Mathematics Fundamentals

DR RAMZAN RAZIM KHAN \& DR DES HILL MATHEMATICS FUNDAMENTALS

[^0]
CONTENTS

1 Numbers and operations 5
2 Algebra 17
3 Simultaneous equations 25
4 Quadratics 31
5 Indices 41
6 Re-arranging formulae 53
7 Exponentials and logarithms 57
8 Equations involving logarithms and/or exponentials 65
9 Quadratic equations 77
10
Functions and graphs 87Quadratic functions and Parabolae103

Free eBook on Learning \& Development

By the Chief Learning Officer of McKinsey

Download Now

12 Calculus 111
Appendix 1: Answers to exercises 123
Appendix 2: Solutions to problem sets 141
Index 197

1. Numbers and operations

Types of Numbers

The natural numbers are the usual numbers we use for counting:

$$
1,2,3,4, \cdots
$$

We also have the very special number zero

$$
0
$$

and the negative numbers

$$
\cdots-4,-3,-2,-1
$$

which are used to indicate deficits (that is, debts) or to indicate opposite directions. These numbers collectively form the integers

$$
\cdots-4,-3,-2,-1,0,1,2,3,4, \cdots
$$

The basic operations of arithmetic

Hopefully, the everyday operations,,$+- \times$ and \div are familiar:
(i) $3+4=7$
(iii) $4 \times 9=36$
(ii) $11-6=5$
(iv) $24 \div 6=4$

Arithmetic involving negative numbers
When negative numbers are involved we need to be careful, and must use brackets if necessary.

Multiplication examples:
(i) $4 \times(-7)=-28$
(iii) $(-3) \times(-6)=18$
(ii) $(-5) \times 6=-30$
(iv) $3 \times 5=15$
positive \times negative $=$ negative negative \times positive $=$ negative negative \times negative $=$ positive positive \times positive $=$ positive

Other examples:
(i) $13+(-8)=5$
(iv) $-16-13=-29$
(ii) $21-(-3)=24$
(v) $(-12) \div 4=-3$
(iii) $-16+13=-3$
(vi) $\frac{-12}{-4}=3$

BIDMAS. The order of operations

Consider the simple question:
What is $2+3 \times 4$?
Which operation $(+$ or \times) do we perform first?
Mathematical expressions are not simply calculated from left to right. They are performed in the following order:

B: Expressions within Brackets (...)
I: Indices (powers, square roots, etc)
We will consider Indices in detail later
DM: Divisions (\div) and Multiplications (\times)
AS: Additions (+) and Subtractions (-)
A couple of things to note:

- Division and multiplication have the same precedence.
- Addition and subtraction have the same precedence.
- Operations with the same precedence are performed left to right.

Some BIDMAS examples

(i) $2+3 \times 4=2+12=14$
(ii) $(4+6) \times(12-4)=10 \times 8=80$
(iii) $4+7 \times(6-2)=4+7 \times 4=4+28=32$
(iv) $3 \times(4+8)-2 \times(10-6)=3 \times 12-2 \times 4=36-8=28$

When brackets are involved we can omit the multiplication sign. So instead of $3 \times(4+8)-2 \times(10-6)$ we could write $3(4+8)-2(10-6)$

More examples

$$
\begin{aligned}
& 4 \div 2 \times 3 \div 3 \\
& =2 \times 3 \div 3 \\
& =6 \div 3 \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& -[2-3(4-6 \div 2-(-3))] \\
& =-[2-3(4-3+3)] \\
& =-[2-3 \times(1+3)] \\
& =-(2-3 \times 4) \\
& =-(2-12) \\
& =-(-10) \\
& =10
\end{aligned}
$$

When brackets are nested we usually use different sorts, e.g. $(\cdots) \quad[\cdots] \quad\{\cdots\}$

Word problems

We are sometimes asked quesions in written or spoken conversation that we will be able to use mathematics to help us solve.

Our first task is to turn the 'word problem' into a mathematics problem.

Example: What is three times the difference between 12 and 4?
Answer:

$$
\begin{aligned}
& 3 \times(12-4) \\
& =3 \times 8 \\
& =24
\end{aligned}
$$

Another example: Joy takes the product of the sum of two and six, and the difference between nineteen and nine. She then result the answer by four. What number does she arrive at?

Answer:

$$
\begin{gathered}
\{(2+6) \times(19-9)\} \div 4 \\
=\{8 \times 10\} \div 4 \\
=80 \div 4 \\
=20
\end{gathered}
$$

The number line

The integers sit nicely on a number line:

Fractions

These are numbers that sit between the integers. For example, the number "one-half", which we write " $\frac{1}{2}$ ", is exactly halfway between

Fractions are ratios of integers, that is,
where the numerator p and denominator q are integers. When the numerator (top line) is smaller than the denominator (bottom line) we call this a proper fraction.

The number "four and two-fifths" is written " $4 \frac{2}{5}$ " and is between 4 and 5 . To pinpoint this number, imagine splitting up the interval between 4 and 5 into fifths (five equal pieces). Now, starting at 4 , move right along two of these fifths.

We call $4 \frac{2}{5}$ a mixed numeral, as it is the sum of an integer and a proper fraction.

Converting mixed numerals to improper fractions

An improper fraction is one in which the numerator is larger than the denominator.

Example: We wish to convert the mixed numeral $3 \frac{1}{2}$ into an improper fraction. We have three wholes and one half:

or three lots of two halves (making six) plus one half is seven halves:

Arithmetically, we write

$$
3 \frac{1}{2}=\frac{3 \times 2+1}{2}=\frac{6+1}{2}=\frac{7}{2}
$$

Some examples

$$
\begin{aligned}
& 4 \frac{1}{3}=\frac{4 \times 3+1}{3}=\frac{12+1}{3}=\frac{13}{3} \\
& 2 \frac{1}{4}=\frac{2 \times 4+1}{4}=\frac{8+1}{4}=\frac{9}{4} \\
& 1 \frac{5}{6}=\frac{1 \times 6+5}{6}=\frac{6+5}{6}=\frac{11}{6} \\
& 8 \frac{3}{5}=\frac{8 \times 5+3}{5}=\frac{40+3}{5}=\frac{43}{5}
\end{aligned}
$$

Note: Improper fractions turn out to be used more often in maths, mainly because mixed numbers are confusing in algebra.

Multiplication of fractions

To multiply two fractions simply multiply their numerators and denominators separately. For example,

$$
\frac{1}{2} \times \frac{5}{6}=\frac{1 \times 5}{2 \times 6}=\frac{5}{12}
$$

Think of this as finding "one-half of five-sixths"

Another example is

$$
\frac{3}{5} \times \frac{2}{7}=\frac{3 \times 2}{5 \times 7}=\frac{6}{35}
$$

Division of fractions

The notation $2 \div 3$ means the same as $\frac{2}{3}$, that is "two-thirds". Now think of 2 and 3 as fractions, that is

$$
2 \div 3=\frac{2}{1} \div \frac{3}{1}
$$

We can also use fraction multiplication to say that

$$
\frac{2}{3}=\frac{2}{1} \times \frac{1}{3}
$$

Comparing these last two we have

$$
\frac{2}{1} \div \frac{3}{1}=\frac{2}{1} \times \frac{1}{3}
$$

That is, dividing by a fraction is equivalent to multiplying by its reciprocal, that is, the fraction having been inverted. For example,

$$
\frac{2}{7} \div \frac{5}{9}=\frac{2}{7} \times \frac{9}{5}=\frac{18}{35}
$$

More examples

$$
\begin{gathered}
\frac{1}{3} \times \frac{2}{7} \div \frac{5}{6}=\frac{2}{21} \div \frac{5}{6}=\frac{2}{21} \times \frac{6}{5}=\frac{12}{105} \\
\frac{\frac{1}{4} \times \frac{7}{8}}{\frac{3}{5}}=\frac{\frac{7}{32}}{\frac{3}{5}}=\frac{7}{32} \div \frac{3}{5}=\frac{7}{32} \times \frac{5}{3}=\frac{35}{96} \\
2 \frac{5}{4} \div \frac{2}{3} \times 3 \frac{1}{7}=\frac{13}{4} \div \frac{2}{3} \times \frac{22}{7}=\frac{13}{4} \times \frac{3}{2} \times \frac{22}{7}=\frac{858}{56}
\end{gathered}
$$

Factorization of numbers

This is the process of expressing a given number as a product of two (or more) smaller numbers. For example,

$$
\begin{array}{rl}
28 & =4 \times 7 \\
108 & =2 \times 54 \\
& =2 \times 6 \times 9 \\
& \\
64 \quad 2 & 2 \times 32 \\
= & 2 \times 2 \times 16 \\
\cdots \\
= & 2 \times 2 \times 2 \times 2 \times 2 \times 2
\end{array}
$$

Cancellation of numbers

The process of simplifying fractions by looking for factors which are common to both the numerator and the denominator and then eliminating (cancelling) them. For example,

$$
\begin{gathered}
\frac{18}{20}=\frac{2 \times 9}{2 \times 10}=\frac{9}{10} \\
\frac{100}{250}=\frac{10 \times 10}{25 \times 10}=\frac{10}{25}=\frac{\not 5 \times 2}{\not 5 \times 5}=\frac{2}{5} \\
\frac{24}{108}=\frac{4 \times 6}{4 \times 27}=\frac{6}{27}=\frac{\not 2 \times 2}{\not 2 \times 9}=\frac{2}{9}
\end{gathered}
$$

Adding and subtracting fractions

Consider the sum

$$
\frac{1}{3}+\frac{2}{5}
$$

We can't add these fractions yet because thirds are different to fifths. However, we can make use of reverse cancellation to make the denominators the same:

$$
\begin{aligned}
\frac{1}{3}+\frac{2}{5} & =\frac{1 \times 5}{3 \times 5}+\frac{2 \times 3}{5 \times 3} \\
& =\frac{5}{15}+\frac{6}{15}
\end{aligned}
$$

Now we just have a total of $5+6=11$ fifteenths, that is

$$
\begin{aligned}
\frac{1}{3}+\frac{2}{5} & =\frac{5+6}{15} \\
& =\frac{11}{15}
\end{aligned}
$$

The same applies to subtraction. For example, $\frac{9}{20}-\frac{2}{5}$. Following the above pattern the denominator would be $20 \times 5=100$, but we can simplify the numbers a little as follows. Since 5 divides into 20 we could just do this instead:

$$
\begin{aligned}
\frac{9}{20}-\frac{2}{5} & =\frac{9}{20}-\frac{2 \times 4}{5 \times 4} \\
& =\frac{9}{20}-\frac{8}{20} \\
& =\frac{9-8}{20} \\
& =\frac{1}{20}
\end{aligned}
$$

Two examples

$$
\begin{gathered}
\frac{1}{4}+\frac{4}{7}=\frac{1 \times 7}{4 \times 7}+\frac{4 \times 4}{7 \times 4}=\frac{7}{28}+\frac{16}{28}=\frac{23}{28} \\
\frac{2}{9}+\frac{1}{6}-\frac{5}{54}=\frac{12}{54}+\frac{9}{54}-\frac{5}{54}=\frac{21}{54}-\frac{5}{54}=\frac{16}{54}
\end{gathered}
$$

which if required can be simplified:
$=\frac{2 \times 8}{2 \times 27}=\frac{8}{27}$

Decimals

Decimals are a convenient and useful way of writing fractions with denominators 10, 100, 1000, etc.

$$
\begin{array}{cc}
\frac{2}{10} \text { is written as } 0.2 & \frac{4}{100} \text { is written as } 0.04 \\
\frac{35}{100} \text { is written as } 0.35 & \frac{612}{1000} \text { is written as } 0.612
\end{array}
$$

The number 237.46 is shorthand for

$$
2 \times 100+3 \times 10+7 \times 1+\frac{4}{10}+\frac{6}{100}
$$

The decimal point separates the whole numbers from the fractions. To the right of the decimal point, we read the names of the digits individually. For example, 237.46 is read as 'two hundred and thirty-seven point four six'.

The places after the decimal point are called the decimal places. We say that 25.617 has 3 decimal places.

Some fractions expressed as decimals

We can write

$\frac{3}{10}$	as 0.3	$-\frac{4}{10}$	as	-0.4
$\frac{47}{100}$	as 0.47	$\frac{12}{10}=1+\frac{2}{10}$	as	1.2
$-\frac{23}{100}$	as -0.23	$\frac{327}{100}=3+\frac{27}{100}$	as	3.27
$\frac{931}{1000}$	as 0.931	$\frac{28}{1000}$	as	0.028
$\frac{6}{100}$	as 0.06	$\frac{5}{1000}$	as	0.005

Common fractions expressed as decimals
All fractions can be written as decimals. However, the decimal sequence may go on forever.

Examples

$\frac{1}{10}=0.1$
$\frac{1}{100}=0.01$

$$
\frac{1}{1000}=0.001
$$

$\frac{1}{2}=0.5$
$\frac{1}{4}=0.25$
$\frac{1}{8}=0.125$
$\frac{3}{4}=0.75$
$\frac{1}{5}=0.2$
$\frac{2}{5}=0.4$
$\frac{1}{3}=0.3333 \ldots$
$\frac{2}{3}=0.6666 \cdots$
$-\frac{2}{5}=-0.4$
$\frac{1}{7}=0.142857142857 \cdots$

$$
\frac{22}{7}=3+\frac{1}{7}=3.1428 \cdots
$$

The \cdots indicate that the sequence goes on forever

Fixing the number of decimal places

When working with decimals we usually limit ourselves to a certain number of decimal places.

Examples To three decimal places

$$
\begin{array}{ll}
\frac{1}{3}=0.333 & \frac{1}{7}=0.143 \\
\frac{1}{8}=0.125 & \frac{2}{5}=0.400
\end{array}
$$

Note that we have 'rounded up' the 2 to 3 because the 8 after the 2 in $\frac{1}{7}=0.14285714 \cdots$ is larger than 5 (out of 10)
Note that we can 'pad out' with zeros to the left in the decimal for $\frac{2}{5}$

Multiplying and dividing decimal numbers by 10

To multiply a decimal number by 10 simply move the decimal point to the left, and to divide a decimal number by 10 move the decimal point to the right

Examples

$$
\begin{array}{cc}
0.47 \times 10=4.7 & 0.06 \times 10=0.6 \\
-0.12 \times 10=-1.2 & 0.000234 \times 10=0.00234 \\
0.000234 \times 100=0.0234 & 0.56 \times 100=56.0 \\
0.378 \div 10=0.0378 & -0.04 \div 10=-0.004 \\
2.571 \div 10=0.2571 & 4.63 \div 100=0.0463
\end{array}
$$

Discover the truth at www.deloitte.ca/careers
Deloitte.
© Deloitte \& Touche LLP and affiliated entities.

Exercises 1

1.1 Evaluate the following
(i) $3(4+2 \times 6)+12 \div 4$
(ii) $6+2[25-3(2+5)]$
1.2 What is the difference between the product of 6 and 7 , and the sum of 3 and 8 ?
1.3 Convert to improper fractions
(a) $1 \frac{1}{4}$
(b) $2 \frac{3}{8}$
1.4 Evaluate (that is, calculate)
(a) $\frac{3}{4} \times \frac{1}{5}$
(b) $\frac{1}{3} \div \frac{2}{5}$
1.5 What fraction is two-thirds of four-fifths?
1.6 Evaluate
(i) $\frac{3}{4}+\frac{2}{5}$
(ii) $\frac{2}{3}-\frac{2+4}{5-1}$
1.7 Reduce to simplest form by using cancellation:

$$
\frac{78}{102}
$$

1.8 What is one-quarter of the sum of one-third and two-sevenths?

Problem set 1

1.1 Evaluate the following.
(a) $4+4 \times 4 \div 4-4$
(b) $4+4 \times(4 \div 4-4)$
(c) $2 \times 4-(8-1)$
(d) $-14 \div 2-(-20) \div(-5)$
(e) $(-4 \times 12)-[32-(-4)]$
(f) $[4 \times(3+4)-21] \div[2 \times 14 \div 7+3]$
(g) $3 \times 8-[-16-(-4)]$
(h) $[-3 \times(3-4)-19] \div[8 \div 4 \times 7-6]$
(i) $(8-4) \div(4+4)-8$
(j) $4+4 \times 4 \div(4-4)$
1.2 Compute the following, leaving your answer in the simplest fraction form.
(a) $\frac{1}{2}+\frac{3}{4}+\frac{5}{12}$
(b) $\frac{3}{4}-\frac{4}{5}+\frac{3}{10}$
(c) $\frac{4}{24}+1 \frac{2}{3}$
(e) $\frac{4}{5} \times \frac{3}{7}$
(d) $1 \frac{2}{3}-2 \frac{3}{5}+1 \frac{4}{5}$
(g) $\frac{7}{9} \times 1 \frac{1}{8} \div \frac{5}{7}$
(f) $2 \frac{2}{3} \div 4 \frac{2}{9}$
(h) $2 \frac{3}{7} \div \frac{34}{14}$
1.3 What is half of the difference between a third of 60 and a quarter of 80 ?
1.4 What is the sum of half of 45 and a third of the product of two thirds and $1 \frac{1}{8}$?
1.5 James and his wife Sweet Li have a 12 year old daughter called Lyn. James is 50 year old and Lyn is 12. Half of his age added to five thirds of Lyn's age gives the age of Sweet Li. How old is Sweet Li?
1.6 Swee Khum put a third of her savings in the bank, a third in bonds, a quarter of the remainder in stocks and the rest in fixed deposit. If her total amount is $\$ 600,000$ how much did she put in fixed deposit?

We will turn your CV into an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you.

Send us your CV on www.employerforlife.com

2. Algebra

Algebra is a powerful tool for expressing fundamental relationships and solving real-world problems.

An example: In the expression $E=m c^{2}$, the variables are the energy (E) of an object and its mass $(m), c^{2}$ means $c \times c$ and c is a constant representing the inconveniently large value of the speed of light in a vacuum, i.e. $29,792,458$ metres per second.

The famous equation above summarises the relationship between the variables E and m

We can also use algebra to express our rules for multiplying and dividing fractions:

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d} \quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}
$$

An example of algebra in action

A simplified version of the formula for the length of time it takes a child to say "are we nearly there yet?" on a long car journey is

$$
T=\frac{1+A}{C^{2}}
$$

where
$T=$ time to say "are we nearly there yet?" (in hours),
$A=$ number of activities provided and
$C=$ number of children.
So, 2 children with 3 activities will take

$$
\begin{aligned}
T & =\frac{1+3}{2^{2}} \\
& =\frac{4}{4} \\
& =1 \text { hour to get restless }
\end{aligned}
$$

Solving equations

In many situations we are told the numerical values of all variables in an equation except one and asked to determine the value of that variable. That is, we are asked to solve for the unknown variable.

Example. In the restlessness problem above we might know that there were 2 children in the back and it took them an hour and a half to complain. How many activities were they given? We have

$$
1 \frac{1}{2}=\frac{1+A}{2^{2}} \quad \text { that is } \quad \frac{3}{2}=\frac{1+A}{2^{2}}
$$

Such constants appearing in relationships are called parameters

An equation is something with an equals sign in it

This formula was proposed by Prof. Dwight Barkley, Warwick University

To answer questions like this we need to know how to re-arrange equations.

Simple Equations

Here are some typical equations with an unknown variable:

$$
\begin{gathered}
x+4=7 \\
2 x+7=\frac{3 x}{2}+8 \\
\frac{2}{x}+4=\frac{3}{x}
\end{gathered}
$$

Our aim is to find out what value of the unknown variable x makes the equation work. That is, we wish to "solve for x ".

Operations on equations
Let's look at

$$
x+4=7
$$

To get x on its own, we can "remove" the other operations (in this case the " +4 ") by performing operations that "undo" them.

To maintain equality, operations must be applied to the entirety of both sides. Operations include:
(1) Multiply (or divide) both sides of an equation by a non-zero number
(2) Add (or subtract) the same number to (from) both sides of an equation

Using these operations effectively is just a matter of technique and practice.

Example:To solve

$$
x+4=7
$$

subtract 4 from both sides:

$$
\begin{aligned}
x+4-4 & =7-4 \\
\Rightarrow \quad x & =3
\end{aligned}
$$

The symbol \Rightarrow means 'implies that', and the diagonal bars indicate cancellation.

It's always a good idea to check that the value we have obtained is in fact correct. Clearly $3+4=7$ so we are correct.

Example: To solve $3 x=12$ divide each side by 3 ,

$$
\begin{gathered}
\Rightarrow \quad \frac{\not x x}{\not x}=\frac{12}{3} \\
\Rightarrow \quad x=4
\end{gathered}
$$

Check: $3 \times 4=12 \quad \checkmark$

Example: To solve $y-4=2 y+10$ you need to get the two y terms on the same side,

$$
\begin{aligned}
& \Rightarrow \quad y-4-y=2 y+10-y \\
& \Rightarrow \quad-4=y+10 \quad \text { (since "two } y^{\prime} \mathrm{s}^{\prime \prime} \text { minus "one } y^{\prime \prime} \text { is "one } y \text { ".) } \\
& \Rightarrow \quad-4-10=y+10-10 \\
& \Rightarrow \quad-14=y
\end{aligned}
$$

Check: $-14-4=-18$ and $2 \times(-14)+10=-18$ hence \checkmark
Example: This one presents a new problem: $3 x+2=2(x+7)$.
Normally, we perform the operations in the brackets first but there is nothing we can do with $x+7$. We need to expand the brackets. We do this with the aid of

The Distributive Law: $a(b+c)=a b+a c$ where a, b and c all represent terms.

Basically, the term out the front, a is multiplied by (distributed amongst) each term inside the brackets, that is, b and c.

Let's first test this law. Say $a=9, b=4, c=3$. Then the left-hand side (LHS) of the equation is

$$
9(4+3)=9 \times 7=63
$$

and the right-hand side (RHS) of the equation is

$$
9 \times 4+9 \times 3=36+27=63
$$

Some examples

$$
\begin{gathered}
4(3+x)=12+4 x \\
3(4-2 x)=12-6 x \\
-x(y-5 z)=-x y+5 x z
\end{gathered}
$$

Watch out when brackets are near other operations:

$$
4 x-4(3+5 x)=4 x-12-20 x=-16 x-12
$$

We can solve equations involving brackets by making use of the Distributive Law.

Example:

$$
\begin{gathered}
3 x+2=2(x+7) \\
\Rightarrow \quad 3 x+2=2 x+14 \\
\Rightarrow \quad x+2=14 \\
\Rightarrow \quad x=12
\end{gathered}
$$

and recall that the symbol \Rightarrow means 'implies that'.
Another example: To solve

$$
2 t-1=3-2[2 t-3(1-t)]
$$

first expand the brackets (from the inside out):

$$
\begin{gathered}
\Rightarrow \quad 2 t-1=3-2[2 t-3+3 t] \\
\Rightarrow \quad 2 t-1=3-2[5 t-3] \\
\Rightarrow \quad 2 t-1=3-10 t+6 \\
\Rightarrow \quad 2 t-1=9-10 t \\
\Rightarrow \quad 12 t-1=9 \\
\Rightarrow \quad 12 t=10
\end{gathered}
$$

and hence

$$
t=\frac{10}{12}
$$

Equations with fractions

Fractions create extra challenges and it's a good idea to deal with them early on. If we have an equation of the form

$$
\frac{A}{B}=\frac{C}{D}
$$

(where A, B, C, D are mathematical expressions) we can multiply both sides by the denominators,

$$
\begin{aligned}
\frac{A}{B} & =\frac{C}{D} \\
\Rightarrow \quad B B \times D \times \frac{A}{\not B} & =\frac{C}{\not D} \times B \times \not \supset \\
\Rightarrow \quad A D & =B C
\end{aligned}
$$

You need to be careful when negative signs are involved
and really careful when more negative signs are involved

The $4 x$ part is not involved in the expansion of the brackets

An example

$$
\begin{aligned}
& \frac{2}{x-1}=\frac{3}{x-2} \\
& \Rightarrow \quad 2(x-2)=3(x-1) \\
& \Rightarrow \quad 2 x-4=3 x-3 \\
& \Rightarrow \quad 2 x-1=3 x \\
& \Rightarrow \quad-1=x
\end{aligned}
$$

Check: If $x=-1$ then the LHS (left-hand side) is

$$
\frac{2}{x-1}=\frac{2}{-1-1}=\frac{2}{-2}=-\frac{2}{2}=-1
$$

and similarly, the RHS (right-hand side) of the equation is -1

Example

$$
\frac{x}{2}+\frac{x}{3}=5
$$

We can't cross multiply here but we can still get rid of the fractions by multiplying through by their denominators:

$$
\Rightarrow \quad 2 \times 3\left(\frac{x}{2}+\frac{x}{3}\right)=2 \times 3 \times 5
$$

and expand the bracket:

$$
\begin{gathered}
\Rightarrow \quad 2 \times 3 \times \frac{x}{2}+2 \times \not \equiv \times \frac{x}{\not b}=6 \times 5 \\
\Rightarrow \quad 3 x+2 x=30 \\
\Rightarrow \quad 5 x=30 \\
\Rightarrow \quad x=\frac{30}{5} \\
\Rightarrow \quad x=6
\end{gathered}
$$

Check: $\frac{6}{2}+\frac{6}{3}=3+2=5$

Simplifying expressions

As you can see, when re-arranging equations we may need to "tidy up", or simplify the other side of an equation (or expression).

Example

$$
\begin{gathered}
6 z-[z+4(z-5)-2(3-4 z)]=\cdots \\
\Rightarrow \quad 6 z-[z+4 z-20-6+8 z]=\cdots \\
\Rightarrow \quad 6 z-z-4 z+20+6-8 z=\cdots \\
\Rightarrow \quad z+26-8 z=\cdots \\
\Rightarrow \quad-7 z+26=\cdots
\end{gathered}
$$

IMPORTANT: When the denominators are 'moved to the top line' they must be placed in brackets. We can then expand the brackets if desired.

Mathematical modelling

We can use algebra to solve real-world problems. Given a problem which is stated in words (a 'word problem') we can convert it into an algebraic equation which we can hopefully solve to find the solution to the real-world problem.

Example: A man is 12 times as old as his son. In 9 years time, the man will be 3 times as old as his son. How old are each now?

Start by identifying the unknowns and assigning a letter to them. Let s be the son's current age. We could call the father's current age " f " but we already know what it is in terms of s (ie. $12 \times s$).

In 9 years time the son's age will be $s+9$ and the father's $12 s+9$.
Now, we are told that

$$
\begin{gathered}
12 s+9=3(s+9) \\
\Rightarrow 12 s+9=3 s+27 \Rightarrow 9 s=18 \quad \Rightarrow \quad s=2
\end{gathered}
$$

Hence, the son is currently 2 years old, and his father 24 . In 9 years time, the son will be 11 and his father 33 , which is correct!

Exercises 2

2.1 Solve the following equations
(a) $4 y-3=3 y+7$
(b) $9 x+8=8 x-4$
2.2 In the formula

$$
x=\frac{5+t}{b-t}
$$

if $x=2$ and $t=1$, then what is the value of b ?
2.3 Solve the following equations
(a) $\frac{1}{3 x+1}=\frac{2}{x-1}$
(b) $-2 y+1+3(2 y-4)=2 y-1$
2.4 Sally's age is 12 years plus half her age. How old is she?

Problem set 2

2.1 Solve the following equations for the unknown.
(a) $x+3=5$
(m) $\frac{x}{2}-\frac{x}{5}=1$
(b) $4 y-5=y+10$
(c) $8 x-4=16$
(n) $\frac{y-4}{2}+\frac{y}{3}=4$
(d) $\frac{2 z}{z+2}=4$
(o) $\frac{2}{y}+4=\frac{3}{y}$
(e) $3-2 x=4$
(f) $7 x+7=2(x+1)$
(p) $\frac{2-y}{3}-\frac{1-y}{2}=y$
(g) $x-\frac{1}{2}=2$
(q) $y-\frac{1-y}{2}+4=7$
(h) $\frac{2 y-3}{4}=\frac{6 y+7}{3}$
(r) $\frac{y}{3}-(3-y)=4-y$
(i) $t=2-2[2 t-3(1-t)]$
(s) $\frac{d-1}{2}-\frac{d}{3}=0$
(j) $\frac{3}{2}(4 a-3)=2[a-(4 a-3)]$
(t) $\frac{4-p}{3}=-8$
(k) $\frac{x+3}{x}=\frac{2}{5}$
(s) $\frac{d-1}{2}-\frac{d}{3}=0$
(l) $\frac{1}{p-1}=\frac{2}{p-2}$
(t) $\frac{4-p}{3}=-8$
2.2 If $2 \frac{1}{4}$ cakes are served in slices of $\frac{1}{8}$ of a cake, how many slices are served?
2.3 Lian earns \$2,000 a fortnight and spends \$1200 of it. What proportion of his salary does he save?
2.4 Nadia buys a packet of 60 samosas for a tea party. She takes out half for her family. She takes the remaining to the party. On the way she meets a friend who takes a sixth of the samosas. A little further on she sees a hungry cat and gives it a fifth of the samosas she has. Then she suddenly feels hungry and eats a quarter of the remaining samosas. How many arrive at the tea party?
2.5 I have a naan recipe that calls for $4 \frac{2}{3}$ cups of flour for 14 servings of naan. I want to make one serving only. How much flour should I use?
2.6 Suppose Mike travels a certain distance on the first day and twice the distance on the next day. If the total distance he travelled is 60 km , how far does he travel on the first day?
2.7 Joy, Pam, Sandra and Lilin each make a donation to the Guide Dogs Association. Sandra gives twice as much as Lilin, Pam gives three times as much as Sandra and Joy gives four times as much as Pam. If their total gift is \$132, find the amount of Lilin's donation, and hence the amount donated by each.

3. Simultaneous equations

All of the equations that we have solved so far are called "linear equations in one unknown". Now we will look at situations where we have two linear equations in two unknowns.

Example

David buys movie tickets for seven adults and one child for \$92. Grace buys tickets for ten adults and three children for $\$ 144$. What are the costs of the individual tickets?

Let a be the cost of an adult ticket, and c be the cost of a child's ticket. Then the equations representing the information given are:

$$
\begin{aligned}
7 a+c & =92 \\
10 a+3 c & =144
\end{aligned}
$$

These are called simultaneous equations. (Many real-life problems contain many equations in many unknowns and require computer methods to solve them.)

A method of solving simultaneous equations

We manipulate the two equations to produce an equation in only one unknown to solve.

Once we have solved this equation we substitute this value into the remaining equation, and then solve for the second unknown.

Here is how the method performs the first step:

$$
\begin{align*}
7 a+c & =92 \\
10 a+3 c & =144 \tag{2}
\end{align*}
$$

Start by multiplying both sides of equation (1) by 3 to produce " $3 c$ " in both equations:

$$
\begin{align*}
& 21 a+3 c=276 \tag{3}\\
& 10 a+3 c=144 \tag{2}
\end{align*}
$$

Plan is to subtract equation (2) from equation (3) to get rid of c. If we subtract equation (2) from equation (3) we get

$$
21 a+3 c-10 a-3 c=276-144
$$

Note: The (1) and (2) are labels

Note that we have given this equation a new label

In tabular form we can write this as

$$
\begin{aligned}
21 a+3 c & =276 \\
(-) 10 a+3 c & =144 \quad(2) \\
\hline 11 a & =132
\end{aligned}
$$

Since the terms are lined up we can perform the subtraction (or addition) term by term.

We now have an easy equation to solve:

$$
11 a=132 \quad \Rightarrow \quad a=\frac{132}{11}=12
$$

Because we eliminated a variable (in this case, c) this method is usually called the elimination method.

We still need to determine how much a child's ticket costs.
All we have to do is substitute the value for a into any of the labelled equations. For example, if we choose equation (1) we get

$$
\begin{aligned}
7 a+c & =92 \\
\Rightarrow 7 \times 12+c & =92 \\
\Rightarrow 84+c & =92 \\
\Rightarrow c & =92-84 \\
\Rightarrow c & =8
\end{aligned}
$$

We can check our calculations by substituting both values into the other equation (equation (2)):

$$
10 a+3 c=10 \times 12+3 \times 8=120+24=144 \quad \checkmark
$$

Example

Solve the pair of simulataneous equations

$$
\begin{align*}
& 3 x-2 y=10(1) \\
& 2 x+3 y=11 \tag{2}
\end{align*}
$$

Notice that if we multiply equation (1) by 2 and equation (2) by 3 then each equation will have the term $6 x$ and we will be able to subtract one from the other. That is,

$$
\begin{aligned}
(-) \quad 6 x-4 y & =20 \\
6 x+9 y & =33(3) \\
& 13 y
\end{aligned}
$$

So $y=1$, and substitution of this into say equation (1) gives

$$
3 x-2 \times 1=10 \quad \Rightarrow \quad 3 x-2=10 \quad \Rightarrow \quad 3 x=12 \quad \Rightarrow \quad x=4
$$

Finally, we should check our result by substituting both values into equation (2):

$$
2 \times 4+3 \times 1=8+3=11
$$

Note that the $(-)$ is simply an indicator of our intention

That is, the cost of an adult ticket is \$12

That is, the cost of an child's ticket is \$8

Note: The biggest source of errors is getting subtractions wrong

Recall that the $(-)$ is simply an indicator of our intention

Another example

Solve the pair of simulataneous equations

$$
\begin{align*}
4 x-2 y & =24 \\
-3 x+5 y & =-25 \tag{2}
\end{align*}
$$

Notice that if we multiply equation (1) by 3 and equation (2) by 4 then each equation will have the term $12 x$ and we will be able to add the equations together. That is,

$$
\begin{aligned}
(+) \quad 12 x-6 y & =72 \quad(3) \\
-12 x+20 y & =-100 \quad(4) \\
\hline 14 y & =-28
\end{aligned}
$$

The (+ is simply an indicator of our intention

So $y=-2$, and substitution of this into say equation (1) gives
$4 x-2 \times(-2)=24 \quad \Rightarrow \quad 4 x+4=24 \quad \Rightarrow \quad 4 x=20 \quad \Rightarrow \quad x=5$
We should check our result by substituting both values into equation (2) $-3 \times 5+5 \times(-2)=-15-10=$ $-25 \checkmark$

The father and son problem revisited

A man is 12 times as old as his son. In 9 years time, he will be only 3 times as old as his son. How old are each now?

Solution: Let s be the son's current age and m be the man's current age. We are told that $m=12 s$ and $m+9=3(s+9)$

We need to re-arrange these equations slightly:

$$
\begin{array}{llll}
m=12 s & \Rightarrow & & m-12 s=0 \\
m+9=3(s+9) & \Rightarrow & m+9=3 s+27 & \Rightarrow \tag{2}
\end{array} m-3 s=18 \text { m }
$$

If we subtract equation (1) from equation (2) we get

$$
-3 s-(-12 s)=18-0 \Rightarrow-3 s+12 s=18 \Rightarrow 9 s=18 \Rightarrow s=2
$$

Substituting this into the equation $m=12 s$ gives $m=12 \times 2=24$

An example of modelling with simultaneous equations

Bruce is a building contractor. If he hires 8 bricklayers and 2 roofers, his daily payroll is $\$ 960$, while 10 bricklayers and 5 roofers require a daily payroll of $\$ 1500$. What is the daily wage of a bricklayer and the daily wage of a roofer?

Solution. Let B be a bricklayer's daily wage and R a roofer's daily wage. We are told that

$$
\begin{align*}
8 B+2 R & =960 \\
10 B+5 R & =1500 \tag{2}
\end{align*}
$$

Note that we drop the $\$$ signs when doing algebra

We can keep the numbers smaller by replacing eq. (2) by a new equation, eq. (3), which equals eq. (2) minus eq. (1).That is,

$$
\begin{aligned}
& 8 B+2 R=960(1) \\
& 2 B+3 R=540(3)
\end{aligned}
$$

Multiply equation (3) by 4 to get

$$
\begin{aligned}
&(-) 8 B+2 R \\
& 8 B+12 R=2160 \\
& 8 B
\end{aligned}
$$

Now it is simply a matter of subtracting equation (1) from equation (4) to get

$$
10 R=1200 \Rightarrow R=\frac{1200}{10}=\frac{120 \times 10}{1 \times 10}=120
$$

That is, a roofer's daily wage is $\$ 120$.
Substitution of $R=120$ into, say equation (1) gives

$$
8 B+2 R=960 \Rightarrow 8 B+2 \times 120=960 \Rightarrow 8 B+240=960
$$

and hence

$$
8 B=960-240 \Rightarrow 8 B=720 \Rightarrow B=\frac{720}{8}=\frac{\not 8 \times 90}{\not 8 \times 1}=90
$$

That is, a bricklayer's daily wage is $\$ 90$.

Exercises 3

3.1 Solve the pairs of simultaneous equations
(a)

$$
\begin{align*}
2 x+3 y & =10(1) \\
x+2 y & =6(2) \tag{2}
\end{align*}
$$

(b)

$$
\begin{align*}
2 x+3 y & =19 \\
5 x-6 y & =-20 \tag{2}
\end{align*}
$$

(c)

$$
\begin{align*}
& 2 x+4 y=4 \tag{1}\\
& 5 x-6 y=2 \tag{2}
\end{align*}
$$

3.2 The sum of two numbers is 28 and their difference is 12 . What are the numbers?

Problem set 3

3.1 Solve the following sets of simultaneous equations.
(f) $x+3 y=3$
$-2 x+y=8$
(a) $2 x+y=8$
$3 x-y=7$
(g) $2 x-3 y=5$ $5 x+2 y=-16$
(h) $x+y=5$
$2 x+y=7$
(i) $4 x+y=10$
$2 x+3 y=10$
(d) $4 x-y=0$ $2 x-y=-2$
(j) ${ }^{\star} 2 x+3 y=8$
e) $2 x+y=4$
$3 x-2 y=-7$

[^1]3.2 Tickets for an ice-skating display are sold at $\$ 5$ for adults and $\$ 2$ for children. If 101 tickets were sold altogether for a take of $\$ 394$, find the number of adults and children who attended.
3.3 An island contains foxes and rabbits. An ecologist counts both species to study their interaction and how their populations change over time. Last year she found the total number of foxes and rabbits was 7,290 and that the fox population was one-eighth of the rabbit population. How many of each species was present?
3.4 The Roman emperor Augustus was fond of gold and silver sovereigns. Every gold sovereign was to weigh 50 grams and every silver one to weigh 40 grams. One year Augustus suspected that the jeweller was cheating him and delivering subweight sovereigns. A consignment contained 30 gold and 20 silver sovereigns weighed 2,250 grams, and a consignment of 15 gold and 25 silver sovereigns weighed 1,550 grams? Was the jeweller cheating Augustus?

4. Quadratics

In Chapter 2 we expanded single brackets. For example,

$$
\begin{gathered}
2(2 x+1)=4 x+2 \\
-3(x-2)=-3 x+6 \\
x(2 y+3 z)=2 x y+3 x z
\end{gathered}
$$

Double bracket expansion

To expand $(a+b)(c+d)$ we use the distributive law:

$$
(a+b)(c+d)=(a+b) c+(a+b) d=a c+b c+a d+b d
$$

Example

$$
(x+1)(2 x+3)=2 x^{2}+3 x+2 x+3=2 x^{2}+5 x+3
$$

Note that each term in the first set of brackets gets multiplied by each term in the second set of brackets, or

FOIL - First ($a c$), Outside ($a d$), Inside ($b c$), Last ($b d$)
As always, watch out for negative signs

Examples

$$
\begin{gathered}
(3 x+1)(x+4)=3 x^{2}+12 x+x+4=3 x^{2}+13 x+4 \\
(x-4)(2 x-3)=2 x^{2}-3 x-8 x+12=2 x^{2}-11 x+12
\end{gathered}
$$

$$
x^{2} \text { means } x \text { times } x
$$

More than one variable

Expressions can contain any number of variables. For example,

$$
3 x^{2}+4 x y+3 y-z^{2}
$$

In this expression $x y$ means x times y

The expanding brackets idea is the same as for one variable.

Examples

(i) $x(3 y+2)=3 x y+2 x$

Note that we don't write expressions like $x 3 y$. We always move the number to the left of a term, and write $3 x y$
(ii) $(2 x+4)(3 y-5)=6 x y-10 x+12 y-20$
(iii) $3(2 x+1)-4(z-5)=6 x+3-4 z+20=6 x-4 z+23$

Quadratic expressions

Double bracket expressions with one variable like this:

$$
(x+1)(3 x+2)
$$

are an important type of expression called a quadratic.
When expanded out and terms collected they are always of the form

$$
a x^{2}+b x+c
$$

Note that if $a=0$ it isn't a quadratic (but b or c or both can be zero)
where a, b and c are numbers.
The numbers a, b and c are called the coefficients of the quadratic.
We say that a is the "coefficient of $x^{2 "}, b$ is the "coefficient of x " and c is the "constant coefficient".

An exercise

Two of the following are not quadratic expressions. Which two?
(a) $x^{2}+3 x+4$
(f) $2 x^{2}+5 x$
(b) $x^{2}-12$
(g) $3 x-8$
(c) $-3 x^{2}+4 x+12$
(h) $3-5 x-2 x^{2}$
(d) $4-x^{2}$
(i) $x^{3}+2 x+5$
(e) $x^{2}+\frac{1}{4} x+\frac{3}{5}$
(j) $\frac{2}{7} x^{2}-\frac{1}{4} x+\frac{3}{5}$

Answer: (g) and (i)

Factorization of quadratic expressions

Factorization is the reverse of expanding brackets. In other words, we start with a quadratic expression, say:

$$
x^{2}+5 x+4
$$

and return it to double bracket form (that is, two factors). In this case the answer turns out to be:

$$
(x+1)(x+4)
$$

To see how this is done, we'll work with quadratic expressions where $a=1$ and note that

$$
(x+A)(x+B)=x^{2}+(A+B) x+A B
$$

So, to find A and B we can see that:

- the constant coefficient is the product of A and B and
- the coefficient of x is the sum of A and B.

