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Preface 

The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining 
(PAKDD 2000) was held at the Keihanna-Plaza, Kyoto, Japan, April 18 - 20, 
2000. PAKDD 2000 provided an international forum for researchers and applica-
tion developers to share their original research results and practical development 
experiences. A wide range of current KDD topics were covered including ma-
chine learning, databases, statistics, knowledge acquisition, data visualization, 
knowledge-based systems, soft computing, and high performance computing. It 
followed the success of PAKDD 97 in Singapore, PAKDD 98 in Austraha, and 
PAKDD 99 in China by bringing together participants from universities, indus-
try, and government from all over the world to exchange problems and challenges 
and to disseminate the recently developed KDD techniques. 

This PAKDD 2000 proceedings volume addresses both current issues and 
novel approaches in regards to theory, methodology, and real world application. 
The technical sessions were organized according to subtopics such as Data Mining 
Theory, Feature Selection and Transformation, Clustering, Application of Data 
Mining, Association Rules, Induction, Text Mining, Web and Graph Mining. 
Of the 116 worldwide submissions, 33 regular papers and 16 short papers were 
accepted for presentation at the conference and included in this volume. Each 
submission was critically reviewed by two to four program committee members 
based on their relevance, originality, quality, and clarity. 

The PAKDD 2000 program was enhanced by two keynote speeches and one 
invited talk: Yoshiharu Sato of Hokkaido University, Japan (Statistics), Ryszard 
S. Michalski of George Mason University, USA (Machine Learning), and Andrew 
Tomkins of IBM Almaden Research Center (Databases). The PAKDD 2000 pro-
gram was further complemented by five tutorials: Enterprise Data Mining with 
Case Studies (Zhexue Huang and Graham J Williams), Data Mining with De-
cision Trees (Johannes Gehrke), Knowledge Extraction from Texts - Applica-
tion to Human Resources in Industry (Yves Kodratoff), Rough Sets in KDD: 
A Tutorial (Andrzej Skowron and Ning Zhong), and Data Mining on the World 
Wide Web (Wee-Keong NG). Two international workshops were co-hosted with 
PAKDD 2000 focusing on two KDD frontiers: the International Workshop on 
Web Knowledge Discovery and Data Mining (WKDDM 2000) and the Interna-
tional Workshop of KDD Challenge on Real-World Data (KDD Challenge 2000). 

The success of PAKDD 2000 would not have been possible without the gen-
erous help rendered to us. We would like to extend our heartfelt gratitude to 
the program committee members and the steering committee members for their 
invaluable contributions. Special thanks go to the conference chairs: Hiroshi Mo-
toda and Masaru Kitsuregawa for their leadership and involvement in making 
the conference run smoothly. We would like to express our immense gratitude 
to all the contributors to the conference for submitting and presenting papers, 
offering tutorials, giving talks, and organizing workshops. Special thanks are 
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due to Yuko Ichiki of Keihanna-Plaza Co. for her excellent secretarial work. The 
conference was sponsored by various academic societies in Japan. These are the 
Japanese Society of Artificial Intelligence (JSAI), SIG-DE (Data Engineering) 
and SIG-AI (Artificial Intelligence) of The Institute of Electronics, Information 
and Communication Engineers, SIG-DM (Data Mining) of the Japan Society 
for Software Science and Technology, SIG-DB (Data Base) and SIG-ICS (Intel-
ligent and Complex Systems) of the Information Processing Society of Japan, 
and ACM SIG-MOD Japan. PAKDD 2000 was also generously supported by 
the SAS Institute, Japan and the Telecommunication Advancement Foundation 
(TAP), Japan. 

We hope all participants had a pleasant stay at PAKDD 2000 as well as in 
Japan, exchanged refreshing views, and we wish them great success in their KDD 
endeavors. 

April 2000 Takao Terano, Huan Liu, and Arbee L. P. Chen 
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Perspective on Data Mining 
from Statistical Viewpoints 

Yoshiharu Sato 

Division of Systems and Information Engineering, Hokkaido University, 
Sapporo, 060-8628 Japan, 

ysatoQmain.eng.hokudai.ac.j p 

Abs t rac t. The history of statistical data analysis is old, it goes back to 
the 1920's. Many fundamental concepts of multivariate statistical data 
analysis, especially pure theoretical notions, have been accomplished by 
the 1950's. After the 1960's, the practical applications of multivariate 
statistical data analysis have been available, coupled with the progress 
of computers, and these have also been an affect on theoretical consid-
erations. 
The basic process of data analysis is given as follows; 

p i ) . An objective of data analysis is given. 
p2). The data which seems to be closely connected with the ob-

jective is observed, (samphng data) 
p3). Constructing a model (or a set of models) for explaining the 

variation of the data. 
p4). Preprocessing (or transforming) the original data in order 

to make consistency between input data and the model. 
p5). Identification of the model based on observed (input) data. 
p6). Evaluate a goodness of fit. If the goodness of fit  is insuffi-

cient, then return to P2) or P3), else go to next process. 
p7). Interpretation of the result and investigate the vaUdity. 

The most different point on "data mining" and statistical data analysis 
seems to be the concept of "Data". In data mining, the data is given 
as a database in advance. But, in statistical data analysis, the data is 
observed according to the objective of the analysis. 
On the other hand, the object of "data mining" is to find the effective 
(or valuable) information in the data. Prom the framework of statistical 
data analysis above, the main processes of data mining are p3), p4) and 
p5). However, the concept of "efficient information" in data mining is 
different from the main part of the data variation in statistical data 
analysis. For instance, in principal component analysis, the main part of 
the data variation is obtained as the first principal component, which has 
the largest proportion. But in data mining, the major variation of the 
data is of no interest, because the knowledge obtained from it is trivial. 
Then, data mining seems to be interested in the principal components 
with small proportion in order to get unusual but valuable information. 
Hence, statistical data analysis for residual data which is removing the 
main part of the data variation from the original data, wil l be useful for 
data mining. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, p. 1, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 



Inductive Databases and Knowledge Scouts 

Ryszard S. Michalski 

PRC Professor of Computational Sciences and Information Technoloy 
Machine Learning and Inference Laboratory 

Institute for Computational sciences and Informatics 
George Mason University 

www.mli.gmu.edu/michalski 

"All  human beings desire to know" 
Aristotle, Metaphysics, L I . 

Abs t rac t. The development of very large databases and the world wide 
web has created extraordinary opportunities for monitoring, analyzing 
and predicting global economical, ecological, demographic, political, and 
other processes in the world. Our current technologies are, however, in-
sufficient for these tasks, and we drowning in the deluge of data that are 
being collected world-wide. 
New methods and integrated tools are needed that can generate goal-
oriented knowledge and predictive hypotheses from massive and multi-
media data, stored in large distributed databases, warehouses, and the 
world wide web. These methods and tools must be able to cope not only 
with huge data volumes in various forms, but also with data inconsis-
tency, missing values, noise, and/or possibly weak data relevance to any 
given task. The development of effective methods and systems for knowl-
edge mining in large multimedia datas emerges as a central challenge on 
the research agenda for the 21st century. 

This talk wil l briefly discuss a novel project towaxd the above goals, 
which is conducted in the GMU Machine Learning and Inference Lab-
oratory. The project concerns the development of what we call induc-
tive databases and knowledge scouts. An inductive database extends a 
conventional database by integrating in it inductive inference capabili-
ties (possibly also other types of uncertain reasoning). These capabilities 
allow a database to answer queries that require synthesizing plausible 
knowledge and make hypothetical predictions. 

One of the important design conditions for an inductive database is that 
the hypothesized knowledge satisfy the "postulate of comprehensiblity," 
that is, is in the form easy to understauid and interpret by people. This 
can be achieved employing an appropriate representation langauge (for 
example, attributional calculus), and implementing a form of reason-
ing which we call "natural induction." An inductive database supports 
the implementation of knowledge scouts, which are personal intelligent 
agents that "live" in the database, and automatically search for knowl-
edge of interest to a particular user or group of users. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 2 -3, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 



Inductive Databases and Knowledge Scouts 

Presented concepts wil l be illustrated by initial results on searching for 
patterns that relate lifestyles with diseases in a large database from the 
American Cancer Society. At the end of the talk, we wil l demonstrate a 
system illustrating principles of natural induction. 



Hyperlink-Aware Mining and Analysis 
of the Web 

Andrew Tomkins 

K53/B1 IBM Almaden Research Center 
650 Harry Rd., San Jose, CA 95120-6099, USA 

tomkinsQalmaden.ibm.co m 

Abstract . The approximately seven billion hyperlinks on the WWW, 
and the anchortext surronding them, represent a valuable collection of 
editorial information about web pages. We begin by discussing methods 
for incorporating this link information into web search. Next, we consider 
a follow-on question: is it possible to apply data mining techniques to the 
link structure of the web in order to discover all communities, including 
those that have only just formed and whose members may not yet be 
aware of one another. 
We also consider modeUng and measurement of this hyperlink structure. 
A recent analysis of the web graph indicates that the macroscopic struc-
ture is considerably more intricate than suggested by earlier experiments. 
We describe these results, and go on to discuss some progress towards 
defining analytical models for graphs such as the web. 
The work described here is joint with Andrei Broder, Ravi Kumar, Farzin 
Maghoul, Prabhakar Raghavan, Raymie Stata, Sridhar Rajagopalan, Eli 
Upfal and Janet Wiener. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, p. 4, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 



Polynomial Time Matching Algorithms 
for Tree-Like Structured Patterns 

in Knowledge Discovery 

Tetsuhiro Miyahara ,̂ Takayoshi Shoudai' ,̂ Tomoyuki Uchida ,̂ 
Kenichi Takahashi ,̂ and Hiroaki Uedâ  

' Faculty of Information Sciences, 
Hiroshima City University, Hiroshima 731-3194, Japan 

{mlyaliaraSits, uchidaQcs, tekkahasiSits, ueda<Dits}. hiroshima-cu. ac. J p 
^ Department of Informatics, 

Kyushu University 39, Kasuga 816-8580, Japan 
shoudaiSi.kyushu-u.ac.j p 

Abst rac t. Graphs have enough richness and flexibilit y to express dis-
crete structures hidden in a large amount of data. Some searching meth-
ods utilizing graph algorithmic techniques have been developed in Knowl-
edge Discovery. A term graph, which is one of expressions for graph-
structured data, is a hypergraph whose hyperedges are regarded as vari-
ables. Although term graphs can represent complicated patterns found 
from structured data, it is hard to do pattern match and pattern search 
in them. We have been studying subclasses of term graphs, called regular 
term trees, which are suited for expressing tree-like structured data. In 
this paper, we consider a matching problem for a regular term tree t and 
a standard tree T, which decides whether or not there exists a tree T' 
such that T' is isomorphic to T and T' is obtained by replacing vEiriables 
in t with some trees. First we show that the matching problem for a 
regular term tree and a tree is NP-complete even if each variable in the 
regular term tree contains only 4 vertices. Next we give a polynomial 
time algorithm for solving the matching problem for a regular term tree 
and a tree of bounded degree such that the regular term tree has only 
variables consisting the constant number of vertices greater than one. We 
also report some computational experiments and compare our algorithm 
with a naive algorithm. 

1 Introduction 

Graph-structured da ta occurs in many domains, such as biomolecular database, 
chemical databaise, the World Wide Web, or semistructured data. Many re-
searchers try to find hidden knowledge from structures of such da ta by using 
data mining techniques. The formalization of expressing graph-structured da ta 
is quite important for finding useful knowledge [10]. 

A term graph, which is one of expressions of graph-structured data, is a hy-
pergraph whose hyperedges are regarded as variables. By expressing structures 

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 5-16, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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Ti T2 T3 

Fig. 1. A term tree t as a tree-like structured pattern which matches trees Ti, T2 and 
T3. 

of data in database with term graphs, we can design tools for discovering hidden 
knowledge or background knowledge from graph-structured data. In Fig. 1, for 
example, we can obtain each tree Ti, T2 and T3 from the term tree t by replac-
ing hyperedges in t with arbitrary trees. That is, the term tree t shows common 
structures between them. The language of first-order logic is much better suited 
for expressing background knowledge and a graph structure can be expressed 
by using first-order logic [3]. Then, inductive logic programming (ILP) systems 
in knowledge discovery have been proposed [1,2,4]. In [8], we designed and im-
plemented the knowledge discovery system KD-FGS for graph-structured data, 
which employs Formal Graph System (FGS,[11]) as a knowledge representation 
language and a refutably inductive inference as an ILP mechanism [9]. FGS is 
a kind of logic programming system which uses term graphs instead of terms 
in first-order logic. Therefore FGS can directly deal with graphs and is suited 
for expressing background knowledge obtained from graph-structured data. By 
using a term graph, we can design tools based on a graph pattern matching 
method for finding new knowledge represented by term graphs obtained from 
graph-structured data. Such tools are useful for finding association rules over 
term graphs, producing decision trees having term graphs as vertex labels, and 
finding the minimum term graph by using the minimum description length prin-
ciple. 

In this paper, we consider a matching problem for a term graph and a graph. 
Informally, the matching problem for a term graph g and a graph G is to decide 
whether or not there exists a graph G' such that G' is isomorphic to G and G" is 
obtained by replacing each variable in g with an arbitrary graph. This problem 
is important for many knowledge discovery systems over term graphs for graph-
structured data. Graphs have enough richness and flexibility  to express unknown 
structures, but many elementary graph problems, e.g., subgraph isomorphism 
and largest common subgraph, are known to be NP-complete [5]. Due to this fact, 
it is difficult to solve the matching problem for a term graph in polynomial time. 
Then it is hard to design and implement a discovery system finding efficiently 
new knowledge from graph-structured data in practice. We consider interesting 
subclasses of term graphs, called regular term trees, such that their matching 
problems are solvable efficiently. In [7], for a regular term tree t and a tree T 
such that every variables in t consist of two vertices, we presented a polynomial 
time algorithm solving the matching problem for t and T. In this paper, we show 
that, in general, the matching problem for a regular term tree t and a tree T is 
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Fig. 2. A term graph g = {V,E,H) is defined by F = {MI,U2} , E = (ll, H = {ei = 
(ui,M2),e2 = (wi,U2)}, v'sCui) = s, (̂ 3(̂ 2) = t, Xg{ei) = X, and Ag(e2) = y. gS is 
obtained by applying a substitution 9 = {x :=  [9i,{vi,V2y\,y := [52, {^1,^12)]} to p. A 
variable is represented by a box with lines to its elements and the order of its items is 
indicated by the numbers at these lines. 

NP-complete even if each variable in t consists of only 4 vertices. But, if t has 
only variables containing constant number of vertices greater than one and T is 
a tree of bounded degree, we can give a polynomial time algorithm solving the 
matching problem. These show that a term tree is a quite useful expression of 
knowledge obtained from tree-like structured data. 

This paper is organized as follows. In Section 2, we introduce a term graph 
as an expression of knowledge for graph-structural data. And a regular term 
tree is defined. In Section 3, we consider the matching problem for a regular 
term tree, and give polynomial-time algorithms solving the matching problem 
for some classes of regular term trees. Finally, we give a result of computational 
experiments comparing our algorithm presented in [7] with a naive algorithm 
in Section 4. Our algorithms and the computational result lead us to develop 
new knowledge discovery tools employing term graphs directly which express 
knowledge obtained from tree-like structured data. 

2 Preliminaries 

Let E and A be finite alphabets, and let X be an alphabet. An element in iJ, A 
and X is called a vertex label, edge label and variable label, respectively. Assume 
that {E yj A) C\ X = %. K term graph g = {V, E, H) consists of a vertex set V, 
an edge set E and a multi-set H. Each element in i? is a list of distinct vertices 
in V and is called a variable. An item in a variable is called a port. And a term 
graph g has a vertex labeling ipg : V —* E, an edge labeling ipg : E —* A and a 
variable labeling Xg : H -  ̂ X. For a set or a list S, the number of elements in S 
is denoted by |5 |. The dimension of a term graph g is the maximum number of 
\h\ over all variables hm g. The degree of a vertex u in a term graph is the sum 
of the number of edges and variables containing u. A term graph g = (V, E, H) 
is called ground and simply denoted by £r = {V, E) li  H = 0. For example, a 
term graph g = {V, E, H) is shown in Fig. 2. 

Let 5 be a term graph and a a list of distinct vertices in g. We call the form 
X :=  [g,(7] a binding for a variable label x £ X. Let ffi,..., fln be term graphs. A 
substitution 0 is a finite collection of bindings {xi := [51, <TI], ... ,Xn  [gn,(^n]}, 
where Xi 's are mutually distinct variable labels in X and each gi has no variable 
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labeled with an element in {xi,... ,Xn}. We obtain a new term graph / by 
applying a substitution 6 = {xi :=  [ffi,cri],.. . ,x„  := [ffm '̂n]}  to a term graph 
g = {V, E, H) in the following way. For each binding Xj := [gi, ai] E. 6 {1 < i < n) 
in parallel, we attach gi to g by removing all variables ti,...,tk labeled with Xj 
from H, and by identifying the m-th vertex ij *  of tj and the m-th vertex erf' of 
ai for each 1 < j < k and each 1 < m < \tj\ — |(TJ|. We remark that the label of 
each vertex i " of g is used for the resulting term graph which is denoted by gO. 
Namely, the label of CTJ" is ignored in g6. 

3 Matching Algorithms for Tree-Like Structured Patterns 

3.1 A Regular  Term Tree of Bounded Degree 

A substitution 6 = {xi := [51, c i ] , . „  := [5n,<''n]}  is called a tree substitution 
if all of the gi are trees. A term graph g is called a term tree if for any tree 
substitution 9 which contains all variable labels in g, gO is also a tree. A term tree 
g is called regular if each variable label in g occurs exactly once [6]. For example, a 
regular term tree t = ({1,2,3,4,5,6,7,8,9,10,11}, {{1,2} , {2,4} , {2,5} , {7,9}} , 
{(1,3), (2,6), (2,7,8), (3,10,11)}) is shown in Fig. 3. In this section, we assume 
that a tree which is an input to our matching algorithms is an unrooted tree 
without a vertex label and an edge label. In the other cases, we can easily 
construct similar matching algorithms. 

We say that T matches t if there exists a tree substitution 6 such that tO and 
T are isomorphic. We give polynomial-time algorithms for solving the following 
problem for a regular term tree of bounded dimension and a tree of bounded 
degree. 

REGULA R TER M TREE MATCHIN G 
Instance: A regular term tree t and a tree T. 
Question: Does T match t? 

First we show the following theorem: 

Theorem 1. REGULAR TERM TREE MATCHING is NP-complete if the di-
mension of an input regular term tree is greater than or equal to 4. 

Proof Membership in NP is obvious. We transform EXACT COVER BY 3-
SETS (X3C) [5, page 221] to this problem. 

EXAC T COVER BY 3-SETS (X3C) 
Instance: Set A with |J4| = 3q for a natural number q and a collection C of 
3-element subsets of X. 
Question: Does C contain an exact cover for A, i.e., a subcollection C C C 
such that every element of X occurs in exactly one member of C". 

We give a transformation for a regular term tree and a tree with vertex 
labels. The vertex labels can be removed by replacing the vertex labels with 
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4 5 6 |7 8 10 11 
9( 

Term Tree t 

1 ^ 2, {3} 
2 ^ 4 , 5, {6} , {7,8} 
3 -^ {10,11} 
7<t=9 

Labeling Rules Ri 

TreeT 

<T= {4,5,6,8,9,10,11} 
5 ={7 , {6} , {8} , {10,11}} 
7 = {3, {6} , {7,8} , {10,11}} 
/'={{3},{6},{7,8},{10,11} } 
e = {2, {3} , {6} , {7,8} , {10,11}} 
/3= {1,2, {3} , {6} , {7,8} , {10,11}} 
a = {1, {3} , {6} , {7,8} , {10,11}} 

The resulting labels by Ri 

Fig. 3. An example: the labeling rule constructed from a term tree t and the resulting 
labels of a tree T after the procedure Matching terminates. 

special trees each of which corresponds to each vertex label, for example, binary 
trees with a linear chain of bounded length. 

Let A = {ai,.,., a„}  where n — 3q. Let C = { c i , . . . , Cm} where Ci C A with 
\ci\ = 3 and let Cj = {cji , 0,2, Cis} ioi i = 1,... ,m. The corresponding instance of 
REGULAR TERM TREE MATCHING is constructed in the following way. Let 
t be a regular term tree (Vt, Et, Ht) where Vt = [v]  U Uili{^«i . ^J2, vtz), Et = ^ 
and Ht = Uil iC^ i = (^^,^'tl)^'i2,^'i3)}  Let E = {a,6}  U {Gi , . . . ,a„}  where a 
and h are special vertex labels which do not appear in {a i , . . . , a„} . The vertex 

for i = 1,.. . ,m 
,}  is defined as 

labeling yt : Vj —+ 17 is defined as <Pf(w) = a and ftivij) = 
and j = 1,2,3. The variable labeling Xt : Ht —* X — {xi,... ,Xn 
Xt{hi) — Xj for t = 1 , . . ., m. Let T be a tree {VT,ET)-, where 

VT = {u}U{ui,...,u„}u{ioi,..., iUm_q}uU™"i^{w^Ji,---,tym} , and 
ET = {{u,Ui},  . . . , {u,Un}} U {{u,Wi}, . . . , {u,Wm-g}} 

U Ui l ' l ' { {^ i . "̂ il} >  ' {'^i^
The vertex labeling (pT  Vp ^> S is defined as <^T{U) — o,, friwi) = b for 
i = 1,..., m—q, and ^T{UJ) = (pT{wij) = â  for i = 1 , . . ., m—q and j = 1 , . . ., n. 

Let Ti = ({so, si, 52, S3}, {{so, s j , {so, S2}, {so, S3}}) with no label and T2 = 
({so, s i , . . ., s„, s„+i} , {{so, s„+i} , {si , s „ + i } , . . . , {s„ , s„+i}} ) with no label. We 
assume that there is a subcollection C C C such that every element of A occurs 
in exactly one member of C Let Oi = {xi :— [Tii,(so,si,52,33)] | Cj € C'} 
where Tu is a tree Ti with a vertex labeling ip defined as v?(so) = a and 
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Term Tree t 

TreeT 

Fig. 4. A transformation from an instance {A,C) of X3C to an instance {t,T) 
of REGULAR TERM TREE MATCHING. A = {ai,a2,a3,a4,05,a6},C = 
{ci,C2,C3,C4,C5,C6},ci = {oi,04, oe}, C2 = {a2, as,a^},C3 = {ai,a5,a6},C4 = 
{a3,a4,a6},C5 = {ai, 02,a6},C6 = {02,04,05}-

(p{sj) = Cij for j = 1,2,3. Let 62 = {xi :=  [Ti2, (SQ,ss{i,i),ss(i^2),ss{i,3))] I Ci = 
{cii,Ci2,Ci3}  € C - C and dj = a5{ij) for j = 1,2,3}, where Ti2 is a tree T2 
with a vertex labeling cp defined as ip{so) = a, ip{sn+i) = b and fp{si) — Oj for 
i = 1 , . .. ,n, and <5 is a function with Cjj = ^s{i,j)- Then 6 = 61 U 62 is B, tree 
substitution such that T and t^ are isomorphic. 

Conversely we assume that there is a tree substitution 6 such that tO and T 
become isomorphic. All 3m +1 vertices in t have to match vertices in T. For each 
i = l,...,m — q, at most 3 vertices in {wn,..., uii„ }  can match vertices in t. 
Therefore at most n + 3{m — q) + l = 3m+ 1 vertices in T can match vertices in t. 
The bindings in 6 are divided into two kinds of bindings Xi :=  [Ti , {SQ, s i, 52, S3)] 
and Xi := [T2,{so,Sij,Si2,Si^)], where 1 < ii,i2,i3 < n because the other kind 
of bindings can not achieve the needed number of vertex matchings 3m + 1. Let 
C" = {cj I there is a binding Xi := [Ti with a vertex labeling, (5o,si,S2,S3)] in 
9}. Then every element of A occurs in exactly one member of C".

Second we explain the algorithm Matching (Fig. 5) which is a framework for 
deciding whether a tree T matches a regular term tree t. 

Let t = {Vt,Et,Ht) and T = {VT,ET) be a regular term tree and a tree, 
respectively. We distinguish one vertex rt of a term tree t and call that vertex 
the root of t. A vertex of degree one is called a leaf if it is not the root. A 
path from vi to Vi is a sequence vi,V2,.  ,Vi of distinct vertices such that for 
1 < J < ii there exists an edge or a variable which includes Vj and Wj+i. If there 
is an edge or a variable which includes v and v' such that v' lies on the path 
from the root rt to v, then v' is said to be the father of v and u is a child of v'. 
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procedure Matching(regular term tree t, tree T); 
begin 

Let rt be one of vertices in t, which is called the root of t; 
Construct the set of all labeling rules Rrt; 
foreach vertex r of T, which is called the root of T do begin 

Label each leaf of T with the set of all leaves of t; 
whil e there exists a vertex w in T 

such that V is not labeled and all children of v are labeled 
do Labeling(D, Rrt)', 

if the label of r includes rt then T matches ( and exit 
end; 
T does not match t 

end. 

Fig. 5. A framework for deciding whether a tree T matches a regular term tree t. 

In part icular for a variable h, v is said to be a child port of h if there is a vertex 
v' such that both v and v' belong to h and w is a child oi v'. A descendant of v 
is any vertex on the path from v to one of the leaves of the tree. 

I n Matching (Fig.5), a label for a vertex in T is a set { u i , . . . , Ufe, V i , . . . , Ve} 
where fc > 0, ^ > 0, t̂ j is a vertex in t, and Vj is a set of vertices in t. Let 
Li,..., Lm be a collection of labels. For any V C Vt, 'we say that L i , . . . , Lm 
covers V if there exist distinct indices fci,..., fc^', f i , . . . , im" among 1 , . . ., m 
and also there exist v'  ̂ € Lki and V" G Lg. for each 1 < i < m' and 1 < j < m" 
such that V C {v[,..., v'^,}  U Vj" U  U V^„. In part icular if there is no proper 
subcollection of L i , . . . , Lm which covers V then we say that L i , . . . , Lm exactly 
covers V. 

Let W be a set of vertices in t. The induced term tree of i by M^ is a term 
tree t[W] = [W,Et[W'],Ht[W'\) where W' = {v£Vt\vism.W or there is a 
vertex v' in W such that u is a descendant of w'.} , £ ' t [ i y ] = {{u , v} £ Et \ u & 
W and V e W) and Ht[W'\ = {{vu . . ., fn) | Wi G W '̂ and ( u i , . . ., u„) is the 
maximal sublist of some h G Ht with keeping the order of i tems in h.}. For a 
single vertex w G Vt, the induced term tree t[w]  oi t hy w is defined as if lw}] . 
A corresponding induced term tree of t to u € Vr is an induced term tree by 
W CVt OT w £Vt which matches T[u], i.e., the subtree of T with the root u. In 
part icular if the induced term tree is induced by a single vertex w, the matching 
between t[w]  and T[u]  has a correspondence of w; to u. 

Let rt be the root of t. First we construct the set of all labeling rules. 

[Basic Labeling Rules] 
Let u be a vertex in t which is not a leaf. Let Vi,V2,... ,Vk be all children 
of V which are connected to v with edges. Let hi,h2,.  ,he be all variables 
which include v, and for i = 1,... ,£, Vi be the set of all children of v which 
are connected to v with the variable / i,. The labeling rule for v is defined as 
follows. If there is no variable which includes v, then let the generating rule 
oi V he V *— vi,..., Vk, otherwise u <^ w i , . . ., Ufc, 1 4 , . . ., V^. 
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procedure Labeling(vertex u £VT, set of labeling rules Rrt)', 
begin 

L : = 0 ; 
Let m be the number of children of u and L i , . . . , Lm be the labels of the children; 
/ *  Step 1 * / 
foreach v <— vi,... ,Vm in Rrt do 

if L i , . . . , Lm exactly covers {vi,  ,Vm} then L := LU {v}; 
I*  Step 2 * / 
foreach v <̂  DI , . . ., Wfc, V i , . . . , Vi in itr-t do 

if L i , . . . , Lm covers { v i , . . . , Vfc}  U V̂ i U  U Vi then L := LU {v}; 
I*  Step 3 * / 
foreach variable /i in i do begin 

Let V' be the set of all child ports of h\ 
foreach V" C V with V" ^ 0 do begin 

foreach v € V — V" do 
if D and V" satisfy either 

(1) u is a leaf and V" is a maximal subset such that L i , . . . , L-m 
covers V", or 

(2) V is the head of a rule v = v i , . . ., v*;, V i , . . . , V< in J?rt 
and y " is a maximal subset such that L i , . . . , L m covers 
{ t ; i , . . . , Ufc}  U Vi U  U F< U V" . 

then L := L U {V" U {v}} ; 
if there is no vertex v which satisfies either (1) or (2) and V" is a 

majcimal subset which is covered by L i , . . . , Lm. 
t h e n L : = L U { V " } 

end 
end; 
Attach L to M as the label 

end; 

Fig. 6. Labeling: a procedure for labeling a vertex in T with a set of vertices in t. 

Then we obtain the following theorem. 

T h e o r em 2. For a regular term tree t of dimension p and a tree T of degree d, 
REGULAR TERM TREE MATCHING is solvable in 0{N^n2PTMIS{d"^^)) 
time where n and N are the numbers of vertices in t and T respectively, and 
TMIS(s) is the time needed to find the maximum independent set in a graph of 
size s. 

Proof. In order to show the correctness of the Matching algorithm, it suffices to 
show the following claim. 

Claim: For any u € Vr, {t[W]  \ W £ L{u)} is equal to the set of all cor-
responding induced term tree of t to u, where L{u) is the output of Labeling 
procedure for u. The claim is shown by induction on the way of tree labeling of 
T with the root r. Suppose that u is a leaf of T. The claim holds for u, due to 
the labeling of a leaf in Matching. Suppose that u is not a leaf of T. Let T[W] 
be a corresponding induced term tree of t to u. Note that (i) T^ is a vertex in 
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Input : labels Li,..., Lm, vertices i^i,..., Vk, and sets of vertices Vi, . . ., Vf; 
Note that each Vi (i = 1,... , )̂ is the set of all child ports of a certain variable 
and each label Lj {j  = 1,... ,m) contains at most one subset of Vi. If the input 
term tree t is of bounded dimension and the input tree T is of bounded degree, 
the size of the graph Q constructed below is bounded because both A; and £ are 
bounded by some constants and the size of each Li is also bounded. 
begin 

Construct a graph Q = {V,£) in the following way. 
Vi:={{vi,{j})\vieLi{l<j<m)}, 
Let £i be the complete graph constructed by Vi, 
V.' := m , {ji,.. .,jm'}) I {ii , , jm'}  C {1 , . . . ,m} 

and Lj i , . . . , Lj^, covers Vi}, 
Let £'i be the complete graph constructed by V,', 
V:=UtiV . U ULiV; , 
£ := {{{X,Y),{X',Y')} I {X,Y),{X',Y') eV,X^X'a.ndYnY'^ 0} 

if there is an independent set of size k + i for the graph G = (V, £) then 
Li , . . . ,Lm covers {vi,... ,Vk} II Vi U  U Ve 

end; 

Fig. 7. A procedure for determining whether or not L i , . . . , Lm covers {t;i,... , Vfc}  U 
Vi U  V̂  (Step 2 and Step 3 (2)). 

t or (ii) VF is a non-empty subset of the set of all child ports of a variable in t. 
By induction hypothesis, the claim holds for any child u' of u. In case (i) W is 
included in L{u) due to Step 1 or 2 in Labeling. In case (ii) W is included in 
L{u) due to Step 3 in Labeling. Then the claim holds for u. 

Since the degree of t have to be less than or equal to d, the maximum length 
of the body of any labeling rule is less than or equal to d. Since the number 
of the children of any vertex is less than d and the size of each set which ap-
pears in the algorithm is less than p, the constructed graph in the procedure 
(Fig.7) is of size 0{d^^'''>). Then the procedure (Fig.7) runs in 0{TMIS{d^^P^)) 
time. The numbers of calls to the procedure Labeling in Matching (Fig.5) is 
0{N'^). The numbers of calls to the procedure (Fig.7) in Labeling is 0{n2^). 
Then the procedure Matching solves REGULAR TERM TREE MATCHING in 
0(7V2n2PTMIS(d°(p))) time. O 

CoroIlEir y 1. For a regular term tree t of bounded dimension and a tree T of 
hounded degree, REGULAR TERM TREE MATCHING is solvable in 0{N'^n) 
time where n and N are the numbers of vertices in t and T respectively. 

If the dimension of t is equal to 2, the procedure Matching by using the 
procedure (Fig.8) instead of the procedure (Fig.7) solves REGULAR TERM 
TREE MATCHING in polynomial time. 
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Input : labels L i , . . . , Lm, vertices vi,.. .,Vk, and sets of vertices {v'l},... ,{v[}; 
begin 

Construct a bipartite graph B = (V, V ,S) in the following way: 
V := {vi,...,Vk,v[,...,v't}, V := { l , . . . ,m} , 
£i:=  {{vi,j}\vie Lj (1 < ji < m)}  ( i = 1 , . . . , A ; ), 
S'i := {{v'uj]  I î € Lj or {v'^} € Lj {1 < j < m)} (i =!,...,£), 

if for the bipartite graph (V,V',£), there exists a graph matching which 
contains all vertices in V 

then Li,. ..,Lm covers {vi ,... ,Vk}U {v'l}  U  U {v'l} 
end; 

Fig. 8. A procedure for determining whether or not Li,..., Lm covers {vi,... ,Vk} U 
{v'l}  U  U {t;̂ }  (for an input regular term tree whose dimension is 2). 

Theorem 3 (Miyahara , et. al [7]). If the dimension of a regular term tree 
is equal to 2, there exists a polynomial-time algorithm for solving REGULAR 
TERM TREE MATCHING. 

Since the maximum matching for a bipartite graph B = (V, V , S) is found in 
OdflA/maxdVlJV'l} ) time, the procedure (Fig.8) runs in 0{nN^-^) time. The 
total time complexity of Matching is 0{n'^N^'^) if the dimension of t is equal 
to 2. There is a gap between the dimensions 2 and 4. The time complexity of 
REGULAR TERM TREE PROBLEM is still open if the dimension is 3. 

3.2 Variant s of Regular  Term Tree 

Ordered Term Tree 
A rooted tree is said to be an ordered tree if for each vertex in the tree, the 
children of the vertex are ordered. In a similar way, we can construct a model 
of ordered term trees by giving an order to the children of each inner vertex. 
Ordered trees are often used to express discrete structures in the fields of 
natural science. For example, it is well known that RNA sequences can be 
expressed with labeled ordered trees. Now we are designing a knowledge 
discovery system for ordered tree-like structured data. 

Regular  Term Tree Graph wit h Property 77 
Let 77 be a property on graph G. Examples of such properties include "G is 
a tree", "G is planar", and "G is outer planar." A term graph g is called a 
term tree graph with property 11 if for any tree substitution 6 which contains 
all variable labels in g, gO is also a graph which has property 77. The match-
ing problem is closely related to graph isomorphism problem. For certain 
special subclasses of graphs, the isomorphism problem is efficiently solvable, 
for example, whether two planar graphs are isomorphic or not is solvable in 
polynomial time. Our objects in knowledge discovery are to find rich prof>-
erties 77 with which the matching problems for regular term tree graph are 
solvable efficiently. 
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Table 1. Experimental results of the two matching algorithms. 

No. 
Tree (#vertex) 

Term Tree (#vertex,#variable) 
Matching 

Our Algorithm (Run Time, sees) 
Naive Algorithm (Run Time, sees) 

No. 

Tree (#vertex) 
Term Tree (#vertex,#variable) 

Matching 
Our Algorithm (Run Time, sees) 

Naive Algorithm (Run Time, sees) 

1 

gl(6) 
t4(6,3) 

true 
0.030 
2.100 

7 

g3(8) 
t l(6, l ) 

false 
0.130 

2 3 
g2(7) g3(8) 

t4(6,3) t4(6,3) 
true true 

0.040 0.130 
49.380 980.440 

8 9 
g3(8) g3(8) 

t2(6,l) t3(6,2) 
false true 

0.130 0.050 
87.580 308.130 234.040 

4 

g4(9) 
t4(6,3) 

true 
0.060 

5 

g5(l l) 
t4(6,3) 

true 
0.070 

6 

g6(17) 
t4(6,3) 

true 
0.180 

aborted) (aborted) (aborted) 

10 

g3(8) 
t4(6,3) 

true 
0.130 

980.440 

11 

g3(8) 
t5(6,3) 

true 
0.060 

12 

g3(8) 
t6(6,4) 

true 
0.030 

aborted) (aborted) 

4 Implementation and Experimental Results 

In order to show that our matching algorithm is useful for knowledge discovery 
from tree-like structured data, we have implemented our matching algorithm for 
a regular term tree with two ports and a tree. We have experiments of running 
our matching algorithm and a naive matching algorithm for such a term tree 
and a tree, and have compared the performance of the two algorithms. 

In Table 1, we summarize some experiments of running the two algorithms 
on a SUN workstation Ultra-lO with clock 333 MHz. For example, in Exp. 3, 
the two algorithms are given EIS inputs a tree ^3 with 8 vertices and a term tree 
ti with 6 vertices and 3 variables. The value "true" in the Matching field means 
that the tree 5-3 is matched with the term tree M. Our algorithm runs in 0.130 
sees (run time) and returns "true". The naive algorithm runs in 980.440 sees 
(run time) and returns "true". The value "false" in the Matching field in Exp.7 
and 8 means that the tree is not matched with the term tree. In Exp. 4,5,6,11 
and 12, the execution of the naive algorithm is aborted without a return value 
after a long time of execution. 

In Exp. from 1 to 6, an input term tree is fixed and an input tree is var-
ied. These experiments show that the execution time of our algorithm slightly 
increases when the size of an input tree become large, but that of the naive 
algorithm sharply increases. In Exp. from 7 to 12, an input tree is fixed and an 
input term tree is varied. These experiments show that the execution time of 
our algorithm slightly increases when the number of variables in an input term 
tree become large, but that of the naive algorithm sharply increases. 

Al l these experiments show that our matching algorithm is efficient and useful 
in discovering tree-like structured patterns. Our matching algorithm can be in-
corporated not only in the KD-FGS system but also in other knowledge discovery 
systems from tree-like structured data which have other knowledge representa-
tion methods such as association rule, decision diagram and so on. 
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5 Conclusions 

We have given an algorithmic foundation of discovering knowledge from tree-
lik e structured data. We have presented polynomial t ime matching algorithms 
for tree-like structured pat terns. Computat ional experiments of comparing our 
matching algorithm and a naive matching algorithm have shown that our match-
ing algorithm is efficient and useful. We wil l incorporate the matching algori thm 
in the KD-FGS system and other knowledge discovery systems from tree-like 
structured data. 
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Abstract. Extracting interesting rules from databases is an important 
field of knowledge discovery. Typically, enormous number of rules are 
embedded in a database and one of the essential abilities of discovery 
systems is to evaluate interestingness of rules to filter out less interesting 
rules. This paper proposes a new criterion of rule's interestingness based 
on its exceptionality. This criterion evaluates exceptionality of rules by 
comparing their accuracy with those of simpler and more general rules. 
We also propose a disovery algorithm, DIG, to extract interesting rules 
with respect to the criterion effectively. 

1 Introduction 

The purpose of knowledge discovery system is to discover interesting patterns in 
a given database. There exist many types of patterns and this paper focuses on 
discovery of classification rules from a set of training instances represented by 
attribute values and class labels. A classification rule restricts values of attributes 
in its body and predicts a class of an instance that satisfies the body. Typically, 
the number of classification rules embedded in the given database is quite large 
and one of the essential abilities of the knowledge discovery system is to extract 
only interesting rules and to filter out uninteresting ones. 

One approach to filtering rules is to constrain patterns of rules explicitly. 
Srikant et al.[ll ] applied this approach to association rules mining in which an 
user restricts what kind of items can appear in rules' bodies and heads. This 
approach is practical in many applications but tends to discover only rules that 
the user expects beforehand. In addition, even if the constraints on rules/items 
are given, a discovery system may output too many rules to be checked by the 
user. Another approach is to evaluate interestingness of rules with pre-defined 
criteria based on statiscal charactaristics in the target database and to accept 
rules with high scores with respect to the criteria. This paper belongs to this 
second approach. 

The interestingness of rules strongly depends on what a user of the system 
already knows and what he/she wants to do with the discovered rules. If the user 
has no background knowledge of the domain represented by the target database, 
then he/she will prefer general rules that summarize the characteristics of each 
class and classify many training instances accurately[5,6]. In such a case, entropy 
based criteria such as information gain[4,7] and J-measure[9] can evaluate rules 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 17-28, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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well. However, such general rules are not appropriate when domain experts use 
the system because they usually know the general rules. 

Following is an example from mushroom database in UCI Repository[2]. This 
database includes about 8,000 instances and each instance is classified into edible 
or poisonous. This database is very easy as a benchmark of supervised learning 
algorithms because the following two rules can classify most instances correctly. 

odor e {almond, anise, none} -  ̂ edible : 98%, 

odor G {creosote, fishy, foul,musty,pungent, spicy} -  ̂ poisonous : 100%, 

where ratios after ":"are accuracy of the rules. Entropy based criteria of rules 
give high scores for these rules because each rule covers about a half of instances 
in the database and achieves very high accuracy. These rules are useful for users 
who don't know anything about mushrooms but are obvious for the domain 
experts. The purpose of this paper is not to learn such trivial rules but to 
discover unexpected, exceptional rules such as 

cap.color G {brown, red} A stalk-root = bulbous —> edible : 100%, 

where 

cap.color € {brown, red} —> edible : 50%, 

stalk-root = bulbous —+ edible : 51%. 

Because 52% of instances in the database are edible, each of two conditions, 
cap.color G {brown, red} and stalk.root = bulbous, is not related to edible 
by itself but the conjunction of them concludes edible with probability 100%. 
This type of rule is not a straightforward conclusion from correlations between 
attributes and classes. It represents exceptions in the given database and may 
be interesting for human experts. However, the traditional criteria of rules such 
as information gain give very low score to this type of exceptional rules because 
they cover only a small number of instances. 

To extract exceptional rules, we need new criterion of rules. Silberschatz and 
Tuzhilin[8] discussed unexpectedness of rules and defined it by how the rule 
contradicts user's knowledge. A problem of their approach is that a discovery 
system has to know what its user knows. One solution to this problem is to 
evaluate unexpectedness by how the rule contradicts other rules held in a given 
database instead of user's knowledge. 

Suzuki [10] proposed a discovery system PEDRE that tries to discover pairs 
of general rules and their exceptions. An exceptional rule is a specialization 
of a general rule but concludes a different class with high accuracy. General 
rules cover relatively many instances and may be trivial for human experts, but 
exceptional rules may give new knowledge to the experts. PEDRE evaluates an 
exceptional rule by comparing with only one general rule, its pair. There may be 
a different generalization of the excetional rule that predicts the same class with 
the exceptional rule. In such a case, the conclusion (class) of the exceptional rule 
holds in a large region of an instance space and the rule represents only a part 
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of the region. Such rule is too specific to predict its concluding class and is not 
appropriate as an exceptional rule. 

In this paper, we propose a new criterion of interestingness to identify a rule 
corresponding to an isolated exceptional region by comparing its accuracy with 
plural general rules. In addition, our criterion can evaluate a rule that permits 
plural values for each attribute appearing in its body. We also propose a discovery 
algorithm, DIG (Discover Interesting rules with Grouping attribute values), to 
extract interesting rules w.r.t. the criterion effectively. 

2 Interestingness of Rules 

This paper focuses on discovery of classification rules from a set of labeled in-
stances represented by attribute values. To simplify discussion, we a.ssume all 
attributes are nominal and there is no missing attribute value. In this section, 
we first explain classification rules we deal with and then discuss how to evaluate 
their interestingness. 

2.1 Classification Rules 

A classification rule is a if-then rule whose head (conclusion) is a class label and 
whose body is a conjunction of conditions of attribute values. We deal with a 
following type of classification rules. 

Rl : ai  ̂ e Dii A  Oĵ  € Dj^ —> c, 

where c is a certain class and Di,  ̂is a subset of possible values of attribute Ci,^. 
Many discovery systems such as ITRULE[9] and PEDRE[10] only extract rules 
that permit or prohibit one value for each attribute in the body of the rule, but 
we extract rules which allow plural values for each attribute. Grouping attribute 
values and allowing all values in one group increases the number of possible 
rules and may degrade efficiency of discovery systems. However, it is quite useful 
to improve readability of extracted rules because one rule with value grouping 
represents plural rules without grouping. 

In the following discussion, we will use support and accuracy of classification 
rules. Support is a probability that both of a body and a head are satisfied, 
P{aii £ Di^ A  Aai  ̂ S Di^ Ac). Accuracy is a conditional probability that a 
head is satisfied on the condition that a body is satisfied, P(c|aii G Di^ A  A 
flii  e Ai.) -

2.2 Interestingness without Groupin g Attribut e Values 

We first discuss interestingness of rules without grouping attribute values, i.e. 
the rules in which Di^. involves exactly one value Wĵ  for each k. Then a rule 
without grouping is 

i?2 : Oil = Uij A  A Oî  — Vi  ̂ -> c. 
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For simplicity, we use "primitive rules" to stand for the rules without grouping 
attribute values. Our basic idea of interestingness is that a rule is interesting 
if its accuracy is higher than predicted from more general rules. The larger the 
difference is, the more interesting the rule is. Let bk be the conjunction of L — 1 
of L conditions excluding â^ = Uĵ , 

bk = (fli i = Uii A -  A ai^_i = Vi^_  ̂ A 0,^^̂  = Vi^_^  ̂ A  A 0,̂ , = Vji,)

Assuming independence of ai^. = Vi^. and bk in a whole instance space and in 
class c, we can predict accuracy of the rule R2 from accuracy of a pair of more 
general rules, Oĵ  = '̂ Ĥ ~> C and bk —* c. 

P{aik =Vi^ /\bk\c)P{c) 
P{c\ai  ̂ = Vi  ̂ A bk) = 

Pidit = Vi  ̂ A bk) 

P{c\ai^=Vi.)P{c\bk) 

Pic) 
If the real accuracy of R2 is comparable to or lower than this expectation, then 
R2 is a trivial conclusion from the rule pair Oĵ  = Vi  ̂^> c and bk —» c, and R2 
is not interesting at all. We require an interesting rule is more accurate than 
expected from more general rules shown above for any k. 

1 < Vfc < L, P (c |a, =v,,A-.-Aa,,=v,,)> P(^ I^H =^^u)-P(c|6fc) ^ ^̂ ^ 

We also require that accuracy of R2 is higher than that of bk —> c. All 
instances covered by R2 are also covered by 6̂  —+ c and if we already know the 
rule 6fc —> c and its accuracy is higher than R2, then R2 is useless to classify 
instances into c. Then, we require 

1 < VA; < L, P{c\ai, =Vi, A  Aui  ̂ = Vi^) > P{c\bk). (2) 

We only compare accuracy of the rule with more general rules with L — 1 condi-
tions but don't compare with other general rules with L — 2 or smaller number 
of conditions. This is because the difference of accuracy from neighboring re-
gions violating only one condition, is more important than the difference from 
far regions violating many conditions. 

The constraints (1) and (2) give lower bounds of accuracy and we define 
interestingness of a primitive rule i?2, Iruie{R2), as a margin of its accuracy to 
satisfy the constraints (1) and (2) as follows. 

acc{R2) - maxi<fc<L (max (P(c|6fc), £W^i i^ j^ )£WM) ) 
Irule{R2) = j ^3-^^^^ , 

where 

acc(i?2) = p(c|aii = Vi  ̂ A  A ai  ̂ = Vi^), 

bk = (flj i =v^, A---A ai^_, = Vi,_  ̂A a,, î = v^^_^^  Aat  ̂ = Vi^) . 

The denominator, 1 - P(c), is a normalization factor and ImieiR'^) becomes 
1 when acc{R2) = 1 and both of Oĵ  = Vi  ̂ and bk are independent of c, i.e. 
-P(cK = '"^k) = P{c\bk) =P(C). 
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2.3 Interestingness wit h Groupin g Attribut e Values 

We can use Imie defined in the previous subsection to evaluate classification 
rules with grouping attribute values by replacing at^, = Vi,  ̂ with ai^  ̂ € Di^, but 
this sometimes gives large scores to inappropriate rules. Let us show an example 
in mushroom database why Imie can not be directly applied to evaluate rules 
with grouping. The next rule is an example with high estimation with respect 

to Irule-

R3:cap-color € {brown,red} A stalk-root £ {bulbous,rooted} —> edible:100%. 

The probabilites required to calculate Imie (^3) are 

P {edible\cap^color S {brown, red}) = 0.50, 

P {edible\stalkjroot £ {bulbous, rooted}) = 0.53, 

P (edible) = 0.52, 

and Iruie{R<i) becomes 0.98. It looks like an exceptional rule because each condi-
tion in its body has no correlation with edible but only edible mushrooms satisfy 
the conjunction of them. However, by exploring relationship between edible and 
each attribute value, we can find the following probability. 

P{edible\stalkjroot = rooted) — 1.00 

This means that the condition on cap-color is redundant for mushrooms with 
stalk-root = rooted and R3 is not interesting at all for classifying them. Instead, 
we prefer the following rule that prohibits stalk-root = rooted and increases the 
probability of edible for all of covered instances compared with the rules whose 
bodies are one of two conditions. 

RA : cap-color G {brown, red} A stalk-root G {bulbous} —> edible : 100% 

In this rule, each attribute value correlates with edible as follows and none of 
them has strong relationship between edible. 

P {edible\cap-Color = brown) = 0.55, 

P {edible\cap-Color — red) = 0.42, 

P {edible\stalkjroot = bulbous) = 0.51. 

The problem of that it evaluates a rule based on only each condition 
in a body but doesn't concern each attribute value allowed in each condition. 
To resolve this problem, we introduce interestingness of an attribute value and 
evaluate how allowing the value contributes to the interestingness of the rule. 

Formally, we define the interestingness of an attribute value QĴ  = U in a rule 
o-ii G -Dji A  A fli^ G Di^ —+ c as follows. 

' valueio.il, =V, a ĵ G A i A  A ttj^ G A i -» c) 

= max Iruie{ah = Uji A  A aî  = u A  Oî , = ifj^ ^ c). 
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For example, we use the following four primitive rules to evaluate attribute 
values in i?3. 

cap.color = brown A stalk-root = bulbous —» edible {Imie = 0.93), 

cap-color = brown A stalk-root = rooted —> edible {Imie = 0.00), 

cap-color — red A stalk-root = bulbous —> edible {Iruie = 102), 

cap-color = red A stalk-root = rooted —> edible [Iruie = 0.00). 

Stalk-root = bulbous appears in the first and the third rule and its interesting-
ness is 1.02. Instead, stalk-root = rooted appears in the second and the last rule 
and Ivaiue{stalk-root = rooted,RZ) = 0. 

Each instance covered by the original rule is covered by exactly one primitive 
rule and high score of lvaiue{0' = '̂ i R) means there is at least one instance with 
a = 11 for which R works better than expected from more general rules. In 
opposite, Ivaiue{<  ̂= î R) becomes low when more general rule can classify the 
instances with a = v with comparable or higher accuracy. 

When extracting a rule whose interestingness is greater than or equals to a 
certain lower bound, LB, we require not only Iruu{R) > LB but also Tvaiue{<J- = 
v,R) > LB for each pair of an attribute and its value allowed in the body of the 
rule. To satisfy the above requirement, we modify the interestingness of rules as 
follows. 

IGruleiR'i-) = min ( Irule{Rl), Hliu Ivalue{aik = V,Rl) . (3) 
\ l<k<L,ve:Di^ J 

Clearly, IGruie{Li) coincides with Iruie(R) for a primitive rule R that allows 
exactly one value for each attribute appeared in its body. 

In the example of mushroom, P{edible\stalk-root = rooted) = 1 leads lvalue 
{stalk-root = rooted, R3) — 0. Then /Gruie(^3) becomes 0 and our new criterion 
of interestingness, IGmie, judges RZ is not interesting at all. In contrast, all 
attribute values in RA get large scores of lvalue and IGruie judges R4 is quite 
interesting. 

3 DIG: Efficient Rule Discovery Algori thm 

3.1 Discovery Algor i thm 

This section gives our discovery algorithm, DIG (Discover Interesting rules with 
Grouping attribute values). We first assume all attributes are nominal and there 
is no missing attribute value. We discuss how to deal with numeric attributes 
and missing attribute values at the end of this section. Inputs of the algorithm 
are the number of attributes in bodies of rules, L, a lower bound of their support, 
LBsup, a lower bound of accuracy, LBacc, and a lower bound of interestingness, 
LBig. To simplify the discussion, we fix  the number of attributes appeared in 
rules' bodies. We iterate to apply the algorithm to extract a set of rules with 
different number of attributes in their bodies. An output is a set of rules that 
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include exactly L attributes in their bodies and satisfy the given constraints on 
their support, accuracy and interestingness. To avoid extracting similar rules 
many times, we restrict the algorithm to extract at most one rule for each pair 
of a class label (head of a rule) and a combination of L attributes. If there are 
plural rules that share a same label and a same attribute set, then the algorithm 
selects one of them with a user-defined objective function. 

One approach to discover interesting rules is generating all rules with suf-
ficiently large support by apriori[l] like algorithms and filtering out rules that 
violate the constraints on accuracy and interestingness. This approach is prac-
tical to extract only primitive rules but may be too unefficient to extract rules 
with grouping attribute values. This is because grouping attribute values drasti-
cally increases the number of possible rules and the first step, enumerating rules 
with large support, requires huge time even when L is small. For example, when 
extracting a rule with a given three attributes with ten possible values, the num-
ber of primitive rules is only 10̂  but the number of rules with value grouping 
becomes (2^'' — 2)̂  ~ 10̂  and the constraint of minimum support usually rejects 
only the rules that accept a few values for each attribute in their bodies. How-
ever, we don't need to enumerate all rules with large support to extract rules 
with large interestingness. Because of the definition of IGmie i the constraint of 
minimum interestingness 

IGruie{aii € A i A  A flj^  G A i —» c) > LBig 

requires 

1 <Vfc<L , Vue A t , 

3(1^11)  ! ̂ »fc_i) '^Jfc+i)  ̂ i t J € A i X  X JJi^_  ̂ X Ui^^  ̂ X  X A D S.t. 

Irule((/\ AJH =ViA A ai  ̂ = Uj^ -» Cj > LBig. 

This property leads the following efficient algorithm that first enumerates prim-
itive rules with large interestingness and generates rules with value grouping by 
combining the interesting primitive rules. This approach can effectively prune 
rules with grouping that can't satisfy the constraint on interestingness and can 
reduce search space drastically compared with enumerating rules with large sup-
port first. 

Figure 1 shows a pseudo-code of DIG. For each combination of attributes, 
DIG first counts a class distribution of instnaces in each combination of attribute 
values to evaluate interestingness of all of possible primitive rules. After that, 
DIG selects a set S of primitive rules whose interestingness is greater than or 
equals to the lower bound LBig  For each subset 5' of 5, DIG generates a rule 
R whose body permits all attribute values allowed in at least one primitive 
rule in S'. DIG evaluates its support, accuracy and IGrule of R. If these values 
are greater than or equal to the corresponding lower bounds and R is better 
than the current best rule, Rbest, with respect to the given objective function, 
DIG updates Rbest- After checking all subsets of S, DIG adds Rbest to a set of 
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Procedure DIG( Training, L, LBsup, LBacc, LBtg, fobj ) 
Inputs : 

Training set, Training, body length, L, 
lower bounds of support, accuracy and interestingness, LBsup, LBacc, LBig 
and an objective function, fobj-

Output : 
Set of interesting rules, Rules. 

Rules := 0. 
Foreach combination of L attributes (a<i , . . ., Otf.), 

Count class distribution for each combination of values {vi^,  Vij^) of 
attributes (o , i , . . ., a,^). 
Foreach class c 

Rbest '.^undefined. 
Foreach combination of values {v^,..., Vi^), 

Evaluate a primitive rule 
ftii  = I'l l A  A fli^ =  Vi  ̂ —» c. 

S := {r\r  is primitive A Iruuix) > LBig). 
Foreach S' C S 

Dik  {vl^r G S', r permits Ojj, = u} , fc = 1 , . , ., L. 
R := Oil e A i , A  A Otj, 6 Z)ij^ —> c. 
If Support{R) > LBsup A Acc(iJ) > L5acc A IGruu{R) > LBig then 

I f flbest =undefinedoT fobj{R) > Iobj{Rbest) t hen 
t : = ^

I f Rbest ^undefined then 
Rules := Rules U {Rbest}-

Rank rules in Rules with respect to /o6j. 
Return/Su/es. 

Fig. 1. Pseudo-code of DIG 

discovered rules. DIG iterates this procedure for all combinations of L at t r ibutes. 
As discussed above, a rule with IGmie > LBig allows only at t r ibute values 
appeared in at least one primitive rules with IruU  ̂ LBig and this algorithm 
can explore all rules with grouping values whose interestingness is greater than 
or equals to LBig. 

3.2 T i m e C o m p l e x i ty 

The most t ime consuming process in DIG is counting a claas distr ibution of in-
stances in each value pat tern to evaluate primitive rules. Because DIG has to 
count distributions for all combinations of L at t r ibutes, the t ime complexity of 
this process is O f ( ^ )  N  Lj, where M is the number of at t r ibutes and TV is 
the number of instances. This complexity depends on N linearly and DIG can 
extract rules from large number of instances. Instead, the complexity rapidly 
increases with L and DIG can't extract complex rules with many at t r ibutes in 
their bodies. However, simple rules with small number of at t r ibutes are some-
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Table 1. Summary of the experiments. 

mushroom 

satimage 

letter 

classes 

2 

6 

26 

atts 

22 

36 

16 

instances 

8,124 

6,435 

20,000 

L 
2 
3 
4 
2 
3 
4 
2 
3 
4 

LBig 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

extradited rules 
23 
10 
0 
12 
0 
0 
16 
2 
0 

cpu time(sec) 
5 
53 
354 
12 

243 
4,189 

10 
158 

2,155 

times more important for knowledge discovery than complex rules because we 
can easily understand the meaning of them. 

3.3 Numeric Attribute s and Missing Attribut e Values 

The current version of DIG assumes all attributes are nominal. It can't deal with 
numeric attributes directly and requires discretization [3] of numeric attributes 
before discovery process. The only difference between symbolic attributes and 
discretized attributes is how to generate groups of values as conditions in rules. 
For a discretized attribute, DIG only permits a value group that represents one 
interval, i.e. a set of neighboring values. For example, if values of a numeric 
attribute ttj are discretized into five values, 1, 2, 3, 4 and 5, then DIG permits 
conditions such as â  € {1,2}  and Cj e {2,3,4} , but rejects â  S {1,4} . 

Databases from practical domain sometimes involve instances in which values 
of some attributes are unknown. For each combination of attributes, DIG works 
with the instances in which values of all of the selected attributes are known. For 
example, DIG ignores an instance whose value of ai is unknown when extracting 
a rule with an attribute set {ai , 02}  but uses the instance when extracting a rule 
with {02,03}  if the values for 02 and 03 are known. 

4 Experiments 

This section reports the experimental results of DIG on three databases from 
UCI repository [2], mushroom, satimage and letter recognition. We selected these 
databases because they involve relatively many instances. In satimage, all at-
tributes are numeric and we discretized each of them into five intervals with 
same population. Letter database is also represented by numeric attributes but 
the attributes are already discretized into integers from 0 to 15 and we used 
them with no change. 

For all databases, we set LBacc = 0.9 and L = 2,3 and 4, i.e. DIG extracted 
rules with 90% or higher accuracy that involve 2 to 4 attributes in the bodies. 
We set minimum support, LB sup at 1% for mushroom and satimage, but used 
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rule 1: stalk^hape = tapering A ring-type = pendant A habitat = grasses — poisonous, 
support = 1.8%, accuracy = 100%, IGnU = 1-30 
P{poisonous) — 0.48 
P{poisonous\stalk-shape = tapering) = 0.44 
P(poisonous\ring.type — pendant) = 0.21 
P{poisonous\habitat = grasses) = 0.34 
P{poisonous\stalkshape = tapering A ringjtype = pendant) = 0.13 
P{pciisonous\stalk^hape = tapering A habitat = grasses) = 0.16 
P{poisonous\ring-type = pendant A habitat = grasses) = 0.33 

(a)Ruies extracted from mushroom database. 

rule 2: 032 < 17 A 34 < 033 < 61 -» dass = 0. 
support = 6.2%, accuracy = 98%, IGmie = 0.80. 
Pidass = 0) = 0.24 
P(dass = 0|o32 < 17) = 0.31 
P{class = 0|34 < a33 < 61) = 0.26 

(b)Rules extracted from satimage database. 

rule 3: width < 3 A 8 < height <9-> I. 
support = 0.4%, accuracy = 100%, IGmU = 0.80. 
P(I) = 0.038 
P(I\width < 3) = 0.213 
P(/|8 < height < 9) = 0.037 

(c)Rules extracted from letter database. 

Fig. 2. Rules extracted by DIG 

0.1% for letter database because this database involves 26 classes and 1% of all 
instances corresponds to about a quarter of instances in each class. This ratio 
is too large to discover exceptional patterns. We also fixed the lower bound of 
interestingness, LBig, as 0.8. As an objective function, fobj, we applied support 
of rules and extracted interesting rules covering as many instances as possible. 
We executed all experiments on sun workstation with 300MHz ultra-sparcll. 

Table 1 shows the domain characteristics of the databases and a summery of 
experimental results, the number of extracted rules and cpu time for extraction. 
In this table, we can observe that the number of rules with large score of IGmie 
decreases with L and no rule with L = 4 satisfies IGmie > 0.8 in all databases. 
A rule with L conditions takes high score with respect to IGmie only when any 
conjunction of L — 1 conditions cover many negative instances but the remaining 
condition can reject most of the negative instances. In natural domain, such a 
hidden relationship between attributes and a class is very rare when L is large. 

Figure 2 shows examples of rules extracted by DIG and probabilities related 
to the rules. The first rule involves three conditions in its body. Each condition 
and each pair of the conditions negatively relate to the conclusion, poisonous, 
but the rule shows that the conjunction of the three conditions covers poisonous 
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mushrooms only. It is not clear whether the rules in the figure are really useful 
and interesting for the users of discovery systems, but they are at least quite 
interesting from statistical viewpoint. 

In all databases, DIG worked sufficiently fast when L < 3 and required at 
most four minutes in satimage. DIG also required practical time when L = 4, 
about 40 minutes in letter recognition and 70 minutes in satimage. The time 
complexity of DIG depends on L exponentially and DIG may require huge time 
when L > 5. However, this is not a critical disadvantage because rules with large 
interestingness are usually extracted with small L as shown in Table 1. 

5 Summary 

This paper discussed what kind of classification rules should be extracted by 
knowledge discovery systems and proposed a new criterion of interestingness of 
rules that evaluates a rule by comparing its accuracy with those of more general 
rules. In addition, we pointed out the necessity of evaluation of each attribute 
value allowed in a body of a rule to evaluate the rule correctly. We also proposed 
a new discovery algorithm, DIG, to extract interesting rules with respect to the 
criterion. We applied DIG to three databases and showed DIG could discover 
interesting rules in practical time. 
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Abstract. The objective of data reduction is to obtain a compact representation 
of a large data set to facilitate repeated use of non-redundant information with 
complex and slow learning algorithms and to allow efficient data transfer and 
storage. For a user-controllable allowed accuracy loss we propose an effective 
data reduction procedure based on guided sampling for identifying a minimal 
size representative subset, followed by a model-sensitivity analysis for 
determining an appropriate compression level for each attribute. Experiments 
were performed on 3 large data sets and, depending on an allowed accuracy loss 
margin ranging from 1% to 5% of the ideal generalization, the achieved 
compression rates ranged between 95 and 12,500 times. These results indicate 
that transferring reduced data sets from multiple locations to a centralized site 
for an efficient and accurate knowledge discovery might often be possible in 
practice. 

Keywords: data reduction, data compression, sensitivity analysis, distributed 
databases, neural networks, learning curve 

1 Introduction 

An important knowledge discovery problem is to establish a reasonable upper 
bound on the size of a data set needed for an accurate and efficient analysis. For 
example, for many applications increasing the data set size 10 times for a possible 
accuracy gain of 1% can not justify huge additional computational costs. Also, overly 
large training data sets can result in increasingly complex models that do not 
generalize well [8]. 

Reducing large data sets into more compact representative subsets while retaining 
essentially the same extractable knowledge could speed up learning and reduce 
storage requirements. In addition, it could allow application of more powerful but 
slower modeling algorithms (e.g. neural networks) as attractive alternatives for 
discovering more interesting knowledge from data. 

Data reduction can be extremely helpful for data mining on large distributed data 
sets where one of the more successful current approaches is learning local models at 
each data site, and combining them in a meta-model [11]. The advantage of meta-
modeling is that learning local models and integrating them is computationally much 
more efficient than moving large amounts of data into a centralized memory for 
learning global models. However, this sub-optimal heuristic assumes similarity 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 29-39,2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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between local data sets and it is not clear how to successfully combine local models 
learned on data with different distributions and not identical sets of attributes. 

A centralized approach of transferring all data to a common location escapes the 
sub-optimality problems of local models combination, but is often infeasible in 
practice due to a limited communication bandwidth among sites. Reducing data sets 
by several orders of magnitude and without much loss of extractable information 
could speed up the data transfer for a more efficient and a more accurate centralized 
learning and knowledge extraction. Here, for user-specified allowed accuracy loss we 
propose an effective data reduction procedure based on applying a guided sampling to 
identify a minimal size representative sample followed by a model-sensitivity analysis 
to determine an appropriate compression level for each attribute. 

The problem addressed in this study is more formally defined in Section 2, the 
proposed data reduction procedure is described in Sections 3-4 and an application to 3 
large data sets is reported in Section 5. 

2 DeHnitions and Problem Description 

To properly describe the goal of data reduction and to explain the proposed approach, 
some definitions will be given first. The definitions apply to regression and 
classification problems solved by learning algorithms minimizing least square error, 
including linear models and feedforward neural networks. 

Definitions 
Given a data set with N examples, each represented by a set of K attributes, 

x={x,,.. .,x^}, and the corresponding target y, we denote the underlying relationship as 
y = E[y I x]-i-e, where e is an additive error term. For regression problems the target is 
usually a single number, while for L-class classification problems it is usually an L-
dimensional vector. We define the reduced data set as any data set obtained irom the 
given one by (1) reduction of the number of examples called down-sampling, or/and 
(2) quantization of its attributes and targets. The length of a data set is defined as the 
number of bits needed for its representation. Compression rate C equals the ratio 
between the bitwise length of the original data set and the bitwise length of the 
reduced data set. 

Assuming a parametric learning algorithm, by /(x; P(n)) we denote a predictor 
learned on n examples and we measure its performance by the mean squared error 
(MSE) defined as MSE(/3)=E{[y- /(x;yff)]'} , where /5 is the set of the model 
parameters. If a predictor is learned on a reduced, instead of the original, data set 
some increase in the MSE is to be expected. The total relative MSE increase, 
MSE(^Jn))/MSE(/3(N)), where ^Jn) are estimators of parameters from a model 
learned on a down-sampled data set with quantized attributes, is the product of 
relative MSE increases due to down-sampling MSE(ySf/î )/MSE(yS^A ĵ) and 
quantization MSE(P^(n))fMSEiP(n)). Throughout the text we denote the relative MSE 
increase as (1+ar), and call a the loss margin. 
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Problem Description 
Our goal is to obtain a minimal length reduced data set that, using the same 

learning algorithm, allows extraction of the same knowledge reduced for at most a 
loss margin cc To achieve this goal we propose two successive phases: (1) reduce the 
sample size from Â  to n„.„  allowing loss margin a  ̂ and achieving compression 
C^=Nln^, and (2) perform proper quantization of attributes of a down-sampled data 
set allowing loss margin a ,̂ followed by Huffman coding [5] of discretized attributes 
and achieving compression C^. Assuming that total loss margin a is close to zero, it 
follows that ar= OCo+(Xf. with an achieved total compression C= CjC^. To keep the 
presentation simple, we will assume that ag= a^= a/2, and will skip the optimization 
of ttj, and a  ̂for the maximum achievable total compression. 

The motivation for data reduction is obtaining the compact representation of a data 
set that would facilitate its efficient repeated use with complex learning algorithms 
and allow its efficient transfer and storage. All these features are highly desirable for 
data mining on distributed databases. In this framework, local computing time needed 
for data reduction would not be a critical requirement, since this effort would be 
rewarded multifold. Nevertheless, for large data sets, the whole data reduction effort 
has comparable or even lower computational time as compared to building a single 
model on a whole data set. In the following two sections we separately describe 
procedures for down-sampling and quantization and compression. 

3 Identifying a Minimum Representative Sample 

3.1 Down-Sampling for  Fast and Stable Algorithm s 

The learning curve for least squares estimators shows the average MSE 
dependence on the size n of a sample used for designing estimators. This curve can be 
divided into an initial region characterized by the fast drop of the MSE with 
increasing sample size and a convergence region where addition of new samples is 
not likely to significantly improve prediction (see Fig. 1). The learning curve is the 
result of complex relationships between data characteristics and a learning algorithm. 
Therefore its shape needs to be determined by experimentation with an objective of 
identifying size «̂ ,„  of a minimum representative sample needed to achieve an 
approximation of the optimal average MSE within a specific loss margin a^. 

An asymptotic analysis based on the law of large numbers and the central limit 
theorem [4] can help in successful modeling of a learning curve. According to the 
asymptotic normality theorem for nonlinear least squares, estimation error is 
asymptotically normal under certain fairly general conditions. Asymptotic normality 
means that n"(P{n)-0} tends in distribution to a normal distribution with mean zero 
and finite covariance matrix, where P(n) is an n-sample based estimate of the true 
parameter vector ^. The consequence is that for large n, residuals e" of the nonlinear 
estimator f{x;/i{n))  consistently estimate the actual disturbances as 

e'= £ + 0{n~^'^). Therefore, 
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MSE(/3(n)) = MSEf/f; + u, u~ N(0(l/n), 0(l/n)), (1) 

meaning that MSE(ySf«)) asymptotically tends to the optimum M S E (^ as 0(l/n), 
with variance decreasing as 0(l/n). Assuming that N corresponds to the convergence 
region and using (1), modeling of a learning curve to estimate a minimum 
representative sample size n  ̂ can be fairly straightforward. 
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Fig. 1. Learning Curve 

A recently proposed progressive sampling procedure [9] can efficiently span the 
available range of sampling sizes in search for the n^. The technique was developed 
with an objective of increasing the speed of inductive learning by providing 
approximately the same accuracy and using significantly smaller sample sizes than 
available. It was shown that geometrical progressive sampling that starts with a small 
sample and uses geometrically larger sample sizes until exceeding n  ̂ (model 
accuracy no longer improves) is an asymptotically optimal sampling schedule. We 
use the idea of progressive sampling with a somewhat different motivation of guiding 
an efficient search for a minimal sample size needed for achieving an approximation 
of the optimal average MSE within a specific loss margin a^. 

In regression statistical theory it is well known that linear least squares algorithms 
are the optimal estimators for linear problem solving. They are characterized by fast 
learning with time complexity 0(n) and well-known statistical properties including 
small variance. The following DSl procedure is proposed for identifying n „̂  value for 
fast and stable models: 
 Estimate model on the whole available data set of size Â  and calculate MSE(AO; 
 Estimate model on a small sample of size n„and calculate MSE(«( ;̂ 
 Increase the sampling size from n  ̂to n.-d until a sample size n  ̂ is reached 

satisfying MSE(n )̂ < {\+a^)MSE{N). 
A direct consequence of the progressive sampling results [9] for models with time 

complexity 0(n) is that the time complexity of this procedure for a=2 is at most twice 
the time of learning on the whole data set. This procedure might also be used for 
simple nonlinear algorithms with small variance (e.g. the feedforward neural 
networks without hidden nodes). 
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3.2 Down-Sampling Extension for  Slower  and Unstable Algorithm s 

Complex nonlinear learning algorithms such as feedforward neural networks with a 
number of hidden nodes typically have a large variance meaning that their MSE(/3fn}) 
can largely differ over different weight's initial conditions and choice of training data. 
Using explained DSl down-sampling procedure for such learning algorithms could 
cause significant errors in the estimation of n^. Also, with these algorithms learning 
time for large Â  can be so long that the cost of obtaining a benchmark value of 
MSE(AO is unacceptable. 

Using (1) and assuming that N is within a learning curve convergence region 
down-sampling can be performed by fitting learning curve samples obtained through 
guided sampling as 

MSE{n)^rQ + yJn + y2ln  ̂ +e, e ~ N(0,O( l /n) ), (2) 

where y,, corresponds to an estimate of MSE for an infinitely large dataset, y, to 0(l/n) 
part of (1), and \ to the initial region of a learning curve. 

The error variance of the learning curve samples decreases as 0(l/n), and so larger 
confidence should be given to MSB's of estimators learned on larger data samples. 
Therefore, we apply a weighted least squares algorithm [6] to fit the learning curve by 
multiplying (2) by n" and learning ^s on transformed learning curve samples. 

For slower and unstable algorithms we propose the following down-sampling 
procedure that we will call DS2: 

 Starting from a sample of size «„, at iteration i increase sample size to rir^n^-d 
until t-statistics for ŷ  and y, do not exceed te,., for some tolerant confidence 
level 6; 

 Repeat until the difference in estimating n  ̂ over several successive iterations 
is sufficiently small: 
 According to estimated y's and predetermined loss margin, a^, estimate 

n»» using (2); 
 Select the next sample size n.^, larger then n^. Larger n,̂ , results in a 

larger improvement in the estimation of n^, but at increased 
computational cost. Our heuristic of randomly selecting n,̂ , within an 
interval [«^, 2n ]̂ has proven to be a good compromise; 

 Learn a new model on n̂ ,̂ samples and calculate its MSE(y8f«ĵ ;J); 
 Output the last estimated n  ̂ as the minimum representative sample size. 

If neural networks are used in the down-sampling procedure, the minimum sample 
size is selected larger than the estimated value since part of the data should be 
reserved to validation subset. Our heuristic determines the total representative size as 
1.5n „̂  such that in all iterations of down-sampling algorithm, O.Sŵ samples are being 
used as a validation set for an early stopping of neural network training. 
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4 Compression of a Minimum Representative Sample 

Storing continuous attributes usually assumes double precision (8 bytes) for an 
accurate representation. Performing quantization of a continuous variable into a 
number of bins allows its representation with a finite alphabet of symbols. This allows 
the use of known compression algorithms [10] to decrease the number of bits needed 
to represent a given attribute at the price of introducing a certain level of distortion. 
We employ uniform quantization where the range of a continuous attribute x is 
partitioned into Q equal subintervals, and all numbers falling in a given interval are 
represented by its midpoint. Denoting quantizer operation as x^=Q(x), the 
quantization error, e^-\^-x, can be considered as uniformly distributed in a range 
[-q/2, q/2], where q= (x^,- x„i„V Q is the quantization interval. Therefore, 
quantization error variance equals q^/12. 

Given a data vector {x' , ...,x"}  over a finite Q-ary alphabet ={a,, ....flg} 
(obtained by quantization), we apply Huffman coding where more frequent symbols 
are assigned shorter encoding lengths [5]. This provides the optimal binary 
representation of each symbol of without any loss of information, such that the 
output bitstring length J^/ i i, is minimized, where/ is frequency of a. and /, is length 
of its binary representation. 

4.1 Model Sensitivity Analysis for  Attribute s Quantization 

In data reduction for knowledge discovery, preserving fidelity of all the attributes 
is not important by itself A better goal is preserving the fidelity of the prediction 
model learned using these attributes as measured by a loss margin a^. With this goal, 
less sensitive attributes can be allowed higher distortion and, therefore, be quantized 
to lower resolution by using larger quantization intervals. To estimate the influence of 
attribute's quantization on model predictions we propose the following sensitivity 
analysis of a model obtained on the down-sampled data set. The outcome of this 
analysis allows deducing proper relative quantization levels for all attributes resulting 
in an efficient quantization procedure. 

For a small quantization interval q the function/(x^.,yS(n^J) can be approximated as 

where e^. is quantization error with a uniform distribution over [-q/2, q/2] and x̂ . 
denotes an input vector with quantized attribute X.,. 

From (3) the relative MSB increase due to quantization of attribute X, is 

N2 

dp(Xi), (4) RMSEQ{qO = Ey(x^i,fi)-nx,fi)f}«  ̂ j { ^ ^ 

where p(x,) is the distribution of attribute X.. 

12 J dxi 
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The integral in (4) could be approximated as 

(srl \A2 

Or, \ 

\ "pip fy+&c,)-f(xi) 
Sxj 

(5) 

where 5x. is a small number (we used 5x.= std(X|)/10(K)). 
By X. we denote the most important attribute with the largest RMSEjidx), 

i =1,...,K. Let us quantize attribute X̂  such that the number of quantization intervals 
inside a standard deviation of X̂  is M  ̂where the constant Mj is called the quantization 
density. Quantization densities of other attributes are selected such that losses of all 
the attributes are the same. These densities can be computed from (4) as 

iRMSEoiSxi) 
M. = M jj  5 ^ J_ = M j^i, (fi) 

' ^^RMSEgiSKj)  ̂ ' W 

where ,̂ <1 is a correction factor that measures the relative importance of the 
attributes and is the key parameter allowing an efficient quantization. 

4.2 Quantization Procedure for  Attribute s and Target 

If an attribute is nominal or already has discrete values it can be directly 
compressed by Huffman coding. If it is continuous, its quantization can greatly 
improve compression without loss of relevant knowledge. 

Using correction factors .̂, a proper Mj needs to be estimated to satisfy a 
quantization loss margin a^. For a given Mj we calculate M., i=l,...,K, to quantize all 
K attributes. We denote a quantized version of an example x as x .̂ 

Starting from a small Af, we should estimate true loss as MSE(;S^(n„J)/ 
MSE(y8(n„j„)) and should gradually increase Mj until this ratio drops below a^. At each 
iteration of M̂  this requires training a new model fix,fi^(n^^)) with quantized attributes 
which could be computationally expensive. However, our experience indicates that 
estimating E{[y-̂ x ,̂y3(n„,„))]̂ }  leads to a slightly pessimistic estimation of 
MSE(y9^(rt̂ J) which can be done by using an already existing model A^,/Kn„J) from 
a down-sampling phase. Hence, to improve speed without much loss of acciu"acy we 
use E{  [y-/(x ,̂y6(« ,̂„))]̂ }  in the quantization procedure. When a proper size Mj is found, 
quantization densities for all continuous attributes M. are calculated from (6) and 
quantized accordingly. 

For classification, target compression can be very successful. If a target is 
continuous, we propose a representation with single or double precision, since for 
knowledge discovery the accuracy of target is usually more important then the 
accuracy of attributes. Finally, after a proper quantization of continuous attributes 
Huffman coding is applied to obtain an optimally compressed data set. Along with the 
compressed data set, a small table containing the key for Huffman decoding is saved. 



36 S. Vucetic and Z. Obradovic 

5 Experimental Results 

To illustrate the potential of the proposed data reduction procedure we performed 
experiments on 3 large data sets. The first data set corresponds to a simple regression 
problem, while the remaining two are well-known benchmark classification problems 
for knowledge discovery algorithms [7]. 

Normal Distributio n Set 
We generated a data set consisting of N= 100,000 examples with 10 normally 

distributed attributes, x., j=l,...,10, and target y generated as a linear function, 
y=Ly5.x,+e for randomly chosen parameters p. and the error term being normally 
distributed and containing 50% of the total variance of y. Assuming standard double 
precision representation, the total size of this data set is 8.8MB. We chose this set to 
test our down-sampling procedure DSl, and we used an optimal linear estimator with 
n„=10, a=1.5, and loss margin set to ciJ={0.01, 0.02, 0.05}. An extremely large 
compression rate of up to 1,100 times to only 8KB, with minimal model accuracy 
loss, was achieved as reported in Table 1. It is interesting to observe that almost 1/3 
of the reduced data set length was used for the target representation since we 
intentionally decided not to compress targets due to their importance. 

Table 1. Data reduction results for normal distribution data set. Here a is the prespecified loss 
margin, M. is the quantization density for the most relevant attribute, loss is an actual accuracy 
loss when using reduced data for modeling, RDS is the reduced dataset size and C achieved 
compression rate. The original double precision representation was 8.8 MB 

a 

0.01 
0.02 
0.05 

Linear Estimator 
n 

mm 

1900 
U20 
420 

M 
10 
8 
5 

loss 
0.007 
0.009 
0.033 

RDS 
13KB 
10 KB 
8KB 

C 
680 
880 
1100 

Neural Network 
}.5n 

4220 
2250 
1020 

M 
8 
6 
4 

RDS 
25 KB 
19 KB 
14 KB 

C 
350 
460 
630 
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Fig. 2. Correction factors from sensitivity analysis for (a) normal distribution set (left 
bars are correct and right estimated correction factors), (b) WAVEFORM data set, and 
(c) COVERTYPE data set 

We also used a neural network with 3 hidden nodes in a down-sampling procedure 
DS2 to estimate the consequences of a non-optimal choice of the learning algorithm. 
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For small sample sizes, neural networks tend to overfit the data, and hence, computed 
n„,„  is significantly larger than for linear estimators. Therefore, the compression rate 
was slightly smaller than for a linear estimator, but still very large. It could also be 
noted that in both cases the quantization interval is fairly large, as could be concluded 
from small value of relative quantization density Mj. The experimentally estimated 
correction factors for 10 attributes obtained through a sensitivity analysis (right bars 
at Fig. 2a) were compared to the true values (left bars at Fig. 2a) and it was evident 
that the sensitivity analysis was extremely successful in proper estimation of attributes 
importance. 

WAVEFOR M Data Set 
As originally proposed by Breiman [2, 7], we generated 100,000 examples of a data 
set with 21 continuous attributes and with 3 equally represented classes generated 
from a combination of 2 of 3 "base" waves. The total size of this data set with double 
precision was 17.8 MB. In a down-samphng procedure with n„=100, a=1.5, and loss 
margin set to a={0.01, 0.02, 0.05}  we used neural networks with 5 hidden nodes, 21 
inputs and 3 outputs. Observe that the number of examples needed for successful 
knowledge extraction was significantly higher than in the normal distribution problem 
as expected for a higher complexity concept. However, for all loss margins the 
obtained data reduction was still very high (see Table 2) while estimated attributes 
correction factors ^ recovered the structure of 3 waveforms hidden in the data (see 
Figure 2b). Our neural network models trained on a reduced data set of length 186KB 
achieved an average generalization accuracy of 86%, which is identical to the 
previously reported accuracy using all 17.6 MB of training data. 

Table 2. Data reduction results for WAVEFORM data set (notation is same as in Table 1) 

a 
0.01 
0.02 

1-5K. 

19670 
10640 

0.05 1 4580 

M 
8 
6 
4 

RDS 
186 KB 
89 KB 
33 KB 

C 
95 
200 
530 

COVERTYPE Data Set 
This is currently one of the largest databases in the UCI Database Repository [7] 
containing 581,012 examples with 54 attributes and 7 target classes and representing 
the forest cover type for 30 x 30 meter cells obtained from US Forest Service (USFS) 
Region 2 Resource Information System [1]. In its raw form it has 75.2 MB, and in the 
compressed 11.2 MB. Out of 54 attributes, 40 are binary columns representing soil 
type, 4 are binary columns representing wilderness area, and the remaining 10 are 
continuous topographical attributes. Seven classes represent forest cover type. Since 
40 attributes for just one variable seemed too much for neural network training, we 
transformed them into 7 new ordered attributes by the following simple „trick" . For 
each of 40 soil types we calculated the relative frequency of each of 7 classes from 
the available examples. In that way each soil type value was represented as a 7-
dimensional vector with values that could be considered continuous and were fit for 
use with neural networks. The transformed data set had 21 attributes and in the down-
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sampling procedure DS2 with n„=100, a=1.5, for loss margin set to Ot=[0.0l, 0.02, 
0,05}  we used neural networks with 5 hidden nodes, 21 inputs and 7 outputs. In the 
quantization procedure we quantized only 10 continuous attributes, while nominal soil 
type and wilderness area attributes were, together with the target variable, compressed 
by Huffman coding directly. Data reduction results presented in Table 3 show that 
surprisingly large data reduction of several thousands times can be performed without 
significant knowledge loss and achieving about 70% accuracy as consistent with 
previous reported results [1]. 

Table 3. Data reduction results for COVERTYPE data set (notation is same as in Table 1) 

« 
0.01 
0.02 
0.05 

l-5ri. 

6860 
3690 
1680 

M 
8 
6 
4 

RDS 
26 KB 
14 KB 
6KB 

C 

2890 
5370 
12500 

It should be noted that approximately 1 KB of reduced data set size is used to 
represent a very informative 40x7 table of relative frequencies for 7 classes on 40 soil 
types. The estimated attribute correction factors are shown in Fig. 2c. One of the by-
products of this sensitivity analysis indicates that the most important attributes for this 
problem are elevation and soil type, followed by wilderness area attribute. 

One of the reasons for such successful reduction of this data set is possibly in its 
spatial component, and a relatively dense spatial grid (30x30 meters). To better 
exploit the spatial component of the COVERTYPE data set it would be desirable if 
positions of examples were also included in the form of x and y coordinates. This 
would allow the use of the elements of spatial statistics [3] and adjusted learning 
algorithms [12] for better knowledge extraction. 

6 Conclusions 

In this paper we proposed a set of procedures aimed at performance-controlled 
reduction of a given data set by: (1) elimination of redundant training examples, and 
(2) attributes quantization and compression. The data reduction goal was to obtain a 
minimal length reduced data set that, using the same learning algorithm, allows 
extraction of the same knowledge reduced for at most a predetermined loss margin. 

Experiments were performed on a large regression and two large classification data 
sets. An ordinary least squares algorithm and neural networks were used to guide data 
reduction. Depending on prespecified loss margins of 1% to 5% of full accuracy, the 
achieved compression rates ranged between 95 and 12,500 times, indicating possible 
huge benefits for centralized knowledge discovery in distributed databases. 

We obtained few other results worth mentioning. The proposed sensitivity analysis 
proved very successful in ranking the attributes and allowed an efficient compression 
of continuous attributes. This analysis can be considered separately as a method for 
soft feature reduction and feature selection that is based directly on their importance 
for a given learning model. Our results also show that a proper choice of learning 



Performance Controlled Data Reduction 39 

model is important for data reduction and that a reduced data set can be used as a 
good indicator of the complexity of a learning problem. 

The proposed procedure is suited for learning algorithms based on least squares 
minimization, and could be applied to a range of classification and regression 
problems. Further work is needed to extend the technique to other learning 
algorithms. 
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Abs t rac t. This paper proposes a method based on the Minimum Mes-
sage Length (MML ) Principle for the task of discovering polynomial 
models up to the second order. The method is compared with a num-
ber of other selection criteria in the ability to, in an automated manner, 
discover a model given the generated data. Of particular interest is the 
ability of the methods to discover (1) second-order independent variables, 
(2) independent variables with weak causal relationships with the target 
variable given a small sample size, and (3) independent variables with 
weak links to the target variable but strong links from other variables 
which are not directly linked with the target variable. A common non-
baicktracking search strategy has been developed and is used with aJl of 
the model selection criteria. 

Keywords: scientific discovery, automated modeUing, second-order poly-
nomial regression 

1 Polynomial Model Selection Criteria 

Polynomial regression concerns with the task of estimating the value of a target 
variable from a number of regressors/independent variables. The standardized 
second-order polynomial regression models considered in this paper typically 
take the form 

p p p K 

2/n = ^ 7p "np + X I X ! Tpg^tnpWn? + in  ̂ Vn = '  ̂ PkXnk + Cn (1) 
p=l p=l q>p k—l 

where for each data item n: 

y„  : target variable x^k  regressor k; 

^nk ^̂  "^np or Xfik = '^np^ngi Q — P 

Unp 

7p 
Ipq 

regressor p (3k : coeff. for regressor k 
coefF. for single regressor K =2P + P\/2\{P - 2)! 
coeff. for compound regressor e„  : noise/residual/error term 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 40-48, 2000. 
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The values of the error term e is assumed to be uncorrelated, normally and 
independently distributed £„  ~ NID{Q,(j'^). For a given set of x^, this assump-
tion causes w to have the same normal distribution and variance as e, that is, 
Vn ~ i PkXnk, c^)- Given that y is normally distributed, the fact that we 
can write ^^ as a linear combination of the y values implies that $k also has a 
normal distribution. 

Unless the exact relationships between the target variable and the regressors 
in a problem domain are known, it is necessary to search among all of the 
potential regressors available for a subset that has the strongest explanatory 
relationships with the target variable to form a polynomial model to be used for 
future predictions. The search space can be large especially when the products 
of variables are also considered (higher-order polynomials). 

This work examines some of the most commonly cited penalized-likelihood 
methods used to compare models with different complexities, along with a 
Bayesian selection method based on the Minimum Message Length (MML ) prin-
ciple [14] developed for this purpose. The summary of the methods is given in 
Table 1. The explanation of the methods is given in Section 1.1 and 1.2. The 
model chosen by any of the methods is claimed to be a parsimonious description 
of the data at hand, therefore has predictive power for future data. This work 
tests the robustness of each method in support of this claim. 

Previous related studies on the comparison of MML and other methods for 
the purpose of curve-fitting can be found in [2] and [13]. In this paper, the task 
is to estimate the order of the regressors of a given polynomial model. 

Table 1. Summaxy of model selection criteria, i is index for sample item ranging from 
1 to n and k is the number of variables in a model 

M e t h od 

M i n i m u m M e s s a ge L e n g th 

M i n i m u m D e s c r i p t i on L e n g th 

C o r r e c t ed A I C 

S t r u c t u r ed Rislc M i n i m i s a t i on 

S t o c h a s t ic C o m p l e x i ty 

Alcailce's I n f o r m a t i on C r i t e r i on 

Bayes ian I n f o r m a t i on C r i t e r i on 

M a l l o w s' Cp 

Ad jus ted Coeff. of D e t e r m i n a t i on 

F - t a - e n t er 

F - t o - e x it 

M M L 

M D L 

C A I C F 

S RM 

SC 

A I C 

B I C 

C p 

a d j R^ 

F - t e st 

Ref. 

(14] 

[8] 

[3] 

[12] 

[9] 

m 
111] 

[61 

[5] 

f l 

O b j e c t i ve F u n c t i on 

- l o g / ( i | » ) + J i o « | / ( » )| - l o g h ( » ) -

- i ^ l og25r + ^ log(fc + l ) , r - 1 - l o g H ( . / , « , i, I , J, I . ) 

- l o g / ( x | » ) + ^ l o g n + ( ^ + l ) + l o g f c (k + 2 ) 

- l o g / ( i | e ) + ^log\II.S}\ + f c + ^ l o g n 

1 V ^ " > / ( f c + l ) ( l o g , j t t ^ + l ) - l o g r , 

i Ei=i 'V^' - V -  ̂ ' 
5 1 o g ^ " _ ^ c2 + J log lX 'XI 

- 2 ( l o g / ( i | «) - k) 

- 2 ( l og / ( a : | ») - J f c l o g n) 

i^ i EL.'?-"--" > 
1 - (Er=i °?^<"" ' '"^'Er-i '"* " *'^^<""" ' 
(J21-1 °i >"''' - ' E ? -! ' f '^ '^f l + ''ctcT'/t" - (*  + I») 
(j2"-i  '?>"="' ^ 'E r -i '?>'>''' '^+''"'' ' ^'"" ' *+ ' ' " 
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1.1 Minimu m Message Length Method 

Prom information theory perspective, Minimum Message Length (MML ) princi-
ple [14] takes the metaphor of sending data over a communication hne. Referring 
to Equation 1, suppose the sender has 2 sets of data, one of the target variable 
yn and the other of the regressors Xnk- The receiver only has the data set of 
the regressors Xnk and would like to have the data set of the target variable yn 
sent. The most expensive way to do this would be to send the encoding of all of 
the data verbatim. This is equivalent to what is known as a table lookup. The 
cheapest way would be by first developing a polynomial model in the form of 
Equation 1 and then sending the optimal encoding of the model and residual 
data which minimizes the total message length: 

L = L{9) + L{x\e)  ̂ - log f{e\x) = - log p{e) - log f{x\e) (2) 

The first part of the message length represents the model complexity and 
the second part represents the goodness of fit of the model into the data. When 
comparing two models with different complexities, the model with the shorter 
two-part message length would be chosen. Prom Bayesian perspective, MML 
principle states that the best model is the one that yields the highest posterior 
probability by maximizing the product of the prior probability of the data given 
the model (Equation 2). 

The cost of encoding the model L{6) is composed of two parts: that of the 
model structure (i.e. which combination of variables) L, and that of the model 
parameters Lp. Hence the total message length is: 

L = L,+Lp + L{x\e) (3) 

In this paper, the cost of encoding the model structure L , is composed of three 
parts: that of the set of single regressors, product of regressors and the combi-
nation of regressors: 

Ls = - logh{u, j) - logh{^,I) - log f J ,^  ̂ (4) 

h{i',j)  and h{^,l) follow geometric series: 
M^,i ) = i^^il - u)/{l - u'+^) and hi^, I) = ^'(1 - 0 / (1 - e^') 

where: u,  ̂ : probability of choosing single, product of regressors 
j , I: single, product of regressors chosen 
J, L: single, product of regressors available 

I t is assumed that the sender and receiver of the message have some prior 
knowledge/expectation about the possible models 6 = (/3fc,cT), giving a message 
length L = -\ogh{9) = -\ogprior{a)prior{{pkW}). However, the adoption of 
a discrete message/code string of length L implies that & itself is regarded as 
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having a prior probability of e~ ,̂ which is discrete. MML principle assigns to 
9 a prior probability h{9) * v{6) where v{6) is the the volume of a region of the 
search space which includes 6. As shown in [14] the whole message length is 
minimized when v{6) is chosen to be proportional to 1/^J\I{6)\, where \I{0)\ is 
the Fisher information matrix. 

As in Equation 1, the parameters (ik are assumed to be normal. If uniform 
density prior (i.e. no preference) is chosen for a, then following [14], the cost of 
encoding the model parameters Lp takes the form 

Lp = - log prior (CT)pr-ior ({ A |<T}) + ^ log \I{e)\ - ^{k + 1) log27r + ^log{k + l)7r - 1 

= - n —L=e-'l'^°'"''"  + i log \m\ -\{k + l) log2,r + \lo9{k + l)7r - 1 (5) 
k=\ ^ 

The term |/(^)| = 'lNu~'^^^^'^'>\X'X\ is the expected Fisher information matrix 
associated with the real-valued parameters of Q. That is, the determinant of the 
expected second partial differentials of L{x\S) (Equation 6) with respect to the 
model. The last three terms reflect the effect of quantization of v{&)  (i.e. the 
discretization of &)  in forming the optimum code [4, pp.59-61] which results in 
the increase in the message length. 

Finally, the cost of encoding the data given the model L{x\6) is simply the 
likelihood function 

L{x\9) = - log / (y |a , { /34) = - l og TT -!—e-^y--Y..=.^--r,.?l^''' (6) 
„= 1 ^^^27 7 

1.2 Comparison Between MM L and the Other  Methods 

The methods in Table 1 can broadly be categorized as penalized-likelihood meth-
ods. When comparing two models, not only do they consider how a model fits 
the data, but they also have penalty terms for the more complex model. Hence, 
the model can be chosen solely from training data. The terms —logf{x\ff) (Equa-
tion 6) or Y^=\ ^1 ^  ̂ ^^  ̂ equations in Tablel typically measure how a model 
fits a data set and the rest represents the penalty terms for model complexity. 
Following [7], F^nter and F^xit is given as 4.0. Following [12], r]  is given as 0.125. 

Rissanen proposes two methods for implementing minimum encoding, the 
Minimum Description Length (MDL) principle and the Stochastic Complexity 
(SC) principle. SC is seen as a refinement of MDL since for large values of n, X'X 
is approximately proportional to n, hence | ^ ' ^ | behaves like n*̂ , and the second 
term of SC is like the second term of MDL [9]. The term |X 'X | is included in 
|7(^)| (Equation 5) for MML which will converge to the same value for large n. 
It can be concluded that MDL incorporates all the terms of SC. The difference 
between the model chosen by MDL and MML relies on the values for the third 
term onwards in each equation. 

The penalty term for AIC, k (the number of independent variables) turns 
out to be the same as Mallows' Cp criterion. BIC is similar to the first two 
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terms of MDL. [3] sees BIC as AIC altered since ^ -+ 0 as n —> oo. BIC has a 
bigger penalty term for model complexity than AIC, hence should be less likely 
to overfit. 

As a variation of AIC, [3, p.361] derived CAICF as an estimate of minus 
the expected entropy, hence does not follow a Bayesian approach. Like MML , 
CAICF uses the Fisher information matrix as a more precise estimate of the 
expected log likelikehood. 

1.3 Search Algorith m 

A non-backtracking search algorithm has been developed to be used as a common 
search engine for the different stopping criteria. This algorithm starts with an 
empty model. Variables are either added to or deleted from the model one at a 
time. A new variable will be added to the model if it results in the best among 
the other alternative new models based on the selection criterion being used. 
After every addition to the model, a variable will be searched to be deleted 
therefrom. A variable will be deleted from the model if it results in the best new 
model among the initial model and any other models should any other variable 
has been chosen. Hence in effect, at each stage of the search process, the model 
chosen would be the best amongst all of the potential models with the same 
complexity that are possibly chosen by adding or deleting one variable to or 
from the existing model. The search terminates when there is no more variable 
to be added which will  result in a better model. In case a model selection method 
overfits the data, a limi t in the maximum number of variables that a model can 
have is imposed to enable the search to terminate in a reasonable amount of 
time. In this paper, a model can have a maximum of 70 variables. 

2 Experimental Design 

Three true models as shown in Figure 1, 2 and 3 have been designed for the 
experiments. Each true model consists of a target variable and a set of single 
and compound independent variables. Not all of the variables are necessarily 
directly or at all connected to the target variable. Each value of an independent 
variable is chosen randomly from a normal distribution N{0,1). For each model, 
6 training and test data sets comprising 500, 1000, 2000, 4000, 6000 and 10000 
instances respectively are generated. 

The product of two independent variables is calculated from the standardized 
values of each variable. Each value of the target variable is calculated from the 
values of all of the independent variables directly linked to it multiplied by the 
respective link weights plus a noise value which is independently and identically 
distributed (i.i.d) as Normal (0,1). 

The search engine is presented with the data of the target variable and all 
of the available independent variables and the possible products of the single 
variables. The performance criteria for the true model discovery task are whether 
or not a model selection method manage to select a model with the same set of 
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variables and corresponding coefficients as those of the true model, as reflected 
in the following measures: 

1. The number of variables selected in the discovered model 
2. How close the coefficients of the discovered model are with those of the true 

model (model error): l/K * Ef=i(/3fc - k? 
3. Model predictive performance (on test data), quantified by 

(a) Root of the mean of the sum of squared deviations: 

RMSE = y i E I U ^ 

(b) Coefficient of determination: E? = l~ {YTi=i e?)/ TJ^=i{yi - V? 

Jacobian Orthogonal Transformation (as opposed to straight Gaussian Elim-
ination) is performed on the covariance matrix of the independent variables for 
the calculation of model coefficients. This ensures that should multicoUinearity 
among variables exists, it is not reflected in the model coefficients. The nor-
malized variances of the single and product of variables are kept to unity by 
standardizing the product of the standardized single variables. 

3 Results and Discussions 

The results of the experiments with artificial data given in Table 2 show that 
the search engine using model selection methods MML , MDL, CAICF, SRM or 
SC manages to home into the true models (i.e. all of the variables with direct 
links to the target variable shown in the number of variables discovered. Due to 
space constraint, the variables and their coefficients are not shown). 

The other methods, namely AIC, BIC, &A]B? and F-test tend to choose wrong 
and much more complex models. The fact that the models selected by AIC, BIC, 
adji?̂  for Model 2 and 3 have 70 variables for all of the sample sizes suggests 
that the search has been stopped before convergence. 

Prom the performance criteria and the number of variables chosen for Model 
1, 2 and 3, it is clear that AIC, BIC, adji?'̂  and F-test have overfitted the training 
data. Hence, this implies that in those model selection methods, the penalty for 
chosing a more complex model is too small compared to the reward of better 
data fit. 

Nonetheless, it has been observed that all of the methods selected some of 
the significant regressors early on in the search process and assigned relatively 
large coefficients to them and small coefficients to the variables chosen which do 
not exist in the true model. 

These results suggest that if a model selection procedure is to be fully au-
tomated, MML , MDL, CAICF, SRM and SC can reliably converge to the true 
model (if one exists), or to a reasonably parsimonious model estimate. The mod-
els selected by the AIC, BIC, adji?'̂  and F-test may need further judgements in 
deciding on the final model which can take two forms. First, choosing a model 
half way through the search process just before it chooses a more complex model 
with worse performance on the test data. Second, pruning out some of the vari-
ables with small coefficients. The need for these manual adjustments explains 
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the real reason behind the traditional common practice of specifying beforehand 
the maximum number of variables for a model (e.g. [10], [7]). 
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Fig. 2. Model 2. Variable 1 is directly Unked to all of the variables with direct links 
(some of which are very weak) to the target variable. Large link coefficients eire delib-
erately placed between variable 1 and these variables to see if this will cause variable 
1 to also be chosen 

4 Conclusion 

A version of Minimum Message Length model selection method and a non-
backtracking search strategy have been developed. Using the common search 
strategy, the robustness of a number of model selection methods in performing 
the task of selecting models that balance model complexity and goodness of fit 
is examined. 

Based on the experiments with artificial data and real atmospheric data for 
hurricane intensity change forecasting, it has been shown that MML , MDL, 
CAICF, SRM and SC methods are good candidates for fully automated model 
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Fig. 3. Model 3. Random values with unit normal with no link to the target variable 
are generated for variables 21 to 31 are included in the pool of potential variables 

Table 2. Performance of the different model selection methods on the task of discov-
ering Model 1, 2 and 3 using varying sample sizes 

Sample 
Size 

500 

1000 

2000 

4000 

6000 

10000 

Method 

M M L 
M D L 

CAICF 
S RM 

SC 
A I C 
B I C 

adjfl^ 
F-teat 
M M L 
M D L 

CAICF 
S RM 

SC 
A I C 
B I C 

adjR^ 
F-test 
M M L 
M D L 

CAICF 
S RM 

SC 
A I C 
B I C 

adjR^ 
F-test 
M M L 
M D L 

CAICF 
S RM 

SC 
A I C 
B I C 

adjB^ 
F-teat 
M M L 
M D L 

CAICF 
S RM 

SC 
A I C 
B I C 

adjK^ 
F-test 
M M L 
M D L 

CAICF 
S RM 

SC 
A I C 
B I C 

adjB^ 
F-teat 

Model 1 (nvar= 10) 
nvar 

6 
6 
6 
6 
8 

40 
40 
70 
15 

8 
8 
8 
8 

10 
30 
30 

62 
17 

9 
7 
7 
7 
9 

31 
31 
65 
13 

9 
9 
9 
9 

10 
38 
38 
56 
18 
10 
10 
10 

9 
10 
32 
32 

62 
14 
10 
10 
10 
10 
10 
32 
32 
52 
13 

ModelErr 

0.0109 
0.0109 
0.0109 
0.0109 
0.0045 
0.0093 
0.0093 
0.0093 
0.0052 
0.0049 
0.0049 
0.0049 
0.0049 
0.0057 
0.0035 
0.0035 
0.0061 
0.0043 
0.0014 
0.0047 
0.0047 
0.0047 
0.0014 
0.0014 
0.0014 
0.0016 
0.0011 
0.0005 
0.0005 
0.0005 
0.0005 
0.0001 
0.0011 
0.0011 
0.0009 
0.0008 
0.0002 
0.0002 
0.0002 
0.0006 
0.0002 
0.0006 
0,0006 
0.0005 
0.0004 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0005 
0.0005 
0.0004 
0.0003 

RMSE 

1.0399 
1.0399 
1.0399 
1.0399 
1.0320 
1.1858 
1.1858 
1.3232 
1.0523 
1.0367 
1.0367 
1.0367 
1.0367 
1.0427 
1.0684 
1.0684 
1.1286 
1.0395 
1.0103 
1.0224 
1.0224 
1.0224 
1.0103 
1.0316 
1.0316 
1.0597 
1.0131 
1.0013 
1.0013 
1.0013 
1.0013 
0.9994 
1.0161 
1.0151 
1.0210 
1.0061 
1.0106 
1.0106 
1.0106 
1.0131 
1.0106 
1.0182 
1.01S2 
1.0259 
1.0130 
1.0116 
1.0116 
1.0116 
1.0116 
1.0116 
1.0162 
1.0162 
1.0193 
1.0128 

R^ 

0.7285 
0.7285 
0.7286 
0.7285 
0.7337 
0.6713 
0.6713 
0.6174 
0.7270 
0.7567 
0.7567 
0.7567 
0.7567 
0.7544 
0.7473 
0.7473 
0.7273 
0.7676 
0.7636 
0.7677 
0.7577 
0.7577 
0.7636 
0.7662 
0.7662 
0.7473 
0.7628 
0.7743 
0.7743 
0.7743 
0.7743 
0.7753 
0.7697 
0.7697 
0.7681 
0.7727 
0.7697 
0,7697 
0.7697 
0.7686 
0.7697 
0.7672 
0.7672 
0.7648 
0.7688 
0.7702 
0.7702 
0.7702 
0.7702 
0.7702 
0.7686 
0.7686 
0,7677 
0.7697 

Model 2 (nvar=: 18) 
nvar 

14 
14 
14 
17 
22 
70 
70 

70 
43 
17 
17 
17 
17 
23 
70 
70 

70 
42 
17 
17 
17 
17 
20 
70 
70 
70 
40 
18 
18 
18 
18 
22 
70 
70 
70 
46 
18 
18 
18 
18 
19 
68 
68 
70 
30 
18 
18 
18 
18 
20 
70 
70 
70 
43 

ModelErr 

0,0068 
0,0068 
0,0170 
0,0048 
0,0077 
0.0130 
0.0130 
0.0130 
0.0130 
0.0012 
0.0012 
0.0012 
0.0012 
0.0024 
0.0059 
0.0059 
0.005S 
0.0070 
0.0013 
0.0013 
0.0013 
0.0013 
0,0011 
0.0027 
0.0027 
0.0025 
0.0022 
0.0004 
0.0004 
0.0004 
0.0004 
0.0009 
0.0013 
0.0013 
0.0013 
0.0012 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
0.0007 
0.0007 
0.0007 
0.0006 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0005 
0.0005 
0.0005 
0.0005 

RMSE 

1,0563 
1,0563 
1,0762 
1,0635 
1,1264 
1,4311 
1,4311 
1,4311 
1,3027 
0.9894 
0.9894 
0.9894 
0.9894 
1.0123 
1.1577 
1.1577 
1.1656 
1.1128 
1.0011 
1.0011 
1.0011 
1.0011 
1.0090 
1.0767 
1.0767 
1.0787 
1.0443 
0.9885 
0,9885 
0,9885 
0,9885 
0,9955 
1.0221 
1.0221 
1.0221 
1.0119 
1.0018 
1.0018 
1.0018 
1.0018 
1.0026 
1.0245 
1.0245 
1.0240 
1.0113 
1.0014 
1.0014 
1.0014 
1.0014 
1.0024 
1.0159 
1.0159 
1.0159 
1.0095 

R^ 

0.9453 
0.9463 
0.9432 
0.9449 
0.9388 
0.9112 
0.9112 
0.9112 
0.9218 
0,9539 
0,9539 
0,9539 
0,9539 
0,9521 
0,9403 
0,9403 
0,9396 
0,9432 
0,9609 
0,9609 
0,9509 
0,9509 
0.9602 
0.9447 
0.9447 
0.9446 
0.9472 
0.9535 
0.9535 
0.9536 
0.9535 
0.9529 
0.9509 
0.9509 
0.9509 
0.9516 
0.9518 
0.9618 
0.9618 
0.9618 
0.9517 
0.9600 
0.9600 
0,9500 
0,9609 
0,9613 
0.9513 
0.9513 
0.9513 
0.9512 
0.9502 
0.9602 
0.9502 
0.9507 

Model 3 (nvar= 10) 
nvar 

10 
10 
11 
17 
20 
70 
70 

70 
30 
10 
10 
10 
13 
16 
70 
70 

70 
40 

9 
10 
10 
10 
19 
70 
70 
70 
37 
10 
10 
10 
10 
12 
70 
70 
70 
30 
10 
10 
10 
10 
10 
70 
70 
70 
29 
10 
10 
10 
10 
11 
70 
70 

70 
22 

ModelErr 

0.0027 
0.0027 
0.0050 
0.0108 
0.0120 
0.0145 
0.0145 
0.0143 
0.0119 
0.0008 
0.0008 
0.0008 
0.0035 
0.0049 
0.0062 
0.0062 
0.0062 
0.0056 
0.0022 
0.0006 
0.0006 
0.0006 
0.0030 
0.0026 
0.0025 
0.0025 
0.0028 
0.0002 
0.0002 
0.0002 
0.0002 
0.0005 
0.0011 
0.0011 
0.0011 
0.0011 
0.0006 
0,0006 
0,0006 
0,0006 
0,0006 
0,0008 
O.OOOS 

0.0008 
0.0012 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0005 
0.0006 
0.0004 
0.0004 

RMSE 

1.0245 
1.0245 
1.0476 
1,1242 
1,1624 
1,6098 
1,5098 
1,6126 
1,2276 
1,0453 
1,0453 
1,0463 
1,0722 
1,0875 
1,2322 
1,2322 
1,2322 
1,1686 
0.9945 
0.9857 
0.9857 
0.9857 
1.0025 
1.0746 
1.0746 
1.0746 
1.0266 
0.9899 
0,9899 
0,9899 
0,9899 
0.9907 
1.0287 
1.0287 
1.0287 
1.0066 
1.0055 
1.0066 
1.0056 
1.0066 
1.0066 
1.0318 
1.0318 
1.0318 
1.0180 
1.0207 
1,0207 
1,0207 
1,0207 
1,0211 
1,0349 
1.0349 
1.0343 
1.0240 

R-' 

0.9266 
0.9266 
0.9234 
0.9129 
0.9074 
0.8601 
0.8601 
0.8596 
0.8989 
0.9266 
0.9266 
0.9266 
0.9220 
0.9200 
0.9029 
0.9029 
0.9029 
0.9099 
0,9307 
0.9319 
0.9319 
0.9319 
0.9299 
0.9216 
0.9216 
0.9216 
0.9272 
0.9316 
0.9316 
0.9316 
0.9316 
0.9315 
0.9272 
0.9272 
0.9272 
0.9296 
0.9300 
0.9300 
0.9300 
0.9300 
0.9300 
0.9270 
0.9270 
0.9270 
0.9285 
0.9290 
0.9290 
0.9290 
0.9290 
0.9290 
0.9275 
0.9275 
0.9276 
0.9286 
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selection tasks. Given a noisy da ta set, the methods can rehably converge to a 
t rue model (if one exists) or to a reasonably parsimonious model. 

The fact that AIC, BIG, adji?̂  and F-test have overfitted the training da ta 
suggests that when comparing two models with different complexity, the increase 
in the penalty terms for model complexity is not sufficient compared to the 
decrease in the terms for goodness of fit. This prompted the doubt that the 
balancing mechanism of the methods might not be robust enough for automated 
model selection task. 
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Abstract. Available technology for mining data usually applies to cen-
trally stored data (i.e., homogeneous, and in one single repository and 
schema). The few extensions to mining algorithms for decentralized data 
have largely been for load balancing. In this paper, we examine mining 
decentralized data for the task of finding frequent itemsets. In contrast 
to current techniques where data is first joined to form a single table, 
we exploit the inter-table foreign key relationships to obtain decentral-
ized algorithms that execute concurrently on the separate tables, and 
thereafter, merge the results. In particular, for typical warehouse schema 
designs, our approeich adapts standard algorithms, and works efficiently. 
We provide analyses and empirical validation for important cases to ex-
hibit how our approach performs well. In doing so, we also compare two 
of our approaches in merging results from individual tables, and thereby, 
we exhibit certain memory vs I/O trade-offs that are inherent in merging 
of decentralized partial results. 

1 Introduction 

Data mining (DM) algorithms, a part of knowledge discovery in databases, are 
typically designed for centralized data (i.e., homogeneous data stored in one 
central repository, with a central administration, and in a single table). However, 
information may be dispersed among different tables, and in some cases, the 
tables may reside in different physical locations. Our research, as presented in 
this paper, describes and analyzes our DM algorithms for decentralized tables. 

DM itself is generally performed on data stored in data warehouses, and even 
so, the data may not be stored in a single table as is assumed by most available 
algorithms (e.g., see [3,14,9]). For instance, the star schema [12] used in data 
warehouses is organized into two groups: facts (the core data being analyzed) 
and dimensions (the attributes about the facts); the fact table is usually much 
larger than the dimension tables. If typical association rules (AR) algorithms 
(e.g., see [3]) were applied to data stored in a star schema, it would be necessary 
to compute first the join of the fact table with its dimension tables. Even though 

*  This work was initiated when the authors were visiting IBM T.J. Watson Research 
Center, and was supported partially by IBM Reseairch funds. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 49-61, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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the cost of a join is often overshadowed by that of running DM, a joined table 
has many more columns and rows (which normalization had been used to avoid), 
and this affects adversely the cost of the DM algorithms as well. 

We begin with a concrete example: star schema tables which represent a case 
of tables associated by foreign key relationships. Motivated by pragmatic consid-
erations stated above, we present an algorithm that adapts and extends available 
algorithms to work efficiently with such decentralized tables. We exploit the de-
centralization by executing the algorithms concurrently on the separate tables, 
and thereafter, we merge the results. This approach requires modifying available 
algorithms, and considering new performance factors. We present our analytical 
and empirical evaluation for particular cases to illustrate our performance gain. 

2 Background and Related Work 

We review the problem of discovering AR using relevant related work, and illus-
trate the problems in applying traditional techniques to decentralized data. 

2.1 Related Work 

The AR discovery problem may be described as follows. Given a set of items 
/ , and a set of records T (i.e., a table), where each record tj is composed of a 
subset ij  of the set of items /, the problem is to find associations among the 
items such that the presence of some items in a record will suggest the presence 
of other items in the same record. An AR, denoted by X => F, where X and 
Y are subsets of a set of items /, is said to have a confidence of c, c € [0,1], 
iff (100 * c)% of the records in the database which contain the items in X also 
contain the items in Y. The support for such a rule is defined to be the fraction 
of records in the table which contain the items in X U y . The problem is to find 
all rules that meet a user-specified minimum confidence and support. 

Discovering AR as introduced in [2], is improved in [3] by the Apriori algo-
rithm in terms of performance. The problem is decomposed into: (1) finding the 
large (i.e., frequent) itemsets (i.e., which meet a user-defined support threshold); 
and (2) generating the AR, based on the support counts found in step 1. The 
research in AR concentrates on the performance of the expensive first step (e.g., 
see [10,11,4,1]), as is the case in this paper. The Apriori algorithm performs 
the counting of itemsets in an iterative manner, by counting the itemsets that 
contain k items (fc-itemsets) at iteration k. In each iteration, a candidate set of 
frequent itemsets is constructed, and the table is scanned to count the number 
of occurrences of each candidate itemset. 

AR were initially studied in the context of market basket data (see [2]), and 
new types of AR have been considered as well (e.g., [14]). Other algorithms 
based on [3] have been presented (e.g., [10,11,4,1]) - but they all assume that 
the data is stored in one single table. Other work on distributing the Apriori 
algorithm (e.g., [5]) considers databases that are horizontally, but not vertically, 
partitioned. That is, one horizontally partitioned table is assumed, with the 
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partitions stored at different sites; eacfi site fias ttie same scfiema. A minor 
variation of tfie Apriori algorithm is run at the different sites, and the mined 
results from the different partitions are merged. However, the different sites have 
to synchronize after each pass, and the amount of data processed is essentially 
the same as in a sequential algorithm (other than for message exchanges) - i.e., 
only the load is shared. In contrast, we provide an approach that applies to 
vertically partitioned tables, and thereby, the cost of processing is reduced. 

2.2 Decentralized Tables 

We illustrate some problems in discovering AR for decentralized data as an 
example. The following is a schema from a banking environment. 

 Customer {acctif, name, balance, zipcode, age) 
 ATM{atm^, type, street, zipcode, limit) 
 ATM activity [xactif^, acctif, atmi^, amount) 

In Figure 1, we show a relevant projection of the tables,̂  assuming that the 
quantitative attributes (e.g., age and monetary amounts) are partitioned using 
an appropriate algorithm (e.g., see [14]). 

When accesses are limited to single tables, the traditional approaches to 
discovering AR would work well for finding associations such as: 

 < age : 20..29 >=^< balance : 1000..1999 > for table Customer 

 < type = in >=><  limit:  10000..19999 > for table ATM 

However, the same approaches will not work well to find: 

 < type — drive >=><  age : 20..29 > 
For rules involving more than one table, we would first need to join the tables 

(i.e., Customer tx ATM activity ixi ATM). The significant redundancy in such 
a joined table would degrade performance (e.g., the itemset < age : 30..39 > 
AND < area : x > occurs three times in the final table, and therefore, would 
need to be counted three times by the algorithm; and yet, it corresponds to just 
one entry in the customer table for primary key acct  ̂ = 05). 

3 A Decentralized Approach 

We suggest a two-phase counting strategy for the frequent itemset discovery: 

 Find frequent itemsets on individual tables separately; and then 
 Merge results from individual tables by using the foreign key relationships. 

