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Preface

The intent of this monograph is to introduce graduate students to branching process
applications of populations and epidemics. Deterministic models of populations and
epidemics are well known in the scientific literature and they provide useful infor-
mation on the dynamics when population and epidemic sizes are large. However,
when sizes are not large, stochastic models and theory are required, for example,
to estimate the probability of extinction. The stochastic theory of branching pro-
cesses has a long history and can be used as a tool in understanding extinction in
many situations. In the mid 19th century, Galton and Watson introduced branching
processes to explain the extinction of family names. Whittle applied the theory in
1955 to an SIR epidemic to estimate the probability of a major outbreak. In this
brief monograph, a summary is presented of single-type and multi-type branching
process theory. This theory is used to estimate the probability of ultimate extinc-
tion in some classic population and epidemic models such as SEIR epidemic and
logistic growth, and some new applications of species invasions and spatial spread
of disease. Some MatLaB programs of stochastic simulations are provided in the
Appendix, and some references are given to additional applications of branching
processes to populations and epidemics.

I thank Rick Durrett and Mike Reed for the invitation to develop these lecture
notes as part of the Mathematical Biosciences Institute Graduate Lecture Series,
Volume 1: Stochastics in Biological Systems. In addition, I thank Edward Allen,
Texas Tech University, who provided valuable feedback on Chapter 4, and an anony-
mous reviewer who provided suggestions and corrections on Chapters 1–4. I espe-
cially thank the editorial and production staff at Springer.

Lubbock, TX, USA Linda J.S. Allen
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Chapter 1
Continuous-Time and Discrete-State Branching
Processes

1.1 Introduction

The study of branching processes began in the mid 19th century with the work of
Bienaymé, Galton, and Watson [10, 23, 39]. Galton and Watson’s original prob-
lem was to study the extinction of family surnames. They formalized the problem
using probability generating functions. This first application employed discrete-
time branching processes. Continuous-time branching process theory is closely rel-
ated to discrete-time theory. In this chapter, we summarize the basic theory for
continuous-time and discrete-state branching processes for single-type and multi-
type processes. This theory is used to estimate population extinction (absorption)
in two examples, a birth-death model and a birth-death-dispersal model. In later
chapters, the branching process theory, developed in this chapter, is applied to some
classic population and epidemic models to predict species invasions or outbreaks in
more complex settings. Further mathematical details about the theory and additional
biological examples can be found in the references (e.g., [7, 14, 20, 23, 24, 32]).

1.2 Single-Type Branching Processes

Let {X(t)|t ∈ [0,∞)} be a collection of a discrete random variables that takes val-
ues in the set of nonnegative integers {0,1,2, . . .} and has the Markov property.
The Markov assumption makes the time between events exponentially distributed.
The process is a continuous-time Markov chain (CTMC). Assume for simplicity
that the process is time-homogeneous. Let pi j(Δ t) denote a transition probability
from state i to state j during a time period Δ t:

pi j(Δ t) = P(X(t +Δ t) = j|X(t) = i}.

© Springer International Publishing Switzerland 2015
L.J.S. Allen, Stochastic Population and Epidemic Models, Mathematical Biosciences
Institute Lecture Series 1.3, DOI 10.1007/978-3-319-21554-9 1
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2 1 Continuous-Time and Discrete-State Branching Processes

The process is assumed to be nonexplosive, that is, sample paths do not app-
roach infinity for finite time t. The state space can consist of number of animals,
plants, cells, genes, etc., and therefore, we refer to the elements as the number of
“individuals.”

A continuous-time branching process puts restrictions on the birth and death pro-
cess. Four important assumptions distinguish a continuous-time branching process
from other CTMCs.

(i) For any time t > 0, each individual gives “birth” to Y “offspring” of the same
type. The random variable Y is discrete with values in the set {0,1,2 . . .}. Prob-
abilities associated with Y are

p j = P{Y = j}, j = 0,1,2, . . . .

(ii) Each individual gives birth independently of all other individuals.
(iii) The same birth probabilities apply to all individuals, referred to as a “single-

type process,” meaning all individuals are of the same type.
(iv) The transition probabilities satisfy

∞

∑
j=0

pi j(t)s
j =

(
∞

∑
j=0

p1 j(t)s
j

)i

, s ∈ [0,1]. (1.1)

The terms birth and offspring in assumption (i) are used in a general sense. For
example, in an epidemic outbreak, the number of infected individuals represents
the states of the branching process and a birth means a new infection and offspring
means the number of new infections produced. Also, in assumptions (i)–(iv), there
is no mention of death. Generally, in branching processes, the birth of offspring
implies death of the parent. That is, the parent is replaced by the offspring. In the
continuous-time process, the birth of offspring may or may not be accompanied by
the death of the parent. If the parent gives birth to j offspring, then dies, the number
of new offspring is j with corresponding probability p j. However, if the parent gives
birth to j offspring and survives, then the number of new offspring, counting the sur-
viving parent, is j+ 1 with corresponding probability p j+1. This latter assumption
can be thought of as a death of the parent and replacement by an “identical sub-
stitute” [14]. Such an assumption is reasonable in an epidemic outbreak, where the
infected parent continues to spread infection until death or recovery.

The mathematical assumption (iv) implies that the process is additive. That is,
the process beginning from state X(0) = i is equivalent to the sum of i inde-
pendent processes beginning from state X(0) = 1. The identity in (iv) means if
X(0) = ∑i

l=1 Xl(0) where Xl(0) = 1, then the probability generating function (pgf)
of X(t) satisfies

P(s, t) = E

(
sX(t)

)
=

i

∏
l=1

E

(
sXl(t)

)
.

Therefore, there is no loss of generality to assume X(0) = 1.
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An additional assumption is made in regard to the offspring probabilities:

0 < p0 < 1. (1.2)

Assumption (1.2) implies there is a positive probability of extinction at each gen-
eration p0 > 0 and that there is at least one offspring, p j > 0 for some j ≥ 1. The
zero state (extinction) is an absorbing state of the Markov chain: X(τ) = 0 implies
X(t + τ) = 0 for t > 0.

Let λ > 0 denote the parameter in the exponential distribution for the lifetime of
one individual, i.e., λe−λ t is the probability density function. In particular,

pi j(Δ t) =

⎧⎨
⎩

λ ip j−i+1Δ t +o(Δ t), j ≥ i−1, j �= i
1−λ iΔ t +o(Δ t), j = i
o(Δ t), j < i−1.

The transition probabilities associated with X(t) satisfy the following forward and
backward Kolmogorov differential equations, respectively,

d p ji(t)

dt
= −λ ip ji(t)+λ

i+1

∑
k=1

kp jk(t)pi−k+1 (1.3)

d pi j(t)

dt
= −λ ipi j(t)+λ i

∞

∑
k=i−1

pk j(t)pk−i+1 (1.4)

with initial conditions for both equations given by pi j(0) = δi j, where δi j = 0,
i �= j, and δii = 1. The terms in the summation in (1.3) represent the probability
of a transition from state j to state k in time t followed by a jump from state k to
state i at rate λkpi−k+1. The terms in the summation in (1.4) represent a jump from
state i to state k at rate λ ipk−i+1 followed by a transition from state k to state j in
time t.

Let f (s) denote the probability generating function (pgf) of the offspring random
variable Y , i.e.,

f (s) =
∞

∑
j=0

p js
j, s ∈ [0,1].

We assume that f is well defined, continuous, and differentiable on [0,1], with
f (0)> 0 and f (1) = 1. Several properties of the pgf are f (0) = p0, f (1) = 1 and

f ′(1) =
∞

∑
j=0

jp j

is the mean number of offspring.
Let P(s, t) denote the pgf of X(t). Formally, P(s, t) = E(sX(t)). Expressed in

terms of the transition probabilities,

P(s, t) =
∞

∑
j=0

p1 j(t)s
j, t ∈ [0,∞), s ∈ [0,1],

where P(s,0) = s, and X(0) = 1.
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From assumption (iv), it can be shown that the pgf P(s, t) is a solution of the
backward equations (1.4). Since X(0) = 1, let i= 1. Multiplying the backward equa-
tions (1.4) by s j, summing from j = 0 to ∞ and interchanging summations on the
second term, leads to

d[∑∞
j=0 p1 j(t)]

dt
=−λ

∞

∑
j=0

p1 j(t)s
j +λ

∞

∑
k=0

pk

∞

∑
j=0

pk j(t)s
j.

Applying property (iv) to the last term in the preceding equation yields the following
expression for the double sum:

∑
k

pk [P(s, t)]k = f (P(s, t)).

Thus, the backward Kolmogorov differential equations lead to the following differ-
ential equation for the pgf P(s, t), given X(0) = 1,

∂P(s, t)
∂ t

=−λ [P(s, t)− f (P(s, t))] (1.5)

with initial condition P(s,0) = s. For our purposes, it is important to note that
the probability of extinction, P(0, t) = p j0(t) = q(t), also satisfies the differential
equation (1.5). That is,

dq(t)
dt

=−λ [q(t)− f (q(t))] = F(q(t)), q(0) = 0. (1.6)

The differential equation for q(t) = p j0(t) can also be derived directly from the
backward equation (1.4).

Our goal is to compute the probability of ultimate extinction,

lim
t→∞

P(X(t) = 0|X(0) = 1) = q∗.

A simple proof verifies that the probability q∗ is the minimal fixed point of f on
[0,1]; a solution of

f (s) = s, s ∈ (0,1].

In fact, it can also be verified that q∗ is the unique fixed point on (0,1) if f ′(1)> 1
[3, 20].

