

Lecture Notes in Artificial Intelligence 1805
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Takao Terano Huan Liu
Arbee L.P. Chen (Eds.)

Knowledge Discovery
and Data Mining
Current Issues and New Applications

4th Pacific-Asia Conference, PAKDD 2000
Kyoto, Japan, April 18-20, 2000
Proceedings

^ 3 Springer

Series Editors

Jaime G. Carbonell.Camegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Takao Terano
Universiy of Tsukuba
Graduate School of Systems Management
3-29-1 Otsuka, Bunkyo-ku,Tokyo 112-0012, Japan
E-mail: terano@gssm.otsuka.tsukuba.ac.jp

Huan Liu
Arizona State University
Department of Computer Science and Engineering
RO. Box 875 406, Tempe, AZ, 85287-5406
E-mail: hliu@asu.edu

Arbee L.P. Chen
National Tsing Hua University
Department of Computer Science
Hsinchu, Taiwan 300, ROC
E-mail: alpchen@cs.nthu.edu.tw

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Knowledge discovery and data mining : current issues and new
applications ; 4th Pacific Asia conference ; proceedings / PAKDD 2000,
Kyoto, Japan, April 18 - 20, 2000. Takao Terano ... (ed.). - Beriin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;
Singapore ; Tokyo : Springer, 2000
(Lecture notes in computer science ; Vol. 1805 : Lecture notes in
artificial intelligence)
ISBN 3-540-67382-2

CR Subject Classification (1991): 1.2, H.3, H.5.1, G.3, J.l

ISBN 3-540-67382-2 Springer-Veriag Beriin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this pubhcation
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Veriag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Veriag is a company in the BertelsmannSpringer pubUshing group.
© Springer-Veriag Beriin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingraber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN 10720199 06/3142 5 4 3 2 10

Preface

The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2000) was held at the Keihanna-Plaza, Kyoto, Japan, April 18 - 20,
2000. PAKDD 2000 provided an international forum for researchers and applica-
tion developers to share their original research results and practical development
experiences. A wide range of current KDD topics were covered including ma-
chine learning, databases, statistics, knowledge acquisition, data visualization,
knowledge-based systems, soft computing, and high performance computing. It
followed the success of PAKDD 97 in Singapore, PAKDD 98 in Austraha, and
PAKDD 99 in China by bringing together participants from universities, indus-
try, and government from all over the world to exchange problems and challenges
and to disseminate the recently developed KDD techniques.

This PAKDD 2000 proceedings volume addresses both current issues and
novel approaches in regards to theory, methodology, and real world application.
The technical sessions were organized according to subtopics such as Data Mining
Theory, Feature Selection and Transformation, Clustering, Application of Data
Mining, Association Rules, Induction, Text Mining, Web and Graph Mining.
Of the 116 worldwide submissions, 33 regular papers and 16 short papers were
accepted for presentation at the conference and included in this volume. Each
submission was critically reviewed by two to four program committee members
based on their relevance, originality, quality, and clarity.

The PAKDD 2000 program was enhanced by two keynote speeches and one
invited talk: Yoshiharu Sato of Hokkaido University, Japan (Statistics), Ryszard
S. Michalski of George Mason University, USA (Machine Learning), and Andrew
Tomkins of IBM Almaden Research Center (Databases). The PAKDD 2000 pro-
gram was further complemented by five tutorials: Enterprise Data Mining with
Case Studies (Zhexue Huang and Graham J Williams), Data Mining with De-
cision Trees (Johannes Gehrke), Knowledge Extraction from Texts - Applica-
tion to Human Resources in Industry (Yves Kodratoff), Rough Sets in KDD:
A Tutorial (Andrzej Skowron and Ning Zhong), and Data Mining on the World
Wide Web (Wee-Keong NG). Two international workshops were co-hosted with
PAKDD 2000 focusing on two KDD frontiers: the International Workshop on
Web Knowledge Discovery and Data Mining (WKDDM 2000) and the Interna-
tional Workshop of KDD Challenge on Real-World Data (KDD Challenge 2000).

The success of PAKDD 2000 would not have been possible without the gen-
erous help rendered to us. We would like to extend our heartfelt gratitude to
the program committee members and the steering committee members for their
invaluable contributions. Special thanks go to the conference chairs: Hiroshi Mo-
toda and Masaru Kitsuregawa for their leadership and involvement in making
the conference run smoothly. We would like to express our immense gratitude
to all the contributors to the conference for submitting and presenting papers,
offering tutorials, giving talks, and organizing workshops. Special thanks are

VI Prefeice

due to Yuko Ichiki of Keihanna-Plaza Co. for her excellent secretarial work. The
conference was sponsored by various academic societies in Japan. These are the
Japanese Society of Artificial Intelligence (JSAI), SIG-DE (Data Engineering)
and SIG-AI (Artificial Intelligence) of The Institute of Electronics, Information
and Communication Engineers, SIG-DM (Data Mining) of the Japan Society
for Software Science and Technology, SIG-DB (Data Base) and SIG-ICS (Intel-
ligent and Complex Systems) of the Information Processing Society of Japan,
and ACM SIG-MOD Japan. PAKDD 2000 was also generously supported by
the SAS Institute, Japan and the Telecommunication Advancement Foundation
(TAP), Japan.

We hope all participants had a pleasant stay at PAKDD 2000 as well as in
Japan, exchanged refreshing views, and we wish them great success in their KDD
endeavors.

April 2000 Takao Terano, Huan Liu, and Arbee L. P. Chen

PAKDD 2000 Conference Commit tee

Conference Chairs:

Masaju Kitsuregawa, University of Tokyo, Japan
Hiroshi Motoda, Osaka University, Japan

Program Chairs:

Takao Terano, Tsukuba University, Japan (Chair)
Huan Liu, Arizona State University, USA (Co-chair)

Arbee L. P. Chen, National Tsing Hua University, Taiwan (Co-chair)

Publicity Chair:

Shinichi Morishita, University of Tokyo, Japan

Workshop Chair:

Takahira Yamaguchi, Shizuoka University, Japan

Tutorial Chair:

Shusaku Tsumoto, Shimane Medical University, Japan

Local Organizing Committee Chair:

Takashi Washio, Osaka University, Japan

PAKDD Steering Committee:

Xindong Wu, Colorado School of Mines, USA (Chair)
Hongjun Lu, National University of Singapore (Co-chair)
Ramamohanarao Kotagiri, University of Melbourne, Australia
Huan Liu, Arizona State University, USA
Hiroshi Motoda, Osaka University, Japan
Lizhu Zhou, Tsinghua University, China
Ning Zhong, Yamaguchi University, Japan

VII I Organisation

PAKDD 2000 Program Committee

Akinori Abe
Tatsuya Akutsu
Hiroki Arimura
Ming-Syan Chen
David Cheung
Vic Ciesielski
Honghua Dai
Usama Fayyad
Takeshi Fukuda
Yike Quo
Jiawei Han
Tomoyuki Higuchi
TuBaoHo
Howard Ho
Xiaohua Hu
Zhexue Huang
Seiji Isobe
Manabu Iwasaki
Won-Chul Jhee
Hiroyuki Kawano
Kyung-Chang Kim
Kevin Korb
Ramamohanarao Kotagiri
Deyi Li
Jianmin Li
T.Y. Lin
Charles X. Ling
Bing Liu
Chunnian Liu
Jiming Liu
Hongjun Lu
Yasuhiko Morimoto
Shinichi Morishita
Masayuki Numao
Tadashi Ohmori
Yukio Ohsawa
Gregory Piatetsky-Shapiro
Mohamed Quafafou
Zbigniew W. Ras
Keun Ho Ryu

NTT Communication Science Laboratories, Japan
University of Tokyo, Japan
Kyushuu University, Japan
National Taiwan University, Taiwan
Hong Kong University, Hong Kong
RMIT, Australia
Deakin University, Australia
Microsoft Research, USA
IBM , Tokyo Research Laboratory, Japan
Imperial College, UK
Simon Eraser University, Canada
Institute of Statistical Mathematics, Japan
Japan Advanced Institute of Science and Technolc
IBM , Almaden Research Center, USA
Knowledge Stream, USA
MIP, Australia
NTT Software Corporation, Japan
Seikei University, Japan
Hong-Ik University, Korea
Kyoto University, Japan
Hong-Ik University, Korea
Monash University, Australia
University of Melbourne, Australia
Beijing System Engineering Institute, China
University of Illinoi s at Chicago, USA
San Jose State University, USA
Univ. Western Ontario, Canada
National University of Singapore
Beijing Polytechnic University, China
Hong Kong Baptist University
National University of Singapore
IBM , Tokyo Research Laboratory, Japan
University of Tokyo, Japan
Tokyo Institute of Technology, Japan
University of Electro-Communications, Japan
Tsukuba University, Japan
Knowledge Stream, USA
University of Nantes, Prance
University of North Carolina, USA
Chungbuk National University, Korea

Organisation IX

Peter Scheuermann
John C. Shafer
Arun Sharma
Zhongzhi Shi
Arul Siromoney
Andrzej Skowron
Wataru Sunayama
Einoshin Suzuki
Atsuhiro TaJcasu
Shiro Takata
Bhavani Thuraisingham
Kai Ming Ting
Hiroshi Tsukimoto
Shusaku Tsumoto
Jeffrey D. UUman
Lipo Wang
Takashi Washio
Graham WiUiams
Xindong Wu
Beat Wuthrich
Takahira Yamaguchi
Yiyu Yao
Suk-Chung Yoon
Tetsuya Yoshida
Meide Zhao
Zijian Zheng
Aoying Zhou
Ning Zhong
Lizhu Zhou
Jan Zytkow

Northwestern University, USA
IBM , Almaden Research Center, USA
University of New South Wales, Australia
Chinese Academy of Sciences, China
Anna University, India
Warsaw University, Poland
Osaka University, Japan
Yokohama National University, Japan
NACSIS, Japan
ATR, Japan
MITRE Corporation, USA
Deakin University, Australia
Toshiba Corporation, Japan
Shimane Medical University
Stanford University
Nanyang Technical University, Singapore
Osaka University, Japan
CSIRO, Australia
Colorado School of Mines, USA
Hong Kong University of Science &; Technology
Shizuoka University, Japan
University of Regina, Canada
Widener University, USA
Osaka University, Japan
University of Illinoi s at Chicago, USA
Blue Martini Software, USA
Pudan University, China
Yamaguchi University, Japan
Tsinghua University, China
University of North Carolina, USA

X Organisation

PAKDD 2000 Reviewers

Akinori Abe
Hiroki Ariraura
Vic Ciesielski
YiD u
Xiujun Gong
Hisaaki Hatano
Tu Bao Ho
Xiaohua Hu
Tetsuya lizuka
Won-Chul Jhee
Kyung-Chang Kim
Ramamohanaxao Kotagiri
Jianmin Li
Charles X. Ling
Huan Liu
Oscar Ortega Lobo
Shinichi Morishita
Hiroshi Motoda
T. N. Nguyen
Tadashi Ohmori
Gregory Piatetsky-Shapiro
Keun Ho Ryu
John C. Shafer
Zhongzhi Shi
Andrzej Skowron
Atsuhiro Takasu
Kai Ming Ting
Wisut Sae-Tung
Takashi Washio
J.Wroblewski
Takahira Yamaguchi
Suk-Chung Yoon
Xiangtao You
Ning Zhong
Jan Zytkow

Akiko Aizawa
Ming-Syan Chen
Honghua Dai
Usama Fayyad
Yike Guo
Lawrence. J. Henschen
Howard Ho
Zhexhe Huang
Seiji Isobe
Rong Jiang
Masaru Kitsuregawa
Doheon Lee
Xiaoli Li
Bing Liu
Jimin Liu
Hongjun Lu
Chie Morita
SvetlozBJ Nestorov
Masayuki Numao
Yukio Ohsawa
Mohamed Quafafou
Makoto Sato
Arun Sharma
Hisako Shiohara
Wataxu Sunayama
Takao Terano
Hiroshi Tsukimoto
Jeffrey D. Oilman
Alicj a Wieczorkowska
Xindong Wu
Yiyu Ya<)
Mariko Yoshida
Meide Zhao
Aoying Zhou

Tatsuya Akutsu
David Cheung
Manoranjan Dash
Takeshi Fukuda
Jiawei Han
Tomoyuki Higuchi
Charles Hu
Md. Farhad Hussain
Manabu Iwaseiki
Hiroyuki Kawano
Kevin Korb
Deyi Li
T.Y. Lin
Chunnian Liu
Jiming Liu
Yasuhiko Morimoto
Koichi Moriyama
N. Binh Nguyen
Kensuke Ohmori
Wen Pen
Zbigniew W. Ras
Peter Scheuermann
John Shepherd
Arul Siromoney
Einoshin Suzuki
Bhavani Thuraisingham
ShusaJcu Tsumoto
Lipo Wang
Graham Williams
Beat Wuthrich
Shiren Ye
Tetsuya Yoshida
Zijian Zheng
Lizhu Zhou

Table of Contents

Keynote Speeches and Invited Talk

Perspective on Data Mining from Statistical Viewpoints 1
Yoshiharu Sato

Inductive Databases and Knowledge Scouts 2
Ryszard S. Michalski

Hyperlink-Aware Mining and Analysis of the Web 4
Andrew Tomkins

Data Mining Theory

Polynomial Time Matching Algorithms for Tree-Like Structured Patterns
in Knowledge Discovery 5

Tetsuhiro Miyahara, Takayoshi Shoudai, Tomoyuki Uchida,
Kenichi Takahashi, Hiroaki Ueda

Fast Discovery of Interesting Rules 17
Nobuhiro Yugami, Yuiko Ohta, Seishi Okamoto

Performance Controlled Data Reduction for Knowledge Discovery
in Distributed Databases 29

Slobodan Vucetic, Zoran Obradovic

Minimum Message Length Criterion for Second-Order Polynomial Model
Discovery 40

Grace W. Rumantir

Frequent Itemset Counting Across Multiple Tables 49
Viviane Crestana Jensen, Nandit Soparkar

Frequent Closures as a Concise Representation for Binary Data Mining . .. 62
Jean-Prangois Boulicaut, Artur Bykowski

An Optimization Problem in Data Cube System Design 74
Edward Hung, David W. Cheung, Ben Kao, Yilong Liang

Exception Rule Mining with a Relative Interestingness Measure 86
Farhad Hussain, Huan Liu, Einoshin Suzuki, Hongjun Lu

Feature Selection and Transformation

Consistency Based Feature Selection 98
Manoranjan Dash, Huan Liu, Hiroshi Motoda

XII Table of Contents

Feature Selection for Clustering 110
Manoranjan Dash, Huan Liu

A Simple Dimensionality Reduction Technique for Fast Similarity Search
in Large Time Series Databases 122

Eamonn J. Keogh, Michael J. Pazzani

Missing Value Estimation Based on Dynamic Attribute Selection 134
K. C. Lee, J. S. Park, Y. S. Kim, Y. T. Byun

On Association, Similarity and Dependency of Attributes 138
Yi Yu Yao, Ning Zhong

Clustering

Prototype Generation Based on Instance Filtering and Averaging 142
Chi-Kin Keung, Wai Lam

A Visual Method of Cluster Validation with Fastmap 153
Zhexue Huang, Tao Lin

COE: Clustering with Obstacles Entities. A Preliminary Study 165
Anthony K.H. Tung, Jean Hou, Jiauiei Han

Combining Sampling Technique with DBSCAN Algorithm for Clustering
Large Spatial Databases 169

Shuigeng Zhou, Aoying Zhou, Jing Cao, Jin Wen, Ye Fan, Yunfa Hu

Predictive Adaptive Resonance Theory and Knowledge Discovery
in Databases 173

Ah-Hwee Tan, Hui-Shin Vivien Soon

Improving Generalization Abilit y of Self-Generating Neural Networks
Through Ensemble Averaging 177

Hirotaka Inoue, Hiroyuki Narihisa

Application of Data Mining

Attribute Transformations on Numerical Databases 181
Tsau Young Lin, Joseph Tremba

Efficient Detection of Local Interactions in the Cascade Model 193
Takashi Okada

Extracting Predictors of Corporate Bankruptcy: Empirical Study on Data
Mining Methods 204

Cindy Yoshiko Shirata, Takao Terano

Table of Contents XII I

Evaluating Hypothesis-Driven Exception-Rule Discovery with Medical
Data Sets 208

Einoshin Suzuki, Shusaku Tsumoto

Discovering Protein Functional Models Using Inductive Logic
Programming 212

Takashi Ishikawa, Masayuki Numao, Takao Terano

Mining Web Transaction Patterns in an Electronic Commerce
Environment 216

Ching-Huang Yun, Ming-Syan Chen

Association Rules and Related Topics

Making Use of the Most Expressive Jumping Emerging Patterns
for Classification 220

Jinyan Li, Guozhu Dong, Ramamohanarao Kotagiri

Mining Structured Association Patterns from Databases 233
Hirofumi Matsuzawa, Takeshi Fukuda

Association Rules 245
Tao Zhang

Density-Based Mining of Quantitative Association Rules 257
David W. Cheung, Lian Wang, S.M. Yiu, Bo Zhou

AViz: A Visualization System for Discovering Numeric Association Rules. . 269
Jiancho Han, Nick Cercone

Discovering Unordered and Ordered Phrase Association Patterns for Text
Mining 281

Ryoichi Pujino, Hiroki Arimura, Setsuo Arikawa

Using Random Walks for Mining Web Document Associations 294
K. Selguk Candan, Wen-Syan Li

Induction

A Concurrent Approach to the Key-Preserving Attribute-Oriented
Induction Method 306

Maybin K. Muyeba, John A. Keane

Scaling Up a Boosting-Based Learner via Adaptive Sampling 317
Carlos Domingo, Osamu Watanabe

Adaptive Boosting for Spatial Functions with Unstable Driving Attributes 329
Aleksandar Lazarevic, Tim Fiez, Zoran Obradovic

XIV Table of Contents

Robust Ensemble Learning for Data Mining 341
Gunnar Ratsch, Bernhardt Scholkopf, Alexander Johannes Smola,
Sebastian Mika, Takashi Onoda, Klaus-Robert Miiller

Interactive Visualization in Mining Large Decision Trees 345
Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira

VQTree: Vector Quantization for Decision Tree Induction 349
Shlomo Geva, Lawrence Buckingham

Making Knowledge Extraction and Reasoning Closer 360
Fosca Giannotti, Giuseppe Manco

Discovery of Relevant Weights by Minimizing Cross-Validation Error 372
Kazumi Saito, Ryohei Nakano

Efficient and Comprehensible Local Regression 376
Luis Torgo

Information Granules for Spatial Reasoning 380
Andrzej Skowron, Jaroslaw Stepaniuk, Shusaku Tsumoto

Text, Web, and Graph Mining

Uncovering the Hierarchical Structure of Text Archives by Using
an Unsupervised Neural Network with Adaptive Architecture 384

Dieter Merkl, Andreas Rauber

Mining Access Patterns Efficiently from Web Logs 396
Jian Pei, Jiawei Han, Behzad Mortazavi-asl, Hua Zhu

A Comparative Study of Classification Based Personal E-mail Filtering . .. 408
Yanlei Diao, Hongjun Lu, Dekai Wu

Extension of Graph-Based Induction for General Graph Structured Data .. 420
Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio

Text-Source Discovery and GIOSS Update in a Dynamic Web 432
Chi- Yuen Ng, Ben Kao, David Cheung

Extraction of Fuzzy Clusters from Weighted Graphs 442
Seiji Hotta, Kohei Inoue, Kiichi Urahama

Text Summarization by Sentence Segment Extraction Using Machine
Learning Algorithms 454

Wesley T. Chuang, Jihoon Yang

Author Index 459

Perspective on Data Mining
from Statistical Viewpoints

Yoshiharu Sato

Division of Systems and Information Engineering, Hokkaido University,
Sapporo, 060-8628 Japan,

ysatoQmain.eng.hokudai.ac.j p

Abs t rac t. The history of statistical data analysis is old, it goes back to
the 1920's. Many fundamental concepts of multivariate statistical data
analysis, especially pure theoretical notions, have been accomplished by
the 1950's. After the 1960's, the practical applications of multivariate
statistical data analysis have been available, coupled with the progress
of computers, and these have also been an affect on theoretical consid-
erations.
The basic process of data analysis is given as follows;

p i) . An objective of data analysis is given.
p2). The data which seems to be closely connected with the ob-

jective is observed, (samphng data)
p3). Constructing a model (or a set of models) for explaining the

variation of the data.
p4). Preprocessing (or transforming) the original data in order

to make consistency between input data and the model.
p5). Identification of the model based on observed (input) data.
p6). Evaluate a goodness of fit. If the goodness of fit is insuffi-

cient, then return to P2) or P3), else go to next process.
p7). Interpretation of the result and investigate the vaUdity.

The most different point on "data mining" and statistical data analysis
seems to be the concept of "Data". In data mining, the data is given
as a database in advance. But, in statistical data analysis, the data is
observed according to the objective of the analysis.
On the other hand, the object of "data mining" is to find the effective
(or valuable) information in the data. Prom the framework of statistical
data analysis above, the main processes of data mining are p3), p4) and
p5). However, the concept of "efficient information" in data mining is
different from the main part of the data variation in statistical data
analysis. For instance, in principal component analysis, the main part of
the data variation is obtained as the first principal component, which has
the largest proportion. But in data mining, the major variation of the
data is of no interest, because the knowledge obtained from it is trivial.
Then, data mining seems to be interested in the principal components
with small proportion in order to get unusual but valuable information.
Hence, statistical data analysis for residual data which is removing the
main part of the data variation from the original data, wil l be useful for
data mining.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, p. 1, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Inductive Databases and Knowledge Scouts

Ryszard S. Michalski

PRC Professor of Computational Sciences and Information Technoloy
Machine Learning and Inference Laboratory

Institute for Computational sciences and Informatics
George Mason University

www.mli.gmu.edu/michalski

"All human beings desire to know"
Aristotle, Metaphysics, L I .

Abs t rac t. The development of very large databases and the world wide
web has created extraordinary opportunities for monitoring, analyzing
and predicting global economical, ecological, demographic, political, and
other processes in the world. Our current technologies are, however, in-
sufficient for these tasks, and we drowning in the deluge of data that are
being collected world-wide.
New methods and integrated tools are needed that can generate goal-
oriented knowledge and predictive hypotheses from massive and multi-
media data, stored in large distributed databases, warehouses, and the
world wide web. These methods and tools must be able to cope not only
with huge data volumes in various forms, but also with data inconsis-
tency, missing values, noise, and/or possibly weak data relevance to any
given task. The development of effective methods and systems for knowl-
edge mining in large multimedia datas emerges as a central challenge on
the research agenda for the 21st century.

This talk wil l briefly discuss a novel project towaxd the above goals,
which is conducted in the GMU Machine Learning and Inference Lab-
oratory. The project concerns the development of what we call induc-
tive databases and knowledge scouts. An inductive database extends a
conventional database by integrating in it inductive inference capabili-
ties (possibly also other types of uncertain reasoning). These capabilities
allow a database to answer queries that require synthesizing plausible
knowledge and make hypothetical predictions.

One of the important design conditions for an inductive database is that
the hypothesized knowledge satisfy the "postulate of comprehensiblity,"
that is, is in the form easy to understauid and interpret by people. This
can be achieved employing an appropriate representation langauge (for
example, attributional calculus), and implementing a form of reason-
ing which we call "natural induction." An inductive database supports
the implementation of knowledge scouts, which are personal intelligent
agents that "live" in the database, and automatically search for knowl-
edge of interest to a particular user or group of users.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 2 -3, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Inductive Databases and Knowledge Scouts

Presented concepts wil l be illustrated by initial results on searching for
patterns that relate lifestyles with diseases in a large database from the
American Cancer Society. At the end of the talk, we wil l demonstrate a
system illustrating principles of natural induction.

Hyperlink-Aware Mining and Analysis
of the Web

Andrew Tomkins

K53/B1 IBM Almaden Research Center
650 Harry Rd., San Jose, CA 95120-6099, USA

tomkinsQalmaden.ibm.co m

Abstract . The approximately seven billion hyperlinks on the WWW,
and the anchortext surronding them, represent a valuable collection of
editorial information about web pages. We begin by discussing methods
for incorporating this link information into web search. Next, we consider
a follow-on question: is it possible to apply data mining techniques to the
link structure of the web in order to discover all communities, including
those that have only just formed and whose members may not yet be
aware of one another.
We also consider modeUng and measurement of this hyperlink structure.
A recent analysis of the web graph indicates that the macroscopic struc-
ture is considerably more intricate than suggested by earlier experiments.
We describe these results, and go on to discuss some progress towards
defining analytical models for graphs such as the web.
The work described here is joint with Andrei Broder, Ravi Kumar, Farzin
Maghoul, Prabhakar Raghavan, Raymie Stata, Sridhar Rajagopalan, Eli
Upfal and Janet Wiener.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, p. 4, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Polynomial Time Matching Algorithms
for Tree-Like Structured Patterns

in Knowledge Discovery

Tetsuhiro Miyahara ,̂ Takayoshi Shoudai' ,̂ Tomoyuki Uchida ,̂
Kenichi Takahashi ,̂ and Hiroaki Uedâ

' Faculty of Information Sciences,
Hiroshima City University, Hiroshima 731-3194, Japan

{mlyaliaraSits, uchidaQcs, tekkahasiSits, ueda<Dits}. hiroshima-cu. ac. J p
^ Department of Informatics,

Kyushu University 39, Kasuga 816-8580, Japan
shoudaiSi.kyushu-u.ac.j p

Abst rac t. Graphs have enough richness and flexibilit y to express dis-
crete structures hidden in a large amount of data. Some searching meth-
ods utilizing graph algorithmic techniques have been developed in Knowl-
edge Discovery. A term graph, which is one of expressions for graph-
structured data, is a hypergraph whose hyperedges are regarded as vari-
ables. Although term graphs can represent complicated patterns found
from structured data, it is hard to do pattern match and pattern search
in them. We have been studying subclasses of term graphs, called regular
term trees, which are suited for expressing tree-like structured data. In
this paper, we consider a matching problem for a regular term tree t and
a standard tree T, which decides whether or not there exists a tree T'
such that T' is isomorphic to T and T' is obtained by replacing vEiriables
in t with some trees. First we show that the matching problem for a
regular term tree and a tree is NP-complete even if each variable in the
regular term tree contains only 4 vertices. Next we give a polynomial
time algorithm for solving the matching problem for a regular term tree
and a tree of bounded degree such that the regular term tree has only
variables consisting the constant number of vertices greater than one. We
also report some computational experiments and compare our algorithm
with a naive algorithm.

1 Introduction

Graph-structured da ta occurs in many domains, such as biomolecular database,
chemical databaise, the World Wide Web, or semistructured data. Many re-
searchers try to find hidden knowledge from structures of such da ta by using
data mining techniques. The formalization of expressing graph-structured da ta
is quite important for finding useful knowledge [10].

A term graph, which is one of expressions of graph-structured data, is a hy-
pergraph whose hyperedges are regarded as variables. By expressing structures

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 5-16, 2000.
© Springer-Verlag Berlin Heidelberg 2000

T. Miyahara et al.

Ti T2 T3

Fig. 1. A term tree t as a tree-like structured pattern which matches trees Ti, T2 and
T3.

of data in database with term graphs, we can design tools for discovering hidden
knowledge or background knowledge from graph-structured data. In Fig. 1, for
example, we can obtain each tree Ti, T2 and T3 from the term tree t by replac-
ing hyperedges in t with arbitrary trees. That is, the term tree t shows common
structures between them. The language of first-order logic is much better suited
for expressing background knowledge and a graph structure can be expressed
by using first-order logic [3]. Then, inductive logic programming (ILP) systems
in knowledge discovery have been proposed [1,2,4]. In [8], we designed and im-
plemented the knowledge discovery system KD-FGS for graph-structured data,
which employs Formal Graph System (FGS,[11]) as a knowledge representation
language and a refutably inductive inference as an ILP mechanism [9]. FGS is
a kind of logic programming system which uses term graphs instead of terms
in first-order logic. Therefore FGS can directly deal with graphs and is suited
for expressing background knowledge obtained from graph-structured data. By
using a term graph, we can design tools based on a graph pattern matching
method for finding new knowledge represented by term graphs obtained from
graph-structured data. Such tools are useful for finding association rules over
term graphs, producing decision trees having term graphs as vertex labels, and
finding the minimum term graph by using the minimum description length prin-
ciple.

In this paper, we consider a matching problem for a term graph and a graph.
Informally, the matching problem for a term graph g and a graph G is to decide
whether or not there exists a graph G' such that G' is isomorphic to G and G" is
obtained by replacing each variable in g with an arbitrary graph. This problem
is important for many knowledge discovery systems over term graphs for graph-
structured data. Graphs have enough richness and flexibility to express unknown
structures, but many elementary graph problems, e.g., subgraph isomorphism
and largest common subgraph, are known to be NP-complete [5]. Due to this fact,
it is difficult to solve the matching problem for a term graph in polynomial time.
Then it is hard to design and implement a discovery system finding efficiently
new knowledge from graph-structured data in practice. We consider interesting
subclasses of term graphs, called regular term trees, such that their matching
problems are solvable efficiently. In [7], for a regular term tree t and a tree T
such that every variables in t consist of two vertices, we presented a polynomial
time algorithm solving the matching problem for t and T. In this paper, we show
that, in general, the matching problem for a regular term tree t and a tree T is

91

Polynomial Time Matching Algorithms

®-<5)—K©
92

Fig. 2. A term graph g = {V,E,H) is defined by F = {MI,U2} , E = (ll, H = {ei =
(ui,M2),e2 = (wi,U2)}, v'sCui) = s, (̂ 3(̂ 2) = t, Xg{ei) = X, and Ag(e2) = y. gS is
obtained by applying a substitution 9 = {x := [9i,{vi,V2y\,y := [52, {^1,^12)]} to p. A
variable is represented by a box with lines to its elements and the order of its items is
indicated by the numbers at these lines.

NP-complete even if each variable in t consists of only 4 vertices. But, if t has
only variables containing constant number of vertices greater than one and T is
a tree of bounded degree, we can give a polynomial time algorithm solving the
matching problem. These show that a term tree is a quite useful expression of
knowledge obtained from tree-like structured data.

This paper is organized as follows. In Section 2, we introduce a term graph
as an expression of knowledge for graph-structural data. And a regular term
tree is defined. In Section 3, we consider the matching problem for a regular
term tree, and give polynomial-time algorithms solving the matching problem
for some classes of regular term trees. Finally, we give a result of computational
experiments comparing our algorithm presented in [7] with a naive algorithm
in Section 4. Our algorithms and the computational result lead us to develop
new knowledge discovery tools employing term graphs directly which express
knowledge obtained from tree-like structured data.

2 Preliminaries

Let E and A be finite alphabets, and let X be an alphabet. An element in iJ, A
and X is called a vertex label, edge label and variable label, respectively. Assume
that {E yj A) C\ X = %. K term graph g = {V, E, H) consists of a vertex set V,
an edge set E and a multi-set H. Each element in i? is a list of distinct vertices
in V and is called a variable. An item in a variable is called a port. And a term
graph g has a vertex labeling ipg : V —* E, an edge labeling ipg : E —* A and a
variable labeling Xg : H - ̂ X. For a set or a list S, the number of elements in S
is denoted by |5 |. The dimension of a term graph g is the maximum number of
\h\ over all variables hm g. The degree of a vertex u in a term graph is the sum
of the number of edges and variables containing u. A term graph g = (V, E, H)
is called ground and simply denoted by £r = {V, E) li H = 0. For example, a
term graph g = {V, E, H) is shown in Fig. 2.

Let 5 be a term graph and a a list of distinct vertices in g. We call the form
X := [g,(7] a binding for a variable label x £ X. Let ffi,..., fln be term graphs. A
substitution 0 is a finite collection of bindings {xi := [51, <TI], ... ,Xn [gn,(^n]},
where Xi 's are mutually distinct variable labels in X and each gi has no variable

8 T. Miyahara et al.

labeled with an element in {xi,... ,Xn}. We obtain a new term graph / by
applying a substitution 6 = {xi := [ffi,cri],.. . ,x„ := [ffm '̂n]} to a term graph
g = {V, E, H) in the following way. For each binding Xj := [gi, ai] E. 6 {1 < i < n)
in parallel, we attach gi to g by removing all variables ti,...,tk labeled with Xj
from H, and by identifying the m-th vertex ij * of tj and the m-th vertex erf' of
ai for each 1 < j < k and each 1 < m < \tj\ — |(TJ|. We remark that the label of
each vertex i " of g is used for the resulting term graph which is denoted by gO.
Namely, the label of CTJ" is ignored in g6.

3 Matching Algorithms for Tree-Like Structured Patterns

3.1 A Regular Term Tree of Bounded Degree

A substitution 6 = {xi := [51, c i] , . „ := [5n,<''n]} is called a tree substitution
if all of the gi are trees. A term graph g is called a term tree if for any tree
substitution 9 which contains all variable labels in g, gO is also a tree. A term tree
g is called regular if each variable label in g occurs exactly once [6]. For example, a
regular term tree t = ({1,2,3,4,5,6,7,8,9,10,11}, {{1,2} , {2,4} , {2,5} , {7,9}} ,
{(1,3), (2,6), (2,7,8), (3,10,11)}) is shown in Fig. 3. In this section, we assume
that a tree which is an input to our matching algorithms is an unrooted tree
without a vertex label and an edge label. In the other cases, we can easily
construct similar matching algorithms.

We say that T matches t if there exists a tree substitution 6 such that tO and
T are isomorphic. We give polynomial-time algorithms for solving the following
problem for a regular term tree of bounded dimension and a tree of bounded
degree.

REGULA R TER M TREE MATCHIN G
Instance: A regular term tree t and a tree T.
Question: Does T match t?

First we show the following theorem:

Theorem 1. REGULAR TERM TREE MATCHING is NP-complete if the di-
mension of an input regular term tree is greater than or equal to 4.

Proof Membership in NP is obvious. We transform EXACT COVER BY 3-
SETS (X3C) [5, page 221] to this problem.

EXAC T COVER BY 3-SETS (X3C)
Instance: Set A with |J4| = 3q for a natural number q and a collection C of
3-element subsets of X.
Question: Does C contain an exact cover for A, i.e., a subcollection C C C
such that every element of X occurs in exactly one member of C".

We give a transformation for a regular term tree and a tree with vertex
labels. The vertex labels can be removed by replacing the vertex labels with

Polynomial Time Matching Algorithms

4 5 6 |7 8 10 11
9(

Term Tree t

1 ^ 2, {3}
2 ^ 4 , 5, {6} , {7,8}
3 -^ {10,11}
7<t=9

Labeling Rules Ri

TreeT

<T= {4,5,6,8,9,10,11}
5 ={7 , {6} , {8} , {10,11}}
7 = {3, {6} , {7,8} , {10,11}}
/'={{3},{6},{7,8},{10,11} }
e = {2, {3} , {6} , {7,8} , {10,11}}
/3= {1,2, {3} , {6} , {7,8} , {10,11}}
a = {1, {3} , {6} , {7,8} , {10,11}}

The resulting labels by Ri

Fig. 3. An example: the labeling rule constructed from a term tree t and the resulting
labels of a tree T after the procedure Matching terminates.

special trees each of which corresponds to each vertex label, for example, binary
trees with a linear chain of bounded length.

Let A = {ai,.,., a„} where n — 3q. Let C = { c i , . . . , Cm} where Ci C A with
\ci\ = 3 and let Cj = {cji , 0,2, Cis} ioi i = 1,... ,m. The corresponding instance of
REGULAR TERM TREE MATCHING is constructed in the following way. Let
t be a regular term tree (Vt, Et, Ht) where Vt = [v] U Uili{^«i . ^J2, vtz), Et = ^
and Ht = Uil iC^ i = (^^,^'tl)^'i2,^'i3)} Let E = {a,6} U {Gi , . . . ,a„} where a
and h are special vertex labels which do not appear in {a i , . . . , a„} . The vertex

for i = 1,.. . ,m
,} is defined as

labeling yt : Vj —+ 17 is defined as <Pf(w) = a and ftivij) =
and j = 1,2,3. The variable labeling Xt : Ht —* X — {xi,... ,Xn
Xt{hi) — Xj for t = 1 , . . ., m. Let T be a tree {VT,ET)-, where

VT = {u}U{ui,...,u„}u{ioi,..., iUm_q}uU™"i^{w^Ji,---,tym} , and
ET = {{u,Ui}, . . . , {u,Un}} U {{u,Wi}, . . . , {u,Wm-g}}

U Ui l ' l ' { {^ i . "̂ il} > ' {'^i^
The vertex labeling (pT Vp ^> S is defined as <^T{U) — o,, friwi) = b for
i = 1,..., m—q, and ^T{UJ) = (pT{wij) = â for i = 1 , . . ., m—q and j = 1 , . . ., n.

Let Ti = ({so, si, 52, S3}, {{so, s j , {so, S2}, {so, S3}}) with no label and T2 =
({so, s i , . . ., s„, s„+i} , {{so, s„+i} , {si , s „ + i } , . . . , {s„ , s„+i}}) with no label. We
assume that there is a subcollection C C C such that every element of A occurs
in exactly one member of C Let Oi = {xi :— [Tii,(so,si,52,33)] | Cj € C'}
where Tu is a tree Ti with a vertex labeling ip defined as v?(so) = a and

10 T. Miyahara et al.

Term Tree t

TreeT

Fig. 4. A transformation from an instance {A,C) of X3C to an instance {t,T)
of REGULAR TERM TREE MATCHING. A = {ai,a2,a3,a4,05,a6},C =
{ci,C2,C3,C4,C5,C6},ci = {oi,04, oe}, C2 = {a2, as,a^},C3 = {ai,a5,a6},C4 =
{a3,a4,a6},C5 = {ai, 02,a6},C6 = {02,04,05}-

(p{sj) = Cij for j = 1,2,3. Let 62 = {xi := [Ti2, (SQ,ss{i,i),ss(i^2),ss{i,3))] I Ci =
{cii,Ci2,Ci3} € C - C and dj = a5{ij) for j = 1,2,3}, where Ti2 is a tree T2
with a vertex labeling cp defined as ip{so) = a, ip{sn+i) = b and fp{si) — Oj for
i = 1 , . .. ,n, and <5 is a function with Cjj = ^s{i,j)- Then 6 = 61 U 62 is B, tree
substitution such that T and t^ are isomorphic.

Conversely we assume that there is a tree substitution 6 such that tO and T
become isomorphic. All 3m +1 vertices in t have to match vertices in T. For each
i = l,...,m — q, at most 3 vertices in {wn,..., uii„ } can match vertices in t.
Therefore at most n + 3{m — q) + l = 3m+ 1 vertices in T can match vertices in t.
The bindings in 6 are divided into two kinds of bindings Xi := [Ti , {SQ, s i, 52, S3)]
and Xi := [T2,{so,Sij,Si2,Si^)], where 1 < ii,i2,i3 < n because the other kind
of bindings can not achieve the needed number of vertex matchings 3m + 1. Let
C" = {cj I there is a binding Xi := [Ti with a vertex labeling, (5o,si,S2,S3)] in
9}. Then every element of A occurs in exactly one member of C".

Second we explain the algorithm Matching (Fig. 5) which is a framework for
deciding whether a tree T matches a regular term tree t.

Let t = {Vt,Et,Ht) and T = {VT,ET) be a regular term tree and a tree,
respectively. We distinguish one vertex rt of a term tree t and call that vertex
the root of t. A vertex of degree one is called a leaf if it is not the root. A
path from vi to Vi is a sequence vi,V2,. ,Vi of distinct vertices such that for
1 < J < ii there exists an edge or a variable which includes Vj and Wj+i. If there
is an edge or a variable which includes v and v' such that v' lies on the path
from the root rt to v, then v' is said to be the father of v and u is a child of v'.

Polynomial Time Matching Algorithms 11

procedure Matching(regular term tree t, tree T);
begin

Let rt be one of vertices in t, which is called the root of t;
Construct the set of all labeling rules Rrt;
foreach vertex r of T, which is called the root of T do begin

Label each leaf of T with the set of all leaves of t;
whil e there exists a vertex w in T

such that V is not labeled and all children of v are labeled
do Labeling(D, Rrt)',

if the label of r includes rt then T matches (and exit
end;
T does not match t

end.

Fig. 5. A framework for deciding whether a tree T matches a regular term tree t.

In part icular for a variable h, v is said to be a child port of h if there is a vertex
v' such that both v and v' belong to h and w is a child oi v'. A descendant of v
is any vertex on the path from v to one of the leaves of the tree.

I n Matching (Fig.5), a label for a vertex in T is a set { u i , . . . , Ufe, V i , . . . , Ve}
where fc > 0, ^ > 0, t̂ j is a vertex in t, and Vj is a set of vertices in t. Let
Li,..., Lm be a collection of labels. For any V C Vt, 'we say that L i , . . . , Lm
covers V if there exist distinct indices fci,..., fc^', f i , . . . , im" among 1 , . . ., m
and also there exist v' ̂ € Lki and V" G Lg. for each 1 < i < m' and 1 < j < m"
such that V C {v[,..., v'^,} U Vj" U U V^„. In part icular if there is no proper
subcollection of L i , . . . , Lm which covers V then we say that L i , . . . , Lm exactly
covers V.

Let W be a set of vertices in t. The induced term tree of i by M^ is a term
tree t[W] = [W,Et[W'],Ht[W'\) where W' = {v£Vt\vism.W or there is a
vertex v' in W such that u is a descendant of w'.} , £ ' t [i y] = {{u , v} £ Et \ u &
W and V e W) and Ht[W'\ = {{vu . . ., fn) | Wi G W '̂ and (u i , . . ., u„) is the
maximal sublist of some h G Ht with keeping the order of i tems in h.}. For a
single vertex w G Vt, the induced term tree t[w] oi t hy w is defined as if lw}] .
A corresponding induced term tree of t to u € Vr is an induced term tree by
W CVt OT w £Vt which matches T[u], i.e., the subtree of T with the root u. In
part icular if the induced term tree is induced by a single vertex w, the matching
between t[w] and T[u] has a correspondence of w; to u.

Let rt be the root of t. First we construct the set of all labeling rules.

[Basic Labeling Rules]
Let u be a vertex in t which is not a leaf. Let Vi,V2,... ,Vk be all children
of V which are connected to v with edges. Let hi,h2,. ,he be all variables
which include v, and for i = 1,... ,£, Vi be the set of all children of v which
are connected to v with the variable / i,. The labeling rule for v is defined as
follows. If there is no variable which includes v, then let the generating rule
oi V he V *— vi,..., Vk, otherwise u <^ w i , . . ., Ufc, 1 4 , . . ., V^.

12 T. Miyahara et al.

procedure Labeling(vertex u £VT, set of labeling rules Rrt)',
begin

L : = 0 ;
Let m be the number of children of u and L i , . . . , Lm be the labels of the children;
/ * Step 1 * /
foreach v <— vi,... ,Vm in Rrt do

if L i , . . . , Lm exactly covers {vi, ,Vm} then L := LU {v};
I* Step 2 * /
foreach v <̂ DI , . . ., Wfc, V i , . . . , Vi in itr-t do

if L i , . . . , Lm covers { v i , . . . , Vfc} U V̂ i U U Vi then L := LU {v};
I* Step 3 * /
foreach variable /i in i do begin

Let V' be the set of all child ports of h\
foreach V" C V with V" ^ 0 do begin

foreach v € V — V" do
if D and V" satisfy either

(1) u is a leaf and V" is a maximal subset such that L i , . . . , L-m
covers V", or

(2) V is the head of a rule v = v i , . . ., v*;, V i , . . . , V< in J?rt
and y " is a maximal subset such that L i , . . . , L m covers
{ t ; i , . . . , Ufc} U Vi U U F< U V" .

then L := L U {V" U {v}} ;
if there is no vertex v which satisfies either (1) or (2) and V" is a

majcimal subset which is covered by L i , . . . , Lm.
t h e n L : = L U { V " }

end
end;
Attach L to M as the label

end;

Fig. 6. Labeling: a procedure for labeling a vertex in T with a set of vertices in t.

Then we obtain the following theorem.

T h e o r em 2. For a regular term tree t of dimension p and a tree T of degree d,
REGULAR TERM TREE MATCHING is solvable in 0{N^n2PTMIS{d"^^))
time where n and N are the numbers of vertices in t and T respectively, and
TMIS(s) is the time needed to find the maximum independent set in a graph of
size s.

Proof. In order to show the correctness of the Matching algorithm, it suffices to
show the following claim.

Claim: For any u € Vr, {t[W] \ W £ L{u)} is equal to the set of all cor-
responding induced term tree of t to u, where L{u) is the output of Labeling
procedure for u. The claim is shown by induction on the way of tree labeling of
T with the root r. Suppose that u is a leaf of T. The claim holds for u, due to
the labeling of a leaf in Matching. Suppose that u is not a leaf of T. Let T[W]
be a corresponding induced term tree of t to u. Note that (i) T^ is a vertex in

Polynomial Time Matching Algorithms 13

Input : labels Li,..., Lm, vertices i^i,..., Vk, and sets of vertices Vi, . . ., Vf;
Note that each Vi (i = 1,... ,)̂ is the set of all child ports of a certain variable
and each label Lj {j = 1,... ,m) contains at most one subset of Vi. If the input
term tree t is of bounded dimension and the input tree T is of bounded degree,
the size of the graph Q constructed below is bounded because both A; and £ are
bounded by some constants and the size of each Li is also bounded.
begin

Construct a graph Q = {V,£) in the following way.
Vi:={{vi,{j})\vieLi{l<j<m)},
Let £i be the complete graph constructed by Vi,
V.' := m , {ji,.. .,jm'}) I {ii , , jm'} C {1 , . . . ,m}

and Lj i , . . . , Lj^, covers Vi},
Let £'i be the complete graph constructed by V,',
V:=UtiV . U ULiV; ,
£ := {{{X,Y),{X',Y')} I {X,Y),{X',Y') eV,X^X'a.ndYnY'^ 0}

if there is an independent set of size k + i for the graph G = (V, £) then
Li , . . . ,Lm covers {vi,... ,Vk} II Vi U U Ve

end;

Fig. 7. A procedure for determining whether or not L i , . . . , Lm covers {t;i,... , Vfc} U
Vi U V̂ (Step 2 and Step 3 (2)).

t or (ii) VF is a non-empty subset of the set of all child ports of a variable in t.
By induction hypothesis, the claim holds for any child u' of u. In case (i) W is
included in L{u) due to Step 1 or 2 in Labeling. In case (ii) W is included in
L{u) due to Step 3 in Labeling. Then the claim holds for u.

Since the degree of t have to be less than or equal to d, the maximum length
of the body of any labeling rule is less than or equal to d. Since the number
of the children of any vertex is less than d and the size of each set which ap-
pears in the algorithm is less than p, the constructed graph in the procedure
(Fig.7) is of size 0{d^^'''>). Then the procedure (Fig.7) runs in 0{TMIS{d^^P^))
time. The numbers of calls to the procedure Labeling in Matching (Fig.5) is
0{N'^). The numbers of calls to the procedure (Fig.7) in Labeling is 0{n2^).
Then the procedure Matching solves REGULAR TERM TREE MATCHING in
0(7V2n2PTMIS(d°(p))) time. O

CoroIlEir y 1. For a regular term tree t of bounded dimension and a tree T of
hounded degree, REGULAR TERM TREE MATCHING is solvable in 0{N'^n)
time where n and N are the numbers of vertices in t and T respectively.

If the dimension of t is equal to 2, the procedure Matching by using the
procedure (Fig.8) instead of the procedure (Fig.7) solves REGULAR TERM
TREE MATCHING in polynomial time.

14 T. Miyahara et al.

Input : labels L i , . . . , Lm, vertices vi,.. .,Vk, and sets of vertices {v'l},... ,{v[};
begin

Construct a bipartite graph B = (V, V ,S) in the following way:
V := {vi,...,Vk,v[,...,v't}, V := { l , . . . ,m} ,
£i:= {{vi,j}\vie Lj (1 < ji < m)} (i = 1 , . . . , A ;),
S'i := {{v'uj] I î € Lj or {v'^} € Lj {1 < j < m)} (i =!,...,£),

if for the bipartite graph (V,V',£), there exists a graph matching which
contains all vertices in V

then Li,. ..,Lm covers {vi ,... ,Vk}U {v'l} U U {v'l}
end;

Fig. 8. A procedure for determining whether or not Li,..., Lm covers {vi,... ,Vk} U
{v'l} U U {t;̂ } (for an input regular term tree whose dimension is 2).

Theorem 3 (Miyahara , et. al [7]). If the dimension of a regular term tree
is equal to 2, there exists a polynomial-time algorithm for solving REGULAR
TERM TREE MATCHING.

Since the maximum matching for a bipartite graph B = (V, V , S) is found in
OdflA/maxdVlJV'l}) time, the procedure (Fig.8) runs in 0{nN^-^) time. The
total time complexity of Matching is 0{n'^N^'^) if the dimension of t is equal
to 2. There is a gap between the dimensions 2 and 4. The time complexity of
REGULAR TERM TREE PROBLEM is still open if the dimension is 3.

3.2 Variant s of Regular Term Tree

Ordered Term Tree
A rooted tree is said to be an ordered tree if for each vertex in the tree, the
children of the vertex are ordered. In a similar way, we can construct a model
of ordered term trees by giving an order to the children of each inner vertex.
Ordered trees are often used to express discrete structures in the fields of
natural science. For example, it is well known that RNA sequences can be
expressed with labeled ordered trees. Now we are designing a knowledge
discovery system for ordered tree-like structured data.

Regular Term Tree Graph wit h Property 77
Let 77 be a property on graph G. Examples of such properties include "G is
a tree", "G is planar", and "G is outer planar." A term graph g is called a
term tree graph with property 11 if for any tree substitution 6 which contains
all variable labels in g, gO is also a graph which has property 77. The match-
ing problem is closely related to graph isomorphism problem. For certain
special subclasses of graphs, the isomorphism problem is efficiently solvable,
for example, whether two planar graphs are isomorphic or not is solvable in
polynomial time. Our objects in knowledge discovery are to find rich prof>-
erties 77 with which the matching problems for regular term tree graph are
solvable efficiently.

Polynomial Time Matching Algorithms 15

Table 1. Experimental results of the two matching algorithms.

No.
Tree (#vertex)

Term Tree (#vertex,#variable)
Matching

Our Algorithm (Run Time, sees)
Naive Algorithm (Run Time, sees)

No.

Tree (#vertex)
Term Tree (#vertex,#variable)

Matching
Our Algorithm (Run Time, sees)

Naive Algorithm (Run Time, sees)

1

gl(6)
t4(6,3)

true
0.030
2.100

7

g3(8)
t l(6, l)

false
0.130

2 3
g2(7) g3(8)

t4(6,3) t4(6,3)
true true

0.040 0.130
49.380 980.440

8 9
g3(8) g3(8)

t2(6,l) t3(6,2)
false true

0.130 0.050
87.580 308.130 234.040

4

g4(9)
t4(6,3)

true
0.060

5

g5(l l)
t4(6,3)

true
0.070

6

g6(17)
t4(6,3)

true
0.180

aborted) (aborted) (aborted)

10

g3(8)
t4(6,3)

true
0.130

980.440

11

g3(8)
t5(6,3)

true
0.060

12

g3(8)
t6(6,4)

true
0.030

aborted) (aborted)

4 Implementation and Experimental Results

In order to show that our matching algorithm is useful for knowledge discovery
from tree-like structured data, we have implemented our matching algorithm for
a regular term tree with two ports and a tree. We have experiments of running
our matching algorithm and a naive matching algorithm for such a term tree
and a tree, and have compared the performance of the two algorithms.

In Table 1, we summarize some experiments of running the two algorithms
on a SUN workstation Ultra-lO with clock 333 MHz. For example, in Exp. 3,
the two algorithms are given EIS inputs a tree ^3 with 8 vertices and a term tree
ti with 6 vertices and 3 variables. The value "true" in the Matching field means
that the tree 5-3 is matched with the term tree M. Our algorithm runs in 0.130
sees (run time) and returns "true". The naive algorithm runs in 980.440 sees
(run time) and returns "true". The value "false" in the Matching field in Exp.7
and 8 means that the tree is not matched with the term tree. In Exp. 4,5,6,11
and 12, the execution of the naive algorithm is aborted without a return value
after a long time of execution.

In Exp. from 1 to 6, an input term tree is fixed and an input tree is var-
ied. These experiments show that the execution time of our algorithm slightly
increases when the size of an input tree become large, but that of the naive
algorithm sharply increases. In Exp. from 7 to 12, an input tree is fixed and an
input term tree is varied. These experiments show that the execution time of
our algorithm slightly increases when the number of variables in an input term
tree become large, but that of the naive algorithm sharply increases.

Al l these experiments show that our matching algorithm is efficient and useful
in discovering tree-like structured patterns. Our matching algorithm can be in-
corporated not only in the KD-FGS system but also in other knowledge discovery
systems from tree-like structured data which have other knowledge representa-
tion methods such as association rule, decision diagram and so on.

16 T. Miyahara et al.

5 Conclusions

We have given an algorithmic foundation of discovering knowledge from tree-
lik e structured data. We have presented polynomial t ime matching algorithms
for tree-like structured pat terns. Computat ional experiments of comparing our
matching algorithm and a naive matching algorithm have shown that our match-
ing algorithm is efficient and useful. We wil l incorporate the matching algori thm
in the KD-FGS system and other knowledge discovery systems from tree-like
structured data.

A c k n o w l e d g m e n ts

This work is part ly supported by Grant-in-Aid for Scientific Research (11780279)
from the Ministry of Education, Science, Sports and Culture, Japan and Grant
for Special Academic Research (9963,9983) from Hiroshima City University.

References

1. S. Dieroski. Inductive logic programming and knowledge discovery in databases.
Advances in Knowledges Discovery and Data Mining, MIT Press, pages 118-152,
1996.

2. S. Dieroski, N. Jacobs, M. Molina, C. Moure, S. Muggleton, and W. V. Leier.
Detecting traffic problems with ILP. Proc. ILP-98, Springer-Verlag, LNAI 144^,
pages 281-290, 1998.

3. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3:7-36, 1999.

4. L. Dehaspe, H. Toivonen, and R. King. Finding frequent substructures in chemical
compounds. Proceedings of the Third International Conference Knowledge Discov-
ery and Data Mining, AAAI Press, pages 30-36, 1998.

5. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

6. S. Matsumoto, Y. Hayashi, and T. Shoudai. Polynomial time inductive inference
of regular term tree languages from positive data. Proc. ALT-97, Springer- Verlag,
LNAI 1316, pages 212-227, 1997.

7. T. Miyahara, T. Shoudai, T. Uchida, T. Kuboyama, K. Takahashi, and H. Ueda.
Discovering new knowledge from graph data using inductive logic programming.
Proc. ILP-99, Springer-Verlag, LNAI 1634, pages 222-233, 1999.

8. T. Miyahara, T. Uchida, T. Kuboyama, T. Yamamoto, K. Takahashi, and H. Ueda.
KD-FGS: a knowledge discovery system from graph data using formal graph sys-
tem. Proc. PAKDD-99, Springer-Verlag, LNAI 1574, pages 438-442, 1999.

9. Y. Mukouchi and S. Arikawa. Towards a mathematical theory of machine discovery
from facts. Theoretical Computer Science, 137:53-84, 1995.

10. H. Toivonen. On knowledge discovery in graph-structured data. Proceedings of the
PAKDD Workshop on Knowledge Discovery from Advanced Databases (KDAD-
99), 1999.

11. T. Uchida, T. Shoudai, and S. Miyano. Parallel algorithm for refutation tree prob-
lem on formal graph systems. lEICE Transactions on Information and Systems,
E78-D(2):99-112, 1995.

Fast Discovery of Interesting Rules

Nobuhiro Yugami, Yuiko Ohta, and Seishi Okamoto

Fujitsu Laboratories
2-2-1 Momochihama, Sawaraku, Fukuoka, 814-8588, Japan

yugamiSflab.fu j itsu.co.j p

Abstract. Extracting interesting rules from databases is an important
field of knowledge discovery. Typically, enormous number of rules are
embedded in a database and one of the essential abilities of discovery
systems is to evaluate interestingness of rules to filter out less interesting
rules. This paper proposes a new criterion of rule's interestingness based
on its exceptionality. This criterion evaluates exceptionality of rules by
comparing their accuracy with those of simpler and more general rules.
We also propose a disovery algorithm, DIG, to extract interesting rules
with respect to the criterion effectively.

1 Introduction

The purpose of knowledge discovery system is to discover interesting patterns in
a given database. There exist many types of patterns and this paper focuses on
discovery of classification rules from a set of training instances represented by
attribute values and class labels. A classification rule restricts values of attributes
in its body and predicts a class of an instance that satisfies the body. Typically,
the number of classification rules embedded in the given database is quite large
and one of the essential abilities of the knowledge discovery system is to extract
only interesting rules and to filter out uninteresting ones.

One approach to filtering rules is to constrain patterns of rules explicitly.
Srikant et al.[ll] applied this approach to association rules mining in which an
user restricts what kind of items can appear in rules' bodies and heads. This
approach is practical in many applications but tends to discover only rules that
the user expects beforehand. In addition, even if the constraints on rules/items
are given, a discovery system may output too many rules to be checked by the
user. Another approach is to evaluate interestingness of rules with pre-defined
criteria based on statiscal charactaristics in the target database and to accept
rules with high scores with respect to the criteria. This paper belongs to this
second approach.

The interestingness of rules strongly depends on what a user of the system
already knows and what he/she wants to do with the discovered rules. If the user
has no background knowledge of the domain represented by the target database,
then he/she will prefer general rules that summarize the characteristics of each
class and classify many training instances accurately[5,6]. In such a case, entropy
based criteria such as information gain[4,7] and J-measure[9] can evaluate rules

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 17-28, 2000.
© Springer-Verlag Berlin Heidelberg 2000

18 N. Yugami, Y. Ohta, and S. Okamoto

well. However, such general rules are not appropriate when domain experts use
the system because they usually know the general rules.

Following is an example from mushroom database in UCI Repository[2]. This
database includes about 8,000 instances and each instance is classified into edible
or poisonous. This database is very easy as a benchmark of supervised learning
algorithms because the following two rules can classify most instances correctly.

odor e {almond, anise, none} - ̂ edible : 98%,

odor G {creosote, fishy, foul,musty,pungent, spicy} - ̂ poisonous : 100%,

where ratios after ":"are accuracy of the rules. Entropy based criteria of rules
give high scores for these rules because each rule covers about a half of instances
in the database and achieves very high accuracy. These rules are useful for users
who don't know anything about mushrooms but are obvious for the domain
experts. The purpose of this paper is not to learn such trivial rules but to
discover unexpected, exceptional rules such as

cap.color G {brown, red} A stalk-root = bulbous —> edible : 100%,

where

cap.color € {brown, red} —> edible : 50%,

stalk-root = bulbous —+ edible : 51%.

Because 52% of instances in the database are edible, each of two conditions,
cap.color G {brown, red} and stalk.root = bulbous, is not related to edible
by itself but the conjunction of them concludes edible with probability 100%.
This type of rule is not a straightforward conclusion from correlations between
attributes and classes. It represents exceptions in the given database and may
be interesting for human experts. However, the traditional criteria of rules such
as information gain give very low score to this type of exceptional rules because
they cover only a small number of instances.

To extract exceptional rules, we need new criterion of rules. Silberschatz and
Tuzhilin[8] discussed unexpectedness of rules and defined it by how the rule
contradicts user's knowledge. A problem of their approach is that a discovery
system has to know what its user knows. One solution to this problem is to
evaluate unexpectedness by how the rule contradicts other rules held in a given
database instead of user's knowledge.

Suzuki [10] proposed a discovery system PEDRE that tries to discover pairs
of general rules and their exceptions. An exceptional rule is a specialization
of a general rule but concludes a different class with high accuracy. General
rules cover relatively many instances and may be trivial for human experts, but
exceptional rules may give new knowledge to the experts. PEDRE evaluates an
exceptional rule by comparing with only one general rule, its pair. There may be
a different generalization of the excetional rule that predicts the same class with
the exceptional rule. In such a case, the conclusion (class) of the exceptional rule
holds in a large region of an instance space and the rule represents only a part

Fast Discovery of Interesting Rules 19

of the region. Such rule is too specific to predict its concluding class and is not
appropriate as an exceptional rule.

In this paper, we propose a new criterion of interestingness to identify a rule
corresponding to an isolated exceptional region by comparing its accuracy with
plural general rules. In addition, our criterion can evaluate a rule that permits
plural values for each attribute appearing in its body. We also propose a discovery
algorithm, DIG (Discover Interesting rules with Grouping attribute values), to
extract interesting rules w.r.t. the criterion effectively.

2 Interestingness of Rules

This paper focuses on discovery of classification rules from a set of labeled in-
stances represented by attribute values. To simplify discussion, we a.ssume all
attributes are nominal and there is no missing attribute value. In this section,
we first explain classification rules we deal with and then discuss how to evaluate
their interestingness.

2.1 Classification Rules

A classification rule is a if-then rule whose head (conclusion) is a class label and
whose body is a conjunction of conditions of attribute values. We deal with a
following type of classification rules.

Rl : ai ̂ e Dii A Oĵ € Dj^ —> c,

where c is a certain class and Di, ̂is a subset of possible values of attribute Ci,^.
Many discovery systems such as ITRULE[9] and PEDRE[10] only extract rules
that permit or prohibit one value for each attribute in the body of the rule, but
we extract rules which allow plural values for each attribute. Grouping attribute
values and allowing all values in one group increases the number of possible
rules and may degrade efficiency of discovery systems. However, it is quite useful
to improve readability of extracted rules because one rule with value grouping
represents plural rules without grouping.

In the following discussion, we will use support and accuracy of classification
rules. Support is a probability that both of a body and a head are satisfied,
P{aii £ Di^ A Aai ̂ S Di^ Ac). Accuracy is a conditional probability that a
head is satisfied on the condition that a body is satisfied, P(c|aii G Di^ A A
flii e Ai.) -

2.2 Interestingness without Groupin g Attribut e Values

We first discuss interestingness of rules without grouping attribute values, i.e.
the rules in which Di^. involves exactly one value Wĵ for each k. Then a rule
without grouping is

i?2 : Oil = Uij A A Oî — Vi ̂ -> c.

20 N. Yugami, Y. Ohta, and S. Okamoto

For simplicity, we use "primitive rules" to stand for the rules without grouping
attribute values. Our basic idea of interestingness is that a rule is interesting
if its accuracy is higher than predicted from more general rules. The larger the
difference is, the more interesting the rule is. Let bk be the conjunction of L — 1
of L conditions excluding â^ = Uĵ ,

bk = (fli i = Uii A - A ai^_i = Vi^_ ̂ A 0,^^̂ = Vi^_^ ̂ A A 0,̂ , = Vji,)

Assuming independence of ai^. = Vi^. and bk in a whole instance space and in
class c, we can predict accuracy of the rule R2 from accuracy of a pair of more
general rules, Oĵ = '̂ Ĥ ~> C and bk —* c.

P{aik =Vi^ /\bk\c)P{c)
P{c\ai ̂ = Vi ̂ A bk) =

Pidit = Vi ̂ A bk)

P{c\ai^=Vi.)P{c\bk)

Pic)
If the real accuracy of R2 is comparable to or lower than this expectation, then
R2 is a trivial conclusion from the rule pair Oĵ = Vi ̂^> c and bk —» c, and R2
is not interesting at all. We require an interesting rule is more accurate than
expected from more general rules shown above for any k.

1 < Vfc < L, P (c |a, =v,,A-.-Aa,,=v,,)> P(^ I^H =^^u)-P(c|6fc) ^ ^̂ ^

We also require that accuracy of R2 is higher than that of bk —> c. All
instances covered by R2 are also covered by 6̂ —+ c and if we already know the
rule 6fc —> c and its accuracy is higher than R2, then R2 is useless to classify
instances into c. Then, we require

1 < VA; < L, P{c\ai, =Vi, A Aui ̂ = Vi^) > P{c\bk). (2)

We only compare accuracy of the rule with more general rules with L — 1 condi-
tions but don't compare with other general rules with L — 2 or smaller number
of conditions. This is because the difference of accuracy from neighboring re-
gions violating only one condition, is more important than the difference from
far regions violating many conditions.

The constraints (1) and (2) give lower bounds of accuracy and we define
interestingness of a primitive rule i?2, Iruie{R2), as a margin of its accuracy to
satisfy the constraints (1) and (2) as follows.

acc{R2) - maxi<fc<L (max (P(c|6fc), £W^i i^ j^)£WM))
Irule{R2) = j ^3-^^^^ ,

where

acc(i?2) = p(c|aii = Vi ̂ A A ai ̂ = Vi^),

bk = (flj i =v^, A---A ai^_, = Vi,_ ̂A a,, î = v^^_^^ Aat ̂ = Vi^) .

The denominator, 1 - P(c), is a normalization factor and ImieiR'^) becomes
1 when acc{R2) = 1 and both of Oĵ = Vi ̂ and bk are independent of c, i.e.
-P(cK = '"^k) = P{c\bk) =P(C).

Fast Discovery of Interesting Rules 21

2.3 Interestingness wit h Groupin g Attribut e Values

We can use Imie defined in the previous subsection to evaluate classification
rules with grouping attribute values by replacing at^, = Vi, ̂ with ai^ ̂ € Di^, but
this sometimes gives large scores to inappropriate rules. Let us show an example
in mushroom database why Imie can not be directly applied to evaluate rules
with grouping. The next rule is an example with high estimation with respect

to Irule-

R3:cap-color € {brown,red} A stalk-root £ {bulbous,rooted} —> edible:100%.

The probabilites required to calculate Imie (^3) are

P {edible\cap^color S {brown, red}) = 0.50,

P {edible\stalkjroot £ {bulbous, rooted}) = 0.53,

P (edible) = 0.52,

and Iruie{R<i) becomes 0.98. It looks like an exceptional rule because each condi-
tion in its body has no correlation with edible but only edible mushrooms satisfy
the conjunction of them. However, by exploring relationship between edible and
each attribute value, we can find the following probability.

P{edible\stalkjroot = rooted) — 1.00

This means that the condition on cap-color is redundant for mushrooms with
stalk-root = rooted and R3 is not interesting at all for classifying them. Instead,
we prefer the following rule that prohibits stalk-root = rooted and increases the
probability of edible for all of covered instances compared with the rules whose
bodies are one of two conditions.

RA : cap-color G {brown, red} A stalk-root G {bulbous} —> edible : 100%

In this rule, each attribute value correlates with edible as follows and none of
them has strong relationship between edible.

P {edible\cap-Color = brown) = 0.55,

P {edible\cap-Color — red) = 0.42,

P {edible\stalkjroot = bulbous) = 0.51.

The problem of that it evaluates a rule based on only each condition
in a body but doesn't concern each attribute value allowed in each condition.
To resolve this problem, we introduce interestingness of an attribute value and
evaluate how allowing the value contributes to the interestingness of the rule.

Formally, we define the interestingness of an attribute value QĴ = U in a rule
o-ii G -Dji A A fli^ G Di^ —+ c as follows.

' valueio.il, =V, a ĵ G A i A A ttj^ G A i -» c)

= max Iruie{ah = Uji A A aî = u A Oî , = ifj^ ^ c).

22 N. Yugami, Y. Ohta, and S. Okamoto

For example, we use the following four primitive rules to evaluate attribute
values in i?3.

cap.color = brown A stalk-root = bulbous —» edible {Imie = 0.93),

cap-color = brown A stalk-root = rooted —> edible {Imie = 0.00),

cap-color — red A stalk-root = bulbous —> edible {Iruie = 102),

cap-color = red A stalk-root = rooted —> edible [Iruie = 0.00).

Stalk-root = bulbous appears in the first and the third rule and its interesting-
ness is 1.02. Instead, stalk-root = rooted appears in the second and the last rule
and Ivaiue{stalk-root = rooted,RZ) = 0.

Each instance covered by the original rule is covered by exactly one primitive
rule and high score of lvaiue{0' = '̂ i R) means there is at least one instance with
a = 11 for which R works better than expected from more general rules. In
opposite, Ivaiue{< ̂= î R) becomes low when more general rule can classify the
instances with a = v with comparable or higher accuracy.

When extracting a rule whose interestingness is greater than or equals to a
certain lower bound, LB, we require not only Iruu{R) > LB but also Tvaiue{<J- =
v,R) > LB for each pair of an attribute and its value allowed in the body of the
rule. To satisfy the above requirement, we modify the interestingness of rules as
follows.

IGruleiR'i-) = min (Irule{Rl), Hliu Ivalue{aik = V,Rl) . (3)
\ l<k<L,ve:Di^ J

Clearly, IGruie{Li) coincides with Iruie(R) for a primitive rule R that allows
exactly one value for each attribute appeared in its body.

In the example of mushroom, P{edible\stalk-root = rooted) = 1 leads lvalue
{stalk-root = rooted, R3) — 0. Then /Gruie(^3) becomes 0 and our new criterion
of interestingness, IGmie, judges RZ is not interesting at all. In contrast, all
attribute values in RA get large scores of lvalue and IGruie judges R4 is quite
interesting.

3 DIG: Efficient Rule Discovery Algori thm

3.1 Discovery Algor i thm

This section gives our discovery algorithm, DIG (Discover Interesting rules with
Grouping attribute values). We first assume all attributes are nominal and there
is no missing attribute value. We discuss how to deal with numeric attributes
and missing attribute values at the end of this section. Inputs of the algorithm
are the number of attributes in bodies of rules, L, a lower bound of their support,
LBsup, a lower bound of accuracy, LBacc, and a lower bound of interestingness,
LBig. To simplify the discussion, we fix the number of attributes appeared in
rules' bodies. We iterate to apply the algorithm to extract a set of rules with
different number of attributes in their bodies. An output is a set of rules that

Fast Discovery of Interesting Rules 23

include exactly L attributes in their bodies and satisfy the given constraints on
their support, accuracy and interestingness. To avoid extracting similar rules
many times, we restrict the algorithm to extract at most one rule for each pair
of a class label (head of a rule) and a combination of L attributes. If there are
plural rules that share a same label and a same attribute set, then the algorithm
selects one of them with a user-defined objective function.

One approach to discover interesting rules is generating all rules with suf-
ficiently large support by apriori[l] like algorithms and filtering out rules that
violate the constraints on accuracy and interestingness. This approach is prac-
tical to extract only primitive rules but may be too unefficient to extract rules
with grouping attribute values. This is because grouping attribute values drasti-
cally increases the number of possible rules and the first step, enumerating rules
with large support, requires huge time even when L is small. For example, when
extracting a rule with a given three attributes with ten possible values, the num-
ber of primitive rules is only 10̂ but the number of rules with value grouping
becomes (2^'' — 2)̂ ~ 10̂ and the constraint of minimum support usually rejects
only the rules that accept a few values for each attribute in their bodies. How-
ever, we don't need to enumerate all rules with large support to extract rules
with large interestingness. Because of the definition of IGmie i the constraint of
minimum interestingness

IGruie{aii € A i A A flj^ G A i —» c) > LBig

requires

1 <Vfc<L , Vue A t ,

3(1^11) ! ̂ »fc_i) '^Jfc+i) ̂ i t J € A i X X JJi^_ ̂ X Ui^^ ̂ X X A D S.t.

Irule((/\ AJH =ViA A ai ̂ = Uj^ -» Cj > LBig.

This property leads the following efficient algorithm that first enumerates prim-
itive rules with large interestingness and generates rules with value grouping by
combining the interesting primitive rules. This approach can effectively prune
rules with grouping that can't satisfy the constraint on interestingness and can
reduce search space drastically compared with enumerating rules with large sup-
port first.

Figure 1 shows a pseudo-code of DIG. For each combination of attributes,
DIG first counts a class distribution of instnaces in each combination of attribute
values to evaluate interestingness of all of possible primitive rules. After that,
DIG selects a set S of primitive rules whose interestingness is greater than or
equals to the lower bound LBig For each subset 5' of 5, DIG generates a rule
R whose body permits all attribute values allowed in at least one primitive
rule in S'. DIG evaluates its support, accuracy and IGrule of R. If these values
are greater than or equal to the corresponding lower bounds and R is better
than the current best rule, Rbest, with respect to the given objective function,
DIG updates Rbest- After checking all subsets of S, DIG adds Rbest to a set of

24 N. Yugami, Y. Ohta, and S. Okamoto

Procedure DIG(Training, L, LBsup, LBacc, LBtg, fobj)
Inputs :

Training set, Training, body length, L,
lower bounds of support, accuracy and interestingness, LBsup, LBacc, LBig
and an objective function, fobj-

Output :
Set of interesting rules, Rules.

Rules := 0.
Foreach combination of L attributes (a<i , . . ., Otf.),

Count class distribution for each combination of values {vi^, Vij^) of
attributes (o , i , . . ., a,^).
Foreach class c

Rbest '.^undefined.
Foreach combination of values {v^,..., Vi^),

Evaluate a primitive rule
ftii = I'l l A A fli^ = Vi ̂ —» c.

S := {r\r is primitive A Iruuix) > LBig).
Foreach S' C S

Dik {vl^r G S', r permits Ojj, = u} , fc = 1 , . , ., L.
R := Oil e A i , A A Otj, 6 Z)ij^ —> c.
If Support{R) > LBsup A Acc(iJ) > L5acc A IGruu{R) > LBig then

I f flbest =undefinedoT fobj{R) > Iobj{Rbest) t hen
t : = ^

I f Rbest ^undefined then
Rules := Rules U {Rbest}-

Rank rules in Rules with respect to /o6j.
Return/Su/es.

Fig. 1. Pseudo-code of DIG

discovered rules. DIG iterates this procedure for all combinations of L at t r ibutes.
As discussed above, a rule with IGmie > LBig allows only at t r ibute values
appeared in at least one primitive rules with IruU ̂ LBig and this algorithm
can explore all rules with grouping values whose interestingness is greater than
or equals to LBig.

3.2 T i m e C o m p l e x i ty

The most t ime consuming process in DIG is counting a claas distr ibution of in-
stances in each value pat tern to evaluate primitive rules. Because DIG has to
count distributions for all combinations of L at t r ibutes, the t ime complexity of
this process is O f (^) N Lj, where M is the number of at t r ibutes and TV is
the number of instances. This complexity depends on N linearly and DIG can
extract rules from large number of instances. Instead, the complexity rapidly
increases with L and DIG can't extract complex rules with many at t r ibutes in
their bodies. However, simple rules with small number of at t r ibutes are some-

Fast Discovery of Interesting Rules 25

Table 1. Summary of the experiments.

mushroom

satimage

letter

classes

2

6

26

atts

22

36

16

instances

8,124

6,435

20,000

L
2
3
4
2
3
4
2
3
4

LBig

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

extradited rules
23
10
0
12
0
0
16
2
0

cpu time(sec)
5
53
354
12

243
4,189

10
158

2,155

times more important for knowledge discovery than complex rules because we
can easily understand the meaning of them.

3.3 Numeric Attribute s and Missing Attribut e Values

The current version of DIG assumes all attributes are nominal. It can't deal with
numeric attributes directly and requires discretization [3] of numeric attributes
before discovery process. The only difference between symbolic attributes and
discretized attributes is how to generate groups of values as conditions in rules.
For a discretized attribute, DIG only permits a value group that represents one
interval, i.e. a set of neighboring values. For example, if values of a numeric
attribute ttj are discretized into five values, 1, 2, 3, 4 and 5, then DIG permits
conditions such as â € {1,2} and Cj e {2,3,4} , but rejects â S {1,4} .

Databases from practical domain sometimes involve instances in which values
of some attributes are unknown. For each combination of attributes, DIG works
with the instances in which values of all of the selected attributes are known. For
example, DIG ignores an instance whose value of ai is unknown when extracting
a rule with an attribute set {ai , 02} but uses the instance when extracting a rule
with {02,03} if the values for 02 and 03 are known.

4 Experiments

This section reports the experimental results of DIG on three databases from
UCI repository [2], mushroom, satimage and letter recognition. We selected these
databases because they involve relatively many instances. In satimage, all at-
tributes are numeric and we discretized each of them into five intervals with
same population. Letter database is also represented by numeric attributes but
the attributes are already discretized into integers from 0 to 15 and we used
them with no change.

For all databases, we set LBacc = 0.9 and L = 2,3 and 4, i.e. DIG extracted
rules with 90% or higher accuracy that involve 2 to 4 attributes in the bodies.
We set minimum support, LB sup at 1% for mushroom and satimage, but used

26 N. Yugami, Y. Ohta, and S. Okamoto

rule 1: stalk^hape = tapering A ring-type = pendant A habitat = grasses — poisonous,
support = 1.8%, accuracy = 100%, IGnU = 1-30
P{poisonous) — 0.48
P{poisonous\stalk-shape = tapering) = 0.44
P(poisonous\ring.type — pendant) = 0.21
P{poisonous\habitat = grasses) = 0.34
P{poisonous\stalkshape = tapering A ringjtype = pendant) = 0.13
P{pciisonous\stalk^hape = tapering A habitat = grasses) = 0.16
P{poisonous\ring-type = pendant A habitat = grasses) = 0.33

(a)Ruies extracted from mushroom database.

rule 2: 032 < 17 A 34 < 033 < 61 -» dass = 0.
support = 6.2%, accuracy = 98%, IGmie = 0.80.
Pidass = 0) = 0.24
P(dass = 0|o32 < 17) = 0.31
P{class = 0|34 < a33 < 61) = 0.26

(b)Rules extracted from satimage database.

rule 3: width < 3 A 8 < height <9-> I.
support = 0.4%, accuracy = 100%, IGmU = 0.80.
P(I) = 0.038
P(I\width < 3) = 0.213
P(/|8 < height < 9) = 0.037

(c)Rules extracted from letter database.

Fig. 2. Rules extracted by DIG

0.1% for letter database because this database involves 26 classes and 1% of all
instances corresponds to about a quarter of instances in each class. This ratio
is too large to discover exceptional patterns. We also fixed the lower bound of
interestingness, LBig, as 0.8. As an objective function, fobj, we applied support
of rules and extracted interesting rules covering as many instances as possible.
We executed all experiments on sun workstation with 300MHz ultra-sparcll.

Table 1 shows the domain characteristics of the databases and a summery of
experimental results, the number of extracted rules and cpu time for extraction.
In this table, we can observe that the number of rules with large score of IGmie
decreases with L and no rule with L = 4 satisfies IGmie > 0.8 in all databases.
A rule with L conditions takes high score with respect to IGmie only when any
conjunction of L — 1 conditions cover many negative instances but the remaining
condition can reject most of the negative instances. In natural domain, such a
hidden relationship between attributes and a class is very rare when L is large.

Figure 2 shows examples of rules extracted by DIG and probabilities related
to the rules. The first rule involves three conditions in its body. Each condition
and each pair of the conditions negatively relate to the conclusion, poisonous,
but the rule shows that the conjunction of the three conditions covers poisonous

Fast Discovery of Interesting Rules 27

mushrooms only. It is not clear whether the rules in the figure are really useful
and interesting for the users of discovery systems, but they are at least quite
interesting from statistical viewpoint.

In all databases, DIG worked sufficiently fast when L < 3 and required at
most four minutes in satimage. DIG also required practical time when L = 4,
about 40 minutes in letter recognition and 70 minutes in satimage. The time
complexity of DIG depends on L exponentially and DIG may require huge time
when L > 5. However, this is not a critical disadvantage because rules with large
interestingness are usually extracted with small L as shown in Table 1.

5 Summary

This paper discussed what kind of classification rules should be extracted by
knowledge discovery systems and proposed a new criterion of interestingness of
rules that evaluates a rule by comparing its accuracy with those of more general
rules. In addition, we pointed out the necessity of evaluation of each attribute
value allowed in a body of a rule to evaluate the rule correctly. We also proposed
a new discovery algorithm, DIG, to extract interesting rules with respect to the
criterion. We applied DIG to three databases and showed DIG could discover
interesting rules in practical time.

References

1. Agrawal, R., Mannila, H., Srikant, R. Toivonen, H. and Verkamo, A. I.: Fast Discov-
ery of Association Rules. In Advances in Knowledge Discovery and Data Mining,
ed. Fayyad, U. M. et al., AAAI Press(1996) 307-328.

2. Blake, C, Keogh, E. and Merz, C. J.: UCI Repository of machine learning
databases. http;//www.ics.uci.edu/ mleaTn/MLRepository.html(1999).

3. Fayyeid, U. M. and Irani, K. B.: Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence(IJCAI-9S), AAAI Press(1993)
1022-1027.

4. Guyon, I., Matic, N. and Vapnik, V.: Discovering Informative Patterns and Data
Cleaning. In Advances in Knowledge Discovery and Data Mining, ed. Fayyad, U.
M. et al., AAAI Press(1996) 181-203.

5. Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic
Rules. In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining(KDD-96). AAAI Press(1996) 263-266.

6. Piatetsky-Shapiro, G.: Discovery, Analysis and Presentation of Strong Rules. In
Knowledge Discovery in Databases, ed. Piatetsky-Shapiro, G. and Frawley, W. J.,
AAAI Press(1991) 229-248.

7. Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers(1993).

8. Silverschatz, A. and Tuzhilin, A.: What Makes Patterns Interesting in Knowledge
Dsicovery Systems. IEEE Transactions on Knowledge and Data Engineering Vol.8,
No.6(1996), 970-974.

28 N. Yugami, Y. Ohta, and S. Okamoto

9. Smyth, P. and Goodman, R. M.: Rule Induction Using Information Theory. In
Knowledge Discovery in Databases, ed. Piatetsky-Shapiro, G. and Prawley, W. J.,
AAA I Press(1991) 160-176.

10. Suzuki, E.: Autonomous Discovery of Reliable Exception Rules. In Proceedings: The
third International Conference on Knowledge Discovery and Data Mining(KDD-
97), AAA I Press(1997) 259-262.

11. Srikant, R., Vu, Q. and Agrawal, R.: Mining Association Rules with Item Con-
straints. In Proceedings: The third International Conference on Knowledge Discov-
ery and Data Mining(KDD-97), AAA I Press(1997) 67-73.

Performance Controlled Data Reduction
for Knowledge Discovery in Distributed Databases

Slobodan Vucetic and Zoran Obradovic

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164-2752, USA

{svucetic , zoran}@eecs.wsu.ed u

Abstract. The objective of data reduction is to obtain a compact representation
of a large data set to facilitate repeated use of non-redundant information with
complex and slow learning algorithms and to allow efficient data transfer and
storage. For a user-controllable allowed accuracy loss we propose an effective
data reduction procedure based on guided sampling for identifying a minimal
size representative subset, followed by a model-sensitivity analysis for
determining an appropriate compression level for each attribute. Experiments
were performed on 3 large data sets and, depending on an allowed accuracy loss
margin ranging from 1% to 5% of the ideal generalization, the achieved
compression rates ranged between 95 and 12,500 times. These results indicate
that transferring reduced data sets from multiple locations to a centralized site
for an efficient and accurate knowledge discovery might often be possible in
practice.

Keywords: data reduction, data compression, sensitivity analysis, distributed
databases, neural networks, learning curve

1 Introduction

An important knowledge discovery problem is to establish a reasonable upper
bound on the size of a data set needed for an accurate and efficient analysis. For
example, for many applications increasing the data set size 10 times for a possible
accuracy gain of 1% can not justify huge additional computational costs. Also, overly
large training data sets can result in increasingly complex models that do not
generalize well [8].

Reducing large data sets into more compact representative subsets while retaining
essentially the same extractable knowledge could speed up learning and reduce
storage requirements. In addition, it could allow application of more powerful but
slower modeling algorithms (e.g. neural networks) as attractive alternatives for
discovering more interesting knowledge from data.

Data reduction can be extremely helpful for data mining on large distributed data
sets where one of the more successful current approaches is learning local models at
each data site, and combining them in a meta-model [11]. The advantage of meta-
modeling is that learning local models and integrating them is computationally much
more efficient than moving large amounts of data into a centralized memory for
learning global models. However, this sub-optimal heuristic assumes similarity

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 29-39,2000.
© Springer-Verlag Berlin Heidelberg 2000

30 S. Vucetic and Z. Obradovic

between local data sets and it is not clear how to successfully combine local models
learned on data with different distributions and not identical sets of attributes.

A centralized approach of transferring all data to a common location escapes the
sub-optimality problems of local models combination, but is often infeasible in
practice due to a limited communication bandwidth among sites. Reducing data sets
by several orders of magnitude and without much loss of extractable information
could speed up the data transfer for a more efficient and a more accurate centralized
learning and knowledge extraction. Here, for user-specified allowed accuracy loss we
propose an effective data reduction procedure based on applying a guided sampling to
identify a minimal size representative sample followed by a model-sensitivity analysis
to determine an appropriate compression level for each attribute.

The problem addressed in this study is more formally defined in Section 2, the
proposed data reduction procedure is described in Sections 3-4 and an application to 3
large data sets is reported in Section 5.

2 DeHnitions and Problem Description

To properly describe the goal of data reduction and to explain the proposed approach,
some definitions will be given first. The definitions apply to regression and
classification problems solved by learning algorithms minimizing least square error,
including linear models and feedforward neural networks.

Definitions
Given a data set with N examples, each represented by a set of K attributes,

x={x,,.. .,x^}, and the corresponding target y, we denote the underlying relationship as
y = E[y I x]-i-e, where e is an additive error term. For regression problems the target is
usually a single number, while for L-class classification problems it is usually an L-
dimensional vector. We define the reduced data set as any data set obtained irom the
given one by (1) reduction of the number of examples called down-sampling, or/and
(2) quantization of its attributes and targets. The length of a data set is defined as the
number of bits needed for its representation. Compression rate C equals the ratio
between the bitwise length of the original data set and the bitwise length of the
reduced data set.

Assuming a parametric learning algorithm, by /(x; P(n)) we denote a predictor
learned on n examples and we measure its performance by the mean squared error
(MSE) defined as MSE(/3)=E{[y- /(x;yff)]'} , where /5 is the set of the model
parameters. If a predictor is learned on a reduced, instead of the original, data set
some increase in the MSE is to be expected. The total relative MSE increase,
MSE(^Jn))/MSE(/3(N)), where ^Jn) are estimators of parameters from a model
learned on a down-sampled data set with quantized attributes, is the product of
relative MSE increases due to down-sampling MSE(ySf/î)/MSE(yS^A ĵ) and
quantization MSE(P^(n))fMSEiP(n)). Throughout the text we denote the relative MSE
increase as (1+ar), and call a the loss margin.

Performance Controlled Data Reduction 31

Problem Description
Our goal is to obtain a minimal length reduced data set that, using the same

learning algorithm, allows extraction of the same knowledge reduced for at most a
loss margin cc To achieve this goal we propose two successive phases: (1) reduce the
sample size from Â to n„.„ allowing loss margin a ̂ and achieving compression
C^=Nln^, and (2) perform proper quantization of attributes of a down-sampled data
set allowing loss margin a ,̂ followed by Huffman coding [5] of discretized attributes
and achieving compression C^. Assuming that total loss margin a is close to zero, it
follows that ar= OCo+(Xf. with an achieved total compression C= CjC^. To keep the
presentation simple, we will assume that ag= a^= a/2, and will skip the optimization
of ttj, and a ̂for the maximum achievable total compression.

The motivation for data reduction is obtaining the compact representation of a data
set that would facilitate its efficient repeated use with complex learning algorithms
and allow its efficient transfer and storage. All these features are highly desirable for
data mining on distributed databases. In this framework, local computing time needed
for data reduction would not be a critical requirement, since this effort would be
rewarded multifold. Nevertheless, for large data sets, the whole data reduction effort
has comparable or even lower computational time as compared to building a single
model on a whole data set. In the following two sections we separately describe
procedures for down-sampling and quantization and compression.

3 Identifying a Minimum Representative Sample

3.1 Down-Sampling for Fast and Stable Algorithm s

The learning curve for least squares estimators shows the average MSE
dependence on the size n of a sample used for designing estimators. This curve can be
divided into an initial region characterized by the fast drop of the MSE with
increasing sample size and a convergence region where addition of new samples is
not likely to significantly improve prediction (see Fig. 1). The learning curve is the
result of complex relationships between data characteristics and a learning algorithm.
Therefore its shape needs to be determined by experimentation with an objective of
identifying size «̂ ,„ of a minimum representative sample needed to achieve an
approximation of the optimal average MSE within a specific loss margin a^.

An asymptotic analysis based on the law of large numbers and the central limit
theorem [4] can help in successful modeling of a learning curve. According to the
asymptotic normality theorem for nonlinear least squares, estimation error is
asymptotically normal under certain fairly general conditions. Asymptotic normality
means that n"(P{n)-0} tends in distribution to a normal distribution with mean zero
and finite covariance matrix, where P(n) is an n-sample based estimate of the true
parameter vector ^. The consequence is that for large n, residuals e" of the nonlinear
estimator f{x;/i{n)) consistently estimate the actual disturbances as

e'= £ + 0{n~^'^). Therefore,

32 S. Vucetic and Z. Obradovic

MSE(/3(n)) = MSEf/f; + u, u~ N(0(l/n), 0(l/n)), (1)

meaning that MSE(ySf«)) asymptotically tends to the optimum M S E (^ as 0(l/n),
with variance decreasing as 0(l/n). Assuming that N corresponds to the convergence
region and using (1), modeling of a learning curve to estimate a minimum
representative sample size n ̂ can be fairly straightforward.

i 1

1 1
' 1
1 1
1 1
 '

"«

i

Convergence
region

 -

N*

i

1
L
y

Learning curve
* for stable lear-

ning algorithm

^
W

Learning curve
* for unstable lear-

nine aleorithm

.

^

Fig. 1. Learning Curve

A recently proposed progressive sampling procedure [9] can efficiently span the
available range of sampling sizes in search for the n^. The technique was developed
with an objective of increasing the speed of inductive learning by providing
approximately the same accuracy and using significantly smaller sample sizes than
available. It was shown that geometrical progressive sampling that starts with a small
sample and uses geometrically larger sample sizes until exceeding n ̂ (model
accuracy no longer improves) is an asymptotically optimal sampling schedule. We
use the idea of progressive sampling with a somewhat different motivation of guiding
an efficient search for a minimal sample size needed for achieving an approximation
of the optimal average MSE within a specific loss margin a^.

In regression statistical theory it is well known that linear least squares algorithms
are the optimal estimators for linear problem solving. They are characterized by fast
learning with time complexity 0(n) and well-known statistical properties including
small variance. The following DSl procedure is proposed for identifying n „̂ value for
fast and stable models:
 Estimate model on the whole available data set of size Â and calculate MSE(AO;
 Estimate model on a small sample of size n„and calculate MSE(«(;̂
 Increase the sampling size from n ̂to n.-d until a sample size n ̂ is reached

satisfying MSE(n)̂ < {\+a^)MSE{N).
A direct consequence of the progressive sampling results [9] for models with time

complexity 0(n) is that the time complexity of this procedure for a=2 is at most twice
the time of learning on the whole data set. This procedure might also be used for
simple nonlinear algorithms with small variance (e.g. the feedforward neural
networks without hidden nodes).

Performance Controlled Data Reduction 33

3.2 Down-Sampling Extension for Slower and Unstable Algorithm s

Complex nonlinear learning algorithms such as feedforward neural networks with a
number of hidden nodes typically have a large variance meaning that their MSE(/3fn})
can largely differ over different weight's initial conditions and choice of training data.
Using explained DSl down-sampling procedure for such learning algorithms could
cause significant errors in the estimation of n^. Also, with these algorithms learning
time for large Â can be so long that the cost of obtaining a benchmark value of
MSE(AO is unacceptable.

Using (1) and assuming that N is within a learning curve convergence region
down-sampling can be performed by fitting learning curve samples obtained through
guided sampling as

MSE{n)^rQ + yJn + y2ln ̂ +e, e ~ N(0,O(l /n)), (2)

where y,, corresponds to an estimate of MSE for an infinitely large dataset, y, to 0(l/n)
part of (1), and \ to the initial region of a learning curve.

The error variance of the learning curve samples decreases as 0(l/n), and so larger
confidence should be given to MSB's of estimators learned on larger data samples.
Therefore, we apply a weighted least squares algorithm [6] to fit the learning curve by
multiplying (2) by n" and learning ^s on transformed learning curve samples.

For slower and unstable algorithms we propose the following down-sampling
procedure that we will call DS2:

 Starting from a sample of size «„, at iteration i increase sample size to rir^n^-d
until t-statistics for ŷ and y, do not exceed te,., for some tolerant confidence
level 6;

 Repeat until the difference in estimating n ̂ over several successive iterations
is sufficiently small:
 According to estimated y's and predetermined loss margin, a^, estimate

n»» using (2);
 Select the next sample size n.^, larger then n^. Larger n,̂ , results in a

larger improvement in the estimation of n^, but at increased
computational cost. Our heuristic of randomly selecting n,̂ , within an
interval [«^, 2n]̂ has proven to be a good compromise;

 Learn a new model on n̂ ,̂ samples and calculate its MSE(y8f«ĵ ;J);
 Output the last estimated n ̂ as the minimum representative sample size.

If neural networks are used in the down-sampling procedure, the minimum sample
size is selected larger than the estimated value since part of the data should be
reserved to validation subset. Our heuristic determines the total representative size as
1.5n „̂ such that in all iterations of down-sampling algorithm, O.Sŵ samples are being
used as a validation set for an early stopping of neural network training.

34 S. Vucetic and Z. Obradovic

4 Compression of a Minimum Representative Sample

Storing continuous attributes usually assumes double precision (8 bytes) for an
accurate representation. Performing quantization of a continuous variable into a
number of bins allows its representation with a finite alphabet of symbols. This allows
the use of known compression algorithms [10] to decrease the number of bits needed
to represent a given attribute at the price of introducing a certain level of distortion.
We employ uniform quantization where the range of a continuous attribute x is
partitioned into Q equal subintervals, and all numbers falling in a given interval are
represented by its midpoint. Denoting quantizer operation as x^=Q(x), the
quantization error, e^-\^-x, can be considered as uniformly distributed in a range
[-q/2, q/2], where q= (x^,- x„i„V Q is the quantization interval. Therefore,
quantization error variance equals q^/12.

Given a data vector {x' , ...,x"} over a finite Q-ary alphabet ={a,,flg}
(obtained by quantization), we apply Huffman coding where more frequent symbols
are assigned shorter encoding lengths [5]. This provides the optimal binary
representation of each symbol of without any loss of information, such that the
output bitstring length J^/ i i, is minimized, where/ is frequency of a. and /, is length
of its binary representation.

4.1 Model Sensitivity Analysis for Attribute s Quantization

In data reduction for knowledge discovery, preserving fidelity of all the attributes
is not important by itself A better goal is preserving the fidelity of the prediction
model learned using these attributes as measured by a loss margin a^. With this goal,
less sensitive attributes can be allowed higher distortion and, therefore, be quantized
to lower resolution by using larger quantization intervals. To estimate the influence of
attribute's quantization on model predictions we propose the following sensitivity
analysis of a model obtained on the down-sampled data set. The outcome of this
analysis allows deducing proper relative quantization levels for all attributes resulting
in an efficient quantization procedure.

For a small quantization interval q the function/(x^.,yS(n^J) can be approximated as

where e^. is quantization error with a uniform distribution over [-q/2, q/2] and x̂ .
denotes an input vector with quantized attribute X.,.

From (3) the relative MSB increase due to quantization of attribute X, is

N2

dp(Xi), (4) RMSEQ{qO = Ey(x^i,fi)-nx,fi)f}« ̂ j { ^ ^

where p(x,) is the distribution of attribute X..

12 J dxi

Performance Controlled Data Reduction 35

The integral in (4) could be approximated as

(srl \A2

Or, \

\ "pip fy+&c,)-f(xi)
Sxj

(5)

where 5x. is a small number (we used 5x.= std(X|)/10(K)).
By X. we denote the most important attribute with the largest RMSEjidx),

i =1,...,K. Let us quantize attribute X̂ such that the number of quantization intervals
inside a standard deviation of X̂ is M ̂where the constant Mj is called the quantization
density. Quantization densities of other attributes are selected such that losses of all
the attributes are the same. These densities can be computed from (4) as

iRMSEoiSxi)
M. = M jj 5 ^ J_ = M j^i, (fi)

' ^^RMSEgiSKj) ̂ ' W

where ,̂ <1 is a correction factor that measures the relative importance of the
attributes and is the key parameter allowing an efficient quantization.

4.2 Quantization Procedure for Attribute s and Target

If an attribute is nominal or already has discrete values it can be directly
compressed by Huffman coding. If it is continuous, its quantization can greatly
improve compression without loss of relevant knowledge.

Using correction factors .̂, a proper Mj needs to be estimated to satisfy a
quantization loss margin a^. For a given Mj we calculate M., i=l,...,K, to quantize all
K attributes. We denote a quantized version of an example x as x .̂

Starting from a small Af, we should estimate true loss as MSE(;S^(n„J)/
MSE(y8(n„j„)) and should gradually increase Mj until this ratio drops below a^. At each
iteration of M̂ this requires training a new model fix,fi^(n^^)) with quantized attributes
which could be computationally expensive. However, our experience indicates that
estimating E{[y-̂ x ,̂y3(n„,„))]̂ } leads to a slightly pessimistic estimation of
MSE(y9^(rt̂ J) which can be done by using an already existing model A^,/Kn„J) from
a down-sampling phase. Hence, to improve speed without much loss of acciu"acy we
use E{ [y-/(x ,̂y6(« ,̂„))]̂ } in the quantization procedure. When a proper size Mj is found,
quantization densities for all continuous attributes M. are calculated from (6) and
quantized accordingly.

For classification, target compression can be very successful. If a target is
continuous, we propose a representation with single or double precision, since for
knowledge discovery the accuracy of target is usually more important then the
accuracy of attributes. Finally, after a proper quantization of continuous attributes
Huffman coding is applied to obtain an optimally compressed data set. Along with the
compressed data set, a small table containing the key for Huffman decoding is saved.

36 S. Vucetic and Z. Obradovic

5 Experimental Results

To illustrate the potential of the proposed data reduction procedure we performed
experiments on 3 large data sets. The first data set corresponds to a simple regression
problem, while the remaining two are well-known benchmark classification problems
for knowledge discovery algorithms [7].

Normal Distributio n Set
We generated a data set consisting of N= 100,000 examples with 10 normally

distributed attributes, x., j=l,...,10, and target y generated as a linear function,
y=Ly5.x,+e for randomly chosen parameters p. and the error term being normally
distributed and containing 50% of the total variance of y. Assuming standard double
precision representation, the total size of this data set is 8.8MB. We chose this set to
test our down-sampling procedure DSl, and we used an optimal linear estimator with
n„=10, a=1.5, and loss margin set to ciJ={0.01, 0.02, 0.05}. An extremely large
compression rate of up to 1,100 times to only 8KB, with minimal model accuracy
loss, was achieved as reported in Table 1. It is interesting to observe that almost 1/3
of the reduced data set length was used for the target representation since we
intentionally decided not to compress targets due to their importance.

Table 1. Data reduction results for normal distribution data set. Here a is the prespecified loss
margin, M. is the quantization density for the most relevant attribute, loss is an actual accuracy
loss when using reduced data for modeling, RDS is the reduced dataset size and C achieved
compression rate. The original double precision representation was 8.8 MB

a

0.01
0.02
0.05

Linear Estimator
n

mm

1900
U20
420

M
10
8
5

loss
0.007
0.009
0.033

RDS
13KB
10 KB
8KB

C
680
880
1100

Neural Network
}.5n

4220
2250
1020

M
8
6
4

RDS
25 KB
19 KB
14 KB

C
350
460
630

(b)

—-trrtfrhf —
- CO

+t
i

muflmRMiin i
Attributes

Fig. 2. Correction factors from sensitivity analysis for (a) normal distribution set (left
bars are correct and right estimated correction factors), (b) WAVEFORM data set, and
(c) COVERTYPE data set

We also used a neural network with 3 hidden nodes in a down-sampling procedure
DS2 to estimate the consequences of a non-optimal choice of the learning algorithm.

Performance Controlled Data Reduction 37

For small sample sizes, neural networks tend to overfit the data, and hence, computed
n„,„ is significantly larger than for linear estimators. Therefore, the compression rate
was slightly smaller than for a linear estimator, but still very large. It could also be
noted that in both cases the quantization interval is fairly large, as could be concluded
from small value of relative quantization density Mj. The experimentally estimated
correction factors for 10 attributes obtained through a sensitivity analysis (right bars
at Fig. 2a) were compared to the true values (left bars at Fig. 2a) and it was evident
that the sensitivity analysis was extremely successful in proper estimation of attributes
importance.

WAVEFOR M Data Set
As originally proposed by Breiman [2, 7], we generated 100,000 examples of a data
set with 21 continuous attributes and with 3 equally represented classes generated
from a combination of 2 of 3 "base" waves. The total size of this data set with double
precision was 17.8 MB. In a down-samphng procedure with n„=100, a=1.5, and loss
margin set to a={0.01, 0.02, 0.05} we used neural networks with 5 hidden nodes, 21
inputs and 3 outputs. Observe that the number of examples needed for successful
knowledge extraction was significantly higher than in the normal distribution problem
as expected for a higher complexity concept. However, for all loss margins the
obtained data reduction was still very high (see Table 2) while estimated attributes
correction factors ^ recovered the structure of 3 waveforms hidden in the data (see
Figure 2b). Our neural network models trained on a reduced data set of length 186KB
achieved an average generalization accuracy of 86%, which is identical to the
previously reported accuracy using all 17.6 MB of training data.

Table 2. Data reduction results for WAVEFORM data set (notation is same as in Table 1)

a
0.01
0.02

1-5K.

19670
10640

0.05 1 4580

M
8
6
4

RDS
186 KB
89 KB
33 KB

C
95
200
530

COVERTYPE Data Set
This is currently one of the largest databases in the UCI Database Repository [7]
containing 581,012 examples with 54 attributes and 7 target classes and representing
the forest cover type for 30 x 30 meter cells obtained from US Forest Service (USFS)
Region 2 Resource Information System [1]. In its raw form it has 75.2 MB, and in the
compressed 11.2 MB. Out of 54 attributes, 40 are binary columns representing soil
type, 4 are binary columns representing wilderness area, and the remaining 10 are
continuous topographical attributes. Seven classes represent forest cover type. Since
40 attributes for just one variable seemed too much for neural network training, we
transformed them into 7 new ordered attributes by the following simple „trick" . For
each of 40 soil types we calculated the relative frequency of each of 7 classes from
the available examples. In that way each soil type value was represented as a 7-
dimensional vector with values that could be considered continuous and were fit for
use with neural networks. The transformed data set had 21 attributes and in the down-

38 S. Vucetic and Z. Obradovic

sampling procedure DS2 with n„=100, a=1.5, for loss margin set to Ot=[0.0l, 0.02,
0,05} we used neural networks with 5 hidden nodes, 21 inputs and 7 outputs. In the
quantization procedure we quantized only 10 continuous attributes, while nominal soil
type and wilderness area attributes were, together with the target variable, compressed
by Huffman coding directly. Data reduction results presented in Table 3 show that
surprisingly large data reduction of several thousands times can be performed without
significant knowledge loss and achieving about 70% accuracy as consistent with
previous reported results [1].

Table 3. Data reduction results for COVERTYPE data set (notation is same as in Table 1)

«
0.01
0.02
0.05

l-5ri.

6860
3690
1680

M
8
6
4

RDS
26 KB
14 KB
6KB

C

2890
5370
12500

It should be noted that approximately 1 KB of reduced data set size is used to
represent a very informative 40x7 table of relative frequencies for 7 classes on 40 soil
types. The estimated attribute correction factors are shown in Fig. 2c. One of the by-
products of this sensitivity analysis indicates that the most important attributes for this
problem are elevation and soil type, followed by wilderness area attribute.

One of the reasons for such successful reduction of this data set is possibly in its
spatial component, and a relatively dense spatial grid (30x30 meters). To better
exploit the spatial component of the COVERTYPE data set it would be desirable if
positions of examples were also included in the form of x and y coordinates. This
would allow the use of the elements of spatial statistics [3] and adjusted learning
algorithms [12] for better knowledge extraction.

6 Conclusions

In this paper we proposed a set of procedures aimed at performance-controlled
reduction of a given data set by: (1) elimination of redundant training examples, and
(2) attributes quantization and compression. The data reduction goal was to obtain a
minimal length reduced data set that, using the same learning algorithm, allows
extraction of the same knowledge reduced for at most a predetermined loss margin.

Experiments were performed on a large regression and two large classification data
sets. An ordinary least squares algorithm and neural networks were used to guide data
reduction. Depending on prespecified loss margins of 1% to 5% of full accuracy, the
achieved compression rates ranged between 95 and 12,500 times, indicating possible
huge benefits for centralized knowledge discovery in distributed databases.

We obtained few other results worth mentioning. The proposed sensitivity analysis
proved very successful in ranking the attributes and allowed an efficient compression
of continuous attributes. This analysis can be considered separately as a method for
soft feature reduction and feature selection that is based directly on their importance
for a given learning model. Our results also show that a proper choice of learning

Performance Controlled Data Reduction 39

model is important for data reduction and that a reduced data set can be used as a
good indicator of the complexity of a learning problem.

The proposed procedure is suited for learning algorithms based on least squares
minimization, and could be applied to a range of classification and regression
problems. Further work is needed to extend the technique to other learning
algorithms.

References

[I] Blackard, J., Comparison of Neural Networks and Discriminant Analysis in Predicting
Forest Cover Types, Ph.D. dissertation, Colorado State University, Fort Collins, 1998.

[2] Breiman, L., Friedman, J., Olshen, R., Stone, C, Classification and Regression Trees, The
Wadsworth International Group, 1984.

[3] Cressie, N.A.C., Statistics for Spatial Data, John Wiley & Sons, Inc., New York, 1993.
[4] Davidson, R., MacKinnon, J., Estimation and Inference in Econometrics, Oxford

University Press, New York, 1993.
[5] Huffman, D, A Method for the Construction of Minimum Redundancy Codes, Proc. IRE,

vol. 40, pp 1098-1101,1952.
[6] Judge, G., Lee, T.C., Hill, C, Introduction to the Theory and Practice of Econometrics,

John Wiley & Sons, 1988.
[7] Murphy, P.M., Aha, D.W., UCI Repository of Machine Learning Databases, Department

of Information and Computer Science, University of California, Irvine, CA, 1999.
[8] Oates, T., Jensen, D., Large Datasets Lead to Overly Complex Models: An Explanation

and a Solution, Proc. Fourth Int'l Conf. on Knowledge Discovery and Data Mining, 1998.
[9] Provost, F., Jensen, D., Oates, T., Efficient Progressive Sampling, Proc. Fifth Int'l Conf.

on Knowledge Discovery and Data Mining, 1999.
[10] Sayood, K., Introduction to Data Compression, Academic Press/Morgan Kaufmann, 1996.
[II] Stolfo, S., Prodromidis, A., Tselepis, S., Lee, W., Fan, D., Chan, P., JAM: Java Agents for

Meta-leaming over Distributed Databases, Proc. Third Int'l Conf. on Knowledge
Discovery and Data Mining, 1997.

[12] Vucetic, S., Fiez, T., and Obradovic, Z., A Data Partitioning Scheme for Spatial
Regression, Proc. IEEE/INNS Int'l Conf. on Neural Networks, No. 348, session 8.1 A,
1999.

Minimum Message Length Criterion
for Second-Order Polynomial Model Discovery

Grace W Rumant ir

School of Computer Science and Software Engineering
Monash University - Clayton Vic 3168 Australia

gwrScsse.monash.edu.a u

Abs t rac t. This paper proposes a method based on the Minimum Mes-
sage Length (MML) Principle for the task of discovering polynomial
models up to the second order. The method is compared with a num-
ber of other selection criteria in the ability to, in an automated manner,
discover a model given the generated data. Of particular interest is the
ability of the methods to discover (1) second-order independent variables,
(2) independent variables with weak causal relationships with the target
variable given a small sample size, and (3) independent variables with
weak links to the target variable but strong links from other variables
which are not directly linked with the target variable. A common non-
baicktracking search strategy has been developed and is used with aJl of
the model selection criteria.

Keywords: scientific discovery, automated modeUing, second-order poly-
nomial regression

1 Polynomial Model Selection Criteria

Polynomial regression concerns with the task of estimating the value of a target
variable from a number of regressors/independent variables. The standardized
second-order polynomial regression models considered in this paper typically
take the form

p p p K

2/n = ^ 7p "np + X I X ! Tpg^tnpWn? + in ̂ Vn = ' ̂ PkXnk + Cn (1)
p=l p=l q>p k—l

where for each data item n:

y„ : target variable x^k regressor k;

^nk ^̂ "^np or Xfik = '^np^ngi Q — P

Unp

7p
Ipq

regressor p (3k : coeff. for regressor k
coefF. for single regressor K =2P + P\/2\{P - 2)!
coeff. for compound regressor e„ : noise/residual/error term

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 40-48, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Minimum Message Length Criterion for Polynomial Model Discovery 41

The values of the error term e is assumed to be uncorrelated, normally and
independently distributed £„ ~ NID{Q,(j'^). For a given set of x^, this assump-
tion causes w to have the same normal distribution and variance as e, that is,
Vn ~ i PkXnk, c^)- Given that y is normally distributed, the fact that we
can write ^^ as a linear combination of the y values implies that $k also has a
normal distribution.

Unless the exact relationships between the target variable and the regressors
in a problem domain are known, it is necessary to search among all of the
potential regressors available for a subset that has the strongest explanatory
relationships with the target variable to form a polynomial model to be used for
future predictions. The search space can be large especially when the products
of variables are also considered (higher-order polynomials).

This work examines some of the most commonly cited penalized-likelihood
methods used to compare models with different complexities, along with a
Bayesian selection method based on the Minimum Message Length (MML) prin-
ciple [14] developed for this purpose. The summary of the methods is given in
Table 1. The explanation of the methods is given in Section 1.1 and 1.2. The
model chosen by any of the methods is claimed to be a parsimonious description
of the data at hand, therefore has predictive power for future data. This work
tests the robustness of each method in support of this claim.

Previous related studies on the comparison of MML and other methods for
the purpose of curve-fitting can be found in [2] and [13]. In this paper, the task
is to estimate the order of the regressors of a given polynomial model.

Table 1. Summaxy of model selection criteria, i is index for sample item ranging from
1 to n and k is the number of variables in a model

M e t h od

M i n i m u m M e s s a ge L e n g th

M i n i m u m D e s c r i p t i on L e n g th

C o r r e c t ed A I C

S t r u c t u r ed Rislc M i n i m i s a t i on

S t o c h a s t ic C o m p l e x i ty

Alcailce's I n f o r m a t i on C r i t e r i on

Bayes ian I n f o r m a t i on C r i t e r i on

M a l l o w s' Cp

Ad jus ted Coeff. of D e t e r m i n a t i on

F - t a - e n t er

F - t o - e x it

M M L

M D L

C A I C F

S RM

SC

A I C

B I C

C p

a d j R^

F - t e st

Ref.

(14]

[8]

[3]

[12]

[9]

m
111]

[61

[5]

f l

O b j e c t i ve F u n c t i on

- l o g / (i | ») + J i o « | / (»)| - l o g h (») -

- i ^ l og25r + ^ log(fc + l) , r - 1 - l o g H (. / , « , i, I , J, I .)

- l o g / (x | ») + ^ l o g n + (^ + l) + l o g f c (k + 2)

- l o g / (i | e) + ^log\II.S}\ + f c + ^ l o g n

1 V ^ " > / (f c + l) (l o g , j t t ^ + l) - l o g r ,

i Ei=i 'V^' - V - ̂ '
5 1 o g ^ " _ ^ c2 + J log lX 'XI

- 2 (l o g / (i | «) - k)

- 2 (l og / (a : | ») - J f c l o g n)

i^ i EL.'?-"--" >
1 - (Er=i °?^<"" ' '"^'Er-i '"* " *'^^<""" '
(J21-1 °i >"''' - ' E ? -! ' f '^ '^f l + ''ctcT'/t" - (* + I»)
(j2"-i '?>"="' ^ 'E r -i '?>'>''' '^+''"'' ' ^'"" ' *+ ' ' "

42 G.W. Rumantir

1.1 Minimu m Message Length Method

Prom information theory perspective, Minimum Message Length (MML) princi-
ple [14] takes the metaphor of sending data over a communication hne. Referring
to Equation 1, suppose the sender has 2 sets of data, one of the target variable
yn and the other of the regressors Xnk- The receiver only has the data set of
the regressors Xnk and would like to have the data set of the target variable yn
sent. The most expensive way to do this would be to send the encoding of all of
the data verbatim. This is equivalent to what is known as a table lookup. The
cheapest way would be by first developing a polynomial model in the form of
Equation 1 and then sending the optimal encoding of the model and residual
data which minimizes the total message length:

L = L{9) + L{x\e) ̂ - log f{e\x) = - log p{e) - log f{x\e) (2)

The first part of the message length represents the model complexity and
the second part represents the goodness of fit of the model into the data. When
comparing two models with different complexities, the model with the shorter
two-part message length would be chosen. Prom Bayesian perspective, MML
principle states that the best model is the one that yields the highest posterior
probability by maximizing the product of the prior probability of the data given
the model (Equation 2).

The cost of encoding the model L{6) is composed of two parts: that of the
model structure (i.e. which combination of variables) L, and that of the model
parameters Lp. Hence the total message length is:

L = L,+Lp + L{x\e) (3)

In this paper, the cost of encoding the model structure L , is composed of three
parts: that of the set of single regressors, product of regressors and the combi-
nation of regressors:

Ls = - logh{u, j) - logh{^,I) - log f J ,^ ̂ (4)

h{i',j) and h{^,l) follow geometric series:
M^,i) = i^^il - u)/{l - u'+^) and hi^, I) = ^'(1 - 0 / (1 - e^')

where: u, ̂ : probability of choosing single, product of regressors
j , I: single, product of regressors chosen
J, L: single, product of regressors available

I t is assumed that the sender and receiver of the message have some prior
knowledge/expectation about the possible models 6 = (/3fc,cT), giving a message
length L = -\ogh{9) = -\ogprior{a)prior{{pkW}). However, the adoption of
a discrete message/code string of length L implies that & itself is regarded as

Minimum Message Length Criterion for Polynomial Model Discovery 43

having a prior probability of e~ ,̂ which is discrete. MML principle assigns to
9 a prior probability h{9) * v{6) where v{6) is the the volume of a region of the
search space which includes 6. As shown in [14] the whole message length is
minimized when v{6) is chosen to be proportional to 1/^J\I{6)\, where \I{0)\ is
the Fisher information matrix.

As in Equation 1, the parameters (ik are assumed to be normal. If uniform
density prior (i.e. no preference) is chosen for a, then following [14], the cost of
encoding the model parameters Lp takes the form

Lp = - log prior (CT)pr-ior ({ A |<T}) + ^ log \I{e)\ - ^{k + 1) log27r + ^log{k + l)7r - 1

= - n —L=e-'l'^°'"''" + i log \m\ -\{k + l) log2,r + \lo9{k + l)7r - 1 (5)
k=\ ^

The term |/(^)| = 'lNu~'^^^^'^'>\X'X\ is the expected Fisher information matrix
associated with the real-valued parameters of Q. That is, the determinant of the
expected second partial differentials of L{x\S) (Equation 6) with respect to the
model. The last three terms reflect the effect of quantization of v{&) (i.e. the
discretization of &) in forming the optimum code [4, pp.59-61] which results in
the increase in the message length.

Finally, the cost of encoding the data given the model L{x\6) is simply the
likelihood function

L{x\9) = - log / (y |a , { /34) = - l og TT -!—e-^y--Y..=.^--r,.?l^''' (6)
„= 1 ^^^27 7

1.2 Comparison Between MM L and the Other Methods

The methods in Table 1 can broadly be categorized as penalized-likelihood meth-
ods. When comparing two models, not only do they consider how a model fits
the data, but they also have penalty terms for the more complex model. Hence,
the model can be chosen solely from training data. The terms —logf{x\ff) (Equa-
tion 6) or Y^=\ ^1 ^ ̂ ^^ ̂ equations in Tablel typically measure how a model
fits a data set and the rest represents the penalty terms for model complexity.
Following [7], F^nter and F^xit is given as 4.0. Following [12], r] is given as 0.125.

Rissanen proposes two methods for implementing minimum encoding, the
Minimum Description Length (MDL) principle and the Stochastic Complexity
(SC) principle. SC is seen as a refinement of MDL since for large values of n, X'X
is approximately proportional to n, hence | ^ ' ^ | behaves like n*̂ , and the second
term of SC is like the second term of MDL [9]. The term |X 'X | is included in
|7(^)| (Equation 5) for MML which will converge to the same value for large n.
It can be concluded that MDL incorporates all the terms of SC. The difference
between the model chosen by MDL and MML relies on the values for the third
term onwards in each equation.

The penalty term for AIC, k (the number of independent variables) turns
out to be the same as Mallows' Cp criterion. BIC is similar to the first two

44 G.W. Rumantir

terms of MDL. [3] sees BIC as AIC altered since ^ -+ 0 as n —> oo. BIC has a
bigger penalty term for model complexity than AIC, hence should be less likely
to overfit.

As a variation of AIC, [3, p.361] derived CAICF as an estimate of minus
the expected entropy, hence does not follow a Bayesian approach. Like MML ,
CAICF uses the Fisher information matrix as a more precise estimate of the
expected log likelikehood.

1.3 Search Algorith m

A non-backtracking search algorithm has been developed to be used as a common
search engine for the different stopping criteria. This algorithm starts with an
empty model. Variables are either added to or deleted from the model one at a
time. A new variable will be added to the model if it results in the best among
the other alternative new models based on the selection criterion being used.
After every addition to the model, a variable will be searched to be deleted
therefrom. A variable will be deleted from the model if it results in the best new
model among the initial model and any other models should any other variable
has been chosen. Hence in effect, at each stage of the search process, the model
chosen would be the best amongst all of the potential models with the same
complexity that are possibly chosen by adding or deleting one variable to or
from the existing model. The search terminates when there is no more variable
to be added which will result in a better model. In case a model selection method
overfits the data, a limi t in the maximum number of variables that a model can
have is imposed to enable the search to terminate in a reasonable amount of
time. In this paper, a model can have a maximum of 70 variables.

2 Experimental Design

Three true models as shown in Figure 1, 2 and 3 have been designed for the
experiments. Each true model consists of a target variable and a set of single
and compound independent variables. Not all of the variables are necessarily
directly or at all connected to the target variable. Each value of an independent
variable is chosen randomly from a normal distribution N{0,1). For each model,
6 training and test data sets comprising 500, 1000, 2000, 4000, 6000 and 10000
instances respectively are generated.

The product of two independent variables is calculated from the standardized
values of each variable. Each value of the target variable is calculated from the
values of all of the independent variables directly linked to it multiplied by the
respective link weights plus a noise value which is independently and identically
distributed (i.i.d) as Normal (0,1).

The search engine is presented with the data of the target variable and all
of the available independent variables and the possible products of the single
variables. The performance criteria for the true model discovery task are whether
or not a model selection method manage to select a model with the same set of

Minimum Message Length Criterion for Polynomial Model Discovery 45

variables and corresponding coefficients as those of the true model, as reflected
in the following measures:

1. The number of variables selected in the discovered model
2. How close the coefficients of the discovered model are with those of the true

model (model error): l/K * Ef=i(/3fc - k?
3. Model predictive performance (on test data), quantified by

(a) Root of the mean of the sum of squared deviations:

RMSE = y i E I U ^

(b) Coefficient of determination: E? = l~ {YTi=i e?)/ TJ^=i{yi - V?

Jacobian Orthogonal Transformation (as opposed to straight Gaussian Elim-
ination) is performed on the covariance matrix of the independent variables for
the calculation of model coefficients. This ensures that should multicoUinearity
among variables exists, it is not reflected in the model coefficients. The nor-
malized variances of the single and product of variables are kept to unity by
standardizing the product of the standardized single variables.

3 Results and Discussions

The results of the experiments with artificial data given in Table 2 show that
the search engine using model selection methods MML , MDL, CAICF, SRM or
SC manages to home into the true models (i.e. all of the variables with direct
links to the target variable shown in the number of variables discovered. Due to
space constraint, the variables and their coefficients are not shown).

The other methods, namely AIC, BIC, &A]B? and F-test tend to choose wrong
and much more complex models. The fact that the models selected by AIC, BIC,
adji?̂ for Model 2 and 3 have 70 variables for all of the sample sizes suggests
that the search has been stopped before convergence.

Prom the performance criteria and the number of variables chosen for Model
1, 2 and 3, it is clear that AIC, BIC, adji?'̂ and F-test have overfitted the training
data. Hence, this implies that in those model selection methods, the penalty for
chosing a more complex model is too small compared to the reward of better
data fit.

Nonetheless, it has been observed that all of the methods selected some of
the significant regressors early on in the search process and assigned relatively
large coefficients to them and small coefficients to the variables chosen which do
not exist in the true model.

These results suggest that if a model selection procedure is to be fully au-
tomated, MML , MDL, CAICF, SRM and SC can reliably converge to the true
model (if one exists), or to a reasonably parsimonious model estimate. The mod-
els selected by the AIC, BIC, adji?'̂ and F-test may need further judgements in
deciding on the final model which can take two forms. First, choosing a model
half way through the search process just before it chooses a more complex model
with worse performance on the test data. Second, pruning out some of the vari-
ables with small coefficients. The need for these manual adjustments explains

46 G.W. Rumantir

the real reason behind the traditional common practice of specifying beforehand
the maximum number of variables for a model (e.g. [10], [7]).

0.98 l.Oq B.75I ; 0.62 0.85
P e 3—H» B-T—t 9r" 7-" 4

. H-37

p

J

o

3

J

p

«
p

"j

O

bl
P
S

Fig. 1. Model 1. The independent variables and the Unk coefficients to be discovered
are in the dashed-line box, i.e. only variables with direct Unlcs to the target variable

o

'»
o

s
p

&
o

s
p
g

p
=i

p

E
P

s
p

=
'

Fig. 2. Model 2. Variable 1 is directly Unked to all of the variables with direct links
(some of which are very weak) to the target variable. Large link coefficients eire delib-
erately placed between variable 1 and these variables to see if this will cause variable
1 to also be chosen

4 Conclusion

A version of Minimum Message Length model selection method and a non-
backtracking search strategy have been developed. Using the common search
strategy, the robustness of a number of model selection methods in performing
the task of selecting models that balance model complexity and goodness of fit
is examined.

Based on the experiments with artificial data and real atmospheric data for
hurricane intensity change forecasting, it has been shown that MML , MDL,
CAICF, SRM and SC methods are good candidates for fully automated model

Minimum Message Length Criterion for Polynomial Model Discovery 47

Fig. 3. Model 3. Random values with unit normal with no link to the target variable
are generated for variables 21 to 31 are included in the pool of potential variables

Table 2. Performance of the different model selection methods on the task of discov-
ering Model 1, 2 and 3 using varying sample sizes

Sample
Size

500

1000

2000

4000

6000

10000

Method

M M L
M D L

CAICF
S RM

SC
A I C
B I C

adjfl^
F-teat
M M L
M D L

CAICF
S RM

SC
A I C
B I C

adjR^
F-test
M M L
M D L

CAICF
S RM

SC
A I C
B I C

adjR^
F-test
M M L
M D L

CAICF
S RM

SC
A I C
B I C

adjB^
F-teat
M M L
M D L

CAICF
S RM

SC
A I C
B I C

adjK^
F-test
M M L
M D L

CAICF
S RM

SC
A I C
B I C

adjB^
F-teat

Model 1 (nvar= 10)
nvar

6
6
6
6
8

40
40
70
15

8
8
8
8

10
30
30

62
17

9
7
7
7
9

31
31
65
13

9
9
9
9

10
38
38
56
18
10
10
10

9
10
32
32

62
14
10
10
10
10
10
32
32
52
13

ModelErr

0.0109
0.0109
0.0109
0.0109
0.0045
0.0093
0.0093
0.0093
0.0052
0.0049
0.0049
0.0049
0.0049
0.0057
0.0035
0.0035
0.0061
0.0043
0.0014
0.0047
0.0047
0.0047
0.0014
0.0014
0.0014
0.0016
0.0011
0.0005
0.0005
0.0005
0.0005
0.0001
0.0011
0.0011
0.0009
0.0008
0.0002
0.0002
0.0002
0.0006
0.0002
0.0006
0,0006
0.0005
0.0004
0.0001
0.0001
0.0001
0.0001
0.0001
0.0005
0.0005
0.0004
0.0003

RMSE

1.0399
1.0399
1.0399
1.0399
1.0320
1.1858
1.1858
1.3232
1.0523
1.0367
1.0367
1.0367
1.0367
1.0427
1.0684
1.0684
1.1286
1.0395
1.0103
1.0224
1.0224
1.0224
1.0103
1.0316
1.0316
1.0597
1.0131
1.0013
1.0013
1.0013
1.0013
0.9994
1.0161
1.0151
1.0210
1.0061
1.0106
1.0106
1.0106
1.0131
1.0106
1.0182
1.01S2
1.0259
1.0130
1.0116
1.0116
1.0116
1.0116
1.0116
1.0162
1.0162
1.0193
1.0128

R^

0.7285
0.7285
0.7286
0.7285
0.7337
0.6713
0.6713
0.6174
0.7270
0.7567
0.7567
0.7567
0.7567
0.7544
0.7473
0.7473
0.7273
0.7676
0.7636
0.7677
0.7577
0.7577
0.7636
0.7662
0.7662
0.7473
0.7628
0.7743
0.7743
0.7743
0.7743
0.7753
0.7697
0.7697
0.7681
0.7727
0.7697
0,7697
0.7697
0.7686
0.7697
0.7672
0.7672
0.7648
0.7688
0.7702
0.7702
0.7702
0.7702
0.7702
0.7686
0.7686
0,7677
0.7697

Model 2 (nvar=: 18)
nvar

14
14
14
17
22
70
70

70
43
17
17
17
17
23
70
70

70
42
17
17
17
17
20
70
70
70
40
18
18
18
18
22
70
70
70
46
18
18
18
18
19
68
68
70
30
18
18
18
18
20
70
70
70
43

ModelErr

0,0068
0,0068
0,0170
0,0048
0,0077
0.0130
0.0130
0.0130
0.0130
0.0012
0.0012
0.0012
0.0012
0.0024
0.0059
0.0059
0.005S
0.0070
0.0013
0.0013
0.0013
0.0013
0,0011
0.0027
0.0027
0.0025
0.0022
0.0004
0.0004
0.0004
0.0004
0.0009
0.0013
0.0013
0.0013
0.0012
0.0002
0.0002
0.0002
0.0002
0.0002
0.0007
0.0007
0.0007
0.0006
0.0001
0.0001
0.0001
0.0001
0.0002
0.0005
0.0005
0.0005
0.0005

RMSE

1,0563
1,0563
1,0762
1,0635
1,1264
1,4311
1,4311
1,4311
1,3027
0.9894
0.9894
0.9894
0.9894
1.0123
1.1577
1.1577
1.1656
1.1128
1.0011
1.0011
1.0011
1.0011
1.0090
1.0767
1.0767
1.0787
1.0443
0.9885
0,9885
0,9885
0,9885
0,9955
1.0221
1.0221
1.0221
1.0119
1.0018
1.0018
1.0018
1.0018
1.0026
1.0245
1.0245
1.0240
1.0113
1.0014
1.0014
1.0014
1.0014
1.0024
1.0159
1.0159
1.0159
1.0095

R^

0.9453
0.9463
0.9432
0.9449
0.9388
0.9112
0.9112
0.9112
0.9218
0,9539
0,9539
0,9539
0,9539
0,9521
0,9403
0,9403
0,9396
0,9432
0,9609
0,9609
0,9509
0,9509
0.9602
0.9447
0.9447
0.9446
0.9472
0.9535
0.9535
0.9536
0.9535
0.9529
0.9509
0.9509
0.9509
0.9516
0.9518
0.9618
0.9618
0.9618
0.9517
0.9600
0.9600
0,9500
0,9609
0,9613
0.9513
0.9513
0.9513
0.9512
0.9502
0.9602
0.9502
0.9507

Model 3 (nvar= 10)
nvar

10
10
11
17
20
70
70

70
30
10
10
10
13
16
70
70

70
40

9
10
10
10
19
70
70
70
37
10
10
10
10
12
70
70
70
30
10
10
10
10
10
70
70
70
29
10
10
10
10
11
70
70

70
22

ModelErr

0.0027
0.0027
0.0050
0.0108
0.0120
0.0145
0.0145
0.0143
0.0119
0.0008
0.0008
0.0008
0.0035
0.0049
0.0062
0.0062
0.0062
0.0056
0.0022
0.0006
0.0006
0.0006
0.0030
0.0026
0.0025
0.0025
0.0028
0.0002
0.0002
0.0002
0.0002
0.0005
0.0011
0.0011
0.0011
0.0011
0.0006
0,0006
0,0006
0,0006
0,0006
0,0008
O.OOOS

0.0008
0.0012
0.0001
0.0001
0.0001
0.0001
0.0002
0.0005
0.0006
0.0004
0.0004

RMSE

1.0245
1.0245
1.0476
1,1242
1,1624
1,6098
1,5098
1,6126
1,2276
1,0453
1,0453
1,0463
1,0722
1,0875
1,2322
1,2322
1,2322
1,1686
0.9945
0.9857
0.9857
0.9857
1.0025
1.0746
1.0746
1.0746
1.0266
0.9899
0,9899
0,9899
0,9899
0.9907
1.0287
1.0287
1.0287
1.0066
1.0055
1.0066
1.0056
1.0066
1.0066
1.0318
1.0318
1.0318
1.0180
1.0207
1,0207
1,0207
1,0207
1,0211
1,0349
1.0349
1.0343
1.0240

R-'

0.9266
0.9266
0.9234
0.9129
0.9074
0.8601
0.8601
0.8596
0.8989
0.9266
0.9266
0.9266
0.9220
0.9200
0.9029
0.9029
0.9029
0.9099
0,9307
0.9319
0.9319
0.9319
0.9299
0.9216
0.9216
0.9216
0.9272
0.9316
0.9316
0.9316
0.9316
0.9315
0.9272
0.9272
0.9272
0.9296
0.9300
0.9300
0.9300
0.9300
0.9300
0.9270
0.9270
0.9270
0.9285
0.9290
0.9290
0.9290
0.9290
0.9290
0.9275
0.9275
0.9276
0.9286

48 G.W. Rumantir

selection tasks. Given a noisy da ta set, the methods can rehably converge to a
t rue model (if one exists) or to a reasonably parsimonious model.

The fact that AIC, BIG, adji?̂ and F-test have overfitted the training da ta
suggests that when comparing two models with different complexity, the increase
in the penalty terms for model complexity is not sufficient compared to the
decrease in the terms for goodness of fit. This prompted the doubt that the
balancing mechanism of the methods might not be robust enough for automated
model selection task.

Acknowledgments

The author is grateful to Ghris Wallace for guidance in the development of the
MM L method. The author is a recipient of the Austral ian Postgraduate Award
(Industry).

References

1. H. Akaike. Information theory and an extension of the Maximum Likelihood prin-
ciple. In B.N. Petrov and F. Csaki, editors, Proc. 2nd Int. Symp. Information Thy.,
pages 267-281, 1973.

2. R. Baxter and D. Dowe. Model selection in linear regression using the MML crite-
rion. Technical Report 276, School of Computer Science and Software Engineering,
Monash University, 1996.

3. H. Bozdogan. Model selection and akaike's information criterion (AIC): the general
theory and its analytical extensions. Psychometrika, 52(3):345-370, 1987.

4. J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, New York, 1988.

5. M. Ezekiel. Methods of Correlation Analysis. Wiley, New York, 1930.
6. C. Mallows. Some comments on Cp. Technometrics, 15:661-675, 1973.
7. A.J. Miller . Subset Selection in Regression. Chapman and Hall, London, 1990.
8. J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
9. J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society B,

49(l):223-239, 1987.
10. T. Ryan. Modem Regression Methods. John Wiley & Sons, New York, 1997.
11. G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464,

1978.
12. V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.
13. C.S. Wallace. On the selection of the order of a polynomial model, unpublished

technical report, Royal Holloway College, 1997.
14. C.S. Wallace and RR. Freeman. Estimation and inference by compact coding.

Journal of the Royal Statistical Society B, 49(1) :240-252, 1987.

Frequent Itemset Counting
Across Multipl e Tables*

Viviane Crestana Jensen and Nandit Soparkar

Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109-2122

{vivianG,soparkar}Qeecs.umich.ed u

Abstract. Available technology for mining data usually applies to cen-
trally stored data (i.e., homogeneous, and in one single repository and
schema). The few extensions to mining algorithms for decentralized data
have largely been for load balancing. In this paper, we examine mining
decentralized data for the task of finding frequent itemsets. In contrast
to current techniques where data is first joined to form a single table,
we exploit the inter-table foreign key relationships to obtain decentral-
ized algorithms that execute concurrently on the separate tables, and
thereafter, merge the results. In particular, for typical warehouse schema
designs, our approeich adapts standard algorithms, and works efficiently.
We provide analyses and empirical validation for important cases to ex-
hibit how our approach performs well. In doing so, we also compare two
of our approaches in merging results from individual tables, and thereby,
we exhibit certain memory vs I/O trade-offs that are inherent in merging
of decentralized partial results.

