ 2 random variable with 2 degrees
of freedom. Using data on private consumption, government expendi-
tures, investment, aggregate hours, and average productivity, Christiano
and Eichenbaum estimate the parameters of the model using GMM
and examine the various unconditional second moments implied by the
model. Their results indicate an inability to reject the unconditional
moment restrictions of the model with government consumption which
also incorporates the indivisible labor assumption.

McGrattan, Rogerson, and Wright [337] implement ML (maximum
likelihood) estimation of an equilibrium business cycle model with house-
hold production and distortionary taxation. They employ a time-domain
approach and provide tests of the role of the household production as well
as policy experiments regarding the role of tax changes. McGrattan et al.
employ a quadratic approximation around a non-stochastic steady state to
obtain a linear-quadratic dynamic optimization problem. In their applica-
tion, competitive equilibria do not solve a social planning problem. Hence,
they use the linear Euler equations to solve for the time paths of the vari-
ables of interest directly. These authors use a state space representation for
their model with a law of motion and measurement equation and apply
a Kalman filter algorithm to form the likelihood function. Their mea-
surement equation corresponds to the optimal decision rule augmented
with idiosyncratic measurement error shocks as in Altug [16]. They use de-
trended values of the variables and examine the behavior of their model
through unconditional moments that are similar to those reported in
calibration-type exercises and the implied impulse response functions. On
the whole, they find that home production (as argued above) improves the
model’s fit and generates different predictions for the effects of tax changes
than the model without home production.

12.5.3. A New Keynesian critique

The behavior of hours and productivity has continued to remain a point
of controversy. The RBC conclusions regarding the response of hours, out-
put, and other variables to a technology shock have been questioned by
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empirical results obtained along several different lines. On the one hand,
Gali [195] has argued that in a suitably restricted vector-autoregression
including measures of hours, productivity, output, and other variables, the
response of hours to productivity shocks is negative. This is in contrast
to the RBC model, which predicts that hours rise on impact to a positive
technology. Proceeding in a different manner, Basu, Fernald, and Kimball
[49] also present evidence that hours worked and other variables fall in
response to technology improvements in the short-run. Their approach
involves purging the standard Solow residual of factors that might lead to
procyclicality such as variable factor utilization. (See our discussion in Sec-
tion 12.3.) We first describe a simple New Keynesian framework that can
be used to rationalize the observations, then discuss the empirical findings
in more detail.

Consider a simple New Keynesian model with monopolistic competi-
tion, price rigidities, and variable labor effort due to Gali [195]. Suppose
that a representative household chooses consumption Ct , money holdings
Mt , hours worked Ht , and effort levels Ut to maximize

E0

{ ∞∑
t=0

β t

[
ln (Ct) + λm ln

(
Mt

Pt

)
− H (Nt , Ut)

]}
(12.72)

subject to∫ 1

0
PitCit + Mt = WtNt + VtUt + ϒt + �t , (12.73)

for t = 0, 1, 2, . . .. In this expression, Ct is a composite consumption good
defined as:

Ct =
(∫ 1

0
C (ε−1)/ε

it di
)ε/(ε−1)

(12.74)

where Cit is the quantity of good i ∈ [0, 1] consumed in period t, and ε > 1
is the elasticity of consumption among consumption goods. The price of
good i is given by Pit , and

Pt =
(∫ 1

0
P1−ε

it di
)1/(1−ε)

(12.75)

is the aggregate price index. The functional form for H (Nt , Ut) is given by:

H (Nt , Ut) = λn

1 + σn
N 1+σn

t + λu

1 + σu
U 1+σu

t . (12.76)

ϒt and �t denote monetary transfers and profits, Wt and Vt denote the
nominal prices of an hour of work and effort, respectively.
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The first-order conditions with respect to the household’s problem are
given by:

μtPit = 1

Ct

(∫ 1

0
C (ε−1)/ε

it di
)1/(ε−1)

C−1/ε
it , i ∈ [0, 1], (12.77)

λm
1

Mt
= μt + βEt(μt+1), (12.78)

λnN σn
t = μtWt , (12.79)

λuU σu
t = μtVt , (12.80)

where μt denotes the Lagrange multiplier on the period-by-period budget
constraint. We can solve for μt from the first-order conditions corre-
sponding to the consumption choice as μt = 1/(PtCt). Substituting for this
variable and simplifying yields:

Cit =
(

Pit

Pt

)−ε

Ct , i ∈ [0, 1], (12.81)

1

Ct
= λm

Pt

Mt
+ βEt

(
1

Ct+1

Pt

Pt+1

)
, (12.82)

λnN σn
t Ct = Wt

Pt
, (12.83)

λuU σu
t Ct = Vt

Pt
. (12.84)

In this economy, good i is produced by firm i using the production
function

Yit = ZtLα
it , (12.85)

where Lit is the quantity of effective labor used by firm i:

Lit = N θ
it U 1−θ

it , 0, θ < 1. (12.86)

Zt is an aggregate technology shock whose growth rate follows an i.i.d.
process {ηt} with ηt ∼ N (0, σ 2

η ):

Zt = Zt−1 exp (ηt). (12.87)

Consider first the choice of optimal inputs of hours and effort chosen by
the firm to minimize its costs subject to the production technology. Let λ
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be the Lagrange multiplier on the technology constraint. The first-order
conditions are given by:

Wt = λZtθαN θα−1
it U (1−θ )α

it (12.88)

Vt = λZt (1 − θ )αN θα
it U (1−θ )α−1

it . (12.89)

Taking the ratio of these conditions yields:

θ

1 − θ

Uit

Nit
= Wt

Vt
. (12.90)

Notice that the firm will be willing to accommodate any changes in
demand at the given price Pit as long as this price is above marginal cost.
Hence, the firm chooses the output level

Yit =
(

Pit

Pt

)−ε

Ct . (12.91)

Thus, when choosing price the firm will solve the problem:

max
Pit

Et−1 {(1/Ct)(PitYit − WtNit − VtUit)} (12.92)

subject to (12.90) and (12.91). To find the first-order condition for this
problem, we will use the last two constraints to solve for the firm’s cost
function as:

WtNit + VtUit = WtNit + 1 − θ

θ

Wt

Vt
VtNit

= WtNit

θ
= WtY

1/α
it

θZ 1/α
t ((1 − θ )Wt/θVt)1−θ

= Wt(Pit/Pt)−ε/αC 1/α
t

θZ 1/α
t ((1 − θ )Wt/θVt)1−θ

Using this result, the first-order condition is:

Et−1

{
(1/Ct)

(
αθPitYit − ε

ε − 1
WtNit

)}
= 0. (12.93)

Finally, the quantity of money is determined as:

Ms
t = Ms

t−1 exp (ξt + γ ηt), (12.94)

where {ξt} is a white noise that is orthogonal to {ηt}, with ξt ∼ N (0, σ 2
m).

In a symmetric equilibrium, all firms charge the same price Pt and choose
the same levels of the inputs and output Nt , Ut , and Yt . Market clearing in
the goods market requires that Ct = Cit = Yit = Yt , Finally, equilibrium in



364 Asset Pricing for Dynamic Economies

the money market requires that the growth rate of the money stock evolve
exogenously as Mt/Mt−1 = exp (ξt + γ ηt ).

Next, guess that consumption is proportional to real balances in equilib-
rium, Ct = Mt/Pt . This together with market-clearing conditions implies
that PtYt = Mt . Using the first-order condition for consumption in (12.81)
and the money growth rule in (12.94) yields:

Ct = λ−1
m

Mt

Pt

[
1 − βEt

(
Pt

Pt+1

Yt

Yt+1

)]

= λ−1
m

Mt

Pt

[
1 − β exp (σ 2

m + γ 2σ 2
η )/2

]
,

= �
Mt

Pt
, (12.95)

where � = λ−1
m

[
1 − β exp (σ 2

m + γ 2σ 2
η )/2

]
. Next use (12.83–12.84) and

(12.90). Taking the ratio of the first two conditions yields:

Wt

Vt
= λn

λu

N σn
t

U σu
t

.

Equating this with (12.90) yields:

Ut

Nt
= 1 − θ

θ

λn

λu

N σn
t

U σu
t

.

Solving for Ut yields:

Ut = A1/α(1−θ )N (1+σn)/(1+σu)
t , (12.96)

where A = ((1 − θ )/θ (λn/λu))α(1−θ )/(1+σu). Substituting this result into the
expression for the production function yields:

Yt = AZtN ϕ
t , (12.97)

where ϕ =αθ + (1 + σn)α(1 − θ )/(1 + σu). Using the price-setting
rule in (12.93) together with (12.83) and the expression for equilibrium
consumption and output derived above, we can show that:

�pt = ξt−1 − (1 − γ )ηt−1 (12.98)

�yt = �ξt + γ ηt + (1 − γ )ηt−1 (12.99)

nt = 1

ϕ
ξt − 1 − γ

ϕ
ηt (12.100)
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�xt =
(

1 − 1

ϕ

)
�ξt +

(
1 − γ

ϕ
+ γ

)
ηt

+ (1 − γ )

(
1 − γ

ϕ
+ γ

)
ηt−1, (12.101)

where x = y − n is the log of labor productivity.
The conditions in (12.98–12.101) can be used to describe the impact of

monetary versus technology shocks. A positive monetary shock defined by
ξt > 0 has a temporary impact on output, employment and productivity.
This can be observed by noting that the levels of yt , nt , and xt depend only
on the current ξt . Hence, an increase in ξt causes output and employment
to go up for one period and then to revert to their initial values. The
impact of ξt on labor productivity is also transitory but the sign depends on
whether ϕ < ( > )1. We note that measured labor productivity responds
positively whenever ϕ > 1, which corresponds to the situation of short-run
increasing returns to labor. Finally, the price level responds one-for-one to
an increase in ξt , though with a one-period lag.

A positive technology shock defined by ηt > 0 has a permanent positive
one-for-one impact on output and productivity and a permanent negative
impact on the price level if γ < 1. More interestingly, a positive technology
shock has a negative short-run impact on employment. This result can be
best understood by considering the case of γ = 0, that is, when there is
no accommodating response in the money supply to real shocks. In that
case, given a constant money supply and predetermined prices, real bal-
ances remain unchanged in the face of a positive technology shock. Hence,
demand remains unchanged so that firms will be able to meet demand by
producing an unchanged level of output. However, with a positive shock
to technology, producing the same output will require less labor input, and
hence a decline in employment will occur.

Gali [195] estimates a structural VAR and identifies technology shocks
as the only shocks that are allowed to have a permanent effect on aver-
age labor productivity. This is similar to the approach in Blanchard and
Quah [69] for identifying demand versus supply shocks using long-run
restrictions on estimated VARs. The structural VAR model interprets the
behavior of (log) hours nt and (log) productivity xt in terms of two types of
exogenous disturbances – technology and non-technology shocks – which
are orthogonal to each other and whose impact is propagated through time
through some unspecified mechanisms as:[

�xt

�nt

]
=
[

C 11(L) C 12(L)
C 21(L) C 22(L)

] [
εz

t
εm

t

]
= C (L)εt ,

where εz
t and εm

t denote, respectively, the sequences of technology and
non-technology shocks. The orthogonality assumption together with a
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normalization implies that E(εtε
′
t ) = I . The identifying assumption is that

only technology shocks have a permanent effect on productivity, which
can be expressed as the restriction C 12(1) = 0.14 Gali [195] estimates this
model using postwar US data. Surprisingly, he finds that alternative mea-
sures of labor input decline in response to a positive technology shock
while GDP adjusts only gradually to its long-run level. Furthermore, tech-
nology shocks explain only a small fraction of employment and output
fluctuations. By contrast, Gali [195] finds that variables that have no perma-
nent effects on employment (and which are referred to as demand shocks)
explain a substantial fraction of the variation in both employment and
output. By contrast, Christiano, Eichenbaum, and Vigfusson [106] suggest
that the standard RBC results hold if per capita hours are measured in
log-levels as opposed to differences.

Basu, Fernald, and Kimball [49] present evidence that support the
SVAR findings by generating a modified Solow residual that accounts
for imperfect competition, non-constant returns to scale, variable factor
utilization and sectoral re-allocation and aggregation effects. Unlike the
SVAR approach, the evidence obtained from this approach is robust to
long-run identifying assumptions or to the inclusion of new variables in
the estimated dynamic system. They find that purging the standard Solow
residual of these effects in ways that we outlined in Section 12.3 elimi-
nates the phenomenon of “procyclical productivity.” They also examine the
response of a key set of variables such as output, hours worked, utilization,
employment, non-residential investment, durables and residential invest-
ment, non-durables and services, and various prices and interest rates to
changes in the purified Solow residual. They use both standard regression
analysis and simple bivariate VARs for this purpose. Their findings corrob-
orate the findings from the SVAR approach regarding the negative response
of hours to technology improvements in the short-run. They also uncover
further evidence for the negative response of non-residential investment to
such shocks. Following Gali [195] and Gali and Rabanal [196], they advance
price rigidity as the major reason for these deviations from the RBC pre-
dictions in the short-run. These findings have, on the one hand, generated
substantial controversy and on the other, cast further doubt on the ability
of the RBC model driven by technology shocks to provide a convincing
explanation of economic fluctuations for the major developed countries.

12.6. C O N C L U S I O N S

This chapter has provided a brief overview of some models and methods in
modern business cycle analysis. The scope of the business cycle literature

14 The value of the matrix C (L) evaluated at L = 1 gives the long-run multipliers for the model, in
other words, the long-run impact of a given shock.



Business cycles 367

precludes a full discussion of many key issues in modeling and empirically
analyzing business cycles. In the next two sections, we introduce monetary
models and models with market incompleteness which have further impli-
cations for quantities and prices in clearly specified general equilibrium
frameworks. In particular, models with individual heterogeneity constitute
an important area of future work. Likewise, much new work in business
cycle analysis has adopted an open-economy or international perspective.
We also discuss this class of models in later chapters. Nevertheless, the
tools that we have introduced up to this point can be fruitfully employed
in developing further models for the analysis of economy-wide dynamics.

12.7. E X E R C I S E S

1. Consider an economy where the representative consumer has prefer-
ences over stochastic consumption ct and hours worked ht given by:

E0

{ ∞∑
t=0

β t[exp (ut) ln (ct) − γ ht]

}
, γ > 0,

where {ut}∞t = 0 is a mean zero i.i.d. preference shock with variance σ 2
u

and E0 is expectation conditional on information available at time 0.
Output in this economy is produced according to the production

function:

f (θt , ht , kt) = (θtht)
1−αkαt , 0 < α < 1,

where kt is the per capita capital stock and θt is a technology shock that
follows a logarithmic random walk, θt+1 = θt exp (εt+1), where {εt}∞t = 0
is a mean zero i.i.d. innovation to technology with variance σ 2

ε . We
assume that {ut}∞t = 0 and {εt}∞t = 0 are mutually uncorrelated.

The capital stock evolves as kt+1 = (1 − δ)kt + it , where 0 < δ < 1 is
the depreciation rate and it is investment.

Define the following transformed variables:

k�t ≡ ln (kt/θt), i�t ≡ ln (it/θt)

c�t ≡ ln (ct/θt), h�
t ≡ ln (ht).

(a) Show that utility in each period can be written as:

U ≡ exp (ut)c�t + ln (θt) exp (ut) − γ exp (h�
t ),

and the feasibility constraint as:

exp (c�t ) + exp (εt+1) exp (k�t+1) − (1 − δ) exp (k�
t )

≤ exp (h�
t )1−α exp (k�t )α.
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(b) Formulate the social planner’s problem for this economy in terms
of the transformed variables and show that this problem has a
stationary solution.

2. Long-Plosser Real Business Cycle Model
Think of a model economy, populated by single infinite-lived indi-

vidual, Robinson Crusoe. At the beginning of each period, he chooses
the level of consumption, c1t , c2t , the amount of leisure time to be con-
sumed for production of goods 1 and 2 during the period, l1t , l2t , and
the capital and labor inputs, kit , nit for i = 1, 2. Crusoe’s objective is to
maximize expected lifetime utility:

U ≡
∞∑

t=0

β tu(c1t , c2t , lt), 0 < β < 1,

subject to the budget constraint:

cjt +
2∑

i=1

kijt ≤ yjt , j = 1, 2,

where kijt denotes the quantity of commodity j allocated to the
production of commodity i, and the time constraint:

n1t + n2t + lt = 1

The production function exhibits constant returns to scale, given by:

yi,t+1 = f (n1t , k1t , n2t , k2t ; λ1,t+1, λ2,t+1), i = 1, 2

where λt is a shock to production which follows a first-order Markov
process. The utility and production functions are given by:

u(c1t , c2t , lt) = θ1 ln (c1t) + θ2 ln (c2t) + θ3 ln (lt)

yi,t+1 = λi,t+1n
αi
it kαi1

i1t kαi2
i2t

where αi+αi1+αi2 = 1. Both commodities are assumed to be perishable,
that is, the depreciation rate is 100%.
(a) Write down Crusoe’s problem in a dynamic programming

approach, define the state variables and choice variables of the
problem explicitly.

(b) Find the first-order conditions and the envelope condition of the
problem.

(c) Using a guess-and-verify technique, find the coefficients of the value
function.

(d) Solve for equilibrium allocations (cjt , lt , njt , kijt for i, j = 1, 2) and
equilibrium prices, particularly, price of the consumption good (pt),
wage-rate (ωt), and one-period interest rate (rt).
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3. Using Uhlig’s Toolkit
Go to http://www2.wiwi.hu-berlin.de/institute/wpol/html/toolkit.

htm and download Uhlig’s software toolkit for solving dynamic stochas-
tic models.

Generate a numerical solution for the Hansen model with indivisible
labor.

4. Spectra for Stationary Time Series Models
Consider the following time series models:

yt = a0 + a1yt−1 + εt , |a1| < 1, (12.102)

zt = b0 + εt + b1εt−1, (12.103)

wt = a0 + a1wt−1b0 + εt + b1εt−1, |a1| < 1. (12.104)

(a) Find the autocovariance function for each of these processes.
(b) Find and plot the spectrum for each of these processes given the

values a1 = 0. 9, b0 = 1, and b1 = 2.
(c) The coherence of two series is given by:

Cyz(ω) =
∞∑

r=−∞
Ryz(r)e−irω,

where Ryz(r), r = . . . , −1, 0, 1, . . . is the cross-covariogram between
{yt} and {zt}. Find the coherence for each pair of processes given in
part (a) and plot them.

(d) How can these measures be useful for understanding the sources of
cyclical fluctuations?
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Monetary and international models





C H A P T E R 13

Models with cash-in-advance constraints

The effects of money and nominal variables on the real economy have been
studied extensively. The apparent lack of consensus on how money and
monetary policy impact the economy reflects the difficulty of the questions
that are raised when money is introduced into a model of the economy. A
standard introductory discussion of the role of money highlights its impor-
tance as a store of value, medium of exchange, and unit of account. In a
model of complete Arrow-Debreu contingent claims, there is no role for
money because all transactions in the form of trades of physical goods and
dated goods can be carried out in the contingent claims market. Indeed
all trades can take place at time zero, before any uncertainty is resolved, or
sequentially over time, resulting in identical allocations. Since all trading is
centralized, there are no problems with a double coincidence of wants or
need for a durable asset. Money is a redundant asset and its introduction
leaves allocations unaffected.

One approach to incorporating money is to assume that money must
be used to carry out transactions. The cash-in-advance model is an exam-
ple of this sort of model. As we will show below, this model is equivalent
to imposing a borrowing constraint on agents: consumption can be car-
ried out only with current wealth and there is no borrowing against future
income. But, just as ad hoc models of borrowing constraints have been crit-
icized for lacking sound microeconomic foundations, the cash-in-advance
model is appropriately criticized for its lack of microeconomic founda-
tions; see Wallace [442] for example. Other models, such as overlapping
generations models (see Wallace [440]) or the Townsend turnpike model
(see Townsend [431]), are structured so there are trading frictions. Trade is
not centralized in that all agents are not present in the same market at the
same date. Hence there is a role for money, or some durable and divisible
asset, that allows for trade within a period and over time. These models
have yielded interesting theoretical insights into the role of money, but
have proven to be difficult to implement empirically. A promising line of
research is the search models of money pioneered by Kiyotaki and Wright
[279]. In this class of models, trade is decentralized and agents are matched
bilaterally and randomly. Without money, trade occurs only if there is a

373
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double coincidence of wants. The introduction of money, under some cir-
cumstances, facilitates trade and production. Models of this type focus on
the micro foundations of money and derive an explicit and essential role for
money within the model. The difficulty with many models of money built
with explicit microeconomic foundations is the paucity of empirical impli-
cations, at least at this date; see Kocherlakota [280] for a discussion. We will
describe some of the fundamental issues in this debate, but ultimately will
discuss several versions of cash-in-advance models because they are, to date,
more useful for discussing policy and deriving empirical implications.

A traditional view of money is that it is a mechanism that eliminates
difficulties of a double coincidence of wants. Typically this is thought of
in terms of physical goods: barter is possible if there is a double coinci-
dence of wants but impossible if there is not. In such a setting, a divisible,
durable, and recognizable asset such as money that can serve as a medium
of exchange creates opportunities for trade. Search models of money, such
as Kiyotaki and Wright [279], are built on the property of money as a
medium of exchange. While these models are interesting, we will broaden
our focus to a lack of double coincidence of wants in dated goods, and
follow the simple example in Kiyotaki and Moore [278], for reasons that
are provided below.

13.1. “ E V I L I S T H E R O O T O F A L L M O N E Y ”

The title of this section is from the paper by Kiyotaki and Moore [278].
They focus on the role of limited commitment instead of physical trading
frictions. Limited commitment enters in two ways. First, a debtor may
not be able to borrow fully against future income. There may be limits
because of moral hazard, for example. Let θ1 denote the upper bound on
the fraction of future income that a borrower can credibly commit to repay.
Second, there may be a limit on the negotiability of a privately issued bond
or paper. If an agent lends to another by purchasing a bond, or an IOU,
that bond may or may not be resalable. If the bond is resalable, or liquid,
then the bond issuer has made a multilateral commitment to repay the
ultimate bond holder. If the bond is not negotiable, then the borrower has
made a bilateral commitment to repay only the original purchaser of the
bond. Let θ2 indicate the negotiability of the paper: if θ2 = 0 then the paper
is non-negotiable and cannot be resold and, if θ2 = 1 then the paper is fully
negotiable and the bond-issuer has made a multilateral commitment to
repay.

Kiyotaki and Moore [278] describe the following model to illustrate
the roles of limited commitment and negotiability. This is a three-period
model. There are three types of agents, with a large number of each type.
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• Type I agents want to consume in period 1 but are endowed with period
3 goods.

• Type II agents want to consume in period 2 but are endowed with period
1 goods.

• Type III agents want to consume in period 3 but are endowed with
period 2 goods.

If θ1 = 1, then each type of agent can fully commit to repay a loan and we
see that, at date 1, all trades can be executed and the first-best outcome
can be achieved: Type j consumes all endowment in period j, regardless of
the timing of his endowment. Notice that the value of θ2 is irrelevant in
this case. Specifically, a type I borrows from a type II in the first period,
while the type II borrows from a type III in the second period, and in
the final period the type I pays back type II and type II pays type III.
Since borrowing and lending are arranged bilaterally, the negotiability of
the paper is irrelevant.

Now suppose that θ1 = 0 for the type III agents, so a type III agent
always defaults, but θ1 = 1 for type I and type II agents. Suppose also that
θ2 = 1 for type I agents. When markets open in the first period, type I
agents can issue paper, which is a form of borrowing, that will be purchased
by type II agents in exchange for goods. Type II agents hold the paper until
the next period and then sell it to the type III agents in exchange for their
period 3 endowment. Type III agents hold the paper originally issued by
type I and, in the third period, receive the payment on the bond from type
I agents. In this case, the negotiability of type I’s bond issue allows the first-
best allocation to be achieved, even though type III agents always default
and, hence, do not issue any paper.

Continue to assume that θ1 = 0 for a type III agent and θ1 = 1 for types
I and II, but now suppose that θ2 = 0 for the type I agent. Then the sys-
tem reverts to autarky and there is no trading. The reason is that there
will be no trade between type II and type III agents and subsequently no
trade among any agents. For convenience, they assume that agents receive
a small benefit from consuming their own endowment and gift giving is
not allowed. Notice that when type I’s paper is negotiable, so θ2 = 1, type
II agents purchase the paper for the purpose of selling it before the matu-
rity date. The bond issue of the type I agent acts like inside money and
provides liquidity. The ability of the type I agent to make a multilateral
commitment can mitigate problems of distrust in other agents.

Notice that fiat money will not be able to substitute for inside money.
Suppose that type I agents are endowed with money in the first period.
Then they can buy the consumption good from type II agents using the
money. Type II agents will accept the money in exchange for goods only if
they believe that type III agents will accept the money. If type III agents will
accept it, then in period 2, type II agents buy the consumption good from
type III agents in exchange for the fiat money. Type III agents then use the
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money to purchase goods from type I agents, assuming that type I agents
will accept it. But type I agents have no use for money in the third period
since there are no more future periods. Hence, in a finite horizon model,
it is not clear that fiat money will solve the liquidity problems unless there
is trust that money will always be accepted in trade.

We can use this approach – the lack of double coincidence in wants
of dated goods – to re-examine the overlapping generations model and the
Townsend turnpike models. In the overlapping generations model, we have
a lack of the double coincidence of wants in dated goods. There is limited
commitment in that an old agent today cannot credibly commit to repay
a current young agent next period. Moreover, any paper issued by the old
agent has no resale value. In the absence of a clearing house, or fiat money,
all transactions are bilateral commitments and none of them is credible.
Hence, with θ1 = 0 for all agents, the only outcome is the autarky equilib-
rium. In a finite horizon overlapping generations model, fiat currency can’t
overcome the trading friction. Turn now to the Townsend turnpike model,
and assume that θ1 > 0. The key property on whether private IOUs will cir-
culate is the negotiability of the notes. If θ2 = 1, then the private notes can
circulate, acting like money. If θ1 or θ2 equal 0, then there is a role for fiat
money. We discuss the overlapping generations and Townsend turnpike
models in more detail in later chapters.

We will now turn to the basic cash-in-advance model, despite the
shortcomings described below. There are several reasons for this: first we
can show that this type of model is equivalent to a borrowing constraint
model, or in the notation above, a model with θ1 = 0. Second, our focus
is on the empirical implications of inflation on asset pricing, so we require
a fully specified model from which empirical implications can be derived.
The cash-in-advance model, which can be modified in many ways, can
yield rich empirical implications.

The cash-in-advance model has been used to study the relationship
among velocity, nominal interest rates, and output by Lucas [318, 319, 321],
Svensson [427], and Lucas and Stokey [323], among others. We study some
of these models in a later part of this chapter. From an asset-pricing point
of view, the cash-in-advance model allows us to price assets denominated
in nominal terms and to define such concepts as the inflation premium in
asset returns and inflation risk.

13.2. T H E B A S I C C A S H - I N - A D V A N C E M O D E L

We begin by describing versions of cash-in-advance models. The basic
model is the asset-pricing model described in Chapter 8 except that a con-
straint – the cash-in-advance constraint – is imposed that motivates the use
of money.

We begin by describing a version of the cash-in-advance model that
incorporates the timing of trades and information in Lucas [319]. There are
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two key features of the Lucas model: first, that all households observe reali-
zations of endowment and money growth at the beginning of the period
before any decisions are made; and second, that the asset market opens
before the goods market.

The representative household has preferences over random sequences of
the single consumption good given by:

E0

{ ∞∑
t = 0

β tU (ct)

}
(13.1)

where 0<β < 1 is the discount factor. This is a pure endowment economy.
To start, we assume that households hold nominal wealth in the form

of currency and government-issued, one-period discount bonds. All con-
sumption purchases must be made with fiat currency brought into the
goods market. The cash-in-advance constraint is:

ptct ≤ Md
t , (13.2)

where pt is the current price level, ct consumption and Md
t is the nominal

currency the agent holds when entering the goods market. The key feature
is that agents don’t consume their own endowment. An agent’s endow-
ment is sold in the goods market for nominal value ptyt and the nominal
receipts are unavailable for spending until the following period. At the end
of period t − 1, an agent is holding the value of nominal receipts pt−1yt−1

plus the value of any unspent nominal balances from the goods market in
period t − 1, equal to:

M d
t−1 − pt−1ct−1.

At the beginning of period t, the agent observes the realization of any
exogenous shocks (to be specified below), receives the payment on the
nominal bond purchased last period Bt−1, and receives a lump-sum mon-
etary transfer Gt . The asset market opens before the goods market. The
nominal wealth that the agent brings into the asset market is:

Ht ≡ Bt−1 + Gt + pt−1yt−1 + [Md
t−1 − pt−1ct−1].

The asset market constraint is:

Md
t + QtBt ≤ Ht . (13.3)

Money required to make desired purchases of consumption goods in the
goods market must be held at the close of the asset market.

To demonstrate that this cash-in-advance model is equivalent to a strict
form of a borrowing constraint model, solve (13.3) for Md

t and substitute
into (13.2), and re-write

Ht − QtBt ≥ ptct . (13.4)
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By assumption, Bt ≥ 0 and if we let Bt = 0, notice that the left side is nom-
inal wealth at the beginning of period t. The cash-in-advance constraint
states that all consumption purchases must be financed with nominal
wealth accumulated by the beginning of period t. Agents are unable to
borrow against current and future income and must provide for consump-
tion by saving. In this sense, the cash-in-advance model is a strict form of
a borrowing constraint model, albeit the constraint is ad hoc because the
reason agents cannot borrow against future income is not made explicit.
As in the first section, we can argue that moral hazard creates difficulties so
that agents are unable to commit credibly to repay any loan.

We now move to the more general formulation of the model, which
introduces equities. Adding this feature will allow us to discuss the impact
of inflation on stock market returns. We now assume that agents can hold
equity shares in addition to government issued bonds. We assume that
there is a stochastic process s, with properties specified below, and the
endowment is a function y : S → Y where Y = [y, ȳ]. Agents own equity
shares of the endowment, which are claims to streams of the endowment
over time. There is one outstanding equity share. An agent holds equity
zt−1 entering period t and the nominal price of an equity is Qe

t . The con-
straint that applies in the asset market with the addition of the equity is:

Md
t + Qe

t zt + QtBt ≤ Ht + Qe
t zt−1, (13.5)

where Ht denotes post transfer money balances held at the beginning of
the period after payments on one-period bonds have been made:

Ht ≡ pt−1yt−1zt−1 + Bt−1 + Md
t−1 − pt−1ct−1 + Gt .

Notice that an equity share purchased in the current period is a claim to
the nominal dividend stream, ptyt , paid at the end of period t so these
funds are unavailable for spending in the current period.

Let st denote the vector of exogenous shocks to this economy. The con-
sumer observes the current shock before the asset market opens and knows
all past values of output and money supply. Since the consumer knows st ,
yt−1 and Mt−1, he also knows current output and the current money stock.
Figure 13.1 shows the timing of trades in the basic cash-in-advance model.

To complete our discussion, we need to describe the stochastic environ-
ment. The vector of exogenous shocks s ∈ S ⊂ �m follows a first-order
Markov process with a stationary transition function F : S × S → [0, 1]
such that F (s, s′) ≡ Pr(st+1 ≤ s′ | st = s). The transition function F satisfies
the following assumption.

Assumption 13.1 The transition function F has the Feller property
so that for any bounded, continuous function h : S →�, the function



Models with cash-in-advance constraints 379

t 
t + 1 

Asset market Goods market 
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d ct Decisions 

Information st 
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zt+1 pt yt 

Figure 13.1. Timing of trades in the Lucas model

Th(s) = ∫
S h(s′)F (s, ds′) is continuous. The process defined by F has a sta-

tionary distribution �.

Notice this is the same assumption we made in Chapter 8. The endowment
yt is exogenous and stationary in levels. Later we discuss some of the issues
that arise when endowment and money are growing. The endowment
evolves as:

yt = y(st). (13.6)

The government’s budget constraint is described next. The government’s
outstanding nominal liabilities at the beginning of the period are:

Bt−1 + Mt−1.

We assume that the government raises funds by issuing new bonds, lump
sum transfers (or taxes) and issuing new money. The constraint is:

Bt−1 − QtBt = Mt − Mt−1 − Gt . (13.7)

If the government issues no bonds, so B = 0, then money is injected
entirely through lump-sum transfers. If we specify a money growth rule
Mt =ωtMt−1, and assume no bonds are issued, then Gt = [ωt − 1]Mt−1.
When bonds are issued, money is injected into the economy in two ways:
as a lump-sum stochastic transfer or by open market operations. If Gt = 0,
then any changes in the outstanding money supply occur through open-
market operation – the buying and selling of government debt by the
central bank. The bond price will be determined in the bond market and
Bt−1, Mt−1 are predetermined variables. Hence if we choose a monetary
policy

Ms
t = ω(st)Ms

t−1, (13.8)

and a bond supply function B(s, M ), then the function G is determined
through the budget constraint. Alternatively, we can pick the functions
G,ω and then use the constraint and market-clearing conditions to
determine the bond supply function.
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We begin by formulating the household’s problem as a dynamic pro-
gramming problem. Since the money supply is growing, the household’s
nominal money holdings are growing in equilibrium. Since there are no
natural bounds on the money growth or its level, it will be helpful to
transform some of the nominal variables into real variables. We do this
by dividing the (nominal) constraints by the current price level. Define
md

t ≡ Md
t /pt , qe

t ≡ Qe
t /pt , and ht ≡ Ht/pt .1 The real constraint in the asset

market is:

md
t + qe

t zt + QtBt

pt
≤ ht + qe

t zt−1, (13.9)

where

ht ≡ 1

pt
[pt−1yt−1zt−1 + Bt−1 + pt−1(md

t−1 − ct−1) + Gt].

The cash-in-advance constraint is:

ct ≤ md
t . (13.10)

The household takes as given the nominal price of consumption goods
and the nominal prices of equities and bonds, which are all assumed to be
continuous, strictly positive functions of the current shocks.

The state variables for the consumer’s problem consist of the current
exogenous state s, and the current holdings of equities z and current
real holdings of money h. Given the price functions p, Qe, and Q , the
consumer’s value function is defined by:

V (s, z, h) = max
{c,md ,z′,B′}

{
U (c) + β

∫
S

V (s′, z′, h′)F (s, ds′)
}

,

subject to the constraints in Equations (13.9) and (13.10).

Definition 13.1 A recursive competitive equilibrium is defined as a set of
continuous, strictly positive price functions p : S × �++ → �++, qe : S →
�++, Q : S → �++, and a value function V : S ×Z ×H → �+ such that
(i) given p(s, M ), qe(s), and Q(s), V (s, z, h) solves the consumer’s problem; (ii)
markets clear: z = 1, Md = M, Bd = Bs, y = c.

1 For this transformation of variables to be useful, it requires that all the information be revealed at
the beginning of the period. If all information is not revealed so that the price level is unknown until
the actual goods market opens, then all nominal variables can be divided by the money stock. We
discuss this later in the chapter.
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Let μ(s) denote the multiplier on the cash-in-advance constraint and
ξ (s) denote the multiplier on the asset market constraint. The first-order
conditions with respect to c, md , z′, and B′ are:

U ′(c) = μ(s) + βEs

[
Vh(s′, z′, h′)

p(s, M )

p(s′, M ′)

]
, (13.11)

ξ (s) = μ(s) + βEs

[
Vh(s′, z′, h′, )

p(s, M )

p(s′, M ′)

]
, (13.12)

ξ (s)qe(s) = βEs

[
Vh(s′, z′, h′)

p(s, M )y
p(s′, M ′)

+ Vz(s′, z′, h′)
]

, (13.13)

ξ (s)
Q(s)

p(s, M )
= βEs

[
Vh(s′, z′, h′)

1

p(s′, M ′)

]
, (13.14)

where Es(·) ≡ E(·|s). The envelope conditions are:

Vh(s, z, h) = ξ (s), (13.15)

Vz(s, z, h) = ξ (s)qe(s). (13.16)

Incorporate the market clearing conditions and use the envelope con-
ditions to eliminate Vh, Vz . Notice that the first two conditions do not
involve the equity or bond price functions. We can solve first for the con-
sumption price function and then solve for the asset prices. Divide both
sides of (13.11) by p(s, M ) and substitute the envelope condition for Vh.
Observe that (13.11) and (13.12) can be rewritten as:

U ′(y(s))
p(s, M )

= μ(s)
p(s, M )

+ βEs

[
U ′(y(s′))
p(s′, M ′)

]
. (13.17)

If μ> 0, then the cash-in-advance constraint is binding and

p(s, M ) = M
y(s)

. (13.18)

If μ = 0, then p satisfies:

1

p(s, M )
= βEs

[
U ′(y(s′))

U ′(y(s))p(s′, M ′)

]
(13.19)

Given a price function, define the function K (s) as the solution to

p(s, M )y(s) = M
K (s)

⇒ M
p(s, M )

= K (s)y(s),

where K (s) is the inverse of velocity.
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If μ> 0, then K (s) = 1, while, if μ> 0, then

1

p(s, M )
= K (s)y(s)

M
= βEs

[
U ′(y(s′))

U ′(y(s))p(s′, M ′)

]
,

which can be rewritten as:

K (s) = βEs

[
U ′(y(s′))K (s′)y(s′)M

U ′(y(s))y(s)M ′

]

= βEs

[
U ′(y(s′))K (s′)y(s′)
U ′(y(s))y(s)ω(s′)

]
> 1.

It follows that:

K (s) = max

[
1,βEs

(
U ′(y(s′))K (s′)y(s′)
U ′(y(s))y(s)ω(s′)

)]
. (13.20)

This is a functional equation in the unknown function K . We will discuss
the solution of the model, in particular how to solve for the function K
later.

Turn now to the first-order condition for the nominal bond (13.14). This
equation can be written as:

U ′(y(s))Q(s)
p(s, M )

= βEs

[
U ′(y(s′))

1

p(s′, M ′)

]
. (13.21)

Using the expression for the price function

K (s)Q(s) = βEs

[
U ′(y(s′))
U ′(y(s))

y(s′)
y(s)

1

ω(s′)
K (s′)

]
.

We have derived a key property of the standard cash-in-advance model,
namely, the close relationship between the binding cash-in-advance con-
straint and positive nominal interest rates. Notice that if K (s) = 1, then
Q(s)< 1 so that nominal interest rates are positive (recall that Q is the
inverse of the nominal interest). If K (s)> 1, then Q(s) = 1 and nominal
rates are equal to zero. The model predicts that if nominal interest rates are
positive, then velocity is constant. Velocity varies only if the nominal rate
is zero, which is not supported in the data.

The final equation is the first-order condition for the equity price (13.13).
This equation can be rewritten as:

qe(s) = βEs

{
U ′(y(s′))
U ′(y(s))

[
p(s, M )y
p(s′, M ′)

+ qe(s′)
]}

(13.22)

and substituting for the price function

qe(s) = βEs

{
U ′(y(s′))
U ′(y(s))

[
y(s′)K (s′)

ω(s′)y(s)K (s)
+ qe(s′)

]}
. (13.23)
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This is a linear functional equation in the unknown function qe. It can
be solved recursively forward. Notice that the inflation tax, in the form of
a depreciation of the real value of nominal money balances held between
periods, falls on the equity holders when the cash-in-advance constraint is
binding. If this constraint is not binding, then the inflation tax falls also
on the holder of the unspent nominal balances.

13.2.1. Solution for velocity

We now discuss a contraction mapping argument that can be used to find
the solution to the functional equation (13.20) in the unknown function
K . We follow Giovannini and Labadie [206].

Define the function

ϒ(s′, s) ≡ U ′(y(s′))
U ′(y(s))

y(s′)
y(s)

1

ω(s′)
.

Also define C(S) as the space of continuous and bounded functions defined
on S. The functional equation we are solving is:

K (s) = max
[
1,βEsϒ(s′, s)K (s′)

]
(13.24)

Let K 0 ∈ C(S). Define the operator T by:

(TK 0)(s) = max
[
1,βEsϒ(s′, s)K 0(s′)

]
(13.25)

We now have the following theorem.

Theorem 13.3 Under Assumption 13.1, there exists exactly one continuous
and bounded function K that solves Equation (13.25).

P R O O F

We first show that T : C(S) → C(S). Next, we show that T n is a con-
traction. Hence we can conclude that there exists exactly one solution to
Equation (13.25).

Under Assumption 13.1, the expectation operator maps continuous,
bounded functions into continuous, bounded functions. Under Assump-
tion 13.5 if K 0 is in the space of bounded, continuous functions, then
so is βEs

[
ϒ(s′, s)K 0(s′)

]
. If f ∈ C(S), then max[1, f (s)] is also because

the max operator is linear and bounded and, because a linear operator is
bounded if and only if it is continuous, it is also continuous. Hence T takes
continuous, bounded functions into continuous, bounded functions.

The next step is to verify Blackwell’s conditions for a contraction. For
any h, g ∈ C(S) such that h(s)> g(s) for all s ∈ S, Th(s) ≥ Tg(s). Hence, T
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is monotone. To determine if T has the discounting property, notice that
applying T to an arbitrary function in C(S) will discount because

T (g + a)(s) = max

[
1,β

∫
S
ϒ(s′, s)(g(s′) + a)F (s, ds′)

]

≤ max
[
1,β

∫
S ϒ(s′, s)g(s′)F (s, ds′)

] + max
[
1,
∫

S ϒ(s′, s)aF (s, ds′)
]

,

where we are using the conditional expectation. Under our assumptions,
ϒ(s′, s) is a stationary process so that there is some j <∞ such that
βEt[ϒ(st+j, st+j−1)]< 1. Define N (st) such that

βN (st )Et

(
N (st )∏
i=1

ϒ(st+j, st+j−1)

)
< 1.

Let N denote the maximum over the N (st) or N = maxs∈S N (s). Start with
an initial guess �0 ∈ C(S) and define:

� 1(st) = (T�0)(st)

= max {1,βEt [ϒ(st+1, st)�0(st+1)]} .

When T is applied M times,

T M�0(s) = max
{
1,βEs

[
ϒ(s′, s)�M−1(s′)

]}
.

To determine if T M has the discounting property, define:

T M (�0 + a)(st) = T M−1 max (1,βEt {ϒ(st+1, st)[�0(st+1) + a]})
≤ T M−1 max {1,βEt [ϒ(st+1, st)�0(st+1)]}

+ aβM Et

M∏
i=1

ϒ(st+i, st+i−1).

If M >N , then

βM Et

(
M∏
i=1

ϒ(st+i, st+i−1)

)
a = δa

where 0<δ< 1. Hence, T M has the discounting property and is mono-
tone so that T M is a contraction mapping. By the N -Stage Contraction
Mapping Theorem, if T M is a contraction for some positive integer M ,
then T has a unique fixed point in C(S), which can be found by the method
of successive approximation.
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13.2.2. Empirical results

The links among velocity, money growth, output growth, the nominal
interest rate, and inflation for the basic cash-in-advance model are stud-
ied empirically by Hodrick, Kocherlakota, and Lucas [252] and Giovannini
and Labadie [206]. These authors solve explicitly for the equilibrium pric-
ing function and for velocity, and match up the theoretical moments
implied by their model with the moments in the data. Since the basic
cash-in-advance model implies that velocity is constant when nominal
interest rates are positive, the first set of authors consider variations on
the basic model due to Svensson [427, 426] and Lucas and Stokey [323]
that break the close link between velocity and nominal interest rates.2

In Svensson’s framework, cash balances are chosen before the quantity
of output is known. Therefore, agents may choose to carry unspent cash
balances across periods, and velocity can in principle vary. In Lucas and
Stokey’s cash-credit model, only some goods are required to be purchased
with currency while other goods can be purchased with credit. Hence,
velocity can vary when interest rates are positive. Using quarterly data
on consumption and money growth, Hodrick et al. estimate a VAR (vec-
tor autoregression) and approximate each VAR by a Markov chain using
the quadrature method in Tauchen [428] that we described in Chap-
ter 6. They conduct a calibration exercise similar to Mehra and Prescott
[341], and examine the unconditional moments of the coefficient of vari-
ation of velocity and the correlations of velocity with money growth,
output growth, and the interest rate. They also examine the means and
standard deviations of real and nominal interest rates, inflation and real
balance growth, and the correlations of inflation with money growth,
consumption growth, and the nominal interest rate. They find that the
cash-in-advance constraint almost always binds and that velocity is con-
stant for the basic cash-in-advance model. They also find that the model
is unable to match the sample moments of other endogenous variables
for parameter values that result in reasonable values for the variability of
velocity. Giovannini and Labadie [206] conduct a complementary study,
and consider the basic Lucas model described above and the Svensson
model. They focus on a set of unconditional and conditional moments
for inflation, velocity, real stock returns, and real interest rates. Consistent
with the predictions of the model, they find that the liquidity constraint
is binding more frequently in the Lucas model than in the Svensson
model. They also examine the relationship between inflation and real stock
returns and the behavior of the equity premium, issues which we discuss
below.

2 See Exercises 2 and 7.
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13.2.3. Inflation risk and the inflation premium

We now describe the implications of this framework for asset price behav-
ior, including equity prices and the price of real and nominal risk-free
assets. Unlike the real models considered earlier, we can use this framework
to describe the effects of changes in the nominal price level on equilibrium
rates of return for assets that have nominal payoffs.

Returning to Equation (13.23) and reverting to time subscripts, we can
derive an expression for the price-dividend ratio as:

qe
t = Et

[ ∞∑
i=1

β i U ′(yt+i)yt+i

U ′(yt)yt

K �
t+i

K �
t ωt,i

]
, (13.26)

where

ωt,i ≡
i∏

j=1

ωt+j

is the sequence of money growth rates between periods t + 1 and t + i.
The price-dividend ratio is a claim to the purchasing power of a unit of
currency at the end of the period, where the purchasing power of money
is defined as the inverse of the price level. Since there is money growth,
the purchasing power of money falls by ω−1

t,i between periods t and t + i.
Unlike the real models of Chapters 8–11, the stochastic discount factor
is the ratio of the marginal utility of the purchasing power of money
U ′(y(s))/p(s, M ) at adjacent periods or the nominal MRS. The stochastic
discount factor converts $1.00 received tomorrow into utility units today.
Specifically, βU ′(y(s′))/p(s′, M ′) measures the utility value of $1.00 held
one period hence while U ′(y(s))/p(s, M ) measures the utility value of $1.00
held today; their ratio measures the intertemporal tradeoff.

The equilibrium price of a one-period nominal bond that pays one unit
of currency at the beginning of the next period can be determined from
Equations (13.14) and (13.15) as:

Qt = βEt

[
U ′(yt+1)pt

U ′(yt)pt+1

]
. (13.27)

As we can see, the price of a one-period nominal bond is just equal to
the stochastic discount factor. The expected real return to a one-period
nominal bond is:

Et(1 + r1
t ) = (1 + R1

t )Et

(
pt

pt+1

)
. (13.28)

This is a version of the Fisher equation, which divides the nominal interest
rate into the expected real interest rate plus the expected rate of inflation.
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We can derive similar expressions for the expected real return on all assets
denominated in nominal terms, including the nominal equity return.

When agents are risk averse, there is also a risk premium included in
the Fisher equation. To derive the inflation risk premium, we consider
assets that have real payoffs indexed by inflation. The price of an inflation-
indexed bond maturing in one period is given by:

qt = βEt

[
U ′(yt+1)

U ′(yt)

]
. (13.29)

The return to a one-period indexed bond is defined as (1 + rf
t ) ≡ 1/q1

t . The
difference between the nominal bond and the inflation-indexed bond is
that the stochastic discount factor for the latter is the intertemporal MRS
in consumption goods.

We define the inflation risk premium as the difference between the
expected real return to a one-period nominal bond and the return to a one-
period indexed bond, E(r1

t ) − rf
t . Now the nominal interest rate satisfies

the relation:

1 + R1
t =

{
βEt

[
U ′(yt+1)pt

U ′(yt)pt+1

]}−1

. (13.30)

Using a covariance decomposition, the term in braces can be written as:

βCovt

[
U ′(yt+1)

U ′(yt)
,

pt

pt+1

]
+ 1

1 + rf
t

Et

[
pt

pt+1

]
.

The conditional covariance measures the covariation between the
intertemporal MRS in consumption with the expected deflation. If we
substitute the above expression into Equation (13.28), notice that if the
conditional covariance above equals zero, then the expected real return to
the nominal bond equals the real interest rate. In this case, we say that the
inflation risk premium is zero.