Example: To factorize

$$
x^{2}+5 x+6=(x+A)(x+B)
$$

we need to find numbers A and B such that

- their product is 6
- their sum is 5

To do this, look at the factorizations of 6:
$2 \times 3 \quad$ or $\quad 1 \times 6 \quad$ or even $\quad(-2) \times(-3) \quad$ or $\quad(-1) \times(-6)$
The corresponding sums are
$2+3$ or $1+6$ or even $(-2)+(-3)$ or $(-1)+(-6)$
Only 2 and 3 sum to 5 , so

$$
x^{2}+5 x+6=(x+2)(x+3)
$$

Note that the order of brackets doesn't matter, we can write

$$
x^{2}+5 x+6=(x+3)(x+2)
$$

"I studied English for 16 years but...
 ...I finally
 learned to speak it in just six lessons"
 Jane, Chinese architect

Example: To factorize

$$
x^{2}-7 x+12
$$

We need the factorizations of 12 . These are
1×12
2×6
3×4
and
$(-1) \times(-12)$
$(-2) \times(-6)$
$(-3) \times(-4)$

The corresponding sums are

13	8	7	-13	-8	-7

We want the sum of the two numbers to be -7 so we must choose -3 and -4 . That is,

$$
x^{2}-7 x+12=(x-3)(x-4)
$$

or

$$
x^{2}-7 x+12=(x-4)(x-3)
$$

Example. To factorize $x^{2}-3 x-4$, observe that the factorizations of -4 are
$1 \times(-4)$

$$
2 \times(-2)
$$

$$
(-1) \times 4
$$

The corresponding sums are $-3,0$ and 3 and we want the sum of the two numbers to be -3 so we must choose 1 and -4 . That is,

$$
x^{2}-3 x-4=(x+1)(x-4)
$$

Note: We can always check the answer by expanding the brackets:

$$
\begin{aligned}
& (x+1)(x-4)=x^{2}-4 x+x-4 \\
& =x^{2}-3 x-4 \quad \checkmark
\end{aligned}
$$

Example. To factorize $x^{2}-22 x+21$ we need to investigate the factors of 21:
1×21
3×7
$(-1) \times(-21)$
$(-3) \times(-7)$

The factors must add up to -22 so clearly we want -1 and -21 so

$$
x^{2}-22 x+21=(x-1)(x-21)
$$

Special cases

Notice the following:

$$
(x+4)(x-4)=x^{2}-4 x+4 x-16=x^{2}-16
$$

and

$$
(x-3)(x+3)=x^{2}+3 x-3 x-9=x^{2}-9
$$

In general, we have the difference of two squares

$$
(x+A)(x-A)=x^{2}-A^{2}
$$

Notice also that

$$
(x+3)^{2}=(x+3)(x+3)=x^{2}+6 x+9
$$

and

$$
(x-3)^{2}=(x-3)(x-3)=x^{2}-6 x+9
$$

In general, we have the perfect squares

$$
(x+A)^{2}=x^{2}+2 A x+A^{2}
$$

and

$$
(x-A)^{2}=x^{2}-2 A x+A^{2}
$$

A simple case

When b and c are both positive, we only have to consider factors which are positive. For example, to factorize

$$
x^{2}+13 x+40
$$

we only need to investigate the positive factorizations of 40 :
1×40
2×20
4×10
5×8

The factors must add up to 13 so clearly we want 5 and 8 and so

$$
x^{2}+13 x+40=(x+5)(x+8)
$$

Another example. To factorize $x^{2}+8 x+16$ we investigate the positive factorizations of 16 :
1×16
2×8
4×4

The factors must add up to 8 so clearly we want 4 and 4 and so

$$
x^{2}+8 x+16=(x+4)(x+4)
$$

Factorizing general quadratics

The most general form for a quadratic is

$$
a x^{2}+b x+c \quad a \neq 0
$$

When $a \neq 1$ the factorizing becomes more difficult.
In general, when we see an expression of the form

$$
a x^{2}+b+c
$$

we want to factorize it by writing it in the form

$$
(A x+B)(C x+D)
$$

Note that

- A and C multiply to produce the coefficient of x^{2}, i.e. a
- B and D multiply to produce the constant coefficient, i.e. c

We'll then need to play around with factorizations of a and c to get the right value of b.

Example

To factorize $7 x^{2}+15 x+2$ we need to write it in the form

$$
(A x+B)(C x+D)
$$

The only factorisation of 7 is 1×7 so

$$
7 x^{2}+15 x+2=(7 x+B)(x+D)
$$

The numbers B and D must multiply to 2 , so one of them must be 1 and the other must be 2 . The question is, which one is which? There are two possibilities:

$$
(7 x+2)(x+1) \quad \text { or } \quad(7 x+1)(x+2)
$$

Expand each of these to find out which:

$$
\begin{aligned}
& (7 x+2)(x+1)=7 x^{2}+7 x+2 x+2=7 x^{2}+9 x+2 \quad \mathrm{X} \\
& (7 x+1)(x+2)=7 x^{2}+14 x+x+2=7 x^{2}+15 x+2
\end{aligned}
$$

A way to factorize when $a \neq 1$

We associate with a given quadratic $a x^{2}+b x+c$ the associated quadratic

$$
x^{2}+b x+a c
$$

and factorize it instead. If the answer is

$$
x^{2}+b x+a c=(x+A)(x+B)
$$

then the factorization for the original quadratic is

$$
a x^{2}+b x+c=(a x+A)\left(x+\frac{B}{a}\right)
$$

Example. To factorize $6 x^{2}+25 x+4$ instead factorize

$$
x^{2}+25 x+24=(x+1)(x+24)
$$

(after a bit of work) and the required factorization is

$$
6 x^{2}+25 x+4=(6 x+1)(x+4)
$$

Example. To factorize $2 x^{2}-10 x+8$ instead factorize

$$
x^{2}-10 x+16=(x-2)(x-8)
$$

(after a bit of work) and the required factorization is

$$
2 x^{2}-10 x+8=(2 x-2)(x-4)
$$

Check:

$$
(2 x-2)(x-4)=2 x^{2}-8 x-2 x+8=2 x^{2}-10 x+8
$$

Our first example To factorize $6 x^{2}-4 x-10$ instead factorize

$$
x^{2}-4 x-60=(x-10)(x+6)
$$

(after quite a bit of work) and the required factorization is

$$
6 x^{2}-4 x-10=(6 x-10)(x+1)
$$

Check:

$$
(6 x-10)(x+1)=6 x^{2}+6 x-10 x-10=6 x^{2}-4 x-10
$$

Algebraic fractions

Algebraic fractions (or rational expressions) are fractions which involve algebraic variables. For example,

$\frac{x+3}{x+1}$	$\frac{x}{x-3}$	$\frac{x+y}{x^{2}-y-4}$
$\frac{1}{x+1}$	$\frac{x^{2}+1}{x^{2}-4}$	$\frac{x^{2}+y^{2}+z^{2}}{1+z}$

Note that we can never divide by 0 , so in for example

$$
\frac{x}{x-3}
$$

we aren't allowed to let x be 3 , that is, we must have $x \neq 3$.

Simplifying rational expressions

Recall that we can cancel out common factors in numerical fractions (if there are any): For example

$$
\frac{56}{24}=\frac{\$ \times 7}{\phi \times 3}=\frac{7}{3}
$$

We can also cancel out common factors in algebraic fractions (if there are any). To do this, we need to factorize the numerator and denominator and see if there are any factors common to both.

Example

To simplify $\frac{x^{2}-x-6}{x^{2}+x-12}$ factorise both quadratics:

$$
\begin{aligned}
\frac{x^{2}-x-6}{x^{2}+x-12} & =\frac{(x-3)(x+2)}{(x+4)(x-3)} \\
& =\frac{(x-3)(x+2)}{(x+4)(x-3)} \\
& =\frac{x+2}{x+4}
\end{aligned}
$$

In other words, the original expression produces the same number as (the simpler) expression

$$
\frac{x+2}{x+4}
$$

whatever x value we choose to use (except those that would give 0 in a denominator).

For example, if $x=5$ the original expression produces the value

$$
\begin{aligned}
\frac{5^{2}-5-6}{5^{2}+5-12} & =\frac{25-5-6}{25+5-12} \\
& =\frac{14}{18}=\frac{7 \times \not 2}{9 \times 22}=\frac{7}{9}
\end{aligned}
$$

The simplified expression also produces this value

$$
\frac{5+2}{5+4}=\frac{7}{9}
$$

Let's try another number. If $x=3$ then the original expression produces the value

$$
\frac{3^{2}-3-6}{3^{2}+3-12}=\frac{0}{0} \quad \text { (huh?) }
$$

but the simplified expression produces the value

$$
\frac{3+2}{3+4}=\frac{5}{7}
$$

What's gone wrong?
One of the few downsides of the number 0 is that it doesn't always behave like other numbers. In particular,

Division by 0is not defined

When we have algebraic expressions in the denominator, values of variables which make the denominator 0 are not allowed. So

$$
\frac{x^{2}-x-6}{x^{2}+x-12}=\frac{(x-3)(x+2)}{(x+4)(x-3)}=\frac{x+2}{x+4} \quad x \neq 3,-4
$$

Adding and subtracting algebraic fractions
The rules for adding and subtracting algebraic fractions are the same as for numerical fractions. For example, to calculate

$$
\frac{x+1}{x-3}+\frac{2 x+7}{x-5}
$$

we still need a common denominator:

$$
\begin{aligned}
& \frac{(x+1)(x-5)}{(x-3)(x-5)}+\frac{(2 x+7)(x-3)}{(x-5)(x-3)} \\
= & \frac{(x+1)(x-5)+(x-3)(2 x+7)}{(x-3)(x-5)} \\
= & \frac{x^{2}-4 x-5+2 x^{2}+x-21}{x^{2}-8 x+15} \text { (expand brackets) } \\
= & \frac{3 x^{2}-3 x-26}{x^{2}-8 x+15} \text { (group like terms) }
\end{aligned}
$$

Multiplying and dividing algebraic fractions
The rules for multiplying and dividing algebraic fractions are the same as for numerical fractions. For example, multiplication:

$$
\frac{x+1}{x-3} \times \frac{2 x+7}{x-5}=\frac{(x+1)(2 x+7)}{(x-3)(x-5)}
$$

and

$$
\begin{aligned}
& \frac{2 x+1}{x+3} \div \frac{4 x+5}{x-6}=\frac{2 x+1}{x+3} \times \frac{x-6}{4 x+5} \\
& =\frac{(2 x+1)(x-6)}{(x+3)(4 x+5)}=\frac{2 x^{2}-11 x-6}{4 x^{2}+17 x+15}
\end{aligned}
$$

Recall that dividing by a fraction is equivalent to multiplying by its reciprocal

American online LIGS University

 is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs:enroll by September 30th, 2014 and
save up to 16% on the tuition!
pay in 10 installments / 2 years
Interactive Online education
visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by anv nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

Exercises 4

4.1 Expand brackets and collect terms in the following
(i) $(x+2)(x-4)$
(iii) $(2-t)(3 t+4)$
(ii) $(-x+5)(-3 x+4)$
(iv) $\left(y+\frac{1}{2}\right)\left(y+\frac{1}{4}\right)$
4.2 Factorise the following quadratic expressions.
(i) $x^{2}-3 x+2$
(iv) $3 x^{2}+8 x+4$
(ii) $x^{2}-x-12$
(iii) $x^{2}+14 x+40$
(v) $4 x^{2}-5 x-6$
4.3 Simplify the following rational expressions.
(i) $\frac{x^{2}-x-2}{x^{2}+2 x+1}$
(ii) $\frac{x^{2}-1}{x^{2}-2 x+1}$

Problem set 4

4.1 Expand brackets and collect terms in the following
(a) $(x+2)(x+4)$
(i) $x(x-1)(x+1)$
(b) $(x-1)(x-2)$
(j) $(x-2 y)(x+2 y)$
(c) $(x-2)(x+2)$
(k) $(2 x-3 y)^{2}$
(d) $(x-1)(1-x)$
(l) $\left(x^{2}-1\right)\left(x^{2}+1\right)$
(e) $(2 x+3)(x+2)$
(m) $\left(x^{2}+x\right)\left(x^{2}-x\right)$
(f) $(x+1)^{2}$
(n) $(x+3 y)(x-3 y)$
(g) $(2 x-1)^{2}$
(o) $(x+1)(x+2)(x+3)$
(h) $(x+2)^{2}$
(p) $(x-1)(x+1)(x+2)$
4.2 Factorise the following quadratic expressions.
(a) $x^{2}+5 x+6$
(d) $x^{2}+x-6$
(b) $x^{2}-5 x+6$
(e) $x^{2}-2 x-15$
(c) $x^{2}-x-6$
(f) $x^{2}-100$
4.3 Simplify the following rational expressions.
(i) $\frac{x^{2}-9}{x+3}$
(ii) $\frac{x^{2}+5 x-14}{x^{2}+10 x+21}$

5. Indices

Indices (sometimes called powers) are notation used to shorthand expressions involving numbers multiplied by themselves a number of times.

Some of the powers of 2 are

$$
\begin{aligned}
& 2^{2}=2 \times 2=4 \\
& 2^{3}=2 \times 2 \times 2=8 \\
& 2^{4}=2 \times 2 \times 2 \times 2=16 \\
& 2^{5}=\underbrace{2 \times 2 \times \cdots \times 2}_{5 \text { terms }}=32
\end{aligned}
$$

For any positive integer (counting number) n,

$$
2^{n}=\underbrace{2 \times 2 \times \cdots \times 2}_{n \text { terms }}
$$

Similarly,

$$
3^{n}=\underbrace{3 \times 3 \times \cdots \times 3}_{n \text { terms }}
$$

For example,

$$
3^{4}=3 \times 3 \times 3 \times 3=81
$$

In general For any number k and positive integer n,

$$
k^{n}=\underbrace{k \times k \times \cdots \times k}_{n \text { terms }}
$$

We say ' k to the $n^{\text {th }}$ power' or ' k to the n '. We can also take powers of negative numbers, e.g.

$$
\begin{aligned}
&(-2)^{4}=\underbrace{(-2) \times(-2)}_{4} \times \underbrace{(-2) \times(-2)}_{4} \\
&= \\
&= \\
& 16
\end{aligned}
$$

Note: " $-2^{4 "}$ is read as " $-(2)^{4 "}$ so $-2^{4}=-(2 \times 2 \times 2 \times 2)=-16$.
We can alos take powers of fractions. For example,

$$
\begin{gathered}
\left(\frac{1}{2}\right)^{3}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8} \\
\left(-\frac{3}{7}\right)^{2}=\left(-\frac{3}{7}\right) \times\left(-\frac{3}{7}\right)=\frac{9}{49}
\end{gathered}
$$

Properties of indicies (powers)

There are some shortcuts (or laws of indicies) we can develop.
Observe that

$$
\begin{aligned}
2^{3} \times 2^{5} & =\underbrace{2 \times 2 \times 2}_{3 \text { terms }} \times \underbrace{2 \times 2 \times 2 \times 2 \times 2}_{5 \text { terms }} \\
& =\underbrace{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}_{3+5=8 \text { terms }} \\
& =2^{8}
\end{aligned}
$$

We say that 2 cubed times 2 to the $5^{\text {th }}$ is 2 to the $8^{\text {th }}$.
In general, the rule is clearly

$$
\begin{aligned}
k^{m} \times k^{n} & =\underbrace{k \times k \times \cdots \times k}_{m \text { terms }} \times \underbrace{k \times k \times \cdots \times k}_{n \text { terms }} \\
& =\underbrace{k \times k \times k \times \cdots \times k \times k}_{m+n \text { terms }}
\end{aligned}
$$

That is,

$$
k^{m} \times k^{n}=k^{m+n}
$$

Here are another two rules. Observe that

$$
\begin{aligned}
\frac{7^{5}}{7^{3}} & =\frac{7 \times 7 \times 7 \times 7 \times 7}{7 \times 7 \times 7} \\
& =\frac{7 \times 7 \times Z \times Z \times \text { Z }}{\lambda \times 夕 \times Z}=7 \times 7=7^{2}
\end{aligned}
$$

We say that 7 to the $5^{\text {th }}$ divided by 7 cubed is 7 squared.
In general, the rule is

$$
\frac{k^{m}}{k^{n}}=k^{m-n}
$$

Observe that

$$
\begin{aligned}
(3 \times 5)^{3} & =(3 \times 5) \times(3 \times 5) \times(3 \times 5) \\
& =3 \times 5 \times 3 \times 5 \times 3 \times 5 \\
& =\underbrace{3 \times 3 \times 3} \times \underbrace{5 \times 5 \times 5}_{5^{3}} \\
& =3^{3} \times{ }^{3}
\end{aligned}
$$

In general, the rule is

$$
(j k)^{n}=j^{n} k^{n}
$$

A rule for fractions

$$
\begin{aligned}
\left(\frac{2}{7}\right)^{3} & =\left(\frac{2}{7}\right) \times\left(\frac{2}{7}\right) \times\left(\frac{2}{7}\right) \\
& =\frac{2 \times 2 \times 2}{7 \times 7 \times 7}=\frac{2^{3}}{7^{3}}
\end{aligned}
$$

In general, the rule is

$$
\left(\frac{j}{k}\right)^{n}=\frac{j^{n}}{k^{n}}
$$

A rule for powers of powers

$$
\begin{gathered}
\left(5^{4}\right)^{3}=5^{4} \times 5^{4} \times 5^{4} \\
=\underbrace{5 \times 5 \times 5 \times 5}_{4 \text { terms }} \times \underbrace{5 \times 5 \times 5 \times 5}_{4 \text { terms }} \times \underbrace{5 \times 5 \times 5 \times 5}_{4 \text { terms }} \\
=\underbrace{5 \times 5 \times 5}_{3 \times 4=12 \text { terms }}=5^{12}
\end{gathered}
$$

In general, the rule is

$$
\left(k^{m}\right)^{n}=k^{m \times n}
$$

The laws of indicies so far

We so far have five Laws of indicies. They are

$$
k^{m} \times k^{n}=k^{n+m} \quad \frac{k^{m}}{k^{n}}=k^{m-n}
$$

$(j k)^{n}=j^{n} \times k^{n}$

$$
\left(\frac{j}{k}\right)^{n}=\frac{j^{n}}{k^{n}}
$$

$$
\left(k^{m}\right)^{n}=k^{m n}
$$

Some commonly occuring powers

$$
2^{2}=4 \quad 2^{3}=8 \quad 2^{4}=16 \quad 2^{5}=32 \quad 2^{6}=64
$$

and

$$
3^{2}=9 \quad 3^{3}=27 \quad 3^{4}=81
$$

Some commonly occuring squares (that is, to the power of 2)

$$
\begin{gathered}
2^{2}=4 \quad 3^{2}=9 \quad 4^{2}=16 \quad 5^{2}=25 \quad 6^{2}=36 \\
7^{2}=49 \quad 8^{2}=64 \quad 9^{2}=81 \quad 10^{2}=100
\end{gathered}
$$

The powers of 10

$$
\begin{array}{lrr}
10^{2}=100 & 10^{3}=1,000 & 10^{4}=10,000 \\
10^{5}=100,000 & 10^{6}=1,000,000 & \text { etc. }
\end{array}
$$

The laws of indicies used in algebraic calculations

The laws can be very useful when working with calculations and expressions. For example,

$$
\begin{gathered}
\frac{16^{9}}{2^{33}}=\frac{\left(2^{4}\right)^{9}}{2^{33}}=\frac{2^{36}}{2^{33}}=2^{36-33}=2^{3}=2 \times 2 \times 2=8 \\
\frac{y^{7}}{y^{3}}=y^{7-3}=y^{4} \\
\left(z^{4}\right)^{2}=z^{4 \times 2}=z^{8} \\
\left(5 x^{3}\right)^{2}=5^{2}\left(x^{3}\right)^{2}=5^{2} x^{3 \times 2}=25 x^{6}
\end{gathered}
$$

Simplifying algebraic expressions

$$
\begin{gathered}
\left(3 y^{2}\right)\left(4 y^{3}\right)=3 \times y^{2} \times 4 \times y^{3}=12 y^{2} y^{3}=12 y^{2+3}=12 y^{5} \\
\frac{12 z^{5}}{3 z^{2}}=\frac{4 \times \not \partial z^{5}}{\not \partial z^{2}}=4 \times \frac{z^{5}}{z^{2}}=4 z^{5-2}=4 z^{3} \\
\frac{x^{5}}{x^{2} x^{2}}=\frac{x^{5}}{x^{2+2}}=\frac{x^{5}}{x^{4}}=x^{5-4}=x^{1}
\end{gathered}
$$

The power of 1
What does x^{1} represent? We can see the answer by cancelling common factors:

$$
\begin{aligned}
\frac{x^{5}}{x^{4}} & =\frac{x x x x x x}{x x x x} \\
& =\frac{x \not x \not x \not x \not x \not x x}{\not x \not x \not x \not x x}=x
\end{aligned}
$$

So, $x^{1}=x$ and we have another index law:

$$
k^{1}=k
$$

Examples:

$$
\begin{array}{ll}
5^{1}=5 & (-3)^{1}=-3 \\
\left(\frac{1}{2}\right)^{1}=\frac{1}{2} & \left(-\frac{2}{7}\right)^{1}=-\frac{2}{7}
\end{array}
$$

The power of o

Similarly, we can extend indices to powers other than counting numbers. For example,

$$
\frac{3^{2}}{3^{2}}=\frac{9}{9}=1
$$

The index rule $\frac{k^{m}}{k^{n}}=k^{m-n}$ gives us

$$
\frac{3^{2}}{3^{2}}=3^{2-2}=3^{0}
$$

Hence $3^{0}=1$. In fact:

$$
k^{0}=1 \text { for any value of } k \text { (except o) }
$$

Examples:

$$
5^{0}=1
$$

$$
\left(-\frac{2}{7}\right)^{0}=1
$$

$$
140,291,090^{0}=1 \quad\left(\frac{987,654,321}{123,456,789}\right)^{0}=1
$$

Negative powers

What about this situation:

$$
\frac{3^{2}}{3^{4}}=\frac{\not 8 \times \not p}{\not b \times 3 \times 3 \times \not b}=\frac{1 \times 1}{1 \times 3 \times 3 \times 1}=\frac{1}{3 \times 3}=\frac{1}{3^{2}}
$$

The index rule $\frac{k^{m}}{k^{n}}=k^{m-n}$ gives us

$$
\frac{3^{2}}{3^{4}}=3^{2-4}=3^{-2}
$$

Hence $3^{-2}=\frac{1}{3^{2}}$ and in fact

$$
k^{-n}=\frac{1}{k^{n}} \text { for any values of } k, n
$$

Examples

$$
\begin{aligned}
5^{-1}= & \frac{1}{5} \quad 10^{-3}=\frac{1}{10^{3}}=\frac{1}{1000} \\
& (-4)^{-2}=\frac{1}{(-4)^{2}}=\frac{1}{(-4) \times(-4)}=\frac{1}{16}
\end{aligned}
$$

Note that

$$
\left(\frac{a}{b}\right)^{-1}=\frac{1}{\left(\frac{a}{b}\right)^{1}}=1 \div \frac{a}{b}=1 \times \frac{b}{a}=\frac{b}{a}
$$

In all, we have nine Laws of Indices

$$
k^{m} \times k^{n}=k^{n+m} \quad \frac{k^{m}}{k^{n}}=k^{m-n}
$$

$$
\begin{array}{lrl}
(j k)^{n}=j^{n} \times k^{n} & \left(\frac{j}{k}\right)^{n}=\frac{j^{n}}{k^{n}} & \left(k^{m}\right)^{n}=k^{m n} \\
k^{-n}=\frac{1}{k^{n}} & \left(\frac{j}{k}\right)^{-1}=\frac{k}{j} & k^{1}=k
\end{array}
$$

How do we interpret powers that are fractions, eg. $4^{\frac{1}{2}}$? Using the index law $k^{m} \times k^{n}=k^{n+m}$ we can say

$$
\begin{aligned}
4^{\frac{1}{2}} \times 4^{\frac{1}{2}} & =4^{\frac{1}{2}+\frac{1}{2}} \\
& =4^{1} \\
& =4
\end{aligned}
$$

That is, " $4^{\frac{1}{2} "}$ is a number which, when multiplied by itself, gives 4 .
Clearly, an answer is 2 because $2 \times 2=4$. We refer to " $4^{\frac{1}{2}}$ " as the square root of 4 and write

$$
\sqrt{4}
$$

Note that $(-2) \times(-2)=4$ as well so we will define the square root (that is, power of $\frac{1}{2}$) to represent only the positive answer. That is,

$$
4^{\frac{1}{2}}=\sqrt{4}=2
$$

Some other examples

$$
\begin{array}{ll}
9^{\frac{1}{2}}=3 & \text { because } 3 \times 3=9 \\
\sqrt{16}=4 & \text { because } 4 \times 4=16 \\
25^{\frac{1}{2}}=5 & \text { because } 5 \times 5=25 \\
\sqrt{36}=6 & \text { because } 6 \times 6=36
\end{array}
$$

Note that

$$
\sqrt{0}=0 \quad \text { and } \quad \sqrt{1}=1
$$

Unfortunately, most square roots aren't whole numbers. For example,

$$
\sqrt{2}=1.414 \cdots \quad \sqrt{5}=2.236 \cdots
$$

Mathematicians leave such answers in square-root form. Other examples are

$$
\begin{array}{llll}
\sqrt{11} & \sqrt{17} & \sqrt{24} & \sqrt{50}
\end{array}
$$

The index laws apply to fractional powers as well. For example,

$$
\left(\frac{4}{9}\right)^{\frac{1}{2}}=\frac{4^{\frac{1}{2}}}{9^{\frac{1}{2}}}=\frac{2}{3} \quad \text { and } \quad \sqrt{\frac{1}{36}}=\frac{\sqrt{1}}{\sqrt{36}}=\frac{1}{6}
$$

What about " $8^{\frac{1}{3}}$ "? Notice that

$$
\begin{aligned}
8^{\frac{1}{3}} \times 8^{\frac{1}{3}} \times 8^{\frac{1}{3}} & =8^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}} \\
& =8^{1} \\
& =8
\end{aligned}
$$

That is, " $8^{\frac{1}{3}}$ " is a number which, when multiplied by itself three times, gives 8.

Clearly, an answer is 2 and " $8^{\frac{1}{3}}$ " is an alternative way of expressing the cube root of 8 :

$$
8^{\frac{1}{3}}=\sqrt[3]{8}
$$

In general,

$$
k^{\frac{1}{n}}=\sqrt[n]{k} \quad\left(\text { the } " n^{\text {th }} \text { root of } k^{\prime \prime}\right)
$$

Example

$$
625^{\frac{1}{4}}=\sqrt[4]{625}=5 \quad \text { because } 5^{4}=625 \quad \text { That is, the } 4^{\text {th }} \text { root of } 625 \text { is } 5
$$

Note that this time, $(-2) \times(-2) \times(-2)=-8$ so there is only one answer for $8^{\frac{1}{3}}$ (that is, 2). In fact, we have

$$
(-8)^{\frac{1}{3}}=\sqrt[3]{-8}=-2
$$

Note: On the other hand, $(-4)^{\frac{1}{2}}=\sqrt{-4}$ does not exist.
That is, there is no such number

Even and odd numbers

We refer to $2,4,6,8, \cdots$ as the even numbers.
We refer to $1,3,5,7, \cdots$ as the odd numbers.
The situation is that if n is odd, then we can take the $n^{\text {th }}$ root of a negative number, but if n is an even, then we cannot.

Mathematicians had to invent a new type of number, called the imaginary number $i=\sqrt{-1}$ to handle this situation in practical problems.

What if the numerator isn't 1 . For example, what is " $8^{\frac{2}{3}}$ "?
The laws of Indices tell us. Recall that $8=2^{3}$. Now

$$
\begin{aligned}
8^{\frac{2}{3}} & =\left(2^{3}\right)^{\frac{2}{3}} \\
& =2^{\beta \times \frac{2}{\beta}} \quad \text { using }\left(k^{m}\right)^{n}=k^{m n} \\
& =2^{2} \\
& =4
\end{aligned}
$$

So you can't take the square root of a negative number

Examples

$$
\begin{gathered}
16^{\frac{3}{2}}=\left(4^{2}\right)^{\frac{3}{2}}=4^{\nless \frac{3}{7}}=4^{3}=4 \times 4 \times 4=64 \\
27^{-\frac{4}{3}}=\left(3^{3}\right)^{-\frac{4}{3}}=3^{\phi \times\left(-\frac{4}{\beta}\right)} \\
=3^{-4}=\frac{1}{3^{4}}=\frac{1}{3 \times 3 \times 3 \times 3}=\frac{1}{81}
\end{gathered}
$$

Surds

Recall that instead of $\sqrt{9}$ we can write 3 , and $\sqrt{16}$ we can write 4 . Square roots, cube roots, etc. that can't be written more simply, for example $\sqrt{2}$ and $\sqrt{5}$ are called surds Thanks to fractional powers and index laws, we have two very useful formulae for simplifying expressions involving surds:

$$
\sqrt{a} \sqrt{a}=a \quad \sqrt{a} \sqrt{b}=\sqrt{a b}
$$

from

$$
k^{n} \times k^{m}=k^{n+m} \quad j^{n} \times k^{n}=(j k)^{n}
$$

Examples:

$$
\sqrt{7} \sqrt{7}=7 \quad \sqrt{3} \sqrt{5}=\sqrt{15}
$$

Note: Similar expressions exist for other roots. For example

$$
(\sqrt[3]{a})^{3}=a \quad \sqrt[3]{a} \sqrt[3]{b}=\sqrt[3]{a b}
$$

Simplifying surd expressions

Expressions involving surds can be simplified using the usual laws of algebra, and the rules just mentioned. Recall that

$$
a(b+c)=a b+a c \quad(a+b)(c+d)=a c+a d+b c+b d
$$

and

$$
\sqrt{a} \sqrt{a}=a \quad \sqrt{a} \sqrt{b}=\sqrt{a b}
$$

Some advice just states the obvious. But to give the kind of advice that's going to make a real difference to your clients you've got to listen critically, dig beneath the surface, challenge assumptions and be credible and confident enough to make suggestions right from day one. At Grant Thornton you've got to be ready to kick start a career right at the heart of business.

Sound like you? Here's our advice: visit GrantThornton.ca/careers/students

Scan here to learn more about a career with Grant Thornton.

Examples

$$
\begin{gathered}
(1+\sqrt{7})(1-\sqrt{7})=1-\not \sqrt{7}+\not \sqrt{7}-7=1-7=-6 \\
(\sqrt{3}+\sqrt{7})(\sqrt{3}+\sqrt{7})=3+\sqrt{3} \sqrt{7}+\sqrt{7} \sqrt{3}+7 \\
=3+\sqrt{21}+\sqrt{21}+7=10+2 \sqrt{21}
\end{gathered}
$$

We can sometimes simplify a surd itself. Especially if the number under the root sign can be factorized. For example,

$$
\begin{gathered}
\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \sqrt{5}=2 \sqrt{5} \\
\sqrt{75}=\sqrt{3 \times 25}=\sqrt{3} \sqrt{25}=\sqrt{3} \times 5=5 \sqrt{3}
\end{gathered}
$$

Exercises 5

5.1 Simplify
(i) $2^{4} \times 2^{9}$
(ii) $\frac{3^{11}}{3^{5}}$
(iii) $(5 \times 7)^{3}$
5.2 Remove the brackets in
(i) $\left(\frac{7}{3}\right)^{2}$
(ii) $\left(5^{4}\right)^{7}$
5.3 Use the Laws of Indices to simplify the following
(i) $x^{-3} x^{5}$
(iv) $\left(3 x^{-2}\right)^{-2} x^{-3} y^{-3}$
(ii) $\left(5 x^{3}\right)^{-2} x^{6}$
(iii) $(5 \times 7)^{3}$
(v) $\frac{5 y^{-2} z}{\left(2 y^{3} z^{-5}\right)^{2}}$
5.4 Simplify the following surds
(i) $\sqrt{48}$
(iii) $(3+\sqrt{5})(2-\sqrt{5})$
(ii) $\sqrt{3}(5+\sqrt{2})$
(iv) $(2 \sqrt{5}-1)(2 \sqrt{5}+1)$

Problem set 5

5.1 Use index laws to simplify each of the following expressions
(a) $x^{3} \times x^{4} \times x$
(f) $\left(4 x^{2}\right)^{3}$
(b) $x^{2} y^{3} x$
(c) $(x y)^{2}$
(g) $\frac{\left(3 x^{2} z\right)^{3}}{(2 x)^{2}}$
(d) $\frac{a^{2} b^{5}}{a b}$
(h) $\left(\frac{9 x^{4}}{(3 x)^{2}}\right)^{5}$
5.2 Express the following numbers without indices
(a) $\frac{2^{4}}{4^{2}}$
(e) $\frac{3^{5}}{27^{2}}$
(b) $\frac{5^{12}}{25^{5}}$
(f) $(-2)^{-4}$
(c) 4^{-1}
(g) $(-3)^{-3}$
(d) 10^{-2}
(h) 0^{-6}
(i) $(-6)^{0}$
5.3 Use index laws to simplify each of the following expressions
(a) $y^{-2} y^{-3}$
(b) $x^{-3} \times x^{3}$
(g) $\frac{6 a^{3} b^{-2}}{a^{2} b^{-1}} \div \frac{8 a^{3} b}{b}$
(c) $\left(a^{-3} b^{-4}\right)\left(a^{-1} b\right)$
(h) $\frac{(-2 a b)^{3}}{\left(2 a^{-1} b\right)^{2}}$
(d) $\frac{4 g^{-3} h^{-5}}{12 g^{-5} h^{3}}$
(e) $\left(-9 x^{-1} y^{2}\right)^{-2}$
(i) $\left(\frac{3 x^{2} y^{-1}}{2}\right)^{0}$
(f) $\left(\frac{3 a b^{2}}{c}\right)^{-1}$
(j) $\frac{x^{6}}{x^{3}} \times\left(\frac{4 x^{3}}{12 x}\right)^{2}$
5.4 Use index laws to simplify each of the following expressions
(a) $3^{x} \times 2^{x} \times 3^{1-x}$
(c) $\frac{x^{y} y^{x}}{x^{-y}}$
(b) $\frac{2^{2}}{2^{x}}$
(d) $\frac{\left(9^{a}\right)^{b}}{\left(3^{2 a}\right)^{b}}$
5.5 Evaluate each of the following expressions.
(a) $8^{\frac{1}{3}}$
(f) $64^{\frac{1}{3}}$
(k) $49^{-\frac{3}{2}}$
(b) $32^{\frac{1}{5}}$
(g) $10000^{-\frac{1}{4}}$
(l) $64^{\frac{5}{6}}$
(c) $81^{\frac{1}{2}}$
(h) $144^{-\frac{1}{2}}$
(m) $64^{-\frac{1}{6}}$
(d) $125^{\frac{1}{3}}$
(i) $32^{\frac{2}{5}}$
(n) $81^{\frac{3}{4}}$
(e) $81^{\frac{1}{4}}$
(j) $36^{\frac{3}{2}}$
(o) $(-27)^{\frac{2}{3}}$
5.6 Evaluate each of the following expressions.
(a) $27^{\frac{2}{3}}$
(i) $27^{\frac{4}{3}}$
(b) $27^{-\frac{2}{3}}$
(j) $64^{-\frac{5}{6}}$
(c) $4^{\frac{7}{2}}$
(d) $16^{-\frac{1}{2}}$
(e) $100^{\frac{3}{2}}$
(k) $\left(\frac{4}{9}\right)^{\frac{3}{2}}$
(f) $16^{-\frac{3}{4}}$
(l) $\left(\frac{4}{9}\right)^{-\frac{3}{2}}$
(g) $169^{-\frac{1}{2}}$
(m) $81^{-\frac{1}{2}}$
5.7 Simplify each of the following expressions
(a) $3 x^{\frac{1}{2}} \times 4 x^{\frac{2}{3}}$
(b) $5 x^{\frac{2}{5}} \times 6 x^{-\frac{1}{10}}$
(e) $\frac{x^{-\frac{2}{3}} y^{\frac{5}{2}}}{x^{-\frac{5}{3}} y^{-1}}$
(c) $\left(4 x^{\frac{1}{2}}\right)^{3} \div\left(9 x^{\frac{1}{3}}\right)^{\frac{3}{2}}$
(d) $\left(64 x^{2}\right)^{-\frac{1}{6}} \div\left(32 x^{\frac{5}{2}}\right)^{-\frac{2}{5}}$
(f) $\frac{x^{\frac{3}{7}} y^{-\frac{4}{5}}}{x^{-\frac{2}{7}} y^{\frac{3}{5}}}$
5.8 Simplify each of the following expressions
(a) $3 x^{\frac{1}{2}} \times 2 x^{-\frac{1}{2}}$
(b) $\left(8 x^{3} y^{5}\right)^{-\frac{2}{3}}$
(g) $\frac{x^{-3} y^{5}}{x^{2} y^{-7}}$
(c) $\left(x^{\sqrt{5}}\right)^{3 \sqrt{5}}$
(h) $7 x^{\frac{1}{4}} \times 2 x^{-\frac{1}{2}}$
(d) $\frac{3 x^{\sqrt{27}}}{x^{\sqrt{12}}}$
(i) $(9 x)^{\frac{1}{2}} \times(27 x)^{\frac{1}{3}}$
(e) $3 x^{-\frac{1}{2}} \times 4 x^{\frac{2}{3}}$
(j) $(9 x)^{\frac{1}{2}} \times(27 x)^{-\frac{1}{3}}$
(f) $\left(x^{2 \sqrt{7}}\right)^{\sqrt{7}}$
(k) $3 x^{-\frac{1}{3}} \div 2 x^{\frac{3}{4}}$
5.9 Simplify each of the following expressions
(a) $\sqrt{12}$
(g) $(1-\sqrt{2}) \sqrt{3}$
(b) $\sqrt{72}$
(h) $(7+3 \sqrt{5}) \sqrt{3}$
(c) $\sqrt{150}$
(i) $(6-2 \sqrt{5})(6+2 \sqrt{5})$
(d) $\sqrt[3]{96}$
(j) $(3+\sqrt{7})^{2}$
(e) $\sqrt{2}(3-\sqrt{2})$
(k) $(4 \sqrt{3}-1)(2 \sqrt{5}+1)$
(f) $\sqrt{5}(2 \sqrt{3}+\sqrt{2})$
(l) $(\sqrt{5}-\sqrt{3})(2 \sqrt{5}+4 \sqrt{3})$

6. Re-arranging formulae

In Chapter 2, we saw how to solve equations with a single variable. If there are several variables in the equation we can still isolate one of them by the same methods.

Example. Solve $3 P=5 v+12$ for v. We get

$$
3 P-12=5 v \quad \Rightarrow \quad \frac{3 P-12}{5}=v
$$

We call this process isolating v
Example. Solve $\frac{H+4}{t}=\frac{3}{b+2}$ for H. Cross-multiply to get

$$
\begin{gathered}
(H+4)(b+2)=3 t \quad \Rightarrow \quad H(b+2)+4(b+2)=3 t \\
\Rightarrow
\end{gathered} \quad H(b+2)=3 t-4(b+2)
$$

and so

$$
H=\frac{3 t-4(b+2)}{b+2}
$$

We have isolated H

Equations involving indices

We can use index laws to isolate variables in more sophisticated equations.

Example. To solve $A=b^{5}$ for b, we need to "undo" the operation "raise to the power of 5 ".