1 Introduction

Data mining (DM) algorithms, a part of knowledge discovery in databases, are
typically designed for centralized data (i.e., homogeneous data stored in one
central repository, with a central administration, and in a single table). However,
information may be dispersed among different tables, and in some cases, the
tables may reside in different physical locations. Our research, as presented in
this paper, describes and analyzes our DM algorithms for decentralized tables.

DM itself is generally performed on data stored in data warehouses, and even
so, the data may not be stored in a single table as is assumed by most available
algorithms (e.g., see [3,14,9]). For instance, the star schema [12] used in data
warehouses is organized into two groups: facts (the core data being analyzed)
and dimensions (the attributes about the facts); the fact table is usually much
larger than the dimension tables. If typical association rules (AR) algorithms
(e.g., see [3]) were applied to data stored in a star schema, it would be necessary
to compute first the join of the fact table with its dimension tables. Even though

* This work was initiated when the authors were visiting IBM T.J. Watson Research
Center, and was supported partially by IBM Reseairch funds.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 49-61, 2000.
© Springer-Verlag Berlin Heidelberg 2000

50 V.C. Jensen and N. Soparkax

the cost of a join is often overshadowed by that of running DM, a joined table
has many more columns and rows (which normalization had been used to avoid),
and this affects adversely the cost of the DM algorithms as well.

We begin with a concrete example: star schema tables which represent a case
of tables associated by foreign key relationships. Motivated by pragmatic consid-
erations stated above, we present an algorithm that adapts and extends available
algorithms to work efficiently with such decentralized tables. We exploit the de-
centralization by executing the algorithms concurrently on the separate tables,
and thereafter, we merge the results. This approach requires modifying available
algorithms, and considering new performance factors. We present our analytical
and empirical evaluation for particular cases to illustrate our performance gain.

2 Background and Related Work

We review the problem of discovering AR using relevant related work, and illus-
trate the problems in applying traditional techniques to decentralized data.

2.1 Related Work

The AR discovery problem may be described as follows. Given a set of items
/ , and a set of records T (i.e., a table), where each record tj is composed of a
subset ij of the set of items /, the problem is to find associations among the
items such that the presence of some items in a record will suggest the presence
of other items in the same record. An AR, denoted by X => F, where X and
Y are subsets of a set of items /, is said to have a confidence of c, c € [0,1],
iff (100 * c)% of the records in the database which contain the items in X also
contain the items in Y. The support for such a rule is defined to be the fraction
of records in the table which contain the items in X U y . The problem is to find
all rules that meet a user-specified minimum confidence and support.

Discovering AR as introduced in [2], is improved in [3] by the Apriori algo-
rithm in terms of performance. The problem is decomposed into: (1) finding the
large (i.e., frequent) itemsets (i.e., which meet a user-defined support threshold);
and (2) generating the AR, based on the support counts found in step 1. The
research in AR concentrates on the performance of the expensive first step (e.g.,
see [10,11,4,1]), as is the case in this paper. The Apriori algorithm performs
the counting of itemsets in an iterative manner, by counting the itemsets that
contain k items (fc-itemsets) at iteration k. In each iteration, a candidate set of
frequent itemsets is constructed, and the table is scanned to count the number
of occurrences of each candidate itemset.

AR were initially studied in the context of market basket data (see [2]), and
new types of AR have been considered as well (e.g., [14]). Other algorithms
based on [3] have been presented (e.g., [10,11,4,1]) - but they all assume that
the data is stored in one single table. Other work on distributing the Apriori
algorithm (e.g., [5]) considers databases that are horizontally, but not vertically,
partitioned. That is, one horizontally partitioned table is assumed, with the

Frequent Itemset Counting Across Multiple Tables 51

partitions stored at different sites; eacfi site fias ttie same scfiema. A minor
variation of tfie Apriori algorithm is run at the different sites, and the mined
results from the different partitions are merged. However, the different sites have
to synchronize after each pass, and the amount of data processed is essentially
the same as in a sequential algorithm (other than for message exchanges) - i.e.,
only the load is shared. In contrast, we provide an approach that applies to
vertically partitioned tables, and thereby, the cost of processing is reduced.

2.2 Decentralized Tables

We illustrate some problems in discovering AR for decentralized data as an
example. The following is a schema from a banking environment.

 Customer {acctif, name, balance, zipcode, age)
 ATM{atm^, type, street, zipcode, limit)
 ATM activity [xactif^, acctif, atmi^, amount)

In Figure 1, we show a relevant projection of the tables,̂ assuming that the
quantitative attributes (e.g., age and monetary amounts) are partitioned using
an appropriate algorithm (e.g., see [14]).

When accesses are limited to single tables, the traditional approaches to
discovering AR would work well for finding associations such as:

 < age : 20..29 >=^< balance : 1000..1999 > for table Customer

 < type = in >=>< limit: 10000..19999 > for table ATM

However, the same approaches will not work well to find:

 < type — drive >=>< age : 20..29 >
For rules involving more than one table, we would first need to join the tables

(i.e., Customer tx ATM activity ixi ATM). The significant redundancy in such
a joined table would degrade performance (e.g., the itemset < age : 30..39 >
AND < area : x > occurs three times in the final table, and therefore, would
need to be counted three times by the algorithm; and yet, it corresponds to just
one entry in the customer table for primary key acct ̂ = 05).

3 A Decentralized Approach

We suggest a two-phase counting strategy for the frequent itemset discovery:

 Find frequent itemsets on individual tables separately; and then
 Merge results from individual tables by using the foreign key relationships.

To begin with, we use the example from Section 2 to illustrate our approach.

The primeury key for the each table is underlined, and the repeat entries in
ATM activity for acct# and atm# correspond to different a;oci#'s.

52 V.C. Jensen and N. Soparkar

Customer Table

acct#

01
02
03
04
05
06

balance

1000..1999
1000..1999
1000.. 1999
2000..5000
2000.. 5000
1000.. 1999

zipcode

X

z

y
y
X

z

age

20..29
20..29
20..29
30..39
30..39
30..39

ATM Table

a tm#

A
B
C
D
E
F

type

drive
out
out
in
in
in

zipcode

X

y
z
X

y
z

limi t

0..9999
0..9999
0..9999
10000..19999
10000.. 19999
10000.. 19999

ATMactivity Table

acct#

01
01
02
02
02
03
03
04
04
05
05
05
06
06

a tm#

A
A
A
C
C
A
B
B
E
A
A
D
C
F

amount

15..25
15..25
15..25
50..100
50.. 100
15..25
15..25
50.. 100
500.. 1000
15..25
15..25
50.. 100
50.. 100
500..1000

Fig. 1. Relevant projection of the three tables.

3.1 Illustrativ e Algorith m

In the first phase, we count itemsets on the individual tables of Customer
and ATM separately. The itemsets from each individual table should be fre-
quent with respect to the final joined table - e.g., in the example of Sec-
tion 2.2, if we consider support on the individual tables alone, the itemset
< type : drive, zipcode : x > would have support of 0.167 for the table ATM,
whereas for the joined table it should be 0.429. The reason for the different
support values is due to the number of occurrences of the record atmjj ̂ — A'm
the ATMactivity table. By determining the number of occurrences of a given
record as it would be in the final joined table, (which, in this case, happens to be
the number of occurrences in the ATMactivity table), we can modify the Apri-
ori algorithm (for instance) in order that, when counting itemsets, this correct
number of occurrences is taken into account.

We also need to count itemsets whose items span more than one table. Now,
if an itemset is frequent, all of its subsets are also frequent [3]. Therefore, all
frequent itemset's subsets, such that all items come from any one table, are
frequent, and these subsets would have been found frequent when our algorithm
ran at that particular table. As a result, for cross table frequent itemsets in
our example, we only need to consider itemsets that are a concatenation of two
frequent itemsets: one from table Customer and one from table ATM?

Let table T = Customer t< ATMactivity ixi ATM. Let an itemset from
table T be 7T = Icustomer U IATM, where Icustomer and IATM contain items

^ For brevity, we disregard amount in the ATMactivity table; [6] describes handling
this.

Frequent Itemset Counting Across Multiple Tables 53

that belong to tables Customer and ATM, respectively. In order for an itemset
IT to be present in table T, a record rcustomer (that contained Icustomer) from
table Customer must be present together in table T with a record TATM (that
contained IATM) from table ATM. That is, table ATM activity must have an
entry corresponding to To count IT, we use
a 2-dimensional array where the elements in each dimension correspond to the
itemsets found frequent in each of the tables Customer and ATM. Let Icustomer
and IATM be the sets of frequent itemsets present in tables Customer and ATM,
respectively. By examining each entry in the ATMactivity table, we determine
the records in the two tables to be joined to form a record in table T. By
considering each pair of frequent itemsets, one from Icustomer and one from
IATM, we determine which itemsets are present in table T for a corresponding
entry in the ATMactivity table. Therefore, by using the 2-dimensional array
and one scan of table ATMactivity, we count all frequent itemsets in table T.

3.2 Algorith m for Star Schema

Let a primary table be a relational table with one primary key and no foreign
keys; the table may have other fields that are categorical, numerical or boolean.
Also, let a relationship table be a relational table which contains foreign keys to
other primary tables. Typically, primary tables refer to entities, and relationship
tables correspond to relationships in an ER diagram ([13]).

We present a decentralized version of the Apriori algorithm, as an exam-
ple case, for star schemas in which there are n primary tables (the dimension
tables): T i , r2, , r „ ; and one central relationship table (the fact table): Tin-
Each Tt{idt,ati, ,atmt) has idt as primary key, and Ti„(idi,id2 , ,idn) has
idt as foreign key to table Tj. Our algorithm finds frequent itemsets on table
T = Tin ixi Ti M Tj DX M r„ as follows.

Phase I : Count itemsets on primary tables.
1. Compute a projection of the relationship table: Access relationship table

Tin to count the number of occurrences of each value for the foreign keys idt.
Store the number of occurrences in a vector Vt for each table Tt. Note: the number
of elements in Vt equals the number of rows in Tt.

2. Counting frequent itemsets on individual primary tables: Count itemsets
using the Apriori algorithm as in [3] on the primary tables, but modified as
follows: in primary table Tt, when incrementing the support of an itemset present
in row i by 1, increment the value of the support by the number of occurrences
of the value of idt for row i in table Ti„ (i.e., the ith element of Vt). We refer
to this step of our algorithm as the "modified Apriori" in the remainder of this
paper. In this manner, we find the n sets of frequent itemsets, It from table Tt;
the itemsets are of length 1 up to m̂ (the number of attributes in table Tt).

Phase I I : Count itemsets across primary tables using the relationship table.
Generate candidates from the n primary tables using an n-dimensional count
array, where dimension t corresponds to elements of the set k together with the

54 V.C. Jensen and N. Soparkar

empty set.̂ We compute the joined table T without materializing it, processing
each row as it is formed, thereby avoiding storage costs for T. Now, for each row r
in T, consider the attributes in TTT, {r) that come from each table Tj, and identify
the subset of itemsets from It contained in -KTI {I')I say it- After computing all such
it, t = \..n, increment by one each position in the n-dimensional array whenever
an element IT is formed by concatenating an element of i i , an element of 12, ,
and an element of i„ (i.e., i i x 12 x x i„) . That is. IT exemplifies an itemset
contained in table T, such that its items belong to more than one primary table.
After table T is processed in this manner, the n-dimensional array contains the
support for all the candidate itemsets, and we can use it to determine which
itemsets are indeed frequent.

Our algorithm, running on decentralized tables, finds the same frequent item-
sets that the Apriori algorithm does running on the joined table. Omitting a
proof here due to space constraints, we indicate that it is a formalization of the
arguments presented in Section 3.1. Note that though our approach uses the
Apriori algorithm to perform counting in the primary tables, most other cen-
tralized algorithms could be modified to use the occurrence vector vt- We could
choose faster centralized algorithms (e.g., [10,11,4,1,7]), and thereafter, merge
the partial results by using our techniques. Also, although we illustrated decen-
tralized DM for the case of the star schema, our basic approach may be extended
to more general designs, and [8] provides an approach to do so. An immediate
advantage of our two-phase approach is that table T is computed and processed
only once, and therefore, there is no need to store it. This comes at the expense
of possibly generating more cross-table itemsets as compajed to Apriori, and we
examine this issue below.

3.3 Re-examining the Mergin g

A major consideration in our decentralized algorithms is in the merging phase;
the counting of itemsets at the individual tables is relatively simple. Our algo-
rithm of Section 3.2, which we call the I / O saving approach, has I/O costs
saved using multiple scans on smaller tables (as compared to scans over the
larger table T). Also, we save on processing time since a given frequent itemset
consisting of items from only one primary table will be counted fewer times than
if we counted on the table T (see Section 4). However, for itemsets with items
from more than one table, there is no pruning from one pass to the next because
all itemsets are counted in one scan during the merge. Therefore, we may end-up
considering some additional candidates (which we call "false candidates") than
if we were to perform pruning at every pass.

If the sets It are too large, our approach may require considerable memory
space; however, we do save on some costs since all the itemsets belonging to an
individual table are already considered at the merge point, and as a result, we
effectively prune away many potential cross-table itemsets. In any case, if the n-
dimensional array does not fit in memory, we may resort to a Memory saving

^ The empty set allows for candidates from more than one, but less than n, tables.

Frequent Itemset Counting Across Multiple Tables 55

merge algorithm for Phase II . This different approach does build the join of the
n + 1 tables, creating table T - but only at the merge phase. The counting step
of the original Apriori algorithm is run on table T, but generates only the cross
table candidate itemsets. The pruning step uses the frequent itemsets Zt, as well
as the cross table itemsets generated. In the Memory saving merge the I/O costs
could be higher since we may have to scan table T several times. However, we
avoid counting false candidates.

There is potential to use a hybrid I/O and Memory saving merge approach
as follows. We can build table T, and perform the Memory saving approach by
scanning it a few times until the remaining subsets of Zt fit in memory. Thereafter,
a switch may be made to the I/O saving approach. A limited version of this
algorithm proved to work well in experiments (see Section 5). Alternatively,
before merging all the results from Phase I, we can process the primary tables
pairwise (e.g., T\ cxi Ti„ cxi T2), using the I/O saving merge by considering
the sets li and I2 as candidates. In this way, we increase the pruning when
considering, say, Ti, T2 and T3, since we know the false candidates that involve
attributes of T\ and T2 earlier. Also, we can consider table T\ M Ti„ txi T2 in
place of Ti and T2, consequently reducing the number of dimensions. Here, we
would not need to materialize table T, but the number of joins that we would
compute (first pair-wise, then all tables) are more.

Another aspect of the merging process is the handling of categorical at-
tributes in the relationship table; [6] offers a discussion.

4 A Cost Analysis

For the case of the star schema, we compare the costs of running the original
Apriori algorithm on the joined table with the costs of running the algorithms
that we propose. We consider both options for Phase II (i.e., the I /O saving and
Memory saving approaches); and the processing costs considered are for I/O and
computing, and we examine each after providing some nomenclature. For details
of the derivations, please see [6].

4.1 Nomenclature

Assume n primary tables Tt,t = l..n and a relationship table Ti„ as described
in Section 3.2; and assume that the primary tables are ordered in their pri-
mary keys. Furthermore, the tables T(have r< records, and table Ti„ has ri „
records. We assume that rt <C r i„ , Vi. To run the Apriori frequent itemset count-
ing algorithm, the join of the n + \ tables, T = Ti„ 1X3 Ti cxi 72 cxi . .. ixi
T„ , is materialized, and T has ri „ records with attributes (irfi,aii , ,Gimi,
1 ^ 2 , 0 2 1, , a 2 m 2i I idn^anl, ,a.nm„)-

Let, k be the length of the longest candidate itemset on T; \cj \ be the number
of candidates of length j on T; kt be the length of the longest candidate itemset
on Tt; kin be the length of the longest candidate itemset on T, such that the
items belong to more than one primary table (fci„ < fc); |c '| be the number of

56 V.C. Jensen and N. Soparkar

candidates of length j where all the items belong to table Tt, t = l..n; |c]"| be
the number of candidates of length j where the items belong to more than one
primary table; and |Zj| be the number of frequent itemsets of length j where all
the items belong to table Tt.

4.2 I / O Costs

I / O costs axe directly related to the table size and the number of scans; the cost
of accessing from disk a single atomic value in a table is the unit for I/O costs.

1. Aprior i on table T:

where the first term is to compute the join {cj) of the tables {cj represents the
I/ O cost of whichever join algorithm is used), the second term is for writing
out the computed join, and the last term is for table scans when the Apriori
algorithm is run {k scans of the table).

2. Decentralized wit h I / O saving merge:

Ti*rin + ^"=1 rt + X;"=i kt{mt + l)rt + cj

where the first two terms correspond to step 1 of Phase I: first counting oc-
currences, and then storing the occurrences to be used in the next step. The
third term corresponds to step 2 of Phase I (i.e., running the modified Apriori
algorithm on the primary tables), and the last term corresponds to Phase II :
computing the join, but without saving the result of the join.

3. Decentralized wit h Memory saving merge:

n*rin+ E"=i ^t + E r=i '^ti'^t + l) n + cj+ rin I]"=i(mt) + kin * r i „ E"=i('Tit)

when compared to I/O saving, we add the costs of saving the joined table and
scanning fci„ times the table T.

For the I/O saving approach, we see that the dominant term is the scanning of
the primary tables {kt times for each table Tt), for the Memory saving approach,
the dominant term is scanning kin times the table T, and for the Apriori on
table T approach, the dominant term is k scans of table T. Given that kt < k,
and rt <C ri„, we see that our first approach offers I /O cost savings as compared
to first computing the join and then running the Apriori algorithm. For the
Memory saving approach, savings in I/O costs are not assured; they depend on
how kin compares to k. In practice, ifci„ could be much smaller than k since
related items are often clustered.

4.3 Compute Costs

For simplicity, we only discuss the dominant CPU cost: given a row and a set
of candidate itemsets, determining the candidates present in the row (called the
subset function). See [6] for a more complete cost model.

Frequent Itemset Counting Across Multiple Tables 57

For every scan, the subset function is executed for each row of the table. It
is difficult to assess the cost for this function; generally, the cost increases with
the length of the row and the number of candidates. With f{p,q) as the cost
of the subset function for a row of length p and a candidate set of size q, CPU
compute costs are:

1. Apriori on table T:

E j = l ^ l n * / (m , | C j |)

for each iteration j , with m as the length of a row in T.

2. Decentral ized wi th I / O saving merge:

Er=i E , t i n * f{mu \c)\) + E ; = I nn * f{mu \l]\)

where the first term arises from the modified Apriori at the primary tables, and
the second term from Phase II .

3. Decentral ized wi th Memory saving merge:

Er=i E,ti n * f{mu \c]\) + E fc n„ * /(m, |c]"|)

where m = E"=i ^ t ^̂ ^̂ kj" l = |cj| — E"=i kil - ^^^ ^^^ ̂ term is as above, and
the second term is for counting cross table itemsets.

The initial terms in our I/O saving approach are much smaller than cor-
responding ones for Apriori on table T since mt < m, |c*| < \cj\, kt < k and
i^t -C T'ln, VI For the terms in the second summation, it is the case that \lj | < \cj\,
and in many cases, \lj\ <C \cj\. In fact, the multiplicand could be less than r i „
depending on the statistical distribution of the data values (e.g., in case two
entries in Ti„ with the same value for idi happen to be close enough so that the
subset function does not need to be recomputed) - which cannot be exploited
by the Apriori on table T. For our Memory saving merge, we notice that the
only term multiplied by ri „ has a considerably smaller set of candidates in our
approach than in the original Apriori.

5 Empirical Validation

We restricted our attention to the case with three tables: two primary tables
and one relationship table; our analysis indicates that our approach is likely to
perform better with more involved database designs where the final joined table
is much larger than the sum of the sizes of the decentralized tables.

5.1 Exper imental Setup

We ran experiments on synthetic data using the data generator in [3]. Since our
study is for decentralized data, and [3] produces centralized data (i.e., one table),
we used the generator for the primary tables Ti and T2 with parameters: N, the

58 V.C. Jensen and N. Soparkar

number of items; \D\, the number of records; | r |, the average length of records;
and |7| the average length of the maximal potentially frequent itemsets.

To generate T12, we used our own generator with parameters: \D\, the number
of records in the final table T = Ti cxi T12 ixi T2; and R, the average number
of repetitions of entries in T12 (note: ri2 < r). Each line generated for table
T12 has randomly picked records from tables Ti and T2, and the number of
repetitions selected from a Poisson distribution (with mean = R). The join of
the three tables, T, is generated in order to compare with the original Apriori.
After computing the join, we determined the average length of records for table
T. The cost of the join was not included in the results, since all the algorithms
have to compute the join at some point (without necessarily materializing it).

We implemented the I/O saving, the Memory saving, and limited Hybrid (in
which we switch to the I/O saving approach after the first pass) approaches. Our
experiments used a 200 MHz Pentium Pro machine with a 256 Mbytes RAM,
running Linux. Among our extensive evaluations, two representative experiments
have their parameters listed in Figure 2.

Parameters for testing

Test

Test 1
Test 2

Ti

N

0.5K
0.5K

PI
IK

O.IM

\T\

10
6

| /|
4
4

T2
N

0.55K
0.55K

\o\
1.2K
O.IM

\T\

10
7

\IL
- 4

4

T12

1̂1
O.IM
lOM

R

50
300

T
\T\

20
13

Fig. 2. Parameters for testing.

We used various support values with the hash tree for the Apriori (see [3])
always fitting in memory. If the hash tree were to not fit in memory, our approach
would be even better, given that at each pass, the number of candidates that
our approach examines is smaller than the original Apriori.

5.2 Experimental Findings

We present our results as follows: first, we plot the time taken by the Apriori
algorithm (i.e., our base case) when evaluated on table T, and second, the time
taken by our approach divided by the time taken by the base case approach,
referred to as our "normalized" results; results are presented in Figures 3 and 4.

For Test 1, the files were small (Table T with only 100000 records), and our
goal was to verify whether our approach could provide some CPU savings, con-
sidering that the entire table fit in main memory. We verified that our approach
performed better, with the exception of the I/O saving algorithm. The reason
for the limited performance of the I/O saving approach is that, as explained
in Section 3.2, when there are many candidates from the primary tables, the
number of false candidates grows significantly. For lower values of support, the
savings provided are not so significant, but our algorithm still performs compa-
rable to Apriori. For Test 2, the files were larger, and the savings accrued due to

Frequent Itemset Counting Across Multiple Tables 59

5000

4000
3500

S 3000
^ 2500
1 2000

1500
1000
500

Base case running time

: A

 /

r /
, /

1 O.r 0.5 0.25
min support (%)

A ; -̂

i 0-8

Normalized Results

i ,' i

"x . *
1 0.6 ^
s ' a : i

g 0.4^?' -Q

1
* 0.2

0
1

Aprlori -
l/Osav

Mem sav
Hybrid

0.7 0.5 0.25
mIn support (%)

, --*
-B

Fig. 3. Results for Test 1.

1200

_ 1000

> 80O

1 600

400

200

0

Base case running time

/ :

0.7 0.5 0.25
min support (%}

1
1

i

1 -

0.8

0.6-

0.4

0.2

0

Normalized Results

1 1

*
D

1 *
>

0.7 0.5
min support (%)

6

0.25

Apriori
I/O sav

Mem sav
Hybrid

- X - --^
-D

Fig. 4. Results for Test 2.

fewer scans of the big table T. We see that the I/O saving algorithm performs
well for ail support values, an advantage with our approach since the I/O saving
algorithm need never materiahze the computed join.

Our algorithms were run serially; first we ran modified Apriori on table Ti,
then we ran modified Apriori on table T2, and then Phase II of our algorithm on
table T to compute frequent itemsets across tables. Therefore, the times shown
account for the running time on the primary tables as well. If the processing
were concurrently on the original tables, the make-span of the running times for
our approach would be even lower due to parallelism.

5.3 Comparisons wit h Cost Analysis

To compare the empirical results with our cost model, our code kept track of the
subset function costs; a counter was incremented each time a node in the hash
tree was accessed, and each time an itemset contained in a leaf was checked
against a record. Similarly, we monitored the actual time spent in I/O. The
results obtained in comparing with our modeling, showed that our cost analysis
is reasonably accurate; see [6] for details.

60 V.C. Jensen and N. Soparkar

6 Conclusions

In this paper, we examined the issues in mining of data stored in decentralized
tables. We described counting of frequent itemsets (used for association rules
discovery), without requiring to materialize a join of the decentralized tables. As
a basic case, we applied our approach to a star schema in which several smaller
dimension tables are associated by foreign keys to a central fact table, and we
presented efficient algorithms that adapts some available approaches. Previous
approaches required the separate tables to be joined to form a single table before
the data could be mined. In contrast, we exploited foreign key relationships
to develop decentralized algorithms that execute concurrently on the separate
tables, and thereafter, we merge the results. We examined the important issues in
merging partial results, the compute and memory requirements, and the trade-
offs that arise. Furthermore, we provided analyses to assess the performance of
our techniques, and we presented empirical validation. Our research indicates
the issues and feasibility of mining of decentralized datasets which will become
increasingly important as focus shifts toward scaling-up to real-life datasets.

Acknowledgements

The authors thank Ramesh C. Agarwal and Anant Jhingran of IBM Research
for valuable suggestions in the early stages of this work.

References

1. R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad, and V. Crestana. A tree projection
algorithm for generation of large itemsets for association rules. IBM Research
Report: RJ 21246. IBM Research Division, New York, 1998.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. of ACM-SIGMOD Int'l Conference on Man-
agement of Data, 1993.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proc. of 20th Int'l Conference on Very Large Data Bases, 1994.

4. S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and im-
plication rules for market basket data. In Proc. of ACM-SIGMOD Int'l Conference
on Management of Data, 1997.

5. D. Cheung, V. Ng, A. Fu, and Y. Fu. Efficient mining of association rules in
distributed databases. IEEE Transactions on Knowledge & Data Engineering,
1996.

6. V. Crestana and N. Soparkar. Mining decentralized data repositories. Tech Report:
CSE-TR-385-99. The University of Michigan, Ann Arbor. February 1999.

7. B. Dunkel and N. Soparkar. Data organization and access for efficient data mining.
In Proc. of 15th IEEE Int'l Conference on Data Engineering, 1999.

8. V. C. Jensen and N. Soparkar. Algebra-based optimization strategies for decen-
tralized mining. Tech Report: CSE-TR-418-99. The University of Michigan, Ann
Arbor. December 1999.

Frequent Itemset Counting Across Multiple Tables 61

9. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proc. of 4th Int'l Conference on Knowledge Discovery & Data Mining, 1998.

10. J. S. Park, M-S Chen, and P. S. Yu. An effective hash-based algorithm for mining
association rules. In Proc. of ACM-SIGMOD Int'l Conference on Management of
Data, 1995.

11. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of 21st Int'l Conference on Very
Large Data Bases, 1995.

12. Star Schemas and Starjoin Technology. A Red Brick Systems White Paper. 1995.
13. A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Systems Concepts. Mc

Graw Hill , third edition, 1996.
14. R. Srikant and R. Agrawal. Mining quantitative association rules in large relational

tables. In Proc. of ACM-SIGMOD Int'l Conference on Management of Data, 1996.

Frequent Closures as a Concise Representation
for Binary Data Mining

Jean-Frangois Boulicaut and Artur Bykowski

Laboratoire d'Ingenierie des Systemes d'Information
Institut NationaJ des Sciences Appliquees de Lyon, Batiment 501

F-69621 Villeurbanne cedex, France
{Jeem-Fremcois.Boulicaut,Artur.Bykowski}01isi.insa-lyon.fr

Abstract. Frequent set discovery from binary data is an important
problem in data mining. It concerns the discovery of a concise repre-
sentation of large tables from which descriptive rules can be derived,
e.g., the popular association rules. Our work concerns the study of two
representations, namely frequent sets and frequent closures. N. Pasquier
and colleagues designed the close algorithm that provides frequent sets
via the discovery of frequent closures. When one mines highly corre-
lated data, apriori-based algorithms clearly fail while close remains
tractable. We discuss our implementation of close and the experimental
evidence we got from two real-life binary data mining processes. Then,
we introduce the concept of almost-closure (generation of every frequent
set from frequent almost-closures remains possible but with a bounded
error on frequency). To the best of our knowledge, this is a new concept
and, here again, we provide some experimental evidence of its add-value.

1 Context and Motivations

One of the obvious hot topics of data mining research in the last five years has
been frequent set discovery from binary data. It concerns the discovery of set
of attributes from large binary tables such that these attributes are true within
a same line often enough. It is then easy to derive rules that describe the data
e.g., the popular association rules [2] though the interest of frequent sets goes
further [8]. In this paper, we discuss the computation and the use of frequent
sets considered as an interesting descriptive representation of binary table for
typical rule mining processes.

When looking for a generic statement, it is possible to formulate a data
mining task as a query over an intensionally defined collection of patterns [4].
Given a schema R for a database, let (P R, £, V) denote the pattern domain
where VYL is a language of patterns, £ is an evaluation function that defines
pattern semantics, and V is a set of result values. Given r, an instance of R, 8
maps each 6 € PR to an element of V. Then, a mining task is the computation of
the subset of T'R that fulfi l interestingness requirements. This can be formalized
as the computation of T/i(r, P R, q) = [6 & VR \ q{T, 9) is true} where predicate q
indicates whether a sentence is considered interesting. Typically, this predicate is

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 62-73, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Frequent Closures as a Concise Representation for Binary Data Mining 63

A
1
1
1
0
1
0

B
1
0
1
1
1
0

c
1
1
1
1
1
0

D
1
0
1
0
0
0

E
1
0
0
0
0
1

£.support(C, r) = 5/6 = 0.83
£.support(AC, r) = 4/6 = 0.67
f .support(yl => C, r) = 0.67
f .confidence(yl =i> C, r) = 4/4 = 1
f .confidence(C => A, r) = 4/5 = 0.8

Fig. 1. A binary dataset r and the behavior of some patterns

a conjunction of constraints that involves the evaluation function. This approach
has been more or less explicitely used for various data mining tasks [13].

Example 1. Given a schema R = { J 4 I , . .. ,.A„} of attributes with domain {0,1}
and a relation r over R, the support of a set X C R, ^.support(X,r), denotes the
fraction of rows of r that have a 1 in each column of X. FVequent set discovery
in r consists in computing every subset from R such that its support is higher
than a given threshold a. Here, PR is 2^, V is [0,1] and the predicate q is
.S'.support(,̂ r) > a. For instance, in Figure 1, supports of {C} and {A,C} in a
dataset are given. Notice that we often use a string notation (e.g., AC) to denote
a set of attributes. D

An explicit interestingness evaluation of all the patterns of PR in a dataset is not
tractable in general. Though an exponential search space is concerned, frequent
sets can be computed in real-life large datasets thanks to the support threshold
on one hand and safe pruning criteria that drastically reduces the search space
on the other hand (e.g., the so-called apriori trick [2]). However, there is still an
active research on algorithms, not only for the frequent set discovery task when
apriori-based algorithms fail (e.g., in the case of highly correlated data) but
also for new related mining tasks, e.g., the discovery of maximal (long) frequent
sets only [3].

Example 2. Association rules have been extensively studied since their intro-
duction in [1]. Given the schema R={y l i , . . . ,yl„} , an association rule is an
expression X =̂ y where X C R and Y € R \ X . PR is the (finite) collection
of such sentences. The typical "behavior" of these rules in an instance r over
R is evaluated by means of two interestingness measures called "support" or
"confidence". The support of a rule X =^Y is equal to the support oi XUY (as
defined in Example 1) while its confidence is equal to its support divided by the
support of X . V is [0,1] x [0,1] and the evaluation function provides the support
(5.support) and the confidence (£^.confidence). The "classical" association rule
mining task concerns the discovery of rules whose support and confidence are
greater or equal to user-given thresholds, resp., a and </>. The predicate q is de-
fined as £.support(,̂ v) > a A £.confidence(0, r) > (j>. For example, with a=0.b
and (^=0.9, A =̂ C is discovered in the data of Figure 1 while C =^ A'ls not.

In the case of association rules, left-hand and right-hand sides denote conjunc-
tions of properties. We can consider the case of generalized rules where other
boolean operators, like negation and disjunction, are allowed.

64 J.-F. Boulicaut and A. Bykowski

Example 3. The rule A/\-^E => C is an example of a generalized rule which might
be extracted from the data in Figure 1. Its support is 0.5 and its confidence is
1. Mining such rules is very complex and we do not know any efficient strategy
to explore the search space for generalized rules. D

As we are interested in very large datasets, an important issue is whether the
explicit interestingness evaluation of a collection of patterns remains tractable.
The answer can come from the computation of concise representations as defined
in [8]. Given a database schema R, a dataset r and a language of patterns V-R.,
a concise representation for r and 'PR, is a structure that makes possible to
answer queries of the form "How many times p € T'R occur in r" approximately
correctly and more efficiently than by looking at r itself. By the way, some concise
representations might enable to provide exact answers.

This paper deals with two related concise representations of binary data,
namely frequent sets and frequent closures. Not only the extraction of these rep-
resentations is discussed but we also point out their specific add-value when con-
sidered as concise representations for rule mining. Beside well-studied ap r i o r i-
based algorithms, we consider the c lose algorithm that provides frequent clo-
sures [10]. We implemented it and made experiments over real data. Furthermore,
we propose the new concept of almost-do sure and sketch the min-ex algorithm
to mine it. The main idea here is to accept a small incertitude on set frequency
since, at that cost, more useful mining tasks become tractable.

2 Frequent Sets As a Concise Representat ion
of Binciry Data

At first, we adapt the formal definition of [8] to the kind of concise representation
we need. Formally, if an evaluation function Q, a member of 0 (the class of
evaluation functions), is an application from a class of structures 5={sj | i € / }
into the interval [0,1], an e-adequate representation for 5 with respect to O is
a class of structures W={r i] i S / } and an alternative evaluation function m:
0 xW -> [0,1] such that for all Q G ©andsj € 5 we have:] Q{si)-m{Q,ri) \< e.
I denotes a finite (or infinite) index set of S.

Example 4- Let us illustrate the definition on classical concepts from program-
ming languages. Assume <S is a class, e.g. float, Sj is an instance of S, e.g. 0.02,
and 0 is the set of proper functions on that class, e.g. {sin, cos}. A concise rep-
resentation can be the couple {H,m), Ti being another class, e.g. short, and m
an alternative way to evaluate Q, e.g. using a table of values of sin and cos for all
angles from {0, 1, ..., 359}. Now, there is an alternative way to compute sin{x)
and cos{x). Instead of Si=0.02, we store ri—round{0.02 x 360/27r) mod 360, i.e.,
1. When the value of sin(0.02) is needed, we can use Tn{sin, 1) that returns the
value stored in the table associated to sin. Clearly, the result is approximate,
but the error is bound and the result is known at a much lower cost.

If the functions from 0 share a lot of intermediate results, and the number of
evaluations justifies it, a concise representation can be made of the intermediate

Frequent Closures as a Concise Representation for Binary Data Mining 65

results from which all functions from Q can be evaluated. Such a concise rep-
resentation avoids going back to the data. The alternative data representation
memory requirement might be smaller as well.

Let us now consider the class S of binary relational schema over the set of
attributes R. Instances Si £ S are relational tables. A query Q £ 0 over an
instance Si of S, denoted Q{si), is a function whose result is to be found with
an alternative (e-adequate) representation. H denotes the alternative class of
structures and the counterpart of evaluations, denoted by m, must be a mapping
from 0 X H into [0,1]. The error due to the new representation r, of Si (thus
compared to the result of Q{si) on the original structure) must be at most e for
any instance of Sj.

Example 5. Let r denote a binary relation over R = { A i , . . . , J4„} and consider
the set 0={5.support(X, r) | X C R} , where f .support(X, r) is the function
that returns the support of X in r (see Example 1). Given a frequency threshold
a, let FSa denote the collection of all frequent sets with their supports. Let
AltSup{X, FS^) denote the support of a frequent set X. FSa and the function
m{£.suppoTt(X,r),FSty) = AltSup{X,FS^) for X e FS„, 0 elsewhere, is a
(7-adequate representation for O over the binary relations defined on R. D

Let us discuss the use of FS ̂ as a concise representation for the rule mining
task we introduced in Example 2. The support and the confidence oi X => Y
are exactly known if the support of the rule is at least a, because the first
equals to AltSup{X U Y, FS^) (since X UY € FS„) and the second equals to
AltSup{XuY,FSa)/AltSup{X,FS<,) (since X e FS^, too). If it is not the case
(f .support(X =̂ F, r) < cr), the support is bounded by [0, <T]. If moreover the
left-hand side (X) of the rule is frequent, we can bound the confidence of the rule
by [0, a/AltSup{X,FS„)]. Otherwise, the confidence can be any number from
[0, 1]). FS(r turns to be a a-adequate representation for rule support evaluation
and a 0.5-adequate representation for rule confidence evaluation. 0.5-adequacy
for confidence is clearly insufficient for most of the applications. But if we are
interested only in frequent rules (support > cr), we get a 0-adequate representa-
tion (so an equivalent representation) for both, the support and the confidence
evaluation functions. It explains the effective strategy for extracting all the po-
tentially interesting association rules (w.r.t. frequency and confidence thresholds)
from FScr'- for each X 6 FS ̂ and for each F c X, the rule X \Y =^ Y is kept
iff it satisfies the minimum confidence criterion.

Generalized rules (see Example 3) can be evaluated using FS,^, too. The
problem is that the collection FS„ might not provide some of the needed sup-
ports for the computation of rule support and confidence even if the support of
the rule is above the support threshold.

Example 6. Assume we want to compute the support and the confidence of the
rule AA-IE => D. Applying well-known transformations, we can write the equa-
tions: f .support(A A -lE =̂ D,r)= f .support(j4D,r) — f .support(AD£ ,̂ r) and
£.confidence(^A-i£ => £),r) = <f.support(AA-'E ̂ D,T) / (£".support(A, r) -
£.s\xppovt{AE, r)). These measures can be computed exactly only if A, AD, AE
and ADE are frequent sets.

66 J.-F. Boulicaut and A. Bykowski

If we consider several negations and disjunctions, the number of terms will in-
crease and the need for the support of infrequent sets will increase too. Since
the computation of the support of all sets is clearly untractable, infrequent con-
juncts will give rise to an incertitude [8]. However, this might be acceptable for
practical applications. It becomes clear that the adequacy of frequent sets as a
concise representation depends on how frequent are the patterns of interest, i.e.,
the more a pattern is frequent, the less an incertitude wil l aSect the result.

3 Computing Frequent Sets and Frequent Closures

The ap r i o ri algorithm is defined in [2] and we assume that the reader is familiar
with it. It is a levelwise method based on the itemset lattice (i.e., the sets of at-
tributes ordered by set inclusion). The algorithm searches in the lattice starting
from singletons and identifies level by level larger frequent sets until the maximal
frequent sets are found, i.e., the collection of sets that are frequent while none of
their supersets is frequent. This collection is denoted by Bd'^{FS,j) and is called
the positive border of FS ̂ [13]. A safe pruning strategy (supersets of infrequent
sets can not be frequent) has been shown to be the very efficient for the com-
putation of FSa in many real-life datasets. One of the identified drawbacks of
apriori-based algorithms is their untractability for highly correlated data min-
ing. Data are correlated when the truth value of an attribute or a set of attributes
determine the truth value of another one (in other terms, association rules with
high confidence hold in it). The problem with correlated data originates from
the fact that each rule with high confidence pushes the positive border back by
one level for a significant part of the itemset lattice (when a does not change).
Highly correlated data contain several such rules, thus pushing back the positive
border by several levels. Consequently, the extraction slows down drastically or
can even turn to be untractable. An algorithm that would avoid counting sup-
port for a great part of frequent sets would accelerate the process. This is the
assumption of useful algorithms like max-miner [3] that provides Bd'^{FSa) but
not FSa- We will consider hereafter an algorithm that avoids counting support
for many frequent sets though it provides -FS'cr, i.e., every frequent set and its
support.

The experiment summarized in Table 1 emphasizes the influence of high
correlation of data. We provide the output of the frequent set discovery tool
f reddie that implements an ap r i o ri algorithm. The left column corresponds to
a real dataset from ANPE ,̂ the right one corresponds to census data (c20dl0k)
preprocessed at the University of Stanford .̂ We kept in both cases the first
10000 objects and for each object, their 17 first variables (each variable might
be encoded in a number of binary attributes). In each column of Table 1, the first
information provides the iteration counter (at level k, the level k of the itemset

^ ANPE is the French national unemployment agency: datalOK contains data about
unemployed people in december 1998.

^ ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip.

Frequent Closures as a Concise Representation for Binary Data Mining 67

Table 1. Mining frequent sets using f reddie (apriori)

Inpu t i il e : datalO K

Frequenc y threshol d 0.0 5

Candidat e Frequen t Tim e

set s

Iter l :

Iter 2 :

Iter s :

Iter 4 :

Iter s :

Iter s :

Iter 7 :

Iter s :

Iter 9 :

Iterl O

Iterl l

Iterl 2

Tota l :

214
2080

2991

5738

7203

6359

3733

1395

304
: 3 2

: 1

set s

65
602

2347

4935

6623

5957

3558

1359

302
32

1
: N o more .

3483 6 2578 1

(s)
0.1 4

18.5 8

78.7 6

223.9 5

367.8 6

391.7 9

257.8 8

105.2 0

23.1 3

2.7 0

0.4 8

1470.4 7

Inpu t fil e : basel7.tx t

Frequenc y threshol d :

Candidat e

set s

Iter l :

Iter 2 :

Iter 3 :

Iter 4 :

Iter s :

Iter 6 :

Iter 7 :

Iter 8 :

Iter 9 :

Iterl O

Iterl l

Iterl 2

Iterl 3

Iterl 4

Tota l :

317
1275

3075

8101

1545 4

2072 0

1997 3

1385 9

6811

: 227 7

: 47 9

: 5 4

: 2

0.0 5

Frequen t Tim e

set s

51
544

2702

7940

1536 5

2070 5

1996 8

1385 7

6811

2277

479
54
2

: N o more .

9708 0 9075 5

(s)
0.1 5

14.6 0

92.1 2

376.8 7

965.4 1

1564.6 3

1777.4 5

1429.2 1

798.3 9

292.6 8

58.8 3

5.8 9

0.7 4

7376.9 7

lattice is processed). Then, we get the number of candidates, the number of
frequent sets and finally the duration of the iteration (CPU time).

The " independance analysis" of the data has shown that ANPE data are
slightly correlated while census data are highly correlated. However, the average
level of correlation in ANPE data is not low. Typical basket analysis data are
much less correlated and would bring down the execution time to a few minutes
(and the number of frequent sets would certainly be smaller for a = 0.05).

The problem is clearly that a user might want to mine (highly) correlated
data with rather low support thresholds while apriori-based algorithms become
untractable (time, memory) in that cases.

c lose is an algorithm that computes frequent closures in binary data [10]. A
set X is a closure in r when there is no attribute in R \ .X' that is always true
when attributes in X are true. In other words, for each property p not in X,
there is a tuple in r that has all properties of X and does not have the property p.
A closure is called a frequent closure when its support in the database is greater
than a given threshold a.

Example 7. In the data from Figure 1, BC is closed while BD is not closed.
Indeed, the objects 1 and 3 (the only ones that verify B and D) verify A and C,
as well. Furthermore, if <7=0.6, BC is a frequent closure in that data.

By reducing the number of candidates considered during the extraction (the
lattice of closures is generally quite much smaller than the lattice of itemsets, see
for instance Figure 2 on the left), c lose can be more efficient than ap r i o r i. It is
straightforward to derive all the frequent sets and their supports from frequent
closures.

68 J.-F. Boulicaut and A. Bykowski

BCD ©

CD ©

Fig. 2. Closed set lattice (left) and sub-lattice of itemset lattice w.r.t. generator D
(right) for the data from Example 1

We now sketch the c lose algorithm and introduce our implementation close2.
Formal definitions and proofs of properties about c lose are in [10]. Mining clo-
sures as a formal basis for association rule mining has also been suggested in
[12] though no algorithm was proposed in that paper.

Let FCa denote the collection of all frequent closures and their supports. The
positive border of FCa, Bd^{FC„), is the set containing all frequent closures
for which no superset of each of them is in FC„. It has been proven that, for a
given dataset, Bd+{FCa) = Bd+{FS<r).

There are two properties of the itemset lattice on which substantial opti-
misations can rely. First, the supports of a set and of its closure are the same
(see the right part of Figure 2 for an example derived from Example 1). Thus,
once identified the closure of a set to be different from this set, we can exclude
the closure and all intermediate sets from the support counting procedure since
they all have the same support. The sets that go through the support counting
procedure are called generators. In Figure 2 on the right, it is emphasized that
counting the support of generator D, whose closure is ABCD, enables to derive
the support for the whole sub-lattice. Second, if the closure oi X is X U C, the
closure of X U y is a superset oi XUYUC. These properties are used as a base
of a safe pruning strategy integrated in c lose [10].

In our implementation close2, the extraction of frequent sets is performed
in two steps. The first step extracts frequent closures from a binary relation. The
extracted closures correspond to all generators. There may be some duplicates,
in terms of closures, because different generators may have a same closure. The
second step takes that collection of frequent closures, removes duplicates, stores
FCa set and derives FSa- In Table 2, we compare the execution of close2 with
f reddie on ANPE and census data. The given time is the average CPU time
for 2 executions. For close2, the time of each step is given. The I/O overhead
is provided as the number of scans on the data. We notice that the relative
advantage of close2 over f reddie is much higher in case of highly correlated
data. However, in both cases, the use of close2 is worthwhile.

Frequent Closures as a Concise Representation for Binary Data Mining 69

Table 2.

Dataset/cr

ANPE/0.05
census/0.05
ANPE/0.1
census/0.1
ANPE/0.2
census/0.2

Comparison of freddi e

freddi e (apriori)
Time (s)

1463.9
7377.6
254.5
2316.9
108.4
565.5

FS„

25 781
90 755
6 370
26 307
1 516
5 771

DB scans

11
13
10
12
9
11

(aprior i 1 and close2

close2
Time (s)

69.2/6.2
61.7/25.8
25.5/1.1
34.6/6.0
11.8/0.2
18.0/1.1

FCa

11 125
10 513
2 798
4 041
638

1 064

DB scans

9
9
8
9
7
9

As it is possible to generate FS ̂ from the corresponding FC^ and ||F5ff|| >
||FC<j||, FCa can be considered as a concise representation of the binary relation
which is more compact than FSa, without any loss of information. Beside effi-
ciency, notice that the postprocessing of frequent closures to get rules can also
give rise to a faster computation of useful rules. A first study in that direction
concerns the computation of non redundant rules [11].

4 A New Concise Representat ion: Mining
Almost-Closures

This section concerns the concept of almost-closure in binary data. To the best
of to our knowledge, this is an original concept. Details about the formalization
and the algorithm are available in [6,5].

A fundamental property of set lattices which is used in c lose, is that the
same support of the sub-lattice's bottom and top implies the same support for
all sets of that sub-lattice. The more the data is correlated (many association
rules with confidence 1), the more the collection of frequent closures is compact
compared to the collection of frequent sets. We decided to relax the constraint
equality of supports, which seems to be a very exigent one, with an "almost-
equality" constraint. The new algorithm, called min-ex, does not require any
association rule with confidence 1 to be present in the mined data. Instead, it
can take advantage of a correlation even if it is approximate (the confidence of
association rules holding in the data should be however close to 1). These situa-
tions might correspond to exceptions in regular behaviours and/or to erroneous
tuples that survived preprocessing steps. We expect that, in case of real-life data
mining, we will remove much more candidates (w.r.t. c lose) from the support
counting procedure, given that min-ex pruning strategy is similar to c lose prun-
ing strategy. The trade-off consists in accepting a small incertitude on supports
though being able to mine correlated data with lower frequency thresholds. In
the following, we consider that the support of a set is the (absolute) number of
objects (tuples) in which all the attributes of the set are true. This is different
from the definition in Example 1.

Formally, if X (an itemset) "occurs" in t objects within the database, we
say that an attribute A is in the almost-closure of X if the support of X U {A}
is at least t — 6 {6 should be small, not to loose the practical relevancy of the

70 J.-F. Boulicaut and A. Bykowski

extracted information). The almost-closure of X is the set containing all such
attributes. Conceptually, a closure is a special case of an almost-closure when
6=0.

Example 8. In data from Figure 1, considering the generator C, one finds that
A and B are in the almost-closure of C for 6=1 while none of them was in its
closure. D

Now, let us explain where the incertitude comes from. Assume that the almost-
closure of X equals to X U {A,B,C}. Let the support of X be sx, and the
supports of X U {A}, X U {B} and X U {C} be respectively sx — SA, SX — SB
and Sx — sc where SA, SB and sc are positive numbers lower than 6. We have
considered two possibilities for output content. The first stores for each frequent
almost-closure: generator items (elements of X , in the example), generator sup-
port (sx) and almost-closure's supplement items {A, B and C). The second
adds to each item a from the almost-closure supplement the difference of sup-
port between X and X U {A} (this difference is called miss-number hereafter).
In our example that part corresponds to SA, SB and sc- These values have to
be known, because to decide if an item is in the almost-closure, they must be at
hand. Miss-numbers are values of miss-counters at the end of the corresponding
database pass.

The fact, that, for instance, B and C are in the almost-closure of X only
implies that they occur almost always with X. Assume that we are in the second
case of output (miss-numbers stored). Prom the supports oi X, X U {B} and
X U {C} we can not infer the support of X U {B, C}, because we do not know if
the misses occurred on the same objects (support would be sx — Tnax{sA, SB))
or on disjoint ones (support would he sx — SA — SB)- Al l intermediate cases are
allowed, too. Storing miss-numbers greatly improves the precision of the resulting
supports, above all when they are small, compared to 6. Therefore, we choose
this solution, even if it increases the volume of output (in terms of quantity of
information, not in terms of number of elements). FaC ̂ denotes the collection
of all frequent almost-closures for threshold a and is the output of min-ex.

An important property about closures has been preserved. Still, if the almost-
closure oi X is X U C, the almost-closure of X U y is a superset of X U y U C.
Let us prove it. Attribute A is in the almost-closure of X iff £.support(X, r) —
f .support(X U {j4},r) < 6. In other words, the number of objects that have all
properties of X and do not have the property A is at most 6. Clearly, the number
of objects satisfying a set of properties can not grow if we enforce that property
with a new constraint. Therefore, the number of objects that have all properties
of X and all properties of Y and do not have the property A can not be greater
than 6. So, all elements of the almost-closure of X (i.e. C) must be present in
the almost-closure oi X\JY.

This property may be used as a basis of an efficient safe pruning strategy,
analogously to the pruning strategy of c lose. We have been looking for such a
strategy. The one implemented in the actual implementation of min-ex seems to
be reliable [6]. However, in spite of numerous tries, we did not establish a proof
that it is safe. We have not found either a counterexample. We checked the

Frequent Closures as a Concise Representation for Binaxy Data Mining 71

completeness in our practical experiments. However, proving the incompleteness
or the completeness of our algorithm remains an open problem though it does
not prevent its use for practical applications.

Deriving frequent sets from frequent almost-closures is as straightforward as
for close. The difference is that now there is an incertitude on the support of
some frequent sets.

The sub-lattices (corresponding to almost-closures) of which the support
range, due to S, crosses the threshold is kept in the result set, leading to the
collection FaC„ that enables to derive a superset of FS^r- This is a safety mea-
sure: we do not want to prune out sub-lattices of which some itemsets are known
to be frequent, for the sake of completeness.

We did several experiments using min-ex on census and ANPE datasets (see
Table 3). A first remark is that it confirms that c lose and min-ex with 6=0
are functionally equivalent. In the case of closeg, the reduction of the size of
FCa w.r.t. the corresponding FS ̂ highlights the tight-correlation level (relative
number of rules with confidence 1) of the data. In the same way, the further
reduction of output (FaC,r compared to FCa ̂) for different
values of 6, points out the loose-correlation level (relative number of association
rules that are nearly "logical" ones).

Let us now discuss the add-value of min-ex w.r.t. c lose for highly correlated
data mining like census data mining. First of all, we must recall that a too high
value of 6 might provide a "fuzzy" FaC„ collection, leading to, e.g., rules with
too high incertitude on evaluation functions.

Consider the CPU time needed by the extraction of FaC^. It has been more
than halved (census data) for 5=6 and the tested frequency thresholds. Next,
the I/O activity (number of database passes) has been reduced, an important
criterion if the I/O turns to be a bottleneck of the system. A third advantage is
that the output collection size has shrunk and we assume that further subsequent
knowledge extraction steps will be faster.

Another way to demonstrate the add-value of min-ex can be derived from
Table 3. We can extract the following concise representations of census data:
either FCQ.OI with c lose or FaCo.oos with min-ex and 5 = 2. It took the same
time (154.3 vs. 155.2 sec, 10 passes for both executions) and we got a similar-
sized output collection (52166 vs. 55401 itemsets). It is possible without incerti-
tude (FCo.oi) or with a very good precision [5=2) on the frequent set supports
{FaCo.oos)- The difference is that, using min-ex, we gained knowledge about
all phenomena of frequency between 0.5% and 1% at almost no price. However,
we must notice that in case of uncorrelated data, the memory consumption and
CPU load due to maintaining miss-counters may affect the performances (See in
Table 3 the extraction time evolution for ANPE/cr=:0.05). Only, with a signifi-
cant reduction of number of candidates (thus only in case of correlated data), the
memory consumption will recover (e.g., see A N P E / C T = 0 . 0 05 or census/o-=0.05).

Applications. A promising application of min-ex would be to enable the discov-
ery of repetitive but scarce behaviours. Another application concerns generalized
rule mining. Generalized rules, if generated from FS„, have an incertitude on

72 J.-F. Boulicaut and A. Bykowski

Table 3. Evaluations of implementations close2 and min-ex

Dataset/(7

ANPE/0.005

census/0.005

ANPE/0.01

census/0.01

ANPE/0.05

census/0.05

close2
Time (s)

816.7

197.8

421.8

154.3

69.2

61.7

FC^

412 092

85 950

161 855

52 166

11 125

10 513

DB scans

11

10

11

10

9

9

min-ex
5

0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6

Time (s)

851.3
759.5
639.7
553.0
216.2
155.2
118.4
98.5
450.4
466.8
445.1
416.4
166.2
124.9
95.0
79.0
71.5
79.7
85.3
88.4
64.4
50.2
38.2
32.2

FaC„

412 092
265 964
182 829
135 136
85 950
55 401
39 036
29 848
161 855
130 765
104 162
84 318
52 166
33 992
24 109
18 822
11 125
11 066
10 931
10 588
10 513
7 294
5 090
4 086

DB scans

11
11
10
10
10
10
8
8
11
11
10
10
10
10
8
8
9
9
9
9
9
9
8
8

measures like support and confidence due to unknown infrequent set supports
[8]. Using min-ex, it is possible to reduce the bounds of error on evaluation
value by supplying the support value for many more itemsets. The incertitude
introduced by min-ex to some terms of generalized rule evaluation functions can
be negligible (w.r.t. function result) compared to the contribution made by the
larger number of known terms. Another interesting use is when an approximate
result of the data mining step is sufficient. For instance, consider the "sampling"
algorithm [7] during its "guess" phase. This phase is supposed to provide an ap-
proximation of the collection of frequent sets. An error is inherent to the use of
sampling. If we keep the error introduced by the use of almost-closures negligible
against the error due to sampling, the guess will be as good as before, but will
be computed faster.

5 Conclusion

We studied several concise representations of binary data when data mining
processes make use of set support (e.g., when looking for association rules). We
studied the close algorithm and beside its introduction in [10], we provide a new

Frequent Closures as a Concise Representation for Binary Data Mining 73

implementation and experimental evidences about its add-value for the concise
representation of (highly) correlated data. I t has lead us to the definition of the
concept of almost-closure and, here again, we provided experimental evidences
of its interest when we are looking for concise representation in difficul t cases
(correlated data and low frequency thresholds). The discovery of almost-closed
frequent sets gave rise to tricky problems w.r.t. the completeness of the mining
task. Completeness of min-ex remains an open problem at that t ime and we are
currently working on it.

A c k n o w l e d g e m e n t s. The authors thank H. Toivonen from the University of
Helsinki for letting us use the f r e d d ie software tool and the Rhone departmental
direction of ANPE who provided data. Last but not least, we want to thank C.
Rigotti for stimulating discussions.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In: Proc. SIGMOD'93, Washington DC (USA), pages
207 - 216, May 1993, ACM Press.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining, pages
307 - 328, 1996, AAA I Press.

3. R.J. Bayardo. Efficiently mining of long patterns from databases. In: Proc. SIG-
MOD'98, Seattle (USA), pages 85 - 93, June 1998, ACM Press.

4. J-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes within
the Inductive Database Framework. In: Proc. DaWak'99, Florence (I), pages 293 -
302, September 1999, Springer-Verlag, LNCS 1676.

5. J-F. Boulicaut, A. Bykowski, and C. Rigotti. Mining almost-closures in highly
correlated data. Research Report LISI INSA Lyon, 2000, 20 pages.

6. A. Bykowski. Frequent set discovery in highly correlated data. Master of Science
thesis, INSA Lyon, July 1999, 30 pages.

7. H. Toivonen. Sampling large databases for association rules. In: Proc. VLDB'96,
Mumbay (India), pages 134 - 145, September 1996, Morgan Kaufmann.

8. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed rep-
resentations. In; Proc. KDD'96, Portland (USA), pages 189 - 194, August 1996,
AAA I Press.

9. H. Mannila. Inductive databases and condensed representations for data mining.
In: Proc. ILPS'97, Port Jefferson, Long Island N.Y. (USA), pages 21 - 30, October
1997, MI T Press.

10. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, Volume 24 (1), pages
25 - 46, 1999.

11. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set discovery of small
covers for association rules. In: Proc. BDA'99, Bordeaux (F), pages 53 - 68,
October 1999.

12. M. Zaki and M. Ogihara. Theoretical foundations of association rules. In: Proc.
Workshop post-SIGMOD DMKD'98, Seattle (USA), pages 85 - 93, June 1998.

13. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241 - 258, 1997.

An Optimization Problem
in Data Cube System Design

Edward Hung, David W. Cheung, Ben Kao, and Yilong Liang

Department of Computer Science and Information Systems,
The University of Hong Kong, Hong Kong.

{ehung,dcheung,kao,ylliang}fflcsis.hku.hk

Abstract. In an OLAP system, we can use data cubes (precomputed
multidimensional views of data) to support real-time queries. To reduce
the maintenance cost, which is related to the number of cubes materi-
ahzed, some cubes can be merged, but the resulting larger cubes will
increase the response time of answering some queries. In order to sat-
isfy the maintenance bound and response time bound given by the user,
we may have to sacrifice some of the queries and not to take them into
our consideration. The optimization problem in the data cube system
design is to optimize an initial set of cubes such that the system can
answer a maximum number of queries and satisfy the bounds. This is an
NP-complete problem. Approximate algorithms Greedy Removing and
2-Greedy Merging are proposed. Experiments have been done on a cen-
sus database and the results show that our approaich is both effective
and efficient.

1 Introduction

1.1 DSS and OLA P

With the advancement of data warehousing technology, corporations are build-
ing their decision support systems (DSS) on large data warehouses. In order to
support on-line analytical processing (OLAP), the system is required to answer
queries with a fast response time. However, queries are usually about summa-
rization information, so the system needs to scan almost the entire database,
giving a very poor response time. One efficient approach to reduce the response
time is to translate frequently asked queries to data cubes or simply cubes, which
are precomputed multi-dimensional views of the data in the data warehouse. [3]
Once the cubes are built, answers to the queries can be retrieved from the cubes
in real time.

An OLAP system can be modeled by a three-level architecture that consists
of: (1) a query client; (2) a data cube engine; and (3) a data warehouse server
(Figure 1). The bottom level is a data warehouse built on top of one or more
source operational DBMSs. It needs to support fast aggregations by using dif-
ferent indexing techniques such as bit-map indices and join indices [6,7]. The
middle level contains a set of cubes generated from the data warehouse. The top

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 74-85, 2000.
© Springer-Verlag Berlin Heidelberg 2000

An Optimization Problem in Data Cube System Design 75

level 1

level 2

level3

Fig. 1. Three-level Architecture of a Data Cube System

level is a query client, which supports DSS queries and allows user to browse the
data cached from the cubes (like slicing and dicing). A query submitted to the
client interface level, after being checked against the cube set, will be directed to
the middle level if it can be answered by the cubes there; otherwise, the query is
passed to the bottom level, from which the results can be derived. Since cubes
store pre-computed results, it is much faster to answer queries with cubes than
with the data warehouse.

Various studies have been made on the three levels of OLAP system. For
the cube level, the main research focuses on the two issues: (1) how to compute
aggregates from a base cube efficiently, and (2) how to store a cube. However,
our previous research study [2] has shown that the key to the design of a query-
efficient OLAP system lies on the design of a good cube set. We remark that
the initial cube set, with one cube being tailor-made to answer each query,
gives the best query performance. The OLAP system would be able to support
real-time responses if the cube level can answer all the queries. Unfortunately,
more the cubes materialized, higher is the maintenance cost because it usually
takes more number of scanning on the database to compute aggregates during
maintenance. Thus, materializing all possible cubes is clearly impractical. We call
the maximum number of cubes materialized as the maintenance bound. We can
reduce the cube number by selecting several disjoint subsets of cubes and merging
them into some larger cubes. As a result, a smaller cube set can be obtained. This
improves the maintenance cost at the expense of increasing query response time
because some queries processed using merged cubes generally take longer time
than using the original smaller cubes as the resulting cube is in general larger
than any one of the component cubes. Therefore, there is a trade-off between
query performance and cube maintenance cost.

Since the OLAP system needs to support real-time responses, a response
time bound is necessary, i.e., the sum of response time to answer a selected set of
frequent queries using the resultant cube set should not exceed the bound given
by the user. However, sometimes the maintenance bound and the response time

76 E. Hung et al.

bound that the user gives are so strict that there does not exist any solution even
after considering all possible merging of cubes. In that case, we have to sacrifice
some of the queries, remove them from our selected set of queries and not to
consider the response time of answering them. Also, the corresponding cubes
are removed from our initial set. As a result, we may be able to find a solution
from the smaller set of cubes, which satisfies the bounds. Our problem now is
how to choose a minimum number of cubes to remove, and how to merge the
remaining cubes so that both of the maintenance bound and the response time
bound are satisfied. This is an NP-complete problem, and what we can do is to
develop some efficient and eflFective approximate algorithms so that a solution
with acceptable performance can be found in an acceptable execution time.

1.2 Data Cube System Design

Given the user query requirements, namely, a set of frequently asked queries,
a maintenance bound and a response time bound, our goal is to derive a data
cube set that satisfies both of the bounds. Our approach to this data cube system
design problem is a two-phase process:
(1) Design of the Initial Data Cube Set

The first phase is to derive an initial set of data cubes from the set of fre-
quently asked queries. This set is called the initial data cube set. The answer of
each query can be retrieved directly and efficiently from a cube in this initial
set.
(2) Optimization of Data Cube System Design

The second phase is an optimization of the initial data cube set so that the
maintenance bound and the response time bound are satisfied by removing a
minimum number of queries and merging the remaining cubes.

1.3 Related Work s

Several papers have been published on data cube implementation. Cube selection
algorithms have been proposed in [5,8]. Our optimization approach differs from
these previous works in two aspects. First, cube selection assumes that there
is one root base cube encompassing all the attributes in all the queries and
that some queries are associated with the root base cube. As a result, a cube
selection would always include the root base cube in the answer. In a general
DSS such as TPC-D [9], we do not anticipate many frequent queries that involve
all the attributes; hence, cube selection is not suitable for solving our problem.
Secondly, most cube selection algorithms start from the base cube at the top
level and determine what cubes deducible from it should be implemented so that
queries on the aggregates in the base cube can be answered efficiently. Tackling
a very different problem, cube optimization tries to merge the cubes in an initial
set in a bottom-up manner to generate a set of cubes which has an optimal
performance for a given set of frequently-asked queries. The search space of the
optimization problem is in general much larger because of the large numbers of

An Optimization Problem in Data Cube System Design 77

attributes in the initial data cube set. In short, cube selection algorithms are for
cube implementation but not for cube optimization.

1.4 Organization of Paper

After introducing the optimization problem in data cube system design and
our approach to solve it, we will discuss the optimization problem in details in
Section 2. The optimization phase in our approach can be divided into two levels,
which will be discussed in Section 3 and 4. The performance study is described
in Section 5. Finally we give a conclusion in Section 6.

2 Data Cube System Design Optimizat ion

2.1 Search Space of an Optimal Set

In this paper, we assume that the requirements of an OLAP system is captured in
a set of frequent queries. We use Q to denote the initial cube set derived from the
queries. For example, if a query involves the attributes a, b, c, a three-dimensional
cube on these attributes is included in Q. Before defining the optimization prob-
lem, let us first discuss the search space of the problem.

To simplify the problem, we assume that the database in the data warehouse
is represented by a star schema [1]. Attributes in the queries come from the
fields of the dimension and fact tables, which may contain many attributes. As
a result, the number of attributes (dimensions) needed to be considered in a
data cube system design is much more than the number of dimension tables. In
TPC-D [9], 33 attributes need to be considered.

In [5], the notion of a composite lattice is used to integrate multi-hierarchical
dimensions with the lattice of aggregates in a data cube. Assume that A =
{oi,a2, ,a„} is the set of all the attributes on which query can be posted.
Any subset of A can be used as the dimension attributes to construct a cube.
The composite lattice L = {V{A), -<) is the lattice of cubes constructed from
all the subsets of A. {V{A) is the power set of A.) The cube associated with
the set A is the root of the lattice L. For two different cubes ci, C2 G L, the
derived from relationship, c\ :< C2, holds if Ci can be derived from C2 directly
or by aggregation. For example the cube Ci = [part, year] can be derived from
C2 = [part, customer, date]. The lattice L is the search space of our optimization
problem. As we have mentioned, n is large in general. Thus, the search space L
of the optimization problem is enormous.

2.2 Problem Definitio n

Given an initial data cube set Q, a search space L, a maintenance bound MB,
and a response time bound RTB, the optimization problem in data cube system
design is defined in Table 1.

78 E. Hung et al.

Table 1. Optimization Problem in Data Cube System Design

Objective: Find P CQ,C CL such that |P| is maximum and Cost{P,C) < RTB

Constraint: Vj> e P, 3c € C, such that p :< c and MC{C) < MB

Each cube in P is derived from a particular query, so P contains a set of
cubes that can be used to directly answer some certain queries. Cost{P, C) is
the total query cost of answering the queries associated with P by using the
cubes in C. The constraint states that any frequent query p can be answered by
some cube c in C. MC{C) is the total maintenance cost of C. Therefore, the
problem is to choose a maximal subset P (and the corresponding queries) from
the initial set Q, and a set of cubes C in L, such that the cost of answering the
queries (associated to P) by using C is under the response time bound RTB and
the cost of maintaining C does not exceed the maintenance bound MB.

For simpHcity, we assume that the weights and the number of queries as-
sociated with each q £ Q are the same. Then we can use q & Q to represent
both a cube in the initial set and the queries associated with it. Since we do
not want to make any assumption on the implementation of the cubes and the
structure of the queries, a good measure of Cost{P, C) is the linear cost model
suggested in [5]. In that model, for cubes p,c, ii p < c, then the cost of de-
ducing the answers for the query p from the cube c is linear to the number of
data points in c. We use 5(c) to denote the number of data points in c. With
respect to the cost model, many sampling and analytical techniques can be used
to estimate the number of data points. For each query p € P, we need to de-
termine a minimum-cost (size) cube c £ C from which the answer of p can
be deduced. We use Fcip) to denote the smallest cube in C for answering p,
i.e., Fc{p) is a cube in C such that p -< Fc{p) and "ix £ C, ii p :< x, then
S{Fc(p)) < Six). * We can now define Cost{P,C) by the formula:

CostiP,C) = Y^iS{Fc{p))) (1)
peP

Without assuming any implementation method, we use the following measure
to determine the maintenance cost MC{C) in the problem definition.

MC{C) = \C\, i.e., the number of cubes in C. (2)

The bound MB is the maximum number of cubes in the data cube system. **

* We use the condition S{Fc{j))) < S{x) instead of Fc{p) :< x, because Fc{p) needs
to be the one that has the minimum size.

'* A more general approach is to define MC{C) as the total size of the cubes in C. In
this paper, we have taken the more restricted model in order to develop a solution
first for the simpler case. Results for the general case are being written in [4].

An Optimization Problem in Data Cube System Design 79

Our approach to the optimization problem consists of two levels: the query
level (the higher level) and the attribute level (the lower level). In this paper,
two algorithms Optimal Removing and Greedy Removing (of queries or cubes)
are described for the query-level optimization. Two algorithms Optimal Merging
and 2-Greedy Merging are described for the attribute-level optimization. Our
suggestion is to use Greedy-Removing at the query level and 2-Greedy Merging
at the attribute level. The details will be discussed in the following sections.

3 Query-Level Optimization

In this section, we discuss the query-level optimization. Given an initial data
cube set Q, optimization at the query level is to find a subset P oi Q such that
the set C obtained by merging some cubes in P satisfies the maintenance bound
[MB] and response time bound (RTB), and the number of data cubes in P (or
the size of P) is maximum, i.e., the number of queries removed is minimum.

3.1 Optimal Removing

/ * input: L,Q,MB,RTB; output: P,C */

1) J = \Q\:
2) while(j > 1) {
3) S = AllSubsets{Q,j):
4) for(P e 5) do {
5) C = AO{L, P, MB)
6) if {Cost{P, C) < RTB) return P, C;

7) }
8) j=j-l\
9) }
10) return "The response time bound is too strict.'

Fig. 2. The algorithm Optimal Removing

Optimal Removing (OR) finds the optimal removal of cubes. The outline of
OR is shown in Figure 2. The algorithm starts with the initial set Q. The loop
(lines 2-9) tries all possible combinations of j queries starting from keeping all
cubes in the initial set Q. In line 3, 5 = AllSubsets{Q,j) assigns S with all
subsets of Q with the number of queries equal to j . In the loop in lines 4-7, for
each set P in S, the attribute-level optimization {AO{L, P, MB)) (which will be
discussed in the next section) refines P to C (which satisfies the maintenance
bound) (line 5), and then it is checked whether the refined set C satisfies the
response time bound or not (line 6). If yes, OR returns P. If none of them is a
solution, we decrease the cube number by one. The iteration of loop in lines 2-9
stops when a solution is found or after removing all cubes.

80 E. Hung et al.

If the number of the initial cubes is n, then the number of ways of keeping n
cubes is „Cn- Then in the next iteration, the number of ways of keeping (n — 1)
cubes is nC'„-i, etc. With respect to the number of attribute-level optimization
done, in the worst case, the time complexity of Optimal Removing is nCn +
nCn-i +... + nCm = 0{n^^^) if m < f oi 0 (n" - ' ") if m > f. The optimal
method is too time-consuming in practice.

3.2 Greedy Removing

/* input: L,Q,MB,RTB; output: P,C */
1) ; = IQI;
2) P = Q:
3) C = AO{L, P, MB)
4) if {Cost{P, C) < RTB) return P, C;
5) while(i > 1) {
6) for all (p G P) do {
7) C = AO{L,P-p,MB)
8) if {Cost{P -p,C)< RTB) P = P - p, return P,C;
9) }
10) P = P — p which gives the minimum Cost(P-p, C) ;

11) j=j-l:
12) }
13) return "The response time bound is too strict."

Fig. 3. The algorithm Greedy Removing

Greedy Removing (GR) is a simple, efficient, but still very effective method.
The outline of GR is shown in Figure 3. P is the set of cubes kept. First we check
whether keeping all cubes (P = Q) gives a solution. If not, we check whether
there is a solution among all possible ways of removing one cube from P. We
choose to remove a cube p from P (i.e., P = P—'p) if the resulting cube set {P — 'p)
gives us a minimum response time among all others. The above is repeated until

-either the response time bound is satisfied or all cubes are removed.
If the number of initial cubes is n, the number of ways of removing one cube

from them is n. After we have removed one cube, the number of ways of removing
another data cube is n — 1, etc. With respect to the number of attribute-level
optimization done, in the worst case, the time complexity of Greedy Removing
is 1 4- n -I- (n — 1) + . .. + (m -f- 1) = 0{'n?). Greedy Removing is very efficient
compared with Optimal Removing. It is also very effective, as we will see in the
performance study section.

4 Attribute-Level Optimization

In this section we discuss how we optimize a given set of data cubes at the
attribute level. Given a set of data cube set P, optimization at the attribute

An Optimization Problem in Data Cube System Design 81

level is to refine the set P to C so that the sum of the response time answering
all queries associated to P by C is minimum with the maintenance cost within
the maintenance bound MB. Essentially, this means that we need to divide the
cubes in P into a number of groups. Cubes in each group are then merged into
one single cube.

4.1 Optimal Merging

A straight-forward brute-force approach would try all possible groupings such
that the number of groups are within the maintenance bound. We call this
approach Optimal Merging (OM). However, it is only necessary to consider those
cases in which the number of groups is equal to the maintenance bound. * * *

We outline OM in Figure 4. In hne 1, TOP{L) returns the top node of the

/ * Input: L,P,MB; output: C * /
1) C = TOP{L);
2) G = AllGrcmpings{P, MB);
3) for all g eG, do
4) if {Cost{P, g) < Cost{P, C))C = g:
5) return C;

Fig. 4. The algorithm Optimal Merging

lattice L, which contains all attributes, and so this cube has the largest size.
C is initialized as the top node. In line 2, the function AllGroupings{P, MB)
considers all possible groupings of cubes in P with the number of groups equal
to MB. For each grouping, cubes in every group are merged into one cube. The
resultant sets of cubes of all groupings are returned to G (G is a set of cube sets).
Therefore, each element g £ G contains a cube set. In line 3, we run the loop
(lines 3 to 4) to consider the response time of every cube set g in G {Cost{P, g))
in order to find a cube set whose response time of answering query set P is
minimum. The resultant cube set C is returned in line 6.

If there are initially n cubes, and the maintenance bound is m, then in the
worst case, the total number of ways of grouping the n cubes into m groups is
0(m""''") . The time complexity is too large in practice.

4.2 2-Greedy Merging

In 2-Greedy Merging (2GM), starting from a given cube set P, we try to merge
cubes step by step in a bottom-up Greedy approach. The outline of 2-Greedy
Merging is shown in Figure 5. In each loop (lines 2 to 5) of the algorithm, we

** It is not necessaxy to consider other cases because the number of groups should
not exceed the maintenance bound, and if the number of groups is less than the
maintenance bound, it is impossible for its total response time to be smaller than
that of the optimal solution.

82 E. Hung et al.

/* input: L, P, MB; output: C */
1) C = P:
2) while MC{C) > MB do {
3) SelectCubes(£) CC,ACL-C) such that a{C, D, A) is maximal,

\D\ = 2 and \A\ = 1;
4) C = C\JA-D;

5) }
6) return C\

Fig. 5. The algorithm 2-Greedy Merging

select two cube sets: D with two cubes and A with one cube. The cubes in D are
removed from C, and the cube in A is added into C such that each cube p in the
input set P can be derived from a cube in the new C. Therefore, the maintenance
cost MC{C) (cube number) would decrease and the query cost would increase.
The algorithm terminates when the maintenance bound is satisfied. In each
iteration, we want to choose a new C such that the increment in the query cost
is small. Thus, we define our evaluation function a by the following formula.

° ^ ^ ' ^ ' ^^ " Cost{P,C+)-Cost{P,C) ̂ £^^plSiFc+{p))-S{Fc{p))] ^^^

where C"*" = CUA — D is the new C. The denominator is the increment in the
query cost. Fc+ip) is the smallest cube in C"*", which can answer p.

Let 2GM begin with n cubes. It first considers „C2 ways of choosing a cube
pair for merging. There are n — 1 cubes left in the second iteration, and the
algorithm considers n-\02 ways of merging two cubes. It stops after only m
cubes are left, where m is the maintenance bound. Thus in the worst case, the
time complexity of the algorithm is ^Cg + n-iC'2 + . .. + 771+1̂ 2̂ = 0{n^), which
is obviously much lower than that of Optimal Merging (0(m"""'")) . Although it
does not guarantee an optimal solution, its performance is near-optimal as we
will see in the performance study section.

5 Performance Study

5.1 Exper imental Setup

Experiments were done to test the effectiveness and efficiency of the optimization
algorithms proposed at the attribute and query levels. The database used is a
Hong Kong census data with 62010 tuples. Each tuple has 15 integer fields, with
ranges from tens to tens of thousands. The queries were generated randomly
with the probability of | for a particular attribute to appear in a query. The
experiments were done on a Sun Enterprise Ultra 450 with 4 UltraSPARC-II
CPU running at 250MHz.

An Optimization Problem in Data Cube System Design 83

5.2 Attribut e Level

The range of query number is from 5 to 15, and that of attribute number involved
is from 10 to 15. The maintenance bound is generated randomly around three-
tenths to eight-tenths of the query number.

Let the response time of answering the given queries using the cubes refined
from 2-Greedy Merging (2GM) be GRT, and that from Optimal Merging (OM)

GRT
be ORT, then the performance ratio (PR) is defined as . Prom Table 2 (a),

URi
54 out of 66 cases (over 81 percents) give a PR of 1. That is to say, the per-
formance of answering the set of frequent queries using the solution of 2GM is
the same as that of the OM. PR of other results are very close to 1. The aver-
age PR is 1.003661, which is very close to 1. The maximum (worst) PR so far
discovered is 1.1274. Table 2 (b) shows that the execution time of 2GM is less
than 1 second in all cases and grows at a sub-cubic rate with the query number.
Our experiments also show that the execution time of OM grows exponentially
with the query number. 2GM is thus a very efficient and effective algorithm for
attribute-level optimization.

Table 2. Table of (a) Performance Ratio of 2GM vs OM, (b) Execution time of 2GM

Query #

5
6
7
8
9
10
11
12
13
14
15

(a) Performance Rat io

At t r ibu te Number
10 11

1.0088

1.0451

12

1
1

1.1274
1
1
1

1.0103
1
1
1
1

13

1
1
1
1

1.0099
1
1

1.0052
1

1.0041
1

14

1.0040

15

1.0532
1

1.0007
1
1
1

1.0003
1
1
1

1.0372

(b) Execut ion t ime (sec)

A t t r ibu te Number
10

0.01
0.01
0.02
0.03
0.04
0.09
0.11
0.11
0.26
0.21
0.27

11

0.01
0.02
0.01
0.02
0.04
0.08
0.11
0.14
0.2
0.26
0.49

12

0.01
0.02
0.02
0.02
0.05
0.09
0.14
0.18
0.2

0.37
0.44

13

0.01
0.02
0.01
0.03
0.07
0.11
0.13
0.2

0.21
0.46
0.44

14

0.01
0.02
0.03
0.04
0.06
0.12
0.12
0.22
0.27
0.42
0.61

15

0.01
0.02
0.03
0.05
0.07
0.11
0.21
0.27
0.28
0.43
0.67

5.3 Query Level

2GM is chosen as the attribute-level optimization subroutine in our experiments
of query-level optimization. The number of attributes is fixed to 15, the number
of queries to 20, the maintenance bound to 10. The response time of the result
generated by 2GM alone is 613431. Thus we set the response time bound from
600000 to 350000 in our experiments of testing GR and OR.

Table 3 shows that when the response time bound is lowered, the number of
queries kept decreases (more queries are removed). The solutions of both GR and
OR almost always keep the same number of queries. The maximum difference
is only one. For efficiency of GR and OR, the execution time of GR is linear to
the number of queries removed and within several minutes while that of OR is
exponential to the number of queries removed.

84 E. Hung et al.

Table 3. Table of Comparisons of Greedy Removing and Optimal Removing

RTB(xlO-')
Queries

kept
Exec, time

(sec)

Greedy
Optimal
Greedy
Optimal

600
19

16
3.15
l i s

575
19

IS
4.35
4.65

550
18

18
29.4
ai.8

525
18
18

31.5
34.4

500
18

18
31.5
34.4

475
17

17
52.7
248

450
17

17
54.6
254

425
16

17
69.8
10S7

400
16

16
70.2
134(5

375
16

16
70.8
1S04

350
15

15
83.0
5333

Prom the previous discussion, we see that the combination of 2-Greedy Merg-
ing (for attribute-level optimization) and Greedy Removing (for query-level op-
timization) is a good choice for solving the data cube system design problem.

6 Conclusion

In this paper, we discussed the optimization problem in requirement-based data
cube system design subject to a maintenance bound and a response time bound.
We proposed a two-phase approach to the problem: First, from a set of frequently
asked queries, we derive an initial data cube set. Second, we remove a minimum
number of cubes from the initial set to get a refined set which can satisfy the
bounds. The second phase can be divided into two levels. In the query level, we
remove as few data cubes from the initial set as possible. In the attribute level, we
refine the resultant set to satisfy the bounds. Experiments have been done on a
census database and the results show that the combination of Greedy Removing
and 2-Greedy Merging is very efficient and gives a near-optimal solution. Further
works include solving the data cube system design problem with considering a
bound of the total storage size of data cubes. [4]

References

S. Chaudhuri et al. An Overview of Data Warehousing and OLAP Technology.
ACM-SIGMOD Record, Vol. 26 No.l P.65-74, March 1997
D.W. Cheung, B. Zhou, B. Kao, H. Lu, T.W. Lam and H.F. Ting, Requirement-
based Design of Data Cube Schema. In Proc. Eighth Int'l Conf. on Information
and Knowledge Management (CIKM), Kanas City, Missouri, Nov 2-6 1999.
J. Gray, A. Bosworth, A. Layman, and H. Piramish. Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab, and sub-total. In Proceeding
of the 12th Intl. Conference on Data Engineering, pages 152-159, New Orleans,
February 1996.
E. Hung and D. W. Cheung. Optimization in Data Cube System Design. Working

V. Harinarayan, A. Rajaraman, and J. D. UUman. Implementing data cubes effi-
ciently. In Proceedings of the A CM SIGMOD Conference on Management of Data,
pages 205-216, Montreal, Quebec, June 1996,
P. O'Neill and G. Graefe. Multi-Table Joins Through Bitmapped Join Indexes. In
SIGMOD Record, pages 8-11, September 1995.
P. O'Neil and D. Quass. Improved Query Performace with Variant Indexes. In
Proceedings of the ACM SIGMOD Conference on Management of Data, pages 38-
49, Tucson, Arizona, May 1997.

An Optimization Problem in Data Cube System Design 85

8. A. Shukla, P.M.Deshpande, J.F.Naughton. Materialized View Selection for Mul-
tidimensional Datasets. In Proceedings of the International Conference on Very
Large Databases, pages 488-499, New York, USA, 1998

9. Transaction Processing Performance Council. TPC Benchmark D(Dicision Sup-
port), Standard Specification, Revision 1.2.3. San Jose, CA , USA, 1997

2

Exception Rule Mining with a Relative
Interestingness Measure

Farhad Hussain ,̂ Huan Liu^, Einoshin Suzuki ,̂ and Hongjun Lu^'*

^ PRIS, School of Computing, National University of Singapore.
ElectriceJ and Computer Engineering, Yokohama National University, Japan.

^ Computer Science, Hong Kong University of Science and Technology,
{farhad, l iuh}acomp.n.us.edu.sg, suzukiQdnj.ynu.ac.jp, luhjOcs.ust.hk

Abstract . This paper presents a method for mining exception rules
based on a novel measure which estimates interestingness relative to its
corresponding common sense rule and reference rule. Mining interesting
rules is one of the important data mining tasks. Interesting rules bring
novel knowledge that helps decision makers for advantageous actions. It is
true that interestingness is a relative issue that depends on the other prior
knowledge. However, this estimation can be biased due to the incomplete
or inaccurate knowledge about the domain. Even if possible to estimate
interestingness, it is not so trivial to judge the interestingness from a
huge set of mined rules. Therefore, an automated system is required
that can exploit the knowledge extractacted from the data in measuring
interestingness. Since the extraicted knowledge comes from the data, so
i t is possible to find a measure that is unbiased from the user's own
belief. An unbiased measure that can estimate the interestingness of a
rule with respect to the extractacted rules can be more acceptable to
the user. In this work we try to show through the experiments, how
our proposed relative measure can give an unbiased estimate of relative
interestingness in a rule considering already mined rules.

1 Introduction

After performing data mining tasks that usually terminate with a large set of
rules, there is a need to find some interesting rules that decision makers can
use for advantageous actions. The number of discovered rules can, however, be
so large that browsing the rule set and finding interesting rules from i t can be
rather difficul t for the user. Moreover, i t is much harder to know which of the
discovered rules are really interesting. Interestingness is a relative issue since
i t always depends on the user's prior knowledge about the domain. However,
user's belief can give a biased estimate for incomplete or inaccurate knowledge
about the domain. True knowledge about the domain can be extracted form
the data. Therefore, to provide an unbiased ^ measure, intuitively we can say,

* This author's work is partially supported by a grant from the National 973 project
of China (No. G1998030414)

^ In measuring interestingness user's biased belief is not incorporated

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 86-97, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Exception Rule Mining with a Relative Interestingness Measure 87

interestingness can be estimated relative to the common sense rules found in
the data. Data mining facilitates understanding the large amount of data by
generating some rules. These rules, considering as common sense knowledge,
can be used to justify the interestingness in other mined rules.

We understand that something that contradicts user's common belief is
bound to be interesting. Let's define exceptions as rules that contradict the com-
mon belief. Exceptions [4,8,12] can take an important role in making critical
decisions. Exceptions and common sense rules point at opposite directions. Ex-
ceptions usually are minority, they are either not known (thus new) or omitted.
Therefore, in many respects, for mining interesting rules, we are interested to
mine exceptions for the common sense [11,12,13,14] rules. A common sense rule
represents a common phenomenon that comes with high support and confidence
in a particular domain. Subjectively, a common sense rule can be interesting if
the user is not well aware about the problem domain or if he has a completely
different view about the domain. It implies that a subjective measure of interest-
ingness may be biased. This bias may not always be wanted in critical decision
making.

Intuitively, exceptions contradict the common sense rules and they have a
low support [12]. Therefore, exception rules are weak in terms of support, but
having high confidence similar to those common sense rules. A weak rule of
low support may not be a reliable. A user can specify minimum support for an
exception to ensure mining reliable exception rules [4,12].

If we mine exception rules, literally there would be a huge number of them
because of their usual lower support threshold. In this paper, an exception rule
is structurally defined as shown in Table 1, Note that this is a simplified version
of [11,12,13,14]. Here A and B represent a single item or a set of items.

Table 1. Rule structure for exceptions

A —* X - common sense rule (strong pattern)
(high support, high confidence)

A,B —* -iX - exception rule (weak pattern)
(low support, high confidence)

B —» -iX -reference rule
(low support and/or low confidence)

I t is clear from the rule structure that the reference item B that explains
the cause of exception, with the given common sense A — ̂X, can be of several
combinations of items satisfying all the support and confidence constraints. The
more the number of items we allow in the reference B, the more the candidate
exception rules we can be generated for a given common sense rule. The number
of reference rules also depends on the number of items for each data attribute.
This implies that for a particular common sense rule, a user usually finds more
and more exceptions that ultimately mislead the user for mining exceptions in

88 F. Hussain et al.

the data. Moreover, all the references that help form exceptions may not be
meaningful or the user may not be aware of them due to their lower support or
confidence for a particular common sense rule to be an exception. Therefore, it
wil l be more meaningful to include those reference items about which the user
is concerned. This implies that to satisfy the criteria (low support and/or low
confidence) for a reference rule B —> -iX in Table 1, we simply ensure the
existence of a common sense rule S —> X.

We are motivated to mine those exception rules that are interesting in nature
and can be estimated by the knowledge from the other mined rules. Estimation of
interestingness is necessary to identify the most interesting rules from the mined
rules. It would be an unbiased estimate since it considers only the common
sense rules in the data, not that of the user's belief. Before giving a measure of
interestingness, it is necessary to understand the components of what and how
they bring surprise or interestingness in a rule given the knowledge about some
common sense rules.

The remainder of this paper is organized as follows. In Section 2, we talk
about some preliminaries and related work on interestingness. In Section 3, we
describe our approach and provide details of our measure analytically. Imple-
mentation of our algorithm for digging out the interesting rules is described in
Section 4. Analysis of our experimental results are shown in Section 5. Finally,
in Section 6, we present our conclusion.

2 Preliminaries and Related Work

In this paper we try to capture interestingness of a given rule through the
amount of change in information relative to the common sense rules. A par-
ticular rule contains the information about its premise, predictive power and
coverage. Therefore, in order to measure the relative interestingness, we calculate
the difference between the information that a rule contains and the information
needed to describe the given rule with common sense rules. The interestingness
of the given rule is proportional to the the amount of difference between this
two information. Bigger the difference in information the more interesting is
the given rule. This resembles to the procedure, an expert uses to estimate the
interestingness of a given rule using other rules.

We define the common sense knowledge K for a rule, is the knowledge about
some common sense rules that we can apply to estimate the interestingness in
the given rule. Since, interestingness is a relative factor that depends on the
knowledge about other rules, therefore, for a rule AB —> X , K composed of the
knowledge about the rules A —* X and B —> X. Therefore, by our definition, the
interestingness /, of a rule should be a function of its support(5), confidence(C)
and the knowledge about common sense rules (K)

/ = / (5 ,C,«)

We believe that lack of any one of these parameters may result in incomplete
estimate of the interestingness. That means we are interested to mine those in-

Exception Rule Mining with a Relative Interestingness Measure 89

teresting rules where all these three components can be applied to make it more
acceptable. The measure we propose, offers both subjective and objective inter-
estingness. When K comes from the user's belief instead of the other mined rules,
then the same measure can be considered as a subjective measure of interesting-
ness for a given rule.

Generally, there are two categories of finding interesting rules: subjective
vs. objective. In a subjective case, a user directly applies his own knowledge,
sometimes even without knowing the nature of the domain to find interestingness
in a rule. That is why, subjective interestingness may be biased and may vary
with different users. Different methods have been proposed to capture interesting
rules subjectively. The main idea is to impose user's own belief about the domain.
Users usually apply their knowledge in terms of rule templates [6] and then try to
match the template by scanning the data satisfying some threshold parameters.
This approach may be suitable to justify a particular user's own belief system
bbt may fail to discover some surprising rules that they even don't know. One
potential problem is that user's subjective judgement may be unrealistic while
applying those rules in the competitive business environment.

In an objective measure where common sense rules are not applied [K = 4>)
to estimate the interestingness, one of the main focus is to iind if there is any
deviation in the rule from the norm. Deviations are powerful and useful in this
case as they provide a simple way of identifying interesting patterns in the data.
This has been shown in the KEFIR [2] application. This type of measure is
likely to be unbiased since no user's preference is given while estimating the
interestingness. However, a rule that deviates may not be interesting if that de-
viation can be explained by other rules in the data. This implies that one can
still generate a large number of rules that are interesting objectively but of littl e
interest to the user [16] as they might know other rules. Again, since for the
existing objective measures, K = (p so, two different rules with similar support
and confidence usually come with the same interestingness. Despite their simi-
larity in support and confidence, interestingness usually should depend on the
prior knowledge about those two rules. For example, using J-measure [10], two
rules AB ^X and PQ ̂ X for which PT{XAB) = PT{XPQ) and FT{X\AB)

= Px(X\PQ) give identical interestingness irrespective to their prior knowledge.
For a rule AB —* X, J-measure is defined as follows.

JiX,AB) = Prix AB) log, ^ ^ g ^ + Pr{^X AB) loĝ ^ ^ ^ ^

Though for an automated system, objective measures are always reliable due
to their unbiased nature, sometimes they are completely unable to justify a rule's
interestingness as they cannot handle knowledge from common sense rules. Since
user's true belief will eventually build upon the common sense rules in the data,
it is worth proposing a measure that can manipulate the common sense rules to
estimate the interestingness in other rules. That is why, we need an objective
measure that takes into account K - the already found rules. In [11], Geometric
mean of the Average Compressed Entropies (GACE) was defined to estimate the

90 F. Hussain et al.

interestingness of a rule if and only if the given rule is an exception to a common
sense rule. GACE defines the interestingness in terms of J-measure from one rule
pair (common sense and exception). For a common sense rule A ^> X and its
exception AB —> -iX , GACE is defined as follows

GACE{A -^X,AB-> -.X) = y/J{X,A)Ji-nX,AB)
When we wish to include more (such as the already extracted rule both

comrnbn sense and reference) in evaluating a rule's interestingness, we need a
new measure that can take into account that something more.

3 Our Approach

In this work, we are interested to mine rules that are objectively interesting,
but in the meantime we are able to measure the interestingness with respect to
already mined rules. For example, a rule '^Sex = F and Age = Young —> Credit
= iVo" with 50% confidence may not be interesting from both subjective and
objective viewpoints. Prom the subjective viewpoint, it is not interesting if the
user believes that the females are not usually given credit compared to the males.
Objectively it is also not interesting since it is not very conclusive as it has 50%
confidence. However, if two strong ^ common sense rules "Sex = F ^ Credit =
Yes" and "Age = Young —» Credit = Yes" are known then "Sex = F and Age
= Young —» Credit = No" with 50% confidence should be interesting to us. This
suggests a need to have a relative interesting measure.

We have mentioned eralier that an objective measure evaluates a rule's in-
terestingness with its support(5) and confidence(C). Now we wish to consider
the relevant extracted rules (K) in our new measure. Below we explain in detail
how all these factors together define relative interestingness of a rule.

3.1 Confidence-Based Interestingness

When no other information is given, an event with lower probability to occur
gives more information, than an event with higher probability. Prom the infor-
mation theory [9], the number of bits required to describe the occurrence is
defined as

I = - l0g2 P
where,
P = The probability of that event to occur.
Similarly, for a given rule AB —» X with confidence PT{X\AB), will require

— log2(PT{X\AB)) and — log2{PT{->X\AB)) number of bits to describe the events
X and -^X given AB. Note that in the case of analyzing the rules we not only
consider the event X or -^X but also the premise that causes the events to oc-
cur. That is why in the case of rules, whenever we talk about the events X or

High support and high confidence

Exception Rule Mining with a Relative Interestingness Measure 91

-iX , we always mention the premise which leads the events to occur. However,
in information theory, we are not interested to know how the events X and -^X
occur. Since the probability of occurrence of the events X and -iX given AB
are 'PT:{X\AB) and 'PT{-^X\AB), so, the expected number of bits required to
describe events X and -^X influenced by AB are -'Px{X\AB)\og2i^x{x\AB))
and - Pr(-iX|j4B) log2(Pr(-iX|AB)) respectively. Thus the total number of bits
required to describe the rule AB -̂ - X is

jABo = (_ Yr{X\AB) loga ^x{X\AB)) + {- Fv{-^X\AB) logj Fi{^X\AB))
where,
jABo _ Number of bits required to describe the rule AB — X when no other

knowledge have been applied.
However, the difference in number of bits in describing the rule AB -* X

in terms oi A —> X and B —> X can bring surprise. Bigger the difference in
describing the rule AB —» X, the more it is interesting. Therefore, to estimate
the relative interestingness in terms of rules A - ̂ X and 5 -̂ ^ X , we need to
know the number of bits required to describe the event X when the probability
of that event to occur given A and B are Pr(X|yl) and Pr(X|B) respectively.
The Table 2 shows the number of bits required to describe the events X and
-iX when A and B are given.

Table 2. The events and the information

Events
X

-.X
X

- X

Given
A
A
B
B

Number of bits
-\og^PT{X\A)

-log2 PT(^X\A)

- log2Pr(X|S)
- log2Pr(-X|B)

Since the rule AB -* X describes the event X in terms of A and B so, to
describe the similar event X, in terms of A and ^ B using the rules A —> X and
B -> X we need - log2(Pr(X|A)) and - log2(Pr(X|B)) number of bits. Now, in
rule AB —> X probability of the event X to occur is PT{X\AB). Therefore, the
expected number of bits required to describe all the X events in rule AB —» X
in terms of A and B using the two rules is thus — Pr(X|AB)(log2(Pr(X|.A)) +
log2(Pr(X|B))). Similarly, for the event ^X in rule AB -> X , -Pi{-nX\AB)
(log2(Pr(-nX|A)) +log2(Pr(-.X|B))) number of bits will be required. Thus the
total number of bits required to describe the event X and -iX in the rule
AB -* Xhy rules A -» X and B ^ X is

jAB ̂ ̂ _Pr(X|y4B)[log2Pr(X|A) + log2Pr(X|B)]
-Pr(-X|AB)[log2Pr(-X|y l) + log2Pr(-X|B)]

where,

It is not or because, event X was influenced in rule AB —f X hy A and B

92 F. Hussain et al.

I^^ ̂ = Number of bits required when AB -+ X is described hy A —> X and

Thus, the relative surprise or relative interestingness that comes from the
difference between two descriptions for the given rule AB —» X is

jijAB ̂ jAB, _ jABo

= Vr{X\AB) log2 p . (^ g ^ g | B) + ^r{-.X\AB)log ̂ p.(/^ i ;^ j f f j , |B)
where,
RI^ ̂ = The relative surprise or interestingness of the rule, considering the

confidence and the knowledge about other rules.
The interestingness of a rule that we have formulated in terms of the confi-

dence gives the exact impression of relative entropy [15]. Here the entropy of a
rule is calculated relative to the other rules. It is a measure of distance between
two distributions. In statistics, it arises as an expected logarithm of the likeli-
hood ratio. The relative entropy D{p{x)\\q{x)) is a measure of the inefficiency
of assuming that the distribution is q{x) when the true distribution is p{x). The
relative entropy or Kullback Leibler distance between two probability function is
defined as,

Dipix)Mx))=E.e^p{x)lo9^
In estimating the interestingness of the rule AB —> X with true confidence

PT{X\AB) we approximated its confidence from the rules A —> X and B — ̂X.

3.2 Support-Based Interestingness

By support of a rule AB —+ X, we mean the frequency of the rule's consequent
evaluated as X by AB relative to the whole dataset. When we know the support
of two common sense rules v4 — X and B —» X , we know the relative frequency
of the consequent X and -iX evaluated by A and B separately. A similar relative
entropy measure can be applied to estimate the surprise from support. Now, for
the newly discovered rule AB —> X, the true distribution of the consequent X
and -iX evaluated by A and B are Pr(ASX) and Pr(A5- 'X) respectively. From
the knowledge of our one common sense rule A —> X, for which the relative fre-
quency of X and -iX are Pr(ylX) and Pr(A-iX) respectively, can be used to
find the distance between two distributions of consequent using relative entropy.
The relative entropy of AB —+ X relative to the rule A —* X in terms of their
support is thus

D{AB - . X | IA -> X) = Pr(ASX) log ^ ^ ^ + Pr(AS-.X) log ^^^M^
Similarly for rule B —> X , the relative entropy is
D{AB ^ X | |B - . X) = Pr(ABX) log ^-0 ̂ + Pr(AB^X) log ^ ^ ^ ^

Exception Rule Mining with a Relative Interestingness Measure 93

Thus the total relative interestingness due to rule's support that comes from
the relative entropy of AB —» X for the two common sense rule is,

RI^ ̂ = D{AB -» X\\A -> X) + D{AB -> X\\B - ̂ X)

= Pr{ABX) log p.^^-itprTlx) + P^AB^X) log p.^J^^^p^g^x)
Hence, the total interestingness of a rule AB —> X relative to A - ̂ X and

B - * X i s
RI = RI^ ̂ + Rlf^
This includes support, confidence and consideration of other rules to estimate

the relative surpriseness.

4 Digging out the Exceptions

Since exceptions are weak in terms of support, we are supposed to dig deeper
into the data with lower support threshold to bring them out. Applying lower
support threshold for mining exceptions is not a cost-effective solution. More-
over, in that large number of rules will be generated where not all of them
are exceptions. Actually we are going to mine those exceptions where the rules
extracted as a common sense will be used to alleviate the problem of dealing
with lower support threshold. In other words, we search for reliable exceptions
starting from the common sense rules. To satisfy all the constraints defined in
Table 1, we find exception AB —> -^X from two common sense rules A - ̂ X and
B - ̂ X {B —* X as common sense infers B —» -iX to be reference for its obvious
low support or/and low confidence). By doing this we can estimate the amount
of surprise the exception rule brings from the knowledge of the extracted rules.
From Figure 1 we can visualize how exceptions are mined going deeper into the
data. The threshold CS support is the minimum support to mine the common
sense rules from the data and the EX support to assure the reliability of the
exception rules. The following algorithm describes the way we mine interesting
rules.

begin
LI = (p 11 list containing large item set
LC = (p 11 list containing common sense rules
LR = <p 11 list containing reference rules for a common sense
LE = 4> /I list containing candidate exception rules
LI *~ GenerateLargeltemSetf) / / running apriori [1]
LC«— GenerateAllCommonSense(LI)
for each CSi from LC do

A <— GetAntecedent(CSi)
LR ̂ GetReferences(CSi, LC)
for each RRj from LR do

B <— GetAntecedent(RRj)
if (A U B) is not in LI

insert(A U 5 U ^Consequent{CSi), LE)

94 F. Hussain et al.

end for
end for
LE <— GenerateExceptions(LE) / / Database scan once
EstimatelnterestingnessfLC, LE) jj Output interesting rules
end. / / according to the degree of surprise

The function GetReferences(CSi, LC), returns all the candidate reference
rules for CSt, from LC. The reference rules are those common sense rules in LC
that have similar consequent as that of CSi. Once we have inserted all the can-
didate exception rules into LE, we scan the database once to obtain the support
and confidence of each candidate exceptions. We output those rules that sat-
isfy the thresholds using GenerateExceptions(LE). EstimateInterestingness(LC,
LE) estimates the relative interestingness.

Strong exception

Common sense

" CS support

Exceptions

 EX suppott

Noise

Fig. 1. Rules in the data

5 Experiments

In this section we explain our interesting rules obtained from Japanese credit
data and mushroom data [7]. The credit data set has 10 attributes and 125
instances with a binary class. The two types of classes define when a credit is
given to a particular person depending on other attribute values. Based on our
approach we obtain the strong patterns that would eventually be considered as
a common sense rule for that credit domain. We use 20% support threshold for
common sense. To mine the reliable exceptions considering already extracted
rules, we use 5% support. For both cases we mine those having more than or
equal to 50% confidence.

We will show the effects of the proposed measure (RI) in two settings: (1)
removing reference rules by assuming they are not available; and (2) including
reference rules. As in the first case, GAGE has been shown effective. Therefore
we compare RI with GAGE to see if RI can achieve the planned objective: they

Exception Rule Mining with a Relative Interestingness Measure 95

should identify the interesting exceptions as GACE does. In the second case, we
show that the ranking order changes due to considering reference rules.

Table 3. Exception rules (credit) justified by the common sense rules

Common Sense (CS) Credit
Reference Rule (RR) Given
Exception = CS + RR
Sex = F, MPay = 0-20 (CS) Yes
Save = 0-100, Mnts = 0-10 (RR) No
Sex = F, MPay = 0-20,
Save = 0-100, Mnts = 0-10 No
MPay = 0-20, Mnts = 0-10 (CS) Yes
Sex = F (RR) No
Sex = F, MPay = 0-20, Mnts = 0-10 No
Mnts = 0-10 (CS) Yes
Sex = F, Save = 0-100 (RR) No
Sex = F, Save = 0-100, Mnts = 0-10 No
Sex = F, Age = 0-40 (CS) Yes
Marry = Yes (RR) No
Sex = F, Age = 0-40, Marry = Yes No

Conf
%

61
37

54
65
38
52
65
42
52
61
29
51

Supp
%

26
17

11
32
17
10
32
18
10
20
15
6

RI
With
Ref

3.16

3.00

2.96

2.52

RI
Without

Ref

1.98

1.93

1.93

1.67

GACE

0.013

0.006

0.006

0.007

Prom the experimental result it is clear that RI without considering reference
rules behaves similar as GACE. So, RI can identify reliable exceptions. When
considering reference rules, RI has changed the rankings (2nd and 3rd rule sets
in Table 3). An actionable exception rule should be reliable. An exception would
be more reliable if it has higher confidence and support. Therefore, from the
perspective of both interestingness and reliability, the first exception "5ex = F,
MPay = 0-20, Save = 0-100, Mnts = 0.10 - ̂ Credit = No" should have the
highest ranking among the four exception rules.

For the mushroom data (22 attributes and 8124 tuples) we conduct a similar
experiment with 15% support and 55% confidence for mining common sense
rules. To mine the exceptions, we specify 5% support and 55% confidence. Table 4
shows some of the rules and their corresponding interestingness, when RI without
reference cannot diferentiate the difference between the third and four rule sets,
EI with reference can. Hence, when we have some knowledge about the rule,
the knowledge should be used if we wish to find relative interestingness. GACE
has made use of common sense rules and RI goes one step further to include
reference rules in the measure.

6 Conclusion

In this work we define an objective measure of relative interestingness that ties
up the with common sense and reference rules in the data when estimating inter-
estingness. This opens the door to apply RI to measure subjective interestingness

96 F. Hussain et al.

Table 4. Exception rules (mushroom) justified by the common sense rules

Common Sense (CS) EMible/
Reference Rule (RR) Poisonous
Exception = CS + RR
stalk-root = ? (CS) P
bruises = f, gill-size = b,
stalk-shape = e, veil-type = p (RR) E
CS -1- RR E
ring-type = e (CS) P
bruises = f, gill-size = b,
ring-number = t (RR) E
CS + RR E
gill-color = p, veil-type = p,
veil-color = w (CS) P
stalk-root = ? (RR) E
CS + RR E
gill-attachment = f, stalk-shape = e,
veil-type = p (CS) P
cap-surface = s, veil-color = w (RR) E
CS -t- RR E

Conf
%

71

27
100
64

43
100

57
29
94

57
40
94

Supp
%

22

6
6
22

12
9

23
9
6

23
11
6

RI
With
Ref.

6.76

4.71

4.19

3.31

RI
Without

Ref.

3.98

3.58

2.28

2.28

GACE

0.05

0.04

0.02

0.02

if we can describe an expert's knowledge in rules. For example, we wish to eval-
uate the new rule in Table 5; it is not very interesting than those in Table 3.
This should be the case as the new rule is not an exception.

Table 5. A new rule (credit) justified by the common sense rules

Common sense Credit
Common sense Given
New rule
Jobless = No, Sex = F Yes
Married = No Yes
Jobless = No, Sex = F, Married = No (Not exception) Yes

Conf
%

70
64
71

Supp
%

28
30
12

RI

2.34

In our approach we focus on relative interestingness that evaluates an excep-
tion rule with respect to its common sense and reference rules. Not much extra
costs invloved in calculating RI: Using Apriori [1] to find the frequent itemsets,
then we just need another database scan to estimate the support and confidence
of the candidate exception items. This efficient new measure provides one more
means in exception rule mining along with other interestingness measures.

Exception Rule Mining with a Relative Interestingness Measure 97

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th conference on Very Large Databases (VLDB), pages 478-499, 1994.

2. G. Piatetsky-Shapiro C Matheus and D. McNeil. Selecting and Reporting What is
Interesting: The KEFIR Application to Healthcare Data. AAAI Press/ MIT Press,
1996.

3. Sarawagi Chakrabeirti. Mining surprising patterns using temporal description
length. In Proc. 24th on Very Large Databases (VLDB), pages 606-616, 1998.

4. Liu H. and Lu H. Efficient search of reliable exceptions. In Proc. third Pacific-Asia
conference on Knowledge Discovery and Data mining (PAKDD), pages 194-203,
1999.

5. W. Hsu Liu B. and Shu Chen. Using general impression to analyze discovered
classification rules. In Proc. third international conference on Knowledge Discovery
and Data mining (KDD), pages 31-36, 1997.

6. H. Mannila M. Klemettinen. Finding interesting rules from leirge sets of discov-
ered association rules. In Third Intl. Conference on Information and Knowledge
Management (CIKM), 1994.

7. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases.
http://wwv.ics.uci.edu/~mle2um/MLRepository.html. Irvine, CA: University of
California, Department of Information and Computer Science, 1996.

8. B. Peidmanabhan and A. Tuzhilin. A beleif-driven method for discovering unex-
pected patterns. In Proc. fourth international conference on Knowledge Discovery
and Data mining (KDD), pages 27-31, 1998.

9. C. Shannon and W. Weaver. The Mathematical Theory of Information. Urbana:
University of Illinoi s Press, 1949.

10. P. Smyth and Goodman R. M. Rule induction using information theory. In Knowl-
edge Discovery in Databases, Piatetsky-Shapiro, G. AAAI Press / The MIT Pres,
pages 159-176, 1991.

11. E. Suzuki. Discovering unexpected exceptions: A stochastic approEich. In Proc.
RFID, pages 225-232, 1996.

12. E. Suzuki. Autonomous discovery of reliable exception rules. In Proc. third in-
ternational conference on Knowledge Discovery and Data mining (KDD), pages
259-262, 1997.

13. E. Suzuki and Y. Kodratoff. Discovery of surprising exception rules based on inten-
sity of implication. In Proc. second Pacific-Asia conference on Knowledge Discovery
and Data mining (PAKDD), 1998.

14. E. Suzuki and M. Shimura. Exceptional knowledge discovery in databases based
on information theory. In Proc. second international conference on Knowledge Dis-
covery and Data mining (KDD), pages 295-298, 1996.

15. C. Thomas M and J. Thomas A. Elements of Information Theory. Wiley-
Interscience Pubhcation, 1996.

16. A. TuzhiUn and A. Silberschatz. What makes patterns interesting in knowledge
discovery systems. In IEEE Trans. Knowledge Discovery and Data Engineering,
pages 970-974, 1996.

2

Consistency Based Feature Selection

Manoranjan Dash ,̂ Huan Liu^, and Hiroshi Motoda'̂

' School of Computing, National University of Singapore, Singapore.
Division of Intelligent Sys Sci, Oscika University, Ibaraki, Osaka 567, Japan.

Abs t rac t. Feature selection is an effective technique in dealing with
dimensionality reduction for classification task, a main component of
data mining. It searches for ein "optimal" subset of features. The search
strategies under consideration are one of the three: complete, heuristic,
and probabilistic. Existing algorithms adopt various measiires to evaluate
the goodness of feature subsets. This work focuses on one measure called
consistency. We study its properties in compsirison with other major
measures and different ways of using this measure in sejirch of feature
subsets. We conduct cin empirical study to examine the pros and cons of
these different search methods using consistency. Through this extensive
exercise, we ciim to provide a comprehensive view of this measure and its
relations with other measures cind a guideline of the use of this meeisure
with different search strategies facing a new application.

1 Introduction

Classification is an important da ta mining tcisk. The basic problem of classifica-
tion is to classify a given pattern (example) to one of m known classes. A pat-
tern of features presumably contains enough information to distinguish among
the classes. When a classification problem is defined by features, the number of
features (N) can be quite large. Pat tern classification is inherently connected to
information reduction. Features can also be redundant or irrelevant. An irrele-
vant feature does not affect the underlying structure of the data in any way. A
redundant feature does not provide anything new in describing the underlying
structure. Because redundant and irrelevant information is cached inside the to-
tality of the features, a classifier that uses all features wil l perform worse than
a classifier that uses relevant features that maximize interclass differences and
minimize intraclass differences [4]. Feature selection is a task of searching for "op-
t imal" subset of features from all available features. Its motivat ion is three-fold:
simplifying the classifier; improving the accuracy of the classifier; and reducing
data dimensionality for the classifier. The last point is part icularly relevant when
a classifier is unable to handle large volumes of data.

Features may not be all relevant. In order to measure the usefulness (or
goodness) of selected features, we need selection criteria. The class separabil-
ity is often used as one of the basic selection criteria. When a set of features
maximizes the class separability, it is considered well suited for classification.
From a statistics viewpoint, five different measurements for class separabil ity

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 98-109, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Consistency Based Feature Selection 99

are analyzed in [8]: error probability, interclass distance, probabilistic distance,
probabilistic dependence and entropy. Information-theoretic considerations [20]
suggested something similar: using a good feature of discrimination provides
compact descriptions of each class, and these descriptions are maximally dis-
tinct. Geometrically, this constraint can be interpreted to mean that (i) such a
feature takes on nearly identical values for all examples of the same class, and
(ii) it takes on some different values for all examples of the other class. In this
work, we use a selection criterion that does not attempt to maximize the class
separability but tries to retain the discriminating power of the data defined by
original features. Feature selection is formalized as finding the smallest set of
features that can distinguish classes as if with the full set. In other words, with
a subset S of features, no two examples with the same values on S have different
class labels [1]. We study the pros and cons of this measure in comparison with
other measures. Another aspect of feature selection is related to the study of
search strategies. Extensive research efforts have been devoted to this study [19,
7,3]. Examples are Branch &Bound [16], Relief [11], Wrapper methods [12], and
Las Vegas algorithms [14]. The search process starts with either an empty set or
a full set. For the former, it expands the search space by adding one feature at
a time (Forward Selection) - an example is Focus [1]; for the latter, it expands
the search space by deleting one feature at a time (Backward Selection) - an
example is 'Branch fe Bound' [16].

The contributions of this paper are: (a) studying a monotonic criterion for
feature selection w.r.t. other selection criteria; (b) exploring its properties and
use in exhaustive (complete), heuristic, and probabilist search; (c) comparing
its different uses with a number of data sets; and (d) suggesting a framework of
when to use what. In the rest of the paper P is the number of patterns, Â is
the number of features, M is the size of relevant features, and m is the number
of class labels.

2 Consistency Measure

Consistency can be interpreted as zero inconsistency. If we attain zero inconsis-
tency, we achieve 100% consistency. Throughout this paper we use consistency
and inconsistency interchangeably.

2.1 The Measure

The suggested measure U is an inconsistency rate over the data set for a given
feature set. In the following description pattern means a set of values for the
features in a candidate subset. The inconsistency rate is calculated as follows:
(1) two patterns are considered inconsistent if they match all but their class
labels, for example, an inconsistency is caused by two instances (0 1 a) and (0 1
a) with different classes (a and a); and (2) the inconsistency count for a pattern
is the number of times it appears in the data minus the largest number among
different class labels: for example, let us assume there are n matching patterns.

100 M. Dash, H. Liu, and H. Motoda

among which ci patterns belong to labelj, ci to label2, and C3 to labels where
C1+C2+C3 = n. If C3 is the largest among the three, the inconsistency count is (n—
ca); and (3) the inconsistency rate is the sum of all the inconsistency counts for
all possible patterns of a feature subset divided by the total number of patterns
(P). By employing a hashing mechanism, we can compute the inconsistency
rate approximately with a time complexity of 0{P). Unlike the commonly used
univariate measures in literature [18], this is a multivariate measure which checks
a subset of features at a time.

2.2 Other Evaluat ion Measures

An optimal subset is always relative to a certain evaluation function. An optimal
subset chosen using one evaluation function may not be the same as that using
another evaluation function. Typically, an evaluation function tries to measure
the discriminating ability of a feature or a subset to distinguish the different
class labels. Blum and Langley [3] grouped different feature selection methods
into two broad groups (i.e., filter and wrapper) based on their use of an induc-
tive algorithm in feature selection or not. Filter methods are independent of an
inductive algorithm, whereas wrapper methods are not. Ben-Bassat [2] grouped
the evaluation functions until 1982 into three categories: information or un-
certainty measures, distance measures, and dependence measures. Considering
these divisions and latest developments, we divide the evaluation functions into
five categories: distance, information (or uncertainty), dependence, consistency,
and classifier error rate. Distance Measures It is also known as separability,
divergence, or discrimination measure. For a two-class problem, a feature X is
preferred to another feature Y if X induces a greater difference between the
two-class conditional probabilities than Y; if the difference is zero then X and
Y are indistinguishable. An example is Euclidean distance. Informatio n Mea-
sures These measures typically determine the information gain from a feature.
The information gain from a feature X is defined as the difference between the
prior uncertainty and expected posterior uncertainty using X. Feature X is pre-
ferred to feature Y if the information gain from feature X is greater than that
from feature Y [2]. An example is entropy. Dependence Measures Depen-
dence measures or correlation measures quantify the ability to predict the value
of one variable from the value of another variable. Correlation coefficient is a
classical dependence measure and can be used to find the correlation between a
feature and a class. If the correlation of feature X with class C is higher than the
correlation of feature Y with C, then feature X is preferred to Y. A slight vari-
ation of this is to determine the dependence of a feature on other features; this
value indicates the degree of redundancy of the feature. Al l evaluation functions
based on dependence measures can be divided between distance and information
measures. But, these are still kept as a separate category because, conceptually,
they represent a different viewpoint [2]. Consistency Measures This type of
measures has been in focus recently. They are characteristically different from
other measures because of their heavy reliance on the training data and use of
Min-Features bias in selecting a subset of features [1]. Min-Features bias prefers

Consistency Based Feature Selection 101

consistent hypotheses definable over features as few as possible. This measure
is similar to the consistency measure U we described in the beginning of this
section with the difference that U can handle noise (e.g. misclassification). Er -
ror Rate Measures The methods using this type of evaluation function are
called "wrapper methods", i.e., the classifier is the evaluation function. As the
features are selected using the classifier that later uses these selected features in
predicting the class labels of unseen instances, the accuracy level is very high
although computationally rather costly [9].

2.3 Consistency Measure vis-a-vis Other Measures

We compare consistency measure with other measures. First, consistency mea-
sure is monotonic and others are not. Assuming we have subsets {So,Si, ...,Sn}
of features, we have a measure U that evaluates each subset Si- The monotonicity
condition requires the following: ^o D Si D ... D 5n => U{So) < U{Si) < ... <
U(Sn)- Second, for the consistency measure, a feature subset can be evaluated in
0{P). It is usually costlier for other measures. For example, to construct a de-
cision tree in order to have predictive accuracy, it requires at least O(PlogP);
to calculate the distances, it requires O(P^). Third, consistency measure can
help remove both redundant and irrelevant features; other measures may not
do so. Last, consistency measure is capable of handling some noise in the data
reflected as a percentage of inconsistencies. This percentage can be obtained by
going through the data once. In short, consistency measure is monotonic, fast,
able to remove redundant and/or irrelevant features, and capable of handling
some noisê

3 Ways of Using Consistency Measure

Different search strategies pose further constraints on a selection criterion. We
demonstrate that the consistency measure can be employed in common forms of
search without modification. Five different algorithms represent standard search
strategies: exhaustive - Focus [1], complete- ABB [13], heuristic- SetCover [6],
probabilistic- LVF [14], and hybrid oi ABB and LVF - QBB. We examine their
advantages and disadvantages.
Focus: exhaustive search: Focus [1] starts with an empty set and carries out
breadth-first search until it finds a minimal subset that predicts pure classes.
With some modification of Focus, we have FocusM that can work on non-binary
data with noise. As FocusM is exhaustive search it guarantees an optimal solu-
tion. However, FocusM's time performance can deteriorate if M is not small with
respect to N. The search space of FocusM is closely related to the number of
relevant features. In general, the less the number of relevant features, the smaller
the search space.
ABB: complete search: Branch & Bound (B&B) [16] starts with a full set

' There are many types of noise. Consistency measure Ccin hcindle misclcissifications.

102 M. Dash, H. Liu, and H. Motoda

of features, and removes one feature at a time. When there is no restriction on
expanding nodes in the search space, this could lead to an exhaustive search.
However, if each node is evaluated by a measure U and an upper limi t is set for
the acceptable values of U, then B&B backtracks whenever an infeasible node is
discovered. If U is monotonic, no feasible node is omitted and savings of search
time do not sacrifice optimality. As pointed out in [19], the measures used in [16]
such as accuracy have disadvantages (e.g., non-monotonicity); the authors of [19]
proposed the concept of approximate monotonicity. ABB [13] is an automated
B&B algorithm having its bound as the inconsistency rate of the data when the
full set of features is used. It starts with the full set of features 5"°, removes one
feature from 5i~^ in turn to generate subsets S^j where / is the current level
and J specifies different subsets at the lih. level. If t/(5j) > t/(5'~^), 5j stops
growing (its branch is pruned); otherwise, it grows to level / + 1, i.e. one more
feature could be removed.

Since inconsistency is a monotonic measure, ABB guarantees an optimal
solution. However, a brief analysis suggests that ABB's time performance can
deteriorate as the difference N — M increases. This issue is related to how many
nodes (subsets) have been generated. The search space of ABB is closely related
to the number of relevant features. In general, the more the number of relevant
features, the smaller the search space due to early pruning of the illegitimate
nodes. Our analysis of Focus and ABB reveals that Focus is efficient when M
is small, and ABB is efficient when N — M is small. In other cases, we can use
inconsistency measure in heuristic search.
SetCover: heuristic search: SetCover [6] uses the observation that the prob-
lem of finding the smallest set of consistent features is equivalent to 'covering'
each pair of examples that have different class labels with some feature on which
they have different values. This enables us to apply Johnson's algorithm [10] for
Set Cover for this problem, which implies that the resulting algorithm outputs
a consistent feature set of size 0 (M log P) in polynomial time. Variants of Set
Cover have previously been used for learning conjunctions of boolean features.
Consistency criterion can be restated as: a feature set S is consistent if for any
pair of instances with different class labels, there is a feature in S that takes
diff'erent values. Thus including a feature f in S "takes care of" all those ex-
ample pairs with different class labels on which / takes different values. Once
all pairs are "taken care of" the resulting set S is consistent. The advantages of
SetCover is that it is fast, close to optimal, and deterministic. This works well
for data where features are rather independent of each other. It may, however,
have problems where features have inter-dependencies. This is because it selects
the best feature in each iteration based on the number of instance-pairs covered.
A new solution is needed that avoids the problems of exhaustive and heuristic
search. Probabilistic search is a natural choice.

LVF : probabilisti c search: Las Vegas algorithms [5] for feature subset selec-
tion can make probabilistic choices of subsets in search of an optimal set. Another
similar type of algorithms is the Monte Carlo algorithm in which it is often pos-
sible to reduce the error probability arbitrarily at the cost of a slight increase in

Consistency Based Feature Selection 103

computing time [5]. LVF is more suitable since the probability of generating a
certain subset is the same. LVF adopts the inconsistency rate as the evaluation
measure. Due to its monotonicity, a superset of a subset of relevant features is
also good. Hence, there are more chances for good subsets to be selected. LVF
keeps the smallest subset of features randomly generated so far that satisfies a
threshold (by default it is the inconsistency rate of the data with all features).
It is fast in reducing the number of features. We conducted experiments to ob-
serve how the number of valid features (M') drops as the number of randomly
generated feature sets increases. A total of 10 data, both artificial and real, are
chosen for the experiments from the UC Irvine data repository [15] (Table 1).
Two typical graphs are shown in Figure 1 in a longer time span (partial results
shown in Table 1) in order to observe the trend.

Data
P
m
N
M'{M)
#Eval
#Max

LED24
1200
10
24

12(5)
230
2"'

Lung Lymph Mush Par3-|-3 Promo
32 148
3 4
56 18

19(4) 8(6)
155 215
256 2 '*

7125
2
22

8(4)
22
222

64
2
12

5(3)
25
2l2

106
2
57

15(4)
187
2 "

Soy Splice Vote Zoo
47 3190 435 74
4 3 2 7
35 60 16 16

12(2) 19(9) 13(8) 9(5)
42 284 215 25
935 2^0 o '* 2'®

Table 1. The number of valid features (M') drops shcirply in the first few hundred runs
for all data. P, N, M and m cire defined earlier. #Eval is number of subsets generated
cind evaluated. #Max is maximum possible subsets.

The trend found in all the experiments is that M' drops sharply from N in
the first few hundred runs (one run means one feature set is randomly generated
and evaluated). Afterwards, it takes quite a long time to further decrease M'.
Some analysis can confirm this finding. A particular set has a probability of
1/2̂ to be generated. At the beginning, the full set is valid. Many subsets can
satisfy the inconsistency criterion. As M' decreases from N to M, fewer and
fewer subsets can satisfy the criterion. However, the probability of a distinct set
being generated is still 1/2'' .̂ That explains why the curves have a sharp drop
in the beginning and then become flat in Figure 1. LVF reduces the number
of features quickly during the initial stage (the first few hundred loops); after
that LVF still searches in the same way (i.e., blindly), the computing resource
is spent on generating many subsets that are obviously not good.
QBB: hybr id search: As ABB and LVF complement each other, QBB is a
natural offspring of ABB and LVF, which uses inconsistency as its evaluation
measure. QBB runs LVF in the first phase and ABB in the second phase so
that the search is more focused after the sharp decrease in the number of valid
subsets. A key issue remains: what is the crossing point in QBB at which ABB
takes over from LVF. If we allow only certain amount of time to run QBB, the
point at which ABB takes over from LVF is crucial for the efficiency of QBB.

104 M. Dash, H. Liu, and H. Motoda

Mushrooin

20

15

10

randoms ubsets
bestSubsetB —

cXJnsistentSubsets o

\ ii ^ * i ; I * t îi / \ i ^^ ; ^^ i -i

iPf ' 111 wi

-

500 1000 1500 200O 2500
rung performed

Promoters

3000 3500 4000

50

40

30

20

10

randoms ubsets
bestSubsets —

consEstenlSubsets o

!

^i :
: f i

S *

2000 4000 6000
rung perfofTTied

eooo 10000

Fig. 1. The typical trends of the decreasing number of valid features versus the number
of runs performed. Points include both valid and invEilid feature subsets. Valid subsets
are connected by solid lines.

Consistency Based Feature Selection 105

Extensive experiments suggested that dividing the total time equally between
LVF and ABB is a robust solution and is more likely to yield the best results. If
the crossing point is too early, LVF might not have reduced the valid subset size
substantially for ABB to perform well under time constraint; but if the crossing
point is too late, the small sized subsets generated by LVF at the crossing point
might not contain any minimal size subset, and so ABB becomes ineffective.

3.1 Summary: When to Use What

As we have five algorithms to choose from, we are also interested to know how we
should use them. Theoretical analysis and experimental experience suggest the
following. If M - the size of relevant features is small, FocusM should be chosen;
however if M is even moderately large, FocusM will take a long time. If there
are a small number of irrelevant and redundant features, ABB should be chosen;
but ABB will take a long time for a moderate number of irrelevant features. For
data with large numbers of features, FocusM and ABB should not be expected
to terminate in realistic time. For the Letter data with 20,000 instances (TV = 16
and M = 11) FocusM took more than 2 days to terminate whereas ABB took
more than 7 hours to generate optimal subsets. Hence, in such cases one should
resort to heuristic or probabilistic search for faster results. Although these algo-
rithms may not guarantee optimal subsets but will be efficient in generating near
optimal subsets in much less time. SetCover is heuristic, fast, and deterministic.
It may face problems with data having highly interdependent features. LVF is
probabilistic, not prone to the problem faced by SetCover, but slow to converge
in later stages. As we have shown, it can reduce the feature subset size very fast
in the beginning but then it slows down in reducing features. QBB is a welcome
modification as it captures the best of LVF and ABB. It is reasonably fast (slower
than SetCover), robust, and can handle features with high interdependency.

4 Further Experiments

The points that remain inconclusive are: (1) features selected using inconsistency
can achieve the objective of dimensionality reduction without sacrificing predic-
tive accuracy; and (2) how the different algorithms fare in terms of time and
optimality. The experimental procedure is to (1) choose data frequently used by
the community; (2) run ABB to get the minimal size as reference; (3) compare
the performance (average time and number of selected features) of different al-
gorithms; and (4) compare the accuracy of two different classifiers (C4.5 [17] and
Back-propagation neural network [21]) over data before and after feature selec-
tion by QBB. Ten data, both artificial and real, are chosen for the experiments
from the UC Irvine data repository [15]. A summary of these data is given in
Table 1. Par34-3 contains 12 features (3 relevant, 3 redundant, 6 irrelevant).

Figure 2 shows a comparison of the performance (both average time and
number of selected features) of different algorithms. First ABB is run over the
10 data to find the M (minimal size) values. For comparison purpose we have

106 M. Dash, H. Liu, and H. Motoda

1
5

11

1 0

8

8

r

R

5 I

-

-

MC.

I

 - -

M(

1 I - r " 1

"
"

' se t C o v e r '
' O p t i m a l '

 ~ - - -9K- .

-ea----

' - J K

'

-

-

-

I 1 1 1 1 1 I

1 0 1 2 1 4
Rrocess ln Q T i m e (s e c)

Fig. 2, Experiments to show how differently algorithms fcire in terms of time cind
optimality. Results of Focus and ABB are out of bounds in x-axis (time).

calculated the average minimal value, MAVQ, over all data which is found to be
5. This value is used as a reference line in Figure 2. Out of the 5 competing
algorithms, FocusM, ABB and SetCover are deterministic, whereas LVF and
QBB are non-deterministic due to their probabilistic nature. QBB spends half
of the time running LVF and the other half running ABB. For LVF and QBB we
show results for 5 different processing time in terms of total numbers of subsets
evaluated (1000...5000). Each experiment was repeated 50 times. Notice that
Focus and ABB are not shown in the graph as their average times fall outside the
range of the 'processing time' in the x-axis of the graph, although minimal sized
subsets are guaranteed in each case. For data having large differences between N
and M values such as Lung Cancer, Promoters, Soybean, Splice data ABB takes
very long time (a number of hours) to terminate. For data having large N values
and not very small M values such as Splice data {N = 60, M = 9) FocusM takes
many hours to terminate. The comparison in Figure 2 shows that QBB is more
efficient both in average time and number of selected features compared to LVF,
FocusM, and ABB. The average size of the subsets produced by QBB is close

Consistency Based Feature Selection 107

to M^^g and it approaches to MAVQ with time. SetCover produces near optimal
subsets in much less time. Between QBB and SetCover we would say QBB is
more robust while SetCover, although very fast and accurate, may fail to deliver
efficient subsets if there is dependency among the features.

The error probability is often used as a validation criterion. Among the dif-
ferent algorithms discussed in the paper we take QBB due to its robustness. We
choose C4.5 decision tree and Back-propagation neural network as two classi-
fiers for validation. For back-propagation each data was divided into a training
set (two-third of the original size) and the rest one-third as testing. For C4.5,
we use the default settings, apply it to data before and after feature selection,
and obtain the results of 10-fold cross-validation. This is repeated 10 times for
each data and the average error rate and tree size are reported in Table 2. That
is, QBB has been run 10 times and C4.5 100 times. The experiment shows the
improvement/no reduction for most data (9 out of 10) in C4.5's accuracy after
feature selection.

Running Back-propagation involves the setting of some parameters, such as
the network structure (number of layers, number of hidden units), learning rate,
momentum, number of CYCLES (epochs), etc. In order to focus our attention
on the eifect of feature selection by QBB, we try to minimize the tuning of the
parameters for each data. We fix the learning rate at 0.1, the momentum at
0.5, one hidden layer, the number of hidden units as half of the original input
units for all data. The experiment is carried out in two steps: (1) a trial run
to find a proper number of CYCLES for each data which is determined by a
sustained trend of no decrease of error; and (2) two runs on data with and
without feature selection respectively using the number of CYCLES found in
step 1. Other parameters remain fixed for the two runs in step 2. The results
are shown in Table 2 with an emphasis on the difference before and after feature
selection. In most cases, error rates decrease (6 out of 10) or do not change (3
out of 10) after feature selection.

Data
LED-24
Lung
Lymphography
Mushroom
Par3+3
Promoters
Soybean
Splice
Vote
Zoo

C4.5
Tree Size

Bef
19.0
19.0
26.9
36.3
12.0
21.4
7.1
173.0
14.5
17.8

Af t
19.0
10.9
22.1
34.2
15.0
8.2
9.4
187.0
14.2
17.7

Error Rate
Bef
0.0
50.0
21.8
0.0
41.9
26.3
2.5
5.9
5.3
7.8

Af t
0.0
41.8
21.4
0.0
0.0
22.1
2.0
14.0
5.3
6.6

Back-Propagation

Cycles
1000
1000
7000
5000
1000
2000
1000
6000
4000
4000

#HU
12
28
9
11
6
29
18
30
8
8

Error Rate
Bef
0.06
75.0
25.0
0.0
22.2
46.8
10.0
25.64
6.7
10.3

Aft
0.0
75.0
25.0
0.0
0.0
25.0
0.0
42.33
4.0
3.4

Table 2. Results of Hybrid Search. #HU is number of Hidden Units.

108 M. Dash, H. Liu, and H. Motoda

5 Concluding Remarks

The fact that the consistency criterion does not incorporate any search bias re-
lating to a part icular classifier enables i t to be used with a variety of different
learning algorithms. As shown in the experiments, for the two different types
of classifiers, selected features improve the performance in terms of lower error
rates in most cases. Features selected without search bias bring us efficiency in
later stage as the evaluation of a feature subset becomes simpler than that of
a full set. On the other hand, since a set of features is deemed consistent if
any function maps from the values of the features to the class labels, any al-
gori thm optimizing this criterion may choose a small set of features that has a
complicated function, while overlooking larger sets of features admit t ing simple
rules. Although intuitively this should be relatively rare, it can happen in prac-
tice, as apparently this was the case for the Splice data where both C4.5 and
Back-propagation's performance deteriorate after feature selection.

The inconsistency measure has received a comprehensive examinat ion that
reveals its many merits for feature selection. The outstanding one is its mono-
tonicity. It is also fast to compute, can detect redundant as well as irrelevant
features. It has been used with a variety of search strategies in feature selec-
tion and no modification is required. The salient contribution of this work is
that a guideline is suggested as to when to use what after detailed evaluation
of different search algorithms. We believe the guideline wil l be very helpful to
practit ioners in need to reduce dimensionality of huge data, and to researchers
who want to further the work of feature selection.

