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Preface

While studying and teaching Methods of Mathematical Modelling of Economic Pro-
cesses, I have been confused about some discrepancies between various parts of the
economic theory. There was an impression that the economic theory exists in inde-
pendent fragments. Especially upsetting for me, a person who began the study of
economic theory with Das Kapital, was the fact that Marx’s theory seems to have
no concern in mainstream economics.

I realised later that I was not the sole person to feel a deep dissatisfaction with the
situation with the economic theory and its ability to describe reality. To say nothing
of the numerous papers, there are many books devoted to a critique of mainstream
economics (Nelson and Winter, 1982; Kornai, 1975; Beaudreau, 1998; Keen, 2001).
There is a special online Real-World Economics Review (http://www.paecon.net/)
opposing the mainstream theories. The people who are engaged in ecology are tra-
ditionally confronting the conventional economic thinking and are looking for phys-
ical terms to explain the phenomena of production (Costanza, 1980; Odum, 1996).
Some physicists are trying to find new approaches to the analysis of economic situ-
ations (Mantegna and Stanley, 1999).

This book contains no critique of any theories. It is devoted to understanding the
principles of production and contains a consecutive exposition of the technological
theory of social production, which can also be understood as the theory of produc-
tion of value. In the foundation of the theory are laid the achievements of classical
political economy. The labour theory of value is completed, after Marx’s hints in
Das Kapital, with the law of substitution. The latter states that, when interpreting
value, one has to consider that the workers’ efforts in the production of things are
substituted with the work of production equipment. A new important concept of
substitutive work, as a value-creating production factor, was introduced and used
to formulate the appropriate theory. The adequacy of the theory has been tested by
using historical data for the U.S. economy.

The book is written by a physicist for the scientifically literate reader who wishes
to understand the principles of the functioning of a national economy. The book
contains a discussion of conventional models (Leontief’s input–output model, the
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vi Preface

classical Walras market theory and others) and can be considered as a textbook for
students of various specialities who have the necessary preparation in physics and
mathematics and a desire to study economic problems. I think the monograph could
be interesting for energy specialists, who are engaged in planning and analysing the
production and consumption of energy carriers, and for economists, who want to
know how energy and technology are affecting economic growth.

The appropriate formulation of the theory has a long history. This monograph
was launched, in fact, as a revision and enlargement of my book Physical Principles
in the Theory of Economic Growth, issued by Ashgate Publishing in 1999. How-
ever, it appears that the proper description of the theory has required the text to be
completely rewritten and new material to be added, so that I have the opportunity to
present a new book with a new title. I have used this edition to clarify the concepts
and methods of the theory as far as it was possible for me at the moment.

I am grateful to many people who support and encourage me in my work. I espe-
cially would like to separate a few persons, with whom I have had the opportunity
to discuss many relevant topics: Robert Ayres, Bernard Beaudreau, Sergio Ulgiati,
Andre Maisseu, Michail Gelvanovskii, Grigorii Zuev and Irina Kiselyeva. Some is-
sues became clearer for me after a discussion on the generalised labour theory of
value with members of the Socintegrum forum (http://socintegrum.ru/); I am thank-
ful especially to Valerii Kalyuzhnyi and Grigorii Pushnoi. Finally, I would like to
express special thanks to my editors Maria Bellantone and Mieke van der Fluit at
Springer.

Vladimir N. PokrovskiiMoscow, Russia
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Notation and Conventions1

A input-output matrix with components a
j
i ;

B capital-output matrix with components b
j
i ;

B = Y

L
labour productivity;

E primary energy used in production;
EP primary substitutive work used in production;
I gross investment in production system;
Ij gross investment of product j ;
I i gross investment in sector i;
I i
j gross investment of product j in sector i;

K value of production equipment in production system;
Kj value of production equipment of kind j in production system;
Ki value of production equipment in sector i;
Ki

j value of production equipment of kind j in sector i;
L labour in production system;
Li labour in sector i;
M amount of circulating money;
M0 amount of circulating paper money;
N number of population;
p price of substitutive work as a production factor;
pj price of product j ;
P substitutive work
P j substitutive work in sector labelled j ;
Qj quantity of product j in natural units;
Rj value of stock of non-material product j ;

1Latin suffixes take values 1,2, . . . , n and numerate products and sectors. As a rule, the upper suffix
numerates sectors, the lower suffix numerates products. The rule about summation with respect to
twice repeated suffixes is sometimes used.

The chapter number and the number of a formula in the chapter are shown in references to
formulae.
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xii Notation and Conventions

S entropy;
t time;
U(·) utility function, welfare function;
u(·) subjective utility function;
W value of national wealth;
Wj value of national wealth of kind j ;
w price of labour, wage;
Xj gross output of product j ;
Y final output, gross domestic product;
Yj final output of product j ;
Zi production of value in sector i;
α technological index;
αi technological index in sector i;

β = �Y

�L
marginal productivity of labour at P = const;

βi marginal productivity of labour in sector i;

γ = �Y

�P
marginal productivity of substitutive work at L = const;

γi marginal productivity of substitutive work in sector i;

δ = 1

K

dK

dt
rate of real growth of capital stock;

δ̃ rate of potential growth of capital stock;
ε substitutive work requirement;

ε̄ = ε
K

P
non-dimensional technological variable;

εi substitutive work requirement in sector i;

ε̄i = εi K
i

P i
non-dimensional technological variable for sector i;

η rate of real (effective) growth of substitutive work;
η̃ rate of potential growth of substitutive work;
Θ index of labour productivity growth;
λ labour requirement;

λ̄ = λ
K

L
non-dimensional technological variable;

λi labour requirement in sector i;

λ̄i = λi K
i

Li
non-dimensional technological variable for sector i;

μ rate of capital depreciation;
ν rate of real (effective) growth of labour;
ν̃ rate of potential growth of labour;

ξ = �Y

�K
marginal productivity of capital;

ξ i = �Z

�Ki
sectoral marginal productivity;

Ξ marginal productivities tensor with component ξ i
j = �Yj

�Ki
;

ρ price index;
τ time of technological rearrangement.



Chapter 1
Introduction: Concept of Value and Production
Factors

Abstract It is enough to look at the contents of economic courses to become easily
convinced that the common thing for all of them is ‘a substance’ of value. It is con-
venient to use the name economic dynamics (econodynamics) for the discipline. It
investigates the processes of emergence, motion and disappearance of value, just as
hydrodynamics investigates processes of motion of liquids; electrodynamics, those
of changing electric and magnetic fields; thermodynamics, processes connected with
the motion and conversion of heat. In this chapter, the concept of value is reviewed,
and the role of basic production equipment, as a set of sophisticated devices which
allow human beings to attract energy from natural sources for the production of
useful things, is discussed.

1.1 A National Economy at a Glance

The enormous growth of the human population through the centuries is connected
with special features of the population. In contrast to any other biological population
inhabiting the Earth, humans have invented highly sophisticated artificial means of
supporting their own existence, while developing a great level of co-operation of
members of their society. Since Palaeolithic times, clothing, shelter and fuel have
become necessities of life almost as fundamental as food itself. Since Palaeolithic
times the organisation of human society has also been progressing.

Modern society presents itself as a huge hierarchal organisation, including the
government, firms, banks, colleges, libraries and so on. It is a very complex organi-
sation, and every one of the members of the society, in some way, is included in the
system. The society, as an economic system, produces everything that is needed for
survival of the community: both the means for supporting human existence and the
means for generating such support.

A huge amount of artificial things are accumulated by societies: buildings, trans-
port routes, bridges, production equipment, energy supply systems, sanitation sys-
tems and so on. Aside from the tangible things, a society accumulates a great amount
of intangible objects: knowledge of the laws of nature, principles of organisation
of society, items of literature and arts and so on. Both the tangible and intangible
constituents of the wealth of the society are equally important for maintaining the
existence of human communities.

V.N. Pokrovskii, Econodynamics, New Economic Windows 12,
DOI 10.1007/978-94-007-2096-1_1, © Springer Science+Business Media B.V. 2012
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2 1 Introduction: Concept of Value and Production Factors

Fig. 1.1 The architecture of a national economy. The central bank and commercial banks create a
money medium for the activity of economic agents. The production system creates all products and
generates the fluxes of products to workers and between production units. The fluxes of money,
depicted in the picture, are moving in opposite directions. Households are buying products, and
money is returning to the producers. The government receives its part of produced value in the
form of taxes, which, in different amounts, are returning to the economic agents. Each flux of
money is a result of negotiation and agreement between corresponding agents

All (tangible and intangible) objects have been created by the production sys-
tem of the society, which includes firms, plants, institutes, schools and so on. The
production system takes minerals and ores from the environment, transforms natu-
ral substances into finished and semi-finished things, the latter are transformed into
other things and so on, until all this is finally consumed, and the substances are
returned into the environment as waste. This is the material side of production.

To discuss the mechanism of motion of products, one needs to consider hu-
man beings, and their desire to consume and, consequently, to produce. In devel-
oped societies, man does not consume only those products which he produces.
The exchange of products, which, in fact, is the exchange of efforts, is a general
phenomenon in modern societies. Man exchanges his services for an intermediate
product—money—and then exchanges the money for products he wants. Therefore,
simultaneously with the motion of products, one discovers the motion of money,
which has to be considered as a separate, special product. The money is circulating
in the economy, providing the exchange of products. Modern money is paper money
and records on the accounts in the central and commercial banks and, thus, is inher-
ently useless. Modern money is nothing more than a certificate that its owner has a
right to get a certain set of products. The value of modern money derives only from
the fact that it can be exchanged for the product.
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The real production and the money system are intervened with each other, thus
one can think that an appropriate description can be achieved when these phenom-
ena are studied together. One can consider the production system and population
as being immersed in a money system of the society, as shown schematically in
Fig. 1.1. The money medium is created by the government, the central bank and
many commercial banks. The central bank issues the bank notes and coins—the
primary money—which is distributed to the commercial banks. The mechanism of
issuing assumes that all paper money is circulating among economic subjects: prac-
tically no paper money is contained in commercial banks. The central bank also
provides commercial banks with credits, so that the commercial banks can provide
the customers with credit money. The records on the accounts of customers are non-
paper money, which are created by the commercial banks. The central bank and
commercial banks introduce an uncertain amount of the circulating money in coins,
bank notes and cashing deposits in the system consisting of the government and the
many customers of the commercial banks.

The subject of discussion in the proposed monograph is a theory of the social
production system, and the latter is represented by many interacting enterprises. The
architecture of the production system appears complex, but in a simple approach the
production system can be considered as a set of the interacting pure sectors. In the
most elementary case the production system can be considered as the only sector.
This heuristic model of the society allows us to develop the theory of the production
system in a simple, so-called macroeconomic approach.

1.2 The Concept of Value

The notion of product appears to be one of the fundamental concepts of economic
theory. It can be defined as something which is produced to be consumed. It does
not matter whether the moment of consumption coincides with the moment of pro-
duction as, for example, in the case of transport services, or does not coincide. In
the latter case the product exists for some time in its material or non-material form.
Also it is insignificant whether the product is intended to satisfy the needs of the
producer or is prepared for sale.1

1Let us pay attention to the distinction of the concepts of a product and a commodity. The latter is
defined as something that is made for sale that is for an exchange at which value is disposed. From
here some people wrongly conclude that the thing made for the producer’s consumption does not
possess value. This statement has been rejected by Marx [1, Chap. 1, Sect. 4]: “Since Robinson
Crusoe’s experiences are a favourite theme with political economists, let us take a look at him on
his island. Moderate though he be, yet some few wants he has to satisfy, and must therefore do a
little useful work of various sorts, such as making tools and furniture, taming goats, fishing and
hunting. Of his prayers and the like we take no account, since they are a source of pleasure to him,
and he looks upon them as so much recreation. In spite of the variety of his work, he knows that
his labour, whatever its form, is but the activity of one and the same Robinson, and consequently,
that it consists of nothing but different modes of human labour. Necessity itself compels him to
apportion his time accurately between his different kinds of work. Whether one kind occupies a
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According to the statements of the researchers,2 the product can be considered
as the unity of use-value and production-value, which allows products to participate
in the processes of exchange. In the exchange, the products oppose each other, and
the use-value of one product stands against the use-value of another. Products with
various use-values can be compared due to the fact that the production-values of all
products differ only in quantity, not in quality. Thus, the property that allows the
products to be compared and exchanged is their exchange value or just value, which
is an attribute of a product, just as mass is an attribute of matter.

One believes that the products are exchanged on average according to their val-
ues. This is an axiom which gives a relative measure of value, and allows one to
ascribe a certain quantity of value to the products and to estimate the value of a set
of products. Value is measured in conventional money units, which are set when the
recognised means of circulation (money) are introduced into the economic system
(see Chap. 3). Due to the overall exchange with the help of the money, all com-
modities can be evaluated, and this is considered as an estimation of their value in
arbitrary money units (dollars, pound sterlings, euros, etc.). One can estimate, for
example, a multitude of services and things produced by a nation for a year. This
quantity is called the Gross Domestic Product (GDP).

The mechanism of exchange has been scrutinised. Some scholars emphasised the
demand side of the phenomenon and argued that there is no value without utility,
so that value ought to be considered as a market estimate of the utility of a thing.
Other scholars argued that there are some things (water and air, for example) which
have utility without market value, and thus, to understand the meaning of value,
one has to refer to the supply side and take into account the production costs of
things. It was understood later (the contributions of Walras [3] and Marshall [4]

greater space in his general activity than another, depends on the difficulties, greater or less as
the case may be, to be overcome in attaining the useful effect aimed at. This our friend Robinson
soon learns by experience, and having rescued a watch, ledger, and pen and ink from the wreck,
commences, like a true-born Briton, to keep a set of books. His stock-book contains a list of the
objects of utility that belong to him, of the operations necessary for their production; and lastly,
of the labour time that definite quantities of those objects have, on an average, cost him. All the
relations between Robinson and the objects that form this wealth of his own creation, are here so
simple and clear as to be intelligible without exertion, even to Mr. Sedley Taylor. And yet those
relations contain all that is essential to the determination of value.”
2Still Aristotle, analysing the exchange of various things, wrote “. . . all things that are exchanged
must be somehow comparable” [2, Book 5, Sect. 5]. Marx [1, p. 14] wrote: “. . . when commodities
are exchanged, their exchange value manifests itself as something totally independent of their use
value. But if we abstract from their use value, there remains their value as defined above. Therefore,
the common substance that manifests itself in the exchange value of commodities, whenever they
are exchanged, is their value.” The brief history and the analysis of concept of value are exposed,
for example, by A.N. Usoff in a work “What is value” (http://www.usoff.narod.ru/Us4.htm, in
Russian). Having begun with concepts of use-value and production-value, Usoff has shown how it
is necessary to introduce the concept of value, free from the pre-prepared interpretations. Everyone
who was studying in a higher educational institution in the USSR until 1990 knows the statement
that ‘value is the expenses of labour.’ However, there is no indispensability to reduce concept of
value to expenses of labour in advance. Factorial theories of value, that is the reduction of value to
labour, capital and other universal factors of production, are considered in the following section.

http://www.usoff.narod.ru/Us4.htm
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used to be especially stressed) that both the cost of production (supply) and utility
(demand) were interdependent and mutually determinant of the value of things. It
had appeared to be fruitless to argue whether demand or supply determines value,
as, in Marshall’s words, “we might as reasonably dispute whether it is the upper
or under blade of a pair of scissors that cuts a piece of paper, as whether value is
governed by utility or costs of production.”

The motion and transformations of products in an economy can be described as
fluxes of value, which appears at the first touching the substances of nature with
the hand of a human being, moves together with the material substance of a prod-
uct, leaving its material form, transfers into other substances, and disappears at final
consumption. The study of these processes is a subject of an empirical science that
can be called economic dynamics (econodynamics). Econodynamics itself can be
defined as a science which investigates the processes of emerging, moving and dis-
appearing of value, and is hardly interested in its material carriers. The concept
of value in econodynamics is as important as the concepts of energy and entropy in
physics. Now we have the fragments of this science only, and one of the fragments—
the theory of production—is described in this monograph.