This can be done by raising both sides to the power of $\frac{1}{5}$:

$$
\begin{array}{rlrl}
(A)^{\frac{1}{5}} & =\left(b^{5}\right)^{\frac{1}{5}} \\
\Rightarrow & A^{\frac{1}{5}} & =b^{5 \times \frac{1}{5}} \quad \text { by index law }\left(k^{m}\right)^{n}=k^{m n} \\
\Rightarrow & A^{\frac{1}{5}} & =b^{1} \\
\Rightarrow & A^{\frac{1}{5}} & =b
\end{array}
$$

More examples

$$
\begin{aligned}
\mathrm{Z}=u^{3} & \Rightarrow u=Z^{\frac{1}{3}} \\
K=p^{\frac{1}{4}} & \Rightarrow p=K^{4} \\
h=w^{\frac{5}{2}} & \Rightarrow w=h^{\frac{2}{5}} \\
R=g^{-\frac{1}{7}} & \Rightarrow g=R^{-7}
\end{aligned}
$$

To solve $c=a x^{2}+b$ for x, we proceed as follows:

$$
\begin{gathered}
c=a x^{2}+b \quad \Rightarrow \quad c-b=a x^{2} \\
\Rightarrow \quad \frac{c-b}{a}=x^{2} \Rightarrow\left(\frac{c-b}{a}\right)^{\frac{1}{2}}=x \quad \text { or } \quad \sqrt{\frac{c-b}{a}}=x
\end{gathered}
$$

To solve $P=\frac{4 r^{3} c}{b^{2}}$ for r, we proceed as follows:

$$
\begin{gathered}
P=\frac{4 r^{3} c}{b^{2}} \quad \Rightarrow \quad P b^{2}=4 r^{3} c \\
\Rightarrow \quad \frac{P b^{2}}{4 c}=r^{3} \quad \Rightarrow \quad\left(\frac{P b^{2}}{4 c}\right)^{\frac{1}{3}}=r
\end{gathered}
$$

Note that we could also solve for b. We would get

$$
b=\sqrt{\frac{4 r^{3} c}{P}}
$$

Exercises 6

6.1
(i) Solve $z^{3} p^{\frac{1}{4}}=a^{4} w^{\frac{2}{3}}$ for w
(ii) Solve $y=\sqrt{x^{3}-c}$ for x
(iii) Solve $m=\frac{12 s^{4} y^{3}}{7 p^{2}}$ for s
(iv) Solve $f^{2} h^{\frac{1}{3}}=v m^{\frac{1}{4}}$ for h

Problem set 6

6.1 In each of the following scientific formulae, isolate the variable indicated
(a) Temperature scales

$$
\text { Solve } \quad C=\frac{5}{9}(F-32) \quad \text { for } F
$$

(b) Volume of a sphere

$$
\text { Solve } \quad V=\frac{4}{3} \pi r^{3} \quad \text { for } r
$$

(c) Ideal gas law

$$
\text { Solve } \quad P V=n R T \quad \text { for } T
$$

(d) Newton's law of gravity

$$
\text { Solve } \quad F=\frac{G M m}{r^{2}} \quad \text { for } r
$$

(e) Brightness of a star

$$
\text { Solve } \quad b=\frac{L}{4 \pi d^{2}} \quad \text { for } d
$$

(f) Buckling of a column

$$
\text { Solve } \quad L=k d^{\frac{2}{3}}\left(\frac{E}{p}\right)^{\frac{1}{3}} \quad \text { for } p
$$

(g) Wavelength of gas particles

$$
\text { Solve } \quad L=\sqrt{\frac{h^{2}}{2 \pi m k T}} \text { for } m
$$

6.2 In each of the following business formulae, isolate the variable indicated
(a) Linear demand equation

$$
\text { Solve } \quad Q=a-b P \quad \text { for } P
$$

(b) Compound interest

$$
\text { Solve } \quad A=P(1+r)^{n} \quad \text { for } r
$$

(c) Money supply

$$
\text { Solve } \quad M V=P Y \quad \text { for } Y
$$

(d) Relationship between marginal revenue and price elasticity

Solve $\quad R=P\left(1-\frac{1}{e}\right) \quad$ for e
(e) Gravity model of trade

$$
\text { Solve } \quad F=K \times \frac{S D}{d^{2}} \quad \text { for } S
$$

Maastricht University

Join the best at
the Maastricht University School of Business and Economics!

Visit us and find out why we are the best!
 Master's Open Day: 22 February 2014

- $33^{\text {rd }}$ place Financial Times worldwide ranking: MSc International Business
- $1^{\text {st }}$ place: MSc International Business
- $1^{\text {st }}$ place: MSc Financial Economics
- $2^{\text {nd }}$ place: MSc Management of Learning
- $2^{\text {nd }}$ place: MSc Economics
- $2^{\text {nd }}$ place: MSc Econometrics and Operations Research
- $2^{\text {nd }}$ place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

Maastricht
University is the best specialist university in the Netherlands

7. Exponentials and logarithms

Exponential equations

Question: 2 to which power gives us 8 ?. The answer is 3 because we know that $2 \times 2 \times 2=2^{3}=8$. We have just solved the equation

$$
2^{y}=8
$$

This is a new sort of equation because the variable to be isolated is a power or exponent. . We call it an exponential equation.

Anything that grows (or shrinks) as a percentage of its size follows an exponential equation and they arise in many areas of Science (eg. population growth, radioactive decay) and Economics (eg. compound interest, economic growth measurement).

Logarithms

To help in solving exponential equations, we can rewrite them as logarithmic equations:

$$
2^{3}=8 \quad \text { is the same as } 3=\log _{2} 8
$$

The notation " $\log _{2} 8$ " is read "logarithm to the base 2 of 8 " and poses the question "what power of the base (2) gives us 8?".

In general, we say:

$$
b^{y}=x \text { is the same as } y=\log _{b} x
$$

Notice that the exponent (y) becomes an ordinary variable when the equation is changed to logarithmic form. This will help us to solve exponential equations.

Some examples of logarithms

$\log _{9} 81=2$	because	$9^{2}=81$
$\log _{3} 27=3$	because	$3^{3}=27$
$\log _{10} 1000=3$	because	$10^{3}=1000$
$\log _{2} 32=5$	because	$2^{5}=32$
$\log _{10} 1,000,000=6$	because	$10^{6}=1,000,000$
$\log _{3} 81=4$	because	$3^{4}=81$

The notation " $\log _{b} x$ " is read "logarithm to the base b of x " and poses the question "what power of b gives us x ?"

A special case: $\log _{b} b$

$$
\begin{array}{lll}
\log _{3} 3=1 & \text { because } & 3^{1}=3 \\
\log _{7} 7=1 & \text { because } & 7^{1}=7
\end{array}
$$

Clearly, this is true for any base, so $\log _{b} b=1$

Another special case: $\log _{b} 1$

$$
\begin{array}{lll}
\log _{3} 1=0 & \text { because } & 3^{0}=1 \\
\log _{9} 1=0 & \text { because } & 9^{0}=1
\end{array}
$$

Clearly, this is also true for any base, so $\log _{b} 1=0$

Negative numbers

We only consider positive bases for logarithms. We also don't define logarithms with a base of 1 .

Note that we can't take the log of a negative number. For example, $\log _{2}(-4)$ makes no sense because 2 raised to any power will always give a positive number. However, the log of a positive number may be negative. Recall the index law

$$
k^{-n}=\frac{1}{k^{n}}
$$

We have

$$
\log _{2}\left(\frac{1}{8}\right)=-3 \quad \text { because } \quad 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

Examples of applications of logarithms

Example: Binary Search in Computer Science is used to track down specific values in an ordered list. Think of it this way:

I have chosen a number between 1 and 16. When you guess I will say 'higher', 'lower' or 'correct'.

The maximum number of guesses required to identify the number is given by

$$
\log _{2} 16=4
$$

In general, the maximum number of guesses is

$$
\log _{2} N
$$

where N is the number of items in the list.
Example: $p H$ in Chemistry measures the acidity or alkalinity of an aqueous (water based) solution. It is related logarithmically to the amount of activity of the hydrogen ion:

$$
p H=-\log _{10}\left(H^{+}\right)
$$

A $p H$ of 7 is neutral (eg. pure water), lower values are acidic and higher values are alkaline.

Example: In many real-life situations (eg. newspaper articles, balance sheets in accounting) numbers starting with 1 occur more often than numbers starting with 2 , etc.

Benford's Law gives the frequency of each starting digit:

$$
P=\log _{10}\left(\frac{d+1}{d}\right)
$$

where P is the frequency and d is the starting digit $(1,2,3 \ldots, 9)$. Around 30% of such numbers start with a ' 1 ', 18% with a ' 2 ', down to just 5% starting with a ' 9 '.

There are many other applications, and in a wide diversity of fields, for example,

Earthquakes (the Richter scale)
Signal processing (signal-noise ratio)
Psychology (Hick's law)
Physics (entropy)
Music (intervals)

Empowering People. Improving Business.

BI Norwegian Business School is one of Europe's largest business schools welcoming more than 20,000 students. Our programmes provide a stimulating and multi-cultural learning environment with an international outlook ultimately providing students with professional skills to meet the increasing needs of businesses.

BI offers four different two-year, full-time Master of Science (MSC) programmes that are taught entirely in English and have been designed to provide professional skills to meet the increasing need of businesses. The MSC programmes provide a stimulating and multicultural learning environment to give you the best platform to launch into your career.

- MSc in Business
- MSc in Financial Economics
- MSC in Strategic Marketing Management
- MSc in Leadership and Organisational Psychology
www.bi.edu/master

The Laws of Logarithms

Logarithms are obviously related to indices, and there are closely related laws of logarithms. For all suitable values of x, y and b we have

$$
\begin{aligned}
\log _{b} b=1 & \left(\text { related to } k^{1}=k\right) \\
\log _{b} 1=0 & \text { (related to } \left.k^{0}=1\right) \\
\log _{b}(x y)=\log _{b} x+\log _{b} y & \text { (related to } \left.k^{m} \times k^{n}=k^{n+m}\right) \\
\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y & \text { (related to } \left.\frac{k^{m}}{k^{n}}=k^{m-n}\right) \\
\log _{b}\left(x^{r}\right)=r \log _{b} x & \text { (related to } \left.\left(k^{m}\right)^{n}=k^{m n}\right)
\end{aligned}
$$

In any given investigation we are usually using the same base b (for example, if we are discussing Binary Searches) and we can omit it from the laws of logarithms and write

$$
\begin{gathered}
\log b=1 \\
\log 1=0 \\
\log (x y)=\log x+\log y \\
\log \left(\frac{x}{y}\right)=\log x-\log y \\
\log \left(x^{r}\right)=r \log x
\end{gathered}
$$

Recently, we have used the laws of indices to simplify expressions involving indices (powers).

Similarly, we can use the laws of logarithms to simplify expressions involving logarithms.

Examples of simplifying equations involving logarithms

$$
\begin{gathered}
\log _{2} 4+\log _{2} 16=\log _{2}(4 \times 16)=\log _{2} 64 \\
\log _{3} 55-\log _{3} 11=\log _{3} \frac{55}{11}=\log _{3} 5 \\
2 \log _{7} 6=\log _{7} 6^{2}=\log _{7} 36 \\
\log _{2}\left(x^{2}\right)+\log _{2}\left(x^{3}\right)=\log _{2}\left(x^{2} x^{3}\right)=\log _{2} x^{5} \\
3 \log _{7}\left(y^{\frac{1}{2}}\right)=\log _{7} y^{3 \times \frac{1}{2}}=\log _{7} y^{\frac{3}{2}}
\end{gathered}
$$

We can use algebra and log laws to express logarithms as algebraic expressions based on simpler logarithms.

Example: Let $\log 2=x$ and $\log 3=y$. Express each of the following in terms of x and y :
$\log 12$
$\log 18$
$\log \left(\frac{9}{2}\right)$
$\log \left(\frac{1}{6}\right)$
To do this we need to write the numbers in terms of 2 and 3 .
Firstly, we have $12=3 \times 4=3 \times 2^{2}$ so
$\log 12=\log \left(3 \times 2^{2}\right)=\log 3+\log 2^{2}=\log 3+2 \log 2=y+2 x$
Similarly, we have $18=2 \times 9=2 \times 3^{2}$ and so

$$
\begin{gathered}
\log 18=\log \left(2 \times 3^{2}\right)=\log 2+\log 3^{2} \\
=\log 2+2 \log 3=x+2 y
\end{gathered}
$$

Also, $\frac{9}{2}=\frac{3^{2}}{2}$ and so

$$
\begin{gathered}
\log \left(\frac{9}{2}\right)=\log \left(\frac{3^{2}}{2}\right)=\log 3^{2}-\log 2 \\
=2 \log 3-\log 2=2 y-x
\end{gathered}
$$

Also, $\frac{1}{6}=\frac{1}{3 \times 2}$ and so

$$
\begin{aligned}
& \log \left(\frac{1}{6}\right)=\log \left(\frac{1}{3 \times 2}\right)=\log 1-\log (3 \times 2) \\
& =\log 1-(\log 3+\log 2)=\log 1-\log 3-\log 2 \\
& =-y-x
\end{aligned}
$$

Note that these are true no matter which base b we use!

Exercises 7

7.1 Convert the following exponential equations into logarithmic form
(i) $2^{6}=64$
(ii) $121=11^{2}$
(iii) $27^{\frac{4}{3}}=81$
(iv) $12=\sqrt{144}$
7.2 Convert the following logarithmic equations into exponential form
(i) $\log _{5} 125=3$
(ii) $\log _{4} 64=3$
(iii) $\log _{7} x=3$
(iv) $\log _{4} 8=x$
7.3 Use the laws of logarithms to simplify the following
(i) $\log _{2} 9+\log _{2} 3$
(ii) $\log _{3} 7-\log _{3} 28$
(iii) $\log _{8} 16-1$
7.4 Let $\log _{4} 3=s$ and $\log _{4} 5=t$. Express in terms of s and t :
(i) $\log _{4} 75$
(ii) $\log _{4}\left(\frac{5}{9}\right)$

Problem set 7

7.1 Write the following logarithmic equations in exponential form.
(a) $\log _{10} 100=2$
(k) $\log _{2} 1=0$
(b) $\log _{10} 1000=3$
(l) $\log _{2} n=1024$
(c) $\log _{10} 1=0$
(m) $\log _{2} 64=6$
(d) $\log _{3} 9=2$
(n) $\log _{9} 81=2$
(e) $\log _{3} 1=0$
(o) $\log _{9}\left(\frac{1}{3}\right)=-\frac{1}{2}$
(f) $\log _{3}\left(\frac{1}{9}\right)=-2$
(p) $\log _{9} 3=\frac{1}{2}$
(g) $\log _{n} 256=2$
(q) $\log _{n} 2=2$
(h) $\log _{n} 14=3$
(i) $\log _{n} 62=4$
(r) $\log _{10} x=\frac{1}{2}$
(j) $\log _{2}\left(\frac{1}{8}\right)=-3$
(s) $\log _{5} 100=x$
(t) $\log _{x} 12=2$
7.2 Write the following exponential equations in logarithmic form.
(a) $2^{5}=32$
(g) $16^{1}=16$
(m) $10^{4}=10000$
(b) $2^{3}=8$
(h) $81^{-\frac{1}{2}}=\frac{1}{9}$
(n) $3^{x}=81$
(c) $2^{0}=1$
(i) $3^{-2}=\frac{1}{9}$
(o) $25^{x}=5$
(d) $8^{2}=64$
(j) $3^{-3}=\frac{1}{27}$
(p) $x^{5}=7$
(e) $8^{-1}=\frac{1}{8}$
(k) $3^{5}=243$
(q) $3^{x^{2}}=81$
(f) $8^{\frac{1}{3}}=2$
(l) $25^{\frac{1}{4}}=\sqrt{5}$
(r) $20^{3 x+1}=3$

Need help with your dissertation?

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info
7.3 Simplify the following using logarithm laws.
(a) $\log 5+\log 2$
(j) $\log _{5} 20+\log _{5} 4$
(b) $\log 8-\log 2$
(c) $3 \log 2-2 \log 3$
(d) $\log 4-\log 20$
(k) $\log \left(\frac{x^{2}}{\sqrt{y}}\right)+\log \left(x^{-2} y^{3}\right)$
(l) $2 \log \left(x^{\frac{1}{2}} y^{2}\right)-\log \left(y^{2} x^{-1}\right)$
(e) $\log 12-\log 3$
(m) $\frac{\log _{10} 27}{\log _{10} 9}$
(f) $\log 16-\log 4$
(n) $\log _{2} 8+\log _{2} 18-\log _{2} 3$
(g) $\log _{2} 12-\log _{2} 3$
(o) $\log _{2} 10-\log _{2} 5$
(h) $\log _{10} 25+\log _{10} 4$
(p) $\log \sqrt{x y}+\frac{1}{2} \log (x y)-$ $\log (x y)$
7.4 Let $x=\log 3$ and $y=\log 4$. Express the following in terms of x and y.
(a) $\log 12$
(b) $\log 36$
(e) $\log \left(\frac{3}{2}\right)$
(c) $\log \left(\frac{3}{4}\right)$
(f) $\log \left(\frac{3}{8}\right)$
(d) $\log 6$
(g) $\log 144$
7.5 Let $\log _{5} 2=x$ and $\log _{5} 3=y$. Express the following in terms of x and y.
(a) $\log _{5} 6$
(b) $\log _{5} 12$
(e) $\log _{5}\left(\frac{3}{2}\right)$
(c) $\log _{5}\left(\frac{3}{10}\right)$
(f) $\log _{5}\left(\frac{3}{8}\right)$
(d) $\log _{5} 60$
(g) $\log _{5} 30$

8. Equations involving logarithms and/or exponentials

In Chapter 2, we discussed how to solve equations which contain a single variable, and in Chapter 6 we extended these ideas to cover multiple variables and variables raised to powers.

Now we look at equations with variables as powers (these are called exponential equations), e.g.

$$
5\left(2^{x}\right)=20
$$

and equations involving logarithms, e.g.

$$
\log _{5} x-\log _{5} 8=2
$$

To solve these we need to be familiar with:

- The laws of logarithms and the laws of indices/exponentials
- Switching between exponential form and logarithm form:

$$
\underbrace{b^{y}=x}_{\text {exponential form }} \quad \underbrace{\log _{b} x=y}_{\text {logarithm form }}
$$

Equations involving logarithms

To solve these we can collect log terms and then switch to the exponential form.

A simple example: Solve $\log _{2}(3 x)=5$. Switch to exponential form:

$$
3 x=2^{5} \quad \Rightarrow \quad 3 x=32 \quad \Rightarrow \quad x=\frac{32}{3}
$$

A not so simple example: Solve $\log _{4} x-\log _{4}(x-1)=2$. Use the laws of logs to combine the terms on the left-hand side:

$$
\log _{4}\left(\frac{x}{x-1}\right)=2
$$

Now switch to exponential form:

$$
\frac{x}{x-1}=4^{2} \quad \Rightarrow \quad \frac{x}{x-1}=16
$$

Now cross-multiply to get

$$
x=16(x-1) \quad \Rightarrow \quad x=16 x-16 \quad \Rightarrow \quad 16=15 x \quad \Rightarrow \quad x=\frac{16}{15}
$$

Equations involving exponentials

To solve, make the base on each side of the equation the same.
A simple example: Solve $4^{x}=16$. Recall that $16=4^{2}$.Then

$$
4^{x}=4^{2}
$$

and since the base is the same on both sides of the equation then the indices must also be same. Hence $x=2$.

A not so simple example: Solve $2^{x} 2^{3 x-1}=8$. Use the laws of indices to combine the terms on the left-hand side:

$$
\begin{aligned}
& & 2^{x+3 x-1} & =8 & & \\
\Rightarrow & & 2^{4 x-1} & =2^{3} & & \text { (make the bases the same) } \\
\Rightarrow & & 4 x-1 & =3 & & \text { (equate the powers) } \\
& \Rightarrow & 4 x & =4 & & \Rightarrow \quad
\end{aligned} \quad x=1
$$

A harder example: Solve $\frac{5^{3 x}}{5^{2 x-1}}=10$ Use the laws of indices to simplify the left-hand side:

$$
5^{3 x-(2 x-1)}=10 \quad \Rightarrow \quad 5^{x+1}=10
$$

However, 10 can't be expressed as an easy power of 5 so switch to logarithm form:

$$
x+1=\log _{5} 10 \quad \Rightarrow \quad x=\log _{5} 10-1
$$

This is a mathematically exact answer but hard to visualise. We know that $\log _{5} 5=1$ and $\log _{5} 25=2$ so $\log _{5} 10$ lies somewhere on the numberline between 1 and 2 . This means that the numerical answer is between 0 and 1 . A calculator tells us that it is

$$
x \approx 0.43
$$

The symbol \approx means "is approximately equal to"

Exponential equations These are equations of the form

$$
y=a\left(b^{x}\right)
$$

for some value a and some positive base value b. We usually omit the brackets and write $y=a b^{x}$.

Example: The simplest example is

$$
y=2^{x}
$$

Exponentials grow very quickly. Lets look at $y=2^{x}$:

x	1	2	3	4	5	6	7	8	9	10	11	12
y	2	4	8	16	32	64	128	256	515	1,024	2,048	4,096

Exponentials with larger bases grow even faster. Example, $y=5^{x}$

$$
\begin{array}{c|cccccc}
\mathrm{x} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \mathrm{y} & 5 & 25 & 125 & 625 & 3,125 & 15,725
\end{array}
$$

Exponential models

In general, exponentials describe situations where every one unit increase in x changes y by a proportion of its current value. Applications of exponentials are many and varied:

- animal populations: the more animals there are in a population, the faster the population size increases.
- viral infections: the more people who are infected, the greater the spread of the infection will be.
- compound interest: the more money you have in an account, the greater the growth of your capital.

Since we are usually interested in quantities which change exponentially over time, we'll replace x with t (for time) and y with a suitable variable, e.g. P for population size at time t :

$$
P=a b^{t}
$$

These are all examples of exponential growth.

Initial population size

The initial population size is the size of the population when we started our investigation. We call this time $t=0$. We usually label the initial population size as P_{0}. If we put $t=0$ and $P=P_{0}$ in the equation $P=a b^{t}$ we get

$$
P_{0}=a \times b^{0} \quad \Rightarrow \quad P_{0}=a \times b^{0} \quad \Rightarrow \quad P_{0}=a \times 1 \quad \Rightarrow \quad P_{0}=a
$$

In other words, a is just the initial population size. For this reason we usually replace a with P_{0} and write

$$
P=P_{0} b^{t}
$$

The bases b tells us how quickly the population grows. The larger the value of b, the faster the population grows.

Example: Bacterial growth. If we start with $N_{0}=8$ bacteria and they double each generation, then after n generations we'll have

$$
N=8\left(2^{n}\right)
$$

Example: Compound interest. If we invest $A_{0}=\$ 1,000$ at a 5% interest rate compounded annually, then after t years we'll have

$$
A=1000\left(1+\frac{5}{100}\right)^{t}
$$

A more involved example: A bacterial colony numbered 3 million at the start of a study (time $t=0$), and after two weeks numbers 12 million. Assuming exponential growth, predict when the bacteria population will exceed 150 million.

Using the units millions of bacteria for the colony size P and weeks for time t, we have the exponential model

$$
P=3 b^{t}
$$

We know that at $t=2$ weeks we have 12 million bacteria, so

$$
12=3 b^{2}
$$

and from this we can find the growth rate of the bacteria:

$$
12=3 b^{2} \quad \Rightarrow \quad \frac{12}{3}=b^{2} \Rightarrow b^{2}=4 \quad \Rightarrow \quad b=2
$$

Hence the growth model is

$$
P=3\left(2^{t}\right)
$$

Note that we need the brackets here because without them it would be 32 to the power of t. To find the time t when the population reaches 150 million bacteria, we have to solve the exponential equation

$$
\begin{aligned}
150 & =3\left(2^{t}\right) \\
\Rightarrow \quad 50 & =2^{t} \\
\Rightarrow \quad \log _{2} 50 & =t
\end{aligned}
$$

Note that $b=-2$ is also a mathematical solution but it makes no biological sense, so we ignore it

A calculator gives us the value $t=5.64$ weeks, that is, about 5 weeks and ' 4 or 5' days, after the beginning of the study.

Exponential decay

We call exponential functions where the population gets smaller over time exponential decay. For every one unit increase in t, the population reduces by a proportion of the current value of P.

In such situations the base b is a fraction between 0 and 1. Applications of exponential decay models are also varied:

- population decay (extinction): as the population gets smaller, fewer animals die.
- radioactive decay: the "half life" of a radioactive substance is the time it takes the radioactivity to halve. It takes another half-life to halve again (ie. reduce to one quarter of the original level).
- depreciation of assets: a new car reduces in value rapidly just after being bought but doesn't change much after a few years.

Example: A pigeon population initially has 1000 members, but two years later it has declined to 250 members. Assuming the exponential model $P=P_{0} b^{t}$ with t measured in years, after how many more years will the pigeon population reach 100 ?

Since the initial population was 1000 , then $P_{0}=1000$ and so

$$
P=1000 b^{t}
$$

After two years it has declined to $P=250$, that is,

$$
250=1000 b^{2} \quad \Rightarrow \quad b^{2}=\frac{250}{1000}=\frac{1}{4} \quad \Rightarrow \quad b=\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}
$$

We wish to know when $P=100$. That is,

$$
100=1000\left(\frac{1}{2}\right)^{t} \Rightarrow\left(\frac{1}{2}\right)^{t}=\frac{100}{1000}=\frac{1}{10} \quad \Rightarrow \quad t=\log _{\frac{1}{2}} \frac{1}{10}
$$

A calculator gives us the value $t=3.32$ years, that is, about 3 years and 4 months, after the beginning of the study.

A very special growth rate
To get around using logarithms with different bases for every different growth rate, we tend to use an agreed common base (and adjust the power to get different growth rates instead).

For many good mathematical reasons, this common base number is $2.718281828459045 \ldots$ It arises naturally in many varied branches of Mathematics. This number is so widely used (and annoying to write!) that it gets its own letter:

$$
e=2.718281828459045 \ldots
$$

where the letter e is in honour of Swiss mathematician Leonhard Euler (1707-1783).

The natural logarithm

We use logarithms with base e so much that they get their own special notation:

$$
" \log _{e} " \text { is equivalent to } " \ln "
$$

The " 1 " stands for "logarithm" and the " n " stands for "natural" (since the base e occurs naturally in so many settings). An expression like

$$
\frac{\log _{e} 250}{\log _{e} 15} \text { is equivalent to } \frac{\ln 250}{\ln 15}
$$

Some examples of switching between exp and log forms:

$$
\begin{aligned}
& e^{x}=4 \quad \Rightarrow \quad x=\ln 4 \\
& \ln y=7 \quad \Rightarrow \quad y=e^{7}
\end{aligned}
$$

TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk

> SUBSCR:BE - to the future

The index and log laws for e and \ln

The laws of indices and laws of logarithms still hold for e and \ln :

$$
\begin{array}{cc}
e^{s} e^{t}=e^{s+t} & \frac{e^{s}}{e^{t}}=e^{s-t} \\
\left(e^{s}\right)^{t}=e^{s t} & e^{-s}=\frac{1}{e^{s}} \\
e^{0}=1 & e^{1}=e \\
\ln (s t)=\ln s+\ln t & \ln \left(\frac{s}{t}\right)=\ln s-\ln t \\
& \ln \left(s^{r}\right)=r \ln s
\end{array}
$$

$$
\ln 1=0 \quad \ln e=1
$$

Solving equations The method of solving exponential and logarithmic equations is the same, except that now we take logarithms with the base e (that is, natural logarithms).

Examples
(i) $e^{2 x}=1 \quad \Rightarrow \quad 2 x=\ln 1 \quad \Rightarrow \quad 2 x=0 \quad \Rightarrow \quad x=\frac{0}{2}=0$
(ii) $\ln x+2 \ln 2=\ln 16 \Rightarrow \ln x+\ln 2^{2}=\ln 16$
$\Rightarrow \ln x+\ln 4=\ln 16 \Rightarrow \ln (4 x)=\ln 16 \Rightarrow 4 x=16 \Rightarrow x=4$

$$
\text { (iii) } \begin{gathered}
\frac{e^{3 x}}{e^{4}}=e^{2} \quad \Rightarrow \quad e^{3 x-4}=e^{2} \quad \Rightarrow \quad 3 x-4=2 \\
\Rightarrow \quad 3 x=6 \quad \Rightarrow \quad x=2
\end{gathered}
$$

Exponential models with base e
In this new format, our growth model is

$$
P=P_{0} e^{k t}
$$

where k is used to set the required growth rate.
The bacterial colony example again: The model is now

$$
P=3 e^{k t}
$$

After two weeks its size is 12 million so

$$
12=3 e^{2 k} \Rightarrow 4=e^{2 k} \Rightarrow \ln 4=2 k \quad \Rightarrow \quad k=\frac{\ln 4}{2}
$$

In this case we can simplify this slightly:

$$
k=\frac{\ln \left(2^{2}\right)}{2}=\frac{\not 2 \ln 2}{\not 2} \Rightarrow k=\ln 2
$$

A tip: don't replace k with this expression in the growth model until it is

To find the time t when the population reaches 150 million bacteria we have to solve the exponential equation

$$
\begin{aligned}
150 & =3 e^{k t} \\
\Rightarrow \quad e^{k t} & =\frac{150}{3}=50 \\
\Rightarrow \quad k t & =\ln 50 \\
\Rightarrow \quad t & =\frac{\ln 50}{k}
\end{aligned}
$$

needed
and since $k=\ln 2$ then

$$
t=\frac{\ln 50}{\ln 2}
$$

Recall that our previous answer was

$$
t=\log _{2} 50
$$

A calculator says that they are numerically the same answer:

$$
t=5.64
$$

Which model to use?

If we wish to describe exponential growth we use

$$
P=P_{0} b^{t} \quad b>1
$$

or

$$
P=P_{0} e^{k t} \quad k>0
$$

If we wish to describe exponential decay we use

$$
P=P_{0} b^{t} \quad b \text { fraction between } 0 \text { and } 1
$$

or

$$
P=P_{0} e^{-k t} \quad k>0
$$

Note that k is always positive. It's the sign in the exponent that tells us if it's growth or decay

Another pigeon problem: A population of pigeons was measured to be 500 in 2012, but had reduced to 300 by 2015. Assuming the population law $P=P_{0} e^{-k t}$, when will the population reach 100 ?

Let t be time in years, starting at $t=0$ in 2012. Now $P_{0}=500$ and so

$$
P=500 e^{-k t}
$$

Also, 2015 represents $t=3$, so we have $P=300$ and hence

$$
300=500 e^{-3 k} \Rightarrow e^{-3 k}=\frac{300}{500} \Rightarrow e^{-3 k}=\frac{3}{5}
$$

Now 'take logs of both sides' (that is, convert to log form):

$$
\Rightarrow \quad-3 k=\ln \left(\frac{3}{5}\right) \quad \Rightarrow \quad k=-\frac{\ln \left(\frac{3}{5}\right)}{3}
$$

A calculator tells us that this is about $k=0.17$ (that is, the population is decining at about 17% per year),

To find the time t when the population reaches 100 we solve

$$
100=500 e^{-k t} \quad \Rightarrow \quad \frac{1}{5}=e^{-k t}
$$

and hence

$$
-k t=\ln \left(\frac{1}{5}\right) \quad \Rightarrow \quad t=\ln \left(\frac{1}{5}\right) \div(-k)
$$

From before we have that $-k=\frac{\ln \left(\frac{3}{5}\right)}{3}$ and hence

$$
t=\frac{\ln \left(\frac{1}{5}\right)}{1} \div \frac{\ln \left(\frac{3}{5}\right)}{3}=\frac{\ln \left(\frac{1}{5}\right)}{1} \times \frac{3}{\ln \left(\frac{3}{5}\right)}
$$

That is,

$$
t=\frac{3 \ln \left(\frac{1}{5}\right)}{\ln \left(\frac{3}{5}\right)}
$$

A calculator tells us that this is about 9.5 years, so roughly the year 2021. It depends what month the measurements were done.

Exercises 8

8.1 Solve the following equations
(i) $\log _{5} x+\log _{5} 8=2$
(ii) $2^{2 x+1}=\frac{1}{32}$
(iii) $\quad\left(3^{2 x-1}\right)^{2}=27$
8.2 Simplify the following
(i) $\ln 27-\ln 3+\ln 4$
(ii) $\frac{16 e^{5}}{2 e^{3}}$
8.3 Solve the following equations
(i) $\ln (2 x)+\ln 6=\ln (4 x)$
(ii) $\frac{e^{5 x+1}}{e^{3 x-2}}=e^{4}$
8.4 A fish population numbered 20 at the start of a study (start time $t=0$) and after five years numbered 480. Assuming that the population law $P=P_{0} e^{k t}$ predict when the population will exceed 1,000.
8.5 An industrial machine which cost $\$ 7000$ in 2010 is valued at $\$ 1000$ in 2015. Assuming the decay law $P=P_{0} e^{-k t}$, when will the machine be worth $\$ 700$?

Problem set 8

8.1 Solve the following exponential equations for the unknown.
(a) $2^{x}=64$
(f) $10^{x+1}=\frac{1}{100}$
(j) $3^{x+1}=10$
(b) $4^{2} x=128$
(g) $3^{x^{3}}=81$
(k) $9^{2 x+1}=50$
(c) $9^{x}=27$
(h) $4^{\frac{x}{2}-1}=128$
(l) $7^{x-1}=4$
(d) $5^{-x}=125$
(i) $4^{x}=7$
(m) $2^{\frac{x}{2}+1}=64$
(e) $8^{2 x}=32$
(n) $5^{2 x-1}=20$
8.2 Solve the following logarithmic equations for the unknown.
(a) $\log _{5} n=4$
(i) $x=\log _{4} 72-\log _{4} 9$
(b) $\log _{8} 4=n$
(j) $x=\log _{7} 98-\log _{7} 2$
(c) $\log _{2} n=\frac{1}{3}$
(k) $\log _{5} x-\log _{5} 7=\log _{5} 6$
(d) $\log _{n}\left(\frac{1}{64}\right)=-2$
(l) $\log _{3} 63-\log _{3}(7 x)=\log _{3} 2$
(e) $\log _{\frac{1}{3}} n=3$
(m) $\log _{5} 4+\log _{5}(2 x-3)=2$
(f) $\log _{6} 6=n$
(n) $\log _{2} 2+\log _{2}(x+2)-$ $\log _{2}(3 x-5)=3$
(g) $\log _{n} 8=\frac{3}{4}$
(o) $\log _{2} 4+\log _{2}(x-1)-$
(h) $\log _{4} 3+\log _{4}(x+2)=2$ $\log _{2}(3 x-4)=2$
8.3 In each of the scientific formulae below, isolate the indicated variable.
(a) pH . Using p as the symbol for pH and H for $\left[\mathrm{H}^{+}\right]$

$$
p=-\log _{10} H \quad \text { find } H
$$

(b) Arrhenius equation

$$
K=A e^{\frac{E}{R T}} \quad \text { find } T
$$

(c) Relationship of rate constants at two different temperatures

$$
\log _{e}\left(\frac{k}{K}\right)=\frac{E}{R}\left(\frac{t-T}{t T}\right) \quad \text { find } K
$$

(d) Benford's Law

$$
P=\log _{10}\left(\frac{d+1}{d}\right) \quad \text { find } d
$$

8.4 A population starts with 1000 individuals and doubles in size every decade.
(a) Use the growth model $N=N_{0} b^{t}$ to find how long will it take for the population to reach 500,000 .
(b) Repeat part (a) using the growth model $N=N_{0} e^{k t}$.
8.5 An endangered species numbered 7,200 at the start of the year 2003 and at the start of 2014 numbered 800. Assuming the population follows the decay law $N=N_{0} e^{-k t}$ predict in what year the population will fall below 120 .
8.6 According to Wikipedia the number of articles on their site grew exponentially between October 2002 and mid 2006. There were 80, 000 articles in October 2002 and 166, 000 in October 2003. When does the model predict that Wikipedia reached $1,500,000$ articles? Use the growth model $N=N_{0} e^{k t}$.)
8.7 DDT is a pesticide that was very effective at controlling marlariacarrying mosquitos until its toxic effects on animals (including cancer in humans) were established. Also, it remains active for many years in the environment because it decays exponentially with a half-life of 15 years. How long does it take for 100 grams of DDT to decay down to 1 gram? Use model $A=A_{0} e^{-k t}$.

9. Quadratic equations

In Chapter 4 we looked at quadratic expressions:

$$
a x^{2}+b x+c \quad \text { with } a \neq 0
$$

For example: $\quad 2 x^{2}+x-6$

$$
x^{2}-3 x+4
$$

Quadratic equations are equations of the kind

$$
\begin{array}{cc}
x^{2}-4 x+3=0 & 2 x^{2}+7 x-4=0 \\
5 x^{2}-x-2=0 & -x^{2}-20 x+40=0
\end{array}
$$

In other words, a quadratic equation is a quadratic expression equal to 0 . The format $a x^{2}+b x+c=0$ is called the standard form of a quadratic equation.

Solving quadratic equations

If the left hand side can be factorized then the solution is easy:

$$
x^{2}-4 x+3=0
$$

We can factorize the left-hand side:

$$
(x-1)(x-3)=0
$$

We know that

$$
0 \times \text { anything }=0
$$

so, if one of the factors above is o, the entire left-hand side is o and we have a solution to the equation. Hence

$$
x-1=0 \quad \text { or } \quad x-3=0
$$

and so

$$
x=1 \quad \text { or } \quad x=3
$$

As we can see, there can be more than one solution to a quadratic equation. We'll see later there can be zero, one or two solutions.

Some examples

Example. $x^{2}-x-6=0$. Factorize to get

$$
(x-3)(x+2)=0 \Rightarrow x=3 \text { or } x=-2
$$

Example. $x^{2}-9=0$. Factorize to get

$$
(x-3)(x+3)=0 \Rightarrow x=3 \text { or } x=-3
$$

Example. $t(t+2)-1=3-t$. Write this in standard form:
$t(t+2)-1=3-t \quad \Rightarrow \quad t^{2}+2 t-1=3-t \quad \Rightarrow \quad t^{2}+3 t-4=0$
Now factorize to get

$$
(t+4)(t-1)=0 \quad \Rightarrow \quad t=-4 \quad \text { or } \quad t=1
$$

Example. $x^{2}+4 x+4=0$. Factorize to get

$$
x^{2}-4 x+4=0 \quad \Rightarrow \quad(x-2)(x-2)=0 \quad \Rightarrow \quad x=2
$$

We see that there is only one solution in this case.

Modelling using quadratic equations

Example: The product of two consecutive positive even numbers is 48 . Find the numbers.

As with earlier problems, we follow some general steps:
Step 1: Define an appropriate variable: Let x be the smaller of the two. Then the other one is $x+2$.

Step 2: Form a quadratic equation: The product of the two is then $x(x+2)$ and this must be 48 so

$$
x(x+2)=48 \quad \Rightarrow \quad x^{2}+2 x-48=0
$$

Step 3: Solve the quadratic equation:

$$
x^{2}+2 x-48=(x+8)(x-6)=0 \quad \Rightarrow \quad x=-8 \quad \text { or } \quad x=6
$$

Step 4: Interpret the solution(s): The numbers must be positive so $x=6$ and hence the numbers are 6 and $6+2=8$.

Example: A framer at a photo gallery wants to frame a print with a border of uniform width all around the print. To make it pleasing to the eye, the area of the border should equal the area of the print. If the print measures 60 cm by 40 cm , how wide should the

Check: $6 \times 8=48 \quad \checkmark$

It's always a good idea to draw a sketch border be?

where $x=$ is the width of the pathway. Note that the area of the picture is

$$
A_{\text {picture }}=60 \mathrm{~cm} \times 40 \mathrm{~cm}=2400 \mathrm{~cm}^{2}
$$

Observe is that the lengths of the sides of the frame are

$$
40+2 x \mathrm{~cm} \quad \text { and } \quad 60+2 x \mathrm{~cm}
$$

and hence the area of the frame is

$$
A_{\text {frame }}=(40+2 x)(60+2 x) \mathrm{cm}^{2}
$$

We are told that $A_{\text {frame }}=2 A_{\text {picture }}$. That is,

$$
\begin{aligned}
(40+2 x)(60+2 x) & =4800 \\
\Rightarrow \quad 2400+80 x+120 x+4 x^{2} & =4800 \\
\Rightarrow \quad 4 x^{2}+200 x-2400 & =0 \\
\Rightarrow \quad x^{2}+50 x-600 & =0 \\
\Rightarrow \quad(x+60)(x-10) & =0 \\
\Rightarrow \quad x=-60 \quad \text { or } \quad x=10 & =0
\end{aligned}
$$

The answer must be positive so $x=10$ and hence the frame should be 60 cm by 80 cm .

Factorization of quadratics revisited

In many cases it's very difficult to determine the factorization of a quadratic expression. This is because it can involve square roots!

Some examples
(a) $x^{2}-7=(x-A)(x-B)$ where

$$
A=\sqrt{7} \quad \text { and } \quad B=-\sqrt{7}
$$

(b) $x^{2}-2 x-1=(x-A)(x-B)$ where

$$
A=1+\sqrt{2} \quad \text { and } \quad B=1-\sqrt{2}
$$

(c) $x^{2}+5 x+3=(x-A)(x-B)$ where

$$
A=\frac{-5+\sqrt{13}}{2} \quad \text { and } \quad B=\frac{-5-\sqrt{13}}{2}
$$

This e-book is made with SetaPDF

The Quadratic Formula

There is a general formula that will give us the factorization. If

$$
a x^{2}+b x+c=a(x-A)(x-B) \quad a \neq 0
$$

then

$$
A=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad B=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Since A and B have very similar structure, we write

$$
A, B=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(The symbol " \pm " means "plus or minus".) The plus expression corresponds to A and the minus expression corresponds to B.

The values A and B are called the roots of the quadratic equation, even if they turn out not to involve square roots.

Let's check that the formula works on a simple example:

$$
x^{2}-3 x+2=(x-2)(x-1)
$$

To use the quadratic formula, first identify the coefficients:

$$
a=1 \quad b=-3 \quad c=2
$$

The quadratic formula is
Hence $x^{2}-3 x+2=(x-A)(x-B)$ where
$A, B=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
A, B=\frac{3 \pm \sqrt{9-8}}{2}=\frac{3 \pm \sqrt{1}}{2}=\frac{3 \pm 1}{2}=\frac{4}{2}, \frac{2}{2}=2,1
$$

Hence $A=2$ and $B=1$ are the roots of the quadratic equation, so

$$
x^{2}-3 x+2=(x-2)(x-1)
$$

Example: Solve $x^{2}-2 x-1=0$. We have

$$
a=1 \quad b=-2 \quad c=-1
$$

First calculate

$$
b^{2}-4 a c=(-2)^{2}-4 \times 1 \times(-1)=4+4=8
$$

and then

$$
A, B=\frac{2 \pm \sqrt{8}}{2}=\frac{2 \pm 2 \sqrt{2}}{2}=\frac{\not 2}{\not 2} \pm \frac{2 \sqrt{2}}{2}=1 \pm \sqrt{2}
$$

where we've used $\sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \sqrt{2}=2 \sqrt{2}$. That is, the roots of the quadratic equation $x^{2}-2 x-1=0$ are

$$
A=1+\sqrt{2} \quad \text { and } B=1-\sqrt{2}
$$

Example: Solve $3 x^{2}+6 x-4=0$. We have

$$
a=3 \quad b=6 \quad c=-4
$$

First calculate

$$
b^{2}-4 a c=6^{2}-4 \times 3 \times(-4)=36+48=84
$$

and then

$$
A, B=\frac{-6 \pm \sqrt{84}}{6}=-\frac{6}{6} \pm \frac{2 \sqrt{21}}{6}=-1 \pm \frac{\sqrt{21}}{3}
$$

where we've used $\sqrt{84}=\sqrt{4 \times 21}=\sqrt{4} \sqrt{21}=2 \sqrt{21}$. That is, the roots of the quadratic equation $3 x^{2}+6 x-4=0$ are

$$
A=-1+\frac{\sqrt{21}}{3} \quad \text { and } \quad B=-1-\frac{\sqrt{21}}{3}
$$

The number of solutions

This depends on the value of

$$
b^{2}-4 a c
$$

which is called the discriminant of the quadratic equation.

