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Preface

In many areas of applied demography one of the most difficult tasks, in either

gaining mastery of the content of an area or of teaching courses in the area is finding

a set of materials that adequately covers the field without having to access an

inordinate number of partial sources, none of which alone provides a sufficient

overview for mastering the area. This has clearly been the case in the area of small

area population estimation where, although there are useful overviews of some

components of the processes and principals involved (see for example, Siegel and

Swanson 2004), the need to examine both the academic and the pragmatic aspects

of the methods and principles for completing, evaluating and knowledgeably using

a set of estimates, have simply not been available in a single source.

For the first time a book which is both a comprehensive and rigorous scholarly

work as well as a user oriented and pragmatic methodological source has become

available with the publication of this text by Swanson and Tayman. In fact, I believe

that it will become for those who do small area population estimates what Shryock

and Siegel and Siegel and Swanson have provided for basic demographic methods–

the source for learning how to approach, complete and evaluate small area popula-

tion estimates in a variety of settings and considering a wide range of theoretical

and pragmatic factors.

Its authors’ credentials for doing such a work are flawless. Together they have

more than a half century of experience in making, evaluating, and presenting

estimates made in their capacities as demographers for state and local governments,

public sector utilities, for private businesses and corporations, and as academic

demographers estimating population change under challenging environmental and

socioeconomic conditions. They not only know this area as practitioners but are

also at the forefront of the academic literature in this area publishing widely and

frequently on the methods, the evaluation and the use of small area population

estimates.The result for the reader is a truly comprehensive volume on small area

population estimation. The volume defines what an estimate is, what factors must

be considered in selecting the estimation method to be used, and what data are

needed to complete different types of estimates and where they can be found.

It examines the methods available to complete estimates (e.g., extrapolation,
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housing unit, regression-base, censal-ratio, component, sample-based, geographic

based). It presents methods and measures for evaluating estimates, and examines

how estimates fit into comprehensive programs for population analysis. This work

also provides a broad range of quantitative examples of the applications of estima-

tion methods and their evaluation and use under alternative circumstances.

When examined in its totality, however, the work is not only likely to become

a basic text for the applied demographer but will also be of substantial utility for

the general demographer attempting to operationalize variable parameters in an

analysis, estimating values for periods where complete data are lacking and eval-

uating patterns of estimation errors. It will be a useful addition to both applied and

basic demographers’ collections of readings. Although its length will likely be

daunting to some it is structured to allow one with basic knowledge of estimation

processes to use it as a reference source for examining specific, as well as generic,

issues impacting population estimation processes.

In sum, the volume you are now reading is one of those seminal pieces of work

by a set of experienced authors. The work reflects the wide background and depth of

experience and knowledge of its authors and there is no doubt that it is the most

useful single source available on small area population estimates. Not only current

but I believe students and other scholars a generation from now will thank the

authors for leaving a record of the application of their basic and applied knowledge

of small area estimates. I know that I have found my basic text for the next time

I teach either a course in applied demographic methods or one on general demo-

graphic methods.
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Chapter 1

Introduction

Although subject to flaws, the most complete and reliable source of information

on a population is taken from a census (Bryan 2004a, 2004b; Swanson and

Walashek 2011). However, a complete enumeration of a population is costly

and not all populations have been subject to a census. Even in countries such as

the United States, where census counts have been mandated since 1790, their high

costs only allow them to be done once every ten years. This means that data can

become outdated and that a substitute is needed – a set of population estimates.

The development of methods of population estimation roughly corresponds to the

development of censuses and vital statistics registries. For example, in the late

18th century, the French mathematician, Laplace, was using what we would today

call a censal-ratio method in combination with recorded births and a population

sample to estimate the population of France (Stigler 1986: 163-164). However,

methodological development really only took off in the late 1930s and early

1940s, fueled in large part by the need for low-cost and timely information

generated by the great depression of the 1930s and World War II. (Bryan

2004a; Eldridge 1947; Hauser and Tepping 1944; Shryock 1938; Shryock and

Lawrence 1949; US Census Bureau 1945, 1949). In the United States, the Census

Bureau played a major role in this effort, but it was not alone. During the early

1940s, the Washington State Census Board, for example, developed a compre-

hensive program of annual population determinations based on estimation

methods that are still used today (Swanson and Pol 2005). Around this same

time, demographers also began developing estimation methods for what were

then called “underdeveloped countries,” (Brass et al. 1968, Chandrasekaran and

Deming 1949; Davis 1951; Popoff and Judson 2004) and the use of sample

surveys as a substitute for complete census counts took hold (Bryan 2004a;

Featherman 2004).

Today, population estimates are ubiquitous. They are done around the world

by a host of governmental and non-governmental entities, as well as individual

consultants (Bryan 2004b; Siegel 2002; Swanson and Pol 2005). The wide-

spread availability of data, methods, and technology has made it possible

for many people not only to develop estimates, but to do so more quickly and

D.A. Swanson and J. Tayman, Subnational Population Estimates,
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less expensively than has ever been done before. This trend is not likely to

abate, but it carries with it a cost in that estimates may both be made and used

with little or no understanding of the issues involved, what constitutes good

estimates, and how to identify them. This book is designed to provide guidance

on these issues and advice on how both to make and identify good estimates.

Before we proceed, though, it is good to talk about what estimates are – and what

they are not.

1.1 What is a Population Estimate?

A population estimate is the determination of the size or the characteristics of a

population at a current or past date in the absence of census data for the same date.

An estimate generally makes use of historical census data and data correlated with

the population (s) in question, such as vital records (e.g., births and deaths) and

administrative records (e.g., school enrollments, covered employment, automobile

registrations, housing permits). However, there are ways in which an estimate can

be done that do not rely directly upon either vital or administrative records, but

rather on mathematical models or sample surveys.

The term population estimate is frequently used in the public domain to refer to

the determination of the size or the characteristics of a population at a future date.

However, most demographers prefer to use the term projection when talking about

the possible size and characteristics of a population in the future. In developing

a portrait of a given population in the future, it is not uncommon for a series

of projections to be made that incorporate a range of plausible assumptions

(e.g., expected trends in fertility, mortality, and migration). However, when one

of these projections is selected as representing the most likely future, it then

becomes the forecast for the population in question.
As opposed to a projection or a forecast, then, a population estimate is

concerned with either the present or the past, but not the future (Smith, Tayman,

and Swanson 2001: 3-4). In regard to this temporal dimension, we find it useful

to make three distinctions in terms of estimates that provide a means of organiz-

ing techniques that we discuss in this book: (1) pre-censal; (2) inter-censal; and

(3) post-censal. This temporal classification is useful because different methods

are typically employed in the development of inter-censal, post-censal, and pre-

censal estimates (Bryan 2004b). It also serves to keep an important principle in

mind. Namely, that one should make full use of census information, vital statis-

tics, and other relevant administrative records in developing estimates relative

to the cost and resources required to make them usable. In turn, this principle

serves to guide the selection of estimation methods. For example, since the data

from the two censuses that bound an inter-censal estimate date contain informa-

tion that both implicitly and explicitly bound the estimate itself, the principle
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suggests that if these data are readily available, then an interpolation method is

more likely to produce more accurate estimates than an extrapolative method and,

as we discuss shortly, be of higher utility.

In using the term “pre-censal,” we are referring to a time period prior to the

initiation of census counts for the population in question. Since we are focusing on

populations for which good census and administrative records data are available,

this implies that the estimates are generally for a period in the distant past, to

include pre-history. As it implies, we are referring to a period between census

counts when we use the term “inter-censal.” As such, we are referring to estimates

for a time in the past, but not one that precedes the availability of census counts for

the population in question. We view the term “post censal” as one that refers to a

current point in time or the very recent past.

An estimate can be prepared for a nation or a subnational area such as a state,

county, city, town, or census tract. An estimate also can be prepared for groups of

subnational areas, groups of nations, or even the world as a whole. As the title and

the examples reveal we focus on subnational estimates in this book, but virtually all

of the methods we describe could be used at the national level. The major issue

distinguishing national from subnational estimates is the fact that there is no

domestic migration to account for at a national level.

The principal demographic characteristics for which an estimate is made include

age and gender. However, in multiracial and multi-ethnic countries such as the

United States and Canada, an estimate might be done not only by age and gender,

but also by race and ethnicity. An estimate also can be made of social and economic

subgroups of the population, households, and families.

1.2 How are Estimates Done?

Demographers and statisticians have developed a population estimation toolkit

that contains a range of methods designed to meet different information needs

at varying levels of accuracy and cost. The methods can be roughly placed into

three categories: (1) analytical and statistical models that use data symptomatic of

population and its changes; (2) mathematical models that use historical census data;

and (3) sample surveys. Methods falling into the first category have generally been

developed by and for applied demographers, most of whom work for national, state,

and local governments. Methods falling into the second category have generally

developed by and for academic demographers, most of whom work at universities

and research institutes. The methods falling into the third category have generally

been developed by and for statisticians and survey research scientists, but they also

are widely used by demographers. Not surprisingly, there also are techniques that

combine methods from two or even all three categories.
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1.3 What makes a Good Estimate?

Without question, an estimate should be accurate, but accuracy is not the only

criterion by which an estimate should be judged. Following the argument presented

by Swanson and Tayman (1995), we suggest that attention be focused on the broader

concept of utility. As alluded to earlier, there are many methods that in principle can

be used to estimate a population, and improvements are a regular feature of these

methods. Further, there is a wide range of decision-making situations in which

population estimates are used. It follows, therefore, that no method should be

universally judged to be superior to others and, by the same token, neither should

any method be judged universally inferior to all others. We suggest instead, that

relative to a given use, utility is gained by selecting a method that provides a

sufficient amount of information for the purpose(s) at hand, while keeping cost

and time to a minimum. In the case of an estimate, the sufficiency of the information

provided is judged on the ability of using it tomake good decisions. So, if an estimate

is produced at minimal cost but provides timely information sufficient to make good

decisions, then it has high utility. If an estimate does not meet these conditions then it

has low utility. This follows the principle we described earlier that an estimate

should make full use of census information, vital statistics, and other relevant

administrative records, given the time and resources required to use them.

An important underlying component of sufficiency is “transparency.” That is, the

ability of a decision-maker to understand how an estimate was done so that he or she

can determine if the assumptions, methods, and data are reasonable.

1.4 Who makes Population Estimates?

Following World War II, many agencies responded to the demand for timely and

low-cost population information. The United Nations started publishing estimates

in its annual Demographic Yearbook in 1948 and in 1947 the US Census Bureau

began publishing them regularly in its series, Current Population Reports. Since
that time, many national and subnational statistical offices, as well as private

vendors and consultants have also issued population estimates (Bryan 2004a,

2004b; Swanson and Pol 2005).

Today, National Statistical offices (e.g., The US Census Bureau), a number of

sub-national governmental offices, non-profit organizations, and private sector firms

publish population estimates (as well as projections and forecasts) on a regular basis.

International agencies such as the United Nations also provide estimates. The US

Census Bureau makes its estimates available at no cost on its website (http://www.

census.gov/population). Statistics Canada, however, charges for virtually all of its

products. The estimates done by state demographic centers are usually available for

a nominal fee, and following the lead of the Bureau, many of the centers have

websites. Private sector firms also make estimates, some of which are available on

websites, but for a fee.
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Although the Census Bureau produces sub-state estimates, this largely remains

the domain of state demographic centers, local governmental entities, and the

private sector. For their part, the state demographic centers have rarely ventured

below the county and city level (e.g., they do not routinely make estimates for

census tracts, although one notable exception is the state of Washington’s demo-

graphic center). This terrain is claimed mainly by local government entities and the

private sector. However, given the rapid advent of GIS (Geographic Information

Systems) and other technological advances, there is much talk in the air of the

Bureau and more than a few state demographic centers developing sub-county

estimates. However, while it is possible that the Bureau and state demographic

centers may extend their interest to lower levels of geography, it is highly unlikely

that this would occur in the opposite direction - the Washington State Demographic

Office is not likely to start doing estimates for the entire United States.

There is coordination between the Bureau of the Census and state demographic

centers, accomplished mainly through the Federal State Cooperative Program for

Population Estimates (FSCPE). Although some informal cooperation existed by the

early 1960s, it was not until the latter part of that same decade that the Census

Bureau and State agencies agreed, among other things, to establish close working

relationships in the preparation of State population estimates and to facilitate the

flow of technical information on population estimates between States. The FSCPE

has remained operational ever since (Bryan 2004b: 525).

The situation in Canada is similar to that found in the United States. Starting in

the 1940s with national estimates, Statistics Canada now prepares estimates for the

country as a whole, its provinces and territories, and statistically-defined areas such

as census divisions (Statistics Canada 1987: 2). Estimates done by Statistics Canada

can be found at http://www.statcan.ca.

There are provincial demographic centers that prepare estimates specific to their

own provinces and sub-areas such as counties. These include centers in Nova

Scotia, Quebec, Ontario, Manitoba, and British Columbia; the provinces without

centers use the estimates done by Statistics Canada. However, Canada does not

have a federal-provincial program similar to the FSCPE found in the United States.

As is the case in the United States, there also are firms in the private sector active in

preparing estimates for Canada and its subareas.

There also are academics and others who make population estimates, most of

which are pre-censal and inter-censal (Brass et al. 1968; Coale and Zelnick 1963;

Nordycke 1989; Lee 1985; Schmitt 1977; Reher and Schofield 1993; Wrigley and

Schofield 1981).

1.5 Why make Population Estimates?

So far, we have discussed what estimates are (and are not), how they are made, and

who makes them. At this point you may be asking yourself, why are they made?

The principal uses of population estimates and other demographic estimates relate
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to government or private planning, particularly in regard to resource allocation

(Siegel 2002: 398-399; Statistics Canada 1987: 2-3; Swanson 1980). Demo-

graphic estimates may be used directly or as the basis for preparing other more

specialized types of information. These include, for example, estimates of the

number of people of working age in a given labor market area, birth and death

rates, the incidence of AIDS cases, the demand for assisted care centers, customers,

households, and so on. The users include local, state and national governments,

business firms, university research centers, and non-profit organizations. In addition

to the uses in the field of planning, there are important uses in demographic analysis

and related types of scientific studies.

As mentioned earlier, population estimates are widely used to make decisions.

The following examples provide an idea of some of the real world uses of popula-

tion estimates. As it turns out, each of the examples illustrates estimates that had

high utility. That is, they were produced at minimal cost and provided timely

information sufficient to make good decisions.

1.5.1 Political Redistricting in Florida

Using post-censal estimates, a team of demographers from Florida State University

assisted Palm Beach County, Florida in the design of new voting districts following

an amendment to the county’s charter approved by voters in 1988 (Serow et al.

1997). Because of strong evidence of population change in Palm Beach County, the

Board of County Commissioners decided that it would be best to use current

population estimates rather than 1980 census data in designing the new voting

districts. The Board then selected the team from Florida State University to prepare

the estimates and to recommend voting district boundaries. In the first part of their

work, the team used two standard techniques, the housing unit method and a

regression method, to develop estimates of very small pieces of geography within

the county (827 Traffic Analysis Zones). In the second part, the team developed five

alternative plans that were presented and discussed in public forums and with the

Board. From these meetings, a consensus emerged in favor of one of the plans and

with slight modifications, it was approved by the Board in 1989.

1.5.2 The Country Mart Store, Omaha, Nebraska

Louis Pol (1988) describes the case of the Country Mart Store, a locally owned and

operated grocery store in Omaha that was facing a possible reduction of customers

in its market area. Until 1986, the store’s owner, Wilbur Fast, had witnessed strong

sales since purchasing it in 1982. By 1986, however, Mr. Fast was concerned and

sought advice from the School of Business at the University of Nebraska, Omaha.

Two sets of population estimates for 1986 using different data sources: (1) records
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assembled by the Country Mart Store on customer locations; and (2) population

estimates produced by a national vendor for zip codes covering the store’s market

area. The two sets were in agreement with one another, which indicated that the

resulting single estimate was both valid and reliable. This 1986 estimate was

compared with census and other data from 1980, and it was found that the popula-

tion had actually increased since 1980. However, there also were indications that it

was changing in terms of average age and household structure, factors important

to retailers. Based on the analysis, Mr. Fast was advised on a marketing strategy

that he then employed.

1.5.3 How many Visitors are in Hawai’i?

In 2002, tourists spent nearly 10 billion dollars in the state (Hawai’i Department of

Business, Economic Development, and Tourism 2004) and the state depends

heavily on tourism. In recognition of this dependence, the state initiated a series

of data collection and estimation efforts many years ago, largely under the guidance

of Robert C. Schmitt, the Hawaii State Statistician. Today, Hawai’i remains the

only governmental unit in the country to systematically and regularly estimate its

“de facto” population. In 2002, the state estimated that 6.45 million people visited

Hawai’i, staying an average of nearly 9.4 days, and spending an average of $155

daily (Department of Business, Economic Development, and Tourism 2004).

The state uses this information in the development of its budgets and the tourism

industry uses it for planning.

1.5.4 The Impact of European Contact on Native Hawaiians

Although controversies exist over the exact numbers and cases, there is agreement

that European contact led to population decline for many cultures, Hawai’i among

them. Schmitt (1968) reports estimates of the Native Hawaiian population for the

period 1778-79 from 100,000 to 400,000. Schmitt (1968) himself developed annual

estimates that indicated a substantial population decline subsequent to European

contact, from 130,300 in 1832 to 93,500 by 1848. By the time of the government of

Hawai’i put together a reasonable (although one that is acknowledged to have

undercounted the population) census in 1850, only 84,165 people were counted

(Schmitt 1968). In successive census counts, accuracy improved as the counts

continued to decline through 1878, when only 55,800 were counted (Schmitt

1968). Following this census and the annexation of Hawai’i by the United States

in 1896, enumerations indicate the population started to increase, but it was assisted

by migration of people into Hawai’i (Nordycke 1989; Schmitt 1968, 1977).

Now that you have an idea of what population estimates are, how they are made,

by whom and why they are made - as well as some idea of their limitations, let me
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turn to what is in store for you in the remainder of this book, which is largely

concerned with how they are made.

1.6 About this Book

The book is applied in nature. It is primarily designed as a guide for developing

estimates of populations in small areas. Its major focus is on developing estimates

within countries that have advanced public information systems, including regu-

larly conducted census counts and a wide range of administrative record systems.

Similarly, the book can be used by people working in the private sector who have

access not only to the public information systems, but also proprietary data. Thus,

the book is primarily aimed at people responsible for making population estimates

in state and local government, the private sector, and non-profit organizations. This

includes not only demographers, but land use planners, transportation planners, and

market researchers,

This book also is intended to serve as a guide for those learning how to make

population estimates. In this category are students and those already in full-time

jobs, who have to teach themselves about estimates. It also can serve as a useful tool

to persons who may not make estimates themselves, but have an interest in knowing

how they are done. This latter group can encompass a wide range, from planners to

survey statisticians.

In terms of classroom instruction, this book should prove adequate as a primary

textbook in a course that is largely or exclusively focused on population estimates.

However, an instructor will need to develop exercises because the book contains

none. In addition, an instructor may need to provide some supplementary material.

In the many courses in which population estimation is covered in a short module,

the book should be useful as supplementary reading or reference.

The book is neither an “easy read” nor a highly mathematical treatise. It assumes

that the reader has at least an undergraduate degree, with the typical reader being

either in a planning position or a graduate student in a social science field, including

planning. A chapter on basic demographic concepts and measures has been

included for two reasons. First, for those who have had no formal demographic

training, it serves as the foundation for the chapters that come later and second,

having it in the book makes the book relatively self-contained.

Although the book really is designed to be used for population estimates at the

sub-national level, it can be used to develop estimates for higher levels of geogra-

phy given that small area estimates can be aggregated upward to higher levels of

geography. However, if the real aim is to produce estimates at a high level

of geography such as a state or province, there are more efficient methods available

and, moreover, readily available estimates (Bryan 2004b).

The book is not all encompassing. There are many topics within the field of

population estimation that it does not cover. For example, it does not cover methods

used to estimate the foreign-born population, a topic covered in depth by Judson
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and Swanson (2011). Rather, it focuses on more general needs and what generally

works in terms of making population estimates for subnational areas in countries

that have well-developed statistical information systems. The book is aimed specif-

ically at geographical units that correspond to states/provinces, counties, census

tracts and other small pieces of geography. The main thrust is on developing

estimates of the total population, but methods for estimating the characteristics

(e.g., age, race, sex) of populations in small areas also are discussed.

The book need not be read in the order that the chapters are presented. However,

for the most part the later chapters assume knowledge of what is covered earlier.

Similarly, the earlier chapters generally present more simple methods than do the

later chapters. The book consists of three major sections, followed by a glossary and

a subject and name index. In Section I of this book, this chapter is followed by

chapters 2 through 4, which cover fundamentals of basic concepts, data sources and

basic demographic measures. The material in chapters 2 through 4 is as much a

review as it is a tutorial and in either case, the intent is to provide just enough to get

someone through the material in the 2nd section of this book, which covers basic

estimation methods.

Section II covers the methods used in population estimation and is really the heart

and soul of the book. It is organized into seven chapters, starting with Chapter 5,

which provides an overview of population estimation methods. Chapter 6 covers

extrapolative methods, chapter 7, housing unit methods, chapter 8, regression

methods, Chapter 9, censal-ratio methods and Chapter 10, component methods.

Chapter 11 discusses sample-based methods, to include “SPREE” and “synthetic”

methods. However, Chapter 11 also touches on related methods, those used by

survey statisticians to extend the coverage of sample surveys to small areas by

“borrowing strength” from other information. These methods are not described in

detail since the focus of the book is on developing population estimates. We believe,

however, that it is important for demographers and others who may not be familiar

with these methods to at least have an idea of what they are. In Chapter 12, structural

models are described, as well as methods based on administrative records and

special types of samples. We discuss the methods described in Section II largely

in terms of “post-censal” since they are largely used to develop estimates for a

current point in time or the very near past. They also can be used for “inter-censal”

estimates, but are not well-suited, if at all, for developing “Pre-censal” estimates.

That is, estimates in the distant past.

Section III deals first with special cases and adjustments (Chapter 13), then with

methods of evaluation (Chapter 14), and then guidelines for developing estimates

(Chapter 15). Chapter 16 is devoted to the development of estimates for types

of populations either not counted at all in a census or ones that are difficult for

the census to count, to include daytime and seasonal and visitor populations, the

homeless, and populations impacted by disasters. Chapter 17 continues this theme,

but takes it back in time. It focuses on the estimation of inter-censal populations,

but also includes some discussion on the estimation of pre-censal populations.

The book concludes with Chapter 18, which looks at the future of population

estimation methods.
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We decided against discussing any software in the book for three reasons. First,

software technology has been undergoing a period of rapid change as this volume

was being prepared, and was likely to be outdated as we wrote. The second reason

is that we believed the reader could implement any demographic method elec-

tronically using standard, readily available, spreadsheet and statistical software

with only limited training and experience on computers. Third, we felt that for

the present purpose it was more important to convey the logic of the methods rather

than present a device for accomplishing the result without thorough training as to its

purpose and interpretation. The book concludes with a glossary and a subject and

author index. References for the citations in each chapter are found at the end of the

respective chapter.
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Chapter 2

Basic Concepts

Creating, interpreting, and evaluating population estimates involves demographic,

geographic, and statistical methods and data. This chapter introduces the major

demographic concepts of size, distribution, characteristics, and the components of

population change along with geographic concepts including Geographic Informa-

tion Systems (GIS), density, center of population, concentration and clustering,

distance, accessibility, and spatial interaction.We conclude this chapter with material

on the concepts of descriptive and inferential statistics, and regression techniques.

2.1 Demographic

Demography is the scientific study of population (Swanson and Siegel 2004: 1).

It focuses on five general topics: population size, population distribution across

geographic areas, population composition (e.g., age, sex, and race), population

change, and the determinants and consequences of population growth. Our focus

is on the first four of these topics, and the Glossary contains definitions for many

other demographic concepts related to population estimates taken directly from

(Swanson and Stephen 2004).

2.1.1 Size

Population estimates start with the same basic consideration as a census: What is

the size of a population? The concept of population size refers to the number of

people residing in a specific area at a specific time (the de jure approach). According

to the latest census, The City of San Diego had population of 1,307,402 on April 1,

2010, whereas the City of Del Mar had a population of only 4,161. These were

the largest and smallest cities in San Diego County in terms of population size.

However, in the censuses of many countries the concept of population size refers to
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the number of people actually present in a given area at a given time (the de facto

approach). Under this approach, all tourists, business travelers, and seasonal residents

present in Miami on census day would be counted along with usual residents who are

also in town that day. Usual residents of Miami who were out of town would not

be counted. De facto population estimates have many uses including dealing with

potential traffic congestion and long commuting times, disaster and relief activities to

understand the number of people that may be affected if a disaster was to occur, and

defining the at-risk population for crime and arrest rates.

The de jure concept is more ambiguous in that it comprises all of the people who

“belong” to a given area by virtue of legal residence, usual residence, or some

similar criterion (Wilmoth 2004: 65). However, the de jure concept is used as the

census definition of population in the United States, Canada, and most other

developed countries and, as such, becomes the dominant concept in population

estimates. Not surprisingly, the dominant focus of this book is on the estimation of

de jure populations, although there is some discussion of methods for estimating de

facto populations in Chapter 16.

By the same token, regardless of which of the two concepts used, virtually all

census data refer to the populations of given geographic areas and, as such, most

estimates, whether of de jure or de facto populations, are done for given geographic

areas. However, the concept of a population need not be linked to a geographic area.

For example, a population could refer to all the dependents of employees working

for a multi-national corporation or the potential customers of an insurance com-

pany. As such, estimates of these populations are not confined to for these given

geographic areas. This book, however, is focused on the methods used to estimate

populations in given geographic areas.

2.1.2 Distribution

The distribution of a population refers to its geographic location. As is the

case with the concept of population size, there are two major ways in which

geographic areas can be identified. The first is the administrative approach, where

areas are defined according to administrative or political criteria. Examples

include states, counties, and cities. For many purposes these are the most impor-

tant types of geographic areas that can be defined and as such, they are used by

most censuses in reporting census population data, including the United States

(Plane 2004). However, administrative areas also have several limitations. Their

boundaries may not account for important economic, cultural, and social consid-

erations. For example, Gary, Indiana is administratively distinct from the city

of Chicago, Illinois, but it is economically, culturally, and socially linked to it.

Another problem is that administrative boundaries may not remain constant over

time –the annexations of a city are a case in point– and changing boundaries make

it difficult not only to make comparisons over time, but to produce consistent

estimates
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Away to get around of the limitations imposed by administrative definitions is to

define geographic areas specifically for purposes of identifying areas that are

economically, socially, and culturally linked that also are consistent over time.

These so-called statistically defined areas are used in many countries, including the

United States (Plane 2004, SANDAG 2010a).

In the United States, important statistical areas are based on geography used in

the census–census blocks, block groups, and census tracts. Blocks are basically city

blocks. They are small areas bounded on all sides by visible features such as streets or

railroad tracks or by invisible boundaries such as city or township limits; they are the

smallest geographic unit for which data are tabulated. Block groups are clusters of

blocks and generally contain 250 to 550 housing units; block groups do not cross

census tract boundaries. Census tracts are small, relatively permanent areas defined

for all metropolitan areas and other densely populated counties. They do not cross

county boundaries and generally contain between 2,500 and 8,000 persons and are

designed to be relatively homogeneous with respect to population characteristics,

living conditions, and economic status. Figure 2.1 shows a hierarchy of geographic

Nation

ZIP Codes

ZIP Code Tabulation Areas Urban Areas

Metropolitan Areas

American Indian Areas/
Alaska Native Areas/
Hawaiian Home Lands

School Districts

Congressional Districts

Economic Places

Voting Districts

Traffic Analysis Zones

County Subdivisions

Subbarrios

Regions

Divisions

States

Places

Alaska Native Regional Corporations

State Legislative Districts

Oregon Urban Growth Areas
Counties

Census Tracts

Block Groups

Blocks

Fig. 2.1 Geographic Hierarchy for the 2000 Decennial Census

Source: Census 2000 Basics IV Geographic Areas. http://www.census.gov/mso/www/

c2000basics/chapter4.htm
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areas built from the 2000 census geography. Geographic areas may work in a hierar-

chical fashion, with smaller areas nesting in larger ones (e.g., census tracts within

counties), while others likeMetropolitan Areas are given only as subsets of the nation.

Geographic boundaries can also be defined according to other criteria. In the

United States, for example, one can obtain estimates for Postal ZIP code areas.

You may recall from Chapter 1 the example of the Country Mart Store, which

defined its market area using ZIP codes. In another example from Chapter 1, the

voting districts for Palm Beach County, Florida, were constructed using data from

827 traffic analysis zones. As the Palm Beach County example suggests, it is not

uncommon to produce estimates and other forms of population data for a combina-

tion of administrative and statistical areas. Figure 2.2 shows an example of such a

system used in San Diego, California known as the Master Geographic Reference

Area (MGRA). It combines census geography, political boundaries, and zip codes

into a spatially detailed spatial system that supports a wide range of uses.

2.1.3 Composition

Composition refers to the characteristics of the population. For population

estimates, the most commonly used characteristics are age, sex, race, and Hispanic

Origin. For many purposes, age is the most important demographic characteristic

Fig. 2.2 Master Geographic Reference Areas in San Diego County

Source: San Diego Association of Governments (February 2010), 2050 Regional Growth Forecast
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because it has such a large impact on so many aspects of life, for individuals as

well as for society as a whole. The age structure of a population affects its birth,

death, and migration rates, and the demand for public education, health care, and

nursing home care. It also impacts the housing market, the labor market, and the

marriage market. No other characteristic is more valuable for a wide variety of

planning and analytical purposes than the age composition of the population

(Smith, Tayman, and Swanson 2001: 23). Sex composition also is important for

many purposes. It is often used in combination with age to show a population’s age-

sex structure (Hobbs 2004).

The age-sex structure is often illustrated using population pyramids (Hobbs

2004: 161-166). Population pyramids are graphic representations showing the

number (or proportion) of the population. The basic pyramid form consists of

bars, representing age groups in ascending order from the lowest to the highest,

pyramided horizontally on one another (see Figure 2.3). The bars for males are

given on the left of a central vertical axis and the bars for females on the right of

the axis. The characteristics of pyramids (e.g., the length of a bar to others, the

steepness and regularity of its slope) for different populations quickly reveal any

differences in the proportion of the sexes, the proportion of the population in any

particular age class or classes, and the general age structure of the population

(Hobbs 2004: 163).

Figure 2.3 shows pyramids for four populations with different age–sex

structures. The pyramid for Uganda has a very broad base and narrows very rapidly.

This pyramid illustrates the case of an age–sex structure with a very large propor-

tion of children, a very small proportion of elderly persons, and a low median age.

It reflects a “young” population with relatively high fertility rates. The pyramid for

Sweden is very different. It has a relatively narrow base and a middle section of

nearly the same dimensions. It illustrates the case of an age–sex structure with

a very small proportion of children, a very large proportion of elderly persons, and a

high median age. It reflects an “old” population and relatively low fertility rates.

The pyramids for Argentina and China illustrate age-sex structures intermediate

between those for Uganda and Sweden, with China showing the impact of its

“one-child” policy in its youngest ages (0-14).

Race and ethnicity are two other widely used demographic characteristics. In the

2000 census the Census Bureau used five broadly defined racial categories: African

American; American Indian or Alaska Native; Asian; Native Hawaiian or other

Pacific Islander; and White (McKibben 2004). The 2000 census incorporated

several changes in the collection of racial data. One important change is that the

Census Bureau for the first time allowed respondents to list themselves as belonging

to more than one racial category; prior to that time, respondents could list only a

single category (McKibben 2004). In addition to race, the US Census uses an ethnic

dimension, with two categories: Hispanic; and non-Hispanic (McKibben 2004).

It should be noted that “Hispanic” is not a racial category; that is, people are

classified both by race and by Hispanic origin. Composition also can refer to

other characteristics such as employment status, income, education, and occupation

(O’Hare, Pollard, and Ritualo 2004).
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Hispanics and race groups often have different demographic characteristics and

patterns of growth that influence population estimation. For example, between 2000

and 2010 in Texas, the percentage change in the Hispanic population is more than

double the overall population, similar to the percent change in American Indians

and Alaskan Natives (see Table 2.1). Consequently, the Hispanic share of the total

population increased from 32.0% in 2000 to 37.6% in 2010. Asians are the fastest

growing race group, increasing by 71.5%, and almost 700,000 people in Texas

identify themselves as belonging to 2 or more race groups in 2010. Non-Hispanic

Whites, another widely use distinction, grew slowly during the first decade of the

21st century, causing its share of the total population to drop from 52.4% to 45.3%.

Non-Hispanic Whites have the oldest age structure with a median age of 41.3 years

<5

10 9 8 7 6 5 4 3 2 1 0 1
Percent

2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 1
Percent

2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1 0 1

Percent
2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 1

Percent
2 3 4 5 6 7 8 9 10

5-9
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79

80+

Sweden 1990 Argentina 1991

China 1990 Uganda 1991

FemaleMale FemaleMale

FemaleMale FemaleMale

<5
5-9

10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79

80+

<5
5-9

10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79

80+

<5
5-9

10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79

80+

Fig. 2.3 Percent Distribution by Age and Sex of the Population of Sweden, China, Argentina, and

Uganda Around 1990

Source: Hobbs (2004: 164)
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in 2010, more than 14 years older than Hispanics (see Table 2.2). Native Hawaiian

and Other Pacific Islanders and Other races have relatively low median ages (27.6

and 26.1) and younger age structures.

2.1.4 Change

Population change is measured as the difference in population size between two

points in time (Perz 2004). A point in time can correspond to the date of a census or

to the date of a population estimate. Measures of population change always refer to

a specific population and a specific period of time; in most instances, they refer to a

specific geographic area as well. Population change can also be measured for

various subgroups of the population (e.g., females, Asians, or teenagers), different

geographic areas (e.g., counties, cities), and different time periods (e.g., 1980-

1990). In other words, population change can refer to changes in size, distribution,

or composition, or to any combination of the three.

Table 2.1 Population by Race and Hispanic Origin in Texas, 2000 and 2010

Change

2000 2010 Number Percent

Total 20,851,820 25,145,561 4,293,741 20.6%

White 14,799,505 17,701,552 2,902,047 19.6%

Black or African American 2,404,566 2,979,598 575,032 23.9%

American Indian and Alaska Native 118,362 170,972 52,610 44.4%

Asian 562,319 964,596 402,277 71.5%

Native Hawaiian and Other Pac. Is. 14,434 21,656 7,222 50.0%

Other Races 2,438,001 2,628,186 190,185 7.8%

Two or More Races 514,633 679,001 164,368 31.9%

Hispanic Origin 6,669,666 9,460,921 2,791,255 41.8%

Non-Hispanic White 10,933,313 11,397,345 464,032 4.2%

Sources: US Census Bureau, Census 2000 and 2010, http://factfinder2.census.gov

Table 2.2 Median Age by

Race and Hispanic Origin,

Texas, 2010

Total 33.6

White 36.0

Black or African American 31.6

American Indian and Alaska Native 30.7

Asian 33.9

Native Hawaiian and Other Pac. Is. 27.6

Other Races 26.1

Two or More Races 20.9

Hispanic Origin 27.0

Non-Hispanic White 41.3

Source: US Census Bureau, 2010 Census, http://

txsdc.utsa.edu/Resources/Decennial/2010/SF1/

profiles/Texas_2010_SF1_Profile.pdf
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2.1.4.1 Components of Population Change

There are only three components of population change: births, deaths, and migra-

tion. A population grows through the addition of births and in-migrants, and

declines through the subtraction of deaths and out-migrants. Understanding these

three demographic processes is essential to understanding the nature and causes of

population change. Fertility is the reproductive performance of a woman, man,

couple, or group; it also is a general term for the incidence of births in a population

or group (Swanson and Stephan 2004: 760). Although fertility rates are generally

low in the US and other developed countries, they can vary substantially from place

to place and from one race, ethnic or socioeconomic group within a given country.

In 2003, the total fertility rate (average number of children per woman) for states

ranged from 1.7 in Vermont to 2.7 in Utah (National Vital Statistics Reports 2010).

Mortality is a general term for the incidence of deaths in a population or group

(Swanson and Stephan 2004: 767). While mortality rates do not vary greatly within

high income countries there are differences between race, ethnic and socioeco-

nomic groups. In 2006, there was a 17.5 year difference in life expectancy (average

number of years of remaining life) at birth between Black Males (69.4 years) and

Asian Females (86.9 years) (LA County Department of Health 2010).

Migration is a general term for the incidence ofmovement by individuals, groups,

or populations seeking to make permanent changes of residence (Swanson and

Stephan 2004: 766). It refers to changes in usual place of reference and excludes

short-term temporary movements such as commuting, visiting friends or relatives,

or taking a business trip. The migration literature uses several terms to describe

migration. Gross migration refers to the total number of migrants into or out of an

area (e.g. 200 in-migrants and 300 out-migrants). Net migration is the difference

between the two (e.g., a net outflow of 100); it shows the net effect of migration on

the change in population. Internal or domestic migration refers to changes of

residence within a county, while foreign or international migration refers to changes

of residence from one county to another. People leaving a country are emigrants and

those entering a country are immigrants. The migration level can vary considerably

from place to place within the United States and can undergo large sudden changes.

In San Bernardino County, California, for example, net migration for the years 2006,

2008, and 2010 was 7.548, -17,214, and -3,167 (State of California 2011).

2.1.4.2 Fundamental Demographic Equation

The overall change in a population is formalized in the fundamental demographic

equation:

Pl � Pb ¼ B� Dþ IM� OM

where Pl is the population at the end of the time period; Pb is the population at the

beginning of the time period; and B, D, IM, OM are the number of births, deaths,
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in-migrants, and out-migrants during the time period.1 The difference between

births and deaths (B � D) is called natural change coming from the population

itself. It may be either positive (natural increase) or negative (natural decrease)

depending on whether births exceed deaths or deaths exceed births. The difference

between IM and OM reflects the change in population due to migration and can be

either positive or negative depending on whether in-migrants exceed out-migrants

or out-migrants exceed in-migrants. The fundamental demographic equation has a

wide range of uses, including the development of estimates of population and net

migration (Smith, Tayman & Swanson 2001: 30) and estimates of net census

undercount (Robinson et al. 1993).

Table 2.3 shows natural increase and estimates of net domestic and foreign

migration for counties in Arizona from 2000 to 2009. Domestic migration accounted

for 49% of the population change in Arizona, followed by natural increase (32%) and

Table 2.3 Cumulative Estimates of the Components of Resident Population Change for Counties

of Arizona: April 1, 2000 to July 1, 2009

Geographic

Area

Total

Population

Changea
Natural

Increase

Vital Events Net Migration

Births Deaths Total Internationalb Domestic

Arizona 1,465,171 464,238 875,726 411,488 986,764 272,410 714,354

Apache 1,168 6,829 11,465 4,636 �5,366 184 �5,550

Cochise 11,786 6,069 16,474 10,405 6,453 2,076 4,377

Coconino 13,531 12,722 18,473 5,751 1,515 2,022 �507

Gila 869 205 6,319 6,114 987 496 491

Graham 3,556 2,123 4,690 2,567 1,562 183 1,379

Greenlee �506 479 997 518 �1,001 71 �1,072

La Paz 297 104 2,082 1,978 299 650 �351

Maricopa 950,964 338,001 564,289 226,288 632,032 215,566 416,466

Mohave 39,793 �636 20,655 21,291 41,241 2,777 38,464

Navajo 15,507 9,464 16,808 7,344 6,583 628 5,955

Pima 176,458 47,933 121,594 73,661 100,945 28,620 72,325

Pinal 161,242 18,224 35,399 17,175 131,833 4,890 126,943

Santa Cruz 5,390 4,996 7,233 2,237 631 2,313 �1,682

Yavapai 48,170 �1,423 19,235 20,658 50,085 3,125 46,960

Yuma 36,946 19,148 30,013 10,865 18,965 8,809 10,156
a Total population change includes a residual. This residual represents the change in population

that cannot be attributed to any specific demographic component. See State and County Terms and

Definitions at http://www.census.gov/popest/topics/terms/states.html.
b Net international migration includes the international migration of both native and foreign-born

populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the

net migration between the United States and Puerto Rico, (c) the net migration of natives to and

from the United States, and (d) the net movement of the Armed Forces population between the

United States and overseas.

Note: The April 1, 2000 estimates base reflects changes to the Census 2000 population resulting

from legal boundary updates, other geographic program changes, and Count Question Resolution

actions. All geographic boundaries for the 2009 population estimates series are defined as of

January 1, 2009.

Source: US Census Bureau, Population Division (CO-EST2009 09 04-04), Release Date:

March 2010
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foreign migration (19%). There is substantial variability in the components of change

among counties. Thirteen counties showed natural increase, while deaths slightly

exceeded births in Mohave and Yavapai Counties. All counties showed positive

growth due to foreign migration, but one-third of the counties lost population as the

result of domestic migration. In counties with natural increase and positive total

migration, the share of growth due to natural increase ranged from 11% to 94%.

2.2 Geographic

Population data are used to support private-sector marketing, business decision

making, and public planning and policy making. For many purposes information on

the size and characteristics of the population of a state or even a county is not

sufficient. There is an increasing demand for population data for smaller scale areas

that define more precisely where people live. Today population estimates are done for

awide range of subregional geographic areas including cities, census tracts, block, and

parcels. Spatially intensive population estimates rely heavily on geographic methods

to analyze, manage, create, and disseminate information. In this section, we discuss

geographic information systems and some major geographic concepts.

2.2.1 Geographic Information Systems (GIS)

Geographic information systems (GIS) work with geographically (geo-) referenced

data that are identified by coordinates that represent the position on the earth. GIS

represent a unique combination computer hardware and software that are used to

manipulate geo-referenced data. These systems provide four main capabilities:

(1) input; (2) data management; (3) data manipulation and analysis; and (4) output

(Aronoff 1989: 39). Many associate GIS with map making, but GIS has revolution-

ized our ability to create and display a wide range of graphical displays. GIS is

much more than a map making utility. It has become a valuable tool for exploring

spatial patterns, relationships, and predictive modeling (Bryan and George 2004).

GIS has many capabilities (e.g., Bryan and George 2004; Fotheringham,

Brunsdon, and Charlton 2000: Chapter 3) and we illustrate a few that are relevant

to population estimation. Say you had an address list of 800,000 electric meters used

to analyze housing trends. How could you get a count of the meters for the 600 census

tracts within the region? "Admatch" is a GIS procedure that can assign an address to

any spatial location (see Figure 2.4). The address is matched to a street-based file that

contains address ranges, geographical coordinates and or codes that define geo-

graphic areas. Once the matching is completed the addresses can be accumulated

as desired. Tiger/Line street files developed by the Census Bureau are available for

public use. Matching to street files approximate the location by interpolating within

the address range on each side of the street. More precise locations can be obtained by

matching to parcel file addresses (discussed in Chapter 3) (Tayman 1999).
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Another important use of GIS is data retrieval and the ability to quickly create data

profiles for any area, any shape, and any size (Hodges 1995; Sharkova 2000; Tordella

1987). What if you were asked to compute the current size and characteristics of the

population at various distances from a store site? Figure 2.5 shows a travel time

contour map that identifies various driving distances from a location in Carlsbad,

CA; a city about 25 miles north of San Diego. The GIS technology used to create this

map could prepare custom reports for each travel time contour.

Our last example deals with global positioning systems (GPS). GPS involves 24

satellites in low earth orbit (12,000 miles) that continuously beam their locations

and temporal positions toward the earth (Bryan and George 2004). With GPS very

precise coordinates can be found for any place on earth. The Census Bureau used

GPS to verify Tiger/Line files and to determine the precise location of housing units

for the 2010 census. Traditional travel diaries are known to undercount trips and

GPS can help obtain more accurate information about travel times and volumes

(Kreitz, Doherty, and Rindsfuser 2002). Figure 2.6 shows the traffic flows in 2001

for individual vehicles in a retail area in San Diego. This information was used to

study travel patterns throughout the day, calibrate travel models, and develop

daytime (de facto) population estimates.

2.2.2 Density

Population density is a simple concept that relates the size of a population to areal

size of a particular geographic area where it is located. Density is usually computed

Fig. 2.4 Admatch: Assign Activities to any Spatial Location

Source: Generated by the authors
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as population per square mile (or square kilometer in the metric system) or per

acre of land area rather than gross area including land and water (Plane 2004).

Population densities (per square mile) vary considerably across counties in the US

(see Figure 2.7). High densities in 2009 are in the Northeast Corridor, on both coasts

Fig. 2.5 Travel time distances from a Location

Source: San Diego Association of Governments (2002), Travel Time Contour Map
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Fig. 2.6 GPS Location of Traffic Flows in San Diego, California

Source: California Department of Transportation (June 2002), 2000-2001 California Statewide

Household Travel Survey. Sacramento, CA

Fig. 2.7 Population Density for Counties and Puerto Rico Municipios: July 1, 2009

Source: US Census Bureau Population Division, Vintage 2009 Population Estimates. http://www.

census.gov/popest/gallery/maps/County-Density-09.html
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in Florida, in the metropolitan areas of the west coast, and around the great lakes.

Low densities occur in many parts of the west and in the US breadbasket. The very

low densities in Alaska are also evident. The overall density in the US is 86.9

persons per square mile and ranges from 0.039 in Yukon-Koyukuk Census Area to

71,505.7 in New York County.

Places with relatively low population densities may result from small population

and/or large areas of undeveloped or uninhabitable land. More refined measures of

population density would use the amount of settled area or settled area with

residential land uses in the denominator. In 2008, San Diego County had a popula-

tion density of 1.5 persons per acre based on the total land area of the County

(SANDAG 2010b). When restricting the land area to that containing residential

activity, the density increases to 9.4.

2.2.3 Center of Population

The mean point of the population distributed over an area is its center of

population. It is the point where the area would balance with each individual

having an equal weight and exerting influence on the central point proportionate

to their distance from that point. The mean center of population is influenced

by the distance of a person from it (Plane 2004). Population change farther away

from the center of population will influence the mean point more so than popula-

tion change near the center. The mean center of California’s population in 1880

was in the San Francisco Bay area and has moved south to near Bakersfield by

the year 2000 (NOAA 2004). So, population change in Riverside or San

Bernardino counties would have more influence on the center of population

than changes within 15 miles of Bakersfield. The mean center of the US popula-

tion has been moving steadily westward since the first US census was taken in

1790 (see Figure 2.8). The center was near the top of Chesapeake Bay in 1790

and by 2010 it was near Plato Missouri. Since 1940, the center of population

has moved south.

2.2.4 Spatial Distribution

Spatial distribution is the specific location or arrangement of events in space or

time, or the arrangement of activities across the earth’s surface. Several related

terms have been used to characterize spatial distribution. Concentration is the degree

to which population is focused or dispersed in geographic areas. Centralization is to

form a center or the concentration of population in geographic space, while decentral-

ization is the dispersal of population across geographic space. These concepts are
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illustrated in Fig. 2.9. Housing units in San Diego County were concentrated along the

South/Central coast and bay areas in 1940. The decentralization of development is

clearly shown. By 1960, development had pushed east and pockets had developed

along the north coast and north inland. These areas had further dispersed by 1980.

The decentralization of housing continued and by 2000 development had spread

beyond the urbanized area forming rural communities.

A cluster is a group of the same or similar items gathered closely together.

A business cluster, for example, is a geographic cluster of interconnected businesses,

suppliers, and associated activities in a particular field. Areal groupings of high

income households, race, and age-restricted housing communities are examples of

population clusters. Population clusters have been formally defined. For example, the

Netherlands defines a distinct population cluster:

as the population living in neighboring buildings that form a continuous built up area with a

clearly recognizable street formation and certain land-use categories do not split up the

population. Different population clusters of which the residential areas are separated no

more than 200 meters of each other are considered to form a population cluster.

An exception is made when residential areas are separated more than 200 meters by a

canal or river, but are connected directly by a bridge or a tunnel. (Van Leeuwen 2007).

Fig. 2.8 Mean Center of the Population of the United States 1790 to 2010.

Source: US Department of Commerce, Economics and Statistics Administration, US Census

Bureau. http://www.census.gov/geo/www/cenpop/meanctr.pdf
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2.2.5 Distance, Accessibility, and Spatial Interaction

A common and long-standing way to measure the dispersion of the population is the

distance (Bachi 1985). Distance can be calculated between individual sites or

locations, but it often measured from aggregate population grouped by geographic

areas. In this case, the population is assumed to be concentrated at the geographic

center of the area. Distance is often expressed in terms of miles or kilometers, but

for some applications distance is represented by time or cost of travel between two

areas (e.g., Putman 1983: 7).

For many applications such as site location or infrastructure demand it is useful

to measure the accessibility of locations to a particular population distribution.

Accessibility can be viewed as the ease of interaction between two or more

locations. From a population perspective, accessibility is the proximity of a

mass of persons to a particular location (Plane 2004). Accessibility over space

is primarily influenced by the capacity of the transportation system relative to the

travel demand. So in most cities, accessibility to the downtown core is much

Fig. 2.9 Spatial Distribution of Housing Units, San Diego County, 1940-2000.

Source: Smith, Tayman, and Swanson (2001: 369)
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quicker and easier during off-peak travel than during rush hour. The interstate

highway system, for example, contributed significantly to the decentralization of

activities across American because it increased the accessibility to formerly far

flung areas.

Spatial interaction is the flow of products, people, services, or information

among places, in response to localized supply and demand and is influenced by

the accessibility between locations. It is a movement of people, freight, or informa-

tion between an origin and a destination and a transport demand / supply relation-

ship expressed over a geographical space (Rodriguez, Comtois and Slack 2009:

Chapter 5.) Spatial interactions cover a wide variety of movements such as journey

to work, migration, tourism, the usage of public facilities, the transmission of

information or capital, the market areas of retailing activities, international trade,

and freight distribution.

The basic assumption concerning many spatial interaction models is that flows are

a function of the attributes of the locations of origin, the attributes of the locations of

destination, and the accessibility between the concerned origins and the destinations.

The gravity model is the most common formulation of the spatial interaction method

(Lowry 1964, Putman 1994, Wegener 1994). It is named as such because it uses a

similar formulation to Newton’s formulation of gravity. Accordingly, the attraction

between two objects is proportional to their mass and inversely proportional to their

respective distance. A typical gravity model for population is based on the location of

jobs, the ability of a location to accommodate additional growth, and the accessibility

between these locations typically measured by travel time or cost.

2.3 Statistical

Statistical methods are widely used in population estimation. Regression techniques

underlie ratio-correlation and other methods discussed in Chapters 6 and 8. They

are also used for evaluating estimation model inputs deriving key parameters for

these models, and evaluating the quality and validity of the resultant estimates

(see Chapter 14). In this section, we discuss major concepts in descriptive and

inferential statistics with specific attention given to regression modeling.

2.3.1 Descriptive Statistics

Descriptive statistics aim to summarize the main features of a distribution of data

without employing a probabilistic formulation. Suppose you are analyzing estima-

tion errors for cities within California and compute statistical measures that quan-

tify the errors. These statistics describe the performance of the estimates for cities

within California, but are not used to make generalizations about estimate errors in

other states or other levels of geography. There are a variety of statistical measures
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and graphical devices used to summarize and describe a distribution of data

(e.g., Jaeger 1983; Langley 1970; Levin and Rubin 1998) and they can be generally

grouped into three categories: central tendency (typicality), variability (dispersion),

and distribution shape.

2.3.1.1 Central Tendency

Central tendency indicates the location or center of a distribution. The most

common measures of central tendency are the mean, median, and mode (Swanson

2012). The average is represented by the arithmetic mean, which is the most widely

used measure of central tendency. The mean is very familiar and has a number

of desirable statistical properties, including that it uses all of the information in

the distribution (Swanson, Tayman, and Barr 2000). This advantage is also a major

drawback, as the mean can be influenced by extreme values. In this circumstance

the mean may not represent the typical value.

The median, on the other hand, is the center point of the distribution and it not

impacted by extreme values. The median is a resistant statistic and the mean is not,

but the median ignores most of the information has other less desirable statistical

properties than the mean. Other resistant measures of central tendency have been

offered (e.g., M-estimators, the trimmed mean) to address the shortcomings of both

the mean and median (Tayman and Swanson 1999).

The mode is the most frequently occurring observation. Unlike the mean and

median, the may not be a unique mode for a distribution of data. If every observation

is unique, there would be no mode or there could be more than one mode. Examples

of data the often contain multiple modes are morning and evening commute-time

travel volumes and household utility usage. The mode is, however, the only measure

of central tendency applicable to nominal (unordered categories) data.

2.3.1.2 Variability

Although measures of central tendency provide useful information, they do not

provide a complete picture of the data. Variability describes the deviation or

spread of the observations from their center (Swanson 2012). Homogeneity and

heterogeneity are also terms used to describe variability in data. For example, we

may wish to compare estimate errors for counties in Florida during the decades

1990s and 2000s. The average error in both cases is 8.5%. With this information,

you would note the average errors are identical and might conclude that there was

no improvement in your methods. The next day your assistant tells you that for the

1990s the range of errors was 0.02% to 45%, and for the 2000s it was 5.6% to

20.2%. This new information shows that the methods had improved by reducing

outlying errors and their variation.
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The simplest measure of variability is the range, which is the difference between

the highest and lowest values. It has the disadvantages of both the mean and median

in that it ignores most of the information in the data set and is influenced by outliers.

To combat the latter situation, measures like the interquartile range and quartile

deviation have been developed (Blalock 1972: 79). The most widely used measures

of variation are the variance and the standard deviation (square root of the vari-

ance). Both of these measures reflect the variability of the scores about the mean of

the distribution. In the above example, the standard deviations for the population

estimates of the 1990s and 2000s have values of 34.2 and 5.8.

Like the mean the variance and standard deviation are influenced by outliers,

but they also present a dilemma in interpretation. What is a big one and what is a

small one? The value of the variance is determined not only by the variability in

the data, but also by the size of the mean. If you, for example, multiplied each

observation in the distribution by 2 both the mean and standard deviation would

double, but the variability of the new distribution would not change. What is

needed is a measure that will provide an indication of the magnitude of the

variation relative to magnitude of the mean. The coefficient of variance is such

as measure of relative variation and is useful in comparing groups with respect to

their homogeneity (e.g., Ikeda 2008).

2.3.1.3 Distribution Shape

We have discussed statistical descriptions under the general categories of measures

of central tendency and variability. It is also useful to describe the general form or

shape of the distribution. First, a distribution may be described by its number of

relative maximums or modality. Strictly speaking, a distribution has only a single

mode when an observation occurs most frequently. It is common to find a distribu-

tion described as bimodal or multimodal when there are two or more humps in the

curve, even though there may be a single distinct mode.

Another distribution characteristic is its symmetry or conversely its skewness.

A distribution is symmetrical if it can be divided into two mirror-image halves

(see Figure 2.10). In a symmetrical distribution, the mean and median will be equal.

If there is only one hump in the distribution the mode will be equal as well.

A symmetrical distribution can also be multimodal in that case the mode would

not equal the mean and median (Winkler and Hays 1975: 156). A non-symmetric or

skewed distribution indicates the length of one of the tails of the distribution,

relative to the center, is disproportionate to the other. A right or positively skewed

distribution the bulk of the distribution falls into the lower values of the distribution

with relatively few observations at the higher values. In a unimodel distribution,

the mean exceeds the median, which exceeds the mode. Population estimate error

distributions are often right-skewed (Tayman and Swanson 1999). On the other

hand, in a left or negatively skewed distribution the long tail occurs among the

lower values of the distribution. Here the mode exceeds the median, which exceeds

the mean.
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Symmetrical curves are often associated with the bell-shaped normal distribution

whose distribution shape is determined solely by its mean and standard deviation.

But not all bell-shaped symmetrical distribution are normal (Blalock 1972: 98).

Unimodal symmetrical curves may be more peaked (leptokurtic) or more flat

(platykurtic) than the normal curve. Equations for these curves involve summarizing

measures in addition to the mean and standard deviation.

2.3.2 Inferential Statistics

With inferential statistics, you are trying to reach conclusions that extend beyond

the immediate data alone. To legitimately use inferential statistics the immediate

data must be either in fact or conceptually a random sample taken from the entire

data set to which one wants to infer (Swanson 2012). Both of these perspectives

Fig. 2.10 Symmetrical, Right- and Left-Skewed Distributions

Source: http://www.google.com/images
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are employed, illustrated or otherwise discussed throughout this book (i.e., in

Chapter 6, Chapter 7, Chapter 8, Chapter 9, Chapter 11, and Chapter 12).

As an example of the perspective where the immediate data are “in fact”,

a random sample, we can use inferential statistics to infer from a random sample

of registered voters to the results of a forthcoming election. As another example

where the immediate data are “in fact,” a random sample, consider estimation errors

for a sample of counties within the US and compute statistical measures that

quantify the errors. Assuming a properly conducted sample, these statistics could

be used to make generalizations about estimate errors for all counties in the US.

As an example of an immediate data set which “in concept” is a random

sample, consider estimation errors for all 39 counties of the State of Washington

as measured against the 2010 census. While in fact this is the entire popula-

tion of interest if we are interested in estimation errors for the state of

Washington’s counties, the specific data in hand can be viewed as the probabilis-

tic manifestation a process in which there is infinite number of outcomes. This

perspective views our specific set of estimation errors as a random sample from

the “super population” of infinite possible outcomes (Hartley and Sielken 1975;

Sampath 2005).

Statistical inference is an important part of the toolkit used to develop population

estimates. It is as a set of procedures designed to support generalizations by

providing probabilistic evidence of their validity. However, one should use this

set of procedures with an understanding of what it can and cannot do. This note of

caution applies in particular to hypothesis testing, which we will shortly discuss.

In using hypothesis tests, one needs to be cognizant of the important distinction

between a substantive difference and a statistical difference (Swanson 2012).

Keeping this distinction in mind will aid in avoiding the pitfalls associated with

the practice of treating hypothesis testing as a ritual that in and of itself provides the

answers to questions (Ziliak and McCloskey 2008).

2.3.2.1 Sampling Methods

Sampling is the process of selecting specific elements (the sample) from a population.

A population is a complete group,whether people, houses, firms, electric light bulbs or

geographic areas. Characteristics of the population are known as parameters, while

characteristics of samples are known as statistics. Parameters are generally fixed and

unknown. If they were known we would not need to sample. Statistics, on the other

hand, vary from one sample to the next. The idea behind sampling is to use the sample

elements to develop statistics that are used to estimate and make inferences about

population parameters.

There are two general sample selection methods probability or random and non-

probability or non-random (Warwick and Lininger 1975: 72). Probability sampling

is where elements are chosen by chance procedures with known probabilities of

selection. Simple random sampling (SRS) is basic selection process, where each

element has the same probability of being selected (Kish 1965: 21). Modifications
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to SRS include the use of stratification (selection from subpopulations), clustering

(selection from groups of elements), and systematic selection (interval selection

from lists). In non-probability samples elements are not selected by chance

procedures or with known probabilities of selection. The most common types of

non-probability samples are haphazard collection, judgment sampling, quota sam-

pling, expert sampling, and purposeful sampling. Inferences are frequently made

from non-probability samples, but they depend heavily on broad assumptions about

the distribution of the survey variables in the population (Kish 1965: 19). On the

other hand, inferences based on probability sampling can be made entirely from

statistical methods, without assumptions about the population distribution.

The sampling distribution underlies the process of statistical inference. A sam-

pling distribution is a probability distribution of a given statistic based on a random

sample of size n. It may be considered as the distribution of a statistic for all

possible samples from the same population of a given size. Imagine a taking a

random sample of 50 households in Pacific Beach, a community of San Diego, and

getting information of the number of persons permanently living in each house.

The average of these values would be a statistic known as persons per household

(PPH). If you took another sample of 50, the PPH value would likely be different

from the first sample. Imagine you repeated this over and over again and infinite

number of times. This distribution of these sample PPH values would be known as

the sampling distribution of the sample mean. By the same token, there is a

sampling distribution for any sample characteristic (e.g., mode, median, regression

coefficient). A sampling distribution is never obtained by empirical means, as

typically only a single sample of size n is selected. However, the sampling distri-

bution provides a way to make inferences about population parameters on the basis

of random samples in terms of the probability that a sample’s statistic will arise

from chance from a certain population (Winkler and Hays 1975: 305).

Under a random and unbiased sample, the mean of the sampling distribution is

equal to the population parameter being estimated. The variability in a sampling

distribution is known as sampling error and is a function of the variance of the

variable in the population and the size of the sample. In general, increases in sample

size will decrease the sampling error. As the sample size gets larger, the sampling

distribution will cluster closer and closer to its mean or the population parameter.

To clarify, we cannot be certain what the outcome of a single sample will be, but as

sample size increases the probability increases that our single sample statistic will

be closer to the parameter being estimated.

Table 2.4 illustrates these ideas based on a population of 100 households. Our aim

is to estimate the PPH, which is 2.12 for the entire population. We simulated four

sampling distributions with sample sizes of 2, 5, 10, and 20 by taking 153 random

samples of each size and calculating the sample PHH for each sample. Themeans for

each sampling distribution range from 2.06 to 2.18 close to the population PPH.

They are not exact because our simulation has a relatively few number of random

samples. For sample sizes of 2, there is considerable variability in the sampling

distribution, which decreases as the sample size increases. For sample sizes of 20, all

but one sample mean falls between two adjacent groups (1.1 to 3.0).
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To calculate probabilities using a sampling distribution, we need to know its

distribution shape. If the population is normally distributed, the sampling distribu-

tion will also be normally distributed, regardless of the sample size (Blalock 1972:

178). Otherwise, the Central Limit theorem states that as the sample size becomes

large the sampling distribution approaches normality, regardless of the shape of the

population distribution (Gnedenko 1967: 302-310). What is the appropriate number

of observations to use the central limit approximation? Some believe that at least

30 observations are needed (Blalock 1972: 185), while others argue that as few as

10 can be considered normal for practical purposes (Winkler and Hays 1975: 316).

Common practice is to use the Student’s t distribution when the sample size is

below 30.

2.3.2.2 Confidence Intervals

There are basically two kinds of estimates for population parameters: point estima-

tion and interval estimation (Blalock 1972: 201). Point estimates provide the best

single value to estimate a population parameter. According to the 2010 American

Community Survey, the median household income was $59,923 in San Diego

County. To ascertain the accuracy of this estimate, we would like to predict that

the parameter is somewhere within a given interval on either side of the point

estimate. In other words, we would like to develop a confidence interval such as we

are 90% confident that the median household income in San Diego County lies

between $58,848 and $60,998.2 The 90% figure is known as the confidence level.

Other common confidence levels are 95% and 99%, but there is nothing sacred

about these levels.

The interval range (difference between the upper and lower limits) is a function

of the sampling error and the confidence level (Hahn and Meeker 1991: 54). It does

not reflect any other uncertainties in the estimation process such as non-response

survey bias, questionnaire wording, or other data collection issues (Swanson 2012).

The sampling error, measured by the standard error, takes into account the sample

standard deviation and sample size. The standard error is an elegant measure in that

Table 2.4 Simulated

Sampling Distributions
PPH n ¼ 2 n ¼ 5 n ¼ 10 n ¼ 20

0 4 0 0 0

0.1 to 1.0 41 20 5 1

1.1 to 2.0 34 67 61 70

2.1 to 3.0 47 42 70 82

3.1 to 4.0 18 21 17 0

4.1 to 5.0 6 3 0 0

5.1+ 3 0 0 0

Sampling Distribution Mean 2.15 2.06 2.18 2.08

Population PPH 2.12

Source: Generated by the authors.
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it takes into account all of the uncertainty associated with statistical inference and

simultaneously links an empirical set of data to the theory that allows one to do

statistical inference (Swanson 2012).

The confidence level is determined by the area under the sampling distribution

curve corresponding to the level. In general, a larger sample, smaller sample

standard deviation, and lower level of confidence will result in narrower confidence

intervals. Methods have been developed for putting confidence intervals around

population estimates (e.g., Espenshade and Tayman 1982; Kintner and Swanson

1993; Swanson 2008: 165-189; Swanson 1989).

2.3.2.3 Hypothesis Testing

In estimation, the question being answered is, “What is the value of the population

parameter?” In hypothesis testing it is, “is it reasonable to believe that the value of

the population parameter is a certain value?” That is, hypothesis testing is used to

make comparisons (Swanson 2012). In regression analysis, for example, a common

hypothesis test is whether the population slope is different from zero (Swanson

2004, 2012). Hypothesis testing begins with an assumption, called the null hypoth-

esis, made about a population parameter. Sample data are used to determine the

difference between the hypothesized value and sample statistic. Smaller differences

increase the likelihood that the hypothesized value is correct. Larger differences

decrease the likelihood. Because we are dealing with a sample, we cannot make a

decision about the hypothesized parameter by simply examining the difference

between it and the sample statistic. A formal statistical test of a hypothesis provides

an objective framework for making this decision.

The outcome of a hypothesis test is a decision. In the case of the regression

coefficient, a decision to continue to believe that its value is zero or the null

hypothesis, or a decision to discard that belief in favor of an alternate hypothesis

that the coefficient is not zero. This decision cannot be made with absolute certainly

if for no other reason than we have sampling error. There are four possible

outcomes in a hypothesis test:

1. Accept the hypothesis when it is true (correct decision);

2. Reject the hypothesis when it is true (incorrect decision, Type 1 error (a));
3. Reject the hypotheses when it is false (correct decision); and

4. Accept the hypothesis when it is false (incorrect decision, Type 2 error (b)).

A type one error (a), also known as the significance level, represents the risk or

probability of making a Type I error. Similarly (b) represents the probability of

making a Type II error. The significance level is typically set at values of 0.10, 0.05,

and 0.01 (Lehmann 1986: 69) and is most often considered to the exclusion of b.
Once the sample size is fixed, a and b vary inversely, so using small values for a
could lead to high probabilities of making a Type II error. The compliment of a
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Type II error is known as power or ability to reject a false hypothesis (Kraemer and

Thiemann 1987). Ideally, the sample size should be set to yield adequate values for

the significance level and power.

Using a test statistic and the appropriate sampling distribution (e.g., normal, t,

F or Chi-square), one computes the likelihood or probability of getting this result

assuming the null hypothesis is true, or the p-value. One accepts the null hypothesis

if the p value is � a and rejects it if the p value is < a. Rejection of the null

hypotheses is known as a statistically significant result. It means that it not likely

that the sample statistic would come from a population with the hypothesized

parameter. Significance tests are sensitive to sample size. In vary large samples

even substantively trivial differences will be statistically significant and in small

samples potentially substantive differences will turn out to be not statistically

significant (Henkel 1976).3

2.4 Regression

Regression analysis includes techniques formodeling and analyzing several variables,

when the focus is on the relationship between a dependent and one or more indepen-

dent variables (Swanson 2012). Regression with one independent variable is simple

regression, and with more than one independent variable is multiple regression.

Regression analysis helps us understand how the typical value of the dependent

variable changes when any one of the independent variables changes, while the

other independent variables are held fixed. Regression analysis is widely used for

estimation, prediction, and forecasting. It also helps us understand which among the

independent variables are related to the dependent variable, and to explore the forms

of these relationships. In restricted circumstances, regression analysis can be used to

infer causal relationships between the independent and dependent variables. Regres-

sion is very flexible. It can handle variables with different measurement scales and

incorporate variable transformations to study non-linear relationships (Draper and

Smith 1981: Chapter 5; Hosmer and Lemeshow 1989).

Regression analysis begins with an equation representing straight line (Draper

and Smith 1981: 9):

Population Y ¼ aþ bXþ e; and

Sample y ¼ aþ bxþ e;

where a and b are constants, y is the dependent variable, x is the independent

variable, and e is the error term. Constants a and b and the error term e are sample

estimates of the corresponding population parameters a, b, and e. The intercept

a represents the point where the line crosses the y-axis at x ¼ 0 and b is the slope

that indicates the magnitude of change in Y for a one unit change in X. For example,

an equation predicting the number of people based on changes in employment

has a slope of 1.25. That means an increase in one job results in an increase of
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1.25 people or a decrease in one job results in the loss of 1.25 people. A positive

slope indicates a direct relationship between the dependent and independent

variables (i.e., they change in the same direction). A negative slope indicates an

inverse relationship in which the variables change in different directions. The error

term (e) accounts for the fact that the independent variable will not perfectly predict

the dependent variable; that is, there will be scatter about the regression line. The

error term contains both measurement error in Y and the effects of other influences

of Y not brought into the equation (Blalock 1972 367).

Several crucial assumptions underlie the regression model and there are

procedures for testing and verifying their validity (e.g., Chatterjee and Hadi 2006;

Draper and Smith 1981: Chapter 3; Stock and Watson 2003: 103-107). Some of the

key assumptions are: 1) the independent variable is measured without error and is

not related to the error term; 2) the errors are not correlated; and 3) the variance of

the error is constant for each observation. The slope and intercept of the regression

line are estimated using ordinary least squares (OLS), which minimizes the squared

errors between the predicted and observed values. Minimizing the squared errors

does not necessary mean these errors are small. Moreover, it is important to keep in

mind that this minimization is relative to using the mean as an estimator, which

in some cases, may not be an optimal estimator in the absence of the additional

information associated with a regression model (Swanson 2004).

There are several ways to evaluate the fit of the regression line. One is the

standard error of the estimate, which measures the scatter of the observed values

around the regression line. The standard error gives a first handle on how well the

fitted equation fits the sample data. But what is a ‘big’ and what is a ‘small’ standard

error depends on the context, and it is sensitive to the units of measurement of the

dependent variable. A more standardized statistic is the r-squared. R-squared ranges

from zero to 1 and shows the proportion of the variance in Y accounted for by X.

There is also a standard error associated with the slope, which can be used to make

inferences about the population slope in the form of confidence intervals or

hypothesis tests.

The extension to regression with more than one independent variable is relatively

straightforward. OLS is used to estimate a slope and standard error for each indepen-

dent variable, but now the slopes are known as partial regression coefficients (Blalock

1972: 431). They represent the slope that would be obtained by controlling or taking

into account the remaining independent variables in the regression equation. Multiple

regression does introduce another complexity; the relationship between the indepen-

dent variables. Multicollinearity is a statistical phenomenon in which two or more

independent variables in a model are highly correlated. In this situation the coefficient

estimates may change erratically in response to small changes in the model or the

data. Multicollinearity does not reduce the predictive power or reliability of the

model as a whole; it only affects calculations regarding individual independent

variables. That is, a multiple regression model with correlated predictors can indicate

how well the entire bundle of predictors predicts the dependent variable, but it may

not give valid results about any individual predictor, or about which predictors are

redundant with respect to others. Belsley, Kuh, and Welsch (1980) discuss ways to

identify multicollinearity and potential remedies.
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Endnotes

1. The IM and OM terms include both domestic and foreign migrants. If information is only

available on net migration the IM and OM terms would be replaced by � NM.

2. Strictly speaking this interval either does or does not contain the median household income for

all households in San Diego County because the parameter is a fixed value. In the long run,

we know that 90% of the infinite number of intervals that could be computed would contain the

population parameter, which is the basis for our inference.

3. Significance testing is the cornerstone of research and the social sciences, but it is not without

critics. Ziliak and McCloskey (2008) point out that "insignificance" does not mean unimpor-

tant, and propose that the scientific community should abandon usage of the test altogether,

as it can cause false hypotheses to be accepted and true hypotheses to be rejected.
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Chapter 3

Data Sources

Demographic data are collected, produced, and distributed by a variety of federal,

state, and local government agencies and private companies (e.g. Bryan 2004a;

Murdock and Ellis 1991: Chapter 3). These data are available as printed publications,

unpublished reports, and electronic data files, with greater access and availability of

data on the Internet. Table 3.1 shows the Web site addresses for commonly used

public data sites. Data are often replicated in secondary sources such as professional

journals, textbooks, and statistical abstracts. We will discuss the most important

sources of demographic data used for population estimation in the United States.

3.1 Choice of Data

An important factor determining the choice of the method for preparing a popula-

tion estimate is the type and quality of data available for this purpose (Bryan 2004b:

526). There two general categories of data used in population estimates: (1) “direct”

data and (2) “indirect” or symptomatic data. The classification depends on the

specific kind of data and their use in a given method. Direct data are obtained from

censuses, surveys (e.g., ACS), from vital registration systems and reflect an

unequivocal connection to population and population change. Indirect data, on

the other hand, produce estimates based on information indirectly related to, or

symptomatic of, the population characteristic being estimated. Examples of indirect

data are school enrollment, income tax returns, voter registration, employment,

electrical hook-ups, and housing. Data of a given type may be direct for one kind of

estimate and indirect for another. For example, data on vital events are direct when

used to estimate natural change in a population. They represent indirect data

when used in the censal ratio method to estimate total population (see Chapter 9).

Both direct and indirect data are often used in combination when estimating

population. If data is lacking or there is insufficient time or resources to collect it,

extrapolation methods can be used to estimate population (See Chapter 6).
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The usefulness of indirect data for population estimation depends on the extent

to which factors other than population influence them. Changes in school atten-

dance may result from changes in the laws relating to attendance and the availabil-

ity of school facilities, as well as from changes in the number of children of school

age. Additionally, the prevalence of private schools and home schooling can

compromise the efficacy of enrollment data. Employment, housing construction,

and public utility customers change with economic conditions (e.g., unemployment

rate) as well as with population. The usefulness of indirect data as symptomatic

indicators of population change will vary with the particular situation and these data

should be carefully evaluated and understood prior to their use in population

estimation. Important criteria to evaluate are relevance to population changes,

completeness, bias, internal consistency, and temporal closeness to the estimation

time point.

3.2 Decennial Census

The decennial census is by far the most important and comprehensive source of

demographic data in the United States. Every 10 years, the federal government

attempts to count the entire population of the country. The results determine each

state’s representation in Congress and are used by state legislatures and local

governments to redraw electoral boundaries. Census data are basis for the distribu-

tion of billions of dollars in federal and state funds each year through a variety of

revenue-sharing and grant-in-aid programs. Businesses and government agencies

use the census for planning, budgeting, marketing, and policy-making purposes.

Scholars and the media use them to analyze social, economic, and political issues,

and they are the basis for population estimates. Excellent discussions of the

decennial census and related issues can be found in Alonso and Starr (1987);

Anderson (1988); Anderson and Fienberg (1999); Edmonston and Schultze

(1995); and Swanson and Walashek (2011).

Table 3.1 Web Site Addresses of Major US Public Sector Data Providers

Bureau of Economic Analysis http://www.bea.gov

Bureau of Labor Statistics http://www.bls.gov

Bureau of Transportation Statistics http://www.bts.gov

Census Bureau http://www.census.gov

Department of Homeland Security http://www.dhs.gov

Federal-State Cooperative Program for Population Estimates http://www.census.gov/population/

www/coop/fscpe.html

Geologic Survey http://www.usgs.gov

National Association of Regional Councils http://www.narc.org

National Center for Education Statistics http://nces.ed.gov/

National Center of Health Statistics http://www.cdc.gov/nchs

State Census Data Centers http://www.census.gov/sdc
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The United States conducted its first census in 1790 and since then a census has

been conducted every 10 years without interruption. The first census compiled a list of

household heads and counted people in five demographic categories. More and more

questions were added over the following decades, covering social, economic, and

housing characteristics as well as demographic characteristics (Bryan 2004a:16-18.

The practice of collecting a limited amount of data from all households (so-called

short-form data) and a larger amount from a sample of households (long-form data)
was begun in 1940 and continued up to the year 2000. In 2000, about five of

six households received the short form of the census and one of six received the

long form. The long form asks the same questions as the short form, plus a number of

others. The 2010 census only included a 10 question short form sent to every

household. The sample long-form data was replaced by the American Community

Survey discussed later in this chapter. Table 3.2 describes the types of data collected

on the short forms of the 2000 and 2010 censuses and the long form of the 2000 census.

The long-form provides the most commonly used and most comprehensive in

terms of demographic and geographic detail data on gross migration. Since 1940

the census has included a question about previous residence five years ago asked

since 1940; in 1950, the question asked about previous residence one-year prior.

Migration data is reported down to the city and census tract level, but only for

in-migrants. The Census Bureau has tabulated in- and out-migrants by age, sex, and

race for states and counties. There are several problems with the migration data

Table 3.2 Types of Data Collected in the 2000 and 2010 Censuses of Population and Housing

All households (2000 and 2010 data):

Population: Name, relationship to householder, sex, age, date of birth, race, and Hispanic origin,

additional people on census day not included (2010), person live or stay somewhere else (2010)

Housing: Number of people in household, telephone number, tenure (ownership status), vacancy

status.

Sample households (2000 long-form data):

Population: Same as short form, plus marital status, school enrollment, educational attainment,

ethnic origin (ancestry), language spoken at home, place of birth, citizenship status, year of entry

into the United States, place of residence five years ago, disability status, living with

grandchildren, military service, employment status, employment history, place of work,

transportation to work, occupation, industry, and income.

Housing: Same as short form, plus type of housing unit, year built, length of residence in current

unit, number of rooms, number of bedrooms, plumbing facilities, kitchen facilities, telephone in

unit, type of heating fuel, number of motor vehicles, size of lot, presence of home business,

annual costs of utilities, monthly rent or mortgage payment, second mortgage, real estate taxes,

property insurance, and value of property.

Other Characteristics: School enrollment, educational attainment, ancestry/ethnic origin, state

or country of birth, citizenship and year of entry, language spoken at home, ability to speak

English, residence 5 years ago, veteran status/period served, disability, grandparents as

caregivers, children ever born, current employment status, hours worked per week, place of

employment, travel time to work, means of travel to work, persons in car pool, industry/

employer type, occupation/class of worker, self-employment, weeks worked last year, total

income by source

Source: Adapted from Smith, Tayman, and Swanson (2001: 37)
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collected in the decennial census (Smith et al. 2001: 113-114). First, they do not

pick up multiple moves over the five year period and consequently, understate the

full extent of mobility during that time (DaVanzo and Morrison 1981; Long and

Boertlein 1990). Second, the long-form sample size can create data reliability

problems for small places, especially when the migration is broken into demo-

graphic subgroups. Third, emigration to foreign countries is not covered. Finally,

the migration data are only available every ten years, and is typically released three

to five years after the data is collected.

The decennial census is based on self-enumeration. Households are mailed

census forms in late March and are asked to fill them out and return them by mail;

in some rural areas the forms are delivered by a census enumerator. The Census

Bureau follows a number of procedures designed to maximize response rates and to

collect information from non-responding households. In spite of these procedures,

the data collected are incomplete and sometimes incorrect. Post-enumeration

surveys and demographic analyses are used to measure the extent and nature of

census errors and to develop estimates of the net undercount (or, in some instances,

the net overcount) (US Census Bureau 2011).

The Census Bureau tabulates aggregate census results for a variety of geographic

areas discussed in Chapter 2. Not all types of data are tabulated for all levels of

geography, however. Short-form data is tabulated for each census block in the

United States. Long-form data are tabulated only down to the block group level.

Public Use Microdata Sample (PUMS) files are compiled for areas with 100,000 or

more residents, providing individual records (stripped of identifying information)

for use in more detailed analyses.

Government officials and other interested parties have been concerned about the

accuracy of census results since the first census (Choldin 1994). Census errors are

caused by missed households, refusal to respond, recording errors, sampling errors,

geographic assignment errors, duplication errors, coding and data-processing

errors, and the incorrect imputation of missing data. Although these errors can

cause census counts to be either too high or too low for any given geographic area

or population subgroup, in most instances they lead to net undercounts of the “true”

population. Nationally, the net census undercount was estimated as 5.4% in 1940,

4.1% in 1950, 3.1% in 1960, 2.7% in 1970, 1.2% in 1980, and 1.8% in 1990; and

1.2% in 2000 (Farley 2008).

The net undercount differs by geographic area and population subgroups. For

example, the net undercount is much greater for blacks, Hispanics, and American

Indians than for non-Hispanic whites (Anderson and Fienberg 2000). Because of the

increase in the net undercount between 1980 and 1990 and the large differences found

among population subgroups, many concerns about the accuracy of the decennial

census were voiced after the 1990 census. The Census Bureau responded by develop-

ing plans to use statistical sampling to account for non-responses and to adjust for the

net differential undercount, but those plans encountered strong political opposition in

Congress. A Supreme Court decision in 1999 prohibited the use of adjustments based

on sampling for the reapportionment of Congress after the 2000 Census, but left

unresolved several broader issues related to the use of statistical adjustments.1
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3.3 Vital Events

Data on events such as births, deaths, marriages, and divorces are called vital

statistics. The US vital registration system is somewhat unusual in that states collect

vital events certificates and are paid to transmit them to the federal government.

As early as 1639, the Massachusetts Bay Colony began reporting births, deaths, and

marriages as part of its administrative/legal system and by 1933 all states had vital

registration systems that met the federal standards (adoption of standard certificates

and at least a 90% registration rate); the Alaskan territory was admitted in 1950 and

the territory of Hawaii for deaths in 1917 and births in 1929 (Bryan 2004a: 26). The

federal government sets standards for the collection and reporting of the data,

compiles summaries from data collected by each state, and publishes a variety of

reports based on these data. The quality of vital statistics data is generally very good

in the United States and other developed countries.

In 1960, the National Office of Vital Statistics was reorganized and became part

of the National Center for Health Statistics (NCHS), which today is a branch of the

Centers for Disease Control (CDC). Annual and monthly reports on births, deaths,

marriages, and divorces are available from the NCHS, along with annual life-tables

for the nation.2 State life tables are typically constructed every 10-year to use the

census to calculate mortality rates; they are prepared by NCHS and by vital

statistics agencies in many states.3 It should be noted that some of the concepts

and definitions used by the NCHS do not precisely match those used by the Census

Bureau and adjustment might be needed when combining Census and NCHS data

(Hahn et al. 1992; Miniño et al. 2010; Sink 1997).

Data from the NCHS are available only at the national and state levels; vital

statistics data for local areas must be obtained elsewhere. Most states tabulate data

at the county (or county-equivalent) level, but few go beyond that to develop

regular data series for subcounty areas (Bogue 1998). Although individual records

generally contain the information needed to allocate them to different types of

subcounty areas (e.g., cities, census tracts), actually doing so requires a substantial

effort. In addition, there are often errors in geocoding birth and death records at the

subcounty level (Flotow and Burson 1996). Analysts needing vital statistics data

for subcounty areas may have to develop those data themselves.

3.4 Surveys

The decennial census and vital statistics reports are valuable sources of demo-

graphic data. However, the census is conducted only once every 10 years, and vital

statistics data cover only a small portion of the variables of interest to

demographers. Sample surveys can be used to collect data on a variety of topics

at various times between censuses. The Census Bureau conducts a variety of large

on-going surveys, some of which are discussed below.
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3.4.1 Current Population Survey

One of the most important sample surveys in the United States is the Current

Population Survey (CPS), a monthly survey of about 50,000 households conducted

by the Census Bureau for the US Bureau of Labor Statistics. Started in the early

1940s, this survey originally focused on the collection of labor force and unem-

ployment data and is the source for the monthly updates of employed residents and

the unemployment rate. It has since been expanded to include a variety of topics

including occupation, industry, education, income, veteran status, marital status,

living arrangements, fertility, and migration, as well as demographic data on age,

sex, race, and ethnicity. Data from the CPS are currently tabulated at the national,

regional, and state levels and for large metropolitan areas.

3.4.2 American Housing Survey

The American Housing Survey (AHS) is conducted for the Department of Housing

and Urban Development (HUD). It collects data on the nation’s housing, including

apartments, single-family homes, mobile homes, vacant housing units, household

characteristics, income, housing, and neighborhood quality, housing costs, equip-

ment and fuels, size of housing unit, and recent movers. National data are collected

in odd numbered years, and data for each of 47 selected Metropolitan Areas are

collected currently about every six years. The national sample covers an average

55,000 housing units. Each metropolitan area sample covers 4,100 or more housing

units. The AHS returns to the same housing units year after year to gather data;

therefore, this survey is ideal for analyzing the flow of households through housing.

AHS metropolitan data are available for subareas of 100,000 or more that are often

defined as groups of census tracts.

3.4.3 Construction and Building Permits Survey

The Current Construction Survey (CCS) provides regional statistics on starts and

completions of new single- and multi-family housing units and sales of new single-

family houses. New residential buildings currently authorized by a building permit

or started in areas not requiring a building permit. Data collected include start date,

completion date, sales date, sales price (single-family houses only), and physical

characteristics of each housing unit, such as square footage and number of

bedrooms.

The Building Permits Survey (BPS) provides current data on new residential con-

struction and additions, alterations, and renovations to existing residential buildings
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from all places issuing building permits for private residential structures. Over

98 percent of all privately-owned residential buildings constructed are in permit-

issuing places. Data collected on permits issued for private projects include number

of buildings, number of housing units, and permit valuation by size of structure.

The BPS provides housing permit information by county and place within the

United States.

Most of the permit-issuing jurisdictions are municipalities; the remainder are

counties, townships, or unincorporated towns. For the municipalities, and townships

or towns, the area subject to building permit requirements to which the figures

pertain is normally that of the governmental jurisdictions. A small number of

municipalities have authority to issue building or zoning permits for areas extending

beyond their corporate limits. In such cases, the data relate to the entire area within

which the permit-issuing authority is exercised. Similarly, a small number of

townships issue permits for only a part of the township and the data normally covers

only the area subject to the township’s permit system.

These surveys are used by The Conference Board for developing the index of

leading economic indicators, the Bureau of Economic analysis for developing

national income and products accounts, and The Federal Reserve Board for

analyzing national and regional economic conditions. The Departments of Housing

and Urban Development use the data to evaluate housing programs. Financial

institutions use these statistics to estimate mortgage demand. Private businesses

use them for market planning, material use, and investment analysis.

3.4.4 American Community Survey

The American Community Survey (ACS) is a relatively new survey conducted

by the Census Bureau with a great deal of potential as a demographic data source.4

The American Community Survey covers a broad range of topics about social,

economic, demographic, and housing characteristics of the US population and it

replaced the long form of the decennial census in 2010. The ACS was started in four

sites in 1996 and has been expanded every year since that time; it was fully

implemented in 2005 with three million households—drawn from all counties or

county equivalents in the United States—contacted each year. Starting in 2005, the

ACS has produced annual estimates of demographic, housing, social, and economic

characteristics for every state, as well as for all cities, counties, metropolitan areas,

and population subgroups of 65,000 or more. In 2007, the estimates for areas

between 20,000 and 65,000 were released based on the accumulation of survey

observations from 2005 to 2007. The first ACS estimates for areas less than 20,000,

including block groups and census tracts were released in 2010 based on the

accumulation of survey observations from 2005 to 2009. Estimates for areas

smaller than 65,000 will be released annually based on successive accumulations

of surveys over the preceding three and five year periods.
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The American Community Survey (ACS) is designed to provide accurate and

timely demographic and economic indicators on a “continuous measurement” basis

for federal, state, and local governments, and businesses. A major goal of the ACS

is to monitor change over time, but even if the ACS works perfectly, it will show

implausible changes for some groups and areas (Hogan 2008; Swanson and Hough

2007). This orientation is a major departure from the traditional decennial census

and from the major surveys managed by the Census Bureau, which provide

“snapshots” at single points in time rather than continuous measurement

observations. The statistical reliability of the ACS samples was intended to match

that of the decennial census long form, but because the sample size of the ACS is

smaller than originally expected, ACS estimates are less precise than the compara-

ble estimates from Census 2000 and prior decennial census years (Rohanna and

Tayman 2006).

There are important differences, aside from sample size, between the ACS and

the decennial census that limit their comparability (US Census Bureau 2009a).

The census uses the “usual residence” concept, while the ACS uses a length of stay

of more than 2 months duration, which can affect the demographic characteristic of

places with substantial seasonal populations (Van Auken et al. 2006). In the ACS,

characteristics such as income are averages derived from successive monthly

samples, as opposed to the point-in-time or interval-of-time reference of the census

(Salvo and Lobo 2002). In contrast to the five year residency question in the

decennial long form, the ACS asks about residency one year ago. Gross migration

flows for states are currently available, but not for counties, and the state flows do

not contain any demographic characteristics.

The ACS places a greater demand or burden on end users compared to

decennial data. For any given area there are now three ACS numbers to choose

from (1-year, 3-year, and 5-year accumulations) for any characteristic. These

choices often show substantial variation (Swanson 2010). The interpretation of

data accumulated over time intervals is more ambiguous than the decennial data

that references an April 1 time point. How for example does one assess the

reliability and validity of multiyear accumulations for areas with rapidly changing

population or trends calculated from this kind of information? The ACS is

very explicit in identifying the error in its estimates by including with its data

releases � values that represent 90% confidence limits. On the one hand, this

information is welcomed, as the error inherent in long-from data was largely kept

under wraps or required application of formulas buried deep in appendices. On the

other hand, many if not most, users of census data are not concerned or do not

have the background to understand and correctly interpret the statistical properties

of ACS data (Rohanna and Tayman 2006).

These and other unresolved issues, such as controlling to estimates with

a different residency rule and their own error, may limit the ACS’s adequacy as a

replacement for the decennial long form (GAO 2004).5 While there are many

challenges facing the ACS, strategies for using the ACS have been and are

continuing to be developed (e.g., Citro and Kalton 2007; Gage 2006). The ACS

holds great potential. Rather than waiting for 10 years for refreshed data from each
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decennial census, local data can be made available each year. There is much work

to be done, and it is important to recognize that the Census Bureau and data users

are experiencing the growing pains of the ACS (Scardamalia 2006).

3.5 Adminstrative Records

Administrative records are records kept by agencies of federal, state, and local

governments for purposes of registration, licensing, and program administration.

Although not always designed explicitly to do so, these records provide valuable

information or symptomatic indicators on specific demographic events or

subgroups of the population; although, they do contain both random and system-

atic biases that can affect their efficacy for demographic analysis (Judson et al.

2001). We have already discussed vital statistics, one type of administrative

record that is very valuable for demographic analysis (including the production

of population estimates). Other types include Medicare, Internal Revenue Service

(IRS), Department of Homeland Security (DHS), utility meters, drivers’ licenses,

building permits, school enrollment, voter registration, and property tax records.

All these data sources can be used for various types of demographic analyses. We

discuss several of these data sources in this section that are used for population

estimation.

3.5.1 Internal Revenue Service

Internal Revenue Service (IRS) records can be used to estimate migration.

By matching the addresses listed on annual income tax returns and adjusting for

the number of exemptions claimed on each return, the IRS is able to create

an annual set of state-to-state and county-to-county migration flows. These data

have several advantages over decennial census data. They are available every

year instead of every 10 years, they cover one-year intervals rather than five-year

intervals, and they are available on a timelier basis (within one to two years

instead of three to five years).

IRS migration data have several limitations, however. Not everyone files an

income tax return. In particular, people with low incomes are not required to file.

People moving to or from abroad are also likely to be missed. The address listed on

a tax return may be that of a bank, law office, accounting firm, or post office box

rather than the home address of the filer. This may lead to an inaccurate distribution

of the population at the local level. The methodology assumes that people listed as

exemptions on a tax return actually live (and move) with the filer; this may not be

true (e.g., college students living away from home). Finally, IRS migration data

provide no information on the characteristics of migrants and are not available

below the county level. For further discussion of the strengths and weaknesses of

IRS migration data, see Engels and Healy (1981); Isserman et al. (1982); and

Wetrogan and Long (1990).
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3.5.2 Department of Homeland Security

Formerly, the Immigration and Naturalization Service (INS), located in the

Department of Justice, was the major source of international migration statistics

in the United States. That function now resides in the Department of Homeland

security. The INS began collecting immigration data in 1892. Before that time,

immigration statistics were collected by the Department of State and the Treasury

Department, beginning in 1820. Incomplete data on emigrants were collected for

a number of years, but those collection efforts were discontinued in the late 1950s

(Bryan 2004a: 30).

The DHS produces annual statistics on the number of legal immigrants by type,

country of origin, place of intended residence, age, sex, marital status, occupation,

and several other characteristics. Data are available for the nation, states, and

metropolitan areas. Some DHS data are based on the year in which a person was

granted legal immigrant status, which is not necessarily the same as the year

in which that person entered the United States. This distinction had a particularly

large impact on immigration statistics for 1989-1992, when many aliens who were

residing in the country illegally were granted permanent resident status under the

provisions of the Immigration Reform and Control Act of 1986 (Immigration and

Naturalization Service 1999).

3.5.3 Other Administrative Records

The vast majority of people in the US ages 65 and older are enrolled in Medicare

and Medicare information is often used to estimate the population in that age

group (Bryan 2004b). School enrollment is another widely used symptomatic

indicator of population change. School enrollment is used to estimate migration in

the component method (Chapter 10), as well as an independent variable in ratio-

correlation models (Chapter 8). Employment at the place of work often used in

ratio-correlation models and is found in most economic-demographic models of

migration (Smith et al. 2001: Chapter 9). The US Bureau of Labor Statistics

produces employment, unemployment and wage data for states and counties.