References

1. H. AlmualUm cind T. G. Dietterich. Learning boolean concepts in the presence of
many irrelevant features. Artificial Intelligence, 69(l-2):279-305, November 1994.

2. M. Ben-Bassat. Pattern recognition and reduction of dimensionality. In P. R.
Krishncuah and L. N. Kanal, editors, Handbook of Statistics, pages 773-791. North
HoUand, 1982.

3. A. L. Blum and P. Lcingley. Selection of relevcint features and examples in machine
learning. Artificial Intelligence, 97:245-271, 1997.

4. A Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's razor.
Readings in Machine Learning, pages 201-204, 1990.

5. G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice HcJl, New Jersy,
1996.

6. M. Dash. Feature selection via set cover. In Proceedings of IEEE Knowledge
and Data Engineering Exchange Eorkshop, pages 165-171, Newport, California,
November 1997. IEEE Computer Society.

7. M. Dash and H. Liu. Feature selection methods for classification. Intelligent Data
Analysis: An Interbational Journal, 1(3), 1997.

8. P. A. Devijver and J. Kittler. Pattern Recognition : A Statistical Approach. Prentice
Hall, 1982.

Consistency Based Feature Selection 109

9. G. H. John, R. Kohavi, and K. Pfleger. Irrelevcint features cind the subset selection
problem. In Proceedings of the Eleventh International Conference on Machine
Learning, pages 121-129, 1994.

10. D. S. Johnson. Approximation eilgorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256-278, 1974.

11. K. Kira and L. A. Rendell. The feature selection problem : Traditional methods
and a new algorithm. In Proceedings of Ninth National Conference on AI, pages
129-134, 1992.

12. R. Kohavi. Wrappers for performance enhancement and oblivious decision graphs.
PhD thesis. Department of Computer Science, Stanford University, CA, 1995.

13. H. Liu, H. Motoda, and M. Dcish. A monotonic measure for optimal feature selec-
tion. In Proceedings of European Conference on Machine Learning, pages 101-106,
1998.

14. H. Liu and R. Setiono. Feature selection and classification - a probabilistic wrapper
approach. In Proceedings of Ninth International Conference on Industrial and
Engineering Applications of AI and ES, 1996.

15. C. J. Merz cmd P. M. Murphy. UCI repository of machine learning databases, 1996.
FTP from ics.uci.edu in the directory pub/machine-learning-databases.

16. P. M. Narendra and K. Fukunaga. A breinch and bound algorithm for featiu-e
selection. IEEE Transactions on Computers, C-26(9):917-922, September 1977.

17. J. R. Quinlan. C4-5 : Programs for Machine Learning. Morgan Kaufmann, San
Mateo, California, 1993.

18. T. W. Rauber. Inductive Pattern Classification Methods - Features - Sensors. PhD
thesis. Department of ElectriccJ Engineering, Universidale Nova de Lisboa, 1994.

19. W. Siedlecki and J Sklcinsky. On automatic feature selection. International Journal
of Pattern Recognition and Artificial Intelligence, 2:197-220, 1988.

20. S. Watanabe. Pattern Recognition: Human and Mechanical. Wiley Intersceince,
1985.

21. A. Zell and et al. Stuttgart Neureil Network Simulator (SNNS), user manual,
version 4.1. Technical report, 1995.

Feature Selection for Clustering

Manoranjan Dash and Huan Liu

School of Computing, National University of Singapore, Singapore.

Abstract. Clustering is an important data mining task. Data mining
often concerns large and high-dimensionai data but unfortunately most
of the clustering algorithms in the literature axe sensitive to largeness or
high-dimensionality or both. Different features affect clusters differently,
some are important for clusters while others may hinder the clustering
task. An efficient way of handling it is by selecting a subset of important
features. It helps in finding clusters efficiently, understanding the data
better and reducing data size for efficient storage, collection and process-
ing. The task of finding original important features for unsupervised data
is largely untouched. Traditional feature selection algorithms work only
for supervised data where class information is avaiilable. For unsuper-
vised data, without class information, often principal components (PCs)
Eire used, but PCs still require all features and they may be difficult to
understand. Our approach: first features Eire ranked Eiccording to their
importance on clustering and then a subset of important features are
selected. For large data we use a scalable method using sampling. Em-
pirical evaluation shows the effectiveness and scalability of our approach
for benchmark and synthetic data sets.

1 Introduction

Clustering is an important data mining task that groups similar objects together
[8,11,10,4,2]. Similarity between a pair of data points is due to different features.
If similarity is distance-based then for a pair of data points in a cluster there
exist at least a few features on which the points are close to each other. Most
clustering methods assume all features to be equally important for clustering, or
in other words they do not distinguish among different features. This is one of
the reasons why most clustering algorithms may not perform well in the face of
high-dimensional data. Another reason of the poor performance is the inherent
sparsity of data in high-dimensional space. In reality different features have vary-
ing effects on clustering. An important feature helps in creating clusters while an
unimportant feature may not help in creating clusters and, in contrary, it may
affect the clustering algorithms adversely by blurring the clusters. Unimportant
features are noisy or irrelevant and can be removed to reduce the data size for
more efficient clustering. It also reduces the noise and helps in data storage,
collection, and processing.

As clustering is done on unsupervised data without class information, tradi-
tional feature selection algorithms for classification [6] do not work. Littl e work

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 110-121, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Feature Selection for Clustering 111

has been done on feature selection for unsupervised data. Dimensionality re-
duction or feature extraction methods (e.g., Principal Components Analysis,
Karhunen-Loeve transformation, or Singular Value Decomposition) are com-
monly used [8]. They have drawbacks such as: (1) it is difl&cult to understand the
data (and the found clusters) using the extracted features, and (2) the original
features remain as they are required to determine the extracted features.

Some recent works on clustering try to handle high-dimensionality by select-
ing important features. In [2] and later in [5] it is observed that dense regions may
be found in subspaces of high dimensional data. The algorithm called CLIQUE
in [2] divides each dimension into a user given divisions. It starts with finding
dense regions in 1-dimensional data and works upward to find fc-dimensional
dense regions using candidate generation algorithm Apriori [3]. This approach is
different from the conventional clustering that partitions the whole data. In [1]
a new concept is presented called "projected clustering" to discover interesting
patterns in subspaces of high-dimensional data. It finds the clusters first and
then selects a subset of features for each cluster. It searches for the subset of
features by putting a restriction on the minimum and the maximum number of
features.

We address the problem of selecting a subset of important features for clus-
tering for the whole data and not just for clusters unlike in [1,2]. This helps
in knowing the important features before doing clustering and the clustering
task becomes more efficient and focused as only the important features can be
used. Finding the important original features for the whole data helps in under-
standing the data better unlike principal components. Data storage, collection
and processing tasks become more efficient and noise is reduced as the data is
pruned.

Our approach is a 2-step method: we first rank and then select a subset of
important features. Ranking of features is done according to their importance
on clustering. An entropy-based ranking measure is introduced. We then select
a subset of features using a criterion function for clustering that is invariant
with respect to different numbers of features. A novel scalable method based on
random sampling is introduced for large data commonly found in data mining
applications.

2 Importance of Features on Clustering

Notations used in the paper are as follows: Xi is i*' ' data point, Xik is
feature value of i*' ' point, Fk is A;*'' feature where i = 1...N and k = 1...N;
Di^^i^ and Si^^i ̂are distance and similarity between points Xi ̂ and Xi^; Xj is
j * ' ' cluster where j = l...c. We start by showing visually the effects of features
on clustering. In Figure l(a,b,c) we show a synthetic data in (3,2,l)-d feature
spaces respectively. There are 75 points with 3 clusters in FI-F2 dimensions,
with each cluster having 25 points. Values in Fl and F2 features follow Gaussian
distribution within each of the 3 clusters while values in feature F3 are uniformly
random. When we take 3 features the clusters are unclear and unnecessarily

112 M. Dash and H. Liu

complex (see Figure 1(a)), whereas no clusters can be found when we visualize
using only 1 feature Fl (Figure 1(c)). Figure 1(b) with F1-F2 features shows
3 well-formed clusters. Selecting features Fl and F2 reduces the dimensionality
of the data while forming well separated clusters.

(a) F1-F2-F3 (b) F1-F2 (c)Fl

Fig. 1. Effect of features on clustering.

In a single dimensional data set clusters can be formed if the single feature
takes values in separate ranges. In a multi-dimensional data set clusters can be
formed from combination of feature values although the single features by them-
selves alone may take uniform values. We have noted down 2 distinct scenarios
in the following.
Scenario 1: A single feature is important by itself only: Consider Figure 2(a)
where there are 2 features. Feature F2 is uniformly distributed while Fl takes
values in 2 separate ranges. It can be clearly seen that Fl is more important for
creating clusters than F2.
Scenario 2: Two features are necessarily important and any individual feature
is useless in defining clusters: Consider Figure 2(b) where there are 2 features.
Both Fl and F2 are uniformly distributed. It can be clearly seen that both Fl
and F2 are necessary for clustering and any one alone is useless.

(a) Scenario 1 (b) Scenario 2

Fig. 2. Effects of features on clusters: scenario 1 shows effect of individual feature
while scenario 2 shows the combined effect of 2 features.

Feature Selection for Clustering 113

3 Entropy-Based Feature Ranking

Consider each feature Fj as a random variable while fi as its value. Prom entropy
theory we know that, entropy is:
E{FI,...,FM) = - E / i) where P (/ I , . . . , / M)

is the probability or density at the point (/i , . . . , / M)- If the probability is uni-
formly distributed we are most uncertain about the outcome, and entropy is
maximum. This will happen when the data points are uniformly distributed in
the feature space. On the other hand, when the data has well-formed clusters
the uncertainty is low and so also the entropy. As we do not have a priori infor-
mation about clusters, calculation of p(/ i, . . . , / M) is not direct. But we can use
the following way to calculate entropy without any cluster information.
Entropy Measure: Usually in a real-world data there may be a few not very
well-formed clusters and some noise (points not belonging to any cluster prop-
erly). Two points belonging to the same cluster or 2 different clusters will con-
tribute to the total entropy less than if they were uniformly sepatated. Similarity
5ij,i2 between 2 instances Xj j and Xi ̂ is high if the 2 instances are very close
and 5ij,i2 is low if the 2 are far away. Entropy £ î,,J2 wil l be low if 5j,,J2 is ei-
ther low or high and Ei ,̂j^ wil l be high otherwise. The following mathematical
formulation is based on this idea.

Our similarity measure is applicable to both numeric and nominal data.
Similarity is based on distance, i.e., for numeric data we use Euclidean dis-
tance while for nominal data we use Hamming distance. Mathematically simi-
larity for numeric data is given as: Si^^i ̂= e~"'^^*i''2 where a is a parameter.
In a multi-dimensional space, distance Dji.i j for numeric data is defined as:
Diuh = [E i^ i i2ll-mtJ^V^^- The interval in the fc*'' dimension is normal-
ized by dividing it by the maximum interval (maxk — mink) before calculating
the distance. If we plot similarity against distance, the curve will have a big-
ger curvature for a larger a. The insight is we assign a very high similarity for
points 'very close' together but assign a low similarity for points 'not close' or
'far away'.

Similarity for nominal features is measured using the Hamming distance. The

similarity between two data points is given as: Si^^i ̂= M'°—-^ where
\^hk = ^hk] is 1 if Xi^k equals Xi^k and 0 otherwise. For data with both numeric
and nominal features, we can discretize numeric values first before applying our
measure. For two points Xi ̂ and Xi^, entropy is: E = —Stj^^i ̂ log 5,1,12 — (1 —
5'ii,ij)log(l — Si^^i^) which assumes the maximum value of 1.0 for Si^^t ̂= 0.5,
and the minimum value of 0.0 for Si^^i ̂= 0.0 and Si^^i ̂= 1-0. For a data set
of AT data points entropy is given as: E = - S f [= i iCf^^iCS'ii.ij x log St^^i ̂+
(1 —) X log(l — Si^^i^)) where Si^^i ̂takes values in [0.0-1.0]. In this work,
a is calculated automatically by assigning 0.5 in Equation: S = e~°'^ ̂ at which
entropy is maximum; so we get: a = ~ '^°-^ where D is the average distance
among the data points.
Algorith m to Rank Features: If the removal of feature Fi causes more dis-
order than the removal of feature F2 then £?_FI > E^F ̂ where E-p ̂ and E-F2

114 M. Dash and H. Liu

are entropy after removing Fi and F2 respectively. In scenario 1 (Figure 2(a))
E-Fi > E-F^. For scenario 2 (Figure 2(b)) we added one more feature F3 which
takes uniformaly random values and does not take part in forming the 2 clusters.
As expected we got E-Pi > E-F3 and E-F2 > E-Pa- Secenario 2 suggests that
our entropy measure works for dependent features also.

For ranking of features we can use E in the following way: Each feature
is removed in turn and E is calculated. If the removal of a feature results in
minimum E the feature is the least important; and vice versa. In the algorithm
CalcEnt(Ffc) calculates E of the data after discarding feature Fk.
Algorith m (RANK) :

P = E values for M features
For fc = 1 to M

Pk = CalcEnt(Ffc)
OutputRank(P)

Scalable Feature Ranking: Data mining generally concerns data with large
number of data points. For a large number of data points our ranking measure
may not be practical as it is (the complexity of RANK is 0{MN'^) if we take
the similarity measure between 2 points as unit). There are different approaches
available in the literature for handling large data sets for a given algorithm. Our
scalable method is based on random sampling. We observed that a reasonably
small random sample retains the original cluster information in most cases. This
phenomenon was also observed in [9] in their work on initialization of partitional
clustering algorithms. Notice that for entropy measure to work well the cluster
structure needs to be retained and it is largely independent of the number of
data points. So, random sampling is a good choice for scalability. The algorithm
is simple. Initially all features are ranked 0. Random samples are generated and
RANK is run over each sample to produce the rankings of features. The feature
rankings are added correspondingly. At the end of all random samples p (we
suggest the use of at least 35 samples as 35 is often considered the minimum
number of samples for large sample procedures [7]) we obtain the final rankings
of the features.
Algorith m for Scalable Ranking, SRANK

for all features FkS Overall iJank, ORk = 0
for / = 1 to p

take a sample Li
run RANK to find rankings Ri
ior k = 1 to M

ORk = ORk + Ri,
output overall rankings OR

Selecting a Subset of Importan t Features:
A problem is how many features we should choose from a ranked list. A natural
expectation is that entropy would fall initially with removal of unimportant fea-
tures, but would stop falling at some point. This is not the case as the entropy

Feature Selection for Clustering 115

is not invariant with respect to different numbers of features. Hence we are left
with finding the different alternatives of selecting a subset of features: (1) If one
knows the number of important features required, just pick them starting with
the most important one, or (2) we can choose a clustering algorithm and choose
the subset that maximizes the clustering quality. The first option is not prac-
tical without any a priori knowledge. The second option is a wrapper method.
Wrapper method is a feature selection method that wraps around clustering
algorithm which is a standard way for supervised feature selection with a clas-
sification algorithm [12]. The difference is that in our case features are already
ranked according to their importance and so the task of searching through the
feature subset space of 2 ̂ is avoided. The idea is to run a clustering algorithm
on the selected features and choose the subset that produces best cluster quality.

We choose fc-means clustering algorithm which is very popular and simple
to implement. It is iterative, provides results fast (converges fast to local max-
ima), has a time complexity of # / i er * |Dafa| * c where #7ier is is the num-
ber of iterations, |Dato| is the size of the data (A^ * M), and c is the number
of clusters. Once the clustering is done we need to measure the cluster qual-
ity. There are numerous criterion functions for clustering in literature to mea-
sure cluster quality. We select scattering criterion which is invariant under non-
singular transformation of data. Scattering Criteria : These criteria consider
the scatter matrices used in multiple discriminant analysis. Scatter matrix for
j * ' ' cluster: Pj = J2xi€x ~ "^j)(^ t ~ '^j)* Within-cluster scatter matrix:
Pw — Y^i=\ Pj Between-cluster scatter matrix: PB = Yl'j=i ('^j ~ '"^)("^j ~ '^)*
where m is the total mean vector and nij is the mean vector for j * ' ' cluster and
(Xi ~ mjY is the matrix transpose of the column vector [Xi — ruj). Among
different scattering criteria we briefly describe here an 'Invariant Criterion'. One
invariant criterion is: tr{Pw~^PB) where tr is trace of a matrix which is the sum
of its diagonal elements. It is invariant under nonsingular linear transformations
of the data. It measures the ratio of between-cluster to within-cluster scatter.
The higher the tr{Pw~^PB), the higher the ratio of between-cluster scatter to
within-cluster one and hence, and hence, the higher the cluster quality. We use
tr{Pw''^PB) to compare the cluster quahty for different subsets of important
features. The algorithm for selecting a subset of features is as follows:
Algorithm SELECT:

run RANK to get rankings Rk,k = 1...M
for k—1 to M

run ii"-means to find clusters using subset {Ri, ...,Rk)
calculate tr{P^^PB)
if stopping criterion satisfy break

In case of large data run SRANK instead of RANK. TrCP^^Ps) will mcrease
with the addition of features if the ratio of between-cluster to within-cluster
increases, otherwise it decreases or remains relatively unchanged. As is found
by the experiments, tr{P^PB) increases initially and once all important fea-
tures are added, it either goes down or remains relatively unchanged for any
addition of unimportant features. The point at which tr{P^PB) goes down or

116 M. Dash and H. Liu

remains unchanged is not difficult to detect visually, hence the stopping criterion
is manually decided.

4 Experiments

We empirically tested our feature selection method on different scenarios that
one may find in various data mining applications. First, tests are conducted on
benchmark and synthetic data sets to check the correctness of our claim that our
feature selection method can select correct features as we know well about these
data sets. Tests are then conducted on a large high-dimensional data to test
the performance of SRANK. We used a MATLA B random function to generate
synthetic data. For synthetic data sets a few features are chosen as important
and these features follow Gaussian distribution. Each cluster is of equal size if
not mentioned otherwise. Clusters are usually overlapping. Unimportant features
are added which take uniformly random values. Each data has 5% noisy data
points.
Benchmark and Synthetic Data: Three synthetic data sets are generated
with different numbers of clusters and features. Benchmark data sets (both nu-
meric and nominal) are selected from UCI machine-learning repository [13]. See
Table 1 for the details about data sets. We have chosen those data sets from
the repository for which prior information is available regarding importance of
features. Although for these benchmark data sets class information is available,
in our experiments we have removed the class labels. Parity3+3 has 3 relevant,
3 redundant, and 6 irrelevant features.

The results for ranking are shown in Table 1. Our method is able to rank
the important features in the top ranks for all data. For CorrAL our method
ranks feature F6 higher. F6 is correlated to the class label 75% of the data
points. This shows our ranking measure favors features that are correlated to
the class. Although for CorrAL this is not desired but for real-world data this
may be acceptable. For Parity3-)-3 ranking was correct although the redundant
features could not be detected. This can be removed if after selecting a subset
of features we check for redundancy between the features in pair. For a small
subset of selected features this may not be extermely prohibitive.

The results for selecting a subset of features are shown for the data sets with
a known number of clusters and numeric data. We use fc-means and tr{Pw~ PB)
to evaluate the subsets of important features. Initialization of fc-means is done by
randomly choosing points from the data. Once a set of points are chosen for the
whole data the same set is used for different subsets of features. The results are
summarized in Figure 3. The X-axis of the plots is for number of most important
features and Y-axis is for tr{P^PB) value for the corresponding subset of most
important features. For Iris data set trace value was the maximum for the two
most important features. For D3C, D4C and D6C data trace value increases with
addition of important features in a fast rate but slows down to almost a halt
after all the important features are added. For a practical application it will not

Feature Selection for Clustering 117

Data Set
Iri s
ChemicalPlant
Non-linear
Parity3+3
CorrAL
Monks
DSC
D4C
D6C

M
4
5
4
12
6
6
4
15
22

#Clusters/Classes
S
oo
oo
2
2
2
S
4
6

Important Features
3,4
1,2,3
1,2
{1,7},{2,8},{3,9 }
1,2,3,4
2,4,5
1,2
1-5
1-7

Ranking (Descending Order)
{3,4},1,2
{3,1,2},4,5
{2,1},3,4
{9,3,8,2,7,1},4,10,...
{3,6,1,2,4},5
{5,2,4},1,6,3
{2,1},4,S
{1,3,5,2,4},13,9,11,...
{3,6,5,4,2,1,7},10,9,...

Table 1. Ranking of features: oo - Class is continuous, bold font is used to show the
correctness of the ranking.

(a) Iris (b) DSC

#Most Important Features—>

(c) D4C

#Most Important Features—>

(d) D6C

#Most Important Features—> #Most Important Features—>

Fig. 3. tr{P^^PB) of Iris and Synthetic data.

118 M. Dash and H. Liu

be difficult to notice these trends, and hence selecting a subset of features can
be an easy task.
Large and High-Dimensional Data: We show the results of our feature selec-
tion on a synthetic large and high-dimensional data. The data has 100 features
(first 20 features are important and the next 80 features unimportant), 5 clus-
ters, each cluster created by Gaussian distribution, unimportant features take
uniformly random values. Each cluster has 20,000 points and the data has 5000
(approximately 5%) noisy data points. Sample sizes chosen are 0.25%, 0.50%
and 1.0%.
Results: For space constraint we have shown results of SHANK and SELECT
for 5 samples. SRANK results are shown in Table 2. The last row in Table 2 is
the over all rankings after 5 runs. In all the runs the 20 important features are
ranked at the top, and hence, they are ranked at the top in over all ranking as
well. SELECT results are shown in Figure 4 and Table 3. We have shown average
results for 5 sample runs for 0.25%. In Table 3 impurity is "number of misclassi-
fications not including the noise" .̂ Notice that impurity is low or zero when only
important features are used and it grows with addition of unimportant features.
I t further confirms our suspicion that fc-means (and probably other clustering
algorithms) get confused with useless features and removing them can contribute
to the cluster quality. This result shows satisfactory scalability of SRANK and
SELECT.

5 Conclusion

We tested RANK over a real-world textual finance data. As many as 423 phrases
or words are used as features for each textual financial data taken on a daily basis
from reliable and standard sources such as Wall Stree Journal. The feature values
are the frequencies of the corresponding phrases in that day's reports. After run-
ning RANK over this high-dimensional data we showed the results to a domain
expert. He was satisfied regarding the top rankings given to important phrases
such as: blue chip, property lost, banking retreat, etc. Efforts are on to use this
ranking for prediction purposes. Another application yet untested is Reuters text
categorization data which has hundereds of thousands of words as features. It
may be useful to pick up a few hundred words for further classification. We stud-
ied a number of related issues such as high-dimensional data, noisy data, large
data, redundant/correlated features, and hill-climbing vs. exhaustive. Handling
high dimensional data is a prominent desirable characteristic of our method.
Experiments show that in the face of high-dimensional data fc-means algorithm
perform poorly, but removal of unimportant features significantly improved its
performance. Our method is able to handle noisy data. To handle very large data
sets we used random samples. Our ranking measure works well consistently for

^ As we have generated the data, the data points that group together in a cluster are
known and it enables us to find impurity after clustering. This may not be the case
for real-world data, and hence tr{Pw~^PB) is more useful practically.

Feature Selection for Clustering 119

#Run

1

2

3

4

5

OverAU
Ranking

Sample Size
0.25%

{15,5,20,14,9,12,2,
7,18,11,17,1,19,10,3,
6,16,8,4,13},42,57,...
{5,6,14,20,7,10,12,

17,16,18,15,13,8,9,19,
2,11,1,4,S},63,25,...

{14,6,17,13,12,9,20,15,
10,5,2,19,1,16,8,7,
11,3,18,4},29,92,...
{11,12,17,1,4,9,8,3,
5,18,16,2,6,19,14,13,
7,20,15,10},32J7,...

{13,19,9,16,20,18,10,
6,8,4,12,5,15,14,17,
2,1,11,3,7},42,37,...

{12,5,9,14,20,17,
6,13,15,11,18,10,16,19,

2,8,l,7,3,4),2Z,9i...

0.50%

{20,5,19,3,14,17,9,
2,11,10,13,1,16,7,4,

8,15,6,18,12},Aifi\,...
{19,14,16,13,3,6,15,
18,17,2,11,8,1,4,7,

9,5,12,10,20},55,23,...
{19,10,15,2,18,3,8,

13,16,7,17,14,12,5,11,
20,9,4,1,6},68,39,...

{8,1,3,19,15,18,12,7,11,
2,4,20,10,13,5,14,17,

6,9,16},Ufi3,...
{15,16,13,2,10,8,19,11,14,

4,3,6,1,9,17,12,7,
20,18,5},37,24,...

{19,3,15,2,13,8,14,
16,10,11,18,17,1,7,12,
20,4,5,9,6} ,Ah,%7,...

1.0%

{15,19,3,16,13,10,9,5,
11,17,12,4,14,20,2,1,

8,18,6,7},71,23,...
{12,13,7,6,4,1,19,3,
9,20,10,11,15,18,8,2,
14,17,16,5} A2,29,...
{9,4,5,2,16,14,1,3,

12,19,20,6,17,15,18,10,
13,7,8,11},71,92,...
{10,19,12,6,1,14,8,

7,20,17,18,13,16,15,2,
4,11,5,3,9},26,70,...

{4,15,14,13,3,9,10,19,
1,7,8,12,5,18,2,16,

17,6,20,11},74,53,...

{19,4,12,13,10,1,3,
9,15,14,16,6,7,5,20,

2,17,8,18,11},62,54,...

Table 2. Ranking for 5 random samples of 3 different sizes

- * o o -

1 O O —

E O 3 0 - t o S O S O -T-O S O S O 1 O O

#Most Important Features—>

Fig. 4. Average tr{Py^/PB) of 5 samples of size 0.25% of a Large and High-Dimensional
Data.

120 M. Dash and H. Liu

#MostlmpFea triP^'Ps) Impurity (%)

1 29.56 10.4
5 87.13 8.2
10 156.4 0.0
15 299.67 0.0
20 468.81 0.0
25 476.36 0.0
30 485.57 2.0

#MostImpFea triP^'Pa) Impurity (%)

35 203.18 10.2
40 122.5 17.4
50 57.4 36.8
60 13.71 62.2
70 5.87 56.0
80 10.37 66.4
100 7.13 73.0

Table 3. Average tr{P^n,^PB) and Impurity of 5 samples of 0.25% of a large and high
dimensional Data

the different runs with different sizes of random samples. Our method only re-
quires the cluster structure be retained which a reasonably small random sample
is expected to maintain. We studied the issue of redundant/correlated features.
We did an experimental study of comparing our hill-climbing feature selection
method vis-a-vis exhaustive method. Hill-climbing method performed reliably
while consuming much less time.

Testing our feature selection method for clustering algorithms other than
A;-means is an ongoing work. But as shown by the experiments over data sets
with known important features, it can be expected that our algorithm would
perform equally well for other clustering algorithms. Another area to explore is
subspace clustering (CLIQUE [2]) which is the task of finding dense regions in
subspaces of features instead of whole space. It can help find interesting data
hidden in subspaces of features where clusters may not be defined by all features.
A problem encountered in CLIQUE concerns scalability with respect to number
of features. Their experiments exhibited a quadratic behavior in the number
of features. It may be interesting to check the effectiveness of our approach
in reducing the dimensionality thereby making the search for subspace clusters
more efficient.

References

C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algo-
rithms for projected clustering. In Proceedings of ACM SIGMOD Conference on
Management of Data, pages 61-72, 1999.
R Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining applications. In Proceedings of
ACM SIGMOD Conference on Management of Data, 1998.
R Agrawal and R. Srikant. Fast algorithm for mining association rules. In Proceed-
ings of the 20th VLDB Conference, Santiago, Chile, 1994.
P. S. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings of the 4th International Conference on Knowledge Dis-
covery & Data Mining (KDD'98), pages 9-15, 1998.

Feature Selection for Clustering 121

5. C. Cheng, A. W. Pu, and Y. Zhang. Entropy-based subspace clustering for mining
numerical data. In Proceedings of Intemationl Conference on Knowledge Discovery
and Data Mining (KDD'99), 1999.

6. M. Dash and H. Liu. Feature selection for classification. International Journal of
Intelligent Data Analysis, http://www.elsevier.com/locate/ida, 1(3), 1997.

7. J. L. Devore. Probability and Statistics for Engineering and Sciences. Duxbury
Press, 4th edition, 1995.

8. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis, chapter
Unsupervised Learning and Clustering. John Wiley & Sons, 1973.

9. U. Fayyad, C. Reina, and P. S. Bradley. Initialization of iterative refinment cluster-
ing algorithms. In Proceedings of the 4th International Conference on Knowledge
Discovery & Data Mining (KDD'98), pages 194-198, 1998.

10. V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS - clustering categorical data
using summaries. In Proceedings of International Conference on Knowledge Dis-
covery and Data Mining (KDD'99), 1999.

11. A. K. Jain and R. C. Dubes. Algorithm for Clustering Data, chapter Clustering
Methods and Algorithms. Prentice-Hall Advanced Reference Series, 1988.

12. R. Kohavi. Wrappers for performance enhancement and oblivious decision graphs.
PhD thesis, Department of Computer Science, Stanford University, Stanford, CA,
1995.

13. C J. Merz and P. M. Murphy. UCI repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 1996.

A Simple Dimensionality Reduction Technique for Fast
Similarity Search in Large Time Series Databases

Eamonn J. Keogh and Michael J. Pazzani

Department of Information and Computer Science
University of California, Irvine, California 92697 USA

{eamonn,pazzani}@ics.uci.ed u

Abstract. We address the problem of similarity search in large time series data-
bases. We introduce a novel-dimensionality reduction technique that supports
an indexing algorithm that is more than an order of magnitude faster than the
previous best known method. In addition to being much faster our approach has
numerous other advantages. It is simple to understand and implement, allows
more flexible distance measures including weighted Euclidean queries and the
index can be built in linear time. We call our approach PCA-indexing (Piece-
wise Constant Approximation) and experimentally validate it on space teleme-
try, financial, astronomical, medical and synthetic data.

1 Introductio n

Recently there has been much interest in the problem of similarity search in time se-
ries databases. This is hardly surprising given that time series account for much of the
data stored in business, medical and scientific databases. Similarity search is useful in
its own right as a tool for exploring time series databases, and it is also an important
subroutine in many KDD applications such as clustering [6], classification [14] and
mining of association rules [5].

Time series databases are often extremely large. Given the magnitude of many time
series databases, much research has been devoted to speeding up the search process
[23,1,15,19,4,11]. The most promising methods are techniques that perform dimen-
sionality reduction on the data, then use spatial access methods to index the data in the
transformed space. The technique introduced in [1] and extended in [8, 21,23]. The
original work by Agrawal et al. utilizes the Discrete Fourier Transform (DFT) to per-
form the dimensionality reduction, but other techniques have been suggested, most
notably the wavelet transform [4].

In this paper we introduce a novel transform to achieve dimensionality reduction. The
method is motivated by the simple observation that for most time series datasets we
can approximate the data by segmenting the sequences into equi-length sections and
recording the mean value of these sections. These mean values can be indexed effi-
ciently in a lower dimensionality space. We compare our method to DFT, the only

T. Terano, H.Liu, and A.L.P. Chen (Ed.s.): PAKDD 2000, LNAI 1805, pp. 122-133, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Dimensionality Reduction Technique for Fast Similarity Search ... 123

obvious competitor, and demonstrate a one to two order of magnitude speedup on four
natural and two synthetic datasets.

In addition to being much faster. We demonstrate that our approach has numerous
other advantages over DFT. It is simple to understand and implement, allows more
flexible queries including the weighted Euclidean distance measure, and the index can
be built in linear time. In addition our method also allows queries which are shorter
than length for which the index was built. This very desirable feature is impossible in
DFT and wavelet transforms due to translation invariance [20].

The rest of the paper is organized as follows. In Section 2, we state the similarity
search problem more formally and survey related work. In Section 3, we introduce our
method. Section 4 contains extensive empirical evaluation of our technique. In Section
5, we demonstrate how our technique allows more flexible distance measures. Section
6 offers concluding remarks and directions for future work.

2 Background and Related Work

Given two sequences X = Xj...x„ and Y=y,...y ̂ with n = m, their Euclidean distance is
defined as:

D{x,Y)^^lt(^ y^y (1)

There are essentially two ways the data might be organized [8]:
 Whole Matching. Here it assumed that all sequences to be compared are the same

length.

 Subsequence Matching. Here we have a query sequence X, and a longer sequence Y.
The task is to find the subsequence in Y, beginning at K., which best matches X,
and report its offset within Y.

„, , , , . ndatapoints -(
Whole matchmg requires com-
paring the query sequence to
each candidate sequence by
evaluating the distance function
and keeping track of the se-
quence with the lowest distance.
Subsequence matching requires
that the query X be placed at
every possible offset within the
longer sequence Y. Note it is
possible to convert subsequence
matching to whole matching by sliding a "window" of length n across K, and making
copies of the m-n windows. Figure 1 illustrates the idea. Although this causes storage
redundancy it simplifies the notation and algorithms so we will adopt this policy for
the rest of this paper.

Figure 1: The subsequence matching problem can be
converted into the whole matching problem by sliding a
"window" of length n across the long sequence and making
copies of the data falling within the windows

124 E.J. Keogh and M.J. Pazzani

There are several kinds of queries that could be made of a database, such as range
queries, all-pairs and nearest neighbor. For simphcity, we will concentrate just on
nearest neighbor. The other kinds of queries can always be built using nearest neigh-
bor, and the extensions are trivial.
Given a query X and a database consisting of K time series Y. (1 < i < K), we want to
find the time series Y. such that D(Y.X) is minimized. The brute force approach, se-
quential scanning, requires comparing every time series Y to X. Clearly this approach
is unrealistic for large datasets.
Any indexing scheme that does not examine the entire dataset could potentially suffer
from two problems, false alarms and false dismissals. False alarms occur when objects
that appear to be close in the index are actually distant. Because false alarms can be
removed in a post-processing stage (by confirming distance estimates on the original
data), they can be tolerated so long as they are relatively infrequent. In contrast, false
dismissals, when qualifying objects are missed because they appear distant in index
space, are usually unacceptable. In this work we will focus on admissible searching,
indexing techniques that guarantee no false dismissals.

2.1 Related Work

A time series X can be considered as a point in n-dimensional space. This immediately
suggests that time series could be indexed by Spatial Access Methods (SAMs) such as
the R-tree and its many variants [9,3]. However SAMs begin to degrade rapidly at
dimensionalities greater than 8-10 [12], and realistic queries typically contain 20 to
1,000 datapoints. In order to utilize SAMs it is necessary to first perform dimension-
ality reduction. Several dimensionality reduction schemes have been proposed. The
first of these F-index, was introduced in [1] and extended in [8,23,21]. Because this is
the current state-of-the-art for time series indexing we will consider it in some detail.
An important result in [8] is that the authors proved that in order to guarantee no false
dismissals, the distance in the index space must satisfy the following condition

D^(A,B)>D,^,.^(A,B) (2)

Given this fact, and the ready availability of off-the-shelf SAMs, a generic technique
for building an admissible index suggests itself. Given the true distance metric (in this
case Euclidean) defined on n datapoints, it is sufficient to do the following:

 Produce a dimensionality reduction technique that reduces the dimensionality
of the data from n to N, where Â can be efficiently handled by your favorite
SAM.

 Produce a distance measure defined on the A' dimensional representation of the
data, and prove that it obeys D^(A,B) > D^^,^{A,B).

In [8] the dimensionality reduction technique chosen was the Discrete Fourier Trans-
form (DFT). Each of the time series are transformed by the DFT. The Fourier repre-
sentation is truncated, that is, only the first k coefficients are retained (1 < ^ < n), and
the rest discarded. The k coefficients can then be mapped into 2k space {2k because
each coefficient has a real and imaginary component) and indexed by an R* tree.

A Dimensionality Reduction Technique for Fast Similarity Search ... 125

An important property of the Fourier Transform is Parseval's Theorem, which states
that the energy in Euclidean space is conserved in Fourier space [18]. Because of the
truncation of positive terms the distance in the transformed space is guaranteed to
underestimate the true distance. This property is exploited by mapping the query into
the same 2k space and examining the nearest neighbors. The theorem guarantees un-
derestimation of distance, so it is possible that some apparently close neighbors are
actually poor matches. These false alarms can be detected by examining the corre-
sponding original time series in a post processing stage.
Many other schemes have been proposed for similarity search in time series databases.
As they focus on speeding up search by sacrificing the guarantee of no false dismissals
[11, 15, 19], and/or allowing more flexible distances measures [2,11, 15, 14, 13, 23,
16,21] we will not discuss them further.

3 Our Approach

As noted by Faloutsos et al. [8], there are several highly desirable properties for any
indexing scheme:

 It should be much faster than sequential scanning.
 The method should require littl e space overhead.
 The method should be able to handle queries of various lengths.
 The method should be allow insertions and deletions without requiring the index

to be rebuilt.
 It should be correct, i.e. there should be no false dismissals.

We will now introduce the PCA indexing scheme and demonstrate that it has all the
above properties.

3.1 Dimensionality Reduction

We denote a time series query as X = x,,... vC„, and the set of time series which consti-
tute the database as F = {Y^,...Y^). Without loss of generality, we assume each se-
quence in y is n units long. Let N be the dimensionality of the transformed space we
wish to index (1 <N< n). For convenience, we assume that Â is a factor of n. This is
not a requirement of our approach, however it does simplify notation.
A time series X of length n is represented in N space by a vector X = Jj ,K , %. The i*
element of X is calculated by the following equation:

(3)
y=A(i-i)+ i

Simply stated, to reduce the data from n dimensions to A' dimensions, the data is di-
vided into N equi-sized "frames". The mean value of the data falling within a frame is
calculated and a vector of these values becomes the data reduced representation. Fig-
ure 2 illustrates this notation. The complicated subscripting in Eq. 3 is just to insure
that the original sequence is divided into the correct number and size of frames.

126 E.J. Keogh and M.J. Pazzani

; f=(- l , -2 , - l ,0, 2.1,1,0)
rt = lXl = 8

^ = (raean(-l,-2,-l,0), mean(2,l,l,0))

^ = (-1,1) N = l ^ l = 2

Figure 2: An illustration of the data reduction technique utilized in this paper. A time series
consisting of eight (n) points is projected into two (iV) dimensions. The time series is divided
into two (N) frames and the mean of each frame is calculated. A vector of these means be-
comes the data reduced representation

Two special cases worth noting are when A' = n the transformed representation is
identical to the original representation. When A' = 1 the transformed representation is
simply the mean of the original sequence. More generally the transformation produces
a piecewise constant approximation of the original sequence.

3.2 Building the Index

Table 1 contains an outline of the indexing algorithm. We are deliberately non-
committal about the particular indexing structure used. This is to reinforce the fact the
dimensionality reduction technique proposed is independent of the indexing structure.
Al l sequences in Y are transformed by Eq. 3 and indexed by the spatial access method
of choice. The indexing tree represents the transformed sequences as points in N di-
mensional space. Each point contains a pointer to the corresponding original sequence
on disk.

for i = 1 t o K // For each sequence to be indexed
Y ̂ <— ŷ - 1:1630(7 ;̂ / / Optional: remove the mean of Y^
Y- <— t r a ns formed (ŷ) ; / / As in eq. 3
I n s e rt Y i n to the index ing s t r u c t u re wi t h a p o i n t er to Y^

on d i sk;
end;

Table 1: An outline of the indexing building algorithm.

Note that each sequence has its mean subtracted before indexing. This has the effect
of shifting the sequence in the y-axis such that its mean is zero, removing information
about its offset. This step is optional. We include it because we want to compare our
results directly to F-index, and F-index discards information about offset. For some
applications this step is undesirable and can be omitted [13]. Note that the transfor-
mation for a single sequence takes 0(n) time, thus the entire index can be built in
0(Kn). This contrasts well to F-index which requires 0(IOiLog«) time.

A Dimensionality Reduction Technique for Fast Similarity Search ... 127

3.3 Searching the Index

As mentioned in Section 2, in order to guarantee no false dismissals we must produce
a distance measure DR, defined in index space, which has the following property:
DiX,Y) > DR{ X,Y). The following distance measure has this property:

DR(X,Y).Jf^l^l(x,-y,f (4)

The proof that D{X,Y) > DR{ X,Y)is straightforward but long. We omit it for brevity.
Table 2 below contains an outline of the nearest neighbor search algorithm. Once a
query X is obtained a transformed copy of it x is produced. The indexing structure is
searched for the nearest neighbor of X . The original sequence pointed to by this
nearest neighbor is retrieved from disk and the true Euclidean distance is calculated. If
the second closest neighbor in the index is further than this true Euclidean distance, we
can abandon the search, because we are guaranteed its distance in the index is an un-
derestimate of its true distance to the query. Failing that, the algorithm repeatedly
retrieves the sequence pointed to by the next most promising item in the index and
tests if its true distance is greater than the current best so far. As soon as that happens
the search is abandoned.

b e s t - s o - f ar
done
i
X

<—
«—
<—
<—

i n f i n i t y ;
FALSE;
1;
t r ans fo rmed(X) ; / / Usin g eq. 2

while i < G AND NOT(done)
FindX' s i " neares t neighbo r i n th e index ; / / Usin g DR {eq.3)
Retriev e sequenc e represente d b y th e i" " neares t neighbor ;

i f D(original-sequence^ , X) < best-so-fa r //D i s define d i n eq. l
best-so-fa r < — D(original-sequencej , X) ;

end;

i f best-so-fa r < i"'+ l neares t neighbo r i n th e inde x
done < - TRUE;
Display ('Sequence ' , i , ' is the nearest neighbor to Query');
Display ('At a distance of ' , b e s t - s o - f ar) ;

end;
i <~ i + 1;

end;
Table 2: An outline of the indexing searching algorithm.

3.4 Handling Queries of Various Lenghts

In the previous section we showed how to handle queries of length n, the length for
which the index structure was built. However, it is possible that a user might wish to
query the index with a query which is longer or shorter that n. For example a user
might normally be interested in monthly patterns in the stock market, but occasionally
wish to search for weekly patterns. Naturally we wish to avoid building an index for

128 E.J. Keogh and M.J. Pazzani

every possible length of query. In this section we will demonstrate how we can exe-
cute queries of different lengths on a single fixed-length index. For convenience we
wil l denote queries longer than n as XL and queries shorter than n as XS, with]XL\ =
«XL and \XS\ = n^,.

3.4.1 Handling Short Queries

Queries shorter than n can be dealt with in two ways. If the SAM used supports di-
mension weighting (for example the hybrid tree [3]) one can simply weigh all the
dimensions from ceilingi^^^^) to A' as zero. Alternatively, the distance calculation in
Eq. 4 can have the upper bound of its summation modified to:

Nshort=\^\ V i ^ S T f e ^ ^'^
The modification does not affect the admissibility of the no false dismissal condition
in eq. 2. Because the distance measure is the same as Eq. 4 which we proved, except
we are summing over an extra 0 to JL-I nonnegative terms on the larger side of the

inequality. Apart from making either one of these changes, the nearest neighbor search
algorithm given in table 2 is used unmodified. This ability of PCA-index to handle
short queries is an attractive feature not shared by F-index, which must resort to se-
quential scanning in this case [8], as must indexing schemes based on wavelets [20].

3.4.2 Handling Longer Queries
Handling long queries is a littl e more difficult than the short query case. Our index
only contains information about sequences of length n (projected into A' dimensions)
yet the query XL is of length n^ with n ̂ > n. However we can regard the index as
containing information about the prefixes of potential matches to the longer sequence.
In particular we note that the distance in index space between the prefix of the query
and the prefix of any potential match is always less than or equal to the true Euclidean
distance between the query and the corresponding original sequence. Given this fact
we can use the nearest neighbor algorithm outlined in table 2 with just two minor
modifications. In line four, the query is transformed into the representation used in the
index, here we need to replace X with XL[\:n]. The remainder of the sequence,
XL[n+l:n^], is ignored during this operation.
In line seven, the original data sequence pointed most promising object in the index is
retrieved. For long queries, the original data sequence retrieved and subsequently
compared to XL must be of length n^not n.

4 Experimental Results

To demonstrate the generality of our method we tested it on five datasets with widely
varying properties.
 Random Walk: The sequence is a random walk x, = x,., + z, Where z, (f = 1,2,...) are

independent identically distributed (uniformly) random variables in the range (-
500,500) [1]. (100,000 datapoints).

A Dimensionality Reduction Technique for Fast Similarity Search... 129

 Astronomical: A dataset that describes the rate of photon arrivals [17]. (28,904
datapoints).

 Financial: The US Daily 5-Year Treasury Constant Maturity Rate, 1972 - 1996
[15]. (8,749 datapoints).

 Space Shuttle: This dataset consists of ten time series that describe the orientation
of the Space Shuttle during the first eight hours of mission STS-57 [14,15].
(100,000 datapoints).

 Control Chart: This dataset consists of the Cyclic pattern subset of the control
chart data from the UCI KDD archive (kdd.ics.uci.edu). The data is essentially a
sine wave with noise. (6,000 datapoints).

4.1 Building Queries

Choosing queries that actually appear in the indexed database will always produce
optimistic results. On the other hand, some indexing schemes can do well if the query
is greatly different from any sequence in the dataset. To perform realistic testing we
need queries that do not have exact matches in the database but have similar properties
of shape, structure, spectral signature, variance etc. To achieve this we do the follow-
ing. We extract a sequence from the database then fli p it either backwards or upside-
down depending on the outcome of a fair coin toss. The flipped sequence then be-
comes our query.
For every combination of dataset, number of dimensions, and query length we per-
formed 1,(XX) random queries and report the average result.

4.2 Evaluation

In previous work on indexing of time series, indexing schemes have been evaluated by
comparing the time taken to execute a query. However this method has the disadvan-
tage of being sensitive to the implementation of the various indexing schemes being
compared. For example in [1], the authors carefully state that they use the branch and
bound optimization for the Sequential-Scan (a standard indexing strawman). However,
in [11] and [23] the authors do not tell us whether they are comparing their indexing
schemes to optimized or unoptimized Sequential-Scan. This is a problem because the
effect of the optimization can be as much as two orders of magnitude, which is far
greater than the speedup reported.
As an example of the potential for implementation bias in this work consider the fol-
lowing. At query time F-index must do a Fourier transform of the query. We could use
the naive algorithm which is 0{n) or the faster radix-2 algorithm (padding the query
with zeros for n ̂ 2'°"'*" [18]) which is 0(nlog«). If we implemented the simple algo-
rithm it would make our indexing method perform better relative to F-index.
To prevent implementation bias we will compare our indexing scheme to F-index by
reporting the P, the fraction of the database that must be examined before we can
guarantee that we have found the nearest match to our query.

130 E.J. Keogh and M.J. Pazzani

P^ Number of objects retreived
(6) Number of objects in database

Note the value of P depends only on the data and the queries and is completely inde-
pendent of any implementation choices, including spatial access method, page size,
computer language or hardware. It is a fair evaluation metric because it corresponds to
the minimum number of disk accesses the indexing scheme must make, and disk time
dominates CPU time. A similar idea for evaluating indexing appears in [10].

4.3 Experimental Results

Figure 3 shows the results of comparing PCA-index to F-index on a variety of da-
tasets. Experiments in [1,8] suggest a dimensionality of 6 for F-index. For complete-
ness we tested of a range of dimensionalities, however only even numbers of dimen-
sions are used because F-index {unlike PCA-index) is only defined for even numbers.
We also tested over a variety of query lengths. Naturally, one would expect both ap-
proaches to do better with more dimensions and shorter queries, and the results gener-
ally confirm this.

PCA-index F-inde\ ...

' '"^^-X/"
.̂ v

rj

 Random Walk

: tinnnciti l

Shuttle

Astronomical

Figure 3: The fraction of tiie database which must be retrieved from dislc using ttie two indexing
schemes compared in this paper, together with sample queries and a section containing the corre-
sponding best match. Each pair of 3d histograms represents a different dataset. Each bar in the 3d
histogram represents P, the fraction of the database that must be retrieved from disk for a par-
ticular combination of index dimensionality and query length (averaged over 1,000 trials)

For low dimensionalities, say 2-4, PCA-index generally outperforms F-index by about
a factor of two. However as the dimensionality increases the difference between the
approaches grows dramatically. At a dimensionality often, PCA-index outperforms F-
index by a factor of 81.4 (averaged over the 5 datasets in Fig 3). Competitive index

A Dimensionality Reduction Technique for Fast Similarity Search . 131

PCA-index F-index

Control Chart

Figure 4: The result of experiments on the Conttol Dataset, with a sample query and a section
containing the corresponding best match. The black topped 3d histogram bars indicate where F-
index outperforms PCA-index

trees can easily handle dimensionalities often or greater [3,12].
The Control dataset shown in Fig. 4 contains the only instances where F-index outper-
formed PCA-index, so we will consider it in more detail. This dataset is a sine wave
with noise. With just two dimensions (corresponding to the real and imaginary parts of
a single Fourier coefficient) F-index can model a sine wave very well. In contrast, at
the same dimensionality PCA-index has several entire periods contained within a sin-
gle frame, thus all frames have approximately the same value and PCA-index has littl e
discriminating power. However the situation changes dramatically as the dimension-
ality increases. Because most of the energy is concentrated in the first coefficient,
adding more dimensions does not improve F-index's performance. In contrast PCA-
index extracts great benefit from the extra dimensions. Once the frame size is less than
a single period of the sine wave its performance increases dramatically.
This special case clearly illustrates a fact that can also be observed in all the other
experiments, PCA-index is able to take advantage of extra dimensions much more that
F-index.

5 Generalizing the Distance Measure

Although the Euclidean distance measure is optimal under several restrictive assump-
tions [1], there are many situations where a more flexible distance measure is desired
[13]. The ability to use these different distance measures can be particularly useful for
incorporating domain knowledge into the search process. One of the advantages of
the indexing scheme proposed in this paper is that it can handle many different dis-
tance measures, with a variety of useful properties. In this section we will consider
one very important example, weighted Euclidean distance. To the author's knowledge,
this is the first time an indexing scheme for weighted Euclidean distance has been
proposed.

5.1 Weighted Euclidean Distance

It is well known in the machine learning community that weighting of features can
greatly increase classification accuracy [22]. In [14] we demonstrated for the first time
that weighing features in time series queries can increase accuracy in time series clas-
sification problems. In addition in [13], we demonstrated that weighting features (to-

132 E.J. Keogh and M.J. Pazzani

gether with a method for combining queries) allows relevance feedback in time series
databases. Both [14,13] illustrate the utility of weighted Euclidean metrics, however
no indexing scheme was suggested. We will now show that PCA-index can be easily
modified to support of weighted Euclidean distance.
In Section 3.2, we denoted a time series query as a vector X = jc,,...jc .̂ More generally
we can denote a time series query as a tuple of equi-length vectors {X = x^,. ..^^,W =
H',,...,wJ where X contains information about the shape of the query and W contains
the relative importance of the different parts of the shape to the query. Using this defi-
nition the Euclidean distance metric in Eq. 1 can be extended to the weighted Euclid-
ean distance metric DW:

We can perform weighted Euclidean queries on our index by making two simple
modifications to the algorithm outlined in Table 2. We replace the two distance meas-
ures D and DR with DW and DRW respectively. DW is defined in Eq. 7 and DRW is
defined as:

w-min(w^(,._,)^,,K ,w^.), DRW([X,W],Y) = ^^'^l^w,{x,-y,f

(8)
Note that it is not possible to modify F-index in a similar manner, because each coef-
ficient represents amplitude and phase of a signal that is added along the entire length
of the query

6 Conclusions

We have introduced a dimensionality reduction technique that allows fast indexing of
time series. We performed extensive empirical evaluation and found our method out-
performs the current best known approach by one to two orders of magnitude. We
have also demonstrated that our technique can support weighted Euclidean queries.
In future work we intend to further increase the speed up of our method by exploiting
the similarity of adjacent sequences (in a similar spirit to the "trail indexing" technique
introduced in [8]). Additionally, we hope to show the speedup obtained by PCA-index
wil l support a variety of time series datamining algorithms that scale poorly to large
datasets, for example the rule induction algorithm proposed in [5].

References

1. Agrawal, R., Faloutsos, C, & Swami, A. (1993). Efficient similarity search in sequence
databases. Proc. of the 4'* Conference on Foundations of Data Organization and Algorithms.

2. Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K. (1995). Fast similarity search in the
presence of noise, scaling, and translation in times-series databases. In VLDB.

3. Chakrabarti, K & Mehrotra, S. (1999). The Hybrid Tree: An Index Structure for High Di-
mensional Feature Spaces. Proc of the IEEE International Conference on Data Engineering.

A Dimensionality Reduction Technique for Fast Similarity Search ... 133

4. Chan, K. & Fu, W. (1999). Efficient Time Series Matching by Wavelets. Proceedings of the
15''' International Conference on Data Engineering.

5. Das, G., Lin, K. Mannila, H., Renganathan, G., & Smyth, P. (1998). Rule Discovery from
Time Series. In Proc of the 3 Inter Conference of Knowledge Discovery and Data Mining.

6. Debregeas, A. & Hebrail, G. (1998). Interactive interpretation of Kohonen maps applied to
curves. Proc of the 4''' International Conference of Knowledge Discovery and Data Mining.

7. Faloutsos, C. & Lin, K. (1995). Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Proc. ACM SIGMOD Conf, pp 163-174.

8. Faloutsos, C, Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in
time-series databases. In Proc. ACM SIGMOD Conf, Minneapohs.

9. Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proc. ACM
SIGMOD Conf, pp 47-57.

10. Hellerstein, J. M., Papadimitriou, C. H., & Koutsoupias, E. (1997). Towards an Analysis of
Indexing Schemes. 16* ACM SIGACT- Symposium on Principles of Database Systems.

11. Huang, Y. W., Yu, P. (1999). Adaptive Query processing for time-series data. Proceedings
of the 5* International Conference of Knowledge Discovery and Data Mining, pp 282-286.

12. Kanth, K.V., Agrawal, D., & Singh, A. (1998). Dimensionality Reduction for Similarity
Searching in Dynamic Databases. In Proc. ACM SIGMOD Conf, pp. 166-176.

13. Keogh, E. & Pazzani, M. (1999). Relevance Feedback Retrieval of Time Series Data. Proc.
of the 22''' Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval.

14. Keogh, E., & Pazzani, M. (1998). An enhanced representation of time series which allows
fast and accurate classification, clustering and relevance feedback. Proceedings of the 4"" Inter-
national Conference of Knowledge Discovery and Data Mining, pp 239-241, AAA I Press.

15. Keogh, E., & Smyth, P. (1997). A probabilistic approach to fast pattern matching in time
series databases. Proc. of the 3"" Inter Conference of Knowledge Discovery and Data Mining

16. Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of similar subsequences in long sequence
databases. In 3"' IEEE Knowledge and Data Engineering Exchange Workshop.

17. Scargle, J. (1998). Studies in astronomical time series analysis: v. Bayesian blocks, a new
method to analyze structure in photon counting data. Astrophysical Journal, Vol. 504.

18. Shatkay, H. (1995). The Fourier Transform - a Primer, Technical Report CS-95-37, De-
partment of Computer Science, Brown University.

19. Shatkay, H., & Zdonik, S. (1996). Approximate queries and representations for large data
sequences. Proc. I2th IEEE International Conference on Data Engineering, pp 546-553.

20. Struzik, Z. & Siebes, A. (1999). The Haar Wavelet Transform in the time series similarity
paradigm. 3"" European Conference on Principles and Practice of KDD.

21. Refiei, D., & Mendelzon, A. (1997). Similarity-Based queries for time series data. In Proc.
ACM SIGMOD Conf, pp. 13-25.

22. Wettschereck, D., Aha, D. & Mohri, T. (1997). A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms. AI Review, Vol 11, Issues 1-5.

23. Yi, B,K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences
under time warping. lEEEE International Conference on Data Engineering, pp 201-208.

Missing Value Estimation
Based on Dynamic Attribute Selection

K.C. Lee, J.S. Park, Y.S. Kim, and Y.T. Byun

Department of Computer Science
Hong-Ik University

Mapogu, Seoul, Korea 121-791
{lee jspark,yskim,byun} @cs.hongik.ac.kr

Abstract. Raw Data used in data mining often contain missing information,
which inevitably degrades the quality of the derived knowledge. In this paper, a
new method of guessing missing attribute values is suggested. This method
selects attributes one by one using attribute group mutual information calculated
by flattening the already selected attributes. As each new attribute is added, its
missing values are filled up by generating a decision tree, and the previously
filled up missing values are naturally utilized. This ordered estimation of miss-
ing values is compared with some conventional methods including Lobo's or-
dered estimation which uses static ranking of attributes. Experimental results
show that this method generates good recognition ratios in almost all domains
with many missing values.

1 Introductio n

Data Mining techniques have been developed to extract knowledge from a large
amount of raw data. However, in the real world data, because data are gathered from
many sources, some attribute values are often missing. Properly fillin g up the missing
information may reduce the error rates of the derived knowledge. This paper intro-
duces a new method of fillin g up missing values. The conventional probabilistic
method used in the mining system C4.5[5] determines missing values according to the
probability of the corresponding values. Lobo's method[4] fill s up values of each
attribute one by one according to the static ranks of their mutual information. In this
paper, we present a new ordered method of estimating missing values, based on a
dynamic attribute selection by considering already selected attributes. Extensive ex-
periments show that our method much improves recognition rates in many domains,
and especially works well even in environments with high missing value ratios.

Thi.s work was .supported by Korea Science Foundation under contract
97-01-02-04-01-3.

T. Terano, H.Liu, and A.L.P. Chen (Ed.s.): PAKDD 2000, LNAl 1805, pp. 134-137,2000.
© Springer-Verlag Berlin Heidelberg 2000

Missing Value Estimation Based on Dynamic Attribute Selection 135

2 Related Works

The simplest approach for dealing with missing attribute values seems to ignore in-
stances with any missing attribute values[6]. This approach cannot utilize any infor-
mation other known attributes may convey, and severely reduces the number of train-
ing data especially in the case of high missing ratios. Another simple method, the
majority method[2], fill s up each missing attribute value with the highest frequency
value of the attribute. Extensive experimentation has been conducted by Quinlan[7]
including building up decision trees for each attribute to decide missing attribute val-
ues, and he adopted the probabilistic method[l] for the C4.5 data mining system[5].
Lobo's method[4] also builds decision trees for each attribute. However, the attributes
are statically ordered according to their mutual information. The ordering of the at-
tributes may be important in that the missing value estimation for an attribute may be
improved by the data with attributes previously filled up.
In this paper, a new missing value estimation method is suggested. The attributes are

selected one by one based on the feature group mutual information[3] calculated by
flattening previously selected attributes. The corresponding decision trees are dynami-
cally generated and previously filled up missing values play their roles.

3 Estimation of Missing Attribute Values

In filling up missing attribute values, it is desirable to utilize the information hidden in
the data. Static methods like the majority method and the probabilistic method use
information directly derivable from the distribution of each attribute, regardless of its
relation with the other attributes. To utilize inter-attribute information, some informa-
tion theoretic measures have been defined[6].

Class uncertainty may be measured by the entropy as in (1). Here C implies the set
of all possible classes, and c implies a specific class.

Nc ^ 1 V

//(C) = -£p (c) log i'(c) y^)

Class uncertainty after knowing the values of an attribute F may be measured by
the conditional entropy as in (2). Here F implies an attribute the values of which are
known, and/implies a specific attribute value of the attribute F.

/ ' (/) (£ / ' (c l /) I o g / ' (c l /) (2)

How much uncertainty is reduced after knowing the values of an attribute is meas-
ured by the mutual information defined by (3).

I{C;F) = H{C)-H{C\F) (3)
Lobo's method ranks attributes according to their mutual information defined in

(3), and builds trees in that order for each attribute to decide missing values.
Once some attributes are already selected and their corresponding missing values

are filled up, it seems reasonable to select the next attribute for missing value fill-up
by considering its relation with the previously selected attributes. Hence we flatten the
previously selected attributes into one big attribute with many values, and accordingly.

136 K.C. Lee et al.

conditional class uncertainty has been defined as in (4). Here, S is the attribute gener-
ated by flattening all the already selected attributes, and (f, S) is a flattened attribute
generated by merging the new attribute/ with 5 .

Nc

H(C\(f,S)) = -Y^P(s')('£p(c\s')\ogP(c\s')) (4)

S = the set of feature values of (f,S)
The attribute values of a new flattened attribute (f,S) belongs to FxSixS2X...xSk,

where Sj is i-th selected attribute. For example, assume that 5 is the flattened attribute
of two already selected attributes, shape and length, such that shape may have values
rectangle or triangle and length may have values red or yellow. S may have flattened
attribute values (rectangle, red), {rectangle, yellow), {triangle, red) and {triangle,
yellow). If the candidate attribute length{=f) may have values long or short, (f,S) may
have values like {rectangle, red, long) and {triangle, yellow, short). However, any
non-existing combination of attribute values are removed.

We choose each next attribute such that the feature group mutual information de-
fined in (5) is maximum. That is, a new attribute is selected such that the attribute
together with all the previously selected ones can best decide the class of unseen data.

G}{C,{f,S))=H{Q-H{C\{f,S)) (5)

Anew attribute/is dynamically selected such that (5) for the attribute/is maximum.
For each attribute dynamically selected, a decision tree is built to fill up the missing
values for the attribute, and the previously filled up attribute values may contribute to
later decisions. The detailed algorithm of this method is as follows.
Step 1: AS <- set of all the attributes; S <- {} ;
Step 2: From AS, select an attribute F with max information gain ratio;

A S ^ A S - { F } ; S < - S u { F };
Step 3: Do the following until the stopping criterion is met

Select F from FS that maximizes GI(C; (F,S));
Fill up missing values for F by building up a decision tree for F;
FS<-FS- {F }; S < -S u {F} ;

The stopping criterion is met in step 3 if adding one or two more attributes does not
improve the performance. For the performance measure, we empirically adopted pes-
simistic error rates to estimate the test data error rates using the training data.

4 Experimental Results

The experimental data set are selected mainly from UCI repository[8] and summa-
rized in Table 1 and the results are shown in Fig. 1 to 3.

Table 1. Summary of Data sets

Name

Car
Led24

Mushroom
Yeast

Instances

1728
3000
8124
1484

Attributes

6
8
22
7

Classes

4
10
2
8

Missing Value Estimation Based on Dynamic Attribute Selection 137

Ten-fold cross validations are used and the average values are shown in the figures.
The results consistently show the effectiveness of our method in most domains espe-
cially when missing value ratios are high. . In the figures this method(FGMI) is com-
pared with Lobo's method and the probability method. 10 to 50 percent of missing
values are intentionally added to each data set to test the proposed methods.

F i q , 1 C a r

10 20 30 40 50

Uissinq Value Ratio(%)

F i q . 2 L e d 2 4

10 20 30 40 50

Uissinq Volue Rolio(%)

Fig. 3 M ushroom

3 ,5

3

2 ,5

2

1,5

10 20 30 40 50

Hissing Volue Rotio(X)

P ro b a b i I i ty - L o b o ' s - FG M I

5 Concluding Remarks

A new method of filling up missing values has been suggested in this paper. The con-
ventional methods like the majority method or the probabilistic method do not reflect
the inter-attribute dependencies, and Lobo's method relies on the static ranks of the
attributes. Contrarily, this method reflects the dynamic nature of the attribute selec-
tions, and much reduces error rates in most domains with high missing ratios.

References
1. B. Cestnik and et al., "Assistant-86: A Knowledge-elicitation Tool for Sophisti-

cated Users," Progress in Machine Learning, Sigma Press, UK, 1987.
2. L Kononenko and E. Roscar, "Experiments in Automatic Learning of Medical

Diagnostic Rules," Technical Report, Jozef Stefan Institute, Yugoslavia, 1984.
3. K.C. Lee, "A Technique of Dynamic Feature Selection Using the FGMI," Lecture

Notes in Artificial Intelligence 1574, pp. 138-142, Springer, 1999.
4. 0.0. Lobo and M. Numao, "Ordered Estimation of Missing Values," Lecture

Notes in Artificial Intelligence 1574, pp.499-503, Springer, 1999.
5. J.R. Quinlan, "Unknown Attribute Values," C4.5 Programs for Machine Learning,

pp.27-32, Morgan Kaufmann, 1993.
6. J.R. Quinlan, "Induction of Decision Trees," Machine Learning:!, pp.81-106, 1986.
7. J.R. Quinlan, "Unknown Attribute Values in Induction," Proc. of the 6* Interna-

tional Machine Learning Workshop, pp. 164-168, Morgan Kaufmann, 1989.
8. http://www.ics.uci.edu/~mleam/MLRepository.html. UCI Machine Learning Re-

pository, Univ. of California, Dept. of Info. Computer Science, Irvine, CA, 1998.

On Association, Similarity and
Dependency of Attr ibutes

Yi Yu Yaô and Ning Zhonĝ

^ Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada S4S 0A2

E-mail: yyao@cs.uregina.ca
^ Department of Computer Science and Systems Engineering, Faculty of Engineering

Yamaguchi University, Tokiwa-Dai, 2557, Ube 755, Japan
E-mail: zhong@ai.csse.yamaguchi-u.ac.jp

1 Introduction

Association, similarity, and dependency of attributes represent useful informa-
tion and knowledge that can be derived from data sets. Similarities indicate the
closeness of attributes reflected by their values on a set of objects. Two attributes
are similar if every object is likely to have the sajne value on them. Data and
functional dependencies show the connection and association between attributes.
They are characterized by the problem of determining the values of one set of at-
tributes based on the values of another set. Two levels of dependencies, referred
to as the local and 5/060/ dependencies, may be observed. The local dependencies
show how one specific combination of values on one set of attributes determines
one specific combination of values on another set. The well known association
rules, which state the presence of one set of items implies the presence of an-
other set of items, may be considered as a special kind of local dependencies.
The global dependencies show all combinations of values on one set of attributes
determine all combinations of values on another set of attributes. Functional
dependencies in relational databases are examples of global dependencies.

The main objective of this paper is to present an outline of a systematic study
on the characterization, classification, quantification, and interpretations of var-
ious types of relationships between attributes, as well as their connections to
each other. For clarity, binary information tables and some particular measures
are used [2,3]. The results from the study may have significant implications in
the understanding of fundamental issues of data mining in general.

2 Overview of Relationships Between Attributes

In a binary information table, a set of objects are represented by using a finite
set of binary attributes taking values over the domain {0,1} . Transaction data
may be easily represented by a binary information table. For two attributes x
and y, an association rule, {x = 1) <= {y = 1), states that the occurrence of y
warrants the occurrence of x. Let m{x = 1) denote the number of rows whose

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 138-141, 2000.
© Springer-Verlag Berlin Heidelberg 2000

On Association, Similarity and Dependency of Attributes 139

value on a; is 1 in the table. The confidence of an association rule is defined by:

confixi ^ yi) = |m(a;i,?/i)i/|m(-,2/i)|, (1)

where XQ and xi stand for the conditions a; = 0 and x = 1, respectively, and
hencem(a:i,j/i) — m{x = l,y = 1), andm{-,yi) = m{y = 1). An association rule
xi ^ 2/1 does not say anything about the occurrence of y given the occurrence
of a;. It deals with one-way dependency. An association rule uses only one of the
four possible combinations of co-occurrence. It thus reflects local data depen-
dency. In summary, association rules summarize local one-way data dependency.
A two-way association rule xx ̂ yi states that the occurrence of x suggests the
occurrence of y, and vice versa. The confidence of xi o- j/i is defined by [2]:

confixi ^yi) = |m(a;i,2/i)|/|m(a;i,-)||m(-,2/i)|. (2)

In information-theoretic terms, it measure the mutual information between xi
and j/i . It is closely related to the confidence of one-way association.

A simple similarity measure of two attributes x and y is defined by the
normalized co-ordination level matching as follows:

^ |m(a; = l)nm(;/ = l) | ^ \m{xi,yi)\
^'^ ̂ \m{x = l)Umiy = l)\ \m{xi,-)Um{;yi)\- ^""^

It reaches the maximum value 1 when the columns labelled by x and y are
identical, and reaches the minimum value 0 when there is no co-occurrence of the
(1,1) combination. The similarity measure does not depend on the combination
(0,0). The co-occurrences of combination (0,0) do not increase, nor decrease,
the similarity between two attributes.

For measuring global data dependencies, we use entropy related measures [1].
One-way dependency y ̂ x may be measured by conditional entropy:

where A'' is the number of rows in the table. Two-way dependency x - ̂ y may
be measured by mutual information:

V^ V^ \m{xi,yj)\ \m{xi,yj)\
N \m{xi,-)\\m{-,yj)

nx;y) = Ty: ^^^^jf^log , i"H^7 ;̂̂ i ,̂. (5)

The mutual information measures the divergence of the joint distribution of x
and y from the independence distribution constructed using the marginals of x
and y. A larger divergence implies a higher degree of probabilistic dependency.

Functional dependency is a well established notion that summarizes logical
relationship between attributes in databases. A functional dependency, y — ̂x,
states the semantics constraint on the values of x and y. If y — ̂x holds, then all
rows in the table having the same value on y must have the same value on x. That
is, the value oiy determines the value of x. All four possible combinations of val-
ues of X and y are considered in functional dependency. A functional dependency
shows global data dependency. Therefore, all local data dependencies, such as
association rules and similarity, do not fully reflect functional dependency.

140 Y. Y. Yao and N. Zhong

3 Comparisons of Various Relationships

If the functional dependency y -> x holds, one may conclude that the confidence
conf{xi 4= yi) is either 1 or 0. From the value of conf{xi <= yi) we cannot con-
clude any functional dependency between x and y. In comparison, the confidence
of two-way association xi ̂ yi is related to functional dependency to a lesser
degree. If ?/ -> x holds, we can say that the value of conf{xi <^ yi) is either 0 or
|m(a;i)|~ .̂ If s{x,y) = 1, we can conclude x -¥ y and y - ̂ x. For s{x^y) = 0, we
cannot infer any functional dependency between x and y. Conversely, ii y — ̂ x
holds, we cannot say too much about s{x, y). It may happen that value of s{x, y)
is 0, 1, or any number between 0 and 1. If both functional dependencies x -¥ y
and y — ̂X, we have either s{x,y) = 0 or s{x,y) = 1.

Information-theoretical measures make use of all four possible combinations
and are closely related to functional dependency. A functional dependency y - ̂ x
holds if and only if H{x \ y) = 0. In this totally depends on y. If the
occurrence of x is probabilistically independent of y, we have H{x | y) = H{x),
or equivalently H{y \ x) = H{y), or H{x,y) = H(x) + H{y). In this case, the
value of y tells nothing about the value of x, and vice versa. For the mutual
information, the functional dependency y - ̂ x holds if and only if we have
I{x] y) = H{x). If both functional dependency a; —> y and y — ̂ x hold, we must
have I{x;y) = H{x) = H{y). If x and y are probabilistically independent, the
mutual information reaches the minimum value 0.

One may consider associations derivable from other combinations. For the
confidence measure, we have conf{xo "^ 2/i) = 1 — conf{x\ <= 2/1). This connec-
tion reveals some difficulties in the interpretation of association rules. Typically,
an association rule xi -^ j/i is interpreted using an IF-THEN statement, IF yi
THEN x\ with confidence c. The associated meaning of the statement is that the
presence of y warrants or suggests the presence of x. In the same way, one may
argue that XQ <= j/i can be paraphrased as saying that the presence of y warrants
or suggests the absence oix. For a small confidence value of a;i <= yi, e.g., < 0.5,
such an interpretation is somehow counter intuitive. Similar observations can be
made regarding associations rules xi <= 3/1 and xi <= yo- This suggests that it
may not be sufficient to consider only one type of associations characterized by
the combination (1,1). In the calculation of confidence of xi -O yi, additional
information is used. It relies on an intuitively appealing interpretation of associ-
ation in terms of probabilistic independence. On the other hand, the similarity
measure defines association in a diff'erent manner, although the same information
is used in its calculation.

For an association rule xi <= yi, another measure called support is defined
by supp{xi,yi) = \m{xi,yi)\/N. It is also the support of xi => yi. The con-
fidence and support measures are not independent. They are related to each
other by: conf{xi <= yi) = supp{xi,yi)/[supp{xi,yi) + supp{xo,yi)]. Only par-
tial co-occurrence information about x and y are used the calculation of con-
fidence. The confidence, similarity, conditional entropy, and mutual informa-
tion differ from each other by the amount of co-occurrence information used.
In terms of support and confidence, the similarity measure, conditional en-

On Association, Similarity and Dependency of Attributes 141

tropy, and mutual information can be expressed. The similarity measure uses
co-occurrence information about three combinations except (0,0). In the ex-
treme cases, the similarity measure and the confidence measure are related by:
(a). s{x,y) = 0 iff conf{xi =j> ?/i) = 0 iff conf(xi <= yi) = 0, and (b). s(x,y) = 1
iff conf{xi =4- yi) = 1 and confixi = y\) = 1. For three attributes x, y and z,
if s{x,y) > s{x,z), we cannot infer conf{xi <= y\) > conf{xi <= zi). That is, a
larger similarity value does not suggest a higher level of association. Conversely,
a higher level of association does not imply a larger degree of similarity. Never-
theless, when the supports of xi and yi are close, it is likely that a very strong
similarity suggests a high level of association. Likewise, it is unlikely that a very
weak similarity suggests a high level of association.

The conditional entropy is a kind of average of various one-way associations
of values of x and y, while the mutual information is a kind of average of various
two-way association. A large value of such a global measure does not neces-
sarily warrants a large value for every one of the local associations. Like the
confidence of an association rule, the the similarity measure focuses mainly on
the associations characterized by the co-occurrence (1,1). To a large degree, the
similarity measure is reflected by one term in the mutual information, namely,
conf{x\ ̂ 2/1) measuring the strength of two-way association of xi and j / i .

4 Conclusion

Many different forms of knowledge and information can be derived from a large
data set. Relationships between attributes represent an important class. An anal-
ysis of possible relationships between attributes and their connections may play
an important role in data mining. The results from our preliminary study show
that at least three types of relationships can be derived. They reflect the as-
sociation, similarity and dependency of attributes. Various measures have been
examined for quantifying the strength of these relationships. The confidence and
similarity show the local dependency, while conditional entropy and mutual in-
formation show the global dependency. Furthermore, confidence and conditional
entropy represent one-way dependency, and similarity and mutual information
represent two-way dependency. These measures have major difference from each
other. They are also related to each other.

The results of this investigation also suggest the needs for the study of new
algorithms in data mining. As future research, we will focus on data mining
algorithms based on similarity measures.

References

1. Yao, Y.Y., Wong, S.K.M., and Butz, C.J. On information-theoretic measures of
attribute importance, Proceedings of PAKDD'99, 133-137, 1999.

2. Yao, Y.Y. and Zhong, N. An analysis of quantitative measures associated with
rules, Proceedings of PAKDD'99, 479-488, 1999.

3. Yao, Y.Y. and Zhong, N. Granular computing using information tables,
manuscript, 1999.

Prototype Generation
Based on Instance Filtering and Averaging

Chi-Kin Keung and Wai Lam

Depeirtment of Systems Engineering and Engineering Management
The Chinese University of Hong Kong, Shatin, Hong Kong

{ckkeung,vlan}9se.cuhk.edu.h k

Abstract. We propose a new algorithm, called Prototype Generation
and Filtering (PGF), which combines the strength of instance-filtering
and instance-averaging techniques. PGF is able to generate representa-
tive prototypes while eliminating noise and exceptions.We also introduce
a distance measure incorporating the class label entropy information for
the prototypes. Experiments have been conducted to compare our PGF
algorithm with pure instance filtering, pure instance averaging, as well as
state-of-the-8irt algorithms such as C4.5 and KNN. The results demon-
strate that PGF can significantly reduce the size of the data while main-
taining and even improving the classification performance.

1 Introduction

The classical nearest neighbor (NN) algorithm has been proved to be effective
in pattern classification on different applications [8]. It stores all the training
instances and requires no knowledge learning from the training set. In order to
classify an unseen instance, its distance with every stored training instance is
calculated and the class of its nearest instance is assigned to it. This algorithm
has two main drawbacks: high computational cost on run-time classification
and high storage requirement. Researchers try to solve this problem by reduc-
ing the number of stored instances. By removing non-representative and noisy
instances, the classification cost and storage requirement can be reduced while
maintaining or even improving the classification accuracy . Instance-filtering and
instance-averaging are the two most common methods to select and generate rep-
resentative instances [8]. Filtering techniques try to filter out non-representative
instances from original training set and averaging techniques attempt to find the
most common characteristics of similar instances by merging and summarizing
them. The two methods have their own strength and weaknesses. Our goal in
this paper is to integrate the two methods to select and generate representative
instances and eliminate noise and exceptions. To this end, we propose a new al-
gorithm, called Prototype Generation and Filtering (PGF) which combines the
strength of the two methods.

Many researchers have worked on the selection of representative instances us-
ing different methods. For examples. Hart proposes a Condensed Nearest Neigh-
bor (CNN) which is probably the earliest method to select representative in-
stances [14]. CNN starts by randomly storing one instance for each class as the

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 142-152, 2000.
© Springer-Verlag Berl in Heidelberg 2000

Prototype Generation Based on Instance Filtering and Averaging 143

initial subset and stores instances misclassified by the current subset. A top-
down variant of CNN, called Reduced Nearest Neighbor (RNN) is proposed by
Gates which removes instance if the removal does not cause any misclassification
of other instances [12]. Later, a number of variants of CNN have been proposed
including [13,19]. The Edited Nearest Neighbor (ENN) algorithm proposed by
Wilson eliminates instances misclassified by their fc-nearest neighbors [21]. This
algorithm retains central points since they are usually correctly classified by their
k-nearest neighbors. Aha et al. introduce the well-know IB2 and IBS algorithm
which is based on CNN storing misclassified instances [2]. IB2 is similar to CNN
except that instances are normalized by the range of attributes and missing
value are tackled while IB3 only accepts instances with a relatively high classi-
fication accuracy compared with the frequency of the observed class. The two
algorithms provide noise tolerance. Aha et al. also propose three instance prun-
ing techniques which can determine the relative attribute relevance and handle
novel attributes [1]. Zhang introduces Typical Instance-Based Learning (TIBL)
which stores typical instance in the region centers [23]. Wilson and Martinez
introduce three instance pruning techniques, called RT1-RT3, which removes an
instance by considering its associates, instances in the current selected instance
set having it as one of their A;-nearest neighbors [22]. RTl removes an instance
if most of its associates are correctly classified without it. RT2 considers asso-
ciates in the entire data set rather than those in the selected set and also sorts
the instances by the distance to their nearest neighbors. RT3 is similar to RT2
except that it employs ENN to filter out noise first.

Chang's method learns representative instances by merging similar ones. It
iteratively merges two closest instances and summarized them by taking the
weighted average of them [6]. Bradshaw introduces the Disjunctive Spanning
(DS) which merges instances with the ones they can correctly classified [5]. Kibler
and Aha improve DS by using an adaptive threshold to limi t the distance between
two merged instances [15]. An algorithm called Nested Generalized Exemplar
(NGE) is proposed by Salzberg which stores instances as hyperrectangles [18].
Wettschereck combine the NGE with KNN to form a hybrid algorithm [20].

Datta and Kibler introduce the Prototype Learner (PL) which learns arti-
ficial instances for each class by generalization of representative instances [9]
in nominal domains. Then they propose the Symbolic Nearest Mean Classifiers
(SNMC) [10,11] which attempts to learn a single prototype for each class using a
modified Value Difference Metric proposed by Cost and Salzberg to weight sym-
bolic features [7]. SNMC uses k-means clustering to group instances of the same
class and create artificial instances using cluster means. Bezdek at el. modify
Chang's method (MCA) which averages instances using simple mean and merges
instances of the same class only [4].

144 Ch.-K. Keung and W. Lam

2 Our Proposed Algorithm

2.1 Motivatio n

Many previous works try to find representative instances by either removing
non-representative and noisy instances (instance-filtering) or merging and sum-
marizing similar instances (instance-averaging). Indeed, the two methods have
their own strength and weaknesses. Filtering methods are more flexible. We can
decide different filtering rules to retain different instances such as border or cen-
tral points and to eliminate noise and outliers. Besides, a consistent subset can
be ensured using some filtering rules [14]. However, filtering methods cannot
find the most representative instances if they are not in the original data set.
They do not generalize instances so that a satisfactory data reduction is usually
not gained. Some filtering methods are sensitive to noise and the order of data
presentation. On the other hand, instance-averaging methods try to generate
representative prototypes by generalizing common characteristics of instances.
They usually have great data reduction rate by summarizing instances instead of
simply selecting them. Also, noise can be effectively generalized away by merging
similar instances. However, non-prototypical instances may be formed if distant
instances are merged. The prototype set may even contain misclassified instances
thus degrading classification accuracy.

I t seems that the two methods can benefit each other. For example, data
reduction in filtering methods can be improved by merging similar instances.
Some noisy instances can be generalized away by averaging methods. The most
representative instances are sometimes not found in the original data set by
filtering rules. Therefore, more representative instances may be found if the
commonest features of instances are generahzed using averaging methods. On
the other hand, non-prototypical instances will not be likely formed in instance-
averaging techniques if outliers are eliminated before. Some filtering rules can
also eliminate noise effectively so that the classification accuracy of instance-
averaging methods can be greatly improved. Besides, filtering rules can also be
designed to further reduce the data set size.

In view of the above motivation, we propose a framework, called Prototype
Generation and Filtering (PGF), which combines the strength of instance aver-
aging and instance filtering methods to generate high quality prototypes. Our
objective is to significantly reduce the data set via prototypes while maintaining
the same level of, or even better classification performance.

2.2 The Framework of Our Approach

PGF consists of an instance-averaging and an instance-filtering components. We
first describe the averaging method and then the filtering method. Then we
present how the two methods are integrated to gain high quality prototypes.

Instance-Averaging Component. Instance-averaging methods attempt to
find the commonest features of instances in the same class by merging simi-
lar instances. They intend to generate ideally one prototype for each class to

Prototype Generation Based on Instance Filtering and Averaging 145

classify unseen cases. Many instance-aver aging methods make use of clustering
techniques. Some methods adopt k-means clustering [10] and others apply hier-
archical methods [6]. Using k-means clustering, we have to decide the number
of prototypes (clusters) beforehand. Researchers try different values of k to find
the optimal results. In hierarchical clustering methods, the number of prototypes
can be determined by stopping rules. Since predefining the number of prototypes
wil l greatly restrict the search space for prototype selection, we adopt hierar-
chical clustering method in our proposed framework. The quality of prototypes
can be evaluated by an evaluation function. Figure 1 shows the algorithm of the
instance-averaging component used in our PGF algorithm.

1. Let prototype set = Training Set.
2. Merge two nearest prototypes in current prototype set.
3. Evaluate current prototype set.
4. Repeat 2 and 3 until no. of prototype = no. of class.
5. Output prototype set with majcimum evaluation score.

Fig. 1. Instance-averaging component using hierarchical clustering method

A prototype essentially contains a set of original instances. It is represented
by the mean of the constituent instances in the prototype. As shown in Figure 1,
each instance is considered as a prototype initially . At each iteration, two proto-
types with shortest distance in the current prototype set are merged to form a
new prototype. The new prototype is the mean of all instances contained in the
merged prototypes and the majority class of the contained instances becomes
the class of the prototypes. The new prototype set is then evaluated by an eval-
uation function to predict the quality of the prototype set. The best prototype
set is stored. These merging and evaluation processes continue until the num-
ber of prototypes reduces to the number of classes in the data set. Finally, the
prototype set with optimal evaluation score is the output.

As our objective is to learn prototypes to classify unseen cases, classifica-
tion accuracy on unseen instances is a good evaluation criterion to evaluate the
quality of prototypes. We divide the training data into a sub-training set and a
tuning set. Prototypes are learned using the sub-training set while the tuning
set is used to evaluate the learned prototypes.

In order to generate homogeneous prototypes, many instance-averaging meth-
ods only merge instances of the same class. For example, [10] partitions the
original data set by class and merge instances within each partition. Despite
the homogeneity of the prototypes formed, these methods may distort the data
distribution. Besides, the strength of averaging method to generalize away mis-
labeled instances of other labels in compact regions is disabled. In view of this,
we design a distance measure which considers both the Euclidean distance and

146 Ch.-K. Keung and W. Lam

the entropy of the merged prototypes. The entropy, Ent{x.), of a prototype x is
related to the class distribution of the instances contained in the prototype. It
is defined as:

c

Ent(x) = - ^ R{x., i) log R{x, i)
i = l

where it(x , i) is the relative frequency of the occurrence of the class label i in
the prototype x. When two prototypes x and y are considered to merge, the
entropy distance between x and y is defined as:

E{x, y) = Ent{z)

where 2 is a hypothetic prototype generated by merging x and y. If a low
entropy is calculated, most instances in the merged prototypes are of the same
class. Therefore, entropy encourages homogeneous prototypes to be merged.

The Euclidean distance of two prototypes is normalized to value from 0 to
1 which is of the same range of entropy. The normalized Euclidean distance of
two prototypes x and y is defined as:

D(.,y)= V K : ^ ^ ^ ^)
V'Sr=i(" '^* ^ mini)

where n is the number of attributes, Xj, yt are the z-th attribute values of x and y
and maxj, minj are the maximum and minimum value of the i-th attribute in the
training set respectively. After the two components are calculated, a parameter
a (0 < a < 1) is then used to weight their contributions. The distance function
EE of PGF is:

EE(x, y) = aD(x, y) + {l- a)E(x, y)

This distance measure favours the merging of homogeneous instances while
preserving the original data distribution.

Instance-Filtering Component. As described above, instance-averaging
methods cannot handle outliers and exceptions effectively. Therefore, we can de-
sign filtering rules which eliminate outliers and exceptions to solve the problem.
Besides, non-prototypical and misclassified prototypes may be generated after
instance-averaging. Filtering rules can help if they can discard non-representative
and noisy instances. For this reason, filtering rules which can eliminate out-
liers, exception and noise would benefit to instance-averaging methods. We have
tried two filtering methods. The first one is the ENN method introduced by
Wilson [21]. This method discards instances which are misclassified by their k
nearest-neighbors. As outliers and noise are seldom classified correctly by their
k nearest-neighbors, they will usually be removed.

The second instance-filtering method considers the classification performance
of each prototype in the prototype set. After the merging process, artificial pro-
totypes are generated by the sub-training set. These prototypes can be used to
classify the original training set and the classification accuracy of each proto-
type are calculated. Prototypes with accuracy lower than a certain threshold

Prototype Generation Based on Instance Filtering and Averaging 147

Q will then be discarded. This method can effectively remove noisy and non-
prototypical prototypes as they usually have low accuracy. Besides, outliers and
exceptions can also be eliminated.

Integratio n of Filterin g and Averaging. Our PGF algorithm integrates
instance-filtering techniques in the instance-averaging component described
above. Figure 2 shows the algorithm of PGF. The filtering processing is indicated
by statement 4. Filtering is conducted when a new prototype set is formed after
each merging process in the instance-averaging component. The filtered proto-
type set is then evaluated by the prototype set evaluation function and the one
with optimal evaluation score will be output. After the prototype set is learned,
it is used to classify unseen cases. The simple Euclidean distances between the
unseen case and all the prototypes are calculated to find the nearest prototype.
The majority class of its nearest prototype is then assigned to the unseen case.

1. Let prototype set = Training Set.
2. Merge two nearest prototypes in current prototype set.
3. Let temp = current prototype set.
4. Filter temp.
5. Evaluate temp.
6. Repeat 2, 3, 4 and 5 until no. of prototype = no. of class.
7. Output temp with m2iximum evaluation score.

Fig. 2. The algorithm of the PGF algorithm

3 Empirical Evaluation

3.1 Experimental Setup

We have conducted a series of experiments to investigate the performance of
our PGF firamework. Nineteen real-world data sets from the widely used UCI
Repository [16] were tested in the experiments. For each data set, we randomly
partitioned the data into ten portions. Ten trials derived from 10-fold cross-
validation were conducted for every set of experiments. The mean of the storage
requirement and classification accuracy of the ten trials were calculated to mea-
sure the performance for a particular data set. Attribute values are normalized
by the range of features in the training set and missing values were replaced by
the mean value of the feature. We first investigate the merit of our framework
as compared to pure instance filtering and pure prototype generation methods.
Then we compare our algorithm with existing learning algorithms, namely, C4.5
and KNN. We finally investigate the performance of our distance measure EE
by comparing EE with and without the entropy consideration.

148 Ch.-K. Keung and W. Lam

3.2 Experimental Results

The first set of experiments studies the benefits of the integration of proto-
type generation and prototype filtering methods. We compare two variants of
our PGF algorithms with pure instance-filtering and pure instance-averaging
algorithms. The first PGF uses ENN to filter prototype set (PGF-ENN) and
the other one filters out prototypes with classification accuracy lower than a
threshold Q (PGF-ACC). The pure instance-filtering algorithm is the simple
ENN (pure-ENN) while the pure instance-averaging algorithms is the one using
classification accuracy (pure-ACC) as the prototype set evaluation function. We
have tried a range of parameters in algorithms compared and select the best one
to represent each of them. The parameter a in our distance measure is also tuned
and the best result is reported. Table 1 and Table 2 show the average storage
requirement and classification accuracy of the four methods respectively.

We first compare pure-ENN with PGF-ENN. From the results in Table 2, it
is found that the pure-ENN have a slightly higher performance in classification
accuracy. However, the storage requirement of PGF-ENN is significantly lower
than that of pure-ENN. About 57% of the training data are further reduced using
PGF-ENN instead of pure-ENN. This supports the fact that instance-averaging
methods can further improve data reduction rate of instance-filtering techniques
by generalizing similar instances without great degradation in classification ac-
curacy. PGF-ENN even gains a slightly increase in classification accuracy on
some data sets using much fewer number of prototypes.

However, when comparing the pure instance-averaging method (pure-ACC)
with PGF-ENN, we find that data reduction rate degrades using the integrated
method. pure-ACC requires a 8% higher average storage requirement than PGF-
ENN does. As for classification accuracy, the two algorithms gain similar results
on all the data sets. The poor performance of ENN in the integrated method can
be explained as below. As mentioned above, ENN discards those instances which
are misclassified by their k nearest neighbors. Central instances will be retained
as they are usually correctly classified by their k nearest neighbors. However, our
instance-averaging method attempts to generalize similar instances by taking the
mean of the merged instances as artificial prototypes. These artificial prototypes
are obviously central points which are usually retained by ENN. Also, with the
influence of ENN, PGF-ENN finds its optimal prototype set in an earlier merging
iteration. Therefore, its data reduction rate degrades even with the integration
of ENN to filter the prototype set.

We then compare pure-ACC with PGF-ACC. Table 1 and Table 2 show that
PGF-ACC gains significant improvement in average storage requirement while
maintaining a high level of classification accuracy. PGF-ACC uses 11.5% fewer
of the total instances to achieve a slightly lower (1.1%) classification accuracy
compared with pure averaging method. PGF-ACC discards less representative
prototypes by using classification accuracy as filtering rule. This accounts for
the improvement of data reduction in the integrated method.

Prototype Generation Based on Instance Filtering and Averaging 149

Table 1. The average storage requirement of ten triais for pure-ENN, pure-ACC,
PGF-ENN and PGF-ACC

Data Set

balance-scale
breast-cancer-w
glass
ionosphere
iri s
letter
liver-disorders
new-thyroid
optdigit
pendigit
pima-diabetes
segmentation
shuttle
sonar
vowel
wdbc
wine
wpbc
yeast
Average

pure-ENN

0.827
0.961
0.701
0.842
0.950
0.755
0.639
0.949
0.965
0.983
0.734
0.950
0.979
0.852
0.964
0.966
0.956
0.747
0.552
0.856

pure-ACC

0.162
0.075
0.097
0.245
0.103
0.591
0.168
0.095
0.491
0.238
0.018
0.355
0.274
0.363
0.256
0.232
0.085
0.018
0.076
0.207

PGF-ENN PGF-ACC

0.239
0.050
0.215
0.195
0.295
0.546
0.275
0.231
0.436
0.261
0.013
0.462
0.330
0.362
0.753
0.248
0.126
0.049
0.379
0.287

0.022
0.046
0.052
0.041
0.081
0.196
0.070
0.058
0.137
0.113
0.011
0.165
0.121
0.079
0.212
0.095
0.054
0.021
0,108
0.088

In conclusion, we find that the performance of PGF depends on the choice
of the filtering method. To make use of the advantage of the integrated method,
the averaging and filtering techniques should target on different instances.

In the second set of experiments, we compare PGF with C4.5 and KNN. The
PGF used in the comparison is PGF integrated with prototype filtering method
using accuracy (PGF-ACC). In KNN, we have conducted different values of k
(k=l,3,5,7,9,11,15,20) and the best k, which is 3, is used for comparison. For
PGF-ACC, we have also tried a range of threshold Q in the filtering component.
Table 1 depicts the size of the reduced data set of PGF (PGF-ACC). It shows
that PGF only retains an average of 8.8% of the total instances while maintaining
a high classification accuracy.

Table 3 shows the classification accuracy and standard deviation of the three
algorithms on all the data sets. It shows that the PGF algorithm is slightly better
than C4.5 in the average classification accuracy across most of the data sets and
KNN has a slightly higher average classification accuracy than PGF. Using a
t-test at 0.05 significant level, we find that PGF outperforms C4.5 in 5 of the
data sets and has the same performance on the remaining ones. Compared with
KNN, PGF performs equally well in 15 of the 19 data sets. In conclusion, PGF
can achieve comparable classification performance with state-of-the-art learning
algorithms such as C4.5 and KNN. More importantly PGF can drastically reduce
the data size to only 8.8% of the original size on average.

150 Ch.-K. Keung and W. Lam

Table 2. The average classification ciccuracy of ten trials for pure-ENN, pure-ACC,
PGF-ENN and PGF-ACC. The standard deviation is given inside the bracket

Data Set

balance-scale
breast-cancer-w
glass
ionosphere
iri s
letter
liver-disorders
new-thyroid
optdigit
pendigit
pima-diabetes
segmentation
shuttle
soneir
vowel
wdbc
wine
wpbc
yeast
Average

pure-ENN

0.856 (0.034)
0.971 (0.039)
0.658 (0.205)
0.832 (0.088)
0.953 (0.046)
0.724 (0.036)
0.626 (0.069)
0.944 (0.053)
0.949 (0.032)
0.982 (0.016)
0.751 (0.100)
0.943 (0.026)
0.971 (0.051)
0.827 (0.199)
0.968 (0.061)
0.958 (0.028)
0.948 (0.101)
0.783 (0.153)
0.569 (0.061)

0.853

pure-ACC

0.806 (0.099)
0.954 (0.028)
0.603 (0.137)
0.906 (0.046)
0.933 (0.050)
0.767 (0.064)
0.597 (0.063)
0.921 (0.074)
0.946 (0.037)
0.969 (0.013)
0.709 (0.079)
0.959 (0.011)
0.974 (0.046)
0.832 (0.072)
0.972 (0.027)
0.940 (0.056)
0.960 (0.046)
0.768 (0.132)
0.561 (0.056)

0.846

PGF-ENN

0.854 (0.050)
0.947 (0.031)
0.658 (0.261)
0.860 (0.095)
0.933 (0.097)
0.692 (0.046)
0.637 (0.080)
0.921 (0.055)
0.941 (0.043)
0.965 (0.014)
0.716 (0.111)
0.932 (0.033)
0.971 (0.047)
0.802 (0.085)
0.931 (0.039)
0.945 (0.040)
0.966 (0.100)
0.742 (0.126)
0.569 (0.027)

0.841

PGF-ACC

0.851 (0.041)
0.957 (0.033)
0.659 (0.135)
0.883 (0.070)
0.947 (0.063)
0.665 (0.048)
0.591 (0.071)
0.921 (0.049)
0.923 (0.027)
0.961 (0.018)
0.716 (0.064)
0.935 (0.021)
0.971 (0.050)
0.789 (0.100)
0.940 (0.047)
0.933 (0.033)
0.960 (0.046)
0.737 (0.159)
0.520 (0.057)

0.835

Table 3. The average classification accuracy of ten trials for C4.5, KNN and PGF-
ACC. The standard deviation is given inside the bracket

Data Set

balance-scale
breast-cancer-w
glass
ionosphere
iri s
letter
liver-disorders
new-thyroid
optdigit
pendigit
pima-diabetes
segmentation
shuttle
sonar
vowel
wdbc
wine
wpbc
yeast
Average

C4.5

0.792 (0.066)
0.939 (0.041)
0.666 (0.083)
0.900 (0.032)
0.953 (0.063)
0.692 (0.043)
0.642 (0.054)
0.921 (0.081)
0.824 (0.029)
0.914 (0.015)
0.694 (0.085)
0.951 (0.015)
0.989 (0.045)
0.706 (0.094)
0.779 (0.046)
0.944 (0.031)
0.888 (0.081)
0.676 (0.168)
0.545 (0.049)

0.811

KNN

0.818 (0.052)
0.964 (0.025)
0.709 (0.199)
0.843 (0.049)
0.940 (0.050)
0.751 (0.029)
0.663 (0.099)
0.953 (0.063)
0.951 (0.049)
0.984 (0.014)
0.745 (0.076)
0.951 (0.008)
0.974 (0.048)
0.856 (0.108)
0.967 (0.022)
0.965 (0.018)
0.960 (0.056)
0.742 (0.163)
0.554 (0.038)

0.857

PGF (PGF-ACC)

0.851 (0.041)
0.957 (0.033)
0.659 (0.135)
0.883 (0.070)
0.947 (0.063)
0.665 (0.048)
0.591 (0.071)
0.921 (0.049)
0.923 (0.027)
0.961 (0.018)
0.716 (0.064)
0.935 (0.021)
0.971 (0.050)
0.789 (0.100)
0.940 (0.047)
0.933 (0.033)
0.960 (0.046)
0.737 (0.159)
0.520 (0.057)

0.835

Prototype Generation Based on Instance Filtering and Averaging 151

Table 4. The average classification accuracy and storage requirement of ten trials of
19 data sets for pure-ACC, PGF-ENN and PGF-ACC with and without entropy in
distance measure

Distance Measure

with entropy
without entropy

pure-ACC
accuracy

0.846
0.839

storage

0.207
0.296

PGF-ENN
accuracy

0.841
0.839

storage

0.287
0.307

PGF-ACC
accuracy

0.835
0.813

storage

0.088
0.115

In the last set of experiments, we investigate the contribution of adding en-
tropy in our distance measure. We compare our distance measure EE, with and
without entropy. Note that if no entropy is used, the distance measure is essen-
tially the normalized Euclidean distance. Table 4 shows the average classifica-
tion accuracy and storage requirement of the pure instance-average (pure-ACC),
PGF-ENN and PGF-ACC of the 19 data sets. We find that entropy has different
impacts on different algorithms. For pure-ACC, storage requirement is improved
from 29.6% to 20.7% with almost the same performance on classification accu-
racy. However, in PGF-ENN, entropy only improves both classification accuracy
and storage requirement very sUghtly. A greater improvement in classification
accuracy and data reduction rate can be found in PGF-ACC. With the addi-
tion of entropy in distance measure, homogeneous prototypes are more likely to
be merged. The results show that this can help in generating more representa-
tive prototypes and a higher classification accuracy and data reduction can be
gained.

4 Conclusions

We have presented a new prototype generation method, called Prototype Gen-
eration and Filtering (PGF), which integrates the strength of instance-filtering
and instance-averaging techniques. We compare the data reduction rate and the
classification performance with pure filtering, pure averaging, as well as C4.5
and KNN on 19 real data sets. PGF is found to be effective in reducing the data
set size while maintaining or even improving the classification accuracy. PGF
can so far deal with real attributes only. In the future, we intend to extend it
to symbolic features by using other distance metric which is capable of measur-
ing distance of discrete values. Different instance averaging methods can also be
investigated to see its effects on the PGF algorithm.

References

Aha, D.W.; Tolerating Noisy, Irrelevant, and Novel Attributes in Instance-Based
Learning Algorithms. International Journal of Man-Machine Studies, Vol. 36. (1992)
267-287
Aha, D.W., Kibler, D. and Albert, M.K.; Instance-Based Learning Algorithms. Ma-
chine Learning, Vol. 6. (1991) 37-66

152 Ch.-K. Keung and W. Lam

3. Bareiss, R.: Exemplar-Based Knowledge Acquisition. A Unified Approach to Con-
cept Representation, Classification, and Learning. Perspective in Artificia l Intelli-
gence, Vol 2. Academic Press (1989)

4. Bezdek, J.C., Reichherzer, T.R., Lim, G.S. and Attikiouzel, Y.: Multiple-Prototype
Classifier Design. IEEE Transactions on Systems, Man, and Cyberneics, Vol. 28, no.
1. (1998) 67-79

5. Bradshaw, G.: Learning about Speech Sounds: The NEXUS project. Proceedings of
the Fourth International Workshop on Machine Learning. (1987) 1-11

6. Chang, C.L.: Finding Prototypes for Nearest Neighbor Classifiers. IEEE Transac-
tions on Computers, Vol. 23, no. 11. (1974) 1179-1184

7. Cost, S and Salzberg, S.: A Weighted Nearest Neighbor Algorithm for Learning with
Symbolic Feature. Machine Learning, Vol. 10. (1993) 57-78

8. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Tech-
niques. Los Alamito, CA: IEEE Computer Society Press (1991)

9. Datta, P. and Kibler, D.: Learning Prototypical Concept Description. Proceedings
of the Twelfth International Conference on Machine Leaning. (1995) 158-166

10. Datta, P. and Kibler, D.: Symbolic Nearest Mean Classifier. Proceedings of the
Fourteenth National Conference of Artificial Intelligence. (1997) 82-87

11. Datta, P. and Kibler, D.: Learning Symbolic Prototypes. Proceedings of the Four-
teenth International Conference on Machine Learning. (1997) 75-82

12. Gates, G.W.: The Reduced Nearest Neighbor Rule. IEEE Transactions on Infor-
mation Theory, Vol. 18, no. 3. (1972) 431-433

13. Gowda, K.C. and Krisha, G.: The Condensed Nearest Neighbor Rule Using the
Concept of Mutual Nearest Neighborhood. IEEE Transactions on Information The-
ory, Vol. 25, no. 4. (1979) 488-490

14. Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Infor-
mation Theory, Vol. 14, no. 3. (1968) 515-516

15. Kibler, D. and Aha, D.W.: Comparing Instance-Averaging with Instance-Filtering
Learning Algorithms. Proceedings of the Third European Working Session on Learn-
ing. (1988) 63-80

16. Murphy P.M. and Aha, D.W.: UCI Repository of Machine Learning Database.
Irvine, CA: University of California Irvine, Department of Information and Com-
puter Science, http://www.ics.uci.edu/ mlearn/MLRepository.html (1994)

17. Ritter, G.L, Woodruff, H.B. and Lowry, S.R.: An Algorithm for a Selective Nearest
Neighbor Decision Rule. IEEE Transactions on Information Theory, Vol. 21, no. 6.
(1975) 665-669

18. Salzberg, S.: A Nearest Hyperrectangle Learning Method. Machine Learning, Vol.
6. (1991) 251-276

19. UUmann, J.R.: Automatic Selection of Reference Data for Use in a Nearest Neigh-
bor Method of Pattern Classification. IEEE Transactions on Information Theory,
Vol. 20, no. 4. (1974) 431-433

20. Wettschereck, D.: A Hybrid Nearest-Neighbor and Nearest-Hyperrectangle Al-
gorithm. Proceedings of the Seventh European Conference on Machine Learning.
(1994) 323-335

21. Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data.
IEEE Transactions on Systems, Man, and Cyberneics, Vol. 2, no. 3. (1972) 431-433

22. Wilson, D.R. and Martinez T.R.: Instance Pruning Techniques. Proceedings of the
Fourteenth International Conference on Machine Learning. (1997) 403-411

23. Zhang, J.: Selecting Typical Instances in Instance-Based Learning. Proceedings of
International Conference on Machine Learning. (1992) 470-479

A Visual Method of Cluster Validation with Fastmap

Zhexue Huang' and Tao Lin^

' E-Business Technology Institute, The University of Hong Kong, Pokfulam, Hong Kong,
CHINA

' CSIRO Mathematical and Information Science, GPO Box 664, Canbeira, ACT 2601,
AUSTRALIA

tao.lin@cmis.csiro.au

Abstract. This paper presents a visual method of cluster validation using the
Fastmap algorithm. Two problems are tackled with Fastmap in the interactive
process of discovering interesting clusters from real world databases. That is,
(1) to verify separations of clusters created by a clustering algorithm and (2) to
determine the number of clusters to be produced. They are achieved through
projecting objects and clusters by Fastmap to the 2D space and visually
examining the results by humans. We use a real example to show how this
method has been used in discovering interesting clusters from a real data set.

Key Words: Data mining. Clustering, Cluster validation. Cluster visualization

1 Introduction

Clustering data in databases is an important task in real applications of data mining
techniques. A typical example is customer segmentation. In database marketing, for
instance, sound customer segmentation is a necessary condition for conducting
effective marketing campaigns. In telecommimication service, customer segmentation
is critical in identifying potential chumers and deciding proper offers to retain them.
However, clustering a large real world database is by no means a trivial task to data
miners because of the size and complexity of data.

A notorious characteristic of clustering is that different clustering algorithms often
impose different clustering structures on data [Jain88]. Unless synthetic data with
known cluster distributions are used, it is difficult to compare the clustering results of
real data from different clustering algorithms. Objects in real world databases are
usually represented in high dimensions and the distributions of objects are often very
sparse. Outliers, noise and clusters at different levels coexist. To discover interesting
clusters from these databases, an interactive approach to stepwise clustering data and
validating clusters is proved effective.

In this paper, we demonstrate the effectiveness of the interactive approach to
discovering hierarchically structured clusters in data. We present a visual method to
use Fastmap and other techniques to visually validate clusters in the interactive
process of clustering. Fastmap is a fast algorithm to project high dimensional data
onto low dimensional spaces, due to Faloutsos and Lin [Falo95]. In the clustering

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 153-164,2000.
© Springer-Verlag Berlin Heidelberg 2000

154 Z. Huang and T. Lin

process, we use Fastmap to solve two problems, (1) to verify the separations of
clusters created by a clustering algorithm and (2) to determine the number of clusters
to be produced.

The interactive process of clustering is conducted as follows. Starting from a given
data set, we first use Fastmap to project all objects onto a 2D space and visually
determine the number of clusters to be produced. Then, we use a clustering algorithm
to generate these clusters. After that, we use Fastmap again to project the clusters onto
a 2D space and visualize them in different colors and/or symbols. If we see any
separate clusters, we identify them as isolated clusters in the original high
dimensional space. This is because a cluster separate from others in the 2D space is
also separate from others in the original high dimensional space. For other clusters
that overlap on the 2D display, we use other techniques to investigate whether they
are separate or not. For the clusters whose separations are uncertain, we merge them
into a composite cluster and use the clustering algorithm to further partition it. We
interactively repeat this process to create a tree of clusters from which interesting
clusters can be gradually identified. In the paper, we use a real example to show how
this method has been used in discovering interesting clusters from a complex data set
in a real world application.

Projection of high dimensional data onto low dimensional spaces for clustering is a
common approach in cluster analysis. Fastmap was primarily designed for this
purpose [Falo95]. Other widely used methods include principal component analysis
(PCA), multidimensional scaling (MDS) [Youn87] and dimensionality reduction
techniques such as K-L transform [Fuku90]. Ganti et al. [Gant99] has recently
integrated Fastmap with the BIRCH clustering algorithm [Zhan97] to cluster data in
arbitrary spaces. In their approach, Fastmap is used to project data in an arbitrary
space onto a projected space in which clustering is performed. However, performing
clustering in the projection space cannot guarantee the discovery of clusters in the
original space. In our approach, we create clusters from the original high dimensional
space and use Fastmap to validate these clusters in the projected low dimensional
space. When a cluster is validated, we are able to conclude that it is a cluster in the
original space.

In this work, we have chosen the ^-prototypes algorithm for clustering high
dimensional data [Huan98] because of its natural handling of categorical data. Other
clustering algorithms, such as CLIQUE [Agra88], CLARANS [NgHa96], BIRCH
[Zhan97], and DBSCAN [Este98], can be used as alternatives in our approach.
However, these algorithms usually deal with numeric data. Data conversion is needed
when categorical data is involved.

2 Building a Cluster Tree

Our approach to clustering a large data set is to use a clustering algorithm and various
cluster validation methods, including Fastmap, to interactively build a tree of clusters
from which interesting clusters can be discovered. In this section, we define a cluster
tree and discuss how it is interactively built from a data set.

A Visual Method of Cluster Validation with Fastmap 155

'
^mmf^-^-

- 2 0 2 4 6 8

(a) (b)

Fig. 1. (a) A data set contains six normally distributed clusters, (b) The cluster tree of the data
set.

2.1 Definitions

Let AT be a data set containing N objects, that is, X = {x^,X2,...,Xfj].

Definition 1 [Theo99]: An m-clustering of .Y is a partition of X into m subsets

(clusters), Cj , . . ., C^, which satisfies:

 C,.^0, i = l,...,m

 C,. n Cj = 0 , i^ j , ij = l,...,m

In addition, the objects in a cluster C, are "more similar" to each other and "less
similar" to objects of other clusters.

Definition 2: A clustering S with k clusters is said to be nested in a clustering T,
which contains r (< k) clusters, if for any cluster C, in S, there is a cluster Q in T such
that Cj 2 C, And there exists at least one cluster in S, which holds Q ^Q and QT^C,.

Definition 3: A cluster tree is a sequence of nested clusterings,
{SQ , 5 j , . . ., 5^ } , so that for any i, j with i < j and for any Cj e S^, there is C, e 5, such
that C, 2 CJ.

Fig. 1 (a) shows a data set containing six clusters. At the high level, clusters A and
B are two clusters with normal distributions while cluster C consists of four sub
clusters which also have normal distributions. The cluster tree of the data set is
represented in Fig. 1 (b). It consists of two clusterings of X, i.e., 5i={A , B, C} and
5j={A , B, a, b, c, d} , and 5̂ is nested in 5j. We call C a composite cluster and others
atomic clusters.

2.2 Discovery of a Cluster Tree

Given the data set in Fig. 1 (a) that has six clusters, we can use a clustering algorithm
such as ^-means to partition it into six clusters. Then we compare the clustering

156 Z. Huang and T. Lin

81

Fig. 2. Discovery of the three high level
clusters in Step 1.

Fig. 3. Six clusters discovered in two steps
by applying the ^-means algorithm to the
data.

results with the original clusters to see if the original clusters can be recovered.
However, in our experiment, such an approach was not successful. On one hand, it
wrongly divided clusters A and B. On the other hand it was unable to separate sub
clusters in cluster C. We also tried the hierarchical clustering methods which also
produced incorrect clusterings. This implies that if clusters exist at different density
levels in data, it is hard to discover them in a single clustering.

To solve this problem, we took two steps to cluster the data. Again, we used k-
means. First, we partitioned the data into three clusters. The result is shown in Fig. 2.
In this step, we successfully recovered the three high level clusters A, B and C. Then
we used ^-means to partition only cluster C into four clusters. In this step, we
successfully recovered the four sub clusters a, b, c, and d. Combining the two step
clustering results, we discovered the six original clusters in the data. The result is
shown in Fig. 3. This example demonstrates that if data contains a hierarchical
structure of clusters, it is more effective to recover these clusters in multiple steps.

2.3 Interactive Approach

In contrast to the bottom-up hierarchical clustering methods, we use a top-down
approach to interactively building cluster trees from data. Starting with the whole data
set that is considered as a cluster on its own right, we stepwise decompose the data
and grow a tree of clusters. In the tree, a node containing children is a composite
cluster while all leaves are atomic clusters.

In this interactive approach, we have to make two decisions at each node to
proceed the process. That is, to decide whether a node being considered is a
composite or atomic cluster and to determine the number of clusters to be created
from it if the node is a composite cluster. With synthetic data, since we know the
details of clusters, we will have no difficulty to make these decisions. However, when
dealing with real data, we usually have no knowledge about the structure of clusters
The Fastmap algorithm and visualization help obtain such knowledge and make

A Visual Method of Cluster Validation with Fastmap 157

decisions. Through Fastmap and other visualization methods, which we will discuss
in Section 3, we can make decisions based on what we see. In clustering real world
data, this kind of human involvement has a great advantage because we can use our
domain knowledge to accept or reject the clusters generated by the clustering
algorithm.

3 Cluster Validation with Fastmap

Cluster validation refers to the procedures that evaluate clusters created from a data
set by a clustering algorithm [Jain88]. In this section, we briefly overview the
Fastmap technique and discuss how to use it in cluster validation. We also present
some other cluster validation methods.

3.1 Fastmap Algorith m

Given a set of Â objects in an n dimensional space and their mutual distances,
Fastmap projects the N objects onto a d (< n) dimensional space. The projection is
performed in d steps. First, two objects O ̂and (9̂ are selected as 'pivot objects' and a
line considered passing through them forms the first axis in the projected d
dimensional space. For any object O^, its coordinate x. ̂on the first axis is calculated as

a,i a,a o,i . ^.

^ ^̂^
a,A

Here, d ̂ j , is the distance between O ̂and O ,̂ and d ̂ ̂ and cf̂ , are the distances
between O, and 0„, O^, respectively. Because all distances between objects are known,
it is straightforward to calculate the coordinates of all objects on the first axis.

To calculate the coordinates of objects on the second axis, we first need to
calculate the distances between objects in the reduced (n - 1) dimensional space. The
distances can be calculated from the distances in the original n dimensional space and
the coordinates on the first axis, as follows:

{d:^^f={d,.f-{x,-Xjf i,j = l...,N (2)

where d^ is the distance between obejcts O. and £) in the reduced (n - 1) dimensional

space, dj is the distance between obejcts O. and Oj in the original n dimensional

space, jc, X. are the coordinates of O. and O. on the first axis. After the distances
between objects in the reduced (n - 1) dimensional space are calculated, Equation (1)
is used to calculate the coordinates on the second axis. This process is recursively
used until the coordinates on the dth axis are calculated. For the details of the Fastmap
algorithm, refer to [Folo95].

158 Z. Huang and T. Lin

3.2 Cluster Validation witl i Fastmap

From the objects distribution viewpoint, validity of a cluster is measured by
Compactness and isolation [Jain88]. Fastmap allows us to see the isolation of clusters
generated from a high dimensional space. We use other methods to validate
compactness of clusters, which will be discussed in Section 3.3.

To validate clusters generated by the /:-prototypes algorithm from a high
dimensional space, we use Fastmap to project objects in different clusters onto a 2D
space and visualize them. In the 2D space, the cluster memberships of objects are
maintained so we can display objects in different clusters with different symbols and
colors. From the display, we can visually identify the clusters, which are isolated from
others. For example, the display in Fig. 4 shows that clusters 2 and 4 are isolated from
other clusters. We can validate that objects in clusters 2 and 4 form separate clusters
in the original space.

Fig. 4. The 2D display shows clusters 2 and 4 form separate clusters.

In Fig. 4, it is not clear whether clusters 0, 1 and 3 form clusters in the original space
or not, because of the overlapping of objects. In this case, we can do the following;

 Remove clusters 2 and 4, and re-project others to see whether a clear separation
can be observed.

 Remove clusters 2 and 4 and merge the rest. Apply the it-prototypes algorithm to
partition the merge into another set of clusters. Then, use Fastmap to validate the
new clusters.

Before clustering a data set, we can use Fastmap to project it onto a 2D space and see
how many clusters possibly exist in the data set therefore we can determine the
number of clusters to be generated.

3.3 Other Cluster Validation Methods

Fastmap helps identify isolated clusters generated from the original high dimensional
space. However, it does not validate whether the isolated clusters are atomic or

A Visual Method of Cluster Validation with Fastmap 159

composite. It cannot verify whether the overlapping clusters are separate in the
original high dimensional space or not. In combination with Fastmap, we use the
following validation methods to solve these two problems.

We use two methods to solve the first problem. Firstly, we visualize the
characteristic information of isolated clusters. The characteristic information includes
cluster centers, category distributions of categorical variables and histograms of
numeric variables. The characteristic information can help understand the meanings
of clusters. A cluster is found if it has a business meaning. Secondly, we visualize the
histograms of distances of objects to cluster centers. From these histograms, we can
visually evaluate the compactness of a cluster. For example, a cluster that has a small
mean and standard deviation is more compact than the clusters with large means and
standard deviations. In general, business meanings are most important in validating
clusters.

We solve the second problem by visualizing the distances between clusters. We
have developed a web view to visualize cluster relationships. An example is shown in
Fig. 5. The filled circles represent clusters, which overlap on the 2D display. The
thick lines linking clusters indicate two clusters are close. From this view, we can
identify that cluster MR1980 and MR2098 are distant from others so we can use the
above two methods to validate them independently. Other clusters can be merged into
a composite cluster and further partitioned with the clustering algorithm.

Syvle m Fl l a Displa y Edi i Adjusto r

4
^

iif :

^S>^

^IWlSfl O

KRlflfl B

J Link CrattlitniiMIJuttD r
Lln R phapla y 6i>4tlnf l pone l

TTT'i ' iTil if i ini—H i
Maxlu m WnlQ M VK\UII:

a «/ 1M 2m iiBS

MinimuiT i Weiah t Value :
^-^
0 S7 U t ?0 1 2E

Appt y

Fig. 5. A web view to visualize cluster relationships.

4 A Real Case Study

In this section, we use a real example to show how to use visual cluster validation
methods to cluster real world data.

160 Z. Huang and T. Lin

4.1 Business Problem and Data

In telecommunication service industry, customers often switch from one service
provider to another. This phenomenon is referred to as churn. Churn costs providers
dearly. Maintaining a low churn rate is a high priority in many companies.

Churned customers can be won back through winback marketing campaigns by
offering them new benefits for reconnecting the service, such as low prices, free
handsets, free minutes, etc. Because not every one prefers to the same offer, it is
important to divide customers into similar groups and associate a suitable offer to
each group in the campaign. Clustering provides an essential technique for customer
segmentation.

The data set contains 1900 records, each representing a customer churned from a
mobile service provider within two months. The customers are described in 37 fields,
including customer ID, phone number, customer details such as age and sex, billing
details such as payment methods and spending, service details as well as network
usage details. After cleaning up the data, five fields were removed. Some are
identification of customers and some contain only one value. In the remaining 32
fields, 28 fields are categorical and four fields are numeric. Fifteen fields contain
missing values.

4.2 Cluster Analysis

The yt-prototypes algorithm [Huan98] was used to cluster this data set because of the
categorical fields. Before clustering, we used Fastmap to project the whole data set
onto a 2D display from which we observed that two clusters could be produced in the
first clustering. Then, we applied the ^-prototypes algorithm to partition the whole
data set into two clusters.

To validate our first clustering result, we used Fastmap again to project the two
clusters onto the 2D display shown in Fig. 6. We can see that cluster 0 (triangles) is
separate from cluster 1 (boxes). Therefore, we can conclude that the two clusters are
also separate in the original high dimensional space. The clustering is justified.

However, what we have known at this stage is only that the two clusters are
separate clusters and we can separate them. We still need to validate if they are
atomic clusters or composite ones. The display shows that they are likely composite
clusters so we can further cluster them.

After separating the two clusters in the first step, we only consider objects in
cluster 0. From the display in Fig. 6, we see that objects in cluster 0 spread over the
place. This is an indication that this cluster contains other sub clusters. Again, we first
projected cluster 0 onto a 2D space to estimate the number of potential clusters, which
happened to be 4. Then, we applied the ^-prototypes algorithm to partition cluster 0
into four sub clusters. The projection of the four clusters on 2D is shown in Fig. 7.
These clusters are separate in the display so they are also separate in the original
space.

To validate these clusters, we further investigated their compactness and
relationships. We calculated the means and standard deviations of distances of objects
to the clusters centers (prototypes). The results are given in Table 1. These values
indicate that sub cluster 0 is most compact because of its small standard deviation.

A Visual Method of Cluster Validation with Fastmap 161

A-

a 3Q tO

Fig. 6. The first clustering of the
Winback data set.

Fig. 7. Projection of four clusters
created from cluster 0.

Sub cluster 1 is lest compact. Sub cluster 3 is more compact than sub cluster 2
although the later looks more compact than the former on the display.

To understand the relationships between these sub clusters, we calculated the
distances between the centers of the clusters. The results are shown in Table 2. We
can see that sub cluster 0 is closer to sub cluster 3 than to sub cluster 2 although the
projection seems to show the opposite. This implies the 2D visualization can mislead
the interpretation because two clusters close to each other on the 2D display do not
warrant that they are also close in the original space. The only principle we can use is
that if two clusters are separate in the projected low dimensional space, they are also
separate in the original high dimensional space. When two clusters are close on the
projected space, we need to validate them through visualization of their relationships
in the original space.

Table 1. Cluster compactness.

Cluiste Mean
r

Std.
Table 2. Distances between clusters.

0
1
2
3

5527. 0
8319. 3
6303. 3
3156. 2

1158. 8
5249. 9
2796. 4
1275. 1

0 1
13162 1 15140 798 6

6036 8 12884 9
18620

By visualizing the characteristic information of these clusters, we found that all these
four sub clusters were high spending clusters. However, the spending in sub clusters 0
and 3 was comparatively lower than the spending in sub clusters 1 and 2 in which sub
cluster 1 was the highest. Interestingly, we found that although the spending in sub
cluster 3 was low but its rate plan is higher than the rate plan of other clusters. Our
result has also shown that all customers in sub cluster 3 were acquired from a
particular sales channel. This may indicate that the sales channel didn't help
customers choose the right service if they were not cheating customers. If true, actions
need to be taken to correct their business practice.

162 Z. Huang and T. Lin

After we finished the analysis of cluster 0 in the first level of clustering, we started
to use the same methods to analyze cluster 1. Before clustering, we used Fastmap to
estimate the number of potential clusters. Then, we applied the ^-prototypes algorithm
to partition cluster 1 into five clusters. Using Fastmap and other validation methods,
we found that two of them form atomic clusters and the other three contain sub
clusters, which need to be further discovered. We continued this process until we
finally got 19 atomic clusters from the whole data set.

Fig. 8 shows the cluster tree discovered using the interactive approach. In this tree
diagram, each box represents a node, which is a cluster of customers. The number
inside each box is the number of customers in that cluster. The R# index uniquely
identifies each cluster in the process. The gray nodes represent composite clusters that
contain sub clusters. The white nodes indicate atomic clusters. The root of the tree RO
represents the entire data set.

After the tree was constructed, we can easily validate any single cluster or group of
the clusters selected from the tree. We can visualize the characteristic information of
the clusters to understand the meanings of the clusters and identify important and
interesting customer segments to be targeted in the winback campaigns.

We have found that the Fastmap 2D projection often gives good indications to
interesting clusters. For example, from the Fastmap projection, cluster R27 has a
special distribution (plus signs in Fig. 9). After analyzing their characteristic
information, it turned out that this cluster contains customers who are instant
churners. The characteristics of these people are that they joined the service, spent
littl e and then left after a few months. Due to the size of this cluster, special
campaigns were designed to target these customers.

5 Conclusions

In this paper, we have presented a visual method of cluster validation using Fastmap.
Instead of using it to produce low dimensional data for clustering, we use Fastmap to
validate clusters created by a clustering algorithm from the original high dimensional
space. The principle here is that if clusters are separate in the projected low
dimensional space, they are also separate in the original space but the opposite is not
true. This enables us to identify the separate clusters in the original high dimensional
space and focus on the overlapping clusters. Fastmap also enables us to determine the
number of potential clusters to produce before the clustering algorithm is run.
The interactive approach to building cluster trees and discover interesting clusters
with various visual cluster validation methods has proved effective in clustering large
data sets in real world databases. We have presented a real case study on how to use
this approach to cluster complex real data. In the case study, we have demonstrated
that Fastmap and other cluster validation methods can be used effectively to verify
clustering results and validate clusters produced by the ^-prototypes clustering
algorithm at different steps. Our results have shown that their use in the interactive
approach is necessary when dealing with complex data because useful clusters are
difficult to discover from a single run of clustering. We have developed a prototype
system to facilitate these analysis activities.

A Visual Method of Cluster Validation with Fastmap 163

Kl

1

R1

1

R̂
6

R4

1

^1
3

Rfi

6

R9

1

R7

3

IS.{

3

Rl '

1

?

RH
1

R14

1

RQ

1

R l l

^

)

Rn
4

Rl
2

Rl

5

5

J

Rl

1
1

R1C

5

R7,(

2

R2

3

R2:

2

R?̂

2

R9/

3

R?*?

8

R26

9

R97

4

i

3

I

>

Fig. 8. The cluster tree interactively created from the Winback data set. The number
inside each box is the number of customers in that cluster. R# index uniquely
identifies each cluster.

164 Z. Huang and T. Lin

Fig. 9. Projection of clusters R26 (0) and R27 (1).

References

[Agra98] Agrawal, R., Gehrke, J, Gunopulos, D. and Raghavan, P. (1998) Automatic subspace
clustering of high dimensional data for data mining appUcations. In Proceedings of
SIGMOD Conference.

[Este96] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996) A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the 2°^
International Conference on Knowledge Discovery in Databases and Data Mining, Portland,
Oregon, USA.

[Falo95] Faloutsos, C. and Lin, K., (1995) Fastmap: a fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In Proceedings of ACM-SIGMOD,
pp. 163-174.

[Fuku90] Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition. Academic Press.
[Gant99] Ganti, V., Ramakrishnan, R., Gehrke, J, Powell, A. L. and French, J. C. (1999)

Clustering large datasets in arbitrary metric spaces. ICDE 1999, pp. 502-511.
[Huan98] Huang, Z. (1998) Extensions to the k-means algorithm for clustering large data sets

with categorical values. Data Mining and Knowledge Discovery, Vol. 2, No. 3, pp. 283-304.
[Jain88] Jain, A. K. and Dubes, R. C. (1988) Algorithms for Clustering Data. Prentice Hall.
[NgHa94] Ng, R. and Han, J. (1994) Efficient and effective clustering methods for spatial data

mining. In Proceedings of VLDB, 1994.
[Theo99] Theodoridis, S. and Koutroumbas, K. (1999) Pattern Recognition. Academic Press.
[Youn87] Young, F. W. (1987) Multidimensional Scaling: History, Theory and Applications.

Lawrence Erlbaum Associates.
[Zhan97] Zhang, T. and Ramakrishnan, R. (1997) BIRCH: A new data clustering algorithm and

its applications. Data Mining and Knowledge Discovery, Vol. 1, No. 2, pp. 141-182.

COE: Clustering with Obstacles Entities
A Preliminary Study

Anthony K. H. Tung, Jean Hon, and Jiawei Han

School of Computing Science
Simon Eraser University

British Columbia
Canada V5A 1S6

{klituiig , jhou,haii}Scs. sf u. ca

Abstract. Clustering analysis has been a very active area of research in
the data mining community. However, most algorithms have ignored the
tact that physical obstacles exist in the real world and could thus aiffect
the result of clustering dramatically. In this paper, we will look at the
problem of clustering in the presence of obstacles. We called this problem
the COE (Clustering with Obstaicles Entities) problem and provide an
outhne of an algorithm called COE-CLARANS to solve it.

1 Introduction

The studies of clustering on large databases started with the introduction of
CLARANS [NH94] and since then, a tremendous amount of research had been
made by the database community on this field [HKOO].

Typically, a clustering task consists of separating a set of points into dif-
ferent groups according to some measure of goodness that differ according to
application. For example, in market research, managers who are planning the
location of their stores may wish to cluster their customers according to their
location and then locate a store to serve each cluster. In such a case, a common
measure of goodness will be the sum of square of the direct Euclidean distance
between the customers and the centre of the cluster they belong to. However, in
many real applications, the use of direct Euclidean distance has its weakness as
illustrated by the following example.

Example 1. A bank manager wishes to locate 4 ATMs in the area shown in
Figure l a to serve the customers who are represented by points in the figure. In
such a situation, however, natural obstacles exist in the area and they should
not be ignored. This is because ignoring these obstacles wil l result in clusters
like those in Figure l b which are obviously wrong. Cluster Ci, for example, is
in fact split by a river and some customers on one side of the river will have to
travel a long way to the allocated ATM on the other side of the river.

Example 1.1 illustrated a practical problem encountered by many users of
traditional clustering algorithms: the lack of mechanism to integrate physical

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 165-168, 2000.
© Springer-Verlag Berlin Heidelberg 2000

166 A.K.H. Tung, J. Hou, and J. Han

.

C4\

\ ' X CI \

vi:.\\' ^

;

 Xa . ,

(a) Customers' location and ob- (b) Clusters formed when ignor-
stacles. ing obstacles.

Fig. 1. Planning the location of ATMs

obstacles into clustering algorithms. In many application, the discovered clusters
can be much more useful if they are found while keeping the physical imitation
of the obstacles in mind.

Depending on the application on hand, different clustering algorithms will be
needed and they will be affected differently by the existence of obstacle entities.
In this paper, we will concentrate on adapting CLARANS to handle obstacles
and we called the adapted algorithm COE-CLARANS . The problem in Ex-
ample 1.1 is formally described as follows:

We are given a set P of n points {pi,P2y-,Pn} and a set O of m non-
intersecting obstacles {oi,...,Om} in a two dimensional region, R with each
obstacle Oi represented by a simple polygon. The distance, d{p, q) between any
two points, p and q, is defined as the length of the shortest Euclidean path from
p to g without cutting through any obstacles. To distinguish this distance from
the direct Euclidean distance, we will refer to this distance as obstructed distance
in this paper. Our objective is to partition P into k clusters C\,...,Ck such that
the following square-error function, E, is minimized.

^ = EtiEpec.^'(P>"^i)

where mt is the centre of cluster Cj that is determined also by the clustering.

Due to lack of space, we will only outline the steps taken in COE-CLARANS
to handle obstacles in the next section follow by the conclusion in Section 3.

2 The COE-CLARANS Algori thm

In order to adapt an existing clustering algorithm like CLARANS to handle
obstacles, two different approaches can be adopted. The first is a loosely-coupled

COE: Clustering with Obstacles Entities. A Preliminary Study 167

approach in which the obstacles are handled solely by the distance function
and the clustering algorithm uses the distance function as a black box without
catering for obstacles. The second approach is a tightly-coupled approach in
which both the clustering algorithm and the distance function take obstacles
into account. COE-CLARANS uses the second approach as it give more room
for optimizing performance. COE-CLARANS use two techniques to perform
efficient clustering. We will introduce them in this section.

2.1 Pre-clustering

To make COE-CLARANS efficient, a pre-clustering step similar to those in
BIRCH [ZRL96], ScaleKM [BFR98] and CHAMELEON [KHK99] are taken to
group the objects into a set of clustering features [ZRL96]. We call these cluster-
ing features, micro-clusters. There are two advantages in adding a pre-clustering
step. First, the compressed micro-clusters take up much less memory space and
clustering can thus be performed in main memory. Second, as computing the
distance between objects and the cluster centers is an expensive operation, pre-
clustering will help reduce the number of such operation.

In order to avoid having micro-clusters that are split by an obstacle, we
first triangulate the region R into triangles and group the data, points according
to the triangle that they are in. Micro-clusters are then formed in each group
separately. As points within a triangle are all mutually visible to each other, this
ensures that micro-cluster formed are not split by an obstacle.

With the use of micro-clusters for clustering, we have to take note that the
cluster centers are now micro-clusters and we are approximating the location of
the actual medoids to be within these cluster centers.

2.2 Using the Lower Bound of E for Prunin g

The CLARANS algorithm is a generate-and-test algorithm which randomly pick
a cluster center Oj and try to replace it with a new center Orandom- To judge
whether Orandom is a better center than Oj, the square error function E is com-
puted with Orandom as the cluster center and if it is found to be lower than the
one computed with Oj as the center, replacement will take place. However, the
computation of E is very expensive with the existence of obstacles. To avoid the
unnecessary computation of E, an more easily computed lower bound of E,
E' is first computed. If E' is already higher than the best solution so far, then
Orandom Can be abandoned without the need for E to be computed.

To compute E' with Orandom as a cluster center, we first underestimate the
distance between Orandom and the micro-clusters by using direct Euclidean dis-
tance. Thus, if the direct Euclidean distance between a micro-cluster p and
Orandom IS shorter than the obstructed distance between p and the other fc — 1
unchanged cluster centers, then p is assigned to Orandom and the direct Euclidean
distance between them will be used when computing the estimated square-error

168 A.K.H. Tung, J. Hou, and J. Han

function £". This makes E' a lower bound for the actual square-error function
E. Since E' is a lower bound of E, we can choose to abandon Orandom without
computing E if E' is already higher than the square-error function of the best
solution so far.

3 Conclusion

In this paper, we introduce the problem of COE which we believe is a very real
and practical problem. We selected a clustering problem and outline an algorithm
COE-CLARANS for solving it. COE-CLARANS makes use of two main ideas
to enhance its efficiency. First, it uses the idea of pre-clustering to compress the
dataset into micro-clusters which could be clustered in the main memory and
thus avoids I/O overhead. Second, it avoids unnecessary computation by first
estimating a lower bound E' for the square-error function E and then computes
E only if E' proves to be lower than the best solution that has been found. We
believe that there is still a lot of room for research in the problem of COE and
hope that our work could motivate more people to look into this area.

References

[BFR98] R Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proc. 4th Int. Conf. Knowledge Discovery and Data Mining
(KDD'98), pages 9-15, New York, NY, August 1998.