To begin with, we use the example from Section 2 to illustrate our approach. 

The primeury key for the each table is underlined, and the repeat entries in 
ATM activity for acct# and atm# correspond to different a;oci#'s. 
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Customer Table 

acct# 

01 
02 
03 
04 
05 
06 

balance 

1000..1999 
1000..1999 
1000.. 1999 
2000..5000 
2000.. 5000 
1000.. 1999 

zipcode 

X 

z 

y 
y 
X 

z 

age 

20..29 
20..29 
20..29 
30..39 
30..39 
30..39 

ATM Table 

a tm# 

A 
B 
C 
D 
E 
F 

type 

drive 
out 
out 
in 
in 
in 

zipcode 

X 

y 
z 
X 

y 
z 

limi t 

0..9999 
0..9999 
0..9999 
10000..19999 
10000.. 19999 
10000.. 19999 

ATMactivity Table 

acct# 

01 
01 
02 
02 
02 
03 
03 
04 
04 
05 
05 
05 
06 
06 

a tm# 

A 
A 
A 
C 
C 
A 
B 
B 
E 
A 
A 
D 
C 
F 

amount 

15..25 
15..25 
15..25 
50..100 
50.. 100 
15..25 
15..25 
50.. 100 
500.. 1000 
15..25 
15..25 
50.. 100 
50.. 100 
500..1000 

Fig. 1. Relevant projection of the three tables. 

3.1 Illustrativ e Algorith m 

In the first phase, we count itemsets on the individual tables of Customer 
and ATM separately. The itemsets from each individual table should be fre-
quent with respect to the final joined table - e.g., in the example of Sec-
tion 2.2, if we consider support on the individual tables alone, the itemset 
< type : drive, zipcode : x > would have support of 0.167 for the table ATM, 
whereas for the joined table it should be 0.429. The reason for the different 
support values is due to the number of occurrences of the record atmjj  ̂ — A'm 
the ATMactivity table. By determining the number of occurrences of a given 
record as it would be in the final joined table, (which, in this case, happens to be 
the number of occurrences in the ATMactivity table), we can modify the Apri-
ori algorithm (for instance) in order that, when counting itemsets, this correct 
number of occurrences is taken into account. 

We also need to count itemsets whose items span more than one table. Now, 
if an itemset is frequent, all of its subsets are also frequent [3]. Therefore, all 
frequent itemset's subsets, such that all items come from any one table, are 
frequent, and these subsets would have been found frequent when our algorithm 
ran at that particular table. As a result, for cross table frequent itemsets in 
our example, we only need to consider itemsets that are a concatenation of two 
frequent itemsets: one from table Customer and one from table ATM? 

Let table T = Customer t< ATMactivity ixi ATM. Let an itemset from 
table T be 7T = Icustomer U IATM, where Icustomer and IATM contain items 

^ For brevity, we disregard amount in the ATMactivity table; [6] describes handling 
this. 
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that belong to tables Customer and ATM, respectively. In order for an itemset 
IT to be present in table T, a record rcustomer (that contained Icustomer) from 
table Customer must be present together in table T with a record TATM (that 
contained IATM) from table ATM. That is, table ATM activity must have an 
entry corresponding to  To count IT, we use 
a 2-dimensional array where the elements in each dimension correspond to the 
itemsets found frequent in each of the tables Customer and ATM. Let Icustomer 
and IATM be the sets of frequent itemsets present in tables Customer and ATM, 
respectively. By examining each entry in the ATMactivity table, we determine 
the records in the two tables to be joined to form a record in table T. By 
considering each pair of frequent itemsets, one from Icustomer and one from 
IATM, we determine which itemsets are present in table T for a corresponding 
entry in the ATMactivity table. Therefore, by using the 2-dimensional array 
and one scan of table ATMactivity, we count all frequent itemsets in table T. 

3.2 Algorith m for  Star  Schema 

Let a primary table be a relational table with one primary key and no foreign 
keys; the table may have other fields that are categorical, numerical or boolean. 
Also, let a relationship table be a relational table which contains foreign keys to 
other primary tables. Typically, primary tables refer to entities, and relationship 
tables correspond to relationships in an ER diagram ([13]). 

We present a decentralized version of the Apriori algorithm, as an exam-
ple case, for star schemas in which there are n primary tables (the dimension 
tables): T i , r2,  , r „ ; and one central relationship table (the fact table): Tin-
Each Tt{idt,ati,  ,atmt) has idt as primary key, and Ti„(idi,id2 ,  ,idn) has 
idt as foreign key to table Tj. Our algorithm finds frequent itemsets on table 
T = Tin ixi Ti M Tj DX  M r„  as follows. 

Phase I : Count itemsets on primary tables. 
1. Compute a projection of the relationship table: Access relationship table 

Tin to count the number of occurrences of each value for the foreign keys idt. 
Store the number of occurrences in a vector Vt for each table Tt. Note: the number 
of elements in Vt equals the number of rows in Tt. 

2. Counting frequent itemsets on individual primary tables: Count itemsets 
using the Apriori algorithm as in [3] on the primary tables, but modified as 
follows: in primary table Tt, when incrementing the support of an itemset present 
in row i by 1, increment the value of the support by the number of occurrences 
of the value of idt for row i in table Ti„  (i.e., the ith element of Vt). We refer 
to this step of our algorithm as the "modified Apriori" in the remainder of this 
paper. In this manner, we find the n sets of frequent itemsets, It from table Tt; 
the itemsets are of length 1 up to m̂  (the number of attributes in table Tt). 

Phase I I : Count itemsets across primary tables using the relationship table. 
Generate candidates from the n primary tables using an n-dimensional count 
array, where dimension t corresponds to elements of the set k together with the 
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empty set.̂  We compute the joined table T without materializing it, processing 
each row as it is formed, thereby avoiding storage costs for T. Now, for each row r 
in T, consider the attributes in TTT, {r)  that come from each table Tj, and identify 
the subset of itemsets from It contained in -KTI {I')I  say it- After computing all such 
it, t = \..n, increment by one each position in the n-dimensional array whenever 
an element IT is formed by concatenating an element of i i , an element of 12, , 
and an element of i„  (i.e., i i x 12 x  x i„) . That is. IT exemplifies an itemset 
contained in table T, such that its items belong to more than one primary table. 
After table T is processed in this manner, the n-dimensional array contains the 
support for all the candidate itemsets, and we can use it to determine which 
itemsets are indeed frequent. 

Our algorithm, running on decentralized tables, finds the same frequent item-
sets that the Apriori algorithm does running on the joined table. Omitting a 
proof here due to space constraints, we indicate that it is a formalization of the 
arguments presented in Section 3.1. Note that though our approach uses the 
Apriori algorithm to perform counting in the primary tables, most other cen-
tralized algorithms could be modified to use the occurrence vector vt- We could 
choose faster centralized algorithms (e.g., [10,11,4,1,7]), and thereafter, merge 
the partial results by using our techniques. Also, although we illustrated decen-
tralized DM for the case of the star schema, our basic approach may be extended 
to more general designs, and [8] provides an approach to do so. An immediate 
advantage of our two-phase approach is that table T is computed and processed 
only once, and therefore, there is no need to store it. This comes at the expense 
of possibly generating more cross-table itemsets as compajed to Apriori, and we 
examine this issue below. 

3.3 Re-examining the Mergin g 

A major consideration in our decentralized algorithms is in the merging phase; 
the counting of itemsets at the individual tables is relatively simple. Our algo-
rithm of Section 3.2, which we call the I / O saving approach, has I/O costs 
saved using multiple scans on smaller tables (as compared to scans over the 
larger table T). Also, we save on processing time since a given frequent itemset 
consisting of items from only one primary table will  be counted fewer times than 
if we counted on the table T (see Section 4). However, for itemsets with items 
from more than one table, there is no pruning from one pass to the next because 
all itemsets are counted in one scan during the merge. Therefore, we may end-up 
considering some additional candidates (which we call "false candidates") than 
if we were to perform pruning at every pass. 

If the sets It are too large, our approach may require considerable memory 
space; however, we do save on some costs since all the itemsets belonging to an 
individual table are already considered at the merge point, and as a result, we 
effectively prune away many potential cross-table itemsets. In any case, if the n-
dimensional array does not fit  in memory, we may resort to a Memory saving 

^ The empty set allows for candidates from more than one, but less than n, tables. 
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merge algorithm for Phase II . This different approach does build the join of the 
n + 1 tables, creating table T - but only at the merge phase. The counting step 
of the original Apriori algorithm is run on table T, but generates only the cross 
table candidate itemsets. The pruning step uses the frequent itemsets Zt, as well 
as the cross table itemsets generated. In the Memory saving merge the I/O costs 
could be higher since we may have to scan table T several times. However, we 
avoid counting false candidates. 

There is potential to use a hybrid I/O and Memory saving merge approach 
as follows. We can build table T, and perform the Memory saving approach by 
scanning it a few times until the remaining subsets of Zt fit  in memory. Thereafter, 
a switch may be made to the I/O saving approach. A limited version of this 
algorithm proved to work well in experiments (see Section 5). Alternatively, 
before merging all the results from Phase I, we can process the primary tables 
pairwise (e.g., T\ cxi Ti„  cxi T2), using the I/O saving merge by considering 
the sets li  and I2 as candidates. In this way, we increase the pruning when 
considering, say, Ti, T2 and T3, since we know the false candidates that involve 
attributes of T\ and T2 earlier. Also, we can consider table T\ M Ti„  txi T2 in 
place of Ti and T2, consequently reducing the number of dimensions. Here, we 
would not need to materialize table T, but the number of joins that we would 
compute (first pair-wise, then all tables) are more. 

Another aspect of the merging process is the handling of categorical at-
tributes in the relationship table; [6] offers a discussion. 

4 A Cost Analysis 

For the case of the star schema, we compare the costs of running the original 
Apriori algorithm on the joined table with the costs of running the algorithms 
that we propose. We consider both options for Phase II (i.e., the I /O saving and 
Memory saving approaches); and the processing costs considered are for I/O and 
computing, and we examine each after providing some nomenclature. For details 
of the derivations, please see [6]. 

4.1 Nomenclature 

Assume n primary tables Tt,t = l..n and a relationship table Ti„  as described 
in Section 3.2; and assume that the primary tables are ordered in their pri-
mary keys. Furthermore, the tables T( have r< records, and table Ti„  has ri „ 
records. We assume that rt <C r i„ , Vi. To run the Apriori frequent itemset count-
ing algorithm, the join of the n + \ tables, T = Ti„  1X3 Ti cxi 72 cxi . .. ixi 
T„ , is materialized, and T has ri „  records with attributes (irfi,aii ,  ,Gimi, 
1 ^ 2 , 0 2 1,  , a 2 m 2i  I idn^anl,  ,a.nm„)-

Let, k be the length of the longest candidate itemset on T; \cj \ be the number 
of candidates of length j on T; kt be the length of the longest candidate itemset 
on Tt; kin be the length of the longest candidate itemset on T, such that the 
items belong to more than one primary table (fci„  < fc); |c '| be the number of 
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candidates of length j where all the items belong to table Tt, t = l..n; |c]"| be 
the number of candidates of length j where the items belong to more than one 
primary table; and |Zj| be the number of frequent itemsets of length j where all 
the items belong to table Tt. 

4.2 I / O Costs 

I / O costs axe directly related to the table size and the number of scans; the cost 
of accessing from disk a single atomic value in a table is the unit for I/O costs. 

1. Aprior i on table T: 

where the first term is to compute the join {cj) of the tables {cj represents the 
I/ O cost of whichever join algorithm is used), the second term is for writing 
out the computed join, and the last term is for table scans when the Apriori 
algorithm is run {k scans of the table). 

2. Decentralized wit h I / O saving merge: 

Ti*rin  + ^"=1 rt + X;"=i kt{mt + l)rt + cj 

where the first two terms correspond to step 1 of Phase I: first counting oc-
currences, and then storing the occurrences to be used in the next step. The 
third term corresponds to step 2 of Phase I (i.e., running the modified Apriori 
algorithm on the primary tables), and the last term corresponds to Phase II : 
computing the join, but without saving the result of the join. 

3. Decentralized wit h Memory saving merge: 

n*rin+  E"=i ^t + E r=i '^ti'^t + l ) n + cj+ rin I]"=i(mt ) + kin * r i „  E"=i('Tit ) 

when compared to I/O saving, we add the costs of saving the joined table and 
scanning fci„  times the table T. 

For the I/O saving approach, we see that the dominant term is the scanning of 
the primary tables {kt times for each table Tt), for the Memory saving approach, 
the dominant term is scanning kin times the table T, and for the Apriori on 
table T approach, the dominant term is k scans of table T. Given that kt < k, 
and rt <C ri„,  we see that our first approach offers I /O cost savings as compared 
to first computing the join and then running the Apriori algorithm. For the 
Memory saving approach, savings in I/O costs are not assured; they depend on 
how kin compares to k. In practice, ifci„  could be much smaller than k since 
related items are often clustered. 

4.3 Compute Costs 

For simplicity, we only discuss the dominant CPU cost: given a row and a set 
of candidate itemsets, determining the candidates present in the row (called the 
subset function). See [6] for a more complete cost model. 
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For every scan, the subset function is executed for each row of the table. It 
is difficult to assess the cost for this function; generally, the cost increases with 
the length of the row and the number of candidates. With f{p,q) as the cost 
of the subset function for a row of length p and a candidate set of size q, CPU 
compute costs are: 

1. Apriori on table T: 

E j = l ^ l n * / ( m , | C j | ) 

for each iteration j , with m as the length of a row in T. 

2. Decentral ized wi th I / O saving merge: 

Er=i E , t i n * f{mu \c)\) + E ; = I nn * f{mu \l]\) 

where the first term arises from the modified Apriori at the primary tables, and 
the second term from Phase II . 

3. Decentral ized wi th Memory saving merge: 

Er=i E,ti n * f{mu \c]\) + E fc n„  * /(m, |c]"|) 

where m = E"=i ^ t ^̂ ^̂  kj" l = |cj| — E"=i kil - ^^^ ^^^  ̂ term is as above, and 
the second term is for counting cross table itemsets. 

The initial terms in our I/O saving approach are much smaller than cor-
responding ones for Apriori on table T since mt < m, |c*| < \cj\, kt < k and 
i^t -C T'ln, VI For the terms in the second summation, it is the case that \lj | < \cj\, 
and in many cases, \lj\  <C \cj\. In fact, the multiplicand could be less than r i „ 
depending on the statistical distribution of the data values (e.g., in case two 
entries in Ti„  with the same value for idi happen to be close enough so that the 
subset function does not need to be recomputed) - which cannot be exploited 
by the Apriori on table T. For our Memory saving merge, we notice that the 
only term multiplied by ri „  has a considerably smaller set of candidates in our 
approach than in the original Apriori. 

5 Empirical Validation 

We restricted our attention to the case with three tables: two primary tables 
and one relationship table; our analysis indicates that our approach is likely to 
perform better with more involved database designs where the final joined table 
is much larger than the sum of the sizes of the decentralized tables. 

5.1 Exper imental Setup 

We ran experiments on synthetic data using the data generator in [3]. Since our 
study is for decentralized data, and [3] produces centralized data (i.e., one table), 
we used the generator for the primary tables Ti and T2 with parameters: N, the 
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number of items; \D\, the number of records; | r |, the average length of records; 
and |7| the average length of the maximal potentially frequent itemsets. 

To generate T12, we used our own generator with parameters: \D\, the number 
of records in the final table T = Ti cxi T12 ixi T2; and R, the average number 
of repetitions of entries in T12 (note: ri2 < r). Each line generated for table 
T12 has randomly picked records from tables Ti and T2, and the number of 
repetitions selected from a Poisson distribution (with mean = R). The join of 
the three tables, T, is generated in order to compare with the original Apriori. 
After computing the join, we determined the average length of records for table 
T. The cost of the join was not included in the results, since all the algorithms 
have to compute the join at some point (without necessarily materializing it). 

We implemented the I/O saving, the Memory saving, and limited Hybrid (in 
which we switch to the I/O saving approach after the first pass) approaches. Our 
experiments used a 200 MHz Pentium Pro machine with a 256 Mbytes RAM, 
running Linux. Among our extensive evaluations, two representative experiments 
have their parameters listed in Figure 2. 

Parameters for testing 

Test 

Test 1 
Test 2 

Ti 

N 

0.5K 
0.5K 

PI 
IK 

O.IM 

\T\ 

10 
6 

| /| 
4 
4 

T2 
N 

0.55K 
0.55K 

\o\ 
1.2K 
O.IM 

\T\ 

10 
7 

\IL 
- 4 

4 

T12 

1̂1 
O.IM 
lOM 

R 

50 
300 

T 
\T\ 

20 
13 

Fig. 2. Parameters for testing. 

We used various support values with the hash tree for the Apriori (see [3]) 
always fitting in memory. If the hash tree were to not fit  in memory, our approach 
would be even better, given that at each pass, the number of candidates that 
our approach examines is smaller than the original Apriori. 

5.2 Experimental Findings 

We present our results as follows: first, we plot the time taken by the Apriori 
algorithm (i.e., our base case) when evaluated on table T, and second, the time 
taken by our approach divided by the time taken by the base case approach, 
referred to as our "normalized" results; results are presented in Figures 3 and 4. 

For Test 1, the files were small (Table T with only 100000 records), and our 
goal was to verify whether our approach could provide some CPU savings, con-
sidering that the entire table fit  in main memory. We verified that our approach 
performed better, with the exception of the I/O saving algorithm. The reason 
for the limited performance of the I/O saving approach is that, as explained 
in Section 3.2, when there are many candidates from the primary tables, the 
number of false candidates grows significantly. For lower values of support, the 
savings provided are not so significant, but our algorithm still performs compa-
rable to Apriori. For Test 2, the files were larger, and the savings accrued due to 
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Fig. 3. Results for Test 1. 
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Fig. 4. Results for Test 2. 

fewer scans of the big table T. We see that the I/O saving algorithm performs 
well for ail support values, an advantage with our approach since the I/O saving 
algorithm need never materiahze the computed join. 

Our algorithms were run serially; first we ran modified Apriori on table Ti, 
then we ran modified Apriori on table T2, and then Phase II of our algorithm on 
table T to compute frequent itemsets across tables. Therefore, the times shown 
account for the running time on the primary tables as well. If the processing 
were concurrently on the original tables, the make-span of the running times for 
our approach would be even lower due to parallelism. 

5.3 Comparisons wit h Cost Analysis 

To compare the empirical results with our cost model, our code kept track of the 
subset function costs; a counter was incremented each time a node in the hash 
tree was accessed, and each time an itemset contained in a leaf was checked 
against a record. Similarly, we monitored the actual time spent in I/O. The 
results obtained in comparing with our modeling, showed that our cost analysis 
is reasonably accurate; see [6] for details. 
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6 Conclusions 

In this paper, we examined the issues in mining of data stored in decentralized 
tables. We described counting of frequent itemsets (used for association rules 
discovery), without requiring to materialize a join of the decentralized tables. As 
a basic case, we applied our approach to a star schema in which several smaller 
dimension tables are associated by foreign keys to a central fact table, and we 
presented efficient algorithms that adapts some available approaches. Previous 
approaches required the separate tables to be joined to form a single table before 
the data could be mined. In contrast, we exploited foreign key relationships 
to develop decentralized algorithms that execute concurrently on the separate 
tables, and thereafter, we merge the results. We examined the important issues in 
merging partial results, the compute and memory requirements, and the trade-
offs that arise. Furthermore, we provided analyses to assess the performance of 
our techniques, and we presented empirical validation. Our research indicates 
the issues and feasibility of mining of decentralized datasets which will  become 
increasingly important as focus shifts toward scaling-up to real-life datasets. 
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Abstract. Frequent set discovery from binary data is an important 
problem in data mining. It concerns the discovery of a concise repre-
sentation of large tables from which descriptive rules can be derived, 
e.g., the popular association rules. Our work concerns the study of two 
representations, namely frequent sets and frequent closures. N. Pasquier 
and colleagues designed the close algorithm that provides frequent sets 
via the discovery of frequent closures. When one mines highly corre-
lated data, apriori-based algorithms clearly fail while close remains 
tractable. We discuss our implementation of close and the experimental 
evidence we got from two real-life binary data mining processes. Then, 
we introduce the concept of almost-closure (generation of every frequent 
set from frequent almost-closures remains possible but with a bounded 
error on frequency). To the best of our knowledge, this is a new concept 
and, here again, we provide some experimental evidence of its add-value. 

1 Context and Motivations 

One of the obvious hot topics of data mining research in the last five years has 
been frequent set discovery from binary data. It concerns the discovery of set 
of attributes from large binary tables such that these attributes are true within 
a same line often enough. It is then easy to derive rules that describe the data 
e.g., the popular association rules [2] though the interest of frequent sets goes 
further [8]. In this paper, we discuss the computation and the use of frequent 
sets considered as an interesting descriptive representation of binary table for 
typical rule mining processes. 

When looking for a generic statement, it is possible to formulate a data 
mining task as a query over an intensionally defined collection of patterns [4]. 
Given a schema R for a database, let ( P R, £, V) denote the pattern domain 
where VYL is a language of patterns, £ is an evaluation function that defines 
pattern semantics, and V is a set of result values. Given r, an instance of R, 8 
maps each 6 € PR to an element of V. Then, a mining task is the computation of 
the subset of T'R that fulfi l interestingness requirements. This can be formalized 
as the computation of T/i(r, P R, q) = [6 & VR \ q{T, 9) is true}  where predicate q 
indicates whether a sentence is considered interesting. Typically, this predicate is 

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 62-73, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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A 
1 
1 
1 
0 
1 
0 

B 
1 
0 
1 
1 
1 
0 

c 
1 
1 
1 
1 
1 
0 

D 
1 
0 
1 
0 
0 
0 

E 
1 
0 
0 
0 
0 
1 

£.support(C, r) = 5/6 = 0.83 
£.support(AC, r) = 4/6 = 0.67 
f .support(yl => C, r) = 0.67 
f .confidence(yl =i> C, r) = 4/4 = 1 
f .confidence(C =>  A, r) = 4/5 = 0.8 

Fig. 1. A binary dataset r and the behavior of some patterns 

a conjunction of constraints that involves the evaluation function. This approach 
has been more or less explicitely used for various data mining tasks [13]. 

Example 1. Given a schema R = { J 4 I , . .. ,.A„}  of attributes with domain {0,1} 
and a relation r over R, the support of a set X C R, ^.support(X,r), denotes the 
fraction of rows of r that have a 1 in each column of X. FVequent set discovery 
in r consists in computing every subset from R such that its support is higher 
than a given threshold a. Here, PR is 2^, V is [0,1] and the predicate q is 
.S'.support(,̂ r) > a. For instance, in Figure 1, supports of {C}  and {A,C} in a 
dataset are given. Notice that we often use a string notation (e.g., AC) to denote 
a set of attributes. D 

An explicit interestingness evaluation of all the patterns of PR in a dataset is not 
tractable in general. Though an exponential search space is concerned, frequent 
sets can be computed in real-life large datasets thanks to the support threshold 
on one hand and safe pruning criteria that drastically reduces the search space 
on the other hand (e.g., the so-called apriori trick [2]). However, there is still an 
active research on algorithms, not only for the frequent set discovery task when 
apriori-based algorithms fail (e.g., in the case of highly correlated data) but 
also for new related mining tasks, e.g., the discovery of maximal (long) frequent 
sets only [3]. 

Example 2. Association rules have been extensively studied since their intro-
duction in [1]. Given the schema R={y l i , . . . ,yl„} , an association rule is an 
expression X =̂  y where X C R and Y € R \ X . PR is the (finite) collection 
of such sentences. The typical "behavior" of these rules in an instance r over 
R is evaluated by means of two interestingness measures called "support" or 
"confidence". The support of a rule X =^Y is equal to the support oi XUY (as 
defined in Example 1) while its confidence is equal to its support divided by the 
support of X . V is [0,1] x [0,1] and the evaluation function provides the support 
(5.support) and the confidence (£^.confidence). The "classical" association rule 
mining task concerns the discovery of rules whose support and confidence are 
greater or equal to user-given thresholds, resp., a and </>. The predicate q is de-
fined as £.support( ,̂ v) > a A £.confidence(0, r) > (j>.  For example, with a=0.b 
and (^=0.9, A =̂  C is discovered in the data of Figure 1 while C =^ A'ls not.

In the case of association rules, left-hand and right-hand sides denote conjunc-
tions of properties. We can consider the case of generalized rules where other 
boolean operators, like negation and disjunction, are allowed. 
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Example 3. The rule A/\-^E => C is an example of a generalized rule which might 
be extracted from the data in Figure 1. Its support is 0.5 and its confidence is 
1. Mining such rules is very complex and we do not know any efficient strategy 
to explore the search space for generalized rules. D 

As we are interested in very large datasets, an important issue is whether the 
explicit interestingness evaluation of a collection of patterns remains tractable. 
The answer can come from the computation of concise representations as defined 
in [8]. Given a database schema R, a dataset r and a language of patterns V-R., 
a concise representation for r and 'PR, is a structure that makes possible to 
answer queries of the form "How many times p € T'R occur in r" approximately 
correctly and more efficiently than by looking at r itself. By the way, some concise 
representations might enable to provide exact answers. 

This paper deals with two related concise representations of binary data, 
namely frequent sets and frequent closures. Not only the extraction of these rep-
resentations is discussed but we also point out their specific add-value when con-
sidered as concise representations for rule mining. Beside well-studied ap r i o r i-
based algorithms, we consider the c lose algorithm that provides frequent clo-
sures [10]. We implemented it and made experiments over real data. Furthermore, 
we propose the new concept of almost-do sure and sketch the min-ex algorithm 
to mine it. The main idea here is to accept a small incertitude on set frequency 
since, at that cost, more useful mining tasks become tractable. 

2 Frequent Sets As a Concise Representat ion 
of Binciry Data 

At first, we adapt the formal definition of [8] to the kind of concise representation 
we need. Formally, if an evaluation function Q, a member of 0 (the class of 
evaluation functions), is an application from a class of structures 5={sj | i € / } 
into the interval [0,1], an e-adequate representation for 5 with respect to O is 
a class of structures W={r i ] i S / }  and an alternative evaluation function m: 
0 xW -> [0,1] such that for all Q G ©andsj € 5 we have: ] Q{si)-m{Q,ri) \< e. 
I denotes a finite (or infinite) index set of S. 

Example 4- Let us illustrate the definition on classical concepts from program-
ming languages. Assume <S is a class, e.g. float, Sj is an instance of S, e.g. 0.02, 
and 0 is the set of proper functions on that class, e.g. {sin, cos}. A concise rep-
resentation can be the couple {H,m), Ti being another class, e.g. short, and m 
an alternative way to evaluate Q, e.g. using a table of values of sin and cos for all 
angles from {0, 1, ..., 359}. Now, there is an alternative way to compute sin{x) 
and cos{x). Instead of Si=0.02, we store ri—round{0.02 x 360/27r) mod 360, i.e., 
1. When the value of sin(0.02) is needed, we can use Tn{sin, 1) that returns the 
value stored in the table associated to sin. Clearly, the result is approximate, 
but the error is bound and the result is known at a much lower cost.

If the functions from 0 share a lot of intermediate results, and the number of 
evaluations justifies it, a concise representation can be made of the intermediate 
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results from which all functions from Q can be evaluated. Such a concise rep-
resentation avoids going back to the data. The alternative data representation 
memory requirement might be smaller as well. 

Let us now consider the class S of binary relational schema over the set of 
attributes R. Instances Si £ S are relational tables. A query Q £ 0 over an 
instance Si of S, denoted Q{si), is a function whose result is to be found with 
an alternative (e-adequate) representation. H denotes the alternative class of 
structures and the counterpart of evaluations, denoted by m, must be a mapping 
from 0 X H into [0,1]. The error due to the new representation r, of Si (thus 
compared to the result of Q{si) on the original structure) must be at most e for 
any instance of Sj. 

Example 5. Let r denote a binary relation over R = { A i , . . . , J4„}  and consider 
the set 0={5.support(X, r) | X C R} , where f .support(X, r) is the function 
that returns the support of X in r (see Example 1). Given a frequency threshold 
a, let FSa denote the collection of all frequent sets with their supports. Let 
AltSup{X, FS^) denote the support of a frequent set X. FSa and the function 
m{£.suppoTt(X,r),FSty) = AltSup{X,FS^) for X e FS„, 0 elsewhere, is a 
(7-adequate representation for O over the binary relations defined on R. D 

Let us discuss the use of FS  ̂ as a concise representation for the rule mining 
task we introduced in Example 2. The support and the confidence oi X =>  Y 
are exactly known if the support of the rule is at least a, because the first 
equals to AltSup{X U Y, FS^) (since X UY € FS„) and the second equals to 
AltSup{XuY,FSa)/AltSup{X,FS<,) (since X e FS^, too). If it is not the case 
(f .support(X =̂  F, r) < cr), the support is bounded by [0, <T]. If moreover the 
left-hand side (X) of the rule is frequent, we can bound the confidence of the rule 
by [0, a/AltSup{X,FS„)]. Otherwise, the confidence can be any number from 
[0, 1]). FS(r turns to be a a-adequate representation for rule support evaluation 
and a 0.5-adequate representation for rule confidence evaluation. 0.5-adequacy 
for confidence is clearly insufficient for most of the applications. But if we are 
interested only in frequent rules (support > cr), we get a 0-adequate representa-
tion (so an equivalent representation) for both, the support and the confidence 
evaluation functions. It explains the effective strategy for extracting all the po-
tentially interesting association rules (w.r.t. frequency and confidence thresholds) 
from FScr'- for each X 6 FS  ̂ and for each F c X, the rule X \Y =^ Y is kept 
iff it satisfies the minimum confidence criterion. 

Generalized rules (see Example 3) can be evaluated using FS,^, too. The 
problem is that the collection FS„ might not provide some of the needed sup-
ports for the computation of rule support and confidence even if the support of 
the rule is above the support threshold. 

Example 6. Assume we want to compute the support and the confidence of the 
rule AA-IE => D. Applying well-known transformations, we can write the equa-
tions: f .support(A A -lE =̂  D,r)=  f .support(j4D,r) — f .support(AD£ ,̂ r) and 
£.confidence(^A-i£ => £),r) = <f.support(AA-'E  ̂ D,T) / (£".support(A, r) -
£.s\xppovt{AE, r)). These measures can be computed exactly only if A, AD, AE 
and ADE are frequent sets.
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If we consider several negations and disjunctions, the number of terms will  in-
crease and the need for the support of infrequent sets will increase too. Since 
the computation of the support of all sets is clearly untractable, infrequent con-
juncts will give rise to an incertitude [8]. However, this might be acceptable for 
practical applications. It becomes clear that the adequacy of frequent sets as a 
concise representation depends on how frequent are the patterns of interest, i.e., 
the more a pattern is frequent, the less an incertitude wil l aSect the result. 

3 Computing Frequent Sets and Frequent Closures 

The ap r i o ri algorithm is defined in [2] and we assume that the reader is familiar 
with it. It is a levelwise method based on the itemset lattice (i.e., the sets of at-
tributes ordered by set inclusion). The algorithm searches in the lattice starting 
from singletons and identifies level by level larger frequent sets until the maximal 
frequent sets are found, i.e., the collection of sets that are frequent while none of 
their supersets is frequent. This collection is denoted by Bd'^{FS,j) and is called 
the positive border of FS  ̂ [13]. A safe pruning strategy (supersets of infrequent 
sets can not be frequent) has been shown to be the very efficient for the com-
putation of FSa in many real-life datasets. One of the identified drawbacks of 
apriori-based algorithms is their untractability for highly correlated data min-
ing. Data are correlated when the truth value of an attribute or a set of attributes 
determine the truth value of another one (in other terms, association rules with 
high confidence hold in it). The problem with correlated data originates from 
the fact that each rule with high confidence pushes the positive border back by 
one level for a significant part of the itemset lattice (when a does not change). 
Highly correlated data contain several such rules, thus pushing back the positive 
border by several levels. Consequently, the extraction slows down drastically or 
can even turn to be untractable. An algorithm that would avoid counting sup-
port for a great part of frequent sets would accelerate the process. This is the 
assumption of useful algorithms like max-miner [3] that provides Bd'^{FSa) but 
not FSa- We will consider hereafter an algorithm that avoids counting support 
for many frequent sets though it provides -FS'cr, i.e., every frequent set and its 
support. 

The experiment summarized in Table 1 emphasizes the influence of high 
correlation of data. We provide the output of the frequent set discovery tool 
f reddie that implements an ap r i o ri algorithm. The left column corresponds to 
a real dataset from ANPE ,̂ the right one corresponds to census data (c20dl0k) 
preprocessed at the University of Stanford .̂ We kept in both cases the first 
10000 objects and for each object, their 17 first variables (each variable might 
be encoded in a number of binary attributes). In each column of Table 1, the first 
information provides the iteration counter (at level k, the level k of the itemset 

^ ANPE is the French national unemployment agency: datalOK contains data about 
unemployed people in december 1998. 

^ ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip. 
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Table 1. Mining frequent sets using f reddie (apriori) 

Inpu t  i il e : datalO K 

Frequenc y threshol d 0.0 5 

Candidat e Frequen t  Tim e 

set s 

Iter l  : 

Iter 2 : 

Iter s : 

Iter 4 : 

Iter s : 

Iter s : 

Iter 7 : 

Iter s : 

Iter 9 : 

Iterl O 

Iterl l 

Iterl 2 

Tota l  : 

214 
2080 

2991 

5738 

7203 

6359 

3733 

1395 

304 
:  3 2 

:  1 

set s 

65 
602 

2347 

4935 

6623 

5957 

3558 

1359 

302 
32 

1 
:  N o more . 

3483 6 2578 1 

(s ) 
0.1 4 

18.5 8 

78.7 6 

223.9 5 

367.8 6 

391.7 9 

257.8 8 

105.2 0 

23.1 3 

2.7 0 

0.4 8 

1470.4 7 

Inpu t  fil e :  basel7.tx t 

Frequenc y threshol d : 

Candidat e 

set s 

Iter l  : 

Iter 2 : 

Iter 3 : 

Iter 4 : 

Iter s : 

Iter 6 : 

Iter 7 : 

Iter 8 : 

Iter 9 : 

Iterl O 

Iterl l 

Iterl 2 

Iterl 3 

Iterl 4 

Tota l  : 

317 
1275 

3075 

8101 

1545 4 

2072 0 

1997 3 

1385 9 

6811 

:  227 7 

:  47 9 

:  5 4 

:  2 

0.0 5 

Frequen t  Tim e 

set s 

51 
544 

2702 

7940 

1536 5 

2070 5 

1996 8 

1385 7 

6811 

2277 

479 
54 
2 

:  N o more . 

9708 0 9075 5 

(s ) 
0.1 5 

14.6 0 

92.1 2 

376.8 7 

965.4 1 

1564.6 3 

1777.4 5 

1429.2 1 

798.3 9 

292.6 8 

58.8 3 

5.8 9 

0.7 4 

7376.9 7 

lattice is processed). Then, we get the number of candidates, the number of 
frequent sets and finally the duration of the iteration (CPU time). 

The " independance analysis" of the data has shown that ANPE data are 
slightly correlated while census data are highly correlated. However, the average 
level of correlation in ANPE data is not low. Typical basket analysis data are 
much less correlated and would bring down the execution time to a few minutes 
(and the number of frequent sets would certainly be smaller for a = 0.05). 

The problem is clearly that a user might want to mine (highly) correlated 
data with rather low support thresholds while apriori-based algorithms become 
untractable (time, memory) in that cases. 

c lose is an algorithm that computes frequent closures in binary data [10]. A 
set X is a closure in r when there is no attribute in R \ .X' that is always true 
when attributes in X are true. In other words, for each property p not in X, 
there is a tuple in r that has all properties of X and does not have the property p. 
A closure is called a frequent closure when its support in the database is greater 
than a given threshold a. 

Example 7. In the data from Figure 1, BC is closed while BD is not closed. 
Indeed, the objects 1 and 3 (the only ones that verify B and D) verify A and C, 
as well. Furthermore, if <7=0.6, BC is a frequent closure in that data.

By reducing the number of candidates considered during the extraction (the 
lattice of closures is generally quite much smaller than the lattice of itemsets, see 
for instance Figure 2 on the left), c lose can be more efficient than ap r i o r i. It is 
straightforward to derive all the frequent sets and their supports from frequent 
closures. 
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BCD © 

CD © 

Fig. 2. Closed set lattice (left) and sub-lattice of itemset lattice w.r.t. generator D 
(right) for the data from Example 1 

We now sketch the c lose algorithm and introduce our implementation close2. 
Formal definitions and proofs of properties about c lose are in [10]. Mining clo-
sures as a formal basis for association rule mining has also been suggested in 
[12] though no algorithm was proposed in that paper. 

Let FCa denote the collection of all frequent closures and their supports. The 
positive border of FCa, Bd^{FC„), is the set containing all frequent closures 
for which no superset of each of them is in FC„.  It has been proven that, for a 
given dataset, Bd+{FCa) = Bd+{FS<r). 

There are two properties of the itemset lattice on which substantial opti-
misations can rely. First, the supports of a set and of its closure are the same 
(see the right part of Figure 2 for an example derived from Example 1). Thus, 
once identified the closure of a set to be different from this set, we can exclude 
the closure and all intermediate sets from the support counting procedure since 
they all have the same support. The sets that go through the support counting 
procedure are called generators. In Figure 2 on the right, it is emphasized that 
counting the support of generator D, whose closure is ABCD, enables to derive 
the support for the whole sub-lattice. Second, if the closure oi X is X U C, the 
closure of X U y is a superset oi XUYUC. These properties are used as a base 
of a safe pruning strategy integrated in c lose [10]. 

In our implementation close2, the extraction of frequent sets is performed 
in two steps. The first step extracts frequent closures from a binary relation. The 
extracted closures correspond to all generators. There may be some duplicates, 
in terms of closures, because different generators may have a same closure. The 
second step takes that collection of frequent closures, removes duplicates, stores 
FCa set and derives FSa- In Table 2, we compare the execution of close2 with 
f reddie on ANPE and census data. The given time is the average CPU time 
for 2 executions. For close2, the time of each step is given. The I/O overhead 
is provided as the number of scans on the data. We notice that the relative 
advantage of close2 over f reddie is much higher in case of highly correlated 
data. However, in both cases, the use of close2 is worthwhile. 
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Table 2. 

Dataset/cr 

ANPE/0.05 
census/0.05 
ANPE/0.1 
census/0.1 
ANPE/0.2 
census/0.2 

Comparison of freddi e 

freddi e (apriori ) 
Time (s) 

1463.9 
7377.6 
254.5 
2316.9 
108.4 
565.5 

FS„ 

25 781 
90 755 
6 370 
26 307 
1 516 
5 771 

DB scans 

11 
13 
10 
12 
9 
11 

(aprior i 1 and close2 

close2 
Time (s) 

69.2/6.2 
61.7/25.8 
25.5/1.1 
34.6/6.0 
11.8/0.2 
18.0/1.1 

FCa 

11 125 
10 513 
2 798 
4 041 
638 

1 064 

DB scans 

9 
9 
8 
9 
7 
9 

As it is possible to generate FS  ̂ from the corresponding FC^ and ||F5ff|| > 
||FC<j||, FCa can be considered as a concise representation of the binary relation 
which is more compact than FSa, without any loss of information. Beside effi-
ciency, notice that the postprocessing of frequent closures to get rules can also 
give rise to a faster computation of useful rules. A first study in that direction 
concerns the computation of non redundant rules [11]. 

4 A New Concise Representat ion: Mining 
Almost-Closures 

This section concerns the concept of almost-closure in binary data. To the best 
of to our knowledge, this is an original concept. Details about the formalization 
and the algorithm are available in [6,5]. 

A fundamental property of set lattices which is used in c lose, is that the 
same support of the sub-lattice's bottom and top implies the same support for 
all sets of that sub-lattice. The more the data is correlated (many association 
rules with confidence 1), the more the collection of frequent closures is compact 
compared to the collection of frequent sets. We decided to relax the constraint 
equality of supports, which seems to be a very exigent one, with an "almost-
equality" constraint. The new algorithm, called min-ex, does not require any 
association rule with confidence 1 to be present in the mined data. Instead, it 
can take advantage of a correlation even if it is approximate (the confidence of 
association rules holding in the data should be however close to 1). These situa-
tions might correspond to exceptions in regular behaviours and/or to erroneous 
tuples that survived preprocessing steps. We expect that, in case of real-life data 
mining, we will remove much more candidates (w.r.t. c lose) from the support 
counting procedure, given that min-ex pruning strategy is similar to c lose prun-
ing strategy. The trade-off consists in accepting a small incertitude on supports 
though being able to mine correlated data with lower frequency thresholds. In 
the following, we consider that the support of a set is the (absolute) number of 
objects (tuples) in which all the attributes of the set are true. This is different 
from the definition in Example 1. 

Formally, if X (an itemset) "occurs" in t objects within the database, we 
say that an attribute A is in the almost-closure of X if the support of X U {A} 
is at least t — 6 {6 should be small, not to loose the practical relevancy of the 
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extracted information). The almost-closure of X is the set containing all such 
attributes. Conceptually, a closure is a special case of an almost-closure when 
6=0. 

Example 8. In data from Figure 1, considering the generator C, one finds that 
A and B are in the almost-closure of C for 6=1 while none of them was in its 
closure. D 

Now, let us explain where the incertitude comes from. Assume that the almost-
closure of X equals to X U {A,B,C}. Let the support of X be sx, and the 
supports of X U {A}, X U {B} and X U {C} be respectively sx — SA, SX — SB 
and Sx — sc where SA, SB and sc are positive numbers lower than 6. We have 
considered two possibilities for output content. The first stores for each frequent 
almost-closure: generator items (elements of X , in the example), generator sup-
port (sx) and almost-closure's supplement items {A, B and C). The second 
adds to each item a from the almost-closure supplement the difference of sup-
port between X and X U {A} (this difference is called miss-number hereafter). 
In our example that part corresponds to SA, SB and sc- These values have to 
be known, because to decide if an item is in the almost-closure, they must be at 
hand. Miss-numbers are values of miss-counters at the end of the corresponding 
database pass. 

The fact, that, for instance, B and C are in the almost-closure of X only 
implies that they occur almost always with X. Assume that we are in the second 
case of output (miss-numbers stored). Prom the supports oi X, X U {B} and 
X U {C} we can not infer the support of X U {B, C}, because we do not know if 
the misses occurred on the same objects (support would be sx — Tnax{sA, SB)) 
or on disjoint ones (support would he sx — SA — SB)- Al l intermediate cases are 
allowed, too. Storing miss-numbers greatly improves the precision of the resulting 
supports, above all when they are small, compared to 6. Therefore, we choose 
this solution, even if it increases the volume of output (in terms of quantity of 
information, not in terms of number of elements). FaC  ̂ denotes the collection 
of all frequent almost-closures for threshold a and is the output of min-ex. 

An important property about closures has been preserved. Still, if the almost-
closure oi X is X U C, the almost-closure of X U y is a superset of X U y U C. 
Let us prove it. Attribute A is in the almost-closure of X iff £.support(X, r) — 
f .support(X U {j4},r ) < 6. In other words, the number of objects that have all 
properties of X and do not have the property A is at most 6. Clearly, the number 
of objects satisfying a set of properties can not grow if we enforce that property 
with a new constraint. Therefore, the number of objects that have all properties 
of X and all properties of Y and do not have the property A can not be greater 
than 6. So, all elements of the almost-closure of X (i.e. C) must be present in 
the almost-closure oi X\JY. 

This property may be used as a basis of an efficient safe pruning strategy, 
analogously to the pruning strategy of c lose. We have been looking for such a 
strategy. The one implemented in the actual implementation of min-ex seems to 
be reliable [6]. However, in spite of numerous tries, we did not establish a proof 
that it is safe. We have not found either a counterexample. We checked the 
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completeness in our practical experiments. However, proving the incompleteness 
or the completeness of our algorithm remains an open problem though it does 
not prevent its use for practical applications. 

Deriving frequent sets from frequent almost-closures is as straightforward as 
for close. The difference is that now there is an incertitude on the support of 
some frequent sets. 

The sub-lattices (corresponding to almost-closures) of which the support 
range, due to S, crosses the threshold is kept in the result set, leading to the 
collection FaC„  that enables to derive a superset of FS^r- This is a safety mea-
sure: we do not want to prune out sub-lattices of which some itemsets are known 
to be frequent, for the sake of completeness. 

We did several experiments using min-ex on census and ANPE datasets (see 
Table 3). A first remark is that it confirms that c lose and min-ex with 6=0 
are functionally equivalent. In the case of closeg, the reduction of the size of 
FCa w.r.t. the corresponding FS  ̂ highlights the tight-correlation level (relative 
number of rules with confidence 1) of the data. In the same way, the further 
reduction of output ( FaC,r compared to FCa  ̂ ) for different 
values of 6, points out the loose-correlation level (relative number of association 
rules that are nearly "logical" ones). 

Let us now discuss the add-value of min-ex w.r.t. c lose for highly correlated 
data mining like census data mining. First of all, we must recall that a too high 
value of 6 might provide a "fuzzy" FaC„  collection, leading to, e.g., rules with 
too high incertitude on evaluation functions. 

Consider the CPU time needed by the extraction of FaC^. It has been more 
than halved (census data) for 5=6 and the tested frequency thresholds. Next, 
the I/O activity (number of database passes) has been reduced, an important 
criterion if the I/O turns to be a bottleneck of the system. A third advantage is 
that the output collection size has shrunk and we assume that further subsequent 
knowledge extraction steps will be faster. 

Another way to demonstrate the add-value of min-ex can be derived from 
Table 3. We can extract the following concise representations of census data: 
either FCQ.OI with c lose or FaCo.oos with min-ex and 5 = 2. It took the same 
time (154.3 vs. 155.2 sec, 10 passes for both executions) and we got a similar-
sized output collection (52166 vs. 55401 itemsets). It is possible without incerti-
tude (FCo.oi) or with a very good precision [5=2) on the frequent set supports 
{FaCo.oos)- The difference is that, using min-ex, we gained knowledge about 
all phenomena of frequency between 0.5% and 1% at almost no price. However, 
we must notice that in case of uncorrelated data, the memory consumption and 
CPU load due to maintaining miss-counters may affect the performances (See in 
Table 3 the extraction time evolution for ANPE/cr=:0.05). Only, with a signifi-
cant reduction of number of candidates (thus only in case of correlated data), the 
memory consumption will recover (e.g., see A N P E / C T = 0 . 0 05 or census/o-=0.05). 

Applications. A promising application of min-ex would be to enable the discov-
ery of repetitive but scarce behaviours. Another application concerns generalized 
rule mining. Generalized rules, if generated from FS„, have an incertitude on 
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Table 3. Evaluations of implementations close2 and min-ex 

Dataset/(7 

ANPE/0.005 

census/0.005 

ANPE/0.01 

census/0.01 

ANPE/0.05 

census/0.05 

close2 
Time (s) 

816.7 

197.8 

421.8 

154.3 

69.2 

61.7 

FC^ 

412 092 

85 950 

161 855 

52 166 

11 125 

10 513 

DB scans 

11 

10 

11 

10 

9 

9 

min-ex 
5 

0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 
0 
2 
4 
6 

Time (s) 

851.3 
759.5 
639.7 
553.0 
216.2 
155.2 
118.4 
98.5 
450.4 
466.8 
445.1 
416.4 
166.2 
124.9 
95.0 
79.0 
71.5 
79.7 
85.3 
88.4 
64.4 
50.2 
38.2 
32.2 

FaC„ 

412 092 
265 964 
182 829 
135 136 
85 950 
55 401 
39 036 
29 848 
161 855 
130 765 
104 162 
84 318 
52 166 
33 992 
24 109 
18 822 
11 125 
11 066 
10 931 
10 588 
10 513 
7 294 
5 090 
4 086 

DB scans 

11 
11 
10 
10 
10 
10 
8 
8 
11 
11 
10 
10 
10 
10 
8 
8 
9 
9 
9 
9 
9 
9 
8 
8 

measures like support and confidence due to unknown infrequent set supports 
[8]. Using min-ex, it is possible to reduce the bounds of error on evaluation 
value by supplying the support value for many more itemsets. The incertitude 
introduced by min-ex to some terms of generalized rule evaluation functions can 
be negligible (w.r.t. function result) compared to the contribution made by the 
larger number of known terms. Another interesting use is when an approximate 
result of the data mining step is sufficient. For instance, consider the "sampling" 
algorithm [7] during its "guess" phase. This phase is supposed to provide an ap-
proximation of the collection of frequent sets. An error is inherent to the use of 
sampling. If we keep the error introduced by the use of almost-closures negligible 
against the error due to sampling, the guess will  be as good as before, but will 
be computed faster. 

5 Conclusion 

We studied several concise representations of binary data when data mining 
processes make use of set support (e.g., when looking for association rules). We 
studied the close algorithm and beside its introduction in [10], we provide a new 
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implementation and experimental evidences about its add-value for the concise 
representation of (highly) correlated data. I t has lead us to the definition of the 
concept of almost-closure and, here again, we provided experimental evidences 
of its interest when we are looking for concise representation in difficul t cases 
(correlated data and low frequency thresholds). The discovery of almost-closed 
frequent sets gave rise to tricky problems w.r.t. the completeness of the mining 
task. Completeness of min-ex remains an open problem at that t ime and we are 
currently working on it. 
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Abstract. In an OLAP system, we can use data cubes (precomputed 
multidimensional views of data) to support real-time queries. To reduce 
the maintenance cost, which is related to the number of cubes materi-
ahzed, some cubes can be merged, but the resulting larger cubes will 
increase the response time of answering some queries. In order to sat-
isfy the maintenance bound and response time bound given by the user, 
we may have to sacrifice some of the queries and not to take them into 
our consideration. The optimization problem in the data cube system 
design is to optimize an initial set of cubes such that the system can 
answer a maximum number of queries and satisfy the bounds. This is an 
NP-complete problem. Approximate algorithms Greedy Removing and 
2-Greedy Merging are proposed. Experiments have been done on a cen-
sus database and the results show that our approaich is both effective 
and efficient. 

1 Introduction 

1.1 DSS and OLA P 

With the advancement of data warehousing technology, corporations are build-
ing their decision support systems (DSS) on large data warehouses. In order to 
support on-line analytical processing (OLAP), the system is required to answer 
queries with a fast response time. However, queries are usually about summa-
rization information, so the system needs to scan almost the entire database, 
giving a very poor response time. One efficient approach to reduce the response 
time is to translate frequently asked queries to data cubes or simply cubes, which 
are precomputed multi-dimensional views of the data in the data warehouse. [3] 
Once the cubes are built, answers to the queries can be retrieved from the cubes 
in real time. 

An OLAP system can be modeled by a three-level architecture that consists 
of: (1) a query client; (2) a data cube engine; and (3) a data warehouse server 
(Figure 1). The bottom level is a data warehouse built on top of one or more 
source operational DBMSs. It needs to support fast aggregations by using dif-
ferent indexing techniques such as bit-map indices and join indices [6,7]. The 
middle level contains a set of cubes generated from the data warehouse. The top 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 74-85, 2000. 
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level 1 

level 2 

level3 

Fig. 1. Three-level Architecture of a Data Cube System 

level is a query client, which supports DSS queries and allows user to browse the 
data cached from the cubes (like slicing and dicing). A query submitted to the 
client interface level, after being checked against the cube set, will  be directed to 
the middle level if it can be answered by the cubes there; otherwise, the query is 
passed to the bottom level, from which the results can be derived. Since cubes 
store pre-computed results, it is much faster to answer queries with cubes than 
with the data warehouse. 

Various studies have been made on the three levels of OLAP system. For 
the cube level, the main research focuses on the two issues: (1) how to compute 
aggregates from a base cube efficiently, and (2) how to store a cube. However, 
our previous research study [2] has shown that the key to the design of a query-
efficient OLAP system lies on the design of a good cube set. We remark that 
the initial cube set, with one cube being tailor-made to answer each query, 
gives the best query performance. The OLAP system would be able to support 
real-time responses if the cube level can answer all the queries. Unfortunately, 
more the cubes materialized, higher is the maintenance cost because it usually 
takes more number of scanning on the database to compute aggregates during 
maintenance. Thus, materializing all possible cubes is clearly impractical. We call 
the maximum number of cubes materialized as the maintenance bound. We can 
reduce the cube number by selecting several disjoint subsets of cubes and merging 
them into some larger cubes. As a result, a smaller cube set can be obtained. This 
improves the maintenance cost at the expense of increasing query response time 
because some queries processed using merged cubes generally take longer time 
than using the original smaller cubes as the resulting cube is in general larger 
than any one of the component cubes. Therefore, there is a trade-off between 
query performance and cube maintenance cost. 

Since the OLAP system needs to support real-time responses, a response 
time bound is necessary, i.e., the sum of response time to answer a selected set of 
frequent queries using the resultant cube set should not exceed the bound given 
by the user. However, sometimes the maintenance bound and the response time 
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bound that the user gives are so strict that there does not exist any solution even 
after considering all possible merging of cubes. In that case, we have to sacrifice 
some of the queries, remove them from our selected set of queries and not to 
consider the response time of answering them. Also, the corresponding cubes 
are removed from our initial set. As a result, we may be able to find a solution 
from the smaller set of cubes, which satisfies the bounds. Our problem now is 
how to choose a minimum number of cubes to remove, and how to merge the 
remaining cubes so that both of the maintenance bound and the response time 
bound are satisfied. This is an NP-complete problem, and what we can do is to 
develop some efficient and eflFective approximate algorithms so that a solution 
with acceptable performance can be found in an acceptable execution time. 

1.2 Data Cube System Design 

Given the user query requirements, namely, a set of frequently asked queries, 
a maintenance bound and a response time bound, our goal is to derive a data 
cube set that satisfies both of the bounds. Our approach to this data cube system 
design problem is a two-phase process: 
(1) Design of the Initial Data Cube Set 

The first phase is to derive an initial set of data cubes from the set of fre-
quently asked queries. This set is called the initial data cube set. The answer of 
each query can be retrieved directly and efficiently from a cube in this initial 
set. 
(2) Optimization of Data Cube System Design 

The second phase is an optimization of the initial data cube set so that the 
maintenance bound and the response time bound are satisfied by removing a 
minimum number of queries and merging the remaining cubes. 

1.3 Related Work s 

Several papers have been published on data cube implementation. Cube selection 
algorithms have been proposed in [5,8]. Our optimization approach differs from 
these previous works in two aspects. First, cube selection assumes that there 
is one root base cube encompassing all the attributes in all the queries and 
that some queries are associated with the root base cube. As a result, a cube 
selection would always include the root base cube in the answer. In a general 
DSS such as TPC-D [9], we do not anticipate many frequent queries that involve 
all the attributes; hence, cube selection is not suitable for solving our problem. 
Secondly, most cube selection algorithms start from the base cube at the top 
level and determine what cubes deducible from it should be implemented so that 
queries on the aggregates in the base cube can be answered efficiently. Tackling 
a very different problem, cube optimization tries to merge the cubes in an initial 
set in a bottom-up manner to generate a set of cubes which has an optimal 
performance for a given set of frequently-asked queries. The search space of the 
optimization problem is in general much larger because of the large numbers of 
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attributes in the initial data cube set. In short, cube selection algorithms are for 
cube implementation but not for cube optimization. 

1.4 Organization of Paper 

After introducing the optimization problem in data cube system design and 
our approach to solve it, we will  discuss the optimization problem in details in 
Section 2. The optimization phase in our approach can be divided into two levels, 
which will be discussed in Section 3 and 4. The performance study is described 
in Section 5. Finally we give a conclusion in Section 6. 

2 Data Cube System Design Optimizat ion 

2.1 Search Space of an Optimal Set 

In this paper, we assume that the requirements of an OLAP system is captured in 
a set of frequent queries. We use Q to denote the initial cube set derived from the 
queries. For example, if a query involves the attributes a, b, c, a three-dimensional 
cube on these attributes is included in Q. Before defining the optimization prob-
lem, let us first discuss the search space of the problem. 

To simplify the problem, we assume that the database in the data warehouse 
is represented by a star schema [1]. Attributes in the queries come from the 
fields of the dimension and fact tables, which may contain many attributes. As 
a result, the number of attributes (dimensions) needed to be considered in a 
data cube system design is much more than the number of dimension tables. In 
TPC-D [9], 33 attributes need to be considered. 

In [5], the notion of a composite lattice is used to integrate multi-hierarchical 
dimensions with the lattice of aggregates in a data cube. Assume that A = 
{oi,a2,  ,a„}  is the set of all the attributes on which query can be posted. 
Any subset of A can be used as the dimension attributes to construct a cube. 
The composite lattice L = {V{A), -<) is the lattice of cubes constructed from 
all the subsets of A. {V{A) is the power set of A.) The cube associated with 
the set A is the root of the lattice L. For two different cubes ci, C2 G L, the 
derived from relationship, c\ :<  C2, holds if Ci can be derived from C2 directly 
or by aggregation. For example the cube Ci = [part, year] can be derived from 
C2 = [part, customer, date]. The lattice L is the search space of our optimization 
problem. As we have mentioned, n is large in general. Thus, the search space L 
of the optimization problem is enormous. 

2.2 Problem Definitio n 

Given an initial data cube set Q, a search space L, a maintenance bound MB, 
and a response time bound RTB, the optimization problem in data cube system 
design is defined in Table 1. 
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Table 1. Optimization Problem in Data Cube System Design 

Objective: Find P CQ,C CL such that |P| is maximum and Cost{P,C) < RTB 

Constraint: Vj> e P, 3c € C, such that p :< c and MC{C) < MB 

Each cube in P is derived from a particular query, so P contains a set of 
cubes that can be used to directly answer some certain queries. Cost{P, C) is 
the total query cost of answering the queries associated with P by using the 
cubes in C. The constraint states that any frequent query p can be answered by 
some cube c in C. MC{C) is the total maintenance cost of C. Therefore, the 
problem is to choose a maximal subset P (and the corresponding queries) from 
the initial set Q, and a set of cubes C in L, such that the cost of answering the 
queries (associated to P) by using C is under the response time bound RTB and 
the cost of maintaining C does not exceed the maintenance bound MB. 

For simpHcity, we assume that the weights and the number of queries as-
sociated with each q £ Q are the same. Then we can use q & Q to represent 
both a cube in the initial set and the queries associated with it. Since we do 
not want to make any assumption on the implementation of the cubes and the 
structure of the queries, a good measure of Cost{P, C) is the linear cost model 
suggested in [5]. In that model, for cubes p,c, ii  p < c, then the cost of de-
ducing the answers for the query p from the cube c is linear to the number of 
data points in c. We use 5(c) to denote the number of data points in c. With 
respect to the cost model, many sampling and analytical techniques can be used 
to estimate the number of data points. For each query p € P, we need to de-
termine a minimum-cost (size) cube c £ C from which the answer of p can 
be deduced. We use Fcip) to denote the smallest cube in C for answering p, 
i.e., Fc{p) is a cube in C such that p -< Fc{p) and "ix £ C, ii  p :<  x, then 
S{Fc(p)) < Six). * We can now define Cost{P,C) by the formula: 

CostiP,C) = Y^iS{Fc{p))) (1) 
peP 

Without assuming any implementation method, we use the following measure 
to determine the maintenance cost MC{C) in the problem definition. 

MC{C) = \C\, i.e., the number of cubes in C. (2) 

The bound MB is the maximum number of cubes in the data cube system. ** 

*  We use the condition S{Fc{j))) < S{x) instead of Fc{p) :<  x, because Fc{p) needs 
to be the one that has the minimum size. 

'*  A more general approach is to define MC{C) as the total size of the cubes in C. In 
this paper, we have taken the more restricted model in order to develop a solution 
first for the simpler case. Results for the general case are being written in [4]. 
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Our approach to the optimization problem consists of two levels: the query 
level (the higher level) and the attribute level (the lower level). In this paper, 
two algorithms Optimal Removing and Greedy Removing (of queries or cubes) 
are described for the query-level optimization. Two algorithms Optimal Merging 
and 2-Greedy Merging are described for the attribute-level optimization. Our 
suggestion is to use Greedy-Removing at the query level and 2-Greedy Merging 
at the attribute level. The details will be discussed in the following sections. 

3 Query-Level Optimization 

In this section, we discuss the query-level optimization. Given an initial data 
cube set Q, optimization at the query level is to find a subset P oi Q such that 
the set C obtained by merging some cubes in P satisfies the maintenance bound 
[MB]  and response time bound (RTB), and the number of data cubes in P (or 
the size of P) is maximum, i.e., the number of queries removed is minimum. 

3.1 Optimal Removing 

/ * input: L,Q,MB,RTB; output: P,C */ 

1) J = \Q\: 
2) while(j > 1) { 
3) S = AllSubsets{Q,j): 
4) for(P e 5) do { 
5) C = AO{L, P, MB) 
6) if {Cost{P, C) < RTB) return P, C; 

7) } 
8) j=j-l\ 
9) } 
10) return "The response time bound is too strict.' 

Fig. 2. The algorithm Optimal Removing 

Optimal Removing (OR) finds the optimal removal of cubes. The outline of 
OR is shown in Figure 2. The algorithm starts with the initial set Q. The loop 
(lines 2-9) tries all possible combinations of j queries starting from keeping all 
cubes in the initial set Q. In line 3, 5 = AllSubsets{Q,j) assigns S with all 
subsets of Q with the number of queries equal to j . In the loop in lines 4-7, for 
each set P in S, the attribute-level optimization {AO{L, P, MB)) (which will  be 
discussed in the next section) refines P to C (which satisfies the maintenance 
bound) (line 5), and then it is checked whether the refined set C satisfies the 
response time bound or not (line 6). If yes, OR returns P. If none of them is a 
solution, we decrease the cube number by one. The iteration of loop in lines 2-9 
stops when a solution is found or after removing all cubes. 
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If the number of the initial cubes is n, then the number of ways of keeping n 
cubes is „Cn- Then in the next iteration, the number of ways of keeping (n — 1) 
cubes is nC'„-i, etc. With respect to the number of attribute-level optimization 
done, in the worst case, the time complexity of Optimal Removing is nCn + 
nCn-i +... + nCm = 0{n^^^) if m < f oi 0 (n" - ' ") if m > f. The optimal 
method is too time-consuming in practice. 

3.2 Greedy Removing 

/*  input: L,Q,MB,RTB; output: P,C */ 
1) ; = IQI; 
2) P = Q: 
3) C = AO{L, P, MB) 
4) if {Cost{P, C) < RTB) return P, C; 
5) while(i > 1) { 
6) for all (p G P ) do { 
7) C = AO{L,P-p,MB) 
8) if {Cost{P -p,C)< RTB) P = P - p, return P,C; 
9) } 
10) P = P — p which gives the minimum Cost(P-p, C) ; 

11) j=j-l: 
12) } 
13) return "The response time bound is too strict." 

Fig. 3. The algorithm Greedy Removing 

Greedy Removing (GR) is a simple, efficient, but still very effective method. 
The outline of GR is shown in Figure 3. P is the set of cubes kept. First we check 
whether keeping all cubes (P = Q) gives a solution. If not, we check whether 
there is a solution among all possible ways of removing one cube from P. We 
choose to remove a cube p from P (i.e., P = P—'p) if the resulting cube set {P — 'p) 
gives us a minimum response time among all others. The above is repeated until 

-either the response time bound is satisfied or all cubes are removed. 
If the number of initial cubes is n, the number of ways of removing one cube 

from them is n. After we have removed one cube, the number of ways of removing 
another data cube is n — 1, etc. With respect to the number of attribute-level 
optimization done, in the worst case, the time complexity of Greedy Removing 
is 1 4- n -I- (n — 1) + . .. + (m -f- 1) = 0{'n?). Greedy Removing is very efficient 
compared with Optimal Removing. It is also very effective, as we will see in the 
performance study section. 

4 Attribute-Level Optimization 

In this section we discuss how we optimize a given set of data cubes at the 
attribute level. Given a set of data cube set P, optimization at the attribute 
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level is to refine the set P to C so that the sum of the response time answering 
all queries associated to P by C is minimum with the maintenance cost within 
the maintenance bound MB. Essentially, this means that we need to divide the 
cubes in P into a number of groups. Cubes in each group are then merged into 
one single cube. 

4.1 Optimal Merging 

A straight-forward brute-force approach would try all possible groupings such 
that the number of groups are within the maintenance bound. We call this 
approach Optimal Merging (OM). However, it is only necessary to consider those 
cases in which the number of groups is equal to the maintenance bound. * * * 

We outline OM in Figure 4. In hne 1, TOP{L) returns the top node of the 

/ * Input: L,P,MB; output: C * / 
1) C = TOP{L); 
2) G = AllGrcmpings{P, MB); 
3) for all g eG, do 
4) if {Cost{P, g) < Cost{P, C))C = g: 
5) return C; 

Fig. 4. The algorithm Optimal Merging 

lattice L, which contains all attributes, and so this cube has the largest size. 
C is initialized as the top node. In line 2, the function AllGroupings{P, MB) 
considers all possible groupings of cubes in P with the number of groups equal 
to MB. For each grouping, cubes in every group are merged into one cube. The 
resultant sets of cubes of all groupings are returned to G (G is a set of cube sets). 
Therefore, each element g £ G contains a cube set. In line 3, we run the loop 
(lines 3 to 4) to consider the response time of every cube set g in G {Cost{P, g)) 
in order to find a cube set whose response time of answering query set P is 
minimum. The resultant cube set C is returned in line 6. 

If there are initially n cubes, and the maintenance bound is m, then in the 
worst case, the total number of ways of grouping the n cubes into m groups is 
0(m""''") . The time complexity is too large in practice. 

4.2 2-Greedy Merging 

In 2-Greedy Merging (2GM), starting from a given cube set P, we try to merge 
cubes step by step in a bottom-up Greedy approach. The outline of 2-Greedy 
Merging is shown in Figure 5. In each loop (lines 2 to 5) of the algorithm, we 

**  It is not necessaxy to consider other cases because the number of groups should 
not exceed the maintenance bound, and if the number of groups is less than the 
maintenance bound, it is impossible for its total response time to be smaller than 
that of the optimal solution. 
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/*  input: L, P, MB; output: C */ 
1) C = P: 
2) while MC{C) > MB do { 
3) SelectCubes(£) CC,ACL-C) such that a{C, D, A) is maximal, 

\D\ = 2 and \A\ = 1; 
4) C = C\JA-D; 

5) } 
6) return C\ 

Fig. 5. The algorithm 2-Greedy Merging 

select two cube sets: D with two cubes and A with one cube. The cubes in D are 
removed from C, and the cube in A is added into C such that each cube p in the 
input set P can be derived from a cube in the new C. Therefore, the maintenance 
cost MC{C) (cube number) would decrease and the query cost would increase. 
The algorithm terminates when the maintenance bound is satisfied. In each 
iteration, we want to choose a new C such that the increment in the query cost 
is small. Thus, we define our evaluation function a by the following formula. 

° ^ ^ ' ^ ' ^^ " Cost{P,C+)-Cost{P,C)  ̂ £^^plSiFc+{p))-S{Fc{p))] ^^^ 

where C"*" = CUA — D is the new C. The denominator is the increment in the 
query cost. Fc+ip) is the smallest cube in C"*", which can answer p. 

Let 2GM begin with n cubes. It first considers „C2 ways of choosing a cube 
pair for merging. There are n — 1 cubes left in the second iteration, and the 
algorithm considers n-\02 ways of merging two cubes. It stops after only m 
cubes are left, where m is the maintenance bound. Thus in the worst case, the 
time complexity of the algorithm is ^Cg + n-iC'2 + . .. + 771+1̂ 2̂ = 0{n^), which 
is obviously much lower than that of Optimal Merging (0(m"""'")) . Although it 
does not guarantee an optimal solution, its performance is near-optimal as we 
will  see in the performance study section. 

5 Performance Study 

5.1 Exper imental Setup 

Experiments were done to test the effectiveness and efficiency of the optimization 
algorithms proposed at the attribute and query levels. The database used is a 
Hong Kong census data with 62010 tuples. Each tuple has 15 integer fields, with 
ranges from tens to tens of thousands. The queries were generated randomly 
with the probability of | for a particular attribute to appear in a query. The 
experiments were done on a Sun Enterprise Ultra 450 with 4 UltraSPARC-II 
CPU running at 250MHz. 
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5.2 Attribut e Level 

The range of query number is from 5 to 15, and that of attribute number involved 
is from 10 to 15. The maintenance bound is generated randomly around three-
tenths to eight-tenths of the query number. 

Let the response time of answering the given queries using the cubes refined 
from 2-Greedy Merging (2GM) be GRT, and that from Optimal Merging (OM) 

GRT 
be ORT, then the performance ratio (PR) is defined as . Prom Table 2 (a), 

URi 
54 out of 66 cases (over 81 percents) give a PR of 1. That is to say, the per-
formance of answering the set of frequent queries using the solution of 2GM is 
the same as that of the OM. PR of other results are very close to 1. The aver-
age PR is 1.003661, which is very close to 1. The maximum (worst) PR so far 
discovered is 1.1274. Table 2 (b) shows that the execution time of 2GM is less 
than 1 second in all cases and grows at a sub-cubic rate with the query number. 
Our experiments also show that the execution time of OM grows exponentially 
with the query number. 2GM is thus a very efficient and effective algorithm for 
attribute-level optimization. 

Table 2. Table of (a) Performance Ratio of 2GM vs OM, (b) Execution time of 2GM 

Query # 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

(a) Performance Rat io 

At t r ibu te Number 
10 11 

1.0088 

1.0451 

12 

1 
1 

1.1274 
1 
1 
1 

1.0103 
1 
1 
1 
1 

13 

1 
1 
1 
1 

1.0099 
1 
1 

1.0052 
1 

1.0041 
1 

14 

1.0040 

15 

1.0532 
1 

1.0007 
1 
1 
1 

1.0003 
1 
1 
1 

1.0372 

(b) Execut ion t ime (sec) 

A t t r ibu te Number 
10 

0.01 
0.01 
0.02 
0.03 
0.04 
0.09 
0.11 
0.11 
0.26 
0.21 
0.27 

11 

0.01 
0.02 
0.01 
0.02 
0.04 
0.08 
0.11 
0.14 
0.2 
0.26 
0.49 

12 

0.01 
0.02 
0.02 
0.02 
0.05 
0.09 
0.14 
0.18 
0.2 

0.37 
0.44 

13 

0.01 
0.02 
0.01 
0.03 
0.07 
0.11 
0.13 
0.2 

0.21 
0.46 
0.44 

14 

0.01 
0.02 
0.03 
0.04 
0.06 
0.12 
0.12 
0.22 
0.27 
0.42 
0.61 

15 

0.01 
0.02 
0.03 
0.05 
0.07 
0.11 
0.21 
0.27 
0.28 
0.43 
0.67 

5.3 Query Level 

2GM is chosen as the attribute-level optimization subroutine in our experiments 
of query-level optimization. The number of attributes is fixed to 15, the number 
of queries to 20, the maintenance bound to 10. The response time of the result 
generated by 2GM alone is 613431. Thus we set the response time bound from 
600000 to 350000 in our experiments of testing GR and OR. 

Table 3 shows that when the response time bound is lowered, the number of 
queries kept decreases (more queries are removed). The solutions of both GR and 
OR almost always keep the same number of queries. The maximum difference 
is only one. For efficiency of GR and OR, the execution time of GR is linear to 
the number of queries removed and within several minutes while that of OR is 
exponential to the number of queries removed. 
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Table 3. Table of Comparisons of Greedy Removing and Optimal Removing 

RTB(xlO-') 
Queries 

kept 
Exec, time 

(sec) 

Greedy 
Optimal 
Greedy 
Optimal 

600 
19 

16 
3.15 
l i s 

575 
19 

IS 
4.35 
4.65 

550 
18 

18 
29.4 
ai.8 

525 
18 
18 

31.5 
34.4 

500 
18 

18 
31.5 
34.4 

475 
17 

17 
52.7 
248 

450 
17 

17 
54.6 
254 

425 
16 

17 
69.8 
10S7 

400 
16 

16 
70.2 
134(5 

375 
16 

16 
70.8 
1S04 

350 
15 

15 
83.0 
5333 

Prom the previous discussion, we see that the combination of 2-Greedy Merg-
ing (for attribute-level optimization) and Greedy Removing (for query-level op-
timization) is a good choice for solving the data cube system design problem. 

6 Conclusion 

In this paper, we discussed the optimization problem in requirement-based data 
cube system design subject to a maintenance bound and a response time bound. 
We proposed a two-phase approach to the problem: First, from a set of frequently 
asked queries, we derive an initial data cube set. Second, we remove a minimum 
number of cubes from the initial set to get a refined set which can satisfy the 
bounds. The second phase can be divided into two levels. In the query level, we 
remove as few data cubes from the initial set as possible. In the attribute level, we 
refine the resultant set to satisfy the bounds. Experiments have been done on a 
census database and the results show that the combination of Greedy Removing 
and 2-Greedy Merging is very efficient and gives a near-optimal solution. Further 
works include solving the data cube system design problem with considering a 
bound of the total storage size of data cubes. [4] 
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Abstract . This paper presents a method for mining exception rules 
based on a novel measure which estimates interestingness relative to its 
corresponding common sense rule and reference rule. Mining interesting 
rules is one of the important data mining tasks. Interesting rules bring 
novel knowledge that helps decision makers for advantageous actions. It is 
true that interestingness is a relative issue that depends on the other prior 
knowledge. However, this estimation can be biased due to the incomplete 
or inaccurate knowledge about the domain. Even if possible to estimate 
interestingness, it is not so trivial to judge the interestingness from a 
huge set of mined rules. Therefore, an automated system is required 
that can exploit the knowledge extractacted from the data in measuring 
interestingness. Since the extraicted knowledge comes from the data, so 
i t is possible to find a measure that is unbiased from the user's own 
belief. An unbiased measure that can estimate the interestingness of a 
rule with respect to the extractacted rules can be more acceptable to 
the user. In this work we try to show through the experiments, how 
our proposed relative measure can give an unbiased estimate of relative 
interestingness in a rule considering already mined rules. 

1 Introduction 

After performing data mining tasks that usually terminate with a large set of 
rules, there is a need to find some interesting rules that decision makers can 
use for advantageous actions. The number of discovered rules can, however, be 
so large that browsing the rule set and finding interesting rules from i t can be 
rather difficul t for the user. Moreover, i t is much harder to know which of the 
discovered rules are really interesting. Interestingness is a relative issue since 
i t always depends on the user's prior knowledge about the domain. However, 
user's belief can give a biased estimate for incomplete or inaccurate knowledge 
about the domain. True knowledge about the domain can be extracted form 
the data. Therefore, to provide an unbiased ^ measure, intuitively we can say, 

*  This author's work is partially supported by a grant from the National 973 project 
of China (No. G1998030414) 

^ In measuring interestingness user's biased belief is not incorporated 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 86-97, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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interestingness can be estimated relative to the common sense rules found in 
the data. Data mining facilitates understanding the large amount of data by 
generating some rules. These rules, considering as common sense knowledge, 
can be used to justify the interestingness in other mined rules. 

We understand that something that contradicts user's common belief is 
bound to be interesting. Let's define exceptions as rules that contradict the com-
mon belief. Exceptions [4,8,12] can take an important role in making critical 
decisions. Exceptions and common sense rules point at opposite directions. Ex-
ceptions usually are minority, they are either not known (thus new) or omitted. 
Therefore, in many respects, for mining interesting rules, we are interested to 
mine exceptions for the common sense [11,12,13,14] rules. A common sense rule 
represents a common phenomenon that comes with high support and confidence 
in a particular domain. Subjectively, a common sense rule can be interesting if 
the user is not well aware about the problem domain or if he has a completely 
different view about the domain. It implies that a subjective measure of interest-
ingness may be biased. This bias may not always be wanted in critical decision 
making. 

Intuitively, exceptions contradict the common sense rules and they have a 
low support [12]. Therefore, exception rules are weak in terms of support, but 
having high confidence similar to those common sense rules. A weak rule of 
low support may not be a reliable. A user can specify minimum support for an 
exception to ensure mining reliable exception rules [4,12]. 

If we mine exception rules, literally there would be a huge number of them 
because of their usual lower support threshold. In this paper, an exception rule 
is structurally defined as shown in Table 1, Note that this is a simplified version 
of [11,12,13,14]. Here A and B represent a single item or a set of items. 

Table 1. Rule structure for exceptions 

A —* X - common sense rule (strong pattern) 
(high support, high confidence) 

A,B —* -iX - exception rule (weak pattern) 
(low support, high confidence) 

B —» -iX -reference rule 
(low support and/or low confidence) 

I t is clear from the rule structure that the reference item B that explains 
the cause of exception, with the given common sense A —  ̂X, can be of several 
combinations of items satisfying all the support and confidence constraints. The 
more the number of items we allow in the reference B, the more the candidate 
exception rules we can be generated for a given common sense rule. The number 
of reference rules also depends on the number of items for each data attribute. 
This implies that for a particular common sense rule, a user usually finds more 
and more exceptions that ultimately mislead the user for mining exceptions in 
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the data. Moreover, all the references that help form exceptions may not be 
meaningful or the user may not be aware of them due to their lower support or 
confidence for a particular common sense rule to be an exception. Therefore, it 
wil l be more meaningful to include those reference items about which the user 
is concerned. This implies that to satisfy the criteria (low support and/or low 
confidence) for a reference rule B —> -iX in Table 1, we simply ensure the 
existence of a common sense rule S —> X. 

We are motivated to mine those exception rules that are interesting in nature 
and can be estimated by the knowledge from the other mined rules. Estimation of 
interestingness is necessary to identify the most interesting rules from the mined 
rules. It would be an unbiased estimate since it considers only the common 
sense rules in the data, not that of the user's belief. Before giving a measure of 
interestingness, it is necessary to understand the components of what and how 
they bring surprise or interestingness in a rule given the knowledge about some 
common sense rules. 

The remainder of this paper is organized as follows. In Section 2, we talk 
about some preliminaries and related work on interestingness. In Section 3, we 
describe our approach and provide details of our measure analytically. Imple-
mentation of our algorithm for digging out the interesting rules is described in 
Section 4. Analysis of our experimental results are shown in Section 5. Finally, 
in Section 6, we present our conclusion. 

2 Preliminaries and Related Work 

In this paper we try to capture interestingness of a given rule through the 
amount of change in information relative to the common sense rules. A par-
ticular rule contains the information about its premise, predictive power and 
coverage. Therefore, in order to measure the relative interestingness, we calculate 
the difference between the information that a rule contains and the information 
needed to describe the given rule with common sense rules. The interestingness 
of the given rule is proportional to the the amount of difference between this 
two information. Bigger the difference in information the more interesting is 
the given rule. This resembles to the procedure, an expert uses to estimate the 
interestingness of a given rule using other rules. 

We define the common sense knowledge K for a rule, is the knowledge about 
some common sense rules that we can apply to estimate the interestingness in 
the given rule. Since, interestingness is a relative factor that depends on the 
knowledge about other rules, therefore, for a rule AB —> X , K composed of the 
knowledge about the rules A —* X and B —> X. Therefore, by our definition, the 
interestingness /, of a rule should be a function of its support(5), confidence(C) 
and the knowledge about common sense rules (K) 

/ = / (5 ,C,«) 

We believe that lack of any one of these parameters may result in incomplete 
estimate of the interestingness. That means we are interested to mine those in-
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teresting rules where all these three components can be applied to make it more 
acceptable. The measure we propose, offers both subjective and objective inter-
estingness. When K comes from the user's belief instead of the other mined rules, 
then the same measure can be considered as a subjective measure of interesting-
ness for a given rule. 

Generally, there are two categories of finding interesting rules: subjective 
vs. objective. In a subjective case, a user directly applies his own knowledge, 
sometimes even without knowing the nature of the domain to find interestingness 
in a rule. That is why, subjective interestingness may be biased and may vary 
with different users. Different methods have been proposed to capture interesting 
rules subjectively. The main idea is to impose user's own belief about the domain. 
Users usually apply their knowledge in terms of rule templates [6] and then try to 
match the template by scanning the data satisfying some threshold parameters. 
This approach may be suitable to justify a particular user's own belief system 
bbt may fail to discover some surprising rules that they even don't know. One 
potential problem is that user's subjective judgement may be unrealistic while 
applying those rules in the competitive business environment. 

In an objective measure where common sense rules are not applied [K = 4>) 
to estimate the interestingness, one of the main focus is to iind if there is any 
deviation in the rule from the norm. Deviations are powerful and useful in this 
case as they provide a simple way of identifying interesting patterns in the data. 
This has been shown in the KEFIR [2] application. This type of measure is 
likely to be unbiased since no user's preference is given while estimating the 
interestingness. However, a rule that deviates may not be interesting if that de-
viation can be explained by other rules in the data. This implies that one can 
still generate a large number of rules that are interesting objectively but of littl e 
interest to the user [16] as they might know other rules. Again, since for the 
existing objective measures, K = (p so, two different rules with similar support 
and confidence usually come with the same interestingness. Despite their simi-
larity in support and confidence, interestingness usually should depend on the 
prior knowledge about those two rules. For example, using J-measure [10], two 
rules AB ^X and PQ  ̂ X for which PT{XAB) = PT{XPQ) and FT{X\AB) 

= Px(X\PQ) give identical interestingness irrespective to their prior knowledge. 
For a rule AB —*  X, J-measure is defined as follows. 

JiX,AB) = Prix AB) log, ^ ^ g ^ + Pr{^X AB) loĝ  ^ ^ ^ ^ 

Though for an automated system, objective measures are always reliable due 
to their unbiased nature, sometimes they are completely unable to justify a rule's 
interestingness as they cannot handle knowledge from common sense rules. Since 
user's true belief will  eventually build upon the common sense rules in the data, 
it is worth proposing a measure that can manipulate the common sense rules to 
estimate the interestingness in other rules. That is why, we need an objective 
measure that takes into account K - the already found rules. In [11], Geometric 
mean of the Average Compressed Entropies (GACE) was defined to estimate the 
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interestingness of a rule if and only if the given rule is an exception to a common 
sense rule. GACE defines the interestingness in terms of J-measure from one rule 
pair (common sense and exception). For a common sense rule A ^> X and its 
exception AB —> -iX , GACE is defined as follows 

GACE{A -^X,AB-> -.X) = y/J{X,A)Ji-nX,AB) 
When we wish to include more (such as the already extracted rule both 

comrnbn sense and reference) in evaluating a rule's interestingness, we need a 
new measure that can take into account that something more. 

3 Our Approach 

In this work, we are interested to mine rules that are objectively interesting, 
but in the meantime we are able to measure the interestingness with respect to 
already mined rules. For example, a rule '^Sex = F and Age = Young —> Credit 
=  iVo" with 50% confidence may not be interesting from both subjective and 
objective viewpoints. Prom the subjective viewpoint, it is not interesting if the 
user believes that the females are not usually given credit compared to the males. 
Objectively it is also not interesting since it is not very conclusive as it has 50% 
confidence. However, if two strong ^ common sense rules "Sex = F ^ Credit = 
Yes" and "Age = Young —» Credit = Yes" are known then "Sex = F and Age 
= Young —» Credit = No" with 50% confidence should be interesting to us. This 
suggests a need to have a relative interesting measure. 

We have mentioned eralier that an objective measure evaluates a rule's in-
terestingness with its support(5) and confidence(C). Now we wish to consider 
the relevant extracted rules (K) in our new measure. Below we explain in detail 
how all these factors together define relative interestingness of a rule. 

3.1 Confidence-Based Interestingness 

When no other information is given, an event with lower probability to occur 
gives more information, than an event with higher probability. Prom the infor-
mation theory [9], the number of bits required to describe the occurrence is 
defined as 

I = - l0g2 P 
where, 
P = The probability of that event to occur. 
Similarly, for a given rule AB —» X with confidence PT{X\AB), will  require 

— log2(PT{X\AB)) and — log2{PT{->X\AB)) number of bits to describe the events 
X and -^X given AB. Note that in the case of analyzing the rules we not only 
consider the event X or -^X but also the premise that causes the events to oc-
cur. That is why in the case of rules, whenever we talk about the events X or 

High support and high confidence 
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-iX , we always mention the premise which leads the events to occur. However, 
in information theory, we are not interested to know how the events X and -^X 
occur. Since the probability of occurrence of the events X and -iX given AB 
are 'PT:{X\AB) and 'PT{-^X\AB), so, the expected number of bits required to 
describe events X and -^X influenced by AB are -'Px{X\AB)\og2i^x{x\AB)) 
and - Pr(-iX|j4B) log2(Pr(-iX|AB)) respectively. Thus the total number of bits 
required to describe the rule AB -̂ - X is 

jABo = (_ Yr{X\AB) loga ^x{X\AB)) + {- Fv{-^X\AB) logj Fi{^X\AB)) 
where, 
jABo _ Number of bits required to describe the rule AB —  X when no other 

knowledge have been applied. 
However, the difference in number of bits in describing the rule AB -* X 

in terms oi A —> X and B —> X can bring surprise. Bigger the difference in 
describing the rule AB —» X, the more it is interesting. Therefore, to estimate 
the relative interestingness in terms of rules A -  ̂ X and 5 -̂ ^ X , we need to 
know the number of bits required to describe the event X when the probability 
of that event to occur given A and B are Pr(X|yl) and Pr(X|B) respectively. 
The Table 2 shows the number of bits required to describe the events X and 
-iX when A and B are given. 

Table 2. The events and the information 

Events 
X 

-.X 
X 

- X 

Given 
A 
A 
B 
B 

Number of bits 
-\og^PT{X\A) 

-log2 PT(^X\A) 

- log2Pr(X|S) 
- log2Pr(-X|B) 

Since the rule AB -* X describes the event X in terms of A and B so, to 
describe the similar event X, in terms of A and ^ B using the rules A —> X and 
B -> X we need - log2(Pr(X|A)) and - log2(Pr(X|B)) number of bits. Now, in 
rule AB —> X probability of the event X to occur is PT{X\AB). Therefore, the 
expected number of bits required to describe all the X events in rule AB —» X 
in terms of A and B using the two rules is thus — Pr(X|AB)(log2(Pr(X|.A)) + 
log2(Pr(X|B))). Similarly, for the event ^X in rule AB -> X , -Pi{-nX\AB) 
(log2(Pr(-nX|A)) +log2(Pr(-.X|B))) number of bits will  be required. Thus the 
total number of bits required to describe the event X and -iX in the rule 
AB -* Xhy rules A -» X and B ^ X is 

jAB  ̂  ̂ _Pr(X|y4B)[log2Pr(X|A) + log2Pr(X|B)] 
-Pr(-X|AB)[ log2Pr(-X|y l) + log2Pr(-X|B)] 

where, 

It is not or because, event X was influenced in rule AB —f X hy A and B 
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I^^  ̂ = Number of bits required when AB -+ X is described hy A —> X and 

Thus, the relative surprise or relative interestingness that comes from the 
difference between two descriptions for the given rule AB —» X is 

jijAB  ̂ jAB, _ jABo 

= Vr{X\AB) log2 p . ( ^ g ^ g | B) + ^r{-.X\AB)log  ̂ p.( /^ i ;^ j f f j , |B ) 
where, 
RI^  ̂ = The relative surprise or interestingness of the rule, considering the 

confidence and the knowledge about other rules. 
The interestingness of a rule that we have formulated in terms of the confi-

dence gives the exact impression of relative entropy [15]. Here the entropy of a 
rule is calculated relative to the other rules. It is a measure of distance between 
two distributions. In statistics, it arises as an expected logarithm of the likeli-
hood ratio. The relative entropy D{p{x)\\q{x)) is a measure of the inefficiency 
of assuming that the distribution is q{x) when the true distribution is p{x). The 
relative entropy or Kullback Leibler distance between two probability function is 
defined as, 

Dipix)Mx))=E.e^p{x)lo9^ 
In estimating the interestingness of the rule AB —> X with true confidence 

PT{X\AB) we approximated its confidence from the rules A —> X and B —  ̂X. 

3.2 Support-Based Interestingness 

By support of a rule AB —+ X, we mean the frequency of the rule's consequent 
evaluated as X by AB relative to the whole dataset. When we know the support 
of two common sense rules v4 — X and B —» X , we know the relative frequency 
of the consequent X and -iX evaluated by A and B separately. A similar relative 
entropy measure can be applied to estimate the surprise from support. Now, for 
the newly discovered rule AB —> X, the true distribution of the consequent X 
and -iX evaluated by A and B are Pr(ASX) and Pr(A5- 'X) respectively. From 
the knowledge of our one common sense rule A —> X, for which the relative fre-
quency of X and -iX are Pr(ylX) and Pr(A-iX) respectively, can be used to 
find the distance between two distributions of consequent using relative entropy. 
The relative entropy of AB —+ X relative to the rule A —* X in terms of their 
support is thus 

D{AB - . X | IA -> X) = Pr(ASX) log ^ ^ ^ + Pr(AS-.X) log ^^^M^ 
Similarly for rule B —> X , the relative entropy is 
D{AB ^ X | |B - . X) = Pr(ABX) log ^-0  ̂ + Pr(AB^X) log ^ ^ ^ ^ 



Exception Rule Mining with a Relative Interestingness Measure 93 

Thus the total relative interestingness due to rule's support that comes from 
the relative entropy of AB —» X for the two common sense rule is, 

RI^  ̂ = D{AB -» X\\A -> X) + D{AB -> X\\B -  ̂ X) 

= Pr{ABX) log p.^^-itprTlx) + P^AB^X) log p.^J^^^p^g^x) 
Hence, the total interestingness of a rule AB —> X relative to A -  ̂ X and 

B - * X i s 
RI = RI^  ̂ + Rlf^ 
This includes support, confidence and consideration of other rules to estimate 

the relative surpriseness. 

4 Digging out the Exceptions 

Since exceptions are weak in terms of support, we are supposed to dig deeper 
into the data with lower support threshold to bring them out. Applying lower 
support threshold for mining exceptions is not a cost-effective solution. More-
over, in that large number of rules will be generated where not all of them 
are exceptions. Actually we are going to mine those exceptions where the rules 
extracted as a common sense will be used to alleviate the problem of dealing 
with lower support threshold. In other words, we search for reliable exceptions 
starting from the common sense rules. To satisfy all the constraints defined in 
Table 1, we find exception AB —> -^X from two common sense rules A -  ̂ X and 
B -  ̂ X {B —* X as common sense infers B —» -iX to be reference for its obvious 
low support or/and low confidence). By doing this we can estimate the amount 
of surprise the exception rule brings from the knowledge of the extracted rules. 
From Figure 1 we can visualize how exceptions are mined going deeper into the 
data. The threshold CS support is the minimum support to mine the common 
sense rules from the data and the EX support to assure the reliability of the 
exception rules. The following algorithm describes the way we mine interesting 
rules. 

begin 
LI = (p 11 list containing large item set 
LC = (p 11 list containing common sense rules 
LR = <p 11 list containing reference rules for a common sense 
LE = 4> /I list containing candidate exception rules 
LI *~ GenerateLargeltemSetf) / / running apriori [1] 
LC«— GenerateAllCommonSense(LI) 
for each CSi from LC do 

A <— GetAntecedent(CSi) 
LR  ̂ GetReferences(CSi, LC) 
for each RRj from LR do 

B <— GetAntecedent(RRj) 
if (A U B) is not in LI 

insert(A U 5 U ^Consequent{CSi), LE) 
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end for 
end for 
LE <— GenerateExceptions(LE) / / Database scan once 
EstimatelnterestingnessfLC, LE) jj  Output interesting rules 
end. / / according to the degree of surprise 

The function GetReferences(CSi, LC), returns all the candidate reference 
rules for CSt, from LC. The reference rules are those common sense rules in LC 
that have similar consequent as that of CSi. Once we have inserted all the can-
didate exception rules into LE, we scan the database once to obtain the support 
and confidence of each candidate exceptions. We output those rules that sat-
isfy the thresholds using GenerateExceptions(LE). EstimateInterestingness(LC, 
LE) estimates the relative interestingness. 

Strong exception 

Common sense 

"  CS support 

Exceptions 

 EX suppott 

Noise 

Fig. 1. Rules in the data 

5 Experiments 

In this section we explain our interesting rules obtained from Japanese credit 
data and mushroom data [7]. The credit data set has 10 attributes and 125 
instances with a binary class. The two types of classes define when a credit is 
given to a particular person depending on other attribute values. Based on our 
approach we obtain the strong patterns that would eventually be considered as 
a common sense rule for that credit domain. We use 20% support threshold for 
common sense. To mine the reliable exceptions considering already extracted 
rules, we use 5% support. For both cases we mine those having more than or 
equal to 50% confidence. 

We will  show the effects of the proposed measure (RI) in two settings: (1) 
removing reference rules by assuming they are not available; and (2) including 
reference rules. As in the first case, GAGE has been shown effective. Therefore 
we compare RI with GAGE to see if RI can achieve the planned objective: they 
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should identify the interesting exceptions as GACE does. In the second case, we 
show that the ranking order changes due to considering reference rules. 

Table 3. Exception rules (credit) justified by the common sense rules 

Common Sense (CS) Credit 
Reference Rule (RR) Given 
Exception = CS + RR 
Sex = F, MPay = 0-20 (CS) Yes 
Save = 0-100, Mnts = 0-10 (RR) No 
Sex = F, MPay = 0-20, 
Save = 0-100, Mnts = 0-10 No 
MPay = 0-20, Mnts = 0-10 (CS) Yes 
Sex = F (RR) No 
Sex = F, MPay = 0-20, Mnts = 0-10 No 
Mnts = 0-10 (CS) Yes 
Sex = F, Save = 0-100 (RR) No 
Sex = F, Save = 0-100, Mnts = 0-10 No 
Sex = F, Age = 0-40 (CS) Yes 
Marry = Yes (RR) No 
Sex = F, Age = 0-40, Marry = Yes No 

Conf 
% 

61 
37 

54 
65 
38 
52 
65 
42 
52 
61 
29 
51 

Supp 
% 

26 
17 

11 
32 
17 
10 
32 
18 
10 
20 
15 
6 

RI 
With 
Ref 

3.16 

3.00 

2.96 

2.52 

RI 
Without 

Ref 

1.98 

1.93 

1.93 

1.67 

GACE 

0.013 

0.006 

0.006 

0.007 

Prom the experimental result it is clear that RI without considering reference 
rules behaves similar as GACE. So, RI can identify reliable exceptions. When 
considering reference rules, RI has changed the rankings (2nd and 3rd rule sets 
in Table 3). An actionable exception rule should be reliable. An exception would 
be more reliable if it has higher confidence and support. Therefore, from the 
perspective of both interestingness and reliability, the first exception "5ex = F, 
MPay = 0-20, Save = 0-100, Mnts = 0.10 -  ̂ Credit = No" should have the 
highest ranking among the four exception rules. 

For the mushroom data (22 attributes and 8124 tuples) we conduct a similar 
experiment with 15% support and 55% confidence for mining common sense 
rules. To mine the exceptions, we specify 5% support and 55% confidence. Table 4 
shows some of the rules and their corresponding interestingness, when RI without 
reference cannot diferentiate the difference between the third and four rule sets, 
EI with reference can. Hence, when we have some knowledge about the rule, 
the knowledge should be used if we wish to find relative interestingness. GACE 
has made use of common sense rules and RI goes one step further to include 
reference rules in the measure. 

6 Conclusion 

In this work we define an objective measure of relative interestingness that ties 
up the with common sense and reference rules in the data when estimating inter-
estingness. This opens the door to apply RI to measure subjective interestingness 
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Table 4. Exception rules (mushroom) justified by the common sense rules 

Common Sense (CS) EMible/ 
Reference Rule (RR) Poisonous 
Exception = CS + RR 
stalk-root = ? (CS) P 
bruises = f, gill-size = b, 
stalk-shape = e, veil-type = p (RR) E 
CS -1- RR E 
ring-type = e (CS) P 
bruises = f, gill-size = b, 
ring-number = t (RR) E 
CS + RR E 
gill-color = p, veil-type = p, 
veil-color = w (CS) P 
stalk-root = ? (RR) E 
CS + RR E 
gill-attachment = f, stalk-shape = e, 
veil-type = p (CS) P 
cap-surface = s, veil-color = w (RR) E 
CS -t- RR E 

Conf 
% 

71 

27 
100 
64 

43 
100 

57 
29 
94 

57 
40 
94 

Supp 
% 

22 

6 
6 
22 

12 
9 

23 
9 
6 

23 
11 
6 

RI 
With 
Ref. 

6.76 

4.71 

4.19 

3.31 

RI 
Without 

Ref. 

3.98 

3.58 

2.28 

2.28 

GACE 

0.05 

0.04 

0.02 

0.02 

if we can describe an expert's knowledge in rules. For example, we wish to eval-
uate the new rule in Table 5; it is not very interesting than those in Table 3. 
This should be the case as the new rule is not an exception. 

Table 5. A new rule (credit) justified by the common sense rules 

Common sense Credit 
Common sense Given 
New rule 
Jobless = No, Sex = F Yes 
Married = No Yes 
Jobless = No, Sex = F, Married = No (Not exception) Yes 

Conf 
% 

70 
64 
71 

Supp 
% 

28 
30 
12 

RI 

2.34 

In our approach we focus on relative interestingness that evaluates an excep-
tion rule with respect to its common sense and reference rules. Not much extra 
costs invloved in calculating RI: Using Apriori [1] to find the frequent itemsets, 
then we just need another database scan to estimate the support and confidence 
of the candidate exception items. This efficient new measure provides one more 
means in exception rule mining along with other interestingness measures. 



Exception Rule Mining with a Relative Interestingness Measure 97 

References 

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 
20th conference on Very Large Databases (VLDB), pages 478-499, 1994. 

2. G. Piatetsky-Shapiro C Matheus and D. McNeil. Selecting and Reporting What is 
Interesting: The KEFIR Application to Healthcare Data. AAAI Press/ MIT Press, 
1996. 

3. Sarawagi Chakrabeirti. Mining surprising patterns using temporal description 
length. In Proc. 24th on Very Large Databases (VLDB), pages 606-616, 1998. 

4. Liu H. and Lu H. Efficient search of reliable exceptions. In Proc. third Pacific-Asia 
conference on Knowledge Discovery and Data mining (PAKDD), pages 194-203, 
1999. 

5. W. Hsu Liu B. and Shu Chen. Using general impression to analyze discovered 
classification rules. In Proc. third international conference on Knowledge Discovery 
and Data mining (KDD), pages 31-36, 1997. 

6. H. Mannila M. Klemettinen. Finding interesting rules from leirge sets of discov-
ered association rules. In Third Intl. Conference on Information and Knowledge 
Management (CIKM), 1994. 

7. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases. 
http://wwv.ics.uci.edu/~mle2um/MLRepository.html. Irvine, CA: University of 
California, Department of Information and Computer Science, 1996. 

8. B. Peidmanabhan and A. Tuzhilin. A beleif-driven method for discovering unex-
pected patterns. In Proc. fourth international conference on Knowledge Discovery 
and Data mining (KDD), pages 27-31, 1998. 

9. C. Shannon and W. Weaver. The Mathematical Theory of Information. Urbana: 
University of Illinoi s Press, 1949. 

10. P. Smyth and Goodman R. M. Rule induction using information theory. In Knowl-
edge Discovery in Databases, Piatetsky-Shapiro, G. AAAI Press / The MIT Pres, 
pages 159-176, 1991. 

11. E. Suzuki. Discovering unexpected exceptions: A stochastic approEich. In Proc. 
RFID, pages 225-232, 1996. 

12. E. Suzuki. Autonomous discovery of reliable exception rules. In Proc. third in-
ternational conference on Knowledge Discovery and Data mining (KDD), pages 
259-262, 1997. 

13. E. Suzuki and Y. Kodratoff. Discovery of surprising exception rules based on inten-
sity of implication. In Proc. second Pacific-Asia conference on Knowledge Discovery 
and Data mining (PAKDD), 1998. 

14. E. Suzuki and M. Shimura. Exceptional knowledge discovery in databases based 
on information theory. In Proc. second international conference on Knowledge Dis-
covery and Data mining (KDD), pages 295-298, 1996. 

15. C. Thomas M and J. Thomas A. Elements of Information Theory. Wiley-
Interscience Pubhcation, 1996. 

16. A. TuzhiUn and A. Silberschatz. What makes patterns interesting in knowledge 
discovery systems. In IEEE Trans. Knowledge Discovery and Data Engineering, 
pages 970-974, 1996. 



2 

Consistency Based Feature Selection 

Manoranjan Dash ,̂ Huan Liu^, and Hiroshi Motoda'̂  

' School of Computing, National University of Singapore, Singapore. 
Division of Intelligent Sys Sci, Oscika University, Ibaraki, Osaka 567, Japan. 

Abs t rac t. Feature selection is an effective technique in dealing with 
dimensionality reduction for classification task, a main component of 
data mining. It searches for ein "optimal" subset of features. The search 
strategies under consideration are one of the three: complete, heuristic, 
and probabilistic. Existing algorithms adopt various measiires to evaluate 
the goodness of feature subsets. This work focuses on one measure called 
consistency. We study its properties in compsirison with other major 
measures and different ways of using this measure in sejirch of feature 
subsets. We conduct cin empirical study to examine the pros and cons of 
these different search methods using consistency. Through this extensive 
exercise, we ciim to provide a comprehensive view of this measure and its 
relations with other measures cind a guideline of the use of this meeisure 
with different search strategies facing a new application. 

1 Introduction 

Classification is an important da ta mining tcisk. The basic problem of classifica-
tion is to classify a given pattern (example) to one of m known classes. A pat-
tern of features presumably contains enough information to distinguish among 
the classes. When a classification problem is defined by features, the number of 
features (N) can be quite large. Pat tern classification is inherently connected to 
information reduction. Features can also be redundant or irrelevant. An irrele-
vant feature does not affect the underlying structure of the data in any way. A 
redundant feature does not provide anything new in describing the underlying 
structure. Because redundant and irrelevant information is cached inside the to-
tality of the features, a classifier that uses all features wil l perform worse than 
a classifier that uses relevant features that maximize interclass differences and 
minimize intraclass differences [4]. Feature selection is a task of searching for "op-
t imal" subset of features from all available features. Its motivat ion is three-fold: 
simplifying the classifier; improving the accuracy of the classifier; and reducing 
data dimensionality for the classifier. The last point is part icularly relevant when 
a classifier is unable to handle large volumes of data. 

Features may not be all relevant. In order to measure the usefulness (or 
goodness) of selected features, we need selection criteria. The class separabil-
ity is often used as one of the basic selection criteria. When a set of features 
maximizes the class separability, it is considered well suited for classification. 
From a statistics viewpoint, five different measurements for class separabil ity 
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are analyzed in [8]: error probability, interclass distance, probabilistic distance, 
probabilistic dependence and entropy. Information-theoretic considerations [20] 
suggested something similar: using a good feature of discrimination provides 
compact descriptions of each class, and these descriptions are maximally dis-
tinct. Geometrically, this constraint can be interpreted to mean that (i) such a 
feature takes on nearly identical values for all examples of the same class, and 
(ii) it takes on some different values for all examples of the other class. In this 
work, we use a selection criterion that does not attempt to maximize the class 
separability but tries to retain the discriminating power of the data defined by 
original features. Feature selection is formalized as finding the smallest set of 
features that can distinguish classes as if with the full set. In other words, with 
a subset S of features, no two examples with the same values on S have different 
class labels [1]. We study the pros and cons of this measure in comparison with 
other measures. Another aspect of feature selection is related to the study of 
search strategies. Extensive research efforts have been devoted to this study [19, 
7,3]. Examples are Branch &Bound [16], Relief [11], Wrapper methods [12], and 
Las Vegas algorithms [14]. The search process starts with either an empty set or 
a full set. For the former, it expands the search space by adding one feature at 
a time (Forward Selection) - an example is Focus [1]; for the latter, it expands 
the search space by deleting one feature at a time (Backward Selection) - an 
example is 'Branch fe Bound' [16]. 

The contributions of this paper are: (a) studying a monotonic criterion for 
feature selection w.r.t. other selection criteria; (b) exploring its properties and 
use in exhaustive (complete), heuristic, and probabilist search; (c) comparing 
its different uses with a number of data sets; and (d) suggesting a framework of 
when to use what. In the rest of the paper P is the number of patterns, Â  is 
the number of features, M is the size of relevant features, and m is the number 
of class labels. 

2 Consistency Measure 

Consistency can be interpreted as zero inconsistency. If we attain zero inconsis-
tency, we achieve 100% consistency. Throughout this paper we use consistency 
and inconsistency interchangeably. 

2.1 The Measure 

The suggested measure U is an inconsistency rate over the data set for a given 
feature set. In the following description pattern means a set of values for the 
features in a candidate subset. The inconsistency rate is calculated as follows: 
(1) two patterns are considered inconsistent if they match all but their class 
labels, for example, an inconsistency is caused by two instances (0 1 a) and (0 1 
a) with different classes (a and a); and (2) the inconsistency count for a pattern 
is the number of times it appears in the data minus the largest number among 
different class labels: for example, let us assume there are n matching patterns. 
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among which ci patterns belong to labelj, ci to label2, and C3 to labels where 
C1+C2+C3 = n. If C3 is the largest among the three, the inconsistency count is (n— 
ca); and (3) the inconsistency rate is the sum of all the inconsistency counts for 
all possible patterns of a feature subset divided by the total number of patterns 
(P). By employing a hashing mechanism, we can compute the inconsistency 
rate approximately with a time complexity of 0{P). Unlike the commonly used 
univariate measures in literature [18], this is a multivariate measure which checks 
a subset of features at a time. 

2.2 Other Evaluat ion Measures 

An optimal subset is always relative to a certain evaluation function. An optimal 
subset chosen using one evaluation function may not be the same as that using 
another evaluation function. Typically, an evaluation function tries to measure 
the discriminating ability of a feature or a subset to distinguish the different 
class labels. Blum and Langley [3] grouped different feature selection methods 
into two broad groups (i.e., filter and wrapper) based on their use of an induc-
tive algorithm in feature selection or not. Filter methods are independent of an 
inductive algorithm, whereas wrapper methods are not. Ben-Bassat [2] grouped 
the evaluation functions until 1982 into three categories: information or un-
certainty measures, distance measures, and dependence measures. Considering 
these divisions and latest developments, we divide the evaluation functions into 
five categories: distance, information (or uncertainty), dependence, consistency, 
and classifier error rate. Distance Measures It is also known as separability, 
divergence, or discrimination measure. For a two-class problem, a feature X is 
preferred to another feature Y if X induces a greater difference between the 
two-class conditional probabilities than Y; if the difference is zero then X and 
Y are indistinguishable. An example is Euclidean distance. Informatio n Mea-
sures These measures typically determine the information gain from a feature. 
The information gain from a feature X is defined as the difference between the 
prior uncertainty and expected posterior uncertainty using X. Feature X is pre-
ferred to feature Y if the information gain from feature X is greater than that 
from feature Y [2]. An example is entropy. Dependence Measures Depen-
dence measures or correlation measures quantify the ability to predict the value 
of one variable from the value of another variable. Correlation coefficient is a 
classical dependence measure and can be used to find the correlation between a 
feature and a class. If the correlation of feature X with class C is higher than the 
correlation of feature Y with C, then feature X is preferred to Y. A slight vari-
ation of this is to determine the dependence of a feature on other features; this 
value indicates the degree of redundancy of the feature. Al l evaluation functions 
based on dependence measures can be divided between distance and information 
measures. But, these are still kept as a separate category because, conceptually, 
they represent a different viewpoint [2]. Consistency Measures This type of 
measures has been in focus recently. They are characteristically different from 
other measures because of their heavy reliance on the training data and use of 
Min-Features bias in selecting a subset of features [1]. Min-Features bias prefers 
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consistent hypotheses definable over features as few as possible. This measure 
is similar to the consistency measure U we described in the beginning of this 
section with the difference that U can handle noise (e.g. misclassification). Er -
ror  Rate Measures The methods using this type of evaluation function are 
called "wrapper methods", i.e., the classifier is the evaluation function. As the 
features are selected using the classifier that later uses these selected features in 
predicting the class labels of unseen instances, the accuracy level is very high 
although computationally rather costly [9]. 

2.3 Consistency Measure vis-a-vis Other  Measures 

We compare consistency measure with other measures. First, consistency mea-
sure is monotonic and others are not. Assuming we have subsets {So,Si, ...,Sn} 
of features, we have a measure U that evaluates each subset Si- The monotonicity 
condition requires the following: ^o D Si D ... D 5n => U{So) < U{Si) < ... < 
U(Sn)- Second, for the consistency measure, a feature subset can be evaluated in 
0{P). It is usually costlier for other measures. For example, to construct a de-
cision tree in order to have predictive accuracy, it requires at least O(PlogP); 
to calculate the distances, it requires O(P^). Third, consistency measure can 
help remove both redundant and irrelevant features; other measures may not 
do so. Last, consistency measure is capable of handling some noise in the data 
reflected as a percentage of inconsistencies. This percentage can be obtained by 
going through the data once. In short, consistency measure is monotonic, fast, 
able to remove redundant and/or irrelevant features, and capable of handling 
some noisê  

3 Ways of Using Consistency Measure 

Different search strategies pose further constraints on a selection criterion. We 
demonstrate that the consistency measure can be employed in common forms of 
search without modification. Five different algorithms represent standard search 
strategies: exhaustive - Focus [1], complete- ABB [13], heuristic- SetCover [6], 
probabilistic- LVF [14], and hybrid oi ABB and LVF - QBB. We examine their 
advantages and disadvantages. 
Focus: exhaustive search: Focus [1] starts with an empty set and carries out 
breadth-first search until it finds a minimal subset that predicts pure classes. 
With some modification of Focus, we have FocusM that can work on non-binary 
data with noise. As FocusM is exhaustive search it guarantees an optimal solu-
tion. However, FocusM's time performance can deteriorate if M is not small with 
respect to N. The search space of FocusM is closely related to the number of 
relevant features. In general, the less the number of relevant features, the smaller 
the search space. 
ABB: complete search: Branch & Bound (B&B) [16] starts with a full set 

' There are many types of noise. Consistency measure Ccin hcindle misclcissifications. 
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of features, and removes one feature at a time. When there is no restriction on 
expanding nodes in the search space, this could lead to an exhaustive search. 
However, if each node is evaluated by a measure U and an upper limi t is set for 
the acceptable values of U, then B&B backtracks whenever an infeasible node is 
discovered. If U is monotonic, no feasible node is omitted and savings of search 
time do not sacrifice optimality. As pointed out in [19], the measures used in [16] 
such as accuracy have disadvantages (e.g., non-monotonicity); the authors of [19] 
proposed the concept of approximate monotonicity. ABB [13] is an automated 
B&B algorithm having its bound as the inconsistency rate of the data when the 
full set of features is used. It starts with the full set of features 5"°, removes one 
feature from 5i~^ in turn to generate subsets S^j where / is the current level 
and J specifies different subsets at the lih. level. If t/(5j) > t/(5'~^), 5j stops 
growing (its branch is pruned); otherwise, it grows to level / + 1, i.e. one more 
feature could be removed. 

Since inconsistency is a monotonic measure, ABB guarantees an optimal 
solution. However, a brief analysis suggests that ABB's time performance can 
deteriorate as the difference N — M increases. This issue is related to how many 
nodes (subsets) have been generated. The search space of ABB is closely related 
to the number of relevant features. In general, the more the number of relevant 
features, the smaller the search space due to early pruning of the illegitimate 
nodes. Our analysis of Focus and ABB reveals that Focus is efficient when M 
is small, and ABB is efficient when N — M is small. In other cases, we can use 
inconsistency measure in heuristic search. 
SetCover: heuristic search: SetCover [6] uses the observation that the prob-
lem of finding the smallest set of consistent features is equivalent to 'covering' 
each pair of examples that have different class labels with some feature on which 
they have different values. This enables us to apply Johnson's algorithm [10] for 
Set Cover for this problem, which implies that the resulting algorithm outputs 
a consistent feature set of size 0 (M log P) in polynomial time. Variants of Set 
Cover have previously been used for learning conjunctions of boolean features. 
Consistency criterion can be restated as: a feature set S is consistent if for any 
pair of instances with different class labels, there is a feature in S that takes 
diff'erent values. Thus including a feature f in S "takes care of" all those ex-
ample pairs with different class labels on which / takes different values. Once 
all pairs are "taken care of" the resulting set S is consistent. The advantages of 
SetCover is that it is fast, close to optimal, and deterministic. This works well 
for data where features are rather independent of each other. It may, however, 
have problems where features have inter-dependencies. This is because it selects 
the best feature in each iteration based on the number of instance-pairs covered. 
A new solution is needed that avoids the problems of exhaustive and heuristic 
search. Probabilistic search is a natural choice. 

LVF : probabilisti c search: Las Vegas algorithms [5] for feature subset selec-
tion can make probabilistic choices of subsets in search of an optimal set. Another 
similar type of algorithms is the Monte Carlo algorithm in which it is often pos-
sible to reduce the error probability arbitrarily at the cost of a slight increase in 
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computing time [5]. LVF is more suitable since the probability of generating a 
certain subset is the same. LVF adopts the inconsistency rate as the evaluation 
measure. Due to its monotonicity, a superset of a subset of relevant features is 
also good. Hence, there are more chances for good subsets to be selected. LVF 
keeps the smallest subset of features randomly generated so far that satisfies a 
threshold (by default it is the inconsistency rate of the data with all features). 
It is fast in reducing the number of features. We conducted experiments to ob-
serve how the number of valid features (M') drops as the number of randomly 
generated feature sets increases. A total of 10 data, both artificial and real, are 
chosen for the experiments from the UC Irvine data repository [15] (Table 1). 
Two typical graphs are shown in Figure 1 in a longer time span (partial results 
shown in Table 1) in order to observe the trend. 

Data 
P 
m 
N 
M'{M) 
#Eval 
#Max 

LED24 
1200 
10 
24 

12(5) 
230 
2"' 

Lung Lymph Mush Par3-|-3 Promo 
32 148 
3 4 
56 18 

19(4) 8(6) 
155 215 
256 2 '* 

7125 
2 
22 

8(4) 
22 
222 

64 
2 
12 

5(3) 
25 
2l2 

106 
2 
57 

15(4) 
187 
2 " 

Soy Splice Vote Zoo 
47 3190 435 74 
4 3 2 7 
35 60 16 16 

12(2) 19(9) 13(8) 9(5) 
42 284 215 25 
935 2^0 o '*  2'® 

Table 1. The number of valid features (M') drops shcirply in the first few hundred runs 
for all data. P, N, M and m cire defined earlier. #Eval is number of subsets generated 
cind evaluated. #Max is maximum possible subsets. 

The trend found in all the experiments is that M' drops sharply from N in 
the first few hundred runs (one run means one feature set is randomly generated 
and evaluated). Afterwards, it takes quite a long time to further decrease M'. 
Some analysis can confirm this finding. A particular set has a probability of 
1/2̂  to be generated. At the beginning, the full set is valid. Many subsets can 
satisfy the inconsistency criterion. As M' decreases from N to M, fewer and 
fewer subsets can satisfy the criterion. However, the probability of a distinct set 
being generated is still 1/2'' .̂ That explains why the curves have a sharp drop 
in the beginning and then become flat in Figure 1. LVF reduces the number 
of features quickly during the initial stage (the first few hundred loops); after 
that LVF still searches in the same way (i.e., blindly), the computing resource 
is spent on generating many subsets that are obviously not good. 
QBB: hybr id search: As ABB and LVF complement each other, QBB is a 
natural offspring of ABB and LVF, which uses inconsistency as its evaluation 
measure. QBB runs LVF in the first phase and ABB in the second phase so 
that the search is more focused after the sharp decrease in the number of valid 
subsets. A key issue remains: what is the crossing point in QBB at which ABB 
takes over from LVF. If we allow only certain amount of time to run QBB, the 
point at which ABB takes over from LVF is crucial for the efficiency of QBB. 
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Fig. 1. The typical trends of the decreasing number of valid features versus the number 
of runs performed. Points include both valid and invEilid feature subsets. Valid subsets 
are connected by solid lines. 
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Extensive experiments suggested that dividing the total time equally between 
LVF and ABB is a robust solution and is more likely to yield the best results. If 
the crossing point is too early, LVF might not have reduced the valid subset size 
substantially for ABB to perform well under time constraint; but if the crossing 
point is too late, the small sized subsets generated by LVF at the crossing point 
might not contain any minimal size subset, and so ABB becomes ineffective. 

3.1 Summary: When to Use What 

As we have five algorithms to choose from, we are also interested to know how we 
should use them. Theoretical analysis and experimental experience suggest the 
following. If M - the size of relevant features is small, FocusM should be chosen; 
however if M is even moderately large, FocusM will take a long time. If there 
are a small number of irrelevant and redundant features, ABB should be chosen; 
but ABB will take a long time for a moderate number of irrelevant features. For 
data with large numbers of features, FocusM and ABB should not be expected 
to terminate in realistic time. For the Letter data with 20,000 instances (TV = 16 
and M = 11) FocusM took more than 2 days to terminate whereas ABB took 
more than 7 hours to generate optimal subsets. Hence, in such cases one should 
resort to heuristic or probabilistic search for faster results. Although these algo-
rithms may not guarantee optimal subsets but will be efficient in generating near 
optimal subsets in much less time. SetCover is heuristic, fast, and deterministic. 
It may face problems with data having highly interdependent features. LVF is 
probabilistic, not prone to the problem faced by SetCover, but slow to converge 
in later stages. As we have shown, it can reduce the feature subset size very fast 
in the beginning but then it slows down in reducing features. QBB is a welcome 
modification as it captures the best of LVF and ABB. It is reasonably fast (slower 
than SetCover), robust, and can handle features with high interdependency. 