Drivers’ license address change is another source of data to estimate migration;

it is used in California’s population estimation program. Drivers from other states

are required to turn in their license when they apply for a California license and

similarly for California drivers moving to other states. These data provide

an annual estimate of gross migration for persons of driving and have been

found to be of sufficient accuracy for use in population estimation (Johnson and

Lovelady 1995).

The housing unit method (Chapter 7) requires information to update housing

stock and household changes since the last census. One source of information for

making these updates is building permits discussed earlier in this chapter. However,
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not all building permits get built and there is a lag between when the permit is

issued and when the unit is constructed (Smith and Lewis 1980). More refined

indicators of housing unit change are certificates of occupancy, which are available

from local planning or building departments. These agencies also often have

information on housing demolitions and unit conversions (e.g., a simple family

home replaced by eight condominiums), which can further improve housing unit

estimates. Some applications of the housing unit method use electric utility data to

estimate households. Households can be estimated directly from utility data,

bypassing the intermediate steps of estimating housing stock and occupancy rate,

but there is not always a one-to-one correspondence between the number of meters

and the number of households (Smith 1986; Tayman 1994).

The geographic specificity of population estimates has evolved over time. Early

on, population estimates were made mainly for states and counties. Estimates now

are routinely made for cities and many subcity areas, including census tracts and

block groups, but there is a growing demand for estimates for even smaller areas

such as assessor’s parcels, block faces, and street segments (Rynerson and Tayman

1998; Swanson and Pol 2005). A primary source of data to support these estimates

is the parcel file. Parcels are individual house- or business-lots that are tracked by a

tax assessor for ownership and taxation purposes. They contain information such as

address, assessors’ parcel number, unit counts, land and structure value, and land

use and zoning codes. Some issues with parcel files include having data only for

taxable, private lots; the resources required to reconcile parcel and census housing

counts; the need for other sources (e.g., areal imagery) to augment and maintain

parcel information; and the GIS expertise and technology to manage and manipulate

parcel information (Jarosz 2008). Parcels do offer a consistent and up-to-date source

on housing changes, a geography that planners and other users can relate too, and a

very accurate and detailed spatial location of housing activity.

In closing, we note that we have largely confined our discussion to administra-

tive records in the United States. However, we note that there are similar records in

other countries in which subnational estimation is widely used (Bryan 2004a). These

countries include Argentina, Australia, Canada, England, India, New Zealand, and

others in which adequate census counts and vital records are available and popula-

tion registries are not in place. However, as noted in Chapter 16, even in countries

with population registers (e.g., Finland), estimation methods must be used if one is

interested in De Facto populations.

Endnotes

1. US House of Representatives v. Department of Commerce, 525 US 316 (1999)

2. The Social Security Administration also produces national life tables several times each decade

(e.g., Bell and Miller 2005).

3. NCHS did not produce state life tables after the 2000 census.
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4. As of October, 2011, The URL for the ACS homepage is http://www.census.gov/acs/www/

5. ACS estimates are controlled to post-censal county level population and housing unit estimates.

Estimates of person characteristics are based on the person weight and estimates of family,

household, and housing unit characteristics are based on the housing unit weight (US Census

Bureau 2009b: Chapter 11). A detailed discussion and evaluation of ACS weighting procedures

is found in Citro and Kalton 2007: Chapters 5 and 6 and Appendix B).
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Chapter 4

Basic Measures

Demographic analysis and population estimation requires the use of quantitative

measures and graphical techniques. This chapter discusses commonly used

measures in demography, geography, and statistics (e.g., Barber 1988: Chapter 3;

Freedman, Pisani, and Purves 2007; Siegel and Swanson 2004; Smith, Tayman, and

Swanson 2001: Chapter 2). We also present graphical techniques for presenting

and analyzing tabular and spatial data (e.g., Jacoby 1997, 1998; Krygier and

Wood 2011; Tufte 1990, 1997, 2001; Tyner 2010).

Measuring population change and computing ratios and rates are fundamental

operations in demography covered in this chapter. Chapter 2 described sources of

direct information on migration. Here we discuss indirect methods for estimating

net migration in aggregate and by age group. The geographic measures we cover

deal with quantifying the distribution of activities across space, comparing the

change or differences in spatial distributions, and measuring the distance and

accessibility of spatial activities. We also present measures that describe location

points, variability, and shape of data distributions, inferential procedures for

computing confidence intervals and performing hypothesis tests, and an example

of regression analysis. The chapter concludes with a discussion of selected

graphical and mapping techniques.

4.1 Demographic

4.1.1 Change

Population change is measured as the difference in population size between two

points in time (i.e., two specific dates). A point in time can correspond to the date of

a census or to the date of a population estimate. It can refer to changes in size,

distribution, or composition, or to any combination of the three. Since censuses are

typically more accurate than estimates, measures of change based on censuses will

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_4, # Springer Science+Business Media B.V. 2012
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generally be more accurate than measures based on estimates. The measures

of population change discussed below above are simple and straightforward.

However, they are not always easy to implement properly because of changes in

geographic boundaries, changes in the accuracy of the base data, and changes

in definitions.

The geographic boundaries of states and most counties have been constant for a

long time. Other geographic areas (e.g., cities, zip codes, census tracts), however,

have experienced sudden (and sometimes large) boundary changes. Consistent

measures of population change are possible only if geographic boundaries are

held constant over time. Changes in the accuracy of the base data (e.g., differential

census undercount rates or allocation errors) also affect the measurement of popu-

lation change. Finally, changes in the definition or interpretation of demographic

concepts can also affect the measurement of change. Take race, for example. Since

respondents were allowed to list only one racial category in the 1990 census and but

could list multiple categories in 2000, apparent changes in race groups between

1990 and 2000 may have been caused by changes in reporting practices as well as

by changes in the actual population.

Population change can be expressed in either absolute or percentage terms.

Absolute change (AC) is computed by subtracting the population at the earlier

date from the population at the later date. A negative sign indicates a population

loss. Percentage change (PC) is computed by dividing the absolute change by the

population at the earlier date and multiplying by 100:

AC ¼ Pl � Pb and

PC ¼ AC=Pb
�100;

where Pl is the population at the later date, Pb is the population at the earlier date.

Population change can also be expressed in terms of an average annual change.

The average annual absolute change (AAAC) can be computed simply by dividing

the total change by the number of years between the two dates:

AAAC ¼ ðPl � PbÞ=y;

where y is the number of years between the two dates.

For some purposes it is helpful to view annual population change in relative

rather than absolute terms, or as annual percent changes (i.e., growth rates) rather

than as annual absolute changes. Average annual growth rates can be calculated in

two slightly different ways. The first is based on a geometric model:

rðgeomÞ ¼ ðPl=PbÞð1=yÞ � 1;

where r is average annual geometric growth rate and the other terms are defined as

before. The geometric growth rate calculated in this manner is based on

compounding in discrete intervals (i.e., at specific dates). In this example, growth
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is compounded once a year. Since population growth occurs continuously, it is

useful to compute the average annual growth rate from an exponential model based

on continuous compounding:

rðexponÞ ¼ ½lnðPl=PbÞ�=y;

where ln is the natural logarithm. Geometric rates are always slightly larger than

exponential rates because they are calculated at discrete intervals rather than

continuously. The differences between geometric and exponential growth rates

will widen as the annual average growth rate gets larger or more negative in the

case of declining areas.

Examining the doubling time can give a more intuitive sense of the long-term

impact of growth than simply viewing the average annual growth rate. The exact

formula for the doubling time based on annual compounding is:

DT ¼ lnð2Þ= lnð1þ rðgeomÞÞ:

A simple and accurate approximation for doubling time, known as the rule of 70,

is given by (Keyfitz 1977:4):

DT ¼ 70=100 �rðgeomÞ:1

Table 4.1 shows the measures of change between 2000 and 2010 in San Diego

County. Hispanics and non-Hispanic Asians are the fastest growing ethnic groups

in San Diego County. For the first time since the race/ethnic data were collected,

the County experienced a decrease in the non-Hispanic White population.

The differences between r(geom) and r(expon) are the largest for the Hispanic

and non-Hispanic Asian groups and are close in value for the other race groups and

total population. For declining populations, the doubling time is negative,

indicating the years require to half the population.

4.1.2 Ratio, Proportion, Percentage, and Rate

Demographic analysis requires the use of statistical measures. Two types can be

identified. Absolute measures focus on single numbers such as population size,

births, deaths, natural increase, or net migration. Relative measures focus on the

relationship between two numbers; they are typically expressed as ratios,

proportions, percentages, rates, or probabilities. All the relative measures are

similar to each other, but each has a distinct meaning.

A ratio is simply one number divided by another. These could be any two

numbers, but do not need to have any particular relationship to each other. To be

useful, of course, the comparison of the two numbers should provide some type of
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meaningful information. A commonly used ratio in demography is the sex ratio,

which is the number of males divided by the number of females (it is often

multiplied by 100 for purposes of exposition). Almost universally, more males

are born than females causing sex ratios to exceed 100 in the younger ages (see

Table 4.2). The predominance of females in the older ages is also evident by sex ratio

values considerably below 100. In San Diego, the large sex ratios in ages 15 to 24 are

indicative of the military population, especially in ages 18 to 21 shown at the bottom

of the table. Alachua County is home of the University of Florida. The sex ratios in

the college-age population show predominance of woman attending that university.

A proportion is a special type of ratio in which the numerator is a subset of the

denominator. In San Diego County in 2010, there are 991,348 Hispanics and a total

population of 3,095,313. The proportion Hispanic is 0.321 (991,348 / 3,095,313).

If we multiply a proportion by 100, we get a percentage. So, Hispanics account for

32.1% of San Diego County population in 2010.

A rate is also a special type of ratio. Strictly speaking, a rate is the number of

events occurring during a given time period divided by the population at risk to the

occurrence of those events.2 For example, the death rate is the number of deaths

divided by the population exposed to the risk of dying and the birth rate is the

number of births divided by the population exposed to the risk of giving birth.

Table 4.1 Measures of Population Change by Race and Hispanic Origin, San Diego County,

2000 to 2010

Race/Ethnic Group 2000 2010 AC PC AAAC

Non-Hispanic 2,062,868 2,103,965 41,097 2.0% 4,109.7

White 1,548,833 1,500,047 �48,786 �3.1% �4,878.6

Black of African American 154,487 146,600 �7,887 �5.1% �788.7

American Indian & Alaskan Native 15,253 14,098 �1,155 �7.6% �115.5

Asian 245,297 328,058 82,761 33.7% 8,276.1

Native Hawaiian & Other Pac. Is. 12,164 13,504 1,340 11.0% 134.0

Other races and 2 or more races 86,834 101,658 14,824 17.1% 1,482.4

Hispanic 750,965 991,348 240,383 32.0% 24,038.3

Total Population 2,813,833 3,095,313 281,480 10.0% 28,148.0

Doubling Timea

Race/Ethnic Group r(geom)b r(expon)b Rule of 70 Exact

Non-Hispanic 0.20 0.20 354.5 351.7

White �0.32 �0.32 �219.1 �216.2

Black of African American �0.52 �0.52 �133.9 �131.9

American Indian &Alaskan Native �0.78 �0.79 �89.2 �87.7

Asian 2.95 2.91 23.7 24.2

Native Hawaiian & Other Pac. Is. 1.05 1.05 66.6 66.7

Other races and 2 or more races 1.59 1.58 44.1 44.3

Hispanic 2.82 2.78 24.9 25.3

Total Population 0.96 0.95 73.1 73.0
aNegative values indicate years required to halve the population
bFor ease of expression the average annual growth rate is multiplied by 100.

Sources: US Census Bureau, 2000 and 2010 censuses
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Although the concept of a rate is clear, it is often difficult or impossible to

develop an exact measure of the population at risk to the occurrence of a particular

event (Smith, Tayman, and Swanson 2001: 33). This problem is usually solved by

using the mid-year population as an approximation of the population at risk. This

solution is based on the assumption that births, deaths, and migration occur evenly

throughout the year, so that the mid-year population is a measure of the average

population during the year.

Crude rates divide the event by the total population. In crude rates the denomi-

nator is only a rough approximation of the population at risk of the occurrence of an

event. For example, males have a greater risk of dying than females, older people

have a greater risk of dying than younger people, and only females of childbearing

age can give birth. A commonly used strategy for refining crude rates is to develop

rates for specific age-sex groups (race and ethnic groups can be used as well).

In addition to the distinction between crude and age-specific rates, a distinction

can also be made between central rates and probabilities (Siegel 2002: 13). In a

central rate, the denominator is the mid-year population. In a probability, the

denominator is the population at the beginning of the time period, which is thought

to correspond more closely to the population at risk to the occurrence of an

event during the time period. In reality, the distinction between central rates and

probabilities is somewhat fuzzy because of the movement of migrants into and out

of the area. It is difficult (if not impossible) to construct true probabilities and

central rates are widely used to approximate true probabilities for a variety of

demographic measures.

Table 4.2 Sex Ratio by Age,

San Diego County and

Alachua County, 2010

Age San Diego Alachua

Under 5 104 105

5 to 9 105 104

10 to14 105 111

15 to 19 111 91

20 to 24 122 98

25 to 29 110 106

30 to 34 105 121

35 to 39 102 104

40 to 44 101 102

45 to 49 100 92

50 to 54 98 87

55 to 59 94 93

60 to 64 92 90

65 to 69 88 87

70 to 74 82 78

75 to 79 78 73

80 to 84 70 53

85+ 57 61

18 to 21 119 88

Sources: US Census Bureau,

2000 and 2010 censuses
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4.1.2.1 Fertility Rates

A number of measures have been developed to reflect the fertility behavior of a

population. We will describe several of the most commonly used. Discussions of

these and other fertility measures can be found in Estee (2004), Pullum (2004),

Dharmalingam (2004), and Smith (1992). Table 4.3 shows the fertility measures

discussed below for San Diego County in 2010.

The simplest fertility measure is the crude birth rate (CBR), which is calculated

by dividing the number of births during a year by the midyear population. It is

generally multiplied by 1,000 to reflect the number of births per 1,000 persons:

CBR ¼ ðB=PÞ �1,000;

where B is the number of births during the year and P is the midyear population.

The CBR is limited because it does not account for differences in demographic

characteristics. Births occur only to females, primarily those between 15 and 44.

The age-sex structure of a population thus has a major impact on its fertility

behavior. Other fertility measures have been developed to account for differences

in age and sex characteristics.

The general fertility rate (GFR) relates the number of births to the number of

females in their prime childbearing years. It is calculated by dividing the number of

births by the number of females 15–44:

GFR ¼ ðB=F15�44Þ �1,000:

Table 4.3 Selected Fertility Measures, San Diego County, 2010

Age Female Pop Births ASFRa Pop Both Sexes

15 to 19 106,787 3,596 33.7 0 to 4 203,423

20 to 24 122,109 10,306 84.4 All Ages 3,095,313

25 to 29 119,659 11,620 97.1

30 to 34 107,537 11,356 105.6

35 to 39 104,621 6,180 59.1

40 to 44 104,268 1,604 15.4

Total 664,981 44,662 395.2

CBR 14.4

GFR 67.2

TFR 1,976.2

CW R (0-4) 0.306
aPer 1,000 woman

Sources:

US Census Bureau, 2010 census

California Department of Public Health, Birth Records
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The GFR (sometimes simply called the fertility rate) provides a more refined

measure than the CBR because it relates the number of births to the population most

likely to give birth. It has a major shortcoming, however. The age distribution of

persons within the 15-44 age group differs from one population to another and

changes over time.

A third measure accounts for these differences by focusing on birth rates for each

individual age group. The age-specific birth rate (ASBR) is calculated by dividing

the number of births to females in a given age group by the number of females in

that age group:

nASBRx ¼ ðnBx=nFxÞ�1,000;

where, x is the youngest age in the age interval, n is the number of years in the age

interval, nBx is the number of births to females between the ages of x and x+n, and

nFx is the number of females between the ages of x and x+n at mid-year.

All of this age detail, while valuable, makes it difficult to evaluate changes in

fertility behavior over time and to compare differences among regions. The total

fertility rate (TFR) summarizes the entire array of ASBRs and facilitates such

comparisons. The TFR is the sum of all the individual ASBRs and is calculated as:

TFR ¼ SASBRx; ðsingle year age groupsÞ
TFR ¼ 5S5ASBRx:ð5-year age groupsÞ

The TFR can be interpreted as the number of children a hypothetical cohort of 1,000

women would have during their lifetimes if none died and if their fertility behavior

at each age conformed to a given set of ASBRs.

We will mention one final measure, the child-woman ratio (CWR):

CWR ¼ ðP0�4=F15�44Þ �1,000;

where P0–4 is the number of children 0–4 and F15-44 is the number of women 15–44.

The CWR is not a true fertility measure. It is simply a ratio of one population

subgroup to another. It incorporates the effects of past mortality and migration

patterns as well as past fertility behavior. In contrast to the other fertility measures

discussed above it does not require any data specifically related to births. This

would be a shortcoming for many analytical purposes, but can be very useful for

geographic areas lacking vital statistics data.

4.1.2.2 Mortality Rates

Similar to fertility, a number of measures have been developed to reflect the

mortality of a population. Discussions of these and other mortality measures can
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be found in McGehee (2004) and Smith (1992). Table 4.4 shows the mortality

measures discussed below for San Diego County in 2010.

The simplest measure of mortality is the crude death rate (CDR), which is

calculated by dividing the number of deaths during a year by the midyear

population. It is generally multiplied by 1,000 to reflect the number of deaths per

1,000 persons:

CDR ¼ ðD=PÞ �1,000,

where D is the number of deaths during the year and P is the midyear population.

The CDR provides an indication of the incidence of deaths relative to the overall

size of a population. For many purposes, however, the usefulness of the CDR is

limited because it does not account for one of the major determinants of mortality,

Table 4.4 Selected Morality Measures, San Diego County, 2010

Age Population Deaths ASDRa
Infant

Deaths Births

0 to 4 203,423 261 128.3 230 44,662

5 to 9 194,029 19 9.8

10 to14 198,716 26 13.1

15 to 19 225,095 110 48.9

20 to 24 270,750 165 60.9

25 to 29 250,737 143 57.0

30 to 34 220,185 163 74.0

35 to 39 211,012 242 114.7

40 to 44 209,551 411 196.1

45 to 49 219,795 612 278.4

50 to 54 210,979 802 380.1

55 to 59 180,305 934 518.0

60 to 64 149,311 1,082 724.7

65 to 69 103,241 1,220 1,181.7

70 to 74 77,313 1,603 2,073.4

75 to 79 64,347 2,596 4,034.4

80 to 84 52,564 3,192 6,072.6

85+ 53,960 6,012 11,141.6

Total 3,095,313 19,593

Infant Mortality Rateb 5.1

Crude Death Ratec 6.3
aPer 100,000 persons
bPer 1,000 births
cPer 1,000 persons

Sources:

US Census Bureau, 2010 census

California Department of Public Health, Death Records
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namely the age structure of the population. A young age structure is the primary

reason why the CDR for blacks is lower than the CDR for whites in the United

States, and why the CDR for Alaska is lower than the CDR for West Virginia

(Smith, Tayman, and Swanson 2001: 51).

The age-specific death rate (ASDR) deals with this problem by focusing on

deaths within each age group. It shows the proportion of persons in each age group

(x to x+n) that dies during a year:

nASDRx ¼ nDx=nPx
�100,000,

where x is the youngest age in the age interval, n is the number of years in the age

interval, nDx is the number of deaths of persons between the ages of x and x+n

during the year, and nPx is the mid-year population of persons between the ages of x

and x+n. ASDRs are generally calculated separately for males and females because

of their well-known differences in longevity. ASDRs are often expressed in terms

of deaths per 100,000 persons because the rates are very small for many age groups.

The J-shaped pattern shown in Table 4.4 reflects the relatively high death rates for

newborn babies, the considerably lower rates for young children, the slowly

increasing rates at the middle ages, and the rapidly increasing rates at the older

ages. This general pattern is found for virtually every population and population

subgroup throughout the world.

We will mention one final mortality measure, the conventional infant mortality

rate, which relates infant deaths (age less than one year) to the number of births:

IMR ¼ ðID=BÞ �1,000,

where ID is infant deaths, and B is births. The IMR usually provides a sufficiently

close approximation of the probability of dying between birth and age 1, and is a

widely used indicator of the health of a population, especially in less developed

areas (McGehee 2004: 283; Reidpath and Allotey 2003).

4.1.2.3 Life Tables and Survival Rates

The life table is a statistical model that summarizes the mortality (and survival)

probabilities observed in a particular population during a particular period of time.3

The empirical foundation of a life table is a complete set of ASDRs for that year.

The ASDRs do not provide exact measures of the risk of dying because some

people die before midyear. In order to be useful for the construction of life tables,

ASBRs must be converted into age-specific probabilities of dying. Techniques for

creating these probabilities and constructing the other functions of a life table can

be found in Kintner (2004); Namboodiri and Suchindran (1987), and Smith (1992).

Life tables are widely used by public health workers, demographers, actuaries, and
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many others. For example, they provide information used in setting insurance

premiums and annuity payouts; evaluating pension, social security, and retiree

health care liabilities, and product life cycles; and determining the effectiveness

of public health and criminal justice programs and drug treatments.

Table 4.5 shows a period life table for both sexes in San Diego County in 2010.

The functions of a life table are defined below:

1. Proportion dying (nqx) – The proportion of persons who are alive at exact age x

but die before reaching exact age x+n.

2. Number surviving (lx) – The number of persons who survive to exact age x, out

of a beginning cohort of 100,000 live births (called the radix).

3. Number dying (ndx) – The number of deaths between exact ages x and x+n, out

of the number of persons alive at the beginning of that interval.

4. Person-years lived during an age interval (nLx) – The summed total of person-

years lived between exact ages x and x+n, based on each person’s record of

survival during that age interval.

5. Total person-years yet to be lived (Tx) – The summed total of person-years lived

during this and all following age intervals.

6. Life expectancy (ex) – The average number of years of life remaining to persons

alive at exact age x.

All functions in a life table are dependent on other functions in the table, but the

nqx is independent of the other functions. Once nqx is known, the remainder of the

table can be derived (Kintner 2004: 317–318).

The life expectancy at birth (e0) is similar to the TFR in that both measures use

hypothetical cohorts and both assume that a given set of age-specific rates will

continue indefinitely. One measure shows the average number of children a cohort

of women would have if a given set of ASBRs persisted throughout their lifetimes.

The other shows the average life span a cohort of newborn babies would have if a

given set of ASDRs persisted throughout their lifetimes. Because they have clear

intuitive meanings and are unaffected by the age-sex structure of a population, both

measures are useful for making comparisons among regions and over time.

Life tables are frequently used to calculate survival rates or the probability of

surviving from one age (or age group) to another. In the cohort component model

(Chapter 10), survival rates can be used to estimate deaths by age. Survival rates are

typically calculated separately for males and females and are often further

subdivided by race and ethnicity. The reason for drawing these distinctions is that

mortality rates vary from one demographic subgroup to another (Smith, Tayman,

and Swanson 2001: 57).

Survival rates are often based on five-year time horizons and five-year age

groups and are calculated as4:

5Sx ¼ 5Lxþ5=5Lx;

where 5Sx is the survival rate, 5Lx+5 is the number of person-years lived between

ages x + 5 and x + 10, and 5Lx is the number of person-years lived between ages x
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and x+5. For San Diego in 2010, the 5-year survival rate for a person aged 65-69 is

0.9226 (see Table 4.5). Survival rates can be calculated for different time horizons

and different age groups by changing the subscripts in the equation shown above.

For example, a 10-year survival rate for a five-year age group can be calculated as:

5Sx ¼ 5Lxþ10=5Lx:

The 10-year survival rate for a person aged 65-69 in San Diego in 2010 is 0.7947

(338,978 / 426,570).

Due to the peculiar nature of mortality patterns in the first year of life, the 0-4 age

cohort is often split into two groups: less than 1 and 1-4 and survival rates are then

calculated separately for each group:

1�4S0�1 ¼ ðL0�1 þ L1�4Þ=500; 000; and
5�9S1�4 ¼ ðL5�9

� 0:8Þ=L1�4:

For the youngest group, there is no prior Lx for the denominator, so the radix

100,000 is multiplied by five because, hypothetically, 100,000 new born babies are

added each year for a five-year period. For ages 1-4, the person years lived in that

age group represents 4 years, while for the 5-9 age group it represents 5 years.

Therefore, the latter Lx value is adjusted downward by 20% to estimate a 4 year

time period.

The procedure for calculating survival rates for the oldest age group is slightly

different because it is an open-ended group. For this age group, T-values rather than

L-values are used. Suppose that 85+ is the oldest age group to be projected, the five-

year survival rate is calculated as:

S80 ¼ T85=T80;

where T85 and T80 are the total person-years lived after ages 85 and 80.

4.1.2.4 Migration Rates

A fundamental methodological problem in the construction of migration rates is

choosing the appropriate population base (i.e., the denominator) to use in calculat-

ing migration rates. Theoretically, the appropriate base for any rate is the popula-

tion at risk of the occurrence of the event under consideration. For mortality and

fertility, the choice is clear: the population at risk of dying or giving birth is the

population of the area under consideration. For migration rates, however, the choice

is not so clear. What is the population at risk of migrating?

Most studies simply use the population of the area under consideration as the

denominator in the construction of migration rates, regardless of whether those
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rates referred to in-migration, out-migration, or net migration (Long 1988;

Meuser and White 1989). Yet the population of the area itself is clearly not the

population at risk to in-migration; after all, those people are already living in

the area. For net migration the issue is even more difficult because net migration is

a residual rather than an actual event; consequently, it has no true population at

risk. Following Smith, Tayman, and Swanson 2001: 104–109, we suggest the

following rules for determining the appropriate at-risk population for computing

migration rates:

1. For out-migration rates, it is the population of the area under consideration;

2. For in-migration rates, it is the population of area of origin; that is the rest of the

US (or other country) outside the area under consideration;

3. For net migration rates in areas losing population or growing very slowly, it is

the population of the area under consideration; and

4. For net migration rates for areas growing rapidly, it is the rest of the US ) or other

country).

The other major question regarding the construction of migration rates is

whether the denominator should reflect the beginning, middle, or end of the

migration interval. We suggest using the population at the beginning of the

interval because it is unaffected by migration during the interval and corresponds

to the base-year population used for making estimates. It is also common to

use the base population “survived” to the end of the migration period using

the appropriate survival rates (Irwin 1977; Pittenger 1976). This approach is a

more complicated to apply but has the advantage of accounting explicitly for

deaths of migrants. Both approaches are acceptable and generally yield very

similar results.5

Table 4.6 illustrates the computation of domestic in-, out-, and net-migration

rates for San Diego County based on the 5-year question in the 2000 census. For the

net migration rate, we used the San Diego County population in 1995 as the

denominator, since the domestic net-migration was slightly negative. In general,

San Diego County experienced net domestic in-migration for retirement age groups

and net domestic out-migration for other ages, except those aged 10-19 in 1995.

The net in-migration in these age groups likely reflects the movement of military

personnel into San Diego County.

4.1.3 Indirect Estimates of Net Migration

In Chapter 2 we discussed data sources that provide data on gross migration, or

unidirectional population movements into and out of a region. Estimates of net

migration can be derived from these gross migration data by subtracting the number

of out-migrants from the number of in-migrants. However, there are many

circumstances in which gross migration data are not available. Under these

circumstances, indirect estimates of net migration can be made by comparing
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the population at two points in time, measuring the change due to natural increase,

and attributing the residual to net migration. Several methods can be used to

calculate net migration in this manner.

One is the vital statistics method, in which net migration (NM) is calculated by

rearranging the terms of the demographic balancing equation described in Chapter 2:

NM ¼ ðPl � PbÞ � ðB� DÞ;

where Pl is the population in a given year, Pb is the population in some earlier year,

and B and D are the number of births and deaths occurring between times (b) and (l).

The vital statistics method can be used to calculate net migration not only for the

entire population, but also for specific subgroups of the population (e.g., race, and

ethnicity) as shown in Table 4.7. In San Diego County between 2000 and 2010,

Hispanic and non-Hispanic Asians and Native Hawaiians & Other Pac. Is. were the

only ethnic/race groups to show positive growth due to migration.

It is very cumbersome to use the vital statistics method to estimate net migration

by age and it is rarely used for this purpose (Morrison, Bryan, and Swanson 2004:

505). Instead of explicitly accounting for deaths, the survival rate method uses

survival rates to estimate the expected population of each age group at the end of a

particular period. Estimates of net migration are then calculated as the difference

between the expected population and the observed (census or estimated) population.

Table 4.7 Estimation of Net Migration by Race and Hispanic Origin, Vital Statistics Method, San

Diego County, 2000-2010

2000 to 2010

Race/ Hispanic

Origin 2000 2010 Change Births Deaths

Natural

Change

Net

Migration

Non-Hispanic 2,062,868 2,103,965 41,097 253,339 137,595 115,744 �74,647

White 1,548,833 1,500,047 �48,786 164,409 149,831 14,578 �63,364

Black of African

American

154,487 146,600 �7,887 18,461 9,201 9,260 �17,147

American Indian

& Alaskan

Native

15,253 14,098 �1,155 702 850 �148 �1,007

Asian 245,297 328,058 82,761 29,704 9,661 20,043 62,718

Native Hawaiian

& Other Pac. Is.

12,164 13,504 1,340 1,202 783 419 921

Other races and

2 or more races

86,834 101,658 14,824 38,861 1,118 37,743 �22,919

Hispanic 750,965 991,348 240,383 201,854 23,954 177,900 62,483

Total Population 2,813,833 3,095,313 281,480 455,193 195,398 259,795 21,685

Sources:

US Census Bureau, 2000 and 2010 censuses

E-2 State of California, Department of Finance, California County Population Estimates and

Components of Change by Year, July 1, 2000–2010. Sacramento, California, December 2010.

E-3 State of California, Department of Finance, California County Race/Ethnic Estimates and

Components of Change by Year July 1, 2000–2008. Sacramento, California, June 2010.
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The most common form of this method is called the forward survival rate method,

in which net migration is estimated as:

NM ¼ nPxþy;l � xSnðnPx;bÞ6;

where nPx,b is the population age x to x+n in year b, nPx+y,l is the population age (x+y)

to (x+n+y) in some later year l, y is the number of years between b and l, and xSn is the

y-year survival rate for age group x to x+n. Other approaches to calculating survival

rates and deriving net migration estimates can also be applied. Detailed discussions

of the survival rate method and other indirect estimates of net migration can be

found in Bogue, Hinze, andWhite (1982) and Morrison, Bryan, and Swanson (2004).

Table 4.8 shows estimates of net migration by age for San Diego County from

2000 to 2010 using the forward survival rate method. When using this method over

Table 4.8 Estimation of Net Migration by Age, Forward Survival Rate Method, San Diego

County, 2000-2010

2010

Net Migration

2000–2010Age in 2000 Age in 2010 2000 Pop

Survival

Ratea
Expected

Pop Census

Births

2005–10

0 to 4 223,754 0.995105 222,659 203,423 �19,236

Births

2000–05

5 to 9 231,439 0.994337 230,128 194,029 �36,099

0 to 4 10 to 14 198,621 0.998613 198,345 198,716 371

5 to 9 15 to 19 212,829 0.997882 212,378 225,095 12,717

10 to 14 20 to 24 199,669 0.995716 198,814 270,750 71,936

15 to 19 25 to 29 199,919 0.994322 198,784 250,737 51,953

20 to 24 30 to 34 230,953 0.993794 229,520 220,185 �9,335

25 to 29 35 to 39 221,273 0.992041 219,512 211,012 �8,500

30 to 34 40 to 44 222,087 0.987599 219,333 209,551 �9,782

35 to 39 45 to 49 235,183 0.980576 230,615 219,795 �10,820

40 to 44 50 to 54 222,080 0.972100 215,884 210,979 �4,905

45 to 49 55 to 59 191,181 0.961886 183,894 180,305 �3,589

50 to 54 60 to 64 161,622 0.947996 153,217 149,311 �3,906

55 to 59 65 to 69 114,391 0.924607 105,767 103,241 �2,526

60 to 64 70 to 74 90,275 0.879923 79,435 77,313 �2,122

65 to 69 75 to 79 81,763 0.794660 64,974 64,347 �627

70 to 74 80 to 84 78,296 0.672353 52,643 52,564 �79

75+ 85+ 153,691 0.392290 60,292 53,960 �6,332

Total 3,076,194 3,095,313 19,119
aFor Births 2005–2010 probability of surviving from birth to age 2.5

For Births 2000–2005 probability of surviving from birth to age 7.5

Other ages probability of surviving 10 years

Average of 2000 and 2010 life table survival rates

Sources:

US Census Bureau, 2000 and 2010 censuses

California Department of Public Health, Birth Records
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a 10-year period, the youngest two age groups in 2010 were not yet born in 2000, so

we use births from the first half and second half of the decade and childhood

survival rates to generate the expected population in 2010. For the other age groups,

the expected population in 2010 reflects 10-year survival rates applied to the 2000

population for each age group.

The net migration for the overall population (19,119) is near the 21,685 estimate

produced by the vital events method and shows the survival rates generated slightly

fewer deaths than shown in the vital records. If the survival rates are lowered by a

factor of 0.9988, around 0.1%, the two estimates of net migration would be almost

identical. The large positive net migration for ages 10 to 19 in 2000 may show the

impact of the military movements and foreign migration. The dramatic swing in

the net migration between the two youngest ages may also indicate the impact of

military families having kids after they move in and move out as the kids age and

the net undercount of children in the youngest ages in the census.

The major advantage of indirect methods of estimating net migration is that they

can be applied when no direct data on in- and out-migration are available (Smith

and Swanson 1998). Consequently, they are particularly useful for projections of

small areas. However, the accuracy of these estimates depends the accuracy of the

underlying population estimates (or counts) and the vital statistics (or survival rate)

data. Errors in these data are directly transmitted to the net migration estimate.

4.2 Geographic

4.2.1 Concentration

Population density, discussed in chapter 2, is one way to measure the concentration

of population or other activities. Another simple way of depicting concentration is

to use a percentage distribution, which measures the relative size of the activity

distributed over a set of geographic areas:

PctDi ¼ Pi=P
�100;where

SPctDi ¼ 100;

where P is population; and i is the geographic area. Another common practice is to

show the ordinal rank of a given activity across geographic space. Both ranks and

percentage distributions facilitate temporal comparisons of geographic concentration.

The Gini concentration ratio (GCR) is a summary measure of the degree of

concentration and ranges from 0.0 to 1.0. A GCR of 0.0 indicates the activity is

perfectly distributed across geographic areas. A larger GCR indicates a greater the

inequality between the population distribution and geographic areas. The GCR
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compares the cumulative percentage distributions of the number of areas (Yi) and

Activity in these areas (Pi):

GCR ¼
X

Pi
� Yiþ1

� �
�

X
Piþ1

� Yi

� �
:

The index of dissimilarity (IOD) is a popular summary measure used to compare

two percentage distributions (e.g., Duncan, Cuzzort, and Duncan 1961: 83-90;

Fonseca and Tayman 1989). The IOD measures the percentage that one distribution

would have to change to match the other. The IOD ranges from 0 to 100, with

0 meaning no spatial disparity, and 100 being complete disparity between the two

groups with no spatial intermingling. The IOD has been criticized because it only

measures two groups at a time and is affected by the number and choice of subunits

for comparison (Siegel 2002: 26). The IOD is computed by:

IOD ¼ 0:5 � X
jðPil=PlÞ � ðPib=PbÞj;

where i and P are defined as before; and l and b represent the distributions being

compared. Other measures have been proposed to address shortcomings of the IOD

and to describe other aspects of segregation and concentration (Massey and Denton

1988, 1998;McKibben and Faust 2004). In the discussion of error measures found in

Chapter 14 we discuss IOD again, but use the term “Index of Misallocation”(IOM)

to signal that it is being specifically used as a measure of population estimation error.

Table 4.9 shows these various measures of concentration for census divisions in

1990 and 2010. The population distribution across census divisions has changed

modestly over the past 20 years. The GCR has declined from 0.067 in 1990 to close

to zero in 2010 and the IOD shows that a relatively small change 5% is needed to

equate the two distributions. The rapid growth in the Pacific and Mountain Division

increased their rankings by 2010, while the ranks of East N. Central, West N.

Central, and E. S. Central decreased.

Another widely used measure of concentration is the location quotient (LQ).

LQ is a commonly utilized in economic analysis, but has much wider applicability

(e.g., Andresen 2007; Barber 1988: 87; Leigh 1970). LQ quantifies how concen-

trated a particular industry, cluster, occupation, or demographic group is in a

geographic area as compared to a larger reference area. For example, the LQ

could be used to compare the percent of households with low income in California

with the low income percent in the US. An LQ of 1.0 indicates the area has a same

concentration as the larger area; a value less than 1.0 indicates the area has a lower

concentration; and a value greater than 1.0 indicates the area has a higher concen-

tration of that activity. The LQ is computed by:

LQ ¼ Ac=
X

Ac

� �
=
�
Rc =

X
Rc

�
;

where A is the geographic area of interest; R is the reference area; and c is the

characteristic.
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A drawback of the LQ is that a value is calculated for each area being analyzed.

For a county with 600 census tracts, the LQ would unwieldy to analyze. The coeffi-

cient of localization (CL) complements the LQ, and provides a single number that

measures the relative concentration of an activity across all areas. The CL ranges

from 0 to 1 and differs from the range of the LQ, which has a minimum value of zero

and no upper limit. A CL of zero means the percentage distribution of an activity

is evenly spread across the areas in accordance with the percent in the reference

area. As CL approaches 1.0, the activity becomes increasingly concentrated in

one area. The CL is computed in three steps (Barber 1988: 89):

1. Calculate the share of the reference area activity in each area (Ac / Rc);

2. Calculate the share of the reference area total in each area(∑Ac / ∑Rc); and

3. Subtract the value from Step 2 from the value in Step 1; add either all positive or

all negative differences.

Table 4.10 presents LQ and CL values for housing structure type in the 18

incorporated cities and unincorporated area in San Diego County, the reference

area. Single family units are over-concentrated in 10 of the 19 areas, with the

greatest excesses in the Encinitas, Lemon Grove, and Poway. El Cajon has

the largest under-representation of single family units with a LQ of 0.75. Multiple

family structures containing 2 to 19 units are over-concentrated in seven areas, with

the greatest excesses in El Cajon, Imperial Beach, and National City. Poway shows

the largest under-representation of these types of units with a LQ of 0.35. Coronado

has the largest overconcentration of large multiple family structures with a LQ of

1.75, followed by El Cajon (1.63), La Mesa (1.29), and San Diego (1.27). Santee

has the largest under-representation, with a LQ of 0.35. Other units are heavily

Table 4.9 Selected Measures of Concentration, Census Divisions, 1990 and 2010

Percent Distribution Rank

Division 1990 2010 1990 2010 1990 2010

New England 13,206,943 14,444,865 5.3% 4.7% 9 9

Middle Atlantic 37,602,286 40,872,375 15.1% 13.2% 4 4

East N. Central 42,008,942 46,421,564 16.9% 15.0% 2 3

West N. Central 17,659,690 20,505,437 7.1% 6.6% 6 7

South Atlantic 43,566,853 59,777,037 17.5% 19.4% 1 1

East S. Central 15,176,284 18,432,505 6.1% 6.0% 7 8

West S. Central 26,702,793 36,346,202 10.7% 11.8% 5 5

Mountain 13,558,776 22,065,451 5.5% 7.1% 8 6

Pacific 39,127,306 49,880,102 15.7% 16.2% 3 2

Total 248,609,873 308,745,538 100.0% 100.0%

Gini Concent. Ratio 1990a 0.067

Gini Concent. Ratio 2000a 0.005

Index of Dissimilarity 5.0
aBased on the number of counties within each census division.

Sources:

US Census Bureau, 1990 and 2010 censuses
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concentrated in Santee and the unincorporated area with LQs of 2.96 and 2.35. Del

Mar has no other units and the LQ in Coronado is only 0.02. The CL of 0.058 shows

that single family units are the most evenly spread across San Diego County. The

distribution of multiple family units is more concentrated than single family units

and the concentration is greater for 20+ units (0.162) than for 2 to 19 units (0.123).

Other units are the most unevenly distributed across jurisdictions San Diego County

with a CL of 0.367, which is over six times larger than the SF CL and over two

times larger than the 20+ units CL.

4.2.2 Center of Population and Distance

The measures presented above and in the statistical section of this chapter below do

not incorporate a spatial dimension related to fundamental spatial concepts of dis-

tance, direction, or relative location. Center of population (CENTP) and distance

measures require information on the location of attributes identified by geographic

coordinates (or points) such as longitude and latitude that can be represented as X and

Y coordinates on a grid system. In this section we present measures that describe the

center and variability of a distribution of points.

Table 4.10 Location Quotients and Coefficient of Localization for Housing Structure Type,

Jurisdictions in San Diego County, 2005–2009

Single

Jurisdiction Familya 2 to 19 20+ Otherb

Carlsbad 1.14 0.83 0.72 0.74

Chula Vista 1.05 0.74 1.05 1.44

Coronado 0.93 0.92 1.74 0.02

Del Mar 1.15 0.90 0.77 0.00

El Cajon 0.75 1.25 1.63 1.39

Encinitas 1.25 0.65 0.49 0.65

Escondido 0.94 1.03 0.94 1.92

Imperial Beach 0.79 1.72 0.91 0.59

La Mesa 0.92 1.18 1.29 0.31

Lemon Grove 1.24 0.72 0.53 0.31

National City 0.86 1.30 1.26 0.62

Oceanside 1.08 0.92 0.68 1.29

Poway 1.30 0.35 0.64 1.15

San Diego 0.91 1.21 1.27 0.33

Santee 1.04 0.94 0.35 2.96

Solana Beach 1.09 0.81 1.19 0.09

Vista 0.97 1.10 0.81 1.59

Unincorporated Area 1.19 0.56 0.43 2.35

Coeff. Of Localization 0.058 0.123 0.162 0.367
aSingle family attached and detached
bMobile homes and other units

Source: US Census Bureau, 2005–2009 ACS
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The mean center is the center of gravity of a point distribution and is a

generalization of the arithmetic mean. It is the average of the X and Y coordinates

over all points. Perhaps more useful is the weighted mean center that includes the

magnitude of activity associated with a point, such as population. The CENTP is an

example of a weighted mean center:

CENTP ¼
X

Pi
� Xi=

X
Pi and y ¼

X
Pi

� Yi=
X

Pi;

where Pi is the population at point i; Xi and Yi are the horizontal and vertical

coordinates. The weighted mean center is affected by extreme values and is

influenced by any change of the distribution over the total area (Plane 2004: 98).

The weighted Manhattan and Euclidian medians are designed to have equal weights

above and below and to the left and right, so they are not influenced by extreme

values (Barber 1988: 99-101). Differences between the weighted mean and

weighted median centers can be substantial. For example, the location of the

2010 median center of the US population is around 50 miles south of the 1940

mean center of the US population, and about 350 miles east of the 2010 mean center

of US population.

Another important characteristic of a spatial distribution is its dispersion or

variability. The standard distance (SD) is the spatial equivalent to the standard

deviation and is based on deviations between each point and the central point (Dic):

Dic ¼ p�
xi � x

��2 þ �
Yi � Y

��2

and the standard distance by:

SD ¼ pX
D2

ic=n:

The SD can also be computed for weighted individual points by computing the

standard distance around its weighted mean center and for data grouped by area by

assuming the activity is concentrated in its geographic center (Barber 1988: 103;

Plane 2004: 100). As the size of the areal unit decreases, the computed SD will

approach the value from the location of individual points. Standard distances can be

mapped as a line segment from the center location origin. The SD is sensitive to

extreme observations, and spatial dispersion measures about the median and

weighted median centers have been proposed (Barber 1988: 103).

4.2.3 Accessibility and Spatial Interaction

Many practical applications including locating business and public facilities rely on

information that measures the accessibility of a particular location or locations with

reference to a distribution of population, jobs, houses, or other characteristics.

78 4 Basic Measures



We discuss commonly used measures and models of accessibility and spatial interac-

tion.More detailed information on these and othermeasures andmodels andmeasures

can be found in (e.g., El-Geneidy and Levinson 2006; Guers and van Wee 2004;

Handy and Niemeier 1997; Haynes and Fotheringham 1984; Koenig 1980).

One of the most widely used and simple measures of accessibility is the

isochronic or cumulative opportunity (IOP), which counts the number of potential

opportunities that can be reached within a predetermined travel time or distance7:

IOPi ¼
X

BjOj;

where IOPi is accessibility measured at point i to potential activity in zone j; Oj are

opportunities or characteristics in zone j; and Bj is a binary value equal to 1 if zone j
falls within the predetermined threshold and 0 otherwise. For example, take a

location near Arlington National Cemetery. In 2010, it is estimated that 31,600

and 269,000 people live within a 1-mile and a 3 mile radius of this location (Nielsen

Solution Center 2010). These people live in households with median incomes of

$84,800 (1-mile) and $82,900 (3-mile).

An alternative to the measures like the IOP is a measure that weights the

characteristics by the spatial separation between the characteristics and the location

where the accessibility is being measured (Plane 2004: 101). One such aggregate

accessibility measure is the population potential (PP) (Hansen 1959). The popula-

tion or characteristic is adjusted for the distance between its zone and the location

zone and receives more weight the closer the distance as follows:

PPi ¼
X

Pj=Dji;

where Pj is the population or characteristic of n areas and Dji are the distances of

these areas from location i.
The gravity-based model is a widely used method for measuring accessibility

and spatial interaction (El-Geneidy and Levinson 2006; Haynes and Fotheringham

1984: 20-29).8 Gravity models can be based on several formulations. The gravity

model for measuring accessibility (A) is a function of the opportunities

(characteristics) in zone j and the impedance of traveling from zone j to the location
point or area i (Iji):

Ai ¼
X

Oj
�ðIjiÞ:

The impedance is measured as travel time or cost and can be further specified

by travel mode (e.g., auto, transit, non-motorized). Different functional forms (e.g.,

declining power, negative exponential, and Gamma) can be used to model the imped-

ance function between j and i (e.g., El-Geneidy and Levinson 2006; Lowry 1964).

The basic gravity model shown above has been enhanced to include measures of

attractiveness or opportunities in zone i and trip end constraints to insure consistency
between the regional characteristics and the zone j allocations (Putman 1983, 1991).
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Table 4.11 considers a hypothetical area containing three opportunity zones and

three point locations and calculates the accessibility of these points to the popula-

tion based on a gravity model. The top panel of the table shows trip cost

probabilities from each opportunity zone to each point location. For example, the

accessibility of location point A to all opportunity zones reflects its high travel costs

relative to the other points, as indicated by the low probabilities. The lowest travel

cost is found between opportunity zone 2 and location point B. This pair has the

highest probability at 0.45. As a result, location point A has by far the lowest

accessibility measure of 61.8. The accessibility measures are much closer in values

for location points B and C. For location point B, most of its value (84.2%) comes

from its relatively low cost of travel to opportunity zone 2 and the relatively large

population residing in this zone.

4.3 Statistical

4.3.1 Descriptive

Descriptive statistics quantify three general characteristics of a data distribution:

location, variability, and shape. Location refers to various points of the data

distribution, including central tendency. Variability describes how spread out or

closely clustered a set of data is. The shape of a distribution is usually characterized

by its symmetry or lack thereof and the extent of its peakedness or flatness.

One way to measure location is to divide the data into equal parts and determine

the end points of these parts. Common divisions include quartiles (4 parts), deciles

(5 parts), and percentiles (100 parts). A percentile is the value of a variable below

which a certain percent of observations fall. Commonly used percentiles are the 25th

and 75th, which represent the middle half of the data set, and the 50th percentile that

corresponds to the median.

Table 4.11 Accessibility Based on a Gravity Model

Trip Cost Probabilities from Zone (j) to Point (i)a

Opportunity Zones (j)

Location Point (i) 1 2 3

A 0.05 0.03 0.08

B 0.15 0.45 0.10

C 0.20 0.32 0.40

Population 123 723 424

Opportunity Zones (j)

Location Point (i) 1 2 3 Accessibility

A 6.2 21.7 33.9 61.8

B 18.5 325.4 42.4 386.3

C 24.6 231.4 169.6 425.6
aTrip cost probabilities are based on a modified gamma function (Costji-1.5 * exp(-2Costji))
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The median is one of several measures of central tendency that describe the

location of the middle of the distribution. The arithmetic mean or average

is the most commonly used measure of central tendency and is computed by

summing the observations and dividing by size of the population (N) or sample (n)9:

m ¼
X

X=N; Population

x
� ¼

X
x=n: Sample

As discussed in Chapter 2, the mean may not accurately reflect the middle of the

distribution when the distribution is skewed. A trimmed mean is less susceptible to

the effects of extreme scores. It is calculated by discarding a certain percentage of

the lowest and the highest scores and then computing the mean of the remaining

scores. For data collected over time, the arithmetic mean gives the wrong answer

(Levin and Rubin 1998: 78). In this situation, the geometric mean (GM) is the

appropriate measure of central tendency for the average rate of change:

GM ¼ ðn
p

X1
� X2

� X3 . . .
� XnÞ:

The simplest measure of variability is the range or the difference between the

minimum and maximum values of the data set. The range ignores most of the data

and can be heavily influenced by outlying observations. The interquartile range

minimizes the effect of outliers by taking the difference between the 25th and 75th

percentiles; the interquartile deviation divides the interquartile range in half. The

interquartile range does not take advantage of all of the information, does not

measure the variability within the middle of the distribution, and by design ignores

the variability at the extremes.

The most widely used measures of variation are the variance and its square root,

the standard deviation. These measures describe how far each observation lies from

the mean of the data set10:

s2 ¼ SðXi � mÞ2=N; Population Variance

s ¼ p
s2; Population Standard Deviation

s2 ¼ Sðxi � x
�Þ2=ðn� 1Þ; Sample Variance

s ¼ p
s2: Sample Standard Deviation

The standard deviation is easier to interpret than the variance because it is

expressed in the same units as the observations. The sample variance uses (n-1)

and not (n) in the denominator because it provides a better estimate of the popula-

tion variance (Levin and Rubin 1998: 102).

The standard deviation is an absolute measure of dispersion that is not compara-

ble across data sets that have widely different means or different units of measure-

ment. For example, a data set has a mean of 50 and standard deviation of 10. If

every observation is multiplied by 3, the mean and standard deviation become 150
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and 30. In this case the variation of the data has not been altered, but just comparing

the two standard deviations would provide a misleading picture. What is needed is a

measure of relative variability or the coefficient of variation (CV). The CV is useful

because the standard deviation should always be interpreted in the context of its

mean. The coefficient of variation is a dimensionless number that relates the mean

to the standard deviation of a distribution:

CV ¼ s=m�100; Population

cv ¼ s=x
��100: Sample

Skewness and kurtosis are characteristics of the shape of the distribution.

Skewness refers to the distribution’s symmetry, while kurtosis its peakedness.

A negative skewness indicates that the tail on the left side of the distribution is

longer than the right side and the bulk of the values (including the median) lie to the

right of the mean. A positive skewness indicates that the tail on the right side is

longer than the left side and the bulk of the values lie to the left of the mean. A zero

value indicates that the values are relatively evenly distributed on both sides of the

mean, typically, but not necessarily, implying a symmetric distribution. A normal

distribution is mesokurtic and has as kurtosis value of 3.0. Values below 3.0

indicate a flatter distribution and above 3.0, a more peaked distribution. Skewness

and kurtosis are computed by:

SK ¼ SðXi � mÞ3=ðN�s3Þ; Population Skewness

sk ¼ Sðxi � x
�Þ3=ððn� 1Þ�s3Þ; Sample skewness

KT ¼ SðXi � mÞ4=ðN � s4Þ; Population kurtosis11

kt ¼ Sðxi � z
�Þ4=ððn� 1Þ � s4Þ: Sample kurtosis

Table 4.12 displays the descriptive statistics for household size for all census tracts

in Salt Lake County, Utah and Cumberland County, Maine. These two areas were

chosen becauseUtah typically has the highest household sizes in theUS andMaine the

lowest. The household size in Salt Lake County was among the highest of any Utah

County and that in Cumberland County was among the lowest in Maine. The mean

household size is around 30% higher in Salt Lake County (3.00 vs. 2.32). There is not

much difference is the three measures of central tendency in either county, indicating

the census tract distributions are not greatly impacted by outliers. The minimum

census tract value is similar in both counties, but the maximum value is over a person

larger in Salt Lake County. As a result, the range for census tracts in Salt Lake County

is larger, as are the other measures of variability that are approximately double those

for Cumberland County. The relative variation is also higher for Salt Lake County as

seen by the CV of 21.3, which is 44% higher than the CV in Cumberland County

(14.8). The census tract distributions for both counties have a slight left-skewness, but

do not indicate great departures from symmetry. Census tracts in Salt Lake County

have a flatter distribution than those in Cumberland County.
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4.3.2 Inferential

Let’s now assume that the data in Table 4.12 represent a random or probability

sample of census tracts in the two counties. The various statistics shown represent

point estimates of their respective population parameters. To develop interval

estimates that account the fact that we are analyzing a sample and not a population,

two pieces of information are required: 1) a measure of the variability of the

sampling distribution; and 2) confidence level. The sampling distribution variability

is measured by the standard error, which relates the sample standard deviation and

the sample size. Each sample statistic has a standard error (SE). Some examples of

standard errors are shown below:

SEx� ¼ s=
p
n Mean

SEp� ¼ pðp��q�Þ=n Proportion12

SEmedian ¼ 1:25 � SEx� : Median

The SE is influenced by the variability in the sample and sample size. The

variability in sampling distribution declines with increases in the sample size. But

since the formula uses the square root of the sample size, there is a diminishing

effect of sample size increases. The SE for the median is 25% larger than the mean,

in large samples with a normal distribution, and therefore the median varies more

from sample to sample than the mean.

Table 4.12 Descriptive

Statistics, Persons per

Household by Census Tract,

Salt Lake County and

Cumberland County,

2005–2009

Statistical Measure

Salt Lake

County

Cumberland

County

Location

Minimum 1.31 1.36

25th Percentile 2.54 2.12

Mean 3.00 2.32

Median 2.99 2.37

Trimmed Mean (5%) 3.01 2.32

75th Percentile 3.47 2.54

Maximum 4.19 3.10

Variability

Range 2.88 1.74

Interquartile Range 0.93 0.42

Semi-Quartile Range 0.47 0.21

Variance 0.409 0.119

Standard Deviation 0.639 0.345

Coefficient of Variation 21.3 14.8

Distribution Shape

Skewness �0.251 �0.382

Kurtosis 2.406 3.332

Number of Observations 193 61

Source: US Census Bureau, 2005–2009 ACS
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The confidence level determines the area under the curve of the probability

function that that underlies the sampling distribution (e.g., normal curve or

t-distribution).13 For example, a 95% confidence interval would have 2.5% of the

area in both tails of the curve. The corresponding standard or Z score is then used to

compute confidence intervals. For example, standard scores under a normal curve

for 90%, 95%, and 99% confidence intervals are 1.64, 1.96, and 2.58. The general

formula for the confidence interval adds and subtracts the standard error times the

appropriate standard score for the desired level of confidence to the sample statistic.

For example, a confidence interval of the mean under the normal distribution is:

x
� � SEx

��Z:

Hypothesis testing begins with an assumption, called the null hypothesis, made

about a population parameter. Sample data are used to determine the difference between

the hypothesized value and sample statistic. Smaller differences increase the likelihood

that the hypothesized value is correct. Larger differences decrease the likelihood.

Using a test statistic and the appropriate sampling distribution (e.g., normal, t, F or

Chi-square), one computes the likelihood or probability of getting this result assuming

the null hypothesis is true, or the p-value.14 In general a test statistic is computed by

taking the difference between the hypothesized value and sample statistic and dividing

that difference by the standard error. One accepts the null hypothesis if the p value

is � a and rejects it if the p value is < a. Remember, a is a Type 1 error or the

probability of rejecting a null hypothesis when it is true.

Table 14.3 presents selected confidence intervals and hypothesis tests treating the

census tract data as representing two independently drawn samples. Confidence inter-

vals for themean are given in the top panel. Even though the sample standard deviation

is larger for Salt Lake County (see Table 4.12), the standard errors are similar for both

sets of census tracts due to the larger sample size in Salt Lake County (193 vs. 61).

The intervals indicate a narrowmargin of error around the mean for the census tracts

in both counties; the difference between the upper and lower limits is around 3%.

The middle panel shows the results of a hypothesis test for a normal distribution

(D’Agostino, Belanger, and D’Agostino 1990). Our test criterion is a ¼ 0.05. This

procedure tests three null hypotheses: 1) the skewness is zero, 2) the kurtosis is that

of a normal distribution; and 2) both the symmetry and kurtosis are from a normal

distribution. All three null hypotheses are accepted for Cumberland County census

tracts, suggesting a normal distribution. For Salt Lake County, the assumption of

symmetry is accepted, but the hypothesis that its distribution has the kurtosis

associated with a normal distribution is rejected.

The final panel shows the difference of mean household size test. We expect that

the mean household size for census tracts in Salt Lake County would be greater than

the mean for Cumberland County. The null hypothesis is set up so not accepting it

would support our expectation, which is what the p-value indicates. One assump-

tion of a difference of means test is the variance of both samples is equal. We ran a

hypothesis test and rejected the null hypothesis of equal variances, so we show the

difference of means test with and without that assumption.
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4.3.3 Regression

To illustrate the results from a regression analysis, we use the data and ratio

correlation model for the 39 counties in Washington State discussed in Chapter 8.

The dependent variable is the county’s share of the state population in 2000 divided

by its share in 1990. The three independent (explanatory) variables, measured in the

same way, are: registered voters, registered automobiles, and school enrollment

grades 1–8. Table 4.14 contains a variety of statistics from this multiple regression.

The top panel shows the general output for a regression analysis. The explanatory

variables explain 79.4% of the variation in the population ratio. Taking into account

the number of parameters in the equation reduces the r-square to 77.6%. The standard

error of 0.038measures the overall fit of the equation, but is not a standardizedmeasure

like the r-square and is sensitive to the units ofmeasurement of the dependent variable.

The analysis of variance table shows the overall explanatory value of the regression

is statistically significant from zero. The unstandardized regression coefficients (b)

are all positive as expected, and represent the effect of the variable on the population

ratio taking into account or controlling for the other independent variables. The standa-

rdized regression coefficient (BETA) is used to gauge their relative strengths in

explaining movements in the population ratio. School enrollment is the strongest

predictor, followed by automobile registration, and finally by voter registration.

The standard error, T-stat, and p-value are used to test the null hypothesis the

slope (b) equal to zero. The coefficients for school enrollment and automobile

registration are significantly different from zero at a ¼ 0.05, but not voter registra-

tion. The zero-order correlation between voter registration and population is 0.563

and is significantly different from zero, but its effect on population is diminished

once the other variables are taken into account. Finally, 95% confidence intervals

are presented for the coefficients of each independent variable. When a coefficient

is significantly different from zero, the endpoints of the interval will have the same

sign; otherwise the signs will differ, as is the case for the voter registration variable.

Table 4.13 Inferential Statistics, Persons per Household by Census Tract, Salt Lake County and

Cumberland County, 2005–2009

95% Confidence Interval Around the Mean

Standard Error Lower Limit Upper Limit

Salt Lake County 0.046 2.95 3.04

Cumberland County 0.044 2.28 2.36

Test of Normality (p-value)

Skewness Kurtosis Joint

Salt Lake County 0.149 0.028 0.037

Cumberland County 0.200 0.355 0.272

Differences of Means Test (Ho: Cumberland � Salt Lake)

T-Statistic p-value

Equal Variances 7.9 0.000

Unequal Variances 10.6 0.000

Source: US Census Bureau, 2005–2009 ACS
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We calculated Cook’s D and DFBETA to evaluate the impact of influential

observations on the regression results (Chatterjee and Hadi 1998; Chapter 4).

Cook’s D assesses the influence (i.e., scaled distance) of an observation on the

estimated set of coefficients. Values exceeding the conventional cut-off point (4/n)

indicate an observation that may excessively influence the regression results.

The DFBETA diagnostic assesses the effect of an individual observation on each

estimated parameter in the model; for each parameter estimate, DFBETA calculates

for each observation the standardized difference in the parameter estimate due to

deleting the observation. Absolute values exceeding the conventional cut-off point

(2/√n) indicate that a particular observation may be excessively influential. These

results are shown in the middle panel of Table 14.4. Influential observations do not

appear to be a significant problem in this regression model. Three counties exceed

the Cook’s D threshold, while the DFBETA shows no influential points for any

variable. We reran the regression removing the counties that exceeded the Cook’s D

threshold and the results were not materially different from the original model.

Table 4.14 Regression Statistics for Ratio-Correlation Model, Washington State Counties,

2000/1990

Multiple R 0.891 Analysis of Variance Table
R Square 0.794

DF SS MS F Sig. F
Adj. R Square 0.776

Regression 3 0.198 0.066 44.855 4.40E-12Std. Error 0.038
Residual 35 0.052 0.001Observations 39
Total 38 0.250

Coefficients, Standard Errors, T- and p-values, and Confidence Intervals

b Beta Std. Error T-stat p-value Lower 95% Upper 95%

Intercept 0.195 0.071 2.734 0.010 0.050 0.341

Voters 0.093 0.141 0.062 1.505 0.141 �0.033 0.219

Autos 0.336 0.410 0.079 4.246 0.000 0.175 0.497

Enrollment 0.398 0.545 0.063 6.344 0.000 0.271 0.525

Influence and Leverage Values

Minimum Maximum Mean

Standard

Deviation Cut-off Point

Exceed1

Cut-off

Cook’s Distance 0.000 0.156 0.029 0.042 0.103 7.7%

DFBeta-Voters �0.031 0.330 0.000 0.011 0.320 0.0%

DFBeta-Auto �0.027 0.046 0.000 0.014 0.320 0.0%

DFBeta-Enrollment �0.026 0.033 0.000 0.110 0.320 0.0%

Multicollinearity Assessment

Correlation Matrix Variance Inflation Factors

Voters Autos Enrollment Voters Autos Enrollment

Voters 1.000 0.554 0.358 20.7 24.5 31.1

Autos 0.554 1.000 0.425

Enrollment 0.358 0.425 1.000

1Percent of the sample larger than cut-off value
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The last panel of the table shows statistics to evaluate multicollinearity.

The usual approach is to examine a correlation matrix of the independent

variables. These correlations are moderate in value and range from 0.358 to

0.554. While a high correlation between independent variables can point to a

collinearity problem, the absence of a high correlation cannot be interpreted as

evidence of no problem (Belsley, Kuh, and Welsch 1980:92). It is possible

for three variables to be collinear, while no two pairs alone are highly correlated.

Another way to examine multicollinearity is through the variance inflation factor

(VIF), which measures the proportion of the variance in an independent

variable associated with the other independent variables. The common rule of

thumb is a VIF greater than 10 indicates excessive or severe multicollinearity

(e.g., Kennedy 1992: 183; Marquardt 1970; Neter, Wasserman, and Kutner 1989:

409), but in some circumstances the VIF threshold could be considerably larger

than 10 (O’Brien 2007). Based on the criteria of 10, it appears that multicol-

linearity a potential issue in this regression.

We also plotted residuals against predicted y-values and each independent

variable to check for heteroscedasticity and model misspecification, and created

normal probability plots to check the normality assumption (Draper and Smith

1981: Chapter 3). Figure 4.1 shows the normal probability plot. Under the normality
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Fig. 4.1 Normal Probability Plot of Regression Residuals, Ratio-Correlation Model
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assumption, all of the residual points would fall directly on the 45 degree

line. There is some departure from normality is the middle of the curve and

may indicate excessive skewness in the residuals with too many errors in one

direction. The plot of the residuals against the predicted y-values are random and

do not indicate the presence of heteroscedasticity or model misspecification

(see Figure 4.2). Plots of the residuals against each independent variable did not

reveal any abnormalities (data not presented). If heteroscedasticity is present,

the simplest solution is to use heteroscedasticity-robust standard errors (Stock and

Watson 2003: 126-129). In our example, there was little difference between the

standard errors for the coefficients between the heteroscedasticity-robust standard

errors and standard errors not corrected for heteroscedasticity.

4.4 Data Display

This final section of this chapter discusses commonly used statistical graphical and

mapping techniques for analyzing and displaying information. Statistical graphics

are used to achieve four broad objectives (Jacoby 1997: 2-4): 1) exploring the
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Fig. 4.2 Scatter Plot of Regression Residuals versus Predicted Values, Ratio-Correlation Model
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contents of a dataset; 2) finding structure in the data; 3) checking assumptions of

statistical models, as just described; and 4) communicating the results of the

analysis. Statistical graphics provide useful summaries of large, complicated

datasets and emphasize the important features of the data. Graphical tools are not

as reliant on underlying assumptions of the data (e.g., interpreting the mean in a

skewed distribution), are less subject to misrepresentation, and facilitate a greater

interaction between the researcher and data by highlighting interesting and unusual

aspects of quantitative data. Further details on the design principles and practices of

constructing, using, and interpreting statistical graphics can be found in Jacoby

(1997, 1998), Schmid (1983), and Tufte (1990, 1997, 2001).

Many of the above comments apply to mapping techniques for spatial data

analysis. Maps provide a visual representation of change over space and are

becoming indispensible for creating, evaluating, and disseminating population

estimates, especially given the increasingly detailed spatial resolution of these

estimates. The information age has introduced a new cartographic product that is

changing the face of mapping: digital data for computerized mapping and analysis.

Even more significant, mapping databases and GIS tools are accessible that do not

require extensive expertise in geographic information systems and cartographic

methods. For better or worse, the ability to make maps has been democratized.

Additional information on the principles of map design and techniques for creating

maps of geospatial data can be found in Krygier and Wood (2011) and

Tyner (2010).15

4.4.1 Statistical Graphics

4.4.1.1 Univariate Data

The histogram is one of the most common ways of displaying univariate data. It is a

two dimensional graph that shows the frequency on the vertical axis and the

variable categories on the horizontal axis. Despite their widespread use, histograms

have several disadvantages when used for continuous data (Jacoby 1997: 14): 1)

minor changes in the bin definitions can greatly impact the visual display; 2) narrow

bins may produce erratic looking graphs, while wide bins may distort/mask impor-

tant distribution features; and 3) variability within a bin is masked. So the choice of

bins can greatly impact substantive conclusions from a histogram. The smooth

histogram overcomes some of these problems, by showing local densities within the

distribution as a smooth continuous function (e.g., Silverman 1986; Tarter and

Kronmal 1976). Line graphs are useful for presenting data over time. Joining up the

points on a line graph gives an instant picture of past trends.

Figure 4.3 shows a histogram and line graph of household income classes in the

highest and lowest income census tracts in San Diego County. The histogram more

clearly identifies the income classes, but the advantage of using the line graph for

showing trends is also evident. Lines will show changes in trends more clearly
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than bars, because the area of the bars detracts from the trend. Both figures show the

much larger concentration of households with incomes of $200,000 or more in

the high income census tract and conversely the much larger concentration of

households with incomes under $30,000 in the low income census tract.
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Fig. 4.3 Household Income Distribution Histogram and Line Chart, Low and High Income

Census Tracts, San Diego, County, 2005–2009

Source: US Census Bureau, 2005–2009 ACS
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Pie charts are used to show the relative sizes of subgroups that make up a whole.

Pie charts are ubiquitous in business, journalism, and the public sector. However,

this type of graph has been criticized because of the difficulties in comparing

sections within a pie chart or data across different pie charts (e.g., Schmid

1983:65; Tufte 2001: 178). Pie charts can be an effective way of displaying

information in some cases, in particular if the intent is to compare the size of a

slice with the whole pie, rather than comparing the slices themselves (Spence

2005; Spence and Lewandowsky 1990). An alternative to the pie chart is the

stacked bar chart, which shows the parts of the whole in a vertical representation.

Figure 4.4 compares the pie and stacked-bar chart for the low income census tract,

where the categories have been collapsed to improve readability. A less widely used

but informative graphic is the ogive, which is a line chart of a cumulative
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Fig. 4.4 Household Income Distribution Pie and Stacked-Bar Chart, Low Income Census Tract,

San Diego, County, 2005–2009

Source: US Census Bureau, 2005–2009 ACS
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probability distribution. Such a distribution provides information on the percent of

the observations above (or below) a certain value. For example, 80% of the

households in the low income census tract have incomes less than $100,000,

compared to 30% in the high income tract (ogive not shown).

Several graphical options exist for displaying a univariate data distribution.

Univariate scatterplots show each observation plotted along a scale line

representing the range of values. This graph displays all of the information

without the potential loss or distortion of a histogram, but it limited to relatively

small datasets (Jacoby 1997: 30). A quantile plot is a two dimensional graph

that shows the data value on the vertical axis plotted against its quantile value.

A quantile is the probability of an observation being less than or equal to certain

position in a cumulative distribution. The shape of a quantile plot helps identify

the shape of a distribution. For example, a symmetrical distribution will have an

s-shaped quantile plot. Quantile plots show all of the data and can be used for

datasets of virtually any size, since they represent the shape of a monotonic

array rather than locations of individual plotting symbols (Jacoby 1997: 36).

There are many variants of the univariate scatterplot theme (e.g., dot plots,

symmetry plots, quantile-quantile plot) (e.g., Friendly 1991: Chapter 3;

Mitchell 2008: Chapters 3 and 7).

Similar to a histogram, the stem-and-leaf plot is useful for visualizing the shape

of the data, but unlike a histogram it retains the original data to two significant digits

(Emerson and Hoaglin 1983). This display consists of a leaf, which is the last digit,

and the rest of the number is the stem. It is sorted in ascending order by stem and

ascending order within each leaf. With very small data sets a stem-and-leaf plot can

be of little use, as a reasonable number of data points are required to establish

definitive distribution properties. With very large data sets (greater than 300), the

stem-and-leaf plot will become cluttered, since each data point must be represented

numerically.

The box plot shows a five-number summary of a dataset and provides a visual

impression of several important aspects of a data distribution: location, spread,

skewness, tail length, and outliers (Emerson and Strenio 1983). The main compo-

nent of a box plot is a box whose endpoints represent the middle of the distribution

bounded by the 25th and 75th percentiles. A crossbar in the box shows the median,

and the tails are represented by a line drawn from each end of the box to a

remote point not considered an outlier. The distance to the remote point from the

end of the box is 1.5 times the interquartile range. Outliers beyond the remote point

are represented by asterisks. The relative position of the median in the box and the

length and direction of the tails depict the distribution shape. For example, a median

closer to the lower end of the box with a long upper tail indicates a right-skewed

distribution.

Figure 4.5 shows box and stem-and-leaf plots for household size for census tracts

for Salt Lake and Cumberland Counties. The differences between the shapes of the

two distributions are evident from these graphs. Both distributions show some

departures from a perfectly symmetrical distribution. The long lower tail for Salt

Lake County census tracts is prominent.
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4.4.1.2 Bivariate and Multivariate Data

The basic visualization tool for bivariate data is the scatterplot that illustrates the

joint distribution of the two variables in a rectangular coordinate system. The value

of one variable is shown on the X-axis and the corresponding value of the other

variable is shown on the Y-axis. Scatterplots help identify strength and direction of

a bivariate relationship and outlying observations. One of the most powerful

features of a scatterplot is its ability to show non-linear relationships. The basic

scatterplot can be enhanced to provide more information about the underlying

pattern of the data, the univariate distributions of the variables, and the individual

observations in the data set (Jacoby 1997: 54-63). Enhancements include: 1) adding

marginal box plots; 2) labeling points; and 3) slicing the data to examine the

conditional relationship within each slice. Another strategy for illuminating the

bivariate relationship is to fit a smooth curve to points on the scatterplot to

summarize changes in the central tendency of one variable at different locations

of the other variable. Nonparametric smoothing techniques are used to fit a curve

without having to know in advance the functional specification between the two

variables (Goodall 1990). The scatterplot in Figure 4.6 shows a moderately strong

relationship between the automobile registration and population variables used in

the ratio-correlation model discussed above.
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and Cumberland County, 2005–2009

Source: US Census Bureau, 2005–2009 ACS
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Multivariate data pose special challenges for statistical graphics. Information

can vary along several dimensions (variables) in a display medium that is inherently

two-dimensional in nature. All multivariate graphics require changing or expanding

the familiar visual metaphors we use for two variables, and a wide variety of

methods have been developed (e.g., Chambers, Cleveland, Kleiner, and Tukey

1983; Friendly 1991: Chapters 8 and 9); Gnanadesikan 1997; Jacoby 1998; Monette

1990). We discuss some of the more popular approaches.

Multiple code plotting uses alternative symbols for representing the different

dimensions. For qualitative variables, the standard bivariate plot will show the

relationship for each category using different symbols. For multiple quantitative

variables, a glyph plot can show all variables simultaneously. Three dimensional

(3-D) scatterplots can be used to examine the relationship between a dependent

variable and two independent variables simultaneously. There are problems in

discerning any more than general patterns and accurate visual estimates from 3-D

scatterplots, but incorporating interactive, dynamic technology display increases

their utility (Sung, Shirley, and Baer 2008).

Multivariate data can be shown as a series of bivariate scatterplots (e.g., Jacoby

1998: 39). The scatterplot matrix facilitates a comprehensive understanding of

multiple bivariate scatterplots by portraying a square, symmetrical table with k
rows and columns. Each intersection of row i and column j contains a scatterplot

showing variable Xi as the horizontal axis and variable Xj as the vertical axis.

Fig. 4.6 Scatter Diagram of the Relationship between Automobile Registration and Population,

Ratio-Correlation Model
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Because the matrix is symmetric, the same variables appear in panel ji with the

horizontal and vertical positions of the variables reversed. One drawback of the

scatterplot matrix is that it does not show multivariate structure because each

scatterplot within a panel is constructed independent of information in other panels.

Figure 4.7 shows the scatterplot matrix of all variables used in the ratio-correlation

model. That the population is more closely associated with school enrollment and

automobile registration is clearly apparent in this matrix. Potential outliers are also

apparent, most notably in the relationship between automobile and voter registrations.

Multivariate structure is the understanding of non-random patterns of several

variables simultaneously. Conditioning plots show how a variable is affected by

several other variables, which addresses the problem with the scatterplot matrix.

A conditioning plot shows the bivariate relationship holding constant or

conditioned on the values of other variables. It is a multi-panel display that shows

the bivariate relationship within slices of the conditioning variable. These slices

follow the principle of small multiples (Tufte 2001: 170–175).

Finally, the bi-plot allows the joint relationships between the observations and

variables of a data matrix to be displayed graphically. Observations are displayed as

Fig. 4.7 Scatterplot Matrix of the Variables, Ratio-Correlation Model
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points while variables are displayed either as vectors, linear axes, or nonlinear

trajectories in a common space (Greenacre 2010). Bi-plots are easy to interpret.

Correlations among the variables are represented by the angles of the vectors. The

observations are represented by points and their distances in the two-dimensional

space determine the similarity between their profiles. A profile for observation i is
its array of scores on all k variables.

4.4.2 Maps

Combining science, aesthetics, and technique cartography builds on the premise

that reality can be modeled in ways that communicate spatial information effec-

tively. In the 21st century it is possible to find a map of virtually anything. However,

finding or making a meaningful map is the objective, and a well-designed map "is

convincing because it implies authenticity (MacEachren 1994: 9). A good map

provides a compromise between portraying the items of interest in the right place

for the map scale used, against the need to annotate that item with text or a symbol,

which takes up space on the map medium and may cause some other item of interest

to be displaced. In this last section of the chapter, we provide examples of

cartographic mapping techniques. These examples are not meant to be comprehen-

sive or even representative of the huge variety of different styles and types of maps,

but are intended to provide a glimpse into the efficacy of this display medium.

Figure 4.8 presents a map of the inventory of real property within the city of

Middletown, Connecticut compiled from tax maps, recorded deeds, and plats. Maps

showing geographic boundaries and their attributes are useful for validating model

inputs and evaluating the estimates themselves. Maps like this provide a convenient

and easy to understand platform for obtaining outside review and greatly enhance

the transparency of modeling data. They are even more productive when made

available digitally.

Figure 4.9 shows the widely used thematic map with shading patterns. The

dramatic change in population pre- and post-Katrina can easily be understood.

The population estimates, built from the ZIP + 4 level and mapped at the census

tract level, reveal where Louisiana’s population has shifted as a result of the

hurricane’s impact. Seventy percent of the census tracts in the state saw an increase

in population totaling 11,746 people, but 30 percent of the census tracts experienced

a population decrease of 460,190, resulting in Louisiana’s state population decreas-

ing by an estimated 448,444.

Figure 4.10 is an example of corridor mapping that also includes pie charts to

indicate the share of daily trips by trip purpose (home to work, school, or college;

home to other places; and trips not originating at home). It shows daily trip-end data

for five selected highway corridors in the San Diego region in the year 2030. Each

selected corridor is surrounded by a one-mile buffer area. This map helps transpor-

tation planners evaluate future travel demands and travel model results and allows

decision makers to see the travel impacts of land use and transportation policies.
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Figure 4.11 illustrates the use of circle symbology to depict the future number of

dwelling units located throughout Guam. The US will relocate thousands of mili-

tary personnel from Okinawa, Japan to the island of Guam. This relocation will

have a major impact on the island’s infrastructure. Housing, schools, and services

will have to be built. New roads and new utilities will be needed, and existing roads

will have to be upgraded. This map is part of a series created to show the distribu-

tion of different demographic variables depending on various development

scenarios on the island of Guam. This type of map gives planners a good way to

visualize the development alternatives and will help them manage the growth of

Guam upon the relocation of several US military bases.

Figure 4.12 shows the distribution of economic activity across the continental

US using gross domestic product (GDP) per day as the measure. The scale of the

economic activity is represented by the height from a 3D surface model. GDP is

measured using employee data from Dun & Bradstreet and combining it with GDP

by industry data from the Bureau of Economic Analysis. This map is used to

respond quickly to requests from federal and state agencies for economic impact

analyses related to hazardous events. It also provides a unique perspective on

economic activity that moves beyond tabular representations of economic data.

Fig. 4.8 City of Middletown, Connecticut, Tax Map 28

Source: Heidi Krueger, Applied Geographics, Inc., and Frank Marchese, City of Middletown, ESRI

Map Book No. 21 http://www.esri.com/mapmuseum/mapbook_gallery/volume21/planning7.html
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Fig. 4.9 Population Displacement—The Impact of Hurricane Katrina on the State of Louisiana

Source: Mapping Analytics, LLC, Gene Rinas, ESRI Map Book No. 21 http://www.esri.com/

mapmuseum/mapbook_gallery/volume21/business2.html
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Fig. 4.10 San Diego Region—Trip Proximity Analysis along Selected Highway Corridors

Source: Joaquin S. Ortega, San Diego Association of Governments, ESRI Map Book No. 23 http://

www.esri.com/mapmuseum/mapbook_gallery/volume23/transportation13.html
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Fig. 4.11 Island of Guam Demographics

Source: Parsons Corporation, ESRI Map Book No. 24 http://www.esri.com/mapmuseum/

mapbook_gallery/volume24/sustainable3.html

Fig. 4.12 US Centers of Economic Activity (Continental United States)

Source: Los Alamos National Laboratory, ESRI, Map Book No. 24 http://www.esri.com/

mapmuseum/mapbook_gallery/volume24/business2.html
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Endnotes

1. If r is expressed as a percentage average annual growth rate the 100 in this formula is not

needed.

2. Demographic measures typically refer to a calendar year. Sometimes a three-year average of

demographic events is used to smooth out the effects of annual fluctuations.

3. Life tables can be classified as complete or abridged. Complete life tables provide data by single

year of age; abridged life tables provide data by age group (usually five-year groups, with the

youngest group subdivided at age one). There are two types of life tables. A period life table is

based on the ASDRs calculated for a particular period of time (usually one, two, or three years).

A cohort life table is based on the mortality patterns actually experienced by members of a

particular birth cohort (e.g., all persons born in 1910) over their lifetimes.

4. Calculating survival rates for one-year age groups requires an unabridged life table, but the

approach is the same. For example, a five-year survival rate for a one-year age group can be

calculated as: Sx ¼ Lx+5/Lx

5. The migration rates must be applied in a manner consistent with the way they were computed;

for example, if rates were based on the unadjusted population at the beginning of the

migration interval, they must be applied to the unadjusted population at the beginning of

the estimation interval.

6. The reverse survival rate method can also be used to estimate net migration by age. Here the

survival rate is divided into the age group at the end of the period and compared to the

appropriate beginning-period age group. The two methods yield identical results and in

practice the forward survival rate is used (Siegel 2002: 22).

7. While travel time and distances are usually used in the IOP, one could set the predetermined

limits based on the travel cost of reaching an area.

8. Migration flows between places i and j, have also been modeled using a gravity function. In

most gravity models, migration is directly proportional to size of the origin and destination

areas and inversely proportional to the intervening distance between them (Rodrigue,

Comtois, and Brian 2009: 216; Tarver and McLeod 1973; Zipf 1946).

9. A variant of the arithmetic mean is the weighted average. In an arithmetic mean each of the

data points contributes equally to the final average, while in a weighted average some data

points contribute more than others.

10. A property of the mean is that the sum of the deviations from each observation and the mean

will equal zero. One way to handle this is to take the absolute value of the differences before

summing, which is what the mean deviation does. The variance on the other hand squares the

differences. The mean deviation is adequate for purely descriptive purposes, but it is not

useful for statistical inference and is rarely used (Blalock 1972: 80).

11. Some computer programs (e.g., excel and SPSS) subtract 3 from the kurtosis formula. In this

case, 0.0 indicates a mesokurtic distribution; a negative value a flatter distribution; and a

positive value a more peaked distribution. Stata uses the formula in the text.

12. �p is the estimated proportion and �q is its compliment.

13. Intervals can also be computed that do not require any specific assumption about the shape of

the probability distribution (e.g., Hahn and Meeker 1991: Chapter 5).

14. Associated with every statistical test are model and measurement requirements, and the test is

valid only if these requirements hold. Parametric tests, as described in the text, make the

most stringent model and measurement assumptions. If those stringent assumptions are

correct, parametric methods have the most statistical power. However, if those assumptions

are incorrect, parametric methods can be verymisleading. For that reason they are not considered

robust. Most parametric hypothesis tests have non-parametric equivalents that require fewer and

less restrictive assumptions (e.g., Gibbons and Chakraborti 2011; Siegel 1956). Nonparametric

tests are often referred to as distribution-free tests.

15. ESRI publishes map books that contain a wide range of maps for many different uses in the

private and public sector. These books are available online at http://www.esri.com/

mapmuseum/index.html.
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Chapter 5

Overview of Estimation Methods

Our purpose in this Chapter is to provide a general roadmap of subnational population

estimation methods, which are covered in detail in subsequent Chapters. We set the

stage for this overview by differentiating between pre-censal, inter-censal, and post-

censal estimates and classifying population estimation methods. Finally we describe

the variety of methods currently used to estimate population. This focus of this

Chapter is on population estimates based on usual residence or de jure. We cover

de facto (physically present) population estimates in Chapter 16.

5.1 Classification of Estimates and Methods

5.1.1 Pre-censal, Inter-censal, and Post-censal Estimates

Estimates are commonly divided into two types on the basis of their time reference

and derivation (Bryan 2004: 523; Raymondo 1992: 99,123). These two types,

which employ different methodologies, are: (1) inter-censal estimates, which relate

to a date between two censuses and take the results of these censuses into account;

and (2) post-censal estimates, which relate to a date following the latest census, but

prior to a subsequent census. Post-censal estimates take the last census and possibly

earlier censuses into account. Post-censal estimates can be generally viewed as

extrapolations, and inter-censal estimates as interpolations. Though extrapolation

techniques may be used in post-censal estimates, post-censal estimates are com-

monly made with symptomatic data, or data related to changes in population. There

are also pre-censal estimates for dates prior to the advent of census taking (e.g.,

before 1790 in the US, before 1871 in Canada, and before 1801 in the United

Kingdom). Pre-censal estimates are the province of historical demography

presented in Chapter 17.
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5.1.2 Classification Schemes

Murdock and Ellis (1991: 181) identified four broad categories of techniques used to

estimate population: (1) Extrapolative (e.g. linear trend; shift-share); (2) Symptomatic

(e.g., censal ratio; housing unit method); (3) Regression-based (e.g., ratio correla-

tion); and 4) Component (e.g., cohort survival, component methods). The Symp-

tomatic and Regression-based procedures both use symptomatic data (as defined in

Chapter 3), but the form of the variables and statistical procedures are quite distinct

between them. While this scheme covers the major techniques for estimating

population, it excludes sample-based techniques (See Chapter 11) and other

techniques such as dual system estimators (Chapter 12).

A more general schema categorizes estimation methods into two types:

(1) “flow” and (2) “stock” (Long 1993). In general, stocks typically have a certain

value at a point in time (e.g., the population size in 2011), while a flow (or “rate”)

changes a stock over time; stock and flows are the basic building blocks for systems

dynamics models (e.g., Forrester 1958). The component technique, for example, is

a flow method because it estimates each component of population change since the

last census. The censal ratio method, for example, is a stock method that estimates

population based on its relationship to other variables such as school enrollment,

employment, automobile registrations, total number of deaths (and births), and

tax returns.

Another schema places estimation methods into three categories: (1) analytical

and statistical models that use data symptomatic of population and its changes;

(2) mathematical models that use historical census data; and (3) sample based

(Judson and Swanson 2011: 13-14). Methods falling into the first category have

generally been developed by and for applied demographers, most of who work for

national, state, and local governments. Methods falling into the second category

have generally developed by and for academic demographers, most of who work at

universities and research institutes. The methods falling into the third category have

generally been developed by and for statisticians and survey research scientists, but

they also are widely used by demographers. There also are techniques that combine

methods from two or even all three categories.

Table 5.1 shows a classification scheme for population estimation methods that

combines elements from the three approaches discussed above. It adds sample

based and other methods to the Murdock and Ellis scheme, along with a stock

and flow dimension. Some broad categories are reported in finer detail to reflect

where the methods differ by stock and flow. The Hamilton-Perry method is not a

strictly component method, but we place it under this rubric because it is a short-

hand or simplified version of the cohort-component model. This scheme identifies a

method as flow if it is predominately based on the change formulation, and the

identification is based on the most frequent application of a method. For example,

the censal ratio method is almost always based on the relationship of a symptomatic

indicator to the population at the last census, but this method could be based on the

change in population relative to the change in a symptomatic indicator between

the last two censuses.
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Most estimation methods are stock-based or have a stock-based component whose

formulation has a point in time focus (13 of the 17 methods). The component

method II, cohort-component, share-of-growth, and difference-correlation methods

are flow based. The housing unit and composite methods use both stocks and flows.

In the housing unit method the flow component is related to estimating changes in

housing units and the stock component is related to determining the occupancy and/

or household size characteristics at a point in time. In the composite method the

flow approach is often applied to estimate the population under 65 years of age and

the stock approach is often applied to estimate the population 65 years and older.

5.2 Estimation Methods

5.2.1 Extrapolation

Extrapolation techniques rely solely on the pattern of past population changes to

estimate the post-censal population. The method assumes that trends in the post-

censal period will be similar to past trends. Extrapolation methods generally are

simple to implement and require limited data; for example, the constant share

method requires data only for a single point in time. These techniques are most

likely to be used for post-censal periods relatively close to the last census, for

completing estimates when resources are limited, or for estimating small areas and

demographic subgroups (e.g., race).

Table 5.1 Classification

of Estimation Methods
Estimation Method Stock Flow

Extrapolation

Simple

Complex

Ratio

Constant Share

Shift Share

Share-of-Growth

x
x

x
x

x

Symptomatic

Housing Unit

Censal ratio

x
x

x

Regression

Ratio Correlation

Difference Correlation

Rate Correlation

Lagged Correlation

x

x
x

x

Component

Component Method II

Cohort-Component

Hamilton-Perry

Composite

x
x

x
x

x

Sample Based x

Other x
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Following Smith, Tayman, and Swanson (2001: 161-162), we examine three

general categories of extrapolation methods: simple, complex, and ratio. Simple

methods have simple mathematical structures and require data for only two points

in time. We cover methods that assume linear, exponential, and geometric patterns

of population change. Complex methods have more complex mathematical struc-

tures, require data from a number of points in time, and require statistical methods

to estimate model parameters. We cover five complex methods: linear trend models,

exponential trend models, polynomial curve fitting, logistic curve fitting, and ARIMA

models. Ratio methods are those where a population of a subgroup is expressed as

a proportion of a larger population (e.g., city population as a share of the county

population; Asians as a share of the total population). Three ratio methods are

discussed: constant share; shift share, and share-of-growth.

5.2.2 Housing Unit

The Housing Unit method is one of the most widely used techniques for subnational

population estimates (Bryan 2004b: 550; Jarosz 2008; Smith and Cody 2004). This

method can be applied at virtually any level of geography, can accommodate a

variety of data sources and application techniques, and can produce estimates that

are at least as accurate as other post-censal estimation techniques (Lowe, Myers,

and Weisser 1984; Smith 1986; Smith & Cody 2004). Since 1996 the US Census

Bureau has relied exclusively on the housing unit method for subcounty population

estimates (US Census Bureau 1998).

The housing unit method is based on the fact that almost everyone lives in

some type of housing structure, whether a single family unit, an apartment, a mobile

home, a college dormitory, or a state prison. The population can therefore be

estimated as the number of occupied housing units (households) times the average

number of persons per household (PPH), plus the number of persons living in group

quarters. Occupied units can be estimated directly or derived from an estimate of

housing units (total and occupied) by applying a vacancy rate factor. The efficacy

of the housing unit method depends on accurate data reflecting the change in

housing and accurate information on the vacancy rate, persons per household, and

group quarters population at the post-censal estimation date. A variety of data

sources and estimation techniques are used to estimate these factors (Smith and

Cody 2004).

5.2.3 Regression

Regression techniques employ the statistical procedures of simple or multiple

regression where symptomatic data are the independent variables and the popula-

tion is the dependent variable. This method assumes that the statistical relationship

between symptomatic data and the corresponding population remains unchanged
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over time (e.g., Mandell and Tayman 1982; Tayman and Schafer 1985). The types

of symptomatic data that have been used in regression models are births, deaths,

school enrollment, tax returns, motor vehicle registrations, employment, voter

registration, and sales taxes. Regression methods are most often applied to estimate

the population of counties within a state, but if symptomatic data are available, they

could be used in any nested geographic system.

The most common regression-based approach to estimating population is the

ratio-correlation method (Schmitt and Crosetti 1954). A multiple regression equa-

tion is derived to express the relationship between (1) the ratio at two census points

of an area’s share of the total for the larger area for several symptomatic series and

(2) the ratio at two census points of an area’s share of the population of the larger

area. Modifications to the ratio variable construction include taking the difference

between the shares over the inter-censal period (Schmitt and Grier 1966; O’Hare

1976; Swanson 1978), and using the ratio of the natural logarithm of the shares

(Swanson and Tedrow 1984). Modifications to the basic regression model have

included creating separate equations for different subgroups of counties (stratification)

and using dummy variables to represent demographic and socio-economic features

of counties (Martin and Serow 1978; Purcell 1970; Rosenberg 1968). Another

alternative that has been proposed is the use of the simple, unweighted average of

the estimates from simple regressions instead of estimates from a single multiple

regression equation (Namboodiri and Lalu 1971).

5.2.4 Censal Ratio

The censal ratio method is among the earliest approaches for estimating post-censal

estimates and its beginning is tied to the publication of Bogue’s (1950) vital rates

method. The vital rates method derives local population estimates from estimates of

post-censal local birth and death rates and post-censal values for births and deaths.

In the early 1970s the more encompassing censal ratio term came into common use

as the method was expanded to include symptomatic indicators other than births

and deaths (Voss, Palit, Kale, and Krebs 1995). The basic approach of a censal ratio

method is to establish the ratio between a symptomatic indicator and the population

at the time of the last census; update the ratio to the post-censal time point; and

derive the estimate from the updated ratio and the value of the post-censal symptom-

atic indicator. Censal ratios are often updated using a synthetic approach that ties

changes in the local ratio to changes in the ratio for a larger area (see Chapter 11).

5.2.5 Component

Component methods generally use estimates of births, deaths, and migration for

the post-censal period to derive a population estimate. This approach to estimating

population is attractive because it can provide a more complete explanation of
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the reasons behind the population change than other estimation techniques.

Component methods that estimate births, deaths, and migration are most often

applied at the county, state, and national levels, but can be applied at any level

providing the appropriate data is available (Murdock, Hwang, and Hamm 1995).

Births and deaths are available for the post-censal period through the national vital

statistics system; although there may be a lag between the latest information and the

post-censal time point. The information on post-censal migration is meager at best

and various approaches have been designed to estimate this component of popula-

tion change (e.g., Murdock, Hwang, and Hamm 1995; Bryan 2004b: 540-544).

The component method can be applied to total population and non-age related

demographic characteristics by simply adding births, subtracting deaths, and either

adding or subtracting the change due to migration from the latest census population.