Note that, due to some difficulties with the concept of value, modern scholars
of economy are trying to avoid that concept; the concept of utility is used instead.
The political economy of the nineteenth century has turned into the economics of
our days, which is defined as “. . . the study of how societies use scarce resources
to produce valuable commodities and distribute them among different groups” [5,
p. 5].

Both econodynamics and economics study one and the same object: the national
economy, whereas econodynamics, in contrast to economics, gives us the opportu-
nity to restore the scientific traditions of studying the society.

1.3 Production System in More Detail

To create and maintain national wealth, that is, things that are useful for human
beings, a social production system was invented and maintained by humans, and this
is just what distinguishes human populations from other biological populations. The
production system consists of many production units, such as enterprises, factories,
plants and firms that create all the things that man needs. The investigation of the
laws of production is one of the central issues of econodynamics.

From a material point of view, the process of production is a process of transfor-
mation of raw materials into finished and semi-finished goods, semi-finished goods
into other semi-finished and finished goods and so on, until the finished commodi-
ties can finally be used by human beings. The products are always consumed by
human beings, so the products always have to be created. Figure 1.2 shows the main
constituents of the production-consumption system as it is imagined due to the re-
markable achievements of the classical political economy and neo-classical eco-
nomics. One can refer to Blaug [6] to follow the fascinating history of approaches
to understanding and describing the economic production-consumption system.
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1.3.1 The Law of Substitution

Any description of the production system of economy assumes that a specific mo-
tion takes place. The task of the production system is to change forms of matter,
that is, to transform, for example, ores of different chemical elements into an air-
craft, which can fly. One can observe how clay transforms into pots, how clay, sand
and stone transform into buildings, how ores and raw materials transform into a car.
To produce a good or a service, some specific work3 must be done. Modern tech-
nologies assume that this work can be done by a human being himself and/or by
some external sources, such as energy sources, simultaneously. To grind corn into
flour, for example, one can use a hand mill, a water mill, a wind mill or a steam
mill. In these cases, as in many others, the production equipment is some means of
attracting external sources of energy (water, wind, coal, oil, etc.) to the production
of things; the workers’ efforts are substituted by the work of falling water, or wind,
or heat. No matter who or what does the work, all of the work must be done to ob-
tain the final result which should be compared with the consumed energy and the
workers’ efforts.

Different mechanisms and appliances are invented to perform the work. Some
of these are handled by a man only, and some of them allow the man to attract en-
ergy from external sources. This is a material realisation of technology: production
equipment.

It is possible that the first person to write about the functional role of machinery
in production was Galileo Galilei. He realised that all machines transmitted and ap-
plied force as special cases of the lever and fulcrum principle. A prominent historian
of science and technology, Donald Cardwell [7], wrote that Galileo in his notes On
Motion and On Mechanics recognised that “the function of a machine is to deploy
and use the powers that nature makes available in the best possible way for man’s
purposes. . . the criterion is the amount of work done—however that is evaluated—
and not a subjective assessment of the effort put into accomplishing it” (pp. 38–39).
The advantage of machines is to harness cheap sources of energy because “the fall
of a river costs little or nothing.”

The relevance of machinery to economic performance was clearly recognised by
Marx [1], who described the functional role of machinery in production processes
in Chapter XV, Machinery and Modern Industry, of Das Kapital as follows:

On a closer examination of the working machine proper, we find in it, as a general rule,
though often, no doubt, under very altered forms, the apparatus and tools used by the hand-
icraftsmen or manufacturing workman: with this difference that instead of being human
implements, they are the implements of a mechanism, or mechanical implements (pp. 181–
182). The machine proper is therefore a mechanism that, after being set in motion performs
with its tools the same operations that were formerly done by the workman with similar
tools. Whether the motive power is derived from man or from some other machine, makes
no difference in this respect (p. 182). The implements of labour, in the form of machinery,

3One can understand work as a process of conversion of energy in technological processes from
one form to another, for example, from mechanical into thermal form.
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Fig. 1.2 Fluxes in the production–consumption system. To produce a thing or a service, apart
from production equipment K , one needs raw materials (ores, water, air, energy carriers and so
on), worker efforts L and some factor which can be conventionally called capital services P . The
last factor is closely connected with production equipment—capital stock K , but different from
it. Though capital services P can be considered formally as an independent production factor, it
is hardly possible to find any other interpretation for it different from the amount of work of pro-
duction equipment, which is done with the help of external energy sources instead of the workers’
efforts. The output of the production process is a multitude of things and services, which are mea-
sured by their total value Y . A part C of final product Y is directly consumed by human beings,
and a part I goes to enhancement of the production system through an increase in the stock of pro-
duction equipment, so that the production system itself is a subject of evolution. The production
processes are accompanied by the emergence of heat and pollutant fluxes, but this is another side
of the problem, to which we shall not pay much attention in the monograph

necessitate the substitution of natural forces for human force, and the conscious application
of science instead of rule of thumb (p. 188). After making allowance, both in the case of
the machine and of the tool, for their average daily cost, that is, for the value they transmit
to the product by their average daily wear and tear, and for their consumption of auxiliary
substances such as oil, coal and so on, they each do their work gratuitously, just like the
forces furnished by nature without the help of man (p. 189).

Hence, both physicists and political economists recognised the important role of
machinery in production processes as having to do with the substitution of workers’
efforts by the work of machines moved by external sources of energy, while the
extent of this substitution depends on the technology per se. It is important to keep
in mind that while capital is a necessary factor input, work can only be replaced by
work, or put differently, work cannot be replaced by capital.

Note that by contrast with Smith and Marx, who focused on physical labour, here
and in the following text, we regard all possible energy-driven activities of workers
including supervision of any kind, that is, the extended concept of labour (human
capital) is used.
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1.3.2 The Generalised Labour Theory of Value

Over the centuries researchers have tried to understand how things get value, or,
in other words, to find a certain universal source of wealth, and the first candidate
for this role was the land. Benjamin Franklin, known for his works on electricity,
was one of the first to formulate the statement that a measure of value is the work
spent by labourers [8]. This idea appears to be central in the political economy
of the beginning of the nineteenth century and was especially developed in works
of Adam Smith [9], David Ricardo [10] and Karl Marx [1]. These great scholars
had no doubt that the production-value was equivalent to the employment of labour
only, which gave foundation to the labour theory of value. According to Smith,
“value of any commodity. . . to the person who processes it and who means not to
use or consume it himself, but to exchange it for other commodities, is equal to
the quantity of labour which enables him to purchase or command.” According to
Marx, “all commodities are only definite masses of congealed labour time.” Every
economist would agree that labour is the most important factor of production, but the
situation appears to be more complicated. The production-value, generally speaking,
does not reduce to the expenses of labour; something else should be added to the
theory.

One can guess that the ‘something’ that is needed in the theory is Marx’s phe-
nomenon of ‘the substitution of natural forces for human force.’ Indeed, after un-
derstanding this phenomenon, Marx could suggest that it affects the mechanism
of production of value. To understand how gratuitous work influences the value
of the products, he could analyse the performance of two similar enterprises. He
could suggest that the first of the enterprises uses a technology which requires
some amounts of labour L and substitution work P , and, to produce the same
quantity of the same product, the second enterprise uses a technology with the
quantities L − �L and P + �P for production factors. So far as the products
are considered to be identical, the exchange values of the products of either enter-
prise on the market are equal, despite the difference in labour consumption. There-
fore, Marx could continue to argue, value cannot be determined by labour only, but
the properly accounted work of natural forces ought to be considered. To produce
the same quantity of value, the decrease in workers’ efforts ought to be compen-
sated by an increase in work of external sources, so that one can write the rela-
tion

−β�L + γ�P = 0,

where productivities β and γ of the corresponding production factors are intro-
duced. Thus, equally with human efforts, the work of natural forces appears to
be an important production factor. It is easy to see that the quantity β/γ deter-
mines the amount of gratuitous work of external sources which is needed to sub-
stitute for the unit of human work to get an equal effect in the production of
value.

In the general case, the work performed by labour L and substitutive work P has
to correspond to a set of products, which has the exchange value Y , and one can
write, assuming that the production system itself remains unchanged, the relation
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between differentials of the quantities

dY = β dL + γ dP. (1.1)

The coefficients β > 0 and γ > 0 correspond to the value produced by the addition
of the unit of labour input at constant pure substitutive energy consumption and by
the addition of the unit of work of production equipment at constant labour input,
respectively; in line with the existing practise, these quantities can be labelled as
marginal productivities of the corresponding production factors. The two produc-
tion factors, the workers’ efforts and the work of external sources of energy, can
substitute for each other and, in this sense, be equivalent, so that labour is eventu-
ally, using Adam Smith’s words, “the only universal, as well as the only accurate
measure of value, or the only standard by which we can compare the values of dif-
ferent commodities at all times, and at all places.”

The discussed mechanism of substitution formalises Marx’s statements. Really,
by substitution of a labourer’s work by forces of nature, that is, by substitution of
efforts of people by the work of external forces of nature using production equip-
ment, work operates in a complex of workers’ efforts plus work of the equipment.
Thus, the work of machines can be appreciated only so far as this work does what
people wish, replacing their efforts. Consequently, a measure of value, certainly, can
be the labourers’ work only. It is possible to say also, according to Marx, that only
labourers’ work creates value, but Marx, unfortunately, did not complete the the-
ory of substitution to the logical end. Taking into account the effect of substitution,
one can say that the only universal and accurate measure of value is the work of
labourers or other agents used for production.

1.4 The Law of Production of Value

The material and non-material results of production—buildings and machinery, cars
and planes and other things among which human beings live—are characterised by
value, so that one can speak about both the production of things and the production
of value. The classical and neo-classical traditions relate the production of value Y in
money units to quantities of universal value-created factors, the so-called production
factors which one needs to create a set of products. According to Smith, Ricardo and
Marx, labour ought to be considered as the only value-creating factor, that is, output
can be considered as a function of consumption of labour L

Y = Y(L). (1.2)

However, it appears to be impossible to explain the growth of productivity of
labour, that is, the growth of value of commodities produced by units of labour in
units of time Y/L using this simple hypothesis. To explain empirical facts, other
production factors (land and capital, first) in line with labour have been intro-
duced.
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1.4.1 Earlier Neo-classical Formulations

The amount of production equipment (measured by its value K) was taken as an
important production factor in the frame of neo-classical economics, and output Y

has been considered to be a function of two variables

Y = Y(K,L). (1.3)

In relation (1.3) capital K and labour L are regarded as perfect substitutes for one
another, that is, a given output can be achieved by any combination of the two fac-
tors, though, of course, there is a most efficient combination, depending on the prices
of production factors. The specific form of function (1.3) was proposed by Cobb and
Douglas [11]

Y = Y0
L

L0

(
L0

L

K

K0

)α

, (1.4)

where index α ought to be considered as a characteristic of the production system
itself. Though many particular forms of the function (1.3) are known [12], function
(1.4) has the advantage of not depending on the initial values of production factors
and is often used for interpretation of phenomena of economic development.

The other tradition [13–16], in accordance with empirical facts, considers the
output as a linear function of capital (or generalised capital)

Y = AK, (1.5)

where ‘capital’ productivity A, due to empirical evidence, does not depend on pro-
duction factors.

It is easy to see that the laws (1.4) and (1.5) are compatible only at the value
α = 1, which leads to exception of the expenses of labour in the law of produc-
tion of value. Another paradox, described by Solow [17], exists: the theory based
on the neo-classic production function (1.3) in any form does not include techno-
logical changes. Nevertheless, there has been a clear belief that, in recent centuries,
technological progress was ultimately the source of economic growth in developed
countries and should be incorporated into the theory of economic growth.

1.4.2 Amendments to the Neo-classical Formulation

To avoid the specified difficulties, it was suggested [17] to modify the concepts of
labour and capital in function (1.3). An extra time dependence of function (1.3)
(the so-called exogenous technological progress) has to be assumed. Otherwise, the
arguments of function (1.3) must be considered, not as capital and expenditures of
labour, but as services of the capital K ′ and work L′

Y = Y(K ′,L′). (1.6)

The quantities K ′ and L′ are capital and labour services which are connected with
measured quantities of capital stock K and labour L, but are somewhat different
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from them. The concepts of labour and capital services appeared to be necessary and
very useful to explain the observed growth of output [18, 19]. However, the problem
of endogenous inclusions of technical progress in the theory remains unsolved, or,
taking advantage of Solow’s words [20], there remains a question: “whether one
has anything useful to say about the progress, in a form that can be made part of an
aggregative growth model.”

In past decades, there have been some attempts to improve the neo-classical the-
ory by including in the production function new variables such as technology, or
human capital, or stock of knowledge H [21–25] or energy E [26–28]. It was as-
sumed that output Y can be written as a function of three, or more, variables

Y = Y(K,L,H,E, . . .).

There was a belief that the only thing one needs to solve the problem is to find a
sufficient number of appropriate variables. However, the econometric investigations
of over 90 different variables, proposed as potential growth determinants, did not
give a definite result [29]. A review of the latest development of the neo-classical
approach can be found in a book by Aghion and Howitt [30].

1.4.3 The Law in the Technological Theory

The theory considered in the monograph, which has been designed to consider the
phenomenon of production of value, keeps the main attributes of the neo-classical
approach, that is, the concept of value created by production factors (donor value)
and the concept of production factors themselves; it can be regarded as a generali-
sation and extension of the conventional neo-classical approach, while the roles of
production factors are revised. In the conventional, neo-classical theory, capital as a
variable played two distinctive roles: capital stock as value of production equipment
and capital service as a substitute for labour. In the technological theory, capital
service is considered as an independent production factor, whereas capital stock is
considered to be the means of attracting labour and energy services to the produc-
tion. Human effort and the work of external energy sources are regarded as the true
sources of value.

In line with the conventional production factors: capital stock K and labour L,
the theory contains capital service P , as an independent production factor.4 The

4An earlier formulation was presented by Beaudreau [31, 32], who accounts for work of the pro-
duction equipment W and another factor named by the organisation which is considered as some-
thing distinct from work. To exclude a discussion of the process of transformation of consumed
power carriers into work and the second-law efficiency of the process, for simplicity (it is mainly
a technical problem which is not universal), work W is identical to the substitutive work or true
work of the production equipment, which is discussed in this monograph. The organisation can
correspond to workers’ efforts L, as to the control, which is, apparently, also actual work requiring
energy consumption. These two factors, accordingly, are called inanimate and animate work by
Beaudreau [31, 32]. The output now can be considered as a function of two factors, Y = Y (W,L),
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production of value Y is considered as a function of the three production factors

Y = Y(K,L,P ). (1.7)

The production system itself may be viewed as a collection of equipment: capital
stock (measured by its value K), acquiring its ability to act from labour and cap-
ital services inputs, that is, the amount of human effort L and the work of natural
sources of energy (wind, water, coal, etc.) P , which substitutes human efforts in the
production of commodities.

The third production factor—substitutive work P —provides the consistency
in explaining the phenomenon of economic growth. It is important that this ap-
proach allow researchers to include characteristics of technology in the description
and to formulate a phenomenological (macroeconomical, no price fluctuations are
discussed) theory of production as a set of evolutionary equations in one-sector
and many-sector approximations. The growth of production is demonstrated to be
caused by achievements in technological consumption of labour and energy. This
statement corresponds to a clear understanding that, in recent centuries, technolog-
ical progress is ultimately the source of economic growth in developed countries.
The technologies are changing, and these changes have appeared to be incorporated
into the theory of economic growth to describe the empirical facts properly. From
a physical point of view, the main result of technological progress is substitution
of human energy by energy from external sources by means of different types of
sophisticated equipment.