4 Further Experiments 

The points that remain inconclusive are: (1) features selected using inconsistency 
can achieve the objective of dimensionality reduction without sacrificing predic-
tive accuracy; and (2) how the different algorithms fare in terms of time and 
optimality. The experimental procedure is to (1) choose data frequently used by 
the community; (2) run ABB to get the minimal size as reference; (3) compare 
the performance (average time and number of selected features) of different al-
gorithms; and (4) compare the accuracy of two different classifiers (C4.5 [17] and 
Back-propagation neural network [21]) over data before and after feature selec-
tion by QBB. Ten data, both artificial and real, are chosen for the experiments 
from the UC Irvine data repository [15]. A summary of these data is given in 
Table 1. Par34-3 contains 12 features (3 relevant, 3 redundant, 6 irrelevant). 

Figure 2 shows a comparison of the performance (both average time and 
number of selected features) of different algorithms. First ABB is run over the 
10 data to find the M (minimal size) values. For comparison purpose we have 
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Fig. 2, Experiments to show how differently algorithms fcire in terms of time cind 
optimality. Results of Focus and ABB are out of bounds in x-axis (time). 

calculated the average minimal value, MAVQ, over all data which is found to be 
5. This value is used as a reference line in Figure 2. Out of the 5 competing 
algorithms, FocusM, ABB and SetCover are deterministic, whereas LVF and 
QBB are non-deterministic due to their probabilistic nature. QBB spends half 
of the time running LVF and the other half running ABB. For LVF and QBB we 
show results for 5 different processing time in terms of total numbers of subsets 
evaluated (1000...5000). Each experiment was repeated 50 times. Notice that 
Focus and ABB are not shown in the graph as their average times fall outside the 
range of the 'processing time' in the x-axis of the graph, although minimal sized 
subsets are guaranteed in each case. For data having large differences between N 
and M values such as Lung Cancer, Promoters, Soybean, Splice data ABB takes 
very long time (a number of hours) to terminate. For data having large N values 
and not very small M values such as Splice data {N = 60, M = 9) FocusM takes 
many hours to terminate. The comparison in Figure 2 shows that QBB is more 
efficient both in average time and number of selected features compared to LVF, 
FocusM, and ABB. The average size of the subsets produced by QBB is close 
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to M^^g and it approaches to MAVQ with time. SetCover produces near optimal 
subsets in much less time. Between QBB and SetCover we would say QBB is 
more robust while SetCover, although very fast and accurate, may fail to deliver 
efficient subsets if there is dependency among the features. 

The error probability is often used as a validation criterion. Among the dif-
ferent algorithms discussed in the paper we take QBB due to its robustness. We 
choose C4.5 decision tree and Back-propagation neural network as two classi-
fiers for validation. For back-propagation each data was divided into a training 
set (two-third of the original size) and the rest one-third as testing. For C4.5, 
we use the default settings, apply it to data before and after feature selection, 
and obtain the results of 10-fold cross-validation. This is repeated 10 times for 
each data and the average error rate and tree size are reported in Table 2. That 
is, QBB has been run 10 times and C4.5 100 times. The experiment shows the 
improvement/no reduction for most data (9 out of 10) in C4.5's accuracy after 
feature selection. 

Running Back-propagation involves the setting of some parameters, such as 
the network structure (number of layers, number of hidden units), learning rate, 
momentum, number of CYCLES (epochs), etc. In order to focus our attention 
on the eifect of feature selection by QBB, we try to minimize the tuning of the 
parameters for each data. We fix the learning rate at 0.1, the momentum at 
0.5, one hidden layer, the number of hidden units as half of the original input 
units for all data. The experiment is carried out in two steps: (1) a trial run 
to find a proper number of CYCLES for each data which is determined by a 
sustained trend of no decrease of error; and (2) two runs on data with and 
without feature selection respectively using the number of CYCLES found in 
step 1. Other parameters remain fixed for the two runs in step 2. The results 
are shown in Table 2 with an emphasis on the difference before and after feature 
selection. In most cases, error rates decrease (6 out of 10) or do not change (3 
out of 10) after feature selection. 

Data 
LED-24 
Lung 
Lymphography 
Mushroom 
Par3+3 
Promoters 
Soybean 
Splice 
Vote 
Zoo 

C4.5 
Tree Size 

Bef 
19.0 
19.0 
26.9 
36.3 
12.0 
21.4 
7.1 
173.0 
14.5 
17.8 

Af t 
19.0 
10.9 
22.1 
34.2 
15.0 
8.2 
9.4 
187.0 
14.2 
17.7 

Error Rate 
Bef 
0.0 
50.0 
21.8 
0.0 
41.9 
26.3 
2.5 
5.9 
5.3 
7.8 

Af t 
0.0 
41.8 
21.4 
0.0 
0.0 
22.1 
2.0 
14.0 
5.3 
6.6 

Back-Propagation 

Cycles 
1000 
1000 
7000 
5000 
1000 
2000 
1000 
6000 
4000 
4000 

#HU 
12 
28 
9 
11 
6 
29 
18 
30 
8 
8 

Error Rate 
Bef 
0.06 
75.0 
25.0 
0.0 
22.2 
46.8 
10.0 
25.64 
6.7 
10.3 

Aft 
0.0 
75.0 
25.0 
0.0 
0.0 
25.0 
0.0 
42.33 
4.0 
3.4 

Table 2. Results of Hybrid Search. #HU is number of Hidden Units. 
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5 Concluding Remarks 

The fact that the consistency criterion does not incorporate any search bias re-
lating to a part icular classifier enables i t to be used with a variety of different 
learning algorithms. As shown in the experiments, for the two different types 
of classifiers, selected features improve the performance in terms of lower error 
rates in most cases. Features selected without search bias bring us efficiency in 
later stage as the evaluation of a feature subset becomes simpler than that of 
a full set. On the other hand, since a set of features is deemed consistent if 
any function maps from the values of the features to the class labels, any al-
gori thm optimizing this criterion may choose a small set of features that has a 
complicated function, while overlooking larger sets of features admit t ing simple 
rules. Although intuitively this should be relatively rare, it can happen in prac-
tice, as apparently this was the case for the Splice data where both C4.5 and 
Back-propagation's performance deteriorate after feature selection. 

The inconsistency measure has received a comprehensive examinat ion that 
reveals its many merits for feature selection. The outstanding one is its mono-
tonicity. It is also fast to compute, can detect redundant as well as irrelevant 
features. It has been used with a variety of search strategies in feature selec-
tion and no modification is required. The salient contribution of this work is 
that a guideline is suggested as to when to use what after detailed evaluation 
of different search algorithms. We believe the guideline wil l be very helpful to 
practit ioners in need to reduce dimensionality of huge data, and to researchers 
who want to further the work of feature selection. 
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Abstract. Clustering is an important data mining task. Data mining 
often concerns large and high-dimensionai data but unfortunately most 
of the clustering algorithms in the literature axe sensitive to largeness or 
high-dimensionality or both. Different features affect clusters differently, 
some are important for clusters while others may hinder the clustering 
task. An efficient way of handling it is by selecting a subset of important 
features. It helps in finding clusters efficiently, understanding the data 
better and reducing data size for efficient storage, collection and process-
ing. The task of finding original important features for unsupervised data 
is largely untouched. Traditional feature selection algorithms work only 
for supervised data where class information is avaiilable. For unsuper-
vised data, without class information, often principal components (PCs) 
Eire used, but PCs still require all features and they may be difficult to 
understand. Our approach: first features Eire ranked Eiccording to their 
importance on clustering and then a subset of important features are 
selected. For large data we use a scalable method using sampling. Em-
pirical evaluation shows the effectiveness and scalability of our approach 
for benchmark and synthetic data sets. 

1 Introduction 

Clustering is an important data mining task that groups similar objects together 
[8,11,10,4,2]. Similarity between a pair of data points is due to different features. 
If similarity is distance-based then for a pair of data points in a cluster there 
exist at least a few features on which the points are close to each other. Most 
clustering methods assume all features to be equally important for clustering, or 
in other words they do not distinguish among different features. This is one of 
the reasons why most clustering algorithms may not perform well in the face of 
high-dimensional data. Another reason of the poor performance is the inherent 
sparsity of data in high-dimensional space. In reality different features have vary-
ing effects on clustering. An important feature helps in creating clusters while an 
unimportant feature may not help in creating clusters and, in contrary, it may 
affect the clustering algorithms adversely by blurring the clusters. Unimportant 
features are noisy or irrelevant and can be removed to reduce the data size for 
more efficient clustering. It also reduces the noise and helps in data storage, 
collection, and processing. 

As clustering is done on unsupervised data without class information, tradi-
tional feature selection algorithms for classification [6] do not work. Littl e work 
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has been done on feature selection for unsupervised data. Dimensionality re-
duction or feature extraction methods (e.g., Principal Components Analysis, 
Karhunen-Loeve transformation, or Singular Value Decomposition) are com-
monly used [8]. They have drawbacks such as: (1) it is difl&cult to understand the 
data (and the found clusters) using the extracted features, and (2) the original 
features remain as they are required to determine the extracted features. 

Some recent works on clustering try to handle high-dimensionality by select-
ing important features. In [2] and later in [5] it is observed that dense regions may 
be found in subspaces of high dimensional data. The algorithm called CLIQUE 
in [2] divides each dimension into a user given divisions. It starts with finding 
dense regions in 1-dimensional data and works upward to find fc-dimensional 
dense regions using candidate generation algorithm Apriori [3]. This approach is 
different from the conventional clustering that partitions the whole data. In [1] 
a new concept is presented called "projected clustering" to discover interesting 
patterns in subspaces of high-dimensional data. It finds the clusters first and 
then selects a subset of features for each cluster. It searches for the subset of 
features by putting a restriction on the minimum and the maximum number of 
features. 

We address the problem of selecting a subset of important features for clus-
tering for the whole data and not just for clusters unlike in [1,2]. This helps 
in knowing the important features before doing clustering and the clustering 
task becomes more efficient and focused as only the important features can be 
used. Finding the important original features for the whole data helps in under-
standing the data better unlike principal components. Data storage, collection 
and processing tasks become more efficient and noise is reduced as the data is 
pruned. 

Our approach is a 2-step method: we first rank and then select a subset of 
important features. Ranking of features is done according to their importance 
on clustering. An entropy-based ranking measure is introduced. We then select 
a subset of features using a criterion function for clustering that is invariant 
with respect to different numbers of features. A novel scalable method based on 
random sampling is introduced for large data commonly found in data mining 
applications. 

2 Importance of Features on Clustering 

Notations used in the paper are as follows: Xi is i*' ' data point, Xik is 
feature value of i*' ' point, Fk is A;*'' feature where i = 1...N and k = 1...N; 
Di^^i^ and Si^^i  ̂are distance and similarity between points Xi  ̂ and Xi^; Xj is 
j * ' ' cluster where j = l...c. We start by showing visually the effects of features 
on clustering. In Figure l(a,b,c) we show a synthetic data in (3,2,l)-d feature 
spaces respectively. There are 75 points with 3 clusters in FI-F2 dimensions, 
with each cluster having 25 points. Values in Fl and F2 features follow Gaussian 
distribution within each of the 3 clusters while values in feature F3 are uniformly 
random. When we take 3 features the clusters are unclear and unnecessarily 
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complex (see Figure 1(a)), whereas no clusters can be found when we visualize 
using only 1 feature Fl (Figure 1(c)). Figure 1(b) with F1-F2 features shows 
3 well-formed clusters. Selecting features Fl and F2 reduces the dimensionality 
of the data while forming well separated clusters. 

(a) F1-F2-F3 (b) F1-F2 (c)Fl 

Fig. 1. Effect of features on clustering. 

In a single dimensional data set clusters can be formed if the single feature 
takes values in separate ranges. In a multi-dimensional data set clusters can be 
formed from combination of feature values although the single features by them-
selves alone may take uniform values. We have noted down 2 distinct scenarios 
in the following. 
Scenario 1: A single feature is important by itself only: Consider Figure 2(a) 
where there are 2 features. Feature F2 is uniformly distributed while Fl takes 
values in 2 separate ranges. It can be clearly seen that Fl is more important for 
creating clusters than F2. 
Scenario 2: Two features are necessarily important and any individual feature 
is useless in defining clusters: Consider Figure 2(b) where there are 2 features. 
Both Fl and F2 are uniformly distributed. It can be clearly seen that both Fl 
and F2 are necessary for clustering and any one alone is useless. 

(a) Scenario 1 (b) Scenario 2 

Fig. 2. Effects of features on clusters: scenario 1 shows effect of individual feature 
while scenario 2 shows the combined effect of 2 features. 
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3 Entropy-Based Feature Ranking 

Consider each feature Fj as a random variable while fi as its value. Prom entropy 
theory we know that, entropy is: 
E{FI,...,FM) = - E / i ) where P ( / I , . . . , / M) 

is the probability or density at the point (/i , . . . , / M )- If the probability is uni-
formly distributed we are most uncertain about the outcome, and entropy is 
maximum. This will happen when the data points are uniformly distributed in 
the feature space. On the other hand, when the data has well-formed clusters 
the uncertainty is low and so also the entropy. As we do not have a priori infor-
mation about clusters, calculation of p( / i, . . . , / M) is not direct. But we can use 
the following way to calculate entropy without any cluster information. 
Entropy Measure: Usually in a real-world data there may be a few not very 
well-formed clusters and some noise (points not belonging to any cluster prop-
erly). Two points belonging to the same cluster or 2 different clusters will  con-
tribute to the total entropy less than if they were uniformly sepatated. Similarity 
5ij,i2 between 2 instances Xj j and Xi  ̂ is high if the 2 instances are very close 
and 5ij,i2 is low if the 2 are far away. Entropy £ î,,J2 wil l be low if 5j,,J2 is ei-
ther low or high and Ei ,̂j^ wil l be high otherwise. The following mathematical 
formulation is based on this idea. 

Our similarity measure is applicable to both numeric and nominal data. 
Similarity is based on distance, i.e., for numeric data we use Euclidean dis-
tance while for nominal data we use Hamming distance. Mathematically simi-
larity for numeric data is given as: Si^^i  ̂= e~"'^^*i''2 where a is a parameter. 
In a multi-dimensional space, distance Dji.i j for numeric data is defined as: 
Diuh = [E i^ i i2ll-mtJ^V^^- The interval in the fc*'' dimension is normal-
ized by dividing it by the maximum interval (maxk — mink) before calculating 
the distance. If we plot similarity against distance, the curve will  have a big-
ger curvature for a larger a. The insight is we assign a very high similarity for 
points 'very close' together but assign a low similarity for points 'not close' or 
'far away'. 

Similarity for nominal features is measured using the Hamming distance. The 

similarity between two data points is given as: Si^^i  ̂= M'°—-^ where 
\^hk = ^hk] is 1 if Xi^k equals Xi^k and 0 otherwise. For data with both numeric 
and nominal features, we can discretize numeric values first before applying our 
measure. For two points Xi  ̂ and Xi^, entropy is: E = —Stj^^i  ̂ log 5,1,12 — (1 — 
5'ii,ij)log( l — Si^^i^) which assumes the maximum value of 1.0 for Si^^t  ̂= 0.5, 
and the minimum value of 0.0 for Si^^i  ̂= 0.0 and Si^^i  ̂= 1-0. For a data set 
of AT data points entropy is given as: E = - S f [ = i iCf^^iCS'ii.ij x log St^^i  ̂+ 
(1 — ) X log(l — Si^^i^)) where Si^^i  ̂takes values in [0.0-1.0]. In this work, 
a is calculated automatically by assigning 0.5 in Equation: S = e~°'^  ̂ at which 
entropy is maximum; so we get: a = ~ '^°-^ where D is the average distance 
among the data points. 
Algorith m to Rank Features: If the removal of feature Fi causes more dis-
order than the removal of feature F2 then £?_FI > E^F  ̂ where E-p  ̂ and E-F2 
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are entropy after removing Fi and F2 respectively. In scenario 1 (Figure 2(a)) 
E-Fi > E-F^. For scenario 2 (Figure 2(b)) we added one more feature F3 which 
takes uniformaly random values and does not take part in forming the 2 clusters. 
As expected we got E-Pi > E-F3 and E-F2 > E-Pa- Secenario 2 suggests that 
our entropy measure works for dependent features also. 

For ranking of features we can use E in the following way: Each feature 
is removed in turn and E is calculated. If the removal of a feature results in 
minimum E the feature is the least important; and vice versa. In the algorithm 
CalcEnt(Ffc) calculates E of the data after discarding feature Fk. 
Algorith m (RANK) : 

P = E values for M features 
For fc = 1 to M 

Pk = CalcEnt(Ffc) 
OutputRank(P) 

Scalable Feature Ranking: Data mining generally concerns data with large 
number of data points. For a large number of data points our ranking measure 
may not be practical as it is (the complexity of RANK is 0{MN'^) if we take 
the similarity measure between 2 points as unit). There are different approaches 
available in the literature for handling large data sets for a given algorithm. Our 
scalable method is based on random sampling. We observed that a reasonably 
small random sample retains the original cluster information in most cases. This 
phenomenon was also observed in [9] in their work on initialization of partitional 
clustering algorithms. Notice that for entropy measure to work well the cluster 
structure needs to be retained and it is largely independent of the number of 
data points. So, random sampling is a good choice for scalability. The algorithm 
is simple. Initially all features are ranked 0. Random samples are generated and 
RANK is run over each sample to produce the rankings of features. The feature 
rankings are added correspondingly. At the end of all random samples p (we 
suggest the use of at least 35 samples as 35 is often considered the minimum 
number of samples for large sample procedures [7]) we obtain the final rankings 
of the features. 
Algorith m for  Scalable Ranking, SRANK 

for all features FkS Overall iJank, ORk = 0 
for / = 1 to p 

take a sample Li 
run RANK to find rankings Ri 
ior k = 1 to M 

ORk = ORk + Ri, 
output overall rankings OR 

Selecting a Subset of Importan t Features: 
A problem is how many features we should choose from a ranked list. A natural 
expectation is that entropy would fall initially with removal of unimportant fea-
tures, but would stop falling at some point. This is not the case as the entropy 
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is not invariant with respect to different numbers of features. Hence we are left 
with finding the different alternatives of selecting a subset of features: (1) If one 
knows the number of important features required, just pick them starting with 
the most important one, or (2) we can choose a clustering algorithm and choose 
the subset that maximizes the clustering quality. The first option is not prac-
tical without any a priori knowledge. The second option is a wrapper method. 
Wrapper method is a feature selection method that wraps around clustering 
algorithm which is a standard way for supervised feature selection with a clas-
sification algorithm [12]. The difference is that in our case features are already 
ranked according to their importance and so the task of searching through the 
feature subset space of 2  ̂ is avoided. The idea is to run a clustering algorithm 
on the selected features and choose the subset that produces best cluster quality. 

We choose fc-means clustering algorithm which is very popular and simple 
to implement. It is iterative, provides results fast (converges fast to local max-
ima), has a time complexity of # / i er * |Dafa| * c where #7ier is is the num-
ber of iterations, |Dato| is the size of the data (A^ * M), and c is the number 
of clusters. Once the clustering is done we need to measure the cluster qual-
ity. There are numerous criterion functions for clustering in literature to mea-
sure cluster quality. We select scattering criterion which is invariant under non-
singular transformation of data. Scattering Criteria : These criteria consider 
the scatter matrices used in multiple discriminant analysis. Scatter matrix for 
j * ' ' cluster: Pj = J2xi€x  ~ "^j)(^ t ~ '^j)*  Within-cluster scatter matrix: 
Pw — Y^i=\ Pj Between-cluster scatter matrix: PB = Yl'j=i  ('^j ~ '"^)("^j ~ '^)* 
where m is the total mean vector and nij is the mean vector for j * ' ' cluster and 
(Xi ~ mjY is the matrix transpose of the column vector [Xi — ruj). Among 
different scattering criteria we briefly describe here an 'Invariant Criterion'. One 
invariant criterion is: tr{Pw~^PB) where tr is trace of a matrix which is the sum 
of its diagonal elements. It is invariant under nonsingular linear transformations 
of the data. It measures the ratio of between-cluster to within-cluster scatter. 
The higher the tr{Pw~^PB), the higher the ratio of between-cluster scatter to 
within-cluster one and hence, and hence, the higher the cluster quality. We use 
tr{Pw''^PB) to compare the cluster quahty for different subsets of important 
features. The algorithm for selecting a subset of features is as follows: 
Algorithm SELECT: 

run RANK to get rankings Rk,k = 1...M 
for k—1 to M 

run ii"-means to find clusters using subset {Ri, ...,Rk) 
calculate tr{P^^PB) 
if stopping criterion satisfy break 

In case of large data run SRANK instead of RANK. TrCP^^Ps) will mcrease 
with the addition of features if the ratio of between-cluster to within-cluster 
increases, otherwise it decreases or remains relatively unchanged. As is found 
by the experiments, tr{P^PB) increases initially and once all important fea-
tures are added, it either goes down or remains relatively unchanged for any 
addition of unimportant features. The point at which tr{P^PB) goes down or 
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remains unchanged is not difficult to detect visually, hence the stopping criterion 
is manually decided. 

4 Experiments 

We empirically tested our feature selection method on different scenarios that 
one may find in various data mining applications. First, tests are conducted on 
benchmark and synthetic data sets to check the correctness of our claim that our 
feature selection method can select correct features as we know well about these 
data sets. Tests are then conducted on a large high-dimensional data to test 
the performance of SRANK. We used a MATLA B random function to generate 
synthetic data. For synthetic data sets a few features are chosen as important 
and these features follow Gaussian distribution. Each cluster is of equal size if 
not mentioned otherwise. Clusters are usually overlapping. Unimportant features 
are added which take uniformly random values. Each data has 5% noisy data 
points. 
Benchmark and Synthetic Data: Three synthetic data sets are generated 
with different numbers of clusters and features. Benchmark data sets (both nu-
meric and nominal) are selected from UCI machine-learning repository [13]. See 
Table 1 for the details about data sets. We have chosen those data sets from 
the repository for which prior information is available regarding importance of 
features. Although for these benchmark data sets class information is available, 
in our experiments we have removed the class labels. Parity3+3 has 3 relevant, 
3 redundant, and 6 irrelevant features. 

The results for ranking are shown in Table 1. Our method is able to rank 
the important features in the top ranks for all data. For CorrAL our method 
ranks feature F6 higher. F6 is correlated to the class label 75% of the data 
points. This shows our ranking measure favors features that are correlated to 
the class. Although for CorrAL this is not desired but for real-world data this 
may be acceptable. For Parity3-)-3 ranking was correct although the redundant 
features could not be detected. This can be removed if after selecting a subset 
of features we check for redundancy between the features in pair. For a small 
subset of selected features this may not be extermely prohibitive. 

The results for selecting a subset of features are shown for the data sets with 
a known number of clusters and numeric data. We use fc-means and tr{Pw~ PB) 
to evaluate the subsets of important features. Initialization of fc-means is done by 
randomly choosing points from the data. Once a set of points are chosen for the 
whole data the same set is used for different subsets of features. The results are 
summarized in Figure 3. The X-axis of the plots is for number of most important 
features and Y-axis is for tr{P^PB) value for the corresponding subset of most 
important features. For Iris data set trace value was the maximum for the two 
most important features. For D3C, D4C and D6C data trace value increases with 
addition of important features in a fast rate but slows down to almost a halt 
after all the important features are added. For a practical application it will  not 
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Data Set 
Iri s 
ChemicalPlant 
Non-linear 
Parity3+3 
CorrAL 
Monks 
DSC 
D4C 
D6C 

M 
4 
5 
4 
12 
6 
6 
4 
15 
22 

#Clusters/Classes 
S 
oo 
oo 
2 
2 
2 
S 
4 
6 

Important Features 
3,4 
1,2,3 
1,2 
{1,7},{2,8},{3,9 } 
1,2,3,4 
2,4,5 
1,2 
1-5 
1-7 

Ranking (Descending Order) 
{3,4},1,2 
{3,1,2},4,5 
{2,1},3,4 
{9,3,8,2,7,1},4,10,... 
{3,6,1,2,4},5 
{5,2,4},1,6,3 
{2,1},4,S 
{1,3,5,2,4},13,9,11,... 
{3,6,5,4,2,1,7},10,9,... 

Table 1. Ranking of features: oo - Class is continuous, bold font is used to show the 
correctness of the ranking. 

(a) Iris (b) DSC 

#Most Important Features—> 

(c) D4C 

#Most Important Features—> 

(d) D6C 

#Most Important Features—> #Most Important Features—> 

Fig. 3. tr{P^^PB) of Iris and Synthetic data. 
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be difficult to notice these trends, and hence selecting a subset of features can 
be an easy task. 
Large and High-Dimensional Data: We show the results of our feature selec-
tion on a synthetic large and high-dimensional data. The data has 100 features 
(first 20 features are important and the next 80 features unimportant), 5 clus-
ters, each cluster created by Gaussian distribution, unimportant features take 
uniformly random values. Each cluster has 20,000 points and the data has 5000 
(approximately 5%) noisy data points. Sample sizes chosen are 0.25%, 0.50% 
and 1.0%. 
Results: For space constraint we have shown results of SHANK and SELECT 
for 5 samples. SRANK results are shown in Table 2. The last row in Table 2 is 
the over all rankings after 5 runs. In all the runs the 20 important features are 
ranked at the top, and hence, they are ranked at the top in over all ranking as 
well. SELECT results are shown in Figure 4 and Table 3. We have shown average 
results for 5 sample runs for 0.25%. In Table 3 impurity is "number of misclassi-
fications not including the noise" .̂ Notice that impurity is low or zero when only 
important features are used and it grows with addition of unimportant features. 
I t further confirms our suspicion that fc-means (and probably other clustering 
algorithms) get confused with useless features and removing them can contribute 
to the cluster quality. This result shows satisfactory scalability of SRANK and 
SELECT. 

5 Conclusion 

We tested RANK over a real-world textual finance data. As many as 423 phrases 
or words are used as features for each textual financial data taken on a daily basis 
from reliable and standard sources such as Wall Stree Journal. The feature values 
are the frequencies of the corresponding phrases in that day's reports. After run-
ning RANK over this high-dimensional data we showed the results to a domain 
expert. He was satisfied regarding the top rankings given to important phrases 
such as: blue chip, property lost, banking retreat, etc. Efforts are on to use this 
ranking for prediction purposes. Another application yet untested is Reuters text 
categorization data which has hundereds of thousands of words as features. It 
may be useful to pick up a few hundred words for further classification. We stud-
ied a number of related issues such as high-dimensional data, noisy data, large 
data, redundant/correlated features, and hill-climbing vs. exhaustive. Handling 
high dimensional data is a prominent desirable characteristic of our method. 
Experiments show that in the face of high-dimensional data fc-means algorithm 
perform poorly, but removal of unimportant features significantly improved its 
performance. Our method is able to handle noisy data. To handle very large data 
sets we used random samples. Our ranking measure works well consistently for 

^ As we have generated the data, the data points that group together in a cluster are 
known and it enables us to find impurity after clustering. This may not be the case 
for real-world data, and hence tr{Pw~^PB) is more useful practically. 
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#Run 

1 

2 

3 

4 

5 

OverAU 
Ranking 

Sample Size 
0.25% 

{15,5,20,14,9,12,2, 
7,18,11,17,1,19,10,3, 
6,16,8,4,13},42,57,... 
{5,6,14,20,7,10,12, 

17,16,18,15,13,8,9,19, 
2,11,1,4,S},63,25,... 

{14,6,17,13,12,9,20,15, 
10,5,2,19,1,16,8,7, 
11,3,18,4},29,92,... 
{11,12,17,1,4,9,8,3, 
5,18,16,2,6,19,14,13, 
7,20,15,10},32J7,... 

{13,19,9,16,20,18,10, 
6,8,4,12,5,15,14,17, 
2,1,11,3,7},42,37,... 

{12,5,9,14,20,17, 
6,13,15,11,18,10,16,19, 

2,8,l,7,3,4),2Z,9i... 

0.50% 

{20,5,19,3,14,17,9, 
2,11,10,13,1,16,7,4, 

8,15,6,18,12},Aifi\,... 
{19,14,16,13,3,6,15, 
18,17,2,11,8,1,4,7, 

9,5,12,10,20},55,23,... 
{19,10,15,2,18,3,8, 

13,16,7,17,14,12,5,11, 
20,9,4,1,6},68,39,... 

{8,1,3,19,15,18,12,7,11, 
2,4,20,10,13,5,14,17, 

6,9,16},Ufi3,... 
{15,16,13,2,10,8,19,11,14, 

4,3,6,1,9,17,12,7, 
20,18,5},37,24,... 

{19,3,15,2,13,8,14, 
16,10,11,18,17,1,7,12, 
20,4,5,9,6} ,Ah,%7,... 

1.0% 

{15,19,3,16,13,10,9,5, 
11,17,12,4,14,20,2,1, 

8,18,6,7},71,23,... 
{12,13,7,6,4,1,19,3, 
9,20,10,11,15,18,8,2, 
14,17,16,5} A2,29,... 
{9,4,5,2,16,14,1,3, 

12,19,20,6,17,15,18,10, 
13,7,8,11},71,92,... 
{10,19,12,6,1,14,8, 

7,20,17,18,13,16,15,2, 
4,11,5,3,9},26,70,... 

{4,15,14,13,3,9,10,19, 
1,7,8,12,5,18,2,16, 

17,6,20,11},74,53,... 

{19,4,12,13,10,1,3, 
9,15,14,16,6,7,5,20, 

2,17,8,18,11},62,54,... 

Table 2. Ranking for 5 random samples of 3 different sizes 

- * o o -

1 O O — 

E O 3 0 - t o S O S O -T-O S O S O 1 O O 

#Most Important Features—> 

Fig. 4. Average tr{Py^/PB) of 5 samples of size 0.25% of a Large and High-Dimensional 
Data. 
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#MostlmpFea triP^'Ps) Impurity (%) 

1 29.56 10.4 
5 87.13 8.2 
10 156.4 0.0 
15 299.67 0.0 
20 468.81 0.0 
25 476.36 0.0 
30 485.57 2.0 

#MostImpFea triP^'Pa) Impurity (%) 

35 203.18 10.2 
40 122.5 17.4 
50 57.4 36.8 
60 13.71 62.2 
70 5.87 56.0 
80 10.37 66.4 
100 7.13 73.0 

Table 3. Average tr{P^n,^PB) and Impurity of 5 samples of 0.25% of a large and high 
dimensional Data 

the different runs with different sizes of random samples. Our method only re-
quires the cluster structure be retained which a reasonably small random sample 
is expected to maintain. We studied the issue of redundant/correlated features. 
We did an experimental study of comparing our hill-climbing feature selection 
method vis-a-vis exhaustive method. Hill-climbing method performed reliably 
while consuming much less time. 

Testing our feature selection method for clustering algorithms other than 
A;-means is an ongoing work. But as shown by the experiments over data sets 
with known important features, it can be expected that our algorithm would 
perform equally well for other clustering algorithms. Another area to explore is 
subspace clustering (CLIQUE [2]) which is the task of finding dense regions in 
subspaces of features instead of whole space. It can help find interesting data 
hidden in subspaces of features where clusters may not be defined by all features. 
A problem encountered in CLIQUE concerns scalability with respect to number 
of features. Their experiments exhibited a quadratic behavior in the number 
of features. It may be interesting to check the effectiveness of our approach 
in reducing the dimensionality thereby making the search for subspace clusters 
more efficient. 
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Abstract. We address the problem of similarity search in large time series data-
bases. We introduce a novel-dimensionality reduction technique that supports 
an indexing algorithm that is more than an order of magnitude faster than the 
previous best known method. In addition to being much faster our approach has 
numerous other advantages. It is simple to understand and implement, allows 
more flexible distance measures including weighted Euclidean queries and the 
index can be built in linear time. We call our approach PCA-indexing (Piece-
wise Constant Approximation) and experimentally validate it on space teleme-
try, financial, astronomical, medical and synthetic data. 

1 Introductio n 

Recently there has been much interest in the problem of similarity search in time se-
ries databases. This is hardly surprising given that time series account for much of the 
data stored in business, medical and scientific databases. Similarity search is useful in 
its own right as a tool for exploring time series databases, and it is also an important 
subroutine in many KDD applications such as clustering [6], classification [14] and 
mining of association rules [5]. 

Time series databases are often extremely large. Given the magnitude of many time 
series databases, much research has been devoted to speeding up the search process 
[23,1,15,19,4,11]. The most promising methods are techniques that perform dimen-
sionality reduction on the data, then use spatial access methods to index the data in the 
transformed space. The technique introduced in [1] and extended in [8, 21,23]. The 
original work by Agrawal et al. utilizes the Discrete Fourier Transform (DFT) to per-
form the dimensionality reduction, but other techniques have been suggested, most 
notably the wavelet transform [4]. 

In this paper we introduce a novel transform to achieve dimensionality reduction. The 
method is motivated by the simple observation that for most time series datasets we 
can approximate the data by segmenting the sequences into equi-length sections and 
recording the mean value of these sections. These mean values can be indexed effi-
ciently in a lower dimensionality space. We compare our method to DFT, the only 

T. Terano, H.Liu, and A.L.P. Chen (Ed.s.): PAKDD 2000, LNAI 1805, pp. 122-133, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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obvious competitor, and demonstrate a one to two order of magnitude speedup on four 
natural and two synthetic datasets. 

In addition to being much faster. We demonstrate that our approach has numerous 
other advantages over DFT. It is simple to understand and implement, allows more 
flexible queries including the weighted Euclidean distance measure, and the index can 
be built in linear time. In addition our method also allows queries which are shorter 
than length for which the index was built. This very desirable feature is impossible in 
DFT and wavelet transforms due to translation invariance [20]. 

The rest of the paper is organized as follows. In Section 2, we state the similarity 
search problem more formally and survey related work. In Section 3, we introduce our 
method. Section 4 contains extensive empirical evaluation of our technique. In Section 
5, we demonstrate how our technique allows more flexible distance measures. Section 
6 offers concluding remarks and directions for future work. 

2 Background and Related Work 

Given two sequences X = Xj...x„ and Y=y,...y  ̂ with n = m, their Euclidean distance is 
defined as: 

D{x,Y)^^lt(^ y^y (1) 

There are essentially two ways the data might be organized [8]: 
 Whole Matching. Here it assumed that all sequences to be compared are the same 

length. 

 Subsequence Matching. Here we have a query sequence X, and a longer sequence Y. 
The task is to find the subsequence in Y, beginning at K., which best matches X, 
and report its offset within Y. 

„, , , , .  ndatapoints -( 
Whole matchmg requires com-
paring the query sequence to 
each candidate sequence by 
evaluating the distance function 
and keeping track of the se-
quence with the lowest distance. 
Subsequence matching requires 
that the query X be placed at 
every possible offset within the 
longer sequence Y. Note it is 
possible to convert subsequence 
matching to whole matching by sliding a "window" of length n across K, and making 
copies of the m-n windows. Figure 1 illustrates the idea. Although this causes storage 
redundancy it simplifies the notation and algorithms so we will adopt this policy for 
the rest of this paper. 

Figure 1: The subsequence matching problem can be 
converted into the whole matching problem by sliding a 
"window" of length n across the long sequence and making 
copies of the data falling within the windows 
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There are several kinds of queries that could be made of a database, such as range 
queries, all-pairs and nearest neighbor. For simphcity, we will concentrate just on 
nearest neighbor. The other kinds of queries can always be built using nearest neigh-
bor, and the extensions are trivial. 
Given a query X and a database consisting of K time series Y. (1 < i < K), we want to 
find the time series Y. such that D(Y.X) is minimized. The brute force approach, se-
quential scanning, requires comparing every time series Y to X. Clearly this approach 
is unrealistic for large datasets. 
Any indexing scheme that does not examine the entire dataset could potentially suffer 
from two problems, false alarms and false dismissals. False alarms occur when objects 
that appear to be close in the index are actually distant. Because false alarms can be 
removed in a post-processing stage (by confirming distance estimates on the original 
data), they can be tolerated so long as they are relatively infrequent. In contrast, false 
dismissals, when qualifying objects are missed because they appear distant in index 
space, are usually unacceptable. In this work we will focus on admissible searching, 
indexing techniques that guarantee no false dismissals. 

2.1 Related Work 

A time series X can be considered as a point in n-dimensional space. This immediately 
suggests that time series could be indexed by Spatial Access Methods (SAMs) such as 
the R-tree and its many variants [9,3]. However SAMs begin to degrade rapidly at 
dimensionalities greater than 8-10 [12], and realistic queries typically contain 20 to 
1,000 datapoints. In order to utilize SAMs it is necessary to first perform dimension-
ality reduction. Several dimensionality reduction schemes have been proposed. The 
first of these F-index, was introduced in [1] and extended in [8,23,21]. Because this is 
the current state-of-the-art for time series indexing we will consider it in some detail. 
An important result in [8] is that the authors proved that in order to guarantee no false 
dismissals, the distance in the index space must satisfy the following condition 

D^(A,B)>D,^,.^(A,B) (2) 

Given this fact, and the ready availability of off-the-shelf SAMs, a generic technique 
for building an admissible index suggests itself. Given the true distance metric (in this 
case Euclidean) defined on n datapoints, it is sufficient to do the following: 

 Produce a dimensionality reduction technique that reduces the dimensionality 
of the data from n to N, where Â  can be efficiently handled by your favorite 
SAM. 

 Produce a distance measure defined on the A' dimensional representation of the 
data, and prove that it obeys D^(A,B) > D^^,^{A,B). 

In [8] the dimensionality reduction technique chosen was the Discrete Fourier Trans-
form (DFT). Each of the time series are transformed by the DFT. The Fourier repre-
sentation is truncated, that is, only the first k coefficients are retained (1 < ^ < n), and 
the rest discarded. The k coefficients can then be mapped into 2k space {2k because 
each coefficient has a real and imaginary component) and indexed by an R* tree. 
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An important property of the Fourier Transform is Parseval's Theorem, which states 
that the energy in Euclidean space is conserved in Fourier space [18]. Because of the 
truncation of positive terms the distance in the transformed space is guaranteed to 
underestimate the true distance. This property is exploited by mapping the query into 
the same 2k space and examining the nearest neighbors. The theorem guarantees un-
derestimation of distance, so it is possible that some apparently close neighbors are 
actually poor matches. These false alarms can be detected by examining the corre-
sponding original time series in a post processing stage. 
Many other schemes have been proposed for similarity search in time series databases. 
As they focus on speeding up search by sacrificing the guarantee of no false dismissals 
[11, 15, 19], and/or allowing more flexible distances measures [2,11, 15, 14, 13, 23, 
16,21] we will not discuss them further. 

3 Our Approach 

As noted by Faloutsos et al. [8], there are several highly desirable properties for any 
indexing scheme: 

 It should be much faster than sequential scanning. 
 The method should require littl e space overhead. 
 The method should be able to handle queries of various lengths. 
 The method should be allow insertions and deletions without requiring the index 

to be rebuilt. 
 It should be correct, i.e. there should be no false dismissals. 

We will now introduce the PCA indexing scheme and demonstrate that it has all the 
above properties. 

3.1 Dimensionality Reduction 

We denote a time series query as X = x,,... vC„, and the set of time series which consti-
tute the database as F = {Y^,...Y^). Without loss of generality, we assume each se-
quence in y is n units long. Let N be the dimensionality of the transformed space we 
wish to index (1 <N< n). For convenience, we assume that Â  is a factor of n. This is 
not a requirement of our approach, however it does simplify notation. 
A time series X of length n is represented in N space by a vector X = Jj ,K , %. The i* 
element of X is calculated by the following equation: 

(3) 
y=A(i-i)+ i 

Simply stated, to reduce the data from n dimensions to A' dimensions, the data is di-
vided into N equi-sized "frames". The mean value of the data falling within a frame is 
calculated and a vector of these values becomes the data reduced representation. Fig-
ure 2 illustrates this notation. The complicated subscripting in Eq. 3 is just to insure 
that the original sequence is divided into the correct number and size of frames. 
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; f=(- l , -2 , - l ,0, 2.1,1,0) 
rt = lXl = 8 

^ = (raean(-l,-2,-l,0), mean(2,l,l,0) ) 

^ = ( -1,1) N = l ^ l = 2 

Figure 2: An illustration of the data reduction technique utilized in this paper. A time series 
consisting of eight (n) points is projected into two (iV) dimensions. The time series is divided 
into two (N) frames and the mean of each frame is calculated. A vector of these means be-
comes the data reduced representation 

Two special cases worth noting are when A' = n the transformed representation is 
identical to the original representation. When A' = 1 the transformed representation is 
simply the mean of the original sequence. More generally the transformation produces 
a piecewise constant approximation of the original sequence. 

3.2 Building the Index 

Table 1 contains an outline of the indexing algorithm. We are deliberately non-
committal about the particular indexing structure used. This is to reinforce the fact the 
dimensionality reduction technique proposed is independent of the indexing structure. 
Al l sequences in Y are transformed by Eq. 3 and indexed by the spatial access method 
of choice. The indexing tree represents the transformed sequences as points in N di-
mensional space. Each point contains a pointer to the corresponding original sequence 
on disk. 

for  i = 1 t o K // For each sequence to be indexed 
Y  ̂ <— ŷ  - 1:1630(7 ;̂ / / Optional: remove the mean of Y^ 
Y- <— t r a ns formed ( ŷ ) ; / / As in eq. 3 
I n s e rt Y i n to the index ing s t r u c t u re wi t h a p o i n t er to Y^ 

on d i sk; 
end; 

Table 1: An outline of the indexing building algorithm. 

Note that each sequence has its mean subtracted before indexing. This has the effect 
of shifting the sequence in the y-axis such that its mean is zero, removing information 
about its offset. This step is optional. We include it because we want to compare our 
results directly to F-index, and F-index discards information about offset. For some 
applications this step is undesirable and can be omitted [13]. Note that the transfor-
mation for a single sequence takes 0(n) time, thus the entire index can be built in 
0(Kn). This contrasts well to F-index which requires 0(IOiLog«) time. 
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3.3 Searching the Index 

As mentioned in Section 2, in order to guarantee no false dismissals we must produce 
a distance measure DR, defined in index space, which has the following property: 
DiX,Y) > DR{ X,Y ). The following distance measure has this property: 

DR(X,Y).Jf^l^l(x,-y,f (4) 

The proof that D{X,Y) > DR{ X,Y)is straightforward but long. We omit it for brevity. 
Table 2 below contains an outline of the nearest neighbor search algorithm. Once a 
query X is obtained a transformed copy of it x is produced. The indexing structure is 
searched for the nearest neighbor of X . The original sequence pointed to by this 
nearest neighbor is retrieved from disk and the true Euclidean distance is calculated. If 
the second closest neighbor in the index is further than this true Euclidean distance, we 
can abandon the search, because we are guaranteed its distance in the index is an un-
derestimate of its true distance to the query. Failing that, the algorithm repeatedly 
retrieves the sequence pointed to by the next most promising item in the index and 
tests if its true distance is greater than the current best so far. As soon as that happens 
the search is abandoned. 

b e s t - s o - f ar 
done 
i 
X 

<— 
«— 
<— 
<— 

i n f i n i t y ; 
FALSE; 
1; 
t r ans fo rmed(X) ; / /  Usin g eq. 2 

while i  <  G AND NOT(done ) 
FindX' s i "  neares t  neighbo r  i n th e index ;  / /  Usin g DR {eq.3 ) 
Retriev e sequenc e represente d b y th e i" "  neares t  neighbor ; 

i f  D(original-sequence^ ,  X )  <  best-so-fa r  //D i s  define d i n eq. l 
best-so-fa r  < — D(original-sequencej ,  X )  ; 

end; 

i f  best-so-fa r  <  i"'+ l  neares t  neighbo r  i n th e inde x 
done < -  TRUE; 
Display ('Sequence ' , i , ' is the nearest neighbor to Query'); 
Display ('At a distance of ' , b e s t - s o - f ar ) ; 

end; 
i <~ i + 1; 

end; 
Table 2: An outline of the indexing searching algorithm. 

3.4 Handling Queries of Various Lenghts 

In the previous section we showed how to handle queries of length n, the length for 
which the index structure was built. However, it is possible that a user might wish to 
query the index with a query which is longer or shorter that n. For example a user 
might normally be interested in monthly patterns in the stock market, but occasionally 
wish to search for weekly patterns. Naturally we wish to avoid building an index for 



128 E.J. Keogh and M.J. Pazzani 

every possible length of query. In this section we will demonstrate how we can exe-
cute queries of different lengths on a single fixed-length index. For convenience we 
wil l denote queries longer than n as XL and queries shorter than n as XS, with ]XL\ = 
«XL and \XS\ = n^,. 

3.4.1 Handling Short Queries 

Queries shorter than n can be dealt with in two ways. If the SAM used supports di-
mension weighting (for example the hybrid tree [3]) one can simply weigh all the 
dimensions from ceilingi^^^^) to A' as zero. Alternatively, the distance calculation in 
Eq. 4 can have the upper bound of its summation modified to: 

Nshort=\^\ V i ^ S T f e ^ ^'^ 
The modification does not affect the admissibility of the no false dismissal condition 
in eq. 2. Because the distance measure is the same as Eq. 4 which we proved, except 
we are summing over an extra 0 to JL-I nonnegative terms on the larger side of the 

inequality. Apart from making either one of these changes, the nearest neighbor search 
algorithm given in table 2 is used unmodified. This ability of PCA-index to handle 
short queries is an attractive feature not shared by F-index, which must resort to se-
quential scanning in this case [8], as must indexing schemes based on wavelets [20]. 

3.4.2 Handling Longer  Queries 
Handling long queries is a littl e more difficult than the short query case. Our index 
only contains information about sequences of length n (projected into A' dimensions) 
yet the query XL is of length n^ with n  ̂ > n. However we can regard the index as 
containing information about the prefixes of potential matches to the longer sequence. 
In particular we note that the distance in index space between the prefix of the query 
and the prefix of any potential match is always less than or equal to the true Euclidean 
distance between the query and the corresponding original sequence. Given this fact 
we can use the nearest neighbor algorithm outlined in table 2 with just two minor 
modifications. In line four, the query is transformed into the representation used in the 
index, here we need to replace X with XL[\:n].  The remainder of the sequence, 
XL[n+l:n^],  is ignored during this operation. 
In line seven, the original data sequence pointed most promising object in the index is 
retrieved. For long queries, the original data sequence retrieved and subsequently 
compared to XL must be of length n^not n. 

4 Experimental Results 

To demonstrate the generality of our method we tested it on five datasets with widely 
varying properties. 
 Random Walk: The sequence is a random walk x, = x,., + z, Where z, (f = 1,2,...) are 

independent identically distributed (uniformly) random variables in the range (-
500,500) [1]. (100,000 datapoints). 
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 Astronomical: A dataset that describes the rate of photon arrivals [17]. (28,904 
datapoints). 

 Financial: The US Daily 5-Year Treasury Constant Maturity Rate, 1972 - 1996 
[15]. (8,749 datapoints). 

 Space Shuttle: This dataset consists of ten time series that describe the orientation 
of the Space Shuttle during the first eight hours of mission STS-57 [14,15]. 
(100,000 datapoints). 

 Control Chart: This dataset consists of the Cyclic pattern subset of the control 
chart data from the UCI KDD archive (kdd.ics.uci.edu). The data is essentially a 
sine wave with noise. (6,000 datapoints). 

4.1 Building Queries 

Choosing queries that actually appear in the indexed database will always produce 
optimistic results. On the other hand, some indexing schemes can do well if the query 
is greatly different from any sequence in the dataset. To perform realistic testing we 
need queries that do not have exact matches in the database but have similar properties 
of shape, structure, spectral signature, variance etc. To achieve this we do the follow-
ing. We extract a sequence from the database then fli p it either backwards or upside-
down depending on the outcome of a fair coin toss. The flipped sequence then be-
comes our query. 
For every combination of dataset, number of dimensions, and query length we per-
formed 1,(XX) random queries and report the average result. 

4.2 Evaluation 

In previous work on indexing of time series, indexing schemes have been evaluated by 
comparing the time taken to execute a query. However this method has the disadvan-
tage of being sensitive to the implementation of the various indexing schemes being 
compared. For example in [1], the authors carefully state that they use the branch and 
bound optimization for the Sequential-Scan (a standard indexing strawman). However, 
in [11] and [23] the authors do not tell us whether they are comparing their indexing 
schemes to optimized or unoptimized Sequential-Scan. This is a problem because the 
effect of the optimization can be as much as two orders of magnitude, which is far 
greater than the speedup reported. 
As an example of the potential for implementation bias in this work consider the fol-
lowing. At query time F-index must do a Fourier transform of the query. We could use 
the naive algorithm which is 0{n) or the faster radix-2 algorithm (padding the query 
with zeros for n  ̂ 2'°"'*" [18]) which is 0(nlog«). If we implemented the simple algo-
rithm it would make our indexing method perform better relative to F-index. 
To prevent implementation bias we will compare our indexing scheme to F-index by 
reporting the P, the fraction of the database that must be examined before we can 
guarantee that we have found the nearest match to our query. 
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P^ Number of objects retreived 
(6) Number of objects in database 

Note the value of P depends only on the data and the queries and is completely inde-
pendent of any implementation choices, including spatial access method, page size, 
computer language or hardware. It is a fair evaluation metric because it corresponds to 
the minimum number of disk accesses the indexing scheme must make, and disk time 
dominates CPU time. A similar idea for evaluating indexing appears in [10]. 

4.3 Experimental Results 

Figure 3 shows the results of comparing PCA-index to F-index on a variety of da-
tasets. Experiments in [1,8] suggest a dimensionality of 6 for F-index. For complete-
ness we tested of a range of dimensionalities, however only even numbers of dimen-
sions are used because F-index {unlike PCA-index) is only defined for even numbers. 
We also tested over a variety of query lengths. Naturally, one would expect both ap-
proaches to do better with more dimensions and shorter queries, and the results gener-
ally confirm this. 

PCA-index F-inde\ ... 

'  '"^^-X/" 
.̂ v 

rj 

 Random Walk 

: tinnnciti l 

Shuttle 

Astronomical 

Figure 3: The fraction of tiie database which must be retrieved from dislc using ttie two indexing 
schemes compared in this paper, together with sample queries and a section containing the corre-
sponding best match. Each pair of 3d histograms represents a different dataset. Each bar in the 3d 
histogram represents P, the fraction of the database that must be retrieved from disk for a par-
ticular combination of index dimensionality and query length (averaged over 1,000 trials) 

For low dimensionalities, say 2-4, PCA-index generally outperforms F-index by about 
a factor of two. However as the dimensionality increases the difference between the 
approaches grows dramatically. At a dimensionality often, PCA-index outperforms F-
index by a factor of 81.4 (averaged over the 5 datasets in Fig 3). Competitive index 
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PCA-index F-index 

Control Chart 

Figure 4: The result of experiments on the Conttol Dataset, with a sample query and a section 
containing the corresponding best match. The black topped 3d histogram bars indicate where F-
index outperforms PCA-index 

trees can easily handle dimensionalities often or greater [3,12]. 
The Control dataset shown in Fig. 4 contains the only instances where F-index outper-
formed PCA-index, so we will consider it in more detail. This dataset is a sine wave 
with noise. With just two dimensions (corresponding to the real and imaginary parts of 
a single Fourier coefficient) F-index can model a sine wave very well. In contrast, at 
the same dimensionality PCA-index has several entire periods contained within a sin-
gle frame, thus all frames have approximately the same value and PCA-index has littl e 
discriminating power. However the situation changes dramatically as the dimension-
ality increases. Because most of the energy is concentrated in the first coefficient, 
adding more dimensions does not improve F-index's performance. In contrast PCA-
index extracts great benefit from the extra dimensions. Once the frame size is less than 
a single period of the sine wave its performance increases dramatically. 
This special case clearly illustrates a fact that can also be observed in all the other 
experiments, PCA-index is able to take advantage of extra dimensions much more that 
F-index. 

5 Generalizing the Distance Measure 

Although the Euclidean distance measure is optimal under several restrictive assump-
tions [1], there are many situations where a more flexible distance measure is desired 
[13]. The ability to use these different distance measures can be particularly useful for 
incorporating domain knowledge into the search process. One of the advantages of 
the indexing scheme proposed in this paper is that it can handle many different dis-
tance measures, with a variety of useful properties. In this section we will consider 
one very important example, weighted Euclidean distance. To the author's knowledge, 
this is the first time an indexing scheme for weighted Euclidean distance has been 
proposed. 

5.1 Weighted Euclidean Distance 

It is well known in the machine learning community that weighting of features can 
greatly increase classification accuracy [22]. In [14] we demonstrated for the first time 
that weighing features in time series queries can increase accuracy in time series clas-
sification problems. In addition in [13], we demonstrated that weighting features (to-
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gether with a method for combining queries) allows relevance feedback in time series 
databases. Both [14,13] illustrate the utility of weighted Euclidean metrics, however 
no indexing scheme was suggested. We will now show that PCA-index can be easily 
modified to support of weighted Euclidean distance. 
In Section 3.2, we denoted a time series query as a vector X = jc,,...jc .̂ More generally 
we can denote a time series query as a tuple of equi-length vectors {X = x^,. ..^^,W = 
H',,...,wJ where X contains information about the shape of the query and W contains 
the relative importance of the different parts of the shape to the query. Using this defi-
nition the Euclidean distance metric in Eq. 1 can be extended to the weighted Euclid-
ean distance metric DW: 

We can perform weighted Euclidean queries on our index by making two simple 
modifications to the algorithm outlined in Table 2. We replace the two distance meas-
ures D and DR with DW and DRW respectively. DW is defined in Eq. 7 and DRW is 
defined as: 

w-min(w^(,._,)^,,K ,w^.), DRW([X,W],Y) = ^^'^l^w,{x,-y,f 

(8) 
Note that it is not possible to modify F-index in a similar manner, because each coef-
ficient represents amplitude and phase of a signal that is added along the entire length 
of the query 

6 Conclusions 

We have introduced a dimensionality reduction technique that allows fast indexing of 
time series. We performed extensive empirical evaluation and found our method out-
performs the current best known approach by one to two orders of magnitude. We 
have also demonstrated that our technique can support weighted Euclidean queries. 
In future work we intend to further increase the speed up of our method by exploiting 
the similarity of adjacent sequences (in a similar spirit to the "trail indexing" technique 
introduced in [8]). Additionally, we hope to show the speedup obtained by PCA-index 
wil l support a variety of time series datamining algorithms that scale poorly to large 
datasets, for example the rule induction algorithm proposed in [5]. 

References 

1. Agrawal, R., Faloutsos, C, & Swami, A. (1993). Efficient similarity search in sequence 
databases. Proc. of the 4'*  Conference on Foundations of Data Organization and Algorithms. 

2. Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K. (1995). Fast similarity search in the 
presence of noise, scaling, and translation in times-series databases. In VLDB. 

3. Chakrabarti, K & Mehrotra, S. (1999). The Hybrid Tree: An Index Structure for High Di-
mensional Feature Spaces. Proc of the IEEE International Conference on Data Engineering. 



A Dimensionality Reduction Technique for Fast Similarity Search ... 133 

4. Chan, K. & Fu, W. (1999). Efficient Time Series Matching by Wavelets. Proceedings of the 
15''' International Conference on Data Engineering. 

5. Das, G., Lin, K. Mannila, H., Renganathan, G., & Smyth, P. (1998). Rule Discovery from 
Time Series. In Proc of the 3 Inter Conference of Knowledge Discovery and Data Mining. 

6. Debregeas, A. & Hebrail, G. (1998). Interactive interpretation of Kohonen maps applied to 
curves. Proc of the 4''' International Conference of Knowledge Discovery and Data Mining. 

7. Faloutsos, C. & Lin, K. (1995). Fastmap: A fast algorithm for indexing, data-mining and 
visualization of traditional and multimedia datasets. In Proc. ACM SIGMOD Conf, pp 163-174. 

8. Faloutsos, C, Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in 
time-series databases. In Proc. ACM SIGMOD Conf, Minneapohs. 

9. Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proc. ACM 
SIGMOD Conf, pp 47-57. 

10. Hellerstein, J. M., Papadimitriou, C. H., & Koutsoupias, E. (1997). Towards an Analysis of 
Indexing Schemes. 16*  ACM SIGACT- Symposium on Principles of Database Systems. 

11. Huang, Y. W., Yu, P. (1999). Adaptive Query processing for time-series data. Proceedings 
of the 5*  International Conference of Knowledge Discovery and Data Mining, pp 282-286. 

12. Kanth, K.V., Agrawal, D., & Singh, A. (1998). Dimensionality Reduction for Similarity 
Searching in Dynamic Databases. In Proc. ACM SIGMOD Conf, pp. 166-176. 

13. Keogh, E. & Pazzani, M. (1999). Relevance Feedback Retrieval of Time Series Data. Proc. 
of the 22''' Annual International ACM-SIGIR Conference on Research and Development in 
Information Retrieval. 

14. Keogh, E., & Pazzani, M. (1998). An enhanced representation of time series which allows 
fast and accurate classification, clustering and relevance feedback. Proceedings of the 4"" Inter-
national Conference of Knowledge Discovery and Data Mining, pp 239-241, AAA I Press. 

15. Keogh, E., & Smyth, P. (1997). A probabilistic approach to fast pattern matching in time 
series databases. Proc. of the 3"" Inter Conference of Knowledge Discovery and Data Mining 

16. Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of similar subsequences in long sequence 
databases. In 3"' IEEE Knowledge and Data Engineering Exchange Workshop. 

17. Scargle, J. (1998). Studies in astronomical time series analysis: v. Bayesian blocks, a new 
method to analyze structure in photon counting data. Astrophysical Journal, Vol. 504. 

18. Shatkay, H. (1995). The Fourier Transform - a Primer, Technical Report CS-95-37, De-
partment of Computer Science, Brown University. 

19. Shatkay, H., & Zdonik, S. (1996). Approximate queries and representations for large data 
sequences. Proc. I2th IEEE International Conference on Data Engineering, pp 546-553. 

20. Struzik, Z. & Siebes, A. (1999). The Haar Wavelet Transform in the time series similarity 
paradigm. 3"" European Conference on Principles and Practice of KDD. 

21. Refiei, D., & Mendelzon, A. (1997). Similarity-Based queries for time series data. In Proc. 
ACM SIGMOD Conf, pp. 13-25. 

22. Wettschereck, D., Aha, D. & Mohri, T. (1997). A review and empirical evaluation of feature 
weighting methods for a class of lazy learning algorithms. AI Review, Vol 11, Issues 1-5. 

23. Yi, B,K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences 
under time warping. lEEEE International Conference on Data Engineering, pp 201-208. 



Missing Value Estimation 
Based on Dynamic Attribute Selection 

K.C. Lee, J.S. Park, Y.S. Kim, and Y.T. Byun 

Department of Computer Science 
Hong-Ik University 

Mapogu, Seoul, Korea 121-791 
{lee jspark,yskim,byun}  @cs.hongik.ac.kr 

Abstract. Raw Data used in data mining often contain missing information, 
which inevitably degrades the quality of the derived knowledge. In this paper, a 
new method of guessing missing attribute values is suggested. This method 
selects attributes one by one using attribute group mutual information calculated 
by flattening the already selected attributes. As each new attribute is added, its 
missing values are filled up by generating a decision tree, and the previously 
filled up missing values are naturally utilized. This ordered estimation of miss-
ing values is compared with some conventional methods including Lobo's or-
dered estimation which uses static ranking of attributes. Experimental results 
show that this method generates good recognition ratios in almost all domains 
with many missing values. 

1 Introductio n 

Data Mining techniques have been developed to extract knowledge from a large 
amount of raw data. However, in the real world data, because data are gathered from 
many sources, some attribute values are often missing. Properly fillin g up the missing 
information may reduce the error rates of the derived knowledge. This paper intro-
duces a new method of fillin g up missing values. The conventional probabilistic 
method used in the mining system C4.5[5] determines missing values according to the 
probability of the corresponding values. Lobo's method[4] fill s up values of each 
attribute one by one according to the static ranks of their mutual information. In this 
paper, we present a new ordered method of estimating missing values, based on a 
dynamic attribute selection by considering already selected attributes. Extensive ex-
periments show that our method much improves recognition rates in many domains, 
and especially works well even in environments with high missing value ratios. 
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2 Related Works 

The simplest approach for dealing with missing attribute values seems to ignore in-
stances with any missing attribute values[6]. This approach cannot utilize any infor-
mation other known attributes may convey, and severely reduces the number of train-
ing data especially in the case of high missing ratios. Another simple method, the 
majority method[2], fill s up each missing attribute value with the highest frequency 
value of the attribute. Extensive experimentation has been conducted by Quinlan[7] 
including building up decision trees for each attribute to decide missing attribute val-
ues, and he adopted the probabilistic method[l] for the C4.5 data mining system[5]. 
Lobo's method[4] also builds decision trees for each attribute. However, the attributes 
are statically ordered according to their mutual information. The ordering of the at-
tributes may be important in that the missing value estimation for an attribute may be 
improved by the data with attributes previously filled up. 
In this paper, a new missing value estimation method is suggested. The attributes are 

selected one by one based on the feature group mutual information[3] calculated by 
flattening previously selected attributes. The corresponding decision trees are dynami-
cally generated and previously filled up missing values play their roles. 

3 Estimation of Missing Attribute Values 

In filling  up missing attribute values, it is desirable to utilize the information hidden in 
the data. Static methods like the majority method and the probabilistic method use 
information directly derivable from the distribution of each attribute, regardless of its 
relation with the other attributes. To utilize inter-attribute information, some informa-
tion theoretic measures have been defined[6]. 

Class uncertainty may be measured by the entropy as in (1). Here C implies the set 
of all possible classes, and c implies a specific class. 

Nc ^ 1 V 

//(C) = -£p (c ) log i'(c) y^) 

Class uncertainty after knowing the values of an attribute F may be measured by 
the conditional entropy as in (2). Here F implies an attribute the values of which are 
known, and/implies a specific attribute value of the attribute F. 

/ ' ( / ) ( £ / ' ( c l / ) I o g / ' ( c l /) (2) 

How much uncertainty is reduced after knowing the values of an attribute is meas-
ured by the mutual information defined by (3). 

I{C;F)  = H{C)-H{C\F) (3) 
Lobo's method ranks attributes according to their mutual information defined in 

(3), and builds trees in that order for each attribute to decide missing values. 
Once some attributes are already selected and their corresponding missing values 

are filled up, it seems reasonable to select the next attribute for missing value fill-up 
by considering its relation with the previously selected attributes. Hence we flatten the 
previously selected attributes into one big attribute with many values, and accordingly. 
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conditional class uncertainty has been defined as in (4). Here, S is the attribute gener-
ated by flattening all the already selected attributes, and (f, S) is a flattened attribute 
generated by merging the new attribute/ with 5 . 

Nc 

H(C\(f,S)) = -Y^P(s')('£p(c\s')\ogP(c\s')) (4) 

S = the set of feature values of (f,S) 
The attribute values of a new flattened attribute (f,S) belongs to FxSixS2X...xSk, 

where Sj is i-th selected attribute. For example, assume that 5 is the flattened attribute 
of two already selected attributes, shape and length, such that shape may have values 
rectangle or triangle and length may have values red or yellow. S may have flattened 
attribute values (rectangle, red), {rectangle, yellow), {triangle, red) and {triangle, 
yellow). If the candidate attribute length{=f) may have values long or short, (f,S) may 
have values like {rectangle, red, long) and {triangle, yellow, short). However, any 
non-existing combination of attribute values are removed. 

We choose each next attribute such that the feature group mutual information de-
fined in (5) is maximum. That is, a new attribute is selected such that the attribute 
together with all the previously selected ones can best decide the class of unseen data. 

G}{C,{f,S))=H{Q-H{C\{f,S)) (5) 

Anew attribute/is dynamically selected such that (5) for the attribute/is maximum. 
For each attribute dynamically selected, a decision tree is built to fill  up the missing 
values for the attribute, and the previously filled up attribute values may contribute to 
later decisions. The detailed algorithm of this method is as follows. 
Step 1: AS <- set of all the attributes; S <- {} ; 
Step 2: From AS, select an attribute F with max information gain ratio; 

A S ^ A S - { F } ; S < - S u { F }; 
Step 3: Do the following until the stopping criterion is met 

Select F from FS that maximizes GI(C; (F,S)); 
Fill up missing values for F by building up a decision tree for F; 
FS<-FS- {F }; S < -S u {F} ; 

The stopping criterion is met in step 3 if adding one or two more attributes does not 
improve the performance. For the performance measure, we empirically adopted pes-
simistic error rates to estimate the test data error rates using the training data. 

4 Experimental Results 

The experimental data set are selected mainly from UCI repository[8] and summa-
rized in Table 1 and the results are shown in Fig. 1 to 3. 

Table 1. Summary of Data sets 

Name 

Car 
Led24 

Mushroom 
Yeast 

Instances 

1728 
3000 
8124 
1484 

Attributes 

6 
8 
22 
7 

Classes 

4 
10 
2 
8 
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Ten-fold cross validations are used and the average values are shown in the figures. 
The results consistently show the effectiveness of our method in most domains espe-
cially when missing value ratios are high. . In the figures this method(FGMI) is com-
pared with Lobo's method and the probability method. 10 to 50 percent of missing 
values are intentionally added to each data set to test the proposed methods. 

F i q , 1 C a r 
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F i q . 2 L e d 2 4 
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Uissinq Volue Rolio(% ) 

Fig. 3 M ushroom 
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3 

2 ,5 

2 

1,5 
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Hissing Volue Rotio(X ) 

P ro b a b i I i ty - L o b o ' s - FG M I 

5 Concluding Remarks 

A new method of filling  up missing values has been suggested in this paper. The con-
ventional methods like the majority method or the probabilistic method do not reflect 
the inter-attribute dependencies, and Lobo's method relies on the static ranks of the 
attributes. Contrarily, this method reflects the dynamic nature of the attribute selec-
tions, and much reduces error rates in most domains with high missing ratios. 

References 
1. B. Cestnik and et al., "Assistant-86: A Knowledge-elicitation Tool for Sophisti-

cated Users," Progress in Machine Learning, Sigma Press, UK, 1987. 
2. L Kononenko and E. Roscar, "Experiments in Automatic Learning of Medical 

Diagnostic Rules," Technical Report, Jozef Stefan Institute, Yugoslavia, 1984. 
3. K.C. Lee, "A Technique of Dynamic Feature Selection Using the FGMI," Lecture 

Notes in Artificial Intelligence 1574, pp. 138-142, Springer, 1999. 
4. 0.0. Lobo and M. Numao, "Ordered Estimation of Missing Values," Lecture 

Notes in Artificial Intelligence 1574, pp.499-503, Springer, 1999. 
5. J.R. Quinlan, "Unknown Attribute Values," C4.5 Programs for Machine Learning, 

pp.27-32, Morgan Kaufmann, 1993. 
6. J.R. Quinlan, "Induction of Decision Trees," Machine Learning:!, pp.81-106, 1986. 
7. J.R. Quinlan, "Unknown Attribute Values in Induction," Proc. of the 6*  Interna-

tional Machine Learning Workshop, pp. 164-168, Morgan Kaufmann, 1989. 
8. http://www.ics.uci.edu/~mleam/MLRepository.html. UCI Machine Learning Re-

pository, Univ. of California, Dept. of Info. Computer Science, Irvine, CA, 1998. 



On Association, Similarity and 
Dependency of Attr ibutes 
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1 Introduction 

Association, similarity, and dependency of attributes represent useful informa-
tion and knowledge that can be derived from data sets. Similarities indicate the 
closeness of attributes reflected by their values on a set of objects. Two attributes 
are similar if every object is likely to have the sajne value on them. Data and 
functional dependencies show the connection and association between attributes. 
They are characterized by the problem of determining the values of one set of at-
tributes based on the values of another set. Two levels of dependencies, referred 
to as the local and 5/060/ dependencies, may be observed. The local dependencies 
show how one specific combination of values on one set of attributes determines 
one specific combination of values on another set. The well known association 
rules, which state the presence of one set of items implies the presence of an-
other set of items, may be considered as a special kind of local dependencies. 
The global dependencies show all combinations of values on one set of attributes 
determine all combinations of values on another set of attributes. Functional 
dependencies in relational databases are examples of global dependencies. 

The main objective of this paper is to present an outline of a systematic study 
on the characterization, classification, quantification, and interpretations of var-
ious types of relationships between attributes, as well as their connections to 
each other. For clarity, binary information tables and some particular measures 
are used [2,3]. The results from the study may have significant implications in 
the understanding of fundamental issues of data mining in general. 

2 Overview of Relationships Between Attributes 

In a binary information table, a set of objects are represented by using a finite 
set of binary attributes taking values over the domain {0,1} . Transaction data 
may be easily represented by a binary information table. For two attributes x 
and y, an association rule, {x = 1) <=  {y = 1), states that the occurrence of y 
warrants the occurrence of x. Let m{x = 1) denote the number of rows whose 
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value on a; is 1 in the table. The confidence of an association rule is defined by: 

confixi ^ yi) = |m(a;i,?/i)i/|m(-,2/i)|, (1) 

where XQ and xi stand for the conditions a; = 0 and x = 1, respectively, and 
hencem(a:i,j/i) — m{x = l,y = 1), andm{-,yi) = m{y = 1). An association rule 
xi ^ 2/1 does not say anything about the occurrence of y given the occurrence 
of a;. It deals with one-way dependency. An association rule uses only one of the 
four possible combinations of co-occurrence. It thus reflects local data depen-
dency. In summary, association rules summarize local one-way data dependency. 
A two-way association rule xx  ̂ yi states that the occurrence of x suggests the 
occurrence of y, and vice versa. The confidence of xi o- j/i is defined by [2]: 

confixi ^yi) = |m(a;i,2/i)|/|m(a;i,-)||m(-,2/i)|. (2) 

In information-theoretic terms, it measure the mutual information between xi 
and j/i . It is closely related to the confidence of one-way association. 

A simple similarity measure of two attributes x and y is defined by the 
normalized co-ordination level matching as follows: 

^ |m(a; = l )nm( ;/ = l ) | ^ \m{xi,yi)\ 
^'^  ̂ \m{x = l)Umiy = l)\ \m{xi,-)Um{;yi)\- ^""^ 

It reaches the maximum value 1 when the columns labelled by x and y are 
identical, and reaches the minimum value 0 when there is no co-occurrence of the 
(1,1) combination. The similarity measure does not depend on the combination 
(0,0). The co-occurrences of combination (0,0) do not increase, nor decrease, 
the similarity between two attributes. 

For measuring global data dependencies, we use entropy related measures [1]. 
One-way dependency y  ̂ x may be measured by conditional entropy: 

where A'' is the number of rows in the table. Two-way dependency x -  ̂ y may 
be measured by mutual information: 

V^ V^ \m{xi,yj)\ \m{xi,yj)\ 
N \m{xi,-)\\m{-,yj) 

nx;y) = Ty: ^^^^jf^log , i"H^7 ;̂̂ i ,̂. (5) 

The mutual information measures the divergence of the joint distribution of x 
and y from the independence distribution constructed using the marginals of x 
and y. A larger divergence implies a higher degree of probabilistic dependency. 

Functional dependency is a well established notion that summarizes logical 
relationship between attributes in databases. A functional dependency, y —  ̂x, 
states the semantics constraint on the values of x and y. If y —  ̂x holds, then all 
rows in the table having the same value on y must have the same value on x. That 
is, the value oiy determines the value of x. All four possible combinations of val-
ues of X and y are considered in functional dependency. A functional dependency 
shows global data dependency. Therefore, all local data dependencies, such as 
association rules and similarity, do not fully reflect functional dependency. 
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3 Comparisons of Various Relationships 

If the functional dependency y -> x holds, one may conclude that the confidence 
conf{xi 4= yi) is either 1 or 0. From the value of conf{xi <= yi) we cannot con-
clude any functional dependency between x and y. In comparison, the confidence 
of two-way association xi  ̂ yi is related to functional dependency to a lesser 
degree. If ?/ -> x holds, we can say that the value of conf{xi <^ yi) is either 0 or 
|m(a;i)|~ .̂ If s{x,y) = 1, we can conclude x -¥ y and y -  ̂ x. For s{x^y) = 0, we 
cannot infer any functional dependency between x and y. Conversely, ii  y —  ̂ x 
holds, we cannot say too much about s{x, y). It may happen that value of s{x, y) 
is 0, 1, or any number between 0 and 1. If both functional dependencies x -¥ y 
and y —  ̂X, we have either s{x,y) = 0 or s{x,y) = 1. 

Information-theoretical measures make use of all four possible combinations 
and are closely related to functional dependency. A functional dependency y -  ̂ x 
holds if and only if H{x \ y) = 0. In this totally depends on y. If the 
occurrence of x is probabilistically independent of y, we have H{x | y) = H{x), 
or equivalently H{y \ x) = H{y), or H{x,y) = H(x) + H{y). In this case, the 
value of y tells nothing about the value of x, and vice versa. For the mutual 
information, the functional dependency y -  ̂ x holds if and only if we have 
I{x]  y) = H{x). If both functional dependency a; —> y and y —  ̂ x hold, we must 
have I{x;y) = H{x) = H{y). If x and y are probabilistically independent, the 
mutual information reaches the minimum value 0. 

One may consider associations derivable from other combinations. For the 
confidence measure, we have conf{xo "^ 2/i) = 1 — conf{x\ <= 2/1). This connec-
tion reveals some difficulties in the interpretation of association rules. Typically, 
an association rule xi -^ j/i is interpreted using an IF-THEN statement, IF yi 
THEN x\ with confidence c. The associated meaning of the statement is that the 
presence of y warrants or suggests the presence of x. In the same way, one may 
argue that XQ <= j/i can be paraphrased as saying that the presence of y warrants 
or suggests the absence oix. For a small confidence value of a;i <= yi, e.g., < 0.5, 
such an interpretation is somehow counter intuitive. Similar observations can be 
made regarding associations rules xi <=  3/1 and xi <=  yo- This suggests that it 
may not be sufficient to consider only one type of associations characterized by 
the combination (1,1). In the calculation of confidence of xi -O yi, additional 
information is used. It relies on an intuitively appealing interpretation of associ-
ation in terms of probabilistic independence. On the other hand, the similarity 
measure defines association in a diff'erent manner, although the same information 
is used in its calculation. 

For an association rule xi <=  yi, another measure called support is defined 
by supp{xi,yi) = \m{xi,yi)\/N. It is also the support of xi =>  yi. The con-
fidence and support measures are not independent. They are related to each 
other by: conf{xi <=  yi) = supp{xi,yi)/[supp{xi,yi) + supp{xo,yi)]. Only par-
tial co-occurrence information about x and y are used the calculation of con-
fidence. The confidence, similarity, conditional entropy, and mutual informa-
tion differ from each other by the amount of co-occurrence information used. 
In terms of support and confidence, the similarity measure, conditional en-
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tropy, and mutual information can be expressed. The similarity measure uses 
co-occurrence information about three combinations except (0,0). In the ex-
treme cases, the similarity measure and the confidence measure are related by: 
(a). s{x,y) = 0 iff conf{xi =j> ?/i) = 0 iff conf(xi <= yi) = 0, and (b). s(x,y) = 1 
iff conf{xi =4- yi) = 1 and confixi = y\) = 1. For three attributes x, y and z, 
if s{x,y) > s{x,z), we cannot infer conf{xi <=  y\) > conf{xi <=  zi). That is, a 
larger similarity value does not suggest a higher level of association. Conversely, 
a higher level of association does not imply a larger degree of similarity. Never-
theless, when the supports of xi and yi are close, it is likely that a very strong 
similarity suggests a high level of association. Likewise, it is unlikely that a very 
weak similarity suggests a high level of association. 

The conditional entropy is a kind of average of various one-way associations 
of values of x and y, while the mutual information is a kind of average of various 
two-way association. A large value of such a global measure does not neces-
sarily warrants a large value for every one of the local associations. Like the 
confidence of an association rule, the the similarity measure focuses mainly on 
the associations characterized by the co-occurrence (1,1). To a large degree, the 
similarity measure is reflected by one term in the mutual information, namely, 
conf{x\  ̂ 2/1) measuring the strength of two-way association of xi and j / i . 

4 Conclusion 

Many different forms of knowledge and information can be derived from a large 
data set. Relationships between attributes represent an important class. An anal-
ysis of possible relationships between attributes and their connections may play 
an important role in data mining. The results from our preliminary study show 
that at least three types of relationships can be derived. They reflect the as-
sociation, similarity and dependency of attributes. Various measures have been 
examined for quantifying the strength of these relationships. The confidence and 
similarity show the local dependency, while conditional entropy and mutual in-
formation show the global dependency. Furthermore, confidence and conditional 
entropy represent one-way dependency, and similarity and mutual information 
represent two-way dependency. These measures have major difference from each 
other. They are also related to each other. 

The results of this investigation also suggest the needs for the study of new 
algorithms in data mining. As future research, we will focus on data mining 
algorithms based on similarity measures. 
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Abstract. We propose a new algorithm, called Prototype Generation 
and Filtering (PGF), which combines the strength of instance-filtering 
and instance-averaging techniques. PGF is able to generate representa-
tive prototypes while eliminating noise and exceptions.We also introduce 
a distance measure incorporating the class label entropy information for 
the prototypes. Experiments have been conducted to compare our PGF 
algorithm with pure instance filtering, pure instance averaging, as well as 
state-of-the-8irt algorithms such as C4.5 and KNN. The results demon-
strate that PGF can significantly reduce the size of the data while main-
taining and even improving the classification performance. 

1 Introduction 

The classical nearest neighbor (NN) algorithm has been proved to be effective 
in pattern classification on different applications [8]. It stores all the training 
instances and requires no knowledge learning from the training set. In order to 
classify an unseen instance, its distance with every stored training instance is 
calculated and the class of its nearest instance is assigned to it. This algorithm 
has two main drawbacks: high computational cost on run-time classification 
and high storage requirement. Researchers try to solve this problem by reduc-
ing the number of stored instances. By removing non-representative and noisy 
instances, the classification cost and storage requirement can be reduced while 
maintaining or even improving the classification accuracy . Instance-filtering and 
instance-averaging are the two most common methods to select and generate rep-
resentative instances [8]. Filtering techniques try to filter out non-representative 
instances from original training set and averaging techniques attempt to find the 
most common characteristics of similar instances by merging and summarizing 
them. The two methods have their own strength and weaknesses. Our goal in 
this paper is to integrate the two methods to select and generate representative 
instances and eliminate noise and exceptions. To this end, we propose a new al-
gorithm, called Prototype Generation and Filtering (PGF) which combines the 
strength of the two methods. 

Many researchers have worked on the selection of representative instances us-
ing different methods. For examples. Hart proposes a Condensed Nearest Neigh-
bor (CNN) which is probably the earliest method to select representative in-
stances [14]. CNN starts by randomly storing one instance for each class as the 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 142-152, 2000. 
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initial subset and stores instances misclassified by the current subset. A top-
down variant of CNN, called Reduced Nearest Neighbor (RNN) is proposed by 
Gates which removes instance if the removal does not cause any misclassification 
of other instances [12]. Later, a number of variants of CNN have been proposed 
including [13,19]. The Edited Nearest Neighbor (ENN) algorithm proposed by 
Wilson eliminates instances misclassified by their fc-nearest neighbors [21]. This 
algorithm retains central points since they are usually correctly classified by their 
k-nearest neighbors. Aha et al. introduce the well-know IB2 and IBS algorithm 
which is based on CNN storing misclassified instances [2]. IB2 is similar to CNN 
except that instances are normalized by the range of attributes and missing 
value are tackled while IB3 only accepts instances with a relatively high classi-
fication accuracy compared with the frequency of the observed class. The two 
algorithms provide noise tolerance. Aha et al. also propose three instance prun-
ing techniques which can determine the relative attribute relevance and handle 
novel attributes [1]. Zhang introduces Typical Instance-Based Learning (TIBL) 
which stores typical instance in the region centers [23]. Wilson and Martinez 
introduce three instance pruning techniques, called RT1-RT3, which removes an 
instance by considering its associates, instances in the current selected instance 
set having it as one of their A;-nearest neighbors [22]. RTl removes an instance 
if most of its associates are correctly classified without it. RT2 considers asso-
ciates in the entire data set rather than those in the selected set and also sorts 
the instances by the distance to their nearest neighbors. RT3 is similar to RT2 
except that it employs ENN to filter out noise first. 

Chang's method learns representative instances by merging similar ones. It 
iteratively merges two closest instances and summarized them by taking the 
weighted average of them [6]. Bradshaw introduces the Disjunctive Spanning 
(DS) which merges instances with the ones they can correctly classified [5]. Kibler 
and Aha improve DS by using an adaptive threshold to limi t the distance between 
two merged instances [15]. An algorithm called Nested Generalized Exemplar 
(NGE) is proposed by Salzberg which stores instances as hyperrectangles [18]. 
Wettschereck combine the NGE with KNN to form a hybrid algorithm [20]. 

Datta and Kibler introduce the Prototype Learner (PL) which learns arti-
ficial instances for each class by generalization of representative instances [9] 
in nominal domains. Then they propose the Symbolic Nearest Mean Classifiers 
(SNMC) [10,11] which attempts to learn a single prototype for each class using a 
modified Value Difference Metric proposed by Cost and Salzberg to weight sym-
bolic features [7]. SNMC uses k-means clustering to group instances of the same 
class and create artificial instances using cluster means. Bezdek at el. modify 
Chang's method (MCA) which averages instances using simple mean and merges 
instances of the same class only [4]. 
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2 Our Proposed Algorithm 

2.1 Motivatio n 

Many previous works try to find representative instances by either removing 
non-representative and noisy instances (instance-filtering) or merging and sum-
marizing similar instances (instance-averaging). Indeed, the two methods have 
their own strength and weaknesses. Filtering methods are more flexible. We can 
decide different filtering rules to retain different instances such as border or cen-
tral points and to eliminate noise and outliers. Besides, a consistent subset can 
be ensured using some filtering rules [14]. However, filtering methods cannot 
find the most representative instances if they are not in the original data set. 
They do not generalize instances so that a satisfactory data reduction is usually 
not gained. Some filtering methods are sensitive to noise and the order of data 
presentation. On the other hand, instance-averaging methods try to generate 
representative prototypes by generalizing common characteristics of instances. 
They usually have great data reduction rate by summarizing instances instead of 
simply selecting them. Also, noise can be effectively generalized away by merging 
similar instances. However, non-prototypical instances may be formed if distant 
instances are merged. The prototype set may even contain misclassified instances 
thus degrading classification accuracy. 

I t seems that the two methods can benefit each other. For example, data 
reduction in filtering methods can be improved by merging similar instances. 
Some noisy instances can be generalized away by averaging methods. The most 
representative instances are sometimes not found in the original data set by 
filtering rules. Therefore, more representative instances may be found if the 
commonest features of instances are generahzed using averaging methods. On 
the other hand, non-prototypical instances will not be likely formed in instance-
averaging techniques if outliers are eliminated before. Some filtering rules can 
also eliminate noise effectively so that the classification accuracy of instance-
averaging methods can be greatly improved. Besides, filtering rules can also be 
designed to further reduce the data set size. 

In view of the above motivation, we propose a framework, called Prototype 
Generation and Filtering (PGF), which combines the strength of instance aver-
aging and instance filtering methods to generate high quality prototypes. Our 
objective is to significantly reduce the data set via prototypes while maintaining 
the same level of, or even better classification performance. 

2.2 The Framework of Our  Approach 

PGF consists of an instance-averaging and an instance-filtering components. We 
first describe the averaging method and then the filtering method. Then we 
present how the two methods are integrated to gain high quality prototypes. 

Instance-Averaging Component. Instance-averaging methods attempt to 
find the commonest features of instances in the same class by merging simi-
lar instances. They intend to generate ideally one prototype for each class to 
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classify unseen cases. Many instance-aver aging methods make use of clustering 
techniques. Some methods adopt k-means clustering [10] and others apply hier-
archical methods [6]. Using k-means clustering, we have to decide the number 
of prototypes (clusters) beforehand. Researchers try different values of k to find 
the optimal results. In hierarchical clustering methods, the number of prototypes 
can be determined by stopping rules. Since predefining the number of prototypes 
wil l greatly restrict the search space for prototype selection, we adopt hierar-
chical clustering method in our proposed framework. The quality of prototypes 
can be evaluated by an evaluation function. Figure 1 shows the algorithm of the 
instance-averaging component used in our PGF algorithm. 

1. Let prototype set = Training Set. 
2. Merge two nearest prototypes in current prototype set. 
3. Evaluate current prototype set. 
4. Repeat 2 and 3 until no. of prototype = no. of class. 
5. Output prototype set with majcimum evaluation score. 

Fig. 1. Instance-averaging component using hierarchical clustering method 

A prototype essentially contains a set of original instances. It is represented 
by the mean of the constituent instances in the prototype. As shown in Figure 1, 
each instance is considered as a prototype initially . At each iteration, two proto-
types with shortest distance in the current prototype set are merged to form a 
new prototype. The new prototype is the mean of all instances contained in the 
merged prototypes and the majority class of the contained instances becomes 
the class of the prototypes. The new prototype set is then evaluated by an eval-
uation function to predict the quality of the prototype set. The best prototype 
set is stored. These merging and evaluation processes continue until the num-
ber of prototypes reduces to the number of classes in the data set. Finally, the 
prototype set with optimal evaluation score is the output. 

As our objective is to learn prototypes to classify unseen cases, classifica-
tion accuracy on unseen instances is a good evaluation criterion to evaluate the 
quality of prototypes. We divide the training data into a sub-training set and a 
tuning set. Prototypes are learned using the sub-training set while the tuning 
set is used to evaluate the learned prototypes. 

In order to generate homogeneous prototypes, many instance-averaging meth-
ods only merge instances of the same class. For example, [10] partitions the 
original data set by class and merge instances within each partition. Despite 
the homogeneity of the prototypes formed, these methods may distort the data 
distribution. Besides, the strength of averaging method to generalize away mis-
labeled instances of other labels in compact regions is disabled. In view of this, 
we design a distance measure which considers both the Euclidean distance and 
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the entropy of the merged prototypes. The entropy, Ent{x.), of a prototype x is 
related to the class distribution of the instances contained in the prototype. It 
is defined as: 

c 

Ent(x) = - ^ R{x., i) log R{x, i) 
i = l 

where it(x , i) is the relative frequency of the occurrence of the class label i in 
the prototype x. When two prototypes x and y are considered to merge, the 
entropy distance between x and y is defined as: 

E{x, y) = Ent{z) 

where 2 is a hypothetic prototype generated by merging x and y. If a low 
entropy is calculated, most instances in the merged prototypes are of the same 
class. Therefore, entropy encourages homogeneous prototypes to be merged. 

The Euclidean distance of two prototypes is normalized to value from 0 to 
1 which is of the same range of entropy. The normalized Euclidean distance of 
two prototypes x and y is defined as: 

D(.,y)= V K : ^ ^ ^ ^ ) 
V'Sr=i(" '^*  ^ mini) 

where n is the number of attributes, Xj, yt are the z-th attribute values of x and y 
and maxj, minj are the maximum and minimum value of the i-th attribute in the 
training set respectively. After the two components are calculated, a parameter 
a (0 < a < 1) is then used to weight their contributions. The distance function 
EE of PGF is: 

EE(x, y) = aD(x, y) + {l-  a)E(x, y) 

This distance measure favours the merging of homogeneous instances while 
preserving the original data distribution. 

Instance-Filtering Component. As described above, instance-averaging 
methods cannot handle outliers and exceptions effectively. Therefore, we can de-
sign filtering rules which eliminate outliers and exceptions to solve the problem. 
Besides, non-prototypical and misclassified prototypes may be generated after 
instance-averaging. Filtering rules can help if they can discard non-representative 
and noisy instances. For this reason, filtering rules which can eliminate out-
liers, exception and noise would benefit to instance-averaging methods. We have 
tried two filtering methods. The first one is the ENN method introduced by 
Wilson [21]. This method discards instances which are misclassified by their k 
nearest-neighbors. As outliers and noise are seldom classified correctly by their 
k nearest-neighbors, they will usually be removed. 

The second instance-filtering method considers the classification performance 
of each prototype in the prototype set. After the merging process, artificial pro-
totypes are generated by the sub-training set. These prototypes can be used to 
classify the original training set and the classification accuracy of each proto-
type are calculated. Prototypes with accuracy lower than a certain threshold 
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Q will then be discarded. This method can effectively remove noisy and non-
prototypical prototypes as they usually have low accuracy. Besides, outliers and 
exceptions can also be eliminated. 

Integratio n of Filterin g and Averaging. Our PGF algorithm integrates 
instance-filtering techniques in the instance-averaging component described 
above. Figure 2 shows the algorithm of PGF. The filtering processing is indicated 
by statement 4. Filtering is conducted when a new prototype set is formed after 
each merging process in the instance-averaging component. The filtered proto-
type set is then evaluated by the prototype set evaluation function and the one 
with optimal evaluation score will be output. After the prototype set is learned, 
it is used to classify unseen cases. The simple Euclidean distances between the 
unseen case and all the prototypes are calculated to find the nearest prototype. 
The majority class of its nearest prototype is then assigned to the unseen case. 

1. Let prototype set = Training Set. 
2. Merge two nearest prototypes in current prototype set. 
3. Let temp = current prototype set. 
4. Filter temp. 
5. Evaluate temp. 
6. Repeat 2, 3, 4 and 5 until no. of prototype = no. of class. 
7. Output temp with m2iximum evaluation score. 

Fig. 2. The algorithm of the PGF algorithm 

3 Empirical Evaluation 

3.1 Experimental Setup 

We have conducted a series of experiments to investigate the performance of 
our PGF firamework. Nineteen real-world data sets from the widely used UCI 
Repository [16] were tested in the experiments. For each data set, we randomly 
partitioned the data into ten portions. Ten trials derived from 10-fold cross-
validation were conducted for every set of experiments. The mean of the storage 
requirement and classification accuracy of the ten trials were calculated to mea-
sure the performance for a particular data set. Attribute values are normalized 
by the range of features in the training set and missing values were replaced by 
the mean value of the feature. We first investigate the merit of our framework 
as compared to pure instance filtering and pure prototype generation methods. 
Then we compare our algorithm with existing learning algorithms, namely, C4.5 
and KNN. We finally investigate the performance of our distance measure EE 
by comparing EE with and without the entropy consideration. 
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3.2 Experimental Results 

The first set of experiments studies the benefits of the integration of proto-
type generation and prototype filtering methods. We compare two variants of 
our PGF algorithms with pure instance-filtering and pure instance-averaging 
algorithms. The first PGF uses ENN to filter prototype set (PGF-ENN) and 
the other one filters out prototypes with classification accuracy lower than a 
threshold Q (PGF-ACC). The pure instance-filtering algorithm is the simple 
ENN (pure-ENN) while the pure instance-averaging algorithms is the one using 
classification accuracy (pure-ACC) as the prototype set evaluation function. We 
have tried a range of parameters in algorithms compared and select the best one 
to represent each of them. The parameter a in our distance measure is also tuned 
and the best result is reported. Table 1 and Table 2 show the average storage 
requirement and classification accuracy of the four methods respectively. 

We first compare pure-ENN with PGF-ENN. From the results in Table 2, it 
is found that the pure-ENN have a slightly higher performance in classification 
accuracy. However, the storage requirement of PGF-ENN is significantly lower 
than that of pure-ENN. About 57% of the training data are further reduced using 
PGF-ENN instead of pure-ENN. This supports the fact that instance-averaging 
methods can further improve data reduction rate of instance-filtering techniques 
by generalizing similar instances without great degradation in classification ac-
curacy. PGF-ENN even gains a slightly increase in classification accuracy on 
some data sets using much fewer number of prototypes. 

However, when comparing the pure instance-averaging method (pure-ACC) 
with PGF-ENN, we find that data reduction rate degrades using the integrated 
method. pure-ACC requires a 8% higher average storage requirement than PGF-
ENN does. As for classification accuracy, the two algorithms gain similar results 
on all the data sets. The poor performance of ENN in the integrated method can 
be explained as below. As mentioned above, ENN discards those instances which 
are misclassified by their k nearest neighbors. Central instances will  be retained 
as they are usually correctly classified by their k nearest neighbors. However, our 
instance-averaging method attempts to generalize similar instances by taking the 
mean of the merged instances as artificial prototypes. These artificial prototypes 
are obviously central points which are usually retained by ENN. Also, with the 
influence of ENN, PGF-ENN finds its optimal prototype set in an earlier merging 
iteration. Therefore, its data reduction rate degrades even with the integration 
of ENN to filter the prototype set. 

We then compare pure-ACC with PGF-ACC. Table 1 and Table 2 show that 
PGF-ACC gains significant improvement in average storage requirement while 
maintaining a high level of classification accuracy. PGF-ACC uses 11.5% fewer 
of the total instances to achieve a slightly lower (1.1%) classification accuracy 
compared with pure averaging method. PGF-ACC discards less representative 
prototypes by using classification accuracy as filtering rule. This accounts for 
the improvement of data reduction in the integrated method. 
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Table 1. The average storage requirement of ten triais for pure-ENN, pure-ACC, 
PGF-ENN and PGF-ACC 

Data Set 

balance-scale 
breast-cancer-w 
glass 
ionosphere 
iri s 
letter 
liver-disorders 
new-thyroid 
optdigit 
pendigit 
pima-diabetes 
segmentation 
shuttle 
sonar 
vowel 
wdbc 
wine 
wpbc 
yeast 
Average 

pure-ENN 

0.827 
0.961 
0.701 
0.842 
0.950 
0.755 
0.639 
0.949 
0.965 
0.983 
0.734 
0.950 
0.979 
0.852 
0.964 
0.966 
0.956 
0.747 
0.552 
0.856 

pure-ACC 

0.162 
0.075 
0.097 
0.245 
0.103 
0.591 
0.168 
0.095 
0.491 
0.238 
0.018 
0.355 
0.274 
0.363 
0.256 
0.232 
0.085 
0.018 
0.076 
0.207 

PGF-ENN PGF-ACC 

0.239 
0.050 
0.215 
0.195 
0.295 
0.546 
0.275 
0.231 
0.436 
0.261 
0.013 
0.462 
0.330 
0.362 
0.753 
0.248 
0.126 
0.049 
0.379 
0.287 

0.022 
0.046 
0.052 
0.041 
0.081 
0.196 
0.070 
0.058 
0.137 
0.113 
0.011 
0.165 
0.121 
0.079 
0.212 
0.095 
0.054 
0.021 
0,108 
0.088 

In conclusion, we find that the performance of PGF depends on the choice 
of the filtering method. To make use of the advantage of the integrated method, 
the averaging and filtering techniques should target on different instances. 

In the second set of experiments, we compare PGF with C4.5 and KNN. The 
PGF used in the comparison is PGF integrated with prototype filtering method 
using accuracy (PGF-ACC). In KNN, we have conducted different values of k 
(k=l,3,5,7,9,11,15,20) and the best k, which is 3, is used for comparison. For 
PGF-ACC, we have also tried a range of threshold Q in the filtering component. 
Table 1 depicts the size of the reduced data set of PGF (PGF-ACC). It shows 
that PGF only retains an average of 8.8% of the total instances while maintaining 
a high classification accuracy. 

Table 3 shows the classification accuracy and standard deviation of the three 
algorithms on all the data sets. It shows that the PGF algorithm is slightly better 
than C4.5 in the average classification accuracy across most of the data sets and 
KNN has a slightly higher average classification accuracy than PGF. Using a 
t-test at 0.05 significant level, we find that PGF outperforms C4.5 in 5 of the 
data sets and has the same performance on the remaining ones. Compared with 
KNN, PGF performs equally well in 15 of the 19 data sets. In conclusion, PGF 
can achieve comparable classification performance with state-of-the-art learning 
algorithms such as C4.5 and KNN. More importantly PGF can drastically reduce 
the data size to only 8.8% of the original size on average. 
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Table 2. The average classification ciccuracy of ten trials for pure-ENN, pure-ACC, 
PGF-ENN and PGF-ACC. The standard deviation is given inside the bracket 

Data Set 

balance-scale 
breast-cancer-w 
glass 
ionosphere 
iri s 
letter 
liver-disorders 
new-thyroid 
optdigit 
pendigit 
pima-diabetes 
segmentation 
shuttle 
soneir 
vowel 
wdbc 
wine 
wpbc 
yeast 
Average 

pure-ENN 

0.856 (0.034) 
0.971 (0.039) 
0.658 (0.205) 
0.832 (0.088) 
0.953 (0.046) 
0.724 (0.036) 
0.626 (0.069) 
0.944 (0.053) 
0.949 (0.032) 
0.982 (0.016) 
0.751 (0.100) 
0.943 (0.026) 
0.971 (0.051) 
0.827 (0.199) 
0.968 (0.061) 
0.958 (0.028) 
0.948 (0.101) 
0.783 (0.153) 
0.569 (0.061) 

0.853 

pure-ACC 

0.806 (0.099) 
0.954 (0.028) 
0.603 (0.137) 
0.906 (0.046) 
0.933 (0.050) 
0.767 (0.064) 
0.597 (0.063) 
0.921 (0.074) 
0.946 (0.037) 
0.969 (0.013) 
0.709 (0.079) 
0.959 (0.011) 
0.974 (0.046) 
0.832 (0.072) 
0.972 (0.027) 
0.940 (0.056) 
0.960 (0.046) 
0.768 (0.132) 
0.561 (0.056) 

0.846 

PGF-ENN 

0.854 (0.050) 
0.947 (0.031) 
0.658 (0.261) 
0.860 (0.095) 
0.933 (0.097) 
0.692 (0.046) 
0.637 (0.080) 
0.921 (0.055) 
0.941 (0.043) 
0.965 (0.014) 
0.716 (0.111) 
0.932 (0.033) 
0.971 (0.047) 
0.802 (0.085) 
0.931 (0.039) 
0.945 (0.040) 
0.966 (0.100) 
0.742 (0.126) 
0.569 (0.027) 

0.841 

PGF-ACC 

0.851 (0.041) 
0.957 (0.033) 
0.659 (0.135) 
0.883 (0.070) 
0.947 (0.063) 
0.665 (0.048) 
0.591 (0.071) 
0.921 (0.049) 
0.923 (0.027) 
0.961 (0.018) 
0.716 (0.064) 
0.935 (0.021) 
0.971 (0.050) 
0.789 (0.100) 
0.940 (0.047) 
0.933 (0.033) 
0.960 (0.046) 
0.737 (0.159) 
0.520 (0.057) 

0.835 

Table 3. The average classification accuracy of ten trials for C4.5, KNN and PGF-
ACC. The standard deviation is given inside the bracket 

Data Set 

balance-scale 
breast-cancer-w 
glass 
ionosphere 
iri s 
letter 
liver-disorders 
new-thyroid 
optdigit 
pendigit 
pima-diabetes 
segmentation 
shuttle 
sonar 
vowel 
wdbc 
wine 
wpbc 
yeast 
Average 

C4.5 

0.792 (0.066) 
0.939 (0.041) 
0.666 (0.083) 
0.900 (0.032) 
0.953 (0.063) 
0.692 (0.043) 
0.642 (0.054) 
0.921 (0.081) 
0.824 (0.029) 
0.914 (0.015) 
0.694 (0.085) 
0.951 (0.015) 
0.989 (0.045) 
0.706 (0.094) 
0.779 (0.046) 
0.944 (0.031) 
0.888 (0.081) 
0.676 (0.168) 
0.545 (0.049) 

0.811 

KNN 

0.818 (0.052) 
0.964 (0.025) 
0.709 (0.199) 
0.843 (0.049) 
0.940 (0.050) 
0.751 (0.029) 
0.663 (0.099) 
0.953 (0.063) 
0.951 (0.049) 
0.984 (0.014) 
0.745 (0.076) 
0.951 (0.008) 
0.974 (0.048) 
0.856 (0.108) 
0.967 (0.022) 
0.965 (0.018) 
0.960 (0.056) 
0.742 (0.163) 
0.554 (0.038) 

0.857 

PGF (PGF-ACC) 

0.851 (0.041) 
0.957 (0.033) 
0.659 (0.135) 
0.883 (0.070) 
0.947 (0.063) 
0.665 (0.048) 
0.591 (0.071) 
0.921 (0.049) 
0.923 (0.027) 
0.961 (0.018) 
0.716 (0.064) 
0.935 (0.021) 
0.971 (0.050) 
0.789 (0.100) 
0.940 (0.047) 
0.933 (0.033) 
0.960 (0.046) 
0.737 (0.159) 
0.520 (0.057) 

0.835 
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Table 4. The average classification accuracy and storage requirement of ten trials of 
19 data sets for pure-ACC, PGF-ENN and PGF-ACC with and without entropy in 
distance measure 

Distance Measure 

with entropy 
without entropy 

pure-ACC 
accuracy 

0.846 
0.839 

storage 

0.207 
0.296 

PGF-ENN 
accuracy 

0.841 
0.839 

storage 

0.287 
0.307 

PGF-ACC 
accuracy 

0.835 
0.813 

storage 

0.088 
0.115 

In the last set of experiments, we investigate the contribution of adding en-
tropy in our distance measure. We compare our distance measure EE, with and 
without entropy. Note that if no entropy is used, the distance measure is essen-
tially the normalized Euclidean distance. Table 4 shows the average classifica-
tion accuracy and storage requirement of the pure instance-average (pure-ACC), 
PGF-ENN and PGF-ACC of the 19 data sets. We find that entropy has different 
impacts on different algorithms. For pure-ACC, storage requirement is improved 
from 29.6% to 20.7% with almost the same performance on classification accu-
racy. However, in PGF-ENN, entropy only improves both classification accuracy 
and storage requirement very sUghtly. A greater improvement in classification 
accuracy and data reduction rate can be found in PGF-ACC. With the addi-
tion of entropy in distance measure, homogeneous prototypes are more likely to 
be merged. The results show that this can help in generating more representa-
tive prototypes and a higher classification accuracy and data reduction can be 
gained. 

4 Conclusions 

We have presented a new prototype generation method, called Prototype Gen-
eration and Filtering (PGF), which integrates the strength of instance-filtering 
and instance-averaging techniques. We compare the data reduction rate and the 
classification performance with pure filtering, pure averaging, as well as C4.5 
and KNN on 19 real data sets. PGF is found to be effective in reducing the data 
set size while maintaining or even improving the classification accuracy. PGF 
can so far deal with real attributes only. In the future, we intend to extend it 
to symbolic features by using other distance metric which is capable of measur-
ing distance of discrete values. Different instance averaging methods can also be 
investigated to see its effects on the PGF algorithm. 
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Abstract. This paper presents a visual method of cluster validation using the 
Fastmap algorithm. Two problems are tackled with Fastmap in the interactive 
process of discovering interesting clusters from real world databases. That is, 
(1) to verify separations of clusters created by a clustering algorithm and (2) to 
determine the number of clusters to be produced. They are achieved through 
projecting objects and clusters by Fastmap to the 2D space and visually 
examining the results by humans. We use a real example to show how this 
method has been used in discovering interesting clusters from a real data set. 

Key Words: Data mining. Clustering, Cluster validation. Cluster visualization 

1 Introduction 

Clustering data in databases is an important task in real applications of data mining 
techniques. A typical example is customer segmentation. In database marketing, for 
instance, sound customer segmentation is a necessary condition for conducting 
effective marketing campaigns. In telecommimication service, customer segmentation 
is critical in identifying potential chumers and deciding proper offers to retain them. 
However, clustering a large real world database is by no means a trivial task to data 
miners because of the size and complexity of data. 

A notorious characteristic of clustering is that different clustering algorithms often 
impose different clustering structures on data [Jain88]. Unless synthetic data with 
known cluster distributions are used, it is difficult to compare the clustering results of 
real data from different clustering algorithms. Objects in real world databases are 
usually represented in high dimensions and the distributions of objects are often very 
sparse. Outliers, noise and clusters at different levels coexist. To discover interesting 
clusters from these databases, an interactive approach to stepwise clustering data and 
validating clusters is proved effective. 

In this paper, we demonstrate the effectiveness of the interactive approach to 
discovering hierarchically structured clusters in data. We present a visual method to 
use Fastmap and other techniques to visually validate clusters in the interactive 
process of clustering. Fastmap is a fast algorithm to project high dimensional data 
onto low dimensional spaces, due to Faloutsos and Lin [Falo95]. In the clustering 
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process, we use Fastmap to solve two problems, (1) to verify the separations of 
clusters created by a clustering algorithm and (2) to determine the number of clusters 
to be produced. 

The interactive process of clustering is conducted as follows. Starting from a given 
data set, we first use Fastmap to project all objects onto a 2D space and visually 
determine the number of clusters to be produced. Then, we use a clustering algorithm 
to generate these clusters. After that, we use Fastmap again to project the clusters onto 
a 2D space and visualize them in different colors and/or symbols. If we see any 
separate clusters, we identify them as isolated clusters in the original high 
dimensional space. This is because a cluster separate from others in the 2D space is 
also separate from others in the original high dimensional space. For other clusters 
that overlap on the 2D display, we use other techniques to investigate whether they 
are separate or not. For the clusters whose separations are uncertain, we merge them 
into a composite cluster and use the clustering algorithm to further partition it. We 
interactively repeat this process to create a tree of clusters from which interesting 
clusters can be gradually identified. In the paper, we use a real example to show how 
this method has been used in discovering interesting clusters from a complex data set 
in a real world application. 

Projection of high dimensional data onto low dimensional spaces for clustering is a 
common approach in cluster analysis. Fastmap was primarily designed for this 
purpose [Falo95]. Other widely used methods include principal component analysis 
(PCA), multidimensional scaling (MDS) [Youn87] and dimensionality reduction 
techniques such as K-L transform [Fuku90]. Ganti et al. [Gant99] has recently 
integrated Fastmap with the BIRCH clustering algorithm [Zhan97] to cluster data in 
arbitrary spaces. In their approach, Fastmap is used to project data in an arbitrary 
space onto a projected space in which clustering is performed. However, performing 
clustering in the projection space cannot guarantee the discovery of clusters in the 
original space. In our approach, we create clusters from the original high dimensional 
space and use Fastmap to validate these clusters in the projected low dimensional 
space. When a cluster is validated, we are able to conclude that it is a cluster in the 
original space. 

In this work, we have chosen the ^-prototypes algorithm for clustering high 
dimensional data [Huan98] because of its natural handling of categorical data. Other 
clustering algorithms, such as CLIQUE [Agra88], CLARANS [NgHa96], BIRCH 
[Zhan97], and DBSCAN [Este98], can be used as alternatives in our approach. 
However, these algorithms usually deal with numeric data. Data conversion is needed 
when categorical data is involved. 

2 Building a Cluster Tree 

Our approach to clustering a large data set is to use a clustering algorithm and various 
cluster validation methods, including Fastmap, to interactively build a tree of clusters 
from which interesting clusters can be discovered. In this section, we define a cluster 
tree and discuss how it is interactively built from a data set. 
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Fig. 1. (a) A data set contains six normally distributed clusters, (b) The cluster tree of the data 
set. 

2.1 Definitions 

Let AT be a data set containing N objects, that is, X = {x^,X2,...,Xfj]. 

Definition 1 [Theo99]: An m-clustering of .Y is a partition of X into m subsets 

(clusters), Cj , . . ., C^, which satisfies: 

 C,.^0, i = l,...,m 

 C,. n Cj = 0 , i^ j , ij  = l,...,m 

In addition, the objects in a cluster C, are "more similar" to each other and "less 
similar" to objects of other clusters. 

Definition 2: A clustering S with k clusters is said to be nested in a clustering T, 
which contains r (< k) clusters, if for any cluster C, in S, there is a cluster Q in T such 
that Cj 2 C, And there exists at least one cluster in S, which holds Q ^Q and QT^C,. 

Definition 3: A cluster tree is a sequence of nested clusterings, 
{SQ , 5 j , . . ., 5^ } , so that for any i, j with i < j and for any Cj e S^, there is C, e 5, such 
that C, 2 CJ. 

Fig. 1 (a) shows a data set containing six clusters. At the high level, clusters A and 
B are two clusters with normal distributions while cluster C consists of four sub 
clusters which also have normal distributions. The cluster tree of the data set is 
represented in Fig. 1 (b). It consists of two clusterings of X, i.e., 5i={A , B, C}  and 
5j={A , B, a, b, c, d} , and 5̂  is nested in 5j. We call C a composite cluster and others 
atomic clusters. 

2.2 Discovery of a Cluster  Tree 

Given the data set in Fig. 1 (a) that has six clusters, we can use a clustering algorithm 
such as ^-means to partition it into six clusters. Then we compare the clustering 



156 Z. Huang and T. Lin 

81 

Fig. 2. Discovery of the three high level 
clusters in Step 1. 

Fig. 3. Six clusters discovered in two steps 
by applying the ^-means algorithm to the 
data. 

results with the original clusters to see if the original clusters can be recovered. 
However, in our experiment, such an approach was not successful. On one hand, it 
wrongly divided clusters A and B. On the other hand it was unable to separate sub 
clusters in cluster C. We also tried the hierarchical clustering methods which also 
produced incorrect clusterings. This implies that if clusters exist at different density 
levels in data, it is hard to discover them in a single clustering. 

To solve this problem, we took two steps to cluster the data. Again, we used k-
means. First, we partitioned the data into three clusters. The result is shown in Fig. 2. 
In this step, we successfully recovered the three high level clusters A, B and C. Then 
we used ^-means to partition only cluster C into four clusters. In this step, we 
successfully recovered the four sub clusters a, b, c, and d. Combining the two step 
clustering results, we discovered the six original clusters in the data. The result is 
shown in Fig. 3. This example demonstrates that if data contains a hierarchical 
structure of clusters, it is more effective to recover these clusters in multiple steps. 

2.3 Interactive Approach 

In contrast to the bottom-up hierarchical clustering methods, we use a top-down 
approach to interactively building cluster trees from data. Starting with the whole data 
set that is considered as a cluster on its own right, we stepwise decompose the data 
and grow a tree of clusters. In the tree, a node containing children is a composite 
cluster while all leaves are atomic clusters. 

In this interactive approach, we have to make two decisions at each node to 
proceed the process. That is, to decide whether a node being considered is a 
composite or atomic cluster and to determine the number of clusters to be created 
from it if the node is a composite cluster. With synthetic data, since we know the 
details of clusters, we will have no difficulty to make these decisions. However, when 
dealing with real data, we usually have no knowledge about the structure of clusters 
The Fastmap algorithm and visualization help obtain such knowledge and make 
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decisions. Through Fastmap and other visualization methods, which we will discuss 
in Section 3, we can make decisions based on what we see. In clustering real world 
data, this kind of human involvement has a great advantage because we can use our 
domain knowledge to accept or reject the clusters generated by the clustering 
algorithm. 

3 Cluster Validation with Fastmap 

Cluster validation refers to the procedures that evaluate clusters created from a data 
set by a clustering algorithm [Jain88]. In this section, we briefly overview the 
Fastmap technique and discuss how to use it in cluster validation. We also present 
some other cluster validation methods. 

3.1 Fastmap Algorith m 

Given a set of Â  objects in an n dimensional space and their mutual distances, 
Fastmap projects the N objects onto a d (< n) dimensional space. The projection is 
performed in d steps. First, two objects O  ̂and (9̂  are selected as 'pivot objects' and a 
line considered passing through them forms the first axis in the projected d 
dimensional space. For any object O^, its coordinate x.  ̂on the first axis is calculated as 

a,i a,a o,i . ^. 

^  ^̂^ 
a,A 

Here, d  ̂ j , is the distance between O  ̂and O ,̂ and d  ̂  ̂ and cf̂ , are the distances 
between O, and 0„, O^, respectively. Because all distances between objects are known, 
it is straightforward to calculate the coordinates of all objects on the first axis. 

To calculate the coordinates of objects on the second axis, we first need to 
calculate the distances between objects in the reduced (n - 1) dimensional space. The 
distances can be calculated from the distances in the original n dimensional space and 
the coordinates on the first axis, as follows: 

{d:^^f={d,.f-{x,-Xjf i,j = l...,N (2) 

where d^  is the distance between obejcts O. and £) in the reduced (n - 1) dimensional 

space, dj  is the distance between obejcts O. and Oj in the original n dimensional 

space, jc, X. are the coordinates of O. and O. on the first axis. After the distances 
between objects in the reduced (n - 1) dimensional space are calculated, Equation (1) 
is used to calculate the coordinates on the second axis. This process is recursively 
used until the coordinates on the dth axis are calculated. For the details of the Fastmap 
algorithm, refer to [Folo95]. 
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3.2 Cluster  Validation witl i Fastmap 

From the objects distribution viewpoint, validity of a cluster is measured by 
Compactness and isolation [Jain88]. Fastmap allows us to see the isolation of clusters 
generated from a high dimensional space. We use other methods to validate 
compactness of clusters, which will be discussed in Section 3.3. 

To validate clusters generated by the /:-prototypes algorithm from a high 
dimensional space, we use Fastmap to project objects in different clusters onto a 2D 
space and visualize them. In the 2D space, the cluster memberships of objects are 
maintained so we can display objects in different clusters with different symbols and 
colors. From the display, we can visually identify the clusters, which are isolated from 
others. For example, the display in Fig. 4 shows that clusters 2 and 4 are isolated from 
other clusters. We can validate that objects in clusters 2 and 4 form separate clusters 
in the original space. 

Fig. 4. The 2D display shows clusters 2 and 4 form separate clusters. 

In Fig. 4, it is not clear whether clusters 0, 1 and 3 form clusters in the original space 
or not, because of the overlapping of objects. In this case, we can do the following; 

 Remove clusters 2 and 4, and re-project others to see whether a clear separation 
can be observed. 

 Remove clusters 2 and 4 and merge the rest. Apply the it-prototypes algorithm to 
partition the merge into another set of clusters. Then, use Fastmap to validate the 
new clusters. 

Before clustering a data set, we can use Fastmap to project it onto a 2D space and see 
how many clusters possibly exist in the data set therefore we can determine the 
number of clusters to be generated. 

3.3 Other  Cluster  Validation Methods 

Fastmap helps identify isolated clusters generated from the original high dimensional 
space. However, it does not validate whether the isolated clusters are atomic or 
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composite. It cannot verify whether the overlapping clusters are separate in the 
original high dimensional space or not. In combination with Fastmap, we use the 
following validation methods to solve these two problems. 

We use two methods to solve the first problem. Firstly, we visualize the 
characteristic information of isolated clusters. The characteristic information includes 
cluster centers, category distributions of categorical variables and histograms of 
numeric variables. The characteristic information can help understand the meanings 
of clusters. A cluster is found if it has a business meaning. Secondly, we visualize the 
histograms of distances of objects to cluster centers. From these histograms, we can 
visually evaluate the compactness of a cluster. For example, a cluster that has a small 
mean and standard deviation is more compact than the clusters with large means and 
standard deviations. In general, business meanings are most important in validating 
clusters. 

We solve the second problem by visualizing the distances between clusters. We 
have developed a web view to visualize cluster relationships. An example is shown in 
Fig. 5. The filled circles represent clusters, which overlap on the 2D display. The 
thick lines linking clusters indicate two clusters are close. From this view, we can 
identify that cluster MR1980 and MR2098 are distant from others so we can use the 
above two methods to validate them independently. Other clusters can be merged into 
a composite cluster and further partitioned with the clustering algorithm. 
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Fig. 5. A web view to visualize cluster relationships. 

4 A Real Case Study 

In this section, we use a real example to show how to use visual cluster validation 
methods to cluster real world data. 
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4.1 Business Problem and Data 

In telecommunication service industry, customers often switch from one service 
provider to another. This phenomenon is referred to as churn. Churn costs providers 
dearly. Maintaining a low churn rate is a high priority in many companies. 

Churned customers can be won back through winback marketing campaigns by 
offering them new benefits for reconnecting the service, such as low prices, free 
handsets, free minutes, etc. Because not every one prefers to the same offer, it is 
important to divide customers into similar groups and associate a suitable offer to 
each group in the campaign. Clustering provides an essential technique for customer 
segmentation. 

The data set contains 1900 records, each representing a customer churned from a 
mobile service provider within two months. The customers are described in 37 fields, 
including customer ID, phone number, customer details such as age and sex, billing 
details such as payment methods and spending, service details as well as network 
usage details. After cleaning up the data, five fields were removed. Some are 
identification of customers and some contain only one value. In the remaining 32 
fields, 28 fields are categorical and four fields are numeric. Fifteen fields contain 
missing values. 

4.2 Cluster  Analysis 

The yt-prototypes algorithm [Huan98] was used to cluster this data set because of the 
categorical fields. Before clustering, we used Fastmap to project the whole data set 
onto a 2D display from which we observed that two clusters could be produced in the 
first clustering. Then, we applied the ^-prototypes algorithm to partition the whole 
data set into two clusters. 

To validate our first clustering result, we used Fastmap again to project the two 
clusters onto the 2D display shown in Fig. 6. We can see that cluster 0 (triangles) is 
separate from cluster 1 (boxes). Therefore, we can conclude that the two clusters are 
also separate in the original high dimensional space. The clustering is justified. 

However, what we have known at this stage is only that the two clusters are 
separate clusters and we can separate them. We still need to validate if they are 
atomic clusters or composite ones. The display shows that they are likely composite 
clusters so we can further cluster them. 

After separating the two clusters in the first step, we only consider objects in 
cluster 0. From the display in Fig. 6, we see that objects in cluster 0 spread over the 
place. This is an indication that this cluster contains other sub clusters. Again, we first 
projected cluster 0 onto a 2D space to estimate the number of potential clusters, which 
happened to be 4. Then, we applied the ^-prototypes algorithm to partition cluster 0 
into four sub clusters. The projection of the four clusters on 2D is shown in Fig. 7. 
These clusters are separate in the display so they are also separate in the original 
space. 

To validate these clusters, we further investigated their compactness and 
relationships. We calculated the means and standard deviations of distances of objects 
to the clusters centers (prototypes). The results are given in Table 1. These values 
indicate that sub cluster 0 is most compact because of its small standard deviation. 
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Fig. 6. The first clustering of the 
Winback data set. 