Theorem 1.1. The probability of ultimate extinction of X(t) given X(0) = 1 is the
smallest fixed point q∗ of the offspring pgf f on (0,1].

Proof. Since the differential equation (1.6) is autonomous, F(q) = −λ [q− f (q)]
and the solution q is bounded, q ∈ [0,1] (F(0) = λ f (0) > 0 and F(1) = −λ [1−
f (1)] = 0), the asymptotic dynamics of q(t) as a function of t are determined by a
phase line diagram (Figure 1.1). That is, the dynamics of q(t) are determined by the
graph of F(q) and whether the direction of flow is increasing or decreasing along
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the q axis. Since q(0) = 0 and F(0) > 0, q(t) is increasing. The limiting value of
q(t) as t →∞ is the minimal stationary solution of F(q) = 0 on (0,1] or equivalently,
the minimal fixed point of f on (0,1]. �

0 0.5 1 0 0.5 1
−1

−0.5

0

0.5

1

q

F
(q

)

0

0.5

1

q
f(

q)

q*

q*

Fig. 1.1 Phase line diagram of the dynamics of q with graph of F(q) and the graph of f (q) showing
the fixed point q∗.

As can be seen from the graph of f in Figure 1.1, f (0) = p0 > 1, f (1) = 1, and
f is increasing and convex. A fixed point other than one exists if the mean number
of offspring is greater than one, f ′(1)> 1. If f ′(1)≤ 1, then the only fixed point of
f on (0,1] is one, so that q∗ = 1. In general, if f ′(1) < 1, the branching process is
said to be subcritical, if f ′(1) = 1, it is critical, and if f ′(1)> 1, it is supercritical.
As a consequence of the branching process assumptions, if X(0) = i, the probability
of extinction is (q∗)i and probability of persistence is 1− (q∗)i. We summarize this
latter result in the following corollary.

Corollary 1.1. The probability of ultimate extinction of the branching process X(t)
given X(0) = i is (q∗)i, where q∗ is the smallest fixed point of f on (0,1].

The two properties from branching process theory, extinction with probability
(q∗)i and persistence with probability 1− (q∗)i, are applied to other CTMC pro-
cesses, where the branching process provides a good approximation when the pop-
ulation or epidemic sizes are small so that assumptions (i)–(iii) are biologically rea-
sonable.

1.2.1 Birth-Death

A simple birth and death process is a single-type branching process, a Markov chain
model with linear transition rates. The transition probabilities for a simple birth and
death process define the probability of a birth or a death in a short period of time Δ t:
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pi j(Δ t) =

⎧⎪⎪⎨
⎪⎪⎩

biΔ t +o(Δ t), j = i+1
diΔ t +o(Δ t), j = i−1
1− (bi+di)Δ t +o(Δ t), j = i
o(Δ t), j �= i−1, i, i+1.

(1.7)

The parameter λ , defined in the previous section, for the exponential distribution of
the lifetime of an individual is λ = b+d.

The analogous deterministic model for a simple birth and death process is expo-
nential growth, which can be expressed as the differential equation,

dn(t)
dt

= (b−d)n(t), n(0) = n0

with solution n(t) = n0 exp((b− d)t). The deterministic solution only provides in-
formation about the expected population size of the Markov chain model [3]. If
b < d, the expected population size approaches zero, extinction, which agrees with
the behavior of the Markov chain model; the probability of extinction is one. How-
ever, if b > d, the expected population size approaches infinity, but as demonstrated
below, there is still a positive probability of extinction in the Markov chain model
due to the variability in the stochastic process.

Two methods for formulating the offspring pgfs for a stochastic simple birth and
death process are discussed by Dorman et al. [14]. These methods are referred to
as the budding model and the bursting model. In the budding model, an individual
“dies and is replaced by an identical substitute” but in the bursting model, the in-
dividual “collects its offspring and holds them for release until death.” In the first
case, the parent reproduces offspring and survives and in the second case, the parent
reproduces offspring and dies.

In the first method, p0 is the probability of dying and pi, i = 2,3, . . . is the proba-
bility of giving birth to i−1 individuals with the parent being included as part of the
new offspring [14]. Given the assumptions concerning the transition probabilities,
the probability of death is d/(b+ d). Also, the probability of reproduction of one
offspring is b/(b+d) but with survival of the parent (an identical substitute), there
are two offspring. These assumptions agree with the transition probabilities in (1.7).
Such types of models are applicable to cell reproduction, where cell division re-
sults in two identical daughter cells [24]. The budding model is also reasonable for
epidemic outbreaks when an infectious individual passes infection to another indi-
vidual but remains infectious. To formulate the branching process, we assume that
each individual has the same probabilities of a birth or a death (assumption (iii)).
Therefore, the offspring pgf has the following form:

f (s) =
d

b+d
+

b
b+d

s2. (1.8)

The probability of more than two offspring or one offspring is zero, p j = 0 for j = 1
and j > 2. The mean number of offspring is f ′(1) = 2b/(b+d). The condition for
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supercriticality, f ′(1)> 1, is equivalent to 2b/(b+d)> 1 or b > d. The fixed point
of f or probability of extinction can be easily shown to be equal to

q∗ =

{ d
b
, b > d

1, b ≤ d.
(1.9)

The transition probabilities in (1.7) correspond to the budding model assumptions,
where λ = b+d is the parameter in the lifetime distribution.

Alternately, in the second method, if we assume a parent individual dies at the
same time as giving birth, we assume a geometric birth function to ensure the
Markov property is preserved [14]. The offspring pgf has the form:

f (s) =
d

b+d

∞

∑
j=0

(
bs

b+d

) j

=
d

d +b(1− s)
. (1.10)

An individual dies with no offspring with probability p0 = d/(b+ d) or has one
offspring then dies with probability p1 = db/(b+ d)2 or has 2 offspring then dies
with probability p2 = db2/(b + d)3, etc. The parent holds the offspring until its
death and releases them in one big burst [14]. The value of f ′(1) = b/d is the mean
number of births during the lifetime of an individual. The lifetime distribution for
the bursting model differs from the budding model (1.8). The parameter λ = d in the
bursting model but λ = b+ d in the budding model. It is interesting that although
the assumptions are different in the budding and bursting model, the fixed point
of (1.10) is the same as for (1.8). The probability of ultimate extinction, given the
initial population size X(0) = n0, is

P0(n0) = (d/b)n0 .

Four sample paths of the CTMC applying the transition probabilities in (1.7) are
graphed in Figure 1.2. The MatLaB program that generated the four sample paths
is given in Appendix A.1. It is clear that the graphs of the sample paths provide a
more realistic picture of the growth of a population when population sizes are small
than the deterministic solution.

1.3 Multi-Type Branching Processes

In a multi-type branching process, there are n different types, such as n stages. Let
X(t) = (X1(t), . . . ,Xn(t)) be a discrete random vector of the n types. The discrete
random variable Xi(t) represents the ith type which has the Markov property and
takes values in the set {0,1,2, . . .}. The transition probabilities for the multi-type
process are

pj,i(Δ t) = P(X(t +Δ t) = i|X(t) = j).

The zero state (extinction) is an absorbing state.
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Fig. 1.2 The exponential solution (black dashed curve) and four sample paths of the branching
process for parameter values b = 2, d = 1, and n0 = 2. The probability of extinction is P0(2) =
(0.5)2 = 0.25.

Similar assumptions (i)–(iv) apply to each of the i types. Let Yik denote the dis-
crete random variable for the number of offspring of type k from a “parent” of type
i. Let Pi(k) = P(Yi1 = k1,Yi2 = k2, . . . ,Yin = kn), where k j ∈ {0,1, . . .}, j = 1, . . . ,n
be the probability parent type i has k1 offspring of type 1, k2 offspring of type 2,
etc. Each individual of type i gives birth independently of others and has the same
offspring probabilities for all time. We assume Xi(0) = 1 and Xj(0) = 0 for j �= i in
defining the ith offspring pgf:

fi(s) = ∑
k
Pi(k)sk =

∞

∑
k1=0

· · ·
∞

∑
kn=1

Pi(k1, . . . ,kn)s
k1
1 · · ·skn

n

for i = 1, . . . ,n. An assumption similar to (1.2) is required to ensure that the asymp-
totic probability of extinction can be computed. Assume that not all of the functions
fi satisfy: fi(0) = 0 and fi is a linear function of the s j (known as simple func-
tions). That is, not all of the pgfs are simple functions. If, for example, all of the
pgfs fi(0) = 0, then the probability of extinction is zero.

Because of the Markov property, the time between events for type i has an exp-
onential distribution with parameter λi. Forward and backward Kolmogorov dif-
ferential equations can be written in terms of the transition probabilities for the
multi-type process. Let P(s, t) = (P1(s, t), . . . ,Pn(s, t)) denote the vector of pgfs
for X(t), where formally, P(s, t) = E(sX(t)). Each Pi is a solution of the backward
differential equation,

∂Pi(s, t)
∂ t

=−λi[Pi(s, t)− fi(P(s, t))], i = 1, . . . ,n,
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with Pi(s,0) = si. Also, as in the case of the single-type branching process, the
probability of extinction by time t, q(t) = (q1(t), . . . ,qn(t)) for the multi-type pro-
cess is a solution of the backward differential equations:

dqi(t)
dt

=−λi[qi(t)− fi(q(t))] = Fi(q(t)), qi(0) = 0, i = 1, . . . ,n. (1.11)

The main difference between the probability of extinction for the multi-type case
and the single-type case is that there is a vector q∗ of probabilities that determine
extinction. The vector q∗ is the large time limit of q(t).