To determine the effects of stochastic inflation on the equity price and
the equity premium, notice that we can rewrite Equation (13.22) as:

1 = βEt

[
U ′(yt+1)

U ′(yt)

(
ptyt

pt+1
+ Qe

t+1

pt+1

)
/

Qe
t

pt

]

1 = βEt

[
U ′(yt+1)

U ′(yt)
(1 + re

t+1)

]
,

where re
t+1 is the (net) real equity return. The equity premium is defined

as the difference between the expected real equity return and the return
on a one-period inflation-indexed bond, Et(re

t+1) − rf
t . Stochastic infla-

tion affects the real equity premium because dividends are paid in nominal
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terms. Thus, changes in the nominal price level or, equivalently, changes
in the purchasing power of money affect the equity return through cur-
rent dividends as well as through the future equity price, which depends
on the whole future path of nominal price level changes. A second way
that stochastic inflation can affect the measured equity premium is that
in practice, the real equity premium must be computed as the difference
between the expected real equity return and the expected real return on a
one-period nominal bond, Et(re

t+1)−Et(r1
t ). As long as Et(r1

t ) differs from rf
t

due to the inflation risk premium, there arises a second channel by which
stochastic inflation affects the equity premium.

Labadie [299] and Giovannini and Labadie [206] study these effects
empirically to determine whether they can account for the “equity pre-
mium puzzle.” The latter authors find that one of the most important
predictions of the model is the very high covariation between ex ante
returns on stocks and nominal bonds, this feature arising from the fact
that both returns are driven by the behavior of their common factor, the
reciprocal of the marginal rate of substitution in wealth. They also find
that stock returns are only occasionally negatively related to inflation, in
contrast to the data, and that ex ante real interest rates are uncorrelated
with expected inflation.

The prices of a variety of other assets can also be determined, assuming
that these assets are in zero net supply. Assuming that there is an active
secondary market, the price today of a nominal bond paying one unit of
currency at time t + τ is:

Qτ
t = βEt

[
U ′(yt+1)pt

U ′(yt)pt+1
Qτ−1

t+1

]
.

By repeated substitution for the bond price, notice that this is
equivalent to:

Qτ
t = βτEt

[
U ′(yt+τ )pt

U ′(yt)pt+τ

]
. (13.31)

Hence, the price of a nominal bond that pays one unit of currency at time
t + τ is just the expected marginal rate of substitution in the purchasing
power of money between periods t and t + τ . The return to holding a
bond maturing in τ periods for n periods and selling it in the secondary
market is defined as Qτ−1

t+1 /Qτ
t . The expected real return to a nominal bond

maturing in τ periods is defined as:

Et(1 + rτt ) = Et

[
Qτ−1

t+1

Qτ
t

pt

pt+1

]
. (13.32)
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The expected real holding risk premium, defined as the difference between
the expected real return to holding for one period a nominal bond
maturing in τ periods and the return to a one period indexed bond is:

Et(rτt ) − rf
t = Et(r1

t ) − rf
t + Et(rτt − r1

t ). (13.33)

The holding risk premium can be divided into the inflation risk premium,

defined as Et(r1
t ) − rf

t and a term risk premium, Et(rτt − r1
t ). In an early

paper, Jaffe and Mandelker [262] study the relationship between inflation
and the holding period returns on bonds.

In actual capital markets, we typically observe assets with nominal pay-
offs being traded. Since the existence of changes in the nominal price level
induces another type of risk that risk-averse agents would prefer to avoid,
the question arises as to the welfare gains from issuing inflation-indexed
bonds and why there are so few instances of this occurring. Fischer [186]
studies the welfare gains of issuing inflation-indexed bonds in a multi-good
model with price level uncertainty. In his framework, all bonds are in net
zero supply.

13.2.4. Velocity shock

The tight relationship between the nominal interest rate and velocity is a
weakness of the standard cash-in-advance model. A simple way to remedy
this is to add a velocity shock. The model of Alvarez, Lucas, and Weber
[26] adds a velocity shock along with differentiated trading opportuni-
ties. We will discuss differentiated trading opportunities later and focus on
velocity shocks here because it is a simple modification of the model just
derived.

Earlier we assumed that none of an agent’s current income could be
used to finance current consumption expenditures. We now modify this to
assume that a random fraction 0 ≤ vt < 1 can be used so that:

ptytvt

of current income can be used to finance consumption expenditures. The
cash-in-advance constraint is modified as

ptct ≤ Md
t + vtytpt . (13.34)

For the moment, we drop the assumption that there is an equity market.
The asset-market constraint is:

Md
t + QtBt ≤ Bt−1 + Gt + Md

t−1 + vt−1pt−1yt−1

− ct−1pt−1 + (1 − vt−1)pt−1yt−1. (13.35)
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Assume that the velocity shock satisfies v : S → [0, 1). Convert the nomi-
nal variables to real variables by dividing by the current price level. The
Bellman equation is:

V (s, h) = max[U (c) + βEsV (s′, h′)]

subject to the modified cash-in-advance constraint (13.34) and the asset-
market constraint (13.35). Since the stochastic velocity shock does not
change the basic structure of the model, we forego derivation of the
first-order conditions and focus on the differences between the mod-
els, specifically the behavior of velocity and prices. Notice that if the
cash-in-advance constraint is binding, then the price is:

p(s, M ) = M
(1 − v)y(s)

.

If the cash-in-advance constraint is not binding, then define the function
K such that:

p(s, M ) = M
(1 − v)y(s)K (s)

.

If the constraint is binding, then K (s) = 1. The first-order conditions for
consumption and real balance are combined to yield:

U ′(y(s))
p(s, M )

= μ

p(s, M )
+ βEs

[
U ′(y(s′))
p(s′, M ′)

]
. (13.36)

Substitute for prices and re-write

K (s) = max

[
1,βEs

U ′(y(s′))
U ′(y(s))

y(s′)
y(s)

1 − v(s′)
1 − v(s)

M
M ′ K (s′)

]
. (13.37)

The first-order condition for nominal bonds can be expressed as:

K (s)Q(s) = βEs

[
U ′(y(s′))
U ′(y(s))

y(s′)
y(s)

1 − v(s′)
1 − v(s)

M
M ′ K (s′)

]
. (13.38)

Notice that the identical conclusion follows: if K = 1 then the nominal
interest rate is positive, while if K > 1, then Q = 1. However the difference
is that velocity is:

(1 − v(s))K (s). (13.39)

Hence velocity can vary when interest rates are positive.

13.3. I N F L A T I O N A N D I N T E R E S T R A T E S

There are two seemingly contradictory views about the relationship among
money supply, interest rates and inflation. The Fisher-equation view states
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that higher money growth leads to higher inflation and higher nomi-
nal interest rates. By contrast, the liquidity effect view argues that money
demand is a downward-sloping function of the nominal interest rate so
that an increase in money supply lowers nominal interest rates. These rela-
tionships have been studied extensively in the data; see the references of
Alvarez, Lucas, and Weber [26] and Monnet and Weber [346], for exam-
ple. Since there is empirical support for both views, it is important for
monetary policy to reconcile these views. The objective is to construct
a monetary model that is consistent with both the Fisher equation and
the liquidity effect. The Fisher equation is consistent with the quantity
theory of money: a higher growth rate in money leads to a proportionately
higher inflation rate, raising the nominal interest rate. The model we dis-
cuss below can reconcile these two views. Our discussion is based on the
articles by Alvarez, Lucas, and Weber [26].

This is exchange economy, where the exogenous and stochastic endow-
ment is stationary in levels and follows (13.6). There are two types of
infinitely lived agents with identical preferences and endowments, who
differ only in terms of whether they are traders or not. A fraction ρ of
agents are traders. This means that they participate in goods markets and
asset markets. A fraction 1 − ρ are non-traders, who participate only in
the goods markets. Agents are endowed with yt , a stochastic non-storable
good. Agents do not consume their own endowment but instead must sell
the endowment in the goods market, so current receipts are ptyt . A fraction
vt of the receipts are available for consumption expenditures in the current
period. This is the velocity shock model that we discussed earlier.

For non-traders, the budget constraint is:

ptcn
t ≤ H n

t + vtptyt , (13.40)

where

H n
t = vt−1pt−1yt−1 − pt−1cn

t−1 + (1 − vt−1)pt−1yt−1,

which is the unspent cash carried over from last period.
Traders participate in the asset market and the goods market and are

subject to a cash-in-advance constraint in the goods market. The trader’s
budget constraint in the asset market is:

H T
t ≥ QtBt + MT

t , (13.41)

where

Ht = Bt−1 + Gt + MT
t−1 + vt−1pt−1yt−1 − pt−1cT

t−1

is the trader’s post-transfer nominal holdings at the beginning of the asset
market. Only traders receive the lump-sum transfer in the asset mar-
ket. Notice that we do not require that the cash-in-advance constraint
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be binding. In the goods market, the trader faces the cash-in-advance
constraint:

cT
t pt ≤ vtptyt + MT

t−1. (13.42)

The objective function for both agents takes the form (13.1). Let μT
t denote

the multiplier for (13.42) and let ψt denote the multiplier for (13.41). Divide
all nominal variables by the price level. The Bellman equation is:

V T (st , hT
t ) = max

[
U (cT

t ) + βEtV T (st+1, hT
t+1)

]
(13.43)

The first-order conditions with respect to cT , MT
t , Bt are:

U ′(cT
t ) = μT

t + βEt

[
V T

h (st+1, hT
t+1)

pt

pt+1

]
, (13.44)

ψt = μT
t + βEt

[
V T

h (st+1, hT
t+1)

pt

pt+1

]
, (13.45)

ψtQt = βEt

[
V T

h (st+1, hT
t+1)

pt

pt+1

]
. (13.46)

The first two equations can be combined as:

U ′(cT
t ) = μT

t + βEt

[
U ′(cT

t+1)
pt

pt+1

]
. (13.47)

The Bellman equation for non-traders is:

V N (st , hN
t ) = max

[
U (cN

t ) + βEtV N (st+1, hN
t+1)

]
. (13.48)

The first-order condition with respect to cn
t is:

U ′(cN
t ) = μN

t + βEt

[
V N

h
pt

pt+1

]
. (13.49)

The market-clearing conditions are:

yt = ρcT
t + (1 − ρ)cN

t (13.50)

Bs
t = Bt , (13.51)

where the money market will clear if the other two markets clear. If the
cash-in-advance constraint is always binding for both types of agents, then
for traders,

ptcT
t = vtptyt + (1 − vt−1)pt−1yt−1 + Mt − Mt−1

ρ
,

where the last term on the right side is the monetary injection (withdrawal
if negative) per trader. If the constraint is binding for non-traders, then

ptcN
t = vtptyt + (1 − vt−1)pt−1yt−1,
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so that, using the goods market clearing condition

yt = ρ

[
vtyt + 1

pt

(
(1 − vt−1)pt−1yt−1 + Mt − Mt−1

ρ

)]
(13.52)

+ (1 − ρ)

[
vtyt + (1 − vt−1)pt−1yt−1

pt

]
(13.53)

= vtyt + (1 − vt−1)pt−1yt−1

pt
+ Mt − Mt−1

pt
(13.54)

= vtyt + Mt

pt
(13.55)

because Mt−1 = (1 − vt−1)pt−1yt−1, so that

pt = Mt

yt

1

1 − vt
. (13.56)

Will the cash-in-advance constraint always be binding? We need to
examine the first-order condition for bonds for traders to answer this ques-
tion. All information is revealed at the beginning of the period so that the
trader knows what the price level will be in the goods market. Any money
balances carried over to the goods market from the asset market that are
left unspent after the goods market closes could have been spent on inter-
est bearing bonds. So the interest rate is the opportunity cost of unspent
money balances. Examining the bond condition, observe that

Qt = βEt

[
U ′(cT

t+1)

U ′(cT
t )

pt

pt+1

]
.

If Qt > 1, then the cash-in-advance constraint is binding for the traders.
Notice that, although non-traders do not enter the asset market, they do
face the same price process as traders in the goods market. For the con-
straint of non-traders to be binding, it must be the case that nominal
prices are not falling too quickly – if the deflation is high enough, then
non-traders will hold additional fiat currency between periods to collect
the positive return on money. Conditions to rule out this type of deflation
are discussed in the appendix of Alvarez, Atkeson, and Kehoe [25]. In the
rest of the discussion, we assume the conditions on the money process such
that the cash-in-advance constraint is always binding are satisfied for both
types of agents.

Under this assumption, then the price process is described by (13.56).
Consumption of traders is:

cT
t = yt

[
(1 − vt )Mt−1

Mt

(
1 − 1

ρ

)
+ 1

ρ
+ vt

(
1 − 1

ρ

)]
(13.57)
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and consumption of non-traders is:

cN
t = yt

Mt
[vtMt + (1 − vt)Mt−1]. (13.58)

Notice that if ρ = 1, then consumption of traders and non-traders is iden-
tical, as we would expect. If ρ �= 1, then consumption of the two types
will be different and will depend on the monetary policy. Notice that if
there is an open-market purchase of bonds, traders have an increase in their
nominal balances, and, for these agents to be content with their portfolio
of bonds and fiat money, the price of bonds must increase, driving the
nominal interest rate down. The traders take a portion of the monetary
injection to the goods market where they purchase the consumption good.
Hence the model is consistent with the liquidity effect view, in which an
expansion of the money supply leads to a decrease in nominal interest rates.

Suppose that the velocity shock v is constant at v̄. Then observe in
(13.56) that an increase in money growth leads to a proportional increase
in inflation, holding the endowment process stationary in levels. Hence
the model, as already mentioned, is consistent with the quantity theory of
money. The real interest rate, equal to the inverse of the expected intertem-
poral marginal rate of substitution in consumption, will vary with the
money shock since the consumption of traders will vary with the money
shock. In particular, holding expected marginal utility of next period’s con-
sumption fixed, an increase in the monetary injection leads to an increase
in the consumption of traders, lowering the marginal utility of current con-
sumption of traders and lowering the expected real rate of interest. This is
at the heart of the liquidity effect: expansionary monetary policy lowers
the expected real rate of interest. Notice that this is a short-run effect. In
the long run, the model remains consistent with the Fisher equation effect
and the quantity theory.

13.4. T R A N S A C T I O N S S E R V I C E S M O D E L

Many other assets besides narrowly defined money play a role in facili-
tating transactions. US Treasury bonds often back checkable deposits and
money market funds and the notion that short-term debt offers transac-
tion services has long been discussed in the literature. If liquid short-term
government debt provides transaction services in addition to generating
interest income, then the marginal return on this debt should reflect the
marginal transaction benefit. This point has been recognized by many,
including Bansal and Coleman [44], who examine whether explicitly incor-
porating the transactions service can help to explain the equity premium
puzzle. One way to view that puzzle, discussed in Chapter 8, is that the
risk-free rate of return is too low, and this low return explains the size of
the premium. Incorporating the transactions services of liquid bonds is
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one approach to explain why the risk-free rate is so low, although there are
other explanations. We develop a simple model in which there are costs to
carrying out transactions – in the form of shopping time or search costs,
which take away from leisure time. Such a model is discussed in Ljungqvist
and Sargent [325]. We combine this transaction cost with the transactions
services from holding bonds.

Let τt denote the shopping time, a kind of transaction cost, and let lt
denote leisure time. An agent’s time constraint is:

1 = lt + τt .

Let Bt denote the nominal value of bond holdings. An agent’s liquidity-in-
advance constraint on the purchase of consumption goods is:

Mt

pt
+ 1

pt
f (Bt , τt) ≥ ct . (13.59)

The basic intuition is this: consumption purchases must be financed with
either cash acquired before entering the goods market or using an account
based on the nominal value of liquid bonds held and incurring a transac-
tions cost measured in foregone leisure. The idea is that the consumption
good can be purchased with balances from an account other than fiat
money, but use of this account requires paying a transaction cost, mea-
sured in foregone leisure, and having liquid bonds as a backing. Hence
holding liquid bonds provides a transactions service and pays interest in
the form of a discount.

The function f has the following properties: fb > 0, fτ > 0, fbb < 0 and
fτ τ < 0, so the function f is increasing and concave in each argument.
Also f (0, τ ) = 0 and f (B, 0) = 0. An example of a function with these
properties is:

f (B, τ ) = ταBθ ,

where α, θ are positive and less than one.
To keep the model as simple as possible, we will keep the structure

close to the standard cash-in-advance described earlier. Agents receive an
endowment y(st) that they must sell and are prevented from using the
receipts to finance current-period consumption. The representative agent
has preferences

E0

[ ∞∑
t=0

β t[U (ct) + W (lt)]

]
. (13.60)

Let

Ht ≡ Md
t−1 − pt−1ct−1 + pt−1yt−1 + Bd

t−1 + Gt
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and ht = Ht
pt

. If the liquidity-in-advance constraint is binding, then

Md
t−1 = pt−1ct−1 − f (Bd

t−1, τt−1),

which can be substituted into Ht to show

Ht = pt−1yt−1 − f (Bd
t−1, τt−1) + Bd

t−1 + Gt .

Hence any consumption financed out of the liquid bond-backed account
affects nominal balances carried over to the next period.

The agent’s budget constraint in the asset market is:

ht ≥ Md
t

pt
+ QtBd

t

pt
. (13.61)

Let ψt denote the Lagrange multiplier for the asset market constraint and
let μt denote the multiplier for the liquidity-in-advance constraint. The
Bellman equation is:

V (ht , st) = max[U (ct) + W (1 − τt) + βEtV (ht+1, st+1)]. (13.62)

The first-order conditions and envelope conditions with respect to
ct , τt , Md

t , Bd
t are:

U ′(ct) = μt + βEt

[
Vh(ht+1, st+1)

pt

pt+1

]
, (13.63)

μt

pt
fτ (Bd

t , τt) = W ′(1 − τt), (13.64)

ψt

pt
= μt

pt
+ βEt

[
Vh(ht+1, st+1)

1

pt+1

]
, (13.65)

ψtQt

pt
= μt fb(Bd

t , τt)

pt
+ βEt

[
Vh(ht+1, st+1)

1

pt+1

]
, (13.66)

Vh(ht , st) = ψt . (13.67)

The equilibrium conditions are: ct = yt , Md
t = Mt and Bd

t = Bt . Use
the envelope condition to eliminate Vh, substitute the market clearing
conditions, and eliminate ψ in (13.63) and (13.65) to obtain:

U ′(yt) = μt + βEt

[
U ′(yt+1)

pt

pt+1

]
. (13.68)

The liquidity-in-advance constraint is:

Mt + f (Bt , τt) ≥ ptyt .
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Notice from (13.64) that:

μt

pt
= W ′(1 − τ )

fτ (Bt , τt)
.

If the liquidity-in-advance constraint is non-binding, then μ= 0 and it
follows that τ = 0. Whether pt = Mt

yt
depends on the nominal interest rate

and, at this point, the conditions for the constraint to be binding can be
derived using methods discussed earlier. Our focus is on the liquidity of
bonds and, for this reason, we assume that the constraint is binding. In
this case,

pt = Mt + f (Bt , τt)

yt
.

Define

�t ≡ βEt

[
U ′(yt+1)yt+1

Mt+1 + f (Bt+1, τt+1)

]
. (13.69)

Use (13.64) to eliminate μt in (13.68) and substitute for pt so that

U ′(yt)yt

Mt + f (Bt , τt)
− W ′(1 − τt)

fτ (Bt , τt)
= �t . (13.70)

Let �t =�> 0 be given. Observe that the left side is strictly decreas-
ing in τt , given yt , Mt , Bt .3 Let τ �(Mt , Bt , yt ,�) denote a solution. It is
straightforward to show that τ � is decreasing in �. Define

G(M , y, B,�) ≡ y[M + f (B, τ �(M , B, y,�))]−1

Define a mapping

T (�)(y, M , B, s) = βEs
[
U ′(y′)G(M ′, y′, B′,�(y′, M ′, B′,�′))

]
.

(13.71)

If �̂> �̃, then T �̂≥ T �̃ so the operator T is monotone.

Lemma 13.1 Under our assumptions

G(M , y, B,�) − �

is weakly decreasing in �.

3 Observe that the derivative is

−U ′(y)yfτ
(M + f )2

+ W ′′(1 − τ )

fτ
+ W ′(1 − τ )fττ

f 2
τ

< 0.
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P R O O F

From (13.69–13.70),

G(M , y, B,�) − � = W ′(1 − τ �(M , B, y,�))

fτ (B, τ �(M , B, y,�))yU ′(y)

Differentiate the right side with respect to � to show that it is weakly
decreasing in �,

We can use this lemma to show that the mapping above is a contraction
mapping by verifying Blackwell’s sufficient conditions for a contraction
mapping and the outline of a formal proof is provided here.

We have already demonstrated that the mapping is monotone. From the
lemma, we know that G − � is weakly decreasing in �. For any � and
a> 0,

G(M , y, B,� + a) − [� + a] ≤ G(M , y, B,�) − �,

or

G(M , y, B,� + a) ≤ G(M , y, B,�) + a.

It then follows that:

T (� + a)(yt , Mt , Bt , st) = βEt

[
U ′(yt+1)

U ′(yt)
G(Mt+1, yt+1, Bt+1,� + a)

]

≤ βEt

{
U ′(yt+1)

U ′(yt)
[G(Mt+1, yt+1, Bt+1,�) + a]

}
≤ T�(yt , Mt , Bt , st) + δa

where 0<δ< 1.
Let G�(M , y, B) denote a solution. We now turn to the reason we are

studying the model: the implication of the liquidity-in-advance constraint
for the nominal interest rate. Observe (13.66) can be re-written as:

Qt = W ′(1 − τt)fb(Bt , τt)

fτ (Bt , τt)
+βEt

[
U ′(yt+1)

U ′(yt)

G�(Mt+1, yt+1, Bt+1)

G�(Mt , yt , Bt)

]
.

(13.72)

The bond price now consists of two parts: a liquidity component and the
expected return to holding the bond. For any output process and real inter-
est rate process, the bond price will be higher because of the liquidity
services, hence the nominal rate will be lower. To see this, suppose that
there are two types of bonds: those that can be used to provide transac-
tions services and those that cannot. The bonds that cannot be used will
have a bond price equal only to the second term on the right side, all other
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things equal. Hence the liquid bond will have a higher price, given the
same state and maturity date for the bond.

Bansal and Coleman [44] provide some empirical results to support their
conclusion that liquid bonds provide transactions services and, once these
services are taken into account, the model can explain the equity premium
puzzle.

13.5. G R O W I N G E C O N O M I E S

So far we have assumed that the endowment is stationary in levels so that,
even if money is growing, dividing all nominal variables by the price level
will convert the transformed variables into stationary real variables. But
how should the models be solved if both the endowment and money are
growing? We briefly describe a method and discuss some of the techni-
cal issues. The reason is more than academic: real output and money are
growing in the data and so it is necessary to modify the model to fit the
data, rather than the other way around. When endowment is growing, we
assume that preferences are of the constant relative risk aversion variety.

The endowment yt is exogenous and growing over time. The rate of
growth is a function of the current shock. The endowment evolves as:

yt = λ(st)yt−1. (13.73)

Money is injected into the economy as a lump-sum stochastic transfer. The
law of motion for the money supply process follows (13.8). The following
assumption restricts money and endowment growth.

Assumption 13.2 Define L≡ [λ, λ̄] and W ≡ [ω, ω̄] where λ> 0, ω> 0,
λ̄ <∞, and ω̄ <∞. The functions λ : S → L and ω : S → W are
continuous functions and both are bounded away from zero.

The following assumption characterizes the utility function.

Assumption 13.3 The utility function U is given by (c1−γ − 1)/(1 − γ ) for
γ ≥ 0, and u(c) = ln c if γ = 1.

In equilibrium, consumption equals endowment, ct = yt , money demand
equals money supply, Md

t = Mt , all bonds are held, Bt = 0, all shares are
held, zt = 1 and the lump-sum money transfer equals the net growth of
money, Gt = (1 − ωt)Mt−1. To ensure that the consumer’s utility is well
defined in equilibrium, we make the following assumption.

Assumption 13.4 β
∫

S λ(s′)1−γ d�(s′)< 1, γ �= 1.

Define the quantity ϒ(s) ≡ λ(s)1−γ /ω(s). The existence of a monetary
equilibrium is established by making the following assumption.
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Assumption 13.5 0<β
∫

S ϒ(s′)d�(s′)< 1, γ �= 1.

For notational convenience, also define ωt,τ ≡ Mt+τ /Mt so that ωt,τ is the
growth of the money supply between periods t and t + τ .

We begin by formulating the household’s problem as a dynamic pro-
gramming problem. Because the money supply is growing, the household’s
nominal money holdings are growing in equilibrium. To make Ht and
Mt stationary, we divide the (nominal) constraints by the current stock
of money Mt . With this modification, the problem is now similar to
the growing endowment case studied in Chapter 8. Define normalized
money and bond holdings by md

t ≡ Md
t /Mt , bt ≡ Bt/Mt , and ht ≡ Ht/Mt .

The nominal price level and the nominal equity price are normalized by
the level of money supply, pt ≡ Pt/Mt and qe

t ≡ Qe
t /Mt .4 The normalized

constraint in the asset market is:

md
t + qe

t zt + Qtbt ≤ ht + qe
t zt−1, (13.74)

where

ht ≡ 1

ω(st)
[pt−1yt−1zt−1 + bt−1 + md

t−1 − pt−1ct−1 + (ωt − 1)].

The cash-in-advance constraint is:

ptct ≤ md
t . (13.75)

Notice that as a result of this normalization, the level of the money held
drops out of the constraints in equilibrium.

The household takes as given the nominal price of consumption goods
and the nominal price of equities and bonds, which are all assumed to
be continuous, strictly positive functions of the current shocks. Define an
interval Z = [0, z̄] where z̄ <∞ such that zt ∈ Z . Likewise, bt ∈ B where
B = [−b, b] such that b> 0. Let H= [0, h̄] where h̄> 1 such that ht ∈ H.
Finally, we know that in equilibrium all of the money will be held at the
close of the assets market and because we have normalized by the money
stock, md = 1. Hence, define M= [0, 1].

Notice that endowment y is strictly positive so that y is in �++. The
prices are functions p(s, y), qe(s, y), and Q(s) and we assume that:

p(s, y)y,
qe(s, y)

p(s, y)y

are functions of s only. Recall that p(s, y) is the nominal price level divided
by the money stock (the inverse of real balances) so that the restriction on

4 In the versions of the cash-in-advance model where all the information is revealed at the beginning
of the period, we can also divide the nominal constraints by the price level as we did earlier in the
chapter. We use the approach of normalizing by the money stock because it works even when some
information is revealed after a market is closed.
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p(s, y)y says that real balances divided by endowment is a function of s only.
Given the price functions p, qe, and Q , the consumer’s value function is
defined by:

V (y, s, z, h) = max
c,md ,z′,b′

{
U (c) + β

∫
S

V (y′, s′, z′, h′)d�(s′)
}

,

subject to the constraints in Equations (13.74) and (13.75) and md ∈ M,
z′ ∈ Z , and b′ ∈ B.

Under Assumptions 13.4 and 13.5, we can show that V is well defined and
finite. Recall that in Chapter 8, we restricted our attention to the space B
of functions g : �++ × S × Z × H → �+ that are jointly continuous
such that if g ∈ B, then supy,s,z,h |g(y, s, z, h)|/y1−γ <∞. We used this
norm to verify the Weighted Contraction Mapping Theorem. We will not
repeat this because the steps are identical to those proving Proposition 8.3
in Chapter 8 except to note that the modulus of the contraction in the
proof is δ =β

∫
S λ(s′)1−γ d�(s′) which, under Assumption 13.4, is always

less than unity. (See Exercise 1.)

13.6. M O N E Y A N D R E A L A C T I V I T Y

In the data, one of the most important stylized facts is the apparent
co-movement of monetary aggregates and output. In Chapter 12, we dis-
cussed a model of inside money due to King and Plosser [277] where the
money-output correlation arises from the role of money as providing trans-
actions services. However, models have also been developed that allow for
the real effects of “outside” money. In Lucas [314, 315], informational prob-
lems due to agents’ misperceptions of relative price changes versus changes
in the aggregate price level cause monetary shocks to have real affects. In
Chapter 12, we also outlined a new Keynesian framework with imperfect
competition and variable factor utilization that allows for a propagation
mechanism for monetary shocks based on price rigidity. A third approach
to quantifying the impact of monetary shocks on real activity has been
in terms of the cash-in-advance model. As we noted earlier, one of the
advantages of the cash-in-advance model is its rich empirical implications.
Cooley and Hansen [120, 121, 122] study the impact of money shocks in
generating business cycle fluctuations as well as the welfare implications of
an inflation tax induced by the cash-in-advance model. The role of produc-
tion and money in explaining the observed behavior of real and nominal
interest rates of various maturities has been stressed by den Hann [150],
amongst others.

In this section, we first present a model with a consumption-leisure
choice that allows for the real effects of money through an inflation tax gen-
erated by monetary shocks. This model is also augmented with an income
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tax. We first present the model and explore its implications for consump-
tion allocations further in Exercise 3. We then extend this model along the
lines suggested by Cooley and Hansen [120] to allow for cash and credit
goods and an indivisible labor supply. We include technology and mone-
tary shocks and a capital-accumulation process that is endogenous. In this
section, we also discuss the efficacy of the model in matching observations
and real and monetary variables for the US economy.

13.6.1. Consumption-leisure choices

We now introduce a model that allows for a consumption-leisure choice
by agents. Since consumption choices are constrained by cash holdings, a
wedge is introduced that allows for the output effects of monetary growth
shocks. An explicit government budget constraint is introduced, linking
bond supply and the money supply. The government finances an exoge-
nous and stochastic expenditure stream, which is distributed lump-sum to
households, by collecting income taxes, seignorage, and borrowing.

Each agent is endowed with one unit of time per period which can be
divided between labor n and leisure !. There is an exogenous and stochastic
capital stock κ owned by the firm which depreciates 100% each period.
The firm issues one equity which is a claim to the return to capital and any
profits. The equity is traded each period in a competitive stock market.
Output y is produced by a linear homogeneous production function:

yt = Aκ 1−θ
t nθ

t , (13.76)

where 0<θ < 1. The household owns the labor stock and is a price-taker in
the factor market. Each factor is paid the value of its marginal product and
these payments exhaust the revenue of the typical firm. The real wage is:

wt = θyt/nt , (13.77)

and the return to the exogenous and stochastic capital stock is:

rt = (1 − θ )yt/κt . (13.78)

The exogenous and stochastic expenditures Gt are financed by issuing cur-
rency Mt − Mt−1, setting the income tax τt , and by borrowing through the
issue of one-period nominal bonds Bs

t which are sold at the price Qt . The
government’s budget constraint is:

Bs
t−1 + Gt = Mt − Mt−1 + QtBs

t + τt−1(Pt−1yt−1), (13.79)

where Pt−1 is the price level in period t − 1. Define bs = Bs/M , g = G/M ,
and p = P/M . The growth of money defined as Mt/Mt−1 ≡ω(st) satisfies:

gt = 1

ω(st)
[ω(st) − 1 − bs

t−1 + τt−1(pt−1yt−1)] + Qtbs
t . (13.80)
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The asset and factor markets open first followed by the goods market. In
the factor market, the household decides how to allocate its time between
labor nt and leisure !t subject to the time constraint:

nt + !t ≤ 1. (13.81)

In the asset market, the household adjusts its holdings of currency, nom-
inal bonds, and equity shares. We normalize by dividing the nominal
constraints by the money stock at the beginning of the period. The
agent’s beginning-of-period money balances after receiving the lump-sum
transfer Gt are denoted Ht . The household’s budget constraint in the asset
market is:

mt + Qtbt + qe
t zt+1 ≤ ht + qe

t zt , (13.82)

where mt denotes money balances held at the close of the asset market and
ht ≡ Ht/Mt .

After the asset and labor markets close, consumption purchases are made
with the currency acquired in the asset market. Because nominal factor
payments are received after the goods market is closed, all consumption
purchases must be financed with real balances held at the closing of the
asset market. The normalized cash-in-advance constraint is:

ptct ≤ mt , (13.83)

where ct is consumption and pt is its price.
After the goods market closes, the household receives the dividend pay-

ment dtzt+1pt and payment on labor supplied wtntpt , where wt is the real
wage, and pays taxes on this income. The law of motion for the agent’s
beginning-of-period money holdings is:

ht+1 = gt+1 + [bt + pt(wtnt + zt+1dt)(1 − τt)

+ mt − ptct]/ω(st+1). (13.84)

At the time the agent decides on the amount of labor to supply, the real
value next period of the factor payment is uncertain because inflation is
uncertain. The timing of trades is summarized in Figure 13.2.

The representative household has preferences:

E0

{ ∞∑
t=0

β tU (ct , !t)

}
, 0<β < 1. (13.85)

We have the following assumption.
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t t + 1
Asset market Goods market

zt , Mt , Bt ctDecisions
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Receipts Bt–1, Gt

Portfolio Ht , zt–1

zt Pt yt

d

Figure 13.2. Timing of trades in the consumption/leisure model

Assumption 13.6 (i) The utility function is continuously twice differen-
tiable, strictly increasing, and strictly concave; (ii) U11 + U12 < 0, U22 +
U21 < 0, and U12 > 0;

(iii) lim
!→1

U1(Aκ 1−θ (1 − !)θ , !)

U2(Aκ 1−θ (1 − !)θ , !)
= ∞, lim

!→0

U2(Aκ 1−θ (1 − !)θ , !)

U1(Aκ 1−θ (1 − !)θ , !)
= ∞.

Part (ii) of this assumption says that current consumption and leisure are
not inferior goods while part (iii) implies both goods will be consumed in
equilibrium.

We assume that the shock to the economy st satisfies the conditions of
Assumption 13.1 and the rate of contraction of the money supply satis-
fies the conditions of Assumption 13.7. In this model, the capital stock is
exogenous. We have the following assumption.

Assumption 13.7 For all s ∈ S, β
∫

S[1/ω(s′)]F (s, ds′)< 1.

Since the technology for transforming one good into the other is linear
if their prices are equal, the agent will be indifferent to the proportion in
which they are consumed. To ensure that both types of goods are con-
sumed, we assume that the marginal rate of substitution between cash and
credit goods is infinite at zero values for these goods.

Assumption 13.8 The capital stock κ : S → �+ is continuous, strictly
bounded away from 0, and takes values on K ≡ [κ , κ].

We assume that there is one outstanding equity share traded in a compet-
itive market that is a claim to the nominal return to capital and profits.
Because the production function is Cobb-Douglas, the factor payments
exhaust all revenue. Hence, there are no profits to be distributed and the
firm’s maximization problem is straightforward. The following assumption
holds for government policy.
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Assumption 13.9 The income tax τ : S → [0, τ̄ ], with τ̄ < 1, is a con-
tinuous function. Government expenditure g : S → �+ and the issue of
one-period nominal bonds bs : S → �+ are continuous functions that satisfy
Equation (13.80).

After observing the realization st , the government transfers g(st) as a lump-
sum payment to households and pays bs(st−1) to bondholders. It finances
these expenditures through seignorage revenue and borrowing in the asset
market.

The price functions p : S → �++, qe : S → �++, Q : S → �++,
and w : S → �++ are assumed to be continuous and strictly positive.
The household takes as given the functions describing the government’s
expenditures, nominal bond supply, income tax rates, and money supply
growth. The dynamic programming problem solved by the household is:

V (h, z, s) = max
{c,!,m,z′,b′}

{
U (c, !) + β

∫
S

V (h′, z′, s′)F (s, ds′)
}

(13.86)

subject to the time constraint (Equation 13.81), the asset-market constraint
(Equation 13.82), the cash-in-advance constraint (Equation 13.83), and the
law of motion for money holdings (Equation 13.84). Assume as before that
z ∈ Z and that h ∈ H≡ [0, h̄] where h̄> 1.

We can define an equilibrium as before. Define the equilibrium mul-
tiplier on the cash-in-advance constraint in Equation (13.83) as μ(s) and
the equilibrium multiplier on the asset market constraint as ξ (s). The
first-order conditions with market-clearing for c, !, m, b′, z′ are:

U1(c, !) = μ(s)p(s) + βEs

[
U1(c′, !′)p(s)

p(s′)ω(s′)

]
, (13.87)

U2(c, !) = βEs

[
U1(c′, !′)w(s)p(s)[1 − τ (s)]

ω(s′)p(s′)

]
, (13.88)

ξ (s) = μ(s) + βEs

[
U1(c′, !′)
ω(s′)p(s′)

]
, (13.89)

ξ (s)Q(s) = βEs

[
U1(c′, !′)
ω(s′)p(s′)

]
, (13.90)

ξ (s)qe(s) = βEs

{
U1(c′, !′)p(s)d (s)[1 − τ (s)]

ω(s′)p(s′)

+ U1(c′, !′)qe(s′)
p(s′)

}
. (13.91)
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This model allows the stochastic inflation tax and the income
tax to have real output effects. Notice that if μ(s) = 0, then
U1(c, !)/p = U2(c, !)/wp(1 − τ ) so that the cash-in-advance constraint cre-
ates a wedge not only in the consumption-leisure choice but also in the
intertemporal substitution between leisure today and leisure tomorrow. It
also has the feature that the government faces a tradeoff in creating real
seignorage revenue. As the government increases the growth of the money
supply, it generates real revenue by taxing the stock of real balances held
by the private sector but it also decreases the real value of the tax revenue
it collected at the end of the previous period.

The wedge introduced by the cash-in-advance constraint implies that we
must solve simultaneously for the multiplier on the cash-in-advance con-
straint μ(s) and the equilibrium value of leisure !(s). Define the functions
ŷ and ŵ as: ŷ(s, !) = A[κ(s)]1−θ (1 − !)θ and ŵ(s, !) = θ ŷ(s, !)/(1 − !). We
begin with the following proposition.

Proposition 13.1 (1) Under Assumption 13.6, U1(ŷ(s, !), !) is strictly
increasing in !.
(2)

�

�!

[
U2(ŷ(s, !), !)

ŵ(s, !)[1 − τ (s)]

]
< 0, lim

!→0

[
U2(ŷ(s, !), !)

ŵ(s, !)[1 − τ (s)]

]
= ∞.

(3) There exists a unique 0<!�(s)< 1 such that

U1(ŷ(s, !), !) − U2(ŷ(s, !), !)

ŵ(s, !)[1 − τ (s)]
= 0

at ! = !�. Further, for !> !� the left side is strictly positive.

P R O O F

Part (1) follows by differentiating with respect to ! and using the strict
concavity and U12 > 0. Part (2) follows also by differentiating and using
the concavity and conditions on U specified in the assumption. To prove
part (3), we know from part (1) that the first term on the left side is strictly
increasing and the second term is strictly decreasing. As ! → 0, the ratio
U2/[U1w(1 − τ )] tends to ∞, while, as ! → 1, y → 0 so that the ratio
[U1w(1 − τ )]/U2 tends to ∞. Hence, the functions cross at one and only
one point, !� and for !> !�, the difference is positive.

Next, define the function � : S → �+ as:

�(s) ≡ βEs

[
U1(ŷ(s′, !′), !′)

p(s′)ω(s′)

]
.
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Solve Equation (13.87) for μ(s) and Equation (13.88) for p(s) and substitute
the resulting solution for p(s) into the equation for μ(s), leading to:

μ(s) = �(s)
[

U1(ŷ(s, !), !), ŵ(s, !)[1 − τ (s)]
U1(ŷ(s, !), !)

− 1

]
. (13.92)

The cash-in-advance constraint p(s)ŷ(s, !) ≤ 1 and Equation (13.92) form a
system of two equations in two unknowns (μ, !).

Choose a fixed value � such that 0<�<∞. Under Assumption 13.6,
the function !̂(s,�) satisfying:

U2{ŷ(s, !̂(s,�)), !̂(s,�)}
ŵ(s, !̂(s,�))

= �

is well defined. This follows because of the continuous differentiability of
U2 and the continuity of ŷ and ŵ. From the cash-in-advance constraint,
we know that the following inequality holds:

ŷ(s, !)
U2(ŷ(s, !), !)(1 − !)

ŵ(s, !)[1 − τ (s)]
≤ �, (13.93)

and holds with equality when μ(s) = 0. Define the function ��(s) as:

��(s) = ŷ(s, !�(s))U2{ŷ(s, !�(s)), !�(s)}
ŵ(s, !�(s))[1 − τ (s)]

.

We have the following proposition.

Proposition 13.2 Under Assumption 13.6 for any finite �≥ 0, the unique
pair !,μ satisfying Equations (13.92) and (13.93) is given by

!(s,�) =
{
!̂(s,�) if 0 ≤ � ≤ ��(s)
!�(s) if � > ��(s)

(13.94)

and μ is given by Equation (13.92).

P R O O F

Because μ(s) ≥ 0, it follows from Equation (13.92) that [U1w(1 − τ )]/
U2 ≥ 1 which in turn implies that !≥ !�. Suppose that 0 ≤�(s)<��(s).
Then !> !�(s) since Equation (13.93) would be violated if != !�(s) so that
[U1w(1−τ )]/U2 > 1. If [U1w(1−τ )]/U2 > 1, then Equation (13.92) implies
that μ> 0. Hence, Equation (13.93) must hold with equality so that the
solution is !̂(s,�). Suppose next that �>��(s). Since !≥ !�(s), Equa-
tion (13.93) must hold as an inequality. Therefore μ= 0 and [U1w(1 −
τ )]/U2 = 1 and != !�(s).

We make the following assumption.
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Assumption 13.10 For all s ∈ S, U1(ŷ(s, !), !)ŷ(s, !) is increasing in !.

Next define the function G : S × �+ → �+ by:

G(s,�) =
{

ŷ(s, !̂(s,�))U1{ŷ(s, !̂(s,�)), !̂(s,�)} if 0 ≤ � ≤ ��(s)
��(s) if � ≥ ��(s).

A solution is a function � satisfying

�(s) = β

∫
S

G(s′,�(s′))F (s′, ds). (13.95)

We have the following proposition.

Proposition 13.3 For each s ∈ S and �≥ 0, G(s,�) − � is weakly
decreasing in �.

P R O O F

Under Assumption 13.9, y(s, !)U1(y(s, !), !) is increasing in ! and, from
Proposition 13.1, !̂(s,�) is non-increasing in �, so that G2 ≤ 0.

We then have the following theorem.

Theorem 13.4 Under Assumptions 13.6, 13.7, and 13.8, Equation (13.95) has
a unique solution � ∈ C and for all �0 ∈ C, limn→∞ ‖T n�0 − �‖ = 0.

P R O O F

Define the operator T on C by:

(Tf )(s) = β

∫
S

G(s′, f (s′))F (s′, ds). (13.96)

Because f , G are continuous and bounded, Tf is continuous and bounded.
Hence T : C → C. Finally, T is a continuous operator. Note that:

‖Tf − Tfn‖ = max
s∈S

|Tf (s) − Tfn(s)|

≤ max
s∈S

β

∫
S
|G(s′, f (s′)) − G(s′, fn(s′))|F (s, ds′)

≤ β max
s′∈S

|G(s′, f (s′)) − G(s′, fn(s′))|.

We show that the operator T satisfies Blackwell’s conditions. Under the
assumptions above and from Proposition 13.1, G is non-decreasing in f , so
that T is monotone. We need only verify the discounting property. From
Proposition 13.1, G(s,�) − � is weakly decreasing in �. For any � ∈ C
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and a> 0, G(s,�+ a) − (�+ a) ≤ G(s,�) −� or G(s,�) ≤ G(s,�) + a.
Then:

T (f + a)(s) = β

∫
S

G(s′, f (s′) + a)F (s, ds′)

≤ β

∫
S
{G(s′, f (s′)) + a}F (s, ds′)

≤ Tf (s) + βa,

so that T is a contraction with modulus β.
Let !(s) be the solution with the output equal to y(s) when !(s) is leisure.

Define the stochastic discount factor as the intertemporal marginal rate of
substitution in the purchasing power of money:

M(s′, s) ≡ βU1{y(s′), !(s′)}p(s)
U1{y(s), !(s)}ω(s′)p(s′)

.

All assets denominated in nominal terms in this model are priced using
this stochastic discount factor. The income tax and the stochastic inflation
tax drive a wedge between consumption and leisure choices and increase
the volatility of the stochastic discount factor that is used to price all assets
with random payoffs. This wedge is similar to the wedge with cash and
credit goods. The role of the income tax and the stochastic inflation tax
in affecting consumption and leisure allocations is discussed further in
Exercise 3.

Some observations on the term structure of interest rates
The empirical behavior of real and nominal interest rates of various matu-
rities – the term structure, as it is known – has been a topic of wide study
in the empirical finance literature. As we discussed in Chapter 8, there
are also studies that have examined the implications of the consumption-
based asset-pricing model. See, for example, Backus, Gregory, and Zin [41].
However, as a variety of authors have noted, the predictions of the standard
consumption-based model are inconsistent with the facts. Specifically, the
standard Lucas model with an exogenous endowment process that is cali-
brated using aggregate consumption growth implies that the term structure
of interest rates is downward-sloping, there is little persistence in interest
rates, and the standard deviation for long-term interest rates is lower than
for short-term interest rates.

den Haan [150] has argued that these findings may be an artifact of omit-
ting such features as capital (or production), variable labor supply, and
money from a standard asset-pricing framework. In the data, consump-
tion growth is typically positively autocorrelated, especially if measured at
quarterly frequencies, and expected consumption growth possesses little
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persistence. Yet for the standard consumption-based asset-pricing model
to produce an upward-sloping term structure and persistent interest rate
movements, consumption growth must be negatively correlated and per-
sistent. den Haan [150] argues that the introduction of production may
help to resolve some of these anomalies because agents’ attempt to smooth
consumption may render growth rates of real variables highly persistent.
Likewise, introducing leisure may improve the model because agents typi-
cally want to smooth the marginal utility of consumption. In a model with
consumption-leisure choices, this will be easier for agents to do because
they can also choose leisure. Finally, money must be included to allow for
modeling of the behavior of nominal interest rates. Yet, as we discussed
above, most monetary models such as cash-in-advance models imply that
velocity does not fluctuate very much. For this purpose, den Haan [150]
introduces money through a shopping time technology.

As in Exercise 6 in Chapter 8, den Haan [150] considers a trend-
stationary and a difference-stationary endowment process. Since the trend-
stationary model that is fit according to US quarterly data typically implies
better behavior in the absence of production or other features, he com-
pares the behavior of the consumption-based versus production-based
model under the assumption that the exogenous endowment (or tech-
nology shock) process follows the trend-stationary model. However, to
examine the role of production alone, he also compares both models under
the assumption of i.i.d. shocks. One of his noteworthy findings is that
the model with production delivers greater persistence in interest rates
regardless of the persistence of the underlying exogenous process driving
endowments (or technology shocks). However, adding variable labor sup-
ply causes the performance of the model to deteriorate in the sense that
the interest rate spreads decline and their variances also fall. This occurs
because in the model with a consumption-leisure choice, consumption
and leisure become negatively correlated, thereby reducing the variance
of the marginal utility of wealth. Finally, introducing money through a
shopping-time technology allows for a consideration of various puzzles. For
example, in Cooley and Hansen [120] the variance of the nominal inter-
est rate is much lower than the observed variance. den Haan [150] finds
that the implications of the shopping-time model are better for the vari-
ability of velocity but worse for asset pricing, in particular, the variance of
interest rates. These results illustrate the range of observed outcomes that
can be generated from existing models that allow for real and monetary
interactions.

13.6.2. Business cycle implications

Following the analysis in Cooley and Hansen [120] and related papers,
we modify the setup in the previous section by allowing for a stochastic
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technology that affects output and an endogenous capital accumulation
process. Thus, output Yt is produced by a linear homogeneous production
function:

Yt = ztK 1−θ
t H θ

t , (13.97)

where 0<θ < 1 and

ln (zt+1) = ρ ln (zt) + εt+1, (13.98)

where εt ∼ N (0, σ 2
ε ).