[HKOO] J. Han and M. Kamber. Data Mining: Concepts and Techniques, (to be
published by) Morgan Kaufmann, 2000.

[KHK99] G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical clus-
tering algorithm using dynamic modeling. COMPUTER, 32:68-75, 1999.

[NH94] R. Ng and J. Han. Efficient and effective clustering method for spatisil data
mining. In Proc. 1994 "̂̂ - Conf. Very Large Data Bases, pages 144-155,
Santiago, Chile, September 1994.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clus-
tering method for very large databases. In Proc. 1996 ACM-SIGMOD Int.
Conf. Management of Data, pages 103-114, Montreal, Canada, June 1996.

Combining Sampling Technique with DBSCAN
Algorithm for Clustering Large Spatial Databases'

Shuigeng Zhou, Aoying Zhou, Jing Cao, Jin Wen, Ye Fan, and Yunfa Hu

Computer Science Department, Fudan University, Shanghai, 200433, China
970218@fudan.edu.cn

Abstract. In this paper, we combine sampUng technique with DBSCAN
algorithm to cluster large spatial databases, two sampling-based DBSCAN
(SDBSCAN) algorithms are developed. One algorithm introduces sampling
technique inside DBSCAN; and the other uses sampling procedure outside
DBSCAN. Experimental results demonstrate that our algorithms are effective
and efficient in clustering large-scale spatial databases.

1 Introduction

DBSCAN [1] is a high-performance clustering algorithm that can discover clusters of
arbitrary shape and handle the noise points effectively. However, for large-scale
spatial databases, DBSCAN requires large volume of memory support and could
incur substantial I/O costs because it operates directly on the entire database. The aim
of this paper is to extend the DBSCAN algorithm to cluster large-scale spatial
databases by data sampling technique. Two novel sampling-based clustering
algorithms are proposed and implemented by combining the sampling technique with
DBSCAN. One algorithm introduces sampling technique inside DBSCAN and the
other applies sampling procedure outside DBSCAN. Owing to data sampling, the I/O
cost and memory requirement for clustering are reduced dramatically, and the run-
time of clustering is thus cut down considerably. Experimental results demonstrate
that our approach is effective and efficient in clustering large-scale spatial databases.

2 Sampling-Based DBSCAN Algorithms

While handling large-scale databases or data warehouses, one common used
technique in clustering analyses is data sampling, which selects a relatively small
number of representatives from databases or data warehouses and applies the
clustering algorithms only to these representatives. However, to the best of our
knowledge, no research on combining sampling technique with DBSCAN has been
reported. We develop two sampling-based DBSCAN (SDBSCAN) algorithms. One

This work was supported by the NSF of China (Grant no. 69743001).

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 169-172, 2000.
© Springer-Verlag Berlin Heidelberg 2000

170 Sh. Zhou et al.

SDBSCAN algorithm adopts sampling technique inside DBSCAN, i.e. inside
sampling approach, and the other SDBSCAN algorithm uses sampling procedure
outside DBSCAN, i.e. outside sampling approach. Comparing with other clustering
algorithms using sampling technique, our approaches have two outstanding features:
- Sampling technique and clustering algorithm are bounded together.
- Clustering not only over the sampled data set, but also over the whole data set.

For more details about SDBSCAN algorithms, the readers can refer to [2].

2.1 The Idea of Sampling Inside DBSCAN Algorithm : SDBSCAN-1

DBSCAN selects a global k-dist value for clustering. For the thinnest clusters, the
number of objects contained in their core objects' neighborhoods with radius Eps
equal to k-dist is k. However, for the other clusters, the number of objects contained
in most of their core objects' neighborhoods of the same radius is more than k.
DBSCAN carries out region query operation for every object contained in the core
object's neighborhood. For a given core object p in cluster C, it's conceivable that the
neighborhoods of the objects contained in p wil l intersect with each other. Suppose q
is an object in p's neighborhood, if its neighborhood is covered by the neighborhoods
of other objects in p, then the region query operation for q can be omitted because all
objects in q's neighborhood can be fetched by the region queries of the other objects
in p, which means that q is not necessary to be selected as a seed for cluster
expansion. Therefore, both time-consuming on region query operation for q and
memory requirement for storing g as a core object can be cut down. In fact, for the
dense clusters, quite a lot of objects in a core object's neighborhood can be ignored
being chosen as seeds. So for the sake of reducing memory usage and I/O costs to
speed up the DBSCAN algorithm, we should sample some representatives rather than
take all of the objects in a core object's neighborhood as new seeds. We call these
sampled seeds representative object of the neighborhood where these objects are held.
Intuitively, the outer objects in the neighborhood of a core object are favorable
candidates of representative object because the neighborhoods of inner objects tend to
being covered by the neighborhoods of outer objects. Hence, sampling the
representative seeds is in fact a problem of selecting representative objects that can
accurately outline the neighborhood shape of a core object.

2.2 The Idea of Outside Sampling DBSCAN Algorithm : SDBSCAN-2

Outside sampling is in fact a traditional technique. However, in our SDBSCAN-2
algorithm, a novel and efficient labeling mechanism is adopted to implementing the
labeling process of the un-sampled data based on R*-tree. The scheme of SDBSCAN-
2 is like this:
- Sample database DB to produce sampled dataset sdb,
- Create R*-trees for DB and sampled data set sdb,
- Cluster sampled data set sdb with DBSCAN,
- FOR each core point p in sampled data set sdb DO:

 resultP:=DB.regionquery (p, Eps),
 DS.changeClIds (resultP,p.ClId).

Combining Sampling Technique with DBSCAN Algorithm 171

Step 1 is the sampling procedure. A sampling algorithm for drawing a sample
randomly from data in fil e in one pass and using constant space is used. In order to
guarantee the clustering quality, an analytical limitation on minimum sampled data
amount is applied. Step 2 is responsible for building R*-trees for DB and the sampled
data set sdb. Step3 and 4 are the key steps that are used for clustering and labeling
respectively. We cluster the sampled data set sdb with DBSCAN algorithm. Once a
core point is found in sdb, all points in its neighborhood of the same radius in DB,
UNCLASSIFffiD or CLASSIFIED as NOISE, sampled or un-sampled, are labeled as
members of the current cluster. Therefore, the clustering process (over the sampled
data set sdb) and the labeling process (over un-sampled points in DB) are in fact
carried out concurrently. When clustering is over, labeling is also finished. A further
improvement on SDBSCAN-2 algorithm is as follows. While building R*-tree, we
don't create a separate R*-tree for the sampled data set sdb. Instead, we build only
one R*-tree for DB. In other words, we merge the R*-trees of DB and sdb in the
former version of SDBSCAN-2 into one single R*-tree, in which we mark out which
point is sampled and which is not. Therefore, the operations of clustering and labeling
are carried out over the same R*-tree. And for each core point in sdb only one time of
region query operation is executed, unlike in the former version of SDBSCAN-2
where two times is needed: the first time for clustering over the R*-tree of sdb, and
the second time for labeling over the R*-tree of DB. Obviously, this improvement can
cut down almost half of the region queries.

3 Performance Evaluation

We evaluate SDBSCAN algorithms with both synthetic sample databases and the
database of the SEQUOIA 2000 benchmark. Generally, SBSCAN algorithms can be
faster than DBSCAN by several times. Figure 1 illustrates scale-up experiment with
DBSCAN, SDBSCAN-1 and SDBSCAN-2, which shows that SDBSCAN algorithms
have better scalability over data set size than DBSCAN. Here, sampling ratio is 20%.

80

I °̂
I 40
i 20

-oescAN
- SDBSCAN- 1

SDBSCAN- 2

5, 000 10, 000 20, 000 50, 000 100, 000
size of da tase t

Fig. 1. Performance comparison: DBSCAN, SDBSCAN-1 and SDBSCAN-2

172 Sh. Zhouetal.

References

1. M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of 2nd
International Conference on Knowledge Discovering in Databases and Data
Mining (KDD-96), Portland, Oregon, August 1996.

2. S. Zhou, et al. Combining sampling technique with DBSCAN algorithm for
clustering large spatial databases. Technical Report of Computer Science
Department, Fudan University, 1999.

Predictive Adaptive Resonance Theory
and Knowledge Discovery in Databases

Ah-Hwee Tan̂ and Hui-Shin Vivien Soon̂

^ Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613
ahhweeQkrdl . org . s g

^ Ngee Ann Polytechnic, 535 Clementi RoEid, Singapore 599489
shsQnp.edu.sg

Abstract. This paper investigates the scalability of predictive Adap-
tive Resonance Theory (ART) networks for knowledge discovery in very
large databases. Although predictive ART performs fast and incremen-
tal learning, the number of recognition categories or rules that it creates
during learning may become substantially large and cause the learning
speed to slow down. To tackle this problem, we introduce an on-line algo-
rithm for evaluating and pruning categories during learning. Benchmark
experiments on a large scale data set show that on-line pruning has been
effective in reducing the number of the recognition categories and the
time for convergence. Interestingly, the pruned networks also produce
better predictive performance.

1 Introduction

One of the major challenges faced by the predictive modeling techniques is the
efficiency and the scalability to very large databases. Gradient descent based
neural network models require many learning iterations through the training
data and are highly computational intensive. This paper presents an alterna-
tive approach to knowledge discovery using a predictive self-organizing neural
network model, known as the Adaptive Resonance Associative Map (ARAM)
[5].

Predictive self-organizing networks [1] perform fast incremental supervised
learning of recognition categories (pattern classes) and multi-dimensional map-
pings of binary and analog patterns. When performing classification tasks,
ARAM formulates recognition categories of the input and output pattern pairs.
Unfortunately, for very large databases, the number of the recognition categories
may become substantially large, causing the learning time to increase signif-
icantly. To tackle this problem, we introduce an on-line algorithm to estimate
the merit or confidence values of the recognition categories of an ARAM network
during learning. Each newly created category node is given a confidence value of
1. A forgetting process constantly reduces confidence values towards 0 at a spe-
cific interval. In conjunction, a reinforcement process increases confidence values
towards Is when correct predictions are produced by their respective recognition
categories. The confidence values of the category nodes are then compared with

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 173-176, 2000.
(c) Springer-Verlag Berlin Heidelberg 2000

174 A.-H. Tan and H.-Sh.V. Soon

a threshold parameter. Categories with confidence values below the threshold
are removed from the network.

category field"

Fig. 1. The Adaptive Resonance Associative Map architecture.

2 Fuzzy A R A M

An ARAM network (Figure 1) consists of two input feature fields, Ff and F^,
connected by bi-directional and conditionable pathways to a category field F2.
For classification problems, Ff serves as the input field representing input activ-
ity vectors and Ff serves as the output field representing output class vectors.

Given a pair of input and output patterns, ARAM computes a choice func-
tion for each F2 recognition category. The winning node that has the maximal
choice function value then triggers a top-down priming on Ff and Ff to check
if its associated input and output weight vectors satisfy the vigilance criteria
in their respective modules. If so, under fast learning, the weight templates of
the F2 recognition category are modified towards their intersection with the in-
put and output vector pair. Otherwise, the recognition category is reset and
the system repeats to select another category node until a match is found. By
synchronizing the unsupervised clustering of the input and output pattern sets,
ARAM learns supervised mapping between the input and output patterns. As
code stabilization is ensured by restricting learning to states where resonances
are reached, fast learning in a real-time environment is feasible. Please refer to
[5] for the detailed algorithm.

3 A R A M Complexity and Category Prun ing

Let P be the number of the input and output training pattern pairs, Q be the
number of the recognition categories created by an ARAM network, M be the

Predictive Adaptive Resonance Theory 175

number of the input attributes, and N be the number of the output classes.
The time complexity per learning iteration of the ARAM algorithm is given by
0{PQ{M + N)). Since M and N are typically fixed for a specific knowledge
discovery task, the complexity thus depends on P and Q. When Q is small, say
around log(P), the time complexity is O(PlogP). However, if Q is large, the
complexity grows to P ̂ in the worst case.

To improve learning efficiency, we propose a method for evaluating and elim-
inating categories that are created by spurious cases during learning. Each cat-
egory node j is associated with a confidence factor Cj, a real number between 0
and 1. For a newly committed node j , Cj equals 1. At a fixed interval, a forget-
ting process constantly causes Cj to decay towards 0. A reinforcement process
increases Cj towards 1 whenever a correct prediction is made by the category
node j during learning.
Confidence erosion: At a chosen interval, the confidence value of each recog-
nition category depreciates towards 0 according to

^(new)_^(o ld)_^^(o ld) ^ (1)

where (€ [0,1] is the confidence decay parameter. The erosion process is self-
scaling in the sense that the decay becomes smaller as cj gets smaller.
Confidence reinforcement: When a category node J, chosen by the code com-
petition process, makes a correct prediction, its confidence value cj is increased
towards 1 by

^ (new)^^ (o ld) ^^ (l _^^o Id) ^ ^ (2)

where T] £ [0,1] is the confidence reinforcement parameter.
Category pruning : The computed confidence values axe then compared with a
threshold parameter r € [0,1]. A category is removed from the ARAM network
when its confidence value falls below r.
Convergence criterion : After each training iteration, the pruned network is
evaluated against the training set for its predictive performance. Training is
stopped when the improvement on the training set performance (in terms of
percents, compared with that obtained in the previous iteration) falls below a
convergence threshold ^.

4 Experiments

The adult data set [4] is one of the largest public domain data set. It contains
48,842 records, each characterized by six continuous attributes and eight nominal
features. The task is to predict whether a person with a particular set of personal
attributes draws a salary greater or less than US$50,000. The adult data set was
noted as a hard domain with a good number of records and a mix of continuous
and discrete features.

Fuzzy ARAM experiments used a standard set of parameter values: choice
parameters aa = at = 0.1, learning rates /3a = Pb — 1-0, and contribution
parameter 7 = 1.0. For on-line pruning, we used (' = 0.005 for confidence decay,

176 A.-H. Tan and H.-Sh.V. Soon

T] = 0.5 for confidence reinforcement, r = 0.05 for pruning threshold, and ^ = 0.5
for stopping criterion. For prediction, ARA M used K-max rule [5] with K = 3.

Table 1. Simulation results of fuzzy ARAM on the adult data set compared with those
of KNN, C4.5, and NBTVee. A '-' indicates that a value is not available for comparison.
The results of ARAM were averaged over 10 simulations.

Methods
1-Nearest-Neighbor
3- Nearest-Neighbor
C4.5
NBTree
Fuzzy ARAM
+ On-hne pruning

Epochs
1
1
-
-

11.5
7.5

Nodes/
Rules
30162
30162
2213

137
3826
343

Time Test
(Sees) Accuracy

78.6
79.7
84.6
85.9

8226 81.0
1125 84.1

As shown in Table 1, fuzzy ARAM created a total of 3,826 category nodes
from the 30,152 training pat terns, with a compression ratio of around 8. Each
learning process took an average of 11.5 iterations to converge. One complete
benchmark experiment, including training and testing, took 8373 seconds (more
than two hours) using an Ultra-60 SUN SPARC machine. Wi t h on-line category
pruning, fuzzy ARAM produced an average of 343 categories. The networks also
converged faster in an average of 7.5 iterations. One complete benchmark involv-
ing 30,152 training cases and 15,060 test cases took about 1,125 seconds (less
than 20 minutes). Comparing predictive performance, fuzzy ARA M obtained
an accuracy of 81.0% on the test cases, about the same as those of K-Nearest-
Neighbor. With on-line category pruning, the test set accuracy improved to
84.1%, roughly comparable to those obtained by C4.5 and NBTree [3].

References

1. Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., Rosen, D. B.: Fuzzy
ARTMAP; A neural network architecture for incremental supervised learning of
analog multidimensional maps. IEEE Transactions on Neural Networks, 3 (1992)
698-713

2. Carpenter, G. A., Tan, A.-H.: Rule extrax^tion: From neural architecture to symbolic
representation. Connection Science, 7 (1995) 3-27

3. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid.
Proceedings, KDD-96 (1996)

4. Murphy, P. M., Aha, D. W.: UCI repository of maehine learning databases [machine-
readable data repository]. Irvine, CA: University of California, Department of In-
formation and Computer Science (1992)

5. Tan, A.-H.; Adaptive Resonance Associative Map. Neural Networks 8 (1995) 437-
446

Improving Generalization Abilit y
of Self-Generating Neural Networks

Through Ensemble Averaging

Hirotaka Inoue and Hiroyuki Narihisa

Department of Information &: Computer Engineering
Okayama University of Science,

1-1 Ridai-cho, Okayama, 700-0005, Japan
{inoue,narihisa}®ice.ous.ac.j p

Abstract. We present an ensemble averaging effect for improving the
generalization capability of self-generating neural networks applied to
classification problems. The results of our computational experiments
show that ensemble averaging effect is 1-7% improvements in accuracy
comparing with single SGNN for three benchmark problems.
Keywords: self-generating neural networks, self-generating neural tree,
ensemble averaging, classification, competitive learning

1 Introduction

Self-generating neural networks (SGNNs) are focussed an at tent ion because of
their simplicity on networks design [1]. SGNNs are some kinds of extension of the
self-organizing maps (SOMs) of Kohonen [2] and utilize the competit ive learning
algorithm which is implemented as self-generating neural tree (SGNT).

The SGNT algorithm is proposed in [3] to generate a neural tree automat-
ically from training data directly. In our previous study concerning the perfor-
mance analysis of the SGNT algorithm [4], we showed that the main characteris-
tic of this SGNT algorithm was its high speed convergence in computat ion t ime
but it was always not best algorithm in its accuracy comparing with the existing
other feed-forward neural networks such as the backpropagation (BP) [5].

In this paper, we present the effect on ensemble averaging for improving
the accuracy of self-generating neural networks (SGNNs) on classification prob-
lems. In order to investigate the effect of the ensemble averaging, we compare
this model with the single SGNN model. In our study, we apply to s tandard
classification problems MONK's [6], Cancer [7], Card [7], which are given as
benchmarks.

2 Ensemble Averaging of SGNNs

SGNNs are directly learned not only the weights of the network connections but
also the structure of the whole network from the given input data. In order to

T, Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 177-180, 2000.
(c) Springer-Verlag Berlin Heidelberg 2000

178 H. Inoue and H. Narihisa

decide a winner neuron n^in for training p dimensional data e,, the competitive
learning is used. If a neuron rij in the current SGNT includes the riwin as its
descendant, weights Wjk of the Uj are updated as follows:

Wjk ̂ Wjk H — j - (ejfc - Wjk). (1)

here, k is from 1 to p, and Cj is the number of the leaf neurons in rij.
After all input data are inserted into the SGNT as its leaf neurons, the

weights of each node neuron Uj are the averages of the corresponding weights of
all its children. Whole SGNT reflect the given feature space by its topology.

Though SGNNs have an ability of fast learning and an applicability of large
scale problems, the accuracy of the classification is not so good as feed-forward
networks which are implemented as a supervised learning method hke the BP. In
order to acquire more higher performance from given training data, we consider
an ensemble averaging of K SGNTs.

The structure of the SGNT changes dynamically in training. The SGNT
algorithm decide the structure of the SGNT after all training data are added in
the SGNT. The different structure of the SGNT is generated by changing the
input order of the training data.

In training process, we define "shuffler" to shuffle the set of input data E.
The set of all input training data E enters each SGNN through each shuffler.
The shuffler makes shuffle elements of E at random. All SGNTs are generated
by adopting the SGNT algorithm. After training process, various SGNTs are
generated independently.

In testing process, the set of test data T entered this ensemble model. Each
output vector ô e 3?'̂ denotes the output of the expert A; for the set of test
data T. The output of this ensemble model is computed by averaging the each
expert output as follows:

K

^ ^ « ^ - (2)

Additionally, each expert can train and test independently. This model has a
possibility of a parallel computation at the training process and the testing one.

3 Experimental Results

In order to analyze the generalization capability of SGNNs through ensemble av-
eraging, we select three typical classification problems which are given as bench-
mark problems in this classification field. Table 1 shows the dataset summary.
Al l problems are binary classification problems. We evaluate the classification
accuracy by comparison with ensemble SGNNs and the single SGNN. The clas-
sification accuracy of each network is the percentage of correctly recognized
examples in the set of all examples.

On the SGNT algorithm, the number of SGNTs K for ensemble averag-
ing is changed from 1 to 100 (1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50,75, and

1 ^

Improving Generalization Abilit y of Self-Generating Neural Networks 179

Table 1. Dataset Summary. #Data - data size (training data size, test data size),
Type - attribute type, and #A - number of attributes.

Name

Monk's
M l
M2
M3

Cancer
Card

#Data

432 (124,432)
432 (169,432)
432 (122,432)'
699 (350,174)
690 (345,172)*

#A

6
6
6
9
51

Type

discrete
discrete
discrete
continuous
mixed

100). Our experimental results are computed by IBM PC/AT (CPU: Pentium
II 450MHz, Memory: 192MB). We compute 50 trials for each single/ensemble
method.

Fig. 1 (a), (b), and (c) shows the relation between the number of SGNTs and
the classification accuracy of the ensemble SGNNs for MONK's, Cancer, and
Card respectively. Here, each classification accuracy is the average of 50 trials.
In Fig. 1, it is shown that the classification accuracy are improved by computing
the ensemble averaging of various SGNTs for all problems. The improvement
ability is obtained from 2 to 10 SGTNs most effectively. The classification accu-
racy of larger than 20 SGNTs ensemble model is convergence for all problems.
The improvement ability is obtained from 2 to 10 SGTNs most effectively. The
classification accuracy of Larger than 20 SGNTs ensemble model is convergence
for all problems. Prom these results, it seems to be decided the number of SGNTs
K is about from 10 to 20 concerning the improvement rate and computation
time.

Table 2 shows comparisons of the classification accuracy and the computa-
tion time of the single SGNN and best classification accuracy of the ensemble
model. All results are showed the average of each trial. In Table 2, the ensemble
model of SGNNs is better classification accuracy than the single SGNN at all
problems in ave. Concerning Mi , M2, and M3, improving of the classification
accuracy are about 7.2%, 2.4%, 4.7% respectively. Concerning Cancer, although
all classification results show good results about 95% for the single SGNN, en-
semble models improve the classification accuracy 0.9-2.2%. Concerning Card
problem, the improvement of the classification accuracy are about 1.2-2.5%.

10 20 30 40 50 60 70 BO 90 10c
The number of SONTs

10 20 30 40 50 60 70 80 so i a
The numbef of SGNTs

^̂ .*.-*- * *-**..

CardZ — s —
Card3 -

10 20 30 40 50 60 70 80 90 IOC
The number of SGNTs

Fig. 1. Relation between the number of SGNTs and the classification accuracy of the
ensemble SGNNs

180 H. Inoue and H. Naxihisa

Table 2. Comparisons of the classification accuracy and the computation time (in sec.)
of the single SGNT and the best classification accuracy of the ensemble model

single
time(sec.)
ensemble
time(sec.)

M\ Mi M3

80.6% 71.2% 83.8%
0.06 0.08 0.06

87.8% 73.6% 88.5%
3.13 2.73 1.95

Cancer 1

95.8%
0.12

98.0%
4.25

Cancer2

94.9%
0.12

95.8%
12.56

CancerS

94.5%
0.12

95.7%
8.92

Cardl Card2 Card3

75.7% 76.3% 71.2%
0.46 0.44 0.44

77.0% 78.8% 72.4%
2.78 33.10 15.58

4 Conclusions

I n this paper, we presented the effect on ensemble averaging of SGNNs to improve
the classification accuracy. Experimental results show that ensemble averaging
of SGNNs improve 1-7% increase of classification accuracy comparing with the
single SGNN by sacrificing its fast computat ion t ime. Concerning the ensemble
averaging of SGNNs, 10-20 ensembles may be appropriate judging from our
experiments. Though this ensemble averaging model sacrifices its computing
t ime, this problem can be solved by considering parallel processing. Flom above
mentioned facts, the SGNT approach is one of the powerful neurar network
algorithm and has a generalization capability competable with most widely used
B P algorithm in feed-forward neural networks.

References

5.

Wen, W. X., Pang, V. and Jennings, A.: Self-Generating vs. Self-Organizing,
What's Different? In: Simpson, P. K. (eds.): Neural Networks Theory, Technol-
ogy, and Applications. IEEE, New York (1996) 210-214
Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin (1995)
Wen, W. X., Jennings, A. and Liu, H.: Leeirning a Neural Tree. In: International
Joint Conf. on Neural Networks. Beijing (1992) 751-756
Inoue, H. and Narihisa, H.: Performance of Self-Generating Neural Network Ap-
plied to Pattern Recognition. In: 5th International Conf. on Information Systems
Analysis and Synthesis, Vol. 5. Orlando, FL (1999) 608-614
Rumelhart, D., Hinton, G. E. and Williams, R. J.: Learning Internal Represen-
tations by Error Propagation. In: Rumelhart, D., McClelland, J. and the PDP
Reserch Group (eds.): Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. MIT Press, Cambridge, MA (1986) 318-362
Thrun, S. B. et alt: The MONK's Problems - A Performance Comparison of Dif-
ferent Learning Algorithms. Technical report CMU-CS-91-197. Carnegie Mellon
University (1991)
Prehelt, L.: PROBENl - A Set of Neural Network Benchmark Problems and
Benchmarking Rules. Technical report 21/94. Universitat Karlsruhe (1994)

Attr ibute Transformations
on Numerical Databases

Applications to Stock Market and Economic Data

Tsau Young Lin^'^and Joseph Trembâ

' Department of Mathematics and Computer Science
San Jose State University,
San Jose, Cahfornia 95192

tylinOcs.s j su.ed u

^ Berkeley Initiative in Soft Computing
Department of Electrical Engineering and Computer Science

University of California,
Berkeley, California 94720

ty1inffl c s.berkely.ed u

Abstract. The effects of attribute transformations on numerical data
mining are investigated. Theoretical examples from classical mathemat-
ics are used to illustrate its critical-ness. The simplest kind of attribu-
tion transformations, linear transformations, is applied to stock market
and economic data. Some useful "predictive" rules are generated. Here
"predictive" is used in the sense that the logical patterns involve time
elements.

Keywords: database, stock market data, rough set, extensional databases,
predictive

1 Introduction

Intuitively, it is clear that selecting suitable attributes is often the key to the
success of data mining. In AI, one often uses knowledge representations to de-
scribe an unknown universe by known features. So the selected features are often
suitable for knowledge discovery. However in database, the attributes are often
selected for totally different purposes; they are selected primary for record keep-
ing. So the existing attributes might not be suitable for data mining; attribute
transformations are often needed.

This is our first paper to investigate attribute transformations systematically.
First we look at linear transformations of attributes. The study is reasonably suc-
cessful. Linear transformations are well understood mathematics and intuitively
reachable areas. The results are applied to stock and economic data. Even in
such simple applications, experiments are needed: Should we take sums, aver-
ages or weighted averages, and for three days, four days, . . ., n-days, and etc.?
Some understanding of the data seems necessary.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 181-192, 2000.
© Springer-Verlag Berlin Heidelberg 2000

182 T.Y. Lin and J. Tremba

Next, we turn to the non-linear transformations. This is a much tougher and
deeper area. Many data mining of daily life problems probably would not need
such sophisticated transformations, however, the area of scientific discoveries
may need such transformations, simply because some interesting scientific data
(attribute) are often not directly observable and measurable. To search for guid-
ance, some classical mathematics is examined. We find examples that indicate
clearly attribute transformations are a "must," at the same time there are no
clear hints on how such transformations can be constructed; see Section 3.

Finally, we observe that attribute transformations can always be approxi-
mated by polynomials. So in the case no meaningful transformations can be
recommended by domain experts, the polynomials of attribute transformations
may be searched brutally by one degree at a time. Attribute transformations, we
believe, will become, if have not been, one of the most important areas of data
mining research.

The data mining methodology we used in this paper is based on rough set
theory [5]. Rough set theory has two formats, abstract and table formats [3]. In
the table format, it is a theory of extensional relational databases ([1] pp. 90).
However, rough set theory and the traditional theory of extensional relational
database are fundamentally different. The latter focuses on storing and retrieving
data, while the former on summarizing the patterns or rules [2] - a subset of
modern data mining theory.

2 Information Tables - Rough Set Theory

Here we present the table format of rough set theory. Roughly, both relational
and rough set theories are studies of attribute-value-pair representations of the
universe. A relation in the database is the image of such a knowledge represen-
tation, while information table is the graph of such a representation.

An information table (also known as information system, knowledge representa-
tion system) consists of

1. U = {u, u , . . .} is a set of entities.
2. A is a set of attributes {A^, A^,... A"}.
3. dom{A^) is the set of the values of the attribute A*

Dom = dom{A^) x dom{A'^)... x dom{A"')

4. p : U X A —> Dom, called description function, is a map such that

p{u,A^) is in dom{A^) for ailu €U and A ̂G A.

The description function p induces a set of maps

t = p{u, —) : A —> Dom.

Attribute Transformations on Numerical Databases 183

Each image forms a tuple:

t = {p{u, A^), p{u, A^),...., p{u, A^), ..p{u, ^ "))

Note that each tuple t is associated with an object u, but not necessarily uniquely.
In an information table, two distinct objects could have the same tuple repre-
sentation that is not permissible in relational databases.

A decision table is an information table {V,A, Dom, p) in which the attribute
set A = C U £ is a union of two non-empty sets, C = {0^,0"^,... C^} and
D = {D^,D'^,.. .D''}, of attributes. The elements in C are called conditional
attributes, D are decision attributes. Each tuple can be regarded as a decision
rule. Rough set theory, then, provides a method to reduce a given decision table
to a minimal table, called redut, which consists of a minimal collection of the
simplest decision rules; one should note that a given decision table may have
several reducts [5].

Strictly speaking, rough set theory is more of data reduction than data min-
ing. The reduct is logically equivalence to the original decision table in the sense
that both the given decision table and its reduct will make the same decision.
It may be somewhat a surprise to rough set community, L. Zadeh reached a
similar conclusion in 1976 ([8] pp278); he called it compactification of a tabular
representation.

3 Attribute Transformations

In this section, we begin our study of attribute transformations systematically.
We examine, transpose, linear, quadratic, and other nonlinear transformations.
The study conclude that attribute transformations are often necessary. How-
ever, there are no indications on how such transformations could be found. In
practice, such transformations most likely will be provided by domain experts.
Finally, we observe from elementary algebra that each attribute transformation
is a polynomial function; So a brutal force search of a proper transformation
(by one degree at a time) is costly possible. We believe the understanding of the
attribute transformations will soon, if have not been, be one of the major areas
of data mining research.

3.1 Tim e Series-Transpose/Delay Operations

This is an intuitively meaningful operation; we create a table of time series. The
original table, which consists of first three columns, Al , Bl and CI, is reproduced
six additional times. Each time it is reproduced, the columns or objects are
shifted up by one row. The 1st group of columns is the records starting from
"first day" record (the original table), 2nd group "second day" (one unit time
delay) and etc. The attribute name is appended with a number indicating the
number of delays. In Table 1, we are showing six delays. The new table is seven
times wider than the original table.

184 T.Y. Lin and J. Tremba

Table 1. shows how data is delayed with eax:h of the six reproductions of the original
table.

X

1
2
3
4
5
6
7
8

^ 1

1
2
3
4
5
6
7
8

J3i
1
2
3
4
5
6
7
8

Ci

1
2
3
4
5
6
7
8

^ 2

2
3
4
5
6
7
8

B2
2
3
4
5
6
7
8

C2

2
3
4
5
6
7
8

^ 7

7
8

Br

7
8

^ 7

7
8

3.2 Linear Transformation s

In this section, we investigate a class of transformations that are mathematically
well understood. Some linear transformations, such as sums, averages, rotations,
translations and etc. are intuitively meaningful. Let B = {Bi,B2,- -Bm} be
a subset of the attributes A = {Ai,A2,...An}- Let r = {ri,r2,- -rm} be a
set of real numbers. We form a new derived attribute A* by taking a linear
combination of attributes in B, namely,

A* = r jB i + r2S2,.. + r „ B „

In Table 2, we give an interesting special case, averaging, that is, we set ri =
... = rm = 1/5:

A* = {Al + ^2 + ^3 + vi4 + A5)/5;
B* = (Bl + B2 + B3 + B4 + 55) /5;
C* = (CI + C2 + C3 + C4 + C5)/5.

Table 2. shows the combined effects of delay and averaging.

X
1
2
3
4
5
6
7
8

A,
1
2
3
4
5
6
7
8

Bl
1
2
3
4
5
6
7
8

Ci
1
2
3
4
5
6
7
8

As
5
6
7
8

Sg
5
6
7
8

a
5
6
7
8

J4*

(1+ 2 + 3 + 4+ 5)/5
(2 + 3 + 4 + 5 + 6)/5
(3 + 4 + 5 + 6 + 7)/5
(4 + 5 + 6 + 7 + 8)/5

B* C*

Attribute Transformations on Numerical Databases 185

3.3 Quadrati c Transformations

Next, we will consider quadratic transformations, namely,

where r,, r{j,/i) are real numbers. This is another class of transformations, which
is reasonably understood mathematically. First, we wil l show their effects from
classical mathematics: The first six columns of Table 3 consists of the coefficients
of the equations of some conic sections:

Ax' ̂+ Bxy + Cy ̂ + Dx + Ey + F = Q

It is clear that we have very littl e to say about these tuples if we only view the first
six attributes. So, we compute a quadratic transformation, called discriminant,

A* = (B2 _ 4AC)

and consider the signs of its values. The sign classifies (generalizes) the values of
the discrimnant into three concepts, positive, negative and zero; denoted by +, -,
0. These signs have standard meaning; see the last column in Table 3. It is clear
that without the new derived attributes A* and the sign, we will not be able
to classifies the conic sections. This example indicates that some proper trans-
formations are needed for data mining, unfortunately, it gives us no hints how
such transformations can be discovered. Nevertheless, since quadratic transfor-
mations are relatively simple, there is a possibility that the right transformation
can be found by brutal force experiments.

Table 3. shows the effects of quadratic transformations

A
9
9
73
2
1
1

B
- 4
0
72

- 72
0
0

c
- 72
16
52
23
0
0

D
0
0
30

- 80
0
12

E
8
0

-40
-60

4
- 1

F
176

-144
- 75
-125

0
39

A*
2608
-576

-10000
5000

0
0

Sign

+
-
-

+
0
0

Interpretations
Ellipse

Hyperbola
Hyperbola

Ellipse
Parabola
Parabola

3.4 Geometr ic Considerations

We will consider a geometric example, the first six columns of Table 4 are the
{X, y)-coordinates of three vertices of triangles. The derived attributes are func-
tions, namely, the length of three segments, of the original attributes. To discover
any theorems about these triangles, the original attributes are not useful at all.
So the following three new derived attributes, the distances, are considered

186 T.Y. Lin and J. Tremba

B' = v/(X2 - x^Y + (F2 ^ n F ,

It is clearly these new attributes of Table 4 show that all segments are the same
length. Such a conclusion is clearly impossible from the original attributes. This
is another example saying that some specific attribute transformations are often
a must, and can only be provided by domain experts.

Table 4. shows the effects of geometric transformations

^ 1

0
1

V3/2
- 2

Fi
1
2

1/2
1

X2
- 1
0

-1/2
- 1

F2
0
1

V3/2
0

X3
1
2

1/2
- 1

Fs
0
1

-V3/2
2

A*
v/2
v/2
v/2
N/2

S*
2
2
2
2

C*
v/2

V2
V2
v/2

At this point, we can offer the following geometric observations. A numerical
n-relation (degree n relation) is a finite set of points that is lying in a "hyper
surfaces" (manifold) of an n-dimensional Euclidean space. Each set of attribute
selections corresponds to a selection of coordinate systems. To have nice qualita-
tive information about such a set of points, there is a need of a specific coordinate
system. In other words, each problem requires its own set of transformations.
So we conclude that data mining often needs a suitable transformation, and the
selection of the transformation is dictated by the specific nature of the given
problem.

3.5 Polynomial Approximatio n of Transformation s

Let us conclude this section with a general formulation of attribute transforma-
tions. Let A, B,..., X, be a set of given attributes. We often need to compute a
derived attribute (see Table 5), which is a function of the original attributes

FY = f{FXi,FX2,...,FXn).

Since the table is of finite size, the function / can take polynomial forms, namely.

Theorem / is a polynomial function.

Proof: The columns from ̂ to X are the conditional attributes, and FY is the
decision attribute. Each row of the conditional attributes can be regarded as a
point X in Euclidean space, and the corresponding decision value is a value y
assigned to x. For convenience, we will call these points x conditional points;
there are as many points as the table size. By a simple result of the college
algebra, there is a polynomial function / which assumes the value y at each
conditional point x, that is, y = f{x) V x. Q.E.D.

Attribute TYansformations on Numerical Databases 187

By this theorem, we note that the distance functions in Table 4 can be ex-
pressed by polynomials. Mathematically, these polynomials are the Weistrass
Approximation of the distance functions on the conditional points. These dis-
tance polynomials are not intrinsic in the sense the "forms" of these polynomi-
als are table dependent. In other words, the polynomials wil l vary as the table
changes. Note that the "form" of the original distance functions are table inde-
pendent, they will not change as the table varies.

Table 5. shows the effects of general transformations

A
Ol

02

03

o,

B
bi

b2

bs

bi

C
Cl

Cl

C3

Ci

X
Xl

X2

X3

Xi

FY
/ i = fiai,bi,,...,xi)

/ 2 = f{a2,b2,,...,X2)

fs = f{a3,b3,,...,X3)

fi = f{ai,bi,,...,Xi)

4 Applications to Economic and Stock Market Data

Our study of attribute transformations is just in the beginning. However, the
linear case is reasonably complete. We will apply it to the stock market and
economic data. The rest of the paper is extracted from [7]. A six year stock
data range of August 1, 1990 to July 31, 1996 was selected (including some
indices [9], [10]. This provided 1518 cases for the daily experiment. The next
step is to find rules about the stock price of the company Applied Materials.
The rule-generation program DataLogic/R-l- is used [6]. The decision attribute
is the stock price of Applied Materials.

4.1 Data Selection

The daily experiment attributes selected were in Table 6:

4.2 Data Preparation

All the attribute data for the daily experiments was discretized into integer
values. The real-number closing price percentage change was rounded to the
nearest integer value. The basic decision table had 1517 rows and 11 columns.
Next the three programs for delaying, averaging, and summing were run on this
table thus producing three new tables each with 77 columns and 1511, 1487,
and 1511 rows respectively; the detail of the three programs can be found in [7].
The decision attribute was generalized; see Table 7. The results provide strong
predictive rules hopefully that provide some insight into the direction of the
change but no information about the amount of the change.

188 T.Y. Lin and J. Tremba

Table 6. Data Selected

Condition Attribute
Dow Jones Industrial Average

Compaq Computer
IBM

Digital Equipment
Intel

Motorola
Texas Instruments

Semiconductor Index
Electronics Index

Electronic Equipment Index

Decision Attribute
Applied Materials (daily price)

Type
Index
Stock
Stock
Stock
Stock
Stock
Stock
Index
Index
Index

Type
Stock

Symbol
Dow
CPQ
IBM
DEC
Intel
Mot
TI

Semi
Elec

Equip

Symbol
Applied

Table 7. Generalization

Cleissification
x<0.b

-0 .5 < xO.5
x>

High lever concept
Falling

No Change
Rising

5 Analysis of Results

Preliminary experiments were tried with the decision attribute being an integer
value representing the percentage change from the previous case. The daily per-
centage change ranged from -51 to -I- 17 for the decision attribute. This would
provide 68 classifications or concepts to be evaluated. The resulting rules were
weak and possessed only a few supporting cases. This led to the choice of allow-
ing only three classifications. The condition attributes remained unchanged as
integer values. The rules generated for the daily and monthly experiments wil l
now be listed.

5.1 Daily Rules

The three programs were run in the rule generator program for the decision
attribute of Applied Materials daily stock price discretized into three categories
of falling, no change, and rising. The rules developed for each of the categories
are:

1. Falling Rules
(a) [EQUIPl < 1]&[T/ 1 < -2]&[- 4 < SEMIl <

-1]

-1] -* [APPLIED

Attribute Transformations on Numerical Databases 189

Stock price will fall if the 5 day average of EQUIP is less than 1% and
the 5 day average of TI is less than -2% and the 5 day average of SEMI is
between -4% and -1% (source: average program). This rule is supported
by 62.2% of the 254 cases.

(b) [-20 < CPQl < -13] ^ [APPLIED = -1]
Stock price will fall if yesterday CPQ was between -20% and -13%
(source: delay program). This rule is supported by 100% of the 2 cases.

(c) [-10 < EQUIP2 < -1] -> [APPLIED = -1]
Stock price will fall if the two day sum of EQUIP was between -10% and
- 1% (source: sum program). This rule is supported by 65.5% of the 554
cases.

2. No Change Rules
(a) [-2 < Til < lj&[l < DECl < 2]&c[MOT2 > 2] ^ [APPLIED = 0]

Stock price will not change if the 5 day average of TI is between -2 %
and 1 % and the 5 day average of DEC is between 1 % and 2 % and the
10 day average of MOT is greater than or equal to 2 % (source: average
program). This rule is supported by 66.7 % of the 3 cases.

3. Rising Rules
(a) [EQUIPl < -3orEQUIPl > 0]&[T71 > 1] ^ [APPLIED = I]

Stock price will rise if the 5 day average of EQUIP is either less than
3% or greater than 0% and the 5 day average of TI is greater than or
equal to 1% (source: average program). This rule is supported by 62.5
% of the 253 cases.

(b) [SEMIl < -AorSEMIl > - l] & [- 3 < EQUIPl < 0]&[T71 <
-3o rTJl > 4] ^ [APPLIED = 1]
Stock price will rise if the 5 day average of SEMI is either less than -4%
or greater than - 1% and the 5 day average of EQUIP is between -3%
and 0% and the 5 day average of TI is either less than or equal to -3%
or greater than or equal to 4% (source: average program). This rule is
supported by 100% of the 3 cases.

(c) [-4 < SEMIl < -1]&[T71 > 1] -^ [APPLIED = 1]
Stock price wil l rise if the 5 day average of SEMI is between -4% and
- 1% and the 5 day average of TI is greater than or equal to 1% (source:
average program). This rule is supported by 77.8% of the 9 cases.

(d) [-8 < IBMl < -5]k[MOT5 = 1]-* [APPLIED = 1]
Stock price will rise if yesterday IBM is between -8% and -5% and 5
days ago MOT was equal to 1% (source; delay program). This rule is
supported by 100% of 4 cases.

(e) [-2 < IBM6 < 0]&:[- 8 < IBMl < -4]Sc[MOT5 < -lorMOTb >
2] -> [APPLIED = 1]
Stock price will rise if 6 days ago IBM is between -2% and 0% and
yesterday IBM was between -8% and -4% and 5 days ago MOT was
either less than or equal to - 1% or greater than or equal to 2% (source;
delay program). This rule is supported by 100% of the 3 cases.

(f) [IBM& < -2orIBM6 > 0]&[/BM l < -lorlBMl > 1]&[M0T 5 <
-2orMOT5 > 2] ^ [APPLIED = 1]

190 T.Y. Lin and J. Tremba

Stock price will rise if 6 days ago IBM was either less than -2% or greater
than 0% and yesterday IBM was either less than or equal to -7% or
greater than or equal to 1% and 5 days ago MOT was either less than
or equal to -2% or greater than or equal to 2% (source: delay program).
This rule is supported by 60% of the 180 cases,

(g) [EQUIP2 > 1] ^ [APPLIED ̂ 1]
Stock price will rise if the two day sum of EQUIP is greater than or
equal to 1% (source: sum program). This rule is supported by 65.9% of
the 627 cases.

5.2 Daily Rule Validatio n

The rules are validated by comparing them against recent test data and deter-
mining the percentage of correct predictions. The daily test data used the eight
month period from August 1, 1996 to April 9, 1997. The monthly test data used
the five month period from August 1, 1996 to December 31, 1996. The period
could not be made larger because the SIA index was changed in January, 1997
[28]. The raw data was preprocessed using the same programs to produce the
delayed, averaged, and cumulative tables. The tables were reviewed manually
to determine the rule compliance. The spreadsheet program Excel by Microsoft
was used as an aid to sort the table based on rule attribute values. The follow-
ing table (Table 8 lists for each rule the number of cases found, the percent of
correct cases, the number of cases found during rule generation, and the percent
of correct cases during rule generation:

Table 8. Rules Analysis

Rule No
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

No of Cases
0
0
58
3
46
0
2
0
1
19
72

Correct
NA
NA
70.7
0.0
60.8
NA
50.0
NA
0.0
68.4
80.5

Learning %
254
2

554
3

253
3
9
4
3

180
627

Learning %
62.2
100
65.5
66.7
62.5
100
77.8
100
100
60.0
65.9

The daily validation results can be separated into two groups. The first group,
consisting of rules 4 and 7, includes those rules that came from a small number
of supporting cases (less than 10). In this group, the error rates were very high.

Attribute Transformations on Numerical Databases 191

In the second group consisting of rules generated with a large number of sup-
porting cases (rules 3, 5, 10, and 11), the percentage correct was very close to
the percentage from the learning experiment. The differences ranged from -1.7
% to 14.6 %. Rules 1, 2, 6, and 8 had no instances in the validation experiment.

5.3 Conclusions on Stock and Economic Data Analysis

For the stock market data analysis, the following conclusions were reached:

1. The combined use of delay, average, and cumulative preprocessing of data
are useful tools for analyzing time series data.

2. The ratio of rising to falling rules derived was 2.3 to 1. This is believed to
have been due to the dominant bull market occurring during the six year
learning period.

3. When working with continuous or semi-continuous data such as stock market
data, rough set theory does not provide a means for selecting or optimizing
the discretizing ranges. It was through trail and error that the ranges used
in this paper were chosen.

6 Conclusions

Here are some of our conclusions:

1. In some data mining problems, attribute transformations are necessary (Sec-
tion 3.4, 3.3).

2. Rough set theory can be used as a data mining tool for the new tables.
(Section 2).

3. Meaningful attribute transformations should be suggested by domain ex-
perts.

4. Since information table is of finite size, attribute transformations can be
approximated by polynomial functions (Section 3.5).

5. Hence brutal force search might be employed (one degree at a time), if the do-
main experts can not suggest a meaningful transformation (Sections 3.2, 3.3).

6. Linear transformations have proved to be useful in stock market and eco-
nomic data (Section 5.3).

7. Even in such a case, some light brutal force searches have been employed;
should 2 day, 3 day ,... n day average be used? (Section 5.3, Item 3)

References

1. Date, C. J.: Introduction to Database Systems. 3rd,7th edn. Addision-Wesely,
Reading, Massachusetts (1981, 2000).

2. Lin, T. Y.: An Overview of Rough Set Theory from the Point of View of Relational
Databases, Bulletin of International Rough Set Society, vol. 1, no. 1 (1997) 30-34.

3. Lin, T. Y.: Guest Editorial, Intelligent Automation and Soft Computing, an Inter-
national Journal, Vol 2, No 2 (1996) 94-94.

192 T.Y. Lin and J. Tremba

4. Meyer,D.: The Theory of Relational Databases. Computer Science Press, 1983 (6th
printing 1988).

5. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer
Academic, Dordrecht (1991)

6. Software: DataLogic/R and DataLogic/R+ Rough Sets Guide, version 1.3, Reduct
and Lobbe, Regina, Saskatchewan, Canada (1993).

7. Tremba, J.: An Application of Rough Sets to Economic and Stock Market Data,
thesis, San Jose State University, (1997).

8. ZEideh, L.: A fuzzy-algorithmic approax;h to the definition of complex and imprecise
concepts, J. Man-machine Studies 8 (1976) 249-191.

9. Semiconductor Industry Association, Seasonally Adjusted Book-To-Bill Ratios,
San Jose, CA.

10. Semiconductor Equipment and Materials International, Market Statistics, Histor-
ical Book to Bill , Mountain View, CA, 1996.

Tsau Young (T. Y.) Li n received his Ph. D from Yale University, and now
is a Professor at Department of Mathematics and Computer Science, San Jose
State University, the Metropolitan University of Silicon Valley, also a BISC fel-
low at the University of California-Berkeley. He has served as editors, associate
editors, members of advisory or editorial board of several international journals,
and chairs, co-chairs and members of program committees of conferences. His
interests include approximation retrievals, data mining, data warehouse, data
security, and new computing methodology (granular, rough, and soft comput-
ing)-
Joseph Tremba is a Software Manager at Applied Materials. Tremba received
a BS and MSEE from the University of Michigan, an MBA from Michigan State
University, and a MSCS degree from San Jose State University. He is a member
of IEEE and Eta Kappa Nu. Contact him at joe-trembaamat.com.

Efficient Detection of Local Interactions
in the Cascade Model

Takashi Okada

Kwansei Gakuin University, Center for Information & Media Studies
Uegahara 1-1-155, Nishinomiya

662-8501 Japan
okacia@kwansei . a c . jp

Abstract Detection of interactions among data items constitutes an essential
part of knowledge discovery. The cascade model is a rule induction
methodology using levelwise expansion of a lattice. It can detect positive and
negative interactions using the sum of squares criterion for categorical data. An
attribute-value pair is expressed as an item, and the BSS (between-groups sum
of squares) value along a link in the itemset lattice indicates the strength of
interaction among item pairs. A link with a strong interaction is represented as a
rule. Items on the node constitute the left-hand side (LHS) of a rule, and the
right-hand side (RHS) displays veiled items with strong interactions with the
added item. This implies that we do not need to generate an itemset containing
the RHS items to get a rule. This property enables effective rule induction. That
is, rule links can be dynamically detected during the generation of a lattice.
Furthermore, the BSS value of the added attribute gives an upper bound to those
of other attributes along the link. This property gives us an effective pruning
method for the itemset lattice. The method was implemented as the software
DISCAS. There, the items to appear in the LHS and RHS are easily controlled
by input parameters. Its algorithms are depicted and an application is provided
as an illustrative example.

Keywords: local interaction, cascade model, sum of squares, itemset lattice,
pruning of lattice.

1 Introductio n

Itemset representation, first introduced in association rule mining [1], offers a flexible
and uniform framework for a learning task. Both classification and characteristic rules
have been induced using this framework [2,»3] . Bayesian networks and Nearest
Neighbor classifiers were also formulated as the mining of labeled itemsets [4].

Detection of local interactions is necessary to obtain valuable knowledge from the
itemset lattice. Here, the term "local interaction" is used in two ways. Firstly, it shows
that some value pairs of two attributes are correlated. For example, two attributes: A
and B indicate strong interactions at row [A:«a3] and at column [B:»b3] in the
contingency table on the next page, while minor interactions are found in other cells.

T, Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 193-203,2000.
© Springer-Verlag Berlin Heidelberg 2000

194 T. Okada

Secondly, "local" denotes that an interaction appears when some preconditions are
satisfied. The interactions in Table 1 may appear only in the cases with [C:«cl] .

Table 1. Example of a local interaction between attributes A, B. Each cell shows the
distribution of 30 cases with [C: 'c 1] item

in 30 cases with [C: cl]
[A: al]
[A: a2]
[A: a3]

[B:bl]
5
5
0

[B: b2]
5
5
0

[B: b3]
0
0
10

Silverstein et al. succeeded in detecting interactions using % test based on
levelwise lattice expansion [5]. They showed the importance of local interactions
between value pairs. Their formulation enabled the detection of a negative interaction
that was missed by association rule mining. The problem of lattice explosion was also
solved by the upward-closed property of dependency in the lattice, and hence the
method was very fast. However, their formulation did not detect the simultaneous
occurrence of plural interactions. As a result, it required difficult speculations to find
such rules as "IF [A: ' a l] THEN [B:'b2, C:'c3]". What is needed is the ability to
detect interactions among plural attributes in the lattice and compare the strengths of
these interactions.

The authors previously proposed the cascade model as a framework for rule
induction [6], and subsequently showed that the sum of squares (55) criterion for
categorical data gave a reasonable measure of the strength of the interaction when we
partitioned a dataset by the values of an attribute [7]. Detailed descriptions of 55
properties for categorical data have been published separately [8]. In this paper, our
focus is on an efficient and effective method of rule mining in the cascade model. The
next section gives a brief introduction to the model and the underlying SS criterion.
Section 3 describes an efficient method for detecting local interactions. The results of
applying the method to House voting-records are discussed in Sect. 4.

2 The Cascade Model

The cascade model examines the itemset lattice where an [attribute:*value] pair is
employed as an item to constitute itemsets. Links in the lattice are selected and
expressed as rules. Figure 1 shows a typical example of a link and its rule expression.
Here, the problem contains five attributes: A* £ , each of which takes (y, n) values.
The itemset at the upper end of the link has an item [A:«y] , and another item [B:*y]
is added along the link. Items of the other attributes are called veiled items. Three
small tables at the center show frequencies of the items veiled at the upper node. The
corresponding WSS (within-group sum of squares) and BSS (between-groups sum of
squares) values are also shown along with their sample variances. Following the
variance definition of a categorical variable [9], WSSt and BSSt were given by the
following formulae [7],

Efficient Detection of Local Interactions in the Cascade Model 195

A:y

A: y, B: y

B
C
D
E

y
60 (9.6)
50(12.5)
60 (9.6)
40 (14.4)

n
40 (14.4)
50(12.5)
40 (14.4)
60 (9.6)

WSS
24.0
25.0
24.0
24.0

a"
.24
.25
.24
.24

B
C
D
E

BSS
9.60
0.00
6.67
5.40

IF [B: y] added on [
THEN [D: y;
Cases: 1(X) '
[D: y] 60% "
[E: n] 60% "

E :n]
60
93%
90%

A:y]

,BSS =
BSS =

= 6.67
= 5.40

B
C
D
E

y
60 (0.00)
30 (7.50)
56 (0.25)
6 (4.86)

n
0 (0.00)

30 (7.50)
4 (3.48)

54 (0.54)

WSS
0.00

15.00
3.73
5.40

a"
.000
.250
.062
.090

Fig. 1. A sample link, its rule expression and properties of the veiled items. See Sect. 3.2 for
the explanation of values in parentheses.

WSS, = ^-IPMY

BSS,=^'2(pHahpria)J ,

(1)

(2)

where i designates an attribute, and the superscripts U and L are attached to show the
upper and the lower nodes, n shows the number of supporting cases of a node, and
Pi{a) is the probability of obtaining the value a for the attribute /.

A large BSSi value is evidence of a strong interaction between the added item and
attribute i. The textbox at the right in Fig. 1 shows the derived rule. The added item
[B: y] appears as the main condition in the LHS, while the items on the upper node
are placed at the end of the LHS as preconditions. When a veiled attribute has a large
655, value, one of its items is placed in the RHS of a rule. An item selection method
from a veiled attribute was described in [7].

We can control the appearance of attributes in the LHS by restricting attributes in
the itemset node. On the other hand, the attributes in the RHS can be selected by
setting the minimum BSS, value of a rule (min-BSSi) for each attribute. The cascade
model does not exclude the possibility of employing a rule link between distant node
pairs if they are partially ordered to each other in the lattice. The main component of
the LHS may then contain plural items, though we cannot compare the advantages of
flexibilit y of expression to the disadvantages of increased computation time. Either
way, items in the RHS of a rule are not necessary for them to reside in the lattice. This
is in sharp contrast to association rule miners, which require the itemset, [A: y; B: y;
D: y; E: n] to derive the rule in Fig. 1.

196 T. Okada

3 Methods

Since association rule mining was first proposed, a great deal of research effort has
been directed towards finding effective methods of levelwise lattice generation [10,
11, 12]. However, vast amounts of computation are still necessary. When we handle
table data, dense items result in a huge number of itemsets at the middle level of the
itemset lattice. In this section, we first propose a new algorithm for rule induction. We
then discuss the problem of lattice pruning and the control of rule expressions.

3.1 Basic Mechanism

The previous section described that a rule description is possible if the LHS items
appear as an itemset node in a lattice and if the frequencies of the veiled items are
known. We then immediately notice that the following two procedures can be used to
improve the rule induction process.

- No Apriori condition check. We can use the frequency information of the veiled
items at the node generation step. That is, items satisfying the minimum support
condition are selected to make new nodes. We can discard an item whose count is
lower than the minimum support. For example, if the minimum support is set to 10
in Fig. 1, four new nodes, made by the addition of items: [C:»y], [C:*n] , [D:»y]
and [E: n] to the lower node, are necessary and sufficient.

- Dynamic detection of rule links. Before the entire lattice is constructed, we can
detect strong interactions and send the relevant link to another process that extracts
rules and provides them for real-time operations. As strong interactions with many
supports are expected to appear in the upper part of the lattice, this will give us a
practical way to implement OLAP and to mine valuable rules from a huge dataset.

The above points are realized as the algorithm CASC, shown in Fig. 2. In this
algorithm, nodes{L) shows the set of itemset nodes at the L-th level of the lattice.
After creating the root-node with no items and counting all items in the database,
create-lattice expands the lattice in a levelwise way, changing the lattice level L. In
each lattice level, it counts the veiled items and detects interactions. Then generate-
next-level simply makes nodes following the first procedure. Section 3.2 discusses a
new pruning-condition added to the minimum support. The second procedure is
implemented as detect-interactions, which compares two nodes in the L-th and (L+1)-
th levels. Hashing is used to fetch the upper node quickly. If a node pair has a veiled
attribute for which BSSi exceeds the given min-BSSi parameter, then the function
sends it to another process. The last function, count, is the most time consuming step.
The subset relationship between the items in a case and those in a node is judged
using the trie data structure. If the condition holds, the count of the veiled items on the
node is incremented.

Here, we note that an upper node does not always exist in the process of detect-
interactions, as we do not use the Apriori condition in the node generation step.

Efficient Detection of Local Interactions in the Cascade Model 197

create-lattice()
nodes(0) : = {root-node }
count(nodes(0) database)
loo p changin g L fro m 1 unti l null(nodes(L))

nodes(L) : = generate-next-level(nodes(L-1))
count(nodes(L) database)
detect-interactions(nodes(L))

generate-next-level(nodes)
loo p fo r nod e i n node s

loo p fo r ite m i n veiled-items(node)
i f pruning-condition i s no t applicabl e

pus h make-new-node(ite m node) t o new-node s
retur n new-node s

detect-interactions(lower-nodes)
loo p fo r nod e i n lower-node s

loo p fo r itemse t i n omit-one-item(node)
upper : = get-node(itemset)
i f fo r som e i , BSSi(nod e upper)>min-B5S i the n

send-link(nod e upper)

count(node s database)
loo p fo r cas e i n databas e

loo p fo r nod e i n node s
i f itemset(node)citems(case) the n

incremen t item-count(node) fo r items(case)

Fig. 2. Algorithm CASC

3.2 Pruning Lattice

The idea of pruning is clear if we think of adding a virtual attribute, B': a copy of B,
in the example provided by Fig. 1. When we generate a new node adding the item
[B': 'y] under the lower node, it gives us nothing, as all frequencies remain the same.
Note that the interactions between B' and (D, E) are detected separately on another
node. Even if the correlation is not so complete as that between B and B', we might
prune new links that add highly correlated attributes like D and E in Fig. 1.

Suppose there is a link between nodes U and L. U has veiled attributes {jc,} and L
is a descendent node of U added by an item, [Â jt'Oo] We employed the following
inequality to prune the link between U and L. A proof of this inequality is given in the
Appendix.

BSSi ̂ {mm BSSo = {mJ2)" n"-.. . (1 - p^{ao)f
(3)

= {mj2)" 'Po^Cao)" ' (1 -PoVo))'

198 T. Okada

BSSi denotes the BSS value for a veiled attribute JT, between U and L, /JO"(«O) is the
probability of attribute XQ having the value OQ at node U, and m, denotes the number of
attribute values of A:,.

Our objective is to find links with large B55, values. Suppose that the threshold of
the BSSi value for the output rule is set to N"'t h res, where Â is the total number of
cases and thres is a user-specified parameter. Then, the above inequality implies that
we do not need to generate the link U-L, if the RHS of (3) is lower than N"*th res.
This pruning condition is written as,

(mi/2) n" po"(ao) ' (1 - Po"(«o))' < N" thres . (4)

If all possible RHS attributes are assigned the same min-BSSi, thres can be set to min-
BSS/N. The LHS of (4) takes the highest value at po"(«o) = 1/3. Then, if n" is small,
we can prune the lattice for a wide range of po"(^) values at a given N thres. On the
other hand, if n" is large, then the pruning is limited to those links with po^ioo) values
far from 1/3. The tables attached at the nodes in Fig. 1 show these LHS values of (4)
in parentheses. Suppose that N is 400 and thres is 0.01. Then the meaningful branches
of the lower node are limited to those links by the addition of three items, [C:»y],
[C:»n] and[E:»y].

Lastly, we have to note the properties of this pruning strategy. There is always the
possibility of other local interactions below the pruned branch. For example, if we
prune the branch from [A:«y, B:*y] to [A:*y , B:»y, D:«y], there might be an
interaction between [C: 'n] and [E:«n] under the pruned node, as shown in Fig. 3.
However, we can expect to find the same kind of interaction under the node [A:»y,
B: 'y] unless the interaction is truly local on the lower pruned node. The upper rule in
Fig. 3 covers broader cases than the lower rule does. So, we call this upper rule a
broader relative rule of the lower pruned rule.

i=> IF [C:'n] added on [A:«y, B:»y] THEN

c=i> IF [C: 'n] added on [A: ' y, B-y , D:«y] THEN

Fig. 3. A pruned rule and its broader relative rule

3.3 Symmetric and Concise Control in Rule Generation

Two input parameters, min-BSSi and thres, affect rule expression. A very high min-
BSSi value excludes the attribute x, from the RHS of the rules. Suppose that the
pruning condition (4) is extended to use thresi for each attribute A:,. Then, we can
prohibit the attribute jc, from entering the LHS of a rule if we give thresi a very high
value.

Setting a high threSi value to the class attribute and high min-BSSi values to the
explanation attributes results in discrimination rules. On the other hand, setting

'runed
node: .

[A:-y ,

[A: "y, B: 'y.

Efficient Detection of Local Interactions in the Cascade Model 199

affordable values to these parameters in all attributes gives us characteristic rules. We
can then use a single rule induction system as a unified generator of discrimination
and characteristic rules.

4 Experimental Results and Discussion

The method proposed in the previous section was implemented as DISCAS version 2
software using lisp. A Pentium II 448MHz PC was used in all experiments and the
database was stored in memory. The following were the three input parameters used
in the DISCAS software.

1. Minsup: the minimum support employed in association rule mining.
2. thresf. 3L parameter to prune the link expansion introduced in Sects. 3.2-3.3.
3. min-BSSi-. a link written out as a rule candidate when one of its BSSi values along

the link exceeds this parameter.

Characteristic rules are derived from a House voting-record dataset with 17
attributes and 435 cases [13] to estimate the performance of DISCAS. Table 2 shows
the number of nodes, the elapsed time to generate the lattice, and the number of
resulting rules changing the first two parameters. The values of threSj are set equal for
all attributes, and the values for min-BSSj are set to 10% of the SSi for the entire
dataset. All candidate links are adopted as rules. To avoid the confusion created by
the effects of various m, values in the attributes, pruning was done assuming that all
m, were equal to 2 in (4).

The row with thres*= '0 .0 in Table 2 shows the results without pruning by the
thres values. Results in the other rows indicate that the application of pruning has
been very effective in reducing the lattice size and the computation time, which are
roughly proportional if the lattice size is not large. When thres or minsup are in a low
value range, the number of rules does not always increase even if they take lower
values, because a link with few instances cannot give enough BSS to exceed min-BSSi.

Next, we inspect the results in the column for which minsup = 0.05. Figure 4 shows
the number of nodes at each generation of the lattice changing thres, where we can
see a typical profile of the lattice size constructed from table data. Remarkable
pruning effects are observed when the number of items in an itemset reaches four.

Pruning should not diminish strong rules. It is interesting to investigate the
distribution of the BSS values of the rules changing thres. The maximimi value in
BSSi's along a link, called maxBSSu is examined. Table 3 shows the number of rules
classified by maxBSSt and by thres at minsup = 0.05. The headline shows the
minimum value of maxBSSi for each column, where Â is 435.

The number of rules with pruning is not changed from the number without pruning
{thres = 0.0), as shown in the upper right region partitioned by the solid line. There
are 27 strong interactions that do not change even at thres = 0.05. The pruning
condition denotes that a substantial decrease in rule counts may be observed at the
lower left region of the broken line, where maxBSSi is less than N'"th res. However,
there is a large number of pruned rules in all the cells of the leftmost column. Either
way, we can expect that strong rules will not be affected by pruning, even if we use
high thres values.

200 T. Okada

When our aim is to find characteristic rules, the strength of a rule should be judge
by the sum of BSSi values along a link. When we used this criterion for rule selection
more than 152 rules were never affected, even at thres = 0.05.

Table 2. Number of nodes, time period and number of rules changing minsup and thres, where
time is the elapsed time in seconds. Note that — indicates that computation was not
accomplished due to memory limitations.

thres

0.0 0

O.OI

0.0 2

0.0 3

0.0 4

0.0 5

node s
tim e
rule s

node s
tim e
rule s

node s
tim e
rule s

node s
tim e
rule s

node s
tim e

mie s
node s

tim e
mle s

0.01 0

—

34819 6
2351 4

731
9892 9

1061
678

4619 9
301
614

2513 2
137
604

1564 3
73

560

0.02 5

88271 4
22431 3

808
13624 4

2692
731

4183 4
313
678

2109 8
114
614

1246 0
61

604
8148

40
560

minsup
0.05 0

33721 6
3969 5

642
5098 6

501
628

1648 1
101
598

8921
48

554
5515

28
547

3853
20

510

0.10 0

9274 7
2375
350

1420 0
98

350
499 8

31
349

2895
18

340
1911

11
340

1429
9

332

0.15 0

3108 1
626
218

4831
33

218
204 0

14
218

1306
9

215
914

7
215
728

5
214

0.20 0

1393 3
154
143

221 4
17

143
900

7
143
589

5
142
442

3
142
355

3
141

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of items

Fig. 4: Number of itemsets for each level of lattice; variable thres, minsup fixed at 0.05.

Efficient Detection of Local Interactions in the Cascade Model 201

Table 3. Number of rules classified by maxBSSi and thres at minsup = 0.05

thres
maxBSSi

0.03N 0.04N 0.05N 0.06N O.OIN 0.08N OWN

0.0 0
O.OI
0.0 2

0.0 3
0.0 4

0.0 5

264
253
238
217

213
198

90
90
89
86
86
81

33
33
33
32
32
31

12
12
12
12
12
12

7
7
7
7
7
7

5
5
5
5
5
5

3
3
3
3
3
3

5 Concluding Remarks

A pruning methodology based on the SS criterion has provided an effective
framework for rule induction. The efficiency of pruning is very useful in table data,
which has been hard to handle because of the combinatorial explosion in the number
of nodes. This method is also applicable to market basket analysis. Low interactions
among most items are expected to lead to effective pruning in lattice generation. It
will be useful if the cost of database access is higher than that of the item counting
operations.

The dynamic output of rule links also enables the detection of interactions when
the expansion of a lattice to higher levels is impossible. It can be used in real time
applications like OLAP and a text mining system for the WWW.

Developed software can easily control the appearance of attributes in the LHS and
the RHS of a rule. Fine-tuning of parameters based on field expertise enables fast and
effective mining that can analyze not only demographic data but also transactions'
data. Analysis of the combined dataset of these two styles will be necessary in future
scientific discovery, such as pattern extraction from clinical histories and the
detection of specific effects from laboratory notebooks. The DISC AS software is
publicly available to academic users upon request to the author.

As the sum of squares criterion constitutes one of the core analysis criterion in the
statistics of continuous variables, the proposed method is expected to lead to a unified
and seamless architecture in data analysis when the detection of local interactions is
important.

References

[1] Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in
Large Databases. Proc. ACM SIGMOD (1993) 207-216

[2] Ali , K., Manganaris, S., Srikant, R.: Partial Classification using Association Rules. Proc.
KDD-97 (1997) 115-118

[3] Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. Proc.
KDD-98 (1998) 80-86

202 T. Okada

[4] Meretakis, D,, WUthrich, B.; Classification as Mining and Use of Labeled Itemsets. Proc.
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(1999)

[5] Silverstein, C, Brin, S,, Motwani, R.; Beyond Market Baskets: Generalizing Association
Rules to Dependence Rules. Data Mining and Knowledge Discovery, 2 (1998) 39-68

[6] Okada, T.: Finding Discrimination Rules using the Cascade Model. J. Jpn. Soc. Artificial
IntelUgence, 15 (2000) in press

[7] Okada, T.: Rule Induction in Cascade Model based on Sum of Squares Decomposition.
Principles of Data Mining and Knowledge Discovery (Proc. PKDD'99), 468-475, Lecture
Notes in Artificial Intelligence 1704, Springer-Verlag (1999).

[8] Okada, T.: Sum of Squares Decomposition for Categorical Data. Kwansei Gakuin Studies
in Computer Science 14 (1999) 1-6. http://www.media.kwansei.ac.jp/home/kiyou/kiyou99/
kiyou99-e.html

[9] Gini, C.W.: Variability and Mutability, contribution to the study of statistical distributions
and relations, Studi Economico-Giuridici della R. Universita de Cagliari (1912). Reviewed
in Light, R.J., Margolin, B.H.: An Analysis of Variance for Categorical Data. J. Amer. Stat.
Assoc. 66 (1971) 534-544

[10] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. Proc. VLDB
(1994)487-499

[11] Toivonen, H.: Sampling Large Databases for Finding Association Rules. Proc. VLDB
(1996) 134-145

[12] Brin, S., Motwani, R., UUman J. D., Tsur, S.: Dynamic Itemset Counting and Implication
Rules for Market Basket Data. Proc. ACM SIGMOD (1997) 255-264

[13] Mertz, C. J., Murphy, P. M.: UCI repository of machine learning databases, http:
//www.ics.uci.edu/~mleam/MLRepository.html, University of California, Irvine, Dept. of
Information and Computer Sci. (1996)

Appendix

We give a proof for the upper bound of B55, shown in (3).

BSS^<^(l-pna,)r , (3)

where U and L denote the upper and the lower nodes of a link, along which an item
[XQ: OQ] is added, /MJ is the number of attribute values for x„ n ̂is the number of cases
on L, and pi(a) is the probability of attribute jc; having the value a. The expressions of
BSSj and n ̂are given by,

BSS^=^'ZiP^(^)-Pn4 (5)

L U V / \

n =n - p o K) (6)

Then the following inequalities hold.

0<n^.{l-pt{a))<n^.(l-pna)) . ^'^

Efficient Detection of Local Interactions in the Cascade Model 203

The bounds of pĵ {a) are expressed by,

P,'(«)

Pi (a)

>0

Po"(«o)

<1

Po"(«o)

ifp,"(fl)>l-Po"(«o) .

if A"(a)>/7o"K) ,

if p^(a) < po (a„) .

(8a)

(8b)

Here, we regard (5) as a quadratic form of {pl'(.a)}. Since it takes the minimum at
Ipl^ia)] and its region is constrained by (8) on a hyperplane defined by J^ /̂J,?'(fl) = 1.0,
BSSi lakes the maximum value at some boundary point. Here, we use a notation q{a)
to denote the value of pt(,a) at the maximum point of B55,. First, let us consider the
case that q(a) is at the higher boundary in the region, where q(a) - p^(a) is positive.

if/7,"(a)<Po"(ao)then

qia)-pria)<4^-pr(a) = 4j^{l-p-(a,))<l-p^(a,) ,
PgiUo) p^iUg) (9)

ifp,"(a)>Po"(ao)then

q(a)-p^ia)<l-p^(a)<\-p^ia,) .

On the other hand, if q{a) is at the lower boundary, the following inequalities hold.

if/7,"(a)>l-Po"(ao)then

pna)-qia)<pna)-U-'-^4^y-^^4^[l-p^Aa.))
Po (^o) Po («o)

ifp,"(a)<l-/7o"(ao)then

p^ia)-q{a)<l-p^(a,)-q{a)<l-p^(a,)

Then, we obtain the following inequality,

{qia)-pna)f<{l-p^{aj

(10)

(11)

As (11) holds for any value a of an attribute Xj, introduction of (11) into (5) gives the
proof of (3).

The author anticipates that (3) will hold for nti - 2. We have found no violations to
this stricter bound during extensive numerical checks. The proof of this inequality is
expected.

Extracting Predictors of Corporate Bankruptcy:
Empirical Study on Data Mining Metliods

Cindy Yoshiko Shirata' and Takao Teranô

' Tsukuba College of Technology Japan,
4-12 Kasuga Ibaraki-Pref. 305-0831 Japan

cindy@cs.k.tsukuba-tech.ac.jp
^ University of Tsukuba, 3-29-1 Otsuka, Bunkyo-ku

Tokyo 112- , Japan
terano@gssm.otsuka.tsukuba.ac.jp

Abstract. We presents some empirical results of a study regarding financial ra-
tios as predictors of Japanese corporate bankruptcy based on a large sample of
bankrupt and non-bankrupt firms' financial data. In this study, variable as pre-
dictors of bankruptcy had been selected by three Al-based data mining tech-
niques and two conventional statistical methods, Logit analysis and Stepwise.
After the selection of a set of variables for every method, discriminant power of
each set was compared to verify the most suitable data mining technique to
select financial variables. Finally, the study concludes that a set of variables
selected by Logit analysis (with logit model) indicated the best discriminant
power, more than 87% accuracy.

1 Introduction

We attempted to obtain sets of the financial ratios as predictors using some different
kinds of Al-based data mining methods with a large sample of financial data. It is
also selected another sets of financial ratios with conventional statistical techniques.
Each method selects one set of financial variables. After the selection of a set of fi-
nancial ratios for every data mining method, we compare the discriminant power of all
sets with four different multivariate discriminant analysis, linear, quadratic, normal-
kernel method and logit analysis. This procedure identifies which set of financial
variables can best predict corporate bankruptcy in Japan and the most suitable data
mining method to analyze financial variables.

2 Methodology

We analyze financial variables with three different Al-based data mining techniques.
One is C4.5 that is a quite popular data mining tool [1]. The other one is SIBILE

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 204-207, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Extracting Predictors of Corporate Bankruptcy 205

which is using interactive Genetic Algorithms and inductive learning techniques [2].
Final one is Classification and Regression Trees (CART) [3] providing from S-plus
program. These three techniques can treat not only quantitative variables but also
qualitative variables. Therefore, two qualitative variables. Capital size and Industry
category will be added on analysis.

This study also tries to select the financial variables with two conventional statisti-
cal techniques, Stepwise of SAS program (SAS ver.6.12) and Logit analysis of S-plus
program (S-plus ver3.1).

3 Variables and Sample Design

The original sixty-six financial variables were chosen on the basis of (1) popularity in
literature, (2) usage by the Japan Development Bank, (3) usage by Teikoku Data

Bank̂ of its Cosmos 1 credit database, and (4) the author's initiated hypothesis. The
variables can be classified into the following categories (1) popularity in the literature
(X1-X8), (2) growth (X9-X12), (3) capital efficiency (X13-X17), (4) profitability
(X18-X27), (5) activity (X28-X42), (6) productivity (X43-X47), (7) liquidity (X48-
X53) and (8) coverage and other earnings relative to leverage measures (X54-X66).
Two qualitative variables. Capital size and Industry category are added as variables.

The samples include all bankrupt firms obtained from Teikoku Data Bank Cos-
mos 1 Database. The data set for this study is 686 bankrupt firms and 300 non-
bankrupt firms. The 300 non-bankrupt firms were extracted from 107,034 non-
bankrupt firms by systematic sampling method. All the bankrupt firms had failed
between 1986 to 1996 in Japan.

4 Data Cleaning

The most important data cleaning procedure is de-duplication of records. All data
using in this study is checked completely that there is no duplication. However, here
is some other very important data cleaning procedure when we treat financial vari-
ables. First, if there is a missing value on data, some programs do not work well or
sometimes cause error. Therefore, it is necessary to delete a whole data line that has a
missing value. We delete such data in advance with cautiously. Second, it must con-
firm the relationship between corporate behavior and tend of financial ratios. There is
a basic rule of financial analysis when we evaluate firms. This rule came from tradi-
tional accounting ethics. To confirm whether the distribution of each variable follows
accounting ethics, univariate approach has been taken. The result of the univariate
analysis of all variables, twelve variables showed the completely opposite tend from a

About 1,000,000,000 financial statements of 250,000 Japanese firms (all industry and size) are stored in

Teikoku Data Bank's CosmoslData Base. The company also has the Bankruptcy Data File which

contains the name of failed firms, the date of filing and reason for bankruptcy.

206 C. Y. Shirata and T. Terano

basic financial analysis rule coming from accounting ethics. We decided to delete
these variables which were indicated the opfjosite tend fi'om ethics. Because they may
mislead the results of analysis toward wrong direction.

5 Experimental Results

Some methods selected too many variables. Therefore, we choose suitable number of
variables which can represent the result of each method. C4.5 assigned fifty variables
on decision tree. We decided to choose variables indicating by the sixth node, thirteen
variables. The important factor to decide what variables we choose is larger likeli-
hood ratio of variables. The Hkelihood ratio of variables would go down drastically
from the seventh node. And there was also an interesting result that only C4.5 se-
lected a qualitative variable. Capital size, on the seventh node. However, no other
technique selected qualitative variables. After consideration whether this variable
should be included, we decided not to add this variables for the next analysis. We also
concluded here that Size or Industry variable does not influence bankruptcy phenome-
non more than financial variables.

CART chosen twenty-four variables. However, the variables at over 100 nodes
seem not to be contributed well for the model, and it was also confirmed that over 100
nodes variables indicated smaller likelihood ratio. Hence, we decided to choose nine-
teen variables selected at less than 100 nodes on CART.

Logit analysis selected twenty-three variables. We choose nineteen higher likeli-
hood ratio variables which are also indicating higher CP value. Table 1 presents the
results of comparison of discriminant power of each set of variables.

Table 1. Comparison of Discriminat Power with Misclassification Rate
No. of

Method variables

C4.5 13
SIBIL 10
CART 19
Logh 19
Stepdisc 17

Normal
Kemel Linear

0.219 0.175
0.184 0.184
0.204 0.160
0.205 0.140
0.230 0.181

Quaratic
0.332
0.194
0.195
0.219
0.275

Logit
0.152
0.175
0.177
0.128
0.166

Best
Model
logit
logit
linear
logit
logit

prob
0.152
0.175
0.160
0.128
0.166

Based on the result of our analysis, a set of variables selected by Logit analysis (with
logit model) indicated the best discriminant power, more than 87% accuracy. The
same set of variables with linear model showed the second discriminat power, more
than 86%. Therefore, we can conclude that the Logit analysis is the best data mining
method to extract predictors of Japanese corporate bankruptcy from financial vari-
ables.

Extracting Predictors of Corporate Bankruptcy 207

Another notable point here is that sets of variables selected by C4.5 and CART
were also indicating higher discriminant power (around 85%) following a set of vari-
ables selected by Logit analysis. Since we got an adequate result from these Al-based
data mining techniques, it convinced us that these techniques were available for vari-
able selection concerning financial problems.

Furthermore, all sets prove that linear model or logit model is a suitable model to
predict bankruptcy with financial variables. In contrast, Normal Kernel (non-
parametric model) and quadratic model are not suitable for bankruptcy prediction
model.

6 Conclusion

Data mining techniques usually analyze a large sample of data like ten thousand or
more. In contrast, this study treated only one thousand data. However, previous
studies developing a bankruptcy prediction model or treating financial problems ana-
lyzed only fifty to hundred sample data. Therefore, the results of these studies were
not generalizable, due to limited size of their samples. In contrast, this study treated
the largest sample of data in this kind of study that had been done ever, and we believe
that our results are more reliable than ever.

There are some interesting results on this study. All Al-based techniques selected
X2 for the best predictor that can discriminate bankrupt firms significantly. In con-
trast, conventional statistical methods did not select X2 at all. Altman mentioned in
his study that X2 was unquestionably the most important variable [4], This result
impressed us that variable selection by Al-based techniques is more trustworthy than
variable selection by conventional statistical method.

In spite of each combination of selected variables are different, all model indicate
an adequate discriminant power. That teaches us that financial variables have dis-
criminant power originally whether the firm is in critical condition. If you would like
to get a few percent higher prediction, it is worth selecting variables by conventional
methods like Logit analysis. However, if you would like to have more stable results,
Al-based techniques like C4.5 or CART can provide a sound set of variables with
reasonable discriminant power.

References

1. Quinlan, J.R.: Introduction of decision trees. Machine Learning 1 (1986) 81-106.
2. Terano, T., Ishino Y.,: Interactive Generic Algorithm Based Feature Selection and its Appli-

cation to Marketing Data Analysis. Feature Extraction, Construction and Selection: A Data
Mining Perspective, Massachusetts (1998) 393-406.

3. Breimann, L., J.H. Frieman, R.A. Olshen, and C.J. Stone: Classification and Regression
Trees. Chapman & Hall, London (1984).

4. Altman, E., R. G. Haldeman and P. Narayanan: ZETA Analysis: A new model to indentify
bankruptcy risk of corporations, Journal of Banking and Finance Vol.1, June (1977) 35.

Evaluating Hypothesis-Driven Exception-Rule
Discovery with Medical Data Sets

Einoshin Suzukî and Shusaku Tsumoto'̂

1 Division of Electrical and Computer Engineering, Faculty of Engineering,
Yokohama National University

suzuki@dnj.ynu.ac.jp
^ Department of Medical Informatics, Shimane Medical University,

School of Medicine
tsumoto@computer.org

Abstract. This paper presents a validation, with two common medi-
cal data sets, of exception-rule discovery based on a hypothesis-driven
approach. The analysis confirmed the effectiveness of the approach in
discovering valid, novel and surprising knowledge.

1 Introduction

In rule discovery, a discovered rule can be classified as either a common sense
rule, which holds true for many examples, or an exception rule, which represents
a different regularity from a common sense rule [1-4]! %An exception rule often
exhibits unexpectedness and usefulness since it differs from a common sense rule
which is often well-known. A hypothesis-driven method obtains a set of pairs
of an exception rule and a common sense rule [1-4], This method is supposed
to discover unexpected rules since it is independent of user-supplied domain
knowledge. In this paper, we validate this method using two data sets [5].

2 Problem Description

Let an atom represent an event which is either a single value assignment to a
discrete attribute or a single range assignment to a continuous attribute. We
define a conjunction rule as a production rule of which premise is represented
by a conjunction of atoms and conclusion is a single atom.

Suzuki, one of the authors, considered a problem of finding a set of rule pairs
[1-4]. Here, a rule pair r{x, x',Yn, Z^) is defined as a pair of two conjunction rules,
which are a common sense rule Y^j, —> x and an exception rule Yf ̂A Z ̂ —* x'.

r[x, X , Yfi, Zi^j = xYfj, — X, In A Zu —> x j

where x and x' are a single atom with the same attribute but different values.
Each premise of rules represents a conjunction of atoms y^ = 2/i A j/2 A A
y^, Z ̂ = zi A Z2 A /\ z^.

T, Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNAI 1805, pp. 208-211, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Evaluation Hypothesis-Driven Exception-Rule Discovery 209

The method employed in this paper outputs rule pairs which satisfy

Pi(Y^) > 9f, K(x|Y^) > MAX(0f ,P?(:E)), K (y ^ ,Z ,) > 0f,

Pi{x'\Y^,Z^) > MAX{e^,Pi{x')), Viix'\Z^) < MIN(0^,P?(x'))

where Pr(a;) represents the ratio of an event x in the data set, and each of
Of,61,6^,62,9\ is a user-supplied threshold.

3 Application to the Meningitis Data Set

3.1 Conditions of the Applicatio n

The updated version of the meningitis data set [5] consists of 140 patients each
of whom is described with 38 attributes. Here, a length of a premise in a rule
pair is limited to one, i.e. fx = 1/ = 1, in the application. The other parameters
were settled as f̂ = 0.2, l9f = 0.75, f̂ = 5/140, 9 ̂ = 0.8, dl = 0.4.

Tsumoto, a domain expert, evaluated each discovered rule-pair from the view-
point of validness, novelty, unexpectedness, and usefulness. For each index of a
rule pair, he attributed an integer score ranging from one to five. A zero score
was attributed if he judged necessary.

3.2 Average Results and Analysis

Table 1 shows results of the experiment described in the previous section. From
the table, we see that the method outputted 169 rule pairs, and their average
performance is 2.9, 2.0, 2.0, and 2.7 for validness, novelty, unexpectedness, and
usefulness. Note that it is relatively easy to discovery valid or useful rule pairs
than novel or unexpected rule pairs. We inspected these rule pairs by group-
ing them with respect to the attribute in the conclusion, and found that these
attributes can be classified into four categories. The first category represents at-
tributes with the lowest scores, and includes CULTURE, C.COURSE, and RISK.
We consider that attributes in this category cannot be explained with this data
set, and investigation on them requires further information on other attributes.
The second category represents attributes with higher scores for validness and
usefulness, and includes FOCAL, LOC.DAT, and Diag2. We consider that at-
tributes in this category can be explained with this data set, and has been well
investigated probably due to their importance in this domain. We regard them as
one of important targets in discovery although one wil l often rediscover conven-
tional knowledge. The third category represents attributes with approximately
equivalent scores, and includes CT.FIND, EEGJOCUS, and Course (G). We
consider that attributes in this category can be explained with this data set, and
has not been investigated well in spite of their importance in this domain. We
regard them as one of the most important targets in discovery. The fourth cat-
egory represents attributes with higher scores for novelty and unexpectedness,
and includes CULT J I N D, KERNIG, and SEX. We consider that attributes in

210 E. Suzuki and Sh. Tsumoto

Table 1. Average performance of the proposed method with respect to attributes in
the conclusion. The column "#" represents the number of discovered rule pairs.

attribute
all

CULT-FIND
CT_FIND

EEG_FOCUS
FOCAL

KERNIG
SEX

LOCJDAT
Diag2

Course (G)
CULTURE
C-GOURSE

RISK

169

4
36
11
18
4
1

11
72
8
2
1
1

validness
2.9
3.3
3.3
3.0
3.1
2.0
2.0
2.5
3.0
1.8
1.0
1.0
1.0

novelty
2.0
4.0
3.0
2.9
2.2
3.0
3.0
1,8
1.1
2.0
1.0
1.0
1.0

unexpectedness usefulness
2.0
4.0
3.0
2.9
2.7
3.0
3.0
1.8
1.1
2.0
1.0
1.0
1.0

2.7
3.5
3.2
3.3
3.0
2.0
2.0
2,5
2.6
1.8
1.0
1.0
LO

this category can be explained with this data set, but has been somewhat ig-
nored. We consider that investigating these attributes using discovered rule sets
can lead to interesting discoveries which might reveal unknown mechanisms in
this domain in spite of their apparent low importance.

3.3 Examples of Discovered Rule Pairs

We have also pursued a best-case analysis, and found it much more promising
as expected. For instance, the following rule pair has a four-rank score for every
index.

83=<CSF_PR0=<121 ->CULT_FIND=F
83=<CSF_PR0=<121, FOCAL=+ ->CULT_FIND=T

This rule pair has the following statistics: Pr(y)̂ = 0.257, Pr(a;|r)̂ = 0.778,
Pr(y^,Z)̂ = 0.035, Pr(x'|y^,Z)̂ = 1.000, Pi{x'\Z^) = 0.285. In other words,
among 140 patients, 36 patients had 83=<CSF_PR0=<i21, and 78 % of them
were also CULT_FIND=F. However, five patients who were FOCAL=+ in addition
to 83=<CSF_PR0=<121 were actually all CULT_FIND=T. This exception rule is
interesting since only 28.5 % of patients who were FOCAL=+ were CULT_FIND=T.

Tsumoto also found several rule pairs concerning EEG_FOCUS, Diag2, FO-
CAL and CT_FIND very interesting. In a paper [5] comparing eleven KDD
methods with respect to this data set, he states this method as "structure of
rule pairs is very appealing to medical experts". He also admits that this method
discovered the most interesting results among eleven methods.

Evaluation Hypothesis-Driven Exception-Rule Discovery 211

4 Application to the Bacterial Test Da ta Set

The bacterial test da ta set represents a version preprocessed by Suzuki. I t con-
sists of 20,919 patients each of whom is admit ted in a hospital and is described
with 135 attr ibutes. In the application, the parameters were sett led as n + u <2,
ef = 0.01, (9f = 0.7, 6l| = 5/20919, 0 ̂ = 0.8, $1 = 0.5. We resolved two tasks
given with this da ta set, and thus restricted the at t r ibutes in the conclusion to
the existence of bacteria and effectiveness of various antibiotics.

The bacterial test da ta set has been provided by a hospital in Japan, and
related domains are so diverse that complete domain-knowledge has not been
established. Therefore, unlike the meningitis da ta set, i t i t difficul t to score the
results. Here, we show only one of the rule pairs that Tsumoto felt the most
interesting.

sex=M, LCMs=sensi t ive ->PCG=reg is tant
sex=M, LCMs=sens i t ive, ward=surgery ->PCG=sens i t i ve

where "LCMs" and "PCG" are both antibiotics. The common sense rule holds
true 52.8 % for 598 patients, while the exception rule holds t rue for 34 patients
among 46. However, among the patients who were ward=surgery, only 1.6 %
were PCG=sens i t ive. This rule pair is especially important since it can reveal
mechanisms related to antibiotics as well as discover anomalies in a ward.

5 Conclusions

In this paper, a hypothesis-driven discovery method for exception rules was
applied to two medical da ta sets, and the results were evaluated by a domain
expert. An average-case analysis for the meningitis da ta set showed that this
approach is highly effective. A best-case analysis for the bacterial test da ta set
also led to discovery of highly interesting knowledge.

References

1. E. Suzuki and M. Shimura : Exceptional Knowledge Discovery in Databases Based
on Information Theory, Proc. Second Int'l Conf. Knowledge Discovery and Data
Mining (KDD-96), AAA I Press, Menlo Park, Calif., pp. 275-278 (1996).

2. E. Suzuki: "Autonomous Discovery of Reliable Exception Rules", Proc. Third Int'l
Conf. Knowledge Discovery and Data Mining (KDD-97), AAA I Press, Menlo Park,
Calif., pp. 259-262 (1997).

3. E. Suzuki and Y. Kodratoff: "Discovery of Surprising Exception Rules based on
Intensity of Implication", Principles of Data Mining and Knowledge Discovery
(PKDD'98), LNAI1510, Springer, Berlin, pp. 10-18 (1998).

4. E. Suzuki: "Scheduled Discovery of Exception Rules", Discovery Science (DS'99),
LNAI nZl, Springer, Berlin, pp. 184-195 (1999).

5. S. Tsumoto et al.: "Comparison of Data Mining Methods using Common Medi-
cal Datasets", ISM Symposium: Data Mining and Knowledge Discovery in Data
Science, The Inst, of Statistical Math., Tokyo, pp. 63-72 (1999).

Discovering Protein Functional Models
Using Inductive Logic Programming

Takashi Ishikawa ,̂ Masayuki Numao ,̂ and Takao Teranô

^ Dept. of Information and Computer Eng., Kisarazu National College of Technology,
Chiba 292-0041, Japan,

teJsasliiSj .kisarazu.ac.jp,
http://www.kisarazu.ac.jp/'jisikawa/

^ Dept. of Computer Sci., Faculty of Eng., Tokyo Institute of Technology,
Tokyo 152-8552, Japan,

numaoScs. titech.. ac. jp,
http://www.nm.cs.titech.ac.jp/numEio/

^ Graduate School of Systems Management, The University of Tsukuba,
Tokyo 112-0012, Japan,

teranoSgssm.otsuka.tsukuba.ac.jp ,
http://www.gssm.otsuka.tsukuba.ac.jp/stafF/~terano/

Abstract. The paper describes a method for meuihine discovery of pro-
tein functional models from protein databases using Inductive Logic Pro-
gramming based on top-down search for relative least general generaliza-
tion. The method discovers effectively protein function models that ex-
plain the relationship between functions of proteins and their amino acid
sequences described in protein databases. The method succeeds in dis-
covering protein functional models for forty membrane proteins, which
coincide with conjectured models in literature of molecular biology.

1 Introduction

Inductive Logic Programming (ILP) [9] has succeeded in applications to molec-
ular biology including secondary structure prediction of protein [8] and other
problems [3]. However, ILP has not been applied to the central problem that
is to explain the relationship between protein functions and their amino acid
sequences. The paper aims at solving the problem of protein function prediction
by discovering protein functional models [5] using ILP.

Traditional methods for protein function prediction use homology search and
sequence motif \1]. Homology search uses global similarities of amino acid se-
quences to find protein of similar functions. On the other hand, sequence motifs
are local patterns of amino acid sequences that are unique to certain functions
of proteins and are stored in the database for some protein functions [2]. Protein
function prediction by sequence motifs is based on matching the target amino
acid sequence with sequence motifs in the database. These methods use global
or local similarities among amino acid sequences to find protein of similar func-
tions. Therefore these methods are limited to proteins with almost same amino

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 212-215, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Discovering Protein Functional Models 213

acid sequences in global or local regions from their fundamental principles. An
another method for protein function prediction uses 3D structures of proteins,
but 3D structures are difficult to predict from amino acid sequences.

2 Protein Functional Models

The approach of the paper to protein function prediction is based on the assump-
tion that combinations of functional sites, which are sequence patterns of amino
acid sequences, characterize a protein function. Functional sites are associated
with secondary structures of proteins in order to specify their position in the 3D
structures. In our protein functional models, functional sites are represented by
strings of characters that code amino acids and combination of functional sites
are used to discriminate narrow functional difference. Furthermore, using protein
functional models allows us to predict protein functions from only amino acid
sequences instead of requiring geometrical information representing 3D struc-
tures.

A protein functional model is represented by the following clause in a logical.

protein{ID, FUNCTION) <- subseq{ID, PATTERN, POS/STD),...

The head of the clause is a literal representing that the protein ID has FUNC-
TION using predicate protein. The body of the clause is a conjunction of lit -
eral representing that the protein ID has subsequence pattern PATTERN at
POS/STD using predicate subseq. Here POS stands for secondary structure po-
sition of the pattern and STD stands for standard protein's ID for which POS is
given. The secondary structure position is determined by finding the most similar
subsequence in the amino acid sequence of the protein STD in the corresponding
secondary structure.

3 A Method for Discovery

The approach of the paper to protein function prediction employs inductive
logic programming to discover protein functional models. Inductive logic pro-
gramming is a machine learning technique suitable for generating hypotheses
represented by first order predicate logic allowing to describe elements of ob-
jects and relation among elements like protein functional models. Unfortunately,
traditional inductive logic programming systems such as Progol [10] and FOIL
[11] are difficult to apply to discovering of protein functional models because of
their restriction for hypothesis language.

We have developed an ILP method [6] that satisfies the requirements above,
which integrates a top-down method and a bottom-up method of inductive logic
programming. The method is based on the top-down search utilizing an informa-
tion theoretic heuristic used in FOIL [11] and generate literals in the hypothesis
clause using relative least general generalization [rlgg) used in GOLEM [7] in a
bottom-up manner. The information theoretic heuristic makes the method ef-
ficient instead using mode declaration. The use of rlgg enables the method to

214 T. Ishikawa, M. Numao, and T. Terano

generate hypotheses involving literals with function terms in order to describe
sub sequence patterns as a list of characters.

In the top-down search for hypothesis clauses, the method generates selec-
tively literals satisfying the following conditions in order to generate clauses with
less redundant literals.

(a) having common variable(s) with existing literals in the hypothesis clause
(b) being Igg of two ground unit clauses in the background knowledge
(c) giving information gain when the literal is added to the body of the clause

4 Exper iment

We have conducted learning experiments in which the discovered results are
compared to the known functional models to evaluate the effectiveness of the
proposed method. The materials are forty membrane proteins in the protein
database SWISS-PROT [2] listed below, for which protein functional models are
known in the literature of molecular biology.

Input data and the discovering program are described by MacProlog32 and
the computation is performed on Power Macintosh 8100/lOOAV. The sum of
positives and negatives is forty and the number of background unit clauses is
about 16000.

Bacteriorhodopsin is a protein that exist in cell membrane of a special bac-
teria and has protein function of proton pump which transports proton (i.e.,
hydrogen ion) using photo energy. The functional sites of bacteriorhodopsin are
considered to be three amino acids D, K, D in the amino acid sequence.

Figure 1 shows the correspondence between the experimental results and the
known functional sites in the amino acid sequence of bacteriorhodopsin [4]. The
numbers above amino acid in Figure 1 indicate the number of trans membrane
domain and symbols '+' and '-' denote specific amino acids in the discovered
functional sites and any amino acids respectively. The correspondence indicates
that the method re-discovered all the functional sites of bacteriorhodopsin.

5 Conclusion

The paper described a method to discover protein functional models from pro-
tein databases using Inductive Logic Programming based on top-down search
for relative least general generalization. Protein function models explain the re-
lationship between protein functions and their amino acid sequences described
in protein databases. The method succeeded in discovering protein functional
models for forty membrane proteins, which coincide with conjectured functional
models in the literature of molecular biology.

Discovering Protein Functional Models 215

1111111 1 111111111 1
MDPIALTAAV GADLLGDGRP ETLWLGIGTL LMLIGTFYF I

1111 2222 2 222222222 2 222222222 2
VKGWGVTDKE AREYYSITI L VPGIASAAYL SMFFGIGLTE

2 3*33 3 3333333*3 3 33 3 4
VQVGSEMLDI YYARYADWLF TTPLLLLDL A LLAKVDRVSI

++—+ -++++++ +

444444444 4 44444444 4 5 555555555 5
GTLVGVDALM IVTGLVGALS HTPLARYTWW LFSTICMI W

555555555 5 6666 6 666666666 6
LYFLATSLRA AAKERGPEVA STFNTLTALV LVLWTAYPIL

+ + —

66666 7777777 7 7777777*7 7 77777 7
WIIGTEGAGV VGLGIETLL F MVLDVTAKVG FGFILLRSR A
+ -+-+ + + + — + + — -

ILGDTEAPEP SAGAEASAAD

Fig. 1. Functional Sites of bacteriorhodopsin

References

1. Attwood, T. K. and Parry-Smith, D. J.: Introduction to bioinformatics. Longman
(1999)

2. Bairoch, A, Bucher, P., and Hofmann, K.: The PROSITE database, its status in
1997, Nucl. Acids Res., Vol.24, pp.217-221 (1997)

3. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (eds.).:
Advances in Knowledge Discovery and Data Mining, AAA I Press/The MI T Press
(1996)

4. Futai, M. (ed.): Biomembrane Engineering (in Japanese), Maruzen (1991)
5. Ishikawa, T., Mitaku, S., Terano, T., Hirokawa, T., Suwa, M., and Seah, B-C:

Building A Knowledge-Base for Protein Function Prediction using Multistrategy
Learning, In Proceedings of Genome Informatics Workshop 1995, pp.39-48 (1995)

6. Ishikawa, T., Tereino, T. and Numao, M.: A Computation Method of Relative Least
General Generahzation Using Literal Association and MDL Criteria, Journal of
Japanese Society for Artificial Intelligence (in Japanese), Vol.14, No. 2, pp.326-
333 (1999)

7. Muggleton, S. and Feng, C: Efficient Induction of Logic Programs, In Proceedings
of the 1st Conference on Algorithmic Learning Theory, Ohmsha (1990)

8. Muggleton, S., King, R., and Sternberg, M.: Protein Secondary Structure Predic-
tion using Logic, Protein Engineering, Vol.5, pp.647-657 (1992)

9. Muggleton, S. and De Raedt, L.: Inductive Logic Programming: Theory and Meth-
ods, The Journal of Logic Programming, Vol.19, pp.629-679 (1994)

10. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing, Vol.13,
pp.245-286 (1995)

11. Quinlan, R.: Learning Logical Definition from Relations, Machine Learning, Vol.5,
pp.239-266 (1990)

Mining Web Transaction Patterns
in an Electronic Commerce Environment

Ching-Huang Yun and Ming-Syan Chen

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan, ROC
chyuiiSarbor. ee.ntu. edu. tw, mschenQcc. ee.ntu. edu. tw

Abstract. In this paper, we explore a new data mining capability which
involves mining Web transaction patterns for an electronic commerce
(EC) environment. We propose an innovative mining model that takes
both the traveling patterns and purchasing patterns of customers into
consideration. First, we develop algorithm WR to extract meaningful
Web transaction records from Web transactions so as to filter out the ef-
fect of irrelevant traversal sequences. Second, we devise algorithm WTM
for determining the large transaction patterns from the Web transaction
records obtained.

1 Introduction

Some existing electronic commerce environments [1][2], Web pages are usually
designed as shop-windows. Customers can visit these Web pages and make Web
transactions through the Web interface. It is known that mining information
from such an EC system can provide very valuable information on consumer
buying behavior and the quality of business strategies can then be improved [4].
Consequently, we shall explore in this paper a new data mining capability which
involves mining Web transaction patterns for an EC environment.

First, for each Web transaction, we develop algorithm Web-transaction-Record
(WR) algorithm, to extract meaningful Web transaction records from a given
Web transaction. Each Web transaction record is represented by the form: ipath:
a set of purchases^, where a purchase, denoted by N(i), means that item i was
purchased in node N along the path. After all the Web transaction records are
derived from Web transactions, algorithm Web Transaction Mining (WTM) is
developed for determining the large transaction patterns from the Web trans-
action records. Similarly to DHP [6], algorithm WTM utilizes the purchasing
patterns for the candidate transaction pattern generation in the pattern discov-
ering procedure. An illustrative example is given for the algorithm proposed.

This paper is organized as follows. Preliminaries are given in Section 2. Algo-
rithms for determined Web transaction patterns is described in Section 3. This
paper concludes with Section 4.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 216-219, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Mining Web Transaction Patterns in an Electronic Commerce Environment 217

2 Prelimingiries

Let N = {ni , n2,.", Hg} be a set of nodes in the EC environment and I = {ii , i2,-"!
ift} be a set of items sold in the system. We then have the following definitions.

Definitio n 1. Let iSiS2...Sy : ni{ii}, ra2{J2}j---, ^x{h:}s ^ ̂ ' ̂transaction pat-
tern, where i^ Q I for 1 < m < x, and {ni, n2,..., nx} Q {si , S2,-.., Sy} C N.
Then, jsiS2...Sy : ni{ii), n2{v2^,..., nx{ix]i, is said to pattern-contain a trans-
action pattern jw\W2---Wq : r\{ti}, r2{t2},---) 'p{^} d /̂ '̂ "'^ o^'j/ if {siS2-..Sy}
contains and{ni{ii}, n2{i2},---, nx{ix}} contains {ri{ti}, r2{t2},-..,
rp{tp}}-

Definitio n 2. A Web transaction is said to pattern-contain iwiW2...Wq
: Tiiti}, r2{i2},... , rp{tp}i if one of its Web transaction records pattern-contains
jwiW2...Wg : ri{ti}, r2{fe},..., rp{tp}i.

A Web transaction consists of a set of purchases along the corresponding
nodes in its traversal path. A transaction pattern is a large transaction pattern
if there is a sufficient number of Web transactions pattern-containing it. It is
worth mentioning that by taking both the traveling patterns and purchasing
patterns into consideration, the problem of mining Web transaction patterns is
in nature different from those addressed in prior works [3] [5].

3 Algorithms for Web Transaction Pat te rns

In general, a Web transaction, generated from electronic commerce services, con-
sists of a traversal path and a list of items purchased along the path. Given a
Web transaction of a customer, algorithm WR is devised to derive Web trans-
action records to capture the customer traveling and purchasing behaviors in an
EC environment.
Algorith m W R
Step 1. For each Web transaction, constructing a customer transaction tree by
mainly incorporating customer transaction records, which correspond to nodes
with purchases, as branches. Each customer transaction record includes the
traversal path and the items purchased in the last node of this path.
Step 2. Determining all the Web transaction records by traversing customer
transaction tree obtained in Step 1 in a depth-first manner.
Step 3. Storing the Web transaction, including the Web transaction records and
the corresponding WTJD, into the database.
Algorith m W T M

A transaction pattern with k-purchase isiS2...Sp: ni{i i} , n2{i2},--- , ak{h}i is
called a large k-transaction pattern, if there are a sufficient number of Web trans-
actions pattern-containing it. Let Ck be a candidate set of large k-transaction
patterns and Tk represent the set of the large k-transaction patterns. Similarly to
DHP [6], WTM utilizes large transaction patterns for generating candidate trans-
action patterns. Furthermore, WTM employs a sophisticated hash tree, called

218 Ch.-H. Yun and M.-S. Chen

VMjlbnsactiai i

wriD
lOO

200

300

400

Pttfa
ABCE

ABFCB
ASJL
ABCE
ASI W
ABCE
ABFO
ASJL
ABD

ABFG
ASIL Q

Pbitfaxse*
B(,,l.Cfi,).E(i,>

Bf i , } .H(U
Sf i . (.Ui .)

B(i ,) ,C(U.E(i ,)
S W . C X i J
BO,).ES,)
B(i,}.G(l:,)

SW.JfU.K U
Dft.)
G(iJ

S{i , ! .J(iJ.Q(i , J

P>lli
AB
ABC
ABD
ABCE
ABK 3
ABFGH
AS
AST
Asn
ASTLO

E'urchase
B(>,)

tfi.)
b(i,)
S(u)
Gfi J
HW
S(i,)
TfU)
L W
Q(' .)

&i p

3
2
1
3
2
1
4
2
2
2

Plh
AB
ABC
ABCE
ABFO
AS
ASJ
ASXL
ASIL O

Purch»«
Bfi. l
CM
E(i.l
G(>,1
S(i,l

KU
Ui.)
«,«)

Sup,
3
2
3
2
4
2
2
2

!>ath
ABC
ABCE

Purdiasec
B(i,).ai j
B(i,).£(i.)

Sup.
2
3

p2|«28 AS
AST

B(i,). S(i,l
B(i,),I(iJ

0
0

Asao
ASIIJ O

nu.or.j
LW,Q{i,») ..

1
0

tA
ABCE

Purthases
B{i,),C(.,),Efi.)

Sip.
2

M l
ABC
ABCE
ABCE
AST
ASJL
ASTLO

^urchatu
B(i,).C(i, l
BOO.ErU
C M . E (i , l
S W . J f i . !
S M . L W
S W . O f i J

Skip.

2
3
2
2
2
2

Ewh
ABCE

Purehascs
B{,,).C(i,).E(i,)

Sop.
2

Fig. 1. An illustrative example for mining Web transaction patterns

Web transaction tree, to store candidate transaction patterns. WTM hashes not
only each node but also each purchase in the path. According to each Web
transaction record of a Web transaction, the support of a candidate transaction
pattern is determined by the number of Web transactions that pattern-contain
this candidate transaction pattern. WTM then obtains the large transaction pat-
terns by destructing the Web transaction tree. Consider the example scenario
in Figure 1. In the first pass, where WTM constructs the Web transaction tree
by hashing each Web transaction record to construct the Web transaction tree
and counts the support of individual purchases. Then, WTM destructs the Web
transaction tree for deriving T\, the set of large 1-transaction patterns. In each sub-
sequent pass, WTM starts with the large transaction patterns found in the previous
pass for generating new candidate transaction patterns to be stored in a Web trans-
action tree. Then, WTM proceeds to the counting of supports and finally reaches the
generation of large transaction patterns.

After all large transaction patterns are obtained, one can derive the Web-
transaction association rules from the large transaction patterns. In this example,
jABCE : B{ii} , C{i2} , E{i4} i is one large 3-transaction pattern with support = 2 and
jAB : B{ii} ^ is one large 1-transaction pattern with support = 3. As a result, we can
derive one Web-transaction association rule jABCE : B{ii } = ^ C{i2} , E{i4} ^ with
the support equal to support(iABCE : B{ii} , C{i2} , E{i4}i) = 2 and the confidence

support«ABCE:BUi),C{i2],EU4}» _ g y^
^^ ' l ^ ' ^' ̂ supporti<AB:B{h}>) - o r /c.

4 Conclusion

In this paper, we explored a new data mining capability which involves mining
Web transaction patterns. First, we developed algorithm WR to extract mean-
ingful Web transaction records from Web transactions so as to filter out the

Mining Web Transaction Patterns in an Electronic Commerce Environment 219

effect of irrelevant traversal sequences. Second, we devised algori thm W T M for
determining the large transact ion pat terns from the Web transact ion records
obtained.

A c k n o w l e d g m e n ts

The authors are supported in part by the National Science Council, Project
No. NSC 89-2219-E-002-007 and NSC 89-2213-E-002-032, Taiwan, Republic of
China.

References

1. http://www.amazon.com/.
2. http://www.ax3l.com/.
3. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large

Databases. Proceedings of the 20th International Conference on Very Large Data
Bases, pages 478-499, September 1994.

4. A. G. Buchner and M. Mulvenna. Discovery Internet Marketing Intelligence through
Online Analytical Web Usage Mining. ACM SIGMOD Record, 27(4):54-61, Dec.
1998.

5. M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data Mining for Path Traversal
Patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2):209-221,
Apri l 1998.

6. J.-S. Park, M.-S. Chen, and P. S. Yu. Using a Hash-Based Method with Transaction
Trimming for Mining Association Rules. IEEE Transactions on Knowledge and Data
Engineering, 9(5);813-825, October 1997.

Making Use of the Most Expressive Jumping Emerging
Patterns for Classification

Jinyan L i \ Guozhu Dong ,̂ and Kotagiri Ramamohanaraô

' Department of CSSE, The University of Melbourne, Parkville, Vic. 3052, Australia.
{ j y l i , r a o } @ c s . m u . o z . au

^ Dept. of CSE, Wright State University, Dayton OH 45435, USA.
gdong@cs.wright.ed u

Abstract. Classification aims to discover a model from training data that can
be used to predict the class of test instances. In this paper, we propose the use
oi jumping emerging patterns (JEPs) as the basis for a new classifier called the
JEP-Classifier. Each JEP can capture some crucial difference between a pair of
datasets. Then, aggregating all JEPs of large supports can produce more potent
classification power. Procedurally, the JEP-Classifier learns the pair-wise features
(sets of JEPs) contained in the training data, and uses the collective impacts con-
tributed by the most expressive pair-wise features to determine the class labels of
the test data. Using only the most expressive JEPs in the JEP-Classifier strength-
ens its resistance to noise in the training data, and reduces its complexity (as there
are usually a very large number of JEPs). We use two algorithms for constructing
the JEP-Classifier which are both scalable and efficient. These algorithms make
use of the border representation to efficiently store and manipulate JEPs. We also
present experimental results which show that the JEP-Classifier achieves much
higher testing accuracies than the association-based classifier of [8], which was
reported to outperform C4.5 in general.

1 Introductio n

Classification is an important problem in the fields of data mining and machine learn-
ing. In general, classification aims to classify instances in a set of test data, based on
knowledge learned from a set of training data. In this paper, we propose a new classifier,
called the JEP-Classifier, which exploits the discriminating power oi jumping emerging
patterns (JEPs) [4]. A JEP is a special type of EP [3] (also a special type of discrimi-
nant rule [6]), defined as an itemset whose support increases abruptly from zero in one
dataset, to non-zero in another dataset — the ratio of support-increase being oo. The
JEP-Classifier uses JEPs exclusively, and is distinct from the CAEP classifier [5] which
mainly uses EPs W\lh finite support-increase ratios.

The exclusive use of JEPs in the JEP-Classifier is motivated by our belief that JEPs
represent knowledge which discriminates between different classes more strongly than
any other type of EPs. Consider, for example, the Mushroom dataset taken from the
UCI data repository [1]. The itemset {ODOR = foul} is a JEP, whose support increases
from 0% in the edible class to 55% in the poisonous class. If a test instance contains
this particular EP, then we can claim with a very high degree of certainty that this

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 220-232, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Most Expressive Jumping Emerging Patterns for Classification 221

instance belongs to the poisonous class, and not to the edible class. In contrast, other
kinds of EPs do not support such strong claims. Experimental results show that the
JEP-Classifier indeed gives much higher prediction accuracy than previously published
classifiers.

Example 1. This simplified example illustrates how JEPs are used in the JEP-Classifier.
Consider two sets of training data, Pi and V^, such that all instances in Pi are of Class
1, and all instances in P2 are of Class 2. Let each instance be a subset of {a, 6, c, d, e}
(see Table 1). Question: Which class should the test instance {a, b, 6) be classified as?

Table 1. Two simplified datasets containing 4 instances each.

Vi
a
a

b
b

c

c

d

d

e

e
e

I>2
a

a

b

b
c
c d

d

e

e

Answer: Class 2. Rationale: The test instance {a, 6, c} contains the JEP {a, 6} from
Pi to P2, whose support in P2 is 50%. Furthermore, the remaining proper subsets of
[a, b, c} — namely, {a}, {b}, {c}, {a, c} , and {b, c} — appear in both classes of data
with the same frequencies. These facts give us a higher confidence that the test instance
should be classified as Class 2.

In general, a test instance T may contain several JEPs, and these EPs can favour
different classes. Consider again the datasets in Table 1, this time with the test instance
T = {a, b, e}. The instance T contains the following JEPs:

- the subsets {b, e} and {a, e}, in favour of Class 1 with supports in Pi of, respec-
tively, 50% and 25%;

- the subset {a, 6} in favour of Class 2, with a support in P2 of 50%.

We let all three JEPs contribute an impact equal to its support in its favoured class — the
final decision is reached using the collective impact, obtained as the sum of the impacts
of the individual JEPs, and choosing the class with the largest collective impact as the
class of the test instance. It follows that the instance {a, b, e} should be classified as
Class 1, since the collective impact in favour of Class 1 (50% -I- 25% = 75%) is larger
than that of Class 2 (50%). This aggregation of the supports of JEPs is at the core of the
JEP-Classifier.

There can be a large (e.g., 10®) number of JEPs in the dense and high-dimensional
datasets of a typical classification problem. Obviously, the naive approach to discover-
ing all JEPs and calculating their collective impacts is too time consuming. For the JEP-
Classifier, we utilize two border-hased algorithms [3,4] to efficiently discover concise
border representations of all JEPs from training dataset. The use of the border repre-
sentation simplifies the identification of the most expressive JEPs. Intuitively, the most
expressive JEPs are those JEPs with large support, which can be imagined as being at

222 J. Li, G. Dong, and R. Kotagiri

the "frontier" of the set of JEPs. Itemsets which are proper subsets of the boundary item-
sets are not JEPs, while itemsets which are proper supersets of the boundary itemsets
must have supports not larger than the largest support of the boundary itemsets. These
boundary JEPs represent the essence of the discriminating knowledge in the training
dataset. The use of the most expressive JEPs strengthens the JEP-Classifier's resistance
to noise in the training data, and can greatly reduce its overall complexity. Borders are
formally defined in Section 3.

Example I above deals with a simple database containing only two classes of data.
To handle the general cases where the database contains more classes, we introduce
the concept of pair-wise features, which describes a collection of the discriminating
knowledge of ordered pairs of classes of data. Using the same idea for dealing with two
classes of data, the JEP-Classifier uses the collective impact contributed by the most
expressive pair-wise features to predict the labels of more than two classes of data.

Our experimental results (detailed in Section 5) show that the JEP-Classifier can
achieve much higher testing accuracy than previously published classifiers, such as the
classifier proposed in [8], which generally outperforms C4.5, and the classifier in [5].
In summary, the JEP-Classifier has superior performance because:

1. Each individual JEP has sharp discriminating power, and
2. Identifying the most expressive JEPs and aggregating their discriminating power

leads to very strong classifying ability.

Note that the JEP-Classifier can reach a 100% accuracy on any training data. However,
unlike many classifiers, this does not lead to the usual overfitting problems, as JEPs can
only occur when they are supported in the training dataset.

The remainder of this paper is organised as follows. In Section 2, we present an
overall description of the JEP-Classifier (the learning phase and the classification pro-
cedure), and formally define its associated concepts. In Section 3, we present two algo-
rithms for discovering the JEPs in a training dataset: one using a semi-naive approach,
and the other using a border-based approach. These algorithms are complementary,
each being useful for certain types of training data. In Section 4, we present a process
for selecting the most expressive JEPs, which efficiently reduces the complexity of the
JEP-Classifier. In Section 5, we show some experimental results using a number of
databases from the UCI data repository [1]. In Section 6, we outline several previously
published classifiers, and compare them to the JEP-Classifier. Finally, in Section 7, we
offer some concluding remarks.

2 The JEP-Classifier

The framework discussed here assumes that the training database O is a normal re-
lational table, consisting of N instances defined by m distinct attributes. An attribute
may take categorical values (e.g., the attribute COLOUR) or numeric values (e.g., the
attribute SALARY). There are q known classes, namely Class 1, , Class q; the N
instances have been partitioned into q sets. P i, P2, i ^g. according to their classes.

To encode P as a binary database, the categorical attribute values are mapped to
items using bijections. For example, the two categorical attribute values, namely red and

Most Expressive Jumping Emerging Patterns for Classification 223

yellow, of COLOR, are mapped to two items: (COLOR = red) and (COLOR = yellow).
For a numeric attribute, its value range is first discretized into intervals, and then the
intervals are mapped to items using an approach similar to that for categorical attributes.
In this work, the values of numeric attributes in the training data are discretized into 10
intervals with the same length, using the so-called equal-length-bin method.

Let / denote the set of all items in the encoding. An itemset X is defined as a subset
of /. The support of an itemset X over a dataset V is the fraction of instances in V
that contain X, and is denoted suppx)' {X).

The most frequently used notion, JEPs, is defined as follows:

Definition 1. The JEPs from V to T>", denoted JEP(r>', V"), (or called the JEPs of
V" over V, or simply the JEPs of T>" if V is understood), are the itemsets whose
supports in V are zero but in "D" are non-zero.

They are mmed jumping emerging patterns (JEPs), because the supports of JEPs grow
sharply from zero in one dataset to non-zero in another dataset.

To handle the general case where the training dataset contains more than two classes,
we introduce the concept of pair-wise features.

Definition 2. The pair-wise features in a dataset V, whose instances are partitioned
into q classes X>i, , T>q, consist of the following q groups of JEPs: those ofV\ over
U^^2^j' (hose 0/P2 over U j / j ^ j ' ' ' " and those ofVq over U'jZiVj.

For example, if g = 3, then the pair-wise features in V consist of 3 groups of JEPs:
those of Vi over 1)2 U P3, those of I?2 over T>i U 2?3, and those of D3 over 2?i U X'2.

Example 2. The pair-wise features in I>i and D2 of Table 1 consist of the JEPs from Vi
toT>2, {a,b}, {a,b,c}, {a,b,d}, {a,6,c,d}, and the JEPs from 1)2 to P i, {a, e}, {b,e},
{a,c, e}, {a, d,e}, {b,c, e}, {b,d, e}, {c, d, e}, {a, c, d, e}, {b, c,d, e}.

Note that we do not enumerate all these JEPs individually in our algorithms. Instead,
we use borders to represent them. Also, the border representation mechanism facilitates
the simple selection of the most expressive JEPs. The concept of border was proposed in
[3] to succinctly represent a large collection of sets. (It wil l be reviewed later in section
3.)

Continuing with the above example, the JEPs from Pi to P2 can be represented
by the border of <{{a,6}} , {{a,b,c,d}}>. Its left bound is {{a,b}}, and its right
bound is {{a, b, c, d}}; it represents all those sets that are supersets of some itemset
in its left bound, and are subsets of some itemset in its right bound. Obviously, {a, b},
the itemset in the left bound, has the largest support among all itemsets covered by
the border. Similarly, the JEPs from P2 to Pi can be represented by two borders:
<{{a , e}, {c, d, e}}, {{a, c, d, e}}> and <{{6 , e}, {c, d,e}}, {{b, c, d, e}}> . (Details
wil l be given in Section 4.) Therefore, the most expressive JEPs in Vi and P2 are those
in the set of {{a, b}, {a, e}, {6, e}, {c, d, e}} , the union of the left bounds of the three
borders above. Observe that it is much smaller than the set of all JEPs.

In JEP-Classifier, the most expressive JEPs play a central role. To classify a test
instance T, we evaluate the collective impact of only the most expressive JEPs that are
subsets of T.

224 J. Li, G. Dong, and R. Kotagiri

Definition 3. Given a pair ofdatasets V and V" and a test instance T, the collective
impact in favour of the class ofV contributed by the most expressive JEPs ofV and
ofV is defined as

E suppv'{X),

xeMEJEP(V',v") and xcT

where MEJEP{V, V") is the union of the most expressive JEPs ofV over V" and the
most expressive JEPs ofV" over V. The collective impact in favour of the class ofD"
is defined similarly.

The classification procedure of JEP-Classifier for a given test instance is a simple
process as follows. Given a test instance T, the q collective impacts respectively in
favour of the q classes are first computed. Then, the JEP-Classifier determines the class
label as the class where T obtains the largest collective impact. When a tie occurs
(i.e., the collective impacts obtained are equal), we can use popularities to break the tie.

Training Data (3 Classes)
"V{ T""V2 j"p^-

By MBD-LLborder or naive algorithm (c^er Horizon-Miner)

Pair-wise Features
{EPfi"+""2","3TTTEP(i"T"3","2)i" " JEP("2"+3

Test
Data

The Mo.st Expressive JEPs

^~ r
Calculating the collective impacts

[when a test case T is given I
Collective impact in favor of

Qass I : Class 2 i

Determining the class label of T

Fig. 1. JEP-Classifier working on a database with three classes of data.

Figure 1 depicts how the JEP-Classifier is built from the training data, and how
it is then used to classify testing data, for the case when a database contains three
classes of data. In this figure, JEP(1 + 2,3) represents the JEPs from Dj U I>2 to
I>3, and similarly for JEP(1 -f 3,2) and JEP(2 + 3,1). The HORIZON-MINER [4] and
MBD-LLBORDER [3] algorithms, used to extract the pair-wise features from the train-
ing dataset, are outlined in Section 3. Determining the most expressive JEPs is discussed
in Section 4.

Most Expressive Jumping Emerging Patterns for Classification 225

3 Discovering the Pair-Wise Features

As the pair-wise features in T) are defined as the JEPs over q pairs of datasets, we only
need to consider how to discover the JEPs over one pair of datasets. Without loss of
generality, suppose dataset V consists of only two classes of data Pi and I>2. then the
pair-wise features in P are the JEPs from Vx to I>2 and the JEPs from P2 to Vi. Now,
we consider how to discover the JEPs from Pi to P2-

The most naive way to find the JEPs from Pi to P2 is to check the frequencies,
in Pi and P2, of all itemsets. This is clearly too expensive to be feasible. The prob-
lem of efficiently mining JEPs from dense and high-dimensional datasets is well-solved
in [3] [4]. The high efficiency of these algorithms is a consequence of their novel use
of borders [3]. In the following subsections we present two approaches to discovering
JEPs. The first approach is a semi-naive algorithm which makes limited use of bor-
ders, while the second approach uses an efficient border-based algorithm called MBD-
LLBORDER [3].

3.1 Borders, Horizontal Borders, and HORIZON-MINER

A border is a structure used to succinctly represent certain large collections of sets.

Definition 4. [3]. A border is an ordered pair <C, 7i> such that each of C and TZ is
an antichain collection of sets, each element of C, is a subset of some element in "R,, and
each element of TZ is a superset of some element in C; C is the left bound of the border,
and TZ is its right bound.

The collection of sets represented by <£, TZ> (also called the set interval of
<C,TZ>)is

[C,TZ] =^{Y\3X eC,3ZeTZ such that X CY C Z}.

We say that [C, TZ] has <£, TZ> as its border, and that each X G [£, TZ\ is covered by
<C,TZ>.

Example 3. The set interval of <{{a , 6}} , {{a , 6, c, d, e}, {a, b, c?, e, / } } > consists of
twelve itemsets, namely all sets that are supersets of {a, b} and that are subsets of either
{a, b, c, d, e} or {a, b, d, e, / } .

Definitions. The horizontal border of a dataset is the border <{0},7^ > that repre-
sents all non-zero support itemsets in the dataset.

Example 4. The horizontal border of Pi in Table 1 is<{0} , {{a , c, d, e},{6 , c, d, e}}> .

The simple HORlZON-MlNER algorithm [4] was proposed to discover the horizon-
tal border of a dataset. The basic idea of this algorithm is to select the maximum itemsets
from all instances in P (an itemset is maximal in the collection C of itemsets if it has
no proper superset in C). HORIZON-MINER is very efficient as it requires only one scan
through the dataset.

226 J. Li, G. Dong, and R. Kotagiri

3.2 The Semi-naive Approach to Discovering JEPs

The semi-naive algorithm for discovering the JEPs from X>i to T>2 consists of the fol-
lowing two steps: (i) Use HORIZON-MINER to discover the horizontal border of V2;
(ii) Scan I>i to check the supports of all itemsets covered by the horizontal border of
V2; the JEPs are those itemsets with zero support in X>i. The pruned SE-tree [3] can be
used in this process to irredundantly and completely enumerate the itemsets represented
by the horizontal border.

The semi-naive algorithm is fast on small databases. However, on large databases, a
huge number of itemsets with non-zero support make the semi-naive algorithm too slow
to be practical. With this in mind, in the next subsection, we present a method which is
more efficient when dealing with large databases.

3.3 Border-Based Algorith m to Discover JEPs

In general, MBD-LLBORDER [3] finds those itemsets whose supports in 152 are >
some support threshold 6 but whose support in Vi are less than some support threshold
5 for a pair of dataset T>i and 'D2. Specially, this algorithm produces exactly all those
itemsets whose supports are nonzero in 1)2 but whose supports are zero in Vi, namely
the JEPs from Pi to 'D2. In this case, MBD-LLBORDER takes the horizontal border
from Vi and the horizontal border from T>2 as inputs. Importantly, this algorithm does
not output all JEPs individually. Instead, MBD-LLBORDER outputs a family of borders
in the form of <Ci, TZi>, i = 1,- ,k,to concisely represent all JEPs.

Unlike the semi-naive algorithm, which must scan the dataset Z?i to discover the
JEPs, MBD-LLBORDER works by manipulating the horizontal borders of the datasets
Vi and r>2. As a result, the MBD-LLBORDER algorithm scales well to large databases.
This is confirmed by the experimental results in Section 5. The M B D - L L B O R D ER al-
gorithm for discovering JEPs is described in detail in the Appendix.

4 Selecting the Most Expressive JEPs

We have given two algorithms to discover the pair-wise features from the training data
V: the semi-naive algorithm is useful when T> is small, while the M B D - L L B O R D ER

algorithm is useful when T> is large. As seen in the past section, the M B D - L L B O R D ER

algorithm outputs the JEPs represented by borders. These borders can represent very
large collections of itemsets. However, only those itemsets with large support contribute
significantly to the collective impact used to classify a test instance. By using only the
most expressive JEPs in the JEP-Classifier, we can greatly reduce its complexity, and
strengthen its resistance to noise in the training data.

Consider JEP(Pi, V2) U JEP(272,2>i), the pair-wise features in V. Observe that
JEP (X>i, r>2) is represented by a family of borders of the form <Ci,1Zi>,i = 1,- ,k,
where the TZi are singleton sets (see the pseudo-code for M B D - L L B O R D ER in the
Appendix). We believe that the itemsets in the left bounds, £ j, are the most expressive
JEPs in the dataset. The reasons behind this selection include:

Most Expressive Jumping Emerging Patterns for Classification 227

- By definition, the itemsets in the left bound of a border have the largest supports
of all the itemsets covered by that border because the supersets of an itemset X
have snaaller supports than that of X. Then, the most expressive JEPs cover more
instances (at least equal) of the training dataset than the other JEPs.

- Any proper subset of the most expressive JEPs is not a JEP any more.

It follows that we can select the most expressive JEPs of JEP (Pi, I>2) by taking the
union of the left bounds of the borders produced by MBD-LLBORDER. This union is
called the LEFT-UNION of JEP(2?i,ri2). So, LEFT-UNION = UA. Similarly, we can
select the most expressive JEPs of JEP(I>2, P i). Combining the two LEFT-UNION, the
most expressive pair-wise features in T) are then constructed.

Algorithmicaily, finding LEFT-UNION can be done very efficiently. If the M B D -

LLBORDER algorithm is used, then we simply use the left bounds of the borders it
produces. In practice, this can be done by replacing the last line of the pseudo code of
the MBD-LLBORDER algorithm in the Appendix with

return the union of the left bounds of all borders in EPBORDERS.

If the semi-naive algorithm is used, then LEFT-UNION can be updated as each new
JEP is discovered.

Example 5. To illustrate several points discussed in this subsection, consider Pi and
T>2 from Table 1. The horizontal border of Vi is <{0} , {acde, bcde}>^, and that of
Pj is <{0} , {ce, de, abcd}>. The JEPs from T>2 to Pi are represented by two borders
<Ci,Tli>, i = 1,2, namely <{ae,cde},{acde}> and <{be,cde},{bcde}>. (The
readers can use MBD-LLBORDER in the Appendix to derive these borders.)

The border <{ae,cde},{acde}> consists of the JEPs {ae, ace, ade,cde, acde},
while the border <{be, cde}, {bcde}> consists of the JEPs {be, bee, bde, cde, bcde}.
Note that the JEPs in the left bounds have the largest supports.

The LEFT-UNION of JEP(P2, P i) is the union of the left bounds of the above two
borders, namely {ae, cde} U {be, cde} = {ae, be, cde}.

5 Experimental Results

In this section we present the results of our experiments, where we run the JEP-Classifier
on 30 databases (some contain up to 10 classes, some have up to 30162 instances,
some have up to 60 attributes) taken from the UCI Repository of Machine Learning
Databases [1]. These experiments were carried out on a 500MHz Pentiumin PC with
512M bytes of RAM. The accuracy was obtained using the methodology of ten-fold
cross-validation [10] (but one fold was tested in census-income).

The experiment's pre-processes are: (i) download original datasets, say P, from the
UCI website; (ii) partition P into class datasets P i ,P2, ,Pq; (iii) randomly shuffle
Vi,i = I,- ,q; (iv) for each P j, choose the first 10% instances as the testing data
and the remaining 90% as the training data. Repeatedly, choose the second 10% as the
testing data, and so forth; (v) if there exist continuous attributes, discretize them by our

' For readability, we use acde as shorthand for the set {a, c, d, e}.

228 J. Li, G. Dong, and R. Kotagiri

equal-length-bin method in the training datasets first, and then map the intervals to the
testing data. This step is used to convert the original training and testing data into the
standard binary transactional data. (These executable codes are available from the au-
thors on request.) After pre-processing, we followed the steps illustrated in Figure 1 to
get the results. Alternatively, MLC++ technique [7] was also used to discretize contin-
uous attributes in the glass, ionosphere, pima, sonar, and vehicle datasets. These testing
accuracies are reported in Table 2. The main disadvantage of MLC++ technique is that
it sometimes, for example in the liver dataset, produces many different instances with
different labels into identical instances.

Table 2. Accuracy Comparison.

Datasets
anneal*
australian*
breast-w*
census
clave*
crx*
diabete*
german*
glass*
heart*
hepatitis*
horse*
hypo*
ionosphere*
iris*
labor*
liver
lymph*
mushroom
nursery
pima*
sick*
sonar*
soybean
tic-tac-toe*
vehicle*
votel*
wine*
yeast*
zoo*

#inst, attri, class
998, 38, 5
690,14, 2
699,10, 2

30162,16, 2
303, 13, 2
690, 15, 2
768, 8, 2

1000, 20, 2
214, 9, 7

270,13, 2
155,19, 2
368, 28, 2

3163, 25, 2
351, 34, 2

150,4, 3
57, 16,2
345, 6, 2

148, 18,4
8124, 22, 2
12960, 8,5

768, 8, 2
4744, 29, 2
208, 60, 2
47, 34, 4
958, 9,2

846, 18,4
433,16, 2
178, 13, 3

1484, 8,10
101, 16,7

JEP-Cla.
4.4

13.66
3.73
12.7
15.81
14.06
23.31
24.8
17.4
17.41
17.40
16.8
2.69
6.9
2.67
8.67
27.23
28.4
0.0
1.04
20.4
2.33
14.1
0.00
1.0

27.9
8.53
6.11
33.72
4.3

CBA
1.9
13.2
3.9
-

16.7
14.1
24.7
25.2
27.4
18.5
15.1
17.9
1.6
7.9
7.1
17.0
-

18.9
-
-

26.9
2.7
21.7

-
0.0
31.2
6.4
8.4
44.9
5.4

C4.5rules
5.2
13.5
3.9
-

18.2
15.1
25.8
27.7
27.5
18.9
19.4
16.3
0.8
8.0
4.7
20.7
32.6
21.0

-
-

24.5
1.5
27.8
8.3
0.6
27.4
4.8
7.3

44.3
7.8

#JEPs
5059
9806
2190

68053
8633
9880
4581

32510
127

7596
5645

22425
1903
8170

161
1400
1269
5652
2985
1331

54
2789

13050
1928
2926

19461
5783
5531
2055
624

#CARs
65081
46564

399
-

1634
4717

162
69277

291
624

2275
7846
493

10055
23

313
-

2965
-
-

2977
627

1693
-

1378
5704

-
1494

-
686

Table 2 summarizes the results. In this table, the first column lists the name of each
database, followed by the numbers of instances, attributes, and classes in Column 2. The

Most Expressive Jumping Emerging Patterns for Classification 229

third column presents the error rate of the JEP-Classifier, calculated as the percentage
of test instances incorrectly predicted. Similarly, columns 4 and 5 give the error rate of,
respectively, the CBA classifier in [8] and C4.5. (These results are the best results taken
from Table 1 in [8]; a dash indicates that we were not able to find previous reported
results). Column 6 gives the number of the most expressive JEPs used by the JEP-
Classifier. The last column gives the number of CARs used in CBA.