The mean number of offspring of type k from a parent of type i is computed from
the partial derivative of fi evaluated when the s j are all equal to one: ∂ fi/∂ s j|s = 1.
The n×n matrix

M = [∂ fi/∂ s j]|s=1

is called the expectation matrix. We make the additional assumption that M is irre-
ducible. The matrix M is the multi-type generalization of f ′(1). Matrix J =Λ [M−I]
is the Jacobian matrix of system (1.11) evaluated when the s j equal one, where
Λ = diag(λ1, . . . ,λn) and I is the n× n identity matrix. The spectral abscissa of J,
denoted s(J) (maximum real part of the eigenvalues of J), determines whether the
multi-type process is subcritical, s(J)< 0, critical, s(J) = 0 or supercritical s(J)> 0.
Alternately, criticality can be expressed in terms of the spectral radius of M, denoted
ρ(M) (maximum absolute value of the eigenvalues of M) [6]. That is,

s(J)< 0(= 0, > 0) if and only if ρ(M)< 1(= 1, > 1).

The analogous theorem for the multi-type process on probability of extinction is
stated below without proof. The proof in the case that matrix M is regular (Mk is a
positive matrix for some positive integer k) is verified by Harris [20] and in the case
that M is irreducible and the pgfs are not all simple is summarized in Pénisson [32].

Theorem 1.2. The probability of ultimate extinction of the continuous-time branch-
ing process X(t) given Xi(0) = 1 and Xj(0) = 0, j �= i is the smallest fixed point
q = (q∗1, . . . ,q

∗
n) of the system of pgfs fi, where q∗i ∈ [0,1]. The probability of ulti-

mate extinction for X(t) given Xi(0) = ki for i = 1, . . . ,n is

P0(k1, . . . ,kn) = (q∗1)
k1 · · ·(q∗n)kn .

The term smallest means the smallest value for each coordinate of q. In the case
that ρ(M) > 1 (supercritical), q is the unique solution in [0,1)n [20, 32]. The next
example illustrates extinction in a birth-death-dispersal branching process with two
types, where the types are distinguished by their location.

1.3.1 Birth-Death-Dispersal

We consider a simple example of a population inhabiting two patches, 1 and 2,
with dispersal between the two patches. Let Xi(t) be the random variable for the
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population size in patch i, i = 1,2, at time t, ΔXi(t) = Xi(t+Δ t)−Xi(t), and X(t) =
(X1(t),X2(t)). In addition, let bi and di be constant per capita birth and death rates,
and mi be the per capita movement rate out of patch i and into patch j, i �= j, i, j =
1,2. All parameters are positive. The transition rates, summarized in Table 1.1, are
linear functions of the population size Xi.

The analogous deterministic model for birth-death-dispersal has the form:

Table 1.1 The six events and corresponding transition rates ri(t) associated with the MC birth-
death-dispersal model, where the transition probabilities are ri(t)Δ t +o(Δ t).

Event ΔX(t) Rate, ri(t)
1 (1,0) b1X1(t)
2 (0,1) b2X2(t)
3 (−1,0) d1X1(t)
4 (0,−1) d2X2(t)
5 (−1,1) m1X1(t)
6 (1,−1) m2X2(t)

dn1(t)
dt

= (b1 −d1)n1(t)−m1n1(t)+m2n2(t)

dn2(t)
dt

= (b2 −d2)n2(t)−m2n2(t)+m1n1(t).

(1.12)

If bi > di, i = 1,2, then each population grows exponentially. The rate of dispersal
from patch 1 to 2 is m1 and from patch 2 to 1 is m2. Because the transition rates are
linear in the Xi (Table 1.1) it follows that the solution (n1,n2) of the deterministic
model is the expected population size of the MC model [3].

A two-type branching process X(t) = (X1(t),X2(t)) can be formulated for the
MC birth-death-dispersal model, similar to the simple birth and death process. The
parameter λi for the exponential lifetime distribution for type i is λi = di +bi +mi.
One individual of type i dies with probability di/(di + bi +mi), gives birth to in-
dividuals of the same type but does not die with probability bi/(di + bi +mi) (or
equivalently dies and is replaced with an identical substitute), or disperses to a dif-
ferent patch with probability mi/(di +bi +mi). The offspring pgfs for populations 1
and 2 in each patch are

f1(s1,s2) =
d1 +b1s2

1 +m1s2

d1 +b1 +m1

f2(s1,s2) =
d2 +b2s2

2 +m2s1

d2 +b2 +m2
.

The expectation matrix M of the offspring pgfs and the Jacobian matrix
J = Λ(M− I) of the backward Kolmogorov differential equations are

M =

⎡
⎢⎣

2b1

d1 +b1 +m1

m1

d1 +b1 +m1
m2

d2 +b2 +m2

2b2

d2 +b2 +m2

⎤
⎥⎦ (1.13)
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and

J =

[
b1 −d1 −m1 m1

m2 b2 −d2 −m2

]
. (1.14)

Both matrices are irreducible. Note that the transpose of the Jacobian matrix J agrees
with the Jacobian matrix of the deterministic model (1.12).

We cannot obtain an explicit expression for the probability of extinction in the
supercritical case (s(J)> 0 or ρ(M)> 1), but the dynamics in special cases will be
illustrated. It is straightforward to check that a necessary condition for survival is
bi > di for some i. If bi < di for i = 1,2, then the process is subcritical (s(J) < 0
or ρ(M)< 1); extinction occurs with probability one. For example, if the birth and
death rates are the same, b1 = b2 = b, d1 = d2 = d, and b > d, then q∗1 = q∗2 = d/b,
a result similar to the simple birth-death process. In this case, dispersal between
the patches does not influence survival. Another interesting case is if b1 > d1 and
b2 < d2, then dispersal can rescue patch 2 from extinction. For example, in the
case b1 = d2, d1 = b2, with b1 > d1, then it is easy to show that the process is
supercritical, provided m1 <m2+b1−d1. Dispersal into the exponentially declining
patch 2 from the exponentially growing patch 1 rescues patch 2 from extinction. On
the other hand, if m1 > m2 +b1 −d1, the process is subcritical and regardless of the
magnitude of dispersal, extinction occurs.

In the supercritical case with m1 <m2+b1−d1, Figure 1.3 illustrates two sample
paths with persistence of the population in both patches. Figure 1.4 plots the proba-
bility of extinction q∗1 and q∗2 as a function of m1 for the case b1 = 2= d2, d1 = 1= b2

and m2 = 1. The fixed points (q∗1,q
∗
2) are computed numerically.
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Fig. 1.3 Two sample paths of the branching process for the two-patch birth-death-dispersal model
with parameter values b1 = 2= d2, d1 = 1= b1, m1 = 0.5 and m2 = 1 and X1(0) = 5 and X2(0) = 1.
The probability of extinction is P0(5,1)≈ (0.6347)5(0.8315) = 0.0857.

Alternately, defining births as in a bursting model (birth followed by death),
where births follow a geometric distribution, then the offspring pgfs for the branch-
ing process are
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Fig. 1.4 Graphs of the probability of extinction for the birth-death-dispersal model as a function
of dispersal parameter m1. Other parameters are b1 = 2 = d2, d1 = 1 = b1, and m2 = 1.

f1(s1,s2) =
d1 +m1s2

b1 +d1 +m1

∞

∑
j=0

(
b1s1

b1 +d1 +m1

) j

=
d1 +m1s2

d1 +m1 +b1(1− s1)

f2(s1,s2) =
d2 +m2s1

b2 +d2 +m2

∞

∑
j=0

(
b2s2

b2 +d2 +m2

) j

=
d2 +m2s1

d2 +m2 +b2(1− s2)
.

Although the expectation matrix M′ for this set of pgfs differs from M defined
in (1.13), matrix J′ = Λ ′(M′ − I) with Λ ′ = diag(d1 +m1,d2 +m2) equals matrix J
defined in (1.14). In addition, it can be shown that the solution for the fixed points
of the pgfs is the same as defined above.

1.4 Summary

Continuous-time Markov chains realistically model the discrete changes that oc-
cur in the birth-death-dispersal process. The solution of the underlying determinis-
tic model for the linear birth-death-dispersal model only predicts the mean of the
stochastic process; it cannot predict the extinction behavior for small population
sizes. Continuous-time and discrete-state branching process theory is shown to be a
useful method to predict population extinction, absorption into the zero state for the
CTMC birth-death-dispersal process.

The basic theory of single- and multi-type branching processes is well known in
the stochastic literature [20, 23, 30], but it is not as widely known or applied in the
population or epidemic literature. In the following two chapters, several applications
of branching process theory are presented to illustrate the insight obtained from
this theory in the study of species invasions or of epidemic outbreaks. Additional
applications of branching process theory that include immigration, environmental
variation, or catastrophes can be found in the references (e.g., [7, 8, 21, 23, 34]).



Chapter 2
Applications of Single-Type Branching Processes

2.1 Introduction

Two applications of single-type branching process theory to population and
epidemic processes are presented. The first application is to an epidemic model with
susceptible, infectious, and recovered individuals in which there is only temporary
immunity to reinfection. In the branching process approximation, the infectious
stage is modeled by a birth and death process. Branching process theory provides
an estimate for the probability of a major outbreak. Whittle in 1955 was the first to
apply this theory in an epidemic setting [38]. The second application is to a classic
competition model for two species. In this application, one species is native and
the other species is nonnative and invasive. Invasive species pose a serious threat
to the survival of many native species [35]. An important problem in conservation
theory is how to prevent this invasive process. Branching process theory is used
to investigate this problem, through analysis of a competition model between the
native and the invasive species.