The cohort-component method is used when estimates are needed by age and

for the components of change (Smith, Tayman, and Swanson 2001). The simplest

cohort-component framework breaks the population into age and sex groups,

but this method can handle further disaggregation by other demographic chara-

cteristics. Estimates of births, deaths, and migration by age are based on age-sex

specific survival rates from a life table and migration rates, which can be net or

gross in- and out-migration rates. Age-specific fertility rates are used to generate

births. For post-censal estimates, the age pattern of births, deaths, and migration is

often adjusted to independently derived control totals.

Although not strictly a component technique, the Hamilton-Perry method

offers an alternative approach for estimating population by age that requires only

population data by age from two time points (Hamilton and Perry 1962). As such, it

can be applied quickly and easily and is particularly suited from subcounty areas

that usually lack the necessary data for the cohort-component method (Smith

and Tayman 2003; Swanson, Schlottmann, and Schmidt 2010: Chapter 3).

The Hamilton-Perry method is based on cohort-change ratios that combine the

effects of mortality and migration and uses a child-woman ratio to estimate the

youngest age group.

The composite method, developed by Bogue and Duncan (1959), is a portfolio of

separate methods each tailored to particular segments of the population. The results

of this portfolio are put together to estimate the total population. While not strictly a

component method, the composite method can incorporate procedures for

estimating the components of change. Many alternative portfolios of methods are

possible, such as using the component method for estimating the population under

65 years of age and censal ratio method using Medicare data to estimate the

population 65 years and older.

5.2.6 Sample Based

Under the sample based rubric we cover sample based, synthetic, and SPREE

methods. These methods are interconnected to each other, but also connect to

110 5 Overview of Estimation Methods



other estimation methods. Sample based methods often rely on estimates of the

population and their characteristics and their predominant use is designing,

analyzing, and adjusting samples. Chapters 2 and 4 provide an overview of the

design and implementation of sample surveys and the statistical tools for analyzing

their results.

Synthetic methods are used to estimate the population or demographic charac-

teristics of a smaller area based on trends in a larger area, such as shown for the

censal ratio method. The synthetic method assumes the local trend changes at the

same rate as the larger area trend. The rate of change in a local area can differ

greatly and even be in the opposite direction of trends in the larger area, biasing

the results of synthetic estimation (Voss, Palit, Kale, and Krebs 1995).

Chambers and Feeney (1977) and Purcell and Kish (1980) proposed structure

preserving estimation (SPREE) as a generalization of synthetic estimation that

makes fuller use of reliable direct estimates. Within a log-linear model framework,

SPREE uses the method of iterative proportionate fitting that adjusts a multiple

dimensional matrix to independently derived marginal totals for each dimension

(e.g., Deming 1943: Chapter VII).

5.2.7 Other Methods

Methods that are sufficiently different from those previously discussed include

structural models, administrative records, dual system estimators, social network

analysis, and imputation and related methods. While different, the methods covered

here have pieces in common with other post-censal population estimation methods.

Demographers and others often face questions that cannot be answered using

estimation (and projection) methods based solely on demographic factors - the

demographic consequences of the closing of a large manufacturing plant, for

example. Structural models can produce population estimates that can account for

factors such as the economy, environment, land use, housing, and the transportation

system (Smith, Tayman, and Swanson 2001: Chapters 9 and 10).

The administrative records method is most associated with using tax return

information to estimate migration rather school enrollment as part of the component

method (Starsinic, Lee, Goldsmith, and Spar 1995). Administrative records may

have a role beyond their use for estimating migration. Swanson and Walashek

(2011) propose a re-vamped US census based neither on the current system, self-

enumeration, nor its predecessor door-to-door canvassing. Instead, they propose the

Census-Enhanced Master Address File (CEMAF) system built on a combination of

four elements: (1) administrative records; (2) the continuously updated Master

Address File; (3) survey data; and (4) modeling and imputation techniques.

CEMAF could also deliver population estimates that are timely, comprehensive,

and internally consistent and also estimates of housing and demographic and socio-

economic characteristics for the US and subnational areas. The dual system

estimates method represents a specific application of the general theme of record
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matching underlying the CEMAF. The dual system method matches files from

the Current Population Survey and IRS to obtain population estimates by age

(15 to 64), sex, race, region, etc. (Causey 1984).

Social network analysis is a method for estimating the hard to count populations.

It represents an interdisciplinary approach developed from the interplay of social

theory; application; and formal mathematical, statistical, and computing methods

(Wasserman and Faust 1994:10). The general approach involves asking people

how many people they know in various populations whose size is well known.

From this information, the network scale up method is used to derive estimates

of the population group of interest (Killworth, Johnsen, Bernard, Shelley, and

McCarty 1990).

Imputation is the general term to describe the assignment of information to cases

with missing values due to non-response in a survey or census. The problems of

missing data are well known and include less efficient estimators, the inability to use

standard complete-data analysis methods, and possible biases because respondents

are often systematically different from non-respondents (Rubin 1987:1). Four com-

mon imputation methods are: (1) deductive, which is based on other information

available from the case in question; (2) hot-deck, which is based on information from

“closest-matching” cases; (3) mean-value, which uses the average as the source of

assignment; and (4) regression-based, which missing values are estimated from

independent factors in cases with no missing values. Imputation can be based on a

single value or derived from a distribution of missing values (multiple imputation).

5.2.8 Inter-censal

After a census is conducted, the post-censal estimates created for the prior decade

by definition become inter-censal estimates. The post-censal estimate corresponding

to the census data inevitably turns out to be different from the census count. This

difference is known as the error of closure, which represents the cumulative decade

error in the estimation procedure as well as any error in the two censuses. To create a

set of inter-censal estimates consistent with the two censuses, the error of closure is

allocated to each inter-censal year. Different approaches have been developed to

handle this allocation for population totals and errors of closure in demographic

composition (Bryan 2004b: 535-538 and 551-552). For example, the error of

closure can be distributed using the share of the decade change in total population

in each inter-censal year.

In some applications, inter-censal estimates may be needed where no post-censal

estimates are available or they do not contain the demographic detail required.

The common way to handle such a situation is using methods of interpolation

(Raymondo 1992: 102-110). The chief difference among interpolation methods is

their assumption about the nature of growth over the inter-censal period. The most

common assumption is that change occurs linearly, but a non-linear (geometric

or exponential growth) assumption may be appropriate in areas of rapid change.
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For more complicated growth patterns, polynomial or osculatory interpolation

methods are available (e.g., Judson and Popoff 2004: 685-692). For example, say

only total population estimates exist for the inter-censal years, but information is

needed by age. One approach is to interpolate the percentage distributions by age

between the two censuses for each inter-censal year and then apply the interpolated

distributions to the inter-censal total population (e.g., Espenshade and Tayman 1982).
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Chapter 6

Extrapolation Methods1

Extrapolation techniques rely solely on the pattern of past population changes to

estimate the post-censal population, and they assume trends in the post-censal

period will be similar to historical trends. This method involves fitting mathemat-

ical models to historical data and using these models to estimate population.

Relatively low costs and small data requirements make extrapolation methods

useful, not only in demography, but in other fields as well (e.g., Armstrong 2001:

217; Granger 1989: Chapters 2, 3, and 4; Mahmoud 1984; Makridakis, Wheel-

wright, and Hyndman 1989: Chapters 4 and 7; Schnaars 1986. Although trend

extrapolation methods are associated more frequently with population projec-

tions, they are useful for post-censal estimates relatively close to the last census,

for completing estimates when resources are limited, or for estimating small

areas and demographic subgroups (e.g. Murdock and Ellis 1991: 184; Baker

et al. 2008).

Although there are many different methods by which historical values can be

extrapolated, it is convenient to organize them into three categories. Simple extrap-

olation methods have simple mathematical structures and require data for only two

dates. We discuss three simple methods: linear change, geometric change, and

exponential change. Complex extrapolation methods require data for additional

time points, have more complicated mathematical structures, and require statistical

estimation of model parameters. We cover five complex methods: linear trend,

polynomial curve, exponential curve, logistic curve, and ARIMA time series models.

The final category, ratio extrapolation methods, involves the two populations: the

population of a subgroup or “child” (e.g., county, Hispanic origin); and the population

of its larger “parent” (e.g., state, total population). We cover three methods: Constant-

Share, Shift-Share, and Share-of-Growth.

We illustrate extrapolation methods using annual total population data from

1980 to 2000 for two counties in Washington State: Island and Walla Walla

(Forecasting Division 2010). We use the 20 year base period for all 11 methods.
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The Springer Series on Demographic Methods and Population Analysis 31,
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For methods requiring only two time points, we use the population in 1980 and

2000. For the complex methods requiring more data we use all 21observations. For

each method, we produced annual estimates over a simulated post-censal period

from 2000 to 2010. To illustrate the methods, we calculate a post-censal estimate

for 2010, and then discuss estimates for selected post-censal years (2002, 2005, and

2010) later in the Chapter.

Table 6.1 and Figure 6.1 show the base data for Island and Walla Walla

Counties. The table also includes data for Washington State, which are needed

to apply the ratio methods. During the 1980 to 2000 period, Island County grew

faster than the state (62.5% vs. 42.6%), while Walla Walla County was among the

slowest growing counties in the state, increasing by 16.3%. In 1980, Island

County had around 3,000 fewer people than Walla Walla County. By 2000,

the population of Island County exceeded that of Walla Walla County by more

than 16,000 people. We return to this fact in our summary comments on trend

extrapolation methods.

Table 6.1 Population of Washington State and Island and Walla Walla Counties, 1980-2000

Year Washington State Island Walla Walla

1980 4,132,353 44,048 47,435

1981 4,229,278 45,443 47,134

1982 4,276,549 46,559 47,712

1983 4,307,247 47,551 48,248

1984 4,354,067 48,225 48,345

1985 4,415,785 49,661 48,287

1986 4,462,212 51,024 48,163

1987 4,527,098 52,436 48,170

1988 4,616,886 54,370 48,085

1989 4,728,077 56,523 48,277

1990 4,866,692 60,195 48,439

1991 5,021,335 62,107 50,220

1992 5,141,177 63,947 51,119

1993 5,265,688 64,193 52,812

1994 5,364,338 66,239 53,836

1995 5,470,104 66,462 53,269

1996 5,567,764 67,856 55,047

1997 5,663,763 68,967 55,238

1998 5,750,033 69,609 55,521

1999 5,830,835 70,512 55,108

2000 5,894,121 71,558 55,180

Av. Annual Change 88,088.4 1,375.5 387.3

Percent Change 42.6% 62.5% 16.3%

Av. Annual Rate of Growtha 1.78 2.43 0.76
aExponential rate of growth
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6.1 Simple Extrapolation

6.1.1 Linear Change

This method assumes that the post-censal population will change by the same

amount over a given period, usually a year, as occurred during the base period.

Average annual absolute change (aaac) during the base period is:

aaac ¼ ðPl � PbÞ=y;

where aaac is the average annual absolute change in the base period; Pl is the

population in the launch year (usually the latest census); Pb is the population in the

base year (earliest year of the data); and y is the number of years in the base period

(i.e., the number of years between the base and launch years). An estimate using the

linear change method is:

Pt ¼ Pl þ zðaaacÞ;

where Pt is the population in the post-censal year and z represents the years between

the post-censal estimate date and the last census.

The average annual absolute change between 1980 and 2000 and the 2010

population estimate for Island County are:

aaac½ð71; 558� 44; 048Þ=20� ¼ 1,375.5; and

P2010½71; 558þ ð10 �1375:5Þ� ¼ 85,313:
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Fig. 6.1 Population of Island and Walla Walla Counties, 1980-2000
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The corresponding calculations for Walla Walla County are:

aaac½ð55,180� 47,435Þ=20� ¼ 387:3; and

P2010½55,180 þ ð10 � 387:3Þ� ¼ 59,053:

6.1.2 Geometric Change

This method assumes that the population will change by the same percentage rate in

the post-censal period as during the base period. The average geometric rate of

population change during the base period is:

r ¼ ½ðP1=PbÞð1=yÞ� � 1;

where r is the average geometric rate of change; Pl is the population in the launch

year; Pb is the population in the base year; and y is the number of years in the base

period. An estimate using the geometric change method is:

Pt ¼ ðP1Þ½ð1þ rÞz�;
where Pt is the population in the post-censal year; and z is the number of years in the

post-censal period.

The annual rate of geometric change between 1980 and 2000 and the 2010

population estimate for Island County are:

rð½ð71,558/44,048Þð1=20Þ� � 1Þ ¼ 0:02456; and

P2010½ð71,558Þ½ð1þ 0:02456Þð10Þ� ¼ 91,208:

The corresponding calculations for Walla Walla County are:

rð½ð55,180/47,435Þð1=20Þ� � 1Þ ¼ 0:00759; and

P2010½ð55,180Þð1þ 0:00759Þ10� ¼ 59; 514:

6.1.3 Exponential Change

The exponential change approach is closely related to the geometric, but it views

change as occurring continuously rather than at discrete intervals. The exponential

rate of population change during the base period is computed as:

r ¼ ½lnðP1=PbÞ�=y;
where r is the average annual exponential rate of change; ln represents the natural

logarithm; Pl is the population in the launch year; Pb is the population in the base
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year; and y is the number of years in the base period. A population estimate using

the exponential change method is:

Pt ¼ P1e
rz;

where Pt is the population in the post-censal year, e is the base of the system of

natural logarithms (approximately 2.71828), and z is the number of years in the

post-censal period.

The annual rate of exponential change from 1980 to 2000 and the 2010 popula-

tion estimate for Island County are:

rð½lnð71,558/44,048Þ�=20Þ ¼ 0:02426; and

P2010½71,558 � ðe0:02426 � 10Þ� ¼ 91,205:

The corresponding calculations for Walla Walla County are:

rð½lnð55,180/47,435Þ�=20Þ ¼ 00756; and

P2010½55,180 � ðe:00759 � 10Þ� ¼ 59,513.

6.2 Complex Extrapolation

Complex extrapolation methods differ from simple extrapolation methods in sev-

eral respects. Complex methods require additional time points over the base period

and thus can provide a more complete picture of the historical pattern of population

change. Their more complex mathematical structures provide a wider range of

assumptions regarding post-censal trends. Finally, the statistical algorithms for

estimating complex model parameters provide a basis for constructing probabilistic

intervals around post-censal population estimates (Espenshade and Tayman 1982;

Swanson and Beck 1994). We discuss the uncertainty in population estimates in

Chapter 14. These features do not guarantee that complex extrapolation methods

provide more accurate estimates than either simple or ratio extrapolation methods,

and complex extrapolation methods are considerably more difficult to implement.

Three basic steps are typically followed when applying complex extrapolation

methods. The first is to assemble historical population data for different dates

during the base period; typically annual data for population. The data must be

based on consistently defined geographic boundaries for each time point; adjust-

ments will be required in areas that have experienced shifts in boundaries, which

is typically the case for subcounty areas. The second step is to estimate the para-

meters of the model selected to generate the estimate; a process known as curve

fitting (Alinghaus 1994). Typically, graphs and statistical measures are used to

determine how well a given model is fits the data for base period, but the choice of

a particular model also reflects judgment about the nature of change during

the post-censal period. The final step is to generate post-censal estimates using

the model(s) selected.
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We develop a variety of complex extrapolation models for Island and Walla

Walla Counties. In these types of models, population is the dependent variable and

time is the independent variable. Time can be measured using the original units or

as recoded values. For ease of interpretation, we express time as integers ranging

from 1 to 31 (e.g., 1¼ 1980, 2¼ 1981, . . ., 21¼ 2000, 22¼ 2001, . . ., 31¼ 2010).

The decision on the measurement of time is not substantively important, as long as a

consistent coding scheme is used in both the base and post-censal periods. The only

impact of the coding scheme will be on the equation intercept; none of model

statistics, slope parameters, or post-censal estimates are affected.

6.2.1 Linear Model

A linear model is based on the equation for a straight line. It assumes that

a population will change by a constant numerical amount. This assumption is

identical to that underlying the simple linear method discussed earlier, but the

model is different:

Pi ¼ aþ ½ðbÞðTiÞ� þ ei þ cb

where i is the time point; P is the population; T is the time variable; a is the

constant or intercept term, and b is the slope; e is the error term of the equation

(see Chapter 2); and cb is a calibration factor. The slope represents the annual

change in population; a positive slope reflects an increasing population and a

negative slope reflects a decreasing population in the post-censal period. The

calibration factor requires explanation. In any curve fitting procedure, it will be

unusual for the estimated and observed values in the launch year to be identical.

An additive calibration factor, based on the launch year residual, adjusts the post-

censal estimates so they are consistent with the launch year population. The

calibration factor is computed by subtracting the predicted population from the

observed population. If the residual is negative/positive (predicted value is too high/

low), the estimates will be adjusted downward/upward by a constant amount.

The Ordinary Least Squares (OLS) regression results, calibration factor, and the

2010 population estimate for Island County, using the value of 31 for time are:

cb 71,558� 73,487 ¼ �1,929; and

P2010 41,913.2þ ð1,503.5 � 31Þ � 1,929 ¼ 86,593; adjusted r2 ¼ 0:979:

The corresponding results for Walla Walla County are:

cb 55,180� 55,555 ¼ �375; and

P2010 45,454.0þ ð481:0 � 31Þ � 375 ¼ 59,990; adjusted r2 ¼ 0:867:
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The linear model fits the data for Island County better than Walla Walla County

as evidenced by its higher adjusted r2. The slopes indicate that Island and Walla

Walla Counties will increase by 1,503 and 481 annually during the post-censal

period. These increases are somewhat, but not dramatically, higher than the average

change over the base period.

6.2.2 Polynomial Model

Polynomial models can be used for basing post-censal estimates on non-linear

patterns (i.e., the annual change is a constant percentage value). The general

formula for a polynomial curve is:

Yi ¼ aþ ðb1ÞðXiÞ þ ðb2ÞðX2
i Þ þ ðb3ÞðX3

i Þ þ � � � þ ðbnÞðXn
i Þ:

Unlike the linear model, a polynomial model has more than one term for the time

variable, represented by raising its value to different powers. The coefficients for

a polynomial model can be estimated using OLS procedures and include a measure

of the linear trend (b1) and measures of the non-linear pattern (b2, b3, . . .., bn).
The highest exponent in the equation is called the degree of the polynomial. The

linear model previously discussed is a first degree polynomial; a second degree or

quadratic polynomial contains X and X2; a third degree polynomial contains X, X2;

and X3; and so forth.

To illustrate the use of a polynomial curve, we use the quadratic form:

Pi ¼ aþ ½ðb1ÞðTiÞ� þ ½ðb2ÞðT2
i Þ� þ ei þ cb:

A quadratic curve can produce a variety of growth scenarios, depending on

the signs and magnitudes of the two slope coefficients (see Figure 6.2). The curves

in this figure are derived from slopes of 1.0 and 0.1 on the linear and squared term

and time values from 1 to 11.

A population growing/declining at an increasing rate will occur when both

coefficients are positive/negative. A positive linear and negative squared term

will cause a population to grow at a decreasing rate, with the possibility of change

turning negative. A negative linear and positive squared term will cause a popula-

tion to decline at a decreasing rate, with the possibility of change turning positive.

Although any degree can be used, polynomials higher than a “second” or at most a

“third” degree are seldom used for population estimation.

The quadratic regression results, calibration factor, and the 2010 population

estimate for Island County are:

cb 71; 558� 72; 609 ¼ �1; 051; and

P2010 40; 744:3þ ð1808:4 � 31Þ þ ð�13:86 � 312Þ � 1,051 ¼ 82,434;

adjusted r2 ¼ 0:981:
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The corresponding results for Walla Walla County are:

cb 55,180 � 56,809 ¼ �1,629; and

P2010 47,124.4þ ð45:24 � 31Þ þ ð19:81 � 312Þ � 1,629 ¼ 65,935;

adjusted r2 ¼ 0:907:

For Island County, the squared term is not significant at a ¼ 0.05 and the

adjusted r2 is only 0.002 higher than the linear model. However, the negative on

the squared term causes the 2010 estimate in this model to be lower than the

estimate from the linear model (82,434 vs. 86,593). For Walla Walla County, the

squared term is significant at a ¼ 0.05 and the adjusted r2 is 0.04 points higher than

the linear model. The addition of the squared term causes the linear term to lose its

statistical significance. The slope of the linear term in the quadratic model (45.24) is

considerably smaller than the slope in the linear model (481.0). The prominence of

the squared term in the Walla Walla County quadratic model causes the post-censal

estimate to be 9.9% higher than the estimate based on the linear model (65,935 vs.

59,990).

6.2.3 Exponential Model

Non-linear trends in the historical data also can be projected using curves based on

logarithmic or other transformations of the base data (e.g., Draper and Smith 1981:

Chapter 5; Isserman 1977; Stock and Watson 2003: Chapter 6). Transformations
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include using the inverse of time to model areas where the population change is

asymptotic; the power function that uses the natural logarithm of time and popula-

tion; the logarithmic function that uses the natural logarithm of time; and the

exponential function that uses the natural logarithm of population.

We illustrate the use of other non-linear functions using the exponential model:

lnðPiÞ ¼ aþ ½ðbÞðTiÞ� þ ei þ cb; and

Pi ¼ elnðPiÞ:

When the population has been transformed by taking the natural logarithm,

the equation yields the post-censal estimate transformed value of the population.

The value of the population itself is obtained by the rules of natural logarithms

(i.e., e raised to the power of the equation result). The slope of an exponential model

estimates the average annual rate of growth.

The exponential model regression results, calibration factor, and the 2010

population estimate for Island County are:

cb 11:17826� 11:22556 ¼ �0:04730;

lnðP2010Þ10:6746þ ð0:02624 � 31Þ � 0:04730 ¼ 11:44074; adjusted r2 ¼ 0:972;

and P2010 e
11:44062 ¼ 93; 036:

The corresponding results for Walla Walla County are:

cb 10:91836� 10:92663 ¼ �0:00827;

lnðP2010Þ 10:7294þ ð0:00939 � 31Þ � 0:00827 ¼ 11:01222; adjusted r2 ¼ 0:871;

and P2010 e
11:01222 ¼ 60; 610:

The exponential model fits the data for Island County better than Walla Walla

County as evidenced by its higher adjusted r2. The slopes indicate that Island and

Walla Walla Counties will increase by 2.6% and 0.9% annually during the post-

censal period. These rates are somewhat higher than the rates observed over the

base period.

6.2.4 Logistic Model

Unlike the extrapolation methods considered so far, the logistic approach explicitly

allows an upper limit on the ultimate size of the population. It is designed to yield an

S-shaped pattern representing an initial period of slow growth rates, followed by a

period of increasing growth rates, and finally a period of declining growth rates that

approach zero as a population approaches its upper limit. The logistic model is

consistent with Malthusian and other theories of constrained population growth.
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Keyfitz (1968: 215) provides the following formula for a 3-parameter logistic

curve:

Pi ¼ a=½1þ ðbðe�cTiÞÞ�;
where a reflects the upper asymptote; b and c are parameters that define the shape of

the logistic curve; and e is the base of the natural logarithm. Some software

packages (e.g. SPSS) require the magnitude of the upper asymptote prior to the

estimation of other model parameters, while other packages (e.g., NCSS) estimate

all parameters within the context of the model. However, like parameters in an

ordinary regression model (e.g., the intercept term), the estimated parameters may

not be consistent with a substantive interpretation (e.g., a represents an actual upper
population limit). Other specifications are available for the logistic curve, some

including more than three parameters (Pielou 1969: 19-32; Sieber and Wild 1989:

331). Other functions that contain asymptotic ceilings or floors on population

include the modified exponential, Gompertz, and hyperbolic (Davis 1995; Pittenger

1976: 57-67).

The 3-parameter logistic regression model regression results, calibration factor,

and the 2010 population estimate for Island County are:

cb 71,558� 72,443 ¼ �885; and

P2010 ð92,078.29=1þ ð1:2472 � eð�0:072686ð31ÞÞÞÞ � 885 ¼ 80,526;

adjusted r2 ¼ 0:984:

The corresponding results for Walla Walla County are:

cb 55,180� 55,752 ¼ �572; and

P2010 ð19,774,450=ð1þ ð432:731 � eð�0:009605ð31ÞÞÞÞ � 572 ¼ 60,783;

adjusted r2 ¼ 0:883:

The estimated a parameter is more logical for Island County (92,078) than the

same parameter for Walla Walla County (19,774,450), but the 2010 post-censal

estimates for both counties do not appear unreasonable. Estimates based on the

logistic curve are sensitive to the value of the upper asymptote. Increasing the a

parameter to 120,000 in Island County raises the 2010 population estimate to

84,990; 5.5% greater than the estimate based on the software generated parameter.

Reducing the a parameter to 80,000 lowers the 2010 population estimate to 76,860.

6.2.5 Arima Model

The final complex extrapolation method we illustrate is the Autoregressive

Integrated Moving Average (ARIMA) model popularized by Box and Jenkins

(1976). Some feel ARIMA models are preferable to regression-based complex
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extrapolation methods because they produce more accurate coefficient estimates

and smaller errors over the post-censal period (e.g., Granger and Newbold 1986:

205-215; Jenkins 1979: 88-94; McDonald 1979). The dynamic and stochastic

framework of ARIMA models also provide a statistical basis for developing

probabilistic intervals around post-censal estimates (e.g., Box and Jenkins 1976:

Chapter 5; Nelson 1973: Chapter 6). However, the methods used in ARIMA

modeling are considerably more complex than the other extrapolation methods,

and are more difficult to implement and explain to users. We provide a general

overview of ARIMA modeling and suggest consulting standard texts for more

details on implementing and using this modeling framework (e.g., Box and Jenkins

1976; Brockwell and Davis 2002; Chatfield 2000; Jenkins 1979; Montgomery,

Jennings, and Kulahci 2008; Yaffee and McGee 2000).

ARIMA models attempt to uncover the stochastic mechanisms that generate

the historical population series and then use this information as a basis for develop-

ing post-censal estimates. Three processes describe the stochastic mechanism and

specify the structure of an ARIMA model: (1) autoregressive; (2) differencing; and

(3) moving average.

The autoregressive process has a memory, which is based on the correlation of

each observation with all preceding observations. The impact of earlier observa-

tions is assumed to diminish exponentially over time. The number of preceding

observations incorporated into the model determines its order. For example, in a

first-order autoregressive process, the current observation is explicitly a function

only of the immediately preceding observation. However, the immediately preced-

ing observation is a function of the one before it, which is a function of the one

before it, and so forth. Consequently, all preceding observations influence current

observations, albeit with a declining impact. In a second-order autoregressive

process, the current observation is explicitly a function of the two immediately

preceding observations; again, all preceding observations have an indirect impact.

A stationary time series (i.e., one with constant differences over time) is needed

to properly construct an ARIMAmodel. The differencing process is used to achieve

such a series. First differences (i.e., observation minus its preceding value) are

usually sufficient, but second differences (i.e., differences between differences)

have been found to be applicable to human populations (McNown and Rogers

1989; Saboia 1974; Tayman, Smith, and Lin 2007). Logarithmic and square root

transformations may also be useful for stabilizing the variance of a time series.

The moving average represents an event that has a substantial but short-lived

impact on a time series pattern. The order of the moving average process defines the

number of time periods affected by a given event.

The general ARIMA model is expressed as ARIMA(p,d,q), where p is the order

of the autoregressive term, d is the degree of differencing, and q is the order of the

moving average term. ARIMA models based on time intervals of less than one year

may also require seasonal terms for p, d, and q; seasonal terms are not usually

relevant when modeling population. The first step in developing an ARIMA model

is to identify the best values for p, d, and q, which typically range from 0 to 2. The d

value is determined first because a stationary series is required to properly identify

the autoregressive and moving average processes (Box and Jenkins 1976: 174;

6.2 Complex Extrapolation 125

http://dx.doi.org/10.1007/978-90-481-8954-0_5
http://dx.doi.org/10.1007/978-90-481-8954-0_6


Granger 1989: 72). As a rule, the time series should contain enough observations

for model identification and parameter estimation. Convention suggests a minimum

of 50 observations for ARIMA modeling (e.g., McCleary and Hay 1980: 20;

Meyler, Kenny and Quinn 1998; Saboia 1974), but there is no hard and fast rule;

for example, some say the minimum should be 60 and others say 30 (Yaffee and

McGee 2000: 4).

The traditional approach for identifying the best values for p, d, and q focuses on

assessing the patterns of the autocorrelation function (ACF) and partial autocorre-

lation function (PACF) (Box and Jenkins 1976: Chapter 6). This quasi formal

approach to identification is subjective and highly dependent on the skill and

interpretation of the analyst (Granger and Newbold 1986: 77-78; Meyler, Kenny,

and Quinn 1998). To help with this problem more objective methods have been

developed, such as statistical tests for stationarity (Dickey, Bell, and Miller 1986;

Elliot, Rothenberg, and Stock 1996; Phillips and Perron 1988) and statistics such as

the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC)

for selecting the best values for p and q while avoiding a model with too many

parameters (Brockwell and Davis 2002: 187-193). The usual practice is to evaluate

several tentative models before the best model is selected. An acceptable ARIMA

model will have random residuals, no significant values in the ACF and PACF, and

the smallest possible values for p, d, and q. The Portmanteau test is used to evaluate

the null hypothesis of randomness in model residuals (Ljung and Box 1978).

We identified the “best” parameters for p, d, and q using the ACF, PACF,

statistical tests, and the AIC and BIC for Island and Walla Walla Counties. We

used annual observations from 1980 to 2000 to be consistent with the base period

of the other extrapolation methods.2 Calculation of post-censal estimates from the

other complex methods requires only the proper value for the time variable and

the model parameters; they are easy to recreate. It is more difficult to recreate post-

censal estimates for ARIMA models. Beyond the launch year post-censal values, or

a combination of the observed and post-censal values are used to generate the post-

censal estimate at a subsequent time point. The temporal sequence of values

required will depend on the degree of differencing and the order of the autore-

gressive and moving average parameters. Box and Jenkins (1976: 135-138) and

Nelson (1973: 144-147) provide details on computing values past the launch year

for a wide variety of ARIMA models

For Island County, an ARIMA(1,2,0) model is selected, which has a first order-

auto regressive process, second-degree differencing, and no moving average. The

coefficients and 2010 post-censal estimate, adjusted with a calibration factor, from

this model are: constant (-16.444); ar1 (-0.593); and 2010 population estimate

(80,828). ARIMA models with second-order differences and a constant follow a

quadratic trend (Tayman, Smith, and Lin 2007), but the negative coefficients on the

constant and ar1 term decelerates the non-linear growth potential of the Island

County ARIMA model.

For Walla Walla County, an ARIMA(0,1,0) model is selected, which has neither

an autoregressive nor moving average process and a first-degree difference.

This model has only a constant term (387.2), and yields a 2010 population estimate

of 58,738. An ARIMA(0,1,0) model is also known as a random walk process
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(Pearson 1905). Under a random walk model, a post-censal estimate is computed by

adding the constant term to the prior year population. If the constant term is not

statistically significant, it can be ignored and the post-censal estimate is simply the

launch year value (Granger and Newbold 1986: 40).

6.3 Ratio Extrapolation

Unlike other trend extrapolation methods, ratio extrapolation methods involve the

relationship between two entities: a larger unit or parent and a subunit or child.

The entities can be geographically-based such as census tracts within a city or reflect

demographic subgroups, such as race groups that comprise the total population.

Ratio extrapolation methods are often used where there is a perfect hierarchical

structure; that is, where the subunits are mutually exclusive and exhaustive and can

be aggregated to the parent level culminating in one all-inclusive unit. For example,

census blocks in the US can be aggregated successively into block groups, census

tracts, counties, states, and finally the entire United States. Ratio methods also can be

used where there is not a perfect hierarchy. For example, the urbanized area of cities

that nests within the urbanized area of a county, and not the entire county area.

Similar to simple extrapolation methods, ratio methods have small data

requirements and are easy to apply. These methods are also self-normalizing in

that the sum of subunit estimates will equal the estimate for the parent. We discuss

three commonly used ratio methods: 1) Constant-Share; 2) Shift-Share: and

3) Share-of-Growth. Ratio methods require an independent post-censal estimate

for the parent, which for most examples in the Chapter is the State of Washington;

we also use the Shift-Share method to produce 2010 post-censal estimates by

Hispanic Origin for Island County. The post-censal estimates for Washington

State are: 6,041,710, 6,256,400, and 6,733,250, for the years 2002, 2005, and

2010 (Forecasting Division 2010).

6.3.1 Constant-Share

In the Constant-Share method, the child’s share of the parent population is held

constant at a level observed during the base period. Typically, it is the share

observed in the launch year. The post-censal estimate is made by applying the

child’s share to independent estimate for the parent. The Constant-Share method is:

Pit ¼ ðPil=PjlÞðPjtÞ;

where Pit is the estimate for child (i) in the post-censal year (t); Pil is the population

of the child in the launch year; Pjl is the population of the parent (j) in the launch

year; and Pjt is the post-censal estimate of the parent.

6.3 Ratio Extrapolation 127



The computation of the 2010 post-censal estimates for Island County, Walla

Walla County, and the remainder of the State using the Constant-Share method is

shown in Table 6.2. This example held the shares constant at the 2000 launch year

value, but shares for any point in time or an average of shares from prior time points

could also be used. The constant method requires data from only one point in time,

making it useful for areas where changing geographic boundaries or lack of infor-

mation and/or time make it impossible to construct a geographically consistent

historical series. The main drawback of this method is that it assumes that all the

subunits will change at the same rate as the parent. In many instances, this will not

be a reasonable assumption.

6.3.2 Shift-Share

Unlike the Constant-Share method, the Shift-Share method is designed to deal with

historical changes in population shares. Different mathematical functions can be

used for extrapolating the historical trend in the shares (Gabbour 1993), and we

describe a method that assumes a linear trend in the shares over the post-censal

period. The Shift-Share method is:

Pit ¼ ðPjtÞ½ðPil=PjlÞ þ ððz=yÞððPil=PjlÞ � ðPib=PjbÞÞÞ�;

where the child is denoted by i; the parent by j; z is the number of years in the post-

censal period; y is the number of years in the base period; and b, l, and t refer to the

base, launch, and post-censal years. The (z/y) term implements the linear trend and

relates the length of the base and post-censal periods. For example with a 20 year

base period length, a post-censal estimate one year past the launch year would apply

(1/20) of the historical share change to the launch year share; two years past would

apply 2/20 of the historical change, and so forth.

The computation of the 2010 post-censal estimates for Island County, Walla

Walla County, and the remainder of the State using the Shift-Share method is

shown in Table 6.3. As mentioned earlier, ratio methods can also be used to

estimate demographic subgroups of the total population. Table 6.4 illustrates the

Table 6.2 Population Estimates: Constant-Share Method Island County, Walla Walla County,

and Balance of State, 2010

2000 2010a 2000–2010 Change

Population Share Estimate Number Percent

Island County 71,558 0.01214 81,742 10,184 14.2

Walla Walla County 55,180 0.00936 63,023 7,843 14.2

Balance of State 5,767,383 0.97850 6,588,485 821,102 14.2

State Total 5,894,121 1.00000 6,733,250 839,129 14.2
a2010 pop ¼ 2000 share * 2010 State estimate
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use of the Shift-Share method to estimate the 2010 population by Hispanic Origin

for Island County. This example uses a 10-year base period from 1990 to 2000.

Because the length of the base and post-censal periods are the same the (z/y) term

equals 1.0 and the entire 1990 to 2000 change in shares is applied to the 2000 shares

to estimate the 2010 shares. The Hispanic Origin estimates require an independent

2010 total population estimate for Island County. For this estimate, we use the

average of the 11 estimates for Island County discussed in this Chapter.

The Shift-Share method can lead to substantial population losses in areas that grew

very slowly (or declined) during the base period or unreasonably high estimates for

places that have grown very rapidly. This inherent problem with the Shift-Share

method is more acute when applying it to projections covering long-range horizons

(e.g., 20 or 30 years), but thismethod could be problematic for post-censal estimates in

areas with extreme changes in population during the base period.

6.3.3 Share-of-Growth

The Share-of-Growth ratio method deals with shares of population change rather

than population size. This method, also known as the apportionment method,

assumes the child’s share of population change in the parent area will be the same

over the post-censal period as it was during the base period. This Share-of-Growth

method is:

Pit ¼ Pil þ ½ððPil � PibÞ=ðPjl � PjbÞÞðPjt � PjlÞ�;

where the components are defined as those in the Shift-Share method.

The computation of the 2010 post-censal estimate for Island County, Walla

Walla County, and the remainder of the State using the Share-of-Growth method

is shown in Table 6.5. The Share-of-Growth method may provide more reasonable

post-censal estimates than either the Constant-Share or Shift-Share methods. How-

ever, it runs into problems when a child’s population change has the opposite sign

of the parent’s change. For example, say during the base period the parent grew by

Table 6.4 Population Estimates by Hispanic Origin: Shift-Share Method, Island County, 2010

Shares 2010 2000–2010 Change

1990 2000 Change Sharea Populationb Number Percent

Non-Hispanic 0.96667 0.96027 �0.00640 0.95387 82,805 14,090 20.5

Hispanic- Mexican 0.01964 0.02376 0.00412 0.02788 2,420 720 42.4

Hispanic Other 0.01369 0.01597 0.00228 0.01825 1,584 441 38.6

1.00000 1.00000 0.00000 1.00000 86,809c 15,251 21.3
a2010 share ¼ 2000 share + 1990–2000 change in share
b2010 pop ¼ 2010 share * 2010 Island County total population estimate
c2010 total population is the average of all 11 extrapolation methods for Island County
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2,500 and a child declined by 500; the child’s share of the parent’s change would be

computed as -500 / 2,500 or -0.2. If the parent grows by 5,000 during the post-

censal period, the decline in the child would be estimated at -1,000. This is not

likely a reasonable result; if anything the child is more likely to decline by a smaller

amount or could even increase. In this situation, the child’s share should be adjusted

and the remaining shares modified so they sum to 1.0. Some applications assume

zero change where change in the child is in the opposite direction of the parent’s

change (Pittenger 1976: 101). Adjusting a distribution with negative and positive

values can be done using the plus-minus method discussed in Chapter 13.

6.4 Analyzing Estimation Results

Using the 11 extrapolation methods and the 20-year base period from 1980 to 2000,

we estimated the total population for the years 2002, 2005, and 2010 in the

simulated post-censal period (see Table 6.6). What can these data tell us about

the behavior of post-censal estimates from ratio extrapolation methods?

Except for the complex polynomial, Constant-Share and Shift-Share, post-censal

estimates are close in value for Walla Walla County; the range of estimates for 2010

is only 2,045 if these three methods are excluded. The reasons for the exceptions are

clear. As previously noted, estimates based on the polynomial equation are driven

mainly by the squared term, which translates into relatively large increases in Walla

Walla population. The Constant-Share-method also yields relatively high estimates

because it assumes that Walla Walla County grows at the same rate as the State

during the post-censal period; it grew much more slowly during the base period.

The Shift-Share method assumes that Walla Walla’s share of the State population

will continue to decline. Despite the post-censal growth in the State’s population,

the Shift-Share method indicates Walla Walla’s population remains relatively

constant. Because the Share-of-Growth method relies on shares of the State’s

population change, its estimates are more in line with the other extrapolation

methods for Walla Walla County. We believe these results would occur in most

areas characterized by slow to moderate population changes.

Table 6.5 Population Estimates: Share-of-Growth Method Island County, Walla Walla County,

and Balance of State, 2010

Change 1980–2000 Population Change 2000–2010

Number Share 2000 2010a Numberb Percent

Island County 27,510 0.01561 71,558 84,657 13,099 18.3

Walla Walla County 7,745 0.00440 55,180 58,872 3,692 6.7

Balance of State 1,726,513 0.97999 5,767,383 6,589,721 822,338 14.3

State Total 1,761,768 1.00000 5,894,121 6,733,250 839,129 14.2
a2010 pop ¼ population 2000 + population change 2000–2010
bpop change 2000–2010 ¼ share of pop change 1980–2000 * State pop change 2000–2010
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The pattern of the estimates shows more variability for the faster growing Island

County. We believe the greater variability of estimates developed from different

extrapolation methods would occur in rapidly growing areas. With the exception of

the quadratic model, the assumption of linear versus non-linear growth makes a

larger difference in the Island County estimates. The polynomial model has a

negative sign on the squared term, which lowers the estimate relative to other

non-linear extrapolation methods. Estimates based on the logistic and ARIMA

models are the lowest of any method, perhaps unreasonably too low. The modest

difference between the calibrated asymptote in the logistic model (92,078) and the

launch year population (71,558) and the negative coefficient on the AR1 term act to

slow down the pace of growth during the post-censal period. The ratio methods also

show considerable variability, but now Shift-Share is the highest and the Constant-

Share is the lowest, reversing the pattern seen forWalla Walla County. This result is

expected because Island County grew faster than the State during the base period.

6.5 Conclusions

Extrapolation methods have a number of useful characteristics. Simple and ratio

methods have modest data requirements and most require population data from two

points in time; the Constant-Share method requires data from only a single time

point. Thesemethods are easy to apply and explain to users, can be applied in a timely

manner, and have low resource requirements. Complex extrapolation methods require

Table 6.6 Population Estimates Based on Alternative Extrapolation Methods, Island and Walla

Walla Counties, 2002, 2005, and 2010

Island Walla Walla

Extrapolation Method 2002 2005 2010 2002 2005 2010

Simple

Linear Change 74,309 78,436 85,313 55,955 57,116 59,053

Geometric Change 75,116 80,788 91,208 56,021 57,306 59,514

Exponential Change 75,116 80,786 91,205 56,021 57,306 59,513

Complex

Linear 74,565 79,075 86,593 56,142 57,585 59,990

Quadratic 73,955 77,343 82,434 57,014 60,061 65,935

Exponential 75,413 81,588 93,036 56,227 57,833 60,610

Logistic 73,710 76,592 80,526 56,258 57,914 60,783

ARIMA 73,792 76,547 80,828 55,640 56,801 58,738

Ratio

Constant-Share 73,346 75,953 81,742 56,550 58,560 63,023

Shift-Share 74,241 78,268 86,742 55,270 55,244 55,886

Share-of-Growth 73,862 77,213 84,657 55,829 56,744 58,872

Projection Range

Numeric Difference 2,067 5,635 12,510 1,744 4,817 10,049

Percentage Difference 3% 7% 16% 3% 9% 18%

132 6 Extrapolation Methods



data from a number of time points and require much greater modeling and statistical

skills than simple or ratio extrapolation methods. The lack of sufficient data often

precludes their use in many small areas. However, compared to other estimation

techniques that use symptomatic data or produce more detailed demographic

characteristics, even complex extrapolation methods are characterized by timeliness,

low resources, and small data requirements. In addition, complex extrapolation

methods can be used to develop probabilistic intervals around post-censal estimates.

Extrapolation methods have some notable short-comings for post-censal estima-

tion. They do not account for differences in some demographic characteristics,

notably age, or for differences in the components of growth. They provide limited

information on the demographic characteristics of the population, and can lead to

unreasonable results even over the relatively short post-censal time period. Perhaps

most importantly, they ignore relevant and known information that tracks changes

in the population over the post-censal period. Finally, how does one decide on

which extrapolation method or methods to use? Should an average of estimates

from several methods be calculated? If so, what methods should be included and

should the average be weighted or not? If a weighted average is desired, how are the

weights determined? Despite the mechanical/objective nature of extrapolation

methods, their proper use requires judgment and subjective choices about time

periods, functional forms, and so forth.

Endnotes

1. Adapted from Chapter 8, “Trend Extrapolation Methods”, in S. Smith, J. Tayman, and D.

“Swanson. Projecting State and Local Populations: Methodology and Analysis. New York,

NY: Kluwer Academic/Plenum Press. 2001.

2. The 21 observations are fewer than recommended for ARIMA modeling, so we also examined

a larger dataset based on 41 annual observations from 1960 to 2000. The orders of the p, d, and

q for the ARIMAmodels did not change and the post-censal estimates were close to those based

on shorter data series. The 2010 post-censal estimates for Island and Walla Walla Counties

were 1.8% lower and 1.0% higher using the longer data series.
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Chapter 7

Housing Unit Method

The housing unit method is based on the fact that almost everyone lives in some

type of housing structure, whether a single family unit, an apartment, a mobile

home, a college dormitory, or a state prison. Recall that the demographic balanc-

ing equation is an exact identity of population change (see Chapter 3). In a similar

vein, the housing unit method provides an exact determination of the total

population; any error is due to inaccuracies in estimates of its elements, not an

inherent flaw in the method itself (Lowe, Pittenger, and Walker 1977; Swanson,

Baker, and Van Patten 1983). It is one of the most widely used techniques for

subnational population estimates (Bryan 2004b: 550; Byerly 1990). One reason

for the wide spread use of the housing unit method is it can be applied at virtually

any level of geography, especially at detailed spatial resolutions (Jarosz 2008;

Tayman 1994). Second it can accommodate a variety of data sources and appli-

cation techniques (Lowe, Myers, and Weisser 1984; Smith and Cody 2004).

Finally, the housing unit method can produce estimates that are at least as accurate

as other post-censal estimation techniques (Hoque 2010; Smith 1986; Smith and

Mandell 1984; Starsinic and Zitter 1968).

This chapter begins by illustrating the general framework of the housing unit

method for estimating post-censal population. We show two methods. One requires

a post-censal estimate of the vacancy rate and the other provides a direct estimate of

households. The four subsequent sections discuss data and procedures for

estimating the individual elements of the housing unit method; namely, housing

units, vacancy rates, persons per household, and group quarters population. The

chapter ends with some concluding remarks about the housing unit method.

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_7, # Springer Science+Business Media B.V. 2012
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7.1 Components of the Housing Unit Method

7.1.1 Population

The housing unit method relies on the straightforward assumption that nearly all

people sleep under some kind of shelter. Within this general framework the post-

censal population estimate of a given place at time (t) is:

Pt ¼ ðHUt
� OCCRtÞ � PPHt þ GQt;

where P is population, HU is housing units (vacant and occupied units); OCCR

is occupancy rate (compliment of the vacancy rate); PPH is average number of

persons per household; and GQ is group quarters population. A common way to

estimate housing unit change is by permit data on housing units built, demolished,

or annexed since the last census (c):

DHSc to t ¼ NHSc to t � DHSc to t � AHSc to t;

where NHS is new housing units; DHS is demolished housing units; AHS is

housing units lost or gained due to annexations; and c to t is the time between the

last census and the post-censal estimate date (t)1. The post-censal estimate of

housing units is then given by:

HSt ¼ HSc þ DHSc to t:

The housing unit method contains both stocks and flows using the formulation

shown in the above three equations. The flow component is used to estimate the

change in housing units over the post-censal period, and stock components are used

to estimate households and household population at the post-censal time point.

These equations represent the basic formation of the housing unit method. The

most used refinement is to disaggregate the method by housing structure type (s):

Pt ¼
X

s
ððHSc;s þ DHSc to t;sÞ � OCCRt;s

� PPHt;sÞ þ GQt:

As discussed in the next section, using building permits rather than certificates of

occupancy requires assumptions about the lag between permit issuance and when

the units are ready for occupancy. Using a single lag time for all building types may

produce inaccuracies since the lag time for multiple family structures is usually

longer than for single family units (Smith 1986). Occupancy rates and PPH values

differ by structure type and using overall rates can lead to errors if the mix of

housing units has changed significantly in the post-censal period. Aside from these

methodological advantages, information on the dynamics of housing markets is

often more useful when disaggregated by housing type (Myers and Doyle 1990).
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Table 7.1 shows April 1, 2010 population estimates for the City of Olympia,

Washington made with the disaggregated housing unit method using building

permit data. The estimated vacancy rates and PPH values vary substantially by

structure type. Single family units have the highest occupancy rates and PPH.

Occupancy rates range from 0.868 for other units to 0.950 for single family units

and PPH values range from 1.67 for structures with 5 or more units to 2.54 for

single family units. Total housing units, households, and household population are

determined using a bottom up approach by summing over the structure type,

preserving the dynamics reflected in the occupancy rates and PPH values.

Studies have found that better estimates of households can be made from electric

customer (EC) data than from building permit information (Starsinic and Zitter

1968; Smith and Cody 2004; Smith and Lewis 1980, 1983). EC data are often of

better quality than building permit data and households can be directly estimated,

eliminating the intermediate steps of estimating housing unit change and occupancy

rates. Starsinic and Zitter (1968) proposed the change in electric customers as an

indicator of the net change in households:

HHt ¼ HHc þ ðECt � ECcÞ;
where HH is the number of households; EC is the number of electric customers;

c is the last census; and t is the post-censal time point. This technique assumes a

one-to-one correspondence between households and electric customers.

Table 7.1 Housing Unit Method: Building Permits Olympia, Washington, April 1, 2010

Housing Units

Single-Family 2 Units 3–4 Units 5+ Units Othera Total

Apr. 1, 2000

2000 to 2010b
11,089 758 1,132 5,907 852 19,738

Completionsc 1,330 40 124 154 n/a 1,648

Demolitions 117 8 0 5 n/a 130

Annexations 172 18 36 11 n/a 237

Net Change 1,385 50 160 160 �33 1,722

Apr. 1, 2010 12,474 808 1,292 6,067 819 21,460

Occupancy Rate 0.95027 0.92625 0.87523 0.88988 0.86813

Households 11,854 748 1,131 5,399 711 19,843

Persons per HH 2.5454 1.7172 2.1568 1.6660 1.6948

Household Pop 30,174 1,284 2,439 8,995 1,205 44,097

Group Quarters

Nursingd

Homes Dorms

Mentale

Health Military Other Total

571 0 410 0 419 1,400

Total Population 45,497
aMobile homes, trailers, and other units
bApr. 1, 2000 to March 31, 2010
cCertificates of occupancy
dIncludes convalesence facilities
eIncludes corrections facilities

Source: State ofWashington, Office of Financial Management, Forecasting Division, March 2, 2011
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A major issue with the difference approach is there is often not a one-to-one

correspondence between households and electric customers. Seasonal residents

may occupy housing units; master meters can serve more than one household;

and separate meters may be installed non-housing uses (Smith and Cody 2004).

To overcome these issues, households can be estimated using a censal ratio approach:

HHt ¼ HHc=ðECcÞ � ECt:

The ratio of households to electric customers is computed at the time of the latest

census. It is often held constant over the post-censal period, as it appears to remain

stable in many places (Smith 1986). If, for example, the seasonal and permanent

populations are growing at different rates, it may be useful to change the ratio over

the post-censal period. Extrapolation of the ratio from previous censuses and

professional judgment can be used to adjust the ratio up or down. A study in Florida

found household estimates from the censal ratio method were more accurate than

estimates based on the difference in electric customers (Smith and Lewis 1983).

Table 7.2 shows April 1, 2010 household estimates for jurisdictions in Sarasota

County, Florida using the difference and censal ratio methods applied to EC data.

The difference method yields higher estimates for all places. The estimates are

similar between the methods for Longboat Key and Sarasota, areas with little

change in electric customers over the decade, but diverge more for Venice, North-

Port and the unincorporated area. In NorthPort, the gain in electric customers is

68.5% larger than the number of households in 2000. Its censal ratio estimate is

7% lower than the estimate based on the change, similar to the difference seen in

Venice. For the unincorporated area, the censal ratio estimate is 2.5% lower than

the estimate based on the difference approach. The finding of a greater upward bias

in the difference approach is consistent with the results from other studies (Smith

and Lewis 1980, 1983).

Examining the 2000 censal ratio illustrates the lack of a one-to-one relationship

between households and EC. All ratios are below one, ranging from 0.718 in

Longboat Key to 0.891 in Sarasota. The effect of seasonal units is most clearly

Table 7.2 Household Estimates using Residential Electric Customers, Sarasota County

Jurisdictions, April 1, 2010

2000 Electric Customers 2010 Households

Jurisdiction Households Ratioa 2000 2010 2000–2010 Differenceb Ratioc

Longboat Key 4,280 0.71836 5,958 5,970 12 4,292 4,289

NorthPort 9,111 0.88914 10,247 25,606 15,359 24,470 22,767

Sarasota 23,427 0.89086 26,297 26,644 347 23,774 23,736

Venice 9,680 0.72537 13,345 16,402 3,057 12,737 11,898

Unincorporated

Area

103,439 0.80857 127,929 144,232 16,303 119,742 116,623

Sarasota County 149,937 0.81587 183,776 218,854 35,078 185,015 178,557
a2000 Households divided by 2000 electric customers
b2000 households + 2000-2010 change in electric customers
c2000 Ratio * 2010 electric customers

Sources: Bureau of Economic and Business Reseach, University of Florida

US Census Bureau, 2000 Decennial Census
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seen for Longboat Key. In 2000, 92% of its vacant units were classified as vacant for

seasonal, recreational, or occasional use. The corresponding figures for NorthPort,

Sarasota, and the unincorporated area were 66%, 34%, and 61%.

7.1.2 Housing Units

Building permits, certificates of occupancy, and electric customers are most often

used as symptomatic indicators of post-censal housing unit change (Smith 1986).

Administrative records such as property tax files, voter registration, postal address

lists, and aerial photographs can also be used to track housing unit change. All these

indicators have strengths and weaknesses that center on their ability to accurately

measure housing unit change and the resources required to collect, analyze, and

integrate them into the housing unit method framework.

7.1.2.1 Building Permit and Completions

The most comprehensive source of building permit data is Building Permits Survey

conducted by the Census Bureau (see Chapter 3). These data cover permits for

new construction by type of unit for every county and jurisdiction in the US,

are available monthly and in an annual aggregation, and are easily accessible

via the Internet.2 The Census Bureau’s residential permit data no longer include

demolitions, demolitions were last collected in 1995, and these data do not cover

mobile homes and other units.

Building permit information can also be directly obtained from the local agency

granting the permits. Local agencies are likely to be the best source for subcity-

level permit information, and for most agencies issuing permits the quality is

generally good. Permits obtained local agencies are subject to inconsistencies

including variations in definitions, data format, and geographic accuracy (Jarosz

1998). Many jurisdictions only provide hard-copy information which can introduce

additional error and require additional resources for data entry and verification.

Errors in geocoding permits to subcity areas are not uncommon and identification

of structure type can be ambiguous, especially the classification of 1-unit attached

structures. Some local agencies provide a permit record for multi-unit buildings,

but do not indicate the number of units. Some agencies provide only the permits

authorized, while others provide both authorized and completed housing units.

While most areas of the county require building permits, some small towns and

sparsely populated rural areas do not issue them. Building permits for mobile homes

are often of questionable quality (Smith 1986). These problems include issuing

permits for spaces in parks rather than for the mobile home unit, double counting

when ownership changes, and not tracking mobile homes. Building permits are

frequently issued for remodels and garages and other external structures and can

be included with permits for new units. Perhaps the most difficult problem with

building permit data is they represent the intention to build. Some units get built

quickly, others after a long delay, and still others never get built. To address this
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issue, lagged times are used to represent an assumed time frame for completion

(Smith and Cody 2004). Using lagged times still assumes that every permit will

eventually get built. The likelihood for eventual construction is influenced by

housing type, housing market conditions, and geographic area. To our knowledge,

this information, if available at all, would have to come from a specific local agency.

Certificates of occupancy or completions solve these problems because they are

issued only after the housing unit is built and ready for occupancy. Completion data

may provide a more accurate assessment of housing unit change than building

permits, but completions are not as widely available.

Table 7.3 provides a comparison of permits and certificates of occupancy for

new housing units from a local agency and permits from the Census Bureau issued

between 2000 and 2010 for Olympia, Washington. There is considerable variation

between the permits data collected in the Census Bureau survey and those from the

local agency. The difference between the local agency and Census Bureau data is

the smallest for single family units; the local agency reported 10 percent fewer

permits. More pronounced differences are seen for multiple family units, especially

for structures with 5+ units.

The comparison of permits and completions from the local agency show a close

correspondence with single family units, but proportionately fewer multiple family

units actually got built. During the 2000s, Olympia added 2,348 housing units

according to the decennial censuses. All symptomatic indicators understate this

change, with undercounts ranging from 14% to 30%. These results, while illustra-

tive in nature, do indicate the potential uncertainty and variability in using building

permit data to estimate housing change.

7.1.2.2 Electric Customers

While the quality of EC data can vary from company to company, large companies

generally have very accurate information, sometimes separately by housing struc-

ture type (Smith 1986). EC data can often be obtained for spatially-detailed areas

Table 7.3 Comparison of Building Permits and Completions Olympia, Washington, Apr. 1, 2000

to March 31, 2010

Single-Family 2 Units 3–4 Units 5+ Units Total

Permits

Local 1,324 66 183 168 1,741

Census Bureau 1,459 52 241 307 2,059

Completionsa 1,330 40 124 154 1,648

Ratio

Permitsb 0.907 1.269 0.759 0.547 0.846

Permits and

Compl.c
1.005 0.606 0.678 0.917 0.947

a Certificates of occupancy
b Local permits / Census Bureau Permits
c Completions / Local Permits

Sources: State ofWashington, Office of FinancialManagement, Forecasting Division,March 2, 2011

US Census Bureau, Censtats
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(e.g., census tract) and even by address, facilitating subcity-level estimation

(Rynerson and Tayman 1998; Tayman 1994). Address-level information is espe-

cially valuable. In conjunction with a GIS procedure known as Admatch, an address

can be assigned to any spatial location (see Chapter 2). EC data also offer one-stop

shopping by covering multiple agencies, saving the considerable time and effort

required to collect data from these agencies individually. For example, Florida

has 53 power companies that cover its roughly 400 cities and towns and 67 counties.

EC data do have some potential drawbacks. Companies may not be willing or

make it very difficult to obtain their customer information. EC data may not always

distinguish between active and inactive meters or between residential and non-

residential customers (Smith 1986). Replacement meters can lead to a double count,

if the record for the original record is maintained. Master-metered apartments have

more than one dwelling unit serviced by a meter, and the dwelling unit counts are

not always provided. EC data may not accurately account for demolitions or unit

conversions and may not distinguish seasonal and non-seasonal households.

7.1.2.3 Parcel Files

Administrative records such as assessor’s property tax (parcel) file may provide

very useful information for estimating housing units. The availability of GIS soft-

ware, robust desktop and server computing systems, data management capabilities,

and digitization of administrative records make using parcel files feasible. Parcel

files are increasing being incorporated into small-area data systems and can form a

foundation for estimating housing units in the post-censal period (e.g., Brown 1999;

Fairfax County 2010: Appendix A; Jarosz 2008; Puget Sound Regional Council

2009). Parcel files often contain the most consistent and up-to-date information on

housing units. San Diego County, for example, provides parcel file updates on a

quarterly basis. In addition to the number of units, parcel files contain other housing

attributes such as structure type, age of structure, and assessed value. Like EC data, a

parcel file offers one-stop shopping and provides very detailed spatial resolution.

Parcels are the atomic unit of development and this fine level of geographic

granularity makes it easier to review, find, and correct errors compared to aggregate

data (Jarosz 2008). A study of San Diego County cities and census tracts found that

housing unit estimates based on the parcel file had less bias and lower absolute

percent errors than estimates based on EC data (Rynerson and Tayman 1998).

The quality of parcel files can vary a great deal from place to place. Some

agencies do not have electronic records or may not be willing to provide data. Non-

taxable housing units such as those on federal, state, and tribal lands will not be in a

parcel file. The quality of housing unit counts on parcels containing multiple family

structures can vary considerably and determining units lost may be problematic.

Reconciling parcel records and housing unit census is labor intensive, requires a

significant commitment of time and resources, and requires ancillary data sources

(Jarosz 2008). Definitional differences between the census and assessor rules can be
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particularly problematic. For example, the census counts time shares as residential

housing unitswhile the assessor in SanDiego counts them as non-residential structures.

Little is known about the accuracy of housing unit estimates based on parcel

files. Table 7.4 compares 2010 parcel file-based housing unit estimates with 2010

census housing unit counts for jurisdictions in San Diego County. The estimates for

2010 have a modest bias and relatively low absolute percent errors. The MALPE

and MAPE (based on the last column and its absolute values) are -1.6% and 1.6%.

Average absolute percent errors across jurisdictions range from 0.0% to 5.8%, and

the estimates are at or above the census in only Oceanside and Lemon Grove. A less

favorable picture emerges when examining the error of the housing unit change.

The parcel file missed 12.3% of the housing unit change in San Diego County.

Even after discounting jurisdictions with relatively little housing change, the parcel

file systematically underestimates housing unit change, and sometimes by large

amounts. These results, while illustrative in nature, do indicate the potential for

parcel file information to deviate from housing unit trends.

7.1.2.4 Other Data Sources

The preceding sources are the most commonly used data to estimate post-censal

housing units, but other data also can track housing unit change including telephone

customer data and water and gas utility information. The correspondence between

these data sources and housing unit change is generally not as close the other data

sources described above (Smith 1986). Many housing units have no phones,

especially since the advent of cell phones, or unlisted numbers; do not require gas

or use bottled gas; or obtain water from wells.

Aerial photography can ascertain changes in housing units, but it tends to more

effective for very specific geographic areas rather than for broad-based estimation.

Aside from its expense, estimating housing units through aerial photography is

very time consuming and labor intensive. Unit counts derived from this source can

be ambiguous. It is relatively straightforward to identify single family detached

houses, but it is much more difficult to determine unit counts in multiple family

structures. With aerial photography it is not always evident whether a building

represents a housing unit or some other type of non-housing use and it is impossible

to identify housing units in mixed used projects (e.g., retail on the first floor and

housing lofts on the remaining floors).

Despite these issues, aerial photography is useful visual validation and external

checking of housing unit estimates from other sources, especially for very small

geographic areas, such as block groups and parcels (Jarosz 2008). Figures 7.1 and

7.2 contain examples of aerial photography, taken close to the 2000 census date,

used for ground truthing in San Diego County. In Figure 7.1, block 1074 clearly

shows no units, but the census counts 10 units. Census counts show 332 housing

units for blocks (1003-1012) in the bottom left of Figure 7.2, but the parcel file has

no units. This area, formerly a navy base, was converted to a private-sector mixed

use project. Apparently the ownership change and attributes were never made to the
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Fig. 7.1 Ground Truthing Using Aerial Photography: Census Problem

Source: Jarosz (2008)

Fig. 7.2 Ground Truthing Using Aerial Photography: Parcel File Problem

Source: Jarosz (2008)
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parcel file. To-date aerial photography has played a limited role in the estimation of

housing units; but perhaps its efficacy may increase going forward (e.g. Lo 1995;

Wicks, Swanson, Vincent, and De Almeida 1999; Wang and Wu 2010). We discuss

this possibility in Chapter 18.

7.1.3 Occupancy Rates

Occupancy rates are needed to convert the post-censal housing stock estimate into

an estimate of households, or occupied units. The occupancy rate is the compliment

of the more widely presented vacancy rate. The occupancy rate can be just for all

units. If the post-censal housing stock is estimated for separate structure types,

estimates of occupancy rates specific to each structure type should be used. Occu-

pancy rates are typically highest for single family units and tend to decrease with

increases in the number of units in a structure; mobile homes often have the lowest

occupancy rate of any housing unit type (see Table 7.1).

A common practice is to hold the vacancy rate constant at the last census (e.g.,

US Census Bureau 2009, 1983). This is a reasonable assumption if the economic

and housing market conditions at the time of the census do not change and is likely

more valid when the estimate date is relative close to the last census. Even if market

conditions are stable, using the occupancy rate from the last census can be prob-

lematic in areas with substantial housing unit growth around the time of the census

or that have experienced significant boundary changes. Census occupancy rates in

these areas tend to be low because of the time required to sell these units and also

because the census may count a housing unit before it is ready for occupancy. In this

situation, it is likely more accurate to raise increase the occupancy rate in the first

few years of the post-censal period, before holding it constant.

Models of housing supply and demand have been developed primarily in the

field of housing economics (e.g., Edelstein and Tang 2007; Gabriel and Nothaft

2001; Hendershott, MacGregor and Tse 2002). These models attempt to explain

fluctuations in occupancy rates using statistical models and factors such as housing

supply and demand, home prices, rents, and population and employment change.

Their primarily aim is to provide a better understanding of housing market dynam-

ics rather than providing specific estimates of occupancy rates for use in the housing

unit method.

Information on post-censal occupancy rates can also be estimated from direct

survey methods such as the “windshield survey” or direct canvassing of an area

(e.g., Alaska Department of Community and Economic Development 2004; Lowe,

Pittenger, and Walker 1977; Swanson, Baker, and Van Patten 1983). These

methods are very labor intensive, time consuming and are most practical for areas

characterized by single family units and relatively small population size.
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7.1.3.1 American Community Survey (ACS)

The American Community Survey (ACS) offers the most comprehensive data

platform for estimating post-censal occupancy rates. Since there is no longer a

census long form, occupancy rates (and persons per household) by structure type

will come from ACS data. An important issue in considering the ACS as a source of

occupancy rate data is it does not have the same residency definition as the decennial

census; the ACS uses essentially a de facto residency rule and the decennial census

uses a de jure residency rule (See Chapter 3). While the difference in rules may not

matter nationally or for states, it could be substantial at sub-state levels, especially

for areas with large numbers of seasonal units.

The ACS controls housing units and household characteristics to post-censal

estimates of housing units and controls population-related variables to population

estimates stratified by age, sex, Hispanic origin, and race. Both the housing unit and

population controls are subject to random error and errors that are systematically

biased either upward or downward based on characteristics of the controlling unit

such as population size and growth rate. Housing unit controls have been found

to have less error than the population controls stratified by age, sex, and Hispanic

Origin (Citron and Kalton 2007: Chapter 5), which suggests that point estimates for

ACS occupancy rates may be more accurate than point estimates for ACS persons

per household variables.

To illustrate ACS estimates of occupancy rates, we compare ACS rates with the

2010 census rates for incorporated cities in San Diego County, California. Three

ACS rates are compared based on the: 1) 2009 annual estimates; 2) estimates based

on the 3-year period 2007 to 2009; and 3) estimates based on the 5-year period from

2005 to 2009.3 We also show annual ACS data for Maricopa County, Arizona

from 2000 to 2009, along with the 2000 and 2010 census occupancy rates.

The ACS occupancy rate estimates are generally in line with the 2010 census for

jurisdictions in San Diego County (see Table 7.5). Average absolute percent

differences are between 1.5% and 2.0%, and the ACS shows a small downward

bias that ranges from an average of -0.5% to -1.4%. Also, the estimates generally do

not vary greatly between the three ACS samples. The greatest variability occurs in

Carlsbad and El Cajon. In Carlsbad, both multi-year accumulations are very close to

the census and the 2009 annual estimate is 2.4% above. The opposite pattern occurs

in El Cajon; its 2009 estimate is very close to the census and both multi-year

accumulations are lower than the census by around three percent.

The occupancy rate trend for Maricopa County appears reasonable; although the

estimate for 2003 seems out of line with the other data points (see Figure 7.3). The

ACS seems to have picked up the impact of the housing meltdown; the occupancy

rate shows a substantial drop between 2006 and 2008. While the 2010 census rate is

outside of the 90% confidence interval for the 2009 estimate, the 2009 point

estimate and census value are close.

Obviously, we cannot draw any firm conclusions or generalizations about the

efficacy of ACS occupancy rates from these comparisons. For these areas, the ACS
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Table 7.5 ACS and Decennial Census Occupancy Rates, San Diego County Incorporated Cities

2010

Census

American Community Survey % Difference from the Census

2009 2007–09 2005–09 2009 2007–09 2005–09

Carlsbad 0.926 0.948 0.925 0.920 2.4 �0.1 �0.6

Chula Vista 0.951 0.886 0.889 0.905 �6.8 �6.5 �4.8

Coronado 0.769 – 0.807 0.804 – 4.9 4.6

Del Mar 0.795 – – 0.780 – – �1.9

El Cajon 0.952 0.953 0.922 0.919 0.1 �3.2 �3.5

Encinitas 0.936 – 0.930 0.926 – �0.6 �1.1

Escondido 0.947 0.952 0.934 0.941 0.5 �1.4 �0.6

Imperial Beach 0.922 – 0.875 0.889 – �5.1 �3.6

La Mesa 0.937 – 0.931 0.937 – �0.6 0.0

Lemon Grove 0.951 – 0.945 0.937 – �0.6 �1.5

National City 0.925 – 0.910 0.919 – �1.6 �0.6

Oceanside 0.919 0.918 0.911 0.912 �0.1 �0.9 �0.8

Poway 0.965 – 0.952 0.965 – �1.3 0.0

San Diego 0.936 0.921 0.923 0.927 �1.6 �1.4 �1.0

San Marcos 0.950 0.951 0.954 0.953 0.1 0.4 0.3

Santee 0.963 – 0.946 0.963 – �1.8 0.0

Solana Beach 0.864 – – 0.856 – – �0.9

Vista 0.946 0.956 0.927 0.941 1.1 �2.0 �0.5

San Diego County 0.933 0.918 0.917 0.924 �1.6 �1.7 �1.0

MAPDa 1.6 2.0 1.5

MALPDb �0.5 �1.4 �0.9
aMean absolute percent difference
bMean algebraic percent difference

Sources: US Census Bureau, 2010 Census; American Communty Survey 2009, 2007–2009, and

2005–2009

Fig. 7.3 Occupancy Rates, Maricopa County, 2000–2010

Note: Line endpoints represent the limits of a 90% confidence interval

Sources: US Census Bureau, 2000 and 2010 Decennial Censuses; 1-yr ACS, 2002–2009
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estimates of occupancy rates are quite good and do not appear to be impacted by the

large number of seasonal units in Maricopa County; according to the 2009 ACS

22.7% (52,300) of the vacant units (230,145) in Maricopa County are classified for

seasonal, recreational, or occasional use. Much work is needed to determine the

efficacy of ACS occupancy rate estimates and how they best can be used in the

housing unit method. Some suggestions for future analysis include: 1) testing a

broad-based a representative sample at various levels of geography; 2) examining

occupancy rates by structure type; 3) testing the ACS against other sources of

data and methods for estimating post-censal occupancy rates; and 4) providing

guidelines for using the ACS occupancy rate estimates.

7.1.3.2 Postal Service Deliveries and Real Estate Vacancy Surveys

Postal service deliveries and real estate vacancy surveys may be useful for updating

occupancy rates during the post-censal period. Two important considerations in

using these data are the definitions of a housing unit and a vacant unit, which

differ from the definitions used in the decennial census. Postal statistics do not

have a distinct definition of vacant; they classify deliveries as Possible and Active.

Possible deliveries include Active deliveries and their difference is Inactive deli-

veries, which are roughly defined as vacant. Active deliveries loosely represent

housing units; although they represent any address where mail is delivered

(i.e., post-office boxes). Lowe and Mohrman (2003a) contain additional details on

other differences between the census and postal delivery data.

Real estate vacancy surveys use non-random sampling procedures; rely on data

provided by apartment managers; and cover only apartments on the rental market.

Thus, they represent a potentially biased subset of multiple family unit types

covered in the census. Additionally, units rented for temporary use and under

renovation are counted as occupied. Lowe (2000a) contains additional details on

other differences between the census and apartment vacancy survey data.

Lowe and Mohrman (2003a) and Lowe (2000a) compared postal delivery data

and real estate vacancy surveys to census data for counties and cities in Washington

State. These studies found that:

1. Real estate vacancy rates were on average five percent points lower than 1990

census rates for a sample of 15 cities in the Seattle area, ranging from -8.3% to

0.6%;

2. Postal statistics for all deliveries were the best match to the housing counts in the

2000 census. Postal counts excluding post office boxes fell notably short in

nearly all counties. The MAPE across counties was 12.6% for all deliveries and

24.5% when post office boxes were excluded;

3. Postal data substantially understated 2000 census vacancy rates by an average of

11 percentage points across counties. Postal and census vacancy rates were close
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in metropolitan counties with an average difference of two percentage points

versus an average of 12 percentage points for non-metropolitan counties. The

largest differences between census and postal vacancy rates were found in

counties with substantial seasonal housing; and

4. Postal vacancy rate trends tracked what might be expected based on changes

in the economy and population. Postal rates showed the largest increases in

counties with struggling economies and net out migration of population.

Because of differences in coverage and definitions with the census, postal data

and real estate surveys should be used to adjust census rates rather than as direct

estimates of the post-censal occupancy rates (Lowe and Mohrman 2003b). How can

these adjustments be made? The procedures discussed above for converting electric

customer data into post-censal household estimates can also be used with postal

delivery and real estate survey data. Given the lack of a one-to-one correspondence

with census occupancy rates, the ratio procedure might be preferable. Another

option is to model the census occupancy rate as a function of either the postal

delivery rate or the real estate survey rate.

Tayman and Rynerson (1997) demonstrated the viability of this modeling

approach for estimating post-censal income distributions for census tracks in San

Diego County. The household income distribution is characterized by three

parameters, which determine the probabilities of households locating in each

income group. These parameters were estimated by fitting a modified lognormal

curve to census household income distributions (Fonseca and Tayman 1989).

Federal and state tax returns from the California Franchise Tax Board (FTB)

provided personal income distributions for census tracks at a census time point,

which were used to estimate the same three parameters. Three census-tract level

regression models were estimated using the census parameter as the dependent

variables and the corresponding FTB parameter as the independent variable.

Post-censal estimates for the three parameters were derived using the estimated

regression model from the census time point and census-tract level post-censal

values for the parameters obtained from the calibration of post-censal FTB data.

7.1.4 Persons Per Houshold

All applications of the housing unit method require an estimate of the average

number of persons per household (PPH) to convert a post-censal household esti-

mate into a household population estimate. The PPH can be just for all units. If post-

censal households are estimated for separate structure types, estimates of PPH

specific to each structure type should be used. PPH is typically highest for single

family units and lower for multiple family housing and mobile homes (see Table 7.1).
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Small shifts in PPH in moderate to large cities can have a dramatic impact on

population estimates based on the housing unit method (Lowe 2000b).

Information on post-censal PPH can be based on data from special censuses

conducted by the Census Bureau (US Census Bureau 2011). Post-censal estimates

of PPH are computed for places taking a special census and then are used in

estimate PPH is places with similar characteristics (Lowe, Pittenger and Walker

1977). A large scale, continuous special census program proved successful in

Washington State, but special censuses are costly. Today they are primarily used

with a goal of obtaining a higher population count for revenue sharing and other

benefits. Sample surveys can also be used to estimate PPH, but to provide accurate

estimates, especially for subcounty areas, samples must be accurately drawn and

quite large. The costs of such surveys generally preclude their use for estimating

PPH. Trends in PPH for large states, regions, and the US from the Current Popula-

tion Survey have been used to estimate local overall PPH and PPH by structure type

(Smith 1986; Smith and Lewis 1980).

7.1.4.1 American Community Survey (ACS)

Swanson and Hough (2007) evaluated PPH values from the ACS as to their suita-

bility for use in the housing unit method. ACS PPH values were compared to

estimated PPH values based on geometric trend extrapolation for 18 of the 36

counties that were 1999 ACS test sites. These 18 sites had ACS data online annually

from 2001 to 2006 and for five three-year periods between these dates. Single-year

ACS PPH values exhibited the least systematic change over time and considerable

directional volatility from year to year; three counties had directional changes

three or more times, two changes in nine counties, and one change in six counties.

Three-year ACS PPH values were more directionally stable over time; two counties

changed direction twice, one change in seven counties, and no directional change in

nine counties.

This volatility in the ACS PPH estimates is not desirable for those making

population estimates. There is an expectation of demographers and their stake-

holders that PPH estimates exhibit systematic changes unless there is compelling,

substantive evidence to justify their temporally instability. ACS PPH values

are subject to sample and non-sample errors and can vary year to year because of

statistical fluctuations. Swanson and Hough (2007) offer a preliminary conclusion

that ACS PPH values exhibit too little systematic change over time to be usable by

demographers preparing post-censal population estimates. They point out that

additional research, along the lines discussed previously for occupancy rates,

is required to confirm this finding and to determine how best to use ACS PPH

values for post-censal estimation.

To illustrate ACS estimates of PPH, we compare ACS rates with the 2010 census

rates for incorporated cities in San Diego County and over time for Maricopa County,

as was done above for occupancy rates. ACS PPH values line up fairly well with the

census for jurisdictions in SanDiegoCounty (see Table 7.6).Average absolute percent
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differences are between 1.7% and 2.4%, and the ACS shows an upward bias of around

1.5% for the 1-year and 3-year estimates. The 5-yearACSPPH estimates are unbiased.

ACS PPH estimates, on average, have larger absolute percent errors than the

occupancy rate estimates for the 1-year and 5-year samples (2.4% vs. 1.6% and

1.5% vs. 1.7%), but are more accurate for the 3 year sample (1.7% vs. 2.0%). ACS

PPH estimates, on average, show a greater bias than the occupancy rate estimates in

the 1-year sample (1.6% vs. -0.5%); a similar level of bias (opposite in sign in the 3-

year sample (-1.5% vs. -1.4%), and less bias in the 5-year sample (-0.1% vs. -0.9%).

To examine the variability of the ACS estimates across the ACS samples, we

examined the range of the absolute percent errors in jurisdictions with two or

more ACS samples. ACS PPH estimates show greater variability than the ACS

occupancy rate estimates based on the range. The average of the range for the ACS

PPH estimates is 2.6 with a low of 0.1 and a high of 5.2. For the ACS occupancy

rate estimates, the average is 1.2 with a low of 0.3 and a high of 3.4.

The ACS PPH trend is Maricopa County is not reasonable (see Figure 7.4). PPH

values remain relatively stable at around the 2000 census value from 2002 to 2005;

the statistical fluctuations during this time are clearly evident. The PPH estimate

Table 7.6 ACS and Decennial Census Persons per Household, San Diego County Incorporated

Cities

2010

Census

American Community Survey % Difference from the Census

2009 2007–09 2005–09 2009 2007–09 2005–09

Carlsbad 2.525 2.522 2.573 2.536 �0.1 1.9 0.4

Chula Vista 3.207 3.299 3.267 3.174 2.9 1.9 �1.0

Coronado 2.307 – 2.304 2.270 – �0.1 �1.6

Del Mar 2.016 – – 2.028 – – 0.6

El Cajon 2.842 2.961 2.925 2.883 4.2 2.9 1.5

Encinitas 2.450 2.523 2.532 – 3.0 3.4

Escondido 3.117 3.190 3.121 3.095 2.3 0.1 �0.7

Imperial Beach 2.821 – 2.806 2.678 – �0.5 �5.1

La Mesa 2.301 – 2.378 2.290 – 3.3 �0.5

Lemon Grove 2.961 – 2.921 2.766 – �1.4 �6.6

National City 3.408 – 3.458 3.396 – 1.5 �0.3

Oceanside 2.805 2.729 2.818 2.801 �2.7 0.5 �0.1

Poway 2.930 3.001 2.997 – 2.4 2.3

San Diego 2.599 2.654 2.623 2.612 2.1 0.9 0.5

San Marcos 3.049 3.183 3.105 3.105 4.4 1.8 1.9

Santee 2.717 – 2.796 2.822 – 2.9 3.9

Solana Beach 2.277 – – 2.279 – – 0.1

Vista 3.131 3.129 3.213 3.130 �0.1 2.6 0.0

San Diego County 2.754 2.815 2.790 2.760 2.2 1.3 0.2

MAPDa 2.4 1.7 1.7

MALPDb 1.6 1.5 �0.1
aMean absolute percent difference
bMean algebraic percent difference

Sources: US Census Bureau, 2010 Census; American Communty Survey 2009, 2007–2009, and

2005–2009
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show a sharp increase after 2005; rising from 2.71 to 2.93 in 2009. This dramatic

increase was incorrect, the 2010 census PPH showed a stable pattern since 2000,

and illustrates the errors that can occur when controlling the ACS to post-censal

population estimates that miss the mark. The 2009 ACS household population

estimate for Maricopa County (3,977,398) is 213,458 persons higher than the

2010 census (3,763,940).

7.1.4.2 Trend Methods

Most applications of the housing unit method hold PPH values constant at a

previous value or have extrapolated historical trends (Cai and Spar 2008; Smith,

Nogle, and Cody 2002; Swanson and Hough 2007; Swanson, Baker and Van Patten

1983; US Census Bureau 2009). The simplest method is to use the PPH value from

the most recent census:

PPHt ¼ PPHc:

This approach can provide relatively accurate estimates when the post-censal

date is relatively close to the census or the PPH has shown stability over time. Other

techniques that use historical trends have been found to produce more accurate post-

censal estimates of PPH rather than using the last census value (Smith and Lewis

1980, 1983; Starsinic and Zitter 1968; Swanson and Hough 2007). Two extrapola-

tion techniques that have been used to estimate PPH were discussed in Chapter 6.

Fig. 7.4 Persons per Household, Maricopa County, 2000–2010

Note: Line endpoints represent the limits of a 90% confidence interval

Sources: US Census Bureau, 2000 and 2010 Decennial Censuses; 1-yr ACS, 2002–2009
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One technique assumes a linear trend between the last two censuses (c and

c-1) will extend into the post-censal period, and the other technique assumes a

geometric trend. PPH estimates for the post-censal time period (t) from these trend

models are:

PPHt ¼ PPHc þ ðx=yÞðPPHc � PPHc�1Þ; Linear trend

PPHt ¼ ðPPHÞc½ð1þ rÞ½x��; and Geometric trend

r ¼ ½ðPPHc=PPHc�1Þ1=y� � 1;

where x is the number of years between t and c and y is the number of years between

the last two censuses (e.g., 10 in the US and 5 in Canada).

A third technique makes three modifications to the linear trend method (Smith

and Lewis 1980). The first modification uses national percentage change since the

last census.4 The second modification adjusts the US percentage change upward

or downward depending on the level of the local PPH at the time of the last census.

Studies have shown that PPH declines/increases tend to be greater/lesser in places

with a large PPH values than in places with small PPH values (Smith and Lewis

1980; Serow, Eberstein, Mayberry, and Rives 1984). The final modification adjusts

for the change in local housing mix, which accounts for the difference in household

sizes between single family and other housing unit types. The first two modifi-

cations are quantified in the following relationship:

DI ¼ ½ðPPHl;c � LÞ=ðPPHus;c � LÞDus; and

Dus ¼ ðPPHus;t=PPHus;cÞ � 1;

where D is the proportional change; L is the lower bound for PPH, l is the local area,

and us is the nation. The lower bound (L) represents the level below which PPH will

no longer decline. As PPH approaches its lower bound the percentage must become

smaller. The conceptual lower limit for PPH is 1.0, but it is not likely his threshold

would ever be reached. Smith and Lewis (1980) used 1.5 as L, but found that the

exact value of L is not critical to the formulation. The effect of changes in the local

housing mix on PPH is estimated as follows:

PPHWl;c ¼ Swl;s;c � PPHl;s;c; and

wl;s;c ¼ Hl;s;c=Hl;c;

where PPHW is the PPH for all households; H is households; s is structure type.

Overall PPH comes from the decennial census and PPH and households by structure

type came from the long form prior to 2010 and now from the ACS. Therefore,

the PPHW created from a weighted average will not necessary match the overall
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PPH at the census time point. The next step is to estimate the post-censal PPHW

at time (t) due to changes in the structure type mix:

PPHWl;t ¼ Swl;s;t � PPHl;s;c; and

wl;s;t ¼ Hl;s;t=Hl;t:

The proportionate change in PPH due to changes in structure type mix is:

DMl ¼ ðPPHWl;t � PPHWl;cÞ=PPHWl;c:

Combing the proportionate change in local PPH due to national trends and the

proportionate change by to structure type shifts, the estimated local area PPH is:

DTl;t ¼ ðDl þ DMlÞ; and

PPHl;t ¼ ð1þ DTl;tÞPPHl;c:

Table 7.7 uses the three trend methods to produce April 1, 2010 estimates of PPH

for jurisdictions in Sarasota County, Florida. The linear and geometric trend

methods yield virtually identical results, which is expected since the change in

PPH during the 1990s was relatively small. During the 1990s, the PPH declined in

all jurisdictions, except NorthPort. These trends continued during the 2000s; albeit

at a slower pace, which is evident when comparing the 2010 estimates and 2010

census values. Changes in US PPH and in local household structure type mix

are required to develop estimates using the adjusted trend method (AdjTrend).

Change in the US PPH was derived from the 2000 and 2010 censuses and post-

censal estimates of households by structure type were taken from the 5-year ACS

(2005–2009). The D component shows the direct relationship between the size of

the adjustment and PPH level in 2000 built into this method. The DM component

shows, except for Longboat Key, the change in household structure type mix causes

an upward adjustment to the PPH. According to the ACS between 2000 and 2010,

the single family share of households declined from 0.417 to 0.386 in Longboat

key; was stable in the City of Sarasota, Venice, and the unincorporated area; and

increased by 0.014 in NorthPort and by 0.018 in Sarasota County.

7.1.4.3 Regression Methods

As previously discussed, post-censal estimates of PPH are traditionally based

on the latest census, historical trends, and or post-censal values for larger areas.

These approaches are easy to implement and produce good estimates when PPH

values remain constant or follow stable trends, but are inaccurate when PPH values

and trends change rapidly (Smith, Nogle, and Cody 2002). PPH estimates may be
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improved by developing regression models that relate changes in PPH to changes in

symptomatic indicators of household size.

This idea is not new. Regression models of PPH were suggested during the

1970s (Comprehensive Planning Organization of the San Diego Region 1974; Voss

and Krebs 1979). Lowe (2000b) developed a regression model for counties in

Washington State using school enrollment in grades K-8, sum of births 4 years

prior to the estimation date, and population over 65+. This model did not perform

as well as expected when PPH estimates for 2000 were compared to the census; it

did not capture PPH increases and tended to overstate the magnitudes of PPH

decline. Kimpel and Lowe (2007) developed an alternative specification of the

prior model using population over 65+, sum of births 14 years prior to the estima-

tion date, Hispanic population, and the PPH from the prior census to control for the

base level of PPH. The longer lag on the birth variable eliminated the need for

the school enrollment variable, which they believed was less reliable than the birth

data. This model has not yet been tested against the 2010 census.

The most comprehensive investigation to date of regression models for PPH was

conducted by Smith, Nogle, and Cody (2002). Their analysis was based on a 462

counties in Florida, Illinois, Texas, and Washington and analyzed PPH estimates

for 1980, 1990, and 2000. Regression-based PPH estimates were compared to the

census data for these years and were also compared against commonly used methods

to estimate PPH. For independent variables were evaluated: 1) births per household;

2) school enrollment in grades K-12 per household; 3) Medicare enrollees age 65

and older per household; and 4) average number of exemptions per federal income

tax return (IRS). The IRS variable was added after models with the first three

independent variables were evaluated. Four regression models, which used differ-

ent forms of the variables, were tested: 1) original variable at a single point in time;

2) ratio of county to state values at a single point in time; 3) arithmetic change in the

variable; and 4) arithmetic change in the ratio. Model 4 is a variant of the difference

correlation method of population estimate discussed in Chapter 8. The also

analyzed the average of the estimates from the four models.5

The main findings and conclusions from this study were:

1. MAPEs based on the four regression models generally fell within a relatively

small range;

2. The PPH estimates from the four models had little systematic bias;

3. The average method generally produced better results than did the individual

regression models;

4. The regression models generally improved upon traditional estimation methods

in both levels of bias and precision;

5. The regression models produced substantially fewer large errors (5% or more)

than did the traditional methods;

6. Inclusion of the IRS variable raised the explained variance; improved the

precision of the PPH estimates; and had no consistent impact on bias;

7. IRS data are excellent indicators of changes in PPH and are available for

counties and subcounty areas (i.e., cities and zip codes);
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8. PPH estimates from state-specific regression models did not perform better

compared to regression models based on the entire sample of all states; and

9. The greatest advantage of regression models over traditional methods of

estimating PPH may be their ability to perform well when PPH is changing

rapidly or following unusual patterns and to reduce the number of large errors.

7.1.5 Group Quarters Population

The number of people living in group quarters facilities is the last piece of

information required for the housing unit method. For large group quarters facilities

(i.e., college dorms, correctional facilities, and military shipboard and barracks)

information is usually available from the administrators of these facilities. Many

state agencies that produce population estimates also maintain a list of group

quarters facilities (e.g., Mohrman 2007). For the group quarters population not in

large facilities such as nursing homes; half-way houses; and monasteries, it may be

reasonable to assume no change since the last census or to assume they are growing

at the same rate as the population in households (Smith 1986). The group quarters

population usually accounts for a small proportion of the total population, but it can

have a major impact on the population estimate in places with colleges, military

installations, and correctional facilities.

Table 7.8 shows the group quarters population represents 3.4% of the total

population in San Diego County, with military group quarters population compris-

ing 1.5%. San Diego County has a large presence of naval and marine installations.

The impact of the group quarters population becomes greater at finer spatial

resolutions. In one city (Coronado), 25.1% of its population is comprised of military

group quarters and the maximum percentages that occur in a city for the other

categories are higher than seen for the County, with the exception of the Other

Institutional. The group quarters population in several categories comprises over

Table 7.8 Group Quarters Share of Total Population, San Diego County Incorporated Cities and

Census Tracts, 2000

Percent of Total Population

All Group

Quarters

Correction

Facilities

Nursing

Homes

Other

Institutional

College

Dorms Military

OtherNon-

institutional

County 3.4% 0.4% 0.3% 0.1% 0.5% 1.5% 0.7%

Maximum Percent of Total Population

Incorporated

Citiesa
27.1% 1.3% 1.4% 0.1% 1.2% 25.1% 2.5%

Census

Tractsb
100.0% 81.7% 12.8% 11.8% 73.8% 99.7% 96.2%

a18 incorporated cities
b437 census tracts with non-zero group quarters population

Source: US Census Bureau, 2000 Decennial Census
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70% of the total population in certain census tracts and the maximum percentages

are all substantially higher than the corresponding values for the cities and the

County.

7.2 Conclusions

The housing unit method is a comprehensive method for estimating post-censal

population. It has a long and successful track record, is conceptually simple, easy to

explain, can be understood by non-experts in demographic methods, and can be

applied at virtually any geographic level (from states, to counties, census tracks,

blocks, and parcels). The geographic scalability of the housing unit method is a

tremendous advantage over most other estimation methods that are applicable for

counties and higher level geographies. Another advantage of the housing unit

method is along with population it also provides current information about trends

in the housing market. The housing unit method is also very flexible and can use

different techniques and data sources.

The housing unit method is a general approach to post-censal population esti-

mation rather than a specific set of techniques. The housing unit method can be

adapted to use data sources and techniques that work the best for any geographic

area. When applied properly and carefully, the housing unit method can yield

accurate estimates. The method will produce inaccurate estimates when applied

carelessly using poor data and assumptions. Judgments about the efficacy of a

particular set of estimates from the housing unit method must be based on the

validity of the data and assumptions for the particular application, not on an

assessment of the validity and performance of the method in general (Smith 1986).

The housing unit method, while simple in concept, requires a major

commitment of time and resources to produce good results. There are a number

of different techniques and data sources that must be carefully evaluated and

accessed to determine which combination is best suited for a particular applica-

tion. Considerable effort is required to ensure that data series are consistent

over time (e.g., reporting procedures have not changed), have been adjusted

for boundary changes, and reflect unique local conditions. The techniques for

estimating occupancy rates and PPH must be scrutinized to determine which one

or combination should be used. The housing unit method will not perform well

unless sufficient resources are devoted to its implementation.

Endnotes

1. Housing units can change location if they are physically moved and they can be gained or lost

due to conversions (e.g., single family house subdivided into apartments or retail space

converted to a loft in a mixed use development. These events usually represent a very small
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part of the overall change in housing units, but may be more significant in certain areas such as

those undergoing revitalization. If data are available, housing unit moves and conversions

should be taken into account.

2. The Censtats building permit website is at http://censtats.census.gov/bldg/bldgprmt.shtml.

3. Ideally, the comparisons should use estimates for 2010, 2009 to 2011, and 2008 to 2013, where

the 2010 census is the center year of the accumulated samples in the ACS.

4. One could use the proportionate change from any larger area such as a state trend to estimate

county PPH or a county trend to estimate census track PPH. Synthetic estimation discussed in

Chapter 11 is an approach that uses trends from a large area to estimate local PPH values.

5. Averages reduce the chances of making large errors and have often have been found to produce

more accurate results than the results for an individual method (e.g., Granger 1989: Chapter 8;

Smith and Mandell 1984).
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Chapter 8

Regression Methods

8.1 Introduction

Regression-based methods for estimating population date back to E. C. Snow

(1911), who published “The application of the method of multiple correlation to

the estimation of post-censal populations” in the Journal of the Royal Statistical
Society. Snow’s paper represents the first published description of the use of

multiple regression in the estimation of population. It also discusses other methods,

pointing out their strengths and weaknesses, then describes the model framework

and the data used in the regression application, and applies it to districts in the U. K.

In addition to being the first published report in English of the use of regression for

population estimates, it sets the stage for subsequent papers by discussing it relative

to other methods. A discussion is published with the paper that contains many

important insights that are today commonplace in the use of multiple regression not

only for making population estimates, but for general use.

One of the insights (Snow 1911: 625) is given by David Heron, who suggests

that one of the shortcomings acknowledged by Snow was to “control” the sum of

the estimates for individual districts to an estimate for the who country (“Estimate

for the whole country/sum of estimates for individual districts). Another is provided

by G. Udny Yule, who contributed substantially to the development of multiple

regression as a modern analytic technique (Stigler 1986: 345-361). Yule (Snow

1911: 621) noted that Snow demonstrated that a multiple regression model built

using data over one decade had coefficients that could be used for the subsequent

decade with the insertion of the new set of values for the independent variables.