The portion of output that is not consumed is invested in new capital
goods. Hence, the law of motion for the capital stock is:

Kt+1 = (1 − δ)Kt + It , 0 < δ < 1. (13.99)

The household owns the capital and makes new investment decisions.
Notice that this is different to the model in the previous section, which
assumes a constant capital stock. It rents out the existing capital stock to
a competitive firm that solves a static profit-maximization problem. The
real wage rate and the rental rate of capital are determined similarly as in
(13.77) and (13.78). Specifically, we have that:

wt = θYt/Ht , (13.100)

rt = (1 − θ )Yt/Kt . (13.101)

The representative household obtains utility from consumption and
leisure. Its preferences are described as follows:

E0

∞∑
t=0

β t[α ln (c1t) + (1 − α) ln (c2t) − γ ht], (13.102)

with 0<β < 1 and 0<α< 1. In this expression, c1 denotes “cash goods”
and c2 denotes “credit goods.”5 The difference arises from the fact that
existing money holdings must be used to acquire cash goods. Also, the
utility function displays the indivisible labor assumption used earlier by
Hansen [228]. At the beginning of period t, the representative house-
hold has money holdings equal to mt + (1 + Rt−1bt) + Tt , where mt is
currency carried over from the previous period and (1 + Rt−1)bt is prin-
cipal plus interest from government bond holdings, bt . The term Tt is
a nominal lump-sum transfer (or tax) paid at the beginning of period t.
The asset market opens first and households acquire bonds bt+1, which
they then carry over into the next period. This leaves the household with

5 See also Exercise 7.
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mt + (1 + Rt−1)bt + Tt − bt+1 units of currency for purchasing goods.
Thus, the cash-in-advance constraint is:

Ptc1t ≤ mt + (1 + Rt−1)bt + Tt − bt+1, (13.103)

where Pt is the price level.
The household’s allocations also satisfy the sequence of budget con-

straints:

c1t + c2t + it + mt+1

Pt
+ bt+1

Pt
≤ wtht + rtkt−1

+ mt

Pt
+ (1 + Rt−1)bt

Pt
+ Tt

Pt
. (13.104)

In modeling the government budget constraint, we assume for simplic-
ity that government purchases are zero, Gt = 0, and that government
bonds are in net zero supply in the economy as whole, Bt = 0. Thus, the
government budget constraint has the simple form:

Tt = Mt+1 − Mt . (13.105)

The money supply grows exogenously as Mt+1 =ωtMt so that the gross
rate of growth is ωt . We assume that:

ln (ωt+1) = η ln (ωt) + εt+1, (13.106)

where the random shock to money growth is distributed normally as εt ∼
N ((1−η)μ̄, σ 2

ε ). The aggregate resource constraint requires that c1t + c2t +
It ≤ Yt .

Since the money supply is growing, we need to divide through by
the aggregate stock of money to induce stationarity in the variables.
Define m̃t = mt/Mt , b̃t = bt/Mt and P̃t = Pt/Mt+1. Notice that the budget
constraint can be written as:

c1t + c2t + it + m̃t+1

P̃t

+ b̃t+1

P̃t

≤ wtht + rtkt−1

+ m̃t + ωt − 1

P̃tωt

+ (1 + Rt−1)
b̃t

P̃tωt

. (13.107)

The cash-in-advance constraint becomes:

c1t ≤ m̃t + ωt − 1

P̃tωt

+ (1 + Rt−1)
b̃t

P̃tωt

− b̃t+1ωt

P̃t

. (13.108)

Notice that the rate of growth of money ωt is always positive in this model.
Hence, the nominal interest rate is also positive, which implies that the
cash-in-advance constraint holds with equality.
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Assume that the law of motion for the household’s own capital is given
by kt+1 = (1 − δ)kt + it . Since bonds are in net zero supply in the aggre-
gate economy, we will impose this condition on the household’s problem
to eliminate the bond holdings. We will also use the law of motion of the
household’s capital stock to eliminate the variable i. The state variables
for the household’s problem consist of the current values of the technol-
ogy shock z, the money shock ω, the household’s own capital stock k,
the aggregate capital stock K , and transformed money holdings m̃. Given
the price functions w = w(z,ω, K ), r = r(z,ω, K ) and P = P(z,ω, K ), the
household’s problem can be written as:

(P) V (z,ω, K , k, m̃) = max
c1,c2,h,k′,m̃′

{α ln (c1) + (1 − α) ln (c2) − γ h

+βV (z′,ω′, K ′, k′, m̃′)
}

subject to the laws of motion for the technology and money shocks (13.98)
and (13.106), the constraints

c1 ≤ m̃ + ω − 1

P̃ω
, (13.109)

c2 + k′ + m̃′

P̃
≤ w(z,ω, K )h + (r(z,ω, K ) + 1 − δ)k, (13.110)

and also the laws of motion for the aggregate variables

K ′ = K ′(z,ω, K ), H = H (z,ω, K ), P = P(z,ω, K ).

(13.111)

A recursive competitive equilibrium for this economy consists of a set
of decision rules c1(ζ ), c2(ζ ), h(ζ ), k′(ζ ), m̃′(ζ )), where ζ ≡ (z,ω, k, K , m̃)′;
a set of per capita or economy-wide decision rules k′(z,ω, K ) and
H (ζ ,ω, K ); pricing functions w(z,ω, K ), r(z,ω, K ), P(z,ω, K ) and value
function V (ζ ) such that (i) given prices, the individual decision rules
solve the consumer’s problem in (P); (ii) the pricing functions w(·)
and r(·) satisfy the condition in (13.101) and (13.101) and (iii) the
individual decision rules are consistent with aggregate outcomes so
that k′(z,ω, K , K , 1) = k′(z,ω, K ), h(z,ω, K , K , 1) = H (z,ω, K ) and
m̃′(z,ω, K , K , 1) = 1 for all values of the aggregate state z,ω, K .

The competitive equilibrium cannot be obtained as the solution to a
social planner’s problem, which is the approach that we followed in solv-
ing the “real” models of Chapters 10–12. The reason is that the inflation tax
induces a wedge between the consumption of cash and credit goods and
between consumption of cash goods and leisure. Instead we need to solve
for the competitive equilibrium directly. Furthermore, given the form of
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the utility function, we need to employ a numerical solution technique to
compute the competitive equilibrium. Hansen and Prescott [233] provide a
general algorithm that can be used to transform a variety of recursive equi-
librium frameworks into a general linear-quadratic dynamic optimization
problem which approximates the original non-linear problem around the
deterministic steady state. We already described how this approach could
be implemented for competitive equilibria that solve the social planner’s
problem in Chapter 12. The approach to solving models with monetary
distortions can also be mapped into a similar framework. The additional
complication is that consistency must be imposed between the individual
decision variables and the aggregate state at each stage of the iterative pro-
cedure used to generate the optimal value function and decision rules. We
briefly describe this approach and discuss some of the empirical findings
associated with the model.

The approach to solving the original non-linear model involves find-
ing the deterministic steady state. This can be obtained by considering the
first-order conditions for a deterministic version of the problem. Let μt

denote the multiplier on the cash-in-advance constraint and ξt the multi-
plier on the budget constraint. The first-order conditions with respect to
c1t , c2t , ht , kt+1, m̃t+1 with the envelope conditions substituted are:

α

c1
= μt + ξt , (13.112)

1 − α

c2t
= ξt , (13.113)

γ = ξtwt (13.114)

ξt = β[ξt+1(rt+1 + 1 − δ)], (13.115)

ξt

P̃t

= β

[
μt+1

P̃t+1ωt+1

+ ξt+1

P̃t+1ωt+1

]
. (13.116)

In the deterministic steady state, all dated variables equal a constant. Notice
that we can solve the last condition for μ + ξ as:

μ + ξ = ξω

β
.

Now consider the ratio of the first two conditions as:

αc2

(1 − α)c1
= μ + ξ

ξ
= ω

β
. (13.117)

The expression on the right side is equal to one plus the nominal interest
rate, R, for this economy, where the gross rate of growth of the money
supply ω is one plus the inflation rate in the steady state and 1/β is the
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(gross) real interest rate. Dividing through by α and adding c1/(1 − α)c1 to
both sides yields:

c
c1

= 1

α
+ 1 − α

α
R, (13.118)

where c = c1 + c2 so that c/c1 is just equal to consumption velocity for this
economy. From the fourth condition we observe that the real interest rate
is also equal to the real rate of return on physical capital accumulation:

(1 − θ )
y
k

+ 1 − δ = 1

β
, (13.119)

where we have substituted for the rental rate of capital. The second and
third conditions show that the marginal rate of substitution between con-
sumption of credit goods and hours worked is equal to the real wage:

γ c2

1 − α
= w = θ

y
h

. (13.120)

Finally, the aggregate resource constraint implies that:

c1 + c2 + δk = y = zk1−θhθ . (13.121)

Notice that we can solve for the steady state values for c1, c2, h, k using the
conditions in (13.117), (13.119), (13.120), and (13.121). The normalized price
level is then determined from the cash-in-advance constraint as:

c1 = m̃

P̃ω
, (13.122)

where m̃ = 1. These conditions can also be used to calibrate the model.
For example, we can use the condition in (13.118) to regress a measure of
velocity against the nominal interest rate to obtain an estimate of α, which
shows the weight of cash versus credit goods in the utility function. The
parameters of the technology shock process can be calibrated from a mea-
sure of the Solow residual and the remaining parameters of preferences and
technology can be obtained from the average values of the capital share in
output, the investment-output ratio, the capital-output ratio and the share
of time spent working in the market.
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The next step is to replace the original non-linear problem with one
which a quadratic objective and linear constraints. For the cash-in-advance
model, define the return function R(z,ω, k, K , H , m̃, k′, m̃′) by:

R(z,ω, k, K , H , m̃, p̃, k′, m̃′) = α ln (c1) + (1 − α) ln (c2) − γ h

c1 = m̃ + ω − 1

P̃ω
,

c2 = w(z,ω, K )h + (r(z,ω, K ) + 1 − δ)k − k′ − m̃′

P̃
.

Now define y ≡ (z,ω, k, K , H , m̃, p̃, h, k′, m̃′)′. Replacing the return func-
tion with a quadratic in y, the original problem can be expressed as:

v(z,ω, k, K , m̃) = max{yT Qy + βv(z′,ω′, k′, K ′, m̃′)}
K ′ = K ′(z,ω, K ) H = H (z,ω, K ) P̃ = P(z,ω, K ).

In this problem, we have the exogenous state variables (z,ω) and we have
substituted for the endogenous state variable k′ using the law of motion
for the household’s capital. Now let d = (h, k′, m̃) denote the decision
variables. The solution for the problem is found through successive approx-
imation on the mapping generating v starting from some initial negative
definite matrix for v0. The aggregate consistency conditions are imposed
by differentiating the value function at the nth stage with respect to di

and by evaluating the expression for each di as di = Di(z,ω, K , K , 1). Since
the objective function is quadratic, the first-order conditions characterizing
each di are linear. The function P is obtained from the first-order condi-
tion for m̃′ after imposing the aggregate consistency conditions that k = K
and m̃ = 1.

Despite the potential interest in the model, Cooley and Hansen [123]
find that monetary shocks do not contribute much to the fluctuation of the
real variables relative to the standard neoclassical growth model. However,
as discussed earlier, the introduction of money through a cash-in-advance
constraint leads to distortions due to the inflation tax. The welfare losses
of the inflation tax are studied further by Cooley and Hansen [121, 122].
Braun [72] examines the magnitude of the optimal inflation tax.

13.7. C O N C L U S I O N S

Providing micro-foundations for money has been a problem that
economists of different persuasions have grappled with over the years.
The cash-in-advance model that we have studied here provides a simple
framework whereby money gets valued in equilibrium and also allows for
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an analysis of monetary phenomena in empirical and quantitative terms.
On the one hand, the cash-in-advance model allows for an asset-theoretic
approach to analyzing the impact of monetary shocks on real and nomi-
nal asset returns. On the other hand, this class of models has been used to
examine the response of real variables to monetary disturbances.

13.8. E X E R C I S E S

1. Consider the basic asset-pricing model in Section 13.1. Define B as the
space of bounded, continuous functions on �++ × S × Z × H such
that supy,s,z,h |V (y, s, z, h)/y1−γ |<∞. For V ∈ B, define the operator
T :

(TV )(y, s, z, h) = max
c,md ,z′,b′

{
U (c) + β

∫
S

V (y′, s′, z′, h′)F (s, ds′)
}

,

subject to the constraints in Equations (13.74) and (13.75) and md ∈ M,
z′ ∈ Z , and b′ ∈ B.

Show that under Assumptions 13.1, 13.2, and 13.4, T has a unique
fixed point in B.

2. The Svensson Model
At the beginning of the period, the household observes the realization

st . The money supply evolves as Mt+1 =ω(st)Mt and endowment is sta-
tionary in levels. The rate of contraction of the money supply satisfies
Assumption 13.7. The normalized money balances held at the begin-
ning of the asset market are md

t ≡ ptytzt + bt + ht − ptct + ωt − 1. The
normalized budget constraint in the asset market is:

ht+1ωt + qe
t zt+1 + Qtbt+1ωt ≤ md

t + qe
t zt . (13.123)

The normalized cash-in-advance constraint is:

ptct ≤ ht , (13.124)

and the state vector for the representative household is (st , zt , bt , ht).
(a) Formulate the household problem in a stationary equilibrium in

which prices p(s), qe(s), and Q(s) are continuous, strictly positive
functions of the economy-wide state variables.

(b) Derive the first-order conditions, envelope conditions, and specify
the market-clearing conditions.

(c) Discuss the relationship between a binding cash-in-advance con-
straint and strictly positive nominal interest rates. Are consumers
willing to hold nominal money balances at a positive nominal
interest rate?
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3. Consumption and Leisure Choices
Use the labor-leisure model in Section 13.6.1 and assume that the utility
function takes the form:

U (ct , !t) ≡ 1

1 − γ
(cαt !

1−α
t )1−γ .

Let ρ ≡ 1 − γ for notational simplicity and assume that ρ > 0. Also
assume that 0<α< 1. For the utility function to be concave in both
arguments, the following conditions must hold: αρ < 1 and (1 −
α)ρ < 1. Also notice that, if ρ > 0, Uc! > 0 (so leisure and consumption
are complements).
(a) Derive the first-order conditions and the envelope conditions.

(b) Next, use the basic structure of the consumption-leisure model but
drop the cash-in-advance constraint to make it a real model. Con-
struct the equilibrium for two cases: a zero tax rate τ and a positive
tax rate. Compare the consumption and leisure streams for the three
versions of the model.

4. A Cash-in-Advance Model with Storage6

There is a representative competitive firm that produces a non-
durable consumption good yt using an input xt . The production
function is yt = λ(st)xαt , where λ : S → �+ is a technology shock.
The intermediate good xt depreciates at 100% when used in produc-
tion. The firm buys the input from consumers in a competitive market
at the real price of wt . The firm solves:

max
xt

λ(st)xαt − xtwt .

The intermediate good is storable when held by households. The law
of motion for the consumer’s holdings of the intermediate good at the
beginning of the period is given by:

kt+1 = θ (st+1)(kt − xt). (13.125)

The capital stock is assumed to be non-negative (kt+1 ≥ 0). If we assume
that the storage shock θ is positive with probability one, then the
non-negativity assumption is equivalent to the constraint kt − xt ≥ 0.
The realization of the shock θt+1 is unknown when xt is chosen in
period t.

The timing of trades is identical to the Svensson model. The
asset market opens and equity shares are traded and money holdings

6 This exercise is derived from Eichenbaum and Singleton [170].
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adjusted. The normalized law of motion for money holdings at the
beginning of the period is

ht+1 = 1

ω(st)
[ht − ptct + bt + (qe

t + ptdt)zt

−qe
t zt+1 + wtptxt + ω(st) − 1] − Qtbt+1. (13.126)

The cash-in-advance constraint is identical to Equation (13.124).
The agent’s preferences are:

E0

{ ∞∑
t=0

β tνt log (ct)

}
, 0 < β < 1, (13.127)

where E0( · ) denotes expectation conditional on information at time 0.
The taste shock is assumed to follow the process νt+1 = νa

t εt+1, where
|a| ≤ 1 and log ε is normally distributed with mean zero, variance σ 2

ε ,
and is not autocorrelated. We assume that νt−1 and εt are part of st .
(a) Derive the equilibrium wage rate and dividends.
(b) The household’s state variables are ht , zt , bt , kt , as well as st and

the economy-wide capital stock, κt which takes values on an inter-
val K≡ [0, κ̄] and evolves as κt+1 = θ (st+1)(κt − xt). Formulate the
household’s problem as a dynamic program.

(c) Derive the equilibrium first-order conditions and envelope condi-
tions for {c, h′, z′, b′, x}.

(d) Let x̃(s, κ) be a fixed policy that satisfies the non-negativity con-
straint and let ỹ(s, κ) be the output produced under this policy.
Define a function � such that, for all (s, κ), the price level satis-
fies p(s, κ) = 1/ỹ(s, κ)�(s, κ). Show that � satisfies the functional
equation:

�(s, κ) = max

[
1,βEs

(
ν ′

ν

�(s′, κ ′)
ω(s)

)]
. (13.128)

(e) Assume that the money supply rule is not a function of κ . Prove
that there exists a fixed point for Equation (13.128) that is a function
of s only. Denote this fixed point ��.

(f ) Define �(st+1, st) ≡β [νt+1�
�(st+1)/ωt�

�(st)]. Use the equilibrium
first-order conditions and the fact that wt/ct =α/xt in equilibrium
to show that �(st+1, st) satisfies the equation:

μk(st , κt)

βα
= Et

[
�(st+1, st)
x(st , κt)

]
−βEt

[
�(st+2, st+1)θ (st+1)

x(st+1, κt+1)

]
.

(g) Suppose that βEt[νt+1/νtωt]< 1. Show that the cash-in-advance
constraint is always binding and ��

t = 1 for all t.
(h) Show that the non-negativity constraint on capital is not binding

and find a closed-form expression for the intermediate good.
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5. Assume that ζt+1 = ζ
η
t ut+1 where |η|< 1 and ut is lognormally dis-

tributed with mean zero and variance σ 2
u . Find a closed-form solution

for the one-period nominal bond in the storage model.
6. Construct the factor supply function for the storage model for a real

version of the model; that is, assume that no money is required for
trading to occur. Compare the solutions and provide some intuition for
the wedge introduced by the cash-in-advance constraint.

7. A Model with Cash and Credit Goods
In this model, the representative agent has preferences given by:

E

{ ∞∑
t=0

β tU (c1,t , c2,t)

}
, 0 < β < 1, (13.129)

where c1,t is consumption of the cash good, c2,t is consumption of the
credit good, and the expectation is over realizations of the shocks at
time zero. To retain the assumption that there is only one type of good
produced and yet make the distinction between cash and credit goods,
assume that there is a linear technology for transforming cash goods into
credit goods on the production or supply side. Let yt be the exogenous
endowment. The linear technology constraint is:

x1,t + x2,t = yt , (13.130)

where x1,t is the production of the cash good and x2,t is the production
of the credit good.

Assumption 13.1 on the shocks to the economy still holds and the
money supply process satisfies Equation (13.8) but we now assume that
the endowment process is stationary in levels. We also require that
money growth satisfies Assumption 13.7.

Assumption 13.11 (i) The utility function U : �2
+ → � is continuously

differentiable, strictly increasing, and strictly concave. For all y > 0,

lim
c→0

U1(c, y − c)

U2(c, y − c)
= ∞, lim

y→c

U1(c, y − c)

U2(c, y − c)
= 0;

(ii) For all y ≥ 0, cU2(c, y − c) is strictly increasing in c, with

lim
c→0

cU2(c, y − c) = 0, lim
c→y

cU2(c, y − c) = ∞,

and for some A<∞, cU1(c, y − c) ≤ A for all 0 ≤ c ≤ y and all y ≥ 0.

At the beginning of the period, the agent starts with currency accu-
mulated last period Mt−1, observes the realization of the current shocks
st , and receives the lump-sum money transfer Gt . The agent’s post trans-
fer money holdings are Ht = Mt−1+Gt where Gt = Mt −Mt−1. To make
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the nominal variables stationary, we divide the agent’s post transfer
balances by the money supply in period t so that:

ht ≡ mt−1 + [ω(st) − 1]/ω(st).

The agent’s initial wealth takes the form of money holdings, an equity
share zt which is a claim to a stochastic nominal dividend stream, and
one-period nominal bonds Bt−1, each of which is a claim to one unit
of currency at time t. The goods market opens first and the agent’s
purchases of cash goods ptc1,t are subject to the following constraint:

ptc1,t ≤ ht (13.131)

where pt is the price level as a ratio of the money stock. The agent also
purchases credit goods in the amount ptc2,t , payment for which can be
postponed until the asset market opens.

At the close of the goods market, the agent receives the nominal divi-
dend payment ztpty(st) and the payment on one-period nominal bonds
Bt−1 purchased last period. Define bt ≡ Bt/Ms

t . The agent’s budget
constraint in the asset market after normalization by the money stock is:

ptc2,t + mt + qe
t zt+1 + Qtbt ≤ (ytpt + qe

t )zt

+ ht − ptc1,t + bt−1/ω(st), (13.132)

where Qe is the nominal price of the equity share, qe ≡ Qe/Ms and Q
is the nominal price of the one-period bond.
(a) Show the existence of a solution to the consumer’s problem.
(b) Find the first-order and envelope conditions.
(c) Using the first-order conditions for bonds, comment on the relation

between velocity and nominal interest rates.
(d) Find an expression for the equity price. How does it differ from the

equity price in an economy without money?
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International asset markets

The role of international trade and exchange in leading to welfare gains is
one of the most basic topics in the economics literature. In recent years, this
issue has been examined from the viewpoint of international risk sharing.
There has also been a proliferation of international models of the business
cycle, which seek to understand the mechanisms for the transmission of
real and monetary shocks. Third, as international asset markets have grown
in size and importance, there has been an increase in the variety of assets
that are traded. Paralleling the growth of these markets is the increased
interest in examining the empirical behavior of assets denominated in
alternative currencies.

In this chapter, we begin by describing a real model of international
trade and exchange that allows us to illustrate the role of risk sharing and
portfolio diversification across countries. This discussion clarifies the ways
in which international trade can lead to perfect sharing even in the absence
of international capital flows. It also links to the literature on international
business cycles. Next, we introduce a monetary model of international
trade and exchange. For this purpose, we use a two-country model with
cash-in-advance constraints in which purchases of goods must be made
with sellers’ currencies. We certainly do not mean to suggest that this is
the only model or even the most commonly accepted model of exchange
rates and asset prices. We choose this model because it allows us to demon-
strate the existence of equilibrium based on utility-maximizing behavior
of agents and it provides a useful framework for examining a variety of
observed relationships. We describe the basic model in Section 14.2 while in
Section 14.3, we modify it to incorporate non-traded goods and investment
and capital flows.

Earlier models in the exchange rate literature include the Dornbusch
model [157] and the Mussa model [348], both of which emphasize dif-
ferential speeds of adjustment and neither of which is based on utility-
maximizing behavior. Obstfeld and Stockman [354] provide a useful survey
that includes a description of these alternative models of exchange rate
determination. Exchange rate behavior has also been studied in money-in-
the-utility-function models (see Calvo [86] and Calvo and Rodriguez [87])

422



International asset markets 423

and in overlapping generations models (see Kareken and Wallace [271] and
Greenwood and Williamson [215]).

There is a large literature on the empirical behavior of foreign exchange
rate markets. It is beyond the scope of this text to describe the issues that
arise in this literature. However, the modeling of risk premia that takes
into account exchange rate risk together with risks emanating from the
real economy provides a useful framework for empirical analysis.

14.1. A T W O - C O U N T R Y M O D E L

Before we incorporate money into a simple two-country, two-good model,
it will be useful to discuss some important issues in a non-monetary pure
endowment economy. Our discussion is based on Cole [111] and Cole and
Obstfeld [112].

We begin our discussion with a two-country real version of the Lucas
asset-pricing model (see Lucas [318]). Agents from both countries are iden-
tical in terms of preferences and differ only in terms of endowments. There
are two goods, Y1 and Y2. Country 1 has a random endowment of good
Y1 and country 2 has a random endowment of good Y2. Neither good is
storable. We assume that endowments are stationary in levels. The case
with growing endowments can be analyzed using an approach similar to
that in Chapter 8.

Let st ∈ S ⊆ �m
+ denote a vector of exogenous shocks that follows

a first-order Markov process with a stationary transition function F . The
transition function F satisfies Assumption 13.1 in Chapter 13.

At the beginning of the period, agents observe the current realization.
We assume that endowment is a time-invariant function of the exogenous
shock.

Assumption 14.1 Define Y ≡ [y, ȳ] where y > 0, and ȳ < ∞. The func-
tions y1 : S → Y and y2 : S → Y are continuous functions that are bounded
away from zero.

The representative consumer in country j has preferences over random
sequences {cj

1,t , cj
2,t}∞t = 0 defined by:

E0

{ ∞∑
t=0

β tU (cj
1,t , cj

2,t )

}
, 0 < β < 1. (14.1)

We have the following assumption.
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Assumption 14.2 The utility function U : �2
+ → � is continuously

differentiable, strictly increasing, and strictly concave. For all c1, c2 > 0,

lim
c1→0

U1(c1, c2)

U2(c1, c2)
= ∞, lim

c2→0

U1(c1, c2)

U2(c1, c2)
= 0.

This requirement on the utility function ensures that both goods are
consumed in equilibrium.

Central planning problem
We start with the central planning problem. Let φj denote the Pareto
weight for country j. Since preferences are time separable, the endowment
is non-storable, and there is no investment process, the problem at time t
is just

max
[
φ1U (c1

1,t , c1
2,t) + φ2U (c2

1,t , c2
2,t)
]

(14.2)

subject to

c1
1,t + c2

1t
= y1,t ,

c1
2,t + c2

2t
= y2,t .

It is straightforward to show that the first-order conditions reduce to

U1(c1
1,t , c1

2,t)

U1(c2
1,t , c2

2,t)
= φ2

φ1
, (14.3)

U2(c1
1,t , c1

2,t)

U2(c2
1,t , c2

2,t)
= φ2

φ1
. (14.4)

It is convenient to assume that preferences are Cobb-Douglas:

U (c1, c2) = (cα1 c1−α
2 )1−ρ

1 − ρ
, 0 < ρ < 1, 0 < α < 1. (14.5)

Under the assumption that preferences are Cobb-Douglas, we can show
that c1

1 = δy1, c1
2 = δy2, c2

1 = (1 − δ)y1, and c2
2 = (1 − δ)y2,

where

δ =
[

1 +
(
φ2

φ1

)σ]
and σ = 1

ρ
. Hence the ratio of marginal utilities across agents in different

countries is equalized for all states and goods.
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No asset trading
In this section, we examine the case in which there is trade in goods but no
trade in international assets. Essentially we are forcing the current account
to equal zero in each period. Let pt denote the relative price of good y2 in
terms of the numeraire good y1. Country 1 and 2’s budget constraints are:

c1
1,t + ptc1

2,t = y1,t . (14.6)

c2
1,t

pt
+ c2

2,t = y2,t . (14.7)

Once again, this is a static problem because there are no assets for intertem-
poral consumption smoothing and the endowment is non-storable. If
we assume the Cobb-Douglas functional form for preferences, then the
consumption allocations are:

c1
1 = αy1,

c1
2 = (1 − α)y1

p
,

c2
1 = αpy2,

c2
2 = (1 − α)y2.

Equilibrium in the two goods markets requires that:

c1
1 + c2

1 = y1. (14.8)

c1
2 + c2

2 = y2. (14.9)

Substitute the consumption functions into the market clearing conditions
and solve for the relative price to show that:

p = (1 − α)y1

αy2
.

This price can be substituted into the consumption functions above to
show that c1

2 = αy2 and c2
1 = (1 − α)y1.

Notice that the no-asset-trading allocation is identical to the central
planning allocation if:

α = δ =
[

1 +
(
φ2

φ1

)σ]
or

φ1 =
[

1 +
(

1 − α

α

)ρ]−1

and φ2 = 1 − φ1.
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This exercise illustrates several points:
• The absence of international capital mobility does not necessarily imply

that the allocation is not Pareto optimal. Efficient risk sharing can occur
despite the lack of financial assets and insurance.

• The international ratio of marginal utilities across countries is identi-
cal across goods and states. A large and positive shock in the amount
of good y1 is positively transmitted to the residents of country 2 by
the increase in demand (and hence the relative price) for good y2. A
large negative shock in the amount of a good is similarly transmitted
across borders, despite the absence of trade in financial assets. Hence
efficient risk sharing occurs through changes in the relative price of
goods.

• Notice that we can price financial assets in the model, under the assump-
tion that the current account is zero, and can show that real interest
rates and real asset returns will be equal for the two countries, despite
the absence of financial capital mobility.

• The total consumption of countries 1 and 2 is:

c1
1 + pc1

2 = αy1 + αy2,

c2
1 + pc2

2 = (1 − α)y1 + (1 − α)y2.

Observe that correlation of the total value of consumption of country 1
and country 2 is positive and equal to one.

As Cole and Obstfeld [112] point out, the positive transmission of shocks
occurs because countries specialize in the production of goods.

Non-specialization in endowments
To illustrate the impact of non-specialization, Cole and Obstfeld [112]
introduce a third good. Call this third good w. Assume that both coun-
tries receive an exogenous and stochastic endowment of good w and let
wj : S → W = [w, w̄] denote the realization of good w in country j. Let
α1,α2,αw denote the expenditure shares under the assumption of Cobb-
Douglas preferences and let w be the numeraire good, so that p1 denotes
the relative price of good y1 in terms of w and p2 denotes the relative
price of good y2 in units of w. Agents in country 1 and 2 have budget
constraints:

p1,t c1
1,t + p2,t c1

2,t + c1
w,t ≤ p1,t y1,t + wa

t ,

p1,t c2
1,t + p2,t c2

2,t + c2
w,t ≤ p2,t y2,t + wb

t .
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The equilibrium relative prices satisfy:

p1 = α1[w1 + w2]

αwy1
,

p2 = α2[w1 + w2]

αwy2
.

The consumption of good 1 by agents in countries 1 and 2, under the
assumption of Cobb-Douglas preferences, can be shown to satisfy:

c1
1,t =

[
αw

(
w1

t

w1
t + w2

t

)
+ α1

]
y1,

c2
1,t =

[
αw

(
w2

t

w1
t + w2

t

)
+ α2

]
y1.

Similar expressions can be derived for the consumption of goods, y2, w.
The ratio of marginal utilities of both countries for each good will be equal
to a constant across all states, a condition for Pareto optimality, only if the
share of the endowment of w, defined as ( w1

t
w1

t+w2
t
) and ( w2

t
w1

t+w2
t
), is constant

as the total w varies with s. The shocks to w1 and w2 must be perfectly
correlated for the allocation with no trade in financial assets to be Pareto
optimal. If these shocks are not perfectly correlated, then there will be
benefits to trading equity shares or other forms of financial assets.

This creates an important distinction between country-specific shocks,
which affect all sectors within a country, and industry-specific shocks.
Shocks to y1 or y2 are by definition country-specific shocks whereas
shocks to w1, w2, where w1, w2 are not perfectly correlated, are sector-
specific shocks. Hence, when there are sector-specific shocks, there are
gains to asset trading that improve risk sharing and allow diversification.
The intuition is that, in the absence of trade in financial assets, the country
with a negative shock to the endowment of w would like to run a current
account deficit by importing w and borrowing against future endowment.
Since the current account must always be balanced, the country must
export more of the good in which it specializes in production to finance
the import of good w. Notice that the relative price of w may not adjust
much if w1 and w2 are negatively correlated but the sum w1 +w2 fluctuates
very little.

Non-traded goods
Suppose now that the third good is a non-traded good. Call this good n and
assume that nj : S → N = [n, n̄] denote the realization of good n in coun-
try j. Let α1,α2,αn denote the expenditure shares under the assumption
of Cobb-Douglas preferences and let y1 be the numeraire good. Under the
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assumption of balanced trade and Cobb-Douglas preferences, the demands
for the goods satisfy:

c1
1 = α1

1 − αn
y1,

c1
2 = α1

1 − αn
y2,

c2
1 = α2

1 − αn
y1,

c2
2 = α2

1 − αn
y2.

Each country consumes its endowment of the non-traded good, n1, n2. The
ratio of marginal utility across countries for a traded good will now depend
on the ratio n1

n2 . Unless n1, n2 are perfectly correlated, then the resulting allo-
cations will not be Pareto optimal. There are gains from international risk
sharing through asset trade. Notice that the correlation of consumption
across countries will now depend on the proportion of a country’s con-
sumption that is non-tradeable. If this sector constitutes a large fraction
of consumption, then even if consumption of traded goods is perfectly
correlated, the correlation of national consumption levels may be close
to zero.

Trade in equity shares
We now introduce trade in financial assets. An agent in country 1 holds
equity shares that are claims to the endowment stream for goods y1 (the
domestic good) and claims to y2 (the foreign good). We now discuss the
impact of asset trading and relate it to the model without asset trade
discussed earlier.

Let zj
i,t for j = 1, 2 and i = 1, 2 denote the shares of good i held by

an agent in country j at the beginning of period t. An agent’s budget
constraint is:

zj
1,t[y1,t+q1,t ]+zj

2,t [p2,t y2,t+qj
2,t] ≥ cj

1,t+p2,t c
j
2,t+q1,t z

j
1,t+1+q2,t z

j
2,t+1.

(14.10)

The agent maximizes his objective function subject to the constraint. The
first-order conditions are:

U1(c
j
1,t , cj

2,t ) = U2(c
j
1,t , cj

2,t)p2,t . (14.11)

U1(c
j
1,t , cj

2,t)q1,t = βEtU1(c
j
1,t+1, cj

2,t+1)[q1,t+1 + y1,t+1]. (14.12)

U1(c
j
1,t , cj

2,t )q2,t = βEtU1(c
j
1,t+1, cj

2,t+1)[q2,t+1 + p2,t+1y2,t+1]. (14.13)
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In equilibrium, all equity shares are held and the endowment of each good
is completely consumed. Lucas [318] assumes that agents hold identical
portfolios, so that zj

i,t = 1/2 for j = 1, 2 and i = 1, 2 so that φj = 1/2 and
δ = 1/2. In such a world, national wealth is equal across countries and
agents have perfectly diversified portfolios. Agents across countries have
identical consumption in this case, unlike the economy in which there
is no trade in financial assets. In the initial model described above in
which there was no trade in financial assets and specialization in endow-
ments, the allocation was Pareto optimal. We commented that we could
price financial assets even if these assets were not traded. What distribu-
tion of endowment shares will result in this allocation? In particular, if
z1

1 = z1
2 =α and z2

1 = z2
2 = 1 − α, then the equilibrium allocation with no

trade in financial assets can be achieved. Hence we have at least two sta-
tionary allocations, depending on the initial distribution of the claims.
This simple example, when combined with our discussion of the equi-
librium with no trade in financial assets, illustrates an important point.
International risk sharing can be achieved through fluctuations in relative
prices in the current account and by trade in financial assets. The exis-
tence of non-traded goods or lack of specialization in production of a good
can affect how much consumption insurance can be achieved through
relative price fluctuations. If we introduced trade in equity shares when
there is a third good w that is produced by both countries, notice that
portfolio diversification may require that an agent holds equity shares
for w1 and w2 if the endowment shocks for w are not perfectly corre-
lated. If these shocks are perfectly correlated, then portfolio diversification
may be achieved by specializing in the holding of equity shares of one
country only.

There has been a substantial literature on the lack of international
portfolio diversification and the degree of international consumption risk
sharing. The international portfolio diversification puzzle is the notion that
investors hold too little of their wealth in foreign securities to be consis-
tent with the standard theory of portfolio choice. Baxter and Jermann [50]
argue that the failure of international diversification is substantial. Their
model incorporates human and physical capital and, within the context of
their model, optimal behavior would lead to a short position in domestic
assets because of a strong positive correlation between the returns to human
and physical capital. A more recent paper by Heathcote and Perri [248]
extends the Baxter and Jermann model to include more than one traded
good. They find, as we have noted above, that consumption insurance is
available through relative price fluctuations and these price fluctuations
can be sufficient to achieve efficient risk sharing. Clearly the conclusion on
whether there is sufficient or insufficient risk sharing is very sensitive to the
model specifications.
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Empirical evidence on international consumption risk sharing is pro-
vided in Backus, Kehoe, and Kydland [40]. Lewis [310] further documents
that there is insufficient intertemporal risk sharing in consumption. As we
have noted above, the existence of non-traded goods combined with the
assumption that utility is non-separable in traded and non-traded goods
makes it more difficult to determine the optimal degree of consumption
risk sharing. We have also shown above that relative price fluctuations
can be a substitute for trade in financial assets in achieving consump-
tion insurance. Lewis documents that the non-separability of utility or the
restriction of asset trade alone are not enough to explain the risk sharing
that we observe, but that when non-separability and asset trade restrictions
are combined, she cannot reject the hypothesis that there is risk sharing.
As Obstfeld and Rogoff [355] argue, many of the puzzles in international
macroeconomics may just be specific to the models researchers are using.
They do find that adding transport costs generally improves a model’s
predictions for real trade.

14.2. I N T E R N A T I O N A L M O N E T A R Y M O D E L

We continue our discussion with a simple two-country version of the Lucas
asset-pricing model with a cash-in-advance constraint (see Lucas [318]).
Agents from both countries are identical in terms of preferences so they
can differ only in terms of initial endowments. In this model, we study
what is typically referred to as a pooled equilibrium – if initial endowments
are identical or if somehow the economy converges to an equilibrium with
equal forms of wealth (so wealth is the same in all states), then we will
show that the economy will stay in this equilibrium.

We assume that endowments are stationary in levels but that money
supplies are growing. The case with growing endowments can be analyzed
using an approach similar to that in Chapter 13, but for expositional pur-
poses we consider the case when only money supplies are growing. The
outstanding stock of money of country i at time t is Mi,t and the money
supply process is:

Mi,t = ωi(st)Mi,t−1, i = 1, 2. (14.14)

At the beginning of the period, agents observe the current realization of the
endowment of each country denoted yi,t for i = 1, 2. Endowment in each
country and money growth satisfy the counterparts of Assumptions 13.11
and 13.7 in Chapter 13.

At the beginning of the period, the representative agent of country 1
receives one-half of the money transfer from its government denoted T 1

1
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and one-half of the money transfer from country 2 denoted T 1
2 . The rep-

resentative agent from country 2 receives a similar set of transfers, T 2
i for

i = 1, 2.1

Country 1 is defined as the domestic country and good 1 is the numeraire
good. The nominal exchange rate et converts nominal quantities defined in
the currency of country 2 into units of the domestic currency. The nominal
wealth of an agent in country j consists of the currency M j

1,t−1 of country
1, currency Mj

2,t−1 of country 2, claims to a nominal dividend for good 1
denoted as zj

1,t−1, which can be sold for a price Qe
1,t , and claims to nominal

dividend for good 2 denoted zj
2,t−1, which can be sold for a price Qe

2,t and
is denominated in units of country 2’s currency. Later on, we introduce
nominal bonds of various maturities that are in zero net supply and forward
and futures contracts for foreign exchange.

The price of good 1 measured in units of M1 is p1,t and the price of good
2 measured in units of M2 is p2,t . Thus, the representative agent in country
j has posttransfer beginning-of-period nominal balances measured in units
of country 1’s currency equal to:

H j
t ≡ Mj

1,t−1 − p1,t−1c
j
1,t−1 + et (M

j
2,t−1 − p2,t−1c

j
2,t−1)

+ p1,t−1y1,t−1z
j
1,t−1 + etp2,t−1y2,t−1z

j
2,t−1 + T j

1,t + etT
j
2,t ,

(14.15)

where the last two terms are the transfers made to the representative agent
in country j.

The asset market opens first. Agents trade in securities, bonds, and cur-
rency. While in the asset market, agents acquire the currency they need
to make consumption purchases. It is assumed that domestic sellers will
accept payment only in their domestic currency. This means that the buyer
has no access to the foreign exchange market once the asset market has
closed. Since there is no new information revealed after the asset market
closes and before the goods market opens, this is similar to the cash-in-
advance constraint in the one-country version of the model with the Lucas
timing in which there is only a transactions demand and no liquidity or
store of value demand for money.

The budget constraint in the asset market faced by the representative
agent of country j is:

Qe
1,t z

j
1,t + etQe

2,t z
j
2,t + Mj

1,t + etM
j
2,t ≤ H j

t + Qe
1,t z

j
1,t−1 + etQe

2,t z
j
2,t−1.

(14.16)

1 In Exercise 8, this assumption is dropped and, instead, we assume that claims in the transfers are
traded just like any other security. In equilibrium, the representative agent from country 1 will hold
one-half of the claims to the transfer of country 1 and one-half of the claims to the transfer from
country 2, just as in the money transfers scheme just described.



432 Asset Pricing for Dynamic Economies

The demand by agent j for units of currency i, i �= j, is:

F j
i,t ≡ Mj

i,t − [Mj
i,t−1 + T j

i,t + pi,t−1(y
j
i,t−1z

j
i,t−1 − cj

i,t−1)]. (14.17)

In the goods market, the following cash-in-advance constraints apply to
the purchases of goods 1 and 2 by the agent from country j:

p1,t c
j
1,t ≤ Mj

1,t , (14.18)

etp2,t c
j
2,t ≤ etM

j
2,t . (14.19)

After the goods market closes, the agent receives the nominal dividend
payments on the claims from both countries.

Notice that the consumer’s nominal wealth is growing because the
money supply is growing. To eliminate the effects of such growth, we
divide all nominal variables by the nominal price of good 1. We also define
the relative price of good 2 in terms of good 1 as:

ζt = etp2,t

p1,t
. (14.20)

This relative price is often called the terms of trade or the real exchange
rate. Later on, we show that this relative price is independent of the money
stocks.

Let lower-case letters denote the nominal value divided by the appro-
priate price; that is, define ht ≡ Ht/p1,t , qe

i,t ≡ Qe
i,t/pi,t , mi,t ≡ Mi,t/pi,t , and

τi,t ≡ Ti,t/pi,t for i = 1, 2. For notational convenience, also define the vari-
able πi,t ≡ pi,t−1/pi,t for i = 1, 2. The normalized budget constraint in the
asset market can be written as:

qe
1,t z

j
1,t + ζtqe

2,t z
j
2,t + mj

1,t + ζtm
j
2,t ≤ hj

t + qe
1,t z

j
1,t−1 + ζtqe

2,t z
j
2,t−1, (14.21)

where

hj
t = π1,t (m

j
1,t−1 − cj

1,t−1) + ζtπ2,t(m
j
2,t−1 − cj

2,t−1)

+ π1,t y1,t−1z
j
1,t−1 + ζtπ2,t y2,t−1z

j
2,t−1 + τ

j
1,t + ζtτ

j
2,t . (14.22)

Likewise, we divide the cash-in-advance constraints in Equations (14.18)
and (14.19) by p1,t to obtain:

cj
1,t ≤ mj

1,t , (14.23)

ζt c
j
2,t ≤ ζtm

j
2,t . (14.24)

Notice that dividing the nominal constraints by the price level has trans-
formed the variables into real quantities or else ratios of prices for the same
good at different points in time.
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The market-clearing conditions for this economy for i = 1, 2 are:

c1
i,t + c2

i,t = yi,t , (14.25)

M 1
i,t + M 2

i,t = Mi,t , (14.26)

z1
i,t + z2

i,t = 1, (14.27)

etF 1
2,t + F 2

1,t = 0. (14.28)

There are seven markets. Using Walras’s Law, if six of them clear, then the
seventh market – the foreign exchange market – will also clear.

Let primes denote future values and unprimed variables denote cur-
rent values. We will seek an equilibrium in which the nominal price
levels and the nominal exchange rate depend on the realization of the
shock s and the stocks of money, M ≡ (M1, M2), but the equity prices
and the real exchange rate depend only on s. The price functions qe

i , ζ are
assumed to be continuous and strictly positive functions qe

i : S → �++,
i = 1, 2 and ζ : S → �++. The nominal exchange rate e and the nom-
inal price levels pi for i = 1, 2 are assumed to be continuous and strictly
positive functions e : S × �2

+ → �++, pi : S × �2
+ → �++ for

i = 1, 2. Define the (gross) deflation rate by πi(s′) ≡ pi(s, M )/pi(s′, M ′).
Notice that we assume that deflation is a function of s′ and, in particular,
does not depend on the stocks of money. This is a property that must be
demonstrated.

Because agents are identical in equilibrium, we drop the index j. The
consumer’s state variables consist of his initial wealth h, his share holdings
zi for i = 1, 2, and the current exogenous shock s. Given the price func-
tions ζ , e and qe

i and pi for i = 1, 2, the resident of each country chooses
(c1, c2, m1, m2, z′

1, z′
2) to solve:

V (h, z1, z2, s) = max
{
U (c1, c2) + βEs[V (h′, z′

1, z′
2, s′)]

}
(14.29)

subject to the asset market constraint (Equation 14.21), the law of motion
for post-transfer real balances (Equation 14.22), and the cash-in-advance
constraints (Equations 14.23 and 14.24). We can show the existence of a
solution to the consumer’s value function as an application of Proposition
8.1 in Chapter 8.

In equilibrium, agents are identical so that c1
i = c2

i = (1/2)yi and
z1

i = z2
i = 1/2. When the market-clearing conditions are substituted into

the law of motion for the posttransfer money holdings, these holdings
become h = (1/2)

[
(M1/p1) + ζ (M2/p2)

]
, which is just the world supply

of real balances measured in units of good 1. Let μi(s) denote the mul-
tiplier for the cash-in-advance constraint on good i, and ξ (s) denote
the multiplier on the budget constraint in the asset market. Let Ui

be the partial derivative of U with respect to its ith argument and
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define Ui(s) ≡ Ui(y1/2, y2/2). Substituting the envelope conditions, the
equilibrium first-order conditions with respect to c1, c2, m1, m2, z′

1, z′
2 are:2

U1(s) = μ1(s) + βEs
[
ξ (s′)π1(s′)

]
, (14.30)

U2(s) = ζ (s)μ2(s) + βEs
[
ξ (s′)π2(s′)ζ (s′)

]
, (14.31)

ξ (s) = μ1(s) + βEs
[
ξ (s′)π1(s′)

]
, (14.32)

ζ (s)ξ (s) = μ2(s)ζ (s) + βEs
[
ξ (s′)π2(s′)ζ (s′)

]
, (14.33)

qe
1 (s)ξ (s) = βEs

{
ξ (s′)[π1(s′)y1(s) + qe

1 (s
′)]
}

, (14.34)

qe
2(s)ζ (s)ξ (s) = βEs{ξ (s′)ζ (s′)[π2(s′)y2(s) + qe

2(s
′)]}. (14.35)

We also have the slackness conditions with respect to the multipliers ξ (s)
and μi(s) for i = 1, 2.

These equilibrium first-order conditions are similar to the first-order
conditions that we derived for the basic cash-in-advance model in
Chapter 13. The difference arises from the fact that we have to determine
the relative price of country 2’s good in terms of country 1’s good, or the
real exchange rate ζ (s). We also need to determine the nominal exchange
rate e(s, M ). For this purpose, we need to determine the nominal price level
in each country, pi(s, M ) for i = 1, 2. We do this following the approach in
the previous chapter by deriving the inverse of the velocity functions for
each currency.

Adding the cash-in-advance constraints for the two types of agents and
imposing market-clearing yields yi ≤ Mi/pi. Define the variables:

�i ≡ Mi/piyi i = 1, 2.

Because M , y are exogenous and positive, solving for �i is equivalent to
solving for pi. Notice that the multipliers μi(s) satisfy the conditions:

μi(s) = Ui(s) − βEs[Ui(s′)πi(s′)], i = 1, 2.

But πi(s′) ≡ pi(s, M )/pi(s′, M ′) by definition. Substituting for πi(s′) and
recalling that μi(s) ≥ 0, the functions �i must satisfy:

Ui(s)yi(s)�i(s) =max

[
Ui(s)yi(s),βEs

(
Ui(s′)yi(s′)�i(s′)

ωi(s′)

)]
(14.36)

for i = 1, 2. Notice that these equations are expressed in terms of the sta-
tionary growth rates of money supplies and the stationary endowments so

2 In Exercise 2, the reader is asked to derive the first-order conditions and envelope conditions for the
agent’s dynamic programming problem.
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that �i is a function only of the shock s. Furthermore, Equation (14.36) can
be solved separately from the other price functions and, in particular, does
not depend on the exchange rate. To find a fixed point to these functional
equations, define the functions:

�i(s) ≡ Ui(s)yi(s)�i(s), i = 1, 2.

Since yi(s) > 0 for all s, studying the properties of the function �i is
equivalent to studying the function �i. This follows as an application of
the implicit function theorem. Using the definition of the functions �i,
define the operators Ti�i for i = 1, 2 by:

(Ti�i)(s) ≡ max

[
Ui(s)yi(s),βEs

(
�i(s′)
ωi(s′)

)]
. (14.37)

Notice that, under Assumptions 13.1 and 14.3, Ti maps C(S), the space of
bounded and continuous, real-valued functions defined on S, into itself. It
is straightforward to verify that Ti is monotone. Under Assumption 14.4,
βEs[ωi(s′)−1] < 1 for all s so that T discounts,

βEs
{
ωi(s′)−1

[
�i(s′) + a

]} ≤ βEs[�i(s′)] + δa,

where 0 < δ < 1. Therefore, Contraction Mapping Theorem implies that
Ti has a fixed point in C(S). Let ��

i denote this fixed point.
We can use these fixed points and the first-order conditions in Equa-

tions (14.34) and (14.35) to construct the equity price functions. Define the
functions:

φi(s) ≡ qe
i (s)Ui(s), i = 1, 2.