2.2 SIRS Epidemic

Introduction of infectious individuals into a susceptible population may result in an
outbreak, causing a large increase in the number of infectious individuals. Whether
an outbreak occurs depends on the rates of transmission, recovery, death, and the
size of the susceptible population. In the SIR epidemic model, the population is
divided into susceptible, infectious, and recovered individuals, S, I, and R, respec-
tively. Let the parameters β and γ denote the transmission and the recovery rates,
respectively. In the case of a serious disease, infection may result in disease mor-
tality at rate α . In addition, if recovered individuals have only temporary immunity
to reinfection, with a waning immunity rate δ , then recovered individuals return to

© Springer International Publishing Switzerland 2015
L.J.S. Allen, Stochastic Population and Epidemic Models, Mathematical Biosciences
Institute Lecture Series 1.3, DOI 10.1007/978-3-319-21554-9 2
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being susceptible. With waning immunity, there is a potential for a second outbreak.
The model with waning immunity is referred to as an SIRS epidemic model.

For the SIRS epidemic model, the ratio β/(γ +α) is known as the basic rep-
roduction number, denoted as R0, an important parameter in epidemic theory. It
is often defined as the number of secondary infections caused by introduction of
one infectious individual into an entirely susceptible population. Therefore, if the
magnitude of R0 is greater than one, the number of cases increases, an epidemic
situation. For different infectious diseases, there have been a wide range of estimates
for R0 that depend on many factors, including the infectious agent, the time, and the
location [13].

Let the three random variables for the states (S, I,R) in the CTMC epidemic
model be denoted as (X1X2,X3) = X with N = ∑3

i=1 Xi equal to the random variable
for the total population size. The transition rates in the CTMC model are given
in Table 2.1. For example, event 1 in Table 2.1 is a new infection. The transition
probability for event 1 is

P(ΔX(t) = (−1,1,0)|X(t)) = β
X1(t)
N(t)

X2(t)Δ t +o(Δ t),

where ΔX(t) = X(t +Δ t)−X(t) and the MC Rate β
X1(t)
N(t)

X2(t) is nonlinear.

Table 2.1 Transition rates for the CTMC SIRS epidemic model (MC Rates) and for the approx-
imating branching process for infectious individuals, X2(t) (BP Rates). In the branching process
approximation, event 1 corresponds to a birth of an infective and events 2 and 3 correspond to a
death of an infective.

Event ΔX(t) MC Rates BP Rates

1 (−1,1,0) β
X1(t)
N(t)

X2(t) βX2(t)

2 (0,−1,1) γX2(t) γX2(t)
3 (0,−1,0) αX2(t) αX2(t)
4 (1,0,−1) δX3(t) —

The deterministic SIRS model corresponding to the CTMC model described
above can be expressed as the following system of ordinary differential equations
(ODEs):

dS(t)
dt

=−β
S(t)
N(t)

S(t)I(t)+δR(t)

dI(t)
dt

= β
S(t)
N(t)

S(t)I(t)− γI(t)−αI(t)

dR(t)
dt

= γI(t)−δR(t),

(2.1)

where S(0) > 0, I(0) > 0,R(0) = 0, and S(t) + I(t) +R(t) = N(t). In this model,
N(t) is not random. Because of the nonlinearity in the state variables, the solution
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(S(t), I(t),R(t)) corresponding to the SIRS model (2.1) is not the expectation of the
random variables in the CTMC model,

(S(t), I(t),R(t)) �= (E(X1(t)),E(X2(t)),E(X3(t))).

As will be clear from the examples, at the initiation of an outbreak and end of
the outbreak, the CTMC model with discrete random variables provides a more
realistic description of the disease dynamics than the ODE model. However, during
an outbreak, if the population size is large, then the dynamics of the CTMC and
ODE models are close. Kurtz [26–28] showed in a series of papers in the 1970s
that the large population limit of a Markov chain model is a system of ODEs. In
particular, the SIRS ODE model is the large population limit of the SIRS CTMC
model.

Near the disease-free state, (X1(0),X2(0),X3(0)) ≈ (N(0)− i0, i0,0). If N(0) is
large and i0 is small, then the transition rates are approximately linear. The CTMC
infectious population can be approximated by a continuous-time branching process.
Either the Markov chain hits zero, an absorbing state, or grows exponentially away
from zero, a disease outbreak. The probability of hitting zero can be estimated from
the branching process approximation.

The transition rates corresponding to a branching process approximation of the
infectious population X2(t) are given in Table 2.1 (BP Rates). For example, event 1
in the branching process approximation is

P(ΔX2(t) = 1|X2(t)) = βX2(t)Δ t +o(Δ t),

a “birth” of an infectious individual. The branching process rate βX2 is linear in X2.
The infectious population X2 in the CTMC epidemic model has a per capita birth

rate equal to b = β and a per capita death rate equal to d = γ +α (Table 2.1). It
follows from the branching process formula in Chapter 1 that the probability of
extinction is equal to q∗ = d/b when b > d (supercritical case). Expressed in terms
of the basic reproduction number,

q∗ =

⎧⎨
⎩

1
R0

, R0 > 1

1, R0 ≤ 1.

The preceding estimate was first described by Whittle in 1955 [38] for the sim-
pler SIR epidemic model with no disease-related mortality (α = 0) and no waning
immunity (δ = 0). Given X2(0) = i0 initial infectious individuals introduced into an
entirely susceptible population, the probability of no major outbreak is

P0(i0)≈ (1/R0)
i0 .

The probability of a major outbreak is 1− (1/R0)
i0 . As noted above, this result

depends on the fact that X1(0)≈ N(0) is sufficiently large and i0 is small.
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The graphs in Figure 2.1 illustrate the dynamics in two cases: N(0) = 100 and
N(0) = 500. The branching process is supercritical, R0 > 1. For the ODE model,
the disease becomes endemic. However, in Figure 2.1 (a) and (c), the disease in
the stochastic model does not become endemic and generally ends after a single
outbreak. For the larger population size of 500, in Figure 2.1 (c), the first outbreak
is followed by one of smaller magnitude, where the maximum outbreak size is about
30. A single major outbreak may be followed by one or more minor ones, if there is
a sufficient number of susceptible individuals after the first outbreak. It is apparent
in Figure 2.1 that the stochastic sample paths are closer to the deterministic ODE
solution in Figure 2.1 (c) than in Figure 2.1 (a) because of the much large population
size in 2.1 (c). The MatLaB program that generated the sample paths in Figure 2.1
is given in Appendix A.2.
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Fig. 2.1 Four sample paths of the CTMC SIRS epidemic model and the corresponding ODE so-
lution (dashed curve). Parameter values for the SIRS epidemic model β = 0.3, γ = 0.1, α = 0.05,
δ = 0.01, I(0) = 2, S(0) = N(0)− 2. In (a) and (b), N(0) = 100 and in (c) and (d), N(0) = 500.
The shorter time scale in (b) and (d) illustrates the growth phase in the branching process approxi-
mation. The probability of a major outbreak is 1−P0(2) = 1− (1/2)2 = 3/4.
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2.3 Species Invasion

According to the NOAA website [31], “An invasive species is an organism that
causes ecological or economic harm in a new environment where it is not native.”
Charles Elton’s book The Ecology of Invasions by Animals and Plants published
in 1958 was the first to call attention to the environmental impact of invasions by
nonnative species [15]. Many nonnative invasive species from amphibians and ants
to water hyacinths and zebra mussels are documented in [35]. An important ques-
tion in conservation theory is how to prevent and control invasive species. Models
and branching processes can help address these questions and inform public policy
decisions.

Four stages are generally identified in the invasion process: arrival, establish-
ment, integration, and spread [37]. The first two stages of the invasion process may
be modeled by competition between two species with one being the native species
and the other, the nonnative species. The invader may arrive many times but each
time it only has a small chance of success unless several propagules are introduced
simultaneously.

We model competition between two species via the well-known Lotka-Volterra
competition model. Let n1 be the native species and n2 the invader in a deterministic
model for competition:

dn1(t)
dt

= r1n1(t)

(
1− n1(t)

K1

)
− c12n1(t)n2(t)

= n1(t)

(
r1 − r1

n1(t)
K1

− c12n2(t)

)
dn2(t)

dt
= r2n2(t)

(
1− n2(t)

K2

)
− c21n2(t)n1(t)

= n2(t)

(
r2 − r2

n2(t)
K2

− c21n1(t)

)
.

(2.2)

All parameters are positive. Each species in the absence of the other grows logisti-
cally to their respective carrying capacity, Ki, i = 1,2. The terms ci j are interspecies
competition coefficients. It is well known that a stable coexistence equilibrium exists
if Ki < r j/c ji, where i, j = 1,2, i �= j. However, if K1 < r2/c21 and K2 > r1/c12, then
species 2 outcompetes species 1; species 1 goes extinct and species 2 approaches
carrying capacity K2.

To formulate a CTMC model for the invasion process, we use the particular form
from the Lotka-Volterra competition model (2.2) to formulate the birth and death
rates. Let X(t) = (X1(t),X2(t)) denote the random vector for species 1 and 2 and
ΔX(t) = X(t +Δ t)−X(t). Assume birth and death rates for species i, respectively,
are dependent on both population sizes, competition within and between species.
That is, let the birth rate be

bi(t) = bi1Xi(t)−bi2X2
i (t), Xi(t)≤ bi1/bi2 (2.3)
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and the death rate be

di(t) = di1Xi(t)+di2X2
i (t)+ ci jXi(t)Xj(t), i �= j, (2.4)

where bi1 > 0, di1 > 0, bi2 ≥ 0, and di2 ≥ 0. If Xi(t) > bi1/bi2, then bi(t) = 0. The
competition term ci jni(t)n j(t) is assumed to contribute to the death rate. Because
the dynamics of the ODE and CTMC are nonlinear in the state variables, the deter-
ministic solution does not correspond to the mean of the stochastic model.