Yule also agreed with Snow that the ex post facto tests performed by Snow

suggested that using variables constructed on relative (percent) change would

perform better than variables constructed on the basis of absolute change (Snow

1911: 622). Finally, among many comments useful still today for those interested in

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_8, # Springer Science+Business Media B.V. 2012
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regression based methods for estimating population, are the following: Greenwood’

remarks on the impact of skewed distributions (Snow 1911: 626); Baines’ (Snow

1911: 626) comments on using ratios, and the importance of data quality by

virtually all of the discussants (Snow 1911: 621-629).

Snow’s (1911) seminal paper is based on the premise that the relationship

between symptomatic indicators and the corresponding population remains

unchanged over time. His work and the insights provided by the discussants of

his paper have led to three related but distinct approaches: ratio-correlation;

difference-correlation; and average ratio methods.

8.2 Ratio-Correlation and Its Variants

The most common regression-based approach data to estimating the total

population of a given area is the ratio-correlation method. Introduced and tested

by Schmitt and Crosetti (1954) and again tested by Crosetti and Schmitt (1956),

this multiple regression method involves relating between changes in several

variables known as symptomatic indicators on the one hand to population

changes on the other hand. The symptomatic indicators that are used reflect the

variables related to population change that are available such that those that

yield an optimal model are chosen. Examples of symptomatic variables that

have been used for this purpose are births, deaths, school enrollment, tax returns,

motor vehicle registrations, employment data, and registered voters. The ratio-

correlation method is used where a set of areas (e.g., counties) are structured into

a geographical hierarchy (e.g. the populations of counties within a given state sum

to the total state population). It proceeds in two steps. The first is the construction

of the model and the second is its implementation – actually using it to create

estimates for given years.

Because themethod looks at change, population data from two successive censuses

are needed to construct the model along with data for the same years representing the

symptomatic indicators. During its implementation step the ratio-correlation method

requires symptomatic data representing the year for which an estimate is desired and

an estimate of the population for the highest level of geography (e.g., the state as a

whole) that is independent of the ratio-correlation model.

The ratio-correlation method expresses the relationship between (1) the change

over the previous inter-censal period (e.g., 1990 to 2000) in an area’s share

(e.g., a given county) of the total for the parent area (e.g., the state as a whole)

for several symptomatic series and (2) the change in an area’s share of the popula-

tion of the parent area. The method can be employed to make estimates for either

the primary or secondary political, administrative and statistical divisions of a

country (Bryan 2004). In the US, the variables selected usually vary from state to

state and because of the small number of counties in some states, certain states were

combined and estimated in one regression equation.
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In general terms, the ratio-correlation model is formally described as follows

(Swanson and Beck 1994):

Pi;t ¼ a0 þ
X

ðbjÞ�Si;j;t þ ei (8.1a)

where

a0 ¼ the intercept term to be estimated

bj ¼ the regression coefficient to be estimated

ei ¼ the error term

j ¼ symptomatic indicator (1 � j � k)

i ¼ subarea (1 � j � n)

t ¼ year of the most recent census

and

Pi;t ¼ ðPi;t=
X

Pi;tÞ=ðPi;t�z=
X

Pi;t�zÞ (8.1b)

Si;j;t ¼ ðSi;t=
X

Si;tÞj=ðSi;t�z=
X

Si;t�zÞj (8.1c)

where

z ¼ number of years between each census for which data are used to construct

the model

p ¼ population

s ¼ symptomatic indicator

Once a ratio-correlation model is constructed, a set of population estimates

for time t + k is developed in a series of six steps. First, (Si,t+k/∑ Si,t+k)j is

substituted into the numerator of the right side of equation 8.1c for each symptom-

atic indicator j and (Si,t/∑ Si,t) j into the denominator of the right side of equation

8.1c for each symptomatic indicator j, which yields Si,j,t+k. Second, the updated

model with the preceding substitution of symptomatic data for time t + k is used

to estimate Pi,t+k. Third, (Pi,t/∑ Pi,t) is substituted into the denominator of Pi,t+k,

which yields Pi,t+k ¼ (Pi,t+k/∑ Pi,t+k)/(Pi,t/∑ Pi,t), where ∑ Pi,t+k) represents

the independently estimated population of the “parent” area of the i subareas

for time t + k (Note that this estimate is given in boldface and is done by a

method exogenous to the ratio-correlation model (e.g., a component method)).

Fifth, since Pi,t+k, (Pi,t/∑ Pi,t) and ∑ Pi,t+k are all known values, the equation

Pi,t+k ¼ (Pi,t+k/∑ Pi,t+k) /(Pi,t/∑ Pi,t) is manipulated to yield an estimate of the

population of area i at time t + k:

ðPi;tþkÞ�ðPi;t=
X

Pi;tÞ�ð
X

Pi;tþkÞ ¼ P̂i;tþk (8.1d)

As equation 8.1d shows, it is important to remember that an independent

estimate of the population for the “parent” geography (∑Pi,t+k) of the i subareas
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is required when using the ratio-correlation model to generate population estimates.

The sixth and final step is to effect a final “control” so that the sum of the i subarea

population estimates is equal to the independently estimated population for the

parent of these i subareas: ∑ Pi,t+k ¼ ∑Pi,t+k, which is accomplished as follows:

Pi;tþk ¼ ðPi;tþk=SPi;tþkÞ�ðSPi;tþkÞ: (8.1e)

It is obvious from the preceding definitions that we are focusing on the ratio-

correlation method as a means of developing post-censal estimates. However, it

can be used to develop inter-censal estimates, a topic we cover at some length in

Chapter 17.

As an empirical example of ratio-correlation model, we use data for the 39

counties of Washington state. We used excel to construct a ratio-correlation

model using 1990 and 2000 census data in conjunction with three symptomatic

indicators: (1) registered voters; (2) registered automobiles, and (3) public school

enrollment in grades 1-8. The raw 1990 and 2000 input data for this model are

provided in an appendix at the end of this chapter as Tables 8.2.a through 8.2.d.

We then use 2005 symptomatic indicators to construct a set of county estimates

for 2005. The input data for 2000 and 2005, along with the results of the

calculations leading to the estimates are shown as Tables 8.2.e through 8.2.h at

the end of this chapter.

A summary of the model and its characteristics is provided in Exhibit 8.1.

Exhibit 8.1 Example Ratio-Correlation Model

Pi;t ¼ 0:195þ ð0:0933�VotersÞ þ ð0:3362�AutosÞ þ ð0:3980�EnrollÞ
½p<:001� ½p ¼ 0:14� ½p<:001� ½p<:001�

where

Pi;t ¼ ðPi;2000=
X

Pi;2000Þ=ðPi;1990=
X

Pi;1990Þ
Si;1;t ¼ ðVotersi;2000=

X
Votersi;2000Þ=ðVotersi;1990=

X
Votersi;1990Þ

Si;2;t ¼ ðAutosi;2000=
X

Autosi;2000Þ=ðAutosi;1990=
X

Autosi;1990Þ
Si;3;t ¼ ðEnrolli;2000=

X
Enrolli;2000Þ=ðEnrolli;1990=

X
Enrolli;1990Þ

R2 ¼ 0:794

adj R2 ¼ 0:776

Although the coefficient for Voters is not statistically significant, we elected to

retain this symptomatic indicator in the model so that we would have a model with

three independent variables, a feature that as explained later, can assist in dealing

with “model invariance.”

The amount of “explained variance” (R2 ¼ 0.794) is typical for a ratio-correla-

tion model. Do not be alarmed that this level is not sufficient to have a “good
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model.” That is, neither believe that a good ratio-correlation model should have a

very high level of explained variance (e.g., R2 > 0.9) nor expect one. This is the

case because the structure of the ratio-correlation model reflects the “stationarity”

achieved by taking ratios over time (Swanson 2004). Note that the coefficients

approximately sum to 1.00. This also is a universal feature of the ratio-correlation

model, one which can be exploited in a model with three symptomatic indicators, as

is discussed shortly.

In using this model to construct a set of county population estimates for 2005,

we follow the six steps just described. First, (Si,2005/∑ Si,2005)j is substituted

into the numerator of the right side of the model for each symptomatic indicator

j and (Si,2000/∑ Si,2000)j into the denominator of the right side of the model for

each symptomatic indicator j, which yields Si,j,2005. Second, the updated model

with the preceding substitution of symptomatic data for 2005 is used to estimate

Pi,2005. Third, (Pi,2000/∑ Pi,2000) is substituted into the denominator of Pi,2005,

which yields Pi,2005 ¼ (Pi,2005/∑Pi,2005)/(Pi,2000/∑ Pi,2000), where ∑ Pi,2005)

represents the independently estimated population of the state as a whole, which

is the parent area of the 39 counties for 2005. Fifth, since Pi,2005, (Pi,2000/∑ Pi,2000)

and ∑ Pi,2005 are all known values, the equation Pi,2005 ¼ (Pi,2005/∑ Pi,2005) /

(Pi,2000/∑ Pi,2000) is manipulated to yield an estimate of the population of county i

in the year 2005:

ðPi;2005Þ�ðPi;2000=
X

Pi;2000Þ�ð
X

Pi;2005Þ ¼ P̂i;2005

The sixth and final step is to control the 2005 population estimates of the 39

counties so that they sum to the independently estimated 2005 population for the

state of Washington as a whole:

P̂i;2005 ¼ ðPi;2005=
X

Pi;2005Þ�ð
X

Pi;2005Þ

The final “controlled” population estimates are shown in Table 8.1. The appen-

dix shows the results of these steps in detail.

An acute observer may notice that except when k ¼ z, the use of the model for

estimating population corresponds to a shorter length of time than that used to

calibrate the model. For example, if one constructs a model using 1990 and 2000

data for the 39 counties in the state ofWashington it corresponds to a ten year period

of change in both population shares and shares of symptomatic variables. However,

in using this same model to estimate the populations of the 39 counties in 2003, the

time period now corresponds to a three year period of change in both population

shares and shares of symptomatic variables. Swanson and Tedrow (1984) addressed

this temporal inconsistency by using a logarithmic transformation. They called the

resulting model the “rate-correlation” model. This is one of several variants of the

basic ratio-correlation regression technique. We discuss this variation in Chapter 17

and provide an empirical example based on the same Washington state data used in

the example for ratio-correlation found in this chapter.
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Another variant is known as the “difference-correlation” method. Similar in

principle to the ratio-correlation method, the difference-correlation method differs

in its construction of a variable that is used to reflect change over time. Rather than

making ratios out of the two proportions at two points in time, the difference

correlation method employs the differences between proportions (Schmitt and

Grier 1966; O’Hare 1980; Swanson 1978a). One advantage of this method is that

Table 8.1 2005 County

Population Estimates

for the state of Washington

County Estimated 2005 Population

Adams 18,125

Asotin 20,706

Benton 155,792

Chelan 66,727

Clallam 66,870

Clark 393,823

Columbia 4,284

Cowlitz 95,522

Douglas 40,065

Ferry 7,295

Franklin 59,650

Garfield 2,266

Grant 79,475

GHarbor 68,680

Island 74,802

Jefferson 26,994

King 1,793,565

Kitsap 239,943

Kittitas 36,560

Klickitat 18,979

Lewis 69,010

Lincoln 9,982

Mason 53,729

Okanogan 38,740

Pacific 21,099

Pend Oreille 12,093

Pierce 758,454

SanJuan 15,363

Skagit 110,607

Skamania 10,104

Snohomish 652,045

Spokane 442,581

Stevens 41,795

Thurston 230,361

Wahkaikum 4,043

WallaWalla 58,906

Whatcom 180,956

Whitman 40,906

Yakima 235,504

State of Washington 6,256,400
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in taking differences one never has to worry about dividing by zero, which, of course,

is undefined in terms of simple algebra, such as is found in the ratio-correlation

and difference-correlation operations. This is not a hypothetical problem. In cases

involving small populations one could expect that some of the ratios involving the

symptomatic indicators would be zero (Swanson 1978a). For example, if one used

the ratio-correlation model to estimate the non-white population of Garfield County,

Washington, one would encounter division by zero. This is where the difference-

correlation form may be preferred.

Another variant was proposed by Namboodiri and Lalu (1971). Known as the

“average regression” technique, Namboodiri and Lalu (1971) examined the use of

the simple, unweighted average of the estimates provided by a number of simple

regression equations, each of which relates the population ratio to one symptomatic

indicator ratio (As discussed in Chapter 9, this turns out to be very similar to using

an average of several censal ratio estimates). Using the insights provide by

Namboodiri and Lalu (1971), Swanson and Prevost (1985) demonstrated that the

ratio-correlation model can be interpreted as a demographic form of “synthetic

estimation” that is composed of a set of weighted censal-ratio estimates, with the

regression coefficients serving as the weights (See Chapter 11).

Another variation on the ratio-correlation method is to use administrative data to

refine the definition of the population being estimated. In the United States, it has

been possible to use Medicare and related data to obtain an estimate of the popul-

ation aged 65 years and over down to the county level (Bryan 2004; Murdock et al.

1995; US Census Bureau 2010). With these data, the model is then used to estimate

the population under the age of 65. Variations on this theme include obtaining

separate estimates of the population not living in households (e.g., students living in

dormitories, military personnel living in barracks and on ships, patients in long-

term care, and prisoners) and then using the model to estimate the household

population (Feeney et al. 1995). Combining this approach with the one using

Medicare data, one could develop a model to estimate the household population

under the age of 65.

Bryan (2004) observes that one of the shortcomings of the ratio-correlation

method and related techniques is that substantial time lags can occur in obtaining

the symptomatic indicators needed for producing a current population estimate.

That is, suppose that it is the year 2014 and a current (2014) estimate is desired,

but the most current symptomatic indicators are for 2012. What can one do?

One answer to this question is “lagged ratio-correlation,” which was introduced

by Swanson and Beck (1994). In this variant of ratio-correlation, the ratios of

proportional symptomatic indicators precede the ratios of population proportions

by “m” years in model construction so that:

Si;jt�m ¼ ðSi;t�m=
X

Si;t�mÞj=ðSi;ðt�mÞ�z=
X

Si;ðt�mÞ�zÞj (8.1f)

where

m ¼ number of years that symptomatic indicators precede the population proportions
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When the lagged ratio-correlation is used to estimate a population, the only

change to the six steps described earlier for the basic form of ratio-correlation is that

(Si,t+k/∑ Si,t+k)j is substituted into the numerator of the right side of equation 8.1c

for each symptomatic indicator j in place of (Si,(t-m)+k/∑ Si,(t-m)+k)j and /(Si,(t-m)/∑
Si,(t-m))j into the denominator of the right side of equation 8.1c for each symptom-

atic indicator j in place of (Si,t/∑ Si,t)j.

Because ratio-correlation and its variants are grounded in regression, they are

connected to the inferential and other statistical tools that come with it (Swanson

1989; Swanson and Beck 1994). This is a theme to which we return in Chapter 14.

In using these tools, it is important to keep in mind an important point, which is

that within this framework, “uncertainty” is generally based on the “frequentist”

view of sample error. Thus, as discussed by Swanson and Beck (1994), the construc-

tion of confidence intervals around estimated values means, for example, that one

perceives (whether implicitly or explicitly) the following: the data used in model

construction are a random sample drawn from a universe; the model would fit

perfectly were it not for random error; and, any subsequent observations of indepen-

dent variables placed into the model and used to generate dependent variables

are drawn from the same universe. Since a given model is constructed from data

using observations from all known cases (e.g., all 39 counties in Washington), the

“universe” represented by the county data is a “superpopulation”. This means, as

we discussed in Chapter 4 and as noted by D’Allesandro and Tayman (1980), the

observed values are a random manifestation of all the possible observations that

could have occurred.

Technically speaking, this makes it difficult to interpret confidence intervals

in an actual estimation or projection application or an ex post facto test because we

can never observe the regression surface for this superpopulation (specifically, the

set of county populations forming the expected values of this regression surface).

What we do observe is a census count. This census count has two distinct uses.

First, it must be viewed as an estimator during the model construction phase

(as are all of the symptomatic indicators). However, when we use a given model

to estimate or project the number of persons in a given county, we must view the

number that is (or could be) generated by a complete enumeration as a parameter.

Thus, in using the term “confidence intervals” one (implicitly or explicitly) assumes

that a census count is used to generate an estimate or projection. Consequently,

when a confidence band is placed around estimated or projected figures, the band is

an interval estimator for a parameter (Swanson and Beck 1994).

Given these qualification, Swanson and Beck (1994) conducted ex post facto

examinations on estimates produced by the lagged ratio-correlation model and their

“forecast intervals” for total populations of the 39 counties in Washington State in

1970, 1980, and 1990. For the 1970 set of county population projections, they found

that the 2/3 forecast intervals contained the 1970 census figure in more than

two-thirds (30 of the 39 counties) as did the 1990 results (31 of 39 counties).

For the 1980 set, the 2/3 forecast interval contained the 1980 census figure in

just less than two-thirds (24 of the 39 counties). Swanson and Beck (1994) argued

that these findings are of interest from an application standpoint because if the
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2/3 forecast intervals contained substantially less than two-thirds of the actual

county populations, one would have a misplaced sense of accuracy in the ability

of the given models to accurately estimate and project county populations. Since the

intervals did contain more than two-thirds of the actual county population figures in

both 1970 and 1990 and nearly two-thirds in 1980, they argued that the results of

this case study revealed an intuitively appealing view of the accuracy of these

particular models (Swanson and Beck 1994).

The findings by Swanson and Beck (1994) suggest that, among other useful

features, one can construct confidence and “forecast” intervals around the estimates

produced by ratio-correlation and its variants that are both statistically and substan-

tively meaningful.

Given that the input data are of good quality, the accuracy of the regression-

based techniques largely depends upon the validity of the central underlying

assumption: that the observed statistical relationship between the independent and

dependent variables in the past inter-censal period will persist in the current post-

censal period. The adequacy of this assumption (that the model is invariant) is

dependent on several conditions (Swanson 1980; Mandell and Tayman 1982;

McKibben and Swanson 1997; Tayman and Schafer 1985).

In an attempt to deal with model invariance, Ericksen (1973, 1974) introduced a

method of post-censal estimation in which the symptomatic information is com-

bined with sample data by means of a regression format. He considered combining

symptomatic information on births, deaths, and school enrollment with sample data

from the Current Population Survey. Swanson (1980) took a different approach to

the issue of model invariance and presented a mildly restricted procedure for using

a theoretical causal ordering and principles from path analysis to provide a basis for

modifying regression coefficients in order to improve the estimation accuracy of the

ratio-correlation method of population estimation.

Ridge Regression also represents a method for dealing with model invariance.

Swanson (1978b) and D’Allesandro and Tayman (1980) examined this approach to

multiple regression and found that it offered some benefits. Ridge Regression also

represents a way to deal with another possible problemwith the regression approach,

which is multi-collinearity, a condition whereby the independent variables are

all highly correlated. This condition can result in type II errors (finding that given

coefficients are not shown to be statistically significant when in fact they are) when

one evaluates the statistical significance of the coefficients associated with the

symptomatic indicators used in a given model. One also can use the standard

diagnostic tools associated with regression to evaluate and this issue and overcome

it without resorting to ridge regression, if an evaluation suggests it is present

(Fox 1991). Swanson (1989) demonstrated another way to deal with model invari-

ance by using the statistical properties of the ratio-correlation method in conjunction

with theWilcoxonmatched-pairs signed rank test and the “rank-order” procedure he

introduced (Swanson 1980).

Judgment is also important in the application of ratio-correlation, as the analyst

must take into account the reliability and consistency of coverage of each variable

(Tayman and Schafer 1985). The increasing availability of administrative data
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allows many possible combinations of variables. High correlation coefficients for

two past inter-censal periods would suggest that the degree of association of the

variables is not changing very rapidly. In such a case, the regression based on the last

inter-censal period should be applicable to the current post-censal period. Further-

more, it is assumed that deficiencies in coverage in the basic data series will remain

constant, or change very little, in the present period (Tayman and Schafer 1985).

In addition to the issue of time lags in the availability of symptomatic indicators,

Bryan (2004) notes two other shortcomings of regression-based techniques:

(1) the use of multiple and differing variables (oftentimes depending on the place

being estimated) and in some instances averaging the results of multiple estimates,

which makes it difficult to decompose error; and (2) this process may compromise

the comparability of estimates between different subnational areas. In regard

to decomposing error, this is a feature of all of the estimation methods that do

not deal directly with the components of population change. In regard to compara-

bility, we note that this is an issue when different regression models are used

(e.g., the ratio-correlation model used to estimate the populations of the 75 counties

of Arkansas is different from the ratio-correlation model used to estimate the

populations of the 39 counties of Washington state.

In regard to the issue of decomposing error, McKibben and Swanson (1997)

argue that at least some of the shortcomings in accuracy of population estimates

would be better understood by linking these methods with the substantive socio-

economic and demographic dynamics that clearly must be underlying the changes

in population that the methods are designed to measure. They provide a case study

of Indiana over two periods, 1970-1980 and 1980-1990, which was selected because

a common population estimation method exhibits a common problem over the two

periods: its coefficients change. The authors link these changes to Indiana’s transi-

tion to a post-industrial economy and describe how this transition operated through

demographic dynamics that ultimately affected the estimation model.

8.3 Summary

Regression-based methods have very limited application in the preparation of

estimates of population composition, such as age-sex groups for small geographic

areas. It is possible, of course, to apply the age distribution at the last census date to

a pre-assigned current total for the area, or to extrapolate the last two census age

distributions to the current date and apply the extrapolated distribution to the

current total. Spar and Martin (1979) found, for example, that the ratio-correlation

method is more accurate than others in estimating the populations of Virginia

counties by race and age.

While the regression approach has its limitations, as suggested by this

overview, it is clear it has strong advantages, given the availability of good

quality data to implement and test it. This is especially the case for the ratio-

correlation method. Among its many advantages is the fact that regression has
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a firm foundation in statistical inference, which leads to the construction of

meaningful measures of uncertainty around the estimates it produces, as demon-

strated by Swanson and Beck (1994). As discussed in Chapters 14 and 15, this

gives the ratio-correlation method an important advantage in terms of error and

uncertainty assessment over the methods that are not linked to statistical infer-

ence. Further, as suggested by Snow (1911) and those who discussed his ground-

breaking use of multiple regression for population estimation, it is important to

use variables that represent some measure of relative change over time, which the

ratio-correlation method does. Although ratio-correlation is inherently a cross-

sectional model rather than a time series, Swanson (2004) suggests that one of

the reasons for its consistently good performance, may be due to the fact that the

formation of the change in ratios provides some of the benefits associated with

“stationarity,” which as we discussed in Chapter 6 is an important characteristic

in the development of a good ARIMA model.

The basic assumption underlying the regression methods discussed here is the

same as those underlying the trend extrapolation methods discussed in Chapter 6 –

in terms of the change in a variable of interest specified by a particular method—the

future will be just like the past. This is the source of model invariance and one must

always ask in using a regression-based method what sort of changes are expected to

occur over time and how can they be accommodated? These questions can be set in

terms of spatial and temporal heterogeneity, spatial autocorrelation, spatial depen-

dence and spatial interaction. Some progress toward answering these questions

appears to have been made (D’Allesandro and Tayman 1980; Ericksen 1973;

Mandell and Tayman 1982; McKibben and Swanson 1997; Swanson 1978b;

Swanson 1980; Tayman and Schafer 1985), but more work is needed. A factor

favoring the success of these endeavors is that these regression models are firmly

embedded in the theory, substance, and issues of spatial demography, which is

discussed in Chapter 12.
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Appendix

Table 8.2a Registered Voters, 1990 and 2000 Data

COUNTY

Number

Year ¼ 2000

Number

Year ¼ 1990

Proportion

Year ¼ 2000

Proportion

Year ¼1990

Ratio of 2000

Prop/1990 Prop

Adams 6,098 5,553 0.00196738 0.002499767 0.787025521

Asotin 12,987 8,597 0.004189959 0.00387007 1.082657236

Benton 75,315 53,452 0.024298665 0.024062227 1.009826097

Chelan 32,803 24,043 0.010583139 0.010823321 0.977808879

Clallam 39,068 28,085 0.012604398 0.012642888 0.996955607

Clark 167,584 88,903 0.054067151 0.040021032 1.350968445

Columbia 2,671 2,256 0.000861737 0.001015573 0.848523475

Cowlitz 49,643 34,503 0.01601618 0.015532048 1.031169905

Douglas 16,855 11,320 0.005437881 0.005095869 1.067115429

Ferry 3,856 2,486 0.00124405 0.001119111 1.111642059

Franklin 16,321 13,228 0.005265598 0.005954785 0.884263396

Garfield 1,670 1,537 0.000538787 0.000691904 0.778702686

Grant 29,970 21,391 0.009669136 0.009629483 1.004117935

GHarbor 32,038 29,613 0.010336329 0.01333074 0.775375474

Island 38,265 24,325 0.012345329 0.010950267 1.12739976

Jefferson 17,330 11,413 0.005591129 0.005137735 1.088247842

King 1,001,339 765,692 0.323059164 0.344687849 0.937251385

Kitsap 125,219 82,518 0.040399051 0.037146727 1.087553441

Kittitas 16,417 12,836 0.00529657 0.00577832 0.916628084

Klickitat 11,717 7,943 0.003780223 0.003575662 1.057209207

Lewis 40,913 27,990 0.013199645 0.012600122 1.047580719

Lincoln 6,656 5,495 0.002147406 0.002473657 0.868109854

Mason 27,238 18,108 0.008787719 0.00815159 1.078037328

Okanogan 18,159 14,987 0.005858587 0.006746625 0.868372958

Pacific 12,697 9,906 0.004096397 0.004459336 0.918611473

PendOreille 6,903 4,851 0.002227095 0.002183751 1.019848515

Pierce 325,079 229,449 0.104879316 0.103289942 1.015387506

SanJuan 9,228 6,919 0.002977203 0.003114693 0.955857879

Skagit 55,780 38,696 0.017996143 0.01741959 1.033097962

Skamania 5,586 3,946 0.001802195 0.001776352 1.014548749

Snohomish 303,110 196,968 0.09779152 0.088668128 1.102893707

Spokane 209,404 165,189 0.067559419 0.07436233 0.908516708

Stevens 25,481 14,406 0.008220863 0.006485079 1.267658073

Thurston 119,016 79,381 0.038397795 0.035734559 1.074528289

Wahkaikum 2,455 1,944 0.00079205 0.000875121 0.90507445

WallaWalla 24,411 20,614 0.007875652 0.009279704 0.848696416

Whatcom 90,987 60,874 0.029354878 0.027403353 1.071214827

Whitman 25,273 18,842 0.008153756 0.008482012 0.961299834

Yakima 94,011 73,148 0.030330502 0.03292868 0.921096825

check sum

STATE

3,099,553 2,221,407 1.0000 1.0000

3,099,553 2,221,407
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Table 8.2b Registered Autos, 1990 and 2000 Data

COUNTY

Number

Year ¼ 2000

Number

Year ¼ 1990

Proportion

Year ¼ 2000

Proportion

Year ¼ 1990

Ratio of 2000

Prop/1990 Prop

Adams 9,144 7,476 0.002950103 0.003365435 0.876588954

Asotin 10,375 8,964 0.003347257 0.00403528 0.829497968

Benton 80,977 62,203 0.02612538 0.028001622 0.932995226

Chelan 39,153 31,360 0.012631821 0.014117179 0.894783691

Clallam 35,697 29,592 0.011516822 0.013321287 0.864542744

Clark 183,053 139,958 0.059057871 0.063004213 0.937363832

Columbia 2,186 2,226 0.000705263 0.001002068 0.703807786

Cowlitz 52,461 47,555 0.016925344 0.021407603 0.790623007

Douglas 13,008 12,107 0.004196734 0.005450149 0.770021861

Ferry 2,384 1,943 0.000769143 0.000874671 0.879351522

Franklin 27,518 24,762 0.008878054 0.011146989 0.796453117

Garfield 1,263 1,247 0.000407478 0.000561356 0.725881898

Grant 35,188 28,154 0.011352605 0.012673949 0.895743254

GHarbor 33,310 32,097 0.010746711 0.014448951 0.743771032

Island 37,675 28,462 0.012154978 0.0128126 0.94867382

Jefferson 14,459 10,170 0.004664866 0.00457818 1.018934751

King 1,083,380 975,138 0.349527819 0.438973137 0.796239654

Kitsap 125,716 101,075 0.040559397 0.045500442 0.891406658

Kittitas 16,405 13,174 0.005292699 0.005930476 0.892457708

Klickitat 9,820 8,351 0.003168199 0.003759329 0.842756427

Lewis 36,164 34,157 0.011667489 0.015376291 0.758797358

Lincoln 5,566 5,632 0.001795743 0.00253533 0.708287578

Mason 25,701 18,893 0.008291841 0.00850497 0.974940622

Okanogan 18,420 15,046 0.005942792 0.006773185 0.877400015

Pacific 10,214 9,204 0.003295314 0.00414332 0.795331737

PendOreille 5,709 4,486 0.001841878 0.002019441 0.912073511

Pierce 349,476 308,937 0.112750451 0.139072669 0.810730479

SanJuan 8,063 5,917 0.002601343 0.002663627 0.97661673

Skagit 66,322 49,147 0.021397279 0.022124266 0.967140723

Skamania 4,149 3,104 0.00133858 0.001397313 0.957967535

Snohomish 332,324 278,326 0.10721675 0.125292664 0.855730473

Spokane 231,030 202,904 0.074536554 0.091340308 0.816031341

Stevens 16,866 12,789 0.00544143 0.005757162 0.945158355

Thurston 121,894 104,118 0.039326316 0.046870294 0.839045632

Wahkaikum 1,634 1,513 0.000527173 0.0006811 0.774002197

WallaWalla 24,258 22,549 0.00782629 0.010150774 0.771004254

Whatcom 90,938 70,164 0.029339069 0.031585387 0.928881103

Whitman 17,061 16,285 0.005504342 0.007330939 0.750837213

Yakima 117,751 99,187 0.037989671 0.04465053 0.850822406

check sum

STATE

3,296,712 2,828,372 1.0636 1.2732

3,296,712 2,828,372
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Table 8.2c Enrollment in Grades 1-8, 1990 and 2000 Data

COUNTY

Number

Year ¼ 2000

Number

Year ¼ 1990

Proportion

Year ¼ 2000

Proportion

Year ¼ 1990

Ratio of 2000

Prop/1990 Prop

Adams 2,417 2,277 0.000779745 0.001025026 0.76070721

Asotin 2,183 2,212 0.00070436 0.000995765 0.707355068

Benton 18,719 15,296 0.006039116 0.006885726 0.87704854

Chelan 8,268 6,567 0.002667485 0.002956234 0.902325116

Clallam 6,424 6,439 0.002072702 0.002898613 0.715066772

Clark 42,803 30,613 0.013809333 0.013780906 1.002062827

Columbia 381 521 0.000122885 0.000234536 0.523951293

Cowlitz 11,789 10,538 0.003803339 0.00474384 0.801742579

Douglas 3,979 3,285 0.001283695 0.001478792 0.868069579

Ferry 816 896 0.000263264 0.000403348 0.652696401

Franklin 6,980 5,760 0.002252063 0.002592951 0.868532899

Garfield 295 311 9.5175E-05 0.000140001 0.679814927

Grant 10,776 8,281 0.003476627 0.003727818 0.932617293

GHarbor 7,778 8,129 0.002509452 0.003659392 0.685756503

Island 6,433 5,803 0.002075538 0.002612308 0.794522595

Jefferson 2,282 2,145 0.00073618 0.000965604 0.762403811

King 173,328 145,005 0.055920321 0.065276197 0.856672483

Kitsap 27,470 23,320 0.008862526 0.010497851 0.844222898

Kittitas 2,907 2,637 0.000937955 0.001187085 0.790132316

Klickitat 2,365 2,370 0.000762987 0.001066891 0.715150057

Lewis 7,901 8,124 0.002549003 0.003657142 0.696993252

Lincoln 1,475 1,466 0.000475943 0.000659942 0.721188755

Mason 5,281 4,448 0.001703768 0.002002335 0.8508909

Okanogan 4,895 4,449 0.001579241 0.002002785 0.788522402

Pacific 2,068 2,069 0.000667125 0.000931392 0.71626711

PendOreille 1,242 1,150 0.000400677 0.00051769 0.773971288

Pierce 85,065 70,118 0.027444386 0.03156468 0.869465072

SanJuan 1,175 949 0.000379132 0.000427207 0.887467517

Skagit 12,035 9,713 0.003882792 0.004372454 0.88801211

Skamania 835 877 0.000269339 0.000394795 0.682224832

Snohomish 73,759 56,030 0.023796657 0.025222753 0.943459945

Spokane 48,216 43,219 0.015555879 0.019455687 0.799554304

Stevens 3,938 3,898 0.001270386 0.001754744 0.723972616

Thurston 23,806 20,459 0.007680617 0.009209929 0.833949692

Wahkaikum 318 287 0.000102595 0.000129197 0.794098348

WallaWalla 6,082 5,650 0.001962199 0.002543433 0.771476591

Whatcom 17,695 14,297 0.005708817 0.006436011 0.887011641

Whitman 3,120 3,079 0.001006639 0.001386058 0.726259907

Yakima 31,436 26,359 0.010142062 0.011865903 0.854723186

check sum

STATE

668,735 559,046 0.2158 0.2517

668,735 559,046
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Table 8.2d Total Population, 1990 and 2000 Data

COUNTY

Number

Year ¼ 2000

Number

Year ¼ 1990

Proportion

Year ¼ 2000

Proportion

Year ¼ 1990

Ratio of 2000

Prop/1990 Prop

Adams 16,428 13,603 0.005300119 0.006123596 0.865523901

Asotin 20,551 17,605 0.006630311 0.007925157 0.836615678

Benton 142,475 112,560 0.045966305 0.050670589 0.907159495

Chelan 66,616 52,250 0.021492131 0.023521129 0.913737242

Clallam 64,525 56,464 0.020817518 0.025418125 0.819002903

Clark 345,238 238,053 0.111383158 0.107163163 1.039379154

Columbia 4,064 4,024 0.001311157 0.001811465 0.723810362

Cowlitz 92,948 82,119 0.02998755 0.036967111 0.811195376

Douglas 32,603 26,205 0.010518613 0.011796578 0.891666538

Ferry 7,260 6,295 0.002342273 0.00283379 0.826551571

Franklin 49,347 37,473 0.015920683 0.016869038 0.943781286

Garfield 2,397 2,248 0.000773337 0.001011971 0.764189025

Grant 74,698 54,758 0.024099604 0.024650143 0.977665896

GHarbor 67,194 64,175 0.02167861 0.028889348 0.750401489

Island 71,558 60,195 0.023086555 0.027097691 0.851974986

Jefferson 25,953 20,146 0.008373143 0.009069027 0.923268049

King 1,737,034 1,507,319 0.560414357 0.678542473 0.825909031

Kitsap 231,969 189,731 0.074839501 0.085410283 0.876235257

Kittitas 33,362 26,725 0.010763488 0.012030663 0.894671151

Klickitat 19,161 16,616 0.006181859 0.007479944 0.82645794

Lewis 68,600 59,358 0.022132224 0.026720903 0.828273803

Lincoln 10,184 8,864 0.003285635 0.003990264 0.823412987

Mason 49,405 38,341 0.015939395 0.017259782 0.923499229

Okanogan 39,564 33,350 0.012764421 0.015013008 0.850224126

Pacific 20,984 18,882 0.006770008 0.008500018 0.796469874

PendOreille 11,732 8,915 0.003785062 0.004013222 0.943147843

Pierce 700,820 586,203 0.22610357 0.263888157 0.856815905

SanJuan 14,077 10,035 0.004541623 0.004517407 1.005360465

Skagit 102,979 79,555 0.033223823 0.035812888 0.927705773

Skamania 9,872 8,289 0.003184975 0.003731419 0.853556112

Snohomish 606,024 465,642 0.195519806 0.209615798 0.932753198

Spokane 417,939 361,364 0.134838475 0.162673477 0.82889035

Stevens 40,066 30,948 0.01292638 0.013931711 0.927838668

Thurston 207,355 161,238 0.066898356 0.072583727 0.921671543

Wahkaikum 3,824 3,327 0.001233726 0.001497699 0.82374758

WallaWalla 55,180 48,439 0.017802567 0.021805549 0.816423687

Whatcom 166,814 127,780 0.053818728 0.057522102 0.935618244

Whitman 40,740 38,775 0.013143831 0.017455153 0.753005741

Yakima 222,581 188,823 0.071810677 0.085001533 0.844816262

check sum

STATE

5,894,121 4,866,692 1.9016 2.1908

5,894,121 4,866,692
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Table 8.2e Registered Voters, 2000 and 2005 Data

COUNTY

Number

Year ¼ 2005

Number

Year ¼ 2000

Proportion

Year ¼ 2005

Proportion

Year ¼ 2000

Ratio of 2005

Prop/2000 Prop

Adams 6,477 6,098 0.001846242 0.00196738 0.938426384

Asotin 11,805 12,987 0.003364966 0.004189959 0.803102325

Benton 85,586 75,315 0.024395931 0.024298665 1.004002932

Chelan 37,395 32,803 0.010659288 0.010583139 1.007195336

Clallam 43,520 39,068 0.012405194 0.012604398 0.984195647

Clark 207,611 167,584 0.059178646 0.054067151 1.094539755

Columbia 2,542 2,671 0.000724586 0.000861737 0.840843924

Cowlitz 53,914 49,643 0.01536796 0.01601618 0.95952715

Douglas 16,994 16,855 0.004844069 0.005437881 0.890800781

Ferry 4,088 3,856 0.001165267 0.00124405 0.936672121

Franklin 21,235 16,321 0.006052948 0.005265598 1.149527149

Garfield 1,524 1,670 0.00043441 0.000538787 0.806273207

Grant 32,760 29,970 0.009338101 0.009669136 0.965763711

GHarbor 36,647 32,038 0.010446074 0.010336329 1.010617382

Island 43,688 38,265 0.012453081 0.012345329 1.008728237

Jefferson 21,165 17,330 0.006032995 0.005591129 1.079029809

King 1,082,406 1,001,339 0.308535298 0.323059164 0.955042706

Kitsap 138,956 125,219 0.039608826 0.040399051 0.980439512

Kittitas 19,817 16,417 0.005648753 0.00529657 1.066492593

Klickitat 12,163 11,717 0.003467012 0.003780223 0.917145013

Lewis 38,007 40,913 0.010833736 0.013199645 0.820759649

Lincoln 6,642 6,656 0.001893274 0.002147406 0.881656249

Mason 31,083 27,238 0.008860079 0.008787719 1.008234247

Okanogan 20,066 18,159 0.005719729 0.005858587 0.976298476

Pacific 13,195 12,697 0.003761179 0.004096397 0.918167693

PendOreille 7,486 6,903 0.002133853 0.002227095 0.958132743

Pierce 405,023 325,079 0.11545011 0.104879316 1.10079007

SanJuan 11,246 9,228 0.003205625 0.002977203 1.076723584

Skagit 63,185 55,780 0.01801062 0.017996143 1.000804414

Skamania 6,305 5,586 0.001797214 0.001802195 0.997235871

Snohomish 352,238 303,110 0.100403967 0.09779152 1.02671445

Spokane 251,184 209,404 0.071598947 0.067559419 1.05979223

Stevens 28,414 25,481 0.008099292 0.008220863 0.985211881

Thurston 137,742 119,016 0.03926278 0.038397795 1.022526959

Wahkaikum 2,592 2,455 0.000738839 0.00079205 0.932818677

WallaWalla 29,279 24,411 0.008345856 0.007875652 1.059703579

Whatcom 106,094 90,987 0.03024165 0.029354878 1.030208693

Whitman 21,082 25,273 0.006009336 0.008153756 0.737002132

Yakima 97,052 94,011 0.027664266 0.030330502 0.912093896

STATE 3,508,208 3,099,553 1.0000 1.0000
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Table 8.2f Registered Autos, 2000 and 2005 Data

COUNTY

Number

Year ¼ 2005

Number

Year ¼ 2000

Proportion

Year ¼ 2005

Proportion

Year ¼ 2000

Ratio of 2005

Prop/2000 Prop

Adams 12,064 9,144 0.003438793 0.002950103 1.165651813

Asotin 11,853 10,375 0.003378648 0.003347257 1.009378178

Benton 103,288 80,977 0.029441812 0.02612538 1.126942914

Chelan 40,826 39,153 0.01163728 0.012631821 0.921267009

Clallam 43,880 35,697 0.01250781 0.011516822 1.086047029

Clark 238,323 183,053 0.067932973 0.059057871 1.150278066

Columbia 2,602 2,186 0.000741689 0.000705263 1.05164913

Cowlitz 59,836 52,461 0.017056001 0.016925344 1.007719636

Douglas 23,100 13,008 0.006584558 0.004196734 1.568971966

Ferry 2,767 2,384 0.000788722 0.000769143 1.025455079

Franklin 35,678 27,518 0.010169865 0.008878054 1.145505997

Garfield 1,413 1,263 0.00040277 0.000407478 0.988445079

Grant 42,352 35,188 0.01207226 0.011352605 1.063391227

GHarbor 38,934 33,310 0.011097974 0.010746711 1.032685607

Island 47,153 37,675 0.013440765 0.012154978 1.105782723

Jefferson 18,982 14,459 0.00541074 0.004664866 1.159891708

King 1,227,244 1,083,380 0.349820763 0.349527819 1.000838114

Kitsap 152,831 125,716 0.043563837 0.040559397 1.074075061

Kittitas 20,690 16,405 0.005897598 0.005292699 1.114289372

Klickitat 11,859 9,820 0.003380358 0.003168199 1.066965344

Lewis 39,820 36,164 0.011350524 0.011667489 0.972833523

Lincoln 6,025 5,566 0.001717401 0.001795743 0.956373605

Mason 34,352 25,701 0.009791894 0.008291841 1.180907111

Okanogan 21,622 18,420 0.006163261 0.005942792 1.037098412

Pacific 12,270 10,214 0.003497512 0.003295314 1.061359329

PendOreille 7,157 5,709 0.002040073 0.001841878 1.107604487

Pierce 436,245 349,476 0.124349811 0.112750451 1.102876387

SanJuan 10,736 8,063 0.003060252 0.002601343 1.176412351

Skagit 81,691 66,322 0.023285677 0.021397279 1.088254146

Skamania 5,032 4,149 0.001434351 0.00133858 1.071546273

Snohomish 412,919 332,324 0.117700832 0.10721675 1.09778399

Spokane 277,551 231,030 0.07911475 0.074536554 1.06142216

Stevens 20,268 16,866 0.005777309 0.00544143 1.061726194

Thurston 163,196 121,894 0.046518336 0.039326316 1.182880611

Wahkaikum 2,080 1,634 0.000592895 0.000527173 1.124669752

WallaWalla 29,277 24,258 0.008345286 0.00782629 1.066314496

Whatcom 115,773 90,938 0.033000609 0.029339069 1.124800811

Whitman 20,277 17,061 0.005779874 0.005504342 1.050057184

Yakima 141,179 117,751 0.040242483 0.037989671 1.059300628

STATE 3,973,145 3,296,712 1.1325 1.0636
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Table 8.2g Enrollment in Grades 1-8, 2000 and 2005 Data

COUNTY

Number

Year ¼ 2005

Number

Year ¼ 2000

Proportion

Year ¼ 2005

Proportion

Year ¼ 2000

Ratio of 2005

Prop/2000 Prop

Adams 2,482 2,417 0.000707381 0.000779745 0.907195775

Asotin 2,077 2,183 0.00059204 0.00070436 0.840536749

Benton 19,064 18,719 0.005434222 0.006039116 0.899837281

Chelan 7,930 8,268 0.002260533 0.002667485 0.847439938

Clallam 5,899 6,424 0.001681528 0.002072702 0.811273366

Clark 46,759 42,803 0.013328426 0.013809333 0.965175193

Columbia 389 381 0.000110871 0.000122885 0.902233821

Cowlitz 11,373 11,789 0.003241755 0.003803339 0.852344476

Douglas 4,067 3,979 0.001159361 0.001283695 0.903143919

Ferry 736 816 0.000209651 0.000263264 0.796354155

Franklin 8,701 6,980 0.002480283 0.002252063 1.101338148

Garfield 241 295 6.87473E-05 9.5175E-05 0.7223256

Grant 10,846 10,776 0.003091595 0.003476627 0.889251387

GHarbor 7,155 7,778 0.00203952 0.002509452 0.812735113

Island 5,909 6,433 0.00168447 0.002075538 0.811582196

Jefferson 1,933 2,282 0.000551099 0.00073618 0.748592414

King 170,347 173,328 0.048556614 0.055920321 0.868317855

Kitsap 25,376 27,470 0.007233434 0.008862526 0.816181917

Kittitas 2,964 2,907 0.000844947 0.000937955 0.900840028

Klickitat 1,984 2,365 0.000565508 0.000762987 0.741176146

Lewis 7,682 7,901 0.002189579 0.002549003 0.85899443

Lincoln 1,341 1,475 0.000382349 0.000475943 0.80335081

Mason 5,074 5,281 0.001446394 0.001703768 0.848938059

Okanogan 4,021 4,895 0.001146141 0.001579241 0.725754324

Pacific 1,817 2,068 0.000518037 0.000667125 0.776520715

PendOreille 1,110 1,242 0.000316458 0.000400677 0.789807647

Pierce 84,043 85,065 0.023956174 0.027444386 0.872898863

SanJuan 1,126 1,175 0.000320819 0.000379132 0.846193378

Skagit 12,072 12,035 0.003441122 0.003882792 0.886249222

Skamania 748 835 0.000213169 0.000269339 0.791451626

Snohomish 73,322 73,759 0.020900101 0.023796657 0.878278846

Spokane 46,975 48,216 0.013389944 0.015555879 0.860764266

Stevens 3,754 3,938 0.00107015 0.001270386 0.842381765

Thurston 24,096 23,806 0.006868415 0.007680617 0.894253064

Wahkaikum 302 318 8.60838E-05 0.000102595 0.839061039

WallaWalla 6,027 6,082 0.001717988 0.001962199 0.875542265

Whatcom 17,575 17,695 0.005009683 0.005708817 0.877534391

Whitman 2,891 3,120 0.000824028 0.001006639 0.818593144

Yakima 31,688 31,436 0.009032589 0.010142062 0.890606697

STATE 661,898 668,735 0.1887 0.2158
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Table 8.2h Estimated Population 2005

COUNTY

Number

Year ¼ 2000

Proportion

Year ¼ 2000

Estimated

Ratio of

2005 Prop /

2000 Prop

Estimated

Proportion

Year ¼ 2005

Estimated

Population

2005 Not

Controlled

Estimated

Population

2005

Controlled

Adams 16,428 0.002787184 1.063487897 0.002964136 18,545 18,125

Asotin 20,551 0.003486695 0.971181915 0.003386215 21,186 20,706

Benton 142,475 0.024172391 1.054035167 0.025478551 159,404 155,792

Chelan 66,616 0.011302109 0.965545336 0.010912699 68,274 66,727

Clallam 64,525 0.010947349 0.998966852 0.010936039 68,420 66,870

Clark 345,238 0.05857328 1.099587137 0.064406425 402,952 393,823

Columbia 4,064 0.000689501 1.016129849 0.000700622 4,383 4,284

Cowlitz 92,948 0.015769612 0.990626693 0.015621798 97,736 95,522

Douglas 32,603 0.005531444 1.184544909 0.006552244 40,993 40,065

Ferry 7,260 0.001231736 0.968611432 0.001193073 7,464 7,295

Franklin 49,347 0.008372241 1.165182116 0.009755185 61,032 59,650

Garfield 2,397 0.000406676 0.91106728 0.00037051 2,318 2,266

Grant 74,698 0.012673306 1.025583671 0.012997536 81,318 79,475

GHarbor 67,194 0.011400173 0.985248907 0.011232008 70,272 68,680

Island 71,558 0.012140572 1.007627662 0.012233176 76,536 74,802

Jefferson 25,953 0.004403201 1.002602877 0.004414662 27,620 26,994

King 1,737,034 0.2947062 0.995305428 0.29332268 1,835,144 1,793,565

Kitsap 231,969 0.039355996 0.99707038 0.039240697 245,505 239,943

Kittitas 33,362 0.005660216 1.056326591 0.005979037 37,407 36,560

Klickitat 19,161 0.003250866 0.954783049 0.003103872 19,419 18,979

Lewis 68,600 0.011638716 0.969691291 0.011285961 70,609 69,010

Lincoln 10,184 0.001727823 0.944850982 0.001632536 10,214 9,982

Mason 49,405 0.008382081 1.048303049 0.008786961 54,975 53,729

Okanogan 39,564 0.006712451 0.943852979 0.006335567 39,638 38,740

Pacific 20,984 0.003560158 0.969194674 0.003450486 21,588 21,099

PendOreille 11,732 0.001990458 0.993572129 0.001977664 12,373 12,093

Pierce 700,820 0.118901529 1.043206233 0.124038816 776,036 758,454

SanJuan 14,077 0.002388312 1.052024748 0.002512563 15,720 15,363

Skagit 102,979 0.017471477 1.035336839 0.018088864 113,171 110,607

Skamania 9,872 0.001674889 0.986583624 0.001652418 10,338 10,104

Snohomish 606,024 0.102818385 1.037135674 0.106636615 667,161 652,045

Spokane 417,939 0.070907774 1.020769569 0.072380498 452,841 442,581

Stevens 40,066 0.006797621 1.005540852 0.006835285 42,764 41,795

Thurston 207,355 0.03517997 1.070883741 0.037673658 235,701 230,361

Wahkaikum 3,824 0.000648782 1.019015058 0.000661119 4,136 4,043

WallaWalla 55,180 0.009361871 1.029031869 0.009633664 60,272 58,906

Whatcom 166,814 0.02830176 1.045653176 0.029593826 185,151 180,956

Whitman 40,740 0.006911972 0.967871665 0.006689902 41,855 40,906

Yakima 222,581 0.037763222 1.019901547 0.038514769 240,964 235,504

STATE 6,401,438 6,256,400

5,894,121 1.0000 1.0232 6,256,400
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Chapter 9

Censal-Ratio Methods

9.1 Introduction

In the late 17th century, John Graunt estimated the population of London and then of

the whole of England and Wales using what today is known as a censal-ratio

method (Devlin 2008: 93-94). Not long afterward, in the 18th century, the French

mathematician, Laplace, also used a censal-ratio method in combination with

recorded births and a population sample to estimate the population of France

(Stigler 1986:163-164). However, methodological development really only took

off in the late 1930s and early 1940s, fueled in large part by the need for low-cost

and timely information generated by the great depression of the 1930s and World

War II (Bryan 2004; Eldridge 1947; Shryock 1938; Shryock and Lawrence 1949).

In modern times, the censal-ratio method is usually traced to Bogue (1950) who

introduced the “vital rates method.”

9.2 Approaches

The censal-ratio method can be implemented in several different ways. The most

basic approach is to use relationships between symptomatic indicators and popula-

tion counts in census years to estimate populations in non-census years and apply-

ing these relationships to symptomatic indictors available in the years for which

estimates are desired. Borrowing from the notation in the preceding chapter on

regression methods, the general form of this approach is as follows.

Ri;j;t ¼ Si;j;t=Pi;t (9.1a)

where

R ¼ Censal-ratio

P ¼ population
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S ¼ symptomatic indicator

j ¼ indicator (1 � j � k)

i ¼ subarea (1 � j � n)

t ¼ year of the most recent census

Once a censal-ratio is constructed, a population estimate for time t + k is

developed by dividing the t + k value of the symptomatic indicator (Si,j,t+k ) by

the ratio (Ri,j,t ) to yield an estimate of Pi,t+k:

P̂i;tþk ¼ Si;j;tþk=Ri;j;t (9.1b)

If area i has a parent area for which an independently-derived population

estimate is available, then, as was the case for the ratio-correlation model discussed

in Chapter 8, it is common is to effect a final “control” so that the sum of the

i subarea population estimates is equal to the independently estimated population

for the parent of these i subareas, ∑Pi,t+k, which is accomplished as follows:

P̂i;tþk ¼ ðP̂i;tþk=SP̂i;tþkÞ�ðSP̂i;tþkÞ: (9.1c)

It should be noted that as long as the algebra yields an estimate of Pi at time t + k,

it is immaterial if Ri,j,t ¼ Pi,t/ Si,j,t or if Ri,j,t ¼ Si,j,t/ Pi,t. In the case of the latter

version, Equation [9.1a] and [9.1b] become, respectively, [9.1d] and [9.1e]:

Ri;j;t ¼ Pi;jt=Sij;;t (9.1d)

P̂i;tþk ¼ ðRi;j;tÞ=ðSi;j;tþkÞ (9.1e)

One advantage of using Equations [9.1a] and [9.1b] over [9.1d] and 9.1c] is that

the resulting ratio of interest is easier to interpret. As the following example shows,

if one uses deaths as the symptomatic indicator, then the ratio is the crude death

rate. Similarly, if one uses births, the resulting ratio is the crude birth rate.

Here, we provide two examples of the censal-ratio method, one for an area with a

large population and the other for an area with a small population. The large

population example is for a 2006 estimate of the population of the state of

Washington and the other one for a 2006 estimate of the population of Garfield

County, which is one of the smallest counties in the state of Washington.

In 2000, the count of the state population was 5,894,143 and the number of

reported deaths in 2000 and 2006, was 43,904 and 45,878, respectively (State of

Washington 2009a). Using Equation [9.1a] we estimate the ratio of deaths to

population at time ¼ t (2000) as 0.0074 ¼ 43,904/ 5,894,143. We can interpret

the ratio, 0.0074, as the crude death rate for the state of Washington in 2000. Using

Equation [9.1b] our 2006 estimate is 6,199,730 ¼ (45,878/0.0074). This estimate

compares favorably with the state’s official 2006 population estimate of 6,376,600

(State of Washington 2009a:3), with a numerical difference of -176,870 and a

relative difference of -2.77% ( -2.77 ¼ (6,199,730 - 6,376,600/6,376,600)*100).
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Turning now to Garfield County, its 2000 census population was 2,976 (State of

Washington 2010). There were 20 deaths reported for Garfield County in 2000

(State of Washington 2002) and 28 for 2006 (State of Washington 2009b). Using

Equation [9.1a] we estimate the ratio of deaths to population at time ¼ t (2000) as

0.0067 ¼ 20/ 2,976. We can interpret the ratio, 0.0067, as the crude death rate for

Garfield County in 2000. Using Equation [9.1b] our 2006 estimate is 4,166 ¼
(28/0.0067). This estimate does not compare favorably with the state’s official

2006 population estimate of Garfield County, which is 2,400 (State of Washington

2010). This is an absolute difference of 1,766 and relative difference of 73.6%

(7.36 ¼ (4,166-2,400/2,400)*100).

What accounts for the small difference between the 2006 estimates for the state

as a whole and the large difference between the 2006 estimates for Garfield

County? Clearly, the accuracy of the Censal-ratio method depends on the stability

of the relationship between P and S over time, whether the first approach (equations

[9.1a] and [9.1b]) is used or the latter (equations [9.1d] and [9.1e]). Thus, “invari-

ance” is an underlying assumption of any censal-ratio method, as it is for the ratio-

correlation method discussed in Chapter 8.

How can we examine the stability of the relationship between P and S over time?

The answer to this question is found in the work of Voss et al. (1995). They argue

that a symptomatic indicator can be viewed as the outcome of a random variable,

which leads to using the statistical properties in the symptomatic indicator that can

be used for purposes of estimation. This is a very insightful contribution that Voss

and his colleagues use to illustrate how censal-ratio estimators can be examined and

improved (Voss et al. 1995: 73-79).

It is useful to consider deaths as an example because everybody is at risk of

dying. Using deaths, Voss and his colleagues (1995) looked at the crude death rate

of a given area i as the marginal probability of death for the area’s inhabitants. This

leads to looking at the distribution of deaths in a given area i as (approximately)

binomial or Poisson with parameter d, where d is defined as follows.

di;t ¼ Di;t=Pi;t (9.2a)

where

i ¼ area (i ¼ 1 to n)

t ¼ time

D ¼ deaths

P ¼ population

Still following Voss et al. (1995), equation [9.2] can be re-written so that the

Expected number of deaths at time ¼ k in area i is:

E½Di;t� ¼ di;t
�Pi;t (9.2b)

The preceding leads to defining the variance of Di,t:

V½Di;t� ¼ Pi;t
�ðdi;tð1� di;tÞÞ (9.2c)
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Which for a given area i with a very small population (and hence, a very small

number of deaths leads to a variance that is approximately

Pi;t
�di;t (9.2d)

So, if we define the variance of Di,t as is done in Equation [ 9.2c], we have a

binomial distribution and if we define it as in Equation [9.2d], we have a Poisson

distribution. If d is assumed to be known, then the recorded number of deaths at

time t in area i, Di,t, leads to an estimate of Pi,t that comes with the following

statistical properties (Voss et al. 1995: 74):

(1) P̂i;t is an unbiased estimator for Pi,t since

E½P̂i;t� ¼ E½Di;t=di;t� ¼ Pi;t (9.2e)

(2) The variance of P̂i;t is

V½P̂i;t� ¼ ðPi;t�ð1� di;tÞ=di;t (9.2f)

and

(3) the coefficient of variation for P̂i;t is

CV½P̂i;t� ¼ ½ð1� di;tÞ=ðdi;t�Pi;tÞ�1=2 (9.2g)

As can be seen in Equation [9.2 g], the coefficient of variation (CV) is defined as

the ratio of the standard deviation to the mean. It is most useful for variables that are

always positive, which is the case for population estimates made using censal-ratio

methods. In general terms, as the “sample” size decreases, the size of the CV

increases and a large CV indicates that the sampling error is large relative to the

estimate, and thus the user is less confident that the estimate is close to the popu-

lation value (see, e.g., US Census Bureau 2008: A-13). In terms of its use with a

censal-ratio estimator, as the number of events measured by the symptomatic

indicator (e.g., deaths) decreases, the size of the CV increases. Thus, as observed

by Voss et al. (1995: 75-76) for symptomatic data with a small count, the natural

variation induced in the estimate by the binomial process would tend to be the

dominant source of error.

Using again our example data for the state of Washington in conjunction with

equations [9.2f] and [9.2 g], we find that the variance of our 2000 estimator is

790,612 ¼ (5,894,143*(1-0.0074)/0.0074) and the CV is 0.0048 ¼ [(1-0.0074)/

(0.0074*5,894,143)]½. The low CV reflects the fact that we have a relatively large

count for our symptomatic indicator, deaths, which suggests that the natural varia-

tion in deaths is not a dominant source of error in our censal-ratio estimate of

6,199,730 for the state’s population in 2006. A very difference picture emerges

when we construct the CV for Garfield County. Here we find that the variance of
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our 2000 estimator is 441,203 ¼ (2,976*(1-0.0067)/0.0067) and the CV is .050 ¼
[(1-0.0067)/(0.0067*2,976)]½. Garfield County’s CV is about ten times larger than

the CV for the state of Washington. It suggests that natural variation in deaths is a

dominant source in our censal-ratio estimate of 4,166. The CV for Garfield County

illustrates three major points. First, it represents the ‘instability’ inherent to such a

small population and its relatively small number of deaths, which in changing from

20 deaths in 2000 to 28 in 2006 produced a population estimate that is 73 percent

larger than the state’s official estimate. Second, it illustrates the need to use a range

of methods in dealing with small populations and the importance of embedding

their estimates within a larger context. Third, the first and second points suggest that

the symptomatic data themselves should be embedded within a larger context.

In developing such a context, the US National Center for Health Statistics, for

example, uses three year averages centered on the year of interest as a way to

improve the accuracy of death rate estimates made using small death counts

(NCHS 1994: 30). This provides a large context, but it must be done carefully.

As illustrated by Voss et al. (1995: 76-79), this strategy leads to biased estimates of

the death rate except under very limited conditions. Thus, while a death rate for that

is built using a centered three-year average may have a smaller variance than its

one-year counterpart, it is likely to be biased. Voss and his colleagues (Voss et al.

1995) experimented with alternatives to three-year centered averages that would

not have the bias likely in this approach but would have a smaller variance than a

death rate constructed from a single year’s worth of mortality data. They found that

an autoregressive approach (see, e.g., the discussion on ARIMA in Chapter 6)

yielded satisfactory results. This extended the ‘larger data context’ substantially.

This suggests that it will work well in those areas with a long history of annual

counts of symptomatic data, but not in areas that have only a limited number of

annual counts available.

Another variation on fundamental form of the censal-ratio method is to use

symptomatic indicators for a “parent area” if they are only available for the areas in

which estimates are desired in census years (and not in the years for which estimates

are desired). This is another way of increasing the context for symptomatic

indicators representing small populations. This approach, described by Voss et al.

(1995), is similar to the “synthetic method” of estimation, which is described in

detail in Chapter 11 and, therefore, not discussed here.

Yet another variation on the fundamental form of the censal-ratio method is the

Composite Method (Bryan 2004: 550-551). This method generally involves com-

puting age-specific death rates in a census year as illustrated in Equation [9.1a] and

then using the reported deaths by age in the estimation year in conjunction with

equation [9.1b] to develop estimates of the population by age, which are then

adjusted using other information and summed to obtain an estimate of the total

population.

As an example of one of the many variations on the composite method,

we use school enrollment data to estimate the 2010 population of Inyo County,

California and compare our estimate to the 2010 Census number. Because we use

school enrollment data, the example here will have similarities to the example of
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ComponentMethod II we provide for Inyo County in Chapter 10, where we generate

a 2010 estimate that like this one can be compared to the 2010 census number.

Our example “jumps off” from the 2000 census population base. We use enroll-

ment in grades K-4 and 5-9 in our example because they correspond very closely with

age groups 5-9 and 10-14. In terms of our “census ratios” we use the following ratios

for 2000: (1) the ratio of the population aged 5-9 enumerated in the 2000 census to the

enrollment reported for 2000-1 (fall 2000 enrollment) in grades K-4; (2) the ratio of

the population aged 10-14 enumerated in the 2000 census to the enrollment reported

for 2000-1 (Fall 2000 enrollment) in grades 5-9; (3) the ratio of the population aged

0-4 enumerated in the 2000 census to the population aged 5-14 enumerated in the 2000

census; (4) the ratio of the population aged 15 years and over enumerated in the 2000

census to the population aged 5-14 enumerated in the 2000 census. With these ratios

and the 2010-11 enrollment in grades K-4 and 5-9 (Fall 2010 enrollment) we can

estimate the 2010 total population of Inyo County as follows.

For 2000-1 (Fall 2000 enrollment), the California Department of Education

(2011a) shows 1,170 students enrolled in grades K through 4 and 1,382 in grades

5-9, respectively, for Inyo County. Our census 2000 population aged 5-9 is 1,184,

which yields a ratio of 1.01197 (¼ 1,184/1,170) relative to enrollment in grades

K-4. Our census 2000 population aged 10-14 is 1,360, which yields a ratio of

0.98408 (¼1,360/1,382) relative to enrollment in grades 5-9. Our census 2000

population aged 0-4 in 2000 is 961, which yields a ratio of 0.37775 (¼961/2,544)

relative to our census 2000 population aged 5-14. Our census 2000 population aged

15 years and over is 14,440, which yields a ratio of 5.67610 (¼14,440/2,544)

relative to our census 2000 population aged 5-14.

For Fall 2010-11 (Fall 2010 enrollment), the California Department of Educa-

tion (2011b) shows 999 students enrolled in grades K through 4 and 1,317 in grades

5-9, respectively, for Inyo County. Multiplying the 999 students in grades K-4 by

1.01197 provides an estimated population aged 5-9 of 1,011. Multiplying the 1,317

students in grades 5-9 by 0.98408 provides an estimated population aged 5-9 of

1,338. Multiplying the estimated 2010 population of 2,349 for age group 5-14 by

0.37775 yields an estimate of 887 for the 2010 population of Inyo County aged 0-4.

Multiplying the estimated 2010 population of 2,349 for age group 5-14 by 5.67610

yields an estimate of 13,335. Adding together our estimates for age groups 0-4,

5-14, and 15+ gives an estimated total 2010 population of 16,572. relative to the

2010 census number of 18,546 (US Census Bureau 2010), our estimate has an

absolute difference of -1,974 and a relative difference of -10.65%.

9.3 Summary

As evidenced by its ubiquity today and John Graunt’s use of it over 300 years ago,

the Censal-ratio method has staying power. The examples, the wide-spread use and

the staying power of censal ratio methods suggest that there are useful symptomatic

indicators readily available. Bryan (2004) advises that to be able to consistently use
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a given censal ratio method, accurate and comparable data must be available at

frequent intervals, including the census date. Bryan (2004) also advises that the

number of annual cases should be high in relation to population size, which is

something that the “statistical interpretation” we just examined can assist in

evaluating. Bryan (2004) also notes that if a small area has a large proportion of

military personnel or group quarters that these should be withdrawn before the

calculations are made, then added again at the estimate date. Following this

suggestion results in what amounts to a composite method, which has features in

common with Component Method II, as we will show in Chapter 10. Bryan (2004)

also suggests that averages can be taken of the estimates resulting from different

symptomatic indicators since the averaging process may partly offset opposite

biases characteristic of the birth-rate estimate and the death-rate estimate. For

example, if a population estimate is too low as a result of an overestimate of the

birth rate, the other population estimate is likely to be too high as a result of an

underestimate of the death rate, because an age distribution that favors a high birth

rate also generally favors a low death rate.

As discussed in Chapter 8 in regard to regression-based techniques, a wide range

of variables have been considered as symptomatic indicators. The list includes

school enrollment or school census data, number of electric, gas, or water meter

accounts, bank receipts, building permits issued, voter registration rolls, welfare

rolls, motor vehicle registrations, birth statistics, death statistics, tax returns, and

covered employment.

It is safe to say that some variation of the censal-ratio method is widely used in

the development of population estimates. In point of fact, most estimation methods

are, at their core, censal-ratio methods. For example, the Housing Unit Method can

be viewed as a censal-ratio method where housing units serve as symptomatic

indicators. However, in the case of the Housing Unit Method, we believe that it is

sufficiently important and its use so widespread that it warranted a separate chapter.

The ratio-correlation regression method discussed in Chapter 8 also uses censal

ratios in the form of its symptomatic indicators.

The symptomatic indictors chosen to use in a given application of the censal-

ratio method are typically those that represent data related to population that

are collected for administrative or legal purposes. The "timing" between the

collection of population and that of a given symptomatic indicator (or set of sympto-

matic indicators) generally determines if the ratio is to be used for estimation or

projection. If the timing between past correspondence of population and its symp-

tomatic indicators is synchronous, then the ratio is generally used to estimate the

population for both a post-censal and an inter-censal estimate. If the timing is

lagged, such that values of population are collected at points in time beyond the

time for which values of symptomatic indicators are collected, then the ratio

method use current values of S to project future values of P to obtain a current

post-censal estimate, such as the case both with the “lagged ratio-correlation

model” discussed in Chapter 8 and “Component Method II,” which is discussed

in Chapter 10.
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Chapter 10

Component Methods

10.1 Introduction

These methods have a long history, but not always under the names we now know

them by (Shryock and Lawrence 1949). There are several methods of population

estimation that belong to the “component” family. All of the component methods

are based on the fundamental demographic equation:

Pi;tþk ¼ Pi;t þ Bi � Di þ Ii � Oi (10.1a)

where

Pi,t ¼ Population of area i at time t (the launch date)

Pi,t+k ¼ Population of area i at time t + k (the estimate date)

Bi ¼ Births in area i between time t and t + k

Di ¼ Deaths in area i between time t and t + k

Ii ¼ In-migrants in area i between time t and t + k

Oi ¼ Out-migrants in area i between time t and t + k

This deceptively simple equation can be displayed in a number of forms (Hoque

2010; Murdock et al. 1995; Zitter and Shryock 1964). For example, it is common to

combine in-migrants and out-migrants into net number of migrants and use the

fundamental equation to estimate net migration between two censuses one taken at

time t and the other at time t + k:

Ni ¼ Pi;tþk � Pi;t � Bi þ (10.1b)

where

Pi,t ¼ Population of area i at time t

Pi,t+k ¼ Population of area i at time t + k

Bi ¼ Births in area i between time t and t + k

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_10, # Springer Science+Business Media B.V. 2012
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Di ¼ Deaths in area i between time t and t + k

Ni ¼ Ii - Oi ¼
(In-migrants to area i between time t and t + k) -

(Out-migrants from area i between time t and t + k)

To be exactly true, the fundamental equation must apply to a defined population

(e.g., the resident population) of a fixed area i and there must be no measurement

errors. For example, if we are using it to estimate the resident population of area i at

time t + k, then all births and deaths used must be to the resident population of area i

between time t and time t + k while all in- and out-migrants during the same period

also apply to this same resident population and Pi,t is measured without error.

The fundamental equation can be applied to age, sex, race, and ethnic segments

of the population. In the case of an age group the age specification of the group

changes over the period. For example, if t is 10 years, then one should compare

age x at time 0 with x + 10 at time t. Put another way, this age group is a “cohort”

that is followed over time. In conjunction with age groups, and the use of future

fertility, mortality and net migration rates, the expanded version of the fundamental

equation can be used to make both estimates and projections. This is known as the

“cohort-component method” (Smith et al. 2001), where “cohort” is defined as

before and “component” is used to refer to the three components of population

change, fertility, mortality, and migration.

All of the component methods generally employ counts of births and deaths

because they are generally available every year from vital statistics records while

migration data are only available in countries with well-maintained population

registers (e.g., Finland). They tend to vary in how the migration component is

estimated. Adapting a classification system provided by Murdock et al. (1995: 14),

we identify five component methods:

1. Component Method I

2. Component Method II

3. Administrative Records Method

4. Cohort-component Method

5. Hamilton-Perry Method

Murdock et al. (1995: 13) identify data on four key components of the popula-

tion of a given area i for which an estimate is desired:

(1) The size of the population for time ¼ t (the launch date);

(2) The number of births between the base date, time ¼ t, and the estimate date,

time ¼ t + k;

(3) the number of deaths between the base date, time ¼ t, and the estimate date,

time ¼ t + k; and

(4) the magnitude and direction of (net) migration between base date, time¼ t, and

the estimate date, time ¼ t + k.

Each of the component methods deals with these four data requirements in

related, but different ways. We start with Component Method I.
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10.2 Component Method I

Component Methods I and II (CM I and CM II, respectively) employ school

enrollment data as a way to estimate net migration (Bryan 2004). However, they

vary in how they account for fertility and mortality. CM I assumes that the

migration rate of school-age children in a given area i can may be estimated as

the difference between the percent change in the population of school age in area

i and the corresponding difference for the a “parent area” that is subject to zero in-

migration and zero out-migration (e.g., in the US, area i is a given county within a

state and the parent area is the United States as a whole). That is, the relative change

in school age children in the parent area is assumed to be due solely to births and

deaths. This relative change for the parent area is then applied to the population of

area i at time t to get an estimate of the net change in the population of area i due to

births and deaths between t and t + k. The net migration rate of the total population

of area i is then assumed to be the same as the migration rate of the school-age

population. This migration rate is multiplied by the total population of area i at time

t and this product along with the estimated net population change due to births and

deaths are algebraically added to P at time t obtain an estimate of P at time t + k.

The assumption in CM I that the relative change in school are children for the

parent area is solely due to births and deaths during the period is a strong assump-

tion as is the corresponding one that this change fits the change due solely to births

and deaths in area i. Moreover, it is not needed when vital records data on births and

deaths are available for area i. Thus, CM II was developed.

10.3 Component Method II

CM II is based on an estimate of net migration that finds the difference between a

current estimate of school-age children (e.g., time ¼ t + k) in area i with the

expected number “survived” from the last census (e.g., time ¼ t) of area i and

then converting the difference to a migration rate that is applied to the entire

population of area i at time t. The net migration component is estimated in six

steps: (1) Enrollment in selected grades (e.g. grades 2 to 8 or in grades Kindergarten

to 9) at time ¼ t + k is adjusted to approximate the population of corresponding

elementary school age on the basis of the relative size of these two groups at the last

census (relating local school enrollment data to a census count at time t); (2) next,

the “expected” population (assuming no net migration) of elementary school age

for area i for time t + k is found by “surviving” the population in the same cohort

from time t (including, if necessary, births subsequent to time t) to t + k (This is

usually done using survivorship probabilities found a life table that is assumed to

apply to area for the period t to t + k; (3) the net migration of children of school age

is estimated as the difference between the “actual” population of school age and the

“expected” population of school age; (4) the estimated net migration of school-age
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children is converted into the estimated net migration of the remainder of the

population by dividing these other population groups by the number of school

age children at the time of the last census; (5) the estimated net number of migrants

in each age group is then summed to obtain an estimate of the net number of

migrants for the total population; and (6) in the final step, the total population is

obtained by using the fundamental demographic equation: adding to the population

in the last census, the net number of migrants and the number of births during the

period and subtracting the number of deaths.

Where administrative records data are available on the population aged 65 years

and over (e.g., in the U.S, Medicare data), it is not uncommon to use CM II to

develop an estimate of the population less than 65 years with appropriate adjust-

ments to the six steps just described and then use the administrative records data

to estimate the population age 65 years and over (Murdock et al. 1995). The two

groups are added together to get an estimate of the total population in what could

be termed a composite method (Bogue 1950; Bogue and Duncan 1959). There are

more variations on the basic idea (Bryan 2004; US Census Bureau 2010; Zitter

and Shryock 1964), but these six steps essentially describe CM II.

CM II assumes: (1) there has been no change since the last census in the ratio of

the population of elementary school age to the number enrolled in the elementary

grades; and (2) that the ratio of the net migration rate of the total population to the

migration rate of the school-age population of area i for the period t to t + k

corresponds to that for the net migration of adults for this are over the same period.

As an example of CM II, we develop an estimate of the 2010 population of Inyo

County, California from a “jump off” from the 2000 census and then compare it to

the 2010 census count for Inyo County. We use grades K-9 in this example because

they correspond very closely to ages 5-14. We proceed in accordance with the six

steps described earlier, which contain, as appropriate, information on the data

sources.

Step 1. Enrollment in grades K-4 and 5-9 in the year 2000-2001 (Fall, 2000)

for Inyo County, California is reported by the California Department of Education

(no date) as 1,170 and 1,382, respectively. The US Census (2001a) reports 1,184

persons aged 5-9 and 1,360 persons aged 10-14 in the 2000 census. The ratio of the

population aged 5-9 to the K-4 enrollment is 1,184/1,170¼ 1.01197 and the ratio of

the population aged 10-14 to the 5-9 enrollment is 1,360/1,382¼ 0.98408 (We note

that the Fall 2000 enrollment is higher than the corresponding population as of the

Spring of 2000).

The enrollment in grades K-4 and 5-9 in the year 2010-2011 (Fall, 2010) for Inyo

County is reported by the California Department of Education (no date) as 999 and

1,317, respectively. Using our adjustment factors from 2000, we estimate the

population aged 5-9 in 2010 as 1.01197*999 ¼ 1,011 and the population aged

10-14 in 2010 as 0.98408*1,317¼1,296. Thus, our total 2010 population aged 5-14

based on school enrollment is 1,011 + 1,296 ¼ 2,307.

Step 2. The “expected” population aged 5-9 in 2010 is found by “surviving”

those born during the period 2000-2004; and the expected population aged 10-14

in 2010 is found by surviving those aged 0-4 counted in the 2000 census. In regard
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to the former, there were 932 births reported for Inyo County residents from

2000 to 2004 (California Department of Public Health, no date). In regard to the

latter, there were 961 persons aged 0-4 reported for Inyo County in the 2000 Census

(US Census Bureau 2001a). In terms of surviving the births from 2000-2004 and the

population aged 0-4 in 2000, we apply survivorship values from the 1995 California

Life table (California Department of Public Health 1999), which is the life table that

is closest to the time period for which we want survivorship values. For the former,

a 10 year survivorship value of 0.988932 was used to generate 930 expected

survivors aged 5-9 in 2010; for the latter, a 10 year survivorship value of 0.99826

was used to generate 960 survivors aged 10-14 in 2010. To find the estimated

number of survivors aged 0-4 in 2010, we multiplied a five year survivorship value

of 0.99991 taken from the closest life table (the 1995-97 California Life table,

California Department of Public Health 1999) by the reported 1,118 births to Inyo

County residents from 1995 to 1999 (California Department of Public Health, No

Date) and found 1,117 survivors.

Step 3. As shown in Step 1, our total population aged 5-9 in 2010 based on school

enrollment is 1,011 and our estimated population aged 10-14 based on school enroll-

ment is 1,296. Subtracting our expected population aged 5-9 from the estimated

population aged 5-9 we estimate the net number of migrants aged 5-9 as of 2010 to

be 1,011 - 930 � 81. Doing the same for the population aged 10-14 we estimate the

net number of migrants to be 1,296 - 960 � 336. Thus, the total number of net

migrants aged 5-14 in 2010 is 81 + 336 � 417

Step 4. The ratio of the population aged 15 years and over to the population aged

5-14 in 2000 (US Census Bureau 2001a) is 14,440/1,360 � 5.67610. Applying this

ratio to the estimated 2010 net number of migrants aged 5-14, we estimate the net

number of migrants aged 15 years and over in 2010 to be 5.67610*417 � 2,368.

To estimate the net number of migrants aged 0-4 in 2010 we use the ratio of

the population aged 0-4 to the population aged 5-14 in 2000 (US Census Bureau

2001a, which is 961/2,544 � 0.37775. Applying this ratio to the estimated 2010

population aged 5-14 of 2,307, we estimate the number aged 0-4 in 2010 to be

0.37775*2,307 � 871. From this we subtract the survivors from the 1,118 births

reported in 2005-2009: 871 – 1,118 � -247

Step 5. Adding together our estimates of net migrants aged 0-4, 5-14 and 15+, we

find that the estimated net migration for the entire population of Inyo County from

2000 to 2010 to be -247 + 417 + 2,368 � 2,538

Step 6. Applying the fundamental demographic equation, we add to the 2000

population (US Census Bureau 2001), the estimated net number of migrants found

in step 5 and the reported number of births (California Department of Public Health,

No Date), and subtract the reported number of deaths (California Department of

Public Health, No Date): 17,945 + 2,538 + 2,050 – 2,062 � 20,471. Comparing our

CM II estimate for Inyo County, California of 20,471 to the 2010 census number

of 18,546 (US Census Bureau 2011a), we find an absolute error of -1,943 and a

relative error of -10.5%.

Before we move on, it is worthwhile to note that other variations in the use of

school data to estimate net migration in a component model are possible. One is the
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“grade-progression method,” which determines the annual net migration of

school-age children by comparing the number of children enrolled in, for example,

grades 2 to 7 in one year with the number enrolled in grades 3 to 8 in the following

year. The remaining steps in a school-progression approach are those described

earlier for CM II.

10.4 Administrative Records Method

An administrative records data source upon which to base estimates of migration

are tax-return records. The US Census Bureau uses them for making state and

county population estimates (Bryan 2004; Long 1993; Starsinic et al. 1995). This

method obtains and uses births and deaths in the same manner as CM II. However,

where CM II uses school enrollment data to estimate net migration, this method

uses the annual tax return record to estimate domestic net migration (Bryan 2004).

A highly useful feature of this method for the United States is that the US Internal

revenue Service makes available online at no cost the annual gross in and out flows

of tax return filers and their dependents (Swanson and McKibben 2010).

10.5 Cohort-Component Method

The cohort-component method was introduced by Cannan (1895), subsequently

used by Bowley (1924), and later re-discovered independently byWhelpton (1928).

It is the most widely used method for producing population projections. Since it is

used for projections it also can be used for estimates. Whether used for projections

or estimates, the basic framework is the same as shown in Equations [10.1a]

and [10.1b], but with age and sex details. We only provide an overview of the

cohort-component method here. Full implementation details are found in Smith

et al. (2001).

The cohort-component method divides the population at time ¼ t (the launch

date) population into age-sex groups (i.e., cohorts) and accounts separately for

the fertility, mortality, and migration behavior of each cohort as it passes from he

launch date at time ¼ t to the estimate data at time ¼ t + k. The division of the

population into age groups was an important methodological advance (de Gans

1999). Not only does this account for the differences in mortality, fertility, and

migration rates among different age groups at a particular time, but it also allows for

changes in these rates for individual cohorts as they cycle through time.

Age cohorts can be defined in a number of ways, but cohort-component models

typically use either single years or 5-year groups. The oldest age group is virtually

always “open-ended,” usually 75+ , 85+, or 90+. Age groups are typically divided

by sex and are sometimes further subdivided by race, ethnicity, and other ascribed

characteristics.
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The cohorts are cycled through time in “intervals,” where the components of

change are applied to the cohorts in each interval as appropriate to bring them

forward in time from the launch date. It is customary that the width of the number of

years used to define the cohorts corresponds to the number of years in the temporal

interval (i.e., 5-year age cohorts when the cohort-component method uses 5-year

intervals).

The first step in the process is to establish the launch year (time¼ t) population

and calculate the number of persons in it who survive to the estimation date

(time ¼ t + k) . This is done by applying age-sex-specific survival rates to each

age-sex group in the launch year population. These can be “controlled” so that the

numbers they generate match reported deaths for each interval (e.g., year) up to

the estimate date.

The second step is to calculate migration for each age-sex group in each interval

from time ¼ t to time ¼ t + k. The third step is to calculate the number of births in

each interval. This is usually done by applying age-specific birth rates to the female

population in each age group. As was the case with the age-sex specific survival

rates, these can be “controlled” so that the numbers they generate match reported

deaths for each year up to the estimate date.

The fourth and final step in the process is to add the number of births

(distinguishing between males and females) to the rest of the population. These

calculations provide an estimate of the population by age and sex at the end of each

interval. This population then serves as the starting point for the following interval.

The process is repeated until the estimate date is reached.

As can be gleaned from the preceding discussion. The cohort-component

method is both data-intensive and computationally-intensive (Bryan 2004; George

et al. 2004; Smith et al. 2001; Swanson et al. 2010). This is especially the case when

it is used for estimation purposes, which typically means that a one year interval is

used to cycle cohorts defined by single years of age through time. Unfortunately,

this also means that data problems tend to increase as the level of demographic

detail increases and as population size declines. Fortunately, there is a variation of

the cohort-component method that can be used to overcome these problems. It is to

this variation, the Hamilton-Perry Method, that we now turn.

10.6 Hamilton-Perry Method

The Hamilton-Perry Method is a variant of the cohort-component method that

has far less intensive input data requirements than the full-blown version does

(Hamilton and Perry 1962; Swanson et al. 2010). Instead of mortality, fertility,

migration, and total population data, which are required by the full-blown cohort-

component method, the Hamilton-Perry method requires data only from the two

most recent censuses (Smith et al. 2001: 153-158; Swanson et al. 2010).

10.6 Hamilton-Perry Method 201



The Hamilton-Perry method moves a population by age (and sex) from time t to

time t + k using cohort-change ratios (CCR) computed from data in the two most

recent censuses. As shown by Swanson et al. (2010), the formula for a CCR is:

nCCRi;x¼nPi;x;t=nPi;x�k;t�k
(10.2a)

where

nPi,x,t is the population aged x to x + n in area i at the most recent census (t),

nPi,x-k,t-k is the population aged x-k to x-k + n in area i at the second most recent

census (t-k), and k is the number of years between the most recent census at time

t for area i and the one preceding it for area i at time t-k.

The basic formula for moving a population into the future to do an estimate

(or a projection) is:

nPi;xþz;tþk ¼ ðnCCRi;xÞ�ðnPi;x;tÞ (10.2b)

where

nPi,x+k,t+k is the population aged x + k to x + k + n in area i at time t + k

nCCRi,x ¼ nPi,x,t / nPi,x-k,t-k

and

nPi, x,t is the population aged x to x + n in area i at the most recent census (t),

Given the nature of the CCRs, 10-14 is the youngest age group for which

projections can be made if there are 10 years between censuses. To project the

population aged 0-4 and 5-9 one can use the ChildWoman Ratio (CWR). It does not

require any data beyond what is available in the decennial census. For projecting

the population aged 0-4, the CWR is defined as the population aged 0-4 divided by

the population aged 15-44. For projecting the population aged 5-9, the CWR is

defined as the population aged 5-9 divided by the population aged 20-49. Here are

the CWR equations for males and females aged 0-4 and 5-9, respectively.

Females 0�4: 5F0;tþk ¼ ð5F0;t=30F15;tÞ�ð30F15;tþkÞ (10.3a)

Males 0�4: 5M0;tþk ¼ ð5M0;t=30F15;tÞ�ð30F15;tþkÞ (10.3b)

Females 5�9: 5F5;tþk ¼ ð5F5;t=30F20;tÞ�ð30F20;tþkÞ (10.3c)

Males 5�9: 5M5;tþk ¼ ð5M5;t=30F20;tÞ�ð30F20;tþkÞ (10.3d)

where
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F is the female population,

M is the male population,

t is the year of the most recent census

and t + k is the estimation year

Projections of the oldest age group differ slightly from projections for the age

groups from 10-14 to the last closed age group (e. g., age group 80-84). For

example, if the final closed age group is 80-84, with 85+ as the terminal open-

ended age group, then calculations for the CCRi,x+ require the summation of the

three oldest age groups to get the population age 75+ at time t-k:

CCRi;75þ ¼ Pi;85þ;t=Pi;75þ;t�k (10.4a)

The formula for estimating the population 85+ of area i for the year t + k is:

Pi;85þ;tþk ¼ Pi;85þ;t=i;75þ;t�kÞ� i;75þ;t (10.4b)

Table 10.1 provides an example of the Hamilton-Perry Method. It uses 1990

census data by age and sex (US Census Bureau 1992 ) and 2000 census data by age

and sex (US Census Bureau 2001a) to generate a 2010 population estimate of 7,314

persons for census tract 1.01 in Clark County, Nevada. The US Census (2011b)

reported 6, 851 persons in Census tract 1.01 for the 2010 Census. Thus, our estimate

has an absolute error of 463 persons, and a relative error of 6.76%.

You may notice that there is a 2005 estimate by age group for Census Tract 1.01

in Table 10.1. This was included to illustrates how one can use the Hamilton-Perry

Method in conjunction with an interpolation technique to obtain an estimate for a

year that is not equal to the length of time between the last census and the one

preceding it (e.g., in the US this would be ten years while in Canada it would be five

years). To do this, we first set the Hamilton-Perry Method up as a projection with

the length of the horizon being equal to the time between the most recent census and

the one preceding it and then use interpolation to get to the year for which a post-

censal estimate is desired. For example, as is shown in Table 10.1, if the last census

was 2000 and we wanted an estimated for Census Tract 1.01 in Clark County for the

year 2005 we could project the population by age group to 2010 and then interpolate

between the 2000 census counts by age and the 2010 “projection” by age shown in

Table 10.1 and then sum up the interpolated age group numbers. Using the

geometric ratio of change, this yields the estimate of 6,857 for the total population

of Census Tract 1.01 2005.

A disadvantage of the Hamilton-Perry method, is that it can lead to unreasonably

high estimates in rapidly growing places and unreasonably low projections in places

experiencing population losses (Smith et al. 2001: 159; Swanson et al. 2010).

Geographic boundary changes are an issue, even with census tracts. Since the

Hamilton-Perry and other extrapolation methods are based on population changes

within a given area, it is essential to develop geographic boundaries that remain

constant over time. For some sub-county areas, this presents a major challenge,
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however. Fortunately, as discussed by Swanson et al. (2010), there are ways of

overcoming these limitations of the Hamilton-Perry Method. They include:

1. Control Hamilton-Perry projections to independent projections produced by

2. some other method;

3. Calibrate Hamilton-Perry projections to post-censal population estimates

Table 10.1 Example Tract 101, Clark County, Nevada, 1990 to 2010

TRACT 101 CLARK COUNTY*

YEAR and

TRACT Identifier

1990

32003000101

2000

32003000101 CCR 2005 Estimate 2010 Estimate

Total Population:

0 to 4 years

345 441 0.37436 508 576

Total Population:

5 to 9 years

389 560 0.32580 521 482

Total Population:

10 to 14 years

372 566 1.64058 645 723

Total Population:

15 to 19 years

373 458 1.17738 559 659

Total Population:

20 to 24 years

299 358 0.96237 451 545

Total Population:

25 to 29 years

389 372 0.99732 414 457

Total Population:

30 to 34 years

384 448 1.49833 492 536

Total Population:

35 to 39 years

421 510 1.31105 499 488

Total Population:

40 to 44 years

461 442 1.15104 479 516

Total Population:

45 to 49 years

392 428 1.01663 473 518

Total Population:

50 to 54 years

334 374 0.81128 366 359

Total Population:

55 to 59 years

346 341 0.86990 357 372

Total Population:

60 to 64 years

356 268 0.80240 284 300

Total Population:

65 to 69 years

348 221 0.63873 219 218

Total Population:

70 to 74 years

208 233 0.65449 204 175

Total Population:

75 to 79 years

104 199 0.57184 163 126

Total Population:

80 to 84 years

50 115 0.55288 122 129

Total Population:

85 years and over

37 67 0.35079 100 134

Total Population 5608 6401 6857 7314

Data from 1990 and 2000 census counts for Clark County, NV (Las Vegas)
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4. Set limits on population change (i.e., establish “ceilings” and “floors”); and

5. Account for all boundary changes;

10.7 General Comments on Component Methods

A major strength of the component methods is that they account for the three

components of population change, births, deaths, and migration. This makes them

straightforward both in terms of understanding them and explaining them. Impor-

tantly, they also take advantage of the fact that vital statistics data are widely

available. As such they are very useful for developing post-censal estimates and

inter-censal estimates. However, as we discuss in Chapter 17, by reversing them

(running them backwards), they also can useful for developing pre-censal as well as

inter-censal estimates.

Another disadvantage is that the availability of vital statistics data may lag

behind the year for which an estimate is desired (e.g., an estimate as of July 1st,

2010 and only calendar year birth and death data for 2009 are available. This means

that these data must be “projected.” This can be done by using one of the trend

extrapolation methods discussed in Chapter 6.
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Chapter 11

Sample Based Methods

The methods discussed in this chapter are based on concepts discussed in chapters

2 and 4. They also are interconnected and connected to methods discussed earlier.

Specifically, we noted in Chapter 8 that the ratio-correlation method can both be

informed by sample data (Ericksen 1973, 1974) and viewed as a form of synthetic

estimation (Swanson and Prevost 1985), a subject we take up in this chapter. More-

over, it is possible to use methods discussed in chapters 7, 8, 9, 10 with sample data.

Conversely, it is the case that some of the methods discussed here, particularly

synthetic estimation, do not require sample data for their use. In this regard, the

placement of synthetic estimation in this chapter reflects its origins in sample methods

and the needs of survey statisticians to leverage the resources they had available

(Steinberg 1979; USNCHS 1968). Aswill be seen in this chapter, demographers use a

form of synthetic estimation that is not dependent on sample information.

In this chapter we start with a very brief discussion of sample based methods,

move on to synthetic methods and then to SPREE, which is followed by a brief

description of the RSS method. We then touch on Bayesian statistical methods. We

conclude the chapter with observations on all four approaches, their intercon-

nections and their connections to other methods.

Of the methods discussed in this chapter, the synthetic methods are the ones

most likely to be used to make population estimates. Consequently, we spend most

of our time on this approach. Before we start with sample based methods, it is useful

to mention that Swanson and Pol (2008) observe that there are two distinct

traditions in regard to population estimates (1) demographic; and (2) statistical.

As Swanson and Pol (2008) explain,

“Demographic methods are used to develop estimates of a total population as well as the

ascribed characteristics – age, race, and sex - of a given population. Statistical methods are

largely used to estimate the achieved characteristics of a population – educational attain-

ment, employment status, income, and martial status, for example Among survey

statisticians, the demographer’s definition of an estimate is generally termed an "indirect

estimate" because unlike a sample survey, the data used to construct a demographic

estimate are symptomatic indicators of population change (e.g., K-12 enrollment data,

births, deaths,) and do not directly represent the phenomenon of interest. Among

demographers, the term "indirect estimate" has a different meaning.”

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_11, # Springer Science+Business Media B.V. 2012
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So, in the field of demography a direct estimate refers to the measurement

of demographic phenomena using data that directly represent the phenomena of

interest, while among statisticians, it is used to describe estimates obtained by

survey sampling. In terms of an indirect estimate, demographers, usually use this

term in referring to the measurement of demographic phenomena using data that do

not directly represent the phenomena of interest (e.g., a child woman ratio instead

of a crude birth rate). Among survey statisticians, this term refers to an estimate not

based on a sample survey, for example, a model based estimate (Schaible 1993).

Unless specifically stated, we will use the demographic definitions of direct esti-

mate and indirect estimate here, respectively.

11.1 Sample Based Methods

As alluded to in the introduction to this chapter and in chapters 2 and 4, sample

based methods are rarely to estimate the ascribed characteristics of a human

population, such as age, race, and sex, much less the size of the population itself.