1.5 Energy and Production

The relationship between economic growth and energy consumed by the production
system5 is one of the most dramatic issues in economics. The spectrum of opinions
on the relationship of energy with value is very broad. The majority of economists,
who believe in the productive force of capital, consider energy (or more correctly:
energy carriers) to be an ordinary intermediate product that contributes to the value
of produced commodities by adding its cost to the price; in other words, consump-
tion of energy is not a source of value. However, one can find many words and
arguments in the literature in favour of a universal role of energy in economic pro-
cesses (see, for example, [28, 31–42]). These researchers have long argued that en-
ergy must also be considered as a value-creating factor which must be introduced

but Beaudreau [31, 32] identifies output and primary work of the production equipment, including
efficiency in the discussion. The output measured as an added market value depends, apparently,
on the chosen unit of value, which should be set independently (see Sect. 10.3).
5It is customary to speak about energy consumption, though, for the sake of precision, the word
consumption should be replaced by the word conversion. Energy cannot be used up in a production
process. It can only be converted into other forms: chemical energy into heat energy, heat energy
into mechanical energy, mechanical energy into heat energy and so on. The measure of potentially
converted energy (work) is exergy.
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into the list of production factors in line with other production factors. Moreover,
some biophysicists are arguing that energy must be considered as the only source
and measure of value [41, 42], and the concept of value itself can be reduced to the
concept of energy.

All approaches to the inclusion of energy into the theory of production are known
as the energy theory of value, which, nevertheless, does not have an accurate and
complete formulation. Reviewing the development of the discussion, Mirovski [43,
p. 816] concluded that “. . . the energy theory of value was never developed with any
seriousness or concerted effort by any of the groups. . . .” Despite further arguments
and investigations performed in later years [44–46], up to now there are no conven-
tional rules according to which one could calculate ‘the energy content of a money
unit’ and test the hypothesis.

Of course, energy carriers (primary energy)6 are quite similar to other intermedi-
ate products participating in the production process. Nobody can distinguish energy
carriers, which are used in the production of aluminium, metallurgical operations
and some chemical processes, from other intermediate products. In all these cases,
the cost of energy is included in the cost of the final products. But in some cases,
apart from being a product, energy from external sources is used to substitute for
labour in the technological processes. Energy-driven equipment works in the place
of manual labour; genuine work done by the production equipment acquires all the
properties of a value-creating production factor, including the property to produce
surplus value. The work that corresponds to a part of consumed energy carries—it
is convenient to have a special name for it: substitutive work or productive energy—
cannot be considered as an intermediate product only, but must be considered as a
value-creating factor which has to be introduced into the list of production factors
equally with other production factors.7 The substitutive work has to be interpreted
as genuine work done by production equipment with the help of external sources of
energy instead of workers. This quantity can also be considered as capital service
provided by capital stock.

At the cost of introducing the third production factor—substitutive work or pro-
ductive energy—the discussed theory allows one to unravel the proper role of energy
in production of value, on one side, and to eliminate the contradictions of conven-
tional neo-classical theory, on the other side. I think that this monograph proposes

6Primary energy is the name for the amount of primary energy carriers (oil, coal, running water,
wind and so on) measured in energy units. It is convenient to measure huge amounts of energy in
a special unit quad (1 quad = 1015 Btu ≈ 1018 joules), which is the unit usually used by the U.S.
Department of Energy.
7Before the year 2000, it was realised that primary energy or total consumption of energy (or
exergy) cannot be a proper production factor. In my book [35, pp. 62–63] I refer to a production
factor called final energy, which, by its definition, is primary energy input times a coefficient of
efficiency. The definition is completely equivalent to that of useful work, used by Ayres [47]. The
growth rate of final energy differs from that of primary energy by 1.5%; it is the growth rate of
efficiency of usage of primary energy. Later I realised [36] that it is substitutive work (not useful
work) that has to be exploited as the production factor.
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some reconciliation of contrasting points of view on the role of energy in production
of value.8

1.6 Organisation of the Monograph

The monograph presents a general technological theory of production, which is
based on the conventional terms and concepts of classical political economy and
neo-classical economics, and on conventional physical principles and methods.
Some main fundamentals and concepts of modern economics, illustrated with his-
torical (1900–2000) data for the U.S. economy, are described in Chaps. 2 and 3 to
introduce the scientifically literate reader, who has not study economics, into the
language and problems of the economic theory and to facilitate him eventually to
understand the contents of the book. The next chapters contain consecutive deriva-
tions of the theory of production, which is the main topic of this book.

The core of the formal theory itself is contained in Chaps. 5 and 6.9 In one-sector
approximation, the list of production factors contains two production factors of con-
ventional neo-classical economics: capital K and labour L, and a new production
factor: capital service or substitutive work P . Capital stock is considered to be the
means of attracting labour and substitutive work to production, while human efforts
and the work of external energy sources are considered as true sources of value. Due
to the definition of the production factors, capital stock K and a certain combination
of services L and P are complements to each other, while capital services (substitu-
tive work) P and labour inputs L act as substitutes for each other. The properties of
the production factors allow one to specify (see details in Chap. 6) the production
function for output Y in the form of the two alternative lines

Y =

⎧⎪⎨
⎪⎩

ξK,

Y0
L

L0

(
L0

L

P

P0

)α

.

8The introduction of energy can also be justified from a thermodynamic point of view. In terms of
modern thermodynamics [48] all the artificial things, as well as all biological organisms and natural
structures, ought to be considered as deviations from equilibrium in our environment, the latter
being reasonably considered a thermodynamic system, and the process of production of useful
things is the process of creation of far-from-equilibrium objects (the dissipative structures), as is
explained by Prigogine with collaborators [48, 49] (see also Chap. 10). To create and support these
structures in our environment, as in any thermodynamic system, the matter and energy fluxes must
run through the system [48, 50]. In our case, energy comes in the form of human effort and the
work of external sources which can be obtained by using the appropriate equipment. The system
of a social production is the mechanism which involves a huge quantity of energy to transform
‘wild’ substances into useful things. The production of useful things can be connected with an
establishment of the order (complexity) in the environment by human activity.
9The principles of the theory were discussed earlier in the author’s monograph [35], though some
issues have been reformulated here. In particular, the concept of substitutive work was not clearly
defined, and the important contribution to production of value from technological and structural
changes was erroneously omitted. The correct version is given in the author’s article [36].
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The complementary descriptions of production of value can be traced back. The first
line in the above formula reminds us of the Harod–Domar approach [13–16], while
the function in the second line coincides with the Cobb–Douglas production func-
tion (1.4), in which substitutive work P stands in the place of capital stock K . The
productivity of capital stock ξ is an internal characteristic of the production system
itself and is the ‘sum’ of the marginal productivities of labour and productive energy,
so that capital productivity eventually determines efficiency of ‘transformation’ of
performed work into value.

To complete the theory, one needs equations for the dynamics of the production
factors, which allow one to investigate trajectories of development. The equations
for the growth rate of capital K , labour L and substitutive work P are formulated
in Chap. 5, and some characteristics of technology, namely, labour and energy re-
quirements, λ and ε, that is, amounts of labour and substitutive work needed for unit
of production equipment to be launched in action, are introduced. These quantities
are combined to create the above introduced index α, thus, connecting it with char-
acteristics of applied technology. The index α appears to be a technological index,
which can also be interpreted as a share of capital services in the total expenses for
maintenance of production factors.

Chapters 4 and 8 contain a generalisation of the theory for a many-sector sys-
tem. The basis of the development is the well-known linear input–output model,
described in Chap. 4. The model represents the production system as a set of cou-
pled sectors, and each of them creates its own specific product. The applicability of
the linear input–output model to dynamic situations (Chap. 8) is extended in pro-
posed work, so the restrictions imposed by production factors (labour and substitu-
tive work) and the evolution of the production system itself, that is, structural and
technological changes, are taken into account. In fact, a phenomenological version
of the evolutionary theory of the production system is formulated in these chapters.

In Chap. 7, the ability of the theory to describe a real situation is illustrated for the
example of historical (1900–2000) statistical data for the U.S. economy. To identify
the considered model, one needs in the empirical time series of output Y , capital
K and labour L. A method of separating substitutive work P from the total pri-
mary consumption of energy, as well as a method of calculating the technological
index α, appears to be an organic part of the theory. Besides, at the given time series
for investment, one can estimate the technological characteristics of the production
system. The comparison shows the consistency of the theory and its correspondence
to empirical facts. The proposed theory can explain facts of economic growth, es-
pecially, the main fact of recent development, that output expansion has outpaced
population growth in the 200 years since the industrial revolution. The theory has
the means to describe the difference in productivity growth for different countries.
Within empirical accuracy, the consistency is perfect, so that one can acquire a feel-
ing that substitutive work or, more generally, capital service is the only missing
production factor in the conventional two-factor theory of economic growth, and
no other production factors, aside from capital, labour and substitutive work, are
needed to describe the path of growth quantitatively. Perhaps the substitutive work
is the same production factor that the scholars of the modern endogenous theory of
economic growth have been seeking.
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Chapters 9 and 10 represent an attempt to understand and interpret the very con-
cept of value, which is a unique specific concept, as frequently used and important
in economics as the concepts of ‘energy’ and ‘entropy’ in physics. The relationships
among the thermodynamic concepts and economic concepts of value and utility are
analysed. Reconciliation of the two points of view on the phenomenon of production
leads to a unified picture that enables us to relate some aspects of our observations
of economic phenomena to physical principles.

Concluding the description, the monograph investigates one of the main prob-
lems of economics—why do economies grow—and reconsiders the theory of pro-
duction from a physicist’s point of view. The monograph contains a quantitative
description of production as a social mechanism, embedded in the environment.
The approach allows us to include characteristics of technology into the description
and to formulate a phenomenological (macroeconomical, no price fluctuations are
discussed) theory of production as a set of evolutionary equations in one-sector and
multi-sector approximations.
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Chapter 2
Empirical Foundation of Input–Output Model

Abstract To describe the performance of a production system, one uses basic terms
and notions which were introduced by many researchers during the long period
of development of economic theory. In this chapter, the terms needed to describe
the phenomenon of social production and economic growth are introduced and dis-
cussed. The main chain of definitions is as follows: product–output–investment–
stock of production equipment. The latter is a set of the real means of production:
the collection of tools and all energy-conversion machines, including information
processing equipment, plus ancillary structures to contain and move them. The
term capital stock is applied for the value of the stock of production equipment
(the means of production). In this and the following chapters, time series of some
quantities for the U.S. economy, which are collected in Appendix B, are used for
illustration.

2.1 On the Classification of Products

To be able to describe the internal processes in an economy in some detail, we need
to focus on a variety of production units, and we also need some classification of
products. Further, we shall use the assumption that all outputs of the production
units can be divided into n classes, which allows us to consider n products, circu-
lating in a national economy [1–4]. Following this tradition, one can assume that all
enterprises of the production system can be divided into n classes as well. There-
fore, we imagine, following Leontief [2], that the production system of an economy
consists of n production sectors, each of them producing only one product. In fact,
in reality it is not that simple to divide the production system of the economy into
production sectors or, more exactly, into pure production sectors [2]; nevertheless,
the scheme appears to be fruitful for a theoretical analysis.

The division of the economy into sectors can vary; the number of sectors de-
pends on the aims one is pursuing. For the current description and planning, the
economy can be divided into no more than a few hundred sectors. An example of a
working classification can be found in Appendix A. For research aims, the economy
can be divided into a few sectors only [2, 3]. As an example, one can consider a
simple model of the production system of an economy consisting of three sectors as
follows.
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1. The first sector deals with resources for material production of goods and pro-
vides the equipment and all the material products necessary for production. This
sector devours natural resources and uses its own products and products of the
second sector to produce the means of production. The sector includes extraction
of raw material (ore, stone, coal, oil, etc.), construction, transportation, manufac-
turing of cars, appliances for homework and furniture, etc. One can see that the
activities with codes 21 and 23 (Appendix A) must be included in this sector.

2. The second sector produces non-material information products, i.e., general
knowledge and various instructions on how to organise a matter for human use.
Instructions are partially embodied in the performance of the production system,
another part exists in a non-material form as postponed messages, forming the
huge collection of information resources. This sector includes the scientific and
project institutes and deals with creation of principles of organisation: science,
research and development, design and experimental works, art, management, a
financial system and computer programs, so that the activities with codes 51,
52, 54, 71 and 92 (Appendix A), for example, must be included in this sector.
It is necessary to note that non-material production, i.e., principles of organisa-
tion, software and results of research works, should be connected with material
production, as they are useless if they are not consumed.

3. The third sector produces the things which human beings need directly. This sec-
tor includes the food processing industry, agriculture, retail, restaurants, hotels,
healthcare and so on. Examples of businesses belonging to this sector are activ-
ities with codes 11, 44, 45, 62 and 72 (Appendix A). We can say that one needs
the first two sectors only to keep the third sector in action. Strictly speaking,
human beings do not need the products of the first two sectors directly.

Note that the first and the third sectors above are those sectors of production
which were introduced by Marx [5], as the sector of the means of production and
the sector of production of commodities. Following Smith, Marx considered that
workers who, according to the above classification, are engaged in the second sector
do not create value, so there was no need for him to consider the second sector.
The necessity of introducing this sector was recognised by Tougan-Baranovsky [6]
and Bortkiewicz [7], who believed that the additional sector makes luxury goods.
For a complete description of the production system, it is necessary to consider the
interaction of tangible and intangible products. For the description to be complete,
all production enterprises should be included in one of these three sectors, although
one can see that it is difficult to locate some of the activities listed in Appendix A.

Let us note that, in addition to the sector classification, some groups of products
can also be selected according to the aims and modes of their consumption. Some
products can be used to produce other products [4]. If things are used for production
many times, as, for example, instruments and tools, machinery, means of transport,
agricultural land and so on, one speaks of fixed production assets. One speaks of in-
termediate production consumption, if products, for example, coal, oil and ore, are
disappearing in the production processes. Products for final consumption by human
beings comprise products which are used as final products many times, e.g., residen-
tial buildings, furniture and so on (residential assets), and products which disappear
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at consumption, like food, for example. Sometimes it is difficult to decide whether
a product (for example, roads and buildings) ought to be classified as production
assets or as residential wealth.

2.2 Motion of Products

Consider an economy as consisting of the production sectors, each of them produc-
ing its own product. The important characteristic of a sector is its output, that is, the
amount of product created by the sector in a time unit

dQi, i = 1,2, . . . , n.

These quantities are measured in natural units such as tons, meters, pieces and so
on. We do not discuss here the difficulties which appear when many primary natural
products are aggregated in the only product of a sector.

To compare the quantities of different products, an empirical estimation of value
of product is used. Measures or scales of value are conditional monetary units, such
as the rouble, dollar and others.1 Neglecting fluctuations, which are the acciden-
tal deviations of quantity from some mean value, one defines the value of a unit
of a product in arbitrarily chosen units as its price. We assume that the prices, as
empirical estimations of value, for all products are known

pi, i = 1,2, . . . , n.

The price of a product is not an intrinsic characteristic of the product. The price
depends on the quantities of all products which are in existence at the moment. As a
rule, the price decreases if the quantity of the product increases, though the situation
can be more complicated. Note that there are coupled sets of products, such that an
increase in the quantity of one product in a couple is followed by an increase (in the
case of a couple of complementary products) or a decrease (in the case of a couple of
substituting products) in the price of the other product of the couple. Therefore, one
ought to consider the price of a product to be a function of quantities of, generally
speaking, all products

pi = pi(Q1,Q2, . . . ,Qn). (2.1)

One can define the gross output of a sector i as the value of the product created
by the sector labelled i for a unit of time

Xi = pi dQi, (2.2)

1The assessment and comparison of value of the various products existing in various points in time
is complicated by the lack of a constant scale of value. As known financier Lietaer [8, p. 254]
writes: ‘The world has been living without an international standard of value for decades, a situa-
tion which should be considered as inefficient as operating without standard of length or weight.’
The absence of a constant scale of value is a headache, both for experts and for analysts.
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so that the gross output of the economy appears to be a vector with n components

X =

∥∥∥∥∥∥∥∥∥∥∥

X1

X2
...