- If the discriminant is positive, we have two solutions, one for the positive component and one for the negative.
- If the discriminant is zero, then the solutions are

$$
A, B=\frac{-b \pm 0}{2 a} \quad \Rightarrow \quad A \text { and } B \text { both }=\frac{-b}{2 a}
$$

We have one solution.

- If the discriminant is negative, then we can't take its square root and hence A and B are undefined. In other words, we have no solutions to the equation.

The discriminant of the quadratic equation $a x^{2}+b x+c=0$ is given its own symbol:

$$
\Delta=b^{2}-4 a c
$$

Summary:

- If $\Delta>0$ then there are two distinct solutions
- If $\Delta=0$ then there is only one solution
- If $\Delta<0$ then there are no solutions

Example: The discriminant of the quadratic equation

$$
2 x^{2}+5 x+4=0
$$

is

$$
\Delta=b^{2}-4 a c=5^{2}-4 \times 2 \times 4=25-32=-7
$$

and hence there is no solution to the quadratic equation.

An alternative form for quadratics

Instead of the standard form $a x^{2}+b x+c$, there is an alternative form:

$$
a(x+\alpha)^{2}+\beta
$$

where the numbers α and β (the Greek letters alpha and beta) are related to a, b and c. To convert from the alternative form to the standard form is easy. We just expand the bracket and tidy up.

Example:

$$
\begin{aligned}
& 2(x+3)^{2}+5 \\
= & 2(x+3)(x+3)+5 \\
= & 2\left(x^{2}+6 x+9\right)+5 \\
= & 2 x^{2}+12 x+23
\end{aligned}
$$

Completing the square

Converting from the standard to the alternative form requires the following process. It is called completing the square and the aim is to re-arrange a quadratic in such a way as to achive our objective.

If the quadratic is of the form $x^{2}+b x+c$ there are three steps:
(1) halve b. Call it α.
(2) square α and both add and subtract it from the quadratic
(3) write this quadratic in the form $(x+\alpha)^{2}+\beta$

If the quadratic is of the form $a x^{2}+b x+c$ there is a preliminary step of factoring out a :

$$
a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)
$$

Free eBook on Learning \& Development

By the Chief Learning Officer of McKinsey

Download Now

 d

Examples

(a) $x^{2}+6 x+14$. Half of 6 is 3 and the square of this is 9 so write

$$
x^{2}+6 x+14=\left(x^{2}+6 x+9\right)+(14-9)
$$

and observe that the first three terms are the expansion of $(x+$ $3)^{2}$. So

$$
x^{2}+6 x+14=(x+3)^{2}+5
$$

(b) $x^{2}-10 x+12$. Half of -10 is -5 and the square of this is 25 so write

$$
x^{2}-10 x+12=\left(x^{2}-10 x+25\right)+(12-25)
$$

and observe that the first three terms are the expansion of $(x-5)^{2}$. So

$$
x^{2}-10 x+12=(x-5)^{2}-13
$$

Exercises 9

9.1 Solve the following quadratic equations
(i) $(y-2)^{2}=-9 y$
(ii) $2(x-3)^{2}=6-5 x+x^{2}$
(iii) $(2 x+2)^{2}-(x-5)^{2}=2 x(x+7)$

Hint: You'll first have to write them in standard form
9.2 Solve the following quadratic equations
(i) $x^{2}+2 x-4=0$
(ii) $11 x^{2}-10 x-1=0$
(iii) $(x+2)(x+3)=-x^{2}-2 x+1$
9.3 How many solutions do each of the following quadratic equations have?
(i) $x^{2}-4 x+2=0$
(ii) $x^{2}+2 x+7=0$
(iii) $4 x^{2}+4 x+1=0$
9.4 Complete the square for the following quadratics
(i) $x^{2}+6 x-4$
(ii) $x^{2}-8 x+20$
(iii) $x^{2}+18 x-12$
(iv) $x^{2}-10 x$

Problem set 9

9.1 Solve the following equations by factorising.
(a) $x^{2}-3 x=0$
(f) $(x-2)(x+1)=4$
(b) $x^{2}-5 x+4=0$
(c) $x^{2}-5 x-14=0$
(g) $x+\frac{15}{x}=8$
(d) $x^{2}-x-42=0$
(e) $3 x^{2}-6 x=-3$
(h) $x=\frac{5}{x-4}$
9.2 Solve the following equations by using the quadratic formula.
(a) $x^{2}-5 x+4=0$
(f) $\frac{3}{2} x^{2}+4 x+1=0$
(b) $3 x^{2}+7 x+2=0$
(g) $x^{2}+x-1=0$
(c) $x^{2}+4 x+1=0$
(h) $2 x^{2}-2 x-3=0$
(d) $-2 x^{2}+3 x-1=0$
(i) $2-3 x^{2}=0$
9.3 Determine the number of solutions for the following equations.
(a) $x^{2}+3 x+1=0$
(e) $\frac{3}{2} x^{2}+4 x+6=0$
(b) $3 x^{2}+4 x+2=0$
(c) $2 x^{2}+3 x+5=0$
(f) $x^{2}+5 x-1=0$
(d) $2 x^{2}+4 x+2=0$
(g) $4 x^{2}-5 x+4=0$
9.4 Complete the square for the following quadratic expressions
(a) $x^{2}+2 x+3$
(d) $x^{2}-6 x$
(b) $x^{2}-4 x-8$
(e) $x^{2}+12 x+36$
(c) $x^{2}+10 x+7$
(f) $x^{2}-20 x-1$
9.5 The product of two consecutive odd numbers is 99 . Find the two numbers.
9.6 One positive number exceeds three times another positive number by 5 . The product of the numbers is 68 . Find the numbers.
9.7 A group of zoologists was studying the effect on the body weight of rats of varying the amount of yeast in their diet. By changing the percentage P of yeast in the diet, the average weight gain, G (in grams), over time was estimated to be

$$
G=-200 P^{2}+200 P+20
$$

What percentage of yeast would you expect to give an average weight gain of 70 grams?
9.8 You wish to make a square-bottomed box with a height of three cm and a volume of $75 \mathrm{~cm}^{3}$. You will take a piece of square cardboard, cut a three cm square from each corner and fold up the sides. What sized piece of cardboard do you need?
9.9 A rectangular park has dimensions 40 metres by 50 metres. A pathway is to be added all around the park which will increase the total area to $3000 \mathrm{~m}^{2}$. How wide is the pathway going to be?

Note that $\sqrt{25+12 \times 68}=29$

Hint: it might help to draw a picture.

Hint: it might help to draw a picture.

10. Functions and graphs

So far we have mostly examined ways to find specific values of variables from equations. Now we will explore mathematical relationships between variables. For example,

- The cost of a taxi ride is related to how far you travel.
- The amount of interest earned on a deposit is related to how long you leave it in the bank.
- The distance travelled by a ball is related to how hard you throw it.

An example: a (simplified) taxi fare costs $\$ 2$ per kilometre (km) plus a $\$ 4$ "flagfall".

If you travel 5 km , the taxi ride costs $\$ 4+\$ 2 \times 5=\$ 14$
If you travel 10 km , the taxi ride costs $\$ 4+\$ 2 \times 10=\$ 24$
If you travel $x \mathrm{~km}$, the taxi ride costs $\$ 4+2 x$
If we define y to be the cost of the taxi ride, we can just write

$$
y=2 x+4
$$

We say that y depends on x or " y is a function of x ":

$$
y=f(x) \quad \text { where in this case } \quad f(x)=2 x+4
$$

For example, when $x=7$, we have $y=f(7)=2 \times 7+4=18$. In other words, a 7 km ride costs $\$ 18$.

Using function notation $f(x)$ to describe a variable like y is a useful way to make clear that the value of y is determined by the value another variable x via an algebraic expression.

Note that " $f(x)$ " does not stand for " f multiplied by $x^{\prime \prime}$

Some examples:

$$
\begin{aligned}
y=f(x) & =x^{2}+1 \\
f(2) & =2^{2}+1=4+1=5 \\
f(0)= & 0^{2}+1=0+1=1 \\
f(-1)= & (-1)^{2}+1=1+1=2 \\
y= & g(x)=2^{x} \\
& g(1)=2^{1}=2 \\
& g(2)=2^{2}=4 \\
& g\left(\frac{1}{2}\right)=2^{\frac{1}{2}}=\sqrt{2}
\end{aligned}
$$

Graphical representation of functions

It's useful to get a visual sense of how a function (y or $f(x)$) changes as x changes. Since two variables are involved, draw two number lines at right angles (through the 0 point on each line):

These number lines are called the " y-axis" (vertical) and the " x-axis" (horizontal).
To visually examine the behaviour of a function, say

$$
y=2 x-3
$$

start by finding out the value of y for different values of x.

$$
\begin{array}{ccc}
x=2 & \text { then } & y=2(2)-3=1 \\
x=1 & \text { then } & y=2(1)-3=-1 \\
x=3 & \text { then } & y=2(3)-3=3 \\
x=4 & \text { then } & y=2(4)-3=5 \\
x=0 & \text { then } & y=2(0)-3=-3 \\
x=-1 & \text { then } & y=2(-1)-3=-5
\end{array}
$$

Now represent them on the picture by cross-referencing points on the x-axis with their corresponding points on the y-axis:

If we tried x-values between the whole numbers, the plotted points would follow the same pattern so we can join them up into a smooth line:

We have now plotted a graph of the function $y=2 x-3$.

Discover the truth at www.deloitte.ca/careers
Deloitte.
© Deloitte \& Touche LLP and affiliated entities.

Co-ordinates

Rather than writing: when $x=1, y=-1$ we use co-ordinates:

$$
(1,-1)
$$

These are like a map reference and the x-value is always given first. To signify a point of interest we can give it a label:

Example

To plot the graph of $y=4-x$ by proceeding at follows:

- Calculate some co-ordinates, that is, find some points on the graph
- Plot the points on a set of axes
- Draw a continuous line which includes all of the points

Here is the graph of the function $y=4-x$

Linear functions

Functions $y=2 x-3$ and $y=4-x$ are called linear functions because their graphs are straight lines. Such functions are common and easy to interpret. They have the general form

$$
y=m x+c
$$

where m and c are numbers.
If we understand how m and c relate to the straight line graph they produce then we can draw the graph without plotting lots of individual points. For example,

$$
x=0 \quad \Rightarrow \quad y=m 0+c \quad \Rightarrow \quad y=c
$$

Note that the co-ordinate $(0, c)$ is on the y-axis. This is the place where the line cuts the y-axis, and for this reason it is called the y-intercept.

The y-intercepts of $y=4-x$ and $y=2 x-3$ are:

Note that we usually don't list all of the numbers on the numberline. Just enough for us to get an idea of the scale of things

The gradient

This is defined as the change in the y-values between two points on the line divided by the change in their x-values.

Example: $y=2 x-3$

$$
\begin{aligned}
& \text { If } x=2 \text { then we have } y=1 \\
& \text { If } x=3 \text { then we have } y=3
\end{aligned}
$$

So y increases by 2 while x increases by 1 , so the gradient is

$$
\frac{\text { change in } y \text {-value }}{\text { change in } x \text {-value }}=\frac{2}{1}=2
$$

The gradient is the same if you use different points:

$$
\begin{array}{r}
\text { If } x=-1 \text { then we have } y=-5 \\
\text { If } x=4 \text { then we have } y=5
\end{array}
$$

So y increases by 10 while x increases by 5 , so the gradient is

$$
\frac{\text { change in } y \text {-value }}{\text { change in } x \text {-value }}=\frac{10}{5}=2
$$

Here is the graph of $y=2 x-3$ showing its y-intercept and indicating its gradient.

Here is the graph of $y=4-x$ showing its y-intercept and indicating its gradient.

We will turn your CV into an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you.

Send us your CV on www.employerforlife.com

We observe that the gradient is the value of m in $y=m x+c$. A useful way to understand the gradient is to think of it as the change in y for every one unit increase in x. This is useful for describing linear relationships in context.

Example: The taxi ride (from last time). The equation that described the taxi fare was

$$
y=2 x+4
$$

where

$$
\begin{gathered}
x=\text { distance travelled }(\mathrm{km}) \\
y=\operatorname{cost}(\$)
\end{gathered}
$$

The gradient of 2 represents the change in cost for every 1 km travelled. In other words, $\$ 2$ per km.

Physical meaning of the gradient

The larger the value of m, the steeper the line. A positive gradient means going uphill left-to-right, and a negative gradient means going downhill left-to-right.

Horizontal lines

What is the equation of this horizontal line?

Hint: What is the gradient, and what is the y-intercept?
The gradient is zero, and the y-intercept is 3 , so the equation is simply $y=3$. In general, the horizontal line passing through $(0, c)$ has equation

$$
y=c
$$

A special case is the x-axis. It has equation $y=0$.

Vertical lines

The only lines which don't fit the $y=m x+c$ format are vertical:

The equation of this line is $x=2$. In general, the vertical line passing through $(a, 0)$ has equation

$$
x=a
$$

A special case is the y-axis. It has equation $x=0$.
The x-intercept
This is where the line crosses the x-axis. That is, the place on the line where $y=0$.

Example: $y=-2 x+6$. We immediately observe that the gradient is $m=-2$ and the y-intercept is $c=6$. The x-intercept is where $y=0$ so we solve

$$
0=-2 x+6 \quad \Rightarrow \quad 2 x=6 \quad \Rightarrow \quad x=3
$$

In general, the quick way to plot an accurate graph of $y=m x+c$ is to find both intercepts, mark them on the axes and draw the straight line which contains them. We call this a sketch of the graph.

Finding the equation of a line

We can work out the equation of a line given sufficient information.
Example: Find the equation of the line with gradient 2 which contains the point $(4,7)$. We know that we are working with a line $y=m x+c$ and we are told that $m=2$, so

$$
y=2 x+c
$$

We also know that when $x=4$ the equation gives $y=7$. Substitute these x and y values into the equation and solve for c :

$$
\begin{aligned}
7 & =2(4)+c \\
\Rightarrow \quad 7 & =8+c \\
\Rightarrow \quad 7-8 & =c \\
\Rightarrow \quad c & =-1
\end{aligned}
$$

Hence, the equation of the straight line is $y=2 x-1$
Example: The equation of the line containing $(2,5)$ and $(5,11)$.
Method 1: Substituting the two co-ordinates into the equation of a line $y=m x+c$ gives us a pair of simultaneous equations to be solved for m and c :

$$
\begin{align*}
& (5,11) \quad \Rightarrow \quad 11=m \times 5+c \tag{1}\\
& (2,5) \quad \Rightarrow \quad \begin{array}{l}
5=m \times 2+c \\
6=3 m
\end{array} \tag{2}
\end{align*}
$$

$$
\text { So } \quad m=\frac{6}{3}=2
$$

Substituting $m=2$ into say equation (2) gives

$$
\begin{aligned}
& \\
5 & =2(2)+c \\
\Rightarrow \quad 5 & =4+c \\
\Rightarrow \quad c & =1
\end{aligned}
$$

Hence, the equation is $y=2 x+1$.

Method 2: Use the definition of gradient to find m :

$$
m=\frac{\text { change in } y \text { value }}{\text { change in } x \text { value }}=\frac{11-5}{5-2}=\frac{6}{3}=2
$$

So the equation (so far) is $y=2 x+c$. To find c, substitute one of the points, say $(2,5)$ into this equation and solve for c :

$$
5=2(2)+c \Rightarrow 5=4+c \Rightarrow 5-4=c \Rightarrow c=1
$$

Hence, the equation of the straight line is $y=2 x+1$

Intersecting lines

We often wish to find the co-ordinates of the point where two lines meet or intersect.

Example: Where do $y=4 x-1$ and $y=-2 x+5$ intersect?
The point of intersection has the same y-value on both lines, so we can just equate the right-hand sides:

$$
4 x-1=-2 x+5 \quad \Rightarrow \quad 6 x=6 \quad \Rightarrow \quad x=1
$$

Substituting back into either of the line equations gives

$$
y=4 x-1=4(1)-1=4-1=3
$$

Hence, the coordinates of the point of intersection are $(1,3)$.
Parallel lines Parallel lines have the same gradient. For example,

$$
y=2 x+1 \quad \text { and } \quad y=2 x-2
$$

Perpendicular lines Perpendicular lines (that is, lines at rightangles to each other) have gradients which multiply to give -1 .For example,

$$
y=2 x-2 \text { and } y=-\frac{1}{2} x+1 \quad\left(2 x-\frac{1}{2}=-1\right)
$$

If a given line has gradient m then any line perpendicular to it must have gradient $-\frac{1}{m}$.

Graphs of exponential and logarithm functions

Exponential growth and decay

When we discussed exponentials and logarithms we observed that exponenial growth functions grow very quickly. For example, the function $y=2^{x}$

x	1	2	3	4	5	6	7	8	9	10	11	12
y	2	4	8	16	32	64	128	256	515	1,024	2,048	4,096

The graph of 2^{x}
To plot the graph of the function $y=2^{x}$ we'll need to determine some points on the graph, plot them and then draw a smooth line between them. In all, we have:

x	-4	-3	-2	-1	0	1	2	3	4
y	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	16

and the graph is

More graphs of exponentials

Here is a plot of the functions $2^{x}, 3^{x}$, and between them e^{x}.

These graphs of exponential growth functions give us a graphical interpretation of things like population growth and compound interest.

Note that the graphs never go below the x-axes, and that all of the graphs have y-intercept 1

The graph of 2^{-x}
Here is a graph of 2^{-x}, along with 2^{x}.

These graphs of exponential decay functions give us a graphical interpretation of things like radioactive decay and depreciation.

The graph of $\log _{2} x$
Here is a graph of $\log _{2} x$, along with 2^{x}.

Exercises 10

10.1 Sketch the graphs of the following linear functions
(i) $y=4 x-8$
(ii) $y=9-3 x$
(iii) $y=2 x+1$
10.2 Find the equation of the horizontal line which contains the point $(4,-5)$.
10.3 Find the equation of the line which is perpendicular to $y=2 x+5$ and has y-intercept 6.
10.4 Find the equation of the line containing $(-2,-4)$ and $(3,1)$.

Note that the graphs are 'left-rightsymmetric' metry, and observe that the graph of $\log _{2} x$ never crosses the y-axis

Problem set 10

10.1 Find the indicated values of the following functions.

$$
\begin{array}{cr}
f(x)=-3 x^{2}+2 x+4 & g(x)=\log _{2} x \\
h(u)=\sqrt{11-u} & F(v)=3^{2 v-4} \\
G(t)=5-3 t & H(s)=\frac{s-3}{s+1}
\end{array}
$$

(a) $f(2)$
(e) $h(7)$
(i) $G\left(\frac{1}{4}\right)$
(b) $f(-1)$
(f) $h(11)$
(j) $G\left(-\frac{2}{5}\right)$
(c) $g(8)$
(g) $F(3)$
(k) $H(2)$
(d) $g\left(\frac{1}{4}\right)$
(h) $F(2)$
(l) $H(-3)$
10.2 Sketch the graphs of the following functions
(a) $y=3 x+6$
(b) $y=-4 x-4$
(c) $y=-2 t+6$
(d) $z=5 x-4$
10.3 Find the equations of the following lines.
(a) Gradient 2 and contains the point $(0,4)$
(b) Gradient -3 and contains the point $(-1,3)$
(c) Contains the points $(3,4)$ and $(6,-2)$
(d) Contains the point $(3,1)$ and is parallel to the line $y=2 x-1$
(e) Perpendicular $y=4 x-1$ and contains the point $(4,2)$
10.4 The line L_{1} has equation $y=3 x+1$. Find the equations of the following five lines.
(a) L_{2} which is parallel to L_{1} and contains the point $(-1,4)$
(b) L_{3} which is perpendicular to L_{1} and has x-intercept 3
(c) L_{4} perpendicular to L_{1} and intersects it at the point $(2,-3)$
(d) L_{5} which is horizontal and has the same y-intercept as L_{1}
(e) L_{6} which contains $(3,7)$ and has the same y-intercept as L_{1}
10.5 Sketch the following pairs of lines from the previous question on the same axes.
(a) L_{1} and L_{3}
(b) L_{2} and L_{6}
(c) L_{4} and L_{5}
10.6 Find the intersection point of each pair of lines in the previous question.
10.7 An application. This is an example of a problem in the area of Operations Research (or Management Systems as it is called in Business). Consider the lines

$$
\begin{gathered}
L_{1}: x+y=4 \\
L_{2}: x+2 y=6 \\
L_{3}: 2 x+y=7
\end{gathered}
$$

(a) Sketch the graphs of all three on the same set of axes.
(b) Find the points of intersection between:
(i) L_{1} and L_{2}
(ii) L_{1} and L_{3}
(iii) L_{2} and the y-axis
(iv) L_{3} and the x-axis
(c) At each of those intersection points find the value of

$$
z=3 x+5 y
$$

(d) At which intersection point does z attain its greatest value?

11. Quadratic functions and Parabolae

Recall that quadratics are expressions of the form

$$
a x^{2}+b x+c
$$

where a, b and c are given numbers.
Quadratic functions are functions of the form

$$
y=f(x)=a x^{2}+b x+c
$$

Here is the graph of $y=x^{2}$. We call this graph a parabola.

Quadratic functions

Different values of a, b and c produce different parabolic graphs. We can obtain the graph of any function by choosing a series of x-values and for each, calculating the corresponding y-value and plotting that co-ordinate. Finally, draw a smooth curve which contains all of the points.

Example: The quadratics function $y=x^{2}-2 x-3$. We have

Obviously we would like to avoid plotting lots of points in order to sketch a parabola. There are four main properties of parabolae:

- the convexity
- the y-intercept
- the x-intercept(s) (if they exist)
- the vertex (or turning point)

Each of these properties can be determined from the coefficients a, b and c in

$$
y=a x^{2}+b x+c
$$

Convexity

$$
y=x^{2}-2 x-3
$$

Concave up (like a smile)

$$
y=-x^{2}+6 x-5
$$

Concave down (like a frown)
If the coefficient of x^{2} (that is, the value of a) is:

- positive, the parabola is concave up (smile)
- negative, the parabola is concave down (frown)

The y-intercept

This is where the parabola passes through the y-axis. In other words, the y-intercept is the value of y when $x=0$. So, for $y=a x^{2}+b x+c$, the y-intercept is:

$$
y=a(0)^{2}+b(0)+c \quad \Rightarrow \quad y=c
$$

The co-ordinate of the y-intercept is hence $(0, c)$.
Example: The parabola $y=2 x^{2}-4 x+6$
has y-intercept 6 and is concave up
Example: The parabola $y=-5 x^{2}-3$
has y-intercept -3 and is concave down
Example: The parabola $y=x-4 x^{2}$
has y-intercept 0 and is concave down

The x-intercept(s)

These are where the parabola passes through the x-axis. In other words, the x-intercepts are the values of x when $y=0$. So, for $y=a x^{2}+b x+c$, we need to solve

$$
a x^{2}+b x+c=0
$$

That is, we have to find the roots of the quadratic equation. We do this either by factorising or using the quadratic formula.

Example: The parabola $y=x^{2}-2 x-3$. We must solve

$$
x^{2}-2 x-3=0
$$

Luckily, we can factorize:

$$
(x-3)(x+1)=0 \quad \Rightarrow \quad x=3 \text { or } x=-1
$$

Recall that there may be 0,1 or 2 solutions

Hence there are two x-intercepts and they are $x=3$ and $x=-1$.

The vertex (turning point)

The symmetry of parabolae tells us that the vertex has an x-value half way between the x-intercepts.

Example: The parabola $y=x^{2}-2 x-3$. In this case, the $x-$ value of the vertex is $x=1$. To find the corresponding y-value we subtitute this value into the function:

$$
y=1^{2}-2(1)-3=-4
$$

The vertex is hence at $(1,-4)$.
For the function $y=x^{2}-2 x-3$ we now have the four main properties:

- concave up
- y-intercept: $(0,-3)$
- x-intercepts: $(-1,0)$ and $(3,0)$
- vertex: $(1,-4)$
and so we can draw the Here is a sketch of the parabola:
Note that we write in the coordinates of any points of interest (for example, the vertex) which are not on one of the axes.

A formula for the vertex x-coordinate

What if the x-intercepts weren't so easy to work with (or perhaps didn't even exist)?

The quadratic formula provides the clue to a general method:
To solve $a x^{2}+b x+c=a(x-A)(x-B)=0$ then

$$
A, B=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If we remove the term added on or taken off, we are left with an x-value halfway between the roots:

$$
x=\frac{-b}{2 a}
$$

This is the x-coordinate of the vertex.
Example: The parabola $y=x^{2}-2 x-3$ has $a=1$ and $b=-2$, so

$$
x=\frac{-b}{2 a}=\frac{2}{2}=1
$$

and substitution of this into $y=x^{2}-2 x-3$ gives us the
y-coordinate of the vertex: $y=1^{2}-2(1)-3=-4$.
An example A sketch of the graph of $y=x^{2}-6 x+8$. We have:

- The graph is concave up since $a=1$ is positive.
- The y-intercept is $c=8$.
- To find the x-intercepts we solve $x^{2}-6 x+8=0$. We can do this using the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{6 \pm \sqrt{36-4 \times 1 \times 8}}{2}
$$

That is,

$$
x=\frac{6 \pm \sqrt{36-32}}{2}=\frac{6 \pm \sqrt{4}}{2}=\frac{6 \pm 2}{2}=\frac{8}{2}, \frac{4}{2}=4,2 .
$$

- To find the vertex:

$$
x=\frac{-b}{2 a}=\frac{6}{2}=3 \quad \Rightarrow \quad y=3^{2}-6 \times 3+8=9-18+8=-1
$$

So the vertex is at $(3,-1)$.
The sketch of $y=x^{2}-6 x+8$ is:

Another example

A sketch of the graph of $y=-x^{2}-2 x-2$. We have that

- The graph is concave down since $a=-1$ is negative.
- The y-intercept is $c=-2$.
- To find the x-intercepts we solve $-x^{2}-2 x-2=0$. We can do this using the quadratic formula:

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{2 \pm \sqrt{4-4 \times(-1) \times(-2)}}{2 \times(-1)} \\
\Rightarrow \quad x=\frac{2 \pm \sqrt{4-8}}{-2}=\frac{2 \pm \sqrt{-4}}{-2}
\end{gathered}
$$

but we can't take the square root of a negative number and hence there are no x-intercepts.

- To find the vertex:

$$
\begin{gathered}
x=\frac{-b}{2 a}=\frac{2}{-2}=-1 \\
\Rightarrow \quad y=-(-1)^{2}-2 \times(-1)-2=-1+2-2=-1
\end{gathered}
$$

So the vertex is at $(-1,-1)$.

We don't have much to go on, just the vertex and the y-intercept.
Wed like to get a point symmetrically across from the y-intercept.
It's x-coordinate will be twice that of the vertex:

$$
x=-2 \Rightarrow y=-(-2)^{2}-2(-2)-2=-4+4-2==-2
$$

and from this we have another point on the graph: $(-2,-2)$.
The graph of $y=-x^{2}-2 x-2$ is

Exercises 11

11.1 Sketch the graph of the quadratic function $y=x^{2}-2 x-8$
indicating

- the convexity (concave up or down)
- the y-intercept
- the vertex co-ordinates
- whatever x-intercepts exist

Problem set 11

11.1 Sketch the graphs of the following quadratic functions, in each case indicating

- the convexity (concave up or down)
- the y-intercept
- the vertex co-ordinates
- whatever x-intercepts exist
(a) $y=2 x^{2}+8 x+6$
(e) $y=x^{2}-4 x+12$
(b) $y=x^{2}-2 x-8$
(f) $y=x^{2}-6 x$
(c) $y=x^{2}-4 x+4$
(g) $y=x^{2}-4$
(d) $y=-x^{2}+4 x-3$
(h) $y=x^{2}-7 x+10$
11.2 Complete the square for the following quadratic functions and use the result to verify the co-ordinates of the vertex of the parabola they repesent.
(a) $y=x^{2}+8 x+3$
(b) $y=x^{2}-14 x$

12. Calculus

Rate of change

In many situations we are interested in how quickly (or slowly) something is changing. For example,

- how quickly a car is accelerating
- how quickly a virus is spreading
- how quickly a company is growing

We refer to how quickly something of interest is changing as its rate of change. In Mathematics we use functions to describe things of interest. How can we calculate the rate of change of a function?

The basic Idea

Consider climbing a hill. Initially it may be quite steep, but as we approach the top it starts to level off. The usually refer to the steepness as its slope or gradient.

It's a measure of the rate of change of height. The simplest situation is a straight line, for example $y=2 x+1$. Its slope/gradient is $m=2$ anywhere on it.

What about a parabola? For example, $y=6 x-x^{2}$. Its graph is: What is its slope at

- $x=0$?
- $x=1$?
- $x=3$?

Notice that the slope/gradient depends on the value of x. How do we find the gradient at any point x ? Can we obtain a "formula" or expression for the gradient of the graph in terms of x ?

The simplest case

Let's look at the simplest case, $y=x^{2}$. We wish to know how steep it is, that is, what is its slope/gradient when say, $x=2$. The gradient we are after is the gradient of the line that just touches the parabola at the point $P(2,4)$. This line is called the tangent to the parabola at P.

Chords

We approximate the tangent at the point to the graph of $y=x^{2}$ at the point $x=2$ by a sequence of chords. A chord is a straight lines joining two points on a curve.

Each chord joins our point of interest P to another point, Q on the parabola. As Q moves in towards P, the chord's gradient approaches that of the tangent. Let's take an arbitrary point Q on the parabola. Its co-ordinates will be $Q\left(a, a^{2}\right)$ for some vlaue of a. Then the gradient of $P Q$ is

$$
\frac{a^{2}-4}{a-2}
$$

Graphically, we have

Limits

What value does function $\frac{a^{2}-4}{a-2}$ approaches as a approaches 2?
Mathematicians refer to that value as the limit of the function as a approaches 2 , and write

$$
\lim _{a \rightarrow 2} \frac{a^{2}-4}{a-2}
$$

We can't substitute $a=2$ in the expression because we'll get $\frac{0}{0}$. We first factorise the numerator: $a^{2}-4=(a+2)(a-2)$, so

$$
\lim _{a \rightarrow 2} \frac{a^{2}-4}{a-2}=\lim _{a \rightarrow 2} \frac{(a+2)(a-2)}{(a-2)}=\lim _{a \rightarrow 2}(a+2)=2+2=4
$$

So the gradient of the tangent line to the function $y=x^{2}$ at $x=2$ is $m=4$. We can if needed calculate that the y-intercept is $c=-4$, and hence the equation of the tangent line is $y=4 x-4$.

Examples
$\lim _{a \rightarrow 5} \frac{a^{2}-11 a+30}{a-5}=\lim _{a \rightarrow 5} \frac{(a-5)(a-6)}{a-5}=\lim _{a \rightarrow 5}(a-6)=5-6=-1$
Our task is always to factorize the numerator. Observe that the bottom line immediately tells us one of the factors of the top line. Our job is to find the other.

Example

$$
\lim _{a \rightarrow 3} \frac{a^{2}+3 a+2}{a-3}=\lim _{a \rightarrow 3} \frac{(a+1)(a+2)}{a-3}
$$

but nothing cancels, and we will end up with $\frac{20}{0}$, but we can't divide by zero! We say that the limit does not exist

"I studied English for 16 years but
 ...I finally learned to speak it in just six lessons"
 Jane, Chinese architect

Tangents

Recall from last lecture our investigation of the tangent to the parabola $y=x^{2}$ at $x=2$. Its gradient is that of the chord PQ as a approaches 2 . That is,
$m=\lim _{a \rightarrow 2} \frac{a^{2}-4}{a-2}=\lim _{a \rightarrow 2} \frac{(a+2)(a-2)}{(a-2)}=\lim _{a \rightarrow 2}(a+2)=2+2=4$
We can do the same calculation for any point $P\left(x, x^{2}\right)$.

The gradient of the tangent line is that of the chord PQ in the limit as a approaches x. That is,

$$
\lim _{a \rightarrow x} \frac{a^{2}-x}{a-x}=\lim _{a \rightarrow x} \frac{(a+x)(a-x)}{(a-x)}=\lim _{a \rightarrow x}(a+x)=x+x=2 x
$$

Example

The gradient of the tangent line at the point $(3,9)$ will be

$$
m=2 \times 3=6
$$

The derivative

We have an expression for the gradient of the tangent line to the function $f(x)=x^{2}$. It is $2 x$. Note that this is another function. We write it as

$$
f^{\prime}(x)=2 x
$$

and call this function the derivative of $f(x)=x^{2}$.
We could do the same sort of calculation for any function $f(x)$.
For example, $f(x)=x^{n}$ or $f(x)=e^{x}$ or $f(x)=\log x$.

If we are writing our function in the $y=\cdots$ form then we write the derivative in the fractional form $\frac{d y}{d x}=\cdots$, reminiscent of the fraction in the limit calculation.

Example

if

$$
y=x^{2} \quad \text { then } \quad \frac{d y}{d x}=2 x
$$

The operation of finding the derivative is called differentiation.

Some derivatives

By performing a process similar to what we did previously, we can show that for any number n,

$$
\text { if } \quad f(x)=x^{n} \quad \text { then } \quad f^{\prime}(x)=n x^{n-1}
$$

Another way of writing this is

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Examples

$$
\frac{d}{d x}\left(x^{3}\right)=3 x^{2}
$$

$\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}} \quad$ or equivalently $\quad \frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}}$
$\frac{d}{d x}\left(x^{-1}\right)=-x^{-2} \quad$ or equivalently $\quad \frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$
Two special ones are

$$
\frac{d}{d x}(x)=\frac{d}{d x}\left(x^{1}\right)=1 x^{0}=1
$$

and

$$
\frac{d}{d x}(1)=\frac{d}{d x}\left(x^{0}\right)=0 x^{-1}=0
$$

Derivatives of sums and multiples

If a function is the sum/difference of two others then its derivative is the sum/difference of the respective derivatives.

Examples

$$
\begin{array}{lll}
g(x)=x^{2}+x^{3} & \Rightarrow & g^{\prime}(x)=2 x+3 x^{2} \\
h(x)=x^{6}-x^{4} & \Rightarrow & h^{\prime}(x)=6 x^{5}-4 x^{3}
\end{array}
$$

If a function is a multiple of a another function then its derivative is a multiple of its derivative.

Examples

$$
\begin{array}{ccc}
j(x)=4 x^{2} & \Rightarrow & j^{\prime}(x)=4(2 x)=8 x \\
k(x)=-2 x^{3} & \Rightarrow & k^{\prime}(x)=-2\left(3 x^{2}\right)=-6 x^{2}
\end{array}
$$

We can use both rules together, for example,

$$
p(x)=4 x^{3}-7 x^{-2}+5 \quad \Rightarrow \quad p^{\prime}(x)=12 x^{2}+14 x^{-3}
$$

Note that for any constant, C we have

$$
\frac{d}{d x}(C)=\frac{d}{d x}(C \times 1)=C \times \frac{d}{d x}(1)=C \times 0=0
$$

An application of derivatives

Derivatives can be used to determine the maximum (or minimum) values of functions.

Example: What is the maximum value attained by the function

$$
y=-x^{2}+6 x-5
$$

The solution to this problem is to realise that at its point of maximum value the tangent to the function will be horizontal:

That is, the gradient of the tangent line will be zero, and hence the derivative of the function will be zero.

We can easily find the derivative of $y=f(x)=-x^{2}+6 x-5$. It's

$$
f^{\prime}(x)=-2 x+6
$$

and this is zero where

$$
-2 x+6=0 \quad \Rightarrow \quad 2 x=6 \quad \Rightarrow \quad x=3
$$

Hence the maximum value of the function occurs when $x=3$. To find the actual value of the function we simply calculaute $y(3)$. That is,

$$
y_{\max }=-3^{2}+6(3)-5=-9+18-5=9-5=4
$$

Derivatives of exp and \log functions

By performing a process similar to what we did for power functions (like $f(x)=x^{2}$) we can show that

$$
\text { if } \quad f(x)=e^{x} \quad \text { then } \quad f^{\prime}(x)=e^{x}
$$

That is, e^{x} is its own derivative.
We can also show that
if $\quad f(x)=\ln x \quad$ then $\quad f^{\prime}(x)=\frac{1}{x} \quad$ and $\quad x \neq 0$
When constants (k or a or b) are involved we have the following:

$$
\begin{array}{rlrlrl}
\frac{d}{d x}\left(e^{k x}\right) & =k e^{k x} & \text { and } & \frac{d}{d x}\left(e^{-k x}\right) & =-k e^{-k x} \\
\frac{d}{d x}(\ln (a x)) & =\frac{1}{x} & & \text { and } & \frac{d}{d x}\left(\log _{b} x\right) & =\frac{1}{\ln (b) x}
\end{array}
$$

Antiderivatives

Not surprisingly, antiderivatives are the opposites of derivatives.
Since $3 x^{2}$ is the derivative of x^{3}, then x^{3} is an antiderivative of $3 x^{2}$.
However, x^{3} plus any constant c is also an antiderivative because

$$
\frac{d}{d x}\left(x^{3}+c\right)=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}(c)=3 x^{2}+0=3 x^{2}
$$

We write this symbolically as follows:

$$
\int 3 x^{2} d x=x^{3}+c
$$

and say that the antiderivative of $3 x^{2}$ is $x^{3}+c$ where c can be any constant. Similarly,

$$
\int x^{2} d x=\frac{x^{3}}{3}+C \quad \text { where } C=\frac{c}{3}
$$

The \int symbol is actually a very tall, very thin letter S (for sum)

Some antiderivatives

By considering the derivatives we've seen so far we can deduce the following antiderivatives.

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1
$$

$$
\int \frac{1}{x} d x=\ln x+C \quad \int e^{x} d x=e^{x}+C
$$

and more complicated things if constants like k and a are involved.
We can also calculate sums and multiples for antiderivatives. For example,

$$
\begin{aligned}
& \int\left(5 x^{3}+7 x^{-2}\right) d x=5 \int x^{3} d x+7 \int x^{-2} d x \\
& \quad=5\left(\frac{x^{4}}{4}\right)+7\left(\frac{x^{-1}}{-1}\right)+C=\frac{5 x^{4}}{4}-\frac{7}{x}+C
\end{aligned}
$$

Note the generic $+C$. It must always be there

Integrals

Another name for antiderivative is integral. We say for instance, that the integral of $3 x^{2}$ is $x^{3}+C$.

Actually, it's called an indefinite integral. In general, we write

$$
F(x)=\int f(x) d x
$$

and say that $F(x)$ is the integral of $f(x)$. In addition, we call $f(x)$ the integrand.

A definite integral is one which is to be evaluated between two points. We write

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b} \quad \text { which means } \quad F(b)-F(a)
$$

Example

$$
\int_{2}^{5} 3 x^{2} d x=\left[x^{3}+C\right]_{2}^{5}=5^{3}+\not \subset-\left(2^{3}+\not \subset\right)=125-8=117 \quad \text { Note that } C \text { will always cancel out }
$$

Geometric meaning of the derivative

Recall that the derivative has the geometric interpretation of being the gradient (slope) of a curve.

Example: Recall that $\frac{d}{d x}\left(x^{2}\right)=2 x$. Then when say, $x=2$ we have

The gradient of the tangent line to the parabola $y=x^{2}$ is $m=2 x$, where x is the x-value of the point of interest.

Geometric meaning of the integral

It turns out that integrals tell us the areas under curves. For example, if the curve is the graph of $y=x^{2}$ and the units are cm , then what is the area of the shaded region below?

The answer is
Area $=\int_{1}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{3}=\frac{3^{3}}{3}-\frac{1^{3}}{3}=\frac{27}{3}-\frac{1}{3}=\frac{26}{3} \approx 8.67 \mathrm{~cm}^{2}$
There's one thing we have to be careful of. If the area is below the x-axis then the integral will be negative, and so the area must be the negative of the integral because area must be positive.

American online LIGS University

is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs:
enroll by September 30th, 2014 and
save up to 16% on the tuition!
pay in 10 installments / 2 years
Interactive Online education
visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by anv nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

Example: Line is the graph of $y=4-2 x$ and the units are metres. What is the area of the shaded region below?