Instead, sample based methods often rely on estimates made by demographers

of total populations and their achieved characteristics (e.g., age, race, and sex) in

designing, analyzing, and adjusting samples (Kish 1965; US Census Bureau 2009).

Thus, we only present a very brief discussion of sample based methods here.

However, we note that sample surveys are used in conjunction with the “Housing

Unit Method” (chapters 7) of estimating population (Lowe and Mohrman 2003;

Swanson et al. 1983).

In a sample based approach, one is typically interested in estimating some

“parameter” of the distribution of a random variable, such as an arithmetic mean

(Rao 2003: xxi). However, survey statisticians also are interested in estimated

counts of characteristics of interest, such as the number of unemployed persons in

labor market areas (Feeney 1987). In addition to being interested in estimating

means and counts, survey statisticians also are interested in errors associated with

these estimates (Pfeffermann 2002: 125).

Given that a probability sample was designed and selected and that measurement

error as well as non-response and other forms of bias were minimal, one could have

a good (unbiased) estimate of the parameter of interest along with information

about its precision (e.g., a confidence interval). Moreover, it is relatively straight-

forward to explain to a non-technical audience how a sample was obtained, as

well as its validity, and level of precision. The major disadvantage of this approach

is that while it is less resource needy than a full-blown census, it still requires a lot

of resources in the form of money, time, and technical expertise (Levy 1979;

Swanson 1981; Swanson et al. 1983; US Census Bureau 2009). In addition,

especially when dealing with small areas, the statistical precision may not be

sufficient to determine differences between current and past values of a parameter

of interest or between parameters measured at the same point in time in different
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areas (US Census Bureau 2008). Yet another disadvantage of the sample based

approach is that it is not uncommon to run into poorly planned and poorly executed

surveys, often using something other than probability based sampling. The results

from such sample surveys run a high risk of being inaccurate and there is virtually

no way to assess their validity, as can be done with well executed surveys based on

probability sampling (Trochim 2006).

Because there are many excellent books and manuals for conducting sample

surveys, we do not describe the steps needed to design and implement sample

surveys as well as analyze their results (Babbie 2009; Cochran 1977; Dillman

et al. 2008; Groves et al. 2009; Kish 1965; Salant and Dillman 1994). Rather,

we move directly to describing sample based methods that are likely to be of

interest to those producing and using population estimates and then touch upon

related methods so that demographers and others not familiar with them some idea

of what they are.

11.1.1 Synthetic Methods

Ford (1981) observed that the problem of constructing county or other small area

estimates from survey data has been an important topic and large-scale surveys and

even complete census counts were often used to solve the problem. Because of the

resource needs of this approach, attention turned to possible alternatives for

obtaining small area information in the 1970s (US NCHS 1968; Ford 1981). One

of the alternatives that gained a lot of attention was synthetic estimation,

which according to Ford (1981) emerged because of a 1978 workshop on Synthetic

Estimates for Small Area Estimates co-sponsored by the National Institute on Drug

Abuse (NIDA) and the National Center for Health Statistics (NCHS). This same

workshop resulted in a monograph edited by Steinberg (1979).

In the “Introduction” to the NIDA/NCHS monograph, Steinberg (1979) cites

“The Radio Listening Survey,” discussed in Hansen et al. (1953) as an early

example of the employment of the synthetic method. In this survey, questionnaires

were mailed to about 1,000 families in each of 500 county areas and personal

interviews were conducted with a sub-sample of the families in 85 of these

county areas who were mailed questionnaires (Hansen et al. 1953: 483-484).

Knowing in advance that the mail-out portion would yield a low level of responses

(about 20 percent of those mailed questionnaires responded), the data collected

in the personal interviews were used to obtain estimates not affected by non-

response. The relationships between the data in the 85 county areas that were

collected from the personal interviews and the mailed questionnaires were then

applied to the county areas for which only mail-out/mail-back was done to improve

the estimates for these areas (Hansen et al. 1953: 483). While the radio listening

study did not use the hallmark of synthetic estimation, which is taking information

from a “parent” area and applying it to its subareas, the idea behind it is similar.
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As was discussed in regard to sample based estimates, in most cases, synthetic

estimation is used to estimate “achieved characteristics” and often relies on esti-

mates made by demographers of total populations and their achieved characteristics

(e.g., age, race, and sex) in developing the estimates (Causey 1988; Cohen and

Zhang 1988; Gonzalez and Hoza 1978; Levy 1979). However, it need not be

confined to this use. Before we turn to a demographic interpretation of synthetic

estimation, it is useful to spend some time on its statistical interpretation.

Cohen and Zhang (1988) provide an informal statistical definition of a synthetic

estimator that we adapt as follows. First, assume that one is interested in obtaining

estimates of an unknown characteristic, xi over a set of i sub-regions (i ¼ 1,. . ., n).
Second, suppose one has census counts pi, (i ¼ l,. . .,n), for each of the sub-regions

and both a census count, P, and a “known” value of X, for the parent region, where

∑pi. ¼ P and ∑xi. ¼ X, respectively. Third, suppose that the estimated values of

xi for the subareas must sum to the known value X for the parent area. In this case,

Cohen and Zhang (1988: 2) define the statistical synthetic estimate as:

X̂i ¼ ðX=PÞ�ðpiÞ: (11.1)

Basically, equation [11.1] shows that the estimated characteristic (xi) for a given

subarea i is found by multiplying the known value of population for sub-area i, pi, by

the “known” ratio of the characteristic (X) to population (P) for the parent area. It is

inevitably the case that the “known” value of X for the parent area is taken from a

sample survey (Steinberg 1979). Cohen and Zhang (1988) go on to show how the

basic idea given in Equation [11.1] can be extended to include demographic subgroups

(e.g., by age, race, and sex). Similar examples are provided by Levy (1979).

As a simple example that shows how Equation [11.1] would be applied, suppose

we have 50,000 people in a parent area (P¼ 50,000) and 1,000 have a characteristic

(X ¼ 1,000) that we are interested in estimating for its three subareas, which have,

respectively 30,000, 15,000, and 5,000 people, respectively.

From a statistical perspective, synthetic estimates are generally held to be

“biased.” That is, there is a difference between the estimator’s expected value

and the true value of the parameter being estimated (see, e.g., Weisstein 2011).

The bias basically comes from the fact that the ratio of xi to pi in a given subarea i is

not the same as the ratio for the parent area. That is, X/P 6¼ xi/pi.

With this simple introduction to systematic estimation, we now turn to how

synthetic estimation works from the standpoint of demographers. The key difference

for demographers is that unlike statisticians, it is the population of area i (pi) that is

Table 11.1 Example of Synthetic Estimation

Sub-area Population Parent Area Ratio (X/P)

Estimated number with

Characteristic x

1 30,000 (1000/50000) 6,000

2 15,000 (1000/50000) 3,000

3 5,000 (1000/50000) 1,000
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“unknown” rather than some characteristic (xi) of this population. To implement

synthetic estimation, demographers find “characteristics” that are available for both

the parent area and its subareas. These characteristics are known to demographers

as “symptomatic indicators,” a term discussed in many of the chapters preceding

this one, especially in chapters 8 and 9. So, for demographers, Equation [11.1]

becomes

p̂i ¼ ðSj;iÞ=ðSj=PÞ (11.2)

where

P ¼ population of the parent area

Sj ¼ value of symptomatic indicator j for the parent area

Sj,i ¼ value of symptomatic indicator j for subarea i (1 � i � n)

pi ¼ estimated population for subarea i (1 � i � n) and so, we can identify the

ratio Sj/P as

Rj ¼ (Sj/P)

As is the case for the synthetic estimators used by statisticians (Equation [11.1]),

the basic form of the synthetic estimator used by demographers (as shown in

Equation [11.2]) can be expanded. One expansion is to put the synthetic estimation

process in motion using a regression framework. This can be done as follows.

pi;t ¼ a�0ðPtÞ�ðpi;t�z=Pt�zÞ þ bj�½ðSj;i;tÞ=ððSj;i;t�z=pi;t�zÞ�ðSj;t=ðSj;t�z=Pt�zÞÞÞ� þ ei
(1.3)

where

a0 ¼ the intercept term to be estimated

bj ¼ the regression coefficient to be estimated using symptomatic indicator j

ei ¼ the error term

sj,i ¼ symptomatic indicator (1 � j � k) in subarea i (1 � i � n)

t ¼ year of the most recent census

z ¼ number years to the census preceding the most recent census

and

P ¼ population of the parent area

Sj ¼ value of symptomatic indicator j for the parent area

pi ¼ estimated population for subarea i (1 � i � n)

Once the preceding regression model is constructed, it can be used to estimate

the population of each area i for a year k years subsequent to the last census (time¼ t)

as follows:

p̂i;tþk ¼ ½a�0ðPtþkÞ�ðpi;t=PtÞ� þ ½bj�ððSj;i;tþkÞ=ððSj;i;t=pi;tÞ�ðSj;tþk=ðSj;t=PtÞÞÞÞ�
(11.4)
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Equations [11.3] and [11.4] should be familiar. They can be algebraically

manipulated to become a bi-variate form (i.e., a regression model with only one

independent variable) of the ratio-correlation model discussed in Chapter 8, which

we show here. First, borrowing from Equation [8.1a] in Chapter 8 we show here the

simple bi-variate ratio-correlation regression model that is algebraically equivalent

to Equation [11.3] :

Pi;t ¼ a0 þ ðbjÞ�Si;jt þ ei (11.5)

where

a0 ¼ the intercept term to be estimated

bj ¼ the regression coefficient to be estimated

ei ¼ the error term

j ¼ symptomatic indicator (1 � j � k)

i ¼ subarea (1 � j � n)

t ¼ year of the most recent census

and

Pi;t ¼ ðPi;t=SPi;tÞ=ðPi;t�z=SPi;t�zÞ (11.6)

Si;jt ¼ ðSi;t=S Si;tÞj=ðSi;t�z=S Si;t�zÞj (11.7)

where

z ¼ number of years between each census for which data are used to construct the

model

p ¼ population

s ¼ symptomatic indicator

As was shown in Chapter 8, a set of population estimates can be done in a series

of six steps, which lead to the estimation version of Equation [11.5], which is

algebraically equivalent to equation [11.4]:

ðPi;tþkÞ�ðPi;t=S Pi;tÞ�ðSPi;tþkÞ ¼ P̂i;tþk (11.8)

As discussed by Swanson and Prevost (1985), these equations show that the

ratio-correlation model can be viewed as a regression method that uses synthetic

estimation (taking a ratio of change for a given “rate” in a parent area and a “censal-

ratio” to estimate a current population for area i). Note that the intercept term, a0,

shown in Equation [11.4] serves as a “weight” applied to an estimate of pi at time

t+k (pi,t+k) based on the proportion of the population in area i at the time of the last

census, t (pi,t) that is multiplied by the total of the parent area at time t+k (Pt+k). The

regression coefficient, bj, shown in Equation [11.4] also serves as a weight. In this

case it is applied to the “synthetic estimate” based on symptomatic indicator sj.

As Swanson (1980) and Swanson and Prevost (1985) observe, the regression
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coefficient in a ratio-correlation model sum to 1.00 (or very nearly so) in virtually

every model constructed, which means that as shown in Equation [11.4] the

estimate of pi can be viewed as a weighted average of synthetic estimates based

on j symptomatic indicators.

11.2 SPREE

Chambers and Feeney (1977) and Purcell and Kish (1980) proposed structure

preserving estimation (SPREE) as a generalization of synthetic estimation in the

sense it makes a fuller use of reliable direct estimates. A good example of its use is

given by Feeney (1987).

SPREE is a categorical data analysis approach to the problem of small area

estimation. It has two general data requirements: The first is that there exist current

estimates for the variables of interest by subgroups for the large area; the second is

that estimates of variables of interest are available by the same subgroups at the

small area level from some previous time period (Griffiths 1996). SPREE uses the

data from the previous point in time (e.g., the most recent census) to allocate current

(e.g., the point in time for which an estimate is being done) at the large area level

to the small areas. Thus, the data from the previous time period must be not only

be available for the small areas of interest and but they also must be available in the

form of cross-classifications with “auxiliary” variables for these same small areas

(Griffiths 1996). The data from the previous point in time are known as the

association structure and the data for the current point in time at the large area

level are known as the allocation structure. The SPREE method allocates the

current data (in the allocation structure) to the small area level by retaining the

relationship of the data given in the association structure (Feeney 1987).

SPREE essentially uses the method of “iterative proportional fitting of margins”

(IP) in a multi- way table, where the margins are “direct estimates” (in the statistical

sense, which is that they are from samples or census counts). In a similar vein,

Bousfield (1977) described the use of raking to force the marginal totals of a two-

way sample table to match census totals and showed how they can be used to

generate population estimates. IP is a form of “N-dimensional controlling” (Smith

et al. 2001: 260-266).

IP approximates a least squares solution in order to obtain convergence in all n

dimensions (Judson and Popoff 2004: 712-71). Smith et al. (2001: 260) observe

that there are three main conditions for applying this method: (1) all projections

must be greater than or equal to zero; (2), theremust be projections for themargins of

each controlling dimension (e.g., age and total population); and (3) the sum of all

projections over all dimensions must be equal; for example, the sum of the age group

projections for the county must be equal to the sum of the total population

projections for the census tracts.

In extending IP to SPREE, Berg and Fuller (2009) state that SPREE uses

estimators for cell totals and column proportions of a two-way table that preserve
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the direct estimators of the marginal totals. Noble et al. (2002) demonstrate that

SPREE is maximum likelihood estimation under a generalized linear model in

which the interactions in the time point of interest are set equal to the interactions

in the Census. If the loglinear expectation function underlying SPREE fails to

hold, the SPREE estimators can be severely biased (Griffiths 1996; Zhang and

Chambers 2004). Griffiths (1996) develops a composite estimator that is a weighted

combination of the direct estimator and the SPREE estimator. Zhang and Chambers

(2004) first define a class of loglinear models called generalized linear structural

models in which the interactions are proportional to the Census interactions. They

then extend the generalized linear structural model to a mixed model with normally

distributed random effects.

SPREE may not always come as close to the independent (control) projections

as the examples shown here. Raising the level of demographic detail and reducing

the geographic scale can cause multiplicative adjustment routines to lose their

efficiency because the computations may not change the original values as much

as is needed to produce complete convergence.

11.3 RSS (Ranked Set Samples) Method

As an alternative to a method proposed by C. R. Rao (1997), the RSS method was

introduced at a conference on population estimates by Sinha and Sinha (1999).

Its major use would be to provide an estimate of the total population (or the total

number of males or females) of a given domain or area in which census counts

(or good estimates) of the total population for some, but not all domains or subareas,

are available. Sinha and Sinha (1999) illustrated and tested the RSS method with

1991 data from 145 urban areas in the state of Bihar, India. What they did was use a

sample of 27 of these 145 urban areas to show how the RSS method could be used to

produce an estimate of the total population of all 145 urban areas.

RSS starts with the fact that “N” (e.g., the 145 urban areas of Bihar) is known

and the decision on how big a sample to take along with the “set size,” which in turn

generate the number of “replications.” In their example for the 145 urban areas of

Bihar et al. (1999) selected 27 as the sample size with 3 as the “set size”, which

generated 9 as the number of replications, where 27/3 ¼ 9. Since 27*3 ¼ 81, this

generated the need to randomly select (with replacement) of 81 of the 145 urban

areas of Bihar. The total populations of the 81 urban areas were assembled into 27

rows i.e. sets, with three cities per row.

Sinha and Sinha (1999) then ranked the three urban areas of each row in

ascending order of population size: rank “1” was given to the urban area with the

lowest population; rank “2” to the urban area with the next-lowest population; and

rank “3” to the urban area with the highest population. After doing this ranking to

each of the 27 rows, they then made selections from the first three rows by selecting

the urban area with the minimum population from the first row; the urban area with

the second rank from the second row; and finally the urban area with the highest
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population from the third row. They then repeated this process for the remaining

rows considering a group of three rows at a time. This resulted in a set of 27 urban

areas, which they organized into three groups according to rank, which means that

there were nine urban areas in each rank, 1, 2, and 3. They then computed the means

of the total populations of the nine urban areas in the “Rank 1”, “Rank 2” and the

“Rank 3” respectively. They the took the (“grand”) mean of these three means and

used it as an estimator of the mean population of the 145 urban areas of Bihar. Since

they knew that Bihar has 145 urban areas, they multiplied this grand mean by 145

and came up with estimate of the total population of the 145 urban areas of Bihar.

Without going into the details, the grand mean they estimated was 77,269.07 �
(34,268.2 + 69,615.3 + 127,923.7)/3. By multiplying this grand mean by N (145)

they estimated the total 1991 population of the 145 urban areas of Bihar as

11,204,015 � 77,269.07*145. This estimate compares favorably with the census

number of 9,905,706, with an absolute difference of 1,298,309 and a relative

difference of 13.1%.

11.4 Bayesian Methods

Bayesian inference represents a perspective on statistical inference that provides an
alternative to the “frequentist” perspective, which is characterized by hypothesis

testing and confidence interval construction (Iversen 1984). Named after Thomas

Bayes because his theorem provides the foundation for this perspective, Bayesian

methods allow for a systematic introduction of subjective viewpoints into the

process of statistical inference (Iverson 1984), which cannot be done under the

frequentist perspective.

In the frequentist method, unknown parameters are often, but not always, treated

as having fixed but unknown values that are not capable of being treated as random

variables. As such, this implies that there is no way that probabilities can be

associated with these parameters. In Bayesian inference, all unknown parameters

can have probabilities. A simple example of a Bayesian perspective is given in the

discussion of deaths as a random variable found in Chapter 9 in conjunction with

the view on censal ratio methods provided by Voss et al. (1995). More elaborate

examples are found in Bousfield (2002) and Cressie and Dajani (1991).

For our purposes in terms of constructing population estimates, the major feature

of Bayesian inference is that it represents a structured system in probabilities can be

“up-dated.” Within the Bayesian perspective, there are two fundamental ways in

which this can be done: (1) the standard Bayes (SB) approach; and (2) the empirical

Bayes (EB) approach (Gelman et al. 2004: 115-156). In SB, the “prior” distribution

is determined before any data are collected and used; in EB, the prior distribution is

estimated from the data. Western (1999) provides descriptions of these two

approaches that is aimed at sociologists and includes a general comparison of

Bayesian and Frequentist methods and philosophies.
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11.5 Summary

Although sample based methods are not generally used by demographers to

generate population estimates, we believe that understanding them and their statis-

tical properties provide an important perspective that can be used to inform the

methods used by demographers. Clearly, the regression-based trend extrapolation

methods discussed in Chapter 6 and the ratio-correlation method discussed in

Chapter 8 are embedded in this perspective. Moreover, the “random variable”

approach of Voss et al. (1995) to censal ratio estimators also adds an important

dimension to understanding these estimators and potential ways to improve their

accuracy. In a similar vein, the Bayesian approach to inference provides yet another

way that these estimators can be understood and their accuracy improved.

In terms of strengths of the sample based methods that are aimed at generating

what the statisticians refer to “direct estimates,” they offer a well-understood

approach that is less costly than full enumerations along with estimates of their

precision. In terms of their weaknesses, the cost of sample surveys often precludes

using them to develop usable information for small areas unless they are supple-

mented by other methods such as synthetic estimation (Ghosh and Rao 1994;

Platek et al. 1987; Rao 2003). The RSS method is not costly, given the availability

of a “sample” of census counts (or good estimates) for a subset of the domain or area

for which an estimate is desired. While it is clearly aimed at developing countries

where census counts may be done of selected areas on a regular basis but not for the

county as a whole, the RSS method may also work in states or provinces in which

annual census counts are done for some areas (e.g., cities and towns) but not for all.

Washington and Alberta come to mind in mind in this regards.

Jaffe (1951: 211) notes that while sample surveys are cheaper than full enume-

rations, “demographic procedures” are cheaper than sample surveys. He also notes

that the “direct estimates” resulting from sample surveys can only be used for current

estimates since it is impossible to interview a past or future population. He goes to

observe that only “demographic procedures” can provide past, current, and future

estimates. We note, however, that these same ‘demographic procedures’ can be

improved by using the statistical tools and perspectives that have emerged from

sampling. All of this suggests that sample-based methods are used for post-censal

estimates, but we also note that given the availability of historical samples and related

data they can be used for inter-censal estimates and even pre-censal estimates.
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Chapter 12

Other Methods

This chapter covers methods that are sufficiently different from those discussed in

chapters 8 through 11 to warrant a separate chapter. However, it should come as no

surprise that pieces of some of these methods are related to the methods already

discussed. All of these general approaches are sufficiently complicated that

examples cannot be provided here. The idea in this chapter is to provide an

overview of the methods and point those of you interested in using any or all of

them to resources that provide more details.

In this chapter we first examine Structural Models before going on to discuss

Administrative Records in general and then cover two specific ways in which these

records can be used to develop estimates: (1) Imputation; and (2) Dual System
Estimators. We then discuss Microsimulation (Agent based modeling) and Neural
Networks, followed by a discussion of two (sample) survey approaches, the
Grouped Answer Method and Social Network Analysis/Snowball Sampling.
We conclude this chapter with a brief discussion of Spatial Demography, which
like the applied demography principle discussed in Chapter 15, we view as a

fundamental element in the conceptual and theoretical foundation upon which

population estimation methods rest.

12.1 Structural Models1

Because changes in population are not solely determined by demographic factors,

but instead depend on the economy, land use rules, transportation systems, and the

environment, structural models have been develop because they produce population

“determinations” (i.e., estimates and projections) in which these and other factors

are taken into account. We describe two general categories of structural models:

(1) economic-demographic models; and (2) urban systems models. Economic-

demographic models are typically used to determine population and economic

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_12, # Springer Science+Business Media B.V. 2012
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estimates and projections for larger geographic areas such as counties, labor

market areas, states, and nations (Treyz 1993). Urban systems models focus on

small geographic areas such as census tracts and block and typically provide

determinations of population, economic activities, land use, and transportation

patterns (Hunt and Abraham 2005). In addition to their differences in geographic

scale, these two types of models often provide alternative explanations of the causes

and consequences of population change. Some structural models contain only a few

equations and variables (Korotayez 2005; Mills and Lubuele 1995; Swanson and

Beck 1994; US Bureau of Economic Analysis 1995), while others contain huge

systems of simultaneous equations with many variables and parameters (Anas and

Liu 2007; Hunt and Abraham 2005; Treyz 1995). Our objective is to provide a

general introduction and overview of the use of structural models. We do not

provide details for building or implementing these kinds of models; such details

can be found in Anas and Liu (2007), Miller et al. (1999), Putnam (1983, 1991),

SANDAG (1998, 1999), and Treyz (1993).

12.2 Economic Demographic Models

Althoughmost economic-demographicmodels deal with all three of the components

of population change, they typically focus on migration (Treyz 1993). This should

not be surprising because western economists typically use equilibrium models in

which “rational” actors participate. Thus, economic factors such as job change,

unemployment, and wages or income are therefore used to determine migration

(Treyz 1993). The empirical evidence suggests that the strongest links are those

found with job change (Krieg and Bohara 1999; Treyz 1993, 1995; Treyz et al.

1991).

Migration and population change are also influenced by non-economic factors

such as climate, coastal location, life cycle changes, personal characteristics, and

social networks (Astone and McLanahan 1994; DaVanzo and Morrison 1978;

Fuguitt and Brown 1990; Massey et al. 1987; Murdock et al. 1984). A complete

migration model including both economic and non-economic factors, however, is

problematic for determining migration or population because the independent

variables themselves must be determined. Determinations of these non-economic

variables are rarely available, while determinations of economic variables can be

obtained from national, state or county-level economic models (Treyz 1993).

We briefly describe three general approaches for designing and implementing

economic-demographic models: (1) Econometric models, which use regression

methods to determine migration; (2) balancing models, which determine migration

as the difference between the supply and demand for labor; and (3) ratio-based

models, which typically derive population directly from employment.

Econometric Models. The econometric approach uses equations that determine

migration from one or more economic variables. Parameters for these equations
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are estimated from historical data using regression techniques. Migration numbers

are then made by solving the equation(s) using the values of the independent

variable(s). The migration equation(s) are typically integrated into a large economic

model that also provides projections of the economic factors.

The most widely used econometric models of migration are “recursive,” whereby

migration is influenced by the economy, but does not itself influence the economy.

Recursive models cannot reflect the full range of interactions between migration and

the economy, but nonetheless have proven successful for projecting migration

(Clark and Hunter 1992; Greenwood and Hunt 1991; SANDAG 1999; Greenwood

1975; Tabuchi 1985). Recursive models of migration have also been implemented

in multiregional migration models (Campbell 1996; Foot and Milne 1989; Isserman

et al. 1995). Non-recursive models attempt to capture the joint impacts of migration

and the economy on each other. Although they are more complicated and require

larger resources than recursive models, non-recursive migration models have been

employed (Conway 1990; Mills and Lubuele 1995; Treyz et al. 1993).

Balancing Model. The concept behind the balancing model is straightforward.

If labor supply exceeds labor demand, workers migrate out of the area; if labor

demand exceeds labor supply, workers migrate into the area. Balancing models are

typically less costly to implement and easier to use than econometric models

because they do not require large-scale systems of equations, huge amounts of

data, or the use of formal statistical procedures. However, they do require numerous

computations and assumptions (Murdock and Ellis 1991). Labor demand is often

represented by a measure of job opportunities typically projected using export-base

models, input-output models, and extrapolation techniques (Greenberg et al. 1978;

Murdock et al. 1984). Labor supply is determined by applying labor force partici-

pation rates to a population derived from a cohort-component model that assumes

zero net migration. The migration of workers is determined by the difference

between labor supply and labor demand. The estimated number of economic

migrants is leveraged to obtain the number of people migrating with them through

assumptions related to characteristics such as marital status and family size.

Population/Employment Ratio. The population/ employment (P/E) model does

not use components of population change. Instead, it develops a total population

number directly. The P/E model is the easiest and least expensive way to incor-

porate economic factors into a population determination. The simplest P/E model

uses a single ratio representing total population to total employment, holds the

ratio constant at its current value, and applies the ratio to an estimate of employ-

ment. The “OBERS” model, developed by the US Bureau of Economic Analysis

(BEA) in the mid-1960s, was perhaps the most widely used P/E model

(US Bureau of Economic Analysis 1995). The approach taken in OBERS divides

the population into three age groups: pre-labor pool (less than 18), labor pool

(18-64), and post-labor pool (65+). Estimates of the labor pool population are

directly related to changes in employment and the pre-labor pool population

estimates are tied directly to the labor pool population. Post-labor pool estimates

are independent of economic changes.
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12.2.1 Urban Systems Models

Urban systemsmodels are used throughout the world to determine the distribution of

residential and nonresidential activities within urban or metropolitan areas

(Anas and Liu 2007; Hunt and Abraham 2005; US EPA 2000). They are designed

to be used for small geographic areas and are used to provide information about a

wide range of issues (e.g., air quality, traffic congestion, public transportation).

Along with economic factors such as jobs and income, urban systems models include

land use characteristics (e.g., zoning, environmental constraints, land value and land

supply) and characteristics of the transportation system (e.g., travel times, cost, and

distances). As such, urban systems models require considerably more information,

time, and resources to implement than economic-demographic models.

Urban systems models vary considerably in their theoretical approaches, mathe-

matical design, data requirements, and ease of implementation, but they typically

consist of three major components—regional population and economic estimates,

land use and activity, and transportation. The regional estimates are often produced

using economic-demographic models. The land use and activity component

consists of a complex set of procedures for distributing the regional population

and economic estimates into zones within the region. The transportation component

provides estimates of transportation system characteristics, such as traffic volumes

and speeds on roadways and on public transportation lines.

A fundamental characteristic of urban systems models is the iterative and

explicit relationships between land use characteristics, activity location, and the

transportation system. The distribution of population in virtually all such models

relies on the link between home (residential location) and workplace (employment

location). These links are represented by travel probabilities between zones based

on time, distance, or cost and commuting patterns (Putnam 1991). Residential

location influences the spatial distribution of employment, particularly employment

that serves a local population such as retail trade and services. This relationship

is implemented by assuming a lag between residential location and location of

employment. The transportation system influences land use characteristics that play

an important role in determining the location of population and other activities.

Thus, urban systems models contain procedures to reconcile the demand for land

with its available supply (SANDAG 1998, 1999; and Waddell 2000).

12.2.2 Comments On Structural Models

Structuralmodels - especially urban systemsmodels - require a lot of resources and are

difficult to implement. They are typically used in developing projections, but in

principle, they can be used to develop estimates. They often require extensive base

data, sophisticated modeling skills, and complex statistical procedures and computer

programs. Therefore, they are accessible only to a relatively narrow range of
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practitioners. In addition, there is no evidence to suggest that structuralmodels provide

more accurate population forecasts than other methods and, given their small

geographic scale, their forecast accuracy is not likely to be high in many applications.

Yet, structuralmodels are usedmore frequently today than ever before because of their

ability to investigate and analyze a wide range of theoretical, planning, and policy

questions (Schmidt et al. 1997; Tayman 1996; Treyz 1995).

12.3 Administrative Records

It is clear from previous chapters (i.e., 7, 8, 9, 10) that administrative records

(here, we include vital events as a component of administrative records) play an

important role in developing population estimates. Some types of records serve

directly as symptomatic indicators of population (e.g., the number of Housing units,

per the discussions of the Housing Unit Method in Chapter 7, the ratio-correlation

method in Chapter 8 and Medicare data in Chapter 10), others serve as indicators

of population change (e.g., births and deaths in CM II as described in Chapter 10),

and still others serve as direct and indirect indicators (e.g., school enrollment as

a symptomatic population indicator in a ratio-correlation model as described in

Chapter 8, a censal ratio variable, as described in Chapter 9, and as an indicator

change in terms of net migration in CM II, as described in Chapter 10). They also

can serve as sample frames (e.g., the discussion of sample-based indicators found in

Chapter 14). In short, without administrative records, the range ofmethodswithwhich

we could develop population estimates would largely be confined to the extrapolation

and interpolation methods described in Chapters 6 and 17. This would result in a

toolkit that was similar to what was used by the US Census Bureau at the beginning of

the 20th century, when experimentation with symptomatic indicators for use as censal

ratio estimators resulted in estimates that were less satisfactory than those produced

with extrapolation models (Shryock and Lawrence 1949).

Administrative records are also used in other ways to develop population

estimates. The “Demographic Analysis” (DA) Method used by the US Census

Bureau to assess the accuracy of the decennial census at the national level is an

estimation technique that relies on administrative records (Robinson et al. 2002;

Robinson et al. 1993). DA population estimates are developed for the census date

using data that are independent of the census. Births and Deaths are added and

subtracted for many years, respectively, and combined with information on immi-

gration and emigration to develop a national population estimate. Because birth and

death records are not complete before 1935, data on Medicare for the population

aged 65 years and over have been used to supplement the estimates of the elderly

population (Robinson et al. 2002). By the time of the 2030 census, the need for the

Medicare supplements will be virtually nil. As such, an estimate of the US popula-

tion in 2030 would be P2030 ¼ (Births1935-2030) – (Deaths1935-2030) +

(Inmigrants1935-2030) – (Outmigrants1935-2030).

12.3 Administrative Records 223

http://dx.doi.org/10.1007/978-90-481-8954-0_7
http://dx.doi.org/10.1007/978-90-481-8954-0_8
http://dx.doi.org/10.1007/978-90-481-8954-0_10
http://dx.doi.org/10.1007/978-90-481-8954-0_10
http://dx.doi.org/10.1007/978-90-481-8954-0_8
http://dx.doi.org/10.1007/978-90-481-8954-0_9
http://dx.doi.org/10.1007/978-90-481-8954-0_10
http://dx.doi.org/10.1007/978-90-481-8954-0_14
http://dx.doi.org/10.1007/978-90-481-8954-0_6
http://dx.doi.org/10.1007/978-90-481-8954-0_17


As described in Chapter 10, the US Census Bureau developed a successful

component based method during the 1970s in which migration was estimated

using tax return data from the US Internal Revenue Service (Healy 1982; Long

1993). This method required matching addresses on successive years of tax returns

and calculating a migration rate based on the total number of exemptions that moved

into and out of each area. In aggregate form, these same IRS data are available

online (http://www.irs.gov/taxstats/article/0,,id¼212683,00.html) and can be used

to develop estimates of in and out migration by county and state.

Another administrative records source of migration data is found in the United

States Postal Service (USPS) “Change of address” tabulations (Swanson et al. 2009;

USPS 2011). These data are widely used by demographic vendors in the private

sector to develop population estimates (Martins et al. 2012).

Finally, in addition to the role that administrative records play in the methods

we have just described, they have the potential to provide estimates that serve as

virtual census counts (Alvey and Scheuren 1982; Kliss and Alvey 1984; Swanson

and Walashek 2011), especially when augmented with survey data, record linkage

techniques, and modeling and imputation methods (Allison 2001; Fay 2005;

Fellegi and Sunter 1969; Judson 2007; Kalton 1983; Liu 2007; 2008; Myrskyl€a
1991; Peterson 1999; Rubin 2004; Scheuren 1999; Statistics Canada 2009; Statis-

tics Finland 2004; Swanson and Knight 1998; Thomsen and Holmøy 1998;

Weinberg 2009). This perspective is not just applicable at the national level. For

example, for states with income tax (all but Alaska, Florida, Nevada, South Dakota,

Texas, Washington, andWyoming), the returns could be used in a manner similar to

that described by Alvey and Scheuren (1982), Kliss and Alvey (1984) Swanson and

Walashek (2011) for federal income tax returns to generate an “administrative

records” census. Something similar to this is done in Alaska, which in effect has

a ‘reverse income tax” in the form of its “permanent fund” distributions (State of

Alaska 2008). In addition, as described byMartins et al. (2012), it is pretty clear that

private sector vendors have used a wide range of data to develop what amounts to a

virtual census count at any given point in time, although the accuracy of any of

these records is unknown due to the proprietary interests of the organizations that

are involved in developing them.

With this general overview of administrative records, we now turn to two

specific methods that can be used with them to develop population estimates:

(1) imputation; and (2) Dual system estimation.

12.4 Imputation

Adapting the definition provided by Swanson and Stephan (2004: 762), imputation

is a general term used to describe the assignment of values to cases for which one or

more variables have missing values due. Four common methods are: (1) deductive

imputation, which is based on other information available from the case in question;

(2) hot-deck imputation, which is based on information from “closest-matching”
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cases; (3) mean-value imputation, which uses means of variables as the source of

assignment; and (4) regression-based imputation, in which models are constructed

using cases with no missing values and a dependent variable is the one whose

missing values will be imputed and the independent variables are those that yield

acceptable regression equations. The general idea is that having an imputed value is

better than having a missing value, especially if the data set in question is small

(e.g., a small sample survey). In addition, as pointed out by Kalton (1983), missing

data can produce biased estimates in surveys if not handled appropriately (Swanson

2008, 1986). The US Census Bureau started using imputation in conjunction with

the 1950 census (Cresce et al. 2005).

Imputation has largely been used to assign values to variables in censuses and

sample surveys for which the respondents provided no information (Fay 1996, 1999;

Madow et al. 1983; Rubin 2004; Singh et al. 2001). However, as missing data were

encountered in administrative records, analysts turned to imputation methods for

assistance in dealing with them (Bye and Judson 2004; Hogan and Cowan 1980).

In some case, the missing values were due to confidentiality standards (Raghunathan

et al. 2003) and in others, in conjunction with record-matching, which leads us to

the next area, Dual Systems Estimators.

12.5 Dual System Estimation

In 1949, C. Chandra Sekar (now known as Chandrasekaran) and W Edwards

Deming introduced a system for estimating the total number of births and deaths

that is based on the algebra underlying the Chi-squared (w2) test in a 2x2 table of

cross-classifications. This technique has been refined and modified for a number

of uses (Hogan and Cowan 1980; Paradies and Barnes 2005; Popoff and Judson

2004; Wolter 1986), including the estimation of the size of wildlife populations,

where it is known as “capture-recapture” (Williams et al. 2002). In demography and

statistics, this general method has become known as “Dual System Estimation”

(Krótki 1978).

A natural way to show how Dual System Estimation (DSE) works is to start from

the w2 Test (Norušis 1991: 265-271). Suppose we have two variables, A and B each

of which has two values, YES and NO. The w2 test is designed to provide a

statistical test of whether or not the two variables, A and B, are related. In the

test, one has all of the YES and NO values for both A and B, which can be viewed as

the sums of each row and column in the 2x2 table in which the “observed” values of

A and B would be cross-classified. The w2 test proceeds by finding observed values
of the two values for each variable and then seeing if the observed values are

different than the expected values, where the expected values are what one would

see if the two variables had no relationship – were independent. It is the latter, the

values expected under the assumption that the two variables are independent, that

is the basis of the original DSE method. However, to get to that point, we need to

have the “observed” values.
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Suppose that we have surveyed all of the members of the Population Association

of America (PAA) and asked each of them two questions that each have the same

two responses, “yes” and “no:” (1) Are you currently a member of the American

Statistical Association (ASTATA); and (2) Are you currently a member of the

American Sociological Association (ASOCA). Suppose, further that there are

10,000 PAA members and that the results of our survey are as found in Table 12.1.

As we can see, 7,000 of the 10,000 PAAmembers are also ASATAmembers and

4,000 of them are also members of the ASOCA. Further, we can see that only 2,000

of the 10,000 PAA members are members both of the ASTATA and the ASOCA.

In order to conduct a w2 statistical test to see if ASTATA membership is indepen-

dent of ASOCA membership, we would need to find the “expected” values in each

of the four cross-classified cells. This would proceed as shown in Table 12.2.

The expected values in the four intersecting cells of a 2x2 table are found by

multiplying the sum of the row by the sum of the column corresponding to the

intersecting cell and dividing this sum by the overall total. In Cell11, of Table 12.2,

we see its expected value (E11 ¼ 2,800), is found by multiplying the sum of the

“row” total (The number of records in System B, N1j ¼ 7,000) by the sum of the

“column” total (The number of records in System A, Ni1 ¼ 4,000) that correspond
to Cell11 and then dividing this product by the overall total number of records in

each organization (∑Nij ¼ 10,000). This is repeated for each of the other three

Table 12.1 Hypothetical Survey Results of PAA Members and Their Memberships in ASOCA

and ASTATA

Currently a member of American

Sociological Association?

TotalYes No

Currently a Member of the

American Statistical Association?

Yes 2,000 5,000 7,000

No 2,000 1,000 3,000

Total 4,000 6,000 10,000

Table 12.2 “Expected” Cross-Classified Values for the Hypothetical Survey of PAA Members

Currently a member of American

Sociological Association?

TotalYes No

Currently a

Member of

the American

Statistical

Association?

Yes E11 ¼
(N1j* Ni1)/ ∑Nij

2,800 ¼
(7,000*4,000)/10,000

E12 ¼
(N1j* Ni2)/ ∑Nij

4,200 ¼
(7,000*6,000)/10,000

N1j (7,000)

No E21 ¼
(N2j* Ni1)/ ∑Nij

1,200 ¼
(3,000*4,000)/10,000

E22 ¼
(N2j* Ni2)/ ∑Nij

1,800 ¼
(3,000*6,000)/10,000

N2j (3,000)

Total Ni1 (4,000) Ni2 (6,000) ∑Nij (10,000)
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cross-classified cells. Essentially what this does is to simultaneously assign the

relative frequency distribution of the row margins (7,000, 3,000) and the frequency

distribution of the column margins (6,000, 4,000) to the cells. So, in Cell11, where

we have an expected value of 2,800 concurrent ASTATA and ASOCA members, it

is the same relative proportion of its column total of 4,000 that the row total of

7,000 is to 10,000 (2,800/4,000 ¼ 7,000/10,000 ¼ 0.70) and at the same time, it is

the same relative proportion of its row total of 7,000 that the column total of 4,000

is to 10,000 (2,800/7,000 ¼ 4,000/10,000 ¼ 0.40). The same type of relationship

holds for the “expected” values in the remaining cells. That is, the expected values

in the cells have the same relative frequency to their column and row totals that the

corresponding column and row totals have to the overall total.

So, by now you may be asking how does DSE actually work? The answer is that

it exploits the algebra for finding “expected” values in order to estimate the overall

“total,” where the overall total corresponds to an estimated number of births,

deaths, or people by using two “independent” administrative records systems

(or two surveys or a survey and an administrative records system). The underlying

assumption is that the administrative records systems are incomplete. If they were

complete (e.g., the birth and death registrations systems in Australia, Canada,

England, and the United States and the population registry system in Finland),

there would be no need for Dual System Estimation. In our hypothetical example,

would translate into having no “overall total.”

Specifically, what DSE does is to have cross-classified data (e.g., as shown in

Table 12.1) and then assume that the two variables are, in fact, independent, so that

the unknown overall total can be estimated. To show how this would work in

practice, suppose that all of the PAA membership lists were destroyed and the

organization was trying to get an idea of how many members there were. A logical

place to start would be the membership lists of other organizations to which PAA

members tended to belong and for which PAA (along with other memberships)

were also recorded. Let us further suppose that it was known that PAA members

belong to ASOCA and ASTATA, two organizations that also maintained informa-

tion on the professional associations to which their members belonged. Suppose

that the ASOCA and ASTATA membership lists were searched with the results

shown in Table 12.3 for PAA members.

As shown in Table 12.2, we found 7,000 PAA members in the ASTATA

membership list and 4,000 PAA members in the ASOCA membership lists,

along with 2,000 who have joint membership in both ASOCA and ASTATA.

Table 12.3 Hypothetical Estimate of Total PAA members using ASOCA and ASTATA

Membership records of PAA members

PAA member who is an ASOCA Member

TotalYes No

PAA Member who

is an ASTATA

Member

Yes O11 (2,000) O12 (5,000) ∑O1j (7,000)

No O21 (2,000) O22 (Unknown) ∑N2j (Unknown)

Total ∑Oi1 (4,000) ∑Ni2 (Unknown) ∑Nij (Unknown)
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It might seem that we could simply subtract the joint members (2,000) from

the sum of the PAA members found in the two organizations (7,000 + 4,000) to

get an estimate of total PAA membership, which would result in an estimate of

9,000 PAA members. Doing so, however, ignores the PAA members who belong

neither to ASTATA and ASOCA. Thus, the way forward is to use the equation

for finding the “expected” values (Table 12.2) to the single cell for which we

have “observed” values and corresponding known row and column totals,

(In Table 12.3 this is cell C11), we would have three known values and one

unknown value (the overall total, (∑Nij), which can be solved for the unknown

value, viz:

E11 ¼ ðO1j
�Oi1Þ=

X
Nij ¼ 2,000 ¼ ð7,000�4,000Þ=

X
Nij

and

X
Ni2 ¼ ð7,000�4,000Þ=2,000 ¼ 14,000

So, we have an estimate of 14,000 for the previously unknown overall total

number of members in the PAA. If, as in our sample survey example, the actual

(but unknown) total were 10,000, we would have a relative percent error of 40%

with this estimate. While this may be high, an error of 40% would be preferable to

having no information at all, given the cost of obtaining it vs. the costs of not having

it. This hypothetical example shows that DSE is capable of producing at least

reasonable estimates. Note that had there been 2,800 members in cell11, we

would have an estimate of 10,000 since the 2,800 number would be in accordance

with the assumption of independence.

As the preceding example illustrates, one of the major issues for DSE is the need

to assume that any two information systems are independent, which for most

administrative records systems is not very realistic. For example, it is highly likely

that many of records in an income tax system match up to people in a driver’s

license system. The fact that many systems are so correlated and other issues have

led to a great deal of research into DSE, especially since the adoption of DSE by the

US Census Bureau as one of the tools to evaluate the accuracy of the decennial

census (Hogan 1993; 2000; Hogan and Cowan 1980; Popoff and Judson 2004;

Wolter 1986). In turn, the use of DSE by the US Census Bureau and the research

into it, provides the method with a substantial theoretical and experiential

foundation.

12.6 Micro-Simulation (Agent Based Modeling)

Agent-Based Models (ABMs) collectively represent an individual modeling

method that, along with two related approaches, Microsimulation (MSM)

and Cellular Automata (CA, also known as Artificial Neural Networks or ANN),
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has received attention as a demographic estimation and forecasting tool in the

past twenty or so years (Andreassen 1993; Bandyopadhyay and Chattopadhyay

2006; Billari and Prskawetz 2003; Booth 2006; Charette 2010; Clarke and Holm

1987; Griffith et al. 2012; Harding and Gupta 2007; Malenfant et al. 2011; Martel

2010; Sokolova et al. 2006; Van der Gaag et al. 2005; Zinn et al. 2010). This

development corresponds to observations made by Smith et al. (2001: 367) that

while population projections were primarily made at the national and state levels

until the 1970s, they started being routinely made for lower levels of geography

such as census tracts and block groups, which, in turn, generated demand for even

lower levels of geography such as tax assessor files, block faces, and street

segments. They observed that this trend implied that projections would eventually

be made for individual addresses, households, and people. Indeed, this observation

has been borne out and the reason is largely due to the development of individual

modeling methods, including ABM. The same comments made by Smith et al.

(2001) in regard to ABM and forecasting apply to ABM and estimation.

What exactly is ABM? According to the International Microsimulation Associ-

ation (2006), it is closely allied to the other two other individual-level modeling

approaches, CA and MSM. In distinguishing these three related approaches, The

International Microsimulation Association (2006) describes them as follows.

(1) In a pure CA, all entities are spatially located within a grid of cells, and all

entities have only one attribute (alive or dead), with behaviors deterministically

dependent upon the state of neighboring cells.

(2) In a pure ABM, the emphasis is on the interaction between individuals, with the

main attribute of each individual being the operating characteristics (behavioral

rules), which evolve stochastically over time in response to the success or

failure of interactions with other individuals.

(3) In a pure MSM, transition probabilities lack evolutionary and spatial

dimensions.

The Association (2006) concludes that as microsimulation models add more

behavioral and spatial interaction between individual units, as CAs add a growing

range of individual attributes and start to incorporate aspatial behaviors, and as

ABMs add both space and fiscal/demographic characteristics to their agents, the

three approaches move towards a common ground.

As an example, Griffith et al. (2012) discuss an ABM known as “DOMICILE

ABM (DOmicile Model Implemented by Calculating In-migration at the Domicile

LEvel) that has been specifically designed as a new approach to the generation of

population estimates and projections. The model design follows that proposed by

Grimm et al. (2006), under the “ODD Protocol” (Overview, Design concepts, and

Details), which is rapidly being adopted by the agent based modeling community as

a standard ABM format.

Another example of ABM is provided by Malenfant et al. (2011), who

describe Demosim, a microsimulation system basically in production by Statistics

Canada that is maintained by Modgen, a programming language specially

designed by Statistics Canada’s Modeling Division to facilitate the development

of microsimulation that can be accessed along with documentation at (http://www.
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statcan.gc.ca/spsd/Modgen.htm). The starting point for the DEMOSIM is the

microdata file for the 20-percent sample of the 2006 census of the population of

Canada This database, which includes close to seven million persons with their

characteristics, was adjusted to take account of the census net undercoverage.

According to Malenfant et al. (2011), the variables contained in the Demosim

initial file can be divided into two major groups. The first consists of the key

variables that were projected for public release purposes:

• Age

• Sex

• Place of residence

• Religious denomination

• Visible minority group

• Immigrant status

• Generation status

• Continent/region of birth

• Mother tongue

• Highest level of schooling

• Labour market participation

The second group consists of “support variables,” which are variables that are

included because they serve to increase the quality of the projection for the

variables in the first group. They include the following:

• Marital status

• Province or territory of birth of non-immigrants

• Year of immigration

• Age at immigration

• Aboriginal identity

• Registered Indian status

• Presence and number of children in the home

• Age of youngest child in the home

• Sex of youngest child in the home

• Dates on which diplomas were obtained

Although it has limitations, Malenfant et al. (2011) argue that Demosim represents

a powerful and relevant tool. Through microsimulation, a user may easily not

only generate multiple characteristics of a population but also take into account

differentials in demographic behaviours between groups of the population.

12.7 Neural Networks

Neural Networks (NN) are based on the idea that many complex processes can be

adequately modeled in terms of simpler processes (Paik 2000). In essence, NN is

based on the processes believed to operate in the human brain, where the complex
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tasks performed by the brain can be faithfully modeled in terms of the interactions

between such neurons (Churchland and Sejnowski 1992). The interactions take

place via synaptic connections, and the electrical resistance of a connection

determines the strength of the interaction between the connected neurons. Typi-

cally, a single neuron in the memory centers of the brain is connected to approxi-

mately 10,000 other neurons in a fully interconnected fashion, but certain portions

of the brain have been observed to have a layered structure, which Paik (2000)

argues is functionally similar to a nonlinear, multivariate regression model. The

vision layer of neurons is analogous to the set of independent (predictor) variables,

whereas the motor neurons are analogous to the dependent (response) variables.

This is the idea that has led to the development and refinement of NN, especially

in regard to statistical methods and the ability to model nonlinear relationships

(Bishop (1995), Masters (1993), and Sarle (1994). However, as Paik (2000)

observes, for a given data set, an NN may be outperformed by a method with

many restrictive and explicit assumptions.

One feature of NN that distinguishes it from standard multiple regression models

is that a given model is “trained,” in a process that is analogous to learning.

A demographic example of this process is found in Tang et al. (2006), who provide

an example of various types of “trained” NN models that were evaluated against one

another and the ratio-correlation model using ex post facto tests in conjunction with

historical census data. They found that properly trained neural networks outperformed

the ratio-correlation regressionmodel overall and that among the different NNmodels

they tested, the fuzzy logic NN performed the best.

12.8 The Grouped Answer Method

This (sample) survey-based technique is designed to estimate difficult to count

populations, such as illegal immigrants. Introduced by the US Government

Accountability Office (US GAO 1998, 1999), it has been refined and simplified

(Larson and Droitcour 2012; US GAO 2006). In 2004, as a large scale test, a

“grouped answer” question module aimed at estimating the foreign born in the US

by immigration status (i.e., legal and otherwise) was included in the General Social

Survey (GSS) conducted by the National Opinion Research Center of the Univer-

sity of Chicago (Larson and Droitcour 2012). The GSS question module represents

the first time the grouped-answer method has been applied in a household survey of

the general population. Data from the GSS test data included foreign-born

respondents’ answers and interviewers’ judgments, and comments written by inter-

viewers, reflecting interviewer observations and statements made by respondents.

These results were reviewed by an independent statistical expert and US GAO.

The findings suggest that the method has promise and it has been recommended

for use by federal statistical agencies in regard to estimating the foreign-born by

immigration status (Larson and Droitcour 2012).

12.8 The Grouped Answer Method 231



Exhibit 12.1 shows a variation of the Grouped Answers method that is designed to

estimate the numbers of foreign-born who lack legal immigrant status. The grouped

answer method features two or more alternative immigration-status cards, each of

which is used with a different sub-sample of foreign-born respondents. Each card

features a 3-box set of immigration-status answer categories, A, B, and C; the

respondent chooses the box that contains his or her immigration status

Reading across Exhibit 12.1, you can see that: Box A in both card set 1 and

card set 2 contains one or two non-sensitive immigration status(es); Box B in

both card sets contains the sensitive undocumented status and a variety of other

non-sensitive statuses; and Box in both card sets is for some other category, not

Exhibit 12.1 The Grouped Answers Method for Estimating the Foreign-Born who lack Legal

Immigrant Status
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in Box A or Box B. The various cards alternate the non-sensitive statuses appearing

in Box A versus Box B; thus, it is possible to obtain direct estimates of each non-

sensitive category (Box A) and, via subtraction, to obtain an indirect, “residual”

estimate of the sensitive, undocumented status: %Illegal ¼ %A (card set 1) - %B

(card set 2) + %C (either card set). No individual respondent is ever associated with

the sensitive, undocumented or illegally present status.

Using this technique in conjunction with personal interviews at several construc-

tion sites in the Washington, DC metropolitan area that targeted low-skilled immi-

grant-saturated trades, Golden and Skibniewski (2009) found approximately that of

the 896 respondents, 55% were undocumented and “quasi-legal.” They cautioned

Exhibit 12.1 (continued)
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that it was difficult to extrapolate these findings to all construction sites in the

Washington DC metropolitan area because they had no viable sample frame, which

left into question how representative the study sites they used were. However,

Golden and Skibniewski (2009) argued that their findings were supported by other

research.

12.9 Social Network Analysis/Snowball Sampling

Like the Grouped Answer method, using Social Network Analysis to estimate a

population of interest is fundamentally a (sample) survey-based tool. The technique

used to do this is usually referred to as “snowball sampling” (Goodman 1961).

Snowball sampling identifies social networks by asking initial respondents about

people they might know who have specific characteristics of interest to the

researcher (Palmore 1967). Those identified, in turn, are then themselves asked

these same questions. This is referred to metaphorically as snowball sampling

because as the process yields more people with the desired characteristics in

a manner similar to how a snowball increases in size as it is rolled along, collecting

more and more snow.

Because the initial form of snowball sampling lacks a sample frame, it does not

have the foundation found in samples selected from a valid frame in a random

manner. As such, it was difficult to get an idea of the precision of an estimate

yielded by such a snowball sample. However, refinements have been developed to

overcome this and other problems and it is now possible to develop estimates of

precision and related information for snowball samples designed using these

refinements (Heckathorn 1997, 2002; Salganick and Heckathorn 2004).

12.10 Spatial Demography

Voss (2007) argues that virtually all demography was spatially oriented until about

the mid 20th century, at which time a paradigm shift occurred that led demography

to become more focused on the individual as a subject of study rather the study of

demographic attributes aggregated to some level(s) within a geographic hierarchy.

However, he notes that three general areas of study continued to be spatially

oriented after this shift: (1): urban demography; (2) rural demography; and

(3) applied demography (Voss 2007). In terms of the latter, applied demography,

Voss observes that research conducted in its subfield of population estimation and

forecasting methods blossomed in the 1950s and as it continued, brought a fresh

perspective to the analysis of spatial units. Voss believes that this research was

greatly enabled by five products that radically changed the field of demography:

(1) the Census Bureau’s TIGER files; (2) electronic census files; (3) extensive

satellite imagery; (4) geographic information system (GIS) software for mapping
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and, importantly, for integrating spatially-arrayed data from diverse and disparate

georeferenced “layers,” and finally (5) the powerful, but affordable computing

hardware platforms on which to bring together these various elements. When

these elements converged in the early 1990s, Voss believes that they began to

alter the way in which spatial demographic research was carried out by generating

new and broadly interdisciplinary relationships on campuses and elsewhere that led

to the development of new hypotheses and research questions. Examples of these

new and invigorated areas of research include spatial interpolation, spatial interac-

tion, and multilevel modeling, among others (Goodchild and Kwan 1978; Mitas and

Mitasova 1999; Voss 2007).

One of the areas of interest in the area of population estimation that has

contributed to new hypotheses and research questions is spatial dependency, the

co-variation of properties within geographic space, which leads to spatial autocor-

relation problem (Dubin 1998; Longhi and Nijkamp 2005; Swanson and Tedrow

1984; Voss et al. 2006). Spatially arrayed statistical models such as the ratio-

correlation model and its variants can have unstable parameter estimates and

yield unreliable significance tests when affected by spatial autocorrelation. How-

ever, by viewing spatial dependency as informative rather than problematic,

correctly specified spatial regression models can be constructed that capture these

relationships (Dubin 1998).

An important concept in demography is the idea of heterogeneity (Vaupel and

Yashin 2006), and it should come as no surprise that this concept applies to spatial

demography (Goodchild 2009). Neither should it come as a surprise that those

building spatially arrayed population estimation models have recognized and

attempted to deal with this issue along with temporal heterogeneity (Chu 1974;

McKibben and Swanson 1997; Swanson 1980; Tayman and Schafer 1985).

Given this discussion, it should be clear that it is not a huge stretch to view

spatial demography as the technical and substantive foundation of population

estimation (and forecasting). The most obvious connection is between ratio-

correlation and its variants since this method is inherently not only a manifestation

of spatial demography in that it deals with population aggregated to geographical

levels, but it also is multi-level, substantively embedded in the theoretical issues

affecting the distribution and composition of populations over time, affected by

spatial autocorrelation, and capable of dealing with both spatial and temporal

heterogeneity.

12.11 Summary

Aside from population registry systems (Statistics Finland 2004) and “Master

Address Files” (Swanson and Walashek 2011), administrative records systems

were not designed to yield population estimates. Because they are correlated with

population numbers, they have, however, been extensively explored and exploited

for purposes of population estimates, as is clear from this chapter and others in this
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book. With the increased difficulty in simultaneously maintaining high response

rates for traditional sample surveys and related forms of primary data collection

(e.g., censuses) and holding costs down, it is likely that administrative records will

loom even more important in the future (Swanson and Walashek 2011).

The two (sample) survey-based methods discussed in this chapter, The Grouped

Answers Method and Social Network Analysis/Snowball Sampling, offer ways to

estimate populations that are difficult to count. In several regards they are like the

methods discussed in Chapter 16 for estimating de Facto populations and those

impacted by a disaster and could, in fact, be used for these purposes.

All of the methods discussed in this chapter are largely designed to develop

post-censal estimates. However, they can be used for inter-censal estimates. Rarely,

if at all, would they be used to develop pre-censal estimates.

Endnote

1. This discussion is adapted from Smith, Tayman, and Swanson (2001: 185-237).
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Chapter 13

Special Cases and Adjustments1

Population estimate methods can be applied in a straightforward manner in many

situations, without consideration of any factors beyond those discussed in previous

chapters. However, there are also situations in which the basic estimation model

should be adjusted to account for special circumstances. Two common adjustments

are for international migration and special populations.2 Failing to account for these

factors can lead to unreasonable estimates and can increase estimation errors.

Whether any specific set of estimates requires adjustment for these factors is, of

course, a question that must be answered on a case-by-case basis. There are also

circumstances in which it is desirable to control a set of estimates to an independent

estimate. In this chapter we discuss the circumstances in which unadjusted

estimates might provide unacceptable results, describe ways for making the neces-

sary adjustments, and describe several techniques for controlling to independent

estimates. The adjustments described in this chapter increase the complexity of the

estimation process, but we believe enhance the usefulness of the resulting

estimates.

13.1 International Migration

In the various component methods described in Chapter 10, the migration element

did not distinguish between internal and international migration. However, interna-

tional migrants often have different characteristics than internal migrants, are

influenced by different factors, and exhibit different patterns of change. Conse-

quently, if international immigration is an important component of growth for a

particular state or local area, it may be useful to estimate it separately from internal

migration.

Table 13.1 shows population change due to internal and international migration

for Census regions and states from 2000 to 2009. There is a tremendous amount of

variability in the relative contributions of internal and international migration to

population change. In the Northeast and Midwest regions, internal migration results
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Table 13.1 Net Total, Internal, and International Migration, Census Regions and States,

2000–2009

International Internal Total

Region

Northeast 1,835,442 �2,539,582 �704,140

Midwest 1,158,438 �1,752,191 �593,753

South 3,118,775 3,874,132 6,992,907

West 2,831,515 417,641 3,249,156

State

Alabama 50,742 85,710 136,452

Alaska 8,308 �9,032 �724

Arizona 272,410 714,354 986,764

Arkansas 36,478 76,445 112,923

California 1,816,633 �1,509,708 306,925

Colorado 144,861 212,822 357,683

Connecticut 112,936 �96,328 16,608

Delaware 19,523 46,524 66,047

District of Columbia 24,179 �41,606 �17,427

Florida 851,260 1,182,974 2,034,234

Georgia 281,998 567,135 849,133

Hawaii 38,951 �33,108 5,843

Idaho 22,121 112,341 134,462

Illinois 403,978 �632,866 �228,888

Indian a 93,367 �21,734 71,633

Iowa 36,329 �52,205 �15,876

Kansas 52,388 �69,962 �17,574

Kentucky 44,314 82,517 126,831

Louisiana 33,046 �318,811 �285,765

Maine 8,079 30,725 38,804

Maryland 191,262 �95,972 95,290

Massachusetts 245,145 �276,768 �31,623

Michigan 168,668 �540,750 �372,082

Minnesota 106,388 �43,962 62,426

Mississippi 17,572 �36,545 �18,973

Missouri 63,420 42,041 105,461

Montana 3,042 39,938 42,980

Nebraska 31,988 �41,144 �9,156

Nevada 110,681 374,762 485,443

New Hampshire 18,373 35,087 53,460

New Jersey 399,803 �459,803 �60,000

New Mexico 47,343 23,215 70,558

New York 839,590 �1,686,583 �846,993

North Carolina 214,573 675,016 889,589

North Dakota 4,568 �19,785 �15,217

Ohio 120,452 �368,203 �247,751

Oklahoma 53,514 39,463 92,977

Oregon 95,484 178,547 274,031

Pennsylvania 176,498 �40,139 136,359

(continued)
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in population loss that is not offset by the gains from international migration.

Internal migration contributes to 55% of the total net migration in the South region,

but only 13% in the West region. Almost half of the states (24) experienced net

internal out-migration and net growth due to international migration. In states with

positive internal and international migration, internal migration accounts for more

of the total net migration in 21 states; the share of internal to total net migration

ranges from 51% in South Dakota to 93% in Montana. In the remaining six states,

the internal share ranges from 33% in New Mexico to 48% in Texas.

Table 13.2 compares selected demographic characteristics for internal and

international migration in the US for 2009-2010. Internal migrants have a greater

representation than international migrants in ages under 18 and in ages 55 and older.

The two groups of migrants have about the same representation in ages 35 to 54.

International migrants have a larger share in the prime migration years of 18 to 34,

especially those 25 to 34. Internal migrants tend to have similar concentration of

males and females, while international migrants have slightly higher concentration

of males (53.3%). As expected, significant differences are seen in the racial and

Hispanic origin composition between internal and international migrants. White

alone is the predominate race for both internal and international migration, but the

White alone share is 21.7 percentage points higher for internal migrants. Black

alone has the second highest concentration of internal migrants (14.6%), while

Asian alone has the second highest concentration of international migrants (31.3%).

Two-thirds of internal migrants are White non-Hispanic compared to 27% of

international migrants; international migrants concentrate in the Hispanic (32.2%)

and other non-Hispanic (40.5%) groups.

Figure 13.1 shows distinctly different patterns of temporal change due to internal

and international net migration in San Diego County from 1980 to 2010. Interna-

tional migration shows a relatively stable pattern of change, ranging from 8,570 to

19,100 per year. Internal migration fluctuates dramatically, generally following

Table 13.1 (continued)

International Internal Total

Rhode Island 30,017 �44,649 �14,632

South Carolina 65,869 310,572 376,441

South Dakota 6,545 6,822 13,367

Tennessee 91,508 264,570 356,078

Texas 933,083 848,702 1,781,785

Utah 65,961 52,582 118,543

Vermont 5,001 �1,124 3,877

Virginia 204,219 171,420 375,639

Washington 202,442 238,546 440,988

West Virginia 5,635 16,018 21,653

Wisconsin 70,347 �10,443 59,904

Wyoming 3,278 22,382 25,660

Source: US Census Bureau, Population Division (NST-EST 2009-04).

Release Date: December 2009
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cycles of employment opportunities and overall economic changes; its range

is -40,700 to 50,000 per year. Because of the lack of a relationship between the

local economy and international migration, structural economic models of migra-

tion (discussed in Chapter 12) often focus on just internal migration.

How can international migration be estimated? Three primary sources of infor-

mation provide information for estimating international migration for the US and its

subnational areas: 1) Department of Homeland Security (DHS); 2) ACS; and 3) the

Census Bureau’s annual estimates program. These sources are comprehensive in

the sense that they provide data for subnational areas covering the entire US, but

there are significant differences between them concerning the detail provided and

aspects of international migration they estimate. Independent estimates of interna-

tional migration for particular states and counties are also available from a few state

demographic centers (e.g. California, New York).

Table 13.2 Characteristics of Internal and International Migrants, United States, 2009–10

Age Group Internala Internationalb Differencec

<18 23.5% 18.4% 5.1%

18 to 24 19.2% 22.4% �3.2%

25 to 34 25.1% 31.7% �6.6%

35 to 44 11.9% 11.4% 0.5%

45 to 54 9.1% 9.3% �0.2%

55 to 64 6.3% 3.8% 2.5%

65+ 4.9% 3.0% 1.9%

100.0% 100.0% 0.0%

Sex Internal International Difference

Male 50.3% 53.3% �3.0%

Female 49.7% 46.7% 3.0%

100.0% 100.0% 0.0%

Race Internal International Difference

White alone 77.1% 55.4% 21.7%

Black alone 14.6% 10.1% 4.5%

Asian alone 4.2% 31.3% �27.1%

Other racesd 4.1% 3.2% 0.9%

100.0% 100.0% 0.0%

Hispanic Origin Internal International Difference

Hispanic 13.3% 32.2% �18.9%

White non-Hispanic 65.5% 27.3% 38.2%

Other non-Hispanic 21.2% 40.5% �19.3%

100.0% 100.0% 0.0%
aMovers from different county, same state; different state, same division; different division, same

region, and different region
bMovers from abroad
cInternal - International
dIncludes American Indian and Alaska Native alone, Native Hawaiian and Other Pacific Islander

alone and Other Islander alone, and all race combinations

Source: US Census Bureau, Current Population Survey,

2010 Annual Social and Economic Supplement, Internet release date: May 2011
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The DHS provides annual fiscal year information on legal permanent residents

or foreign nationals who have been granted the right to reside permanently in the

United States. DHS data identifies new arrivals to an area, as well as the number of

persons in an area whose status has been changed to a legal permanent resident.

Information is available for the US, states, and core based statistical areas, but not for

individual counties.3 The DHS legal permanent resident profile includes information

on sex, age, county of birth, marital status, occupation, and class of admission (family

sponsored, employment-base, relative of US citizens, diversity, refugees and asylees,

and other); no cross-classifications of these variables are provided. Data from the

DHS do not provide a complete picture of international migration. They do not reflect

emigration from an area and exclude estimates of undocumentedmigration.Moreover,

the DHS only provides the year of the status change and not when the immigrant came

into the US, which may overstate the immigration for a particular year.

The ACS arguably offers the most comprehensive source of information on

international migration through its question on previous residence one-year prior.

Information is provided for persons who moved to an area and were living abroad

Fig. 13.1 Population Change due to Internal and International Migration, San Diego County,

1980–2010

Source: State of California, Department of Finance, Sacramento, CA

Population Estimates and Components of Change by County- July 1, 1999–2010, with 2010

Census Benchmark. August 2011

Revised County Population Estimates and Components of Change by County, July 1 1990–2000.

February 2005

Revised County Population Estimates and Components of Change by County, July 1, 1970–1990.

February 1995
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during the prior year. The ACS, at least indirectly, does include undocumented

migration to the extent they were included in and responded to the survey. A wide

range of characteristics are available from the ACS including age, sex, race, His-

panic origin, marital status, educational attainment, and income. The tabulated data

from the ACS do not provide cross-classifications of these variables and cover all

persons moving from overseas; including, for example, US residents living abroad.

ACS Public Use Microdata Sample (PUMS) files can be used to identify the foreign

born moving to the US and to cross-classify variables for use in estimation models.

Like the DHS profiles, the ACS does not include information on emigration.

The Census Bureau produces estimates of net international migration for the US,

states, and counties as a component of change for their annual estimates. While the

Census Bureau estimates net international migration by age, sex, race, and Hispanic

Origin, only the overall number is provided in their public data. The international

migration component combines for parts: 1) net international migration of the

foreign born, 2) net migration between the US and Puerto Rico; 3) net migration

of natives to and from the US, and 4) net movement of Armed Forces population to

and from the United States. One important advantage of the Census Bureau’s

estimate is it includes both estimates of immigration and emigration for international

migration of the foreign born and migration between the US and Puerto Rico.4

The Census Bureau estimates foreign born immigration to the US using ACS

information on the reported residence of the foreign born population in the prior

year. Emigration of the foreign born from the US is estimated using a residual

method that ages forward the foreign born population in Census 2000 and compares

it to the expected population to the foreign born population estimated by the ACS.

State- and county-specific factors based on the foreign born population entering the

US within 5-years and with 10-years are used to distribute the US estimates of

immigration and emigration. Additional details of the procedures to estimate net

international migration are found in US Census Bureau (2010).

Table 13.3 illustrates the differences between the DHS, ACS, and Census

Bureau estimates of international migration for the US and San Diego County for

the period around 2009. The ACS and DHS estimates of total international migra-

tion are larger than the Census Bureau’s estimates for both San Diego County and

the United States. The ACS estimate is by far the highest of any source. It is double

Table 13.3 Alternative Estimates of International Migration, United States and San Diego

County, 2009

Dept. of Homeland Securitya

New

Arrivals

Adjustment

of Status Total ACSb
Censusc

Bureau

US 463,042 667,776 1,130,818 1,687,595 854,905

San Diego County 8,367 12,412 20,779 33,613 10,270
aLegal Permanent Residents, Fiscal Year 2009
bAll persons in 2009 whose previous residence one year prior was abroad
cNet international migration, 2008–2009

Sources: Department of Homeland Security

US Census Bureau, 2009 ACS

US Census Bureau, 2009 Vintage Population Estimates
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the Census Bureau’s estimate for the US and is more than triple its estimate for San

Diego County. The ACS estimate is also 49% higher than the DHS estimate for the

US and is 62% higher than the estimate for San Diego County. In both the US and

San Diego, approximately 59% of the legal permanent residents in 2009 represent

an adjustment of status and not a recent move. A large fraction of status adjustment

would impact the use of DHS data for annual estimates. By comparison, the Census

Bureau’s estimate for San Diego County is 900 persons (9%) less than the estimate

of net international migration for the same time period prepared by the State of

California (2010).

While these results are illustrative, they suggest the Census Bureau’s estimate

may be more suitable for population estimation than either the DHS or basic data

from the ACS. As noted above, the Census Bureau only provides an estimate of

the total net international migration. Demographic characteristics, if needed, can be

obtained from the ACS by combining the characteristics of foreign born immigrants

and foreign born population entering the US during the past 10 years. These

characteristics would be controlled to the Census Bureau total (see the Controlling

section later in this chapter). If one chooses to create their own estimates of

international migration using DHS, ACS, or other sources, we recommend assum-

ing an emigration rate of 20 percent of the immigration level (see Endnote 4) to

better approximate the net effect of international migration on population change.

13.2 Special Populations

A special population is a group of persons located in an area because of an

administrative or legislative action (Pittenger 1976: 205). Common types include

college students, prison inmates, residents of nursing homes, and military personal

and their dependents. Special populations complicate post-censal estimates because

their growth and decline are not determined by the same factors that affect change

in the general population; consequently, they often follow different growth trends.

Special populations often have different demographic characteristics as well.

For example, military personnel and college students are concentrated primarily in

the young adult ages, residents of nursing homes are concentrated primarily in the

older ages, and the prison population often has a high concentration of males and

minorities. These differences can have a substantial impact on the factors used to

estimate population.

Another confounding characteristic of special populations is that they often do

not age in place like other population groups. Instead, their age structure may

remain fairly stable over time. For example, a college town sees a large inflow of

people age 17-19 and a large outflow of people age 21-23 every year. Consequently,

a substantial proportion of the town’s young adult population replaces itself

repeatedly rather than aging in place.

Special populations do not cause any particular problems for population

estimates if they comprise only a small proportion of the total population or if
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their growth rates and demographic characteristics are similar to the rest of the

population. In these circumstances no special adjustments are needed. When special

populations follow different trends and account for a substantial proportion of the

total population, however, adjustments should be made.

Unfortunately, there is no rule of thumb defining “different” or “substantial.”

Consequently, the analyst must evaluate each situation separately, focusing on the

special population’s demographic composition, growth trends, components of

growth, and—perhaps most important—its share of total population. It is a good

bet that special populations will have a significant impact on estimates in areas

with large prisons, military installations, colleges, or universities. Nursing homes,

boarding schools, and mental institutions can also be important. The impact of special

populations is generally greater in small areas than in large areas. For example, a

prison may have little impact on the total population of a county, but may comprise

the most if not all of the population of a census tract as seen in Table 7.8.

Several steps can be followed to account for special populations when making

population estimates (see Figure 13.2). The first is to create the “regular” popula-

tion in the census data by subtracting the special population from the total

population. The second is to estimate the regular population, using the methods

described in earlier chapters. The third is to estimate the special population itself,

using one of the approaches described below. The final step is to add the estimate

of the special population to the estimate of the regular population.

How can special populations be estimated? One approach is to develop a compo-

nent model for the special population itself, using data and rates for the components

of change that pertain specifically to that population (Pittenger 1976: 205).

This approach will be useful if the special population accounts for a large proportion
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of the total population and if the necessary data are available. Data limitations often

make this approach impractical, especially for small areas. A second approach is to

use the special population and its characteristics from the last census. This approach

will be useful if the size and demographic composition of the special population has

been relatively stable over time and is expected to remain so in the post-censal

period. It will also be useful if the direction and magnitude of changes are

completely unpredictable between the last census and time the estimate is made.

Finally, estimates of special populations can be based on information collected from

the administrators of facilities such as colleges, prisons, or nursing homes.

Combinations of the various approaches can also be used, such as holding the

demographic composition of the special population constant while allowing for

changes in its total size.

Data availability is a difficult problem for the development of independent

estimates of special populations. County-level population and in-migration data

for some special population groups can be obtained from the ACS, using either

summary files or PUMS data. Data are available for persons residing in group

quarters facilities such as military barracks, prisons, and college dormitories, but

are not available for military dependents (i.e., spouses and children of military

personnel) and for college students not living in dormitories. Estimates for these

groups can be made using PUMS data that identify all households headed by

military personnel or students or if they are the partner of the head of household,

but these estimates may have considerable error. Since PUMS data are available

only for counties and subcounty areas with 100,000 residents or more, they cannot

be used for small areas.

It is also difficult to obtain mortality and fertility data specific to special

populations. In these instances, the analyst may simply have to make an educated

guess. Fortunately, the development of birth and death information specific to a

special population is generally unnecessary, either because the special population’s

contribution to local births and deaths is very small or because rates for the special

population are similar to rates for the population as a whole. The military popula-

tion (including dependents) may be an exception. Fertility rates for this group are

often higher than for the non-military population. Figure 13.3 illustrates these

differences in fertility behavior using child woman ratios (CWR) ages 0-4 for

the military and total population in San Diego County.

If the military population comprises a substantial portion of the total population,

it may be advisable to account separately for the fertility of this population. Birth

certificates in some counties report the military status of parents, providing an

excellent source of data on military births. In most counties, however, birth

certificates do not include this information. Another possibility is to obtain infor-

mation on births occurring in military hospitals, either directly from the hospital or

from birth certificates. Although useful, this information excludes data on births to

military families that did not occur in military hospitals. When complete data on

military births are available, the analyst can easily develop estimates of military

births and incorporate them directly into the estimation process.

How can estimates of military births be developed for places lacking these types

of data? One possibility is to use PUMS data from the most recent census or the ACS
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to calculate the number of children ages 0-4 for the military and total populations.

An adjustment factor can be developed by forming a ratio of the military children

to the all children. Estimates of military birth rates can then be made by applying

this adjustment factor to births reported for the entire population. Military birth rates

can be estimated from CWRs for the military and total populations. The ratio of

the military CWR to the total CWR applied to the age-specific birth rates (ASBRs)

for the entire population will yield an estimate of military ASBRs. This approach

assumes that the pattern of ASBRs is the same for military and non-military

populations.

Obtaining special population data is evenmore difficult for subcounty areas than it is

for counties. The decennial census and ACS provides subcounty data on total numbers

for some types of special populations, but generally does not provide data on their

demographic characteristics. One approach to dealing with this problem is to identify a

small area—such as a census tract or individual block—in which the entire population

belongs to the special population group. In instances like this, data defining the total

population also define the special population. Those data can then be used to estimate

the characteristics of similar special populations in nearby areas. For example, suppose

that estimates are to bemade for a census tract containing a prison. Suppose further that

two particular blocks within that census tract are identified as containing solely prison

inmates. The demographic characteristics of those two blocks can be used as an

estimate of the characteristics of the prison population for the entire census tract.

The presence of a special population in an area is a red flag warning the analyst

to pay special attention to the data used in the estimation model. If the special

population is large enough and differs significantly from the rest of the population

in terms of its demographic characteristics and growth rates, it should be accounted

for explicitly in the estimation model. Sometimes the necessary data are available

for special populations, sometimes they are not. When the necessary data are not
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directly available, the analyst may have to become particularly creative. Develop-

ing reasonable population estimates requires developing reasonable adjustments for

special populations.

We use San Diego County, California to illustrate the impact of a special

population (uniformed military) on population estimates by age. San Diego has

one of the largest concentrations of military personnel in the United States. In 2010,

the uniformed military personnel (89,270) accounted for 2.9% of the county’s total

population. This population is heavily male (91%) and is concentrated in ages 18-

29 (69.7%). Given their numbers and age distribution, the uniformed military

population is likely to have a substantial impact on the estimates by age for San

Diego County.

We developed two alternative sets of 2010 estimates for San Diego County, using

the 2000 census as the base. One set used a basic (i.e., unadjusted) cohort-component

model and the other used an adjusted model that separated uniformed military

personnel from the civilian population. In the basic model, net migration rates were

based on the total population. In the adjusted model, net migration rates were based

on the civilian population and were applied solely to that population. An independent
estimate was made for the uniformed military population, assuming no change from

the 2000 Census. Other than for the net migration rates, the births, survival rates, and

overall net migration total used in the two models were identical.

Table 13.4 shows projections of males from the basic and adjusted models. By

design the two projections of total population are identical. However, there are

Table 13.4 Alternative Estimates of the Male Population, San Diego County, 2010

Cohort Component Model Differencea

Age Group Basicb Adjustedc Number Percent

0-4 117,917 117,917 0 0.0%

5-9 114,425 114,437 �12 0.0%

10-14 102,586 102,649 �63 �0.1%

15-19 116,156 121,166 �5,010 �4.3%

20-24 123,614 146,576 �22,962 �18.6%

25-29 122,934 125,756 �2,822 �2.3%

30-34 126,908 112,335 14,573 11.5%

35-39 119,458 116,777 2,681 2.2%

40-44 116,810 113,110 3,700 3.2%

45-49 122,013 117,417 4,596 3.8%

50-54 110,673 107,817 2,856 2.6%

55-59 91,948 90,531 1,417 1.5%

60-64 75,851 75,371 480 0.6%

65-69 52,087 52,117 �30 �0.1%

70-74 37,627 37,638 �11 0.0%

75-79 29,149 29,075 74 0.3%

80-84 21,404 21,256 148 0.7%

85+ 19,914 19,533 381 1.9%

County Total 1,621,474 1,621,478 �4 0.0%
aBasic - adjusted
bNo adjustments for uniformed military population.
cSeparate projections for uniformed military and civilian populations.
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significant differences in some age groups. For ages 15-19, 20-24, and 25-29,

projections from the basic model are lower than those from the adjusted model

by 4%, 19%, and 2%. For ages 30-34 to 55-59 the projections from the basic model

overstated the population, with the largest divergence in ages 30-34 (12%).

Differences between the two models were relatively small for ages under 15 and

60 and above. The large differences in the age composition are due in part because

the basic model ages military population at the same rate as the civilian population,

while in the adjusted model the military age distribution is unchanged over the post-

censal period.

Net migration estimates by age also differ significantly between the two models

(see Figure 13.4). The adjusted model shows a smoother and more reasonable

pattern of net migration by age, when military migration is removed from the net

migration rates. The basic model shows a large, exaggerated net in-migration for

ages 15-24 and subsequent net outflow of in ages 25-29. Migration levels for the

two models are generally similar after age 35.

13.3 Controlling

Analysts making population estimates often face two distinct but related problems.

One is how to make estimates of demographic characteristics (e.g., age, sex, race)

match an independent estimate of total population. The second is how to make

estimates for a number of geographic areas add up to an independent estimate for a
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larger area (e.g., how to make the sum of census tract estimates match a county

estimate). Controlling is the term we use to describe this adjustment process.

There are several reasons for controlling estimates. One is the requirement

that a set of estimates be consistent with an “official” estimate that has been

developed, adopted, or sanctioned by a governmental body or some other

decision-making unit. It is also possible that controlling reduces the likelihood

of large estimate errors by imposing limits on post-censal changes. This advan-

tage will be especially important for estimates of small areas such as blocks or

block groups. Perhaps most important, controlling facilitates the construction of a

set of estimates that is consistent across demographic subgroups and geographic

areas. That is, estimates of demographic characteristics will sum to estimates

of total population and estimates for small geographic areas will sum to estimates

for larger geographic areas.

In this section we describe several methods for controlling estimates: 1) single

factor; 2) two-factor or plus-minus; and 3) multi- or N-dimensional. We illustrate

these methods using 2010 estimates of the population by ethnicity for Major

Statistical Areas (MSAs) within San Diego County (SANDAG 2011).5 In the first

illustration, we control the total population estimate by MSA to the total population

counted in the 2010 census for San Diego County. In the second illustration, we

control the 2010 estimate for each ethnic group in one MSA (Central) to the

controlled total population in the same MSA. In the third illustration, we control

the estimated population change between 2000 and 2010 for each ethnic group in

the Central MSA to the controlled total population change in same MSA. In our

final illustration, we control the 2010 estimates by ethnicity in each MSA to the

controlled total population in the MSA and to the population by ethnicity for San

Diego County counted the 2010 census.

13.3.1 Single Factor Method

The simplest method for controlling to an independent estimate (e.g. total popula-

tion) is to use a raking procedure based on a single adjustment factor. This factor is

computed by dividing the total from the independent estimate by the total from the

original estimate. The original estimate for each subgroup or geographic area is

then adjusted by multiplying each one by the adjustment factor. The equations for a

post-censal time point are:

FACTOR ¼ CNTLE=E; and

CEg or c ¼ Eg or c � FACTOR;

where E is the original estimate; CNTLE is the independent estimate of the total

(i.e., the control total); FACTOR is the adjustment factor; c is the characteristic

(e.g. race), and g is the geographic area (e.g. MSA); and CE is the controlled

estimate.
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Table 13.5 shows the original and controlled estimates for the population of

MSAs in 2010. The original (uncontrolled) estimate for San Diego County is

3,224,432 and the independent census control total is 3,095,314, yielding an

adjustment factor of 3,095,314 / 3,224,432 ¼ 0.959956. This factor represents the

proportionate adjustment required to match the control total. In this example,

the original population estimate in each MSA is adjusted downward by 4.1 percent.

The adjusted (controlled) estimate for each MSA is computed by multiplying the

original estimate by 0.959956. The sum of the adjusted MSAs is equal to the 2010

census count of 3,095,314.

In the previous example, estimates of geographic subunits were controlled to an

independent estimate of the total population for a large geographic. The same method

can be applied to adjust demographic subgroups. For example, estimates of males and

females could be based either on a different adjustment factor for each sex or on a single

adjustment factor for both sexes. If sexwas broken into two racial categories (black and

white), estimates for black males, black females, white males, and white females could

be based on four separate adjustment factors (one calculated specifically for each race-

sex group), on two separate adjustment factors (one for each race), or on a single

adjustment factor based on the controlled and uncontrolled projections of the total

population. Table 13.6 illustrates the single factor adjustment approach by adjusting

estimates by ethnic group to the controlled total population in the Central MSA from

Table 13.5.

The choice of the appropriate control group will depend on the availability and

reliability of independent estimates for various demographic groups. For demo-

graphic groups with similar growth characteristics, it is generally not necessary to

develop separate control totals and adjustment factors. The main thing to remember

when applying this method is that the sum of the demographic subgroups for which

adjustments are made must equal the control total, within rounding error, used in

computing the adjustment factor.

Table 13.5 The Single Factor Raking Method: Controlling to the Census Total Population, Major

Statistical Areas, San Diego County, 2010

2010 Estimate

MSA Originala Controlledb Differencec

Central 660978 634,510 �26,468

East County 23484 22,544 �940

East Suburban 500317 480,282 �20,035

North City 775654 744,594 �31,060

North County East 440472 422,834 �17,638

North County West 437224 419,716 �17,508

South Suburban 386303 370,834 �15,469

County 3,224,432 3,095,314 �129,118

Original County Estimate 3,224,432

2010 Census 3,095,313

Adjustment Factord 0.959956
aEstimates from the San Diego Association of Governments (2011)
bOriginal estimate * adjustment factor.
cControlled estimate - original estimate
d2010 Census / original County estimate
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13.3.2 Two Factor (Plus-Minus) Method

The first approach to controlling works well when the adjustments are small to

moderate. When adjustments are large, it may produce unsatisfactory results because

some demographic subgroups may be adjusted by a larger amount than warranted.

In these circumstances, amethod that focuses on population change over the estimation

period rather than the population in the post-censal year may produce better results.

The basic idea behind the second approach is simple: changes in total population

over the estimation period are calculated for both the independent estimate and the

original estimate. A ratio of the two projected changes is formed and applied to the

change originally projected for each demographic subgroup, producing a set of

adjusted changes. These adjusted changes are then added to the census population

each demographic subgroup to provide a controlled estimate for the post-censal year.

Although the basic idea behind this approach is simple, its implementation

becomes complicated when some subgroups are estimated to increase while others

are estimated to decrease. To illustrate this point, suppose that there are only two

subgroups. One is estimated to increase by 200 and the other is estimated to decline

by 75, implying a total population change of 125. Suppose further that the change

for the independent estimate (i.e., the control total) is 100. These numbers produce

an adjustment factor of 100/125 ¼ 0.80 Applying this factor to the changes

originally estimated for the two subgroups (200 and –75) produces adjusted

changes of 160 and –60. These numbers sum to 100, which is consistent with the

change in the independent estimate. However, the adjustment causes the subgroup

losing population to lose less than originally estimated. Given that estimated growth

for the entire population has been adjusted downward, this does not appear to be a

reasonable outcome.

Table 13.6 The Single Factor Raking Method: Controlling Ethnicity to the Total Population,

Central MSA, San Diego County, 2010

2010 Estimate

Ethnicty Originala Controlledb Differencec

Hispanic 270,364 259,537 �10,827

White non Hispanic 203,751 195,592 �8,159

Black non-Hispanic 72,273 69,379 �2,894

Asian & PI non-Hispanic 87,091 83,604 �3,487

Other non-Hispanicd 27,499 26,398 �1,101

Central MSA 660,978 634,510 �26,468

Original Central MSA Estimate 660,978

Controlled Central MSA Estimate 634,510

Adjustment Factore 0.959956
aEstimates from the San Diego Association of Governments (2011)
bOriginal estimate * adjustment factor
cControlled estimate - original estimate
dIncludes American Indian and Alaska Native alone, Native

Hawaiian and Other Pacific Islander alone and Other

Islander alone, and all race combinations
e2010 Census / original County estimate
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This example points to an important problem with using a simple raking

procedure for adjusting estimated population changes; when some demographic

subgroups are estimated to increase and others are estimated to decline, a raking

procedure based on a single adjustment factor causes both population gains and

losses to become larger. This is not a logical outcome. A better outcome would be

that adjustments for all demographic subgroups are positive when the overall

adjustment is upward and negative when the overall adjustment is downward.

This can be accomplished by using two separate adjustment factors—one for

subgroups that are estimated to grow and one for subgroups that are estimated to

decrease. This adjustment procedure is known as the plus-minus method (Judson

and Popoff 2004: 708-709). The equations for the plus-minus method for a post-

censal period are:

CNTLCHG ¼ CNTLE� Ecen

ECHGg or c ¼ Eg or c � Eg or c; cen

ABSUM ¼ jSECHGg or cj
SUM ¼ SECHGg or c

POSFACTOR ¼ ðABSUM þ ðCNTLCHG� SUMÞÞ=ABSUM
NEGFACTOR ¼ ðABSUM � ðCNTLCHG� SUMÞÞ=ABSUM

If ECHGg or c > 0; then CEg or c ¼ Eg or c; cen þ ðECHGg or c
� POSFACTORÞ

If ECHGg or c < 0; then CEg or c ¼ Eg or c; cen þ ðECHGg or c
� NEGFACTORÞ;

where CNTLE is the independent estimate of the total (i.e., the control total); E is

the estimation variable; CNTLCHG is the change between census point (cen) and

post-censal year for the independent estimate; ECHG is the change implied by the

original (uncontrolled) estimate for each demographic characteristic (c) or geo-

graphic area (g); ABSUM is the sum of the absolute values of uncontrolled changes;

SUM is the sum of the uncontrolled changes; POSFACTOR is the adjustment

factor for subgroups estimated to increase; NEGFACTOR is the adjustment factor

for subgroups estimated to decline; and CE is the controlled estimate of change.

As these equations show, the formulas for the positive and negative adjustment

factors are quite similar, differing only by a single sign in the numerator. In fact, if

projected changes for all demographic subgroups have the same sign, the plus-minus

method produces the same adjustment factor as the single-factor raking procedure.

It should also be noted that the sum of the two adjustment factors will always

equal two.

Table 13.7 shows the application of the plus-minus method to the ethnic group

estimates in the Central MSA. Since the overall adjustment lowers the estimated

change, the adjustment factors indicate that population changes for ethnic groups

losing population are increased (made smaller) by just over 32% (1.320331), while

population changes for ethnic groups gaining population are lowered by the same

percentage (0.679669). Comparing the controlled and uncontrolled columns, we

see that the adjustment process works as expected. The gains become smaller for

ethnic groups estimated to increase and the losses become larger for ethnic groups

258 13 Special Cases and Adjustments
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estimated to decline. Of course, if the adjustment increases the overall change, the

positive factor will exceed 1.0 and the negative factor will be less than 1.0.

One weakness of the plus-minus method occurs when the difference between the

control total (CNTLCHG) and the sum of the uncontrolled projections (SUM)

exceeds the sum of the absolute values of the uncontrolled projections (ABSUM).

Under this condition, one of the adjustment factors turns negative, reversing the signs

of the estimated changes. One solution to this problem is to transform the distribution

of estimated changes by adding or subtracting a fixed constant to each value before

computing the adjustment factors. The control total also must be modified by the total

amount added to or subtracted from the distribution. After the factors are applied, the

controlled values are transformed back to the original scale by the amount of the fixed

constant. It is relatively easy to find a transformation value that results in positive

values for both adjustment factors (e.g., SANDAG 1998).

The examples illustrate how to control estimates of characteristics or geographic

areas to an independent control total. In some instances, however, the application

may call for controlling to an independent estimate of migration rather than to an

independent estimate of total population. This may occur whenmigration (rather than

total population) is the variable of interest or when the focus is on the components

of change rather than population per se. The plus-minus method can be used to

adjust net migration for subgroups to an independent estimate of net migration. For

gross migration models, if there are separate controls for in- and out-migrants

the single factor method can be used. If only a net migration control is available,

out-migrants are treated as the group with negative changes and in-migrants as the

group with positive changes. Examples of controlling migration are found in Smith,

Tayman, and Swanson (2001: 253-258).

13.3.3 N-Dimensional Controlling

What if we wanted to make the MSA ethnic group estimates consistent with the

census ethnic group counts for San Diego County, but preserve the population totals

for each MSA? The methods discussed so far cannot handle this situation. A major

problem with single dimensional controlling is making estimates consistent across

one dimension makes them inconsistent across another. A procedure is needed that

can control across several dimensions simultaneously; this is sometimes called N-

dimensional controlling.

N-dimensional controlling is accomplished using the iterative proportions (IP)

method, which approximates a least squares solution in order to obtain convergence

in all N dimensions (Deming 1943: Chapter 7). This method can handle a wide

range of situations. Our illustration covers the situation most commonly encoun-

tered when controlling population estimates. There are three main conditions for

applying this version of the IP method. First, all estimates must be greater than or

equal to zero. Second, there must be totals of each controlling dimension (e.g.,

ethnic group and total population). If we are controlling MSA estimates to a county

260 13 Special Cases and Adjustments
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estimate, for example, this condition requires that we have total population controls

for each MSA and population controls for each ethnic group for the County. The

third condition is that the sum of all totals over all dimensions must be equal; for

example, the sum of the ethnic group totals for the county must be equal to the sum

of the total population controls for the MSAs.

For purposes of illustration we use two dimensions, one representing a demographic

characteristic (ethnic group) and one representing the total population of the seven

MSAs in San Diego County. The IP method begins with an initial matrix, whose body

contains the population estimates by ethnic group for each MSA. The row controls are

the census population by ethnic group for the larger geographic area (the County) and

the column controls are the total population for each MSA. These row and column

totals are often referred to as marginals. The goal of the IP method is to adjust the

matrix so that —when summed horizontally—MSA estimates equal County totals

for each ethnic group and—when summed vertically—MSA estimates by ethnic group

equal the population control for each MSA.

We achieve this goal by applying a single-factor raking procedure to the original

matrix, alternating sequentially between rows and columns. Starting with the rows,

we apply a row-specific raking factor to each cell in each row; we repeat this

process for all rows. After this step, the sum across the rows matches the County

population for each ethnic group. However, the sum down the columns (i.e., all

ethnic groups within an MSA) no longer matches the total population control for

that MSA. We then apply a column-specific raking factor to each cell in each

column. After this step, the sum of the cells in each column matches the total

population control of that column, but the sum of the cells in each row no longer

matches the County population in that ethnic group. Continuing this sequence of

adjustments we eventually arrive at a convergence in which cells in both rows and

columns sum to the marginal totals (except for small differences due to rounding).