To compare the CTMC dynamics to those of the ODE model, assume that
ri = bi1 − di1 > 0 and bi2 + di2 = ri/Ki. (See Table 2.2.) Even though the deter-
ministic model predicts invader success, this is not the case in the stochastic model.
If the invader population is not sufficiently large, then it cannot become established.

Table 2.2 Transition rates for the CTMC competition model (MC Rates) and for the continuous-
time branching process approximation (BP Rates). Rates bi(t) and di(t) are defined in (2.3)
and (2.4).

Event ΔX(t) MC Rates BP Rates
1 (1,0) b1(t) –
2 (0,1) b2(t) b21X2(t)
3 (−1,0) d1(t) –
4 (0,−1) d2(t) (d21 + c21K1)X2(t)

Theory from branching process can be applied when X1(0) = K1 is sufficiently
large and X2(0) = n20 is small. To estimate the probability of species 2 invasion
success, the rates for the branching process (BP Rates) for X2 are applied from
Table 2.2. The corresponding linear approximation for the ODE model for n2(t) is

dn2(t)
dt

≈ (b21 −d21 − c21K1)n2(t).

The zero state for species 2 (or species 1) is an absorbing state. It follows that the
branching process approximation for the invader X2(t) will have per capita birth and
death rates, b = b21 and d = d21 + c21K1, respectively. Thus, species 2 can invade
species 1 iff b > d iff b21 > d21 +c21K1 (supercritical case). This latter inequality is
equivalent to the inequality K1 < r2/c21. Therefore, from branching process theory,
if K1 < r2/c21, the probability of extinction or an unsuccessful invasion of species
2 is approximately

P0(n20) =

(
d21 + c21K1

b21

)n20

and the probability of a successful invasion is 1−P0(n20), where n20 is the initial
population size of the invader.

If the interspecies competitive effect of species 1 on species 2 is relatively small,
that is, c21K1 is small compared to b21, then species 2 has a competitive advantage
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and a greater chance of invasion. The stochastic model also shows that invasion
success depends on the population size of the invader, n20. If the invasion is success-
ful, the outcome of the competition, either coexistence of both species or dominance
by species 2, can be predicted by the ODE model. This outcome may be representa-
tive of the third stage of invasion, integration. Which of these two outcomes occurs
depends on the relation of b11 to d11 + c12K2. If species 2 is a better competitor,
b11 < d11 + c12K2, then species 2 will replace species 1.

An example of the CTMC species invasion model is simulated with parameter
values chosen so that species 2 dominates after it successfully invades. Parameter
values are K1 = 100, K2 = 200, and K1 > r2/c21 in Figure 2.2. The four sample
paths of the CTMC competition model illustrate four invasion attempts, but only
one is successful.

0 10 20
0

50

100

Time

S
pe

ci
es

 1

0 5 10
0

50

100

Time

S
pe

ci
es

 1

0 10 20
0

100

200

Time

S
pe

ci
es

 2

0 5 10
0

10

20

30

Time

S
pe

ci
es

 2

Fig. 2.2 Four sample paths of the two species CTMC competition model and the solution of the
ODE model (2.2) with parameter values r1 = 1, r2 = 2, b11 = 2, d11 = 1 = d21, b21 = 3, di2 = 0,
i = 1,2, c12 = 0.01 = c21 = 0.01, K1 = 100, and K2 = 200. Initial conditions are X1(0) = 100
and X2(0) = 3. The graphs on the left are for the time interval [0,25], whereas the graphs on
the right are for the time interval [0,10]. The shorter time scale illustrates the initial exponential
growth of species 2 invasion. The probability that species 2 invades species 1 at equilibrium is
1−P0(3) = 1− (2.5/3)3 ≈ 0.421.
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2.4 Summary

Continuous-time and discrete-state branching process theory from Chapter 1 is app-
lied to two problems. One problem is to estimate the probability of a major out-
break in an SIRS epidemic with temporary immunity and the second problem is to
estimate the probability of species invasion when a native species competes with
a nonnative species. Additional applications of branching process theory involving
multiple species and multiple sites in the study of species invasions and epidemic
outbreaks can be found in the references (e.g., [5, 6, 29, 34]).



Chapter 3
Applications of Multi-Type Branching Processes

3.1 Introduction

Two applications of multi-type branching processes to epidemic models are pre-
sented. The first application is to an SEIR epidemic model and the second appli-
cation is to the same epidemic model but with dispersal. The SEIR epidemic is
modeled as a two-type branching process. Occurrence of an outbreak depends on
the number of exposed and infectious individuals. It is shown that the offspring pgfs
for the exposed and infectious populations lead to an explicit formula for the proba-
bility of an outbreak. In the SEIR model with dispersal, the case of two regions with
different healthcare situations are considered. One region has poor healthcare versus
another region with excellent healthcare. It is shown that the rate and the direction
of movement have a large impact on the occurrence of an outbreak. Branching pro-
cess theory is used to investigate the probability of an outbreak when the movement
rates differ between the two regions.

Although the SIR and SEIR epidemic models are simple, they are often used as
a first approximation during or after disease outbreaks to provide estimates of the
potential spread of the disease or to understand the pattern of spread. For example,
SIR and SEIR epidemic models in conjunction with data provided useful informa-
tion about the spread of the 2002–2003 SARS (Severe Acute Respiratory Syndrome)
pandemic which began in China, the 2009–2010 H1N1 influenza pandemic which
began in Mexico, and the 2014 Ebola outbreak in Africa [11, 22, 33].

© Springer International Publishing Switzerland 2015
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3.2 SEIR Epidemic

Consider an SEIR epidemic model, where S, E, I, and R are the susceptible, exposed,
infectious, and recovered individuals, respectively. With disease-related mortality
rate α , the population size is not constant, S(t) +E(t) + I(t) +R(t) = N(t). The
deterministic SEIR ODE model has the form:

dS(t)
dt

=−β
S(t)
N(t)

I(t)

dE(t)
dt

= β
S(t)
N(t)

I(t)−δE(t)

dI(t)
dt

= δE(t)− γI(t)−αI(t)

dR(t)
dt

= γI(t).

(3.1)

Births, deaths, and temporary immunity are not included in this model. However,
the basic reproduction number near the disease-free state has the same form as in
the SIRS model considered in Chapter 2 [36]:

R0 =
β

γ +α
. (3.2)

For the CTMC SEIR epidemic model, let X(t) = (X1(t),X2(t),X3(t),
X4(t)) denote the discrete random variables for the four states, (S(t),E(t),
I(t),R(t)). The transition rates for the CTMC SEIR epidemic model (MC Rates)
and those for the corresponding branching process approximation (BP rates) for
exposed and infectious populations, X2 and X3 are given in Table 3.1. Because the
rates are nonlinear, the solution of the deterministic model does not represent the
mean of the stochastic model. Note that event 1 has a nonlinear transition rate in
the MC model but a linear rate in the branching process approximation.

Table 3.1 Transition rates for the CTMC SEIR epidemic model (MC Rates) and for the corre-
sponding branching process approximation for exposed and infectious individuals (BP Rates).

Event ΔX(t) MC Rates BP Rates

1 (−1,1,0,0) β
X1(t)
N(t)

I(t) β I(t)

2 (0,−1,1,0) δX2(t) δX2(t)
3 (0,0,−1,1) γX3(t) γX3(t)
4 (0,0,−1,0) αX3(t) αX3(t)

To compute the probability of epidemic extinction for the multi-type branching
process, the pgfs for the random variables, X2 and X3, are defined. Applying the
transition rates from Table 3.1, the pgfs for X2 and X3 are
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f1(s1,s2) =
δ s2

δ

f2(s1,s2) =
β s1s2 + γ +α

β + γ +α
.

Although f1 is a simple function, f2 is not. The expectation matrix of the pgfs is

M =

⎡
⎣ 0 1

β
β + γ +α

β
β + γ +α

⎤
⎦ .

Matrix J = Λ(M− I) is

J =

[−δ δ
β −γ −α

]
,

where Λ = diag(δ ,β + γ + α). Both matrices are irreducible. It is clear that if
R0 > 1, the branching process is supercritical. In particular, if R0 > 1, the unique
fixed point of the pgfs is (q∗1,q

∗
2) ∈ (0,1)2, where q∗i = 1/R0 (Whittle’s result). The

difference between the SIR and SEIR CTMC models is that the exposed period
increases the time until extinction and the presence of both exposed and infectious
individuals increases the probability of an outbreak. This latter result can be seen in
the probability of extinction (no major outbreak) for the CTMC SEIR epidemic
model, which is given by

P0(e0, i0)≈ (1/R0)
e0+i0 .

A numerical example of the SEIR CTMC model along with the deterministic
solution is given in Figure 3.1. Three of the four sample paths represent an out-
break, whereas in one there is no outbreak. The probability of a major outbreak is
1−P0(1,0) = 0.625.

If additional mortality occurs during the exposed period at rate εX2(t), then the
pgf for X2 is

f1(s1,s2) =
δ s2 + ε
δ + ε

.