These results raise several points of interest.

1. Our JEP-Classifier performed perfectly (100% or above 98.5% testing accuracy)
on some databases (nursery, mushroom, tic-tac-toe, soybean).

2. Among the 25 databases marked with * (indicating results of both CBA and C4.5
are available) in table 2, the JEP-Classifier outperforms both C4.5 and CBA on 15
datasets; CBA wins on 5; and C4.5 wins on 5 (in terms of the testing accuracies).

3. For the databases (with bold font), they have much larger data sizes than the re-
maining databases. The JEP-Classifier performs well on those datasets.

4. For unbalanced datasets (having unbalanced numbers of instances for each class),
the JEP-Classifier performs well. For example, nursery dataset contains 5 classes
and have respectively 4320,2,328,4266, and 4044 instances in each class. Interest-
ingly, we observed that the testing accuracy by the JEP-Classifier was consistently
around 100% for each class. For CBA, its support threshold was set as 1%. In this
case, CBA would mis-classify all instances of class 2. The reason is that CBA can-
not find the association rules in class 2.

Our experiments also indicate that the JEP-Classifier is fast and highly efficient.

- Building the classifiers took approximately 0.3 hours on average for the 30 cases
considered here.

- For databases with a small number of items, such as the iris, labor, liver, soy-
bean, and zoo databases, the JEP-Classifier completed both the learning and testing
phases within a few seconds. For databases with a large number of items, such
as the mushroom, sonar, german, nursery, and ionosphere databases, both phases
required from one to two hours.

- In dense databases, the border representation reduced the total numbers of JEPs (by
a factor of up to 10® or more) down to a relatively small number of border itemsets
(approximately 10^).

We also conducted experiments to investigate how the number of data instances
affects the scalability of the JEP-Classifier. We selected 50%, 75%, and 90% of data
instances from each original database to form three new databases. The JEP-Classifier
was then applied to the three new databases. The resulting run-times shows a linear
dependence on the number of data instances when the number of attributes is fixed.

6 Related Work

Extensive research on the problem of classification has produced a range of different
types of classification algorithms, including nearest neighbor methods, decision tree in-
duction, error back propagation, reinforcement learning, and rule learning. Most classi-
fiers previously published, especially those based on classification trees (e.g., C4.5 [9],

230 J. Li, G. Dong, and R. Kotagiri

CART [2]), arrive at a classification decision by making a sequence of micro decisions,
where each micro decision is concerned with one attribute only. Our JEP-Classifier, to-
gether with the CAEP classifier [5] and the CBA classifier [8], adopts a new approach
by testing groups of attributes in each micro decision. While CBA uses one group at
a time, CAEP and the JEP-Classifier use the aggregation of many groups of attributes.
Furthermore, CBA uses association rules as the basic knowledge of its classifier, CAEP
uses emerging patterns (mostly with finite growth rates), and the JEP-Classifier uses
jumping emerging patterns.

While CAEP has some common merits with the JEP-Classifier, it differs from the
JEP-Classifier in several ways:

1. Basic idea. The JEP-Classifier utilizes the JEPs of large supports (the most discrim-
inating and expressive knowledge) to maximize its collective classification power
when making decisions. CAEP uses the collective classifying power of EPs with
finite growth rates, and possibly some JEPs, in making decisions.

2. Learning phase. In the JEP-Classifier, the most expressive JEPs are discovered by
simply taking the union of the left bounds of the borders derived by the MBD-
LLBORDER algorithm (specialised for discovering JEPs). In the CAEP classifier,
the candidate EPs must be enumerated individually after the M B D - L L B O R D ER

algorithm in order to determine their supports and growth rates.
3. Classification procedure. The JEP-Classifier's decision is based on the collective

impact contributed by the most expressive pair-wise features, while CAEP's deci-
sion is based on the normalized ratio-support scores.

4. Predicting accuracy. The JEP-Classifier outperforms the CAEP classifier in large
and high dimension databases such as mushroom, ionosphere, and sonar. For small
datasets such as heart, breast-w, hepatitis, and wine databases, the CAEP classifier
reaches higher accuracies than the JEP-Classifier does. On 13 datasets where results
are available for CAEP, the JEP-Classifier outperforms CAEP on 9 datasets.

While our comparison to CAEP is still preliminary, we believe that CAEP and JEP-
Classifiers are complementary. More investigation is needed to fully understand the
advantages offered by each technique.

7 Concluding Remarks

In this paper, we have presented an important application of JEPs to the problem of
classification. Using the border representation and border-based algorithms, the most
expressive pair-wise features were efficiently discovered in the learning phase. The col-
lective impact contributed by these pair-wise features were then used to classify test in-
stances. The experimental results have shown that the JEP-Classifier generally achieves
a higher predictive accuracy than previously published classifiers, including the classi-
fier in [8], and C4.5, This high accuracy results from the strong discriminating power of
an individual JEP over a fraction of the data instances and the collective discriminating
power by all the most expressive JEPs. Furthermore, our experimental results show that
the JEP-Classifier scales well to large datasets.

Most Expressive Jumping Emerging Patterns for Classification 231

As future work, we plan to pursue several directions, (i) In this paper, collective
impact is measured by the sum of the supports of the most expressive JEPs. As alter-
natives, we are considering other aggregates, such as the squared sum, and adaptive
methods, such as neural networks, (ii) In this paper, JEPs are represented by borders.
In the worst case, the number of the JEPs in the left bound of a border can reach C^j^,
where N is the number of attributes in the dataset. We are considering the discovery and
use of only some of the itemsets in the left bound, to avoid this worst-case complex-
ity, (iii) In discovering JEPs using the MBD-LLBORDER algorithm, there are multiple
uses of the BORDER-DlFF sub-routine, dealing with different borders. By parallelizing
these multiple calls, we can make the learning phase of the JEP-Classifier even faster
and more scalable.

Acknowledgements

We are grateful to Richard Webber for his help. We thank Bing Liu and Jiawei Han for
useful discussions. We also thank the anonymous referees for helpful suggestions.

References

1. Blake, C. L., Murphy, P. M.: UCI Repository of machine learning database.
[http://www.cs.uci.edu/mleam/mlrepository.html]. Irvine, CA: University of California, De-
partment of Information and Computer Science (1998)

2. Breiman, L., Friedman, J., Olshen, R., Stone, C: Classification and Regression Trees.
Wads worth International Group (1984)

3. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences.
Proceedings of ACM SIGKDD'99 International Conference on Knowledge Discovery &
Data Mining, San Diego, USA, (1999) 43-52

4. Dong, G., Li, J., Zhang, X.: Discovering jumping emerging patterns and experiments on real
datasets. Proceedings of the 9th International Database Conference (IDC'99), Hong Kong,
(1999) 155-168

5. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging pat-
terns. DS-99: Second International Conference on Discovery Science, Tokyo, Japan, (1999)

6. Han, J., Fu, Y.: Exploration of the power of attribute-oriented induction in data mining. In:
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds): Advances in Knowl-
edge Discovery and Data Mining. AAAI/MI T Press (1996) 399^21

7. Kohavi, R. , John, G. , Long, R. , Manley, D. , Pfleger, K.: MLC++: a machine learning
library in C++. Tools with artificial inteUigence, (1994) 740-743

8. Liu, B., Hsu, W, Ma, Y.: Integrating classification and association rule mining. Proceedings
of the 4th International Conference on Knowledge Discovery in Databases and Data Mining,
KDD'98 New York, USA (1998)

9. Quinlan, J. R.: C4. 5: program for machine learning. Morgan Kaufmann (1992)
10. Salzberg, S. L.: On comparing classifiers: pitfalls to avoid and a recommended approach.

Data Mining and Knowledge Discovery 1 (1997) 317-327

Appendix: MBD-LLBORDER for Discovering JEPs
Suppose the horizontal border of Pi is <{0} , {Ci , , Cm}> and the horizontal bor-
der of P2 is <{0} , {Di, Dn}>. MBD-LLBORDER finds the JEPs from Di to P2
as follows.

232 J. Li, G. Dong, and R. Kotagiri

MBD-LLBORDER(horizontalBorder {Vi), horizontal -
Borde r (P2)) ; ; return all JEPs from 2? i to 7^2 by multi-

ple calls of BORDER-DlFF
EPBORDERS<- {} ;

for j fro m 1 t o n do
i f some Ci i s a s u p e r s et of Dj t h en continue;
{C[,- -,0'^} ̂ {Ci nDj,---,Cmn Dj} ;
RIGHTBOUND <— a l l maximal i t e m s e ts i n ,C'^};
add BORDER-DlFF(<{0},i?j>,<{0},RlGHTBoUND>) i n t o EPBOR-

D E R S;

return EPBORDERS;

BORDER-DIFF(< {0 }, {U}>, <{0} , {5i , 52, , Sk}>)

; ; r e t u rn t he ^border of [{0},{C/}] - [{0},{5i,52 , ,5fc}]
i n i t i a l i z e C t o {{x} | x€U — Si}}
for I = 2 t o fc do

C^{XU{x}\ X£C,x€U-Si};
remove a l l i t e m s e ts Y i n £ t h at a re not m in ima l;

return <C,{U}>;

Note that given a collection C of sets, the minimal sets are those ones whose proper
subsets are not in C. For correctness and variations of BORDER-DlFF, the readers are
referred to [3].

Mining Structured Association Patterns
from Databases

Hirofumi Matsuzawa and Takeshi Fukuda

IBM Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato-shi,

Kanagawa 242-8502, Japan
{matuzawa,fukudat}Sjp.ibm.com

Abstract. We consider the data-mining problem of discovering struc-
tured association patterns from large databases. A structured association
pattern is a set of sets of items that can represent a two level structure
in some specified set of target data. Although the structure is very sim-
ple, it cannot be extracted by conventional pattern discovery algorithms.
We present an algorithm that discovers all frequent structured associar
tion patterns. We were motivated to consider the problem by a specific
text mining appUcation, but our method is applicable to a broad range of
data mining applications. Experiments with synthetic and real data show
that our algorithm efficiently discovers structured association patterns in
a large volume of data.

1 Introduction

Finding patterns in databases is the fundamental operation behind common
data-mining tasks, including the mining of association rules [1,2,3,4,5,6,7] and
sequential patterns [8,9]. For the most part, mining algorithms have been devel-
oped to discover very simple patterns such as sets or sequences of items. It is
sometimes difficult for users to gain insight from such simple patterns.

While the patterns that mining algorithms generate are simple, the target
data of interest often includes much more complex structures. In order to apply
mining algorithms to complex data, what we usually do is to convert the data
into a flat table, focusing on a fixed part of the original data structure and
ignoring the rest. However, semi-structured data [10,11,12], such as data on the
World Wide Web and collections of documents written in natural languages,
contain structures that axe not fixed beforehand, and such structures themselves
may be interesting targets for knowledge discovery. If we can discover patterns
with the same structure as a specified set of target data, such patterns will be
intuitive and useful.

As a first step toward complex pattern mining, we adopt a set of sets of items
as our form of patterns. Inner sets may have labels. The form of patterns delin-
eates a tree structure with two levels (see Figure 1 for an example). We call such
patterns structured association patterns. In this paper, we present an algorithm
that discovers all frequent structured association patterns in databases.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 233-244, 2000.
© Springer-Verlag Berlin Heidelberg 2000

234 H. Matsuzawa and T. Pukuda

1 2 3 4 5 6 7

A, B, and C are labels of inner sets.

Fig. 1. Example of a pattern

predicate
install
get
push

arguments
{customer, software}
{customer, fatal error, now}
{she, key}

Fig. 2. Predicate-argument tuples

The custome r ha d installe d th e software , an d i s
now gettin g a fata l erro r whe n sh e pushe s a key .

a fata l erro r

a key

Circled words are predicative verbs.

Fig. 3. An example of a network

1.1 Motivatin g Example

Let us consider a call center of an enterprise. The call-taJters input the sum-
maries of customers' calls into the database as short documents in some natural
language. We would like to extract from the database typical questions, re-
quirements, complaints, and commendations. Since it is very hard for humans
to discover such knowledge from a large volume of text data, it is natural to
consider whether a pattern mining technique may help in the task.

One naive way is to find association rules or sequential patterns of words in
the text by using standard pattern discovery algorithms. This will produce many
patterns, but it is often difficult to recall the meaning of the original sentence
from a discovered pattern, because the pattern does not contain any information
on the roles of the words in the original sentence.

The progress of natural language processing technology has made it possi-
ble to automatically extract relationships between words by disambiguating the
meanings of individual words. The technology is far from perfect, but it is very
useful. Indeed, a typical machine translation method constructs a network struc-
ture from a sentence on the basis of the semantic relationship of words, performs
some operations on the network, and then converts the network structure into
a sentence in another language [13,14]. Figure 3 shows an example of a network
structure obtained from a sentence. If we can find important patterns in the
network structure, it wil l help us to realize our aim, since we can determine the
meaning of each individual word in the network. Therefore, given a large collec-
tion of such networks, finding frequent subgraphs as patterns is a natural and
interesting problem. But the computational complexity of this task seems to be
very high. We therefore simplify the problem as follows.

We pay attention to "predicates" (or verbs), since they play the most sig-
nificant semantic roles in a sentence. A predicate takes as "arguments" several
words that have direct or indirect modification relationships with the predicate.

Mining Structured Association Patterns from Databases 235

We treat such a group of words as a "predicate-argument tuple." For example,
the sentence in Figure 3 has three groups, as shown in Figure 2. Although such
groups do not carry all of the information in the original sentence, they are still
much more informative than a simple set of individual words, and make it easier
for users to recall the meaning of the original sentence.

A predicate-argument tuple can be represented by a set with a label, in
which the predicate is a label and the arguments are elements of the set. Thus
a sentence becomes a set of labeled sets. Therefore it is natural to consider the
problem of mining frequent patterns that consist of labeled sets, such as { (install
{software-A, driver_B}), (get {fatal, error}) } , from the text database.

Similar problems can be seen in the domain of molecular biology. Each indi-
vidual molecule of nucleic acid is meaningless, but a sequence of them has some
function, and a collection of such sequences may be the cause of an important bi-
ological phenomenon. Therefore, it would be useful to be able to find important
collections in a DNA database.

2 Problem Statement

In this section, we give a formal statement of the problem, following those given
in previous publications [1,2].

Definition s Let I = {ij , i g , . . ., im} be a set of literals, called items. A labeled
set g = {I, A) is a pair of a label I € I and a set of items A C X. We call
labeled sets groups. Let ^ = I x set(J) denote the domain of groups. Let V
be a set of transactions, where each transaction T is a set of groups (T C Q).
Each transaction has a unique identifier, called a TID. Within a transaction,
each group also has a unique identifier, called a GID. A structured association
pattern, or pattern for short, is also a set of groups.

Pattern Matchin g We say that a group g = {lg,Ag) matches another group
h = {Ih, Ah), if Ig = Ih and Ag C Ah. We say that a pattern P = {g\,g2,.. Qk)
matches a transaction T = {h\, /12, . , hi} if for each element gi £ P there exists
a distinct group hj € T such that gi matches hj. Note that these group-by-group
matchings must be distinct. For example, a pattern Pi = {(1 , {2}) , (1, {4}) }
matches a transaction T = {(1, {2,3,4}), (1, {4,5})} , but P2 = {(1 , {2}) , (1, {3}) }
does not, because both groups of P2 match only the first group of T. We say
that a pattern P' is a subpattem of P if P' matches P.

Support A pattern P has support s in the transaction set VHP matches s
percent of transactions in P. Even when a pattern matches a transaction more
than once, the contribution of the transaction to the support count is only L
Problem Definitio n Given a set of transactions V, the problem of mining
structured association patterns is to generate all patterns that have support
greater than the user-specified minimum support threshold (called minsup). We
call a pattern frequent if the support of the pattern is greater than minsup. It is
easy to construct an implication of the form X =^ Y from a pattern P, where
X (JY = P and X fl F = 0, in the same way as described in [2]. Therefore we
do not discuss this point at present.

236 H. Matsuzawa and T. Fukuda

0) MAiN(DataSet V) {
1) / / X> is the input data set.
2) / / Ck is a set of candidate patterns of size k.
3) / / Lk is a set of frequent patterns of size k.

4) c,^{{l,il))\iei}u{{*,{i})\iel};
5) fc«-l;
6) while {Ck i^ 0) {
7) COUNT(©, Cfc);
8) Lfc p € Cfc I p is frequent};
9) Cfc+l <— GENERATE-CANDIDATES(iit);

10) A:*-fc + l;
11) }
12) return IJ^Lfc;
13) }

Fig, 4. Outline of the Algorithm

Transaction T

4 5 6 3 7 6 7 8

Patiemp

U\) 1(4) 1(5) 1(_6) U2) 1(5) 1(7) U3) 1(6) Ij?) 1(!)

>

Sequence s(p)

s(p) b a subMqiiciM c orsCD

Fig. 5. Sequence matching (1)

We call the number of items in a group, including its label, the size of the
group. In like manner, we call the sum of the group sizes in a pattern the sizt
of the pattern. We refer to a pattern of size fc as a fe-pattern.

We assume that items in each group are kept sorted in lexicographic order,
without loss of generality, because we are considering sets, not sequences. Simi-
larly, we assume that groups in each transaction and pattern are kept sorted
in lexicographic order of the labels of the groups. When g\ = {li,Ai) and
52 = ('2,-42) have the same label — that is, when li = I2 — the tie is re-
solved by looking at the lexicographic order of the first different elements of Ai
and A2. Note that we allow multiple groups in a transaction to have the same
labels; this is the tie case mentioned above. We can handle simple sets without
labels by assigning a special label, NULL, to groups.

3 Algorithm

Figure 4 shows the outUne of our algorithm, which is similar to that of other
Apriori [2]-based pattern mining algorithms. First of all, we generate candidate
patterns, each of which consists of a single item (line 4), where patterns of the
form (*, {i}) have a special label "* " that matches any labels.

Each pass, say pass k, consists of two phases. First, the database is scanned to
count the support of each candidate in Ck by calling a function named "COUNT"

(line 7). The algorithm of COUNT uses a data structure similar to that of the
subset function of Apriori [2], but it differs in that we need to handle the cases
when some groups in a pattern have the same label. Next, the frequent patterns
in Lk are used to generate the candidate patterns Ck+i for the (fc -|- l) th pass
by a function named "GENERATE-CANDIDATES" (line 9).

Mining Structured Association Patterns from Databases 237

Transaction T

'KtK
2 7 3 6 4 5

Pattern p

Sequence s(T)
 u p 1(2) IC7) 1^1) 1(3) 1(6) 1/1)1^4) 1(3)

 U1)1(3)M1)I(4)U1)1(7)
Sequence s(p)

s(p) is not a subsequence of s(T)

Fig. 6. Sequence matching (2)

1(4) 1 (5) 1(31 I (4 | 1 (4) 1 (5) 1 (5)

A hash-tree storing <L(l)/(3)/(4)),
<L(l)^(3)/(5)), (L(l)L(2)/(3)) , <L(l)L(2)/(4)),
{C(1)L(2)>, (L(2)/(3)/(4)>, {i(2)/(3)/(5)>, and
<i(2)/(4)/(5)).

Fig. 7. A hash-tree

3.1 Counting Support of Patterns

Given a set of groups p, we first convert it into a sequence of symbols s{p). For
example, when p = {(1,{4,6}) , (2, {}) , (3, {7})} , the corresponding sequence
s{p) = (L(l) 7(4) 7(6) L{2) 1,(3) 7(7)), where L{*) (denotes a symbol corre-
sponding to a group label and 7(*) denotes a symbol corresponding to a group
element. Let us assume that no transaction (and thus no pattern) contains more
than one group with the same label. Then, as shown in Figure 5, we can decide
whether a pattern p matches a transaction t by checking whether s(p) is a sub-
sequence of s{t) and some constraint is satisfied .̂ Since Apriori uses a hash-tree
to efficiently find all the patterns (itemsets) that are subsequences of a given
transaction, it seems that we can apply a similar algorithm to our problem.

However, when some groups in a transaction may have the same group label,
the above idea does not work. For example. Figure 6 shows a case in which a
pattern p matches a transaction t even though s{p) is not a subsequence of s{t).
Therefore in order to decide if a pattern p matches a transaction t, we need to
determine if there exists a bipartite matching of s{p) and s{t) that covers all the
elements of s(p). Since we have many candidate patterns, and want to find from
them all the patterns that match a given transaction, we need to solve multiple
bipartite matching problems simultaneously. We use another hash-tree to solve
those problems.

If a pattern p has multiple groups with same label, we treat them as a cluster,
when p is converted into a sequence s{p). For example, a pattern {(1,{2,3}) ,
(2, {1,3}) , (2, {2,4}) , (3, {2}) } is translated into a sequence (L(l) , 7(2), 7(3),
C(2), 7/(3), 7(2)), where the second and third groups of the pattern become a
cluster. There are three types of elements: C {cluster), L (label), and 7 (item).

We store sequences of all patterns in Ck in the hash-tree. An interior node
of the hash-tree is a hash table. When we add a sequence s{p) to the hash-tree,
we start from the root node and go down the tree by scanning the sequence. At

^ If an element I{x) in s{t) is used in the matching, an element that corresponds to
the group label of x must also be used.

238 H. Matsuzawa and T. Fukuda

a tree node at depth d, we decide which branch to follow by applying a hash
function to the dth element of s{p). Since this hash-tree is a kind of trie [15], any
common prefixes of all patterns are shared in a path from the root node, and a
path from the root to a leaf identifies the sequence of a pattern. Figure 7 shows
an example.

Scanned transaction t is translated into a sequence s{t). Starting from the
root node, we find all the candidate patterns that match a transaction t. We
apply the following procedure based on the type of node we are at:

— Root node: Apply a hash function to every item in s{t), and recursively apply
this procedure to the node in the corresponding bucket. For any pattern p
that matches the transaction t, the first element of s{p) must be in s{t). By
hashing on every item in s{t), we ensure that we only ignore patterns that
start with an element not in s{t).

— Interior node labeled I or L: Assume that we reached this node by hashing
on an element e in s{t). Hash on each element that comes after e in s{t) and
recursively apply this procedure to the node in the corresponding bucket.

— Interior node labeled C: Construct bipartite graphs to find all candidate
patterns that match the cluster of the transaction. Assume that we reached
this node by hashing on an element e in s{t). For each found pattern p that
have a cluster that matches t, recursively apply this procedure to the tree of
suffix pattern of p.

— Leaf node: We have now found a pattern that matches the transaction t.

Matchin g Clusters
Let us focus on a C-labeled node of the hash-tree. The node may have multi-

ple — say, k — clusters each of which is a part of a pattern and shares a common
prefix. Let C = {ci , C2,..., Cfe} denote the set of the clusters. As we come to this
node, the transaction t also contains a cluster c{t) that has the same group label
as CiS. Our goal is to find all the clusters in C that match c{t).

In this paragraph, we consider the problem of deciding whether a single
cluster Ci matches c{t). Suppose that Cj has n groups and c(f) has m groups
(n < m). Let Cj = {51,52, ,ffn} , and c(i) = {/ii,/i2 , ,/im} - Consider a
bipartite graph d = {ci,c{t);Ei) such that there exists an edge {gx,hy) G Ei if
and only if gx S Cj matches hy £ c{t). Figure 8 shows an example of a bipartite
graph. Ci matches c{t) if and only if there exists a bipartite matching in d
that covers all 5i for 2 = 1 , . . ., n. Therefore, the problem of deciding whether d
matches c{t) can then be reduced to checking whether the size of the maximum
bipartite matching in d is equal to n. This can be effectively solved by a classical
algorithm[16]. In Figure 8, solid lines are the edges of the maximum bipartite
matching. Since all groups in Cj are covered by the matching, c, matches c{t) in
this case.

To effectively make all graphs Gi = {ci,c{t);Ei) for all Cj e C, we construct
another hash-tree beforehand, which stores all the candidate groups of Cj for
i = 1,... ,k. For each group hj € c{t), we identify all groups that match hj by
using the hash-tree, and add the corresponding edges to the graphs. After the

Mining Structured Association Patterns from Databases 239

.̂--"'group s i n c(t)"'^* .

,' h i h o h o h ^ h e

' 9 1 9 2 9 3 9 4 , '
*-,,group s i n c ^ ,, *

Fig. 8. Bipartite matching

type A

typeB

type 01

typeC

typeC ;

type D

Fig. 9. Classification of patterns

above procedure, we know all the graphs, and hence we can find all clusters that
match the transaction t.

3.2 Generating Candidates

The candidate generation function of Apriori joins a = {ai , 02 , . . ., a }̂ with b =
{61,62,..., 6/c}, when they differ only in the last elements (i.e., ai = bi,..., 0̂ —1
= 6fc—1), to generate a new candidate c = {ai,... ,ak—i,ak,bk}- This method
generates candidate patterns very efficiently even when there are a large number
of patterns.

However, as for structured patterns, it may be impossible to drop the last
elements because it may violate a structural constraint. For example, let us
consider a pattern p = {(1,{3}),(1,{4})} . There are no pairs of proper pat-
terns that differ only the last elements and that can be joined to generate p.
In order to generate the pattern, we need to join pi = {(1 , {}) , (1, {4}) } and
V2 = {(1, {3}) , (!,{}) } = {(1, {}),(! , {3})} . Note that by joining pi with p2,
we can generate another pattern p' = {(1, {}) , (1, {3,4})} . Therefore candidate
generation of structured patterns is not as simple as that of simple patterns.

Instead of thinking what fc-sized patterns can be generated by joining two
(A; — l)-sized patterns, we inversely consider how we can split fc-sized pattern into
(A; —l)-sized subpatterns. We classify patterns of size k >3 into the following four
types based on the last two elements, and split each of them into two subpatterns
of size (fc — 1) so that the fc-sized pattern can be generated by joining the two
subpatterns:

— Type A: The last two elements of the pattern are items of a single group.
— Type B: The last element is a group label, and the second last element is a

item of the second last group.

240 H. Matsuzawa and T. Fukuda

— Type C: The last element is an item of the last group and the second last
element is the group label. We further classify patterns of this type into Type
CI and C2 based on the third last elements.

- Type D:

Figure 9 illustrates this classification and how a pattern of each type can be
constructed from its subpatterns. In this figure, a triangle represents a subpattern
or subgroup. Because each element is either a label or an item, every pattern is
classified into one of the above types. Therefore we can generate any candidate
patterns by one of the expressions in the figure. Note that we must be careful
to handle cases in which labels of the last and second last group are the same,
because the order of the groups may change.

The GENERATE-CANDIDATES function takes as its argument the set of all
frequent fe-patterns Lk, and returns the set of candidate {k + l)-patterns Ck+i-
The function works in two steps:

1. Join Phase: We generate candidate (A; + l)-patterns by joining Lk with Lk-
If a pattern pi G Lk is one of the patterns in the right-hand side of Figure 9,
we find a pattern p2 S Lk of the counterpart of pi and join pi and p2 to
generate a new candidate. Note that we do not have to search entire Lk for
the counterparts of pi, since we previously sort Lk in lexicographical order,
and the range of the counterparts of pi is limited.

2. Prune Phase: We delete candidate patterns that have a fc-subpattern whose
support count is less than the minimum support. To effectively check whether
all fc-subpattern are in Lk, we use a hash-tree that stores Lk-

The above procedure is reminiscent of the candidate generation procedure
for finding simple association rules; however details are quite different.

4 Experiments

To evaluate the effectiveness of the algorithm, we implemented it in C-I-+, and
performed several experiments on an IBM PC Server 330 running Windows NT
4.0 with a 333 MHz Intel Pentium II Processor and 320 MB of main memory.
The data resided in the NT file system and was stored on a 9 GB SCSI 3.5"
drive, with measured sequential throughput of about 8 MB/second.

4.1 Synthetic Data

The synthetic data generator presented in [2] is commonly used for evaluating
the performance of pattern-mining algorithms. We modified the generator so
that it can generate structured transactions for our algorithm. Figure 10 shows
the major parameter settings.

To see the scalability of the algorithm against the input size, we generated
several datasets by changing the number of transactions from 100,000 (14.4 MB)
to 2,000,000 (288 MB). We set the minimum support to 0.5 percent and the

Mining Structured Association Patterns from Databases 241

Number of distinct labels
Number of distinct items
Average number of groups

in a transaction
Average number of items

in a group

1,000
1,000

5

5

Fig. 10. Parameter Settings of Synthetic
Datasets

100COOK 400K 600K gOOK 1M 1 4 M 1

Numbe r of transaction s

(a) Data volume vs. execution time

Repetitio n leve l

(b) Repetition level vs. execution time

^ tOOO '

0.5 0.6 0.7

Minimu m suppor t t%]

(c) Minsup level vs. execution time

Fig. 11. The experimental results on the synthetic datasets

repetition level to 0.6. Figure 11 (a) shows the relationship between the volume
of input and the execution time of the algorithm. We can see that the execution
time increases linearly in proportion to the number of transactions. When the
number of transactions was 2,000,000, the algorithm discovered 6,236 patterns.

To assess how duplicated group labels affect the performance, we generated
several datasets by changing a parameter called repetition level, which controls
the average probability that a group has the same label as other groups in
a transaction. We set the repetition level to 0, 0.2, 0.4, 0.6, 0.8, and 1.0. The
average number of distinct group labels in a transaction decreases almost linearly
in the repetition level, — that is, 5.0, 4.3, 3.6, 2.9, 2.2, and 1.6, respectively
— while the average number of groups in a transaction is always 5. We set
the number of transactions to 100,000 and the minimum support count to 500
(0.5%). Figure 11 (b) shows the result. While the execution time is almost linear
in the repetition levels when the repetition level is relatively low, it starts to
increase rapidly when the repetition level is more than 0.7.

We also conducted an experiment on how the minimum support threshold
affects the performance. We fixed the number of transactions at 100,000 and
the repetition level at 0.6. Figure 11 (c) shows the result. Note that the vertical
scale is logarithmic. We can see a trend similar to that of other Apriori-based

242 H. Matsuzawa and T. Fukuda

Number of sentences
Number of predicative words
Number of non-predicative

words
Average number of words

in a sentence
Average number of groups

in a sentence
Size

109,451
12,754

54,453

4.23

1.48

3.6MB

Fig. 12. Call center data

4500

4000

« 3500

i
f 3000
3.
B 2500 1 2000

2 1500

1000

500

\ ' 'structure d Pattern s -——
I Large Itemset s « ,

 \

 \

\ \
\ \

^ v . ^ ' - ~ - . . .

^—::rr-— —
Minimu m suppor t coun t

Fig. 13. Experimental results on the call
center data

algorithms. When the minimum support is 0.3 (resp. 0.5, 0.7, 0.9, 1.0) percent,
the number of frequent patterns is 93,074 (1264, 750, 602, 565).

4.2 Real Data

We applied our algorithm and a standard association rule mining algorithm to
real data consisting of Japanese text obtained from a certain company's call cen-
ter. For our algorithm, we preprocessed the original text data, using a shallow
(and hence fast) natural language parser [17] developed at the authors' insti-
tution to convert all the sentences into sets of predicate-argument tuples as we
explained in Subsection 1.1. We also converted all the sentences into flat sets of
words so that an ordinary association discovery algorithm (which we call a con-
ventional algorithm) can discover frequent sets of words as patterns. Figure 12
shows the characteristics of the data.

I t takes less than two minutes for our algorithm to discover all the patterns,
even when the minimum support count is only 5 (i.e., 0.005%). We do not com-
pare the execution time, since the conventional algorithm used here runs on a
different platform. As shown in Figure 13, the conventional algorithm discovers
about twice as many patterns as our algorithm, even though there are combina-
torially more structured patterns than simple itemsets. This experiment shows
that more than half of the patterns discovered by the conventional method are
bogus, because the patterns discovered only by the conventional algorithm con-
sist of words that are used in very different contexts in the supporting sentences.
Most patterns in which the analysts of the text data are interested have a sup-
port level of around 10 to 20. When the minimum support is at such a low level,
the conventional algorithm generates too many patterns, half of which are bogus.
Therefore, our method can significantly reduce the burden of text analysts who
have been using ordinary pattern mining algorithms.

To see the effectiveness of our method from the view point of our motivating
application, we examined precision and recall, commonly used for measuring
effectiveness of information retrieval systems.

Mining Structured Association Patterns from Databases 243

Our method
Pattern

{(request {repair}) (say {}) }
{(expire {guarantee}) (say {}) }

{(ask {dealer}) (say {}) }
{(attach {stereo-set, store})}
{(inspect {dealer}) (say {}) }

Recall (%)
100
100
97.9
97.4
96.8

Precision (%)
91.2
100
100
100
93.8

Conventional method
Recall (%)

100
100
100
100
100

Precision (%)
79.5
87.2
76.2
80.9
57.4

Fig. 14. Recall and precision

We define recall and precision as follows. Suppose that we are given a set
of semantic relationships of words, for instance, "someone purchases a car." We
describe the relationships in pattern languages as { (purchase {car}) } for our
method and { purchase, car } for the conventional method. We call a sentence
covered by a pattern if the pattern matches the sentence. We call a sentence rele-
vant if humans decide that the sentence contains the semantic relationships. Let
X denote the number of covered sentences, let Y denote the number of relevant
sentences, and let Z denote the number of covered and relevant sentences. Then
recall is defined as Z/Y and precision is defined as Z/X.

We found recall and precision for several patterns. Figure 14 shows the result
(the original words are in Japanese). Because patterns used by the conventional
method (flat sets of words) certainly cover all relevant sentences, the recall of
the conventional method is always 100 percent, but the precision is not very
good. On the contrary, both recall and precision for our method are very high.
Although the natural language parser sometimes makes mistakes, this result
confirms the advantages of our approach.

5 Conclusions

We introduced the problem of mining structured association patterns from data-
bases. A structured association pattern is a set of sets of items that can express a
two-level structure in the target data. We presented an algorithm that efficiently
discovers all frequent structured association patterns in a large database. We
implemented the algorithm and evaluated it by using synthetic data and real text
data. The method described in this paper can be used to solve problems in which
each data element is not especially significant, but some combinations of elements
are meaningful, and combinations of combinations of individual elements are
interesting targets for discovery.

We are now developing a text mining system for call centers and evaluating
our approach by using real text data. It is essential for text mining to utilize
prior knowledge such as compound words and thesaural information. We plan to
look into the problem of efficiently discovering structured patterns using prior
knowledge. It would be interesting to investigate how much the accuracy of
natural language processing affects the effectiveness of our approach. We also

244 H. Matsuzawa and T. Fukuda

plan to look into the problem of discovering more complex pat terns from text
and semi-structured data.

References

1. Rakesh Agrawal, Tomasz Imielinski, and Arum Swami. Mining association rules
between sets of items in large databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 207-216, May 1993.

2. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Proceedings of the International Conference on Very Large Data Bases,
pages 487-499, 1994.

3. Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association rules.
In Proceedings of the International Conference on Very Large Data Bases, pages
407-419, 1995.

4. Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules from
large databases. In Proceedings of the International Conference on Very Large
Data Bases, pages 420-431, 1995.

5. Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash-based algo-
rithm for mining association rules. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 175-186, May 1995.

6. Sergay Erin, R. Motowani, Jeffery UUman, and S. Tsur. Dynamic itemset counting
and implication rules for market basket data. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 255-264, 1997.

7. Roberto J. Bayardo Jr. Efficiently mining long patterns from databases. In Pro-
ceedings of the ACM SIGMOD Conference on Management of Data, May 1998.

8. Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Pro-
ceedings of the International Conference on Data Engineering, 1995.

9. Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In Proceedings of the International
Conference on Extending Database Technology, 1996.

10. Serge Abiteboul. Querying semi-structured data. In Proceedings of the Interna-
tional Conference on Database Theory, pages 1-18, January 1997.

11. Peter Buneman. Semistructured data. In Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 1997.

12. Ke Wang and Huiqing Liu. Schema discovery for semistructured data. In Proceed-
ings of the International Conference on Knowledge Discovery and Data Mining,
pages 271-274, August 1997.

13. Sergei Nirenburg, editor. Machine Translation. Cambridge University Press, Cam-
bridge, 1987.

14. Makoto Nagao, Jun-ichi Tsujii, and Jun-ichi Nakamura. The Japanese government
project for machine translation. In Jonathan Slocum, editor. Machine Translation
Systems, pages 141-186. Cambridge University Press, Cambridge, 1988.

15. Edward M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 23(2):262-272, April 1976.

16. John E. Hopcroft and Richard M. Karp. An n^^ ̂ algorithm for maximum match-
ings in bipartite graphs. SIAM Journal of Computing, 2(4):225-231, December
1973.

17. Tetsuya Nasukawa, Masayuki Morohashi, and Tohru Nagano. Customer claim
mining: Discovering knowledge in vast amounts of textual data. Technical Report
RT0319, IBM Tokyo Research Laboratory, May 1999.

Association Rules

Tao Zhang

Triada Ltd., 323B Vintage Park Dr., Foster City, CA 94404

Abstract. New association rules are presented for measure of associa-
tion relationships between patterns. The new association rules are shown
to not only measure three well-known association relationships correctly,
but also satisfy other criteria for correct measure of association. Com-
parison with other measures is discussed both theoretically and experi-
mentally. Applications in supervised mining of association rules and in
pattern-driven multidimensional pattern analysis are presented.

1 Association Rules

Association rules have received much attention in the past (Agrawal et al. 1993a,
Agrawal et al. 1993b, Agrawal and Srikant 1994, Klemettine et al. 1994, Manni-
la et al. 1994, Han and Fu 1995, Houtsman and Swami 1995, Park et al. 1995,
Srikant and Agrawal 1995, Savasere et al. 1995, Agrawal et al. 1996a, Agrawal
et al. 1996b, Cheung et al. 1996, Toivonen 1996, Lee et al. 1998, Meo et al. 1998,
Wijsen and Meersman 1998, Silverstein et al. 1998). There are 2 fundamental
problems in the study of association rules: association rules and mining asso-
ciation rules. The former is about measure of association relationships between
patterns. The latter is about development of efficient techniques for finding inter-
esting association rules, which may include development of additional measures
(support for example) of pattern properties other than association, to identify
interesting rules. Precise measure of association is sufficient for understanding
association rules and is not sufficient for mining association rules. As the titl e
suggested, measure of association is the main subject in this paper. An associa-
tion rule is a measure of the amount of association relationship between patterns
(or information events) in quantity, similar to the information entropy which is
a measure of the amount of information in quantity. The simplest association
pattern is a mathematical expression of transactional relationship between t-
wo patterns A and B, instead of sequential relationship. Unlike transactional
correlation which has no direction, the transactional association has direction,
meaning A associated with B is not equal to B associated with A. Therefore,
a correct measure of association should be not only a transactional measure,
but also sensitive to direction. Currently, two methods are well recognized for
measure of association: conditional measure (or conditional rule) and the x^
measure (or contingency table). A conditional measure is a sequential measure
of typical if-then sequence. While the x ̂ test is a transactional measure, it is
not sensitive to direction because it is a symmetric measure. A fundamental

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 245-256, 2000.
(c) Springer-Verlag Berlin Heidelberg 2000

246 T. Zhang

property of a correct measure of association is that it has to be transaction-
al measure sensitive to direction. We developed a new formula for association
rules (T. Zhang, US patent pending). Our starting point is to recognize the
difference between association and disassociation, similar to the difference be-
tween attractive and repulsive forces. If probability of co-occurrence P{A\B)
for patterns A and B is larger than probability of no co-occurrence P{A\B),
the relationship of A associated with B is association (attractive). Otherwise,
the relationship is disassociation (repulsive). The association relationship is de-
scribed by PA{A - . B) = 1 - P{A\B)/P{A\B), if P{A\B) > P{A\B). The
disassociation relationship is described by PoiA =^ B) = P{A\B)/P{A\B) — 1,
if P{A\B) < P{A\B). Combining the two formulas, we obtain

PiA\B) - PiA\B)
P(A =^B) =

MAX[P{A\B),P{A\B)]

P{AB) - P{A)P{B)
MAX[P{AB){1 - P{B)), P{B){P{A) - P{AB))] ^̂ ^

where association pattern vl ^ 5 describes transactional association of pattern
A with pattern B. P{A), P{B), and P{AB) are probabilities for patterns A, B,
and A A B respectively. It is noted that the probabilities are approximated by
corresponding frequencies in a database. The approximation is exact when the
number of records in the database is infinite large. Our association rule measures
direction since the above formula is not symmetric about A and B. In order to
compare our association rule with other measures of association, we present
formulas for these measures as well. Association measured by a conditional rule
is given by

PiA=^B)^PiB\A) = ^ ^ . (2)

Association measured by the x^ test is given by

^2 [PjAB) - P{A)PiB)]' ̂ [PjAB) - P{A)P{B)]'^
 ̂ ~ PiA)P{B) ^ P{A)P{B)

[P{AB)-P{A)P{B)r [P{AB)-P{A)P{Br .„ .
P{A)P(B) PiA)P{B) ̂ '

where N is the number of records. Here, we have normalized the result in a range
between 0 and 1. 0 means complete independence while 1 represents complete
dependence. The above formula may reduce to the following

^ = [P{AB)-P{A)P{B)Y
N P{A)P{B){1 - P{A)){1 - P{B)y ^'

The above formula is symmetric about A and B. Therefore, it does not measure
association direction. Furthermore, measure of interest is used to identify which
one of 4 pairs gives the most significant contribution since the above formula
aggregates 4 related pairs (Silverstein et al. 1998). Because of being insensitive
to association direction, the y ̂ test is ruled out for correct measure of association
relationship.

Association Rules 247

2 Comparison with Existing Measures of Association

In the above description of association rules, we argued that the current as-
sociation rules approximated by either conditional rules or the x^ test do not
measure associations accurately. Now, we prove it. A fundamental test for a
correct measure of associations is a test of three well-known associations: com-
plete association P{AB) = P{A), complete disassociation P{AB) = 0, and
complete random association or complete independence P{AB) — P{A)P{B).
A correct measure should give a definitive result for each of the three associa-
tion tests without uncertainty. In another word, the result for each test should
be a constant independent of P{A) and/or P{B), rather than a function of
P{A) and/or P{B). For the complete association, pattern A is always associat-
ed with pattern B. The normalized association should be a maximum or 100%
regardless what P{A) and P{B) are. Our new association rule gives the fol-
lowing result P{A => B) = MAX[PIA)(I-PIB)) O] ~ ^- Conditional rule gives
P{B\A) = ^,^J = 1. Both association rule and conditional rule pass the

test. On the other hand, the x ̂ test gives ^ = p|g(L~p'. (̂ which fails the
test because the result is a function of P{A) and P{B), instead of a constant.
For the complete disassociation test, pattern A is never associated with pat-
tern B. The normalized disassociation should be a maximum or 100% no mat-
ter what P{A) and P{B) are. Our new association rule gives P{A => S) =
- MAxl^lfA^liB)] = - 1 - Conditional rule gives P{B\A) = ^ ̂ = 0. Our
new association rule and conditional rule pass the second test. The x^ mea-
sure fails to pass the test because it gives ^ = ii_p(]AiiLp(B)] which is a
function of P{A) and P{B), instead of a constant. For the complete random
association, pattern A is randomly associated with pattern B. Our new as-
sociation rule gives P{A =^ B) = P/A)P(B)\I-P(B)] ~ ^- '^^^ ^^ *'®®* gives
^ = p(A)p(B)\i-'p(A)]h-p(B)] ~ -̂ "^^^ ̂time, association rule and dependence
rule (x'̂ test) pass the test. Conditional rule gives P{B\A) = P{B) which is
a function of P{B), instead of a constant. Therefore, conditional rule fails the
independence test. Our new eissociation rule is the only one that passes all three
tests.

3 Other Possible Measures of Association

Having shown that our association measure passes successfully a test of three
well-known association relationships and that both conditional rules and the x^
test fail to pass the same test, we may ask whether our new measure of association
is the only correct measure of association relationships between patterns. This
question is diflScult to answer directly without rigorous proof. Instead, we look at
other measures of association, that may pass the same test. One such measure
may be obtained by modifying conditional measure. The main problem for a
conditional rule to measure association relationship is that it can not distinguish

248 T. Zhang

association from disassociation except two extreme situations when conditional
confidence is either 1 or 0. This is due to absence of comparison of a given
conditional confidence with unconditional probability of a target. If the former
is larger than the latter, the relationship is association. If the former is less than
the latter, the relationship is disassociation. Otherwise, it is random association.
Therefore, we modify conditional measure by subtracting the latter from the
former, or

P,n = P{B\A) - P{B). (5)

Positive results describe association relationships while negative results repre-
sent disassociation relationships. If results are positive, normalize the modified
measure by dividing the above formula by l-P(B). The normalized formula de-
scribes association. Otherwise, normalize the modified measure by dividing the
formula by P(B). The resulting formula describes disassociation relationship.
The normalized association formula becomes

^ P{B\A) - P{B) ̂ P{AB) - P{A)P{B)
l-P{B) P{A){l-P{B)) ^'

The normalized disassociation formula becomes

^ P{B\A)-P{B) ̂ P{AB)-P{A)P{B)
"^ P{B) P{A)P{B) ^ '

The above two formulas measure the three well-known associations correct-
ly indeed. However, there are other criteria or properties for test of correct
association measure. One is measure of association direction as indicated be-
fore. It is seen that the second formula above is symmetric about A and B.
Therefore, it does not measure direction necessary for association relationship.
Another property is symmetry between association and disassociation, simi-
lar to the symmetry between attractive and repulsive forces. Such symmetry
does not exist in the above two equations while our association and disasso-
ciation do have such symmetry property. But, the most important criteria is
a clear, unique, and independent interpretation of the measured association
relationship. Results from the above two formulas do not have such interpre-
tation. In contrast, results from our association measure have adequate inter-
pretation. The interpretation is that it measures the strength of probability of
co-occurrence relative to probability of no co-occurrence for association, and
the strength of probability of no co-occurrence relative to probability of co-
occurrence for disassociation. This interpretation becomes more evident if we
rewrite our association formula as P{A\B)/P{A\B) = 1/(1 - P{A => B)) for
association and P{A\B)/P{A\B) = 1/(1 -I- P{A =^ B)) for disassociation. For
P{A ^ 5) = 0.5,0.75,0.8,0.9,0.95, or 0.98, pattern A is 1,3,4,9,19,49 times
more likely to appear with pattern B than not, respectively. Similarly, pat-
tern A is 1,3,4,9,19,49 times more likely to appear in the absence of pattern
B than they appear together for P{A ̂ B) = -0 .5, -0.75, -0 .8, -0.9, -0.95,
or —0.98 respectively. Each value has unique and independent interpretation. A
symmetric correspondence between association and disassociation values exists

Association Rules 249

for all values using our measure. Similar correspondence does not exist between
association and disassociation values using the two formulas modified from con-
ditional measure. To see the point more clearly, we express the modified for-
mulas as multiplication of our new association and conditional confidence, or
Pa = P{A => B)P{B\A) and Pd == P{A ^ B)P{B\A), which indicate that as-
sociation relationships that have the same value in our measure have different
values if the corresponding conditional confidence values differ from each other.
This means that one of the two measures must be incorrect because of multiple
measured results for the same association. Since the second formula modified
from conditional measure does not measure disassociation direction and both
formulas modified from conditional measure fail to have proper interpretation of
association, formulas modified from conditional measure do not measure associ-
ation accurately.

4 Supervised Mining of Association Rules

Having presented new association rules and theoretical comparison with other
measures of association relationship, we discuss briefly mining association rules
before we present experimental comparison and applications. Like mining other
patterns and relationships, mining association rules is to find interesting asso-
ciation rules, which may require additional measures to define interestingness
independing of association relationship. Such measures may change from one to
another, depending on objectives for mining interesting rules. A well-established
measure is support which measures how often patterns co-occur. We want to
emphasize that support does not measure any relationship between patterns,
but rather measures frequency of occurrence or co-occurrence of patterns. Fre-
quency is about how often patterns co-occur while relationship is about how
co-occurring patterns relate to patterns not co-occurring. Therefore, support or
any other measure that does not measure association relationship is not part of
association rules, and only makes sense in mining association rules. There have
been significant work done in mining association rules in an unsupervised way
such as regular market basket analysis. Here, we present an approach for mining
association rules in a supervised manner. Supervised mining of association rules
is to define a target (business problem or business opportunity), and to identify
interesting patterns associated with the target. The supervised mining can be
very useful in business pattern analysis in databases. For example, Coca-Cola
would be much more interested in the relationships between Coke and other
products, and between products of their competitors and other products, than
relationships between non-soft-drink products in POS data. Here, a target may
be Coke products or their competitors' products. In general, business people
at higher level want to know how patterns existing in their business database
relate to a well-defined business problem or opportunity. It is much easier to
perform supervised mining of association rules than unsupervised mining be-
cause only rules describing association relationships between a target pattern
and other patterns need to be obtained. Similar to unsupervised mining of asso-

250 T. Zhang

elation rules, support measure may be used for identification of interesting rules.
However, we re-normalize conventional support by multiplying the total number
of records divided by the total counts of a given target pattern in the study of
association relationships between the target pattern and other patterns. In this
way, the modified support values represent contributions, in percentage, to the
target (problem or opportunity) from other patterns. We use this re-normalized
support measure in the following applications.

5 Experimental Results

In this section, we apply our new association rules to real-world examples in
comparison with conditional rules. No experimental comparison with the x^
test is given because of being unable to measure association direction by the
X ̂ test. Comparison of association rules with the x ̂ test would be equivalent to
comparison of a vector with a scalar, which is meaningless. We start with a simple
POS transactional example shown in Table 1 (Mannila 1998). Table 1 shows 10
rows of transactions of a POS data set. Find out association rules for association
patterns mustard A sausage A beer =J> chips and mustard A sausage A beer =̂
soft-drink. First, we calculate the association using the conventional technique
of conditional rules. We obtain C{mustard A sausage A beer => chips) = 0.5
and C{mustard A sausage A beer =̂ soft.drink) = 0.5. The results show that
associations measured by the above two association rules are equal, indicating
that pattern mustard A sausage A beer is associated equally with pattern chips
and with pattern soft-drink. However, the results for the same two association
rules are different if we use our new measure for association patterns. The results
are C(mustard A sausage A beer => chips) = —4/7 and C{mustard A sausage A
beer => soft-drink) = 1/3. The above results show that pattern mustard A
sausageAheer is disassociated with pattern chips, but is associated with pattern
soft-drink, although the two patterns have the same conditional confidence. The
above results mean that triplet pattern mustardAsausagehbeer is more likely to
occur together with soft drink than without soft drink while the triplet pattern is
less likely to occur together with chips than without chips. To see this difference
more clearly, we modify the data in Table 1 by replacing the first 0 in column
chips by 1 and the last two Is in column Soft-drink by 0, so that association values
are changed while conditional confidence values remain the same. However, the
new association values become C{mustardAsausageAbeer => chips) = —3/4 and
C{mustard A sausage A beer => soft-drink) = 3/4. The above results indicate
that triplet pattern mustard A sausage A beer is three times more likely to
appear with soft drink than without it while the same triplet pattern is three
times more likely to appear in the absence of chips than in the presence of chips.
This difference between soft drink and chips in association with the same triplet
pattern can not be seen from conditional rules.

Now, we apply our association rules to a more interesting case: data set for
KDD Cup 98. Here, we try to identify interesting patterns associated with do-
nation pattern defined by value 1 in data column TARGET_B. All conditional

Association Rules 251

Table 1. A simple example data set

Row JD Chips
Ti
T2
T3
T4

n Te
Tr
Ts
T9
Tio

1
1
1
0
0
1
1
1
1
0

Mustaxd Sausage
0
1
0
0
1
1
0
1
0
1

0

0
1

Soft-drink Beer
0 1
1 1
0 0
0 1
1 1
0 1
1 1
0 0
1 0
0 1

patterns discovered using conditional rules are shown in Table 2. Discovered con-
ditional patterns in Table 2 are shown in two dimensions: support and association
dimensions, using a new method developed for pattern-driven multidimension-
al pattern analysis (T. Zhang, US patent pending). A key for pattern-driven
multidimensional analysis is to choose support and association measures as di-
mensional variables, and to display distribution of pattern numbers, not pattern

Table 2. Multidimensional distribution of conditional pattern numbers (SI - Support
interval, CI - confidence interval)

SI
SI

0-1%
1-2%
2-3%
3-4%
4-5%
5-6%
6-7%
7-8%
8-9%
9-10%
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%
90-100%

0-1 1-2 2-3
CI
3-4

X

4-5
10%
5-6

25121 6680 2751 1382 136 1414
2654
1367
782
458
326
226
162
127
102
363
68
45
34
42
23
23
42
54

6
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6-7 7-8 8-9 9-10
87
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

252 T. Zhang

Table 3. Multidimensional distribution of association pattern numbers (SI - Support
interval, AI - association interval)

SI
SI

0-1%
1-2%
2-3%
3-4%
4-5%
5-6%
6-7%
7-8%
8-9%

9-10%
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%
90-100%

0-1 1-2 2-3
AI
3-4

X

4-5
10%
5-6 6-7 7-8 8-9 9-10

2774 2954 2189 2572 2525 2466 2551 2929 2978 1669
698
413
282
177
133
98
69
56
53
168
29
17
19
13
9
4
13
14

469
213
121
73
30
22
14
12
3
27
3
2
0
0
0
0
0
0

191
85
33
9
8
3
0
1
2
9
2
0
0
1
0
0
0
0

53
28
9
0
3
1
0
1
1
1
0
0
0
0
0
0
0
0

39
13
15
10
3
1
0
1
1
1
1
0
0
0
0
0
0
0

9
7
2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

details (this is a crucial difference from OLAP where aggregated data values
are displayed in multiple dimensions), in multiple dimensions. The point here
is to display distribution of interestingness of all discovered association rules in
one screen shot before choosing thresholds for interesting patterns. Each two-
dimensional lattice cell in Table 2 shows the number of patterns having support
values within a given support interval and having association values within a
given association interval. For example, the first cell in the first row shows 25121
association patterns having support values less than 1% and having association
values less than 10%. Typically, the first row and first column represent noise
because support values and/or association values are too small (1%, 10%). Then,
the remaining cells represent association patterns that are not noise in the first
cut. There are 10 such patterns in Table 2 measured by conditional rules. If we
set thresholds for interesting patterns to be 5% for support and 40% for associ-
ation (or conditional confidence). We found no interesting patterns in Table 2.
The results for association patterns using our new method are shown in Table 3.
First, we find many association patterns (in thousands) that are not noise pat-
terns in the first cut. Most of these association patterns are difficult to separate
from noise using conditional rules because they fall into the first column (or
the second column if we count support interval column). There are two ways to
discover association rules: user-driven and pattern-driven discoveries. In a user-
driven discovery, a user specifies a pair of thresholds for interesting patterns. For

Association Rules

Table 4. Interesting association patterns

Field Names Association Patterns Support Association
RFA_4
RFA^
RFA.5
RFAJ2

RFA-2A
RAMNT-14
RAMNT-24
LASTGIFT

RFA^F

S4D = * Donor
S4D = ^ Donor
S4D => Donor
L4D => Donor

D =?- Donor
5 ==> Donor
5 => Donor
5 =r- Donor
4 => Donor

0.053479
0.053273
0.053066
0.096015
0.143713
0.062771
0.056989
0.085071
0.204419

0.508833
0.499053
0.493150
0.488384
0.484016
0.446097
0.421484
0.411148
0.410662

253

the same pair of thresholds: 5% for support and 40% for association, we found
9 interesting association patterns in Table 3. Detail of these 9 interesting asso-
ciation patterns and rules is shown in Table 4. In Table 4, column 1 shows data
field names and column 2 shows field values. Furthermore, these 9 interesting
patterns all have conditional confidence less than 10%, implying that they are
in the first column in Table 2. Another way for discovery of association rules is
to perform a pattern query by selecting a cell or a set of cells in Table 3. For
example, select cell in row 6 (support values between 5% and 6%) and column 6
(association between 40% and 50%) and perform a pattern query. The resulting
3 interesting patterns are shown in rows 2, 3, and 7, in Table 4.

6 Verification of Association Rules

A rigorous test for the new association measure would be prediction of donors
in the second example above using our new association rules. However, such
tests require development of a solid prediction model for accurate predictions,
which involves intelligent binning among many other issues to be resolved accu-
rately. Instead of developing a sophisticated prediction model, we performed a
simple test to verify the accuracy of our new association rules. In our test, we
separate data records in two groups: records associated with donors and record-
s disassociated with donors in the KDD Cup 98 example above. We measure
patterns associated with donors. Patterns having association values larger than
zero are association patterns while patterns having association values less than
zero are disassociation patterns. Assume a donor is associated with a set of pat-
terns having an average association to be no less than zero. We can verify such
association by the following consideration. Calculate the average association for
each record by averaging association values from various columns (except TAR-
GET_B and TARGET_D columns) in each record. Assign each record with its
average association. In theory, records having higher average association would
be more likely associated with donors. Ideally, all records having average associa-
tion larger than zero are associated with donors. We tested this simple model on
the KDD Cup 98 learning data set. The results are shown in Table 5. In Table 5,

4 T . Zhan g

Filte r
NO
NO

[-0.1,0.1]
[-0.1,0.1]
[-0.3,0.3]
[-0.3,0.3]
[-0.5,0.5]
[-0.5,0.5]
[-0.7 , 0.7]
[-0.7,0.7]
[-0.9,0.9]
[-0.9,0.9]

[-0.98,0.98]
[-0.98,0.98]

Table 5. Validatio n o f associatio n rule s

Recor d rang e Averag e associatio n Num . o f record s N u m . o f donor s
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2
1 - 9541 2

C < 0
C > 0
C < 0
C > 0
C < 0
C > 0
C < 0
C > 0
C < 0
C > 0
C < 0
C > 0
C < 0
C > 0

6886 6
2654 6
6660 2
2881 0
7450 8
2090 4
8227 7
1313 5
8468 6
1072 6
8541 4
9998

8546 6
9946

1151
3692
921

392 2
583

426 0
121

472 2
46

479 7
1

484 2
0

4843

the first column shows thresholds for association values to be considered in the
calculation of average association per record. We filter out association values
within a pair of thresholds in the calculation. For example, exclude association
values between -0.1 and +0.1 in the calculation. The second column shows a
data range in records we tried for each test on the learning data set (95412
records in total). In each data range, we divide records into two groups differing
in the sign of average association per record. One group has average association
no less than zero and the rest is the other group. The third column in Table 5
shows average association either no less than zero defining donor group or less
than zero for non-donor group. Column 4 shows the number of records in each
group. Column 5 shows the number of donors in each group. For example, the
first two rows show that 68866 records have average association less than zero.
1151 of them are associated with a donor. 26546 records in the same test have
non-negative average association and 3692 of them are associated with donors.
I t is seen that the results become better and better as the threshold defining a
range to be filtered out becomes larger and larger. Our new association rules can
be used for building a prediction model. For example, the above model for ver-
ification of association rules is the simplest prediction model using association
rules, in which potential donors are predicted by positive average association
per record. However, development of a solid prediction model using association
rules requires solving other complicated problems such as measure of multiple
association and intelligent binning, which is beyond what is intended for this
paper.

Association Rules 255

7 Summary

We have presented new association rules with theoretical comparison with two
leading existing measures. Our new measure of association is a transactional
measure sensitive to association direction. We shown that the new association
rules passed successfully a test of 3 well-known associations. In contrast, associ-
ation rules using conditional measure or the x^ test were shown to fail the test.
Comparison with conditional rules was shown experimentally. A new technique
for supervised mining of association rules was presented in a pattern-driven way
and in multiple dimensions. Both association rules and pattern-driven multidi-
mensional pattern analysis presented here are implemented in Triada's products
using a new pattern-base technology (Bugajski and Russo 1993, Bugajski and
Russo 1994, Bugajski 1997, Zhang 1999 and Zhang et al. 1999). Finally, we
verified our new association rules experimentally by grouping records into asso-
ciation class and disassociation class for a given target pattern. We shown that
the target pattern appears only in the association group if a classifier is properly
chosen. However, we point out that association rules presented here measure
single association only. Association rules for measure of multiple-association re-
lationships are more complicated and will be presented elsewhere. In conclusion,
we believe that we have solved a fundamental problem in understanding associ-
ation rules by presenting the first correct association rules.

References

R. Agrawal, T. Imielinski, and A. Swami. 1993a. Mining association rules
between sets of items in large databases. In Proceedings of the ACM SIGMOD
International Conference on the Management of Data, pages 207-216.

R. Agrawal, T. Imielinski, and A. Swami. 1993b. Database mining: a perfor-
mance perspective. IEEE Transactions on Knowledge and Data Engineering,
5:914-925.

R. Agrawal and R. Srikant. 1994. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, pages 487-499.

R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, and R. Srikant. 1996a.
The Quest Data Mining System. In Proceedings of the Second International
Conference on Knowledge Discovery in Databases and Data.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. 1996b.
Fast Discovery of Association Rules. In, Fayyad et al (Fayyad et al., 1996),
pages 307-328.

J. M. Bugajski and J. T. Russo. 1993. US patent No. 5,245,337.
J. M. Bugajski and J. T. Russo. 1994. US patent No. 5,293,164.
J. M. Bugajski. 1997. US patent No. 5,592,667.
A. W. Cheung, J. Han, V. T. Ng, A. Fu, and Y. Fu. 1996. A fast distributed algo-

rithm for mining association rules. In Proceedings of the Fourth International
Conference on Parallel and Distributed Information Systems.

256 T. Zhang

U. M. Fayyad. G. Piatetsky-Shapiro, P. Smyth, and R. Uthrusamy. 1996. Ad-
vances in Knowledge Discovery and Data Mining. AAA I Press, Menlo Park,
CA.

J. Han and Y. Fu. 1995. Discovery of multiple-level association rules from large
databases. In Proceedings of the 21th International Conference on Very Large
Data Bases, pages 420-431.

M. Houtsman and A. Swami. 1995. Set-oriented mining of association rules.
In Proceedings of the International Conference on Data Engineering, pages
25-34.

M. Klemettine, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. 1994.
Finding interesting rules from large sets of discovered association rules. In Pro-
ceedings of the 3th International Conference on Information and Knowledge

Management, pages 401-407.
S. D. Lee, D. W. Cheung, and B. Kao. 1998. Is sampling useful in data mining?

A case in the maintenance of discovered association rules. Data Mining and
Knowledge Discovery, Vol. 2, number 3, pages 233-262.

H. Mannila, H. Toivonen, and A. I. Verkamo. 1994. Efficient algorithms for dis-
covering association rules. In Proceedings of the AAAI Workshop on Knowl-
edge Discovery in Databases, pages 144-155.

H. Mannila. 1998. Database methods for data mining. Tutorial for 4th Interna-
tional Conference on Knowledge Discovery and Data Mining.

R. Meo, G. Psaiia, and S. Ceri. 1998. An extension to SQL for mining association
rules. Data Mining and Knowledge Discovery, Vol. 2, number 2, pages 195-224.

J. S. Park, M. S. Chen, and P. S. Yu. 1995. An effective hash based algorithm for
mining association rules. In Proceedings of the ACM SIGMOD International
Conference on the Management of Data, pages 175-186.

A. Savasere, E. Omiecinski, and S. Navathe. 1995. An efficient algorithm
for mining association rules in large databases. In Proceedings of the 21th
International Conference on Very Large Data Bases, pages 432-444.

C. Silverstein, S. Brin, and R. Motwani. 1998. Beyond market basket: Gener-
alizing association rules to dependence rules. Data Mining and Knowledge
Discovery, Vol. 2, number 1, pages 39-68.

R. Srikant and R. Agrawal. 1995. Mining generalized association rules. In
Proceedings of the 21th International Conference on Very Large Data Bases,
pages 407-419.

H. Toivonen. 1996. Sampling large databases for finding association rules. In
Proceedings of the 22th International Conference on Very Large Data Bases,
pages 134-145.

J. Wijsen and R. Meersman. 1998. On the complexity of mining quantitative
association rules. Data Mining and Knowledge Discovery, Vol. 2, number 3,
pages 263-282.

T. Zhang, J. M. Bugajski, and K. R. Raghavan. 1999. US patent No. 5,966,709.
T. Zhang. 1999. US patent No. 5,983,232.

Density-Based Mining
of Quantitative Association Rules

David W.Cheung, Lian Wang, S.M.Yiu, and Bo Zhou

Department of Computer Science and Information Systems
The University of Hong Kong, Pokfulam, Hong Kong

{dcheuag,wliem,smyiu,bzhou}®csis.hku.hk

Abstract. Many algorithms have been proposed for mining of boolean
association rules. However, very littl e work has been done in mining
quantitative association rules. Although we can transform quantitative
attributes into boolean attributes, this approach is not effective and is
difficult to scale up for high dimensional case and also may result in many
imprecise association rules. Newly designed algorithms for quantitative
association rules still are persecuted by nonscalable and noise problem.
In this paper, an efficient algorithm, QAR-miner, is proposed. By us-
ing the notion of "density" to capture the characteristics of quantitative
attributes and an efficient procedure to locate the "dense regions", QAR-
miner not only can solve the problems of previous approaches, but also
can scale up well for high dimensional case. Evaluations on QAR-miner
have been performed using both synthetic and real databases. Prelim-
ineiry results show that QAR-miner is effective and can scale up quite
linearly with the increasing number of attributes.

1 Introduction

Data mining, the effective discovery of correlations among the underlying data
in large databases, has been recognized as an important area for database re-
search and has also attracted a lot of attention from the industry as it has
many applications in marketing, financial, and retail sectors. One commonly
used representation to describe these correlations is called association rules as
introduced in [3]. In this model, the set / = {ii,i2, im} is a collection of items
or attributes. The database DB consists of a set of transactions, where each
transaction is a subset of items in /. An association rule is an implication of the
form X =^ Y with X,Y C I and X DY = <l>. The meaning of the rule is that
a transaction contains items in X wil l Hkely contains items in Y so that mar-
keting strategy can be derived from this implication, for instance. To determine
whether an association rule is interesting, two thresholds are being used: support
and confidence. An association rule, X =^ Y, has support s% in DB if s% of
transactions in DB contain items in XLlY. The same association rule is said to
have confidence c% if among the transactions containing items in X, there are
c% of them containing also items in Y. So, the problem is to find all associa-
tion rules which satisfy pre-defined minimum support and minimum confidence
constraints.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 257-268, 2000.
© Springer-Verlag Berlin Heidelberg 2000

258 D.W. Cheung et al.

In this setting, attributes which represent the items are assumed to have only
two values and thus are referred as boolean attributes. If an item is contained in a
transaction, the corresponding attribute value will be 1, otherwise the value will
be 0. Many interesting and efficient algorithms have been proposed for mining
association rules for these boolean attributes, for example, Apriori [3], DHP
[9], and PARTITION algorithms [10] (see also [1,2,12,4,5,7]). However, in a real
database, attributes can be quantitative and the corresponding domains can
have multiple values or a continuous range of values, for example. Age, Salary.
By considering this type of attributes, association rules like this one, (30 <
Age < 39) and (50000 < Salary < 79999) ^ (100000 < Loan < 300000), will be
desirable. To handle these quantitative attributes, in this paper, a new threshold
called density wil l be introduced. This new threshold, together with the support
and confidence thresholds, will lead to an efficient and scalable algorithm, QAR-
miner, for mining quantitative association rules.

1.1 Motivatio n for a Density Threshold

The motivation for a new density threshold can best be illustrated by an example.
Assuming that we have two quantitative attributes, A and B (see figure 1).
Each transaction in the database is mapped to a data point (or a range) in
this two dimensional space using the corresponding values of the attributes as
coordinates. We want to find all the association rules of the form A C [a;i, 2:2] =>
B C [2/1,2/2] where a;i,a;2 € {0,al,a2,a3,a4,a5,a6} with X2 > xi and 2/1)2/2 G
{0,61,62,63,64,65} with 2/2 > Vi- And we further set the support threshold
to 5 points and the confidence threshold to 50%. We can obviously obtain the

B
t>5

t>-4-
t>3

t>2

t>l

O

o f ma

r

o n

rj" ?
i - j .

i i

>^^^
R - e g i on

^.--^^^ o f r u l e C 2)

a l a.2 a3 a4 a5 a6 y ^

Fig. 1. Example of some quantitative rules

following rules:

- y lC [al,a2]
-AC [a2,a5]
-AC [0,a5] =

One can easily see that with only the support and confidence thresholds, as long
as a range has the minimum support, any larger range containing this range

^BC [62,63] (1)
^ S C [0,65] (2)
B C [0,65] (3)

Density-Based Mining of Quantitative Association Rules 259

wil l also satisfy the support threshold. Similarly, by enlarging the two ranges in
both dimensions, it is very likely that the new ranges will satisfy the confidence
constraint as well. This can lead to many "useless" rules:

— Trivia l Rule: Rules (2) and (3) will be considered as useless and not in-
teresting because rule (3) covers all possible values of both attributes while
rule (2) covers almost all possible values of both attributes.

— Redundant Rule: According to the above observation, from rule (1), we
can have all kinds of rules in the form A C [zl,z2] => B C [^1,^2] where
[al,a2] C [zl,z2] and [62,63] C [ul,u2]. In this particular example, we can
see that all these rules satisfy both the support and confidence constraints.
However, these rules, when compared with rule (1), are not very interesting
because the increase in support of these rules is relatively a lot less than the
increase in the sizes of the ranges.

Prom the above example, intuitively, rule (1) is much more preferable than
both rules (2) and (3). The reason is the density of the region representing rule(l)
is much higher than the density of regions representing rule(2) and (3) (see Fig.
1). Hence, if density is defined as a new threshold, it is easy to get rid of trivial
and redundant rules.

In real application, when we map a database in a multidimensional space, we
can always notice that the data points (transactions) exhibit a "dense-regions-in-
sparse-regions" property. In other words, the space is sparse but not uniformly
so. That is, the data points are not distributed evenly throughout the multidi-
mensional space. According to this kind of distribution and the density threshold
we have just introduced, the problem of mining quantitative association rules
can be transformed to the problem of finding regions with enough density {dense
regions) and finally these dense regions will then be mapped to quantitative as-
sociation rules.

1.2 Related Work

There are a few others' work in trying to solve this mining problem for quantita-
tive attributes. In [11], the authors proposed an algorithm which is an adaptation
of the Apriori algorithm for quantitative attributes. It partitions each quanti-
tative attribute into consecutive intervals using equi-depth bins. Then adjacent
intervals may be combined to form new intervals in a controlled manner. Prom
these intervals, frequent itemsets (c.f. large itemsets in Apriori Algorithm) will
then be identified. Association rules will be generated accordingly. The prob-
lems with this approach is that the number of possible interval combinations
grows exponentially as the number of quantitative attributes increases, so it
is not easy to extend the algorithm to higher dimensional case. Besides, the
set of rules generated may consist of redundant rules for which they present a
"greater-than-expected-value" interest measure to identify the interesting ones.

Another algorithm proposed for quantitative attributes is [8]. Their idea is
to combine similiar association rules to form interesting quantitative associa-
tion rules using the technique of clustering. The algorithm will map the whole

260 D.W. Cheung et al.

database into a two dimensional array with each entry representing an interval
in each of the dimensions. Entries with enough support will be marked, then a
greedy clustering algorithm using "bitwise AND" operation is used to locate the
clusters. In this approach, the drawback is that the algorithm is sensitive to noise.
Although an image processing technique, called low-pass filter, is used to remove
these noises, the algorithm is still sensitive to noise and noise is unavoidable in
real database. Also, the algorithm is basically designed for two quantitative at-
tributes, so again it is not trivial to extend the algorithm to an efficient one for
higher dimensional cases.

On the other hand, the noise problem and the redundant rules problem of
these approaches can be handled by the density threshold in our approach. And
our QAR-miner can be used in higher dimensional cases with scalable perfor-
mance. It is hoped that this new approach can give more insights on this mining
problem. The remaining of the paper will be organized as follows. Some prelim-
inary definitions will be given in section 2. Section 3 will describe the algorithm
for QAR-miner. Evaluations on QAR-miner will be discussed in section 4. Con-
clusion will be presented in section 5.

2 Some Prel iminary Definitions

In this section, some preliminary notations and definitions wil l be presented.

Definition 1. Let Ai {1 < i < n) be a quantitative attribute with a totally
ordered domain. Then, a quantitative association rule is of the form:

Al C [ai,bi]AA2 C [02,62] A... A A „ _ I C [a„_i,6„_i] =^ An C [a„,6„] where
[ai,bi] (ai < bi) is a range on the domain of Ai.

The mapping of transactions to data points of a multidimensional space is
done as follows. Each attribute is represented by a dimension in the space. A
transaction is mapped to a data point in the space using the attribute values as
coordinates. And in the multi-dimensional space, the volume and the density of
a rectangular region r will be denoted by Vr and pr respectively.

Definition 2. Consider a multidimensional space S created by a mapping from
a set of transactions. Let r be a rectangular region in S, then the density of r,
Pr, is defined as the number of data points inside the region divided by v^. (We
sometimes use p{r) to denote pr for simplicity.)

Definition 3. Let X, (1 < i < q) denote a set of regions. Then, if X is the
region formed by combining this set of regions, X is the minimum bounding
rectangular box which contains all regions Xj .

Definition 4. S is a dense region if its density, ps, is greater than or equal
to a user specified threshold, Pmin-

Definition 5. Given n parts Ai,A2,...,An, which are n sets of disjoint regions.
The maximum combined density of these n parts is

max{pc\C is the combined region of ci,C2,...,c„

and Ci C Ai,C2 C. A2,...,Cn Q An}

Density-Based Mining of Quantitative Association Rules 261

3 Algorithms for QAR-Miner

3.1 Framework of QAR-Mine r

In QAR-miner, the multidimensional space is divided into cells. The problem of
mining quantitative association rule is divided into two subproblems: (1) finding
dense regions and (2) translating dense regions to quantitative association rules.
We further decompose the first step into two subproblems. We first locate all
base dense regions. A base dense region is a connected set of cells in which each
cell must have a density higher than piow- Then, these base dense regions will
be combined to form bigger dense regions. The formation of these bigger dense
regions is to combine similar quantitative rules into one interesting rule. However,
in this part, if at each step, we try all possible combinations of the available dense
regions, the complexity will be extremely high. To reduce the time complexity,
a "hierarchical divide-and-conquer" approach is developed. Finally, the dense
regions identified in step (1) will be tested against the support and confidence
thresholds to generate quantitative association rules.

3.2 EDEM Algorith m for Findin g Base Dense Regions

We formulate the base dense region discovering problem as the following opti-
mization problem. Let 5 = Di x Z)2 x x D^ be a rf-dimension space such
that, ioi 1 < i < d, Di = {x\x G Ai,Li < x < Hi} is a range in a totally
ordered domain Ai, bounded above and below by Hi and Li respectively. The
space S is partitioned into equal size cells such that the cell length on the i-th
dimension is Ci. That is, the i-th dimension is divided into crij = {Hi — Li)/ci
equal intervals. We use CP =< ci,C2, ,Q > to denote a cell-based partition
of S. We use cell as the basic unit to reference the coordinates of regions. We use
r = [{li,l2, ,ld), {h\,h2, , hd)] to denote a region representing a subspace
whose projection on the i-dimension is the interval [Li 4- Cili,Li + Cihi]. And
Pmin is the density requirement for base dense regions. Because the final rules
we mined should satisfy the support threshold, so the volume of a base dense re-
gion corresponding to a rule should also be large enough or it cannot get enough
support. Hence we give Vmin as the volume threshold that a base dense region
should satisfy, piow is another density threshold that each cell should satisfy in
a base dense region. This is because we do not want to combine empty or nearly
empty cells in a base dense region.

Given a d-dimensional space S, a set of data points D in 5, a cell based parti-
tion CP on S, together with three input thresholds pmin, Plow, and Vmin, finding
the base dense regions in S is equivalent to solving the following optimization
problem (see table 1 where r̂ denotes the ith base dense region).

The EDEM algorithm actually consists of three steps:

— Step 1: Build a k-d tree to store the non-empty cells.
— Step 2: Prune away sparse regions from the k-d tree.
— Step 3: Locate the base dense regions.

262 D.W. Cheung et al.

Table 1. Problem statement of finding base dense regions

Objective: Maximize Evnii = 1,
Constraints: p ̂ > Pmin, (i = 1, ...,n)

Vn > Vmin,{i = l , . . . ,n)
Vi = 1,..., m for all cell cl in r,, pd > piow, {i = = 1,. .,n)

In fact, after step 2, most of the sparse regions will be pruned away. The k-d tree
will be divided into covers containing the base dense regions. It is guaranteed
that the same base dense region will not be divided into different covers although
more than one base dense region may be in the same cover. Therefore, in step
3, the searching can be done in each cover. Based on some interesting theorems,
these three steps can be performed efficiently. Please refer to [13] for more details
on how this is done.

3.3 HDRCluster Algorith m for Combining Base Dense Regions

Now what we have is a set of base dense regions. The next step is to combine
them into bigger dense regions. The idea is that: Given a set of dense regions, by
combining these regions in all possible cases, the combination with the largest
combined density which still satisfy the density constraint should be combined.
The final set of dense regions so obtained is regarded as the optimal result.
However, a direct implementation of this idea is highly inefficient. Fortunately,
based on the following observations, a more efficient algorithm, HDRCluster, can
be used.

Let us illustrate the observations by an example. In this example, R, which
is the set of input base dense regions, contains 15 base dense regions which are
labelled with integers from 1 to 15. For presentation purpose, let DRCluster(/c)
denote the procedure that will try all combinations of regions with at most k
regions in any combination. The results generated by DRCluster(3) and DRClus-
ter(2) are shown in Figure 2 (a) and (b), respectively. In these figures, rectangles
surrounded by dashed line denote the dense regions generated by the processes.

Fig. 2. Results of DRCluster (3) and DRCluster(2) on R

Density-Based Mining of Quantitative Association Rules 263

After comparing these two figures, we have the following two observations.
Firstly, although DRCluster(2) does not generate the same result as DRClus-
ter(3), it does generate some dense regions generated by DRCluster(3). Secondly,
some base dense regions are "far" away, some combinations of regions can be
ignored without affecting the final result. To formalize the second observation,
we define independent parts as follows:

Definitio n 6. Given n parts such that each part is a set of dense regions. If
the maximum possible combined density of any combination of these parts is less
than Pmin These parts are independent parts.

And with the help of the following theorem, it is easy to identify independent
parts.

Theorem 1. Given that DRClusterfp) can generate the optimal result. And
Pi,...,Pn are n parts of base dense regions. If the maximum combined density of
any two parts is smaller than ^,^/" '^\, they are independent parts.

These two observations together give a hierarchical divid-and-conquer algo-
rithm for combining dense regions. See below for a high level description of the
algorithm and the detailed version will be presented in the full paper.

— Step 1: Set k = 2.
— Step 2: Divide the input R into independent parts.
— Step 3: For each independent part, run DRCluster(fc).
— Step 4: Remove regions which are already optimal.
— Step 5: Set k = k + 1. Repeat steps 2 - 5 until all optimal regions are

identified.

3.4 Generate Quantitativ e Association Rules

Now we can transform dense regions to quantitative association rules. Since den-
sity threshold is already satisfied, so we only need to consider whether support
and confidence threshold are satisfied. From the definition, a quantitative asso-
ciation is of the form: Ai C [ai,fti] AJ42 C [02,^2] A ... A A „ _ I C [a„_i,6„_i] =̂
An C [a„,6„] where Ai{l <i < n) is a quantitative attribute. It is obvious that
the rule defines a dense region by the ranges for each Aj . Let this dense region
be denoted by i?„. And let the orthographic projection of i?„ on the hyperplane
formed by dimensions Ai,A2,...,An-i be denoted by Rn-i- Because of ortho-
graphic projection, the length of Rn-i on ith dimension is the same as it of i?„,
where 1 < i < n — I. Now the support of this potential association rule that
generated from Rn is the number of points falling in i?„, and the confidence
of this potential rule is the number of points falling in Rn over the number of
points falling in Rn-i- If both of the support and confidence requirements are
satisfied, then a quantitative association rules is successfully generated from the
dense region i?„. See an example in Figure 3. We can see a three dimensional
box Rn in the three dimensional space, and a two dimensional shadow below it

264 D.W. Cheung et al.

As

as
fin

62-'_-
p^' Rn-l

Fig. 3. Example of counting support and confidence

X

which is Rn-i, that is, the orthographic projection of Rn on the plane formed
by dimensions Ai and A2.

As we perform the same checking on all the dense regions, we can get all the
quantitative association rules.

4 Performance Study of QAR-Miner

Some experiments have been carried out to evaluate the performance of QAR-
miner. All the experiments axe performed on a Sun Sparc 5 workstation running
Solaris 2.6 with 64M main memory. Since the third step of QAR-miner is rather
trivial, so the discussion will be mainly focused on the first two steps.

4.1 Generation of Synthetic Database

In this performance study, we first use synthetic database to evaluate the perfor-
mance of QAR-miner. The main parameters for synthetic database generation
are listed in Table 2. The databases are generated by a 2-step procedure. In the
first step of the procedure, a number of non-overlapping potential dense regions
are generated. In the second step, points are generated in each of the poten-
tial dense regions, as well as in the remaining space. For each generated point,
transaction(s) corresponding to that point will then be generated.

4.2 Evaluation of EDEM and HDRCIuster on Synthetic Database

To simplify the experiments, we use a default cell volume of 20 for the cells in
EDEM. And we set piow = Pminf ̂ and Vmin = 4096 and pmin = Pdri i" all the
experiments.

Effect of EDEM and HDRCIuster on Different Dimension Numbers.
In these set of experiments, we fixed the volume of the d-dimensional space
and increased the number of dimensions from 2 to 7. The d-dimensional space
has a volume of 2 x 10 °̂ with different lengths in dimensions. Also, Ndr = 10,

Density-Based Mining of Quantitative Association Rules 265

Table 2. Input parameters of data generation

parameter

d
Li

Ps
m

Ndr

u
at

Pdr
rfidr

meaning

no. of dimensions
length of dimension i
density of the sparse region
average multiphcity for the whole spa<;e
no. of dense regions
average length of dense regions in dimension i
standard deviation of the length of dense regions in dimension i
average density of dense regions
average multiplicity for the dense regions

io^r=20%. The average volume of a potential dense region is 5 x 10 ,̂ and the
number of data points in the whole d-dimensional space is about one million, in
which about 5% are sparse points.

SpaMJriHDRCIuU r

f '

: k-9 - ^

Fig. 4. Speed of EDEM and HDRCluster on different dimension numbers

Figure 4 clearly shows that the speeds of EDEM and HDRCluster are not
increasing exponentially as the number of dimensions increases. This is what we
have expected from the analysis.

EfTect of EDEM and HDRCluster on Different Number of Dense Re-
gions. Besides the above experiments, we also test the performance of EDEM
and HDRCluster with different number of dense regions from 10 to 100. These
experiments are performed in a 3-dimensional space with a volume of 2 x 10^°,
and the total number of points is about one million in which about 5% of them
are sparse points. Figure 5 shows the result.

In Figure 5, we can see that the speed of EDEM decreases as the number of
dense regions increases. The reasons are the followings. Firstly, the size of each
dense region becomes smaller. This reduces the amount of splitting of the base
dense regions across the k-d tree nodes; and secondly as the size of dense region

266 D.W. Cheung et al.

Fig. 5. Speed of EDEM and HDRCluster with different number of dense regions

decreases, the size of base dense region covers becomes smaller accordingly. This
in turn speeds up the base dense region growing in these base dense region covers.
We may also notice that the speed of HDRCluster is growing rapidly with the
number of base dense regions. So the smaller the value of k in HDRCluster(A;),
the better the performance.

In the above experiments, we also test the results generated by HDRCluster(fc)
with different values oi k {k = 9,8,7,6,5,4,3), and it is found that even with
fc = 4, the procedure will return the optimal result. We also counted the average
and maximum number of base dense regions in a dense region when the number
of dense regions changing form 10 to 100 in above experiments. Table 3 shows
the corresponding result, it is clear that the average number of base dense re-
gions in a dense region is always around 5, and the maximum number of base
dense regions is seldomly exceed 8, only once. This is in line with our prediction.
That is using a smaller value of k for the procedure HRDCluster(k) is usually
good enough to get a good result.

Table 3. Average and Maximum base dense regions in dense regions

No of Dense Region

Average No
Maximum No

10

6.3
10

20

5.8
8

40

5.2
8

60

5.1
7

80

4.6
6

100

4.2
6

To further verify that the performance of HDRCluster(/c) is better than that
of DRCluster(fc), the following figure compares the speeds of DRCluster(3), DR-
Cluster(4), and HDRCluster(4). It is clear HDRCluster(4) outperforms the other
two.

4.3 Evaluation of QAR-Mine r on Real Database

We also test QAR-miner on real data. The real data is about the worl d wide
re-export trad e statistics provied by Hong Kong Productivity Council.

In this set of real data, we have chosen four attributes(dimensions) from the
original database for our experiment: Country of Consignment(denoted by CC),
Country of Origin (denoted by CO), Trade Item(denoted by TI) and Month.
Each tuple in the database represents that Hong Kong has re-exported (a trade

Density-Based Mining of Quantitative Association Rules 267

Sp««d ol DHCIust w and HDRCIusta r

too

1

. "

1

...--*-

Dimanmko n Numbe r

Fig. 6. Speed of DRCluster and HDRCluster with different number of dimension

item in) TI provied by (a country in)CO to (a country in) CC in that month.
Both CO and CC have 188 different values with each value representing a country
or a region. TI has 6343 different values with each value representing a trade
item. The rule is of the form

[a, 6] C CO A [c, d]CCCA [i,j] Q Month ^ [e, /] C TI

([a,b] and [c,d] are set of countries, [e,f] is a set of trade items.) The number of
tuples is about 1,200,000 and the volume of this 4-dimensional space is about
1.5 X 10 .̂ Here we set Pmm=30%, and Vmin = 2000 After running QAR-miner,
we find some interesting rules, the following shows one of them (the dots in rules
means there are other items that we do not list them here):

fPRC
FINLAND,CHIL E ^ r BALL POINT PENS '

\ TAPAIV f A { GREECE,TURKEY V / \ { 5-9 } => ^ MEDICAMENTS
(̂ JAPAN J j^ MEXICO J [F O O T W E A R . ..

5 Conclusion

In this paper, we have introduced a new "density" threshold for mining quanti-
tative association rules. Using this density threshold and an efficient algorithm
for locating dense regions, an efficient algorithm, QAR-miner, is developed for
quantitative attributes. This QAR-miner not only solves the problems of previ-
ous algorithms, but also can scale up well for high dimensional cases as supported
by the preliminary experimental results.

In fact, the techniques presented in this paper can also be applied in other
areas. For example, both EDEM and the HDRCluster algorithms are found very
useful in indexing OLAP data for reducing the query response time [6].

268 D.W. Cheung et al.

References

1. R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In Proc. 4th Conf. on Foundations of Data organization and Algorithms,
October 1993.

2. R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval classifier
for database mining applications. In Proc. of the 18th Conf. VLDB, Vancouver,
Canada, August 1992.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
Of the 20th Conf. on VLDB, Santiago, Chile, September 1994

4. D. W. Cheung, V. T. NO, A. W. Pu, and Y.J. Fu. Efficient mining of associa-
tion rules in distributed databases. IEEE Transactions on Knowledge and Data
Engineering, 8(6)1996

5. D.W. Cheung and Y. Xiao. Effect of Data Skewness in Parallel Mining of Asso-
ciation Rules. In Proc. The 2th PAKDD-98 Conf. . Melbourne, Australia, April ,
1998.

6. David W. Cheung et al. Towards the Building of a Dense-Region-Based OLAP
System. Manuscript, 1999.

7. J. Han and Y. Fu. Discovery of multiple-level association rules from large databases.
In Proc. Of the 21st Conf. on VLDB, Zurich, Switzerland, September 1995.

8. B. Lent. A. Swami, and J. Widom. Clustering Association Rules. In Proceedings
of ICDE97, Birmingham, UK, April 1997.

9. Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash-based algo-
rithm for mining association rules. In Proc. ACM SIGMOD International Confer-
ence on management of Data, San Jose, California, May 1995.

10. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21th conf. VLDB, Zurich,
Switzerland, September. 1995

11. R. Srikant and R. Agrawal. Mining quantitative association rules in large rela-
tional tables. In Proc. Of the ACM SIGMOD Conference on Management of Data,
Montreal, Canada, June 1996

12. H. Toivonen. Sampling large databases for association rules. In Proc. Of the 22th
Conf. on VLDB, Mumbai, India, September 1996

13. B. Zhou, D.W. Cheung and B. Kao. A Fast Algorithm for Density-Based Clustering
in Large Database. In Proc. The 3rd (PAKDD-99) Conf., Beijing, China, April
1999.

AViz : A Visualization System
for Discovering Numeric Association Rules

Jianchao Han and Nick Cercone

Department of Computer Science, University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

{ j 2hanQhopper,ncerconeQmath}.uwaterloo.ca

Abs t rac t. We introduce an intersictive visualization system, AViz, for
discovering numerical association rules from large data sets. The process
of interactive visual discovery consists of six steps: preparing the raw
data, visualizing the original data, cleaning the data, discretizing nu-
merical attributes, and discovering and visualizing association rules. The
basic framework of the AViz system is presented and three approaches to
discretize numerical attributes, including equal-sized, bin-packing based
equal-depth, and interaction-based approaches, are proposed and imple-
mented. The algorithm for discovering and visualizing numerical asso-
ciation rules is discussed and analyzed. The AViz system has been ex-
perimented on a census data set. The experimental results demonstrate
that the AViz system is useful and helpful for discovering and visualizing
numerical association rules.

Keywords: KDD, data mining, data visualization, association rules.

1 Introduction

Many techniques and systems for da ta visualization have been developed and
implemented [3,5,6,7,8,10]. One common feature of these business systems is
their dependence on computer graphics and scientific visualization; da ta mining
visualization is t reated in a straightforward way to mine data so that the com-
plex data can be made more understandable. The problem that exists in these
systems, however, is that in most cases, the complex data is carefully arranged
and displayed in specific visual form, and the mining results are left to the user
who must observe and determine the meaning of the pictures. Unfortunately, i t
is not easy for a user to do this job because it usually requires a wealth of back-
ground knowledge. Silicon Graphics developed a series of visualizers like Map
Visualizer, Tree Visualizer, etc. [5] to visualize data mining results according
to different da ta mining techniques such as decision tree, neural network, etc.
But only the mining results are displayed. Interactive visual da ta mining should
provide a user with not only the mining results but also the entire process in
visual form so that the user can part icipate in the mining process and present
what he/she is concerned with most.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 269-280, 2000.
© Springer-Verlag Berlin Heidelberg 2000

270 J. Han and N. Cercone

We introduce an interactive system for visualizing the process of discovering
numerical association rules. Consider association rules of the form: A ̂ B,
where A consists of two different numerical attributes and J5 is a numerical or
nominal attribute. Suppose X and Y are two such different numerical attributes
and Z is a quantitative attribute. Our goal is to find an interest region in the
X xY plane for each value z oi Z, as shown below:

X € [a;i,a;2],y e [2/1,2/2] =^ Z = z

For example,

age £ [26,35], salary € [50/c, 65A:] ==> position = analyst

is such a rule, where X is age, Y is salary, and Z is position.

The AViz system consists of six components, including data preparation, raw
data visualization, data reduction, numerical attribute discretization, discretiza-
tion visualization, and discovery and visualization of rules. In Section 2, related
research is introduced. The framework of the AViz system is presented in Section
3, and three approaches to discretizing numerical attributes are discussed and
compared in Section 4. The paradigm and algorithm for discovering and visu-
alizing numerical association rules based on the scheme proposed by Fukuda et
al. [4] are described and analyzed in Section 5. The implementation of the AViz
system and an experiment on census data are discussed in Section 6. Finally,
Section 7 contains concluding remarks.

2 Related Work

The main idea of discovering numerical association rules is to discretize the nu-
merical attributes into disjoint intervals, and then transform the problem to
mining item association rules [1,2,13]. Each interval is represented as a Boolean
attribute. A tuple is said to satisfy this Boolean attribute if it has the value of the
corresponding numerical attribute falling into this interval. There are currently
many approaches to discretizing numerical attributes. The equi-sized approach
is to simply partition the continuous domain into intervals with equal length [4].
The equi-depth approach [12] basically partitions the data values into intervals
with equal size along the ordering of the data. Another equi-depth approach
proposed in [13] is based on the measure of the partial completeness over item-
sets which compensates for the amount of information lost by partitioning. The
distance-based approach [11] consists of two phases, and addresses the measure
of the quality of an interval and the distance between the data points in the
adjacent intervals. The first phase identifies data clusters and the second phase
combines clusters to form rules,

The AViz system provides three approaches to perform discretization, equi-
sized, bin-packing based equi-depth, and interaction-based. The equi-sized and
bin-packing based equi-depth approaches require the user to specify the num-
ber of intervals for both numerical attributes. The interaction-based approach is

AViz: A Visualization System for Discovering Numeric Association Rules 271

based on one of the other two approaches. After the numerical attributes are dis-
cretized and visualized, the user can intuitively adjust the partition by observing
the distribution of the data.

Keim and Kriegel [7] and Keim [8] compared the different techniques for
visualizing data mining, and Kennedy et al. [9] presented a framework for in-
formation visualization. Fukuda et al. [4] proposed the SONAR system which
discovers association rules from two dimensional data by visualizing the orig-
inal data and finding an optimized rectangular or admissible region. Han and
Cercone [6] implemented the DVIZ system for visualizing various kinds of knowl-
edge. The basic idea of visualizing association rules in the AViz system is based
on [4,6].

3 The AVi z System

AViz is an interactive data mining visualization system, which uses visualization
techniques to clean and preprocess the data and also interpret the patterns dis-
covered. AViz exploits numerical attributes discretization approaches and min-
ing algorithms to discover numerical association rules according to requirements
(support threshold and confidence threshold) specified by the user. AViz consists
of six components, shown in Fig. 1.

 1 ^
JTl
- -,
y '.[f

 {

'^ ^
?^.:
 ra.

'
s
Z^c

« r
,

T " .

'f
\

L.

f

r
>

Pattern
Discovery vs
Visualization

Fig. 1. The AViz System

In the AViz system, data preparation specifies the original data file, attributes
file, the numerical attributes X and Y, and the nominal or numerical attribute
Z, which forms the antecedence and the consequence of the association rules

272 J. Han and N. Cercone

to be discovered, respectively. This specification is interactively given by the
user and implemented by using file dialog and choice windows. The data set
prepared for discovering association rules is a list of tuples consisting of three
fields < x,y,z >.

The second step, visualizing the raw data, reads the tuples in the data file,
and transfers each tuple into a point of the drawable window. Since we only
consider two numerical attributes in the antecedence of association rules, we
project points in the three dimensional space X xY x Z onto the X xY plane.
Thus we can observe how the data distribute in the space. The denser are the
points in a region, the more support is shown for the region.

According to the visualization of the raw data, the user can pick up an
interesting region on the X xY plane by using a "rubber band". This region
usually contains dense points and has high support. The points outside the region
are "cleaned". Therefore, the size of the data set used to discover association rules
is reduced. This task is accomplished in the third step, data reduction. Another
reduction is attribute selection, which has been completed in the data preparation
step manually. The result of the reduction is redisplayed on the screen window
so that reduction can take place further. This step can be repeated until the user
is satisfied with the final result.

The next step is to discretize the numerical attributes, dividing each contin-
uous attribute into disjoint intervals (buckets). AViz provides three approaches
in its Discretization Approaches library, shown in Fig. 1, including equi-sized,
bin-packing based equi-depth, and interaction-based approaches.

Discretizing numerical attributes results in two sets of intervals, one for each
numerical attribute. Thus a collection of squares is obtained and stored in the
Discretized Data Set in Fig. 1, each square consisting of two intervals, one from
each numerical attribute. Assume that attribute X is partitioned into N ̂ buck-
ets, and Y into Ny buckets, then the total number of squares is Â x Ny. Usually,
Â x and Ny are between 20 and 300 in practice. Hence the data set is mapped
into Â x Ny squares, regardless of the data set size. To visualize the discretized
numerical attributes, the raw data is read again from disk, and the support and
hit for each square are calculated. The support of a square is the number of
points which fall in it, and the hit of a square ioi Z = z is the number of points
that fall in this square and have value z of Z. For each square, the sum of its
all hits corresponding to different values of Z is equal to its support. The visu-
alization of the discretized attributes is to render all squares for all values of Z
according to their support and hit, and draw and rotate a series of planes, see
Fig. 4.

Finally, the algorithm for discovering the association rules is executed to find
the optimal region in terms of the user-specified support and confidence threshold
by moving threshold sliders, and each rule is represented as an optimal region
on the plane Z = z oi the three-dimensional space X x Y x Z, see Fig. 5.

AViz: A Visualization System for Discovering Numeric Association Rules 273

4 Discretizing Numerical Attributes

The AViz system provides three approaches to discretizing numerical attributes,
equi-sized, bin-packing based equi-depth, and interaction-based approaches.
More approaches could be added, however, in the future to compare the per-
formance of the AViz system.

The equi-sized approach partitions the continuous domain into intervals with
equal length. For example, if the domain of attribute age is [0,100], then it
can be divided into small intervals with length of 10, thus we have intervals
< 0^6,0,10 > ,< age, 11,20 > , . . . ,< age,91,100 >. This approach is simple
and easily implemented. The main drawback of this approach is it may miss
many useful rules since the distribution of the data values is not considered.

Suppose the domains of numerical attributes X and Y are [Minx, Maxx]
and [Miny, Maxy], respectively. X xY forms an Euclidean plane. Each tuple t
in the data set can be mapped to a point (t[X], t[Y]) in X x Y. Assume X and
Y are discretized into Nx and Ny buckets, respectively. Then the size of buckets
is, on average, {Maxx - Minx)/Nx for X, and {Maxy - Miny)/Ny for Y. For
a region P in X x y , we say a tuple t meets condition {X, Y) & P lit is mapped
to a point in region P.

The second discretization approach used in AViz is called bin-packing based
equi-depth approach, which is different from existing approaches. The domain of
the numerical attributes may contain an infinite number of points. To deal with
this problem, KIDS employs an adjustable buckets method [12], while the ap-
proach proposed in [13] is based on the concept of partial completeness measure.
The drawback of these approaches is in time-consuming computation and/or
large storage requirements. AViz exploits a simple and direct method, which is
described as follows.

Assume the window size used to visualize the data set is M (width or height)
in pixels, and each pixel corresponds to a bin. Thus we have M bins, denoted
B[i],i = Q,.. .,M — I. We map the raw data tuples to the bins in terms of the
mapping function. Suppose B\i] contains T\i\ tuples, and further, the attribute
is to be discretized into A'̂ buckets. According to the equi-depth approach, each
bucket will contain d = J2i=Q ^W/-^ tuples. We first assign B{0], B[l], ..., to
the first bucket until it contains at least d tuples, and then assign the following
bins to the second bucket. We can repeat this operation until all buckets contain
a roughly equal number of tuples.

One benefit of the bin-packing based equi-depth approach is that the storage
requirement is only 0{M-\-N), depending on the number of buckets and the size
of the visualization window, regardless of the domain of the attributes and the
size of the data set. Another advantage of this approach is that sorting the data
is not needed and the algorithm execution time is linear in the size of the data
set. This method, however, may not produce enough buckets, because each bin
must be assigned to only one bucket, and cannot be broken up. For instance, if
the data concentrates in several bins, then the buckets that contain these bins
wil l contain many more tuples than others. This case could happen especially
when the visualization window has a small size.

274 J. Han and N. Cercone

The third discretization approach that AViz employs is interaction-based.
This method consists of two steps. First, the user can specify one of the two
approaches described above to simply discretize the attributes. AViz displays
the discretization result. In the second step, the user can observe the data dis-
tribution and attribute discretization, and then intuitively move discretization
lines to wherever he/she thinks appropriate by clicking and dragging the mouse.
In this interaction process, the user can actively decide the discretization of
numerical attributes. Thus, this approach can only be used with other two ap-
proaces to adjust the discretization results. However, since the visualized data
has been preprocessed and mapped onto the screen, the user can only observe the
graphics to obtain an approximate idea about the data distribution. For a small
visualization window, distortion inevitably occurs. This may cause discretization
errors.

5 Discovering and Visualizing Association Rules

In order to visualize association rules using geometric techniques, we must pursue
an interesting projection of association rules to display. The basic idea is to find
a small region, such as a rectangle, on the display for each association rule and
use the size, color hue and intensity of each region to represent the corresponding
association rules.

AVi z is based on the two-dimensional model for visualizing numerical associ-
ation rules proposed by Fukuda et al. [4]. The AViz system, however, extended
the two-dimensional model to the three-dimensional space. Suppose the domains
of numerical attributes X and Y are discretized into Nx and Ny buckets respec-
tively. These buckets may or may not be equi-sized, depending on the discretiza-
tion approach. The screen axes are partitioned correspondingly. Thus the X xY
plane is divided into Â x Ny unit squares. A tuple t in the data set is projected
to the unit square containing the point (t[X],t[y]) .

Consider the unit square Gy ,l<i<Ny and I < j < Nx, which is composed
of the i-th interval of Y and the j-th interval of X. Let Uij denote the number
of total tuples in dj and vf ̂ the number of tuples satisfying Z = z in dj.
The square Gij ioi Z = z is denoted by Gfj, and its confidence can be easily
calculated as Confidence{Gfj) = vfj/uij € [0,1]. Thus, Gf̂ - is rendered with
color RGB={v^j, Uij — vfj,0). The red component is v^J, representing the square
confidence, while the green component is uy — wf , and the black component is
0. Thus the brightness level is Uij, the support of the square. So the redder the
square, the higher its confidence , and the brighter the square, the higher its
support.

The concepts confidence and support for a square can be extended to any
form of region on the plane. The support of a region is defined as the summation
of supports of all squares in the region. The confidence of a region is similarly
defined.

AViz: A Visualization System for Discovering Numeric Association Rules 275

A region is said to be ample if its support is greater than or equal to the
support threshold. A region is said to be confident if its confidence is greater
than or equal to the confidence threshold.

The algorithm for discovering numerical association rules by visualization is
discussed in [4]. For a given confidence threshold 6, the gain of the square G^j
is defined as

gain{Glj) = v^j-exuij.

Obviously, when the confidence of Gfj = 6,gain{Gfj) = 0. The gain reflects
the confidence. When the confidence is greater than the threshold, the gain is
positive, while the gain is negative when the confidence is less than the threshold.
The gain of a region is the gain summation of all squares in the region.

We implement a dynamic programming algorithm for finding the optimized
gain rectangles in three-dimensional space, which is based on the algorithm for
two-dimensional space [4]. The time complexity of our algorithm is 0{N2 Nx
Ny min{Nx,Ny}), where Â ^ is the number of values of attribute Z, if Z is
nominal, or the number of discrete intervals, if Z is numerical. The basic idea is,
for each Z value z, to choose randomly a pair of rows, say i-th and j-th rows,
1 < i £ i < -^y, and consider rectangles (^^([i,^] , m) on the plane Z = z, which
consists of the squares from the i-th row to the j-th row in the m-th column, for
m = 1,2,.. .,Nx- Then compute the gain for each rectangle G^([i,j],m),

j 3

gain{G'{\i,j],m)) =^gain{GU = ^^(^fcm - ^ x Wfcm)-
k~i k=:i

Finally, compute the gain for rectangular regions C([i,j], [r,k]), 1 < i < j <
NyA ̂ r < k < Nx, which consists of rows from i to j , and columns from r to
k on the plane X x Y with Z = z. The optimized gain rectangle in the plane
Z = z is one with the highest gain.

6 AVi z Implementat ion and Exper iment

The AViz system has been implemented in JDK 1.2 and JavaSD. The data prepa-
ration is accomplished by choosing a data file and attributes file, and specifying
the attributes to be mined. The data file is formatted in tuples which consists
of a series of fixed length fields. The attributes file characterizes each attribute,
including attribute name, type, length, position in the tuple, and domain. This
is implemented in dialog windows (under the file menu and setting menu). The
steps of discovering knowledge are controlled by the control menu, which con-
sists of the next five steps. Two sliders are used to control the support threshold
and confidence threshold. By moving these sliders in the discovering step, the
resulting rules (focus area in each planes parallel with X x Y plane) can vary.

AVi z has been applied to the U.S. census data in 1997 to find the associ-
ation rules between attributes. The data set contains about 1.4 million tuples,
each tuple consisting of 5 numerical attributes age, total-person-income, taxable-
income-amount, tax-amount, hours-usually-worked-per-week and 3 nominal at-
tributes sex, race, class-of-work.

276 J. Han and N. Cercone

In the following we give an example to trace the process of association rules
discovery and visualization.

Step 1: Data preparation

Choose two numerical attributes X= Taxable-income-amount and Y=Total-
person-income, and an nominal attribute Z=Race. The domain of X and Y is
[0, lOOOii'] and [0,500i<r], respectively. Z takes the following five values: White,
Black, Am,er-Indian-or-Eskimo, Asian-or-Pacific-Islander, and Other. Also, we
specify that X and Y are to be discretized into 20 intervals.

Step 2: Raw data visualization

Project the raw data onto the visualization window, shown in Fig. 2. In the
mapping, the Z value of the tuples is not considered, and only X and Y values
are regarded.

ts^Mining4fHlVtsu4tuiiigAsTOCUilMmnule t
t;n e Setthgi i B f f B l H«in

r
^ 3~(MaDlsi»Uiin g

.g>-Vff,.,:7^P... -

n«^BwRawDflt a

j(127,2) |3at3 cleanin g

Suppor t ThieshoiO(iyiOOO D ConnaencaTnresnold(i/iOO)

Fig. 2. The raw census data and interesting area

Step 3: Data cleaning

From Fig. 2, we see that most data concentrates on a strip which is interesting
to us. The other data can be cleaned. For now, we pick this strip by using a rubber
band. After cleaning, the remaining data set contains about 1.08 million tuples.

AViz: A Visualization System for Discovering Numeric Association Rules

L^J..il.l..l.ti.UiJ[|ll.i.LJ.r.WWPM=ff B

no Sotthg a Q ^ Q i^ ^

, rtK

I I I ~

^^imM

j ^ : \ *^T,\.A^'^^ ^V\^L ' . .^4

Support ThtesholdfiyiDOD) ConfmanceTnrastiolddnaa)

|C13t,3J toiscjelizationftmEhed

Fig. 3. Discretizing the interesting area of numerical attributes

I and Visual iz inaAt tocu ibonHi f ie t

Fltr Si^iig s CoriK* Kst)

Support Tf1reshola(1/1000) Confidence TTifesholdd/l 00)

(123J4} IVisu^Eize discretization

Fig. 4. Visualizing the discretization by rotating planes around Y axis

278 J. Han and N. Cercone

l-»<!!.i.'|inj ! "

>l 1

ft;

4*

! i

ti
t \

If*!'

:-T

, 'J-
If

H-~j

i

-1 t

. . ^ J U

Support Threshold(l/1000)

|(123,74) jvtsualize association rules .
?i '"d

Confidence Threshold(1/100)

Fig. 5. Discovering the Optimal Rectangles representing association rules

Step 4: Discretizing numerical attribute s

We choose the second approach of attribute discretization, bin-packing based
equi-depth, and then utilize the interaction-based method by moving discretiza-
tion Hnes to adjust the discretization. The result is shown in Fig. 3

Step 5: Visualizing the discretization

In Fig. 4 we visualize the discretization of Taxable-income-amount and Total-
person-income for each value of Z = White, Black, Amer-Indian-or-Eskimo,
Asian-or-Pacific-Islander, and Other. Each Z value corresponds to a plane and
the volume consisting of all planes rotates around Y axis so that all planes can
be viewed clearly.

Step 6: Discovering and Visualizing association rules

To find the association rules, we move the threshold sliders and specify the
support threshold and confidence threshold as 0.2% and 50%, respectively. We
obtain five rules, each corresponding to a value of Z, which are described as
follows and shown in Fig. 5.

X € [IbMK, 1%.MK],Y e [41.62/sr,44.58ii'] =^ Z = White
X e [g.TSX, IQA^K],Y G [26.26isr, 28.51K] =^ Z = Black
X 6 [12.67/sr, n.UK], Y e [38.24/ ,̂ 39.72]̂ = > Z = Amer-Indian-or- Eskimo
X e [11.99ii', 12.12K], Y e [33.12.ft:, 33.73]̂ = > Z = Asian-or-Pacifi c-Islander
X e [l^mK, 11.12ii:], Y G [30.20ii', 3I.13i<') =^ Z = Other

AViz: A Visualization System for Discovering Numeric Association Rules 279

The result shows that White has the largest optimal and most upper area
X e [15.64ii:, 18.34ii'] A y G [41.62ii:, 44.58ii'], while Black has the lowerest area
X G [9.78ii:, 10.44i(:] A y G [26.26/!:, 28.51/^]. Other three categories have the
optimal areas between those of White and Black.

7 Concluding Remarks

AVi z is an interactive system for visualizing and discovering numerical associ-
ation rules. The basic idea is to use visualization techniques to constrain the
domain of da ta by interacting with user and then to discover rules from the
reduced data, and finally to visualize the resulting knowledge. In our imple-
mentation, we emphasize the human-machine interaction, since we believe that
interactive visualization plays an important role in data mining to guide the
process of discovering knowledge. The experiment by visualizing a large data set
has also demonstrated that it is useful for users to understand the relationships
among data and to concentrate on the meaningful da ta to discover knowledge.
The capability of the AVi z system wil l be expanded to visualize not only the
process of discovering association rules but also the dynamic processes of dis-
covering other kinds of knowledge, like classification rules. Another problem is
about high-dimensional data. An approach for reducing the dimensionality of
the original da ta based on the principal coordinate analysis is being considered.
Combining the visualization and data mining algorithms wil l produce a much
more efficient method of knowledge discovery.

A c k n o w l e d g m e n ts

The authors are members of the Inst i tute for Robotics and Intelligent Systems
(IRIS) and wish to acknowledge the support of the Networks of Centers of Ex-
cellence Program of the Government of Canada, the Natural Sciences and Engi-
neering Research Council, and the part icipation of P R E C A RN Associates Inc.

References

1. R. Agrawal, R. Srikant, Fast algorithm for mining association rules in large
databases, Proc. of the 20th International Conference on VLDB , pp.487-499, Sept.
1994.

2. Y. Cai, N. Cercone, J. Han, Attribute Oriented Induction in Relational Databases,
in Knowledge Discovery in Databases ed. by Gregory Piatetsky-Shapiro and
Willia m J. Prawley, pp.213-228, 1991.

3. M. Derthick, J. Kolojejchick, S. F. Roth, An Interactive Visualization Environment
for Data Exploration, KDD-97, pp.2-9, 1997.

4. T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama, Data Mining Using Two-
Dimensional Optimized Association Rules: Scheme, Algorithms, and Visualization,
Proc. of the ACM SIGMOD International Conference on Management of Data, pp.
13-24, 1996.

280 J. Han and N. Cercone

5. R. Groth, Data Mining: A Haxids-on Approach for Business Professionals, Prentice
Hall PTR, 1998.

6. J. Han, N. Cercone, DVIZ: A System for Visualizing Data Mining, Proc. of the
3rd Pacific-Asia Knowledge Discovery in Databases, pp. 390-399, 1999.

7. D. A. Keim, H. P. Kriegel, Visualization Techniques for Mining Large Databases:
A Comparison, Transactions on Knowledge and Data Engineering, Dec.,1996.

8. D. Keim, Vizual Data Mining, Proceedings of International Conference on Very
Large Data Bases, 1997.

9. J. B. Kennedy, K. J. Mitchell, P. J. Barchay, A framework for information visual-
ization, SIGMORD Record, VoL25, No.4, Dec, 1996.

10. B. Liu, W. Hsu, K. Wang, S. Chen, Visually Aided Exploration of Interesting
Association Rules, Proc. of the 3rd Pacific-Asia Knowledge Discovery in Databases,
pp. 380-389, 1999.

11. R. J. Miller, Y. Yang, Association Rules over Interval Data, Proc. of the ACM
SIGMOD International Conference on Management of Data, pp. 452-461, 1997.

12. G. Piatetsky-Shapiro, Discovery, Analysis, and Presentation of Strong Rules, in
Knowledge Discovery in Databases ed. by Gregory Piatetsky-Shapiro and William
J. Prawley, pp.229-260, 1991.

13. R. Srikant, R. Agrawal, Mining Quantitative Association Rules in Large Relational
Tables, Proc. of the ACM SIGMOD International Conference on Management of
Data, pp.1-12, 1996.

Discovering Unordered and Ordered Phrase
Association Patterns for Text Mining

Ryoichi Pujino ,̂ Hiroki Arimura^' ,̂ and Setsuo Arikawâ

^ Nippon Steel Information and Communication Systems, Inc.
Kitakyushu 804-0001, Japan

^ PRESTO, Japan Science and Technology Corporation
^ Dept. Informatics, Kyushu Univ., FVikuoka 812-8581, Japan,

{arim,fu j ino,arikawajQi.kyushu-u.ac.j p

Abstract. This paper considers the problem of finding all frequent
phrase association patterns in a leirge collection of unstructured texts,
where a phrase association pattern is a set of consecutive sequences of
arbitrary number of keywords which appear together in a document. For
the ordered and the unordered versions of phrase association patterns, we
present efficient algorithms, called Levelwise-Scan, based on the sequen-
tial counting technique of Apriori algorithm. To cope with the problem
of the huge feature spaice of phrase association patterns, the algorithm
uses the generalized suffix tree and the pattern matching automaton.
By theoretical and empirical analyses, we show that the algorithms runs
quickly on most random texts for a wide range of psirameter values and
scales up for large disk-resident text databases.

1 Introduction

Background. Recent progress of network and storage technologies have been
rapidly increasing the size and the species of text databases such as webpages,
SGML/XML archives, and a collection of emails or text files accumulated on a
file system. These lead to potential demands for new access methods for large
text databases. However, traditional data mining research mainly considers well-
structured databases like transaction databases with boolean or numeric at-
tributes [2,3,9,16], and thus there still are a small number of studies on text
data mining [5,6,10,14,18].

Phrase association patterns. We consider the problem of discovering all
frequent patterns in a large collection of unstructured texts. Suppose we are
given a set of documents S. A phrase over S is any string of arbitrary length
that appears in S. We do not assume any semantic restriction on phrases as
used in natural language processing, and thus we mean by a phrase merely
a sequence of keywords delimited by space letters. An unordered k-proximity
phrase association pattern (unordered phrase pattern, for short) is an unordered
set of phrases associated with a nonnegative integer k, called a proximity, such
as ({(data mining), (very large databases)}, 30) which expresses a pattern that

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 281-293, 2000.
© Springer-Veriag Berlin Heidelberg 2000

282 R. F\ijino, H. Arimura, and S. Arikawa

the phrases (data mining) and (very large databases) appear in a document
close to each other, more precisely within the distance k. Similarly, an or-
dered k-proximity phrase association pattern (ordered phrase pattern, for short)
is defined except that phrases must appear in a specified order. For exam-
ple, (((a silkworm missile), (attacks), (Iranian oil platform)), 30) is an ordered k-
proximity phrase association pattern. In information retrieval [7], queries con-
sisting of phrases are proved to be more powerful than conventional queries
consisting of keywords.

The problem we consider is the frequent pattern problem, which is the problem
to find all phrase association patterns that appear more than a user-specified
threshold. An efficient method for solving this problem can be used for finding
interesting patterns based on various information-theoretic measures such as the
confidence [3], the information entropy [16], and the classification accuracy [6].

Approaches. If the maximum number of phrases in a pattern is bounded by
a constant d then the frequent pattern problem for both unordered and ordered
patterns is solvable by Enumerate-Scan algorithm [18], a modification of a naive
generate-and-test algorithm, in 0{n'^'^^) time and 0{n'^) scans although it is still
too slow to apply real world problems. Arimura et al. [6] gives the Split-Merge
algorithm that finds frequent ordered phrase patterns in almost linear time with
poly-log factor for random text databases. However, this algorithm is inefficient
for large disk-resident text databases, and hard to extend for unordered pat-
terns. As related researches, [10] considered the discovery of association rules
over keywords with predefined category-tags, and [14] studied data mining of
episodes, a non-consecutive sequence of events. Unfortunately, these methods
are not directly applicable to our problem.

A possible approach is to follow the design principle of the Apriori algo-
rithm [3], the state-of-the-art algorithm for mining association rules in transac-
tion databases. However, a problem in this approach is that the feature space
of phrase patterns is huge compared with that for transaction databases. For
example, even a subset of Reuters newswires [17] of size 460KB contains two
hundred thousands of unique phrases (Section 5) while a typical database con-
tains less than two thousands of attributes in the basket analysis ([3]). Hence,
we require efficient handling of the huge feature space of phrase patterns.

Mai n resul ts. In this paper, we present a practical algorithm, called Level-
wise-Scan, for efficiently finding frequent unordered phrase patterns as well as
ordered phrase patterns from a large disk-resident database based on the ap-
proach of the Apriori algorithm [3] and the Enumerate-Scan algorithm [18]. To
overcome the problem of the huge feature space of phrase patterns, the algorithm
incorporates the techniques of the generalized suffix tree [18] and the pattern
matching automaton [4] for efficiently storing and detecting frequent phrases in
a text database.

In theoretical analyses, we show that for random text databases, Levelwise-
Scan quickly finds all frequent unordered d-phrase patterns in almost linear time
0{n' ̂ -\- (logn)^7V) and space 0{n\ogn-\-R) with a constant factor depending on

Discovering Phrase Association Patterns for Text Mining 283

k and d, where n and N are the total sizes of a small sample and the whole text
database, respectively, and R is the output size. For ordered d-phrase patterns,
we have similar time complexity. The experiments on Reuters newswire test
data [17] show that the Levelwise-Scan algorithm performs well for various values
of parameters and scales up for large text data with linear time complexity.
By simulation results, we estimate that the algorithm will run in 40 minutes
for 100MB of disk-resident text data. From these results, we conclude that the
proposed algorithm is efficient in practice as well as in theory for large text
databases.

2 Formulation

Text databases. Let E be a. finite alphabet of symbols. In this paper, we
assume the alphabet E = {a, b,c,d, . . ., z, . . . , * , +, ",", ".", "LJ"} , including
the space symbol "LJ" . We denote by E* the set of all finite strings over E, and
by e the empty string. For a string s of length n and 1 < i < n, we denote by
\s\ the length of s and by s\i] the ith letter of s. For a set of strings 5 C E*,-we
denote by |5| the cardinality of S and by | |5 || = S s es 1*1 *^^ total length of S.

If there exist strings u,v,w £ E* for a string t € E* such that t = uvw then
w, V and w are a prefix, a substring, and a suffix of t, respectively. For a string
s,t £ E*, if there exists a positive integer 1 < i < |f | such that t[i] i[z~|-|i| —1] =
s then s occurs in t at i. The integer i is called an occurrence of s in t.

A document is any string s £ E*, and a text database is a finite collec-
tion T = {si,...,Sm}, m > 0, of documents. In our definition, a phrase is
any substring TT of d € T which may delimited with spaces "i_i." For example,
(Lloyd'si-jShippingi-Intelligence) is a phrase.

Phrase association patterns. Let d and k be any nonnegative integers. An
unordered k-proximity d-phrase association pattern (or unordered {k,d)-phrase
pattern) is a pair n = {{pi,.. - ,pd},k) of an unordered set {pi,... ,pd} Q E*
of d phrases and a parameter k called a proximity. The pattern n appears
in a document s if there exist some substrings so,..-,Sd of s such that (i)
s = 5oPi(i)Si , Sd-iPi(d)Sd for some permutation {i{l), i{d)} of { 1 , . . . , n)
and (ii) |si| < fc for every i = 1,... ,d—l. Note that in our definition, the prox-
imity k is counted in the number of letters. Similarly, an ordered k-proximity
d-phrase association pattern (or ordered {k,d)-phrase pattern) [5,6] is a pair
TT = ({pi, ,Pd), k) of a sequence pi,... ,pd € E* oi d phrases and a prox-
imity k. The appearance of an ordered pattern is defined similarly except that
the permutation is fixed to the identity such that i{j) = j for every 1 < j < d.
We sometimes omit the proximity k if it is clear from context.

Data Minin g problems. Let T = {ti,... ,tm}, m > 0, be a text database
and C be a class of patterns (also called hypothesis space), where each TT S C is
identified with a mapping TY : T - ̂ {0,1} . The document count of TT, denoted
by hitxiTr), is the number of documents s S T in which n appears. Then the
frequency of TT w.r.t. T is defined by SUPPT{T^) = hitT{Tr)/\T\. For 0 < cr < 1,

284 R. Fujino, H. Arimura, and S. Arikawa

a pattern n is a-frequent w.r.t. T or simply frequent if suppriTt) > (T. Then,
the problem we consider is a variant of the frequent pattern problem, which
is originally introduced by Agrawal and Srikant [3] and extensively studied for
transaction databases.

Frequent Pattern Problem for class C
Input : A text database T C S*, and a threshold 0 < CT < 1 for frequency.
Problem: Find all frequent patterns n G C w.r.t. T, i.e., suppxiTr) > cr.

Sampling is a useful technique to cope with large disk-resident text databases.
A sample is any subset S Q T. An S-induced pattern is a pattern TT such that
every phrase of TT appears at least once in S. To capture the data mining with
sampling, we introduce a modified version of the problem stated as follows.

Frequent Pattern Problem wit h sampling for class C
Input : A text database T, a sample 5 C T, and a threshold 0 < cr < 1.
Problem: Find all 5-induced patterns TT € C that is frequent w.r.t. T, i.e.,
SUPPT{IT) > a.

3 Previous Algorithms

In this section, we briefly review two existing algorithms Enumerate-Scan [18]
and Split-Merge [5,6] for solving the frequent pattern problem. Then, in the
next section, we will present a new algorithm Levelwise-Scan. Algorithms other
than Split-Merge can deal with both the unordered and the ordered versions. In
what follows, n denotes the total size of the input text database T and d be the
number of phrases in a pattern.

3.1 Enumerate-Scan Algorith m

The Enumerate-Scan algorithm implements a naive generate-and-test method
[18]. Enumerating all of 0(71 "̂̂) possible patterns, the algorithm counts the fre-
quency of each pattern by scanning the entire text database. If the number of
phrases is bounded by constant d > 0, the algorithm solves the frequent pattern
problem in 0{n'^'^'^^) time with 0{n'^'^) disk scans for unordered and ordered
cases. Wang et al. [18] showed that the complexity can be improved to 0{n'^'^^)
time and 0{n'^) scans by using the generalized suffix tree (See Sec. 4.2) although
it still requires several hours for mining genome sequences of 15KB for 2-phrase
patterns with approximate matching [18].

3.2 Split-Merg e Algorith m

In the previous works [5,6], we developed an efficient algorithm, here called
Split-Merge, that finds all the optimal patterns for the class of ordered {k,d)-
proximity phrase patterns. The Split-Merge algorithm quickly runs in almost

Discovering Phrase Association Patterns for Text Mining 285

Algorith m Levelwise-Scan;
Input: A text database T = {51,..., Sm}, a frequency threshold 0 < a < 1.
Output: The set Li of u-frequent i-phrase patterns w.r.t. T for every 0 < i < d.

Phase. A (Building Phase) In the first pass, the algorithm do the foUowings.
A.l First, draw a small sample set S from T that fits in main memory if sampling

is required.
A.2 Build the generahzed suffix tree (GST) for S.
A.3 Count the occurrence of each phrase to select frequent phrases using the GST

(explained in Sec. 4.2).
A.4 Build a finite automaton M for recognizing Li.

Phase B {Scanning Phase) In the following pass i = 2,... ,d, the algorithm com-
putes the set Li of all frequent i-phrase patterns by iterating the following process
until no more frequent patterns are found.
B.l First, it builds the candidate set d of i-phrase patterns using the frequent

patterns in Li-i built in pass i — 1.
B.2 Next, the algorithm scans the whole text database T from left to right using

M to count the frequencies of all patterns in d at a single pass on T and to
build Li, the set of all frequent i-phrase patterns.

Fig. 1. Levelwise-Scan algorithm

linear time 0{k'^~^n\og'^'^ ̂ n) with poly-log factor using 0{k''~^n) space for
most nearly random texts. The algorithm quickly searches the hypothesis space
using dynamic reconstruction of the content index, called a suffix array. Kasai et
al. [11] reported that the algorithm finds the best 600 patterns at the information
entropy in a few minutes for a subset of Reuters newswires [17] of 7 mega-bytes
using a few hundreds mega-bytes of main memory.

4 Levelwise-Scan Algorithm

4.1 Outlin e of the Algorith m

In Fig. 1, we present our algorithm Levelwise-Scan, which efficiently finds all fre-
quent unordered and ordered versions of phrase patterns in a given collection of
documents. The Levelwise-Scan algorithm is based on the same design principle
as the Apriori algorithm of Agrawal et al. or Levelwise algorithm in [2,3]. Based
on a similar strategy employed by the Apriori algorithm [3], the Levelwise-Scan
algorithm runs through several passes over a text database T to compute the
set Li of all frequent i-phrase patterns for every i = 1,... ,d.

In the following sections, we will describe each phase in more detail. For
simplicity, we consider the case without sampling, i.e., 5 = T. In Section 4.4, we
wil l discuss the efficiency with sampling. In what follows, S = T = {si,..., Sm}
is a text database of m > 0 texts and n = \\S\\ is the total size of S. We denote
by 0 < a < 1 the minimum frequency threshold and by d and k the number of
phrases and the proximity of a pattern to be found, respectively. Let denote by
I the length of the longest frequent phrases in Li.

286 R. Fujino, H. Arimura, and S. Arikawa

A text database S
1 2 3 4

a b c a-
5

$ 1

6 7 $ y
b | W ^ ^ ^ ^

1fl
$2

Document A DociimeDt B

SufEU tree

r r . r 0_ ^ ~"^* j
c/

a/

7
A

k' ĉ l Q . ' \ \
/ *v $T\^ 5A\S2 \ \

A 8 A mk& .p. A B A B

8 6 S 5 10

Adocunwnt T
1 g 3 4 5

a H ^ ^ H b
§
c

7
a

8
b

9
c

initio}

An AC mscWne M

Fig. 2. The generalized suffix tree (GST)
ST for S = {a6co$i,b6co$2}. The shad-
owed node corresponds to the substring
bca and two shadowed leaves correspond
to the two occurrences of bca. Suffix links
are omitted. (Sec. 4.2)

Fig. 3. The AC-pattern matching machine
M for P = {abca,bbca,bca,ca,a}, which
corresponds to all internal nodes of the GST
in Fig. 2. The solid and the dotted lines
indicate goto and failure functions, respec-
tively. (Sec. 4.3)

4.2 G e n e r a l i z ed Suffix T rees

We use the generalized suffix tree (GST, for short) for efficiently storing all
phrases appearing in S (Step A.2 of Fig. 1). First, we assume that every docu-
ment Sj e 5, 1 < I < m, is terminated with appending a special delimiter symbol
$j such that $i 7̂ c for any cG UU{$j} {i ̂ j). The GST for S is the compacted
trie for all suffices of s € 5, which is obtained from the (uncompacted) tr ie for
all suffices [1] by removing all internal nodes with a single child and concate-
nat ing its labels into a single string [15,18]. Each node u of a GST represents
the string word{v), called a branching substring w.r.t. S, which is obtained by
concatenating the labels on the path from the root to v in its order. Each leaf
is labeled with the name of the document it belongs to. Each internal node has
the suffix link which points to the node w such that word{v) = c word{w) for
some c £ S. In Fig. 2, we show an example of the GST.

The GST ST for S uses 17n bytes to store and can be built in 0{n) t ime
[15]. I t is known that the maximum length I of the branching substr ings and the
height h, denoted by height{ST), are both O(logn) for random texts [8]. We
define the set Occs(7r) = { s € 5 | TT occurs in s } . Then, pat terns n and r to be
equivalent if OccsiT^) = OCCS{T).

Def in i t io n 1. An unordered or ordered phrase pattern n is of canonical form
w.r.t. S C E* if it consists only of branching substrings w.r.t. S.

L e m m a 1 (Ar imur a et al. [5]) . For any unordered (or ordered k-proximity)
d-phrase pattern n that appears at least one document in S, there exists a pattern
in the same class that is of canonical form and equivalent to TT.

Discovering Phrase Association Patterns for Text Mining 287

Procedure Count-Prune;
Input: The GST ST for sample S and the frequency threshold 0 < a < 1;

1. For each node v, do (a)-(c) below: /* in the depth-first order * /
(a) If II is a leaf with label i, then set all but the i-th bit to be zero.
(b) If V is an internal node and we returned from a child w then

bits{v) = bits{v) + bits{w), and discard bits{w).
(c) If #bits{v) > <T l^l, then mark v as frequent.

2. Prune all unmarked nodes by traversing ST.

Fig. 4. The procedure for finding all frequent phrases and prune the GST

4.3 Buildin g Phase

This phase is common to both unordered and ordered versions of the algorithm.
In the building phase (Phase A) of Fig. 1, the algorithm finds all a frequent
phrases and stores them in a space efficient data structure called the generalized
suffix tree.

Computing frequent phrases. In Fig. 4, we show the procedure Count-
Prune for computing the set Li and then pruning the GST, which implements
Step A.3 of Fig. 1. Count-Prune first solve the problem of counting the frequency
of all branching substrings using the GST ST for S, which is known as the color
set size problem [12].

Although this problem has an 0{n) time solution [12], we use a simpler
algorithm for its practical efficiency. In Fig. 4, each node v has a bit-vector bits{v)
of length m such that the i-th bit is on iff word{v) occurs the i-th. document.
We denote by # and + the bitcount and the bitwise-or operators, respectively.

Lemma 2. The procedure Count-Prune in Fig. 4, given the GST ST for S,
computes the set L\ of all frequent phrases w.r.t. S in time 0{mn) and 0{mh)
additional space, where h = height{ST).

The following lemmas justify our pruning strategy similar to [3]. Let 0 < (T < 1.

Lemma 3. Let v, w be nodes of GST for S C E*. Then, ifv is an ancestor ofw
then hits{word{v)) > hits{word{w)), where hits{p) = {s G S\p appears in s}.

Lemma 4. // an unordered (or ordered) d-phrase pattern TT is cr-frequent w.r.t. S
then so is the (d — l)-phrase pattern obtained from TT by removing any phrase.

Buildin g a pattern matching machine over GST. At Step A.4 of Fig. I,
Levelwise-Scan builds a finite state automaton M, called an Aho-Corasick pat-
tern matching machine {AC-machine, for short) [4] for recognizing Li.

Let P Q S* he a. set of strings. Then, the AC-machine M for P is exactly the
(uncompacted) trie UT{P) [I] for the strings in P augmented with the failure
and the output functions attached to each node. The initial state of M is the
root. The goto function is the set of labeled edges forming the trie UT{P). As in
the suffix tree, each node v represents the string word{v). The failure function of

288 R. Pujino, H. Arimura, and S. Arikawa

V is defined to be the edge from v to the unique node that represents the longest
suffix of word{v) which is a prefix of some string in P. The output function of
V is the set of all the suffices of word[v) contained in P. In Fig. 3, we show an
example of the AC-machine M. After scanning the first four letters abbe of a
given text T = abbcbcabc, M detects the strings bbc, be, c by following the path
{a,b,fail,b,c) from the root to the shaded node.

Lemma 5 (Aho and Corasick [4]). We can construct the AC-machine for
P in 0{\\P\\) time, and detect the occurrence of all strings p G P in a given
document of length n in 0{n) time by scanning the document once.

A set P C E* is substring-closed ii P ={ s € E* \t € P,s is a substring of f } .
By the next lemma, we can construct the AC-machine for Li directly on the
GST for Li at Step A.4 of Fig. 1.

Lemma 6. Let PCS* be substring-closed. Then, the edges and the suffix links
of the GST for P, respectively, are isomorphic to the goto and the failure func-
tions of the AC-machine for P at all branching nodes. (See Fig. 2 and Fig. 3.̂

4.4 Scanning Phase

In the scanning phase (Phase B) of Fig. 1, Levelwise-Scan counts the occurrences
of all frequent patterns of Lj by scanning the text T from left to right.

Candidate generation. In Step B.l, we build the candidate set Ci from
Li-\. This part is almost same as that of [3]. For each i > 1, Levelwise-Scan
constructs the i-th candidate set Cj by merging members of Li_i and pruning
many non-frequent members of Cj using i j _ i on memory using Lemma 3 and
Lemma 4. To store each branching phrase, encoded with the pointer to a node
of the GST, we use a hash-based trie (called the hash tree in [3]).