The rate of convergence is relatively fast, typically requiring less than five cycles

of horizontal and vertical adjustments to achieve complete agreement in one

dimension and close agreement in the other. It does not matter whether one begins

the process by adjusting rows or columns; the results are essentially the same. One

can refine the IP method to handle both positive and negative adjustments by using

the plus-minus method described earlier to compute two separate adjustment

factors to use in the iterative process.

Table 13.8 shows the mechanics of the IP method. The first panel (“Beginning

Matrix, First Iteration”) shows the initial conditions and the elements needed to

apply the IP method. The main body of the matrix is contained in columns 2-8 and

the rows for five ethnic groups; the cells of this matrix show the uncontrolled

estimates produced by the San Diego Association of Governments (SANDAG

2011). Column 9 shows the “Sum of the MSA” estimates for each ethnic group

and Column 10 (Control) shows the row marginals (i.e., the census population by

ethnic group for the County). The row labeled “Sum of Ethnic Groups” shows

the uncontrolled estimates of total population for each MSA and the row labeled

“MSA Control” shows the column marginals (i.e., controlled MSA population from

Table 13.5).
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The population control totals are all lower, except for Hispanics, than the sum of

the uncontrolled projections. The two numbers in bold print (-129,119) are particu-

larly important. They represent the total amount of the adjustment required in the

rows and columns in order to make the projections consistent in both dimensions;

they must be equal for the IP method presented here to work properly. The row and

column adjustment factors are computed as the ratio of the control total to the sum

of the corresponding cells; they are computed separately for each ethnic group and

each MSA. All the adjustment factors in the first panel are below 1.0, except for the

Hispanics, indicating that downward adjustments are necessary.

The second panel of Table 13.8 (“Rows Adjusted, First Iteration”) shows the

population estimates by ethnic group for each MSA after we adjusted them to match

the row control totals. For example, the adjusted Hispanic population in the N. City

MSA is:

96;201�1:00412 ¼ 96;558:

After the first set of adjustments all the row adjustment factors are 1.0 (or very close

to 1.0), indicating convergence to the population by ethnic group for the County.

In addition, the total amount of adjustment now required is close to zero (-2 for

both the sum of ethnic groups and the sum of MSAs). However, for individual

MSAs the sum of ethnic groups is still inconsistent with the control totals. In fact,

four of the seven column adjustment factors have changed from values of less than

1.0 in Panel 1 to values slightly greater than 1.0 in Panel 2.

The third panel (“Columns Adjusted, First Iteration”) shows the population

projections by ethnic group for each MSA after we adjusted them to match the

column control totals. For example, the adjusted Hispanic population in the N. City

MSA is now:

96;558�1:007183 ¼ 97;292:

All of the column adjustment factors are now 1.0 (or very close to 1.0), indicating

convergence to the total population controls for each MSA, but the column

adjustments have made the sum of the ethnic group estimates for MSAs inconsis-

tent with the ethnic group controls for the County. However, the differences are

much smaller than they were before; which shows that substantial convergence to

both marginal totals has occurred after only one full iteration of the process.

The last panel of Table 13.8 (“Columns Adjusted, Fourth Iteration”) shows the

results after four full iterations. As is evident from this panel, the MSA estimates by

ethnic group have now converged (within rounding error) to both the census

population by ethnic group and for the County the total population control for

each MSA.

The IP method—and other controlling methods—may not always come as close to

the independent (control) projections as the examples shown here. Raising the level

of demographic detail and reducing the geographic scale can cause multiplicative

adjustment routines to lose their efficiency because the computations may not
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change the original values as much as is needed to produce complete convergence.

For example, integer values less than 5 will not change unless the adjustment is at

least 10% (e.g., 5 * 1.09 equals 5 after rounding to the nearest integer). If this occurs

with enough frequency, controlling falls short of its intended target.

To handle circumstances where multiplicative adjustments are not adequate,

alternative mathematical controlling strategies have been developed (e.g. SANDAG

1998). These involve probabilistic assignment routines and/or iterative schemes that

apply small additive adjustments (e.g. � 1) to the uncontrolled observations. Private

data vendors do some of the most innovative work in this area but—for obvious

reasons—are reluctant to reveal their trade secrets.

13.4 Conclusions

The data and techniques used in population estimation methods can usually be

described in a fairly simple and straightforward way (although a simple description

is a challenge for some of the complex extrapolation and structural models). Applying

these methods in the real world of messy data and complicated population dynamics,

however, is not always so simple and straightforward. Some data series contain

significant errors; others simply do not exist. Some population subgroups react

differently to the same events or follow different trends over the same period of time.

In this chapter we described several situations in which a straightforward appli-

cation of an estimation method might produce misleading results and larger esti-

mation errors. We also described a number of procedures for dealing with these

problems. We believe these procedures will help the analyst avoid some common

pitfalls and produce better estimates.

Our description of potential problems and solutions is not complete, of course. No

description could possibly cover all the circumstances that could potentially affect

state or local population change. The analyst must considermany possibilities and be

prepared to make adjustments not only for the situations we have described, but for

others as well. The development of a good basic model can never replace the need

for careful and creative thinking in the construction of population estimates.

Endnotes

1. Adapted from Chapter 11, “Special Adjustments”, in S. Smith, J. Tayman, and D. “Swanson.

Projecting State and Local Populations: Methodology and Analysis. New York, NY: Kluwer

Academic/Plenum Press. 2001.

2. Population estimates can also be impacted by census enumeration errors, particularly those for

age and other demographic characteristics. Nationally, census enumeration errors have

declined steadily since 1950, except for a small increase between 1980 and 1990 (Robinson,

West, and Adlakha 2002; US Census Bureau 2003). Census coverage rates vary considerably

from place to place and it is difficult to measure local enumeration errors (Pittenger 1976: 202).

To our knowledge, estimates of census enumeration errors are not available for states, counties,

or local areas; therefore, they are not usually taken into account when preparing population

estimates.
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3. Metropolitan and micropolitan statistical areas (metro and micro areas) are geographic entities

defined by the US Office of Management and Budget (OMB) for use by federal statistical

agencies in collecting, tabulating, and publishing federal statistics. The term "Core Based

Statistical Area" (CBSA) is a collective term for both metro and micro areas. A metro area

contains a core urban area of 50,000 or more population, and a micro area contains an urban

core of at least 10,000 (but less than 50,000) population. Each metro or micro area consists of

one or more counties and includes the counties containing the core urban area, as well as any

adjacent counties that have a high degree of social and economic integration (as measured by

commuting to work) with the urban core.

4. The number of emigrants was estimated to be around 200,000 or about 20% of the immigrants

in the late 1990s (Martin and Midgley 1999). Separating international and internal migration

allows one to make adjustments for the emigration component. Such adjustments are particu-

larly important for subnational areas that have received large numbers of immigrants, because

emigration from the US occurs primarily among the foreign born population (Edmonston and

Passel 1992).

5. San Diego County is divided into seven MSAs that conform to census tract boundaries. MSAs

were constructed so their boundaries remain constant over time, facilitating temporal analysis.

They range in size from 23,500 in the sparsely populated eastern half of the County to 775,700

in suburban areas near the center of the County. The average size of the MSAs, excluding

smallest, is 533,500.
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Chapter 14

Evaluating Estimates

Population estimates are used for a wide variety of purposes. Businesses use them

to develop customer profiles, identify market clusters, and determine optimal site

locations. Researchers use them to study development patterns, environmental

conditions, and social trends. State and local governments use them to monitor

growth trends, the impact of public policies and to estimate the need for schools,

roads, parks, public transportation, fire protection, and other goods and services.

Producers of estimates use this information to evaluate and improve estimation

methodologies. Given these widespread uses of population estimates it is essential

to evaluate their error. This chapter provides such an evaluation. We start with

a discussion of various statistics that can be used to measure estimate error.

We illustrate these measures using 2010 estimates for counties in Washington

State and then provide an overview of the empirical evidence, focusing on the

effects of differences in estimation methodology, population size, and population

growth rate. We conclude the first section of this chapter with a discussion on ways

to account for the uncertainty in population estimates.

We have now discussed several approaches to making population estimates that

include a variety of models, techniques, special adjustments, and types of data that

can be used to produce the desired estimates. Given all the possibilities, how does

one go about choosing the specific models, techniques, and data sources to use for

a particular set of estimates? Is there a single “best” approach, or at least some that

are better than others? Are some approaches better under some circumstances,

while others are better under other circumstances? How can we even go about

answering these questions? In the final section of this chapter we describe a number

of criteria that, in addition to estimation error and uncertainty, can be used to

evaluate population estimates. The criteria we believe are most important are the

provision of necessary detail, face validity, plausibility, costs of production,

timeliness, and ease of application and explanation.

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_14, # Springer Science+Business Media B.V. 2012
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14.1 Measuring Estimation Error1

14.1.1 Defining Estimation Error

We define estimate error (E) as the difference between the population estimate

(EST) for a particular geographic area in a particular post-censal year (t) and the

actual population (ACT) for the same area and year:

Et ¼ ESTt � ACTt:

For example, if the population of a city had been estimated to be 60,000 in 2010,

and the actual population turned out to be 54,000, the estimation error would be

6,000. If the population had been estimated at 48,000, the estimation error would

be -6,000. Although not often analyzed, estimation error can also be assessed over

the post-censal period by comparing the estimated and observed changes.

Estimation errors are often expressed as percent differences rather than as

absolute differences. This specification is useful when measures of relative error

rather than absolute error are needed. The use of percent errors is particularly

helpful when making comparisons across geographic areas because—without

adjustments for population size—errors for places with large populations would

dominate the effects of errors for places with small populations. An estimate error

of 1,500 has a very different meaning for a place with 2,500 residents than a place

with 250,000 residents:

Algebraic Percent Error ðALPEtÞ ¼ ½ðESTt � ACTtÞ =ACTt�� 100 ; and

Absolute Percent Error ðAPEtÞ ¼ j ½ðESTt � ACTtÞ =ACTt�� 100:

In the above example, if the population of a city had been estimated to be 48,000

in 2010 and the actual population turned out to be 54,000, the ALPE would be

(-6,000 / 54,000) * 100 ¼ -11.1% and the APE would be 11.1%. The ALPE

preserves the sign of the percent error; it has a theoretical minimum of -100%

and no upper bound, while the APE has a minimum at zero and no upper bound.

ALPE and APE represent the individual errors under study, and for a set of

geographic areas form the distribution of estimation errors.

Population counts from the decennial census are often used as proxies for the

“actual” population of an area. For post-censal or inter-censal years, estimates

produced by the Census Bureau, other federal agencies, state and local agencies,

or private companies are typically used (e.g., Rynerson and Tayman 1998; Swanson

and Tedrow 1984). These proxies are not perfect, of course. Census counts are

subject to errors that may be substantial for some places or demographic groups;

estimates are subject to even larger errors.2
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14.1.2 Error Measures

Population estimate error distributions can then be analyzed using a variety of

summary measures (e.g., Fonseca and Tayman 1989; Hodges, Wilcox, and

Poveromo 2002; Makridakis, Wheelwright and Hyndman 1998: 41-50; Swanson,

Tayman and Barr 2000; Tayman 1996). We will describe a number of measures,

including the ones most commonly used to evaluate population estimates. The first

two measures refer to the average error for a set of n individual estimates:

Mean Error ðMEÞ ¼ SEt = n; and

MeanAbsolute Error ðMAEÞ ¼ S j Et j = n:

The first measure takes account of the direction of errors; consequently, positive

and negative errors offset each other. Measures that account for the direction of the

error measure the bias of a set of estimates. In fact, positive and negative values

could offset each other completely, resulting in a ME of zero even when individual

errors are large. For example, three estimates with errors of 500, 700, and –1,200

would yield a ME of zero. The second measure ignores the direction of the error, so

positive and negative errors do not offset each other. Measures that ignore the

direction measure the accuracy (or precision) of a set of estimates. The mean

absolute error—sometimes called the mean absolute deviation—shows the average

difference between estimated and actual populations, regardless of whether the esti-

mates were too high or too low. Using the example cited above, estimates with errors

of 500, 700, and –1,200 would yield a MAE of 2,400.

These measures are based on the numerical differences between estimated and

actual populations; they do not account for differences in population size. The next

two measures account for population size by focusing on percent errors rather than

numeric errors:

MeanAlgebraic Percent Error ðMALPEÞ ¼ SALPEt =n; and

MeanAbsolute Percent Error ðMAPEÞ ¼ SAPEt = n:

The MALPE (often called the mean percent error) is a measure of bias in which

positive and negative values offset each other. A positive MALPE reflects a

tendency for estimates to be too high and a negative MALPE reflects a tendency

for estimates to be too low. The MALPE is fairly widely used as a measure of bias

(e.g. Rayer 2007; Smith and Sincich 1992; Tayman 1996). The percent of positive

errors (%POS) is also used as a measure of bias; a %POS equal to 50% would

suggest no bias, values greater than 50% would suggest a positive basis, and values

less than 50% would suggest a negative bias.
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The MAPE, on the other hand, is a measure of accuracy in which positive and

negative values do not offset each other. It shows the average percent difference

between estimated and actual populations, regardless of whether the individual

estimates were too high or too low. The MAPE is the most commonly used measure

of estimate accuracy (Swanson, Tayman and Barr 2000).

Sometimes it is important to use error measures that give more weight to large

errors than to small errors; for example, when a large error has a disproportionately

large impact on the cost of being wrong. In these situations, the following measures

can be used:

Mean Squared Error ðMSEÞ ¼ S ðEtÞ2 = n; and

RootMean Squared Error ðRMSEÞ ¼ ffip ½S ðEtÞ2 = n�:

Although these two measures are commonly used in general analyses of error

(e.g., Armstrong & Collopy 1992; Mahmoud 1987), they are less useful for

evaluations of population estimation errors because results for areas with large

populations swamp the results for areas with small populations. This problem can

be dealt with by using percent errors rather than absolute errors as in the Root

Mean Squared Percent Error (RMSPE) (e.g., Keilman 1990; Smith and Sincich

1992; Swanson and Tayman 1995):

RootMean Squared Percent Error ¼ ffip ½S ðPEtÞ2 = n�:

14.1.2.1 Robust Measures

Average measures of error have several desirable properties including reliability; ease

of use and interpretation; incorporating all of the information; and uniqueness for a set

of observations, but they have a major drawback. Arithmetic means are affected by

extreme values and in the presence of outliers likely either understate or overstate the

error represented by most of the observations in the error distribution, depending on

the skewness of the distribution. Averages based are the absolute percent error

distribution (APE) are particularly susceptible to outliers, because extreme values

typically occur only at the high end of the distribution, and the APE is prone to

asymmetry in practice (Emerson and Strenio 1983; Swanson and Tayman 1999). The

error distribution of the APEs is often right-skewed because it is bounded on the left by

zero and unbounded on the right. Therefore, the MAPE is susceptible to being pulled

upward and to overstating the error represented bymost of the observations. Swanson,

Tayman, and Bryan (2011) have estimated that for every 1% increase in skewness the

upward bias of the MAPE increases by approximately 0.7%.

Because of the shortcomings of the average in characterizing an asymmetrical

distribution, alternative measures of central tendency are often presented in con-

junction with the average. These alternatives are generally referred to as robust or
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resistant statistics because they focus on the main body of the data and attempt to

minimize the impact of outlying observations (Hampel, Ronchetti, Rousseeuw, and

Stahel 1986: 1-18). The median is one such robust statistic, as are the symmetrical

MAPE (SMAPE), trimmed mean, and M-estimators (e.g., Goodall 1983; Hodges,

Wilcox, and Poveromo 2002; Makridakis and Hibon 1995; Rosenberger and Gasko

1983; Swanson and Tayman 1999). A drawback of the median is it ignores most of

the information contained in the error distribution; it is only based on one or two

observations. The trimmed mean ignores the most extreme observations in both tails

of the error distribution based on a user-defined percentage, typically between five and

10 percent. Swanson and Tayman (1999) found that the SMAPE fell short as an

alternative to the MAPE, but that M-estimators provided a valid assessment of

accuracy. However, M-estimators lack the intuitive and interpretative qualities of

the MAPE and are unfamiliar to many users and practitioners.

Another alternative applies a non-linear transformation to the error distribution

of the APEs and then computes an average based on the transformed distribution

(Tayman, Swanson, and Barr 1999; Swanson, Tayman, and Bryan 2011). The

objective is to find a transformation that creates an error distribution less dominated

by the large outlying errors, incorporates all of the information about individual

errors, and does not overstate the error represented by most of the observations.

The geometric mean, based on the natural logarithm transformation, might be

useful when data are right-skewed:

GMAPE ¼ e½ð1=nÞ =S lnðxÞÞ�:

GMAPE is easy to calculate and interpret, but it has a major drawback; the

logarithmic transformation may not be the most appropriate. To address the ques-

tion of what transformation is most appropriate, Tayman, Swanson, and Barr (1999)

introduced the MAPE-R (MAPE-Rescaled). To change the shape of a distribution

efficiently and objectively, they use a standardized technique for generating a

single, nonlinear function to change the shape of the APE distribution. This

technique is based on the power transformation developed by Box and Cox (1964):

yðlÞ ¼ ðXl � lÞ=l where l 6¼ 0; or

yðlÞ ¼ lnðxÞwhen l ¼ 0;

where x is the original APE, y is the transformed APE, and l is the power

transformation constant. One determines l by finding its value that maximizes

the function:

mlðlÞ ¼ �ðn=2Þ � ln½ð1=nÞ
X

ðyi � yÞ2� þ ðl� 1Þ �
X

lnðxiÞ;

where, n is the sample size; y is the transformed observation; �y is the mean of the

transformed observations; x is the original observation (APE). ml(l) at a local

maximum provides the l that optimizes the probability that the transformed APE
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distribution will be symmetrical. Finding l does not guarantee symmetry, but it

represents the l most likely to yield a symmetrical distribution. The maximum

value of ml(l) is obtained by solving its function for different values of l between

the range of –2 and 2 and identifying the largest resulting Box-Cox value (Draper

and Smith 1981: 225-226).

The transformed APE distribution considers all errors, but assigns a propor-

tionate amount of influence to each case through normalization and not elimi-

nation; thereby, reducing the otherwise disproportionate effect of outliers on a

summary measure of error. The mean of the transformed APE distribution

(APE-T) is known as MAPE-T. The APE-T distribution has a disadvantage; the

Box-Cox transformation moves the observations into a unit of measurement that

is difficult to interpret (Emerson and Stoto 1983: 124). MAPE-T is expressed back

into the original scale of the observations by taking its inverse (Swanson and

Coleman 2007). The re-expression of MAPE-T is known as MAPE-R:

MAPE-R ¼ ½ðlÞðMAPE� T þ 1Þ�1=l:

14.1.2.2 Loss Functions

The loss function can be used to quantify low average relative errors and to detect

outlying errors (Bryan 1999). A total loss function represents a weighted combina-

tion of the numeric error and percent error for a given area or observation (i):

Li ¼ j Ea
i � PE1�a

i j;

where E is the numeric error, PE is the percent error, and a is the weight, which

ranges from 0 to 1. The average of the Li’s provides a summary measure of

accuracy, while outliers can be detected from the Li values themselves. Simplifying

the equation algebraically yields:

Li ¼ j ESTi � ACTi j =ACT1�a
i ;

where EST is the estimate and ACT is the observed value. Now the weight is only

applied to the observed value. The relative impacts of the numeric and percent

errors on the loss function are determined by the weight; the smaller the weight (a)
the greater the influence of the percent error, whose weight is 1-a. The weight can
be determined subjectively, but Bryan (1999) has tested and proposed the following

function for a based on the range of the observed values:

a ¼ InðACTmax � ACTminÞ= 25:

The loss function is not well-known to users and practitioners and lacks an intuitive

or easy way to judge and the magnitude of error. Insofar as the loss function is a

relative measure, it lacks generality. For example, loss functions could not be com-

pared for estimates for different time periods, geographic levels, or variables; it can
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only be interpreted in the context of a specific application. The determination of the

loss function weight lacks a firm empirical basis and defined set of guidelines. For

these reasons, loss functions have been rarely used to evaluate population estimates

14.1.2.3 Allocation Error

The summary measures discussed above are based on the error for a particular

geographic area. Another perspective views the misallocation of the estimates

across geographic space. This aspect of error is most pertinent for estimation

procedures that nest activities from a larger geographic area to smaller geographic

areas and use the larger area as a control. Population estimates are often used to

distribute resources in a zero-sum fashion making allocation error an important

component in measuring the performance of estimates. The Index of Misallocation

(IOM), also known as the Index of Dissimilarity (see Chapter 4), measures the

extent that the estimates misallocate activities over a set of geographic areas

(i) (Duncan, Cuzzort, and Duncan 1961: 83-90; Fonseca and Tayman 1989).

Swanson (1981) proposed using the term “Index of Misallocation” when it was

used specifically to evaluate this aspect of error for population estimates. Its

computation is the same as the Index of Disssimilarity:

IOM ¼ 0:5 � X
j ðESTi=ESTÞ � ðACTi=ACTÞ j � 100

h i
:

The IOM compares the percent distributions of an activity across geographic

space and measures the percentage that one distribution (i.e. based on the estimates)

would have to change to match the other (e.g. based on the census). The IOM ranges

from 0 to 100; 0 means no spatial disparity, and 100 means complete disparity

between the census and estimates across a set of geographic areas.

14.1.2.4 Relative Error

Estimation errors as measured above are often the main standard for judging the

adequacy or quality of a given set of estimates. Estimate error is an important, but it

not the only criterion upon which an estimate should be judged. Estimates can also

be judged according to their overall “utility,” or their value-added in improving the

quality of information upon which decisions are based.

To measure the utility, or potential gain in information from an estimate, measures

have been developed that compare the errors from a formal model to a no or low-cost

naı̈ve model, such as basing the estimate on the last census (e.g., Davis 1994;

Harper, Coleman, and Devine 2003). Theil’s U-statistic is used extensively to

evaluate economic time series models (Theil 1966). Theil’s U ranges from 0.0 to

1.0, where the upper bound indicates no improvement over the naive model.

The proportionate reduction in error (PRE) also shows the extent to which an estimate
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from a formal model (Method a) can improve on an estimate based on a naı̈ve model

(Method b) (Swanson and Tayman 1995):

PRE ¼ ððMethod b�Method aÞ=Method bÞ �100:

In using PRE, one develops a population estimate for the same area using two

different methods (a) and (b). The error arising from each methods is defined and

measured and the proportionate reduction in error found by the preceding formula.

What constitutes Method (a) and Method (b) relative to our discussion of utility?

Method (a) results from an estimation technique such as the censal-ratio method,

CMII, ratio-correlation and the like, while Method (b) is the estimate resulting from

data already at hand through an existing ‘count’, such as the last census. The estimate

resulting fromMethod (b) is called a ‘naive’ estimate in that it represents the theoreti-

cally (andmost often, the practical) maximum error for an estimate because it based on

no new knowledge. PRE determines the reduction of error found by using the estimate

fromMethod (a) over the error in the ‘naive’ estimate fromMethod (b). A PRE of zero

indicates the formal method does not improve on the naı̈ve method. Values between

0 and 100 represent the percentage gain of information from the formal method,

while negative vales indicate the formalmethod performsworse than the naı̈vemethod.

14.1.2.5 Error of the Change

All of the error measures discussed above focus on differences in population levels

in the post-censal year. This is the approach most commonly used to evaluate

population estimation accuracy. An alternative approach focuses on differences

between estimated and actual annual growth rates rather than differences between

estimated and actual population sizes. Keyfitz (1981), Long (1995), and Stoto

(1983) used this approach for evaluating national population projections and

Tayman (1996) used it for evaluating census tract projections, but this approach

can be applied to estimates as well. Seeing how well the estimated change matches

or predicts the observed change is a more rigorous test. A post-censal year estimate

includes both activities in the launch year and estimated change, which confounds

the measurement of the error caused solely by the estimation method.

Tayman (1996) suggests two approaches for examining the error in estimating

the percentage change. A parametric approach uses a regression model that predicts

the observed percentage change using the estimated percentage change as the inde-

pendent variable. A different, and perhaps more useful perspective, is to take a more

general look at this relationship using non-parametric cross-tabulation techniques.

The percentage change variables are defined by broad categories rather than by their

original interval form. These redefined percentage change variables are cross-classi-

fied, which facilitates analysis of the conditional relationships within different growth

rate categories. Of particular interest are the percentages shown in the diagonal of the

table, which represent the success of estimated percentage change category in

predicting the same observed percentage change category. If the estimated percentage

change category is a perfect predictor, each diagonal cell would contain 100%.
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14.1.2.6 Selection Criteria

Given the many different statistics that can be used to measure estimate accuracy

and bias, how can one go about choosing the most appropriate measure(s)? A

number of researchers have discussed criteria that might be used to select measures

of forecast error (e.g., Ahlburg 1995; Armstrong and Collopy 1992; Makridakis

1993), but these criteria are also applicable to measures of estimation error. Several

criteria are mentioned frequently. Error measures should be reliable; that is,

repeated applications should yield similar results. They should be valid, in the

sense that they actually measure what they purport to measure. They should

convey as much information about estimate errors as possible and should be easy

for the data user to understand. They should be sensitive to differences in error

distributions, but should not be unduly influenced by outliers.

The Committee on National Statistics (1980:10-12) defined four accuracy

criteria that ideally should be met by post-censal estimates: 1) low average error;

2) low average relative error (disregarding direction of the error; 3) few extreme

relative errors; and 4) absence of bias for subgroups. It is generally not possible to

produce a set of estimates that will minimize the four criteria simultaneously; the

Committee chose to focus on low average relative error and few extreme relative

errors, with some attention to low average error or bias.

TheMALPE provides a useful way to investigate the tendency for projections to be

too high or too low. While not as susceptible to outliers as the MAPE, analysis of

estimation bias should also include a robust measure of central tendency along with

the%positivemeasure.While themedian is often used because of its familiarity, other

robustmeasures can achieve the aim of themedianwhile preservingmost, if not all, of

the observations. For example, there are four M-estimators to choose from: 1) Huber,

2) Hampel, 3) Andrews’ Wave and 4) Tukey bi-weight. Each estimator varies in

their resistance to the impact of outlying observations and relies on a different

weighting algorithm. Although the four M-estimators generally yield similar results,

we prefer the Tukey bi-weight because it is most resistant over a wider range of

distributions and it is the most popular (Goodall 1983; Swanson and Tayman 1999).

The MAPE provides a reasonable measure for evaluating accuracy under a wide

variety of circumstances, but it oftenwill overstate the typical error in a set of estimates.

Like the MALPE, the MAPE should be accompanied by a robust summary measure of

central tendency.We believe that a measure based on a non-linear transformation of the

underlying APE distribution is the best robust measure to use. Further, we prefer

MAPE-R to GMAPE because of the flexibility in determining the optimal transforma-

tion parameter. As Swanson and Coleman (2007) show, GMAPE will always be

less than or equal to MAPE-R and thus GMAPE has a greater potential for overstating

the accuracy of most of the observations. A comparison of GMAPE and MAPE-R

would provide a useful test of the efficacy of alternative non-linear transformations for

creating an averagemeasure of accuracy that is not influenced by outlying observations.

Can valid conclusions be drawn when only a few error measures are analyzed?

We believe they can in most instances. Although different error measures provide

different perspectives on estimation accuracy and bias, error patterns appear to be

quite stable and highly correlated across a variety of error measures and the impact
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of factors such as population size and growth rate on error is generally about the

same regardless of which error measure is used (Davis 1994; Rayer 2007). Because

of these similarities, it is not necessary to analyze a wide variety of error measures

to achieve valid conclusions.

14.2 Evaluating Post-censal Population Estimates

14.2.1 Error at the Post-censal Time Point

To illustrate the various measures of error just discussed, we present an evaluation

of the 2010 population estimates for counties in Washington State. These estimates,

were developed from the ratio-correlation model described in Chapter 8, that was

calibrated over the 1990-2000 decade and used registered voters, registered

automobiles, and school enrollment in grades 1 through 8 as symptomatic indicators.

Table 14.1 shows the 2010 census, 2010 estimate, numeric error, and percent error by

county. The state estimate used as the control for the ratio-correlation model is quite

accurate; it is around 14,000 persons or 0.2% higher than the 2010 census. Douglas

and SpokaneCounties, highlighted in grey, have virtually identical numeric errors, but

the percent error for Spokane (0.9%) is almost 12 times lower than the percent error for

Douglas (10.6%). This comparison highlights the point made earlier about the advan-

tage of using percent errors rather than numeric errors when evaluating estimates for

areas with varying population sizes. A quick scan shows the outlying errors for

Douglas and Steven Counties and to a lesser extent for Wahkiakum County.

Table 14.2 presents summary measures of bias and accuracy, allocation error

IOM, and utility (PRE). These estimates show a slight upward bias. The mean error

indicates that on average these estimates are high by 358 persons, but this number is

difficult to interpret because it lacks the context of the population size. The

MALPE, which accounts for population size, indicates an average error of 0.7%.

The distribution of the numeric errors and ALPEs is positively skewed being

influenced by the three outlying errors, all of which are overestimates. Both the

median error (27) and median ALPE (0.0%) are noticeably lower than their average

counterparts. There is variation among the other robust measures of bias (based on

the percent errors), but they all suggest a slight upward bias to these estimates;

These county estimates have a high level of accuracy. Themean absolute error and

MAPE indicate that on average these estimates are within 2,921 persons and 3.2% of

the census count. The RMSPE is a percentage point higher than theMAPE, because it

gives more weight to the outlying observations. The right skewness in the distribution

of the absolute errors and APEs is evident; both the median absolute error (1,365) and

Median APE (2.5%) are noticeably lower than their counterparts. There is less

variation in the other robust measures of accuracy compared to robust measures of

bias, especially removing the trimmed mean and GMAPE. TheMAPE-R (2.4%) is in

line with the median APE and all M-estimators. The ratio of the MAPE to MAPE-R

suggests that theMAPE overstates the absolute percent error representative ofmost of

the observations by 33%.
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Table 14.1 Population Estimation Error, Washington State Counties, 2010a

2010 Error

Estimate Census Number Percent

Adams 19,550 18,728 822 4.39

Asotin 21,817 21,623 194 0.90

Benton 173,607 175,177 �1,570 �0.90

Chelan 72,480 72,453 27 0.04

Clallam 70,102 71,404 �1,302 �1.82

Clark 435,496 425,363 10,133 2.38

Columbia 4,291 4,078 213 5.22

Cowlitz 99,368 102,410 �3,042 �2.97

Douglas 42,493 38,431 4,062 10.57

Ferry 7,969 7,551 418 5.54

Franklin 73,403 78,163 �4,760 �6.09

Garfield 2,252 2,266 �14 �0.62

Grant 90,485 89,120 1,365 1.53

Gig Harbor 70,516 72,797 �2,281 �3.13

Island 77,546 78,506 �960 �1.22

Jefferson 28,011 29,872 �1,861 �6.23

King 1,921,450 1,931,249 �9,799 �0.51

Kitsap 245,011 251,133 �6,122 �2.44

Kittitas 39,708 40,915 �1,207 �2.95

Klickitat 20,545 20,318 227 1.12

Lewis 74,803 75,455 �652 �0.86

Lincoln 10,668 10,570 98 0.93

Mason 57,962 60,699 �2,737 �4.51

Okanogan 42,180 41,120 1,060 2.58

Pacific 21,780 20,920 860 4.11

Pend Oreille 12,490 13,001 �511 �3.93

Pierce 815,218 795,225 19,993 2.51

San Juan 16,184 15,769 415 2.63

Skagit 116,255 116,901 �646 �0.55

Skamania 11,230 11,066 164 1.48

Snohomish 708,639 713,335 �4,696 �0.66

Spokane 475,286 471,221 4,065 0.86

Stevens 48,519 43,531 4,988 11.46

Thurston 250,590 252,264 �1,674 �0.66

Wahkaikum 4,306 3,978 328 8.25

Walla Walla 61,677 58,781 2,896 4.93

Whatcom 197,493 201,140 �3,647 �1.81

Whitman 42,271 44,776 �2,505 �5.59

Yakima 254,850 243,231 11,619 4.78

Washington State 6,738,501 6,724,540 13,961 0.20
a Estimates based on the ratio-correlation model from Chapter 8
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These estimates have very little allocation error as evidenced by an IOM of 0.9%

and they also have a great deal of utility compared to two naı̈ve estimates of the

2010 population based on the 2000 census (see Table 14.2). The greatest gain in

information or knowledge is seen the bias where the ratio-correlation (formal)

model lowers the average bias (MALPE) by 94.1% and 69.4%. The formal model

also substantially lowers the average error (MAPE) by 75% and 50.4%.

Table 14.3 demonstrates the effect of the Box-Cox transformation and shows

selected characteristics of the original APE distribution and the transformed

APE distribution (APE-T). First, the APE-T distribution is symmetrical. Its average

and median are almost identical, the skewness coefficient is close to zero; and a

Table 14.2 Summary Measures of Estimation Error, Washington State Counties, 2010

Bias Accuracy

Mean Error 358.0 Mean Absolute Error 2,921.4

Median Error 27.0 Median Absolute Error 1,365.0

MALPE 0.7 MAPE 3.2

% Positive 51.3 RMSPE 4.2

Median ALPE 0.0 Median APE 2.5

Trimmed Mean (5%) 0.6 MAPE-R 2.4

M-Estimators GMAPE 2.1

Huber’s 0.4 Trimmed Mean (5%) 2.9

Tukey’s 0.1 M-Estimators

Hampel’s 0.5 Huber’s 2.7

Andrew’s Wave 0.1 Tukey’s 2.5

Hampel’s 2.7

Andrew’s Wave 2.5

Index of Misallocation 0.88

Proportionate Reduction in Error (PRE)

Naı̈ve 1a Naı̈ve 2b

MALPE 94.1 69.4

MAPE 75.0 50.4
aUse 2000 census
bAdjust 2000 census using the proprotionate change in the state population

Table 14.3 Characteristics

of the APE and APE-T

Distributions, Washington

State Counties, 2010

APE APE-T

Average 3.2 3.4

Median 2.5 3.5

Standard Deviation 2.7 1.2

Coeff. of Variation 85.9 36.3

Skewness 1.38a �0.03b

Minimum 0.04 0.32

Maximum 11.5 5.97

% Errors > 5% 20.5 7.7

% Errors >10% 7.7 0.0
aReject hypothesis of a symmetrical distribution
bAccept hypothesis of a symmetrical distribution
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statistical test (D’Agostino, Belanger, and D’Agostino 1990) further confirms a

symmetrical distribution. Second, the transformation reduces the variation of the

error distribution as indicated by the standard deviation and coefficient of variation.

The Box-Cox transformation not only compresses very large values, but also in-

creases values greater than one in skewed distributions where l was relatively small

(less than 0.4) (Swanson, Tayman and Barr 2000); the l for this dataset is 0.294.

Third, the percentage of relatively large errors is substantially lower in the distribution

of APE-Ts; there are no errors over 10 percent and there are two-thirds fewer errors

over 5 percent compared to the distribution of the APEs.

14.2.2 Error of the Change

How do these estimates fare when examining the error of the population change

between 2000 and 2010? As noted previously, the State estimate is 14,000 or

0.2% higher than the 2010 census, but the estimated change overstates the

observed change (830,419) by 1.7%. So while the method does a very good job

at capturing state population change, the differences in the percent errors show

that evaluating the change is a more rigorous standard of comparison. Some other

examples further illustrate this point. The largest county in the state (King) has

an ALPE (-0.5%), but the estimate understates the 2000-10 change by (-5.0%).

Gig harbor has an average error (ignoring the sign) of 3.1%, but the estimate

misses the observed change by 41%.

How well does the estimated percent change predict the observed percent change

(see Figure 14.1)? The estimated percent change is a good predictor of the observed

percent change. The regression equation has a moderately strong explained vari-

ance of 78% and the slope indicates that a one unit increase in the estimated change

results in a 0.9 unit increase in the observed change. Most notably, the estimates do

well in picking up extreme changes. For example, Garfield County declined by 6%

between the censuses, which is the same percentage decline indicated in the

estimates. On the other end of the growth continuum, Franklin, the fastest growing

County between the censuses (58.3%), is also the fastest growing county in the

estimates (48.8%).

Table 14.4 looks at the relationship between the observed and estimated

percent changes from a different (nonparametric) perspective. Along with the

cross-tabulation, the table contains several nonparametric statistics that measure

the strength of relationship (Siegel 1956: Chapter 9).3 The estimates are similarly

successful in predicting the observed growth rate in all categories, except the most

stable counties (5.0% to 9.9%); the observed growth rate category is correctly

identified in roughly 60% of the counties. For the most stable counties, the success

rate drops to 46% and this category exhibits the most homogeneity in the

percentages for adjacent categories. In general, the ratio-correlation model

estimates the growth rate pattern fairly well, especially in areas with the greatest

change.
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Fig. 14.1 The Relationship between the Observed and Estimated Percent Change, Washington

State Counties, 2000-2010

Table 14.4 Cross

Classification, Observed

and Estimated Change,

Washington State Counties,

2000–2010

Estimate Percent Change (Column Percents)

Observed

Percent Change <5.0% 5.0% – 9.9% 10.0% – 19.9% 20+%

<5.0% 60% 23% 7% 0%

5.0% – 9.9% 40% 46% 14% 14%

10.0% – 19.9% 0% 31% 57% 29%

20+% 0% 0% 21% 57%

100% 100% 100% 100%

Ordinal Measures of Association

Somers’d 0.590

Kendals tau-b 0.596

Kendals tau-c 0.572

Gamma 0.776
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14.3 Factors Affecting Estimation Error

To set the stage for the discussion of the factors affecting estimation error, we

identify the level of accuracy that can be expected from a set of population

estimates (see Table 14.5).4 We base these expectations on evaluations of 1980

and 1990 estimates of all counties and states conducted by the Census Bureau

(Davis 1994 and Long (1993); evaluations of 2000 estimates for all counties, states,

census tracts, and block groups conducted by a private data vendor (Hodges,

Wilcox, and Poveromo 2002), and an unpublished evaluation of 2010 estimates

for all states, counties, census tracts, and block groups conducted by the authors.

We also examined a myriad of evaluation studies, most of them pertaining to

counties in specific states, to validate the ranges shown in the table.

The expected MAPEs for a 10-year post-censal period range from 1% to 3% for

states; from 3% to 6% for counties; from 10% to 13% for census tracts, and from

14% to 19% for block groups. One would expect that the accuracy of population

estimates would be greater than the accuracy of population forecasts for a compa-

rable time period, because estimates have access to symptomatic data that track

population change. Based on the typical MAPEs for population forecasts for a

10-year horizon (Smith, Tayman, and Swanson 2001: 340), the MAPEs for popula-

tion estimates are roughly one-half the size of those for population forecasts for

states, counties, and census tracts. Estimation errors for any specific set of estimates

will be affected by factors such population size, population growth rate, and quality

of symptomatic indicators, of course, but we believe these numbers provide rea-

sonable approximation of the accuracy of estimates for these levels of geography.

14.3.1 Estimation Method

Estimation methods differ in terms of data requirements, mathematical structure,

degree of disaggregation, number of variables included, and modeling/statistical

skills required. Is there a difference is the performance between estimation

methods? A common perception among users of population projections is that

complex methods are more accurate than simpler methods, but the vast preponder-

ance of the evidence suggests otherwise (e.g., Smith and Tayman 2003; Smith,

Tayman, and Swanson 2001: 307-316). We believe a similar conclusion generally

applies for population estimation methods (e.g., Hoque 2010; Poole, Tarver, White,

and Gurley 1966; Murdock, Kelley, Jordon, Pecotte and Luedke 2006: 52-56).

Table 14.5 Typical

“MAPEs” for Population

Estimates by Geographic

Areaa

States 1% to 3%

Counties 3% to 6%

Census Tracts 10% to 13%

Block Groups 14% to 18%
a10-year post-censal period
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With the possible exception of extrapolation techniques, no single method that

incorporates symptomatic indicators consistently produces more accurate or less

biased estimates than any other method.5 Errors that occur in population estimates

are heavily influenced by the quality and availability of symptomatic indicators and

the care and rigor taken in implementation, rather than by the mathematics or

particular combination of variables contained in the model. For example, it has

been shown that in ratio-correlation models error in the symptomatic indicators

have the greatest impact on estimation error, while the contribution to error of

coefficient instability is minimal (Tayman and Schafer 1985).

There are relatively few comparative evaluations of alternative population estima-

tion methods, especially compared to rich literature for population and other project-

ions. Evaluations of population estimates typically focus on a single method,

alternative specifications of a single method, or the individual components of a

method. Below we summarize a few studies that have compared multiple methods.

Hoque (2010) evaluated 1990 estimates for counties and places in Texas for four

methods: component method II (CMII), ratio-correlation (RC), housing unit (HU),

and average of all methods. For counties, RC estimates were the most accurate with

a MAPE of 4.8%. CMII and the average had a similar level of accuracy (6.5% and

6.2%), and HU performed markedly poorer (10.3%). In terms of bias in the county

estimates, HU and the average had the least bias with MALPEs of 0.6%. The level

of bias was double and in the opposite direction for RC and CM II (-1.3%). For

places, HU (15.9%) out-performed CM II and the average, whose MAPEs were

19.8% and 18.4%. A similar ranking between the methods was seen for bias; the

MALPE ranged from 7.8% for HU to 9.1% for CM II.

Smith and Mandell (1984) evaluated 1980 estimates for counties in Florida

for six methods: HU; CM II; RC; Administrative Records (AD); and 2 averages

(HU CM II and RC), and (HU, CM II, RC, and AD). The AD method was the same

as the CM II, but used tax returns to estimate migration instead of school enroll-

ment. The degree of precision of all methods, except CM II, was similar; the MAPE

for CMII was 7.7% compared to 5.2% to 5.7% for the other methods. The lowest

MAPE was seen in the average of the four methods. All methods showed a marked

downward bias, but the tendency to under-estimate was lowest for the HU method,

with a MALPE of -2.9%; the MALPEs for the other methods ranged from -3.9%

for RC to -7.1% for CM II. The two average methods had the 4th and 5th highest

levels of bias, with MALPEs of -5.1% and -4.6%.

Zitter and Shyrock (1964) evaluated 1950 and 1960 estimates for states for ten

methods: CM I; CM II; RC; Composite (COM); Vital Rates (VR); linear trend;

geometric trend; and 3 averages (CM II and VR), (CMII and RC), and (COM and

RC). For the 1960 estimates, all of the symptomatic methods, except CM 1, were

more accurate than the two extrapolation methods. The average percent deviation

for the four symptomatic methods had a narrow range from 2.0% for CM II to

2.8% for RC. The three averages performed the best; their average percent

deviations ranged from 1.5% to 1.8%. The picture was similar for 1950, but with

some differences. First, the evaluation did not include the RC method. Second,

the variation of the error was wider for the three symptomatic methods; it ranged

from 2.5% for COM to 4.4% for VR. Finally, CM II and COM outperformed
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the average method, with average percent deviations of 3.1% and 2.5% compared to

3.5% for the average.

14.3.2 Components of the Housing Unit Method

The housing method is widely used to prepare population estimates. It relies on

post-censal estimates of housing stock and households, persons per household, and

group quarters population (GQs). Of all post-censal estimation methods, housing

unit method components have been the most thoroughly studied, due primarily to

the work of Smith and his colleagues at the University of Florida (Smith and Cody

1994, 2004, 2011). We present their most recent evaluation of 2010 estimates for

counties and places in Florida (Smith and Cody 2011).

Which component of the HUmethod can be estimatedmost accurately? Table 14.6

shows that for counties PPH estimates are somewhat more accurate than household

estimates, both considerably smaller than the error for GQs, with MAPEs of 2.0%,

2.5%, and 18.4%. There was a slight tendency for PPH estimates to be too high and

household estimates to be too low, but the GQs estimates have a substantial upward

bias. The PPH estimates are still the most accurate for subcounty areas, but now

the MAPE for households (7.8%) is almost double the MAPE for PPH (4.0%).

The large MAPE for GQs occurs because in many places the percent error is based

on very small numbers of people. There was a slight tendency for both PPH and

household estimates to be too high in subcounty areas. A number of studies have

also found errors for households to be greater than errors for PPH (Lowe, Myers,

and Weisser 1984; Smith and Cody 1994, 2004; Starsinic and Zitter 1968).

For both counties and subcounty areas, percentage errors for GQs are much

larger than percentage errors for households and PPH. Does this mean that GQs

error contribute the most to overall estimation error? Synthetic population

estimates based on a combination of estimated values and census values show

that GQs error contribute the least to population estimation error, because the GQs

population generally accounts for a very small proportion of total population. Even

with perfect estimates of PPH and GQs, errors in household estimates lead to the

largest population estimation errors, averaging 2.4% for counties and 7.6% for

Table 14.6 Estimation Errors by Component, Florida Counties and Subcounty Areas, 2010

Component MAPE MALPE %POS

% of absolute errors

<5% >10%

Counties Households 2.6 �1.0 40.3 95.5 0.0

PPH 2.0 1.1 71.6 97.0 0.0

GQ 18.4 13.6 80.6 20.9 52.2

Subcounty Areas Households 7.8 1.6 50.2 75.9 12.4

PPH 4.0 0.4 57.1 75.4 6.2

GQ 110.1 86.4 42.3 42.0 52.4

Source: Smith and Cody (2011)
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subcounty areas (ignoring the direction of error). With perfect estimates of

households and GQs, errors in PPH estimates would have created population esti-

mation errors averaging 1.9% for counties and 3.9% for subcounty areas (ignoring

the direction of errors).

14.3.3 Population Size

Many studies covering a variety of estimation methods and geographic areas have

found estimate accuracy to improve as population size increases (e.g., Hoque 2010;

Long 1993; Smith and Mandell 1984; Smith and Cody 2011). This relationship,

however, tends to weaken (or disappear completely) once a certain population size

has been reached. The threshold level at which the relationship begins to weaken

varies with the size of the geographic unit under consideration. For example, the

relationship begins to weaken at a smaller population size for estimates of counties

than for estimates of states. It appears that not only does population size matter, but

so does the relationship between population size and the size of the geographic area.

A clear relationship between estimation errors and population size is generally

found only for measures of accuracy (e.g., MAPE), not for measures of bias

(e.g., MALPE). A number of studies have found no consistent relationship between

population size and bias (e.g., Davis 1994; Harper, Coleman and Devine 2003;

Smith and Cody 2004). Although the evidence is not completely clear-cut, it

appears that population size has no predictable impact on the tendency for popula-

tion estimates to be too high or too low. Similar results regarding population size

and accuracy and bias have been found in evaluations of population forecasts

(Smith, Tayman, and Swanson 2001: 316-317).

Table 14.7 illustrates the relationship between population size and estimate errors.

It shows errors for 2010 estimates for subcounty areas in Florida (Smith and

Cody 2011). The direct relationship between accuracy and population size is clearly

Table 14.7 Population estimation error by population size, Florida Subcounty Areas, 2010

Size (2000) N MAPE MALPE %POS

% of absolute errors

<5% >10%

<250 23 37.4 1.5 47.8 8.7 69.6

250– 499 23 13.0 3.2 47.8 26.1 56.5

500–999 46 11.3 1.8 47.8 37.0 39.1

1,000–2,499 62 13.5 2.9 61.3 24.2 53.2

2,500–4,999 49 9.8 4.1 59.2 38.8 30.6

5,000–9,999 60 7.6 2.3 43.3 45.0 25.0

10,000 - 14,999 49 5.5 2.2 69.4 55.1 14.3

15,000 - 24,999 34 4.6 1.4 55.9 70.6 2.9

25,000 -49,999 50 4.2 0.6 56.0 70.0 6.0

50,000–99,999 31 2.6 0.5 54.8 83.9 0.0

100,000–199,999 24 3.6 1.2 54.2 75.0 4.2

200,000 + 17 3.3 �0.3 58.8 82.4 0.0

Source: Smith and Cody (2011)
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evident when looking at the MAPEs, which range from 37.4% for areas with less than

250 persons to 3.3% for areas over 200,000. The non-linear, "plateauing" pattern of

this relationship is also seen; the MAPE stabilizes at around 50,000 persons. In

general, as population size increases the percent of large errors over 10% moves in

the opposite direction. The inconsistent relationship between population size and bias

is also evident in the pattern of the MALPE, which supports the conclusion that

estimation bias is largely unaffected by differences in population size.

14.3.4 Population Growth Rate

Population growth rates have a strong impact on estimate errors. Estimate accuracy

is generally greatest for places with small but positive growth rates and decreases as

growth rates deviate in either a positive or negative direction from those low levels.

That is, there is a U-shaped relationship between estimate accuracy and population

growth rates (e.g. Hoque 2010; Smith and Cody 2004; Long 1993). The largest

errors are typically found for places that are either growing rapidly or declining

rapidly. Bias is also strongly affected by differences in population growth rates

(e.g., Hodges and Healy 1984; Smith and Cody 2004). Estimates tend to be too

high for places that are losing population and too low for places that are growing

rapidly. Similar results regarding population growth rate and accuracy have been

found in evaluations of population forecasts (Smith, Tayman, and Swanson 2001:

317-320), but, in terms of bias, forecasts tend to be too low for places losing

population and too high for places growing rapidly.

Table 14.8 illustrates the relationship between population growth rate and

estimate errors using 2010 population estimates for subcounty areas in Florida

(Smith and Cody 2011). The U-shaped relationship between population growth

rate and estimation accuracy is evident. By far, the largest MAPEs are in areas that

declined by more than 10% or increased by 100% or more. MAPEs are relatively

Table 14.8 Population estimation error by population growth rate, Florida Subcounty Areas,

2010

N MAPE MALPE %POS

% of absolute errors

<5% >10%

Growth Rate (2000–2010)

<�10% 40 29.0 28.8 97.8 2.5 92.5

�10.0%–0% 97 8.5 8.0 90.7 41.2 27.8

0.0%–4.9% 53 5.9 1.1 56.6 64.2 11.3

5.0%–9.9% 48 5.3 1.2 52.1 64.6 8.3

10.0%–14.9% 49 4.1 �0.5 44.9 65.3 6.1

15.0%–24.9% 57 4.2 �2.2 33.3 73.7 10.5

25.0%–49.9% 81 7.3 �4.2 35.8 45.7 23.5

50.0%–99.9% 27 8.3 �5.2 18.5 40.7 29.6

100 + % 16 30.9 �30.0 6.2 12.5 75.0

Source: Smith and Cody (2011)
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stable for growth rates between 5% and 25%. The expected pattern of estimation

bias and population growth rate is also seen. The highest level of upward bias

occurs where areas have declined by more than 10% and the highest level of

downward bias occurs where areas have increased by 100% or more. The positive

bias continues at decreasing levels until the growth reaches 10% and then turns

negative and then increases continually with increases in growth rates (without

regard of sign). That is, there is an inverse relationship between population growth

rate and estimate bias.

14.4 Accounting For Uncertainty

The almost universal way of obtaining information on population estimation error

is through the use of retrospective or post-hoc analysis using the census as the

standard of comparison. While these analyses provide a wealth of valuable infor-

mation about the historical performance of population estimation methods and

techniques, they furnish almost no information on the error inherent in the post-

censal estimates itself. The main issue is these tests use information not directly

relevant for the period for which the estimate is made (Ericksen 1973). The fact that

a ratio-correlation estimate had an average error of 2.3 percent in estimating the

2010 population tells little about its performance in estimating the 2015 population.

Post-hoc analyses can suggest which technique might or should produce the most

accurate estimate and provide some idea of the range of error inherent in the

estimate. However, neither of these statements can be made with any certainty or

precision because they are inferences based on a time period other than the post-

censal period in question (Espenshade and Tayman 1982).

Post-censal estimates are not free of error, but only a single value for the number

being estimated is usually presented. This deterministic approach gives the impres-

sion that the estimate corresponds to the “true” value of the number in question.

Nevertheless, the practice of indicating the direction and magnitude of error in

post-censal population statistics is virtually, if not, completely absent in statistical

offices (United Nations 1971: 6). Not much has changed in the 40 years since the U.N.

report. It is true that now the ACS provides 90% confidence limits for its estimates,

but the population and housing unit estimates developed by the Census Bureau used

as controls in the ACS are deterministic and treated as if they had no error.

It is useful to provide a direct measure of error and the distributional properties

of population estimates. When information is presented in this manner, one can

quickly see how much the estimate can be trusted (Keyfitz 1972). Users of post-

censal estimates are entitled to the warning constituted by a wide distribution.

A single point estimate tends to project a false sense of accuracy into the figures

because it implies an unreal deterministic interpretation. As we turn to this

discussion, keep in mind that a complementary discussion of this aspect of estima-

tion evaluation is provided in Chapter 8.
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14.4.1 Confidence Intervals

Efforts to account for uncertainty in post-censal estimates have focused on developing

intervals around a point estimate. These confidence intervals are accompanied by

an explicit indication of the probability that a given range will contain the estimated

population. Confidence intervals—strictly speaking—apply only to sample data and

not to other applications, such as the prediction intervals associated with regression

analysis. Prediction intervals focus on random values within the population distribu-

tion and not on any specific parameter, as is the often case with confidence intervals.

For ease of exposition, we use the term confidence intervals.

14.4.1.1 Sample Surveys

Confidence intervals for post-censal estimates can be based on surveys of house-

holds and populations using proper sampling techniques and statistical theory

(e.g., Cochran 1977; Hedayat and Sinha 1991; Kish 1965). As described in

Chapter 4, confidence intervals are constructed around a point estimate by adding

and subtracting the margin of error. The margin of error represents the standard

error multiplied by a factor indicating the desired probability or confidence level.

The size of standard error is a function of sample size, sampling design, and sample

variance. The ACS is the best example of confidence intervals for post-censal

estimates based on sample surveys. Swanson, Roe and Carlson (1992) and

Swanson, Carlson, Roe, andWilliams (1995) used sample surveys to put confidence

intervals around the total population and age group estimates in three small rural

Nevada communities (Armargosa Valley, Beatty, and Pahrump). Confidence

intervals based on sample surveys are expensive and not practical for most post-

censal estimation applications

14.4.1.2 Regression Methods

Regression models offer a much more practical alternative for developing confi-

dence intervals around post-censal population estimates, especially the widely

used ratio-correlation model. Confidence intervals could easily be integrated into

this framework at little or no cost and without requiring additional data collection.

The formulae for generating a confidence interval around the post-censal estimate

P for a sample size (n) and (k) independent variables are given by Kmenta (1971:

363-364):

Upper Limit ¼ Pþ ðtn�k;a=2
�SfÞ;

Lower Limit ¼ P� ðtn�k;a=2
�SfÞ;
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where (t) is the standard score representing the desired confidence level and Sf is the

standard error of the prediction.

Sf consists of two parts. One part is that the sample regression will not be the

same as the population regression due to sampling error. The second part is due to

random error in that the actual value of the point estimate will not lie on the

population regression line. As discussed in detail in Chapter 8, a ratio-correlation

model is typically based on all counties and not a sample of counties, so the

universe is represented by a super population; that is, the observed counties are a

representative sample of all possible observations that could have occurred

(Swanson and Beck 1994; D’Allesandro and Tayman 1980). Confidence intervals

from a statistical model are valid only to the extent that the assumptions underlying

that model are valid. The various assumptions and procedures for evaluating the

assumptions underlying regression model are found in most texts on regression

modeling (e.g., Kmenta 1971; Stock and Watson 2003; Belsley, Kuh, and Welsch

1980). In addition confidence intervals from a statistical model may be influenced

by errors in the base data, errors in specifying the model, and errors in estimating

the model’s parameters.

Swanson and Beck (1994) developed a ratio-correlation model for making short-

term (2-year) county population projections for Washington State. They compared

the 66% confidence intervals associated with this model to census counts of

Washington’s 39 counties in 1970, 1980, and 1990. They found the prediction

intervals to contain the 1970 census count in 30 counties (77%), the 1980 census

count in 24 counties (62%), and the 1990 census count in 31 counties (79%). These

results suggest that these 66% prediction intervals provided a reasonably accurate

view of short-term forecast uncertainty.

Espenshade and Tayman (1982) developed a time series regression model for

making post-censal estimates of the population by age in Florida. The model was

based on the concept of an age specific death rate reformulated to express the

post-censal estimate in terms of the death rate, number of deaths, and latest census

population. Regression models were used to estimate the post-censal death rate

and its confidence intervals, which were then translated into confidence intervals

for the total population and population by age. Population estimates produced for

the State of Florida fell within the 95% intervals in 15 of the 18 age groups,

suggesting the intervals provide a reasonable view of post-censal estimation

uncertainty. One limitation of this method is that it may be unsatisfactory for

substate areas because of a potential small numbers problem in the calculation of

age-specific death rates.

14.4.1.3 Other Approaches

Swanson (2008), based on earlier work by him and several colleagues, described a

procedure for generating confidence intervals for short-term forecasts based on the

cohort-component model. The formal measure of uncertainty takes the form of a

“mean square error confidence interval” (MSECI), which is designed to the capture
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the uncertainty due to random error in age-specific mortality rates and systematic

error (net undercount error in census counts underlying both the base populations).

The method was tested by doing an ex post facto comparison of the confidence

intervals generated for age-sex projections for Nye County, Nevada against the

2000 census population.

The evaluation revealed that the MSECI appear to be too narrow. In terms of a

66% MSECI, the census count was contained in only 2 of the 17 age groups for

males, no age group for females, and one age group for the total population. For the

total population, only the total population for males was contained with the 66%

MSECI. The census counts for more age groups were contained within the

95% MSECI, but there was still far less than would be expected if the intervals

provided a reasonable view of uncertainty. Nye County, Nevada is a very small

county with volatile rates of change, and Swanson (2008) suggests that the method

may perform better in large, less volatile populations.

A substantial amount of research over the last several decades has dealt with the

measurement and evaluation of uncertainty in population forecasts. Much of this

research has focused on the development and application of univariate ARIMA

time series models (e.g., Alho and Spencer 1997; Pflaumer 1992; Tayman, Smith

and Lin 2007). To our knowledge, ARIMA models have not been used to place

confidence intervals around post-censal estimates.

ARIMA models, discussed in Chapter 6 along with other complex extrapolation

methods, assume that the pattern (structure) of the data does not change over time,

that errors are normally distributed with a mean of zero and a constant variance, and

that errors are independent of each other (Makridakis, Hibon, Lusk, & Belhadjali

1987). The two main advantages of univariate time series models are: 1) they

require only historical data on the population of the area being estimated; and

2) their underlying mathematical and statistical properties provide a basis for

developing confidence intervals to accompany the point estimates (Box and Jenkins

1976: Chapter 5; Brockwell and Davis 2002: Chapter 6). Time series models

require a fairly long series of historical observations, can be difficult to apply,

and require a high level of statistical modeling expertise.

14.4.2 Illustrative Confidence Intervals

In this section, we present two examples of confidence intervals; one based on an

ARIMA model and the other based on a ratio-correlation model. Our first example

shows 95% confidence intervals for annual population estimates from 2001 to 2010

for Walla Walla County, Washington. These intervals are based on the ARIMA

(0,1,0) model developed in Chapter 6. The second example shows 66% confidence

intervals around 2010 population estimates for Washington State counties. These

intervals are based on the ratio-correlation model developed in Chapter 8.

Table 14.9 contains the point estimates and 95% confidence intervals for Walla

Walla County using 20-year (1980-2000) and 40-year (1960-2000) base periods.
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The half-width expresses the size of the confidence interval in percentage terms.

For example, a half-width of 2.7 means there is a 95% chance the post-censal estimate

will be within plus or minus 2.7% of 2001 point estimate. As expected, the half-

width increases with the length of post-censal period, reflecting the increased

uncertainty as one moves further away from the last census. These intervals suggest

that in 2010 the probability is 95% that the population of Walla Walla County will

range from 53,300 to 64,800. The 2010 census count of 58,781 falls inside of this

interval. The longer base period results in slightly narrower intervals; increases in

sample size, all things equal, will reduce the variance in post-censal estimates.

Each ARIMA model provides different confidence intervals (e.g., Cohen 1986;

Keilman, Pham, and Hetland 2002; Tayman, Smith, and Lin 2007). To illustrate, we

ran a second ARIMA (1,1,0) model adding a first order autoregressive term.

In 2010, the point estimate from the two models are close (58,740 and 58,980),

but the width of the interval is wider under the model with the autoregressive term

(13,300 vs. 11,400); a difference of 17%.

Table 14.10 contains 2010 point estimates, 66% confidence intervals, and the

2010 census counts for Washington State counties. The state totals represent the

bottom up sum of the counties. The half-widths (not shown) have a fairly narrow

Table 14.9 Population Estimates: 95% Confidence Intervals, Walla Walla County, 2001–2010a

20-Year Base Period (1980–2000)

Lower Limit Point Estimate Upper Limit Half Widthb

2001 54,052 55,252 57,082 2.7

2002 53,761 55,640 58,148 3.9

2003 53,595 56,027 59,088 4.9

2004 53,490 56,414 59,968 5.7

2005 53,420 56,801 60,813 6.5

2006 53,374 57,189 61,633 7.2

2007 53,346 57,576 62,436 7.9

2008 53,330 57,963 63,226 8.5

2009 53,324 58,350 64,006 9.2

2010 53,326 58,738 64,779 9.7

40-Year Base Period (1960–2000)

Lower Limit Point Estimate Upper Limit Half Widthb

2001 54,173 55,252 56,837 2.4

2002 53,923 55,576 57,736 3.4

2003 53,791 55,901 58,516 4.2

2004 53,719 56,226 59,238 4.9

2005 53,683 56,550 59,923 5.5

2006 53,672 56,875 60,583 6.1

2007 53,679 57,199 61,225 6.6

2008 53,701 57,524 61,853 7.1

2009 53,733 57,849 62,470 7.6

2010 53,775 58,173 63,078 8.0
aBased on an ARIMA (0, 1, 0) model
b (((Upper Limit - Lower Limit) / 2) / Point Estimate) * 100
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Table 14.10 Population Estimates: 66% Confidence Intervals, Washington State Counties, 2010a

2010

Census

Outside Interval

Lower Limit Point Estimate Upper Limit Lower Upper

Adams 19,223 20,006 20,790 18,728 X

Asotin 21,379 22,326 23,273 21,623

Benton 171,103 177,658 184,214 175,177

Chelan 71,078 74,172 77,265 72,453

Clallam 68,856 71,738 74,620 71,404

Clark 429,504 445,660 461,816 425,363 X

Columbia 4,203 4,391 4,579 4,078 X

Cowlitz 97,492 101,687 105,883 102,410

Douglas 41,645 43,484 45,324 38,431 X

Ferry 7,832 8,155 8,479 7,551 X

Franklin 72,086 75,116 78,146 78,163 X

Garfield 2,191 2,304 2,418 2,266

Grant 89,121 92,596 96,071 89,120 X

Gig Harbor 69,129 72,162 75,194 72,797

Island 76,105 79,356 82,607 78,506

Jefferson 27,450 28,665 29,879 29,872

King 1,886,466 1,966,293 2,046,121 1,931,249

Kitsap 240,308 250,729 261,151 251,133

Kittitas 39,129 40,634 42,140 40,915

Klickitat 20,154 21,024 21,894 20,318

Lewis 73,452 76,549 79,645 75,455

Lincoln 10,443 10,917 11,391 10,570

Mason 57,086 59,315 61,543 60,699

Okanogan 41,373 43,164 44,955 41,120 X

Pacific 21,341 22,288 23,236 20,920 X

Pend Oreille 12,253 12,781 13,309 13,001

Pierce 802,867 834,243 865,619 795,225 X

San Juan 15,932 16,562 17,191 15,769 X

Skagit 114,358 118,968 123,578 116,901

Skamania 11,053 11,492 11,932 11,066

Snohomish 698,084 725,177 752,271 713,335

Spokane 467,506 486,378 505,250 471,221

Stevens 47,729 49,651 51,573 43,531 X

Thurston 247,038 256,439 265,839 252,264

Wahkaikum 4,235 4,407 4,579 3,978 X

Walla Walla 60,606 63,116 65,626 58,781 X

Whatcom 194,600 202,102 209,603 201,140

Whitman 41,263 43,258 45,252 44,776

Yakima 250,615 260,797 270,980 243,231 X

Washington State 6,626,288 6,895,760 7,165,236 6,724,540

% Outside 38%
aBased on the ratio-correlation model from Chapter 8.
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range across counties, ranging from 3.6% to 4.9%. If the confidence intervals

portray a reasonably accurate view of uncertainty, the percent of counties where

the 2010 census is not contained in its interval should be close to the compliment of

the confidence level. For the county intervals, the 2010 census is not contained

within the intervals of 38% of the counties, close to the expected 34%. These

confidence intervals appear to provide a realistic view of the uncertainty in these

2010 population estimates generated from the ration correlation model.

14.5 Other Evaluation Criteria6

Forecast error and uncertainty are important criterion for evaluating population

estimates and their models. In this section we describe a number of other criteria

relevant to such an evaluation. We discuss criteria we believe are most important:

provision of necessary detail, face validity, plausibility, costs of production, timeli-

ness, and ease of application and explanation. After describing these criteria, we

consider how they must be balanced against each other when making choices

regarding the appropriate methodology to use in any given situation.

14.5.1 Provision of Necessary Detail

Perhaps the most fundamental criterion for evaluating estimates is whether they

provide the level of geographic and demographic detail required by the data user.

State estimates are of little use to someone needing county estimates. Estimates

of total population are of little use to someone needing estimates by age and sex.

Estimates for counties are of little use to someone needing estimates for school

districts. Many data users need population estimates for states and counties. These

needs can be met relatively easily because the geographic boundaries for states and

counties generally remain stable over time and many types of data are routinely

available at the state and county levels. In addition, the number of states and

counties is finite and relatively manageable; there are more than 3,100 counties

or county equivalents nationwide, with the largest numbers in Texas (254) and

Georgia (159). Most states have fewer than 100 counties or county equivalents.

For subcounty areas, however, the number of potential areas—and even the

ways in which those areas might be defined—is virtually endless. Possibilities

include cities, townships, census tracts, block groups, blocks, parcels, school

districts, traffic analysis zones, and many types of market or service areas. Estimates

that meet the needs for geographic detail for all (or almost all) data users would

have to be made at the block group or lower levels of geography. Those estimates

could then be aggregated to fit the geographic region required by each individual

data user. Such a process, of course, would be extremely expensive and fraught with

problems of data availability and reliability.
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The need for demographic detail also varies from user to user. Some require only

total population numbers while others require breakdowns by age, sex, race, and/or

ethnicity. Some need age data in single-year age groups; for others, five- or 10-year

age groups are sufficient. Some require estimates of specific population subgroups

such as college students, military personnel, seasonal residents, and persons with

disabilities. Others require estimates by income, education, occupation, poverty

status, or other socioeconomic and demographic characteristics. Again, the poten-

tial for variation in user needs is virtually limitless.

The needs of the largest number of potential data users can be met (at least

theoretically) by making estimates that are highly disaggregated by geographic area

and demographic characteristics. Armed with these building blocks, data users can

put together estimates that cover the specific geographic areas and demographic

characteristics they need. Greater degrees of disaggregation, however, require

greater data requirements, have lower data reliability, have higher the costs of

production, and have higher the expected degree of error for each detailed category.

These are strong incentives against the production of highly disaggregated estimates.

As a result, most producers of general-purpose estimates provide estimates that cover

only a limited number of geographic areas and demographic categories.

The most basic criterion for judging the potential usefulness of a set of popula-

tion estimates, then, is whether those estimates provide the level of geographic and

demographic detail needed for any particular purpose. If the estimates cannot at

least come close to meeting those requirements, they will not be very useful

regardless of how well they do with respect to the other evaluation criteria.

General-purpose estimates will be able to meet the needs of many data users for

many purposes, but some applications will require estimates created specifically for

the purposes at hand.

14.5.2 Face Validity and Plausibility

By face validity, we mean the extent to which an estimate uses the best methods for

a particular purpose, is based on reliable data, and accounts for relevant factors.

Because of the effects of population and geographic size, evaluating face validity is

considerably more complex and time-consuming for small areas (e.g., census tracts)

than for large areas (e.g., states). The face validity of a method depends primarily

on the purposes for which the estimates will be used. All the methods discussed in

this book can be used for estimates of total population. For estimates by age group,

the analyst must account for shifts in age structure over time; this implies the use of

some variant of the cohort-component method. For estimates of the components of

growth, the model must distinguish among the effects of fertility, mortality, and

migration. Estimates incorporating interactions between economic and demo-

graphic variables require the use of structural models. The face validity of a

particular model or technique cannot be generalized; rather, it is conditional upon

the specific purposes for which the estimates will be used.
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Face validity is also affected by the quality of the data used to create the

estimates. Although they are not perfect, data from the short form of the decennial

census are generally quite accurate, especially for larger geographic regions.

Sample data from the ACS are less accurate (especially for small areas), and are

subject to greater variations in their reliability. Vital statistics data are highly

accurate for states and counties, less accurate for subcounty areas, but vital events

data are generally more accurate than school enrollment and tax returns and data

for tracking changes in housing units, households, persons per households, and

occupancy rates.

The timeliness of input data may also affect face validity. Demographic data

vary considerably in terms of time lags and frequency of release. Birth and death

data are typically available close to the post-censal time point, but many symptom-

atic indicators lag one or more years behind. Face validity is also determined by the

extent to which the estimation methodology accounts for the impact of relevant

factors affecting population change, such as large special populations and interna-

tional migration. An important part of assessing the face validity of population

estimates, then, is evaluating the quality and timeliness of the input data and making

adjustments when necessary to correct for apparent errors and to account for

relevant factors.

Plausibility is closely related to face validity; in fact, the two may be thought of

as opposite sides of the same coin. Face validity focuses on the inputs into the

estimation process, whereas plausibility focuses on the outcomes. If an estimate is

not based on valid data and techniques, it is not likely to provide plausible or

reasonable results. Plausibility, of course, is a subjective concept. Just as beauty is

in the eye of the beholder, so too is plausibility. A trend that appears eminently

plausible to one observer may seem totally implausible to another.

Are the estimates consistent with current trends and expectations about change?

If not, what are the reasons for these differences? Have some special circumstances

been overlooked? Were there errors entering data or writing computer programs?

Answering questions like these provides one type of “plausibility check. Plausibil-

ity checks require a substantial investment of time and effort, especially for highly

disaggregate estimates, but have a potentially large pay-off. Given their subjective

nature, however, plausibility checks must be viewed as suggestive rather than

conclusive. They provide hints and clues, but cannot “prove” that one set of

estimates is better than another.

14.5.3 Costs of Production And Timeliness

The costs of production for a set of population estimates are determined primarily

by labor costs. A great deal of time must be spent considering all the relevant details

involved in producing a set of estimates; collecting, verifying, and cleaning up

the input data; putting together an estimation model; and evaluating the plausibility

of the results. Other costs (e.g., computer hardware and software, purchases of

proprietary data) are typically small in comparison.
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Very little research has focused on the costs of producing population projections.

Just how high are those costs and how do they vary by method, level of geographic

and demographic detail, and frequency of application? Logic and personal experi-

ence suggest that costs increase with the degree of methodological complexity, with

the level of geographic and demographic detail provided, and with the attention

paid to special populations and unique events. However, costs can be expected to

decline with the number of times a specific application is repeated; it takes more

time to produce a set of estimates for the first time than to repeat the process

additional times. Other things being equal, lower costs are preferable to higher

costs. Other things, however, are rarely equal. Trade-offs must be made between

costs of production and other attributes of population estimates. Assessing the costs

of production—and their relationship to other estimation attributes—is central to

the evaluation process

Timeliness is the amount of time needed to construct the estimates. This is

determined by the scope of the project and by the resources devoted to it. Produc-

tion time takes on particular importance when a set of customized estimates is

created for a specific client. The client (who may be someone within the same

organization as the analyst) may require that the estimates be completed within a

short (perhaps unreasonably short) period. In some circumstances, production time

is a major factor determining the choice of estimation methods. In terms of costs

and timeliness, for example, ratio-correlation estimates for a given set of counties

are likely to cost less and be produced more quickly than estimates based on

the housing unit method. Extrapolation methods are generally the least costly and

most timely method, while structural models are generally the most costly and least

timely method.

14.5.4 Ease of Application And Explanation

Ease of application is determined by the amount of time and the level of

expertise needed to collect, verify, and adjust the input data; develop an estima-

tion model; and generate the desired population estimates. This criterion will be

particularly important for analysts with limited training or expertise in the pro-

duction of population estimates or who face severe time or budget constraints.

At the present time, no widely available estimation software package can be

implemented quickly and easily. Instead, the analyst generally must develop a

set of computer algorithms specifically for the project at hand. We expand on this

point in Chapter 18.

Ease of explanation refers to the extent to which data users can be provided with

a clear description of the data sources and techniques used in producing the

estimates. For some data users, this criterion is irrelevant. They are interested

only in the estimates themselves, not in how they were produced. Other data

users, however, can truly evaluate (and properly use) a set of estimates only if
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they understand how those estimates were made. Indeed, some may have little or no

use for estimates based on unknown methods or “black box” models. For those data

users, the clearer and more complete the description of the methodology the more

valuable the estimates (Rainford & Masser 1987). For example, the housing unit

and component methods are easier to explain to users and require less sophisticated

statistical and modeling skills then ratio-correlation, structural models, and complex

trend extrapolation methods.

14.6 A Balancing Act

All the criteria discussed above are potentially important for choosing the data

and techniques that will be used in constructing a set of population estimates or

for evaluating a set produced by someone else. The relative importance of each

criterion, however, varies according to the purposes for which the projections

will be used.

The provision of necessary detail is essential for all purposes. If data for the

relevant geographic areas and demographic categories are not available, the

estimates clearly will not be very useful. Face validity, plausibility, and timeliness

would also seem to be of almost universal importance; exceptions might be when

estimates are used simply to illustrate the outcomes of various hypothetical

scenarios or to push a particular point of view. Ease of application and costs of

production generally do not matter to the data user, but are important to the

producer. In fact, these criteria may drive methodological decision making when

time is limited or budgets are tight. Ease of explanation is unimportant for some

data users, critical for others. Estimation accuracy may be the most important

criterion when estimates are used to guide decision making, but is irrelevant

when estimates are used for simulations or to push a particular agenda.

Choosing the relevant criteria for evaluating a set of estimates is clearly a

balancing act. Some criteria may be much more important than others and decisions

based on one criterion may be inconsistent with decisions based on another.

Choices must be made regarding which criteria are most important for a particular

set of estimates and—when they conflict with each other—which to rank ahead of

the other. An optimal estimation strategy can be chosen only after weighing the

relative importance of each of the evaluation criteria.

14.7 Conclusions

The first part of this chapter dealt with estimation error. To close this chapter

it may be helpful to summarize the empirical evidence regarding accuracy and

bias for population estimates. Estimate accuracy generally increases with
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population size, but tends to level off once a certain size threshold is reached.

Accuracy tends to be greatest for places with slow but positive growth rates and

tends to decline as growth rates deviate in either direction from those levels.

Estimation bias is unrelated to population size, but estimates tend to be too high

for places that are losing population and too low for places that are growing

rapidly. For estimates of total population no single model or technique is consis-

tently more accurate than any other. These results have been found in so many

circumstances that we believe they can be accepted as general characteristics of

population estimation errors.

The last part of the chapter dealt with additional criteria that can be used to

evaluate population estimates and their methods. Evaluating population estimates

is a two-step process. The first step is to choose the criteria upon which the

estimates will be evaluated. Potential criteria include the provision of necessary

detail, face validity, plausibility, costs of production, timeliness, ease of application

and explanation, and estimate error, utility, and uncertainty. The choice of criteria

will depend on the purposes for which the estimates will be used and the constraints

imposed on the analyst producing the estimates. For any given purpose some

criteria may be very important, some may be moderately important, and a few

may be completely unimportant.

The second step is to use these criteria to guide the selection of estimation

methods. Simple extrapolation methods are characterized by timeliness, ease of

application and explanation, low costs of production, and applicability to very small

areas; however, they cannot provide much demographic detail and do not take

into account post-censal symptomatic indicators. Complex extrapolation methods

share many of these attributes, but typically require more data and modeling

expertise and are harder to apply and explain. Component methods are much

more costly and less timely, but are capable of providing a rich array of demo-

graphic detail. Housing unit methods are also costly and less timely, but provide

additional information on housing and household characteristics and are applicable

to small geographic areas. Ratio-correlation models are relatively low cost, but

provide limited demographic detail and rank low on ease of explanation and

application. Structural models are the most data-intensive, time-consuming, and

costly, but are capable of providing a variety of inter-related estimates and offer the

greatest analytical usefulness.

Again, we are left with a balancing act. The importance of each criterion must be

weighed against the importance of all the others, and the characteristics of each

method must be weighed against the characteristics of all the other methods.

Typically, cost and timeliness must be traded off against richness of geographic

and demographic detail. The most fundamental task facing the analyst is to choose

the optimal bundle of characteristics based on the resources available and the

purposes for which the estimates will be used. This choice will guide the analyst

through the selection of estimation methods, the collection of input data, and all the

other steps of the estimation process.
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Endnotes

1. This section is adapted from Chapter 13 “Forecast Accuracy and Bias”, in S. Smith, J. Tayman,

and D. “Swanson. Projecting State and Local Populations: Methodology and Analysis. New

York, NY: Kluwer Academic/Plenum Press. 2001.

2. Enumeration errors can either raise or lower the error in population estimates, depending on

whether they reinforce or offset the differences between the actual and estimates populations.

As previously noted, to our knowledge, there is no information on the census enumeration

errors for states and local areas. Therefore, most empirical studies do not attempt to adjust for

enumeration error when evaluating population estimates; the notable exceptions being Judson,

Popoff, and Batutis (2002) and Murdock and Hoque (1995).

3. The cell sizes in this cross-tabulation are small so the results should be viewed in that context

(4 cells have zero observations, 5 cells have 1 or 2 observations; 5 cells have 3 or 4

observations; and 2 cells have 5 or more observations).

4. We purposely excluded estimates for places from Table 14.5 because of their great variability

in size. The Census Bureau conducted a study of the error in their 2000 estimates by place and

minor civil division (Harper, Coleman, and Devine 2003). That study showed an overall MAPE

for all places of 12.4%, similar to that for census tracks, with MAPEs ranging from 4.3% for

places with more than 100,000 persons to 35.1% for places with few than 100 persons.

5. Extrapolation techniques have been found to underperform most other estimation methods over

a 10-year post-censal period (Poole, Tarver, White and Gurley 1966:19; Zitter and Shyrock

1964), but extrapolation techniques have not been evaluated for shorter post-censal periods

where they may perform better.

6. This section is adapted from Chapter 12 “Evaluating Projections”, in S. Smith, J. Tayman, and

D. “Swanson. Projecting State and Local Populations: Methodology and Analysis. New York,

NY: Kluwer Academic/Plenum Press. 2001.

References

D’Agostino, R. B., Belanger, A., & D’Agostino, R., B., Jr. (1990). A suggestion for using powerful

and informative tests of normality. The American Statistician, 44(3), 316–321.
Ahlburg, D. A. (1995). Simple versus complex models: Evaluation, accuracy, and combining.

Mathematical Population Studies, 5, 281–290.
Alho, J., & Spencer, B. D. (1997). The practical specification of the expected error of population

forecasts. Journal of Official Statistics, 13, 203–225.
Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting

methods: Empirical comparisons. International Journal of Forecasting, 8, 69–80.
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential

data and sources of collinearity. New York: John Wiley & Sons.

Box, G. P., & Cox, D. (1964). An analysis of transformations. Journal of the Royal Statistical
Society, Series B, 26, 211–252.

Box, G. P., & Jenkins, G. (1976). Time series analysis: Forecasting and control. San Francisco:

Holden-Day.

Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting, Second
Edition. Dordrecht, Heidelberg, London, and New York: Springer.

Bryan, T. (1999). Small area population estimation technique using administrative records and
evaluation of results with loss functions and optimization criteria. Paper presented at the

Federal Committee on Statistical Methodology Research Conference, Washington, D.C

298 14 Evaluating Estimates

http://dx.doi.org/10.1007/978-90-481-8954-0_13
http://dx.doi.org/10.1007/978-90-481-8954-0_12


Cochran, W. G. (1977). Sampling techniques, Third Edition. New York: John Wiley & Sons.

Cohen, J. E. (1986). Population forecasts and confidence intervals for Sweden: A comparison of

model-based and empirical approaches. Demography, 23, 105–126.
Committee on National Statistics. (1980). Estimating population and income for small areas.

Washington, DC: National Academy Press.

D’Allesandro, F., & Tayman, J. (1980). Ridge regression for population estimation: Some insights

and clarification Staff Document No. 56. Olympia, WA: Office of Financial Management, State

of Washington.

Davis, S. T. (1994). Evaluation of post-censal county estimates for the 1980sWorking Paper No. 5.
Washington, DC: Population Division, US Bureau of the Census.

Draper, N., & Smith, H. (1981). Applied regression analysis, Second Edition. New York: John

Wiley & Sons.

Duncan, O. D., Cuzzort, R., & Duncan, B. (1961). Statistical geography: Problems in analyzing
areal data. Glencoe: Free Press.

Emerson, J. D., & Stoto, M. (1983). Transforming data. In D. C. Hoaglin, F. Mosteller &

J. W. Tukey (Eds.), Understanding Robust and Exploratory Data Analysis (pp. 97–128).

New York: John Wiley & Sons.

Emerson, J. D., & Strenio, J. (1983). Boxplots and batch comparisons. In D. C. Hoaglin,

F. Mosteller & J. W. Tukey (Eds.), Understanding Robust and Exploratory Data Analysis
(pp. 58–96). New York: John Wiley & Sons.

Ericksen, E. P. (1973). A method for combining sample survey data and symptomatic indicators to

obtain population estimates for local areas. Demography, 10(2), 137–160.
Ericksen, E. P. (1979). Defining criteria for evaluation local estimates Research Monograph

Series, Synthetic Estimates for Small Areas (Vol. No. 24). Washington, DC: US Department

of Health, Education and Welfare.

Espenshade, T. J., & Tayman, J. (1982). Confidence intervals for post-censal state population

estimates. Demography, 19(2), 191–210.
Fonseca, L., & Tayman, J. (1989). Post-censal estimates of household income distributions.

Demography, 26(1), 149–160.
Goodall, C. (1983). M-estimators of location: An outline of the theory. In D. C. Hoaglin,

F. Mosteller & J. W. Tukey (Eds.), Understanding Robust and Exploratory Data Analysis
(pp. 339–403). New York: John Wiley & Sons.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics:
The approach based on influence functions. New York: John Wiley & Sons.

Harper, G., Coleman, C., & Devine, J. (2003). Evaluation of 2000 subcounty population estimates

Working Paper Series No. 70. Washington, DC: Population Division, US Census Bureau.

Hedayat, A. S., & Sinha, B. K. (1991). Design and inference in finite population sampling.
New York: John Wiley & Sons.

Hodges, K., & Healy, M. K. (1984). A micro application of a modified housing unit method for
tract level population estimates. Paper presented at the annual meeting of the Population

Association of America, Minneapolis, MN.

Hodges, K., Wilcox, F., & Poveromo, A. (2002). An evaluation of small area estimates produced
by the private sector. Paper presented at the annual meeting of the Population Association of

America, Atlanta, Georgia.

Hoque, N. (2010) An Evaluation of Small Area Population Estimates Produced by Component

Method II, Ratio-correlation and Housing Unit Methods for 1990. The Open Demography
Journal, 3, 18–30.

Judson, D. H., Popoff, C. L., & Batutis, M. J. (2002). An evaluation of the accuracy of US Census

Bureau county population estimates. Statistics in Transition, 5(2), 205–235.
Keilman, N., Pham, P. Q., & Hetland, A. (2002). Why population forecasts should be

probabilistic-Illustrated by the case of Norway. Demographic Research, 6, 409–453.
Keilman, N. W. (1990). Uncertainty in national population forecasting. Amsterdam: Swets and

Zeitlinger.

References 299



Keyfitz, N. (1972). On future population. Journal of the American Statistical Association, 67,
347–363.

Keyfitz, N. (1981). The limits to population forecasting. Population and Development Review, 7,
579–593.

Kish, L. (1965). Survey Sampling. New York: John Wiley & Sons.

Kmenta, J. (1971). Elements of Econometrics. New York: Macmillan Publishing Co.

Long, J. F. (1993). Post-censal population estimates: States, counties, and places Working Paper
No. 3. Washington, DC: Population Division, US Bureau of the Census.

Long, J. F. (1995). Complexity, accuracy, and utility of official population projections.Mathemat-
ical Population Studies, 5, 203–216.

Lowe, T. J., Myers, W. R., &Weisser, L. M. (1984). A special consideration in improving housing
unit estimates: The interaction effect. Paper presented at the annual meeting of Population

Association of America, Minneapolis, MN.

Mahmoud, E. (1987). The evaluation of forecasts. In S. G. Makridakis & S. C. Wheelwright (Eds.),

The Handbook of Forecasting (pp. 504–522). New York: John Wiley & Sons.

Makridakis, S. G. (1993). Accuracy measures: Theoretical and practical concerns. International
Journal of Forecasting, 9, 527–529.

Makridakis, S. G., Hibon, M., Lusk, E., & Belhadjali, M. (1987). Confidence intervals: An

empirical investigation of the series in the M-competition. International Journal of
Forecasting, 3, 489–508.

Makridakis, S. G., & HibonM. (1995). Forecasting accuracy (or error) measures INSEADWorking
Paper Series 95/18/TM. Fontainebleau, France: INSEAD.

Makridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting methods and
applications, Third Edition. New York: John Wiley & Sons.

Murdock, S. H., & Hoque, M. N. (1995). The effect of undercount on the accuracy of small-area

population estimates: Implications for the use of administrative data for improving population

enumeration. Population Research and Policy Review, 14, 251–271.
Murdock, S. H., Kelley, C., Jordan, J., Pecotte, B., & Luedke, A. (2006). Demographics: A guide

to methods and sources of data for demographic analysis in the media, business, and govern-
ment. Boulder: Paradigm Publishers.

Pflaumer, P. (1992). Forecasting US population totals with the Box-Jenkins approach. Interna-
tional Journal of Forecasting, 8, 329–338.

Poole, R. W., Tarver, J. D., White, D., & Gurley, W. R. (1966). An evaluation of alternative

techniques for estimating county population in a six-state area Economic Research Series 3.
Stillwater, OK: College of Business, Oklahoma State University.

Rainford, P., & Masser, I. (1987). Population forecasting and urban planning practice. Environ-
mental and Planning A, 19, 1463–1475.

Rayer, S. (2007). Population forecast accuracy: does the choice of summary measure of error

matter? Population Research and Policy Review, 26, 163–184.
Rosenberger, J. L., & Gasko, M. (1983). Comparing location estimators: Trimmed means, medians

and trimean. In D. C. Hoaglin, F. Mosteller & J. W. Tukey (Eds.), Understanding Robust and
Exploratory Data Analysis (pp. 297–337). New York: John Wiley & Sons.

Rynerson, C., & Tayman, J. (1998). An Evaluation of Address-Level Administrative Records Used
to Prepare Small Area Population Estimates. Paper presented at the annual meeting of the

Population Association of America, Chicago, IL.

Siegel, J. S. (2002). Applied demography: Applications in business, government, law, and public
policy. San Diego: Academic Press.

Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.

Smith, S. K., & Cody, S. (1994). Evaluating the housing unit method: A case study of 1990

population estimates in Florida. Journal of the American Planning Association, 60, 209–221.
Smith, S. K., & Cody, S. (2004). An evaluation of population estimates in Florida: April 1, 2000.

Population Research and Policy Review, 23, 1–24.

300 14 Evaluating Estimates



Smith, S. K., & Cody, S. (2011). An evaluation of population estimates in Florida, 2011 Special
Population Reports No. 8. Gainesville, FL: Bureau of Economic and Business Research.

Smith, S. K., & Mandell, M. (1984). A comparison of population estimation methods: Housing

unit versus component II, ratio correlation and administrative records. Journal of the American
Statistical Association, 79(386), 282–289.

Smith, S. K., & Sincich, T. (1992). Evaluating the forecast accuracy and bias of alternative

population projections for states. International Journal of Forecasting, 8, 495–508.
Smith, S. K., & Tayman, J. (2003). An evaluation of population projections by age. Demography,

40(4), 741–757.
Smith, S. K., Tayman, J., & Swanson, D. A. (2001). State and local population projections:

Methodology and analysis. New York: Kluwer Academic/Plenum Publishers.

Starsinic, D. E., & Zitter, M. (1968). Accuracy of the housing unit method in preparing population

estimates for cities. Demography, 5, 474–484.
Stock, J. H., & Watson, M. W. (2003). Introduction of Econometrics. Boston: Addison Wesley.

Stoto, M. (1983). The accuracy of population projections. Journal of the American Statistical
Association, 78, 13–20.

Swanson, D. A. (1981). Allocation accuracy in population estimates: An overlooked criterion with

fiscal implications Small Area Population Estimates and Their Accuracy, Series GE-41, No. 7
(pp. 13-21). Washington, DC: US Bureau of the Census.

Swanson, D. A. (2008). Measuring Uncertainty in population data generated by the cohort

component method. In S. H. Murdock & D. A. Swanson (Eds.), Applied Demography in the
21st Century. Dordrecht, Heidelberg, London, and New York: Springer.

Swanson, D. A., & Beck, D. M. (1994). A new short-term county population projection method.

Journal of Economic and Social Measurement, 20, 25–50.
Swanson, D. A., & Coleman, C. (2007). On theMAPE-R as ameasure of cross-sectional estimation

and forecast accuracy. Journal of Economic and Social Measurement, 32(4), 219–233.
Swanson, D. A., & Tayman, J. (1995). Between a rock and a hard place: The evaluation of

demographic forecasts. Population Research and Policy Review, 14(2), 233–249.
Swanson, D. A., & Tayman, J. (1999). On the validity of the MAPE as a measure of population

forecast accuracy. Population Research and Policy Review, 18(4), 299–322.
Swanson, D. A., Roe, L., & Carlson, J. (1992). A variation of the housing unit method for

estimating the population of small, rural Areas: A case study of the local expert procedure.

Survey Methodology, 18(1), 155–163.
Swanson, D. A., Carlson, J., Roe, L. & Williams, C. (1995). Estimating the population of rural

communities by age and gender: A case study of the local expert procedure. Small Town
May-June, 14–21.

Swanson, D. A., Tayman, J., & Barr, C. F. (2000). A note on the measurement of accuracy for

subnational demographic estimates. Demography, 37(2), 193–202.
Swanson, D. A., Tayman, J., & Bryan, T. (2011). MAPE-R: A rescaled measure or accuracy for

cross-sectional, sub-national forecasts. Journal of Population Research, 28, 225–243.
Swanson, D. A., & Tedrow, L. M. (1984). Improving the measurement of temporal change in

regression models used for county population estimates. Demography, 21(3), 373–381.
Tayman, J. (1996). The accuracy of small area population forecasts based on a spatial interaction

modeling system. Journal of the American Planning Association, 62, 85–98.
Tayman, J., & Schafer, E. (1985). The impact of coefficient drift and measurement error in the

accuracy of ratio correlation population estimates. The Review of Regional Studies, 15(2),
3–11.

Tayman, J., Smith, S. K., & Lin, J. (2007). Precision, bias and uncertainty for state population

forecasts: An exploratory analysis of time series methods. Population Research and Policy
Review, 26, 347–369.

Tayman, J., Swanson, D. A., & Barr, C. F. (1999). In search of the idea measure of accuracy for

subnational demographic forecasts. Population Research and Policy Review, 18(5), 387–409.
Theil, H. (1966). Applied economic forecasting. Amsterdam: North Holland Publishing Co.

References 301



United Nations. (1971). Methods of estimating total population for current dates ST/SOA/Series
A/No. 10. New York: Population Division, United Nations Department of Social Affairs.

Voss, P. R., Palit, C. D., Kale, B. D., & Krebs, H. C. (1981). Forecasting state population using

ARIMA time series models. Madison, WI: Applied Population Laboratory, University of

Wisconsin.

Zitter, M., & Shyrock, H. S. (1964). Accuracy of methods for preparing post-censal estimates for

states and local areas. Demography, 1(1), 227–241.

302 14 Evaluating Estimates



Chapter 15

Guidelines for Developing
and Presenting Estimates

In assembling our guidelines, we examined ideas in the area of population estimation

and also in two areas related to population estimation: (1) sample (statistical)

surveys; and (2) population forecasting. In regard to the two related fields, we

found ideas that can be applied directly as guidelines for developing and presenting

estimates and others that can be easily adapted for this purpose. While, as this book

attests, there are substantial areas of overlap among sample surveys, population

forecasting, and population estimation, there are important distinctions. And these

distinctions lead to different guidelines.

In the area of population estimation, Herman Habermann (2006) describes

principles for the US Census Bureau’s estimates and projections programs that

we find particularly useful in constructing guidelines for the development of

population estimates. In regard to sample surveys, we found guidelines issued

by the US Office of Management and Budget (2006) that were as detailed and

specific as any we had encountered. From the field of population projections

we found useful ideas in Habermann (2006), Pittenger (1977) and Smith et al.