Notice that these functions satisfy the following mapping:

(Tiφi)(s) = βEs

[
Ui(s′)yi(s′)��

i (s′)
ωi(s′)��

i (s)
+ φi(s′)

]
, (14.38)

where we have substituted for πi(s′) = pi/p′
i and pi = Mi/�

�
i yi for i = 1, 2.

Under Assumptions 13.1, 14.3, and 14.4, it is straightforward to show
that there exist functions φ�

i ∈ C(S) that are the fixed points of
Equation (14.38).

14.2.1. The terms of trade and the exchange rate

We are now in a position to derive expressions for the equilibrium real and
nominal exchange rate and to show the implications of the model for their
behavior.

We use Equations (14.30) and (14.31) to express the terms of trade or the
real exchange rate as:

ζ (s) = U2(s)
U1(s)

. (14.39)
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Fluctuations in the endowment of either good affect the real exchange rate
while fluctuations in the money supply have no effect on the real exchange
rate. This last result is known as purchasing power parity and it is the open
economy counterpart of the quantity theory of money. It has been widely
studied as an empirical phenomenon.

Given the solutions ��
i , we can use the definition of the real exchange

rate to find a solution for the equilibrium nominal exchange rate as a
function of M1/M2 and y2/y1 as:

e(s, M ) = U2(s)
U1(s)

��
2 (s)

��
1 (s)

M1y2(s)
M2y1(s)

. (14.40)

Hence, the equilibrium exchange rate is affected by changes in relative
velocity, changes in the MRS in consumption, and changes in the relative
supplies of the goods and money stocks. Real disturbances affect both the
exchange rate and the terms of trade so that we would expect these variables
to be correlated. Notice that some standard results apply. An increase in
the money supply of country 1 depreciates the exchange rate for currency 1
(increases e) while an increase in the money supply of country 2 appreciates
it (decreases e).

Notice that the change in the nominal exchange rate satisfies:

e(s′, M ′)
e(s, M )

= U2(s′)y2(s′)
U2(s)y2(s)

U1(s)y1(s)
U1(s′)y1(s′)

��
1 (s)

��
1 (s′)

��
2 (s′)

��
2 (s)

ω1(s′)
ω2(s′)

.

Since the growth rate of money supplies in each country is a stationary
random variable, changes in nominal exchange rates are also stationary. We
can multiply both sides of the expression in Equation (14.40) by M2/M1 to
obtain:

M2

M1
e(s, M ) = U2(s)

U1(s)
��

2 (s)
��

1 (s)
y2(s)
y1(s)

= ζ (s)
��

2 (s)
��

1 (s)
y2(s)
y1(s)

.

Since the right side of this expression is stationary, notice that the nominal
exchange rate times the ratio of the money supplies in the two countries is
also a stationary random variable. Recall that we did not restrict the rela-
tive money supplies to be stationary. Nevertheless, the assumption that the
equilibrium real exchange rate is a stationary variable implies restrictions
for the time series behavior of the nominal exchange rate and the relative
money supplies.

These expressions also allow us to discuss tests of alternative forms of
purchasing power parity. The absolute version of purchasing power parity
says that the real exchange rate or the relative price of the foreign versus
domestic goods is just unity in the long run. Using the expression for the
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real interest rate, the absolute version of purchasing power parity can be
expressed as:

log (ζt) = log (et) − log (p1,t/p2,t ) = 0. (14.41)

The relative version of purchasing power parity states that this relation
holds in first differences:

� log (ζt) = � log (et) − � log (p1,t/p2,t) = 0, (14.42)

where � is the first difference operator.
Notice that if purchasing power parity holds in the long-run, move-

ments in nominal exchange rates should be offset by movements in relative
price levels. A number of studies have argued that the real exchange rate
follows a random walk (see Adler and Lehman [8]), which implies that
deviations from purchasing power parity can be expected to be perma-
nent. Mark [334] reports similar findings using monthly observations from
June 1973 through February 1988. He uses consumer price index data taken
from the International Monetary Fund publication International Financial
Statistics to measure commodity prices. Exchange rate data are taken from
Harris, Bank’s Foreign Exchange Weekly Review, which reports Friday clos-
ing prices in London. The countries chosen are Belgium, Canada, France,
Germany, Italy, Japan, and the United Kingdom. Mark examines three sets
of bilateral relationships, with the United States, the United Kingdom, and
Germany serving as the home country, and finds that movements in nom-
inal exchange rates and relative price levels are unrelated in the long-run as
well as in the short-run.

Mark also suggests a test of purchasing power parity as a long-run
relationship by testing whether log (et) and log (p1,t/p2,t) are cointegrated
series. According to this methodology, two sequences of random variables
{xt} and {yt} are said to be cointegrated if (i) they are non-stationary in lev-
els; (ii) they are stationary in first differences; and (iii) there exists a linear
combination of the levels, ut = xt + αyt , which is stationary. The variable
α is referred to as the cointegrating constant. To test for cointegration, we
determine whether {xt} and {yt} are non-stationary in levels but station-
ary in first differences. Next, xt is regressed on yt , or vice versa. This is
called the cointegrating regression and {ut} is defined as the residual from
this regression. The cointegrating constant can be consistently estimated
by least squares. Finally, an augmented Dickey-Fuller test is performed on
the error sequence, {ut}.3

3 To do this test, consider the regression

(1 − θ1L − θ2L2)(1 − ρL)ut = vt ,

where {vt } is an i.i.d. sequence and L is the lag operator. We wish to test whether ρ = 1. We rewrite
the above equation as ut = −φ1ut−1 +φ2�ut−1 +φ3�ut−2 + vt , where φ1 = (1 −ρ)(1 − θ1 − θ2).
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Mark first tests for unit roots in log (et) and log (p1,t/p2,t). He finds that
the logarithms of the nominal exchange rate are non-stationary in levels but
stationary in first differences. For some country pairs, the unit root hypoth-
esis can be rejected for the logarithms of the relative price levels. Excluding
these country pairs, he is unable to reject at conventional significance lev-
els the null hypothesis of no cointegration for log (et) and log (p1,t/p2,t)
or, equivalently, that the real exchange rate has a unit root. He argues that
while small departures from the null hypothesis may be hard to detect with
existing data, there is evidence to suggest that shocks to the real exchange
rate are persistent enough to prevent a return to purchasing power parity
in the long run.

Huizinga [258] studies the long-run behavior of real exchange rates using
an alternative set of statistical procedures. He considers the real exchange
rates of the US dollar, the British pound, and the Japanese yen against ten
major currencies. His sample consists of monthly observations on the log-
arithm of the real exchange rate for the floating exchange rate period from
1974 to 1986. He finds the long-run behavior of real exchange rates differs
from a random walk by having a notable mean-reverting component. In
contrast to the serially uncorrelated changes implied by a random walk,
there is substantial negative serial correlation of changes in real exchange
rates, which he argues is a common feature among the real exchange rates
of many countries. Despite the existence of a mean-reverting component,
he finds that the permanent component accounts for between 52% and
77% of the variance of the actual change in the real exchange rate of the
US dollar against ten currencies. These results are in accord with Campbell
and Clarida [91], who develop an empirical model of real exchange rates
using Kalman filtering techniques.

A related empirical issue is the behavior of the real exchange rate across
different nominal exchange rate regimes. For example, Mussa [349] argues
that the behavior of the real exchange rate has become more variable in the
floating exchange rate period since the breakdown of the Bretton Woods
agreement in 1973. Grilli and Kaminsky [216] examine a variety of nom-
inal exchange rate regimes since 1885, including the gold standard eras in
the nineteenth century and in the interwar era, and the fixed and floating
exchange rate eras since World War II. They find that transitory distur-
bances are important for the behavior of the real exchange rate in the
pre-World War II era and that the behavior of the real exchange rate varies
more by historical episode than by the exchange rate regime. Recall that in
our model, the real exchange rate is a stationary random variable so that
real shocks or shocks to endowments have only a temporary effect.

Under the null hypothesis of no cointegration, φ1 = 0. The distribution of the usual t-statistic is not
standard. However, critical values tabulated by Engle and Granger [173] may be used.
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14.2.2. Pricing alternative assets

We can derive the prices of a variety of assets using this framework, includ-
ing equity prices, the price of pure discount bonds, and the prices of
forward and futures contracts for foreign exchange.

We first briefly discuss the determinants of equity prices in the domes-
tic and foreign country. We already described how to construct the
equity price functions using the fixed points φ�

i for i = 1, 2. Using Equa-
tions (14.34) and (14.35), the equity prices satisfy:

qe
1,t = βEt

[
U1,t+1

U1,t
(π1,t+1y1,t + qe

1,t+1)

]

qe
2,t = βEt

[
U1,t+1

U1,t

ζt+1

ζt
(π2,t+1y2,t + qe

2,t+1)

]
,

where U1,t+k is the marginal utility of consumption of the first good at date
t+k evaluated at equilibrium consumption. Notice that the nominal prices
of goods 1 and 2 affect the equity pricing formulas only so far as they affect
the term involving the dividend payment. The dividend on the claims to
good 1 are paid in the currency of country 1 and likewise for equities issued
by country 2. Because the nominal dividend p1,t y1,t is paid at the end of
period t, it can only be used to purchase consumption goods in period
t + 1. Hence, we divide the nominal dividend by the nominal price of 1 in
period t + 1 to convert it to a real quantity. The same arguments apply to
the real price of claims to good 2: in this case, q2,t is the price of equities
expressed in units of good 2. We convert the MRS for consumption in
good 1 to units of good 2 by multiplying it with the ratio of the relative
prices ζt+1/ζt .

We can also derive the price of pure discount bonds denominated in
country i’s currency. The equilibrium price of a k-period nominal bill for
country i is given by:

Qi
t,k = βkEt

[
Ui,t+k

Ui,t
πi,t+k

]
, i = 1, 2. (14.43)

Define Ri
t,k ≡ 1/Qi

t,k as the (gross) return on the nominal bond. Notice that
the nominal bond price depends on the nominal MRS, which is the MRS
in consumption times the ratio of purchasing powers of money between
periods t and t + k.

There are many other types of assets that can be priced in this economy.
A particularly important one is a forward contract for foreign exchange,
which is an obligation to deliver one unit of foreign exchange at some
specified date in the future. It is bought or sold at a current price measured
in units of domestic currency. Although a forward contract involves no
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expenditures in the current period, leaving the current period budget con-
straint unaffected, the agent’s budget constraint is affected in the period in
which the delivery occurs.

Assume that the delivery occurs at the beginning of the period. Let the
domestic market price at date t of one unit of foreign currency at time
t +k be defined as Gt,k. Suppose that the agent has purchased zG

t,k contracts
forward at price Gt,k. After the delivery, the agent’s real balances at the
beginning of period t + k evaluated in units of good Y1 are:

ht+k + zG
t,k

p1,t+k
(et+k − Gt,k),

where ht+k is defined as in Equation (14.22). The total return (or loss)
is equal to the difference between the spot exchange rate at the date the
contract is delivered and the price at which the contracts are purchased, or
(et+k−Gt,k)zG

t,k. Because no expenditure is required at time t, the first-order
condition for the choice of zG

t,k is:

0 = βkEt

[
U1,t+k

U1,t
π1,t+k(et+k − Gt,k)

]
, (14.44)

where we have multiplied both sides by p1,t/U1,t . As before, the nominal
MRS is used to discount the return. Because Gt,k is known at time t, we
can re-write this as:

βkEt

[
U1,t+k

U1,t
π1,t+ket+k

]
= βkEt

[
U1,t+k

U1,t
π1,t+k

]
Gt,k.

Using the expression for the bond price in Equation (14.43), we can write
the forward price as:

Gt,k = βkEt

[
U1,t+k

U1,t
π1,t+ket+k

]
R1

t,k, (14.45)

where R1
t,k ≡ 1/Q 1

t,k.
Using a covariance decomposition, we can re-write Equation (14.45) as:

Et(et+k) − Gt,k = −R1
t,kCovt

(
βkU1,t+k

U1,t
π1,t+k, et+k

)
. (14.46)

The left side is the expected profit on a long position in the forward market,
which involves a purchase of foreign currency in the forward market, while
the right side is the risk premium. Notice that there are two sources of time-
varying risk premia or expected profits in the forward market: the first
derives from movements in the conditional covariance between the future
spot rate and the nominal MRS and the second derives from movements
in the nominal risk-free rate, R1

t,k. Notice also that if the nominal MRS
and the spot exchange rate were independent, then Gt,k = Et(et+k), or the
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forward price is an unbiased predictor of the future spot rate. Thus, the
forward rate is a biased predictor of the future spot rate as long as the
conditional covariance between the future spot rate and the nominal MRS
is different from zero.4 We describe tests of the unbiasedness hypothesis
and alternative ways of modeling risk premia in Section 14.3.

We now derive the risk premium in the forward market using inter-
est rate arbitrage. This involves comparing the returns from purchasing
foreign currency using an uncovered investment strategy versus a cov-
ered investment strategy in the market for foreign exchange. An uncovered
one-period investment in a foreign-denominated bond is one in which an
agent exchanges etQ2

t,1 units of domestic currency for et+1 units of domes-
tic currency next period. Converting these nominal quantities into current
units of good Y1 and discounting the uncertain payoff next period, the
equilibrium condition is:

1 = βEt

[
U1,t+1

U1,t
π1,t+1R2

t,1
et+1

et

]
. (14.48)

Such an investment strategy is subject to exchange rate risk in the sense
that the payoff on the bond at time t +1 of one unit of country 2’s currency
has an uncertain value in units of country 1’s currency. To eliminate the
exchange rate risk, the investor can sell a forward contract at time t (so that
he agrees to supply foreign currency in exchange for domestic currency at
time t + 1). This is a covered position or a covered one-period investment
and a covered interest arbitrage argument, which eliminates exchange rate
risk, satisfies:

1 = βEt

[
U1,t+1

U1,t
π1,t+1R2

t,1
Gt,1

et

]
. (14.49)

Using the expression for bond prices in Equation (14.43) and noting that
R2

t,1, Gt,1, and et are known at time t, Equation (14.49) implies that the

4 One might conclude that this biasedness is necessarily a result of risk aversion. To show that this
conclusion is wrong, suppose that agents are risk neutral. In this case, we have a linear utility function
and constant marginal utility of consumption. Thus, Equation (14.45) becomes:

Gt,k = βkEt
(
π1,t+ket+k

)
R1

t,k

= Et (et+k) + βkCovt
(
π1,t+k , et+k

)
R1

t,k . (14.47)

As long as the covariance between the future spot rate and the ratio of the purchasing powers of
money is non-zero, the forward rate is a biased predictor of the future spot rate. This bias does not
arise from the risk premium but from the covariance of changes in the nominal price of goods and
the future exchange rate.
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ratio of current nominal interest rates is equal to the ratio of the forward
rate and the spot exchange rate:

R1
t,1

R2
t,1

= Gt,1

et
. (14.50)

This is a statement of interest rate parity, which says that an agent is indif-
ferent between investing in a bond denominated in the domestic currency,
or investing a unit of the domestic currency in the foreign-denominated
bond and selling the foreign-denominated proceeds in the forward mar-
ket. The return on the former strategy is R1

t,1 while the return on the latter
strategy is (Gt,1/et)R2

t,1, which are equal by Equation (14.50).
The uncovered and covered investment strategies can be compared by

subtracting Equation (14.48) from Equation (14.49):

0 = βEt

[
U1,t+1

U1,t
π1,t+1R2

t,1

(
et+1 − Gt,1

et

)]
. (14.51)

Using the covariance decomposition and dividing by R2
t,1, this equation can

be rewritten in terms of the risk premium as in Equation (14.46).
Another related quantity is the forward premium, defined as Gt,k − et .

We can derive an alternative expression for the forward premium by
subtracting et from both sides of Equation (14.46) as:

Gt,k − et = Et(et+k) − et + R1
t,kCovt

(
βkU1,t+k

U1,t
π1,t+k, et+k

)
.

(14.52)

This says that the forward premium is equal to the sum of expected
depreciation on the domestic currency and the risk premium.

Now let us consider the pricing of futures contracts for foreign exchange.
The difference between forward contracts and futures contracts for for-
eign exchange lies in the institutional features of the futures market. The
key feature is the daily resettlement of profit and loss on a contract called
“marking to market.” The resettlement is accomplished by a clearinghouse
in the futures exchange which stands between the buyer and seller of a
futures contract. The clearinghouse takes no active position in the market.
We assume that the daily resettlement occurs at the beginning of the period
so that the agent’s initial holdings of real balances are affected if the futures
price changes.

Suppose that two parties have contracts at time t with the clearinghouse
at the initial futures price Ft,k. The agent who sells a contract to deliver
currency is in a short position and the agent who buys the contract is
in a long position. If, in the next time period, the price rises (falls) to
Ft+1,k−1, the amount Ft+1,k−1−Ft,k is credited to (debited from) the account
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of the party who bought the contract and debited from (credited to) the
account of the short party who sold the contract. The sequence of cash
flows between the initial contract date and the date at which the contract
is delivered is the major difference between futures contracts and forward
contracts.

Let zF
t,k denote the quantity of futures contracts bought (sold) in period

t to be delivered at time t + k. This decision does not alter the agent’s bud-
get constraint at time t but, at time t + 1, marking to market occurs and
the agent’s budget constraint at time t + 1 is affected. Thus, the quantity
(Ft+1,k−1 − Ft,k)zF

t,k (which can be positive or negative) enters the agent’s
budget constraint at time t + 1. The first-order condition with respect to
zF

t,k is:

0 = βEt

[
U1,t+1

U1,t
π1,t+1

(
Ft+1,k−1 − Ft,k

)]
,

where we have multiplied both sides by p1,t/U1,t , The futures price is
given by:

Ft,k = βEt

[
U1,t+1

U1,t
π1,t+1R1

t,1Ft+1,k−1

]
.5 (14.53)

For notational convenience, define the nominal MRS between periods
t and t + k as M1

t,k ≡βk(U1,t+k/U1,t)π1,t+k. Substituting for Ft+i,k−i,
i = 1, · · · , k in the above expression and using an iterated expectation
argument, we obtain:

Ft,k = Et

[
M1

t,k

(
t+k−1∏

i=t

R1
i,1

)
et+k

]
, (14.54)

where the last line follows because Ft+k,0 = et+k.
Using a covariance decomposition, we can write the futures price as:

Ft,k = Et(et+k) + Covt

[
M1

t,k

(
t+k−1∏

i=t

R1
i,1

)
, et+k

]
. (14.55)

5 Since Ft,k is known at time t, we can simplify the first-order condition as:

βEt

[
U1,t+1

U1,t
π1,t+1Ft+1,k−1

]
= Qt,1Ft,k ,

and use the definition of R1
t,1.
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We are now in a position to compare the futures price and the forward
price. Let us consider the difference:

Ft,k − Gt,k = Et

[
M1

t,ket+k

(
t+k−1∏

i=t

R1
i,1 − R1

t,k

)]
.

The forward price Gt,k differs from the futures price Ft,k because the prod-
uct of the one-period nominal rates of return (which are random as of time
t) does not necessarily equal the k-period risk-free rate between t and t +k,
which is R1

t,k. This difference can be attributed to the sequence of cash flows
that is generated by the futures contract but not by the forward contract.

14.3. V A R I A N T S O F T H E B A S I C M O D E L

In this section, we consider two variants of the basic two-country model
with cash-in-advance constraints that we developed in the previous section.
We first study the effects of non-traded goods on equilibrium exchange
rates and asset prices. In the second variant of the basic model, we intro-
duce capital flows and study a model with the Stockman-Svensson timing
of trades.

14.3.1. Non-traded goods

In this section, we introduce non-traded goods in such a way that agents
are no longer identical in terms of their wealth or asset holdings. Modi-
fying the model in this way results in a richer velocity function and more
interesting dynamics for asset prices. Our discussion is derived from the
paper by Stockman and Dellas [416].

The setup is identical to the model just described aside from the fact that
households living in country 1 receive not only an endowment of y1 units
of a traded good but also n1 units of a non-traded good while households
residing in country 2 receive an endowment of y2 of a traded good and n2

of a non-traded good. Goods Y1 and Y2 are traded costlessly while goods n1

and n2 are only traded domestically. All goods are perishable. The endow-
ments of the non-traded goods are assumed to be stationary in levels. They
are determined as ni,t = ηi(st). Let N ≡ [η, η̄] with η > 0 and η̄ < ∞.
Similar to Assumption 14.3, we assume that ηi : S → N is a continuous
function that is bounded away from zero.

The representative household in country j chooses consumption and
end-of-period assets to maximize:

E0

{ ∞∑
t=0

β t[U (cj
1,t , cj

2,t) + W (cj
n,t )]

}
, (14.56)
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where U satisfies Assumption 14.2 and W is strictly increasing, strictly con-
cave, continuously differentiable with limc→0 W ′(c) =∞ and W (0) = 0.

At the outset, we allow agents to hold claims to the endowment of the
non-traded good of either country. The asset market opens first followed
by the goods market. Let qn

i,t denote the real price of a claim to the non-
traded good dividend in country i, denominated in units of Yi, and let
xi

j,t denote the beginning-of-period shares of the non-traded endowment
in country j held by an agent from country i. Let the nominal price of n1

in units of country 1’s currency be pn
1 , the nominal price of n2 in units of

country 2’s currency be pn
2 , and define ζ n

i,t = pn
i,t/pi,t to be the relative price

of the non-traded good measured in units of Yi. The representative agent
in country 1 has post-transfer beginning-of-period real balances, measured
in units of good Y1, equal to:

h1
t ≡ π1,t[m1

1,t−1 − c1
1,t−1 − ζ n

1,t−1c
1
n,t−1] + ζtπ2,t [m1

2,t−1 − c1
2,t−1]

+π1,t [y1,t−1z1
1,t + ζ n

1,t−1n1,t−1x1
1,t] +

ζtπ2,t[y2,t−1z1
2,t + ζ n

2,t−1n2,t−1x1
2,t ] + τ 1

1,t + ζtτ
1
2,t , (14.57)

where the last two terms are the transfers made to the representative
agent in country 1. The representative agent in country 2 has post-transfer
beginning-of-period real balances, measured in units of good Y1, equal to:

h2
t ≡ π1,t [m2

1,t−1 − c2
1,t−1] + ζtπ2,t[m2

2,t−1 − c2
2,t−1 − ζ n

2,t−1c
2
n,t−1]

+π1,t [y1,t−1z2
1,t + ζ n

1,t−1n1,t−1x2
1,t]

+ζtπ2,t [y2,t−1z2
2,t + ζ n

2,t−1n2,t−1x2
2,t ] + τ 2

1,t + ζtτ
2
2,t . (14.58)

The asset market opens first and agents trade in securities and currency.
While in the asset market, agents acquire the currency they need to make
consumption purchases in the subsequent goods market. It is assumed that
domestic sellers will accept payment only in their domestic currency. The
budget constraint in the asset market faced by the representative agent of
country j is:

qe
1,t z

j
1,t+1 + qn

1,t x
j
1,t+1 + ζt[qe

2,t z
j
2,t+1 + qn

2,t x
j
2,t+1] + mj

1,t + ζtm
j
2,t

≤ hj
t + qe

1,t z
j
1,t + qn

1,t x
j
1,t + ζt[qe

2,t z
j
2,t + qn

2,t x
j
2,t ], (14.59)

where qn
i,t is the real price at time t of an equity share of the non-traded

good in country i measured in units of good Yi.
In the goods market, the following cash-in-advance constraints apply to

the purchases of goods Y1 and Y2 by the agent from country 1:

c1
1,t + c1

n,tζ
n
1,t ≤ m1

1,t , (14.60)

ζt c1
2,t ≤ ζtm1

2,t , (14.61)
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and for the agent from country 2:

c2
1,t ≤ m2

1,t , (14.62)

ζt[c2
2,t + c2

n,tζ
n
2,t ] ≤ ζtm2

2,t . (14.63)

After the goods market closes, the agent receives the nominal dividend
payments on the claims from both countries.

Define ζ : S → R++, ζ n : S → R++, and qe
i : S → R++ for i = 1, 2 to

be strictly positive, continuous functions. Also define the nominal price of
traded and non-traded goods pi : S×R2

+ → R++ and pn
i : S×R2

+ → R++
for i = 1, 2, and the nominal exchange rate e : S × R2

+ → R++ to be
strictly positive, continuous functions. For notational convenience, define
the vector αj ≡ (zj

1, zj
2, xj

1, xj
2). The consumer’s state consists of hj, αj and

the current shock s. Given the price functions ζ , ζ n
i , e, qe

i , pi and pn
i for

i = 1, 2, the resident of country j chooses (cj
1, cj

2, cj
n, mj

1, mj
2,αj′) to solve:

V (hj,αj, s) = max
{
U (cj

1, cj
2) + W (cj

n) + βEs[V (hj′,αj′, s′)]
}

subject to the asset market constraint (Equation 14.59), the law of motion
for post-transfer real balances (Equation 14.57 or 14.58), and the cash-in-
advance constraints (Equations 14.60 and 14.61 or 14.62 and 14.63). The
market-clearing conditions require that c1

i +c2
i = yi, ci

n = ni, M 1
i +M 2

i = Mi,
z1

i + z2
i = 1, x1

i + x2
i = 1 for i = 1, 2.

In the first section, we assumed that agents are identical in equilibrium.
In the presence of non-traded goods, we continue to assume that each
consumer consumes half the endowment of each country and holds half
the shares of the traded goods. To determine the holdings of equity shares
of the non-traded endowments, substitute these conditions into the agents’
holdings of money balances at the beginning of the period. For i = 1,

h1
t = π1,t [m1

t−1+ζ n
1,t−1n1,t−1(x1

1,t −1)]+ζtπ2,t[m1
2,t−1+n2,t−1x1

2,t]+τ 1
1,t +ζtτ

1
2,t .

We have a similar expression for h2
t . Under the assumption that agents

are identical in their consumption of traded goods and holdings of equity
shares on traded goods, a stationary equilibrium requires that agents do not
hold claims on the non-traded goods of the foreign country, x̂1

2 = x̂2
1 = 0

and x̂1
1 = x̂2

2 = 1. Under this allocation, ĥ1 = ĥ2, which equal world real
balances . 5

[
(M1,t/p1,t) + ζt(M2,t/p2,t)

]
.6 Notice that in equilibrium, asset

holdings are given by α̂1 = (. 5, . 5, 1, 0) for residents of country 1 and
α̂2 = (. 5, . 5, 0, 1) for residents of country 2 while equilibrium consumption
satisfies ĉj

1 = . 5y1, ĉj
2 = . 5y2, and ĉj

n = nj for j = 1, 2.

6 If we set xi
j = . 5 for i, j = 1, 2, the real balances held by the two agents would no longer be equal

(h1 �= h2). In that case, we would be unable to sustain a perfectly pooled equilibrium in the traded
goods and assets markets because the endowment processes for the non-traded goods are not
identical while agents have the same utility function for consumption of the non-traded good.
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Let μi(s) denote the multiplier for the cash-in-advance constraint on
good i, and ξ (s) denote the multiplier on the budget constraint in the asset
market. Define Ui(s) as before and let Wi(s) denote the marginal utility
with respect to the ith non-traded good. The equilibrium first-order condi-
tions with respect to c1, c2, cn, m1, m2, z1, z2, x1, and x2 for the representative
consumer from country 1 are:

U1(s) = μ1(s) + βEs
[
ξ (s′)π1(s′)

]
, (14.64)

U2(s) = ζ (s)μ2(s) + βEs
[
ξ (s′)π2(s′)ζ (s′)

]
, (14.65)

W1(s) = ζ n
1 (s)μ1(s) + βEs

[
ξ (s′)π1(s′)ζ n

1 (s′)
]

, (14.66)

ξ (s) = μ1(s) + βEs
[
ξ (s′)π1(s′)

]
, (14.67)

ζ (s)ξ (s) = ζ (s)μ2(s) + βEs
[
ξ (s′)π2(s′)ζ (s′)

]
, (14.68)

qe
1 (s)ξ (s) = βEs

{
ξ (s′)[π1(s′)y1(s) + qe

1 (s
′)]
}

, (14.69)

qe
2(s)ζ (s)ξ (s) = βEs

{
ξ (s′)ζ (s′)[π2(s′)y2(s) + qe

2(s)]
}

, (14.70)

qn
1 (s)ξ (s) = βEs

{
ξ (s′)[π1(s′)ζ n

1 (s)n1(s) + qn
1 (s′)]

}
, (14.71)

qn
2 (s)ζ (s)ξ (s) = βEs

{
ξ (s′)ζ (s′)[π2(s′)ζ n

2 (s)n2(s) + qn
2 (s′)]

}
. (14.72)

The slackness conditions can be derived in a straightforward manner.
A similar set of conditions characterizes the problem of a representative

consumer from country 2. The only different condition involves the non-
traded good from country 2:

W2(s) = ζ (s)ζ n
2 (s)μ2(s) + βEs

[
ξ (s′)π2(s′)ζ (s′)ζ n

2 (s′)
]

. (14.73)

We now derive the implications of this model for equilibrium prices.
The right side of Equation (14.64) equals the right side of Equation (14.67)
so that U1(s) = ξ (s). Similarly, the right side of Equation (14.65) equals
the right side of Equation (14.68) so that U2(s) = ζ (s)ξ (s). Finally, using
Equations (14.64) and (14.66) together yields a solution for ζ n

1 (s) as:

ζ n
1 (s) = W1(s)

U1(s)
. (14.74)

This says that the relative price of the non-traded good in country 1 is
defined in terms of the MRS in consumption between the traded and non-
traded good. We can derive a similar expression for ζ n

2 (s).
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It is straightforward to demonstrate that the inverse of the velocity
function for country i satisfies:

Ui(s)[yi(s) + ζ n
i (s)ni(s)]�i(s) = max

{
Ui(s)[yi(s) + ζ n

i (s)ni(s)],

βEs

(
Ui(s′)[yi(s′) + ζ n

i (s′)ni(s′)]�i(s′)
ωi(s′)

)}
. (14.75)

Introducing non-traded goods into this setup creates another way for
velocity to fluctuate because it depends on the relative price of the traded
to the non-traded good.

The nominal exchange rate is determined from Equations (14.65) and
(14.68), from which it follows that U2(s) = ζ (s)U1(s). Hence,

e(s, M ) = U2(s)
U1(s)

M1

M2

[y2(s) + ζ n
2 (s)n2(s)]

[y1(s) + ζ n
1 (s)n1(s)]

��
2 (s)

��
1 (s)

, (14.76)

where ��
i denotes the solution to Equation (14.75). Notice that the terms

of trade (ζ = U2/U1) and the relative price of non-traded goods affect the
nominal exchange rate. The effect of an increase in the supply of the non-
traded good on the exchange rate will depend on the sign of W ′′n + W ′.
If the supply of n1 increases and if W ′′n + W ′ < 0, then the exchange rate
increases (or depreciates).

The price of a one-period nominal bond that pays one unit of currency
i next period with certainty satisfies:

Qi
1 (s) = βEs

[
Ui(s′)�i(s′)[yi(s′) + ζ n

i (s′)ni(s′)]
Ui(s)�i(s)[yi(s) + ζ n

i (s)n1(s)]ωi(s′)

]
. (14.77)

Notice that changes in the supply of the non-traded good affect the nom-
inal interest rate. In this model, velocity is constant whenever interest
rates are positive. The bond price can be substituted into the functional
equation for � and clearly if nominal interest rates are positive, then the
cash-in-advance constraint is binding.

14.3.2. Exchange rates and international capital flows

We now introduce a model with investment and international capital
flows. Our discussion derives from the paper by Stockman and Svensson
[417]. This model has the Stockman-Svensson timing convention which
assumes that the goods market opens first and the consumer makes goods
purchases using the sellers’ currencies and then the asset market opens.

In this model, countries are completely specialized in production. Out-
put of the domestic good denoted x1,t depends on the domestic capital
stock denoted kt and a random disturbance θt as:

x1,t = f (kt , θt), (14.78)



International asset markets 449

where f (·, θ ) is strictly increasing, strictly concave, and differentiable. The
capital stock depreciates 100% each period. Output of the foreign good
denoted x2,t is exogenous. Only the foreign good can be used for domestic
investment. Investment at time t transforms the foreign goods into domes-
tic capital at time t + 1 so that the quantity of foreign goods available for
world consumption at time t is x2,t − kt+1.

The shocks to the economy st follow a first-order Markov process with
a transition function F that satisfies the conditions of Assumption 13.1.
The money supplies in each country evolve according to Equation (14.14)
and satisfy Assumption 14.4. The endowment of country 2 at time t
is a time-invariant function of the exogenous shock, x2,t ≡ x2(st) and so
is the disturbance to the production function of country 1 which we
denote by θt ≡ θ (st). Define X ≡ [x2, x̄2] and �≡ [θ , θ̄ ], where x2 > 0,
x̄2 < ∞, θ > 0 and θ̄ < ∞. We assume that x2 : S → X and
θ : S → � are continuous functions that are bounded away from zero.
Since output takes values in a compact set and there is 100% depreciation,
notice that kt+1 takes values in the compact set K≡ [k, k̄] where k > 0
and k̄ < ∞.

The household in country j begins the period with holdings of domestic
and foreign currency denoted M j

1,t and Mj
2,t and claims to dividends zj

1,t and
zj

2,t for the production processes in each country. There is one outstand-
ing equity share in each production process. The household is assumed to
be the owner of the capital stock and, at the beginning of the period, it
rents out the capital accumulated the previous period kj

t in exchange for
rental income paid by the firm after the goods market closes. We assume
that there is a competitive rental market so that households and firms are
price-takers.7 Essentially the firm receives the nominal revenue from sell-
ing output in the goods market and, after the close of the market, it pays
rent and dividends to households so that the firm holds no money between
periods.

After the goods markets close, the asset markets open and all interest and
dividend payments are made, factor payments are made to the owners of
capital, and assets are traded. The consumer in country j also receives the
lump-sum money transfers T j

i,t from the government of country i which

equal the net growth of money, T j
i,t = [ωi(st) − 1]M̄i,t . The constraint in

the asset market for the representative consumer in country j at time t
denominated in units of the domestic currency is:

7 The assumption that households own the capital stock and rent it to the firm differs from the setup
in Stockman and Svensson who assume that, when the consumer holds a share in the domestic firm,
it receives the dividends d1,t from the firm but in addition, it agrees to deliver investment goods to
the firm in each period equal to kt+1.
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pt c
j
1,t + etp2,t(c

j
2,t + kj

t+1) + Mj
1,t+1 + etM

j
2,t+1 + Qe

1,t z
j
1,t+1

+ etQe
2,t z

j
2,t+1 ≤ (Qe

1,t + p1,td1,t)z
j
1,t + et(Qe

2,t + p2,td2,t)z
j
2,t

+ Mj
1,t + T j

1,t + et(M
j
2,t + T j

2,t ) + Rtk
j
t ,

where Rt is the nominal rent paid to owners of the capital stock. The cash-
in-advance constraints are:

p1,t c
j
1,t ≤ Mj

1,t ,

etp2,t(c
j
2,t + kj

t+1) ≤ etM
j
2,t .

Since the money supplies are growing, we divide the nominal constraints
by the domestic currency price of country 1’s goods to convert nominal
quantities into units of good 1. The asset market constraint becomes:

cj
1,t + ζt(c

j
2,t + kj

t+1) + Mj
1,t+1

p1,t
+ ζt

Mj
2,t+1

p2,t
+ qe

1,t z
j
1,t+1

+ ζtqe
2,t z

j
2,t+1 ≤ (qe

1,t + d1,t)z
j
1,t + ζt (qe

2,t + d2,t)z
j
2,t

+ Mj
1,t

p1,t
+ τ

j
1,t + ζt

(
Mj

2,t

p2,t
+ τ

j
2,t

)
+ rtk

j
t , (14.79)

where ζt ≡ etp2,t/p1,t , rt ≡ Rt/p1,t , qe
i,t ≡ Qe

i,t/pi,t , and τi,t ≡ Ti,t/pi,t for
i = 1, 2. Likewise, the cash-in-advance constraints become:

cj
1,t ≤ Mj

1,t/p1,t , (14.80)

ζt(c
j
2,t + kj

1,t+1) ≤ ζtM
j
2,t/p2,t . (14.81)

Consumers in both countries have identical information and portfolios
and their preferences are defined as in Equation (14.1), where the utility
function satisfies Assumption 14.2. The household observes the current
exogenous shock s and so observes the current disturbance to domestic
production, the endowment of country 2, and the money growth rates.
The consumer’s state at time t is summarized by its money holdings
Mj

1 , Mj
2, equity holdings zj

1, zj
2, and its stock of capital kj. The aggregate

state consists of the aggregate capital stock k and the current shock s.
We will seek an equilibrium in which the terms of trade, the rental rate,

and the equity prices are time-invariant functions of k and s, and the nom-
inal exchange rate and nominal prices levels are time-invariant functions
of s, k, and M ≡ (M̄1, M̄2). Define S ≡ S × K. Define ζ : S → R++,
r : S → R++, and qe

i : S → R++ for i = 1, 2 to be positive, continuous
functions and pi : S × R2

+ → R++ for i = 1, 2 and e : S × R2
+ → R++

to be positive, continuous functions. For notational convenience, define
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αj ≡ (Mj
1 , Mj

2, zj
1, zj

2, kj). Given the price functions ζ , e, r and qe
i and pi for

i = 1, 2, the representative agent’s problem in country j is to solve:

V (αj, k, s) = max
c
j
1 ,c

j
2,αj′

{
U (cj

1, cj
2) + βEs[V (αj′ , k, s′)]

}

subject to the asset market constraint (Equation 14.79) and the cash-in-
advance constraints (Equations 14.80 and 14.81). We can show the existence
of the consumer’s value function using the methods defined earlier.

The market-clearing conditions are:

c1
1,t + c2

1,t = x1,t , (14.82)

c1
2,t + c2

2,t + k1
t+1 + k2

t+1 = x2,t , (14.83)

z1
i,t+1 + z2

i,t+1 = 1, (14.84)

M 1
i,t+1 + M 2

i,t+1 = ωi(st)M̄i,t , (14.85)

for i = 1, 2.
We assume that the optimal consumption and capital holdings by the

representative consumer in country j can be expressed as time-invariant
functions of the aggregate state, c1(k, s), c2(k, s), and K (k, s). Define Ui(k, s)
as the partial derivative of U with respect to its ith argument evaluated
at ci(k, s) for i = 1, 2. Let ξ (k, s) denote the Lagrange multiplier on the
asset market constraint and μi(k, s) denote the Lagrange multiplier on
the cash-in-advance constraints. Substituting the envelope conditions, the
first-order conditions with respect to ci, M ′

i , z′
i for i = 1, 2 and k′ are:

U1(k, s) = ξ (k, s) + μ1(k, s), (14.86)

U2(k, s) = ζ (k, s)[ξ (k, s) + μ2(k, s)], (14.87)

ξ (k, s) = βEs{π1(k′, s′)[ξ (k′, s′)

+ μ1(k′, s′)]}, (14.88)

ζ (k, s)ξ (k, s) = βEs{π2(k′, s′)ζ (k′, s′)[ξ (k′, s′)

+ μ2(k′, s′)]}, (14.89)

qe
1 (k, s)ξ (k, s) = βEs{ξ (k′, s′)[d ′

1 + qe
1 (k

′, s′)]}, (14.90)

ζ (k, s)qe
2(k, s)ξ (k, s) = βEs{ζ (k′, s′)ξ (k′, s′)[d ′

2

+ qe
2(k

′, s′)]}, (14.91)

ζ (k, s)[ξ (s) + μ2(k, s)] = βEs[ξ (s′)r(k′, s′)]. (14.92)
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In these expressions, πi(k′, s′) ≡ pi(k, s, M )/pi(k′, s′, M ′) for i = 1, 2. We
also have the slackness conditions with respect to the multipliers ξ (k, s)
and μi(k, s) for i = 1, 2.

For country 2, where the output of good 2 is determined exogenously,
the dividend is equal to the amount of good 2 produced so that d2 = x2(s).
Now turn to the problem solved by a firm which produces good 1. The
firm chooses the amount of capital kt to rent that maximizes its profits; it
solves:

d1,t ≡ max
kt

[f (kt , θt ) − rtkt]. (14.93)

The firm rents capital up to the point where its marginal product equals
the rental rate. When capital markets clear, the amount hired by firms just
equals the amount held by the representative household. The profits of the
firm are paid out as dividends to shareholders.

The first-order condition for investment, with the equilibrium condi-
tion rt = fk(kt , θt) substituted in, is:

βEt[ξt+1fk(kt+1, θt+1)] = (ξt + μ2,t)ζt = U2,t , (14.94)

where fk denotes the partial derivative of f (k, θ ) with respect to k. The
right side is just the marginal cost of investment at time t. The left side
shows the expected marginal benefit at time t + 1: a higher value of capital
at time t + 1 produces additional output at t + 1 and ξt+1 is the marginal
utility of this income.

We study the pooled equilibrium for this model. The pooled equilib-
rium requires that:

c1 = x1/2, c2 = [x2 − K (k, s)]/2,

z′
i = 1/2, M ′

i = ωi(s)M̄i/2, i = 1, 2.

We assume that the utility function in each country U is separable with
respect to c1 and c2. In this case, we can use the conditions in Equa-
tions (14.86), (14.88), and (14.94) to solve for the function K and the
inverse of the velocity function in country 1. Since U is separable, we can
write U1 and U2 as functions of the equilibrium consumption of domestic
and foreign goods only, U1(x1/2) and U2[(x2 − k′)/2].

We add the cash-in-advance constraints for members of country 1 and 2
in the domestic and the foreign currency and define the functions:

�1 ≡ M̄1/p1x1, (14.95)

�2 ≡ M̄2/(p2x2 + k′). (14.96)
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Notice that we can derive an expression for the multiplier on the cash-in-
advance constraint for country 1 as:

U1(k, s)�1(k, s)x1 = μ1(k, s) + βEs

[
U1(k′, s′)�1(k′, s′)x′

1

ω1(s′)

]
.

In equilibrium, x1(k, s) = f (k, s) is given. It will be more convenient to
derive a mapping for the function:

�(k, s) ≡ U1(k, s)�1(k, s)x1(k, s)

from the above expression by considering the cases when μ1 = 0 and μ1 >

0 as:

�(k, s) = max

[
U1(k, s)x1(k, s),βEs

(
�(k′, s′)
ω(s′)

)]
. (14.97)

Notice that k′ is a decision variable. If the capital process were given exoge-
nously, then we could define an operator with a fixed point �� that satisfies
Equation (14.97). Instead, we need to solve also for the equilibrium capital
path. Here we will outline the steps that are necessary to solve this model.

Recall that the first-order condition for investment can be expressed as:

U2[x2(s) − k′] = βEs[ξ (k′, s′)fk(k′, θ ′)] (14.98)

Notice that U2 is increasing in k′ given s so that we can define k′ from
φ(k, s) = U2[x2(s) − k′] for φ1 > 0 as:

k′ = H (φ, s) = x2(s) − U −1
2 (φ).

Notice also that H is increasing in its first argument. Let K (k, s) be a fea-
sible solution and define φ(k, s) ≡ U2[x2(s) − K (k, s)]. We can then write
Equation (14.98) as:

φ(k, s) = βEs{ξ(H [φ(k, s), s], s′)fk(H [φ(k, s), s], θ ′)}. (14.99)

Notice that we evaluate φ at (k, s) on both sides of the equation. By
assumption fk is strictly decreasing in its first argument. For fixed (k, s),
consider the solution scalar φ > 0, that is, the solution to:

φ = βEs{ξ [H (φ, s), s′]fk[H (φ, s), θ ′]}. (14.100)

If we assume that ξ is decreasing in its first argument, then for fixed (k, s)
the left side is clearly increasing in φ and the right side is strictly decreasing
so there exists a unique solution φ for each (k, s) pair. Let (Sξ )(k, s) denote
the solution φ to Equation (14.100).

Given the function �, we can define the multiplier function ξ using the
following argument. Let K (k, s) be given. When μ1 = 0, ξ (k, s) = U1(s) and
�(k, s) =βEs[�(k′, s′)/ω(s′)]. When μ1 > 0, then �(k, s) = U1(s)x1(s) and
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ξ (k, s) =βEs[�(k′, s′)/(x1(s)ω(s′))]. From the definition of the function �,
it follows that:

ξ (k, s) ≡ min

[
U1(k, s),βEs

(
�(k′, s′)
x1(s)ω(s′)

)]
. (14.101)

Let T2 be the operator that yields ξ from � or ξ (k, s) = (T2�)(k, s). Given
ξ (k, s) = (T2�)(k, s), we can find the solution φ to Equation (14.100).
Define the operator T1 by:

φ(k, s) ≡ (T1�)(k, s)

= βEs
{
(T2�)(H [φ(k, s), s], s′)fk(H [φ(k, s), s], θ ′)

}
.
(14.102)

We can now define the operator T∞ as follows:

�n+1(k, s) = (T∞�n)(k, s)

= max

[
U1(k, s)x1(k, s),βEs

(
�n{H [φ(k, s)], s′}

ω(s′)

)]
,

(14.103)

where φ(k, s) = (T1�)(k, s) is the solution to the previous mapping. The
form of this mapping is different from the other mappings that we stud-
ied earlier. A proof can be constructed using the approach in Deaton and
Laroque [139] but it is beyond the scope of our analysis to provide the
entire derivation. Assuming a solution has been found, let ξ�(k, s) denote
a fixed point and let K �(k, s) be the optimal investment function. Given
the solution for ��

1 (k, s) and K �(k, s), we can use Equations (14.87) and
(14.89) to solve for �2(k, s) and Equations (14.90) and (14.91) to solve for
the equity prices qe

1 (k, s) and qe
2(k, s).

Since there is one equity share outstanding, the value of the firm is just
qe

1,t . We can derive an expression for firm value by solving Equation (14.90)
forward:

qe
1,t = 1

ξt
Et

( ∞∑
τ=t+1

β t−τ {ξ�(k�τ , sτ )[x1(k�τ , sτ ) − fk(k�τ , θτ )k�τ ]}
)

,

where we have made use of the fact that equilibrium dividends at each date
τ are equal to domestic profits at that date.

We now use this framework to define a number of accounting identi-
ties involving international capital flows. The domestic country’s current
account surplus is defined as the change in its net holdings of foreign assets,
which is also the capital account deficit. We denote the capital account
deficit (current account surplus) in period t, measured in units of the
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domestic good, by Ct . The total world values of foreign assets V2,t and
domestic assets V1,t are:

V1,t = qe
1,t + ω1(st)m1,t , (14.104)

V2,t = ζt [qe
2,t + ω2(st)m2,t], (14.105)

where mi,t ≡ M̄i,t/pi,t for i = 1, 2 denote the world real balances of the
domestic and foreign currencies. Foreign assets consist of shares in the for-
eign firm and the real balances of foreign money. Domestic assets are the
shares in the home firm and real balances of domestic money.

Households in the domestic country have a net foreign account asset
position at the end of period t, denoted Ft , which is given by:

Ft = V2,t/2 − V1,t/2. (14.106)

The current account surplus in period t is:

Ct = �Ft = (V2,t − V2,t−1 − V1,t + V1,t−1)/2, (14.107)

where � denotes the first difference operator. Define domestic saving St

as the change in domestic wealth, St =�(V2,t/2 + V1,t/2), and domestic
investment It as the change in the value of domestic assets, It =�V1,t . The
current account surplus Ct can be written as:

Ct = St − It . (14.108)

We now define the balance-of-trade surplus and the service account sur-
plus. The trade account surplus measured in domestic goods is defined
as:

TAt = c2
1,t − ζt (c1

2,t + kt+1) = x1,t/2 − ζt[x2,t + K (kt , st)]/2.

The first term shows exports, which equal half of domestic output. The sec-
ond term shows imports of consumption goods and the third term shows
imports of goods for investment.

The service account surplus consists of net dividends or interest payments
and capital gains on all assets:

SAt = [ζt x2,t − x1,t + K (kt , st) + �(ζtqe
2,t − qe

1,t) + ζt(ω2,t − 1)m2,t

− (ω1,t − 1)m1,t + (�ζtp−1
2,t )M̄2,t − (�p−1

1,t )M̄1,t]/2.