Xn

∥∥∥∥∥∥∥∥∥∥∥
.

2.2.1 Balance Equations

To create the product of a sector, apart from fixed production capital, it is necessary
to use the products of, generally speaking, all the sectors. For example, to produce
bread, apart from an oven, it is necessary to have flour, yeast, fuel and so on. There-
fore, the gross output of each sector is distributed among the others

Xi =
n∑

j=1

X
j
i + Yi, i = 1,2, . . . , n, (2.3)

where X
j
i is an amount of the product labelled i used for production of the product

labelled j . The intermediate production consumption of the products is determined
by the existing technology and does not include consumption of the basic production
assets. The residue Yi is called the final output, which is the value of the products
used for productive and non-productive consumption beyond the current production
processes. It will be discussed later.

On the other hand, the value of the output of a sector i is the sum of the values
of products consumed in the production and an additive term

Xi =
n∑

j=1

Xi
j + Zi, i = 1,2, . . . , n. (2.4)

This relation defines the quantity Zi which is called the production of value in sec-
tor i. One can consider that every sector creates value. The first terms on the right-
hand sides of relations (2.3) and (2.4) represent products which are swallowed up
by the acting production sectors.

The final output of the sectors Yi characterises production achievements of the
society. For this purpose, it is convenient to use the sum

Y =
n∑

j=1

Yj . (2.5)

This is the value of all the material and non-material products created by a society
per unit of time (year). We call it the Gross Domestic Product (GDP), if we are
considering a national economy.
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Table 2.1 Balance of
products Gross

output
X1 X2 · · · Xn Final

output

X1 X1
1 X2

1 · · · Xn
1 Y1

X2 X1
2 X2

2 · · · Xn
2 Y2

· · · · · · · · · · · · · · · · · ·
Xn X1

n X2
n · · · Xn

n Yn

Production
of value

Z1 Z2 · · · Zn Y

One can sum relations (2.3) and (2.4) over the suffixes and compare the results
to obtain

Y =
n∑

j=1

Zj . (2.6)

It means that the GDP is equal to the production of value in all production sectors
of the economy.

The quantities incorporated in formulae (2.3)–(2.6) can be conventionally repre-
sented by a balance table (Table 2.1). All quantities in the table should be replaced
by numbers in order for a real economy to be analysed.

When we take into account that some products can be objects of import and
export from other countries (international trade), the production balance changes a
little. In this case it is necessary to subtract an export part from the gross product
of each sector T

↑
i and to add import quantity of the product T

↓
i , so that the balance

parity (2.3) is recorded in the modified form

Xi + T
↓
i − T

↑
i =

n∑
j=1

X
j
i + Yi, i = 1,2, . . . , n, (2.7)

where X
j
i is the part of the product with index i which is used for production in

sector j . The difference between import and export can be used both for intermedi-
ate production consumption and for final consumption. The residual Yi , called the
final product, presents the value of the products used beyond current processes for
productive and non-productive consumption.

On the other hand, the value of a product Xi can be presented as the sum of
value of the products consumed by production, and some additive term, which is
presented by (2.4). This parity defines the quantity of value Zi , created in sector i.
One can suppose that each sector creates value, as the production equipment takes
part in the production.

Summing up relations (2.4) and (2.7) on indexes i and comparing the results, one
obtains, instead of (2.6),

Z = Y + T ↑ − T ↓. (2.8)
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In this case, the value created by the production system Z = ∑n
j=1 Zj is referred

to as the GDP, which is used for productive and non-productive consumption Y =∑n
j=1 Yj and pure export T ↑ − T ↓.

2.2.2 Distribution of the Social Product

To move further, it is necessary to consider the main constituents of both the value
of the final products created in sectors Yi , and the production of value in sectors Zi .
The last quantity was considered by Marx, who called it the social product and
supposed that the production of value in each sector can be broken into wages V j ,
surplus product Mj and value of the production assets disappearing in the process
of production Aj ; consequently,

Zj = V j + Mj + Aj , j = 1,2, . . . , n. (2.9)

Both the wages V j and the surplus product Mj can be used for direct consumption
or for the further development of production.

One of the major characteristics of the sector functioning is the rate of profit,
defined as

Mj

Aj + V j
, j = 1,2, . . . , n. (2.10)

According to Marx, because of the aspiration of separate manufacturers to profit,
these quantities tend to accept identical values; however, actually alignments of rates
of profit are not observed.

The final product Yj , defined by the balance equation (2.3), is used both for
direct consumption and for maintenance and expansion of the production system of
an economy. Consequently we can present a vector of the final product as the sum
of three vectors

Yj = Ij + Gj + Cj , j = 1,2, . . . , n, (2.11)

where Cj stands for the value of products which are consumed by people directly
and immediately (one-time consumption), Gj designates the value of intermediate
products (material and non-material) not consumed and not used in production and
Ij designates gross investments (with inclusion of amortisation expenses) in the
basic production equipment (fixed capital). It is believed that all quantities are es-
timations of values of actual fluxes of products. Certainly, some of the components
of fluxes Ij , Gj and Cj can be set equal to zero.

The situation becomes simpler if we refer to the three-sector model described in
Sect. 2.1. We assume that storage of intermediate material products can be neglected
here, so, instead of relation (2.11), we have

Y1 = I, Y2 = G, Y3 = C, (2.12)
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where I is investment in stock of residential and non-residential assets, G is invest-
ment in stock of knowledge and C is one-time human consumption. So, the total
final output can be represented as a sum of the three components

Y = I + G + C. (2.13)

2.2.3 Gross Domestic Product

The Gross Domestic Product (GDP) represents a measure of the current achieve-
ments of an economy as a whole—a measure of a multitude of fluxes of prod-
ucts. The equations recorded in the previous section show the various methods
of calculating the GDP, which can be estimated as the results of production, that
is, the value of created products (2.5), or by the account of the use of prod-
ucts (see (2.5) and (2.11)), or by the contribution of separate components of the
created value (see (2.6), (2.8) and (2.9)). Using a similar foundation, methods of an
assessment of GDP, based on a system of national accounts,2 have been developed
under the patronage of the United Nations.3

When an arbitrary monetary unit of value is chosen, the GDP can be estimated
for a given point in time in an uncontested way. However, due to possible changes
of the money units, there is a question of how to compare the GDPs for various
years. Assuming that values of equivalent sets of products for various years are
identical, one finds a parity between monetary scales at various points in time [10].
The monetary unit, established in this way, possesses the property to have constant
purchasing capacity, but has nothing to do with a parity of value at various points
in time. When a monetary unit of constant purchasing capacity is used, inflation is
excluded, but with variation of productivity, the value content of the monetary unit
changes in due course.

As an illustration, the GDP of the U.S. economy measured in different scales
of value is shown in Fig. 2.1. The direct assessment of the progress of a social
production is made in current monetary units; for the U.S. economy, the dependence
of the directly estimated total product in current monetary units can be approximated
by the exponential function

Ŷ = 19.965 × 109 · e0.0518t dollar/year.

Here, time t is measured in years, beginning (t = 0) at 1900. After some tedious
procedures [10], the directly estimated quantity Ŷ can be transformed into an as-
sessment of GDP in the monetary scale of constant purchasing capacity Y . In this

2The System of National Accounts 1993. http://unstats.un.org/unsd/nationalaccount/sna.asp.
3An interesting description of the history of approaches to the estimation of the GDP for various
nations was given by Studenski [9].

http://unstats.un.org/unsd/nationalaccount/sna.asp
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Fig. 2.1 Production of value in the U.S. economy. The lower curve depicts GNP in millions of
current dollars, the middle one in millions of dollars for year 1996. The latter curve shows real
income of the society in money units of constant purchasing power and can be approximated by
an exponential function (2.14). The upper curve presents values of GNP measured in millions of
energy units, taken as 50000 J (see Sect. 10.3)

case, the time dependence of GDP (the middle curve of Fig. 2.1) can be approxi-
mated by the exponential function

Y = 1.69 × 1012 · e0.0326t dollar(1996)/year. (2.14)

Time t is measured in years, and t = 0 corresponds to year 1950. The upper curve of
Fig. 2.1 depicts the real change of production of value with a constant money scale,
which is introduced in Chap. 10 (Sect. 10.3).

The ratio of the output in the current money units to the output in the constant
purchasing power money units defines the price index

ρ(t) = Ŷ /Y.

The actual price index is a pulsing quantity, but, with the above assessments, it is
possible to see that the average price index for the U.S. has increased (since 1950)
as

ρ ∼ e0.0192t .

The purchasing capacity of the monetary unit of the U.S.—the dollar—decreases as
an inverse quantity. Each holder of the dollar in 1950–2000 has been losing annually
nearly 2% of its purchasing capacity, which is, in fact, an implicit tax in favour of
an emitter. In the third chapter, we shall return to the discussion of money units and
price index.

Though the time dependence of GDP is smooth, consideration of the rate of

growth 1
Y

dY
dt

shows a pulsating character in the progress of production. On the chart
of Fig. 2.2 it is possible to see that the period of pulsations of the rate of growth of
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Fig. 2.2 The rate of growth
of the U.S. GDP. The rate of
growth of the GDP for the
U.S. economy shows a
pulsating character of
production

GDP takes about four years. We shall return to the discussion of the reason for the
pulsations in the seventh chapter (Sect. 7.3.2).

2.2.4 Constituents of Gross Domestic Product

2.2.4.1 Investments in the Production Equipment

One recognises a set of products as investments, both material and non-material, if
the products are not intended for immediate consumption and are kept for use in
production. In the material form, the investments are buildings, cars and the various
equipment sets in various sectors. A part of a sector output is distributed over sec-
tors, so it is possible to define quantity I i

j as a part of a product j invested in sector

i and to consider investments as a matrix with components I i
j

I =

∥∥∥∥∥∥∥∥∥∥∥

I 1
1 I 2

1 . . . I n
1

I 1
2 I 2

2 . . . I n
2

. . . . . . . . . . . .

I 1
n I 2

n . . . I n
n

∥∥∥∥∥∥∥∥∥∥∥
. (2.15)

The quantities I i
j apparently cannot be chosen arbitrarily, and the society works

out the mechanisms of the choice of investments. When the development of an econ-
omy is planned, which is possible in the case where all means of production basi-
cally belong to the state, the choice has a directive character: the special state body
centrally makes decisions about investment that define the future assortment and
volumes of goods and services. When the market economy is reined, and the means
of production belong to various proprietors, including the state, each proprietor itself
defines the investment decision, and therefore the future production is determined
spontaneously.
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Fig. 2.3 Investment and
capital in the U.S. economy.
Estimates of value of material
national wealth K (upper
curve) and value of
investment I (lower curve)
are given, according to
Appendix B, in million
dollars for year 1996. The
growth of capital can be
approximated by the
exponential function (2.29)

One can define investment of type j in all sectors as

Ij =
n∑

i=1

I i
j , j = 1,2, . . . , n.

Quite similarly, we can calculate the gross investment of all products in sector i as

I i =
n∑

j=1

I i
j , i = 1,2, . . . , n.

The gross investment in the entire production system is now defined as

I =
n∑

i=1

I i =
n∑

j=1

Ij =
n∑

i,j=1

I i
j . (2.16)

One can find very good estimates of investment I for the U.S. economy (see
Appendix B). The time dependence of the gross investment for the entire economy
is shown in Fig. 2.3.

2.2.4.2 Personal Consumption

The consumption C is defined as the value of the products which are consumed
by humans immediately (one-time consumption). Perhaps a proper estimate of this
quantity could be the minimum amount of products which are needed in order for
humans to subsist. To characterise the necessary consumption, it is convenient to
use the poverty threshold used in the U.S. statistics. The estimates of this quantity
for a person in different family situations since year 1959 can be found on the U.S.
Census Bureau website.4 One can consider the poverty threshold per person in a

4http://www.census.gov/hhes/poverty/histrov/hstpov1.htm.

http://www.census.gov/hhes/poverty/histrov/hstpov1.htm
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Fig. 2.4 Personal
consumption in the U.S.
economy. Estimates of value
of personal consumption
C = cN are given in millions
of dollars for year 1996. The
solid line is based on direct
estimates of the poverty
threshold by the U.S. Census
Bureau; the dashed line
presents the results of
calculation due to (6.33)

one-person family to give a realistic estimate of the current consumption. For year
1996, for example, this quantity is estimated as 7995 dollars per person per year.
This quantity ought to be multiplied by the number of population to get the lower
estimate of the consumption in year 1996 as C = 2,120 billion dollars. The time
dependence of the personal consumption is depicted in Fig. 2.4. On the other hand,
one can use (6.33) for the cost of labour and the estimated (in Sect. 7.1.2) values of
the technological index to calculate the personal consumption. The results for the
U.S. in the twentieth century are shown in Fig. 2.4 by the dashed line.

One can consider consumption as the most important part of the GDP. ‘Every
man is rich or poor according to the degree in which he can afford to enjoy the
necessaries, conveniences, and amusements of human life.’ [11, p. 47].

2.2.4.3 Fluxes of Non-material Products

Many employees in different sectors of the production system create and distribute
different messages. But there are some businesses, such as education, science and
R&D, publishers, theatres, TV, cinema, post, law services, statistics, consulting
companies and so on, for which the main activity is the creation and distribution
of different messages. One calls these sectors the information sectors. The product
of these sectors is a great amount of messages, informative or not; it depends on
the recipient. Therefore, one cannot say that the product of the information sectors
is information. Some messages are never read; they are waiting for the recipients
in depositories such as libraries. Some of the messages are received by many re-
cipients, and for some of them the messages carry no information. Some messages
certainly carry valuable information for the recipients, e.g., instructions on how to
use the energy of running water as a work horse, and the instructions on how to
organise matter to be used as a transport vehicle or an appliance. Some of the mes-
sages lose their value, and some disappear, but for many years society has stored a
great deal of messages—information resources.

The total amount of produced services on the creation and distribution of differ-
ent messages in the U.S. economy was estimated by Machlup [12] as 29% of the
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Fig. 2.5 Non-material products in the U.S. economy. Values of non-material products
G = Y − I − C (lower curve) are calculated from known values of output Y , investment I and av-
eraged values of consumption C (see Figs. 2.1, 2.2, 2.3). Values of non-material national wealth R

(upper curve) are calculated according to (2.28), whereas depreciation coefficient is assumed to
take the same values as for material products. All quantities are given in million dollars for year
1996

Gross National Product (GNP) for year 1959 and as 46% of the GNP for year 1967.
For recent times one can easily get an estimate of the non-material information
product G from formula (2.13). For example, one has estimates for year 1996: GNP
Y = 7,813, material investment I = 2,054 and the current consumption C = 2,120
billion 1996 dollars. Thus, one can get the estimate for the non-material informa-
tion product G = Y − I − C = 3,638 billion 1996 dollars, which is about 47% of
the GNP. The time dependence of the flux G is depicted in Fig. 2.5.

The value of the achievements of science, research and projects is essential and
cannot be ignored. The information products are considered to be important for soci-
ety (because much effort is spent to produce them), and the share of the information
products in the GNP apparently does not decrease.

2.2.4.4 Principles of Distribution of Products

All three parts of the final product for the U.S.: investment, personal consumption
and storing of information products, are comparable, and it seems possible that the
final output of any society is distributed among the three parts in approximately
equal fractions. The distribution certainly experiences some operating influences
from the society, and it would be interesting to determine whether there exists a
principle which governs such a division. One of the main questions to understand
is: What are the rules to determine a splitting of the final output into three parts?