Fig. 7. Projection of four clusters 
created from cluster 0. 

Sub cluster 1 is lest compact. Sub cluster 3 is more compact than sub cluster 2 
although the later looks more compact than the former on the display. 

To understand the relationships between these sub clusters, we calculated the 
distances between the centers of the clusters. The results are shown in Table 2. We 
can see that sub cluster 0 is closer to sub cluster 3 than to sub cluster 2 although the 
projection seems to show the opposite. This implies the 2D visualization can mislead 
the interpretation because two clusters close to each other on the 2D display do not 
warrant that they are also close in the original space. The only principle we can use is 
that if two clusters are separate in the projected low dimensional space, they are also 
separate in the original high dimensional space. When two clusters are close on the 
projected space, we need to validate them through visualization of their relationships 
in the original space. 

Table 1. Cluster compactness. 

Cluiste Mean 
r 

Std. 
Table 2. Distances between clusters. 

0 
1 
2 
3 

5527. 0 
8319. 3 
6303. 3 
3156. 2 

1158. 8 
5249. 9 
2796. 4 
1275. 1 

0 1 
13162 1 15140 798 6 

6036 8 12884 9 
18620 

By visualizing the characteristic information of these clusters, we found that all these 
four sub clusters were high spending clusters. However, the spending in sub clusters 0 
and 3 was comparatively lower than the spending in sub clusters 1 and 2 in which sub 
cluster 1 was the highest. Interestingly, we found that although the spending in sub 
cluster 3 was low but its rate plan is higher than the rate plan of other clusters. Our 
result has also shown that all customers in sub cluster 3 were acquired from a 
particular sales channel. This may indicate that the sales channel didn't help 
customers choose the right service if they were not cheating customers. If true, actions 
need to be taken to correct their business practice. 
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After we finished the analysis of cluster 0 in the first level of clustering, we started 
to use the same methods to analyze cluster 1. Before clustering, we used Fastmap to 
estimate the number of potential clusters. Then, we applied the ^-prototypes algorithm 
to partition cluster 1 into five clusters. Using Fastmap and other validation methods, 
we found that two of them form atomic clusters and the other three contain sub 
clusters, which need to be further discovered. We continued this process until we 
finally got 19 atomic clusters from the whole data set. 

Fig. 8 shows the cluster tree discovered using the interactive approach. In this tree 
diagram, each box represents a node, which is a cluster of customers. The number 
inside each box is the number of customers in that cluster. The R# index uniquely 
identifies each cluster in the process. The gray nodes represent composite clusters that 
contain sub clusters. The white nodes indicate atomic clusters. The root of the tree RO 
represents the entire data set. 

After the tree was constructed, we can easily validate any single cluster or group of 
the clusters selected from the tree. We can visualize the characteristic information of 
the clusters to understand the meanings of the clusters and identify important and 
interesting customer segments to be targeted in the winback campaigns. 

We have found that the Fastmap 2D projection often gives good indications to 
interesting clusters. For example, from the Fastmap projection, cluster R27 has a 
special distribution (plus signs in Fig. 9). After analyzing their characteristic 
information, it turned out that this cluster contains customers who are instant 
churners. The characteristics of these people are that they joined the service, spent 
littl e and then left after a few months. Due to the size of this cluster, special 
campaigns were designed to target these customers. 

5 Conclusions 

In this paper, we have presented a visual method of cluster validation using Fastmap. 
Instead of using it to produce low dimensional data for clustering, we use Fastmap to 
validate clusters created by a clustering algorithm from the original high dimensional 
space. The principle here is that if clusters are separate in the projected low 
dimensional space, they are also separate in the original space but the opposite is not 
true. This enables us to identify the separate clusters in the original high dimensional 
space and focus on the overlapping clusters. Fastmap also enables us to determine the 
number of potential clusters to produce before the clustering algorithm is run. 
The interactive approach to building cluster trees and discover interesting clusters 
with various visual cluster validation methods has proved effective in clustering large 
data sets in real world databases. We have presented a real case study on how to use 
this approach to cluster complex real data. In the case study, we have demonstrated 
that Fastmap and other cluster validation methods can be used effectively to verify 
clustering results and validate clusters produced by the ^-prototypes clustering 
algorithm at different steps. Our results have shown that their use in the interactive 
approach is necessary when dealing with complex data because useful clusters are 
difficult to discover from a single run of clustering. We have developed a prototype 
system to facilitate these analysis activities. 
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Fig. 8. The cluster tree interactively created from the Winback data set. The number 
inside each box is the number of customers in that cluster. R# index uniquely 
identifies each cluster. 
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Fig. 9. Projection of clusters R26 (0) and R27 (1). 
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Abstract. Clustering analysis has been a very active area of research in 
the data mining community. However, most algorithms have ignored the 
tact that physical obstacles exist in the real world and could thus aiffect 
the result of clustering dramatically. In this paper, we will look at the 
problem of clustering in the presence of obstacles. We called this problem 
the COE (Clustering with Obstaicles Entities) problem and provide an 
outhne of an algorithm called COE-CLARANS to solve it. 

1 Introduction 

The studies of clustering on large databases started with the introduction of 
CLARANS [NH94] and since then, a tremendous amount of research had been 
made by the database community on this field [HKOO]. 

Typically, a clustering task consists of separating a set of points into dif-
ferent groups according to some measure of goodness that differ according to 
application. For example, in market research, managers who are planning the 
location of their stores may wish to cluster their customers according to their 
location and then locate a store to serve each cluster. In such a case, a common 
measure of goodness will  be the sum of square of the direct Euclidean distance 
between the customers and the centre of the cluster they belong to. However, in 
many real applications, the use of direct Euclidean distance has its weakness as 
illustrated by the following example. 

Example 1. A bank manager wishes to locate 4 ATMs in the area shown in 
Figure l a to serve the customers who are represented by points in the figure. In 
such a situation, however, natural obstacles exist in the area and they should 
not be ignored. This is because ignoring these obstacles wil l result in clusters 
like those in Figure l b which are obviously wrong. Cluster Ci, for example, is 
in fact split by a river and some customers on one side of the river will have to 
travel a long way to the allocated ATM on the other side of the river. 

Example 1.1 illustrated a practical problem encountered by many users of 
traditional clustering algorithms: the lack of mechanism to integrate physical 
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(a) Customers' location and ob- (b) Clusters formed when ignor-
stacles. ing obstacles. 

Fig. 1. Planning the location of ATMs 

obstacles into clustering algorithms. In many application, the discovered clusters 
can be much more useful if they are found while keeping the physical imitation 
of the obstacles in mind. 

Depending on the application on hand, different clustering algorithms will  be 
needed and they will be affected differently by the existence of obstacle entities. 
In this paper, we will  concentrate on adapting CLARANS to handle obstacles 
and we called the adapted algorithm COE-CLARANS . The problem in Ex-
ample 1.1 is formally described as follows: 

We are given a set P of n points {pi,P2y-,Pn} and a set O of m non-
intersecting obstacles {oi,...,Om} in a two dimensional region, R with each 
obstacle Oi represented by a simple polygon. The distance, d{p, q) between any 
two points, p and q, is defined as the length of the shortest Euclidean path from 
p to g without cutting through any obstacles. To distinguish this distance from 
the direct Euclidean distance, we will refer to this distance as obstructed distance 
in this paper. Our objective is to partition P into k clusters C\,...,Ck such that 
the following square-error function, E, is minimized. 

^ = EtiEpec.^'(P>"^i) 

where mt is the centre of cluster Cj that is determined also by the clustering. 

Due to lack of space, we will only outline the steps taken in COE-CLARANS 
to handle obstacles in the next section follow by the conclusion in Section 3. 

2 The COE-CLARANS Algori thm 

In order to adapt an existing clustering algorithm like CLARANS to handle 
obstacles, two different approaches can be adopted. The first is a loosely-coupled 
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approach in which the obstacles are handled solely by the distance function 
and the clustering algorithm uses the distance function as a black box without 
catering for obstacles. The second approach is a tightly-coupled approach in 
which both the clustering algorithm and the distance function take obstacles 
into account. COE-CLARANS uses the second approach as it give more room 
for optimizing performance. COE-CLARANS use two techniques to perform 
efficient clustering. We will introduce them in this section. 

2.1 Pre-clustering 

To make COE-CLARANS efficient, a pre-clustering step similar to those in 
BIRCH [ZRL96], ScaleKM [BFR98] and CHAMELEON [KHK99] are taken to 
group the objects into a set of clustering features [ZRL96]. We call these cluster-
ing features, micro-clusters. There are two advantages in adding a pre-clustering 
step. First, the compressed micro-clusters take up much less memory space and 
clustering can thus be performed in main memory. Second, as computing the 
distance between objects and the cluster centers is an expensive operation, pre-
clustering will help reduce the number of such operation. 

In order to avoid having micro-clusters that are split by an obstacle, we 
first triangulate the region R into triangles and group the data, points according 
to the triangle that they are in. Micro-clusters are then formed in each group 
separately. As points within a triangle are all mutually visible to each other, this 
ensures that micro-cluster formed are not split by an obstacle. 

With the use of micro-clusters for clustering, we have to take note that the 
cluster centers are now micro-clusters and we are approximating the location of 
the actual medoids to be within these cluster centers. 

2.2 Using the Lower  Bound of E for  Prunin g 

The CLARANS algorithm is a generate-and-test algorithm which randomly pick 
a cluster center Oj and try to replace it with a new center Orandom- To judge 
whether Orandom is a better center than Oj, the square error function E is com-
puted with Orandom as the cluster center and if it is found to be lower than the 
one computed with Oj as the center, replacement will  take place. However, the 
computation of E is very expensive with the existence of obstacles. To avoid the 
unnecessary computation of E, an more easily computed lower  bound of E, 
E' is first computed. If E' is already higher than the best solution so far, then 
Orandom Can be abandoned without the need for E to be computed. 

To compute E' with Orandom as a cluster center, we first underestimate the 
distance between Orandom and the micro-clusters by using direct Euclidean dis-
tance. Thus, if the direct Euclidean distance between a micro-cluster p and 
Orandom IS shorter than the obstructed distance between p and the other fc — 1 
unchanged cluster centers, then p is assigned to Orandom and the direct Euclidean 
distance between them will  be used when computing the estimated square-error 
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function £". This makes E' a lower bound for the actual square-error function 
E. Since E' is a lower bound of E, we can choose to abandon Orandom without 
computing E if E' is already higher than the square-error function of the best 
solution so far. 

3 Conclusion 

In this paper, we introduce the problem of COE which we believe is a very real 
and practical problem. We selected a clustering problem and outline an algorithm 
COE-CLARANS for solving it. COE-CLARANS makes use of two main ideas 
to enhance its efficiency. First, it uses the idea of pre-clustering to compress the 
dataset into micro-clusters which could be clustered in the main memory and 
thus avoids I/O overhead. Second, it avoids unnecessary computation by first 
estimating a lower bound E' for the square-error function E and then computes 
E only if E' proves to be lower than the best solution that has been found. We 
believe that there is still a lot of room for research in the problem of COE and 
hope that our work could motivate more people to look into this area. 
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Abstract. In this paper, we combine sampUng technique with DBSCAN 
algorithm to cluster large spatial databases, two sampling-based DBSCAN 
(SDBSCAN) algorithms are developed. One algorithm introduces sampling 
technique inside DBSCAN; and the other uses sampling procedure outside 
DBSCAN. Experimental results demonstrate that our algorithms are effective 
and efficient in clustering large-scale spatial databases. 

1 Introduction 

DBSCAN [1] is a high-performance clustering algorithm that can discover clusters of 
arbitrary shape and handle the noise points effectively. However, for large-scale 
spatial databases, DBSCAN requires large volume of memory support and could 
incur substantial I/O costs because it operates directly on the entire database. The aim 
of this paper is to extend the DBSCAN algorithm to cluster large-scale spatial 
databases by data sampling technique. Two novel sampling-based clustering 
algorithms are proposed and implemented by combining the sampling technique with 
DBSCAN. One algorithm introduces sampling technique inside DBSCAN and the 
other applies sampling procedure outside DBSCAN. Owing to data sampling, the I/O 
cost and memory requirement for clustering are reduced dramatically, and the run-
time of clustering is thus cut down considerably. Experimental results demonstrate 
that our approach is effective and efficient in clustering large-scale spatial databases. 

2 Sampling-Based DBSCAN Algorithms 

While handling large-scale databases or data warehouses, one common used 
technique in clustering analyses is data sampling, which selects a relatively small 
number of representatives from databases or data warehouses and applies the 
clustering algorithms only to these representatives. However, to the best of our 
knowledge, no research on combining sampling technique with DBSCAN has been 
reported. We develop two sampling-based DBSCAN (SDBSCAN) algorithms. One 
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SDBSCAN algorithm adopts sampling technique inside DBSCAN, i.e. inside 
sampling approach, and the other SDBSCAN algorithm uses sampling procedure 
outside DBSCAN, i.e. outside sampling approach. Comparing with other clustering 
algorithms using sampling technique, our approaches have two outstanding features: 
- Sampling technique and clustering algorithm are bounded together. 
- Clustering not only over the sampled data set, but also over the whole data set. 

For more details about SDBSCAN algorithms, the readers can refer to [2]. 

2.1 The Idea of Sampling Inside DBSCAN Algorithm : SDBSCAN-1 

DBSCAN selects a global k-dist value for clustering. For the thinnest clusters, the 
number of objects contained in their core objects' neighborhoods with radius Eps 
equal to k-dist is k. However, for the other clusters, the number of objects contained 
in most of their core objects' neighborhoods of the same radius is more than k. 
DBSCAN carries out region query operation for every object contained in the core 
object's neighborhood. For a given core object p in cluster C, it's conceivable that the 
neighborhoods of the objects contained in p wil l intersect with each other. Suppose q 
is an object in p's neighborhood, if its neighborhood is covered by the neighborhoods 
of other objects in p, then the region query operation for q can be omitted because all 
objects in q's neighborhood can be fetched by the region queries of the other objects 
in p, which means that q is not necessary to be selected as a seed for cluster 
expansion. Therefore, both time-consuming on region query operation for q and 
memory requirement for storing g as a core object can be cut down. In fact, for the 
dense clusters, quite a lot of objects in a core object's neighborhood can be ignored 
being chosen as seeds. So for the sake of reducing memory usage and I/O costs to 
speed up the DBSCAN algorithm, we should sample some representatives rather than 
take all of the objects in a core object's neighborhood as new seeds. We call these 
sampled seeds representative object of the neighborhood where these objects are held. 
Intuitively, the outer objects in the neighborhood of a core object are favorable 
candidates of representative object because the neighborhoods of inner objects tend to 
being covered by the neighborhoods of outer objects. Hence, sampling the 
representative seeds is in fact a problem of selecting representative objects that can 
accurately outline the neighborhood shape of a core object. 

2.2 The Idea of Outside Sampling DBSCAN Algorithm : SDBSCAN-2 

Outside sampling is in fact a traditional technique. However, in our SDBSCAN-2 
algorithm, a novel and efficient labeling mechanism is adopted to implementing the 
labeling process of the un-sampled data based on R*-tree. The scheme of SDBSCAN-
2 is like this: 
- Sample database DB to produce sampled dataset sdb, 
- Create R*-trees for DB and sampled data set sdb, 
- Cluster sampled data set sdb with DBSCAN, 
- FOR each core point p in sampled data set sdb DO: 

 resultP:=DB.regionquery (p, Eps), 
 DS.changeClIds (resultP,p.ClId). 
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Step 1 is the sampling procedure. A sampling algorithm for drawing a sample 
randomly from data in fil e in one pass and using constant space is used. In order to 
guarantee the clustering quality, an analytical limitation on minimum sampled data 
amount is applied. Step 2 is responsible for building R*-trees for DB and the sampled 
data set sdb. Step3 and 4 are the key steps that are used for clustering and labeling 
respectively. We cluster the sampled data set sdb with DBSCAN algorithm. Once a 
core point is found in sdb, all points in its neighborhood of the same radius in DB, 
UNCLASSIFffiD or CLASSIFIED as NOISE, sampled or un-sampled, are labeled as 
members of the current cluster. Therefore, the clustering process (over the sampled 
data set sdb) and the labeling process (over un-sampled points in DB) are in fact 
carried out concurrently. When clustering is over, labeling is also finished. A further 
improvement on SDBSCAN-2 algorithm is as follows. While building R*-tree, we 
don't create a separate R*-tree for the sampled data set sdb. Instead, we build only 
one R*-tree for DB. In other words, we merge the R*-trees of DB and sdb in the 
former version of SDBSCAN-2 into one single R*-tree, in which we mark out which 
point is sampled and which is not. Therefore, the operations of clustering and labeling 
are carried out over the same R*-tree. And for each core point in sdb only one time of 
region query operation is executed, unlike in the former version of SDBSCAN-2 
where two times is needed: the first time for clustering over the R*-tree of sdb, and 
the second time for labeling over the R*-tree of DB. Obviously, this improvement can 
cut down almost half of the region queries. 

3 Performance Evaluation 

We evaluate SDBSCAN algorithms with both synthetic sample databases and the 
database of the SEQUOIA 2000 benchmark. Generally, SBSCAN algorithms can be 
faster than DBSCAN by several times. Figure 1 illustrates scale-up experiment with 
DBSCAN, SDBSCAN-1 and SDBSCAN-2, which shows that SDBSCAN algorithms 
have better scalability over data set size than DBSCAN. Here, sampling ratio is 20%. 
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Fig. 1. Performance comparison: DBSCAN, SDBSCAN-1 and SDBSCAN-2 
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Abstract. This paper investigates the scalability of predictive Adap-
tive Resonance Theory (ART) networks for knowledge discovery in very 
large databases. Although predictive ART performs fast and incremen-
tal learning, the number of recognition categories or rules that it creates 
during learning may become substantially large and cause the learning 
speed to slow down. To tackle this problem, we introduce an on-line algo-
rithm for evaluating and pruning categories during learning. Benchmark 
experiments on a large scale data set show that on-line pruning has been 
effective in reducing the number of the recognition categories and the 
time for convergence. Interestingly, the pruned networks also produce 
better predictive performance. 

1 Introduction 

One of the major challenges faced by the predictive modeling techniques is the 
efficiency and the scalability to very large databases. Gradient descent based 
neural network models require many learning iterations through the training 
data and are highly computational intensive. This paper presents an alterna-
tive approach to knowledge discovery using a predictive self-organizing neural 
network model, known as the Adaptive Resonance Associative Map (ARAM) 
[5]. 

Predictive self-organizing networks [1] perform fast incremental supervised 
learning of recognition categories (pattern classes) and multi-dimensional map-
pings of binary and analog patterns. When performing classification tasks, 
ARAM formulates recognition categories of the input and output pattern pairs. 
Unfortunately, for very large databases, the number of the recognition categories 
may become substantially large, causing the learning time to increase signif-
icantly. To tackle this problem, we introduce an on-line algorithm to estimate 
the merit or confidence values of the recognition categories of an ARAM network 
during learning. Each newly created category node is given a confidence value of 
1. A forgetting process constantly reduces confidence values towards 0 at a spe-
cific interval. In conjunction, a reinforcement process increases confidence values 
towards Is when correct predictions are produced by their respective recognition 
categories. The confidence values of the category nodes are then compared with 
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a threshold parameter. Categories with confidence values below the threshold 
are removed from the network. 

category field" 

Fig. 1. The Adaptive Resonance Associative Map architecture. 

2 Fuzzy A R A M 

An ARAM network (Figure 1) consists of two input feature fields, Ff and F^, 
connected by bi-directional and conditionable pathways to a category field F2. 
For classification problems, Ff serves as the input field representing input activ-
ity vectors and Ff serves as the output field representing output class vectors. 

Given a pair of input and output patterns, ARAM computes a choice func-
tion for each F2 recognition category. The winning node that has the maximal 
choice function value then triggers a top-down priming on Ff and Ff to check 
if its associated input and output weight vectors satisfy the vigilance criteria 
in their respective modules. If so, under fast learning, the weight templates of 
the F2 recognition category are modified towards their intersection with the in-
put and output vector pair. Otherwise, the recognition category is reset and 
the system repeats to select another category node until a match is found. By 
synchronizing the unsupervised clustering of the input and output pattern sets, 
ARAM learns supervised mapping between the input and output patterns. As 
code stabilization is ensured by restricting learning to states where resonances 
are reached, fast learning in a real-time environment is feasible. Please refer to 
[5] for the detailed algorithm. 

3 A R A M Complexity and Category Prun ing 

Let P be the number of the input and output training pattern pairs, Q be the 
number of the recognition categories created by an ARAM network, M be the 
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number of the input attributes, and N be the number of the output classes. 
The time complexity per learning iteration of the ARAM algorithm is given by 
0{PQ{M + N)). Since M and N are typically fixed for a specific knowledge 
discovery task, the complexity thus depends on P and Q. When Q is small, say 
around log(P), the time complexity is O(PlogP). However, if Q is large, the 
complexity grows to P  ̂ in the worst case. 

To improve learning efficiency, we propose a method for evaluating and elim-
inating categories that are created by spurious cases during learning. Each cat-
egory node j is associated with a confidence factor Cj, a real number between 0 
and 1. For a newly committed node j , Cj equals 1. At a fixed interval, a forget-
ting process constantly causes Cj to decay towards 0. A reinforcement process 
increases Cj towards 1 whenever a correct prediction is made by the category 
node j during learning. 
Confidence erosion: At a chosen interval, the confidence value of each recog-
nition category depreciates towards 0 according to 

^(new)_^(o ld)_^^(o ld) ^  (1) 

where ( € [0,1] is the confidence decay parameter. The erosion process is self-
scaling in the sense that the decay becomes smaller as cj gets smaller. 
Confidence reinforcement: When a category node J, chosen by the code com-
petition process, makes a correct prediction, its confidence value cj is increased 
towards 1 by 

^ (new)^^ (o ld ) ^^ ( l _^^o Id ) ^ ^  (2) 

where T] £ [0,1] is the confidence reinforcement parameter. 
Category pruning : The computed confidence values axe then compared with a 
threshold parameter r € [0,1]. A category is removed from the ARAM network 
when its confidence value falls below r. 
Convergence criterion : After each training iteration, the pruned network is 
evaluated against the training set for its predictive performance. Training is 
stopped when the improvement on the training set performance (in terms of 
percents, compared with that obtained in the previous iteration) falls below a 
convergence threshold ^. 

4 Experiments 

The adult data set [4] is one of the largest public domain data set. It contains 
48,842 records, each characterized by six continuous attributes and eight nominal 
features. The task is to predict whether a person with a particular set of personal 
attributes draws a salary greater or less than US$50,000. The adult data set was 
noted as a hard domain with a good number of records and a mix of continuous 
and discrete features. 

Fuzzy ARAM experiments used a standard set of parameter values: choice 
parameters aa = at = 0.1, learning rates /3a = Pb — 1-0, and contribution 
parameter 7 = 1.0. For on-line pruning, we used (' = 0.005 for confidence decay, 
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T] = 0.5 for confidence reinforcement, r = 0.05 for pruning threshold, and ^ = 0.5 
for stopping criterion. For prediction, ARA M used K-max rule [5] with K = 3. 

Table 1. Simulation results of fuzzy ARAM on the adult data set compared with those 
of KNN, C4.5, and NBTVee. A '-' indicates that a value is not available for comparison. 
The results of ARAM were averaged over 10 simulations. 

Methods 
1-Nearest-Neighbor 
3- Nearest-Neighbor 
C4.5 
NBTree 
Fuzzy ARAM 
+ On-hne pruning 

# Epochs 
1 
1 
-
-

11.5 
7.5 

# Nodes/ 
Rules 
30162 
30162 
2213 

137 
3826 
343 

Time Test 
(Sees) Accuracy 

78.6 
79.7 
84.6 
85.9 

8226 81.0 
1125 84.1 

As shown in Table 1, fuzzy ARAM created a total of 3,826 category nodes 
from the 30,152 training pat terns, with a compression ratio of around 8. Each 
learning process took an average of 11.5 iterations to converge. One complete 
benchmark experiment, including training and testing, took 8373 seconds (more 
than two hours) using an Ultra-60 SUN SPARC machine. Wi t h on-line category 
pruning, fuzzy ARAM produced an average of 343 categories. The networks also 
converged faster in an average of 7.5 iterations. One complete benchmark involv-
ing 30,152 training cases and 15,060 test cases took about 1,125 seconds (less 
than 20 minutes). Comparing predictive performance, fuzzy ARA M obtained 
an accuracy of 81.0% on the test cases, about the same as those of K-Nearest-
Neighbor. With on-line category pruning, the test set accuracy improved to 
84.1%, roughly comparable to those obtained by C4.5 and NBTree [3]. 
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Abstract. We present an ensemble averaging effect for improving the 
generalization capability of self-generating neural networks applied to 
classification problems. The results of our computational experiments 
show that ensemble averaging effect is 1-7% improvements in accuracy 
comparing with single SGNN for three benchmark problems. 
Keywords: self-generating neural networks, self-generating neural tree, 
ensemble averaging, classification, competitive learning 

1 Introduction 

Self-generating neural networks (SGNNs) are focussed an at tent ion because of 
their simplicity on networks design [1]. SGNNs are some kinds of extension of the 
self-organizing maps (SOMs) of Kohonen [2] and utilize the competit ive learning 
algorithm which is implemented as self-generating neural tree (SGNT). 

The SGNT algorithm is proposed in [3] to generate a neural tree automat-
ically from training data directly. In our previous study concerning the perfor-
mance analysis of the SGNT algorithm [4], we showed that the main characteris-
tic of this SGNT algorithm was its high speed convergence in computat ion t ime 
but it was always not best algorithm in its accuracy comparing with the existing 
other feed-forward neural networks such as the backpropagation (BP) [5]. 

In this paper, we present the effect on ensemble averaging for improving 
the accuracy of self-generating neural networks (SGNNs) on classification prob-
lems. In order to investigate the effect of the ensemble averaging, we compare 
this model with the single SGNN model. In our study, we apply to s tandard 
classification problems MONK's [6], Cancer [7], Card [7], which are given as 
benchmarks. 

2 Ensemble Averaging of SGNNs 

SGNNs are directly learned not only the weights of the network connections but 
also the structure of the whole network from the given input data. In order to 
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decide a winner neuron n^in for training p dimensional data e,, the competitive 
learning is used. If a neuron rij  in the current SGNT includes the riwin as its 
descendant, weights Wjk of the Uj are updated as follows: 

Wjk  ̂ Wjk H — j -  (ejfc - Wjk). (1) 

here, k is from 1 to p, and Cj is the number of the leaf neurons in rij. 
After all input data are inserted into the SGNT as its leaf neurons, the 

weights of each node neuron Uj are the averages of the corresponding weights of 
all its children. Whole SGNT reflect the given feature space by its topology. 

Though SGNNs have an ability of fast learning and an applicability of large 
scale problems, the accuracy of the classification is not so good as feed-forward 
networks which are implemented as a supervised learning method hke the BP. In 
order to acquire more higher performance from given training data, we consider 
an ensemble averaging of K SGNTs. 

The structure of the SGNT changes dynamically in training. The SGNT 
algorithm decide the structure of the SGNT after all training data are added in 
the SGNT. The different structure of the SGNT is generated by changing the 
input order of the training data. 

In training process, we define "shuffler" to shuffle the set of input data E. 
The set of all input training data E enters each SGNN through each shuffler. 
The shuffler makes shuffle elements of E at random. All SGNTs are generated 
by adopting the SGNT algorithm. After training process, various SGNTs are 
generated independently. 

In testing process, the set of test data T entered this ensemble model. Each 
output vector ô  e 3?'̂  denotes the output of the expert A; for the set of test 
data T. The output of this ensemble model is computed by averaging the each 
expert output as follows: 

K 

^ ^ « ^ - (2) 

Additionally, each expert can train and test independently. This model has a 
possibility of a parallel computation at the training process and the testing one. 

3 Experimental Results 

In order to analyze the generalization capability of SGNNs through ensemble av-
eraging, we select three typical classification problems which are given as bench-
mark problems in this classification field. Table 1 shows the dataset summary. 
Al l problems are binary classification problems. We evaluate the classification 
accuracy by comparison with ensemble SGNNs and the single SGNN. The clas-
sification accuracy of each network is the percentage of correctly recognized 
examples in the set of all examples. 

On the SGNT algorithm, the number of SGNTs K for ensemble averag-
ing is changed from 1 to 100 (1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50,75, and 

1 ^ 
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Table 1. Dataset Summary. #Data - data size (training data size, test data size), 
Type - attribute type, and #A - number of attributes. 

Name 

Monk's 
M l 
M2 
M3 

Cancer 
Card 

#Data 

432 (124,432) 
432 (169,432) 
432 (122,432)' 
699 (350,174) 
690 (345,172)* 

#A 

6 
6 
6 
9 
51 

Type 

discrete 
discrete 
discrete 
continuous 
mixed 

100). Our experimental results are computed by IBM PC/AT (CPU: Pentium 
II 450MHz, Memory: 192MB). We compute 50 trials for each single/ensemble 
method. 

Fig. 1 (a), (b), and (c) shows the relation between the number of SGNTs and 
the classification accuracy of the ensemble SGNNs for MONK's, Cancer, and 
Card respectively. Here, each classification accuracy is the average of 50 trials. 
In Fig. 1, it is shown that the classification accuracy are improved by computing 
the ensemble averaging of various SGNTs for all problems. The improvement 
ability is obtained from 2 to 10 SGTNs most effectively. The classification accu-
racy of larger than 20 SGNTs ensemble model is convergence for all problems. 
The improvement ability is obtained from 2 to 10 SGTNs most effectively. The 
classification accuracy of Larger than 20 SGNTs ensemble model is convergence 
for all problems. Prom these results, it seems to be decided the number of SGNTs 
K is about from 10 to 20 concerning the improvement rate and computation 
time. 

Table 2 shows comparisons of the classification accuracy and the computa-
tion time of the single SGNN and best classification accuracy of the ensemble 
model. All results are showed the average of each trial. In Table 2, the ensemble 
model of SGNNs is better classification accuracy than the single SGNN at all 
problems in ave. Concerning Mi , M2, and M3, improving of the classification 
accuracy are about 7.2%, 2.4%, 4.7% respectively. Concerning Cancer, although 
all classification results show good results about 95% for the single SGNN, en-
semble models improve the classification accuracy 0.9-2.2%. Concerning Card 
problem, the improvement of the classification accuracy are about 1.2-2.5%. 

10 20 30 40 50 60 70 BO 90 10c 
The number of SONTs 

10 20 30 40 50 60 70 80 so i a 
The numbef of SGNTs 

^̂ .*.-*- * *-**.. 

CardZ — s — 
Card3 -

10 20 30 40 50 60 70 80 90 IOC 
The number of SGNTs 

Fig. 1. Relation between the number of SGNTs and the classification accuracy of the 
ensemble SGNNs 
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Table 2. Comparisons of the classification accuracy and the computation time (in sec.) 
of the single SGNT and the best classification accuracy of the ensemble model 

single 
time(sec.) 
ensemble 
time(sec.) 

M\ Mi M3 

80.6% 71.2% 83.8% 
0.06 0.08 0.06 

87.8% 73.6% 88.5% 
3.13 2.73 1.95 

Cancer 1 

95.8% 
0.12 

98.0% 
4.25 

Cancer2 

94.9% 
0.12 

95.8% 
12.56 

CancerS 

94.5% 
0.12 

95.7% 
8.92 

Cardl Card2 Card3 

75.7% 76.3% 71.2% 
0.46 0.44 0.44 

77.0% 78.8% 72.4% 
2.78 33.10 15.58 

4 Conclusions 

I n this paper, we presented the effect on ensemble averaging of SGNNs to improve 
the classification accuracy. Experimental results show that ensemble averaging 
of SGNNs improve 1-7% increase of classification accuracy comparing with the 
single SGNN by sacrificing its fast computat ion t ime. Concerning the ensemble 
averaging of SGNNs, 10-20 ensembles may be appropriate judging from our 
experiments. Though this ensemble averaging model sacrifices its computing 
t ime, this problem can be solved by considering parallel processing. Flom above 
mentioned facts, the SGNT approach is one of the powerful neurar network 
algorithm and has a generalization capability competable with most widely used 
B P algorithm in feed-forward neural networks. 
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Abstract. The effects of attribute transformations on numerical data 
mining are investigated. Theoretical examples from classical mathemat-
ics are used to illustrate its critical-ness. The simplest kind of attribu-
tion transformations, linear transformations, is applied to stock market 
and economic data. Some useful "predictive" rules are generated. Here 
"predictive" is used in the sense that the logical patterns involve time 
elements. 

Keywords: database, stock market data, rough set, extensional databases, 
predictive 

1 Introduction 

Intuitively, it is clear that selecting suitable attributes is often the key to the 
success of data mining. In AI, one often uses knowledge representations to de-
scribe an unknown universe by known features. So the selected features are often 
suitable for knowledge discovery. However in database, the attributes are often 
selected for totally different purposes; they are selected primary for record keep-
ing. So the existing attributes might not be suitable for data mining; attribute 
transformations are often needed. 

This is our first paper to investigate attribute transformations systematically. 
First we look at linear transformations of attributes. The study is reasonably suc-
cessful. Linear transformations are well understood mathematics and intuitively 
reachable areas. The results are applied to stock and economic data. Even in 
such simple applications, experiments are needed: Should we take sums, aver-
ages or weighted averages, and for three days, four days, . . ., n-days, and etc.? 
Some understanding of the data seems necessary. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 181-192, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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Next, we turn to the non-linear transformations. This is a much tougher and 
deeper area. Many data mining of daily life problems probably would not need 
such sophisticated transformations, however, the area of scientific discoveries 
may need such transformations, simply because some interesting scientific data 
(attribute) are often not directly observable and measurable. To search for guid-
ance, some classical mathematics is examined. We find examples that indicate 
clearly attribute transformations are a "must," at the same time there are no 
clear hints on how such transformations can be constructed; see Section 3. 

Finally, we observe that attribute transformations can always be approxi-
mated by polynomials. So in the case no meaningful transformations can be 
recommended by domain experts, the polynomials of attribute transformations 
may be searched brutally by one degree at a time. Attribute transformations, we 
believe, will  become, if have not been, one of the most important areas of data 
mining research. 

The data mining methodology we used in this paper is based on rough set 
theory [5]. Rough set theory has two formats, abstract and table formats [3]. In 
the table format, it is a theory of extensional relational databases ([1] pp. 90). 
However, rough set theory and the traditional theory of extensional relational 
database are fundamentally different. The latter focuses on storing and retrieving 
data, while the former on summarizing the patterns or rules [2] - a subset of 
modern data mining theory. 

2 Information Tables - Rough Set Theory 

Here we present the table format of rough set theory. Roughly, both relational 
and rough set theories are studies of attribute-value-pair representations of the 
universe. A relation in the database is the image of such a knowledge represen-
tation, while information table is the graph of such a representation. 

An information table (also known as information system, knowledge representa-
tion system) consists of 

1. U = {u, u , . . .}  is a set of entities. 
2. A is a set of attributes {A^, A^,... A"}. 
3. dom{A^) is the set of the values of the attribute A* 

Dom = dom{A^) x dom{A'^)... x dom{A"') 

4. p : U X A —> Dom, called description function, is a map such that 

p{u,A^) is in dom{A^) for ailu €U and A  ̂G A. 

The description function p induces a set of maps 

t = p{u, —) : A —> Dom. 
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Each image forms a tuple: 

t = {p{u, A^), p{u, A^),...., p{u, A^), ..p{u, ^ " ) ) 

Note that each tuple t is associated with an object u, but not necessarily uniquely. 
In an information table, two distinct objects could have the same tuple repre-
sentation that is not permissible in relational databases. 

A decision table is an information table {V,A, Dom, p) in which the attribute 
set A = C U £  is a union of two non-empty sets, C = {0^,0"^,... C^} and 
D = {D^,D'^,.. .D''}, of attributes. The elements in C are called conditional 
attributes, D are decision attributes. Each tuple can be regarded as a decision 
rule. Rough set theory, then, provides a method to reduce a given decision table 
to a minimal table, called redut, which consists of a minimal collection of the 
simplest decision rules; one should note that a given decision table may have 
several reducts [5]. 

Strictly speaking, rough set theory is more of data reduction than data min-
ing. The reduct is logically equivalence to the original decision table in the sense 
that both the given decision table and its reduct will make the same decision. 
It may be somewhat a surprise to rough set community, L. Zadeh reached a 
similar conclusion in 1976 ([8] pp278 ); he called it compactification of a tabular 
representation. 

3 Attribute Transformations 

In this section, we begin our study of attribute transformations systematically. 
We examine, transpose, linear, quadratic, and other nonlinear transformations. 
The study conclude that attribute transformations are often necessary. How-
ever, there are no indications on how such transformations could be found. In 
practice, such transformations most likely will  be provided by domain experts. 
Finally, we observe from elementary algebra that each attribute transformation 
is a polynomial function; So a brutal force search of a proper transformation 
(by one degree at a time) is costly possible. We believe the understanding of the 
attribute transformations will soon, if have not been, be one of the major areas 
of data mining research. 

3.1 Tim e Series-Transpose/Delay Operations 

This is an intuitively meaningful operation; we create a table of time series. The 
original table, which consists of first three columns, Al , Bl and CI, is reproduced 
six additional times. Each time it is reproduced, the columns or objects are 
shifted up by one row. The 1st group of columns is the records starting from 
"first day" record (the original table), 2nd group "second day" (one unit time 
delay) and etc. The attribute name is appended with a number indicating the 
number of delays. In Table 1, we are showing six delays. The new table is seven 
times wider than the original table. 
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Table 1. shows how data is delayed with eax:h of the six reproductions of the original 
table. 

X 

1 
2 
3 
4 
5 
6 
7 
8 

^ 1 

1 
2 
3 
4 
5 
6 
7 
8 

J3i 
1 
2 
3 
4 
5 
6 
7 
8 

Ci 

1 
2 
3 
4 
5 
6 
7 
8 

^ 2 

2 
3 
4 
5 
6 
7 
8 

B2 
2 
3 
4 
5 
6 
7 
8 

C2 

2 
3 
4 
5 
6 
7 
8 

^ 7 

7 
8 

Br 

7 
8 

^ 7 

7 
8 

3.2 Linear  Transformation s 

In this section, we investigate a class of transformations that are mathematically 
well understood. Some linear transformations, such as sums, averages, rotations, 
translations and etc. are intuitively meaningful. Let B = {Bi,B2,-  -Bm} be 
a subset of the attributes A = {Ai,A2,...An}- Let r = {ri,r2,-  -rm} be a 
set of real numbers. We form a new derived attribute A* by taking a linear 
combination of attributes in B, namely, 

A* = r jB i + r2S2,.. + r „ B „ 

In Table 2, we give an interesting special case, averaging, that is, we set ri  = 
... = rm = 1/5: 

A* = {Al + ^2 + ^3 + vi4 + A5)/5; 
B* = (Bl + B2 + B3 + B4 + 55) /5; 
C* = (CI + C2 + C3 + C4 + C5)/5. 

Table 2. shows the combined effects of delay and averaging. 

X 
1 
2 
3 
4 
5 
6 
7 
8 

A, 
1 
2 
3 
4 
5 
6 
7 
8 

Bl 
1 
2 
3 
4 
5 
6 
7 
8 

Ci 
1 
2 
3 
4 
5 
6 
7 
8 

As 
5 
6 
7 
8 

Sg 
5 
6 
7 
8 

a 
5 
6 
7 
8 

J4* 

(1+ 2 + 3 + 4+ 5)/5 
(2 + 3 + 4 + 5 + 6)/5 
(3 + 4 + 5 + 6 + 7)/5 
(4 + 5 + 6 + 7 + 8)/5 

B* C* 
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3.3 Quadrati c Transformations 

Next, we will  consider quadratic transformations, namely, 

where r,, r{j,/i ) are real numbers. This is another class of transformations, which 
is reasonably understood mathematically. First, we wil l show their effects from 
classical mathematics: The first six columns of Table 3 consists of the coefficients 
of the equations of some conic sections: 

Ax'  ̂+ Bxy + Cy  ̂ + Dx + Ey + F = Q 

It is clear that we have very littl e to say about these tuples if we only view the first 
six attributes. So, we compute a quadratic transformation, called discriminant, 

A* = ( B2 _ 4AC) 

and consider the signs of its values. The sign classifies (generalizes) the values of 
the discrimnant into three concepts, positive, negative and zero; denoted by +, -, 
0. These signs have standard meaning; see the last column in Table 3. It is clear 
that without the new derived attributes A*  and the sign, we will  not be able 
to classifies the conic sections. This example indicates that some proper trans-
formations are needed for data mining, unfortunately, it gives us no hints how 
such transformations can be discovered. Nevertheless, since quadratic transfor-
mations are relatively simple, there is a possibility that the right transformation 
can be found by brutal force experiments. 

Table 3. shows the effects of quadratic transformations 

A 
9 
9 
73 
2 
1 
1 

B 
- 4 
0 
72 

- 72 
0 
0 

c 
- 72 
16 
52 
23 
0 
0 

D 
0 
0 
30 

- 80 
0 
12 

E 
8 
0 

-40 
-60 

4 
- 1 

F 
176 

-144 
- 75 
-125 

0 
39 

A* 
2608 
-576 

-10000 
5000 

0 
0 

Sign 

+ 
-
-

+ 
0 
0 

Interpretations 
Ellipse 

Hyperbola 
Hyperbola 

Ellipse 
Parabola 
Parabola 

3.4 Geometr ic Considerations 

We will consider a geometric example, the first six columns of Table 4 are the 
{X, y)-coordinates of three vertices of triangles. The derived attributes are func-
tions, namely, the length of three segments, of the original attributes. To discover 
any theorems about these triangles, the original attributes are not useful at all. 
So the following three new derived attributes, the distances, are considered 
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B' = v/(X2 - x^Y + (F2 ^ n F , 

It is clearly these new attributes of Table 4 show that all segments are the same 
length. Such a conclusion is clearly impossible from the original attributes. This 
is another example saying that some specific attribute transformations are often 
a must, and can only be provided by domain experts. 

Table 4. shows the effects of geometric transformations 

^ 1 

0 
1 

V3/2 
- 2 

Fi 
1 
2 

1/2 
1 

X2 
- 1 
0 

-1/2 
- 1 

F2 
0 
1 

V3/2 
0 

X3 
1 
2 

1/2 
- 1 

Fs 
0 
1 

-V3/2 
2 

A* 
v/2 
v/2 
v/2 
N/2 

S* 
2 
2 
2 
2 

C* 
v/2 

V2 
V2 
v/2 

At this point, we can offer the following geometric observations. A numerical 
n-relation (degree n relation) is a finite set of points that is lying in a "hyper 
surfaces" (manifold) of an n-dimensional Euclidean space. Each set of attribute 
selections corresponds to a selection of coordinate systems. To have nice qualita-
tive information about such a set of points, there is a need of a specific coordinate 
system. In other words, each problem requires its own set of transformations. 
So we conclude that data mining often needs a suitable transformation, and the 
selection of the transformation is dictated by the specific nature of the given 
problem. 

3.5 Polynomial Approximatio n of Transformation s 

Let us conclude this section with a general formulation of attribute transforma-
tions. Let A, B,..., X, be a set of given attributes. We often need to compute a 
derived attribute (see Table 5), which is a function of the original attributes 

FY = f{FXi,FX2,...,FXn). 

Since the table is of finite size, the function / can take polynomial forms, namely. 

Theorem / is a polynomial function. 

Proof: The columns from  ̂ to X are the conditional attributes, and FY is the 
decision attribute. Each row of the conditional attributes can be regarded as a 
point X in Euclidean space, and the corresponding decision value is a value y 
assigned to x. For convenience, we will call these points x conditional points; 
there are as many points as the table size. By a simple result of the college 
algebra, there is a polynomial function / which assumes the value y at each 
conditional point x, that is, y = f{x) V x. Q.E.D. 
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By this theorem, we note that the distance functions in Table 4 can be ex-
pressed by polynomials. Mathematically, these polynomials are the Weistrass 
Approximation of the distance functions on the conditional points. These dis-
tance polynomials are not intrinsic in the sense the "forms" of these polynomi-
als are table dependent. In other words, the polynomials wil l vary as the table 
changes. Note that the "form" of the original distance functions are table inde-
pendent, they will  not change as the table varies. 

Table 5. shows the effects of general transformations 

A 
Ol 

02 

03 

o, 

B 
bi 

b2 

bs 

bi 

C 
Cl 

Cl 

C3 

Ci 

X 
Xl 

X2 

X3 

Xi 

FY 
/ i = fiai,bi,,...,xi) 

/ 2 = f{a2,b2,,...,X2) 

fs = f{a3,b3,,...,X3) 

fi = f{ai,bi,,...,Xi) 

4 Applications to Economic and Stock Market Data 

Our study of attribute transformations is just in the beginning. However, the 
linear case is reasonably complete. We will  apply it to the stock market and 
economic data. The rest of the paper is extracted from [7]. A six year stock 
data range of August 1, 1990 to July 31, 1996 was selected (including some 
indices [9], [10]. This provided 1518 cases for the daily experiment. The next 
step is to find rules about the stock price of the company Applied Materials. 
The rule-generation program DataLogic/R-l- is used [6]. The decision attribute 
is the stock price of Applied Materials. 

4.1 Data Selection 

The daily experiment attributes selected were in Table 6: 

4.2 Data Preparation 

All the attribute data for the daily experiments was discretized into integer 
values. The real-number closing price percentage change was rounded to the 
nearest integer value. The basic decision table had 1517 rows and 11 columns. 
Next the three programs for delaying, averaging, and summing were run on this 
table thus producing three new tables each with 77 columns and 1511, 1487, 
and 1511 rows respectively; the detail of the three programs can be found in [7]. 
The decision attribute was generalized; see Table 7. The results provide strong 
predictive rules hopefully that provide some insight into the direction of the 
change but no information about the amount of the change. 



188 T.Y. Lin and J. Tremba 

Table 6. Data Selected 

Condition Attribute 
Dow Jones Industrial Average 

Compaq Computer 
IBM 

Digital Equipment 
Intel 

Motorola 
Texas Instruments 

Semiconductor Index 
Electronics Index 

Electronic Equipment Index 

Decision Attribute 
Applied Materials (daily price) 

Type 
Index 
Stock 
Stock 
Stock 
Stock 
Stock 
Stock 
Index 
Index 
Index 

Type 
Stock 

Symbol 
Dow 
CPQ 
IBM 
DEC 
Intel 
Mot 
TI 

Semi 
Elec 

Equip 

Symbol 
Applied 

Table 7. Generalization 

Cleissification 
x<0.b 

-0 .5 < xO.5 
x> 

High lever concept 
Falling 

No Change 
Rising 

5 Analysis of Results 

Preliminary experiments were tried with the decision attribute being an integer 
value representing the percentage change from the previous case. The daily per-
centage change ranged from -51 to -I- 17 for the decision attribute. This would 
provide 68 classifications or concepts to be evaluated. The resulting rules were 
weak and possessed only a few supporting cases. This led to the choice of allow-
ing only three classifications. The condition attributes remained unchanged as 
integer values. The rules generated for the daily and monthly experiments wil l 
now be listed. 

5.1 Daily Rules 

The three programs were run in the rule generator program for the decision 
attribute of Applied Materials daily stock price discretized into three categories 
of falling, no change, and rising. The rules developed for each of the categories 
are: 

1. Falling Rules 
(a) [EQUIPl < 1]&[T/ 1 < -2]&[- 4 < SEMIl < 

-1] 

-1] -*  [APPLIED 
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Stock price will  fall if the 5 day average of EQUIP is less than 1% and 
the 5 day average of TI is less than -2% and the 5 day average of SEMI is 
between -4% and -1% (source: average program). This rule is supported 
by 62.2% of the 254 cases. 

(b) [-20 < CPQl < -13] ^ [APPLIED = -1] 
Stock price will  fall if yesterday CPQ was between -20% and -13% 
(source: delay program). This rule is supported by 100% of the 2 cases. 

(c) [-10 < EQUIP2 < -1] -> [APPLIED = -1] 
Stock price will fall if the two day sum of EQUIP was between -10% and 
- 1% (source: sum program). This rule is supported by 65.5% of the 554 
cases. 

2. No Change Rules 
(a) [-2 < Til < lj&[ l < DECl < 2]&c[MOT2 > 2] ^ [APPLIED = 0] 

Stock price will not change if the 5 day average of TI is between -2 % 
and 1 % and the 5 day average of DEC is between 1 % and 2 % and the 
10 day average of MOT is greater than or equal to 2 % (source: average 
program). This rule is supported by 66.7 % of the 3 cases. 

3. Rising Rules 
(a) [EQUIPl < -3orEQUIPl > 0]&[T71 > 1] ^ [APPLIED = I] 

Stock price will rise if the 5 day average of EQUIP is either less than 
3% or greater than 0% and the 5 day average of TI is greater than or 
equal to 1% (source: average program). This rule is supported by 62.5 
% of the 253 cases. 

(b) [SEMIl < -AorSEMIl > - l ] & [ - 3 < EQUIPl < 0]&[T71 < 
-3o rTJl > 4] ^ [APPLIED = 1] 
Stock price will  rise if the 5 day average of SEMI is either less than -4% 
or greater than - 1% and the 5 day average of EQUIP is between -3% 
and 0% and the 5 day average of TI is either less than or equal to -3% 
or greater than or equal to 4% (source: average program). This rule is 
supported by 100% of the 3 cases. 

(c) [-4 < SEMIl < -1]&[T71 > 1] -^ [APPLIED = 1] 
Stock price wil l rise if the 5 day average of SEMI is between -4% and 
- 1% and the 5 day average of TI is greater than or equal to 1% (source: 
average program). This rule is supported by 77.8% of the 9 cases. 

(d) [-8 < IBMl < -5]k[MOT5 = 1]-*  [APPLIED = 1] 
Stock price will  rise if yesterday IBM is between -8% and -5% and 5 
days ago MOT was equal to 1% (source; delay program). This rule is 
supported by 100% of 4 cases. 

(e) [-2 < IBM6 < 0]&:[- 8 < IBMl < -4]Sc[MOT5 < -lorMOTb > 
2] -> [APPLIED = 1] 
Stock price will  rise if 6 days ago IBM is between -2% and 0% and 
yesterday IBM was between -8% and -4% and 5 days ago MOT was 
either less than or equal to - 1% or greater than or equal to 2% (source; 
delay program). This rule is supported by 100% of the 3 cases. 

(f) [IBM&  < -2orIBM6 > 0]&[/BM l < -lorlBMl > 1]&[M0T 5 < 
-2orMOT5 > 2] ^ [APPLIED = 1] 
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Stock price will  rise if 6 days ago IBM was either less than -2% or greater 
than 0% and yesterday IBM was either less than or equal to -7% or 
greater than or equal to 1% and 5 days ago MOT was either less than 
or equal to -2% or greater than or equal to 2% (source: delay program). 
This rule is supported by 60% of the 180 cases, 

(g) [EQUIP2 > 1] ^ [APPLIED  ̂ 1] 
Stock price will rise if the two day sum of EQUIP is greater than or 
equal to 1% (source: sum program). This rule is supported by 65.9% of 
the 627 cases. 

5.2 Daily Rule Validatio n 

The rules are validated by comparing them against recent test data and deter-
mining the percentage of correct predictions. The daily test data used the eight 
month period from August 1, 1996 to April 9, 1997. The monthly test data used 
the five month period from August 1, 1996 to December 31, 1996. The period 
could not be made larger because the SIA index was changed in January, 1997 
[28]. The raw data was preprocessed using the same programs to produce the 
delayed, averaged, and cumulative tables. The tables were reviewed manually 
to determine the rule compliance. The spreadsheet program Excel by Microsoft 
was used as an aid to sort the table based on rule attribute values. The follow-
ing table (Table 8 lists for each rule the number of cases found, the percent of 
correct cases, the number of cases found during rule generation, and the percent 
of correct cases during rule generation: 

Table 8. Rules Analysis 

Rule No 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 

No of Cases 
0 
0 
58 
3 
46 
0 
2 
0 
1 
19 
72 

Correct 
NA 
NA 
70.7 
0.0 
60.8 
NA 
50.0 
NA 
0.0 
68.4 
80.5 

Learning % 
254 
2 

554 
3 

253 
3 
9 
4 
3 

180 
627 

Learning % 
62.2 
100 
65.5 
66.7 
62.5 
100 
77.8 
100 
100 
60.0 
65.9 

The daily validation results can be separated into two groups. The first group, 
consisting of rules 4 and 7, includes those rules that came from a small number 
of supporting cases (less than 10). In this group, the error rates were very high. 
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In the second group consisting of rules generated with a large number of sup-
porting cases (rules 3, 5, 10, and 11), the percentage correct was very close to 
the percentage from the learning experiment. The differences ranged from -1.7 
% to 14.6 %. Rules 1, 2, 6, and 8 had no instances in the validation experiment. 

5.3 Conclusions on Stock and Economic Data Analysis 

For the stock market data analysis, the following conclusions were reached: 

1. The combined use of delay, average, and cumulative preprocessing of data 
are useful tools for analyzing time series data. 

2. The ratio of rising to falling rules derived was 2.3 to 1. This is believed to 
have been due to the dominant bull market occurring during the six year 
learning period. 

3. When working with continuous or semi-continuous data such as stock market 
data, rough set theory does not provide a means for selecting or optimizing 
the discretizing ranges. It was through trail and error that the ranges used 
in this paper were chosen. 

6 Conclusions 

Here are some of our conclusions: 

1. In some data mining problems, attribute transformations are necessary (Sec-
tion 3.4, 3.3). 

2. Rough set theory can be used as a data mining tool for the new tables. 
(Section 2). 

3. Meaningful attribute transformations should be suggested by domain ex-
perts. 

4. Since information table is of finite size, attribute transformations can be 
approximated by polynomial functions (Section 3.5). 

5. Hence brutal force search might be employed (one degree at a time), if the do-
main experts can not suggest a meaningful transformation (Sections 3.2, 3.3). 

6. Linear transformations have proved to be useful in stock market and eco-
nomic data (Section 5.3). 

7. Even in such a case, some light brutal force searches have been employed; 
should 2 day, 3 day ,... n day average be used? (Section 5.3, Item 3) 
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Abstract Detection of interactions among data items constitutes an essential 
part of knowledge discovery. The cascade model is a rule induction 
methodology using levelwise expansion of a lattice. It can detect positive and 
negative interactions using the sum of squares criterion for categorical data. An 
attribute-value pair is expressed as an item, and the BSS (between-groups sum 
of squares) value along a link in the itemset lattice indicates the strength of 
interaction among item pairs. A link with a strong interaction is represented as a 
rule. Items on the node constitute the left-hand side (LHS) of a rule, and the 
right-hand side (RHS) displays veiled items with strong interactions with the 
added item. This implies that we do not need to generate an itemset containing 
the RHS items to get a rule. This property enables effective rule induction. That 
is, rule links can be dynamically detected during the generation of a lattice. 
Furthermore, the BSS value of the added attribute gives an upper bound to those 
of other attributes along the link. This property gives us an effective pruning 
method for the itemset lattice. The method was implemented as the software 
DISCAS. There, the items to appear in the LHS and RHS are easily controlled 
by input parameters. Its algorithms are depicted and an application is provided 
as an illustrative example. 

Keywords: local interaction, cascade model, sum of squares, itemset lattice, 
pruning of lattice. 

1 Introductio n 

Itemset representation, first introduced in association rule mining [1], offers a flexible 
and uniform framework for a learning task. Both classification and characteristic rules 
have been induced using this framework [2,»3 ] . Bayesian networks and Nearest 
Neighbor classifiers were also formulated as the mining of labeled itemsets [4]. 

Detection of local interactions is necessary to obtain valuable knowledge from the 
itemset lattice. Here, the term "local interaction" is used in two ways. Firstly, it shows 
that some value pairs of two attributes are correlated. For example, two attributes: A 
and B indicate strong interactions at row [A:«a3] and at column [B:»b3 ] in the 
contingency table on the next page, while minor interactions are found in other cells. 

T, Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 193-203,2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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Secondly, "local" denotes that an interaction appears when some preconditions are 
satisfied. The interactions in Table 1 may appear only in the cases with [C:«cl ] . 

Table 1. Example of a local interaction between attributes A, B. Each cell shows the 
distribution of 30 cases with [C: 'c 1] item 

in 30 cases with [C: cl] 
[A: al] 
[A: a2] 
[A: a3] 

[B:bl ] 
5 
5 
0 

[B: b2] 
5 
5 
0 

[B: b3] 
0 
0 
10 

Silverstein et al. succeeded in detecting interactions using % test based on 
levelwise lattice expansion [5]. They showed the importance of local interactions 
between value pairs. Their formulation enabled the detection of a negative interaction 
that was missed by association rule mining. The problem of lattice explosion was also 
solved by the upward-closed property of dependency in the lattice, and hence the 
method was very fast. However, their formulation did not detect the simultaneous 
occurrence of plural interactions. As a result, it required difficult speculations to find 
such rules as "IF [A: ' a l] THEN [B:'b2, C:'c3]". What is needed is the ability to 
detect interactions among plural attributes in the lattice and compare the strengths of 
these interactions. 

The authors previously proposed the cascade model as a framework for rule 
induction [6], and subsequently showed that the sum of squares (55) criterion for 
categorical data gave a reasonable measure of the strength of the interaction when we 
partitioned a dataset by the values of an attribute [7]. Detailed descriptions of 55 
properties for categorical data have been published separately [8]. In this paper, our 
focus is on an efficient and effective method of rule mining in the cascade model. The 
next section gives a brief introduction to the model and the underlying SS criterion. 
Section 3 describes an efficient method for detecting local interactions. The results of 
applying the method to House voting-records are discussed in Sect. 4. 

2 The Cascade Model 

The cascade model examines the itemset lattice where an [attribute:*value] pair is 
employed as an item to constitute itemsets. Links in the lattice are selected and 
expressed as rules. Figure 1 shows a typical example of a link and its rule expression. 
Here, the problem contains five attributes: A* £ , each of which takes (y, n) values. 
The itemset at the upper end of the link has an item [A:«y ] , and another item [B:*y] 
is added along the link. Items of the other attributes are called veiled items. Three 
small tables at the center show frequencies of the items veiled at the upper node. The 
corresponding WSS (within-group sum of squares) and BSS (between-groups sum of 
squares) values are also shown along with their sample variances. Following the 
variance definition of a categorical variable [9], WSSt and BSSt were given by the 
following formulae [7], 
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A:y 

A: y, B: y 

B 
C 
D 
E 

y 
60 ( 9.6) 
50(12.5) 
60 ( 9.6) 
40 (14.4) 

n 
40 (14.4) 
50(12.5) 
40 (14.4) 
60 ( 9.6) 

WSS 
24.0 
25.0 
24.0 
24.0 

a" 
.24 
.25 
.24 
.24 

B 
C 
D 
E 

BSS 
9.60 
0.00 
6.67 
5.40 

IF [B: y] added on [ 
THEN [D: y; 
Cases: 1(X) ' 
[D: y] 60% " 
[E: n] 60% " 

E :n] 
60 
93% 
90% 

A:y ] 

,BSS = 
BSS = 

= 6.67 
= 5.40 

B 
C 
D 
E 

y 
60 (0.00) 
30 (7.50) 
56 (0.25) 
6 (4.86) 

n 
0 (0.00) 

30 (7.50) 
4 (3.48) 

54 (0.54) 

WSS 
0.00 

15.00 
3.73 
5.40 

a" 
.000 
.250 
.062 
.090 

Fig. 1. A sample link, its rule expression and properties of the veiled items. See Sect. 3.2 for 
the explanation of values in parentheses. 

WSS, = ^-IPMY 

BSS,=^'2(pHahpria)J , 

(1) 

(2) 

where i designates an attribute, and the superscripts U and L are attached to show the 
upper and the lower nodes, n shows the number of supporting cases of a node, and 
Pi{a) is the probability of obtaining the value a for the attribute /. 

A large BSSi value is evidence of a strong interaction between the added item and 
attribute i. The textbox at the right in Fig. 1 shows the derived rule. The added item 
[B: y] appears as the main condition in the LHS, while the items on the upper node 
are placed at the end of the LHS as preconditions. When a veiled attribute has a large 
655, value, one of its items is placed in the RHS of a rule. An item selection method 
from a veiled attribute was described in [7]. 

We can control the appearance of attributes in the LHS by restricting attributes in 
the itemset node. On the other hand, the attributes in the RHS can be selected by 
setting the minimum BSS, value of a rule (min-BSSi) for each attribute. The cascade 
model does not exclude the possibility of employing a rule link between distant node 
pairs if they are partially ordered to each other in the lattice. The main component of 
the LHS may then contain plural items, though we cannot compare the advantages of 
flexibilit y of expression to the disadvantages of increased computation time. Either 
way, items in the RHS of a rule are not necessary for them to reside in the lattice. This 
is in sharp contrast to association rule miners, which require the itemset, [A: y; B: y; 
D: y; E: n] to derive the rule in Fig. 1. 
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3 Methods 

Since association rule mining was first proposed, a great deal of research effort has 
been directed towards finding effective methods of levelwise lattice generation [10, 
11, 12]. However, vast amounts of computation are still necessary. When we handle 
table data, dense items result in a huge number of itemsets at the middle level of the 
itemset lattice. In this section, we first propose a new algorithm for rule induction. We 
then discuss the problem of lattice pruning and the control of rule expressions. 

3.1 Basic Mechanism 

The previous section described that a rule description is possible if the LHS items 
appear as an itemset node in a lattice and if the frequencies of the veiled items are 
known. We then immediately notice that the following two procedures can be used to 
improve the rule induction process. 

- No Apriori condition check. We can use the frequency information of the veiled 
items at the node generation step. That is, items satisfying the minimum support 
condition are selected to make new nodes. We can discard an item whose count is 
lower than the minimum support. For example, if the minimum support is set to 10 
in Fig. 1, four new nodes, made by the addition of items: [C:»y], [C:*n] , [D:»y] 
and [E:  n] to the lower node, are necessary and sufficient. 

- Dynamic detection of rule links. Before the entire lattice is constructed, we can 
detect strong interactions and send the relevant link to another process that extracts 
rules and provides them for real-time operations. As strong interactions with many 
supports are expected to appear in the upper part of the lattice, this will give us a 
practical way to implement OLAP and to mine valuable rules from a huge dataset. 

The above points are realized as the algorithm CASC, shown in Fig. 2. In this 
algorithm, nodes{L) shows the set of itemset nodes at the L-th level of the lattice. 
After creating the root-node with no items and counting all items in the database, 
create-lattice expands the lattice in a levelwise way, changing the lattice level L. In 
each lattice level, it counts the veiled items and detects interactions. Then generate-
next-level simply makes nodes following the first procedure. Section 3.2 discusses a 
new pruning-condition added to the minimum support. The second procedure is 
implemented as detect-interactions, which compares two nodes in the L-th and (L+1)-
th levels. Hashing is used to fetch the upper node quickly. If a node pair has a veiled 
attribute for which BSSi exceeds the given min-BSSi parameter, then the function 
sends it to another process. The last function, count, is the most time consuming step. 
The subset relationship between the items in a case and those in a node is judged 
using the trie data structure. If the condition holds, the count of the veiled items on the 
node is incremented. 

Here, we note that an upper node does not always exist in the process of detect-
interactions, as we do not use the Apriori condition in the node generation step. 
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create-lattice( ) 
nodes(0 )  : = {root-node } 
count(nodes(0 )  database ) 
loo p changin g L  fro m 1  unti l  null(nodes(L) ) 

nodes(L )  : = generate-next-level(nodes(L-1) ) 
count(nodes(L )  database ) 
detect-interactions(nodes(L) ) 

generate-next-level(nodes ) 
loo p fo r  nod e i n node s 

loo p fo r  ite m i n veiled-items(node ) 
i f  pruning-condition i s  no t  applicabl e 

pus h make-new-node(ite m node )  t o new-node s 
retur n new-node s 

detect-interactions(lower-nodes ) 
loo p fo r  nod e i n lower-node s 

loo p fo r  itemse t  i n omit-one-item(node ) 
upper  : = get-node(itemset ) 
i f  fo r  som e i ,  BSSi(nod e upper)>min-B5S i  the n 

send-link(nod e upper ) 

count(node s database ) 
loo p fo r  cas e i n databas e 

loo p fo r  nod e i n node s 
i f  itemset(node)citems(case )  the n 

incremen t  item-count(node )  fo r  items(case ) 

Fig. 2. Algorithm CASC 

3.2 Pruning Lattice 

The idea of pruning is clear if we think of adding a virtual attribute, B': a copy of B, 
in the example provided by Fig. 1. When we generate a new node adding the item 
[B': 'y] under the lower node, it gives us nothing, as all frequencies remain the same. 
Note that the interactions between B' and (D, E) are detected separately on another 
node. Even if the correlation is not so complete as that between B and B', we might 
prune new links that add highly correlated attributes like D and E in Fig. 1. 

Suppose there is a link between nodes U and L. U has veiled attributes {jc,}  and L 
is a descendent node of U added by an item, [Â jt'Oo]  We employed the following 
inequality to prune the link between U and L. A proof of this inequality is given in the 
Appendix. 

BSSi ̂  {mm  BSSo = {mJ2)"  n"-.. . (1 - p^{ao)f 
(3) 

= {mj2)"  'Po^Cao)" ' (1 -PoVo))' 
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BSSi denotes the BSS value for a veiled attribute JT, between U and L, /JO"(«O) is the 
probability of attribute XQ having the value OQ at node U, and m, denotes the number of 
attribute values of A:,. 

Our objective is to find links with large B55, values. Suppose that the threshold of 
the BSSi value for the output rule is set to N"'t h res, where Â  is the total number of 
cases and thres is a user-specified parameter. Then, the above inequality implies that 
we do not need to generate the link U-L, if the RHS of (3) is lower than N"*th res. 
This pruning condition is written as, 

(mi/2)  n"  po"(ao) ' (1 - Po"(«o))' < N"  thres . (4) 

If all possible RHS attributes are assigned the same min-BSSi, thres can be set to min-
BSS/N. The LHS of (4) takes the highest value at po"(«o) = 1/3. Then, if n" is small, 
we can prune the lattice for a wide range of po"(^) values at a given N  thres. On the 
other hand, if n" is large, then the pruning is limited to those links with po^ioo) values 
far from 1/3. The tables attached at the nodes in Fig. 1 show these LHS values of (4) 
in parentheses. Suppose that N is 400 and thres is 0.01. Then the meaningful branches 
of the lower node are limited to those links by the addition of three items, [C:»y], 
[C:»n] and[E:»y]. 

Lastly, we have to note the properties of this pruning strategy. There is always the 
possibility of other local interactions below the pruned branch. For example, if we 
prune the branch from [A:«y, B:*y] to [A:*y , B:»y, D:«y], there might be an 
interaction between [C: 'n] and [E:«n] under the pruned node, as shown in Fig. 3. 
However, we can expect to find the same kind of interaction under the node [A:»y, 
B: 'y] unless the interaction is truly local on the lower pruned node. The upper rule in 
Fig. 3 covers broader cases than the lower rule does. So, we call this upper rule a 
broader relative rule of the lower pruned rule. 

i=> IF [C:'n] added on [A:«y, B:»y] THEN 

c=i> IF [C: 'n] added on [A: ' y, B-y , D:«y ] THEN 

Fig. 3. A pruned rule and its broader relative rule 

3.3 Symmetric and Concise Control in Rule Generation 

Two input parameters, min-BSSi and thres, affect rule expression. A very high min-
BSSi value excludes the attribute x, from the RHS of the rules. Suppose that the 
pruning condition (4) is extended to use thresi for each attribute A:,. Then, we can 
prohibit the attribute jc, from entering the LHS of a rule if we give thresi a very high 
value. 

Setting a high threSi value to the class attribute and high min-BSSi values to the 
explanation attributes results in discrimination rules. On the other hand, setting 

'runed 
node: . 

[A:-y , 

[A: "y, B: 'y. 
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affordable values to these parameters in all attributes gives us characteristic rules. We 
can then use a single rule induction system as a unified generator of discrimination 
and characteristic rules. 

4 Experimental Results and Discussion 

The method proposed in the previous section was implemented as DISCAS version 2 
software using lisp. A Pentium II 448MHz PC was used in all experiments and the 
database was stored in memory. The following were the three input parameters used 
in the DISCAS software. 

1. Minsup: the minimum support employed in association rule mining. 
2. thresf. 3L parameter to prune the link expansion introduced in Sects. 3.2-3.3. 
3. min-BSSi-. a link written out as a rule candidate when one of its BSSi values along 

the link exceeds this parameter. 

Characteristic rules are derived from a House voting-record dataset with 17 
attributes and 435 cases [13] to estimate the performance of DISCAS. Table 2 shows 
the number of nodes, the elapsed time to generate the lattice, and the number of 
resulting rules changing the first two parameters. The values of threSj are set equal for 
all attributes, and the values for min-BSSj are set to 10% of the SSi for the entire 
dataset. All candidate links are adopted as rules. To avoid the confusion created by 
the effects of various m, values in the attributes, pruning was done assuming that all 
m, were equal to 2 in (4). 

The row with thres*= '0 .0 in Table 2 shows the results without pruning by the 
thres values. Results in the other rows indicate that the application of pruning has 
been very effective in reducing the lattice size and the computation time, which are 
roughly proportional if the lattice size is not large. When thres or minsup are in a low 
value range, the number of rules does not always increase even if they take lower 
values, because a link with few instances cannot give enough BSS to exceed min-BSSi. 

Next, we inspect the results in the column for which minsup = 0.05. Figure 4 shows 
the number of nodes at each generation of the lattice changing thres, where we can 
see a typical profile of the lattice size constructed from table data. Remarkable 
pruning effects are observed when the number of items in an itemset reaches four. 

Pruning should not diminish strong rules. It is interesting to investigate the 
distribution of the BSS values of the rules changing thres. The maximimi value in 
BSSi's along a link, called maxBSSu is examined. Table 3 shows the number of rules 
classified by maxBSSt and by thres at minsup = 0.05. The headline shows the 
minimum value of maxBSSi for each column, where Â  is 435. 

The number of rules with pruning is not changed from the number without pruning 
{thres = 0.0), as shown in the upper right region partitioned by the solid line. There 
are 27 strong interactions that do not change even at thres = 0.05. The pruning 
condition denotes that a substantial decrease in rule counts may be observed at the 
lower left region of the broken line, where maxBSSi is less than N'"th res. However, 
there is a large number of pruned rules in all the cells of the leftmost column. Either 
way, we can expect that strong rules will not be affected by pruning, even if we use 
high thres values. 
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When our aim is to find characteristic rules, the strength of a rule should be judge 
by the sum of BSSi values along a link. When we used this criterion for rule selection 
more than 152 rules were never affected, even at thres = 0.05. 

Table 2. Number of nodes, time period and number of rules changing minsup and thres, where 
time is the elapsed time in seconds. Note that — indicates that computation was not 
accomplished due to memory limitations. 

thres 

0.0 0 

O.OI 

0.0 2 

0.0 3 

0.0 4 

0.0 5 

node s 
tim e 
rule s 

node s 
tim e 
rule s 

node s 
tim e 
rule s 

node s 
tim e 
rule s 

node s 
tim e 

mie s 
node s 

tim e 
mle s 

0.01 0 

— 

34819 6 
2351 4 

731 
9892 9 

1061 
678 

4619 9 
301 
614 

2513 2 
137 
604 

1564 3 
73 

560 

0.02 5 

88271 4 
22431 3 

808 
13624 4 

2692 
731 

4183 4 
313 
678 

2109 8 
114 
614 

1246 0 
61 

604 
8148 

40 
560 

minsup 
0.05 0 

33721 6 
3969 5 

642 
5098 6 

501 
628 

1648 1 
101 
598 

8921 
48 

554 
5515 

28 
547 

3853 
20 

510 

0.10 0 

9274 7 
2375 
350 

1420 0 
98 

350 
499 8 

31 
349 

2895 
18 

340 
1911 

11 
340 

1429 
9 

332 

0.15 0 

3108 1 
626 
218 

4831 
33 

218 
204 0 

14 
218 

1306 
9 

215 
914 

7 
215 
728 

5 
214 

0.20 0 

1393 3 
154 
143 

221 4 
17 

143 
900 

7 
143 
589 

5 
142 
442 

3 
142 
355 

3 
141 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Number of items 

Fig. 4: Number of itemsets for each level of lattice; variable thres, minsup fixed at 0.05. 
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Table 3. Number of rules classified by maxBSSi and thres at minsup = 0.05 

thres 
maxBSSi 

0.03N 0.04N 0.05N 0.06N O.OIN 0.08N OWN 

0.0 0 
O.OI 
0.0 2 

0.0 3 
0.0 4 

0.0 5 

264 
253 
238 
217 

213 
198 

90 
90 
89 
86 
86 
81 

33 
33 
33 
32 
32 
31 

12 
12 
12 
12 
12 
12 

7 
7 
7 
7 
7 
7 

5 
5 
5 
5 
5 
5 

3 
3 
3 
3 
3 
3 

5 Concluding Remarks 

A pruning methodology based on the SS criterion has provided an effective 
framework for rule induction. The efficiency of pruning is very useful in table data, 
which has been hard to handle because of the combinatorial explosion in the number 
of nodes. This method is also applicable to market basket analysis. Low interactions 
among most items are expected to lead to effective pruning in lattice generation. It 
will be useful if the cost of database access is higher than that of the item counting 
operations. 

The dynamic output of rule links also enables the detection of interactions when 
the expansion of a lattice to higher levels is impossible. It can be used in real time 
applications like OLAP and a text mining system for the WWW. 

Developed software can easily control the appearance of attributes in the LHS and 
the RHS of a rule. Fine-tuning of parameters based on field expertise enables fast and 
effective mining that can analyze not only demographic data but also transactions' 
data. Analysis of the combined dataset of these two styles will be necessary in future 
scientific discovery, such as pattern extraction from clinical histories and the 
detection of specific effects from laboratory notebooks. The DISC AS software is 
publicly available to academic users upon request to the author. 

As the sum of squares criterion constitutes one of the core analysis criterion in the 
statistics of continuous variables, the proposed method is expected to lead to a unified 
and seamless architecture in data analysis when the detection of local interactions is 
important. 
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Appendix 

We give a proof for the upper bound of B55, shown in (3). 

BSS^<^(l-pna,)r , (3) 

where U and L denote the upper and the lower nodes of a link, along which an item 
[XQ: OQ] is added, /MJ is the number of attribute values for x„  n  ̂is the number of cases 
on L, and pi(a) is the probability of attribute jc; having the value a. The expressions of 
BSSj and n  ̂are given by, 

BSS^=^'ZiP^(^)-Pn4  (5) 

L U V / \ 

n =n - p o K) (6) 

Then the following inequalities hold. 

0<n^.{l-pt{a))<n^.(l-pna)) . ^'^ 
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The bounds of pĵ {a) are expressed by, 

P,'(«) 

Pi (a) 

>0 

Po"(«o) 

<1 

Po"(«o) 

ifp,"(fl)>l-Po"(«o) . 

if A"(a)>/7o"K) , 

if p^(a) < po (a„)  . 

(8a) 

(8b) 

Here, we regard (5) as a quadratic form of {pl'(.a)}. Since it takes the minimum at 
Ipl^ia)]  and its region is constrained by (8) on a hyperplane defined by J^ /̂J,?'(fl) = 1.0, 
BSSi lakes the maximum value at some boundary point. Here, we use a notation q{a) 
to denote the value of pt(,a) at the maximum point of B55,. First, let us consider the 
case that q(a) is at the higher boundary in the region, where q(a) - p^(a) is positive. 

if/7,"(a)<Po"(ao)then 

qia)-pria)<4^-pr(a) = 4j^{l-p-(a,))<l-p^(a,) , 
PgiUo) p^iUg) (9) 

ifp,"(a)>Po"(ao)then 

q(a)-p^ia)<l-p^(a)<\-p^ia,) . 

On the other hand, if q{a) is at the lower boundary, the following inequalities hold. 

if/7,"(a)>l-Po"(ao)then 

pna)-qia)<pna)-U-'-^4^y-^^4^[l-p^Aa.)) 
Po (^o) Po («o) 

ifp,"(a)<l-/7o"(ao)then 

p^ia)-q{a)<l-p^(a,)-q{a)<l-p^(a,) 

Then, we obtain the following inequality, 

{qia)-pna)f<{l-p^{aj 

(10) 

(11) 

As (11) holds for any value a of an attribute Xj, introduction of (11) into (5) gives the 
proof of (3). 

The author anticipates that (3) will hold for nti - 2. We have found no violations to 
this stricter bound during extensive numerical checks. The proof of this inequality is 
expected. 
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Abstract. We presents some empirical results of a study regarding financial ra-
tios as predictors of Japanese corporate bankruptcy based on a large sample of 
bankrupt and non-bankrupt firms' financial data. In this study, variable as pre-
dictors of bankruptcy had been selected by three Al-based data mining tech-
niques and two conventional statistical methods, Logit analysis and Stepwise. 
After the selection of a set of variables for every method, discriminant power of 
each set was compared to verify the most suitable data mining technique to 
select financial variables. Finally, the study concludes that a set of variables 
selected by Logit analysis (with logit model) indicated the best discriminant 
power, more than 87% accuracy. 

1 Introduction 

We attempted to obtain sets of the financial ratios as predictors using some different 
kinds of Al-based data mining methods with a large sample of financial data. It is 
also selected another sets of financial ratios with conventional statistical techniques. 
Each method selects one set of financial variables. After the selection of a set of fi-
nancial ratios for every data mining method, we compare the discriminant power of all 
sets with four different multivariate discriminant analysis, linear, quadratic, normal-
kernel method and logit analysis. This procedure identifies which set of financial 
variables can best predict corporate bankruptcy in Japan and the most suitable data 
mining method to analyze financial variables. 

2 Methodology 

We analyze financial variables with three different Al-based data mining techniques. 
One is C4.5 that is a quite popular data mining tool [1]. The other one is SIBILE 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI 1805, pp. 204-207, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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which is using interactive Genetic Algorithms and inductive learning techniques [2]. 
Final one is Classification and Regression Trees (CART) [3] providing from S-plus 
program. These three techniques can treat not only quantitative variables but also 
qualitative variables. Therefore, two qualitative variables. Capital size and Industry 
category will be added on analysis. 

This study also tries to select the financial variables with two conventional statisti-
cal techniques, Stepwise of SAS program (SAS ver.6.12) and Logit analysis of S-plus 
program (S-plus ver3.1). 

3 Variables and Sample Design 

The original sixty-six financial variables were chosen on the basis of (1) popularity in 
literature, (2) usage by the Japan Development Bank, (3) usage by Teikoku Data 

Bank̂  of its Cosmos 1 credit database, and (4) the author's initiated hypothesis. The 
variables can be classified into the following categories (1) popularity in the literature 
(X1-X8), (2) growth (X9-X12), (3) capital efficiency (X13-X17), (4) profitability 
(X18-X27), (5) activity (X28-X42), (6) productivity (X43-X47), (7) liquidity (X48-
X53) and (8) coverage and other earnings relative to leverage measures (X54-X66). 
Two qualitative variables. Capital size and Industry category are added as variables. 

The samples include all bankrupt firms obtained from Teikoku Data Bank Cos-
mos 1 Database. The data set for this study is 686 bankrupt firms and 300 non-
bankrupt firms. The 300 non-bankrupt firms were extracted from 107,034 non-
bankrupt firms by systematic sampling method. All the bankrupt firms had failed 
between 1986 to 1996 in Japan. 

4 Data Cleaning 

The most important data cleaning procedure is de-duplication of records. All data 
using in this study is checked completely that there is no duplication. However, here 
is some other very important data cleaning procedure when we treat financial vari-
ables. First, if there is a missing value on data, some programs do not work well or 
sometimes cause error. Therefore, it is necessary to delete a whole data line that has a 
missing value. We delete such data in advance with cautiously. Second, it must con-
firm the relationship between corporate behavior and tend of financial ratios. There is 
a basic rule of financial analysis when we evaluate firms. This rule came from tradi-
tional accounting ethics. To confirm whether the distribution of each variable follows 
accounting ethics, univariate approach has been taken. The result of the univariate 
analysis of all variables, twelve variables showed the completely opposite tend from a 

About 1,000,000,000 financial statements of 250,000 Japanese firms (all industry and size) are stored in 

Teikoku Data Bank's CosmoslData Base. The company also has the Bankruptcy Data File which 

contains the name of failed firms, the date of filing and reason for bankruptcy. 
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basic financial analysis rule coming from accounting ethics. We decided to delete 
these variables which were indicated the opfjosite tend fi'om ethics. Because they may 
mislead the results of analysis toward wrong direction. 

5 Experimental Results 

Some methods selected too many variables. Therefore, we choose suitable number of 
variables which can represent the result of each method. C4.5 assigned fifty variables 
on decision tree. We decided to choose variables indicating by the sixth node, thirteen 
variables. The important factor to decide what variables we choose is larger likeli-
hood ratio of variables. The Hkelihood ratio of variables would go down drastically 
from the seventh node. And there was also an interesting result that only C4.5 se-
lected a qualitative variable. Capital size, on the seventh node. However, no other 
technique selected qualitative variables. After consideration whether this variable 
should be included, we decided not to add this variables for the next analysis. We also 
concluded here that Size or Industry variable does not influence bankruptcy phenome-
non more than financial variables. 

CART chosen twenty-four variables. However, the variables at over 100 nodes 
seem not to be contributed well for the model, and it was also confirmed that over 100 
nodes variables indicated smaller likelihood ratio. Hence, we decided to choose nine-
teen variables selected at less than 100 nodes on CART. 

Logit analysis selected twenty-three variables. We choose nineteen higher likeli-
hood ratio variables which are also indicating higher CP value. Table 1 presents the 
results of comparison of discriminant power of each set of variables. 

Table 1. Comparison of Discriminat Power with Misclassification Rate 
No. of 

Method variables 

C4.5 13 
SIBIL 10 
CART 19 
Logh 19 
Stepdisc 17 

Normal 
Kemel Linear 

0.219 0.175 
0.184 0.184 
0.204 0.160 
0.205 0.140 
0.230 0.181 

Quaratic 
0.332 
0.194 
0.195 
0.219 
0.275 

Logit 
0.152 
0.175 
0.177 
0.128 
0.166 

Best 
Model 
logit 
logit 
linear 
logit 
logit 

prob 
0.152 
0.175 
0.160 
0.128 
0.166 

Based on the result of our analysis, a set of variables selected by Logit analysis (with 
logit model) indicated the best discriminant power, more than 87% accuracy. The 
same set of variables with linear model showed the second discriminat power, more 
than 86%. Therefore, we can conclude that the Logit analysis is the best data mining 
method to extract predictors of Japanese corporate bankruptcy from financial vari-
ables. 
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Another notable point here is that sets of variables selected by C4.5 and CART 
were also indicating higher discriminant power (around 85%) following a set of vari-
ables selected by Logit analysis. Since we got an adequate result from these Al-based 
data mining techniques, it convinced us that these techniques were available for vari-
able selection concerning financial problems. 

Furthermore, all sets prove that linear model or logit model is a suitable model to 
predict bankruptcy with financial variables. In contrast, Normal Kernel (non-
parametric model) and quadratic model are not suitable for bankruptcy prediction 
model. 

6 Conclusion 

Data mining techniques usually analyze a large sample of data like ten thousand or 
more. In contrast, this study treated only one thousand data. However, previous 
studies developing a bankruptcy prediction model or treating financial problems ana-
lyzed only fifty to hundred sample data. Therefore, the results of these studies were 
not generalizable, due to limited size of their samples. In contrast, this study treated 
the largest sample of data in this kind of study that had been done ever, and we believe 
that our results are more reliable than ever. 

There are some interesting results on this study. All Al-based techniques selected 
X2 for the best predictor that can discriminate bankrupt firms significantly. In con-
trast, conventional statistical methods did not select X2 at all. Altman mentioned in 
his study that X2 was unquestionably the most important variable [4], This result 
impressed us that variable selection by Al-based techniques is more trustworthy than 
variable selection by conventional statistical method. 

In spite of each combination of selected variables are different, all model indicate 
an adequate discriminant power. That teaches us that financial variables have dis-
criminant power originally whether the firm is in critical condition. If you would like 
to get a few percent higher prediction, it is worth selecting variables by conventional 
methods like Logit analysis. However, if you would like to have more stable results, 
Al-based techniques like C4.5 or CART can provide a sound set of variables with 
reasonable discriminant power. 
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Abstract. This paper presents a validation, with two common medi-
cal data sets, of exception-rule discovery based on a hypothesis-driven 
approach. The analysis confirmed the effectiveness of the approach in 
discovering valid, novel and surprising knowledge. 

1 Introduction 

In rule discovery, a discovered rule can be classified as either a common sense 
rule, which holds true for many examples, or an exception rule, which represents 
a different regularity from a common sense rule [1-4]! %An exception rule often 
exhibits unexpectedness and usefulness since it differs from a common sense rule 
which is often well-known. A hypothesis-driven method obtains a set of pairs 
of an exception rule and a common sense rule [1-4], This method is supposed 
to discover unexpected rules since it is independent of user-supplied domain 
knowledge. In this paper, we validate this method using two data sets [5]. 

2 Problem Description 

Let an atom represent an event which is either a single value assignment to a 
discrete attribute or a single range assignment to a continuous attribute. We 
define a conjunction rule as a production rule of which premise is represented 
by a conjunction of atoms and conclusion is a single atom. 

Suzuki, one of the authors, considered a problem of finding a set of rule pairs 
[1-4]. Here, a rule pair r{x, x',Yn, Z^) is defined as a pair of two conjunction rules, 
which are a common sense rule Y^j, —> x and an exception rule Yf  ̂A Z  ̂ —* x'. 

r[x, X , Yfi, Zi^j = xYfj, —  X, In A Zu —> x j 

where x and x' are a single atom with the same attribute but different values. 
Each premise of rules represents a conjunction of atoms y^ = 2/i A j/2 A  A 
y^, Z  ̂ = zi A Z2 A  /\ z^. 

T, Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNAI 1805, pp. 208-211, 2000. 
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The method employed in this paper outputs rule pairs which satisfy 

Pi(Y^) > 9f, K(x|Y^) > MAX(0f ,P?( :E)), K ( y ^ ,Z , ) > 0f, 

Pi{x'\Y^,Z^) > MAX{e^,Pi{x')), Viix'\Z^) < MIN(0^,P?(x')) 

where Pr(a;) represents the ratio of an event x in the data set, and each of 
Of,61,6^,62,9\ is a user-supplied threshold. 

3 Application to the Meningitis Data Set 

3.1 Conditions of the Applicatio n 

The updated version of the meningitis data set [5] consists of 140 patients each 
of whom is described with 38 attributes. Here, a length of a premise in a rule 
pair is limited to one, i.e. fx = 1/ = 1, in the application. The other parameters 
were settled as f̂ = 0.2, l9f = 0.75, f̂ = 5/140, 9  ̂ = 0.8, dl = 0.4. 

Tsumoto, a domain expert, evaluated each discovered rule-pair from the view-
point of validness, novelty, unexpectedness, and usefulness. For each index of a 
rule pair, he attributed an integer score ranging from one to five. A zero score 
was attributed if he judged necessary. 

3.2 Average Results and Analysis 

Table 1 shows results of the experiment described in the previous section. From 
the table, we see that the method outputted 169 rule pairs, and their average 
performance is 2.9, 2.0, 2.0, and 2.7 for validness, novelty, unexpectedness, and 
usefulness. Note that it is relatively easy to discovery valid or useful rule pairs 
than novel or unexpected rule pairs. We inspected these rule pairs by group-
ing them with respect to the attribute in the conclusion, and found that these 
attributes can be classified into four categories. The first category represents at-
tributes with the lowest scores, and includes CULTURE, C.COURSE, and RISK. 
We consider that attributes in this category cannot be explained with this data 
set, and investigation on them requires further information on other attributes. 
The second category represents attributes with higher scores for validness and 
usefulness, and includes FOCAL, LOC.DAT, and Diag2. We consider that at-
tributes in this category can be explained with this data set, and has been well 
investigated probably due to their importance in this domain. We regard them as 
one of important targets in discovery although one wil l often rediscover conven-
tional knowledge. The third category represents attributes with approximately 
equivalent scores, and includes CT.FIND, EEGJOCUS, and Course (G). We 
consider that attributes in this category can be explained with this data set, and 
has not been investigated well in spite of their importance in this domain. We 
regard them as one of the most important targets in discovery. The fourth cat-
egory represents attributes with higher scores for novelty and unexpectedness, 
and includes CULT J I N D, KERNIG, and SEX. We consider that attributes in 
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Table 1. Average performance of the proposed method with respect to attributes in 
the conclusion. The column "#" represents the number of discovered rule pairs. 

attribute 
all 

CULT-FIND 
CT_FIND 

EEG_FOCUS 
FOCAL 

KERNIG 
SEX 

LOCJDAT 
Diag2 

Course (G) 
CULTURE 
C-GOURSE 

RISK 

# 
169 

4 
36 
11 
18 
4 
1 

11 
72 
8 
2 
1 
1 

validness 
2.9 
3.3 
3.3 
3.0 
3.1 
2.0 
2.0 
2.5 
3.0 
1.8 
1.0 
1.0 
1.0 

novelty 
2.0 
4.0 
3.0 
2.9 
2.2 
3.0 
3.0 
1,8 
1.1 
2.0 
1.0 
1.0 
1.0 

unexpectedness usefulness 
2.0 
4.0 
3.0 
2.9 
2.7 
3.0 
3.0 
1.8 
1.1 
2.0 
1.0 
1.0 
1.0 

2.7 
3.5 
3.2 
3.3 
3.0 
2.0 
2.0 
2,5 
2.6 
1.8 
1.0 
1.0 
LO 

this category can be explained with this data set, but has been somewhat ig-
nored. We consider that investigating these attributes using discovered rule sets 
can lead to interesting discoveries which might reveal unknown mechanisms in 
this domain in spite of their apparent low importance. 

3.3 Examples of Discovered Rule Pairs 

We have also pursued a best-case analysis, and found it much more promising 
as expected. For instance, the following rule pair has a four-rank score for every 
index. 

83=<CSF_PR0=<121 ->CULT_FIND=F 
83=<CSF_PR0=<121, FOCAL=+ ->CULT_FIND=T 

This rule pair has the following statistics: Pr(y )̂ = 0.257, Pr(a;|r )̂ = 0.778, 
Pr(y^,Z )̂ = 0.035, Pr(x'|y^,Z )̂ = 1.000, Pi{x'\Z^) = 0.285. In other words, 
among 140 patients, 36 patients had 83=<CSF_PR0=<i21, and 78 % of them 
were also CULT_FIND=F. However, five patients who were FOCAL=+ in addition 
to 83=<CSF_PR0=<121 were actually all CULT_FIND=T. This exception rule is 
interesting since only 28.5 % of patients who were FOCAL=+ were CULT_FIND=T. 

Tsumoto also found several rule pairs concerning EEG_FOCUS, Diag2, FO-
CAL and CT_FIND very interesting. In a paper [5] comparing eleven KDD 
methods with respect to this data set, he states this method as "structure of 
rule pairs is very appealing to medical experts". He also admits that this method 
discovered the most interesting results among eleven methods. 
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4 Application to the Bacterial Test Da ta Set 

The bacterial test da ta set represents a version preprocessed by Suzuki. I t con-
sists of 20,919 patients each of whom is admit ted in a hospital and is described 
with 135 attr ibutes. In the application, the parameters were sett led as n + u <2, 
ef = 0.01, (9f = 0.7, 6l| = 5/20919, 0  ̂ = 0.8, $1 = 0.5. We resolved two tasks 
given with this da ta set, and thus restricted the at t r ibutes in the conclusion to 
the existence of bacteria and effectiveness of various antibiotics. 

The bacterial test da ta set has been provided by a hospital in Japan, and 
related domains are so diverse that complete domain-knowledge has not been 
established. Therefore, unlike the meningitis da ta set, i t i t difficul t to score the 
results. Here, we show only one of the rule pairs that Tsumoto felt the most 
interesting. 

sex=M, LCMs=sensi t ive ->PCG=reg is tant 
sex=M, LCMs=sens i t ive, ward=surgery ->PCG=sens i t i ve 

where "LCMs" and "PCG" are both antibiotics. The common sense rule holds 
true 52.8 % for 598 patients, while the exception rule holds t rue for 34 patients 
among 46. However, among the patients who were ward=surgery, only 1.6 % 
were PCG=sens i t ive. This rule pair is especially important since it can reveal 
mechanisms related to antibiotics as well as discover anomalies in a ward. 

5 Conclusions 

In this paper, a hypothesis-driven discovery method for exception rules was 
applied to two medical da ta sets, and the results were evaluated by a domain 
expert. An average-case analysis for the meningitis da ta set showed that this 
approach is highly effective. A best-case analysis for the bacterial test da ta set 
also led to discovery of highly interesting knowledge. 
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Abstract. The paper describes a method for meuihine discovery of pro-
tein functional models from protein databases using Inductive Logic Pro-
gramming based on top-down search for relative least general generaliza-
tion. The method discovers effectively protein function models that ex-
plain the relationship between functions of proteins and their amino acid 
sequences described in protein databases. The method succeeds in dis-
covering protein functional models for forty membrane proteins, which 
coincide with conjectured models in literature of molecular biology. 

1 Introduction 

Inductive Logic Programming (ILP) [9] has succeeded in applications to molec-
ular biology including secondary structure prediction of protein [8] and other 
problems [3]. However, ILP has not been applied to the central problem that 
is to explain the relationship between protein functions and their amino acid 
sequences. The paper aims at solving the problem of protein function prediction 
by discovering protein functional models [5] using ILP. 

Traditional methods for protein function prediction use homology search and 
sequence motif \1]. Homology search uses global similarities of amino acid se-
quences to find protein of similar functions. On the other hand, sequence motifs 
are local patterns of amino acid sequences that are unique to certain functions 
of proteins and are stored in the database for some protein functions [2]. Protein 
function prediction by sequence motifs is based on matching the target amino 
acid sequence with sequence motifs in the database. These methods use global 
or local similarities among amino acid sequences to find protein of similar func-
tions. Therefore these methods are limited to proteins with almost same amino 
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acid sequences in global or local regions from their fundamental principles. An 
another method for protein function prediction uses 3D structures of proteins, 
but 3D structures are difficult to predict from amino acid sequences. 

2 Protein Functional Models 

The approach of the paper to protein function prediction is based on the assump-
tion that combinations of functional sites, which are sequence patterns of amino 
acid sequences, characterize a protein function. Functional sites are associated 
with secondary structures of proteins in order to specify their position in the 3D 
structures. In our protein functional models, functional sites are represented by 
strings of characters that code amino acids and combination of functional sites 
are used to discriminate narrow functional difference. Furthermore, using protein 
functional models allows us to predict protein functions from only amino acid 
sequences instead of requiring geometrical information representing 3D struc-
tures. 

A protein functional model is represented by the following clause in a logical. 

protein{ID, FUNCTION) <- subseq{ID, PATTERN, POS/STD),... 

The head of the clause is a literal representing that the protein ID has FUNC-
TION using predicate protein. The body of the clause is a conjunction of lit -
eral representing that the protein ID has subsequence pattern PATTERN at 
POS/STD using predicate subseq. Here POS stands for secondary structure po-
sition of the pattern and STD stands for standard protein's ID for which POS is 
given. The secondary structure position is determined by finding the most similar 
subsequence in the amino acid sequence of the protein STD in the corresponding 
secondary structure. 

3 A Method for Discovery 

The approach of the paper to protein function prediction employs inductive 
logic programming to discover protein functional models. Inductive logic pro-
gramming is a machine learning technique suitable for generating hypotheses 
represented by first order predicate logic allowing to describe elements of ob-
jects and relation among elements like protein functional models. Unfortunately, 
traditional inductive logic programming systems such as Progol [10] and FOIL 
[11] are difficult to apply to discovering of protein functional models because of 
their restriction for hypothesis language. 

We have developed an ILP method [6] that satisfies the requirements above, 
which integrates a top-down method and a bottom-up method of inductive logic 
programming. The method is based on the top-down search utilizing an informa-
tion theoretic heuristic used in FOIL [11] and generate literals in the hypothesis 
clause using relative least general generalization [rlgg) used in GOLEM [7] in a 
bottom-up manner. The information theoretic heuristic makes the method ef-
ficient instead using mode declaration. The use of rlgg enables the method to 
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generate hypotheses involving literals with function terms in order to describe 
sub sequence patterns as a list of characters. 

In the top-down search for hypothesis clauses, the method generates selec-
tively literals satisfying the following conditions in order to generate clauses with 
less redundant literals. 

(a) having common variable(s) with existing literals in the hypothesis clause 
(b) being Igg of two ground unit clauses in the background knowledge 
(c) giving information gain when the literal is added to the body of the clause 

4 Exper iment 

We have conducted learning experiments in which the discovered results are 
compared to the known functional models to evaluate the effectiveness of the 
proposed method. The materials are forty membrane proteins in the protein 
database SWISS-PROT [2] listed below, for which protein functional models are 
known in the literature of molecular biology. 

Input data and the discovering program are described by MacProlog32 and 
the computation is performed on Power Macintosh 8100/lOOAV. The sum of 
positives and negatives is forty and the number of background unit clauses is 
about 16000. 

Bacteriorhodopsin is a protein that exist in cell membrane of a special bac-
teria and has protein function of proton pump which transports proton (i.e., 
hydrogen ion) using photo energy. The functional sites of bacteriorhodopsin are 
considered to be three amino acids D, K, D in the amino acid sequence. 

Figure 1 shows the correspondence between the experimental results and the 
known functional sites in the amino acid sequence of bacteriorhodopsin [4]. The 
numbers above amino acid in Figure 1 indicate the number of trans membrane 
domain and symbols '+' and '-' denote specific amino acids in the discovered 
functional sites and any amino acids respectively. The correspondence indicates 
that the method re-discovered all the functional sites of bacteriorhodopsin. 

5 Conclusion 

The paper described a method to discover protein functional models from pro-
tein databases using Inductive Logic Programming based on top-down search 
for relative least general generalization. Protein function models explain the re-
lationship between protein functions and their amino acid sequences described 
in protein databases. The method succeeded in discovering protein functional 
models for forty membrane proteins, which coincide with conjectured functional 
models in the literature of molecular biology. 
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Fig. 1. Functional Sites of bacteriorhodopsin 
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Abstract. In this paper, we explore a new data mining capability which 
involves mining Web transaction patterns for an electronic commerce 
(EC) environment. We propose an innovative mining model that takes 
both the traveling patterns and purchasing patterns of customers into 
consideration. First, we develop algorithm WR to extract meaningful 
Web transaction records from Web transactions so as to filter out the ef-
fect of irrelevant traversal sequences. Second, we devise algorithm WTM 
for determining the large transaction patterns from the Web transaction 
records obtained. 

1 Introduction 

Some existing electronic commerce environments [1][2], Web pages are usually 
designed as shop-windows. Customers can visit these Web pages and make Web 
transactions through the Web interface. It is known that mining information 
from such an EC system can provide very valuable information on consumer 
buying behavior and the quality of business strategies can then be improved [4]. 
Consequently, we shall explore in this paper a new data mining capability which 
involves mining Web transaction patterns for an EC environment. 

First, for each Web transaction, we develop algorithm Web-transaction-Record 
(WR) algorithm, to extract meaningful Web transaction records from a given 
Web transaction. Each Web transaction record is represented by the form: ipath: 
a set of purchases^, where a purchase, denoted by N(i), means that item i was 
purchased in node N along the path. After all the Web transaction records are 
derived from Web transactions, algorithm Web Transaction Mining (WTM) is 
developed for determining the large transaction patterns from the Web trans-
action records. Similarly to DHP [6], algorithm WTM utilizes the purchasing 
patterns for the candidate transaction pattern generation in the pattern discov-
ering procedure. An illustrative example is given for the algorithm proposed. 

This paper is organized as follows. Preliminaries are given in Section 2. Algo-
rithms for determined Web transaction patterns is described in Section 3. This 
paper concludes with Section 4. 
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2 Prelimingiries 

Let N = {ni , n2,.", Hg}  be a set of nodes in the EC environment and I = {ii , i2,-"! 
ift}  be a set of items sold in the system. We then have the following definitions. 

Definitio n 1. Let iSiS2...Sy : ni{ii},  ra2{J2}j---, ^x{h:}s ^  ̂ '  ̂transaction pat-
tern, where i^ Q I for 1 < m < x, and {ni, n2,..., nx} Q {si , S2,-.., Sy} C N. 
Then, jsiS2...Sy : ni{ii),  n2{v2^,..., nx{ix]i, is said to pattern-contain a trans-
action pattern jw\W2---Wq : r\{ti},  r2{t2},--- ) 'p{^} d /̂ '̂ "'^ o^'j/ if {siS2-..Sy} 
contains  and{ni{ii},  n2{i2},---, nx{ix}} contains {ri{ti},  r2{t2},-.., 
rp{tp}}-

Definitio n 2. A Web transaction is said to pattern-contain iwiW2...Wq 
: Tiiti},  r2{i2},... , rp{tp}i  if one of its Web transaction records pattern-contains 
jwiW2...Wg : ri{ti},  r2{fe},..., rp{tp}i. 

A Web transaction consists of a set of purchases along the corresponding 
nodes in its traversal path. A transaction pattern is a large transaction pattern 
if there is a sufficient number of Web transactions pattern-containing it. It is 
worth mentioning that by taking both the traveling patterns and purchasing 
patterns into consideration, the problem of mining Web transaction patterns is 
in nature different from those addressed in prior works [3] [5]. 

3 Algorithms for Web Transaction Pat te rns 

In general, a Web transaction, generated from electronic commerce services, con-
sists of a traversal path and a list of items purchased along the path. Given a 
Web transaction of a customer, algorithm WR is devised to derive Web trans-
action records to capture the customer traveling and purchasing behaviors in an 
EC environment. 
Algorith m W R 
Step 1. For each Web transaction, constructing a customer transaction tree by 
mainly incorporating customer transaction records, which correspond to nodes 
with purchases, as branches. Each customer transaction record includes the 
traversal path and the items purchased in the last node of this path. 
Step 2. Determining all the Web transaction records by traversing customer 
transaction tree obtained in Step 1 in a depth-first manner. 
Step 3. Storing the Web transaction, including the Web transaction records and 
the corresponding WTJD, into the database. 
Algorith m W T M 

A transaction pattern with k-purchase isiS2...Sp: ni{i i} , n2{i2},--- , ak{h}i is 
called a large k-transaction pattern, if there are a sufficient number of Web trans-
actions pattern-containing it. Let Ck be a candidate set of large k-transaction 
patterns and Tk represent the set of the large k-transaction patterns. Similarly to 
DHP [6], WTM utilizes large transaction patterns for generating candidate trans-
action patterns. Furthermore, WTM employs a sophisticated hash tree, called 
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Fig. 1. An illustrative example for mining Web transaction patterns 

Web transaction tree, to store candidate transaction patterns. WTM hashes not 
only each node but also each purchase in the path. According to each Web 
transaction record of a Web transaction, the support of a candidate transaction 
pattern is determined by the number of Web transactions that pattern-contain 
this candidate transaction pattern. WTM then obtains the large transaction pat-
terns by destructing the Web transaction tree. Consider the example scenario 
in Figure 1. In the first pass, where WTM constructs the Web transaction tree 
by hashing each Web transaction record to construct the Web transaction tree 
and counts the support of individual purchases. Then, WTM destructs the Web 
transaction tree for deriving T\, the set of large 1-transaction patterns. In each sub-
sequent pass, WTM starts with the large transaction patterns found in the previous 
pass for generating new candidate transaction patterns to be stored in a Web trans-
action tree. Then, WTM proceeds to the counting of supports and finally reaches the 
generation of large transaction patterns. 

After all large transaction patterns are obtained, one can derive the Web-
transaction association rules from the large transaction patterns. In this example, 
jABCE : B{ii} , C{i2} , E{i4} i is one large 3-transaction pattern with support = 2 and 
jAB : B{ii} ^ is one large 1-transaction pattern with support = 3. As a result, we can 
derive one Web-transaction association rule jABCE : B{ii }  = ^ C{i2} , E{i4} ^ with 
the support equal to support(iABCE : B{ii} , C{i2} , E{i4}i ) = 2 and the confidence 

support«ABCE:BUi),C{i2],EU4}» _ g y^ 
^^ ' l ^ ' ^'  ̂ supporti<AB:B{h}>) - o r /c. 

4 Conclusion 

In this paper, we explored a new data mining capability which involves mining 
Web transaction patterns. First, we developed algorithm WR to extract mean-
ingful Web transaction records from Web transactions so as to filter out the 
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effect of irrelevant traversal sequences. Second, we devised algori thm W T M for 
determining the large transact ion pat terns from the Web transact ion records 
obtained. 
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Abstract. Classification aims to discover a model from training data that can 
be used to predict the class of test instances. In this paper, we propose the use 
oi jumping emerging patterns (JEPs) as the basis for a new classifier called the 
JEP-Classifier. Each JEP can capture some crucial difference between a pair of 
datasets. Then, aggregating all JEPs of large supports can produce more potent 
classification power. Procedurally, the JEP-Classifier learns the pair-wise features 
(sets of JEPs) contained in the training data, and uses the collective impacts con-
tributed by the most expressive pair-wise features to determine the class labels of 
the test data. Using only the most expressive JEPs in the JEP-Classifier strength-
ens its resistance to noise in the training data, and reduces its complexity (as there 
are usually a very large number of JEPs). We use two algorithms for constructing 
the JEP-Classifier which are both scalable and efficient. These algorithms make 
use of the border representation to efficiently store and manipulate JEPs. We also 
present experimental results which show that the JEP-Classifier achieves much 
higher testing accuracies than the association-based classifier of [8], which was 
reported to outperform C4.5 in general. 

1 Introductio n 

Classification is an important problem in the fields of data mining and machine learn-
ing. In general, classification aims to classify instances in a set of test data, based on 
knowledge learned from a set of training data. In this paper, we propose a new classifier, 
called the JEP-Classifier, which exploits the discriminating power oi jumping emerging 
patterns (JEPs) [4]. A JEP is a special type of EP [3] (also a special type of discrimi-
nant rule [6]), defined as an itemset whose support increases abruptly from zero in one 
dataset, to non-zero in another dataset — the ratio of support-increase being oo. The 
JEP-Classifier uses JEPs exclusively, and is distinct from the CAEP classifier [5] which 
mainly uses EPs W\lh finite support-increase ratios. 

The exclusive use of JEPs in the JEP-Classifier is motivated by our belief that JEPs 
represent knowledge which discriminates between different classes more strongly than 
any other type of EPs. Consider, for example, the Mushroom dataset taken from the 
UCI data repository [1]. The itemset {ODOR = foul}  is a JEP, whose support increases 
from 0% in the edible class to 55% in the poisonous class. If a test instance contains 
this particular EP, then we can claim with a very high degree of certainty that this 
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instance belongs to the poisonous class, and not to the edible class. In contrast, other 
kinds of EPs do not support such strong claims. Experimental results show that the 
JEP-Classifier indeed gives much higher prediction accuracy than previously published 
classifiers. 

Example 1. This simplified example illustrates how JEPs are used in the JEP-Classifier. 
Consider two sets of training data, Pi and V^, such that all instances in Pi are of Class 
1, and all instances in P2 are of Class 2. Let each instance be a subset of {a, 6, c, d, e} 
(see Table 1). Question: Which class should the test instance {a, b, 6) be classified as? 

Table 1. Two simplified datasets containing 4 instances each. 

Vi 
a 
a 

b 
b 

c 

c 

d 

d 

e 

e 
e 

I>2 
a 

a 

b 

b 
c 
c d 

d 

e 

e 

Answer: Class 2. Rationale: The test instance {a, 6, c}  contains the JEP {a, 6}  from 
Pi to P2, whose support in P2 is 50%. Furthermore, the remaining proper subsets of 
[a, b, c}  — namely, {a}, {b}, {c}, {a, c} , and {b, c} — appear in both classes of data 
with the same frequencies. These facts give us a higher confidence that the test instance 
should be classified as Class 2. 

In general, a test instance T may contain several JEPs, and these EPs can favour 
different classes. Consider again the datasets in Table 1, this time with the test instance 
T = {a, b, e}. The instance T contains the following JEPs: 

- the subsets {b, e} and {a, e}, in favour of Class 1 with supports in Pi of, respec-
tively, 50% and 25%; 

- the subset {a, 6}  in favour of Class 2, with a support in P2 of 50%. 

We let all three JEPs contribute an impact equal to its support in its favoured class — the 
final decision is reached using the collective impact, obtained as the sum of the impacts 
of the individual JEPs, and choosing the class with the largest collective impact as the 
class of the test instance. It follows that the instance {a, b, e} should be classified as 
Class 1, since the collective impact in favour of Class 1 (50% -I- 25% = 75%) is larger 
than that of Class 2 (50%). This aggregation of the supports of JEPs is at the core of the 
JEP-Classifier. 

There can be a large (e.g., 10®) number of JEPs in the dense and high-dimensional 
datasets of a typical classification problem. Obviously, the naive approach to discover-
ing all JEPs and calculating their collective impacts is too time consuming. For the JEP-
Classifier, we utilize two border-hased algorithms [3,4] to efficiently discover concise 
border representations of all JEPs from training dataset. The use of the border repre-
sentation simplifies the identification of the most expressive JEPs. Intuitively, the most 
expressive JEPs are those JEPs with large support, which can be imagined as being at 



222 J. Li, G. Dong, and R. Kotagiri 

the "frontier" of the set of JEPs. Itemsets which are proper subsets of the boundary item-
sets are not JEPs, while itemsets which are proper supersets of the boundary itemsets 
must have supports not larger than the largest support of the boundary itemsets. These 
boundary JEPs represent the essence of the discriminating knowledge in the training 
dataset. The use of the most expressive JEPs strengthens the JEP-Classifier's resistance 
to noise in the training data, and can greatly reduce its overall complexity. Borders are 
formally defined in Section 3. 

Example I above deals with a simple database containing only two classes of data. 
To handle the general cases where the database contains more classes, we introduce 
the concept of pair-wise features, which describes a collection of the discriminating 
knowledge of ordered pairs of classes of data. Using the same idea for dealing with two 
classes of data, the JEP-Classifier uses the collective impact contributed by the most 
expressive pair-wise features to predict the labels of more than two classes of data. 

Our experimental results (detailed in Section 5) show that the JEP-Classifier can 
achieve much higher testing accuracy than previously published classifiers, such as the 
classifier proposed in [8], which generally outperforms C4.5, and the classifier in [5]. 
In summary, the JEP-Classifier has superior performance because: 

1. Each individual JEP has sharp discriminating power, and 
2. Identifying the most expressive JEPs and aggregating their discriminating power 

leads to very strong classifying ability. 

Note that the JEP-Classifier can reach a 100% accuracy on any training data. However, 
unlike many classifiers, this does not lead to the usual overfitting problems, as JEPs can 
only occur when they are supported in the training dataset. 

The remainder of this paper is organised as follows. In Section 2, we present an 
overall description of the JEP-Classifier (the learning phase and the classification pro-
cedure), and formally define its associated concepts. In Section 3, we present two algo-
rithms for discovering the JEPs in a training dataset: one using a semi-naive approach, 
and the other using a border-based approach. These algorithms are complementary, 
each being useful for certain types of training data. In Section 4, we present a process 
for selecting the most expressive JEPs, which efficiently reduces the complexity of the 
JEP-Classifier. In Section 5, we show some experimental results using a number of 
databases from the UCI data repository [1]. In Section 6, we outline several previously 
published classifiers, and compare them to the JEP-Classifier. Finally, in Section 7, we 
offer some concluding remarks. 

2 The JEP-Classifier 

The framework discussed here assumes that the training database O is a normal re-
lational table, consisting of N instances defined by m distinct attributes. An attribute 
may take categorical values (e.g., the attribute COLOUR) or numeric values (e.g., the 
attribute SALARY). There are q known classes, namely Class 1, , Class q; the N 
instances have been partitioned into q sets. P i, P2,  i ^g. according to their classes. 

To encode P as a binary database, the categorical attribute values are mapped to 
items using bijections. For example, the two categorical attribute values, namely red and 
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yellow, of COLOR, are mapped to two items: (COLOR = red) and (COLOR = yellow). 
For a numeric attribute, its value range is first discretized into intervals, and then the 
intervals are mapped to items using an approach similar to that for categorical attributes. 
In this work, the values of numeric attributes in the training data are discretized into 10 
intervals with the same length, using the so-called equal-length-bin method. 

Let / denote the set of all items in the encoding. An itemset X is defined as a subset 
of /. The support of an itemset X over a dataset V is the fraction of instances in V 
that contain X, and is denoted suppx)' {X). 

The most frequently used notion, JEPs, is defined as follows: 

Definition 1. The JEPs from V to T>", denoted JEP(r>', V"), (or called the JEPs of 
V" over V, or simply the JEPs of T>" if V is understood), are the itemsets whose 
supports in V are zero but in "D" are non-zero. 

They are mmed jumping emerging patterns (JEPs), because the supports of JEPs grow 
sharply from zero in one dataset to non-zero in another dataset. 

To handle the general case where the training dataset contains more than two classes, 
we introduce the concept of pair-wise features. 

Definition 2. The pair-wise features in a dataset V, whose instances are partitioned 
into q classes X>i, , T>q, consist of the following q groups of JEPs: those ofV\ over 
U^^2^j' (hose 0/P2 over U j / j ^ j ' ' ' "  and those ofVq over U'jZiVj. 

For example, if g = 3, then the pair-wise features in V consist of 3 groups of JEPs: 
those of Vi over 1)2 U P3, those of I?2 over T>i U 2?3, and those of D3 over 2?i U X'2. 

Example 2. The pair-wise features in I>i and D2 of Table 1 consist of the JEPs from Vi 
toT>2, {a,b}, {a,b,c}, {a,b,d}, {a,6,c,d}, and the JEPs from 1)2 to P i, {a, e}, {b,e}, 
{a,c, e}, {a, d,e}, {b,c, e}, {b,d, e}, {c, d, e}, {a, c, d, e}, {b, c,d, e}. 

Note that we do not enumerate all these JEPs individually in our algorithms. Instead, 
we use borders to represent them. Also, the border representation mechanism facilitates 
the simple selection of the most expressive JEPs. The concept of border was proposed in 
[3] to succinctly represent a large collection of sets. (It wil l be reviewed later in section 
3.) 

Continuing with the above example, the JEPs from Pi to P2 can be represented 
by the border of <{{a,6}} , {{a,b,c,d}}>. Its left bound is {{a,b}}, and its right 
bound is {{a, b, c, d}};  it represents all those sets that are supersets of some itemset 
in its left bound, and are subsets of some itemset in its right bound. Obviously, {a, b}, 
the itemset in the left bound, has the largest support among all itemsets covered by 
the border. Similarly, the JEPs from P2 to Pi can be represented by two borders: 
<{{a , e}, {c, d, e}}, {{a, c, d, e}}> and <{{6 , e}, {c, d,e}}, {{b, c, d, e}}> . (Details 
wil l be given in Section 4.) Therefore, the most expressive JEPs in Vi and P2 are those 
in the set of {{a, b}, {a, e}, {6, e}, {c, d, e}} , the union of the left bounds of the three 
borders above. Observe that it is much smaller than the set of all JEPs. 

In JEP-Classifier, the most expressive JEPs play a central role. To classify a test 
instance T, we evaluate the collective impact of only the most expressive JEPs that are 
subsets of T. 
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Definition 3. Given a pair ofdatasets V and V" and a test instance T, the collective 
impact in favour of the class ofV contributed by the most expressive JEPs ofV and 
ofV is defined as 

E suppv'{X), 

xeMEJEP(V',v") and xcT 

where MEJEP{V, V") is the union of the most expressive JEPs ofV over V" and the 
most expressive JEPs ofV" over V. The collective impact in favour of the class ofD" 
is defined similarly. 

The classification procedure of JEP-Classifier for a given test instance is a simple 
process as follows. Given a test instance T, the q collective impacts respectively in 
favour of the q classes are first computed. Then, the JEP-Classifier determines the class 
label as the class where T obtains the largest collective impact. When a tie occurs 
(i.e., the collective impacts obtained are equal), we can use popularities to break the tie. 

Training Data (3 Classes) 
"V{ T""V2 j"p^-

By MBD-LLborder or naive algorithm (c^er Horizon-Miner) 

Pair-wise Features 
{EPfi"+""2","3TTTEP(i"T"3","2)i" " JEP("2"+3 

Test 
Data 

The Mo.st Expressive JEPs 

^~  r 
Calculating the collective impacts 

[ when a test case T is given I 
Collective impact in favor  of 

Qass I : Class 2 i 

Determining the class label of T 

Fig. 1. JEP-Classifier working on a database with three classes of data. 

Figure 1 depicts how the JEP-Classifier is built from the training data, and how 
it is then used to classify testing data, for the case when a database contains three 
classes of data. In this figure, JEP(1 + 2,3) represents the JEPs from Dj U I>2 to 
I>3, and similarly for JEP(1 -f 3,2) and JEP(2 + 3,1). The HORIZON-MINER [4] and 
MBD-LLBORDER [3] algorithms, used to extract the pair-wise features from the train-
ing dataset, are outlined in Section 3. Determining the most expressive JEPs is discussed 
in Section 4. 
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3 Discovering the Pair-Wise Features 

As the pair-wise features in T) are defined as the JEPs over q pairs of datasets, we only 
need to consider how to discover the JEPs over one pair of datasets. Without loss of 
generality, suppose dataset V consists of only two classes of data Pi and I>2. then the 
pair-wise features in P are the JEPs from Vx to I>2 and the JEPs from P2 to Vi. Now, 
we consider how to discover the JEPs from Pi to P2-

The most naive way to find the JEPs from Pi to P2 is to check the frequencies, 
in Pi and P2, of all itemsets. This is clearly too expensive to be feasible. The prob-
lem of efficiently mining JEPs from dense and high-dimensional datasets is well-solved 
in [3] [4]. The high efficiency of these algorithms is a consequence of their novel use 
of borders [3]. In the following subsections we present two approaches to discovering 
JEPs. The first approach is a semi-naive algorithm which makes limited use of bor-
ders, while the second approach uses an efficient border-based algorithm called MBD-
LLBORDER [3]. 