The first three terms are the net dividends from the foreign and domes-
tic production processes received by the domestic country. The fourth
and fifth terms show the capital gains on foreign equity minus foreign-
ers’ capital gains on domestic equity. The sixth and seventh terms show the
receipt of foreign monetary transfers minus the payment of domestic mon-
etary transfers. The last two terms show domestic capital gains on holdings
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of foreign currency minus foreign capital gains on holdings of domestic
currency. Notice that Ct = TAt + SAt .

One difference between these measures and reported current-account
data is that capital gains are arbitrarily excluded from the latter so that the
sum of SAt and TAt does not equal the change in the net foreign asset
position. Also, the definitions of saving and investment given above do not
correspond to national-income-accounting (NIA) definitions. The NIA
definition of gross domestic savings is the difference between “income”
defined as [x1,t + ζt(x2,t + kt+1)]/2 and consumption:

[x1,t + ζt(x2,t + kt+1)]/2 − c1
1,t − ζt c1

2,t = kt+1.

The NIA definition of gross domestic investment is kt+1 so savings minus
investment is zero according to the NIA definitions and it is not equal to
the change in the net foreign asset position.

Stockman and Svensson use the solution to the model to analyze the
determinants of the current account surplus (the capital account deficit)
and the covariation between capital flows Ct and such variables as invest-
ment (defined as kt+1 − kt), national outputs, x1,t and x2,t , the terms of
trade ζt , and the rate of change in the exchange rate. For example, we can
ask under what conditions real appreciation of the domestic currency is
associated with a current account surplus versus a deficit. Stockman and
Svensson find that these covariances depend on the degree of risk aver-
sion (or the degree of intertemporal substitution in consumption), the size
and magnitude of net foreign assets, the marginal product of capital, and
the stochastic properties of the disturbances to productivity and money
growth. To derive such results, we need to use the properties of the opti-
mal investment policy K �(k, s), the inverse velocity functions ��

i (k, s), and
the equity price functions qe

i (k, s) for i = 1, 2.

14.4. C O N C L U S I O N S

In this chapter, we have provided both real and nominal models of inter-
national trade and exchange. The real models allow us to analyze risk
sharing and portfolio diversification across countries and to analyze the
sources of international business cycles. By contrast, the nominal models
provide a useful framework for examining exchange risk, the determina-
tion of forward and future prices of foreign exchange and similar issues.
Incorporating capital into international models also allows an analysis of
capital international flows.

14.5. E X E R C I S E S

1. Consider the dynamic programming problem defined in Equa-
tion (14.29). Define φ(s) ≡ V (h(s), 0. 5, 0. 5, s) and let φh = Vh, φ1 = Vz1 ,
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and φ2 = Vz2 denote the first partial derivative of the consumer’s val-
uation function with respect to h, z1 and z2, respectively, evaluated at
equilibrium money and asset holdings, and the current state.

Derive the equilibrium first-order conditions and envelope con-
ditions for the consumer’s problem and show that they yield the
conditions described by Equations (14.30) through (14.35).

2. Siegel’s Paradox
Siegel [401] has argued that the proposition that the level of the for-

ward rate is equal to the expected value of the level of the future spot
rate would lead to a contradiction. If this were true for exchange rates
quoted as the British pound per US dollar, then it could not be true for
the exchange rate quoted as US dollar per British pound.
(a) Using Jensen’s inequality, state the nature of Siegel’s paradox.
(b) Comment on Siegel’s paradox in an equilibrium model with risk-

neutral consumers.
3. Derive the forward rate and the risk premium, the futures price, and the

stock prices for the two-country model with the Stockman-Svensson
timing.

4. 8 Modify the two-country model with the Stockman-Svensson timing
in the previous exercise by assuming that the government does not con-
sume any endowment and that money is injected by way of a lump-sum
transfer at the beginning of the asset market. Assume, however, that
agents can trade the two currencies taken to the goods market. For a
representative agent who enters the good market with holdings H1,t and
H2,t , the following budget constraint holds:

H1,t + ētH2,t ≥ !i,t H̄1,t + ēt!2,t H̄2,t

where ēt is the equilibrium exchange rate in the exchange market that
meets at the same time as the goods market, !i is the nominal price of
acquiring one more unit of currency i, and H̄1,t and H̄2,t are the adjusted
money holdings. The agent now has two additional decision variables,
H̄1,t and H̄2,t .
(a) Derive the first-order conditions for the new decision variables and

determine the equilibrium price ! and the exchange rate.
(b) Derive the equilibrium prices p̄1 and p̄2. Derive the forward

exchange rate.
5. 9 Variations in the roles of national currencies in the international econ-

omy are studied. Assume that there is only one endowment good which
is received by both countries. Let ph denote the price of the good in
units of the home country currency and let pf denote the price of the

8 This exercise derived from Engel [172].
9 This exercise derived from Helpman and Razin [251].
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good in units of the foreign country currency. Assume that the timing
corresponds to that of the Lucas version of the model. If the endow-
ment good of both countries is to be bought and consumed, then the
law of one price must hold: ph = epf .

Consider two monetary mechanisms. Under the first, the seller will
accept only domestic currency. This is the mechanism that we have
used throughout our discussion of international cash-in-advance mod-
els. Under the second mechanism, we assume that all transactions are
constrained to take place with the buyer’s domestic currency.
(a) Derive the first-order conditions and equilibrium prices, real and

nominal exchange rates, and equilibrium nominal interest rates
under the first mechanism. Derive the forward rate.

(b) Derive the first-order conditions and equilibrium prices, real and
nominal exchange rates, and equilibrium nominal interest rates
under the second mechanism. Derive the forward rate.

6. 10 Consider the Lucas two-country model and assume that preferences
are given by:

U (c1, c2) = [θc1−γ
1 +(1−θ )c1−γ

2 ]/(1−γ ), γ ≥ 0, 0 < θ < 1.

(a) Find expressions for the changes in the logs of the nominal and real
exchange rates.

(b) To be broadly consistent with actual experience, the model must
produce real and nominal exchange rates that are of roughly equal
variance and that are highly correlated. Using your answer to (a),
show that the Lucas model generally requires monetary variability
to be more important than real variability for these results to obtain.

7. Assume that shares to the monetary transfers are traded in the Lucas
version of the two-country model. Determine the equilibrium price of
the shares under the assumption that there is a pooled equilibrium.

10 This exercise is derived from Mark [334].
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Models with market incompleteness





C H A P T E R 15

Asset pricing with frictions

Up to this point, our discussion has been based on frictionless trading
in a representative consumer context. In Chapter 2, we argued that trad-
ing frictions such as short sales constraints or transactions costs can alter
the implications of a variety of asset-pricing relations. As an example, we
showed that in the presence of such frictions, a strict form of the Law of
One Price may fail to hold. In this chapter, we will introduce such frictions
into asset-pricing models and discuss some of the empirical implications.
We will also consider some of the empirical implications of allowing for
market incompleteness for asset-pricing phenomena. Various authors have
noted that such models have the potential to account for a variety of
economic phenomena that cannot be explained easily using the simple
representative consumer economies that we have studied so far.

As our earlier discussion indicates, resolution of such asset-pricing
anomalies as the “equity premium puzzle,” the “real risk-free rate puzzle,”
and the behavior of the term premiums may lie in the relaxation of the
representative consumer, complete markets assumption. In a representative
agent model, all asset returns are driven by a common stochastic discount
factor which suggests that, to some extent, stocks and bonds should tend
to move together. Yet the empirical evidence appears to be at odds with
this requirement.1 By introducing market incompleteness, borrowing con-
straints, and other sorts of frictions, some have suggested that this close
link can be broken. In this chapter, we will study the asset-pricing implica-
tions of uninsurable idiosyncratic risk. It turns out that the results hinge on
the nature of uninsurable idiosyncratic risk. As Constantinides and Duffie
[119] demonstrate, a resolution of asset-pricing anomalies requires that
volatility of idiosyncratic income risk vary with the aggregate state of the
economy. We will also introduce a model with bid-ask spreads and review
some of the empirical implications regarding the impact of transactions
costs.

The final topic in this chapter is the construction of volatility bounds
with frictions. Following Luttmer [327] and He and Modest [246], we

1 See, for example, Barsky [46].

461
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show how to derive volatility bounds for intertemporal MRSs when there
exist short sales constraints, and other frictions.

15.1. T H E R O L E O F I D I O S Y N C R A T I C R I S K

F O R A S S E T P R I C I N G

In Chapter 7, we examined the implications of the full risk-sharing hypoth-
esis in intertemporal environments where there is both idiosyncratic and
aggregate risk. We showed that in a situation where there is only idiosyn-
cratic risk, consumers can insure away all fluctuations in their consumption
stream. By contrast, when there is aggregate risk, the full risk-sharing
hypothesis implies that some risk must be borne by consumers. We also
showed that the common intertemporal MRS across consumers in the full
risk-sharing equilibrium is equal to the pricing function or pricing kernel
used to price any asset in this equilibrium.

To understand the role of idiosyncratic risk, consider the basic asset-
pricing equation:

1 = Et
[
Mi,t+1Rjt

]
, (15.1)

where Rjt denotes the (gross) return on any asset and Mi,t+1 is the intertem-
poral MRS for each consumer i. Under the complete markets assumption,
consumers set their intertemporal MRSs equal to the common ratio of
the contingent claims prices, pt+1/pt , as discussed in Chapter 7. Typically,
this ratio depends on the history of the shocks and hence varies in a ran-
dom fashion so that the common intertemporal MRS is the stochastic
discount factor. In the representative consumer pure exchange economy of
Chapter 8, the stochastic discount factor is equal to the random intertem-
poral MRS of the representative consumer and can be evaluated using a
parametric specification of preferences and aggregate or per capita con-
sumption data. With incomplete markets, asset-pricing relations based on
an intertemporal MRS evaluated with aggregate or per capita consumption
data are not valid. Likewise, market frictions such as short sales constraints
and bid-ask spreads will alter the relationship between individual intertem-
poral MRSs and the common stochastic discount factor used to value
random payoffs.

One approach to characterizing the stochastic discount factor in incom-
plete market settings is to solve directly for the asset-pricing function. An
early example of this approach is provided by Scheinkman and Weiss [391],
who consider an economy with heterogeneous agents and borrowing con-
straints. In their framework, idiosyncratic shocks are perfectly negatively
correlated across agents, implying that the complete contingent claims
allocations are constant across consumers. However, in the presence of
uninsurable idiosyncratic risk and borrowing constraints, they show that
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the allocations and the asset price depend on the average holdings of the
asset that agents use to smooth consumption over time. Put differently,
the cross-sectional distribution of wealth varies over time and helps to
determine economic outcomes. We analyze more formally models with
borrowing or short sales constraints in Chapter 16.

A variety of papers have used versions of this type of model to examine
the role of idiosyncratic risk on allocations and asset prices. In a model with
no aggregate uncertainty and with i.i.d. shocks for individuals, Aiyagari
and Gertler [11] have found in simulations that the borrowing constraints
did not generate enough volatility of asset returns. To improve their results,
they also included transactions costs. This is similar to the results of the
papers by Heaton and Lucas [249, 250], who work with a three-period
model and incorporate transactions costs, short sales constraints, and bor-
rowing constraints. Telmer [429] develops a model in which there is both
aggregate and individual uncertainty. He finds that introducing a risk-free
asset allows the agents to do a great deal of consumption smoothing.2

Constantinides and Duffie [119] have pointed out that in most of these
models, the idiosyncratic labor income shocks are i.i.d. and hence tran-
sient so that the permanent income of agents is almost equal across agents
despite imperfect risk sharing. Hence, the consumption-smoothing oppor-
tunities afforded by a risk-free bond are almost enough to allow risk sharing
and that this is the reason transactions costs and short sales constraints are
needed. See also Krusell and Smith [293] and Storesletten, Telmer, and
Yaron [422], amongst others.

To illustrate the impact of idiosyncratic risk using a simple example, sup-
pose that the intertemporal MRS and asset returns are jointly log-normally
distributed. Under these assumptions we showed in Chapter 8 that the
excess return on the risky asset relative to the risk-free asset, or the risk
premium, can be expressed as:

Et(rt+1) − r f
t + 1

2
Vart (rt+1) = −Covt (mi,t+1, rt+1), (15.2)

where rt+1 = ln (Rt+1), mit+1 = ln (Mi,t+1), and r f
t is the real risk-free rate.

This expression says that the expected excess return plus the variance of
returns (due to the Jensen effect) equals the risk premium. Suppose also
that preferences are of the CRRA variety. This implies that:

ln (mi,t+1) = ln (β) − γ�ci,t+1,

where �ci,t+1 = ln (Ci,t+1/Cit). Thus, the expression for the risk premium
becomes:

Et(rt+1) − r f
t + 1

2
Vart (rt+1) = γCovt (�ci,t+1, rt+1). (15.3)

2 Other related papers are by Brown [81] and Danthine, Donaldson, and Mehra [137].



464 Asset Pricing for Dynamic Economies

Now suppose that individual consumption growth has an aggregate and an
idiosyncratic component as:

�ci,t+1 = At+1 + εi,t+1. (15.4)

Notice that only the aggregate risk will get priced in equilibrium. Equiv-
alently, the conditional covariance of any return that is traded with the
idiosyncratic part of consumption growth will be zero. (Recall also our dis-
cussion in Chapter 8.) Hence, idiosyncratic risk that enters linearly in a log
SDF will not affect asset-pricing relations.3

As various authors have noted, idiosyncratic shocks can affect asset
prices in equilibrium only if their variance depends on the aggregate
state. Mankiw [331] shows that the concentration of uninsurable idiosyn-
cratic shocks throughout the population affects the equity premium. In
his model, idiosyncratic income risk in an incomplete markets setting
affects the equity premium because the volatility of idiosyncratic shocks
depends negatively on aggregate consumption. Similarly, Constantinides
and Duffie [119] assume that uninsurable idiosyncratic shocks are both
persistent and heteroscedastic and that the conditional volatility of the
idiosyncratic shocks is a function the aggregate state of the economy. These
authors employ the device of postulating an idiosyncratic income process
under which the no-trade allocation for each consumer is an equilibrium.
Specifically consider a pure exchange economy populated with a large
number of agents such that each agent has the exogenous income process:

yit = δitCt − Dt , (15.5)

where Ct is aggregate consumption, Dt is the aggregate dividend and δit is
defined as:

δit = exp

[
t∑

s=1

(
ηisys − y2

s

2

)]
, (15.6)

yt =
√

2

γ 2 + γ

[
ln

(
Mt

Mt−1

)
+ ρ + γ ln

(
Ct

Ct−1

)] 1
2

, (15.7)

where Mt has the interpretation of the equilibrium pricing kernel, {ηit} are
independent across i and t, and ηit is standard normal and independent of
the information set at time t − 1, It−1, and of yt .4

3 The risk-free rate may fall, however, due to precautionary savings effects.
4 We omit a discussion of the technical details required to render this problem well defined. In partic-

ular, notice that for the postulated income process to be consistent with equilibrium, it must be the
case that

∑
i∈A δit = 1 for the entire set of agents A.
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Consider the intertemporal Euler equation for any consumer i:

βEt

[
Rj,t+1

(
Ci,t+1

Cit

)−γ
]

= 1. (15.8)

To simplify this expression, suppose that the no-trade allocation is an equi-
librium. Then Cit = yit + Dt = δitCt . Substituting this for the ratios of
consumption and simplifying yields:(

Ci,t+1

Cit

)−γ

=
(

Ct+1

Ct

δi,t+1

δit

)−γ

=
(

Ct+1

Ct

)−γ

exp

[
−γ

(
ηi,t+1 yt+1 − y2

t+1

2

)]
.

where we have used the definition of δit for each t. Now evaluate

βEt

[
Rj,t+1

(
Ci,t+1

Cit

)−γ
]

= βEt

{
Rj,t+1

(
Ct+1

Ct

)−γ

exp

[
−γ

(
ηi,t+1 yt+1 − y2

t+1

2

)]}

= βEt

{
Rj,t+1

(
Ct+1

Ct

)−γ

ϒit

}
,

whereby an iterated expectations argument,

ϒit = E
{

exp

[
−γ

(
ηi,t+1 yt+1 − y2

t+1

2

)]
|It ∪ yt+1

}

= exp

[
γ (γ + 1)

2
y2

t+1

]
.

Hence, the intertemporal Euler equation can be written as:5

βEt

{
Rj,t+1

(
Ct+1

Ct

)−γ

exp

[
γ (γ + 1)

2
y2

t+1

]}
= 1. (15.9)

5 It takes one more step to establish the existence of the no-trade equilibrium. Specifically, this is
shown by noting that ϒit =β(Ct+1/Ct )γ (Mt+1/Mt ), implying that Mt+1 is indeed the pricing
kernel in any asset-pricing relationship.
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To complete the argument, we note that y2
t+1 denotes the variance of the

cross-sectional distribution of consumption:

ln

(
Ci,t+1/Ct+1

Cit/Ct

)
= ln

(
δit+1

δit

)
= ηi,t+1 yt+1 − y2

t+1/2

∼ N
(

−y2
t+1

2
, y2

t+1

)
since ηit is standard normal and independent of yt+1.

To illustrate the implications, we consider some special cases:
• If y2

t+1 = 0, then the model reduces to the representative agent model
evaluated using aggregate consumption data.

• If

y2
t+1 = a + b ln

(
Ct+1

Ct

)
,

then the Euler equation in (15.9) is evaluated in the same way but with
the parameters

β̃ = β exp

[
γ (γ + 1)

2
a
]

,

γ̃ = γ − γ (γ + 1)

2
b.

• In general, we replace the stochastic discount factor evaluated using only
aggregate consumption growth with one in which the term y2

t+1 also
enters:

�t+1 ≡
(

Ct+1

Ct

)−γ

exp

[
γ (γ + 1)

2
y2

t+1

]
.

In this case, we can write the risk premium as:

Et(Rj,t+1) − r f
t = −r f

t Covt (Rj,t+1,�t+1). (15.10)

Now there is an additional source of variation arising from the presence
of the y2

t+1 in the conditional covariance. Thus, we say that asset j has
a positive (negative) risk premium if the conditional covariance of its
return with �t+1 is negative (positive).

Lettau [307] provides a simple diagnostic regarding the role of idiosyn-
cratic shocks in resolving asset-pricing anomalies. In contrast to many
models of idiosyncratic risk that allow agents to trade in a small number
of assets, Lettau [307] assumes agents consume their income and examines
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the Sharpe ratio for risky assets computed using individual income data.
In other words, he considers the volatility bound:

|Et(Rj,t+1 − r f
t )|

SDt(Rj,t+1)
≤ SDt(mi,t+1)

Et(mi,t+1)
,

where mi,t+1 is evaluated using individual income data. If it is the case
that individual income growth is negatively correlated, then consumption
is smoother than income because income shocks will have a less than one-
to-one effect on permanent income, and conversely if income growth is
positively autocorrelated. Hence, volatility bounds evaluated under indi-
vidual income data will provide a useful lower bound for actual asset
market data. As we discussed in Chapters 8 and 9, the Sharpe ratio esti-
mated from postwar data using S&P 500 excess returns is around 0.50 on
an annual basis. Lettau [307] considers the maximal bound on the Sharpe
ratio computed using individual income data. Surprisingly, he finds that
none of the estimated income processes in models that assume incomplete
markets and uninsurable income risk is capable of matching the Sharpe
ratio in the data. For example, the idiosyncratic income process estimated
by Heaton and Lucas [250] from the Panel Study of Income Dynamics
(PSID) data set implies a Sharpe ratio of around 0.18. A similar find-
ing emerges for Krusell and Smith’s [293] model of idiosyncratic risk in
which unemployed agents face a higher probability of becoming unem-
ployed when aggregate times are bad. Based on a calibration for quarterly
data, the highest Sharpe ratio implied by the model (for employed agents
in good times) is only capable of matching the observed quarterly Sharpe
ratio. Finally, in Storesletten, Telmer, and Yaron [422] the calculated Sharpe
ratios are only one-fifth of their observed values even after allowing for
the variance of idiosyncratic shocks to vary depending on whether the
aggregate economy is above or below trend.

15.2. T R A N S A C T I O N S C O S T S

Up to this point, we have considered the implications of borrowing con-
straints and other restrictions on securities trades. In actual securities
markets, another important friction has to do with transactions costs.
In this section, we briefly review this literature and present an example of
a model with transactions costs.

During the process of buying or selling most assets, some kind of trans-
actions cost is incurred. Often, these costs take the form of a difference
between the price at which the asset is sold and the price at which it
can be purchased, commonly known as the “bid-ask” spread. Transac-
tions costs can take other forms such as up-front fees on load mutual
funds and brokerage commission costs. Aiyagari and Gertler [11] report
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that the ratio of the bid-ask spread to the price is 0.52% for actively traded
stocks and that this ratio increases as firm size declines, reaching 6.55%
for the average firm with assets under ten million dollars. For the buyer
or seller, there are additional costs associated with managing a portfo-
lio such as information costs and bookkeeping costs. For the financial
intermediary, which may take the form of an exchange or an organized
market, the fees, commissions, and the bid-ask spread paid by the buyer
and seller of assets are charges for the services provided by the intermedi-
ary. Three kinds of costs faced by an intermediary have been emphasized
in the literature: order-processing costs, which can include research and
information-gathering costs and costs of providing financial counseling;
inventory-holding costs, which take the form of price risk because there
may be a time lag between the time the dealer buys an asset and the time
he sells it; and adverse-information costs. Adverse-information costs may
be incurred when there is asymmetric information. Current prices may
signal negative information about the value of the asset which changes its
equilibrium price. If the dealer is the asset holder, he may suffer a loss
from the price change. A general discussion on the components of the
bid-ask spread is by Stoll [420] and Glosten and Harris [207]. The inven-
tory risk has been studied by Amihud and Mendelson [27] and Stoll [419],
among others, while the adverse information costs have been studied by
Copeland and Galai [126], Glosten and Milgrom [208], and Easley and
O’Hara [167].

If the liquidity of an asset is measured by the cost of immediate execu-
tion of a transaction, then the quoted ask price can include a premium for
immediate purchase and the bid price can include a discount for immedi-
ate sale. The bid-ask spread can be interpreted as a measure of liquidity;
the spread is smaller for more liquid assets. Several empirical studies, such
as that by Amihud and Mendelson [28], have concluded that average risk-
adjusted returns increase with their bid-ask spread. An empirical study of
liquidity and yields is by Amihud and Mendelson [29].

Another type of cost affecting trading volume is a securities transactions
tax. This type of tax has been considered in the US and exists in many
other countries; see the survey by Schwert and Seguin [396] and the arti-
cle by Umlauf [436] for examples. Proponents argue that the tax would
reduce excess price volatility caused by excessive speculation, generate tax
revenues, and increase the planning horizons of managers; arguments for
this sort of tax are contained in the articles by Stiglitz [411] and Summers
and Summers [425]. The notion that there is excess volatility in finan-
cial markets because of destabilizing speculation is discussed by DeLong,
Shleifer, Summers, and Waldman [145]. Critics of the tax proposal argue
that it would increase the costs of capital, distort optimal portfolio deci-
sions, reduce market efficiency and drive markets to lower tax countries;
see the papers by Grundfest and Shoven [220], and Kupiec [294] [295],
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Roll [366], Ross [372], Schwert [395], and the article by Grundfest [221] for
examples.

While there is an extensive literature studying transactions costs in asset
markets, there has not been a great deal of work on the effects of these costs
on equilibrium interest rates. One approach is to assume price processes
and then derive the effect of transactions costs on optimal consumption
and portfolio decisions. This is the approach taken by Constantinides [117],
Duffee and Sun [162], Dumas and Luciano [163], among others. Grossman
and Laroque [217] study optimal portfolio and consumption choices in
the presence of an illiquid durable consumption good such as housing. In
their model, optimal consumption is not a smooth function of wealth. It is
optimal for a consumer to wait until a large change in wealth occurs before
changing his consumption. A rise in transactions cost increases the average
time between the sale of durable goods. They conclude that the standard
consumption CAPM does not hold.

Aiyagari and Gertler [11], Heaton and Lucas [249], and Vayanos and Vila
[438] are examples of general equilibrium models with transactions costs.
The papers by Aiyagari and Gertler and Vayanos and Vila have no aggre-
gate uncertainty although there is individual-specific risk. The Heaton and
Lucas model has aggregate uncertainty but is a three-period model. They
find that, if trading in some assets is costless, then agents substitute almost
entirely away from assets that are costly to trade. Agents would prefer to
alter the composition of their portfolio rather than pay transactions costs
or tolerate more volatile consumption. Because agents tend to specialize
in holdings of assets that are costless to trade, they conclude that small
changes in transactions costs do not have significant price effects.

In this section, we provide two further results on models with transac-
tions costs. To study the effect of transactions costs on trading volume and
equilibrium asset prices requires the use of a model with heterogeneous
agents, which has proven to be analytically difficult.6 Instead, we provide a
basic description of the dynamic programming problem faced by an agent
in a model with bid-ask spreads. Second we discuss the issue of volatility
bounds for intertemporal MRSs with frictions.

15.2.1. A model with bid-ask spreads

Suppose that there is a financial intermediary, such as an organized
exchange which facilitates trade but charges a proportional fee in an
amount depending on whether the client is buying or selling an asset. The
fees may reflect the costs of processing the order, price risks associated with

6 It is possible to incorporate transactions costs in the production technology. For example, Marshall
[335] incorporates money into a general equilibrium model assuming that holding real balances
lowers the resource costs of consuming.
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the transactions, and informational asymmetries. For simplicity, we assume
that the profits of the intermediary are distributed lump-sum to the agents
of the economy. At time t, agent i has random income yi

t and holds a port-
folio comprised of an equity share zi

t , which pays a fixed dividend dt , and
risk-free bonds issued by the government which sell at discount at price
1/(1 + rt). If agent i sells an equity share, he receives the price qt(1 − αs)
and if he buys an equity share, he pays the price qt(1 + αb). The difference
in the prices at which the equity is sold and bought is the “bid-ask” spread,
which equals:

qt(αb − αs).

Notice that we make no attempt to explain the origins of the spread and
instead treat αb and αs as parameters. We can view this spread times the
number of transaction as the profit of the financial intermediary; let πf

denote the per capita profit of the intermediary. This is described more
fully below. Let st denote the vector of exogenous state variables that agent
i needs to make a forecast of returns, dividends, income and consumption
next period. The budget constraint of agent i at time t takes the form:

yi,t + bi,t + zi,tdt − τt − qt max{αb(zi,t+1 − zi,t),αs(zi,t − zi,t+1)}

+ πf ,t ≥ ci,t + qt(zi,t+1 − zi,t) + bi,t+1

1 + rt
. (15.11)

We set this up as a dynamic programming problem. The representative
type i agent solves:

V ( yi, zi, bi, s) = max[U (ci) + βEsV ( y′
i, z′

i , b′
i, s′)] (15.12)

subject to constraints described below. Notice that the first-order condi-
tions depend on whether the agent decides to buy, sell or hold the equity
share zi,t .

To study the properties of the dynamic programming problem under
transactions costs, we split the problem into three sub-problems. Define
Vs as the value of selling equity shares. The problem is:

Vs( y, z, b, s) = max
{c,b′,z′}

[U (c) + βEsV ( y′, z′, b′, s′)] (15.13)

subject to (15.11) and the constraint

z ≥ z′. (15.14)

Next, define the value function if the agent decides to buy, Vb. The
problem is:

Vb( y, z, b, s) = max
{c,b′,z′}

[U (c) + βEsV ( y′, z′, b′, s′)] (15.15)
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subject to (15.11) and the constraint

z ≤ z′. (15.16)

Finally, the value of holding onto the existing equity shares,

Vh(y, z, b, s) = max
{c,b′}

[U (c) + βEsV (y′, z, b′, s′)] (15.17)

subject to

c + b′

1 + r
≤ y + zd − τ + πf . (15.18)

We can then write the dynamic programming problem as:

V (y, z, b, s) = max[Vs(y, z, b, s), Vh(y, z, b, s), Vb(y, z, b, s)] (15.19)

Under this formulation, we have retained the recursive structure of the
problem. As an example, we solve one of the sub-problems. Consider the
solution to Vs. The first-order conditions are:

U ′(c) = ξs (15.20)

ξs

1 + r
= βEsV3(y′

i, z′
i , b′

i, s′), (15.21)

ξsq(1 − αs) = βEsV2(y′
i, z′

i , b′
i, s′) + μs, (15.22)

where μs is the multiplier attached to the constraint (15.14), and ξs the
multiplier on the budget constraint. If μs = 0, then the constraint is non-
binding and

ξsq(1 − αs) = βEsV2(y′
i, z′

i , b′
i, s′),

otherwise,

ξsq(1 − αs) ≥ βEsV2(y′
i, z′

i , b′
i, s′).

We can derive a similar equation for the sub-problem of buying the equity
share with the result that:

ξbq(1 + αb) ≤ βEsV2(y′
i, z′

i , b′
i, s′),

which holds with equality if the constraint (15.16) is non-binding. Notice
that under this formulation, the function V denotes the value function
assuming that the agent behaves optimally at all future dates. The slope
of the value function with respect to equity shares is given, and the agent
must choose the optimal course of action – buy, sell, or hold – in the
current period.
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We can define an operator T by:

TV n(y, z, b, s) = max[V n
s (y, z, b, s), V n

h (y, z, b, s), V n
b (y, z, b, s)] (15.23)

where V n
i is defined for i = s, b, h. Notice that T is monotonic. If W >V

for all (y, z, b, s), then notice that TW ≥ TV . Furthermore, T discounts.
Each of the Vi is concave and the maximization operator preserves
concavity so that V is concave.

Our discussion is incomplete in the sense that the agent takes as given
the equity price function q and the return on the risk-free asset r. As we
mentioned earlier, constructing an equilibrium with heterogeneous agents
is analytically difficult.

15.3. V O L A T I L I T Y B O U N D S W I T H F R I C T I O N S

In Chapter 8, we described how to derive the mean-standard deviation
region for intertemporal MRSs that are used to price random payoffs in
dynamic asset-pricing models. We now extend this discussion to account
for short sales constraints, transaction costs, and borrowing constraints. As
in our earlier discussion, the volatility bounds we derive here can be used
as a diagnostic tool for determining the class of asset-pricing models that
is consistent with asset market data. The approach in this section involves
deriving restrictions for intertemporal MRSs with various forms of fric-
tions under a complete markets interpretation. This precludes analyzing
the interaction of market incompleteness together with the existence of
short sales or solvency constraints. As an example of this latter approach,
Scheinkman and Weiss [391] restrict the set of underlying securities at the
same time as they impose a short sales constraint on the existing securi-
ties. However, the approach in Luttmer yields representations for volatility
bounds that can be evaluated using aggregate consumption data as stressed
by Cochrane and Hansen [110].

Consider the sequential interpretation of the complete contingent
claims equilibrium that we described in Chapter 7. Define z(st+1) as the
quantity of securities purchased at time t which pay off x(st+1) conditional
on the state st+1 at time t +1. We assume consumers can purchase securities
that pay off for each possible realization of the economy. Portfolios with
such payoffs can be purchased at the price q(st+1, st) period t. Using this
notation, agent i faces a sequence of one-period constraints of the form:

ci(st) +
S∑

s=1

q(st+1, st)x(st+1)zi(st+1) ≤ ωi(st) + x(st)zi(st), (15.24)

for t ≥ 0. We can obtain a single budget constraint for the consumer by
solving (15.24) forward, where we implicitly impose a condition that the
value of limiting portfolio payoff goes to zero.
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Volatility bounds with frictions have been derived by Luttmer [327] and
He and Modest [246] who consider different types of constraints. Luttmer
considers a solvency constraint of the form:

x(st+1)zi(st+1) ≥ 0 for all st+1 ∈ S. (15.25)

According to this constraint, any contingent contract that allows debt in
some state of the world is prohibited. A weaker version of the constraint is
employed by He and Modest who require that:

S∑
s=1

q(st+1, st)x(st+1)zi(st+1) ≥ 0. (15.26)

This states that the value of the portfolio today must be non-negative. It
does not preclude q(st+1)zi(st+1) from being negative in some states of the
world. We refer to it as the market-wealth constraint.

Now we analyze the implications of these constraints for individual
intertemporal MRSs with complete markets. Consider the problem of
consumer i in such an equilibrium. The value function can be expressed as:

V (zit , st) = max
cit ,zi,t+1

⎧⎨
⎩U (cit) + β

∑
st+1∈S

π (st+1|st)V (zi,t+1, st+1)

⎫⎬
⎭

subject to (15.24) and the solvency constraint (15.25). Let ξi(st) denote the
multiplier on the single-period budget constraints (15.24) and μi(st+1) the
multiplier on the solvency constraint, where we have indexed this multi-
plier with st+1 to take into account the fact there is a solvency constraint for
each possible future state st+1 ∈ S. Assume that consumers’ preferences are
given by Eq. (7.62). The first-order and envelope conditions are given by:

U (ci(st)) = ξi(st),

Vz(zi(st), st) = ξi(st)x(st),

ξi(st)q(st+1, st)x(st+1) = βπ (st+1|st)Vz(zi(st+1), st+1) + μi(st+1)x(st+1).

The first-order condition with respect to the portfolio weights zi(st+1)
imply that:

q(st+1, st)x(st+1)ξi(st)−βπ (st+1|st)x(st+1)ξi(st+1)−μi(st+1)x(st+1) = 0,

where the elements of the vector μi(st+1) equal zero if and only if the cor-
responding elements of zi(st+1) are strictly positive. Substituting for ξi(st):

βπ (st+1|st)U ′(ci(st+1))

U ′(ci(st))
x(st+1) ≤ q(st+1, st)x(st+1). (15.27)

Let Mi ≡βU ′(ci(st+1))/U ′(ci(st)) denote the individual intertemporal
MRS, and ℘ ≡ q(st+1, st)/π (st+1|st) be the probability-weighted contingent
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claims prices between dates t + 1 and t. Summing over st+1 and also taking
expectations with respect to the conditioning variable st , we can write the
condition in (15.27) as:

E(Mix) ≤ E(℘x). (15.28)

Since we assumed complete markets in the construction of the payoffs of
the traded securities so that x > 0, and given that both Mi and ℘ are
non-negative, we also have that:

Mi ≤ ℘. (15.29)

Thus, with solvency constraints, the individual intertemporal MRS is
downward biased relative to the market-determined stochastic discount
factor that is used to value payoffs on one-period securities. For certain
classes of utility functions (including exponential and power utility func-
tions), we can show that the intertemporal MRS evaluated with per capita
consumption data also inherits this downward bias:

Ma ≤ ℘ (15.30)

where Ma ≡βU ′(c̄(st+1))/U ′(c̄(st)), and U is a function of the average
subsistence levels, γ̄ , and per capita consumption, c̄t . (See Exercise 3.)

Now let us consider the implications of the less restrictive market-wealth
constraint in Equation (15.26). In contrast to the earlier case, there is now
a single multiplier on the market wealth constraint denoted by μi(st), and
the relevant condition characterizing consumer’s optimal portfolio choice
problem is:

q(st+1, st)x(st+1)ξi(st) = βπ (st+1|st)x(st+1)ξi(st+1) + μi(st)q(st+1, st)x(st+1).

(15.31)

Define the return of the security that pays off conditional on st+1 ∈ S next
period by R(st+1, st) = x(st+1)/q(st+1, st). Substituting for ξi(st) and ξi(st+1),
dividing both sides by q(st+1, st) and summing over the future states st+1

yields:

β
∑

st+1∈S

π (st+1|st)U ′(ci(st+1))

U ′(ci(st))
R(st+1, st) =

∑
st+1∈S

x(st+1)

[
1 − μi(st)

U ′(ci(st))

]
.

Consider two securities with returns R(st+1 = sj, st) and R(st+1 = sk, st).
Notice that we can write the above condition in terms of the excess return
on securities j and k as:∑

st+1∈S

π (st+1|st)βU ′(ci(st+1))

U ′(ci(st))
[Rj(st+1, st) − Rk(st+1, st)] = 0. (15.32)

Assume that consumers can form portfolios in addition to those
described above. Let X denote the set of one-period security payoffs with
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zero market prices, or equivalently, the set of excess returns. Using the
results in (15.31) and (15.32), any payoff in X satisfies the market-wealth
constraint:

Et[Mix] = Et[℘x] = 0 for x ∈ X . (15.33)

The payoff Mi − ℘Et(℘Mi)/Et(℘2) has a zero market price, that is,
Et[℘(Mi − ℘Et(℘Mi)/Et(℘2))] = 0. Using this payoff for x in relation
(15.33), we have

Mi = ψ i℘ for ψ i = Et(℘Mi)/Et(℘2). (15.34)

Furthermore, (15.28) implies that 0<ψ i ≤ 1. For the power utility func-
tion, we can show that

Ma = ψa℘, (15.35)

where 0<ψa ≤ 1. (See Exercise 3.) Recall that the market-wealth con-
straint is less restrictive than the solvency constraint. As the above results
demonstrate, the less restrictive constraint imposes the more stringent
proportionality requirement on the aggregate intertemporal MRS.

The construction of volatility bounds using actual asset market data are
described by Hansen and Jagannathan [232], Cochrane and Hansen [110],
Luttmer [327], and He and Modest [246] for economies with and with-
out frictions. The approach followed is to assume that there is a finite
set of payoffs and to obtain an expression for the intertemporal MRS
through simple projection arguments. In Chapter 2, we already derived an
expression for the intertemporal MRS by imposing the absence of arbitrage
implied by the Law of One Price. (See Section 2.1.1.) The idea is to choose
the stochastic discount factor or intertemporal MRS to be a linear combi-
nation of the N basis payoffs. However, as Hansen and Jagannathan show,
this representation for the intertemporal MRS does not impose strict pos-
itivity. To do that, one considers random variables that can be interpreted
as either European call or put options on the payoffs traded by consumers.
When there are short sales or solvency constraints and other frictions, the
Euler equalities characterizing the intertemporal MRS are supplanted by
Euler inequalities of the form in Eq. (15.28). Luttmer [327] and He and
Modest [246] present evidence showing that the introduction of market
frictions of the type discussed in this section can go some way in helping to
reconcile asset-pricing behavior based on a simple representative consumer
asset pricing with CRRA utility.

15.4. C O N C L U S I O N S

In this chapter, we have explored some asset-pricing implications of trad-
ing frictions. In the next chapter on borrowing constraints, we will examine
the role of market incompleteness under a variety of assumptions on the
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nature of markets and the types of trades that agents can enter into. There
we will characterize the equilibrium explicitly and demonstrate the con-
ditions under market incompleteness of various forms matters. We also
consider models in which there exist endogenous solvency constraints due
to a participation constraint on agents.

15.5. E X E R C I S E S

1. There are two types of consumers, and three states of the world. Each
agent is endowed with one unit of labor in each state and each period.
The following table relates output per unit of labor of consumer i = 1, 2
in state of the world j = 1, 2, 3:

i, j 1 2 3

1 4 3 2
2 2 3 4

Output might be stored by individual consumers at no cost and the
utility function of consumer i is given by:

E0

2∑
t=1

( ln (cit) − !it),

where E0(. ) denotes expectation conditional on information at time
0 and !it denotes the amount of labor used in the production of the
consumption good. States are i.i.d. and π1 =π3 = 0. 25 and π2 = 0. 5,
where πi denotes the probability of state i in any period.
(a) Find the consumption and labor supply allocations of type i = 1, 2

if there exists a full set of contingent claims markets. Characterize
the behavior of aggregate consumption in equilibrium.

(b) Find the autarkic allocations.
(c) Using your answers to parts (a) and (b), discuss whether an econo-

metrician can use aggregate consumption data in order to deter-
mine whether markets are complete or not, if s/he does not know
the form of the production technology.

2. 7 Suppose that agents live two periods and that per capita consumption
takes one of two values, μ or (1 − φ)μ where 0<φ< 1, with each
state occurring with probability 1/2. At time zero, agents choose their
portfolio. At time 1, the uncertain endowment is realized, the payoff on
the portfolio is made and then agents consume. The portfolio pays −1
in the bad state and 1 + π in the good state where π is a risk premium.

7 This problem is based on Mankiw [331].
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(a) Assume that all agents are identical. The representative consumer
maximizes E[U (c)]. Let R denote the payoff on the portfolio so
that the budget constraint at time 1 is c ≤ θR, where θ denotes the
quantity held of the asset.
Let U = c1−γ /(1 − γ ). Solve for the risk premium π under this
assumption.

(b) We now introduce heterogeneity and incomplete markets. Agents
are identical ex ante but not ex post. In the bad state assume that the
fall in aggregate consumption equal to φμ is concentrated among a
fraction λ of the population.

i. Derive the first-order condition and the premium π .
ii. Show that the premium depends not only on the size of

the aggregate shock φ but also on its distribution within the
population.

iii. Assume that utility is constant relative to risk aversion and show
that a decrease in λ increases π (so the more concentrated the
shock, the larger the premium).

3. a) Show that the volatility bound in (15.30) holds for the following
utility functions:

(i) U (ci) = ((ci − γ i)1−σ − 1)/(1 − σ ), σ > 0, (15.36)

(ii) U (ci) = − exp ( − α(ci − γ i)) α > 0. (15.37)

b) Let γ i = 0 in (15.36), and show that (15.35) holds with

ψa =
[∑

i

ψ 1/σ (ci,t/c̄t)

]−σ

.
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Borrowing constraints

In this chapter, we will discuss economies in which there may exist
restrictions of various forms on trading by agents. One of the most
common forms of market friction is the presence of a borrowing con-
straint. However, there may also exist economies in which only a small
number of assets is traded. Typically we refer to economies in which
the number of assets traded is less than the set of random states as
economies with market incompleteness. Such market incompleteness may
arise from private information considerations or intergenerational restric-
tions. We consider the role of intergenerational frictions in Chapter 17.
In contrast to environments where individual heterogeneity does not
matter in a fundamental way, an important implication of models with
market incompleteness is that the cross-sectional distribution of non-
human wealth will vary over time and help to determine economic
outcomes.

In this chapter, we start with a model of idiosyncratic endowment risk,
in which aggregate output is constant and there is a countable infinity
of agents. This setup was introduced by Bewley [64] as a way of provid-
ing general equilibrium foundations for the permanent income hypothesis.
In such an environment, agents can trade a variety of assets to eliminate
the impact of idiosyncratic income or endowment risk on their consump-
tion profiles. Using this framework, we distinguish between the impact of
closing down contingent claims markets and the impact of closing down
credit markets. We consider three different market arrangements – com-
plete contingent claims, pure insurance markets, and pure credit markets.
When complete contingent claims markets are available, agents are unre-
stricted in the quantity or type of trades that they can enter into across
alternative dates and states of the world. By contrast, in a pure insurance
economy, there are restrictions on short sales of contingent claims. Equiv-
alently, there are borrowing constraints. Finally, in a pure credit economy
(of the type studied by Huggett [257], for example), agents trade private
IOUs at a constant interest rate. In this latter setup, they can be deman-
ders or issuers of such IOUs, leading to a potential interpretation of the

478
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traded claims as “inside money.”1 It turns out that when the idiosyncratic
shocks are distributed as i.i.d., the three different trading arrangements are
equivalent: agents can obtain the same consumption allocations regard-
less of the set of asset trades permitted. This result no longer holds for
environments in which the shocks follow a Markov process. Models with
ad hoc borrowing constraints, idiosyncratic risk, and no aggregate uncer-
tainty typically rule out contingent claims markets and impose arbitrary
constraints on borrowing. Our analysis indicates that the Markov structure
of the model is critical.

We then turn to the topic of market frictions when there is aggre-
gate uncertainty. Our discussion is based on the Townsend [431] turnpike
model, which incorporates a physical trading friction, namely, that agents
trade with only a small subset of agents over their lifetime and that trade
takes place at distinct locations and is bilateral. This creates a role for a
financial intermediary to maintain records of transactions and debt. Mar-
ket incompleteness is incorporated by assuming that the clearing house
has limited record keeping which creates natural limits on borrowing.
We examine allocations when there are standard borrowing constraints,
short-sale constraints, and debt constraints. Our discussion is based on the
models of Kehoe and Levine [272, 273], Kocherlakota [280], and Alvarez
and Jermann [24].

16.1. I D I O S Y N C R A T I C R I S K A N D B O R R O W I N G

C O N S T R A I N T S

The complete markets version of this model was discussed in Chapter 7
and in this section we just review the model so that the chapter is
self-contained. It is helpful to review the complete markets allocations dis-
cussed in that chapter because it is a natural starting point to understand
how borrowing constraints impact consumption allocations.

We start with a pure endowment model in which all agents are ex ante
identical. Agents face idiosyncratic endowment risk and aggregate endow-
ment is deterministic. The focus is on the role of ex post heterogeneity
among individuals under alternative trading arrangements.

Typically models with borrowing constraints impose joint assumptions:
(i) the non-existence of contingent claims markets and (ii) restrictions on
credit markets. The goal in this section is to separate the impact of these
two assumptions. We start with a pure insurance market: contingent claims
can be purchased but the value of the end-of-period portfolio must be
non-negative. Next we examine a pure credit market in which agents can

1 For a further discussion of the implications of the pure credit model, see Ljungqvist and
Sargent [325].
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borrow and lend at a risk free rate, but contingent claims contracts are
unavailable.

16.1.1. The basic model

Each period, an agent draws a random endowment that is assumed to fol-
low a first-order Markov chain. Let θ ∈ �, with �≡{θ , . . . , θ̄}, be a
discrete random variable such that θ ≥ 0 and θ̄ is finite. Let g(θ ′|θ ) denote
the probability of moving from state θ to θ ′ in one period. Define φ(θ ) as
the unconditional probability of θ , let θm denote the unconditional mean,
and let θm(θ ) denote the conditional mean. Also define g j(θj | θ0) as the
j-step ahead probability, specifically the probability of θ = θj in j periods

when the current θ is θ0. Finally, define θ j
m(θ ) as the j-step ahead conditional

mean.
There is a countable infinity of agents i ∈ I, where I is the set of inte-

gers. Each period t, agent i receives an endowment θt,i drawn from �. The
history for agent i is denoted θ t

i ={θ1,i, . . . , θt,i}. An agent is characterized
by his history θ t

i ∈ �t . The fraction of agents with history θ t is identi-
cal to the probability of observing the history of the endowment shocks
θ t , and this is equal to gt(θ t), given θ0. The unconditional probability of
observing θt in the general population is φ(θt) and, with a countable infin-
ity of agents, the fraction of agents with θ is φ(θ ). The total endowment
per capita of the economy each period is:

θm =
∑
θ∈�

φ(θ )θ =
∑
θ∈�

∑
θj∈�

g(θ | θj)φ(θj)θ , (16.1)

so there is no aggregate uncertainty.
The commodity space for this economy consists of history-dependent

sequences {ct(θ t)}∞t = 0, where each element of the sequence denoted
ct(θ t ) ∈ �+ is indexed by the history of endowment shocks up to that
date, θ t ∈ �t . The representative agent has lifetime preferences:

∞∑
t=0

∑
θ t∈�t

β t gt(θ
t)U (ci,t(θ

t)). (16.2)

Agents are identical at the beginning of time and become differentiated
over time because of different endowment realizations.

16.1.2. Restrictions on markets

We start with the pure insurance case in which a full array of contingent
claims is available but there is a restriction on the value of the portfolio
held at the end of the period that prevents any borrowing. We then turn
to the pure borrowing economy.
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16.1.3. Pure insurance economy

We rule out any borrowing or lending but allow insurance in the form
of purchases of contingent claims. This means there is no borrowing or
lending and the value of the contingent claims portfolio held at the end of
the period must be non-negative.