The future amounts of production, consumption and information products de-
pend on today’s investments. At any moment of time a society has to decide what
part of the final product ought to be consumed and what part ought to be saved
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for the sake of future consumption. One can imagine two alternative approaches
to the problem: one from the side of consumption and the other from the side of
production. Some models (see, for example, [13]) determine investment as a result
of maximisation of present and future consumption. In Chap. 5, we discuss how
investment can be determined from the side of production.

2.3 The National Wealth

Every society holds a huge stock of material and non-material products—the na-
tional wealth—which, in a natural form, is a set of objects, both tangible (buildings,
networks of supply, machinery, transport means, furniture, home appliances and so
on) and intangible (principles of the organisation of the matter and society, works of
art and literature and other things).

2.3.1 Assessments of the Stored Products

The value of the material and non-material parts of the national wealth can be es-
timated, if one estimates pure investments, which are gross investments minus the
value of the products, that disappear for the same unit of time (value of depreciation)

dKj

dt
= Ij − μKj , (2.17)

dRj

dt
= Gj − μRj . (2.18)

Here Ij and Gj are gross investments representing the increase of material and
non-material wealth per unit of time. We assume that investments become produc-
tive instantaneously. The second terms in relations (2.17) and (2.18) describe the
depreciation of national wealth due to wearing and ageing.

Equations (2.17) and (2.18) introduce the stocks of products: Kj is the value of
the material assets including basic production equipment (production capital); Rj is
the value of the storage of intermediate production materials including the stock of
knowledge. It is difficult to give an exact estimate of these amounts, because some
of these products disappear very quickly, but others keep their value for centuries.
Apparently, estimates of the stocks Kj and Rj depend on the choice of the second
terms on the right-hand side of (2.17) and (2.18). One can assume, for simplicity,
that the depreciation is proportional to the amount of national wealth with one and
the same coefficients of depreciation μ for all products in all situations.

The above relations allow one to represent the components of the national wealth
in the following form:

Kj(t) =
∫ ∞

0
e−μxIj (t − x)dx, (2.19)
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Rj (t) =
∫ ∞

0
e−μxGj (t − x)dx. (2.20)

One can see that the national wealth represents accumulated investments, especially
investments of the recent past, as the earlier produced commodities disappear. The
quantity

kj (t, t − x) = e−μxIj (t − x)

is a part of the existing fixed production capital, which was introduced during a unit
of time at the moment of time t − x. This quantity is the smallest part of capital
stock which can be considered in macroeconomic theory.

Relations (2.17), (2.18) and (2.19), (2.20) connect with each other two kinds of
quantities: fluxes Ij , Gj and stocks Kj , Rj . Only one set of quantities, namely,
fluxes, can be estimated directly. The other quantities, stocks, are usually calculated
in value units. But this does not mean that stocks are theoretical constructs; they are
realities, which can be measured by natural units of products. However, apparently
it is difficult to give a precise direct assessment of value of the stored products,
especially non-material products.

The total value of the national wealth is a sum of the quantities which were
defined above

W =
n∑

j=1

(Kj + Rj). (2.21)

The national wealth consists of products which were produced at different moments
of time and under different conditions of production, which implies different bygone
current prices. The value of national wealth W is a characteristic of the set of the
products which depends of the history of bygone prices. In other words, the value
of national wealth cannot be a function of amounts of products. However, we can
introduce such a function for a set of products or a function of a state—the utility
function—which is closely related to value (see Chap. 10, Sect. 10.2). The utility
function U replaces the non-existing value function in theoretical considerations.

2.3.2 Structure of Fixed Production Capital

The national wealth is created by the production system of the economy, which is
a real engine of the economic system, and production capital, which was consid-
ered very thoroughly by many researchers, appears to be a very important part of
national wealth. Note that different approaches to the concept of capital stock can
be accepted. In a wider sense, capital stock includes all material national wealth;
in a narrower sense, the concept of capital stock can be understood as the value of
basic production equipment, one can say, the core production capital. To illustrate
application of the theory, we shall apply the wider concept of capital stock.
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The accumulation of invested products (2.15) determines the production capital
(capital stock) via the equation

dKi
j

dt
= I i

j − μKi
j , i, j = 1,2, . . . , n, (2.22)

where Ki
j stands for value of production equipment of type j in sector i. One can

see that the production equipment can be considered as a matrix with components
Ki

j

K =

∥∥∥∥∥∥∥∥∥∥∥

K1
1 K2

1 . . . Kn
1

K1
2 K2

2 . . . Kn
2

. . . . . . . . . . . .

K1
n K2

n . . . Kn
n

∥∥∥∥∥∥∥∥∥∥∥
. (2.23)

The total amount of product of type j in all sectors is defined as

Kj =
n∑

i=1

Ki
j , j = 1,2, . . . , n.

Quite similarly, we can calculate the total amount of the production capital in sec-
tor i as

Ki =
n∑

j=1

Ki
j , i = 1,2, . . . , n.

The production capital of the whole economy is now defined as

K =
n∑

i=1

Ki =
n∑

j=1

Kj =
n∑

i,j=1

Ki
j . (2.24)

One can sum (2.22) over suffixes i or j to obtain equations for the dynamics of
the total amount of equipment labelled j and for the dynamics of the fixed capital
in sector i, correspondingly,

dKj

dt
= Ij − μKj , j = 1,2, . . . , n, (2.25)

dKi

dt
= I i − μKi, i = 1,2, . . . , n. (2.26)

Remember that all dynamic equations in this section are valid for the case where
the depreciation is proportional to the amount of national wealth with one and
the same coefficients of depreciation μ for all products in all situations. Gener-
ally speaking, coefficients of depreciation are different for different equipment in
different sectors.
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2.3.3 Estimates of Fixed Production Capital

Formulae (2.17), (2.18) give a basis for approximate formulae, according to which
the separate parts of the national wealth can be estimated. In a simple case, when
one considers the three-sector model described in Sect. 2.1, (2.17) and (2.18) reduce
to equations for two components of national wealth: stock of basic equipment K and
stock of knowledge and projects R

dK

dt
= I − μK, (2.27)

dR

dt
= G − μR. (2.28)

It is easy to see that, at the given fluxes I and G, the calculated amounts of
components of national wealth must depend on the choice of the value of the depre-
ciation coefficient μ, which is neither a quite arbitrary nor a well-known quantity.

The time series for capital K and investment I for the U.S. economy is known
(see Appendix B) and allows us to calculate values of the rate of capital depreciation
μ by using (2.27). The results are shown in Fig. 2.6. The website of the U.S. Bureau
of Economic Analysis (www.bea.gov) also contains estimates of depreciated capi-
tal μK which allow us to calculate the rate of capital depreciation μ in a different
way, as the ratio of depreciated amount of capital to the total amount. These results
are also depicted in Fig. 2.6. These estimates allow us to consider the depreciation
coefficient as an increasing function of time which has value μ = 0.026 in year
1925 and increases linearly from 0.026 to 0.07 over years 1925–2000. However, the
results show inconsistency of the primary data: the two estimates from the same
source differ from each other; also, the depreciation coefficient cannot be negative.
We have chosen to consider the empirical values of investment and capital depicted
in Fig. 2.3 to be ‘correct’ values and to exploit the calculated values of the depreci-
ation coefficient, while using local averaged values (dashed line in Fig. 2.6) instead
of negative ones.

The calculated time dependence of capital as well as gross investment for the en-
tire U.S. economy is shown in Fig. 2.3 on p. 28. The time dependence of production
capital can be approximated by the exponential function

K = 5.49 × 1012 · e0.0316t dollar(1996), (2.29)

where time t is measured in years, and t = 0 corresponds to year 1950.
The time dependence of the stock of knowledge R can be calculated according

to (2.28), assuming the flux G (which was described in Sect. 2.2.4.3 as a quantitative
measure of efforts for creating principles of organisation per year, that is, investment
in science and in research and developments) is given, as shown in Fig. 2.5, and the
rate of depreciation μ of the stock of knowledge can be guessed. The results are
demonstrated in Fig. 2.5.

http://www.bea.gov
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Fig. 2.6 The depreciation
coefficient in the U.S.
economy. The direct
estimates of the quantity as
the ratio of depreciated
amount of capital stock to the
total amount (the shorter
curve) and estimates due
to (2.27) (pulsating curve)
with use of values of
investment and capital. The
dashed lines represent
corrected values

2.4 Labour Force

Work is the most important production factor. Its role in production was thoroughly
investigated in systems of concepts of political economy and neo-classical eco-
nomics. ‘Labour is, in the first place, a process in which both man and Nature partic-
ipate, and in which man of his own accord starts, regulates, and controls the material
reactions between himself and Nature. He opposes himself to Nature as one of her
own forces, setting in motion arms and legs, head and hands, the natural forces of
his body, in order to appropriate Nature’s productions in a form adapted to his own
wants. By thus acting on the external world and changing it, he at the same time
changes his own nature. He develops his slumbering powers and compels them to
act in obedience to his sway. . . . At the end of every labour-process, we get a re-
sult that already existed in the imagination of the labourer at its commencement.
. . . Besides the exertion of the bodily organs, the process demands that, during the
whole operation, the workman’s will be steadily in consonance with his purpose.’
(See [5], vol. 1, Chap. 7, Sect. 1.) ‘. . . however varied the useful kinds of labour, or
productive activities, may be, it is a physiological fact, that they are functions of the
human organism, and that each such function, whatever may be its nature or form,
is essentially the expenditure of human brain, nerves, muscles, & c.’ (See [5], vol. 1,
Chap. 1, Sect. 4.)

2.4.1 Consumption of Labour

Modern technology assumes that man is installed into the production process and
works inside it. The true measure of labour is work (in a physical sense, in energy
units) done by a labourer, but practically, the labour is measured by working time, so
that it is important to estimate the work which can be done by a labourer per hour. In
a sedentary state, the human organism (an adult male) requires about 2500 kcal/day
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Fig. 2.7 Population and
consumption of labour in the
U.S. The upper curve
represents population in
hundreds of persons. The
lower curve represents
consumption of labour in
millions of man-hours per
year. The latter dependence
can be approximated by
exponential function (2.30)

or about 106 kcal/year ≈ 4 · 109 J/year.5 Extra activity requires an extra supply of
energy. The energy needed for a working man can be up to two times more than
the energy needed for a resting man (Chap. 26 in [14], [15]). Though some types
of work require significant energy consumption, we accept the value of the work
done by a labourer to be approximately 100 kcal/hour or 4.18 × 105 J/hour. The
possibilities of the human engine were lower in earlier times, as was shown by Fogel
and Costa [16] on the basis of historical data for France and Britain for years 1785
and 1790, correspondingly.

Therefore, labour is measured in man-hours, while corrections due to the charac-
ter of labour (heavy or light), intensity of work and other factors are considered to
have been taken into account. For the last statement, I rely on Scott [17], who in his
turn refers to other researchers. As an example, according to the data compiled in
Appendix B, the amount of man-hours per year (labour consumption) in the econ-
omy of the U.S. is shown in Fig. 2.7 as a function of time. The dependence can be
approximated by a straight line, especially after year 1950, so that for this period

L = 1.23 × 1011 · e0.0147t man·hour/year, (2.30)

where time t is measured in years, and t = 0 at year 1950.
According to Marx [5], labour is a commodity that produces value. The bulk

productivity of labour, that is, the value produced per unit of labour, due to formu-
lae (2.14) and (2.30), can be approximated for the U.S. economy as

Y/L = 13.74 · e0.0179t dollar(1996)/man·hour. (2.31)

One can estimate that productivity of labour in the U.S. economy has grown by six
times during the past century. This growth of productivity cannot be explained with-
out taking into account that there is another commodity—energy—with a similar
property that can substitute labour and produce value. We believe that the increase

51 cal = 4.18 joules.
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in the labour productivity is connected with the use of newer and newer sources of
energy by human beings.

2.4.2 Population and Labour Supply

The supply of the labour is the potential amount of labour L̃, available at given wage
w, in other words, at a given price of labour. The labour supply is conventionally
considered to be connected with the whole population N

L̃ = f (w)N. (2.32)

The population is a reservoir (a pool) from which labour is supplied. The increasing
function f (w) changes from zero at w = 0 to a certain limiting value, which is
usually about 0.5 for developed countries.

The dynamic equation for the change in population can be written as

dN

dt
= (b − d)N, (2.33)

where b − d is the birth rate minus the death rate, i.e., the growth rate of the popu-
lation.

To obtain an equation for the labour supply, one ought to differentiate relation
(2.32) to get

dL̃

dt
= ν̃

(
N,b − d,w,

dw

dt

)
L̃, (2.34)

where the potential growth rate of the labour supply is determined by the growth of
the population and changes in the level of the wage

ν̃ = (b − d)f (w) + Nf ′(w)
dw

dt
.

Note that the total amount of wages wL also includes, generally speaking, in-
vestments in capital, so that the amount of subsistence cL, that is, the amount of
expenses which are needed to provide a living for and training of labour, is less than
wL (see also Sect. 2.2.4.2).

2.5 Energy Resources in the Production Processes

Energy, as has been discussed repeatedly and for a long time (see, for example, [18,
19]), is vital for the performance of the production system. The socially organised
stream of energy begins with identification of primary energy carriers: coal, oil,
potential energy of falling water—all that humans find in the nature and that costs
nothing, until it is not recognised yet, how to take energy from energy carriers.
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Fig. 2.8 Consumption of energy in the U.S. economy. The solid lines represent consumption of
energy carriers (primary energy, top curve) and productive consumption of energy (substitutive
work, bottom curve). The dashed line depicts primary energy (exergy) needed for work of pro-
duction equipment, estimated based on the data of Ayres et al. [20] as the sum of half of the net
electricity consumption, consumption of energy by other prime movers and non-fuel consumption
of oil products. Primary substitutive energy is also calculated (and depicted by symbol �) as a part
of primary energy, which is anti-correlated with labour (see Sect. 7.1.5). All quantities are esti-
mated in quads per year (1 quad = 1015 Btu ≈ 1018 J). The primary energy and substitutive work
from year 1950 can be approximated by exponential function (2.36). Reproduced from [26] with
permission of Elsevier

2.5.1 Work and Quasi-work in a National Economy

An energy carrier is what we call something that contains potential energy: the
chemical energy embodied in fossil fuels (coal, oil and natural gas) or in biomass;
the potential energy of a water reservoir; the electromagnetic energy of solar radia-
tion; the energy stored in the nuclei of atoms. The total of the primary energy carriers
used by humans and estimated in power units, is listed in handbooks as the quantity
of used6 primary energy. The primary energy consumption is the consumption of
energy carriers as they can be taken from nature.

As an illustration, Fig. 2.8 shows with a solid line the total consumption of pri-
mary energy carriers, as shown by official statistics of the U.S. Department of En-
ergy (see Appendix B). Apparently, the primary energy carriers (for simplicity, one

6It is customary to speak about the consumption of energy in a national economy. For precision,
the word consumption should be replaced by the word conversion. Energy cannot be used up in the
production process; it can only be converted into other forms: chemical energy into heat energy,
heat energy into mechanical energy, mechanical energy into heat energy and so on. The measure
of converted energy (work) is exergy.
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speaks about consumption of primary energy E) in public facilities are used for the
most variety of tasks. So, for example, 0.55 quad7 of oil products from the total
amount of about 97 quad of primary energy consumed in the U.S. economy in year
1999 was laid on the roads. It is clear that it is not even the energy content that is
important in this case, but the property of oil products as specific materials.

For the most part, primary energy is not used directly but is first transformed
and converted into fuels and electricity—final energy—which can be transported
and distributed to the points of final use. The final energy consumption provides
energy services for manufacturing, transportation, space heating, cooking and so
on.8 Extensive investigations of the consumption of primary and final energy in the
U.S. economy was conducted by Ayres with collaborators [20, 21].