3.1 Borders, Horizontal Borders, and HORIZON-MINER 

A border is a structure used to succinctly represent certain large collections of sets. 

Definition 4. [3].  A border is an ordered pair <C, 7i> such that each of C and TZ is 
an antichain collection of sets, each element of C, is a subset of some element in "R,, and 
each element of TZ is a superset of some element in C; C is the left bound of the border, 
and TZ is its right bound. 

The collection of sets represented by <£, TZ> (also called the set interval of 
<C,TZ>)is 

[C,TZ] =^{Y\3X eC,3ZeTZ such that X CY C Z}. 

We say that [C, TZ] has <£, TZ> as its border, and that each X G [£, TZ\ is covered by 
<C,TZ>. 

Example 3. The set interval of <{{a , 6}} , {{a , 6, c, d, e}, {a, b, c?, e, / } } > consists of 
twelve itemsets, namely all sets that are supersets of {a, b} and that are subsets of either 
{a, b, c, d, e} or {a, b, d, e, / } . 

Definitions. The horizontal border of a dataset is the border <{0},7^ > that repre-
sents all non-zero support itemsets in the dataset. 

Example 4. The horizontal border of Pi in Table 1 is<{0} , {{a , c, d, e},{6 , c, d, e}}> . 

The simple HORlZON-MlNER algorithm [4] was proposed to discover the horizon-
tal border of a dataset. The basic idea of this algorithm is to select the maximum itemsets 
from all instances in P (an itemset is maximal in the collection C of itemsets if it has 
no proper superset in C). HORIZON-MINER is very efficient as it requires only one scan 
through the dataset. 
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3.2 The Semi-naive Approach to Discovering JEPs 

The semi-naive algorithm for discovering the JEPs from X>i to T>2 consists of the fol-
lowing two steps: (i) Use HORIZON-MINER to discover the horizontal border of V2; 
(ii ) Scan I>i to check the supports of all itemsets covered by the horizontal border of 
V2; the JEPs are those itemsets with zero support in X>i. The pruned SE-tree [3] can be 
used in this process to irredundantly and completely enumerate the itemsets represented 
by the horizontal border. 

The semi-naive algorithm is fast on small databases. However, on large databases, a 
huge number of itemsets with non-zero support make the semi-naive algorithm too slow 
to be practical. With this in mind, in the next subsection, we present a method which is 
more efficient when dealing with large databases. 

3.3 Border-Based Algorith m to Discover  JEPs 

In general, MBD-LLBORDER [3] finds those itemsets whose supports in 152 are > 
some support threshold 6 but whose support in Vi are less than some support threshold 
5 for a pair of dataset T>i and 'D2. Specially, this algorithm produces exactly all those 
itemsets whose supports are nonzero in 1)2 but whose supports are zero in Vi, namely 
the JEPs from Pi to 'D2. In this case, MBD-LLBORDER takes the horizontal border 
from Vi and the horizontal border from T>2 as inputs. Importantly, this algorithm does 
not output all JEPs individually. Instead, MBD-LLBORDER outputs a family of borders 
in the form of <Ci, TZi>, i = 1,-  ,k,to concisely represent all JEPs. 

Unlike the semi-naive algorithm, which must scan the dataset Z?i to discover the 
JEPs, MBD-LLBORDER works by manipulating the horizontal borders of the datasets 
Vi and r>2. As a result, the MBD-LLBORDER algorithm scales well to large databases. 
This is confirmed by the experimental results in Section 5. The M B D - L L B O R D ER al-
gorithm for discovering JEPs is described in detail in the Appendix. 

4 Selecting the Most Expressive JEPs 

We have given two algorithms to discover the pair-wise features from the training data 
V: the semi-naive algorithm is useful when T> is small, while the M B D - L L B O R D ER 

algorithm is useful when T> is large. As seen in the past section, the M B D - L L B O R D ER 

algorithm outputs the JEPs represented by borders. These borders can represent very 
large collections of itemsets. However, only those itemsets with large support contribute 
significantly to the collective impact used to classify a test instance. By using only the 
most expressive JEPs in the JEP-Classifier, we can greatly reduce its complexity, and 
strengthen its resistance to noise in the training data. 

Consider JEP(Pi, V2) U JEP(272,2>i), the pair-wise features in V. Observe that 
JEP (X>i, r>2) is represented by a family of borders of the form <Ci,1Zi>,i  = 1,-  ,k, 
where the TZi are singleton sets (see the pseudo-code for M B D - L L B O R D ER in the 
Appendix). We believe that the itemsets in the left bounds, £ j, are the most expressive 
JEPs in the dataset. The reasons behind this selection include: 
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- By definition, the itemsets in the left bound of a border have the largest supports 
of all the itemsets covered by that border because the supersets of an itemset X 
have snaaller supports than that of X. Then, the most expressive JEPs cover more 
instances (at least equal) of the training dataset than the other JEPs. 

- Any proper subset of the most expressive JEPs is not a JEP any more. 

It follows that we can select the most expressive JEPs of JEP (Pi, I>2) by taking the 
union of the left bounds of the borders produced by MBD-LLBORDER. This union is 
called the LEFT-UNION of JEP(2?i,ri2). So, LEFT-UNION = UA. Similarly, we can 
select the most expressive JEPs of JEP(I>2, P i ). Combining the two LEFT-UNION, the 
most expressive pair-wise features in T) are then constructed. 

Algorithmicaily, finding LEFT-UNION can be done very efficiently. If the M B D -

LLBORDER algorithm is used, then we simply use the left bounds of the borders it 
produces. In practice, this can be done by replacing the last line of the pseudo code of 
the MBD-LLBORDER algorithm in the Appendix with 

return the union of the left bounds of all borders in EPBORDERS. 

If the semi-naive algorithm is used, then LEFT-UNION can be updated as each new 
JEP is discovered. 

Example 5. To illustrate several points discussed in this subsection, consider Pi and 
T>2 from Table 1. The horizontal border of Vi is <{0} , {acde, bcde}>^, and that of 
Pj is <{0} , {ce, de, abcd}>. The JEPs from T>2 to Pi are represented by two borders 
<Ci,Tli>,  i = 1,2, namely <{ae,cde},{acde}> and <{be,cde},{bcde}>. (The 
readers can use MBD-LLBORDER in the Appendix to derive these borders.) 

The border <{ae,cde},{acde}> consists of the JEPs {ae, ace, ade,cde, acde}, 
while the border <{be, cde}, {bcde}> consists of the JEPs {be, bee, bde, cde, bcde}. 
Note that the JEPs in the left bounds have the largest supports. 

The LEFT-UNION of JEP(P2, P i) is the union of the left bounds of the above two 
borders, namely {ae, cde} U {be, cde} = {ae, be, cde}. 

5 Experimental Results 

In this section we present the results of our experiments, where we run the JEP-Classifier 
on 30 databases (some contain up to 10 classes, some have up to 30162 instances, 
some have up to 60 attributes) taken from the UCI Repository of Machine Learning 
Databases [1]. These experiments were carried out on a 500MHz Pentiumin PC with 
512M bytes of RAM. The accuracy was obtained using the methodology of ten-fold 
cross-validation [10] (but one fold was tested in census-income). 

The experiment's pre-processes are: (i) download original datasets, say P, from the 
UCI website; (ii) partition P into class datasets P i ,P2,  ,Pq; (iii ) randomly shuffle 
Vi,i = I,-  ,q; (iv) for each P j, choose the first 10% instances as the testing data 
and the remaining 90% as the training data. Repeatedly, choose the second 10% as the 
testing data, and so forth; (v) if there exist continuous attributes, discretize them by our 

' For readability, we use acde as shorthand for the set {a, c, d, e}. 
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equal-length-bin method in the training datasets first, and then map the intervals to the 
testing data. This step is used to convert the original training and testing data into the 
standard binary transactional data. (These executable codes are available from the au-
thors on request.) After pre-processing, we followed the steps illustrated in Figure 1 to 
get the results. Alternatively, MLC++ technique [7] was also used to discretize contin-
uous attributes in the glass, ionosphere, pima, sonar, and vehicle datasets. These testing 
accuracies are reported in Table 2. The main disadvantage of MLC++ technique is that 
it sometimes, for example in the liver dataset, produces many different instances with 
different labels into identical instances. 

Table 2. Accuracy Comparison. 

Datasets 
anneal* 
australian* 
breast-w* 
census 
clave* 
crx* 
diabete* 
german* 
glass* 
heart* 
hepatitis* 
horse* 
hypo* 
ionosphere* 
iris* 
labor* 
liver 
lymph* 
mushroom 
nursery 
pima* 
sick* 
sonar* 
soybean 
tic-tac-toe* 
vehicle* 
votel* 
wine* 
yeast* 
zoo* 

#inst, attri, class 
998, 38, 5 
690,14, 2 
699,10, 2 

30162,16, 2 
303, 13, 2 
690, 15, 2 
768, 8, 2 

1000, 20, 2 
214, 9, 7 

270,13, 2 
155,19, 2 
368, 28, 2 

3163, 25, 2 
351, 34, 2 

150,4, 3 
57, 16,2 
345, 6, 2 

148, 18,4 
8124, 22, 2 
12960, 8,5 

768, 8, 2 
4744, 29, 2 
208, 60, 2 
47, 34, 4 
958, 9,2 

846, 18,4 
433,16, 2 
178, 13, 3 

1484, 8,10 
101, 16,7 

JEP-Cla. 
4.4 

13.66 
3.73 
12.7 
15.81 
14.06 
23.31 
24.8 
17.4 
17.41 
17.40 
16.8 
2.69 
6.9 
2.67 
8.67 
27.23 
28.4 
0.0 
1.04 
20.4 
2.33 
14.1 
0.00 
1.0 

27.9 
8.53 
6.11 
33.72 
4.3 

CBA 
1.9 
13.2 
3.9 
-

16.7 
14.1 
24.7 
25.2 
27.4 
18.5 
15.1 
17.9 
1.6 
7.9 
7.1 
17.0 
-

18.9 
-
-

26.9 
2.7 
21.7 

-
0.0 
31.2 
6.4 
8.4 
44.9 
5.4 

C4.5rules 
5.2 
13.5 
3.9 
-

18.2 
15.1 
25.8 
27.7 
27.5 
18.9 
19.4 
16.3 
0.8 
8.0 
4.7 
20.7 
32.6 
21.0 

-
-

24.5 
1.5 
27.8 
8.3 
0.6 
27.4 
4.8 
7.3 

44.3 
7.8 

#JEPs 
5059 
9806 
2190 

68053 
8633 
9880 
4581 

32510 
127 

7596 
5645 

22425 
1903 
8170 

161 
1400 
1269 
5652 
2985 
1331 

54 
2789 

13050 
1928 
2926 

19461 
5783 
5531 
2055 
624 

#CARs 
65081 
46564 

399 
-

1634 
4717 

162 
69277 

291 
624 

2275 
7846 
493 

10055 
23 

313 
-

2965 
-
-

2977 
627 

1693 
-

1378 
5704 

-
1494 

-
686 

Table 2 summarizes the results. In this table, the first column lists the name of each 
database, followed by the numbers of instances, attributes, and classes in Column 2. The 
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third column presents the error rate of the JEP-Classifier, calculated as the percentage 
of test instances incorrectly predicted. Similarly, columns 4 and 5 give the error rate of, 
respectively, the CBA classifier in [8] and C4.5. (These results are the best results taken 
from Table 1 in [8]; a dash indicates that we were not able to find previous reported 
results). Column 6 gives the number of the most expressive JEPs used by the JEP-
Classifier. The last column gives the number of CARs used in CBA. 

These results raise several points of interest. 

1. Our JEP-Classifier performed perfectly (100% or above 98.5% testing accuracy) 
on some databases (nursery, mushroom, tic-tac-toe, soybean). 

2. Among the 25 databases marked with * (indicating results of both CBA and C4.5 
are available) in table 2, the JEP-Classifier outperforms both C4.5 and CBA on 15 
datasets; CBA wins on 5; and C4.5 wins on 5 (in terms of the testing accuracies). 

3. For the databases (with bold font), they have much larger data sizes than the re-
maining databases. The JEP-Classifier performs well on those datasets. 

4. For unbalanced datasets (having unbalanced numbers of instances for each class), 
the JEP-Classifier performs well. For example, nursery dataset contains 5 classes 
and have respectively 4320,2,328,4266, and 4044 instances in each class. Interest-
ingly, we observed that the testing accuracy by the JEP-Classifier was consistently 
around 100% for each class. For CBA, its support threshold was set as 1%. In this 
case, CBA would mis-classify all instances of class 2. The reason is that CBA can-
not find the association rules in class 2. 

Our experiments also indicate that the JEP-Classifier is fast and highly efficient. 

- Building the classifiers took approximately 0.3 hours on average for the 30 cases 
considered here. 

- For databases with a small number of items, such as the iris, labor, liver, soy-
bean, and zoo databases, the JEP-Classifier completed both the learning and testing 
phases within a few seconds. For databases with a large number of items, such 
as the mushroom, sonar, german, nursery, and ionosphere databases, both phases 
required from one to two hours. 

- In dense databases, the border representation reduced the total numbers of JEPs (by 
a factor of up to 10® or more) down to a relatively small number of border itemsets 
(approximately 10^). 

We also conducted experiments to investigate how the number of data instances 
affects the scalability of the JEP-Classifier. We selected 50%, 75%, and 90% of data 
instances from each original database to form three new databases. The JEP-Classifier 
was then applied to the three new databases. The resulting run-times shows a linear 
dependence on the number of data instances when the number of attributes is fixed. 

6 Related Work 

Extensive research on the problem of classification has produced a range of different 
types of classification algorithms, including nearest neighbor methods, decision tree in-
duction, error back propagation, reinforcement learning, and rule learning. Most classi-
fiers previously published, especially those based on classification trees (e.g., C4.5 [9], 
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CART [2]), arrive at a classification decision by making a sequence of micro decisions, 
where each micro decision is concerned with one attribute only. Our JEP-Classifier, to-
gether with the CAEP classifier [5] and the CBA classifier [8], adopts a new approach 
by testing groups of attributes in each micro decision. While CBA uses one group at 
a time, CAEP and the JEP-Classifier use the aggregation of many groups of attributes. 
Furthermore, CBA uses association rules as the basic knowledge of its classifier, CAEP 
uses emerging patterns (mostly with finite growth rates), and the JEP-Classifier uses 
jumping emerging patterns. 

While CAEP has some common merits with the JEP-Classifier, it differs from the 
JEP-Classifier in several ways: 

1. Basic idea. The JEP-Classifier utilizes the JEPs of large supports (the most discrim-
inating and expressive knowledge) to maximize its collective classification power 
when making decisions. CAEP uses the collective classifying power of EPs with 
finite growth rates, and possibly some JEPs, in making decisions. 

2. Learning phase. In the JEP-Classifier, the most expressive JEPs are discovered by 
simply taking the union of the left bounds of the borders derived by the MBD-
LLBORDER algorithm (specialised for discovering JEPs). In the CAEP classifier, 
the candidate EPs must be enumerated individually after the M B D - L L B O R D ER 

algorithm in order to determine their supports and growth rates. 
3. Classification procedure. The JEP-Classifier's decision is based on the collective 

impact contributed by the most expressive pair-wise features, while CAEP's deci-
sion is based on the normalized ratio-support scores. 

4. Predicting accuracy. The JEP-Classifier outperforms the CAEP classifier in large 
and high dimension databases such as mushroom, ionosphere, and sonar. For small 
datasets such as heart, breast-w, hepatitis, and wine databases, the CAEP classifier 
reaches higher accuracies than the JEP-Classifier does. On 13 datasets where results 
are available for CAEP, the JEP-Classifier outperforms CAEP on 9 datasets. 

While our comparison to CAEP is still preliminary, we believe that CAEP and JEP-
Classifiers are complementary. More investigation is needed to fully understand the 
advantages offered by each technique. 

7 Concluding Remarks 

In this paper, we have presented an important application of JEPs to the problem of 
classification. Using the border representation and border-based algorithms, the most 
expressive pair-wise features were efficiently discovered in the learning phase. The col-
lective impact contributed by these pair-wise features were then used to classify test in-
stances. The experimental results have shown that the JEP-Classifier generally achieves 
a higher predictive accuracy than previously published classifiers, including the classi-
fier in [8], and C4.5, This high accuracy results from the strong discriminating power of 
an individual JEP over a fraction of the data instances and the collective discriminating 
power by all the most expressive JEPs. Furthermore, our experimental results show that 
the JEP-Classifier scales well to large datasets. 
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As future work, we plan to pursue several directions, (i) In this paper, collective 
impact is measured by the sum of the supports of the most expressive JEPs. As alter-
natives, we are considering other aggregates, such as the squared sum, and adaptive 
methods, such as neural networks, (ii) In this paper, JEPs are represented by borders. 
In the worst case, the number of the JEPs in the left bound of a border can reach C^j^, 
where N is the number of attributes in the dataset. We are considering the discovery and 
use of only some of the itemsets in the left bound, to avoid this worst-case complex-
ity, (iii ) In discovering JEPs using the MBD-LLBORDER algorithm, there are multiple 
uses of the BORDER-DlFF sub-routine, dealing with different borders. By parallelizing 
these multiple calls, we can make the learning phase of the JEP-Classifier even faster 
and more scalable. 
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Appendix: MBD-LLBORDER for Discovering JEPs 
Suppose the horizontal border of Pi is <{0} , {Ci , , Cm}> and the horizontal bor-
der of P2 is <{0} , {Di,  Dn}>. MBD-LLBORDER finds the JEPs from Di to P2 
as follows. 
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MBD-LLBORDER(horizontalBorder {Vi), horizontal -
Borde r  (P2) )  ; ;  return all JEPs from 2? i  to 7^2 by multi-

ple calls of BORDER-DlFF 
EPBORDERS<-  {} ; 

for j fro m 1  t o n  do 
i f some Ci i s a s u p e r s et of Dj t h en continue; 
{C[,-  -,0'^}  ̂ {Ci nDj,---,Cmn Dj}  ; 
RIGHTBOUND <— a l l maximal i t e m s e ts i n  ,C'^}; 
add BORDER-DlFF(<{0},i?j>,<{0},RlGHTBoUND>) i n t o EPBOR-

D E R S; 

return EPBORDERS; 

BORDER-DIFF(< {0 }, {U}>,  <{0} , {5i , 52, , Sk}>) 

; ; r e t u rn t he ^border of [{0},{C/} ] - [{0},{5i,52 ,  ,5fc}] 
i n i t i a l i z e C t o {{x}  | x€U — Si}} 
for I = 2 t o fc do 

C^{XU{x}\ X£C,x€U-Si}; 
remove a l l i t e m s e ts Y i n £ t h at a re not m in ima l; 

return <C,{U}>; 

Note that given a collection C of sets, the minimal sets are those ones whose proper 
subsets are not in C. For correctness and variations of BORDER-DlFF, the readers are 
referred to [3]. 
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Abstract. We consider the data-mining problem of discovering struc-
tured association patterns from large databases. A structured association 
pattern is a set of sets of items that can represent a two level structure 
in some specified set of target data. Although the structure is very sim-
ple, it cannot be extracted by conventional pattern discovery algorithms. 
We present an algorithm that discovers all frequent structured associar 
tion patterns. We were motivated to consider the problem by a specific 
text mining appUcation, but our method is applicable to a broad range of 
data mining applications. Experiments with synthetic and real data show 
that our algorithm efficiently discovers structured association patterns in 
a large volume of data. 

1 Introduction 

Finding patterns in databases is the fundamental operation behind common 
data-mining tasks, including the mining of association rules [1,2,3,4,5,6,7] and 
sequential patterns [8,9]. For the most part, mining algorithms have been devel-
oped to discover very simple patterns such as sets or sequences of items. It is 
sometimes difficult for users to gain insight from such simple patterns. 

While the patterns that mining algorithms generate are simple, the target 
data of interest often includes much more complex structures. In order to apply 
mining algorithms to complex data, what we usually do is to convert the data 
into a flat table, focusing on a fixed part of the original data structure and 
ignoring the rest. However, semi-structured data [10,11,12], such as data on the 
World Wide Web and collections of documents written in natural languages, 
contain structures that axe not fixed beforehand, and such structures themselves 
may be interesting targets for knowledge discovery. If we can discover patterns 
with the same structure as a specified set of target data, such patterns will  be 
intuitive and useful. 

As a first step toward complex pattern mining, we adopt a set of sets of items 
as our form of patterns. Inner sets may have labels. The form of patterns delin-
eates a tree structure with two levels (see Figure 1 for an example). We call such 
patterns structured association patterns. In this paper, we present an algorithm 
that discovers all frequent structured association patterns in databases. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 233-244, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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1 2 3 4 5 6 7 

A, B, and C are labels of inner sets. 

Fig. 1. Example of a pattern 

predicate 
install 
get 
push 

arguments 
{customer, software} 
{customer, fatal error, now} 
{she, key} 

Fig. 2. Predicate-argument tuples 

The custome r  ha d installe d th e software ,  an d i s 
now gettin g a  fata l  erro r  whe n sh e pushe s a  key . 

a fata l  erro r 

a key 

Circled words are predicative verbs. 

Fig. 3. An example of a network 

1.1 Motivatin g Example 

Let us consider a call center of an enterprise. The call-taJters input the sum-
maries of customers' calls into the database as short documents in some natural 
language. We would like to extract from the database typical questions, re-
quirements, complaints, and commendations. Since it is very hard for humans 
to discover such knowledge from a large volume of text data, it is natural to 
consider whether a pattern mining technique may help in the task. 

One naive way is to find association rules or sequential patterns of words in 
the text by using standard pattern discovery algorithms. This will  produce many 
patterns, but it is often difficult to recall the meaning of the original sentence 
from a discovered pattern, because the pattern does not contain any information 
on the roles of the words in the original sentence. 

The progress of natural language processing technology has made it possi-
ble to automatically extract relationships between words by disambiguating the 
meanings of individual words. The technology is far from perfect, but it is very 
useful. Indeed, a typical machine translation method constructs a network struc-
ture from a sentence on the basis of the semantic relationship of words, performs 
some operations on the network, and then converts the network structure into 
a sentence in another language [13,14]. Figure 3 shows an example of a network 
structure obtained from a sentence. If we can find important patterns in the 
network structure, it wil l help us to realize our aim, since we can determine the 
meaning of each individual word in the network. Therefore, given a large collec-
tion of such networks, finding frequent subgraphs as patterns is a natural and 
interesting problem. But the computational complexity of this task seems to be 
very high. We therefore simplify the problem as follows. 

We pay attention to "predicates" (or verbs), since they play the most sig-
nificant semantic roles in a sentence. A predicate takes as "arguments" several 
words that have direct or indirect modification relationships with the predicate. 
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We treat such a group of words as a "predicate-argument tuple." For example, 
the sentence in Figure 3 has three groups, as shown in Figure 2. Although such 
groups do not carry all of the information in the original sentence, they are still 
much more informative than a simple set of individual words, and make it easier 
for users to recall the meaning of the original sentence. 

A predicate-argument tuple can be represented by a set with a label, in 
which the predicate is a label and the arguments are elements of the set. Thus 
a sentence becomes a set of labeled sets. Therefore it is natural to consider the 
problem of mining frequent patterns that consist of labeled sets, such as {  (install 
{software-A, driver_B}), (get {fatal, error}) } , from the text database. 

Similar problems can be seen in the domain of molecular biology. Each indi-
vidual molecule of nucleic acid is meaningless, but a sequence of them has some 
function, and a collection of such sequences may be the cause of an important bi-
ological phenomenon. Therefore, it would be useful to be able to find important 
collections in a DNA database. 

2 Problem Statement 

In this section, we give a formal statement of the problem, following those given 
in previous publications [1,2]. 

Definition s Let I = {ij , i g , . . ., im} be a set of literals, called items. A labeled 
set g = {I, A) is a pair of a label I € I and a set of items A C X. We call 
labeled sets groups. Let ^ = I x set(J) denote the domain of groups. Let V 
be a set of transactions, where each transaction T is a set of groups (T C Q). 
Each transaction has a unique identifier, called a TID. Within a transaction, 
each group also has a unique identifier, called a GID. A structured association 
pattern, or pattern for short, is also a set of groups. 

Pattern Matchin g We say that a group g = {lg,Ag) matches another group 
h = {Ih, Ah), if Ig = Ih and Ag C Ah. We say that a pattern P = {g\,g2,..  Qk) 
matches a transaction T = {h\, /12, . , hi} if for each element gi £ P there exists 
a distinct group hj € T such that gi matches hj. Note that these group-by-group 
matchings must be distinct. For example, a pattern Pi = {(1 , {2}) , (1, {4}) } 
matches a transaction T = {(1, {2,3,4}), (1, {4,5})} , but P2 = {(1 , {2}) , (1, {3}) } 
does not, because both groups of P2 match only the first group of T. We say 
that a pattern P' is a subpattem of P if P' matches P. 

Support A pattern P has support s in the transaction set VHP matches s 
percent of transactions in P. Even when a pattern matches a transaction more 
than once, the contribution of the transaction to the support count is only L 
Problem Definitio n Given a set of transactions V, the problem of mining 
structured association patterns is to generate all patterns that have support 
greater than the user-specified minimum support threshold (called minsup). We 
call a pattern frequent if the support of the pattern is greater than minsup. It is 
easy to construct an implication of the form X =^ Y from a pattern P, where 
X (JY = P and X fl F = 0, in the same way as described in [2]. Therefore we 
do not discuss this point at present. 
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0) MAiN(DataSet V) { 
1) / / X> is the input data set. 
2) / / Ck is a set of candidate patterns of size k. 
3) / / Lk is a set of frequent patterns of size k. 

4) c,^{{l,il))\iei}u{{*,{i})\iel}; 
5) fc«-l; 
6) while {Ck i^ 0) { 
7) COUNT(©, Cfc); 
8) Lfc p € Cfc I p is frequent}; 
9) Cfc+l <— GENERATE-CANDIDATES(iit); 

10) A:*-fc + l; 
11) } 
12) return IJ^Lfc; 
13) } 

Fig, 4. Outline of the Algorithm 

Transaction T 

4 5 6 3 7 6 7 8 

Patiemp 

U\) 1(4) 1(5) 1(_6) U2) 1(5) 1(7) U3) 1(6) Ij?) 1(!) 

> 

Sequence s(p) 

s(p) b a subMqiiciM c orsCD 

Fig. 5. Sequence matching (1) 

We call the number of items in a group, including its label, the size of the 
group. In like manner, we call the sum of the group sizes in a pattern the sizt 
of the pattern. We refer to a pattern of size fc as a fe-pattern. 

We assume that items in each group are kept sorted in lexicographic order, 
without loss of generality, because we are considering sets, not sequences. Simi-
larly, we assume that groups in each transaction and pattern are kept sorted 
in lexicographic order of the labels of the groups. When g\ = {li,Ai)  and 
52 = ('2,-42) have the same label — that is, when li  = I2 — the tie is re-
solved by looking at the lexicographic order of the first different elements of Ai 
and A2. Note that we allow multiple groups in a transaction to have the same 
labels; this is the tie case mentioned above. We can handle simple sets without 
labels by assigning a special label, NULL, to groups. 

3 Algorithm 

Figure 4 shows the outUne of our algorithm, which is similar to that of other 
Apriori [2]-based pattern mining algorithms. First of all, we generate candidate 
patterns, each of which consists of a single item (line 4), where patterns of the 
form (*, {i})  have a special label "* " that matches any labels. 

Each pass, say pass k, consists of two phases. First, the database is scanned to 
count the support of each candidate in Ck by calling a function named "COUNT" 

(line 7). The algorithm of COUNT uses a data structure similar to that of the 
subset function of Apriori [2], but it differs in that we need to handle the cases 
when some groups in a pattern have the same label. Next, the frequent patterns 
in Lk are used to generate the candidate patterns Ck+i for the (fc -|- l) th pass 
by a function named "GENERATE-CANDIDATES" (line 9). 
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Transaction T 

'KtK 
2 7 3 6 4 5 

Pattern p 

Sequence s(T) 
 u p 1(2) IC7) 1^1) 1(3) 1(6) 1/1)1^4) 1(3) 

 U1)1(3)M1)I(4)U1)1(7) 
Sequence s(p) 

s(p) is not a subsequence of s(T) 

Fig. 6. Sequence matching (2) 

1(4) 1 (5) 1(31 I ( 4 | 1 (4) 1 (5) 1 (5) 

A hash-tree storing <L(l)/(3)/(4)), 
<L(l)^(3)/(5)), (L(l)L(2)/(3)) , <L(l)L(2)/(4)), 
{C(1)L(2)>, (L(2)/(3)/(4)>, {i(2)/(3)/(5)>, and 
<i(2)/(4)/(5)). 

Fig. 7. A hash-tree 

3.1 Counting Support of Patterns 

Given a set of groups p, we first convert it into a sequence of symbols s{p). For 
example, when p = {(1,{4,6}) , (2, {}) , (3, {7})} , the corresponding sequence 
s{p) = (L(l ) 7(4) 7(6) L{2) 1,(3) 7(7)), where L{*)  (denotes a symbol corre-
sponding to a group label and 7(*) denotes a symbol corresponding to a group 
element. Let us assume that no transaction (and thus no pattern) contains more 
than one group with the same label. Then, as shown in Figure 5, we can decide 
whether a pattern p matches a transaction t by checking whether s(p) is a sub-
sequence of s{t) and some constraint is satisfied .̂ Since Apriori uses a hash-tree 
to efficiently find all the patterns (itemsets) that are subsequences of a given 
transaction, it seems that we can apply a similar algorithm to our problem. 

However, when some groups in a transaction may have the same group label, 
the above idea does not work. For example. Figure 6 shows a case in which a 
pattern p matches a transaction t even though s{p) is not a subsequence of s{t). 
Therefore in order to decide if a pattern p matches a transaction t, we need to 
determine if there exists a bipartite matching of s{p) and s{t) that covers all the 
elements of s(p). Since we have many candidate patterns, and want to find from 
them all the patterns that match a given transaction, we need to solve multiple 
bipartite matching problems simultaneously. We use another hash-tree to solve 
those problems. 

If a pattern p has multiple groups with same label, we treat them as a cluster, 
when p is converted into a sequence s{p). For example, a pattern {(1,{2,3}) , 
(2, {1,3}) , (2, {2,4}) , (3, {2}) }  is translated into a sequence (L(l) , 7(2), 7(3), 
C(2), 7/(3), 7(2)), where the second and third groups of the pattern become a 
cluster. There are three types of elements: C {cluster), L (label), and 7 (item). 

We store sequences of all patterns in Ck in the hash-tree. An interior node 
of the hash-tree is a hash table. When we add a sequence s{p) to the hash-tree, 
we start from the root node and go down the tree by scanning the sequence. At 

^ If an element I{x) in s{t) is used in the matching, an element that corresponds to 
the group label of x must also be used. 
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a tree node at depth d, we decide which branch to follow by applying a hash 
function to the dth element of s{p). Since this hash-tree is a kind of trie [15], any 
common prefixes of all patterns are shared in a path from the root node, and a 
path from the root to a leaf identifies the sequence of a pattern. Figure 7 shows 
an example. 

Scanned transaction t is translated into a sequence s{t). Starting from the 
root node, we find all the candidate patterns that match a transaction t. We 
apply the following procedure based on the type of node we are at: 

— Root node: Apply a hash function to every item in s{t), and recursively apply 
this procedure to the node in the corresponding bucket. For any pattern p 
that matches the transaction t, the first element of s{p) must be in s{t). By 
hashing on every item in s{t), we ensure that we only ignore patterns that 
start with an element not in s{t). 

— Interior node labeled I or L: Assume that we reached this node by hashing 
on an element e in s{t). Hash on each element that comes after e in s{t) and 
recursively apply this procedure to the node in the corresponding bucket. 

— Interior node labeled C: Construct bipartite graphs to find all candidate 
patterns that match the cluster of the transaction. Assume that we reached 
this node by hashing on an element e in s{t). For each found pattern p that 
have a cluster that matches t, recursively apply this procedure to the tree of 
suffix pattern of p. 

— Leaf node: We have now found a pattern that matches the transaction t. 

Matchin g Clusters 
Let us focus on a C-labeled node of the hash-tree. The node may have multi-

ple — say, k — clusters each of which is a part of a pattern and shares a common 
prefix. Let C = {ci , C2,..., Cfe}  denote the set of the clusters. As we come to this 
node, the transaction t also contains a cluster c{t) that has the same group label 
as CiS. Our goal is to find all the clusters in C that match c{t). 

In this paragraph, we consider the problem of deciding whether a single 
cluster Ci matches c{t). Suppose that Cj has n groups and c(f) has m groups 
(n < m). Let Cj = {51,52,  ,ffn} , and c(i) = {/ii,/i2 ,  ,/im} - Consider a 
bipartite graph d = {ci,c{t);Ei) such that there exists an edge {gx,hy) G Ei if 
and only if gx S Cj matches hy £ c{t). Figure 8 shows an example of a bipartite 
graph. Ci matches c{t) if and only if there exists a bipartite matching in d 
that covers all 5i for 2 = 1 , . . ., n. Therefore, the problem of deciding whether d 
matches c{t) can then be reduced to checking whether the size of the maximum 
bipartite matching in d is equal to n. This can be effectively solved by a classical 
algorithm[16]. In Figure 8, solid lines are the edges of the maximum bipartite 
matching. Since all groups in Cj are covered by the matching, c, matches c{t) in 
this case. 

To effectively make all graphs Gi = {ci,c{t);Ei) for all Cj e C, we construct 
another hash-tree beforehand, which stores all the candidate groups of Cj for 
i = 1,... ,k. For each group hj € c{t), we identify all groups that match hj by 
using the hash-tree, and add the corresponding edges to the graphs. After the 
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.̂--"'group s i n c(t)"'^* . 

,'  h i  h o h o h ^  h e 

'  9 1 9 2 9 3 9 4 , ' 
*-,,group s i n c ^  ,, * 

Fig. 8. Bipartite matching 

type A 

typeB 

type 01 

typeC 

typeC ; 

type D 

Fig. 9. Classification of patterns 

above procedure, we know all the graphs, and hence we can find all clusters that 
match the transaction t. 

3.2 Generating Candidates 

The candidate generation function of Apriori joins a = {ai , 02 , . . ., a }̂  with b = 
{61,62,..., 6/c}, when they differ only in the last elements (i.e., ai = bi,..., 0̂ —1 
= 6fc—1), to generate a new candidate c = {ai,... ,ak—i,ak,bk}- This method 
generates candidate patterns very efficiently even when there are a large number 
of patterns. 

However, as for structured patterns, it may be impossible to drop the last 
elements because it may violate a structural constraint. For example, let us 
consider a pattern p = {(1,{3}),(1,{4})} . There are no pairs of proper pat-
terns that differ only the last elements and that can be joined to generate p. 
In order to generate the pattern, we need to join pi = {(1 , {}) , (1, {4}) }  and 
V2 = {(1, {3}) , (!,{}) }  = {(1, {}),(! , {3})} . Note that by joining pi with p2, 
we can generate another pattern p' = {(1, {}) , (1, {3,4})} . Therefore candidate 
generation of structured patterns is not as simple as that of simple patterns. 

Instead of thinking what fc-sized patterns can be generated by joining two 
(A; — l)-sized patterns, we inversely consider how we can split fc-sized pattern into 
(A; —l)-sized subpatterns. We classify patterns of size k >3 into the following four 
types based on the last two elements, and split each of them into two subpatterns 
of size (fc — 1) so that the fc-sized pattern can be generated by joining the two 
subpatterns: 

— Type A: The last two elements of the pattern are items of a single group. 
— Type B: The last element is a group label, and the second last element is a 

item of the second last group. 
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— Type C: The last element is an item of the last group and the second last 
element is the group label. We further classify patterns of this type into Type 
CI and C2 based on the third last elements. 

- Type D: 

Figure 9 illustrates this classification and how a pattern of each type can be 
constructed from its subpatterns. In this figure, a triangle represents a subpattern 
or subgroup. Because each element is either a label or an item, every pattern is 
classified into one of the above types. Therefore we can generate any candidate 
patterns by one of the expressions in the figure. Note that we must be careful 
to handle cases in which labels of the last and second last group are the same, 
because the order of the groups may change. 

The GENERATE-CANDIDATES function takes as its argument the set of all 
frequent fe-patterns Lk, and returns the set of candidate {k + l)-patterns Ck+i-
The function works in two steps: 

1. Join Phase: We generate candidate (A; + l)-patterns by joining Lk with Lk-
If a pattern pi G Lk is one of the patterns in the right-hand side of Figure 9, 
we find a pattern p2 S Lk of the counterpart of pi and join pi and p2 to 
generate a new candidate. Note that we do not have to search entire Lk for 
the counterparts of pi, since we previously sort Lk in lexicographical order, 
and the range of the counterparts of pi is limited. 

2. Prune Phase: We delete candidate patterns that have a fc-subpattern whose 
support count is less than the minimum support. To effectively check whether 
all fc-subpattern are in Lk, we use a hash-tree that stores Lk-

The above procedure is reminiscent of the candidate generation procedure 
for finding simple association rules; however details are quite different. 

4 Experiments 

To evaluate the effectiveness of the algorithm, we implemented it in C-I-+, and 
performed several experiments on an IBM PC Server 330 running Windows NT 
4.0 with a 333 MHz Intel Pentium II Processor and 320 MB of main memory. 
The data resided in the NT file system and was stored on a 9 GB SCSI 3.5" 
drive, with measured sequential throughput of about 8 MB/second. 

4.1 Synthetic Data 

The synthetic data generator presented in [2] is commonly used for evaluating 
the performance of pattern-mining algorithms. We modified the generator so 
that it can generate structured transactions for our algorithm. Figure 10 shows 
the major parameter settings. 

To see the scalability of the algorithm against the input size, we generated 
several datasets by changing the number of transactions from 100,000 (14.4 MB) 
to 2,000,000 (288 MB). We set the minimum support to 0.5 percent and the 
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Number of distinct labels 
Number of distinct items 
Average number of groups 

in a transaction 
Average number of items 

in a group 

1,000 
1,000 

5 

5 

Fig. 10. Parameter Settings of Synthetic 
Datasets 
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(c) Minsup level vs. execution time 

Fig. 11. The experimental results on the synthetic datasets 

repetition level to 0.6. Figure 11 (a) shows the relationship between the volume 
of input and the execution time of the algorithm. We can see that the execution 
time increases linearly in proportion to the number of transactions. When the 
number of transactions was 2,000,000, the algorithm discovered 6,236 patterns. 

To assess how duplicated group labels affect the performance, we generated 
several datasets by changing a parameter called repetition level, which controls 
the average probability that a group has the same label as other groups in 
a transaction. We set the repetition level to 0, 0.2, 0.4, 0.6, 0.8, and 1.0. The 
average number of distinct group labels in a transaction decreases almost linearly 
in the repetition level, — that is, 5.0, 4.3, 3.6, 2.9, 2.2, and 1.6, respectively 
— while the average number of groups in a transaction is always 5. We set 
the number of transactions to 100,000 and the minimum support count to 500 
(0.5%). Figure 11 (b) shows the result. While the execution time is almost linear 
in the repetition levels when the repetition level is relatively low, it starts to 
increase rapidly when the repetition level is more than 0.7. 

We also conducted an experiment on how the minimum support threshold 
affects the performance. We fixed the number of transactions at 100,000 and 
the repetition level at 0.6. Figure 11 (c) shows the result. Note that the vertical 
scale is logarithmic. We can see a trend similar to that of other Apriori-based 
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Number of sentences 
Number of predicative words 
Number of non-predicative 

words 
Average number of words 

in a sentence 
Average number of groups 

in a sentence 
Size 

109,451 
12,754 

54,453 

4.23 

1.48 

3.6MB 

Fig. 12. Call center data 
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Fig. 13. Experimental results on the call 
center data 

algorithms. When the minimum support is 0.3 (resp. 0.5, 0.7, 0.9, 1.0) percent, 
the number of frequent patterns is 93,074 (1264, 750, 602, 565). 

4.2 Real Data 

We applied our algorithm and a standard association rule mining algorithm to 
real data consisting of Japanese text obtained from a certain company's call cen-
ter. For our algorithm, we preprocessed the original text data, using a shallow 
(and hence fast) natural language parser [17] developed at the authors' insti-
tution to convert all the sentences into sets of predicate-argument tuples as we 
explained in Subsection 1.1. We also converted all the sentences into flat sets of 
words so that an ordinary association discovery algorithm (which we call a con-
ventional algorithm) can discover frequent sets of words as patterns. Figure 12 
shows the characteristics of the data. 

I t takes less than two minutes for our algorithm to discover all the patterns, 
even when the minimum support count is only 5 (i.e., 0.005%). We do not com-
pare the execution time, since the conventional algorithm used here runs on a 
different platform. As shown in Figure 13, the conventional algorithm discovers 
about twice as many patterns as our algorithm, even though there are combina-
torially more structured patterns than simple itemsets. This experiment shows 
that more than half of the patterns discovered by the conventional method are 
bogus, because the patterns discovered only by the conventional algorithm con-
sist of words that are used in very different contexts in the supporting sentences. 
Most patterns in which the analysts of the text data are interested have a sup-
port level of around 10 to 20. When the minimum support is at such a low level, 
the conventional algorithm generates too many patterns, half of which are bogus. 
Therefore, our method can significantly reduce the burden of text analysts who 
have been using ordinary pattern mining algorithms. 

To see the effectiveness of our method from the view point of our motivating 
application, we examined precision and recall, commonly used for measuring 
effectiveness of information retrieval systems. 
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Our method 
Pattern 

{(request {repair}) (say {}) } 
{(expire {guarantee}) (say {}) } 

{(ask {dealer}) (say {}) } 
{(attach {stereo-set, store})} 
{(inspect {dealer}) (say {}) } 

Recall (%) 
100 
100 
97.9 
97.4 
96.8 

Precision (%) 
91.2 
100 
100 
100 
93.8 

Conventional method 
Recall (%) 

100 
100 
100 
100 
100 

Precision (%) 
79.5 
87.2 
76.2 
80.9 
57.4 

Fig. 14. Recall and precision 

We define recall and precision as follows. Suppose that we are given a set 
of semantic relationships of words, for instance, "someone purchases a car." We 
describe the relationships in pattern languages as {  (purchase {car} ) }  for our 
method and {  purchase, car }  for the conventional method. We call a sentence 
covered by a pattern if the pattern matches the sentence. We call a sentence rele-
vant if humans decide that the sentence contains the semantic relationships. Let 
X denote the number of covered sentences, let Y denote the number of relevant 
sentences, and let Z denote the number of covered and relevant sentences. Then 
recall is defined as Z/Y and precision is defined as Z/X. 

We found recall and precision for several patterns. Figure 14 shows the result 
(the original words are in Japanese). Because patterns used by the conventional 
method (flat sets of words) certainly cover all relevant sentences, the recall of 
the conventional method is always 100 percent, but the precision is not very 
good. On the contrary, both recall and precision for our method are very high. 
Although the natural language parser sometimes makes mistakes, this result 
confirms the advantages of our approach. 

5 Conclusions 

We introduced the problem of mining structured association patterns from data-
bases. A structured association pattern is a set of sets of items that can express a 
two-level structure in the target data. We presented an algorithm that efficiently 
discovers all frequent structured association patterns in a large database. We 
implemented the algorithm and evaluated it by using synthetic data and real text 
data. The method described in this paper can be used to solve problems in which 
each data element is not especially significant, but some combinations of elements 
are meaningful, and combinations of combinations of individual elements are 
interesting targets for discovery. 

We are now developing a text mining system for call centers and evaluating 
our approach by using real text data. It is essential for text mining to utilize 
prior knowledge such as compound words and thesaural information. We plan to 
look into the problem of efficiently discovering structured patterns using prior 
knowledge. It would be interesting to investigate how much the accuracy of 
natural language processing affects the effectiveness of our approach. We also 
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plan to look into the problem of discovering more complex pat terns from text 
and semi-structured data. 
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Abstract. New association rules are presented for measure of associa-
tion relationships between patterns. The new association rules are shown 
to not only measure three well-known association relationships correctly, 
but also satisfy other criteria for correct measure of association. Com-
parison with other measures is discussed both theoretically and experi-
mentally. Applications in supervised mining of association rules and in 
pattern-driven multidimensional pattern analysis are presented. 

1 Association Rules 

Association rules have received much attention in the past (Agrawal et al. 1993a, 
Agrawal et al. 1993b, Agrawal and Srikant 1994, Klemettine et al. 1994, Manni-
la et al. 1994, Han and Fu 1995, Houtsman and Swami 1995, Park et al. 1995, 
Srikant and Agrawal 1995, Savasere et al. 1995, Agrawal et al. 1996a, Agrawal 
et al. 1996b, Cheung et al. 1996, Toivonen 1996, Lee et al. 1998, Meo et al. 1998, 
Wijsen and Meersman 1998, Silverstein et al. 1998). There are 2 fundamental 
problems in the study of association rules: association rules and mining asso-
ciation rules. The former is about measure of association relationships between 
patterns. The latter is about development of efficient techniques for finding inter-
esting association rules, which may include development of additional measures 
(support for example) of pattern properties other than association, to identify 
interesting rules. Precise measure of association is sufficient for understanding 
association rules and is not sufficient for mining association rules. As the titl e 
suggested, measure of association is the main subject in this paper. An associa-
tion rule is a measure of the amount of association relationship between patterns 
(or information events) in quantity, similar to the information entropy which is 
a measure of the amount of information in quantity. The simplest association 
pattern is a mathematical expression of transactional relationship between t-
wo patterns A and B, instead of sequential relationship. Unlike transactional 
correlation which has no direction, the transactional association has direction, 
meaning A associated with B is not equal to B associated with A. Therefore, 
a correct measure of association should be not only a transactional measure, 
but also sensitive to direction. Currently, two methods are well recognized for 
measure of association: conditional measure (or conditional rule) and the x^ 
measure (or contingency table). A conditional measure is a sequential measure 
of typical if-then sequence. While the x  ̂ test is a transactional measure, it is 
not sensitive to direction because it is a symmetric measure. A fundamental 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 245-256, 2000. 
(c) Springer-Verlag Berlin Heidelberg 2000 
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property of a correct measure of association is that it has to be transaction-
al measure sensitive to direction. We developed a new formula for association 
rules (T. Zhang, US patent pending). Our starting point is to recognize the 
difference between association and disassociation, similar to the difference be-
tween attractive and repulsive forces. If probability of co-occurrence P{A\B) 
for patterns A and B is larger than probability of no co-occurrence P{A\B), 
the relationship of A associated with B is association (attractive). Otherwise, 
the relationship is disassociation (repulsive). The association relationship is de-
scribed by PA{A - . B ) = 1 - P{A\B)/P{A\B), if P{A\B) > P{A\B). The 
disassociation relationship is described by PoiA =^ B) = P{A\B)/P{A\B) — 1, 
if P{A\B) < P{A\B). Combining the two formulas, we obtain 

PiA\B) - PiA\B) 
P(A =^B) = 

MAX[P{A\B),P{A\B)] 

P{AB) - P{A)P{B) 
MAX[P{AB){1 - P{B)), P{B){P{A) - P{AB))] ^̂ ^ 

where association pattern vl ^ 5 describes transactional association of pattern 
A with pattern B. P{A), P{B), and P{AB) are probabilities for patterns A, B, 
and A A B respectively. It is noted that the probabilities are approximated by 
corresponding frequencies in a database. The approximation is exact when the 
number of records in the database is infinite large. Our association rule measures 
direction since the above formula is not symmetric about A and B. In order to 
compare our association rule with other measures of association, we present 
formulas for these measures as well. Association measured by a conditional rule 
is given by 

PiA=^B)^PiB\A) = ^ ^ . (2) 

Association measured by the x^ test is given by 

^2 [PjAB) - P{A)PiB)]'  ̂ [PjAB) - P{A)P{B)]'^ 
 ̂ ~ PiA)P{B) ^ P{A)P{B) 

[P{AB)-P{A)P{B)r [P{AB)-P{A)P{Br .„ . 
P{A)P(B) PiA)P{B)  ̂ ' 

where N is the number of records. Here, we have normalized the result in a range 
between 0 and 1. 0 means complete independence while 1 represents complete 
dependence. The above formula may reduce to the following 

^ = [P{AB)-P{A)P{B)Y 
N P{A)P{B){1 - P{A)){1 - P{B)y ^' 

The above formula is symmetric about A and B. Therefore, it does not measure 
association direction. Furthermore, measure of interest is used to identify which 
one of 4 pairs gives the most significant contribution since the above formula 
aggregates 4 related pairs (Silverstein et al. 1998). Because of being insensitive 
to association direction, the y  ̂ test is ruled out for correct measure of association 
relationship. 
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2 Comparison with Existing Measures of Association 

In the above description of association rules, we argued that the current as-
sociation rules approximated by either conditional rules or the x^ test do not 
measure associations accurately. Now, we prove it. A fundamental test for a 
correct measure of associations is a test of three well-known associations: com-
plete association P{AB) = P{A), complete disassociation P{AB) = 0, and 
complete random association or complete independence P{AB) — P{A)P{B). 
A correct measure should give a definitive result for each of the three associa-
tion tests without uncertainty. In another word, the result for each test should 
be a constant independent of P{A) and/or P{B), rather than a function of 
P{A) and/or P{B). For the complete association, pattern A is always associat-
ed with pattern B. The normalized association should be a maximum or 100% 
regardless what P{A) and P{B) are. Our new association rule gives the fol-
lowing result P{A =>  B) = MAX[PIA)(I-PIB)) O] ~ ^- Conditional rule gives 
P{B\A) = ^,^J = 1. Both association rule and conditional rule pass the 

test. On the other hand, the x  ̂ test gives ^ = p|g(L~p'. (̂ which fails the 
test because the result is a function of P{A) and P{B), instead of a constant. 
For the complete disassociation test, pattern A is never associated with pat-
tern B. The normalized disassociation should be a maximum or 100% no mat-
ter what P{A) and P{B) are. Our new association rule gives P{A => S) = 
- MAxl^lfA^liB)] = - 1 - Conditional rule gives P{B\A) = ^  ̂ = 0. Our 
new association rule and conditional rule pass the second test. The x^ mea-
sure fails to pass the test because it gives ^ = ii_p(]AiiLp(B)]  which is a 
function of P{A) and P{B), instead of a constant. For the complete random 
association, pattern A is randomly associated with pattern B. Our new as-
sociation rule gives P{A =^ B) = P/A)P(B)\I-P(B)] ~ ^- '^^^ ^^ *'®®* gives 
^ = p(A)p(B)\i-'p(A)]h-p(B)] ~ -̂ "^^^  ̂time, association rule and dependence 
rule (x'̂  test) pass the test. Conditional rule gives P{B\A) = P{B) which is 
a function of P{B), instead of a constant. Therefore, conditional rule fails the 
independence test. Our new eissociation rule is the only one that passes all three 
tests. 

3 Other Possible Measures of Association 

Having shown that our association measure passes successfully a test of three 
well-known association relationships and that both conditional rules and the x^ 
test fail to pass the same test, we may ask whether our new measure of association 
is the only correct measure of association relationships between patterns. This 
question is diflScult to answer directly without rigorous proof. Instead, we look at 
other measures of association, that may pass the same test. One such measure 
may be obtained by modifying conditional measure. The main problem for a 
conditional rule to measure association relationship is that it can not distinguish 
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association from disassociation except two extreme situations when conditional 
confidence is either 1 or 0. This is due to absence of comparison of a given 
conditional confidence with unconditional probability of a target. If the former 
is larger than the latter, the relationship is association. If the former is less than 
the latter, the relationship is disassociation. Otherwise, it is random association. 
Therefore, we modify conditional measure by subtracting the latter from the 
former, or 

P,n = P{B\A) - P{B). (5) 

Positive results describe association relationships while negative results repre-
sent disassociation relationships. If results are positive, normalize the modified 
measure by dividing the above formula by l-P(B). The normalized formula de-
scribes association. Otherwise, normalize the modified measure by dividing the 
formula by P(B). The resulting formula describes disassociation relationship. 
The normalized association formula becomes 

^ P{B\A) - P{B)  ̂ P{AB) - P{A)P{B) 
l-P{B) P{A){l-P{B))  ^' 

The normalized disassociation formula becomes 

^ P{B\A)-P{B)  ̂ P{AB)-P{A)P{B) 
"^ P{B) P{A)P{B)  ^ ' 

The above two formulas measure the three well-known associations correct-
ly indeed. However, there are other criteria or properties for test of correct 
association measure. One is measure of association direction as indicated be-
fore. It is seen that the second formula above is symmetric about A and B. 
Therefore, it does not measure direction necessary for association relationship. 
Another property is symmetry between association and disassociation, simi-
lar to the symmetry between attractive and repulsive forces. Such symmetry 
does not exist in the above two equations while our association and disasso-
ciation do have such symmetry property. But, the most important criteria is 
a clear, unique, and independent interpretation of the measured association 
relationship. Results from the above two formulas do not have such interpre-
tation. In contrast, results from our association measure have adequate inter-
pretation. The interpretation is that it measures the strength of probability of 
co-occurrence relative to probability of no co-occurrence for association, and 
the strength of probability of no co-occurrence relative to probability of co-
occurrence for disassociation. This interpretation becomes more evident if we 
rewrite our association formula as P{A\B)/P{A\B) = 1/(1 - P{A => B)) for 
association and P{A\B)/P{A\B) = 1/(1 -I- P{A =^ B)) for disassociation. For 
P{A ^ 5) = 0.5,0.75,0.8,0.9,0.95, or 0.98, pattern A is 1,3,4,9,19,49 times 
more likely to appear with pattern B than not, respectively. Similarly, pat-
tern A is 1,3,4,9,19,49 times more likely to appear in the absence of pattern 
B than they appear together for P{A  ̂ B) = -0 .5, -0.75, -0 .8, -0.9, -0.95, 
or —0.98 respectively. Each value has unique and independent interpretation. A 
symmetric correspondence between association and disassociation values exists 
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for all values using our measure. Similar correspondence does not exist between 
association and disassociation values using the two formulas modified from con-
ditional measure. To see the point more clearly, we express the modified for-
mulas as multiplication of our new association and conditional confidence, or 
Pa = P{A =>  B)P{B\A) and Pd == P{A ^ B)P{B\A), which indicate that as-
sociation relationships that have the same value in our measure have different 
values if the corresponding conditional confidence values differ from each other. 
This means that one of the two measures must be incorrect because of multiple 
measured results for the same association. Since the second formula modified 
from conditional measure does not measure disassociation direction and both 
formulas modified from conditional measure fail to have proper interpretation of 
association, formulas modified from conditional measure do not measure associ-
ation accurately. 

4 Supervised Mining of Association Rules 

Having presented new association rules and theoretical comparison with other 
measures of association relationship, we discuss briefly mining association rules 
before we present experimental comparison and applications. Like mining other 
patterns and relationships, mining association rules is to find interesting asso-
ciation rules, which may require additional measures to define interestingness 
independing of association relationship. Such measures may change from one to 
another, depending on objectives for mining interesting rules. A well-established 
measure is support which measures how often patterns co-occur. We want to 
emphasize that support does not measure any relationship between patterns, 
but rather measures frequency of occurrence or co-occurrence of patterns. Fre-
quency is about how often patterns co-occur while relationship is about how 
co-occurring patterns relate to patterns not co-occurring. Therefore, support or 
any other measure that does not measure association relationship is not part of 
association rules, and only makes sense in mining association rules. There have 
been significant work done in mining association rules in an unsupervised way 
such as regular market basket analysis. Here, we present an approach for mining 
association rules in a supervised manner. Supervised mining of association rules 
is to define a target (business problem or business opportunity), and to identify 
interesting patterns associated with the target. The supervised mining can be 
very useful in business pattern analysis in databases. For example, Coca-Cola 
would be much more interested in the relationships between Coke and other 
products, and between products of their competitors and other products, than 
relationships between non-soft-drink products in POS data. Here, a target may 
be Coke products or their competitors' products. In general, business people 
at higher level want to know how patterns existing in their business database 
relate to a well-defined business problem or opportunity. It is much easier to 
perform supervised mining of association rules than unsupervised mining be-
cause only rules describing association relationships between a target pattern 
and other patterns need to be obtained. Similar to unsupervised mining of asso-
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elation rules, support measure may be used for identification of interesting rules. 
However, we re-normalize conventional support by multiplying the total number 
of records divided by the total counts of a given target pattern in the study of 
association relationships between the target pattern and other patterns. In this 
way, the modified support values represent contributions, in percentage, to the 
target (problem or opportunity) from other patterns. We use this re-normalized 
support measure in the following applications. 

5 Experimental Results 

In this section, we apply our new association rules to real-world examples in 
comparison with conditional rules. No experimental comparison with the x^ 
test is given because of being unable to measure association direction by the 
X  ̂ test. Comparison of association rules with the x  ̂ test would be equivalent to 
comparison of a vector with a scalar, which is meaningless. We start with a simple 
POS transactional example shown in Table 1 (Mannila 1998). Table 1 shows 10 
rows of transactions of a POS data set. Find out association rules for association 
patterns mustard A sausage A beer =J> chips and mustard A sausage A beer =̂  
soft-drink. First, we calculate the association using the conventional technique 
of conditional rules. We obtain C{mustard A sausage A beer => chips) = 0.5 
and C{mustard A sausage A beer =̂  soft.drink) = 0.5. The results show that 
associations measured by the above two association rules are equal, indicating 
that pattern mustard A sausage A beer is associated equally with pattern chips 
and with pattern soft-drink. However, the results for the same two association 
rules are different if we use our new measure for association patterns. The results 
are C(mustard A sausage A beer => chips) = —4/7 and C{mustard A sausage A 
beer => soft-drink) = 1/3. The above results show that pattern mustard A 
sausageAheer is disassociated with pattern chips, but is associated with pattern 
soft-drink, although the two patterns have the same conditional confidence. The 
above results mean that triplet pattern mustardAsausagehbeer is more likely to 
occur together with soft drink than without soft drink while the triplet pattern is 
less likely to occur together with chips than without chips. To see this difference 
more clearly, we modify the data in Table 1 by replacing the first 0 in column 
chips by 1 and the last two Is in column Soft-drink by 0, so that association values 
are changed while conditional confidence values remain the same. However, the 
new association values become C{mustardAsausageAbeer => chips) = —3/4 and 
C{mustard A sausage A beer =>  soft-drink) = 3/4. The above results indicate 
that triplet pattern mustard A sausage A beer is three times more likely to 
appear with soft drink than without it while the same triplet pattern is three 
times more likely to appear in the absence of chips than in the presence of chips. 
This difference between soft drink and chips in association with the same triplet 
pattern can not be seen from conditional rules. 

Now, we apply our association rules to a more interesting case: data set for 
KDD Cup 98. Here, we try to identify interesting patterns associated with do-
nation pattern defined by value 1 in data column TARGET_B. All conditional 
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Table 1. A simple example data set 

Row JD Chips 
Ti 
T2 
T3 
T4 

n Te 
Tr 
Ts 
T9 
Tio 

1 
1 
1 
0 
0 
1 
1 
1 
1 
0 

Mustaxd Sausage 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 

0 

0 
1 

Soft-drink Beer 
0 1 
1 1 
0 0 
0 1 
1 1 
0 1 
1 1 
0 0 
1 0 
0 1 

patterns discovered using conditional rules are shown in Table 2. Discovered con-
ditional patterns in Table 2 are shown in two dimensions: support and association 
dimensions, using a new method developed for pattern-driven multidimension-
al pattern analysis (T. Zhang, US patent pending). A key for pattern-driven 
multidimensional analysis is to choose support and association measures as di-
mensional variables, and to display distribution of pattern numbers, not pattern 

Table 2. Multidimensional distribution of conditional pattern numbers (SI - Support 
interval, CI - confidence interval) 

SI 
SI 

0-1% 
1-2% 
2-3% 
3-4% 
4-5% 
5-6% 
6-7% 
7-8% 
8-9% 
9-10% 
10-20% 
20-30% 
30-40% 
40-50% 
50-60% 
60-70% 
70-80% 
80-90% 
90-100% 

0-1 1-2 2-3 
CI 
3-4 

X 

4-5 
10% 
5-6 

25121 6680 2751 1382 136 1414 
2654 
1367 
782 
458 
326 
226 
162 
127 
102 
363 
68 
45 
34 
42 
23 
23 
42 
54 

6 
2 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

6-7 7-8 8-9 9-10 
87 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Table 3. Multidimensional distribution of association pattern numbers (SI - Support 
interval, AI - association interval) 

SI 
SI 

0-1% 
1-2% 
2-3% 
3-4% 
4-5% 
5-6% 
6-7% 
7-8% 
8-9% 

9-10% 
10-20% 
20-30% 
30-40% 
40-50% 
50-60% 
60-70% 
70-80% 
80-90% 
90-100% 

0-1 1-2 2-3 
AI 
3-4 

X 

4-5 
10% 
5-6 6-7 7-8 8-9 9-10 

2774 2954 2189 2572 2525 2466 2551 2929 2978 1669 
698 
413 
282 
177 
133 
98 
69 
56 
53 
168 
29 
17 
19 
13 
9 
4 
13 
14 

469 
213 
121 
73 
30 
22 
14 
12 
3 
27 
3 
2 
0 
0 
0 
0 
0 
0 

191 
85 
33 
9 
8 
3 
0 
1 
2 
9 
2 
0 
0 
1 
0 
0 
0 
0 

53 
28 
9 
0 
3 
1 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

39 
13 
15 
10 
3 
1 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 

9 
7 
2 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

details (this is a crucial difference from OLAP where aggregated data values 
are displayed in multiple dimensions), in multiple dimensions. The point here 
is to display distribution of interestingness of all discovered association rules in 
one screen shot before choosing thresholds for interesting patterns. Each two-
dimensional lattice cell in Table 2 shows the number of patterns having support 
values within a given support interval and having association values within a 
given association interval. For example, the first cell in the first row shows 25121 
association patterns having support values less than 1% and having association 
values less than 10%. Typically, the first row and first column represent noise 
because support values and/or association values are too small (1%, 10%). Then, 
the remaining cells represent association patterns that are not noise in the first 
cut. There are 10 such patterns in Table 2 measured by conditional rules. If we 
set thresholds for interesting patterns to be 5% for support and 40% for associ-
ation (or conditional confidence). We found no interesting patterns in Table 2. 
The results for association patterns using our new method are shown in Table 3. 
First, we find many association patterns (in thousands) that are not noise pat-
terns in the first cut. Most of these association patterns are difficult to separate 
from noise using conditional rules because they fall into the first column (or 
the second column if we count support interval column). There are two ways to 
discover association rules: user-driven and pattern-driven discoveries. In a user-
driven discovery, a user specifies a pair of thresholds for interesting patterns. For 
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Table 4. Interesting association patterns 

Field Names Association Patterns Support Association 
RFA_4 
RFA^ 
RFA.5 
RFAJ2 

RFA-2A 
RAMNT-14 
RAMNT-24 
LASTGIFT 

RFA^F 

S4D = *  Donor 
S4D = ^ Donor 
S4D =>  Donor 
L4D =>  Donor 

D =?- Donor 
5 ==> Donor 
5 =>  Donor 
5 =r- Donor 
4 =>  Donor 

0.053479 
0.053273 
0.053066 
0.096015 
0.143713 
0.062771 
0.056989 
0.085071 
0.204419 

0.508833 
0.499053 
0.493150 
0.488384 
0.484016 
0.446097 
0.421484 
0.411148 
0.410662 
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the same pair of thresholds: 5% for support and 40% for association, we found 
9 interesting association patterns in Table 3. Detail of these 9 interesting asso-
ciation patterns and rules is shown in Table 4. In Table 4, column 1 shows data 
field names and column 2 shows field values. Furthermore, these 9 interesting 
patterns all have conditional confidence less than 10%, implying that they are 
in the first column in Table 2. Another way for discovery of association rules is 
to perform a pattern query by selecting a cell or a set of cells in Table 3. For 
example, select cell in row 6 (support values between 5% and 6%) and column 6 
(association between 40% and 50%) and perform a pattern query. The resulting 
3 interesting patterns are shown in rows 2, 3, and 7, in Table 4. 

6 Verification of Association Rules 

A rigorous test for the new association measure would be prediction of donors 
in the second example above using our new association rules. However, such 
tests require development of a solid prediction model for accurate predictions, 
which involves intelligent binning among many other issues to be resolved accu-
rately. Instead of developing a sophisticated prediction model, we performed a 
simple test to verify the accuracy of our new association rules. In our test, we 
separate data records in two groups: records associated with donors and record-
s disassociated with donors in the KDD Cup 98 example above. We measure 
patterns associated with donors. Patterns having association values larger than 
zero are association patterns while patterns having association values less than 
zero are disassociation patterns. Assume a donor is associated with a set of pat-
terns having an average association to be no less than zero. We can verify such 
association by the following consideration. Calculate the average association for 
each record by averaging association values from various columns (except TAR-
GET_B and TARGET_D columns) in each record. Assign each record with its 
average association. In theory, records having higher average association would 
be more likely associated with donors. Ideally, all records having average associa-
tion larger than zero are associated with donors. We tested this simple model on 
the KDD Cup 98 learning data set. The results are shown in Table 5. In Table 5, 
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Filte r 
NO 
NO 

[-0.1,0.1 ] 
[-0.1,0.1 ] 
[-0.3,0.3 ] 
[-0.3,0.3 ] 
[-0.5,0.5 ] 
[-0.5,0.5 ] 
[-0.7 ,  0.7 ] 
[-0.7,0.7 ] 
[-0.9,0.9 ] 
[-0.9,0.9 ] 

[-0.98,0.98 ] 
[-0.98,0.98 ] 

Table 5. Validatio n o f  associatio n rule s 

Recor d rang e Averag e associatio n Num .  o f  record s N u m .  o f  donor s 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 
1 -  9541 2 

C <  0 
C >  0 
C <  0 
C >  0 
C <  0 
C >  0 
C <  0 
C >  0 
C <  0 
C >  0 
C <  0 
C >  0 
C <  0 
C >  0 

6886 6 
2654 6 
6660 2 
2881 0 
7450 8 
2090 4 
8227 7 
1313 5 
8468 6 
1072 6 
8541 4 
9998 

8546 6 
9946 

1151 
3692 
921 

392 2 
583 

426 0 
121 

472 2 
46 

479 7 
1 

484 2 
0 

4843 

the first column shows thresholds for association values to be considered in the 
calculation of average association per record. We filter out association values 
within a pair of thresholds in the calculation. For example, exclude association 
values between -0.1 and +0.1 in the calculation. The second column shows a 
data range in records we tried for each test on the learning data set (95412 
records in total). In each data range, we divide records into two groups differing 
in the sign of average association per record. One group has average association 
no less than zero and the rest is the other group. The third column in Table 5 
shows average association either no less than zero defining donor group or less 
than zero for non-donor group. Column 4 shows the number of records in each 
group. Column 5 shows the number of donors in each group. For example, the 
first two rows show that 68866 records have average association less than zero. 
1151 of them are associated with a donor. 26546 records in the same test have 
non-negative average association and 3692 of them are associated with donors. 
I t is seen that the results become better and better as the threshold defining a 
range to be filtered out becomes larger and larger. Our new association rules can 
be used for building a prediction model. For example, the above model for ver-
ification of association rules is the simplest prediction model using association 
rules, in which potential donors are predicted by positive average association 
per record. However, development of a solid prediction model using association 
rules requires solving other complicated problems such as measure of multiple 
association and intelligent binning, which is beyond what is intended for this 
paper. 
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7 Summary 

We have presented new association rules with theoretical comparison with two 
leading existing measures. Our new measure of association is a transactional 
measure sensitive to association direction. We shown that the new association 
rules passed successfully a test of 3 well-known associations. In contrast, associ-
ation rules using conditional measure or the x^ test were shown to fail the test. 
Comparison with conditional rules was shown experimentally. A new technique 
for supervised mining of association rules was presented in a pattern-driven way 
and in multiple dimensions. Both association rules and pattern-driven multidi-
mensional pattern analysis presented here are implemented in Triada's products 
using a new pattern-base technology (Bugajski and Russo 1993, Bugajski and 
Russo 1994, Bugajski 1997, Zhang 1999 and Zhang et al. 1999). Finally, we 
verified our new association rules experimentally by grouping records into asso-
ciation class and disassociation class for a given target pattern. We shown that 
the target pattern appears only in the association group if a classifier is properly 
chosen. However, we point out that association rules presented here measure 
single association only. Association rules for measure of multiple-association re-
lationships are more complicated and will  be presented elsewhere. In conclusion, 
we believe that we have solved a fundamental problem in understanding associ-
ation rules by presenting the first correct association rules. 
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Abstract. Many algorithms have been proposed for mining of boolean 
association rules. However, very littl e work has been done in mining 
quantitative association rules. Although we can transform quantitative 
attributes into boolean attributes, this approach is not effective and is 
difficult to scale up for high dimensional case and also may result in many 
imprecise association rules. Newly designed algorithms for quantitative 
association rules still are persecuted by nonscalable and noise problem. 
In this paper, an efficient algorithm, QAR-miner, is proposed. By us-
ing the notion of "density" to capture the characteristics of quantitative 
attributes and an efficient procedure to locate the "dense regions", QAR-
miner not only can solve the problems of previous approaches, but also 
can scale up well for high dimensional case. Evaluations on QAR-miner 
have been performed using both synthetic and real databases. Prelim-
ineiry results show that QAR-miner is effective and can scale up quite 
linearly with the increasing number of attributes. 

1 Introduction 

Data mining, the effective discovery of correlations among the underlying data 
in large databases, has been recognized as an important area for database re-
search and has also attracted a lot of attention from the industry as it has 
many applications in marketing, financial, and retail sectors. One commonly 
used representation to describe these correlations is called association rules as 
introduced in [3]. In this model, the set / = {ii,i2,  im} is a collection of items 
or attributes. The database DB consists of a set of transactions, where each 
transaction is a subset of items in /. An association rule is an implication of the 
form X =^ Y with X,Y C I and X DY = <l>.  The meaning of the rule is that 
a transaction contains items in X wil l Hkely contains items in Y so that mar-
keting strategy can be derived from this implication, for instance. To determine 
whether an association rule is interesting, two thresholds are being used: support 
and confidence. An association rule, X =^ Y, has support s% in DB if s% of 
transactions in DB contain items in XLlY. The same association rule is said to 
have confidence c% if among the transactions containing items in X, there are 
c% of them containing also items in Y. So, the problem is to find all associa-
tion rules which satisfy pre-defined minimum support and minimum confidence 
constraints. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 257-268, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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In this setting, attributes which represent the items are assumed to have only 
two values and thus are referred as boolean attributes. If an item is contained in a 
transaction, the corresponding attribute value will be 1, otherwise the value will 
be 0. Many interesting and efficient algorithms have been proposed for mining 
association rules for these boolean attributes, for example, Apriori [3], DHP 
[9], and PARTITION algorithms [10] (see also [1,2,12,4,5,7]). However, in a real 
database, attributes can be quantitative and the corresponding domains can 
have multiple values or a continuous range of values, for example. Age, Salary. 
By considering this type of attributes, association rules like this one, (30 < 
Age < 39) and (50000 < Salary < 79999) ^ (100000 < Loan < 300000), will  be 
desirable. To handle these quantitative attributes, in this paper, a new threshold 
called density wil l be introduced. This new threshold, together with the support 
and confidence thresholds, will lead to an efficient and scalable algorithm, QAR-
miner, for mining quantitative association rules. 

1.1 Motivatio n for  a Density Threshold 

The motivation for a new density threshold can best be illustrated by an example. 
Assuming that we have two quantitative attributes, A and B (see figure 1). 
Each transaction in the database is mapped to a data point (or a range) in 
this two dimensional space using the corresponding values of the attributes as 
coordinates. We want to find all the association rules of the form A C [a;i, 2:2] => 
B C [2/1,2/2] where a;i,a;2 € {0,al,a2,a3,a4,a5,a6} with X2 > xi and 2/1)2/2 G 
{0,61,62,63,64,65}  with 2/2 > Vi- And we further set the support threshold 
to 5 points and the confidence threshold to 50%. We can obviously obtain the 

B 
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t>-4-
t>3 

t>2 

t>l 
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o f ma 
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rj" ? 
i - j . 

i  i 

>^^^ 
R - e g i on 

^.--^^^  o f r u l e C 2 ) 

a l a.2 a3 a4 a5 a6 y ^ 

Fig. 1. Example of some quantitative rules 

following rules: 

- y lC [al,a2] 
-AC [a2,a5] 
-AC [0,a5] = 

One can easily see that with only the support and confidence thresholds, as long 
as a range has the minimum support, any larger range containing this range 

^BC [62,63] (1) 
^ S C [0,65] (2) 
B C [0,65] (3) 
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wil l also satisfy the support threshold. Similarly, by enlarging the two ranges in 
both dimensions, it is very likely that the new ranges will satisfy the confidence 
constraint as well. This can lead to many "useless" rules: 

— Trivia l Rule: Rules (2) and (3) will be considered as useless and not in-
teresting because rule (3) covers all possible values of both attributes while 
rule (2) covers almost all possible values of both attributes. 

— Redundant Rule: According to the above observation, from rule (1), we 
can have all kinds of rules in the form A C [zl,z2] =>  B C [^1,^2] where 
[al,a2] C [zl,z2] and [62,63] C [ul,u2]. In this particular example, we can 
see that all these rules satisfy both the support and confidence constraints. 
However, these rules, when compared with rule (1), are not very interesting 
because the increase in support of these rules is relatively a lot less than the 
increase in the sizes of the ranges. 

Prom the above example, intuitively, rule (1) is much more preferable than 
both rules (2) and (3). The reason is the density of the region representing rule(l) 
is much higher than the density of regions representing rule(2) and (3) (see Fig. 
1). Hence, if density is defined as a new threshold, it is easy to get rid of trivial 
and redundant rules. 

In real application, when we map a database in a multidimensional space, we 
can always notice that the data points (transactions) exhibit a "dense-regions-in-
sparse-regions" property. In other words, the space is sparse but not uniformly 
so. That is, the data points are not distributed evenly throughout the multidi-
mensional space. According to this kind of distribution and the density threshold 
we have just introduced, the problem of mining quantitative association rules 
can be transformed to the problem of finding regions with enough density {dense 
regions) and finally these dense regions will then be mapped to quantitative as-
sociation rules. 

1.2 Related Work 

There are a few others' work in trying to solve this mining problem for quantita-
tive attributes. In [11], the authors proposed an algorithm which is an adaptation 
of the Apriori algorithm for quantitative attributes. It partitions each quanti-
tative attribute into consecutive intervals using equi-depth bins. Then adjacent 
intervals may be combined to form new intervals in a controlled manner. Prom 
these intervals, frequent itemsets (c.f. large itemsets in Apriori Algorithm) will 
then be identified. Association rules will be generated accordingly. The prob-
lems with this approach is that the number of possible interval combinations 
grows exponentially as the number of quantitative attributes increases, so it 
is not easy to extend the algorithm to higher dimensional case. Besides, the 
set of rules generated may consist of redundant rules for which they present a 
"greater-than-expected-value" interest measure to identify the interesting ones. 

Another algorithm proposed for quantitative attributes is [8]. Their idea is 
to combine similiar association rules to form interesting quantitative associa-
tion rules using the technique of clustering. The algorithm will  map the whole 
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database into a two dimensional array with each entry representing an interval 
in each of the dimensions. Entries with enough support will be marked, then a 
greedy clustering algorithm using "bitwise AND" operation is used to locate the 
clusters. In this approach, the drawback is that the algorithm is sensitive to noise. 
Although an image processing technique, called low-pass filter, is used to remove 
these noises, the algorithm is still sensitive to noise and noise is unavoidable in 
real database. Also, the algorithm is basically designed for two quantitative at-
tributes, so again it is not trivial to extend the algorithm to an efficient one for 
higher dimensional cases. 

On the other hand, the noise problem and the redundant rules problem of 
these approaches can be handled by the density threshold in our approach. And 
our QAR-miner can be used in higher dimensional cases with scalable perfor-
mance. It is hoped that this new approach can give more insights on this mining 
problem. The remaining of the paper will  be organized as follows. Some prelim-
inary definitions will be given in section 2. Section 3 will  describe the algorithm 
for QAR-miner. Evaluations on QAR-miner will be discussed in section 4. Con-
clusion will  be presented in section 5. 

2 Some Prel iminary Definitions 

In this section, some preliminary notations and definitions wil l be presented. 

Definition 1. Let Ai {1 < i < n) be a quantitative attribute with a totally 
ordered domain. Then, a quantitative association rule is of the form: 

Al C [ai,bi]AA2 C [02,62] A... A A „ _ I C [a„_i,6„_i ] =^ An C [a„,6„] where 
[ai,bi]  (ai < bi) is a range on the domain of Ai. 

The mapping of transactions to data points of a multidimensional space is 
done as follows. Each attribute is represented by a dimension in the space. A 
transaction is mapped to a data point in the space using the attribute values as 
coordinates. And in the multi-dimensional space, the volume and the density of 
a rectangular region r will  be denoted by Vr and pr respectively. 

Definition 2. Consider a multidimensional space S created by a mapping from 
a set of transactions. Let r be a rectangular region in S, then the density of r, 
Pr, is defined as the number of data points inside the region divided by v^. (We 
sometimes use p{r) to denote pr for simplicity.) 

Definition 3. Let X, (1 < i < q) denote a set of regions. Then, if X is the 
region formed by combining this set of regions, X is the minimum bounding 
rectangular box which contains all regions Xj . 

Definition 4. S is a dense region if its density, ps, is greater than or equal 
to a user specified threshold, Pmin-

Definition 5. Given n parts Ai,A2,...,An, which are n sets of disjoint regions. 
The maximum combined density of these n parts is 

max{pc\C is the combined region of ci,C2,...,c„ 

and Ci C Ai,C2 C. A2,...,Cn Q An} 
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3 Algorithms for QAR-Miner 

3.1 Framework of QAR-Mine r 

In QAR-miner, the multidimensional space is divided into cells. The problem of 
mining quantitative association rule is divided into two subproblems: (1) finding 
dense regions and (2) translating dense regions to quantitative association rules. 
We further decompose the first step into two subproblems. We first locate all 
base dense regions. A base dense region is a connected set of cells in which each 
cell must have a density higher than piow- Then, these base dense regions will 
be combined to form bigger dense regions. The formation of these bigger dense 
regions is to combine similar quantitative rules into one interesting rule. However, 
in this part, if at each step, we try all possible combinations of the available dense 
regions, the complexity will  be extremely high. To reduce the time complexity, 
a "hierarchical divide-and-conquer" approach is developed. Finally, the dense 
regions identified in step (1) will be tested against the support and confidence 
thresholds to generate quantitative association rules. 

3.2 EDEM Algorith m for  Findin g Base Dense Regions 

We formulate the base dense region discovering problem as the following opti-
mization problem. Let 5 = Di x Z)2 x  x D^ be a rf-dimension space such 
that, ioi 1 < i < d, Di = {x\x G Ai,Li < x < Hi}  is a range in a totally 
ordered domain Ai, bounded above and below by Hi and Li respectively. The 
space S is partitioned into equal size cells such that the cell length on the i-th 
dimension is Ci. That is, the i-th dimension is divided into crij = {Hi — Li)/ci 
equal intervals. We use CP =<  ci,C2,  ,Q > to denote a cell-based partition 
of S. We use cell as the basic unit to reference the coordinates of regions. We use 
r = [{li,l2,  ,ld), {h\,h2, , hd)] to denote a region representing a subspace 
whose projection on the i-dimension is the interval [Li  4- Cili,Li  + Cihi]. And 
Pmin is the density requirement for base dense regions. Because the final rules 
we mined should satisfy the support threshold, so the volume of a base dense re-
gion corresponding to a rule should also be large enough or it cannot get enough 
support. Hence we give Vmin as the volume threshold that a base dense region 
should satisfy, piow is another density threshold that each cell should satisfy in 
a base dense region. This is because we do not want to combine empty or nearly 
empty cells in a base dense region. 

Given a d-dimensional space S, a set of data points D in 5, a cell based parti-
tion CP on S, together with three input thresholds pmin, Plow, and Vmin, finding 
the base dense regions in S is equivalent to solving the following optimization 
problem (see table 1 where r̂  denotes the ith base dense region). 

The EDEM algorithm actually consists of three steps: 

— Step 1: Build a k-d tree to store the non-empty cells. 
— Step 2: Prune away sparse regions from the k-d tree. 
— Step 3: Locate the base dense regions. 
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Table 1. Problem statement of finding base dense regions 

Objective: Maximize Evnii = 1,
Constraints: p  ̂ > Pmin, (i = 1, ...,n) 

Vn > Vmin,{i = l , . . . ,n) 
Vi = 1,..., m for all cell cl in r,, pd > piow, {i  = = 1,. .,n) 

In fact, after step 2, most of the sparse regions will be pruned away. The k-d tree 
will  be divided into covers containing the base dense regions. It is guaranteed 
that the same base dense region will not be divided into different covers although 
more than one base dense region may be in the same cover. Therefore, in step 
3, the searching can be done in each cover. Based on some interesting theorems, 
these three steps can be performed efficiently. Please refer to [13] for more details 
on how this is done. 

3.3 HDRCluster  Algorith m for  Combining Base Dense Regions 

Now what we have is a set of base dense regions. The next step is to combine 
them into bigger dense regions. The idea is that: Given a set of dense regions, by 
combining these regions in all possible cases, the combination with the largest 
combined density which still satisfy the density constraint should be combined. 
The final set of dense regions so obtained is regarded as the optimal result. 
However, a direct implementation of this idea is highly inefficient. Fortunately, 
based on the following observations, a more efficient algorithm, HDRCluster, can 
be used. 

Let us illustrate the observations by an example. In this example, R, which 
is the set of input base dense regions, contains 15 base dense regions which are 
labelled with integers from 1 to 15. For presentation purpose, let DRCluster(/c) 
denote the procedure that will  try all combinations of regions with at most k 
regions in any combination. The results generated by DRCluster(3) and DRClus-
ter(2) are shown in Figure 2 (a) and (b), respectively. In these figures, rectangles 
surrounded by dashed line denote the dense regions generated by the processes. 

Fig. 2. Results of DRCluster (3) and DRCluster(2) on R 
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After comparing these two figures, we have the following two observations. 
Firstly, although DRCluster(2) does not generate the same result as DRClus-
ter(3), it does generate some dense regions generated by DRCluster(3). Secondly, 
some base dense regions are "far" away, some combinations of regions can be 
ignored without affecting the final result. To formalize the second observation, 
we define independent parts as follows: 

Definitio n 6. Given n parts such that each part is a set of dense regions. If 
the maximum possible combined density of any combination of these parts is less 
than Pmin These parts are independent parts. 

And with the help of the following theorem, it is easy to identify independent 
parts. 

Theorem 1. Given that DRClusterfp) can generate the optimal result. And 
Pi,...,Pn are n parts of base dense regions. If the maximum combined density of 
any two parts is smaller than ^,^/" '^\, they are independent parts. 

These two observations together give a hierarchical divid-and-conquer algo-
rithm for combining dense regions. See below for a high level description of the 
algorithm and the detailed version will  be presented in the full paper. 

— Step 1: Set k = 2. 
— Step 2: Divide the input R into independent parts. 
— Step 3: For each independent part, run DRCluster(fc). 
— Step 4: Remove regions which are already optimal. 
— Step 5: Set k = k + 1. Repeat steps 2 - 5 until all optimal regions are 

identified. 

3.4 Generate Quantitativ e Association Rules 

Now we can transform dense regions to quantitative association rules. Since den-
sity threshold is already satisfied, so we only need to consider whether support 
and confidence threshold are satisfied. From the definition, a quantitative asso-
ciation is of the form: Ai C [ai,fti] AJ42 C [02,^2] A ... A A „ _ I C [a„_i,6„_i ] =̂  
An C [a„,6„] where Ai{l  <i  < n) is a quantitative attribute. It is obvious that 
the rule defines a dense region by the ranges for each Aj . Let this dense region 
be denoted by i?„. And let the orthographic projection of i?„  on the hyperplane 
formed by dimensions Ai,A2,...,An-i be denoted by Rn-i- Because of ortho-
graphic projection, the length of Rn-i on ith dimension is the same as it of i?„, 
where 1 < i < n — I. Now the support of this potential association rule that 
generated from Rn is the number of points falling in i?„, and the confidence 
of this potential rule is the number of points falling in Rn over the number of 
points falling in Rn-i- If both of the support and confidence requirements are 
satisfied, then a quantitative association rules is successfully generated from the 
dense region i?„. See an example in Figure 3. We can see a three dimensional 
box Rn in the three dimensional space, and a two dimensional shadow below it 
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Fig. 3. Example of counting support and confidence 

X 

which is Rn-i, that is, the orthographic projection of Rn on the plane formed 
by dimensions Ai and A2. 

As we perform the same checking on all the dense regions, we can get all the 
quantitative association rules. 

4 Performance Study of QAR-Miner 

Some experiments have been carried out to evaluate the performance of QAR-
miner. All the experiments axe performed on a Sun Sparc 5 workstation running 
Solaris 2.6 with 64M main memory. Since the third step of QAR-miner is rather 
trivial, so the discussion will be mainly focused on the first two steps. 

4.1 Generation of Synthetic Database 

In this performance study, we first use synthetic database to evaluate the perfor-
mance of QAR-miner. The main parameters for synthetic database generation 
are listed in Table 2. The databases are generated by a 2-step procedure. In the 
first step of the procedure, a number of non-overlapping potential dense regions 
are generated. In the second step, points are generated in each of the poten-
tial dense regions, as well as in the remaining space. For each generated point, 
transaction(s) corresponding to that point will  then be generated. 

4.2 Evaluation of EDEM and HDRCIuster  on Synthetic Database 

To simplify the experiments, we use a default cell volume of 20 for the cells in 
EDEM. And we set piow = Pminf  ̂ and Vmin = 4096 and pmin = Pdri i" all the 
experiments. 

Effect of EDEM and HDRCIuster  on Different Dimension Numbers. 
In these set of experiments, we fixed the volume of the d-dimensional space 
and increased the number of dimensions from 2 to 7. The d-dimensional space 
has a volume of 2 x 10 °̂ with different lengths in dimensions. Also, Ndr = 10, 



Density-Based Mining of Quantitative Association Rules 265 

Table 2. Input parameters of data generation 

parameter 

d 
Li 

Ps 
m 

Ndr 

u 
at 

Pdr 
rfidr 

meaning 

no. of dimensions 
length of dimension i 
density of the sparse region 
average multiphcity for the whole spa<;e 
no. of dense regions 
average length of dense regions in dimension i 
standard deviation of the length of dense regions in dimension i 
average density of dense regions 
average multiplicity for the dense regions 

io^r=20%. The average volume of a potential dense region is 5 x 10 ,̂ and the 
number of data points in the whole d-dimensional space is about one million, in 
which about 5% are sparse points. 

SpaMJriHDRCIuU r 

f ' 

: k-9 - ^ 

Fig. 4. Speed of EDEM and HDRCluster on different dimension numbers 

Figure 4 clearly shows that the speeds of EDEM and HDRCluster are not 
increasing exponentially as the number of dimensions increases. This is what we 
have expected from the analysis. 

EfTect of EDEM and HDRCluster  on Different Number  of Dense Re-
gions. Besides the above experiments, we also test the performance of EDEM 
and HDRCluster with different number of dense regions from 10 to 100. These 
experiments are performed in a 3-dimensional space with a volume of 2 x 10^°, 
and the total number of points is about one million in which about 5% of them 
are sparse points. Figure 5 shows the result. 

In Figure 5, we can see that the speed of EDEM decreases as the number of 
dense regions increases. The reasons are the followings. Firstly, the size of each 
dense region becomes smaller. This reduces the amount of splitting of the base 
dense regions across the k-d tree nodes; and secondly as the size of dense region 
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Fig. 5. Speed of EDEM and HDRCluster with different number of dense regions 

decreases, the size of base dense region covers becomes smaller accordingly. This 
in turn speeds up the base dense region growing in these base dense region covers. 
We may also notice that the speed of HDRCluster is growing rapidly with the 
number of base dense regions. So the smaller the value of k in HDRCluster(A;), 
the better the performance. 

In the above experiments, we also test the results generated by HDRCluster(fc) 
with different values oi k {k = 9,8,7,6,5,4,3), and it is found that even with 
fc = 4, the procedure will return the optimal result. We also counted the average 
and maximum number of base dense regions in a dense region when the number 
of dense regions changing form 10 to 100 in above experiments. Table 3 shows 
the corresponding result, it is clear that the average number of base dense re-
gions in a dense region is always around 5, and the maximum number of base 
dense regions is seldomly exceed 8, only once. This is in line with our prediction. 
That is using a smaller value of k for the procedure HRDCluster(k) is usually 
good enough to get a good result. 

Table 3. Average and Maximum base dense regions in dense regions 

No of Dense Region 

Average No 
Maximum No 

10 

6.3 
10 

20 

5.8 
8 

40 

5.2 
8 

60 

5.1 
7 

80 

4.6 
6 

100 

4.2 
6 

To further verify that the performance of HDRCluster(/c) is better than that 
of DRCluster(fc), the following figure compares the speeds of DRCluster(3), DR-
Cluster(4), and HDRCluster(4). It is clear HDRCluster(4) outperforms the other 
two. 

4.3 Evaluation of QAR-Mine r  on Real Database 

We also test QAR-miner on real data. The real data is about the worl d wide 
re-export trad e statistics provied by Hong Kong Productivity Council. 

In this set of real data, we have chosen four attributes(dimensions) from the 
original database for our experiment: Country of Consignment(denoted by CC), 
Country of Origin (denoted by CO), Trade Item(denoted by TI) and Month. 
Each tuple in the database represents that Hong Kong has re-exported (a trade 
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Fig. 6. Speed of DRCluster and HDRCluster with different number of dimension 

item in) TI provied by (a country in)CO to (a country in) CC in that month. 
Both CO and CC have 188 different values with each value representing a country 
or a region. TI has 6343 different values with each value representing a trade 
item. The rule is of the form 

[a, 6] C CO A [c, d]CCCA [i,j]  Q Month ^ [e, /] C TI 

([a,b] and [c,d] are set of countries, [e,f] is a set of trade items.) The number of 
tuples is about 1,200,000 and the volume of this 4-dimensional space is about 
1.5 X 10 .̂ Here we set Pmm=30%, and Vmin = 2000 After running QAR-miner, 
we find some interesting rules, the following shows one of them (the dots in rules 
means there are other items that we do not list them here): 

fPRC 
FINLAND,CHIL E ^ r BALL POINT PENS ' 

\ TAPAIV f A { GREECE,TURKEY V / \ {  5-9 }  => ^ MEDICAMENTS 
(̂  JAPAN J j^ MEXICO J [ F O O T W E A R . .. 

5 Conclusion 

In this paper, we have introduced a new "density" threshold for mining quanti-
tative association rules. Using this density threshold and an efficient algorithm 
for locating dense regions, an efficient algorithm, QAR-miner, is developed for 
quantitative attributes. This QAR-miner not only solves the problems of previ-
ous algorithms, but also can scale up well for high dimensional cases as supported 
by the preliminary experimental results. 

In fact, the techniques presented in this paper can also be applied in other 
areas. For example, both EDEM and the HDRCluster algorithms are found very 
useful in indexing OLAP data for reducing the query response time [6]. 
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Abs t rac t. We introduce an intersictive visualization system, AViz, for 
discovering numerical association rules from large data sets. The process 
of interactive visual discovery consists of six steps: preparing the raw 
data, visualizing the original data, cleaning the data, discretizing nu-
merical attributes, and discovering and visualizing association rules. The 
basic framework of the AViz system is presented and three approaches to 
discretize numerical attributes, including equal-sized, bin-packing based 
equal-depth, and interaction-based approaches, are proposed and imple-
mented. The algorithm for discovering and visualizing numerical asso-
ciation rules is discussed and analyzed. The AViz system has been ex-
perimented on a census data set. The experimental results demonstrate 
that the AViz system is useful and helpful for discovering and visualizing 
numerical association rules. 

Keywords: KDD, data mining, data visualization, association rules. 

1 Introduction 

Many techniques and systems for da ta visualization have been developed and 
implemented [3,5,6,7,8,10]. One common feature of these business systems is 
their dependence on computer graphics and scientific visualization; da ta mining 
visualization is t reated in a straightforward way to mine data so that the com-
plex data can be made more understandable. The problem that exists in these 
systems, however, is that in most cases, the complex data is carefully arranged 
and displayed in specific visual form, and the mining results are left to the user 
who must observe and determine the meaning of the pictures. Unfortunately, i t 
is not easy for a user to do this job because it usually requires a wealth of back-
ground knowledge. Silicon Graphics developed a series of visualizers like Map 
Visualizer, Tree Visualizer, etc. [5] to visualize data mining results according 
to different da ta mining techniques such as decision tree, neural network, etc. 
But only the mining results are displayed. Interactive visual da ta mining should 
provide a user with not only the mining results but also the entire process in 
visual form so that the user can part icipate in the mining process and present 
what he/she is concerned with most. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 269-280, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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We introduce an interactive system for visualizing the process of discovering 
numerical association rules. Consider association rules of the form: A  ̂ B, 
where A consists of two different numerical attributes and J5 is a numerical or 
nominal attribute. Suppose X and Y are two such different numerical attributes 
and Z is a quantitative attribute. Our goal is to find an interest region in the 
X xY plane for each value z oi Z, as shown below: 

X € [a;i,a;2],y e [2/1,2/2] =^ Z = z 

For example, 

age £ [26,35], salary € [50/c, 65A:] ==> position = analyst 

is such a rule, where X is age, Y is salary, and Z is position. 

The AViz system consists of six components, including data preparation, raw 
data visualization, data reduction, numerical attribute discretization, discretiza-
tion visualization, and discovery and visualization of rules. In Section 2, related 
research is introduced. The framework of the AViz system is presented in Section 
3, and three approaches to discretizing numerical attributes are discussed and 
compared in Section 4. The paradigm and algorithm for discovering and visu-
alizing numerical association rules based on the scheme proposed by Fukuda et 
al. [4] are described and analyzed in Section 5. The implementation of the AViz 
system and an experiment on census data are discussed in Section 6. Finally, 
Section 7 contains concluding remarks. 

2 Related Work 

The main idea of discovering numerical association rules is to discretize the nu-
merical attributes into disjoint intervals, and then transform the problem to 
mining item association rules [1,2,13]. Each interval is represented as a Boolean 
attribute. A tuple is said to satisfy this Boolean attribute if it has the value of the 
corresponding numerical attribute falling into this interval. There are currently 
many approaches to discretizing numerical attributes. The equi-sized approach 
is to simply partition the continuous domain into intervals with equal length [4]. 
The equi-depth approach [12] basically partitions the data values into intervals 
with equal size along the ordering of the data. Another equi-depth approach 
proposed in [13] is based on the measure of the partial completeness over item-
sets which compensates for the amount of information lost by partitioning. The 
distance-based approach [11] consists of two phases, and addresses the measure 
of the quality of an interval and the distance between the data points in the 
adjacent intervals. The first phase identifies data clusters and the second phase 
combines clusters to form rules, 

The AViz system provides three approaches to perform discretization, equi-
sized, bin-packing based equi-depth, and interaction-based. The equi-sized and 
bin-packing based equi-depth approaches require the user to specify the num-
ber of intervals for both numerical attributes. The interaction-based approach is 
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based on one of the other two approaches. After the numerical attributes are dis-
cretized and visualized, the user can intuitively adjust the partition by observing 
the distribution of the data. 

Keim and Kriegel [7] and Keim [8] compared the different techniques for 
visualizing data mining, and Kennedy et al. [9] presented a framework for in-
formation visualization. Fukuda et al. [4] proposed the SONAR system which 
discovers association rules from two dimensional data by visualizing the orig-
inal data and finding an optimized rectangular or admissible region. Han and 
Cercone [6] implemented the DVIZ system for visualizing various kinds of knowl-
edge. The basic idea of visualizing association rules in the AViz system is based 
on [4,6]. 

3 The AVi z System 

AViz is an interactive data mining visualization system, which uses visualization 
techniques to clean and preprocess the data and also interpret the patterns dis-
covered. AViz exploits numerical attributes discretization approaches and min-
ing algorithms to discover numerical association rules according to requirements 
(support threshold and confidence threshold) specified by the user. AViz consists 
of six components, shown in Fig. 1. 
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Fig. 1. The AViz System 

In the AViz system, data preparation specifies the original data file, attributes 
file, the numerical attributes X and Y, and the nominal or numerical attribute 
Z, which forms the antecedence and the consequence of the association rules 
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to be discovered, respectively. This specification is interactively given by the 
user and implemented by using file dialog and choice windows. The data set 
prepared for discovering association rules is a list of tuples consisting of three 
fields < x,y,z >. 

The second step, visualizing the raw data, reads the tuples in the data file, 
and transfers each tuple into a point of the drawable window. Since we only 
consider two numerical attributes in the antecedence of association rules, we 
project points in the three dimensional space X xY x Z onto the X xY plane. 
Thus we can observe how the data distribute in the space. The denser are the 
points in a region, the more support is shown for the region. 

According to the visualization of the raw data, the user can pick up an 
interesting region on the X xY plane by using a "rubber band". This region 
usually contains dense points and has high support. The points outside the region 
are "cleaned". Therefore, the size of the data set used to discover association rules 
is reduced. This task is accomplished in the third step, data reduction. Another 
reduction is attribute selection, which has been completed in the data preparation 
step manually. The result of the reduction is redisplayed on the screen window 
so that reduction can take place further. This step can be repeated until the user 
is satisfied with the final result. 

The next step is to discretize the numerical attributes, dividing each contin-
uous attribute into disjoint intervals (buckets). AViz provides three approaches 
in its Discretization Approaches library, shown in Fig. 1, including equi-sized, 
bin-packing based equi-depth, and interaction-based approaches. 

Discretizing numerical attributes results in two sets of intervals, one for each 
numerical attribute. Thus a collection of squares is obtained and stored in the 
Discretized Data Set in Fig. 1, each square consisting of two intervals, one from 
each numerical attribute. Assume that attribute X is partitioned into N  ̂ buck-
ets, and Y into Ny buckets, then the total number of squares is Â x  Ny. Usually, 
Â x and Ny are between 20 and 300 in practice. Hence the data set is mapped 
into Â x  Ny squares, regardless of the data set size. To visualize the discretized 
numerical attributes, the raw data is read again from disk, and the support and 
hit for each square are calculated. The support of a square is the number of 
points which fall in it, and the hit of a square ioi Z = z is the number of points 
that fall in this square and have value z of Z. For each square, the sum of its 
all hits corresponding to different values of Z is equal to its support. The visu-
alization of the discretized attributes is to render all squares for all values of Z 
according to their support and hit, and draw and rotate a series of planes, see 
Fig. 4. 

Finally, the algorithm for discovering the association rules is executed to find 
the optimal region in terms of the user-specified support and confidence threshold 
by moving threshold sliders, and each rule is represented as an optimal region 
on the plane Z = z oi the three-dimensional space X x Y x Z, see Fig. 5. 
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4 Discretizing Numerical Attributes 

The AViz system provides three approaches to discretizing numerical attributes, 
equi-sized, bin-packing based equi-depth, and interaction-based approaches. 
More approaches could be added, however, in the future to compare the per-
formance of the AViz system. 

The equi-sized approach partitions the continuous domain into intervals with 
equal length. For example, if the domain of attribute age is [0,100], then it 
can be divided into small intervals with length of 10, thus we have intervals 
< 0^6,0,10 > ,< age, 11,20 > , . . . ,< age,91,100 >. This approach is simple 
and easily implemented. The main drawback of this approach is it may miss 
many useful rules since the distribution of the data values is not considered. 

Suppose the domains of numerical attributes X and Y are [Minx, Maxx] 
and [Miny, Maxy], respectively. X xY forms an Euclidean plane. Each tuple t 
in the data set can be mapped to a point (t[X],  t[Y]) in X x Y. Assume X and 
Y are discretized into Nx and Ny buckets, respectively. Then the size of buckets 
is, on average, {Maxx - Minx)/Nx for X, and {Maxy - Miny)/Ny for Y. For 
a region P in X x y , we say a tuple t meets condition {X, Y) & P lit  is mapped 
to a point in region P. 

The second discretization approach used in AViz is called bin-packing based 
equi-depth approach, which is different from existing approaches. The domain of 
the numerical attributes may contain an infinite number of points. To deal with 
this problem, KIDS employs an adjustable buckets method [12], while the ap-
proach proposed in [13] is based on the concept of partial completeness measure. 
The drawback of these approaches is in time-consuming computation and/or 
large storage requirements. AViz exploits a simple and direct method, which is 
described as follows. 

Assume the window size used to visualize the data set is M (width or height) 
in pixels, and each pixel corresponds to a bin. Thus we have M bins, denoted 
B[i],i  = Q,.. .,M — I. We map the raw data tuples to the bins in terms of the 
mapping function. Suppose B\i]  contains T\i\ tuples, and further, the attribute 
is to be discretized into A'̂  buckets. According to the equi-depth approach, each 
bucket will contain d = J2i=Q ^W/-^ tuples. We first assign B{0], B[l], ..., to 
the first bucket until it contains at least d tuples, and then assign the following 
bins to the second bucket. We can repeat this operation until all buckets contain 
a roughly equal number of tuples. 

One benefit of the bin-packing based equi-depth approach is that the storage 
requirement is only 0{M-\-N), depending on the number of buckets and the size 
of the visualization window, regardless of the domain of the attributes and the 
size of the data set. Another advantage of this approach is that sorting the data 
is not needed and the algorithm execution time is linear in the size of the data 
set. This method, however, may not produce enough buckets, because each bin 
must be assigned to only one bucket, and cannot be broken up. For instance, if 
the data concentrates in several bins, then the buckets that contain these bins 
wil l contain many more tuples than others. This case could happen especially 
when the visualization window has a small size. 
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The third discretization approach that AViz employs is interaction-based. 
This method consists of two steps. First, the user can specify one of the two 
approaches described above to simply discretize the attributes. AViz displays 
the discretization result. In the second step, the user can observe the data dis-
tribution and attribute discretization, and then intuitively move discretization 
lines to wherever he/she thinks appropriate by clicking and dragging the mouse. 
In this interaction process, the user can actively decide the discretization of 
numerical attributes. Thus, this approach can only be used with other two ap-
proaces to adjust the discretization results. However, since the visualized data 
has been preprocessed and mapped onto the screen, the user can only observe the 
graphics to obtain an approximate idea about the data distribution. For a small 
visualization window, distortion inevitably occurs. This may cause discretization 
errors. 

5 Discovering and Visualizing Association Rules 

In order to visualize association rules using geometric techniques, we must pursue 
an interesting projection of association rules to display. The basic idea is to find 
a small region, such as a rectangle, on the display for each association rule and 
use the size, color hue and intensity of each region to represent the corresponding 
association rules. 

AVi z is based on the two-dimensional model for visualizing numerical associ-
ation rules proposed by Fukuda et al. [4]. The AViz system, however, extended 
the two-dimensional model to the three-dimensional space. Suppose the domains 
of numerical attributes X and Y are discretized into Nx and Ny buckets respec-
tively. These buckets may or may not be equi-sized, depending on the discretiza-
tion approach. The screen axes are partitioned correspondingly. Thus the X xY 
plane is divided into Â x  Ny unit squares. A tuple t in the data set is projected 
to the unit square containing the point (t[X],t[y]) . 

Consider the unit square Gy ,l<i<Ny  and I < j < Nx, which is composed 
of the i-th interval of Y and the j-th interval of X. Let Uij  denote the number 
of total tuples in dj and vf  ̂ the number of tuples satisfying Z = z in dj. 
The square Gij ioi Z = z is denoted by Gfj, and its confidence can be easily 
calculated as Confidence{Gfj) = vfj/uij € [0,1]. Thus, Gf̂ - is rendered with 
color RGB={v^j, Uij — vfj,0). The red component is v^J, representing the square 
confidence, while the green component is uy — wf , and the black component is 
0. Thus the brightness level is Uij, the support of the square. So the redder the 
square, the higher its confidence , and the brighter the square, the higher its 
support. 

The concepts confidence and support for a square can be extended to any 
form of region on the plane. The support of a region is defined as the summation 
of supports of all squares in the region. The confidence of a region is similarly 
defined. 
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A region is said to be ample if its support is greater than or equal to the 
support threshold. A region is said to be confident if its confidence is greater 
than or equal to the confidence threshold. 

The algorithm for discovering numerical association rules by visualization is 
discussed in [4]. For a given confidence threshold 6, the gain of the square G^j 
is defined as 

gain{Glj) = v^j-exuij. 

Obviously, when the confidence of Gfj = 6,gain{Gfj) = 0. The gain reflects 
the confidence. When the confidence is greater than the threshold, the gain is 
positive, while the gain is negative when the confidence is less than the threshold. 
The gain of a region is the gain summation of all squares in the region. 

We implement a dynamic programming algorithm for finding the optimized 
gain rectangles in three-dimensional space, which is based on the algorithm for 
two-dimensional space [4]. The time complexity of our algorithm is 0{N2  Nx
Ny  min{Nx,Ny}), where Â ^ is the number of values of attribute Z, if Z is 
nominal, or the number of discrete intervals, if Z is numerical. The basic idea is, 
for each Z value z, to choose randomly a pair of rows, say i-th and j-th rows, 
1 < i £ i < -^y, and consider rectangles (^^([i,^] , m) on the plane Z = z, which 
consists of the squares from the i-th row to the j-th row in the m-th column, for 
m = 1,2,.. .,Nx- Then compute the gain for each rectangle G^([i,j],m), 

j 3 

gain{G'{\i,j],m)) =^gain{GU = ^^(^fcm - ^ x Wfcm)-
k~i k=:i 

Finally, compute the gain for rectangular regions C([i,j],  [r,k]),  1 < i < j < 
NyA  ̂ r < k < Nx, which consists of rows from i to j , and columns from r to 
k on the plane X x Y with Z = z. The optimized gain rectangle in the plane 
Z = z is one with the highest gain. 

6 AVi z Implementat ion and Exper iment 

The AViz system has been implemented in JDK 1.2 and JavaSD. The data prepa-
ration is accomplished by choosing a data file and attributes file, and specifying 
the attributes to be mined. The data file is formatted in tuples which consists 
of a series of fixed length fields. The attributes file characterizes each attribute, 
including attribute name, type, length, position in the tuple, and domain. This 
is implemented in dialog windows (under the file menu and setting menu). The 
steps of discovering knowledge are controlled by the control menu, which con-
sists of the next five steps. Two sliders are used to control the support threshold 
and confidence threshold. By moving these sliders in the discovering step, the 
resulting rules (focus area in each planes parallel with X x Y plane) can vary. 

AVi z has been applied to the U.S. census data in 1997 to find the associ-
ation rules between attributes. The data set contains about 1.4 million tuples, 
each tuple consisting of 5 numerical attributes age, total-person-income, taxable-
income-amount, tax-amount, hours-usually-worked-per-week and 3 nominal at-
tributes sex, race, class-of-work. 
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In the following we give an example to trace the process of association rules 
discovery and visualization. 

Step 1: Data preparation 

Choose two numerical attributes X= Taxable-income-amount and Y=Total-
person-income, and an nominal attribute Z=Race. The domain of X and Y is 
[0, lOOOii'] and [0,500i<r], respectively. Z takes the following five values: White, 
Black, Am,er-Indian-or-Eskimo, Asian-or-Pacific-Islander, and Other. Also, we 
specify that X and Y are to be discretized into 20 intervals. 

Step 2: Raw data visualization 

Project the raw data onto the visualization window, shown in Fig. 2. In the 
mapping, the Z value of the tuples is not considered, and only X and Y values 
are regarded. 

ts^Mining4fHlVtsu4tuiiigAsTOCUilMmnule t 
t;n e Setthgi i B f f B l H«in 

r 
^  3~(MaDlsi»Uiin g 

.g>-Vff,.,:7^P... -

n«^BwRawDflt a 

j(127,2) |3at3 cleanin g 

Suppor t ThieshoiO(iyiOOO D ConnaencaTnresnold(i/iOO ) 

Fig. 2. The raw census data and interesting area 

Step 3: Data cleaning 

From Fig. 2, we see that most data concentrates on a strip which is interesting 
to us. The other data can be cleaned. For now, we pick this strip by using a rubber 
band. After cleaning, the remaining data set contains about 1.08 million tuples. 
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Fig. 5. Discovering the Optimal Rectangles representing association rules 

Step 4: Discretizing numerical attribute s 

We choose the second approach of attribute discretization, bin-packing based 
equi-depth, and then utilize the interaction-based method by moving discretiza-
tion Hnes to adjust the discretization. The result is shown in Fig. 3 

Step 5: Visualizing the discretization 

In Fig. 4 we visualize the discretization of Taxable-income-amount and Total-
person-income for each value of Z = White, Black, Amer-Indian-or-Eskimo, 
Asian-or-Pacific-Islander, and Other. Each Z value corresponds to a plane and 
the volume consisting of all planes rotates around Y axis so that all planes can 
be viewed clearly. 

Step 6: Discovering and Visualizing association rules 

To find the association rules, we move the threshold sliders and specify the 
support threshold and confidence threshold as 0.2% and 50%, respectively. We 
obtain five rules, each corresponding to a value of Z, which are described as 
follows and shown in Fig. 5. 

X € [IbMK, 1%.MK],Y e [41.62/sr,44.58ii'] =^ Z = White 
X e [g.TSX, IQA^K],Y G [26.26isr, 28.51K] =^ Z = Black 
X 6 [12.67/sr, n.UK], Y e [38.24/ ,̂ 39.72 ]̂ = > Z = Amer-Indian-or- Eskimo 
X e [11.99ii', 12.12K], Y e [33.12.ft:, 33.73 ]̂ = > Z = Asian-or-Pacifi c-Islander 
X e [l^mK, 11.12ii:], Y G [30.20ii', 3I.13i<') =^ Z = Other 
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The result shows that White has the largest optimal and most upper area 
X e [15.64ii:, 18.34ii'] A y G [41.62ii:, 44.58ii'], while Black has the lowerest area 
X G [9.78ii:, 10.44i(:] A y G [26.26/!:, 28.51/^]. Other three categories have the 
optimal areas between those of White and Black. 

7 Concluding Remarks 

AVi z is an interactive system for visualizing and discovering numerical associ-
ation rules. The basic idea is to use visualization techniques to constrain the 
domain of da ta by interacting with user and then to discover rules from the 
reduced data, and finally to visualize the resulting knowledge. In our imple-
mentation, we emphasize the human-machine interaction, since we believe that 
interactive visualization plays an important role in data mining to guide the 
process of discovering knowledge. The experiment by visualizing a large data set 
has also demonstrated that it is useful for users to understand the relationships 
among data and to concentrate on the meaningful da ta to discover knowledge. 
The capability of the AVi z system wil l be expanded to visualize not only the 
process of discovering association rules but also the dynamic processes of dis-
covering other kinds of knowledge, like classification rules. Another problem is 
about high-dimensional data. An approach for reducing the dimensionality of 
the original da ta based on the principal coordinate analysis is being considered. 
Combining the visualization and data mining algorithms wil l produce a much 
more efficient method of knowledge discovery. 
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^ Nippon Steel Information and Communication Systems, Inc. 
Kitakyushu 804-0001, Japan 

^ PRESTO, Japan Science and Technology Corporation 
^ Dept. Informatics, Kyushu Univ., FVikuoka 812-8581, Japan, 

{arim,fu j  ino,arikawajQi.kyushu-u.ac.j p 

Abstract. This paper considers the problem of finding all frequent 
phrase association patterns in a leirge collection of unstructured texts, 
where a phrase association pattern is a set of consecutive sequences of 
arbitrary number of keywords which appear together in a document. For 
the ordered and the unordered versions of phrase association patterns, we 
present efficient algorithms, called Levelwise-Scan, based on the sequen-
tial counting technique of Apriori algorithm. To cope with the problem 
of the huge feature spaice of phrase association patterns, the algorithm 
uses the generalized suffix tree and the pattern matching automaton. 
By theoretical and empirical analyses, we show that the algorithms runs 
quickly on most random texts for a wide range of psirameter values and 
scales up for large disk-resident text databases. 

1 Introduction 

Background. Recent progress of network and storage technologies have been 
rapidly increasing the size and the species of text databases such as webpages, 
SGML/XML archives, and a collection of emails or text files accumulated on a 
file system. These lead to potential demands for new access methods for large 
text databases. However, traditional data mining research mainly considers well-
structured databases like transaction databases with boolean or numeric at-
tributes [2,3,9,16], and thus there still are a small number of studies on text 
data mining [5,6,10,14,18]. 

Phrase association patterns. We consider the problem of discovering all 
frequent patterns in a large collection of unstructured texts. Suppose we are 
given a set of documents S. A phrase over S is any string of arbitrary length 
that appears in S. We do not assume any semantic restriction on phrases as 
used in natural language processing, and thus we mean by a phrase merely 
a sequence of keywords delimited by space letters. An unordered k-proximity 
phrase association pattern (unordered phrase pattern, for short) is an unordered 
set of phrases associated with a nonnegative integer k, called a proximity, such 
as ({(data mining), (very large databases)}, 30) which expresses a pattern that 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 281-293, 2000. 
© Springer-Veriag Berlin Heidelberg 2000 
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the phrases (data mining) and (very large databases) appear in a document 
close to each other, more precisely within the distance k. Similarly, an or-
dered k-proximity phrase association pattern (ordered phrase pattern, for short) 
is defined except that phrases must appear in a specified order. For exam-
ple, (((a silkworm missile), (attacks), (Iranian oil platform)), 30) is an ordered k-
proximity phrase association pattern. In information retrieval [7], queries con-
sisting of phrases are proved to be more powerful than conventional queries 
consisting of keywords. 

The problem we consider is the frequent pattern problem, which is the problem 
to find all phrase association patterns that appear more than a user-specified 
threshold. An efficient method for solving this problem can be used for finding 
interesting patterns based on various information-theoretic measures such as the 
confidence [3], the information entropy [16], and the classification accuracy [6]. 

Approaches. If the maximum number of phrases in a pattern is bounded by 
a constant d then the frequent pattern problem for both unordered and ordered 
patterns is solvable by Enumerate-Scan algorithm [18], a modification of a naive 
generate-and-test algorithm, in 0{n'^'^^) time and 0{n'^) scans although it is still 
too slow to apply real world problems. Arimura et al. [6] gives the Split-Merge 
algorithm that finds frequent ordered phrase patterns in almost linear time with 
poly-log factor for random text databases. However, this algorithm is inefficient 
for large disk-resident text databases, and hard to extend for unordered pat-
terns. As related researches, [10] considered the discovery of association rules 
over keywords with predefined category-tags, and [14] studied data mining of 
episodes, a non-consecutive sequence of events. Unfortunately, these methods 
are not directly applicable to our problem. 

A possible approach is to follow the design principle of the Apriori algo-
rithm [3], the state-of-the-art algorithm for mining association rules in transac-
tion databases. However, a problem in this approach is that the feature space 
of phrase patterns is huge compared with that for transaction databases. For 
example, even a subset of Reuters newswires [17] of size 460KB contains two 
hundred thousands of unique phrases (Section 5) while a typical database con-
tains less than two thousands of attributes in the basket analysis ([3]). Hence, 
we require efficient handling of the huge feature space of phrase patterns. 

Mai n resul ts. In this paper, we present a practical algorithm, called Level-
wise-Scan, for efficiently finding frequent unordered phrase patterns as well as 
ordered phrase patterns from a large disk-resident database based on the ap-
proach of the Apriori algorithm [3] and the Enumerate-Scan algorithm [18]. To 
overcome the problem of the huge feature space of phrase patterns, the algorithm 
incorporates the techniques of the generalized suffix tree [18] and the pattern 
matching automaton [4] for efficiently storing and detecting frequent phrases in 
a text database. 

In theoretical analyses, we show that for random text databases, Levelwise-
Scan quickly finds all frequent unordered d-phrase patterns in almost linear time 
0{n'  ̂ -\- (logn)^7V) and space 0{n\ogn-\-R) with a constant factor depending on 
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k and d, where n and N are the total sizes of a small sample and the whole text 
database, respectively, and R is the output size. For ordered d-phrase patterns, 
we have similar time complexity. The experiments on Reuters newswire test 
data [17] show that the Levelwise-Scan algorithm performs well for various values 
of parameters and scales up for large text data with linear time complexity. 
By simulation results, we estimate that the algorithm will  run in 40 minutes 
for 100MB of disk-resident text data. From these results, we conclude that the 
proposed algorithm is efficient in practice as well as in theory for large text 
databases. 

2 Formulation 

Text databases. Let E be a. finite alphabet of symbols. In this paper, we 
assume the alphabet E = {a, b,c,d, . . ., z, . . . , * , +, ",", ".", "LJ"} , including 
the space symbol "LJ" . We denote by E* the set of all finite strings over E, and 
by e the empty string. For a string s of length n and 1 < i < n, we denote by 
\s\ the length of s and by s\i] the ith letter of s. For a set of strings 5 C E*,-we 
denote by |5| the cardinality of S and by | |5 || = S s es 1*1 *^^ total length of S. 

If there exist strings u,v,w £ E* for a string t € E* such that t = uvw then 
w, V and w are a prefix, a substring, and a suffix of t, respectively. For a string 
s,t £ E*, if there exists a positive integer 1 < i < |f | such that t[i]  i[z~|-|i| —1] = 
s then s occurs in t at i. The integer i is called an occurrence of s in t. 