Counting: the unordered version. In Fig. 5, we show the procedure Un-
ordered-Scan for the unordered case, which implements Step B.2 of the Level-
wise-Scan algorithm. Let t £ T. Scanning t from left to right, the algorithm
detects the occurrence of the longest branching substring word{vi) terminating
at the position i = 1 , . . ., |t|, where Vi is a node or a state of M . P = {vi,... ,u„)
is the resulting array of nodes representing such occurrences. To avoid enu-
merating redundant patterns, it detect only the longest matching Vi using an
AC-machine M. A (2 d- l)-tuple {oi,... ,Od;li, ,ld) € {!,... , |t|}2'' is {k,d)-
admissible w.r.t. P if (i) 0 < (oj — li) — Oi_i < k for every i = 2,... ,d, and
(ii) 0 < / < len{oi+i) for every i = 1,... ,d, where len{oi) is the length of the
branching substring word{P{oi)) represented by Oj. It is easy to see that if a
{k, rf)-phrase pattern {{pi,. ,Pd}, k) appears in t then the set of the right ends
Oi of the occurrences of p i , . . ., pd together with a set of the lengths U of the
phrases Pi form an admissible tuple {o\,... ,Od;l\,... ,1^), and the converse also
holds. There are at most 0{k'''l'''\t\) such fc-admissible cf-tuples with a given P,
where / is the maximum length of branching substrings. S{pi) is the set of all
nodes representing the suffices of a phrase pi, which is obtained by following

Discovering Phrase Association Patterns for Text Mining 289

Procedure Unordered-Scan;
Input: the level d>2, the AC-machine M for S and a text database T= { i i , . . . , tm};
Output: the set Lj of all S-induced frequent unordered (fc, rf)-phrase patterns w.r.t. T.
1 Set C(7r) = 0 and D{n) = 0 for every TT € C<i.
2 foreach t« eT ((5 = l , . . . ,m) do
3 Initialize the array P of nodes.
4 foreach t = 1,. . ., |i(do
5 If M moves the next state v reading the letter t[i] , then set P{i) := v.
6 Let O C {1 , . . ., |t)}^'' be the set of all (fc,d)-admissible tuples w.r.t. P.
7 foreach (oi,... .ojiZi,...,Id) & O do
8 Let pi eS(oi) , . .. ,pde«S(od) be the phrases satisfying \pi\ = li, ,\pd\ = ld-
9 Sort (pi,. .. ,Pd) in a total order over nodes by a permutation j{-).
10 if TT = ((Pj(i), . ,Pj{d)),fc) € Cd and 5 > i5(7r) then
11 C(7r) = C(7r) + 1 and £)(7r) = (5.
12 Insert all patterns -n &Cd such that C{j) > cr-\T\ into Ld-

Fig. 5. The unordered version of the scanning phase of the Levelwise-Scan algorithm
for unordered (fc, d)-phrase patterns, which implements Step B.2 of the algorithm.

failure links. Furthermore, we use C(7r) to keep the document count of TT, and
D(7r) to keep the name of the last document for avoiding duplicated counting.

Counting: the ordered version. For the ordered case, we use the proce-
dure OrderedJScan, which is a modification of UnorderedJScan in Fig. 5. It is
the only difference between two procedures that Ordered-Scan does not sort
obtained sequence (pi,...,pd) at Line 9 before check the membership TT G C,
while Unordered-Scan sorts it to have a lexicographcally smallest permutation
(Pj?(i)i iPj(d)) ^s a representative.

4.5 Tim e Analysis

Now, we give the correctness and the time complexity of the Levelwise-Scan al-
gorithm. Strings in an infinite family s i, S2 G S* are said to be almost random
if for any Sj, the maximum length of the branching substrings of Sj is O(logn),
where n = \si\. Any random string generated by the uniform distribution over
S is known to be almost random with high probability [8]. Genetic sequences
are also known to behave like almost random strings.

Wit h sampling. Let T C i;* be a text database of total size TV and S CT
be a sample of total size n. We denote by R the total size of the output 5Z j 11 i i 11

Theorem 1. Let k,d > 0, T be a set of almost random texts and S be its sample.
For the class of unordered {k,d)-phrase patterns, Levelwise-Scan of Fig. 1 solves
the frequent pattern problem with sampling in time 0{n' ̂ -h dk'^~^{logn)'^N) and
space 0{n log n + R).

Proof. We can show that the algorithm runs in 0{n ̂ -\- \\Li\\ + dk'^l'^N) time
and 0{nh + R) space when I is the maximum length of the branching substrings

290 R. Fujino, H. Arimura, and S. Arikawa

Table 1. Performance overview: the number #L2 of patterns found and the running
time Total for a sample of fixed size n = 466/l'B (a) with varying min-freq from 0.0025
to 0.04 and (b) with veirying proximity k from 10 to 100, where k = 10, min-freq = 0.01,
and max-freq = 0.5 if not specified.

min-freq
0.0400
0.0200
0.0100
0.0050
0.0025

Unordered
\Li\ Time (s)

42 35.5
136 41.7
345 62.2
774 130.7

1,419 314.1

Ordered
\Li\ Time (s)

3 36.3
18 41.3
57 63.8

118 134.4
184 324.5

proximity
10
20
40
80

100

Ordered
|Li | Time (s)

4 4.0
32 32.0
84 84.0

176 176.0
204 204.0

in T and h is the height of the GST for S. li T and thus S are almost random
then I and h are both O(logn). R is the order of dh'^l'^N. D

Corollar y 1. Let k,d > 0. For the class of ordered {k,d)-phrase patterns, the
frequent pattern problem with sampling is solvable in time 0{n'^+dk'^~ ̂ {\ogn)'^N)
and space 0{n\ogn + R) for almost random text databases.

Withou t sampling. Finally, we see that in the case without sampling, i.e.,
S = T.ln this case, Phase A is done in 0{n) = 0{N) time by solving the color-
set size problem in linear time [12] and by using the (compacted) GST directly
as the AC-machine for Li. Hence, we can show that the modified version solves
the frequent pattern problem in time 0{dk'^~^{\ognYN) for almost random T,
which improves the time complexity of the Split-Merge algorithm [6] by log n
factor.

5 Experimental Results

We implemented the Levelwise-Scan algorithm in C-I--I- and ran experiments
on Reuters newswires [17]. The timing has been measured on a Sun worksta-
tion (300MHz UltraSPARC-II with 512MB main memory) under Solaris 2.6. As
heuristics for finding interesting patterns in English texts, we set each sentence
terminating with the period "." to be a document, and also removed from i i
those phrases with frequency more than a user-specified threshold max-freq =0 .5
as stop words. To collect basic data, we put 5 = T in the following experiments.

Performance overview. First, we run the experiments with varying the min-
imum support min-freq and the proximity k with the fixed sized sample of
n = 466KB (4,000 documents) and using the unordered and ordered 2-phrase
patterns (Table 1 (a) and (b)). The proximity is fc = oo for unordered and k = 10
for ordered patterns, where oo means that there is no proximity constraint. Ta-
ble 1 (a) indicates that the number of frequent unordered patterns are six to
ten times larger than that of frequent ordered patterns for the same value of
min-freq, while the running times are similar.

Discovering Phrase Association Patterns for Text Mining 291

250K.

200K

IJOK

IDDK

SOK

l o s j e i ^ . - ^

^ "
v>^^ - ^15 ,672

) 1000 2000 3000
H Documents

250

,.^0

150

M

50

D
tooo

^, , , Build GST Build ACm Scan Text

150

1000 2000
Documents

4G00

Fig. 6. (a) Characteristics of the text data: The number of basic features and frequent
patterns with varying the number of documents from 26KB to A66KB. Bi,Li, and
L2 denote the total numbers of the branching phrases, ||-Li|| and ||I '2||, respectively,
(b) Scalability: The running time with varying the number of documents from 2&KB
to A&6KB. Parameters are fc = 30, d = 2, min-freq = 0.005, and max-freq = 0.5.
Scalabi l i ty. Next, we made a scale-up test with varying the sample size n =
25KB to 466KB (from 125 to 4000 documents) using ordered 2-phrase pat terns,
where still S = T. Fig. 6 (a) shows the behaviors of basic quanti t ies Bi, Lx and
1/2 (explained in the caption of Fig. 6 (a)) that dominates the running t ime. We
see that Bi grows in 0{n) as expected, Li behaves like a huge constant, L2 is
small but slowly grows on this data. Fig. 6 (b) shows the total running t ime of
Levelwise-Scan is almost linear in n, as expected from the theoretical analysis.

Simu la t ion for m in in g a huge da tabase w i t h samp l ing. Finally, we es-
t imated the expected running t ime of Levelwise-Scan with sampling from the
experiments with text size up to B = 466i<'S (Fig. 6) as follows. We used the
formula Time{N) = T f ^T + T̂ ACm ^ (j jcan _̂ yTranŝ X (^ / 5 ~, to est imate

the running t ime with sample size n = B and the text database size N, where
Tg denotes the t ime required for a-stage for a £ {GST, ACm, Scan}, and
yTrans _ Q o5g [g ^jjg transfer time for 1 MB from the disk in sequential I /O.
Table 2 shows the estimated running t ime, where we see that Levelwise-scan wil l
process a text database of 100MB under an hour with sampling rat io 0.5% on a
corpus similar to the Reuters newswire.

Table 2. Expected running time on a large text database with a fixed sample size of
11511 = 466KB and a varying text database size (|T|| up to 500MB. These running time
are estimated by a simulation based on the result of Table 1.

Sample size
||S||(MB)

0.466
0.466
0.466
0.466
0.466

Text size
lirii(MB)

0.466
1.000

10.000
100.000
500.000

Samphng
ratio
1.000
0.466
0.047
0.005
0.001

Ordered Patterns
GST-l-ACm (s) Scan-|-Trans (s)

124.81 10.37
124.81 22.25
124.81 222.53
124.81 2225.32
124.81 11126.61

Total (s)
135.18
147.06
347.34

40 min.
3 hours

292 R. Fujino, H. Arimura, and S. Arikawa

6 Conclusion

In this paper, we considered the discovery of unordered and ordered frequent
phrase pat terns from large text databases, and presented an efficient text mining
algorithm based on the Apriori algorithm [3]. Experiments showed that this
algorithm performs well on typical English text data.

A c k n o w l e d g m e n ts

We would like to thank to Prof. Shinichi Morishita, Prof. Takashi Tsuchiya,
Prof. Masayuki Takeda, and Prof. Shinichi Shimozono for fruitful discussions
and comments on this issue. This work is partial ly supported by a Grant- in-Aid
for Scientific Research on Priori ty Areas "Discovery Science" from the Ministry
of Education, Science, Sports, and Culture in Japan.

References

1. A. V. Aho, J. E. Hopcroft, and J. Ullman, The design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast discovery
of association rules, Advances in Knowledge Discovery and Data Mining, Chap. 12,
MI T Press, 307-328, 1996.

3. R. Agrawal, R. Srikant, Fast algorithms for mining association rules. In Proc. the
20th VLDB, 487-499, 1994.

4. A. V. Aho, M. J. Corasick, Efficient string matching: An aid to bibliographic
search. In CACM, 1998

5. H. Arimura, A. Wataki, R. Fujino, S. Arikawa, An efficient algorithm for text data
mining with optimal string patterns. In Proc. ALT'98, LNAI , 247-261, 1998.

6. H. Arimura, S. Shimozono, Maximizing agreement with a classification by bounded
or unbounded number of associated words. In Proc. ISAAC'98, LNCS, 1998. A
modified version is appeared as Efficient discovery of optimal word-association
patterns in large text databases, New Generation Computing, 18, 49-60, 2000.

7. W. Croft, H. Turtle, D. Lewis, The use of phrases and structured queries in
information retrieval. In Proc. SIGIR'91, 32-45, 1991.

8. L. Devroye, W. Szpankowski, B. Rais, A note on the height of the suffix trees,
SIAM J. Comput, 21, 48-53, 1992.

9. U. M. Fayy2id, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (eds), Advances
in knowledge discovery and data mining, AAA I Press/The MI T Press, 1996.

10. R. Feldman and W. Kioesgen, Maximal association rules: A new tool for mining
for keyword co-occurrences in document collections, In Proc. KDD-97, 167-174,
1995.

11. T. Kasai, T. Itai, H. Arimura, Arikawa, Exploratory document browsing using
optimized text data mining. In Proc. Data Mining Workshop, 24-30, 1999 (In
Japanese).

12. L. C. K. Lui, Color set size problem with applications to string matching. Proc. the
3rd Annual Symp. Combinatorial Pattern Matching, 1992.

13. M. J. Kearns, R. E. Shapire, L. M. Sellie, Toward efficient agnostic learning.
Machine Learning, 17, 115-141, 1994.

Discovering Phrase Association Patterns for Text Mining 293

14. H. Mannila and H. Toivonen, Discovering generalized episodes using minimal
occurrences, In Proc. KDD-96, 146-151, 1996.

15. E. M. McCreight, A space-economical suffix tree construction algorithm. In J ACM
23, 262-272, 1976

16. S. Morishita, On classification and regression, Proc. DS'98, LNAI 1532, 1998.
17. D. Lewis, Reuters-21578 text categorization test collection. Distribution 1.0, AT& T

Labs-Research, http:/ /www.reseetrch.att .com/~lewis/, 1997.
18. J. T. L. Wang, G. W. Chirn, T. G. Marr, B. Shapiro, D. Shasha and K. Zhang,

Combinatorial pattern discovery for scientific data: Some preliminary results. In
Proc. SIGMOD'94, 115-125, 1994.

Using Random Walks for Mining Web Document
Associat ions

K. Selguk Candan^'* and Wen-Syan Li^

^ C&C Research Laboratories, NEC USA, Inc., MS/SJIO, San Jose, CA 95134,USA
{c2mdan,weii}accrl.sj .nec.com

^ Computer Sci, and Eng. Dept., Arizona State University, Tempe, AZ 85287, USA
candanQasu.ed u

Abs t rac t. World Wide Web has emerged as a primetry means for stor-
ing and structuring information. In this paper, we present a framework
for mining implicit associations among Web documents. We focus on the
following problem: "For a given set of seed URLs, find a list of Web
pages which reflect the association among these seeds." In the proposed
framework, associations of two documents are induced by the connectiv-
ity and linking path length. Based on this framework, we have developed
a random walk-hased Web mining technique and validated it by experi-
ments on real Web data. In this paper, we also discuss the extension of
the algorithm for considering document contents.

1 Introduction

I n tradit ional information retrieval field, in order to determine the association
between a given set of documents, keyword vectors that represent the contents
of these document are compared. A major difference between Web pages and
textual documents is that Web pages have links connecting to other related
pages. When an author prepares a Web document, he/she would put contents
on each page while linking related information together using anchors, to create
a document spanning multiple pages. Thus, Web structures can be used as hints
to derive document association. Existing approaches for finding Web document
associations include the companion and co-citation algorithms proposed by Dean
and Henzinger[l] and the Netscape algorithm[2] used to implement the What 's
R e l a t e d? functionalities. In this paper, we are interested not only in deriving
document associations, but also in inducing the reasons why they are associated.
We focus on the problem "for a given two seed URLs, find a list of Web pages
which reflex the association such two seed URLs."

Example 1. In Figure 1, we show a subset of links between two personal Web
pages W.Li and D.Agrawal. The purpose of each link is indicated in the link
label. The associations between W. L i and D. Agrawal are implicitl y expressed in
the Web structure connecting W.Li and D.Agrawal even though this structure
is created independently by many individuals. Below, we enumerate some asso-
ciations that can be derived from this graph, and some possible interpretat ions:

* This work was performed when the author visited NEC, CCRL.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 294-305, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Using Random Walks for Mining Web Document Associations 295

SUNV, SB P. Scheuermann N* ^

graduated
Ittx n

l i i (acuity

Fig. 1. Link structure connecting and associating the Web pages of W. Li and D. Agrawal

 Web8 paper page appears in a path of distance of 2 connecting the two pages.
Therefore, W.Li and D.Agrawal may be associated due to a co-authored paper.
 Y.Wu page is on two paths each of distance 4. W.Li and D. Agrawal may be

associated due to the fact they both supervised Y. Wu.
 WOWS'99 and ACM DL'99 pages appear on a single path of distance 3. W.Li and

D.Agrawal are participating in the same conference.
 P.Scheuermann, D.Agrawal, NWU, W.Li, and SUNY pages appear on a single

path of distance 4. D.Agrawal and W.Li may be associated due to some people
related to SUNY, SB or due to an alumni relationship.

Obviously, the links connecting these pages are not intended to express such
associations and the authors are not coordinated to make the link semantics
consistent across the Web. However, we can use the following two intuitions: (1)
Path length: Pages on a shorter path between the two pages in the example are
stronger indicators than others to reflect why these pages are associated; and
Connectivity: Pages which appear on more paths are stronger indicators than
others to reflect why the two pages are associated.

Note that a page with a higher connectivity (i.e. more incoming links and
outgoing links) is more likely to be included in more paths; consequently, such
a page is more likely to be ranked higher according to the above criteria. This
is consistent with the principle of topic distillation[3,4]. On the other hand, to
address the associativity problem, we also need to consider the distance between
a page and seed URLs to account for the first intuition. Thus, a page with a
high connectivity but far away from the seed URLs may be less significant to
represent the seed URLs after associations than a page with low connectivity
but close to the seed URLs. A page which satisfies both criteria (i.e. near seed
URLs and with high connectivity) is a good representative for the association.

Based on the motivation and intuitions, we present a novel framework for
mining associations among Web documents using information implicitly reflected

296 K.S. Candan and W.-S. Li

in the links connecting them. We develop a Web mining technique, based on a
random walk algorithm, which considers document distances by link and con-
nectivity. In the concluding remarks, we also briefly show the algorithm can be
extended to be specific content focused (e.g. finding why the W. Li and D. Agrawal
are associated with respect to the PowerBookmarks project).

2 Random Walks Algori thm

In this section, we introduce the modeling of the framework and the algorithm.

2.1 Modeling

Let us assume that we are interested in mining the associations of a set, <S =
{s i , . . . , s„} , of seed Web pages (or snodes). The mining task is to find a set
Ref{S), of pages that best induce (or refiect) the association among a given
set of snode s. We denote such pages inductive Web pages (or inodes). For ease
of presentation, we start with the case where there are only two seed pages for
association mining. The cases where S contains more than two pages is discussed
in Section 2.3.

Let the Web be modeled as a directed graph, G{V, E), and let the two seed
pages in S, defined as snode, correspond to vertices Va and Vf, in V. Let us also
assume that we want to find an inode page (or vertex) within a radius of d from
Va or life. Note that the choice of d is application dependent. If progressive results
are required, d can be incremented starting from 1, refining the results at each
step, until either the process times out or an acceptable inode is located.

Links have been used in many fields to associate documents. They can
be categorized into four types: connectivity, co-citation, social filtering, and
transitivity[4]. Since the association mining problem as formulated in this paper
is symmetric, we do not differentiate these. Consequently, we use an undirected
graph, G^{V,E^), to model the Web. Assuming that we are given a radius d,
we define the relevant neighborhood, G^{V^,E^), of G"(V,f;") , as the set of
vertices, V ̂ = VG^{va,Vb,d), that are reachable either from Va or Vb in d edge
traversals: (Vuj £ VG^{va.,Vb,d) reachableG"{va,Vi,d) WreachableG''{vb,Vi,d)) .
Note that without loss of generality, we will assume that the graph, G^, is
connected.

To derive metrics for Inode selection, one straight forward candidate metric,
that adjusts connectivity scores by distance, for inode selection would be

score{v) = \
length{p)'

pGpaths(A,B ,v)

where paths{A,B,v) is the set of (simple) paths between the seeds, A and B,
that pass through a candidate inode, v, and length{p) is the length of the path.

Note that, although it merges the two required structural criteria, this metric
has two major disadvantages preventing its use in association mining. (1) First,
its calculation may require the enumeration of all paths in the graph, which may
require exponential time with respect to the size of the graph, and (2) although

Using Random Walks for Mining Web Document Associations 297

1. V = 6);
2. For each Vi G V'^, create a new node v'i and insert it in V;
3. f = 0;
4. For each ejt = (wt,Wj) 6 £ "̂ such that both Vi and Vj are in V'^

(a) create two directed edges e'2xk — {'"'i^'^j) and 62x^+1 = {''^'jiVi) and insert them
in £;

5. For all vertices v'i e V, let
(a) sdist{v'i,v'a) be the shortest distance, in G^, between v'i and the vertex, v'^,

corresponding to Va, and
(b) sdist{vi,v{,) be the shortest distance, in G^, between v'i and the vertex, v^,

corresponding to Vf,
(c) penalty{vi) = sdist{vi,v'a) + sdist{v'i,v't,).
(d) For all vertices t;,' e V and for all {vi, v'-) i S, T[j, i] = 0.0;
(e) For all vertices U; G V solve the following set of linear equations:

L{v'i) = \ Yl mi i = i-o i u

T\j, i\ X penalty{vj) = T[k, i] x penalty{v';c) {vi,Vj) G S and (vi,Vk) € £

Fig. 2. Algorithm for constructing a random walk graph

the maximum length of the paths grows linearly with the number of vertices in
the graph, the number of paths grows exponentially as shown in our experiments.
As a consequence, contrary to the intuition, the effect of the long paths (since
their number is exponentially higher than the number of shorter paths) on the
calculation of score{v) is likely to be much larger than the effect of short paths.

2.2 Case 1: S Contains Two Seed Pages

Consequently, instead of exphcitly defining a metric, we will choose a set of
random walk parameters that will implicitly capture the essence of these obser-
vations. For this purpose, we define and construct a random walk graph that
reflects the required random walk parameters.

Definitio n 1 (Random Walk Graph). A random walk graph TZ{V,£,T) is
a triple, where V is a set of vertices, £̂ is a set of directed edges, and T is a
|V| X |V| matrix where
- T\j, i] denotes the likelihood of moving to vertex Vi from vertex Vj.

Note that Ei<j<|v| ^b '. «1 = 1-0 o

Algorith m 2.1 (Constructing a Random Walk Graph) Given an undi-
rected neighborhood graph G^{V^,E^), two vertices Va and Vb in V, and a
radius d, we can construct a directed random walk graph 7̂ („̂ _̂ j_ rf)(V,f ,T) us-
ing the algorithm presented in Figure 2. o

298 K.S. Candan and W.-S. Li

Fig. 3. (a) Penalty of each node and (b) transition values of each node

Description of the Algorith m for Constructing a Random Walk Graph
Steps 1 and 2 of this algorithm insert the relevant vertices in the neighborhood
into the random walk graph. Note that these two steps can be performed incre-
mentally until a subgraph within a radius of d is explored. The next two steps
use the undirected edges in the neighborhood graph to define two transitions
(forward and backward) between the vertices in the random walk graph. These
two transitions allow the random walk to proceed freely, back on forth, between
the neighboring vertices of the graph.

Step 5, then, calculates a penalty for each node. This penalty term reflects
the distance of each vertex from the seed vertices. Hence, for the case with two
seeds, we define the penalty as the sum of shortest path distances between the
given vertex and two seed vertices. We use the penalty to calculate the likelihood
of each vertex being visited by the random walk process; more specifically, we
calculate the transition probabilities of the edges in the graph using this term.

Since, by definition, a higher penalty means a greater distance from the seeds,
it should yield a lower association score. Consequently, once the random walk
process is at a vertex, Vi, it must proceed to a subsequent vertex, Vj, with a
probability inversely proportional to VjS penalty. Furthermore, since the random
walk will continue for an indefinite amount of time, the probability that the
random walk process will leave vertex Uj (that is, it wil l proceed to one of its
neighbors) must be equal to 1.0.

Example 2. Let us reconsider our example and focus on the portion of the graph
shown in Figure 3(a), which depicts the vertex A, its four neighbors (F, D, C,
and J), and the associated penalties calculated according to a distance metric
(for the sake of simplicity, we omit the phase of penalty calculation). The fol-
lowing items reflect some of the facts about the transition probabilities of the
edges leaving A:

— The sum of all such transition probabilities is equal to 1.0.
— Since the penalty of the vertex F is twice as much as the penalty of vertex

C, the transition probability from A to F must be half of the transition
probability from A to C.

— Since the penalty of the vertex £> is | times as much as the penalty of
vertex C, the transition probability from Ato D must be | of the transition
probability from A to C.

Using Random Walks for Mining Web Document Associations 299

Fig. 4. (a) Penalty values, and (b) transition values for the example Web graph in
Figure 1

Hence, we can calculate the transition values for the edges leaving A using
the following set of constraints (as described in Step 5(e) of the algorithm):

T[F, A] + T[D, A] + T[C, A] + T[J, A] = 1.0;
3xT[D,A] = 2*T[C,A];

4xT[J,A] =4*T[F,A];

4xT[J,A\ = 3*T[D,A];

4 X T[F, A] = 3* T[D, A]

2 X T[C, A] = 4* T[J, A]

4 X T[F, A] = 2* T[C, A]

Note that only the first four equations are enough to solve for all the unknowns.
Figure 3(b) shows the transition values obtained by solving these constraints, o

Definitio n 2 (Convergence Vector). Given a random walk graph, 'R.(^va,Vb,d)
(V, £,T), t is called a convergence vector of T if (i = Tt). o

Note that due to the structure of the transition matrix, such a convergence
vector is guaranteed to exist. Intuitively, t[i], describes the percentage of its time
that a random walk process will spend in vertex v[i] in a sufficiently long random
walk. As we described earlier, the higher this ratio, the better inode is the cor-
responding vertex. Consequently, we choose the inodes using their corresponding
values in the convergence vector.
Definitio n 3 (/node Vertex). Given a graph G{V,E), the inode vertex with
respect to vertices Va and Vb in G and a distance d, denoted as inode oi^a, ^6, d)
is a vertex Vk € V ̂ such that t[k] = max{t[i] \ v[€ V} . We also say that, if
t[i] > t[j], then Vi is more dominant than Vj. o

Example 3. Let us assume that Figure 4(a) shows a portion of a graph, G",
where each shown vertex, Vi, is reachable from vertex J4 or S in 2 edges. The
numbers shown in the vertices of the graph in Figure 4(a) are the corresponding
distance penalties of the vertices. Figure 4(b), then, shows the corresponding
random walk graph, 'R.{A,B,2)- The transition values are shown as labels of the
edges. The corresponding transition matrix T is also shown in Table 1(a).

Then, if we solve the hnear equation (J — T)t = 0 (i.e. 12 variables and 13
constraints), we can find t as shown in Table 1(b). According to this, excluding

300 K.S. Candan and W.-S. Li

Table 1. (a) T and (b) t for for the example Web graph in Figure 1

T

A
B
C
D
E
F
G
H
I
J
K
L

A

0.0
0.0

3

H
0.0

3
Ifi

0.0
0.0
0.0

3
Ifi

0.0
0.0

B

0.0
0.0

3

0.0

0.0
0.0
3
Ifi

0.0
0.0
0.0
3
16

c
1
7 1
?,

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

D
3

0.0
0.0
0.0

2
5

0.0
0.0
0.0
0.0
0.0
0.0
0.0

E

0.0
3

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

F
2

0.0
0.0
0.0
0.0
0.0

1
,1

0.0
0.0
0.0
0.0
0.0

G

0.0
0.0
0.0
0.0
0.0

1
?,

0.0
1
2

0.0
0.0
0.0
0.0

H

0.0
2
3

0.0
0.0
0.0
0.0

1
,1

0.0
0.0
0.0
0.0
0.0

I

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1
7,

0.0
1
2

J
1
7,

0.0
0.0
0.0
0.0
0.0
0.0
0.0

1
4

0.0
1
4

0.0

K

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1
?,

0.0
I
2

L

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

i
4

0.0
1
4

0.0

t

A
B

c
D
E
F
G
H
I
J
K
L

0.183
0.183
0.137
0.076
0.076
0.051
0.034
0.051
0.034
0.068
0.034
0.068

(a) (b)

the vertices A and B themselves, the most dominant vertex is C. Vertices, D and
E follow C with lower dominance values as they are on a longer path between
A and B. Although vertices J and L, are on an even longer path, they follow D
and E closely since they are on multiple paths. o

2.3 Case 2: <S Contains More Than Tvk̂ o Pages

In order to extend the algorithm presented in the previous section to the case
in which 5 contains more than two seed pages, we need to observe that the
algorithm uses these seed pages to discover the boundaries of the neighborhood,
and to calculate the penalty of each vertex in the random walk graph.

The first of these tasks is easy to generalize. Given a set of vertices, \S\ > 2
and a radius, d, the relevant neighborhood, G^{V^,E^) of G"(1^,S"), is the
set of vertices, V' ̂ = VciSfd), that are reachable from the vertices in / in d

edge traversals: (Vvi € VG"(<S,C!) \/^,^^reachableG^{vj,Vi,d)].

The second task, determining the penalty each vertex, can be handled in
two ways. We can either trivially generalize the definition of the penalty as

(penalty{v!j) = J^v'&ssdist{v[, v'j)\ or we can use

length{minimum-steinerJ,ree{S U {w }̂))
to get a more accurate picture of the distance of v[from the seed vertices. Note
that the problem of finding the minimum weighted connected subgraph, G', of
a given graph G, such that G' includes all vertices in a given subset R oi G
is known as the Steiner tree problem̂ [5]. Unfortunately, the minimum weight
Steiner tree problem [6] is known to be NP-hard; i.e., it is not known whether
there exists a polynomial time solution. The first option, on the other hand, is
known to require polynomial time; and consequently, it is more efficient.

If it exists, G' is guaranteed to be a tree.

Using Random Walks for Mining Web Document Associations 301

2.4 Complexity of the Algorith m

For a given graph G^{V^,E^) the maximum degree of vertices is m, where
0 < m < \V^\, we analyze the complexity of the algorithm as follows:

1. The algorithm firsts find the shortest distance between every vertex and the
seed vertices in S. This operation can be performed using the Floyd-Warshall
all pairs shortest path algorithm in O(IV^'^I^). The assignment of penalties
for each vertex, then, takes 0(|V^ |) time.

2. Once the penalties are know, calculation of the transition values for a given
vertex takes 0{C{m, m +1)) time, where £(x, y) is the time that is required
to solve a set of linear equations with x number of variables and y number
of equations. Hence, the total number of time required to find all transition
values in the graph is 0(|V^'' |̂ x C{m,m + 1)).

3. After all the transition values are known, the algorithm solves a set of linear
equations with \V^\ variables and |F^|- |-1 equations. Hence, this step takes
0 (£ (| y ^ | , | y |̂ + l)) .

4. Consequently, the total amount of time taken by the algorithm is

0{\V^\ ̂ + | 1 / ^| X C{m,m+ 1) + C{\V^l \V^\ + 1)).

3 Experiments

Our current implementation utilizes a linear equation solver Maple for calculating
both edge transition probabilities and the corresponding convergence vector. We
have conducted our experiments on www-db.standford.edu, which has 3600 pages
and 12, 581 edges. The average number of edges per page is 3.5. The experiments
were ran on a 500MHz Pentium Architecture Linux OS PC with 128 MB of RAM.

3.1 Execution Tim e

The first experiment is for measuring the execution time of the algorithm. Note
that there are two phases: calculation of (1) the edge transition probabilities
and of (2)the convergence vector. We measure their execution time separately.

For a Web subgraph containing neighborhood of 1085 nodes (i.e. pages within
3 links from seed URLs /c lasses .h tml and "echang/, the execution time is
rcEisonable fast. The total clock time needed is 760 seconds for the first phase;
among that 572.76 seconds (i.e. 75.36%) is for reading the Web graph from disk.
And, the clock time needed for the second phase is 343 second, among that only
9 seconds are for writing the results.

Thus, the total CPU time needed is 187.24 seconds for the first phase to solve
1,085 sets of equations (one for each node with average 4 to 5 variables and 4
to 5 constraints). In the second phase, only one set of equations needs to be
solve. This set of equations with 1,085 variables and 1,086 constraints requires
334.36 seconds to solved. We believe such execution time is satisfactory and can
be further improved by using a faster machine with larger memory or passing
the results of the first phase directly as the input of the second phase.

302 K.S. Candan and W.-S. Li

Table 2. Top 10 association pages within radius of 1 from seeds

0.217939 /lore/
0.071164 /projects.html
0.053373 /'hector/infolab.html
0.053373 /projects-noim.html
0.040030 /tsimmis/

0.080059 /midas/midas.html
0.056338 /c3/c3.html
0.053373 /projects-noim.html
0.048925 /tsimmis/tsimmis.html
0.035582 /'chaw/

Table 3. 30 association pages within radius of 2 from seeds

0.066801 /lore/
0.049419 /www-db.stanford.edu/
0.040217 /projects.html
0.038854 /"hector/infolab.html
0.032719 /tsimmis/tsimmis.html
0.028629 /projects-noim.html
0.028629 /projects-noim.html
0.028356 /"uUman/pub/hits.html
0.025630 /tsimmis/
0.025175 /c3/c3.html
0.024539 /midas/midas.html
0.022085 /people/widom.html
0.021813 /'widom/widom.html
0.017109 /warehousing/warehouse.html
0.015678 /people/sergey.html

0.015541 /tsimmis/tsimmis.html
0.015337 /"widom/
0.014814 / c 3/
0.014519 /people/gio.html
0.014315 / L i e /
0.013360 / ' chaw/
0.013088 /"sergey/
0.012270 /CHAIMS/
0.012065 /people/hector.html
0.011043 /people/jpgs/
0.010225 /SKC/
0.009979 /people/index.html
0.009611 /people/index2.html
0.009161 /"uUman/
0.008930 /-t lahir i/

3.2 Association Mining Resul ts

The second experiment is for testing the effectiveness of the algorithm. We can
present only a small portion of the results due to the space limit .

For the project home page URLs / l o r e/ and /midas/midas.html, the top
10 of 32 association pages within radius of 1 from seeds is shown in Table 2. We
are satisfied with the results given most people working for both projects, such
as /"widom, /"ullman, / "wiener/, and / "sergey/, as well as the home pages
of related projects are selected. When we extend the exploration radius from 1
to 2, the results are still satisfactory given most of the results remain and few
new pages are introduced. The associating pages within radius of 2 from seed
URLs are sown in Table 3 (top 30 out of 155 pages are shown).

We observe that when the radius is extended, many index pages, such as the
root page, departmental page (e.g. info lab.html, and more project pages (e.g.
/warehousing/warehouse.html and /CHAIMS/), are now included. We also ob-
serve several other interesting factors. For example. Professor Wiederhold, whose
home page is /peop le /g io. html, does not participate in LORE project and MIDAS
project. However, Professor Wiederhold is the organizer of a popular database
seminar where most people has links pointing to the seminar announcement
page. As a result, the home page of Professor Wiederhold is selected.

4 Extension to Content-Focused Algorithm
In order to incorporate document contents to the association mining process, we
propose to change the definition of penalty to also include document contents.

Using Random Walks for Mining Web Document Associations 303

t

A
B
C
D
E
F
G
H
I
J
K
L

0.123
0.123
0.092
0.051
0.051
0.116
0.185
0.116
0.023
0.046
0.023
0.046

(a) (b)

Fig. 5. (a) Penalty of an example Web sub-graph, and (b) corresponding t

This variation, the Content-Focused Random Walk Algorithm , allows us to
mine document associations with respect to not only seed URLs but also a
particular topic. For example, we may ask a more specific question: "find why
the pages W.Li and D. Agrawal are associated with respect to NEC" or "find why
the pages W. Li and D. Agrawal are associated with respect to the Y. Wu page".
Assuming that there exists a function, relevance{v,topic), for measuring the
relevance between the contents of a vertex v and a given topic topic, we redefine

the penalty of a vertex as
Alternatively, we can also consider content similarity of two linked pages

to adjust the importance of each link. Intuitively, if a page is content-wise more
related to the seed pages, then it is more likely to explain the association between
them; hence it should be assigned a lower penalty, increasing its likelihood of
being visited during a random walk. We call this variation Content-Sensi t ive
Random Walk Algorithm. Assuming that there exists a function, relevance{v, S)
, which evaluates the relevance of the content of a given vertex v G V with
respect to a set of vertices 5 e 2^, we can redefine the penalty of a vertex as

{rJ:::SSm), [re^ltit,]^ o ̂as ipenaltyiv) x {2 - relevance{v,S))).
Note that the choice of the adjusted penalty function is application dependent
and such a choice allows users to fine tune the sensitivity to the contents.

Example 4- Let us look reconsider the previous example. Now we want to ask
"find why the pages W.Li and D.Agrawal are associated with respect to Peter
Scheuermann. Let us assume that the page G has a strong relevance to the
focused content, "Peter Scheuermann". Let us also assume that the relevance
function used assigns 0.8 to G and 0.1 to all other pages.

Assuming that we use the penalty function (reilvancetv i)) ' ^^S^''̂ ^ shows
the graph and the corresponding convergence matrix, t. According to this vector,
the most "dominant" vertex in the graph is G. Comparing with the results in

304 K.S. Candan and W.-S. Li

Table 1(b), the scores of G, F, and H are boosted since G is now in focus. In
this example, we observe that the results successfully reflect the structure and
the document contents with respect to the given topic. o

5 Related Work

Link information has been used by many search engines to rank query results.
They assume that the quality of a document can be " assured" by the number of
links pointing to it. HITS algorithm was proposed by J. Kleinberg [3]. It aims
at selecting a small subset of the most "authoritative" pages from a much larger
set of query result pages. Authoritative page is a page with many incoming links
and a hub page is a page with many outgoing links. Such authoritative pages
and hub pages are mutually reinforced: good authoritative pages are linked by a
large number of good hub pages and vice versa. This technique organizes topic
spaces as a smaller set of hub and authoritative pages and it provides an effective
mean for summarizing query results, so called "topic distillation".

Bharat and Henzinger [7] improved the basic HITS algorithm [8] by adding
additional heuristics. The modified topic distillation algorithm considers only
those pages that are in different domains with similar contents for mutual au-
thority/hub reinforcement. Another variation of the basic topic distillation algo-
rithm is proposed by Page and Brin[9]. Their algorithm further considers page
fanout in propagating scores.

Many of these basic and modified topic distillation algorithms have been also
used to identify latent Web communities[10,ll]. These above techniques focus on
finding high quality documents induced by link analysis. Our proposed algorithm
can be extended for topic distillation by targeting all nodes in the explored graph
instead of few seed URLs. By such adjustment, the algorithm would be able to
find hub and authority.

Dean and Henzinger[l] proposed two algorithms, companion and cocitation
to identify related pages and compared their algorithms with the Netscape
algorithm[2] used to implement the What' s Related? functionalities. By extend-
ing the scope from documents to Web sites, Bharat and Broder[12] conducted a
study to compare several algorithms for identifying mirrored hosts on the Web.
The algorithms operate on the basis of URL strings and linkage data: the type
of information easily available from web proxies and crawlers.

This work above focuses on finding related documents or Web sites. Our work
focuses on finding pages inducing associations of given seed URLs. The proposed
random walks algorithm can be extended to be content-focused.

6 Concluding Remarks

In this paper, we present a framework and an algorithm for mining implicit
associations among Web documents induced by link structures and document
contents. The algorithm works on any graph and can focus on a specific topic. We
have implemented and evaluated the algorithm. The preliminary experimental
results on real Web data show that the algorithm work well and efficiently.

Using Random Walks for Mining Web Document Associations 305

The authors would hke to express their appreciations to
www-db. S t a n f o r d. edu for its da ta used in their experiments. Selecting this Web
site is due to the considerations (1) the authors need to be familiar with the
contents so that the authors can evaluate the results; and (2) the pages in the
Web sites must not be dynamically generated pages. The second consideration
restricts the authors from using most of corporation sites. The experimental
results presented in this paper are for the purposes of scientific research only.

References

1. Jeffrey Dean and Monika Henzinger. Finding Related Pages in the World Wide
Web. In Proceedings of the 8th World-Wide Web Conference, Toronto, Canada,
May 1999.

2. Netscape Communications Corporation. What's Related web page. Information
available at http://home.netscape.com/netscapes/related/faq.html.

3. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. In Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 668-677,
January 1998.

4. Wen-Syan Li and Selcuk Candan. Integrating Content Search with Structure Anal-
ysis for Hypermedia Retrieval and Management. To appear in ACM Computing
Survey, 2000.

5. FYank K. Hwang, Dana S. Richards, and Pawel Winter, editors. The Steiner Tree
Problem (Annals of Discrete Mathematics, Vol 53). 1992.

6. S.L. Hakimi. Steiner's problem in graphs and its implications. Networks, 1:113-131,
1971.

7. Krishna Bharat and Monika Henzinger. Improved algorithms for topic distillation
in a hyperlinked environment. In Proceedings of the 21th Annual International
ACM SIGIR Conference, pages 104-111, Melbourne, Australia, August 1998.

8. Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Sridhar Rajagopalan,
David Gibson, and Jon Kleinberg. Automatic Resource Compilation by Analyzing
Hyperlink Structure and Associated Text. In Proceedings of the 7th World-Wide
Web Conference, pages 65-74, Brisbane, Queensland, Australia, April 1998.

9. Lawrence Page and Sergey Brin. The Anatomy of a Large-Scale Hypertextual Web
Seeirch Engine. In Proceedings of the 7th World- Wide Web Conference, Brisbane,
Queensland, Australia, April 1998.

10. David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Inferring Web Commu-
nities from Link Topology. In Proceedings of the 1998 ACM Hypertext Conference,
pages 225-234, Pittsburgh, PA, USA, June 1998.

11. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.
Trawling the Web for Emerging Cyber-Communities. In Proceedings of the 8th
World-Wide Web Conference, Toronto, Canada, May 1999.

12. Krishna Bharat and Andrei Z. Broder. Mirror, Mirror, on the Web: A Study of
Host Pairs with Replicated Content. In Proceedings of the 8th World-Wide Web
Conference, Toronto, Canada, May 1999.

A Concurrent Approach to the Key-Preserving
Attribute-Oriented Induction Method

Maybin K. Muyeba and John A. Keane

Department of Computation, UMIST, Manchester M60 IQD, UK.
{muyeba, jak@co.umist.ac.uk}

Abstract. Attribute-Oriented Induction (AOI) reduces the search space of large
data to produce a minimal rule set. Classical AOI techniques only consider
attributes that can be generalised but eliminates keys to relations. The Key-
Preserving AOI (AOI-KP) preserves keys of the input relation and relate them
to the rules for subsequent data queries. Previously, the sequential nature of
AOI-KP affected performance on a single processor machine. More
significantly, time was spent doing I/O to files linked to each generated rule.
AOI-KP is O (np) and storage requirement O (n), where n and p represent the
number of input and generalised tuples respectively. We present two enhanced
AOI-KP algorithms, concAOI-KP (concurrent AOI-KP) and onLineConcAOI-
KP of orders O (np) and O (n) respectively. The two algorithms have storage
requirement O (p) and O (q), q =p*r, 0<r<l respectively. A prototype support
tool exists and initial results indicate substantially increased utilisation of a
single processor.

1 Introduction

Data mining [2] is the application of algorithms to discover knowledge in data.
Attribute-Oriented Induction (AOI) has been investigated for mining various kinds of
rules including associations, sequential patterns, classification and summarisation [3].
AOI is a set-oriented generalisation technique that produces high-level rules from
huge data sets. AOI reduces the input relation to a minimal relation called a prime
table and then a. final rule table by using an attribute or rule threshold. An attribute or
rule threshold determines how any distinct attributes or rules remain in the final rule
table. For each attribute, AOI uses a concept hierarchy tree [4] to generalise it by
climbing through the hierarchy levels of that attribute. An attribute is generalised if its
low-level concepts (e.g. leaf concepts) are replaced by high-level concepts. Database
values are stored as leaf concepts in the tree (see figure 1).

In many approaches using AOI, the problem has been losing information upon
generalisation. This happens when relational keys or attributes that index these
relations are removed. This is because the index can not be generalised.

Keys preserved during the mining process can be used to query data relevant to
the rules produced. For example, the rule in figure 2 discovers knowledge about
postgraduate students in year one with respect to their gender and birth place. The rule

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 306-316, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Concurrent Approach to the Key-Preserving Attribute-Oriented Induction Method 307

reveals the ratios of each category of students and their specific identities. The Iceys
for each rule can be used to efficiently query data related to the three rules.

ANY (Sex)

F M

Leaf concepts

ANY {Binh_place)

Ejjrope America

China India UK France USA Canada

A A A A A A
Beijing, Nanjing Bombay Calcutta Leeds Hull Paris Lyons Chicago N.York Toronto Winnipeg

^ ^

Leaf concepts

Fig. 1. Concept hierarchies for Sex and Birth_place

V(x) Postgraduate (x)AAcc_year (x) ="Year 1"=>
Birth_place (X)G America [30%] [Rule keys =1, 3, 10]
V Sex (x) = "Female" A Birth_place (x)6 Europe [30%] [Rule keys =2, 6,7]
V Sex (x) = "Male"A Birth_place(x)e Asia [40%][Rule keys =4, 5, 8, 9]

Fig. 2. Characteristic rules for postgraduate students

The query "List the names and average marks obtained by female European
postgraduate students in year 1" would be efficiently queried using keys 2, 6 and 7
from an appropriate table or tables storing this data. The query would be more
efficient if the preserved keys index the queried tables. Thus, generalised information
coupled with the ability to obtain detail data from the database is necessary for
querying the mined data.

The Key-Preserving AOI algorithm (AOI-KP) [5] performs efficient data queries
on the discovered knowledge by making use of keys. In AOI-KP, the input data is
stored in an initial table while keys to tuples are later inserted in a separate table
during the mining process. When static data structures are used for storing keys in

308 M.K. Muyeba and J.A. Keane

memory, performance is drastically affected. By using dynamic data structures that
grow at execution time, there are gains in space and time as will be shown in section
3. Initial results indicate that using the AOI-KP approach helps to shuffle back and
forth between rules produced and the database.

This paper introduces a concurrent key-preserving algorithm conAOl-KP,
motivated by the performance degradation of the sequential AOI-KP algorithm as the
volume of input data increases. The approach to concurrency is as follows:
1. The merging of tuples, to be illustrated in section 3, is a sequential process. This

involves removing some tuples from the prime table and then inserting key(s) in a
table of keys. These two tasks could therefore occur concurrently as they
accessed different tables.

2. The I/O task for writing keys to file after rule production were not time efficient.
After accumulating keys in a table, each rule was then associated with some keys
in that table and had to be written to file for subsequent data queries. Thus, the
greater the number of rules, which depend on the rule threshold, the more file
writes were needed.

A major hindrance is storing the whole input to memory. A solution is to retrieve
blocks of tuples to memory, generahse them and only store the generalised tuples
before the next block is retrieved. Another algorithm, onLineConAOl-KP, is
introduced to enhance conAOl-KP and is more space efficient but less time efficient.

The paper is organised as follows: in section 2, related work is considered; in
section 3 analysis and results of the algorithms are presented; and section 4 presents
conclusions and further work.

2 Related Work

This work is similar to the algorithms on AOI such as Learning CHaracteristic Rules
(LCHR), and in particular to Generalise DataBase Relation {GDBR) and Fast
Incremental Generalisation and Regeneralisation {FIGR) [6].

Generally, it is desirable that data mining algorithms be both space and time
efficient. Like GDBR, conAOl-KP is transformed into an on-line algorithm
{onLineConcAOl-KP) by reading blocks of tuples from disk to memory. The
difference here is that the size of the prime table is determined from distinct non-leaf
concepts, which are a level higher than leaf concepts, for each attribute. GDBR
determines the size of the prime table from attribute thresholds. Therefore, it is
assumed that every tuple will be generalised at least once so that there is no allowance
for any tuple proceeding to the rule generation stage with leaf concepts. This is a
remote possibility with GDBR if thresholds are reached before any generalisation
takes place. However, attributes with only two concept levels, for example "sex"
which has leaf concepts "M" and "F ' and general concept "ANY " are the only
exceptions. Similarly, FIGR determines the size of prime table from distinct values of
leaf concepts.

A Concurrent Approach to the Key-Preserving Attribute-Oriented Induction Method 309

3 The Concurrent AOI-KP Approach

3.1 Analysis of Order Complexity and Space Requirements

The motivation for this work was to improve the sequential AOI-KP's order
complexity of O (np) and space requirement of O (n) + O (p), for n input and p
generalised tuples.

Firstly, with the onLineConAOI-KP algorithm, n input tuples were retrieved
as blocks of tuples with each tuple generalised before insertion in the initial relation.
Subsequent tuples were retrieved, generalised and compared to other generalised
tuples in memory. Similar tuples (those having the same attribute values except their
keys) were stored as one tuple (this is termed merging tuples) and their keys stored in
a table, called a keys table. Therefore the initial input table, which we now call a
prime table, can be declared with only a few hundred rows. This is because the
product of distinct values of each attribute's non-leaf concepts (i.e. the generalised
concepts) is smaller than distinct values of leaf concepts.

The prime table's size is therefore a small constant value of size

q=p*r,0<i<\.

Now q = n if all input tuples were retrieved to memory. Considering FIGR and
GDBR, q<p if GDBR with a big attribute threshold and large number of attributes is
considered as GDBR determines the size of the prime table from the product of
attribute thresholds. FIGR determines the size of the prime table from distinct leaf
concepts, which are greater than distinct generalised leaf concepts as implemented in
onLineConAOI-KP and conAOI-KP.

Therefore, the initial relation in our case is just a prime relation of size q<=p.
This approach also eliminates the use of a summary input table as used in GDBR and
FIGR. This summary table is presented as a two-dimensional table with two attributes
relevant to the mining process. It compiles statistics about those attribute values and
could be prohibitively large if the number of attributes increased.

With FIGR, the size of the prime table with m input attributes is
m

s ^ n ki

where ki is the distinct number of leaf concepts for each attribute i. For
onLineConAOI-KP, the size of the, prime table is

310 M.K. Muyeba and J.A. Keane

q - n kgen(i)

where q = p*r, 0<r< 1, as k(gen(i)) is the distinct number of generalised leaf concepts
for generalised attribute i and ofcourse k(gen(i)) < kj.

Therefore, onLineConAOI-KP's space requirement is O (q) for the initial and
prime relations and O (n/m)+c for the keys table, where c is a small storage increment
due to key insertions. The O (n/m)+c arises because keys table dynamically increases
in size as more input is read. This is not the case when a fixed size keys table for n
input tuples that requires O (n) space is declared.

As more input is read, c gets used up and can grow dynamically in multiples of
its previous size. This means for very large n, a single machine can still have memory
problems unless m is large which is unlikely for the AOI method. Therefore, the space
requirement for large n is O (q) and order complexity O (n) for onLineConAOI-KP.

Secondly, for conAOI-KP, the time to retrieve n input tuples, convert them to
concepts for each of the m attributes to a prime table of size p is O (nmpd), where d is
the deepest concept hierarchy for any attribute. Assuming a small number of attributes
m and the deepest concept hierarchy d is small, the order complexity is only O (np).

The problem with conAOI-KP is that we do not retrieve blocks of tuples to
memory but the whole input is read. The only improvement is concurrency of the fil e
I/O process.

We present concurrency mechanism involved in both conAOI-KP and
onLineConAOI-KP in the next section and compare performance.

3.2 Sequential and Concurrent Algorithm s

In this section, the sequential and concurrent versions of the AOI-KP algorithm are
discussed. Two class pseudo-codes and their methods for the parent and children
thread processes are also shown for clarity. Three major processes where concurrency
may be useful namely, key insertion, merging similar tuples and file I/O have been
investigated.

The sequential AOI-KP algorithm, in figure 3, performs poorly with large data
input because it uses memory to hold all the data. The two processes, tuple merges
and key insertion, use separate tables for storing generalised tuples (the input or prime
table) and keys (the keys table). A tuple merge occurs if two tuples have the same
attribute values (generalised or not) except their identifying attribute called a key.
Thus one tuple and its correspionding key(s) is removed from the prime or input table
and the resulting two keys are inserted in the keys table. These two processes could
therefore occur concurrently.

However, a much bigger difference in execution time occurs when there are a
large number of keys associated with each of the two tuples being compared in the
prime table and a merge has to be performed. Therefore, two threads of execution for

A Concurrent Approach to the Key-Preserving Attribute-Oriented Induction Method 311

key insertion and tuple merges could be spawned concurrently. In theory, this means
that with smaller data sizes, the concurrent approach would be much slower than the
sequential approach because of thread overheads i.e. the time to create, spawn,
synchronise and terminate threads.

In addition, however, a major performance bottleneck is writing keys to file
when rules are generated. Therefore, to improve the overall performance of AOI-KP,
the concurrent AOI-KP (conAOI-KP) algorithm is introduced as shown in figure 4.

Step 1. Collect data (as a whole)
Make concept hierarchies for Ai

Determine distinct values of attributes Ai
For each attribute A

While attribute threshold not reached
If (A has hierarchy, A <> key attribute, A has more

than two levels)
Generalise A

Step 2. Merge similar tuples
If two tuples are similar

Insert keys in Keys Table (copying key (s))
Delete tupie(s), leave one tuple in prime table (tuple merge)

Increase counts
Else

Insert tuples in different rows of Prime Table
Insert keys in different rows of Keys Table

Increase counts
Repeat Step 2 until attribute threshold \s reached
Step 3. Check rule threshold

While rule threshold not reached
Generalise appropriate attribute

Merge tuples
Insert keys

For i =1 to rule threshold (sequentia l I/O fil e process)
Search keys Table for non-Null row

If (non-Null row Found)
Write keys to file IR.txt

//Sequential AOI-KP

Fig. 3. Sequential AOI-KP Algorithm

Figure 5 shows class implementations of the parent and child thread codes for
concurrent execution of the file I/O process. The parent class passes to the child class
method, the file number and the row of the keys table where the preserved keys are
stored. The file number corresponds to the rule number produced in the mining
process e.g. rule 1 has preserved keys in file IR.txt etc.

312 M.K. Muyeba and J.A. Keane

Step 1. Collect data {In Blocks for on line concurrent AOI-KP)
Make concept hierarchies for A
Determine distinct values of attributes A
For each attribute Ai

While attribute threshold not reached
If (A has hierarchy, A <> /fey attribute, Ai has more than
two levels)

Generalise A
Step 2. Merge similar tuples

If two tuples are similar
Perfor m concurren t Key insertio n and tupl e merge s

Insert keys in Keys Table (copying key (s))
Delete tuple(s), leave one tuple in prime table
(tuple merge)

Increase counts
Else

Insert tuples in different rows of Prime Table
Insert keys in different rows of Keys Table
Increase counts

Repeat Step 2 until attribute threshold is reached
Step 3. Check rule threshold

While rule threshold not reached
Generalise appropriate attribute
Merge tuples
Insert keys

For / =1 to rule threshold (concurren t I/O fil e process)
Spawn paren t threa d when firs t non-nul l

or non-blanl (row of Keys Table found
Spawn chil d threa d to writ e keys to fil e iR.txt
Search Keys Table for next non-Null row
If (non-null row Found)

Spawn next chil d threa d to writ e keys to fil e iR.txt
//Concurrent AOI-KP

Fig. 4. Concurrent AOI-KP Algorithm

With file I/O, once keys are stored in the keys table, each set of keys for a rule is
separated by a null or blank row. To store keys for rule i in file iR.txt, the parent
thread is spawned and scans the keys table for a blank or null row, having spawned a
child thread from the first encountered non-null or non-blank row of the keys table. If
another blank or null row is subsequently encountered, another child thread for rule
i+1 is spawned for writing to file (i+i)R.txt and so on.

If the attribute or rule threshold is m, then m children threads will be spawned
for writing to m key files.

A Concurrent Approach to the Key-Preserving Attribute-Oriented Induction Method 313

Class ParentThread
{ (Declare member variables and assign them values using

constructors)

/=1
ft/eA/o=1
k=0
ruleThreshold = m

CliildTliread ch1 ,..,chi, i =1 ..ruleThreshold

Metho d (k, ruleThreshold)
while (k < size of Keys Table AND i<=ruieThreshold)
{

if(blank or null value encountered in keys Table row k) loop
case {fileNo)

1: spawn childThread cM{fileNo, k)
2: spawn childThread ch2(fileNo, k)
3:

i: spawn childThread ch\{fileNo,k)
k=k+1
i=i+1

]
]// end Class ParentThread

Class ChildThread
{ (Declare member variables and assign them values using

constructors)
fileNo
rowK
for {/' = ^,...ruleThreshold)

Declare files iR.txt

Metho d (fileNo, rowK)
case (fileNo)

1: write rowKQ\ Keys Table in file 1 R.txt
continue;

m: write roivKof Keys Table in file mR.txt
continue;

close files
)//end class childThread

Fig. 5. Classes of Parent and Child Threads for file I/O

Figure 6 shows the results of execution times of sequential AOI-KP, conAOI-KP and
onLineConAOl-KP algorithms on student data using a P266 MHz 64MB-memory

314 M.K. Muyeba and J.A. Keane

Windows NT cluster. The execution times include data retrieval, mining and file I/O
processes. Each data set was run five times and the average time computed.

The concurrent AOI-KP thus improved processor utilisation by 25% due to
concurrent I/O for each fil e of keys generated.

The onLineConAOI-KP algorithm was run on the same data set. By retrieving
blocks of tuples to memory, generalising the tuples and inserting them in a prime
table directly from the input, memory restrictions were temporarily solved. As more
input was read, the keys table grew with the input size. As database retrieval time is
an expensive operation, this affected execution time, which improved processor
utilisation by only 16% compared to the sequential AOI-KP algorithm.

-nqutmUi l AOI-K P

P

-iMLfewCMAOI-K P

1000 1000 0 20O0 O 3000 0 1000 0 5000 O 6000 0 7000 0 8000 0 9000 0 10000 0

No. of tuples

Fig. 6. Comparisons of sequential and concurrent versions of AOI-KP

From the graph in figure 6, it is evident that concurrency mechanisms have provided
improvement. All three algorithms are affected by the size of input data. The
onLineConAOI-KP algorithm can take more input than the other two because memory
is economised by retrieving blocks of tuples. The conAOl-KP algorithm runs faster
than both sequential AOI-KP and onLineConAOI-KP as long as the data fits in
memory. This is because it is exempt from the I/O bottleneck experienced by
onLineConAOI-KP and employs concurrency not implemented in sequential AOI-KP.
However, sequential AOI-KP initially performs equally well with few input data. As
memory gets used and file I/O starts, performance deteriorates.

A Concurrent Approach to the Key-Preserving Attribute-Oriented Induction Method 315

Further improvements would be to lessen use of memory by retrieving blocks of
tuples, writing keys to file immediately upon data input or employing a parallel-
processing paradigm. The former would be more space efficient but not time efficient,
whilst the latter approach may improve both space and time efficiency.

4 Conclusions and Further Work

This paper has presented a concurrent approach for preserving keys in attribute-
oriented induction on a single processor machine. The result has been enhanced
performance. The execution time, when conAOI-KP is considered, has been reduced
by 25%, indicating a greater utilisation of the processor. In addition, the storage
requirement is only O (p). When onLineConAOI-KP is considered, execution time is
reduced by 16% and only required O (q) space.

With large data, the keys table grows proportional to the input. In addition,
database retrieval time is affected by large inputs especially when blocks of tuples
have to be read. This was shown by the deterioration in execution time of the
onLineConAOI-KP algorithm with respect to conAOI-KP.

Another viable solution is to employ parallelism in either of the following two
ways:

1. Employing a distributed memory message-passing architecture e.g. a
network of workstations (NOW). A NOW provides attractive scalability in
terms of computational power and memory[7].

2. Employing a parallel shared memory multiprocessor with explicit message-
passing [8].

The amount of execution time would be greatly reduced if h processors were
involved. This would mean reducing the order complexity from O (np) to O (np/h) for
the conAOI-KP algorithm and O (n) to O (n/h) for the onLineConAOl-KP algorithm.
Current work investigates parallelism on a NOW architecture.

References

1. Han, J.; Cercone, N. and Cai, Y. 1991 "Attribute-Oriented Induction in
Relational Databases" In G. Piatetsky-Shapiro and W. J. Frawley, editors.
Knowledge Discovery in Databases, pp 213-228.

2. Frawley, W. J. and Piatetsky-Shapiro, G. 1991. "Knowledge Discovery in
Databases", AAAI/MI T Press, pp 1-27.

3. Agrawal, R.; Imielinski, T. and Swami, A. 1993. "Database Mining: A
Performance Perspective" IEEE Transactions on Knowledge and Data
Engineering, 5(6):914-925, December.

4. Fu, Y. 1996. "Discovery of Multiple-Level Rules from Large Databases" Ph.D.
thesis. Computing Science, Simon Eraser University, July.

5. Muyeba, K. M. and Keane, J. A. 1999. "Extending Attribute-Oriented Induction
as a Key-Preserving Data Mining Method' Proceedings of the 3 '̂' European
Conference on Principles of Knowledge Discovery and Data Mining (PKDD'99),

316 M.K. Muyeba and J.A. Keane

J. Zytkow and J. Rauch, editors, Prague, Czech. Republic, pp 249-258,
September.

6. Carter, C. L. and Hamilton, H. J. 1998. "Efficient Attribute-Oriented
Generalisation for Knowledge Discovery from Large Databases" IEEE
Transactions on Knowledge Discovery and Data Engineering, 10(2): 193-208,
March.

7. Zaki, M. J.; Li , W. and Parthasarathy, S. 1997. "Customized Dynamic Load
Balancing for a Network of Workstations" JPDC, Special Issues on Workstation
Clusters and Network-Based Computing, 43(2): 156-162, June.

8. Freitas, A. A. and Lavington, S. H. 1996. "Mining Very Large Databases with
Parallel Processing", Kluwer Academic, Boston.

Scaling Up a Boosting-Based Learner
via Adaptive Sampling

Carlos Domingo * and Osamu Watanabe **

Dept. of Math, and Comp. Science, Tokyo Institute of Technology
Meguro-ku, Ookayama, Tokyo, Japan.
{carlos,wateinabe}Ois.titech.ac. jp

Abstract. In this paper we present a experimental evaluation of a boost-
ing based learning system and show that can be run efficiently over a
large dataset. The system uses as base learner decision stumps, single
atribute decision trees with only two terminal nodes. To select the best
decision stump at each iteration we use an adaptive sampling method. As
a boosting algorithm, we use a modification of AdaBoost that is suitable
to be combined with a base learner that does not use all the dataset.
We provide experimental evidence that our method is as accurate as the
equivalent algorithm that uses all the dataset but much faster.

1 Introduction

One defining chaxacteristic of data mining applications is that the input dataset
is huge. Thus, we are typically seeking for algorithms that can be run efficiently
even if the input is very large. Another important aspect of data mining is
that, in many situations, one is required to obtain solutions that can be later
interpreted by a human expert. In contrast, in machine learning research the
emphasis has been traditionally put in prediction accuracy. Thus, state of the
art algorithms like C4.5 that consistently produce very accurate hypothesis,
when run over a large dataset are slow and produce very large outputs that are
hard to interpret. It is a common practice for data miners to run an algorithm
for induction of decision tress over a large dataset for several hours only to end
up discarding most of the output (and thus, reducing the accuracy) in order to
obtain something that can be interpreted by a human expert.

In this paper we present a learning algorithm that while not always producing
a hypothesis as accurate as one might obtain using traditional machine learning
methods, it produces a very concise output and can be run very fast even if the
dataset is large. This learning algorithm combines two powerful tools, boosting
and sampling. We will use a very simple learning algorithm that uses an adaptive
sampling method as a base learner and then we will use a boosting method to

* Thanks to the European Commission for their generous support via a EU S&T
fellowship programme.

** Supported in part by the Ministry of Education, Science, Sports and Culture of
Japan, Grant-in-Aid for Scientific Research on Priority Areas (Discovery Science).

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 317-328, 2000.
© Springer-Verlag Berlin Heidelberg 2000

318 C. Domingo and O. Watanabe

improve its accuracy. In the following we discuss these two methods in more
detail.

Boosting [21] is a technique for constructing a "strong" learning algorithm
based on a "weak" learning algorithm. Boosting typically works by repeatedly
disturbing the training set to obtain several different weak hypotheses that con-
centrate more and more are on the harder instances and that are later combined
to obtain a much stronger one. In particular, the AdaBoost algorithm of FYeund
and Schapire [11] has been repeatedly reported to be the most effective in the ab-
sence of noise [12,19,2,1]. However, AdaBoost is originally designed to run using
all the dataset and thus it is not suitable to be used with large datasets. In this
paper we will use a modification of AdaBoost recently proposed by Domingo and
Watanabe [23,5] that is more suitable for being combined with a base learner
that uses only a portion of the dataset selected through sampling as discussed
in Section 2. The boosting algorithm outputs a hypothesis that is the weighted
majority of the hypothesis output by the base learner.

Since as we argued one of our goals is to obtain a hypothesis that can be
easily interpreted, we will use as a base learner a very simple one, decision stumps
(single attribute decision trees with only two terminal nodes). Obviously, the
predictive power of this learner is very weak and this is the reason we also want
to use boosting to combine few of them to increase the accuracy. Thus, at each
boosting iteration we will select the best stump with respect to the distribution
generated by the boosting process at that step. Recall that we also wanted to
be able to efficiently run the learning algorithm on a large dataset. Boosting
is a slow method since it implies running sequentially several times the base
learner algorithm. Thus, unless we are not able to make the base learner very
fast, the overall learning algorithm might become extremely slow. The method
we propose to speed up the base learner is sampling. Instead of using all the
dataset at each iteration to determine which stump we pass to the boosting
algorithm we will use only a portion of it. Now, the problem is shifted to decide
how much amount of data we need at each iteration. To solve this problem we
wil l use an adaptive sampling method proposed by Domingo et.al. [3,4] that
it is particularly suitable for this problem. Adaptive sampling methods do not
determine the sample size a priori. Instead, they obtain examples incrementally
and decide on-line depending on the current situation when to stop sampling.
Adaptive sampling methods have been studied in statistics under the name of
sequential samphng [22] and more recently in the database community [17,16]. In
the KDD literature, related methods are described under the name of progressive
sampling [14,18]. Details on how to use sampUng for selecting the stump at each
boosting iteration are provided in Section 3.

In this paper we provide an experimental evaluation of this learning system.
We have done experiments to compare the results obtained using all the dataset
at each boosting iteration to select the best decision stump and the results
obtained using our adaptive sampling method to do the selection. We conclude
that there is no apparent lost in accuracy by using the sampling method while
there is a great decrease in running time, an average of 40 times for the fastest

Scaling Up a Boosting-Based Learner via Adaptive Sampling 319

method over the 6 datasets used in the experiments. All the hypotheses obtained
are just a weighted combination of 10 attributes.

This paper is organized as follows. In Section 2 and Section 3 we describe the
boosting algorithm MadaBoost and the decision stump selector with adaptive
sampling that we will use for our experiments. Then, in Section 4 we report
several experiments that we have performed using our system and compare the
results with other learning algorithms. We conclude in Section 5 summarizing
the results and discussing future work.

2 Filtering Adaptive Boosting: MadaBoost

In this section we describe the boosting algorithm used in the learning system
being evaluated in this paper.

We first justify the choice of the algorithm. The obvious choice would have
been algorithm AdaBoost due to Preund and Schapire [11] since it has been re-
peatedly reported to outperform any other voting method [12,2,1]. AdaBoost is
originally designed for the boosting by subsampling framework (also called boost-
ing by re-weighting) where the base learner is required to produce a hypothesis
that tries to minimize the error with respect to a weighted training set. The
training set is fixed at the beginning and used throughout all the boosting steps
with AdaBoost modifying the weights at each iteration depending on the hy-
potheses being obtained. Recall that our goal is to use a base learner that uses
a small sample of the overall training set at each step so it can be run very
efficiently. Thus, the boosting by subsampling framework is not appropriate for
this. Instead, we should move to the so called boosting by filtering (also called
boosting by re-sampling) where, instead of fixing a training set, we can randomly
draw an example, calculate its weight and filter it according to it. In this way,
we can effectively simulate the probability distribution that boosting is using
at each step and obtain and un-weighted sample that has been drawn from it.
This procedure is standard an is basically the sample filter that was already
proposed by Preund in [10]. However, AdaBoost is not suitable for this task. If
we use the weights of AdaBoost to construct a filter in the way just described,
obtaining a random sample at each step with respect to the current modified
distribution turns out to be very slow process. More precisely, one can show that
the time taken by the filter to generate one example is exponential with respect
to 0(1/ct), where €t is the error of the combined boosting hypothesis at the
t-th step. In other words, since our goal is to reduce the error of the combined
hypothesis up to a small number, this means that at some point the time taken
to generate a new training set to proceed boosting one more iteration might
become prohibitively large. One obvious solution is to normalize the weights so
they sum up to 1 and thus, they can be used more efficiently to simulate the fil-
tering probability (notice that in this way we will actually have the distribution
under which the base learner is required to work). However, to normalize the
weights we have to go through all the dataset and thus, the advantage of using
sampling is simply lost. We refer the reader to [5] for a rigorous description of
this problem.

320 C. Domingo and O. Watanabe

Algorith m MadaBoost
Input : e > 0

inducer AVSS, T = #trials;
1 for i = 1 to T
2 iht,et) ̂ SVS{FilEx{t))
3 Pt ̂ y/et/il - et);
4 end-for

5 output /T such that /T(X) = argmaXj,gy ^ ̂ ^̂ S "S
i:hi(,x)=y

6 Procedure FilEx{t) /* t: current boosting trial /*
7 loop-forever
8 generate (x,yx) uniformly at random from training set S\
9 co'ns{hi,x) = 1 if htix) = j/x and -1 otherwise;

10 «;<(x)-min{l,nLi/?^°"'^'^'^'} ;
11 with probability wt{x), output {x,yx) and exit;

Fig. 1. Algorithm MadaBoost for the filtering framework.

This problem of AdaBoost has been recently addressed by Domingo and
Watanabe in [5] (see also [23] where the idea was originated). For overcoming
this problem, it was proposed a simple modification of AdaBoost denoted by
MadaBoost that is suitable for both, the subsampling and the filtering frame-
works. A description of MadaBoost for boosting by filtering together with the
filter is provided in Figure 1. The filter is a loop that attempts to pass an exam-
ple randomly obtained from the dataset to the base learner using the weights of
the examples as a probability. The base learner algorithm AVSS that uses the
filter is described in the following section.

In Figure 1 we can see that the only difference with the original AdaBoost
algorithm is that we keep the weights always upper bounded by 1 while in
AdaBoost the weights can grow unbounded. This is the key property of the
modification and even in this case we can still show that the algorithm retains the
original boosting property in the PAC sense. That is, if we can obtain hypotheses
better than random guessing at each step, then MadaBoost can make the error
of the combined hypothesis arbitrarily small in a finite amount of time. The main
property of MadaBoost is that, at each boosting iteration, it can be shown that
the time taken to randomly generate a new training sample under the current
boosting distribution is linear in 0(l/et) where tt is the error of the combined
hypothesis at the t-th boosting round. Recall that this time is exponential in
0{l/et) when using AdaBoost. (For more details on MadaBoost we refer the
reader to [5].)

3 Adaptive Decision Stump Selector

In this section we describe the algorithm used as a base learner for the boosting
process. As already discussed in the introduction, we have chosen decision stumps

Scaling Up a Boosting-Based Learner via Adaptive Sampling 321

as a base learner. A decision stump is a decision trees with only one internal
node and two terminal nodes over discrete attributes. At the node just a single
attribute is used to test whether it is equal or not to one of its possible values.
Decision stumps can be also though as IF-THEN rules where the condition
depends just on one attribute and one of its possible values.

Given a fixed problem description we will denote by HDS ̂ the set of all
possible decision stumps over the set of attributes. To obtain any advantage
through sampling we need to be able to compute set HDS without looking at all
the data. For this reason we consider only discrete attributes. Obviously, we also
want to take into account continuous attributes, in case there is any, and for that
reason we have first discretized the data. As a discretization algorithm we have
used equal-width interval binning discretization with 5 intervals. Although this
method has been shown to be inferior to more sophisticated methods like entropy
discretization [9], it is very easy to implement, very fast and the performance
difference is small [8]. We will use two different versions of the base learner,
the one that does not perform sampling and uses all the data and the one
that uses sampling. We will start describing the first one. Given HDS and the
dataset X, we will go through all the data and compute for each h G HDS,
its error on X and output the one that has the smallest error on X. This base
classifier is very similar to the IR classifier of [13] and the MC4(l)-disc of [1]
except that the discretization step is different. For the version using sampling

Algorithm ADSS {HDS,5);
t< -0; S<-0; n=\HDs\\
repeat

use FilEx to generate one example and add it to S;
t < - t + l;^
at = 3-y/(21nT-lnlnr-|-l)/t, where r = nt(i + l)/(2(5V7r);
for all h e HDS, U{h, S) <— \\{x e S : h classifies x correctly}||/t - 1/2;

until (3h 6 HDS such that U{h,S) > at)
output ho G HDS with largest U{h, S);
output 1 — U{ho,S) as an estimation of ho's error prob.;

Fig. 2. The Adaptive Decison Stump Selector .4I'<S<S.

we will use an algorithm proposed by Domingo et.al. in [3,4]. The algorithm is
described in Figure 2 and we discuss it in the following. The algorithm, denoted
by ADSS receives as input set HDS and a confidence parameter 6. I t randomly
obtains examples from dataset X usign procedure FiltEx described in Section 2.
Every time a new example is obtained, it updates the advantage of every stump
h G HDS, defined as U{h,S) = accus{h) — 1/2. Then, it decides adaptively
when to stop sampling. The stopping condition is determined depending on:
the advantages of the stumps on the current set of examples S, the number of
examples t obtained so far, the number n of stumps considered and the confidence

322 C Domingo and O. Watanabe

parameter 6. The reason to consider the advantage U{h, S) instead of the more
commonly used accuracy ||{a; G S : h classifies x correctly}||/i is that we are
going to use this algorithm as a base learner for a boosting process and boosting
requires always a hypothesis that has accuracy over 50% at each iteration. While
this cannot be guaranteed in general, what our sampling method guarantees is
that if there exists a stump with an accuracy larger than 50%, then with high
probability it will select an stump that also has an accuracy larger than 50%
ensuring that the boosting process continues. The following theorem concerning
the complexity and reliability of the algorithm can be easily derived from the
more general results in [4] and we refer the reader to that paper for a proof.

Theorem 1. ^ Let V he the filtering distribution at certain boosting step and
let hi, G HDS be the hypothesis with largest advantage under that distribution,
defined as 7,k = errorxiihi,) —1/2 and assume that 7* > 0. Then, with probability
larger than 1 — 5, algorithm ADSS outputs a stump h such that 7 > 7*/2, where
7 = errorx>{h) — 1/2 and finishes within 0{{l/'y^)ln{n/S))

Notice that the key property of the algorithm is that the number of exam-
ples used is not decided a priori, it depends adaptively on the situation. More
precisely, the better the best stump at one iteration (and therefore, the larger
7*) the faster the algorithm will finish. Also notice that the theorem guarantees
that whenever a stump with accuracy larger than 50% exists, one with accuracy
also larger than 50% will be output with high probability.

We will consider two different versions of the algorithm depending on how
many examples we obtain from the random sampling process at each iteration.
The first version is the one provided in Figure 2, that we will refer as the arith-
metic version, obtains just one example every iteration. The second version, the
geometric version, increases the sample size by an s multiplicative factor at each
iteration where s is a positive integer set by the user. Arithmetic and geometric
sampling methods have been also studied recently in [18]. A result similar to
Theorem 1 can be also proved for the geometric version where now the sample
size will depend on s. We again refer the reader to [4] for more details in the
theoretical properties of these algorithms.

4 Experimental Results

We have conducted our experiments on a collection of datasets from the reposi-
tory at University of California at Irvine [15]. We have chosen all datasets with
2 classes since, according to previous experiments on boosting stumps, we are
not expecting our base learner to be able to find weak hypothesis with accuracy
better than 50% for most problems with a large number of classes. Apart from
this restriction, the choice of the datasets has been done so it reflects a variety

^ For this theorem to hold, we assume that the Central Limit Theorem applies. A
slightly less efficient version but not condition to the Central Limit Theorem is also
provided in [4].

Scaling Up a Boosting-Based Learner via Adaptive Sampling 323

of datasets sizes and combination of discrete and continuous attributes. As a
test bed for comparing our boosting decision stumps algorithms we have chosen
two well known learning algorithms, the decision tree inducer C4.5 [20] and the
Naive Bayes classifier [7].

One point needs to be clarified on the way we used these datasets. We had
to inflate the datasets since we need large datasets but most of the UCI datasets
are quite small. That is, following [14], we have artificially inflated the training
set (the test set has been left unchanged to avoid making the problem easier)
introducing 100 copies of all records and randomizing their order. Inflating the
datasets only makes the problem harder in terms of running time, does not
change the problem in terms of accuracy if we restrict ourselves to use learners
that are just calculating statistics about the training sample. For instance, if one
particular decision stump has an accuracy of 80% on the original training set,
then this stump has the same accuracy in the inflated dataset. Thus, if that is
the stump of choice in the small dataset it wil l also be in the inflated version.
Moreover, it also does not affect the results concerning sampling, neither makes
the problem easier nor more difficult. The reason is that all the statistical bounds
used to calculate necessary sample sizes provide results that are independent of
the size of the probability space from where we are sampling that, in this case,
is the training set. The necessary sample sizes depend on the probabilities on
the training set and these are unchanged when we inflate the dataset. In other
words, if in one particular situation the necessary sample size is 10.000, this
sample size will be the same independently of whether we are sampling from the
original dataset or from the inflated version.

From the above discussion we conclude the following. For the algorithms
using boosting stumps and for the Naive Bayes classifler we wil l provide both,
accuracy and running time results in the inflated datasets since those learning
algorithms satisfy the requirements just described and therefore these results are
meaningful. However, in the case of C4.5 we only provide running time results
not accuracy results since this algorithm is not strictly based on probabilities
over the sample. It makes, for instance, decisions about whether to split or not
based on the actual number of instances following in one particular node and
these numbers are obviously changed when we inflate the dataset. The accuracy
results of C4.5 in the inflated dataset are cannot be used for comparison.

In any case, we are aware that this is perhaps not the best method to test
our algorithms and real large datasets would obviously have been better; but we
still believe that the results are informative and convincing enough to show the
goodness of our method.

The experiments were carried out using S = 0.1 in algorithm AVSS and
s = 2 for the geometric version. For every dataset, we have used a 10-fold cross
validation if a test set is not provided and for the algorithms using sampling (and
thus, randomized) the results are averaged over 10 runs. Al l the experiments have
been done in a computer with a CPU alpha 600Mhz using 256Mb of memory and
a hard disk of 4.3Gb running under Linux. Since enough memory was available,
all the data has been loaded in a table in main memory and from there the

324 C. Domingo and O. Watanabe

algorithms have been run. Loading the data took few seconds and since this time
is the same for all the algorithms it has been omitted from the results. Notice
that for C4.5, this in fact the only way to run it. For the other algorithms, we
could have been done using the data from disk and an efficient sampling method
from external memory. Doing experiments under these conditions is part of our
future work. The running time results also include the time taken to construct
all the decision stumps.

The experiments were done for estimating the performance of the arithmetic
and geometric versions of algorithm AVSS combined with the version of Mad-
aBoost for the filtering framework. For comparison purposes, we also executed
MadaBoost in the boosting by subsampling framework using the whole dataset;
that is, MadaBoost with a base learner that selects the best decision stump by
searching through the whole dataset exhaustively. Below we use Ar., Geo., and
Exh. respectively to denote the arithmetic and the geometric versions of AVSS
and the exhaustive search selector. We have also carried out the experiments
with Exh. using the original AdaBoost and found the difference in accuracy
with MadaBoost with Exh. negligible (we refer the reader to [6] for a detail
experimental comparison between AdaBoost and MadaBoost). We also provide
the accuracy results obtained just by using a single decision stump (denoted by
DS) so the gain produced by the boosting algorithm can be appreciated.

We have set the number of boosting rounds to be 10 which usually is enough
to converge to a fixed training error (that is, although we keep obtaining hy-
pothesis with accuracy slightly better than 50%, the training error does not get
reduced anymore).

Table 1. Accuracies of boosted decision stumps with and withouth sampling and that
of Naive Bayes.

Name
agaricus
kr-vs-kp
hypothyroid
sick-euthy.
german
ionos

Size
731100
287600
284600
284600
90000
31590

\HDS\

296
222
192
192
222
408

DS
88.68
68.24
95.70
90.74
69.90
76.18

Exh.
97.74
93.19
95.86
91.02
74.10
90.26

Ar.
97.84
92.89
95.84
90.93
74.28
89.53

Geo.
98.03
92.71
95.86
90.93
74.30
89.63

NB
98.82
88.05
95.43
90.26
76.00
89.14

Table 1 shows the accuracy obtained on these datasets by three combinations
of selectors with MadaBoost. The columns "Size" and "H/TDSH" show, for each
dataset, its size and the number of all possible decision stumps respectively. As
we can see easily, there is no significant difference between the accuracies ob-
tained by these three methods. These results indicate that our sampling method
is accurate enough. Two other consequences can be also observed. First, running
boosting even for this few number of iterations makes a significant improvement
in accuracy in most of the datasets. This can be observed by comparing the

Scaling Up a Boosting-Based Learner via Adaptive Sampling 325

accuracies obtained with that obtained using just a single decision stump (col-
umn DS). This accuracy has been obtained using all the dataset. Second, even
though the hypotheses produced are very simple (a weighted majority of ten
depth-1 decision trees), the accuracies are comparable to that obtained using
Naive Bayes, a learning algorithm that has been reported to be competitive
with more sophisticated methods hke decision trees [7].

Table 2. Running times (in seconds) of MadaBoost with and without sampling, and
that of Naive Bayes and C4.5.

Name
agaricus
kr-vs-kp
hypothyroid
sick-euthy.
german
ionos

Exh.
892.31
265.63
233.24
232.05
80.75
56.95

Ar.
2.07
3.68
5.82
6.84

16.96
6.29

Geo.
1.78
2.75
5.67
6.77

10.47
4.74

NB
16.34
10.07
7.14
7.08
1.08
0.85

C4.5
21.65
31.13
67.40

162.76
20.34
29.47

Once we have established that there is no loss in accuracy due to the use of
sampling, we should check whether there is any gain in efficiency. Table 2 shows
the running times of MadaBoost combined with three selection algorithms, ex-
haustive one (Exh.), and the arithmetic (Ar.) and the geometric (Geo.) versions.
We have also provided the running time of Naive Bayes (NB) and C4.5 for those
datasets.

Let us discuss about these results. First, one can easily see that the exhaustive
search version is a very slow process, particularly for large datasets. The running
time of MadaBoost with Exh. is a function of the dataset size, the number of
decision stumps considered (which depends on how many attributes the dataset
has and their range of values), and the number of boosting rounds.

For the algorithms using sampling, we can see that the running time has
been greatly reduced for all datasets. The running time of MadaBoost with
the arithmetic version of AVSS is, on average, approximately 40 times smaller
than that of the Exh. Surprisingly enough, for the sampling versions the fastest
dataset becomes the largest one, Agaricus. The reason is the particular structure
of this dataset. During all the 10 boosting iterations one can find hypothesis
with accuracy larger than 70% and thus, the sample sizes needed at each step
are very small. This contrasts with datasets like German where a similar number
of decision stumps is considered and, even though the dataset is less than 1/8
of Agaricus, the running time on German is 8 times larger. This is because for
this dataset, after the third boosting iteration, even the best stump has accuracy
smaller than 60% and this affects the efficiency of the sampling method. Recall
that the inverse of the advantage of the best stump (i.e. the distance of its
accuracy compare to the random hypothesis) is the major term that determines
the necessary sample size at each boosting round.

326 C. Domingo and O. Watanabe

Table 3. Running time of ADSS with geometric sampling for different values of s.

Name
agaricus
kr-vs-kp
hypothyroid
sick-euthy.
german
ionos

s= 1.5
1.47
2.33
5.16
6.48
9.05
4.27

s = 2
1.78
2.75
5.67
6.77

10.47
4.74

s = 2.5
2.01
3.07
6.67
6.79

10.41
5.29

s = 3
2.11
2.93
7.04
7.01

13.17
6.06

This difference between Agaricus and German becomes more clear by looking
at the total number of examples used by a base learner, i.e., AVSS, during the
boosting iterations. Recall that we are using boosting by filtering; so when the
base learner asks for an example, the filtering method might have to actually
sample several of them until it gets one that passes the filter and is given to
the base learner. Our experiment shows that, in total, German needs 264,763
examples while Agaricus needs only 82,915 examples. On the other hand, the
number of examples actually used by the base learner is 162,058 for German and
13,907 for Agaricus, and there is more than 10 times difference.

As for the difference between arithmetic and geometric sampling, we can see
that, for this particular problem and our choice of s = 2, the geometric sampling
is, on average, around 1.3 times faster than the arithmetic sampling, which is
what we can expect from our theoretical estimation provided in [4]. In Table 3
we provide the running times of Geo. for other values of s.

Table 4. Accuracies and running times for 10, 20 and 30 boosting rounds.

DataSet
Name

agaricus
kr-vs-kp
hypothyroid
sick-euthy.
german
ionos

Running Time
10
1.78
2.75
5.38
6.77

10.47
4.74

20
5.97
8.44

33.31
58.17
20.34
13.98

30
13.88
20.88

128.29
172.56
41.21
28.29

Accuracy
10

98.03
92.71
95.86
90.93
74.30
89.63

20
98.95
93.48
95.87
91.08
76.37
92.35

30
99.77
93.94
95.86
92.13
77.10
93.90

With respect to C4.5, we can see that our algorithm is faster in many datasets.
More specifically, MadaBoost with ADSS using geometric sampling is around 10
times faster than C4.5. Compared to Naive Bayes, we can see that our method
is much faster for the largest datasets (more than 9 times for Agaricus) but as
the dataset becomes smaller the advantage is lost and, for instance, for dataset
German our method becomes around 10 times slower. Notice that Naive Bayes
is perhaps the fastest known learning method that uses all the datsiset since its
running time scales exactly linear in the training set.

Scaling Up a Boosting-Based Learner via Adaptive Sampling 327

We have also done some experiments to check the scalabiUty of the process
with respect to the number of boosting iterations. The results are shown in
Table 4. These results have been obtained using MadaBoost and the geometric
version of Decision Stumps Selector with s = 2. Notice that for some datasets
there is still a gain in accuracy and that, in general, is still much faster to run 30
boosting iterations using our sampling method than to run 10 boosting iterations
using all the dataset.

5 Conclusions

In this paper we have studied a simple learning system based on boosting de-
cision stumps. Our goal was to show that this learning system can be executed
efficiently using a large dataset. For achieving this goal we have proposed the
following two tools. First, we have use an adaptive sampling method for selecting
the decision stump at each iteration so that this process can be done using only
part of the dataset. Second, we have use a modification of AdaBoost that can
be efficiently run under the boosting by filtering method and thus, appropiately
combined with the sampling based base learner that we used. We have provide
experimental evidence that this method is much more efficient than using all the
dataset and that there is no apparent lost in accuracy.

Future work involves finding a stronger based learner that, while we can
still combine with our sampling method provides us with a better accuracy
at each step so that the overall accuracy is better and we can also use it for
problems with a large number of classes. Another interesting topic is to perform
these experiments but using much larger datasets that cannot be loaded in main
memory and thus, we have to sample from external memory.

References

1. Bauer, E. and Kohavi, R. 1998. An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants. Machine Learning, 1-38, 1998.

2. Dietterich, T., 1998. An Experimental Comparison of Three Methods for Construct-
ing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine
Learning, 32:1-22.

3. Domingo, C, Gavalda, R. and Watanabe, R., 1998. Praictical Algorithms for On-line
Selection. Proceedings of the First International Conference on Discovery Science,
DS'98. Lecture Notes in Artificial Intelligence 1532:150-161.

4. Domingo, C, Gavalda, R. and Watanabe, O., 1999. Adaptive Sampling Methods for
Scaling Up Knowledge Discovery Algorithms. Proceedings of the Second International
Conference on Discovery Science, DS'99. Lecture Notes on Artificial Intelligence,
1721, pp. 172-183.

5. Domingo, C. and Watanabe, O., 1999. MadaBoost: A modification of AdaBoost.
Tech Rep. C-133, Dept. of Math and Computing Science, Tokyo Institute of Tech-
nology. URL: http://www.is.titech.ac. jp/"carlos.

328 C. Domingo and O. Watanabe

6. Domingo, C. and Watanabe, O., 1999. Experimental evaluation of a mod-
ification of AdaBoost for the filtering framework. Tech Rep. C-139, Dept.
of Math and Computing Science, Tokyo Institute of Technology. URL:
h t t p: //www. i s. t i t e c h. ac. jp/"cztr los.

7. P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality
of the simple Bayesian classifier. Machine Learning, 29:2, 103-130, 1997.

8. Dougherty, J., Kohavi, R., and Sahami, M., 1995. Supervised and Unsupervised
Discretization of Continuous Features. Proceedings of the Twelfth International Con-
ference on Machine Learning.

9. Fayad, U.M. and Irani, K.B., 1993. Multi-interval discretization of continuous-valued
attributes for classification learning. Proceedings of the 13th International Joint Con-
ference on Artificial Intelligence, pp. 1022-1027.

10. Freund, Y., 1995. Boosting a weak learning algorithm by majority. Information
and Computation, 121(2):256-285.

11. Freund, Y., and Schapire, R.E., 1997. A decision-theoretic generalization of on-line
learning and an application to boosting. JCSS, 55(1):119-139.

12. Freund, Y., and Schapire, R.E., 1997. Experiments with a new boosting algorithm.
Proceedings of the 13th International Conference on Machine Learning, 148-146.

13. R.C. Holte. Very simple classification rules perform well on most common datasets.
Machine Learning, 11:63-91, 1993.

14. John, G. H. and Langley, P., 1996. Static Versus Dynamic Sampling for Data
Mining. Proc. of the Second International Conference on Knowledge Discovery and
Data Mining, AAAI/MI T Press.

15. Keogh, E., Blake, C. and Merz, C.J., 1998. UCI repository of machine learning
databases, [http://www.ics.uci.ed u/ mleau-n/MLRepository.html]. Irvine, CA: Uni-
versity of California, Department of Information and Computer Science.

16. Lipton, R. J. and Naughton, J. F., 1995. Query Size Estimation by Adaptive Sam-
pling. Journal of Computer and System Science, 51:18-25.

17. Lipton, R. J., Naughton, J. F., Schneider, D. A. and Seshadri, S., 1995. Efficient
sampling strategies for relational database operations. Theoretical Computer Science,
116:195-226.

18. Provost, F., Jensen, D. and Gates, T., 1999. Efficient Progressive Sampling. Pro-
ceedings of the 5th International Conference on Knowledge Discovery and Data Min-
ing.

19. Quinlan, J. R., 1996. Bagging, Boosting and C4.5. Proceedings of the Thirteenth
National Conference on Artificial Intelligence, AAA I Press and the MI T Press, pp.
725-723.

20. Quinlan, J. R., 1993. Ci.5: Programs for machine learning. Morgan Kaufmann,
San Mateo, California.

21. Schapire, R. E., 1990. The strength of weak learnability. Machine Learning,
5(2):197-227.

22. Wald, A., 1947. Sequential Analysis. Wiley Mathematical, Statistics Series.
23. Watanabe, O., 1999. Prom Computational Learning Theory to Discovery Science.

Proc. of the 26th International Colloquim on Automata, Languages and Programming,
ICALP'99 Invited talk. Lecture Notes in Computer Science 1644:134-148.

Adaptive Boosting for Spatial Functions
with Unstable Driving Attributes*

Aleksandar Lazarevic', Tim Fiez ,̂ and Zoran Obradovic'

' School of Electrical Engineering and Computer Science, Washington State University,
Pullman, WA 99164-2752, USA

{alazarev , zoran}@eecs.wsu.ed u

^ Department of Crop and Soil Sciences, Washington State University,
Pullman, WA 99164-2752, USA

tfiez@wsu.edu

Abstract. Combining multiple global models (e.g. back-propagation based
neural networks) is an effective technique for improving classification accuracy
by reducing a variance through manipulating training data distributions.
Standard combining methods do not improve local classifiers (e.g. k-nearest
neighbors) due to their low sensitivity to data perturbation. Here, we propose an
adaptive attribute boosting technique to coalesce multiple local classifiers each
using different relevant attribute information. In addition, a modification of
boosting method is developed for heterogeneous spatial databases with unstable
driving attributes by drawing spatial blocks of data at each boosting round. To
reduce the computational costs of k-nearest neighbor (k-NN) classifiers, a novel
fast k-NN algorithm is designed. The adaptive attribute boosting applied to real
life spatial data and artificial spatial data show observable improvements in
prediction accuracy for both local and global classifiers when unstable driving
attributes are present in the data. The "spatial" variant of boosting applied to the
same data sets resulted in highly significant improvements for the k-NN
classifier, making it competitive to boosted neural networks.

Keywords: multi-strategy learning, boosting, attribute representation, spatial
databases, fast k-NN classifier.

1. Introductio n

Many large-scale data analysis problems involve an investigation of relationships
between attributes in heterogeneous databases. Large data sets very often exhibit
attribute instability, such that the set of relevant attributes is not the same through the
entire data space. This is especially true in spatial databases, where different spatial
regions may have completely different characteristics.

It is known in machine learning theory that combining multiple classifiers is an
effective technique for improving prediction accuracy. There are many general

* Partial support by the INEEL University Research Consortium project No. C94-175936 to
T. Fiez and Z. Obradovic is gratefully acknowledged.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 329-340, 2000.
© Springer-Verlag Berlin Heidelberg 2000

330 A. Lazarevic, T. Fiez, and Z. Obradovic

combining algorithms such as bagging [1], boosting [2], or Error Correcting Output
Codes (ECOC) [3] that significantly improve global classifiers like decision trees,
rule learners, and neural networks. These algorithms may manipulate the training
patterns individual classifiers use (bagging, boosting) or the class labels (ECOC). An
ensemble of classifiers must be both diverse and accurate in order to improve
accuracy of the whole. Diversity is required to ensure that all the classifiers do not
make the same errors. In order to increase the diversity of combined classifiers for
spatial heterogeneous databases with attribute instability, one cannot assume that the
same set of attributes is appropriate for each single classifier. For each training
sample, drawn in a bagging or boosting iteration, a different set of attributes is
relevant and therefore the appropriate attribute set should be used by each single
classifier in an iteration. In addition, the application of different classifiers on spatial
databases, where the data are highly spatially correlated, may produce spatially
correlated errors. In such situations the standard combining methods might require
different schemes for manipulating the training instances in order to keep the diversity
of classifiers.

In this paper, we propose a modification of the AdaBoost algorithm [2] for
combining multiple classifiers to improve overall classification accuracy. In each
boosting round we try to maximize the local information for a drawn sample by
changing attribute representation through attribute selection, attribute extraction and
appropriate attribute weighting methods [4]. In order to exploit the spatial data
knowledge, a modification of the boosting method appropriate for heterogeneous
spatial databases is proposed, where at each boosting round spatial data blocks are
drawn instead of the standard approach of sampling single instances.

The influence of these adjustments to single classifiers is not the same for local
classifiers (e.g. k-nearest neighbor) and global classifiers (e.g. artificial neural
networks). It is known that standard combining methods do not improve simple local
classifiers due to correlated predictions across the outputs from multiple combined
classifiers [1, 3]. We show that prediction of combined nearest neighbor classifiers
can be decorrelated by selecting different attribute representations for each sample
and by sampling spatial data blocks. The nearest neighbor classifier is often criticized
for slow run-time performance and large memory requirements, and using multiple
nearest neighbor classifiers could further worsen the problem. Therefore, we used a
novel fast method for k-nearest neighbor classification to speed up the boosting
process. We also test the influence of changing attribute representation on global
classifiers like neural networks.

2. Related Work

The nearest neighbor classifier [6] is one of the oldest and simplest methods for
performing general, non-parametric classification. A common extension is to choose
the most common class among the k nearest neighbors. Despite its simplicity, the k-
nearest neighbor classifier (k-NN) can often provide similar accuracy to more
sophisticated methods such as decision trees or neural networks. It's advantages
include ability to learn from a small set of examples, and to incrementally add new
information at runtime.

Adaptive Boosting for Spatial Functions 331

Recently, researchers have begun testing methods for improving classification
accuracy by combining multiple versions of a single classifier, also known as an
ensemble approach. Unfortunately, many combining methods do not improve the k-
NN classifier. For example, when experimenting with bagging, Breiman [1] found no
difference in accuracy between the bagged k-NN classifier and the single model
approach. It is also shown that ECOC will not improve classifiers that use local
information due to high error correlation [3].

A popular alternative to bagging is boosting, which uses adaptive sampling of
patterns to generate the ensemble. In boosting [2], the classifiers in the ensemble are
trained serially, with the weights on the training instances set adaptively according to
the performance of the previous classifiers. The main idea is that the classification
algorithm should concentrate on the difficult instances. Boosting can generate more
diverse ensembles than bagging does, due to its ability to manipulate the input
distributions. However, it is not clear how one should apply boosting to the k-NN
classifier for the following reasons: (1) boosting stops when a classifier obtains 100%
accuracy on the training set, but this is always true for the k-NN classifier, (2)
increasing the weight on a hard to classify instance does not help to correctly classify
that instance as each prototype can only help classify its neighbors, not itself. Freund
and Schapire [2] applied a modified version of boosting to the k-NN classifier that
worked around these problems by limiting each classifier to a small number of
prototypes. However, their goal was not to improve accuracy, but to improve speed
while maintaining current performance levels.

Although there is a large body of research on multiple model methods for
classification, very littl e specifically deals with combining k-NN classifiers. Ricci and
Aha [5] applied ECOC to the k-NN classifier (NN-ECOC). Normally, applying
ECOC to k-NN would not work since the errors in two-class problems would be
perfectly correlated. However, they found that applying attribute selection to the two-
class problems decorrelated errors if different attributes were selected. Unlike this
approach. Bay's Multiple Feature Subsets (MFS) method [6] uses random attributes
when combining individual classifiers by simple voting. Each time a pattern is
presented for classification, a new random subset of attributes is selected for each
classifier.

Although it is known that boosting works well with global classifiers like neural
networks, there have been several experiments in selecting different attribute subsets
as an attempt to force the classifiers to make different and hopefully uncorrected
errors. Tumer and Ghosh [7] found that with neural networks, selectively removing
attributes could decorrelate errors. Unfortunately, the error rates in the individual
classifiers increased, and as a result there was littl e or no improvement in the
ensemble. Cherkauer [8] was more successful, and was able to combine neural
networks that used different hand selected attributes to achieve human expert level
performance in identifying volcanoes from images.

332 A. Lazarevic, T. Fiez, and Z. Obradovic

3. Methodology

3.1 Adaptive Boosting for k-NN Classifiers

We follow the generalized procedure of AdaBoost.M2 [2]. The modified algorithm is
shown in Fig. 1. It maintains a distribution D, over the training examples, which can
be initially uniform. The algorithm proceeds in a series of T rounds. In each round,
the entire weighted training set is given to the weak learner to compute weak
hypothesis /;,. The distribution is updated to give wrong classifications higher weights
than correct classifications.

 Given: Set S {(x„ y,), ... , (x ,̂ yJ} x, G X, with labels y, e Y =
 Initialize the distribution D, over the examples, such that D,(i)
 F o r t = l , 2, 3,4, ... 7"

0. Find relevant feature inlbrmation (or distiibution D,
1. Train weak learner using distribution D,
2. Compute weak hypothesis /z,: X x Y —> [0, 1]
3. Compute the pseudo-loss of hypothesis h,:

e,= Y Y,D,{i,y){\-h,{X,,y,.) + h,(AT,.,y))
U.y)eB

4. Sct/3,= £,/(l-£)

5. Update D.: D,^, (i. y) = {D,(«, ^) /Z,) ^/''^^i-/,,(x,

= 1/m.

,y,)+'i,(j :

k}

.yj)

where Z, is a normalization constant chosen such that D,^, is a distribution.

 Output the final hypothesis: h^, = arg max V (log —) h, (x. y)

Fig. 1. The scheme of modified AdaBoost.M2 algorithm

Since at each boosting iteration t we have different training samples drawn
according to the distribution D,, at the beginning of the "for loop" in Fig. 1 we modify
the standard algorithm by adding step 0., wherein we choose a different attribute
representation for each sample. Different attribute representations are realized through
attribute selection, attribute extraction and attribute weighting processes through
boosting iterations. This is an attempt to force individual classifiers to make different
and hopefully uncorrelated errors.

Error correlation is related to Breiman's [1] concept of stability in classifiers.
Nearest neighbor classifiers are stable to the patterns, so bagging and boosting
generate poor k-NN ensembles. Nearest neighbor classifiers, however, are extremely
sensitive to the attributes used. Our approach attempts to use this instability to
generate a diverse set of local classifiers with uncorrelated errors. At each boosting
round, we perform one of the following methods to determine a suitable attribute
space for use in classification.

Adaptive Boosting for Spatial Functions 333

To eliminate irrelevant and highly correlated attributes, regression-based attribute
selection was performed through performance feedback [4] forward selection and
backward elimination search techniques based on linear regression mean square error
(MSE) minimization. The r most relevant attributes are selected according to the
selection criterion at each round of boosting, and are used by the k-NN classifiers.

In contrast to attribute selection where a decision is target-based, variance-based
dimensionality reduction through attribute extraction is also considered. Here, linear
Principal Components Analysis (PCA) [4] was employed. Each of the k-NN
classifiers uses the same number of new transformed attributes. Another possibility is
to choose an appropriate number of newly transformed attributes which will retain
some predefined part of the variance.

The attribute weighting method used in the proposed method is based on a 1-layer
feedforward neural network. First, we try to perform target value prediction for the
drawn sample with defined a 1-layer feedforward neural network using all attributes.
It turns out that this kind of neural network can discriminate relevant from irrelevant
attributes. Therefore, the neural networks interconnection weights are taken as
attribute weights for the k-NN classifier.

To further experiment with attribute stability properties, miscellaneous attribute
selection algorithms [4] were applied on the entire training set and the most stable
attributes were selected. Then the standard boosting method was applied to the k-NN
classifiers using the identified fixed set of attributes at each boosting iteration. When
boosting is applied with attribute selection at each boosting round, the attribute
occurrence frequency is monitored in order to compare the most stable selected
attributes. When attribute subsets selected through boosting iterations become stable,
this can be an indication to stop the boosting process.

3.2 Spatial Boosting for k-NN Classiflers

Spatial data represent a collection of attributes whose dependence is strongly related
to a spatial location where observations close to each other are more likely to be
similar than observations widely separated in space. Explanatory attributes, as well as
the target attribute in spatial data sets are very often highly spatially correlated. As a
consequence, applying different classification techniques on such data is likely to
produce errors that are also spatially correlated [12]. Therefore, when applied to
spatial data, the boosting method may require different partitioning schemes than
simple weighted selection which doesn't take into account the spatial properties of the
data. Rather than drawing n data points according to the distribution D, (Fig. 1), the
proposed method draws (n/M)̂ spatial data blocks (squares of size M points x M
points) according to the new distribution 5D,. The distribution 5D, is modified in such
a way that all data points dp inside the same spatial block have the same SD/dp). This
is done through simple median M x M filtering over the data points inside the spatial
block. Using this approach we hope to achieve more decorrelated classifiers whose
integration can further improve model generalization capabilities for spatial data.

334 A. Lazarevic, T. Fiez, and Z. Obradovic

3.3 Adaptive Attribut e and Spatial Boosting for Neural Network Classiflers

Although standard boosting can increase prediction accuracy of artificial neural
network classifiers, we experimented with changing attribute representation and
spatial block drawing to see if adaptive attribute and spatial boosting can further
improve accuracy of an ensemble of classifiers. The most stable attributes used in
standard boosting of k-NN classifiers were also used here for the same purpose. At
each boosting round we performed attribute selection and attribute extraction
processes, since the attribute weighting method seemed to be "redundant" when
training neural network classifiers. We trained multilayer (2-layered) feedforward
neural network classification models with the number of hidden neurons equal to the
number of input attributes. We also experimented with different numbers of hidden
neurons. The neural network classification models had the number of output nodes
equal to the number of classes (3 in our experiments), where the predicted class is
from the output with largest response. We used two learning algorithms: resilient
propagation [10] and Levenberg-Marquardt [11]. The experiments for testing attribute
stability through the boosting were repeated as well, and they were used to determine
the proper number of boosting iterations.

3.4 The Fast Ic-NN Algorith m

The quality of k-NN generalization depends on which k instances are deemed least
distant, which is determined by its distance function. We consider two distance
functions in our work: standard Euclidean and Mahalanobis distance.

To speed up the long-lasting boosting process, a fast k-NN classifier is proposed.
For n training examples and d attributes our approach requires preprocessing which
takes 0{d- n- log n) steps to sort each attribute separately. However, this is performed
only once, and we trade off this initial time for later speedups.

The main idea of the proposed algorithm will be presented is as follows.

1

Fig. 2. The used hyper-rectangle, hypersphere and hypercubes in the fast k-NN

Adaptive Boosting for Spatial Functions 335

Initially , we form a hyper-rectangle with boundaries defined by the extreme values
of the k closest values for each attribute (Fig. 2 - small dotted lines). If the number of
training instances inside the identified hyper-rectangle is less than k, we compute the
distances from the test point to all of dk data points which correspond to the k closest
values for each of d attributes, and sort them into non-decreasing array sx. We take
the nearest training example cdp with the distance dst^^, and form a hypercube with
boundaries defined by this minimum distance dst^ ̂(Fig. 2 - larger dotted lines). If the
hypercube doesn't contain enough (k) training points, form the hypercube of a side
2sx{k+l). Although this hypercube contains more than k training examples, we need
to find the one which contains the minimal number of training examples greater than
k. Therefore, if needed, we search for a minimal hypercube by binary halving the
index in non-decreasing array sx. This can be executed at most log k times, since we
are reducing the size of the hypercube from 2-sx{k+l) to 2-sx(l). Therefore the total
time complexity of our algorithm is 0(dlog k -log n), under the assumption that n >
dk, which is always true in practical problems.

If the number of training instances inside the identified hyper-rectangle is greater
than k, we also search for a minimal hypercube that contains at least k and at most 2-k
training instances inside the hypercube. This was accomphshed through binary
halving or incrementing the side of a hypercube. After each modification of a
hypercube's side, we compute the number of enclosed training instances and modify
the hypercube accordingly. By analogous reasoning as in the previous case, it can be
shown that binary halving or incrementing the hypercube's side will not take more
than log k time, and therefore the total time complexity is still 0(dlog k log n).

When we find a hypercube which contains the appropriate number of points, it is
not necessary that all k nearest neighbors are in the hypercube, since some of the
closer training instances to the test points could be located in a hypersphere of

identified radius dst (Fig. 2). Since there is no fast way to compute the number of
instances inside the sphere without computing all the distances, we embed the
hypersphere in a minimal hypercube and compute the number of the training points
inside this surrounding hypercube. The number of points inside the surrounding
hypercube is much less than the total number of training instances and therefore
classification speedups of our algorithm.

4. Experimental Results

Our experiments were performed using spatial data from a 220 ha field located near
Pullman, WA. All attributes were interpolated to a 10x10 m grid resulting in 24,598
patterns. The Pullman data set contained x and y coordinates, 19 soil and topographic
attributes and the corresponding crop yield. We also performed the experiments on an
artificial data set made using our spatial data simulator [13] corresponding to 5
heterogeneous data distributions, each having different relevant attributes for yield
generation. The data set had 5 relevant and 5 irrelevant attributes.

336 A. Lazarevic, T. Fiez, and Z. Obradovic

For the Pullman data set the miscellaneous attribute selection methods were used to
identify the 4 most relevant attributes (Table 1) and the most stable attributes (4, 7, 9,
20) were used for the standard boosting method.

Table 1. Attribute selection methods used to identify 4 most stable attributes

Attribut e Selection Metliods

Forward Selection

Inter-class
distance

Probabilistic

distance

Minkowski
order

1

3

Euclidean

Chebychev

Bhatacharya

Mahalanobis

Divergence metric

Patrick-Fischer

Minimal Error Probability,
k-NN with Resubstitution

Linear Regression

Performance Feedback

Selected
Attributes

7,9,10,11

3, 4, 5, 7

3, 4, 5, 7

3,4, 5, 7

3, 4, 8,9

7,9,11,20

3, 4, 8, 9

13,16,20,21

4,7,11,19

5, 9, 7, 18

Branch and Bound

Proba-
bilistic

distance

Bhatacharya

Mahalanobis

Patrick-
Fischer

Backward Elimination
-. .

Proba-
bilistic

distance

Bhatacharya

Mahalanobis

Patrick-
Fischer

Linear Regression

Performance Feedback

Selected
Attributes

4, 7, 10, 14

7,9,11,20

13,17,20,21

Selected
Attributes

4, 7, 9, 14

7,9,11,20

13,17,20,21

7,9, 11,20

23
22
21
20
19

f 16
n 15
1 14
« 13

 12
ffl 11
p 10

9
0>

-*-

+ -*-*- +* » *-
 + 1 - -

- — *

J, J, „ 1 + ~

0 5 10 15 20 25 30 35 40
Boosting Iterations

Fig. 3. Attribute stability during boosting
on k-NN classifiers

23
22
21
20
19

S 17

-c 15 -

" 13
^ 12
B 11
O 10
<u 9
W 8

7
6
5
4
3

~ ¥ f If t + 'W W "

- + * - **- - * - + + - * -

-If- + --*- - -

- >+ -
10 15 20 25 30

Boost ing Iterations
35 40

Fig. 4. Attribute stability during boosting
on Levenberq-Marquardt algorithm

For the k-NN classifier experiments, the value of k was set using cross validation
performance estimates on the entire training set. The selected attributes during the
boosting iterations were monitored and their frequency was computed. The attribute
frequency during the boosting rounds for backward elimination is shown in Fig. 3.

Adaptive Boosting for Spatial Functions 337

PCA was also used to reduce data dimensionality at each boosting round. Here,
projections to 4 dimensions explained most of the variance and there was littl e
improvement from additional dimensions. For the attribute weighting method, we
used the attribute weights given by a neural network. For each of these attribute
representation changing methods, boosting was applied to k-NN classifiers and the
classification accuracies for 3 equal size classes are given in Table 2.

Table 2. Comparative analysis of overall classification test accuracies for 3-class problems

Number
of

Boosting
Rounds

8

16

24

32

40

Standard
Boosting
on k-NN

38.2

39.5

38.8

38.5

39.3

Attribute Boosting on k-NN with

Forward
Selection

40.9

41.3

41.9

41.8

42.1

Backward
Elimination

38.5

38.8

42.1

43.5

42.8

PCA

42.4

42.4

44.5

45.1

43.4

Attribute
Weighting

43.0

43.9

44.8

46.1

44.3

Boosting on

Levenberg-Marquardt

Standard
Boosting

43.6

44.1

44.8

45.5

44.9

Backward
Elimination

47.5

47.8

48.3

48.8

48.5

Analyzing the data from Table 2, the methods of adaptive attribute boosting
outperformed the standard boosting model. The results indicate that 30 boosting
rounds were usually sufficient to maximize prediction accuracy. After this many
iterations, attribute selection somewhat stabilized although attribute selection during
boosting was less stable for k-NN (Fig. 3) than for neural networks (Fig. 4). For k-NN
after approximately 30 boosting rounds the attributes became fairly stable with
attributes 7, 11 and 20 obviously more stable than attributes 3 and 9 which also
appeared in later iterations. The prediction accuracies for k-NN classifier experiments
using Mahalanobis distance were worse than those using k-NN classifier with
Euclidean distance, and are not reported here. The results show that our approach is
promising. For each method of changing attribute representation, we achieve better
prediction accuracy than using the standard boosting method.

The frequency of selected attributes during the boosting rounds when boosting was
applied to neural network classification models is presented in Fig. 4. The best results
were obtained with applied backward elimination attribute selection using the
Levenberq-Marquardt algorithm (Table 2). It appears that monitoring selected
attributes can be a good criterion for early stopping of boosting, since after the
selected attribute subsets become stable no significant improvements in prediction
accuracy was noticed. In this case it was even more evident that attributes stabilized
after approximately 30 boosting rounds. During the boosting iterations we were
selecting the 4 and 5 most important attributes, and the number of hidden neurons in a
2-layer feedforward neural network was equal to the number of input attributes. We
noticed that further increasing the number of hidden neurons did not improve
prediction accuracy probably because of overfitting.

338 A. Lazarevic, T. Fiez, and Z. Obradovic

Since our data have a spatial dimension, we also performed experiments with a
modified spatial boosting method. Applying the spatial boosting method to a k-NN
classifier, we achieved much better prediction than using the previous two boosting
methods on a k-NN classifier (Table 3). Furthermore, when applying spatial boosting
with attribute selection at each round, the prediction accuracy was increased slightly
as the size (M) of the spatial block was increased (Table 3). No such improvements
were noticed for spatial boosting with fixed attributes or with the attribute weighting
method, and therefore the classification accuracies for just M = 5 are given.

Applying spatial boosting on neural network classifiers resulted in no
enhancements in classification accuracies. Moreover, for pure spatial boosting
without attribute selection we obtained slightly worse classification accuracies than
using "non-spatial" boosting. This phenomenon is due to spatial correlation of our
attributes, which means that data points close in the attribute space are probably close
in real space. Since k-NN examines this local information, it gains from spatial data
blocks unlike neural networks which do not consider any kind of spatial information
during the training. Therefore, one of our current concerns will be to find a technique
to include spatial knowledge into the training of neural networks classifiers.

Table 3. Overall accuracy of spatial boosting on a 3-class real-life test data using k-NN

Number of
Boosting
Rounds

8

16

24

32

40

Spatial Boosting for k-NN with

Fixed
Attribute Set

M = 5

46.4

46.6

46.7

46.9

47.0

Backward Elimination Attribute Selection

M = 2

45.8

46.2

46.7

46.9

47.2

M = 3

47.7

47.6

47.9

48.1

48.1

M = 4

48.1

48.1

48.2

48.4

47.9

M = 5

47.8

47.7

48.2

47.9

47.8

Attribute
Weighting

M = 5

45.2

45.6

45.8

46.3

45.9

Although we achieved promising results on the real life data, we repeated all
experiments for the more controllable artificial data set, which had 5 clusters similar
in attribute space. Each of these clusters had a different set of relevant attributes used
for yield generation. The best results for boosting of k-NN and neural network
classifiers are shown in Table 4.

The adaptive attribute boosting results show no improvements in prediction
accuracy, which was due to properties of the artificial data set. Each different region
has not only different relevant attributes related to yield class but also a different
number of relevant attributes. Since we are not sure of the number of relevant
attributes for each region, we need to select at least the 4 or 5 most important
attributes at each boosting round. However, the total number of relevant attributes in
the data set is 5 as well, and therefore we could not achieve any attribute instability.
To avoid forcing the standard boosting method to be inferior to our method, we used
all 5 relevant attributes from the data set for standard boosting. If we select the 5 best

Adaptive Boosting for Spatial Functions 339

attributes during each boosting iteration, it is obvious that we will achieve similar
results. Therefore, we were selecting the 4 most relevant attributes knowing that for
some drawn samples we would lose beneficial information. Nevertheless, we obtained
similar classification accuracies as the standard boosting method, but reached the
"bounded" final prediction accuracy in a smaller number of boosting iterations. This
could be very important in order to reduce the time needed for the latest boosting
rounds. Instead of post-pruning the boosted classifiers [14] we can try to on-line settle
the appropriate nimiber of boosting iterations.

Table 4. Comparative analysis of overall classification accuracies for 3-class problems on
artificial test data set with 5 clusters (BE stands for Backward Elimination, LM for Levenberg-
Marquardt algorithm)

Number
of

Boosting
Rounds

8

16

24

32

40

Boosting
Applied to k-
NN Classifier

Standard

57.9

59.1

57.6

58.3

58.2

BE

57.5

59.1

58.7

58.5

59.2

Boosting Applied
to LM Neural

Networks

Standard

65.3

66.7

67.1

68.8

69.8

BE

66.1

67.2

69.3

69.2

69.4

Spatial Boosting for k-NN with

Fixed
Attribute Set

M = 5

65.6

65.5

65.8

66.0

66.1

Backward Elimination
Attribute Selection

M=:2

64.6

65.2

65.5

65.4

65.3

M=3

65.3

65.9

65.9

66.2

66.4

M^4

65.4

65.2

65.8

66.1

66.7

M=5

66.0

66.7

67.0

67.6

68.1

Classification accuracies of spatial boosting for k-NN on the artificial data set were
again much better than without using spatial information and comparable to neural
networks. Here, the classification accuracy improvements from increasing the size
(M) of the spatial blocks were more apparent than for real-life data due to the higher
spatial correlation of the artificial data.

5. Conclusions and Future Work

Results from two spatial data sets indicate that the proposed algorithm for combining
multiple classifiers can result in significantly better predictions over existing classifier
ensembles, especially for heterogeneous data sets with attribute instabilities. By
manipulating the attribute representation used by individual classifiers at each
boosting round, we showed that classifiers could be more decorrelated thus leading to
higher prediction accuracy. The attribute stability test served as a good indicator for
proper stopping of further boosting iterations. Testing of the proposed method seems
to indicate that a smaller number of iterations is needed in order to achieve the same
final prediction accuracy. The new boosting method proposed for spatial data showed
promising results for k-NN classifiers making it competitive with highly non-linear
and powerful models like neural networks.

340 A. Lazarevic, T. Fiez, and Z. Obradovic

In this paper, we concentrated on improving the accuracy of the global classifier.
Although the new fast k-NN classifier significantly reduces the computational
requirements, an open research question is to further increase the speed of ensembles
of k-NN classifiers for high-dimensional data.

Although the performed experiments provide evidence that the proposed approach
can improve predictions of ensemble of classifiers, further work is needed to examine
the method for more heterogeneous data sets with more diverse attributes. In addition,
we are working to extend the method to regression based problems.

References

1. Breiman, L.: Bagging predictors, Machine Learning 24,123-140, (1996)

2. Freund, Y., and Schapire, R. E.: Experiments with a new boosting algorithm. Machine
Leaming: Proceedings of the Tliirteenth International Conference, pp. 325-332, (1996)

3. Kong, E. B., Dietterich, T. G.: Error-correcting output coding corrects bias and variance.
In Proc. of the twelfth National Conference on Artificial Intelligence, 725-730, (1996)

4. Liu, L. and Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining,
Kluwer Academic Publishers, Boston (1998)

5. Ricci, F., and Aha, D. W.: Error-correcting output codes for local learners. In Proceedings
of the lOth European Conference on Machine Leaming, (1998)

6. Bay, S. D.: Nearest Neighbor Classification from Multiple Feature Subsets. Intelligent
Data Analysis. 3(3); 191-209, (1999)

7. Tumer, K., and Ghosh, J.: Error correlation and error reduction in ensemble classifiers,
Connection Science 8, 385-404, (1996)

8. Cherkauer, K. J.: Human expert-level performance on a scientific image analysis task by a
system using combined artificial neural networks. In P. Chan, (Ed.): Working Notes of the
AAA I Workshop on Integrating Multiple Learned Models, 15-21, (1996)

9. Bishop, C, Neural Networks for Pattern Recognition, Oxford University Press, (1995)

10. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation
Leaming: The RPROP Algorithm, Proceedings of the IEEE International Conf. on Neural
Networks, San Francisco, 586-591 (1993)

11. Hagan, M., Menhaj, M.B.: Training feedforward networks with the Marquardt algorittim.
IEEE Transactions on Neural Networks 5, 989-993 (1994)

12. Vucetic, S., Fiez, T., Obradovic, Z.: A Data Partitioning Scheme for Spatial Regression,
Proceedings of the IEEE/INNS Int'l Conf. on Neural Networks, Washington, D.C., No.
348, session 8.1 A., (1999)

13. Pokrajac, D., Fiez, T. and Obradovic, Z.: A Spatial Data Simulator for Agriculture
Knowledge Discovery Applications, in review.

14. Margineantu, D. D., and Dietterich, T. G.: Pmning adaptive boosting. In Proceedings of
the 14th International Conference on Machine Learning, 211-218 (1997)

Robust Ensemble Learning for Data Mining*

Gunnar RatschS Bernhard Scholkopf ,̂ Alexander Johannes Smola ,̂
Sebastian Mika\ Takashi Onoda'*, and Klaus-Robert Miiller ^

1 GMD FIRST, Kekulestr. 7, D-12489 Berlin, Germany
^ Microsoft Research, 1 Guildhall Street, Cambridge, UK

^ Dep. of Engineering, ANU, Canberra ACT 0200, Australia
* CIRL CRIEPI, 2-n-l Iwadokita, Komae-shi, Tokyo, 201-8511 Japan

{raetsch,mika,klaus}fflfirst.gmd.de, bscflmicrosoft.com,
Alex.SmolaQamu.edu.au, onodaQcriepi.denken.or.jp

Abstract. We propose a new boosting algorithm which similaxly to v-
Support-Vector Classification allows for the possibility of a pre-specified
fraction v of points to lie in the margin area or even on the wrong side of
the decision boundary. It gives a nicely interpretable way of controlling
the trade-off between minimizing training error and capacity. Further-
more, it can act as a filter for finding and selecting informative patterns
from a database.

1 Introduction
Boosting and related Ensemble learning methods have been recently used with
great success in applications such as Optical Character Recognition [2,3,11]. The
idea of a large (minimum) margin explains the good generalization performance
of AdaBoost in the low noise regime. However, AdaBoost performs worse than
other learning machines on noisy tasks [6,7], such as the iris and the breast cancer
benchmark data sets [5]. The present paper addresses the overfitting problem of
AdaBoost in two ways. Primarily, it makes an algorithmic contribution to the
problem of constructing regularized boosting algorithms. Secondly, it allows the
user to roughly specify a hyper-parameter that controls the tradeoff between
training error and capacity. This, in turn, is also appealing from a theoretical
point of view, since it involves a parameter which controls a quantity that plays
a crucial role in the generalization error bounds.

2 Boosting and the Linear Programming Solution
In this section, we briefly discuss the properties of the solution generated by
standard AdaBoost and closely related Arc-GV[l] , and discuss the relation to
a linear programming (LP) solution over the class of base hypotheses G. Let
{^((x) : i = 1 , . .. , T} be a sequence of hypotheses and a = [ai... ar] their
weights satisfying at > 0. The hypotheses gt are elements of a hypotheses class
G = {g : X h-^ which is defined by a base learning algorithm L.

The ensemble generates the label which is the weighted majority of the votes
by sign(/(x)) where /(x) =: J2 ̂ ||a'|| gt(x)- In order to express that / and there-
fore also the margin p depend on a and for the ease of notation we define
p(z,a) = yf{x), where z = (x,y). Likewise we use the normalized margin

* This paper is a short version of [8].

T. Terano, H.Liu, and A.L.P. Chen (Ed.s.): PAKDD 2000, LNAI 1805, pp. 341-344, 2000.
© Springer-Verlag Berlin Heidelberg 2000

342 G. Raetsch et al.

p{a) = inini<i<m/9(zj,a) . The minimization objective function of AdaBoost
can be expressed in terms of margins Q{cx) := J2'iLi 6xp(—||Q||ip(zj,a)). In ev-
ery iteration AdaBoost tries to minimize this error by a stepwise maximization
of the margin. It is believed (but not proven) that AdaBoost asymptotically
approximates (up to scaling) the solution of the following linear programming
problem over the complete hypothesis set G

maximize p
subject to p{zi,a) > p for all 1 < i < m Q\

a t , / 9>0 for all 1 < i < |G|

l|a||i = l -
Breiman [1] proposed a modification of AdaBoost, Arc-GV, making it possible to
show the asymptotic convergence of p(a ') to the global solution: limt^oo p{oi*) =
p'P, where p'̂ is the maximum possible margin for a combined classifier from G.

3 V-ATC

Let us consider the case where we are given a (finite) set G = {g : x ^- ̂ [—1,1]}
of T hypotheses. To find the coefficients a for the combined hypothesis / (x)
we extend the LP-AdaBoost algorithm [4,7] and solve the following linear opti-
mization problem, similar in spirit to [10]:

maximize P - ^ T,T=i ^i
subject to p(zi, Q) > p - ĵ for all 1 < i < m ^2)

6 , a t ,p > 0 for all 1 < < < T and 1 < j < m
||a||i = 1 .

This algorithm does not force all margins to be beyond zero and we get a. soft
margin classification with a regularization constant Interestingly, it can be
shown that u is asymptotically proportional to the fraction of patterns in the
margin area [8].
Suppose, we have a very large base hypothesis class G. Then it is very difficult
to solve (2) as (1) directly. To this end, we propose an algorithm, U-ATC, that
can approximate the solution of (2). The optimal p for fixed margins p(zt, a) in
(2) can be written as

p^{oc) ~ argmax p Y^ip - p(zi, a))+ 1 ,
^6(0,1] V ^ ™ ^ J

(3)

where (^)+ = max(,̂ 0). Setting ĵ = {pu{oi) - p(zi,a))+ and subtracting
- ̂ X)Hi ^i from the resulting inequality on both sides, yields (for all 1 < i < m)

p{zi,a)+^i>p^{a) (4)

p{zi,a)+^i-—J2^i>p,ia)-—J2^i- (^)
i= l i = l

In particular we have to get rid of the slack variables ĵ again by absorbing them
into quantities similar to p(zi ,a) and p{cx). This works as follows: on the right

Robust Ensemble Learning for Data Mining 343

hand side of (5) we have the objective function (cf. (2)) and on the left hand
side a term that depends nonUnearly on a. Defining

PAOI) p^{a)—yi^'' pA'^i^oi) =p(zi'")+^i—yz^i' (6)
»=i i = l

which we substitute for p{a.) and /9(z,a) in (1), respectively, we obtain a new
optimization problem. Note that Pv{ot) and pj,(zi,a) play the role of a corrected
or virtual margin. We obtain a non-linear min-max problem in terms of p

maximize p{a)
subject to p{zi,a) > p{a) for all 1 < i < m f'j\

at > 0 for all 1 < t < T
l|a||i = 1 ,

which we refer to as u-Arc.
We can now state interesting properties for i/-Arc by using Theorem 5 of [9]

that bounds the generalization error R{f) for ensemble methods. In our case
Rp{f) < I' by construction, thus we get the following simple reformulation of
this bound:

i . (/) < . + W -
c fh\og^{m/h)

+ log (8)

The tradeoff in minimizing the right hand side between the first and the second
term is controlled directly by an easy interpretable regularization parameter u.

4 Experiments
We show a set of toy experiments to illustrate the general behavior of f-Arc-GV.
As base hypothesis class G we use RBF networks [7], and as data a two-class
problem generated from several 2D Gauss blobs. We obtain the following results:

0.6

1
0.
S

| o . 4

0.2

number of important

patterns

v*-

numberof - ^

margin Bnx)ra ^ ^

1 y ^
training error

1
0.2 0.3 0.4 05 0.6 0.7 0.1 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 1. Toy experiment: the left shows the average fraction of important patterns, the
average fraction of margin errors and the average training error for different values
of the regularization constant v for i/-Arc. The bottom plots show the corresponding
generalization error. The parameter v allows us to reduce the test errors to values
about 20% (relatively) lower than for the hard margin algorithm (for i/ = 0 we recover
Arc-GV/AdaBoost and for t* = 1 we get Bagging.)

344 G. Raetsch et al.

— U-ATC leads to approximately vm pat terns that are effectively used in the
training of the base learner: Figure 1 (left) shows the fraction of pat terns
that have high average weights during the learning process.

— f-Ar c leads to the fraction u of margin errors (cf. dashed line in Figure 1)
exactly.

— The (estimated) test error, averaged over 10 training sets, exhibits a rather
flat minimum in v (Figure 1 (right)).

5 Conclusion
We analyzed the AdaBoost algorithm and found that Arc-GV and AdaBoost
are suitable for approximating the solution of non-linear min-max problems over
huge hypothesis classes. We introduced a new regularization constant u that
controls the fraction of pat terns inside the margin area. The new parameter is
highly intuitive and has to be tuned only within a fixed interval [0,1].

We found empirically that the generalization performance in i/-Arc is robust
against changes around the optimal choice of the regularization parameter v.
This finding makes model selection (e.g. via cross-validation) much easier.

As the pat terns in the margin area correspond to interesting, difficul t and
informative pat terns, future research wil l focus on using Boosting and Support
Vector methods for da ta mining purposes.

References

1. L. Breiman. Prediction games and arcing algorithms. Technical Report 504, Statis-
tics Depeirtment, University of California, December 1997.

2. H. Drucker, R. Schapire, and P. Simard. Boosting performance in neural networks.
Int. Journal of Pattern Recognition and Artificial Intelligence, 7:705 - 719, 1993.

3. Y. LeCun et al. Learning algorithms for classification: A compaxison on handwrit-
ten digit recognition. Neural Networks, pages 261-276, 1995.

4. A. Grove and D. Schuurmans. Boosting in the hmit: Maximizing the margin of
learned ensembles. In Proc. of the 15th Nat. Conf. on Al, pages 692-699, 1998.

5. C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA.

6. J. R. Quinlan. Boosting first-order learning (invited lecture). Lecture Notes in
Computer Science, 1160:143, 1996.

7. G. Ratsch, T. Onoda, and K.-R. Miiller . Soft margins for AdaBoost. Technical
Report NC-TR-1998-021, NeuroColt, 1998. To appear in Machine Learning.

8. G. Ratsch, B. Schokopf, A. Smola, S. Mika, T. Onoda, and K.-R. Miiller . Robust
ensemble learning. In A.J. Smola, P.L. Bartlett, B. Scholkopf, and D. Schuur-
mans, editors. Advances in Large Margin Classifiers, pages 207-219. MI T Press,
Cambridge, MA, 1999.

9. R. Schapire, Y. Preund, P. L. Bartlett, and W. Sun Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. Annals of Statistics,
26(5):1651-1686, 1998.

10. B. Scholkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12:1083 - 1121, 2000.

11. H. Schwenk and Y. Bengio. Training methods for adaptive boosting of neural
networks. In Michael I. Jordan, Michael J. Kearns, and Sara A. SoUa, editors.
Advances in Neural Inf. Processing Systems, volume 10. The MIT Press, 1998.

Interactive Visualization
in Mining Large Decision Trees

Trong Dung Nguyen, Tu Bao Ho, and Hiroshi Shimodaira

Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa, 923-1292 JAPAN

Abstract. This paper presents a tree visuaUzer that combines several
techniques from the field of information visualization to handle efficiently
leirge decision trees in an interactive mining system.

1 Introduction

Research on visualization of decision trees has recently received a great attention
from the KDD (knowledge discovery and data mining) community because of its
practical importance. Many works have been done, e.g., the 3D Tree Visualizer
in system MineSet [2], CAT scan (classification aggregation tablet) for inducing
bagged decision trees [5], the interactive visualization in decision tree construc-
tion [1], etc. In our development of a tree visualizer for the system CABRO [4],
a KDD system based on decision tree induction, we face two problems of deci-
sion tree visualization that have not thoroughly investigated: integration of tree
visualization into an interactive knowledge discovery process and visualization
of large trees.

This paper represents the tree visualizer of CABRO, which can be invoked
during the discovery process and can handle large trees by combining several
techniques in information visualization. We also introduce a new technique,
called T2.5D, for large tree visualization.

2 The Tree Visualizer

This section describes an overview of the tree visualizer in CABRO. The tree
visualizer of CABRO provides several views; each view uses variant techniques
and drawing algorithms to display trees, and serves different usage purposes.
The available views are:

— Standard: The tree is drawn in proportion, the size of a node is up to the
length of its label, a father is vertically located at the middle of its children,
and sibling are horizontally aligned.

— Tightly-coupled [3]: The window is divided into two panels, one displays
the tree in a tiny size and the other displays it in a normal size. The user
uses the first panel as a map to navigate, and sees the focused area in the
second one.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 345-348, 2000.
© Springer-Verlag Berlin Heidelberg 2000

346 T.D. Nguyen, T.B. Ho, and H. Shimodaira

Fig. 1. Model selection Fig. 2. The T2.5D view

— Fish-eyes [3]: This view distorts the magnified image so that nodes around
the center of interest is displayed at high magnification, and the rest of the
tree is progressively compressed.

— T2.5D: This view is based on our proposed technique named T2.5D (stands
for Tree 2.5 Dimensions) that tries to save screen space in order to display
more nodes in a compact window. The focused paths of the tree are drawn
in the front and in highlighted colors, the other paths are in background and
dim colors (Fig. 2).

The tree visualizer allows the user to customize above views by applying
several operations on them. These operations include:

— Zoom: The user can zoom in or zoom out the drawn tree.
— Collapse/expand; The user can choose to view some parts of the tree by

collapsing and expanding paths.
— Display node: The user can see the content of a node such as attribute/

value, class, population, etc.

For different purposes of usage, the tree visuahzer provides three modes of
use:

— View^ing: In this mode, the user takes whole control of the visualizer; he/she
is free to choose which and how trees to be displayed. This mode is used when
the user just wants to view a particular tree.

— Mining : In this mode, the system automatically invokes tree visualizer to
display trees under consideration. For example, changes of a generating tree
are continuously displayed, so the user can see the progress of induction.

— Matching: In this mode, the tree visualizer shows visual feedback for match-
ing unknown objects, such as highlighting matched paths and matched ob-
jects or graying out the unmatched parts of the tree.

Interactive Visualization in Mining Large Decision Trees 347

3 Interact ive Discovery and Large Decision Trees

This section analyses the role of the tree visualizer in the interactive discovery
process of CABRO, and how it can handle efficiently with trees of different sizes.

3.1 Model Selection

In CABRO, to construct decision trees, the user needs to choose a series of
settings including which attribute selection and pruning techniques to be used,
what is the minimum number of instances at a leaf node, what is the lowest ac-
cepted error rate, whether the values of an attribute will be grouped, how to deal
with missing values, etc. Furthermore, if there are some continuous attributes
the user may have to choose some discretization technique to discretize them.
The chosen settings will be registered in a form called a plan. The realization of a
plan wil l yield a decision tree (model). As there axe many possible combinations
of settings, the user usually has to try a number of plans to achieve appropri-
ate decision trees. We consider that work model selection. After decision trees
are generated, the user can visualize, evaluate and compare them. This iterative
cycle may be repeated until reaching appropriate models. Usually, the model
selection is a daunting and very time consuming work, but thanks to the tree
visualizer and the flexible user interface of the system, it becomes easier and
more effective (Fig. 1).