The total of the primary energy carriers can be broken into two parts according to
their role in productions. It is possible to allocate a part which is used for operating
various adaptations allowing substitution of labour efforts by work of the production
equipment. This quantity can be called primary substitutive work EP. True substitu-
tive work or productive energy P , which really replaces workers’ efforts, is a small
part of the consumed primary productive energy EP, and the coefficient of efficiency
P/EP depends on exploited technology. In the United States in the beginning of
60th years, for example, in general consumption nearly 5 · 1019 J, about a third of
all consumed energy, went to substitution of labourers’ work. At an efficiency ratio
equal to 0.01, true substitutive work made nearly 5 · 1017 J.

The other part of the socially organised stream of energy, called quasi-work, is
used directly in production and in households for illumination, heating, chemical
transformations and other tasks.

2.5.2 Direct Estimation of Substitutive Work

Although one can easily find estimates of the total amount of primary energy car-
riers, the biggest interest for our aims is caused by possible assessments of the
quantity of energy going to the substitution of workers’ efforts in the production
processes. Based on the results of fundamental investigations [20, 21] of the usage
of primary and final energy in the U.S. economy, one can estimate the amount of
substitutive work in this case.

7Primary energy is the name for primary energy carriers (oil, coal, running water, wind and so on)
measured in energy units. It is convenient to measure huge amounts of energy in a special unit
quad (1 quad = 1015 Btu ≈ 1018 J), which is usually used by the U.S. Department of Energy.
8The problems arising in the estimation of the amount of energy which is converted (used up) in
production processes to do useful work are discussed by Patterson [22], Nakićenović et al. [23],
Zarnikau et al. [24] and Ayres [25]. According to Nakićenović et al. [23], the global average of
primary to final efficiency was about 70% in year 1990, while it was higher in developed countries.
Data collected by Ayres [25, Table 2] demonstrates that efficiency of energy conversion increased
during the last centuries.
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The substitutive work or productive energy P could be generally interpreted as
capital services. The most important property of this quantity is its ability to substi-
tute labour services, which are different efforts of humans in production processes,
and the substitutive work itself should be defined as an amount of work which is
done by external energy sources with the help of production equipment instead of
workers’ efforts. To estimate substitutive work, we have to consider human efforts,
which, we assume, can be replaced by the work of production equipment driven by
external energy sources. We can divide all efforts into three groups.

2.5.2.1 Efforts on Displacements of Substances and Bodies (Including Human
Bodies)

These efforts were substituted by the work of animals, wind and moving steamer
engines in the past. Now in the U.S., they are substituted mainly by the work of self-
moving machines—automobiles, trucks, aeroplanes and other mobile equipment—
driven by the products of oil. Estimates of energy used for this purposes can be
obtained for the U.S. economy as the sum of energy of consumed distillate fuel
oil, jet fuel and motor gasoline. According to U.S. Department of Energy data
(www.eia.gov), the amount was 19.46 quad in year 1998. This is the energy content
of fuel; the amount is different from the amount of work (service energy) which
is needed to move vehicles. The service delivery efficiency for transportation was
analysed by Ayres [25], and the ratio of the energy delivered to wheels to the fuel
energy was estimated as 0.06. The ratio of the useful work (substitutive work) to fuel
energy is much less; it is close, one can suppose, to the Ayres [25] technical effi-
ciency, which was 0.015 for transportation (much less for farming and construction)
in year 1979. According to Ayres et al. [20], efficiency has been improving begin-
ning with 1975, so that one can estimate the contribution to substitutive work from
transportation. The genuine work of transportation vehicles due to energy carriers
can be calculated as 0.1 quad in year 1998, though the amount of energy carriers
needed to provide this work was about 19.46 quad.

2.5.2.2 Efforts on Transformation and Separation of Substances and Bodies

These are efforts in the production of clothes, tools, different appliances and so
on—much, if not all, manufacturing. Animal-driven, wind-driven, water-driven and
steam engine-driven power were used to do work instead of humans in previous cen-
turies. Nowadays the same work is mainly done by machines with electric drives.
According to the U.S. Department of Energy (http://www.eia.gov), motor-driven
equipment accounts for about half of the electricity in the manufacturing sector.
Non-industrial motors, driving pumps, compressors, washing machines, vacuum
cleaners and power tools also account for quite a lot of electricity consumption.
Part of the electricity consumed by clothes washers and dish washers provides me-
chanical movement. So we can account that more than half of the consumed site

http://www.eia.gov
http://www.eia.gov
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electricity in the U.S. economy, that is about 6 quad in 2000, is taken by motors. In
the best cases, electricity in a machine drive can be recovered into rotational motion
with an efficiency of up to 0.8–0.9 [20]. However, the result of the work of a ma-
chine tool, for example, is a component or detail of another machine, and one has
to consider the whole procedure of making something: installation, stop-start move-
ments, measurement and so on. It is difficult to get an absolute measure of efficiency
in this case, but one can imagine that there is a certain amount of work which has to
be done to obtain the necessary effect. Presumably, it is the work of a human who
can obtain this effect on his own. The efficiency of machine drives was estimated by
Ayres [20] as about 0.002 in years 1960–1970. At manual operation the efficiency is
low, but automated control and operation allow increases in efficiency. One assumes
that the introduction of information processors into the production could affect the
efficiency of the processes, which could reach 0.005 in year 2000. This gives an
estimate for the contribution to substitutive work from machine drives to be 0.2–0.3
quad per year 2000.

2.5.2.3 Efforts on Sense-based Supervision and Co-ordination, Development
of Principles of Organisation

While the human efforts listed in the preceding two groups have been success-
fully substituted by work of other sources of energy from ancient times, attempts
to mechanise the functions of the brain were mainly unsuccessful until the advent of
computers (information processors) in the twentieth century. Up until recent times
these functions were considered as essentially human functions. Now the work of
the brain is being substituted by information processors driven by electricity. Ac-
cording to the U.S. Department of Energy (http://www.eia.gov), the consumption
of electricity by computers and office equipment in the commercial sector of the
U.S. economy in year 1999 was 0.4 quad. In the residential sector electricity was
consumed by computers and electronics in the amount of 0.35 quad in year 1999.
There is no data on the consumption of electricity by computers in the industrial
sector, though one can hardly have any doubt about the presence of the appliances
of information technology in this sector and the sector of transportation. To the sum
of the above figures—0.75 quad—one has to add the amount of electricity con-
sumed by other office and communication equipment in all sectors. In total, one can
estimate the consumption of electricity by computers, electronics and office equip-
ment to be about 1 quad in year 1999. This figure estimates, at least, a scale of
phenomenon. One cannot directly measure the work produced by the devices of in-
formation technology to measure the efficiency, but one can see some signs that the
useful effect per unit of consumed energy (efficiency) has been increasing. For ex-
ample, the consumption of electricity by one computer decreased from 299 kWh/yr
in 1985 to 213 kWh/yr in 1999 [27, 28]. This means that consumption of electricity
by a computer was decreasing with average rate 0.025. Simultaneously, the number
of computers and consumption of electricity increased with average rate of growth
0.027 between years 1990 and 1999, as can be calculated from the data of Koomey

http://www.eia.gov
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et al. [27] and Kawamoto et al. [28]. All this means that the useful effect from the
consumption of electricity by computers has been growing in recent times with a
growth rate of more than 0.052, which is the sum of the rate of growth of con-
sumption of electricity, 0.027, and the rate of decrease of consumption of electricity
by one unit, 0.025, plus the estimate of improving the unit performance. Similar
considerations can be made for all devices of information technology from the col-
lection of data by Koomey et al. [27] and Kawamoto et al. [28]. The efficiency of
computers is certainly less than unity, but they may be more efficient than many
other appliances. It is difficult to judge what part of the resulting amount of 1 quad
per year can be attributed to substitutive work itself, but, perhaps, an estimate of 0.5
quad per year is realistic. This huge amount of energy was spent usefully in year
1999 to produce instructions to humans and apparatuses in the U.S. economy.

2.5.2.4 Final Remarks

Summing up, the total amount of substitutive work in the U.S. economy in 1999
can be estimated as 1 quad per year. It is approximately one hundred times less
than the total (primary) consumption of energy, which was about 97 quad in 1999.
However, the amount of primary energy (energy carriers) needed to provide this
amount of substitutive work is about 25 quad, which is about 26% of the total pri-
mary consumption of energy. This number corresponds to the estimates by Ayres
[25, Table 1] who found that the part of energy which can be considered as the pri-
mary production factor (machine drive, transport drive, farming and construction)
in the U.S. economy was 9% in year 1800, 23% in 1900 and about 32% in 1991.

2.5.3 Energy Carriers as Intermediate Products and Energy
as a Production Factor

Energy carriers are consumed now in great amounts in production processes and are
considered to be products which are moving in the production system and thus must
be included in the balance table (Table 2.1, p. 23). From the conventional economic
point of view, all consumed energy carriers can be considered as intermediate or,
sometimes, final products.

Electricity as an energy carrier, for example, is the most important intermediate
product in the production of aluminium, metallurgical operations and some chemi-
cal processes, among others. Electricity consumed for lighting, comfort and process
heating must be considered either as a final product (in the residential sector) or
as intermediate products (in commercial and other sectors). In all cases of produc-
tion consumption, the cost of energy is included in the cost of the final products,
and energy contributes to the value of produced commodities no more than other
intermediate products participating in the production process.

However, it has long been argued [18, 19] that, aside from regarding the energy
carriers as intermediate or final products, the delivered energy is universally vital to
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the performance of the economy and must be included in the theory of production
as an important production factor. Apart from being a commodity, in some cases,
energy from external sources plays a special role, substituting for efforts of work-
ers in the technological processes. Energy-driven equipment works in the place of
workers, and energy can be ascribed all the properties of labour, including the prop-
erty to produce surplus value. In these cases, work or energy, which apparently is
only a part of the total (primary) consumption of energy, has to be specified as a
value-creating production factor in the conventional economic terms.

Thus, one can define the different roles of the consumed energy carriers in the
production processes. In any case, energy carriers participate in the production pro-
cesses as usual commodities. However, part of the consumed energy P —it is called
productive energy or substitutive work—has to be considered not only as an ordi-
nary intermediate or final product, but also as a value-creating factor, which has to
be introduced in the list of production factors equally with the production factors
of conventional neo-classical economics, capital K and labour L. This production
factor, substitutive work P , is not primary energy and, moreover, not even energy
delivered to production equipment. It has to be considered as genuine work done by
production equipment with the help of external sources of energy instead of workers.
This quantity can also be considered as capital service provided by capital stock.

The substitutive work P defined in this way has a special price, different from
the prices of energy carriers as a usual intermediate or final products. It is clear that
the amount of consumed products which are needed to support substitutive work P

is valued as μK , so that the price of substitutive work, as a production factor, is

p = μK

P
(2.35)

2.5.4 Estimates of Primary Energy and Substitutive Work

There are plenty of data on the total consumption of primary energy E in different
countries (in the Energy Statistics Yearbook, for example), but little is known about
the productive part of consumption P which is a true value-creating production
factor. However, there is a method of estimation of substitutive work P which is
based on a relation between the rates of growth of production factors (5.20). This
method, which is described in detail in Sect. 7.1.2, allows one to calculate the growth
rate η of substitutive work, if one knows the rates of growth of output, capital and
labour consumption. Then, one can restore the time dependence of substitutive work
if the absolute value of the quantity itself is known in one of the moments of time.

As an illustration, Fig. 2.8 shows the total consumption of primary energy car-
riers, as shown by official statistics of the U.S. Department of Energy (see Ap-
pendix B), and the calculated usage of substitutive work [29] in the U.S. economy
according to official estimation of the empirical situation. The method does not al-
low one to calculate absolute values of substitutive work; it was taken to be about
1 quad at the end of the century, as was estimated in Sect. 2.5.2. The extra growth
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Fig. 2.9 The ratio of
substitutive work to workers’
efforts. The ratio of
substitutive work to estimates
of workers’ efforts for the
U.S. economy (the upper
curve) and for the Russian
economy (the lower shorter
curve). Reproduced from [30]
with permission of Elsevier

rate of substitutive work in the U.S. economy in years 1950–2000 in comparison
with the primary consumption of energy was about 0.04 per year in the second half
of the century. The dependence of the total and productive consumption of energy
from year 1950 can be approximated by the functions

E = 33.3 · e0.0205t quad/year, (2.36)

P = 1.96 · e0.0585t quad/year, (2.37)

where, as in previous examples, time t is measured in years, starting from year 1950.
It is possible to estimate the productive consumption of energy for a unit of labour.
For the U.S. economy, since 1950,

P/L = 6.42 × 105 · e0.0441t J/man·hour. (2.38)

Figure 2.9 shows the ratio of the work executed by the production equipment to
energy estimates of the efforts of the workers, taking into account an estimate of
an hour of work, obtained in Sect. 2.4.1. One can find that, by the present time, the
efforts of every worker in the economy of the U.S. are amplified more than 10 times.
This is a rule: consumption of energy from external sources exceeds the work done
by man by a few times in all developed countries.

The average productivity of substitutive work for the U.S. economy can be ap-
proximated by the function

Y/P = 2.14 × 10−5 · e−0.0259t dollar(1996)/J. (2.39)

The best characteristics of labour and energy productivity are marginal productivi-
ties, which will be introduced and estimated in Chap. 7.

2.5.5 Stock of Knowledge and Supply of Substitutive Work

While the labour supply L̃ can be related to the population, which can be consid-
ered to be a pool from which the labour force emerges (see Sect. 2.4.2), the pro-
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ductive energy supply P̃ can be related to the stock of knowledge which is playing
a role of a reservoir (pool) from which applications of energy emerge. Indeed, one
ought to have available sources of energy and appliances, which allow the use of en-
ergy in production aims. Some devices ought to be invented, made and installed for
work. Human imagination provides methods of using energy in production tasks.
Therefore, the base for the energy supply lies in a deposit of knowledge which is
fallow, unless it is used in a routine production process. This deposit determines
the possibility of the society attracting the extra energy to production. The stock of
knowledge should be considered as a resource.

To describe the process of evolution of the energy supply, one can refer to the
simple three-sector model of the production system introduced in Sect. 2.1. Dis-
covering the principle of organisation and developing projects of technological pro-
cesses is the content of activity of the second sector. One can consider that this stock
of knowledge, that is, fundamental results of science, results of research, project
works and so on (stock of principles of organisation), are measured by their total
value R, which is governed by (2.28). Alternatively, the stock of knowledge can be
measured directly in terms of natural units, that is, by numbers of patents issued,
numbers of technical journals, numbers of books in print and so on. The knowledge
is embodied in organisations and cultures more than in individuals, although indi-
vidual skills are also part of this category. Can the value of stock of knowledge R

be a measure of the information contained in all this?
Then, the first sector materialises the projects. One can find plenty of brilliant

examples of ‘transformation’ of knowledge into useful work in the history of tech-
nology and one can try to formalise this process, considering the stock of knowledge
as a resource or as a reservoir (pool) from which applications of energy emerge. One
can assume, noting an analogy of (2.28) with (2.33), that an equation for energy sup-
ply P̃ , that is, the amount of energy which can be used in production processes as
substitutive work, can be written similarly to (2.34) in the form

dP̃

dt
= η̃(ε,R)P̃ . (2.40)

One can assume that the rate of potential growth of substitutive work η̃ depends
on the stock of knowledge R and on the price of introducing substitutive work into
production 1/ε (see Sect. 5.2, (5.16)). The price of transformation and materiali-
sation of deposited massages, that is, the price of attracting the energy, has been
appearing on the stage of materialisation of principles of organisation. The function
η̃ = η̃(ε,R) remains unknown; one can assume a simple dependence

η̃ = g(ε)R. (2.41)

However, in a situation of uncertainty, the growth rate of potential energy, or the
energy supply itself, ought to be given.