The basic reproduction number for the ODE model with mortality during the exp-
osed period differs from (3.2) and is equal to

R0 =
βδ

(δ + ε)(γ +α)
. (3.3)

If R0 > 1, then the fixed point can be explicitly determined,

q∗1 =
δ

δ + ε
1
R0

+
ε

δ + ε

q∗2 =
1
R0

.
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A model with natural births and deaths in all stages yields a similar result [4]. The
value for the probability of extinction is greater in the exposed period than in the inf-
ectious period, q∗1 > q∗2. This is a reasonable result since in the exposed period, ind-
ividuals may die with probability ε/(δ + ε) before becoming infectious or become
infectious but not transmit the disease with probability δ/[(δ + ε)R0].
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Fig. 3.1 Four sample paths of the CTMC SEIR epidemic model along with the deterministic solu-
tion (dashed curve). Parameter values are β = 0.4, δ = 0.4, γ = 0.1, α = 0.05, and ε = 0. Initial
values are S(0) = 499, E(0) = 1, I(0) = 0 = R(0). The basic reproduction number R0 = 2.67. The
probability of a major outbreak is 1−P0(1,0) = 0.625.

3.3 Epidemic Dispersal

Suppose disease is spread between two populations each occupying different reg-
ions or patches and modeled by the SEIR epidemic equations within each patch.
In population 1, poor healthcare facilities result in frequent disease outbreaks. In
population 2, better healthcare facilities and reduced mortality and recovery rates
result in no major outbreaks. For population 1, the basic reproduction number is
greater than one but for population 2, the basic reproduction number is less than
one. With dispersal between these two populations, the outcome changes depending
on the direction and the rate of dispersal.

Let the disease parameters for each of these populations be denoted as βi, δi, γi,
and εi, i = 1,2. The rate of dispersal from population 1 to 2 is m1 and the rate from
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population 2 to 1 is m2. For simplicity, the model assumes that all individuals within
each stage, S, E, I, or R, disperse at the same rates, i.e., with rates m1 and m2. The
disease is spread by the movement of exposed or infectious individuals between
these two populations. The deterministic model for population 1 with dispersal is

dS1(t)
dt

=−β1
S1(t)
N1(t)

I1(t)−m1S1(t)+m2S2(t)

dE1(t)
dt

= β1
S1(t)
N1(t)

I1(t)−δ1E1(t)− ε1E1(t)−m1E1(t)+m2E2(t)

dI1(t)
dt

= δ1E1(t)− γ1I1(t)−α1I1(t)−m1I1(t)+m2I2(t)

dR1(t)
dt

= γ1I1(t)−m1R1(t)+m2R2(t).

(3.4)

A similar system holds for population 2. Without dispersal, mi = 0, the basic repro-
duction number R0i, i = 1,2, for each population is given by formula (3.3), where
the parameters for population 1 or 2 have subscripts 1 or 2, respectively. We assume
R01 > 1 and R02 < 1.

A branching process approximation for the corresponding CTMC SEIR model
for two patches can be applied if the population size is large but the exposed and
infectious population sizes are small. For the branching process, we are only inter-
ested in the exposed and infectious stages. The direction and the rate of movement
of individuals in these disease stages have a large impact on the probability of an
outbreak.

Let X(t) = (X1(t),X2(t),X3(t),X4(t)) denote the four discrete random variables
for stages E1, I1, E2, and I2, respectively. The four probability generating functions
of the approximating branching process are

f1(s1,s2,s3,s4) =
δ1s2 + ε1 +m1s3

δ1 +m1 + ε1

f2(s1,s2,s3,s4) =
β1s1s2 + γ1 +α1 +m1s4

β1 + γ1 +α1 +m1

f3(s1,s2,s3,s4) =
δ2s4 + ε2 +m2s1

δ2 + ε2 +m2

f4(s1,s2,s3,s4) =
β2s3s4 + γ2 +α2 +m2s2

β2 + γ2 +α2 +m2
.

(3.5)

If the spectral radius of the expectation matrix ρ(M)> 1, then the process is super-
critical. A formula for the minimal fixed point of (3.5), (q∗1,q

∗
2,q

∗
3,q

∗
4) can be com-

puted numerically. In the supercritical case, the probability of no major outbreak is
approximately

P0(e10, i10,e20, i20) = (q∗1)
e10(q∗2)

i10(q∗3)
e20(q∗4)

i20 ,

where e j0 and i j0 are the initial number of exposed and infectious individuals in
patch j, respectively. The probability of a major outbreak is 1−P0(e10, i10,e20, i20).
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An example with equal dispersal rates for the two populations, m1 = m2, results
in outbreaks in both populations. The probability of an outbreak increases in popu-
lation 1 but decreases in population 2. In Figure 3.2, population 1 has R01 = 2.67
but in population 2 there is lower transmission, higher recovery, and lower mortality,
so that R02 = 0.89. One infectious individual introduced into population 1 gives a
probability for no major outbreak, P0(0,0,0,1) = 0.751.
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Fig. 3.2 Four sample paths of the SEIR CTMC model with dispersal along with the ODE solu-
tion (dashed curve). Parameter values are β1 = 0.4, β2 = 0.2, δ1 = 0.4 = δ2, γ = 0.1, γ2 = 0.05,
α1 = 0.05, α2 = 0.025, ε1 = 0 = ε2, and m1 = 0.05 = m2. Initial values are S1(0) = 500,
S2(0) = 499, E1(0) = 0 = E2(0), I1(0) = 1, and R1(0) = 0 = R2(0). The basic reproduction num-
bers for each population are R10 = 2.67 and R02 = 0.89. Probability of no major outbreak is
P0(0,0,0,1) = 0.751.

With unequal dispersal between the two populations, the probability of an out-
break depends on the direction and magnitude of the dispersal rates (as in the birth-
death-dispersal model in Chapter 1). In Figure 3.3, the fixed points (q∗1,q

∗
2,q

∗
3,q

∗
4)

of the pgfs in (3.5) are computed numerically given both m1 and m2 lie in the range
[0,0.2]. If dispersal is greater toward the population with good healthcare facilities
it is possible to eradicate disease in both populations, that is, no major outbreaks
occur. Allowing movement out of the poor healthcare region but restricting move-
ment into the region (bottom left graph in Figure 3.3) is a good strategy for disease
control, but restricting movement out of the poor healthcare strategy but allowing
movement into that region (bottom right graph in Figure 3.3) is a poor strategy.
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Fig. 3.3 Probability of no major outbreak for a CTMC SEIR epidemic model with dispersal
between two populations as estimated by the fixed points q∗i . Dispersal from population 1 to 2
is m1 and from population 2 to 1 is m2. Parameter values are the same as in Figure 3.2, except
for the dispersal parameters: β1 = 0.4, β2 = 0.2, δ1 = 0.4 = δ2, γ = 0.1, γ2 = 0.05, α1 = 0.05,
α2 = 0.025, ε1 = 0 = ε2.

3.4 Summary

The multi-type branching process application to an SEIR epidemic with dispersal
illustrates the importance of controlling movement into and out of particular reg-
ions to prevent an outbreak. Although prevention and control measures are more
complex in real epidemic or pandemic situations, the basic SIR and SEIR mod-
els are often used in conjunction with data to help estimate the potential spread of
the disease, e.g., SARS, influenza, and Ebola [11, 22, 33]. The control measures
in pandemic situations often include travel restrictions, quarantine, isolation, and
drugs such as antiviral medication to prevent infection. Other specific applications
of branching processes to infectious disease models include vector-transmitted dis-
eases [4, 6, 9, 18], HIV infection, [12] and bovine respiratory syncytial virus [19].



Chapter 4
Continuous-Time and Continuous-State
Branching Processes

4.1 Introduction

For the continuous-time and continuous-state branching process, the probability
of extinction differs from that of the continuous-time and discrete-state branching
process considered in the preceding chapters. One obvious difference is, in the
continuous-state process, the random variable X(t) ∈ [0,∞) as opposed to X(t) ∈
{0,1,2 . . .}. Another major difference is that the estimate for probability of extinc-
tion in the continuous-state branching process is an upper bound for the correspond-
ing discrete-state process. That is, the probability of extinction is always greater
for the continuous-state branching process. Although the estimates differ, it is also
shown that the two branching process estimates for probability of extinction are
close when the maximum population size is large and the birth to death ratio is small.
Therefore, the continuous-state branching process provides a reasonable alterna-
tive to estimating population or epidemic persistence or extinction. Certainly, when
computing the probability of extinction for biological processes that are continuous-
valued rather than discrete-valued, the continuous-state process should be applied.
Furthermore, continuous-time and continuous-state branching process models have
an advantage of being easily formulated and computationally simulated for complex
biological systems with demographic and environmental variability.

In this chapter, an analytical formula for the probability of extinction is obtained
for the single-type, continuous-state, birth-death branching process through solution
of the backward Kolmogorov differential equation. This extinction formula is com-
pared to the corresponding estimate from the discrete-state branching process. Two
applications are used to illustrate the extinction estimate for the continuous-state
branching approximation, logistic growth and an SIR epidemic.