(2001: 343-360).

Common to all three fields is the idea of error assessment, which suggests that

something about error should be contained in guidelines for population estimates.

Some methods of population estimation, moreover, share a common inferential

framework with sample surveys that renders error assessments very similar. For

example, Espenshade and Tayman (1982), Swanson (1989), Roe et al. (1992), and

Swanson et al. (1995) have shown how meaningful confidence intervals can be

constructed around several different methods used to generate population estimates.

It also is the case that some estimation methods are not grounded in the tools of

inferential statistics and, as such, have more in common with the more limited

assessment framework of forecast error than they do with the framework for sample

surveys. So, considering the clear-cut and rigorous standards that can be applied to

sample surveys (US OMB 2006), guidelines for population estimates will have

generally more in common with the guidelines for population forecasts than with

sample surveys. This does not demean the guidelines available for population

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,
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forecasting. It simply recognizes the many differences between a sample survey

and a forecast.

With this in mind, we note in regard to developing population projections,

Smith, Tayman, and Swanson (2001: 343) observe that guidelines will not solve

every problem that may be encountered. Changes in data collection procedures and

definitions are one of the common problems encountered that are difficult to deal

with under existing guidelines and procedures. As an example, from 1999 to 2005

the US Census Bureau used annual Medicare enrollment data to estimate the annual

net migration of the population aged 65 years and over by county. Because of data

consistency problems in the post-2005 Medicare data, Census Bureau now projects

the number of Medicare enrollees as of July 1 for each county from 2006 to 2008

based on prior trends in Medicare enrollment (US Census Bureau 2010: A2-A3).

Considering the Medicare data example and many other instances where unfore-

seen circumstances can arise, we nonetheless believe that guidelines for all their

limitations are useful.

Although the term “transparency” is not used by Habermann (2006), Pittenger

(1977), Smith et al. (2001), and US Office of Management and Budget (2006), it is

clear from reading these materials that a traceable trail of documentation is deemed

highly desirable. Thus, we believe transparency should be integral to guideless for

developing population estimates.

We also believe that the observations made by Swanson and Tayman (1995) in

regard to the “irony of forecasting,” are largely applicable to estimation. First, as

the case with a population forecast, it is virtually impossible to produce an estimate

that is without error, yet estimates continue to be done. Second, as identified by

Swanson and Tayman (1995) in regard to forecasting, the error expectations among

demographers depend mostly on the size of the population and the length forecast

horizon. With only a slight wording change, we believe that this statement applies

to estimates: The error expectations among demographers in regard to estimates

depend mostly on the size of the population and the “estimation horizon.” That is,

the length of time between the estimate and the nearest census(es) used as a basis

for the estimate. It also is worth noting here that it also is far more difficult to

estimate the error in a given forecast than it is to estimate the error in a sample

survey. However, as we have written earlier, some estimation methods share a

common inferential framework with sample surveys. We will take advantage of this

in developing our guidelines for population estimates.

With the preceding ideas in hand, the foundation we plan to use for our estima-

tion guidelines lacks only the mortar needed to unify them. For this purpose, we

use the “applied demography” principle (Swanson et al. 1996). This principle can

be summarized as one that views explanatory power and precision in terms of doing

what is necessary to support practical decision-making while minimizing time and

resources. Applied to the estimation process, it basically says that, as is the case

with a census, a completely accurate estimate is not only unachievable, but also not

necessarily a desirable goal (Swanson and Walashek 2011: 4-6). Thus, one should

not spend time and resources on trying to achieve the unachievable – a perfect

estimate. Instead, one should try to minimize time and cost requirements while
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delivering estimates that are sufficiently accurate for their intended use. In this

regard we note that accuracy is an important component, but it should not be used as

the sole basis for judging the adequacy of a given estimate or set of estimates

(Kitagawa 1980; Swanson and Tayman 1995). The result of the preceding is a set of

guidelines resulting in a seven step process. We note in advance that each of the first

six steps needs to be documented in that they lead to the seventh and final step,

which is “presentation and documentation.”

15.1 The Seven Step Process

Step 1. Determine What is Needed and the Time and Resources Available to
Meet this Need. For estimates being done on a custom basis (e.g., a client has

requested a post-censal estimate for a specific area for which no estimates are

readily available), the first step in developing population estimates is to determine

what exactly is needed and what the time and resource constraints are in meeting

this need. In the situation where there is a specific client, this step would be part of

the process leading to a final contract.

Clearly identifying these issues is the first step in the documentation trail needed

for transparency (and for executing a satisfactory contract). If an estimate of the

total population of a given area is needed in less than a week and there is very little

in the way of resources available to develop these estimates, then a censal ratio

method, an extrapolation method and the Hamilton-Perry Method should be on the

list of potential methods to use while more data-intensive methods such as a sample

based method, Component Method II, a full-blown cohort-component method, or a

ratio-correlation model (and its variants) should be excluded.

When estimates are produced more for general purposes (e.g., annual population

estimates produced by the US Census Bureau and Statistics Canada), the process is

somewhat different since there is no specific client, but, instead, a range of actual

and potential users. It is different in that the decisions underlying estimates of this

nature are based on experience and the expectations regarding the primary needs of

the majority of data users.

Whether for a specific client or for general use, the applied demography princi-

ple should be kept in mind even if time and budget constraints are pre-set. If the

time and budget constraints are severe, it may even mean that the estimates may not

be sufficient for the task(s) at hand. If the estimate(s) are to be designed for a

specific client, it is important that this issue be addressed before a contract is

executed. For example, it may be the case that the client wants to have age-race-

sex details for extremely small areas (e.g., blocks) that can be done with, say, the

Hamilton-Perry Method, but there may insufficient time and money to allow a

detailed examination of the block level estimates relative to high levels of quality

control (see, e.g., Swanson et al. 2010). In general, the greater the amount of

demographic and geographic detail required, and the greater the attention paid to

15.1 The Seven Step Process 305



an area’s unique characteristics and special populations, the greater the time and

other resources needed to produce the desired estimates.

It is worth noting here that it is much more time-consuming to construct a set of

estimates for the first time than it is to repeat the process a second, third, or fourth

time. Developing estimates from scratch and collecting, analyzing, and adjusting

input data are time-consuming tasks. Updating a set of already-available estimates

is much simpler.

What demographic characteristics are needed? Should the estimates be the total

population size, or also of its composition. If estimates by age are needed, what are

the relevant age groups ? The client will generally be able to answer these questions,

but may not realize their importance unless prompted. Knowing the purpose for

which the estimates are to be used will help determine the types of characteristics

required. Age, sex, race, and ethnicity are the demographic characteristics most

commonly included in population estimates. For some purposes, however, estimates

of other demographic characteristics or population subgroups may also be needed,

such as persons with disabilities. The estimates may also be used for estimates of

population-related variables such as the number of households.

Population estimates are often made for well-defined regions such as states

or counties that have easily determined boundaries that correspond to the boun-

daries used for administrative records and generally remain stable over time. For

subcounty areas, however, the situation is often very different. Boundaries for sub-

county areas are subject to sudden and dramatic changes. It is not uncommon for

cities to annex adjoining areas, census tracts to be subdivided, zip codes to be

reconfigured, service areas to be redefined, or new school districts to be formed. It is

essential to determine if the boundaries of these types of areas have changed during

the period for which historical base data have been collected. If they have, the data

must be adjusted so that they refer to a geographic area that remains constant over

time. If adjustments are not made, the estimates will confound the effects of

boundary changes with population changes

Sometimes estimates must be made for regions lacking well-defined boundaries,

such as postal delivery areas (zip codes). For example, a client may have only a

rough idea of the geographic region making up a service area and lacks even zip

code information on customers. In these instances, it is important to establish a clear

set of boundaries for which meaningful estimates can be made and relevant data

collected. When delineating the boundaries of a geographic area, it will be helpful

to match boundaries with those used for the collection of the relevant base data

(e.g., cities, census tracts, block groups).

Step 2. Select the Method(s). The results of Step 1 point to the selection of

methods to be used. The next step is to choose the one(s) to be used in making the

estimates. This choice will depend on the purposes for which the estimates will be

used; the level of geographic and demographic detail needed; the amount of time,

money, and other resources available; and the availability of relevant input data.

As is indicated elsewhere in this book a wide range of methods can be used for

total population estimates. Simple extrapolation and interpolation methods such as

linear, exponential, shift-share, and share-of-growth may be sufficient, especially
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for inter-censal estimates. However, extrapolation methods can lead to problems for

areas that changed rapidly during the base period in which these models were

constructed (Swanson et al. 2010).

Estimates that require detailed age data inevitably require some type of cohort

approach. Here, the Hamilton- Perry method comes to mind along with the full-

blown cohort-component method. The former is capable of producing good inter-

censal estimates and reasonable estimates by age for time points not too distant

from the census data used for the launch year (see, e. g. chapters 10 and 17). The

latter is preferred as the time between the launch year and the target year increases

for a post-censal estimate as well as a pre-censal estimate. If the time between the

lunch year and the target year is great for a pre-censal estimate, then the Inverse

Projection Method is likely to be preferred over using the cohort-component

method as a backcasting technique, given the availability of birth and death data

(see, chapter 17).

It is important to keep in mind that in choosing an estimation method, no single

model or technique is better than all others for all purposes. Each has its own

strengths and weaknesses and must be evaluated according to its face validity,

timeliness, cost, data requirements, ease of application, and other characteristics.

Some of these characteristics are complementary (e.g., low costs, low data requi-

rements, and ease of application typically go together), but others conflict with one

another. And of course, it is always prudent to consider the need for error assess-

ment, availability of data, and the deadline for producing estimates, relative to

budget constraints

Step 3. Assemble the Data. Without input data of good quality it is virtually

impossible to produce a high quality estimate. The quality of the estimate depends a

on the quality of the data used to generate it (Habermann 2006; Popoff and Judson

2004; Tayman and Shafer 1985). For a sample-based method, the estimate is

generated directly for the time needed. However, for censal ratio methods an

additional point in time is required to develop an estimator; for interpolation and

extrapolation methods as well as the ratio-correlation and Hamilton-Perry methods,

two additional points in time are required. Still more may be required for other

component methods. More complex methods such as structural models may require

even more data points.

If the data needed for a given method are not adequate then a change in methods

is usually in store. In some cases, some sort of analogue (e.g., model) data may be

needed. The data needed are usually those closest to the target year (whether post-

or pre-censal). Again, we mention that it always is important to assess data quality.

Although it is the closest thing to a “gold standard” for demographic data in the

United States, the decennial census is not completely error-free. Sometimes these

errors are corrected within a year or two after the census, but they often go

uncorrected until the following census (or even longer). Many census errors cancel

out at higher levels of geography (except for the well-known undercount problem),

but for small areas they can be substantial, especially for particular subgroups of the

population (e.g., age, sex, and race categories). Thus, it is imperative to assess the
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quality of all of the available input data, note and take into account both observed

and potential problems, and make appropriate corrections or adjustments, relative

to time and resource constraints.

Step 4. Develop the Estimates. Even a custom-made estimate for a specific

client is not necessarily a “stand alone” estimate. Up to the level of the world as a

whole, all other areas are nested in a geographical hierarchy. Hence, it may be

useful to control small-area population estimates to estimates for larger areas even

if only for reasons of consistency (see chapter 13).

Step 5. Assess Likely Error(s). In discussing error, we also cover the statistical

idea of “uncertainty.” An example of the idea of uncertainty is provided in chapter 9

and in chapter 14. In chapter 9, we compare the accuracy of a censal ratio estimator

for an estimate for a large population, (King County,Washington)with an estimate for

a small population (Garfield County, Washington. In this example, we suggested that

the concept of statistical uncertainty was an underlying reasonwhy the estimate for the

large population was more accurate in a direct comparison with the 2000 census than

was the estimate for the small population. In chapter 14, we discuss the development

and use of confidence intervals as a tool for evaluating estimates.

Implicit in our recommendation to assess likely error is the need for an ongoing

evaluation program. To assist in this task, we adapt a figure from chapter 5 and

display it here as Exhibit 15.1, modified so that methods are classified by whether or

not they are rooted in inferential statistics. As Exhibit15.1 suggests, our guidelines

focus on methods used to estimate De Jure populations. However, we also will

touch on methods used for De Facto populations.

As is the case with population forecasts (Smith, Tayman, and Swanson 2001),

we believe it is important to provide the data user with some indication of the

uncertainty associated with population estimates. This can be done in several

ways, some less formal than others, One example of an informal approach is to

construct a range of estimates based on two or more methods, application

techniques, or sets of assumptions. Estimates might be developed, for example,

using different methods. The main benefit of producing a range of estimates is that

it shows the populations generated from different but reasonable models,

techniques, or sets of assumptions. The primary limitation is that it does not

provide a formal measure of uncertainty. Another way to indicate uncertainty is

to construct statistical measures of uncertainty around the estimates. As is

discussed in chapter 8, this is a natural component of the ratio-correlation and

related regression-based methods. Yet another way to provide an indication of

uncertainty is to construct tables summarizing errors from previous estimates for

the area(s) being estimated or areas with similar characteristics.

Post-censal and pre-censal population estimates are subject to more error than

inter-censal estimates, especially for small places. These errors are caused by our

inability to correctly establish the course of mortality, fertility, and migration.

We believe it is important to convey this information to the data user. Although it

may be disappointing, information on potential estimation errors will give the data

user a more realistic view of the estimates and help him/her plan more effectively

for the uncertainty inherent in estimates.
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Finally, we note that while accuracy is important, all of the evidence clearly

shows that perfection is not achievable. It was in reaction to this that Swanson and

Tayman (1995) suggested that utility should also be used along with accuracy.

Why? Because it has been found that population determinations with rather large

errors are often useful and in particular they are virtually always more useful than

simply assuming that there has been no change in population since the last census

(Swanson and Tayman 1995; Swanson et al. 1998). As a means of measuring

utility, they suggesting using “Proportional Reduction in Error” (PRE) as a measure

to accompany those commonly provided in ex post facto evaluations of error. This

measure is simple to construct and interpret:

PRE ¼ ½ðError byMethodðbÞÞ � ðError byMethodðaÞÞ�=ðError byMethodðbÞÞ

In using PRE, one develops a population estimate for the same area using two

different methods, ‘a’ and ‘b’. The error arising from each of the two methods is

defined and measured and the proportionate reduction in error found by using

rule (a) as opposed to rule(b) is determined by placing both error measures in

the preceding formula. What constitutes method a and method b relative to

Exhibit 15.1 De Jure Estimation Methods*

BASIS IN INFERENTIAL STATISTICS?

METHOD YES NO

POSSIBLE LINK,

DEPENDING ON SPECIFICS

Extrapolation

Simple

Complex, not ARIMA

ARIMA

Ratio

Constant Share

Shift Share

Share-of-Growth

x

x
x

x

x

x

Symptomatic

Housing Unit

Censal Ratio

x
x

Regression

Ratio Correlation

Difference Correlation

Rate Correlation

Lagged Correlation

x

x

x

x

Component

Component Method II

Cohort-Component

Hamilton-Perry

Composite

x

x
x
x

Sample Based x

Other x
*Our classification follows generally accepted practices for these methods, including their sources

of data.
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our discussion of utility? Method a is the estimation of a given population

resulting from an estimation technique such as the censal-ratio method, CMII,

ratio-correlation and the like, while Method b is the estimation of the same popula-

tion resulting from data already at hand through an existing ’count’, such as the last

census. The estimate resulting from Method b is what can be called a ’naive’

estimate in that it represents the theoretically (and most often, the practical)

maximum error for an estimate because it based on no new knowledge. By using

the PRE formula one can evaluate the reduction of error found by using the ’actual’

estimate (derived using method a) over the error in the ’naive’ estimate, method b, a

number taken from the last census. Thus, this PRE shows the reduction in error

(or gain in ’knowledge’) due to the particular method b (and its judgments and input

data) under an ex post facto evaluation.

Step 6. Review. Reviewing estimates, both internal and external is unquestion-

ably useful. How much reviewing is done of an estimate or given set of estimates

depends on many factors, including budget and time constraints, laws and adminis-

trative rules and policies, and past practice, and the use(s) to which the estimate(s)

will be put, among others. We also suggest that a checklist be developed for

purposes of review. This would be analogous to the pre-flight check list used by

pilots before putting an airplane into motion. We provide suggestions below for

what may be included in such a check list.

As part of internal review, we believe it is always useful to conduct a self-review

if nothing else. The first step in a self review is to simply examine the context to see

if the estimate is plausible. That is, does it have ‘face validity.’ If not, then

additional internal review is certainly called for. However, even if in a personal

review, an estimate has face validity, it generally useful to at least move on to an

internal review, which involves others in the same group (some of whom may have

worked on the estimate) or same organization.

The estimate should be compared to historical data. is it consistent with the past?

If not, then this may indicate an error is present. Does the error remain about the

same as the horizon becomes longer? Review may end at this point, but it may be

the case that some form of external review is mandated or simply just called for.

By external review, we mean an examination of the results not only by clients,

public officials, advisory boards, and various groups of data users (Smith et al.

2001), but also by professional peers (Swanson 2004). In some circumstances, there

is no formal external review: Once the results have been reviewed internally, the

review process is complete.

If one is preparing estimates for a specific client, we strongly advise that a review

of “preliminary estimates” be done by the client and that this process be built into

the contract. This also provides an opportunity to discuss the data and methods and

in a sense, go through an “assisted personal review.”

Step 7. Documentation and Release. In this step, the documentation from each

of the preceding six steps needs to be assembled and turned into a report

(e.g., a technical appendix) for purposes of transparency. The documentation

should be included as part of the report in which the estimate is “released.”

The documentation should include the checklist used in assembling the estimates
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as well as the relevant input data, methods, assumptions, accuracy and utility

assessments, and special adjustments such as “controlling” along with the rationale

for the decisions made in regard to the selections made in regard to input data,

methods, assumptions, accuracy and utility assessments, and special adjustments.

Putting this documentation together also provides part of the track record for doing

estimates in the future so that lessons learned will then enter into an updated

checklist. It also provides the basis for an institutional memory. In the face of

personnel turnover, new hires need a transparent, comprehensive description of the

estimation methods used previously and evaluations of their performance.

15.2 Summary

As discussed at the beginning of this chapter, neither the seven steps we propose

nor any other set of guidelines can answer every question and solve every problem

that may be encountered in the development of population estimates. As Smith

et al. (2001: 360) observe in regard to population projections, “. . .very set of

circumstances is unique in one way or another. . .,” an observation we believe

applies equally well to population estimates. This is the case even with large

organizations that produce estimates on a regular basis, where the impact of

changes in decennial census concepts, questions, coverage, and definitions cannot

always be accommodated under existing procedures (see, e.g., Swanson 2010).

It also may be the case that estimates are produced for a wide range of potential

users, some of which have need for more precise estimates than others. The

guidelines suggest developing estimates that are appropriately sufficient such that

the time and resources necessary to produce them are minimized. In this case,

however, it may be that time and resources do not allow for the needs of the users

that need more precise estimates. Thus, estimates for these users will not be as

sufficient as those for users who can live with less precise numbers. It also is the case

that religiously following these guidelines will not necessarily yield accurate popu-

lation estimates. However, we believe that they can help you make reasonable

choices and avoid major mistakes.
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Chapter 16

De Facto Populations and Populations
Impacted by Disasters

This chapter deals with three separate estimation topics related by the fact that they

are not easily assembled from census data, which in the US and the other countries

to which this book is addressed (e.g., Argentina, Australia, Brazil, Canada,

England, Ireland, Mexico, and the United States) is based on the concept of a De

Jure population. The first issue is that of a de Facto population, which is the concept

of people enumerated, estimated, or forecasted where they are found rather than

where they usually reside. The second is that of the homeless population and the

third, a population impacted by a disaster. For both the homeless and those

impacted by a disaster, the underlying concept is that of a De Jure population, but

in the case of both, the methods for estimating De Jure populations are rendered

virtually useless (Rummel 1991; Smith and McCarty 1996; Swanson 2008; US

Department of Housing and Urban Development 2008a). This situation calls into

play at least some of the methods for estimating De Facto populations, hence the

reason for covering both in this chapter. In addition, having estimates of the De

Facto population can play an important role in the plans for coping with disasters.

The idea of a de Facto population also has more than a few nuances. For

example, the visitor population in a resort area such as Las Vegas or Honolulu is

a De Facto population, but where these visitors are during the day vs. the night also

can vary substantially. For example, during the day, visitors to Hawaii may be on

beaches while at night they are in their hotels. Similarly, some of the visitors to Las

Vegas may be in Death Valley, the Red Rock Natural Conservation area, Lake

Mead, or the Grand Canyon during the day, but in hotel rooms during early evening,

then in a theater watching a play, then a restaurant, then in casinos, then finally back

to their hotel rooms.

Similarly, many of the commuters to the financial district of San Francisco,

California for purposes of work may be in Chinatown for lunch. Yet another

example is that the population of McAllen, Texas may swell during the winter

months with snowbirds from the upper Midwest, who during the day may be at

south Padre Island enjoying the beach.

These examples illustrate the fact that the estimation of de Facto populations

presents difficulties not found with the estimates of De Jure populations, as is
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evidenced by some of the colorful names given to these methods – Demoflush
comes readily to mind (Goldschmidt and Dahl 1976), for example, as one such

name that has a cachet not found among the names of De Jure methods (e.g.,

Component Method II).

For purposes of discussing estimation methods, it is convenient to look at the

concept of a De Facto population from three perspectives: (1) daytime population;

(2) visitor population; and (3) seasonal population, which we subdivide into (a) the

amenity seeking population and (b) migrant workers and their families. One reason

for using these three categories is that they correspond roughly to the kinds of

estimates (and projections) that are desired for De Facto populations (Akkerman

2000; Happel and Hogan 1987; 2002; Kavanaugh and Lamphere 1989; Las Vegas

Convention and Visitors Authority 2011a; Schmitt 1956; 1968; Smith 1989).

Another reason is that these categories are important because of the impacts they

have on the population numbers of the places were they are found. As examples:

Daytime Population. In the late 1990s, the De Jure population of San Francisco,

California was about 750,000; its daytime population was estimated at 1.3 million

(San Francisco Planning Department 1997).

Visitor Population. As of the 2010 census, the De Jure population of Clark County,

Nevada (metropolitan Las Vegas) was 1,375,765 (US Census Bureau 2011); there

were over 37 million visitors to Las Vegas in 2010 (Las Vegas Convention and

Visitors Authority 2011b).

Seasonal Amenities Population. The July, 1995 De Jure population of Leelanau

County in Michigan’s Upper Peninsula was estimated by Becker et al. (1996) to

be 18,502; the “second home” (seasonal) population was estimated by them to be

10,937.

Seasonal Migrant Worker Population. In the 2000 Census, the De Jure popula-

tion of Chelan County, Washington was 66,616 (US Census Bureau 2001); the 2000

population of Migrant Seasonal Farm Workers and their families in this apple-

producing county was estimated at 26,382 by Larson (2000)

As we will see in our forthcoming discussion involving definitions of these types

of populations, there are more ambiguities involving them then there are in the

definition of a De Jure population, and there are plenty in the latter (Cork and Voss

2006).1 Among other issues, these categories are neither mutually exclusive nor

exhaustive. For example, many places have seasonal fluctuations in terms of both

what we call visitor populations and what we call seasonal populations. However,

our three categories lend themselves to different techniques and in developing our

definitions, we will keep these different techniques in mind. We also will use

the definition of “Census Day” in terms of our definitions and use the concept of

usual residence as a foil to work from. Again, we stress that neither this device nor

others will resolve all of the many ambiguities of defining what a population is.

For our purposes, we use the US Census Bureau’s (2005) definition of a daytime

population, which is the number of people who are present in an area during normal

business hours. This is in contrast to the population present during nighttime hours,

314 16 De Facto Populations and Populations Impacted by Disasters



which usually corresponds to the De Jure population or residential population. Some

areas such as the Financial District of San Francisco, California, contain few

residents and have a very small nighttime population. However, San Francisco’s

Financial District has many thousands of people working in it during weekday while

nearby bedroom communities, such as Walnut Creek, California, may have more

than 50 percent of its residential population leaving each workday morning to travel

to their jobs, with no correspondingly large inflow of workers into the area. Note that

this definition is largely based on the traditional idea of the workday being Monday

through Friday, which means it does not consider people in San Francisco’s Finan-

cial District during the day on either a Saturday or Sunday who are waiting to ride the

cable cars up Market Street. Such people would be viewed instead as visitors. It

would consider, however, workers picking table grapes in California’s Central

Valley as a daytime population of the vineyard in which they are working. As this

example suggests, some or all of these workers may be seasonal in that their usual

residence in terms of census residency rules is elsewhere.

We define a visitor population as people who are in a given area on census day

for a short period of time that would not be considered their usual place of

residence, but who also are not part of the area’s daytime population. We introduce

the idea of a short period of time to assist in distinguishing a visitor population from

a seasonal population. This would include people on vacation staying in a hotel as

well as people who are working on assignment for a few days who are staying in a

hotel (e.g., conference attendees, salespeople). This follows the temporal dimension

described by Happel and Hogan (2002) in their distinction between visitor and

seasonal populations. From our definition it is clear we are not looking at visitors

to specific attractions, a subject dealt with by Tyrrell and Johnston (2002). Also,

we are interested in the number of visitors, not the number of visits, otherwise

known as person trips (Leeworthy 1996).

In defining a seasonal population, we begin with the observation by Cork and

Voss (2006: 5) that no recent census in the United States has allowed respondents

the ability to directly indicate that they believe that address information on their

census questionnaire is inaccurate. Respondents have been unable to indicate, for

example, that they have received the form at a seasonal home. They also note that

unlike the case in the United States, there are other countries that ask questions in

their censuses that allow one to determine usual place of residence and seasonal

residence information (Cork and Voss 2006: 54).

Happel and Hogan (2002), among others, not only use a temporal dimension to

define seasonal population, but also the reasons for travel. As suggested by our

earlier examples, this is useful in distinguishing between seasonal effects largely

due to amenities (spending the month of July at a second home in Michigan’s Upper

Peninsula) and those largely due to work (migrant labor). Thus, we distinguish the

seasonal population from the visitor population on the basis of time. For those

seeking amenities, we view them as being in an areas for more than a couple of

weeks, but not more than six months’ For the migrant workers, we view them as

being in areas for as short as a few days, but also not more than six months.
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16.1 Estimating a Daytime Population

Here, we will describe two general approaches that can be used to estimate daytime

populations. The first is provided by the US Census Bureau (2005) and the second

via remote sensing imagery (Cai et al. 2006; Wicks et al. 1999)

16.1.1 Using (De Jure) Census Data.

The Census Bureau (2005) developed its estimates of daytime populations using

information from the 2000 Census “long form” that included data on the employed

population, place of work, means of transportation to work, or the other journey to

work items. Given the data, the Census Bureau (2005) developed two methods,

which are algebraically equivalent to one another. The first method uses “commute

to work” information:

ðestimated daytime population of area iÞ ¼ ðresident population of area iÞ
þ ðworkers who commute into area iÞ � ðworkers who commute out of area iÞ

(16.1a)

The second uses “place of work” and “place of residence” information:

ðestimated daytime population of area i Þ ¼ ðresident population of area i Þ
þ ðworkers working in area iÞ � ðworkers living in area iÞ

(16.1b)

Using [16.1b] we find that as of April 1st (Census Day), 2000, the estimated

Daytime population of San Francisco, California is 945,480 (US Census Bureau

2005), where

945;458¼ð776;733Þþð587;300Þ�ð418;553Þ
ðS:F: resident populationÞþðworkers working in S:FÞ�ðworkers living in S:F:Þ

Unfortunately, with the loss of the decennial “long form,” the data needed to use

these two methods is no longer available and one must turn to the American

Community Survey, which while possible to use, presents some challenges not

found with the decennial census “long form” (Cork and Voss 2006; Van Auken

et al. 2006; Swanson and Walashek 2011). However, countries with census data

similar to those needed for methods 1 and 2 would be able to employ either method,

respectively (United Kingdom Statistics Authority 2001).
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16.1.2 Remote Sensing Imagery

Researchers at the Oak Ridge National Laboratory have developed, LandScan,

a method for estimating “ambient” populations at a one kilometer level of resolu-

tion using a combination of satellite imagery and GIS (Bhaduri et al. 2007;

Cheriyadat et al. 2007), where an ambient population is an average over 24 hours

period. The fact that a 24 hour “average” population suggests that daytime

populations can be estimated (as well as DeJure and Seasonal populations).

Detailed descriptions of Landscan’s methods and data can be accessed at http://

www.ornl.gov/sci/landscan/index.shtml, along with and data via a registration

procedure that can be initiated at this same website. Note that registration is geared

toward providing data access to non-commercial users.

16.2 Estimating a Visitor Population

Estimating visitor populations can be done through several methods, the most

common of which include counting occupied rooms in hotels and other facilities

in combination with an average number per occupied room, and surveys conducted

via transportation modes, entry and exit points area, and visitor sites (Leeworthy

1996; Watson et al. 2000). These methods are generally time and resource intensive

because in part they rely on surveys, but, even with the use of “administrative

records” such as occupied hotel rooms they remain time and resource intensive.

As an example of the time and resource intensity, the Hawaii Tourism Authority

(2010: 2) estimates that there were 6,517,054 visitors to Hawaii in 2009, staying an

average of 9.33 days. To get these estimates (and other information), the Hawai’i

Tourism Authority combined information from three major steps: (1) determining

passenger counts on arriving airline flights, foreign and domestic, separating

visitors from in-transit passengers, returning Hawai’i residents, and migrants

intending to reside in Hawai’i; (2) determining arrivals by cruise ships: Visitors

who entered Hawai‘i via foreign-flagged cruise ships, derived from the Cruise

Visitor survey which covered US flagged and foreign flagged cruise ships;

(3) obtaining Cruise ships “Arrivals by Air,” derived from the Domestic In-flight

and International Departure surveys which sampled only visitor arrivals by air. This

figure represented an estimate of visitors staying on cruise ships. These three major

steps used data from 10 sources: (1) airline passenger counts (both scheduled and

chartered), domestic and foreign; (2) reports by the US Office of Immigration

Statistics; (3) reports by the Bureau of Customs and Border Protection, Honolulu

Office.; (4) US Customs Declaration Forms; (5) International Intercept Survey, a

systematic sample of passengers in the boarding area and walkways at the Honolulu

International Airport and the Kahului Airport on Maui; (6) Domestic Survey, the

form for which is on the reverse side of the Hawai’i State Department of

Agriculture’s mandatory Plants and Animals declaration form, which is distributed
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to passengers on all flights from the US mainland to Hawai‘i every day of the year;

(7) The Island Visitor Survey, from samples taken conducted at departure area of

the airports on all the islands; (8) Cruise Visitor Survey, forms for which are

distributed to the cabins on the cruise ships; (9) Honolulu International Airport

Billing Records, which show the number of passengers on flights from Canada who

were pre-cleared in Canada and not included in the INS; and (10) Cruise Passenger

Counts: All cruise ships which entered Honolulu, Hilo and Lahaina Harbor for

which passenger counts are reported to the Department of Transportation, Harbors

Division and the Department of Land and Natural Resources.

As this example for Hawai’i illustrates, the development of visitor population

estimates is often time and resource intensive, with a high level of administrative

coordination. The example is not dissimilar to methods described elsewhere in

this regard (Erkkila 2000; Leeworthy 1996; Tyrrell and Johnston 2002; Watson

et al. 2000).

16.3 Estimating a Seasonal Population

16.3.1 The Amenity Seeking Seasonal Population

Some countries have the ability to develop De Facto numbers along with De Jure

numbers built directly into their regular census counts, while others are more

limited (for a suggested list, see, e.g., Cork and Voss 2006: 303-325). Unfortu-

nately, the United States conducts a census in which De Facto numbers cannot be

directly extracted. However, as shown earlier in the section on Daytime Population

Estimates, it has collected census information that can be used to develop De Facto

estimates. In the case of seasonal populations, of the features of the US decennial

census is its classification of vacant housing, which includes those reserved for

seasonal, recreational, or occasional use. This can be exploited for purposes of

estimating a seasonal population.

To start, here is some background on this classification from the US Census

Bureau (2004). First, in order to make the vacation home category consistent over

the decades, “seasonal”, “held for occasional use”, and “for migrant workers” are

combined. Second, the “occasional use” category was not used prior to the 1960

census. Third, counts of seasonal and occasional use vacant units are separately

provided from 1960 to 1980, but they were combined beginning in 1990 because

evidence indicated enumerators had great difficulty determining the difference.

Fourth, counts of housing units for migrant workers were included with seasonal

units before 1990; for comparability, this housing type was added beginning with

the 1990 count of seasonal, recreational, or occasional units. Fifth, separate counts

of migratory vacant units are provided beginning with 1990, a number observed to

be very small over the decades.
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The availability of this information is one of the reasons we made a distinction

between the visitor population and the seasonal population. With the preceding data

and an estimate of the average number of seasonal persons per seasonal household

(SEASONPPH) in hand, the Housing Unit Method (see Chapter 7) can be used to

develop an estimate of the total amenity seeking seasonal population of a given area

i. To proceed, we need an estimate of SEASONPPH. Although it is dated, the US

Census Bureau (1982) produced a report from the 1980 census on non-permanent

residents. This report is nicely geared toward seasonal populations, especially those

that are amenity seeking. Table C of this report provides Average Persons Per

Households for non-permanent households (i.e., SEASONPPH) for selected states,

which we can use in conjunction with the Census Bureau’s 2004 report on seasonal

housing to obtain an estimate of a seasonal population:

SEASONPi ¼ SSMHUi
� PPHSEASONi (16.2)

where

SEASONPi ¼ Estimated Seasonal Population in area i

SSMHUi ¼ Seasonal Single and Multiple Housing Units

PPHSEASONi ¼ Average Number of Persons per Seasonal Household

As an example of the preceding, we develop a seasonal population estimate for

Arizona as of April 2000. First, we find that there were 142,601 housing units for

seasonal, recreational, and occasional use in Arizona for 2000 (US Census Bureau

2004). Second, we find that the SEASONPPH for Arizona as of April 1980 is 1.84

(Table C, US Census Bureau 1982) and that the median age of persons in non-

permanent households is over 65. The latter suggests that the non-permanent

households are made up of amenity seeking ”snowbirds” (Happel and Hogan

2002). With the preceding in hand, we use equation [16.2] to estimate the seasonal

amenity seeking population for the 1999-2000 winter season for Arizona as:

262;386 ¼ 142;601�1:84 (16.2)

The preceding estimate differs from the 1999-2000 estimate of 273,000

snowbirds in state of Arizona provided by Happel and Hogan (2002), but not by

much. The absolute difference is -10,514 and the relative difference is -3.89%.

Our HUM based method as shown in equation [16.2] could be refined, given the

availability of information on Recreational Vehicle (RV) parks, which are not part

of the permanent housing stock, but should be included because seasonal residents

live there. For areas that keep track of RV space inventories, equation [16.2] can be

refined as follows

SEASONPi ¼ ðSSMHUi þ RVSiÞ� PPHSEASONi (16.3)

where

SEASONPi ¼ Estimated Seasonal Population in area i
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SSMHUi ¼ Seasonal Single and Multiple Housing Units in area i

RVSi ¼ Recreational Vehicle Spacves in area i

PPHSEASONi ¼ Average Number of Persons per Seasonal Household in area i

Additional refinements could be made if survey data available. For example, if a

survey is done of RV parks that collected data on the occupants, then a separate

PPH value for them could be used, along with an estimate of the occupied RV

spaces.

There is some ambiguity in the “winter season” 1999–2000 date given for our

example estimate for Arizona. As noted by Smith (1989) an accurate enumeration of

the entire seasonal population is almost never available. Among other limitations,

this means that the empirical relationship between the symptomatic variables and

seasonal population is not based on an actual point-in-time census. This means that

we have no direct estimate of error. At best, a given estimate can be compared with

estimates from other sources in hopes of “triangulating” the seasonal population,

keeping in mind that it likely fluctuates over the season in question. These

fluctuations leave even such precisely named methods such as “Demoflush” with

estimates that are not as precise as the name might suggest.

In concluding this discussion of the amenity seeking seasonal population, we

know that there are people who move in combination with seasonal amenity seekers

for purposes of employment. For example, many of the people working at lodges

and related facilities in national parks only are there for the season, (e.g., summer in

Yellowstone and winter in Death Valley). For our purposes, we include them as part

of the amenity seeking population and not part of the next seasonal group we

examine, the migrant worker population.

16.3.2 Migrant Worker Seasonal Population

This population largely works in agriculture and related areas (e.g., fish canneries in

Alaska), and for those that work in services geared toward the amenity seeking

seasonal population, we have included them as part of this group, as just stated.

Moreover, evidence indicates that the migrant worker seasonal population is

decreasing in that people who once moved from place to place following harvests

and related seasonal work are becoming permanent year-round residents in agricul-

tural areas (Kandel 2008).

While the data on this population may be skimpy in terms of the Decennial US

Census on Population and Housing, this is not the case in regard to the US Census of

Agriculture, which was formerly conducted by the US Census Bureau, but is now

conducted by the National Agriculture Statistics Service, US Department of Agri-

culture (http://www.nass.usda.gov/ ). The US Department of Agriculture (USDA)

maintains and analyzes a wealth of data on this population (Kandel 2008) as does

US Department of Labor (USDOL), especially in the form of its National Agricul-

tural Workers Surveys (http://www.doleta.gov/agworker/naws.cfm). As an example
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of the richness of these data, the 2007 Census of Agriculture shows that in Arizona,

28,754 farmhands were hired, of which 238 were migrant laborers (U.S, Department

of Agriculture 2008). Similar data are available for other states and for sub-areas

within states via the USDA’s “quickstats” service ((http://quickstats.nass.usda.gov).

As we described at the outset of this section, we used information we had about

available data and methods to assist in developing our De Facto population

categories. Developing estimates of a visitor population is perhaps the most onerous

because there are little, if any, publically available data for such a population. At the

other end of the spectrum, we have the readily accessible and no-cost data available

on the seasonal migrant worker population, courtesy of USDA and USDOL. Very

close to the USDA and USDOL information in terms of accessibility and cost, we

have the information from the US Census Bureau that can be manipulated to obtain

estimates of daytime populations as well as estimates of the seasonal amenity

seeking population. We now turn to a related, but distinct task: estimating the

immediate effect of disasters on populations.

16.4 Estimating a Homeless Population

In a country such as the United States where the De Jure concept is used to define

population, the presence of people who do not live either in permanent resident

units or in group quarters (e.g., dormitories, barracks, convents, shelters for the

homeless) creates problems for census and estimation purposes. To start with,

the US Decennial Census completely went to “mail-out/mail-back” by 1980 as

the initial mode of contact (US Census Bureau, n.d.) To implement this method, the

“Master Address File” (MAF) was developed, which is a national register of

addresses (Swanson and Walashek 2011). As you can guess, the major bulk of

census activities are based on the MAF, which returns us to the point made earlier

that those not living in permanent units present enumeration problems since where

they “reside” is not in the MAF. The US Census Bureau is, of course, well aware

of the presence of people not living in permanent units and makes an effort to count

them in the decennial census (Glasser 1991; Salo 1990; US Census Bureau, n.d.).

Fortunately, efforts to count the homeless in the United States received a

tremendous boost in 1987 when the McKinney-Vento Homeless Act became law

in the United States. Among its provisions is the requirement that surveys of the

homeless must be done by agencies seeking funding under the Act (US Department

of Housing and Urban Development 2008a). The Act was re-authorized in 2009

with the same survey requirement.

Under the charge of the McKinney-Vento Homeless Act, The US Department

of Housing and Urban Development (US HUD), needed to define homelessness.

In moving toward a definition (US HUD 2008b: 4) observes “residential stability”

can be divided into two broad categories of people: (1) those who “literally

homeless;” and (2) those who are “precariously housed.” The “literally homeless”

include people who for various reasons have found it necessary to live in
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emergency shelters or transitional housing for some period of time. This category

also includes unsheltered homeless people who sleep in places not meant for human

habitation (for example, streets, parks, abandoned buildings, and subway tunnels)

and who may also use shelters on an intermittent basis” (US HUD 2008b: 4). The

“Precariously Housed” refers to “. . .people on the edge of becoming literally

homeless who may be doubled up with friends and relatives or paying extremely

high proportions of their resources for rent. The group is often characterized as

being at imminent risk of becoming homeless” (US HUD 2008b: 4).

With these definitions in hand, US HUD developed two manuals designed to

assist local jurisdictions in meeting the survey requirements of the McKinney-

Vento Act. The two manuals are aimed at the two groups composing the “literally

homeless,” the sheltered homeless (US HUD 2008a) and the unsheltered homeless

(US HUD 2008b).

US HUD (2008a) defines the sheltered homeless as adults, children, and unaccom-

panied youth who, on the night of the count, are living in shelters for the homeless,

including: (1) Emergency shelters; (2) Transitional housing; (3) Domestic violence

shelters; (4) Residential programs for runaway/homeless youth; (5) Any hotel, motel,

or apartment voucher arrangements paid by a public or private agency because the

person or family is homeless. US HUD (2008b) defines the unsheltered homeless as

the homeless who are not residing in shelters for the homeless and similar facilities.

It is designed to produce counts of the unsheltered homeless and their characteristics.

This orientation complements the information on those living in

As an example of the type of information that can result from these two manuals,

we turn to the 2007 census and survey of the homeless in southern Nevada, which

includes Las Vegas (Applied Survey Research 2007). The study was conducted in

January, 2007 and included not only counts of both the sheltered homeless and the

unsheltered homeless, but estimates of the “precariously housed,” which was termed

the “hidden homeless” in the study. Using a range of methods geared specifically to

enumerating and surveying these three types of homeless population, the study

estimated a total homeless population of 11,417, of whom 3,747 were enumerated

on the streets, 3,844 in shelters, and the remaining 3,826 were “hidden”(Applied

Survey Research 2007: 3). The methods included a systematic two-day canvassing

of streets, a canvassing of shelters and institutions, and a general population tele-

phone survey (Applied Survey Research 2007: 67-90). The telephone survey was

used as the basis for estimating the “hidden” homeless, “. . .persons living on private
property but in locations that would not be considered “double-ups” as defined by

HUD such as tents, cars/vans, unconverted garages, storage sheds, etc. The general

population phone survey was a 10-15 minute survey designed to determine if there

were people staying in the household who would otherwise be homeless. (Applied

Survey Research 2007: 71).

While the 2007 Las Vegas study may be one of the most comprehensive of the

homeless counts and surveys, it is not alone. Studies of the homeless abound and it

may be the case that a study has already been done for an area of interest to you; if

not, the two US HUD manuals and the Las Vegas Report provide the basis for

estimating the homeless population in the area of interest to you.
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16.5 Estimating the Entire De Facto Population

To our knowledge, nobody has put together a “De Facto Population Equation,”

which we believe could be a useful tool. To this end, we offer the following equation:

Di ¼ Vi þ Hi þ Ai þMi þ þREPi þ NDi þ RPi (16.4)

Where i ¼ the area in question

D ¼ De Facto Population

V ¼ Visitor Population

H ¼ Homeless Population

A ¼ Amenity Seeking Seasonal Population

M ¼ Migrant Worker Seasonal Population

ND ¼ Non-Resident “Daytime” Population

RP ¼ Resident (De Jure) Population Present

and

RP ¼ R – RA

where

R ¼ Resident Population

RA ¼ Resident population away

In some areas, there is a large “ND” population and in others, it is virtually zero.

For example, a large chunk of the daytime population of San Francisco is composed

of people who live elsewhere. Similarly, the Honolulu Census Designated Place

(basically, the city of Honolulu), will have a daytime population that commuted in

from areas on the island of Oahu, outside of the Honolulu CDP. However, for the

entire state of Hawai’i there are virtually no members of a “daytime” population

that are from outside of Hawai’i who are not part of either the visitor or seasonal

populations.

As an example application, of equation [16.4] we provide an estimate of the De

Facto population of 543,665 for Honolulu, Hawai’i, (the Census Designated Place,

i.e., the Honolulu CDP) as of April 2000:

DHonolulu ¼ VHonolulu þ HHonolulu þ AHonolulu þMHonolulu þ RPHonolulu þ NDHonolulu

636;970 ¼ 168;101þ 8;000þ 14;297þ 16þ 353;251þ 93;305

The visitor count of 168,101 is taken from a report by the Hawai’i Department of

Business, Economic Development, and Tourism (2000); the homeless estimate of

8,000 is taken from a report done by SMS Research that provided an estimate

for 2003, which was delivered to us in a personal communication from the President

of SMS Research, Jim Dannemiller (2011) that also provided advice on the likely

number in 2000; the amenity seeking seasonal population estimate of 14,297

was derived using the same method described earlier in this chapter for Arizona,

16.5 Estimating the Entire De Facto Population 323



but with data specific to Honolulu, as was the estimated number of 16 for the

migrant worker seasonal population. The estimate of 353,251 of the total Honolulu

resident population that was present was derived by using statistics on returning

residents (60,000) for the month of April, 1999 found in a report by the Hawai’i

Department of Business, Economic Development, and Tourism (2001). This num-

ber was assumed to apply to April of 2000 and multiplied by the proportion of

Hawaii resident who live in Honolulu (60,000* (371,657/ 1,211,537)) to get an

estimate of the number of Honolulu residents who were away (18,406), which was

subtracted from the total number of residents (371,657) to get the estimate of

353,251 for the total number of residents present.

The estimate of the Daytime population of the Honolulu CDP who are residents

from other areas is based on a manipulation of Equation [16.1a], which recall is

defined as: (estimated daytime population of area i)¼ (resident population of area i)

+ (workers who commute into area i) - (workers who commute out of area i).

The preceding equation can be re-arranged to yield (workers who commute into

area i) ¼ (estimated daytime population of area i) - (resident population of area i).

In the case of the Honolulu CDP, we use the data for daytime population estimates

assembled by the US Census Bureau (2005), which shows a daytime population

of 464,964 and a De Jure population of 371,657. Thus, we have an estimate of the

“ND” population of 93,305 ¼ 464,964 - 371,657.

As is the case with any equation, this one offers the potential to estimate a

missing term if the others are available. For example, Hi ¼ Di - (Vi + Ai + Mi + NDi

+ RPi). Another example of how equation [16.4] might be used would be to take

ratios of various elements and then use them to fill in missing terms. For example,

if the ratio of the De Facto to the De Jure population was relatively constant (at least

during certain seasons or months), this relationship might be used to estimate the

total De Facto population, such that a missing piece (e.g., the homeless population)

could be estimated. And of course some terms could be combined to make the task

of making such estimates more tractable (e.g., the amenity seeking seasonal popu-

lation could be combined with the migrant worker seasonal population to get a total

seasonal population term).

16.6 Estimating a Disaster-Impacted Population

As we mentioned at the outset, estimates of De Facto populations are useful

in planning for and coping with a disaster, especially those of daytime populations

and seasonal amenity seeking populations. Here, however, we are interested in the

impact of a disaster. In this regard we also note that there are two distinct groups of

interest: (1) the population remaining in an area in which a disaster occurred; and

(2) the population dispersed by the disaster. In regard to the former, the location is

generally easy to define (Swanson 2008; Swanson et al. 2007; Swanson et al. 2009)

while the latter is less easily defined because of the nature of dispersion (Henderson

et al. 2009 Smith and McCarty 1996). Here, we provide an overview of methods

used to estimate both groups. We note that these methods, like those used to
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estimate visitor and homeless populations are largely time and resource intensive in

that all three are ephemeral. One major difference in developing estimates for

visitor vs. homeless and disaster impacted populations is that the direct data needed

for the latter are usually collected under difficult – even dangerous –circumstances

(Applied Survey Research 2007; Swanson et al. 2007). On the plus side, “pre-

disaster” data are available (Swanson et al. 2007).

As an example of developing an estimate for the area in which a disaster occurred,

we turn to the study of Hurricane Katrina on the Mississippi Gulf Coast (Swanson

et al. 2007). As one of nine “social network” post-Katrina research projects funded

by the National Science Foundation under the provisions of the SGER program, this

study required $96, 212 in funding to accomplish two major tasks:

(1) gather pre- and post-Katrina information on housing and population from 573

targeted census blocks at the epicenter of Katrina’s impact on theMississippi gulf

coast that the 2000 census showed as containing people (the “Short Form”); and

(2) employ a random start, systematic selection, cluster sample targeting 126 of

these 573 blocks for administration of a 115-item questionnaire (the “Long

Form”), such that at least 350 completed questionnaires would be obtained. The

Long Form was designed for several purposes, one of which was to collect

retrospective information on the roles that social and kinship networks played

in determining respondents’ success (i.e., the capacity for respondents to

sustain their physical and emotional well-being after Hurricane Katrina).

Before Katrina stuck, there were 8,535 (permanent) housing units in the 346

blocks that were canvassed, an increase of nearly 10% over the Census 2000 count

of 7,793. Of the 8,555 housing units in study area, 2,227 (27%) were destroyed

and 3,997 substantially damaged (47%), leaving 2,261 habitable (26%). There were

2,012 temporary units found the Study Area after Katrina struck, of which 94%

were occupied.

There were approximately 16,540 people residing in 6,486 (occupied) perma-

nent housing units in the 346 blocks as of Census 2000. Just prior to the impact of

Katrina on August 29th, 2005, there were approximately 7,100 occupied permanent

housing units (83% of the total number of permanent housing units) containing

18,105 people in these same 346 blocks After Katrina stuck, the study found

approximately 10, 950 people residing in 3,938 permanent and temporary housing

units in these same 346 blocks. At the time of Census 2000 and just prior to when

Katrina struck, the average number of persons per household (PPH) in the Study

Area was 2.55. Subsequent to Katrina the PPH was 2.78.

Thus, for the 346 blocks comprising the study area (Swanson et al. 2007) found

that Hurricane Katrina resulted in:

(1) a decline of 7,155 for the household population – a 40% drop from the pre-

Katrina household population of 18,105;8 and

(2) an increase of 0.23 persons per household– a 9% increase from the pre-Katrina

PPH of 2.55.

The preceding estimates done by Swanson et al. (2007) are consistent with the

special estimates of Hancock and Harrison counties that the Census Bureau
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released for January of 2006. These estimates were designed to show the impact of

Katrina in the 117 counties designated by the Federal Emergency Management

Agency (FEMA) as being eligible for individual and public assistance (US Census

Bureau 2006).

In a larger study, Swanson et al. (2009) extended their estimates to include

New Orleans and other areas of Louisiana directly impacted by Hurricane.

They found relative to what had been projected for the zipcode impacted by Katrina,

the hurricane had resulted in 311,150 fewer people expected in the absence of its

impact. For the 18 zipcodes in Orleans Parish (The city of New Orleans), the impact

was a reduction of 203,198 people. As these estimates suggest, the pre-Katrina

population was elsewhere. Frey, Singer and Park (2007) found where much of the

Pre-Katrina population had moved, at least in terms of the city of New Orleans.

Using data from the 2006 American Community Survey along with data from

other sources, such as Census Bureau estimates and Internal Revenue Service

migration data (see Chapter 12 for a discussion of these data and how they can be

used to estimate migration), Frey et al. (2007) analyzed population change from

July 1st of 200 to July 1st, 2005 (pre-Katrina since Katrina struck in August of 2005)

with that found for July 1st 2005 to July 1st of 2006 in selected metropolitan areas in

Alabama, Louisiana, Mississippi, and Texas to estimate population losses in the

impact area and simultaneously estimate gains in terms of nearby receiving areas.

The results are not definite, but they are suggestive. For example, Frey et al. (2007)

found that Harris County, Texas (where the city of Houston is located) increased

its population by 123,000 in 2005–2006. They compared this to the increase of

67,000 people for 2004–2005 and concluded that much of the increase was due to

the presence of displaced people from the New Orleans area. Taking into account

that some of the people displaced by Katrina went to places far from the impact

area, one can get a good picture of the metropolitan areas that were themselves

impacted indirectly by Katrina in terms of the movement it caused among the

populations it impacted directly.

16.7 Summary

No matter how the pie is sliced, the estimation of a De Facto population in a country

that depends on a De Jure concept of population is generally not a task that is easily

accomplished. This is true in countries that rely on a population registry system

(e.g. Finland) and a regular census (e.g., the United States). As we noted, however,

some countries have census information that can be used to develop estimates for

daytime and seasonal populations. In this chapter, we have provided examples of

how these estimates may be accomplished. In many regards these examples should

be viewed as templates that can be adjusted to different situations. For example,

where the data are a bit different than those used in our examples, those seeking

to develop daytime and seasonal population estimates at least have a starting point

so that they can and find the data and make the necessary adjustments to develop
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the estimates of these populations. To this end, we believe that the general equation

we described for estimating a De Facto population serves as a useful point of

reference - or departure.

While it is clear that at the national level, there are countries that have informa-

tion on international visitors, we are not aware of any county, however, that can

easily develop estimates of visitor populations, both domestic and international for

subnational areas. As our example shows, in the United States, Hawai’i is virtually

unique in this regard since visitors can arrive only by air or sea and because of its

economic dependence on visitors, it has developed a sophisticated system for

estimating visitors to the state as a whole, and selected subareas.

Like the estimates of visitor populations, those for homeless and disaster

impacted populations are time and resource intensive. Some of these needs can

be reduced by relying on “off the shelf” methods developed by US HUD (2008a,

2008b) for the homeless and Centers such as the National Hazards Center at the

University of Colorado at Boulder or the Disaster Research Center at the University

of Delaware for populations impacted by disasters. Along with the “off-the-shelf”

methods, there is, of course, a great deal of knowledge and experience in homeless

research at US HUD and local jurisdictions seeking its funding for the homeless,

and in disaster research at the National Centers, to include methods to estimate the

demographic impacts of natural and man-made disasters.

Endnote

1. For those interested in the nuances of defining populations, both De Facto and De Jure, we

recommend the book edited by Dan Cork and Paul Voss (2006).
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Chapter 17

Historical Estimates

In this chapter, we consider methods that can be used to estimate populations

at past points in time. Our focus is on the near past rather than the distant past.

By this we mean that we primarily examine methods that can be used for inter-

censal estimates in areas that have adequate census and vital statistics coverage,

but for which there are historical gaps. An example of such a gap would be that if

one wants to know the population of the state of Washington in 1938, one must

turn to an estimation method. The state has good census (and vital statistics

coverage), and its state demographic center started producing annual state level

estimates in 1944 (State of Washington 1944). However, there was neither a

census conducted in 1938 nor was there an estimate made by either the state’s

demographic center or the US Census Bureau (Shryock and Lawrence 1949).

To a large degree, this means that we are discussing inter-censal estimates

in developed countries, methods for which often overlap with those used to

develop post-censal estimates. However, we include a brief discussion of methods

that can be used to develop pre-censal estimates. Further, as noted earlier (e.g. chapters

8 and 9), methods used to develop pre-censal estimates overlap to a fair degree

methods used to develop population information from incomplete data (Brass et al.

1968; Carrier and Hobcraft 1971; United Nations 1983), which means that they are

applicable to less developed countries. To a far lesser extent the methods used to

develop inter-censal estimates overlap with incomplete data methods.

Having good historical population information is not just an academic area of

interest (Nordyke 1989, Schmitt 1968). It provides a foundation for current estimates

and projections (Smith et al. 2001: 172-176; 323-326; 352).

17.1 Inter-censal Methods

Interpolation methods are a well-established technique in the field of demography

and have a wide range of uses (Judson and Popoff 2004). Here, we focus on two

simple extrapolation methods that were discussed in chapter 6 that can be used as

D.A. Swanson and J. Tayman, Subnational Population Estimates,
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interpolation methods to develop inter-censal estimates. The first is arithmetic and

the second is geometric. We look at them both as examples of a broad range of

extrapolative techniques that can be used for purposes of inter-censal interpolation.

Arithmetic Interpolation. Recall from chapter 6 that the formula used to deter-

mine an arithmetic measure of change is:

D ¼ ðP1 � PbÞ=ðyÞ (17.1)

where D is the average absolute change, Pl is the population in the launch year, Pb is

the population in the base year, and y is the number of years in the base period (i.e.,

the number of years between the base year, b, and the launch year, l). As noted in

chapter 6, it can be used to extrapolate population change in order to obtain a post-

censal estimate:

Pt ¼ P1 þ ½ðzÞðDÞ� (17.2)

where Pt is the population in the target year, Pl is the population in the launch year,

and z is the number of years in the post-censal estimation horizon (i.e., the number

of years between the target year, t, and the launch year, l), and D is the average

absolute change computed for the base period.

For purposes of inter-censal estimation, equations [17.1] and [17.2] can be

restated as follows, respectively

D ¼ ðPbþy � PbÞ=ðyÞ (17.3)

where D is the average absolute change, Pb+y is the population in the census following

the census at time b (the base year), Pb is the population in the base year, and y is the

number of years in the inter-censal period (i.e., the number of years between the base

year census and the successive census forming the inter-censal period).

Pbþx ¼ Pb þ ½ðyÞðDÞ� (17.4)

where we want to develop an estimate between Pb and Pb+x, which represent

two successive census years and Pb+x is the population in the estimation year, Pb
is the population in the base year, x is the number of years in the inter-censal

estimation horizon (i.e., the number of years between the estimation year and the

base year, b, with 1 � x � 9), and D is the average absolute change computed for

the period between Pb and Pb+y.

As an example of arithmetic interpolation, suppose we want to estimate the

population of the 39 counties of Washington from 1991 to 1999. Using the 1990

and 2000 census data shown in Table 17.1, each county’s average absolute

(annual) change is found in right-most column (using equation [17.3], which was

used in conjunction with equation [17.4] to develop the annual estimates from

1991 to 1999.
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Geometric Interpolation. As discussed in chapter 6, this method assumes that a

population will change by the same percentage rate over a given increment of time.

The average geometric ratio of population change during the period between the

two successive census counts that border the inter-censal period for which estimates

are desired can be computed as:

r ¼ ½ðPbþy=PbÞð1=yÞ� (17.5)

where r is the average geometric ratio of change, Pb+y is the population in the

census following the census at time b (the base year), Pb is the population in

the base year, and y is the number of years in the base period. An inter-censal

estimate using this method can be computed as:

Pbþx ¼ ðPbÞ½ðrÞx� (17.6)

where Pb+x is the population in the inter-censal estimate year, Pb is the population in

the base year, r is the average geometric ratio of change, and x is the number of

years in the inter-censal estimation horizon (i.e., the number of years between the

estimation year and the base year, b, with 1 � x � 9).

As an example of geometric interpolation, we again use the example of the 39

counties of Washington from 1991 to 1999. Using the 1990 and 2000 census data

shown in Table 17.2, each county’s average (annual) geometric ratio of change is

found in right-most column (using equation [17.5], which was used in conjunction

with equation [17.6] to develop the annual estimates from 1991 to 1999.

The estimates in tables 17.1 and 17.2 are very similar. For example, the 1995

estimates of Garfield County’s population (the smallest in the state) using the ari-

thmetic and geometric methods are 2,323 and 2,336, respectively. For King County,

(the county with the largest population in Washington), the estimates using the

arithmetic and geometric methods are 1,622,176 and 1,618,103, respectively.

Assessment of Arithmetic and Geometric Backcasting. Clearly, inter-censal

estimates cannot go too far astray, but it is difficult to assess their accuracy unless

one calibrates the models at censuses twenty years apart and then uses the models to

estimate populations for the intervening census, which can then be evaluated

against the numbers in the intervening census. The major accuracy issues are

sudden population changes that take place in the inter-censal period and then

subside. Here, we would be especially concerned about directional changes. This

type of change is not common at high levels of geography (e.g., nation, state) and

lower levels with large populations (e.g., counties in a major metropolitan area), but

one must be cautious about how accurate the estimates are in any given year for

lower levels of geography with small populations (e.g., counties in rural areas,

census tracts, blockgroups, blocks, and zip codes). One way to gain more precise

estimates when sudden population changes are possible is to use information

beyond the two census counts forming the inter-censal period of interest. Here,

we are thinking of administrative records that are available annually during the

inter-censal period, which brings to mind ratio-correlation and its variants.
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Rate-Correlation, a Variant of Ratio-Correlation. Another method that can be

used for inter-censal estimates is the ratio-correlation method, which was discussed

at some length in chapter 8. Here, we will focus on the rate-correlation variant of

ratio-correlation and use it as an example since an example of the post-censal use of

ratio-correlation was given in chapter 8. To start, recall that in chapter 8, the ratio-

correlation method is defined as follows.

Pi;t ¼ a0 þ SðbjÞ�Si;j;t þ ei (17.7a)

where

a0 ¼ the intercept term to be estimated

bj ¼ the regression coefficient to be estimated

ei ¼ the error term

j ¼ symptomatic indicator (1 � j � k)

i ¼ subarea (1 � j � n)

t ¼ year of most recent census forming the inter-censal period

and

Pi;t ¼ ðPi;t=SPi;tÞ=ðPi;t�z=SPi;t�zÞ (17.7b)

Si;j;t ¼ ðSi;t=SSi;tÞj=ðSi;t�z=SSi;t�zÞj (17.7c)

where

z ¼ number of years between each census for which

data are used to construct the model

p ¼ population

s ¼ symptomatic indicator

Once a ratio-correlation model is constructed, a set of population estimates for

time t-x (where x � z) is developed in a series of six steps. First, (Si,t-x/∑ Si,t-x)j is

substituted into the numerator of the right side of equation 17.7c for each symptom-

atic indicator j and (Si,t-z/∑ Si,t-z) j into the denominator of the right side of equation

17.7c for each symptomatic indicator j, which yields Si,j,t+x. Second, the updated

model with the preceding substitution of symptomatic data for time t-x is used to

estimate Pi,t-x. Third, (Pi,t-z/∑ Pi,t-z) is substituted into the denominator of Pi,t-x,

which yields Pi,t-x ¼ (Pi,t-x/∑ Pi,t-x)/(Pi,t-z/∑ Pi,t-z), where ∑ Pi,t-x) represents the
independently estimated population of the “parent” area of the i subareas for time t-x

(Note that this estimate is given in boldface and is done by a method exogenous to

the ratio-correlation model (e.g., a component method)). Fifth, since Pi,t-x, (Pi,-z/

∑ Pi,t-z) and∑ Pi,t-x are all known values, the equation Pi,t-x¼ (Pi,t-x/∑ Pi,t-x) /(Pi,t-z/

∑ Pi,t-z) is manipulated to yield an estimate of the population of area i at time t + k:

ðPi;t�xÞ�ðPi;t�z=SPi;t�zÞ�ðSPi;t�xÞ ¼ P
^
i;t�x (17.7d)
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As equation 17.7d shows, it is important to remember that an independent

estimate of the population for the “parent” geography (∑Pi,t-x) of the i subarea is

required when using the ratio-correlation model to generate population estimates.

The sixth and final step is to effect a final “control” so that the sum of the i

subarea population estimates is equal to the independently estimated population

for the parent of these i subareas: ∑ Pi,t-x ¼ ∑Pi,t-x, which is accomplished as

follows:

Pi;t�x ¼ ðPi;t�x=SPi;t�xÞ�ðSPi;t�xÞ: (17.7e)

In the rate-correlation variant of the ratio-correlation method, population change

is viewed from an exponential perspective and a corresponding logarithmic trans-

formation is used on the independent and dependent variables along the length of

time between the successive census counts forming the inter-censal period for

which estimates are desired. That is, the model develops an exponential estimate

of the (annual) rate of change. In developing the model, this means that equation

[17.7a] becomes

½ððlnðPi;tÞÞ=ðt� zÞ� ¼ a0 þ SðbjÞ�½ðlnðSi;j;tÞÞ=ðt� zÞÞ� þ ei (17.8a)

and equations 17.7b through 17.7d are modified accordingly

As an example of the rate-correlation model, we use the same 1990 and 2000

input data with which the ratio-correlation model was constructed as the example in

chapter 8. We then use the rate-correlation model constructed using these data to

generate an estimate for 1995. Exhibit 17.1 provides the model. The basic data are

found in tables 8.2a through 8.2d.

Exhibit 17.1 Example Rate-Correlation Model

½ðLnðPi;tÞÞ=10� ¼ 0:195þ 0:0933�½ðlnðVotersÞÞ=10�ð
þ 0:3362�½ðlnðAutosÞÞ10�ð þ 0:3980�½ðlnðEnrollÞÞ=10�ð
þ 0:3980�½ðlnðEnrollÞÞ=10�ð ½p<:05�½p ¼ 0:148�½p < :001�½p<:001�

where

Pi;t ¼ ðPi;2000=SPi;2000Þ=ðPi;1990=SPi;1990Þ
Si;1;t ¼ ðVotersi;2000=SVotersi;2000Þ=ðVotersi;1990=SVotersi;1990Þ
Si;2;t ¼ ðAutosi;2000=SAutosi;2000Þ=ðAutosi;1990=SAutosi;1990Þ
Si;3;t ¼ ðEnrolli;2000=SEnrolli;2000Þ=ðEnrolli;1990=SEnrolli;1990Þ
R2 ¼ 0:789

adj R2 ¼ 0:771
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For the same reasons discussed in regard to the corresponding ratio-correlation

model found in chapter 8, we retain the model as shown in Exhibit 17.1 to use for

post-censal estimates during the period 1991-1999.

The final “controlled” population estimates are shown in Table 17.3. The

appendix shows the results of these steps in detail.

Reverse Demographic Accounting. In a paper given at the annual meeting of

the Population Association of America, Jerry McKibben (1988) examined the

accuracy of the US Bureau of the Census’s 1975 county population estimates for

Indiana by comparing them with “expected Census” figures generated by the

reverse demographic method. This method develops “expected” 1975 census

figures by algebraically subtracting the reported number of net migrants for the

period 1975-1980 from the reported 1980 census count and adding to this figure

reported deaths and subtracting reported births for the same period.

This technique can be used to generate census quality inter-censal estimates for

the mid-decade year (years ending in five) in the United States (and elsewhere, given

similar data) when the inter-censal period is bounded by census counts that had the

five-year migration question on the long form (1950 to 2000). It also can be used in

conjunction with the inter-censal estimation methods discussed previously in this

chapter with the mid-decade point estimate found using McKibben’s technique

serving as a census quality number. This means, for example that the geometric

method could be used to estimate populations for the first four years following a

decennial census ( the years ending in 1, 2, 3, and 4) where the ratio of change is

determined over the five year period from the decennial census to the subsequent

mid-decade point. Similarly, the geometric method could be used for the last four

years (the years ending in 6, 7, 8, and 9) where the geometric ratio of change is

determined from the mid-decade point to the subsequent census. Obviously, the

arithmetic method could follow a similar path while two rate-correlation models

could be constructed for such an inter-censal period, the first for the period from the

decennial census to the mid-decade year and the second from the mid-decade year to

the subsequent census. The first model would be used to estimate the years ending in

1, 2, 3, and 4, while the second could be used for the years ending in 6, 7, 8, and 9.

17.2 Pre-censal Methods

Backward Extrapolation (Backcasting). This can be done using any model of change.

For purposes of exposition, we use again here the arithmetic and geometric models.

BackwardExtrapolation (Backcasting) using theArithmeticMethod. For purposes

of pre-censal estimation, equations [17.1] and [17.2] can be restated as follows,

respectively

D ¼ ðPb � PbþxÞ=ðyÞ (17.9)

Pb ¼ Pbþx þ ½ðyÞðDÞ� (17.10)
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where D is the average absolute change, Pb+y is the population in the census

following the census at time b, Pb is the population in the backcast launch year,

and y is the number of years in the inter-censal period (i.e., the number of years

between the backcast launch year census and the successive census). A pre-censal

estimate (prior to time b) can then be generated using equation [17.9] to find D,
which then can be used as shown in equation [17.10] to backcast estimates prior to

a census at time b.

Table 17.3 1995 County Population Estimates for the

State of Washington Using the Rate-Correlation Method

Adams 14,635

Asotin 19,174

Benton 130,510

Chelan 60,608

Clallam 62,054

Clark 279,539

Columbia 4,244

Cowlitz 88,693

Douglas 29,514

Ferry 7,192

Franklin 43,487

Garfield 2,280

Grant 63,325

Grays Harbor 68,227

Island 69,264

Jefferson 23,968

King 1,622,180

Kitsap 217,061

Kittitas 30,395

Klickitat 17,829

Lewis 63,917

Lincoln 9,209

Mason 45,805

Okanogan 37,853

Pacific 20,588

Pend Oreille 10,315

Pierce 651,452

San Juan 11,804

Skagit 91,498

Skamania 9,101

Snohomish 523,122

Spokane 399,293

Stevens 34,698

Thurston 178,211

Wahkiakum 3,664

Walla Walla 52,832

Whatcom 147,001

Whitman 41,563

Yakima 210,464

State of Washington 5,396,569
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As an example of arithmetic backcasting, suppose we want to estimate the

population of the 39 counties of Washington from 1999 to 1991. Using the 2010

and 2000 census data shown in Table 17.4, each county’s average absolute (annual)

change is found in right-most column (using equation [17.9], which was used in

conjunction with equation [17.10] to develop the annual estimates from 1999 to

1991. For purposes of assessing accuracy, we also show an estimate for 1990 along

with the 1990 census population in Table 17.4

Backward Extrapolation (Backcasting) using The Geometric Method For

purposes of pre-censal estimation, equations [17.3] and [17.4] can be restated as

follows, respectively

r ¼ ½ðPb=PbþyÞð1=yÞ� (17.11)

Pbþx ¼ ðPbÞ½ðrÞx� (17.12)

where r is the average (annual) ratio of change, Pb+y is the population in the census

following the census at time b, Pb is the population in the backcast launch year, and

y is the number of years in the inter-censal period (i.e., the number of years between

the backcast launch year census and the successive census). A pre-censal estimate

(prior to time b) can then be generated using equation [17.11] to find D, which then
can be used as shown in equation [17.12] to backcast estimates prior to a census at

time b.

As an example of geometric backcasting, suppose we want to estimate the

population of the 39 counties of Washington from 1999 to 1991. The 2010 and

2000 census data shown in Table 17.5 and each county’s average (annual) ratio of

change is (found in right-most column, using equation [17.11]) was used in

conjunction with equation [17.12] to develop the annual estimates from 1999 to

1991. For purposes of assessing accuracy, we also show an estimate for 1990 along

with the 1990 census population in Table 17.5.

Assessment of Arithmetic and Geometric Backcasting. Unlike the situation with

inter-censal estimates, one can do an “ex post facto” assessment of the accuracy of

pre-censal estimation methods, using the same approach that is used for this type of

assessment post-censal methods (e.g., ratio-correlation). This is fortunate because

there is much more room for pre-censal estimates to go astray than is the case for

inter-censal estimates. It was for these reasons that we provided an assessment of

arithmetic and geometric backcasting in tables 17.4 and 17.5, respectively

Generally, both methods show reasonable levels of accuracy at ten years away

from the backcasting launch point. The arithmetic backcast has a Mean Absolute

Percent Error (MAPE) of 8.70% for the estimates it generated in 1990 while the

geometric backcast has a MAPE of 9.37%.

In closing our discussion of the arithmetic and geometric methods as backcasting

tools, we note that Bob Schmitt (1977, 1968) appears to have developed estimates

for Hawaii from 1832 to 1848 using the geometric method, which most surely was

implemented via backcasting. With this, we now turn our discussion to more

other forms of developing pre-censal estimates. The Hamilton-Perry Method,
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for example, which can be used in reverse to generate pre-censal estimates. We then

follow the discussion of the Hamilton-Perry Method with one on inverse projection.

Another Backcasting Tool: The Hamilton-PerryMethod in Reverse. In chapter 10,

we discussed the Hamilton-Perry Method, which is a variant of the cohort-

component method that has far less intensive input data requirements (Hamilton

and Perry 1962; Smith et al. 2001: 153-158; Swanson et al. 2010). Running it in

reverse to obtain pre-censal estimates requires data from the two earliest censuses

so that we can move a population by age (and sex) backwards, from time t to time t-

k using reverse cohort-change ratios (RCCR). The formula for a RCCR is:

nRCCRi;x ¼n Pi;x�k;t�k =nPi;x; t (17.13a)

where

nPi,x-k,t-k is the population aged x-k to x-k + n in area i at the earliest census (t-k),

nPi,x,t is the population aged x to x + n in area i at the census at time t, which

follows the earliest census (t-k) for area i,

and k is the number of years between the earliest census and the one that follows it

The basic formula moving a population into the past to do an estimate (or a

backcast) is:

nPi;x� k; t� k ¼ ðnRCCRi;xÞ�ðnPi;x;tÞ (17.13b)

where

nPi,x-k,t-k is the population aged x-k to x-k-n in area i at earliest census (t-k)

nRCCRi,x ¼ nPi,x-k,t-k/nPi,x,t
and

nPi,x,t is the population aged x to x+n in area i at the earliest census(t),

One advantage of RCCRs is that we can backcast age groups 0-4 and 5-9

(from those aged 10-14 and 15-19, ten years later, respectively). This is not possible

for the forward-looking Hamilton-Perry Method, which generally employs Child

Woman Ratios. A backcast of the oldest age group also is more straightforward than

in the projection of it in the forward looking version of the Hamilton-Perry Method.

For example, if the final closed age group is 80-84, with 85+ as the terminal

open-ended age group in the census following the earliest census, then calculations

for the RCCRi,x+

RCCRi;85þ ¼ Pi;75þ;t=Pi;85þ;tþk (17.14a)

The formula for estimating the population 75+ of area i for the year t-k is:

Pi;75þ;t�k ¼ ðPi;75þ;t=i;85þ;tþkÞ�Pi;75þ;t (17.14b)
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Table 17.6a provides an example of a backcast from a Reverse Hamilton-Perry

Method. It uses 1930 and 1920 age-sex census data on Native Hawaiians in Hawai’i

to develop RCCRs and then backcasts the 1920 Native Hawaiian population to 1910

to generate population estimates by age and sex for Native Hawaiians in Hawai’i.

Because this group was counted in the 1910 census, we can compare the “pre-

censal” estimates of them to the enumerated numbers to get an idea of the method’s

accuracy. These comparisons are found in Table 17.6b. The method underestimated

the total population of Native Hawaiians in 1910 by 930 people (-3.27%). For the

estimates by age group for both sexes combined, the MAPE is 7.10%.

When one considers the use of a CCR (and its inverse, the RCCR), it is easy to

see that the survivorship ratio found in a life table is a CCR (and the inverse of a

survivorship ratio is an RCCR). The survivorship rates computed from the “nLx”

column (Years lived in a given age interval) of a life table are equivalent to the

CCRs calculated for age groups of a specific width, while the survivorship rates

computed from the “Tx” column (Years lived at this and all subsequent ages) are

equivalent to the CCRs calculated for open-ended terminal age groups. The rela-

tionship between survivorship rates calculated from Tx and CCRs calculated from

open-ended, terminal age intervals brings up a way in which the reverse Hamilton-

Perry Method can be used to estimate a total pre-censal population. The way to

proceed is to first consider the relationship between T0 and Tx in a life table as

follows:

xS0 ¼ Tx=T0 (17.15a)

where

xS0 ¼ the survivorship rate from birth to the open-ended terminal age group, x

Tx ¼ Years lived in the open-ended, terminal age group

T0 ¼ Years lived at birth and all subsequent age groups

Re-arranging the terms in Equation [17.15], we see that

Tx ¼ xS0
�T0 (17.15b)

and, further that

T0 ¼ ðTx=xS0Þ (17.15c)

The preceding equations suggest that an RCCR can be constructed such that a

total pre-censal population can be estimated. First, note that

RCCRkþ ¼ P0þ;t=Pkþ;tþk (17.16a)

The formula for estimating the total population 0+ of area i for the year t-k is:

P0þ;t�k ¼ RCCRkþ�Pkþ;t (17.16b)
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As an example, we again turn to historical data on the Native Hawaiian population

in Hawai’i. Here we will use 1930 and 1910 data for Native Hawaiians to estimate a

RCCR for age group 20+ and then apply thisRCCR to theNativeHawaiian population

aged 20+ in 1910 in order to estimate the total number of Native Hawaiians in 1890.

As shown in Table 17.6a, there are 13,120 Native Hawaiians age 20 years and over in

1930, while in 1910 there are 25,095 Native Hawaiians in total, of whom 15,001 are

aged 20 and over. From these data, we find that:

RCCR20þ;1910 ¼ 25;095=13;120 ¼ 1:9127

And that

P0þ;1890 ¼ 1:9127�15;001 ¼ 28;693

So, our estimate of the Native Hawaiian population of Hawai’i in 1890 is 28, 693.

This estimate is 16.7 percent less than the number reported by Schmitt (1977: 25)

from the Hawaiian Kingdom’s 1890 census, which is 34,436. Given that migra-

tion of Native Hawaiians was not a major factor in its population change (see,

e.g., Schmitt 1968: 183), it appears that mortality rates were dramatically higher

for this population between 1890 and 1910 than it was between 1910 and 1930,

which, in fact, the available evidence suggests is the case (Nordyke 1989; Schmitt

1968; Schmitt 1977). The correct RCCR20+ for estimating the total number

of Native Hawaiians in 1890 from those aged 20 and over in 1910 is 2.2956 ¼
34,436/15,001.

In summary, the Reverse Hamilton-Perry appears to be capable of working well

going back ten years, but backcasting to points in time beyond ten years from a

census is subject to higher levels of error. This is not surprising for populations

going through dramatic changes in the components of change that are summarized

in the form of cohort change ratios and reverse cohort change ratios. As a means

of accounting more directly for changes in these components, we turn to a tool

specifically developed for this purpose, inverse projection (Barbi et al. 2004;

Lee 1985).

Inverse Projection. Since Lee (1974) first developed Inverse Projection (IP), the

method has undergone revisions and has been used to construct population histories

of countries, cities, and parishes or missions, covering a wide range of demographic

histories (McCaa 2001). Moreover, the evidence suggests that with very little input

data, IP can deliver accurate demographic estimates (Lee 1985; McCaa 2001, 1989;

and McCaa and Vaupel 1992). McCaa (2001) cautions, however, that as is the case

with most demographic techniques, as input data quality and detail increase, so do

the accuracy and quality of the estimates.

The IP variations differ in their use of models to supplement missing or unknown

parameters, but in all cases it provides refined mortality and fertility rates, as well as

age composition from crude birth and death rates and an initial estimate (or census)

of the total population (McCaa 2001). In order to operate reasonably well, IP needs
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relatively accurate vital events data. Like, the cohort-component method, it does

need age data, but they need not be detailed and may be estimated for the year in

which an IP is launched. Unlike, the cohort-component method, however, which

uses age-specific rates to generate counts, IP uses counts of vital events to estimate

age-specific rates. To generate an estimate, IP requires a count of annual births and

deaths from the launch year to the target year and an estimate of the size of launch

year population. In the absence of reliable empirical age data for the launch year,

model age structures of mortality, fertility, migration, and, most importantly, the

initial population may be relied upon (McCaa 2001).

In the initial IP approach developed by Lee (1974), only the total population is

required at the launch year along with counts of births and deaths for each IP cycle

(e.g., annual, five year, ten year). Where a count of the total population is known at

one or more of the cycles, the total derived from the IP is subtracted from the

observed total to obtain an estimate of net migration, which is apportioned equally

among the intervening IP cycles.

The age structure of the population at the launch year is needed, but this can be

obtained from a model if it is not available otherwise. Moreover, even if the launch

year age structure is inaccurate, its effect on accuracy diminishes and at some point

becomes inconsequential due to ergodicity - the condition in which a dynamic

process “forgets” the state in which it started, which in this case is the launch year

age structure (Lee 1985; and Wachter 1986). This has many implications, including

the fact that within a century even a very peculiar age structure is “forgotten” as

birth, death and migration rates displace it. However, this is not the case with the

size of a population, which exerts a powerful influence for a long time (McCaa and

Vaupel 1992).

Borrowing from McCaa’s (2001) description, we here describe Lee’s (1974)

original exposition of inverse projection. It starts when an arbitrary set of age

specific death rates from a single parameter family of life tables is applied to the

launch year population. Multiplying these age-specific rates by the numbers of

people in the corresponding age groups at the launch year provides estimates of

the age-specific deaths for the initial inverse projection cycle. When the age

specific-deaths are summed over all age groups and divided by the total number

of actual deaths, an adjustment factor is produced, the normalized death ratio, or

“k.” This adjustment factor, k, is a measure of the discrepancy between the

observed number of deaths and the total number resulting from the inverse projec-

tion. This same adjustment factor, k, is then used to adjust the age specific deaths so

that they correspond to the independently generated total number of deaths. This is

accomplished in several steps. First, the age specific death rates found in the model

life table used in step one are subtracted from an adjacent model life table in the

same family (e.g., the “West model life tables). The result is a domain of mortality

variability at each age. This domain is used to interpolate to an adjusted age-specific

death rate. The calculation is accomplished by simply multiplying k and the

mortality domain at each age and adding the result to the first approximation.

This yields a final estimate of deaths for each age group. When summed, they

equal the total deaths for the period.
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Netmigration by age is apportioned crudely as a function of age-specific rates and

a level parameter for each period. Where migration is a minor factor relative to

mortality, this solution – required due to a lack of data – produces acceptable results.

The number of births for each interval is determined by the stream of vital

events. What is lacking is a summary fertility statistic which takes into account the

age structure of the population. A solution common to all inverse projection

algorithms is the estimation of the gross reproduction ratio from the number of

births, the age structure of the population, and normalized age patterns of fertility.

McCaa (2001) notes that the “k” adjustment factor also can be used as a measure

of goodness of fit where model age data are required. Because k is an indicator of

the age-standardized intensity of mortality relative to the age structure of the initial

population and to the pair of age-specific mortality schedules used to inverse project

the population to the next period, the sum of squares of this ratio (K2) is a useful

measure of goodness of fit, when the birth and death series, and initial population

size are held constant. Note that this does not directly account for migration.

As a means of dealing with populations not “closed” to migration, back projection

was developed by Wrigley and Schofield for their massive reconstruction of the

population of England, 1541–1871 (Wrigley and Schofield 1981). This technique is

designed to develop migration estimates from a terminal age structure by backcasting

the population against the flows of births and deaths (McCaa 2001). Lee (1993)

criticized this approach on several grounds including the fact that it ignores ergodicity

as well as the fact it “resurrects people who have died into the oldest age group, an

attempt that is, in practice, hypersensitive to error.” It should be noted, however, that

reasonable estimates of net migration can be derived from backcasting as long as the

input data are reasonably accurate (Al-Jiboury and Swanson 1988).

The debate over IP versus back projection led to the development of Generalized

Inverse Projection, which exploits whatever data are available as well as a broad

range of assumptions or constraints, including components derived from back

projection (McCaa 2001; Oeppen 1993a, 1993b). Generalized inverse projection

uses a standard method of demographic accounting and a standard non-linear

optimization algorithm to overcome a range of empirical and theoretical problems.

Fortunately, McCaa (2001) has developed “POPULATE,” an online IP tool

that implements a range of variations of the IP approach. For those interested in

using this tool to develop pre-censal estimates, we strongly recommend not only

reading McCaa’s essay (2001) and the materials associated with it, but also running

the example data sets, all of which can be found at http://www.hist.umn.edu/

~rmccaa/populate/index.htm.

17.3 Summary

Population projections seem to be involved with a fair amount of debate and

conflict (D’Allesandro 1987; Moen 1984; Smith et al. 2001; Swanson and

Tayman 1995). Similarly, historical population estimates, especially pre-censal
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ones going relatively far back in time, appear to generate intense debates. Stannard

(1989) takes great issue with estimates of the number of people provided by Schmitt

(1968, 1977) and by Nordyke (1989) in Hawai’i prior to the arrival of Captain Cook

and general contact with Europeans. The crux of the debate is that Stannard

believes that the number of pre-contact Hawaiians was much higher than the

numbers estimated by Schmitt and by Nordyke. Similarly, Thornton (1987)

believes that most of estimates of Native American population numbers prior to

European contact also are too low, as does Stannard (1992). Less contentious, but as

lively, have been the debates over inverse projection and backcasting (McCaa 2001;

Oeppen 1993a, 1993b). Even less contentious are the inter-censal estimates, which

have less room for error than do pre-censal estimates. The importance of accurate

historical information is reflected in these debates. Among other functions, the

information sets the context for social agreements on both our present and our

future (Mead 1929). For these and a myriad of other reasons, the ability to develop

estimates of historical populations, both near-term and those in the distant past, are

an important component in the estimation toolkit.
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Chapter 18

Future Directions in Population Estimation

Where estimation methods primarily differ is in their specific variables, data

sources, and the ways in which those variables and data sources are related to

each other. Future changes in the field of population estimation will therefore stem

from changes in the availability of historical data, the tools for organizing and

manipulating those data, our understanding of how different variables interact to

determine population change, and our ability to build new models or develop new

methods based on these new insights. The inspired analyst will incorporate factors

not previously considered in developing estimates, or will put them together in

creative new ways.

What recent developments might change the way we make population-

estimates? Where is current research headed? Are any “paradigm shifts” imminent?

In this chapter, we describe several promising new developments in the field of

population estimation, make some suggestions regarding areas needing further

research, and offer several predictions regarding future developments. We also

discuss several recent changes in the scope of estimates and some of the challenges

we see on the horizon.

We distinguish between two types of developments pertaining to population

estimates. Technological developments are those affecting the availability of input

data and the computing tools used to organize and manipulate those data. Method-

ological developments are those affecting the models used to formulate

relationships among input data and estimate those relationships into the post-censal

period. Put another way, technological developments affect the resources we have

to work with, whereas methodological developments reflect new ways of using

those resources. Although this distinction is not always clear-cut, we believe it

helps clarify the developments discussed in this chapter.
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The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0_18, # Springer Science+Business Media B.V. 2012

357



18.1 Technological Developments

Three technological developments—greater data availability, expanding computing

power, and the growth of Geographic Information Systems (GIS)—are transforming

the way we make population estimates. These developments have already had a

substantial impact and promise to have an even greater impact in the coming years.

18.1.1 Data Availability

Sources of mortality, fertility, and migration data have evolved gradually over the

past several decades. Perhaps the most important improvement was the development

of annual migration estimates based on IRS records, which first became available

during the late 1970s. These data provide an alternative to school enrollment for

developing migration estimates. Other than that, data on the components of popula-

tion growth have changed very little over the last half century. As seen throughout

this book, administrative records play an important role in the development of

population estimates. Without them population estimation methods would largely

be confined to extrapolation and interpolation methods described in Chapters 6

and 17.

While it is difficult to predict whether a new source or type of administrative

record is on the horizon, the way these data are used and combined are likely to

evolve. For example, Swanson and Walashek (2011) describe a Census-Enhanced

Master Address File (CEMAF) system built on a combination of four elements:

(1) administrative records; (2) the continuously updated Master Address File;

(3) survey data; and (4) modeling and imputation techniques. CEMAF could deliver

population estimates that are timely, comprehensive, and internally consistent and

also estimates of housing and demographic and socio-economic characteristics for

the national and subnational areas. We also believe that the use of parcel files will

continue to escalate for organizations that require spatially intensive population and

housing estimates.

The biggest sea change in data that will impact population estimation is the

American Community Survey (ACS) discussed in Chapter 3. Now fully implanted,

the ACS has replaced the census long-form. It is designed to provide accurate and

timely social, demographic, and economic indicators on a “continuous measure-

ment” basis for federal, state, and local governments, and businesses. Annual

characteristics are available for many of geographic areas where they were not

previously available. The ACS migration data may be particularly useful because

there are so few alternative sources of migration data. The ACS is not without its

share of issues (e.g., small sample sizes, implausible temporal changes, interpreta-

tion of multi-year samples, and different residency rules from the census). These

issues limit its effectiveness as a replacement for the census long form and its use

in post-censal population estimation. But currently the ACS is the only game in town
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for providing detailed social, demographic, and economic characteristics. It is safe

to say that considerable research will be directed along two major themes: 1) a more

comprehensive understanding of the issues and their implications in using the ACS;

and 2) strategies for improving the efficacy of the ACS, such as those suggested by

Rogers, Little, and Raymer (2010) for dealing with its migration information.

Although there have been some recent changes in the sources of data used for

making population estimates, there have been major changes in the formats in which

those data are available. For centuries, hard copy (i.e., printed reports) was the only

available format. This format was slow, cumbersome, and expensive. Recent

decades have seen the development of computer tapes, diskettes, CDs, and the

Internet. Many types of data are now available instantly and for free, simply at the

click of a mouse. Information technology has revolutionized our ability to access

and use data for population estimates and a variety of other purposes. It takes no

great leap of faith to anticipate substantial further improvements along these lines.

18.1.2 Computing Capabilities

Before 1950, most population estimates were generated manually using pencils

and paper or rudimentary mechanical devices for doing arithmetic operations. The

dawn of the computer age not only made it possible to produce population estimates

much more quickly and easily and for a wider range of geographic areas and

demographic categories, but allowed the incorporation of large, complex datasets

into the estimation process (e.g., parcel files, IRS tax returns). Increases in comput-

ing capabilities will undoubtedly influence future developments in the field of

population estimation, just as they have in other fields where estimates are built

on complex models driven by masses of data (e.g., meteorology).

In the early years of the electronic era, automated estimation programs were

written using a high-level programming language (usually FORTRAN) and were

run through a centralized computer. These programs required hundreds of punch

cards and were slow, inefficient, and often frustrating. The advent and widespread

use of personal computers, spreadsheet programs, and statistical analysis packages

has revolutionized the production, analysis, and evaluation of population estimates.

Spreadsheets and statistical analysis packages are simpler to use, more tolerant or

errors, and require less training than formal programming languages. They have

many built-in functions and macros to perform repetitive tasks, facilitating the

creation, display, printing, and graphing of data (e.g., Klosterman, Brail, and

Bossard 1993). Greater computing power has also made possible the development

of powerful desktop GIS applications. These developments have provided the

technical infrastructure needed to support ever more complicated, spatially-

intensive, and data-intensive estimation methods.

Distributed computing environments have made a comeback in recent years,

along with new software and programming applications. Many analysts nowwork in

networked computer environments, making it easy to share information and obtain
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access to centralized sources of information. Relational database management

systems, modern computing platforms, and user-friendly interfaces are being used

more and more frequently for population estimates. These new technologies greatly

facilitate the development, analysis, and distribution of population estimates.

Relational database storage and retrieval systems make it easier to manage,

maintain, document, and verify information. Modern computing platforms contain

structured and modular programming algorithms. These platforms are easier to

maintain, can handle a wide range of computational algorithms, and permit a

detailed documentation of computer code. Finally, a well-designed, user-friendly

GUI interface can tie the entire estimation system together (e.g., data, results, and

computer programs). This frees one from having to perform a number of tedious,

time-consuming chores, makes it easier to explain estimation methods to data users,

and greatly facilitates the analysis and review of the estimates.

The Internet, too, influences the production of population estimates. We believe

“estimation tool kits” will likely become widely available on the Internet in the

years ahead, especially with the increasing use of the “cloud.” These tool kits will

contain a variety of computational algorithms and have sophisticated data manage-

ment and output capabilities, enabling analysts to apply their own data and methods

and develop reports, charts, graphs, and data files. This will substantially reduce the

time required to put together the appropriate software for constructing population

estimates.

The Internet has already made it quicker, easier, and less costly to obtain the data

needed for population estimates. However, this is still mostly a “manual” process

that requires locating information site-by-site. Looking ahead, we expect this

process to become automated, perhaps through a common, easy-to-use interface

that locates and integrates all the relevant data sources, regardless of their file

structure, format, or location on the Internet.

18.1.3 Geographic Information Systems (GIS)

Most demographic analyses have a strong geographic component. For example, the

population estimates analyzed in this book referred to specific geographic areas

such as states, counties, census tracts, or parcels. Many other data-intensive fields

(e.g., urban planning, marketing, epidemiology, and environmental science) also

have close relationshipswith geography.As discussed inChapter 2, it is not surprising,

then, that a computer-based methodology has come into widespread use for the

geographic display and analysis of geo-spatial data.

A GIS provides the tools for linking spatial data with non-spatial data. It allows

one to organize data from one or more sources into a variety of geographic areas

(e.g., census tracts, ZIP codes, market areas) and helps data users visualize spatial

relationships. GIS provides a methodology for quickly and efficiently organizing,

analyzing, and displaying a large amount of spatial data. The ability to geocode

(i.e., assign an observation of a variable to a specific geographic area) data such as
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building permits, electric customers, tax records, births, deaths, school enrollment,

and other symptomatic indicators of population change will greatly enhance our

ability to make demographic estimates for very small units of geography. GIS also

makes it possible to analyze historical demographic trends for very small geo-

graphic areas. These capabilities will facilitate the refinement of current estimate

methods and possibly the development of new ones.

18.2 Methodological Developments

The technological developments discussed above help improve the quality and

quantity of the data and tools available for making population estimates. Will

these developments lead to better population estimates? That depends primarily

on improvements in how those tools are used. Methodological advances are likely

in at least four areas: 1) synthetic population and household estimates, 2) spatial

regression models, 3) remote sensing, and 4) measuring uncertainty. All of these

developments have the potential to raise the overall utility of population estimates;

some of them may reduce estimate error as well.