Though it is indisputable that knowledge makes energy available for humans, the
question remains of how to describe it in quantitative terms. Does function (2.41)
really exist and, if it exists, which is its asymptotic behaviour? One may think that
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the current attention to the stock of knowledge, as to the genuine source of economic
growth [31–33] (see also the textbook [34]) can help to solve the problem. However,
we do not know whether the available energy is limited or not. One can imagine and
consider two scenarios of development: the energy supply P̃ as a function of time
has or does not have a limit value. There is apparently no question of lack of energy.
It is a question of ways of utilisation of energy to get the desired effect. This question
is clearly connected with the other question: Can the stock of knowledge be limited?

2.6 Natural Processes in a Human-Designed Production System

The production system is embedded in the natural environment. In the beginning
of the production cycle, raw materials are extracted from the natural environment,
while at the end of the production cycle, the wastes and useless by-products are
thrown out into nature. The flow of substances starts and finishes in the natural
environment (see Fig. 1.2 on p. 7), thus one has to consider the interaction of the
production system with the environment.

Some industries (agriculture and forestry, for example) use natural processes to
provide the production of commodities. Some natural things are even used as pro-
duction equipment. Soil (land) is used to produce corn, cows are used to produce
milk and so on. The natural things are considered as production capital, and their
value is estimated in the same way as the value of all other capital products.

The sector theory of production, considered in Sect. 2.2, assumes that some nat-
ural processes are included in the production system. To consider the interaction be-
tween the environment and the production system in more detail, one has to admit
that some of the variables Xj represent amounts of natural products. It is convenient
to assume that, in consistency with the definitions of Sect. 2.2, Xj , j ≤ r is the gross
output of artificial products in money units and Nj , j > r is the gross output of nat-
ural products measured in natural units. The gross output Xj both of artificial and
natural products can be distributed (similar to (2.3)) as

Xi =
r∑

j=1

X
j
i +

n∑
j=r+1

X
j
i + Yi, i = 1,2, . . . , r, (2.42)

Ni =
r∑

j=1

N
j
i +

n∑
j=r+1

N
j
i + Yi

pi

, i = r + 1, r + 2, . . . , n, (2.43)

where X
j
i is an amount of artificial product labelled i used for the production of

product labelled j and, similarly, N
j
i is an amount of natural product labelled i

used for the production of product labelled j , while there is a residue Yi called final
output. We assume that the price pi and money measure might be introduced for
those of the natural products which are supported by human activity.

Now, one can write the second set of balance equations, which, as in (2.4), rep-
resent the balance of production of value in sectors of production of both artificial
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Table 2.2 Balance of artificial and natural products

Gross
output

X1 X2 · · · Xr Xr+1 Xr+2 · · · Xn Final
output

X1 MAN-CREATED
PROCESSES

Xr+1
1 Xr+2

1 · · · Xn
1 Y1

X2 Xr+1
2 Xr+2

2 · · · Xn
2 Y2

· · · · · · · · · · · · · · · · · ·
Xr Xr+1

r Xr+2
r · · · Xn

r Yr

Xr+1 X1
r+1 X2

r+1 · · · Xr
r+1 NATURAL

PROCESSES
Yr+1

Xr+2 X1
r+2 X2

r+2 · · · Xr
r+2 Yr+2

· · · · · · · · · · · · · · · · · ·
Xn X1

n X2
n · · · Xr

n Yn

Production
of value

Z1 Z2 · · · Zr 0 0 · · · 0 Y

and natural products

Xj =
r∑

l=1

X
j
l +

n∑
l=r+1

plN
j
l + Zj , j = 1,2, . . . , r, (2.44)

pjN
j =

r∑
l=1

X
j
l +

n∑
l=r+1

plN
j
l , j = r + 1, r + 2, . . . , n, (2.45)

where Zj is production of value in sector j , and we admit that there is no production
of value in the sectors of natural production.

It is convenient to define the amounts of value of gross product and intermediate
consumption for products of the natural processes

Xj = pjNj , X
j
l = plN

j
l

to include all considered quantities in the more detailed (in comparison with Ta-
ble 2.1) balance table (Table 2.2). However, the majority of natural products are
traditionally regarded as zero-price products and are not included in the balance
scheme.

To determine the production of value Z and components of the gross output Y in
this case, we sum (2.42) over index i from 1 to r and also (2.44) over index j from 1
to r . After comparing the results, one obtains

Z =
r∑

j=1

Yj +
n∑

j=r+1

(
r∑

l=1

X
j
l − pj

r∑
l=1

Nl
j

)
. (2.46)

The conventional characteristic of efficiency of the production system, the fi-
nal output Y = ∑n

j=1 Yj , is considered to be equal to the production of value
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Z = ∑n
j=1 Zj . Thus, the right-hand side of (2.46) can be considered as the sum

of components of the vector Y, which can be determined as

Yj =

⎧⎪⎪⎨
⎪⎪⎩

Yj , j = 1,2, . . . , r

r∑
l=1

X
j
l − pj

r∑
l=1

Nl
j , j = r + 1, r + 2, . . . , n

(2.47)

The quantity X
j
l , at l ≤ r , j > r is the amount of artificial product labelled l

supporting the production of natural product j , so that the sum
∑r

l=1 X
j
l is a total

amount of the artificial products supporting the production of the natural product j .
On the other hand, Nl

j , at j > r , l ≤ r is an amount of the natural product labelled

j needed for production of the artificial product l, so that the sum
∑r

l=1 Nl
j is the

total amount of natural product j used in production in all sectors. Therefore, one
can see that the components of final output (2.47), at j > r , are characteristics of
our interactions with nature. Values of the characteristics depend on prices of the
natural products, so that it is very important to use the right prices for estimation of
the interaction characteristics. Because nature does not have a representative agent
on the market, there is no market evaluation of the prices of natural products, and
one can choose the prices arbitrarily. It is natural to choose the right prices in such a
way that in the situation of balance all the components (2.47) at j > r vanish. This
requirement is followed by a definition of the balancing price of natural product j

as

pj =
∑r

l=1 X
j
l∑r

l=1 Nl
j

, j = r + 1, r + 2, . . . , n. (2.48)

At these prices, the interaction characteristics can be positive or negative: the former
case means that humans invest in the environment, whereas the latter case means
that there is a damage to the environment, or this can be interpreted as our debt to
nature.

However, whatever the prices of natural products, one always assumes that
Yj = 0 at j > r . The production of natural sectors is not usually accounted for
at all, so the national statistics can show a truncated produced value Y = ∑r

j=1 Yj

instead of the real amount Y = ∑n
j=1 Yj . The underestimation of prices of natural

products in comparison with the balancing price (2.48) result in a deficiency of gross
investment in nature. In both our century and in the previous ones, the production
system was contained in the environment, but in previous years the interaction with
the environment was not as large in scale as it is in our times, and it was mainly
local. Nowadays, ecological problems have appeared, which seem to stem from un-
derestimation of the prices of the natural products. A proper social mechanism of
regulation of our interaction with the environment does not exist at the moment; it
has to be invented and implemented in reality.
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Chapter 3
Monetary Side of Social Production

Abstract The input–output model of an economic production system assumes that
a specific motion takes place: natural substances transform into finished and semi-
finished things, the latter transform into other things and so on, until all this is finally
consumed, and the substances return into the environment as waste. Simultaneously
with the motion of products, one discovers the motion of money, which has to be
considered as a separate, special product. The money is circulating in the economy,
providing the exchange of products. To describe the phenomenon of money circula-
tion, in this chapter, we shall consider fluxes of money in a simplified system, con-
sisting of the government and many production firms, and where the sector, which
produces money, consists of a central bank and many commercial banks. A system
of dynamic equations is formulated to describe the money circulation in the produc-
tion system. The set of equations is investigated for both steady-state and unsteady
situations. The description of money circulation is impossible beyond the descrip-
tion of real production fluxes; therefore, an optimal quantity of money is apparently
defined by the social production, though the basic features of real production can be
described on their own.

3.1 Architecture of the Social Production System

The production system, which is needed to maintain the existence of the human
society, used to be described, due to the works of Leontief [1] (see also Chap. 2), as a
system of interacting sectors, each of them creating its own product. In the simplest
case, one can consider a system consisting of three sectors, as was described in
Sect. 2.1. The first sector creates basic production equipment (K , production funds),
the second one creates non-material intermediate products (S), consumed by the
other two sectors and stored in warehouses and depositories for future production
and non-production consumption, and the third sector creates products for direct
consumption by humans (C). We consider here the production system immersed in
the money system of the society, as shown schematically in Fig. 3.1.

The main organisers and managers of money circulation are a central bank and
commercial banks. The central bank issues the bank notes and coins—the primary
money. These bank notes and coins are distributed to the commercial banks, which
supply many customers with cash money. The central bank also provides the com-
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Fig. 3.1 The scheme of money fluxes. The central bank and the commercial banks create a money
medium for activity of the economic agents. The three sectors of the production system create all
products and originate the fluxes of money between the sectors, which are not shown here, and
to workers in the form of wages WK , WS , WC . The workers are buying products, and money is
returning to the producers. The government receives its part of produced value in the form of taxes
T = θKYK + θSYS + θCYC + θLW , which in different amounts are returning to the economic
agents. To each arrow representing a flux of money there corresponds an arrow of opposite direc-
tion, presenting fluxes of labour force and products. There is a bargain every time, when money is
exchanged for products and labour force

mercial banks with credits, so that the commercial banks can provide the customers
with credit money. The records on the accounts of customers are non-paper money,
which are created by the commercial banks. So, the central bank and commercial
banks introduce an uncertain arbitrary amount of the circulating money in coins,
bank notes and cashing deposits into the system consisting of the government and
many customers of the commercial banks.

Although the money system contains many commercial banks, each with many
customers, for simplicity, we consider all commercial banks together as the only
commercial bank; further, instead of many customers, we consider four groups of
customers. One can separate all accounts in the commercial banks into groups:
a group of producers of main production equipment (K), a group of producers of
non-material intermediate products (S), a group of producers of products for imme-
diate consumption (C) and a group of final consumers (L).

Economic subjects interact with each other using money as a tool for the pur-
chase of resources, both for consumption and for production. The major function
of the bank system resides in the redistribution of money, in particular, in direct-
ing money from investors to firms, which require finances for forthcoming projects.
One can assume an elementary diagram of monetary streams, in which only banks
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are accumulators of expenses and incomes. The system of monetary circulation is
described using the assumptions that the central bank has no aim to receive any
profit, and the commercial banks are limited to obtaining a reasonable modest per-
cent. Actually the situation is more complex: the commercial banks are aspiring to
increase in profit by increasing their own capital, due to a share issue, and are en-
gaging in speculative operations. All of this can lead to an essential discrepancy of
the monetary circulation with production needs, which reveals itself as a financial
crisis.

Due to its huge practical importance, the phenomenon of money circulation has
been studied thoroughly throughout the centuries [2]. In addition to some seminal
monographs [3–5], there is a huge amount of books and articles devoted to differ-
ent aspects of the problem. A paramount understanding of the problem provokes a
closed mathematical description of money circulation or a mathematical monetary
theory of production, which has been successfully developed [6, 7]. In this chapter,
following the method elucidated by Keen [7], a system of equations for the simplest
closed system, described above, will be formulated and investigated. The results of
the theory depend on the specific assumptions of the system architecture and the
preferences of the process participants. The derived parities are a schematisation of
the processes of monetary circulation.

3.2 Participants of the Money System

3.2.1 The Customers of the Commercial Banks

For expansion of production and consumption, the clients of commercial banks need
money; thus, at each given point in time, clients should determine whether a finan-
cial source of possible expenses should be money from their own accounts or a loan
from a commercial bank. The customers of commercial banks create a demand for
credit money, and they appear to be the basic movers of the progress of the economic
system.

3.2.1.1 The Producers

In accordance with the speculations in Chap. 2, one can assume that the output of
each sector is needed to maintain the production of, generally speaking, all other
sectors, so that the gross products XK , XS or XC are generally distributed among
three sectors, and the balance relation for the products can be written as

XK = XKK + XKS + XKC + I,

XS = XSK + XSS + XSC + G,

XC = C,

(3.1)
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where I , G and C are components of final products, which are planned for sale
beyond the intermediate production usage; I = IK + IS + IC is the value of the
investment products, distributed over the three sectors. For simplicity, it is assumed
that the product of the third sector in the amount C is completely consumed.

The product fluxes are accompanied by money fluxes, which are moving in the
opposite direction. Each production sector receives money from the sales of its prod-
uct from the government, workers and all production sectors, including payments
from its own sector,

MK→K + MS→K + MC→K + YK,

MK→S + MS→S + MC→S + YS,

YC.

(3.2)

The quantities YK , YS , YC can be considered to be components of the final output—
Gross Domestic Product (GDP).

Simultaneously, each production sector pays (symbolised by minus signs) wages
to labourers and money for the products of all the sectors,

−MK→K − MK→S − IK − WK − θKYK,

−MS→K − MS→S − IS − WS − θSYS,

−MC→K − MC→S − IC − WC − θCYC.

(3.3)

Here, we take into account that the producers have to pay taxes to the government
in the amounts θKYK , θSYS and θCYC .

Before writing the payment balance for the sectors, note that, though the re-
ceiving and payments of the money occur at one and the same time, due to the
time involved for production, marketing, transportation, investment, consumption
and so on, the symbols in (3.2) and (3.3) present payments for amounts of products
produced at different times. For simplicity, one can consider the symbols for inter-
mediate products within the sectors to have identical meaning, so that the payment
balance for every production sector can be written as

0 = YK + MS→K + MC→K − MK→S − IK − WK − θKYK,

0 = YS + MK→S + MC→S − MS→K − IS − WS − θSYS,

0 = YC − MC→K − MC→S − IC − WC − θCYC.

(3.4)

Regarding the interaction of the production units with banks, for simplicity we
assume that the commercial bank is the only source of financing of production activ-
ity, not considering the issuing of shares and bonds.1 Consequently, we consider that

1Production units distributing shares can receive money to cover expenses directly from con-
sumers. These primary securities are promissory notes on which emitters undertake to pay the
cost of the securities and a percentage on them through a certain time and in a certain way. Money
from securities is directed by the emitters to cover investment expenses, which after a while results
in an additional product.
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the financial state of the producers is defined by the amounts of deposits D and debts
B (with corresponding superscripts) in the commercial banks. These quantities are
connected with the balance equations

dDK

dt
= rKDK + YK + MS→K + MC→K − MK→S

− IK − WK − θKYK − qKBK + dBK

dt
,

dDS

dt
= rSDS + YS + MK→S + MC→S − MS→K

− IS − WS − θSYS − qSBS + dBS

dt
,

dDC

dt
= rCDC + YC − MC→K − MC→S − IC − WC

− θCYC − qCBC + dBC

dt
.

(3.5)

Here, we use the designations qK , qS , qC for the norms of payments to banks for
credit, and rK , rS , rC for the norms of payments of banks for customer deposits.
These quantities are established by the commercial banks to adjust the quantities of
deposits and debts.

To exclude the payments for intermediate products from discussion, we introduce
notation for the total amount of deposits and debts of the production customers in
the commercial banks

DP = DK + DS + DC, rP DP = rKDK + rSDS + rCDC,

BP = BK + BS + BC, qP BP = qKBK + qSBS + qCBC.

Summing up (3.5), we get

dDP

dt
= rP DP + Y − I − WP − θP Y − qP BP + dBP

dt
. (3.6)

The loans allow the producers to avoid a disruption between receiving and pay-
ment. They are needed to provide the expenditures I and WP , so one can consider
that the amount of the loan is connected with the amount of the expenditures.