A document is any string s £ E*, and a text database is a finite collec-
tion T = {si,...,Sm}, m > 0, of documents. In our definition, a phrase is 
any substring TT of d € T which may delimited with spaces "i_i." For example, 
(Lloyd'si-jShippingi-Intelligence) is a phrase. 

Phrase association patterns. Let d and k be any nonnegative integers. An 
unordered k-proximity d-phrase association pattern (or unordered {k,d)-phrase 
pattern) is a pair n = {{pi,.. - ,pd},k) of an unordered set {pi,... ,pd} Q E* 
of d phrases and a parameter k called a proximity. The pattern n appears 
in a document s if there exist some substrings so,..-,Sd of s such that (i) 
s = 5oPi(i)Si , Sd-iPi(d)Sd for some permutation {i{l),  i{d)}  of { 1 , . . . , n) 
and (ii) |si| < fc for every i = 1,... ,d—l. Note that in our definition, the prox-
imity k is counted in the number of letters. Similarly, an ordered k-proximity 
d-phrase association pattern (or ordered {k,d)-phrase pattern) [5,6] is a pair 
TT = ({pi,  ,Pd), k) of a sequence pi,... ,pd € E* oi d phrases and a prox-
imity k. The appearance of an ordered pattern is defined similarly except that 
the permutation is fixed to the identity such that i{j)  = j for every 1 < j < d. 
We sometimes omit the proximity k if it is clear from context. 

Data Minin g problems. Let T = {ti,... ,tm}, m > 0, be a text database 
and C be a class of patterns (also called hypothesis space), where each TT S C is 
identified with a mapping TY : T -  ̂ {0,1} . The document count of TT, denoted 
by hitxiTr), is the number of documents s S T in which n appears. Then the 
frequency of TT w.r.t. T is defined by SUPPT{T^) = hitT{Tr)/\T\. For 0 < cr < 1, 
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a pattern n is a-frequent w.r.t. T or simply frequent if suppriTt) > (T. Then, 
the problem we consider is a variant of the frequent pattern problem, which 
is originally introduced by Agrawal and Srikant [3] and extensively studied for 
transaction databases. 

Frequent Pattern Problem for  class C 
Input : A text database T C S*, and a threshold 0 < CT < 1 for frequency. 
Problem: Find all frequent patterns n G C w.r.t. T, i.e., suppxiTr) > cr. 

Sampling is a useful technique to cope with large disk-resident text databases. 
A sample is any subset S Q T. An S-induced pattern is a pattern TT such that 
every phrase of TT appears at least once in S. To capture the data mining with 
sampling, we introduce a modified version of the problem stated as follows. 

Frequent Pattern Problem wit h sampling for  class C 
Input : A text database T, a sample 5 C T, and a threshold 0 < cr < 1. 
Problem: Find all 5-induced patterns TT € C that is frequent w.r.t. T, i.e., 
SUPPT{IT) > a. 

3 Previous Algorithms 

In this section, we briefly review two existing algorithms Enumerate-Scan [18] 
and Split-Merge [5,6] for solving the frequent pattern problem. Then, in the 
next section, we will present a new algorithm Levelwise-Scan. Algorithms other 
than Split-Merge can deal with both the unordered and the ordered versions. In 
what follows, n denotes the total size of the input text database T and d be the 
number of phrases in a pattern. 

3.1 Enumerate-Scan Algorith m 

The Enumerate-Scan algorithm implements a naive generate-and-test method 
[18]. Enumerating all of 0(71 "̂̂ ) possible patterns, the algorithm counts the fre-
quency of each pattern by scanning the entire text database. If the number of 
phrases is bounded by constant d > 0, the algorithm solves the frequent pattern 
problem in 0{n'^'^'^^) time with 0{n'^'^) disk scans for unordered and ordered 
cases. Wang et al. [18] showed that the complexity can be improved to 0{n'^'^^) 
time and 0{n'^) scans by using the generalized suffix tree (See Sec. 4.2) although 
it still requires several hours for mining genome sequences of 15KB for 2-phrase 
patterns with approximate matching [18]. 

3.2 Split-Merg e Algorith m 

In the previous works [5,6], we developed an efficient algorithm, here called 
Split-Merge, that finds all the optimal patterns for the class of ordered {k,d)-
proximity phrase patterns. The Split-Merge algorithm quickly runs in almost 
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Algorith m Levelwise-Scan; 
Input: A text database T = {51,..., Sm}, a frequency threshold 0 < a < 1. 
Output: The set Li of u-frequent i-phrase patterns w.r.t. T for every 0 < i < d. 

Phase. A (Building Phase) In the first pass, the algorithm do the foUowings. 
A.l First, draw a small sample set S from T that fits in main memory if sampling 

is required. 
A.2 Build the generahzed suffix tree (GST) for S. 
A.3 Count the occurrence of each phrase to select frequent phrases using the GST 

(explained in Sec. 4.2). 
A.4 Build a finite automaton M for recognizing Li. 

Phase B {Scanning Phase) In the following pass i = 2,... ,d, the algorithm com-
putes the set Li of all frequent i-phrase patterns by iterating the following process 
until no more frequent patterns are found. 
B.l First, it builds the candidate set d of i-phrase patterns using the frequent 

patterns in Li-i  built in pass i — 1. 
B.2 Next, the algorithm scans the whole text database T from left to right using 

M to count the frequencies of all patterns in d at a single pass on T and to 
build Li, the set of all frequent i-phrase patterns. 

Fig. 1. Levelwise-Scan algorithm 

linear time 0{k'^~^n\og'^'^ ̂ n) with poly-log factor using 0{k''~^n) space for 
most nearly random texts. The algorithm quickly searches the hypothesis space 
using dynamic reconstruction of the content index, called a suffix array. Kasai et 
al. [11] reported that the algorithm finds the best 600 patterns at the information 
entropy in a few minutes for a subset of Reuters newswires [17] of 7 mega-bytes 
using a few hundreds mega-bytes of main memory. 

4 Levelwise-Scan Algorithm 

4.1 Outlin e of the Algorith m 

In Fig. 1, we present our algorithm Levelwise-Scan, which efficiently finds all fre-
quent unordered and ordered versions of phrase patterns in a given collection of 
documents. The Levelwise-Scan algorithm is based on the same design principle 
as the Apriori algorithm of Agrawal et al. or Levelwise algorithm in [2,3]. Based 
on a similar strategy employed by the Apriori algorithm [3], the Levelwise-Scan 
algorithm runs through several passes over a text database T to compute the 
set Li of all frequent i-phrase patterns for every i = 1,... ,d. 

In the following sections, we will describe each phase in more detail. For 
simplicity, we consider the case without sampling, i.e., 5 = T. In Section 4.4, we 
wil l discuss the efficiency with sampling. In what follows, S = T = {si,..., Sm} 
is a text database of m > 0 texts and n = \\S\\ is the total size of S. We denote 
by 0 < a < 1 the minimum frequency threshold and by d and k the number of 
phrases and the proximity of a pattern to be found, respectively. Let denote by 
I the length of the longest frequent phrases in Li. 
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Fig. 2. The generalized suffix tree (GST) 
ST for S = {a6co$i,b6co$2}. The shad-
owed node corresponds to the substring 
bca and two shadowed leaves correspond 
to the two occurrences of bca. Suffix links 
are omitted. (Sec. 4.2) 

Fig. 3. The AC-pattern matching machine 
M for P = {abca,bbca,bca,ca,a}, which 
corresponds to all internal nodes of the GST 
in Fig. 2. The solid and the dotted lines 
indicate goto and failure functions, respec-
tively. (Sec. 4.3) 

4.2 G e n e r a l i z ed Suffix T rees 

We use the generalized suffix tree (GST, for short) for efficiently storing all 
phrases appearing in S (Step A.2 of Fig. 1). First, we assume that every docu-
ment Sj e 5, 1 < I < m, is terminated with appending a special delimiter symbol 
$j such that $i 7̂  c for any cG UU{$j}  {i   ̂ j). The GST for S is the compacted 
trie for all suffices of s € 5, which is obtained from the (uncompacted) tr ie for 
all suffices [1] by removing all internal nodes with a single child and concate-
nat ing its labels into a single string [15,18]. Each node u of a GST represents 
the string word{v), called a branching substring w.r.t. S, which is obtained by 
concatenating the labels on the path from the root to v in its order. Each leaf 
is labeled with the name of the document it belongs to. Each internal node has 
the suffix link which points to the node w such that word{v) = c  word{w) for 
some c £ S. In Fig. 2, we show an example of the GST. 

The GST ST for S uses 17n bytes to store and can be built in 0{n) t ime 
[15]. I t is known that the maximum length I of the branching substr ings and the 
height h, denoted by height{ST), are both O( logn) for random texts [8]. We 
define the set Occs(7r) = {  s € 5 | TT occurs in s } . Then, pat terns n and r to be 
equivalent if OccsiT^) = OCCS{T). 

Def in i t io n 1. An unordered or ordered phrase pattern n is of canonical form 
w.r.t. S C E* if it consists only of branching substrings w.r.t. S. 

L e m m a 1 (Ar imur a et al. [5]) . For any unordered (or ordered k-proximity) 
d-phrase pattern n that appears at least one document in S, there exists a pattern 
in the same class that is of canonical form and equivalent to TT. 
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Procedure Count-Prune; 
Input: The GST ST for sample S and the frequency threshold 0 < a < 1; 

1. For each node v, do (a)-(c) below: /*  in the depth-first order * / 
(a) If II is a leaf with label i, then set all but the i-th bit to be zero. 
(b) If V is an internal node and we returned from a child w then 

bits{v) = bits{v) + bits{w), and discard bits{w). 
(c) If #bits{v) > <T  l^l, then mark v as frequent. 

2. Prune all unmarked nodes by traversing ST. 

Fig. 4. The procedure for finding all frequent phrases and prune the GST 

4.3 Buildin g Phase 

This phase is common to both unordered and ordered versions of the algorithm. 
In the building phase (Phase A) of Fig. 1, the algorithm finds all a frequent 
phrases and stores them in a space efficient data structure called the generalized 
suffix tree. 

Computing frequent phrases. In Fig. 4, we show the procedure Count-
Prune for computing the set Li and then pruning the GST, which implements 
Step A.3 of Fig. 1. Count-Prune first solve the problem of counting the frequency 
of all branching substrings using the GST ST for S, which is known as the color 
set size problem [12]. 

Although this problem has an 0{n) time solution [12], we use a simpler 
algorithm for its practical efficiency. In Fig. 4, each node v has a bit-vector bits{v) 
of length m such that the i-th bit is on iff word{v) occurs the i-th. document. 
We denote by # and + the bitcount and the bitwise-or operators, respectively. 

Lemma 2. The procedure Count-Prune in Fig. 4, given the GST ST for S, 
computes the set L\ of all frequent phrases w.r.t. S in time 0{mn) and 0{mh) 
additional space, where h = height{ST). 

The following lemmas justify our pruning strategy similar to [3]. Let 0 < ( T < 1. 

Lemma 3. Let v, w be nodes of GST for S C E*. Then, ifv is an ancestor ofw 
then hits{word{v)) > hits{word{w)), where hits{p) = {s G S\p appears in s}. 

Lemma 4. // an unordered (or ordered) d-phrase pattern TT is cr-frequent w.r.t. S 
then so is the (d — l)-phrase pattern obtained from TT by removing any phrase. 

Buildin g a pattern matching machine over  GST. At Step A.4 of Fig. I, 
Levelwise-Scan builds a finite state automaton M, called an Aho-Corasick pat-
tern matching machine {AC-machine, for short) [4] for recognizing Li. 

Let P Q S* he a. set of strings. Then, the AC-machine M for P is exactly the 
(uncompacted) trie UT{P) [I] for the strings in P augmented with the failure 
and the output functions attached to each node. The initial state of M is the 
root. The goto function is the set of labeled edges forming the trie UT{P). As in 
the suffix tree, each node v represents the string word{v). The failure function of 
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V is defined to be the edge from v to the unique node that represents the longest 
suffix of word{v) which is a prefix of some string in P. The output function of 
V is the set of all the suffices of word[v) contained in P. In Fig. 3, we show an 
example of the AC-machine M. After scanning the first four letters abbe of a 
given text T = abbcbcabc, M detects the strings bbc, be, c by following the path 
{a,b,fail,b,c) from the root to the shaded node. 

Lemma 5 (Aho and Corasick [4]). We can construct the AC-machine for 
P in 0{\\P\\) time, and detect the occurrence of all strings p G P in a given 
document of length n in 0{n) time by scanning the document once. 

A set P C E* is substring-closed ii  P ={  s € E* \t € P,s is a substring of f } . 
By the next lemma, we can construct the AC-machine for Li directly on the 
GST for Li at Step A.4 of Fig. 1. 

Lemma 6. Let PCS* be substring-closed. Then, the edges and the suffix links 
of the GST for P, respectively, are isomorphic to the goto and the failure func-
tions of the AC-machine for P at all branching nodes. (See Fig. 2 and Fig. 3.̂  

4.4 Scanning Phase 

In the scanning phase (Phase B) of Fig. 1, Levelwise-Scan counts the occurrences 
of all frequent patterns of Lj by scanning the text T from left to right. 

Candidate generation. In Step B.l, we build the candidate set Ci from 
Li-\. This part is almost same as that of [3]. For each i > 1, Levelwise-Scan 
constructs the i-th candidate set Cj by merging members of Li_i and pruning 
many non-frequent members of Cj using i j _ i on memory using Lemma 3 and 
Lemma 4. To store each branching phrase, encoded with the pointer to a node 
of the GST, we use a hash-based trie (called the hash tree in [3]). 

Counting: the unordered version. In Fig. 5, we show the procedure Un-
ordered-Scan for the unordered case, which implements Step B.2 of the Level-
wise-Scan algorithm. Let t £ T. Scanning t from left to right, the algorithm 
detects the occurrence of the longest branching substring word{vi) terminating 
at the position i = 1 , . . ., |t|, where Vi is a node or a state of M . P = {vi,... ,u„) 
is the resulting array of nodes representing such occurrences. To avoid enu-
merating redundant patterns, it detect only the longest matching Vi using an 
AC-machine M. A ( 2 d- l)-tuple {oi,... ,Od;li,  ,ld) € {!,... , |t|}2'' is {k,d)-
admissible w.r.t. P if (i) 0 < (oj — li) — Oi_i < k for every i = 2,... ,d, and 
(ii ) 0 < / < len{oi+i) for every i = 1,... ,d, where len{oi) is the length of the 
branching substring word{P{oi)) represented by Oj. It is easy to see that if a 
{k, rf)-phrase pattern {{pi,.  ,Pd}, k) appears in t then the set of the right ends 
Oi of the occurrences of p i , . . ., pd together with a set of the lengths U of the 
phrases Pi form an admissible tuple {o\,... ,Od;l\,... ,1^), and the converse also 
holds. There are at most 0{k'''l'''\t\)  such fc-admissible cf-tuples with a given P, 
where / is the maximum length of branching substrings. S{pi) is the set of all 
nodes representing the suffices of a phrase pi, which is obtained by following 
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Procedure Unordered-Scan; 
Input: the level d>2, the AC-machine M for S and a text database T= { i i , . . . , tm}; 
Output: the set Lj of all S-induced frequent unordered (fc, rf)-phrase patterns w.r.t. T. 
1 Set C(7r) = 0 and D{n) = 0 for every TT € C<i. 
2 foreach t« eT ((5 = l , . . . ,m) do 
3 Initialize the array P of nodes. 
4 foreach t = 1,. . ., |i( do 
5 If M moves the next state v reading the letter t[i] , then set P{i) :=  v. 
6 Let O C {1 , . . ., |t)}^'' be the set of all (fc,d)-admissible tuples w.r.t. P. 
7 foreach (oi,... .ojiZi,...,Id) & O do 
8 Let pi eS(oi) , . .. ,pde«S(od) be the phrases satisfying \pi\ = li,  ,\pd\ = ld-
9 Sort (pi,. .. ,Pd) in a total order over nodes by a permutation j{-). 
10 if TT = ((Pj(i), . ,Pj{d)),fc) € Cd and 5 > i5(7r) then 
11 C(7r) = C(7r) + 1 and £)(7r) = (5. 
12 Insert all patterns -n &Cd such that C{j) > cr-\T\ into Ld-

Fig. 5. The unordered version of the scanning phase of the Levelwise-Scan algorithm 
for unordered (fc, d)-phrase patterns, which implements Step B.2 of the algorithm. 

failure links. Furthermore, we use C(7r) to keep the document count of TT, and 
D(7r) to keep the name of the last document for avoiding duplicated counting. 

Counting: the ordered version. For the ordered case, we use the proce-
dure OrderedJScan, which is a modification of UnorderedJScan in Fig. 5. It is 
the only difference between two procedures that Ordered-Scan does not sort 
obtained sequence (pi,...,pd) at Line 9 before check the membership TT G C, 
while Unordered-Scan sorts it to have a lexicographcally smallest permutation 
(Pj?(i)i  iPj(d)) ^s a representative. 

4.5 Tim e Analysis 

Now, we give the correctness and the time complexity of the Levelwise-Scan al-
gorithm. Strings in an infinite family s i, S2  G S* are said to be almost random 
if for any Sj, the maximum length of the branching substrings of Sj is O(logn), 
where n = \si\. Any random string generated by the uniform distribution over 
S is known to be almost random with high probability [8]. Genetic sequences 
are also known to behave like almost random strings. 

Wit h sampling. Let T C i;*  be a text database of total size TV and S CT 
be a sample of total size n. We denote by R the total size of the output 5Z j 11 i i 11

Theorem 1. Let k,d > 0, T be a set of almost random texts and S be its sample. 
For the class of unordered {k,d)-phrase patterns, Levelwise-Scan of Fig. 1 solves 
the frequent pattern problem with sampling in time 0{n'  ̂ -h dk'^~^{logn)'^N) and 
space 0{n log n + R). 

Proof. We can show that the algorithm runs in 0{n  ̂ -\- \\Li\\ + dk'^l'^N) time 
and 0{nh + R) space when I is the maximum length of the branching substrings 
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Table 1. Performance overview: the number #L2 of patterns found and the running 
time Total for a sample of fixed size n = 466/l'B (a) with varying min-freq from 0.0025 
to 0.04 and (b) with veirying proximity k from 10 to 100, where k = 10, min-freq = 0.01, 
and max-freq = 0.5 if not specified. 

min-freq 
0.0400 
0.0200 
0.0100 
0.0050 
0.0025 

Unordered 
\Li\ Time (s) 

42 35.5 
136 41.7 
345 62.2 
774 130.7 

1,419 314.1 

Ordered 
\Li\ Time (s) 

3 36.3 
18 41.3 
57 63.8 

118 134.4 
184 324.5 

proximity 
10 
20 
40 
80 

100 

Ordered 
|Li | Time (s) 

4 4.0 
32 32.0 
84 84.0 

176 176.0 
204 204.0 

in T and h is the height of the GST for S. li  T and thus S are almost random 
then I and h are both O(logn). R is the order of dh'^l'^N. D 

Corollar y 1. Let k,d > 0. For the class of ordered {k,d)-phrase patterns, the 
frequent pattern problem with sampling is solvable in time 0{n'^+dk'^~  ̂ {\ogn)'^N) 
and space 0{n\ogn + R) for almost random text databases. 

Withou t sampling. Finally, we see that in the case without sampling, i.e., 
S = T.ln this case, Phase A is done in 0{n) = 0{N) time by solving the color-
set size problem in linear time [12] and by using the (compacted) GST directly 
as the AC-machine for Li. Hence, we can show that the modified version solves 
the frequent pattern problem in time 0{dk'^~^{\ognYN) for almost random T, 
which improves the time complexity of the Split-Merge algorithm [6] by log n 
factor. 

5 Experimental Results 

We implemented the Levelwise-Scan algorithm in C-I--I- and ran experiments 
on Reuters newswires [17]. The timing has been measured on a Sun worksta-
tion (300MHz UltraSPARC-II with 512MB main memory) under Solaris 2.6. As 
heuristics for finding interesting patterns in English texts, we set each sentence 
terminating with the period "." to be a document, and also removed from i i 
those phrases with frequency more than a user-specified threshold max-freq =0 .5 
as stop words. To collect basic data, we put 5 = T in the following experiments. 

Performance overview. First, we run the experiments with varying the min-
imum support min-freq and the proximity k with the fixed sized sample of 
n = 466KB (4,000 documents) and using the unordered and ordered 2-phrase 
patterns (Table 1 (a) and (b)). The proximity is fc = oo for unordered and k = 10 
for ordered patterns, where oo means that there is no proximity constraint. Ta-
ble 1 (a) indicates that the number of frequent unordered patterns are six to 
ten times larger than that of frequent ordered patterns for the same value of 
min-freq, while the running times are similar. 
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Fig. 6. (a) Characteristics of the text data: The number of basic features and frequent 
patterns with varying the number of documents from 26KB to A66KB. Bi,Li, and 
L2 denote the total numbers of the branching phrases, ||-Li|| and ||I '2||, respectively, 
(b) Scalability: The running time with varying the number of documents from 2&KB 
to A&6KB. Parameters are fc = 30, d = 2, min-freq = 0.005, and max-freq = 0.5. 
Scalabi l i ty. Next, we made a scale-up test with varying the sample size n = 
25KB to 466KB (from 125 to 4000 documents) using ordered 2-phrase pat terns, 
where still S = T. Fig. 6 (a) shows the behaviors of basic quanti t ies Bi, Lx and 
1/2 (explained in the caption of Fig. 6 (a)) that dominates the running t ime. We 
see that Bi grows in 0{n) as expected, Li behaves like a huge constant, L2 is 
small but slowly grows on this data. Fig. 6 (b) shows the total running t ime of 
Levelwise-Scan is almost linear in n, as expected from the theoretical analysis. 

Simu la t ion for  m in in g a huge da tabase w i t h samp l ing. Finally, we es-
t imated the expected running t ime of Levelwise-Scan with sampling from the 
experiments with text size up to B = 466i<'S (Fig. 6) as follows. We used the 
formula Time{N) = T f ^T + T̂ ACm ^ ( j jcan _̂  yTranŝ  X ( ^ / 5 ~, to est imate 

the running t ime with sample size n = B and the text database size N, where 
Tg denotes the t ime required for a-stage for a £ {GST, ACm, Scan}, and 
yTrans _ Q o5g [g ^jjg transfer time for 1 MB from the disk in sequential I /O. 
Table 2 shows the estimated running t ime, where we see that Levelwise-scan wil l 
process a text database of 100MB under an hour with sampling rat io 0.5% on a 
corpus similar to the Reuters newswire. 

Table 2. Expected running time on a large text database with a fixed sample size of 
11511 = 466KB and a varying text database size (|T|| up to 500MB. These running time 
are estimated by a simulation based on the result of Table 1. 

Sample size 
||S||(MB) 

0.466 
0.466 
0.466 
0.466 
0.466 

Text size 
lirii(MB ) 

0.466 
1.000 

10.000 
100.000 
500.000 

Samphng 
ratio 
1.000 
0.466 
0.047 
0.005 
0.001 

Ordered Patterns 
GST-l-ACm (s) Scan-|-Trans (s) 

124.81 10.37 
124.81 22.25 
124.81 222.53 
124.81 2225.32 
124.81 11126.61 

Total (s) 
135.18 
147.06 
347.34 

40 min. 
3 hours 
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6 Conclusion 

In this paper, we considered the discovery of unordered and ordered frequent 
phrase pat terns from large text databases, and presented an efficient text mining 
algorithm based on the Apriori algorithm [3]. Experiments showed that this 
algorithm performs well on typical English text data. 
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Abs t rac t. World Wide Web has emerged as a primetry means for stor-
ing and structuring information. In this paper, we present a framework 
for mining implicit associations among Web documents. We focus on the 
following problem: "For a given set of seed URLs, find a list of Web 
pages which reflect the association among these seeds." In the proposed 
framework, associations of two documents are induced by the connectiv-
ity and linking path length. Based on this framework, we have developed 
a random walk-hased Web mining technique and validated it by experi-
ments on real Web data. In this paper, we also discuss the extension of 
the algorithm for considering document contents. 

1 Introduction 

I n tradit ional information retrieval field, in order to determine the association 
between a given set of documents, keyword vectors that represent the contents 
of these document are compared. A major difference between Web pages and 
textual documents is that Web pages have links connecting to other related 
pages. When an author prepares a Web document, he/she would put contents 
on each page while linking related information together using anchors, to create 
a document spanning multiple pages. Thus, Web structures can be used as hints 
to derive document association. Existing approaches for finding Web document 
associations include the companion and co-citation algorithms proposed by Dean 
and Henzinger[l] and the Netscape algorithm[2] used to implement the What 's 
R e l a t e d? functionalities. In this paper, we are interested not only in deriving 
document associations, but also in inducing the reasons why they are associated. 
We focus on the problem "for a given two seed URLs, find a list of Web pages 
which reflex the association such two seed URLs." 

Example 1. In Figure 1, we show a subset of links between two personal Web 
pages W.Li and D.Agrawal. The purpose of each link is indicated in the link 
label. The associations between W. L i and D. Agrawal are implicitl y expressed in 
the Web structure connecting W.Li and D.Agrawal even though this structure 
is created independently by many individuals. Below, we enumerate some asso-
ciations that can be derived from this graph, and some possible interpretat ions: 

*  This work was performed when the author visited NEC, CCRL. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 294-305, 2000. 
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SUNV, SB P. Scheuermann N* ^ 

graduated 
Ittx n 

l i i (acuity 

Fig. 1. Link structure connecting and associating the Web pages of W. Li and D. Agrawal 

 Web8 paper page appears in a path of distance of 2 connecting the two pages. 
Therefore, W.Li and D.Agrawal may be associated due to a co-authored paper. 
 Y.Wu page is on two paths each of distance 4. W.Li and D. Agrawal may be 

associated due to the fact they both supervised Y. Wu. 
 WOWS'99 and ACM DL'99 pages appear on a single path of distance 3. W.Li and 

D.Agrawal are participating in the same conference. 
 P.Scheuermann, D.Agrawal, NWU, W.Li, and SUNY pages appear on a single 

path of distance 4. D.Agrawal and W.Li may be associated due to some people 
related to SUNY, SB or due to an alumni relationship. 

Obviously, the links connecting these pages are not intended to express such 
associations and the authors are not coordinated to make the link semantics 
consistent across the Web. However, we can use the following two intuitions: (1) 
Path length: Pages on a shorter path between the two pages in the example are 
stronger indicators than others to reflect why these pages are associated; and 
Connectivity: Pages which appear on more paths are stronger indicators than 
others to reflect why the two pages are associated. 

Note that a page with a higher connectivity (i.e. more incoming links and 
outgoing links) is more likely to be included in more paths; consequently, such 
a page is more likely to be ranked higher according to the above criteria. This 
is consistent with the principle of topic distillation[3,4]. On the other hand, to 
address the associativity problem, we also need to consider the distance between 
a page and seed URLs to account for the first intuition. Thus, a page with a 
high connectivity but far away from the seed URLs may be less significant to 
represent the seed URLs after associations than a page with low connectivity 
but close to the seed URLs. A page which satisfies both criteria (i.e. near seed 
URLs and with high connectivity) is a good representative for the association. 

Based on the motivation and intuitions, we present a novel framework for 
mining associations among Web documents using information implicitly reflected 
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in the links connecting them. We develop a Web mining technique, based on a 
random walk algorithm, which considers document distances by link and con-
nectivity. In the concluding remarks, we also briefly show the algorithm can be 
extended to be specific content focused (e.g. finding why the W. Li and D. Agrawal 
are associated with respect to the PowerBookmarks project). 

2 Random Walks Algori thm 

In this section, we introduce the modeling of the framework and the algorithm. 

2.1 Modeling 

Let us assume that we are interested in mining the associations of a set, <S = 
{s i , . . . , s„} , of seed Web pages (or snodes). The mining task is to find a set 
Ref{S), of pages that best induce (or refiect) the association among a given 
set of snode s. We denote such pages inductive Web pages (or inodes). For ease 
of presentation, we start with the case where there are only two seed pages for 
association mining. The cases where S contains more than two pages is discussed 
in Section 2.3. 

Let the Web be modeled as a directed graph, G{V, E), and let the two seed 
pages in S, defined as snode, correspond to vertices Va and Vf, in V. Let us also 
assume that we want to find an inode page (or vertex) within a radius of d from 
Va or life. Note that the choice of d is application dependent. If progressive results 
are required, d can be incremented starting from 1, refining the results at each 
step, until either the process times out or an acceptable inode is located. 

Links have been used in many fields to associate documents. They can 
be categorized into four types: connectivity, co-citation, social filtering, and 
transitivity[4]. Since the association mining problem as formulated in this paper 
is symmetric, we do not differentiate these. Consequently, we use an undirected 
graph, G^{V,E^), to model the Web. Assuming that we are given a radius d, 
we define the relevant neighborhood, G^{V^,E^), of G"(V,f;") , as the set of 
vertices, V  ̂ = VG^{va,Vb,d), that are reachable either from Va or Vb in d edge 
traversals: (Vuj £ VG^{va.,Vb,d) reachableG"{va,Vi,d) WreachableG''{vb,Vi,d)) . 
Note that without loss of generality, we will assume that the graph, G^, is 
connected. 

To derive metrics for Inode selection, one straight forward candidate metric, 
that adjusts connectivity scores by distance, for inode selection would be 

score{v) = \ 
length{p)' 

pGpaths(A,B ,v) 

where paths{A,B,v) is the set of (simple) paths between the seeds, A and B, 
that pass through a candidate inode, v, and length{p) is the length of the path. 

Note that, although it merges the two required structural criteria, this metric 
has two major disadvantages preventing its use in association mining. (1) First, 
its calculation may require the enumeration of all paths in the graph, which may 
require exponential time with respect to the size of the graph, and (2) although 
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1. V = 6); 
2. For each Vi G V'^, create a new node v'i and insert it in V; 
3. f = 0; 
4. For each ejt = (wt,Wj) 6 £ "̂ such that both Vi and Vj are in V'^ 

(a) create two directed edges e'2xk — {'"'i^'^j)  and 62x^+1 = {''^'jiVi)  and insert them 
in £; 

5. For all vertices v'i e V, let 
(a) sdist{v'i,v'a) be the shortest distance, in G^, between v'i and the vertex, v'^, 

corresponding to Va, and 
(b) sdist{vi,v{,) be the shortest distance, in G^, between v'i and the vertex, v^, 

corresponding to Vf, 
(c) penalty{vi) = sdist{vi,v'a) + sdist{v'i,v't,). 
(d) For all vertices t;,' e V and for all {vi, v'-) i S, T[j, i]  = 0.0; 
(e) For all vertices U; G V solve the following set of linear equations: 

L{v'i)  = \ Yl mi i = i-o i u 

T\j, i\ X penalty{vj) = T[k, i]  x penalty{v';c) {vi,Vj) G S and (vi,Vk) € £ 

Fig. 2. Algorithm for constructing a random walk graph 

the maximum length of the paths grows linearly with the number of vertices in 
the graph, the number of paths grows exponentially as shown in our experiments. 
As a consequence, contrary to the intuition, the effect of the long paths (since 
their number is exponentially higher than the number of shorter paths) on the 
calculation of score{v) is likely to be much larger than the effect of short paths. 

2.2 Case 1: S Contains Two Seed Pages 

Consequently, instead of exphcitly defining a metric, we will  choose a set of 
random walk parameters that will  implicitly capture the essence of these obser-
vations. For this purpose, we define and construct a random walk graph that 
reflects the required random walk parameters. 

Definitio n 1 (Random Walk Graph). A random walk graph TZ{V,£,T) is 
a triple, where V is a set of vertices, £̂  is a set of directed edges, and T is a 
|V| X |V| matrix where 
- T\j, i]  denotes the likelihood of moving to vertex Vi from vertex Vj. 

Note that Ei<j<|v| ^b '. «1 = 1-0 o 

Algorith m 2.1 (Constructing a Random Walk Graph) Given an undi-
rected neighborhood graph G^{V^,E^), two vertices Va and Vb in V, and a 
radius d, we can construct a directed random walk graph 7̂ („̂ _̂ j_ rf)(V,f  ,T) us-
ing the algorithm presented in Figure 2. o 
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Fig. 3. (a) Penalty of each node and (b) transition values of each node 

Description of the Algorith m for  Constructing a Random Walk Graph 
Steps 1 and 2 of this algorithm insert the relevant vertices in the neighborhood 
into the random walk graph. Note that these two steps can be performed incre-
mentally until a subgraph within a radius of d is explored. The next two steps 
use the undirected edges in the neighborhood graph to define two transitions 
(forward and backward) between the vertices in the random walk graph. These 
two transitions allow the random walk to proceed freely, back on forth, between 
the neighboring vertices of the graph. 

Step 5, then, calculates a penalty for each node. This penalty term reflects 
the distance of each vertex from the seed vertices. Hence, for the case with two 
seeds, we define the penalty as the sum of shortest path distances between the 
given vertex and two seed vertices. We use the penalty to calculate the likelihood 
of each vertex being visited by the random walk process; more specifically, we 
calculate the transition probabilities of the edges in the graph using this term. 

Since, by definition, a higher penalty means a greater distance from the seeds, 
it should yield a lower association score. Consequently, once the random walk 
process is at a vertex, Vi, it must proceed to a subsequent vertex, Vj, with a 
probability inversely proportional to VjS penalty. Furthermore, since the random 
walk will continue for an indefinite amount of time, the probability that the 
random walk process will  leave vertex Uj (that is, it wil l proceed to one of its 
neighbors) must be equal to 1.0. 

Example 2. Let us reconsider our example and focus on the portion of the graph 
shown in Figure 3(a), which depicts the vertex A, its four neighbors ( F, D, C, 
and J), and the associated penalties calculated according to a distance metric 
(for the sake of simplicity, we omit the phase of penalty calculation). The fol-
lowing items reflect some of the facts about the transition probabilities of the 
edges leaving A: 

— The sum of all such transition probabilities is equal to 1.0. 
— Since the penalty of the vertex F is twice as much as the penalty of vertex 

C, the transition probability from A to F must be half of the transition 
probability from A to C. 

— Since the penalty of the vertex £> is | times as much as the penalty of 
vertex C, the transition probability from Ato D must be | of the transition 
probability from A to C. 
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Fig. 4. (a) Penalty values, and (b) transition values for the example Web graph in 
Figure 1 

Hence, we can calculate the transition values for the edges leaving A using 
the following set of constraints (as described in Step 5(e) of the algorithm): 

T[F, A] + T[D, A] + T[C, A] + T[J, A] = 1.0; 
3xT[D,A] = 2*T[C,A]; 

4xT[J,A] =4*T[F,A]; 

4xT[J,A\ = 3*T[D,A]; 

4 X T[F, A] = 3* T[D, A] 

2 X T[C, A] = 4* T[J, A] 

4 X T[F, A] = 2* T[C, A] 

Note that only the first four equations are enough to solve for all the unknowns. 
Figure 3(b) shows the transition values obtained by solving these constraints, o 

Definitio n 2 (Convergence Vector). Given a random walk graph, 'R.(^va,Vb,d) 
(V, £,T), t is called a convergence vector of T if (i = Tt). o 

Note that due to the structure of the transition matrix, such a convergence 
vector is guaranteed to exist. Intuitively, t[i],  describes the percentage of its time 
that a random walk process will spend in vertex v[i]  in a sufficiently long random 
walk. As we described earlier, the higher this ratio, the better inode is the cor-
responding vertex. Consequently, we choose the inodes using their corresponding 
values in the convergence vector. 
Definitio n 3 (/node Vertex). Given a graph G{V,E), the inode vertex with 
respect to vertices Va and Vb in G and a distance d, denoted as inode oi^a, ^6, d) 
is a vertex Vk € V  ̂ such that t[k]  = max{t[i]  \ v[ € V} . We also say that, if 
t[i]  > t[j],  then Vi is more dominant than Vj. o 

Example 3. Let us assume that Figure 4(a) shows a portion of a graph, G", 
where each shown vertex, Vi, is reachable from vertex J4 or S in 2 edges. The 
numbers shown in the vertices of the graph in Figure 4(a) are the corresponding 
distance penalties of the vertices. Figure 4(b), then, shows the corresponding 
random walk graph, 'R.{A,B,2)- The transition values are shown as labels of the 
edges. The corresponding transition matrix T is also shown in Table 1(a). 

Then, if we solve the hnear equation (J — T)t = 0 (i.e. 12 variables and 13 
constraints), we can find t as shown in Table 1(b). According to this, excluding 
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Table 1. (a) T and (b) t for for the example Web graph in Figure 1 

T 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

A 

0.0 
0.0 

3 

H 
0.0 

3 
Ifi 

0.0 
0.0 
0.0 

3 
Ifi 

0.0 
0.0 

B 

0.0 
0.0 

3 

0.0 

0.0 
0.0 
3 
Ifi 

0.0 
0.0 
0.0 
3 
16 

c 
1 
7 1 
?, 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

D 
3 

0.0 
0.0 
0.0 

2 
5 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

E 

0.0 
3 

0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

F 
2 

0.0 
0.0 
0.0 
0.0 
0.0 

1 
,1 

0.0 
0.0 
0.0 
0.0 
0.0 

G 

0.0 
0.0 
0.0 
0.0 
0.0 

1 
?, 

0.0 
1 
2 

0.0 
0.0 
0.0 
0.0 

H 

0.0 
2 
3 

0.0 
0.0 
0.0 
0.0 

1 
,1 

0.0 
0.0 
0.0 
0.0 
0.0 

I 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

1 
7, 

0.0 
1 
2 

J 
1 
7, 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

1 
4 

0.0 
1 
4 

0.0 

K 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

1 
?, 

0.0 
I 
2 

L 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

i 
4 

0.0 
1 
4 

0.0 

t 

A 
B 

c 
D 
E 
F 
G 
H 
I 
J 
K 
L 

0.183 
0.183 
0.137 
0.076 
0.076 
0.051 
0.034 
0.051 
0.034 
0.068 
0.034 
0.068 

(a) (b) 

the vertices A and B themselves, the most dominant vertex is C. Vertices, D and 
E follow C with lower dominance values as they are on a longer path between 
A and B. Although vertices J and L, are on an even longer path, they follow D 
and E closely since they are on multiple paths. o 

2.3 Case 2: <S Contains More Than Tvk̂ o Pages 

In order to extend the algorithm presented in the previous section to the case 
in which 5 contains more than two seed pages, we need to observe that the 
algorithm uses these seed pages to discover the boundaries of the neighborhood, 
and to calculate the penalty of each vertex in the random walk graph. 

The first of these tasks is easy to generalize. Given a set of vertices, \S\ > 2 
and a radius, d, the relevant neighborhood, G^{V^,E^) of G"(1^,S"), is the 
set of vertices, V'  ̂ = VciSfd), that are reachable from the vertices in / in d 

edge traversals: (Vvi € VG"(<S,C!) \/^,^^reachableG^{vj,Vi,d)]. 

The second task, determining the penalty each vertex, can be handled in 
two ways. We can either trivially generalize the definition of the penalty as 

(penalty{v!j) = J^v'&ssdist{v[, v'j)\ or we can use 

length{minimum-steinerJ,ree{S U {w }̂) ) 
to get a more accurate picture of the distance of v[ from the seed vertices. Note 
that the problem of finding the minimum weighted connected subgraph, G', of 
a given graph G, such that G' includes all vertices in a given subset R oi G 
is known as the Steiner tree problem̂  [5]. Unfortunately, the minimum weight 
Steiner tree problem [6] is known to be NP-hard; i.e., it is not known whether 
there exists a polynomial time solution. The first option, on the other hand, is 
known to require polynomial time; and consequently, it is more efficient. 

If it exists, G' is guaranteed to be a tree. 
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2.4 Complexity of the Algorith m 

For a given graph G^{V^,E^) the maximum degree of vertices is m, where 
0 < m < \V^\, we analyze the complexity of the algorithm as follows: 

1. The algorithm firsts find the shortest distance between every vertex and the 
seed vertices in S. This operation can be performed using the Floyd-Warshall 
all pairs shortest path algorithm in O(IV^'^I^). The assignment of penalties 
for each vertex, then, takes 0( |V^ |) time. 

2. Once the penalties are know, calculation of the transition values for a given 
vertex takes 0{C{m, m +1)) time, where £(x, y) is the time that is required 
to solve a set of linear equations with x number of variables and y number 
of equations. Hence, the total number of time required to find all transition 
values in the graph is 0(|V^'' |̂ x C{m,m + 1)). 

3. After all the transition values are known, the algorithm solves a set of linear 
equations with \V^\ variables and |F^|- |-1 equations. Hence, this step takes 
0 ( £ ( | y ^ | , | y |̂ + l)) . 

4. Consequently, the total amount of time taken by the algorithm is 

0{\V^\  ̂ + | 1 / ^| X C{m,m+ 1) + C{\V^l \V^\ + 1)). 

3 Experiments 

Our current implementation utilizes a linear equation solver Maple for calculating 
both edge transition probabilities and the corresponding convergence vector. We 
have conducted our experiments on www-db.standford.edu, which has 3600 pages 
and 12, 581 edges. The average number of edges per page is 3.5. The experiments 
were ran on a 500MHz Pentium Architecture Linux OS PC with 128 MB of RAM. 

3.1 Execution Tim e 

The first experiment is for measuring the execution time of the algorithm. Note 
that there are two phases: calculation of (1) the edge transition probabilities 
and of (2)the convergence vector. We measure their execution time separately. 

For a Web subgraph containing neighborhood of 1085 nodes (i.e. pages within 
3 links from seed URLs /c lasses .h tml and "echang/, the execution time is 
rcEisonable fast. The total clock time needed is 760 seconds for the first phase; 
among that 572.76 seconds (i.e. 75.36%) is for reading the Web graph from disk. 
And, the clock time needed for the second phase is 343 second, among that only 
9 seconds are for writing the results. 

Thus, the total CPU time needed is 187.24 seconds for the first phase to solve 
1,085 sets of equations (one for each node with average 4 to 5 variables and 4 
to 5 constraints). In the second phase, only one set of equations needs to be 
solve. This set of equations with 1,085 variables and 1,086 constraints requires 
334.36 seconds to solved. We believe such execution time is satisfactory and can 
be further improved by using a faster machine with larger memory or passing 
the results of the first phase directly as the input of the second phase. 
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Table 2. Top 10 association pages within radius of 1 from seeds 

0.217939 /lore/ 
0.071164 /projects.html 
0.053373 /'hector/infolab.html 
0.053373 /projects-noim.html 
0.040030 /tsimmis/ 

0.080059 /midas/midas.html 
0.056338 /c3/c3.html 
0.053373 /projects-noim.html 
0.048925 /tsimmis/tsimmis.html 
0.035582 /'chaw/ 

Table 3. 30 association pages within radius of 2 from seeds 

0.066801 /lore/ 
0.049419 /www-db.stanford.edu/ 
0.040217 /projects.html 
0.038854 /"hector/infolab.html 
0.032719 /tsimmis/tsimmis.html 
0.028629 /projects-noim.html 
0.028629 /projects-noim.html 
0.028356 /"uUman/pub/hits.html 
0.025630 /tsimmis/ 
0.025175 /c3/c3.html 
0.024539 /midas/midas.html 
0.022085 /people/widom.html 
0.021813 /'widom/widom.html 
0.017109 /warehousing/warehouse.html 
0.015678 /people/sergey.html 

0.015541 /tsimmis/tsimmis.html 
0.015337 /"widom/ 
0.014814 / c 3/ 
0.014519 /people/gio.html 
0.014315 / L i e / 
0.013360 / ' chaw/ 
0.013088 /"sergey/ 
0.012270 /CHAIMS/ 
0.012065 /people/hector.html 
0.011043 /people/jpgs/ 
0.010225 /SKC/ 
0.009979 /people/index.html 
0.009611 /people/index2.html 
0.009161 /"uUman/ 
0.008930 /-t lahir i/ 

3.2 Association Mining Resul ts 

The second experiment is for testing the effectiveness of the algorithm. We can 
present only a small portion of the results due to the space limit . 

For the project home page URLs / l o r e/ and /midas/midas.html, the top 
10 of 32 association pages within radius of 1 from seeds is shown in Table 2. We 
are satisfied with the results given most people working for both projects, such 
as /"widom, /"ullman, / "wiener/, and / "sergey/, as well as the home pages 
of related projects are selected. When we extend the exploration radius from 1 
to 2, the results are still satisfactory given most of the results remain and few 
new pages are introduced. The associating pages within radius of 2 from seed 
URLs are sown in Table 3 (top 30 out of 155 pages are shown). 

We observe that when the radius is extended, many index pages, such as the 
root page, departmental page (e.g. info lab.html, and more project pages (e.g. 
/warehousing/warehouse.html and /CHAIMS/), are now included. We also ob-
serve several other interesting factors. For example. Professor Wiederhold, whose 
home page is /peop le /g io. html, does not participate in LORE project and MIDAS 
project. However, Professor Wiederhold is the organizer of a popular database 
seminar where most people has links pointing to the seminar announcement 
page. As a result, the home page of Professor Wiederhold is selected. 

4 Extension to Content-Focused Algorithm 
In order to incorporate document contents to the association mining process, we 
propose to change the definition of penalty to also include document contents. 
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t 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

0.123 
0.123 
0.092 
0.051 
0.051 
0.116 
0.185 
0.116 
0.023 
0.046 
0.023 
0.046 

(a) (b) 

Fig. 5. (a) Penalty of an example Web sub-graph, and (b) corresponding t 

This variation, the Content-Focused Random Walk Algorithm , allows us to 
mine document associations with respect to not only seed URLs but also a 
particular topic. For example, we may ask a more specific question: "find why 
the pages W.Li and D. Agrawal are associated with respect to NEC" or "find why 
the pages W. Li and D. Agrawal are associated with respect to the Y. Wu page". 
Assuming that there exists a function, relevance{v,topic), for measuring the 
relevance between the contents of a vertex v and a given topic topic, we redefine 

the penalty of a vertex as
Alternatively, we can also consider content similarity of two linked pages 

to adjust the importance of each link. Intuitively, if a page is content-wise more 
related to the seed pages, then it is more likely to explain the association between 
them; hence it should be assigned a lower penalty, increasing its likelihood of 
being visited during a random walk. We call this variation Content-Sensi t ive 
Random Walk Algorithm. Assuming that there exists a function, relevance{v, S) 
, which evaluates the relevance of the content of a given vertex v G V with 
respect to a set of vertices 5 e 2^, we can redefine the penalty of a vertex as 

{rJ:::SSm), [re^ltit,]^  o  ̂as ipenaltyiv) x {2 - relevance{v,S))). 
Note that the choice of the adjusted penalty function is application dependent 
and such a choice allows users to fine tune the sensitivity to the contents. 

Example 4- Let us look reconsider the previous example. Now we want to ask 
"find why the pages W.Li and D.Agrawal are associated with respect to Peter 
Scheuermann. Let us assume that the page G has a strong relevance to the 
focused content, "Peter Scheuermann". Let us also assume that the relevance 
function used assigns 0.8 to G and 0.1 to all other pages. 

Assuming that we use the penalty function ( reilvancetv i) ) ' ^^S^''̂  ^ shows 
the graph and the corresponding convergence matrix, t. According to this vector, 
the most "dominant" vertex in the graph is G. Comparing with the results in 
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Table 1(b), the scores of G, F, and H are boosted since G is now in focus. In 
this example, we observe that the results successfully reflect the structure and 
the document contents with respect to the given topic. o 

5 Related Work 

Link information has been used by many search engines to rank query results. 
They assume that the quality of a document can be " assured" by the number of 
links pointing to it. HITS algorithm was proposed by J. Kleinberg [3]. It aims 
at selecting a small subset of the most "authoritative" pages from a much larger 
set of query result pages. Authoritative page is a page with many incoming links 
and a hub page is a page with many outgoing links. Such authoritative pages 
and hub pages are mutually reinforced: good authoritative pages are linked by a 
large number of good hub pages and vice versa. This technique organizes topic 
spaces as a smaller set of hub and authoritative pages and it provides an effective 
mean for summarizing query results, so called "topic distillation". 

Bharat and Henzinger [7] improved the basic HITS algorithm [8] by adding 
additional heuristics. The modified topic distillation algorithm considers only 
those pages that are in different domains with similar contents for mutual au-
thority/hub reinforcement. Another variation of the basic topic distillation algo-
rithm is proposed by Page and Brin[9]. Their algorithm further considers page 
fanout in propagating scores. 

Many of these basic and modified topic distillation algorithms have been also 
used to identify latent Web communities[10,ll]. These above techniques focus on 
finding high quality documents induced by link analysis. Our proposed algorithm 
can be extended for topic distillation by targeting all nodes in the explored graph 
instead of few seed URLs. By such adjustment, the algorithm would be able to 
find hub and authority. 

Dean and Henzinger[l] proposed two algorithms, companion and cocitation 
to identify related pages and compared their algorithms with the Netscape 
algorithm[2] used to implement the What' s Related? functionalities. By extend-
ing the scope from documents to Web sites, Bharat and Broder[12] conducted a 
study to compare several algorithms for identifying mirrored hosts on the Web. 
The algorithms operate on the basis of URL strings and linkage data: the type 
of information easily available from web proxies and crawlers. 

This work above focuses on finding related documents or Web sites. Our work 
focuses on finding pages inducing associations of given seed URLs. The proposed 
random walks algorithm can be extended to be content-focused. 

6 Concluding Remarks 

In this paper, we present a framework and an algorithm for mining implicit 
associations among Web documents induced by link structures and document 
contents. The algorithm works on any graph and can focus on a specific topic. We 
have implemented and evaluated the algorithm. The preliminary experimental 
results on real Web data show that the algorithm work well and efficiently. 
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The authors would hke to express their appreciations to 
www-db. S t a n f o r d. edu for its da ta used in their experiments. Selecting this Web 
site is due to the considerations (1) the authors need to be familiar with the 
contents so that the authors can evaluate the results; and (2) the pages in the 
Web sites must not be dynamically generated pages. The second consideration 
restricts the authors from using most of corporation sites. The experimental 
results presented in this paper are for the purposes of scientific research only. 
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Abstract. Attribute-Oriented Induction (AOI) reduces the search space of large 
data to produce a minimal rule set. Classical AOI techniques only consider 
attributes that can be generalised but eliminates keys to relations. The Key-
Preserving AOI (AOI-KP) preserves keys of the input relation and relate them 
to the rules for subsequent data queries. Previously, the sequential nature of 
AOI-KP affected performance on a single processor machine. More 
significantly, time was spent doing I/O to files linked to each generated rule. 
AOI-KP is O (np) and storage requirement O (n), where n and p represent the 
number of input and generalised tuples respectively. We present two enhanced 
AOI-KP algorithms, concAOI-KP (concurrent AOI-KP) and onLineConcAOI-
KP of orders O (np) and O (n) respectively. The two algorithms have storage 
requirement O (p) and O (q), q =p*r,  0<r<l  respectively. A prototype support 
tool exists and initial results indicate substantially increased utilisation of a 
single processor. 

1 Introduction 

Data mining [2] is the application of algorithms to discover knowledge in data. 
Attribute-Oriented Induction (AOI) has been investigated for mining various kinds of 
rules including associations, sequential patterns, classification and summarisation [3]. 
AOI is a set-oriented generalisation technique that produces high-level rules from 
huge data sets. AOI reduces the input relation to a minimal relation called a prime 
table and then a. final rule table by using an attribute or rule threshold. An attribute or 
rule threshold determines how any distinct attributes or rules remain in the final rule 
table. For each attribute, AOI uses a concept hierarchy tree [4] to generalise it by 
climbing through the hierarchy levels of that attribute. An attribute is generalised if its 
low-level concepts (e.g. leaf concepts) are replaced by high-level concepts. Database 
values are stored as leaf concepts in the tree (see figure 1). 

In many approaches using AOI, the problem has been losing information upon 
generalisation. This happens when relational keys or attributes that index these 
relations are removed. This is because the index can not be generalised. 

Keys preserved during the mining process can be used to query data relevant to 
the rules produced. For example, the rule in figure 2 discovers knowledge about 
postgraduate students in year one with respect to their gender and birth place. The rule 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNAI1805, pp. 306-316, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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reveals the ratios of each category of students and their specific identities. The Iceys 
for each rule can be used to efficiently query data related to the three rules. 

ANY (Sex) 

F M 

Leaf concepts 

ANY {Binh_place) 

Ejjrope America 

China India UK France USA Canada 

A A A A A A 
Beijing, Nanjing Bombay Calcutta Leeds Hull Paris Lyons Chicago N.York Toronto Winnipeg 

^ ^ 

Leaf concepts 

Fig. 1. Concept hierarchies for Sex and Birth_place 

V(x) Postgraduate (x)AAcc_year (x) ="Year 1"=> 
Birth_place (X)G America [30%] [Rule keys =1, 3, 10] 
V Sex (x) = "Female" A Birth_place (x)6 Europe [30%] [Rule keys =2, 6,7] 
V Sex (x) = "Male"A Birth_place(x)e Asia [40%][Rule keys =4, 5, 8, 9] 

Fig. 2. Characteristic rules for postgraduate students 

The query "List the names and average marks obtained by female European 
postgraduate students in year 1" would be efficiently queried using keys 2, 6 and 7 
from an appropriate table or tables storing this data. The query would be more 
efficient if the preserved keys index the queried tables. Thus, generalised information 
coupled with the ability to obtain detail data from the database is necessary for 
querying the mined data. 

The Key-Preserving AOI algorithm (AOI-KP) [5] performs efficient data queries 
on the discovered knowledge by making use of keys. In AOI-KP, the input data is 
stored in an initial table while keys to tuples are later inserted in a separate table 
during the mining process. When static data structures are used for storing keys in 
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memory, performance is drastically affected. By using dynamic data structures that 
grow at execution time, there are gains in space and time as will be shown in section 
3. Initial results indicate that using the AOI-KP approach helps to shuffle back and 
forth between rules produced and the database. 

This paper introduces a concurrent key-preserving algorithm conAOl-KP, 
motivated by the performance degradation of the sequential AOI-KP algorithm as the 
volume of input data increases. The approach to concurrency is as follows: 
1. The merging of tuples, to be illustrated in section 3, is a sequential process. This 

involves removing some tuples from the prime table and then inserting key(s) in a 
table of keys. These two tasks could therefore occur concurrently as they 
accessed different tables. 

2. The I/O task for writing keys to file after rule production were not time efficient. 
After accumulating keys in a table, each rule was then associated with some keys 
in that table and had to be written to file for subsequent data queries. Thus, the 
greater the number of rules, which depend on the rule threshold, the more file 
writes were needed. 

A major hindrance is storing the whole input to memory. A solution is to retrieve 
blocks of tuples to memory, generahse them and only store the generalised tuples 
before the next block is retrieved. Another algorithm, onLineConAOl-KP, is 
introduced to enhance conAOl-KP and is more space efficient but less time efficient. 

The paper is organised as follows: in section 2, related work is considered; in 
section 3 analysis and results of the algorithms are presented; and section 4 presents 
conclusions and further work. 

2 Related Work 

This work is similar to the algorithms on AOI such as Learning CHaracteristic Rules 
(LCHR), and in particular to Generalise DataBase Relation {GDBR) and Fast 
Incremental Generalisation and Regeneralisation {FIGR) [6]. 

Generally, it is desirable that data mining algorithms be both space and time 
efficient. Like GDBR, conAOl-KP is transformed into an on-line algorithm 
{onLineConcAOl-KP) by reading blocks of tuples from disk to memory. The 
difference here is that the size of the prime table is determined from distinct non-leaf 
concepts, which are a level higher than leaf concepts, for each attribute. GDBR 
determines the size of the prime table from attribute thresholds. Therefore, it is 
assumed that every tuple will be generalised at least once so that there is no allowance 
for any tuple proceeding to the rule generation stage with leaf concepts. This is a 
remote possibility with GDBR if thresholds are reached before any generalisation 
takes place. However, attributes with only two concept levels, for example "sex" 
which has leaf concepts "M" and "F ' and general concept "ANY " are the only 
exceptions. Similarly, FIGR determines the size of prime table from distinct values of 
leaf concepts. 
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3 The Concurrent AOI-KP Approach 

3.1 Analysis of Order  Complexity and Space Requirements 

The motivation for this work was to improve the sequential AOI-KP's order 
complexity of O (np) and space requirement of O (n) + O (p), for n input and p 
generalised tuples. 

Firstly, with the onLineConAOI-KP algorithm, n input tuples were retrieved 
as blocks of tuples with each tuple generalised before insertion in the initial relation. 
Subsequent tuples were retrieved, generalised and compared to other generalised 
tuples in memory. Similar tuples (those having the same attribute values except their 
keys) were stored as one tuple (this is termed merging tuples) and their keys stored in 
a table, called a keys table. Therefore the initial input table, which we now call a 
prime table, can be declared with only a few hundred rows. This is because the 
product of distinct values of each attribute's non-leaf concepts (i.e. the generalised 
concepts) is smaller than distinct values of leaf concepts. 

The prime table's size is therefore a small constant value of size 

q=p*r,0<i<\. 

Now q = n if all input tuples were retrieved to memory. Considering FIGR and 
GDBR, q<p if GDBR with a big attribute threshold and large number of attributes is 
considered as GDBR determines the size of the prime table from the product of 
attribute thresholds. FIGR determines the size of the prime table from distinct leaf 
concepts, which are greater than distinct generalised leaf concepts as implemented in 
onLineConAOI-KP and conAOI-KP. 

Therefore, the initial relation in our case is just a prime relation of size q<=p. 
This approach also eliminates the use of a summary input table as used in GDBR and 
FIGR. This summary table is presented as a two-dimensional table with two attributes 
relevant to the mining process. It compiles statistics about those attribute values and 
could be prohibitively large if the number of attributes increased. 

With FIGR, the size of the prime table with m input attributes is 
m 

s ^ n ki 

where ki is the distinct number of leaf concepts for each attribute i. For 
onLineConAOI-KP, the size of the, prime table is 
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q - n kgen(i) 

where q = p*r, 0<r< 1, as k(gen(i)) is the distinct number of generalised leaf concepts 
for generalised attribute i and ofcourse k(gen(i)) < kj. 

Therefore, onLineConAOI-KP's space requirement is O (q) for the initial and 
prime relations and O (n/m)+c for the keys table, where c is a small storage increment 
due to key insertions. The O (n/m)+c arises because keys table dynamically increases 
in size as more input is read. This is not the case when a fixed size keys table for n 
input tuples that requires O (n) space is declared. 

As more input is read, c gets used up and can grow dynamically in multiples of 
its previous size. This means for very large n, a single machine can still have memory 
problems unless m is large which is unlikely for the AOI method. Therefore, the space 
requirement for large n is O (q) and order complexity O (n) for onLineConAOI-KP. 

Secondly, for conAOI-KP, the time to retrieve n input tuples, convert them to 
concepts for each of the m attributes to a prime table of size p is O (nmpd), where d is 
the deepest concept hierarchy for any attribute. Assuming a small number of attributes 
m and the deepest concept hierarchy d is small, the order complexity is only O (np). 

The problem with conAOI-KP is that we do not retrieve blocks of tuples to 
memory but the whole input is read. The only improvement is concurrency of the fil e 
I/O process. 

We present concurrency mechanism involved in both conAOI-KP and 
onLineConAOI-KP in the next section and compare performance. 

3.2 Sequential and Concurrent Algorithm s 

In this section, the sequential and concurrent versions of the AOI-KP algorithm are 
discussed. Two class pseudo-codes and their methods for the parent and children 
thread processes are also shown for clarity. Three major processes where concurrency 
may be useful namely, key insertion, merging similar tuples and file I/O have been 
investigated. 

The sequential AOI-KP algorithm, in figure 3, performs poorly with large data 
input because it uses memory to hold all the data. The two processes, tuple merges 
and key insertion, use separate tables for storing generalised tuples (the input or prime 
table) and keys (the keys table). A tuple merge occurs if two tuples have the same 
attribute values (generalised or not) except their identifying attribute called a key. 
Thus one tuple and its correspionding key(s) is removed from the prime or input table 
and the resulting two keys are inserted in the keys table. These two processes could 
therefore occur concurrently. 

However, a much bigger difference in execution time occurs when there are a 
large number of keys associated with each of the two tuples being compared in the 
prime table and a merge has to be performed. Therefore, two threads of execution for 
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key insertion and tuple merges could be spawned concurrently. In theory, this means 
that with smaller data sizes, the concurrent approach would be much slower than the 
sequential approach because of thread overheads i.e. the time to create, spawn, 
synchronise and terminate threads. 

In addition, however, a major performance bottleneck is writing keys to file 
when rules are generated. Therefore, to improve the overall performance of AOI-KP, 
the concurrent AOI-KP (conAOI-KP) algorithm is introduced as shown in figure 4. 

Step 1. Collect data (as a whole) 
Make concept hierarchies for Ai 

Determine distinct values of attributes Ai 
For each attribute A 

While attribute threshold not reached 
If ( A has hierarchy, A <> key attribute, A has more 

than two levels) 
Generalise A 

Step 2. Merge similar tuples 
If two tuples are similar 

Insert keys in Keys Table (copying key (s)) 
Delete tupie(s), leave one tuple in prime table (tuple merge) 

Increase counts 
Else 

Insert tuples in different rows of Prime Table 
Insert keys in different rows of Keys Table 

Increase counts 
Repeat Step 2 until attribute threshold \s reached 
Step 3. Check rule threshold 

While rule threshold not reached 
Generalise appropriate attribute 

Merge tuples 
Insert keys 

For i =1 to rule threshold (sequentia l I/O fil e process ) 
Search keys Table for non-Null row 

If (non-Null row Found) 
Write keys to file IR.txt 

//Sequential AOI-KP 

Fig. 3. Sequential AOI-KP Algorithm 

Figure 5 shows class implementations of the parent and child thread codes for 
concurrent execution of the file I/O process. The parent class passes to the child class 
method, the file number and the row of the keys table where the preserved keys are 
stored. The file number corresponds to the rule number produced in the mining 
process e.g. rule 1 has preserved keys in file IR.txt etc. 
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Step 1. Collect data {In Blocks for on line concurrent AOI-KP) 
Make concept hierarchies for A 
Determine distinct values of attributes A 
For each attribute Ai 

While attribute threshold not reached 
If ( A has hierarchy, A <> /fey attribute, Ai has more than 
two levels) 

Generalise A 
Step 2. Merge similar tuples 

If two tuples are similar 
Perfor m concurren t Key  insertio n and tupl e merge s 

Insert keys in Keys Table (copying key (s)) 
Delete tuple(s), leave one tuple in prime table 
(tuple merge) 

Increase counts 
Else 

Insert tuples in different rows of Prime Table 
Insert keys in different rows of Keys Table 
Increase counts 

Repeat Step 2 until attribute threshold is reached 
Step 3. Check rule threshold 

While rule threshold not reached 
Generalise appropriate attribute 
Merge tuples 
Insert keys 

For / =1 to rule threshold (concurren t I/O fil e process ) 
Spawn paren t threa d when firs t non-nul l 

or non-blanl ( row of Keys  Table found 
Spawn chil d threa d to writ e keys  to fil e iR.txt 
Search Keys Table for next non-Null row 
If (non-null row Found) 

Spawn next chil d threa d to writ e keys  to fil e iR.txt 
//Concurrent AOI-KP 

Fig. 4. Concurrent AOI-KP Algorithm 

With file I/O, once keys are stored in the keys table, each set of keys for a rule is 
separated by a null or blank row. To store keys for rule i in file iR.txt, the parent 
thread is spawned and scans the keys table for a blank or null row, having spawned a 
child thread from the first encountered non-null or non-blank row of the keys table. If 
another blank or null row is subsequently encountered, another child thread for rule 
i+1  is spawned for writing to file (i+i)R.txt and so on. 

If the attribute or rule threshold is m, then m children threads will be spawned 
for writing to m key files. 
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Class ParentThread 
{ (Declare member variables and assign them values using 

constructors) 

/=1 
ft/eA/o=1 
k=0 
ruleThreshold = m 

CliildTliread ch1 ,..,chi, i =1 ..ruleThreshold 

Metho d (k, ruleThreshold) 
while ( k < size of Keys Table AND i<=ruieThreshold) 
{ 

if( blank or null value encountered in keys Table row k) loop 
case {fileNo) 

1: spawn childThread cM{fileNo, k) 
2: spawn childThread ch2(fileNo, k) 
3: 

i: spawn childThread ch\{fileNo,k) 
k=k+1 
i=i+1 

] 
]// end Class ParentThread 

Class ChildThread 
{ (Declare member variables and assign them values using 

constructors) 
fileNo 
rowK 
for {/' = ^,...ruleThreshold) 

Declare files iR.txt 

Metho d ( fileNo, rowK) 
case (fileNo) 

1: write rowKQ\ Keys Table in file 1 R.txt 
continue; 

m: write roivKof Keys Table in file mR.txt 
continue; 

close files 
)//end class childThread 

Fig. 5. Classes of Parent and Child Threads for file I/O 

Figure 6 shows the results of execution times of sequential AOI-KP, conAOI-KP and 
onLineConAOl-KP algorithms on student data using a P266 MHz 64MB-memory 
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Windows NT cluster. The execution times include data retrieval, mining and file I/O 
processes. Each data set was run five times and the average time computed. 

The concurrent AOI-KP thus improved processor utilisation by 25% due to 
concurrent I/O for each fil e of keys generated. 

The onLineConAOI-KP algorithm was run on the same data set. By retrieving 
blocks of tuples to memory, generalising the tuples and inserting them in a prime 
table directly from the input, memory restrictions were temporarily solved. As more 
input was read, the keys table grew with the input size. As database retrieval time is 
an expensive operation, this affected execution time, which improved processor 
utilisation by only 16% compared to the sequential AOI-KP algorithm. 

-nqutmUi l AOI-K P 

P 

-iMLfewCMAOI-K P 

1000 1000 0 20O0 O 3000 0 1000 0 5000 O 6000 0 7000 0 8000 0 9000 0 10000 0 

No. of tuples 

Fig. 6. Comparisons of sequential and concurrent versions of AOI-KP 

From the graph in figure 6, it is evident that concurrency mechanisms have provided 
improvement. All three algorithms are affected by the size of input data. The 
onLineConAOI-KP algorithm can take more input than the other two because memory 
is economised by retrieving blocks of tuples. The conAOl-KP algorithm runs faster 
than both sequential AOI-KP and onLineConAOI-KP as long as the data fits in 
memory. This is because it is exempt from the I/O bottleneck experienced by 
onLineConAOI-KP and employs concurrency not implemented in sequential AOI-KP. 
However, sequential AOI-KP initially performs equally well with few input data. As 
memory gets used and file I/O starts, performance deteriorates. 
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Further improvements would be to lessen use of memory by retrieving blocks of 
tuples, writing keys to file immediately upon data input or employing a parallel-
processing paradigm. The former would be more space efficient but not time efficient, 
whilst the latter approach may improve both space and time efficiency. 

4 Conclusions and Further Work 

This paper has presented a concurrent approach for preserving keys in attribute-
oriented induction on a single processor machine. The result has been enhanced 
performance. The execution time, when conAOI-KP is considered, has been reduced 
by 25%, indicating a greater utilisation of the processor. In addition, the storage 
requirement is only O (p). When onLineConAOI-KP is considered, execution time is 
reduced by 16% and only required O (q) space. 

With large data, the keys table grows proportional to the input. In addition, 
database retrieval time is affected by large inputs especially when blocks of tuples 
have to be read. This was shown by the deterioration in execution time of the 
onLineConAOI-KP algorithm with respect to conAOI-KP. 

Another viable solution is to employ parallelism in either of the following two 
ways: 

1. Employing a distributed memory message-passing architecture e.g. a 
network of workstations (NOW). A NOW provides attractive scalability in 
terms of computational power and memory[7]. 

2. Employing a parallel shared memory multiprocessor with explicit message-
passing [8]. 

The amount of execution time would be greatly reduced if h processors were 
involved. This would mean reducing the order complexity from O (np) to O (np/h) for 
the conAOI-KP algorithm and O (n) to O (n/h) for the onLineConAOl-KP algorithm. 
Current work investigates parallelism on a NOW architecture. 
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Abstract. In this paper we present a experimental evaluation of a boost-
ing based learning system and show that can be run efficiently over a 
large dataset. The system uses as base learner decision stumps, single 
atribute decision trees with only two terminal nodes. To select the best 
decision stump at each iteration we use an adaptive sampling method. As 
a boosting algorithm, we use a modification of AdaBoost that is suitable 
to be combined with a base learner that does not use all the dataset. 
We provide experimental evidence that our method is as accurate as the 
equivalent algorithm that uses all the dataset but much faster. 

1 Introduction 

One defining chaxacteristic of data mining applications is that the input dataset 
is huge. Thus, we are typically seeking for algorithms that can be run efficiently 
even if the input is very large. Another important aspect of data mining is 
that, in many situations, one is required to obtain solutions that can be later 
interpreted by a human expert. In contrast, in machine learning research the 
emphasis has been traditionally put in prediction accuracy. Thus, state of the 
art algorithms like C4.5 that consistently produce very accurate hypothesis, 
when run over a large dataset are slow and produce very large outputs that are 
hard to interpret. It is a common practice for data miners to run an algorithm 
for induction of decision tress over a large dataset for several hours only to end 
up discarding most of the output (and thus, reducing the accuracy) in order to 
obtain something that can be interpreted by a human expert. 

In this paper we present a learning algorithm that while not always producing 
a hypothesis as accurate as one might obtain using traditional machine learning 
methods, it produces a very concise output and can be run very fast even if the 
dataset is large. This learning algorithm combines two powerful tools, boosting 
and sampling. We will use a very simple learning algorithm that uses an adaptive 
sampling method as a base learner and then we will  use a boosting method to 
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improve its accuracy. In the following we discuss these two methods in more 
detail. 

Boosting [21] is a technique for constructing a "strong" learning algorithm 
based on a "weak" learning algorithm. Boosting typically works by repeatedly 
disturbing the training set to obtain several different weak hypotheses that con-
centrate more and more are on the harder instances and that are later combined 
to obtain a much stronger one. In particular, the AdaBoost algorithm of FYeund 
and Schapire [11] has been repeatedly reported to be the most effective in the ab-
sence of noise [12,19,2,1]. However, AdaBoost is originally designed to run using 
all the dataset and thus it is not suitable to be used with large datasets. In this 
paper we will  use a modification of AdaBoost recently proposed by Domingo and 
Watanabe [23,5] that is more suitable for being combined with a base learner 
that uses only a portion of the dataset selected through sampling as discussed 
in Section 2. The boosting algorithm outputs a hypothesis that is the weighted 
majority of the hypothesis output by the base learner. 

Since as we argued one of our goals is to obtain a hypothesis that can be 
easily interpreted, we will use as a base learner a very simple one, decision stumps 
(single attribute decision trees with only two terminal nodes). Obviously, the 
predictive power of this learner is very weak and this is the reason we also want 
to use boosting to combine few of them to increase the accuracy. Thus, at each 
boosting iteration we will select the best stump with respect to the distribution 
generated by the boosting process at that step. Recall that we also wanted to 
be able to efficiently run the learning algorithm on a large dataset. Boosting 
is a slow method since it implies running sequentially several times the base 
learner algorithm. Thus, unless we are not able to make the base learner very 
fast, the overall learning algorithm might become extremely slow. The method 
we propose to speed up the base learner is sampling. Instead of using all the 
dataset at each iteration to determine which stump we pass to the boosting 
algorithm we will use only a portion of it. Now, the problem is shifted to decide 
how much amount of data we need at each iteration. To solve this problem we 
wil l use an adaptive sampling method proposed by Domingo et.al. [3,4] that 
it is particularly suitable for this problem. Adaptive sampling methods do not 
determine the sample size a priori. Instead, they obtain examples incrementally 
and decide on-line depending on the current situation when to stop sampling. 
Adaptive sampling methods have been studied in statistics under the name of 
sequential samphng [22] and more recently in the database community [17,16]. In 
the KDD literature, related methods are described under the name of progressive 
sampling [14,18]. Details on how to use sampUng for selecting the stump at each 
boosting iteration are provided in Section 3. 

In this paper we provide an experimental evaluation of this learning system. 
We have done experiments to compare the results obtained using all the dataset 
at each boosting iteration to select the best decision stump and the results 
obtained using our adaptive sampling method to do the selection. We conclude 
that there is no apparent lost in accuracy by using the sampling method while 
there is a great decrease in running time, an average of 40 times for the fastest 
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method over the 6 datasets used in the experiments. All the hypotheses obtained 
are just a weighted combination of 10 attributes. 

This paper is organized as follows. In Section 2 and Section 3 we describe the 
boosting algorithm MadaBoost and the decision stump selector with adaptive 
sampling that we will use for our experiments. Then, in Section 4 we report 
several experiments that we have performed using our system and compare the 
results with other learning algorithms. We conclude in Section 5 summarizing 
the results and discussing future work. 

2 Filtering Adaptive Boosting: MadaBoost 

In this section we describe the boosting algorithm used in the learning system 
being evaluated in this paper. 

We first justify the choice of the algorithm. The obvious choice would have 
been algorithm AdaBoost due to Preund and Schapire [11] since it has been re-
peatedly reported to outperform any other voting method [12,2,1]. AdaBoost is 
originally designed for the boosting by subsampling framework (also called boost-
ing by re-weighting) where the base learner is required to produce a hypothesis 
that tries to minimize the error with respect to a weighted training set. The 
training set is fixed at the beginning and used throughout all the boosting steps 
with AdaBoost modifying the weights at each iteration depending on the hy-
potheses being obtained. Recall that our goal is to use a base learner that uses 
a small sample of the overall training set at each step so it can be run very 
efficiently. Thus, the boosting by subsampling framework is not appropriate for 
this. Instead, we should move to the so called boosting by filtering (also called 
boosting by re-sampling) where, instead of fixing a training set, we can randomly 
draw an example, calculate its weight and filter it according to it. In this way, 
we can effectively simulate the probability distribution that boosting is using 
at each step and obtain and un-weighted sample that has been drawn from it. 
This procedure is standard an is basically the sample filter that was already 
proposed by Preund in [10]. However, AdaBoost is not suitable for this task. If 
we use the weights of AdaBoost to construct a filter in the way just described, 
obtaining a random sample at each step with respect to the current modified 
distribution turns out to be very slow process. More precisely, one can show that 
the time taken by the filter to generate one example is exponential with respect 
to 0(1/ct), where €t is the error of the combined boosting hypothesis at the 
t-th step. In other words, since our goal is to reduce the error of the combined 
hypothesis up to a small number, this means that at some point the time taken 
to generate a new training set to proceed boosting one more iteration might 
become prohibitively large. One obvious solution is to normalize the weights so 
they sum up to 1 and thus, they can be used more efficiently to simulate the fil-
tering probability (notice that in this way we will actually have the distribution 
under which the base learner is required to work). However, to normalize the 
weights we have to go through all the dataset and thus, the advantage of using 
sampling is simply lost. We refer the reader to [5] for a rigorous description of 
this problem. 



320 C. Domingo and O. Watanabe 

Algorith m MadaBoost 
Input : e > 0 

inducer AVSS, T = #trials; 
1 for  i = 1 to T 
2 iht,et)  ̂ SVS{FilEx{t)) 
3 Pt  ̂ y/et/il - et); 
4 end-for 

5 output /T such that /T(X) = argmaXj,gy ^  ̂ ^̂ S "S 
i:hi(,x)=y 

6 Procedure FilEx{t) /* t: current boosting trial /* 
7 loop-forever 
8 generate (x,yx) uniformly at random from training set S\ 
9 co'ns{hi,x) = 1 if htix) = j/x and -1 otherwise; 

10 «;<(x)-min{l,nLi/?^°"'^'^'^'} ; 
11 with probability wt{x), output {x,yx) and exit; 

Fig. 1. Algorithm MadaBoost for the filtering framework. 

This problem of AdaBoost has been recently addressed by Domingo and 
Watanabe in [5] (see also [23] where the idea was originated). For overcoming 
this problem, it was proposed a simple modification of AdaBoost denoted by 
MadaBoost that is suitable for both, the subsampling and the filtering frame-
works. A description of MadaBoost for boosting by filtering together with the 
filter is provided in Figure 1. The filter is a loop that attempts to pass an exam-
ple randomly obtained from the dataset to the base learner using the weights of 
the examples as a probability. The base learner algorithm AVSS that uses the 
filter is described in the following section. 

In Figure 1 we can see that the only difference with the original AdaBoost 
algorithm is that we keep the weights always upper bounded by 1 while in 
AdaBoost the weights can grow unbounded. This is the key property of the 
modification and even in this case we can still show that the algorithm retains the 
original boosting property in the PAC sense. That is, if we can obtain hypotheses 
better than random guessing at each step, then MadaBoost can make the error 
of the combined hypothesis arbitrarily small in a finite amount of time. The main 
property of MadaBoost is that, at each boosting iteration, it can be shown that 
the time taken to randomly generate a new training sample under the current 
boosting distribution is linear in 0(l/et) where tt is the error of the combined 
hypothesis at the t-th boosting round. Recall that this time is exponential in 
0{l/et) when using AdaBoost. (For more details on MadaBoost we refer the 
reader to [5].) 

3 Adaptive Decision Stump Selector 

In this section we describe the algorithm used as a base learner for the boosting 
process. As already discussed in the introduction, we have chosen decision stumps 



Scaling Up a Boosting-Based Learner via Adaptive Sampling 321 

as a base learner. A decision stump is a decision trees with only one internal 
node and two terminal nodes over discrete attributes. At the node just a single 
attribute is used to test whether it is equal or not to one of its possible values. 
Decision stumps can be also though as IF-THEN rules where the condition 
depends just on one attribute and one of its possible values. 

Given a fixed problem description we will denote by HDS  ̂ the set of all 
possible decision stumps over the set of attributes. To obtain any advantage 
through sampling we need to be able to compute set HDS without looking at all 
the data. For this reason we consider only discrete attributes. Obviously, we also 
want to take into account continuous attributes, in case there is any, and for that 
reason we have first discretized the data. As a discretization algorithm we have 
used equal-width interval binning discretization with 5 intervals. Although this 
method has been shown to be inferior to more sophisticated methods like entropy 
discretization [9], it is very easy to implement, very fast and the performance 
difference is small [8]. We will  use two different versions of the base learner, 
the one that does not perform sampling and uses all the data and the one 
that uses sampling. We will start describing the first one. Given HDS and the 
dataset X, we will  go through all the data and compute for each h G HDS, 
its error on X and output the one that has the smallest error on X. This base 
classifier is very similar to the IR classifier of [13] and the MC4(l)-disc of [1] 
except that the discretization step is different. For the version using sampling 

Algorithm ADSS {HDS,5); 
t< -0; S<-0; n=\HDs\\ 
repeat 

use FilEx to generate one example and add it to S; 
t < - t + l;^ 
at = 3-y/(21nT-lnlnr-|-l)/t, where r = nt(i + l)/(2(5V7r); 
for all h e HDS, U{h, S) <— \\{x e S : h classifies x correctly}||/t - 1/2; 

until (3h 6 HDS such that U{h,S) > at) 
output ho G HDS with largest U{h, S); 
output 1 — U{ho,S) as an estimation of ho's error prob.; 

Fig. 2. The Adaptive Decison Stump Selector .4I'<S<S. 

we will use an algorithm proposed by Domingo et.al. in [3,4]. The algorithm is 
described in Figure 2 and we discuss it in the following. The algorithm, denoted 
by ADSS receives as input set HDS and a confidence parameter 6. I t randomly 
obtains examples from dataset X usign procedure FiltEx described in Section 2. 
Every time a new example is obtained, it updates the advantage of every stump 
h G HDS, defined as U{h,S) = accus{h) — 1/2. Then, it decides adaptively 
when to stop sampling. The stopping condition is determined depending on: 
the advantages of the stumps on the current set of examples S, the number of 
examples t obtained so far, the number n of stumps considered and the confidence 
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parameter 6. The reason to consider the advantage U{h, S) instead of the more 
commonly used accuracy ||{a; G S : h classifies x correctly}||/i is that we are 
going to use this algorithm as a base learner for a boosting process and boosting 
requires always a hypothesis that has accuracy over 50% at each iteration. While 
this cannot be guaranteed in general, what our sampling method guarantees is 
that if there exists a stump with an accuracy larger than 50%, then with high 
probability it will select an stump that also has an accuracy larger than 50% 
ensuring that the boosting process continues. The following theorem concerning 
the complexity and reliability of the algorithm can be easily derived from the 
more general results in [4] and we refer the reader to that paper for a proof. 

Theorem 1. ^ Let V he the filtering distribution at certain boosting step and 
let hi, G HDS be the hypothesis with largest advantage under that distribution, 
defined as 7,k = errorxiihi,) —1/2 and assume that 7*  > 0. Then, with probability 
larger than 1 — 5, algorithm ADSS outputs a stump h such that 7 > 7*/2, where 
7 = errorx>{h) — 1/2 and finishes within 0{{l/'y^)ln{n/S)) 

Notice that the key property of the algorithm is that the number of exam-
ples used is not decided a priori, it depends adaptively on the situation. More 
precisely, the better the best stump at one iteration (and therefore, the larger 
7*) the faster the algorithm will finish. Also notice that the theorem guarantees 
that whenever a stump with accuracy larger than 50% exists, one with accuracy 
also larger than 50% will be output with high probability. 

We will  consider two different versions of the algorithm depending on how 
many examples we obtain from the random sampling process at each iteration. 
The first version is the one provided in Figure 2, that we will refer as the arith-
metic version, obtains just one example every iteration. The second version, the 
geometric version, increases the sample size by an s multiplicative factor at each 
iteration where s is a positive integer set by the user. Arithmetic and geometric 
sampling methods have been also studied recently in [18]. A result similar to 
Theorem 1 can be also proved for the geometric version where now the sample 
size will depend on s. We again refer the reader to [4] for more details in the 
theoretical properties of these algorithms. 

4 Experimental Results 

We have conducted our experiments on a collection of datasets from the reposi-
tory at University of California at Irvine [15]. We have chosen all datasets with 
2 classes since, according to previous experiments on boosting stumps, we are 
not expecting our base learner to be able to find weak hypothesis with accuracy 
better than 50% for most problems with a large number of classes. Apart from 
this restriction, the choice of the datasets has been done so it reflects a variety 

^ For this theorem to hold, we assume that the Central Limit Theorem applies. A 
slightly less efficient version but not condition to the Central Limit Theorem is also 
provided in [4]. 
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of datasets sizes and combination of discrete and continuous attributes. As a 
test bed for comparing our boosting decision stumps algorithms we have chosen 
two well known learning algorithms, the decision tree inducer C4.5 [20] and the 
Naive Bayes classifier [7]. 

One point needs to be clarified on the way we used these datasets. We had 
to inflate the datasets since we need large datasets but most of the UCI datasets 
are quite small. That is, following [14], we have artificially inflated the training 
set (the test set has been left unchanged to avoid making the problem easier) 
introducing 100 copies of all records and randomizing their order. Inflating the 
datasets only makes the problem harder in terms of running time, does not 
change the problem in terms of accuracy if we restrict ourselves to use learners 
that are just calculating statistics about the training sample. For instance, if one 
particular decision stump has an accuracy of 80% on the original training set, 
then this stump has the same accuracy in the inflated dataset. Thus, if that is 
the stump of choice in the small dataset it wil l also be in the inflated version. 
Moreover, it also does not affect the results concerning sampling, neither makes 
the problem easier nor more difficult. The reason is that all the statistical bounds 
used to calculate necessary sample sizes provide results that are independent of 
the size of the probability space from where we are sampling that, in this case, 
is the training set. The necessary sample sizes depend on the probabilities on 
the training set and these are unchanged when we inflate the dataset. In other 
words, if in one particular situation the necessary sample size is 10.000, this 
sample size will be the same independently of whether we are sampling from the 
original dataset or from the inflated version. 

From the above discussion we conclude the following. For the algorithms 
using boosting stumps and for the Naive Bayes classifler we wil l provide both, 
accuracy and running time results in the inflated datasets since those learning 
algorithms satisfy the requirements just described and therefore these results are 
meaningful. However, in the case of C4.5 we only provide running time results 
not accuracy results since this algorithm is not strictly based on probabilities 
over the sample. It makes, for instance, decisions about whether to split or not 
based on the actual number of instances following in one particular node and 
these numbers are obviously changed when we inflate the dataset. The accuracy 
results of C4.5 in the inflated dataset are cannot be used for comparison. 

In any case, we are aware that this is perhaps not the best method to test 
our algorithms and real large datasets would obviously have been better; but we 
still believe that the results are informative and convincing enough to show the 
goodness of our method. 

The experiments were carried out using S = 0.1 in algorithm AVSS and 
s = 2 for the geometric version. For every dataset, we have used a 10-fold cross 
validation if a test set is not provided and for the algorithms using sampling (and 
thus, randomized) the results are averaged over 10 runs. Al l the experiments have 
been done in a computer with a CPU alpha 600Mhz using 256Mb of memory and 
a hard disk of 4.3Gb running under Linux. Since enough memory was available, 
all the data has been loaded in a table in main memory and from there the 
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algorithms have been run. Loading the data took few seconds and since this time 
is the same for all the algorithms it has been omitted from the results. Notice 
that for C4.5, this in fact the only way to run it. For the other algorithms, we 
could have been done using the data from disk and an efficient sampling method 
from external memory. Doing experiments under these conditions is part of our 
future work. The running time results also include the time taken to construct 
all the decision stumps. 

The experiments were done for estimating the performance of the arithmetic 
and geometric versions of algorithm AVSS combined with the version of Mad-
aBoost for the filtering framework. For comparison purposes, we also executed 
MadaBoost in the boosting by subsampling framework using the whole dataset; 
that is, MadaBoost with a base learner that selects the best decision stump by 
searching through the whole dataset exhaustively. Below we use Ar., Geo., and 
Exh. respectively to denote the arithmetic and the geometric versions of AVSS 
and the exhaustive search selector. We have also carried out the experiments 
with Exh. using the original AdaBoost and found the difference in accuracy 
with MadaBoost with Exh. negligible (we refer the reader to [6] for a detail 
experimental comparison between AdaBoost and MadaBoost). We also provide 
the accuracy results obtained just by using a single decision stump (denoted by 
DS) so the gain produced by the boosting algorithm can be appreciated. 

We have set the number of boosting rounds to be 10 which usually is enough 
to converge to a fixed training error (that is, although we keep obtaining hy-
pothesis with accuracy slightly better than 50%, the training error does not get 
reduced anymore). 

Table 1. Accuracies of boosted decision stumps with and withouth sampling and that 
of Naive Bayes. 

Name 
agaricus 
kr-vs-kp 
hypothyroid 
sick-euthy. 
german 
ionos 

Size 
731100 
287600 
284600 
284600 
90000 
31590 

\HDS\ 

296 
222 
192 
192 
222 
408 

DS 
88.68 
68.24 
95.70 
90.74 
69.90 
76.18 

Exh. 
97.74 
93.19 
95.86 
91.02 
74.10 
90.26 

Ar. 
97.84 
92.89 
95.84 
90.93 
74.28 
89.53 

Geo. 
98.03 
92.71 
95.86 
90.93 
74.30 
89.63 

NB 
98.82 
88.05 
95.43 
90.26 
76.00 
89.14 

Table 1 shows the accuracy obtained on these datasets by three combinations 
of selectors with MadaBoost. The columns "Size" and "H/TDSH" show, for each 
dataset, its size and the number of all possible decision stumps respectively. As 
we can see easily, there is no significant difference between the accuracies ob-
tained by these three methods. These results indicate that our sampling method 
is accurate enough. Two other consequences can be also observed. First, running 
boosting even for this few number of iterations makes a significant improvement 
in accuracy in most of the datasets. This can be observed by comparing the 
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accuracies obtained with that obtained using just a single decision stump (col-
umn DS). This accuracy has been obtained using all the dataset. Second, even 
though the hypotheses produced are very simple (a weighted majority of ten 
depth-1 decision trees), the accuracies are comparable to that obtained using 
Naive Bayes, a learning algorithm that has been reported to be competitive 
with more sophisticated methods hke decision trees [7]. 

Table 2. Running times (in seconds) of MadaBoost with and without sampling, and 
that of Naive Bayes and C4.5. 

Name 
agaricus 
kr-vs-kp 
hypothyroid 
sick-euthy. 
german 
ionos 

Exh. 
892.31 
265.63 
233.24 
232.05 
80.75 
56.95 

Ar. 
2.07 
3.68 
5.82 
6.84 

16.96 
6.29 

Geo. 
1.78 
2.75 
5.67 
6.77 

10.47 
4.74 

NB 
16.34 
10.07 
7.14 
7.08 
1.08 
0.85 

C4.5 
21.65 
31.13 
67.40 

162.76 
20.34 
29.47 

Once we have established that there is no loss in accuracy due to the use of 
sampling, we should check whether there is any gain in efficiency. Table 2 shows 
the running times of MadaBoost combined with three selection algorithms, ex-
haustive one (Exh.), and the arithmetic (Ar.) and the geometric (Geo.) versions. 
We have also provided the running time of Naive Bayes (NB) and C4.5 for those 
datasets. 

Let us discuss about these results. First, one can easily see that the exhaustive 
search version is a very slow process, particularly for large datasets. The running 
time of MadaBoost with Exh. is a function of the dataset size, the number of 
decision stumps considered (which depends on how many attributes the dataset 
has and their range of values), and the number of boosting rounds. 

For the algorithms using sampling, we can see that the running time has 
been greatly reduced for all datasets. The running time of MadaBoost with 
the arithmetic version of AVSS is, on average, approximately 40 times smaller 
than that of the Exh. Surprisingly enough, for the sampling versions the fastest 
dataset becomes the largest one, Agaricus. The reason is the particular structure 
of this dataset. During all the 10 boosting iterations one can find hypothesis 
with accuracy larger than 70% and thus, the sample sizes needed at each step 
are very small. This contrasts with datasets like German where a similar number 
of decision stumps is considered and, even though the dataset is less than 1/8 
of Agaricus, the running time on German is 8 times larger. This is because for 
this dataset, after the third boosting iteration, even the best stump has accuracy 
smaller than 60% and this affects the efficiency of the sampling method. Recall 
that the inverse of the advantage of the best stump (i.e. the distance of its 
accuracy compare to the random hypothesis) is the major term that determines 
the necessary sample size at each boosting round. 
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Table 3. Running time of ADSS with geometric sampling for different values of s. 

Name 
agaricus 
kr-vs-kp 
hypothyroid 
sick-euthy. 
german 
ionos 

s= 1.5 
1.47 
2.33 
5.16 
6.48 
9.05 
4.27 

s = 2 
1.78 
2.75 
5.67 
6.77 

10.47 
4.74 

s = 2.5 
2.01 
3.07 
6.67 
6.79 

10.41 
5.29 

s = 3 
2.11 
2.93 
7.04 
7.01 

13.17 
6.06 

This difference between Agaricus and German becomes more clear by looking 
at the total number of examples used by a base learner, i.e., AVSS, during the 
boosting iterations. Recall that we are using boosting by filtering; so when the 
base learner asks for an example, the filtering method might have to actually 
sample several of them until it gets one that passes the filter and is given to 
the base learner. Our experiment shows that, in total, German needs 264,763 
examples while Agaricus needs only 82,915 examples. On the other hand, the 
number of examples actually used by the base learner is 162,058 for German and 
13,907 for Agaricus, and there is more than 10 times difference. 

As for the difference between arithmetic and geometric sampling, we can see 
that, for this particular problem and our choice of s = 2, the geometric sampling 
is, on average, around 1.3 times faster than the arithmetic sampling, which is 
what we can expect from our theoretical estimation provided in [4]. In Table 3 
we provide the running times of Geo. for other values of s. 

Table 4. Accuracies and running times for 10, 20 and 30 boosting rounds. 

DataSet 
Name 

agaricus 
kr-vs-kp 
hypothyroid 
sick-euthy. 
german 
ionos 

Running Time 
10 
1.78 
2.75 
5.38 
6.77 

10.47 
4.74 

20 
5.97 
8.44 

33.31 
58.17 
20.34 
13.98 

30 
13.88 
20.88 

128.29 
172.56 
41.21 
28.29 

Accuracy 
10 

98.03 
92.71 
95.86 
90.93 
74.30 
89.63 

20 
98.95 
93.48 
95.87 
91.08 
76.37 
92.35 

30 
99.77 
93.94 
95.86 
92.13 
77.10 
93.90 

With respect to C4.5, we can see that our algorithm is faster in many datasets. 
More specifically, MadaBoost with ADSS using geometric sampling is around 10 
times faster than C4.5. Compared to Naive Bayes, we can see that our method 
is much faster for the largest datasets (more than 9 times for Agaricus) but as 
the dataset becomes smaller the advantage is lost and, for instance, for dataset 
German our method becomes around 10 times slower. Notice that Naive Bayes 
is perhaps the fastest known learning method that uses all the datsiset since its 
running time scales exactly linear in the training set. 
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We have also done some experiments to check the scalabiUty of the process 
with respect to the number of boosting iterations. The results are shown in 
Table 4. These results have been obtained using MadaBoost and the geometric 
version of Decision Stumps Selector with s = 2. Notice that for some datasets 
there is still a gain in accuracy and that, in general, is still much faster to run 30 
boosting iterations using our sampling method than to run 10 boosting iterations 
using all the dataset. 

5 Conclusions 

In this paper we have studied a simple learning system based on boosting de-
cision stumps. Our goal was to show that this learning system can be executed 
efficiently using a large dataset. For achieving this goal we have proposed the 
following two tools. First, we have use an adaptive sampling method for selecting 
the decision stump at each iteration so that this process can be done using only 
part of the dataset. Second, we have use a modification of AdaBoost that can 
be efficiently run under the boosting by filtering method and thus, appropiately 
combined with the sampling based base learner that we used. We have provide 
experimental evidence that this method is much more efficient than using all the 
dataset and that there is no apparent lost in accuracy. 

Future work involves finding a stronger based learner that, while we can 
still combine with our sampling method provides us with a better accuracy 
at each step so that the overall accuracy is better and we can also use it for 
problems with a large number of classes. Another interesting topic is to perform 
these experiments but using much larger datasets that cannot be loaded in main 
memory and thus, we have to sample from external memory. 
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Abstract. Combining multiple global models (e.g. back-propagation based 
neural networks) is an effective technique for improving classification accuracy 
by reducing a variance through manipulating training data distributions. 
Standard combining methods do not improve local classifiers (e.g. k-nearest 
neighbors) due to their low sensitivity to data perturbation. Here, we propose an 
adaptive attribute boosting technique to coalesce multiple local classifiers each 
using different relevant attribute information. In addition, a modification of 
boosting method is developed for heterogeneous spatial databases with unstable 
driving attributes by drawing spatial blocks of data at each boosting round. To 
reduce the computational costs of k-nearest neighbor (k-NN) classifiers, a novel 
fast k-NN algorithm is designed. The adaptive attribute boosting applied to real 
life spatial data and artificial spatial data show observable improvements in 
prediction accuracy for both local and global classifiers when unstable driving 
attributes are present in the data. The "spatial" variant of boosting applied to the 
same data sets resulted in highly significant improvements for the k-NN 
classifier, making it competitive to boosted neural networks. 

Keywords: multi-strategy learning, boosting, attribute representation, spatial 
databases, fast k-NN classifier. 

1. Introductio n 

Many large-scale data analysis problems involve an investigation of relationships 
between attributes in heterogeneous databases. Large data sets very often exhibit 
attribute instability, such that the set of relevant attributes is not the same through the 
entire data space. This is especially true in spatial databases, where different spatial 
regions may have completely different characteristics. 

It is known in machine learning theory that combining multiple classifiers is an 
effective technique for improving prediction accuracy. There are many general 
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combining algorithms such as bagging [1], boosting [2], or Error Correcting Output 
Codes (ECOC) [3] that significantly improve global classifiers like decision trees, 
rule learners, and neural networks. These algorithms may manipulate the training 
patterns individual classifiers use (bagging, boosting) or the class labels (ECOC). An 
ensemble of classifiers must be both diverse and accurate in order to improve 
accuracy of the whole. Diversity is required to ensure that all the classifiers do not 
make the same errors. In order to increase the diversity of combined classifiers for 
spatial heterogeneous databases with attribute instability, one cannot assume that the 
same set of attributes is appropriate for each single classifier. For each training 
sample, drawn in a bagging or boosting iteration, a different set of attributes is 
relevant and therefore the appropriate attribute set should be used by each single 
classifier in an iteration. In addition, the application of different classifiers on spatial 
databases, where the data are highly spatially correlated, may produce spatially 
correlated errors. In such situations the standard combining methods might require 
different schemes for manipulating the training instances in order to keep the diversity 
of classifiers. 

In this paper, we propose a modification of the AdaBoost algorithm [2] for 
combining multiple classifiers to improve overall classification accuracy. In each 
boosting round we try to maximize the local information for a drawn sample by 
changing attribute representation through attribute selection, attribute extraction and 
appropriate attribute weighting methods [4]. In order to exploit the spatial data 
knowledge, a modification of the boosting method appropriate for heterogeneous 
spatial databases is proposed, where at each boosting round spatial data blocks are 
drawn instead of the standard approach of sampling single instances. 

The influence of these adjustments to single classifiers is not the same for local 
classifiers (e.g. k-nearest neighbor) and global classifiers (e.g. artificial neural 
networks). It is known that standard combining methods do not improve simple local 
classifiers due to correlated predictions across the outputs from multiple combined 
classifiers [1, 3]. We show that prediction of combined nearest neighbor classifiers 
can be decorrelated by selecting different attribute representations for each sample 
and by sampling spatial data blocks. The nearest neighbor classifier is often criticized 
for slow run-time performance and large memory requirements, and using multiple 
nearest neighbor classifiers could further worsen the problem. Therefore, we used a 
novel fast method for k-nearest neighbor classification to speed up the boosting 
process. We also test the influence of changing attribute representation on global 
classifiers like neural networks. 

2. Related Work 

The nearest neighbor classifier [6] is one of the oldest and simplest methods for 
performing general, non-parametric classification. A common extension is to choose 
the most common class among the k nearest neighbors. Despite its simplicity, the k-
nearest neighbor classifier (k-NN) can often provide similar accuracy to more 
sophisticated methods such as decision trees or neural networks. It's advantages 
include ability to learn from a small set of examples, and to incrementally add new 
information at runtime. 
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Recently, researchers have begun testing methods for improving classification 
accuracy by combining multiple versions of a single classifier, also known as an 
ensemble approach. Unfortunately, many combining methods do not improve the k-
NN classifier. For example, when experimenting with bagging, Breiman [1] found no 
difference in accuracy between the bagged k-NN classifier and the single model 
approach. It is also shown that ECOC will not improve classifiers that use local 
information due to high error correlation [3]. 

A popular alternative to bagging is boosting, which uses adaptive sampling of 
patterns to generate the ensemble. In boosting [2], the classifiers in the ensemble are 
trained serially, with the weights on the training instances set adaptively according to 
the performance of the previous classifiers. The main idea is that the classification 
algorithm should concentrate on the difficult instances. Boosting can generate more 
diverse ensembles than bagging does, due to its ability to manipulate the input 
distributions. However, it is not clear how one should apply boosting to the k-NN 
classifier for the following reasons: (1) boosting stops when a classifier obtains 100% 
accuracy on the training set, but this is always true for the k-NN classifier, (2) 
increasing the weight on a hard to classify instance does not help to correctly classify 
that instance as each prototype can only help classify its neighbors, not itself. Freund 
and Schapire [2] applied a modified version of boosting to the k-NN classifier that 
worked around these problems by limiting each classifier to a small number of 
prototypes. However, their goal was not to improve accuracy, but to improve speed 
while maintaining current performance levels. 

Although there is a large body of research on multiple model methods for 
classification, very littl e specifically deals with combining k-NN classifiers. Ricci and 
Aha [5] applied ECOC to the k-NN classifier (NN-ECOC). Normally, applying 
ECOC to k-NN would not work since the errors in two-class problems would be 
perfectly correlated. However, they found that applying attribute selection to the two-
class problems decorrelated errors if different attributes were selected. Unlike this 
approach. Bay's Multiple Feature Subsets (MFS) method [6] uses random attributes 
when combining individual classifiers by simple voting. Each time a pattern is 
presented for classification, a new random subset of attributes is selected for each 
classifier. 

Although it is known that boosting works well with global classifiers like neural 
networks, there have been several experiments in selecting different attribute subsets 
as an attempt to force the classifiers to make different and hopefully uncorrected 
errors. Tumer and Ghosh [7] found that with neural networks, selectively removing 
attributes could decorrelate errors. Unfortunately, the error rates in the individual 
classifiers increased, and as a result there was littl e or no improvement in the 
ensemble. Cherkauer [8] was more successful, and was able to combine neural 
networks that used different hand selected attributes to achieve human expert level 
performance in identifying volcanoes from images. 
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3. Methodology 

3.1 Adaptive Boosting for  k-NN Classifiers 

We follow the generalized procedure of AdaBoost.M2 [2]. The modified algorithm is 
shown in Fig. 1. It maintains a distribution D, over the training examples, which can 
be initially uniform. The algorithm proceeds in a series of T rounds. In each round, 
the entire weighted training set is given to the weak learner to compute weak 
hypothesis /;,. The distribution is updated to give wrong classifications higher weights 
than correct classifications. 

 Given: Set S {(x„  y,), ... , (x ,̂ yJ}  x, G X, with labels y, e Y = 
 Initialize the distribution D, over the examples, such that D,(i) 
 F o r t = l , 2, 3,4, ... 7" 

0. Find relevant feature inlbrmation (or distiibution D, 
1. Train weak learner using distribution D, 
2. Compute weak hypothesis /z,: X x Y —> [0, 1] 
3. Compute the pseudo-loss of hypothesis h,: 

e,= Y Y,D,{i,y){\-h,{X,,y,.) + h,(AT,.,y)) 
U.y)eB 

4. Sct/3,= £,/(l-£) 

5. Update D.: D,^, (i. y) = {D,(«, ^) /Z,)  ^/''^^i-/,,(x, 

=  1/m. 

,y,)+'i,(j : 

k} 

.yj ) 

where Z, is a normalization constant chosen such that D,^, is a distribution. 

 Output the final hypothesis: h^, = arg max V (log — )  h, (x. y) 

Fig. 1. The scheme of modified AdaBoost.M2 algorithm 

Since at each boosting iteration t we have different training samples drawn 
according to the distribution D,, at the beginning of the "for loop" in Fig. 1 we modify 
the standard algorithm by adding step 0., wherein we choose a different attribute 
representation for each sample. Different attribute representations are realized through 
attribute selection, attribute extraction and attribute weighting processes through 
boosting iterations. This is an attempt to force individual classifiers to make different 
and hopefully uncorrelated errors. 

Error correlation is related to Breiman's [1] concept of stability in classifiers. 
Nearest neighbor classifiers are stable to the patterns, so bagging and boosting 
generate poor k-NN ensembles. Nearest neighbor classifiers, however, are extremely 
sensitive to the attributes used. Our approach attempts to use this instability to 
generate a diverse set of local classifiers with uncorrelated errors. At each boosting 
round, we perform one of the following methods to determine a suitable attribute 
space for use in classification. 
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To eliminate irrelevant and highly correlated attributes, regression-based attribute 
selection was performed through performance feedback [4] forward selection and 
backward elimination search techniques based on linear regression mean square error 
(MSE) minimization. The r most relevant attributes are selected according to the 
selection criterion at each round of boosting, and are used by the k-NN classifiers. 

In contrast to attribute selection where a decision is target-based, variance-based 
dimensionality reduction through attribute extraction is also considered. Here, linear 
Principal Components Analysis (PCA) [4] was employed. Each of the k-NN 
classifiers uses the same number of new transformed attributes. Another possibility is 
to choose an appropriate number of newly transformed attributes which will retain 
some predefined part of the variance. 

The attribute weighting method used in the proposed method is based on a 1-layer 
feedforward neural network. First, we try to perform target value prediction for the 
drawn sample with defined a 1-layer feedforward neural network using all attributes. 
It turns out that this kind of neural network can discriminate relevant from irrelevant 
attributes. Therefore, the neural networks interconnection weights are taken as 
attribute weights for the k-NN classifier. 

To further experiment with attribute stability properties, miscellaneous attribute 
selection algorithms [4] were applied on the entire training set and the most stable 
attributes were selected. Then the standard boosting method was applied to the k-NN 
classifiers using the identified fixed set of attributes at each boosting iteration. When 
boosting is applied with attribute selection at each boosting round, the attribute 
occurrence frequency is monitored in order to compare the most stable selected 
attributes. When attribute subsets selected through boosting iterations become stable, 
this can be an indication to stop the boosting process. 

3.2 Spatial Boosting for  k-NN Classiflers 

Spatial data represent a collection of attributes whose dependence is strongly related 
to a spatial location where observations close to each other are more likely to be 
similar than observations widely separated in space. Explanatory attributes, as well as 
the target attribute in spatial data sets are very often highly spatially correlated. As a 
consequence, applying different classification techniques on such data is likely to 
produce errors that are also spatially correlated [12]. Therefore, when applied to 
spatial data, the boosting method may require different partitioning schemes than 
simple weighted selection which doesn't take into account the spatial properties of the 
data. Rather than drawing n data points according to the distribution D, (Fig. 1), the 
proposed method draws (n/M )̂ spatial data blocks (squares of size M points x M 
points) according to the new distribution 5D,. The distribution 5D, is modified in such 
a way that all data points dp inside the same spatial block have the same SD/dp). This 
is done through simple median M x M filtering over the data points inside the spatial 
block. Using this approach we hope to achieve more decorrelated classifiers whose 
integration can further improve model generalization capabilities for spatial data. 
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3.3 Adaptive Attribut e and Spatial Boosting for  Neural Network Classiflers 

Although standard boosting can increase prediction accuracy of artificial neural 
network classifiers, we experimented with changing attribute representation and 
spatial block drawing to see if adaptive attribute and spatial boosting can further 
improve accuracy of an ensemble of classifiers. The most stable attributes used in 
standard boosting of k-NN classifiers were also used here for the same purpose. At 
each boosting round we performed attribute selection and attribute extraction 
processes, since the attribute weighting method seemed to be "redundant" when 
training neural network classifiers. We trained multilayer (2-layered) feedforward 
neural network classification models with the number of hidden neurons equal to the 
number of input attributes. We also experimented with different numbers of hidden 
neurons. The neural network classification models had the number of output nodes 
equal to the number of classes (3 in our experiments), where the predicted class is 
from the output with largest response. We used two learning algorithms: resilient 
propagation [10] and Levenberg-Marquardt [11]. The experiments for testing attribute 
stability through the boosting were repeated as well, and they were used to determine 
the proper number of boosting iterations. 

3.4 The Fast Ic-NN Algorith m 

The quality of k-NN generalization depends on which k instances are deemed least 
distant, which is determined by its distance function. We consider two distance 
functions in our work: standard Euclidean and Mahalanobis distance. 

To speed up the long-lasting boosting process, a fast k-NN classifier is proposed. 
For n training examples and d attributes our approach requires preprocessing which 
takes 0{d- n- log n) steps to sort each attribute separately. However, this is performed 
only once, and we trade off this initial time for later speedups. 

The main idea of the proposed algorithm will be presented is as follows. 

1 

Fig. 2. The used hyper-rectangle, hypersphere and hypercubes in the fast k-NN 
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Initially , we form a hyper-rectangle with boundaries defined by the extreme values 
of the k closest values for each attribute (Fig. 2 - small dotted lines). If the number of 
training instances inside the identified hyper-rectangle is less than k, we compute the 
distances from the test point to all of dk data points which correspond to the k closest 
values for each of d attributes, and sort them into non-decreasing array sx. We take 
the nearest training example cdp with the distance dst^^, and form a hypercube with 
boundaries defined by this minimum distance dst^  ̂(Fig. 2 - larger dotted lines). If the 
hypercube doesn't contain enough (k) training points, form the hypercube of a side 
2sx{k+l). Although this hypercube contains more than k training examples, we need 
to find the one which contains the minimal number of training examples greater than 
k. Therefore, if needed, we search for a minimal hypercube by binary halving the 
index in non-decreasing array sx. This can be executed at most log k times, since we 
are reducing the size of the hypercube from 2-sx{k+l) to 2-sx(l). Therefore the total 
time complexity of our algorithm is 0(dlog k -log n), under the assumption that n > 
dk, which is always true in practical problems. 

If the number of training instances inside the identified hyper-rectangle is greater 
than k, we also search for a minimal hypercube that contains at least k and at most 2-k 
training instances inside the hypercube. This was accomphshed through binary 
halving or incrementing the side of a hypercube. After each modification of a 
hypercube's side, we compute the number of enclosed training instances and modify 
the hypercube accordingly. By analogous reasoning as in the previous case, it can be 
shown that binary halving or incrementing the hypercube's side will not take more 
than log k time, and therefore the total time complexity is still 0(dlog k log n). 

When we find a hypercube which contains the appropriate number of points, it is 
not necessary that all k nearest neighbors are in the hypercube, since some of the 
closer training instances to the test points could be located in a hypersphere of 

identified radius dst (Fig. 2). Since there is no fast way to compute the number of 
instances inside the sphere without computing all the distances, we embed the 
hypersphere in a minimal hypercube and compute the number of the training points 
inside this surrounding hypercube. The number of points inside the surrounding 
hypercube is much less than the total number of training instances and therefore 
classification speedups of our algorithm. 

4. Experimental Results 

Our experiments were performed using spatial data from a 220 ha field located near 
Pullman, WA. All attributes were interpolated to a 10x10 m grid resulting in 24,598 
patterns. The Pullman data set contained x and y coordinates, 19 soil and topographic 
attributes and the corresponding crop yield. We also performed the experiments on an 
artificial data set made using our spatial data simulator [13] corresponding to 5 
heterogeneous data distributions, each having different relevant attributes for yield 
generation. The data set had 5 relevant and 5 irrelevant attributes. 
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For the Pullman data set the miscellaneous attribute selection methods were used to 
identify the 4 most relevant attributes (Table 1) and the most stable attributes (4, 7, 9, 
20) were used for the standard boosting method. 

Table 1. Attribute selection methods used to identify 4 most stable attributes 

Attribut e Selection Metliods 

Forward Selection 

Inter-class 
distance 

Probabilistic 

distance 

Minkowski 
order 

1 

3 

Euclidean 

Chebychev 

Bhatacharya 

Mahalanobis 

Divergence metric 

Patrick-Fischer 

Minimal Error Probability, 
k-NN with Resubstitution 

Linear Regression 

Performance Feedback 

Selected 
Attributes 

7,9,10,11 

3, 4, 5, 7 

3, 4, 5, 7 

3,4, 5, 7 

3, 4, 8,9 

7,9,11,20 

3, 4, 8, 9 

13,16,20,21 

4,7,11,19 

5, 9, 7, 18 

Branch and Bound 

Proba-
bilistic 

distance 

Bhatacharya 

Mahalanobis 

Patrick-
Fischer 

Backward Elimination 
-. . 

Proba-
bilistic 

distance 

Bhatacharya 

Mahalanobis 

Patrick-
Fischer 

Linear Regression 

Performance Feedback 

Selected 
Attributes 

4, 7, 10, 14 

7,9,11,20 

13,17,20,21 

Selected 
Attributes 

4, 7, 9, 14 

7,9,11,20 

13,17,20,21 

7,9, 11,20 
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Fig. 3. Attribute stability during boosting 
on k-NN classifiers 
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Fig. 4. Attribute stability during boosting 
on Levenberq-Marquardt algorithm 

For the k-NN classifier experiments, the value of k was set using cross validation 
performance estimates on the entire training set. The selected attributes during the 
boosting iterations were monitored and their frequency was computed. The attribute 
frequency during the boosting rounds for backward elimination is shown in Fig. 3. 
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PCA was also used to reduce data dimensionality at each boosting round. Here, 
projections to 4 dimensions explained most of the variance and there was littl e 
improvement from additional dimensions. For the attribute weighting method, we 
used the attribute weights given by a neural network. For each of these attribute 
representation changing methods, boosting was applied to k-NN classifiers and the 
classification accuracies for 3 equal size classes are given in Table 2. 

Table 2. Comparative analysis of overall classification test accuracies for 3-class problems 

Number 
of 

Boosting 
Rounds 

8 

16 

24 

32 

40 

Standard 
Boosting 
on k-NN 

38.2 

39.5 

38.8 

38.5 

39.3 

Attribute Boosting on k-NN with 

Forward 
Selection 

40.9 

41.3 

41.9 

41.8 

42.1 

Backward 
Elimination 

38.5 

38.8 

42.1 

43.5 

42.8 

PCA 

42.4 

42.4 

44.5 

45.1 

43.4 

Attribute 
Weighting 

43.0 

43.9 

44.8 

46.1 

44.3 

Boosting on 

Levenberg-Marquardt 

Standard 
Boosting 

43.6 

44.1 

44.8 

45.5 

44.9 

Backward 
Elimination 

47.5 

47.8 

48.3 

48.8 

48.5 

Analyzing the data from Table 2, the methods of adaptive attribute boosting 
outperformed the standard boosting model. The results indicate that 30 boosting 
rounds were usually sufficient to maximize prediction accuracy. After this many 
iterations, attribute selection somewhat stabilized although attribute selection during 
boosting was less stable for k-NN (Fig. 3) than for neural networks (Fig. 4). For k-NN 
after approximately 30 boosting rounds the attributes became fairly stable with 
attributes 7, 11 and 20 obviously more stable than attributes 3 and 9 which also 
appeared in later iterations. The prediction accuracies for k-NN classifier experiments 
using Mahalanobis distance were worse than those using k-NN classifier with 
Euclidean distance, and are not reported here. The results show that our approach is 
promising. For each method of changing attribute representation, we achieve better 
prediction accuracy than using the standard boosting method. 

The frequency of selected attributes during the boosting rounds when boosting was 
applied to neural network classification models is presented in Fig. 4. The best results 
were obtained with applied backward elimination attribute selection using the 
Levenberq-Marquardt algorithm (Table 2). It appears that monitoring selected 
attributes can be a good criterion for early stopping of boosting, since after the 
selected attribute subsets become stable no significant improvements in prediction 
accuracy was noticed. In this case it was even more evident that attributes stabilized 
after approximately 30 boosting rounds. During the boosting iterations we were 
selecting the 4 and 5 most important attributes, and the number of hidden neurons in a 
2-layer feedforward neural network was equal to the number of input attributes. We 
noticed that further increasing the number of hidden neurons did not improve 
prediction accuracy probably because of overfitting. 
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Since our data have a spatial dimension, we also performed experiments with a 
modified spatial boosting method. Applying the spatial boosting method to a k-NN 
classifier, we achieved much better prediction than using the previous two boosting 
methods on a k-NN classifier (Table 3). Furthermore, when applying spatial boosting 
with attribute selection at each round, the prediction accuracy was increased slightly 
as the size (M) of the spatial block was increased (Table 3). No such improvements 
were noticed for spatial boosting with fixed attributes or with the attribute weighting 
method, and therefore the classification accuracies for just M = 5 are given. 

Applying spatial boosting on neural network classifiers resulted in no 
enhancements in classification accuracies. Moreover, for pure spatial boosting 
without attribute selection we obtained slightly worse classification accuracies than 
using "non-spatial" boosting. This phenomenon is due to spatial correlation of our 
attributes, which means that data points close in the attribute space are probably close 
in real space. Since k-NN examines this local information, it gains from spatial data 
blocks unlike neural networks which do not consider any kind of spatial information 
during the training. Therefore, one of our current concerns will be to find a technique 
to include spatial knowledge into the training of neural networks classifiers. 

Table 3. Overall accuracy of spatial boosting on a 3-class real-life test data using k-NN 

Number of 
Boosting 
Rounds 

8 

16 

24 

32 

40 

Spatial Boosting for k-NN with 

Fixed 
Attribute Set 

M = 5 

46.4 

46.6 

46.7 

46.9 

47.0 

Backward Elimination Attribute Selection 

M = 2 

45.8 

46.2 

46.7 

46.9 

47.2 

M = 3 

47.7 

47.6 

47.9 

48.1 

48.1 

M = 4 

48.1 

48.1 

48.2 

48.4 

47.9 

M = 5 

47.8 

47.7 

48.2 

47.9 

47.8 

Attribute 
Weighting 

M = 5 

45.2 

45.6 

45.8 

46.3 

45.9 

Although we achieved promising results on the real life data, we repeated all 
experiments for the more controllable artificial data set, which had 5 clusters similar 
in attribute space. Each of these clusters had a different set of relevant attributes used 
for yield generation. The best results for boosting of k-NN and neural network 
classifiers are shown in Table 4. 

The adaptive attribute boosting results show no improvements in prediction 
accuracy, which was due to properties of the artificial data set. Each different region 
has not only different relevant attributes related to yield class but also a different 
number of relevant attributes. Since we are not sure of the number of relevant 
attributes for each region, we need to select at least the 4 or 5 most important 
attributes at each boosting round. However, the total number of relevant attributes in 
the data set is 5 as well, and therefore we could not achieve any attribute instability. 
To avoid forcing the standard boosting method to be inferior to our method, we used 
all 5 relevant attributes from the data set for standard boosting. If we select the 5 best 
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attributes during each boosting iteration, it is obvious that we will achieve similar 
results. Therefore, we were selecting the 4 most relevant attributes knowing that for 
some drawn samples we would lose beneficial information. Nevertheless, we obtained 
similar classification accuracies as the standard boosting method, but reached the 
"bounded" final prediction accuracy in a smaller number of boosting iterations. This 
could be very important in order to reduce the time needed for the latest boosting 
rounds. Instead of post-pruning the boosted classifiers [14] we can try to on-line settle 
the appropriate nimiber of boosting iterations. 