The answer is

$$
\begin{aligned}
\text { Area } & =-\int_{2}^{5}(4-2 x) d x=-\left[4 x-x^{2}\right]_{2}^{5}=-\left(4(5)-5^{2}\right)+\left(4(2)-2^{2}\right) \\
& =-(20-25)+(8-4)=-(-5)+4=5+4=9 \mathrm{~m}^{2}
\end{aligned}
$$

which we can in fact check because the region is a triangle:

$$
\text { Area }=\frac{1}{2} \text { base } \times \text { height }=\frac{3 \times 6}{2}=\frac{18}{2}=9 \mathrm{~m}^{2}
$$

Exercises 12

12.1 Find if possible the following limits
(i) $\lim _{a \rightarrow 2} \frac{a^{2}-a-2}{a-2}$
(iii) $\lim _{t \rightarrow 6} \frac{t^{2}-5 t+4}{t-6}$
(ii) $\lim _{s \rightarrow 4} \frac{s^{2}-2 s-8}{s-4}$
(iv) $\lim _{z \rightarrow 3} \frac{4 z^{2}-11 z-3}{z-3}$
12.2 Differentiate the following functions
(i) $f(x)=2 x^{3}+4 x^{2}+3 x+5$
(ii) $g(t)=2 t\left(t^{2}+t+1\right)$
(iii) $z=\frac{3 x^{4}}{4}+\frac{1}{x}+\sqrt{x}+4 x$
12.3 Integrate the following functions
(i) $f(x)=5 x^{2}+3 x+4$
(ii) $g(x)=\frac{3 x^{4}}{4}+\frac{1}{x^{2}}+\sqrt{x}$
12.4 Find the area bounded by the graph of the function $y=12-3 x^{2}$ and the x-axis

Problem set 12

12.1 Evaluate the following limits if they exist.

$$
\begin{aligned}
& \text { (a) } \\
& \lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4} \\
& \text { (b) } \\
& \lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2} \\
& \text { (c) } \\
& \lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-1} \\
& \text { (d) } \\
& \lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x-3} \\
& \text { (e) } \\
& \lim _{x \rightarrow 2} \frac{4 x^{2}-16}{x-2} \\
& \text { (f) }
\end{aligned}
$$

12.2 Differentiate each of the following functions.
(a)

$$
y=x^{3}+x^{2}+x+6
$$

$$
\begin{equation*}
y=3 x^{4}-x^{3}+x^{2}+x-2 \tag{b}
\end{equation*}
$$

(c) $\quad y=x^{2}+\sqrt{x}+\frac{1}{x}-3$
12.3 Differentiate

$$
y=\left(\sqrt{x}+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}\right)
$$

12.4 Perform the following integrations
(a)

$$
\int\left(x^{2}+x+6\right) d x
$$

(b)

$$
\int\left(3 x^{4}-x^{3}-2\right) d x
$$

(c)

$$
\int\left(x^{2}+\sqrt{x}+\frac{4}{x^{2}}\right) d x
$$

12.5 Evaluate the following definite integrals.

$$
\text { (a) } \quad \int_{0}^{1}\left(x^{3}+x^{2}\right) d x
$$

(b)

$$
\int_{2}^{3}\left(5 x^{4}+5 x-2\right) d x
$$

(c) $\quad \int_{-2}^{2}\left(x^{2}+4 x-3\right) d x$
12.6 Find the AREA bounded by the graph of $f(x)$ and the x-axis between the points indicated for the functions below. [HINT:
Sketch the graph first!]
(a)

$$
f(x)=x^{2}+1
$$

$$
x=-1 \text { to } x=1
$$

(b)

$$
f(x)=x^{2}-x, \quad x=0 \text { to } x=2
$$

Appendix 1: Answers to exercises

Exercises in Chapter 1

(i)

$$
\begin{aligned}
& 3(4+2 \times 6)+12 \div 4 \\
& =3 \times(4+12)+3 \\
& =3 \times 16+3 \\
& =48+3 \\
& =51
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 6+2[25-3(2+5)] \\
& =6+2[25-3 \times 7] \\
& =6+2[25-21] \\
& =6+2 \times 4 \\
& =6+8 \\
& =14
\end{aligned}
$$

In various places colours are used to focus attention
1.2 Difference of the product of 6 and 7 and the sum of 3 and 8 is the difference of 42 and 11 , that is, $42-11$, which is 31 . In symbols we have

$$
(6 \times 7)-(3+8)=42-11=31
$$

1.3 (a) $1 \frac{1}{4}=\frac{4 \times 1+1}{4}=\frac{4+1}{4}=\frac{5}{4}$
(b) $2 \frac{3}{8}=\frac{2 \times 8+3}{8}=\frac{16+3}{8}=\frac{19}{8}$
1.4 (a) $\frac{3}{4} \times \frac{1}{5}=\frac{3 \times 1}{4 \times 5}=\frac{3}{20}$
(b) $\frac{1}{3} \div \frac{2}{5}=\frac{1}{3} \times \frac{5}{2}=\frac{1 \times 5}{3 \times 2}=\frac{5}{6}$
1.5 Two-thirds of four-fifths is

$$
\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}
$$

1.6
(ii) $\frac{3}{4}+\frac{2}{5}=\frac{3 \times 5}{4 \times 5}+\frac{2 \times 4}{5 \times 4}=\frac{15}{20}+\frac{8}{20}=\frac{15+8}{20}=\frac{23}{20}$
(ii) $\frac{2}{3}-\frac{2+4}{5-1}=\frac{2}{3}-\frac{6}{4}=\frac{2 \times 4}{3 \times 4}-\frac{6 \times 3}{4 \times 3}=\frac{8}{12}-\frac{18}{12}=\frac{8-18}{12}=\frac{-10}{12}$ which is the same as $-\frac{10}{12}$
1.7 In simplest form:

$$
\frac{78}{102}=\frac{\not 2 \times 39}{2 \times 51}=\frac{39}{51}=\frac{\not b \times 13}{\not p \times 17}=\frac{13}{17}
$$

1.8 One-quarter of the sum of one-third and two-sevenths is

$$
\begin{gathered}
\frac{1}{4} \times\left(\frac{1}{3}+\frac{2}{7}\right) \\
=\frac{1}{4} \times \frac{13}{21} \\
=\frac{13}{84}
\end{gathered}
$$

Exercises in Chapter 2

2.1
(i)

$$
\begin{gathered}
4 y-3=3 y+7 \\
\Rightarrow \quad 4 y-\not p+\not x=3 y+7+3 \quad \Rightarrow \quad 4 y=3 y+10 \\
\Rightarrow \quad 4 y-3 y=3 y+10-3 y \quad \Rightarrow \quad y=10
\end{gathered}
$$

Check:
$4 \times 10-3=40-3=37$ and $3 \times 10+7=30+7=37$ hence
(ii) $9 x+8=8 x-4 \quad \Rightarrow \quad 9 x=8 x-12 \quad \Rightarrow \quad x=-12$

Check:

$$
\begin{aligned}
9 \times(-12)+8=-108+8 & =-100 \\
8 \times(-12)-4=-96-4 & =-100
\end{aligned}
$$

2.2 In the formula $x=\frac{5+t}{b-t}$, if $x=2$ and $t=1$, then

$$
\begin{gathered}
2=\frac{5+1}{b-1} \quad \Rightarrow \quad \frac{2}{1}=\frac{6}{b-1} \\
\Rightarrow \quad 2(b-1)=6 \quad \Rightarrow \quad \frac{\not 2(b-1)}{2}=\frac{6}{2} \\
\Rightarrow \quad b-1=3 \quad \Rightarrow \quad b=4
\end{gathered}
$$

Check:

$$
\frac{5+t}{b-t}=\frac{5+1}{4-1}=\frac{6}{3}=2
$$

2.3 (i) Cross-multiply:

$$
\begin{aligned}
& \frac{1}{3 x+1}=\frac{2}{x-1} \quad \Rightarrow \quad x-1=2(3 x+1) \\
\Rightarrow & x-1=6 x+2 \quad \Rightarrow \quad-3=5 x \quad \Rightarrow \quad x=-\frac{3}{5}
\end{aligned}
$$

(ii) Expand the bracket:

$$
\begin{aligned}
-2 y+1+3(2 y-4)=2 y-1 & \Rightarrow \quad-2 y+1+6 y-12=2 y-1 \\
\Rightarrow \quad 4 y-11=2 y-1 \quad & \Rightarrow \quad 2 y=10 \quad \Rightarrow \quad y=5
\end{aligned}
$$

2.4 Let a be Sally's age. If it's 12 years plus half her age then

$$
a=12+\frac{a}{2} \quad \Rightarrow \quad 2 a=24+a \quad \Rightarrow \quad a=24
$$

Exercises in Chapter 3

3.1
(a)

$$
\begin{aligned}
2 x+3 y & =10 \\
x+2 y & =6
\end{aligned}
$$

Multiply equation (2) by 2 to get

$$
\begin{aligned}
(-) \quad 2 x+3 y & =10 \\
2 x+4 y & =12 \\
& y=2
\end{aligned}
$$

Substituting this value into, say equation (2) gives

$$
x+2 y=6 \quad \Rightarrow \quad x+4=6 \quad \Rightarrow \quad x=2
$$

Finally, check by substituting both values into equation (1):

$$
2 x+3 y=10 \Rightarrow 4+6=10
$$

$$
\begin{align*}
2 x+3 y & =19 \tag{b}\\
5 x-6 y & =-20
\end{align*}
$$

Multiply equation (1) by 2 to get

$$
\begin{aligned}
4 x+6 y & =38 \quad(3) \\
(+) \quad 5 x-6 y & =-20 \quad(2) \\
\hline 9 x & =18
\end{aligned}
$$

Hence $x=2$ and substituting this into, say equation (1) gives

$$
2 x+3 y=19 \quad \Rightarrow \quad 4+3 y=19 \quad \Rightarrow \quad 3 y=15 \quad \Rightarrow \quad y=5
$$

Finally, check by substituting both values into equation (2):

$$
5 x-6 y=-20 \quad \Rightarrow \quad 10-30=-20
$$

$$
\begin{align*}
& 2 x+4 y=4 \tag{c}\\
& 5 x-6 y=2
\end{align*}
$$

multiply equation (1) by 5 and equation (2) by 2 to get

$$
\begin{aligned}
(-) 10 x-12 y & =4 \quad(4) \\
\hline 32 y & =16
\end{aligned}
$$

and hence

$$
y=\frac{16}{32}=\frac{16 \times 1}{16 \times 2} \Rightarrow y=\frac{1}{2}
$$

Substituting this value into, say equation (1) gives

$$
2 x+4 y=4 \quad \Rightarrow \quad 2 x+2=4 \quad \Rightarrow \quad 2 x=2 \quad \Rightarrow \quad x=1
$$

Finally, check by substituting both values into equation (2):

$$
5 x-6 y=2 \quad \Rightarrow \quad 5-3=2
$$

3.2 Let the numbers be m and n, with m larger than n. We are told that

$$
\begin{align*}
& m+n=28 \tag{1}\\
& m-n=12 \tag{2}
\end{align*}
$$

Adding these equations together gives

$$
m+m+\not h-\not h=28+12 \quad \Rightarrow \quad 2 m=40 \quad \Rightarrow \quad m=\frac{40}{2}=20
$$

Substitute this back into say equations (1) to get

$$
20+n=28 \quad \Rightarrow \quad n=28-20 \quad \Rightarrow \quad n=8
$$

That is, the required numbers are 20 and 8 . Check
$20+8=28$
and
$20-8=12 \quad \checkmark$

Some advice just states the obvious. But to give the kind of advice that's going to make a real difference to your clients you've got to listen critically, dig beneath the surface, challenge assumptions and be credible and confident enough to make suggestions right from day one. At Grant Thornton you've got to be ready to kick start a career right at the heart of business.

Sound like you? Here's our advice: visit GrantThornton.ca/careers/students

Scan here to learn more about a career with Grant Thornton.

Exercises in Chapter 4

4.1 Expanding brackets and collecting terms gives:
(i) $\quad(x+2)(x-4)=x^{2}-4 x+2 x-8=x^{2}-2 x-8$
(ii) $(-x+5)(-3 x+4)=3 x^{2}-4 x-15 x+20=3 x^{2}-19 x+20$
(iii) $\quad(2-t)(3 t+4)=6 t+8-3 t^{2}-4 t=-3 t^{2}+2 t+8$
(iv) $\left(y+\frac{1}{2}\right)\left(y+\frac{1}{4}\right)=y^{2}+\frac{1}{2} y+\frac{1}{4} y+\frac{1}{2} \times \frac{1}{4}=y^{2}+\frac{3}{4} y+\frac{1}{8}$
4.2 To factorize
(i) $x^{2}-3 x+2$. The factors of 2 are

$$
1 \times 2 \quad(-1) \times(-2)
$$

and the sum must be -3 so we have

$$
x^{2}-3 x+2=(x-1)(x-2)
$$

(ii) $x^{2}-x-12$. The factors of -12 are
$1 \times(-12), \quad 2 \times(-6), \quad 3 \times(-4), \quad 4 \times(-3), \quad 6 \times(-2), \quad 12 \times(-1)$
and the sum must be -1 so we have

$$
x^{2}-x-12=(x+3)(x-4)
$$

(iii) $x^{2}+14 x+40$. The positive factors of 40 are
1×40
2×20
4×10
5×8
and the sum must be 14 so

$$
x^{2}+14 x+40=(x+4)(x+10)
$$

(iv) The original quadratic is $3 x^{2}+8 x+4$, so the associated quadratic is $x^{2}+8 x+12$. After a little bit of work we find that

$$
x^{2}+8 x+12=(x+2)(x+6)
$$

and hence the required factorization is

$$
3 x^{2}+8 x+4=(3 x+2)\left(x+\frac{6}{3}\right)
$$

That is,

$$
3 x^{2}+8 x+4=(3 x+2)(x+2)
$$

(v) The original quadratic is $4 x^{2}-5 x-6$, so the associated quadratic is $x^{2}-5 x-24$. After a little bit of work we find that

$$
x^{2}-5 x-24=(x+4)(x-8)
$$

and hence the required factorization is

$$
4 x^{2}-x-5=(4 x+4)\left(x-\frac{8}{4}\right)
$$

That is,

$$
4 x^{2}-5 x-6=(4 x+3)(x-2)
$$

4•3 Factorizing and cancelling gives:
(i)

$$
\frac{x^{2}-x-2}{x^{2}+2 x+1}=\frac{(x+1)(x-2)}{(x+1)(x+1)}=\frac{x-2}{x+1}
$$

(ii)

$$
\frac{x^{2}+5 x-14}{x^{2}+10 x+21}=\frac{(x+7)(x-2)}{(x+7)(x+3)}=\frac{x-2}{x+3}
$$

Exercises in Chapter 5

5.1
(i)

$$
2^{4} \times 2^{9}=2^{4+9}=2^{13}
$$

(ii)

$$
\frac{3^{11}}{3^{5}}=3^{11-5}=3^{6}
$$

(iii)

$$
(5 \times 7)^{3}=5^{3} \times 7^{3}
$$

5.2
(i)

$$
\left(\frac{7}{3}\right)^{2}=\frac{7^{2}}{3^{2}}
$$

(ii)

$$
\left(5^{4}\right)^{7}=5^{4 \times 7}=5^{28}
$$

5.3 Using the Laws of Indices we have

$$
\begin{equation*}
x^{-3} x^{5}=x^{-3+5}=x^{2} \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{aligned}
& \frac{\left(y^{-1}\right)^{7}}{y^{-3}}=\frac{y^{-1 \times 7}}{y^{-3}}=\frac{y^{-7}}{y^{-3}} \\
= & y^{-7-(-3)}=y^{-7+3}=y^{-4}
\end{aligned}
$$

(iii) $\quad\left(5 x^{3}\right)^{-2} x^{6}=5^{-2}\left(x^{3}\right)^{-2} x^{6}=5^{-2} x^{-6} x^{6}=5^{-2} x^{-6+6}$

$$
=5^{-2} x^{0}=5^{-2} \times 1=5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}
$$

(iv)

$$
\begin{gathered}
\left(3 x^{-2}\right)^{-2} x^{-3}=3^{-2}\left(x^{-2}\right)^{-2} x^{-3} \\
=\frac{1}{3^{2}} x^{4} x^{-3}=\frac{1}{9} x^{4-3}=\frac{x}{9}
\end{gathered}
$$

(v)

$$
\begin{aligned}
& \frac{5 y^{-2} z}{\left(2 y^{3} z^{-5}\right)^{2}}=\frac{5 y^{-2} z}{2^{2}\left(y^{3}\right)^{2}\left(z^{-5}\right)^{2}}=\frac{5 y^{-2} z}{4 y^{6} z^{-10}} \\
= & \frac{5}{4} y^{-2-6} z^{1-(-10)}=\frac{5}{4} y^{-8} z^{1+10}=\frac{5}{4} y^{-8} z^{11}
\end{aligned}
$$

5.4 Simplifying gives

$$
\begin{equation*}
\sqrt{48}=\sqrt{16 \times 3}=\sqrt{16} \sqrt{3}=4 \sqrt{3} \tag{i}
\end{equation*}
$$

(ii) $\sqrt{3}(5+\sqrt{2})=\sqrt{3} \times 5+\sqrt{3} \sqrt{2}=5 \sqrt{3}+\sqrt{6}$
(iii)
$(3+\sqrt{5})(2-\sqrt{5})=6-3 \sqrt{5}+2 \sqrt{5}-\sqrt{5} \sqrt{5}=6+(2-3) \sqrt{5}-5$

$$
=(6-5)+(-1) \sqrt{5}=1-\sqrt{5}
$$

(iv) $\quad(2 \sqrt{5}-1)(2 \sqrt{5}+1)=4 \sqrt{5} \sqrt{5}+2 \sqrt{5}-2 \sqrt{5}-1$

$$
=4 \times 5-1=20-1=19
$$

Click on the ad to read more

Exercises in Chapter 6

6.1 (i)

$$
z^{3} p^{\frac{1}{4}}=a^{4} w^{\frac{2}{3}} \quad \Rightarrow \quad \frac{z^{3} p^{\frac{1}{4}}}{a^{4}}=w^{\frac{2}{3}} \quad \Rightarrow \quad\left(\frac{z^{3} p^{\frac{1}{4}}}{a^{4}}\right)^{\frac{3}{2}}=w
$$

We usually write the isolated variable on the left-hand side:

$$
w=\left(\frac{z^{3} p^{\frac{1}{4}}}{a^{4}}\right)^{\frac{3}{2}}
$$

(ii)

$$
\begin{gathered}
y=\sqrt{x^{3}-c} \Rightarrow y^{2}=x^{3}-c \\
\Rightarrow \quad y^{2}+c=x^{3} \quad \Rightarrow \quad x=\sqrt[3]{y^{2}+c}
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& m=\frac{12 s^{4} y^{3}}{7 p^{2}} \Rightarrow 7 p^{2} m=12 s^{4} y^{3} \\
& \Rightarrow \frac{7 p^{2} m}{12 y^{3}}=s^{4} \Rightarrow s=\sqrt[4]{\frac{7 p^{2} m}{12 y^{3}}}
\end{aligned}
$$

(iv)

$$
f^{2} h^{\frac{1}{3}}=v m^{\frac{1}{4}} \Rightarrow h^{\frac{1}{3}}=\frac{v m^{\frac{1}{4}}}{f^{2}} \Rightarrow h=\left(\frac{v m^{\frac{1}{4}}}{f^{2}}\right)^{3}
$$

Exercises in Chapter 7

Recall that the Laws of Logarithms are

$$
\begin{array}{lr}
\log _{b} b=1 & \log _{b} 1=0 \\
\log _{b}\left(x^{r}\right)=r \log _{b} x \\
\log _{b}(x y)=\log _{b} x+\log _{b} y & \log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y
\end{array}
$$

$7 \cdot 1$
(i)

$$
2^{6}=64 \quad \text { so } \quad 6=\log _{2} 64
$$

(ii)

$$
121=11^{2} \quad \text { so } \quad \log _{11} 121=2
$$

(iii)
$27^{\frac{4}{3}}=81$
so $\quad \frac{4}{3}=\log _{27} 81$
(iv)

$$
12=\sqrt{144} \quad \text { so } \quad \log _{144} 12=\frac{1}{2}
$$

7.2
(i) $\quad \log _{5} 125=3 \quad$ so $\quad 125=5^{3}$
(ii) $\quad \log _{4} 64=3 \quad$ so $\quad 64=4^{3}$
(iii) $\quad \log _{7} x=3 \quad$ so $\quad x=7^{3}$
(iv) $\quad \log _{4} 8=x \quad$ so $\quad 8=4^{x}$
$7 \cdot 3$
(i) $\log _{2} 9+\log _{2} 3=\log _{2} 27$ since $9 \times 3=27$
(ii)

$$
\log _{3} 7-\log _{3} 28=\log _{3}\left(\frac{1}{4}\right) \quad \text { since } \frac{7}{28}=\frac{1 \times 7}{4 \times 7}=\frac{1}{4}
$$

(iii) In $\log _{8} 16-1$ write 1 as $\log _{8} 8$ to get

$$
\log _{8} 16-1=\log _{8} 16-\log _{8} 8=\log _{8}\left(\frac{16}{8}\right)=\log _{8} 2
$$

Note that log takes precedence over subtraction. If we'd wanted the subtraction to be done first, we'd write $\log _{8}(16-1)$
7.4 We have $\log _{4} 3=s$ and $\log _{4} 5=t$. Now
(i) $\log _{4} 75=\log _{4}(3 \times 25)=\log _{4}\left(3 \times 5^{2}\right)=\log _{4} 3+\log _{4}\left(5^{2}\right)$

$$
=\log _{4} 3+2 \log _{4} 5=s+2 t
$$

(ii) $\log _{4}\left(\frac{5}{9}\right)=\log _{4}\left(\frac{5}{3^{2}}\right)=\log _{4} 5-\log _{4}\left(3^{2}\right)$

$$
=\log _{4} 5-2 \log _{4} 3=t-2 s
$$

Exercises in Chapter 8

8.1
(i) $\log _{5} x+\log _{5} 8=2 \Rightarrow \log _{5}(8 x)=2 \Rightarrow 8 x=5^{2}$

$$
\Rightarrow \quad 8 x=25 \quad \Rightarrow \quad x=\frac{25}{8}
$$

(ii) $\quad 2^{2 x+1}=\frac{1}{32} \quad \Rightarrow \quad 2^{2 x+1}=2^{-5} \quad \Rightarrow \quad 2 x+1=-5$

$$
\Rightarrow \quad 2 x=-6 \quad \Rightarrow \quad x=-\frac{6}{2} \quad \Rightarrow \quad x=-3
$$

(iii) $\quad\left(3^{2 x-1}\right)^{2}=27 \quad \Rightarrow \quad 3^{2(2 x-1)}=3^{3} \Rightarrow 3^{4 x-2}=3^{3}$

$$
\Rightarrow \quad 4 x-2=3 \quad \Rightarrow \quad 4 x=5 \quad \Rightarrow \quad x=\frac{5}{4}
$$

8.2
(i) $\ln 27-\ln 3+\ln 4=\ln \left(\frac{27}{3}\right)+\ln 4=\ln 9+\ln 4=\ln 36$
(ii)

$$
\left(\frac{16 e^{5}}{2 e^{3}}=\frac{16}{2} e^{5-3}=8 e^{2}\right.
$$

8.3
(i) $\ln (2 x)+\ln 6=\ln (4 x+2) \quad \Rightarrow \quad \ln (12 x)=\ln (4 x+2)$

$$
\Rightarrow \quad 12 x=4 x+2 \quad \Rightarrow \quad 8 x=2 \quad \Rightarrow \quad x=\frac{2}{8}=\frac{1}{4}
$$

(ii)

$$
\frac{e^{5 x+1}}{e^{3 x-2}}=e^{4} \quad \Rightarrow \quad e^{5 x+1-(3 x-2)}=e^{4}
$$

$$
\Rightarrow \quad 5 x+1-3 x+2=4 \quad \Rightarrow \quad 2 x+3=4 \quad \Rightarrow \quad 2 x=1 \quad \Rightarrow \quad x=\frac{1}{2}
$$

8.4 The data gives immediately that $P_{0}=20$ so $P=20 e^{k t}$. We are told that after 5 years there were 480 fish, so

$$
480=20 e^{5 k} \Rightarrow e^{5 k}=\frac{480}{20}=24 \Rightarrow 5 k=\ln 24 \Rightarrow k=\frac{\ln 24}{5}
$$

This is about 0.64 , that is, the growth rate is about 64%. To find out when the population exceeds 1000 we solve

$$
\begin{aligned}
P(t)=1000 & \Rightarrow 20 e^{k t}=1000 \quad \Rightarrow \quad e^{k t}=\frac{1000}{20}=\frac{100}{2}=50 \\
& \Rightarrow k t=\ln 50 \Rightarrow t=\frac{\ln 50}{k}
\end{aligned}
$$

That is,

$$
t=\ln 50 \div k=\frac{\ln 50}{1} \div \frac{\ln 24}{5}=\frac{\ln 50}{1} \times \frac{5}{\ln 24}=\frac{5 \ln 50}{\ln 24}
$$

A calculator would tell us that $t \approx 6.15$ years, that is, about 6 years and 2 months after the beginning of the study.

(1)
 Maastricht University

Join the best at

the Maastricht University School of Business and Economics!

- $33^{\text {rd }}$ place Financial Times worldwide ranking: MSc International Business
- $1^{\text {st }}$ place: MSc International Business
- $1^{\text {st }}$ place: MSc Financial Economics
- $2^{\text {nd }}$ place: MSc Management of Learning
- $2^{\text {nd }}$ place: MSc Economics
- $2^{\text {nd }}$ place: MSc Econometrics and Operations Research
- $2^{\text {nd }}$ place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

Visit us and find out why we are the best!
 Master's Open Day: 22 February 2014

8.5 The machine cost $\$ 7000$ in 2010 and is valued at $\$ 1000$ in 2015. Assuming the decay law $P=P_{0} e^{-k t}$, when will the machine be worth $\$ 700$? Let t be time in years starting at 0 in 2010. Then $P_{0}=7000$, so

$$
P=7000 e^{-k t}
$$

Now, 2015 represents $t=5$, so we have $P=1000$ and hence

$$
1000=7000 e^{-5 t} \Rightarrow e^{-5 k}=\frac{1000}{7000} \quad \Rightarrow \quad e^{-5 k}=\frac{1}{7}
$$

Now 'take logs of both sides' (that is, switch to log form):

$$
\Rightarrow \quad-5 k=\ln \left(\frac{1}{7}\right) \quad \Rightarrow \quad k=-\frac{\ln \left(\frac{1}{7}\right)}{5}
$$

A calculator would tell us that this is about 0.39 (that is, decining at 39% per year), but it's best to leave it in mathematical form. To find the time t when the machine will be worth $\$ 700$ we solve

$$
700=7000 e^{-k t} \quad \Rightarrow \quad \frac{1}{10}=e^{-k t}
$$

and hence

$$
-k t=\ln \left(\frac{1}{10}\right) \quad \Rightarrow \quad t=\ln \left(\frac{1}{10}\right) \div(-k)
$$

From before we have that $-k=\frac{\ln \left(\frac{1}{7}\right)}{5}$ and hence

$$
t=\frac{\ln \left(\frac{1}{10}\right)}{1} \div \frac{\ln \left(\frac{1}{7}\right)}{5}=\frac{\ln \left(\frac{1}{10}\right)}{1} \times \frac{5}{\ln \left(\frac{1}{7}\right)}
$$

That is,

$$
t=\frac{5 \ln \left(\frac{1}{10}\right)}{\ln \left(\frac{1}{7}\right)}
$$

A calculator will tell us that this is about 6 years, so roughly the year 2016.

Exercises in Chapter 9

9.1 We need to write them in standard form and then factorize:
(i)

$$
\begin{gathered}
(y-2)^{2}=-9 y \quad \Rightarrow \quad y^{2}-4 y+4=-9 y \\
\Rightarrow \quad y^{2}+5 y+4=0 \\
\Rightarrow \quad(y+1)(y+4)=0 \quad \Rightarrow \quad y=-1 \text { or }-4
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& 2(x-3)^{2}=6-5 x+x^{2} \\
\Rightarrow & 2 x^{2}-12 x+18=6-5 x+x^{2}
\end{aligned}
$$

$$
\Rightarrow \quad x^{2}-7 x+12=0 \quad \Rightarrow \quad(x-3)(x-4) \quad \Rightarrow \quad x=3 \text { or } 4
$$

(iii)

$$
(2 x+2)^{2}-(x-5)^{2}=2 x^{2}+19
$$

$$
\Rightarrow \quad 4 x^{2}+8 x+4-\left(x^{2}-10 x+25\right)=2 x^{2}+19
$$

$\Rightarrow \quad x^{2}+18 x-40=0 \quad \Rightarrow \quad(x-2)(x+20) \quad \Rightarrow \quad x=2$ or -20
9.2 The quadratic formula is

$$
a x^{2}+b x+c=a(x-A)(x-B) \Rightarrow A, B=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(i) $x^{2}+2 x-4=0$. We have
$a=1, b=2, c=-4 \Rightarrow b^{2}-4 a c=2^{2}-4 \times 1 \times(-4)=4+16=20$
and hence

$$
A, B=\frac{-2 \pm \sqrt{20}}{2}=\frac{-2+2 \sqrt{5}}{2}=\frac{-2}{2} \pm \frac{2 \sqrt{5}}{2}=-1 \pm \sqrt{5}
$$

(ii) $11 x^{2}-10 x-1=0$. We have
$a=11, b=10, c=-1 \Rightarrow b^{2}-4 a c=10^{2}-4 \times 11 \times(-1)=144$
and hence

$$
A, B=\frac{10 \pm \sqrt{144}}{22}=\frac{10 \pm 12}{22}=\frac{22}{22}, \frac{-2}{22}=1,-\frac{1}{11}
$$

(iii) $(x+2)(x+3)=-x^{2}-2 x+1$. We first need to put the equation into standard form. We have

$$
x^{2}+5 x+6=-x^{2}-2 x+1 \quad \Rightarrow \quad 2 x^{2}+7 x+5=0
$$

We have

$$
a=2, b=7, c=5 \Rightarrow b^{2}-4 a c=49-4 \times 2 \times 5=49-40=9
$$

and hence

$$
A, B=\frac{-7 \pm \sqrt{9}}{4}=\frac{-7 \pm 3}{4}=\frac{-7+3}{4}, \frac{-7-3}{4}=-1,-\frac{10}{4}
$$

9.3 The discriminant is

$$
\Delta=b^{2}-4 a c
$$

(i) $x^{2}-4 x+2=0$. We have
$\Delta=b^{2}-4 a c=(-4)^{2}-4 \cdot 1 \cdot 2=16-8=8>0 \Rightarrow$ two solutions
(ii) $x^{2}+2 x+7=0$. We have
$\Delta=b^{2}-4 a c=2^{2}-4 \cdot 1 \cdot 7=4-28=-24<0 \Rightarrow$ no solutions
(iii) $4 x^{2}+4 x+1=0$. We have

$$
\Delta=b^{2}-4 a c=4^{2}-4 \cdot 4 \cdot 1=16-16=0 \Rightarrow \text { one solution }
$$

9.4 Completing the square gives
(i) $x^{2}+6 x-4$. Half of 6 is 3 and the square of this is 9 so write

$$
x^{2}+6 x-4=\left(x^{2}+6 x+9\right)+(-4-9)=(x+3)^{2}-13
$$

(ii) $x^{2}-8 x+20$. Half of -8 is -4 and the square of this is 16 so write

$$
x^{2}-8 x+20=\left(x^{2}-8 x+16\right)+(20-16)=(x-4)^{2}+4
$$

(iii) $x^{2}+18 x-12$. Half of 18 is 9 and the square of this is 81 so write

$$
x^{2}+18 x-12=\left(x^{2}+18 x+81\right)+(-12-81)=(x+9)^{2}-93
$$

(iv) $x^{2}-10 x$. Half of -10 is -5 and the square of this is 25 so write

$$
x^{2}-10 x=\left(x^{2}-10 x+25\right)+(-25)=(x-5)^{2}-25
$$

Exercises in Chapter 10

10.1 We need to find the y-intercept and the x-intercept.
(i) $y=4 x-8$. The y-intercept is $c=-8$ and to get the x-intercept solve

$$
0=4 x-8 \quad \Rightarrow \quad 4 x=8 \quad \Rightarrow \quad x=2
$$

and hence the graph is

(ii) $y=9-3 x$. The y-intercept is $c=9$ and to get the
x-intercept solve

$$
0=9-3 x \quad \Rightarrow \quad 3 x=9 \quad \Rightarrow \quad x=3
$$

and hence the graph is

(iii) $y=2 x+1$. The y-intercept is $c=1$ and to get the
x-intercept solve

$$
0=2 x+1 \quad \Rightarrow \quad 2 x=-1 \quad \Rightarrow \quad x=-\frac{1}{2}
$$

and hence the graph is

10.2 Horizontal lines have equation $y=c$ (that is, $m=0$). Now, the y-coordinate of the point $(4,-5)$ is $c=-5$ so the equation of the line must be

$$
y=-5
$$

10.3 We are told that the y-intercept is 6 and hence $c=6$. Observe that the given line $(y=2 x+5)$ has gradient 2 . As the desired line is perpendicular to this line then it must have gradient

$$
m=-\frac{1}{2}
$$

and hence the equation of the desired line is

$$
y=-\frac{1}{2} x+6
$$

10.4 To find the equation of the line containing the points $(-2,-4)$ and $(3,1)$ we can use either of Method 1 or Method 2.

Method 1: Substituting the two co-ordinates into the equation of a line $y=m x+c$ gives us a pair of simultaneous equations to be solved for m and c :

$$
\left.\begin{array}{rl}
(-2,-4) & \Rightarrow \quad-4
\end{array}=m \times(-2)+c\right)
$$

The general equation of a line is $y=m x+c$

Substituting $m=1$ into say equation (2) gives

$$
\begin{aligned}
& 1=3+c \\
\Rightarrow \quad c & =-2
\end{aligned}
$$

Hence the equation is

$$
y=x-2
$$

Method 2: The points are $(-2,-4)$ and $(3,1)$. Use the definition of gradient to find m :

$$
m=\frac{\text { change in } y \text { value }}{\text { change in } x \text { value }}=\frac{1-(-4)}{3-(-2)}=\frac{1+4}{3+2}=\frac{5}{5}=1
$$

So the equation (so far) is $y=x+c$. To find c, substitute one of the points, say $(3,1)$ into this equation and solve for c :

$$
1=3+c \quad \Rightarrow \quad c=-2
$$

Hence, the equation of the straight line is $y=x-2$

Exercises in Chapter 11

11.1 To sketch the graph of $y=x^{2}-2 x-8$ we need

- concave up
- the y-intercept is at $(0,-8)$
- to find the x-intercepts:

$$
\begin{aligned}
x^{2}-2 x-8 & =0 \\
\Rightarrow \quad(x+2)(x-4) & =0
\end{aligned}
$$

So, the x-intercepts are $(-2,0)$ and $(4,0)$.

- the vertex occurs halfway between the x-intercepts, at $x=1$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(-2)}{2(1)}=1\right)
$$

The y-value at $x=1$ is then

$$
\begin{aligned}
y & =(1)^{2}-2(1)-8 \\
& =1-2-8 \\
& =-9
\end{aligned}
$$

The vertex is $(1,-9)$.

Exercises in Chapter 12

12.1 In each case, we need to factorise the numerators
(i) $\lim _{a \rightarrow 2} \frac{a^{2}-a-2}{a-2}=\lim _{a \rightarrow 2} \frac{(a-2)(a+1)}{a-2}=\lim _{a \rightarrow 2}(a+1)=3$
(ii) $\lim _{s \rightarrow 4} \frac{s^{2}-2 s-8}{s-4}=\lim _{s \rightarrow 4} \frac{(s-4)(s+2)}{s-4}=\lim _{s \rightarrow 4}(s+2)=6$
(iii) $\lim _{t \rightarrow 6} \frac{t^{2}-5 t+4}{t-6}=\lim _{t \rightarrow 6} \frac{(t-1)(t-4)}{t-6}$ does not exist
(iv) $\lim _{z \rightarrow 3} \frac{4 z^{2}-11 z-3}{z-3}=\lim _{z \rightarrow 3} \frac{(z-3)(4 z+1)}{z-3}=\lim _{z \rightarrow 3}(4 z+1)=13$
12.2 Recall that

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \frac{d}{d x}(x)=1 \quad \frac{d}{d x}(1)=0
$$

(i) $f(x)=2 x^{3}+4 x^{2}+3 x+5$. Then

$$
f^{\prime}(x)=2\left(3 x^{2}\right)+4\left(2 x^{1}\right)+3(1)+5(0)=6 x^{2}+8 x+3
$$

(ii) $g(t)=2 t\left(t^{2}+t+1\right)=2 t^{3}+2 t^{2}+2 t$. Then

$$
g^{\prime}(t)=6 t^{2}+4 t+2
$$

(iii) $z=\frac{3 x^{4}}{4}+\frac{1}{x}+\sqrt{x}+4 x$. We have

$$
\begin{aligned}
z & =\frac{3}{4} x^{4}+x^{-1}+x^{\frac{1}{2}}+4 x \\
\Rightarrow \quad \frac{d z}{d x} & =\frac{3}{4}\left(4 x^{3}\right)-x^{-2}+\frac{1}{2} x^{-\frac{1}{2}}+4 \\
& =3 x^{3}-\frac{1}{x^{2}}+\frac{1}{2 \sqrt{x}}+4
\end{aligned}
$$

Need help with your dissertation?

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info
12.3 Recall that Recall that

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1
$$

(i) If $f(x)=5 x^{2}+3 x+4$ then

$$
\int f(x) d x=\frac{5 x^{3}}{3}+\frac{3 x^{2}}{2}+4 x+C
$$

(ii) If $g(x)=\frac{3 x^{4}}{4}+\frac{1}{x^{2}}+\sqrt{x}$ then we have

$$
g(x)=\frac{3}{4} x^{4}+x^{-2}+x^{\frac{1}{2}}
$$

and hence

$$
\int g(x) d x=\frac{3}{4}\left(\frac{x^{5}}{5}\right)+\frac{x^{-1}}{-1}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{3 x^{5}}{20}-\frac{1}{x}+\frac{2}{3} x^{\frac{3}{2}}+C
$$

12.4 We have to integrate $y=f(x)=12-3 x^{2}$, but from where to where? We need to know its x-intercepts. That is,

$$
12-3 x^{2}=0 \quad \Rightarrow \quad 3 x^{2}=12 \quad \Rightarrow \quad x^{2}=4 \quad \Rightarrow \quad x= \pm 2
$$

We have

$$
F(x)=\int f(x) d x=12 x-x^{3}+C
$$

Hence the required area is

$$
\begin{gathered}
\text { Area }=[F(x)]_{-2}^{2}=\left(12(2)-2^{3}+\not \subset\right)-\left(12(-2)-(-2)^{3}+\not \subset\right) \\
\quad=(24-8)-(-24+8)=16-(-16)=16+16=32
\end{gathered}
$$

Appendix 2: Solutions to problem sets

Problem Set 1

1.1 Evaluate the following.
(a) $4+4 \times 4 \div 4-4$
$=4+16 \div 4-4$
$=4+4-4$
$=4$
(b) $4+4 \times(4 \div 4-4)$
$=4+4 \times(1-4)$
$=4+4 \times(-3)$
$=4-12$
$=-8$
(c) $2 \times 4-(8-1)$
$=2 \times 4-7$
$=8-7$
$=1$
(e) $\quad(-4 \times 12)-[32-(-4)]$
$=(-48)-[36]$
$=-84$
(d) $-14 \div 2-(-20) \div(-5)$ $=-7-(4)$
$=-11$

$$
-\quad 01
$$

(f) $[4 \times(3+4)-21] \div[2 \times 14 \div 7+3]$
$=[4 \times 7-21] \div[28 \div 7+3]$
$=[28-21] \div[4+3]$
$=7 \div 7$
$=1$
(g) $3 \times 8-[-16-(-4)]$
$=24-[-16+4]$
$=24-[-12]$
$=24+12$
$=36$
(h) $\quad[-3 \times(3-4)-19] \div[8 \div 4 \times 7-6]$
$=[(-3) \times(-1)-19] \div[2 \times 7-6]$
$=[3-19] \div[14-6]$
$=-16 \div 8$
$=-2$
(i)

$$
\begin{aligned}
& (8-4) \div(4+4)-8 \\
& 4 \div 8-8 \\
= & \frac{1}{2}-8 \\
= & \frac{1}{2}-\frac{16}{2} \\
= & -\frac{15}{2}
\end{aligned}
$$

1.2 Compute the following, leaving your answer in the simplest fraction form.
(a) $\frac{1}{2}+\frac{3}{4}+\frac{5}{12} \quad$ (2 and 4 divide into 12)

$$
=\frac{1 \times 6}{2 \times 6}+\frac{3 \times 3}{4 \times 3}+\frac{5}{12}
$$

(b) $\frac{3}{4}-\frac{4}{5}+\frac{3}{10} \quad(4,5$ and 10 divide into 20$)$
$=\frac{3 \times 5}{4 \times 5}-\frac{4 \times 4}{5 \times 4}+\frac{3 \times 2}{10 \times 2}$
$=\frac{6}{12}+\frac{9}{12}+\frac{5}{12}$
$=\frac{15-16+6}{20}$
$=\frac{6+9+5}{12}$
$=\frac{5}{20}$
$=\frac{20}{12}$
$=\frac{\$ 5 \times 1}{\$ 5 \times 4}$
$=\frac{5 \times 4}{3 \times 4}$
$=\frac{1}{4}$

$$
=\frac{5}{3}
$$

(c)

$$
\frac{4}{24}+1 \frac{2}{3}
$$

(d) $1 \frac{2}{3}-2 \frac{3}{5}+1 \frac{4}{5}$
$=\frac{1 \times 4}{6 \times 4}+\frac{5}{3}$

$$
=\frac{5}{3}-\frac{13}{5}+\frac{9}{5}
$$

$=\frac{1}{6}+\frac{5 \times 2}{3 \times 2}$
$=\frac{25-39+27}{15}$
$=\frac{1+10}{6}$
$=\frac{13}{15}$
$=\frac{11}{6}$

$$
\text { (e) } \begin{aligned}
& \begin{array}{ll}
\frac{4}{5} \times \frac{3}{7} & \\
=\frac{4 \times 3}{3} \div 4 \frac{2}{9} \\
= & \frac{12}{35}
\end{array} \\
= & \frac{8}{3} \div \frac{38}{9} \\
& =\frac{8}{3} \times \frac{9}{38} \\
& =\frac{4 \times \not 2}{1 \times 3} \times \frac{3 \times 3}{2 \times 19} \\
& =\frac{4 \times 3}{1 \times 19} \\
& =\frac{12}{19}
\end{aligned}
$$

(g) $\quad \frac{7}{9} \times 1 \frac{1}{8} \div \frac{5}{7}$
(h) $2 \frac{3}{7} \div \frac{34}{14}$
$=\frac{17}{7} \times \frac{14}{34}$
$=\frac{7}{9} \times \frac{9}{8} \times \frac{7}{5}$
$=\frac{17}{7} \times \frac{7 \times 2}{17 \times 2}$
$=\frac{7 \times 1 \times 7}{1 \times 8 \times 5}$
$=\frac{2}{2}$

$$
=1
$$

1.3 What is half of the difference between a third of 60 and a quarter of 80 ?

$$
\frac{1}{2} \times\left(\frac{1}{3} \times 60-\frac{1}{4} \times 80\right)=\frac{1}{2}(20-20)=0
$$

1.4 What is the sum of half of 45 and a third of the product of two thirds and $1 \frac{1}{8}$?

$$
\begin{aligned}
& \frac{1}{2} \times 45+\frac{1}{3} \times \frac{2}{3} \times 1 \frac{1}{8} \\
= & \frac{1}{2} \times \frac{45}{1}+\frac{1}{3} \times \frac{2}{3} \times \frac{9}{8} \\
= & \frac{45}{2}+\frac{1}{4}=\frac{91}{4}
\end{aligned}
$$

1.5 James and his wife Sweet Li have a 12 year old daughter called Lyn. James is 50 year old and Lyn is 12. Half of his age added to five thirds of Lyn's age gives the age of Sweet Li. How old is Sweet Li?

$$
\frac{1}{2} \times 50+\frac{5}{3} \times 12=25+20=45, \text { so Sweet } \mathrm{Li} \text { is } 45
$$

1.6 Swee Khum put a third of her savings in the bank, a third in bonds, a quarter of the remainder in stocks and the rest in fixed deposit. If her total amount is $\$ 600,000$ how much did she put in fixed deposit?
After Swee Khum put a third in the bank and a third in bonds, she is left with one third of her savings, which is $\$ 200,000$. She then puts a quarter in stocks, so she is left with $\frac{3}{4} \times \$ 200,000=\$ 150,000$, so she puts $\$ 150,000$ in fixed deposit.

Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative knowhow is crucial to running a large proportion of the world's wind turbines.

Up to 25% of the generating costs relate to maintenance. These can be reduced dramatically thanks to our vstems for on-line condition monitoring and automatic luo ication. We help make it more economical to create cleaner cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations.

Therefore we need the best employees who can peet this challenge!

Problem Set 2

2.1 Solve the following equations for the unknown.
(a) $x+3=5$

$$
\begin{aligned}
x+3 & =5 \\
\Rightarrow \quad x+3-3 & =5-3 \\
\Rightarrow \quad x & =2
\end{aligned}
$$

(b) $4 y-5=y+10$

$$
\begin{aligned}
4 y-5 & =y+10 \\
\Rightarrow \quad 4 y-5+5 & =y+10+5 \\
\Rightarrow \quad 4 \quad 4 y & =y+15 \\
\Rightarrow \quad 4 y-y & =y+15-y \\
\Rightarrow \quad 3 y & =15 \\
\Rightarrow \quad 3 y & =\frac{15}{3} \\
\Rightarrow \quad y \quad y & =5
\end{aligned}
$$

(c) $8 x-4=16$

$$
\begin{aligned}
8 x-4 & =16 \\
\Rightarrow \quad 8 x-4+4 & =16+4 \\
\Rightarrow \quad \frac{8 x}{8} & =\frac{20}{8} \\
\Rightarrow \quad x & =\frac{20}{8} \\
\Rightarrow \quad & =\frac{5}{2}
\end{aligned}
$$

(d) $\frac{2 z}{z+2}=4$

First we get z out of the bottom line by multiplying both sides by $z+2$.

$$
\begin{array}{rlrl}
\Rightarrow \quad \frac{z+2}{1} & \frac{2 z}{z+2} & =4(z+2) \\
\Rightarrow \quad 2 z & =4 z+8 \\
\Rightarrow \quad 2 z-2 z & =4 z+8-2 z \\
\Rightarrow \quad 0 & =2 z+8 \\
\Rightarrow \quad 0-8 & =2 z+8-8 \\
\Rightarrow \quad-8 & =2 z \\
\Rightarrow \quad-4 & =z
\end{array}
$$

(e) $3-2 x=4$

$$
\begin{array}{rlrl}
3-2 x & =4 \\
\Rightarrow \quad-3+3-2 x & =4-3 \\
\Rightarrow \quad & -2 x & =1 \\
\Rightarrow \quad & \frac{-2 x}{-2} & =\frac{1}{-2} \\
\Rightarrow \quad x & =-\frac{1}{2}
\end{array}
$$

(f) $7 x+7=2(x+1)$

$$
\begin{aligned}
7 x+7 & =2(x+1) \\
\Rightarrow \quad 7 x+7 & =2 x+2 \\
\Rightarrow \quad 7 x+7-7-2 x & =2 x+2-7-2 x \\
\Rightarrow \quad 5 x & =-5 \\
\Rightarrow \quad x & =-1
\end{aligned}
$$

(g) $x-\frac{1}{2}=2$

$$
\begin{aligned}
x-\frac{1}{2} & =2 \\
\Rightarrow \quad x & =2 \frac{1}{2} \\
& =\frac{5}{2}
\end{aligned}
$$

(h) $\frac{2 y-3}{4}=\frac{6 y+7}{3}$

First multiply both sides by 3 and by 4 to remove the fractions.

$$
\begin{aligned}
\Rightarrow \quad 3 \times 4 \times \frac{2 y-3}{4} & =\not p \times 4 \times \frac{6 y+7}{\not b} \\
\Rightarrow \quad 3(2 y-3) & =4(6 y+7) \\
\Rightarrow \quad 6 y-9 & =24 y+28 \\
\Rightarrow \quad 6 y-9+9-24 y & =24 y+28+9-24 y \\
\Rightarrow \quad-18 y & =37 \\
\Rightarrow \quad y & =-\frac{37}{18}
\end{aligned}
$$

(i) $t=2-2[2 t-3(1-t)]$

First we simplify the bracket term.

$$
\begin{aligned}
t & =2-2[2 t-3+3 t] \\
& =2-2[5 t-3] \\
& =2-10 t+6 \\
& =8-10 t \\
\Rightarrow \quad t+10 t & =8-10 t+10 t \\
\Rightarrow \quad 11 t & =8 \\
\Rightarrow \quad t & =\frac{8}{11}
\end{aligned}
$$

(j) $\frac{3}{2}(4 a-3)=2[a-(4 a-3)]$

First we simplify the bracket term on the right-hand side, and them multiply both sides by 2 to remove the denominator on the left-hand side.

$$
\begin{aligned}
\Rightarrow \quad \frac{3}{2}(4 a-3) & =2[a-(4 a-3)] \\
& =2[a-4 a+3] \\
& =2[3-3 a] \\
& =6-6 a \\
\Rightarrow \quad 2 \times \frac{3}{2}(4 a-3) & =2 \times(6-6 a) \\
\Rightarrow \quad 3(4 a-3) & =12-12 a \\
\Rightarrow \quad 12 a-9 & =12-12 a \\
\Rightarrow \quad 12 a-9+9+12 a & =12-12 a+9+12 a \\
\Rightarrow \quad 24 a & =21 \\
\Rightarrow \quad a & =\frac{21}{24} \\
& =\frac{7}{8}
\end{aligned}
$$

(k) $\frac{x+3}{x}=\frac{2}{5}$

Cross-multiply to get

$$
\begin{aligned}
& \Rightarrow \quad 5(x+3)=2 x \\
& \Rightarrow \quad 5 x+15=2 x \\
& \\
& \Rightarrow \quad 3 x=-15 \\
& \Rightarrow \quad x=-5 .
\end{aligned}
$$

TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk

> SUBSCRYBE - to the future
(l) $\frac{1}{p-1}=\frac{2}{p-2}$

Cross-multiply to get

$$
\begin{aligned}
\Rightarrow \quad p-2 & =2(p-1) \\
\Rightarrow \quad p-2 & =2 p-2 \\
\Rightarrow \quad p-2+2-p & =2 p-2+2-p \\
\Rightarrow \quad 0 & =p
\end{aligned}
$$

(m) $\frac{x}{2}-\frac{x}{5}=1$

Multiply throught by 2 and by 5 to get

$$
\begin{aligned}
\frac{x}{2}-\frac{x}{5} & =1 \\
\Rightarrow \quad 22 \times 5 \times \frac{x}{2}-2 \times \not 5 \times \frac{x}{\boxed{2}} & =2 \times 5 \times 1 \\
\Rightarrow \quad 5 x-2 x & =10 \\
\Rightarrow \quad 3 x & =10 \\
\Rightarrow \quad x & =\frac{10}{3}
\end{aligned}
$$

(n) $\frac{y-4}{2}+\frac{y}{3}=4$

Multiply through by 2 and by 3 to get

$$
\begin{aligned}
\Rightarrow \quad 2 \times 3 \times \frac{y-4}{\not 2}+2 \times \not 0 \times \frac{y}{\not 2} & =2 \times 3 \times 4 \\
\Rightarrow \quad 3(y-4)+2 y & =24 \\
\Rightarrow \quad 3 y-12+2 y & =24 \\
\Rightarrow \quad 5 y & =36 \\
\Rightarrow \quad y & =\frac{36}{5}
\end{aligned}
$$

(o) $\frac{2}{y}+4=\frac{3}{y}$

Multiply both sides by y to get

$$
\begin{aligned}
& \Rightarrow \quad y\left(\frac{2}{y}+4\right)=y \times \frac{3}{y} \\
& \Rightarrow \quad y \times \frac{2}{y}+y \times 4=3 \\
& \Rightarrow \quad 2+4 y=3 \\
& \Rightarrow \quad 4 y=1 \\
& \Rightarrow \quad y=\frac{1}{4}
\end{aligned}
$$

(p) $\frac{2-y}{3}-\frac{1-y}{2}=y$

Multiply through by 2 and by 3 to get

$$
\begin{aligned}
\Rightarrow \quad 2 \times \not 0 \times \frac{2-y}{\not b}-22 \times 3 \times \frac{1-y}{2} & =2 \times 3 \times y \\
\Rightarrow \quad 2(2-y)-3(1-y) & =6 y \\
\Rightarrow \quad 4-2 y-3+3 y & =6 y \\
\Rightarrow \quad 1+y & =6 y \\
\Rightarrow 1 & =5 y \\
\text { so } y & =\frac{1}{5}
\end{aligned}
$$

(q) $y-\frac{1-y}{2}+4=7$

First transfer all the numbers to the right-hand side, and then multiply both sides by 2.

$$
\begin{aligned}
\Rightarrow \quad y-\frac{1-y}{2} & =3 \\
\Rightarrow \quad 2 y-(1-y) & =6 \quad \text { (don't forget the brackets here!) } \\
\Rightarrow \quad 2 y-1+y & =6 \\
\Rightarrow \quad 3 y & =7 \\
\Rightarrow \quad y & =\frac{7}{3}
\end{aligned}
$$

(r) $\frac{y}{3}-(3-y)=4-y$

Multiplying both sides by 3 gives

$$
\begin{aligned}
y-3(3-y) & =3(4-y) \\
\Rightarrow \quad y-9+3 y & =12-3 y \\
\Rightarrow \quad 4 y & =21-3 y \\
\Rightarrow \quad 7 y & =21 \\
\Rightarrow \quad y & =3
\end{aligned}
$$

(s) $\frac{d-1}{2}-\frac{d}{3}=0$

Multiply through by 2 and by 3 to get

$$
\begin{aligned}
\underline{2} \times 3 \times \frac{d-1}{\not 2}-2 \times \not p \times \frac{d}{p} & =2 \times 3 \times 0 \\
\Rightarrow \quad 3(d-1)-2 d & =0 \\
\Rightarrow \quad 3 d-3-2 d & =0 \\
\Rightarrow \quad d & =3
\end{aligned}
$$

(t) $\frac{4-p}{3}=-8$

Multiply both sides by 3 to get

$$
\begin{array}{rlrl}
& \Rightarrow-p & =-24 \\
\Rightarrow \quad & -p & =-28 \\
\Rightarrow \quad \frac{-p}{-1} & =\frac{-28}{-1} \\
\Rightarrow \quad & p & =28
\end{array}
$$

(u) $\frac{d-1}{2}-\frac{d}{3}=0$

Multiply through by 2 and by 3 to get

$$
\begin{aligned}
2 \times 3 \times \frac{d-1}{2}-2 \times \not p \times \frac{d}{\not b} & =2 \times 3 \times 0 \\
\Rightarrow \quad 3(d-1)-2 d & =0 \\
\Rightarrow \quad 3 d-3-2 d & =0 \\
\Rightarrow \quad d & =3
\end{aligned}
$$

(v) $\frac{4-p}{3}=-8$

Multiply both sides by 3 to get

$$
\begin{array}{rlrl}
& \begin{aligned}
4-p & =-24 \\
\Rightarrow & -p
\end{aligned}=-28 \\
\Rightarrow \quad & \frac{-p}{-1} & =\frac{-28}{-1} \\
\Rightarrow & p & =28
\end{array}
$$

2.2 If $2 \frac{1}{4}$ cakes are served in slices of $\frac{1}{8}$ of a cake, how many slices are served?

$$
\begin{aligned}
& 2 \frac{1}{4} \div \frac{1}{8} \\
= & \frac{9}{4} \times \frac{8}{1} \\
= & \frac{9}{4} \times \frac{4 \times 2}{1} \\
= & 18 \text { slices }
\end{aligned}
$$

2.3 Lian earns \$2,000 a fortnight and spends \$1200 of that. What proportion of his salary does he save?
Lian saves $\$ 2,000-\$ 1,200=\$ 800$, which is

$$
\begin{aligned}
& \frac{800}{2000} \\
= & \frac{8}{20} \\
= & \frac{2}{5} \text { which is } \frac{2}{5} \text { of his salary. }
\end{aligned}
$$

2.4 Nadia buys a packet of 60 samosas for a tea party. She takes out half for her family. She takes the remaining to the party. On the way she meets a friend who takes a sixth of the samosas. A little further on she sees a hungry cat and gives it a fifth of the samosas she has. The she suddenly feels hungry and eats a quarter of the remaining samosas. How many does she arrive with at the tea party?
Nadia starts with half the samosas for her party, so she takes $\frac{1}{2} \times 60=$ 30 samosas. Her friend takes $\frac{1}{6}$ of these, so she is left with $\frac{5}{6} \times 30=25$ samosas. She gives a cat $\frac{1}{5}$ of these, so she is left with $\frac{4}{5} \times 25=20$ samosas. She eats $\frac{1}{4}$ of these, so she is left with $\frac{3}{4} \times 20=15$ samosas. She arrives at the party with 15 samosas.
2.5 I have a naan recipe that calls for $4 \frac{2}{3}$ cups of flour for 14 servings of naan. I want to make one serving only. How much flour should I use?

$$
\begin{aligned}
& 4 \frac{2}{3} \div 14 \\
= & \frac{14}{3} \times \frac{1}{14} \\
= & \frac{1}{3}
\end{aligned}
$$

so I need $\frac{1}{3}$ cup of flour.
2.6 Suppose Mike travels a certain distance on the first day and twice the distance on the next day. If the total distance he travelled is 60 km , how far does he travel on the first day?

Let x denote the distance travelled on the first day. The distance travelled on the second day is $2 x$. Since the total distance travelled is 60 km , we must have

$$
x+2 x=60 \Rightarrow 3 x=60 \Rightarrow x=20
$$

so Mike travels 20 km on the first day.
2.7 Joy, Pam, Sandra and Lilin each make a donation to the Guide Dogs Association. Sandra gives twice as much as Lilin, Pam gives three times as much as Sandra and Joy gives four times as much as Pam. If their total gift is $\$ 132$, find the amount of Lilin's donation, and hence the amount donated by each.

Let the amount given by Lilin be x. Then Sandra gives $2 x$, Pam gives $3 \times 2 x=6 x$ and Joy gives $4 \times 6 x=24 x$. Total donation was $\$ 132$, so

$$
\begin{aligned}
x+2 x+6 x+24 x & =132 \\
\Rightarrow \quad 33 x & =132 \\
\Rightarrow \quad x & =\frac{132}{33} \\
\Rightarrow \quad x & =\frac{\not 11 \times 12}{\not 11 \times 3} \quad \text { (via 11 times table) } \\
\Rightarrow \quad x & =\frac{12}{3} \\
& =\frac{\not p \times 4}{\not \supset \times 1}=4
\end{aligned}
$$

Thus Lilin gave \$4, Sandra gave \$8, Pam gave \$24 and Joy gave \$96.
The total of these amounts is \$132 as required.

Problem Set 3

Please note that these solutions present only one option for solving these problems. You may have taken different steps. The important thing is that you get the right answers at the end.
3.1 Solve the following sets of simultaneous equations.
(a)

$$
\begin{align*}
2 x+y & = & 8 \tag{1}\\
(+) 3 x-y & = & 7 \\
\hline 5 x & = & 15 \\
\Rightarrow x & = & \frac{15}{5}=3
\end{align*}
$$

Substitute this back into either of the equations, for example,
Eq. (1) to get

$$
\begin{aligned}
2 \times 3+y & =8 \\
\Rightarrow \quad 6+y & =8 \\
\Rightarrow \quad y & =8-6=2
\end{aligned}
$$

(b)

$$
\begin{align*}
2 x+3 y & =19 \tag{1}\\
4 x-y & =3 \tag{2}
\end{align*}
$$

Multiply Eq. (1) by 2 to get

$$
\begin{array}{rlrl}
4 x+6 y & = & 38 \\
(-) 4 x-y & = & 3 \tag{2}\\
\hline 4 y^{\star} & = & 35 \\
\Rightarrow y & =\frac{35}{7}=5
\end{array}
$$

* Note that $6 y-(-y)=7 y$.

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
\begin{aligned}
2 x+3 \times 5 & =19 \\
\Rightarrow \quad 2 x+15 & =19 \\
\Rightarrow \quad 2 x & =19-15 \\
\Rightarrow \quad 2 x & =4 \quad \Rightarrow \quad x=2
\end{aligned}
$$

We can check this solution by substituting these values of x and y into the LHS of the other equation (2):

$$
3 \times 3-2=7=\text { RHS }
$$

so the solution is correct: $x=3, y=2$.

We can check this solution by substituting these values of x and y into the LHS of the other equation (2):

$$
4 \times 2-5=3=\text { RHS }
$$

so the solution is correct: $x=2, y=5$
(c)

$$
\begin{align*}
x+2 y & =10 \tag{1}\\
(-) x-y & =1 \\
\hline 3 y^{\star} & =9 \\
\Rightarrow y & =3
\end{align*}
$$

* Note that $2 y-(-y)=3 y$.

Substitute this back into either of the original equations, for example, Eq. (2) to get

$$
x-3=1 \quad \Rightarrow \quad x=4
$$

(d)

$$
\begin{aligned}
4 x-y & =0 \\
(-) 2 x-y & =-2 \\
\hline 2 x & =2^{\star} \\
\Rightarrow x & =1
\end{aligned}
$$

\star Note that $-y-(-y)=0$ and $0-(-2)=2$.
Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
4 \times 1-y=0 \quad \Rightarrow \quad 4=y
$$

(e)

$$
\begin{array}{r}
2 x+y=4 \\
5 x+2 y=9 \tag{2}
\end{array}
$$

Multiply Eq. (1) by 2 to get

$$
\begin{align*}
4 x+2 y & =8 \tag{3}\\
(-) 5 x+2 y & =9 \\
\hline-x & =-1 \\
\Rightarrow x & =1
\end{align*}
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
2 \times 1+y=4 \quad \Rightarrow \quad y=2
$$

(f)

$$
\begin{array}{r}
x+3 y=3 \\
-2 x+y=8 \tag{2}
\end{array}
$$

Multiply Eq. (1) by 2 to get

$$
\begin{align*}
2 x+6 y & =6 \tag{3}\\
(+)-2 x+y & =8 \\
\hline 7 y & =14 \\
\Rightarrow y & =2
\end{align*}
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
x+3 \times 2=3 \Rightarrow x=3-6 \Rightarrow x=-3
$$

(g)

$$
\begin{align*}
2 x-3 y & =5 \tag{1}\\
5 x+2 y & =-16 \tag{2}
\end{align*}
$$

Do $5 \times$ Eq. (1) and do $2 \times$ Eq. (2) to get

$$
\begin{array}{rlrr}
10 x-15 y & = & 25 \tag{3}\\
(-) 10 x+4 y & = & -32 \\
\hline & -19 y & = & 57 \\
\Rightarrow y & = & \frac{57}{-19} \\
\Rightarrow y & = & -\frac{19 \times 3}{19 \times 1}=-3
\end{array}
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
\begin{aligned}
2 x-3(-3) & =5 \\
\Rightarrow \quad 2 x+9 & =5 \\
\Rightarrow \quad 2 x & =5-9 \\
\Rightarrow \quad x & =\frac{-4}{2}=-2
\end{aligned}
$$

(h)

$$
\begin{align*}
x+y & =5 \tag{1}\\
(-) \quad 2 x+y & =7 \\
\hline-x & =-2 \\
\Rightarrow x & =2
\end{align*}
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
2+y=5 \Rightarrow y=3
$$

We can check this solution by substituting these values of x and y into the LHS of the other equation (2):
$5(-2)+2(-3)=-10-6=-16=$ RHS so the solution is correct: $x=-2, y=$ -3

We can check this solution by substituting these values of x and y into the LHS of the other equation (2):

$$
2 \times 2+3=7=\text { RHS }
$$

so the solution is correct: $x=2, y=3$
(i)

$$
\begin{align*}
& 4 x+y=10 \tag{1}\\
& 2 x+3 y=10 \tag{2}
\end{align*}
$$

Do $2 \times$ Eq. (2) to get

$$
\begin{align*}
4 x+y & =10 \tag{1}\\
(-) 4 x+6 y & =20 \tag{3}\\
\hline-5 y & =-10 \\
\Rightarrow y & =\frac{-10}{-5} \\
& =2
\end{align*}
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
\begin{aligned}
4 x+2 & =10 \\
\Rightarrow \quad 4 x & =10-2 \\
\Rightarrow \quad x & =\frac{8}{4} \\
& =2
\end{aligned}
$$

(j) ${ }^{\star}$ This one is too difficult for a Test question but if you like fraction arithmetic

$$
\begin{align*}
2 x+3 y & =8 \tag{1}\\
3 x-2 y & =-7 \tag{2}
\end{align*}
$$

Multiply Eq. (1) by 3 and Eq. (2) by 2 to get

$$
\left.\left.\begin{array}{rl}
6 x & +9 y
\end{array} \begin{array}{rl}
64 \\
(-) & 6 x-4 y \tag{4}
\end{array}\right)=-14\right] .
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
\begin{aligned}
2 x+3 \times \frac{38}{13} & =8 \\
\Rightarrow \quad 26 x+3 \times 38 & =13 \times 8 \\
\Rightarrow \quad 26 x+114 & =104 \\
\Rightarrow \quad 26 x & =-10 \\
\Rightarrow \quad x & =\frac{-10}{26} \\
& =-\frac{2 x 5}{\not 2 \times 13} \\
& =-\frac{5}{13}
\end{aligned}
$$

We can check this solution by substituting these values of x and y into the LHS of the other equation (2):

$$
2 \times 2+3 \times 2=10=\text { RHS }
$$

so the solution is correct: $x=2, y=2$

We can check this solution by substituting these values of x and y into the LHS of the other equation (2):

$$
\begin{aligned}
3 \times\left(-\frac{5}{13}\right)-2 \times\left(\frac{38}{13}\right) & =-\frac{15}{13}-\frac{76}{13} \\
& =-\frac{91}{13} \\
& =-\frac{13 \times 7}{13 \times 1} \\
& =-7=\text { RHS }
\end{aligned}
$$

so the solution is correct.
3.2 Tickets for an ice-skating display are sold at $\$ 5$ for adults and $\$ 2$ for children. If 101 tickets were sold altogether for a take of $\$ 394$, find the number of adults and children who attended.
Let a denote the number of adults and c the number of children.
We are told that 101 tickets were sold so we must have

$$
\begin{equation*}
a+c=101 \tag{1}
\end{equation*}
$$

We are also told that

$$
\begin{equation*}
5 a+2 c=394 \tag{2}
\end{equation*}
$$

To solve this set of equations multiply Eq. (1) by 5 to get

$$
\begin{align*}
& 5 a+5 c=505 \tag{3}\\
& 5 a+2 c=394 \tag{2}
\end{align*}
$$

Do Eq. (3) - Eq. (2) to get
$5 a-5 a+5 c-2 c=505-394 \quad \Rightarrow \quad 3 c=111 \quad \Rightarrow \quad c=\frac{111}{3}$
It turns out that $111=3 \times 37$ so

$$
c=\frac{111}{3}=\frac{37 \times \not \equiv}{1 \times \not \equiv} \quad \Rightarrow \quad c=\frac{37}{1} \quad \Rightarrow \quad y=37
$$

Substitute this back into either of the original equations, for example, Eq. (1) to get

$$
a+c=101 \quad \Rightarrow \quad a+37=101 \quad \Rightarrow \quad a=101-37 \quad \Rightarrow \quad a=64
$$

That is, 64 adults and 37 children attended the display.
3.3 An island contains foxes and rabbits. An ecologist counts both species to study their interaction and how their populations change over time. Last year she found the total number of foxes and rabbits was 7,290 and the foxes were only 1 eighth of the rabbit population. How many of each species was present?
Let f be the number of foxes and r be the number of rabbits.
We are told that $r+f=7290$. We are also told that the foxes were only 1 eighth of the rabbit population, that is, the rabbit population is eight times as large as the fox population. That is $r=8 f$ which we can write as $r-8 f=0$. Hence the two simultaneous equations are

$$
\begin{align*}
& r+f=7290 \tag{1}\\
& r-8 f=0 \tag{2}
\end{align*}
$$

Do Eq. (1) - Eq. (2) to get
$r-\gamma+f-(-8 f)=7290-0 \Rightarrow f+8 f=7290 \Rightarrow 9 f=7290 \Rightarrow f=\frac{7290}{9}=810$
by using a calculator. The rabbit population is eight times this
much so

$$
r=8 \times 810=6480
$$

3.4 The ancient Roman emperor Augustus was fond of gold and silver sovereigns. By royal decree every gold sovereign was to weigh 50 grams and every silver one to weigh 40 grams. One year a new jeweller was hired to prepare the sovereigns. Augustus suspected that the jeweller was cheating him and delivering sub-weight sovereigns. A consignment contained 30 gold and 20 silver sovereigns weighed 2,250 grams, and a consignment of 15 gold and 25 silver sovereigns weighed 1,550 grams? Was the jeweller cheating Augustus?

Let g be the weight of a gold sovereign and s the weight of a silver sovereign. Then

$$
\begin{align*}
& 30 g+20 s=2250 \tag{1}\\
& 15 g+25 s=1550 \tag{2}
\end{align*}
$$

Do $2 \times$ Eq. (2) to get

$$
\begin{align*}
& 30 g+20 s=2250 \tag{1}\\
& 30 g+50 s=3100 \tag{3}
\end{align*}
$$

Now do Eq. (3) - Eq. (1) to get

$$
\begin{gathered}
30 g-30 g+50 s-20 s=3100-2250 \quad \Rightarrow \quad 30 s=850 \\
\Rightarrow s=\frac{850}{30}=\frac{85}{3}=28.333 \text { grams approx. }
\end{gathered}
$$

but a silver sovereign should weigh 40 grams, so it looks like the jeweller was cheating Augustus. However, we should first check what the situation is with the gold soverigns. Substituting $s=\frac{85}{3}$ into, say Eq. (1) gives

$$
\begin{aligned}
30 g+20 \times \frac{85}{3}= & 2250 \quad \Rightarrow \quad 3 \times 30 g+20 \times 85=3 \times 2250 \\
& \Rightarrow \quad 90 g+1700=6750 \\
\Rightarrow \quad 90 g=5050 \Rightarrow & g=\frac{5050}{90}=\frac{505}{9}=56.111 \text { grams approx. }
\end{aligned}
$$

so the gold soverigns are actually heavier than required!

Problem Set 4

4.1 Expand the following.
(a) $(x+2)(x+4)=x^{2}+6 x+8$
(b) $(x-1)(x-2)=x^{2}-3 x+2$
(c) $(x-2)(x+2)=x^{2}-4$
(d) $(x-1)(1-x)=-x^{2}+2 x-1$
(e) $(2 x+3)(x+2)=2 x^{2}+7 x+6$
(f) $(x+1)^{2}=x^{2}+2 x+1$
(g) $(2 x-1)^{2}=4 x^{2}-4 x+1$
(h) $(x+2)^{2}=x^{2}+4 x+4$
(i) $x(x-1)(x+1)=x^{3}-x$
(j) $(x-2 y)(x+2 y)=x^{2}-4 y^{2}$
(k) $(2 x-3 y)^{2}=4 x^{2}-12 x y+9 y^{2}$
(l) $\left(x^{2}-1\right)\left(x^{2}+1\right)=x^{4}-1$
(m) $\left(x^{2}+x\right)\left(x^{2}-x\right)=x^{4}-x^{2}$
(n) $(x+3 y)(x-3 y)=x^{2}-9 y^{2}$
(o) $(x+1)(x+2)(x+3)=x^{3}+6 x^{2}+11 x+6$
(p) $(x-1)(x+1)(x+2)=x^{3}+2 x^{2}-x-2$
4.2 Factorise the following quadratic expressions.
(a) $x^{2}+5 x+6=(x+2)(x+3)$
(d) $x^{2}+x-6=(x-2)(x+3)$
(b) $x^{2}-5 x+6=(x-2)(x-3)$
(e) $x^{2}-2 x-15=(x-5)(x+3)$
(c) $x^{2}-x-6=(x+2)(x-3)$
(f) $x^{2}-100=(x+10)(x-10)$
4.3 Simplify the following rational expressions.
(a)

$$
\begin{aligned}
\frac{x^{2}-9}{x+3} & =\frac{(x-3)(x+3)}{x+3} \\
& =x-3
\end{aligned}
$$

(b) $\frac{x^{2}+5 x-14}{x^{2}+10 x+21}=\frac{(x+7)(x-2)}{(x+7)(x+3)}$

$$
=\frac{x-2}{x+3}
$$

Problem Set 5

There are often several different (but equally efficient) ways to solve index problems. Only one version is presented here so don't worry if you get the same answer by a different method.
5.1 Use index laws to simplify each of the following expressions
(a) $x^{3} \times x^{4} \times x=x^{3+4+1}=x^{8}$
(b) $x^{2} y^{3} x=x^{2+1} y^{3}=x^{3} y^{3}$
(c) $(x y)^{2}=x^{2} y^{2}$
(d) $\frac{a^{2} b^{5}}{a b}=\frac{a^{2}}{a} \times \frac{b^{5}}{b}=a^{2-1} \times b^{5-1}=a b^{4}$
(e) $\frac{2 x^{4} y^{2}}{6 x^{2} y^{2}}=\frac{1 \times \not 2}{3 \times \not 2} \times \frac{x^{4}}{x^{2}} \times \frac{y^{2}}{y^{2}}=\frac{1}{3} \times x^{2} \times y^{0}=\frac{1}{3} x^{2}$ or $\frac{x^{2}}{3}$
(f) $\left(4 x^{2}\right)^{3}=4^{3} x^{2 \times 3}=64 x^{6} \quad$ (note that $4 \times 4 \times 4=16 \times 4=8 \times 8$)
(g) $\frac{\left(3 x^{2} z\right)^{3}}{(2 x)^{2}}=\frac{3^{3} x^{6} z^{3}}{2^{2} x^{2}}=\frac{27}{4} \times x^{6-2} \times z^{3}=\frac{27}{4} x^{4} z^{3}$ or $\frac{27 x^{4} z^{3}}{4}$
(h) $\left(\frac{9 x^{4}}{(3 x)^{2}}\right)^{5}=\left(\frac{9 x^{4}}{9 x^{2}}\right)^{5}=\left(x^{4-2}\right)^{5}=\left(x^{2}\right)^{5}=x^{10}$
5.2 Express the following numbers without indices
(a) $\frac{2^{4}}{4^{2}}=\frac{16}{16}=1$ or by index laws $\frac{2^{4}}{\left(2^{2}\right)^{2}}=\frac{2^{4}}{2^{4}}=1$
(b) $\frac{5^{12}}{25^{5}}=\frac{5^{12}}{\left(5^{2}\right)^{5}}=\frac{5^{12}}{5^{10}}=5^{12-10}=5^{2}=25$
(c) $4^{-1}=\frac{1}{4}$
(d) $10^{-2}=\frac{1}{10^{2}}=\frac{1}{100}$
(e) $\frac{3^{5}}{27^{2}}=\frac{3^{5}}{\left(3^{3}\right)^{2}}=\frac{3^{5}}{3^{6}}=3^{5-6}=3^{-1}=\frac{1}{3}$
(f) $(-2)^{-4}=\frac{1}{(-2)^{4}}=\frac{1}{16}$
(g) $(-3)^{-3}=\frac{1}{(-3)^{3}}=-\frac{1}{27}$
(h) $0^{-6}=\frac{1}{0^{6}}=\frac{1}{0 \times 0 \times 0 \times 0 \times 0 \times 0}=\frac{1}{0}$ but this is not defined.
(i) $(-6)^{0}=1$
5.3 Use index laws to simplify each of the following expressions
(a) $y^{-2} y^{-3}=y^{-2+(-3)}=y^{-5}$
(b) $x^{-3} \times x^{3}=x^{-3+3}=x^{0}=1$
(c) $\left(a^{-3} b^{-4}\right)\left(a^{-1} b\right)=a^{-3} b^{-4} a^{-1} b=a^{-3+(-1)} b^{-4+1}=a^{-4} b^{-3}$
(d) $\frac{4 g^{-3} h^{-5}}{12 g^{-5} h^{3}}=\frac{4}{12} \times \frac{g^{-3}}{g^{-5}} \times \frac{h^{-5}}{h^{3}}=\frac{1}{3} \times g^{-3-(-5)} \times h^{-5-3}=\frac{1}{3} g^{2} h^{-8}$
(e) $\left(-9 x^{-1} y^{2}\right)^{-2}=(-9)^{-2} x^{-1 \times(-2)} y^{2 \times(-2)}=\frac{1}{(-9)^{2}} x^{2} y^{-4}=\frac{1}{81} x^{2} y^{-4}$
(f) $\left(\frac{3 a b^{2}}{c}\right)^{-1}=\frac{c}{3 a b^{2}} \quad$ (recognising that a power of -1 represents reciprocal)
(g) $\frac{6 a^{3} b^{-2}}{a^{2} b^{-1}} \div \frac{8 a^{3} b}{b}=\frac{6 a^{3} b^{-2}}{a^{2} b^{-1}} \times \frac{b}{8 a^{3} b}=\frac{{ }^{3} 6 a^{3} b^{-2+1}}{4^{8} a^{2+3} b^{-1+1}}=\frac{3 a^{3} b^{-1}}{4 a^{5} b^{0}}=\frac{3}{4} a^{-2} b^{-1}$ or $\frac{3}{4 a^{2} b}$
(h) $\frac{(-2 a b)^{3}}{\left(2 a^{-1} b\right)^{2}}=\frac{(-2)^{3} a^{3} b^{3}}{2^{2} a^{-1 \times 2} b^{2}}=\frac{-8}{4} a^{3-(-2)} b^{3-2}=-2 a^{5} b$
(i) $\left(\frac{3 x^{2} y^{-1}}{2}\right)^{0}=1 \quad$ (always!)
(j) $\frac{x^{6}}{x^{3}} \times\left(\frac{4 x^{3}}{12 x}\right)^{2}=x^{6-3} \times\left(\frac{1 \times 4}{3 \times 4} x^{3-1}\right)^{2}=x^{3} \times\left(\frac{1}{3} x^{2}\right)^{2}=x^{3} \times \frac{1}{9} x^{4}=\frac{1}{9} x^{7}$ or $\frac{x^{7}}{9}$
5.4 index laws to simplify each of the following expressions
(a) $3^{x} \times 2^{x} \times 3^{1-x}=3^{x+1-x} 2^{x}=3 \times 2^{x} \quad$ (note that the " \times " is needed here)
(b) $\frac{2^{2}}{2^{x}}=2^{2-x}$
(c) $\frac{x^{y} y^{x}}{x^{-y}}=x^{y-(-y)} y^{x}=x^{2 y} y^{x}$
(d) $\frac{\left(9^{a}\right)^{b}}{\left(3^{2 a}\right)^{b}}=\frac{9^{a b}}{3^{2 a b}}=\frac{\left(3^{2}\right)^{a b}}{3^{2 a b}}=\frac{3^{2 a b}}{3^{2 a b}}=1$
5.5 Evaluate each of the following expressions.
(a) $8^{\frac{1}{3}}=\left(2^{3}\right)^{\frac{1}{3}}=2^{3 \times \frac{1}{3}}=2^{1}=2$
(i) $32^{\frac{2}{5}}=\left(2^{5}\right)^{\frac{2}{5}}=2^{5 \times \frac{2}{5}}=2^{2}=4$
(b) $32^{\frac{1}{5}}=\left(2^{5}\right)^{\frac{1}{5}}=2^{5 \times \frac{1}{5}}=2^{1}=2$
(j) $36^{\frac{3}{2}}=\left(6^{2}\right)^{\frac{3}{2}}=6^{2 \times \frac{3}{2}}=6^{3}=216$
(c) $81^{\frac{1}{2}}=\left(9^{2}\right)^{\frac{1}{2}}=9^{2 \times \frac{1}{2}}=9^{1}=9$
(d) $125^{\frac{1}{3}}=\left(5^{3}\right)^{\frac{1}{3}}=5^{3 \times \frac{1}{3}}=5^{1}=5$
(k) $49^{-\frac{3}{2}}=\left(7^{2}\right)^{-\frac{3}{2}}=7^{2 \times\left(-\frac{3}{2}\right)}=7^{-3}=\frac{1}{343}$
(e) $81^{\frac{1}{4}}=\left(3^{4}\right)^{\frac{1}{4}}=3^{4 \times \frac{1}{4}}=3^{1}=3$
(l) $64^{\frac{5}{6}}=\left(2^{6}\right)^{\frac{5}{6}}=2^{5}=32$
(f) $64^{\frac{1}{3}}=\left(4^{3}\right)^{\frac{1}{3}}=4^{3 \times \frac{1}{3}}=4^{1}=4$
(m) $64^{-\frac{1}{6}}=\left(2^{6}\right)^{-\frac{1}{6}}=2^{-1}=\frac{1}{2}$
(g) $10000^{-\frac{1}{4}}=\left(10^{4}\right)^{-\frac{1}{4}}=10^{-1}=\frac{1}{10}$
(n) $81^{\frac{3}{4}}=\left(3^{4}\right)^{\frac{3}{4}}=3^{3}=27$
(h) $144^{-\frac{1}{2}}=\left(12^{2}\right)^{-\frac{1}{2}}=12^{-1}=\frac{1}{12}$
(o) $(-27)^{\frac{2}{3}}=\left[(-3)^{3}\right]^{\frac{2}{3}}=(-3)^{2}=9$
5.6 Evaluate each of the following expressions.
(a) $27^{\frac{2}{3}}=\left(3^{3}\right)^{\frac{2}{3}}=3^{2}=9$
(b) $27^{-\frac{2}{3}}=\left(3^{3}\right)^{-\frac{2}{3}}=3^{-2}=\frac{1}{9}$
(c) $4^{\frac{7}{2}}=\left(2^{2}\right)^{\frac{7}{2}}=2^{7}=128$
(d) $16^{-\frac{1}{2}}=\left(4^{2}\right)^{-\frac{1}{2}}=4^{-1}=\frac{1}{4}$
(e) $100^{\frac{3}{2}}=\left(10^{2}\right)^{\frac{3}{2}}=10^{3}=1000$
(f) $16^{-\frac{3}{4}}=\left(2^{4}\right)^{-\frac{3}{4}}=2^{-3}=\frac{1}{8}$
(g) $169^{-\frac{1}{2}}=\left(13^{2}\right)^{-\frac{1}{2}}=13^{-1}=\frac{1}{13}$
(h) $32^{\frac{4}{5}}=\left(2^{5}\right)^{\frac{4}{5}}=2^{4}=16$
(i) $27^{\frac{4}{3}}=\left(3^{3}\right)^{\frac{4}{3}}=3^{4}=81$
(j) $64^{-\frac{5}{6}}=\left(2^{6}\right)^{-\frac{5}{6}}=2^{-5}=\frac{1}{32}$
(k) $\left(\frac{4}{9}\right)^{\frac{3}{2}}=\left[\left(\frac{2}{3}\right)^{2}\right]^{\frac{3}{2}}=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$
(l) $\left(\frac{4}{9}\right)^{-\frac{3}{2}}=\left[\left(\frac{2}{3}\right)^{2}\right]^{-\frac{3}{2}}=\left(\frac{2}{3}\right)^{-3}=\frac{27}{8}$
(m) $81^{-\frac{1}{2}}=\left(9^{2}\right)^{-\frac{1}{2}}=9^{-1}=\frac{1}{9}$