18.2.1 Synthetic Populations and Households

For many years population estimates were made primarily at the national and

state levels. In recent decades estimates have been carried out at progressively

lower levels of geography. Estimates now are routinely made for subcounty areas

such as census tracts, block groups, and traffic analysis zones. There is a growing

demand for estimates for even smaller areas such as tax assessor parcels and block

faces. Taking this trend to its logical conclusion implies the development of

estimates for individual households and people, also known as synthetic estimates.

Synthetic households are comprised of one or more individuals; each has an

associated set of characteristics (e.g., age, sex, income, labor force and marital

status). Synthetic estimates not only have value in their own right, but support

the expanding array of micro-simulation models being developed and used today

(e.g., Davidson, Donnelly, Vovsha, Freedman, Ruegg, Hicks, Castiglione and

Picado 2007; Statistics Canada 2011; Waddell, Borning, Noth, Freier, Becke, and

Ulfarsson 2003). We believe estimates for very small areas—including estimates of

individuals and households—will become increasingly common.

Making estimates at this level may seem like science fiction, but several

approaches for estimating individual households and people have already been

constructed. Most of the existing procedures for synthesizing population and

housing data are based on the Iterative Proportional Fitting (IP) method, discussed

in Chapter 13, where the number of individuals in each cell of the cross-classification

table is estimated (Muller and Axhausen 2011). Beckman, Baggerley, and McKay
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(1996) were the first to apply IP to the problem of generating synthetic populations.

The unadjusted data cells are referred to as the “seed” cells, and the selected

totals are referred to as the “marginal” totals. IP uses a sample dataset, most often

PUMS, to establish the correlation between the dimensions or attributes under the

condition that the mapping of the summations in lower dimensions should fit the

margins given by census/ACS data.

The direct application of IP for synthesis of data requires specific conditions to

work efficiently. The marginal column totals and the marginal row totals must add

up to the same value, and the marginal cell values cannot be zero. Guo and Bhat

(2007) alleviated the zero-cell-value problem and the inability to control the

statistical distributions of both household- and individual-level attributes. Pritchard

and Miller (2009) also improved the IP method by allowing many more attributes

per agent through a Monte Carlo simulation based on a sparse list-based data

structure. IP-based methods are based on pre-defined categories of individuals.

A different type of categorization would yield a different classification table,

which would also change the end results of the analysis. This phenomenon is called

the modifiable attribute cell problem (MACP). Otani, Sugiki, Vichiensan, and

Miyamoto (2011) have proposed a method for dealing with the MACP that

determines the best combination of categories. The best cell organization is one

that minimizes the number of cells in the table with respect to the key output

variable that has been defined and used as an evaluation criterion.

18.2.2 Spatial Regression Models

As discussed in Chapter 8, regression methods are widely used for post-censal

population estimates, most notably the ratio-correlation method. Over the years a

number of modifications to the basic ratio-correlation model have been tested

including alternative measurements of the variables (i.e. differences and natural

logarithms), use of dummy variables and stratification, and use of the average of

estimates from single variable regression models. Swanson and Tedrow (1984)

suggested that the logarithmic transformation improved estimate accuracy because

that transformation may reduce the effects of spatial autocorrelation. They suggested

that it would be useful to examine spatial correlation issues involving regression

models for population estimates. To our knowledge, this issue still has not been

investigated.

Although spatial statistics have been applied to numerous fields in the last few

decades, it has drawn demographers’ attention only recently (Chi and Zhu 2008).

Spatial autocorrelation can be loosely defined as a similarity (or dissimilarity)

between two values of an attribute that are nearby spatially (Griffith 1987: 9).

With positive spatial autocorrelation, high or low values of an attribute tend to

cluster in space whereas with negative spatial autocorrelation, locations tend
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to be surrounded by neighbors with very different values. Spatial autocorrelation

can be measured by various indexes, the most well-known being Moran’s I statistic

(Moran 1948). Spatial autocorrelation, like temporal autocorrelation, violates

standard statistical techniques that assume independence among observations.

Regression analyses that do not compensate for spatial dependency can have unstable

parameter estimates and yield unreliable significance tests (Anselin and Griffith

1988). Despite its complexity, spatial demographic analysis has in recent years

become more accessible for demographers to explore, due to the development of

user-friendly spatial data analysis software packages.

18.2.3 Remote Sensing

Remote sensing and GIS have been used to estimate population, particularly for

large areas. Wu, Qui, and Wang (2005), provide a comprehensive review of the

use of remote sensing for population estimation before 2005. Early remote sensing

applications involved manually counting the number of houses using aerial photos

(Lo 1986), which was followed by automatic approaches with satellite remote-

sensing imagery to estimate population density (Lo 1995). The launch of the IKONOS

satellite in 1999, with very-high-resolution sensors, offered new opportunities to

investigate urban physical configurations at a fine spatial scale. In addition, airborne

Light Detection and Ranging (LiDAR) has become widely used for deriving high-

resolution vertical information in urban areas. A recent issue of the International

Journal of Remote Sensing focused on recent developments in population estima-

tion using remote-sensing and GIS technologies (Wang and Wu 2010). Below we

summarize a few papers from this special issue to illustrate the current state-of-the

practice.

Dong, Ramesh, and Nepali (2010) combined LiDAR, Landsat Thematic Map-

per, and a parcel data set for a study area in Denton, Texas. Using census blocks as

samples, building count, building area, and building volume were calculated from a

digital surface model, zonal statistics, and 2000 census data using a set of OLS

and geographically weighted regression models. They found that the population

count was often overstated when population density of the census block is low

(<300 persons km�2) and was always understated when the population density is

high (>3,500 persons km�2). They concluded the minimum estimation error of

�23% was too imprecise for small area population estimation and suggested the

low accuracy was caused by the lack of high resolution LiDAR and image data,

which made it difficult to separate trees and buildings.

Lu, IM, Quackenbush, and Halligan (2010) using higher resolution data

than the previous study, estimated the population of census blocks in a study area

of Denver, Colorado. This research examined the utility of QuickBird imagery

and LiDAR data using two approaches: area-based and volume-based. Residential-

building footprints were first delineated from the remote-sensing data using image

segmentation and machine-learning decision-tree classification. Regression
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analysis was used to model the relationship between population and the area

or volume of the delineated residential buildings. Both approaches resulted

in the successful performance for estimating population with high accuracy

(coefficient of determinations ¼ 0.80 – 0.95; root-mean-square errors ¼ 10 – 30

people; relative root-mean-square errors ¼ 0.10 – 0.30). The area-based approach

was slightly better than the volume-based approach because the residential areas of

the study sites are generally homogeneous (i.e. single houses), and the volume-

based approach is more sensitive to classification errors. LiDAR-derived shape

information such as height greatly improved population estimation compared to

population estimation using only spectral data.

Deng, Wu, and Wang (2010) explored the feasibility of incorporating GIS,

remote-sensing, and demographic data into the housing unit method to estimate

the population in census blocks in Grafton, Wisconsin. Two major components of

the housing unit method, housing unit counts and persons per household (PPH),

were obtained by modeling their relationships with demographic, geographic, and

spatial factors using a sequence of OLS regression models. The results indicated

that spatial factors derived from remote sensing using the dasymetric-mapping

method, GIS datasets, and demographic information can significantly improve the

accuracy of small-area population estimation.

18.2.4 Measuring Uncertainty

Population estimates cannot provide perfectly accurate estimates of current or past

populations (see Chapter 14 for a detailed discussion of forecast accuracy). The

uncertainty inherent in population estimates has been accounted for by developing

probabilistic intervals that provide an explicit statement of the level of error

expected to accompany a specific point estimate. However, the practice of

indicating the direction and magnitude of error in post-censal population statistics

is still virtually, if not, completely absent in statistical offices

We believe it is important to provide a direct measure of error and the distribu-

tional properties of population estimates, and that future research will focus

increasingly on the measurement of uncertainty in population estimates. The

ratio-correlation method offers a ready-made, low cost approach to developing

measures of estimate uncertainty that is greatly underutilized. Perhaps, probabilistic

intervals can also be developed for the housing unit method by treating its

components as stochastic and using margins of error from the ACS to estimate

their uncertainty. Although such research may not directly improve estimate accu-

racy, it will enhance our understanding of the uncertainty inherent in population

estimates, particularly how uncertainty varies by population size and growth

rate, geographic region, length of the post-censal period, estimation method, and

perhaps other factors as well. We hope that private companies and federal, state,

and local government agencies will start producing explicit probabilistic intervals

to accompany their estimates.
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18.3 Scope of Estimates

Not only are changes occurring in the technology and methodology of population

estimates, but in their scope as well. In particular, estimates are being made for

smaller and more varied units of geography and for a broader array of demographic

characteristics. This trend is driven by market and other demands for such estimates

and by technological changes making such estimates possible. The demand for

small-area population estimates is increasing. In the public sector estimates are the

basis for such purposes as constructing budgets, developing transportation systems,

planning for schools, and determining the optimal location of public facilities.

Private sector uses include financial planning, site analyses, sales forecasting, target

marketing, and new product introduction. Many of these uses require estimates for

very small levels of geography and/or for very detailed population and other

characteristics.

Trends in marketing illustrate the growing demand for greater geographic and

demographic detail (Martins, Yusuf, and Swanson 2011; Pol and Thomas 1997:

36-37). In the 1960s, mass marketing was the order of the day. The market was seen

as a homogeneous mass of consumers, each one pretty much like any other. Over

time, this concept gave way to the notion of target marketing in which specific

products or brands are directed toward specific types of consumers. In response to

the development of even more refined demographic clusters, target marketing has

given way to micro-marketing, which focuses on characteristics at the household

level (Verdino 2010). Micromarketing grew to prominence in the 1990s, as

personal computers allowed easier segmentation and dissemination of information

to customers. Micromarketing attempts to pinpoint very small groups of potential

customers and focus on their buying patterns. Armed with information from

an ever-growing number of consumer data bases, micro-marketers are targeting

customers down to the block or even the household level. As was noted in

Chapter 12, microsimulation methods appear to be ideally suited for this use.

We believe the demand for detailed estimates for very small areas will continue

to grow. Technological changes—such as improvements in GIS and the greater

availability and variety of geocoded data bases—will allow practitioners to meet

that demand more easily than they could in the past. The development of synthetic

population and household estimates will be particularly useful for these purposes.

The trend toward greater geographic and demographic and other characteristic

detail in estimates is likely to continue and perhaps to accelerate.

18.4 Some Challenges

Earlier in this chapter, we mentioned that more and more databases are being

developed, containing more and more information on more and more people.

Although these databases are extremely useful for many purposes, their growth
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and widespread availability raise serious questions regarding the confidentiality of

data. A backlash against the collection and utilization of data—based on privacy

and confidentiality concerns—could have serious repercussions for all data users

(Anderson and Seltzer 2009; El-Badry and Swanson 2007). In particular, it could

threaten the development of linked data systems based on geographic or personal

identifiers if ethical standards are in fact or in principle compromised. This would

be a major blow for the production of population estimates. Seltzer (2010) provides

important ideas regarding the balance between the maintenance of ethical standards

and professional integrity and the generation and availability of data. His ideas

suggest that developing new data sources and maintaining access to current sources

may become an increasingly difficult challenge for producers and consumers of

population estimates.

The widespread availability of demographic data and software will make it

possible for more people to make population estimates, and to make them faster,

cheaper, with greater demographic detail, and for a wider variety of geographic

areas than ever before. This trend will be generally beneficial for data users and will

raise the overall usefulness of population estimates. However, it will likely increase

the number of estimates based on poor quality data, inadequate attention to detail,

vested political or economic interests, and a poor understanding of the causes of

population growth and demographic change. This proliferation of estimates will

almost certainly be confusing. Data users will face a broader array of options than

ever before and will have to do more homework in order to make the best choices.

As elsewhere in a market-driven economy, caveat emptor (let the buyer beware)

will be the order of the day.
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Demographic and Statistical Glossary1

Adjusted R-Squared A regression goodness-of-fit statistic that is “corrected” for

the degrees of freedom. It is interpreted as the fraction of variation in the

dependent variable that is explained by the regression model (independent

variables and constant).

Adjusted Rate (See STANDARDIZATION).

Administrative Records Data collected by governmental (and sometimes private)

organizations for taxation, registration, fee collection, and other administrative

purposes that indirectly provide demographic information. These data are used

by demographers for analyses, estimates, projections, and the evaluation of data

specifically collected for demographic purposes (See also ADMINISTRATIVE

RECORDS METHOD).

Administrative Records Method In the United States, a member of the family

of component methods for estimating population that relies on a past census,

vital statistics data, and migration data derived from tax returns (See also

POPULATION ESTIMATE).

Age The length of time that a person has lived. A distinction is made between

completed age and exact age, with completed age usually defined in terms of the

last birthday and exact age being the exact time since birth. Conventions for

determining age vary somewhat between cultures and countries.

Age Distribution (See POPULATION COMPOSITION).

Aggregation The process of assembling individual elements into summary form

for purposes of presentation or analysis. For example, to assemble census

records for individuals in a given area into a summary for the area as a whole.

Aggregation Bias A type of distortion that can result by attributing relationships

found among summaries to the individual elements from which the summaries

were obtained.

Allocation The assignment of values to cases for which “item non-response” is

found in a sample survey or census. Many allocation methods are available,

including automated algorithms (See also IMPUTATION, NON-RESPONSE,

and SUBSTITUTION).

D.A. Swanson and J. Tayman, Subnational Population Estimates,
The Springer Series on Demographic Methods and Population Analysis 31,

DOI 10.1007/978-90-481-8954-0, # Springer Science+Business Media B.V. 2012
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Allocation Error The extent to which estimates misallocate population over a set

of geographic areas such as counties. The Index of Dis-similarly can be used to

measure this type of error.

Alpha (a) The probability of committing a Type I error. A Type I error occurs

when a researcher rejects a true null hypothesis. Alpha is also called the level of

significance.

Alternative Hypothosis The hypothesis that complements the null hypothesis;

usually it is the hypothesis that the researcher is interested in proving. The

alternative hypothesis is generally denoted as Ha.

American Community Survey (ACS) In the United States, an on-going house-

hold survey conducted by the Census Bureau on a “rolling” geographic basis

that is designed to provide demographic characteristics for counties, places,

and other small areas. It may replace the long-form in the 2010 census.

Analysis of Variance A statistical technique that uses the F-test to determine

whether there is a significant difference in the means of two or more independent

groups.

Annexation In the United States, the legal act of adding territory to a govern-

mental unit, usually an incorporated place, through the passage of an ordinance,

court order, or other legal action.

Arithmetic Mean (See Mean) - The average of a group of numbers. The mean is a

common measure of central tendency.

AT-Risk Population The persons to whom an event can potentially occur. In the

form of the population at the middle of a given period, such as a year, it is used as

an approximation of “Person-years lived”(See also EXPOSURE, PERSON-

YEARS LIVED, and PROBABILITY).

Autocorrleation A problem that arises in regression analysis when the data occur

over time and the error terms are correlated; also called serial correlation.

Autoregression A multiple regression forecasting technique in which the inde-

pendent variables are time-lagged versions of the dependent variable.

Balancing Equation A term attributed to A. Jaffe that describes the basic popula-

tion relation: Pt¼ P0þ I – O, where Pt equals a given population at time¼ 0þ t,

P0¼ the given population at time ¼0, I ¼ the number of persons entering the

population through birth and immigration between time¼0 and time¼ 0þ t, and

O ¼ the number of persons exiting the population through death and emigration

between time¼0 and time¼0 þ t (See also COHORT-COMPONENT

METHOD, COMPONENTMETHOD, ERROROFCLOSURE, and RESIDUAL

METHOD).

Base Period In a population estimate, this is the period between the initial year for

which data are used to generate the estimate and the last year, which is known as

the launch year. (See also LAUNCH YEAR, ESTIMATION HORIZON, and

TARGET YEAR; and POPULATION ESTIMATE).

Baseline Survey A collection of data used for subsequent comparison or control.

Bayes Rule An extension of the conditional law of probabilities discovered by

Thomas Bayes that can be used to revise probabilities.
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Bayesian A way of doing inferential statistics based on ideas developed by

Thomas Bayes. Some Bayesian techniques incorporate extensions of formal

logic and others incorporate subjective probabilities.

Beta (b) The probability of committing a Type II error. A Type II error occurs

when a researcher fails to reject a false null hypothesis.

Bias The deviation of an estimate or set of estimates from the correct value(s) in

one direction (i.e., above or below the correct value(s)).

Bimodal Data sets that have two modes.

Binomial Distribution A discrete distribution which gives the probability of

observing X successes in a fixed number (n) of independent Bernoulli trials.

Birth This refers only to a live birth and is referenced by the issuance of a birth

certificate in the United States. As defined by the World Health Organization and

allied organizations, a live birth is the complete expulsion or extraction from its

mother of a product of conception, irrespective of the duration of pregnancy,

which, after such separation, breathes or shows any other evidence of life such as

beating of the heart, pulsation of the umbilical cord, or definite movement of

voluntary muscles, whether or not the umbilical cord has been cut or the placenta

is attached; each product of such a birth is considered live-born. According

to this definition, the period of gestation, or the state of life or death at the time

of registration, are not relevant. The US standard contains this definition plus

a statement recommended by the American College of Obstetricians and

Gynecologists to assist in the determination of what should be considered a

live birth: “Heartbeats are to be distinguished from transient cardiac

contractions; respirations are to be distinguished from fleeting respiratory efforts

or gasps.” (See also ABORTION and FETAL LOSS).

Block In the United States, the lowest level of geography for which census data are

compiled. It is a typically a city block, but specifically is a small area bounded on

all sides by identifiable features (e.g., roads, rivers, and city limits) that does not

cross the boundaries of a given census tract. Each block is numbered uniquely

within census tracts (See also BLOCKGROUP, BLOCKNUMBERINGAREA,

CENSUS TRACT, and CENSUS GEOGRAPHY).

Block Group In the United States, a cluster of blocks within a census tract that

have the same first digit in their identifying numbers (See also BLOCK, BLOCK

NUMBERING AREA, CENSUS TRACT and CENSUS GEOGRAPHY).

Block Numbering Area In the United States, these were used in the1990 census

as the framework for grouping and numbering blocks in counties that did not

have census tracts and provided coverage only for the block-numbered portion

of a county. Starting with the 2000 Decennial census all US counties have census

tracts. (See also BLOCK, BLOCK GROUP, CENSUS TRACT, and CENSUS

GEOGRAPHY).

Bounds The error portion of the confidence interval that is added and/or subtracted

from the point estimate to form the confidence interval.

Censal-Ratio Method A set of population estimation techniques found within the

“Change in Stock Method” family that uses crude rates (e.g., birth and death) as

measured at the most recent census date(s) and post-censal administrative
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records. For example, a population estimate for 2002 can be obtained by

dividing reported deaths for 2002 by the crude death rate measured in 2000 or

by a crude death rate projected from 2000 to 2002. Often a series of Censal-Ratio

estimates are averaged together. D. Swanson and R. Prevost showed in 1985 that

the Ratio-Correlation Method is algebraically equivalent to a weighted average

of censal-ratio estimates in which regression slope coefficients serve as weights

(See also CHANGE IN STOCK METHOD, POPULATION ESTIMATE,

RATIO-CORRELATION METHOD, and WEIGHTED AVERAGE).

Censored A condition affecting time-ordered data because the time frame for

which data are collected does not cover the entire time span over which an

event of interest may occur (e.g., a pregnancy at future point beyond the time frame

in which data were collected). “Left-Censored” is used to describe the period

preceding the data collection time frame and “right-censored,” the subsequent

period.

Census The count of a given population (or other phenomena of interest) and

record its characteristics, done at a specific point in time and usually at regular

intervals by a governmental entity for the geographic area or subareas under its

domain (See also CENSUS COVERAGE, CENSUS DEFINED RESIDENT,

POPULATION, POPULATION ESTIMATE, and SAMPLE).

Census Coverage An estimate of how complete a census was of a given popula-

tion (See also COVERAGE ERROR, NET CENSUS UNDERCOUNT ERROR

and TRUE POPULATION).

Census Coverage Error (See COVERAGE ERROR).

Census County Division In the United States, a statistical subdivision of counties

in states established cooperatively by the Census Bureau and local groups in

which minor civil divisions (e.g., townships) are not suitable for presenting

census data (See also CENSUS GEOGRAPHY).

Census Defined Resident The concept of defining persons counted in a census in

order to count each and every person once and only once. One of two counting

bases is used: (1) De Jure, which attempts to locate persons at their usual

residence; and (2) De facto, which counts people where they are found. The

US Decennial Census is based on the De Jure method. (See also CENSUS, DE

FACTO POPULATION, DE JURE POPULATION, DOMICLE, RESIDENCE,

and USUAL RESIDENCE).

Census Designated Place (CDP) In the United States, a concentration of popula-

tion enumerated during the decennial census in an area lacking legal boundaries,

but recognized by the residents (and others) as a distinctive area with a name.

A CDP is defined cooperatively by local officials and the Census Bureau. CDPs

have been used since the 1980 census; from 1940 to 1970, they were called

Unincorporated Places. (See also CENSUS GEOGRAPHY).

Census Error (See COVERAGE ERROR).

Census Geography In the United States, this refers to the hierarchical system of

geographic areas that is used in conjunction with each decennial census.

It consists of two major components: (1) areas defined by political or adminis-

trative boundaries (e.g., states, counties, townships, and cities.); and (2) areas

defined by “statistical” boundaries (e.g., block, census designated place, census
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tract). The areas so defined are used for analytical, political, and administrative

purposes. Any country conducting a census uses some type of census geography.

(See also BLOCK, CENSUS COUNTY DIVISION, CENSUS DESIGNATED

PLACE, CENSUS TRACT, CITY, COUNTY. METROPOLITAN AREA).

Census Tract In the United States, this is the lowest level of “statistical geography”

found in the decennial census designed to be homogenous with respect to popula-

tion and economic characteristics ( note that blocks and block groups, while at

a lower level, are not designed with respect to population or economic homo-

geneity). Once established it is designed to be consistent in its boundaries for a

long period of time. Starting with the 2000 census, all areas in the United States

are tracted. (See also BLOCK, BLOCK GROUP, BLOCK NUMBERING

AREA; and CENSUS GEOGRAPHY).

Central City Within the US Census Bureau’s geography system, the core area in

a metropolitan area. However, in other contexts, it is usually viewed as the

concentrated inner area of a city consisting of business districts and urban

housing.

Central Limit Theorem A theorem that states that regardless of the distribution of

a population, the sample means and sample proportions will be normally

distributed as long as the sample sizes are large.

Change in Stock Method A family of techniques for estimating population that is

based on the measuring the total change in population since the last census rather

than the components of change. Examples include the censal-ratio method,

housing unit method, and the ratio-correlation method (See also COMPONENT

METHOD, CENSAL-RATIO METHOD, HOUSING UNIT METHOD, and

POPULATION ESTIMATE).

Chebyshev’s Inequality A theorem stating that at least 1 - 1/k values will fall

within þ/� k standard deviations of the mean regardless of the shape of the

distribution.

Chi-Squared Distribution A continuous distribution determined by the sum of

the squares of k independent, normally distributed random variables.

Chi-Squared Goodness of Fit Test A statistical test used to analyze probabilities

of multinomial distribution trials along a single dimension; compares expected,

or theoretical, frequencies of categories from a populations distribution to the

observed, or actual, frequencies from a distribution.

Chi-Squared Test of Independence A non-parametric statistical test used to

analyze the frequencies of two variables with multiple categories to determine

whether the two variables are independent.

City In the United States, a type of incorporated place (See also CENSUS

GEOGRAPHY).

Class Midpoint For any given class interval of a frequency distribution, the value

halfway across the class interval; the average of the two class endpoints.

Closed Population A population for which in and out migration is minimal, if at

all. For example, the population of the world as a whole is “closed,” whereas the

population of New York City is not.
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Cluster Sampling A type of random sampling in which the population is divided

into non-overlapping areas or clusters and elements are randomly sampled from

the areas or clusters.

Coefficient of Determination The proportion of variability of the dependent

variable accounted for or explained by the independent variable in a regression

model.

Coefficient of Skewness A measure of the degree of skewness that exists in a

distribution of numbers; compares the mean and the median in light of the

magnitude of the standard deviation.

Coefficient of Variation The ratio of the standard deviation to the mean,

expressed as a percentage.

Cohort A group of people who experience the same demographic event during a

particular period of time such as their year of marriage, birth, or death. Cohorts

are typically defined on the basis of a initiating signal event (e.g., birth), but they

also can be defined on the basis of a terminating signal event (e.g., death).

(See also COHORT ANALYSIS, COHORT EFFECT, COHORT MEASURE,

and PERIOD).

Cohort Change Ratio (see HAMILTON-PERRY METHOD).

Cohort-Component Method A projection technique that takes into account

the components of population change, births, deaths, and migration, and a

population’s age and sex composition, (See also BALANCING EQUATION,

COMPONENT METHOD, and POPULATION PROJECTION).

Component Method In general, this refers to any technique for estimating

population that incorporates births, deaths, and migration. Also known as a

“Flow Method” (See also BALANCING EQUATION, CHANGE IN STOCK

METHOD, COMPONENT METHOD I, COMPONENT METHOD II, and

POPULATION ESTIMATE).

Component Method I A component method of estimating population that uses

the relationship between local and national school enrollment data to estimate

the net migration component. (See also COMPONENT METHOD, COMPO-

NENT METHOD II, and POPULATION ESTIMATE).

Component Method II A component method of estimating population that uses

the relationship between expected (survived) and actual local school enrollment

data to estimate the net migration component. (See also COMPONENT

METHOD, COMPONENT METHOD I, and POPULATION ESTIMATE).

Components of Change There are four basic components of population change:

births, deaths, in-migration, and out-migration. The excess of births over deaths

results in natural increase, while the excess of deaths over births results in

natural decrease. The difference between in- and out-migration is net migration.

In an analysis of special characteristics or groups, the number of components is

broadened to include relevant additional factors (e.g., aging, marriages,

divorces, annexations, and retirements), depending on the group (See also

BALANCING EQUATION).

Composite Method A technique for estimating total population that is based upon

independent estimates of age or age-sex groups that are summed to obtain the

total population (See also POPULATION ESTIMATE).
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Consolidated Metropolitan Statistical Area (See METROPOLITAN AREA).

Continuous Distributions Distributions constructed from continuous random

variables.

Controlling The act of adjusting a distribution to an independently derived total

value (See also CONTROLS).

Controls Independently derived estimates of a “total value” to which distributions

are adjusted for purposes of improving accuracy, reducing variance and bias, or

maintaining consistency. Controls can be univariate (one-dimensional) or mul-

tivariate (n-dimensional). Many methods may be used, including those that take

account of whether the distributions have only positive values or both positive

and negative values. (See also CONTROLLING, ITERATIVE PROPOR-

TIONAL FITTING and PLUS-MINUS METHOD).

Correlation A measure of the degree of relatedness of two or more variables.

Covariance The variance of X and Y together.

Coverage Error In principle, this refers to the difference between the “true

population” and the number reported in a set of data such as a census, survey,

or set of administrative records. In practice, it is the difference between an

estimate of the true number and the number reported in a set of data such as a

census, survey, or set of administrative records (See also CENSUS, NET CEN-

SUS UNDERCOUNT ERROR, TOTAL ERROR, and TRUE POPULATION).

County In the United States, a type of governmental unit that is the primary

administrative subdivision of every state except Alaska and Louisiana (See

also CENSUS GEOGRAPHY).

County Equivalent In the United States, a geographic entity that is not legally

recognized as a county but referred to by the Census Bureau as the equivalent of

a county for purposes of data presentation. Boroughs and certain statistically

defined areas are county equivalents in Alaska and parishes are county equivalents

in Louisiana (See also COUNTY and CENSUS GEOGRAPHY).

Critical Value The value that divides the non-rejection region from the rejection

region.

Crude Rate A rate that relates a demographic event to the total population and

makes no distinction concerning different exposure levels to the event.

Examples include the Crude Birth Rate, Crude Death Rate, Crude Divorce

Rate, Crude Marriage Rate, and Crude Rate of Natural Increase (See also

AGE-SPECIFIC RATE, GENERAL RATE and RATE).

Current Population Survey(CPS) In the United States, a sample survey

conducted monthly by the Census Bureau designed to represent the civilian non-

institutional population that obtains a wide range of socio-economic-demographic

data (See also CIVILIAN NON-INSTITUTIONAL POPULATION).

Curve A mathematical function, usually continuous and otherwise “well-

behaved” that can be used as a model for a demographic process such as the

change in the size of a population over time. Examples include the Exponential,

Geometric, Gompertz, Linear, Logistic, and Polynomial.

Curve-Fitting The process of finding a mathematical function that serves as a

model for a given demographic process.
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Data Aggregation Compounding primary data into an aggregate to express data in

summary form. National income is an example of aggregate data.

Data Linkage (see MATCHING).

Death The permanent disappearance of all evidence of life at any time after live

birth has taken place. The loss of a member of a population, as recorded by a

death certificate.

Decrement The exit of an individual or set of individuals from a “population” of

interest, where the population is often defined by a model. In the case of a model

such as the standard life table, such an exit would be due to death (See also

INCREMENT and INCREMENT-DECREMENT LIFE TABLE).

De Facto Population A census concept that defines an enumerated person on the

basis of his or her actual location at the time of the census (See also CENSUS

DEFINED RESIDENT and DE JURE POPULATION).

De Jure Population A census concept that defines an enumerated person on a

basis other than his or her actual location at the time of the census. The most

common basis is the person’s usual place of residence at the time of a census.

(See also CENSUS DEFINED RESIDENT and DE FACTO POPULATION).

Degrees of Freedom A mathematical adjustment made to the size of the sample;

used along with alpha to locate values in statistical tables.

Demographic Accounting The process of analyzing the change in a population

using “stocks” (e.g., conditions such as the number of people in a given age-sex

group) and “flows” (e.g., events such as births and deaths by age and sex) to

show how the flows affect stocks over time. Ideally the stocks and flows should

be measured without error and form mutually exclusive and exhaustive

categories.

Demographic Analysis Generally, this refers to the methods of examination,

assessment, and interpretation of the components and processes of population

change, especially births, deaths, and migration. In the United States, it also

refers to a specific method of estimating net census undercount using the

components and process of population change.

Demographics A popular term for demography also used to represent demo-

graphic data and the application of demographic data, methods, and perspectives

to activities undertaken by non-profit organizations, businesses, and

governments (See also DEMOGRAPHY).

Demography The study of population, typically focused on five aspects: (1) size;

(2) geographic distribution; (3) composition; (4) the components of change

(births, deaths, migration); and (5) the determinants and consequences of popu-

lation change. This term is usually used to refer to human populations, but it also

is used to refer to non-human, particularly wildlife, populations. (See also DEMO-

GRAPHICS, FAMILY DEMOGRAPHY, HOUSEHOLD DEMOGRAPHY,

ORGANIZATIONAL DEMOGRAPHY, and POPULATION).

Dependent Variable In regression analysis, the variable that is being predicted.

Descriptive Statistics Statistics that have been gathered on a group to describe or

reach conclusions about that same group.

Difference-Correlation Method (See RATIO-CORRELATION METHOD).
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Direct Estimation The measurement of demographic phenomena using data

that directly represent the phenomena of interest.(See also INDIRECT

ESTIMATION).

Direct Standardization The adjustment of a summary rate (e.g., the crude death

rate) for a population in question found by computing a weighted average of

group-specific rates (e.g., age specific death rates) for the population in question,

where the weights consist of specific groups (e.g., the proportion in each age

group) found in a “standard” population. This procedure is designed to produce a

summary rate that controls for the effects of population composition (e.g., age)

and is usually used for purposes of comparison with directly standardized rates

for other populations computed using the same standard population. To stan-

dardize a crude death rate by the direct method, multiply the age-specific death

rates for the population in question by the age-specific proportions in a standard

population and sum the products. (See also INDIRECT STANDARDIZATION,

STANDARD POPULATION, and STANDARDIZATION).

Discrete Distributions Distributions constructed from discrete random variables.

Diurnal Fluctuation For a given area, the change in its De Facto population

over the course of a day (i.e., a 24 hour period) (See also DE FACTO

POPULATION).

Domicile A person’s fixed, permanent, and principal home for legal purposes

(See also HOUSEHOLD, HOUSING UNIT, RESIDENCE and USUAL

RESIDENCE).

Dual Residence The state of having two usual places of residence over a given

period of time, which must be resolved in a De Jure census through the use of a

set of procedures designed to count persons once and only once.

Dual-Systems Estimation Estimation of the true number of events or persons by

matching the individual records in two data collections systems (See also

MATCHING).

Dummy Variable Another name for a qualitative or indicator variable; usually

coded as 0 or 1 and represents whether or not a given item or person possesses

a certain characteristic.

Durbin-Watson Test A statistical test for determining whether a significant

autocorrelation is present in a time-series regression model.

Emigrant A resident of a given country who departs to take up residence in

another country (See also DOMESTIC MIGRATION, FOREIGN MIGRATION,

and MIGRATION).

Enumeration The act of counting the members of a population in a census.

Enumeration District The area assigned to an enumerator during a census or

survey of a given area.

Error Of Closure The difference between the change in population implied by

census counts at two different dates and the change implied by an estimate not

dependent on both census counts. This also can refer to a term added to the

demographic balancing equation to account for errors in the components of

change that cause them not to exactly match the change in measured inde-

pendently for the population to which they apply. (See also BALANCING

EQUATION and RESIDUAL METHOD).
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Estimation Horizon In a population estimate, the period between the launch

year and the target year (See also BASE PERIOD, LAUNCH YEAR, and

POPULATION PROJECTION).

Estimate (See POPULATION ESTIMATE).

Ethnicity A common cultural heritage that sets a group apart on the basis of

national origin, ancestry, language, religion, and similar characteristics. In the

US decennial census, ethnicity is self-identified (See also RACE).

Event A change in condition or status (e.g., single to married).

Expected Value The long-run average of occurrences; sometimes referred to as

the mean value.

Ex Ante This literally means “Before the event” in Latin. In the context of

population estimates, it is usually used to mean that a set of estimates was

developed that is not tested against a set of corresponding census numbers.

However, the estimates may be compared to other information such as forecasts

or other estimates. Such a comparison is known as an Ex Ante Test of Accuracy

(See EX POST FACTO).

Ex Post Facto This literally means “After the fact” in Latin. In the context of

population estimates, it is usually used to mean that a set of estimates was

developed for a year in which a census was done either in advance of the census

or without using the census numbers to inform the estimates. The estimates are

then compared to the census numbers after the latter are made available. This

comparison is known as an Ex Post Facto Test of Accuracy. (See EX ANTE)

Exponential Distribution A continuous distribution closely related to the Poisson

distribution that describes the times between random occurrences.

Exponential Smoothing A forecasting technique in which a weighting system is

used to determine the importance of previous time periods in the forecast.

Extinct Generations A technique introduced by P. Vincent in the early 1950s that

is designed to estimate the number of extremely old persons in a population at a

given date by cumulating deaths (to include, as needed, reported, estimated, and

projected deaths) to given cohorts to the point where all members of the given

cohorts have expired.

Extrapolation The process of determining (estimating or projecting) values that

go beyond the last known data point in a series (e.g., the most recent census or

estimate). It is typically accomplished by using a mathematical formula, a graphic

procedure, or a combination of the two. (See also INTERPOLATION).

F Distribution A distribution based on the ratio of two random variances; used in

testing two variances and in analysis of variance.

F Value The ratio of two sample variances, used to reach statistical conclusions

regarding the null hypothesis; in ANOVA, the ratio of the treatment variance to

the error variance.

Family In the United States, defined by the Census Bureau as those members of

a household who are related through blood, adoption, or marriage (See also

HOUSEHOLD).
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Fertility The reproductive performance of a woman, man, couple, or group. Also a

general term for the incidence of births in a population or group. One of the

components of population change (See also COMPONENTS OF CHANGE

and FECUNDITY).

Fips Code In the United States, one of a series of codes issued by the National

Institute of Standards and Technology for the identification of geographic

entities. FIPS stands for “Federal Information Processing Standards.”

Flow Method (See COMPONENT METHOD).

Forecast (See POPULATION FORECAST).

Forward Survival Rate A type of rate that expresses survival of a population

group from a younger age to an older age. Where a survival rate is not further

labeled, forward survival is to be assumed (See also REVERSE SURVIVAL

RATE and SURVIVAL).

Forward-Reverse Survival Method A technique used in both estimating inter-

censal populations and net migration between two censuses in which an

“average” is taken between the results of using forward and reverse survival

rates to age and “young” a given population, respectively, over the period

between the two censuses (See also FORWARD SURVIVAL RATE,

REVERSE SURVIVAL RATE, and SURVIVAL).

Frequency Distribution A summary of data presented in the form of class

intervals and frequencies.

General Rate A rate that relates a demographic event to a set of people in a given

population generally thought to be exposed to the event of interest, but one for

which no distinction is made regarding different exposure levels to the event.

A GENERAL RATE is distinguished from a CRUDE RATE because of the

former’s attempt to limit the population at risk to those actually exposed

to the event in question, typically on the basis of age. Examples include the

General Activity Rate, General Divorce Rate, General Enrollment Rate, and

the General Fertility Rate. (See also AGE-SPECIFIC RATE, CRUDE RATE

and RATE).

Geocoding The assignment of geographic or spatial information to data, such as

coordinates. It is the most fundamental operation in the development of a “GIS”

- Geographic Information System (See also GEOGRAPHIC INFORMATION

SYSTEM).

Geographic Information System (GIS) A chain of operations involving the

collection, storage, manipulation, and display of data referenced by geographic

or spatial coordinates (e.g., coded by latitude and longitude).

GIS (See GEOGRAPHIC INFORMATION SYSTEM).

Gravity Model A model (borrowed from classical physics) based on the hypothe-

sis that movement (migration, commuting, retail purchasing, etc.) between two

areas is directly related to the population size of each area and inversely related

to the distance between the two areas.

Gross Migration The sum of in-migration and out-migration for a given area

(See also MIGRATION, and NET MIGRATION).
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Group Quarters In the United States, a term used by the Census Bureau for

places in which people reside that are not considered as “housing units.” Such

places include prisons, long-term care hospitals, military barracks, and school

and college dormitories. (See also HOUSING UNIT and HOUSEHOLD

POPULATION).

Growth Rate Often used as a general expression to describe the rate of change in a

given population, even one that is declining (See also RATE and RATE OF

CHANGE).

Hamilton-Perry Method A technique developed by H. Hamilton and J. Perry

used in population projections that refers to a type of survival rate calculated for

a cohort from two censuses. It includes not only the effects of mortality, but also

the effects of net migration and relative census enumeration error (See also

SURVIVAL RATE).

Head of Household A “marker” for a household, its type and structure. It is

usually defined as the principal wage-earner or provider for a multi-person

household, or, alternatively, is a person in whose name the housing unit is rented

or owned. Persons living alone also are designated as heads of households.

In principle, the number of households is equal to the number of household

heads (See also HOUSEHOLD).

Headship Rate Usually defined as the proportion of the (household) population

who are “heads” of households. (i.e., divide the number of households by the

household population), often by age. It is often used in conjunction with popula-

tion projections to obtain household projections (See also HEAD OF HOUSE-

HOLD, HOUSEHOLD and POPULATION PROJECTION).

Heteroskedasticity The condition that occurs when the error variances produced

by a regression model are not constant.

Hispanic A person of Spanish or Latin American origin (also known as “Latino”).

In the U. S. decennial census, persons of Hispanic origin are self-identified. Persons

of Hispanic origin may be of any race (See also ETHNICITY and RACE).

Homeless Person Member of a population without a home or an official address

usually found in shelters, on the streets, in vacant lots or vacant buildings.

Homoskedsticity The condition that occurs when the error variances produced

by a regression model are constant.

Horizon (See PROJECTION HORIZON).

Hot Deck Imputation (See IMPUTATION).

Household Either a single person or a group of people making provision for food

and other essentials of living, occupying the whole, part of, or more than one

housing unit or other provision for shelter. The definitions vary by country. (See

also DOMICLE, FAMILY, GROUP QUARTERS, HEAD OF HOUSEHOLD,

HOMELESS PERSON, HOUSEHOLD POPULATION, and HOUSING UNIT).

Household Population Members of a population living in households, (as

opposed to those who are homeless or living in group quarters - e.g., prisons,

long-term care hospitals, military barracks, and school and college dormitories)

(See also GROUP QUARTERS, HOMELESS PERSONS, HOUSEHOLD,

HOUSING UNIT).
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Housing Unit Generally a shelter intended for “separate use” by its occupants, such

that there is independent access to the outside and the shelter is not a group

quarters. A housing unit may be occupied or vacant. (See also DOMICLE,

FAMILY, GROUP QUARTERS, HOMELESS PERSONS, and HOUSEHOLD).

Housing Unit Method A population estimation technique found within the

“Change in Stock Method” family that uses current housing unit counts, vacancy

estimates, and estimates of the number of persons per household to estimate the

total household population, to which can be added an estimate of the group

quarters population to obtain an estimate of the total population (See also

CHANGE IN STOCK METHOD, HOUSEHOLD, HOUSING UNIT, GROUP

QUARTERS, and POPULATION ESTIMATE).

Hypothesis Testing A process of testing hypotheses about parameters by setting

up null and alternative hypotheses, gathering sample data, computing statistics

from the samples, and using statistical techniques to reach conclusions about the

hypothesis.

Immigrant Residents of a given country entering another country in order to take

up permanent residence (See also DOMESTIC MIGRATION, FOREIGN

MIGRATION, and MIGRATION).

Immigration (see FOREIGN MIGRATION).

Impairments Chronic health conditions involving abnormalities of body structure

and appearance, the most common being chronic sensory and musculoskeletal

conditions.

Imputation In a sample survey or census, a general term used to describe

the assignment of values to cases for which one or more variables have missing

values due to “non-response.” Four common methods are: (1) deductive impu-

tation, which is based on other information available from the case in question;

(2) hot-deck imputation, which is based on information from “closest-matching”

cases; (3) mean-value imputation, which uses means of variables as the source

of assignment; and (4) regression-based imputation, in which models are

constructed using cases with no missing values and a dependent variable is

the one whose missing values will be imputed and the independent variables

are those that yield acceptable regression equations (See also ALLOCATION,

NON-RESPONSE, and SUBSTITUTION).

Incidence Rate The frequency with which an event, such as a new case of illness,

occurs in a population at risk to the event over a given period of time.

Increment The entry of an individual or set of individuals into a population of

interest, where the population of interest is often defined by a model. In the

case of a model of nuptiality, such an entry would be marriage (See also

DECREMENT and INCREMENT-DECREMENT LIFE TABLE).

Independent Variable In regression analysis, the predictor variable.

Index of Dis-similarity In the context of population estimates, this measure is

used to determine the accuracy of a set of estimates for a set of geographic areas

(e.g., counties) in an ex post facto test of accuracy. It also is known as the Index

of Mis-allocation. It provides the percent of the estimated populations that would

need to be re-allocated in order to match the corresponding census numbers for

the same geographic areas. (see EX POST FACTO)
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Indirect Estimation The measurement of demographic phenomena using data

that do not directly represent the phenomena of interest. (See also DIRECT

ESTIMATION).

Indirect Standardization The adjustment of a summary rate (e.g., the crude death

rate) for a population in question found in part by computing a weighted average

of group-specific rates (e.g., age-specific death rates) of a “reference” popula-

tion, where the weights are the specific groups (e.g., proportion in each age

group) of the population in question. This procedure is designed to produce a

summary rate that controls for the effects of population composition (e.g., age)

and is usually used for purposes of comparison with indirectly standardized

rates for other populations computed using the same reference population.

To standardize a crude (death) rate by the indirect method, first multiply the

age-specific-(death) rates in the reference population by the population in the

corresponding age groups of the population in question and sum the products

to get the “expected” total (deaths) for the population in question. Then divide

the expected total (deaths) into the total reported (deaths) for the popula-

tion in question and multiply this ratio by the crude (death) rate of the

reference population (See also DIRECT STANDARDIZATION and

STANDARDIZATION).

Inferential Statistics Statistics that have been gathered from a sample and used to

reach conclusions about the population from which the sample was taken.

Inflation-Deflation Method A technique that compensates for census coverage

error by adjusting the demographic composition of the population of interest, but

not its total number. It is sometimes used in conjunction with the cohort-

component method of population projection, with the population in the launch

year subject to “inflation” and the subsequent projection(s) subject to a compen-

sating “deflation.” It also is employed in the preparation of the official estimates

of the population of the United States by age, sex, race, and ethnicity (Hispanic

and non-Hispanic) (See also COVERAGE ERROR, COHORT-COMPONENT

METHOD, LAUNCH YEAR, and POPULATION ESTIMATE).

In-Migrant A person who takes up residence within a “migration-defined” receiv-

ing area (the destination) after leaving a residence at a location outside of the

receiving area (the origin), but one within the same country. For most countries,

the destination and origin must be in different areas as defined by a political,

administrative, or statistically-defined boundary. In the US, the destination must

be in a different county than the origin for a person to be classified as an

in-migrant by the Census Bureau (See also DESTINATION, IMMIGRANT,

IN-MIGRATION RATE, MIGRANT, MIGRATION, MOVER, NET MIGRA-

TION, NON-MIGRANT, ORIGIN, and OUT-MIGRANT).

In-Migration (See IN-MIGRANT).

In-Migration Rate The ratio of the number of in-migrants to a receiving area

(the destination) over a given period to any one of a number of measures of the

population of the receiving area, including the population at the end of the

period, the population at the beginning of the period, and so on. Sometimes
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the denominator is formed by using an approximation of the population at risk of

migrating, e.g., the national population outside of the destination (See also

DESTINATION, IN-MIGRANT, MIGRATION, NET MIGRATION RATE,

and OUT-MIGRATION RATE).

Inter-censal The period between two successive censuses.

International Migration The movement across an international boundary for the

purpose of establishing a new permanent residence (See also DOMESTIC

MIGRATION).

Interpolation The calculation of intermediate values for a given series of

numbers. It is typically accomplished by using a mathematical formula,

a graphic procedure, or a combination of the two. It typically imparts or even

imposes a regularity to data and can, therefore, be used for smoothing, whether

or not the imposed regularity is realistic (See also EXTRAPOLATION and

SMOOTHING).

Interquartile Range The range of values between the first and the third quartile.

Interval Estimate A range of values within which it is estimated with some

confidence the population parameter lies.

Iterative Proportional Fitting Amethod for adjusting a multi-way distribution to

a set of independently derived total values that approximates a least-squares

approach. (See also CONTROLLING, CONTROLS and PLUS-MINUS

METHOD).

J-Index A measure of the intrinsic growth of a population in a generation

developed by A. J. Lotka that approximates the net reproduction rate and that,

in turn, is approximated by the Replacement Index. When divided by the mean

length of a generation it yields an estimate of the intrinsic rate of increase (See

also MEAN LENGTH OF A GENERATION, NET REPRODUCTION RATE,

REPLACEMENT INDEX and INTRINSIC RATE).

Jump-Off Year (See LAUNCH YEAR).

Karup-King Method A technique used to interpolate between given points or to

subdivide groups. It is based on a polynomial osculatory formula (See also

INTERPOLATION).

Kurtosis The amount of peakedness of a distribution.

Latino (See HISPANIC).

Launch Year The year inwhich a population estimate is launched, typically the year

of the most recent census. Sometimes referred to as the “Jump-Off” year, it is the

starting point of the estimation horizon (See also BASE PERIOD, ESTIMATION

HORIZON, TARGET YEAR; and POPULATION ESTIMATE).

Left-Censored (See CENSORED).

Least Squares The process by which a regression model is developed based on

calculus techniques that attempt to produce a minimum sum of the squared error

values.

Level of Significance The probability of committing a Type I error; also know as

alpha.
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Life Table A statistical model comprised of a combination of age-specific mortality

rates for a given population. A period life table (Also known as a cross-sectional

life table) is constructed using mortality and age data from a single point in time; a

generation life table (also known as a cohort life table) is based on the mortality of

an actual birth cohort followed over time (to its extinction). A complete life table

contains mortality information for single years of age, while an abridged table

contains information by age group (See also GENERATION LIFE TABLE,

INCREMENT-DECREMENT LIFE TABLE, PERIOD LIFE TABLE, LIFE

EXPECTANCY and SURVIVAL RATE).

Life Table Functions The fundamental elements of a life table, to include the

number surviving to a given age, the number of deaths to those surviving to a

given birthday before they reach a subsequent birthday, the probability of dying

before reaching a subsequent birthday for those who survived to a given birth-

day, the number alive between two birthdays, and the years of life remaining for

those who survive to a given birthday (including birth). Life table functions can

be interpreted in two ways: (1) as a depiction of the lifetime mortality experience

of a cohort of newborns; and (2) as a stationary population that would result from

a fixed mortality schedule and a constant number of annual births equal to the

constant number of annual deaths resulting from the fixed mortality schedule

(See also LIFE TABLE).

Logistic Curve A mathematical model that depicts an “S-Shaped” curve indica-

tive of three stages of population change: (1) an initial period of slow growth;

(2) a subsequent period of rapid growth; and (3) a final period in which growth

slows and comes to a halt (See also DEMOGRAPHIC TRANSITION).

Long Form In the United States, the decennial census form given on a sample

basis (approximately 1 in 6 households) that is designed to collect a wide range

of population and housing data. The data collected go well beyond the basic

information collected in the short form, which is given to the remaining

households. Note, however, that the questions on the short form are contained

in the long form (See also SHORT FORM).

Longevity (See LIFE SPAN).

Major Civil Division A “primary” subnational political area established by law

or a related process. (See also CENSUS GEOGRAPHY and MINOR CIVIL

DIVISION).

Master Address File (MAF) In the United States, the set of records maintained

by the Census Bureau for purposes of conducting the decennial census. It is

intended to represent the geographic location of every housing unit.

Matched Groups A group constructed on a case-by-case basis through matching

of sets of records according to a limited number of characteristics.

Matched Pairs Data or measurements gathered from pairs of items or persons that

are matched on some characteristic or from a before-and-after design and then

separated into different samples; also called paired data or related measures.

Matched Pairs Test A t test to test the differences in two related or matched

samples; sometimes called the t test for related measures or the correlated t –test.
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Matching (of Records) Assembly of data in a common format from different

sources but pertaining to the same unit of observation, (e.g., a person, household,

or an event such as death). Also known as Record Matching and Data Linkage

(See also DUAL SYSTEMS ESTIMATION).

Mean This refers to the arithmetic average. It is calculated by summing the values

of a given variable (e.g., total county population) and then dividing the sum by

the number of cases (e.g., the number of counties).

Mean Absolute Deviation The average of the absolute values of the deviations

around the mean for a set of numbers.

Mean Absolute Error The average of the absolute values of errors of a set of

estimates.

Mean Absolute Percentage Error (MAPE) In the context of population estimates,

this refers to the arithmetic average of absolute percent differences between a set of

estimate and corresponding census numbers. It is frequently used in an ex post facto

test of accuracy. (see also EX POST FACTO, MEAN ALGEBRAIC PERCENT

ERROR (MALPE)MEANABSOLUTE PERCENT ERRORRECALCULATED

(MAPE-R) and Median Absolute Percent Error (MEDAPE)).

Mean Absolute Percentage Error Recalculated (MAPE-R) Because the MAPE

is usually impacted by extreme errors, MAPE-R was developed as a way to

mitigate the effects of extreme errors without losing significant information

about the errors. (see also EX POST FACTO and MEAN ABSOLUTE PER-

CENT ERROR (MAPE)).

Mean Algebraic Percent Error (MALPE) Unlike MAPE, which uses absolute

values, this measure uses the direction of errors in that it preserves both negative

and positive errors. MALPE is rarely impacted by extreme errors. MAPE-R

(see also EX POST FACTO and MEAN ABSOLUTE PERCENT ERROR

(MAPE)).

Mean Error The average of all the errors of in a set of estimates.

Mean Square Error The average of all errors squared in a set of estimates data.

MEDAPE to MAPE RATIO This can be used as a descriptive tool to help judge

the influence of outliers on the MAPE. A ratio of 1.0 indicates that outlying

observations are not influencing the MAPE. Ratios above 1.0 indicate the

potential magnitude of the overstatement of the typical error by the MAPE. A

Ratio below 1.0 might suggest the existence of a left-skewed distribution; in this

case, the MAPE potentially understates the typical error. (see also MAPE,

MEDIAN ABSOLUTE PERCENT ERROR (MEDAPE) and SKEWNESS).

Median The middle value in an ordered array of numbers.

Median Absolute Percent Error (MEDAPE) This is the percent error which falls

in the middle of the error distribution; half of the absolute percent errors are

larger and half are smaller. MEDAPE is useful when the objective is to highlight

the “typical” error and ignore the effects of outlying errors. One drawback of the

MEDAPE is that it ignores most of the information contained in the error

distribution; it is only based on one or two observations. (see also MAPE,

MAPE-R, and MEDAPE to MAPE RATIO).

Metric Data Interval and ratio level data; also called quantitative data.
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Metropolitan Area In the United States, this refers to a family of specific census

geographies intended to represent a large population nucleus and aggregations

thereof. Specific types of include “Primary Metropolitan Statistical Area” and

“Standard Consolidated Statistical Area.” (See also CENSUS GEOGRAPHY,

PRIMARY METROPOLITAN STATISTICAL AREA, and STANARD

CONSOLIDATED STATISTICAL AREA).

Migrant A person who makes a relatively permanent change of residence from

one country, or region within a country (an origin), to another (the destination)

during a specified (migration) period. For most countries, the change must be

across a political, administrative, or statistically-defined boundary for a person

to be classified as a migrant. In the US, the origin and destination must be in

different counties for a person to be classified as a migrant (See also DESTINA-

TION, EMIGRANT, IMMIGRANT, IN-MIGRANT, MIGRATION, MOVER,

NON-MIGRANT, ORIGIN, and OUT-MIGRANT).

Migration A general term for the incidence of movement by individuals, groups or

populations seeking to make relatively permanent changes of residence. One of

the components of population change (See also ASYLEE, COMMUTING,

COMPONENTS OF CHANGE, DESTINATION, DOMESTIC MIGRATION,

EMIGRANT, FOREIGN-BORN, GROSS MIGRATION, IMMIGRANT, IN-

MIGRANT, INTERNALLY DISPLACED PERSONS, INTERNATIONAL

MIGRATION, MIGRANT, MOBILITY, MOVER, NATIVE, NET MIGRA-

TION, NON-MIGRANT, ORIGIN, OUT-MIGRANT, and REFUGEE).

Migration Stream A group of migrants with a common origin and destination

over a given period. (See also COUNTERSTREAM).

Military Population Persons who are members of the armed forces.

Military Dependent Population Persons who are dependents of members of the

armed forces.

Minor Civil Division A “secondary” subnational political area established by law

or a related process (See also CENSUS GEOGRAPHY and MAJOR CIVIL

DIVISION).

Mobility, Geographic Any move resulting in a change of residence (See also

DOMESTIC MIGRATION and MIGRATION).

Mobility Rate The ratio of the number of movers over a given time period to the

population at risk of moving over the same period (See also IN-MIGRATION

RATE, MIGRATION, and OUT-MIGRATION RATE).

Mobility Status A Classification of people based on their residential locations at

the beginning and end of a given time period.

Model A generalized representation of a demographic process, set of demographic

relationships, pattern of mortality, fertility, migration, or marriage, or method of

population estimation or projection.

Mover A person who reports in a census or survey that he or she lived at a different

address at an earlier date (e.g., five years before the census or survey). In the US,

a mover is classified by the Census Bureau as a person who changed residence,

but within the same county (See also MIGRATION).

Moving Average When an average of data from previous time periods is used to

forecast the value for ensuing time periods and this average is modified at each
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new time period by including more recent values not in the previous average and

dropping out values from the more distant time periods that were in the average.

It is continually updated at each new time period.

Multicollinearity A problematic condition that occurs when two or more of the

independent variables of a multiple regression model are highly correlated.

Multiple Regression Regression analysis with one dependent variable and two or

more independent variables.

Multi-Regional Analysis An analysis of multi-regional systems in which spatial

and demographic factors are linked.

Multi-State Life Table An extension of the standard life table in which multiple

transitions between states are possible and the transitions are expressed in

terms of transition probabilities between states (See also DECREMENT,

INCREMENT, and INCREMENT-DECREMENT LIFE TABLE).

Natural Increase The excess of births over deaths in a population is defined as

natural increase; an excess of deaths over births is defined as natural decrease.

Net Census Undercount Error The estimated level of coverage error in a census

computed by algebraically adding estimated overcounts and estimated under-

counts for population groups (e.g., age-sex-race) and summing them. (See also

COVERAGE ERROR, NON-RANDOM ERROR and TRUE POPULATION).

Net Migration The difference between the number of in-migrants and the number

of out-migrants for a given area (e.g., a county) over a given period of time:

Net ¼ In - Out (See also GROSS MIGRATION, IN-MIGRANT, MIGRATION,

NET MIGRATION RATE, and OUT-MIGRANT).

Net Migration Rate The ratio of net migration for a given area (e.g., a county)

over a given period to any one of a number of measures of the population of the

area, including the population at the end of the period, the population at the

beginning of the period, and so on. Sometimes the denominator is formed by

using a population outside of the area (e.g., the national population outside of the

county) (See also IN-MIGRATION RATE, MIGRATION, NET MIGRATION,

and OUT-MIGRATION RATE).

Net Number of Migrants (See Net Migration).

Nonlinear Regression Multiple regression models in which the models are non-

linear, such as polynomial models, logarithmic models, and exponential models.

Nonmetric Data Nominal and ordinal level data; also called qualitative data.

Non-Metropolitan Population The number of people living outside large urban

settlements. In the US, this represents the population outside Metropolitan

Statistical Areas (See also CENSUS GEOGRAPHY).

Non-Migrant In a census or survey, an individual who resided in an area both

at the beginning and end of the designated migration period. Alternatively, an

individual who has neither migrated into nor migrated out of his or her

area of residence. (See also IN-MIGRANT, MIGRATION, MOVER, NET

MIGRATION and OUT-MIGRANT).

Nonparametric Statistics A class of statistical techniques that make few

assumptions about the population and are particularly applicable to nominal

and ordinal level data.
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Non-Random Sampling Sampling in which not every unit of the population has

the same probability of being selected into the sample.

Non-Random Error All errors not due to the effects of random sample selection

(i.e., random error). It can occur both in a sample survey and in a population

census. Examples include non-response, incorrect answers by a valid respon-

dent, answers given by a non-valid respondent, as well as coding and other

processing errors. Statistical inference can only be used to estimate random

error, not non-random error (See also NET CENSUS UNDERCOUNT

ERROR, NON-RESPONSE, POPULATION, RANDOM ERROR, SAMPLE,

and TOTAL ERROR).

Non-Rejection Region Any portion of a distribution that is not in the rejection

region. If the observed statistic falls in this region, the decision is a fail to reject

the null hypothesis.

Non-Response Missing data on a form used in a survey or census due to a number

of reasons, including the refusal of a respondent to answer, the inability to locate

a potential respondent, the inability of a respondent (or informant) to answer

questions, or the omission of answers due to a clerical or some other form of

error. Total non-response refers to a case (i.e., an observation) in which all

variables have missing values and item non-response refers to a case in

which fewer than all variables have one or more missing values. Imputation is

often used to estimate values for cases in which they are missing (See also

IMPUTATION, NON-RANDOM ERROR, NON-RESPONDENT).

Non-Response Error (See NON-RESPONSE).

Non-Respondent In a sample survey or census, a respondent who refuses to be

interviewed, or is otherwise unable to take part (See also NON-RESPONSE).

Normal Distribution A widely known and much-used continuous distribution

that fits the measurements of many human characteristics and many machine-

produced items.

Null Hypothesis The hypothesis that assumes the status quo - that the old theory,

method, or standard is still true; the complement of the alternative hypothesis.

Observed Significance Level Another name for the p-value method of testing

hypotheses.

Odds Ratio As defined for a dichotomous variable, the ratio of the proportion of

the population having a characteristic of interest to the proportion not having the

characteristic. For example, the percent of the population to the percent not in

poverty The logarithm of the odds ratio is termed a logit. (See also LOGIT).

One-Tailed Test A statistical test wherein the researcher is interested only in

testing one side of the distribution.

Open-Ended Interval A class interval in a distribution of grouped data that is not

bounded on one end. For example, in a distribution of data on income, the highest

income class may be given as $100,000 ormore; in a life table the last age interval

may be given as 85 years and over. In a longitudinal analysis, the period between

the most recent occurrence of an event of interest (e.g., a live birth) and a

subsequent time point . For example, in a survey of birth histories, the period
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between the second birth and the survey would constitute an open-ended interval

for a woman reporting two births, whereas the periods between her first and

second birth would be a closed interval.

Open Interval (See OPEN-ENDED INTERVAL).

Origin The place of residence that a migrant left at the start of a given (migration)

period (See also DESTINATION, MIGRANT, and MIGRATION).

Osculatory Interpolation An interpolation method that involves combining

higher-order polynomial formulas into one equation, designed to provide a

smooth junction between two adjacent groups of data (e.g., age group 5-9 and

age group 10-14). (See also INTERPOLATION).

Outliers Data points that lie apart from the rest of the points.

Out-Migrant A person who leaves his or her residence in a “migration-defined”

sending area (the origin) to take up residence at a location outside of the sending

area (the destination), but one within the same country. For most countries, the

origin and destination must be in different areas as defined by a political,

administrative, or statistically-defined boundary In the US, the origin must

be in a different county than the destination for a person to be classified as an

out-migrant by the Census Bureau (See also DESTINATION, EMIGRANT,

IN-MIGRANT, MIGRANT, MIGRATION, MOVER, NET MIGRATION,

NON-MIGRANT, ORIGIN, and OUT-MIGRATION RATE).

Out-Migration (See INTERNAL MIGRATION).

Out-Migration Rate The ratio of the number of out-migrants from a sending area

(the origin) over a given period to some measure of the population of the sending

area, including the population at the beginning of the period, the population

at the end of the period, and so on. (See also ORIGIN, OUT-MIGRANT,

IN-MIGRATION RATE, MIGRATION, and NET MIGRATION RATE).

Overcount In a census, this can be due to counting some people more than once,

counting people in a census who are not members of the population in question,

or a combination of both (See also NET CENSUS UNDERCOUNT ERROR and

UNDERCOUNT).

Own-Child Method A census or survey-based method for measuring fertility that

uses counts of children living with their mothers.

P-Value Method A method of testing hypotheses in which there is no preset level

of alpha. The probability of getting a test statistic at least as extreme as the

observed test statistic is computed under the assumption that the null hypothesis

is true. This probability is called the p value, and it is the smallest value of alpha

for which the null hypothesis can be rejected.

Paired Data Data gathered from pairs of items or persons that are matched on

some characteristic or from a before-and-after design and then separated into

different samples; also called matched pairs data or related measures.

Parameter A descriptive measure of the population.

Parametric Statistics A class of statistical techniques that contain assumptions

about the population and that are used only with interval and ratio level data.

Partial Migration Rate The number of in-migrants from a particular origin to a

given destination relative to the population of either the origin or destination.
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Participation Rate The proportion of a population or segment of a population

with a certain characteristic, usually social or economic, e.g., the proportion

aged 10-14 who are enrolled in school.

Percent (See PROPORTION).

Percentiles Measures of central tendency that divide a group of data into 100

parts.

Period Measure A summary measure of data collected during a brief period of

time (usually one year) that typically represent more than one cohort (See also

COHORT MEASURE and PERIOD ANALYSIS).

Place of Residence (See USUAL RESIDENCE).

Plus-Minus Method A “controlling” technique that attempts to compensate for

both increasing and decreasing subsets of a population of interest by using two

separate adjustment factors. For example, one might use the plus-minus method

in adjusting post censal population estimates of census tracts to an estimate

of the county containing the tracts, if some tracts show growth since the last

census and others show decline (See also CONTROLLING, CONTROLS, and

ITERATIVE PROPORTIONAL FITTING).

Point Estimate An estimate of a population parameter constructed from a statistic

taken from a sample.

Population In the demographic sense, the “inhabitants” of a given area at a given

time, where inhabitants could be defined either on the De Facto or De Jure basis

(but not a mixture of both). Note that the concept of “area” can be generalized

beyond the geographical sense to include, for example, formal organizations.

In the statistical sense, the term “population” refers to the entire set of persons

(or phenomenon) of interest in a particular study, as compared to a sample,

which refers to a subset of the whole (See also CENSUS, DE FACTO

POPULATION, DE JURE POPULATION, DEMOGRAPHY, SAMPLE, and

SPECIAL POPULATION).

Population In the statistical sense, A collection of persons, objects, or items of

interest.

Population At Risk (See AT-RISK POPULATION).

Population Composition The classification of members of a population by

one or more characteristics such as age, sex, race, and ethnicity. It can be

presented in either absolute or relative numbers. “Population distribution” and

“population structure” are often used as synonyms (See also POPULATION

DISTRIBUTION).

Population Decrease Reduction in the number of inhabitants in an area.

Population Density Number of persons per unit of land area.

Population Distribution Usually used to refer to the location of a population over

space at a given time, but sometimes used as a synonym for population compo-

sition (See also POPULATION COMPOSITION).

Population Dynamics Changes in population size and structure due to fertility,

mortality, and migration, or the analysis of population size and structure in these

terms.
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Population Estimate An approximation of a current or past population of a given

area at a given time, or its distribution and composition, in the absence of a

complete enumeration, ideally done in accordance with one of two standards for

defining a population, De Facto or De Jure (See also ADMINISTRATIVE

RECORDS METHOD, CENSAL-RATIO METHOD, CENSUS, CENSUS

DEFINED RESIDENT, CHANGE IN STOCK METHOD, COMPONENT

METHOD, COMPOSITE METHOD, DE FACTO POPULATION, DE JURE

POPULATION, HOUSING UNIT METHOD, POPULATION PROJECTION,

RATIO-CORRELATION METHOD, RATIO ESTIMATION, SYNTHETIC

METHOD, and VITAL RATES METHOD).

Population Forecast An approximation of the future size of the population for a

given area, often including its composition and distribution. A forecast usually is

one of a set of projections selected as the most likely representation of the future

(See also POPULATION ESTIMATE and POPULATION PROJECTION).

Population Projection The numerical outcome of a particular set of implicit and

explicit assumptions regarding future values of the components of population

change for a given area in combination with an algorithm. Strictly speaking, it is

a conditional statement about the size of a future population (often along with its

composition and distribution), ideally made in accordance with one of the two

standards used in defining a population, De Facto or De Jure (See also BASE

PERIOD, CENSUS, CENSUS DEFINED RESIDENT, COHORT-COMPO-

NENT METHOD, DE FACTO POPULATION, DE JURE POPULATION,

LAUNCH YEAR, POPULATION FORECAST, POPULATION ESTIMATE,

PROJECTION HORIZON, and TARGET YEAR).

Population Register An administrative record system used by many countries

(e.g., China, Finland, Japan, and Germany) that requires residents to register

their place of residence, usually at a local police station. By itself, such a system

provides limited demographic information (e.g., total population), but where it

can be matched to other administrative record systems (e.g., tax, social and

health care services), the result is often a system that provides a wide range of

longitudinal and cross-sectional demographic information.

Population Size The number of persons inhabiting a given area at a given time.

(See also CENSUS and POPULATION).

Power The probability of rejecting a false null hypothesis.

Power Curve A graph that plots the power values against various values of the

alternative hypothesis.

Prevalence The number of persons who have a given characteristic (e.g., disease,

contraceptive use, impairment, labor force participation) in a given population at

a designated time or who had the characteristic at any time during a designated

period, such as a year (See also PREVALENCE RATE).

Prevalence Rate The proportion of persons in a population who have a particular

disease or attribute at a specified time (point prevalence) or at any time

during a designated period, such as a year (period prevalence). (See also

PREVALENCE).
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Primary Metropolitan Statistical Area In the United States, a census-based

piece of geography defined by the Office of Management and Budget that is

comprised of a central city and county and adjoining counties linked to

the central city by social and economic interactions that meet prescribed

standards. (See also CENSUS GEOGRAPHY, METROPOLITAN AREA, and

STANDARD CONSOLIDATED AREA).

Probability A ratio in which the numerator consists of those in a population

experiencing an event of interest (e.g., death) over a specified period of time,

while the denominator consists of the at-risk population. (See also AT-RISK

POPULATION, PROPORTION, RATE, and RATIO).

Probit A mathematical transformation, often used in event history analysis,

for “linearizing” the cumulative normal distribution of a variable of interest.

The probit unit is y ¼ 5 þ Z(p) , where p ¼ the prevalence of response at each

dose level and Z(p) ¼ the corresponding value of the standard cumulative

normal distribution (See also EVENT HISTORY ANALYSIS and LOGIT).

Projection (See POPULATION PROJECTION).

Projection Horizon In a population projection, the period between the launch

year and the target year (See also Base Period, Launch Year, and Target Year;

and POPULATION PROJECTION).

Proportion A ratio used to describe the status of a population with respect to some

characteristic (e.g., married), where the numerator is part of the denominator.

When multiplied by 100, a proportion is known as a “percent.” (See also

PROBABILITY, RATE, and RATIO).

Public Use Microdata Sample (Pums) In the United States and elsewhere this

usually refers to a hierarchically-structured data set that contains individual,

family, and household information in a given record and for which confidential-

ity is maintained by deleting identifying information. It is typically obtained by

sampling from census records.

Quartiles Measures of central tendency that divide a group of data into four

subgroups or parts.

Race In theory, classification of the members of a population in terms of biological

ancestry, in which a range of physical characteristics, such as hair structure,

cephalic index, and so on, is employed to assign persons to one category or

another (one of three principal races or unclassified). In demographic practice,

classification of the members of a population in terms of socially constructed

definitions of membership in categories in which skin color and other

characteristics, including national ethnic affiliations, may be the basis of assign-

ment by census or survey enumerators or by self-enumeration. In the US

decennial census, persons are self-identified by race (See also ETHNICITY ).

Raking (See CONTROLLING).

Random Error The difference between a statistic of interest (e.g., mean age)

found in a sample unaffected by non-random error and its corresponding param-

eter (e.g., mean age) found in the population from which the sample was drawn.

Random error can only occur in a sample, never in a population. It is often
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referred to as sample error or sampling error (See also NON-RANDOM

ERROR, POPULATION, SAMPLE, and TOTAL ERROR).

Rate Technically, this type of ratio is the same as a probability. However, the term

is often applied to the type of ratio known as a proportion, as in the case of

“vacancy rate,” which is the ratio of unoccupied housing units to all housing

units. It is also applied to other types of ratios in which the denominators are not

precisely the “at-risk populations,” as is the case of the crude birth rate (See also

AT-RISK POPULATION, PROBABILITY, PROPORTION, and RATIO).

Rate-Correlation Method (See RATIO-CORRELATION METHOD).

Rate of Change The change of population during a given period express as a rate.

The rate may relate to the entire period, in which case the denominator is usually

the initial population. Alternatively, it may be an average annual rate, in which

case the rate may assume annual compounding, continuous compounding, or

some other function (See also POPULATION CHANGE).

Rate of Natural Increase The result of subtracting the crude death rate from

the crude birth rate. For a population closed to migration it provides the rate

of increase (or the rate of decrease if the crude death rate exceeds the crude

birth rate) (See also CRUDE BIRTH RATE, CRUDE DEATH RATE, and

INTRINSIC RATE).

Ratio A single number that expresses the relative size of two other numbers - i.e., a

quotient, which is the result of dividing one number by another. (See also

PROBABILITY, PROPORTION, and RATE).

R-Squared The coefficient of multiple determination; a value that ranges from

0 to 1 and represents the proportion of the dependent variable in a multiple

regression model that is accounted for by the independent variables.

Random Sampling Sampling in which every unit of the population has the same

probability of being selected for the sample.

Random Variable A variable that contains the outcomes of a chance experiment.

Range The difference between the largest and the smallest values in a set of

numbers.

Ratio-CorrelationMethod A regression-based subnational population estimation

technique found within the “Change in Stock Method” family. Introduced by R.

Schmitt and A. Crosetti in the early 1950s: (1) the dependent variable consists of

the ratio formed by dividing the most recent population proportion for a set of

sub-areas (e.g., proportion of a state population in each of its counties at the most

recent census) by the population proportion for the same subareas at an earlier

time (i.e., the previous census); and (2) the independent variables consist of

corresponding ratios of proportions for symptomatic indicators of population

(e.g., school enrollment, automobile registrations, births, deaths) available from

administrative records. Variations of the Ratio-Correlation Method include the

Difference-Correlation Method introduced by R. Schmitt and J. Gier in 1966 and

the Rate-Correlation Method introduced by D. Swanson and L. Tedrow in the

1984 (See also CENSAL-RATIO METHOD, CHANGE IN STOCK METHOD,

POPULATION ESTIMATE, and WEIGHTED AVERAGE).
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Ratio Estimation A set of techniques used to estimate population based on ratios

across geographic areas, variables, or both. (See also POPULATION

ESTIMATE).

Record Linkage (See MATCHING).

Record Matching (See MATCHING).

Reference Population (See STANRARD POPULATION).

Regression The process of constructing a mathematical model or function that can

be used to predict or determine one variable by any other variable.

Rejection Region If a computed statistic lies in this portion of a distribution,

the null hypothesis will be rejected.

Residence The place where a person lives. Defined differently in different censuses,

but often interpreted as “usual residence,” which is the case in the US decennial

census based on the De Jure method (See also CENSUS, CENSUS-DEFINED

RESIDENT, DE JURE, DOMICLE, USUAL RESIDENCE).

Residential Mobility A change of residence, either in the same city or town, or

between cities, states, countries, or communities.

Residual The difference between the actual Y value and the Y value predicted by

the regression model; the error of the regression model in predicting each value

of the dependent variable.

Residual Method A technique that estimates inter-censal net migration for a given

area by subtracting from the most recent census count, the algebraic sum of

inter-censal births and deaths added to the population counted at the preceding

census. Resulting estimates are confounded by differences in net census under-

count error (See also BALANCING EQUATION, ERROR OF CLOSURE, and

NET MIGRATION).

Response Variable The dependent variable in a multiple regression model; the

variable that the researcher is trying to predict.

Return Migration A move back to point of origin, whether domestic or foreign

(See also MIGRATION).

Reverse Record Check A technique used to estimate census coverage error that

attempts to match a sample drawn from a reliable source of records independent

of the census with data collected in the census. For example, a reverse record

check may attempt to match a sample of births over a 10-year period with

children under 10 in the census, or a sample of enrollees under Medicare with

the elderly population in the census (See also CENSUS and COVERAGE

ERROR).

Reverse Stream (See COUNTERSTREAM).

Reverse Survival Method Any method of estimating population involving back-

ward “survival” of a population to an earlier date (See also SURVIVAL RATE).

Right-Censored (See CENSORED).

Robust Describes a statistical technique that is relatively insensitive to minor

violations in one or more of its underlying assumptions.

Rural Population Usually defined as the residual population after the urban

population has been identified (See also URBAN POPULATION).
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Rural-Urban Migration The migration from rural to urban areas, both internal

and international.

Sample A subset of a population (in the statistical sense) for which data are

typically collected in a “survey,” which is a way of providing respondents

with questions to be answered (e.g., through personal interviews, telephone

interviews, mail-out/mail-back questionnaires). Samples may also be selected

from administrative and other records such that interviews are not needed

because data are taken directly from the records themselves (e.g., fromMedicare

files). Samples may be defined in a number of ways, but if statistical inference is

to be used, a sample’s elements should have a known probability of selection, or

at least a reasonable approximation thereof, so that “random error” can be

estimated (See also CENSUS, NON-RANDOM ERROR, POPULATION, and

RANDOM ERROR).

Sample Error (See RANDOM ERROR).

Sample Proportion The quotient of the frequency at which a given characteristic

occurs in a sample and the number of items in the sample.

Sample Size Estimation An estimate of the size of sample necessary to fulfill the

requirements of a particular level of confidence and to be within a specified

amount of error.

Sample Space A complete roster or listing of all elementary events for an

experiment.

Sampling Error (See RANDOM ERROR).

School-Age Population Children if school age, usually defined by the ages for

which school attendance is compulsory, which varies from country to country

and sometimes with a given country.

Seasonal Adjustment A statistical modification to a data series to reduce the

effect of seasonal variation (See also SEASONAL VARIATION).

Seasonal Variation Seasonal differences in the occurrence of data collected over

time and reported at least quarterly (See also SEASONAL ADJUSTMENT).

Self-Enumeration A method of conducting a census or sample survey in which

respondents fill out questionnaire themselves, usually in connection with a mail-

out/mail-back design for distributing and retrieving the questionnaires.

Serial Correlation A problem that arises in regression analysis when the error

terms of a regression model are correlated due to time-series data; also called

autocorrelation.

Short Form In the United States, the decennial census form asking a limited range

of basic population and housing questions and distributed to about five-sixths of

the households, with the so-called “long form” being distributed to the

remaining households. Note, however, that the questions on the short form

are contained in the long form, so in effect all households receive the short

form (See also LONG FORM).

Simple Random Sampling The most elementary of the random sampling

techniques; involves numbering each item in the population and using a list or

roster of random numbers to select items for the sample.
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Skewness The lack of symmetry of a distribution of values (See also MAPE).

Small Area The subdivisions of the primary political subdivisions of a country.

In the United States, counties and their subdivisions are usually considered small

areas, although some limit the term to subcounty areas such as census tracts,

block groups, and blocks and the areas that can be aggregated from them

(See also CENSUS GEOGRAPHY).

Smoothing The adjustment of data to eliminate or reduce irregularities and other

anomalies assumed to result from measurement and other errors. A common

application of smoothing procedures is in connection with single-year-of-age

data that appear to be affected by age heaping (See also AGE-HEAPING and

INTERPOLATION).

Special Population Population groups identified separately for purposes of a

census and or sample survey because of their distinctive living arrangements,

such as college students, prison inmates, residents of nursing homes, and military

personnel and their dependents. Special populations usually are characterized

by components of change very different from the broader populations in which

they are found, sometimes because of laws or regulations governing them. (See

also COMPONENTS OF CHANGE and POPULATION).

Standard Consolidated Area In the United States, a combination of Primary

Metropolitan Statistical Areas, with a total population of at least 1,000,000,

established by the Office of Management and Budget. (See also CENSUS

GEOGRAPHY, METROPOLITAN AREA, and PRIMARYMETROPOLITAN

STATISTICAL AREA).

Standard Deviation The square root of the variance.

Standard Error of the Estimatie - A standard deviation of the error of a regres-

sion model.

Standard Error of the Mean The standard deviation of the distribution of sample

means.

Standard Error of the Proportion The standard deviation of the distribution of

sample proportions.

Standard Metropolitan Statistical Area (See PRIMARY METROPOLITAN

AREA).

Standard Population A “reference” population used for purposes of analyzing a

population of interest. Also, specifically, a population whose age distribution is

employed in the calculation of standardized rates by the direct method. (See also

DIRECT STANDARDIZATION and STANDARDIZATION).

Standardization In the demographic sense, the adjustment of a summary rate

(e.g., the crude death rate) to remove the effects of population composition

(e.g., age), usually done to compare rates across populations with different

compositions. There are two general types of standardization, direct and indirect.

The type selected is dependent on the data available for the population(s) of

interest (See also DIRECT STANDARDIZATION, INDIRECT STANDARD-

IZATION, POPULATION COMPOSITION, STANDARD POPULATION, and

STANDARDIZED RATE).

Standardization In the statistical sense,
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Standardized Normal Distribution Z distribution; a distribution of Z scores

produced for values from a normal distribution with a mean of 0 and a standard

deviation of 1.

Standardized Rate A rate that has been subjected to standardization. (See also

STANDARDIZATION).

Statistic A descriptive measure of a sample.

Statistics A science dealing with the collection, analysis, interpretation,

and presentation of numerical data.

Stepwise Regression A step-by-step multiple regression search procedure that

begins by developing a regression model with a single predictor variable and

adds and deletes predictors one step at a time, examining the fit of the model at

each step until there are no more significant predictors remaining outside the

model.

Stratified Random Sampling A type of random sampling in which the population

is divided into various non-overlapping strata and then items are randomly

selected into the sample from each stratum.

Stocks and Flows A stock (or “level variable”) in this broader sense is some entity

that is accumulated over time by inflows and/or depleted by outflows. Stocks can

only be changed via flows. Mathematically a stock can be seen as an accumula-

tion or integration of flows over time - with outflows subtracting from the stock.

Stocks typically have a certain value at each moment of time - e.g. the number of

population at a certain moment. A flow (or “rate”) changes a stock over time.

Usually we can clearly distinguish inflows (adding to the stock) and outflows

(subtracting from the stock). Flows typically are measured over a certain interval

of time - eg. the number of births over a day or month.

Subjective Probability A probability assigned based on the intuition or reasoning

of the person determining the probability.

Substitution In a sample survey or census, the process of assigning values for a

case in which there is “total non-response.” Many substitution methods

are available, including automated algorithms (See also ALLOCATION,

IMPUTATION, and NON-RESPONSE).

Suburban A popular term referring to the residential area surrounding a central

city. Such an area may follow the transportation lines and be dependent on the

central city both economically and culturally but, increasingly, such areas are

becoming the equivalent of central cities to suburbs of their own. (See also

URBAN FRINGE).

Survey (See SAMPLE).

Sum of Squares Error The sum of the residuals squared for a regression model.

Sum of Squares X The sum of the squared deviations about the mean of a set of

values.

Survival Rate A rate expressing the probability of survival of a population group,

usually an age group, from one date to another and from one age to another.

A survival rate can be based on life tables or two censuses. When based on two

censuses, the rate includes not only the effects of mortality, but also the effects of
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net migration and relative census enumeration error. (See also FORWARD

SURVIVAL RATE, HAMILTON-PERRY METHOD, LIFE TABLE,

SURVIVAL, and SURVIVORSHIP FUNCTION).

Synthetic Method A member of the family of ratio estimation methods that is

used to estimate characteristics of a population in a subarea (e.g., a county) by

reweighting ratios (e.g., prevalence rates or incidence rates) obtained from

survey or other data available at a higher level of geography (e.g., a state) that

includes the subarea in question. (See also POPULATION ESTIMATE, RATIO

ESTIMATION and WEIGHTED AVERAGE).

T Distribution A distribution that describes the sample data in small samples

when the standard deviation is unknown and the population is normally

distributed.

T Statistic The computed value of t used to reach statistical conclusions regarding

the null hypothesis in small-sample analysis.

Target Year In a population estimate, the final year for which a population is

estimated, the end point of the estimation horizon (See also BASE PERIOD,

LAUNCH YEAR, and ESTIMATION HORIZON; and POPULATION

ESTIMATE).

Temporary Migration A type of migration, both internal and international, in

which the duration of stay is temporary. Data for temporary migration are not

normally included in the official data on internal or international migration and

are usually obtained from a special sample survey.

Tiger (See TOPOLOGICALLY INTEGRATED GEOGRAPHIC ENCODING

AND REFERENCING SYSTEM).

Time Series Data Data gathered on a given characteristic over a period of time at

regular intervals.

Topologically Integrated Geographic Encoding and Referencing System.
(TIGER) A digital database of geographic features (e.g., roads, rivers, political

boundaries, census statistical boundaries, etc.) covering the entire United States.

It was developed by the US Census Bureau to facilitate computerized mapping

and areal data analysis. (See also GEOGRAPHIC INFORMATION SYSTEM).

Total Error In a sample, the theoretical sum of random error and non-random

error, which in practice can at best only be roughly approximated because of

the difficulty of estimating non-random error. Also known as Total Sample Error.

In a census, total error is comprised solely of non-random error (see also NON-

RANDOM ERROR, RANDOM ERROR, and TRUE POPULATION).

Trend Long-run general direction of a business climate over a period of

several years.

Trend Extrapolation (See EXTRAPOLATION).

True Population In theory, the population that would be counted if there were no

errors in a census. In practice, it is a value representing the theoretical actual

number for the population at a given date, which cannot be precisely measured,

but which can be roughly approximated by adjusting a census for net census

undercount error (See also CENSUS and NET CENSUS UNDERCOUNT

ERROR).
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Truncation Bias Distortion of results due to the systematic omission from an

analysis of values that fall below or above a given range.

Turnover A term sometimes employed to refer to the sum of the components of

change during a period, i.e., births plus deaths plus immigrants/in-migrants plus

emigrants/out-migrants.

Two-Tailed Test A statistical test wherein the researcher is interested in testing

both sides of the distribution.

Type I Error An error committed by rejecting a true null hypothesis.

Type II Error An error committed by failing to reject a false null hypothesis.

Undercount In a census, the omission of valid members of the population in

question (See also NET CENSUSUNDERCOUNTERROR and OVERCOUNT).

Under-Enumeration (See UNDERCOUNT).

Under-Registration The omission of persons or events from a registration system

or other administrative record system.

Uniform Distribution A relatively simple continuous distribution in which the

same height is obtained over a range of values; also called the rectangular

distribution.

Unincorporated Place (See CENSUS DESIGNATED PLACE).

Urban Fringe The densely settled area surrounding the core city of an urbanized

area. Sometimes population referred to as the suburban area (See also

SUBURBAN).

Urban Population Usually defined as a large population in a densely-packed area

that meets criteria derived from geographic, social, and economic factors, which,

in turn, may vary by country (See also RURAL POPULATION ).

Urbanization Growth in the proportion of persons living in urban areas;

the process whereby a society changes from a rural to an urban way of life.

Usual Residence The place where one usually eats and sleeps, a concept

associated with a De Jure census (See also CENSUS, CENSUS-DEFINED

RESIDENT, DE JURE, DOMICILE, LABOR FORCE, and RESIDENCE).

Variance The average of the squared deviations about the arithmetic mean for a

set of numbers.

Variance Inflation Factor A statistic computed using the R-squared value of

a regression model developed by predicting one independent variable of a

regression analysis by other independent variables; used to determine whether

there is multicollinearity among the variables.

Vital Events Births, deaths, fetal losses, abortions, marriages, annulments,

divorces–any of the events relating to mortality, fertility, marriage, and divorce

recorded in registration systems (See also VITAL STATISTICS).

Vital Rates Method A censal-ratio method of population estimation introduced

by D. Bogue in the 1950s that uses crude birth and crude death rates (See also

CENSAL-RATIO METHOD and POPULATION ESTIMATE).

Vital Records (See VITAL STATISTICS).

Vital Statistics Data on births, deaths, fetal losses, abortions, marriages, and

divorces usually compiled through registration systems or other administrative

record systems (See also VITAL EVENTS).

Demographic and Statistical Glossary 399



Weighted Average Usually an arithmetic mean of an array of specific rates or

ratios, with variable weights applied to them representing the relative distribu-

tion of the populations on which the rates or ratios are based. More generally, a

summary measure of a set of numbers (absolute numbers or ratios), computed as

the cumulative product of the numbers and a set of weights representing their

relative importance in the population. An unweighted average is one in which

each number in the set has the same weight (e.g., 1 or 1/n, where n is the total set

of numbers) (See also CENSAL RATIO METHOD and SYNTHETIC

METHOD).

Z Distribution A distribution of Z scores; a normal distribution with a mean of

0 and a standard deviation of 1.

Z Score The number of standard deviations a value (X) is above or below the mean

of a set of numbers when the data are normally distributed.

Zip Code Administrative areas set up by the US Postal Service as postal delivery

areas and used for marketing and related purposes in the United States. They

have fluid boundaries that do not correspond to any established political area or

statistical area of the decennial census but may approximate some small areas

defined by the census (See also CENSUS GEOGRAPHY).

A Demography Timeline Relevant to Population Estimates

1661 Giovanni Battista RICCIOLI: “De verisimili hominum numero,”Geographiae
et Hydrographiae Reformatae (scholarly estimate of the earth’s population and

in various nations)

1741 Johann S€USSMILCH: Die G€ottliche Ordnung in den Ver€anderungen des
menschlichen Geschlechts, aus der Geburt, dem Tode und der Fortplanzung
desselben erwissen (The Divine Order. . ., most painstaking estimate of world

population to his time, editions: 2nd, 1761; 3rd, 1765)

1748 Swedish law requiring national compilation of parish vital statistics records

1753 Robert WALLACE: The Numbers of Man in Ancient and Modern Times
(French ed., 1760)

1755 Benjamin FRANKLIN: Observations Concerning the Increase of Mankind,
Peopling of Countries, etc.

1786 Pierre Simon LAPLACE proposes a censal ratio method for estimating

population

1790 Mar 1 In accordance with Article 1, Section 2 of the US Constitution, the first

United States census began; the world’s first continuous, periodic national

census

1801 periodic census begins in England and France

1802 LAPLACE’s censal ratio method used to estimate the population of France.

1850 US Census collected individual-level data for the first time.

1850 ff. Otto L. H€UBNER: Geographisch-statistiche Tabellen (until 1919)
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1895 Edwin CANNAN: “The Probability of a Cessation of the Growth of

Population in England and Wales during the Next Century” Economic Journal
(An early use of the cohort-component method of population projection)

1911 E.C. SNOW: “The Application of the Method of Multiple Correlation to the

Estimation of Post-censal Population,” Journal of he Royal Statistical Society
(first known use of linear regression to estimate population)

1938. Henry S. SHRYOCK: “Methods of estimating post-censal population,”

Journal of the American Statistical Association.
1940 US census first employed sampling, 1 in 20 households received “supple-

mental questions,” based on experience gained from unemployment surveys

done in the 1930s and the first “Current Population Survey,” which itself

preceded the 1940 census; participants include W . Edwards DEMING, Philip

HAUSER, Morris HANSEN, William HURWITZ, William MADOW, who

collectively would make important contributions to the theory and practice of

sampling

1941. Margaret HAGOOD. Statistics for Sociologists.
1946 US Congress enacts federal programs that use statistical formulas in conjunc-

tion with census and other data for funding purposes; sets the stage for a

tremendous expansion of the use of such formulas from the 1950s to the 1990s

1947. Hope Tisdale ELDRIGDGE: “Problems and methods of estimating post-

censal population,” Social Forces.
1949. US Census Bureau, “Illustrative examples of two methods of estimating

the current population of small areas,” Current Population Reports, Series
P-25, No. 20.

1950. Don BOGUE: “A technique for making extensive population estimates,”

Journal of the American Statistical Association.
1954 Robert C. SCHMITT and Albert H. CROSETTI: “Accuracy of the Ratio-

Correlation Method for Estimating Post-censal Population,” Land Economics
(seminal work on subnational population estimation)

1962. C. Horace HAMILTON and Josef PERRY: “A short method for projecting

population by age from one decennial census to another,” Social Forces.
1967 United Nations: Methods of Estimating Basic Demographic Measures from

Incomplete Data, Manual IV
1968 William BRASS et al.: The Demography of Tropical Africa (Important

methodological developments for dealing with missing and defective demo-

graphic data)

1971 Henry S. SHRYOCK, Jacob S. SIEGEL, and ASSOCIATES: The Methods
and Materials of Demography (Important comprehensive text book and refer-

ence work on demography)

1978. Maria GONZALEZ and Christine. HOZA: “Small area estimation with

application to unemployment and housing estimates,” Journal of the American

Statistical Association (Seminal paper on synthetic estimation method)

1979. Robert FAY and Roger HERRIOT: “Estimates of income for small places: an

application of James-Stein procedures to census data,” Journal of the American
Statistical Association.
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1980 Evelyn KITAGAWA et al.(editors): Estimating Population and Income for
Small Places (Comprehensive treatment of small area population estimation)

1982 Everett LEE and Harold GOLDSMITH (editors): Population Estimates:

Methods for Small Area Analysis.
1983 United Nations: Indirect Techniques for Demographic Estimation, Manual X
1987. Statistics Canada, Population Estimation Methods, Canada.
1987. P. PLATEK, J.N.K. RAO, C. SÄRNDAL, and M.P. SINGH (editors): Small

Area Statistics: An international Symposium.
1995. N. RIVES, W. SEROW, A. LEE, H. GOLDSMITH, and P. VOSS (editors):

Basic Methods for Preparing Small-Area Population Estimates.
1996 American Community Survey initiated, starting the process that could lead to

collecting in a “continuous measurement” sample survey of the long form of the

US Census

2002. J. SIEGEL: Applied Demography: Applications to Business, Government,
Law, and Public Policy.

Endnote

1. Sources of information used in compiling this Glossary /Demography Timeline include the

following publications:

Easton, J. and J. McColl (n.d.). Statistics Glossary v1.1 (http://www.cas.lancs.ac.uk/

glossary_v1.1/main.html).

Stigler, S. M. 1986. The History of Statistics: The Measurement of Uncertainty Before 1900.
Cambridge, MA: The Belknap Press of Harvard University Press.

Swanson, D. A. 2012. Learning Statistics: A Manual for Sociology Students. San Diego, CA:

Cognella Academic Publishing.

Swanson, D.A. and G. E. Stephan. 2004. Glossary and Demography Timeline. pp 751–786 in J.

Siegel and D.A. Swanson (eds.) The Methods and Materials of Demography 2nd Edition. New
York, NY: Elsevier Academic Press.
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