Table 4. Comparative analysis of overall classification accuracies for 3-class problems on 
artificial test data set with 5 clusters (BE stands for Backward Elimination, LM for Levenberg-
Marquardt algorithm) 

Number 
of 

Boosting 
Rounds 

8 

16 

24 

32 

40 

Boosting 
Applied to k-
NN Classifier 

Standard 

57.9 

59.1 

57.6 

58.3 

58.2 

BE 

57.5 

59.1 

58.7 

58.5 

59.2 

Boosting Applied 
to LM Neural 

Networks 

Standard 

65.3 

66.7 

67.1 

68.8 

69.8 

BE 

66.1 

67.2 

69.3 

69.2 

69.4 

Spatial Boosting for k-NN with 

Fixed 
Attribute Set 

M = 5 

65.6 

65.5 

65.8 

66.0 

66.1 

Backward Elimination 
Attribute Selection 

M=:2 

64.6 

65.2 

65.5 

65.4 

65.3 

M=3 

65.3 

65.9 

65.9 

66.2 

66.4 

M^4 

65.4 

65.2 

65.8 

66.1 

66.7 

M=5 

66.0 

66.7 

67.0 

67.6 

68.1 

Classification accuracies of spatial boosting for k-NN on the artificial data set were 
again much better than without using spatial information and comparable to neural 
networks. Here, the classification accuracy improvements from increasing the size 
(M) of the spatial blocks were more apparent than for real-life data due to the higher 
spatial correlation of the artificial data. 

5. Conclusions and Future Work 

Results from two spatial data sets indicate that the proposed algorithm for combining 
multiple classifiers can result in significantly better predictions over existing classifier 
ensembles, especially for heterogeneous data sets with attribute instabilities. By 
manipulating the attribute representation used by individual classifiers at each 
boosting round, we showed that classifiers could be more decorrelated thus leading to 
higher prediction accuracy. The attribute stability test served as a good indicator for 
proper stopping of further boosting iterations. Testing of the proposed method seems 
to indicate that a smaller number of iterations is needed in order to achieve the same 
final prediction accuracy. The new boosting method proposed for spatial data showed 
promising results for k-NN classifiers making it competitive with highly non-linear 
and powerful models like neural networks. 
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In this paper, we concentrated on improving the accuracy of the global classifier. 
Although the new fast k-NN classifier significantly reduces the computational 
requirements, an open research question is to further increase the speed of ensembles 
of k-NN classifiers for high-dimensional data. 

Although the performed experiments provide evidence that the proposed approach 
can improve predictions of ensemble of classifiers, further work is needed to examine 
the method for more heterogeneous data sets with more diverse attributes. In addition, 
we are working to extend the method to regression based problems. 
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Abstract. We propose a new boosting algorithm which similaxly to v-
Support-Vector Classification allows for the possibility of a pre-specified 
fraction v of points to lie in the margin area or even on the wrong side of 
the decision boundary. It gives a nicely interpretable way of controlling 
the trade-off between minimizing training error and capacity. Further-
more, it can act as a filter for finding and selecting informative patterns 
from a database. 

1 Introduction 
Boosting and related Ensemble learning methods have been recently used with 
great success in applications such as Optical Character Recognition [2,3,11]. The 
idea of a large (minimum) margin explains the good generalization performance 
of AdaBoost in the low noise regime. However, AdaBoost performs worse than 
other learning machines on noisy tasks [6,7], such as the iris and the breast cancer 
benchmark data sets [5]. The present paper addresses the overfitting problem of 
AdaBoost in two ways. Primarily, it makes an algorithmic contribution to the 
problem of constructing regularized boosting algorithms. Secondly, it allows the 
user to roughly specify a hyper-parameter that controls the tradeoff between 
training error and capacity. This, in turn, is also appealing from a theoretical 
point of view, since it involves a parameter which controls a quantity that plays 
a crucial role in the generalization error bounds. 

2 Boosting and the Linear Programming Solution 
In this section, we briefly discuss the properties of the solution generated by 
standard AdaBoost and closely related Arc-GV[l] , and discuss the relation to 
a linear programming (LP) solution over the class of base hypotheses G. Let 
{^((x ) : i = 1 , . .. , T}  be a sequence of hypotheses and a = [ai... ar] their 
weights satisfying at > 0. The hypotheses gt are elements of a hypotheses class 
G = {g : X h-^  which is defined by a base learning algorithm L. 

The ensemble generates the label which is the weighted majority of the votes 
by sign(/(x)) where /(x) =: J2  ̂ ||a'|| gt(x)- In order to express that / and there-
fore also the margin p depend on a and for the ease of notation we define 
p(z,a) = yf{x), where z = (x,y). Likewise we use the normalized margin 

*  This paper is a short version of [8]. 
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p{a) = inini<i<m/9(zj,a) . The minimization objective function of AdaBoost 
can be expressed in terms of margins Q{cx) := J2'iLi 6xp(—||Q||ip(zj,a)). In ev-
ery iteration AdaBoost tries to minimize this error by a stepwise maximization 
of the margin. It is believed (but not proven) that AdaBoost asymptotically 
approximates (up to scaling) the solution of the following linear programming 
problem over the complete hypothesis set G 

maximize p 
subject to p{zi,a) > p for all 1 < i < m Q\ 

a t , / 9>0 for all 1 < i < |G| 

l|a||i = l -
Breiman [1] proposed a modification of AdaBoost, Arc-GV, making it possible to 
show the asymptotic convergence of p(a ') to the global solution: limt^oo p{oi*) = 
p'P, where p'̂  is the maximum possible margin for a combined classifier from G. 

3 V-ATC 

Let us consider the case where we are given a (finite) set G = {g : x ^-  ̂ [—1,1]} 
of T hypotheses. To find the coefficients a for the combined hypothesis / (x) 
we extend the LP-AdaBoost algorithm [4,7] and solve the following linear opti-
mization problem, similar in spirit to [10]: 

maximize P - ^ T,T=i ^i 
subject to p(zi, Q) > p - ĵ for all 1 < i < m ^2) 

6 , a t ,p > 0 for all 1 < < < T and 1 < j < m 
||a||i = 1 . 

This algorithm does not force all margins to be beyond zero and we get a. soft 
margin classification with a regularization constant  Interestingly, it can be 
shown that u is asymptotically proportional to the fraction of patterns in the 
margin area [8]. 
Suppose, we have a very large base hypothesis class G. Then it is very difficult 
to solve (2) as (1) directly. To this end, we propose an algorithm, U-ATC, that 
can approximate the solution of (2). The optimal p for fixed margins p(zt, a) in 
(2) can be written as 

p^{oc) ~ argmax p Y^ip - p(zi, a))+ 1 , 
^6(0,1] V ^ ™ ^ J 

(3) 

where (^)+ = max( ,̂ 0). Setting ĵ = {pu{oi) - p(zi,a))+ and subtracting 
-  ̂ X)Hi ^i from the resulting inequality on both sides, yields (for all 1 < i < m) 

p{zi,a)+^i>p^{a) (4) 

p{zi,a)+^i-—J2^i>p,ia)-—J2^i- (^) 
i= l i = l 

In particular we have to get rid of the slack variables ĵ again by absorbing them 
into quantities similar to p(zi ,a) and p{cx). This works as follows: on the right 
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hand side of (5) we have the objective function (cf. (2)) and on the left hand 
side a term that depends nonUnearly on a. Defining 

PAOI) p^{a)—yi^''  pA'^i^oi) =p(zi'")+^i—yz^i' (6) 
»=i i = l 

which we substitute for p{a.) and /9(z,a) in (1), respectively, we obtain a new 
optimization problem. Note that Pv{ot) and pj,(zi,a) play the role of a corrected 
or virtual margin. We obtain a non-linear min-max problem in terms of p 

maximize p{a) 
subject to p{zi,a) > p{a) for all 1 < i < m f'j\ 

at > 0 for all 1 < t < T 
l|a||i = 1 , 

which we refer to as u-Arc. 
We can now state interesting properties for i/-Arc by using Theorem 5 of [9] 

that bounds the generalization error R{f) for ensemble methods. In our case 
Rp{f) < I' by construction, thus we get the following simple reformulation of 
this bound: 

i . ( / ) < . + W -
c fh\og^{m/h) 

+ log (8) 

The tradeoff in minimizing the right hand side between the first and the second 
term is controlled directly by an easy interpretable regularization parameter u. 

4 Experiments 
We show a set of toy experiments to illustrate the general behavior of f-Arc-GV. 
As base hypothesis class G we use RBF networks [7], and as data a two-class 
problem generated from several 2D Gauss blobs. We obtain the following results: 
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Fig. 1. Toy experiment: the left shows the average fraction of important patterns, the 
average fraction of margin errors and the average training error for different values 
of the regularization constant v for i/-Arc. The bottom plots show the corresponding 
generalization error. The parameter v allows us to reduce the test errors to values 
about 20% (relatively) lower than for the hard margin algorithm (for i/ = 0 we recover 
Arc-GV/AdaBoost and for t*  = 1 we get Bagging.) 



344 G. Raetsch et al. 

— U-ATC leads to approximately vm pat terns that are effectively used in the 
training of the base learner: Figure 1 (left) shows the fraction of pat terns 
that have high average weights during the learning process. 

— f-Ar c leads to the fraction u of margin errors (cf. dashed line in Figure 1) 
exactly. 

— The (estimated) test error, averaged over 10 training sets, exhibits a rather 
flat minimum in v (Figure 1 (right)). 

5 Conclusion 
We analyzed the AdaBoost algorithm and found that Arc-GV and AdaBoost 
are suitable for approximating the solution of non-linear min-max problems over 
huge hypothesis classes. We introduced a new regularization constant u that 
controls the fraction of pat terns inside the margin area. The new parameter is 
highly intuitive and has to be tuned only within a fixed interval [0,1]. 

We found empirically that the generalization performance in i/-Arc is robust 
against changes around the optimal choice of the regularization parameter v. 
This finding makes model selection (e.g. via cross-validation) much easier. 

As the pat terns in the margin area correspond to interesting, difficul t and 
informative pat terns, future research wil l focus on using Boosting and Support 
Vector methods for da ta mining purposes. 
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Abstract. This paper presents a tree visuaUzer that combines several 
techniques from the field of information visualization to handle efficiently 
leirge decision trees in an interactive mining system. 

1 Introduction 

Research on visualization of decision trees has recently received a great attention 
from the KDD (knowledge discovery and data mining) community because of its 
practical importance. Many works have been done, e.g., the 3D Tree Visualizer 
in system MineSet [2], CAT scan (classification aggregation tablet) for inducing 
bagged decision trees [5], the interactive visualization in decision tree construc-
tion [1], etc. In our development of a tree visualizer for the system CABRO [4], 
a KDD system based on decision tree induction, we face two problems of deci-
sion tree visualization that have not thoroughly investigated: integration of tree 
visualization into an interactive knowledge discovery process and visualization 
of large trees. 

This paper represents the tree visualizer of CABRO, which can be invoked 
during the discovery process and can handle large trees by combining several 
techniques in information visualization. We also introduce a new technique, 
called T2.5D, for large tree visualization. 

2 The Tree Visualizer 

This section describes an overview of the tree visualizer in CABRO. The tree 
visualizer of CABRO provides several views; each view uses variant techniques 
and drawing algorithms to display trees, and serves different usage purposes. 
The available views are: 

— Standard: The tree is drawn in proportion, the size of a node is up to the 
length of its label, a father is vertically located at the middle of its children, 
and sibling are horizontally aligned. 

— Tightly-coupled [3]: The window is divided into two panels, one displays 
the tree in a tiny size and the other displays it in a normal size. The user 
uses the first panel as a map to navigate, and sees the focused area in the 
second one. 
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Fig. 1. Model selection Fig. 2. The T2.5D view 

— Fish-eyes [3]: This view distorts the magnified image so that nodes around 
the center of interest is displayed at high magnification, and the rest of the 
tree is progressively compressed. 

— T2.5D: This view is based on our proposed technique named T2.5D (stands 
for Tree 2.5 Dimensions) that tries to save screen space in order to display 
more nodes in a compact window. The focused paths of the tree are drawn 
in the front and in highlighted colors, the other paths are in background and 
dim colors (Fig. 2). 

The tree visualizer allows the user to customize above views by applying 
several operations on them. These operations include: 

— Zoom: The user can zoom in or zoom out the drawn tree. 
— Collapse/expand; The user can choose to view some parts of the tree by 

collapsing and expanding paths. 
— Display node: The user can see the content of a node such as attribute/ 

value, class, population, etc. 

For different purposes of usage, the tree visuahzer provides three modes of 
use: 

— View^ing: In this mode, the user takes whole control of the visualizer; he/she 
is free to choose which and how trees to be displayed. This mode is used when 
the user just wants to view a particular tree. 

— Mining : In this mode, the system automatically invokes tree visualizer to 
display trees under consideration. For example, changes of a generating tree 
are continuously displayed, so the user can see the progress of induction. 

— Matching: In this mode, the tree visualizer shows visual feedback for match-
ing unknown objects, such as highlighting matched paths and matched ob-
jects or graying out the unmatched parts of the tree. 
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3 Interact ive Discovery and Large Decision Trees 

This section analyses the role of the tree visualizer in the interactive discovery 
process of CABRO, and how it can handle efficiently with trees of different sizes. 

3.1 Model Selection 

In CABRO, to construct decision trees, the user needs to choose a series of 
settings including which attribute selection and pruning techniques to be used, 
what is the minimum number of instances at a leaf node, what is the lowest ac-
cepted error rate, whether the values of an attribute will  be grouped, how to deal 
with missing values, etc. Furthermore, if there are some continuous attributes 
the user may have to choose some discretization technique to discretize them. 
The chosen settings will be registered in a form called a plan. The realization of a 
plan wil l yield a decision tree (model). As there axe many possible combinations 
of settings, the user usually has to try a number of plans to achieve appropri-
ate decision trees. We consider that work model selection. After decision trees 
are generated, the user can visualize, evaluate and compare them. This iterative 
cycle may be repeated until reaching appropriate models. Usually, the model 
selection is a daunting and very time consuming work, but thanks to the tree 
visualizer and the flexible user interface of the system, it becomes easier and 
more effective (Fig. 1). 

The system frequently invokes the tree visualizer in the interaction with the 
user throughout model selection whenever he/she needs to refer to trees in order 
to make a choice. The tree visualizer then is in mining mode; it automatically 
chooses an arrangement of views that may be most convenient for the user to 
get needed information. Moreover, if the induction is set to run interactively, the 
system allows the user to be able to take part at every step of the induction, for 
example, he/she can manually choose which attribute will  be used to branch a 
node, or which branch has to be pruned. The tree visualizer then will  display 
candidate trees corresponding to different possibilities of the tree construction. 
The user then can decide which one is promising to further construct. 

3.2 Large Decision Trees 

There are many researches in the field of information visualization for represent-
ing large hierarchical structures, e.g., treemap, cone trees, hyperbolic trees [3], 
however they are not directly applicable to decision tree visualization. In the 
tree visualizer of CABRO, we deal with large trees by combining many known 
techniques whenever they fit  and developing a the T2.5D technique. Those tech-
niques are used to implement the views and operations. They complement each 
other to give the user a convenient visualization in different situations in discov-
ering and using decision trees. For example, the standard view is the best for 
small and average trees as it displays a very proportional picture of tree struc-
ture. Used together with the collape/expand operation the standard mode can 
deal well with bigger trees. Tightly-coupled views help the user to locate easily 
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any area in the tree picture, while fish-eye view is the best if the user currently 
focuses on a single node but also wants to see clearly its neighbors. 

Very large trees are still difficult to navigate and view even with tightly-
coupled and fish-eye techniques. To solve the problem, we have been developing 
the technique T2.5D. The 3D browsers usually can display more nodes in a 
compact area of the screen but require currently expensive 3D animation support 
and the structure somehow not easy to navigate, while the 2D browsers have a 
limitation in displaying many nodes in one view. The T2.5D technique combines 
the advantages of both the 2D and 3D drawing techniques to provide the user an 
efficient view with lower processing cost. The T2.5D view can display more than 
1000 nodes in full size (some are partially overlapped). In T2.5D, a node can 
be highlighted or dim. The highlighted nodes are those the user currently pays 
most attention on, and they are displayed in 2D for ease of view and navigation. 
The dim nodes are displayed in 3D to save the space, they allow the user to get 
an idea about overall structure of the hierarchy. 

4 Conclusion 

We addressed problems of integration of tree visualization into an interactive 
knowledge discovery process, and visualization of large trees. We presented the 
interactive tree visuaUzer of the system CABRO that employs recent visual-
ization techniques in mining decision trees, and how it works in an interactive 
discover process. We described our attempt to deal with large tree by imple-
menting multiple complemented views and operations, and introducing the new 
technique T2.5D. Though there are still a lot of work for improving this inter-
active tree visualizer, we believe that it contributes an efficient solution to the 
state-of-the-art of visualization of decision trees in KDD, especially T2.5D is 
very promising as a new display and navigation technique for large trees. 
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Abstract. We describe a new oblique decision tree induction algorithm. 
The VQTree algorithm uses Learning Vector Quantization to form a non-
parametric model of the training set, and from that obtains a set of hy-
perplanes which are used as oblique splits in the nodes of a decision tree. 
We use a set of public data sets to compare VQTree with two existing 
decision tree induction algorithms, 05.0 and OCl. Our experiments show 
that VQTree produces compact decision trees with higher accuracy than 
either C5.0 or OCl on some datasets. 

1 Introduction 

Decision trees are widely used for classification problems [Breiman et al. 1984], 
[Quinlan 1992], [Murthy et al. 1994]. Their popularity is easy to understand, as 
they provide efficient, readily interpreted models of the input-output mapping 
for a given classification task. 

Conceptually, a decision tree is a branching structure of linked nodes, which 
taken together represent a set of nested if-then-else tests. The two main kinds of 
decision tree are commonly referred to as axis-parallel and oblique trees. Axis-
parallel trees are characterized by decisions of the form 

attribute = value 

used for attributes with symbolic values, or 

attribute < value 

used for numeric attributes. Examples of axis-parallel decision tree systems are 
CART [Breiman et al. 1984] and C4.5 [Quinlan 1992]. The decisions used in 
oblique trees are linear inequalities involving more than one attribute: 

w^x < value, 

where a; is a vector of attribute values and t« is a weight vector. Examples 
of oblique decision tree systems are Linear Machine Decision Trees (LMDT) 
[UtgoflF & Brodley 1991] and OCl [Murthy et al. 1994]. 

Quinlan observes that some classification tasks are inherently less well suited 
for axis-parallel decision trees than others [Quinlan 1994]. When the decision 
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surface involves few interactions between attributes we expect axis-parallel trees 
to be very successful. Conversely, if the decision surface involves interactions 
between multiple attributes then oblique hyperplanes provide a more economical 
and accurate representation of the decision surface [Murthy et al. 1994]. 

Decision trees are usually built by a recursive divide-and-conquer process 
which is very efficient for axis-parallel decision trees [Quinlan 1992, page 17]. 
Suppose there are n examples, each of which has d attributes. Then there are 
a maximum of n possible distinct binary splits for each attribute, so that the 
maximum number of axis-parallel binary splits is just n x d. Therefore it is 
feasible to exhaustively test all possible splits at each branch [Quinlan 1992, 
page 25]. However, there may be as many as 2''(2) distinct oblique binary splits 
of the same set of examples [Murthy et al. 1994, page 3]. To get around this, 
oblique decision tree algorithms must constrain the set of oblique tests to be 
considered. This is usually done by a sampling or search procedure. 

In the present paper we suggest another approach, the VQTree algorithm, 
that combines the strengths of both approaches. The algorithm uses a prepro-
cessing step to create a pool of oblique hyperplanes called the decision set, which 
contains a piecewise linear approximation to the decision surface. Then standard 
top-down induction is applied to the training set, using hyperplanes from the 
decision set to subdivide the training subset at each node. The use of oblique 
splits lets us take advantage of naturally appearing linear interactions in the 
training set. Use of a preprocessing step to identify candidate splits allows us to 
exhaustively evaluate the splits during the induction step. 

The remainder of the paper is laid out as follows. In Section 2 we introduce 
decision tree induction and provide brief descriptions of several existing oblique 
decision tree systems. Section 3 describes the VQTree algorithm in detail. In 
Section 4 we outline a set of experiments which verify the utilit y of the algorithm. 
Finally in Section 5 we summarize and point the way for further exploration. 

2 Previous Work on Oblique Decision Tree Induct ion 

We consider classification problems, in which there is an input space X C 3t ,̂ 
a discrete set of class labels C, and an unknown relation TZ C X x C. We have a 
(given) training set of labelled examples T CTZ, which are assumed to be drawn 
according to fixed but unknown probability distribution V defined over TZ. The 
goal is to find a function F : X —  ̂C which approximates 7̂  in such a way that 
the probability of classification error is minimal with respect to T>. 

2.1 Top-Down Decision Tree Inductio n 

In a decision tree system, F is implemented as a nested series of multi-way 
if-then-else tests, which subdivide X into a disjoint set of polyhedral decision 
regions. Each leaf of the decision tree has a class label and covers one decision 
region. A point is classified by traversing the tree to determine which region it 
lies in, and taking the class label of the associated leaf. Decision trees are built 
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by a greedy divide and conquer naethod in which the training set is recursively 
partitioned into subsets, controlled by a "goodness of split" measure, G. 

At stage i of construction, a pool of candidate tests Si is available, as well 
as a set % of available training points. Each test s G 5j is used to split Tj into 
subsets {Til(5) ,  and a measure of quality is assigned to the resulting 
partition using G. The test s* that yields the best quality measure is chosen 
for the current branch, s* is removed from the pool of candidate tests, and the 
process is applied recursively to each subset Tij{s*)  to produce the decision tree. 
Branching ceases when all examples in a subset belong to the same class, or 
when some alternative stopping criterion is met. Once a test has been chosen it 
is not reviewed during the construction phase. Many algorithms also employ a 
pruning stage, when redundant nodes are eliminated to improve the accuracy of 
the decision tree. 

Several metrics have been used to measure goodness of split. Information 
Gain, the method used by C4.5, has proved to be robust and effective 
[Quinlan 1992, page 21]. However, a number of other measures are detailed in 
[Murthy et al. 1994, Appendix B]. 

2.2 Obliqu e Decision Tree Algorithm s 

LMD T [Utgoff & Brodley 1991] constructs a linear machine in each branch, con-
sisting of a set of weight vectors {lodc S C}, one for each class. The weight vec-
tors are optimized by an iterative process in which training points are presented 
and reward or punishment steps are applied to each weight vector. If training 
point {x,y) is presented, the update step is 

A positive update occurs if and only if the classes match, ie. c = y. As training 
continues the correction factor p decays according to the schedule: 

(3 <- 0.995/3 - 0.0005 

P- 1 + /3' 

Since the lineax machine in each node contains one weight vector for each class, 
LMD T produces multi-way splits with oblique hyperplanes. 

OCl [Murthy et al. 1994] is derived from a variant of CART which used 
linear combinations of attributes in tests, and employed a randomized search 
method [Breiman et al. 1984, chapter 5]. OCl places a single hyperplane in 
each branch, forming an oblique binary split. The hyperplane is initialized with 
the best ajcis-parallel binary split for the current subset of training examples. 
After initial placement, a random hill-climbing method is used to improve the 
quality of the split. Since the worst that can happen during the hill-climbing 
stage is "no improvement", the resulting oblique test will be at least as good as 
the best axis-parallel binary split. 
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[Sanchez et al. 1998] describe a method for constructing a decision tree from 
the Voronoi diagram of the training set. The Voronoi diagram is a set of poly-
hedral cells, one for each point in the training set. The polyhedron surrounding 
a training point contains the set of all points closer to that training point than 
any other point in the training set, using the Euclidean metric to measure dis-
tances. Thus the task of determining the nearest training point to a query point 
is equivalent to finding which polyhedron in the Voronoi diagram contains the 
query point. The cell boundaries in the Voronoi diagram form a set of hyper-
planes V, which are used to construct an oblique decision tree. The algorithm 
is: 

— Obtain the decision hyperplanes V from the training set. 
— Recursively split 5t̂  with hyperplanes from V to form a decision tree. 
— Assign class labels to each leaf of the decision tree: 

 Generate a query point that lies in the region covered by the leaf. 
 Search the training set to find the nearest training point to the query 

point. 
 The class label of the nearest training point becomes the class repre-

sented by the leaf. 
— Prune the tree by merging any sibling leaves that represent the same class. 

The VQTree algorithm differs in several practical ways from all of these meth-
ods. Like the algorithm of [Sanchez et al. 1998], we do not recursively subdivide 
the training set during the search for candidate tests, and hyperplanes are ob-
tained from a Voronoi diagram. However, by conducting Vector Quantization 
as the first step we obtain a compressed representation of the underlying data. 
This reduces the number of candidate splits that must be evaluated during the 
top-down induction step. 

3 The VQTree Algorithm 

The VQTree algorithm consists of the following steps; 

1. Select an initial nearest neighbour codebook from the training set. 
2. Optimize the nearest neighbour codebook using one of the algorithms in the 

Learning Vector Quantization (LVQ) family [Kohonen 1988]. 
3. Derive a set of hyperplanes (called the decision set) from the codebook by 

examining the adjacency relationships between prototypes. 
4. Postprocess the training set to reduce classification noise. 
5. Build a decision tree using top-down induction as described in Section 2. 

3.1 Selection of Initia l Codebook 

Input: Training set, T CTZ 
Number of prototypes required, m* > 0 

Output: Codebook, M CTZ 
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A codebook is a set M of labelled prototype points belonging to the same 
space as the target relation TZ. Thus, M — {(^1,1^1), , (^m,<^m)}  C X x C. 
The codebook is used to classify a point x by finding the nearest prototype ^j< 
in Ai, and taking the associated class ipj-. Distances are calculated using the 
Euclidean metric. 

We use a variant of the random coding method [Gersho & Gray 1992, page 
359] to seed the codebook with approximately m randomly chosen training 
points. Class prior probabilities are taken into account to give a balanced spread 
of prototypes across all classes. The number of prototypes drawn for each class 
depends upon the total number required and on the relative proportions of the 
classes in the training set. If class c has frequency fc in the training set while the 
training set has A'' points, then the number of prototypes drawn for that class 
is ruc = fm*  x j^]-  The complete codebook will contain m = ^Z^ec "^c labelled 
prototypes. 

3.2 Codebook Opt imizat ion 

Input: Training set, T CTZ 
Codebook, McTl 

Output: Optimised codebook, M' C 7̂  

Kohonen's LVQ algorithms [Kohonen 1988] optimize nearest neighbour code-
books for classification. They are computationally efficient, readily able to handle 
very large training sets. Although there are some differences in detail between 
LVQ algorithms, the central point is the learning step, which is common to all. 
At each time step t, a training example x{t) is used to update one or more 
prototypes ij.{t)  using a reward/punishment regime of the form: 

Here a{t) is a learning rate, which may vary during training. The update is 
positive if and only if the class of point x{t) and prototype iJ.{t) are the same. If 
the training example x{t) contains missing values, then distances axe calculated 
and updates are apphed in the subspace of non-missing values. 

The chief difference between LVQ algorithms is the criterion used to decide 
which (if any) prototype /x(t) to adjust when presented with x{t). For our ex-
periments here, we have used LVQl [Kohonen 1988] and the Decision Surface 
Mapping (DSM) algorithm [Geva k Sitte 1991]. 

LVQl forms a non-parametric model of the distribution of training points 
within each class, and implicitly approximates the Bayes decision surface. LVQl 
is fairly robust in the presence of noise in the training set. Under LVQl , when a 
training point x{t) is presented, the single nearest prototype is adjusted. 

DSM strives to form an accurate model of the Bayes decision surface at the 
expense of quantization within each class. When point x{t) is presented, one 
of two actions may be taken. If the nearest neighbour to x{t) in the codebook 
has the same class label as x{t) then no update occurs. However, if the nearest 
neighbour to x{t) has a different class label to x(t), two prototypes are adjusted: 
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— the actual nearest prototype is pushed away from x{t), because its class is 
wrong. 

— the nearest prototype with the right class is pulled towards x{t). 

Because updates occur whenever a training example is misclassified, DSM is 
subject to problems when the data is noisy. However, if the conditions are right 
DSM can produce classifiers that are considerably more accurate and compact 
than those trained with LVQl . 

3.3 Ex t ract t he Decision Set 

Input: Training set, T CTZ 
Codebook, M cTZ 

Output: Decision set S, a set of hyperplanes 

Once the codebook has been created, each prototype Hj is surrounded by a 
decision region which includes the points nearer to fij  than to any other proto-
type. All points within this region will  be mapped to the class (pj by the nearest 
neighbour classifier. If fij  and fik are two adjacent prototypes then the hyper-
plane Hjk which separates their decision regions has an equation of the form 

Hjkix) = wj^x + bjk  0 

where Wjk — V-j — fJ'k 

and bjk =  + y^kf^jk-

We are interested only in the set of hyperplanes that separate adjacent decision 
regions mapping to different classes, 

S C {Hjk\l  <j,k<mA<Pjj^ (i>k}. 

One way to find S would be to first compute the Voronoi diagram of the code-
book, and from there read off the hyperplanes. However, computing the Voronoi 
diagram in high dimensional space is a hard problem since there may be an ex-
ponential number of vertices. Since we do not need to know the vertices of the 
diagram, we are able to tackle a simpler problem, namely to determine whether 
or not two prototypes have adjacent decision regions. In the VQTree prototype 
this is done using a polynomial-time algorithm based on ray-casting, although 
it could also be formulated as a linear programming task [Sanchez et al. 1998]. 

The algorithm we use to determine whether the hyperplane Hjk is to be 
included in S is: 

1. a; <- Hj,y <- fik-
2. A^{Hji\ijtj},U^{}. 
3. yHji eA,a^  ̂ {wj^x + bji)/{wJiX + wj^y). 
4. p <— argmint{aj|ai > 0} . 
5. If p = fc, then signal success and STOP. 
6. X 'r- x-\- ap{y — x) 
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7. A^A- {Hjp]M  ^UU {Hjp} 
8. If Hji{x) < 0 for some Hji e U, then signal failure and STOP. (The hy-

perplanes are assumed to be oriented so that Hji{x)  > 0 if x is within the 
decision region.) 

9. y^y~ [wjpfj-j  + bjp)I(ujjptwjp)Wjp. 
10. Go to step 3. 

The codebook contains m prototypes, so there are 0{m?) possible hyperplanes 
to consider. For each of these hyperplanes, step 3 requires up to O^m?) in-
tersections to be calculated. As each intersection requires the computation of 
several dot-products between vectors, we obtain an upper bound of 0{Dm^) for 
the complexity of this algorithm. Thus, clear advantages are to be had if the 
number of prototypes is kept small. 

3.4 Reduce Classification Noise in Trainin g Set 

Input: Training set, T C 7?. 
Codebook, McU 

Output: "Clean" training set, T' C 7̂  

During implementation of this algorithm we encountered the practical diffi -
culty that, if the training set contains many points with a class label that does 
not match the value predicted by the nearest neighbour classifier, then the deci-
sion tree overfits the noisy data. This problem seems to stem from the fact that, 
during early splits especially, hyperplanes are applied to split training data far 
from the region where they actually appear as part of the decision surface. 

To get around this difficulty, we perform a postprocessing step to clean up 
class noise in the training set. The class label of each training point is replaced 
with a new label, obtained by nearest neighbour search in the codebook. 

3.5 Top-Down Inductio n and Prunin g 

Input: "Clean" training set, T cTl 
Decision set S, a set of hyperplanes 

Output: Oblique decision tree 

Having obtained the decision set, it remains only to apply the top-down 
induction algorithm described in Section 2 to complete the decision tree. For 
training points with missing values, we determine the position relative to each 
hyperplane by comparing the distance from the training point to each of the pro-
totypes that generated the hyperplane, restricting the calculation to the subspace 
of non-missing values. After the tree has been grown, we perform a bottom-up 
pruning pass, which identifies any branch that has two leaves with the same class 
label. If such a branch is found, it is replaced by a single leaf representing the 
common class. This form of pruning simplifies the tree, but has no effect on the 
classification accuracy. 
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Fig. 1. Test error on 9 benchmark datasets. 

4 Experimental Results 

This section describes the results of a set of tests, comparing VQTree with C5.0 
Release 1 (the commercial version of C4.5), and with OCl Release 3. We em-
ployed two LVQ algorithms (DSM and LVQl ) to optimise the nearest neighbour 
codebook, yielding two variants of VQTree classifier which we term VQTree 
(DSM) and VQTree (LVQl) respectively. We tested the algorithms on 9 data 
sets from the UCI Machine Learning Repository [Murphy & Aha 1994], chosen 
primarily because they include a large proportion of continuous attributes. For 
each data set, we conducted 10 repeats of 10-fold cross validation, presenting 
the same training and test sets to all algorithms at each stage. 

Minimal preprocessing was conducted before we started the experiments. 
For the Anneal domain, missing values were converted to valid "not applicable" 
symbolic values. Other than that, for C5.0 the data was used as-is from the 
repository. VQTree and OCl require real-valued attributes, so as each training-
testing partition was generated we converted symbolic values to sparse-coded 
binary values and standardised all attributes using the transformation 

Here Xi is attribute i, Xi is the mean of Xi and cr, is the standard deviation of 
Xi, computed using values from the training set. 

The optimal number of prototypes to include in the codebook is not usually 
known before a classifier is built, so we ran a series of experiments using 2, 4, 8, 
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Table 1. Pairwise combinations of the 4 decision trees involved in this study. Each cell 
contains the number of wins, draws and losses between the decision tree in that row 
versus the decision tree in that column. 

Algorithm 

C5.0 
OCl 

VQTree (DSM) 
VQTree (LVQl ) 

C5.0 

-
3 - 2 - 4 
3 - 1 - 5 
5 - 1 - 3 

OCl 

4 - 2 - 3 
-

2 - 2 - 5 
4 - 2 - 3 

VQTree 
(DSM) 

5 - 1 - 3 
5 - 2 - 2 

-
4 - 1 - 4 

VQTree 
(LVQl ) 

3 - 1 - 5 
3 - 2 - 4 
4 - 1 - 4 

-

16, 32 and 64 prototypes per codebook,̂ reporting the best result for each data 
set. DSM and LVQl were trained for 20 epochs, with an initial learning rate a{t) 
of 0.1, decaying linearly to 0. C5.0 and OCl were run using default parameter 
values, so pruned trees were produced. 

Figure 1 shows the test error of the four decision trees and the underly-
ing nearest neighbour classifiers from which each VQTree classifier was derived. 
Thus, the series "DSM" refers to the nearest neighbour classifier trained with 
DSM, while the series "VQTree (DSM)" refers to the corresponding decision 
tree. The two VQTree algorithms perform well compared to C5.0 and OCl, with 
the LVQl variant attaining the lowest test error on 4 of the 9 datasets while the 
DSM variant reached the lowest error on 2. C5.0 attained the lowest error on 2, 
while OCl was best on 1 domain. 

Table 1 provides comparisons between each pair of decision trees that we 
tested, using 95% confidence intervals to determine significance. Within each 
pair, an algorithm scores a win if its test error is significantly lower than the 
other, a loss if the test error is significantly higher, and a draw otherwise. Again 
the LVQl variant of VQTree makes a strong showing relative to C5.0 and OCl, 
but it appears to be evenly matched with the DSM variant of VQTree. 

Turning to the issue of classifier size, Table 2 sets out details of the optimal 
LVQ codebook sizes and the number of leaves in each decision tree. OCl is the 
most economical of the decision tree algorithms, followed by VQTree (DSM), 
VQTree (LVQl) and C5.0. The size of the classifier produced by the LVQl 
variant of VQTree is usually smaller than the original LVQ codebook, but this 
is not always the case for the DSM variant. This reflects the fact that LVQl 
tends to spread prototypes evenly through the training set, while DSM is more 
parsimonious with prototypes and places them nearer to the decision surface. 
Examining the optimal number of prototypes for each data set, we see that 
there is no hard and fast rule - for some tasks a large codebook is required, 
producing correspondingly complex trees. However, for other data sets a very 
simple oblique decision tree is best - Cleveland Heart Disease and Australian 
Credit data sets require only a single hyperplane. 

' The actual number of prototypes varies slightly from these ideal values. See Section 
3.1 for details. 



358 Sh. Geva and L. Buckingham 

Table 2. Average classifier size - number of leaves per decision tree, number of proto-
types per nearest neighbour classifier. 

Dataset 

Anneal 
Breast-w 

Credit 
Glass 

Heart-c 
Iri s 

Pima 
Segmentation 

Sonar 

C5.0 

23.7 
12.6 
18.5 
23.8 
20.1 
4.8 

22.4 
41.4 
14.4 

OCl 

6.5 
2.9 
3.1 

12.1 
3.6 
3.2 
6.3 

30.5 
5.8 

DSM 

65 
2 
2 

10 
2 
3 
4 

35 
16 

VQTree 
(DSM) 

24.3 
2.0 
2.0 

19.7 
2.0 
3.0 
4.4 

60.9 
22.5 

LVQl 

65 
8 
2 

34 
2 
9 
4 

66 
64 

VQTree 
(LVQl ) 

20.9 
3.6 
2.0 

32.4 
2.0 
6.4 
5.4 

84.7 
20.6 

Finally, we observe that on two datasets, Glass and Sonar, neither VQTree 
variant lived up to the full promise of the underlying nearest neighbour clas-
sifier. Although the decision trees do not generalise as well as the underlying 
classifiers, they perform identically on the training set. The large number of 
prototypes needed in the LVQl codebook for Sonar suggests that there may be 
many small clusters in the dataset. Since the hyperplanes of the decision set are 
obtained by a local process, it may be that by using them in a global manner 
the algorithm obscures the fine structure of the training set. This is a subject 
for future investigation. 

5 Conclusions 

In the present paper we have described an oblique decision tree induction al-
gorithm based on Learning Vector Quantization. The algorithm identifies a set 
of hyperplanes, the decision set, that locally approximate the decision surface 
as embodied in a training set. Each of these hyperplanes gives a linear inequal-
ity which can be used to subdivide the input space into two half spaces. In a 
postprocessing step, an oblique tree is constructed from the decision set, using 
standard top-down tree induction. 

To establish the viability of the algorithm, we have implemented a prototype 
which uses a ray-casting algorithm to build the decision set in polynomial time, 
and which employs the Information Gain criterion to assess the quality of a 
split. The prototype has been applied to several benchmark datasets from the 
UCI repository, yielding very encouraging results. VQTree compares favourably 
with C5.0 and OCl in terms of classification accuracy, although OCl produces 
more compact trees. 

Despite the success of the prototype system tested here, several aspects of 
the system will benefit from further research, chiefly: 

— A mechanism to automatically determine optimal LVQ codebook size. 
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— A way to determine which is the best LVQ training algorithm to employ. 
— Combining oblique splits as produced by VQTree with axis-parallel splits to 

produce a more robust and effective system. 
— Combining oblique splits derived from diverse codebooks to produce single 

decision trees. 

Vector quantizat ion is fairly mature classification and signal processing tech-
nology, but LVQ classifiers are usually regarded as "black-boxes" which perform 
an input-output mapping. In this paper we have i l lustrated a way in which the 
internal st ructure of the LVQ codebook can be used to advantage to produce an 
accurate, economical decision tree. 
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Abstract. The paper shows how a logic-based database language can 
support the various steps of the KDD process by providing a high degree 
of expressiveness, and the separation of concerns between the specifica-
tion level and the mapping to the underlying databases and data mining 
tools. In particular, the mechanism of user-defined aggregates provided 
in CDC++ allows to specify data mining tasks and to formalize the min-
ing results in a uniform way. We show how the mechanism applies to the 
concept of Inductive Databases, proposed in [2,12]. We concentrate on 
bayesian classification and show how user defined aggregates allow to 
specify the mining evaluation functions and the returned patterns. The 
resulting formalism provides a flexible way to customize, tune and reason 
on both the evaluation functions and the extracted knowledge. 

1 Introduction 

In recent years, there has been an increasing attention to the problem of for-
malizing the notion knowledge discovery process. Current knowledge extraction 
tools and applications, in fact, provide littl e support to manage the overall pro-
cess in a uniform way, and to tune the process according to domain knowledge. 
This is particularly problematic in classification tasks, where the role of domain, 
or background, knowledge is relevant and may influence the classification re-
sults within each step of the KDD process: which attributes discriminate best, 
how can we characterize a correct/useful profile, which are the useful domain 
transformations, etc., are all examples of domain dependent notions. 

A coherent formalism, capable of dealing uniformly with induced knowledge 
and background, or domain, knowledge, would represent a significant advance in 
the design and development of decision support systems, in several challenging 
application domains. The advantages of such an integrated formalism are, in 
principle: 

— the capability of specifying expert rules, or business rules; 
— the ability to tailor a methodology to a specific class of applications. 

Other proposals in the current Uterature have shown that the knowledge dis-
covery process can take great advantage of a powerful knowledge-representation 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 360-371, 2000. 
@ Springer-Verlag Berlin Heidelberg 2000 
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and reasoning formalism [15,11,17,5,3,8]. In this context, the notion of induc-
tive database, proposed in [2,12], is a first attempt to formalize the notion of 
interactive mining process. An inductive database provides a unified and trans-
parent view of both inferred (deductive) knowledge, and all the derived patterns, 
(the induced knowledge) over the data. The user does not care about whether 
he is dealing with inferred or induced knowledge, and whether the requested 
knowledge is materialized or not. The only detail he is interested in stems in 
the high-level specification of the query involving both deductive and induc-
tive knowledge, according to some (either objective or subjective) interestigness 
quality measure. Interestingly, the notion of Inductive Databases finds a natural 
generalization in rule-based languages, such as Deductive Databases. In [6], we 
proposed a model for a such generalization, based on the notion of user-defined 
aggregate in the logic database CD C++. 

In this paper we consider the problem of defining a logic-beised knowledge 
discovery support environment capable of dealing with classification tasks. We 
extend the approach shown in [6,8] to Naive Bayes Classification, that, to the 
purpose of this paper, has two main advantages: 

1. It is one of the most practical approaches to several types of learning prob-
lems. 

2. It is particularly simple to represent as an inductive database schema. 

As a result, we show how a logic-based database language such as €!>€++  [20] 
can support the various steps of the KDD process by providing: a high degree of 
expressiveness, the ability to formalize the overall KDD process and the capabil-
ity of separating the concerns between the specification level and the mapping 
to the underlying databases and data mining tools. 

The paper is organized as follows. In section 2 we introduce the basic features 
of a Logic Database Language and briefly sketch the mechanism of user defined 
aggregates provided by £!>£++.  Section 3 describes the generalization of the 
concept of inductive databases to the case of deductive databases. In section 4 
we show how such a mechanism provides a flexible way to custumize, tune and 
reason on both the evaluation function and the extracted knowledge, by concen-
trating on the formalization and representation of the bayesian classification [4] 
data minig task. Finally, a short final section discusses some remarks that the 
approach issues. 

2 Logic Database Languages 

Deductive databases are database management systems whose query languages 
and storage structures are designed around a logical model of data. The under-
lying technology is an extension to relational databases that increases the power 
of the query language. We adopt the C'DC++ deductive database system, which 
provides, in addition to the typical deductive features, a highly expressive query 
language with advanced mechanisms for non-deterministic, non-monotonic and 
temporal reasoning [7,21]. 
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A remarkable capability of such a language is that of expressing distributive 
aggregates, which are definable by the user [21], For example, the following rule 
illustrates the use of a sum aggregate, which aggregates the values of the relation 
sales along the dimension Dealer: 

supplierTot(Time, Product, sum(Sales)) <— 

sales(Time,Product,Store,Sales). 

Such rule corresponds to the SQL statement 

SELECT Time, Product, SUM(Sales) 
FROM sa les 
GROUP BY Time, Product 

Prom a semantic viewpoint, the above rule is a syntactic sugar for a program 
that exploits the notions of nondeterministic choice and XY-stratification [10,20,7]. 
In order to compute the following aggregation predicate 

q(Y,aggr(X))^p(X,Y). 

we exploit the capability of imposing a nondeterministic order among the tuples 
of the relation p, 

ordP(Y, n i l , n i l ) <- p(X, Y). 
ordP(Z,X,Y) ^ ordP(Z,-,X),p(Y,Z),choice(X,Y),choice(Y,X). 

Here n i l is a fresh constant, conveniently used to simplify the program. If the 
base relation p is formed by k tuples for a given value s of y , then there are k\ 
possible outcomes for the query ordP(X, Y), namely a set: 

{ordP(s, n i l , n i l ) , ordP(s, n i l , t i ) , ordP(s, t i , t g ) , . . ., ordP(s, tk_i, tn)} 

for each permutation {(s, t i ) , . . ., (s, tjt)}  of the tuples of P. Therefore, in each 
possible outcome of the mentioned query, the relation ordP is a total (intransi-
tive) ordering of the tuples of p. The double choice constraint in the recursive 
rule specifies that the successor and predecessor of each tuple of p is unique. 

As shown in [20], we can then exploit such an ordering to define "recursive" 
aggregates, i.e., aggregates inductively defined: 

f{{x})  = gix) (1) 

f{Su{x}) = h{f{S),x) (2) 

By defining the base and inductive cases by means of ad-hoc user-defined predi-
cates s ing le and mult i, we can then define an incremental computation of the 
aggregation function: 

aggrP(Aggr, Z, X, C) 4- ordP(Z, n i l , X), X ^̂  n i l , single(Aggr, X, C). 

aggrP(Aggr, Z, Y, C) ^ ordP(Z, X, Y), aggrP(Aggr, X, Ci),multi(Aggr, Y, Ci, C). 

Finally, the originary rule can be translated into 

q(Y,C) ^ ordP(Y,-,X),-ordP(Y,X,_),aggrP(aggr,Y,X,C). 
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Example 1 ( [21]). The aggregate sum can be easily defined by means of the 
following rules: 

single(sum, X, X). 

inulti(siam, X, SO, SN) ^ SN = SO + X. 

D 

In [21], a further extension to the approach is proposed, in order to deal with 
more complex aggregation functions. Practically, we can manipulate the results 
of the aggregation function by means of two predicates f re tu rn and ereturn. 
The rule definining the aggregation predicate is translated into the following: 

q(Z,R) ^ ordP(Z,X,Y),aggrP(aggr,Z,X,C),ereturn(aggr,Y,C,R). 
q(Z, R) *- ordP(Z, X, Y), -ordP(Z, Y,_), aggrP(aggr, Z, Y, C), f return(aggr, C, R). 

where the first rule defines early returns (i.e., results of intermediate computa-
tions), and the second rule defines final returns, i.e., results on overall values. 

Example 2 ([21 J). The aggregatemaxpair considers tuples {ci,ni), where rij is a 
real number, and returns the term c, with the greater value of n,. The aggregate 
can be defined by means of s ing le, multi and f re turn: 

single(maxpair, (C,P), (C,P)). 

mul ti (maxpair, (C, P), (CO, PO), (C, P)) ^ P > PC 
multi(maxpair, (C,P),(CO,PO),(CO,PO)) ^ P < PO. 

freturn(maxpair, (CO,PO),CO). 

D 

Example 3. Given the relation gate(G,X) specifying the output signal of a gate 
G, the andGate(Y) predicate should compute the intersection of the signals of all 
the available gates. The computation can be specified by means of an aggregate 
and: 

andGate(and(X)) <- gate(G,X). 

single(cind,X,X). 

multi(and, X, A, A) +- X 7̂  0, A 5̂  0. 
ereturn(and, 0, A, 0). 
freturn(and, X,X). 

Notice that the ere turn predicate allows to stop the computation as soon as a 
0 gate is found. D 

3 Logic-Based Inductive Databases 

In [2], an inductive database schema is defined as a pair TZ = (R, (QR,e, V)), 
where R is a database schema, QR is a collection of patterns, V is a set of result 
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values and e is an evaluation function mapping each instance r of R and each 
pattern 9 G QR in V. An inductive database instance is then defined as a pair 
(r, s), where r is an instance of R and s C Q R. 

A typical KDD process operates on both the components of an inductive 
database, by querying both components of the pair (assuming that s is mate-
rialized as a table, and that the value e{v,6) is available for each value 6 of 
s). 

A simple yet powerful way of formalizing such ideas in a query language is 
that of exploiting user-defined aggregates [6]. Practically, we can formalize the 
inductive part of an inductive database (i.e., the triple (QR,e, V)) by means of 
rules that instantiate the following general schema: 

s{Zi,..., Zk,u-d-aggr{ei,... ,eh,Xi,..., Xn)) <- T{YI,. .., Ym). (3) 

Intuitively, this rule defines the format of any subset s of Q R. e i , . . ., e/j specify 
the components needed to compute the evaluation function e. The patterns in 
s are obtained from a rearranged subset Xi,...,Xn of the tuples Y i , . . . , Ym 
in r. The structure of s is defined by the formal specification of the aggregate 
U-d.aggr, in particular by the re tu rn rules. 

The tuples {0, v) resulting from the evaluation of such rule, represent patterns 
in QR and their value in V according to e. As a result, the "inductive" predicate 
s itself can be used in the definition of more complex queries. 

Example 4- Consider the relation t ransact ion(Date, Cust, Item, Pr ice, Qty). A 
sample mining scenario for such a table consists in detecting the items in the 
relation with the average value more than a given threshold. The inductive 
database has R s t ransact ion, QR = {i\i  € dom(R[Item])} and e(r,i) = 
avg{{p X q\{t,i,p,q) G r}) . The above inductive schema is formalized, in accor-
dance to (3) with the following rule: 

s(avgThres((a-, Item, Value))) <— t ransac t ion (̂ _, Item, Pr ice, Qty), 
Value = Pr ice x Qty. 

Where a represents the given threshold, and the aggregate avgThres is defined, 
as usual, by means of the predicates 

single(avgThres, (T, I, V), (T, I, V, 1)). 

multi(avgThres, (T, I, VN), (T, I , VO, NO), (T, I , V,N)) ^ V = VN + VO,N = NO -h 1. 
multi(avgThres, (T, I, VN), (T, I, VO, NO), (T, I , VO, NO)). 
multi(avgThres,(T,I,VN),(T, IO,VO,NO),(T, I,VN, 1))* - I 7̂  10. 

f return(avgThres, (T, I, V, N), (I , A)) <- A = V/N, A > T. 

For each item, both the sum and the count of the occurrences is computed.̂ 
When all the tuples have been considered, the average value of each item is 

^ Here, a naive computation is specified, that potentially computes more than one 
tuple for each item. Notice, however, that more refined definitions are possible, by 
exploiting negation and slightly modifying the definition of user defined aggregate. 
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computed, and returned and as answer if and only if it is greater than the given 
threshold. D 

Notice that the above schema can produce different computations of s on 
different clusters of the tuples of r grouped on the basis of the values of the 
attributes Zi,...,Zk- Practically, the results of the above schema, given an in-
stance r of R, are the tuples (( rc i ( r ) ,s i ) , . . ., (o'Ch(r),s/i), where Cj = Zi = 
Ui; A . .. A Zfc = Vii^ with Vi. G dom{Zj), and Sj is the set of patterns related to 
'^Ci(r) . 

In [6], we showed that the formalism is flexible enough to allow the for-
malization of association rule mining. In the following, we extend the approach 
proposed there to the classification data mining task. 

4 Bayesian Classification 

According to the approach presented in the previous section, we are interested 
in developing a classification construct based on the notion of user-defined ag-
gregate. We concentrate here on bayesian classification, that is among the most 
practical approaches to many types of learning problems [13,14]. To summarize, 
we aim at computing the function 

max Prob{C = c\Ai = a i , . . ., A„  = an) 
c 

where c is the target attribute and a i , . . . , a„  are possible values of the at-
tributes of a relation with schema R = {Zi,..., Zk} such that {Ai,..., An, C) C 
{Z\,..., Zk]. By assuming that, for each i,j such that i  ̂ j , Ai and Aj are inde-
pendent, the above expression is maximized by the same value c that maximizes 
the expression 

n 

max Prob{C = c)  J|Prob{Ai = a^\C = c) 
1 

We can define an inductive database schema as follows. The patterns QR are 
represented by the expressions Ai = ai A C = c, where aj G dom{Ai) and 
c G dom{C). Let V = [0, l]'^, r be an instance of R and ^ = Ai = aiAC — c £ QR; 
then e(r,9) = {Prob{A, = ai\C = c), Prob{C = c)). 

By assuming that Prob{A\B) can be estimated as count{AAB)/count{B), we 
can then define the pair {Prob{Ai = ai\C = c),Prob{C = c)) as a user-defined 
aggregate.̂ Practically, we define a predicate s as 

s(Xi , . . ., X„,bayes((P, [Ai,... , A^],C))) ^ r (Z i , . . ., Z^). 

where the variables Xi , . . ., X ,̂ P, Ai , . . ., An, C are a (possibly rearranged) subset 
of Z i , . . ., Zjt and r (Z i , . . ., Zk) is either an extensional or an intensional predicate. 

^ Notice that such an approach fails to deal with 0 probabilities. However, simple 
corrections can be done, as suggested, e.g., in [14, chapter 6]. For example, we can 
weight the proposed estimate of Prob{A\B) with prior uniform probabilities. 



366 F. Giannotti and G. Manco 

The result of such an evaluation is the set of conditional probabilities of each of 
the possible values of Ai, given any possible value of C, and a weight P associated 
to the tuple A i , . . . , An. 

We can define, as usual, the s ing le, multi and f re tu rn predicates: 

single(bayes, (P, F, C), (P, Fs)) <- in i t (F, C, P, Fs). 

mult i(bayes, (P, F, C), (NO,FO), (NO + P, FN)) <- update(F, C, P, FO, FN). 

The tuple (P,C,F) represents a tuple in the database. More precisely, C is 
the target attribute, F is the collection of the relevant features and P is the 
weight associated to the current tuple. The i n i t predicate builds a list of tuples 
(/i i Ci, "/i I "ci)I representing respectively the feature fi, the target attribute as-
sociated to Cj, the (current) frequency n/; of fi,Ci and the related frequency 71^ 
of Ci. The update predicate updates the list FO with the tuples available from 
C and F. For each quadruple {fi,Ci,nj^,nci) in FO and for each pair (/,c) where 
f G F, rici is incremented if c = ĉ  and n/. is incremented if both f = fi and 
C = Ci. 

As a final result, the collected tuples allow the computation of conditional 
probabihties: 

f return(bayes, (N, FO), (C, F, Pc, PF,C)) ^ 

member((F,C,CF,Cc),FO),PF,c = CF/CC,PC = Cc/N. 

Let us consider the extensional predicate: 

playTennis(Outlook,Temperature,Humidity,Wind, Play) 

with extension in table 1. A simple classifier on such a relation is built by means 
of the rule 

c lass if ier(bayes{(l, [Outlook,Temp, Humidity, Wind], Play))) <— 
playTennis(Outlook,Temp, Humidity,Wind,Play). 

Example 5. A query c lass if ier(C, F, Pc, PF) against such a database returns the 
answers 

(no, sunny, 0.357143, 0.6) (no, hot, 0.357143, 0.4) 
(no, weak, 0.357143,0.4) (no, strong, 0.367143, 0.6) 

(yes, hot, 0.642857, 0.222222) (yes, high, 0.642857, 0.333333) 
(yes, rain, 0.642857, 0.444444) (yes, mild, 0.642857, 0.444444) 

(yes, normal, 0.642857, 0.666667) (yes, strong, 0.642857, 0.333333 
(no, cool, 0.357143, 0.2) (no, normal, 0.357143, 0.2) 

(yes, sunny, 0.642857,0.222222) (no, rain, 0.357143, 0.2) 
(no, high, 0.357143, 0.8) (yes, overcast, 0.642857, 0.333333) 

(yes, weak, 0.642857, 0.666667) (yes, cool, 0.642857,0.333333)) 
(no, overcast, 0.357143, 0.2) (no,mild, 0.357143, 0.4) 

Such tuples represent a classification model that can be used to classify any new 
tuple. D 
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Tabl e 1 .  Sampl e playTenni s facts . 

playTennl5(overcast ,  hot .  normal ,  weak ,  yes )  playTennisCsunny ,  hot ,  high ,  weak ,  no ) 
playTennis(sunny ,  hot ,  high ,  strong ,  no )  playTennis(overcast ,  hot ,  high ,  weak ,  yes ) 
playTennis(overcast ,  cool ,  normal ,  strong ,  no )  playTennis(rain ,  cool ,  normal ,  weak ,  yes ) 
playTennis(rain ,  cool ,  normal ,  strong ,  yes )  playTennis(rain ,  mild ,  high ,  weak ,  yes ) 
playTennis(sunny ,  mild ,  high ,  weak ,  no )  playTennis(sunny ,  cool ,  normal ,  weak ,  yes ) 
playTennis(rain ,  mild ,  normal ,  weak ,  yes )  playTennis(sunny ,  mild ,  normal ,  strong ,  yes ) 
playTennis(overcast ,  mild ,  high ,  strong ,  yes )  playTennis(rain ,  mild ,  high ,  strong ,  no ) 

Once the classification model is trained, the classifier can be easily built: 

c lass if y(0, T, H, W,maxpair((P, Prob))) - c lass if ier(P, 0, Probo, Probp), 
c lass if ier(P, T, Probt, Probp), c l ass if ier(P, H, Probh, Probp), 

c lass if ier(P, W, Prob„, Probp), 
Prob — Probp x Probo x Probt x Probh x Prob„ 

where the maxpair aggregate is defined in example 2. The above defined pred-
icate c lass if y(Fi , . .. ,Fn, Target) guesses the value of Target on the basis of 
the values of the interesting features F i , . .. ,Fn, according to the classification 
model defined by the relation c l a s s i f i e r. 

Notice that, in general, the definition of the predicate c lass i fy depends 
from the model defined by the predicate c l a s s i f i e r. 

c lass if y(Xi,...,X„ , Fi,...,F^,maxpair((C, P))) <-
c lass if ie r (X i , . . ., X„, C, Fi, Pc, P F J, 

c lass if ie r (X i , . . ., X„, C, Fa, Pc, P F J, 

c lass if ie r (X i , . . ., X., C, F ,̂ Pc, P F J, 
P = PF. x . . . X P F .. 

In the following we shall concentrate only in the definition of the c l a s s i f i er 
predicate, and shall omit the definition of c lass i fy. The rest of the section 
shows some examples of complex queries whithin the resulting logic language. 
We shall refer to table 1 as a running example. 

I t is easy to build a predicate that evaluates the goodness (w.r.t. some quality 
measure) of the classifier built in the previous section. 

Example 6. The high-level specification task "Compute the misclassification rate 
of the trained model" is formalized by the following rule: 

misc lass if ied(0,T, H, W, Play, Predicted)  ̂ tes tSet(0,T, H, W, Play), 
c lass if y(0, T, H, W, Predicted), Play  ̂ Predicted. 

When run against the playTennis table, the misc lass if ied relation returns 
the tuples 

(overcast, cool, normal, strong, no, yes) 
(overcast, mild, high, strong, yes, no) 

(rain, mild, high, strong, no, yes) 

representing the misclassified portion of the table. D 
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The predicate t e s t S et can be defined either as an extensional predicate or 
as an intensional predicate. This suggests a way for directly defining a boosting 
technique. 

Example 7 (Boosting). The high-level specification task for boosting "compute 
an increasing sequence of classifiers such that each classifier is built by increasing 
the weight of the tuples misclassified by the preceding classifier" can be defined 
by the following set of rules: 

c a s e ( 0 , 1, 0, T, H, W, P) <- p layTenn is (0, T, H, W, P). 
c a s e (I + 1, WW + 1, 0, T, H, W, P) <- case ( I, WW, 0, T, H, W, P), 

m i s c l a s s if i e d ( I, 0, T, H, W, P). 
c a s e (l + 1, WW, 0, T, H, W, P) <- case ( I, WW, 0, Temp, H, W, P), 

- . m i s c l a s s if i e d ( I, 0, T, H, W,_). 

c lass i f i e r ( I ,bayes ( (WW, [0,T,H,W],P)) )̂  case(I,WW,0,T,H,W,P). 
m i s c l a s s i f i e d ( I , 0 , T, H,W,P)«— c a s e ( l, WW, 0,T,H,W,P), 

c l a s s if y ( I , 0, T, H, W, Pred), P  ̂ Pred. 

Classifiers are incrementally built and identified by the stage argument I . At each 
stage, the training-set is built by incrementing the weight of the misclassified 
tuples. In order to obtain the misclassification rate of each classifier built with 
the above technique, we have to count the misclaissification rate of each classifier: 

t o t M i s c l a s s if i e d ( I, count( (0, T, H, W, P))) * - m i c l a s s if i e d ( l, 0, T, H, W, P). 

The first argument of the t o t M i s c l a s s i ed predicate represents the classifier 
ID , and the second argument represents the number of tuples misclassified by 
the classifier. By considering the first 10 classifiers built we obtain the following 
misclassification rate for each classifier: 

to tMisc lass if ied(6, 1) to tMisc lass if ied(9, 2) to tMisc lass if ied(4, 3) 
to tMisc lass if ied( l, 3) to tMisc lass if ied(3, 2) to tMisc lass if ied(5, 2) 
to tMisc lass i f ied(8, 3) to tMisc lassi f ied(0, 3) to tMisc lass i f ied(2, 3) 
to tMisc lass if ied(7, 5) 

D 

Example 8 (Meta-Learning). Auto-focusing mechanisms can be easily defined. 
We can 'Hrain a classifier as a coordinator of a set of classifiers built by boosting, 
where each classifier has a votation weight depending by its misclassification 
rate": 

v o t a t i o n ( 0, T, H, W, C, sum(V)) +- c l a s s if y ( I , 0, T, H, W, C, P), 

t o t M i s c l a s s i f i e d ( I , T ) , V= 1/T. 

boostClassi fy(0,T,H,W,maxpair ( (C,N))) <— votat ion(0,T,H,W,C,N). 

The misclassification rate of the boosting classifier is computed by the rule 

b o o s t M i s c l a s s if ied(count ( (0, T,H, W, C))) <— p layTenn is (0, T, H, W, C), 
b o o s t C l a s s if y(0, T, H, W, Pred), C 7̂  Pred. 

D 
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Example 9 (Cross-Validation). In the following we assume that each row of the 
playTennis has an identifier I . A cross-validation technique can be used to eval-
uate the prediction accuracy of the classification task against a given dataset. 
Practically, we can randomly split a dataset into K different training sets and 
test-sets, and then compute the average prediction accuracy of the adopted clas-
sification method. 

crossValidate(K, N,bayes((l, [0,T, H, W], P))) ^ 
nthTrainingSet(K, N, 0, T, H, W, P). 

nthTrainingSet(K, N, 0,T, H, W, P) <- playTennis(I, 0, T, H, W, P), 
-ibelongs(l,K,N). 

nthTestSet(K ,  N ,  0 ,  T ,  H ,  W,  P )  < -  playTennis(r ,  0 ,  T ,  H ,  W,  P) , 

belongs(I,K,N) . 

countMisclassif ied(K, N, count((0,T, H, W))) <— nthTestSet(K, N, 0, T, H, W, P), 

c lass if y(K, N, 0, T, H, W, Pred), P ^ Pred. 

crossValidation(K, avg(C)) <— countMisclassif ied(K,N,C). 

Here, the predicate belongs ( I , K, N) specifies the splitting policy of the dataset.̂ 
D 

5 Final Remark 

A very desirable property of systems for data mining and knowledge discovery is 
the capability of separating the concerns between the conceptual/logical design 
and the phisical implementation of data mining applications. To this purpose, 
the approach described in this paper and in [6] proposes a uniform declarative 
specification of the various steps of the knowledge discovery process. 

In this paper our primary aim was the investigation of the integration of a 
deductive query language with a classification engine. We have shown that the 
formalism of user-defined aggregates is powerful enough to (1) model the notion 
of inductive database, and (2) to specify flexible query answering capabilities. 
The main difference with other database-oriented approaches is that the capa-
bilit y of defining logical expressions has very desirable characteristics in order to 
construct the knowledge processing engine. 

The paper was not concerned with efficiency issues. As a matter of fact, the 
problem of efficiently coupling data mining with database systems is common in 
many approaches currently existing in the literature. It has been experimentally 
shown [1,16] that specialized algorithms (provided with specialized data struc-
tures) have a better performance than database-oriented approaches. Hence, in 

^ For example, any tuple can be randomly assigned to any value n between 0 and n. 
In our experiment, we implemented the simple policy of specifying the test set n as 
composed by all the tuples i such that mod{i, k) — n. 
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order to improve performance considerably, a thorough modification of the un-
derlying database abstract machine should be investigated. Notice in fact that, 
wit h respect to ad hoc algorithms, when the programs specified in the previous 
sections are executed on a logic abstract machine, the only available optimiza-
tions for such programs are the tradit ional deductive databases optimizations [7]. 
Such optimizations techniques, however, can be (and sometimes need to be) fur-
ther improved by adding ad-hoc optimizations. 

To the purpose of this paper, it can be assumed to accept a reasonable wors-
ening in performance, by describing the aggregation formalism as a semantically 
clean representation formalism, and demanding the computat ional effort to ex-
ternal ad-hoc inductive engines, in the style of [8,9]. This, however, is only a 
part ial solution to the problem, in that more refined optimization techniques 
can be adopted, as envisaged in [6]. Some interesting steps in this direction 
have been made: e.g., [18] proposes an approach to the optimization of datalog 
aggregation-based queries. 

Another interesting way of coping with efficiency is that of identifying a set 
of relevant features that can be transferred into more specialized and efficient 
languages. As an example, [19] study how to provide relational database systems 
wit h the mechanism of user-defined aggregates. This suggests that specialized 
languages for mining/olap tasks could benefit of even a subset of the features of a 
logic database language, easy to implement in an efficient way (such EIS, for exam-
ple, the mechanism of rules for describing the process, or s tandard inpu t /ou tput 
interfaces for the interaction between mining and querying). However, a more 
detailed discussion of such problems is postponed to future work. 
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Abstract. In order to discover relevant weights of neural networks, this 
paper proposes a novel method to learn a distinct squared penalty factor 
for each weight as a minimization problem over the cross-validation error. 
Experiments showed that the proposed method works well in discovering 
a polynomial-type law even from data containing irrelevant vairiables and 
a small amount of noise. 

1 Introduction 

Neural networks can be utilized as a core technique in some KDD (Knowledge 
Discovery and Data mining) applications such as scientific discovery [2,1]. One 
important research subject of neural networks is to improve the generalization 
performance. Here the generalization means the performance on new data. It is 
widely known that adding some penalty term to a standard training error term 
can lead to significant improvements in network generalization. As for squared 
penalty, a single penalty factor is often conveniently used. If we can develop 
a method that automatically adjusts a distinct penalty factor for each weight, 
several advantages can be expected, i.e., the generalization performance will  be 
still more improved; the readability of discovered laws wil l be improved; such 
a squared penalty term is consistent with any linear scaling of variables; and 
suitable penalty factors can be determined without inaccurate estimation, 

2 Optimal Penalty Factor Calculation 

Let (xi , , XK ) y) be a vector of variables describing each example, where Xk 
is a numeric or nominal explanatory variable and y is a numeric target vari-
able. Here we assume that each nominal explanatory variable is described as a 
dummy variable. As a class of numeric formula y{x\ 0), we consider a generalized 
polynomial expressed by 

J K 3 I K \ 
t/(a;;0) =iOo + ^ u ) j J|a;" *̂  = wo + X^wJj exp I ^lyjfclna;^ j , (1) 

3=\ k=\ j = l \k=\ J 
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where each parameter wj or Wjk is an unknown real number, and J is an un-
known integer corresponding to the number of terms. © is an M-dimensional 
parameter vector constructed by arranging parameters Wjjj = 0, , J, and 
Wjk,j = 1, , J,fc = I,-  ,K. Let D = {{x'^,y'^),fj. = 1, , A }̂  be a set of 
training examples, where A'' is the number of examples. Here we assume that 
each training example {x^, y'^) is independent and identically distributed. Now, 
our ultimate goal of the law discovery is defined as a problem of minimizing the 
generalization error, that is, to find the optimal estimator 0* that minimizes 

g{0*) = EDETiy''-y{x^;e*{D))f, (2) 

where T = {x" ^y") denotes test data independent of the training data D. The 
least-squares estimate of ©*, denoted by 0, minimizes the error sum of squares 

However, this estimation is likely to over-fit to the training data; thus, we cannot 
usually obtain good results in terms of the generalization performance. 

As we have already mentioned, it is widely known that adding some penalty 
term to Eq. (3) can lead to significant improvements in network generalization. 
Here a simple penalized target function using a single factor is given as below. 

M 

£2{0)=£A0) + \eM^)Y.Ol, (4) 
m=l 

where exp(A) is a penalty factor and 6m G 0. Here since the penalty factor must 
be non-negative, we adopted exp(A), instead of a standard parameterization A. 

To improve both the generalization performance and the readability, we con-
sider a distinct penalty factor for each weight. Let A be an M-dimensional vector 
(Ai , , AM)"^ , and A be an M-dimensional diagonal matrix whose diagonal el-
ements are defined by Amm = exp(Am) for m = 1, , M, where aF denotes a 
transposed vector of a. Then, the discovery of laws subject to Eq. (1) can be de-
fined as the following learning problem in neural networks. That is, the problem 
is to find the 0 that minimizes the following objective function for weights 

S{0)=Si{0)^-\0'^A0. (5) 

Now, we introduce an objective function for penalty factors derived from the 
procedure of cross-validation, and propose MCV (Minimum Cross-Validation) 
regularizer. The procedure of cross-validation divides the data D at random into 
S distinct segments {Gs, s = 1, , 5), and uses 5—1 segments for training, and 
uses the remaining one for the test. This process is repeated S times by changing 
the remaining segment, and the generalization performance is evaluated by using 
the following MSE (mean squared error) over all S test results. 

MSEcv = ^J2T.{y''- y^^''-' ®«))'  (6) 
s = iv e G, 
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Here @s denotes the optimal weights obtained by minimizing the following ob-
jective function for weights 

^s{0s)  = \Y.^y''-  2/(̂ '̂ ; 0«))' + \&'^sAes.  (7) 

The extreme case of 5 = A'' is known as the leave-one-out method, which is 
often used for a small size of data. Note that Eq. (6) is regarded as a reasonable 
approximation to Eq. (2) for a given data set D. According to the implicit 
function theorem, since 0 , can be regarded as a vector consisting of implicit 
functions of A, Eq. (6) can be defined as the objective function for penalty 
factors. Thus, we can calculate A which minimizes Eq. (6). Then, by using A, 
we can calculate & which minimizes Eq. (5). Finally, © is adopted as the final 
weight vector of the discovered law. 

3 Evaluation by Experiments 

We consider an artificial law (function) described by 

j / = 2 + 3 4 i : r 2 ° ' '' + 42;3i4°°2 (8) 

where we have 9 numeric explanatory variables. Clearly, variables xs, , xg are 
irrelevant to Eq. (8). Each example is generated as follows: each value of numeric 
variables xi,-  ,xg is randomly generated in the range of (0,1), and we get the 
corresponding value of y by calculating Eq. (8) and adding Gaussian noise with a 
mean of 0 and a standard deviation of 0.1. The number of examples is set to 200 
(TV = 200). Before the analysis, the following scaling was applied to the variables: 
y = {y — mean{y))/std{y), and Inxk = Inxk — mean(lnxfc), fc = 1,  ,9. 

In the experiments, the initial values for the weights Wjk were indepen-
dently generated according to a normal distribution with a mean of 0 and a 
standard deviation of 1; the initial values for the weights Wj were set to 0. 
The initial values for the penalty factors A were set to 0, i.e., A was set to 
the identical matrix. The iteration was terminated when the gradient vector 
was sufficiently small, i.e., maxm{||i9/9 m̂ '^(0)11}  < 10"̂  for learning over 0; 
max„{j |a/9A„  M5Ecv(A)| |}  < lO"^ for learning over A. 

MCV regularizer was compared with two conventional methods, no-penalty 
method and single-factor method, where the objective functions of these con-
ventional methods are Eq. (3) and Eq. (4), respectively. Figure 1(a) shows the 
learning results of these three methods, where the RMSE (root mean squared 
error) was used for evaluation; the number of hidden units J was fixed at the 
correct number 2; the cross-validation error was calculated by using the leave-
one-out method, i.e., S = N; and the generalization performance was measured 
by using a set of noise-free 10,000 test examples generated independently to the 
training examples. This figure shows that the RMSE for the training data was 
almost the same for each method; both the RMSE for the cross-validation and 
the RMSE for the test data were clearly decreased by using MCV regularizer; 



Discovery of Relevant Weights by Minimizing Cross-Validation Error 375 
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Fig. 1. Experimental results of artificial data 

and the performance of the single factor method was almost comparable to those 
of the no penalty method. 

An example of the laws discovered by the no penalty method was as follows: 

y = 2.0306 
0.0203„+0,0035„-0.0029„+0.0073^+0.0056 +0.0010 +0.0022^-0.0036 

X X, 4 X X. 6 3^7 Xo Xg 
0.0002^+0.0011 4--  ̂QOQ':!^+00008„+0.0004„-1.0003 +0.0201„-0.0a05^-0.0011 -0.0002^-0.0002„ 

n ~ 0 - C / i 7 i ? 0 J /i X Q 3  '*^K R X y X o X ( 

where the weight values were rounded off to the fourth decimal place. Note that 
these weight values were transformed so as to correspond to the original scale 
of variables. Although a law almost equivalent to the true one was found, it is 
difficul t to select only the relevant weights from this result. While an example 
of the laws discovered by MCV regularizer was as follows: 

y 2.0118 
0.0000^+0.0019^+0.0007^+0.0000^+0.0000^+0.0000 

XQ 
-1-9 Q7Q9, r+0 -9941-0 .0190 „ -0 .0000 „ -0 .0000 +0.0019 +0.0007 +0 .0000„ 

I 16  iy  I J^Jb-i  "^ 2 X o x ^  "̂ ^ ^  " ' f i X ' T X i 

, 0 Q Q Q 7 „ + 0 . 0 0 0 0 + 0 . 0 0 0 1 _ - 0 . 9 9 9 9 „ + 0 . 0 1 9 7 „ - 0 . 0 0 0 0 „ - 0 . 0 0 0 6 „ - 0 . 0 0 0 0 - , - 0 . 0 0 0 0 - . + 0 . 0 0 0 3 
~T~0. y i / O I X i X o X' T 4 «*'c X e X y X Q X Q 

Clearly, the irrelevant weight values were greatly suppressed. 
Figure 1(b) shows the learning result of the penalty factors. This figure indi-

cates that only the penalty factors for the relevant weights became small enough, 
i.e., we can easily select only the relevant weights. Therefore, it was shown that 
the MCV regularizer simultaneously improves the generalization performance 
and readability, without care of variable scaling and a candidate determination 
for the penalty factors. 
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Abstract. This paper describes an approach to multivariate regression that aims 
at improving the computational efficiency and comprehensibility of local 
regression techniques. Local regression modeling is known for its ability to 
accurately approximate quite diverse regression surfaces with high accuracy. 
However, these methods are also known for being computationally demanding 
and for not providing any comprehensible model of the data. These two 
characteristics can be regarded as major drawbacks in the context of a typical 
data mining scenario. The method we describe tackles these problems by 
integrating local regression within a partition-based induction method. 

1 Introduction 

This paper describes a hybrid approach to multivariate regression problems. 
Multivariate regression is a well known data analysis problem that can be loosely 
defined as the study of the relationship between a target continuous variable and a set 
of other input variables based on a sample of cases. In many important regression 
domains we cannot assume any particular functional form for the model describing 
this relationship. This type of problems demand for what is usually known as non-
parametric approaches. An example of such techniques is local regression modeling 
(e.g. [3]). The basic idea behind local regression consists of delaying the task of 
obtaining a model til l prediction time. Instead of fitting a single model to all given 
data these methods obtain one model for each query case using only the most similar 
training cases. As a result of this methodology these techniques do not produce any 
visible and comprehensible model of the given training data. Moreover, for each 
query point its "neighbors" have to be found, which is a time-consuming task for any 
reasonably large problem. Still, these models are able to easily adapt to any form of 
regression surface, which leads to large advantages in terms of their ability to 
approximate a wide range of functions. In this paper we address the drawbacks of 
local models by integrating them with regression trees. 

2 Local Regression Modeling 

According to Cleveland and Loader [3] local regression modeling traces back to the 
19* century. These authors provide a historical survey of the work done since then. In 
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this paper we focus on one particular type of local modeling, namely kernel 
regression. Still, the described methodology is applicable to other local models. 
Within kernel regression a prediction for a query case is obtained by an averaging 
process over the most similar training cases. The central issue of these models is thus 
the notion of similarity, which is determined using a particular metric over the 

multidimensional space defined by the input variables. Given a data set {(x,,>',)}" _ , 

where x, is a vector of input variable values, a kernel model prediction for a query 
case X, is obtained by, 

/ ^ 1 « fdix- X ]^ (1) 

SKs,^, 
Xy, 

where. 
d(.) is the distance function between two instances; 
^r(.) is a kernel (weighing) function; 
hisn bandwidth (or neighbourhood size) value; 

n f'd{xj,\ ) 
and SKs is the sum of all weights, i.e. SKs -  ̂ K Ll_i_ 

In this work we have used an Euclidean distance function together with a gaussian 
kernel (see [1] for an overview of these and other alternatives). 

A kernel prediction can be seen as a weighed average of the target variable values 
of the training cases that are nearer to the query point. Each of the training cases 
within a specified distance (the bandwidth h) enter this averaging. Their weight is 
inversely proportional to the distance to the query, according to the K{.) gaussian 
function. 

The classical definition of the knowledge discovery in databases [4] refers this 
process as striving to identify valid, novel, potentially useful, and ultimately 
understandable patterns in data. From the perspective of understandability the local 
regression framework described above is very poor. Another characteristic of a 
typical data mining problem is its high dimensionality, i.e. the large number of cases 
and/or variables. Local modeling has a very high computational complexity if applied 
as described above. In effect, the prediction for each query case demands a look-up 
over all training cases to search for the most similar instances. This process has a 
complexity of the order of O(nxv) for each test case, where n is the number of training 
cases, and v is the number of variables. 

3 Local Regression Trees 

Regression trees (e.g. [2]) are non-parametric models that have as main advantages a 
high computational efficiency and a good compromise between comprehensibility and 
predictive accuracy. A regression tree can be seen as a partitioning of the input space. 
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This partitioning is described by a hierarchy of logical tests on the input variables. 
Standard regression trees usually assume a constant target variable value within each 
partition. 

The regression method we propose consists of using local regression in the context 
of the partitions defined by a regression tree. The resulting model differs from a 
regression tree only in prediction tasks. Given a query case we drop it down the tree 
until a leaf is reached, as in standard regression trees. However, having reached a leaf 
(that represents a partition) we use the respective training cases to obtain a kernel 
prediction for the query case. From the perspective of local modeling these local 
regression trees have two main advantages. Firstly, they provide a focusing effect, 
that avoids looking for the nearest training cases in all available training data. Instead 
we only use the cases within the respective partition, which has large computational 
efficiency advantages. Secondly, the regression tree can be seen as providing a rough, 
but comprehensible, description of the regression surface approximated by local 
regression trees. 

4 Experimental Evaluation 

This section describes a series of experiments designed with the goal of comparing 
local regression trees with kernel regression modeling. The goal of these experiments 
is to compare the predictive accuracy of kernel models and local regression trees, and 
also to assert the computational efficiency gains of the later. Regarding local 
regression trees we have used exactly the same local modeling settings as for kernel 
regression, the single difference being that one is applied in the leaves of the trees 
while the other uses the information of all training set. The experimental methodology 
used was a 10-fold cross validation (CV). The results that are shown are averages of 
10 repetitions of 10-fold CV runs. The error of the models was measured by the mean 
squared error (MSE) between the predicted and truth values. Differences that can be 
considered statistically significant are marked by -i- signs (one sign means 95% 
confidence and two 99% confidence). The best results are presented in bold face. 

Table 1 shows the results of these experiments with three different domains. Close 
Nikkei 225 and Close Dow Jones consist of trying to predict the evolution of the 
Nikkei 225 and Dow Jones stock market indices for the next day based on 
information of previous days values and other indices. Telecoinm is a commercial 
telecommunications problem used in a study by Weiss and Indurkhya [7]. The two 
former consist of 2399 observations each described by 50 input variables, while the 
later contains 15000 cases described by 48 variables. 

Table 1. Comparing local regression trees with kernel models. 

MSE 
CPU sec. 

Close Nikkei 225 
Local RT 
140091.6 

4.4 

Kernel 
125951.1 

6.5 
++ 
++ 

Close Dow Jones 
Local RT 

86.8 
2.47 

Kernel 
214.5 
6.66 

-I-+ 

-i-i-

Telecomm 
Local RT 

42.40 
63.57 

Kernel 
57.19 
452.88 

-H-

-l-l-
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The results in terms of predictive accuracy are contradictory. In effect, both two 
methods achieve statistically significant (> 99% confidence) wins on different 
domains. However, local regression trees are able to significantly outperform kernel 
models in terms of computation efficiency, in spite of the small size of both the 
training and testing samples. In effect, additional simulation studies with increasing 
sample sizes have shown a more significant efficiency advantage of local regression 
trees [6]. Further details on these and other experiments can be found in [5, 6]. 

5 Conclusions 

Local regression is a well-known data analysis method with excellent modeling 
abilities in a large range of problems. However, these techniques suffer from a high 
computational complexity and by not obtaining any visible and comprehensible 
model of the data. These can be considered major drawbacks in a typical data mining 
scenario. 

In this paper we have described local regression trees that can be regarded as a new 
type of regression models that integrate a partition-based technique with local 
modeling. Local regression trees provide the smoothing effects of local modeling 
within the efficiency and comprehensibility of partition-based methods. Through the 
use of kernel models in the leaves of a standard regression tree we are able to provide 
a focusing effect on the use of kernel models with large advantages in the 
computation necessary to obtain the predictions. At the same time, the partitioning 
obtained with the tree can be regarded as a comprehensible overview of the regression 
surface being used to obtain the predictions. 

We have carried out a large set of experiments that confirmed that local regression 
trees have an overwhelming advantage in terms of computation time with respect to 
standard local modeling techniques. Moreover, we have observed significant 
advantages in terms of predictive accuracy in several data sets. 
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^ Institute of Mathematics, Warsaw University, 
Banacha 2, 02-097 Warsaw, Poland, 

skowronOmimuw.edu.p i 
^ Institute of Computer Science, Bialystok University of Technology, 

Wiejska 45A, 15-351 Bialystok, Poland, 
j  StepanQii.pb.bialystok.p i 

^ Department of Medical Informatics, Shimane Medical University 
89-1 Enya-cho, Izumo-city, Shimane 693-8501 Japan 

tsumotoScomputer.or g 

Abstract. The aim of the paper is to present an outline of granular 
computing framework for spatial reasoning. In our previous papers we 
have discussed basic notions related to granular computing, namely the 
information granule syntax and semantics as well as the inclusion and 
closeness (similarity) relations of granules. Different information sources 
(units, agents) are equipped with two kinds of operations on informar 
tion granules: operations possessed by agents transforming tuples of in-
formation granules into new granules and approximation operations for 
computing by agents information granule approximations delivered by 
other agents. More complex granules axe constructed by means of these 
operations from some input information granules. 

1 Motivation 

We would like to discuss briefly an example showing a motivation for our work 
[10]. Let us consider a team of agents recognizing the situation on the road. The 
aim is to classify a given situation as, e.g., dangerous or not. This soft speci-
fication granule is represented by a family of information granules called case 
soft patterns representing cases, like cars are too close. The whole scene (ac-
tual situation on the road) is decomposed into regions perceived by local agents. 
Higher level agents can reason about regions observed by team of their children 
agents. They can express in their own languages features used by their children. 
Moreover, they can use new features like attributes describing relations between 
regions perceived by children agents. The problem is how to organize agents into 
a team having, e.g., tree structure, with the property that the information gran-
ules synthesized by the team from input granules (being local perceptions of local 
agents) will  identify the situation on the road in the following sense: returned by 
the team granule is sufficiently close to the soft specification granule if and only 
if the situation on the road is dangerous and moreover, if any returned gran-
ule occurs to be sufficiently close to the specification granule then the relevant 
case soft pattern is identified. The aim of our project is to develop foundations 
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for this kind of reasoning. In particular it is necessary to give precise meaning 
to the notions like: information granules, soft information granules, closeness of 
information granules in satisfactory degree, information granules synthesized by 
team of agents etc. The presented paper and its extension [8] realize the first 
step towards this goal. 

In Figure 1 the following entities are depicted: 

— a specification soft granule represented by family of case soft granules gi,g2, 
93,94; 

— input granules igi,i92 representing actual local situations for agi,ag2; 
— higher level granules describing situation received by fusion of granules per-

ceived by agi,ag2 taking into account the relationships between granules 
and a context in which they appear; 

— og,ogi,og2 granules returned by ag,agi,ag2, respectively; og is received by 
performing an operation at ag on ogi,og2-

ogx 

agi 

^Si 

Og2 

agi 

igi 

Fig. 1. Illustrative Example 

To sum up, we consider a set of agents Ag. Each agent is equipped with 
some approximation spaces (defined using rough set approach [3]). Agents are 
cooperating to solve a problem specified by a special agent called customer-agent. 
The result of cooperation is a scheme of agents. In the simplest case the scheme 
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can be represented by a tree labeled by agents. In this tree leaves are delivering 
some information granules (representing of perception in a given situation by 
leaf agents) and any non-leaf agent ag G Ag is performing an operation o [ag) on 
approximations of granules delivered by its children. The root agent returns an 
information granule being the result of computation by the scheme on granules 
delivered by leaf agents. It is important to note that different agents use different 
languages. Thus granules delivered by children agents to their father can be 
usually perceived by him in an approximate sense before he can perform any 
operation on delivered granules. 

2 Information Granules 

Methods for qualitative spatial reasoning [5], [2], [9], [1], [10] are closely related 
to a paradigm Computing with Words recently formulated by Lotfi Zadeh [11], 
[12]. Several attempts have been made to develop foundations for computing with 
words[12]. Among them there is a rapidly growing area of granular computing 
aiming to develop models for computing with information granules (see e.g. [4]). 

They are two basic notions for granular computing: information granule and 
calculus on information granules [4]. 

Notions of information granule [11], [4] and information granule similarity 
(inclusion or closeness) are very useful for knowledge discovery. Informally speak-
ing, information granules can be treated as linked collections of objects drawn 
together by the criteria of indiscernibility, similarity or functionality [11]. 

In [6], [7] several examples of complex information granules have been dis-
cussed. We have presented syntax, semantics, relations of inclusion Up and close-
ness dp for information granules and a general recursive scheme for construction 
of more complex granules from simpler ones. In particular, the inclusion and 
closeness relations for more complex granules are defined by extension of these 
relations for the granules being parts of those complex granules. 

In this paper we elaborate a general scheme for information granule construc-
tion in distributed systems introduced in [7]. We describe only the main idea of 
our approach. The reader can find a more complete version in [8]. 

Teams of agents organized, e.g., along the schemes of decomposition of com-
plex objects (representing situations on the road) into trees. The trees are rep-
resented by expressions called terms. Two granules are defined being values of 
t under the valuation val for any valuation val of leaf agents of a given term 
t in the set of input granules. They are called the lower and upper approxima-
tions of t under val. The necessity to consider rather approximation of granule 
returned by a given term t under a given valuation val than the exact value of t 
under val is a consequence of the mentioned above ability of agents to perceive 
in approximate sense only of information granules received from other agents. 
Similarity relations extracted from data allow to measure the closeness of these 
granules, in particular to the soft specification granule. 

We consider problems of agent team (terms) synthesis for different tasks. 
For example, we are looking for a strategy returning for any valuation val (rep-
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resenting global situation) a term (agent team) t with the following property: 
the lower and upper values of t under val are sufficiently close to a given soft 
specification granule if and only if the global situation represented by val really 
matches this specification. 

We also emphasize [8] the problem of the robust granule construction. We use 
some ideas from rough mereology [4] to specify the rules describing the ranges 
in which parameters of granules being arguments of operations on granules can 
be changed to assure that the results of the operations on these granules are 
sufficiently close. We suggest that such rules should be extracted from data. The 
construction of such robust granules seems to be important for spatial reasoning. 

Progress in solving the above discussed problems is strongly dependent on 
further results in foundations of granular computing including soft information 
granule understanding, methods for measuring of different kinds of information 
granule closeness or methods for information granule transformation. 
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Abstract. Discovering the inherent structure in data has beconae one of 
the major cheillenges in data mining applications. It requires the devel-
opment of stable and adaptive models that are capable of hsindling the 
typically very high-dimensional feature spaces. In this paper we present 
the Growing Hierarchical Self-Organizing Map (GH-SOM), a neural net-
work model based on the self-organizing map. The main feature of this 
extended model is its capability of growing both in terms of map size 
as well as in a three-dimensional tree-structure in order to represent the 
hierarchicfil structure present in a data collection. This capability, com-
bined with the stability of the self-organizing map for high-dimensional 
feature space representation, makes it an ideal tool for data analysis sind 
exploration. We demonstrate the potentistl of this method with an ap-
phcation from the information retrieval domain, which is prototypical 
of the high-dimensional feature spaces frequently encountered in today's 
applications. 

1 Introduction 

Today's information age may be characterized by constant massive production 
and dissemination of written information. More powerful tools for exploring, 
searching, and organizing the available mass of information are needed to cope 
with this situation. An attractive way to assist the user in document archive 
exploration is based on unsupervised artificial neural networks, especially self-
organizing maps [3], for document space representation. A number of reseeirch 
publications show that this idea has found appreciation in the community [4, 
5, 6, 7, 9, 13]. Self-organizing maps are used to visualize the similarity between 
documents in terms of distances within the two-dimensional map display. Hence, 
similar documents may be found in neighboring regions of the map. 

Despite the large number of research reports on self-organizing map usage 
for document archive representation, some difficulties remain untouched. First, 
the determination of a suitable number of neurons requires some insight into the 
structtire of the document archive. This cannot be assumed, however, in case of 
unknown document collections. Thus, it might be helpful if the neural network 
would be able to determine this number during its learning process. Second, hier-
archical relations between the input data are not mirrored in a straight-forward 
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manner. Obviously, we should expect such hierarchical relations in document col-
lections where different subject matters are covered. The identification of these 
hierarchical relations remains a highly important data mining task that cannot 
be addressed conveniently within the framework of self-organizing map usage. 

In order to overcome these two limitations of self-organizing maps we pro-
pose a novel neural network architecture in this paper, i.e. the growing hierar-
chical self-organizing map, GH-SOM for short. This neural network architecture 
is capable of determining the required number of units during its unsupervised 
learning process. Additionally, the data set is clustered hierarchically by relying 
on a layered architecture comprising a nimaber of independent self-organizing 
maps within each layer. 

The remainder of this paper is organized as follows. In Section 2 we pro-
vide an outline of architecture and learning rule of the growing hierarchical 
self-organizing map. Section 3 gives a description of the experimental data set, 
namely a collection of articles from the Time Magazine. We provide results from 
using both the self-organizing map and the growing hierarchical self-organizing 
map with this data set in Section 4. Related work is briefly described in Section 
5. Finally, we present our conclusions in Section 6. 

2 Growing Hierarchical Self-Organizing Maps 

The key idea of the growing hierarchical self-organizing map {GH-SOM) is to 
use a hierarchical neural network structure composed of a number of individual 
layers each of which consists of independent self-organizing maps {SOMs). In 
particular, the neural network architecture starts with a single-unit SOM at 
layer 0. One SOM is used at layer 1 of the hierarchy. For every imit in this layer 
1 map, a SOM might be added to the next layer of the hierarchy. This principle 
is repeated with the third and any further layers of the GH-SOM. 

Since one of the shortcomings of SOM usage is its fixed network architecture 
in terms of the number of units and their arrangement, we rather rely on an 
incrementally growing version of the SOM. This relieves us from the burden of 
predefining the network's size which is now determined during the unsupervised 
training process according to the pecuUarities of the input data space. Pragmati-
cally speaking, the GH-SOM is intended to uncover the hierarchical relationship 
between input data in a straight-forward fashion. More precisely, the similarities 
of the input data are shown in increasingly finer levels of detail along the hi-
erarchy defined by the neural network architecture. SOMs at higher layers give 
a coarse grained picture of the input data space whereas SOMs of deeper lay-
ers provide fine grained input discrimination. The growth process of the neural 
network is guided by the so-called quantization error which is a measure of the 
quality of input data representation. 

The starting point for the growth process is the overall deviation of the input 
data as measured with the single-unit SOM at layer 0. This unit is assigned a 
weight vector mo, mo = [̂ Oi,A'02i  i^o„]^ , computed as the average of all 
input data. The deviation of the input data, i.e. the mean quantization error of 
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this single unit, is computed as given in Expression (1) with d representing the 
number of input data x. We will refer to the mean quantization error of a unit 
as mqe in lower case letters. 

mqeo = -  | |mo-a; || (1) 

After the computation of mqeo, training of the GH-SOM starts with its first 
layer SOM. This first layer map initially consists of a rather small number of 
units, e.g. a grid of 2 x 2 units. Each of these units i is assigned an n-dimensional 
weight vector rui, nii = [fii^jHi^,...  ,fii^]'^, mi € 3t", which is initialized with 
random values. It is important to note that the weight vectors have the same 
dimensionahty as the input patterns. 

The learning process of SOMs may be described as a competition among the 
units to represent the input patterns. The unit with the weight vector being 
closest to the presented input pattern in terms of the input spax;e wins the 
competition. The weight vector of the winner as well as units in the vicinity 
of the winner are adapted in such a way as to resemble more closely the input 
pattern. 

The degree of adaptation is guided by means of a learning-rate paxaineter 
a, decreasing in time. The number of units that are subject to adaptation also 
decreases in time such that at the beginning of the learning process a large 
number of units around the winner is adapted, whereas towards the end only 
the winner is adapted. These units are chosen by means of a neighborhood 
function hd which is based on the units' distances to the winner as measured 
in the two-dimensional grid formed by the neural network. In combining these 
principles of 50M training, we may write the learning rule as given in Expression 
(2), where x represents the current input pattern, and c refers to the winner at 
iteration t. 

rriiit  + 1)= ruiit) + a{t)  hci{t)  [x(t) - mi(i)] (2) 

In order to adapt the size of this first layer SOM, the mean quantization 
error of the map is computed ever after a fixed number A of training iterations 
as given in Expression (3). In this formula, u refers to the number of units i 
contained in the SOM m. In analogy to Expression (1), mqCj is computed as 
the average distance between weight vector rUi  and the input patterns mapped 
onto unit i. We will refer to the mean quantization error of a map as MQ E in 
upper case letters. 

M Q E ^ - i - V m q e , (3) 
u —̂̂  

i 
The basic idea is that each layer of the GH-SOM is responsible for explaining 

some portion of the deviation of the input data as present in its preceding layer. 
This is done by adding units to the SOMs on each layer until a suitable size of 
the map is reached. More precisely, the SOMs on each layer are allowed to grow 
until the deviation present in the unit of its preceding layer is reduced to at least 
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a fixed percentage T^. Obviously, the smaller the parameter r ^ is chosen the 
larger will be the size of the emerging SOM. Thus, as long as MQE ^  > Tm-mqeo 
holds true for the first layer map m, either a new row or a new column of units 
is added to this SOM. This insertion is performed neighboring the unit e with 
the highest mean quantization error, mqeg, after A training iterations. We will 
refer to this unit as the error unit. The distinction whether a new row or a new 
column is inserted is guided by the location of the most dissimilar neighboring 
unit to the error unit. Similarity is measured in the input space. Hence, we 
insert a new row or a new column depending on the position of the neighbor 
with the most dissimilar weight vector. The initialization of the weight vectors 
of the new luiits is simply performed as the average of the weight vectors of the 
existing neighbors. After the insertion, the learning-rate parameter a and the 
neighborhood function hd are reset to their initial values and training continues 
according to the standard training process of SOMs. Note that we currently use 
the same value of the parcmieter Tm for each map in each layer of the GH-SOM. It 
might be subject to further research, however, to search for alternative strategies, 
where layer or even map-dependent quantization error reduction parameters are 
utilized. 

Consider Figure 1 for a graphical representation of the insertion of units. 
In this figure the architecture of the SOM prior to insertion is shown on the 
left-hand side where we find a map of 2 x 3 units with the error unit labeled 
by e and its most dissimilar neighbor signified by d. Since the most dissimilar 
neighbor belongs to another row within the grid, a new row is inserted between 
units e and d. The resulting architecture is shown on the right-hand side of the 
figure as a map of now 3 x 3 units. 

Fig. 1. Insertion of units to a self-organizing map 

As soon as the growth process of the first layer map is finished, i.e. MQE ^  < 
Tm 'niqeQ, the units of this map are examined for expansion on the second layer. 
In particular, those units that have a large mean quantization error will  add 
a new SOM to the second layer of the GH-SOM. The selection of these units 
is based on the mean quantization error of layer 0. A parameter r^ is used to 
describe the desired level of granularity in input data discrimination in the final 
maps. More precisely, each miit i fulfillin g the criterion given in Expression (4) 
wil l be subject to hierarchical expansion. 

mqCj > r„  mqcQ (4) 
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The training process and unit insertion procedure now continues with these 
newly established SOMs. The major difference to the training process of the 
second layer map is that now only that fraction of the input data is selected for 
training which is represented by the corresponding first layer unit. The strategy 
for row or column insertion as weU as the termination criterion is essentially 
the same as used for the first layer map. The same procedure is applied for any 
subsequent layers of the GH-SOM. 

The training process of the GH-SOM is terminated when no more units re-
quire further expansion. Note that this training process does not necessarily leaxl 
to a balanced hierarchy, i.e. a hierarchy with equal depth in each branch. Rather, 
the specific requirements of the input data is mirrored in that clusters might exist 
that are more structured than others and thus need deeper branching. Consider 
Figure 2 for a graphical representation of a trained GH-SOM. In particular, the 
neural network depicted in this figm:e consists of a single-unit SOM at layer 0, 
a SOM of 2 X 3 units in layer 1, six SOMs in layer 2, i.e. one for each unit in 
the layer 1 map. Note that each of these maps might have a different number 
and different arrangements of units as shown in the figure. Finally, we have one 
SOM in layer 3 which was expanded from one of the layer 2 units. 

Fig. 2. Architecture of a trained GH-SOM 

To summarize, the growth process of the GH-SOM is guided by two parame-
ters Tu and Tm- The parameter r„  specifies the desired quality of input data rep-
resentation at the end of the training process. Each unit i with mqe, > r„  mqeg 
wil l be expanded, i.e. a map is added to the next layer of the hieraxchy, in order 
to explain the input data in more detail. Contrary to that, the parameter Tm 
specifies the desired level of detail that is to be shown in a particular SOM. In 
other words, new units are added to a SOM until the MQ E of the map is a 
certain fraction, Tm, of the mqe of its preceding unit. Hence, the smaller Tm the 
larger will  be the emerging maps. Conversely, the larger r^ the deeper will  be 
the hierarchy. 
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3 Data Set 

In the experiments presented hereafter we use the TIME Magazine article col-
lection available at http://www.ifs.tuwien.ac.at/ifs/research/ir as a reference doc-
ument archive. The collection comprises 420 documents from the TIME Mag-
azine of the early 1960's. The documents can be thought of as forming topical 
clusters in the high-dimensional feature space spanned by the words that the 
documents are made up of. The goal is to map and identify those clusters on 
the 2-dimensional map display. Thus, we use full-text indexing to represent the 
various documents according to the vector space model of information retrieval. 
The indexing process identified 5923 content terms, i.e. terms used for document 
representation, by omitting words that appear in more than 90% or less than 
1% of the documents. The terms are roughly stemmed and weighted accord-
ing to a tf X idf, i.e. term frequency x inverse document frequency, weighting 
scheme [14], which assigns high values to terms that are considered important in 
describing the contents of a document. Following the featmre extraction process 
we end up with 420 vectors describing the documents in the 5923-dimensional 
document space, which are further used for neural network training. 

4 Experimental Results 

Figure 3 shows a conventional self-organizing map trained with the Times Article 
Collection data set. It consists of 10 x 15 imits represented as table cells with a 
number of articles being mapped onto each individual unit. The articles mapped 
onto the same or neighboring units are considered to be similar to each other in 
terms of the topic they deal with. Due to space considerations we cannot present 
all the articles in the collection. We thus selected a number of tmits for detailed 
discussion. 

We find, that the SOMhas succeeded in creating a topology preserving repre-
sentation of the topical clusters of articles. For example, in the lower left corner 
we find a group of units representing articles on the conflict in Vietnam. To 
name just a few, we find articles T320, T369 on unit (14/1)\ TS90, T4I8, 
T434 on unit (15/1) or T390, T4I8, T434 on unit (15/2) deaUng with the gov-
ernment crackdown on buddhist monks, next to a number of articles on units 
(15/4), (15/5) and neighboring ones, covering the fighting and suffering during 
the Vietnam War. 

A cluster of documents covering affairs in the Middle-East is located in the 
lower right corner of the map around unit (15/10), next to a cluster on the so-
called Profumo-Keeler affair, a political scandal in Great Britain in the 1960's, 
on and around units (11/10) and (12/10). Above this area, on units (6/10) and 
neighboring ones we find articles on elections in Italy and possible coalitions, 
next to two units (3/10) and (4/10) covering elections in India. Similarly, all 
other units on the map can be identified to represent a topical cluster of news 

^ We use the notion (x/y) to refer to the unit located in row x and column y of the 
map, starting with (1/1) in the upper left corner 
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T024 
T086 
TS42 

MJIJ1JJI,IJ»I..!J.^HL.IJI,I1HI.1.. I 

Fig. 3. 10 X 15 SOM oi the Time Magazine collection 

articles. For a more detailed discussion of the articles and topic clusters found 
on this map, we refer to [12] and the online-version of this map available at 
http://www.ifs.tuwien.ac.at/ifs/research/ir. 

While we find the SOM to provide a good topologically ordered representa-
tion of the various topics found in the article collection, no information about 
topical hierajchies can be identified from the resulting flat map. Apart from this 
we find the size of the map to be quite large with respect to the number of 
topics identified. This is mainly due to the fact that the size of the map has to 
be determined in advance, before any information about the number of topical 
clusters is available. 

To overcome these shortcomings we trained a growing hierarchical SOM. 
Based on the artificial unit representing the means of all data points at layer 0, 
the GH-SOM training algorithm started with a 2 x 2 SOM at layer 1. The 
training process for this map continued with additional units being added until 
the quantization error fell below a certain percentage of the overall quantization 
error of the unit at layer 0. The resulting first-layer map is depicted in Figure 4. 
The map has grown for two stages, adding one row and one column respectively, 
resulting in 3 x 3 units representing 9 major topics in the document collection. 

For convenience we list the topics of the various units, rather then the in-
dividual articles in the figure. For example, we find unit (1/1) to represent all 
articles related to the situation in Vietnam, whereas Middle-East topics are cov-
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Fig. 4. Layer 1 of the GH-SOM 

ered on unit (1/3), or articles related to elections and other political topics on 
unit (3/1) in the lower left corner to name but a few. 

Based on this first separation of the most dominant topical clusters in the 
article collection, further maps were automatically trained to represent the var-
ious topics in more detail. This results in 9 individual maps on layer 2, each 
representing the data of the respective higher-layer unit in more detail. Some 
of the units on these layer 2 maps were further expanded as distinct SOMs in 
layer 3. 

The resulting layer 2 maps are depicted in Figure 5. Please note, that -
according to the structure of the data - the maps on the second layer have 
grown to different sizes, such as a small 2 x 2 map representing the articles of 
unit (3/1) of the first map, up to 3 x 3 maps for the units (2/1), (3/2) and 
(3/3). TaJfing a more detailed look at the first map of layer 2 representing unit 
(1/1) of layer 1 we find it to give a clearer representation of articles covering 
the situation in Vietnam. Units (1/1) and (2/1) on this map represent articles 
on the fighting during the Vietnam War, whereas the remaining units represent 
articles on the internal conflict between the catholic government and buddhist 
monks. At this layer, the two units (1/2) and (3/2) have further been expanded 
to form separate maps with 3 x 3 units each at layer 3. These again represent 
articles on the war and the internal situation in Vietnam in more detail. 

To give cinother example of the hierarchical structures identified during the 
growing hierarchical SOM trciining process, we may take a look at the 2 x 3 
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Fig. 5. Layer 2 of the GH-SOM: 1 50M per unit of layer 1 SOM 

map representing the articles of unit (3/1) of the first layer map. Al l of these 
articles were found to deal with political matters on layer 1. This common topic 
is now displayed in more detciil at the resulting second-layer map. For example, 
we find unit (1/3) to represent articles on the elections in India. Next to these, 
we find on units (1/2) and (2/3) articles covering the elections and discussions 
about poUtical coalitions between socialists and christian democrats in Italy. The 
remaining 3 units on this map deal with different issues related to the Profumo-
Keeler scandal in Great Britain, covering the pohtical hearings in parliament as 
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well as background information on this scandal and the persons involved. Again, 
some of the units have been expanded at a further level of detail forming 3 x 2 
or 3 X 3 SOMs on layer 3. 

For comparing the GH-SOM with its flat counterpart we may identify the 
locations of the articles on the 9 second-layer maps on the corresponding 10 x 15 
SOM. This allows us to view the hierarchical structure of the data on the flat 
map. We find that, for example, the cluster on Vietnam simply forms one larger 
coherent cluster on the flat map in the lower left corner of the map covering 
the rectangle spanned by the units (14/1) and (15/5). The same applies to the 
cluster of Middle-East affairs, which is represented by the map of unit (1/3) in the 
growing hierarchical SOM. This cluster is mainly located in the lower right corner 
of the flat SOM. The cluster of political affairs, represented by unit (3/1) on the 
first layer of the GH-SOM and represented in more detail on its subsequent layers, 
is spread across the right side of the flat SOM, covering more or less all units on 
columns 9 and 10 and between rows 3 and 12. Note, that this common topic of 
political issues is not easily discernible from the overall map representation in the 
flat SOM, where exactly this hierarchical information is lost. The subdivision of 
this cluster on political matters becomes further evident when we consider the 
second layer classification of this topic airea, where the various sub-topics are 
clearly separated, covering Indian elections, Italian coaUtions cind the British 
Profumo-Keeler scandal. 

As another interesting feature of the GH-SOM we want to emphasize on is 
the overall reduction in map size. During analysis we found the second layer of 
the GH-SOM to represent the data at about the same level of topical detail as 
the corresponding flat SOM. Yet the number of units of all individual second-
layer SOMs combined is only 87 as opposed to 150 units in the flat 10 x 15 
SOM. Of course we might decide to train a smaller flat SOM of, say 9 x 10 
units. However, with the GH-SOM model, this number of units is determined 
automatically, and only the necessary number of units is created for eax;h level 
of detail representation required by the respective layer. Furthermore, not all 
branches are grown to the same depth of the hierarchy. As can be seen from 
Figure 5, only some of the units are further expanded in a layer 3 map. With 
the resulting maps at all layers of the hierarchy being rather small, activation 
calculation and winner evaluation is by orders of magnitude faster than in the 
conventional model. Apart from the speedup gained by the reduced network size, 
orientation for the user is highly improved as compared to the rather huge maps 
which can not be easily comprehended as a whole. 

5 Related Work 

A number of extensions and modiflcations have been proposed over the years in 
order to enhance the applicability of SOMs to data mining, specifically cluster 
identification. Some of the approaches, such as the U-Matrix [15], or the Adaptive 
Coordinates and Clxister Connection techniques [8] focus on the detection and 
visuaUzation of clusters in conventional SOMs. Similar cluster information can 
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also be obtained using our LabelSOM method [11], which automatically describes 
the characteristics of the various units. Grouping units that have the same de-
scriptive keywords assigned to them allows to identify topical clusters within the 
SOM map area. However, none of the methods identified above facilitates the 
detection of hierarchical structure inherent in the data. 

The hierarchical feature map [10] addresses this problems by modifying the 
SOM network architecture. Instead of training a flat SOM map, a balanced 
hierarchical structure of SOMs is trained. Similar to our GH-SOM model, the 
data mapped onto one single unit is represented at some further level of detail in 
the lower-level map assigned to this unit. However, this model rather pretends to 
represent the data in a hierarchical way rather than really reflecting the structure 
of the data. This is due to the fact that the architecture of the network has to 
be defined in advance, i.e. the number of layers and the size of the maps at each 
layer is fixed prior to network training. This leads to the definition of a balanced 
tree which is used to represent the data. What we want, however, is a network 
architecture definition based on the actual data presented to the network. This 
requires the SOM to actually use the data available to define its axchitecture, 
the required levels in the hierarchy and the size of the map at each level, none 
of which is present in the hierarchical feature map model. 

The necessity of having to define the size of the SOM in advance has been 
addressed in several models, such as the Incremental Grid Growing [1] or Grow-
ing Grid [2] models. The latter, similar to our GH-SOM model, adds rows and 
columns during the training process, starting with an initial 2 x 2 SOM. How-
ever, the main focus of this model lies with an equal distribution of input signals 
across the map, adding units in the neighborhood of imits that represent an un-
proportionally high number of data points. It does thus not primarily reflect the 
concept of representation at a certain level of detail, which is rather expressed 
in the overall quantization error rather then the number of data points mapped 
onto certain areas. The Incremental Grid Growing model, on the other hcind, can 
add new units only on the borders of the map. Neither of this models, however, 
takes the inherently hierarchical structure of data into account. 

6 Conclusions 

We have presented the Growing Hierarchical Self-Organizing Map (GH-SOM), a 
neural network based on the self-organizing map (SOM), a model that has proven 
to be effective for cluster analysis of very high-dimensional feature spaces. Its 
main benefits are due to the model's capabilities to (1) determine the number of 
neural processing units required in order to represent the data at a desired level 
of detail and (b) to create a network architecture reflecting the hierarchical struc-
ture of the data. The resulting benefits are numerous: first, the processing time 
is largely reduced by training only the necessary number of units for a certain 
degree of detail representation. Second, the GH-SOM by its very architecture 
resembles the hierarchical structure of data, allowing the user to understand 
and analyze large amounts of data in an explorative way. Third, with the vari-
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ous emergent maps at each level in the hierarchy being rather small, i t is easier 
for the user to keep an overview of the various clusters identified in the data 
and to build a cognitive model of it in a very high-dimensional feature space. 
We have demonstrated the capabilities of this approach by an application from 
the information retrieval domain, where text documents, which are located in 
a high-dimensional feature space spaxmed by the words in the documents, are 
clustered by their mutual similarity and where the hierarchical structure of these 
documents is reflected in the resulting network architecture. 
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Abs t rac t. With the explosive growth of data avaiilable on the World 
Wide Web, discovery and analysis of useful information from the World 
Wide Web becomes a practical necessity. Web access pattern, which is the 
sequence of accesses pursued by users frequently, is a kind of interesting 
and useful knowledge in practice. 
In this paper, we study the problem of mining access patterns from Web 
logs efficiently. A novel data structure, called Web access pat tern 
t ree, or WAP-tree in short, is developed for efficient mining of access 
patterns from pieces of logs. The Web access pattern tree stores highly 
compressed, critical information for access pattern mining and facilitates 
the development of novel algorithms for mining access patterns in large 
set of log pieces. Our algorithm can find access patterns from Web logs 
quite efficiently. The experimental and performance studies show that 
our method is in general an order of magnitude faster than conventional 
methods. 

1 Introduction 

Wit h the explosive growth of da ta available on the World Wide Web, discovery 
and analysis of useful information from the World Wide Web becomes a practical 
necessity. Web mining is the application of da ta mining technologies to huge 
Web da ta repositories. Basically, there are two domains that perta in to Web 
mining: Web content mining and Web usage mining. The former is the process 
of extract ing knowledge from the content of Web sites, whereas the latter, also 
known as Web log mining, is the process of extract ing interesting pat terns in 
Web access logs. 

Web servers register a Web log entry for every single access they get, in which 
important pieces of information about accessing are recorded, including the URL 
requested, the I P address from which the request originated, and a t imestamp. 
A fragment of log file is shown as follows. 

pm21sl5. intergate.bc.ca - - [06/0ct/1999:00:00:09 -0700] "GET / HTTP/1.1"  200 5258 
"http://vrew.sfii.ca/academic_programs.htm"  "Hozi l la/4. 0 (compatible; HSIE 4 .01; Windows 95)" 

pm21sl5. intargata.bc.ca [06/Dct/1999:00:00: ll -0700] "GET / images/bu l le ts /bsqs .g if 
HTTP/1.1"  200 489 "http://www.cs.8fu.ca/"  "Hozi l la/4. 0 (compatible; MSIE 4 .01; Windows 95)" 

*  The work was supported in part by the Natural Sciences and Engineering Research 
Council of Canada (grant NSERC-A3723), the Networks of Centres of Excellence of 
Canada (grant NCE/IRIS-3), and the Hewlett-Packard Lab. 
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There are many efforts towards mining various patterns from Web logs, e.g. 
[4,11^15]. Web access patterns mined from Web logs are interesting and use-
ful knowledge in practice. Examples of applications of such knowledge include 
improving designs of web sites, analyzing system performance as well as net-
work communications, understanding user reaction and motivation, and building 
adaptive Web sites [5,10,13,14]. 

Essentially, a Web access pattern is a sequential pattern in a large set of 
pieces of Web logs, which is pursued frequently by users. Some research efforts 
try to employ techniques of sequential pattern mining [2], which is mostly based 
on association rule mining [1], for discovering Web access patterns from Web 
logs. 

Sequential pattern mining, which discovers frequent patterns in a sequence 
database, was first introduced by Agrawal and Srikant [2] as follows: given a 
sequence database where each sequence is a list of transactions ordered by trans-
action time and each transaction consists of a set of items, find all sequential 
patterns with a user-specified minimum support, where the support is the number 
of data sequences that contain the pattern. 

Since its introduction, there have been many studies on efficient mining tech-
niques and extensions of sequential pattern mining method to mining other time-
related frequent patterns [2,12,8,7,3,9,6]. 

Srikant and Agrawal [12] generalized their definition of sequential patterns in 
[2] to include time constraints, sliding time window, and user-defined taxonomy 
and developed a generalized sequential pattern mining algorithm, GSP, which 
outperforms their AprioriAII algorithm [2]. GSP mines sequential patterns by 
scanning the sequence database multiple times. In the first scan, it finds all 
frequent 1-items and forms a set of 1-element frequent sequences. In the following 
scans, it generates (step-wise longer) candidate sequences from the set of frequent 
sequences and check their supports. GSP is efficient when the sequences are 
not long as well as the transactions are not large. However, when the length 
of sequences increase and/or when the transactions are large, the number of 
candidate sequences generated may grow exponentially, and GSP will  encounter 
difficulties. 

Al l of the above studies on time-related (sequential or periodic) frequent 
pattern mining adopt an Apriori like paradigm, which promotes a generate-and-
test method: first generate a set of candidate patterns and then test whether 
each candidate may have sufficient support in the database (i.e., passing the 
minimum support threshold test). The Apriori heuristic is on how to generate a 
reduced set of candidates at each iteration. 

However, as these algorithms are level-wise, Apriori -like in nature, they en-
counter the same difficulty when the length of the pattern grows long, which is 
exactly the case in Web access pattern mining. In Web log mining, the length of 
Web log pieces can be pretty long, while the number of such pieces can be quite 
huge in practice. 

In this paper, we investigate the issues related to efficiently mining Web access 
from large set of pieces of Web log. The main contributions are as follows. First, 
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a concise, highly compressed WAP-tree structure is designed and implemented 
which handles the sequences elegantly. Second, an efficient mining algorithm, 
WAP-mine , is developed for mining the complete (but nonredundant) Web access 
patterns from large set of pieces of Web log. Third, a performance study has 
been conducted which demonstrates that the WAP-mine algorithm is an order 
of magnitude faster than its Apriori -based counterpart for mining Web access 
patterns. 

The remaining of the paper is organized as follows. The problem is defined in 
Section 2, while the general idea of our novel method is presented in Section 3. 
Section 4 and 5 focus on construction WAP-tree and mining the tree, respectively. 
We show the experimental results and conclude the paper in Section 6. 

2 Problem Statement 

In this paper, we focus on mining Web access patterns. In general, a Web log 
can be regarded as a sequence of pairs of user identifier and event. In this inves-
tigation, Web log files are divided into pieces per mining purpose. Preprocessing 
can be applied to the original Web log files, so that pieces of Web logs can be 
obtained. Each piece of Web log is a sequence of events from one user or session 
in timestamp ascending order, i.e. event happened early goes first. We model 
pieces of Web logs as sequences of events, and mine the sequential patterns over 
certain support threshold. 

Let £  be a set of events. A Web log piece or (Web) access sequence 
S = 6162  e„  (ej G E) for (1 < i < n) is a sequence of events, while n is 
called the length of the access sequence. An access sequence with length n is 
also called an n-sequence. Please note that it is not necessary that ej  ̂ BJ for 
{i  y  ̂j) in an access sequence S. Repetition is allowed. For example, aab and ab 
are two different access sequences, in which a and b are two events. 

Access sequence S' = e'l Cg  eJ is called a subsequence of access sequence 
S = 6162  Bn, and S a super-sequence of S', denoted as S' C S, if and only if 
there exist 1 < ii  < i2 <  < ii  < n, such that e'- = ei  ̂ for {I  < j < I). Access 
sequence S' is a proper subsequence of sequence S, denoted as S' C S, if and 
only if S' is a subsequence of S and S'  ̂ S. 

In access sequence S = 6162  efcCfe+i  e„, if subsequence Ssuffix — 
Cfc+i  e„  is a super sequence of pattern P = e[e'2  -Cj, and ek+i = e[, the 
subsequence of S, Sprefix = 6162  efc, is called the prefix of S with respect to 
pattern P. 