Let q(θ ′, θ ) denote the price of a contingent claim that pays off next
period conditional on state θ ′ occurring. Also let z(θ ′, θ ) be the shares
purchased of these claims conditional on state θ occurring today. There is
a borrowing constraint which precludes the total value of shares purchased
today from being negative. We can formulate the dynamic programming
problem for this example. The Bellman equation is:

V (z, θ ) = max
{c,z′}

[U (c) + β
∑
θ ′∈�

g(θ ′ | θ )V (z′, θ ′)]

subject to

c +
∑
θ ′∈�

q(θ ′, θ )z(θ ′, θ ) ≤ θ + z, (16.3)

∑
θ ′∈�

q(θ ′, θ )z(θ ′, θ ) ≥ 0. (16.4)

Let λ(θ ) denote the Lagrange multiplier for the budget constraint and μ(θ )
the multiplier for the borrowing constraint. The first-order conditions and
envelope condition are:

U ′(ct) = λ(θ ), (16.5)

q(θ ′, θ )[λ(θ ) + μ(θ )] = βg(θ ′ | θ )Vz(z′, θ ′), (16.6)

Vz(z, θ ) = λ(θ ). (16.7)

The conditions can be re-written as:

[U ′(c) + μ(θ )]q(θ ′, θ ) = βg(θ ′ | θ )U ′(c′). (16.8)

Since there are no lending opportunities, because there is no borrow-
ing, consumption is determined by the current endowment θ and claims
purchased in the previous period so that:

c = z + θ ,

regardless of the value of μ. Hence we can solve for the equilibrium price

q(θ ′, θ ) = βg(θ ′ | θ )U ′(z(θ ′) + θ ′)
U ′(z + θ ) + μ(θ )

. (16.9)

We study two cases for the distribution of the endowment shock.
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IID endowment
Assume that the endowment process is i.i.d. over time for every agent.
This implies that the optimal portfolio choices z(θ ′) do not depend on the
current value of the state variables θ , z(θ ). Hence, if the portfolio choices
are invariant with respect to the current state, then the implication is that
the multiplier μ is either always zero or always positive. A positive μ in all
states means the agent always wishes to borrow against future income. But
if Ponzi schemes are ruled out, then this cannot occur, so that μ= 0 for all
states. In that case,

q(θ ′, θ ) = βg(θ ′)U ′(z(θ ′) + θ ′)
U ′(z + θ )

.

A natural conjecture is that:

c = θm,

which requires that consumption is constant and equal to the average
value of the endowment. Under this conjecture, the first best allocation is
achieved. To verify this conjecture, observe that, if the conjecture is correct,
then the price is:

q(θ ′, θ ) = βg(θ ′)

and the portfolio constraint (16.4) is:∑
θ ′

βg(θ ′)[θm − θ ] = 0.

By definition of the mean, the equation holds. Hence, the first-order con-
dition, the budget constraint, portfolio constraint, and market-clearing
conditions are satisfied, so that the guess c = θm has been verified and is
a solution.

The value function is:

V (z, θ ) = U (θm)[1 + β + β2 . . .] = U (θm)

1 − β
.

Hence, when the endowment is i.i.d., a pure insurance economy which
disallows borrowing or lending results in a Pareto optimal allocation and
the borrowing constraint has no impact on the ability of agents to smooth
consumption.

Markov endowment
We have just shown in the i.i.d. case that the borrowing constraint has no
impact on the allocations and the first best outcome is achieved. Does this
still hold when the endowment process is first-order Markov?

Recall that the dynamic programming version of the complete contin-
gent claims solution results in a first-order condition given by:

q(θ ′, θ )U ′(c(θ )) = βg(θ ′|θ )U ′(c(θ ′)),
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and the budget constraint is:

c +
∑
θ ′∈�

q(θ ′, θ )z(θ ′, θ ) ≤ θ + z.

To check if borrowing and lending are necessary to achieve the com-
plete contingent claims solution, set c = θm and q(θ ′, θ ) =βg(θ ′ | θ ) as
before and then check if the first-order condition, budget constraints, and
market-clearing conditions are satisfied. If c = θm, then the agent’s budget
constraint is:

θ + z = θm + β
∑
θ ′∈�

g(θ ′|θ )z(θ ′, θ ).

If z = θm − θ then the portfolio constraint for each θ must satisfy:

0 =
∑
θ ′∈�

g(θ ′|θ )[θm − θ ′].

But notice this equation does not hold since∑
θ ′∈�

g(θ ′|θ )θ ′ = θm(θ ),

which is the conditional mean. Hence, if no borrowing is allowed but
pure insurance is available through contingent claims markets, setting
consumption equal to:

c(θt , θt−1) = θm(θt−1), (16.10)

will satisfy the portfolio constraint. The first-order condition under this
policy is:

[U ′(θm(θt−1)) + μ(θt , θt−1)]q(θt+1, θt) = βg(θt+1 | θt)U ′(θm(θt)).

(16.11)

Since this equation must hold for any θt−1 ∈ �, it follows that:

q(θt+1, θt) = βg(θt+1 | θt)U (θm(θt))

U ′(θm(θt−1)) + μ(θt , θt−1)
(16.12)

so that μ> 0 for some agents. The goods market-clearing condition can
be expressed as:

∑
θ t

gt(θ
t )[θt −θm(θt−1)] =

∑
θt−1

∑
θt

g(θt | θt−1)[θt −θm(θt−1)] = 0

(16.13)

so the goods market clearing condition is satisfied. Hence the guess that
c = θm(θt−1) has been verified.
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The distribution of wealth is described next. The agent’s net claim or
wealth is equal to:

z(θt , θt−1) = θm(θt−1) − θt .

Conditional on the past realization of the endowment shock θt−1, observe
that the sequence for net wealth over time, {z(θt , θt−1), z(θt+1, θt), . . .} is
uncorrelated. Moreover, notice that:

z(θt , θt−1) = θm(θt−1) − θt = θm(θt−1) − θm + [θm − θt],

where the first term after the second equality is the deviation of the condi-
tional mean from the unconditional mean and the second term in brackets
is the deviation of the endowment from the unconditional mean.

Hence the consumer can insure against risk conditional on the endow-
ment θt−1 but cannot achieve smooth consumption without borrowing or
lending to smooth out fluctuations in the conditional mean. Hence impos-
ing a borrowing constraint in a Markov model with contingent claims
markets for insurance limits agents’ ability to smooth consumption because
of fluctuations in the conditional mean of the endowment. Fluctuations
around the conditional mean can be smoothed through state-contingent
insurance but fluctuations in the conditional mean over time cannot be
smoothed without borrowing and lending.

16.1.4. Pure credit model

We now turn to another extreme model – one in which borrowing and
lending are allowed but there are no state-contingent markets. Notice that
this is similar to the borrowing-lending model that we studied in Chapter 5.
However, in that case our focus was on describing the consumer’s optimal
consumption and saving (dissaving) plan whereas here we are concerned
with the characterization of equilibrium prices and allocations in a pure
credit economy.

To describe this economy, let r denote the (non-random) return to lend-
ing, and let at denote an agent’s asset holdings (possibly negative) at the
beginning of period t. The agent’s problem is to choose sequences of con-
sumption and asset holdings to maximize (16.2) subject to the set of budget
constraints

ct + at ≤ at−1r + θt , t ≥ 0. (16.14)

Assume that a0 = 0 for all agents.
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At time t, an agent has a history of endowment realizations θ̂ t . Con-
ditional on this history, an agent’s expected discounted present value of
lifetime income from period t forward is:

At (θ̂
t) =

∞∑
τ=t

∑
θτ |θ̂ t

( 1

r

)τ−t
gτ (θτ | θ̂ t )θτ .

At any time t conditional on θ̂ t , the maximum amount that an agent can
borrow is At(θ̂t), which is a natural debt limit. Imposing the constraint that

at(θ̂
t ) ≥ −At (θ̂t) (16.15)

rules out the possibility of a Ponzi scheme.
The pure credit economy can be studied as a dynamic programming

problem with Bellman equation

V (at−1, θt ) = max
at

[U (at−1r + θt − at)

+ β
∑

θt+1∈�
g(θt+1 | θt)V (at , θt+1)] (16.16)

subject to the initial condition a0 = 0. The first-order condition with the
envelope condition incorporated is:

U ′(at−1r + θt − at) = βr
∑

θt+1∈�
g(θt+1 | θt)U ′(atr + θt+1 − at+1).

(16.17)

Notice that if βr = 1, then the first-order condition states that an agent sets
his end-of-period assets such that current marginal utility just equals the
expected marginal utility. If βr > 1, marginal utility would need to fall over
time for the first-order condition to hold. This would mean that consump-
tion must rise over time. But if the endowment process is stationary then
it is impossible for consumption to rise for all agents over time. If βr < 1,
then the opposite argument can be made. Hence, the only stationary solu-
tion for consumption is βr = 1, which we assume holds for the rest of the
discussion.

Before we describe the market-clearing conditions, it will be useful to
discuss the distribution of assets at−1 at the beginning of period t. The
actual time path of debt depends on the sample path of endowment
and the consumption function. Suppose the agent picks a consumption
function ĉt : �t→�+ that is feasible. Then, in the first period under
this consumption policy, his asset holdings at the end of period 1 with
endowment θ̂1 are:
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a1(θ̂1) = θ̂1 − ĉ1(θ̂1),

where the assumption a0 = 0 is incorporated. In the second period with
endowment θ̂2, his end-of-period holdings are:

a2(θ̂
2) = ra1(θ̂1) + θ̂2 − ĉ2(θ̂

2)

= r[θ̂1 − ĉ1(θ̂1)] + θ̂2 − ĉ2(θ̂
2).

More generally,

at(θ̂
t) =

t∑
h=1

rt−h[θ̂h − ĉh(θ̂ h)]. (16.18)

Hence the history of borrowing and saving is summarized by at = at(θ̂ t).
At time t, a fraction gt(θ̂ t) of agents will have asset holdings at (θ̂ t) at the
end of the period. Hence at time t, there will be a wealth distribution.
Summing over consumption, endowment, and asset-holding allocations
using the fraction of individuals with histories of the shocks θ t , gt(θ t), the
market-clearing conditions are:∑

θ t∈�t

gt(θ
t )[θt − ct(θ

t )] = 0, (16.19)

∑
θ t∈�t

gt(θ
t)at(θ

t ) = 0 (16.20)

where the first condition is goods market clearing and the second is that
borrowing equals lending. The equilibrium has the property that the first-
order conditions are satisfied for all agents θ t ∈ �t and the market-clearing
conditions are satisfied. If we had assumed that agents differed in terms of
a0, then the initial debt would also be an argument of the function at( · ).

An agent’s asset position at the beginning of period t is summarized by
rat−1(θ t−1) in current value. Conditional on the endowment realization θ̂t ,
the agent’s expected future net claims under consumption policy ct are:

�t(θ̂t ) =
∞∑
j=1

∑
θ t+j |θ̂t

r−jgt+j(θ
t+j | θ̂t)[ct+j(θ

t+j) − θt+j].

We now relate the state variable at−1(θ t−1) to the expected future net claims
through the budget constraint. Solve the budget constraint for at−1 as:

at−1(θ
t−1) = 1

r
[ct(θ

t ) + at − θt].
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Update the time subscript by one in the equation above and compute the
expectation conditional on θt :

rat(θ
t ) =

∑
θt+1|θt

g(θt+1 | θt)[ct+1(θ
t+1) + at+1 − θt+1].

Solving this equation recursively forward results in:

rat(θ
t ) =

∞∑
j=1

∑
θt+j |θt

( 1

r

)j−1
gj(θt+j | θt)[ct+j(θ

t+j) − θt+j] (16.21)

where we have imposed the no-Ponzi condition that the value of debt at
some future date t + n tends to zero in expected value as n → ∞:

lim
n→∞

1

r

n∑
j=1

∑
θt+j |θt

( 1

r

)j−1
gj(θt+j|θt)at+n(θ t+n) → 0.

Substitute this expression into rat−1 to obtain:

rat−1(θ
t−1) = ct(θ

t) − θt + �t(θt) (16.22)

Hence the link between the history of debt/asset position, summarized
by at−1(θ t−1), and the expected present value of future net claims is the
end-of-period asset position at .

This provides us with a convenient way to understand borrowing
constraints. A borrowing constraint places restrictions on the value
of the sequence �t , the expected present value of future claims. In
the pure insurance economy, this value was restricted to equal zero.
In general, the borrowing constraint impedes an agent’s ability to
borrow against future income, which means that the value of � is
restricted.

Notice that this rules out a situation in which the consumer can obtain
unlimited consumption by infinitely rolling over his/her existing debt. The
endowment history θ̂ t generates a credit history summarized by:

rat−1(θ̂
t−1) − ct(θ̂

t) + θ̂t .

This is the current value of actual net claims under the consumption policy.
The current value of net claims and the expected discounted present value
of future net claims are related as

�t(θ̂t) = rat−1(θ̂
t−1) + θ̂t − ct(θ̂t).

We now study some special cases of this environment.
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IID endowment
Assume that the endowment shock is i.i.d. We concluded in the complete
contingent claims model that c = θm was the equilibrium solution. Is the
consumption policy c = θm a solution in our pure credit economy assum-
ing i.i.d. endowment shocks? Suppose that c = θm. Then the agent’s saving
behavior is:

at = at−1r + θt − θm,

or

θt − θm = at − at−1r,

so the changes in an agent’s debt position are i.i.d. and have zero mean.
Will this satisfy the individual agent’s first-order conditions and the

market-clearing conditions assuming βr = 1? Substitute c = θm into the
first-order condition to show that:

U ′(θm) = βr
∑
θ ′

g(θ ′)U ′(θm), (16.23)

which holds identically since
∑

θ ′ g(θ ′) = 1 and βr = 1. Hence, the first-
order condition is satisfied under this consumption policy.

Market clearing in the goods market requires that:∑
θ t

gt(θ
t)[θt − θm] =

∑
θt

g(θt)[θt − θm] = 0

which holds by definition of the mean. The market-clearing condition in
the credit market is:

0 =
∑
θ t∈�t

gt(θ
t)at(θ

t) (16.24)

Hence the first-order condition and market-clearing conditions are sat-
isfied so that c = θm is a solution to the model. Hence the pure credit
economy can achieve the first best outcome when endowment shocks are
i.i.d.

How does the wealth distribution evolve over time? Starting at a0 = 0,
at time 1,

a1 = θ1 − θm,

at time 2,

a2 = ra1 + θ2 − θm

and so on until

at =
t∑

j=1

rt−j[θj − θm].
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At time 0, E0at = 0 and the value of � is:

�t(θ̂t) =
∞∑
i=1

∑
θt+i |θ̂t

( 1

r

)i
g(θt+i)[θm − θt+i] = 0.

Hence an agent’s changes in assets are uncorrelated over time.
The price of a claim that pays off one unit for sure in each state is

given by:

q =
∑
θ∈�

q(θ ),

where q(θ ) is the contingent claims price in the pure insurance economy.
From this it follows that the real interest rate is equal to:

r = 1

β
= 1

q
= 1∑

θ∈� q(θ )
. 2 (16.25)

Then the first-order condition for the pure credit model is equivalent
to the first-order conditions for the first-best and pure-insurance models
evaluated under the constant consumption policy c = θm. Hence, if the
endowment is i.i.d., then the pure-insurance and pure-credit allocations
are identical and equal to the allocations in the complete contingent claims
solution. By contrast, we showed that the prices in an economy with a
full set of contingent claims or in the pure insurance economy depend
on the past realization of the endowment shock when this shock follows
a Markov process. As a consequence, we might expect this equivalence to
break down when we consider the equilibrium for a pure credit economy
for the Markov case.

Markov endowment
Assume now that the endowment process is first-order Markov so that the
first-order condition is (16.17). Let c(θ ) denote a solution. The conjecture
that consumption depends only on the current θ is based on the intuition
that in a world with borrowing and lending, an agent is able to smooth
consumption intertemporally so that the endowment last period, which
affected his savings at the end of the period, need not impact consumption
in the current period.

The first-order condition is:

U ′(c(θt)) = βr
∑

θt+1∈�
g(θt+1 | θt)U ′(c(θt+1)).

Is the optimal consumption c = θm a solution? The first-order condition
will be satisfied because βr = 1.

2 Recall that we showed this result in Chapter 2 based on the absence of arbitrage arguments.
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The remaining question is whether such consumption behavior is
market-clearing. To determine if the goods market clears, observe that at
time t, a fraction φ(θ ) have endowment θ , regardless of the individual
agent’s history up to time t − 1. Hence,∑

θt

φ(θt)[θt − θm] = 0

under the policy c = θm. Hence the goods market clears.
To examine whether the asset market clears, recall that the expected

discounted present value of future net claims under consumption policy
c = θm is:

�t(θ̂t ) =
∞∑
j=1

∑
θ t+j |θ̂t

r−jg(θ t+j | θ̂t)[θm − θt+j]

=
∞∑
j=1

r−j[θm − θ j
m(θt)], (16.26)

where θ
j
m(θ ) is the j-step ahead conditional mean, conditional on θt .

Notice that the term on the right side is generally not equal to 0. As
in the complete contingent claims model with Markov endowment, the
size of � depends on the speed of mean reversion. The market-clearing
condition is:

0 =
∑
θ t

gt(θ
t)at(θ

t ) = 1

r

∑
θ t

gt(θ
t)[θm − θt + �t(θt)]

=
∑
θ t

gt(θ
t)�(θt).

Notice that:∑
θ t

gt(θ
t)�(θt) =

∑
θt

φ(θt)�(θt)

=
∑
θt

φ(θt)

⎡
⎣ ∞∑

j=1

( 1

r

)j
[θm − θ j

m(θt)]

⎤
⎦

= 0.

While, for an individual agent, θm − θ
j
m(θt) �= 0, the average over all agents

will equal zero because the average of the conditional means is just equal
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to the unconditional mean. The last equality follows by using an iterated
expectations argument as:∑

θt

φ(θt)[θm − θ j
m(θt )] = θm −

∑
θt

φ(θt)θ
j
m(θt) = 0

for all horizons j ≥ 1.
Hence, if the endowment risk is Markov but borrowing and lending are

restricted only to rule out Ponzi schemes, then the allocations are identical
to those of the complete contingent claims equilibrium.

16.1.5. Asset span

We have shown that in the pure credit economy in which prices are
not state contingent, the consumption allocations are identical to the
first-best allocations regardless of whether the endowment is i.i.d. or first-
order Markov. However, this conclusion does not hold if we consider
the pure-insurance economy with Markov shocks. To understand these
results, notice that in an economy with idiosyncratic risk only – regard-
less of whether these shocks are i.i.d. or Markov – agents can smooth their
consumption merely by borrowing and lending. By contrast, if only insur-
ance contracts are available and the shocks are Markov, conditional on
the current state, agents would like to borrow to smooth their consump-
tion streams. When they face borrowing constraints, however, even if they
can purchase claims that pay off in any possible state next period condi-
tional on the state, they cannot perfectly smooth their consumption over
time. For this reason, most models, such as Huggett [257], Aiyagari [10], or
Ljungqvist and Sargent [325], impose joint restrictions limiting contingent
claims trading and self-insurance.

We generally do not see state-contingent prices and claims of the sort
that we study in the Arrow-Debreu equilibrium. So does that imply that
the markets in which we actually trade are incomplete? The analysis above
indicates that allocations achieved in a complete contingent claims mar-
ket structure can also be achieved within a restricted asset space. In the
pure-credit model with a single short-term and fixed-rate asset, an individ-
ual could take a long (saving) or short (borrowing) position and the full
insurance allocation could be achieved. In the pure-insurance model, the
restriction on borrowing had an impact on the allocations only in the case
of a Markov endowment process. The notion that market incompleteness
may not matter is explored in the paper by Levine and Zame [309]. They
show market incompleteness may not matter when agents have a long time
horizon and can self-insure through borrowing and lending. The conclu-
sion may not hold if there are multiple consumption goods or the wrong
types of assets are traded. We can interpret our pure insurance economy
with Markov endowment as an example of an economy with the wrong
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type of assets being traded. The examples in this section have examined
only idiosyncratic risk.

When there is aggregate uncertainty, the impact of market incom-
pleteness may be important. Levine and Zame [309] show that market
incompleteness may not matter when there is aggregate risk provided
agents have the same constant relative risk-aversion utility and the right set
of assets is traded. This point is also explored by Krueger and Lustig [292].
Krueger and Lustig [292] show that if aggregate risk is incorporated into
a model with idiosyncratic risk, and if the distributions of the aggregate
shocks and idiosyncratic shocks are independent, then the risk premium is
unaffected.

We have established that, under some circumstances, market incom-
pleteness has no impact on consumption allocations or risk premiums. The
conclusion is that restrictions on the asset span may not have a significant
impact. Yet empirical studies indicate that market incompleteness and fric-
tions are important and so the task is to incorporate frictions into trading
that result in changes in equilibrium allocations and prices. We next turn
to a model that incorporates a trading friction – trading is bilateral and
takes place at decentralized locations each time period. The model can be
related to our pure-credit and pure-insurance models just discussed.

16.2. T O W N S E N D T U R N P I K E M O D E L

The discussion above focused on models of idiosyncratic risk in which
aggregate output is deterministic. We shift now to the impact of mar-
ket incompleteness when there is aggregate uncertainty. While aggregate
uncertainty cannot be diversified away, it can be shared efficiently when
markets are complete.

This section is based on the Townsend [431] turnpike model. The model
has a specific trading friction, namely, trade is bilateral and location-
specific. The decentralization of trade and the feature that an agent will
interact with only a small subset of agents creates a role for a financial
intermediary. The standard contingent claims model does not specify a
site or location for delivery of goods, implicitly assuming that all agents are
located at the same site or that goods can be costlessly and instantaneously
moved across sites at a point in time. Models of incomplete markets some-
times assume that the incompleteness arises because of spatial separation,
although many other models of market incompleteness are studied, such
as private information or lack of enforcement mechanisms, for example. In
this model we assume that at a point in time agents are characterized not
only by the aggregate state and their type but also by their location. The
stochastic endowment is received by an agent at a particular site, and this
non-storable consumption good cannot be transported across sites within
a time period.
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Transactions across agents at different sites will depend on the commu-
nication across sites and the restrictions on the delivery of the contract,
which in turn are related to enforcement and limited commitment. Full
communication means that agents can enter into contingent contracts
with agents at other sites. Unrestricted delivery means that delivery can be
guaranteed even if the counter parties are at different sites on the delivery
date. Full communication with restricted delivery leads to partial insurance
against aggregate risk, even though an agent can enter into a countable
infinity of contracts. A model in which there is full communication but
partially restricted delivery because of record-keeping constraints or limited
netting of transactions is equivalent to a model with borrowing constraints.
We also show that the Alvarez-Jermann model of endogenous solvency
constraints is related to a particular netting scheme in which there is no
default in equilibrium.

In this setting, the Arrow-Debreu complete markets allocation can be
achieved if contingent claims are pooled across all sites and agents. All
contracts must specify the delivery site. If trade is decentralized among
agents at different sites, there must be full communication across loca-
tions. Specifically, agents located at different sites at time t must be able
to communicate and to enter into contingent claims contracts. Second,
there must be unrestricted delivery on the contracts. This means that the
two counter parties in the contract can be located at different sites at the
delivery date. We examine several versions of the model under different
assumptions about communication across sites and restrictions on delivery.

16.2.1. Description of the model

An agent is indexed by his type, his location, the date, and the history of
the system. There are two types of agents: type E (east-moving) and type
W (west-moving). There is a countable infinity of each type of agent.

At time t, the type E or W agent is at a location i ∈ I , where I is the
set of integers. In period t + 1, an E-type will move to site i + 1 while the
W -type agent will move to site i − 1. If, at time t a type E agent is located
at site i and a type W agent is located at site j, then the following set of
potential interactions are possible. If j < i, then the two agents never meet
in the future. If i = j, then the agents are present at the same site at the
same point of time, but never meet again. If j > i, then the two agents may
potentially be at the same site at the same time. If j − i is an even (and
positive) number, then the agents are at the same site at time t + j−i

2 . If
j − i is odd, then the two agents are never at the same site at the same point
in time. All agents at all locations act as price-takers.

At each site and in each time period, each type of agent receives a
stochastic and exogenous endowment. The exogenous endowments follow
a stationary, first-order Markov chain. Let st ∈ S ={ε1, . . . , εn}. A type E
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agent at site i has a non-storable endowment yi
e : S → Y = [y, ȳ], where

y ≥ 0. Type W agent at site i has non-storable endowment yi
w : S → Y .

Denote ȳi(s) = yi
e(s) + yi

w(s) as total endowment in state s at site i. The
endowment is non-storable and cannot be moved across sites during the
time period it is received. Moreover, let yi

e = ye and yi
w = yw for all i, so

that type E agents are identical across sites, as are type W . In much
of the discussion, the location index will be dropped when there is no
ambiguity.

Define πi,j = prob(st+1 = εj | st = εi) for i, j = 1, . . . , n. Define � as
the n × n matrix of transition probabilities with (i, j)-element π (sj | si),
where summation across a row equals one. Finally, let π̂ (s) denote the
unconditional probability of being in state s, and �̂ denote the vector
of unconditional probabilities. Let st = (s1, . . . , st) be the history of real-
izations up to time t and let πt(st) denote the probability of st , where
st ∈ St = S × · · · × S︸ ︷︷ ︸

t

. Hence, at time t an agent is characterized by his

type, location i where i ∈ I , and the common history st .
There are some important differences between the model with idiosyn-

cratic risk discussed in the first part of this chapter and the current model
in terms of the underlying uncertainty. In the first with idiosyncratic risk,
there was a countable infinity of agents so that the sample realization gen-
erated a sample mean equal to the underlying population mean, using
the Law of Large Numbers. Under certain conditions on trading, agents
could achieve full risk sharing and constant consumption over time. In
the current model there is both aggregate and idiosyncratic risk. The total
endowment at a particular site is:

yi(s) ≡ yi
e(s) + yi

w(s),

which varies with the state s so that there is aggregate uncertainty. Aggre-
gate uncertainty, by definition, cannot be diversified away. The issue is
whether that aggregate risk is optimally shared across agents. We also
see heterogeneity among agents: as total endowment yi(s) fluctuates, the
share of the total endowment for a type E may vary. But notice that
there are no risk sharing arrangements among agents of the same type,
because agents of the same type are identical. We could also incorporate a
location-specific shock that is i.i.d. across sites to generate more variability
in endowment and create risk-sharing arrangements among agents of the
same type.

A type E agent has preferences over consumption bundles described by:

∞∑
t=0

∑
st

β tπt (st)U (ct), (16.27)
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where 0<β < 1. Let ci
t (s

t) denote the consumption of a type E agent at
time t, location i when the history is st . The type W agent has preferences
over consumption bundles described by:

∞∑
t=0

∑
st

β tπt(st)W (ηt). (16.28)

Let ηi
t (s

t) denote the consumption of a type W agent in location i at
time t when history is st . The functions U , W are assumed to be strictly
increasing, strictly concave, and twice continuously differentiable. Let
U1, W1 denote the first derivatives and assume the Inada conditions hold:
limc→0 U1(c) =∞ and limc→∞ U1(c) = 0 for U = U , W .

Before proceeding with a borrowing-constrained model, it is useful to
discuss the role of the financial intermediary or clearing house. If there were
no accounting system or agency to keep track of and enforce the delivery
of contingent claims contracts, then no agent would enter into these con-
tracts and the only outcome is autarky, where each agent just consumes
his endowment. The reason is clear: each agent meets a particular agent of
different type at most once. Hence if the east agent wishes to borrow from
a particular west agent, the west agent will lend only if the debt instrument
issued by the east agent is enforceable and negotiable. Enforceability means
that the east agent cannot default on the contract and negotiability means
that the west agent can sell the contract to another agent and still have
the contract honored by the issuer. Hence the Townsend turnpike model
creates a role for a durable asset, such as money, or a clearing house that
facilitates borrowing and lending. In the discussion below, we emphasize
the clearing house interpretation. The clearing house facilitates the delivery
on a contract.

The complete markets competitive equilibrium is solved first. In this
case, the clearing house intermediates borrowing and lending and enforces
contracts. The type E agent who is located at site i at t = 0 has a budget
constraint:

0 =
∞∑

t=0

∑
st

qi+t
t (st)[yi+t

e (st) − ci+t
t (st)] (16.29)

Let λi denote the Lagrange multiplier, and assume that λi = λ for all i ∈ I .
The first-order condition is:

β tπt(st)U1(ci+t
t (st)) = λqi+t

t (st). (16.30)

The budget constraint for a type W agent who starts at location i at
t = 0 is:

0 =
∞∑

t=0

∑
st

qi−t
t (st)[yi−t

w (st) − ηi−t
t (st)]. (16.31)
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Let φ denote the Lagrange multiplier. The first-order condition is:

β tπt(st)W1(η
i−t
t (st)) = φqi−t

t (st) (16.32)

At site i, the market-clearing condition is:

ȳi(st) − ci
t (s

t) − ηi
t (s

t) = 0 (16.33)

The first-order conditions for the two agents located at site i at time t can
be solved for the price to obtain:

W1(ηi
t (s

t))

φ
= qi

t(s
t)

β tπt(st)
= U1(ci

t (s
t))

λ
(16.34)

Consider stationary solutions of the form ci : S → Y for i ∈ I .
With market clearing at each site, (16.34) can be re-written with market
clearing as:

U1(ci(st))
W1(ȳi(st) − ci(st))

= λ

φ
. (16.35)

Observe that the left side is strictly decreasing in c. The stationary
solution is:

c(st) = g
(

st ,
λ

φ

)
.

To determine the value of λ
φ

, substitute for the equilibrium price into the
type E ’s budget constraint:

0 =
∞∑

t=0

∑
st

β tπt(st)U1

(
g(st ,

λ

φ
)

)[
ye(st) − g

(
st ,

λ

φ

)]
. (16.36)

The right side is strictly increasing in λ
φ

, hence there exists a unique
solution (λ/φ)�.

With the benchmark case established, we turn now to borrowing-
constrained households.

16.2.2. Borrowing-constrained households

To examine the impact of the borrowing constraint when there are con-
tingent claims and aggregate risk, the borrowing constraint is modeled
as a lower bound on the value of the portfolio at the end of the period.
The constraint is best understood in a sequential model using dynamic
programming.

Let Ve(st , ze) denote the value function of a type E agent at location i in
state st who holds contingent claims ze at the beginning of the period. The
type E agent solves:
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Ve(st , ze) = max[U (ct) + β
∑
st+1

π (st+1 | st)Ve(st+1, ze(st+1))],

(16.37)

subject to

ye(st) + ze = ct +
∑
st+1

q̂(st+1, st)ze(st+1), (16.38)

and

D ≤
∑
st+1

q̂(st+1, st)ze(st+1), (16.39)

where D ≤ 0, places a restriction net indebtedness since the constraint
implies

0 ≤ ct ≤ ye(st) + ze(st) − D.

Notice the non-negativity constraint on consumption implies that:

ze(st) ≥ D − ye(st),

which places a lower (negative) bound on contingent claims holdings (a
short sale constraint).

Let μe(st) denote the Lagrange multiplier for the budget constraint
(16.38) and let λe(st) denote the multiplier for the borrowing constraint
(16.39) for a type E agent. The first-order conditions and envelope
condition are

U1(ct) = μe(st), (16.40)

μe(st)q̂(st+1, st) − λe(st) = βπ (st+1 | st)V2,e(st+1, ze(st+1)), (16.41)

V2,e(st , ze(st)) = μe(st). (16.42)

These conditions simplify as:

U1(ct)q̂(st+1, st) − λe(st) = βπ (st+1 | st)U1(ct+1). (16.43)

Market clearing requires that:

ze(st+1) + zw(st+1) = 0.

At first glance, it might seem that our pure-insurance economy described
at the beginning of the chapter is an example of this model in which D = 0.
This is not the case because of the aggregate risk. Will the borrowing con-
straint ever be binding when there is aggregate risk that is i.i.d.? Suppose
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that D = 0 so that no borrowing is allowed. Optimal risk sharing in this
model is an allocation such that:

U ′(c(st+1))

W ′(η(st+1))
= K ,

where K is a positive constant and the consumption of a type E is a
function c(st , K ). The agent’s portfolio constraint can be expressed as:

0 =
∑
st+1

βπ (st+1 | st)U1(c(st+1, K ))[ye(st+1) − c(st+1, K )],

where both sides have been multiplied by U ′(ct). Notice that the right side
is a function of the unknown K . This model can be solved by using the
first-order condition for the type W agent to show that, when the aggregate
shock is i.i.d., the first-best allocation can be achieved when D = 0. For
this reason we will assume that the endowment is Markov for the rest of
the discussion.

Under the assumption of Markov endowment, one outcome is that the
constraint is non-binding for both types of agents. A second case is that the
constraint binds for one of the agents. Notice that it can bind for only one
type of agent in each time period. If the constraint is binding for a type E
agent, then consumption is c(st) = ye(st) + ze(st) − D so that:

λe(st) = max[0, U1(ye(st)+ze(st)−D)q̂i(st+1, st)−βπ (st+1 | st)U1(ct+1)].

If λe(st)> 0, then observe that the equilibrium consumption of a type W
agent is η(st) = yw(st) + zw + D. Hence, in this simple model with two
types of agents, it is clear that the consumption allocations of the uncon-
strained agent are affected by the borrowing constraint through the limits
on his transactions with the constrained agent.

Before examining the asset-pricing implications of the model, we will
interpret the borrowing constraint as a specific netting scheme or record-
keeping technology used by the clearing house.

16.2.3. Borrowing constraints as netting schemes

In this section, we exploit the physical frictions in trading by interpreting
these frictions as a type of netting scheme. For intermediation to occur, the
clearing house must facilitate delivery on contracts between counter par-
ties located at different sites on the delivery date. To prevent Ponzi schemes
from occurring, the clearing house will need to maintain records all of the
contingent claims contracts entered into by agents W (i) or E(i), i ∈ I .
As discussed earlier, there is a countable infinity of such contracts. In this
section, the clearing house maintains records but is technologically con-
strained from maintaining records and deliveries on all contracts at all sites
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over time. In particular, an agent at site i at time t will be allowed to bor-
row from agents that are no more than n sites away from site i. There is an
upper bound on how much the agent can borrow, equal to the expected
discounted present value of his income for the next n periods. Agents are
allowed limited opportunities to roll this debt over and, over his lifetime,
the expected discounted present value of expenditures cannot exceed the
expected discounted present value of income.

Suppose that the clearing house nets deliveries at site i + 1 at time t + 1
with deliveries at site i−1. If E(i) borrows from W (i+2) at time t, resources
are shifted from W (i) to E(i) for the loan to take place. Agent W (i) will be
repaid at site i − 1 from payments made by E(i − 2) and W (i + 2) will be
repaid at site i + 2 by E(i) for resources that W (i + 2) shifted to E(i + 2).
Although multiple agents are involved in the transaction, the initial loan
takes place at two sites (i, i + 2) and the repayment takes place at two sites
(i − 1, i + 1). Rolling the debt over will expand the number of agents and
sites involved in the transaction.

Define

An,t (st) = qt(st)ye(st) +
∑
st+1

πt+1(st+1)An−1,t+1(st+1),

where A0,t (st) ≡ 0, which equals the discounted present value of endow-
ment for n periods in the future, including the current period, measured
in time 0 prices. Similarly for the type W agent define

B1,t (st) ≡ qt(st)yw(st)

and

Bn,t (st) = qt(st)yw(st) +
∑
st+1

πt+1(st+1)Bn−1,t+1(st+1).

For general netting schemes, the problem solved by a type E is to
maximize (16.27) subject to:

0 ≤
∑

t

∑
st

qi+t
t (st)[yi+t

e (st) − ci+t
t (st)], (16.44)

0 ≤ Ai+t
n,t (st) − qi+t

t (st)ci+t
t (st). (16.45)

The first constraint is the standard lifetime budget constraint, while the
second constraint states that the agent’s borrowing is capped by the
expected discount present value of income for the next n periods. This
places a limit on the amount of debt that an agent can acquire. It also has
the following interpretation: that claims against an agent at time t in state
st , site i, when netted against agents at sites i, . . . , i + n are bounded above
by the agent’s ability to repay in the next n periods. Suppose that (16.45)
binds in period t. Then next period, the agent faces (16.45) updated one
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time period and can borrow, as long as (16.44) is satisfied over his lifetime.
This formulation allows a more general and flexible borrowing constraint
than is typically used.

Let μe denote the multiplier for the lifetime constraint for a type E agent
and let λn

e,t(s
t) denote the multiplier for the borrowing constraint (16.45).

The first-order condition is:

β tπt(st)U ′(ci+t
t (st)) = [μe + λn

e,t(s
t)]qi+t

t (st) (16.46)

If n = 1, then the clearing house will not intermediate any loans between
the agents at site i at time t and the equilibrium allocation is autarky. If
n = 2, then the clearing house will intermediate loans but only for agents
that are no more than two sites apart at time t +1. Clearly, as n grows large,
the constraint is less likely to bind because the lifetime budget constraint
must be satisfied. As n → ∞, the constraint is equivalent to the no-Ponzi
scheme condition.

16.2.4. Liquidity-constrained households

Kehoe and Levine [273] define liquidity constraints as a restriction on
short-sales of an asset. A short-sale constraint in this model takes the form

ye(st) − c(st) ≥ D(st).

The implications of this constraint are discussed next and then related to
the Alvarez and Jermann model [24] of endogenous debt constraints.

The east and west traveling agents maximize their objective func-
tions subject to their lifetime budget constraints (16.31) and the short-sale
constraint of the form

yi(st) − ci(st) ≥ D(st) (16.47)

where i = e, w and D(st)< 0. Notice that the constraint is generally state-
dependent, and is stronger than the borrowing constraint model above
since it limits not only the end-of-period portfolio∑

st+1

qt+1(st+1)[yi(st+1) − ci(st+1)] ≥
∑
st+1

qt+1(st+1)D(st+1)

but also indebtedness in each state. Observe also that the short-sale con-
straint can be binding even if the aggregate shock is i.i.d., unlike the
pure-insurance models or the borrowing constraint model.

Let φi(st) denote the Lagrange multiplier for the short-sale constraint
and let μi denote the multiplier for the lifetime budget constraint (16.31).
The first-order condition for a type E agent is:

πt(st)β tU1(ct(st)) = μeqt(st) + φe(st). (16.48)
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If φe > 0 then c(st) = ye(st) − D(st). From market clearing, it follows that
η(st) = yw(st) + D(st). If the east-type agent has φe(st)> 0, then φw(st) = 0
and conversely. The short-sale constraint can be binding for only one type
of agent in equilibrium. If φe > 0 then the equilibrium price will satisfy:

qt(st)

πt(st)β t
= U1(ye(st) − D(st)) − φe(st)

μe
= W1(yw(st) + D(st))

μw
.

(16.49)

Hence the allocation either satisfies:

U ′(c(st))
W ′(η(st))

= μe

μw

and the price is proportional to βπ (st |st−1) or else the constraint is binding
and the equilibrium satisfies the equation above.

16.2.5. Debt-constrained economies

Alvarez and Jermann [24] derive a constrained efficient equilibrium based
on endogenous solvency constraints. Their work builds on earlier work by
Kocherlakota [280] and Kehoe and Levine [272, 273], who construct equi-
libria in endowment economies where there are participation constraints.
Agents can always opt to revert to the autarky solution and so any efficient
allocation with market participation must take this into account. Alvarez
and Jermann [24] show that the participation constraints can be inter-
preted as endogenous solvency constraints. Agents can choose to default
and revert to the autarky solution. They derive endogenous borrowing
constraints such that the agent, while having the option of default, will
in equilibrium never choose default.

Define V a
e (st) as:

V a
e (st) = U (ye(st)) + β

∑
st+1

π (st+1 | st)V a
e (st+1) (16.50)

so that V a is the value of the endowment under autarky. The agent will
choose to default whenever his current value function is less than V a. The
problem can be directly solved by requiring Ve(st , zt) ≥ V a(st). An alter-
native approach taken by Alvarez and Jermann [24] is to show that the
solution to the following model is identical to the model with the partic-
ipation constraint. They study the following debt-constrained economy:

Ve(st , ze) = max[U (ct)+β
∑
st+1

π (st+1 | s)Ve(st+1, ze(st+1))] (16.51)
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subject to

ye(st) + ze = ct +
∑
st+1

q̂(st+1, s)ze(st+1)

and

ze(st+1) ≥ D(st+1),

which is the dynamic programming version of the short-sale constrained
model in the previous section. Let μe(st) denote the multiplier on the
budget constraint and let λe(st+1) denote the multiplier on the borrowing
constraint. The first-order conditions and the envelope condition are:

U1(ct) = μe(st) (16.52)

μe(st)q̂(st+1, st) = λe(st+1) + βπ (st+1 | st)V2,e(st+1, ze(st+1)) (16.53)

V2,e = μe(st+1) (16.54)

They show that the solvency constraint is not too tight if

Ve(st , D(st)) = V a
e (st). (16.55)

As long as the short-sale constraint is not too tight, the agent will never
choose to default on debt. This implies that there is a netting scheme such
that no agent will default in equilibrium.

16.3. C O N C L U S I O N S

In this chapter, we have examined the role of restrictions on markets and
on trades. We have considered economies in which there is only idiosyn-
cratic risk and also ones for which there is also aggregate uncertainty.
In the former case, we have examined the nature of equilibria in pure
credit and pure insurance economies under alternative assumptions for the
shocks. We have also analyzed the Townsend turnpike model in which
there are locational trading frictions. These models show the impact of
market incompleteness and trading frictions and allow us to understand
how individual allocations and asset prices differ from the pure frictionless
Arrow-Debreu complete contingent claims economy. In the next chapter,
we employ similar techniques to analyze the overlapping generations model
under pure exchange and with production.

16.4. E X E R C I S E S

1. Consider an economy in which there are two types of agents, where
α ∈ (0, 1) denotes the fraction of agents of type a. Also assume that
there are two states of the world, s ∈ S ={1, 2} and suppose that
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the sequence of shocks {st} are i.i.d. where π = Prob(st = 1). Let θi(st)
denote the productivity of each agent i in state st . The production
function for an agent of type i is:

yi,t = θi(st)!i,t , (16.56)

where !i,t is the labor supply of agent i in period t. If s = 1,
θ1(1) = 1 and θ2(1) = 0 while if s = 2, θ2(2) = 0 and θ1(2) = 1. Hence,
productivity shocks are perfectly negatively correlated across agents.

A typical type i consumer has preferences over stochastic sequences
{ci,t , !i,t} of the form:

U i =
∞∑

t=0

∑
st∈S

{
β t[U (ci,t) − !i,t]

}
. (16.57)

At time zero, agent of type i maximizes (16.57) subject to the lifetime
constraint

0 =
∞∑

t=0

∑
st

pt(st)[θi(st)li,t(st) − ci(st)], (16.58)

where pt denotes the contingent claims prices at time zero.
The market-clearing condition is:

αc1,t + (1 − α)c2,t = αθ1(st)!1,t + (1 − α)θ2(st)!2,t .

(a) Find the first-order conditions and market-clearing conditions for
the complete contingent claims equilibrium.

(b) Find the expected present value of lifetime earnings for agents of
type 1 and 2.

(c) Find the complete contingent claims allocations and prices under
the assumption that (i) α = 1/2 and π = 1/2; (ii) π = 2/3 and
α = 1/2.

2. Now consider an economy in which a complete set of contingent
claims do not exist but where borrowing and lending are permitted.
Assume that there is a durable and non-depletable asset that is fixed
in per capita supply at one unit. The asset is bought and sold at a real
price qt at time t. Let zi,t , denote the asset holdings of a type i agent
at time t.
(a) Formulate each household’s problem as a dynamic programming

problem and show that it has a solution.
(b) Show that the allocations and prices in the borrowing and lend-

ing equilibrium are identical to those in the complete contingent
claims equilibrium.



C H A P T E R 17

Overlapping generations models

In this chapter, we study the overlapping generations model of Samuelson
[381]. The main feature of this model is that an agent “lives” for two peri-
ods: in the first period, he has a non-trivial decision on how much to
save and how much to consume, and in the second and final period, he
consumes all of his wealth so that the second-period decision is trivial.
Each time period, a new generation enters into trading so that there are
always two types of agents – young and old. The overlapping generations
model has a special type of friction – because of the physical environment,
agents are unable to commit to certain transactions over time. Bilateral bor-
rowing and lending arrangements are not available because of incomplete
participation. We have other models in which the physical environment
precludes bilateral transactions over time, namely the Townsend turn-
pike model with east and west traveling agents (see Townsend [431]). In
the terminology of Kocherlakota [280], these environments are character-
ized by agents that are “. . . unable to commit themselves to a particular
allocation of resources” (p. 233). The overlapping generations model also
has the property that allocations can be dynamically inefficient, imply-
ing that a reallocation of resources would make some agents better off
and no agent worse off. The dynamic inefficiency arises because there is
a double infinity of agents and time periods, according to Shell [397].
We explore the implications of dynamic efficiency in the overlapping
generations model.

In the overlapping generations framework with stochastic endowment,
there are two concepts of Pareto optimality: equal-treatment Pareto opti-
mality and conditional Pareto optimality. In the first case, young agents
born in period t are viewed as identical regardless of the current state,
whereas in the second case, young agents born in different states but in
the same time period are viewed as different agents. In either case, an
allocation can be dynamically inefficient. In a deterministic pure endow-
ment model, the dynamic inefficiency arises because of the double infinity
of agents and time periods. Transfers can be made such that the initial
old generation is strictly better off while no other agent is worse off. The
introduction of a clearing house or a durable asset, such that the transfer

504
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can be implemented through the market system, will eliminate the ineffi-
ciency. When the endowment is stochastic, the dynamic inefficiency can
arise when there is inefficient risk sharing. There is a recent literature which
discusses these issues in the context of the overlapping generations model.
(See, for example, Demange and Laroque [147] and Demange [146].)

In a deterministic model of capital accumulation, Diamond [152]
showed that there may be an over-accumulation of capital in an inter-
generational economy, leading to a dynamic inefficiency. By decreasing the
capital stock and redistributing the good, the dynamic inefficiency can be
eliminated. Diamond [152] shows that the presence of the dynamic effi-
ciency can be determined from a simple relationship between the rate
of growth of the population and the marginal productivity of capital, or
equivalently, the real interest rate. Recent research has shown that when the
environment is stochastic, determining whether an economy is dynami-
cally inefficient is more subtle. Our discussion in this section follows Abel
et al. [7], Bertocchi [59] and Bertocchi and Kehagias [60].

The issue of dynamic inefficiency and different concepts of Pareto opti-
mality are of more importance than just academic interest. Social security
schemes can be justified if an economy is dynamically inefficient. As we
have argued, dynamic inefficiency is intimately related to lack of risk shar-
ing in a stochastic environment. As an example, Krueger and Kubler [291]
analyze the social security debate from the viewpoint of aggregate risk
sharing in an incomplete markets economy. If an economy is dynamically
inefficient, the introduction of a safe asset such as outside money or risk-
free government bonds may also eliminate the inefficiency, as will income
insurance and various types of state-contingent transfers. The form of the
optimal policy will depend on the concept of Pareto optimality also. We
discuss some of these issues later in this chapter.

17.1. T H E E N V I R O N M E N T

The overlapping generations model is a simple framework for capturing
the effects of what we will term “incomplete participation.” The Arrow-
Debreu framework has infinite-lived agents who meet at time 0 and sign
state-contingent contracts. The overlapping generations model has a fun-
damentally different setup, as we will see later when we study an OLG
model using Arrow-Debreu pricing.

17.1.1. Primitives

It is useful to start out with a description of the environment underlying
the overlapping generations model.

Demographics There are n agents in each cohort. Agents born in period
t live two periods and expire in period t + 1, with no bequest motive.
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Hence each period there are 2n agents: n young and n old. The model
was initially designed as a demographic model. As we will discuss
below, this is too narrow an interpretation.

Consumption The time t consumption of an agent born in period t is
denoted ct

t . The time t + 1 consumption of an agent born in period
t is denoted ct

t+1. Hence the superscript denotes the period of birth
and the subscript denotes the current time period.

Endowment Let wt
t denote the time t endowment of an agent born in

period t and let wt
t+1 denote the time t + 1 endowment of an agent

born in period t. Let W = [0, w̄] where wt
t+1 ∈ W .

Feasible Allocations Feasible allocations satisfy:

wt−1
t + wt

t ≥ ct
t + ct−1

t (17.1)

Preferences An agent born in period t ∈ T , T ={1, 2, . . .}, has additive
preferences:

U (ct
t ) + V (ct

t+1) (17.2)

Initial Old Generation There is always an issue of how to treat the initial
old at time 1 – the standard is to assume that they never experienced
the joys of youth and have preferences:

V0(c0
1 )

and have endowment w0
1 .

17.1.2. Autarky in the absence of an outside asset

The implications of the overlapping generations model under different
trading arrangements lie at the heart of many debates in the literature.
Hence, it is important to understand the structure of the trading arrange-
ments in this model. Suppose, in particular, that there is no government
or clearing house or other agency that facilitates trade between agents of
different cohorts. Then, as we argue below, there is no trade.

Consider the possible kinds of trades.
Trade with agents within a cohort: If agents within a cohort (from the

same generation) are heterogeneous, then these agents can trade privately
issued IOUs. They essentially can borrow and lend among themselves since
they share the same lifetimes. Hence within a generation, the marginal
rates of substitution across agents will be equalized, as will the intertempo-
ral marginal rate of substitution. Hence we can work with a representative
member of generation t.