The system frequently invokes the tree visualizer in the interaction with the
user throughout model selection whenever he/she needs to refer to trees in order
to make a choice. The tree visualizer then is in mining mode; it automatically
chooses an arrangement of views that may be most convenient for the user to
get needed information. Moreover, if the induction is set to run interactively, the
system allows the user to be able to take part at every step of the induction, for
example, he/she can manually choose which attribute will be used to branch a
node, or which branch has to be pruned. The tree visualizer then will display
candidate trees corresponding to different possibilities of the tree construction.
The user then can decide which one is promising to further construct.

3.2 Large Decision Trees

There are many researches in the field of information visualization for represent-
ing large hierarchical structures, e.g., treemap, cone trees, hyperbolic trees [3],
however they are not directly applicable to decision tree visualization. In the
tree visualizer of CABRO, we deal with large trees by combining many known
techniques whenever they fit and developing a the T2.5D technique. Those tech-
niques are used to implement the views and operations. They complement each
other to give the user a convenient visualization in different situations in discov-
ering and using decision trees. For example, the standard view is the best for
small and average trees as it displays a very proportional picture of tree struc-
ture. Used together with the collape/expand operation the standard mode can
deal well with bigger trees. Tightly-coupled views help the user to locate easily

348 T.D. Nguyen, T.B. Ho, and H. Shimodaira

any area in the tree picture, while fish-eye view is the best if the user currently
focuses on a single node but also wants to see clearly its neighbors.

Very large trees are still difficult to navigate and view even with tightly-
coupled and fish-eye techniques. To solve the problem, we have been developing
the technique T2.5D. The 3D browsers usually can display more nodes in a
compact area of the screen but require currently expensive 3D animation support
and the structure somehow not easy to navigate, while the 2D browsers have a
limitation in displaying many nodes in one view. The T2.5D technique combines
the advantages of both the 2D and 3D drawing techniques to provide the user an
efficient view with lower processing cost. The T2.5D view can display more than
1000 nodes in full size (some are partially overlapped). In T2.5D, a node can
be highlighted or dim. The highlighted nodes are those the user currently pays
most attention on, and they are displayed in 2D for ease of view and navigation.
The dim nodes are displayed in 3D to save the space, they allow the user to get
an idea about overall structure of the hierarchy.

4 Conclusion

We addressed problems of integration of tree visualization into an interactive
knowledge discovery process, and visualization of large trees. We presented the
interactive tree visuaUzer of the system CABRO that employs recent visual-
ization techniques in mining decision trees, and how it works in an interactive
discover process. We described our attempt to deal with large tree by imple-
menting multiple complemented views and operations, and introducing the new
technique T2.5D. Though there are still a lot of work for improving this inter-
active tree visualizer, we believe that it contributes an efficient solution to the
state-of-the-art of visualization of decision trees in KDD, especially T2.5D is
very promising as a new display and navigation technique for large trees.

References

1. Ankerst, M., Elsen, C, Ester, M., Kriegel, H. P.: Visual Classification: An In-
teractive Approach to Decision Tree Construction. Proc. of Fifth Inter. Conf. on
Knowledge Discovery and Data Mining (1999), 392-397.

2. Brunk, C, Kelly, J. and Kohavi, R.: MineSet: An Integrated System for Data
Mining. Proc. of Third Inter. Conf. on Knowledge Discovery and Data Mining
(1997) 135-138.

3. Card, S., Mackinlay, J., Shneiderman B.: Readings in Information Visualization:
Using Vision To Think, Morgan Kaufmann Publishers, Inc. (1999).

4. Nguyen, D. T., Ho, T. B.: An Interactive-Graphic System for Decision Tree Induc-
tion. Journal of Japanese Society for Artificial Intelligence, Vol. 14 (1999) 131-138.

5. Rao, J. S., Potts, W. J. E.: Visualizing Bagged Decision Trees. Proc. of Third Inter.
Conf. on Knowledge Discovery and Data Mining, AAAI Press (1997) 243-246.

VQTree: Vector Quantization
for Decision Tree Induction

Shlomo Geva and Lawrence Buckingham

Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

Abstract. We describe a new oblique decision tree induction algorithm.
The VQTree algorithm uses Learning Vector Quantization to form a non-
parametric model of the training set, and from that obtains a set of hy-
perplanes which are used as oblique splits in the nodes of a decision tree.
We use a set of public data sets to compare VQTree with two existing
decision tree induction algorithms, 05.0 and OCl. Our experiments show
that VQTree produces compact decision trees with higher accuracy than
either C5.0 or OCl on some datasets.

1 Introduction

Decision trees are widely used for classification problems [Breiman et al. 1984],
[Quinlan 1992], [Murthy et al. 1994]. Their popularity is easy to understand, as
they provide efficient, readily interpreted models of the input-output mapping
for a given classification task.

Conceptually, a decision tree is a branching structure of linked nodes, which
taken together represent a set of nested if-then-else tests. The two main kinds of
decision tree are commonly referred to as axis-parallel and oblique trees. Axis-
parallel trees are characterized by decisions of the form

attribute = value

used for attributes with symbolic values, or

attribute < value

used for numeric attributes. Examples of axis-parallel decision tree systems are
CART [Breiman et al. 1984] and C4.5 [Quinlan 1992]. The decisions used in
oblique trees are linear inequalities involving more than one attribute:

w^x < value,

where a; is a vector of attribute values and t« is a weight vector. Examples
of oblique decision tree systems are Linear Machine Decision Trees (LMDT)
[UtgoflF & Brodley 1991] and OCl [Murthy et al. 1994].

Quinlan observes that some classification tasks are inherently less well suited
for axis-parallel decision trees than others [Quinlan 1994]. When the decision

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 349-359, 2000.
© Springer-Verlag Berlin Heidelberg 2000

350 Sh. Geva and L. Buckingham

surface involves few interactions between attributes we expect axis-parallel trees
to be very successful. Conversely, if the decision surface involves interactions
between multiple attributes then oblique hyperplanes provide a more economical
and accurate representation of the decision surface [Murthy et al. 1994].

Decision trees are usually built by a recursive divide-and-conquer process
which is very efficient for axis-parallel decision trees [Quinlan 1992, page 17].
Suppose there are n examples, each of which has d attributes. Then there are
a maximum of n possible distinct binary splits for each attribute, so that the
maximum number of axis-parallel binary splits is just n x d. Therefore it is
feasible to exhaustively test all possible splits at each branch [Quinlan 1992,
page 25]. However, there may be as many as 2''(2) distinct oblique binary splits
of the same set of examples [Murthy et al. 1994, page 3]. To get around this,
oblique decision tree algorithms must constrain the set of oblique tests to be
considered. This is usually done by a sampling or search procedure.

In the present paper we suggest another approach, the VQTree algorithm,
that combines the strengths of both approaches. The algorithm uses a prepro-
cessing step to create a pool of oblique hyperplanes called the decision set, which
contains a piecewise linear approximation to the decision surface. Then standard
top-down induction is applied to the training set, using hyperplanes from the
decision set to subdivide the training subset at each node. The use of oblique
splits lets us take advantage of naturally appearing linear interactions in the
training set. Use of a preprocessing step to identify candidate splits allows us to
exhaustively evaluate the splits during the induction step.

The remainder of the paper is laid out as follows. In Section 2 we introduce
decision tree induction and provide brief descriptions of several existing oblique
decision tree systems. Section 3 describes the VQTree algorithm in detail. In
Section 4 we outline a set of experiments which verify the utilit y of the algorithm.
Finally in Section 5 we summarize and point the way for further exploration.

2 Previous Work on Oblique Decision Tree Induct ion

We consider classification problems, in which there is an input space X C 3t ,̂
a discrete set of class labels C, and an unknown relation TZ C X x C. We have a
(given) training set of labelled examples T CTZ, which are assumed to be drawn
according to fixed but unknown probability distribution V defined over TZ. The
goal is to find a function F : X — ̂C which approximates 7̂ in such a way that
the probability of classification error is minimal with respect to T>.

2.1 Top-Down Decision Tree Inductio n

In a decision tree system, F is implemented as a nested series of multi-way
if-then-else tests, which subdivide X into a disjoint set of polyhedral decision
regions. Each leaf of the decision tree has a class label and covers one decision
region. A point is classified by traversing the tree to determine which region it
lies in, and taking the class label of the associated leaf. Decision trees are built

VQTree; Vector Quantization for Decision Tree Induction 351

by a greedy divide and conquer naethod in which the training set is recursively
partitioned into subsets, controlled by a "goodness of split" measure, G.

At stage i of construction, a pool of candidate tests Si is available, as well
as a set % of available training points. Each test s G 5j is used to split Tj into
subsets {Til(5) , and a measure of quality is assigned to the resulting
partition using G. The test s* that yields the best quality measure is chosen
for the current branch, s* is removed from the pool of candidate tests, and the
process is applied recursively to each subset Tij{s*) to produce the decision tree.
Branching ceases when all examples in a subset belong to the same class, or
when some alternative stopping criterion is met. Once a test has been chosen it
is not reviewed during the construction phase. Many algorithms also employ a
pruning stage, when redundant nodes are eliminated to improve the accuracy of
the decision tree.

Several metrics have been used to measure goodness of split. Information
Gain, the method used by C4.5, has proved to be robust and effective
[Quinlan 1992, page 21]. However, a number of other measures are detailed in
[Murthy et al. 1994, Appendix B].

2.2 Obliqu e Decision Tree Algorithm s

LMD T [Utgoff & Brodley 1991] constructs a linear machine in each branch, con-
sisting of a set of weight vectors {lodc S C}, one for each class. The weight vec-
tors are optimized by an iterative process in which training points are presented
and reward or punishment steps are applied to each weight vector. If training
point {x,y) is presented, the update step is

A positive update occurs if and only if the classes match, ie. c = y. As training
continues the correction factor p decays according to the schedule:

(3 <- 0.995/3 - 0.0005

P- 1 + /3'

Since the lineax machine in each node contains one weight vector for each class,
LMD T produces multi-way splits with oblique hyperplanes.

OCl [Murthy et al. 1994] is derived from a variant of CART which used
linear combinations of attributes in tests, and employed a randomized search
method [Breiman et al. 1984, chapter 5]. OCl places a single hyperplane in
each branch, forming an oblique binary split. The hyperplane is initialized with
the best ajcis-parallel binary split for the current subset of training examples.
After initial placement, a random hill-climbing method is used to improve the
quality of the split. Since the worst that can happen during the hill-climbing
stage is "no improvement", the resulting oblique test will be at least as good as
the best axis-parallel binary split.

352 Sh. Geva and L. Buckingham

[Sanchez et al. 1998] describe a method for constructing a decision tree from
the Voronoi diagram of the training set. The Voronoi diagram is a set of poly-
hedral cells, one for each point in the training set. The polyhedron surrounding
a training point contains the set of all points closer to that training point than
any other point in the training set, using the Euclidean metric to measure dis-
tances. Thus the task of determining the nearest training point to a query point
is equivalent to finding which polyhedron in the Voronoi diagram contains the
query point. The cell boundaries in the Voronoi diagram form a set of hyper-
planes V, which are used to construct an oblique decision tree. The algorithm
is:

— Obtain the decision hyperplanes V from the training set.
— Recursively split 5t̂ with hyperplanes from V to form a decision tree.
— Assign class labels to each leaf of the decision tree:

 Generate a query point that lies in the region covered by the leaf.
 Search the training set to find the nearest training point to the query

point.
 The class label of the nearest training point becomes the class repre-

sented by the leaf.
— Prune the tree by merging any sibling leaves that represent the same class.

The VQTree algorithm differs in several practical ways from all of these meth-
ods. Like the algorithm of [Sanchez et al. 1998], we do not recursively subdivide
the training set during the search for candidate tests, and hyperplanes are ob-
tained from a Voronoi diagram. However, by conducting Vector Quantization
as the first step we obtain a compressed representation of the underlying data.
This reduces the number of candidate splits that must be evaluated during the
top-down induction step.

3 The VQTree Algorithm

The VQTree algorithm consists of the following steps;

1. Select an initial nearest neighbour codebook from the training set.
2. Optimize the nearest neighbour codebook using one of the algorithms in the

Learning Vector Quantization (LVQ) family [Kohonen 1988].
3. Derive a set of hyperplanes (called the decision set) from the codebook by

examining the adjacency relationships between prototypes.
4. Postprocess the training set to reduce classification noise.
5. Build a decision tree using top-down induction as described in Section 2.

3.1 Selection of Initia l Codebook

Input: Training set, T CTZ
Number of prototypes required, m* > 0

Output: Codebook, M CTZ

VQTree: Vector Quantization for Decision Tree Induction 353

A codebook is a set M of labelled prototype points belonging to the same
space as the target relation TZ. Thus, M — {(^1,1^1), , (^m,<^m)} C X x C.
The codebook is used to classify a point x by finding the nearest prototype ^j<
in Ai, and taking the associated class ipj-. Distances are calculated using the
Euclidean metric.

We use a variant of the random coding method [Gersho & Gray 1992, page
359] to seed the codebook with approximately m randomly chosen training
points. Class prior probabilities are taken into account to give a balanced spread
of prototypes across all classes. The number of prototypes drawn for each class
depends upon the total number required and on the relative proportions of the
classes in the training set. If class c has frequency fc in the training set while the
training set has A'' points, then the number of prototypes drawn for that class
is ruc = fm* x j^]- The complete codebook will contain m = ^Z^ec "^c labelled
prototypes.

3.2 Codebook Opt imizat ion

Input: Training set, T CTZ
Codebook, McTl

Output: Optimised codebook, M' C 7̂

Kohonen's LVQ algorithms [Kohonen 1988] optimize nearest neighbour code-
books for classification. They are computationally efficient, readily able to handle
very large training sets. Although there are some differences in detail between
LVQ algorithms, the central point is the learning step, which is common to all.
At each time step t, a training example x{t) is used to update one or more
prototypes ij.{t) using a reward/punishment regime of the form:

Here a{t) is a learning rate, which may vary during training. The update is
positive if and only if the class of point x{t) and prototype iJ.{t) are the same. If
the training example x{t) contains missing values, then distances axe calculated
and updates are apphed in the subspace of non-missing values.

The chief difference between LVQ algorithms is the criterion used to decide
which (if any) prototype /x(t) to adjust when presented with x{t). For our ex-
periments here, we have used LVQl [Kohonen 1988] and the Decision Surface
Mapping (DSM) algorithm [Geva k Sitte 1991].

LVQl forms a non-parametric model of the distribution of training points
within each class, and implicitly approximates the Bayes decision surface. LVQl
is fairly robust in the presence of noise in the training set. Under LVQl , when a
training point x{t) is presented, the single nearest prototype is adjusted.

DSM strives to form an accurate model of the Bayes decision surface at the
expense of quantization within each class. When point x{t) is presented, one
of two actions may be taken. If the nearest neighbour to x{t) in the codebook
has the same class label as x{t) then no update occurs. However, if the nearest
neighbour to x{t) has a different class label to x(t), two prototypes are adjusted:

354 Sh. Geva and L. Buckingham

— the actual nearest prototype is pushed away from x{t), because its class is
wrong.

— the nearest prototype with the right class is pulled towards x{t).

Because updates occur whenever a training example is misclassified, DSM is
subject to problems when the data is noisy. However, if the conditions are right
DSM can produce classifiers that are considerably more accurate and compact
than those trained with LVQl .

3.3 Ex t ract t he Decision Set

Input: Training set, T CTZ
Codebook, M cTZ

Output: Decision set S, a set of hyperplanes

Once the codebook has been created, each prototype Hj is surrounded by a
decision region which includes the points nearer to fij than to any other proto-
type. All points within this region will be mapped to the class (pj by the nearest
neighbour classifier. If fij and fik are two adjacent prototypes then the hyper-
plane Hjk which separates their decision regions has an equation of the form

Hjkix) = wj^x + bjk 0

where Wjk — V-j — fJ'k

and bjk = + y^kf^jk-

We are interested only in the set of hyperplanes that separate adjacent decision
regions mapping to different classes,

S C {Hjk\l <j,k<mA<Pjj^ (i>k}.

One way to find S would be to first compute the Voronoi diagram of the code-
book, and from there read off the hyperplanes. However, computing the Voronoi
diagram in high dimensional space is a hard problem since there may be an ex-
ponential number of vertices. Since we do not need to know the vertices of the
diagram, we are able to tackle a simpler problem, namely to determine whether
or not two prototypes have adjacent decision regions. In the VQTree prototype
this is done using a polynomial-time algorithm based on ray-casting, although
it could also be formulated as a linear programming task [Sanchez et al. 1998].

The algorithm we use to determine whether the hyperplane Hjk is to be
included in S is:

1. a; <- Hj,y <- fik-
2. A^{Hji\ijtj},U^{}.
3. yHji eA,a^ ̂ {wj^x + bji)/{wJiX + wj^y).
4. p <— argmint{aj|ai > 0} .
5. If p = fc, then signal success and STOP.
6. X 'r- x-\- ap{y — x)

VQTree: Vector Quantization for Decision Tree Induction 355

7. A^A- {Hjp]M ^UU {Hjp}
8. If Hji{x) < 0 for some Hji e U, then signal failure and STOP. (The hy-

perplanes are assumed to be oriented so that Hji{x) > 0 if x is within the
decision region.)

9. y^y~ [wjpfj-j + bjp)I(ujjptwjp)Wjp.
10. Go to step 3.

The codebook contains m prototypes, so there are 0{m?) possible hyperplanes
to consider. For each of these hyperplanes, step 3 requires up to O^m?) in-
tersections to be calculated. As each intersection requires the computation of
several dot-products between vectors, we obtain an upper bound of 0{Dm^) for
the complexity of this algorithm. Thus, clear advantages are to be had if the
number of prototypes is kept small.

3.4 Reduce Classification Noise in Trainin g Set

Input: Training set, T C 7?.
Codebook, McU

Output: "Clean" training set, T' C 7̂

During implementation of this algorithm we encountered the practical diffi -
culty that, if the training set contains many points with a class label that does
not match the value predicted by the nearest neighbour classifier, then the deci-
sion tree overfits the noisy data. This problem seems to stem from the fact that,
during early splits especially, hyperplanes are applied to split training data far
from the region where they actually appear as part of the decision surface.

To get around this difficulty, we perform a postprocessing step to clean up
class noise in the training set. The class label of each training point is replaced
with a new label, obtained by nearest neighbour search in the codebook.

3.5 Top-Down Inductio n and Prunin g

Input: "Clean" training set, T cTl
Decision set S, a set of hyperplanes

Output: Oblique decision tree

Having obtained the decision set, it remains only to apply the top-down
induction algorithm described in Section 2 to complete the decision tree. For
training points with missing values, we determine the position relative to each
hyperplane by comparing the distance from the training point to each of the pro-
totypes that generated the hyperplane, restricting the calculation to the subspace
of non-missing values. After the tree has been grown, we perform a bottom-up
pruning pass, which identifies any branch that has two leaves with the same class
label. If such a branch is found, it is replaced by a single leaf representing the
common class. This form of pruning simplifies the tree, but has no effect on the
classification accuracy.

a

 C5.0
ODSM
 VQTree(DSM)

ALVQ l
AVQTrK(LVQl)
 OCl

356 Sh. Geva and L. Buckingham

40%

35%

30%

25%

I 20%

u

15%

10%

5%

0%

Anneal Breast-w Credit Glass Heait-c Iri s Pima Segment Sonar

Fig. 1. Test error on 9 benchmark datasets.

4 Experimental Results

This section describes the results of a set of tests, comparing VQTree with C5.0
Release 1 (the commercial version of C4.5), and with OCl Release 3. We em-
ployed two LVQ algorithms (DSM and LVQl) to optimise the nearest neighbour
codebook, yielding two variants of VQTree classifier which we term VQTree
(DSM) and VQTree (LVQl) respectively. We tested the algorithms on 9 data
sets from the UCI Machine Learning Repository [Murphy & Aha 1994], chosen
primarily because they include a large proportion of continuous attributes. For
each data set, we conducted 10 repeats of 10-fold cross validation, presenting
the same training and test sets to all algorithms at each stage.

Minimal preprocessing was conducted before we started the experiments.
For the Anneal domain, missing values were converted to valid "not applicable"
symbolic values. Other than that, for C5.0 the data was used as-is from the
repository. VQTree and OCl require real-valued attributes, so as each training-
testing partition was generated we converted symbolic values to sparse-coded
binary values and standardised all attributes using the transformation

Here Xi is attribute i, Xi is the mean of Xi and cr, is the standard deviation of
Xi, computed using values from the training set.

The optimal number of prototypes to include in the codebook is not usually
known before a classifier is built, so we ran a series of experiments using 2, 4, 8,

VQTree: Vector Quantization for Decision Tree Induction 357

Table 1. Pairwise combinations of the 4 decision trees involved in this study. Each cell
contains the number of wins, draws and losses between the decision tree in that row
versus the decision tree in that column.

Algorithm

C5.0
OCl

VQTree (DSM)
VQTree (LVQl)

C5.0

-
3 - 2 - 4
3 - 1 - 5
5 - 1 - 3

OCl

4 - 2 - 3
-

2 - 2 - 5
4 - 2 - 3

VQTree
(DSM)

5 - 1 - 3
5 - 2 - 2

-
4 - 1 - 4

VQTree
(LVQl)

3 - 1 - 5
3 - 2 - 4
4 - 1 - 4

-

16, 32 and 64 prototypes per codebook,̂ reporting the best result for each data
set. DSM and LVQl were trained for 20 epochs, with an initial learning rate a{t)
of 0.1, decaying linearly to 0. C5.0 and OCl were run using default parameter
values, so pruned trees were produced.

Figure 1 shows the test error of the four decision trees and the underly-
ing nearest neighbour classifiers from which each VQTree classifier was derived.
Thus, the series "DSM" refers to the nearest neighbour classifier trained with
DSM, while the series "VQTree (DSM)" refers to the corresponding decision
tree. The two VQTree algorithms perform well compared to C5.0 and OCl, with
the LVQl variant attaining the lowest test error on 4 of the 9 datasets while the
DSM variant reached the lowest error on 2. C5.0 attained the lowest error on 2,
while OCl was best on 1 domain.

Table 1 provides comparisons between each pair of decision trees that we
tested, using 95% confidence intervals to determine significance. Within each
pair, an algorithm scores a win if its test error is significantly lower than the
other, a loss if the test error is significantly higher, and a draw otherwise. Again
the LVQl variant of VQTree makes a strong showing relative to C5.0 and OCl,
but it appears to be evenly matched with the DSM variant of VQTree.

Turning to the issue of classifier size, Table 2 sets out details of the optimal
LVQ codebook sizes and the number of leaves in each decision tree. OCl is the
most economical of the decision tree algorithms, followed by VQTree (DSM),
VQTree (LVQl) and C5.0. The size of the classifier produced by the LVQl
variant of VQTree is usually smaller than the original LVQ codebook, but this
is not always the case for the DSM variant. This reflects the fact that LVQl
tends to spread prototypes evenly through the training set, while DSM is more
parsimonious with prototypes and places them nearer to the decision surface.
Examining the optimal number of prototypes for each data set, we see that
there is no hard and fast rule - for some tasks a large codebook is required,
producing correspondingly complex trees. However, for other data sets a very
simple oblique decision tree is best - Cleveland Heart Disease and Australian
Credit data sets require only a single hyperplane.

' The actual number of prototypes varies slightly from these ideal values. See Section
3.1 for details.

358 Sh. Geva and L. Buckingham

Table 2. Average classifier size - number of leaves per decision tree, number of proto-
types per nearest neighbour classifier.

Dataset

Anneal
Breast-w

Credit
Glass

Heart-c
Iri s

Pima
Segmentation

Sonar

C5.0

23.7
12.6
18.5
23.8
20.1
4.8

22.4
41.4
14.4

OCl

6.5
2.9
3.1

12.1
3.6
3.2
6.3

30.5
5.8

DSM

65
2
2

10
2
3
4

35
16

VQTree
(DSM)

24.3
2.0
2.0

19.7
2.0
3.0
4.4

60.9
22.5

LVQl

65
8
2

34
2
9
4

66
64

VQTree
(LVQl)

20.9
3.6
2.0

32.4
2.0
6.4
5.4

84.7
20.6

Finally, we observe that on two datasets, Glass and Sonar, neither VQTree
variant lived up to the full promise of the underlying nearest neighbour clas-
sifier. Although the decision trees do not generalise as well as the underlying
classifiers, they perform identically on the training set. The large number of
prototypes needed in the LVQl codebook for Sonar suggests that there may be
many small clusters in the dataset. Since the hyperplanes of the decision set are
obtained by a local process, it may be that by using them in a global manner
the algorithm obscures the fine structure of the training set. This is a subject
for future investigation.

5 Conclusions

In the present paper we have described an oblique decision tree induction al-
gorithm based on Learning Vector Quantization. The algorithm identifies a set
of hyperplanes, the decision set, that locally approximate the decision surface
as embodied in a training set. Each of these hyperplanes gives a linear inequal-
ity which can be used to subdivide the input space into two half spaces. In a
postprocessing step, an oblique tree is constructed from the decision set, using
standard top-down tree induction.

To establish the viability of the algorithm, we have implemented a prototype
which uses a ray-casting algorithm to build the decision set in polynomial time,
and which employs the Information Gain criterion to assess the quality of a
split. The prototype has been applied to several benchmark datasets from the
UCI repository, yielding very encouraging results. VQTree compares favourably
with C5.0 and OCl in terms of classification accuracy, although OCl produces
more compact trees.

Despite the success of the prototype system tested here, several aspects of
the system will benefit from further research, chiefly:

— A mechanism to automatically determine optimal LVQ codebook size.

VQTree: Vector Quantization for Decision Tree Induction 359

— A way to determine which is the best LVQ training algorithm to employ.
— Combining oblique splits as produced by VQTree with axis-parallel splits to

produce a more robust and effective system.
— Combining oblique splits derived from diverse codebooks to produce single

decision trees.

Vector quantizat ion is fairly mature classification and signal processing tech-
nology, but LVQ classifiers are usually regarded as "black-boxes" which perform
an input-output mapping. In this paper we have i l lustrated a way in which the
internal st ructure of the LVQ codebook can be used to advantage to produce an
accurate, economical decision tree.

References

[Breiman et al. 1984] Breiman, L., Friedman, J.H., Olshen R.A. & Stone, C.J: Clas-
sification And Regression Trees. Pacific Grove, CA: Wadsworth & Brooks/Cole

[Gersho & Gray 1992] Gersho, A. & Gray, R.M.: Vector Quantization And Signal Pro-
cessing. Boston, MA: Kluwer Academic Publishers

[Geva & Sitte 1991] Geva, S. & Sitte, J.: Adaptive Nearest Neighbour Pattern Classi-
fication. IEEE Transactions on Neural Networks 2 (1991), 318-322

[Kohonen 1988] Kohonen, T.: Self-Organization and Associative Memory. New York,
NY: Springer-Verlag

[Murphy & Aha 1994] Murphy, P. &: Aha, D.: UCI repository of machine learning
databases - a machine-readable data repository. Maintained at the Department of
Information and Computer Science, University of California, Irvine. Anonymous
FTP from i cs .uc i .edu in /pub/machinG-learning-databases

[Murthy et al. 1994] Murthy, S.K., Kasif, S., Salzberg, S.: A System for Induction of
Oblique Decision Trees. Journal of Artificial Intelligence Research, 2, 1-32

[Quinlan 1992] Quinlan, J.R.: C4.5 - Programs For Machine Learning. San Mateo CA:
Morgan Kaufmann

[Quinlan 1994] Quinlan, J.R.; Comparing Connectionist &: Symbolic Learning Meth-
ods. In Hanson, S. J., Drastal, G. A. & Rivest, R. L. (Eds): Computational Learning
Theory and Natural Learning Systems, Vol 1, Constraints and Prospects. Cam-
bridge MA: MI T Press, 445-456

[Quinlan 1996] Quinlan, J.R.: Improved Use of Continuous Attributes in C4.5. Journal
of Artificial Intelligence. Research 4 77-90

[Sanchez et al. 1998] Sanchez, J.S., Pla, F., Ferri, F.J.: A Voronoi-diagram-based ap-
proach to oblique decision tree induction. Proceedings. Fourteenth International
Conference on Pattern Recognition (1998) 542-544

[Utgoff & Brodley 1991] Utgoff, P.E. & Brodley, C.E. Linear Machine Decision Trees.
Technical Report 10, University of Massachusetts at Amherst

Making Knowledge Extraction
and Reasoning Closer

Fosca Giannotti and Giuseppe Manco

CNUCE- CNR
Via S. Maria 36. 56125 Pisa - Italy

{F.Giannotti,G.Manco}®cnuce.cnr.i t

Abstract. The paper shows how a logic-based database language can
support the various steps of the KDD process by providing a high degree
of expressiveness, and the separation of concerns between the specifica-
tion level and the mapping to the underlying databases and data mining
tools. In particular, the mechanism of user-defined aggregates provided
in CDC++ allows to specify data mining tasks and to formalize the min-
ing results in a uniform way. We show how the mechanism applies to the
concept of Inductive Databases, proposed in [2,12]. We concentrate on
bayesian classification and show how user defined aggregates allow to
specify the mining evaluation functions and the returned patterns. The
resulting formalism provides a flexible way to customize, tune and reason
on both the evaluation functions and the extracted knowledge.

1 Introduction

In recent years, there has been an increasing attention to the problem of for-
malizing the notion knowledge discovery process. Current knowledge extraction
tools and applications, in fact, provide littl e support to manage the overall pro-
cess in a uniform way, and to tune the process according to domain knowledge.
This is particularly problematic in classification tasks, where the role of domain,
or background, knowledge is relevant and may influence the classification re-
sults within each step of the KDD process: which attributes discriminate best,
how can we characterize a correct/useful profile, which are the useful domain
transformations, etc., are all examples of domain dependent notions.

A coherent formalism, capable of dealing uniformly with induced knowledge
and background, or domain, knowledge, would represent a significant advance in
the design and development of decision support systems, in several challenging
application domains. The advantages of such an integrated formalism are, in
principle:

— the capability of specifying expert rules, or business rules;
— the ability to tailor a methodology to a specific class of applications.

Other proposals in the current Uterature have shown that the knowledge dis-
covery process can take great advantage of a powerful knowledge-representation

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 360-371, 2000.
@ Springer-Verlag Berlin Heidelberg 2000

Maiking Knowledge Extraction and Reasoning Closer 361

and reasoning formalism [15,11,17,5,3,8]. In this context, the notion of induc-
tive database, proposed in [2,12], is a first attempt to formalize the notion of
interactive mining process. An inductive database provides a unified and trans-
parent view of both inferred (deductive) knowledge, and all the derived patterns,
(the induced knowledge) over the data. The user does not care about whether
he is dealing with inferred or induced knowledge, and whether the requested
knowledge is materialized or not. The only detail he is interested in stems in
the high-level specification of the query involving both deductive and induc-
tive knowledge, according to some (either objective or subjective) interestigness
quality measure. Interestingly, the notion of Inductive Databases finds a natural
generalization in rule-based languages, such as Deductive Databases. In [6], we
proposed a model for a such generalization, based on the notion of user-defined
aggregate in the logic database CD C++.

In this paper we consider the problem of defining a logic-beised knowledge
discovery support environment capable of dealing with classification tasks. We
extend the approach shown in [6,8] to Naive Bayes Classification, that, to the
purpose of this paper, has two main advantages:

1. It is one of the most practical approaches to several types of learning prob-
lems.

2. It is particularly simple to represent as an inductive database schema.

As a result, we show how a logic-based database language such as €!>€++ [20]
can support the various steps of the KDD process by providing: a high degree of
expressiveness, the ability to formalize the overall KDD process and the capabil-
ity of separating the concerns between the specification level and the mapping
to the underlying databases and data mining tools.

The paper is organized as follows. In section 2 we introduce the basic features
of a Logic Database Language and briefly sketch the mechanism of user defined
aggregates provided by £!>£++. Section 3 describes the generalization of the
concept of inductive databases to the case of deductive databases. In section 4
we show how such a mechanism provides a flexible way to custumize, tune and
reason on both the evaluation function and the extracted knowledge, by concen-
trating on the formalization and representation of the bayesian classification [4]
data minig task. Finally, a short final section discusses some remarks that the
approach issues.

2 Logic Database Languages

Deductive databases are database management systems whose query languages
and storage structures are designed around a logical model of data. The under-
lying technology is an extension to relational databases that increases the power
of the query language. We adopt the C'DC++ deductive database system, which
provides, in addition to the typical deductive features, a highly expressive query
language with advanced mechanisms for non-deterministic, non-monotonic and
temporal reasoning [7,21].

362 F. Giannotti and G. Manco

A remarkable capability of such a language is that of expressing distributive
aggregates, which are definable by the user [21], For example, the following rule
illustrates the use of a sum aggregate, which aggregates the values of the relation
sales along the dimension Dealer:

supplierTot(Time, Product, sum(Sales)) <—

sales(Time,Product,Store,Sales).

Such rule corresponds to the SQL statement

SELECT Time, Product, SUM(Sales)
FROM sa les
GROUP BY Time, Product

Prom a semantic viewpoint, the above rule is a syntactic sugar for a program
that exploits the notions of nondeterministic choice and XY-stratification [10,20,7].
In order to compute the following aggregation predicate

q(Y,aggr(X))^p(X,Y).

we exploit the capability of imposing a nondeterministic order among the tuples
of the relation p,

ordP(Y, n i l , n i l) <- p(X, Y).
ordP(Z,X,Y) ^ ordP(Z,-,X),p(Y,Z),choice(X,Y),choice(Y,X).

Here n i l is a fresh constant, conveniently used to simplify the program. If the
base relation p is formed by k tuples for a given value s of y , then there are k\
possible outcomes for the query ordP(X, Y), namely a set:

{ordP(s, n i l , n i l) , ordP(s, n i l , t i) , ordP(s, t i , t g) , . . ., ordP(s, tk_i, tn)}

for each permutation {(s, t i) , . . ., (s, tjt)} of the tuples of P. Therefore, in each
possible outcome of the mentioned query, the relation ordP is a total (intransi-
tive) ordering of the tuples of p. The double choice constraint in the recursive
rule specifies that the successor and predecessor of each tuple of p is unique.

As shown in [20], we can then exploit such an ordering to define "recursive"
aggregates, i.e., aggregates inductively defined:

f{{x}) = gix) (1)

f{Su{x}) = h{f{S),x) (2)

By defining the base and inductive cases by means of ad-hoc user-defined predi-
cates s ing le and mult i, we can then define an incremental computation of the
aggregation function:

aggrP(Aggr, Z, X, C) 4- ordP(Z, n i l , X), X ^̂ n i l , single(Aggr, X, C).

aggrP(Aggr, Z, Y, C) ^ ordP(Z, X, Y), aggrP(Aggr, X, Ci),multi(Aggr, Y, Ci, C).

Finally, the originary rule can be translated into

q(Y,C) ^ ordP(Y,-,X),-ordP(Y,X,_),aggrP(aggr,Y,X,C).

Making Knowledge Extraction and Reasoning Closer 363

Example 1 ([21]). The aggregate sum can be easily defined by means of the
following rules:

single(sum, X, X).

inulti(siam, X, SO, SN) ^ SN = SO + X.

D

In [21], a further extension to the approach is proposed, in order to deal with
more complex aggregation functions. Practically, we can manipulate the results
of the aggregation function by means of two predicates f re tu rn and ereturn.
The rule definining the aggregation predicate is translated into the following:

q(Z,R) ^ ordP(Z,X,Y),aggrP(aggr,Z,X,C),ereturn(aggr,Y,C,R).
q(Z, R) *- ordP(Z, X, Y), -ordP(Z, Y,_), aggrP(aggr, Z, Y, C), f return(aggr, C, R).

where the first rule defines early returns (i.e., results of intermediate computa-
tions), and the second rule defines final returns, i.e., results on overall values.

Example 2 ([21 J). The aggregatemaxpair considers tuples {ci,ni), where rij is a
real number, and returns the term c, with the greater value of n,. The aggregate
can be defined by means of s ing le, multi and f re turn:

single(maxpair, (C,P), (C,P)).

mul ti (maxpair, (C, P), (CO, PO), (C, P)) ^ P > PC
multi(maxpair, (C,P),(CO,PO),(CO,PO)) ^ P < PO.

freturn(maxpair, (CO,PO),CO).

D

Example 3. Given the relation gate(G,X) specifying the output signal of a gate
G, the andGate(Y) predicate should compute the intersection of the signals of all
the available gates. The computation can be specified by means of an aggregate
and:

andGate(and(X)) <- gate(G,X).

single(cind,X,X).

multi(and, X, A, A) +- X 7̂ 0, A 5̂ 0.
ereturn(and, 0, A, 0).
freturn(and, X,X).

Notice that the ere turn predicate allows to stop the computation as soon as a
0 gate is found. D

3 Logic-Based Inductive Databases

In [2], an inductive database schema is defined as a pair TZ = (R, (QR,e, V)),
where R is a database schema, QR is a collection of patterns, V is a set of result

364 F. Giannotti and G. Manco

values and e is an evaluation function mapping each instance r of R and each
pattern 9 G QR in V. An inductive database instance is then defined as a pair
(r, s), where r is an instance of R and s C Q R.

A typical KDD process operates on both the components of an inductive
database, by querying both components of the pair (assuming that s is mate-
rialized as a table, and that the value e{v,6) is available for each value 6 of
s).

A simple yet powerful way of formalizing such ideas in a query language is
that of exploiting user-defined aggregates [6]. Practically, we can formalize the
inductive part of an inductive database (i.e., the triple (QR,e, V)) by means of
rules that instantiate the following general schema:

s{Zi,..., Zk,u-d-aggr{ei,... ,eh,Xi,..., Xn)) <- T{YI,. .., Ym). (3)

Intuitively, this rule defines the format of any subset s of Q R. e i , . . ., e/j specify
the components needed to compute the evaluation function e. The patterns in
s are obtained from a rearranged subset Xi,...,Xn of the tuples Y i , . . . , Ym
in r. The structure of s is defined by the formal specification of the aggregate
U-d.aggr, in particular by the re tu rn rules.

The tuples {0, v) resulting from the evaluation of such rule, represent patterns
in QR and their value in V according to e. As a result, the "inductive" predicate
s itself can be used in the definition of more complex queries.

Example 4- Consider the relation t ransact ion(Date, Cust, Item, Pr ice, Qty). A
sample mining scenario for such a table consists in detecting the items in the
relation with the average value more than a given threshold. The inductive
database has R s t ransact ion, QR = {i\i € dom(R[Item])} and e(r,i) =
avg{{p X q\{t,i,p,q) G r}) . The above inductive schema is formalized, in accor-
dance to (3) with the following rule:

s(avgThres((a-, Item, Value))) <— t ransac t ion (̂ _, Item, Pr ice, Qty),
Value = Pr ice x Qty.

Where a represents the given threshold, and the aggregate avgThres is defined,
as usual, by means of the predicates

single(avgThres, (T, I, V), (T, I, V, 1)).

multi(avgThres, (T, I, VN), (T, I , VO, NO), (T, I , V,N)) ^ V = VN + VO,N = NO -h 1.
multi(avgThres, (T, I, VN), (T, I, VO, NO), (T, I , VO, NO)).
multi(avgThres,(T,I,VN),(T, IO,VO,NO),(T, I,VN, 1))* - I 7̂ 10.

f return(avgThres, (T, I, V, N), (I , A)) <- A = V/N, A > T.

For each item, both the sum and the count of the occurrences is computed.̂
When all the tuples have been considered, the average value of each item is

^ Here, a naive computation is specified, that potentially computes more than one
tuple for each item. Notice, however, that more refined definitions are possible, by
exploiting negation and slightly modifying the definition of user defined aggregate.

Making Knowledge Extraction and Reasoning Closer 365

computed, and returned and as answer if and only if it is greater than the given
threshold. D

Notice that the above schema can produce different computations of s on
different clusters of the tuples of r grouped on the basis of the values of the
attributes Zi,...,Zk- Practically, the results of the above schema, given an in-
stance r of R, are the tuples ((rc i (r) ,s i) , . . ., (o'Ch(r),s/i), where Cj = Zi =
Ui; A . .. A Zfc = Vii^ with Vi. G dom{Zj), and Sj is the set of patterns related to
'^Ci(r) .

In [6], we showed that the formalism is flexible enough to allow the for-
malization of association rule mining. In the following, we extend the approach
proposed there to the classification data mining task.

4 Bayesian Classification

According to the approach presented in the previous section, we are interested
in developing a classification construct based on the notion of user-defined ag-
gregate. We concentrate here on bayesian classification, that is among the most
practical approaches to many types of learning problems [13,14]. To summarize,
we aim at computing the function

max Prob{C = c\Ai = a i , . . ., A„ = an)
c

where c is the target attribute and a i , . . . , a„ are possible values of the at-
tributes of a relation with schema R = {Zi,..., Zk} such that {Ai,..., An, C) C
{Z\,..., Zk]. By assuming that, for each i,j such that i ̂ j , Ai and Aj are inde-
pendent, the above expression is maximized by the same value c that maximizes
the expression

n

max Prob{C = c) J|Prob{Ai = a^\C = c)
1

We can define an inductive database schema as follows. The patterns QR are
represented by the expressions Ai = ai A C = c, where aj G dom{Ai) and
c G dom{C). Let V = [0, l]'^, r be an instance of R and ^ = Ai = aiAC — c £ QR;
then e(r,9) = {Prob{A, = ai\C = c), Prob{C = c)).

By assuming that Prob{A\B) can be estimated as count{AAB)/count{B), we
can then define the pair {Prob{Ai = ai\C = c),Prob{C = c)) as a user-defined
aggregate.̂ Practically, we define a predicate s as

s(Xi , . . ., X„,bayes((P, [Ai,... , A^],C))) ^ r (Z i , . . ., Z^).

where the variables Xi , . . ., X ,̂ P, Ai , . . ., An, C are a (possibly rearranged) subset
of Z i , . . ., Zjt and r (Z i , . . ., Zk) is either an extensional or an intensional predicate.

^ Notice that such an approach fails to deal with 0 probabilities. However, simple
corrections can be done, as suggested, e.g., in [14, chapter 6]. For example, we can
weight the proposed estimate of Prob{A\B) with prior uniform probabilities.

366 F. Giannotti and G. Manco

The result of such an evaluation is the set of conditional probabilities of each of
the possible values of Ai, given any possible value of C, and a weight P associated
to the tuple A i , . . . , An.

We can define, as usual, the s ing le, multi and f re tu rn predicates:

single(bayes, (P, F, C), (P, Fs)) <- in i t (F, C, P, Fs).

mult i(bayes, (P, F, C), (NO,FO), (NO + P, FN)) <- update(F, C, P, FO, FN).

The tuple (P,C,F) represents a tuple in the database. More precisely, C is
the target attribute, F is the collection of the relevant features and P is the
weight associated to the current tuple. The i n i t predicate builds a list of tuples
(/i i Ci, "/i I "ci)I representing respectively the feature fi, the target attribute as-
sociated to Cj, the (current) frequency n/; of fi,Ci and the related frequency 71^
of Ci. The update predicate updates the list FO with the tuples available from
C and F. For each quadruple {fi,Ci,nj^,nci) in FO and for each pair (/,c) where
f G F, rici is incremented if c = ĉ and n/. is incremented if both f = fi and
C = Ci.

As a final result, the collected tuples allow the computation of conditional
probabihties:

f return(bayes, (N, FO), (C, F, Pc, PF,C)) ^

member((F,C,CF,Cc),FO),PF,c = CF/CC,PC = Cc/N.

Let us consider the extensional predicate:

playTennis(Outlook,Temperature,Humidity,Wind, Play)

with extension in table 1. A simple classifier on such a relation is built by means
of the rule

c lass if ier(bayes{(l, [Outlook,Temp, Humidity, Wind], Play))) <—
playTennis(Outlook,Temp, Humidity,Wind,Play).

Example 5. A query c lass if ier(C, F, Pc, PF) against such a database returns the
answers

(no, sunny, 0.357143, 0.6) (no, hot, 0.357143, 0.4)
(no, weak, 0.357143,0.4) (no, strong, 0.367143, 0.6)

(yes, hot, 0.642857, 0.222222) (yes, high, 0.642857, 0.333333)
(yes, rain, 0.642857, 0.444444) (yes, mild, 0.642857, 0.444444)

(yes, normal, 0.642857, 0.666667) (yes, strong, 0.642857, 0.333333
(no, cool, 0.357143, 0.2) (no, normal, 0.357143, 0.2)

(yes, sunny, 0.642857,0.222222) (no, rain, 0.357143, 0.2)
(no, high, 0.357143, 0.8) (yes, overcast, 0.642857, 0.333333)

(yes, weak, 0.642857, 0.666667) (yes, cool, 0.642857,0.333333))
(no, overcast, 0.357143, 0.2) (no,mild, 0.357143, 0.4)

Such tuples represent a classification model that can be used to classify any new
tuple. D

Makin g Knowledg e Extractio n an d Reasonin g Close r 36 7

Tabl e 1 . Sampl e playTenni s facts .

playTennl5(overcast , hot . normal , weak , yes) playTennisCsunny , hot , high , weak , no)
playTennis(sunny , hot , high , strong , no) playTennis(overcast , hot , high , weak , yes)
playTennis(overcast , cool , normal , strong , no) playTennis(rain , cool , normal , weak , yes)
playTennis(rain , cool , normal , strong , yes) playTennis(rain , mild , high , weak , yes)
playTennis(sunny , mild , high , weak , no) playTennis(sunny , cool , normal , weak , yes)
playTennis(rain , mild , normal , weak , yes) playTennis(sunny , mild , normal , strong , yes)
playTennis(overcast , mild , high , strong , yes) playTennis(rain , mild , high , strong , no)

Once the classification model is trained, the classifier can be easily built:

c lass if y(0, T, H, W,maxpair((P, Prob))) - c lass if ier(P, 0, Probo, Probp),
c lass if ier(P, T, Probt, Probp), c l ass if ier(P, H, Probh, Probp),

c lass if ier(P, W, Prob„, Probp),
Prob — Probp x Probo x Probt x Probh x Prob„

where the maxpair aggregate is defined in example 2. The above defined pred-
icate c lass if y(Fi , . .. ,Fn, Target) guesses the value of Target on the basis of
the values of the interesting features F i , . .. ,Fn, according to the classification
model defined by the relation c l a s s i f i e r.

Notice that, in general, the definition of the predicate c lass i fy depends
from the model defined by the predicate c l a s s i f i e r.

c lass if y(Xi,...,X„ , Fi,...,F^,maxpair((C, P))) <-
c lass if ie r (X i , . . ., X„, C, Fi, Pc, P F J,

c lass if ie r (X i , . . ., X„, C, Fa, Pc, P F J,

c lass if ie r (X i , . . ., X., C, F ,̂ Pc, P F J,
P = PF. x . . . X P F ..

In the following we shall concentrate only in the definition of the c l a s s i f i er
predicate, and shall omit the definition of c lass i fy. The rest of the section
shows some examples of complex queries whithin the resulting logic language.
We shall refer to table 1 as a running example.

I t is easy to build a predicate that evaluates the goodness (w.r.t. some quality
measure) of the classifier built in the previous section.

Example 6. The high-level specification task "Compute the misclassification rate
of the trained model" is formalized by the following rule:

misc lass if ied(0,T, H, W, Play, Predicted) ̂ tes tSet(0,T, H, W, Play),
c lass if y(0, T, H, W, Predicted), Play ̂ Predicted.

When run against the playTennis table, the misc lass if ied relation returns
the tuples

(overcast, cool, normal, strong, no, yes)
(overcast, mild, high, strong, yes, no)

(rain, mild, high, strong, no, yes)

representing the misclassified portion of the table. D

368 F. Giannotti and G. Manco

The predicate t e s t S et can be defined either as an extensional predicate or
as an intensional predicate. This suggests a way for directly defining a boosting
technique.

Example 7 (Boosting). The high-level specification task for boosting "compute
an increasing sequence of classifiers such that each classifier is built by increasing
the weight of the tuples misclassified by the preceding classifier" can be defined
by the following set of rules:

c a s e (0 , 1, 0, T, H, W, P) <- p layTenn is (0, T, H, W, P).
c a s e (I + 1, WW + 1, 0, T, H, W, P) <- case (I, WW, 0, T, H, W, P),

m i s c l a s s if i e d (I, 0, T, H, W, P).
c a s e (l + 1, WW, 0, T, H, W, P) <- case (I, WW, 0, Temp, H, W, P),

- . m i s c l a s s if i e d (I, 0, T, H, W,_).

c lass i f i e r (I ,bayes ((WW, [0,T,H,W],P)))̂ case(I,WW,0,T,H,W,P).
m i s c l a s s i f i e d (I , 0 , T, H,W,P)«— c a s e (l, WW, 0,T,H,W,P),

c l a s s if y (I , 0, T, H, W, Pred), P ̂ Pred.

Classifiers are incrementally built and identified by the stage argument I . At each
stage, the training-set is built by incrementing the weight of the misclassified
tuples. In order to obtain the misclassification rate of each classifier built with
the above technique, we have to count the misclaissification rate of each classifier:

t o t M i s c l a s s if i e d (I, count((0, T, H, W, P))) * - m i c l a s s if i e d (l, 0, T, H, W, P).

The first argument of the t o t M i s c l a s s i ed predicate represents the classifier
ID , and the second argument represents the number of tuples misclassified by
the classifier. By considering the first 10 classifiers built we obtain the following
misclassification rate for each classifier:

to tMisc lass if ied(6, 1) to tMisc lass if ied(9, 2) to tMisc lass if ied(4, 3)
to tMisc lass if ied(l, 3) to tMisc lass if ied(3, 2) to tMisc lass if ied(5, 2)
to tMisc lass i f ied(8, 3) to tMisc lassi f ied(0, 3) to tMisc lass i f ied(2, 3)
to tMisc lass if ied(7, 5)

D

Example 8 (Meta-Learning). Auto-focusing mechanisms can be easily defined.
We can 'Hrain a classifier as a coordinator of a set of classifiers built by boosting,
where each classifier has a votation weight depending by its misclassification
rate":

v o t a t i o n (0, T, H, W, C, sum(V)) +- c l a s s if y (I , 0, T, H, W, C, P),

t o t M i s c l a s s i f i e d (I , T) , V= 1/T.

boostClassi fy(0,T,H,W,maxpair ((C,N))) <— votat ion(0,T,H,W,C,N).

The misclassification rate of the boosting classifier is computed by the rule

b o o s t M i s c l a s s if ied(count ((0, T,H, W, C))) <— p layTenn is (0, T, H, W, C),
b o o s t C l a s s if y(0, T, H, W, Pred), C 7̂ Pred.

D

Making Knowledge Extraction and Reasoning Closer 369

Example 9 (Cross-Validation). In the following we assume that each row of the
playTennis has an identifier I . A cross-validation technique can be used to eval-
uate the prediction accuracy of the classification task against a given dataset.
Practically, we can randomly split a dataset into K different training sets and
test-sets, and then compute the average prediction accuracy of the adopted clas-
sification method.

crossValidate(K, N,bayes((l, [0,T, H, W], P))) ^
nthTrainingSet(K, N, 0, T, H, W, P).

nthTrainingSet(K, N, 0,T, H, W, P) <- playTennis(I, 0, T, H, W, P),
-ibelongs(l,K,N).

nthTestSet(K , N , 0 , T , H , W, P) < - playTennis(r , 0 , T , H , W, P) ,

belongs(I,K,N) .

countMisclassif ied(K, N, count((0,T, H, W))) <— nthTestSet(K, N, 0, T, H, W, P),

c lass if y(K, N, 0, T, H, W, Pred), P ^ Pred.

crossValidation(K, avg(C)) <— countMisclassif ied(K,N,C).

Here, the predicate belongs (I , K, N) specifies the splitting policy of the dataset.̂
D

5 Final Remark

A very desirable property of systems for data mining and knowledge discovery is
the capability of separating the concerns between the conceptual/logical design
and the phisical implementation of data mining applications. To this purpose,
the approach described in this paper and in [6] proposes a uniform declarative
specification of the various steps of the knowledge discovery process.

In this paper our primary aim was the investigation of the integration of a
deductive query language with a classification engine. We have shown that the
formalism of user-defined aggregates is powerful enough to (1) model the notion
of inductive database, and (2) to specify flexible query answering capabilities.
The main difference with other database-oriented approaches is that the capa-
bilit y of defining logical expressions has very desirable characteristics in order to
construct the knowledge processing engine.

The paper was not concerned with efficiency issues. As a matter of fact, the
problem of efficiently coupling data mining with database systems is common in
many approaches currently existing in the literature. It has been experimentally
shown [1,16] that specialized algorithms (provided with specialized data struc-
tures) have a better performance than database-oriented approaches. Hence, in

^ For example, any tuple can be randomly assigned to any value n between 0 and n.
In our experiment, we implemented the simple policy of specifying the test set n as
composed by all the tuples i such that mod{i, k) — n.

370 F. Giannotti and G. Manco

order to improve performance considerably, a thorough modification of the un-
derlying database abstract machine should be investigated. Notice in fact that,
wit h respect to ad hoc algorithms, when the programs specified in the previous
sections are executed on a logic abstract machine, the only available optimiza-
tions for such programs are the tradit ional deductive databases optimizations [7].
Such optimizations techniques, however, can be (and sometimes need to be) fur-
ther improved by adding ad-hoc optimizations.

To the purpose of this paper, it can be assumed to accept a reasonable wors-
ening in performance, by describing the aggregation formalism as a semantically
clean representation formalism, and demanding the computat ional effort to ex-
ternal ad-hoc inductive engines, in the style of [8,9]. This, however, is only a
part ial solution to the problem, in that more refined optimization techniques
can be adopted, as envisaged in [6]. Some interesting steps in this direction
have been made: e.g., [18] proposes an approach to the optimization of datalog
aggregation-based queries.

Another interesting way of coping with efficiency is that of identifying a set
of relevant features that can be transferred into more specialized and efficient
languages. As an example, [19] study how to provide relational database systems
wit h the mechanism of user-defined aggregates. This suggests that specialized
languages for mining/olap tasks could benefit of even a subset of the features of a
logic database language, easy to implement in an efficient way (such EIS, for exam-
ple, the mechanism of rules for describing the process, or s tandard inpu t /ou tput
interfaces for the interaction between mining and querying). However, a more
detailed discussion of such problems is postponed to future work.

References

1. R. Agrawal, S. Sarawagi, and S. Thomas. Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications. In Procs. of
ACM-SIGMOD'98, 1998.

2. J-F. Boulicaut, M. Klemettinen, and H. Mannila. Querying Inductive Databases:
A Case Study on the MINE RULE Operator. In Procs. 2nd European Conf. on
Principles and Practice of Knowledge Discovery in Databases (PKDD98), volume
1510 of Lecture Notes in Computer Science, pages 194-202, 1998.

3. J-F. Boulicaut, P. Marcel, and C. Rigotti. Query Driven Knowledge Discovery in
Multidimensional Data. In Procs. of the ACM international workshop on Data
warehousing and OLAP, pages 87-93, 1999.

4. C. Elkan. Boosting and Naive Bayesian Learning. In Procs. of the International
Conference on Knowledge Discovery and Data Mining (KDD-97), 1997.

5. U.M. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
Knowledge Discovery and Data Mining. AAA I Press/the MI T Press, 1996.

6. F. Giannotti and G. Manco. Querying Inductive Databases via Logic-Based User
Defined Aggregates. In Procs. of the 3rd European Conference on Principles and
Practice of Knowledge Discovery in Databases, number 1704 in Lecture Notes in
Artificia l Intelligence, pages 125-135, September 1999.

7. F. Giannotti, G. Manco, M. Nanni, and D. Pedreschi. Nondeterministic, Nonmono-
tonic Logic Databases. IEEE Trans, on Knowledge and Data Engineering, 2000.
To appear.

Making Knowledge Extraction and Reasoning Closer 371

8. F. Giannotti, G. Manco, M. Nanni, D. Pedreschi, and F. Turini. Integration of
deduction and induction for mining supermarket sales data. In Proceedings of
the International Conference on Practical Applications of Knowledge Discovery
(PADD99), April 1999.

9. F. Giannotti, G. Manco, M. Nanni, D. Pedreschi, and F. TYirini . Using Deduction
for Intelligent Data Analysis. Technical Report B4-1999-02, CNUCE Institute of
CNR, January 1999. Submitted for pubhcation.

10. F. Giannotti, D. Pedreschi, and C. Zaniolo. Semantics and Expressive Power
of Non Deterministic Constructs for Deductive Databases. In Journal of Logic
Programming, 1999.

11. J. Han. Towards On-Line Analytical Mining in Large Databases. Signnod Records,
27(1):97-107, 1998.

12. H. Mannila. Inductive databases and condensed representations for data mining.
In International Logic Programming Symposium,, pages 21-30, 1997.

13. D. Michie, D.J. Spiegelhalter, and C. Taylor. Machine Learning, Neural and Sta-
tistical Classification. Ellis Horwood, New York, 1994.

14. J. Mitchell. Machine Learning. McGraw-Hill, 1997.
15. S. Ceri R. Meo, G. Psaila. A New SQL-Like Operator for Mining Association

Rules. In Proceedings of The Conference on Very Large Databases, pages 122-133,
1996.

16. S. Ruggieri. Efficient C4.5. Technical report. Department of Computer Science,
University of Pisa, January 2000. Available at h. t tp: / /www-kdd.di .ui i ip i . i t.

17. W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for Data Min-
ing. In Advances in Knowledge Discovery and Data Mining, pages 375-398. AAA I
Press/The MI T Press, 1996.

18. D. Tsur et al. Query Flocks: A Generalization of Association-Rule Mining. In
Proc. ACM Conf. on Management of Data (Sigmod98), pages 1-12, 1998.

19. H. Wang and C. Zaniolo. User defined aggregates in database languages. In Seventh
International Workshop on Database Programming Languages, September 1999.

20. C. Zaniolo, N. Arni, and K. Ong. Negation and Aggregates in Recursive Rules:
The £!>£++ Approach. In Proc. 3rd Int. Conf. on Deductive and Object-Oriented
Databases (D00D9S), volume 760 of Lecture Notes in Computer Science, 1993.

21. C. Zaniolo and H. Wang. Logic-Based User-Defined Aggregates for the Next Gen-
eration of Database Systems. The Logic Programming Paradigm: Current Trends
and Future Directions. Springer Verlag, 1998.

Discovery of Relevant Weights
by Minimizing Cross-Validation Error

Kazumi Saitô and Ryohei Nakano'̂

1 NXT Communication Science Laboratories
2-4 Hikaridai, Seika, Soraku, Kyoto 619-0237 Japan

saito(Ocslab . keel . nt t .co.j p
^ Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan
nakeoiofflics .nltech, ac. jp

Abstract. In order to discover relevant weights of neural networks, this
paper proposes a novel method to learn a distinct squared penalty factor
for each weight as a minimization problem over the cross-validation error.
Experiments showed that the proposed method works well in discovering
a polynomial-type law even from data containing irrelevant vairiables and
a small amount of noise.

1 Introduction

Neural networks can be utilized as a core technique in some KDD (Knowledge
Discovery and Data mining) applications such as scientific discovery [2,1]. One
important research subject of neural networks is to improve the generalization
performance. Here the generalization means the performance on new data. It is
widely known that adding some penalty term to a standard training error term
can lead to significant improvements in network generalization. As for squared
penalty, a single penalty factor is often conveniently used. If we can develop
a method that automatically adjusts a distinct penalty factor for each weight,
several advantages can be expected, i.e., the generalization performance will be
still more improved; the readability of discovered laws wil l be improved; such
a squared penalty term is consistent with any linear scaling of variables; and
suitable penalty factors can be determined without inaccurate estimation,

2 Optimal Penalty Factor Calculation

Let (xi , , XK) y) be a vector of variables describing each example, where Xk
is a numeric or nominal explanatory variable and y is a numeric target vari-
able. Here we assume that each nominal explanatory variable is described as a
dummy variable. As a class of numeric formula y{x\ 0), we consider a generalized
polynomial expressed by

J K 3 I K \
t/(a;;0) =iOo + ^ u) j J|a;" *̂ = wo + X^wJj exp I ^lyjfclna;^ j , (1)

3=\ k=\ j = l \k=\ J

T. Terano, H.Liu, and A.L.P. Chen (Eds): PAKDD 2000, LNAI 1805, pp. 372-375, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Discovery of Relevant Weights by Minimizing Cross-Validation Error 373

where each parameter wj or Wjk is an unknown real number, and J is an un-
known integer corresponding to the number of terms. © is an M-dimensional
parameter vector constructed by arranging parameters Wjjj = 0, , J, and
Wjk,j = 1, , J,fc = I,- ,K. Let D = {{x'^,y'^),fj. = 1, , A }̂ be a set of
training examples, where A'' is the number of examples. Here we assume that
each training example {x^, y'^) is independent and identically distributed. Now,
our ultimate goal of the law discovery is defined as a problem of minimizing the
generalization error, that is, to find the optimal estimator 0* that minimizes

g{0*) = EDETiy''-y{x^;e*{D))f, (2)

where T = {x" ^y") denotes test data independent of the training data D. The
least-squares estimate of ©*, denoted by 0, minimizes the error sum of squares

However, this estimation is likely to over-fit to the training data; thus, we cannot
usually obtain good results in terms of the generalization performance.

As we have already mentioned, it is widely known that adding some penalty
term to Eq. (3) can lead to significant improvements in network generalization.
Here a simple penalized target function using a single factor is given as below.

M

£2{0)=£A0) + \eM^)Y.Ol, (4)
m=l

where exp(A) is a penalty factor and 6m G 0. Here since the penalty factor must
be non-negative, we adopted exp(A), instead of a standard parameterization A.

To improve both the generalization performance and the readability, we con-
sider a distinct penalty factor for each weight. Let A be an M-dimensional vector
(Ai , , AM)"^ , and A be an M-dimensional diagonal matrix whose diagonal el-
ements are defined by Amm = exp(Am) for m = 1, , M, where aF denotes a
transposed vector of a. Then, the discovery of laws subject to Eq. (1) can be de-
fined as the following learning problem in neural networks. That is, the problem
is to find the 0 that minimizes the following objective function for weights

S{0)=Si{0)^-\0'^A0. (5)

Now, we introduce an objective function for penalty factors derived from the
procedure of cross-validation, and propose MCV (Minimum Cross-Validation)
regularizer. The procedure of cross-validation divides the data D at random into
S distinct segments {Gs, s = 1, , 5), and uses 5—1 segments for training, and
uses the remaining one for the test. This process is repeated S times by changing
the remaining segment, and the generalization performance is evaluated by using
the following MSE (mean squared error) over all S test results.

MSEcv = ^J2T.{y''- y^^''-' ®«))' (6)
s = iv e G,

374 K. Saito and R. Nakano

Here @s denotes the optimal weights obtained by minimizing the following ob-
jective function for weights

^s{0s) = \Y.^y''- 2/(̂ '̂ ; 0«))' + \&'^sAes. (7)

The extreme case of 5 = A'' is known as the leave-one-out method, which is
often used for a small size of data. Note that Eq. (6) is regarded as a reasonable
approximation to Eq. (2) for a given data set D. According to the implicit
function theorem, since 0 , can be regarded as a vector consisting of implicit
functions of A, Eq. (6) can be defined as the objective function for penalty
factors. Thus, we can calculate A which minimizes Eq. (6). Then, by using A,
we can calculate & which minimizes Eq. (5). Finally, © is adopted as the final
weight vector of the discovered law.

3 Evaluation by Experiments

We consider an artificial law (function) described by

j / = 2 + 3 4 i : r 2 ° ' '' + 42;3i4°°2 (8)

where we have 9 numeric explanatory variables. Clearly, variables xs, , xg are
irrelevant to Eq. (8). Each example is generated as follows: each value of numeric
variables xi,- ,xg is randomly generated in the range of (0,1), and we get the
corresponding value of y by calculating Eq. (8) and adding Gaussian noise with a
mean of 0 and a standard deviation of 0.1. The number of examples is set to 200
(TV = 200). Before the analysis, the following scaling was applied to the variables:
y = {y — mean{y))/std{y), and Inxk = Inxk — mean(lnxfc), fc = 1, ,9.

In the experiments, the initial values for the weights Wjk were indepen-
dently generated according to a normal distribution with a mean of 0 and a
standard deviation of 1; the initial values for the weights Wj were set to 0.
The initial values for the penalty factors A were set to 0, i.e., A was set to
the identical matrix. The iteration was terminated when the gradient vector
was sufficiently small, i.e., maxm{||i9/9 m̂ '^(0)11} < 10"̂ for learning over 0;
max„{j |a/9A„ M5Ecv(A)| |} < lO"^ for learning over A.

MCV regularizer was compared with two conventional methods, no-penalty
method and single-factor method, where the objective functions of these con-
ventional methods are Eq. (3) and Eq. (4), respectively. Figure 1(a) shows the
learning results of these three methods, where the RMSE (root mean squared
error) was used for evaluation; the number of hidden units J was fixed at the
correct number 2; the cross-validation error was calculated by using the leave-
one-out method, i.e., S = N; and the generalization performance was measured
by using a set of noise-free 10,000 test examples generated independently to the
training examples. This figure shows that the RMSE for the training data was
almost the same for each method; both the RMSE for the cross-validation and
the RMSE for the test data were clearly decreased by using MCV regularizer;

Discovery of Relevant Weights by Minimizing Cross-Validation Error 375

IE (Rou t Msan Square d Error) panall y taclo r
cross - * [

 t ra in igH'^ ' I iSa i io S ^ ~ - ~ , , _ _ _ ^

 arro r M i r r o r ^ ^ J ^ ^ ^ ^ ^ ^ "

no penalt y sirrgi D laclo r MCV rsQularizo r

(a) performance of three methods

RMSE (Roat Mean Square d Error)
^ cross -

0.12 h traini g
0.1 [^"P r

o.os
Q.ne
0.04
0,02

Hidtfe n uni t 1 Hidde n uni t 2

(b) learning result of penally faclors

Fig. 1. Experimental results of artificial data

and the performance of the single factor method was almost comparable to those
of the no penalty method.

An example of the laws discovered by the no penalty method was as follows:

y = 2.0306
0.0203„+0,0035„-0.0029„+0.0073^+0.0056 +0.0010 +0.0022^-0.0036

X X, 4 X X. 6 3^7 Xo Xg
0.0002^+0.0011 4-- ̂QOQ':!^+00008„+0.0004„-1.0003 +0.0201„-0.0a05^-0.0011 -0.0002^-0.0002„

n ~ 0 - C / i 7 i ? 0 J /i X Q 3 '*^K R X y X o X (

where the weight values were rounded off to the fourth decimal place. Note that
these weight values were transformed so as to correspond to the original scale
of variables. Although a law almost equivalent to the true one was found, it is
difficul t to select only the relevant weights from this result. While an example
of the laws discovered by MCV regularizer was as follows:

y 2.0118
0.0000^+0.0019^+0.0007^+0.0000^+0.0000^+0.0000

XQ
-1-9 Q7Q9, r+0 -9941-0 .0190 „ -0 .0000 „ -0 .0000 +0.0019 +0.0007 +0 .0000„

I 16 iy I J^Jb-i "^ 2 X o x ^ "̂ ^ ^ " ' f i X ' T X i

, 0 Q Q Q 7 „ + 0 . 0 0 0 0 + 0 . 0 0 0 1 _ - 0 . 9 9 9 9 „ + 0 . 0 1 9 7 „ - 0 . 0 0 0 0 „ - 0 . 0 0 0 6 „ - 0 . 0 0 0 0 - , - 0 . 0 0 0 0 - . + 0 . 0 0 0 3
~T~0. y i / O I X i X o X' T 4 «*'c X e X y X Q X Q

Clearly, the irrelevant weight values were greatly suppressed.
Figure 1(b) shows the learning result of the penalty factors. This figure indi-

cates that only the penalty factors for the relevant weights became small enough,
i.e., we can easily select only the relevant weights. Therefore, it was shown that
the MCV regularizer simultaneously improves the generalization performance
and readability, without care of variable scaling and a candidate determination
for the penalty factors.

References

1. R. Nakano and K. Saito. Discovery of a set of nominally conditioned polynomials.
In Proc. 2nd Int. Conf. on Discovery Science, LNAI1721, pages 287-298, 1999.

2. K. Saito and R. Nakano. Law discovery using neural networks. In Proc. 15th Int.
Joint Conf. on Artificial Intelligence, pages 1078-1083, 1997.

Efficient and Comprehensible Local Regression

Luis Torgo

LIACC-FEP, University of Porto
R. Campo Alegre, 823 - 4150 Porto - Portugal

ltorgo@ncc.up.pt http://www.ncc.up.pt/~ltorgo

Abstract. This paper describes an approach to multivariate regression that aims
at improving the computational efficiency and comprehensibility of local
regression techniques. Local regression modeling is known for its ability to
accurately approximate quite diverse regression surfaces with high accuracy.
However, these methods are also known for being computationally demanding
and for not providing any comprehensible model of the data. These two
characteristics can be regarded as major drawbacks in the context of a typical
data mining scenario. The method we describe tackles these problems by
integrating local regression within a partition-based induction method.

1 Introduction

This paper describes a hybrid approach to multivariate regression problems.
Multivariate regression is a well known data analysis problem that can be loosely
defined as the study of the relationship between a target continuous variable and a set
of other input variables based on a sample of cases. In many important regression
domains we cannot assume any particular functional form for the model describing
this relationship. This type of problems demand for what is usually known as non-
parametric approaches. An example of such techniques is local regression modeling
(e.g. [3]). The basic idea behind local regression consists of delaying the task of
obtaining a model til l prediction time. Instead of fitting a single model to all given
data these methods obtain one model for each query case using only the most similar
training cases. As a result of this methodology these techniques do not produce any
visible and comprehensible model of the given training data. Moreover, for each
query point its "neighbors" have to be found, which is a time-consuming task for any
reasonably large problem. Still, these models are able to easily adapt to any form of
regression surface, which leads to large advantages in terms of their ability to
approximate a wide range of functions. In this paper we address the drawbacks of
local models by integrating them with regression trees.

2 Local Regression Modeling

According to Cleveland and Loader [3] local regression modeling traces back to the
19* century. These authors provide a historical survey of the work done since then. In

T, Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 376-379, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Efficient and Comprehensible Local Regression 377

this paper we focus on one particular type of local modeling, namely kernel
regression. Still, the described methodology is applicable to other local models.
Within kernel regression a prediction for a query case is obtained by an averaging
process over the most similar training cases. The central issue of these models is thus
the notion of similarity, which is determined using a particular metric over the

multidimensional space defined by the input variables. Given a data set {(x,,>',)}" _ ,

where x, is a vector of input variable values, a kernel model prediction for a query
case X, is obtained by,

/ ^ 1 « fdix- X]^ (1)

SKs,^,
Xy,

where.
d(.) is the distance function between two instances;
^r(.) is a kernel (weighing) function;
hisn bandwidth (or neighbourhood size) value;

n f'd{xj,\)
and SKs is the sum of all weights, i.e. SKs - ̂ K Ll_i_

In this work we have used an Euclidean distance function together with a gaussian
kernel (see [1] for an overview of these and other alternatives).

A kernel prediction can be seen as a weighed average of the target variable values
of the training cases that are nearer to the query point. Each of the training cases
within a specified distance (the bandwidth h) enter this averaging. Their weight is
inversely proportional to the distance to the query, according to the K{.) gaussian
function.

The classical definition of the knowledge discovery in databases [4] refers this
process as striving to identify valid, novel, potentially useful, and ultimately
understandable patterns in data. From the perspective of understandability the local
regression framework described above is very poor. Another characteristic of a
typical data mining problem is its high dimensionality, i.e. the large number of cases
and/or variables. Local modeling has a very high computational complexity if applied
as described above. In effect, the prediction for each query case demands a look-up
over all training cases to search for the most similar instances. This process has a
complexity of the order of O(nxv) for each test case, where n is the number of training
cases, and v is the number of variables.

3 Local Regression Trees

Regression trees (e.g. [2]) are non-parametric models that have as main advantages a
high computational efficiency and a good compromise between comprehensibility and
predictive accuracy. A regression tree can be seen as a partitioning of the input space.

378 L. Torgo

This partitioning is described by a hierarchy of logical tests on the input variables.
Standard regression trees usually assume a constant target variable value within each
partition.

The regression method we propose consists of using local regression in the context
of the partitions defined by a regression tree. The resulting model differs from a
regression tree only in prediction tasks. Given a query case we drop it down the tree
until a leaf is reached, as in standard regression trees. However, having reached a leaf
(that represents a partition) we use the respective training cases to obtain a kernel
prediction for the query case. From the perspective of local modeling these local
regression trees have two main advantages. Firstly, they provide a focusing effect,
that avoids looking for the nearest training cases in all available training data. Instead
we only use the cases within the respective partition, which has large computational
efficiency advantages. Secondly, the regression tree can be seen as providing a rough,
but comprehensible, description of the regression surface approximated by local
regression trees.

4 Experimental Evaluation

This section describes a series of experiments designed with the goal of comparing
local regression trees with kernel regression modeling. The goal of these experiments
is to compare the predictive accuracy of kernel models and local regression trees, and
also to assert the computational efficiency gains of the later. Regarding local
regression trees we have used exactly the same local modeling settings as for kernel
regression, the single difference being that one is applied in the leaves of the trees
while the other uses the information of all training set. The experimental methodology
used was a 10-fold cross validation (CV). The results that are shown are averages of
10 repetitions of 10-fold CV runs. The error of the models was measured by the mean
squared error (MSE) between the predicted and truth values. Differences that can be
considered statistically significant are marked by -i- signs (one sign means 95%
confidence and two 99% confidence). The best results are presented in bold face.

Table 1 shows the results of these experiments with three different domains. Close
Nikkei 225 and Close Dow Jones consist of trying to predict the evolution of the
Nikkei 225 and Dow Jones stock market indices for the next day based on
information of previous days values and other indices. Telecoinm is a commercial
telecommunications problem used in a study by Weiss and Indurkhya [7]. The two
former consist of 2399 observations each described by 50 input variables, while the
later contains 15000 cases described by 48 variables.

Table 1. Comparing local regression trees with kernel models.

MSE
CPU sec.

Close Nikkei 225
Local RT
140091.6

4.4

Kernel
125951.1

6.5
++
++

Close Dow Jones
Local RT

86.8
2.47

Kernel
214.5
6.66

-I-+

-i-i-

Telecomm
Local RT

42.40
63.57

Kernel
57.19
452.88

-H-

-l-l-

Efficient and Comprehensible Local Regression 379

The results in terms of predictive accuracy are contradictory. In effect, both two
methods achieve statistically significant (> 99% confidence) wins on different
domains. However, local regression trees are able to significantly outperform kernel
models in terms of computation efficiency, in spite of the small size of both the
training and testing samples. In effect, additional simulation studies with increasing
sample sizes have shown a more significant efficiency advantage of local regression
trees [6]. Further details on these and other experiments can be found in [5, 6].

5 Conclusions

Local regression is a well-known data analysis method with excellent modeling
abilities in a large range of problems. However, these techniques suffer from a high
computational complexity and by not obtaining any visible and comprehensible
model of the data. These can be considered major drawbacks in a typical data mining
scenario.

In this paper we have described local regression trees that can be regarded as a new
type of regression models that integrate a partition-based technique with local
modeling. Local regression trees provide the smoothing effects of local modeling
within the efficiency and comprehensibility of partition-based methods. Through the
use of kernel models in the leaves of a standard regression tree we are able to provide
a focusing effect on the use of kernel models with large advantages in the
computation necessary to obtain the predictions. At the same time, the partitioning
obtained with the tree can be regarded as a comprehensible overview of the regression
surface being used to obtain the predictions.

We have carried out a large set of experiments that confirmed that local regression
trees have an overwhelming advantage in terms of computation time with respect to
standard local modeling techniques. Moreover, we have observed significant
advantages in terms of predictive accuracy in several data sets.

References

L Atkeson,C.G., Moore,A.W., Schaal.S.: Locally Weighted Learning. Artificial Intelligence
Review, 11, 11-73. Special issue on lazy learning, Aha, D. (Ed.), 1997.

2. Breiman.L. , Friedman,J.H., 01shen,R.A. & Stone,C.J.: Classification and Regression Trees.
Wadsworth Int. Group, Belmont, California, USA, 1984.

3. CIeveland,W., Loader,C.: Smoothing by Local Regression: Principles and Methods (with
discussion). Computational Statistics, 1995.

4. Fayyad,U.,Shapiro,G.,Smyth,P.:From data mining to knowledge discovery: an overview. In
Advances in Knowledge Discovery and Data Mining, Fayyad et a/.(eds). AAAI Press
(1996).

5. Torgo, L.: Inductive Learning of Tree-based Regression Models. Ph.D. Thesis. Dept. of
Computer Science, Faculty of Sciences. University of Porto, 1999. Available at
http://www.ncc.up.pt/~ltorgo.

6. Torgo,L.: Efficient and Comprehensible Local Regression. LIACC, Machine Learning
Group, Internal Report n.99.2 , 1999. Available at http://www.ncc.up.pt/~ltorgo.

7. Weiss, S. and Indurkhya, N.: Rule-based Machine Learning Methods for Functional
Prediction. Journal of Artificial Intelligence Research (JAIR), 3, pp.383-403, 1995

Information Granules for Spatial Reasoning

Andrzej Skowron-', Jaroslaw Stepaniuk,̂ and Shusaku Tsumotô

^ Institute of Mathematics, Warsaw University,
Banacha 2, 02-097 Warsaw, Poland,

skowronOmimuw.edu.p i
^ Institute of Computer Science, Bialystok University of Technology,

Wiejska 45A, 15-351 Bialystok, Poland,
j StepanQii.pb.bialystok.p i

^ Department of Medical Informatics, Shimane Medical University
89-1 Enya-cho, Izumo-city, Shimane 693-8501 Japan

tsumotoScomputer.or g

Abstract. The aim of the paper is to present an outline of granular
computing framework for spatial reasoning. In our previous papers we
have discussed basic notions related to granular computing, namely the
information granule syntax and semantics as well as the inclusion and
closeness (similarity) relations of granules. Different information sources
(units, agents) are equipped with two kinds of operations on informar
tion granules: operations possessed by agents transforming tuples of in-
formation granules into new granules and approximation operations for
computing by agents information granule approximations delivered by
other agents. More complex granules axe constructed by means of these
operations from some input information granules.

1 Motivation

We would like to discuss briefly an example showing a motivation for our work
[10]. Let us consider a team of agents recognizing the situation on the road. The
aim is to classify a given situation as, e.g., dangerous or not. This soft speci-
fication granule is represented by a family of information granules called case
soft patterns representing cases, like cars are too close. The whole scene (ac-
tual situation on the road) is decomposed into regions perceived by local agents.
Higher level agents can reason about regions observed by team of their children
agents. They can express in their own languages features used by their children.
Moreover, they can use new features like attributes describing relations between
regions perceived by children agents. The problem is how to organize agents into
a team having, e.g., tree structure, with the property that the information gran-
ules synthesized by the team from input granules (being local perceptions of local
agents) will identify the situation on the road in the following sense: returned by
the team granule is sufficiently close to the soft specification granule if and only
if the situation on the road is dangerous and moreover, if any returned gran-
ule occurs to be sufficiently close to the specification granule then the relevant
case soft pattern is identified. The aim of our project is to develop foundations

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 380-383, 2000.
@ Springer-Verlag Berlin Heidelberg 2000

Information Granules for Spatial Reasoning 381

for this kind of reasoning. In particular it is necessary to give precise meaning
to the notions like: information granules, soft information granules, closeness of
information granules in satisfactory degree, information granules synthesized by
team of agents etc. The presented paper and its extension [8] realize the first
step towards this goal.

In Figure 1 the following entities are depicted:

— a specification soft granule represented by family of case soft granules gi,g2,
93,94;

— input granules igi,i92 representing actual local situations for agi,ag2;
— higher level granules describing situation received by fusion of granules per-

ceived by agi,ag2 taking into account the relationships between granules
and a context in which they appear;

— og,ogi,og2 granules returned by ag,agi,ag2, respectively; og is received by
performing an operation at ag on ogi,og2-

ogx

agi

^Si

Og2

agi

igi

Fig. 1. Illustrative Example

To sum up, we consider a set of agents Ag. Each agent is equipped with
some approximation spaces (defined using rough set approach [3]). Agents are
cooperating to solve a problem specified by a special agent called customer-agent.
The result of cooperation is a scheme of agents. In the simplest case the scheme

382 A. Skowron, J. Stepaniuk, and Sh. Tsumoto

can be represented by a tree labeled by agents. In this tree leaves are delivering
some information granules (representing of perception in a given situation by
leaf agents) and any non-leaf agent ag G Ag is performing an operation o [ag) on
approximations of granules delivered by its children. The root agent returns an
information granule being the result of computation by the scheme on granules
delivered by leaf agents. It is important to note that different agents use different
languages. Thus granules delivered by children agents to their father can be
usually perceived by him in an approximate sense before he can perform any
operation on delivered granules.

2 Information Granules

Methods for qualitative spatial reasoning [5], [2], [9], [1], [10] are closely related
to a paradigm Computing with Words recently formulated by Lotfi Zadeh [11],
[12]. Several attempts have been made to develop foundations for computing with
words[12]. Among them there is a rapidly growing area of granular computing
aiming to develop models for computing with information granules (see e.g. [4]).

They are two basic notions for granular computing: information granule and
calculus on information granules [4].

Notions of information granule [11], [4] and information granule similarity
(inclusion or closeness) are very useful for knowledge discovery. Informally speak-
ing, information granules can be treated as linked collections of objects drawn
together by the criteria of indiscernibility, similarity or functionality [11].

In [6], [7] several examples of complex information granules have been dis-
cussed. We have presented syntax, semantics, relations of inclusion Up and close-
ness dp for information granules and a general recursive scheme for construction
of more complex granules from simpler ones. In particular, the inclusion and
closeness relations for more complex granules are defined by extension of these
relations for the granules being parts of those complex granules.

In this paper we elaborate a general scheme for information granule construc-
tion in distributed systems introduced in [7]. We describe only the main idea of
our approach. The reader can find a more complete version in [8].

Teams of agents organized, e.g., along the schemes of decomposition of com-
plex objects (representing situations on the road) into trees. The trees are rep-
resented by expressions called terms. Two granules are defined being values of
t under the valuation val for any valuation val of leaf agents of a given term
t in the set of input granules. They are called the lower and upper approxima-
tions of t under val. The necessity to consider rather approximation of granule
returned by a given term t under a given valuation val than the exact value of t
under val is a consequence of the mentioned above ability of agents to perceive
in approximate sense only of information granules received from other agents.
Similarity relations extracted from data allow to measure the closeness of these
granules, in particular to the soft specification granule.

We consider problems of agent team (terms) synthesis for different tasks.
For example, we are looking for a strategy returning for any valuation val (rep-

Information Granules for Spatial Reasoning 383

resenting global situation) a term (agent team) t with the following property:
the lower and upper values of t under val are sufficiently close to a given soft
specification granule if and only if the global situation represented by val really
matches this specification.

We also emphasize [8] the problem of the robust granule construction. We use
some ideas from rough mereology [4] to specify the rules describing the ranges
in which parameters of granules being arguments of operations on granules can
be changed to assure that the results of the operations on these granules are
sufficiently close. We suggest that such rules should be extracted from data. The
construction of such robust granules seems to be important for spatial reasoning.

Progress in solving the above discussed problems is strongly dependent on
further results in foundations of granular computing including soft information
granule understanding, methods for measuring of different kinds of information
granule closeness or methods for information granule transformation.

Acknowledgments

This research was supported by the grants from the State Committee for Scien-
tifi c Research (KBN) and the Research Grant of the European Union - ESPRIT-
CHIT 2 No. 20288. Jaroslaw Stepaniuk has been supported by the KBN grant
No. 8 T l l C 023 15. Andrzej Skowron has been also partially supported by grant
of the Wallenberg fundation.

References

1. Diintsch I., Wang H., McCloskey S.: Relations Algebras in Qualitative Spatial
Reasoning, Fundamenta Informaticae 39(3), 1999, pp. 229-248.

2. Escrig M.T., Toledo F.: Qualitative Spatial Reasoning: Theory and Practice, lOS
Press, Amsterdam, 1998.

3. Pawlak Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers, Dordrecht, 1991.

4. Polkowski L., Skowron A.: Towards Adaptive Calculus of Granules, In: [12], vol.1,
pp. 201-227.

5. Roddick J.P., Spiliopoulou M.: A Bibliography of Temporal, Spatial, and Tem-
poral Data Mining Reseaxch, Newsletter of the Special Interest Group (SIG) on
Knowledge Discovery & Data Mining 1(1), pp. 34-38.

6. Skowron A., Stepaniuk J.: Towards Discovery of Information Granules, Lecture
Notes in Artificial Intelligence 1704, Springer-Verlag, 1999, pp. 542-547.

7. Skowron A., Stepaniuk J.: Information Granules in Distributed Environment, Lec-
ture Notes in Artificial Intelligence 1711, Springer-Verlag, 1999, pp. 357-365.

8. Skowron A., Stepaniuk J., Tsumoto S.: Information Granules for Spatial Reasoning,
Bulletin of International Rough Set Society 3/4 1999, pp. 147-154.

9. Sogo T,, Ishiguro H., Ishida T.: Acquisition of Qualitative Spatial Representation
by Visual Observation, IJCAI 1999, pp. 1054-1060.

10. WWW SPACENET page: http://agora.scs.leeds.ac.uk/spacenet/.
11. Zadeh L.A.: Fuzzy Logic = Computing with Words, IEEE Trans, on Fuzzy Systems

Vol. 4, 1996, pp. 103-111.
12. Zadeh L.A., Kacprzyk J. (Eds.): Computing with Words in Information/Intelligent

Systems vol.1-2, Physica-Verlag, Heidelberg, 1999.

Uncovering the Hierarchical Structure of Text
Archives by Using an Unsupervised Neural

Network with Adaptive Architecture

Dieter Merkl and Andreas Rauber

Institut fii r Softwaretechnik, Technische Universitat Wien
Favoritenstrafie 9-11/188, A-1040 Wien, Austria

www.ifs.tuwien.ac.at/~dieter www.ifs.tuwien.ac.at/~andi

Abstract. Discovering the inherent structure in data has beconae one of
the major cheillenges in data mining applications. It requires the devel-
opment of stable and adaptive models that are capable of hsindling the
typically very high-dimensional feature spaces. In this paper we present
the Growing Hierarchical Self-Organizing Map (GH-SOM), a neural net-
work model based on the self-organizing map. The main feature of this
extended model is its capability of growing both in terms of map size
as well as in a three-dimensional tree-structure in order to represent the
hierarchicfil structure present in a data collection. This capability, com-
bined with the stability of the self-organizing map for high-dimensional
feature space representation, makes it an ideal tool for data analysis sind
exploration. We demonstrate the potentistl of this method with an ap-
phcation from the information retrieval domain, which is prototypical
of the high-dimensional feature spaces frequently encountered in today's
applications.

1 Introduction

Today's information age may be characterized by constant massive production
and dissemination of written information. More powerful tools for exploring,
searching, and organizing the available mass of information are needed to cope
with this situation. An attractive way to assist the user in document archive
exploration is based on unsupervised artificial neural networks, especially self-
organizing maps [3], for document space representation. A number of reseeirch
publications show that this idea has found appreciation in the community [4,
5, 6, 7, 9, 13]. Self-organizing maps are used to visualize the similarity between
documents in terms of distances within the two-dimensional map display. Hence,
similar documents may be found in neighboring regions of the map.

Despite the large number of research reports on self-organizing map usage
for document archive representation, some difficulties remain untouched. First,
the determination of a suitable number of neurons requires some insight into the
structtire of the document archive. This cannot be assumed, however, in case of
unknown document collections. Thus, it might be helpful if the neural network
would be able to determine this number during its learning process. Second, hier-
archical relations between the input data are not mirrored in a straight-forward

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNAI1805, pp. 384-395,2000.
© Springer-Vetlag Berlin Heidelberg 2000

Uncovering the Hierarchical Structure of Text Archives 385

manner. Obviously, we should expect such hierarchical relations in document col-
lections where different subject matters are covered. The identification of these
hierarchical relations remains a highly important data mining task that cannot
be addressed conveniently within the framework of self-organizing map usage.

In order to overcome these two limitations of self-organizing maps we pro-
pose a novel neural network architecture in this paper, i.e. the growing hierar-
chical self-organizing map, GH-SOM for short. This neural network architecture
is capable of determining the required number of units during its unsupervised
learning process. Additionally, the data set is clustered hierarchically by relying
on a layered architecture comprising a nimaber of independent self-organizing
maps within each layer.

The remainder of this paper is organized as follows. In Section 2 we pro-
vide an outline of architecture and learning rule of the growing hierarchical
self-organizing map. Section 3 gives a description of the experimental data set,
namely a collection of articles from the Time Magazine. We provide results from
using both the self-organizing map and the growing hierarchical self-organizing
map with this data set in Section 4. Related work is briefly described in Section
5. Finally, we present our conclusions in Section 6.

2 Growing Hierarchical Self-Organizing Maps

The key idea of the growing hierarchical self-organizing map {GH-SOM) is to
use a hierarchical neural network structure composed of a number of individual
layers each of which consists of independent self-organizing maps {SOMs). In
particular, the neural network architecture starts with a single-unit SOM at
layer 0. One SOM is used at layer 1 of the hierarchy. For every imit in this layer
1 map, a SOM might be added to the next layer of the hierarchy. This principle
is repeated with the third and any further layers of the GH-SOM.

Since one of the shortcomings of SOM usage is its fixed network architecture
in terms of the number of units and their arrangement, we rather rely on an
incrementally growing version of the SOM. This relieves us from the burden of
predefining the network's size which is now determined during the unsupervised
training process according to the pecuUarities of the input data space. Pragmati-
cally speaking, the GH-SOM is intended to uncover the hierarchical relationship
between input data in a straight-forward fashion. More precisely, the similarities
of the input data are shown in increasingly finer levels of detail along the hi-
erarchy defined by the neural network architecture. SOMs at higher layers give
a coarse grained picture of the input data space whereas SOMs of deeper lay-
ers provide fine grained input discrimination. The growth process of the neural
network is guided by the so-called quantization error which is a measure of the
quality of input data representation.

The starting point for the growth process is the overall deviation of the input
data as measured with the single-unit SOM at layer 0. This unit is assigned a
weight vector mo, mo = [̂ Oi,A'02i i^o„]^ , computed as the average of all
input data. The deviation of the input data, i.e. the mean quantization error of

386 D. Merkl and A. Rauber

this single unit, is computed as given in Expression (1) with d representing the
number of input data x. We will refer to the mean quantization error of a unit
as mqe in lower case letters.

mqeo = - | |mo-a; || (1)

After the computation of mqeo, training of the GH-SOM starts with its first
layer SOM. This first layer map initially consists of a rather small number of
units, e.g. a grid of 2 x 2 units. Each of these units i is assigned an n-dimensional
weight vector rui, nii = [fii^jHi^,... ,fii^]'^, mi € 3t", which is initialized with
random values. It is important to note that the weight vectors have the same
dimensionahty as the input patterns.

The learning process of SOMs may be described as a competition among the
units to represent the input patterns. The unit with the weight vector being
closest to the presented input pattern in terms of the input spax;e wins the
competition. The weight vector of the winner as well as units in the vicinity
of the winner are adapted in such a way as to resemble more closely the input
pattern.

The degree of adaptation is guided by means of a learning-rate paxaineter
a, decreasing in time. The number of units that are subject to adaptation also
decreases in time such that at the beginning of the learning process a large
number of units around the winner is adapted, whereas towards the end only
the winner is adapted. These units are chosen by means of a neighborhood
function hd which is based on the units' distances to the winner as measured
in the two-dimensional grid formed by the neural network. In combining these
principles of 50M training, we may write the learning rule as given in Expression
(2), where x represents the current input pattern, and c refers to the winner at
iteration t.

rriiit + 1)= ruiit) + a{t) hci{t) [x(t) - mi(i)] (2)

In order to adapt the size of this first layer SOM, the mean quantization
error of the map is computed ever after a fixed number A of training iterations
as given in Expression (3). In this formula, u refers to the number of units i
contained in the SOM m. In analogy to Expression (1), mqCj is computed as
the average distance between weight vector rUi and the input patterns mapped
onto unit i. We will refer to the mean quantization error of a map as MQ E in
upper case letters.

M Q E ^ - i - V m q e , (3)
u —̂̂

i
The basic idea is that each layer of the GH-SOM is responsible for explaining

some portion of the deviation of the input data as present in its preceding layer.
This is done by adding units to the SOMs on each layer until a suitable size of
the map is reached. More precisely, the SOMs on each layer are allowed to grow
until the deviation present in the unit of its preceding layer is reduced to at least

Uncovering the Hierarchical Structure of Text Archives 387

a fixed percentage T^. Obviously, the smaller the parameter r ^ is chosen the
larger will be the size of the emerging SOM. Thus, as long as MQE ^ > Tm-mqeo
holds true for the first layer map m, either a new row or a new column of units
is added to this SOM. This insertion is performed neighboring the unit e with
the highest mean quantization error, mqeg, after A training iterations. We will
refer to this unit as the error unit. The distinction whether a new row or a new
column is inserted is guided by the location of the most dissimilar neighboring
unit to the error unit. Similarity is measured in the input space. Hence, we
insert a new row or a new column depending on the position of the neighbor
with the most dissimilar weight vector. The initialization of the weight vectors
of the new luiits is simply performed as the average of the weight vectors of the
existing neighbors. After the insertion, the learning-rate parameter a and the
neighborhood function hd are reset to their initial values and training continues
according to the standard training process of SOMs. Note that we currently use
the same value of the parcmieter Tm for each map in each layer of the GH-SOM. It
might be subject to further research, however, to search for alternative strategies,
where layer or even map-dependent quantization error reduction parameters are
utilized.

Consider Figure 1 for a graphical representation of the insertion of units.
In this figure the architecture of the SOM prior to insertion is shown on the
left-hand side where we find a map of 2 x 3 units with the error unit labeled
by e and its most dissimilar neighbor signified by d. Since the most dissimilar
neighbor belongs to another row within the grid, a new row is inserted between
units e and d. The resulting architecture is shown on the right-hand side of the
figure as a map of now 3 x 3 units.

Fig. 1. Insertion of units to a self-organizing map

As soon as the growth process of the first layer map is finished, i.e. MQE ^ <
Tm 'niqeQ, the units of this map are examined for expansion on the second layer.
In particular, those units that have a large mean quantization error will add
a new SOM to the second layer of the GH-SOM. The selection of these units
is based on the mean quantization error of layer 0. A parameter r^ is used to
describe the desired level of granularity in input data discrimination in the final
maps. More precisely, each miit i fulfillin g the criterion given in Expression (4)
wil l be subject to hierarchical expansion.

mqCj > r„ mqcQ (4)

388 D. Merkl and A. Rauber

The training process and unit insertion procedure now continues with these
newly established SOMs. The major difference to the training process of the
second layer map is that now only that fraction of the input data is selected for
training which is represented by the corresponding first layer unit. The strategy
for row or column insertion as weU as the termination criterion is essentially
the same as used for the first layer map. The same procedure is applied for any
subsequent layers of the GH-SOM.

The training process of the GH-SOM is terminated when no more units re-
quire further expansion. Note that this training process does not necessarily leaxl
to a balanced hierarchy, i.e. a hierarchy with equal depth in each branch. Rather,
the specific requirements of the input data is mirrored in that clusters might exist
that are more structured than others and thus need deeper branching. Consider
Figure 2 for a graphical representation of a trained GH-SOM. In particular, the
neural network depicted in this figm:e consists of a single-unit SOM at layer 0,
a SOM of 2 X 3 units in layer 1, six SOMs in layer 2, i.e. one for each unit in
the layer 1 map. Note that each of these maps might have a different number
and different arrangements of units as shown in the figure. Finally, we have one
SOM in layer 3 which was expanded from one of the layer 2 units.

Fig. 2. Architecture of a trained GH-SOM

To summarize, the growth process of the GH-SOM is guided by two parame-
ters Tu and Tm- The parameter r„ specifies the desired quality of input data rep-
resentation at the end of the training process. Each unit i with mqe, > r„ mqeg
wil l be expanded, i.e. a map is added to the next layer of the hieraxchy, in order
to explain the input data in more detail. Contrary to that, the parameter Tm
specifies the desired level of detail that is to be shown in a particular SOM. In
other words, new units are added to a SOM until the MQ E of the map is a
certain fraction, Tm, of the mqe of its preceding unit. Hence, the smaller Tm the
larger will be the emerging maps. Conversely, the larger r^ the deeper will be
the hierarchy.

Uncovering the Hierarchical Structure of Text Archives 389

3 Data Set

In the experiments presented hereafter we use the TIME Magazine article col-
lection available at http://www.ifs.tuwien.ac.at/ifs/research/ir as a reference doc-
ument archive. The collection comprises 420 documents from the TIME Mag-
azine of the early 1960's. The documents can be thought of as forming topical
clusters in the high-dimensional feature space spanned by the words that the
documents are made up of. The goal is to map and identify those clusters on
the 2-dimensional map display. Thus, we use full-text indexing to represent the
various documents according to the vector space model of information retrieval.
The indexing process identified 5923 content terms, i.e. terms used for document
representation, by omitting words that appear in more than 90% or less than
1% of the documents. The terms are roughly stemmed and weighted accord-
ing to a tf X idf, i.e. term frequency x inverse document frequency, weighting
scheme [14], which assigns high values to terms that are considered important in
describing the contents of a document. Following the featmre extraction process
we end up with 420 vectors describing the documents in the 5923-dimensional
document space, which are further used for neural network training.

4 Experimental Results

Figure 3 shows a conventional self-organizing map trained with the Times Article
Collection data set. It consists of 10 x 15 imits represented as table cells with a
number of articles being mapped onto each individual unit. The articles mapped
onto the same or neighboring units are considered to be similar to each other in
terms of the topic they deal with. Due to space considerations we cannot present
all the articles in the collection. We thus selected a number of tmits for detailed
discussion.

We find, that the SOMhas succeeded in creating a topology preserving repre-
sentation of the topical clusters of articles. For example, in the lower left corner
we find a group of units representing articles on the conflict in Vietnam. To
name just a few, we find articles T320, T369 on unit (14/1)\ TS90, T4I8,
T434 on unit (15/1) or T390, T4I8, T434 on unit (15/2) deaUng with the gov-
ernment crackdown on buddhist monks, next to a number of articles on units
(15/4), (15/5) and neighboring ones, covering the fighting and suffering during
the Vietnam War.

A cluster of documents covering affairs in the Middle-East is located in the
lower right corner of the map around unit (15/10), next to a cluster on the so-
called Profumo-Keeler affair, a political scandal in Great Britain in the 1960's,
on and around units (11/10) and (12/10). Above this area, on units (6/10) and
neighboring ones we find articles on elections in Italy and possible coalitions,
next to two units (3/10) and (4/10) covering elections in India. Similarly, all
other units on the map can be identified to represent a topical cluster of news

^ We use the notion (x/y) to refer to the unit located in row x and column y of the
map, starting with (1/1) in the upper left corner

390 D. Merkl and A. Rauber

T024
T086
TS42

MJIJ1JJI,IJ»I..!J.^HL.IJI,I1HI.1.. I

Fig. 3. 10 X 15 SOM oi the Time Magazine collection

articles. For a more detailed discussion of the articles and topic clusters found
on this map, we refer to [12] and the online-version of this map available at
http://www.ifs.tuwien.ac.at/ifs/research/ir.

While we find the SOM to provide a good topologically ordered representa-
tion of the various topics found in the article collection, no information about
topical hierajchies can be identified from the resulting flat map. Apart from this
we find the size of the map to be quite large with respect to the number of
topics identified. This is mainly due to the fact that the size of the map has to
be determined in advance, before any information about the number of topical
clusters is available.

To overcome these shortcomings we trained a growing hierarchical SOM.
Based on the artificial unit representing the means of all data points at layer 0,
the GH-SOM training algorithm started with a 2 x 2 SOM at layer 1. The
training process for this map continued with additional units being added until
the quantization error fell below a certain percentage of the overall quantization
error of the unit at layer 0. The resulting first-layer map is depicted in Figure 4.
The map has grown for two stages, adding one row and one column respectively,
resulting in 3 x 3 units representing 9 major topics in the document collection.

For convenience we list the topics of the various units, rather then the in-
dividual articles in the figure. For example, we find unit (1/1) to represent all
articles related to the situation in Vietnam, whereas Middle-East topics are cov-

Uncovering the Hierarchical Structure of Text Archives 391

r^ r i4 i I lc ipa: th iS0HU b Dlikla J Ufarv y P n j i d - t l m a

f^ Ed4 ^ Convttnmkr

1 « «f 3 A *. '^ ^
1 ma.- Rt̂ on i i«i i » H sik e wic« * Rtt

^ J * B K * I 1 < W A Oft ldcjtt ' . F .vv : ; . v,..- . - -

M * | u l R a , L K y « r 1 H C - i O k

Hk ^

n C " A ^ "i^W '

T / ^ | ! D«p«rt [i t« f i t o f ^ o f l w u t T H h t i d l o ^

Vt«ia L \Jn\WM\.j «^ T«hiielQ.j ^

HLtrarchictdl y Growin g S O M -»

VuHann

2S vt idA l

! AAKL SiKihAHKt^

lnde{>cndGn « a fN iban i

32 tstKitt

liktyle, U-tsfifiitj L l^SCKi t t

1 ^ j .J50 M j ii3.£-3 W

Ce4liti«nit , PvliiRwci l
SixLi t GtiAp , Nibtfc ^ t.<tw^

! 3 a 5 5 Q M j

w j f

Lajfe r 1

] i i i } ,ST[i t

?< vtjC)4 f

61. I f lKl t J

1 l i j j a u

* *t:a » £3 ^ 1

Fig. 4. Layer 1 of the GH-SOM

ered on unit (1/3), or articles related to elections and other political topics on
unit (3/1) in the lower left corner to name but a few.

Based on this first separation of the most dominant topical clusters in the
article collection, further maps were automatically trained to represent the var-
ious topics in more detail. This results in 9 individual maps on layer 2, each
representing the data of the respective higher-layer unit in more detail. Some
of the units on these layer 2 maps were further expanded as distinct SOMs in
layer 3.

The resulting layer 2 maps are depicted in Figure 5. Please note, that -
according to the structure of the data - the maps on the second layer have
grown to different sizes, such as a small 2 x 2 map representing the articles of
unit (3/1) of the first map, up to 3 x 3 maps for the units (2/1), (3/2) and
(3/3). TaJfing a more detailed look at the first map of layer 2 representing unit
(1/1) of layer 1 we find it to give a clearer representation of articles covering
the situation in Vietnam. Units (1/1) and (2/1) on this map represent articles
on the fighting during the Vietnam War, whereas the remaining units represent
articles on the internal conflict between the catholic government and buddhist
monks. At this layer, the two units (1/2) and (3/2) have further been expanded
to form separate maps with 3 x 3 units each at layer 3. These again represent
articles on the war and the internal situation in Vietnam in more detail.

To give cinother example of the hierarchical structures identified during the
growing hierarchical SOM trciining process, we may take a look at the 2 x 3

392 D. Merkl and A. Rauber

T14S
T302
T519

T 3 32
T 5 08

T3d4
T 4 15

T029
TOSl
T0S3
T338
Taes
T313
T464
T470
T518
T545
T559
T'134

T 4 es
T 5 33

T 3 20
T334
T 3 90
T396
T414
T 4 18

m a p:
T021
TD28
T048
T058
TD65
TlOO
T358

Tdd^
T109
T192
T a 24
T3T3

m a p;
T149
T151
T159
T302
T321
T403
T546
T547
T563

T082
T238
T462
T477

TiV i
T336
T407
T438

m a p;
T l l O
T254
T391
T427
T442
T47JS
T525
Tssa

mop:
T190
T28a
T297
T408
T4B7
T524

map:
T057
T214
T237
T286
T289
TS02
T549
map:
T123
T133
T160
T176
T321
T562

T 0 40
T055
T063
T105
T196
T 2 40
T265
T288
T341
T417
T4B7
T512
T526
map;
T170
T315
T324
T337
T342
T384
T369
T529

TiVa
T476
T493
T533

T182
T198
T388
T400

map:
T024
T070
T096
T 1 30
T242
T304
T413
T424
T501
T3C0

map:
T043
TIOT
T230
T24T
T278
T331
T348
T485
T530

TMfi
T i e 2
T282
T31B

T 2 96

Til l
T174
T385
T422
T53a

T094
T203
T304
T303
T335
TSSQ
T443
T479

T25a
T370
T299

T049
T098
T175
T188
T201
T 2 2i
T226
T227
T281
T284
T306

T034
T : O 6

T34a
T 4 ao
T 4 90
T301
T311
T39B

T050
T113
T263
T277
T382
T541
T556

ris4
T444
TS35

T276

T 2 79
T461
T 5 37
T553

T316

T243
T280
TS43

T334
TS44
T 5 6i

T030
TOSS
T119
T220
T322
T36e
T326
T355

1033
T095
T181
T34fl
T551

TD23
T 0 e9
T084
T097
T U 8
Tiaa
T223
T370
T437
T514

T120
T150
T180
T218
T219
T234
T3CI9
T406
T431

T093
T i a 2
T195
T349
T259
TS28
m a p;
T020
T091
T U 3
T184
T300
T310
T368
T412
T494

map:
T031
T235
T336
T274
T386
T330
T496
T503
T5S2

T161
T189
T258
T298
T307
T360

T064
T129
T147
T1T3
T217
T251
T 3 i a
T a i a
T356
T359
T430
T527

Toafl
T 1 40
T 2 a3
T29S
map:
T 1 57
T i a 3
T187
T315
T339
T25a
T268
T2S3
T 3 98
T509
T522

TOflfl
T I 3 8
T333
T459

T6«6
T087
T1D4
T131
T294

Toea
T185
T446

mop.-
TOfll
T067
T122
T26T
T300
T 3 «l
T411

T053
T i 4 e
T153
T1B3
T275

T l D l
T34e
T351
T364
T365
T381
T 3 94
T473
mop:
T 0 25
T 0 54
T 3 53
T 4 49
T 4 72
T 5 50
T 3 57

7236
T244
T24S
T34T

TM3
T 3 80
T393
T404

T257
T30S
T491

T 0 18
T042
T 1 38
T 1 86
T 1 78
T194
T 4 26
T 5 39
TS42

T13S
T171
T345
T 3 2»
T495
T521

T64!l
T134
T250
T425
T44S

T 1 02
T 1 28
T 1 43
T 1 58
T172
T19T
T 2 «l
T 2 92
T3aT
T402

T U B
T131
T 3 23
T 4 e3
T471
T504

T 0 45
T071
T072
T 0 88
T 0 86
T 1 99
T331
T 2 60

T019
T137
T233
T264
T383
T384
TS07

T463
T438

T017
T12e
T183
T213
T287
T308
T317
T540

T088
T108
T116
T145
T341
T263
T401
T313

mop:
T144
Tiea
T332
T367
T388
T40S
T535

T047

Ti n
T181
T492
T811
T55S

Fig. 5. Layer 2 of the GH-SOM: 1 50M per unit of layer 1 SOM

map representing the articles of unit (3/1) of the first layer map. Al l of these
articles were found to deal with political matters on layer 1. This common topic
is now displayed in more detciil at the resulting second-layer map. For example,
we find unit (1/3) to represent articles on the elections in India. Next to these,
we find on units (1/2) and (2/3) articles covering the elections and discussions
about poUtical coalitions between socialists and christian democrats in Italy. The
remaining 3 units on this map deal with different issues related to the Profumo-
Keeler scandal in Great Britain, covering the pohtical hearings in parliament as

Uncovering the Hierarchical Structure of Text Archives 393

well as background information on this scandal and the persons involved. Again,
some of the units have been expanded at a further level of detail forming 3 x 2
or 3 X 3 SOMs on layer 3.

For comparing the GH-SOM with its flat counterpart we may identify the
locations of the articles on the 9 second-layer maps on the corresponding 10 x 15
SOM. This allows us to view the hierarchical structure of the data on the flat
map. We find that, for example, the cluster on Vietnam simply forms one larger
coherent cluster on the flat map in the lower left corner of the map covering
the rectangle spanned by the units (14/1) and (15/5). The same applies to the
cluster of Middle-East affairs, which is represented by the map of unit (1/3) in the
growing hierarchical SOM. This cluster is mainly located in the lower right corner
of the flat SOM. The cluster of political affairs, represented by unit (3/1) on the
first layer of the GH-SOM and represented in more detail on its subsequent layers,
is spread across the right side of the flat SOM, covering more or less all units on
columns 9 and 10 and between rows 3 and 12. Note, that this common topic of
political issues is not easily discernible from the overall map representation in the
flat SOM, where exactly this hierarchical information is lost. The subdivision of
this cluster on political matters becomes further evident when we consider the
second layer classification of this topic airea, where the various sub-topics are
clearly separated, covering Indian elections, Italian coaUtions cind the British
Profumo-Keeler scandal.

As another interesting feature of the GH-SOM we want to emphasize on is
the overall reduction in map size. During analysis we found the second layer of
the GH-SOM to represent the data at about the same level of topical detail as
the corresponding flat SOM. Yet the number of units of all individual second-
layer SOMs combined is only 87 as opposed to 150 units in the flat 10 x 15
SOM. Of course we might decide to train a smaller flat SOM of, say 9 x 10
units. However, with the GH-SOM model, this number of units is determined
automatically, and only the necessary number of units is created for eax;h level
of detail representation required by the respective layer. Furthermore, not all
branches are grown to the same depth of the hierarchy. As can be seen from
Figure 5, only some of the units are further expanded in a layer 3 map. With
the resulting maps at all layers of the hierarchy being rather small, activation
calculation and winner evaluation is by orders of magnitude faster than in the
conventional model. Apart from the speedup gained by the reduced network size,
orientation for the user is highly improved as compared to the rather huge maps
which can not be easily comprehended as a whole.

5 Related Work

A number of extensions and modiflcations have been proposed over the years in
order to enhance the applicability of SOMs to data mining, specifically cluster
identification. Some of the approaches, such as the U-Matrix [15], or the Adaptive
Coordinates and Clxister Connection techniques [8] focus on the detection and
visuaUzation of clusters in conventional SOMs. Similar cluster information can

394 D. Merkl and A. Rauber

also be obtained using our LabelSOM method [11], which automatically describes
the characteristics of the various units. Grouping units that have the same de-
scriptive keywords assigned to them allows to identify topical clusters within the
SOM map area. However, none of the methods identified above facilitates the
detection of hierarchical structure inherent in the data.

The hierarchical feature map [10] addresses this problems by modifying the
SOM network architecture. Instead of training a flat SOM map, a balanced
hierarchical structure of SOMs is trained. Similar to our GH-SOM model, the
data mapped onto one single unit is represented at some further level of detail in
the lower-level map assigned to this unit. However, this model rather pretends to
represent the data in a hierarchical way rather than really reflecting the structure
of the data. This is due to the fact that the architecture of the network has to
be defined in advance, i.e. the number of layers and the size of the maps at each
layer is fixed prior to network training. This leads to the definition of a balanced
tree which is used to represent the data. What we want, however, is a network
architecture definition based on the actual data presented to the network. This
requires the SOM to actually use the data available to define its axchitecture,
the required levels in the hierarchy and the size of the map at each level, none
of which is present in the hierarchical feature map model.

The necessity of having to define the size of the SOM in advance has been
addressed in several models, such as the Incremental Grid Growing [1] or Grow-
ing Grid [2] models. The latter, similar to our GH-SOM model, adds rows and
columns during the training process, starting with an initial 2 x 2 SOM. How-
ever, the main focus of this model lies with an equal distribution of input signals
across the map, adding units in the neighborhood of imits that represent an un-
proportionally high number of data points. It does thus not primarily reflect the
concept of representation at a certain level of detail, which is rather expressed
in the overall quantization error rather then the number of data points mapped
onto certain areas. The Incremental Grid Growing model, on the other hcind, can
add new units only on the borders of the map. Neither of this models, however,
takes the inherently hierarchical structure of data into account.

6 Conclusions

We have presented the Growing Hierarchical Self-Organizing Map (GH-SOM), a
neural network based on the self-organizing map (SOM), a model that has proven
to be effective for cluster analysis of very high-dimensional feature spaces. Its
main benefits are due to the model's capabilities to (1) determine the number of
neural processing units required in order to represent the data at a desired level
of detail and (b) to create a network architecture reflecting the hierarchical struc-
ture of the data. The resulting benefits are numerous: first, the processing time
is largely reduced by training only the necessary number of units for a certain
degree of detail representation. Second, the GH-SOM by its very architecture
resembles the hierarchical structure of data, allowing the user to understand
and analyze large amounts of data in an explorative way. Third, with the vari-

Uncovering the Hierarchical Structure of Text Archives 395

ous emergent maps at each level in the hierarchy being rather small, i t is easier
for the user to keep an overview of the various clusters identified in the data
and to build a cognitive model of it in a very high-dimensional feature space.
We have demonstrated the capabilities of this approach by an application from
the information retrieval domain, where text documents, which are located in
a high-dimensional feature space spaxmed by the words in the documents, are
clustered by their mutual similarity and where the hierarchical structure of these
documents is reflected in the resulting network architecture.

References

1. J. Blackmore and R. Miikkulainen. Incremental grid growing: Encoding high-
dimensional structure into a two-dimensional feature map. In Proc. of the IEEE
Int'l. Conf. on Neural Networks (ICNN'93), San Francisco, CA, USA, 1993.

2. B. Pritzke. Growing grid - a self-organizing network with constant neighborhood
range and adaption strength. Neural Processing Letters, 2, No. 5 : 1 - 5, 1995.

3. T. Kohonen. Self-Organizing Maps. Springer Verlag, Berlin, Germany, 1995.
4. T. Kohonen. Self-organization of very leirge document collections: State of the art.

In Proc Int'l Conf on Artificial Neural Networks, Skovde, Sweden, 1998.
5. X. Lin, D. Soergel, and G. Marchionini. A self-organizing semantic map for in-

formation retrieval. In Proc. Int'l ACM SIGIR Conf. on R & D in Information
Retrieval, Chicago, IL , 1991.

6. D. Merkl. Text clcissification with self-organizing maps: Some lessons lesirned. Neu-
rocomputing, 21(1-3), 1998.

7. D. Merkl. Text data mining. In A Handbook of Natural Language Processing: Tech-
niques and Applications for the Processing of Language as Text. Marcel Dekker,
New York, 1998.

8. D. Merkl and A. Rauber. Alternative ways for cluster visualization in self-
organizing maps. In Proc. of the Workshop on Self-Organizing Maps (WSOM97),
Helsinki, Finland, 1997.

9. D. Merkl and A. Rauber. Uncovering associations between documents. In Proc.
International Joint Conference on Artificial Intelligence (IJCAI99), Stockholm,
Sweden, 1999.

10. R. Miikkulainen. Script recognition with hierarchical feature maps. Connection
Science, 2:83 - 101, 1990.

11. A. Rauber and D. Merkl. Automatic labeling of self-organizing maps: Making a
treasure map reveal its secrets. In Proc. 4th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD99), Beijing, China, 1999. Springer Verlag.

12. A. Rauber and D. Merkl. Using self-organizing maps to organize document col-
lections Eind to characterize subject matters: How to make a map tell the news of
the world. In Proc. 10th Int'l Conf. on Database and Expert Systems Applications
(DEXA99), Florence, Italy, 1999.

13. D. Roussinov and M. Ramsey. Information forage through adaptive visualization.
In Proc. ACM Conf on Digital Libraries 98 (DL98), Pittsburgh, PA, USA, 1998.

14. G. Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley, Reading, MA, 1989.

15. A. Ultsch. Self-organizing neural networks for visualization and classification. In
Information and Classification. Concepts, Methods and Application. Springer Ver-
lag, 1993.

Mining Access Patterns Efficiently
from Web Logs *

Jian Pei, Jiawei Han, Behzad Mortazavi-asl, and Hua Zhu

School of Computing Science, Simon FYaser University, Canada
{pel j laii,han,mortazav ,hzhua}Qcs. sf u. ca

Abs t rac t. With the explosive growth of data avaiilable on the World
Wide Web, discovery and analysis of useful information from the World
Wide Web becomes a practical necessity. Web access pattern, which is the
sequence of accesses pursued by users frequently, is a kind of interesting
and useful knowledge in practice.
In this paper, we study the problem of mining access patterns from Web
logs efficiently. A novel data structure, called Web access pat tern
t ree, or WAP-tree in short, is developed for efficient mining of access
patterns from pieces of logs. The Web access pattern tree stores highly
compressed, critical information for access pattern mining and facilitates
the development of novel algorithms for mining access patterns in large
set of log pieces. Our algorithm can find access patterns from Web logs
quite efficiently. The experimental and performance studies show that
our method is in general an order of magnitude faster than conventional
methods.

1 Introduction

Wit h the explosive growth of da ta available on the World Wide Web, discovery
and analysis of useful information from the World Wide Web becomes a practical
necessity. Web mining is the application of da ta mining technologies to huge
Web da ta repositories. Basically, there are two domains that perta in to Web
mining: Web content mining and Web usage mining. The former is the process
of extract ing knowledge from the content of Web sites, whereas the latter, also
known as Web log mining, is the process of extract ing interesting pat terns in
Web access logs.

Web servers register a Web log entry for every single access they get, in which
important pieces of information about accessing are recorded, including the URL
requested, the I P address from which the request originated, and a t imestamp.
A fragment of log file is shown as follows.

pm21sl5. intergate.bc.ca - - [06/0ct/1999:00:00:09 -0700] "GET / HTTP/1.1" 200 5258
"http://vrew.sfii.ca/academic_programs.htm" "Hozi l la/4. 0 (compatible; HSIE 4 .01; Windows 95)"

pm21sl5. intargata.bc.ca [06/Dct/1999:00:00: ll -0700] "GET / images/bu l le ts /bsqs .g if
HTTP/1.1" 200 489 "http://www.cs.8fu.ca/" "Hozi l la/4. 0 (compatible; MSIE 4 .01; Windows 95)"

* The work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (grant NSERC-A3723), the Networks of Centres of Excellence of
Canada (grant NCE/IRIS-3), and the Hewlett-Packard Lab.

T. Terano, H.Liu , and A.L.P. Chen (Eds.): PAKD D 2000, LNA I 1805, pp. 396-407, 2000.
© Springer-Verlag Berli n Heidelberg 2000

Mining Access Patterns Efficiently from Web Logs 397

There are many efforts towards mining various patterns from Web logs, e.g.
[4,11^15]. Web access patterns mined from Web logs are interesting and use-
ful knowledge in practice. Examples of applications of such knowledge include
improving designs of web sites, analyzing system performance as well as net-
work communications, understanding user reaction and motivation, and building
adaptive Web sites [5,10,13,14].

Essentially, a Web access pattern is a sequential pattern in a large set of
pieces of Web logs, which is pursued frequently by users. Some research efforts
try to employ techniques of sequential pattern mining [2], which is mostly based
on association rule mining [1], for discovering Web access patterns from Web
logs.

Sequential pattern mining, which discovers frequent patterns in a sequence
database, was first introduced by Agrawal and Srikant [2] as follows: given a
sequence database where each sequence is a list of transactions ordered by trans-
action time and each transaction consists of a set of items, find all sequential
patterns with a user-specified minimum support, where the support is the number
of data sequences that contain the pattern.

Since its introduction, there have been many studies on efficient mining tech-
niques and extensions of sequential pattern mining method to mining other time-
related frequent patterns [2,12,8,7,3,9,6].

Srikant and Agrawal [12] generalized their definition of sequential patterns in
[2] to include time constraints, sliding time window, and user-defined taxonomy
and developed a generalized sequential pattern mining algorithm, GSP, which
outperforms their AprioriAII algorithm [2]. GSP mines sequential patterns by
scanning the sequence database multiple times. In the first scan, it finds all
frequent 1-items and forms a set of 1-element frequent sequences. In the following
scans, it generates (step-wise longer) candidate sequences from the set of frequent
sequences and check their supports. GSP is efficient when the sequences are
not long as well as the transactions are not large. However, when the length
of sequences increase and/or when the transactions are large, the number of
candidate sequences generated may grow exponentially, and GSP will encounter
difficulties.

Al l of the above studies on time-related (sequential or periodic) frequent
pattern mining adopt an Apriori like paradigm, which promotes a generate-and-
test method: first generate a set of candidate patterns and then test whether
each candidate may have sufficient support in the database (i.e., passing the
minimum support threshold test). The Apriori heuristic is on how to generate a
reduced set of candidates at each iteration.

However, as these algorithms are level-wise, Apriori -like in nature, they en-
counter the same difficulty when the length of the pattern grows long, which is
exactly the case in Web access pattern mining. In Web log mining, the length of
Web log pieces can be pretty long, while the number of such pieces can be quite
huge in practice.

In this paper, we investigate the issues related to efficiently mining Web access
from large set of pieces of Web log. The main contributions are as follows. First,

398 J. Pei et al.

a concise, highly compressed WAP-tree structure is designed and implemented
which handles the sequences elegantly. Second, an efficient mining algorithm,
WAP-mine , is developed for mining the complete (but nonredundant) Web access
patterns from large set of pieces of Web log. Third, a performance study has
been conducted which demonstrates that the WAP-mine algorithm is an order
of magnitude faster than its Apriori -based counterpart for mining Web access
patterns.

The remaining of the paper is organized as follows. The problem is defined in
Section 2, while the general idea of our novel method is presented in Section 3.
Section 4 and 5 focus on construction WAP-tree and mining the tree, respectively.
We show the experimental results and conclude the paper in Section 6.

2 Problem Statement

In this paper, we focus on mining Web access patterns. In general, a Web log
can be regarded as a sequence of pairs of user identifier and event. In this inves-
tigation, Web log files are divided into pieces per mining purpose. Preprocessing
can be applied to the original Web log files, so that pieces of Web logs can be
obtained. Each piece of Web log is a sequence of events from one user or session
in timestamp ascending order, i.e. event happened early goes first. We model
pieces of Web logs as sequences of events, and mine the sequential patterns over
certain support threshold.

Let £ be a set of events. A Web log piece or (Web) access sequence
S = 6162 e„ (ej G E) for (1 < i < n) is a sequence of events, while n is
called the length of the access sequence. An access sequence with length n is
also called an n-sequence. Please note that it is not necessary that ej ̂ BJ for
{i y ̂j) in an access sequence S. Repetition is allowed. For example, aab and ab
are two different access sequences, in which a and b are two events.

Access sequence S' = e'l Cg eJ is called a subsequence of access sequence
S = 6162 Bn, and S a super-sequence of S', denoted as S' C S, if and only if
there exist 1 < ii < i2 < < ii < n, such that e'- = ei ̂ for {I < j < I). Access
sequence S' is a proper subsequence of sequence S, denoted as S' C S, if and
only if S' is a subsequence of S and S' ̂ S.

In access sequence S = 6162 efcCfe+i e„, if subsequence Ssuffix —
Cfc+i e„ is a super sequence of pattern P = e[e'2 -Cj, and ek+i = e[, the
subsequence of S, Sprefix = 6162 efc, is called the prefix of S with respect to
pattern P.

Given a set of access sequence WAS = {81,82, ,Sm}, called Web ac-
cess sequence database, in which Si {1 < i < m) are access sequences. The
support of access sequence S in WAS is defined as supw_A.s{S) = ' ̂ ^'^
supw^siS) is also denoted as sup{S) if WAS is clear from the context. A se-
quence 8 is said a ^-pat tern or simply (Web) access pa t t e rn of >V^<S, if
supwAs{8) > ^. Please note that the access sequences in a Web access sequence
database need not be of the same length. Although events can be repeated in an
access sequence or pattern, any pattern can get support at most once from one
access sequence.

Mining Access Patterns Efficiently from Web Logs 399

Problem Statement. The problem of Web access pattern minin g is: given
Web access sequence database WAS and a support threshold ^, mine the complete
set of ^-patterns of WAS.

Example 1. Let {a, b, c, d, e, / } be a set of events, and 100, 200, 300, and 400 are
identifiers of users. A fragment of Web log records the information as follows.

<100, a)(100, f>)(200, a)(300,6)(200,6)(400, a)(100, a){400,6)(300, a)(100, c)

(200, c)(400, a) (200, a) (300,6) (200, c)(400, c)(400, c)(300, a) (300, c)

A preprocessing which divides the log file into access sequences of individual
users is applied to the log file, while the resulting access sequence database,
denoted as WAS, is shown in the first two columns in Table 1.

There are totally 4 access sequences in the database. They are not with same
length. The first access sequence, abdac, is a 5-sequence, while ah is a subsequence
of it. In access sequence of user 200, both e and eaebc are prefixes with respect
to ac. fc is a 50%-pattern because it gets supports from access sequence of user
300 and 400. Please note that even fc appears twice in the access sequence of
user 400, afbacfc, but the sequence contributes only one to the count of fc.

Table 1. A database of Web access sequences.

User ID

100
200
300
400

Web Access Sequence

abdac
eaebcac
babfaec
afbacfc

Frequent subsequence

abac
abcac
babac
abacc

3 WAP-mine : Mining Access Pat te rns Efficiently from
Web Logs

Access patterns can be mined using sequential pattern mining techniques. Al-
most all previously proposed methods for sequential pattern mining are based
on a sequential pattern version of Apriori heuristic [1], stated as follows.

Property 1. (Sequential Pattern Apriori) Let S£Q be a sequence database,
if a sequence G is not a ^-pattern of S£Q, any super-sequence of G cannot be a
^-pattern of SSQ.

For example, " / " is not a 75%-pattern of WAS in Example 1, thus any access
sequence containing "/" , cannot be a 75%-pattern.

The sequential pattern Apriori property may substantially reduce the size of
candidate sets. However, because of the combinatorial nature of the sequential

400 J. Pei et al.

pattern mining, it may still generate a huge set of candidate patterns, especially
when the sequential pattern is long, which is exactly the case of Web access
pattern mining.

This motivates us to study alternative structures and methods for Web access
pattern mining. The key consideration is how to facilitate the tedious support
counting and candidate generating operations in the mining procedure.

Our novel approach for mining Web access patterns is called WAP-mine . It
is based on the following heuristic, which follows Property 1.

Property 2. (Suffix heuristic) If e is a frequent event in the set of prefixes of
sequences in WAS, w.r.t. pattern P, sequence eP is an access pattern of WAS.

For example, 6 is a frequent event within the set of prefixes w.r.t. ac in
Example 1, so we can claim that bac is an access pattern.

Basically, the general idea of our method can be summarized as follows.

— A nice data structure, WAP-tree , is devised to register access sequences and
corresponding counts compactly, so that the tedious support counting can
be avoided. It also maintains linkages for traversing prefixes with respect
to the same suffix pattern efficiently. A WAP-tree registers all and only all
information needed by the rest of mining. Once such a data structure is
built, all the remaining mining processing is based on the WAP-tree . The
original access sequence database is not needed any more. Because the size
of WAP-tree is usually much smaller than that of the original access sequence
database, as shown later, the mining becomes easier. As shown in Section 4,
the construction of WAP-tree is quite efficient by simply scanning the access
sequence database twice.

— An efficient recursive algorithm is proposed to enumerate access patterns
from WAP-tree . No candidate generation is required in the mining proce-
dure, and only the patterns with enough support will be under considera-
tion. The philosophy of this mining algorithm is conditional search. Instead
of searching patterns level-wise as Apriori, conditional search narrows the
search space by looking for patterns with the same suffix, and count frequent
events in the set of prefixes with respect to condition as suffix. Conditional
search is a partition-based divide-and-conquer method instead of bottom-up
generation of combinations. It avoids generating large candidate sets.

The essential structure of the WAP-mine algorithm is as follows. The algo-
rithm scans the access sequence database twice. In the first pass, it determines
the set of frequent events. An event is called a frequent event if and only if
it appears in at least (̂ |W./15|) access sequences of WAS, in which |W.4<S[
and ^ denotes the number of access sequences in WAS and the support thresh-
old, respectively. In the next scan, WAP-mine builds a tree data structure, called
WAP-tree , using frequent events, to register all count information for further
mining. Then, WAP-mine recursively mine the WAP-tree using conditional search
to find all Web access patterns. An overview of the algorithm is given in Algo-
rithm 1.

Mining Access Patterns Efficiently from Web Logs 401

Algor i thm 1 (WAP-mine : mining access pa t te rns in Web access se-
quence database)
Input : access sequence database WAS and support threshold ^ (0 < ^ < 1).
Output : the complete set of ^-patterns in WAS.
Method:

1. Scan WAS once, find all frequent events.
2. Scan WAS again, construct a WAP-tree over the set of frequent events for

using Algorithm 2, presented in Section 4;
3. Recursively mine the WAP-tree using conditional search, which will be pre-

sented in Section 5.

There are two key techniques in our method, constructing WAP-tree and min-
ing access patterns from WAP-tree . They are explored in detail in the following
two sections. Section 4 focuses on the concept and the construction of WAP-tree ,
while Section 5 investigates the mining of access patterns from WAP-tree .

4 Construct ion of WAP-tree

The following observations may help us design a highly condensed Web access
pattern tree.

1. Of all the 1-sequences, only the frequent ones will be useful in the construc-
tion of frequent fc-sequences for any k > 1. Thus, if an event e is not in the
set of frequent 1-sequences, there is no need to include e in the construction
of a Web access pattern tree.

2. If two access sequences share a common prefix P, the prefix P can be shared
in the WAP-tree . Such sharing can bring some advantages. It saves some
space for storing access sequences and facilitates the support counting of
any subsequence of the prefix P.

Based on the above observations, a Web access pa t te rn t ree structure, or
WAP-tree in short, can be defined as follows.

1. Each node in a WAP-tree registers two pieces of information: label and count,
denoted as label : count. The root of the tree is a special virtual node with
an empty label and count 0. Every other node is labeled by an event in the
event set E, and is associated with a count which registers the number of
occurrences of the corresponding prefix ended with that event in the Web
access sequence database.

2. The WAP-tree is constructed as follows: for each access sequence in the
database, filter out any nonfrequent events, and then insert the resulting
frequent subsequence into WAP-tree . The insertion of frequent subsequence
is started from the root of WAP-tree . Considering the first event, denoted
as e, increment the count of child node with label e by 1 if there exists one;
otherwise create a child labeled by e and set the count to 1. Then, recur-
sively insert the rest of the frequent subsequence to the subtree rooted at
that child labeled e.

402 J. Pei et

3. Auxiliary node linkage structures are constructed to assist node traversal in
a WAP-tree as follows. All the nodes in the tree with the same label are linked
by shared-label linkages into a queue, called event-node queue, The event-
node queue of with label Cj is also called Cj-queue. There is one header
table 7i for a WAP-tree , and the head of each event-node queue is registered
inW.

Example 2. Let's consider the access sequence database in Example 1. Suppose
the support threshold is set to 75%, i.e. it is required to find all Web access
patterns supported by at least three access sequences in the database.

One scan of the database derives the set of frequent 1-events: {a, 6, c} . For
convenience, the frequent subsequences are listed in the rightmost column of
Table 1.

Header Tabel IK<»< Header Tabel (Roof)

Conditional WAP-treelac

Conditional WAP-treeIc

WAP-tree

Fig. 1. The WAP-tree and conditional WAP-tree for frequent subsequences in Table 1.

The WAP-tree is shown in Figure 1, which is constructed as follows. First,
insert the sequence abac into the initial tree with only one virtual root. It creates
a new node [a : 1) (i.e., labeled as a, with count set to 1) as the child of the
root, and then derives the a-branch "(a : 1) —> (6 : 1) —> (a : 1) ^ (c : 1)",
in which arrows point from parent nodes to children ones. Second, insert the
second sequence abcac. It starts at the root. Since the root has a child labeled
o, o's count is increased by 1, i.e., (a : 2) now. Similarly, we have {b : 2). The
next event, c, does not match the existing node a, and a new child node c : 1 is
created and inserted. The remaining sequence insertion process can be derived
accordingly.

The algorithm for constructing a WAP-tree for Web access sequences is given
in Algorithm 2.

Algorith m 2 (WAP-tree Construct ion for Web access sequences)
Input : A Web access sequence database WAS and the set of frequent events
FE (which is obtained by scanning WAS once).
Output : an WAP-tree T.

Mining Access Patterns Efficiently from Web Logs 403

Method:

1. Create a root node for T;
2. For each access sequence S in the access sequence database WAS do

(a) Extract frequent subsequence S' from S by removing all events appearing
in S but not in FE. Let S' = siS2 s„, where Si {1 < i < n) are events
in S'. Let current-node point to the root of T.

(b) For i = 1 to n do, if current-node has a child labeled Sj, increase the
count of Si by 1 and make currentjnode point to 5 ,̂ else create a new
child node (sj : 1), make current-node point to the new node, and insert
it into the s,-queue.

3. Return(T);

Analysis: The WAP-tree registers all access sequence counts. As will be shown
in later sections, the mining process for all Web access patterns needs to work
on the WAP-tree only, instead of on the original database any more. Therefore,
WAP-mine needs to scan the access sequence database only twice. It is easy to
show that the height of the WAP-tree is one plus the maximum length of the
frequent subsequences in the database. The width of the WAP-tree , i.e. the
number of leaves of the tree, is bounded by the number of access sequences in
the database. Therefore, WAP-tree may not generate explosive number of nodes.
Access sequences with same prefix will share some upper part of path from root.
Statistically, considering the factor of prefix sharing, the size of WAP-tree is much
smaller than the size of access sequence database.