Given a set of access sequence WAS = {81,82,  ,Sm}, called Web ac-
cess sequence database, in which Si {1 < i < m) are access sequences. The 
support of access sequence S in WAS is defined as supw_A.s{S) = '  ̂ ^'^
supw^siS) is also denoted as sup{S) if WAS is clear from the context. A se-
quence 8 is said a ^-pat tern or simply (Web) access pa t t e rn of >V^<S, if 
supwAs{8) > ^. Please note that the access sequences in a Web access sequence 
database need not be of the same length. Although events can be repeated in an 
access sequence or pattern, any pattern can get support at most once from one 
access sequence. 
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Problem Statement. The problem of Web access pattern minin g is: given 
Web access sequence database WAS and a support threshold ^, mine the complete 
set of ^-patterns of WAS. 

Example 1. Let {a, b, c, d, e, / }  be a set of events, and 100, 200, 300, and 400 are 
identifiers of users. A fragment of Web log records the information as follows. 

<100, a)(100, f>)(200, a)(300,6)(200,6)(400, a)(100, a){400,6)(300, a)(100, c) 

(200, c)(400, a) (200, a) (300,6) (200, c)(400, c)(400, c)(300, a) (300, c) 

A preprocessing which divides the log file into access sequences of individual 
users is applied to the log file, while the resulting access sequence database, 
denoted as WAS, is shown in the first two columns in Table 1. 

There are totally 4 access sequences in the database. They are not with same 
length. The first access sequence, abdac, is a 5-sequence, while ah is a subsequence 
of it. In access sequence of user 200, both e and eaebc are prefixes with respect 
to ac. fc is a 50%-pattern because it gets supports from access sequence of user 
300 and 400. Please note that even fc appears twice in the access sequence of 
user 400, afbacfc, but the sequence contributes only one to the count of fc. 

Table 1. A database of Web access sequences. 

User ID 

100 
200 
300 
400 

Web Access Sequence 

abdac 
eaebcac 
babfaec 
afbacfc 

Frequent subsequence 

abac 
abcac 
babac 
abacc 

3 WAP-mine : Mining Access Pat te rns Efficiently from 
Web Logs 

Access patterns can be mined using sequential pattern mining techniques. Al-
most all previously proposed methods for sequential pattern mining are based 
on a sequential pattern version of Apriori heuristic [1], stated as follows. 

Property 1. (Sequential Pattern Apriori ) Let S£Q be a sequence database, 
if a sequence G is not a ^-pattern of S£Q, any super-sequence of G cannot be a 
^-pattern of SSQ. 

For example, " / " is not a 75%-pattern of WAS in Example 1, thus any access 
sequence containing "/" , cannot be a 75%-pattern. 

The sequential pattern Apriori property may substantially reduce the size of 
candidate sets. However, because of the combinatorial nature of the sequential 
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pattern mining, it may still generate a huge set of candidate patterns, especially 
when the sequential pattern is long, which is exactly the case of Web access 
pattern mining. 

This motivates us to study alternative structures and methods for Web access 
pattern mining. The key consideration is how to facilitate the tedious support 
counting and candidate generating operations in the mining procedure. 

Our novel approach for mining Web access patterns is called WAP-mine . It 
is based on the following heuristic, which follows Property 1. 

Property 2. (Suffix heuristic) If e is a frequent event in the set of prefixes of 
sequences in WAS, w.r.t. pattern P, sequence eP is an access pattern of WAS. 

For example, 6 is a frequent event within the set of prefixes w.r.t. ac in 
Example 1, so we can claim that bac is an access pattern. 

Basically, the general idea of our method can be summarized as follows. 

— A nice data structure, WAP-tree , is devised to register access sequences and 
corresponding counts compactly, so that the tedious support counting can 
be avoided. It also maintains linkages for traversing prefixes with respect 
to the same suffix pattern efficiently. A WAP-tree registers all and only all 
information needed by the rest of mining. Once such a data structure is 
built, all the remaining mining processing is based on the WAP-tree . The 
original access sequence database is not needed any more. Because the size 
of WAP-tree is usually much smaller than that of the original access sequence 
database, as shown later, the mining becomes easier. As shown in Section 4, 
the construction of WAP-tree is quite efficient by simply scanning the access 
sequence database twice. 

— An efficient recursive algorithm is proposed to enumerate access patterns 
from WAP-tree . No candidate generation is required in the mining proce-
dure, and only the patterns with enough support will be under considera-
tion. The philosophy of this mining algorithm is conditional search. Instead 
of searching patterns level-wise as Apriori, conditional search narrows the 
search space by looking for patterns with the same suffix, and count frequent 
events in the set of prefixes with respect to condition as suffix. Conditional 
search is a partition-based divide-and-conquer method instead of bottom-up 
generation of combinations. It avoids generating large candidate sets. 

The essential structure of the WAP-mine algorithm is as follows. The algo-
rithm scans the access sequence database twice. In the first pass, it determines 
the set of frequent events. An event is called a frequent event if and only if 
it appears in at least (̂  |W./15|) access sequences of WAS, in which |W.4<S[ 
and ^ denotes the number of access sequences in WAS and the support thresh-
old, respectively. In the next scan, WAP-mine builds a tree data structure, called 
WAP-tree , using frequent events, to register all count information for further 
mining. Then, WAP-mine recursively mine the WAP-tree using conditional search 
to find all Web access patterns. An overview of the algorithm is given in Algo-
rithm 1. 
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Algor i thm 1 (WAP-mine : mining access pa t te rns in Web access se-
quence database) 
Input : access sequence database WAS and support threshold ^ (0 < ^ < 1). 
Output : the complete set of ^-patterns in WAS. 
Method: 

1. Scan WAS once, find all frequent events. 
2. Scan WAS again, construct a WAP-tree over the set of frequent events for 

using Algorithm 2, presented in Section 4; 
3. Recursively mine the WAP-tree using conditional search, which will  be pre-

sented in Section 5. 

There are two key techniques in our method, constructing WAP-tree and min-
ing access patterns from WAP-tree . They are explored in detail in the following 
two sections. Section 4 focuses on the concept and the construction of WAP-tree , 
while Section 5 investigates the mining of access patterns from WAP-tree . 

4 Construct ion of WAP-tree 

The following observations may help us design a highly condensed Web access 
pattern tree. 

1. Of all the 1-sequences, only the frequent ones will be useful in the construc-
tion of frequent fc-sequences for any k > 1. Thus, if an event e is not in the 
set of frequent 1-sequences, there is no need to include e in the construction 
of a Web access pattern tree. 

2. If two access sequences share a common prefix P, the prefix P can be shared 
in the WAP-tree . Such sharing can bring some advantages. It saves some 
space for storing access sequences and facilitates the support counting of 
any subsequence of the prefix P. 

Based on the above observations, a Web access pa t te rn t ree structure, or 
WAP-tree in short, can be defined as follows. 

1. Each node in a WAP-tree registers two pieces of information: label and count, 
denoted as label : count. The root of the tree is a special virtual node with 
an empty label and count 0. Every other node is labeled by an event in the 
event set E, and is associated with a count which registers the number of 
occurrences of the corresponding prefix ended with that event in the Web 
access sequence database. 

2. The WAP-tree is constructed as follows: for each access sequence in the 
database, filter out any nonfrequent events, and then insert the resulting 
frequent subsequence into WAP-tree . The insertion of frequent subsequence 
is started from the root of WAP-tree . Considering the first event, denoted 
as e, increment the count of child node with label e by 1 if there exists one; 
otherwise create a child labeled by e and set the count to 1. Then, recur-
sively insert the rest of the frequent subsequence to the subtree rooted at 
that child labeled e. 
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3. Auxiliary node linkage structures are constructed to assist node traversal in 
a WAP-tree as follows. All the nodes in the tree with the same label are linked 
by shared-label linkages into a queue, called event-node queue, The event-
node queue of with label Cj is also called Cj-queue. There is one header 
table 7i for a WAP-tree , and the head of each event-node queue is registered 
inW. 

Example 2. Let's consider the access sequence database in Example 1. Suppose 
the support threshold is set to 75%, i.e. it is required to find all Web access 
patterns supported by at least three access sequences in the database. 

One scan of the database derives the set of frequent 1-events: {a, 6, c} . For 
convenience, the frequent subsequences are listed in the rightmost column of 
Table 1. 

Header Tabel IK<»< Header Tabel (Roof) 

Conditional WAP-treelac 

Conditional WAP-treeIc 

WAP-tree 

Fig. 1. The WAP-tree and conditional WAP-tree for frequent subsequences in Table 1. 

The WAP-tree is shown in Figure 1, which is constructed as follows. First, 
insert the sequence abac into the initial tree with only one virtual root. It creates 
a new node [a : 1) (i.e., labeled as a, with count set to 1) as the child of the 
root, and then derives the a-branch "(a : 1) —> (6 : 1) —> (a : 1) ^ (c : 1)", 
in which arrows point from parent nodes to children ones. Second, insert the 
second sequence abcac. It starts at the root. Since the root has a child labeled 
o, o's count is increased by 1, i.e., (a : 2) now. Similarly, we have {b : 2). The 
next event, c, does not match the existing node a, and a new child node c : 1 is 
created and inserted. The remaining sequence insertion process can be derived 
accordingly. 

The algorithm for constructing a WAP-tree for Web access sequences is given 
in Algorithm 2. 

Algorith m 2 (WAP-tree Construct ion for  Web access sequences) 
Input : A Web access sequence database WAS and the set of frequent events 
FE (which is obtained by scanning WAS once). 
Output : an WAP-tree T. 
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Method: 

1. Create a root node for T; 
2. For each access sequence S in the access sequence database WAS do 

(a) Extract frequent subsequence S' from S by removing all events appearing 
in S but not in FE. Let S' = siS2  s„, where Si {1 < i < n) are events 
in S'. Let current-node point to the root of T. 

(b) For i = 1 to n do, if current-node has a child labeled Sj, increase the 
count of Si by 1 and make currentjnode point to 5 ,̂ else create a new 
child node (sj : 1), make current-node point to the new node, and insert 
it into the s,-queue. 

3. Return(T); 

Analysis: The WAP-tree registers all access sequence counts. As will be shown 
in later sections, the mining process for all Web access patterns needs to work 
on the WAP-tree only, instead of on the original database any more. Therefore, 
WAP-mine needs to scan the access sequence database only twice. It is easy to 
show that the height of the WAP-tree is one plus the maximum length of the 
frequent subsequences in the database. The width of the WAP-tree , i.e. the 
number of leaves of the tree, is bounded by the number of access sequences in 
the database. Therefore, WAP-tree may not generate explosive number of nodes. 
Access sequences with same prefix will share some upper part of path from root. 
Statistically, considering the factor of prefix sharing, the size of WAP-tree is much 
smaller than the size of access sequence database. 

From Algorithm 2, the construction of WAP-tree , one can observe an impor-
tant property of WAP-tree stated as follows. 

Lemma 1. For any access sequence in an access sequence database WAS, there 
exists a unique path in the WAP-tree starting from the root such that all labels 
of nodes in the path in order is exactly the same as the events in the sequence. 

This lemma ensures that the number of distinct leaf nodes as well as paths in 
an WAP-tree cannot be more than the number of distinct frequent subsequences 
in the access sequence database, and the height of the WAP-tree is bounded by 
one (for the root) plus the maximal number of instances of frequent 1-events in 
an access sequence. 

I t is easy to show that a WAP-tree can be partitioned and structured in the 
form similar to B-|—tree, and can be implemented even in pure SQL. Therefore, 
WAP-tree as well as mining using WAP-tree are highly scalable. 

5 Mining Web Access Pat terns from WAP-tree 

The WAP-tree structure constructed by Algorithm 2 provides some interesting 
properties which facilitate mining Web access patterns. 

Property 3. (Node-link property ) For any frequent event e,, all the frequent 
subsequences contain Cj can be visited by following the Cj-queue, starting from 
the record for Ci in the header table of WAP-tree . 
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The property facilitates the access of all the pattern information related to 
frequent event Cj by following the all branches in WAP-tree linked by ej-queue 
only once. For any node labeled e, in an WAP-tree , all nodes in the path from 
root of the tree to this node (excluded) form a prefi x sequence of a. The count 
of this node labeled Cj is called the count of the prefix sequence. 

Please note that a path from root may have more than one node labeled 
ei, thus a prefix sequence of ej may contain another prefix sequence of ej. For 
example, sequence aba is a prefix sequence of "6" in abab, it contains another 
prefix sequence of "6", a. when counting ab in sequence abab, we must maice sure 
no double counting, i.e. abab contributes only 1 to the count of ab. It is achieved 
by the concept of unsubsumed count as follows. 

Let G and H be two prefix sequences of Cj, and G is also formed by the sub-
path from root of that H is formed by, H is called a super-prefix sequence 
of G, and G is a sub-prefix sequence of H. For instance, aba is a super-prefix 
sequence of a. 

For a prefix sequence of ej without any super-prefix sequences, we define the 
unsubsumed count of that sequence as the count of it. For a prefix sequence 
of ej with some super-prefix sequences, the unsubsumed count of it is the count 
of that sequence minus unsubsumed counts of all its super-prefix sequences. For 
example, let 5 = (a : 6) -^ (6 : 5) ^ (a : 2) —> (6 : 2) be one path from root, 
the unsubsumed count of the first a, a prefix sequence of b, in the path should 
be 3 instead of 5, since two of the totally five counts in the first b node devotes 
to the super-prefix sequence aba of a. 

Property 4- (Prefix sequence unsubsumed count property ) The count of a 
sequence G ended with ê  is the sum of unsubsumed counts of all prefix sequences 
of Ci which is a super-sequence of G. 

Based on the above two properties, we can apply conditional search to 
mine all Web access patterns using WAP-tree . What "conditional search" means, 
instead of searching all Web access patterns at a time, it turns to search Web 
access patterns with same suffix. Suffix is used as the condition to narrow the 
search space. As the suffix becomes longer, the remaining search space becomes 
smaller potentially. 

The conditional search paradigm has some advantages against Apriori -like 
ones. The node-link property of WAP-tree ensures that, for any frequent event 
ej, all sequences with suffix e, can be visited efficiently using the Cj-queue of the 
tree. On the other hand, the prefix sequence unsubsumed count property makes 
sure that to count all frequent events in the set of sequences with same suffix, 
only caring the unsubsumed count is sufficient. That simplifies the counting op-
erations. These two properties of WAP-tree make the conditional search efficient. 

The basic structure of mining all Web access patterns in WAP-tree is as fol-
lows. If the WAP-tree has only one branch, all (ordered) combinations events 
in the branch are all the Web access patterns in the tree. So what needs to 
be done is just to return the complete set of such combinations. Otherwise, for 
each frequent event e, in the WAP-tree , by following the ej-queue started from 
header table, an ej-conditional access sequence base is constructed, denoted 
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as PS I Cj, which contains all and only all prefix sequences of Cj. Each prefix 
sequence in PS \ ej carries its count from the WAP-tree , For each prefix se-
quence of gj with count c, when it is inserted into PS \ e ,̂ all of its sub-prefix 
sequences of Cj are inserted into PS \ ti with count — c. It is easy to show that 
by accumulating counts of prefix sequences, a prefix sequence in PS \ e, holds 
its unsubsumed count. Then, the complete set of Web access patterns which are 
prefix sequence of Ci can be mined by concatenating ei to all Web access patterns 
returned from mining the conditional WAP-tree , and ê  itself. 

The algorithm is given as follows. 

Algorith m 3 (Minin g all Web access pa t te rns in a WAP-tree ) 
Input : a WAP-tree T and support threshold ^. 
Output : the complete set of ^-patterns. 
Method: 

1. if the WAP-tree T has only one branch, return all the unique combinations 
of nodes in that branch. 

2. initialize Web access pattern set WAP = 0. Every event in WAP-tree T itself 
is a Web access pattern, insert them into WAP. 

3. for each event ej in WAP-tree T, 
(a) construct a conditional sequence base of Cj, i.e. PS j ej, by following the 

Ci-queue, count conditional frequent events at the same time. 
(b) if the the set of conditional frequent events is not empty, build a condi-

tional WAP-tree for ej over PS | Ci using algorithm 2. Recursively mine 
the conditional WAP-tree 

(c) for each Web access pattern returned from mining the conditional 
WAP-tree , concatenate ei to it and insert it into WAP 

4. return WAP. 

Example 3. Let us mine the Web access patterns in the WAP-tree in Figure 1. 
Suppose the support threshold is set to 75%. We start the conditional search 
from frequent event c. The conditional sequence base of c is listed as follows. 

aha : 2,ab : l,abca : l,ab : —1, baba : l,abac : l,aba : —1 

To be qualified as a conditional frequent event, one event must have count 3. 
Therefore, the conditional frequent events are a(4) and 6(4). Then, a conditional 
WAP-tree , WAP-tree | c, is built, as also shown in Figure 1. 

Recursively, the conditional sequence base of ca is built. It is a6 : 3,6 : 1, a6 : 
1,6 : —1. The WAP-tree | a is built, also shown in Figure 1. There is only one 
branch in the conditional tree, so all combinations are generated. Thus, the Web 
access patterns with suffix ac are aac, bac, abac, ac. 

Then, we can construct the conditional sequence base for 6 in WAP-tree | c, 
and mine the conditional WAP-tree . The frequent patterns a6c, be can be found. 

At this point, the conditional search of c is finished. We can use other frequent 
events in turn, to find all the other Web access patterns. 
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Following the properties presented ahead and considering the enumerating 
of access patterns in Algorithm 3, the correctness of WAP-mine can be shown. 

Theorem 1. WAP-mine returns the complete set of access patterns without re-
dundancy. 

As can be seen in the example, and shown in our experiments, mining Web 
access patterns using WAP-tree has significant advantages. First, the WAP-tree is 
an effective data structure. It registers all count information for pattern mining, 
and frees the mining process from counting candidates by pattern matching. 
Secondly, the conditional search strategies narrow the search space efficiently, 
and make best uses of WAP-tree structure. It avoids the overwhelming problems 
of generating explosive candidates in Apriori -like algorithms. 

6 Performance Evaluation and Conclusions 

Experiments are pursued to compare the efficiency of WAP-mine and GSP, the 
algorithm proposed in [12]. The dataset for experiment is generated based on 
the principle introduced in [2]. All experiments are conducted on a 450-MHz 
Pentium PC machine with 64 megabytes main memory, running Microsoft Win-
dows/NT. All the programs are written in Microsoft/Visual C+-I- 6.0. 

Run time (sec.) Run time (sec.) 

WAP-mm 

GSP 

Support threshold (' 
Number of access sequences in Web access sequence database (k) 

Fig. 2. Experimental results. 

The experimental results are shown in Figure 2. We compare the scalabilities 
of our WAP-mine and GSP, with threshold as well as the number of access se-
quences in the database. The experimental result shows that WAP-mine outper-
forms GSP in quite significant margin, and WAP-mine has better scalability than 
GSP. Both WAP-mine and GSP show linear scalability with the number of access 
sequences in the database. However, WAP-mine outperforms GSP. 

In conclusion, WAP-tree is an effective structure facilitating Web access pat-
tern mining, and WAP-mine outperforms GSP based solution in a wide margin. 
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The success of WAP-tree and WAP-mine can be credited to the compact structure 
of WAP-tree and the novel conditional search strategies. 

We beUeve that, with certain extensions, the methodology of WAP-tree and 
WAP-mine can be applied to attack many data mining tasks efficiently such as 
sequential pat tern mining and episode mining. 
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Abstract. This paper addresses personal E-mail filtering by casting it in the 
framework of text classification. Modeled as semi-structured documents, E-
mail messages consist of a set of fields with predefined semantics and a number 
of variable length free-text fields. While most work on classification either 
concentrates on structured data or free text, the work in this paper deals with 
both of them. To perform classification, a naive Bayesian classifier was 
designed and implemented, and a decision tree based classifier was 
implemented. The design considerations and implementation issues are 
discussed. Using a relatively large amount of real personal E-mail data, a 
comprehensive comparative study was conducted using the two classifiers. The 
importance of different features is reported. Results of other issues related to 
building an effective personal E-mail classifier are presented and discussed. It is 
shown that both classifiers can perform filtering with reasonable accuracy. 
While the decision tree based classifier outperforms the Bayesian classifier 
when features and training size are selected optimally for both, a carefully 
designed naive Bayesian classifier is more robust. 

1 Introduction 

As the Internet grows at a phenomenal rate, electronic mail (abbreviated as E-mail) 
has become a widely used electronic form of communication on the Internet. 
Everyday, a huge number of people exchange messages in this fast and inexpensive 
way. With the excitement on electronic commerce growing, the usage of E-mail wil l 
increase more dramatically. However, the advantages of E-mail also make it overused 
by companies, organizations or people to promote products and spread information, 
which serves their own purposes. The mailbox of a user may often be crammed with 
E-mail messages some or even a large portion of which are not of interest to her/him. 
Searching for interesting messages everyday is becoming tedious and annoying. As a 
consequence, a personal E-mail filter is indeed needed. 

The work on building an E-mail filter can be cast into the framework of text 
classification: An E-mail message is viewed as a document, and a judgement of 
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interesting or not is viewed as a class label given to the E-mail document. While text 
classification has been well explored and various techniques have been reported [2, 3, 
7], empirical study on the document type of E-mail and the features of building an 
effective personal E-mail filter in the framework of text classification is only modest. 

Along the line of empirical study on E-mail classification, Fredrik Kilander 
summarized real users' suggestions and opinions on what should be the important 
properties in classifying electronic texts and messages [4]. A preliminary study 
claimed that threading electronic mail [6] could only gain partial success based on 
structured information. A significant level of effectiveness could be achieved by 
applying standard text matching methods to the textual portions. A prototype, Smokey 
[12], combined natural language processing and sociolinguistic observations to 
identify insulting messages. This work differed from general electronic text 
classification, focusing mainly on language processing. A Bayesian approach to 
filtering junk E-mail was presented in [11]. It considered domain specific features in 
addition to raw text of E-mail messages. Elaborating on commercial junk E-mail, it 
enhanced the performance of a Bayesian classifier by handcrafting and incorporating 
many features indicative of junk E-mail. William Cohen compared a "traditional IR" 
method based on TF-IDF (Term Frequency — Inverse Document Frequency) 
weighting and a new method for learning sets of "keyword-spotting rules" based on 
the RIPPER rule learning algorithm [1]. The experiments, however, were only 
conducted with a relatively small number of data sets of real users. The issues related 
to building an effective E-mail classifier were not fully considered either. 

The work reported in this paper was motivated by our belief that to realize an 
effective personal E-mail filter in the framework of text classification, the following 
issues should be fully taken into account. 
 An E-mail filter is personalized and the knowledge used by each personal filter is 

subjective. Therefore, classifying personal E-mail messages is more challenging 
than using a priori knowledge to filter commercial junk messages that are often 
characterized by symbols and words like '$', "free", "saving", etc. 

 An in depth study on the distinct type of E-mail documents is needed to make full 
use of the information embedded in them. Feature selection is the key issue. 

 Typical text classification techniques should be examined and compared to enable 
better understanding of the capabilities and characteristics of these techniques to 
perform the task of a personal E-mail filter. 

 A relatively large amount of real E-mail data from individuals with different 
interests should be used in experiments. 
For the problem of classifying E-mail documents, the objects to be classified are 

semi-structured textual documents consisting of two portions. One portion is a set of 
structured fields with well-defined semantics and the other portion is a number of 
variable length sections of free text. We would like to emphasize this feature in our 
study because information from both portions is important. In the case of E-mail 
messages, the fields in the mail header such as the sender and the recipient are very 
informative when we determine how interesting the message part is. On the other 
hand, the interestingness of an E-mail message from the same sender also depends on 
the content of the body message. However, not many text classifiers take both 
portions into consideration. For example, the classic document clustering techniques 
in information retrieval seldom consider the contents of structured fields. On the other 
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hand, conventional classification techniques may not be effective when dealing with 
variable length free text. 

There have been a number of approaches developed for classification. We selected 
two most popular approaches, naive Bayesian classification [5, 8] and decision trees 
[9] to classify personal E-mail messages. The naive Bayesian approach was chosen 
because it is widely used in text processing. Decision tree was chosen because of its 
effectiveness in classifying relational data. For the naive Bayesian approach, a 
classifier based on previous work with some extensions was designed and 
implemented. For the decision tree approach, we implemented a classifier based on 
the widely used C4.5 system [10]. 

A series of experiments were conducted on a relatively large amount of real 
personal E-mail data. The behaviors of the two classification approaches were 
compared and discussed in detail. We find that both approaches provide reasonable 
performance in terms of recall rate and classification accuracy. Decision tree 
outperforms Bayesian a littl e when features and training size are selected optimally 
for both. However, the naive Bayesian classifier is more robust with respect to the 
size and class disparity of training data. 

The remainder of the paper is organized as follows. Section 2 discusses the 
modeling and features of E-mail messages. Section 3 presents our design and 
implementation of a naive Bayesian classifier and a decision tree based classifier for 
E-mail filtering. The experiments and results are presented in Section 4. Finally 
Section 5 concludes the paper with discussions on future work. 

2 Document Model 

In this section, we describe how E-mail documents are modeled and how features are 
selected to perform personal E-mail filtering. 

2.1 Modeling Semi-structured Documents 

In a broad sense. E-mail messages are semi-structured documents that possess a set of 
structured fields with predefined semantics and a number of variable length free-text 
fields. In a formal way, such a document can be represented as Fig. 1. 

Field 1 to Field s are structured fields and usually contain information pertaining to 
the document, such as authorship, date, organization, layout of the text body, etc. As 
the major contents of the document. Field s+1 to Field s+t are variable length free-
text fields, such as subject area, abstract, the body and references. While most 
classification work focuses on either the structured part or the text part, we argue that 
both the structured fields and the free-text portion could contain important 
information for determining the class to which a document belongs. Therefore, a 
classifier to serve the purpose should be able to include features from both the 
structured fields and the free text. 
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Field 1: 
Field 2: 

Field s: — 
Field s+1: 

Field s+t: 

Structured fields 

Variable length 
free-text fields 

Fig. 1. Modeling Semi-structured Documents 

2.2 Modeling Electronic Mail 

In general. E-mail messages belong to the board class of semi-structured documents. 
Therefore they inherit the characteristics of possessing two portions of fields. In 
particular, they have some unique features. In addition to the structured fields and free 
text, there is evidence showing that domain specific information implicit in text fields 
is useful to improve the classification accuracy in certain applications. For example, 
Sahami et. al. reported that, there are many particular features of E-mail that help 
determine if a message is junk or not [11]. Such features include phases like "Free 
Money", and over-emphasized punctuation, such as "!!!" . Since a feature in the free-
text part normally refers to a single word, these particular features are treated as the 
third type, handcrafted features. To make full use of the information in an E-mail 
message, we generated all three types of features for each document. 
 Structured features: features represented by structured fields in the header part of 

an E-mail document. In this work, six structured features were generated. They are 
SenderDomain (the domain of a sender, such as .com and .edu), SenderAddress 
(the E-mail address of a sender). Recipient (single recipient, in a group with the 
name mentioned, or via a mailing list). Date, MailType (replied, forwarded or sent 
directly), and ContentType (having attachment or not). 

 Textual features: features explicitly contained in a free text section. In this work, 
only words consisting of alphabetic letters (no numbers or symbols) were counted 
into the vocabulary. Furthermore, a standard stop list was used to remove those 
words insignificant to classification. Simple stemming was also applied to reduce 
the vocabulary size. 

 Handcrafted features: features obtained by preprocessing the documents. 
Heuristically six features were handcrafted. They are (I) the number of 
exclamation marks, (2) the number of dollar signs, (3) the number of http links, (4) 
the length of the message, (5) the length of the subject line, and (6) the occurrence 
of words indicative of not interesting E-mail in the subject area (a list of such 
words was collected in advance). 
The usefulness of each type of features in different classifiers will be discussed in 

detail in experiments. 
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3 Two Classifiers 

3.1 A Naifve Bayesian Classifier 

The Bayesian learning approach views a text document as a bag of words. For a naive 
Bayesian classifier to work effectively, two conditions should be satisfied. First any 
word inside a document occurs independently. Second, there is no linear ordering of 
the word occurrences. Although these two assumptions may not hold in real cases, 
naive Bayesian classifiers do provide good performance in a lot of applications [3, 8]. 

Two different generative models, the multi-variate Bernoulli model and the 
multinomial model under the Bayesian framework were reported in [8]. Experimental 
results show the multinomial model usually outperforms the multi-variate Bernoulli 
model when vocabulary size is large or chosen optimally for both. Thus, we adopted 
the multinomial model with a littl e simplification as shown from formula (1) to (4). 

The following symbols are used in the rest part of this paper. C\... Q are a set of 
class labels of a class variable C. Dj... D„  are a set of training documents. Fi... F„ 
represent a set of features in a given document. The class label of a document D' is 
determined as follows: 

C = arg max̂  PiC  ̂ | D') = arg max̂  P{D' \ Q ) / ' ( Q ). (1) 

Since a document is represented by a set of features {F\... FJ, with the naive 
Bayes assumption that each feature in a document occurs independently, we have; 

C = arg max, P{F, | C, )P{F  ̂ | C, )...P(F„ \ C, )P(.C,). (2) 

With a given set of labeled samples (the training data), the training process 
calculates Bayes-optimal estimates for all the parameters. Here the estimation of the 
probability of feature Fj on condition of class k and each class prior are obtained as 
follows: 

P(Fj\C,)-

P(C,) 

l + ^^!^,N(Fj,D,)PiC,\D^) (3) 

\V\+'Sl,l!S,NiF„D,)PiC,\D,)' 

SLESE1>(^-A)/'(C,|D,) 

Here A'( F,., D.) is the number of occurrences of feature F, in document D., P( Q | 
D)={0,1]  is given by the class label of that document, |£>| denotes the number of 

training documents and ^^}iPiF,\C,^) = l. To handle the probability of non-
occurring features in the training data, add-by-one smoothing is used. \V\ is the 
vocabulary size. 

Note that we are classifying E-mail messages that are distinct in document type. A 
feature involved in classification could be either a word in the text portion or a certain 
property (structured feature or handcrafted feature) associated to the document. 
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A Bayesian classifier has the advantage of being able to handle a large number of 
features. It simply models a document as "a bag of words" and all the words together 
form the vocabulary of the classifier. Naturally each word consisting of alphabetic 
letters in the main text portion is one feature in the vocabulary. To accommodate 
other two types of features in classification, a simple way is to treat such features as 
certain artificially created words and extend the vocabulary to include those features. 
The advantage of this approach is no need to modify the classifier. The importance of 
a feature is reflected uniformly by the probability of F  ̂ on condition of class Q no 
matter what type the feature belongs to. 

Another issue of building a classifier in the context of E-mail messages is cost 
sensitiveness. When we assign a class label with the maximum class probability 
among all to a document, we are making an implicit assumption that the cost of 
misclassification is the same to all classes. In this application, the assumption is not 
true. Let Ci denote the class label of "not interesting" and C2 the class label of 
"interesting" (this notation will be used in the rest of the paper). The cost of 
misclassifying an interesting message to be not interesting is obviously much higher 
than that of misclassifying a not interesting message to be interesting. To make the 
naive Bayesian classifier cost sensitive, we introduce to (2) one design parameter, 
threshold a  ̂for each class label k with Xt t -^'-

C ^ a r g m a x , ( ^ ( ^ - l ^ - ^ ^ ( ^ ^ l ^ ^ ^ - ^ ( ^ " l ^ ^ > ^ ^ ^ ^ > ). ^'^ 

In this application with two class labels, the intuitive meaning of the threshold is 
as follows: In the case where misclassifying C2 (interesting) into Ci (not interesting) 
is more costly, we only make a prediction of class label C\ if the final probability for 
decision making, P{C\\D'), is greater than the threshold OTi, otherwise class label C2 is 
chosen. In the rest part of the paper, for simplicity we use a to represent flfi.  The 
classifier is cost sensitive with a> 0.5. If we set a= 0.5, we will have a normal cost-
insensitive classifier. 

3.2 A Decision Tree Based Classifier 

Decision tree is a widely used data mining technique for classification and prediction, 
which is intensively studied in data mining applications in databases. C4.5, a typical 
and effective method of building decision trees, was used in our work to build a 
classifier of E-mail documents. 

For a decision tree based approach, the situation is different from a Bayesian 
classifier. There is no problem for it to cope with the structured features and the 
handcrafted features since the number of these features (or attributes) is relatively 
small. However, it is not easy to handle a large number of textual features if every 
feature in the text is used in classification. A straightforward way is to limit the 
number of textual features that are considered by the classifier when a tree is built. In 
order to select textual features from the vocabulary, mutual information [8] is 
computed for each textual word F,: 
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nc„f,)  (6) /(C;/,) = y y P(C,,/,)log( ^^^^'-^'̂  ). 

Here/ = 1 indicates the presence of feature F, in a document. P{C  ̂ is the number of 
feature occurrences in documents with class label Q divided by the total number of 
feature occurrences; P(f) is the number of occurrences of feature F, divided by the 
total number of feature occurrences; and PCQ , f) is the number of feature 
occurrences of F  ̂ in documents with class label Q divided by the total number of 
feature occurrences. Based on the 7(C; f) value a certain number of textual features 
are selected from the vocabulary as attributes that will be used in classification. For 
each document, the number of occurrences of a selected textual feature is the attribute 
value. 

4 Experiments and Results 

To have better understanding of the issues related to building a personal E-mail filter 
and the behavior of such filters, a series of experiments were conducted using both the 
naive Bayesian classifier and the decision tree based classifier. 

4.1 Data Sets and Performance Metrics 

In the experiments. E-mail messages were used as document samples. The 
characteristics of collected data sets are shown in Table 1. 

Table 1. Data Samples Used in Experiments 

Source of data sets 
Number of data sets 
Size of each data set 
Number of classes 

5 (2 professors, 3 graduate students) 
11 (one set consists of E-mail messages in a month) 
250-700 
2 ("not interesting", "interesting") 

Every user who provided personal E-mail messages labeled all her/his messages as 
either interesting or not interesting. Since we did not give classification criteria to the 
person who provided the E-mail data, the classification was rather subjective. Unlike 
some other reported work, "not interesting" E-mail does not necessarily refer to 
commercial advertisements. For example, given two call-for-paper messages from 
international conferences in computer science, one may be classified as "not 
interesting" and the other as "interesting" depending on the theme of the conferences 
and the personal interest. Therefore, classifying an E-mail message as interesting or 
not is more challenging than pure commercial spam filtering. 

During the experiments, each data set was divided into two portions: training data 
and test data in the chronicle order. The training data were used to train a classifier 
and the obtained classifier then classified the test data. Metrics used to measure the 
classification performance are defined as follows: 
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Error - rate
# false classification 

# classified messages 

(7) 

" Interesting" recall
#"in te resting" messages classified as" in teres ting " 

# total" in teresting" messages 

(8) 

' Interesting" precision
#"in teresting" messages classified as" in teresting" 

# total messages classified as "in teresting" 

(9) 

"Not interesting" recall and precision are defined likewise. In the application of a 
personal E-mail filter, considering the information loss by misclassifying an 
"interesting" message as "not interesting", we emphasize the "interesting" recall and 
the error rate in the following tests. 

4.2 Precision-Recall Graph of the Naive Bayesian Classifier 

The implemented Bayesian classifier classifies an E-mail message as "not interesting" 
only if the probability of "not interesting" is greater than threshold a{a> 0.5). The 
value of the threshold in fact reflects the relative cost of misclassifying an 
"interesting" message as "not interesting". High a means high cost of such 
misclassification. Therefore, a is an important design parameter for a naive Bayesian 
classifier. The first experiment aimed at the general behavior of the classifier when 
different threshold values were used. All three types of features were generated. By 
varying the threshold from 0.5 to 0.999, different recall and precision pairs were 
obtained for both "not interesting" and "interesting" classes. The average of 11 data 
sets was used to draw the recall-precision graph as shown in Fig. 2. 
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Fig. 2. Recall-Precision Graphs 

A few observations can be made. First, within a wide range of the threshold value, 
both recall and precision values are around or above 90%. Second, the recall-
precision curve of "not interesting" E-mail is better than that of "interesting" E-mail. 
Seemingly it is easier for a Bayesian classifier to identify "not interesting" E-mail 
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messages because they are often obviously characterized by some features. Finally, 
the rate at which recall and precision change is different from the rate at which 
threshold a changes. For "interesting" E-mail, when a increases from 0.5 to 0.9, the 
recall increases slowly by 0.35%. However when a increases from 0.9 to 0.999, the 
recall increases by 1.2%. Likewise "not interesting" recall decreases slowly as a 
changes from 0.5 to 0.9 but much faster when a changes from 0.9 to 0.999. 
Therefore, in order to obtain high recall of "interesting" E-mail a should be set a 
relatively high value, say higher than 0.9. In the following experiments, we used 0.99 
as the default setting for a. 

4.3 Experiments on Feature Selection 

As we mentioned earlier, three types of features are generated for both classifiers. 
One question under exploration is how important these features are in E-mail 
classification. The second set of experiments was conducted to study the performance 
of the classifiers when different types of features were used. Fig. 3 and Fig. 4 depict 
the results of 11 data sets using the Bayesian classifier and the decision tree based 
classifier, respectively. In the figures, H stands for header features only, T for textual 
features only, HT for header features plus textual features, HH for header features 
plus handcrafted features, TH for textual features plus handcrafted, and HTH for 
header, textual and handcrafted features, namely all features. H, T, HT were three 
baselines. HH, TH, HTH were tested to detect the change of performance by adding 
handcrafted features to those baselines. The average of 11 groups was used for 
evaluation in terms of three accuracy metrics, error rate, "not interesting" recall and 
"interesting" recall. 
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Fig. 3. Effects of Selected Features on the Naive Bayesian Classifier 

Fig. 3 shows that, when only the structured features (H) are considered, the error 
rate is very high. If the structured features and the handcrafted features are selected 
(HH), the error rate is still quite high. However in these cases, the "interesting" recall 
is unexpectedly high. The reason lies in the small number of features involved in 
classification, only six or twelve. When only a small number of features in a 
document are selected, the difference between /"(D'lQ) with different class label k is 
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outweighed by the denominator a. High a leads to a good "interesting" recall. 
However, error rate is high and "not interesting" recall is low, indicating these two 
feature selection methods are not appropriate to a Bayesian classifier. All other four 
cases involve the textual features. The best performance is achieved using the 
structured and the textual features (case HT). Adding header features better performs 
both case (T) and case (TH). However, comparing cases T and TH, HT and HTH, we 
find that, adding handcrafted features in fact does not improve the performance of 
case (T) and worsens that of (HT). 

Erro r Rate Recall s 

HT HH 
Features included 

HT HH 
Features included 

Fig. 4. Effects of Feature Selection on the Decision Tree Based Classifier 

Fig. 4 shows the performance of the decision tree based classifier when different 
features are included in classification. Its performance is bad when the structured 
(header) features are not included. Therefore these two types of feature selection are 
not appropriate. On the baseline of H, adding either textual featiu^es or handcrafted 
features enhances the performance. However, when both textual features and 
handcrafted features are added to the baseline, the performance deteriorates, esp. in 
"interesting" recall and error rate. With all features included, the database schema 
consists of 32 attributes: 6 header features, 6 handcrafted features and 20 textual 
features. Decision tree becomes inaccurate with so many attributes. It works best with 
the selection method HT or HH. 
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Fig. 5. Comparison in Feature Selection 
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Fig. 5 presents the average accuracy of the two classifiers in terms of error rate and 
"interesting" recall. Both the Naive Bayesian classifier and the decision tree based 
classifier perform best with header features and textual features. The method of 
combining these two types of features for classification is useful. Neither of the 
classifiers works best with all features selected. One lesson we learned is that adding 
many features does not necessarily enhance the performance. Cautions should be 
taken in feature selection. In the optimal case, decision tree beats Bayesian based 
classifier in error rate and "interesting" recall. 

4.4 Experiments on Robustness of Classifiers 

We also conducted a set of experiments aiming to discover the robustness of both 
classifiers on different conditions that may happen in the real use of a personal E-mail 
filter. Limited by space, we just summarize the results without going into details. 

Training size is an important issue that affects the accuracy of classifiers. From the 
experimental results we find when the training size is less than the test size, the 
decision tree based classifier has much lower "interesting" recall and higher error rate 
than the Bayesian classifier. It shows decision tree has a sparse data problem. As the 
training size grows, both classifiers improve the performance. In the optimal case 
decision tree outperforms naive Bayesian. But a Bayes classifier keeps a reasonable 
performance on most conditions and has better performance when only a small 
training size is available. 

Both classifiers can be affected by class disparity. Naive Bayes classifier favors the 
major class by the factor of class prior in the decision rule. Decision tree based 
classifier chooses the major class at each test. Real users can have any ratio of "not 
interesting" messages to "interesting" messages. This experiment aimed to find out 
how these two classifiers perform as the class disparity of training data changes. The 
results show that the naive Bayes classifier works well when "interesting" E-mail 
messages cover from 30% to 80% of the total training messages. The decision tree 
based classifier has high error rate at both ends of "interesting" coverage and the 
general performance is not stable. 

5 Conclusion 

This paper models E-mail messages as a combination of structured fields and free text 
fields, which motivated the work of classifying such documents deploying both kinds 
of information. Certain heuristic features obtained from preprocessing the documents 
were also included for the purpose of classifying E-mail messages. A comprehensive 
comparative study was conducted using a naive Bayesian based classifier and a 
decision tree based classifier. Different ways of feature selection for both models 
were evaluated. Performance of two classifiers was compared with respect to training 
size and class disparity. By a series of experiments on real personal data, we find that 
both classifiers can be used to classify E-mail messages with reasonable accuracy. In 
the optimal cases, decision tree based classifier outperforms Bayesian classifier, but 
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Bayesian is more robust on various conditions. Careful feature selection from 
structured fields and free text body enhances performance. 

The study reported in this paper can be extended in three directions. First, due to 
the personalized nature of electronic mail, the test data available is only moderately 
large. We are trying to collect more data from different types of users. It will deepen 
our study and enable more findings about how to achieve an effective personal E-mail 
filter. Second, we are exploring the ways of combining these two types of classifiers 
in feature selection and decision making, which might lead to a more accurate 
classification method in this problem domain. Last, we plan to expand the 
classification from two classes to multiple classes and further to a hierarchy of 
classes, which will better serve the need of E-mail users. 
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Abstract. A machine learning technique called Graph-Based Induction 
(GBI) efficiently extracts typical patterns from directed graph data by 
stepwise pair expansion (pairwise chunking). In this paper, we expand 
the capability of the Graph-Based Induction to handle not only tree 
structured data but also multi-inputs/outputs nodes and loop structure 
(including a self-loop) which cannot be treated in the conventional way. 
The method is verified to work as expected using artificially generated 
data and we evaluated experimentally the computation time of the im-
plemented program. We, further, show the effectiveness of our approach 
by applying it to two kinds of the real-world data: World Wide Web 
browsing data and DNA sequence data. 

1 Introduction 

Inductive learning, which tries to find useful rules and patterns from data, has 
been an important area of investigation. Conventional learning methods use 
an attribute-value table as a data representation language and represent the 
relation between attribute values and classes by use of decision tree [Quinlan86] 
and rules [Michalski90,Clark89]. Association rules [Agrawal94] widely used in 
the area of data mining belong to this type of data representation. However, the 
attribute-value table is not suitable for representing more general and structural 
data. Inductive logic programming (ILP) [Muggleton89] which uses the first-
order predicate logic can represent general relationship in data. ILP has a merit 
that domain knowledge and acquired knowledge can be utilized as background 
knowledge. However, its state of the art is not so matured that anyone can use 
the technique easily. 

By paying attention to the fact that many structural data involving relation-
ship can be represented by a colored directed graph, we have proposed Graph-
Based Induction (GBI) [Yoshida97] which can efficiently extracts typical pat-
terns from a directed graph data of limited types by stepwise pair expansion 
called "pairwise chunking". The expressiveness of the GBI stands between the 
attribute-value table and the first-order predicate logic. 

In this paper, we expand the capability of the GBI so that it can handle 
not only a tree structured data but also a graph data with multi-inputs/outputs 
nodes and loop structure (including a self-loop) which cannot be treated in the 
conventional way. The method is verified to work as expected using artificially 

T. Terano, H.Liu, and A.L.P. Chen ( E d s ): PAKDD 2000, LNA I 1805, pp. 420-431, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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Fig. 1. The idea of graph contraction by pairwise chunking 

generated data and we evaluated experimentally the computation time of the 
implemented program. We show the effectiveness of our approach by applying 
it to two kinds of the real scale data. One is an application to extracting typi-
cal patterns from WWW browsing histories data. Another is an application to 
extracting classification rules from two kinds of DNA sequence data. 

2 Graph-Based Induction 

2.1 Framework of Graph-Based Inductio n 

The original GBI was so formulated to minimize the graph size by replacing 
each found pattern with one node that it repeatedly contracted the graph. The 
graph size definition reflected the sizes of extracted patterns as well as the size 
of contracted graph. This prevented the algorithm from continually contracting, 
which meant the graph never became a single node. Because finding a subgraph 
is known to be NP-hard, the ordering of links is constrained to be identical if 
the two subgraphs are to match, and an opportunistic beam search similar to 
genetic algorithm was used to arrive at suboptimal solutions. In this algorithm, 
the primitive operation at each step in the search was to find a good set of linked 
pair nodes to chunk (pairwise chunking) [Yoshida95]. 

The central intuition behind our GBI is as follows: a pattern that appears 
frequently enough in a colored directed graph is worth paying attention to and 
may represent an important concept in the environment (which is implicitly 
embedded in the input graph). In other words, the repeated patterns in the 
input graph represent typical characteristics of the given environment. 

Because the search is local and stepwise, we can adopt an indirect index 
rather than a direct estimate of the graph size to find the promising pairs. On 
the basis of this notion, we generalize the original GBI. The idea of pairwise 
chunking is given in Figure 1. 

The stepwise pair expansion (pairwise chunking) is performed by repeating 
the following three steps. 
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Fig. 2. An example of directed graph 

Step 1. If there are patterns which are the same as the chunked pattern in the 
input graph, rewrite each of them to one node of the same label. 

Step 2. Extract all pairs which consist of the connected two nodes in the graph. 
Step 3. Select the most typical pair among the extracted pairs and register it 

as the pattern to chunk. 

Stepwise pair expansion is performed by repeating the above three steps from the 
initial state where no typical pattern is yet found. As a result, the characteristics 
in data can be extracted as a set of typical patterns. 

2.2 Graph-Based Inductio n for  General Graph Structured Data 

In order to apply GBI to general graph structured data, we adopt a method 
to represent the graph structured data using a set of table forms by paying 
attention to the link information between nodes. More concretely, the directed 
graph as shown in Figure 2 can be represented using Table 1. For example, the 
first line in this table shows that the node No.l has node name "a" and also has 
nodes No.7 and No.10 as child nodes. In this way, directed graph data can be 
represented using the table forms. Further, the restriction of the link ordering is 
no more required. 

As we count the pair (parent node —> child node), it is necessary to identify 
self-loop when the parent node and the child node are of the same kind {E.g. 
a ^  ̂ a). Therefore, we introduce "self-loop distinction flag". 

Moreover, each time we perform the pairwise chunking, we keep link infor-
mation between nodes in order to be able to restore the chunked pairs to the 
original patterns. This is realized by keeping two kinds of node information. One 
is "child node information" that means which node in the pattern the link goes 
to, and another is the "parent node information" that means which node in the 
pattern the link comes from. These two kinds of information are also represented 
by tables (not shown here). Chunking operation can be handled by manipulating 
these three tables. 
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Table 1. An example of table form translated from the directed graph 

Node No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Node Name 
a 
b 
d 
b 
a 
b 
d 
b 
b 
a 
b 
c 

Child Node No. 
@7@10 
@7 
@8@11 
@8 
@9 
@9 
@10 
@11@12 
@12 
@11 

Represent the graph strucrured daia using tabi*! 

Count pairs by each Icind (pair infornialion 
canaists of 6 elements: psstai node, child 
node, tink, licik infDrTnalion ot parent node, 
Mak. ijiformauon of child node, 5elMoop 
distinction flag). 

Select the kinder pairs tobechunl:ed based 
on the evaluation function, 
[f [her? is no pairs lO be chunked» tfTmin^Le 
this prograAi. 

Perform the pairwis* chunking and replace by 
one new nodt. 
Update the link inrormation which goes lo the 
chunked node and the link information which 
coitLCS from the chunked node. 

Child node [nfbrmation: 

rnformaiion which node the 
tink goes to 

Tnnr 

Chunking 
a—b 

Parent node information: 

Information which node 
the lin k corne r fro m 

Fig. 3. Algorithm of the proposed method 

The basic algorithm of the proposed method which extends GBI to handle a 
general graph structured data is shown in Figure 3. In this implemented program, 
we use the simple "frequency" of pairs as the evaluation function to use for 
stepwise pair expansion. 

3 Performance Evaluation 

The method was verified to work as expected using artificially generated data 
and we evaluated experimentally the computation time of the implemented pro-
gram. The computation time is measured for 30,000 times repetition of program 
execution excluding the initialization steps. 
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Data 1 Data 2 Data 3 

Fig. 4. Graph structured data for evaluation (Data ICData 2CData 3) 

40 60 80 100 
Number of Chunking 

Fig. 5. Computation time and number of chunking (1) 

3.1 Computation Tim e for  Uncolored Graphs 

At first, we evaluated the computation time using three kinds of graph structured 
data (Data 1: loop type, Data 2: lattice type, Data 3: tree type) as shown in 
Figure 4 for which there is only one kind of node label. 

The computation time for chunking in the implemented program was mea-
sured as we increased the graph size from a small graph with several nodes to the 
graph which needs chunking about 120 times. Figure 5 shows the relationship 
between the computation time and the number of chunking. 

From this figure, it is found that the computation time increases almost 
linearly with the number of chunking. And also it is considered that the gradient 
of each line depends on the average number of links going out from each node. 

3.2 Computation Tim e for  Colored Graphs 

Next, we evaluated the computation time using three kinds of graph structured 
data (Data 4: loop type. Data 5: lattice type, Data 6: tree type) as shown in 
Figure 6 for which there are three kinds of node labels. 

The computation time was measured in a similar way for uncolored graphs. 
Figure 7 shows the relationship between the computation time and the number 
of chunking. Overall, tendency is the same for uncolored graph. Compared with 
Figure 5, it is conjectured that the number of node labels does not affect the 
computation time so much. 
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(aHb>- ^dh® 

Data 4 Data 5 Data 6 

Fig. 6. Graph structured data for evaluation (Data 4CData 5CData 6) 

20 40 60 80 100 120 140 
Number of Chunking 

Fig. 7. Computation time and number of chunking (2) 

We further confirmed this tendency for both uncolored and colored graphs 
by measuring the computation time for chunking as we increase the graph size 
from 50 nodes to 1000 nodes, where graphs are artificially generated in such a 
way that the average number of links going out of each node remains a fixed 
value. 

Extracting Typical Patterns 
from WWW Browsing History Data 

4.1 W W W Browsing Histor y Data 

The performance of the proposed method was examined through a real scale 
application in this section. The data analyzed is the log file of the commercial 
WWW server of Recruit Co., Ltd. in Japan. The URLs on WWW form a huge 
graph, where each URL represents a node that is connected by many links (other 
URLs). When a client visits the commercial WWW site, he/she browses only a 
small part of the huge graph in one access session, and the browsing history of 
the session becomes a small graph structured data. This site's total number of 
hit by the nation wide internet users always remains within the third place from 
the top in every month in Japanese internet record. 
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Table 2. Experimental result 

Thresholdi%j 
No. of Extracted Patterns 
No. of Pairwise Chunking 
Computation Timei5ec.j 

0.10 
33 

9455 
1374 

0.05 
106 

17443 
1734 

0.025 
278 

26672 
2187 

4.2 Experimental Method 

The basic format of an access record to a URL by a client in the log file is 
indicated in Figure 8. This access log of the WWW server for a particular day 
was over 400MB and the number of clients who access to the WWW server 
was about 26,800 on that day. The total number of the URLs involved in this 
commercial WWW site is about 19,400 and there are a large number of links 
between them. 

As the log file consists of the sequence of the access records, they are initially 
sorted by the IP addresses, and each subsequence having an identical IP address 
corresponding to the browsing access history in a session of an individual client 
is extracted. Then, we transformed the subsequence of each client's visiting his-
tory into a graph structured data (total 150,000 nodes). By using all subgraphs 
transformed in this way as the input data, the proposed method extracted typi-
cal patterns in the data. In other words, after removing all kinds of error such as 
a server error from the access records and sorting the data in order of IP address, 
we make graph structured data for each IP address (client), and append them 
into a large table. 

In the implemented program, we use the simple "frequency" of pairs as the 
evaluation function for stepwise pair expansion. We terminated the chunking 
when we finish finding all chunk patterns which consist of more than a certain 
number of nodes. We use the frequency threshold 0.1%C0.05%C0.025% of total 
nodes in the graph. 

4.3 Experimental Results 

We executed the implemented program using the experimental method described 
in the previous section. Table 2 shows the number of extracted chunk patterns, 
the number of pairwise chunking and the computation time for each frequency 
threshold. 

Figure 9 indicates the relationship between the threshold and the number 
of derived patterns consisting of more than 3 nodes. The number of nodes in 
chunk patterns increases with the decrease of threshold because the larger chunk 

IP address of a client Zi Time stamp of the access A URL address 
A-.space character 

Fig. 8. Basic format of an access record. 
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Fig. 9. Relationship between the threshold and the number of derived patterns con-
sisting of more than 3 nodes 

chunk pat terns increases with the decrease of threshold because the larger chunk 
pat terns are derived for the lower threshold where additional nodes are appended 
to the chunk pat terns which have been already extracted in the higher threshold. 
Chunk pat terns derived in the higher threshold is a subset of chunk pat terns 
extracted in the lower threshold. 

Several examples of the extracted chunk pat terns are shown below. 

a) /NAVI/CATEGORY/Sub/s03/ssl3/din.htTnl 

-  ̂ /NAVI/CATEGORY/Sub/s03/ssl3/dn2.html 

-> /NAVI/CATEGORY/Sub/s03/ssl3/dn3.html 

b) /NAVI/CATEGORY/Sub/sOl.html 

-+ /N AVI /CATEGORY/ Sub/ sQ\/ ssQ6.html 

-> /NAVI/CATEGORY/Suh/sQl/ss06/d01.html 

c) / N AVI /mscategcyry / Sub/ s\2.html 

-  ̂ /N AV I /mscategory/ Sub/ s08.html 

—* /N AV I /mscategory / Sub/ s02.html 

—> / service/shank/N AVI/COOL/cool2.html 

Browsing pat tern a) is an example that clients follow some URLs in the same 
directory and the number of this pat tern was 152 {i.e., 152 clients followed this 
pat tern). Browsing pat tern b) is an example that clients go deeper into directories 
step by step and the number of this pat tern was 144. Browsing pat tern c) is an 
example that clients jump to the URLs in a different directory after following 
some URLs in the same directory and the number of this pat tern was 72. 

I t is natural that many pat terns similar to a) or b) have been extracted 
because of the structure of this W W W site. However, it is more interesting to 
note that some patterns such as c) also have been extracted if the contents of 
each URL were available to us. 
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DNA Scquenct Data 

Positive Example of Promoter 
12345678 9 12343678 9 123456 7 
CGTCGATGGCGTATCCATACCTAACAA. 
CATCGCTTCAGTGACCACTCTATCACC. 
TGAAAAACAAGAAGCCCGGATTGCTCT. 

Negative Example of Promoter 
12345678 9 12343678 9 123456 7 
GGTTGCCTTAACCAGTCTGGCAGATGC. 

ClaMificatio n Rule of DNA Sequence 

If Nucleotide 1 - C 
Nucleotide3 = T 
Nucleotide 4 = C 

Then Sequence is Promoter 

Fig. 10. Extradition of classification rules from DNA sequence data 

5 Extracting Classification Rules from DNA Data 

5.1 Applicatio n to Promoter  D NA Sequence Data 

In this section, the real-world task of recognizing biological concepts in DNA 
sequences is investigated. In particular, the task is to recognize promoters in 
strings that represent nucleotides (one of A, G, T, or C). A promoter is a ge-
netic region which initiates the first step in the expression of an adjacent gene 
{transcription). This data set is one of the UCI Machine Learning Repository 
[Blake98]. The input features are 57 sequential DNA nucleotides and the to-
tal number of instances is 106 including 53 positive instances (sample promoter 
sequences) and 53 negative instances (non-promoter sequences). 

Figure 10 illustrates the process of mapping the problem into a colored di-
rected graph, using GBI method to extract patterns and interpreting them as 
classification rules. In mapping the cases in the data set into the graph struc-
ture, we construct one subgraph for each sequence in the data set. The subgraph 
consists of a root node and a set of leaf nodes. The color of the root node of the 
subgraph specifies whether the corresponding sequence represents a promoter 
sequence or not, which means the class information (positive or negative). The 
color of the i-th leaf specifies the nucleotide (one of A, G, T, or C). 

In case of the classification problem, we interpret the root node as a class node 
and the links attached to it as the primary attributes. The node at the other end 
of each link is the value of the attribute, which can have secondary attributes, 
although this is not the case for this simple DNA problem. Thus, each attribute 
can have its own attributes recursively, and the graph {i.e., each instance of the 
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Table 3. Experimental results 

Learning Method 
No. of Errors /106 

ID3 
19 

C4.5 
18 

GBI 
16 

data) becomes a directed tree. Here, we have to select the attribute and its value 
pair that best characterizes the class. 

The chunk patterns derived by GBI are tried to match for the test cases 
in the following way. The chunk patterns which have lower evaluation function 
value (frequency) are tried to match first. If the frequency of the chunk patterns 
is same, those which have more nodes in the pattern are tried to match first. 
That is, more specific rules are tried to match with higher priority. 

Table 3 shows the experimental results (number of errors in total 106 cases) in 
comparison with other learning methods such as IDS, C4.5, which are evaluated 
by leaving-one-out. Prom this table, it is found that the error rate of GBI is 
lower than the standard tree-induction program ID3 and C4.5. 

5.2 Applicatio n to Splice D NA Sequence Data 

Splice junctions are the points on DNA sequence at which "superfluous" DNA 
is removed during the process of protein creation. The problem is to recog-
nize the boundaries between exons (the parts of the DNA sequence retained 
after splicing) and introns (the parts of the DNA sequence that are spliced out) 
in a given sequence of DNA. This problem consists of two subtasks: recogniz-
ing exon/intron boundaries (referred to as E/T), and recognizing intron/exon 
boundaries (referred to as I/E). 

This data set contains 3190 cases, of which 25% are I/E, 25% are E/I and 
the remaining 50% are Neither. Each example consists of a 60 nucleotide DNA 
sequence categorized according to the type of boundary at the center of the 
sequence. 

In mapping the cases in the data set into the graph structure, we constructed 
one subgraph for each sequence in the data set, in the same way as in the 
Promoter DNA data. The subgraph consists of a root node and a set of leaf nodes. 
The color of the root node of the subgraph specifies whether the corresponding 
sequence represents one of the I/E, E/I and Neither. The color of the i-th leaf 
specifies the nucleotide (one of A, G, T, or C). 

The chunk patterns derived by GBI are tried to match for the test cases in 
the same way as mentioned in the previous subsection. 

Table 4 shows the experimental results (error rate) in comparison with other 
learning methods such as ID3, C4.5, which are evaluated by 10-fold cross-
validation. Prom this table, it is found that the error rate of GBI is lower than 
ID3 and is almost the same as the standard tree-induction program C4.5. 
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Table 4. Experimental results 

Learning Method 
Error Rate (%) 

ID3 
10.6 

C4.5 
8.0 

GBI 
8.8 

6 Related Work 

Most of the current methods for extracting knowledge from databases have diffi -
culties in handling the growing amount of structural data that express relation-
ships among data objects. However, there are some research work for discovering 
knowledge in structural data, especially graph structured data. 

[Cook94] proposed the substructure discovery system called SUBDUE which 
discovers interesting and repetitive subgraphs in a labeled graph representation. 
Experiments show SUBDUE's applicability to several domains, such as molec-
ular biology, image analysis and computer-aided design. SUBDUE expands one 
subgraph based on the Minimum Description Length (MDL) principle. There-
fore, the number of substructure which is discovered in a graph is always one. 
On the other hand, GBI for general graph structured data which is proposed 
in this paper can extract multiple patterns based on the evaluation function for 
stepwise pair expansion. 

[Wallace96] presented a Bayesian approach to the discovery of causal models 
based on Minimum Message Length (MML) , which is one way to realize Occam's 
razor just like MDL. The MML induction approach can recover causal models 
from sample graph data without incorporating background knowledge. While 
this approach is towards automated learning of causal model using MML , this 
applicability to huge graph structured data is not clear so far. 

[Inokuchi99] applied Basket Analysis to mine association rules from the graph 
structured data. The Basket Analysis [Agrawal94] derives frequent itemsets and 
association rules having support and confidence levels greater than their thresh-
olds from massive transaction data. In [Inokuchi99], a simple preprocessing of 
data enabled to use a standard Basket Analysis technique for a graph structured 
data. However, each node must have a distinct label with this approach. 

7 Conclusion 

In this paper, we showed how we can expand the capability of the Graph-Based 
Induction algorithm to handle more general graphs, i.e., directed graphs with 
1) multiple inputs/outputs nodes and 2) loop structure (including a self-loop). 
The algorithm was implemented and verified to work as expected using first 
artificially generated data and second two kinds of real-world data: World Wide 
Web browsing data and DNA sequence data. The algorithm runs almost linearly 
to the graph size and can indeed find interesting patterns. 
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The foUowings are in progress: 1) investigating the sensitivity of chunk or-
dering, 2) using extended chunks as constructed of new features for s tandard 
decision tree algorithm, 3) using statistical index (e.g. Gini Index [Breiman84]) 
or the description length in stead of the simple "frequency" as the evaluation 
function for stepwise expansion, 4) introducing a new index which corresponds 
to the notion of "similarity" of human concept, 5) applying different kinds of 
graph structured data in the real-world such as chemical structured data. 
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Abstract. "Text-source discovery" is the problem of identifying rele-
vant document databases that potentially contain documents that match 
a user query. GIOSS [6] is a cost-effective technique for solving the text-
source discovery problem. However, the GIOSS approax;h assumes that 
the document databases aje fully cooperative in exporting statistical in-
formation about their collections. This paper discusses how the GIOSS 
technique can be applied to a dynamic and uncooperative Web environ-
ment in assisting users to locate relevant Web information sources, 
keywords: text-source discovery, GIOSS, search engines 

1 Introduction 

The World Wide Web enables its users to access large amounts of interesting in-
formation made available by various information sources. While new information 
is being put onto the Web everyday, large numbers of articles are being updated 
regularly, some at a very high frequency. It is impossible for a human being to 
keep track of all this information and changes. In order to fully utilize the power 
of the Web as a gigantic information source, it is essential to develop software 
systems on top of the Web to assist users in retrieving relevant documents. 

Internet search engines such as Alta Vista, Lycos, etc., are the most popular 
tools that people use to locate information on the Web. A search engine works 
by traversing the Web via the pages it has encountered, and indexing the pages 
based on the keywords they contain [1]. 

Although search engines have been proven in practical use as indispensable 
tools for Web retrieval, they suffer from a number of drawbacks [2,3,4,5]. For 
many queries, the result is a very large answer set of individual Web pages with 
poor retrieval precision. As an example, if one queries some general information 
about "Microsoft Windows", up to thousands of individual pages that contain 
"Microsoft Windows" will  be suggested. A more satisfactory answer to such a 
general concept query might be a recommendation to the Microsoft Web site. 
Starting from the main index page, the user can search via the query interface 
or navigate the Web site via the hypertext links according to his own specific 
interest to pin-point relevant documents. We call this strategy of first locating 
a relevant Web site, then locating relevant information within that site, the 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 432-441, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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two-step approach. In contrast, we consider the traditional search engines take a 
one-step approach to retrieve all potential pages directly. 

As the Web develops, we see more and more information sources that are 
dedicated to specific topics of interests. If a user is looking for general information 
about a topic, chances are that a site exists on the Web that is specialized on 
that topic. Recommending Web sites instead of individual pages becomes more 
meaningful to this type of general concept queries. 

One economical solution to recommend a Web site is to borrow the idea of 
G10SS\%,7]. It is a system that, given a user query, recommends relevant doc-
ument databases based on some statistical information that it keeps about the 
document databases. Such a problem of identifying relevant text databases is 
called the text-source discovery problem. The original study on GIOSS assumes 
that the document databases are fully cooperative in exporting statistical infor-
mation about their document collections. However, this is obviously not the case 
for Web sites. The goal of this paper is to investigate how the idea of GIOSS can 
be applied in a dynamic and uncooperative Web environment. 

The rest of the paper is organized as follows. In Section 2 we discuss some 
techniques for the text-source discovery problem. In Section 3 we propose a 
solution to the GIOSS update problem. In Section 4 we present experimental 
results verifying the effectiveness of our solution. Finally, we conclude the paper 
in Section 5. 

2 Text-Source Discovery 

GIOSS is one of the techniques tackling the text-source discovery problem. The 
sources are ranked according to the number of relevant documents they contain. 
Relevancy here is measured by the similarity between a document and the user 
query. There are two models in GIOSS to measure the similarity: the Boolean 
model and the Vector-Space model. In this paper, we focus our discussion on the 
Boolean model. 

Under the Boolean model, a document, D is relevant to a query, Q ii  D 
contains all the keywords in Q. The similarity function, sim{Q, D) is simply 
defined as: 

- 1  ̂ r^\ f 1 if Z? contains all the keywords in Q\ 
^ ^ ^ ( ^ ' ^ ) = j o otherwise. 

The goodness of a document database, db, with respect to Q, is measured by 
simply counting the number of matching documents: 

goodness{Q,db) = 2 . sim{Q,D) 
Dedb 

Al l the quantities defined above can be easily calculated with a full-text index 
as in the case of traditional search engines. However, if compared with GIOSS, 
the search engine approach is very costly, both in terms of the storage as well as 
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the network bandwidth requirements. This is because a search engine essentially 
has to keep the details of all the Web pages and reload them if they are updated. 

In this paper, we apply the idea of GIOSS on the Web. The ultimate goal 
is to recommend Web sites based on the above word statistics. For each Web 
site, db, GIOSS keeps the total number of documents, n{db), and the document 
frequency, dj{db), for each keyword j . The keywords are Eissumed to appear in the 
different documents independently and uniformly.̂  Given a conjunctive query Q 
of k words U ,̂..., U^., GIOSS estimates the goodness of db with respect to Q by: 

goodnessiQ,db) = [[  - ^  ̂ x n{db) = ^^^^^^^,_, (1) 

GIOSS assumes the availability of the above keyword statistics. However, 
in practice, most Web sites are dynamic and uncooperative, i.e., they do not 
actively export the keyword statistics of their collections. Even if such statistics 
are obtained, they become stale fast due to frequent updates on the Web sites' 
contents. Maintaining these statistics is thus a very critical problem in applying 
GIOSS to tackle the Web site discovery problem. 

3 GIOSS Update 

In this section we demonstrate how the total number of documents, n{db), and 
the document frequency dj{dbys are maintained, and how they are used to an-
swer query under the Boolean model. Also, we describe the design of a prototype 
system which implements GIOSS in the Web environment. 

It is not always possible to obtain the complete document collection of a Web 
site. Retrieving all documents poses much burden on the network bandwidth and 
storage. Also, in many cases, obtaining the complete collection is not necessary 
if the goal of the system is to determine whether a Web site contains a non-
trivial  number of relevant documents. As an example, the sports site ESPN is 
a good source of NBA basketball and contains numerous articles on the topic. 
To deduce that ESPN is a site relevant to the keyword "NBA" , it is sufficient to 
examine only a fraction of articles located at ESPN. Hence, instead of actively 
probing a Web site for documents, we take a passive approach: our modified 
GIOSS server only examines and summarizes documents that a user community 
has ever retrieved from the Web site within a certain period of time. That means 
our system uses a sample of documents to project the information content of the 
Web site. Figure 1 shows the architecture of our system. 

We assume that users access the Web via a Proxy server which buffers re-
cently accessed Web documents in the cache. The Proxy cache is assumed to be 
large enough to store the documents retrieved in a day. The HTTP header of 

^ These assumptions are not realistic, and thus the estimates of goodness are off. 
However, the estimates are only used to rank document databases, not to compute 
accurate values. Readers are referred to [6] for a discussion on the efficacy of GIOSS. 
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Fig. 1. System architecture 

the document retrieved carries the last-modified time from which the Proxy can 
determine whether the document exists in the cache and whether it is updated. 

Our GIOSS server interacts closely with the Proxy server. For each Web site, 
db, the GIOSS server maintains a document frequency vector, DF{db). It models 
the document frequency statistics of the Web documents that our system has 
ever retrieved from db in a certain period of time, say, in the past M days. If 
db denotes a subset of documents retrieved from db, then the j - t h component 
of the DF{db) vector represents the document frequency of the j-th. keyword in 
db, denoted by dj{db). Besides DF{db), the GIOSS server also keeps the total 
number of documents in db, denoted by n{db). The goodness of db with respect 
to a query Q is estimated based on Equation 1 using dj{db) and n{db) in place 
of dj{db) and n{db) respectively. 

3.1 Construct ing DF 

The efficacy of our GIOSS server depends on how well the DF vector is con-
structed. A very simple "solution" to constructing the DF vector is to summarize 
everything the system has ever seen. For example, for each Web document from 
db ever brought into the cache, the GIOSS server increments the entry DF{db) [j] 
by one if the word tj appears in the document. However, this simple strategy 
incorrectly estimates the DF vector when the same document is accessed re-
peatedly. Here, let us consider the following examples. 

Example 1 (FAQ) A FAQ document on a popular topic may be accessed 
by a number of users. If the time between successive accesses is long enough such 
that a copy of the document cannot be found in the cache, then every access to 
the FAQ will bring the same document into the cache. This causes the GIOSS 
server to increment the document frequencies of the words that appear in the 
FAQ on every access. Essentially, the server is fooled to think that there are 
multiple documents that contain the same words, while in fact, only one version 
of the FAQ should be counted. 
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Example 2 (Scoreboard) A Web page which broadcasts the scoreboard of 
an on-going NBA game is updated and reloaded many times while the game is 
being played. Similar to the FAQ example, each access to this scoreboard page 
causes an erroneous increment to the DF vector. The difference between the 
FAQ example and the scoreboard example is that while the FAQ rarely changes, 
some words in the scoreboard page are transient, i.e., there may be significant 
word changes between successive page updates. 

In order for the GIOSS server not to over-count the document frequencies, we 
need to identify whether a Web document has ever been seen before, and what 
should be added or deducted from the DF vector. For the Scoreboard example, 
since the inter-retrieval time of the same page is in the order of minutes, the 
previous outdated page is still in the cache. The GIOSS server only has to 
decrement the document frequencies of the words that appear in the outdated 
page in the cache, and increment those that appear in the new version. For the 
FAQ example, the old document has probably been flushed out of the cache 
already when the new version is requested again. Hence, the GIOSS server does 
not have the information to correctly update the DF vector. To rectify, the 
GIOSS server also maintains two more pieces of information: 
A log (LOG ) of document records For each document doci which is retrieved 
by the system and identified by its URL, a record r̂  of two fields {LSi,LMi) 
is put in the LOG. LSi is the expected life span of doci while LMi is the last 
modified time of doCi. We will illustrate how these fields are used in the next 
subsection. To limi t the amount of storage taken by the LOG, our prototype 
only keeps records of Web pages retrieved in the past 400 days. (This window of 
time can be adjusted.) Loosely speaking, the system forgets documents that are 
more than about a year old. As we will  see shortly, the document frequencies 
due to these old documents are appropriately deducted from the DF vector. 
A set of k expiry vectors Vi,...,Vk For each Web site db, the system keeps a 
set of expiry vectors Vi(d6)'s. (In the following discussion, we drop the reference 
db for simplicity.) When a Web page D is brought into the cache, the document 
frequencies of the words in D are incremented in the DF vector. The system 
would then estimate, based on the past history of D, an expected life span for 
D. Essentially, the system assumes that D will  be modified on an expiry day, 
and its outdated content should be removed from the DF vector then. When 
D is subsequently flushed out of the cache, its content is captured by a certain 
expiry vector of a particular life span. Each expiry vector Vi is associated with 
an initial counter Id and an expiry counter Ed. The expiry counter is decre-
mented by one every day. When the expiry counter Ed ticks down to zero, the 
corresponding expiry vector Vi is subtracted from the DF vector, signaling that 
certain Web pages previously accessed by the system are presumed outdated. 
The system then tries to reset the expiry counter to the value of the initial 
counter, recycling the expiry vector for capturing other Web pages. Besides Id 
and Ed, the expiry vector Vi is also associated with a size counter n{Vi) which 
gives the total number of pages Vi summarizes. 
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To illustrate the use of the LOG and the expiry vectors, we reconsider the 
previous examples. We only highlight those key steps that show how the system 
patches the DF vector. Other details are presented in the algorithms shown in 
the next subsection. 

For the FAQ example, if the FAQ document does not change, when it is 
accessed and brought into the cache for the first time, the DF vector is appro-
priately updated to reflect the inclusion of the FAQ and a log record is created. 
The life span of the FAQ is set to a default value. When the FAQ is retrieved the 
second time, its log record is consulted. Since the last-modified time of the newly 
fetched FAQ is the same as that in the log record, the system knows that the 
DF vector has already included the content of the FAQ. So, the second retrieval 
does not induce any update to the DF vector. 

For the scoreboard example, we assume that the Proxy cache is big enough 
to store all the documents the system retrieves in a day. Since the inter-retrieval 
time of the scoreboard page is very short, when a new version of the same page 
is retrieved, the previous version can still be found in the cache. The system 
only has to decrement the document frequencies of the words that appear in the 
outdated page in the cache, and increment those in the new version. 

3.2 Algorithm s 

In this subsection, we present the algorithms for managing the vectors and the 
LOG. The algorithms are driven by the following events: 
Request When a user requests a document D, the system first checks if the 
newest version of D is in the cache. If not, D is downloaded from the Web site. 
If a log record of D is available, that means D has been retrieved before. The 
system then checks if the newest version of D is the same as the previously one. 
If not, the DF vector is incremented to include the new D. Otherwise, DF is 
only updated if the life span was wrongly estimated to have already expired in 
the previous estimate. In any case, the log record is appropriately updated. If 
D is retrieved for the first time, a new log record is created and the life span 
of D is set to a default value. Figure 2 shows the algorithm for handling a user 
request. 
Flush When a document D is to be flushed out of the cache, the system captures 
I?'s content in an expiry vector. The expiry date of D is its last modified time 
plus its life span, and the number of days to expiry equals the expiry date minus 
the current time. The expiry vector whose counter EC is closest to the number 
of days to expiry is chosen to capture D. In case the expiry date has already 
passed, £)'s content is expired immediately and the DF vector is updated. 
End-of-day At the end of a day, the expiry counters -BCs' of all the expiry 
vectors are decremented by one. If an expiry counter Ed becomes zero, Vi 
is deducted from the DF vector. The system then tries to reset Ed to its 
initial value ICi. However, if there exists another expiry vector Vj whose expiry 
counter ECj has the same value as ICi, there are now two expiry vectors Vi 
and Vj with the same expiry counter value. We call this a vector clash. Different 
expiry vectors should have different expiry counters in order to effectively capture 
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Request(D ) 
{  le t  d b =  we b sit e containin g D  ; 

retreiv e HTTP heade r  o f  D  fro m we b sit e d b ; 
i f  ( D i s no t  i n cache )  o r 

(header' s las t  modifie d tim e < > cach e copy' s las t  modifie d time ) 
{. downloa d D  fro m d b ;  } 

i f  (LOG[D ]  doe s no t  exist ) 
•C creat e LOG[D ]  ; 

set  LOG[D].L S =  defaul t  lif e spa n ; 
set  LOG[D].L M =  NULL ;  / /  tentative ,  t o b e fixe d i n (* )  belo w 

} 
els e i f  (LOG[D].L M < > D' s las t  modifie d time ) 
{  se t  LOG[D].L S =  D' s las t  modifie d tim e -  LOG[D ]  .L M ;  } 

/ /  (* )  se t  L M fiel d i f  no t  don e ye t  ;  updat e DF vecto r  i f  necesssur y 
i f  (LOG[D].L M < > D' s las t  modifie d time ) 
{  se t  LOG[D].L M =  D' s las t  modifie d tim e ; 

i f  ( D i s i n cache ) 
-[  fo r  eac h wor d t j  i n D' s ol d versio n i n cach e d o 

{  DF(db)[j] — ;  } 
n(db) ~ ; 

} 

fo r  eac h wor d t j  i n D  d o 
{  DF(db)[j]+ + ;  > 
n(db)+ + ; 

> 

Fig. 2. Algorithm Request 

Flush(D) 
-C i f ( (LOG[D].LM + LOG[D].LS) > current time ) 

{  l et Vi(db) = 
expiry vector with ECi = LOG[D].LM + LOG[D].LS - current time 

for each word t j i n D do 
{ Vi(db)[j]+ + ; } 
n(Vi(db))++ ; 

} 
els e 
{  fo r  eac h wor d t j  i n D  d o 

{  DF(db)[j]- -  ;  } 
n(db) — ; 

} 
} 

Fig. 3. Algorithm Flush 
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documents that exhibit different life spans. Vector clash is thus undesirable. To 
ensure the expiry vectors cover a reasonable spectrum of expiry dates, the system 
dynamically adjusts the vectors' expiry counter values. In particular, when a 
vector clash happens, the system swaps the roles of the clashing vectors. That 
is, it swaps Id with ICj and tries to reset Ed to the new Id. If Vi then 
clashes with yet another vector Vk, further swapping is done until there is no 
vector clash. Figure 4 shows the algorithm for updating the DF and expiry 
vectors at the end of a day. 

End-of-day( ) 

{  fo r  eac h Web sit e d b d o 

•[  fo r  eac h expir y vecto r  Vi(db )  d o {  ECi(db) — ;  } 

i f  (ther e exist s a  vecto r  Vi(db )  suc h tha t  ECi(db )  =  0 ) 

{  ii(db )  =  ii(db )  -  n(Vi(db) )  ; 

fo r  eac h non-zer o entr y k  i n Vi(db )  d o 

{  DF(db)[k ]  =  DF(db)[k ]  -  Vi(db)[k ]  ;  } 

whil e (TRUE )  d o 

{ ECi(db )  =  ICi(db )  ; 

i f  (ther e exist s anothe r  vecto r  Vj(db )  wit h ECi(db )  =  ECj(db) ) 

swap(ICi(db) ,  ICj(db) )  ; 

els e exi t  whil e loo p ;  }  }  } 

Fig .  4 .  Algorith m End-of-da y 

4 Experiment 

To illustrate the effectiveness of our GIOSS update algorithm, we implemented 
a prototype system and conducted an experiment. The goal is to study how well 
the system keeps the word statistics of a Web site. In this section we briefly 
discuss the experiment result. 

We selected a sports Web site and took a snapshot of the site every day, 
for 76 consecutive days. Each snapshot has, on the average, 20,000 Web pages. 
The Web site also has archives of pages which are only accessible via its search 
interfaces. The snapshots we took did not include those archives. Over the 76 
snapshots, there are about 124,000 unique pages, with unique URLs'. Many 
pages have dynamic contents or exhibit the transient existence property. For 
example, only 416 pages, most of which being index pages, exist throughout the 
76 days, and none has its content remain unmodified for more than 21 days. 

To model Web page accesses, we first identified the "index pages" of the Web 
site, e.g., the "soccer" index page, the "tennis" index page, etc. Each index page 
represents an area of interest of the Web site. Each other Web page was then 
grouped with the index page which shares with it the same URL prefix. Finally, 
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we identified the pages which exhibit transient existence property, i.e., those 
that only exist for less than two days. We simulated a situation in which 5% of 
the pages in each snapshot were accessed by the prototype. Since the average 
snapshot size is 20,000 pages, about 1,000 pages were accessed per snapshot. 

We synthesized the page requests according to the following rules: 

1. The home page and all the index pages are accessed. 
2. Three quarters of the page requests, i.e., about 750, are distributed evenly 

to each area of interests. 
3. One quarter of the page requests, i.e., about 250, are randomly selected from 

the pages of transient existence. 

Rule (1) is used to model the fact that the index pages are usually the most 
frequently accessed pages. With rule (2), we assume different areas are of similar 
popularity. With rule (3), we observe that the pages of transient existence usually 
contain "fresh news" and are more likely be accessed. The pages selected under 
rule (2) may overlap with those pages selected under rule (3). Thus the total 
number of pages accessed per snapshot may be slightly less than 1,000. 

The prototype system implements all the details as discussed in Section 3. 
For the experiment, since we have only 76 snapshots of the Web site, we set the 
default life span of a page to 60 days. 

We recall that GIOSS uses the fraction of documents in a database for a 
particular keyword, i.e., di{db)/n{db) in Equation 1, to estimate the goodness of 
the database with respect to a query. We call this fraction the document density 
of the i-th word, and denote it by the symbol pi{db). We will show how accurate 
the prototype estimates the document densities. Since our GIOSS system only 
"sees" a sample of pages from the Web site, the document densities are just 
estimates based on the sample pages. The document frequency information of 
the sample pages are summarized in the DF vector while n{db) records the total 
number of pages ever retrieved from the Web site db and not yet expired. The 
estimated document density of the i-th word p^^*'{db) is thus DF{db)[i\ln{db). 

We drove the prototype using the synthesized streams of page requests. We 
then compared the estimated document densities p?''{d6) with the real document 
densities pi{db) of the words that appear in the last snapshot. In particular, we 
compute the relative error, e,, defined by: 

gj = [p^^''{db) — pi{db)) /pi{db), for all word ti in the last snapshot. 

Figure 4 shows a bar graph which illustrates the average relative error of 
words whose document densities fall into a specific range. Prom the figure, we see 
that the average relative error for words with a non-trivial density {pi{db) > 5%) 
is within 10%. This shows that our system is able to estimate the document den-
sities and thus the goodness of a Web site from a small set of document samples 
(5%) fairly accurately. For words with a low document density (0 < Pi{db) < 
0.5%), however, the average relative error is not insignificant. Fortunately, these 
words with such a low document density appear very rarely in the Web site. The 
error in the estimate of words with low document density is thus unimportant. 
Hence, it does not undermine the effectiveness of our GIOSS system. 
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Figure 1: Relative error versus densities 

Fig. 5. Relative error versus densities 

5 Conclusion 

In this paper, we discuss the text-source discovery problem and the GIOSS ap-
proach. Due to the dynamic nature of the Web, a direct application of GIOSS 
is inadequate. The problem is how one could obtain updated keyword statistics 
of the Web sites, which are an important piece of information GIOSS relies on 
in making an effective recommendation. We call this problem the GIOSS update 
problem. We discuss an approach to solving the GIOSS update problem based 
on passive sampling of documents from the Web sites. Data structures and algo-
rithms for dynamically tracking the keyword statistics of Web sites are proposed. 
We implemented the ideas in a prototype GIOSS system. We conducted a sim-
ple experiment verifying the effectiveness of our approach. The result shows that 
our system can give a reasonable estimate of document densities. The est imate 
is part icularly accurate for those frequently occuring keywords. 

References 

1. The Web Robots FAQ. URL: http://www.mesquite.com. 
2. M.E. Maron D.C. Blair. An evaluation of retrieval effectiveness for a full-text doc-

ument retrieval system. Communications of the ACM, 28(3):290-299, 1985. 
3. S. Feldman. Just the answers, please: Choosing a web search service. The Magazine 

for Database Professionals, May 1997. 
4. B. Grossan. Search Engines: What They Are? How They Work? 

URL: http://webreference.com/content/search/features.html. 
5. V.N. Gudivada. Information retrieval on the world wide web. IEEE Internet Com-

puting, l(5):58-68, 1997. 
6. Anthony Tomasic Luis Gravano, Hector Garcia-Molina. The effectiveness of GIOSS 

for the text-database discovery problem. In Proceedings of the 1994 ACM SIGMOD. 
7. Anthony Tomasic Luis Gravano, Hector Garcia-Molina. Generalizing GIOSS to 

vector-space databases and broker hierarchies. In Proceedings of the 1995 VLDB 
Conference, May 1995. 



Extraction of Fuzzy Clusters 
from Weighted Graphs 

Seiji Hotta, Kohei Inoue, and Kiichi Urahama 

Kyushu Institute of Design, Pukuoka 815-8540, Japan 
urah.amaQkyushu-id .ac . jp 

Abs t rac t. A spectral graph method is presented for partitioning of 
nodes in a graph into fuzzy clusters on the basis of weighted adjacency 
matrices. Extraction of a fuzzy cluster from a node set is formulated by 
an eigenvalue problem and clusters are extracted sequentially from major 
one to minor ones. A clustering scheme is devised at first for undirected 
graphs and it is next extended to directed graphs and also to undirected 
bipartite ones. These clustering methods are applied to analysis of a link 
structure in Web networks and image retrieval queried by keywords or 
sample images. Extracted structure of clusters is visualized by a multi-
variate exploration method called the correspondence analysis. 

1 Introduction 

Data summarizat ion by clustering is a fundamental strategy for exploration of 
large scale data structures in information retrieval, filtering and da ta mining [1]. 
Hypertexts or da ta matr ix in document retrieval can be represented by directed 
or undirected graphs. Clustering of graphs is useful for exploration of those 
data structures. Clustering is an NP-hard problem which needs approximate 
solution methods one of which is spectral graph partitioning[2] in which integer 
constraints are relaxed to real values and combinatorial tasks are reduced to 
eigenvalue problems. Spectral part i t ioning method is recently extended to graphs 
and matrices[3] and to categorical data[4]. The method[3] yields continuous, 
i.e. fuzzy clustering instead of discrete, i.e. hard one, however the number of 
clusters is fixed a priori. The method[4] is an extension of their approach[5] for 
finding a dense set in directed graphs to a strategy for finding multiple sets by 
using a nonlinear iteration schemes. We have presented another spectral graph 
method[6] for part i t ioning data into fuzzy clusters. Our method applies a linear 
eigenvalue solution to the adjacency matr ix of da ta successively for extract ing 
fuzzy clusters sequentially. In this paper, we extend it to directed graphs and to 
undirected bipart i te ones and apply them to analysis of a link structures in Web 
networks and to image retrieval queried by keywords or sample images. Extracted 
structure of clusters is visualized by a multivariate exploration method called 
the corresponding analysis. This visualization can be used for image retrieval by 
browsing of images and keywords. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.); PAKDD 2000, LNA I 1805, pp. 442-453, 2000. 
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2 Sequential Extraction of Fuzzy Clusters by Spectral 
Graph Method 

We partition nodes of a graph whose edges and nodes have real weights into a 
set of fuzzy clusters. Our method[6] for fuzzy clustering of data is first applied 
to undirected graphs. It is next extended to directed graphs and to undirected 
bipartite ones. Their practical implication will be clarified in the next section 
for their applications. 

2.1 Fuzzy Clustering of Undirected Graphs 

Let the weight of the ith node in an undirected graph of m nodes be Uj, and 
the weight of the edge between the ith and the j t h nodes be Wij (see Fig.1(a)). 
Undirected graph implies Wij = Wji. Our method [6] extracts cohesive subsets 
successively from this node set. Let xu be the degree of participation of the ith 
node in the first, i.e. most densely connected cluster, then the cohesiveness of this 
cluster is evaluated by X^^j S f ci ViXuWijVjXij and the first cluster maximizes 
it as 

max 2_] / , ViXiiWijVjXij 
i=l  J = l 

m 

subj.to X^'^i^^i i = 1 
1 =1 

(1) 

This first step of extraction coincides with the method[7] for finding the most 
cohesive subset in image data. This equation is converted by the transformation 
of variables xu = Jvlxu into a canonical form: 

niax ^ ^ \/viX\iWij V ^ ^ i j 

subj.to ^ i f j = l 
(2) 

The optimal solution x\ = [xu,...,xim] of this maximization problem is 
the principal eigenvector of the weighted adjacency matrix Wi = \,/viWijy/vJ]. 

M Wij 

(b) 
Fig. 1. Undirected graph (a) and directed one (b) 
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Since all elements of Wi are nonnegative, every x'u is also nonnegative, and the 
cohesiveness of the cluster is given by the principal eigenvalue. The solution of 
eq.(l) is given by Xu = xu/y/vi and let ti = argmaxjXii, then pu = xufxu^ 
is the membership of the ith. node in the first cluster [6]. 

The second cluster is extracted by the same procedure after the deletion 
of the first cluster from the original node set. After the deletion the weight 
of each node becomes (1 — pii)Vi, hence the membership X2i of the ith node 
in the second cluster is given by replacing Uj in xu by (1 — p\i)Vi. Thus ex-
tracted clusters are deleted successively and then generally the membership pki 
in the A:th cluster is given by the procedure: we first calculate the principal 
eigenvector Xk of the matrix Wk — [yJViVjWij YYiZi yj{^ ~Pi i)(l —Pij)]: i^ext 

Xki = iki/y'Vi WiZi (l  ̂ Pii) is calculated and ik = argmaxjXfci is found, then 
the membership of the ith node in the fcth cluster is given by pki = Xki/xki^. 
Since every element of the matrix decreases monotonically in this sequential ex-
traction of clusters, its principal eigenvalue, i.e. the cohesiveness also decreases 
monotonically. The profile of the variation in the cohesiveness suggests us an 
appropriate number of clusters. 

2.2 Fuzzy Clustering of Directed Graphs 

Generally Wij  ̂ Wji in directed graphs. The weight of nodes is differentiated 
into two, one is the weight m as an initial node for the edges outgoing from 
the ith node and the terminal weight Vi for edges incoming to it(see Fig.1(b)). 
Accordingly the membership of nodes is divided to the initial membership Xi 
and the terminal membership y .̂ The first cluster with the largest cohesiveness 
is then formulated as 

(3) 

max y ^ } UjXiiWijVjyij 
i=l  j=\ 

m m 

subj.to ^U iX?j = l , Y^Vjylj = l 
t= i >=i 

which is an extension of eq.(l). This first step of cluster extraction coincides with 
the method[5] for finding the most dense subset in Web networks. Similarly to 
the previous subsection the variable transformation xu = s/ulxxi,y\j = y/UJyij 
converts eq.(3) into 

max 
XI,yi 

subj.to 

53 H v *̂i ' 
i = i j = i 

iWij^yij 

m 

E^5 = 
(4) 

whose solution xi — [xn, ...,XIT„] , yi = [yii , ...,yiTn] is shown by the Lagrange 
multiplier method to meet the following two equations: 

Wxyx = Axi , W'^xx = p.yx (5) 
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where Wi = \^/uiWijy/vj], and A and /x are Lagrange multipliers. Elimination of 
y from these two equations, or conversely the elimination of x leads to 

w^w^xi^Xiixi, w[wm = >^mi (6) 

which state that xi is the principal eigenvector of WiV7^ and yi is that of 
W^^W î. In practical computation, one of these two eigenvectors, e.g. yi is calcu-
lated and then the other is given by only matrix multiplication as xi = Wiyi. 
The normalization of its norm is unnecessary because it wil l be renormalized 
at the transformation to memberships. The solution of eq.(3) is xu = xnf sjv^i-, 
yij = yij/\/Vj from which the memberships are given by pu = xu/ ma,x{xii}, 
Qij = yij/'^^^{yij}  where pu is the initial membership of the ith node and 
qij is the terminal membership of the node j . We call ii  = argmaxijpii}  the 
representative initial node in the first cluster, which corresponds to the hub in 
[5], and jx = argmaxj{9ij}  is the representative terminal node which is called 
the authority in [5]. 

Let us evaluate the cohesiveness of clusters. If we multiply x\ to the left 
equation of (5), we get x^Wxyx = \x\^x\ = A, and similarly the multiplica-
tion of y\ to the right equation of (5) leads to y{Wjx\ — ^yfyi — /x. From 
these two equations we know X = p,, from which together with eq.(6) it is 
derived that A(=: /x) is the square root of the principal eigenvalue of W^Wi , 
which is equal to that of Wi l^^ . Thus it is concluded that the cohesiveness 
E i l i Z ) ^ i Ui^iiWijVjyij  = xJWiyi is given by A(= /x). 

Next at the extraction of the second cluster, the weight of nodes as initial 
points is reduced to (1 — pii)ui and their terminal weight becomes (1 — qij)vj. 
The membership in the second cluster is hence given by the above expression 
for the first cluster with the replacement of Uj by (1 — pii)ui and that of Vj 
by (1 — qij)vj.The third and subsequent clusters are given similarly and gen-
erally the feth cluster is calculated by the following procedure: the principal 
eigenvector yk of W^Wk where Wk = [^/u^vjwij HjJi A / ( 1 - Pii){l  - qij)]  is 
calculated and from it we get Xk = Wkyk which is further transformed to 

Xki = ^ki/'\/uiYli=i  i^^Pii)- The representative initial node ik is that with 
maximal Xki and the representative terminal node jk is with maximal ykj. The 
membership as initial nodes in the kth cluster is then given by pki = Xki/xkit 
and that as terminal nodes is qkj = ykj/ykjk- The cohesiveness of the fcth clus-
ter is the square root of the principal eigenvalue of W^Wk (or WkW^). The 
cohesiveness decreases monotonically as k increases. 

Finally before proceeding to the next section, we show that directed graphs 
can be transformed to undirected bipartite graphs equivalent to them. At first 
each node i is doubled to i and i and an edge with the weight Wij is drawn from 
z to i. The direction of edges can be dropped and then we get an undirected 
bipartite graph (see Fig.2) where the weight of node i is Ui and that of j is 
Vj. Clustering of such an undirected bipartite graph is considered in the next 
section. 
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(a) (b) 

Fig. 2. Undirected bipartite graph (b) equivalent to digraph (a) 

2.3 Undirected Bipartit e Graphs 

Let a graph be composed of two subsets of nodes i = 1, ...,m and j = 1, ...,n 
between which undirected edges with a weight Wij {=  Wji) are linlied but no edge 
exists in each subset. There are three cases for the clustering of those undirected 
bipartite graphs. 

The first is clustering of the entire graph as an undirected graph by ignoring 
the specificity of its bipartite structure. In this case the method in section 2.1 is 
simply applied to the entire graph. 

The second is the clustering of two subsets separately. This clustering cannot 
be done by applying the method in section 2.1 to each subset independently 
because there is no direct link in the subset. Let xi be the degree of participation 
of the nodes in one subset in the first cluster and j/i be that of the nodes in the 
other subset, then the equation for these variables reads the same as eq.(3). This 
means the equivalence between directed graphs and undirected bipartite ones as 
is stated at the end of the previous section. Separate clustering can be recognized 
by the elimination of xi or j/i from eq.(3), which yields two separate equations 

max x[WiWi^xi 

subj.to II xi 11= 1 

max yfWi Wiyi 
yi 

subj.to I! yi 11= 1 

(7) 

(8) 

which reveal that FFi VF/" is the adjacency matrix for xi and ly^Wi is that for yi . 
This separation however cannot be recommended from their computational costs. 
Since the matrix Wi is generally nonsquare because m  ̂ n {Wi is square for 
directed graphs in section 3.1), the size of W^Wi is different to that of WiW^, 
hence the cost is minimized by calculating only the eigenvector of smaller one of 
these matrices and obtaining the other eigenvector by using one of eq.(5). 

Finally the third case is clustering of only one subset of nodes. Contrarily to 
the second case where clusters are extracted concurrently from both subsets, the 
other subset is invariant throughout the extraction process in this case. Let the 
subset i = 1,..., m be partitioned into clusters. The extraction of the first cluster 
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is the same as eq.(3). Next at the extraction of the second cluster, only the weight 
of the subset i = 1,..., m is reduced to (1 — pii)ui and Vj {j  = 1,..., n) are fixed 
invariantly. The extraction of the third and subsequent clusters is similar and 
generally the kth cluster is calculated by the following procedure: the principal 
eigenvector Xk of Wk W  ̂ where W  ̂ = {-.Ju^jWij W,iZ\ ^/l — 'pu\ is calculated (or 
if m > n the principal eigenvector y  ̂ of W^Wfeis calculated and from it we get 

ik = WkVk) and from it we get Xki = iki/yui YiiZi (1 - Pu)- The representative 
node ik is that with maximal Xki and the membership of the ith node in the 
fcth cluster is given by pki = Xki/xki^. The cohesiveness of the fcth cluster is 
the square root of the principal eigenvalue of W^Wk (or WkW^) and decreases 
monotonically as k increases. Note that the membership in extracted clusters 
is obtained for the nodes j = l , . . .,n as a byproduct of this clustering of the 
subset i = 1,..., m. The representative node jk of the kth cluster is the one with 
maximal ykj and the membership is given by qkj = ykj/Vkjk for the jth node in 
the fcth cluster. 

3 Applications 

We next proceed from the basic theory of the clustering algorithms described 
above to some examples of their practical applications. The order of subsections 
below corresponds to that of subsections in the above section. 

3.1 Clustering of Metri c Data 

When data are given by a set of points in a metric, e.g. Euclidean spaces, the data 
are represented by an undirected graph in which each node denotes a datum and 
edges have the weight which is the inverse of the distance between data. Their 
clustering is obtained by the procedure described in section 2.1. This class of data 
is very popular and their clustering is rather elementary, hence its examination 
is skipped here. 

3.2 Clustering of Web Pages 

Next examples are hypertexts and Web pages which are represented by a directed 
graph where each text or page is denoted by a node and links are represented 
by directed edges between nodes. A set of journal articles are also represented 
by a directed graph where the links denote citational relations. These examples 
are analyzed by the method in section 2.2. We report here the clustering of Web 
pages. We used a set of 127 Web pages which are retrieved by a search engine 
"metacrawler" with the keyword "information retrieval" together with secondary 
searches. A directed graph was constructed from the links in those pages. All 
the weights were set to one for both nodes and edges. Figure 3 shows the co-
hesiveness of extracted clusters. Its decreasing rate deteriorates after the 4th 
extraction, this shows that clusters from the 4th one are sparse and the number 
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of salient clusters is three. Their representative initial pages (whose URL and 
title) are 
1. http://cuiwww.unige.ch/ viper/other-systems.html 

Links to other image database systems 
2. http://nl06.is.tokushima-u.ac.jp/member/kita/NLP/IR.html 

Information Retrieval Links 
3. http://www.umiacs.umd.edu/research/CLIP/filter2.html 

Information Filtering Resources 

and their representative terminal pages are 
1. http://wwwqbic.almaden.ibm.com/ 

QBIC - IBM's Query By Image Content 
2. http://ciir.cs.umass.edu/ 

The Center for Intelligent Information Retrieval 
3. http://www.Iucifer.com/ sasha/articles/ACF.html 

Automated Collaborative Filtering and Semantic Transports 

In these lists the number is the extracted order which is upper for the clus-
ter including more pages. The representative initial page called the hub in [5] 
has links to many pages in the cluster, hence it serves to introduction to the 
topics of the cluster. The representative terminal page called the authority in [5] 
is linked from many pages in the cluster, hence its content is important for the 
topics. The topics of above three clusters are 1. image retrieval, 2. information 
retrieval, and 3. information filtering. Though this example contains very small 
number of pages of restricted topics, clustering of arbitrarily gathered pages of 
large numbers could find groups emergently build up in the internet such as a 
cyber-community. 

The present cluster analysis of Web networks can be used for suggestion of 
new links for each page. Let us consider an intuitive example where the initial 
membership pki of a page in a cluster has the value one and pu {I   ̂ k) of that 
page in other clusters are zero. This means that some links exist from that page 

Fig. 3. Variation in cohesiveness ot dusters 
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to some pages included in that cluster and there is no link from that page to 
other clusters. Then a new link from that page to the representative terminal 
page of that cluster is highly recommended if it does not exist yet. By extending 
this intuitive example with crisp membership values to general cases with fuzzy 
memberships, we get the following recommendation rule. Let pi = {pn, ...,pi^iY' 
where TV is the number of clusters be the vector of the membership of the ith 
page as initial nodes in each cluster and qj = [qij,  ...,qf^j]'  ̂ be that of the j t h 
page as terminal nodes. Then the degree of the desirability of the link from 
the ith page to the jth page can be estimated by the similarity between these 
two vectors. For instance, the similarity can be evaluated by the cosine of the 
angle between these two vectors: Uj = pfqj/ |( Pi )(|( qj |( where p'^qi is the 
inner product X)fe=i PkQki and || p || is the Euclidean norm y/p'^p. Thus if there 
is no Unk from the ith page to the jth one and rij  is large, then this link is 
recommended to be added newly. 

3.3 Image Retrieval by Keywords 

Next is the third example of data retrieval based on the clustering to which the 
scheme in section 2.3 can be applied. Data in the document retrieval by key-
words can be represented by an undirected bipartite graph in which the set of 
documents is one subset of nodes and keywords are denoted by the other subset 
of nodes and the weight of links denotes the frequency of keywords appearing in 
each document. For instance a data matrix in table 1 is represented by the bi-
partite graph shown in Fig.4 in which all the weights of nodes and those of edges 
are one. By clustering the documents using the method in section 2.3, we can 

Table 1. A data matrix for texts and keywords 

textl 
text2 
texts 

kwl 

1 
1 
0 

kw2 

0 
1 
1 

kw3 

1 
0 
0 

kw4 

0 
1 
1 
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grasp the cluster structure of documents and at the same time the membership 
of each keyword in each cluster is also obtained as a byproduct. Documents and 
keywords are related through these memberships and we can retrieve documents 
queried by keywords by referring these relations. Fuzziness of the clustering en-
ables us detailed ranking which is impossible by hard clustering. Objects in a 
database are not restricted to documents. We examine image databases in this 
section. 

Let us first consider the retrieval by query. Another strategy of retrieval by 
browsing will be shown in the next section. Let us begin with a simple case with 
a query being one keyword whose membership in each cluster is pfc (^ = 1, -.., iV) 
where A'̂  is the number of clusters. Let q^i be the membership of the ith im-
age in the kth cluster. Then the query keyword is represented by the vector 
p= \pi, ...,PN]'  ̂ and each image is represented by the vector qi = [qn,..., qm]'^-
Intuitive is the hard clustering case where images included in a cluster to which 
the query belongs are retrieved. This rule is extended to fuzzy clustering cases 
similarly to the above example for Web link recommendation. We evaluate the 
similarity between the query and each image by the cosine of the angle between 
their vectors: Sj —p^qi/ || p |||| qi \\ where p^ ĵ is the inner product YLk='i.Pk<lki 
and II p II is the Euclidean norm yjp'^p. This similarity is the correlation coef-
ficient between the query and each image. Images with large similarity to the 
query are relevant to that query, hence the rank of the relevance of images to the 
query is given by Sj. Thus images are retrieved by the order of the value of Sj. 
This retrieval scheme can be extended to a query given by multiple keywords. 
When L keywords are inputted, the cosine su = pfqi/ || pi \\\\ qi || between the 
membership vector pi = \p\i, ...,PNIY' of *'he /th keyword and qi = [qu,..., qjvi]^ 
of each image is calculated for each keyword / = 1,..., L. These elementary scores 
are combined by the product Sj = n ;=i ^n if ^^  ̂ combination rule is "AND" , or 
by the sum Si = X^j^j su if the rule is "OR". Images are retrieved by the order 
of the value of this combined score sj. 

When the query is given by an image instead of keywords and we search in a 
database for images similar to the query image, the retrieval process is similar, 
i.e. the similarity between the query image and each image in the database is 
evaluated by the cosine of the angle of vectors of those memberships in each 
cluster. 

We have experimented the retrieval of images queried by a sample image. 
Example database is composed of 160 photographs attached with 46 keywords. 
This dataset of images was clustered by the scheme in section 2.3. The varia-
tion in the cohesiveness of clusters is illustrated in Fig.5 from which the number 
of clusters is determined to five. Ten images are retrieved for each image in 
the database as the query. To evaluate the performance of the present retrieval 
method, we have also experimented the retrieval by using the latent semantic 
indexing (LSI) method [8]. The rank of the data matrix of the size 160 x 46 was 
reduced to five by the singular value decomposition. Ten images are retrieved 
for each image. Figure 6 shows the number of the same images retrieved both by 
the present method and by the LSI for each query image. The axis of abscissas 
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Fig. 5. Variation in cohesiveness of clus- Fig. 6. Number of images appearing both 
ters in the first 10 by the present method and 

in those by the LSI method 

in Fig.6 denotes each query image and its axis of ordinates is the number of 
images coincident in both ten retrieved images. The average number of coin-
cidence is seven which reveals that the present method outputs images similar 
to those by the LSI method. The entire retrieval time, which is clustering plus 
160 retrievals in the present method and singular value decomposition plus 160 
retrievals in the LSI, is 0.22 seconds in the present method and 0.33 seconds in 
the LSI method. Though the present method contains five times of eigenvalue 
decomposition which is only one time in the LSI method, the present method is 
faster than the LSI. This is attributed to the fact that the eigendecomposition is 
applied to a 46 x 46 matrix in the present method, on the other hand the matrix 
size is 160 x 46 in the LSI. 

4 Graph Drawing Based on Fuzzy Clustering 

Since the membership value in hard clustering takes only one or zero, detailed 
topology in each cluster is lost hence the ordering of data in each cluster has 
no meaning. Contrarily the memberships take continuous values in the fuzzy 
clustering, therefore the locational relation between data displayed on a screen 
reflects data topology. Two data with similar membership patterns should be 
placed close together on a screen. Here we calculate approximately such a topol-
ogy preserving map by using an exploratory multivariate data analysis method 
called the correspondence analysis [9]. 

The correspondence analysis is a method for displaying data by arranging 
them preserving their similarity relations given by their cooccurrence matrix. 
Let there be m samples and n items and the cooccurrence degree of the ith sam-
ple and the j t h item be dij. The procedure of the correspondence analysis for 
arranging samples on a two-dimensional space based on this cooccurrence matrix 
D — [dij]  is summarized as follows: If m < n then we calculate the secondary 
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principal eigenvector 1*2 and the third one U3 of the matrix F~^DG~^D^F~'^ 
where F = diag(/i);/i = Yl"=i<iij  and G = diag(pj);gj = S i l i <̂ y and next 
calculate x = F'"^U2 and y = F'^u^. Conversely if m > n then we calculate the 
second and the third eigenvectors V2, V3 and their eigenvectors A2, A3 of the ma-
trix G~ 21?'^F~^DG"" 2, and from them we next calculate a; = F~^DG~'^V2/V^ 
and y = F~^DG'"^Vi/^/Xl. These x and y give the locations of data, i.e. [xi, yi) 
is the two-dimensional coordinate of the ith sample. 

We exploit this correspondence analysis here for the visualization of the struc-
ture of extracted fuzzy clusters. We regard the nodes in a graph as samples and 
their cluster as an item, then the degree of cooccurrence dij corresponds to the 
degree of the ith node appearing in the j t h cluster, i.e. the membership of the 
ith node in the j t h cluster. Hence we construct the cooccurrence matrix D by 
equating dij to pji which is the membership of the ith node in the j t h cluster 
and apply the correspondence analysis to it, then two nodes with similar mem-
bership values are located close together and we can grasp the cluster structure 
visually. For example five clusters extracted from 160 images and 46 keywords 
cited in the previous section were displayed by this method. In this example the 
samples are images and keywords, and items are clusters, hence m ':^ n which 
is the latter case in the above procedures. Resulted arrangement of images and 
keywords is illustrated in Fig. 7(a) where images are denoted by white squares 
and the black dots denote keywords, and representative images and keywords 
are displayed large. Links in Fig. 7(a) denote the correspondence between images 

-0 1 

-().()4 

-().{)45 

-0.05 

-0.055 

-0.06 

^^'''% 

1 - 1 - 1 , 

cli i ld 

u 

I- ^oRcopIc 

excursion old man 

couple faniiiy ^'^' 
r . J . 1 

K)5 0 0,005 001 

Fig. 7. Drawing of cluster structure for images and keywords 

and keywords. The "People" cluster nearly central in Fig.7(a) is magnified in 
Fig. 7(b) where links are omitted for simplification. These simultaneous displays 
of images and keywords on the same screen serve to grasp these relations and 
are used for the browsing retrieval of images with the aid of the search based 
on keywords. On the other hand however such simultaneous display is rather 
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complicated to see. Search speed will  be raised in some cases if only keywords 
are displayed first and we select a place in the screen and then the images in the 
selected area are displayed on the screen. Although the present display method 
is different to the graph drawing schemes[10] whose object is the visibility of the 
link structure of graphs because our main concern here is the presentation of 
the cluster structure, the present scheme can be said one of the graph drawing 
method with the emphasis on the cluster structure. 

5 Conclusion 

A spectral graph method has been presented for partitioning the node set of 
a graph into fuzzy clusters on the basis of its adjacency matrix. The method 
has been applied to the extraction of link structures in Web networks, retrieval 
of images queried by keywords or sample images and graph drawing based on 
the clustering. The present method is based on only the link relations between 
nodes in contrast to conventional clustering method based on only the features 
of nodes. Combination of these two approaches to clustering is under study to 
improve their performance. 
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2 

Abstract. We present an approach to the design of an automatic text 
summarizer that generates a summary by extracting sentence segments. 
First, sentences are broken into segments by special cue markers. Each 
segment is represented by a set of predefined features (e.g. location of 
the segment, number of title words in the segment). Then supervised 
learning algorithms are used to train the summarizer to extract important 
sentence segments, based on the feature vector. Results of experiments 
indicate that the performance of the proposed approach compares quite 
favorably with other approaches (including MS Word summarizer). 

1 Introduction 

With lots of information pouring in everyday, document summaries are becoming 
essential. Instead of having to go through the entire text, people can understand 
the text fast and easily by a concise summary. In order to obtain a good summary, 
however, we are faced with several challenges. The first challenge is the extent 
to which we "understand" the text for writing a summary. In our approach we 
do not claim to generate a summary by abstract (after understanding the whole 
text), but attempt to extract some segments out of the text. Second, a summary 
may be subjective depending on whether people think that certain features or 
characteristics should be used to generate a summary. Features all have a degree 
of subjectivity and generality when they are to be used to form a summary. 
Ideally, we are looking for those features that are independent of the types of 
text and users to suggest the significance of parts of a document. 

Against this background, we propose an approach to automatic text sum-
marization by sentence segment extraction using machine learning algorithms. 
We perform a "shallow parsing" [5] by looking at special markers in order to 
determine the sentence segments. Special markers and their by-product, rhetor-
ical relations, discriminate one portion of text from another. We define a set 
of features for each sentence segment. Then we convert these features into a 
vector representation and apply machine learning algorithms in order to derive 
the rules or conditions by which we generate a summary. As we shall find out, 
machine learning will report to us whether one feature is useful at all in looking 
for summary material based on achieving a good balance between subjectivity 
and generality of summarization. 

T. Terano, H.Liu, and A.L.P. Chen (Eds.): PAKDD 2000, LNA I 1805, pp. 454-457, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 
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2 Design of the Text Summarizer 

2.1 Sentence Segmentation 

Our segmentation method is basically the same as Marcu's [5]. A sentence is 
segmented by a cue phrase. The basic idea behind this is to separate units (i.e. 
sentence segments) that possibly convey independent meanings and use the units 
in summarization. (See [5] for detailed description on the cue phrases and the 
segmentation algorithm.) 

2.2 Feature Representation 

The sentence segments need to be represented by a set of features. There are 
two kinds of features we consider: structured and non-structured. The former is 
related to the structure of the text (e.g. rhetorical relations), while the latter is 
not (e.g. titl e words). 

Mann and Thompson noted in their Rhetorical Structure Theory that a sen-
tence can be decomposed into segments, usually clauses [4]. The main segment 
is called a nucleus, and its subordinate segment is called a satellite, relating to 
the main segment with some rhetorical relation. There are many rhetorical rela-
tions signaled by different cue phrases (e.g. because, hut, if, however). Generally, 
when a rhetorical relation occurs, the nucleus is considered as a more impor-
tant segment - and has more chances to be in the summary - than its satellite 
counterpart. 

Using Marcu's discourse-marker-based hypothesizing algorithm [5], we dis-
cover rhetorical relations on segments' base level. In other words, we obtain the 
rhetorical relations of a segment to another segment in nearby region instead of 
talking all the combinations of segments recursively to generate the whole RST 
tree, which is computationally demanding. 

We collect a total of 23 features and generate the feature vector F which can 
be divided into three groups: 

- Group I: 1. paragraph number, 2. offset in the paragraph, 3. number of bonus 
words, 4. number of titl e words, 5. term frequency, 

- Group II : 6. antithesis, 7. cause, 8. circumstances, 9. concession, 10. condi-
tion, 11. contrast, 12. detail, 13. elaboration, 14. example, 15. justification, 
16. means, 17. otherwise, 18. purpose, 19. reason, 20. summary relation, 

- Group III : 21. weight of nucleus, 22. weight of satellite, 23. max level. 

Features 1-5 in Group I are non-structural attributes of the text. They are coun-
ters associated with a feature like the location of the segment as defined in [3,1]. 
Features 6-20 are distinct rhetorical relations. When a segment is hypothesized 
with a relation, such a relation (feature) Fj (initially zero) will  change its value 
by the following equation: 

\ Fi + l.Q/x if nucleus 

{ Fi — l.Q/x if satellite 
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where x is the number of the asymmetric, exclusive-or relations being hypothe-
sized with the segment. Features 21-23 in the last group are collective descrip-
tions of the rhetorical relations. For example, Weight of nucleus sums up all 
the occurrences one segment acting as a nucleus, regardless of which relation it 
possesses. Max level describes how many times, recursively, a segment can be 
a satellite of another satellite. 

2.3 Summar izer Training 

Here the goal is to select a few segments as a summary that can represent 
the original text. With the feature vectors generated in previous steps, we can 
easily apply machine learning algorithms to train a summarizer (i.e. supervised 
learning). We are interested in seeing whether programs can quickly learn from 
our model summary and categorize which segments should be in summary and 
which should not - and learn it from all 23 aforementioned features that are 
deemed representative. We consider the following three learning algorithms in 
our experiments. 

Decision Trees We adopted the C4.5, a decision tree learning algorithm de-
signed by Quinlan [6], to train the summarizer. It generates a decision tree 
making use of the features which give the maximal information gain. C4.5 has 
been known to be a very fast and efficient algorithm with good generalization 
capability. (See [6] for detailed descriptions on the algorithm.) 

Naive Bayesian Classifier We apply the naive Bayesian classifier as used 

in [2]: P{c G C \ Fi,Fu...Fk) = "^^^'^^I^'^pff.f'^^^where C is the set of 

target classes (i.e. in the summary or not in the summary) and F is the set of 
features. In our experiment, since the value of the most features are real numbers, 
we assume a normal distribution for every feature, and use normal distribution 
density function to calculate the probability P{Fj). 

DistAl DistAI [7] is a simple and relatively fast but efficient constructive neu-
ral network learning algorithm for pattern classification. (See [7] for detailed 
description on the algorithm and performance evaluations.) 

3 Experimental Results 

Among the variety of data on the Internet, we chose nine U.S. patents for our 
experiments. Note that we used only the sections of "background of invention" 
and "summary of invention" instead of considering the entire patent. For each 
patent data, we manually generated a model summary to be used in training and 
evaluation of the summarizer. Table 1 displays the number of sentences, number 
of segments, and the number of segments in the model summary. 
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Table 1. Dataset size and performance, sen, seg, and sum are the number of sentences 
and segments in the patent data, and the number of segments in the model summary. 
a, p, and r represents the accuracy, precision, and recall, respectively (in percentage). 

ID 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Data Size 
sen seg sum 
58 75 25 
29 33 14 
36 48 16 
45 77 20 
16 19 5 
95 139 17 
76 98 25 
23 29 6 
30 39 11 
Average 

Standard dev. 

MS Word 
a p r 

62.7 46.4 50.0 
48.5 40.0 42.8 
33.3 23.5 25.0 
64.9 33.3 35.0 
57.4 28.6 40.0 
76.3 5.6 5.9 
61.2 25.9 28.0 
75.9 40.0 33.3 
66.7 40.0 36.4 
60.8 31.6 32.9 
13.4 12.1 12.6 

C4.5 
a p r 

70.7 32.0 61.5 
60.6 21.4 60.0 
64.6 37.5 46.1 
88.3 60.0 92.3 
68.4 60.0 42.9 
82.7 29.4 29.4 
70.4 32.0 40.0 
75.8 71.4 71.4 
71.8 9.1 50.0 
72.6 39.0 54.8 
8.6 20.0 18.9 

Bayesian 
a p r 

72.0 60.0 48.0 
60.6 52.9 64.3 
60.4 41.2 43.8 
75.3 52.6 50.0 
63.2 37.5 60.0 
84.2 40.0 58.8 
79.6 60.9 56.0 
51.7 50.0 71.4 
76.9 100 18.2 
69.3 55.0 52.3 
10.8 18.8 15.3 

DistAI 
a p r 

72.0 44.4 48.0 
57.6 40.0 28.6 
72.9 45.5 31 .3 
76.6 47.6 50.0 
84.2 60.0 60.0 
87.8 28.9 64.7 
74.5 33.3 40.0 
100 100 100 
77.0 54.5 54.5 

78.1 50. 5 53.0 
11.8 20.9 21.4 

The performance of the summarizer is evaluated by a 9-fold cross-validation 
using the patent data. We evaluate the results of summarization by the precision, 
recall and classification accuracy (overall percentage of correct classification re-
gardless of the class labels) for the three learning algorithms, and compare them 
with the summarizer in Microsoft Word. Table 1 displays the performance of all 
the methods considered. As we can see from Table 1, all the three approaches 
using machine learning outperformed Microsoft Word summarizer significantly. 
We do not know exactly the underlying mechanism that Microsoft Word uses 
to summarize a document. It appears that many co-occurred words are simply 
selected as a summary. The summary generated by our approach is more co-
herent than those incoherent fragments of words generated by Microsoft Word 
summarizer. 
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