© Springer International Publishing Switzerland 2015
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4.2 Single-Type Branching Processes

A continuous-time and continuous-state branching process {X(t)|t ∈ [0,∞)} is a
Markov process with nonnegative state space X(t) = x∈ [0,∞). The branching prop-
erty depends on the probability measure of X(t). Briefly, P(t,x,E) is the transition
probability measure of X(t). Given X(0) = x, the probability measure of a transi-
tion to a state in E is P(t,x,E), where E is a Borel measurable subset of [0,∞). For
example, the probability of extinction at time t beginning from state x is P(t,x,{0}).
The transition probability measure satisfies the following branching property [7]:

P(t,x+ y,E) =
∫ ∞

0
P(t,x,E −u)P(t,y,du). (4.1)

Equation (4.1) implies the process is additive, similar to the assumption (1.1) in
Chapter 1. The preceding relation means the probability of reaching state E at time
t beginning from x+ y is the sum of two independent processes, one beginning at
x and the other at y. Other properties of the branching process can be derived from
condition (4.1). The first and second moments satisfy

lim
Δ t→0+

E[ΔX(t)|X(t) = x]
Δ t

= a1x, lim
Δ t→0+

E[(ΔX(t))2|X(t) = x]
Δ t

= a2x, (4.2)

properties that define a diffusion process. These two moments lead to the derivation
of the backward Kolmogorov differential equation (e.g., [3]):

∂P(t,x,y)
∂ t

= a1x
∂P(t,x,y)

∂x
+

1
2

a2x
∂ 2P(t,x,y)

∂x2 , (4.3)

where the first term on the right is known as the drift and the second term as the
diffusion. Similarly a forward Kolmogorov differential equation can be derived:

∂P(t,x,y)
∂ t

=−∂ (a1yP(t,x,y))
∂y

+
1
2

∂ 2(a2yP(t,x,y))
∂y2 . (4.4)

The continuous-state process is related to the MC branching process. In the MC
branching process, ΔX(t) = +1 with probability bX(t)Δ t +o(Δ t) and ΔX(t) =−1
with probability dX(t)Δ t + o(Δ t). With these assumptions, the mean and variance
given in (4.2) are a1x = (b − d)x and a2x = (b+d)x. The forward Kolmogorov
differential equations lead to an Itô stochastic differential equation (SDE) for the
continuous-state branching process X(t) [1, 2, 27]:

dX(t) = a1X(t)dt +
√

a2X(t)dW (t)

= (b−d)X(t)dt +
√
(b+d)X(t)dW (t), (4.5)

where W (t) is a Wiener process, ΔW (t) =W (t+Δ t)−W (t)∼ Normal(0,Δ t), nor-
mally distributed with mean zero and variance Δ t.
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Numerical solutions of the Itô SDE (4.5) are graphed in Figure 4.1. The MatLaB
program that generated these four sample paths is given in Appendix A.3. These
sample paths are comparable to the sample paths of the birth-death process in
Figure 1.2.
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Fig. 4.1 The exponential growth model n(t) = n0e(b−d)t (dashed curve) and four sample paths of
the continuous-state branching process for b = 2, d = 1, and x = n0 = 2. One sample path hits zero.
Compare with Figure 1.2. The probability of extinction for the continuous-state branching process
is P0(n0) = exp(−2n0(b−d)/(b+d)) = exp(−4/3)≈ 0.2636.

Feller computed the probability of extinction for the continuous-state branch-
ing process [16]. The probability of ultimate extinction P0(x), where x is the ini-
tial state, can be obtained directly from equation (4.3) by computing the stationary
solution with appropriate boundary conditions. That is, P0(x) is the solution u(x) of
the boundary value problem:

0 = (b−d)u′(x)+
(b+d)

2
u′′(x), u(0) = 1, u(∞) = 0,

where x ∈ (0,∞) is the initial population size. The solution of this boundary value
problem is easily obtained as

u(x) = P0(x) = exp

(
−2x

(b−d)
(b+d)

)
= exp

(
−2x

(b/d −1)
(b/d +1)

)
. (4.6)

It is interesting to note that a lower bound for probability of extinction is e−2x, e.g.,

lim
(b/d)→∞

P0(x) = e−2x.
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This is in contrast to the MC model, where the probability of extinction P0(x) =
(d/b)x approaches zero as b/d → ∞. A graph comparing the probability of extinc-
tion as a function of b/d is plotted in Figure 4.2.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

b/d

n0=1

SDE
CTMC

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

b/d

SDE
CTMC

P
0(

1)

P
0(

3)

n0=3

Fig. 4.2 The probability of extinction P0(x) for the continuous-state (SDE) versus the discrete
state (CTMC) branching processes are graphed as a function of b/d and x = n0.

4.3 Applications

Two applications are presented. The first application is to the logistic growth model
and the second application is to the SIR epidemic model.

4.3.1 Logistic Growth

The formulation of a stochastic logistic growth model depends on assumptions reg-
arding birth and death rates, b(t) and d(t). A general form for a stochastic logistic
model that includes variability due to births and deaths is similar to (4.5):

dX(t) = (b(t)−d(t))X(t)dt +
√
(b(t)+d(t))X(t)dW (t).

The birth and death rates can be related to the well-known form for births and deaths
in the logistic growth model dn(t)/dt = rn(t)(1−n(t)/K). If

b(t) = b1n(t)−b2n2(t)
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and

d(t) = d1n(t)+d2n2(t),

where b1,b2,d2, and d2 are nonnegative b1 − d1 = r and b2 − d2 = r/K, then
b(t)−d(t) agrees with the growth rate in the logistic growth model. That is,

b(t)−d(t) = rn(t)

(
1− n(t)

K

)
.

Unfortunately, there is an infinite number of possible choices for the coefficients bi

and di for the birth and the death rates.
The nonlinear logistic model is approximated by the continuous-state branching

process in (4.5) if the nonlinear terms are dropped in the birth and death rates. The
branching approximation can be applied when the population size is small and the
carrying capacity K is large.

As an example, let r = 1 with b1 = 2, d1=1, b2=r/(cK), and d2 = (c−1)r/(cK),
c ≥ 1. With these parameter values, the nonlinear logistic SDE model is

dX(t) = rX(t)(1−X(t)/K)dt +
√

X(t)(3+X(t)/K)dW (t), (4.7)

with r = 1. If the carrying capacity K is large and X(0) is small, then the approx-
imation of the nonlinear logistic SDE model (4.7) by the branching process SDE
model (4.5) takes the form:

dX(t) = X(t)dt +
√

3X(t)dW (t).

Applying formula (4.6) with b − d = b1 − d1 = 1 and b + d = b1 + d1 = 3 and
x = n0 = 2, the probability of extinction is approximately P0(x) = exp(−4/3). Four
sample paths are plotted in Figure 4.3. (See Appendix A.3.)
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Fig. 4.3 Four sample paths of the stochastic logistic growth model (4.7) and the solution of the
deterministic logistic growth model (dashed curve). Parameter values are r = 1, K = 1, b1 = 2,
d1 = 1, b2 = r/(cK), and d2 = r(c − 1)/(cK) with c ≥ 1. Initial condition X(0) = n0 = 2.
Three sample paths persist and one hits zero. Probability of extinction is approximately P0(n0) ≈
exp(−4/3)≈ 0.2636.
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4.3.2 SIR Epidemic

In the second application, consider an SDE SIR epidemic model. As in Chapters 2
and 3, the infectious population size is approximated by a branching process when
the population size is large but the infectious population size is small. One form for
the full nonlinear SDE SIR epidemic model that is consistent with the CTMC model
is [1, 2]:

dS(t) = −β I(t)
S(t)
N(t)

dt −
√

β I(t)
S(t)
N(t)

dW1(t)

dI(t) =

[
β I(t)

S(t)
N(t)

− (γ +α)I(t)

]
dt +

√
β I(t)

S(t)
N(t)

dW1(t)

−
√

γI(t)dW2(t)+
√

αI(t)dW3(t)

dR(t) = γI(t)dt +
√

γI(t)dW2(t),

where Wi(t), i= 1,2,3 are three independent Wiener processes. The total population
size is S(t)+ I(t)+R(t) = N(t). In the case that S(0)≈ N(0) and N(0) is large, then
S(t)/N(t)≈ 1, initially. Setting S(t)/N(t) = 1 in the SDE for I(t) yields the SDE:

dI(t) = (β − γ −α)I(t)dt +
√

β I(t)dW1(t)−
√

γI(t)dW2(t)+
√

αI(t)dW3(t).

The SDE for I(t) does not depend on the variables S(t) or R(t). Since the terms
ΔWi(t) are normally distributed and independent, their sum is also normally dis-
tributed. In particular, an equivalent SDE approximation for I(t) is

dI(t) = (β − γ −α)I(t)dt +
√
(β + γ +α)I(t)dW (t), I(0) = i0.

Hence, I(t) can be approximated by the SDE branching process model (4.5) with
b = β and d = γ +α . Such a branching process appears obvious if b and d are iden-
tified as in the SIRS model as b = β and as d = γ +α . Estimates for the probability
of epidemic extinction are given by the formula in (4.6), provided S(0) is close to
N(0), N(0) is sufficiently large, and i0 is small.

4.4 Summary

For the single-type, continuous-state branching process, an explicit formula for
probability of extinction is computed as the solution of the backward Kolmogorov
differential equation. The continuous-state branching process estimate for probabil-
ity of extinction is greater than the corresponding one for the discrete-state process:(

d
b

)x

≤ exp

(
−2x

b−d
b+d

)
, b ≥ d, x > 0.

However, the two approximations are close if the ratio b/d is small.
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For the multi-type continuous-state branching process an explicit formula is
difficult to obtain because the probability of extinction is the solution of more com-
plex backward Kolmogorov differential equations. However, an estimate for the
probability of extinction can be obtained by numerically approximating the solution
of these equations with appropriate boundary and initial conditions. Applications to
more general SDE epidemic and population models can be found in the references
(e.g., [1–3, 5]).



Appendix A
MatLaB Programs

A.1 MatLaB Programs: Chapter 1

The Gillespie algorithm is used to generate sample paths for the birth and death
continuous-time branching process [17]. Four sample paths are plotted with the
MatLaB code.