This e-book is made with SETASIGN SetaPDF

www.setasign.com

5.7 Simplify each of the following expressions
(a) $3 x^{\frac{1}{2}} \times 4 x^{\frac{2}{3}}=12 x^{\frac{1}{2}+\frac{2}{3}}=12 x^{\frac{7}{6}}$
(b) $5 x^{\frac{2}{5}} \times 6 x^{-\frac{1}{10}}=30 x^{\frac{2}{5}+\left(-\frac{1}{10}\right)}=30 x^{\frac{3}{10}}$
(c) $\left(4 x^{\frac{1}{2}}\right)^{3} \div\left(9 x^{\frac{1}{3}}\right)^{\frac{3}{2}}=\frac{64 x^{\frac{3}{2}}}{27 x^{\frac{1}{2}}}=\frac{64 x}{27}$
(d) $\left(64 x^{2}\right)^{-\frac{1}{6}} \div\left(32 x^{\frac{5}{2}}\right)^{-\frac{2}{5}}=64^{-\frac{1}{6}} x^{-\frac{1}{3}} \times \frac{1}{\left(32 x^{\frac{5}{2}}\right)^{-\frac{2}{5}}}$

$$
=\frac{1}{64^{\frac{1}{6}} x^{\frac{1}{3}}} \times\left(32 x^{\frac{5}{2}}\right)^{\frac{2}{5}}=\frac{32^{\frac{2}{5}} x}{2 x^{\frac{1}{3}}}=\frac{4 x}{2 x^{\frac{1}{3}}}=2 x^{\frac{2}{3}}
$$

(e) $\frac{x^{-\frac{2}{3}} y^{\frac{5}{2}}}{x^{-\frac{5}{3}} y^{-1}}=\frac{x^{\frac{5}{3}} y^{\frac{5}{2}} y}{x^{\frac{2}{3}}}=x y^{\frac{7}{2}}$
(f) $\frac{x^{\frac{3}{7}} y^{-\frac{4}{5}}}{x^{-\frac{2}{7}} y^{\frac{3}{5}}}=\frac{x^{\frac{3}{7}} x^{\frac{2}{7}}}{y^{\frac{3}{5}} y^{\frac{4}{5}}}=\frac{x^{\frac{5}{7}}}{y^{7}}$
5.8 Simplify each of the following expressions
(a) $3 x^{\frac{1}{2}} \times 2 x^{-\frac{1}{2}}=6 x^{\frac{1}{2}-\frac{1}{2}}=6 x^{0}=6$
(b) $\left(8 x^{3} y^{5}\right)^{-\frac{2}{3}}=8^{-\frac{2}{3}} x^{-2} y^{-\frac{10}{3}}=\frac{1}{\left(2^{3}\right)^{\frac{2}{3}} x^{2} y^{\frac{10}{3}}}=\frac{1}{4 x^{2} y^{\frac{10}{3}}}$
(c) $\left(x^{\sqrt{5}}\right)^{3 \sqrt{5}}=x^{\sqrt{5} \times 3 \sqrt{5}}=x^{15}$
(d) $\frac{3 x^{\sqrt{27}}}{x^{\sqrt{12}}}=\frac{3 x^{\sqrt{9 \times 3}}}{x^{\sqrt{4 \times 3}}}=\frac{3 x^{3 \sqrt{3}}}{x^{2 \sqrt{3}}}=3 x^{\sqrt{3}}$
(e) $3 x^{-\frac{1}{2}} \times 4 x^{\frac{2}{3}}=12 x^{-\frac{1}{2}+\frac{2}{3}}=12 x^{\frac{1}{6}}$
(f) $\left(x^{2 \sqrt{7}}\right)^{\sqrt{7}}=x^{2 \times 7}=x^{14}$
(g) $\frac{x^{-3} y^{5}}{x^{2} y^{-7}}=\frac{y^{5} y^{7}}{x^{2} x^{3}}=\frac{y^{12}}{x^{5}}$
(h) $7 x^{\frac{1}{4}} \times 2 x^{-\frac{1}{2}}=14 x^{\frac{1}{4}+\left(-\frac{1}{2}\right)}=14 x^{-\frac{1}{4}}$
(i) $(9 x)^{\frac{1}{2}} \times(27 x)^{\frac{1}{3}}=3 x^{\frac{1}{2}} \times 3 x^{\frac{1}{3}}=9 x^{\frac{1}{2}+\frac{1}{3}}=9 x^{\frac{5}{6}}$
(j) $(9 x)^{\frac{1}{2}} \times(27 x)^{-\frac{1}{3}}=\frac{3 x^{\frac{1}{2}}}{(27 x)^{\frac{1}{3}}}=\frac{3 x^{\frac{1}{2}}}{3 x^{\frac{1}{3}}}=x^{\frac{1}{2}-\frac{1}{3}}=x^{\frac{1}{6}}$
(k) $3 x^{-\frac{1}{3}} \div 2 x^{\frac{3}{4}}=\frac{3 x^{-\frac{1}{3}}}{2 x^{\frac{3}{4}}}=\frac{3}{2 x^{\frac{3}{4}} \times x^{\frac{1}{3}}}=\frac{3}{2 x^{\frac{3}{4}+\frac{1}{3}}}=\frac{3}{2 x^{\frac{13}{12}}}$
5.9 Simplify each of the following expressions
(a) $\sqrt{12}=\sqrt{4 \times 3}=\sqrt{4} \sqrt{3}=2 \sqrt{3}$
(b) $\sqrt{72}=\sqrt{36 \times 2}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$
(c) $\sqrt{150}=\sqrt{25 \times 6}=\sqrt{25} \sqrt{6}=5 \sqrt{6}$
(d) $\sqrt[3]{96}=\sqrt[3]{8 \times 12}=\sqrt[3]{8} \sqrt[3]{12}=2 \sqrt[3]{12}$
(e) $\sqrt{2}(3-\sqrt{2})=3 \sqrt{2}-\sqrt{2} \sqrt{2}=3 \sqrt{2}-2$
(f) $\sqrt{5}(2 \sqrt{3}+\sqrt{2})=2 \sqrt{15}+\sqrt{10}$
(g) $(1-\sqrt{2}) \sqrt{3}=\sqrt{3}-\sqrt{6}$
(h) $(7+3 \sqrt{5}) \sqrt{3}=7 \sqrt{3}+3 \sqrt{15}$
(i) $(6-2 \sqrt{5})(6+2 \sqrt{5})=6^{2}-(2 \sqrt{5})^{2}=36-2^{2} \times 5=16$
(j) $(3+\sqrt{7})^{2}=(3+\sqrt{7})(3+\sqrt{7})=9+3 \sqrt{7}+3 \sqrt{7}+7=16+6 \sqrt{7}$
(k) $(4 \sqrt{3}-1)(2 \sqrt{5}+1)=8 \sqrt{15}+4 \sqrt{3}-2 \sqrt{5}-1$
(l) $(\sqrt{5}-\sqrt{3})(2 \sqrt{5}+4 \sqrt{3})=2 \times 5+4 \sqrt{15}-2 \sqrt{15}-4 \times 3=10+2 \sqrt{15}-12=2 \sqrt{15}-2$

Problem Set 6

6.1 For each of the following formulae, isolate the indicated variable

In each case, think of the operation that has been applied to both sides. These are listed for the first two parts to get you started.
(b) Solve $V=\frac{4}{3} \pi r^{3}$ for r

$$
\begin{aligned}
& \Rightarrow \quad \frac{V}{\pi}=\frac{4}{3} r^{3} \quad \text { [divide both sides by } \pi \text {] } \\
& \Rightarrow \quad \frac{3 V}{4 \pi}=r^{3} \quad \text { [multiply both sides by } \frac{3}{4} \text {] } \\
& \Rightarrow \quad r=\left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}} \quad \text { or } \sqrt[3]{\frac{3 V}{4 \pi}} \quad \text { [raise both sides to the power of } \frac{1}{3} \text {] }
\end{aligned}
$$

(c) Solve $P V=n R T$ for T

$$
\Rightarrow \quad \frac{P V}{n R}=T
$$

(d) Solve $F=\frac{G M m}{r^{2}}$ for r

$$
\begin{aligned}
\Rightarrow r^{2} F & =G M m \\
\Rightarrow r^{2} & =\frac{G M m}{F} \\
\Rightarrow \quad r & =\sqrt{\frac{G M m}{F}}
\end{aligned}
$$

(e) Solve $b=\frac{L}{4 \pi d^{2}} \quad$ for d

$$
\Rightarrow \quad 4 \pi d^{2} b=L
$$

$$
\Rightarrow \quad d^{2}=\frac{L}{4 \pi b}
$$

$$
\Rightarrow \quad d=\sqrt{\frac{L}{4 \pi b}}
$$

$$
\begin{aligned}
& \text { (a) Solve } C=\frac{5}{9}(F-32) \text { for } F \\
& \Rightarrow \quad \frac{9}{5} C=F-32 \quad \text { [multiply both sides by } \frac{9}{5} \text {] } \\
& \Rightarrow \quad 32+\frac{9}{5} C=F \quad \text { [add } 32 \text { to both sides] }
\end{aligned}
$$

$$
\text { (f) Solve } \begin{aligned}
L & =k d^{\frac{2}{3}}\left(\frac{E}{p}\right)^{\frac{1}{3}} \quad \text { for } p \\
\Rightarrow L^{3} & =k^{3} d^{2} \frac{E}{p} \\
\Rightarrow L^{3} p & =k^{3} d^{2} E \\
\Rightarrow \quad p & =\frac{k^{3} d^{2} E}{L^{3}} \\
\text { (g) Solve } L & =\sqrt{\frac{h^{2}}{2 \pi m k T}} \text { for } m \\
\Rightarrow \quad L^{2} & =\frac{h^{2}}{2 \pi m k T} \\
\Rightarrow \quad m L^{2} & =\frac{h^{2}}{2 \pi k T} \\
\Rightarrow \quad m & =\frac{h^{2}}{2 \pi k T L^{2}}
\end{aligned}
$$

Free eBook on Learning \& Development

By the Chief Learning Officer of McKinsey

Download Now

6.2 For each of the following business formulae, isolate the indicated variable

$$
\text { (a) } \begin{aligned}
\text { Solve } Q & =a-b P \text { for } P \\
\Rightarrow \quad b P & =a-Q \\
\Rightarrow \quad P & =\frac{a-Q}{b}
\end{aligned}
$$

(b) Solve $A=P(1+r)^{n}$ for r

$$
\Rightarrow \quad \frac{A}{P}=(1+r)^{n}
$$

$$
\Rightarrow \quad\left(\frac{A}{P}\right)^{\frac{1}{n}}=1+r
$$

$$
\Rightarrow \quad\left(\frac{A}{P}\right)^{\frac{1}{n}}-1=r
$$

(c) Solve $M V=P Y$ for Y

$$
\Rightarrow \quad \frac{M V}{P}=Y
$$

(d) Solve $R=P\left(1-\frac{1}{e}\right)$ for e

$$
\begin{aligned}
\Rightarrow \quad \frac{R}{P} & =1-\frac{1}{e} \\
\Rightarrow \quad \frac{1}{e} & =1-\frac{R}{P} \\
& =\frac{P}{P}-\frac{R}{P} \\
& =\frac{P-R}{P} \\
\Rightarrow e & =\frac{P}{P-R}
\end{aligned}
$$

(e) Solve $F=K \times \frac{S D}{d^{2}}$ for S

$$
\begin{aligned}
& \Rightarrow \quad d^{2} F=K S D \\
& \Rightarrow \quad \frac{d^{2} F}{K D}=S
\end{aligned}
$$

Problem Set 7

7.1 The required exponential forms are
(a) $10^{2}=100$
(f) $3^{-2}=\frac{1}{9}$
(k) $2^{0}=1$
(p) $9^{\frac{1}{2}}=3$
(b) $10^{3}=1000$
(g) $n^{2}=256$
(l) $2^{1024}=n$
(q) $n^{2}=2$
(c) $10^{0}=1$
(h) $n^{3}=14$
(m) $2^{6}=64$
(r) $10^{\frac{1}{2}}=x$
(d) $3^{2}=9$
(i) $n^{4}=62$
(n) $9^{2}=81$
(s) $5^{x}=100$
(e) $3^{0}=1$
(j) $2^{-3}=\frac{1}{8}$
(o) $9^{-\frac{1}{2}}=\frac{1}{3}$
(t) $x^{2}=12$
7.2 The required logarithmic forms are
(a) $5=\log _{2} 32$
(g) $1=\log _{16} 16$
(l) $\frac{1}{4}=\log _{25} \sqrt{5}$
(b) $3=\log _{2} 8$
(c) $0=\log _{2} 1$
(h) $-\frac{1}{2}=\log _{81}\left(\frac{1}{9}\right)$
(m) $4=\log _{10} 10000$
(n) $x=\log _{3} 81$
(d) $2=\log _{8} 64$
(i) $-2=\log _{3}\left(\frac{1}{9}\right)$
(o) $x=\log _{25} 5$
(e) $-1=\log _{8}\left(\frac{1}{8}\right)$
(j) $-3=\log _{3}\left(\frac{1}{27}\right)$
(p) $5=\log _{x} 7$
(q) $x^{2}=\log _{3} 81$
(f) $\frac{1}{3}=\log _{8} 2$
(k) $5=\log _{3} 243$
(r) $3 x+1=\log _{20} 3$
$7 \cdot 3$ (a) $\log 5+\log 2=\log (5 \times 2)=\log 10$
(b) $\log 8-\log 2=\log \left(\frac{8}{2}\right)=\log 4$
(c) $3 \log 2-2 \log 3=\log \left(2^{3}\right)-\log \left(3^{2}\right)=\log \left(\frac{8}{9}\right)$
(d) $\log 4-\log 20=\log \left(\frac{4}{20}\right)=\log \left(\frac{1}{5}\right)$
(e) $\log 12-\log 3=\log \left(\frac{12}{3}\right)=\log 4$
(f) $\log 16-\log 4=\log \left(\frac{16}{4}\right)=\log 4$
(g) $\log _{2} 12-\log _{2} 3=\log _{2}\left(\frac{12}{3}\right)=\log _{2} 4=2$
(h) $\log _{10} 25+\log _{10} 4=\log _{10}(25 \times 4)=\log _{10} 100=2$
(i) $\log _{10} 25-\log _{10} 250=\log _{10}\left(\frac{25}{250}\right)=\log _{10}\left(\frac{1}{10}\right)=-1$
(j) $\log _{5} 20+\log _{5} 4=\log _{5}(20 \times 4)=\log _{5} 80$
(k) $\log \left(\frac{x^{2}}{\sqrt{y}}\right)+\log \left(x^{-2} y^{3}\right)=\log \left(x^{2} y^{-\frac{1}{2}}\right)+\log \left(x^{-2} y^{3}\right)=\log \left(x^{2} y^{-\frac{1}{2}} \times x^{-2} y^{3}\right)$

$$
=\log \left(x^{0} y^{\frac{5}{2}}\right)=\frac{5}{2} \log y
$$

(l) $2 \log \left(x^{\frac{1}{2}} y^{2}\right)-\log \left(y^{2} x^{-1}\right)=\log \left(\left(x^{\frac{1}{2}} y^{2}\right)^{2}\right)-\log \left(y^{2} x^{-1}\right)=\log \left(x y^{4}\right)-\log \left(y^{2} x^{-1}\right)$

$$
=\log \left(\frac{x y^{4}}{x^{-1} y^{2}}\right)=\log \left(x^{2} y^{2}\right)=\log \left((x y)^{2}\right)=2 \log (x y)
$$

(m) $\frac{\log _{10} 27}{\log _{10} 9}=\frac{\log _{10}\left(3^{3}\right)}{\log _{10}\left(3^{2}\right)}=\frac{3 \log _{10^{3}}}{2 \log _{10} 3}=\frac{3}{2}$
(n) $\log _{2} 8+\log _{2} 18-\log _{2} 3=\log _{2}\left(\frac{8 \times 18}{3}\right)=\log _{2}(8 \times 6)=\log _{2} 48$
(o) $\log _{2} 10-\log _{2} 5=\log _{2}\left(\frac{10}{5}\right)=\log _{2} 2=1$
(p) $\log \sqrt{x y}+\frac{1}{2} \log (x y)-\log (x y)=\log \left((x y)^{\frac{1}{2}}\right)+\frac{1}{2} \log (x y)-\log (x y)$

$$
=\frac{1}{2} \log (x y)+\frac{1}{2} \log (x y)-\log (x y)=\left(\frac{1}{2}+\frac{1}{2}-1\right) \log (x y)=0
$$

7.4 In this question, we are given that $x=\log 3$ and $y=\log 4$.
(a) $\log 12=\log (3 \times 4)=\log 3+\log 4=x+y$
(b) $\log 36=\log 9+\log 4=\log \left(3^{2}\right)+\log 4=2 \log 3+\log 4=2 x+y$
(c) $\log \left(\frac{3}{4}\right)=\log 3-\log 4=x-y$
(d) $\log 6=\log 2+\log 3=\log \left(4^{\frac{1}{2}}\right)+\log 3=\frac{1}{2} \log 4+\log 3=\frac{1}{2} y+x$
(e) $\log \left(\frac{3}{2}\right)=\log 3-\log 2=\log 3-\log \left(4^{\frac{1}{2}}\right)=\log 3-\frac{1}{2} \log 4=x-\frac{1}{2} y$
(f) $\log \left(\frac{3}{8}\right)=\log 3-\log 8=\log 3-(\log 4+\log 2)=\log 3-\left(\log 4+\log \left(4^{\frac{1}{2}}\right)\right)$

$$
=\log 3-\left(\log 4+\frac{1}{2} \log 4\right)=x-\left(y+\frac{1}{2} y\right)=x-\frac{3}{2} y
$$

(g) $\log 144=\log \left(12^{2}\right)=2 \log 12=2(\log 3+\log 4)=2(x+y)=2 x+2 y$
7.5 In the question, we are given $x=\log _{5} 2$ and $y=\log _{5} 3$.
(a) $\log _{5} 6=\log _{5} 3+\log _{5} 2=y+x$
(b) $\log _{5} 12=\log _{5} 4+\log _{5} 3=\log _{5}\left(2^{2}\right)+\log _{5} 3$

$$
=2 \log _{5} 2+\log _{5} 3=2 x+y
$$

(c) $\log _{5}\left(\frac{3}{10}\right)=\log _{5} 3-\log _{5} 10=\log _{5} 3-\left(\log _{5} 2+\log _{5} 5\right)=y-(x+1)=y-x-1$
(d) $\log _{5} 60=\log _{5} 6+\log _{5} 10=\log _{5} 2+\log _{5} 3+\log _{5} 2+\log _{5} 5=2 x+y+1$
(e) $\log _{5}\left(\frac{3}{2}\right)=\log _{5} 3-\log _{5} 2=y-x$
(f) $\log _{5}\left(\frac{3}{8}\right)=\log _{5} 3-\log _{5} 8=\log _{5} 3-\log _{5}\left(2^{3}\right)=\log _{5} 3-3 \log _{5} 2=y-3 x$
(g) $\log _{5} 30=\log _{5} 3+\log _{5} 2+\log _{5} 5=x+y+1$

Problem Set 8

8.1 (a) $2^{x}=64$
$2^{x}=2^{6}$

$$
x=6
$$

(b) $4^{2} x=128$
$16 x=128$

$$
x=8
$$

(c) $\quad 9^{x}=27$
$\left(3^{2}\right)^{x}=3^{3}$

$$
3^{2 x}=3^{3}
$$

(l) $7^{x-1}=4$
$x-1=\log _{7} 4$
$x=\log _{7} 4+1 \approx 1.71$

$$
2 x=3
$$

$$
\frac{x}{2}+1=6
$$

(d) $5^{-x}=125$
(m) $2^{\frac{x}{2}+1}=64$
$\frac{x}{2}+1=6$
$2^{\frac{x}{2}+1}=2^{6}$

$$
x=\frac{3}{2}
$$

$$
\frac{x}{2}=5
$$

$$
x=10
$$

$5^{-x}=5^{3}$

$$
-x=3
$$

$$
\begin{aligned}
\left(2^{3}\right)^{2 x} & =2^{5} \\
6 x & =5 \\
x & =\frac{5}{6}
\end{aligned}
$$

(n) $5^{2 x-1}=20$

$$
x=-3
$$

(e) $8^{2 x}=32$
(f) $10^{x+1}=\frac{1}{100}$
$10^{x+1}=10^{-2}$
$x+1=-2$
$x=-3$
(g) $3^{x^{3}}=81$
$3^{x^{3}}=3^{4}$
$x^{3}=4$
$x=\sqrt[3]{4}$ or $4^{\frac{1}{3}} \approx 1.59$
(h) $\quad 4^{\frac{x}{2}-1}=128$
$\left(2^{2}\right)^{\frac{x}{2}-1}=2^{7}$
$2\left(\frac{x}{2}-1\right)=7$
$\frac{2 x}{2}-2=7$
$x-2=7$
$x=9$
(i) $4^{x}=7$

$$
x=\log _{4} 7 \approx 1.43
$$

(j) $3^{x+1}=10$ $x+1=\log _{3} 10$ $x=\log _{3} 10-1 \approx 1.10$
(k)
$2 x-1=\log _{5} 20$

$$
\begin{aligned}
2 x & =\log _{5} 20+1 \\
x & =\frac{\log _{5} 20+1}{2} \\
& =\frac{\log _{5} 4+\log _{5} 5+1}{2} \\
& =\frac{\log _{5} 4+2}{2} \approx 1.43
\end{aligned}
$$

8.2 (a) $\log _{5} n=4$

$$
\begin{aligned}
n & =5^{4} \\
n & =625
\end{aligned}
$$

(e) $\log _{\frac{1}{3}} n=3$

$$
\left(\frac{1}{3}\right)^{3}=n
$$

(b) $\log _{8} 4=n$

$$
8^{n}=4
$$

$$
\begin{aligned}
9^{2 x+1} & =50 \\
2 x+1 & =\log _{9} 50 \\
2 x & =\log _{9} 50-1 \\
x & =\frac{\log _{9} 50-1}{2} \approx 0.39
\end{aligned}
$$

$$
\frac{1}{27}=n
$$

$$
2^{3 n}=2^{2}
$$

$$
3 n=2
$$

$$
\text { (f) } \begin{aligned}
\log _{6} 6 & =n \\
6^{n} & =6
\end{aligned}
$$

$$
n=\frac{2}{3}
$$

$$
n=1
$$

(c) $\log _{2} n=\frac{1}{3}$

$$
n=2^{\frac{1}{3}} \text { or } \sqrt[3]{2} \approx 1.26
$$

(d) $\log _{n}\left(\frac{1}{64}\right)=-2$

$$
\begin{aligned}
n^{-2} & =\frac{1}{64} \\
n^{-2} & =\frac{1}{8^{2}} \\
n^{-2} & =8^{-2} \\
n & =8
\end{aligned}
$$

(g) $\quad \log _{n} 8=\frac{3}{4}$

$$
\begin{aligned}
n^{\frac{3}{4}} & =8 \\
n^{\frac{3}{4}} & =2^{3} \\
\left(n^{\frac{1}{4}}\right)^{3} & =2^{3} \\
n^{\frac{1}{4}} & =2 \\
n & =2^{4} \\
& =16
\end{aligned}
$$

(k) $\quad \log _{5} x-\log _{5} 7=\log _{5} 6$ $\log _{5}\left(\frac{x}{7}\right)-\log _{5} 6=0$

$$
\log _{5}\left(\frac{x}{7} \div 6\right)=0
$$

$$
\log _{5}\left(\frac{x}{42}\right)=0
$$

$$
\frac{x}{42}=5^{0}
$$

$$
\frac{x}{42}=1
$$

$$
x=42
$$

$$
\begin{aligned}
& \text { (h) } \log _{4} 3+\log _{4}(x+2)=2 \\
& \log _{4}[3(x+2)]=2 \\
& \log _{4}(3 x+6)=2 \\
& 3 x+6=4^{2} \\
& 3 x+6=16 \\
& \text { (i) } \quad x=\log _{4} 72-\log _{4} 9 \\
& x=\log _{4}\left(\frac{72}{9}\right) \\
& x=\log _{4} 8 \\
& 4^{x}=8 \\
& \left(2^{2}\right)^{x}=2^{3} \\
& 2 x=3 \\
& x=\frac{3}{2} \\
& \text { (j) } \quad x=\log _{7} 98-\log _{7} 2 \\
& x=\log _{7}\left(\frac{98}{2}\right) \\
& x=\log _{7} 49 \\
& 7^{x}=49 \\
& 7^{x}=7^{2} \\
& x=2
\end{aligned}
$$

(l) $\log _{3} 63-\log _{3}(7 x)=\log _{3} 2$

$$
\begin{aligned}
\log _{3}\left(\frac{63}{7 x}\right)-\log _{3} 2 & =0 \\
\log _{3}\left(\frac{9}{x} \div 2\right) & =0 \\
\log _{3}\left(\frac{9}{2 x}\right) & =0 \\
\frac{9}{2 x} & =3^{0} \\
\frac{9}{2 x} & =1 \\
9 & =2 x
\end{aligned}
$$

$$
\frac{9}{2}=x
$$

(m) $\log _{5} 4+\log _{5}(2 x-3)=2$

$$
\begin{aligned}
\log _{5}[4(2 x-3)] & =2 \\
\log _{5}(8 x-12) & =2 \\
8 x-12 & =5^{2} \\
8 x & =25+12 \\
x & =\frac{37}{8}
\end{aligned}
$$

(n) $\log _{2} 2+\log _{2}(x+2)-\log _{2}(3 x-5)=3$

$$
\begin{aligned}
\log _{2}\left[\frac{2(x+2)}{3 x-5}\right] & =3 \\
\log _{2}\left[\frac{2 x+4}{3 x-5}\right] & =3 \\
\frac{2 x+4}{3 x-5} & =2^{3} \\
\frac{2 x+4}{3 x-5} & =8 \\
2 x+4 & =8(3 x-5) \\
2 x+4 & =24 x-40 \\
44 & =22 x \\
2 & =x
\end{aligned}
$$

(o) $\log _{2} 4+\log _{2}(x-1)-\log _{2}(3 x-4)=2$

$$
\begin{aligned}
\log _{2}\left[\frac{2(x-1)}{3 x-4}\right] & =2 \\
\frac{4 x-4}{3 x-4} & =2^{2} \\
\frac{4 x-4}{3 x-4} & =4 \\
4 x-4 & =4(3 x-4) \\
4 x-4 & =12 x-16 \\
12 & =8 x \\
\frac{3}{2} & =x
\end{aligned}
$$

8.3 (a) $p H$. Using p as the symbol for $p H$ and H as the symbol for $\left[H^{+}\right]$

$$
p=-\log _{10} H \quad \Rightarrow \quad-p=\log _{10} H \quad \Rightarrow \quad H=10^{-p}
$$

(b) Arrhenius equation

$$
\begin{aligned}
K & =A e^{\frac{E}{K T}} \Rightarrow \frac{K}{A}=e^{\frac{E}{R T}} \Rightarrow \log _{e}\left(\frac{K}{A}\right)=\frac{E}{R T} \\
& \Rightarrow R T \log _{e}\left(\frac{K}{A}\right)=E \quad \Rightarrow \quad T=\frac{E}{R \log _{e}\left(\frac{K}{A}\right)}
\end{aligned}
$$

(c) Relationship of rate constants at two different temperatures

$$
\begin{aligned}
\log _{e}\left(\frac{k}{K}\right) & =\frac{E}{R}\left(\frac{t-T}{t T}\right) \\
\Rightarrow \quad \frac{k}{K} & =e^{\frac{E}{R}\left(\frac{t-T}{t T}\right)} \\
\Rightarrow \quad \frac{K}{k} & =\frac{1}{e^{\frac{E}{R}\left(\frac{t-T}{t T}\right)}} \\
\Rightarrow \quad K & =\frac{k}{e^{\frac{E}{R}\left(\frac{t-T}{t T}\right)}} \text { or } k e^{-\frac{E}{R}\left(\frac{t-T}{t T}\right)} \text { or even } k e^{\frac{E}{R}\left(\frac{T-t}{t T}\right)}
\end{aligned}
$$

(d) Benford's Law

$$
\begin{gathered}
P=\log _{10}\left(\frac{d+1}{d}\right) \Rightarrow \frac{d+1}{d}=10^{P} \quad \Rightarrow \quad d+1=10^{P} d \\
\Rightarrow 1=10^{P} d-d \quad \Rightarrow \quad 1=d\left(10^{P}-1\right) \quad \Rightarrow \quad \frac{1}{10^{P}-1}=d
\end{gathered}
$$

8.4 A population starts with 1000 individuals and doubles in size every decade.
(a) Use the growth model $N=N_{0} b^{t}$ to find how long will it take for the population to reach 500,000 .

The initial population size is $N_{0}=1000$ and "doubling every decade" means that measuring t in decades is a good idea because we can then use $b=2$. That is, $N=1000\left(2^{t}\right)$. When $N=500,000$ we have

$$
\begin{aligned}
500,000 & =1000\left(2^{t}\right) \\
\Rightarrow \quad \frac{500,000}{1,000} & =2^{t} \\
\Rightarrow \quad \frac{500 \times 1000}{1 \times 1000} & =2^{t} \\
\Rightarrow \quad 500 & =2^{t} \\
\Rightarrow \quad t & =\log _{2} 500 \approx 8.97 \text { decades }=89.7 \text { years }
\end{aligned}
$$

(b) Repeat part (a) using the growth model $N=N_{0} e^{k t}$.

Firstly, we need to get an expression for k. Since the population is doubling every decade, we know that there will be 2000 individuals when $t=1$ decades:

$$
2000=1000 e^{k(1)} \Rightarrow 2=e^{k} \Rightarrow k=\ln 2 \approx 0.69
$$

When $N=500,000$ we have

$$
\begin{aligned}
500,000 & =1000 e^{k t} \quad \text { so we can solve for } t \\
\Rightarrow \quad 500 & =e^{k t} \\
\Rightarrow \quad k t & =\ln 500 \\
\Rightarrow \quad t & =\ln 500 \div k \\
& =\ln 500 \div \ln 2 \quad \text { from above } \\
& =\frac{\ln 500}{\ln 2} \approx 8.97
\end{aligned}
$$

8.5 An endangered species numbered 7,200 at the start of 2003 and at the start of 2014 numbered 800. Assuming the population follows the decay law $N=N_{0} e^{-k t}$ predict in what year the population will fall below 120.
If we use 2003 as our starting time (that is, $t=0$) then 2014 is $t=11$. This makes $N_{0}=7200$ and $N=800$ when $t=11$:

$$
\begin{aligned}
N=800 & =7200 e^{-k(11)} \quad \text { and solve for } k \\
\Rightarrow \quad \frac{800}{7200} & =e^{-11 k} \\
\Rightarrow \quad \frac{1 \times 800}{9 \times 800} & =e^{-11 k} \\
\Rightarrow \quad \frac{1}{9} & =e^{-11 k} \\
\Rightarrow \quad-11 k & =\ln \left(\frac{1}{9}\right)=\ln \left(9^{-1}\right) \\
& =-\ln 9 \quad \text { using } \log \text { laws } \\
\Rightarrow \quad k & =\frac{-\ln 9}{-11} \\
& =\frac{\ln 9}{11} \approx 0.20
\end{aligned}
$$

To find out when the population falls below 120 start with $N=120$:

$$
\begin{aligned}
120 & =7200 e^{-k t} \quad \text { so we can solve for } t \\
\Rightarrow \quad \frac{120}{7200} & =e^{-11 k} \\
\Rightarrow \quad \frac{1 \times 120}{60 \times 120} & =e^{-11 k} \\
\Rightarrow \quad \frac{1}{60} & =e^{-k t} \\
\Rightarrow \quad-k t & =\ln \left(\frac{1}{60}\right) \\
& =-\ln 60 \quad(\text { see above }) \\
\Rightarrow \quad t & =-\ln 60 \div-k \\
& =\ln 60 \div \frac{\ln 9}{11} \quad \text { from above } \\
& =\frac{\ln 60}{1} \times \frac{11}{\ln 9}=\frac{11 \ln 60}{\ln 9} \approx 20.50
\end{aligned}
$$

That is, July 2023 is when the population will fall below 120.
8.6 According to Wikipedia (en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia\'s_growth), the number of articles on their site grew exponentially between October 2002 and mid 2006. There were 80,000 articles in October 2002 and 166,000 in October 2003. When does the model predict that Wikipedia reached 1,500,000 articles? (Use the growth model $N=N_{0} e^{k t}$.)
Firstly, we need to get an expression for k. It makes sense to use thousands of articles as the units of N (although it doesn't matter if you use just articles instead) and set October 2002 as $t=0$ years. This makes $N_{0}=80$ and there were 166 thousand articles at $t=1$:

$$
166=80 e^{k(1)} \Rightarrow \frac{166}{80}=e^{-11 k} \Rightarrow \frac{2 \times 83}{2 \times 40}=e^{-11 k} \quad \Rightarrow \quad k=\ln \left(\frac{83}{40}\right) \approx 0.73
$$

When $N=1500$ we have

$$
\begin{aligned}
1500 & =80 e^{k t} \quad \text { so we can solve for } t \\
\Rightarrow \quad \frac{1500}{80} & =e^{-11 k} \\
\Rightarrow \quad \frac{75 \times 20}{4 \times 20} & =e^{-11 k} \\
\Rightarrow \quad k t & =\ln \left(\frac{75}{4}\right) \\
\Rightarrow \quad t & =\ln \left(\frac{75}{4}\right) \div k \\
& =\ln \left(\frac{75}{4}\right) \div \ln \left(\frac{83}{40}\right) \quad \text { from above } \\
& =\frac{\ln \left(\frac{75}{4}\right)}{\ln \left(\frac{83}{40}\right)} \approx 4.02
\end{aligned}
$$

Hence Wikipedia would have reached 1,500,000 articles around October 2006. As it happens, growth of new articles had started to slow down by then and this exponential model no longer worked.
8.7 DDT is a pesticide that was very effective at controlling marlaria-carrying mosquitos until its toxic effects on animals (including cancer in humans) were established. Furthermore, it remains active for many years in the environment because it decays exponentially with a half-life of 15 years.
How long does it take for 100 grams of DDT to decay down to 1 gram? (Use the decay model $A=A_{0} e^{-k t}$.) Firstly, we need to get an expression for k. Since the half-life is $t=15$ years, we know that there will be 50 grams left at this time:
$50=100 e^{-k(15)} \Rightarrow \frac{1}{2}=e^{-15 k} \quad \Rightarrow \quad-15 k=\ln \left(\frac{1}{2}\right)=\ln \left(2^{-1}\right)=-\ln 2 \quad \Rightarrow \quad k=\frac{-\ln 2}{-15}=\frac{\ln 2}{15}$
When $A=1$ gram we have

$$
\begin{aligned}
1 & =100 e^{-k t} \quad \text { so we can solve for } t \\
\Rightarrow \quad \frac{1}{100} & =e^{-k t} \\
\Rightarrow \quad-k t & =\ln \left(\frac{1}{100}\right) \\
& =\ln \left(100^{-1}\right) \\
& =-\ln 100 \\
\Rightarrow \quad t & =-\ln 100 \div-k \\
& =\ln 100 \div \frac{\ln 2}{15} \text { from above } \\
& =\frac{\ln 100}{1} \times \frac{15}{\ln 2} \\
& =\frac{15 \ln 100}{\ln 2} \approx 99.66
\end{aligned}
$$

That is, t is between 99 and 100 years. That's a long time for something to remain toxic!

Discover the truth at www.deloitte.ca/careers
Deloitte.
© Deloitte \& Touche LLP and affiliated entities.