From Algorithm 2, the construction of WAP-tree , one can observe an impor-
tant property of WAP-tree stated as follows.

Lemma 1. For any access sequence in an access sequence database WAS, there
exists a unique path in the WAP-tree starting from the root such that all labels
of nodes in the path in order is exactly the same as the events in the sequence.

This lemma ensures that the number of distinct leaf nodes as well as paths in
an WAP-tree cannot be more than the number of distinct frequent subsequences
in the access sequence database, and the height of the WAP-tree is bounded by
one (for the root) plus the maximal number of instances of frequent 1-events in
an access sequence.

I t is easy to show that a WAP-tree can be partitioned and structured in the
form similar to B-|—tree, and can be implemented even in pure SQL. Therefore,
WAP-tree as well as mining using WAP-tree are highly scalable.

5 Mining Web Access Pat terns from WAP-tree

The WAP-tree structure constructed by Algorithm 2 provides some interesting
properties which facilitate mining Web access patterns.

Property 3. (Node-link property) For any frequent event e,, all the frequent
subsequences contain Cj can be visited by following the Cj-queue, starting from
the record for Ci in the header table of WAP-tree .

404 J. Pei et al.

The property facilitates the access of all the pattern information related to
frequent event Cj by following the all branches in WAP-tree linked by ej-queue
only once. For any node labeled e, in an WAP-tree , all nodes in the path from
root of the tree to this node (excluded) form a prefi x sequence of a. The count
of this node labeled Cj is called the count of the prefix sequence.

Please note that a path from root may have more than one node labeled
ei, thus a prefix sequence of ej may contain another prefix sequence of ej. For
example, sequence aba is a prefix sequence of "6" in abab, it contains another
prefix sequence of "6", a. when counting ab in sequence abab, we must maice sure
no double counting, i.e. abab contributes only 1 to the count of ab. It is achieved
by the concept of unsubsumed count as follows.

Let G and H be two prefix sequences of Cj, and G is also formed by the sub-
path from root of that H is formed by, H is called a super-prefix sequence
of G, and G is a sub-prefix sequence of H. For instance, aba is a super-prefix
sequence of a.

For a prefix sequence of ej without any super-prefix sequences, we define the
unsubsumed count of that sequence as the count of it. For a prefix sequence
of ej with some super-prefix sequences, the unsubsumed count of it is the count
of that sequence minus unsubsumed counts of all its super-prefix sequences. For
example, let 5 = (a : 6) -^ (6 : 5) ^ (a : 2) —> (6 : 2) be one path from root,
the unsubsumed count of the first a, a prefix sequence of b, in the path should
be 3 instead of 5, since two of the totally five counts in the first b node devotes
to the super-prefix sequence aba of a.

Property 4- (Prefix sequence unsubsumed count property) The count of a
sequence G ended with ê is the sum of unsubsumed counts of all prefix sequences
of Ci which is a super-sequence of G.

Based on the above two properties, we can apply conditional search to
mine all Web access patterns using WAP-tree . What "conditional search" means,
instead of searching all Web access patterns at a time, it turns to search Web
access patterns with same suffix. Suffix is used as the condition to narrow the
search space. As the suffix becomes longer, the remaining search space becomes
smaller potentially.

The conditional search paradigm has some advantages against Apriori -like
ones. The node-link property of WAP-tree ensures that, for any frequent event
ej, all sequences with suffix e, can be visited efficiently using the Cj-queue of the
tree. On the other hand, the prefix sequence unsubsumed count property makes
sure that to count all frequent events in the set of sequences with same suffix,
only caring the unsubsumed count is sufficient. That simplifies the counting op-
erations. These two properties of WAP-tree make the conditional search efficient.

The basic structure of mining all Web access patterns in WAP-tree is as fol-
lows. If the WAP-tree has only one branch, all (ordered) combinations events
in the branch are all the Web access patterns in the tree. So what needs to
be done is just to return the complete set of such combinations. Otherwise, for
each frequent event e, in the WAP-tree , by following the ej-queue started from
header table, an ej-conditional access sequence base is constructed, denoted

Mining Access Patterns Efficiently from Web Logs 405

as PS I Cj, which contains all and only all prefix sequences of Cj. Each prefix
sequence in PS \ ej carries its count from the WAP-tree , For each prefix se-
quence of gj with count c, when it is inserted into PS \ e ,̂ all of its sub-prefix
sequences of Cj are inserted into PS \ ti with count — c. It is easy to show that
by accumulating counts of prefix sequences, a prefix sequence in PS \ e, holds
its unsubsumed count. Then, the complete set of Web access patterns which are
prefix sequence of Ci can be mined by concatenating ei to all Web access patterns
returned from mining the conditional WAP-tree , and ê itself.

The algorithm is given as follows.

Algorith m 3 (Minin g all Web access pa t te rns in a WAP-tree)
Input : a WAP-tree T and support threshold ^.
Output : the complete set of ^-patterns.
Method:

1. if the WAP-tree T has only one branch, return all the unique combinations
of nodes in that branch.

2. initialize Web access pattern set WAP = 0. Every event in WAP-tree T itself
is a Web access pattern, insert them into WAP.

3. for each event ej in WAP-tree T,
(a) construct a conditional sequence base of Cj, i.e. PS j ej, by following the

Ci-queue, count conditional frequent events at the same time.
(b) if the the set of conditional frequent events is not empty, build a condi-

tional WAP-tree for ej over PS | Ci using algorithm 2. Recursively mine
the conditional WAP-tree

(c) for each Web access pattern returned from mining the conditional
WAP-tree , concatenate ei to it and insert it into WAP

4. return WAP.

Example 3. Let us mine the Web access patterns in the WAP-tree in Figure 1.
Suppose the support threshold is set to 75%. We start the conditional search
from frequent event c. The conditional sequence base of c is listed as follows.

aha : 2,ab : l,abca : l,ab : —1, baba : l,abac : l,aba : —1

To be qualified as a conditional frequent event, one event must have count 3.
Therefore, the conditional frequent events are a(4) and 6(4). Then, a conditional
WAP-tree , WAP-tree | c, is built, as also shown in Figure 1.

Recursively, the conditional sequence base of ca is built. It is a6 : 3,6 : 1, a6 :
1,6 : —1. The WAP-tree | a is built, also shown in Figure 1. There is only one
branch in the conditional tree, so all combinations are generated. Thus, the Web
access patterns with suffix ac are aac, bac, abac, ac.

Then, we can construct the conditional sequence base for 6 in WAP-tree | c,
and mine the conditional WAP-tree . The frequent patterns a6c, be can be found.

At this point, the conditional search of c is finished. We can use other frequent
events in turn, to find all the other Web access patterns.

406 J. Pei et al.

Following the properties presented ahead and considering the enumerating
of access patterns in Algorithm 3, the correctness of WAP-mine can be shown.

Theorem 1. WAP-mine returns the complete set of access patterns without re-
dundancy.

As can be seen in the example, and shown in our experiments, mining Web
access patterns using WAP-tree has significant advantages. First, the WAP-tree is
an effective data structure. It registers all count information for pattern mining,
and frees the mining process from counting candidates by pattern matching.
Secondly, the conditional search strategies narrow the search space efficiently,
and make best uses of WAP-tree structure. It avoids the overwhelming problems
of generating explosive candidates in Apriori -like algorithms.

6 Performance Evaluation and Conclusions

Experiments are pursued to compare the efficiency of WAP-mine and GSP, the
algorithm proposed in [12]. The dataset for experiment is generated based on
the principle introduced in [2]. All experiments are conducted on a 450-MHz
Pentium PC machine with 64 megabytes main memory, running Microsoft Win-
dows/NT. All the programs are written in Microsoft/Visual C+-I- 6.0.

Run time (sec.) Run time (sec.)

WAP-mm

GSP

Support threshold ('
Number of access sequences in Web access sequence database (k)

Fig. 2. Experimental results.

The experimental results are shown in Figure 2. We compare the scalabilities
of our WAP-mine and GSP, with threshold as well as the number of access se-
quences in the database. The experimental result shows that WAP-mine outper-
forms GSP in quite significant margin, and WAP-mine has better scalability than
GSP. Both WAP-mine and GSP show linear scalability with the number of access
sequences in the database. However, WAP-mine outperforms GSP.

In conclusion, WAP-tree is an effective structure facilitating Web access pat-
tern mining, and WAP-mine outperforms GSP based solution in a wide margin.

Mining Access Patterns Efficiently from Web Logs 407

The success of WAP-tree and WAP-mine can be credited to the compact structure
of WAP-tree and the novel conditional search strategies.

We beUeve that, with certain extensions, the methodology of WAP-tree and
WAP-mine can be applied to attack many data mining tasks efficiently such as
sequential pat tern mining and episode mining.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
1994 [nt. Conf. Very Large Data Bases, pages 487-499, Santiago, Chile, September
1994.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf.
Data Engineering, pages 3-14, Taipei, Taiwan, March 1995.

3. C. Bettini, X. Sean Wang, and S. Jajodia. Mining temporal relationships with
multiple granularities in time sequences. Data Engineering Bulletin, 21:32-38, 1998.

4. R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining World
Wide Web browsing patterns. In Journal of Knowledge & Information Systems,
Vol.1, No.l, 1999.

5. J. Graham-Cumming. Hits and misses: A year watching the Web. In Proc. 6th Int'l
World Wide Web Conf., Santa Clara, Cahfornia, April 1997.

6. J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time
series database. In Proc. 1999 Int. Conf. Data Engineering (ICDE'99), pages 106-
115, Sydney, Australia, April 1999.

7. H. Lu, J. Han, and L. Feng. Stock movement and n-dimensional inter-transaction
association rules. In Proc. 1998 SIGMOD Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD'98), pages 12:1-12:7, Seattle, Washing-
ton, June 1998.

8. H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1:259-289, 1997.

9. B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proc.
1998 Int. Conf Data Engineering (ICDE'98), pages 412-421, Orlando, FL, Feb.
1998.

10. M. Perkowitz and O. Etzioni. Adaptive sites: Automatically learning from user
access patterns. In Proc. 6th Int'l World Wide Web Conf., Santa Clara, Cahfornia,
Apri l 1997.

11. M. Spiliopoulou and L. Faulstich. WUM: A tool for Web utilization analysis.
In Proc. 6th Int'l Conf. on Extending Database Technology (EDBT'98), Valencia,
Spain, March 1998.

12. R. Srikant and R. Agrawal. Mining quantitative association rules in large relational
tables. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, pages H 2 ,
Montreal, Canada, June 1996.

13. T. Sullivan. Reading reader reaction: A proposal for inferential analysis of Web
server log files. In Proc. 3rd Conf. Human Factors & The Web, Denver, Colorado,
June 1997.

14. L. Tauscher and S. Greeberg. How people revisit Web pages: Empirical findings and
implications for the design of history systems. In Int 'I Journal of Human Computer
Studies, Special Issue on World Wide Web Usability, 47:97-138, 1997.

15. O. Zaiane, M. Xin, and J. Han. Discovering Web access patterns and trends by
applying OLAP and data mining technology on Web logs. In Proc. Advances in
Digital Libraries Conf. (ADL'98), Melbourne, Austraha, pages 144-158, April 1998.

A Comparative Study of Classification Based Personal
E-mail Filtering

Yanlei Diao, Hongjun Lu', and Dekai Wu

Department of Computer Science
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{diaoyl,luhj,dekai}@cs.ust.h k

Abstract. This paper addresses personal E-mail filtering by casting it in the
framework of text classification. Modeled as semi-structured documents, E-
mail messages consist of a set of fields with predefined semantics and a number
of variable length free-text fields. While most work on classification either
concentrates on structured data or free text, the work in this paper deals with
both of them. To perform classification, a naive Bayesian classifier was
designed and implemented, and a decision tree based classifier was
implemented. The design considerations and implementation issues are
discussed. Using a relatively large amount of real personal E-mail data, a
comprehensive comparative study was conducted using the two classifiers. The
importance of different features is reported. Results of other issues related to
building an effective personal E-mail classifier are presented and discussed. It is
shown that both classifiers can perform filtering with reasonable accuracy.
While the decision tree based classifier outperforms the Bayesian classifier
when features and training size are selected optimally for both, a carefully
designed naive Bayesian classifier is more robust.

1 Introduction

As the Internet grows at a phenomenal rate, electronic mail (abbreviated as E-mail)
has become a widely used electronic form of communication on the Internet.
Everyday, a huge number of people exchange messages in this fast and inexpensive
way. With the excitement on electronic commerce growing, the usage of E-mail wil l
increase more dramatically. However, the advantages of E-mail also make it overused
by companies, organizations or people to promote products and spread information,
which serves their own purposes. The mailbox of a user may often be crammed with
E-mail messages some or even a large portion of which are not of interest to her/him.
Searching for interesting messages everyday is becoming tedious and annoying. As a
consequence, a personal E-mail filter is indeed needed.

The work on building an E-mail filter can be cast into the framework of text
classification: An E-mail message is viewed as a document, and a judgement of

 The second author's work is partially supported by a grant from the National 973 project of
China (No. G1998030414).

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 408-419, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Comparative Study of Classification Based Personal E-mail Filtering 409

interesting or not is viewed as a class label given to the E-mail document. While text
classification has been well explored and various techniques have been reported [2, 3,
7], empirical study on the document type of E-mail and the features of building an
effective personal E-mail filter in the framework of text classification is only modest.

Along the line of empirical study on E-mail classification, Fredrik Kilander
summarized real users' suggestions and opinions on what should be the important
properties in classifying electronic texts and messages [4]. A preliminary study
claimed that threading electronic mail [6] could only gain partial success based on
structured information. A significant level of effectiveness could be achieved by
applying standard text matching methods to the textual portions. A prototype, Smokey
[12], combined natural language processing and sociolinguistic observations to
identify insulting messages. This work differed from general electronic text
classification, focusing mainly on language processing. A Bayesian approach to
filtering junk E-mail was presented in [11]. It considered domain specific features in
addition to raw text of E-mail messages. Elaborating on commercial junk E-mail, it
enhanced the performance of a Bayesian classifier by handcrafting and incorporating
many features indicative of junk E-mail. William Cohen compared a "traditional IR"
method based on TF-IDF (Term Frequency — Inverse Document Frequency)
weighting and a new method for learning sets of "keyword-spotting rules" based on
the RIPPER rule learning algorithm [1]. The experiments, however, were only
conducted with a relatively small number of data sets of real users. The issues related
to building an effective E-mail classifier were not fully considered either.

The work reported in this paper was motivated by our belief that to realize an
effective personal E-mail filter in the framework of text classification, the following
issues should be fully taken into account.
 An E-mail filter is personalized and the knowledge used by each personal filter is

subjective. Therefore, classifying personal E-mail messages is more challenging
than using a priori knowledge to filter commercial junk messages that are often
characterized by symbols and words like '$', "free", "saving", etc.

 An in depth study on the distinct type of E-mail documents is needed to make full
use of the information embedded in them. Feature selection is the key issue.

 Typical text classification techniques should be examined and compared to enable
better understanding of the capabilities and characteristics of these techniques to
perform the task of a personal E-mail filter.

 A relatively large amount of real E-mail data from individuals with different
interests should be used in experiments.
For the problem of classifying E-mail documents, the objects to be classified are

semi-structured textual documents consisting of two portions. One portion is a set of
structured fields with well-defined semantics and the other portion is a number of
variable length sections of free text. We would like to emphasize this feature in our
study because information from both portions is important. In the case of E-mail
messages, the fields in the mail header such as the sender and the recipient are very
informative when we determine how interesting the message part is. On the other
hand, the interestingness of an E-mail message from the same sender also depends on
the content of the body message. However, not many text classifiers take both
portions into consideration. For example, the classic document clustering techniques
in information retrieval seldom consider the contents of structured fields. On the other

410 Y. Diao, H. Lu, and D. Wu

hand, conventional classification techniques may not be effective when dealing with
variable length free text.

There have been a number of approaches developed for classification. We selected
two most popular approaches, naive Bayesian classification [5, 8] and decision trees
[9] to classify personal E-mail messages. The naive Bayesian approach was chosen
because it is widely used in text processing. Decision tree was chosen because of its
effectiveness in classifying relational data. For the naive Bayesian approach, a
classifier based on previous work with some extensions was designed and
implemented. For the decision tree approach, we implemented a classifier based on
the widely used C4.5 system [10].

A series of experiments were conducted on a relatively large amount of real
personal E-mail data. The behaviors of the two classification approaches were
compared and discussed in detail. We find that both approaches provide reasonable
performance in terms of recall rate and classification accuracy. Decision tree
outperforms Bayesian a littl e when features and training size are selected optimally
for both. However, the naive Bayesian classifier is more robust with respect to the
size and class disparity of training data.

The remainder of the paper is organized as follows. Section 2 discusses the
modeling and features of E-mail messages. Section 3 presents our design and
implementation of a naive Bayesian classifier and a decision tree based classifier for
E-mail filtering. The experiments and results are presented in Section 4. Finally
Section 5 concludes the paper with discussions on future work.

2 Document Model

In this section, we describe how E-mail documents are modeled and how features are
selected to perform personal E-mail filtering.

2.1 Modeling Semi-structured Documents

In a broad sense. E-mail messages are semi-structured documents that possess a set of
structured fields with predefined semantics and a number of variable length free-text
fields. In a formal way, such a document can be represented as Fig. 1.

Field 1 to Field s are structured fields and usually contain information pertaining to
the document, such as authorship, date, organization, layout of the text body, etc. As
the major contents of the document. Field s+1 to Field s+t are variable length free-
text fields, such as subject area, abstract, the body and references. While most
classification work focuses on either the structured part or the text part, we argue that
both the structured fields and the free-text portion could contain important
information for determining the class to which a document belongs. Therefore, a
classifier to serve the purpose should be able to include features from both the
structured fields and the free text.

A Comparative Study of Classification Based Personal E-mail Filtering 411

Field 1:
Field 2:

Field s: —
Field s+1:

Field s+t:

Structured fields

Variable length
free-text fields

Fig. 1. Modeling Semi-structured Documents

2.2 Modeling Electronic Mail

In general. E-mail messages belong to the board class of semi-structured documents.
Therefore they inherit the characteristics of possessing two portions of fields. In
particular, they have some unique features. In addition to the structured fields and free
text, there is evidence showing that domain specific information implicit in text fields
is useful to improve the classification accuracy in certain applications. For example,
Sahami et. al. reported that, there are many particular features of E-mail that help
determine if a message is junk or not [11]. Such features include phases like "Free
Money", and over-emphasized punctuation, such as "!!!" . Since a feature in the free-
text part normally refers to a single word, these particular features are treated as the
third type, handcrafted features. To make full use of the information in an E-mail
message, we generated all three types of features for each document.
 Structured features: features represented by structured fields in the header part of

an E-mail document. In this work, six structured features were generated. They are
SenderDomain (the domain of a sender, such as .com and .edu), SenderAddress
(the E-mail address of a sender). Recipient (single recipient, in a group with the
name mentioned, or via a mailing list). Date, MailType (replied, forwarded or sent
directly), and ContentType (having attachment or not).

 Textual features: features explicitly contained in a free text section. In this work,
only words consisting of alphabetic letters (no numbers or symbols) were counted
into the vocabulary. Furthermore, a standard stop list was used to remove those
words insignificant to classification. Simple stemming was also applied to reduce
the vocabulary size.

 Handcrafted features: features obtained by preprocessing the documents.
Heuristically six features were handcrafted. They are (I) the number of
exclamation marks, (2) the number of dollar signs, (3) the number of http links, (4)
the length of the message, (5) the length of the subject line, and (6) the occurrence
of words indicative of not interesting E-mail in the subject area (a list of such
words was collected in advance).
The usefulness of each type of features in different classifiers will be discussed in

detail in experiments.

412 Y. Diao, H. Lu, and D. Wu

3 Two Classifiers

3.1 A Naifve Bayesian Classifier

The Bayesian learning approach views a text document as a bag of words. For a naive
Bayesian classifier to work effectively, two conditions should be satisfied. First any
word inside a document occurs independently. Second, there is no linear ordering of
the word occurrences. Although these two assumptions may not hold in real cases,
naive Bayesian classifiers do provide good performance in a lot of applications [3, 8].

Two different generative models, the multi-variate Bernoulli model and the
multinomial model under the Bayesian framework were reported in [8]. Experimental
results show the multinomial model usually outperforms the multi-variate Bernoulli
model when vocabulary size is large or chosen optimally for both. Thus, we adopted
the multinomial model with a littl e simplification as shown from formula (1) to (4).

The following symbols are used in the rest part of this paper. C\... Q are a set of
class labels of a class variable C. Dj... D„ are a set of training documents. Fi... F„
represent a set of features in a given document. The class label of a document D' is
determined as follows:

C = arg max̂ PiC ̂ | D') = arg max̂ P{D' \ Q) / ' (Q). (1)

Since a document is represented by a set of features {F\... FJ, with the naive
Bayes assumption that each feature in a document occurs independently, we have;

C = arg max, P{F, | C,)P{F ̂ | C,)...P(F„ \ C,)P(.C,). (2)

With a given set of labeled samples (the training data), the training process
calculates Bayes-optimal estimates for all the parameters. Here the estimation of the
probability of feature Fj on condition of class k and each class prior are obtained as
follows:

P(Fj\C,)-

P(C,)

l + ^^!^,N(Fj,D,)PiC,\D^) (3)

\V\+'Sl,l!S,NiF„D,)PiC,\D,)'

SLESE1>(^-A)/'(C,|D,)

Here A'(F,., D.) is the number of occurrences of feature F, in document D., P(Q |
D)={0,1] is given by the class label of that document, |£>| denotes the number of

training documents and ^^}iPiF,\C,^) = l. To handle the probability of non-
occurring features in the training data, add-by-one smoothing is used. \V\ is the
vocabulary size.

Note that we are classifying E-mail messages that are distinct in document type. A
feature involved in classification could be either a word in the text portion or a certain
property (structured feature or handcrafted feature) associated to the document.

A Comparative Study of Classification Based Personal E-mail Filtering 413

A Bayesian classifier has the advantage of being able to handle a large number of
features. It simply models a document as "a bag of words" and all the words together
form the vocabulary of the classifier. Naturally each word consisting of alphabetic
letters in the main text portion is one feature in the vocabulary. To accommodate
other two types of features in classification, a simple way is to treat such features as
certain artificially created words and extend the vocabulary to include those features.
The advantage of this approach is no need to modify the classifier. The importance of
a feature is reflected uniformly by the probability of F ̂ on condition of class Q no
matter what type the feature belongs to.

Another issue of building a classifier in the context of E-mail messages is cost
sensitiveness. When we assign a class label with the maximum class probability
among all to a document, we are making an implicit assumption that the cost of
misclassification is the same to all classes. In this application, the assumption is not
true. Let Ci denote the class label of "not interesting" and C2 the class label of
"interesting" (this notation will be used in the rest of the paper). The cost of
misclassifying an interesting message to be not interesting is obviously much higher
than that of misclassifying a not interesting message to be interesting. To make the
naive Bayesian classifier cost sensitive, we introduce to (2) one design parameter,
threshold a ̂for each class label k with Xt t -^'-

C ^ a r g m a x , (^ (^ - l ^ - ^ ^ (^ ^ l ^ ^ ^ - ^ (^ " l ^ ^ > ^ ^ ^ ^ >). ^'^

In this application with two class labels, the intuitive meaning of the threshold is
as follows: In the case where misclassifying C2 (interesting) into Ci (not interesting)
is more costly, we only make a prediction of class label C\ if the final probability for
decision making, P{C\\D'), is greater than the threshold OTi, otherwise class label C2 is
chosen. In the rest part of the paper, for simplicity we use a to represent flfi. The
classifier is cost sensitive with a> 0.5. If we set a= 0.5, we will have a normal cost-
insensitive classifier.

3.2 A Decision Tree Based Classifier

Decision tree is a widely used data mining technique for classification and prediction,
which is intensively studied in data mining applications in databases. C4.5, a typical
and effective method of building decision trees, was used in our work to build a
classifier of E-mail documents.

For a decision tree based approach, the situation is different from a Bayesian
classifier. There is no problem for it to cope with the structured features and the
handcrafted features since the number of these features (or attributes) is relatively
small. However, it is not easy to handle a large number of textual features if every
feature in the text is used in classification. A straightforward way is to limit the
number of textual features that are considered by the classifier when a tree is built. In
order to select textual features from the vocabulary, mutual information [8] is
computed for each textual word F,:

414 Y. Diao, H. Lu, and D. Wu

nc„f,) (6) /(C;/,) = y y P(C,,/,)log(^^^^'-^'̂).

Here/ = 1 indicates the presence of feature F, in a document. P{C ̂ is the number of
feature occurrences in documents with class label Q divided by the total number of
feature occurrences; P(f) is the number of occurrences of feature F, divided by the
total number of feature occurrences; and PCQ , f) is the number of feature
occurrences of F ̂ in documents with class label Q divided by the total number of
feature occurrences. Based on the 7(C; f) value a certain number of textual features
are selected from the vocabulary as attributes that will be used in classification. For
each document, the number of occurrences of a selected textual feature is the attribute
value.

4 Experiments and Results

To have better understanding of the issues related to building a personal E-mail filter
and the behavior of such filters, a series of experiments were conducted using both the
naive Bayesian classifier and the decision tree based classifier.

4.1 Data Sets and Performance Metrics

In the experiments. E-mail messages were used as document samples. The
characteristics of collected data sets are shown in Table 1.

Table 1. Data Samples Used in Experiments

Source of data sets
Number of data sets
Size of each data set
Number of classes

5 (2 professors, 3 graduate students)
11 (one set consists of E-mail messages in a month)
250-700
2 ("not interesting", "interesting")

Every user who provided personal E-mail messages labeled all her/his messages as
either interesting or not interesting. Since we did not give classification criteria to the
person who provided the E-mail data, the classification was rather subjective. Unlike
some other reported work, "not interesting" E-mail does not necessarily refer to
commercial advertisements. For example, given two call-for-paper messages from
international conferences in computer science, one may be classified as "not
interesting" and the other as "interesting" depending on the theme of the conferences
and the personal interest. Therefore, classifying an E-mail message as interesting or
not is more challenging than pure commercial spam filtering.

During the experiments, each data set was divided into two portions: training data
and test data in the chronicle order. The training data were used to train a classifier
and the obtained classifier then classified the test data. Metrics used to measure the
classification performance are defined as follows:

A Comparative Study of Classification Based Personal E-mail Filtering 415

Error - rate
false classification

classified messages

(7)

" Interesting" recall
#"in te resting" messages classified as" in teres ting "

total" in teresting" messages

(8)

' Interesting" precision
#"in teresting" messages classified as" in teresting"

total messages classified as "in teresting"

(9)

"Not interesting" recall and precision are defined likewise. In the application of a
personal E-mail filter, considering the information loss by misclassifying an
"interesting" message as "not interesting", we emphasize the "interesting" recall and
the error rate in the following tests.

4.2 Precision-Recall Graph of the Naive Bayesian Classifier

The implemented Bayesian classifier classifies an E-mail message as "not interesting"
only if the probability of "not interesting" is greater than threshold a{a> 0.5). The
value of the threshold in fact reflects the relative cost of misclassifying an
"interesting" message as "not interesting". High a means high cost of such
misclassification. Therefore, a is an important design parameter for a naive Bayesian
classifier. The first experiment aimed at the general behavior of the classifier when
different threshold values were used. All three types of features were generated. By
varying the threshold from 0.5 to 0.999, different recall and precision pairs were
obtained for both "not interesting" and "interesting" classes. The average of 11 data
sets was used to draw the recall-precision graph as shown in Fig. 2.

Recall-Precldo n Graph for Not Interestin g Msg t
0.946

0.944

0.942

I "^
? 0.938

0.936

0 934

0.932

a increases

0.905 091 0.915 0.92 0 925 0 93 0.935 0.9

Recall

0 925 T

0.92

0.915

.i '
5 0,905

i 0 9 -

0895

0.89

0.885

Recall-Precisio n Graph for Interestin g Msgs

a increases

0915

Recalf

Fig. 2. Recall-Precision Graphs

A few observations can be made. First, within a wide range of the threshold value,
both recall and precision values are around or above 90%. Second, the recall-
precision curve of "not interesting" E-mail is better than that of "interesting" E-mail.
Seemingly it is easier for a Bayesian classifier to identify "not interesting" E-mail

416 Y. Diao, H. Lu, and D. Wu

messages because they are often obviously characterized by some features. Finally,
the rate at which recall and precision change is different from the rate at which
threshold a changes. For "interesting" E-mail, when a increases from 0.5 to 0.9, the
recall increases slowly by 0.35%. However when a increases from 0.9 to 0.999, the
recall increases by 1.2%. Likewise "not interesting" recall decreases slowly as a
changes from 0.5 to 0.9 but much faster when a changes from 0.9 to 0.999.
Therefore, in order to obtain high recall of "interesting" E-mail a should be set a
relatively high value, say higher than 0.9. In the following experiments, we used 0.99
as the default setting for a.

4.3 Experiments on Feature Selection

As we mentioned earlier, three types of features are generated for both classifiers.
One question under exploration is how important these features are in E-mail
classification. The second set of experiments was conducted to study the performance
of the classifiers when different types of features were used. Fig. 3 and Fig. 4 depict
the results of 11 data sets using the Bayesian classifier and the decision tree based
classifier, respectively. In the figures, H stands for header features only, T for textual
features only, HT for header features plus textual features, HH for header features
plus handcrafted features, TH for textual features plus handcrafted, and HTH for
header, textual and handcrafted features, namely all features. H, T, HT were three
baselines. HH, TH, HTH were tested to detect the change of performance by adding
handcrafted features to those baselines. The average of 11 groups was used for
evaluation in terms of three accuracy metrics, error rate, "not interesting" recall and
"interesting" recall.

Error Rate Recall s
0.3

0.25

0 2

0.15

0.1

0.05

0

avg

sidde v

HT HH

Feature s include d

0.9

0.8

1 0.7
DC

0.6

0.5

0.4

— not interestin g

g

HT HH

Feature s include d

Fig. 3. Effects of Selected Features on the Naive Bayesian Classifier

Fig. 3 shows that, when only the structured features (H) are considered, the error
rate is very high. If the structured features and the handcrafted features are selected
(HH), the error rate is still quite high. However in these cases, the "interesting" recall
is unexpectedly high. The reason lies in the small number of features involved in
classification, only six or twelve. When only a small number of features in a
document are selected, the difference between /"(D'lQ) with different class label k is

A Comparative Study of Classification Based Personal E-mail Filtering 417

outweighed by the denominator a. High a leads to a good "interesting" recall.
However, error rate is high and "not interesting" recall is low, indicating these two
feature selection methods are not appropriate to a Bayesian classifier. All other four
cases involve the textual features. The best performance is achieved using the
structured and the textual features (case HT). Adding header features better performs
both case (T) and case (TH). However, comparing cases T and TH, HT and HTH, we
find that, adding handcrafted features in fact does not improve the performance of
case (T) and worsens that of (HT).

Erro r Rate Recall s

HT HH
Features included

HT HH
Features included

Fig. 4. Effects of Feature Selection on the Decision Tree Based Classifier

Fig. 4 shows the performance of the decision tree based classifier when different
features are included in classification. Its performance is bad when the structured
(header) features are not included. Therefore these two types of feature selection are
not appropriate. On the baseline of H, adding either textual featiu^es or handcrafted
features enhances the performance. However, when both textual features and
handcrafted features are added to the baseline, the performance deteriorates, esp. in
"interesting" recall and error rate. With all features included, the database schema
consists of 32 attributes: 6 header features, 6 handcrafted features and 20 textual
features. Decision tree becomes inaccurate with so many attributes. It works best with
the selection method HT or HH.

0.3

0 25

0.2-

0.15

0.05 '

H T

Erro r Rate

—«—na'he bayes

n Irs©

HT HH

Features include d

TH HTH

1

0.9

= 0.8

i
"^ 0.7

OS

H

"

T

nteresting " Recal l

—4— nato bayes

—»~-dacrsio n tree

HT HH

Features include d

TH HTH

Fig. 5. Comparison in Feature Selection

418 Y. Diao, H. Lu, and D. Wu

Fig. 5 presents the average accuracy of the two classifiers in terms of error rate and
"interesting" recall. Both the Naive Bayesian classifier and the decision tree based
classifier perform best with header features and textual features. The method of
combining these two types of features for classification is useful. Neither of the
classifiers works best with all features selected. One lesson we learned is that adding
many features does not necessarily enhance the performance. Cautions should be
taken in feature selection. In the optimal case, decision tree beats Bayesian based
classifier in error rate and "interesting" recall.

4.4 Experiments on Robustness of Classifiers

We also conducted a set of experiments aiming to discover the robustness of both
classifiers on different conditions that may happen in the real use of a personal E-mail
filter. Limited by space, we just summarize the results without going into details.

Training size is an important issue that affects the accuracy of classifiers. From the
experimental results we find when the training size is less than the test size, the
decision tree based classifier has much lower "interesting" recall and higher error rate
than the Bayesian classifier. It shows decision tree has a sparse data problem. As the
training size grows, both classifiers improve the performance. In the optimal case
decision tree outperforms naive Bayesian. But a Bayes classifier keeps a reasonable
performance on most conditions and has better performance when only a small
training size is available.

Both classifiers can be affected by class disparity. Naive Bayes classifier favors the
major class by the factor of class prior in the decision rule. Decision tree based
classifier chooses the major class at each test. Real users can have any ratio of "not
interesting" messages to "interesting" messages. This experiment aimed to find out
how these two classifiers perform as the class disparity of training data changes. The
results show that the naive Bayes classifier works well when "interesting" E-mail
messages cover from 30% to 80% of the total training messages. The decision tree
based classifier has high error rate at both ends of "interesting" coverage and the
general performance is not stable.

5 Conclusion

This paper models E-mail messages as a combination of structured fields and free text
fields, which motivated the work of classifying such documents deploying both kinds
of information. Certain heuristic features obtained from preprocessing the documents
were also included for the purpose of classifying E-mail messages. A comprehensive
comparative study was conducted using a naive Bayesian based classifier and a
decision tree based classifier. Different ways of feature selection for both models
were evaluated. Performance of two classifiers was compared with respect to training
size and class disparity. By a series of experiments on real personal data, we find that
both classifiers can be used to classify E-mail messages with reasonable accuracy. In
the optimal cases, decision tree based classifier outperforms Bayesian classifier, but

A Comparative Study of Classification Based Personal E-mail Filtering 419

Bayesian is more robust on various conditions. Careful feature selection from
structured fields and free text body enhances performance.

The study reported in this paper can be extended in three directions. First, due to
the personalized nature of electronic mail, the test data available is only moderately
large. We are trying to collect more data from different types of users. It will deepen
our study and enable more findings about how to achieve an effective personal E-mail
filter. Second, we are exploring the ways of combining these two types of classifiers
in feature selection and decision making, which might lead to a more accurate
classification method in this problem domain. Last, we plan to expand the
classification from two classes to multiple classes and further to a hierarchy of
classes, which will better serve the need of E-mail users.

References

1. William W. Cohen: Learning Rules that Classify E-mail. In Proceedings of the 1996 AAAI
Spring Symposium on Machine Learning in Information Access

2. W. W. Cohen, Y. Singer: Context-Sensitive Learning Methods for Text Categorization. In
Proceedings ofSIGIR-1996

3. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam and S. Slattery:
Learning to Extract Symbolic Knowledge from the World Wide Web. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI-98)

4. Fredrik Kilander: Properties of Electronic Texts for Classification Purposes as Suggested
by Users. http://www.dsv.su.Se/~fk/if_Doc/F25/essays.ps.Z

5. D. D. Lewis: Naive (Bayes) at Forty: The Independent Assumption in Information
Retrieval. In European Conference on Machine Learning, 1998

6. D. D. Lewis, K. A. Knowles: Threading Electronic Mail: A Preliminary Study. In
Information Processing and Management, 33(2): 209-217, 1997

7. D. D. Lewis, M. Ringuette: A Comparison of Two Learning Algorithms for Text
Categorization. In Third Annual Symposium on Document Analysis and Information
Retrieval, pp. 81-93, Las Vegas, NV

8. Andrew McCallum and Kamal Nigam: A Comparison of Event Models for Naive Bayes
Text Classification. Working notes of the 1998 AAAl/ICML workshop on Learning for Text
Categorization

9. J. R. Quinlan: Induction of Decision Trees. Machine Learning, 1: 81-106, 1986
10. J. R. Quinlan: C4.5: Programs for Machine Learning. San Mateo, Calif.: Morgan

Kaufmann Publishers, 1993
11. M. Sahami, S. Dumais, D. Heckerman, E. Horvitz: A Bayesian Approach to Filtering lunk

E-mail. In Learning for Text Categorization: Papers from the 1998 workshop. AAAI
Technical Report WS-98-05

12. Ellen Spertus: Sraokey: Automatic Recognition of Hostile Messages. In Proceedings of
Innovative Applications of Artificial Intelligence (lAAI) 1997

Extension of Graph-Based Induction
for General Graph Structured Data

Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, and Takashi Washio

I.S.I.R., Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, JAPAN

Abstract. A machine learning technique called Graph-Based Induction
(GBI) efficiently extracts typical patterns from directed graph data by
stepwise pair expansion (pairwise chunking). In this paper, we expand
the capability of the Graph-Based Induction to handle not only tree
structured data but also multi-inputs/outputs nodes and loop structure
(including a self-loop) which cannot be treated in the conventional way.
The method is verified to work as expected using artificially generated
data and we evaluated experimentally the computation time of the im-
plemented program. We, further, show the effectiveness of our approach
by applying it to two kinds of the real-world data: World Wide Web
browsing data and DNA sequence data.

1 Introduction

Inductive learning, which tries to find useful rules and patterns from data, has
been an important area of investigation. Conventional learning methods use
an attribute-value table as a data representation language and represent the
relation between attribute values and classes by use of decision tree [Quinlan86]
and rules [Michalski90,Clark89]. Association rules [Agrawal94] widely used in
the area of data mining belong to this type of data representation. However, the
attribute-value table is not suitable for representing more general and structural
data. Inductive logic programming (ILP) [Muggleton89] which uses the first-
order predicate logic can represent general relationship in data. ILP has a merit
that domain knowledge and acquired knowledge can be utilized as background
knowledge. However, its state of the art is not so matured that anyone can use
the technique easily.

By paying attention to the fact that many structural data involving relation-
ship can be represented by a colored directed graph, we have proposed Graph-
Based Induction (GBI) [Yoshida97] which can efficiently extracts typical pat-
terns from a directed graph data of limited types by stepwise pair expansion
called "pairwise chunking". The expressiveness of the GBI stands between the
attribute-value table and the first-order predicate logic.

In this paper, we expand the capability of the GBI so that it can handle
not only a tree structured data but also a graph data with multi-inputs/outputs
nodes and loop structure (including a self-loop) which cannot be treated in the
conventional way. The method is verified to work as expected using artificially

T. Terano, H.Liu, and A.L.P. Chen (E d s): PAKDD 2000, LNA I 1805, pp. 420-431, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Extension of Graph-Based Induction for General Graph Structured Data 421

Fig. 1. The idea of graph contraction by pairwise chunking

generated data and we evaluated experimentally the computation time of the
implemented program. We show the effectiveness of our approach by applying
it to two kinds of the real scale data. One is an application to extracting typi-
cal patterns from WWW browsing histories data. Another is an application to
extracting classification rules from two kinds of DNA sequence data.

2 Graph-Based Induction

2.1 Framework of Graph-Based Inductio n

The original GBI was so formulated to minimize the graph size by replacing
each found pattern with one node that it repeatedly contracted the graph. The
graph size definition reflected the sizes of extracted patterns as well as the size
of contracted graph. This prevented the algorithm from continually contracting,
which meant the graph never became a single node. Because finding a subgraph
is known to be NP-hard, the ordering of links is constrained to be identical if
the two subgraphs are to match, and an opportunistic beam search similar to
genetic algorithm was used to arrive at suboptimal solutions. In this algorithm,
the primitive operation at each step in the search was to find a good set of linked
pair nodes to chunk (pairwise chunking) [Yoshida95].

The central intuition behind our GBI is as follows: a pattern that appears
frequently enough in a colored directed graph is worth paying attention to and
may represent an important concept in the environment (which is implicitly
embedded in the input graph). In other words, the repeated patterns in the
input graph represent typical characteristics of the given environment.

Because the search is local and stepwise, we can adopt an indirect index
rather than a direct estimate of the graph size to find the promising pairs. On
the basis of this notion, we generalize the original GBI. The idea of pairwise
chunking is given in Figure 1.

The stepwise pair expansion (pairwise chunking) is performed by repeating
the following three steps.

422 T. Matsuda et al.

Fig. 2. An example of directed graph

Step 1. If there are patterns which are the same as the chunked pattern in the
input graph, rewrite each of them to one node of the same label.

Step 2. Extract all pairs which consist of the connected two nodes in the graph.
Step 3. Select the most typical pair among the extracted pairs and register it

as the pattern to chunk.

Stepwise pair expansion is performed by repeating the above three steps from the
initial state where no typical pattern is yet found. As a result, the characteristics
in data can be extracted as a set of typical patterns.

2.2 Graph-Based Inductio n for General Graph Structured Data

In order to apply GBI to general graph structured data, we adopt a method
to represent the graph structured data using a set of table forms by paying
attention to the link information between nodes. More concretely, the directed
graph as shown in Figure 2 can be represented using Table 1. For example, the
first line in this table shows that the node No.l has node name "a" and also has
nodes No.7 and No.10 as child nodes. In this way, directed graph data can be
represented using the table forms. Further, the restriction of the link ordering is
no more required.

As we count the pair (parent node —> child node), it is necessary to identify
self-loop when the parent node and the child node are of the same kind {E.g.
a ^ ̂ a). Therefore, we introduce "self-loop distinction flag".

Moreover, each time we perform the pairwise chunking, we keep link infor-
mation between nodes in order to be able to restore the chunked pairs to the
original patterns. This is realized by keeping two kinds of node information. One
is "child node information" that means which node in the pattern the link goes
to, and another is the "parent node information" that means which node in the
pattern the link comes from. These two kinds of information are also represented
by tables (not shown here). Chunking operation can be handled by manipulating
these three tables.

Extension of Graph-Based Induction for General Graph Structured Data 423

Table 1. An example of table form translated from the directed graph

Node No.
1
2
3
4
5
6
7
8
9
10
11
12

Node Name
a
b
d
b
a
b
d
b
b
a
b
c

Child Node No.
@7@10
@7
@8@11
@8
@9
@9
@10
@11@12
@12
@11

Represent the graph strucrured daia using tabi*!

Count pairs by each Icind (pair infornialion
canaists of 6 elements: psstai node, child
node, tink, licik infDrTnalion ot parent node,
Mak. ijiformauon of child node, 5elMoop
distinction flag).

Select the kinder pairs tobechunl:ed based
on the evaluation function,
[f [her? is no pairs lO be chunked» tfTmin^Le
this prograAi.

Perform the pairwis* chunking and replace by
one new nodt.
Update the link inrormation which goes lo the
chunked node and the link information which
coitLCS from the chunked node.

Child node [nfbrmation:

rnformaiion which node the
tink goes to

Tnnr

Chunking
a—b

Parent node information:

Information which node
the lin k corne r fro m

Fig. 3. Algorithm of the proposed method

The basic algorithm of the proposed method which extends GBI to handle a
general graph structured data is shown in Figure 3. In this implemented program,
we use the simple "frequency" of pairs as the evaluation function to use for
stepwise pair expansion.

3 Performance Evaluation

The method was verified to work as expected using artificially generated data
and we evaluated experimentally the computation time of the implemented pro-
gram. The computation time is measured for 30,000 times repetition of program
execution excluding the initialization steps.

424 T. Matsuda et al.

Data 1 Data 2 Data 3

Fig. 4. Graph structured data for evaluation (Data ICData 2CData 3)

40 60 80 100
Number of Chunking

Fig. 5. Computation time and number of chunking (1)

3.1 Computation Tim e for Uncolored Graphs

At first, we evaluated the computation time using three kinds of graph structured
data (Data 1: loop type, Data 2: lattice type, Data 3: tree type) as shown in
Figure 4 for which there is only one kind of node label.

The computation time for chunking in the implemented program was mea-
sured as we increased the graph size from a small graph with several nodes to the
graph which needs chunking about 120 times. Figure 5 shows the relationship
between the computation time and the number of chunking.

From this figure, it is found that the computation time increases almost
linearly with the number of chunking. And also it is considered that the gradient
of each line depends on the average number of links going out from each node.

3.2 Computation Tim e for Colored Graphs

Next, we evaluated the computation time using three kinds of graph structured
data (Data 4: loop type. Data 5: lattice type, Data 6: tree type) as shown in
Figure 6 for which there are three kinds of node labels.

The computation time was measured in a similar way for uncolored graphs.
Figure 7 shows the relationship between the computation time and the number
of chunking. Overall, tendency is the same for uncolored graph. Compared with
Figure 5, it is conjectured that the number of node labels does not affect the
computation time so much.

Extension of Graph-Based Induction for General Graph Structured Data 425

(aHb>- ^dh®

Data 4 Data 5 Data 6

Fig. 6. Graph structured data for evaluation (Data 4CData 5CData 6)

20 40 60 80 100 120 140
Number of Chunking

Fig. 7. Computation time and number of chunking (2)

We further confirmed this tendency for both uncolored and colored graphs
by measuring the computation time for chunking as we increase the graph size
from 50 nodes to 1000 nodes, where graphs are artificially generated in such a
way that the average number of links going out of each node remains a fixed
value.

Extracting Typical Patterns
from WWW Browsing History Data

4.1 W W W Browsing Histor y Data

The performance of the proposed method was examined through a real scale
application in this section. The data analyzed is the log file of the commercial
WWW server of Recruit Co., Ltd. in Japan. The URLs on WWW form a huge
graph, where each URL represents a node that is connected by many links (other
URLs). When a client visits the commercial WWW site, he/she browses only a
small part of the huge graph in one access session, and the browsing history of
the session becomes a small graph structured data. This site's total number of
hit by the nation wide internet users always remains within the third place from
the top in every month in Japanese internet record.

426 T. Matsuda et al.

Table 2. Experimental result

Thresholdi%j
No. of Extracted Patterns
No. of Pairwise Chunking
Computation Timei5ec.j

0.10
33

9455
1374

0.05
106

17443
1734

0.025
278

26672
2187

4.2 Experimental Method

The basic format of an access record to a URL by a client in the log file is
indicated in Figure 8. This access log of the WWW server for a particular day
was over 400MB and the number of clients who access to the WWW server
was about 26,800 on that day. The total number of the URLs involved in this
commercial WWW site is about 19,400 and there are a large number of links
between them.

As the log file consists of the sequence of the access records, they are initially
sorted by the IP addresses, and each subsequence having an identical IP address
corresponding to the browsing access history in a session of an individual client
is extracted. Then, we transformed the subsequence of each client's visiting his-
tory into a graph structured data (total 150,000 nodes). By using all subgraphs
transformed in this way as the input data, the proposed method extracted typi-
cal patterns in the data. In other words, after removing all kinds of error such as
a server error from the access records and sorting the data in order of IP address,
we make graph structured data for each IP address (client), and append them
into a large table.

In the implemented program, we use the simple "frequency" of pairs as the
evaluation function for stepwise pair expansion. We terminated the chunking
when we finish finding all chunk patterns which consist of more than a certain
number of nodes. We use the frequency threshold 0.1%C0.05%C0.025% of total
nodes in the graph.

4.3 Experimental Results

We executed the implemented program using the experimental method described
in the previous section. Table 2 shows the number of extracted chunk patterns,
the number of pairwise chunking and the computation time for each frequency
threshold.

Figure 9 indicates the relationship between the threshold and the number
of derived patterns consisting of more than 3 nodes. The number of nodes in
chunk patterns increases with the decrease of threshold because the larger chunk

IP address of a client Zi Time stamp of the access A URL address
A-.space character

Fig. 8. Basic format of an access record.

Extension of Graph-Based Induction for General Graph Structured Data 427

Fig. 9. Relationship between the threshold and the number of derived patterns con-
sisting of more than 3 nodes

chunk pat terns increases with the decrease of threshold because the larger chunk
pat terns are derived for the lower threshold where additional nodes are appended
to the chunk pat terns which have been already extracted in the higher threshold.
Chunk pat terns derived in the higher threshold is a subset of chunk pat terns
extracted in the lower threshold.

Several examples of the extracted chunk pat terns are shown below.

a) /NAVI/CATEGORY/Sub/s03/ssl3/din.htTnl

- ̂ /NAVI/CATEGORY/Sub/s03/ssl3/dn2.html

-> /NAVI/CATEGORY/Sub/s03/ssl3/dn3.html

b) /NAVI/CATEGORY/Sub/sOl.html

-+ /N AVI /CATEGORY/ Sub/ sQ\/ ssQ6.html

-> /NAVI/CATEGORY/Suh/sQl/ss06/d01.html

c) / N AVI /mscategcyry / Sub/ s\2.html

- ̂ /N AV I /mscategory/ Sub/ s08.html

—* /N AV I /mscategory / Sub/ s02.html

—> / service/shank/N AVI/COOL/cool2.html

Browsing pat tern a) is an example that clients follow some URLs in the same
directory and the number of this pat tern was 152 {i.e., 152 clients followed this
pat tern). Browsing pat tern b) is an example that clients go deeper into directories
step by step and the number of this pat tern was 144. Browsing pat tern c) is an
example that clients jump to the URLs in a different directory after following
some URLs in the same directory and the number of this pat tern was 72.

I t is natural that many pat terns similar to a) or b) have been extracted
because of the structure of this W W W site. However, it is more interesting to
note that some patterns such as c) also have been extracted if the contents of
each URL were available to us.

428 T. Matsuda et al.

DNA Scquenct Data

Positive Example of Promoter
12345678 9 12343678 9 123456 7
CGTCGATGGCGTATCCATACCTAACAA.
CATCGCTTCAGTGACCACTCTATCACC.
TGAAAAACAAGAAGCCCGGATTGCTCT.

Negative Example of Promoter
12345678 9 12343678 9 123456 7
GGTTGCCTTAACCAGTCTGGCAGATGC.

ClaMificatio n Rule of DNA Sequence

If Nucleotide 1 - C
Nucleotide3 = T
Nucleotide 4 = C

Then Sequence is Promoter

Fig. 10. Extradition of classification rules from DNA sequence data

5 Extracting Classification Rules from DNA Data

5.1 Applicatio n to Promoter D NA Sequence Data

In this section, the real-world task of recognizing biological concepts in DNA
sequences is investigated. In particular, the task is to recognize promoters in
strings that represent nucleotides (one of A, G, T, or C). A promoter is a ge-
netic region which initiates the first step in the expression of an adjacent gene
{transcription). This data set is one of the UCI Machine Learning Repository
[Blake98]. The input features are 57 sequential DNA nucleotides and the to-
tal number of instances is 106 including 53 positive instances (sample promoter
sequences) and 53 negative instances (non-promoter sequences).

Figure 10 illustrates the process of mapping the problem into a colored di-
rected graph, using GBI method to extract patterns and interpreting them as
classification rules. In mapping the cases in the data set into the graph struc-
ture, we construct one subgraph for each sequence in the data set. The subgraph
consists of a root node and a set of leaf nodes. The color of the root node of the
subgraph specifies whether the corresponding sequence represents a promoter
sequence or not, which means the class information (positive or negative). The
color of the i-th leaf specifies the nucleotide (one of A, G, T, or C).

In case of the classification problem, we interpret the root node as a class node
and the links attached to it as the primary attributes. The node at the other end
of each link is the value of the attribute, which can have secondary attributes,
although this is not the case for this simple DNA problem. Thus, each attribute
can have its own attributes recursively, and the graph {i.e., each instance of the

Extension of Graph-Based Induction for General Graph Structured Data 429

Table 3. Experimental results

Learning Method
No. of Errors /106

ID3
19

C4.5
18

GBI
16

data) becomes a directed tree. Here, we have to select the attribute and its value
pair that best characterizes the class.

The chunk patterns derived by GBI are tried to match for the test cases
in the following way. The chunk patterns which have lower evaluation function
value (frequency) are tried to match first. If the frequency of the chunk patterns
is same, those which have more nodes in the pattern are tried to match first.
That is, more specific rules are tried to match with higher priority.

Table 3 shows the experimental results (number of errors in total 106 cases) in
comparison with other learning methods such as IDS, C4.5, which are evaluated
by leaving-one-out. Prom this table, it is found that the error rate of GBI is
lower than the standard tree-induction program ID3 and C4.5.

5.2 Applicatio n to Splice D NA Sequence Data

Splice junctions are the points on DNA sequence at which "superfluous" DNA
is removed during the process of protein creation. The problem is to recog-
nize the boundaries between exons (the parts of the DNA sequence retained
after splicing) and introns (the parts of the DNA sequence that are spliced out)
in a given sequence of DNA. This problem consists of two subtasks: recogniz-
ing exon/intron boundaries (referred to as E/T), and recognizing intron/exon
boundaries (referred to as I/E).

This data set contains 3190 cases, of which 25% are I/E, 25% are E/I and
the remaining 50% are Neither. Each example consists of a 60 nucleotide DNA
sequence categorized according to the type of boundary at the center of the
sequence.

In mapping the cases in the data set into the graph structure, we constructed
one subgraph for each sequence in the data set, in the same way as in the
Promoter DNA data. The subgraph consists of a root node and a set of leaf nodes.
The color of the root node of the subgraph specifies whether the corresponding
sequence represents one of the I/E, E/I and Neither. The color of the i-th leaf
specifies the nucleotide (one of A, G, T, or C).

The chunk patterns derived by GBI are tried to match for the test cases in
the same way as mentioned in the previous subsection.

Table 4 shows the experimental results (error rate) in comparison with other
learning methods such as ID3, C4.5, which are evaluated by 10-fold cross-
validation. Prom this table, it is found that the error rate of GBI is lower than
ID3 and is almost the same as the standard tree-induction program C4.5.

430 T. Matsuda et al.

Table 4. Experimental results

Learning Method
Error Rate (%)

ID3
10.6

C4.5
8.0

GBI
8.8

6 Related Work

Most of the current methods for extracting knowledge from databases have diffi -
culties in handling the growing amount of structural data that express relation-
ships among data objects. However, there are some research work for discovering
knowledge in structural data, especially graph structured data.

[Cook94] proposed the substructure discovery system called SUBDUE which
discovers interesting and repetitive subgraphs in a labeled graph representation.
Experiments show SUBDUE's applicability to several domains, such as molec-
ular biology, image analysis and computer-aided design. SUBDUE expands one
subgraph based on the Minimum Description Length (MDL) principle. There-
fore, the number of substructure which is discovered in a graph is always one.
On the other hand, GBI for general graph structured data which is proposed
in this paper can extract multiple patterns based on the evaluation function for
stepwise pair expansion.

[Wallace96] presented a Bayesian approach to the discovery of causal models
based on Minimum Message Length (MML) , which is one way to realize Occam's
razor just like MDL. The MML induction approach can recover causal models
from sample graph data without incorporating background knowledge. While
this approach is towards automated learning of causal model using MML , this
applicability to huge graph structured data is not clear so far.

[Inokuchi99] applied Basket Analysis to mine association rules from the graph
structured data. The Basket Analysis [Agrawal94] derives frequent itemsets and
association rules having support and confidence levels greater than their thresh-
olds from massive transaction data. In [Inokuchi99], a simple preprocessing of
data enabled to use a standard Basket Analysis technique for a graph structured
data. However, each node must have a distinct label with this approach.

7 Conclusion

In this paper, we showed how we can expand the capability of the Graph-Based
Induction algorithm to handle more general graphs, i.e., directed graphs with
1) multiple inputs/outputs nodes and 2) loop structure (including a self-loop).
The algorithm was implemented and verified to work as expected using first
artificially generated data and second two kinds of real-world data: World Wide
Web browsing data and DNA sequence data. The algorithm runs almost linearly
to the graph size and can indeed find interesting patterns.

Extension of Graph-Based Induction for General Graph Structured Data 431

The foUowings are in progress: 1) investigating the sensitivity of chunk or-
dering, 2) using extended chunks as constructed of new features for s tandard
decision tree algorithm, 3) using statistical index (e.g. Gini Index [Breiman84])
or the description length in stead of the simple "frequency" as the evaluation
function for stepwise expansion, 4) introducing a new index which corresponds
to the notion of "similarity" of human concept, 5) applying different kinds of
graph structured data in the real-world such as chemical structured data.

A c k n o w l e d g m e n ts

The authors are very grateful to Mr. Kouhei Kumazawa and Mr. Shoei Arai in
Recruit Co., Ltd., Japan for providing the access log of the commercial W W W
site.

References

[Agrawal94] R. Agrwal and R. Srikant. First Algorithms for Mining Association Rules.
Proc. of the 20th VLDB Conference, pp. 487-499, 1994.

[Blake98] C. Blake, E. Keogh, and C. J. Merz. UCI Repository of Machine Learning
Databases, http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

[Breiman84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software,
1984.

[Clark89] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learning
Vol. 3, pp. 261-283, 1989.

[Cook94] D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum De-
scription Length and Background Knowledge. Journal of Artificial Intelligence
Research, Vol. 1, pp. 231-255, 1994.

[Inokuchi99] A. Inokuchi, T. Washio and H. Motoda. Basket Analysis for Graph Struc-
tured Data, Proc. of the Third Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD'99), pp. 420-431, 1999.

[Michalski90] R. S. Michalski. Learning Flexible Concepts: Fundamental Ideas and a
Method Based on Two-Tiered Representaion. In Machine Learning, An Artificial
Intelligence Approach, Vol. Il l , (eds. Kodrtoff Y. and Michalski T.), pp. 63-102,
1990.

[Muggleton89] S. Muggleton and L. de Raedt. Inductive Logic Programming: Theory
and Methods. Journal of Logic Programming Vol. 19, No. 20, pp. 629-679, 1994.

[Quinlan86] J. R. Quinlan. Induction of decision trees. Machine Learning, Vol. 1,
pp. 81-106, 1986.

[Wallace96] C. Wallace, K. B. Korb and H. Dai. Causal Discovery via MML , Proc. of
the 13th International Conference on Machine Learning (ICML'96), pp. 516-524,
1996.

[Yoshida95] K. Yoshida and H. Motoda. CLIP: Concept Learning from Inference Pat-
tern, Artificial Intelligence, Vol. 75, No. 1, pp. 63-92, 1995.

[Yoshida97] K. Yoshida and H. Motoda. Inductive Inference by Stepwise Pair Exten-
sion (in Japanese), Journal of Japanese Society for Artificial Intelligence, Vol. 12,
No. 1, pp. 58-67, 1997.

Text-Source Discovery and GIOSS Update
in a Dynamic Web

Chi-Yuen Ng, Ben Kao, and David Cheung

Department of Computer Science and Information Systems,
The University of Hong Kong, Pokfulam, Hong Kong.

{cyng , kao , dcheung}9csis . hku . h k

Abstract. "Text-source discovery" is the problem of identifying rele-
vant document databases that potentially contain documents that match
a user query. GIOSS [6] is a cost-effective technique for solving the text-
source discovery problem. However, the GIOSS approax;h assumes that
the document databases aje fully cooperative in exporting statistical in-
formation about their collections. This paper discusses how the GIOSS
technique can be applied to a dynamic and uncooperative Web environ-
ment in assisting users to locate relevant Web information sources,
keywords: text-source discovery, GIOSS, search engines

1 Introduction

The World Wide Web enables its users to access large amounts of interesting in-
formation made available by various information sources. While new information
is being put onto the Web everyday, large numbers of articles are being updated
regularly, some at a very high frequency. It is impossible for a human being to
keep track of all this information and changes. In order to fully utilize the power
of the Web as a gigantic information source, it is essential to develop software
systems on top of the Web to assist users in retrieving relevant documents.

Internet search engines such as Alta Vista, Lycos, etc., are the most popular
tools that people use to locate information on the Web. A search engine works
by traversing the Web via the pages it has encountered, and indexing the pages
based on the keywords they contain [1].

Although search engines have been proven in practical use as indispensable
tools for Web retrieval, they suffer from a number of drawbacks [2,3,4,5]. For
many queries, the result is a very large answer set of individual Web pages with
poor retrieval precision. As an example, if one queries some general information
about "Microsoft Windows", up to thousands of individual pages that contain
"Microsoft Windows" will be suggested. A more satisfactory answer to such a
general concept query might be a recommendation to the Microsoft Web site.
Starting from the main index page, the user can search via the query interface
or navigate the Web site via the hypertext links according to his own specific
interest to pin-point relevant documents. We call this strategy of first locating
a relevant Web site, then locating relevant information within that site, the

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 432-441, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Text-Source Discovery and GIOSS Update in a Dynamic Web 433

two-step approach. In contrast, we consider the traditional search engines take a
one-step approach to retrieve all potential pages directly.

As the Web develops, we see more and more information sources that are
dedicated to specific topics of interests. If a user is looking for general information
about a topic, chances are that a site exists on the Web that is specialized on
that topic. Recommending Web sites instead of individual pages becomes more
meaningful to this type of general concept queries.

One economical solution to recommend a Web site is to borrow the idea of
G10SS\%,7]. It is a system that, given a user query, recommends relevant doc-
ument databases based on some statistical information that it keeps about the
document databases. Such a problem of identifying relevant text databases is
called the text-source discovery problem. The original study on GIOSS assumes
that the document databases are fully cooperative in exporting statistical infor-
mation about their document collections. However, this is obviously not the case
for Web sites. The goal of this paper is to investigate how the idea of GIOSS can
be applied in a dynamic and uncooperative Web environment.

The rest of the paper is organized as follows. In Section 2 we discuss some
techniques for the text-source discovery problem. In Section 3 we propose a
solution to the GIOSS update problem. In Section 4 we present experimental
results verifying the effectiveness of our solution. Finally, we conclude the paper
in Section 5.

2 Text-Source Discovery

GIOSS is one of the techniques tackling the text-source discovery problem. The
sources are ranked according to the number of relevant documents they contain.
Relevancy here is measured by the similarity between a document and the user
query. There are two models in GIOSS to measure the similarity: the Boolean
model and the Vector-Space model. In this paper, we focus our discussion on the
Boolean model.

Under the Boolean model, a document, D is relevant to a query, Q ii D
contains all the keywords in Q. The similarity function, sim{Q, D) is simply
defined as:

- 1 ̂ r^\ f 1 if Z? contains all the keywords in Q\
^ ^ ^ (^ ' ^) = j o otherwise.

The goodness of a document database, db, with respect to Q, is measured by
simply counting the number of matching documents:

goodness{Q,db) = 2 . sim{Q,D)
Dedb

Al l the quantities defined above can be easily calculated with a full-text index
as in the case of traditional search engines. However, if compared with GIOSS,
the search engine approach is very costly, both in terms of the storage as well as

434 Ch.-Y. Ng, B. Kao, and D. Cheung

the network bandwidth requirements. This is because a search engine essentially
has to keep the details of all the Web pages and reload them if they are updated.

In this paper, we apply the idea of GIOSS on the Web. The ultimate goal
is to recommend Web sites based on the above word statistics. For each Web
site, db, GIOSS keeps the total number of documents, n{db), and the document
frequency, dj{db), for each keyword j . The keywords are Eissumed to appear in the
different documents independently and uniformly.̂ Given a conjunctive query Q
of k words U ,̂..., U^., GIOSS estimates the goodness of db with respect to Q by:

goodnessiQ,db) = [[- ^ ̂ x n{db) = ^^^^^^^,_, (1)

GIOSS assumes the availability of the above keyword statistics. However,
in practice, most Web sites are dynamic and uncooperative, i.e., they do not
actively export the keyword statistics of their collections. Even if such statistics
are obtained, they become stale fast due to frequent updates on the Web sites'
contents. Maintaining these statistics is thus a very critical problem in applying
GIOSS to tackle the Web site discovery problem.

3 GIOSS Update

In this section we demonstrate how the total number of documents, n{db), and
the document frequency dj{dbys are maintained, and how they are used to an-
swer query under the Boolean model. Also, we describe the design of a prototype
system which implements GIOSS in the Web environment.

It is not always possible to obtain the complete document collection of a Web
site. Retrieving all documents poses much burden on the network bandwidth and
storage. Also, in many cases, obtaining the complete collection is not necessary
if the goal of the system is to determine whether a Web site contains a non-
trivial number of relevant documents. As an example, the sports site ESPN is
a good source of NBA basketball and contains numerous articles on the topic.
To deduce that ESPN is a site relevant to the keyword "NBA" , it is sufficient to
examine only a fraction of articles located at ESPN. Hence, instead of actively
probing a Web site for documents, we take a passive approach: our modified
GIOSS server only examines and summarizes documents that a user community
has ever retrieved from the Web site within a certain period of time. That means
our system uses a sample of documents to project the information content of the
Web site. Figure 1 shows the architecture of our system.

We assume that users access the Web via a Proxy server which buffers re-
cently accessed Web documents in the cache. The Proxy cache is assumed to be
large enough to store the documents retrieved in a day. The HTTP header of

^ These assumptions are not realistic, and thus the estimates of goodness are off.
However, the estimates are only used to rank document databases, not to compute
accurate values. Readers are referred to [6] for a discussion on the efficacy of GIOSS.

Text-Source Discovery and GIOSS Update in a Dynamic Web 435

Fig. 1. System architecture

the document retrieved carries the last-modified time from which the Proxy can
determine whether the document exists in the cache and whether it is updated.

Our GIOSS server interacts closely with the Proxy server. For each Web site,
db, the GIOSS server maintains a document frequency vector, DF{db). It models
the document frequency statistics of the Web documents that our system has
ever retrieved from db in a certain period of time, say, in the past M days. If
db denotes a subset of documents retrieved from db, then the j - t h component
of the DF{db) vector represents the document frequency of the j-th. keyword in
db, denoted by dj{db). Besides DF{db), the GIOSS server also keeps the total
number of documents in db, denoted by n{db). The goodness of db with respect
to a query Q is estimated based on Equation 1 using dj{db) and n{db) in place
of dj{db) and n{db) respectively.

3.1 Construct ing DF

The efficacy of our GIOSS server depends on how well the DF vector is con-
structed. A very simple "solution" to constructing the DF vector is to summarize
everything the system has ever seen. For example, for each Web document from
db ever brought into the cache, the GIOSS server increments the entry DF{db) [j]
by one if the word tj appears in the document. However, this simple strategy
incorrectly estimates the DF vector when the same document is accessed re-
peatedly. Here, let us consider the following examples.

Example 1 (FAQ) A FAQ document on a popular topic may be accessed
by a number of users. If the time between successive accesses is long enough such
that a copy of the document cannot be found in the cache, then every access to
the FAQ will bring the same document into the cache. This causes the GIOSS
server to increment the document frequencies of the words that appear in the
FAQ on every access. Essentially, the server is fooled to think that there are
multiple documents that contain the same words, while in fact, only one version
of the FAQ should be counted.

436 Ch.-Y. Ng, B. Kao, and D. Cheung

Example 2 (Scoreboard) A Web page which broadcasts the scoreboard of
an on-going NBA game is updated and reloaded many times while the game is
being played. Similar to the FAQ example, each access to this scoreboard page
causes an erroneous increment to the DF vector. The difference between the
FAQ example and the scoreboard example is that while the FAQ rarely changes,
some words in the scoreboard page are transient, i.e., there may be significant
word changes between successive page updates.

In order for the GIOSS server not to over-count the document frequencies, we
need to identify whether a Web document has ever been seen before, and what
should be added or deducted from the DF vector. For the Scoreboard example,
since the inter-retrieval time of the same page is in the order of minutes, the
previous outdated page is still in the cache. The GIOSS server only has to
decrement the document frequencies of the words that appear in the outdated
page in the cache, and increment those that appear in the new version. For the
FAQ example, the old document has probably been flushed out of the cache
already when the new version is requested again. Hence, the GIOSS server does
not have the information to correctly update the DF vector. To rectify, the
GIOSS server also maintains two more pieces of information:
A log (LOG) of document records For each document doci which is retrieved
by the system and identified by its URL, a record r̂ of two fields {LSi,LMi)
is put in the LOG. LSi is the expected life span of doci while LMi is the last
modified time of doCi. We will illustrate how these fields are used in the next
subsection. To limi t the amount of storage taken by the LOG, our prototype
only keeps records of Web pages retrieved in the past 400 days. (This window of
time can be adjusted.) Loosely speaking, the system forgets documents that are
more than about a year old. As we will see shortly, the document frequencies
due to these old documents are appropriately deducted from the DF vector.
A set of k expiry vectors Vi,...,Vk For each Web site db, the system keeps a
set of expiry vectors Vi(d6)'s. (In the following discussion, we drop the reference
db for simplicity.) When a Web page D is brought into the cache, the document
frequencies of the words in D are incremented in the DF vector. The system
would then estimate, based on the past history of D, an expected life span for
D. Essentially, the system assumes that D will be modified on an expiry day,
and its outdated content should be removed from the DF vector then. When
D is subsequently flushed out of the cache, its content is captured by a certain
expiry vector of a particular life span. Each expiry vector Vi is associated with
an initial counter Id and an expiry counter Ed. The expiry counter is decre-
mented by one every day. When the expiry counter Ed ticks down to zero, the
corresponding expiry vector Vi is subtracted from the DF vector, signaling that
certain Web pages previously accessed by the system are presumed outdated.
The system then tries to reset the expiry counter to the value of the initial
counter, recycling the expiry vector for capturing other Web pages. Besides Id
and Ed, the expiry vector Vi is also associated with a size counter n{Vi) which
gives the total number of pages Vi summarizes.

Text-Source Discovery and GIOSS Update in a Dynamic Web 437

To illustrate the use of the LOG and the expiry vectors, we reconsider the
previous examples. We only highlight those key steps that show how the system
patches the DF vector. Other details are presented in the algorithms shown in
the next subsection.

For the FAQ example, if the FAQ document does not change, when it is
accessed and brought into the cache for the first time, the DF vector is appro-
priately updated to reflect the inclusion of the FAQ and a log record is created.
The life span of the FAQ is set to a default value. When the FAQ is retrieved the
second time, its log record is consulted. Since the last-modified time of the newly
fetched FAQ is the same as that in the log record, the system knows that the
DF vector has already included the content of the FAQ. So, the second retrieval
does not induce any update to the DF vector.

For the scoreboard example, we assume that the Proxy cache is big enough
to store all the documents the system retrieves in a day. Since the inter-retrieval
time of the scoreboard page is very short, when a new version of the same page
is retrieved, the previous version can still be found in the cache. The system
only has to decrement the document frequencies of the words that appear in the
outdated page in the cache, and increment those in the new version.

3.2 Algorithm s

In this subsection, we present the algorithms for managing the vectors and the
LOG. The algorithms are driven by the following events:
Request When a user requests a document D, the system first checks if the
newest version of D is in the cache. If not, D is downloaded from the Web site.
If a log record of D is available, that means D has been retrieved before. The
system then checks if the newest version of D is the same as the previously one.
If not, the DF vector is incremented to include the new D. Otherwise, DF is
only updated if the life span was wrongly estimated to have already expired in
the previous estimate. In any case, the log record is appropriately updated. If
D is retrieved for the first time, a new log record is created and the life span
of D is set to a default value. Figure 2 shows the algorithm for handling a user
request.
Flush When a document D is to be flushed out of the cache, the system captures
I?'s content in an expiry vector. The expiry date of D is its last modified time
plus its life span, and the number of days to expiry equals the expiry date minus
the current time. The expiry vector whose counter EC is closest to the number
of days to expiry is chosen to capture D. In case the expiry date has already
passed, £)'s content is expired immediately and the DF vector is updated.
End-of-day At the end of a day, the expiry counters -BCs' of all the expiry
vectors are decremented by one. If an expiry counter Ed becomes zero, Vi
is deducted from the DF vector. The system then tries to reset Ed to its
initial value ICi. However, if there exists another expiry vector Vj whose expiry
counter ECj has the same value as ICi, there are now two expiry vectors Vi
and Vj with the same expiry counter value. We call this a vector clash. Different
expiry vectors should have different expiry counters in order to effectively capture

438 Ch.-Y . Ng , B . Kao , an d D . Cheun g

Request(D)
{ le t d b = we b sit e containin g D ;

retreiv e HTTP heade r o f D fro m we b sit e d b ;
i f (D i s no t i n cache) o r

(header' s las t modifie d tim e < > cach e copy' s las t modifie d time)
{. downloa d D fro m d b ; }

i f (LOG[D] doe s no t exist)
•C creat e LOG[D] ;

set LOG[D].L S = defaul t lif e spa n ;
set LOG[D].L M = NULL ; / / tentative , t o b e fixe d i n (*) belo w

}
els e i f (LOG[D].L M < > D' s las t modifie d time)
{ se t LOG[D].L S = D' s las t modifie d tim e - LOG[D] .L M ; }

/ / (*) se t L M fiel d i f no t don e ye t ; updat e DF vecto r i f necesssur y
i f (LOG[D].L M < > D' s las t modifie d time)
{ se t LOG[D].L M = D' s las t modifie d tim e ;

i f (D i s i n cache)
-[fo r eac h wor d t j i n D' s ol d versio n i n cach e d o

{ DF(db)[j] — ; }
n(db) ~ ;

}

fo r eac h wor d t j i n D d o
{ DF(db)[j]+ + ; >
n(db)+ + ;

>

Fig. 2. Algorithm Request

Flush(D)
-C i f ((LOG[D].LM + LOG[D].LS) > current time)

{ l et Vi(db) =
expiry vector with ECi = LOG[D].LM + LOG[D].LS - current time

for each word t j i n D do
{ Vi(db)[j]+ + ; }
n(Vi(db))++ ;

}
els e
{ fo r eac h wor d t j i n D d o

{ DF(db)[j]- - ; }
n(db) — ;

}
}

Fig. 3. Algorithm Flush

Text-Source Discovery and GIOSS Update in a Dynamic Web 439

documents that exhibit different life spans. Vector clash is thus undesirable. To
ensure the expiry vectors cover a reasonable spectrum of expiry dates, the system
dynamically adjusts the vectors' expiry counter values. In particular, when a
vector clash happens, the system swaps the roles of the clashing vectors. That
is, it swaps Id with ICj and tries to reset Ed to the new Id. If Vi then
clashes with yet another vector Vk, further swapping is done until there is no
vector clash. Figure 4 shows the algorithm for updating the DF and expiry
vectors at the end of a day.

End-of-day()

{ fo r eac h Web sit e d b d o

•[fo r eac h expir y vecto r Vi(db) d o { ECi(db) — ; }

i f (ther e exist s a vecto r Vi(db) suc h tha t ECi(db) = 0)

{ ii(db) = ii(db) - n(Vi(db)) ;

fo r eac h non-zer o entr y k i n Vi(db) d o

{ DF(db)[k] = DF(db)[k] - Vi(db)[k] ; }

whil e (TRUE) d o

{ ECi(db) = ICi(db) ;

i f (ther e exist s anothe r vecto r Vj(db) wit h ECi(db) = ECj(db))

swap(ICi(db) , ICj(db)) ;

els e exi t whil e loo p ; } } }

Fig . 4 . Algorith m End-of-da y

4 Experiment

To illustrate the effectiveness of our GIOSS update algorithm, we implemented
a prototype system and conducted an experiment. The goal is to study how well
the system keeps the word statistics of a Web site. In this section we briefly
discuss the experiment result.

We selected a sports Web site and took a snapshot of the site every day,
for 76 consecutive days. Each snapshot has, on the average, 20,000 Web pages.
The Web site also has archives of pages which are only accessible via its search
interfaces. The snapshots we took did not include those archives. Over the 76
snapshots, there are about 124,000 unique pages, with unique URLs'. Many
pages have dynamic contents or exhibit the transient existence property. For
example, only 416 pages, most of which being index pages, exist throughout the
76 days, and none has its content remain unmodified for more than 21 days.

To model Web page accesses, we first identified the "index pages" of the Web
site, e.g., the "soccer" index page, the "tennis" index page, etc. Each index page
represents an area of interest of the Web site. Each other Web page was then
grouped with the index page which shares with it the same URL prefix. Finally,

440 Ch.-Y. Ng, B. Kao, and D. Cheung

we identified the pages which exhibit transient existence property, i.e., those
that only exist for less than two days. We simulated a situation in which 5% of
the pages in each snapshot were accessed by the prototype. Since the average
snapshot size is 20,000 pages, about 1,000 pages were accessed per snapshot.

We synthesized the page requests according to the following rules:

1. The home page and all the index pages are accessed.
2. Three quarters of the page requests, i.e., about 750, are distributed evenly

to each area of interests.
3. One quarter of the page requests, i.e., about 250, are randomly selected from

the pages of transient existence.

Rule (1) is used to model the fact that the index pages are usually the most
frequently accessed pages. With rule (2), we assume different areas are of similar
popularity. With rule (3), we observe that the pages of transient existence usually
contain "fresh news" and are more likely be accessed. The pages selected under
rule (2) may overlap with those pages selected under rule (3). Thus the total
number of pages accessed per snapshot may be slightly less than 1,000.

The prototype system implements all the details as discussed in Section 3.
For the experiment, since we have only 76 snapshots of the Web site, we set the
default life span of a page to 60 days.

We recall that GIOSS uses the fraction of documents in a database for a
particular keyword, i.e., di{db)/n{db) in Equation 1, to estimate the goodness of
the database with respect to a query. We call this fraction the document density
of the i-th word, and denote it by the symbol pi{db). We will show how accurate
the prototype estimates the document densities. Since our GIOSS system only
"sees" a sample of pages from the Web site, the document densities are just
estimates based on the sample pages. The document frequency information of
the sample pages are summarized in the DF vector while n{db) records the total
number of pages ever retrieved from the Web site db and not yet expired. The
estimated document density of the i-th word p^^*'{db) is thus DF{db)[i\ln{db).

We drove the prototype using the synthesized streams of page requests. We
then compared the estimated document densities p?''{d6) with the real document
densities pi{db) of the words that appear in the last snapshot. In particular, we
compute the relative error, e,, defined by:

gj = [p^^''{db) — pi{db)) /pi{db), for all word ti in the last snapshot.

Figure 4 shows a bar graph which illustrates the average relative error of
words whose document densities fall into a specific range. Prom the figure, we see
that the average relative error for words with a non-trivial density {pi{db) > 5%)
is within 10%. This shows that our system is able to estimate the document den-
sities and thus the goodness of a Web site from a small set of document samples
(5%) fairly accurately. For words with a low document density (0 < Pi{db) <
0.5%), however, the average relative error is not insignificant. Fortunately, these
words with such a low document density appear very rarely in the Web site. The
error in the estimate of words with low document density is thus unimportant.
Hence, it does not undermine the effectiveness of our GIOSS system.

Text-Source Discovery and GIOSS Update in a Dynamic Web 441

0.4

0.3S

0.3

0.26

0.2

0.15

0.1

0.05

-

-

-

-
-
-
-
-
-
-

n"
0.0 0.005 0.01 0.015 0.05-0.5 0.5 Pi{db)
to to to to to to

0.005 0.01 0.015 0.05 0.5 1.0

Figure 1: Relative error versus densities

Fig. 5. Relative error versus densities

5 Conclusion

In this paper, we discuss the text-source discovery problem and the GIOSS ap-
proach. Due to the dynamic nature of the Web, a direct application of GIOSS
is inadequate. The problem is how one could obtain updated keyword statistics
of the Web sites, which are an important piece of information GIOSS relies on
in making an effective recommendation. We call this problem the GIOSS update
problem. We discuss an approach to solving the GIOSS update problem based
on passive sampling of documents from the Web sites. Data structures and algo-
rithms for dynamically tracking the keyword statistics of Web sites are proposed.
We implemented the ideas in a prototype GIOSS system. We conducted a sim-
ple experiment verifying the effectiveness of our approach. The result shows that
our system can give a reasonable estimate of document densities. The est imate
is part icularly accurate for those frequently occuring keywords.

References

1. The Web Robots FAQ. URL: http://www.mesquite.com.
2. M.E. Maron D.C. Blair. An evaluation of retrieval effectiveness for a full-text doc-

ument retrieval system. Communications of the ACM, 28(3):290-299, 1985.
3. S. Feldman. Just the answers, please: Choosing a web search service. The Magazine

for Database Professionals, May 1997.
4. B. Grossan. Search Engines: What They Are? How They Work?

URL: http://webreference.com/content/search/features.html.
5. V.N. Gudivada. Information retrieval on the world wide web. IEEE Internet Com-

puting, l(5):58-68, 1997.
6. Anthony Tomasic Luis Gravano, Hector Garcia-Molina. The effectiveness of GIOSS

for the text-database discovery problem. In Proceedings of the 1994 ACM SIGMOD.
7. Anthony Tomasic Luis Gravano, Hector Garcia-Molina. Generalizing GIOSS to

vector-space databases and broker hierarchies. In Proceedings of the 1995 VLDB
Conference, May 1995.

Extraction of Fuzzy Clusters
from Weighted Graphs

Seiji Hotta, Kohei Inoue, and Kiichi Urahama

Kyushu Institute of Design, Pukuoka 815-8540, Japan
urah.amaQkyushu-id .ac . jp

Abs t rac t. A spectral graph method is presented for partitioning of
nodes in a graph into fuzzy clusters on the basis of weighted adjacency
matrices. Extraction of a fuzzy cluster from a node set is formulated by
an eigenvalue problem and clusters are extracted sequentially from major
one to minor ones. A clustering scheme is devised at first for undirected
graphs and it is next extended to directed graphs and also to undirected
bipartite ones. These clustering methods are applied to analysis of a link
structure in Web networks and image retrieval queried by keywords or
sample images. Extracted structure of clusters is visualized by a multi-
variate exploration method called the correspondence analysis.

1 Introduction

Data summarizat ion by clustering is a fundamental strategy for exploration of
large scale data structures in information retrieval, filtering and da ta mining [1].
Hypertexts or da ta matr ix in document retrieval can be represented by directed
or undirected graphs. Clustering of graphs is useful for exploration of those
data structures. Clustering is an NP-hard problem which needs approximate
solution methods one of which is spectral graph partitioning[2] in which integer
constraints are relaxed to real values and combinatorial tasks are reduced to
eigenvalue problems. Spectral part i t ioning method is recently extended to graphs
and matrices[3] and to categorical data[4]. The method[3] yields continuous,
i.e. fuzzy clustering instead of discrete, i.e. hard one, however the number of
clusters is fixed a priori. The method[4] is an extension of their approach[5] for
finding a dense set in directed graphs to a strategy for finding multiple sets by
using a nonlinear iteration schemes. We have presented another spectral graph
method[6] for part i t ioning data into fuzzy clusters. Our method applies a linear
eigenvalue solution to the adjacency matr ix of da ta successively for extract ing
fuzzy clusters sequentially. In this paper, we extend it to directed graphs and to
undirected bipart i te ones and apply them to analysis of a link structures in Web
networks and to image retrieval queried by keywords or sample images. Extracted
structure of clusters is visualized by a multivariate exploration method called
the corresponding analysis. This visualization can be used for image retrieval by
browsing of images and keywords.

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 442-453, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Extraction of Fuzzy Clusters from Weighted Graphs 443

2 Sequential Extraction of Fuzzy Clusters by Spectral
Graph Method

We partition nodes of a graph whose edges and nodes have real weights into a
set of fuzzy clusters. Our method[6] for fuzzy clustering of data is first applied
to undirected graphs. It is next extended to directed graphs and to undirected
bipartite ones. Their practical implication will be clarified in the next section
for their applications.

2.1 Fuzzy Clustering of Undirected Graphs

Let the weight of the ith node in an undirected graph of m nodes be Uj, and
the weight of the edge between the ith and the j t h nodes be Wij (see Fig.1(a)).
Undirected graph implies Wij = Wji. Our method [6] extracts cohesive subsets
successively from this node set. Let xu be the degree of participation of the ith
node in the first, i.e. most densely connected cluster, then the cohesiveness of this
cluster is evaluated by X^^j S f ci ViXuWijVjXij and the first cluster maximizes
it as

max 2_] / , ViXiiWijVjXij
i=l J = l

m

subj.to X^'^i^^i i = 1
1 =1

(1)

This first step of extraction coincides with the method[7] for finding the most
cohesive subset in image data. This equation is converted by the transformation
of variables xu = Jvlxu into a canonical form:

niax ^ ^ \/viX\iWij V ^ ^ i j

subj.to ^ i f j = l
(2)

The optimal solution x\ = [xu,...,xim] of this maximization problem is
the principal eigenvector of the weighted adjacency matrix Wi = \,/viWijy/vJ].

M Wij

(b)
Fig. 1. Undirected graph (a) and directed one (b)

444 S. Hotta, K. Inoue, and K. Urahama

Since all elements of Wi are nonnegative, every x'u is also nonnegative, and the
cohesiveness of the cluster is given by the principal eigenvalue. The solution of
eq.(l) is given by Xu = xu/y/vi and let ti = argmaxjXii, then pu = xufxu^
is the membership of the ith. node in the first cluster [6].

The second cluster is extracted by the same procedure after the deletion
of the first cluster from the original node set. After the deletion the weight
of each node becomes (1 — pii)Vi, hence the membership X2i of the ith node
in the second cluster is given by replacing Uj in xu by (1 — p\i)Vi. Thus ex-
tracted clusters are deleted successively and then generally the membership pki
in the A:th cluster is given by the procedure: we first calculate the principal
eigenvector Xk of the matrix Wk — [yJViVjWij YYiZi yj{^ ~Pi i)(l —Pij)]: i^ext

Xki = iki/y'Vi WiZi (l ̂ Pii) is calculated and ik = argmaxjXfci is found, then
the membership of the ith node in the fcth cluster is given by pki = Xki/xki^.
Since every element of the matrix decreases monotonically in this sequential ex-
traction of clusters, its principal eigenvalue, i.e. the cohesiveness also decreases
monotonically. The profile of the variation in the cohesiveness suggests us an
appropriate number of clusters.

2.2 Fuzzy Clustering of Directed Graphs

Generally Wij ̂ Wji in directed graphs. The weight of nodes is differentiated
into two, one is the weight m as an initial node for the edges outgoing from
the ith node and the terminal weight Vi for edges incoming to it(see Fig.1(b)).
Accordingly the membership of nodes is divided to the initial membership Xi
and the terminal membership y .̂ The first cluster with the largest cohesiveness
is then formulated as

(3)

max y ^ } UjXiiWijVjyij
i=l j=\

m m

subj.to ^U iX?j = l , Y^Vjylj = l
t= i >=i

which is an extension of eq.(l). This first step of cluster extraction coincides with
the method[5] for finding the most dense subset in Web networks. Similarly to
the previous subsection the variable transformation xu = s/ulxxi,y\j = y/UJyij
converts eq.(3) into

max
XI,yi

subj.to

53 H v *̂i '
i = i j = i

iWij^yij

m

E^5 =
(4)

whose solution xi — [xn, ...,XIT„] , yi = [yii , ...,yiTn] is shown by the Lagrange
multiplier method to meet the following two equations:

Wxyx = Axi , W'^xx = p.yx (5)

Extraiction of Fuzzy Clusters from Weighted Graphs 445

where Wi = \^/uiWijy/vj], and A and /x are Lagrange multipliers. Elimination of
y from these two equations, or conversely the elimination of x leads to

w^w^xi^Xiixi, w[wm = >^mi (6)

which state that xi is the principal eigenvector of WiV7^ and yi is that of
W^^W î. In practical computation, one of these two eigenvectors, e.g. yi is calcu-
lated and then the other is given by only matrix multiplication as xi = Wiyi.
The normalization of its norm is unnecessary because it wil l be renormalized
at the transformation to memberships. The solution of eq.(3) is xu = xnf sjv^i-,
yij = yij/\/Vj from which the memberships are given by pu = xu/ ma,x{xii},
Qij = yij/'^^^{yij} where pu is the initial membership of the ith node and
qij is the terminal membership of the node j . We call ii = argmaxijpii} the
representative initial node in the first cluster, which corresponds to the hub in
[5], and jx = argmaxj{9ij} is the representative terminal node which is called
the authority in [5].

Let us evaluate the cohesiveness of clusters. If we multiply x\ to the left
equation of (5), we get x^Wxyx = \x\^x\ = A, and similarly the multiplica-
tion of y\ to the right equation of (5) leads to y{Wjx\ — ^yfyi — /x. From
these two equations we know X = p,, from which together with eq.(6) it is
derived that A(=: /x) is the square root of the principal eigenvalue of W^Wi ,
which is equal to that of Wi l^^ . Thus it is concluded that the cohesiveness
E i l i Z) ^ i Ui^iiWijVjyij = xJWiyi is given by A(= /x).

Next at the extraction of the second cluster, the weight of nodes as initial
points is reduced to (1 — pii)ui and their terminal weight becomes (1 — qij)vj.
The membership in the second cluster is hence given by the above expression
for the first cluster with the replacement of Uj by (1 — pii)ui and that of Vj
by (1 — qij)vj.The third and subsequent clusters are given similarly and gen-
erally the feth cluster is calculated by the following procedure: the principal
eigenvector yk of W^Wk where Wk = [^/u^vjwij HjJi A / (1 - Pii){l - qij)] is
calculated and from it we get Xk = Wkyk which is further transformed to

Xki = ^ki/'\/uiYli=i i^^Pii)- The representative initial node ik is that with
maximal Xki and the representative terminal node jk is with maximal ykj. The
membership as initial nodes in the kth cluster is then given by pki = Xki/xkit
and that as terminal nodes is qkj = ykj/ykjk- The cohesiveness of the fcth clus-
ter is the square root of the principal eigenvalue of W^Wk (or WkW^). The
cohesiveness decreases monotonically as k increases.

Finally before proceeding to the next section, we show that directed graphs
can be transformed to undirected bipartite graphs equivalent to them. At first
each node i is doubled to i and i and an edge with the weight Wij is drawn from
z to i. The direction of edges can be dropped and then we get an undirected
bipartite graph (see Fig.2) where the weight of node i is Ui and that of j is
Vj. Clustering of such an undirected bipartite graph is considered in the next
section.

446 S. Hotta, K. Inoue, and K. Urahama

(a) (b)

Fig. 2. Undirected bipartite graph (b) equivalent to digraph (a)

2.3 Undirected Bipartit e Graphs

Let a graph be composed of two subsets of nodes i = 1, ...,m and j = 1, ...,n
between which undirected edges with a weight Wij {= Wji) are linlied but no edge
exists in each subset. There are three cases for the clustering of those undirected
bipartite graphs.

The first is clustering of the entire graph as an undirected graph by ignoring
the specificity of its bipartite structure. In this case the method in section 2.1 is
simply applied to the entire graph.

The second is the clustering of two subsets separately. This clustering cannot
be done by applying the method in section 2.1 to each subset independently
because there is no direct link in the subset. Let xi be the degree of participation
of the nodes in one subset in the first cluster and j/i be that of the nodes in the
other subset, then the equation for these variables reads the same as eq.(3). This
means the equivalence between directed graphs and undirected bipartite ones as
is stated at the end of the previous section. Separate clustering can be recognized
by the elimination of xi or j/i from eq.(3), which yields two separate equations

max x[WiWi^xi

subj.to II xi 11= 1

max yfWi Wiyi
yi

subj.to I! yi 11= 1

(7)

(8)

which reveal that FFi VF/" is the adjacency matrix for xi and ly^Wi is that for yi .
This separation however cannot be recommended from their computational costs.
Since the matrix Wi is generally nonsquare because m ̂ n {Wi is square for
directed graphs in section 3.1), the size of W^Wi is different to that of WiW^,
hence the cost is minimized by calculating only the eigenvector of smaller one of
these matrices and obtaining the other eigenvector by using one of eq.(5).

Finally the third case is clustering of only one subset of nodes. Contrarily to
the second case where clusters are extracted concurrently from both subsets, the
other subset is invariant throughout the extraction process in this case. Let the
subset i = 1,..., m be partitioned into clusters. The extraction of the first cluster

Extraction of Fuzzy Clusters from Weighted Graphs 447

is the same as eq.(3). Next at the extraction of the second cluster, only the weight
of the subset i = 1,..., m is reduced to (1 — pii)ui and Vj {j = 1,..., n) are fixed
invariantly. The extraction of the third and subsequent clusters is similar and
generally the kth cluster is calculated by the following procedure: the principal
eigenvector Xk of Wk W ̂ where W ̂ = {-.Ju^jWij W,iZ\ ^/l — 'pu\ is calculated (or
if m > n the principal eigenvector y ̂ of W^Wfeis calculated and from it we get

ik = WkVk) and from it we get Xki = iki/yui YiiZi (1 - Pu)- The representative
node ik is that with maximal Xki and the membership of the ith node in the
fcth cluster is given by pki = Xki/xki^. The cohesiveness of the fcth cluster is
the square root of the principal eigenvalue of W^Wk (or WkW^) and decreases
monotonically as k increases. Note that the membership in extracted clusters
is obtained for the nodes j = l , . . .,n as a byproduct of this clustering of the
subset i = 1,..., m. The representative node jk of the kth cluster is the one with
maximal ykj and the membership is given by qkj = ykj/Vkjk for the jth node in
the fcth cluster.

3 Applications

We next proceed from the basic theory of the clustering algorithms described
above to some examples of their practical applications. The order of subsections
below corresponds to that of subsections in the above section.

3.1 Clustering of Metri c Data

When data are given by a set of points in a metric, e.g. Euclidean spaces, the data
are represented by an undirected graph in which each node denotes a datum and
edges have the weight which is the inverse of the distance between data. Their
clustering is obtained by the procedure described in section 2.1. This class of data
is very popular and their clustering is rather elementary, hence its examination
is skipped here.

3.2 Clustering of Web Pages

Next examples are hypertexts and Web pages which are represented by a directed
graph where each text or page is denoted by a node and links are represented
by directed edges between nodes. A set of journal articles are also represented
by a directed graph where the links denote citational relations. These examples
are analyzed by the method in section 2.2. We report here the clustering of Web
pages. We used a set of 127 Web pages which are retrieved by a search engine
"metacrawler" with the keyword "information retrieval" together with secondary
searches. A directed graph was constructed from the links in those pages. All
the weights were set to one for both nodes and edges. Figure 3 shows the co-
hesiveness of extracted clusters. Its decreasing rate deteriorates after the 4th
extraction, this shows that clusters from the 4th one are sparse and the number

448 S. Hotta, K. Inoue, and K. Urahama

of salient clusters is three. Their representative initial pages (whose URL and
title) are
1. http://cuiwww.unige.ch/ viper/other-systems.html

Links to other image database systems
2. http://nl06.is.tokushima-u.ac.jp/member/kita/NLP/IR.html

Information Retrieval Links
3. http://www.umiacs.umd.edu/research/CLIP/filter2.html

Information Filtering Resources

and their representative terminal pages are
1. http://wwwqbic.almaden.ibm.com/

QBIC - IBM's Query By Image Content
2. http://ciir.cs.umass.edu/

The Center for Intelligent Information Retrieval
3. http://www.Iucifer.com/ sasha/articles/ACF.html

Automated Collaborative Filtering and Semantic Transports

In these lists the number is the extracted order which is upper for the clus-
ter including more pages. The representative initial page called the hub in [5]
has links to many pages in the cluster, hence it serves to introduction to the
topics of the cluster. The representative terminal page called the authority in [5]
is linked from many pages in the cluster, hence its content is important for the
topics. The topics of above three clusters are 1. image retrieval, 2. information
retrieval, and 3. information filtering. Though this example contains very small
number of pages of restricted topics, clustering of arbitrarily gathered pages of
large numbers could find groups emergently build up in the internet such as a
cyber-community.

The present cluster analysis of Web networks can be used for suggestion of
new links for each page. Let us consider an intuitive example where the initial
membership pki of a page in a cluster has the value one and pu {I ̂ k) of that
page in other clusters are zero. This means that some links exist from that page

Fig. 3. Variation in cohesiveness ot dusters

Extraction of Fuzzy Clusters from Weighted Graphs 449

to some pages included in that cluster and there is no link from that page to
other clusters. Then a new link from that page to the representative terminal
page of that cluster is highly recommended if it does not exist yet. By extending
this intuitive example with crisp membership values to general cases with fuzzy
memberships, we get the following recommendation rule. Let pi = {pn, ...,pi^iY'
where TV is the number of clusters be the vector of the membership of the ith
page as initial nodes in each cluster and qj = [qij, ...,qf^j]' ̂ be that of the j t h
page as terminal nodes. Then the degree of the desirability of the link from
the ith page to the jth page can be estimated by the similarity between these
two vectors. For instance, the similarity can be evaluated by the cosine of the
angle between these two vectors: Uj = pfqj/ |(Pi)(|(qj |(where p'^qi is the
inner product X)fe=i PkQki and || p || is the Euclidean norm y/p'^p. Thus if there
is no Unk from the ith page to the jth one and rij is large, then this link is
recommended to be added newly.

3.3 Image Retrieval by Keywords

Next is the third example of data retrieval based on the clustering to which the
scheme in section 2.3 can be applied. Data in the document retrieval by key-
words can be represented by an undirected bipartite graph in which the set of
documents is one subset of nodes and keywords are denoted by the other subset
of nodes and the weight of links denotes the frequency of keywords appearing in
each document. For instance a data matrix in table 1 is represented by the bi-
partite graph shown in Fig.4 in which all the weights of nodes and those of edges
are one. By clustering the documents using the method in section 2.3, we can

Table 1. A data matrix for texts and keywords

textl
text2
texts

kwl

1
1
0

kw2

0
1
1

kw3

1
0
0

kw4

0
1
1

450 S. Hotta, K. Inoue, and K. Urahama

grasp the cluster structure of documents and at the same time the membership
of each keyword in each cluster is also obtained as a byproduct. Documents and
keywords are related through these memberships and we can retrieve documents
queried by keywords by referring these relations. Fuzziness of the clustering en-
ables us detailed ranking which is impossible by hard clustering. Objects in a
database are not restricted to documents. We examine image databases in this
section.

Let us first consider the retrieval by query. Another strategy of retrieval by
browsing will be shown in the next section. Let us begin with a simple case with
a query being one keyword whose membership in each cluster is pfc (^ = 1, -.., iV)
where A'̂ is the number of clusters. Let q^i be the membership of the ith im-
age in the kth cluster. Then the query keyword is represented by the vector
p= \pi, ...,PN]' ̂ and each image is represented by the vector qi = [qn,..., qm]'^-
Intuitive is the hard clustering case where images included in a cluster to which
the query belongs are retrieved. This rule is extended to fuzzy clustering cases
similarly to the above example for Web link recommendation. We evaluate the
similarity between the query and each image by the cosine of the angle between
their vectors: Sj —p^qi/ || p |||| qi \\ where p^ ĵ is the inner product YLk='i.Pk<lki
and II p II is the Euclidean norm yjp'^p. This similarity is the correlation coef-
ficient between the query and each image. Images with large similarity to the
query are relevant to that query, hence the rank of the relevance of images to the
query is given by Sj. Thus images are retrieved by the order of the value of Sj.
This retrieval scheme can be extended to a query given by multiple keywords.
When L keywords are inputted, the cosine su = pfqi/ || pi \\\\ qi || between the
membership vector pi = \p\i, ...,PNIY' of *'he /th keyword and qi = [qu,..., qjvi]^
of each image is calculated for each keyword / = 1,..., L. These elementary scores
are combined by the product Sj = n ;=i ^n if ^^ ̂ combination rule is "AND" , or
by the sum Si = X^j^j su if the rule is "OR". Images are retrieved by the order
of the value of this combined score sj.

When the query is given by an image instead of keywords and we search in a
database for images similar to the query image, the retrieval process is similar,
i.e. the similarity between the query image and each image in the database is
evaluated by the cosine of the angle of vectors of those memberships in each
cluster.

We have experimented the retrieval of images queried by a sample image.
Example database is composed of 160 photographs attached with 46 keywords.
This dataset of images was clustered by the scheme in section 2.3. The varia-
tion in the cohesiveness of clusters is illustrated in Fig.5 from which the number
of clusters is determined to five. Ten images are retrieved for each image in
the database as the query. To evaluate the performance of the present retrieval
method, we have also experimented the retrieval by using the latent semantic
indexing (LSI) method [8]. The rank of the data matrix of the size 160 x 46 was
reduced to five by the singular value decomposition. Ten images are retrieved
for each image. Figure 6 shows the number of the same images retrieved both by
the present method and by the LSI for each query image. The axis of abscissas

Extraction of Fuzzy Clusters from Weighted Graphs 451

en

D

.>

O
O

50 100

query image

150

Fig. 5. Variation in cohesiveness of clus- Fig. 6. Number of images appearing both
ters in the first 10 by the present method and

in those by the LSI method

in Fig.6 denotes each query image and its axis of ordinates is the number of
images coincident in both ten retrieved images. The average number of coin-
cidence is seven which reveals that the present method outputs images similar
to those by the LSI method. The entire retrieval time, which is clustering plus
160 retrievals in the present method and singular value decomposition plus 160
retrievals in the LSI, is 0.22 seconds in the present method and 0.33 seconds in
the LSI method. Though the present method contains five times of eigenvalue
decomposition which is only one time in the LSI method, the present method is
faster than the LSI. This is attributed to the fact that the eigendecomposition is
applied to a 46 x 46 matrix in the present method, on the other hand the matrix
size is 160 x 46 in the LSI.

4 Graph Drawing Based on Fuzzy Clustering

Since the membership value in hard clustering takes only one or zero, detailed
topology in each cluster is lost hence the ordering of data in each cluster has
no meaning. Contrarily the memberships take continuous values in the fuzzy
clustering, therefore the locational relation between data displayed on a screen
reflects data topology. Two data with similar membership patterns should be
placed close together on a screen. Here we calculate approximately such a topol-
ogy preserving map by using an exploratory multivariate data analysis method
called the correspondence analysis [9].

The correspondence analysis is a method for displaying data by arranging
them preserving their similarity relations given by their cooccurrence matrix.
Let there be m samples and n items and the cooccurrence degree of the ith sam-
ple and the j t h item be dij. The procedure of the correspondence analysis for
arranging samples on a two-dimensional space based on this cooccurrence matrix
D — [dij] is summarized as follows: If m < n then we calculate the secondary

452 S. Hotta, K. Inoue, and K. Urahama

principal eigenvector 1*2 and the third one U3 of the matrix F~^DG~^D^F~'^
where F = diag(/i);/i = Yl"=i<iij and G = diag(pj);gj = S i l i <̂ y and next
calculate x = F'"^U2 and y = F'^u^. Conversely if m > n then we calculate the
second and the third eigenvectors V2, V3 and their eigenvectors A2, A3 of the ma-
trix G~ 21?'^F~^DG"" 2, and from them we next calculate a; = F~^DG~'^V2/V^
and y = F~^DG'"^Vi/^/Xl. These x and y give the locations of data, i.e. [xi, yi)
is the two-dimensional coordinate of the ith sample.

We exploit this correspondence analysis here for the visualization of the struc-
ture of extracted fuzzy clusters. We regard the nodes in a graph as samples and
their cluster as an item, then the degree of cooccurrence dij corresponds to the
degree of the ith node appearing in the j t h cluster, i.e. the membership of the
ith node in the j t h cluster. Hence we construct the cooccurrence matrix D by
equating dij to pji which is the membership of the ith node in the j t h cluster
and apply the correspondence analysis to it, then two nodes with similar mem-
bership values are located close together and we can grasp the cluster structure
visually. For example five clusters extracted from 160 images and 46 keywords
cited in the previous section were displayed by this method. In this example the
samples are images and keywords, and items are clusters, hence m ':^ n which
is the latter case in the above procedures. Resulted arrangement of images and
keywords is illustrated in Fig. 7(a) where images are denoted by white squares
and the black dots denote keywords, and representative images and keywords
are displayed large. Links in Fig. 7(a) denote the correspondence between images

-0 1

-().()4

-().{)45

-0.05

-0.055

-0.06

^^'''%

1 - 1 - 1 ,

cli i ld

u

I- ^oRcopIc

excursion old man

couple faniiiy ^'^'
r . J . 1

K)5 0 0,005 001

Fig. 7. Drawing of cluster structure for images and keywords

and keywords. The "People" cluster nearly central in Fig.7(a) is magnified in
Fig. 7(b) where links are omitted for simplification. These simultaneous displays
of images and keywords on the same screen serve to grasp these relations and
are used for the browsing retrieval of images with the aid of the search based
on keywords. On the other hand however such simultaneous display is rather

Extraction of Fuzzy Clusters from Weighted Graphs 453

complicated to see. Search speed will be raised in some cases if only keywords
are displayed first and we select a place in the screen and then the images in the
selected area are displayed on the screen. Although the present display method
is different to the graph drawing schemes[10] whose object is the visibility of the
link structure of graphs because our main concern here is the presentation of
the cluster structure, the present scheme can be said one of the graph drawing
method with the emphasis on the cluster structure.

5 Conclusion

A spectral graph method has been presented for partitioning the node set of
a graph into fuzzy clusters on the basis of its adjacency matrix. The method
has been applied to the extraction of link structures in Web networks, retrieval
of images queried by keywords or sample images and graph drawing based on
the clustering. The present method is based on only the link relations between
nodes in contrast to conventional clustering method based on only the features
of nodes. Combination of these two approaches to clustering is under study to
improve their performance.

References

1. Florescu D., Levy A., Mendelzon A.: Database techniques for the World-Wide Web:
A survey. SIGMOD Record 27 (1998) 59-74

2. Donath W. E., Hoffman A. J.: Lower bounds for the partitioning of graphs. IBM J.
Res. Develop. 17 (1973) 420-425

3. Drineas P., Frieze A., Kannan R., Vempala S., Vinay V.: Clustering in large graphs
and matrices. Proc. SODA'99 (1999) 291-299

4. Gibson D., Kieinberg J., Raghavan P.: Clustering categorical data: An approach
based on dynamical systems. Proc. 24th VLDB (1998) 311-322

5. Kieinberg J. M.: Authoritative sources in a hyperlinked environment. Proc.
SODA'98 (1998) 668-677

6. Inoue K., Urahama K.: Sequential fuzzy cluster extraction by a graph spectral
method. Patt. Recog. Lett. 20 (1999) 699-705

7. Sairkar S., Boyer K. L.: Quantitative measures of change based on feature organizar
tion: Eigenvalues and eigenvectors. Comput. Vision Imag. Und. 71 (1998) 110-136

8. Deerwester S., Dumais S., Furnas G., Landauer T., Heirshamn R.: Indexing by latent
semantic analysis. J. Amer. Soc. Infor. Sci. 41 (1990) 391-407

9. Jambu M.: Exploratory and multivariate data analysis. Academic Press (1991)
10. Tamassia R., ToUis I. G.: Graph drawing: Algorithms for the visualization of

graphs. Prentice Hall (1998)

Text Summarization by Sentence Segment
Extraction Using Machine Learning Algorithms

Wesley T. Chuang^''̂ and Jihoon Yang-̂

' Dept. of Computer Science, UCLA, Los Angeles, CA, 90095, USA
yelsewQcs.ucla.edu

HRL Laboratories, LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265, USA
{yelsew I yan.g}Qwins .hr l. com

2

Abstract. We present an approach to the design of an automatic text
summarizer that generates a summary by extracting sentence segments.
First, sentences are broken into segments by special cue markers. Each
segment is represented by a set of predefined features (e.g. location of
the segment, number of title words in the segment). Then supervised
learning algorithms are used to train the summarizer to extract important
sentence segments, based on the feature vector. Results of experiments
indicate that the performance of the proposed approach compares quite
favorably with other approaches (including MS Word summarizer).

1 Introduction

With lots of information pouring in everyday, document summaries are becoming
essential. Instead of having to go through the entire text, people can understand
the text fast and easily by a concise summary. In order to obtain a good summary,
however, we are faced with several challenges. The first challenge is the extent
to which we "understand" the text for writing a summary. In our approach we
do not claim to generate a summary by abstract (after understanding the whole
text), but attempt to extract some segments out of the text. Second, a summary
may be subjective depending on whether people think that certain features or
characteristics should be used to generate a summary. Features all have a degree
of subjectivity and generality when they are to be used to form a summary.
Ideally, we are looking for those features that are independent of the types of
text and users to suggest the significance of parts of a document.

Against this background, we propose an approach to automatic text sum-
marization by sentence segment extraction using machine learning algorithms.
We perform a "shallow parsing" [5] by looking at special markers in order to
determine the sentence segments. Special markers and their by-product, rhetor-
ical relations, discriminate one portion of text from another. We define a set
of features for each sentence segment. Then we convert these features into a
vector representation and apply machine learning algorithms in order to derive
the rules or conditions by which we generate a summary. As we shall find out,
machine learning will report to us whether one feature is useful at all in looking
for summary material based on achieving a good balance between subjectivity
and generality of summarization.

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 454-457, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Text Summarization by Sentence Segment Extraction 455

2 Design of the Text Summarizer

2.1 Sentence Segmentation

Our segmentation method is basically the same as Marcu's [5]. A sentence is
segmented by a cue phrase. The basic idea behind this is to separate units (i.e.
sentence segments) that possibly convey independent meanings and use the units
in summarization. (See [5] for detailed description on the cue phrases and the
segmentation algorithm.)

2.2 Feature Representation

The sentence segments need to be represented by a set of features. There are
two kinds of features we consider: structured and non-structured. The former is
related to the structure of the text (e.g. rhetorical relations), while the latter is
not (e.g. titl e words).

Mann and Thompson noted in their Rhetorical Structure Theory that a sen-
tence can be decomposed into segments, usually clauses [4]. The main segment
is called a nucleus, and its subordinate segment is called a satellite, relating to
the main segment with some rhetorical relation. There are many rhetorical rela-
tions signaled by different cue phrases (e.g. because, hut, if, however). Generally,
when a rhetorical relation occurs, the nucleus is considered as a more impor-
tant segment - and has more chances to be in the summary - than its satellite
counterpart.

Using Marcu's discourse-marker-based hypothesizing algorithm [5], we dis-
cover rhetorical relations on segments' base level. In other words, we obtain the
rhetorical relations of a segment to another segment in nearby region instead of
talking all the combinations of segments recursively to generate the whole RST
tree, which is computationally demanding.

We collect a total of 23 features and generate the feature vector F which can
be divided into three groups:

- Group I: 1. paragraph number, 2. offset in the paragraph, 3. number of bonus
words, 4. number of titl e words, 5. term frequency,

- Group II : 6. antithesis, 7. cause, 8. circumstances, 9. concession, 10. condi-
tion, 11. contrast, 12. detail, 13. elaboration, 14. example, 15. justification,
16. means, 17. otherwise, 18. purpose, 19. reason, 20. summary relation,

- Group III : 21. weight of nucleus, 22. weight of satellite, 23. max level.

Features 1-5 in Group I are non-structural attributes of the text. They are coun-
ters associated with a feature like the location of the segment as defined in [3,1].
Features 6-20 are distinct rhetorical relations. When a segment is hypothesized
with a relation, such a relation (feature) Fj (initially zero) will change its value
by the following equation:

\ Fi + l.Q/x if nucleus

{ Fi — l.Q/x if satellite

456 W.T. Chuang and J. Yang

where x is the number of the asymmetric, exclusive-or relations being hypothe-
sized with the segment. Features 21-23 in the last group are collective descrip-
tions of the rhetorical relations. For example, Weight of nucleus sums up all
the occurrences one segment acting as a nucleus, regardless of which relation it
possesses. Max level describes how many times, recursively, a segment can be
a satellite of another satellite.

2.3 Summar izer Training

Here the goal is to select a few segments as a summary that can represent
the original text. With the feature vectors generated in previous steps, we can
easily apply machine learning algorithms to train a summarizer (i.e. supervised
learning). We are interested in seeing whether programs can quickly learn from
our model summary and categorize which segments should be in summary and
which should not - and learn it from all 23 aforementioned features that are
deemed representative. We consider the following three learning algorithms in
our experiments.

Decision Trees We adopted the C4.5, a decision tree learning algorithm de-
signed by Quinlan [6], to train the summarizer. It generates a decision tree
making use of the features which give the maximal information gain. C4.5 has
been known to be a very fast and efficient algorithm with good generalization
capability. (See [6] for detailed descriptions on the algorithm.)

Naive Bayesian Classifier We apply the naive Bayesian classifier as used

in [2]: P{c G C \ Fi,Fu...Fk) = "^^^'^^I^'^pff.f'^^^where C is the set of

target classes (i.e. in the summary or not in the summary) and F is the set of
features. In our experiment, since the value of the most features are real numbers,
we assume a normal distribution for every feature, and use normal distribution
density function to calculate the probability P{Fj).

DistAl DistAI [7] is a simple and relatively fast but efficient constructive neu-
ral network learning algorithm for pattern classification. (See [7] for detailed
description on the algorithm and performance evaluations.)

3 Experimental Results

Among the variety of data on the Internet, we chose nine U.S. patents for our
experiments. Note that we used only the sections of "background of invention"
and "summary of invention" instead of considering the entire patent. For each
patent data, we manually generated a model summary to be used in training and
evaluation of the summarizer. Table 1 displays the number of sentences, number
of segments, and the number of segments in the model summary.

Text Summarization by Sentence Segment Extraction 457

Table 1. Dataset size and performance, sen, seg, and sum are the number of sentences
and segments in the patent data, and the number of segments in the model summary.
a, p, and r represents the accuracy, precision, and recall, respectively (in percentage).

ID
1
2
3
4
5
6
7
8
9

Data Size
sen seg sum
58 75 25
29 33 14
36 48 16
45 77 20
16 19 5
95 139 17
76 98 25
23 29 6
30 39 11
Average

Standard dev.

MS Word
a p r

62.7 46.4 50.0
48.5 40.0 42.8
33.3 23.5 25.0
64.9 33.3 35.0
57.4 28.6 40.0
76.3 5.6 5.9
61.2 25.9 28.0
75.9 40.0 33.3
66.7 40.0 36.4
60.8 31.6 32.9
13.4 12.1 12.6

C4.5
a p r

70.7 32.0 61.5
60.6 21.4 60.0
64.6 37.5 46.1
88.3 60.0 92.3
68.4 60.0 42.9
82.7 29.4 29.4
70.4 32.0 40.0
75.8 71.4 71.4
71.8 9.1 50.0
72.6 39.0 54.8
8.6 20.0 18.9

Bayesian
a p r

72.0 60.0 48.0
60.6 52.9 64.3
60.4 41.2 43.8
75.3 52.6 50.0
63.2 37.5 60.0
84.2 40.0 58.8
79.6 60.9 56.0
51.7 50.0 71.4
76.9 100 18.2
69.3 55.0 52.3
10.8 18.8 15.3

DistAI
a p r

72.0 44.4 48.0
57.6 40.0 28.6
72.9 45.5 31 .3
76.6 47.6 50.0
84.2 60.0 60.0
87.8 28.9 64.7
74.5 33.3 40.0
100 100 100
77.0 54.5 54.5

78.1 50. 5 53.0
11.8 20.9 21.4

The performance of the summarizer is evaluated by a 9-fold cross-validation
using the patent data. We evaluate the results of summarization by the precision,
recall and classification accuracy (overall percentage of correct classification re-
gardless of the class labels) for the three learning algorithms, and compare them
with the summarizer in Microsoft Word. Table 1 displays the performance of all
the methods considered. As we can see from Table 1, all the three approaches
using machine learning outperformed Microsoft Word summarizer significantly.
We do not know exactly the underlying mechanism that Microsoft Word uses
to summarize a document. It appears that many co-occurred words are simply
selected as a summary. The summary generated by our approach is more co-
herent than those incoherent fragments of words generated by Microsoft Word
summarizer.

References

1. H. P. Edmundson. New Methods in Automatic Extracting. In Advances In Auto-
matic Text Summarization, pages 23-42, 1999.

2. J. Kupiec, J. Pedersen, F. Chen. A Trainable Document Summarizer. In Advances
In Automatic Text Summarization, pages 55-60, 1999.

3. H. P. Luhn. The Automatic Creation of Literature Abstracts. In Advances In Au-
tomatic Text Summarization, pages 15-21, 1999.

4. W. Mann, S. Thompson. Rhetorical structure theory: Toweird a functional theory
of text. In Text 8(3): pages 243-281, 1988.

5. D. Marcu. The rhetorical parsing, summarization, and generation of natural lan-
guage texts. Ph.D. Dissertation, Department of Computer Science, University of
Toronto. 1997.

6. J.R. Quinlan. €4-5: Programs for Machine Learning. Morgan Kaufmann, 1993.
7. J. Yang, R. Parekh, V. Honavar. DistAI: An Inter-pattern Distance-based Con-

structive Learning Algorithm. In Intelligent Data Analysis 3: pages 55-73, 1999.

Author Index

Arikawa, Setsuo, 281
Arimura, Hiroki, 281

Boulicaut, Jean-Frangois, 62
Buckingham, Lawrence, 349
Bykowski, Artur, 62
Byun, Y.T., 134

Candan, K. Selguk, 294
Cax), Jing, 169
Cercone, Nick, 269
Chen, Ming-Syan, 216
Cheung, David W., 74, 257, 432
Chuang, Wesley T., 454

Dash, Manoranjan, 98, 110
Diao, Yanlei, 408
Domingo, Carlos, 317
Dong, Guozhu, 220

Fan, Ye, 169
Fiez, Tim, 329
Fujino, Ryoichi, 281
Fukuda, Takeshi, 233

Geva, Shlomo, 349
Giannotti, Fosca, 360

Han, Jiancho, 269
Han, Jiawei, 165, 396
Ho, Tu Bao, 345
Horiuchi, Tadashi, 420
Hotta, Seiji, 442
Hou, Jean, 165
Hu, Yunfa, 169
Huang, Zhexue, 153
Hung, Edward, 74
Hussain, Farhad, 86

Inoue, Hirotaka, 177
Inoue, Kohei, 442
Ishikawa, Takashi, 212

Jensen, Viviane Crestana, 49

Kao, Ben , 74 , 43 2
Keane, Joh n A. , 30 6
Keogh, Eamon n J. , 12 2
Keung, Chi-Kin , 14 2
Kim, Y.S. , 13 4
Kotagiri, Ramamohanaiaxa, 220

Lam, Wai, 142
Lazarevic, Aleksandar, 329
Lee, K.C., 134
Li , Jinyan, 220
Li , Wen-Syan, 294
Liang, Yilong, 74
Lin, Tao, 153
Lin, Tsau Young, 181
Liu, Huan, 86, 98, 110
Lu, Hongjun, 86, 408

Manco, Giuseppe, 360
Matsuda, Takashi, 420
Matsuzawa, Hirofumi, 233
Merkl, Dieter, 384
Michalski, Ryszard S., 2
Mika, Sebastian, 341
Miyahara, Tetsuhiro, 5
Mortazavi-asl, Behzad, 396
Motoda, Hiroshi, 98, 420
Miiller , Klaus-Robert, 341
Muyeba, May bin K., 306

Nakano, Ryohei, 372
Narihisa, Hiroyuki, 177
Ng, Chi-Yuen, 432
Nguyen, Trong Dung, 345
Numao, Masayuki, 212

Obradovic, Zoran, 29, 329
Ohta, Yuiko, 17
Okada, Takashi, 193
Okamoto, Seishi, 17
Onoda, Takashi, 341

Park, J.S., 134
Pazzani, Michael J., 122
Pei, Jian, 396

460 Author Index

Ratsch, Gunnar, 341
Rauber, Andreas, 384
Rumantir, Grace W., 40

Saito, Kazumi, 372
Sato, Yoshiharu, 1
Scholkopf, Bernhard, 341
Shimodaira, Hiroshi, 345
Shirata, Cindy Yoshiko, 204
Shoudai, Taicayoshi, 5
Skowron, Andrzej, 380
Smola, Alexander Johannes, 341
Soon, Hui-Shin Vivien, 173
Soparkar, Nandit, 49
Stepaniuk, Jaroslaw, 380
Suzuki, Einoshin, 86, 208

Takahashi, Kenichi, 5
Tan, Ah-Hwee, 173
Terano, Takao, 204, 212
Tomkins, Andrew, 4
Torgo, Luis, 376
Tremba, Joseph, 181
Tsumoto, Shusaku, 208, 380
Tung, Anthony K.H., 165

Uchlda, Tomoyuki, 5
Ueda, Hiroaki, 5
Urahama, Kiichi , 442

Vucetic, Slobodan, 29

Wang, Lian, 257
Washio, Takashi, 420
Watanabe, Osamu, 317
Wen, Jin, 169
Wu, Dekai, 408

Yang, Jihoon, 454
Yao, Yi Yu, 138
Yiu, S.M, 257
Yugami, Nobuhiro, 17
Yun, Ching-Huang, 216

Zhang, Tao, 245
Zhong, Ning, 138
Zhou, Aoying, 169
Zhou, Bo, 257
Zhou, Shuigeng, 169
Zhu, Hua, 396

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 1640: W. Tepfenhart, W. Cyre (Eds.), Conceptual
Structures: Standards and Practices. Proceedings, 1999.
XII , 515 pages. 1999.

Vol. 1647: F.J. Garijo, M. Boman (Eds.), Multi-Agent
System Engineering. Proceedings, 1999. X, 233 pages.
1999.

Vol. 1650: K.-D. Althoff, R. Bergmann, L.K. Branting
(Eds.), Case-Based Reasoning Research and Develop-
ment. Proceedings, 1999. XII , 598 pages. 1999.

Vol. 1652: M. Klusch, O.M. Shehory, G. Weiss (Eds.),
Cooperative Information Agents III . Proceedings, 1999.
XI , 404 pages. 1999.

Vol. 1669: X.-S. Gao, D. Wang, L. Yang (Eds.), Auto-
mated Deduction in Geometry. Proceedings, 1998. VII ,
287 pages. 1999.

Vol. 1674: D. Floreano, J.-D. Nicoud, F. Mondada (Eds.),
Advances in Artificia l Life. Proceedings, 1999. XVI , 737
pages. 1999.

Vol. 1688: P. Bouquet, L. Serafini, P. Br6zillon, M.
Benerecetti, F. Castellani (Eds.), Modeling and Using
Context. Proceedings, 1999. XII , 528 pages. 1999.

Vol. 1692: V. MatouJek, P. Mautner, J. Ocelikova, P.
Sojka (Eds.), Text, Speech, and Dialogue. Proceedings,
1999. XI , 396 pages. 1999.

Vol. 1695: P. Barahona, J.J. Alferes (Eds.), Progress in
Artificia l Intelligence. Proceedings, 1999. XI , 385 pages.
1999.

Vol. 1699: S. Albayrak (Ed.), Intelligent Agents for Tel-
ecommunication Applications. Proceedings, 1999. IX, 191
pages. 1999.

Vol. 1701: W. Burgard, T. Christaller, A.B. Cremers
(Eds.), KI-99: Advances in Artificia l Intelligence. Pro-
ceedings, 1999. XI, 311 pages. 1999.

Vol. 1704: Jan M. Zytkow, J. Rauch (Eds.), Principles of
Data Mining and Knowledge Discovery. Proceedings,
1999. XIV , 593 pages. 1999.

Vol. 1705: H. Ganzinger, D. McAllester, A. Voronkov
(Eds.), Logic for Programming and Automated Reason-
ing. Proceedings, 1999. XII , 397 pages. 1999.
Vol. 1711: N. Zhong, A. Skowron, S. Ohsuga (Eds.), New
Directions in Rough Sets, Data Mining, and Granular-Soft
Computing. Proceedings, 1999. XIV , 558 pages. 1999.

Vol. 1712: H. Boley, A Tight, Practical Integration of
Relations and Functions. XI , 169 pages. 1999.

Vol. 1714: M.T. Pazienza(Eds.), Information Extraction.
IX , 165 pages. 1999.

Vol. 1715: P. Perner, M. Petrou (Eds.), Machine Learn-
ing and Data Mining in Pattern Recognition. Proceedings,
1999. VIII , 217 pages. 1999.

Vol. 1720: O. Watanabe, T. Yokomori (Eds.), Algorith-
mic Learning Theory. Proceedings, 1999. XI, 365 pages.
1999.

Vol. 1721: S. Arikawa, K. Furukawa (Eds.), Discovery
Science. Proceedings, 1999. XI , 374 pages. 1999.

Vol. 1730: M. Gelfond, N. Leone, G. Pfeifer (Eds.), Logic
Programming and Nonmonotonic Reasoning. Proceed-
ings, 1999. XI , 391 pages. 1999.

Vol. 1733: H. Nakashima, C. Zhang (Eds.), Approaches
to Intelligent Agents. Proceedings, 1999. XII , 241 pages.
1999.

Vol. 1735: J.W. Amtrup, Incremental Speech Translation.
XV , 200 pages. 1999.

Vol. 1739: A. Braffort, R. Gherbi, S. Gibet, J. Richardson,
D. Teil (Eds.), Gesture-Based Communication in Human-
Computer Interaction. Proceedings, 1999. XI , 333 pages.
1999.

Vol. 1744: S. Staab, Grading Knowledge: Extracting De-
gree Information from Texts. X, 187 pages. 1999.

Vol. 1747: N. Foo (Ed.), Adavanced Topics in Artificia l
Intelligence. Proceedings, 1999. XV, 500 pages. 1999.

Vol. 1757: N.R. Jennings, Y. Lesperance (Eds.), Intelli-
gent Agents VI . Proceedings, 1999. XII , 380 pages. 2000.

Vol. 1759: M.J. Zaki, C.-T. Ho (Eds.), Large-Scale Par-
allel Data Mining. VIII , 261 pages. 2000.

Vol. 1760: J.-J. Ch. Meyer, P.-Y. Schobbens (Eds.), For-
mal Models of Agents. Poceedings. VIII , 25 3 pages. 1999.

Vol. 1761: R. Caferra, G. Salzer (Eds.), Automated De-
duction in Classical and Non-Classical Logics. Proceed-
ings. VIII , 299 pages. 2000.

Vol. 1771: P. Lambrix, Part-Whole Reasoning in an Ob-
ject-Centered Framework. XII , 195 pages. 2000.

Vol. 1772: M. Beetz, Concurrent Reactive Plans. XVI ,
213 pages. 2000.

Vol. 1778; S. Wermter, R. Sun (Eds.), Hybrid Neural
Systems. IX, 403 pages. 2000.

Vol. 1792: E. Lamma, P. Mello (Eds.), APIA 99: Ad-
vances in Artificial Intelligence. Proceedings, 1999. XI ,
392 pages. 2000.

Vol. 1793: O. Cairo, L.E. Sucar, F.J. Cantu (Eds.), MICAI
2000: Advances in Artificia l Intelligence. Proceedings,
2000. XIV , 750 pages. 2000.

Vol. 1794: H. Kirchner, C. Ringeissen (Eds.), Frontiers
of Combining Systems. Proceedings, 2000. X, 291 pages.
2000.

Vol. 1805: T. Terano, H. Liu, A.L.P. Chen (Eds.), Knowl-
edge Discovery and Data Mining. Proceedings, 2000. XIV ,
460 pages. 2000.

Lecture Notes in Computer Science

Vol. 1758: H. Heys, C. Adams (Eds.), Selected Areas in
Cryptography. Proceedings, 1999. VIII , 243 pages. 2000.

Vol. 1759: M.J. Zaki, C.-T. Ho (Eds.), Large-Scale Par-
allel Data Mining. VIII , 261 pages. 2000. (Subseries
LNAI) .

Vol. 1760: J.-J, Ch. Meyer, P.-Y. Schobbens (Eds.), For-
mal Models of Agents. Poceedings. VIII , 253 pages. 1999.
(Subseries LNAI) .

Vol. 1761: R. Caferra, G. Salzer (Eds.), Automated De-
duction in Classical and Non-Classical Logics. Proceed-
ings. VIII , 299 pages. 2000. (Subseries LNAI) .

Vol. 1762; K.-D. Schewe, B. Thalheim (Eds.), Founda-
tions of Information and Knowledge Systems. Proceed-
ings, 2000. X, 305 pages. 2000.

Vol. 1763: J. Akiyama, M. Kano, M. Urabe (Eds.), Dis-
crete and Computational Geometry. Proceedings, 1998.
VIII , 333 pages. 2000.

Vol. 1764: H. Ehrig, G. Engels, H.-J. Kreowski, G.
Rozenberg (Eds.), Theory and Application to Graph Trans-
formations. Proceedings, 1998. IX, 490 pages. 2000.

Vol. 1765: T. Ishida, K. Isbister (Eds.), Digital Cities.
IX , 444 pages. 2000.

Vol. 1767: G. Bongiovanni, G. Gambosi, R. Petreschi
(Eds.), Algorithms and Complexity. Proceedings, 2000.
VIII , 317 pages. 2000.

Vol. 1768: A. Pfitzmann (Ed.), Information Hiding. Pro-
ceedings, 1999. IX, 492 pages. 2000.

Vol. 1769: G. Haring, C. Lindemann, M. Reiser (Eds.),
Performance Evaluation: Origins and Directions. X, 529
pages. 2000.

Vol. 1770: H. Reichel, S. Tison (Eds.), STAGS 2000.
Proceedings, 2000. XIV , 662 pages. 2000.

Vol. 1771: P. Lambrix, Part-Whole Reasoning in an Ob-
ject-Centered Framework. XII , 195 pages. 2000.
(Subseries LNAI) .

Vol. 1772: M. Beetz, Concurrent Reactive Plans. XVL
213 pages. 2000. (Subseries LNAI) .

Vol. 1773: G. Saake, K. Schwarz, C. Turker (Eds.), Trans-
actions and Database Dynamics. Proceedings, 1999. VIII ,
247 pages. 2000.

Vol. 1774: J. Delgado, G.D. Staraoulis, A. Mullery, D.
Prevedourou, K. Start (Eds.), Telecommunications and IT
Convergence Towards Service E-volution. Proceedings,
2000. XIII , 350 pages. 2000.

Vol. 1776: G.H. Gonnet, D. Panario, A. Viola (Eds.),
LATI N 2000: Theoretical Informatics. Proceedings, 2000.
XIV , 484 pages. 2000.

Vol. 1777: C. Zaniolo, P.C. Lockemann. M.H. Scholl,
T. Grust (Eds.), Advances in Database Technology -
EDBT 2000. Proceedings, 2000. XII , 540 pages. 2000.

Vol. 1778: S. Wermter, R. Sun (Ed.s.), Hybrid Neural
Systems. IX, 403 pages. 2000. (Subseries LNAI) .

Vol. 1780: R. Conradi (Ed.), Software Process Technol-
ogy. Proceedings, 2000. IX, 249 pages. 2000.

Vol. 1781: D. A. Watt (Ed.), Compiler Construction. Pro-
ceedings, 2000. X, 295 pages. 2000.

Vol. 1782: 0. Smolka (Ed.), Programming Languages and
Systems. Proceedings, 2000. XIII , 429 pages. 2000.

Vol. 1783: T. Maibaum (Ed.), Fundamental Approaches
to Software Engineering. Proceedings, 2000. XIII , 375
pages. 2000.

Vol. 1784: J. Tiuryn (Eds.), Foundations of Software Sci-
ence and Computation Structures. Proceedings, 2000. X,
391 pages. 2000.

Vol. 1785: S. Graf, M. Schwartzbach (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
Proceedings, 2000. XIV , 552 pages. 2000.

Vol. 1786; B.H. Haverkort, H.C. Bohnenkamp, C.U. Smith
(Eds.), Computer Performance Evaluation. Proceedings,
2000. XIV , 383 pages. 2000.

Vol. 1790: N. Lynch, B.H. Krogh (Eds.), Hybrid Systems:
Computation and Control. Proceedings, 2000. XII , 465
pages. 2000.

Vol. 1792; E. Lamma, P. Mello (Eds.), A1*IA 99: Ad-
vances in Artificial Intelligence. Proceedings, 1999. XI,
392 pages. 2000. (Subseries LNAI) .

Vol. 1793: O. Cairo, L.E. Sucar, F.J. Cantu (Eds.), MICAI
2000: Advances in Artificia l Intelligence. Proceedings,
2000. XIV , 750 pages. 2000. (Subseries LNAI) .

Vol. 1794: H. Kirchner, C. Ringeissen (Eds.), Frontiers
of Combining Systems. Proceedings, 2000. X, 291 pages.
2000. (Subseries LNAI) .

Vol. 1795: J. Sventek, G. Coulson (Eds.), Middleware
2000. Proceedings, 2000. XI , 436 pages. 2000.

Vol. 1796: B. Christianson, B. Crispo, J.A. Malcolm, M.
Roe (Eds.), Security Protocols. Proceedings, 1999. XII ,
229 pages. 2000.

Vol. 1801; J. Miller , A. Thompson, P. Thomson, T.C.
Fogarty (Eds.), Evolvable Systems: From Biology to Hard-
ware. Proceedings, 2000. X, 286 pages. 2000.

Vol. 1802: R. Poll, W. Banzhaf, W.B. Langdon, J. Miller ,
P. Nordin, T.C. Fogarty (Eds.), Genetic Programming.
Proceedings, 2000. X, 361 pages. 2000.

Vol. 1803: S. Cagnoni et al. (Eds.), Real-World Applica-
tions of Evolutionary Computing. Proceedings, 2000. XII ,
396 pages. 2000.

Vol. 1805: T. Terano, H. Liu, A.L.P. Chen (Eds.), Knowl-
edge Discovery and Data Mining. Proceedings, 2000. XIV ,
460 pages. 2000. (Subseries LNAI) .