% Birth and Death Process

clear all

n0=2; b=2; d=1; % Initial value and parameters

t=[0:.1:5];

y=n0*exp((b-d).*t);% Deterministic solution

plot(t,y,’k--’,’Linewidth’,2);

axis([0,5,0,50]);

hold on

for k=1:4 % Four Sample Paths, Gillespie algorithm

clear t x

t(1)=0; x(1)=n0;

j=1;

while x(j)>0 & x(j)<50 % Stop hits zero or reaches size=50

u1=rand; u2=rand; % Two uniform random numbers

t(j+1)=-log(u1)/(b*x(j)+d*x(j))+t(j); %Time to next event

if u2<b/(b+d)

x(j+1)=x(j)+1; % Birth

else

x(j+1)=x(j)-1; % Death

end

j=j+1;

end

if k==1

stairs(t,x,’y-’,’Linewidth’,2);

end
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if k==2

stairs(t,x,’b-’,’Linewidth’,2);

end

if k==3

stairs(t,x,’g-’,’Linewidth’,2);

end

if k==4

stairs(t,x,’r-’,’Linewidth’,2);

end

end

xlabel(’Time’);

ylabel(’Population Size’);

hold off

A.2 MatLaB Programs: Chapter 2

The Gillespie algorithm is used to generate sample paths for the SIRS Markov chain
model [17]. To compare the branching process formula (1/R0)

i0 for the probability
of extinction to the extinction probability for the nonlinear Markov chain in the SIRS
epidemic model, ten thousand sample paths are simulated for the Markov chain
model. If the cumulative number of cases hits a predetermined outbreak size outb,
it is counted as an outbreak, whereas if the number of cases hits zero, it is counted
as an extinction event. An estimate for probability of extinction is the proportion
of extinction events out of the ten thousand sample paths. It should be noted that
the predetermined outbreak size depends on the population size. Here it is set to
the minimum of 25 and 0.25N(0) which for initial population sizes greater than
100 equals 25. For larger population sizes there is better agreement between the
branching process formula and the probability of extinction estimate of the Markov
chain model.

% SIRS Epidemic Model

clear all

for kk=1:2:3

gam=0.1;alpha=.05;delta=.01; beta=0.3; i0=2; % Parameters

if kk==1

N=100

time=120;

else

N=500

time=300;

end

%Euler’s method for solving ODE

dt=.05; tim=time/dt;

i(1)=i0; s(1)=N-i0;r(1)=0; % Initial values
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ssum=0;

for tt=1:tim

nn=s(tt)+i(tt)+r(tt);

i(tt+1)=i(tt)+dt*((beta/nn)*i(tt)*s(tt)-gam*i(tt)

-alpha*i(tt));

s(tt+1)=s(tt)+dt*(-(beta/nn)*i(tt)*s(tt)+delta*r(tt));

r(tt+1)=r(tt)+dt*(gam*i(tt)-delta*r(tt));

ssum=ssum+dt*(beta/nn)*i(tt)*s(tt);

end

TotalCases=round(ssum)+i0 % Cumm Cases up to time

subplot(2,2,kk)

plot([0:dt:time],i,’k--’,’linewidth’,2);

xlabel(’Time’);

ylabel(’Infectives’);

axis([0,time,0,.3*N])

hold on

subplot(2,2,kk+1)

plot([0:dt:time],i,’k--’,’linewidth’,2);

xlabel(’Time’);

ylabel(’Infectives’);

axis([0,20,0,20]);

hold on

for k=1:4 % Sample paths for MC, Gillespie algorithm

clear t s i r

t(1)=0; i(1)=i0; s(1)=N-i0;r(1)=0;

j=1;

while i(j)>0 & t(j)<time % Stop hits zero or at time

nn=s(j)+i(j)+r(j);

u1=rand;u2=rand;

den=((beta/nn)*i(j)*s(j)+gam*i(j)+alpha*i(j)

+delta*r(j));

t(j+1)=-log(u1)/den+t(j) % Time to next event

e1=(beta/nn)*s(j)*i(j)/den;

e2=e1+gam*i(j)/den;

e3=e2+alpha*i(j)/den;

e4=e3+delta*r(j)/den;

if (u2<=e1)

s(j+1)=s(j)-1;

i(j+1)=i(j)+1;

r(j+1)=r(j);

elseif (u2>e1 & u2<=e2)

s(j+1)=s(j);

i(j+1)=i(j)-1;

r(j+1)=r(j)+1;
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elseif (u2>e2 & u2<=e3)

s(j+1)=s(j);

i(j+1)=i(j)-1;

r(j+1)=r(j);

else

s(j+1)=s(j)+1;

i(j+1)=i(j);

r(j+1)=r(j)-1;

end

j=j+1;

end

if k==1

subplot(2,2,kk)

stairs(t,i,’y-’,’linewidth’,2);

hold on

subplot(2,2,kk+1)

stairs(t,i,’y-’,’linewidth’,2);

hold on

end

if k==2

subplot(2,2,kk)

stairs(t,i,’b-’,’linewidth’,2);

hold on

subplot(2,2,kk+1)

stairs(t,i,’b-’,’linewidth’,2);

hold on

end

if k==3

subplot(2,2,kk)

stairs(t,i,’g-’,’linewidth’,2);

hold on

subplot(2,2,kk+1)

stairs(t,i,’g-’,’linewidth’,2);

hold on

end

if k==4

subplot(2,2,kk)

stairs(t,i,’r-’,’linewidth’,2);

hold off

subplot(2,2,kk+1)

stairs(t,i,’r-’,’linewidth’,2);

hold off

end

end
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% Estimate Probability of Epidemic Extinction

count=0;tots=10000;

for k=1:tots % Number of sample paths

clear t s i r

i=i0; s=N-i0; r=0;

j=1;

outb=min(25,.25*N);

sumi=i0;

while i>0 & sumi<outb %Stop hits zero or cumm cases=outb

u1=rand; u2=rand;

nn=s+i+r;

den=((beta/nn)*i*s+gam*i+alpha*i+delta*r);

e1=(beta/nn)*s*i/den;

e2=e1+gam*i/den;

e3=e2+alpha*i/den;

e4=e3+delta*r/den;

if (u2<=e1)

i=i+1;

s=s-1;

r=r;

sumi=sumi+1;

elseif (u2>e1 & u2<=e2)

s=s;

i=i-1;

r=r+1;

elseif (u2>e2 & u2<=e3)

s=s;

i=i-1;

r=r;

else

s=s+1;

i=i;

r=r-1;

end

j=j+1;

end

if i==0

count=count+1;

end

end

probextSP=count/tots % Ext Approx from Sample Paths

probextBP=((gam+alpha)/beta)^(i0) % Ext Est from BP

end
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A.3 MatLaB Programs: Chapter 4

The Euler-Maruyama numerical method is used to numerically solve the SDEs [25].
A sample path of an Itô SDE such as dX(t) = f (X(t))dt+g(X(t))dW (t) is approx-
imated by the Euler-Maruyama method as follows:

X(t +Δ t) = X(t)+ f (X(t))Δ t +g(X(t))η
√

Δ t,

where η ∼ Normal(0,1) and η
√

Δ t ∼ Normal(0,Δ t). The MatLaB command
randn(sim,1) generates a vector of length sim of standard normal random numbers.
Multiplication by

√
Δ t yields a vector of normal random numbers with mean 0

and variance Δ t. The following MatLaB program for Figure 4.1 applies the Euler-
Maruyama method to generate ten thousand sample paths up to time 10, then graphs
the first four sample paths. The proportion of sample paths that hit zero prior to time
10 gives an estimate of the probability of extinction which can be compared to the
exact probability of extinction, given by formula (4.6).

% SDE exponential growth and extinction, Figure 4.1

clear all

b=2; d=1; n0=2; % Parameter and initial values

dt=0.005;tim=10/dt; sdt=sqrt(dt); sim=10000;

x=zeros(sim,1)+n0;

for t=1:tim % Euler-Maruyama

rn=randn(sim,1);

x(:,t+1)=x(:,t)+(b-d)*x(:,t)*dt+sqrt((b+d)*x(:,t)).

*rn*sdt;

pos=x(:,t+1)>0;

x(:,t+1)=x(:,t+1).*pos; % Nonnegative sample paths

end

ze=sum(x(:,tim+1)==0);

approxext=sum(ze)/sim % Approximate Prob Ext

ext=exp(-2*(b-d)*n0/(b+d)) % Exact Prob Ext

% Graph four sample paths

tt=[0:dt:10];

plot(tt,x(1,:),’r-’,tt,x(2,:),’b-’,tt,x(3,:),’g-’,tt,x(4,:),

’y-’,...

tt,2*exp((b-d).*tt),’k--’,’linewidth’,2)

xlabel(’Time’);

ylabel(’Population Size’)

axis([0,5,0,50])

For Figure 4.3, the stochastic logistic growth model (4.7) is solved using the
Euler-Maruyama method. The for loop in MatLaB code of the preceding program is
replaced by the code below. In the plot, four sample paths of the stochastic logistic
model are graphed along with the solution of the deterministic logistic model:

n(t) =
n0K

n0 +(K −N0)e−rt .
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for t=1:tim

rn=randn(sim,1);

f=r*x(:,t).*(1-x(:,t)/K);

g=sqrt(x(:,t).*(b1+d1+r*x(:,t)/K));

x(:,t+1)=x(:,t)+f*dt+g.*rn*sdt; % Euler-Maruyama

pos=x(:,t+1)>0;

x(:,t+1)=x(:,t+1).*pos;

end

LG=n0*K./(n0+(K-n0)*exp(-r*tt)); % Logistic growth
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