Problem Set 9

9.1 Solve the following equations by factorising.

$$
\text { (a) } \begin{aligned}
x^{2}-3 x & =0 \\
\Rightarrow \quad x(x-3) & =0 \\
\Rightarrow \quad x & =0 \text { or } x-3=0 \\
\Rightarrow \quad x & =0 \text { or } x=3
\end{aligned}
$$

$$
\text { (f) } \quad(x-2)(x+1)=4
$$

Expand and convert to standard form:

$$
\text { (b) } \quad x^{2}-5 x+4=0
$$

$$
\begin{aligned}
\Rightarrow \quad x^{2}-x-2 & =4 \\
\Rightarrow \quad x^{2}-x-6 & =0 \\
\Rightarrow \quad(x+2)(x-3) & =0 \\
\Rightarrow \quad x+2 & =0 \text { or } x-3=0 \\
\Rightarrow \quad x & =-2 \text { or } x=3
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad(x-4)(x-1) & =0 \\
\Rightarrow \quad x-4 & =0 \text { or } x-1=0 \\
\Rightarrow \quad x & =4 \text { or } x=1
\end{aligned}
$$

(c) $\quad x^{2}-5 x-14=0$

$$
\begin{aligned}
\Rightarrow \quad(x-7)(x+2) & =0 \\
\Rightarrow \quad x-7 & =0 \text { or } x+2=0 \\
\Rightarrow \quad x & =7 \text { or } x=-2
\end{aligned}
$$

(d) $x^{2}-x-42=0$

$$
\begin{aligned}
\Rightarrow \quad(x-7)(x+6) & =0 \\
\Rightarrow \quad x-7 & =0 \text { or } x+6=0 \\
\Rightarrow \quad x & =7 \text { or } x=-6
\end{aligned}
$$

$$
\text { (e) } \quad 3 x^{2}-6 x=-3
$$

$$
\Rightarrow \quad 3 x^{2}-6 x+3=0
$$

Divide through by 3:

$$
\begin{aligned}
\Rightarrow \quad x^{2}-2 x+1 & =0 \\
\Rightarrow \quad(x-1)^{2} & =0 \\
\Rightarrow \quad x-1 & =0 \\
\Rightarrow \quad x & =1
\end{aligned}
$$

(g) $\quad x+\frac{15}{x}=8$

Multiply through by x :

$$
\begin{aligned}
\Rightarrow \quad x^{2}+15 & =8 x \\
\Rightarrow \quad x^{2}-8 x+15 & =0 \\
\Rightarrow \quad(x-5)(x-3) & =0 \\
\Rightarrow \quad x-5 & =0 \text { or } x-3=0 \\
\Rightarrow \quad x & =5 \text { or } x=3
\end{aligned}
$$

$$
\text { (h) } \quad x=\frac{5}{x-4}
$$

Cross multiply:

$$
\begin{aligned}
\Rightarrow \quad \frac{x}{1} & =\frac{5}{x-4} \\
\Rightarrow \quad x(x-4) & =1 \times 5 \\
\Rightarrow \quad x^{2}-4 x-5 & =0 \\
\Rightarrow \quad(x-5)(x+1) & =0 \\
\Rightarrow \quad x-5 & =0 \text { or } x+1=0 \\
\Rightarrow \quad x & =5 \text { or } x=-1
\end{aligned}
$$

9.2 Solve the following equations by using the quadratic formula.
(a) $x^{2}-5 x+4=0$, so $a=1, b=-5, c=4$:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\Rightarrow \quad x & =\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 1 \times 4}}{2 \times 1} \\
& =\frac{5 \pm \sqrt{25-16}}{2} \\
& =\frac{5 \pm \sqrt{9}}{2} \\
& =\frac{5 \pm 3}{2} \\
\Rightarrow \quad x & =\frac{5+3}{2} \text { or } x=\frac{5-3}{2} \\
\Rightarrow \quad x & =\frac{8}{2} \text { or } x=\frac{2}{2} \\
\Rightarrow \quad x & =4 \text { or } x=1
\end{aligned}
$$

Note: we could have factorised this one:

$$
(x-4)(x-1)=0
$$

(b) $3 x^{2}+7 x+2=0$, so $a=3, b=7, c=2$:

$$
\begin{aligned}
x & =\frac{-7 \pm \sqrt{7^{2}-4 \times 3 \times 2}}{2 \times 3} \\
& =\frac{-7 \pm \sqrt{49-24}}{6} \\
& =\frac{-7 \pm \sqrt{25}}{6} \\
& =\frac{-7 \pm 5}{6} \\
\Rightarrow \quad x & =\frac{-7+5}{6} \text { or } x=\frac{-7-5}{6} \\
\Rightarrow \quad x & =-\frac{1}{3} \text { or } x=-2
\end{aligned}
$$

$$
\text { (e) } \begin{aligned}
x^{2}+3 x+4 & =0, \text { so } a=1, b=3, c=4: \\
x & =\frac{-3 \pm \sqrt{3^{2}-4 \times 1 \times 4}}{2 \times 1} \\
& =\frac{-3 \pm \sqrt{9-16}}{2} \\
& =\frac{-3 \pm \sqrt{-7}}{2}
\end{aligned}
$$

We can't take the square root of a negative number so there are no solutions.

$$
\begin{aligned}
& =\frac{-4 \pm 2 \sqrt{3}}{2} \\
& =\frac{2(-2 \pm \sqrt{3})}{2} \\
& =\frac{1 \not 2(-2 \pm \sqrt{3})}{\not 2} \\
& =-2 \pm \sqrt{3} \\
\Rightarrow \quad x & =-2+\sqrt{3} \text { or } x=-2-\sqrt{3} \\
\text { (d) } \quad-2 x^{2}+3 x-1 & =0, \text { so } a=-2, b=3, c=-1: \\
x & =\frac{-3 \pm \sqrt{3^{2}-4 \times(-2) \times(-1)}}{2 \times(-2)} \\
& =\frac{-3 \pm \sqrt{9-8}}{-4} \\
& =\frac{-3 \pm \sqrt{1}}{-4} \\
& =\frac{-3 \pm 1}{-4} \\
\Rightarrow \quad x & =\frac{-3+1}{4} \text { or } x=\frac{-3-1}{4} \\
\Rightarrow \quad x & =\frac{1}{2} \text { or } x=1
\end{aligned}
$$

(c) $x^{2}+4 x+1=0$, so $a=1, b=4, c=1$:

$$
\begin{aligned}
x & =\frac{-4 \pm \sqrt{4^{2}-4 \times 1 \times 1}}{2 \times 1} \\
& =\frac{-4 \pm \sqrt{16-4}}{2} \\
& =\frac{-4 \pm \sqrt{12}}{2}
\end{aligned}
$$

Recall that $\sqrt{12}=2 \sqrt{3}$, so
(f) $\frac{3}{2} x^{2}+4 x+1=0$

Multiply through by 2 to remove fraction:

$$
\begin{aligned}
3 x^{2}+8 x+2 & =0, \text { so } a=3, b=8, c=2: \\
x & =\frac{-8 \pm \sqrt{8^{2}-4 \times 3 \times 2}}{2 \times 3} \\
& =\frac{-8 \pm \sqrt{40}}{6}
\end{aligned}
$$

Recall that $\sqrt{40}=2 \sqrt{10}$, so

$$
\begin{aligned}
& =\frac{-8 \pm 2 \sqrt{10}}{6} \\
& =\frac{2(-4 \pm \sqrt{10})}{6} \\
& =\frac{{ }^{1} \not 2(-4 \pm \sqrt{10})}{6_{3}} \\
& =\frac{-4 \pm \sqrt{10}}{3} \\
\Rightarrow \quad x & =\frac{-4+\sqrt{10}}{3} \text { or } x=\frac{-4-\sqrt{10}}{3}
\end{aligned}
$$

(g) $x^{2}+x-1=0$, so $a=1, b=1, c=-1$:

$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times(-1)}}{2 \times 1} \\
& =\frac{-1 \pm \sqrt{1+4}}{2} \\
& =\frac{-1 \pm \sqrt{5}}{2} \\
\Rightarrow \quad x & =\frac{-1+\sqrt{5}}{2} \text { or } x=\frac{-1-\sqrt{5}}{2}
\end{aligned}
$$

(h) $2 x^{2}-2 x-3=0$, so $a=2, b=-2, c=-3$:

$$
\begin{aligned}
x & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 2 \times(-3)}}{2 \times 2} \\
& =\frac{2 \pm \sqrt{4+24}}{4} \\
& =\frac{2 \pm \sqrt{28}}{4} \\
& =\frac{2 \pm 2 \sqrt{7}}{4} \\
& =\frac{2(1 \pm \sqrt{7})}{4} \\
& =\frac{{ }^{1} 2(1 \pm \sqrt{7})}{42} \\
& =\frac{1 \pm \sqrt{7}}{2} \\
x & =\frac{1+\sqrt{7}}{2} \text { or } x=\frac{1-\sqrt{7}}{2} \\
\text { (i) } 2-3 x^{2} & =0
\end{aligned}
$$

No x term is the same as $0 x$:

$$
\begin{aligned}
-3 x^{2}+0 x+2 & =0, \text { so } a=-3, b=0, c=2: \\
x & =\frac{-0 \pm \sqrt{0^{2}-4 \times(-3) \times 2}}{2 \times(-3)} \\
& =\frac{ \pm \sqrt{24}}{-6} \\
& =\frac{ \pm 2 \sqrt{6}}{-6} \\
& =\frac{ \pm{ }^{1} \not 2 \sqrt{6}}{-\emptyset_{3}} \\
& =\frac{ \pm \sqrt{6}}{-3} \\
\Rightarrow \quad x & =-\frac{\sqrt{6}}{3} \text { or } x=\frac{\sqrt{6}}{3}
\end{aligned}
$$

9.3 Determine the number of solutions for the following equations.

All we need to do in each case is check the discriminant $b^{2}-4 a c$.
(a) $x^{2}+3 x+1=0$ In this case we have $a=1, b=3$ and $c=1$ so

$$
b^{2}-4 a c=3^{2}-4 \times 1 \times 1=9-4=5>0 \Rightarrow \text { two solutions }
$$

(b) $3 x^{2}+4 x+2=0$

$$
b^{2}-4 a c=4^{2}-4 \times 3 \times 2=16-24=-8<0 \quad \Rightarrow \quad \text { no solutions }
$$

(c) $2 x^{2}+3 x+5=0$

$$
b^{2}-4 a c=3^{2}-4 \times 2 \times 5=9-40=-31<0 \Rightarrow \text { no solutions }
$$

(d) $2 x^{2}+4 x+2=0$

$$
b^{2}-4 a c=4^{2}-4 \times 2 \times 2=16-16=0 \quad \Rightarrow \quad \text { one solution }
$$

Note: you get the same conclusion if you divide through by 2 first: $x^{2}+2 x+1=0$

$$
b^{2}-4 a c=2^{2}-4 \times 1 \times 1=4-4=0 \quad \Rightarrow \quad \text { one solution }
$$

(e) $\frac{3}{2} x^{2}+4 x+6=0$

$$
b^{2}-4 a c=4^{2}-4 \times \frac{3}{2} \times 6=16-36=-24<0 \quad \Rightarrow \quad \text { no solutions }
$$

Note: you get the same conclusion if you multiply through by 2 first: $3 x^{2}+8 x+12=0$

$$
b^{2}-4 a c=8^{2}-4 \times 3 \times 12=64-144<0 \quad \Rightarrow \quad \text { no solutions }
$$

(f) $x^{2}+5 x-1=0$

$$
b^{2}-4 a c=5^{2}-4 \times 1 \times(-1)=25+4=29>0 \quad \Rightarrow \quad \text { two solutions }
$$

(g) $4 x^{2}-5 x+4=0$

$$
b^{2}-4 a c=(-5)^{2}-4 \times 4 \times 4=25-64=-39<0 \quad \Rightarrow \quad \text { no solutions }
$$

9.4 Complete the square for the following quadratic expressions
(a) $x^{2}+2 x+3=x^{2}+2 x+\left(\frac{2}{2}\right)^{2}-\left(\frac{2}{2}\right)^{2}+3$
$=x^{2}+2 x+1-1+3$
$=(x+1)^{2}-1+3$
$=(x+1)^{2}+2$
(b) $x^{2}-4 x-8=x^{2}-4 x+\left(\frac{-4}{2}\right)^{2}-\left(\frac{-4}{2}\right)^{2}-8$

$$
\begin{aligned}
& =x^{2}-4 x+4-4-8 \\
& =(x-2)^{2}-4-8 \\
& =(x-2)^{2}-12
\end{aligned}
$$

(c) $x^{2}+10 x+7=x^{2}+10 x+\left(\frac{10}{2}\right)^{2}-\left(\frac{10}{2}\right)^{2}+7$

$$
\begin{aligned}
& =x^{2}+10 x+25-25+7 \\
& =(x+5)^{2}-25+7 \\
& =(x+5)^{2}-18
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
x^{2}-6 x & =x^{2}-6 x+\left(\frac{-6}{2}\right)^{2}-\left(\frac{-6}{2}\right)^{2} \\
& =x^{2}-6 x+9-9 \\
& =(x-3)^{2}-9
\end{aligned}
$$

(e) $x^{2}+12 x+36=x^{2}+12 x+\left(\frac{12}{2}\right)^{2}-\left(\frac{12}{2}\right)^{2}+36$

$$
\begin{aligned}
& =x^{2}+12 x+36-36+36 \\
& =(x+6)^{2}-36+36 \\
& =(x+6)^{2}
\end{aligned}
$$

(In other words, $x^{2}+12 x+36$ is already a perfect square.)

$$
\text { (f) } \begin{aligned}
x^{2}-20 x-1 & =x^{2}-20 x+\left(\frac{-20}{2}\right)^{2}-\left(\frac{-20}{2}\right)^{2}-1 \\
& =x^{2}-20 x+100-100-1 \\
& =(x-10)^{2}-100-1 \\
& =(x-10)^{2}-101
\end{aligned}
$$

9.5 The product of two consecutive odd numbers is 99 . Find the two numbers.

Let n be the smaller number. The next odd number is then $n+2$. Since the product of the two numbers is 99 we have

$$
n(n+2)=99 \Rightarrow n^{2}+2 n-99=0
$$

You might recognise that the factorisation is

$$
(n-9)(n+11)=0
$$

in which case $n-9=0$ or $n+11=0$. Hence $n=9$ or -11 .
Answer: the numbers are either 9 and 11 or -11 and -9 .
If you don't recognise the factorisation, the quadratic formula gives us that

$$
\begin{aligned}
n & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{2^{2}-4 \times 1 \times(-99)}}{2 \times 1} \\
& =\frac{-2 \pm \sqrt{400}}{2} \\
& =\frac{-2 \pm 20}{2} \\
\Rightarrow \quad x & =\frac{-2+20}{2} \text { or } x=\frac{-2-20}{2} \\
\Rightarrow \quad x & =9 \text { or } x=-11
\end{aligned}
$$

9.6 One positive number exceeds three times another positive number by 5. The product of the numbers is 68.

Find the numbers. Note that $\sqrt{25+12 \times 68}=29$.
Let n be the smaller number. Then the larger one is $3 n+5$. Since the product of the two numbers is 68 we have

$$
\begin{aligned}
n(3 n+5) & =68 \\
\Rightarrow \quad 3 n^{2}+5 n & =68 \\
\Rightarrow \quad 3 n^{2}+5 n-68 & =0
\end{aligned}
$$

The quadratic formula then gives us that

$$
\begin{aligned}
n & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-5 \pm \sqrt{5^{2}-4 \times 3 \times(-68)}}{2 \times 3} \\
& =\frac{-5 \pm \sqrt{25+12 \times 68}}{6} \\
& =\frac{-5 \pm 29}{6} \\
\Rightarrow \quad x & =\frac{-5+29}{6} \text { or } x=\frac{-5-29}{6} \\
& =4 \text { or } x=-\frac{34}{6}
\end{aligned}
$$

Since we are told the number is positive, we have
Answer: the numbers are are 4 and $3 \times 4+5=17$.
9.7 A group of zoologists was studying the effect on the body weight of rats of varying the amount of yeast in their diet. By changing the percentage P of yeast in the diet, the average weight gain, G (in grams), over time was estimated to be $G=-200 P^{2}+200 P+20$. What percentage of yeast would you expect to give an average weight gain of 70 grams?
We have to solve $-200 P^{2}+200 P+20=70$. That is

$$
-200 P^{2}+200 P-50=0
$$

Note that $200=4 \times 50$ so we can divide through by 50 to get

$$
\begin{gathered}
-4 P^{2}+4 P-1=0 \\
a=-4, b=4, c=-1 \\
P=\frac{-4 \pm \sqrt{4^{2}-4 \times(-4) \times(-1)}}{2 \times(-4)} \\
=\frac{-4 \pm \sqrt{16-16}}{-8} \\
=\frac{-4 \pm 0}{-8} \\
=\frac{1}{2}
\end{gathered}
$$

Answer: The percentage of yeast required is $\frac{1}{2} \%$
Note: you can reduce the number of negative signs by dividing the quadratic equation through by -1 as well:

$$
\begin{gathered}
4 P^{2}-4 P+1=0 \\
a=4, b=-4, c=1
\end{gathered}
$$

This version leads to the same answer.

We will turn your CV into an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you.

Send us your CV on www.employerforlife.com
9.8 You wish to make a square-bottomed box with a height of three cm and a volume of $75 \mathrm{~cm}^{3}$. You will take a piece of square cardboard, cut a three cm square from each corner and fold up the sides. What sized piece of cardboard do you need? Hint: it might help to draw a picture.
Let $w=$ side length of of the piece of square cardboard:

The base area of the box is $(w-6)^{2}$ and its volume equals $75 \mathrm{~cm}^{3}$, so we have

$$
\begin{aligned}
& \text { base } \times \text { height }=(w-6)^{2} \times 3=75 \\
& \Rightarrow \quad(w-6)^{2}=25 \quad \Rightarrow \quad w^{2}-12 w+36=25 \\
& \Rightarrow \quad w^{2}-12 w+11=0 \quad \Rightarrow \quad(w-11)(w-1)=0 \quad \text { (or use the quadratic formula) } \\
& \Rightarrow \quad w=11 \text { or } 1
\end{aligned}
$$

$w=1$ isn't a plausible answer since we can't fold up 3 cm sides if the width is only 1 cm .
Answer: we need a square piece of cardboard of width 11 cm .
9.9 A rectangular park has dimensions 40 metres by 50 metres. A pathway is to be added all around the park which will increase the total area to $3000 \mathrm{~m}^{2}$. How wide is the pathway going to be? Hint: Draw a picture. Let $x=$ width of the pathway:

The side lengths of the total area (park and pathway) are $40+2 x$ and $50+2 x$ and the total area equals $75 \mathrm{~cm}^{3}$, so we have

$$
\begin{gathered}
(40+2 x)(50+2 x)=3000 \\
\Rightarrow \quad 2000+180 x+4 x^{2}=3000 \quad \Rightarrow \quad 4 x^{2}+180 x-1000=0 \\
\Rightarrow \quad x^{2}+45 x-250=0
\end{gathered}
$$

$$
\text { quad (dividing through by } 4) \Rightarrow(w-5)(w+50)=0 \quad \text { (or use the quadratic formula) }
$$

$$
\Rightarrow \quad w=5 \text { or }-50
$$

$w=-50$ is negative so it isn't a plausible path width.

Problem Set 10

10.1 Find the indicated values of the following functions.

$$
\begin{gathered}
f(x)=-3 x^{2}+2 x+4 \quad g(x)=\log _{2} x \quad h(u)=\sqrt{11-u} \\
F(v)=3^{2 v-4} \quad G(t)=5-3 t \quad H(s)=\frac{s-3}{s+1}
\end{gathered}
$$

(a) $f(2)=-3\left(2^{2}\right)+2(2)+4$
$=-12+4+4$

$$
=-4
$$

(f) $h(11)=\sqrt{11-11}$
$=\sqrt{0}$
$=0$
(j) $G\left(-\frac{2}{5}\right)=5-3\left(-\frac{2}{5}\right)$
$=\frac{25}{5}+\frac{6}{5}$
$=\frac{31}{5}$
(b) $f(-1)=-3(-1)^{2}+2(-1)+4$
(g) $\quad F(3)=3^{2(3)-4}$

$$
\begin{aligned}
& =3^{6-4} \\
& =3^{2} \\
& =9
\end{aligned}
$$

(c) $g(8)=\log _{2} 8$

$$
=3
$$

(h) $\quad F(2)=3^{2(2)-4}$

$$
=3^{4-4}
$$

(d) $g\left(\frac{1}{4}\right)=\log _{2}\left(\frac{1}{4}\right)$

$$
=3^{0}
$$

$$
=1
$$

(l) $H(-3)=\frac{-3-3}{-3+1}$
$=\frac{-6}{-2}$

$$
=3
$$

(e) $h(7)=\sqrt{11-7}$

$$
\text { (e) } \quad \begin{aligned}
h(7) & =\sqrt{11-7} \\
& =\sqrt{4} \\
& =2
\end{aligned}
$$

(i) $G\left(\frac{1}{4}\right)=5-3\left(\frac{1}{4}\right)$

$$
\begin{aligned}
& =\frac{20}{4}-\frac{3}{4} \\
& =\frac{17}{4}
\end{aligned}
$$

10.2 Sketch the graphs of the following functions
(a) $y=3 x+6$

To find the x-intercept:

(b) $y=-4 x-4$

To find the x-intercept:

$$
\begin{array}{rlrl}
& & 0 & =-4 x-4 \\
\Rightarrow & & 4 x & =-4 \\
\Rightarrow & x & =-1
\end{array}
$$

(c) $y=-2 t+6$

To find the t-intercept:

$$
\begin{array}{rlrl}
& & 0 & =-2 t+6 \\
\Rightarrow \quad 2 t & =6 \\
\Rightarrow \quad t & =3
\end{array}
$$

(d) $z=5 x-4$

To find the x-intercept:

$$
\begin{aligned}
& 0=5 x-4 \\
& \Rightarrow \quad 4=5 x \\
& \Rightarrow \quad \frac{4}{5}=x
\end{aligned}
$$

10.3 Find the equations of the following lines.
(a) Gradient 2 and contains the point $(0,4)$

Equation is $y=2 x+c$ and point $(0,4)$ tells us that the y-intercept is 4 so the equation is $y=2 x+4$.
(b) Gradient -3 and contains the point $(-1,3)$

The equation is $y=-3 x+c$ and the point $(-1,3)$ is on the line so

$$
\begin{aligned}
3 & =-3(-1)+c \\
\Rightarrow \quad 3 & =3+c \Rightarrow \quad 0=c
\end{aligned}
$$

The equation is $y=-3 x$.
(c) Contains the points $(3,4)$ and $(6,-2)$

Method 1 : The equation is $y=m x+c$ and the points tell us that

$$
\begin{aligned}
& (3,4) \quad 4 \quad 4=3 m+c \quad \text { (1) } \\
& (6,-2) \quad \Rightarrow \quad \begin{aligned}
(-)-2 & =6 m+c \\
6 & =-3 m
\end{aligned} \\
& \Rightarrow-2=m
\end{aligned}
$$

Substitute one of the points, say $(3,4)$, into $y=-2 x+c$:

$$
\begin{aligned}
& 4=-2(3)+c \\
& \Rightarrow \quad 4=-6+c \quad \Rightarrow \quad 10=c
\end{aligned}
$$

The equation is $y=-2 x+10$.
Method 2 : The gradient of the line is

$$
\begin{aligned}
m & =\frac{\text { change in } y \text { value }}{\text { change in } x \text { value }} \\
& =\frac{-2-4}{6-3} \star \\
& =\frac{-6}{3}=-2
\end{aligned}
$$

We now find c in the same way as for Method 1 .
(d) Contains the point $(3,1)$ and is parallel to the line with equation $y=2 x-1$

The gradient is $m=2$ and the point $(3,1)$ is on the line so

$$
\begin{aligned}
1 & =2(3)+c \\
\Rightarrow \quad 1 & =6+c \\
\Rightarrow \quad-5 & =c
\end{aligned}
$$

The equation is $y=2 x-5$.
(e) Perpendicular to the line $y=4 x-1$ and contains the point $(4,2)$

The gradient is $m=-\frac{1}{4}$ and the point $(4,2)$ is on the line so

$$
\begin{array}{rlrl}
& & 2 & =-\frac{1}{4}(4)+c \\
\Rightarrow & 2 & =-1+c \\
\Rightarrow & 3 & =c
\end{array}
$$

The equation is $y=-\frac{1}{4} x+3$.
10.4 The line L_{1} has equation $y=3 x+1$. Find the equations of the following six lines.
(a) The line L_{2} which is parallel to L_{1} and contains the point $(-1,4)$
(b) The line L_{3} which is perpendicular to L_{1} and has x-intercept 3
(c) The line L_{4} which is perpendicular to L_{1} and intersects it at the point $(2,-3)$
(d) The line L_{5} which is horizontal and has the same y-intercept as L_{1}
(e) The line L_{6} which contains the point $(3,7)$ and has the same y-intercept as L_{1}

Note that the line $L_{1}: y=3 x+1$ has gradient 3 and y-intercept 1
(a) L_{2} is parallel to L_{1} so $y=3 x+c$ and it contains the point $(-1,4)$ so

$$
\begin{array}{rlrl}
& & 4 & =3(-1)+c \\
\Rightarrow & 4 & =-3+c \\
\Rightarrow & 7 & =c
\end{array}
$$

The equation is $y=3 x+7$.
(b) L_{3} is perpendicular to L_{1} so $y=-\frac{1}{3} x+c$ and has x-intercept 3. Hence, $(3,0)$ is on L_{3} so

$$
\begin{array}{rlrl}
& & 0 & =-\frac{1}{3}(3)+c \\
\Rightarrow \quad 0 & =-1+c \\
\Rightarrow \quad c & =1
\end{array}
$$

The equation is $y=-\frac{1}{3} x+1$.
(c) L_{4} is perpendicular to L_{1} so $y=-\frac{1}{3} x+c$ and it intersects L_{1} at $(2,-3)$ so the point $(2,-3)$ must be on L_{4} as well and hence

$$
\begin{aligned}
-3 & =-\frac{1}{3}(2)+c \\
\Rightarrow \quad-\frac{9}{3} & =-\frac{2}{3}+c \\
\Rightarrow \quad c & =-\frac{7}{3}
\end{aligned}
$$

The equation is $y=-\frac{1}{3} x-\frac{7}{3}$.
(d) L_{5} is horizontal so it has the equation $y=c$. The line has the same y-intercept as L_{1}, that is $c=1$ and hence the equation of L_{5} is

$$
y=1
$$

(e) $\quad L_{6}$ has the same y-intercept as L_{1} so $y=m x+1$ and it contains the point $(3,7)$ so

$$
\begin{aligned}
7 & =3 m+1 \\
\Rightarrow \quad 7-1 & =-3 m \\
\Rightarrow \quad 6 & =3 m \\
\Rightarrow \quad 2 & =m
\end{aligned}
$$

The equation is $y=2 x+1$.
10.5 Sketch the following pairs of lines from the previous question on the same axes. (All x-intercepts worked out via the same method as Question 2.)
(c) $L_{4}: y=-\frac{1}{3} x-\frac{7}{3}$ and $L_{5}: y=1$

(a) $L_{1}: y=3 x+1$ and $L_{3}: y=-\frac{1}{3} x+1$

(b) $L_{2}: y=3 x+7$ and $L_{6}: y=2 x+1$

10.6 Find the intersection point of each pair of lines in the previous question.
(a) $L_{1}: y=3 x+1$ and $L_{3}: y=-\frac{1}{3} x+1$ intersect where

$$
3 x+1=-\frac{1}{3} x+1 \quad \Rightarrow \quad 9 x+3=-x+3 \quad \Rightarrow \quad 8 x=0 \quad \Rightarrow \quad x=0
$$

Use, say, L_{1} to find the y-value at the intersection: $y=3(0)+1=1$. Hence the intersection point is $(0,1)$. (Check the graph to see that this must be the correct answer.)
(b) $L_{2}: y=3 x+7$ and $L_{6}: y=2 x+1$ intersect where

$$
3 x+7=2 x+1 \quad \Rightarrow \quad x=-6
$$

Use, say, L_{6} to find the y-value at the intersection:

$$
y=2(-6)=-12+1=-11
$$

so the intersection point is $(-6,-11)$. (Check the graph to see that this answer is in the right area.)
(c) $L_{4}: y=-\frac{1}{3} x-\frac{7}{3}$ and $L_{5}: y=1$ intersect where

$$
-\frac{1}{3} x-\frac{7}{3}=1 \quad \Rightarrow \quad-x-7=3 \quad \Rightarrow \quad-x=10 \quad \Rightarrow \quad x=-10
$$

Since L_{5} is horizontal the intersection point is $(-10,1)$. (Check the graph to see that this answer is in the right area.)
10.7 Application: this is an example of a problem in the area of Operations Research (or Management Systems as it is called in Business). Consider the lines

$$
L_{1}: x+y=4 \quad L_{2}: x+2 y=6 \quad L_{3}: 2 x+y=7
$$

(a) Sketch the graphs of all three functions on the same set of axes.

Re-arrange the equations into $y=m x+c$ form:

$$
L_{1}: y=-x+4 \quad L_{2}: y=-\frac{1}{2} x+3 \quad L_{3}: y=-2 x+7
$$

See below for the graphs.
(b) Find the points of intersection between:
(i) L_{1} and L_{2}

$$
-x+4=-\frac{1}{2} x+3 \quad \Rightarrow \quad-2 x+8=-x+6 \quad \Rightarrow \quad 2=x
$$

Use, say, L_{1} to find the y-value at the intersection:

$$
y=-(2)+4=2
$$

Hence, the intersection point is $(2,2)$.
(ii) L_{1} and L_{3}

$$
-x+4=-2 x+7 \quad \Rightarrow \quad x=3
$$

Use, say, L_{1} to find the y-value at the intersection:

$$
y=-(3)+4=1
$$

Hence, the intersection point is $(3,1)$.
(iii) L_{2} and the y-axis This is just the y-intercept of $L_{2}:(0,3)$.
(iv) L_{3} and the x-axis This is the x-intercept of L_{3} :

$$
0=-2 x+7 \quad \Rightarrow \quad 2 x=7 \quad \Rightarrow \quad x=\frac{7}{2}
$$

Hence, the intersection point is $\left(\frac{7}{2}, 0\right)$.

$\left(\frac{7}{2}, 0\right)$
(c) At each of the intersection points in (b) find the value of $z=3 x+5 y$
(i) $(2,2): z=3(2)+5(2)=16$.
(ii) $(3,1): z=3(3)+5(1)=14$
(iii) $(0,3): z=3(0)+5(3)=15$
(iv) $\left(\frac{7}{2}, 0\right): z=3\left(\frac{7}{2}\right)+5(0)=\frac{21}{2}$ or $10 \frac{1}{2}$
(d) At which intersection point does $z=3 x+5 y$ attain its greatest value? At $(2,2)$ (greatest value 16).

Problem Set 11

11.1 Sketch the graphs of the following quadratic functions, in each case indicating

- the convexity (concave up or down),
- the y-intercept,
(a) $y=2 x^{2}+8 x+6$
- concave up
- the y-intercept is at $(0,6)$
- to find the x-intercepts:

$$
\begin{aligned}
2 x^{2}+8 x+6 & =0 \\
\Rightarrow \quad x^{2}+4 x+3 & =0 \\
\Rightarrow \quad(x+1)(x+3) & =0
\end{aligned}
$$

So, the x-intercepts are $(-1,0)$ and $(-3,0)$. (You can also use the quadratic formula to find the roots but

- the vertex co-ordinates and
- whatever x-intercepts exist.
trying to factorise first is an excellent shortcut.)
- the vertex occurs halfway
between the x-intercepts, at $x=-2$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(4)}{2(1)}=-2\right)
$$

The y-value at $x=-2$ is
then

$$
\begin{aligned}
y & =2(-2)^{2}-8(-2)+6 \\
& =8-16+6 \\
& =-2
\end{aligned}
$$

b) $y=x^{2}-2 x-8$

- concave up
- the y-intercept is at $(0,-8)$
- to find the x-intercepts:

$$
\begin{aligned}
x^{2}-2 x-8 & =0 \\
\Rightarrow \quad(x+2)(x-4) & =0
\end{aligned}
$$

So, the x-intercepts are $(-2,0)$ and $(4,0)$.

- the vertex occurs halfway
between the x-intercepts, at $x=1$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(-2)}{2(1)}=1\right)
$$

The y-value at $x=1$ is
then

$$
\begin{aligned}
y & =(1)^{2}-2(1)-8 \\
& =1-2-8 \\
& =-9
\end{aligned}
$$

The vertex is $(1,-9)$.

(c) $y=x^{2}-4 x+4$
(d) $y=-x^{2}+4 x-3$

- concave up
- the y-intercept is at $(0,4)$
- to find the x-intercepts:

$$
\begin{aligned}
x^{2}-4 x+4 & =0 \\
\Rightarrow \quad(x-2)(x-2) & =0
\end{aligned}
$$

So, the x-intercept is $(2,0)$.

- in this case the vertex occurs halfway is also at the x-intercept (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(-4)}{2(1)}=2\right)
$$

The y-value at $x=2$ is clearly o so the vertex is $(2,0)$.
Note: this is a feature of perfect squares.

- concave down
- the y-intercept is at $(0,-3)$
- to find the x-intercepts:

$$
\begin{aligned}
-x^{2}+4 x-3 & =0 \\
\Rightarrow \quad x^{2}-4 x+3 & =0 \\
\Rightarrow \quad(x-1)(x-3) & =0
\end{aligned}
$$

So, the x-intercepts are $(1,0)$ and $(3,0)$.

- the vertex occurs halfway between the x-intercepts, at $x=2$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(4)}{2(-1)}=2\right)
$$

The y-value at $x=2$ is then

$$
\begin{aligned}
y & =-(2)^{2}+4(2)-3 \\
& =-4+8-3 \\
& =1
\end{aligned}
$$

The vertex is $(2,1)$.

(e) $y=x^{2}-4 x+12$

- concave up
- the y-intercept is at $(0,12)$
- the x-intercepts look difficult so use the discriminant:

$$
\begin{aligned}
b^{2}-4 a c & =(-4)^{2}-4(1)(12) \\
& =16-48 \\
& <0
\end{aligned}
$$

So, there are no x-intercepts.

- the x-coordinate of the vertex is =

$$
x=\frac{-b}{2 a}=\frac{-(-4)}{2(-1)}=2
$$

The y-value at $x=2$ is then

$$
\begin{aligned}
y & =(2)^{2}-4(2)+12 \\
& =4-8+12 \\
& =8
\end{aligned}
$$

The vertex is $(2,8)$.

(f) $y=x^{2}-6 x$

- concave up
- in this case $c=0$ so the y-intercept is at $(0,0)$.
- we already know that one of the x-intercepts is $(0,0)$. Factorizing confirms this and locates the other one:

$$
\begin{aligned}
x^{2}-6 x & =0 \\
\Rightarrow \quad x(x-6) & =0
\end{aligned}
$$

So, the other x-intercept is $(6,0)$.

- the vertex occurs halfway between the x-intercepts, at $x=3$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(-6)}{2(1)}=3\right)
$$

The y-value at $x=3$ is
then

$$
\begin{aligned}
y & =-(3)^{2}-6(3) \\
& =9-18 \\
& =-9
\end{aligned}
$$

The vertex is $(3,-9)$.

(g) $y=x^{2}-4$

- concave up
- the y-intercept is at $(0,-4)$
- to find the x-intercepts:

$$
\begin{aligned}
x^{2}-4 & =0 \\
\Rightarrow \quad(x-2)(x+2) & =0
\end{aligned}
$$

So, the x-intercepts are $(-2,0)$ and $(2,0)$.

- the vertex occurs halfway between the x-intercepts, at $x=0$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(0)}{2(1)}=0\right)
$$

The y-value at $x=0$ is then

$$
\begin{aligned}
y & =-(0)^{2}-4 \\
& =-4
\end{aligned}
$$

(or realise that it is also the y-intercept!). The vertex is $(0,-4)$.
Note: this is a feature of the difference of two squares.

(h) $y=x^{2}-7 x+10$

- concave up
- the y-intercept is at $(0,10)$
- to find the x-intercepts:

$$
\begin{aligned}
x^{2}-7 x+10 & =0 \\
\Rightarrow \quad(x-2)(x-5) & =0
\end{aligned}
$$

So, the x-intercepts are $(2,0)$ and $(5,0)$.

- the vertex occurs halfway between the x-intercepts, at $x=\frac{7}{2}$ (or use

$$
\left.x=\frac{-b}{2 a}=\frac{-(-7)}{2(1)}=\frac{7}{2}\right)
$$

The y-value at $x=\frac{7}{2}$ is
then

$$
\begin{aligned}
y & =\left(\frac{7}{2}\right)^{2}-7\left(\frac{7}{2}\right)+10 \\
& =\frac{49}{4}-\frac{49}{2}+10 \\
& =-\frac{9}{4}
\end{aligned}
$$

The vertex is $\left(\frac{7}{2},-\frac{9}{4}\right)$.

11.2 Complete the square for the following quadratic functions and use the result to verify the co-ordinates of the vertex of the parabola they repesent.

$$
\text { (a) } \begin{aligned}
y & =x^{2}+8 x+3 \\
& =x^{2}+8 x+\left(\frac{8}{2}\right)^{2}-\left(\frac{8}{2}\right)^{2}+3 \\
& =x^{2}+8 x+16-16+3 \\
& =(x+4)^{2}-16+3 \\
y & =(x+4)^{2}-13
\end{aligned}
$$

$(x+4)^{2}$ can't be negative so the smallest value of y occurs when

$$
(x+4)^{2}=0
$$

ie. $x=-4$. The y-value at $x=-4$ is then -13 , so the coordinates of the vertex are $(-4,-13)$.
The x-value of the vertex is also given by

$$
x=\frac{-b}{2 a}=\frac{-(8)}{2(1)}=-4
$$

At $x=-4$:

$$
\begin{aligned}
y & =(-4)^{2}+8(-4)+3 \\
& =16-32+3 \\
& =-13
\end{aligned}
$$

The answers are the same.
(b) $y=x^{2}-14 x$

$$
\begin{aligned}
& =x^{2}-14 x+\left(\frac{-14}{2}\right)^{2}-\left(\frac{-14}{2}\right)^{2} \\
& =x^{2}-14 x+49-49 \\
& =(x-7)^{2}-49
\end{aligned}
$$

$(x-7)^{2}$ can't be negative so the smallest value of y occurs when

$$
(x-7)^{2}=0
$$

ie. $x=7$. The y-value at $x=7$ is then -49 , so the coordinates of the vertex are $(7,-49)$.
The x-value of the vertex is also given by

$$
x=\frac{-b}{2 a}=\frac{-(-14)}{2(1)}=7
$$

At $x=7$:

$$
\begin{aligned}
y & =(7)^{2}-14(7) \\
& =49-98 \\
& =-49
\end{aligned}
$$

The answers are the same.

Problem Set 12

12.1 Evaluate the following limits if they exist.
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{x-4}=\lim _{x \rightarrow 4}(x+4)=4+4=8$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+4)}{x-2}=\lim _{x \rightarrow 2}(x+4)=2+4=6$
(c) $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-1}=\lim _{x \rightarrow 4} \frac{(x-4)(x+3)}{x-1}=\frac{(4-4)(4+3)}{4-1}=\frac{0 \times 7}{3}=\frac{0}{3}=0$
(d) $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x-3)}{x-3}=\lim _{x \rightarrow 3}(x-3)=3-3=0$
(e) $\lim _{x \rightarrow 2} \frac{4 x^{2}-16}{x-2}=\lim _{x \rightarrow 2} \frac{4\left(x^{2}-4\right)}{x-2}=\lim _{x \rightarrow 2} \frac{4(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(4(x+2))=4(2+2)=4 \times 4=16$
(f) $\lim _{x \rightarrow-7} \frac{x^{2}+15 x+56}{x+7}=\lim _{x \rightarrow-7} \frac{(x+7)(x+8)}{x+7}=\lim _{x \rightarrow-7}(x+8)=-7+8=1$
12.2 Differentiate each of the following functions.
(a) $y=x^{3}+x^{2}+x+6 \Rightarrow \frac{d y}{d x}=3 x^{2}+2 x+1$
(b) $y=3 x^{4}-x^{3}+x^{2}+x-2 \Rightarrow \frac{d y}{d x}=12 x^{3}-3 x^{2}+2 x+1$
(c) $y=x^{2}+\sqrt{x}+\frac{1}{x}-3 \Rightarrow \frac{d y}{d x}=2 x+\frac{1}{2 \sqrt{x}}-\frac{1}{x^{2}}$

12.3 To differentiate

$$
y=\left(\sqrt{x}+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}\right)
$$

we need to expand the brackets. We get

$$
y=x^{2} \sqrt{x}+\frac{\sqrt{x}}{x^{2}}+\frac{x^{2}}{x}+\frac{1}{x^{3}}=x^{2} x^{\frac{1}{2}}+x^{\frac{1}{2}} x^{-2}+x+x^{-3}=x^{\frac{5}{2}}+x^{-\frac{3}{2}}+x+x^{-3}
$$

and because $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ we get

$$
\frac{d y}{d x}=\frac{5}{2} x^{\frac{3}{2}}-\frac{3}{2} x^{-\frac{5}{2}}+1-3 x^{-4}
$$

12.4 Perform the following integrations
(a) $\int\left(x^{2}+x+6\right) d x=\frac{x^{3}}{3}+\frac{x^{2}}{2}+6 x+C$
(b) $\int\left(3 x^{4}-x^{3}-2\right) d x=\frac{3 x^{5}}{5}-\frac{x^{4}}{4}-2 x+C$
(c) $\int\left(x^{2}+\sqrt{x}+\frac{4}{x^{2}}\right) d x=\frac{x^{3}}{3}+\frac{2 x^{\frac{3}{2}}}{3}-\frac{4}{x}+C$
12.5 Evaluate the following definite integrals.
(a) $\int_{0}^{1}\left(x^{3}+x^{2}\right) d x=\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1}=\left(\frac{1^{4}}{4}+\frac{1^{3}}{3}\right)-\left(\frac{0^{4}}{4}+\frac{0^{3}}{3}\right)=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}$
(b) $\int_{2}^{3}\left(5 x^{4}+5 x-2\right) d x=\left[x^{5}+\frac{5 x^{2}}{2}-2 x\right]_{2}^{3}=\left(3^{5}+\frac{5\left(3^{2}\right)}{2}-2(3)\right)-\left(2^{5}+\frac{5\left(2^{2}\right)}{2}-2(2)\right)$
$=\left(243+\frac{45}{2}-6\right)-\left(32+\frac{20}{2}-4\right)=237+\frac{45}{2}-28-\frac{20}{2}=209+\frac{25}{2}=\frac{418+25}{2}=\frac{443}{2}$
(c) $\int_{-2}^{2}\left(x^{2}+4 x-3\right) d x=\left[\frac{x^{3}}{3}+2 x^{2}-3 x\right]_{-2}^{2}=\left(\frac{2^{3}}{3}+2\left(2^{2}\right)-3(2)\right)-\left(\frac{(-2)^{3}}{3}+2\left((-2)^{2}\right)-3(-2)\right)$
$=\left(\frac{8}{3}+8-6\right)-\left(-\frac{8}{3}+8+6\right)=\frac{8}{3}+2+\frac{8}{3}-14=\frac{16}{3}-12=\frac{16-36}{3}=-\frac{20}{3}$
12.6 Find the AREA bounded by the graph of $f(x)$ and the x-axis between
the points indicated for the functions below. The graphs are shown below.

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{1}\left(x^{2}+1\right) d x=\left[\frac{x^{3}}{3}+x\right]_{-1}^{1} \\
& =\left(\frac{1}{3}+1\right)-\left(\frac{-1}{3}-1\right) \\
= & \frac{1}{3}+1+\frac{1}{3}+1=\frac{2}{3}+2=\frac{8}{3}
\end{aligned}
$$

(b) $f(x)=x^{2}-x, \quad x=0$ to $x=2$

Some of the region is above the x-axis and some below so

$$
\begin{aligned}
& \text { Area }=-\int_{0}^{1}\left(x^{2}-x\right) d x+\int_{1}^{2}\left(x^{2}-x\right) d x \\
& =-\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =-\left(\frac{1}{3}-\frac{1}{2}\right)+0+\left(\frac{8}{3}-\frac{4}{2}\right)-\left(\frac{1}{3}-\frac{1}{2}\right) \\
& =-\frac{1}{3}+\frac{1}{2}+\frac{8}{3}-2-\frac{1}{3}+\frac{1}{2}=\frac{6}{3}-1=1
\end{aligned}
$$

Index

x-intercept, 81
y-intercept, 78
algebra, 15
algebraic fractions, 32
antiderivative, 101
area under a curve, 102
associated quadratic, 31

BIDMAS, 6
cancellation, 10
chord, 96
co-ordinates, 77
coefficients, 28
completing the square, 72
convexity, 90
decimals, 11
definite integral, 101
denominator, 7
derivative, 98
difference of two squares, 30
differentiation, 98
discriminant, 70
distributive law, 17
$e, 61$
elimination method, 24
exponent, 51
exponential decay, 60
exponential equation, 51
exponential growth, 59
exponential models, 59
factorization, 10, 28
fractions, 7
function, 75
gradient, 78
graph, 77
horizontal axis, 76
horizontal lines, 80
improper fraction, 8
indefinite integral, 101
integers, 5
integral, 101
integrand, 101
intersecting lines, 83
laws of Indices, 41
laws of logarithms, 53
LHS, 17
limit, 97
linear functions, 78
logarithm, 51
logarithmic equation, 51
mathematical modelling, 19
mixed numeral, 8
natural logarithm, 61
natural numbers, 5
negative numbers, 5
negative powers, 41
number line, 7
numerator, 7
parabola, 89
parallel lines, 83
perfect squares, 30
perpendicular lines, 83
proper fraction, 7,8
quadratic, 28
quadratic equation, 67
quadratic expressions, 67
quadratic formula, 69
quadratic functions, 89
rate of change, 95
rational expressions, 32
RHS, 17
sigfig, 12
simultaneous equations, 23
sketch, 81
standard form, 67
straight line, 78
tangent, 97
vertex, 91
vertical axis, 76
vertical lines, 81
word problems, 7

[^0]: Mathematics Fundamentals
 $1^{\text {st }}$ edition
 © 2017 Dr Ramzan Razim Khan \& Dr Des Hill \& bookboon.com
 ISBN 978-87-403-1864-7
 Peer review by Dr Miccal Matthews, The University of Western Australia

[^1]: * This one is too difficult for a Test question