Trade between agents of different cohorts: At time t, there are two types
of agents present in the economy: old agents born in period t − 1 and
young agents t. A young agent at period t will never lend to an old agent
at time t because the old agent will expire by period t + 1 when the loan
is to be repaid. Similarly the old agent at time t will never lend to a young
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agent at time t because the old agent will be dead next period and unable
to use the repayment. A young agent generally would like to shift some
consumption from youth to old age, but to do so would require entering
into an agreement with a young agent born at time t + 1. Such trades are
not allowed if we consider sequential trading because the time t + 1 young
agent is not available to negotiate trades at time t. But suppose for the
moment that such trades could be negotiated. Suppose that a young agent
at time t could sign a contract with a young agent at time t+1. Would there
be an incentive for the agents to enter into a contract? If the young agent
would like to shift some of his wealth forward to time t + 1, that would
require that the young agent at time t + 1 transfer some resources to the
old generation at time t. But what can the young agent at time t offer to a
young agent at time t + 1? The young agent at time t is unable to transfer
resources to period t + 2, which is the time period that young agents born
in period t+1 would like to receive the resources. Hence, even if contingent
claims among young agents at time t and t + 1 could be negotiated, no one
would enter into these contracts. Hence, the OLG model is not a model
of incomplete markets, because these markets exist, it is just that no one
wishes to participate in them. Hence for there to be any trading among
different cohorts, there must be an outside asset or some institution that
clears the trades. A convenient outside asset is nominal money.

Dynamic inefficiency: For an allocation to be Pareto optimal the
expected discounted present value of the wealth of the society must be
finite. In an overlapping generations model, this measure of society’s wealth
may not be finite, indicating that the economy is dynamically inefficient.
The dynamic inefficiency can arise because of the double infinity of types
of agents and time periods in the model. Each time period there are two
types of agents, those born at time t +i and t +i+1. As i = 1, . . . , ∞, there
is an infinite number of types of agents and an infinite number of time peri-
ods for the economy. In an economy with this type of double infinity in
which the expected discounted present value of the society’s wealth is not
finite, the infinite value of wealth signifies that the current price of a unit
of endowment in the distant future is large. If the current generation could
consume more today and borrow from future generations, welfare might
be improved. Essentially an old agent today can borrow from a current
young agent who, in turn, borrows from a young agent next period and
so on into the infinite future. It is always possible to borrow from a future
young generation because there is an infinite number of time periods and
infinite number of types, or generations, of agents. The debt is rolled over
indefinitely and essentially is a Ponzi scheme. The introduction of an out-
side asset, such as fiat money which is intrinsically worthless, is an example
of a mechanism that can eliminate the dynamic inefficiency. The introduc-
tion of an intermediary which allows this borrowing from the future can
also eliminate the dynamic inefficiency.
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In the absence of an outside asset, agents would consume their own
endowment; this is called autarky. In this case, ct

t = wt
t . The marginal rate

of substitution between old and young agents is:

V ′(wt−1
t )

U ′(wt
t )

.

We will discuss the stochastic case later. Notice that if the endowment is
fluctuating, the marginal rate of substitution is fluctuating over time. Com-
pare this with our infinite-lived Arrow-Debreu allocation in the absence of
aggregate risk. In that case, the MRS was constant over time. Hence the
model fails to achieve static efficiency (using Azariadis’s [38] terminology).

The types of financial mechanisms that can be used to support the
Pareto optimal allocations in the deterministic and stochastic versions of
the overlapping generations model have been the topic of much study. As
we discuss below, the implementation of the Pareto optimal allocations
typically requires some transfer scheme. There exist all sorts of institu-
tional arrangements that can be used for this purpose. The role of fiat
money, both constant and stochastically growing, and also other govern-
ment policies such as risk-free bonds, state-contingent taxes, social security,
and insurance have also received attention in the literature. (See, for exam-
ple, Chamley and Polemarcharkis [101], Weiss [447], and Wallace [441].)
The various policies are equivalent in the sense that the consumption allo-
cations and the underlying state-contingent prices are unaffected by the
policy changes.

17.2. T H E S T O C H A S T I C O V E R L A P P I N G

G E N E R A T I O N S M O D E L

Now consider the stochastic overlapping model. Here we will illustrate the
source of the dynamic inefficiency, which does not arise from incomplete
markets but rather from what Shell [397] refers to as the “double infinity of
agents and time periods.” We make this point by demonstrating that the
overlapping generations model can be mapped directly into the standard
Arrow-Debreu framework. Our discussion is based on the articles by Shell
[397] and Labadie [301], [302].

There are overlapping generations and an agent born in period t lives for
two periods. There is no population growth. The endowment is exogenous,
stochastic and non-storable. There is an exogenous stochastic process st ∈
S ={s1, . . . , sn} that is a stationary, first-order Markov chain. A young agent
has a non-storable endowment w1 : S → W = [w, w̄], where w > 0 and
w̄ <∞. Old agents at time t have an endowment w2 : S → [0, w̄]. The
total endowment in state st is:

w(st) = w1(st) + w2(st).
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The one-step transition probability is π (sj | si) = Prob(st+1 = sj | st
= si) for i, j = 1, . . . , n. The history of realizations up to time t is
st = (s0, s1, . . . , st). Define πt(st) as the probability of st . The n × n matrix
of transition probabilities is �, with (i, j)-element π (sj | si) such that
summation over the elements of a row equals one. Let π̂ (s) denote the
unconditional probability of being in state s. The vector of unconditional
probabilities satisfies the relation �′π̂ = π̂ . By assumption, the Markov
chain is stationary, so that π̂ is the eigenvector of the transition matrix and
the eigenvalue is 1.

The preferences of a young agent born in period t are:

U (ct
t ) +

∑
st+1

π (st+1 | st)V (ct
t+1), (17.3)

where ct
t is the time t consumption of a young agent born in period t and

ct
t+1 is the time t + 1 consumption of an agent born in period t. Hence,

agents’ preferences satisfy the expected utility hypothesis.

Assumption 17.1 The functions U , V satisfy U ′(c)> 0, V ′(c)> 0,
U ′′(c)< 0, V ′′(c)< 0; U and V are thrice continuously differentiable; and
limc→0 U ′(c) =∞, limc→0 V ′(c) =∞, limc→∞ U ′(c) = 0, and limc→∞
V ′(c) = 0.

To ensure that a transfer of a unit of consumption from youth to old age
is always welfare improving, the following assumption is made.

Assumption 17.2 Let a> 0 such that w > a ≥ 0. As a → 0,

−U ′(w1(s) − a) +
∑

j

π (sj | s)V ′(w2(sj) + a) > 0. (17.4)

Denote w̄ j = ∑n
i = 1 π̂ (si)w j(si) for j = 1, 2. The unconditional means of the

endowment processes satisfy

U ′(w̄1) = V ′(w̄2). (17.5)

Let the marginal utility of second period consumption V ′ be convex, so that
V ′(w̄2)<

∑
j π̂jV ′(w2(sj)).

The restriction on the marginal utilities ensures that young agents wish to
save in the stochastic environment. The restriction on the unconditional
means of the endowment process ensures that the deterministic compet-
itive equilibrium is Pareto optimal. The convexity of V ′ is assumed so
that the assumptions on endowment processes in the deterministic and
stochastic environments are consistent. This point is discussed below.

A feasible solution for the consumption of the young agent is a function
of the form c : S → W . Using the resource allocation constraint (and
assuming non-satiation), the consumption of the old is w(s) − c(s). The
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marginal utility of consumption for a young agent in state s is U ′(c(s)) and
the marginal utility for an old agent is V ′(w(s) − c(s)). The intertemporal
marginal rate of substitution between states si and sj for a young agent born
in state si is:

m(sj, si) ≡ V ′(w(sj) − c(sj))

U ′(c(si))
.

This intertemporal marginal rate of substitution (IMRS) will play an
important role in dynamic efficiency developed below.

There are basically two matrices of interest in studying dynamic effi-
ciency: first, the contingent claims pricing matrix which depends on the
IMRS for a single agent over time and the transition probabilities, and
second, the matrix associated with the central planner’s problem, which
depends on the transition probabilities and the marginal rate of substitu-
tion (MRS) across agents within a period. To highlight the relationship
between the matrices, we start with a discussion of the central planning
problem.

17.2.1. Central planning problem

Let φt(st)> 0 for each st ∈ St denote the Pareto weight associated with
a young agent born at time t in state st , and let φ0 be the Pareto weight
associated with the initial old at time period 1.1 Denote ct

i as the period i
consumption of an agent born in period t, where i = t, t + 1. The central
planning problem is:

max
{c0

1 ,ct
t ,ct

t+1}

{∑
s1

φ0π (s1 | s0)V (c0
1 )

+
∞∑
t=1

∑
st∈St

[
φt (st)

(
U (ct

t ) +
∑
st+1

π (st+1|st)V (ct
t+1)

)

+λt(st)[w(st) − ct
t − ct−1

t ]

]}
, (17.6)

1 There is no loss of generality in making φ0 state contingent and letting the initial weight be∑
s0 φ0(s0)π (s1 | s0)π̂ (s0).
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where λt(st) is the Lagrange multiplier for the resource constraint at time
t. The first-order conditions with respect to {c0

1 , ct
t , ct

t+1} are:

φ0π (s1|s0)V ′(c0
1 ) = λ1(s1), (17.7)

φt(st)U ′(ct
t ) = λt(st), (17.8)

φt (st)π (st+1|st)V ′(ct
t+1) = λt+1(st+1). (17.9)

We will study a stationary solution such that the social planning weights
and the allocations of the young and old agents are time-invariant func-
tions of a finite set of realizations of the underlying state. Specifically, define
the functions φ : S → �+, c : S → �+ and c2 : S × S → �+, such that:

φt (st) = β tφ(st), 0 < β ≤ 1,

ct
t = c(st),

ct
t+1 = c2(st+1, st).

With these restrictions on the functions φ, c, c2, observe that the resource
constraint, w(st) = c(st) + c2(st , st−1) is a function of st , st−1 and not the
entire history st . Hence define the current period Lagrange multiplier as:

λ(st , st−1) ≡ β−t
∑
st−2

λt(st).

The first-order conditions (17.7)–(17.9) are modified as:

φ0π (s1 | s0)V ′(c0
1 ) = βλ(s1, s0), (17.10)

φ(st)U ′(c(st)) = λ(st , st−1), (17.11)

φ(st)π (st+1|st)V ′(c2(st+1, st)) = βλ(st+1, st). (17.12)

Decrease the time subscript in (17.12) by one unit, divide both sides by
β, sum over st−1, equate the right side of (17.12) to the right side of (17.11),
and re-write to obtain:

φ(st)U ′(c(st)) = 1

β

∑
st−1

φ(st−1)π (st | st−1)V ′(c2(st , st−1)), (17.13)

where summing the left side of (17.11) over st−1 yields the expression itself.
Incorporate the resource constraint into (17.13):

φ(st)U ′(c(st)) = 1

β
V ′(w(st) − c(st))

∑
st−1

φ(st−1)π (st | st−1). (17.14)

This corresponds to equation (3) in Peled [358] or equations (4) and
(5) in Aiyagari and Peled [12]. Let B = max[U ′(w), V ′(w)]> 0. Given
the weighting function φ, the solution to (17.14) is a function c�(si,φ),
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si ∈ S. Such a solution exists because the left side is strictly decreasing in
c while the right side is strictly increasing. Moreover, as c → 0, U ′ → ∞
while V ′ → B > 0 since the first-period endowment is strictly positive and
bounded below. As c → w, U ′ → B while V ′ → ∞. In equilibrium, the
consumption of the old is invariant with respect to last period’s aggregate
shock.

Given a solution c�(si,φ), define the n × n diagonal matrix U (c�) with
(i, i)th element U ′(c�(si,φ)) along the diagonal. Next define the n × n
matrix V(c�) with (i, j) element π (sj | si)V ′(w(sj) − c�(sj,φ)). Define 0
as an n × 1 vector of zeroes and let φ be the n × 1 vector of Pareto weights.
The first-order condition is expressed in matrix notation as:

0 = [βU (c�(φ)) − V(c�(φ))]φ, (17.15)

which is a homogeneous system of equations. Notice that this is a vector
representation of (17.14). Given the allocation c� and the matrices V ,U , the
solution φ is not unique. This becomes apparent by dividing each of the n
equations by φ(si) and solving for the n − 1 values φ(sj)/φ(si). The func-
tional dependence of the matrices will be suppressed for convenience in
the discussion below. Multiply both sides of (17.15) by (βU )−1 (the inverse
of βU ) to obtain:

0 = [I − (βU )−1V]φ. (17.16)

Observe that the matrix M≡ (βU )−1V has all positive elements. The
Perron-Frobenius Theorem (see Strang [423], p. 271 for example) can
be applied to determine whether the inverse [I − M]−1 exists. Let ηm

denote the dominant root of M. If ηm > 1 then the inverse fails to be
non-negative, which cannot be a solution since all elements of φ must be
positive. If ηm = 1, then the inverse fails to exist. If ηm < 1, then

(I − M)−1 = I + M + M2 + · · ·
is a convergent sequence. The important point here is that any arbitrary
but feasible set of weights may not result in a dominant root less than unity,
implying that there is an additional condition that must be satisfied for
the allocation c� to be Pareto-optimal. This additional condition is closely
related to the size of the dominant root and is discussed next.

Recall that the function λ measures the marginal value of the endow-
ment. The solution must also satisfy the transversality condition

lim
j→∞

∑
st+j

λ(st+j+1, st+j)w(st+j+1)π (st+j+1|st+j) = 0, (17.17)

which is a requirement that the expected discounted present value of the
economy’s endowment is finite. This condition must hold for the alloca-
tion to be dynamically efficient. If (17.17) fails to hold, the economy is
dynamically inefficient.
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To determine whether the proposed solution satisfies the transversality
condition, observe (17.11) can be written as:

φ(st−1) = λ(st−1, st−2)

U ′(c�(st−1))
,

where the time subscript has been decreased by one unit. Substitute for
φ(st−1) in (17.14) and re-write:∑

st−1

λ(st , st−1) = 1

β

∑
st−1

π (st | st−1) [λ(st−1, st−2)]
V ′(w(st) − c�(st))

U ′(c�(st−1))
.

(17.18)

From the first-order condition for the first time period, we have:∑
s0

λ(s1, s0) = 1

β
φ0π (s1|s0)V ′(w(s1) − c�(s1)).

Solving (17.18) recursively we have:∑
st

λ(st+1, st) =
(

1

β

)∑
st

λ(st , st−1)π (st+1|st)
[

V ′(w(st+1) − c�(st+1))

U ′(c�(st))

]

=
(

1

β

)t ∑
st

πt (st+1)

⎡
⎣ t∏

j=1

V ′(w(sj+1) − c�(sj+1))

U ′(c�(sj))

⎤
⎦∑

s0

λ(s1, s0).

The transversality condition is satisfied when the IMRS satisfies
V ′(w(st+1) − c(st+1))/U ′(c(st))< 1 on average, or

n∑
i=1

n∑
j=1

π (sj|si)
V ′(w(sj) − c�(sj))

U ′(c�(si))
≤ 1.

The transversality condition ensures that the expected discounted present
value of the endowment of the infinite-lived economy is finite.

Satisfying the transversality condition above is equivalent to finding the
stationary solution in Aiyagari and Peled [12]. They define a n × n matrix
Q with (i, j)th element:

q(si, sj) = π (si | sj)V ′(w(si) − c�(si))

U ′(c�(sj))
= βλ(si, sj)

λ(sj, sk)
.

They show that an allocation c� is Pareto optimal if and only if the matrix
Q , which has all positive elements, has a dominant root that is less than or
equal to unity. If the dominant root is less than unity, then (I − Q)−1 > 0
where In×n is the identity matrix, and, by the Perron-Frobenius Theorem:

(I − Q)−1 = I + Q + Q2 + Q3 + · · · ,
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which converges to a fixed matrix. The infinite series of matrices corre-
sponds to the sum in (17.17). In this case, the expected discounted present
value of wealth of the economy

�T [I + Q + Q2 + · · · ]W

is finite, where W T = [w(s1), . . . , w(sn)]. It will be shown below that the
elements of the matrix Q are the contingent claims prices that support the
allocation. Hence, the transversality condition, or equivalently, the prop-
erties of the matrix Q ensure that the expected discounted present value of
wealth is finite, as required for the allocation to be Pareto optimal.

The matrix Q is related to the matrix M=βU−1V discussed above by
noting that the matrix Q is:

Q = (U )−1(V)T ,

where VT is the transpose of the matrix V .

17.2.2. Equal-treatment Pareto-optimal solution

The Pareto-optimal allocation derived as the solution to the central plan-
ning problem above results in a MRS across agents at a point in time
equal to

V ′(w(st) − c�(st))
U ′(c�(st))

= βφ(st)∑
st−1

π (st | st−1)φ(st−1)
, (17.19)

which, in general, varies across states st . This solution is said to be condi-
tionally Pareto optimal (CPO), in which agents born in different states but
in the same time period are treated differently. In a static setting, a property
of full risk sharing is a constant marginal rate of substitution across states
for all agents. The equal-treatment Pareto-optimal solution (ET-PO) exhibits
constant MRS across states for agents, or

V ′(w(s) − c(s))
U ′(c(s))

= β for all s, (17.20)

so the ratio of marginal utilities is equal across all states, a property of full
insurance. In this case, the Pareto weights must satisfy:

φ̂(sj) =
∑

si

π (sj | si)φ̂(si),

so each Pareto weight φ(st) is proportional to its unconditional probability
π̂ (st). Denote cf as the solution to (17.20), which will be referred to as the
ET-PO allocation. Recalling the definition of the matrix V (see page 512),
observe that:

(U (cf ))−1V(cf ) = β�,
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where � is the matrix of probabilities with (i, j) element π (sj | si).
For an agent born in state st , the expected IMRS under the ET-PO

allocation is:

∑
st+1

π (st+1|st)V ′(w(st+1) − cf (st+1))

U ′(cf (st))
= β

∑
st+1

λ(st+1, st)

λ(st , st−1)
,

(17.21)

which varies over st .
It is important to examine the implications for risk sharing of the two

notions of Pareto optimality. Under conditional Pareto optimality, an agent
is characterized by (t, st), the time period and state history, including the
current state st . Two agents [t, (ŝt | st−1)] and [t, (s̄t | st−1)] such that (t, st−1)
are identical, are treated as distinct agents. Hence, all first-period endow-
ment risk is uninsurable by construction. Under equal treatment Pareto
optimality, agents born at t with state history st−1 are treated as identical
agents, so that first period endowment risk is insurable.

17.3. C O M P E T I T I V E E Q U I L I B R I U M

Shell [397] demonstrated that the Arrow-Debreu contingent claims frame-
work is versatile enough to study the overlapping generations model. In
this section, we construct the Arrow-Debreu prices for the competitive
equilibrium and then examine the allocations under two assumptions
about the market structure. The key insight is that a complete set of con-
tingent claims can be offered, but without some intervention, such as a
clearing house or a financial intermediary, agents will not purchase the
claims. This point is illustrated below. In our discussion below, all prices
are expressed as time 0 prices for convenience.

17.3.1. Deterministic economy

To clarify the role of uncertainty and to understand the role of a clearing
house in the model, we start with a discussion of the model in which the
endowment is deterministic, so that w1, w2 are constant. Let φt =βφt−1

and φ0 > 0. The central planning problem becomes:

max
{c0

1 ,ct
t ,ct

t+1}

{
φ0V (c0

1 ) +
∞∑
t=1

[
φt
(
U (ct

t ) + V (ct
t+1)

) + λt(w − ct
t − ct−1

t )
]}

.

(17.22)
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The first-order conditions are:

φ0V ′(c0
1 ) = λ1, (17.23)

φtU ′(ct
t ) = λt , (17.24)

φtV ′(ct
t+1) = λt+1. (17.25)

As in Section 14.1.1, we assume that λt+1 =β−1λt . Since the endowment is
constant, the first-order conditions (17.24)–(17.25) reduce to:

U1(c) = βV1(w − c). (17.26)

We now examine whether a competitive equilibrium can achieve the Pareto
optimal allocation.

Let qt denote the price of a one-period privately issued bond zt+1. Specif-
ically, at time t an agent purchases qtzt+1, which entitles him to payment
zt+1 at time t + 1 from the issuer of the bond. All prices are expressed at
time 0. In the competitive equilibrium, the young agent born at time t
solves:

max
{ct

t ,ct
t+1}

[
U (ct

t ) + V (ct
t+1)

]
(17.27)

subject to

0 = qt[w1 − ct
t ] + qt+1[w2 − ct

t+1],

where the constraint states that the total value of consumption equals the
total value of income, or wealth. Let μt denote the Lagrange multiplier for
the budget constraint. The first-order conditions are:

U ′(ct
t ) = μtqt , (17.28)

V ′(ct
t+1) = μtqt+1. (17.29)

Eliminate μt , substitute in the resource constraint, and solve for qt+1:

qt+1 = V ′(w − ct+1
t+1)

U ′(ct
t )

qt . (17.30)

The question now is whether privately issued bonds will be traded. The
potential buyer of a bond zt+1 is a young agent at time t, who wishes to
shift some consumption to period t + 1. The issuer of a bond at time t, the
borrower, is the old agent. Since these are privately issued bonds, the bond
is the liability of the issuer and, since the issuer has a finite time horizon,
the bonds are not a durable asset. Since the issuer (old agents) at time t is
unable to make the payment at time t + 1, a young agent will not purchase
the bonds. Hence, equilibrium in the bond market requires that zt = 0 for
all t so that consumption is ct

t = w1 when young and ct
t+1 = w2 when old.

Before we discuss the role of a clearing house or financial intermediary, we
discuss the conditions of Assumption (17.2).
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For the moment, suppose Assumption (17.2) does not hold and the allo-
cation of the endowment is such that V ′(w2)>U ′(w1). Then the autarky
solution c = w1 results in qt+1 → ∞ as t → ∞ in (17.30). Hence, the
deterministic economy in autarky is dynamically inefficient, implying that
the time-0 Arrow-Debreu price for delivery of a unit of consumption in
the infinite future is infinity.

As observed by Shell [397], the dynamic inefficiency in the infinite hori-
zon model is a result of the double infinity of agents and time periods. The
inefficiency is eliminated by transferring resources from the current young
to the current old. The initial old experience a clear welfare gain from such
a transfer and the current young are compensated by receiving a transfer
in their old age. Since the economy has an infinite time horizon and an
infinite number of agents, there is always a future young generation from
which such a transfer can be implemented, unlike a finite horizon ver-
sion of the model. In a finite horizon version of the economy, the autarky
solution is Pareto efficient. Young agents will not transfer resources to the
current old because the terminal young are always worse off under such a
transfer scheme.

Now impose Assumption (17.2). Under this assumption, because
U ′(w̄1) = V ′(w̄2), it follows that:

qt+1 = V ′(w̄2)

U ′(w̄1)
qt = qt ,

so that prices are constant and the competitive equilibrium is dynamically
efficient in autarky.

17.3.2. Fiat money

The introduction of fiat money, currency that is intrinsically worthless,
is a mechanism that can be used to eliminate the dynamic inefficiency.
Suppose that the initial generation is given worthless pieces of money, in
the amount M , which is constant. The initial old generation has a budget
constraint

c0
1 = M

p1
,

where p1 is the nominal price of a unit of endowment in period 1. The
young agent in the first period has a budget constraint

w1
1 ≥ c1

1 + Md

p1
.

In equilibrium Md = M , and the young consumer’s first-order condi-
tion is:

U ′(c1
1 )

1

p1
= V ′

(
w1

2 + M
p2

)
1

p2
. (17.31)
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If w1
t = w1 and w2

t = w2 so that the endowment of the young and old agents
is constant over time, then the stationary solution is pt = p, a constant and

U ′
(

w1 − M
p

)
= V ′

(
w2 + M

p

)
.

We can illustrate the efficiency gain using this model. In the absence of
money or any sort of clearing house, young agents consume w1 and old
consume w2. By assumption, the availability of money is welfare improving
because

U
(

w1 − M
p

)
+ V

(
w2 + M

p

)
> U (w1) + V (w2).

Hence the initial young give up M
p and receive M

p in period 2, as do all

future generations. The initial old are now able to consume w2 + M
p and

hence are strictly better off while all other agents are at least as well off
so there is a welfare gain. Such a reallocation could not occur if the time
horizon were finite. Suppose there are T periods. In period T , the young
agents will be unwilling to hold fiat currency because it is the final period
so there is no use for it. But if the last young generation has no value for
it, then neither will the young at time T − 1 because they know it will not
have value in the last period. It follows recursively that money will have
no value in the first period. This illustrates the importance of an infinity
of time periods. If the time horizon is infinite but there is only a finite
number of agents with which to trade, then at some point, if an agent
makes a loan, the loan will have to be paid back. There is no way to keep
rolling over the loan when there is only a finite number of agents.

17.3.3. The stochastic economy

We have just seen that, under Assumption (17.2), the deterministic version
of the model is dynamically efficient. We maintain this assumption and
now examine the source of dynamic inefficiency when the endowment is
stochastic. We will show that inefficient risk sharing can serve as a source
of dynamic inefficiency.

Autarky
Let z(st , st+1) denote the contingent claim purchased by a young agent in
state st , conditional on st+1 being realized. Let q(st+1, st) denote the price of
a claim. The young agent has lifetime budget constraints

w1(st) = ct
t +

∑
st+1

q(st+1, st)z(st+1, st), (17.32)

ct
t+1 = z(st+1, st) + w2(st+1), (17.33)
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for all st . Besides the young agents in the market the only other agents
are the old agents born at t − 1 in state st−1. In the absence of a finan-
cial intermediary or clearing house, there will be no buyers of these claims
and no contingent claims trading in general in this economy, for the rea-
sons already discussed. Young agents want to trade with young agents next
period and not with the current old generation. Hence, as in the determin-
istic case, ct

t = w1(st) and ct−1
t = w2(st). Notice that contingent claims can

be priced under the autarkic allocation, specifically:

qa(st+1, st) = π (st+1|st)V ′(w2(st+1))

U ′(w1(st))
.

The matrix Qa of contingent claims prices under autarky may have a
dominant root that is greater than unity, so that the autarky solution is
dynamically inefficient. This would be the case if w2(s) = 0 for any s ∈ S,
for example.

Let Qa denote the matrix (U )−1V under autarky. Suppose that w2(sj) = 0
for some sj. Then

[I − (U (w1)−1V(w2)]−1

will fail to exist and the competitive equilibrium in autarky is dynami-
cally inefficient, even though the deterministic version of this economy is
dynamically efficient. It is not necessary that w2(sj) = 0 for some sj, only
that the dominant root of the matrix Qa be greater than unity. Hence, the
issue of inefficient risk sharing in a model of incomplete participation is an
issue of the distribution of income over agents at a point of time, and is
not just a matter of the double infinity in the economy, as was the case in
the deterministic setting.

Role of a clearing house
As we have seen, privately issued bonds that are the liability of the issuer
are not durable in that the issuer is not in the market at the time pay-
ment is made to the bondholder. We now discuss a simple mechanism
that allows privately issued bonds to be traded. Suppose, in particular,
that there is a “clearing house” that posts prices at time 0 and at those
prices compiles aggregate demand and aggregate supply for goods in dif-
ferent periods. The introduction of a clearing house potentially provides
a mechanism for the elimination of the dynamic inefficiency, depending
on how the clearing house is operated. A contingent claims market can
be supported if the clearing house compiles the net supply and demand
of assets across all agents present in the economy at a point in time, and
sets prices at time 0 so that net demand is zero in each state st and time
period t.
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In a contingent claims equilibrium, the old generation at time t holds
claims z(st , st−1) purchased last period and the payments from the clearing
house to the holder of the claims due this period equal

z(st , st−1).

The clearing house’s receipts from selling contingent claims equal∑
st+1

q(st+1, st)z(st+1, st).

If the clearing house adds the payments and receipts, so that

z(st , st−1) +
∑
st+1

q(st+1, st)z(st+1, st) = 0,

then the transactions are feasible for the clearing house. Notice that in the
first period,∑

s1

q(s1)z(s1, s0) > 0

and this amount is transferred to the initial old generation, which is the
beneficiary of the creation of the clearing house. The initial old generation
issues liabilities which are covered by purchases of the initial young genera-
tion, and so on into the future. The initial old generation is never required
to repay this liability, which is the source of increased welfare in the model
because no subsequent generation is worse off.

Notice that the clearing house creates transfers that would not occur if
all trades were bilateral. Specifically, an agent characterized by (t, ŝt) would
like to trade with agents of type (t + 1, {ŝt , s′}s′∈S). But any agent born
in period t + 1 is uninterested in the trade because real goods available
in period t have no value to the agent unless they can be converted into
goods in period t + 1 or t + 2. This is the role of the clearing house: to
intermediate trades between agents of different generations. In the absence
of a clearing house, or some durable asset such as money, there will be no
trades arranged bilaterally between agents of different generations. In our
discussion, we assume the existence of a clearing house but the transactions
can be supported by other financial arrangements, a point developed in the
problems at the end of the chapter.

In the next two sections, we examine a clearing house that uses two types
of netting schemes:
• The first requires net trades between an agent born (t, ŝt) to balance

(sum of the trades net to zero) with trades of agents born in t + 1 with
(ŝt , s′) where s′ ∈ S. This is the conditional futures market.

• In the second case, the sum of trades of any agent born in period t, so
agents t, {ŝt−1, st} where st ∈ S must balance with the sum of trades of
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agents t + 1, {ŝt−1, st , st+1} for st , st+1 ∈ S2. This is the equal-treatment
futures market, where agents can purchase insurance against first-period
endowment risk.
In the first setting, young agents are able to purchase state-contingent

claims that insure against endowment risk in old age, but are unable to
diversify away endowment risk when young. This corresponds to the case
in Wright [450] where an agent is characterized not only by the time period
t in which he is born but also by the history of the system, including the
current realization st . In the second formulation, the clearing house allows
trades that enable young agents to insure against endowment risk when
young and old. Essentially any agent born at time t is treated as a single
agent and is not differentiated by the state in which he is born. The two
formulations will result in different budget constraints for the agent born
in time t and different netting schemes for the clearing house.

Conditional futures market
Under this formulation, an agent is characterized by the date in which he
is born in addition to the state st at time t. The timing is as follows: the
aggregate shock is realized and then young agents are born. Hence any
trading between young and old agents will be conditional on the history
st . A young agent can insure against old-age endowment risk but has no
opportunity to insure against first-period endowment risk.

Let qt(st) denote the time-0 contingent claim price of a unit of con-
sumption delivered at time t in the event st occurs. The lifetime budget
constraint of agent (t, st) is:

0 = qt(st)[w1(st) − ct
t ] +

∑
st+1

qt+1(st+1)[w2(st+1) − ct
t+1], (17.34)

which holds for each history st . Agent (t, st) solves:

max
{ct

t ,ct
t+1}

[
U (ct

t ) +
∑
st+1

π (st+1 | st)V (ct
t+1)

]

+μt(st)

[
qt(st)[w1(st) − ct

t ] +
∑
st+1

qt+1(st+1)[w2(st+1) − ct
t+1]

]
,

where μt(st) is the Lagrange multiplier. The first-order conditions are:

U ′(ct
t ) = μt(st)qt(st), (17.35)

π (st+1|st)V ′(ct
t+1) = μt(st)qt+1(st+1). (17.36)
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Solve (17.35) and (17.36) for μt(st) and re-write

π (st+1|st)V ′(ct
t+1)

U ′(ct
t )

= qt+1(st+1)

qt(st)
. (17.37)

A stationary competitive equilibrium is a pair of functions c : S → �+
and c2 : S × S → �+ such that ct

t = c(st) and ct
t+1 = c2(st+1, st), and

a price function, described below. Under the assumption of stationar-
ity in allocations, the budget constraint (17.34) can be summed over all
histories st−1:

0 =[w1(st) − c(st)]
∑
st−1

qt(st)

+
∑
st+1

[w2(st+1) − c2(st+1, st)]
∑
st−1

qt+1(st+1), (17.38)

where the first term on the right side is a function of st only and the second
term on the right side is a function of (st+1, st), regardless of st−1. Hence,
the Lagrange multiplier μt(st) is now a function μ(st) of the current state
only. Define

q(st+1, st) ≡
∑

st−1 qt+1(st+1)∑
st−1 qt(st)

. (17.39)

In this case, (17.37) can be expressed as:

π (st+1|st)V ′(w(st+1) − c(st+1))

U ′(c(st))
= q(st+1, st), (17.40)

where the goods market clearing condition

w(st) = c(st) + c2(st , st−1)

has been incorporated. Using the market-clearing conditions, note that
w2(st) − c2(st , st−1) = − (w1(st) − c(st)). Substitute this result and the
expression for q into the budget constraint and re-write

U ′(c(st))[w1(st) − c(st)] =∑
st+1

π (st+1|st)V ′(w(st+1) − c(st+1))[w1(st+1) − c(st+1)]. (17.41)

This forms a system of n equations for each state sj in n unknowns ce(sj).
Let ce denote a solution. A proof of the existence and uniqueness is now
sketched. Let Q denote the space of matrices Q : S × S → �n×n

+ ,
with element Q an n × n matrix of strictly positive elements such that
Q has a dominant root strictly less than one. Let Q0 ∈ Q and define
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x(s) ≡ w1(s) − c(s), which shows the amount saved by the young agent.
Given Q0, find the solution x to:

x(s) =
∑

s′
Q0(s′, s)x(s′).

Let x1(s) denote the solution and define q1(s′, s) as:

q1(s′, s) = π (s′ | s)V ′(w2(s′) + x1(s′))
U ′(w1(s) − x1(s))

. (17.42)

This new matrix Q 1 can be shown to be an element of Q and this
establishes a mapping to determine the solution ce.

Hence, a young agent picks current consumption and state-contingent
old-age consumption such that the weighted marginal utilities are equal.
The system above can be defined in matrix notation as:

0 = [
U (ce) − VT (ce)

]
x (17.43)

where x is an n × 1 matrix with ith element w1(si) − ce(si). Multiply both
sides by (U (ce))−1 and re-write to obtain:

0 = [
I − Q(ce)

]
x,

where Q = (U (ce))−1VT (ce).
Observe that for the two type of agents alive at time t, the marginal rate

of substitution between agents is:

V ′(w(st) − ce(st))
U ′(ce(st))

= μ(st−1)

μ(st)
. 2 (17.44)

This fluctuates across states st , reflecting an agent’s inability to insure
against endowment risk when young. Observe that at time t, in state
(st , st−1), the old generation has excess demand q(st , st−1)[c2(st , st−1)−w2(st)]
and the young generation has excess supply q(st , st−1)[w1(st) − c(st)]. The
two terms must sum to 0 and do when the goods market clears.

To show that this solution is Pareto optimal, observe the Pareto weight
vector φ solves

0 = [I − (U )−1(ce)V(ce)]φ,

which is identical to Equation (17.16) when β = 1.

2 Notice that we pick the first-order conditions at time t for a young agent born at t and old agent
born at t − 1.
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Equal-treatment futures market
In this section, the timing of the model is modified: at the beginning of
period t, young agents are born and both young and old agents submit
excess supplies and demands to the clearing house. Then the realization of
the aggregate shock is observed by all agents. Let ρt(st) denote the time 0
price of a unit of consumption at time t contingent on state st .

Muench [347] studies a futures market at time t − 1 that allows agents
born at time t to enter into contingent contracts to insure against endow-
ment risk when young. The clearing house treats an agent born at time t
with history st−1as a single agent, regardless of what the state st is at time t.

The budget constraint of an agent born at time t is now no longer
balanced state by state but balanced when averaged across states, or:

0 =
∑

st

[
ρt(st , st−1)[w1(st) − ct

t ] +
∑
st+1

ρt+1(st+1, st)[w2(st+1) − ct
t+1]

]

(17.45)

for any history st−1 ∈ St−1. A young agent born at time t solves:

max
{ct

t ,ct
t+1}

∑
st∈S

πt(st | st−1)

[
U (ct

t ) +
∑
st+1

π (st+1 | st)V (ct
t+1)

]

+ μt(st−1)
∑

st

[
[w1(st) − ct

t ]ρt(st) +
∑
st+1

ρt+1(st+1)[w2(st+1) − ct
t+1]

]
.

(17.46)

The first-order conditions are:

πt(st |st−1)U ′(ct
t ) = μt(st−1)ρt(st), (17.47)

π (st+1|st)π (st |st−1)V ′(ct
t+1) = μt(st−1)ρt+1(st+1). (17.48)

Solve for μt(st−1) and rearrange:

π (st+1|st)V ′(ct
t+1)

U ′(ct
t )

= ρt+1(st+1)

ρt(st)
. (17.49)

To find the stationary solution in which a young agent buys full insur-
ance against endowment risk when young and old, observe that the budget
constraint can be expressed as:
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0 =
∑

st

{∑
st−1

ρt(st)[w1(st) − c(st)]

+
∑
st+1

[∑
st−1

ρt+1(st+1)[w2(st+1) − c2(st+1, st)]

]}
(17.50)

so that μt =μt(st) is constant across states st . Solve the first-order condi-
tions for μt :

μt = U ′(c(st))π (st |st−1)∑
st−1 ρt(st)

= V ′(c2(st+1, st))π (st+1|st)π (st |st−1)∑
st−1 ρt+1(st+1)

(17.51)

so that the weighted marginal utility of consumption is equalized for all
states. Define

ρ(st+1, st) =
∑

st−1 ρt+1(st+1)∑
st−1 ρt(st)

.

Then (17.51) can be expressed as:

π (st+1|st)V ′(w(st+1) − c(st+1))

U ′(c(st))
= ρ(st+1, st), (17.52)

where the market-clearing condition has been incorporated.
For old and young agents in the market at time t, decrease the time

subscript in (17.48) by one unit, substitute in the conditions for a stationary
solution, solve for the price and use (17.47) to obtain:

∑
st−1

ρt(st) = U ′(c(st))
∑

st−1 πt(st)

μt

=
∑

st−1 πt(st)V ′(w(st) − c(st))
μt−1

, (17.53)

which can be re-written as:

V ′(w(st) − c(st))
U ′(c(st))

= μt−1

μt
= β, (17.54)

since μt−1 =β−1μt for all t. Let cf (s) denote the solution. Such a solu-
tion exists because the numerator is continuously increasing in c while the
denominator is decreasing. As c → 0 the left side tends to 0 while, as
c → w the left side tends to ∞; hence a solution exists and is unique.
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When β = 1, cf is the golden rule allocation. As total endowment increases,
cf rises but by proportionately less.3 The lifetime budget constraint is:

0 =
∑

s

π̂ (s)
[
U ′(c f (s))[w1(s) − c f (s)]

−
∑

s′
π (s′, s)V ′(w(s′) − c f (s′))[w1(s′) − c f (s′)]

]

=
∑

s

π̂ (s)
[
U ′(c f (s))[w1(s) − c f (s)]

−β
∑

s′
π (s′, s)U ′(c f (s′))[w1(s′) − c f (s′)]

]
. (17.55)

In matrix notation, the solution is

0 = π̂T [
(U (c f ) − V(c f ))x f ]

= π̂TU (c f )[I − (U (c f )−1V(c f )]x f , (17.56)

where π̂ is an n dimensional vector of the unconditional probabilities
and π̂T is its transpose, xf (si) = w1(si) − cf (si) and xf is the n dimen-
sional vector. In state (st , st−1), the excess supply of the current young is
ρ(st)[w1(st) − cf (st)] and the excess demand from the current old gener-
ation is ρ(st)[c2(st , st−1) − w2(st)]. The two terms sum to zero when the
goods market clears.

17.4. E Q U I T Y P R I C I N G I N A G R O W I N G E C O N O M Y

While the contingent claims prices constructed in the previous section can
be used to price any payment stream, it is instructive to derive an explicit
equity pricing model with growth and a related capital asset-pricing model
(CAPM). This model shares many of the features of the Lucas asset-pricing
model that we studied in Chapter 8, and thus allows us to relate the results
that we derive in this section to our earlier results.

As in the Lucas model, we assume the single consumption good is non-
storable, and there is no capital accumulation. Unlike the Lucas model,
however, we assume that the consumption good is produced by combining

3 Observe that

�c
�w

= V ′′
βU ′′ + V ′′

which lies in the interval (0, 1).
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labor L and a fixed factor K according to a linearly homogeneous produc-
tion function. There is a constant population of 2N : N young and N
old. Each young agent is endowed with one unit of labor which he sup-
plies inelastically for a real wage. Let yt denote output per unit of labor.
Because labor is inelastically supplied, the labor force is fixed, and the capi-
tal stock is fixed, the capital-labor ratio is constant at yt = k. More precisely,

yt = L−1AtF (K , L) = Atf (KL−1) = Atf (k), (17.57)

where k ≡ K /L and At is a stochastic technology shifter. The produc-
tion function f is assumed to be twice continuously differentiable, with
f ′( · )> 0, f ′′( · )< 0, f (0) = 0, and f ′(k) + f ′′(k)k > 0.

We assume that there is neutral growth in technology; thus,

At = θtAt−1,

where θt is the random growth in technology. We make the following
assumption.

Assumption 17.3 Assume that θt is a real-valued first-order Markov chain
and let θt take values on �≡ {θ , . . . , θ̄} such that each θ ∈ � is finite and
strictly positive. Let π (θ ′|θ ) be the transition function.

The assumptions on the production technology imply that output per unit
of labor evolves as

yt = θt yt−1, (17.58)

where we have used the fact that

Atf (k) = θtAt−1f (k) = θt yt−1.

Hence, θt , yt−1 summarize the state at time t. With a constant population,
there is unbounded growth in output per worker. Define ȳt = yt(θ̄ )−t for
all t. The commodity space is the space of sequences with growth rates that
are uniformly bounded. The sequence {ȳt} is assumed to lie in the space of
bounded sequences of real numbers normed by:

‖{ȳt}‖ = ‖{yt(θ̄ )−t}‖ = sup
t

|yt(θ̄ )−t |.

Let the state space be S =�+ × �.
The endowed factor has an outstanding equity share that is priced com-

petitively each period in a stock market. An equity is a claim to a share of
the income stream of the endowed factor. In the initial period, each mem-
ber of the old generation holds one equity share. Under the assumptions
that production is linearly homogeneous, labor is supplied inelastically,
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and firms are competitive, the production decision is straightforward. Also,
using Euler’s theorem on homogeneous functions, we have that:

Atf (k) = At

[
k

�F (K , L)

�K
+ �F (K , L)

�L

]
≡ w(θt , yt−1) + d (θt , yt−1),

where wt = w(θt , yt−1) denotes the real wage, and dt = d (θt , yt−1) dividend
payments to owners of capital. The assumption that f ′(k) + f ′′(k)k > 0 is
made to ensure that payments to both capital and labor increase as output
increases.

At the beginning of the period, θt is realized and observed by all agents.
The young consumer at time t maximizes the expected value of a two-
period, time-additive utility function (17.3) by deciding how much to
consume and to save from his current wages.

Saving takes the form of buying zt shares of the security from the
current old generation at a price of qt , so that the young consumer’s
consumption is:

ct
t = w(θt , yt−1) − qe

t zt ,

assuming that the constraint is binding. Consumption in the second period
will depend on the dividends paid next period and the price at which the
agent can sell his share in the stock market, namely,

ct−1
t = [d (θt , yt−1) + qe

t ]zt−1.

Substituting for ct
t and ct+1

t , the young agent chooses zt to maximize:

U (w(θt , yt−1)−qe
t zt)+β

∑
θt+1∈�

V (zt[d (θt+1, yt)+qe
t+1])π (θt+1|θt).

The first-order condition is:

U ′(w(θt , yt−1) − qe
t zt)qe

t =

β
∑
�

π (θt+1|θt)V ′(zt[d (θt+1, yt) + qe
t+1])[d (θt+1, yt) + qe

t+1]. (17.59)

All agents observe θt , yt−1 and qe
t and know the law of motion for yt

described in (17.58) and the distribution of the technology shock. There
are two market-clearing conditions:

zt = 1, (17.60)

ct
t + ct−1

t = yt . (17.61)

Only equilibria that are stationary in the state variables will be con-
sidered so that the equilibrium price can be written as a fixed func-
tion qe

t = qe(θt , yt−1). All agents within a cohort are identical and this
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assumption, in addition to the assumed concavity of the utility function,
implies that all young consumers will hold equal amounts of the secu-
rity. In equilibrium, the security price just equals the saving of young
consumers; this follows from the equilibrium conditions and the agent’s
first-period budget constraint. Hence, given the price function qe(θt , yt−1),
use the market-clearing conditions to define

c(θt , yt−1) = w(θt , yt−1) − qe(θt , yt−1) (17.62)

as the first-period consumption of a typical young agent at time t. Because
w(θt , yt−1) is exogenous and always positive, notice that finding the func-
tion c is equivalent to finding the function for the equilibrium price
of shares qe. If a solution exists, it satisfies the equilibrium first-order
condition:

U ′(c(θt , yt−1))[w(θt , yt−1) − c(θt , yt−1)] =

β
∑
�

π (θt+1|θt)V ′(y(θt+1, yt) − c(θt+1, yt))[y(θt+1, yt) − c(θt+1, yt)].

We briefly describe an approach to construct the equilibrium. Let Q0

denote an n × n matrix of strictly positive elements with a dominant
root strictly less than one. Let qe(s) denote a feasible equity price func-
tion, specifically strictly positive such that consumption in (17.62) is strictly
positive. A mapping can be established as:

q1
e(θt , yt−1) = β

∑
θ ′

π (θ ′, θ )Q0(θ ′, θ )[d (θ ′, yt) + q0
e (θt+1, yt)],

where Q0 = (U ′)−1V ′. Notice that the law of motion for yt is already deter-
mined (yt = θt yt−1) and the dividend function is given. Define a new matrix
Q 1 with element

π (θ ′|θ )V ′(d (θ ′, y) + q1
e(θ

′, y))

U ′(w(θ , y−1) − q1
e(θ , y−1))

. (17.63)

This sets up a recursive structure that can be used to find a solution
q1

e(θ , y−1).
Next, we discuss the behavior of asset prices in an OLG model and

contrast their behavior with the infinite-lived representative agent model.

17.4.1. Risk premia

We now study some of the model’s implications for the asset-pricing rela-
tions. The risk premium is defined as the difference between rates of return
on the risky security and a one-period bond which delivers a certain unit
of the consumption good next period. Denote the return on the equity by:

R(θ ′, θ ) ≡ qe(θ ′, y′) + d (θ ′, y′)
q(θ , y)

,
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when the current state is θ , y and tomorrow’s state is θ ′, y′. The dependence
on y′, y is suppressed for convenience below. Observe that y′ = θy so that
there is no ambiguity by not making the functional dependence explicit.

Using this definition, the equilibrium first-order condition can be re-
written as:∑

�

R(θ ′, θ )
β ′V ′ (y(θ ′, y) − c(θ ′, y)

)
U ′ (c(θ , y)

) π (θ ′, θ ) = 1. (17.64)

Recall:

m(θ ′, θ ) ≡ β ′V ′ (y(θ ′, y′) − c(θ ′, y′)
)

U ′(c(θ , y))

is the IMRS for a young consumer when the current state is θ , y and
tomorrow’s state is θ ′, y′. A risk-free bond that is in zero net supply in
this economy will have the price Eθ [m(θ ′, θ )] where Eθ denotes expecta-
tion conditional on the state θ . Let rf (θ ) be the return on the riskless bond,
which is defined as:

rf (θ ) ≡ 1

Eθ [m(θ ′, θ )]
.

The conditional risk premium in the simple OLG model is:

Eθ [R(θ ′, θ )] − rf (θ ) = −rf (θ )Covθ [R(θ ′, θ ), m(θ ′, θ )], (17.65)

where we have re-written the expression for the risk premium using the
equilibrium condition in equation (17.64) and noting that:

Eθ

[
R(θ ′, θ )m(θ ′, θ )

] =
Eθ [R(θ ′, θ )]Eθ [m(θ ′, θ )] + Covθ [R(θ ′, θ ), m(θ ′, θ )].

The expression in (17.65) is very similar to our expression for the risk
premium in the infinite-lived representative agent framework. The vari-
ability of the MRS in the OLG model depends on the curvature of the
utility function, the variability of the output, and on the variability of
the consumption of the young generation. It is the addition of this third
feature – the changing proportion of output consumed by the young
generation – that distinguishes the OLG model from the infinite-lived rep-
resentative agent framework. Although output may be growing relatively
smoothly over time, fluctuations in the proportion of output consumed
by the young, which occur because young agents can save, permit greater
fluctuations in the MRS. Although output is perishable, young agents
can substitute away from random consumption tomorrow towards cer-
tain consumption today because they can vary their savings and hence the
proportion of output they consume. The risk premium may be large in an



Overlapping generations models 531

OLG model even with low values of relative risk aversion because young
agents may demand a higher return on the risky asset to hold it willingly.

The equity-price behavior can be compared for the two models. When
the state is (θt , yt−1), the equity price in the OLG model can be expressed
as:

q(θt , yt−1) = Et[m(θt+1, yt , θt , yt−1)(q(θt+1, yt) + d (θt+1, yt))]

= Et

[
∞∑
j=1

d (θt+j, yt+j−1)
∏j

τ=1 m(θt+τ , yt+τ−1, θt+τ−1, yt+τ−2)

]

by repeatedly substituting for q(θt+1, yt). Notice that the discount rate
depends on more than per capita consumption since it also depends on
how output is divided between the young and old at two adjacent points
in time over the entire horizon.

Now compare the equity price for the overlapping generations model
with the equity price for the Lucas asset-pricing model. Let y(θt) = θt yt−1

denote the exogenous and stochastic endowment process and assume that
it is identical to the output process, per worker, of the overlapping genera-
tions model. Define st = (θt , yt−1). In a representative consumer model, the
equity price is:

q(st) = Et

⎡
⎣ J∑

j=1

y(st+j)
j∏

τ=1

βU ′(y(st+τ ))

U ′(y(st+τ−1))
+ q(st+J )

J∏
τ=1

βU ′(y(st+τ ))

U ′(y(st+τ−1))

⎤
⎦

= Et

⎡
⎣ ∞∑

j=1

y(st+j)β
j U ′(y(st+j))

U ′(y(st))

⎤
⎦ .

In a Lucas model, current consumption always equals current output so
that βU ′(y′)/U ′(y) changes only because U ′(y′) changes as y′ changes. But
this involves only the curvature of the utility function, which also measures
risk aversion. In this type of model, we can simply use aggregate consump-
tion or per capita consumption to discount future values of dividends.
The discount rate applied to a dividend received in period t + j is just the
intertemporal marginal rate of substitution between periods t and t + j.
While the one-period discount rates for periods t + 1 through t + j − 1
cancel in the representative agent model, they do not cancel in the OLG
model.

As we have discussed earlier, the behavior of the stochastic discount rate
is the key to the behavior of the equity premium. The bounds on the equity
premium for the OLG model are:∣∣∣∣ rf (θ ) − Eθ [R(θ ′, θ )]

Sθ [R(θ ′, θ )]

∣∣∣∣ ≤ Sθ [m(θ ′, θ )]

Eθ [m(θ ′, θ )]
(17.66)
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where Sθ is the conditional standard deviation. We will determine these
bounds for a parametric example.

Example 17.1 Let two-period preferences be defined as:

U (ct
t ) + E(V (ct

t+1)) = ln (b + ct
t ) + βE[ln (b + ct

t+1)],

where 0<β < 1. Notice that b + c > 0 must hold for preferences to be
well defined. These preferences allow decreasing, increasing, or constant
relative risk aversion, depending on the value of b. Define the coefficient
of relative risk aversion as !(c) = − U ′′(c)c/U ′(c), and notice that:
• !′(c)> 0 and !(c)< 1 if b> 0,
• !′(c) = 0 and !(c) = 1 if b = 0, and
• !′(c)< 0 and !(c)> 1 if b< 0.
Also, limc→∞[ln (b+ c)− ln c] = 0, so in a growing economy, we approach
the case of constant and unitary relative risk aversion.

Recall that the state of the economy is summarized by st = (θt , yt−1). The
equilibrium first-order conditions are:

qe(θt , yt−1)

b + c(θt , yt−1)
= βEt

[
θt+1yt − c(θt+1, yt)

b + θt+1yt − c(θt+1, yt)

]
. (17.67)

Define the function J as

J (θ , y) = θy − c(θ , y)

b + θy − c(θ , y)
.

The equity price is then written as:

qe(θt , yt−1) = βEt[J (θt+1, yt)(b + c(θt , yt−1))].

Substituting for c(θt , yt−1) = w(θt , yt−1) − qe(θt , yt−1), we have:

qe(θt , yt−1) = βEt[ J (θt+1, yt)(b + w(θt , yt−1) − qe(θt , yt−1))],

and solving for qe, we have

qe(θt , yt−1) = (b + w(θt , yt−1))βEt[J (θt+1, yt)]

1 + βEt[J (θt+1, yt)]
. (17.68)

Suppose the production function is Cobb-Douglas with share of labor
defined by 1−α and share of capital defined by α. Then, w(θt , yt−1) = (1−
α)θt yt−1 and d (θt , yt−1) =αθt yt−1. Also assume that the technology shock
θt is i.i.d. and define yt = y where yt = θt yt−1. Then the price becomes:

qe(y) = (b + (1 − α)y)βE[J (y′)]
1 + βE[J (y′)]

. (17.69)

Notice that θt is no longer a state variable although yt = θt yt−1 is. Some
other properties for the i.i.d. case follow.
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(i) For b = 0,

q(y) = β
(1 − α)y
(1 + β)

= w(y) − c(y), (17.70)

which equals the savings of the young.
(ii) For b �= 0,

E[J (y′)] = E
[

y′ − c(y′)
b + y′ − c(y′)

]
, (17.71)

where y′ is next period’s output.
Notice that E[J (y′)] is equal to a constant which is less than or greater than
one depending on the value of b.

What is the conditional risk premium in this model when b = 0 and the
technology shock is i.i.d.? Evaluating the expressions for R(y′, y) and rf (y),
and substituting for current and future consumption, dividends and the
equity price, we have:

E[R(y′, y)] − rf (y) = E
[

d (y′) + q(y′)
q(y)

]
−
[

E
(

βc(y)

y′ − c(y′)

)]−1

= E
[
αy′ + β(1 − α)y′/(1 + β)

βαy/(1 + β)

]
− 1

β
E
[

(1 − α)y/(1 + β)

y′ − (1 − α)y′/(1 + β)

]−1

= α + β

β(1 − α)

[
E(y′/y) − E(y/y′)−1

]
(17.72)

which is positive using Jensen’s inequality. Notice that the conditional risk
premium falls as (1 − α),β, or y increase.

17.5. C A P I T A L A C C U M U L A T I O N A N D S O C I A L

S E C U R I T Y

Dynamic efficiency is an important issue in capital asset pricing, capital
accumulation, and economic growth. We end this chapter with a discus-
sion of a model of capital accumulation and social security. As noted earlier,
dynamic inefficiency is the result of a double infinity of agents and time
periods. In a pure endowment model with no uncertainty, dynamic ineffi-
ciency can arise if there is no durable asset or clearing house to intermediate
borrowing and lending between different generations. In a stochastic pure
endowment economy, the dynamic inefficiency can arise because of insuf-
ficient risk sharing and is the result of the distribution of the stochastic
income across heterogeneous agents at a point in time.

In this final section, we allow young agents to save by accumulating
capital. Dynamic inefficiency in a model of capital accumulation can occur
if there is an overaccumulation of capital, which occurs when an economy
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has a population growth that exceeds the steady state marginal product of
capital or equivalently the economy is consistently investing more than it
is earning in profit. The question of whether an economy is dynamically
inefficient is important in answering questions about the appropriate fiscal
policy, in particular social security. Important references in this are the
papers by Diamond [152], Bertocchi [59], Bertocchi and Kehagias [60],
and Abel et al. [7].

The assessment of the dynamic efficiency of the economy is typi-
cally based on estimates of the marginal productivity of capital based
on observed accounting profit rates. Since the population rate of growth
appears to be less than the steady-state marginal product of capital, it
would seem that the US economy is dynamically efficient. As Abel et al. [7]
comment, an alternative and equally plausible way to judge dynamic effi-
ciency is to look at the safe real interest rate, such as the return to Treasury
bills. This return can be measured accurately and the data suggests that
the real interest rate on safe assets is less than economic growth rates. By
this measure, the US economy might be judged as dynamically inefficient.
To reconcile these two approaches, it is necessary to introduce uncertainty
and use explicit models in which profitability, the value of capital and the
growth rates are uncertain. This implies that there is a distinction between
the marginal productivity of capital and the interest rate on safe govern-
ment securities. In such models, an economy is said to be dynamically
efficient if it invests less than the return to capital. In a competitive econ-
omy, the issue of dynamic efficiency can be solved by comparing the level of
investment with the cash flows generated by production after the payments
of wages. This is referred to as the “net cash flow” criterion.

In this section we discuss simple models of social security and standard
dynamic inefficiency. Our discussion is based on Abel et al. [7] and Bertoc-
chi [59], which are stochastic versions of Diamond [152]. The model is
similar in structure to the model with a fixed resource but differs in two
important ways. First the population is growing at rate n so that

Nt+1 = (1 + n)Nt .

Second, the level of the capital stock depends on the level of investment in
the previous period. Capital is assumed to depreciate 100% each period so
that the capital accumulation equation is

Kt+1 = It ,

where It is investment.
Young households supply labor inelastically so that the labor supply at

time t is Nt , the number of young agents. We continue to assume that the
production function displays constant returns to scale so that

Yt = AtF (Kt , Nt) = AtK α
t N 1−α

t ,
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where 0<α< 1. Output can be expressed as per worker

yt = Atkαt

where yt = Yt/Nt and kt = Kt/Nt . The resource constraint is

Yt = Nt−1ct−1
t + Ntct

t + Kt+1, (17.73)

which is converted to per worker as

yt = ct−1
t

1 + n
+ ct

t + kt+1(1 + n).

For simplicity, we make the following assumption on technology shocks.

Assumption 17.4 The technology shock At is a first-order Markov chain
that is stationary in levels. Let At ∈ A ≡ {a1, . . . , an} with transition proba-
bilities π (a′|a). Let at = {a1, . . . , at} denote the history of technology shocks up
to time t and let K0 denote the initial capital endowment.

Young households own one unit of labor, which they supply inelasti-
cally. The wage in the competitive labor market is equal to labor’s marginal
product:

wt = (1 − α)atkαt ,

which is expressed per worker.
Households own stocks in competitive firms and firms own the capital

stock. Let Qe
t denote the time t price of an equity share. Each period their

equity shares satisfy

1 = Ntzt . (17.74)

A young agent has a unit labor endowment when young and provides
for second period consumption by purchasing equity shares in firms. His
budget constraints are

wtns
t = ct

t + Qe
t zt (1st period ) (17.75)

ct
t+1 = zt[Qe

t+1 + Dt+1] (2nd period ), (17.76)

where Dt+1 denotes the dividend paid in period t + 1. Since labor causes
no disutility, observe that ns

t = 1 for all t.
Solve the first period budget constraint for ct

t and multiply by Nt to
show that

Ntct
t = Ntwt − NtztQe

t = Ntwt − Qe
t ,

using (17.74). Decrease the time subscripts in (17.76) by one and multiply
by Nt−1 to obtain

Nt−1ct−1
t = Nt−1zt−1[Qe

t + Dt] = Qe
t + Dt ,
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again using (17.74). Substitute these equations into the resource constraint:

Yt = Nt−1ct−1
t + Ntct

t + It

= Qe
t + Dt + Ntwt − Qe

t + It (17.77)

= Dt + Ntwt + Kt+1, (17.78)

or re-writing

Yt − Ntwt = αYt = Dt + Kt+1, (17.79)

so that the dividend is

Dt = αYt − Kt+1.

The dividend measures the flow of funds from firms to households, net of
labor income. Notice that the dividend is defined as the return to capital
minus the investment. A repurchase of shares by firms is a dividend payment
while a new equity issue is a negative dividend.

Let μt
t denote the Lagrange multiplier for the first-period budget

constraint. The first-order conditions with respect to ct
t , zt are

U ′(ct
t ) = μt

t , (17.80)

μt
tQ

e
t = Et

{
V ′(ct

t+1)[Q
e
t+1 + Dt+1]

}
. (17.81)

Observe that

Ntct
t+1 = Ntzt[Qe

t+1 + Dt+1]

= Yt+1 − Nt+1ct+1
t+1 − Kt+2.

Use the first-order conditions to eliminate μt
t , multiply both sides of the

equation by zt = 1/Nt , and re-write to obtain

U ′(ct
t )

Qe
t

Nt
= Et

{
V ′(ct

t+1)
Nt+1

Nt

[
Qe

t+1

Nt+1
+ Dt+1

Nt+1

]}
. (17.82)

Let qe
t ≡ Qe

t /Nt and dt ≡ Dt/Nt so that this equation can be written as

qe
t = Et

{
(1 + n)

V ′(ct
t+1)

U ′(ct
t )

[qe
t+1 + dt+1]

}

= Et

⎧⎨
⎩

∞∑
j=1

(1 + n)j
j∏

i=1

Mt+idt+j

⎫⎬
⎭ , (17.83)

where

Mt+i ≡ V ′(ct
t+i+1)

U ′(ct
t+i)

for all i.

Thus, the ex-dividend stock price or equivalently, the ex-dividend value
of the firm, per worker, is equal to the expected discounted present value
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of the future dividend stream per worker. Clearly the conditions for an
allocation to be dynamically efficient are linked with the conditions for
convergence of the right-side of this equation. This point is discussed
further below.

The financial structure of a firm has already been studied in Chapter 10.
In this application, since capital depreciates completely each period and
we assume only equities are issued, the firm’s maximization problem is to
choose next period’s capital stock to maximize net present value. Following
the approach in Section 10.4 of Chapter 10, define the net cash flow (NCF)
of the firm as gross profits minus investment:

NCFt = Yt − Ntwt − Kt+1.

Since the firm issues only new equity, this quantity must also equal
dividend payments plus new share issues:

NCFt = Dtzt + Qe
t (zt − zt+1).

Now the ex-dividend value of the firm is:

W e
t = Qe

t zt+1

= Et
{
Mt+1(Qe

t+1 + Dt+1)zt+1
}

= Et
{
Mt+1[(Qe

t+1 + Dt+1)zt+1 + Qe
t+1zt+2 − Qe

t+1zt+2]
}

= Et
{
Mt+1[W e

t+1 + NCFt+1]
}

,

where we have obtained the second line from the consumer’s first-order
condition, and the last line from the definitions of ex-dividend value and
NCF. We can iterate this equation forward and solve for the ex-dividend
value of the firm as the expected, discounted sum of future net cash flows.
The firm’s value is the sum of current net cash flow and the ex-dividend
value:

Wt = NCFt + Et

⎧⎨
⎩

∞∑
i=1

i∏
j=1

Mt+jW e
t+i

⎫⎬
⎭ . (17.84)

We can set up a recursive formulation of this problem and maximizing the
resulting Bellman equation with respect to investment or the future capital
stock Kt+1. The first-order condition for this problem with the envelope
condition substituted in is:

1 = Et
{
Mt+1αat+1K α−1

t+1 N 1−α
t+1

}
= Et

{
Mt+1αat+1kα−1

t+1

}
.

The consumer’s first-period budget constraint implies that qe
t = wt − ct

t
while the second-period budget constraint and resource constraint imply
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that qe
t+1 + dt+1 = yt+1 − ct+1

t+1 − (1 + n)kt+2. Making these substitutions,
the equilibrium first-order conditions are

U1(ct
t )[wt − ct

t ] = Et
{
(1 + n)V1(ct

t+1)[yt+1 − ct+1
t+1 − (1 + n)kt+2]

}
U1(ct

t ) = Et
{
V1(ct

t+1)αat+1kα−1
t+1

}
.

Define the functions d : A × Y → �, c : A × Y → �+, and k :
A × Y → �+ such that dt ≡ d (at , yt) =αyt − kt+1(1 + n), ct

t ≡ c(at , yt),
and kt+1 ≡ k(at , yt), where yt = atkαt . Notice that the possibility that d < 0
is incorporated. Also if d is given then, given y, the capital stock per worker
is also determined. Then in equilibrium

U ′(c(a, y))[(1 − α)y − c(a, y)] =
Ea

{
(1 + n)V ′(y′ − c(a′, y′) + d (a′, y′))[(1 − α)y′ − c(a′, y′) + d (a′, y′)]

}
,

(17.85)

U ′(c(a, y)) = Ea
{
V ′(y′ − c(a′, y′) + d (a′, y′))αa′(k(a, y))α−1

}
, (17.86)

y′ = a′(k(a, y))α. (17.87)

Given a dividend function d , (17.85) is a functional equation in the
unknown function c, which can be solved using the methods described
in the first section (since given d this is an endowment economy from the
point of view of the young household). Given the consumption function,
the function k solving (17.87) can be determined. This establishes a new
dividend function to be used in the functional equation (17.85).

Abel et al. [7] do not focus on the existence and uniqueness of the com-
petitive equilibrium, which require the techniques discussed in Chapter 17
of Stokey, Lucas with Prescott [418]. Instead, they write down the central
planning problem and derive restrictions on the planning weights and the
allocation to determine if an allocation is dynamically efficient. Let φ0 and
φt(at) denote Pareto weights, whose dependence on the initial capital stock
is suppressed. The central planning problem is to choose {c0

1 , ct
t , ct

t+1, Kt+1}
to maximize∑

a1

φ0π (a1 | a0)V (c0
1 )

+
∞∑
t=1

∑
at∈At

[
φt(at)

(
U (ct

t ) +
∑
st+1

π (at+1, at)V (ct
t+1)

)

+λt(at)[at(Kt)
α(Nt)

1−α − Ntct
t − Nt−1ct−1

t − Kt+1]

]
, (17.88)

where λt(at ) is the Lagrange multiplier on the resource constraint at time t.
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The first-order conditions with respect to {c0
1 , ct

t , ct
t+1, Kt+1} are

φ0π (a1 | a0)V ′(c0
1 ); = λ1(a1, K0)N0, (17.89)

φt(at)U ′(ct
t ) = λt(at)Nt , (17.90)

φt (at)π (at+1 | at)V ′(ct
t+1) = λt+1(at+1)Nt , (17.91)

λt(at) =
∑
at+1

λt+1(at+1)at+1αK α−1
t+1 N 1−α

t+1 .

(17.92)

The first-order conditions can be simplified as

U ′(ct
t ) =

∑
at+1

π (at+1 | at )V ′(ct
t+1)αat+1

(
Kt+1

Nt+1

)α−1

. (17.93)

The transversality condition is

lim
t→∞

∑
at

λt(at+1)at+1αK α−1
t+1 N 1−α

t+1 Kt+1 = 0. (17.94)

They show that, for a given allocation satisfying feasibility, a set of Pareto
weights and Lagrange multipliers can be found that satisfy the first-order
conditions and the resource constraint. The principal result of their paper,
and the result on which we wish to focus, is the following.

Proposition 17.1 If dt
qt

≥ ε > 0 in all periods and all states of nature, then

the equilibrium is dynamically efficient. If dt
qt

≤ − ε < 0 in all periods and all
states of nature, then the equilibrium is dynamically inefficient.

The proof of the proposition is contained in the appendix of their paper.
We outline only some of the critical aspects of the argument here. To estab-
lish efficiency, they show that the Lagrange multiplier for the resource
constraint must satisfy a transversality condition, just as we saw in our
discussion of the pure endowment economy of optimal risk sharing. To
determine if a particular competitive equilibrium is dynamically efficient,
the allocation is taken as given and the issue is whether Pareto weights and
Lagrange multipliers that satisfy the first-order conditions and the transver-
sality condition can be found. If there is a set of weights and Lagrange
multipliers satisfying the conditions of the proposition, then the compet-
itive equilibrium allocation is dynamically efficient. They then show that
if the conditions of the proposition are not satisfied, a transfer of resources
such that some agent is better off while no one else is worse off can be
found. If the dividend/price process satisfies dt

qt
≤ − ε < 0, then such a

transfer can be made, establishing dynamic inefficiency.
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Abel et al. define

Gt+1 = Qt+1

Qt

as the growth rate of the value of the portfolio. The market rate of return is

RM
t = Qt+1 + Dt+1

Qt
.

Their second proposition is stated next.

Proposition 17.2 If there is some asset with rate of return Rt such that
Rt
Gt

≥ 1 + ε > 1 in all periods and all states of nature, then the equilibrium
is dynamically efficient. If there is some asset with rate of return Rt such that
Rt
Gt

≤ 1−ε < 1 in all periods and all states, then the equilibrium is dynamically
inefficient.

The result is applied to the risk-free rate: if the risk-free rate is always
greater than the growth rate of the market value of the capital stock,
then the economy is dynamically efficient. The implication is that com-
parisons of the risk-free rate with the average growth rate are not sufficient
to establish dynamic efficiency.

17.5.1. Social security

The issue of dynamic efficiency is of more importance than just academic
interest. It helps us put into context discussions about optimal fiscal policy,
in particular social security. Whether social security is welfare-improving
depends on whether or not the economy is dynamically efficient. If it is
dynamically inefficient then transfers in the form of social security may
be welfare-improving. Another important issue is whether the government
needs to play a role in eliminating dynamic inefficiency and, if the answer
is yes, what that role should be. We have seen in the case of dynamic
inefficiency because of inefficient risk sharing that the creation of a clear-
ing house, or equivalently a durable asset such as money or bonds, will
remove the inefficiency. While conditional Pareto-optimal allocations can
be achieved through the creation of the durable asset, equal-treatment
Pareto-optimal allocations cannot if trading occurs after the current state
is realized.

These issues have been considered by a variety of authors. Demange
and Laroque [147] characterize the sufficient conditions for interim opti-
mality in the equilibrium of an overlapping generations economy under
productivity and demographic shocks. They define interim optimality of
an allocation as a situation where there does not exist another feasible allo-
cation that gives larger expected utility at birth to current living young
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and old generations and to all the agents who will be born in the future.
They then show the relation between interim optimality and conditional
Pareto optimality. Following that they study the rational expectations equi-
librium with and without financial assets to characterize the optimality
properties of the equilibria. As a result, regarding the rational expectations
equilibrium they confirm the two Welfare Theorems.

Demange [146] studies the optimality properties of an economy with
finitely lived agents under interim optimality and ex-ante optimality. Actu-
ally she gives a common optimality definition that includes both interim
and ex-ante optimality. Interim optimality is as defined above. Ex-ante opti-
mality differs from interim optimality in the sense that the date at which
the expected utility of agents is calculated is no longer the date of birth
but the initial date that the economy starts. The key necessary condition is
short-run optimality for the optimality of the economy. Hence, short-run
interim (ex-ante) optimality is a necessary condition for interim (ex-ante)
optimality of the economy. Short-run optimality is defined as a condition
in which it is not possible to make some agents born before a given date
t better off without making others worse off. After giving some charac-
terizations for the optimality of this economy, Demange continues with
optimality properties of rational expectations equilibrium under sequen-
tially complete and incomplete markets. Under incomplete markets she
studies the optimality of rational expectations equilibrium with produc-
tive land and with social security. With productive land she concludes that
any equilibrium allocation is interim optimal and with social security there
may still be room for Pareto improvement. Krueger and Kubler [291] give
an example of an economy with incomplete markets where introduction
of a social security system is Pareto-improving in the interim optimality
sense.

A literature has also developed that uses in the overlapping generations
in computational experiments. A survey of computational social security
models is provided by İmrohoroğlu, İmrohoroğlu, and Joines [260]. In
this study, they develop a general framework for modeling an unfunded
(pay-as-you-go) social security system and describe several of the more
important computational models of social security. Another venue of
research regarding social security involves the relation of social security
models with political economy considerations. In a recent survey, Galasso
and Profeta [193] establish the reasons for the existence of social security
programs and the interaction between social security systems and other
redistributive programs under different multi-dimensional voting models.
Moreover, they review the literature studying the relation between political
sustainability and social security.
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17.6. C O N C L U S I O N S

In this chapter, we have analyzed issues of dynamic inefficiency and
discussed alternative arrangements for implementing Pareto-optimal allo-
cations in the stochastic overlapping generations model. We have also
discussed the impact of capital accumulation on the issue of dynamic inef-
ficiency. Finally, we have explored some of the implications of the model
for asset pricing. The literature that uses the overlapping generations model
as a framework of analysis for optimal monetary and fiscal policy, social
security, intergenerational risk sharing, models with human capital, and
education, to name a few, is too vast to be summarized here. Nevertheless,
the framework that we developed here can be adapted to study such other
substantive problems of interest.

17.7. E X E R C I S E S

1. This problem uses the stochastic pure endowment economy that is sta-
tionary in levels and has a constant population. Assume that instead of
contingent claims, the government gives a fixed amount of fiat currency
M0 to each initial old agent. The nominal price of the consumption
good is p(s) where s is the state.
(a) Derive the budget constraints for a young agent and then solve the

agent’s maximization problem.
(b) Derive the equilibrium conditions. What is the equation for the

equilibrium price process, assuming that prices are stationary?
(c) Compare the allocation with that of the asset-pricing model in the

first section. Can the monetary equilibrium achieve the conditional
Pareto-optimal allocation? Can the fixed money supply obtain the
equal-treatment Pareto-optimal allocation?

(d) Use the same setup as the first part of this question but now assume
that the money supply process is stochastic. Specifically, assume that
money is a function M : S → �+. For an arbitrary money supply
rule, determine the equilibrium price process. Will the allocations
be conditional Pareto optimal?

2. In the section on capital accumulation, we assumed that firms owned
capital and that households own equity shares in the firm. Now assume
that households directly own the capital stock and rent the capital to
firms which combine labor and capital to produce the consumption
good. If holding capital is the only way for young agents to save, then
the budget constraints facing a young agent are

wt = ct
t + It

Nt
(17.95)

ct
t+1 = Rt+1

It

Nt
(17.96)
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where Rt+1 is the rental rate paid to capital in period t + 1. The rental
rate on capital is its marginal product

Rt+1 = at+1αK α−1
t+1 N 1−α

t+1

Observe that Kt+1 = It .
(a) Derive the first-order conditions.
(b) Observe that there are no direct exchanges between young and old

households, unlike the equity model where young households buy
equity shares from old households. Will the consumption alloca-
tions and capital accumulation be identical in the two versions of
the model?

3. Social Security
Assume there is no growth in population or technology. Also assume
that there is no depreciation. Young agents born at time t are endowed
with one unit of labor that they supply for a wage rate wt . Factors are
paid their marginal product. The production function displays constant
returns to scale.

Young households care about leisure. Old agents receive no endow-
ment and must save to provide for old-age consumption. Agents born
at time t solve the following problem:

max
{c1,t ,c2,t+1,nt }

[
a ln c1,t + b ln (1 − nt) + βa ln c2,t+1

]
(17.97)

subject to

c1,t + 1

rt+1
[c2,t+1 − St+1] = wtnt(1 − τ ) (17.98)

where 0<τ < 1 is a labor income tax that is constant over time, wt

is wage rate, and St+1 is a social security payment to old agents at time
t+1. All savings is invested in capital and rt denotes the return to capital
kt , equal to the marginal product of capital. Also 0<β < 1 and a and b
are fixed preference parameters.
(a) Derive the first-order conditions. Use the first-order conditions to

express c2,t+1 as a function of c1,t and rt+1. Use the same conditions
to express nt as a function of wt and c1,t .

(b) Substitute your answers from part (a) into the budget constraint.
Use the result to explain how savings is determined.

(c) Consider two systems:
• Pay-as-you-go system: under this system,

St = τwtnt

so that the tax revenue is not invested in next period’s capital
stock. Determine the steady state capital stock.

• Fully funded system: under this system, τwtnt is invested in the
capital stock. Determine the steady state capital stock.
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(d) Discuss how the distortionary income tax affects the steady state
capital stock under the two payment schemes.

4. Brouwer Fixed Point Theorem
Assume that output is stationary in levels and that it is i.i.d. over time.
Then the equilibrium consumption of the young satisfies

U ′(c(y))(w(y) − c(y)) = β

∫
Y

V ′(g(y′) − c(y′))(g(y′) − c(y′))dF (y′).

Define h(y, c) = U ′(c)(w(y) − c). Notice that

hc(y, c) = U ′′(c)(w(y) − c) − U ′(c) < 0.

Assume that U is twice continuously differentiable. Given a solution
c̃(y′), notice that the right side of the first-order condition does not
depend on the current realization y, or

K = β

∫
Y

V ′(g(y′) − c̃(y′))(g(y′) − c̃(y′))dF (y′).

Given a value 0 ≤ H ≤ ∞, define c(y, H ) as the consumption satisfying

U ′(c(y, H ))[w(y) − c(y, H )] = H .

The properties described in Assumption 17.1 are assumed to hold.
Notice that c(y, H ) = w(y) and that as H → ∞, c(y, H ) tends to 0.
Hence, c : Y × H → [0, w(y)]. Let C(Y ) denote the set of functions c
such that {c : Y × �+ → [0, w(y)]}. Consider the following mapping.

K = TK = β

∫
Y

V ′(g(y′) − c(y′, K ))(g(y′) − c(y′, K ))dF (y′). (17.99)

Use the Brouwer Fixed Point Theorem to show that there exists a
unique solution K .

5. This problem is taken from Cooley and Salyer [125].
Consider an economy in which two goods, housing services and a

consumption good, are produced by constant return technologies. The
output of each industry is a function of a fixed specific factor and
shiftable capital. The aggregate quantity of capital is fixed at K . Let
x and h denote the quantity of consumption goods and housing ser-
vices produced in the two sectors. Given the production technologies,
we can solve for the capital requirement functions in the two sectors as

K x = f (x), and K h = g(h),

where fx, gh > 0, and fxx, ghh > 0.
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In this model, we assume that corporate assets are taxed, but not
housing assets. Suppose there two tax states, s = 0, τ , and let T (s)
denote the tax rate in those states.
Firms’ problems
Firms in each industry maximize

π x(s) = max
x

{
x(s) − [1 + T (s)]r(s)f (x(s))

}
,

and

π h(s) = max
h

{
R(s)h(s) − r(s)g(h(s))

}
,

where r is the capital rental rate and R is the price of housing services,
or its rental rate.
The consumer’s problem
The representative consumer derives utility from both housing services
and consumption goods, and has preferences given by

E0

{ ∞∑
t=0

β tU (xt , ht)

}
,

where 0<β < 1, U is a strictly increasing, concave, twice differentiable
function, and x and h are both normal goods. In each period, the indi-
vidual chooses consumption of the background good, housing services,
and the purchase of securities. The consumer’s budget constraints can
be written as

x(s) + R(s)h(s) + px(s)zx(s) + ph(s)zh(s) ≤ w(s),

where w(s) denotes the agent’s wealth at the beginning of the period,
px and ph are the prices to claims of output of the consumption good
and housing services, and zx and zh are the quantity of such claims
purchased. As a result of choices made at t, the wealth at t + 1 when the
state is s′ is given by

w(s′) =zx(s)[π x(s′) + px(s′)]

+ zh(s)[π h(s′) + ph(s′)] + r(s′)K + �(s′),

where rK is the rental income from the agent’s capital endowment, and
� is the lump-sum transfer of revenues to the individual.
a) Using the first-order conditions for the consumer’s optimum, derive

an expression for the rental rate on housing, R(s).
b) Using a diagram, describe the production possibilities frontier

for this economy, and show that, in equilibrium, the consumer
will choose more housing services in the high-tax state, and less
consumption of the background good, namely,

h(τ ) > h(0), and x(0) > x(τ ).
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c) Using this result and the monotonicity of the capital requirements
functions K x and K h, show that the rental rate on capital will be
lower in the high-tax state, namely, r(0)> r(τ ), and that profits
in the consumption goods sector will also be lower in that state,
namely, π x(0)>π x(τ ).

d) Let the probability of each tax state be such that Pi,j = P for
i, j = 0, τ . Show that

px(0) = βπ x(0)[P − β(2P − 1)] + βπ x(τ )λ(1 − P)

(1 − β)(1 + β − 2Pβ)
,

px(τ ) = βλ−1π x(0)(1 − P) + βπ x(τ )[P − β(2P − 1)]

(1 − β)(1 + β − 2Pβ)
,

where λ= Ux(τ )/Ux(0). We also have that

ph(0) = βR(0)[P − β(2P − 1)] + βR(τ )λ(1 − P)

(1 − β)(1 + β − 2Pβ)
,

ph(τ ) = βλ−1R(0)(1 − P) + βR(τ )[P − β(2P − 1)]

(1 − β)(1 + β − 2Pβ)
.

e) Show that

ph(0) > ph(τ ) and px(0) > px(τ ).
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C H A P T E R A

Mathematical appendix

The notation conventions that we follow are standard. For example, we let
� denote the real line. For any positive integer n, �n denotes the set of
n-tuples of the form (x1, . . . , xn) with xi in � for all i. For any n-tuple
(x1, . . . , xn) with xi in X for all i, the conventions for inequalities are:
(i) x ≥ 0 means that x is non-negative; for x in �n, this is equivalent to
x ∈ �n

+; (ii) x > 0 means that x is non-negative and not zero but not nec-
essarily strictly positive in all coordinates; (iii) x � 0 means that X is strictly
positive in all coordinates. For x in �n, this is equivalent to x ∈ �n

++. With
these conventions, a function f defined on �n is increasing if f (x) ≥ f (y)
whenever x ≥ y and strictly increasing if f (x)> f (y) whenever x > y.

A.1 S T O C H A S T I C P R O C E S S E S

The basic building block of our analysis is the notion of a stochastic pro-
cess. A stochastic procees is a collecton of random variables {X (t), t ∈ T }.
The set T is known as the index set of the process. An important case is
when T ={0, ±1, ±2, . . .} or T = {0, 1, 2, . . .}. For these cases, we obtain
what is known as discrete time stochastic processes.

When studying stochastic processes, we introduce the notions of a sam-
ple space, events, and a probability function. The sample space � is the
space of all possible outcomes for the random phenomena described by
the stochastic process. An event is a set of sample observations. For techni-
cal reasons, we consider the set of events that belong to the set F , where
F has the following properties:
A. � ∈ F .
B. If E ∈ F , then the complement of E denoted Ec ∈ F .
C. IF E1, E2, . . . belongs to F , then their union also belongs to F ,

∪∞
i = 1Ei ∈ F .

To complete the description of random phenomena, we define a probabil-
ity function P[·] on the family F of random events. More precisely, for
each E ∈ F , one can define a number P[E] which is called the probability
that the event E will occur. Put differently, P[E] represents the probability
that an observed outcome of the random phenomena is an element of E .

549
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The function P[·] satisfies the following properties:
(i) P[E] ≥ 0 for every event E .

(ii) P[�] = 1 for the certain event �.
(iii) For any sequence of events E1, E2, . . . which are mutually exclusive,

that is, EjEK = ∅ where ∅ denotes the impossible event, we have

P
[∪∞

i=1Ei
] =

∞∑
i=1

P[Ei]. (A.1.1)

In many applications, it often suffices to take the smallest family of
subsets of the sample space � that satisfies properties A.–C. above. For
example, if � denotes the real line, one adopts as the family of events the
family B of Borel sets, where B is defined as the smallest family of sets
of real numbers that possess properties A.–C. and in addition, contains
as members all intervals. (An interval is a set of real numbers of the form
{x : a< x < b}, {x : a< x ≤ b}, {x : a ≤ x < b}, {x : a ≤ x ≤ b}, where a
and b may be finite or infinite numbers.)

An object X is said to be a random variable if (i) it is a real finite-valued
function on sample � on whose family F of events a probability function
P[·] has been defined; (ii) for every Borel set B of real numbers the set
{ω : X (ω) is in B} is an event in F .

The probability function of a random variable X denoted PX [·] is a
function defined for every Borel set B of real numbers by

PX [B] = P [ω : X (ω) is in B] = P[X is in B]. (A.1.2)

In words, PX [B] is the probability that an observed value of X is in B.
Two random variables X and Y are said to be identically distributed if

their probability functions are equal; that is, PX [B] = PY [B] for all Borel
sets B.

We can derive the distribution function FX ( · ) for any random variable
X for any number x as

FX (x) = P[X ≤ x]. (A.1.3)

A random variable X is said to be discrete if there exists a function called
the probability mass function of X and denoted by pX ( · ) which satisfies

PX [B] = P[X is in B] =
∑

x∈B s.t. pX (x)>0

pX (x). (A.1.4)

Thus, for any real number x, we have that pX (x) = P[X = x].
A random variable X is said to be continuous if there exists a function

called the probability density function of X and denoted by fX ( · ) such that
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PX [B] = P[X is in B] =
∫

B
fX (x)dx. (A.1.5)

Since

FX (x) =
∫ x

−∞
fX (x′)dx′, −∞ < x < ∞, (A.1.6)

it follows that

fX (x) = d
dx

FX (x) (A.1.7)

for all real numbers x at which the derivative exists.
We return to the issue of describing the probability law for a stochastic

process. One plausible way of describing a stochastic process {X (t), t ∈ T }
defined on an infinite index set T is to specify the joint probability law
of the n random variables X (t1), X (t1), . . . , X (tn) for all integers n and n
points t1, t2, . . . , tn ∈ T . To specify the joint probability law of the n ran-
dom variables X (t1), X (t1), . . . , X (tn) we can specify the joint distribution
function for all real numbers x1, . . . , xn as

FX (t1),X (t2),...,X (tn)(x1, x2, . . . , xn)

= P[X (t1) ≤ x1, X (t2) ≤ x2, . . . , X (tn) ≤ xn]. (A.1.8)

Let {X (t), t ∈ T } be a stochastic process with finite second moments.
The mean value function, denoted m(t), is defined for t ∈ T by

m(t) = E[X (t)], (A.1.9)

and its covariance kernel denoted by K (s, t) is defined for all s and t in T by

K (s, t) = Cov[X (s), X (t)]. (A.1.10)

Recall that for random variables obeying the normal distribution, knowl-
edge about the mean and variance yields complete knowledge about all the
probabilities describing the random variable. In the general case when the
functional form of the probability law of the random variable is unknown,
the mean and variance still serve to summarize partially the underlying
probability law.

We now turn to the issue of stationary versus non-stationary (or evolu-
tionary) stochastic processes. Intuitively, a stationary stochastic process is
one whose distribution remains the same throughout time because the
underlying random mechanism generating the process does not change
over time.
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A stochastic process {X (t), t ∈ T } whose index set T is linear is said
to be
1. (i) strictly stationary of order k where k is a given positive integer if for

any k points t1, t2, . . . , tk ∈ T and for any h ∈ T , the k-dimensional
random vectors

(X (t1), . . . , X (tk)) and (X (t1 + h), . . . , X (tk + h))

are identically distributed;
2. (ii) strictly stationary if for any integer k it is strictly stationary of order k.

There is another concept of stationarity called covariance stationarity,
which is much easier to develop theoretically and which suffices for many
applications. This is stated as follows.

A stochastic process {X (t), t ∈ T } is said to be covariance stationary if
it possesses finite second moments, if its index set T is linear, and if its
covariance kernel K (s, t) is a function only of the absolute difference |s− t|
in the sense that there exists a function R( · ) such that for all s and t in T

K (s, t) = R(s − t), (A.1.11)

or more generally, R(ν) has the property that for t and t + ν in T

Cov[X (t), X (t + ν)] = R(ν). (A.1.12)

We call R(ν) the covariance function of the covariance stationary time
series {X (t), t ∈ T }.

We say that {X (t)} is a Gaussian process if the set of random vari-
ables (X (t1), . . . , X (tn))′ has a multivariate normal distribution. Since the
multivariate normal distribution is completely specified by its mean and
variance-covariance matrix, if {X (t)} is covariance stationary, then it is
strictly stationary. When X (t) is a p-dimensional vector of random vari-
ables, {X (t)} is called a multivariate stochastic process. Such multivariate
processes allow us to examine relationships among different series. In addi-
tion to requiring each series to be stationary, we require that the collection
of p series are jointly stationary; that is, for each i, j, Cov(Xi(t), Xj(s)) is a
function of only the absolute difference |t − s|.

A process that has found uses in the applications that we consider here
is the log-normal process. We say that that the random variable X is log-
normally distributed, denoted X ∼ LN (μ, σ 2), if

f (x) = 1√
2πσ x

exp

(
− ( ln (x) − μ)2

2σ 2

)
, x > 0. (A.1.13)
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We have that E[X ] = exp (μ + σ 2/2) and Var[X ] = exp (2μ + σ 2)
( exp (σ 2) − 1). A useful result is as follows. Since the normal distribution
is preserved under linear transformations,

if Y ∼ LN [μ, σ 2], then ln (Y r) ∼ N [rμ, r2σ 2], (A.1.14)

for r integer.

A.2 S O M E U S E F U L T H E O R E M S

Many applications in economics make use of the properties of continu-
ity and differentiability of the functions characterizing utility, production,
etc. In this section, we provide a set of theorems that makes use of these
properties.

Theorem A.1 (Intermediate Value Theorem) Let A = [a, b] be an interval
in � and let f : A → � be a continuous function. If f (a)< f (b) and if c is
a real number such that f (a)< c < f (b), then there exists an x ∈ (a, b) such
that f (x) = c. A similar statement holds if f (a)> f (b).

In general, a function that is differentiable everywhere need not be con-
tinuously differentiable. Nevertheless, the derivative still possesses some
minimal continuity properties.

Theorem A.2 (Intermediate Value Theorem for the Derivative) Let
A = [a, b] be an interval in � and let f : A → � be a function that is
differentiable everywhere on A. If f ′(a)< f ′(b) and c is a real number such
that f ′(a), c < f ′(b), then there is a point x ∈ (a, b) such that f ′(x) = c. A
similar statement holds if f ′(a)> f ′(b).

We also have the following theorem regarding the derivative of an
everywhere differentiable function.

Theorem A.3 (Mean Value Theorem) Let A = [a, b] and let f : A → � be
a continuous function. Suppose is f is differentiable on (a, b). Then there exists
x ∈ (a, b) such that

f (b) − f (a) = (b − a)f ′(x).

Suppose that a function f is at least k-times differentiable, and denote
the kth derivative of f evaluated at the point z as f (k)(z). The following
theorem which is a generalization of the Mean Value Theorem states that a
many-times differentiable function can be approximated by a polynomial.

Theorem A.4 (Taylor’s Theorem) Let f : A → � be a continuously differ-
entiable function of order m, where A is an open interval in �, and m ≥ 0 is
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a non-negative integer. Suppose also that f m+1(z) exists for every point z ∈ A.
Then for any z, y ∈ A, there is a z ∈ (x, y) such that

f (y) =
m∑

k=0

(
f (k)(x)(y − x)k

k!

)
+ f m+1(z)(y − x)m+1

(m + 1)!
.

In many applications, we are interested in finding the solution to a sys-
tem of equations that are defined implicitly in terms of a set of variables x
and parameters θ . The following is useful for this purpose.

Theorem A.5 (Implicit Function Theorem)
Let x = (x1, . . . , xN )′ and θ = (θ1, . . . , θM )′, and suppose that there are N

equations of the form

fi(x1, . . . , xN ; θ1, . . . , θM ) = 0, i = 1, . . . , N .

Suppose that every equation fi( · ) is continuously differentiable with respect
to its N + M arguments and we consider a solution x̄ = (x̄1, . . . , x̄N )′ at
the parameters θ̄ = (θ̄1, . . . , θ̄M )′ satisfying fi(x̄; θ̄ ) = 0 for all i. Define the
Jacobian matrix of the system of equations with respect to the variables x as:

Dxf (x, θ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�f1(x̄;θ̄ )
�x1

�f1(x̄;θ̄ )
�x2

. . .
�f1(x̄;θ̄ )

�xN
�f2(x̄;θ̄ )

�x1

�f2(x̄;θ̄ )
�x2

. . .
�f2(x̄;θ̄ )

�xN
...

...
...

...
�fN (x̄;θ̄ )

�x1

�fN (x̄;θ̄ )
�x2

. . .
�fN (x̄;θ̄ )

�xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

If the Jacobean matrix evaluated at (x̄, θ̄ ) is non-singular, then the system can
be solved locally at (x̄, θ̄ ) by implicitly defined functions gi : �M → �N that
are continuously differentiable. Furthermore, the first-order effects of θ on x at
(x̄, θ̄ ) can be obtained as:

Dθg(θ̄ ) = −[Dxf (x̄; θ̄ )]−1Dθ f (x̄; θ̄ ).

The special case of the implicit function theorem occurs where M = N
and every equation has the form

fn(x, θ ) = gn(x) − θn = 0.

This is known as the inverse function theorem.
In many applications, we are often interested in the properties of a max-

imized function and the feasible set characterizing optimal intertemporal
choices. The following results are useful for this purpose.

We begin by defining the idea of a correspondence from some X into a
set Y . This is a relation which assigns a set �(x) ⊆ Y to each x ∈ X . There
are several notions of continuity for correspondences.
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1 2

1

ϕ1 (s)

s

Figure A.1. An upper hemi-continuous correspondence

Definition A.1 A correspondence � : X → Y is upper hemi-continuous
(u.h.c) at x if �(x) is non-empty and if, for every sequence xn → x and
every sequence {yn} such that yn ∈ �(xn), for all n, there exists a convergent
subsequence of {yn} whose limit point is in �(x).

To consider an example, let S = [0, 2] and define the correspondence
ϕ1 : S → 2[0,1] where 2[0,1] denotes all the subsets of [0, 1].

ϕ1(s) =
{

[0, 1 − s] if s ∈ [0, 1)
[0, 1] if s ∈ [1, 2].

Then ϕ1(s) is upper hemi-continuous but it is not lower hemi-continuous.

Definition A.2 A correspondence � : X → Y is lower hemi-continuous
(l.h.c) at x if �(x) is non-empty and if, for every y ∈ �(x) and every sequence
xn → x, there exists N ≥ 1 and a sequence {yn}∞n = N such that yn → y and
yn ∈ �(xn), for all n ≥ N .

Now define ϕ2 : S → 2[0,1] by

ϕ2(s) =
{

[0, 1 − s] if s ∈ [0, 1]
[0, 1] if s ∈ (1, 2].

Then ϕ2(s) is lower hemi-continuous but it is not upper hemi-continuous.
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1 2

1

ϕ2 (s)

s

Figure A.2. A lower hemi-continuous correspondence

Definition A.3 A correspondence � : X → Y is called continuous at x ∈ X
if it is both u.h.c. and l.h.c. at x.

Let X ⊆ �l , let Y ⊆ �m, let f : X × Y → � be a single-valued
function, and let � : X → Y be a non-empty, possibly multivalued corre-
spondence. In many applications that we will consider in this book, we are
interested in analyzing the properties of a problem of the following sort:
supy∈�(x) f (x, y). If, as we typically assume, f (x, ·) is continuous in y and
the set �(x) is non-empty and compact, then for each x the maximum will
be attained. In this case, the function

h(x) = max
y∈�(x)

f (x, y) (A.2.15)

is well defined, as is the non-empty set

G(x) = {y ∈ �(x) : f (x, y) = h(x)} (A.2.16)

which denotes the set of values y that attains the maximum.
The following theorem allows us to analyze the conditions under which

the function h(x) and the set G(x) vary continuously with x.

Theorem A.6 (Theorem of the Maximum) Let X ⊆ �l , let Y ⊆ �m, let
f : X ×Y → � be a continuous function, and let � : X → Y be a compact-
valued and continuous correspondence. Then the function h : X → � is
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continuous and the correspondence G : X → Y is non-empty, compact-valued,
and u.h.c.

We can also use the concepts of continuity of functions and correspon-
dences to provide examples of two fixed theorems that are used in many
applications in economics.

Theorem A.7 (Brouwer’s Fixed Point Theorem)
Suppose X ∈ �N is a non-empty, closed and bounded (compact), convex set,

and that f : X → X is a continuous function from X onto itself. Then f ( · )
has a fixed point; that is, there is an x ∈ X such that f (x) = x.

As an example, consider the case with N = 1 and X = [0, 1]. In this case, the
theorem says that the graph of any continuous function from the interval
[0, 1] into itself must cross the 45-degree line at least once. This result can
be obtained as an application of the intermediate value theorem as follows.
For this purpose, define the continuous function ψ(x) = f (x) − x. Then
ψ(0) ≥ 0 and ψ(1) ≤ 0 and so ψ(x) = 0 for some x ∈ [0, 1], which implies
that f (x) = x for some x ∈ [0, 1].

A generalization of the Brouwer’s Fixed Point Theorem is provided next.

Theorem A.8 (Kakutani Fixed Point Theorem)
Suppose X ∈ �N is a non-empty, compact, convex set, and ϕ(x) is a corre-

spondence relating points in X to closed, convex subsets of X . Then assuming
ϕ(x) is upper semi-continuous, there exists at least one point x� ∈ X which
belongs to the set into which it is mapped by ϕ:

x� ∈ ϕ(x�),

and x� is a fixed point of ϕ.
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