3.2.1.2 The Consumers

The financial state of the consumers is defined by the amounts of deposits and debts,
DL and BL, in the commercial banks. In addition, they are holders of paper money
in the amount M0. The consumers use their money and possible loans to acquire
products, so the balance equations for the consumers can be written as

dDL

dt
= rLDL + W − C − θLW − qLBL + dBL

dt
− dM0

dt
, (3.7)
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where W = WK + WS + WC + WG is a flux of money to workers in the form of
wages, which are received from the production sectors (WK , WS , WC ) and the gov-
ernment (WG). The consumers pay money in the amount C to the third sector for
products for consumption, which were created some time ago, and to the govern-
ment in the form of taxes, θLW . In reality, the situation can be somewhat more
complex; part of the wages can be used to purchase shares of the enterprises, that
is, for investment in various sectors, which we do not consider here. The loan BL is
needed to provide the expenditures C. The banks establish norms of payments for
debts and deposits of clients qL and rL.

The right-hand sides of (3.6) and (3.7) contain payments to and by the commer-
cial banks. The banks establish the payments for debts and deposits of the customers
qP , qL and rP , rL. These quantities can be considered as functions of the amounts
of deposits and debts; they are determined by the commercial banks from the re-
quirement to get a profit from bank operations (see the next section). So, as there
is a payment for debts, customers try to reduce the quantity of debts as much as
possible and to keep some money on the depository accounts in commercial banks.

3.2.2 Commercial Bank as a Customer of the Central Bank
and a Producer of Credit Money

One can assume that the commercial bank has the only account with the central
bank DB , on which it holds all its reserve, including the amount of mandatory de-
posit of the commercial bank ξ(DP + DL), where ξ is a norm of the mandatory
reserve deposit set up by the central bank. The commercial banks have loans BB

from the central bank to produce credit money, which is needed to facilitate interac-
tion among the production sectors and consumers within the economic system.

The state of the commercial bank is determined by its actives: KKB , DB −
ξ(DP + DL), BP , BL and passives: BB , DP , DL, so that the income of the bank,
neglecting the income from the bank’s capital KKB , can be written as

rB
[
DB − ξ(DP + DL)

] − qBBB + qP BP + qLBL − rP DP − rLDL. (3.8)

The central bank fixes the payments for deposits and debts of the commercial bank,
rB and qB , and the commercial bank sets norms of payments for debts and deposits
of clients qP , qL and rP , rL. In any case, it is expected that the value of q with any
index will appear greater than the value of r with an appropriating index. Usually the
central bank does not pay for mandatory deposits of commercial banks and sets up
a high level of the refinancing rate qB . The norm of the mandatory reserve deposit
ξ and the refinancing rate qB are considered as main regulators of the amount of
non-paper money.

The primary activity of commercial banks is connected with crediting the clients.
To its disposal, the commercial bank gets the loan from the central bank in quantity
dBB

dt
which is used by the bank for crediting the clients. To provide loans, the bank
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uses the available quantity of money, including client deposits, and, at the same
time, excepting a quantity of a mandatory reserve in the central bank. The sum of
money provided on loan from the commercial bank, BP + BL, is connected with
the sum of money BB , provided on loan by the central bank. Indeed, according to
the well-known mechanism of multiplication (see, for example, [8, p. 240]), taking
an extra amount of credit �BB from the central bank, a commercial bank can lend
(1 − ξ)�BB to clients and other banks, whereas a part ξ�BB of the total amount
must be reserved in the central bank. The banks use the amount (1 − ξ)�BB for
further lending, leaving the part ξ(1 − ξ)�BB of the amount in the central bank as a
reserve. The process is continuing, so that the banks are creating money on customer
deposits in the total amount

�BB + (1 − ξ)�BB + (1 − ξ)2�BB + · · · = 1

ξ
�BB,

and one can write the relation

d(BP + BL)

dt
≤ 1

ξ

dBB

dt
. (3.9)

Considering the aspiration of commercial banks to expanding credits and some ra-
tionality of their behaviour, the inequality (3.9) can be recorded in the form of the
equality

d(BP + BL)

dt
= 1

ξ

dBB

dt
. (3.10)

When being credited, the clients increase the amounts of deposits (see (3.6)
and (3.7)) in the commercial bank: the bank creates credit money.

The amount of money in the commercial banks is understood as deposit DB

with the central bank. This quantity changes due to its income (3.8), increasing
or decreasing the amount of the changes of the debt to the central bank BB and
operations with the customers of commercial banks, so that the balance equation
can be written as

dDB

dt
= rB

[
DB − ξ(DP + DL)

] − qBBB + qP BP + qLBL

− rP DP − rLDL + dBB

dt
+ d(DP + DL)

dt
− d(BP + BL)

dt
. (3.11)

Using (3.6) and (3.7), (3.11) can be rewritten in the form

dDB

dt
= rB

(
DB − ξ(DP + DL)

) − qBBB

+ Y − I − C + WG − T − E0 + Ec, (3.12)

where symbols for emission of paper and credit money are introduced,

E0 = dM0

dt
, Ec = dBB

dt
. (3.13)



58 3 Monetary Side of Social Production

The mechanism of issuing assumes that all paper money is circulating among con-
sumers: practically no paper money is contained in commercial banks.

Equations (3.12) describe the main relationship of the commercial bank with the
central bank and clients.

The behaviour of the commercial bank is determined by its desire to maximise
profits (3.8), and the bank can choose the quantities qP , qL, rP , rL at every moment
of time. To increase profits, the commercial banks are motivated to produce more
credits BP and BL to their customers and to take as little credit BB from the central
bank as possible, but there are some restrictions on these amounts: only an increase
in BB allows an increase in BP and BL. There are apparently some other restrictive
relations on the amount of loans to the customers of the commercial bank BP +BL.
The available reserve has to be positive, so the amount of credits cannot be more
than the available resources,

BP + BL ≤ DB + (1 − ξ)(DP + DL) + KKB.

Within this restriction, the commercial banks can increase loans BP + BL to their
customers, creating credit money. A bank needs some amount of initial capital KKB

to start operations.

3.2.3 The Government as a Customer of the Central Bank and the
Central Bank as a Producer of Paper Money

The institution which is crucial in the organisation of money circulation in a society
is the central bank, which is a bank of the commercial banks and the bank of the
government. The activity of the central bank is closely connected with the activity
of the government and is based on the credit to the government and the central
bank’s assets. To organise the money circulation, the central bank issues money in
the form of paper notes (coins) and credits to commercial banks. The central bank
creates fiat money that sets up a scale of value.

3.2.3.1 The Balance of the Government

The government wants at its disposal enough money to finance national projects
and salary payments to civil servants. The main account of the government with
the central bank presents the governmental budget and reflects motion of money
to and from the government. The state of the government’s budget is defined by
the amounts of deposits DG and debts BG with the central bank. The motion of
money includes a flux of taxes (and other income) T into the budget, which are the
payments from the producers and consumers

T = θP Y + θLW, (3.14)
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where Y = YK + YS + YC is the GDP with contributions from the three production
sectors and W = WK +WS +WC +WG is the total amount of wages paid to workers.
The government supervises norms of the taxation θP and θL. As a rule, taxes should
provide expenses of the government G, which represents investments in various
national projects and wage payments to the civil servants WG. In the closed system
external loans are impossible and, consequently,

T ≥ G + WG.

The difference between the income and expenses

� = T − G − WG

is called a primary proficit, if � > 0, or a primary deficit, if � < 0, of the state
budget.

With the expansion of production, the income and expenses of the government
increase, and a possible budget deficit of the government in the closed system be-
comes covered due to the internal loan BG and (or) issues of paper money M0,
so that the amount of money at the government’s disposal DG obeys the balance
equation

dDG

dt
= rGDG + T − G − WG − qGBG + Eg + E0, (3.15)

where symbols for emission of paper money and bonds are used

E0 = dM0

dt
, Eg = dBG

dt
. (3.16)

The government can stimulate the production sectors by some money interven-
tions G. For simplicity, it is assumed further that all money is coming to the second
sector producing non-material products.

Note that, for a more detailed analysis, one has to take into account that, if the
government pays money at moment t , it receives taxes from the earlier activity. The
loan is needed to provide the governmental expenditures G and WG, so that one can
assume that the amount of the loan is connected with the amount of the expenditures.

3.2.3.2 The Central Bank

For a closed economy, the only source of loan for the government is the central
bank, the state of which is determined by its actives: KCB , BG, BB and passives:
DG, DB , M0. It is assumed that the central bank is set up to organise the circulation
of money in the system, not to receive profit, so that its payments for deposits and
the expenses for production of money have to be balanced by receiving payments
for loans. One can write the balance relation for the bank’s income as

qGBG + qBBB − rGDG − rB
[
DB − ξ(DP + DL)

] − χM0 = 0, (3.17)
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where qBBB is the payment of the commercial banks for the use of credits of the
central bank, and qB is a refinancing rate. The last term in (3.17) represents the
expenses needed to maintain the circulation of the paper money. The expenses for
production of a unit of money χ is a characteristic that is determined by the central
bank. The norms of payments for debts and deposits of the government, qG and
rG, in (3.15) and (3.17) are specified by agreement of the central bank with the
government. Due to its close relationship with the government, the central bank
does not intend to get any profit from the service to the government.

The central bank is set up to credit the government. In any case, the total amount
of the credit of the central bank to the government should be restricted by the relation

BG ≤ DG + DB − BB + M0,

where M0 is the total amount of paper money in circulation, and DB is the sum of
all deposits of the commercial banks with the central bank. The above requirement
actually does not restrict the credit to the government. To supply the government,
the central bank issues extra paper money, so that the total amount of paper money
in circulation can be written as

M0 ≥ BG − DG − DB + BB. (3.18)

The credit to the government opens the windows of the cash storehouses, and the
fluxes of paper money rush into the economy. The extra emission is connected with
the deficit of the government’s budget.

3.3 Money Circulation and Production

The assumptions about the composition and architecture of the closed system, con-
sisting of the government, the central bank, the commercial banks and many produc-
tion and consumption units, allow us to describe the situation. The economic sub-
jects are interacting with each other by means of fluxes of money. To create money,
the central bank issues coins and paper money in the amount of M0 and credits the
commercial banks in the amount of BB . The sum of the issued paper and non-paper
money M0 +BB is called the monetary base. The credit of the central bank BB to the
commercial banks provides an opportunity to credit the producers and consumers,
thus creating deposits DP + DL, which can be called non-paper money. The non-
paper money can be converted into paper money and, likewise, the paper money can
be converted into non-paper money, so that the characteristic quantity is the sum of
all deposits in commercial banks DP +DL and paper money M0. The total is called
the monetary mass, for which the conventional symbol M2 = M0 + DP + DL is
used. The process of introducing and circulating money is described by the equa-
tions formulated in Sect. 3.2, and our task now is to calculate the amounts of both
paper and non-paper money needed for the proper functioning of the production
system.
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3.3.1 The Description of Production

In the ‘basement’ of the economic activity, one can find apparently the real con-
sumption and production. John Maynard Keynes wrote in his Treatise on Money
that ‘[h]uman effort and human consumption are the ultimate matters from which
alone economic transactions are capable of deriving any significance; and all other
forms of expenditure only acquire importance from their having some relation-
ship, sooner or later, to the effort of producers or to the expenditure of consumers’
[9, pp. 120–121].

In the considered case the production-consumption processes are characterised
with the quantities: I , G, C, WP , WG, which are assumed to be given as functions
of time. An expression for the important characteristics of the system—the Gross
Domestic Product, Y —can be obtained when (3.6), (3.7) and (3.15) have been ag-
gregated,

Y = I + G + C + qP BP + qLBL + qGBG − rP DP

− rLDL − rGDG + d(DP + DL + DG)

dt
− d(BP + BL + BG)

dt
. (3.19)

This formula appears to be a generalisation of (2.13): the GDP Y is a sum of assess-
ments of investments I , output of non-material products G, direct consumption C

and services of the bank system. The quantity Y can be determined after calculating
the quantities of loans and deposits, according to the equations presented in the next
section.

3.3.2 Equations for Money Circulation

The basis of the system of evolutionary equations comprises the balance parities
discussed in Sect. 3.2. Equations (3.6), (3.7), (3.10), (3.12) and (3.15) connect the
state variable of five interacting economic subjects, each one of which possesses
certain financial actives and has its own tactics of behaviour. Below we rewrite these
equations in a convenient form for the analysis,

dDB

dt
= rB

(
DB − ξ(DP + DL)

) − qBBB

+ Y − I − C + WG − T − E0 + Ec,

dDP

dt
= rP DP + Y − I − WP − θP Y − qP BP + 1 − f

ξ
Ec,

dDL

dt
= rLDL + W − C − θLW − qLBL − E0 + f

ξ
Ec, (3.20)

dDG

dt
= rGDG + T − G − WG − qGBG + E0 + Eg,
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dBP

dt
= 1 − f

ξ
Ec,

dBL

dt
= f

ξ
Ec,

dBB

dt
= Ec,

dM0

dt
= E0,

dBG

dt
= Eg,

where f defines the consumers’ fraction in an increase in the amount of credit
money in the commercial banks. The amount of tax is connected with the income of
the enterprises and workers by (3.14), that is,

T = θP Y + θL(WP + WG).

The government fixes norms of taxes θP , θL, to provide the expenses G and WG.
The government and the central bank also determine the emission of paper and credit
money Ec, E0, Eg , which are considered as known functions of time. The central
bank establishes the norm of mandatory deduction ξ and the norms of payments
rB, qB for commercial banks. The commercial banks define norms of payments for
deposits and credits rP , rL, qP , qL for the clients. Certainly, a necessary condition
is non-negative profits of the commercial banks (3.8).

Within the determined restrictions, the commercial bank chooses the debt to the
central bank, and the clients of commercial banks choose amounts of the deposits
and loans. Each client of a commercial bank can choose a parity between debts and
deposits, and the government can take money on debt (to accept obligations) or let
out paper money at its sole discretion.

The set of equations (3.20) describes the behaviour of the money system as deter-
mined with seven variables: DP , DL, DB , DG, BB , BG, M0. A difficulty is that the
quantities, set by the government, the central bank and commercial banks, are not
constant but depend on the situation and modes of behaviour of economic agents.
Apparently, various models of behaviour of the agents are possible, and it is neces-
sary to analyse an actual situation to record the appropriate equation. Though, one
can add a condition (3.17) of non-profitness of the central bank to the system of
equations, some variables remain free, and the system of balance equations should
be somehow completed.

3.3.3 The Steady-State Situation

In the general case, a trajectory of development of the system is determined by
evolutionary equations (3.20), which should be completed with some preferences
of the economic agents, but the simplest steady-state situation is determined by the
balance equations only, and one does not need any additional assumptions. In a
steady-state case, one has to consider all characteristics of the system, as well as
variables, to be constant. Economists call a steady-state situation an equilibrium
one, but, from the thermodynamic point of view, the system is not in equilibrium,
but in a stationary, non-equilibrium state.
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3.3.3.1 The Steady-State Conditions

The steady-state situation means that all rates of growth of the variables are equal
to zero, providing that the system (3.20) reduces to the equations

0 = rB(DB − ξ(DP + DL)) − qBBB + qP BP + qLBL − rP DP − rLDL,

0 = rP DP + Y − I − WP − θP Y − qP BP ,

0 = rLDL + W − C − θLW − qLBL,

0 = rGDG + T − G − WG − qGBG.

(3.21)

The GDP, Y , defined by (3.19), and other characteristics of production are con-
sidered constant. The equations includes streams of taxes T from production and
consumption (with indexes P and L) and a total sum of wages received by workers,

T = θP Y + θLW, W = WP + WG. (3.22)

These quantities and other parameters of the system are also considered constant.
In a stationary case, from (3.10) it follows that the money borrowed by commer-

cial banks from the central bank BB should be defined as

BB = ξ(BP + BL) + const. (3.23)

The system of equations (3.21)–(3.23) does not define a unique point; the number of
variables DP , DL, BP , BL, DB , BB , DG, BG appears to be greater than the number
of equations.

With the use of (3.6) and (3.7), one can reformulate (3.21) to record the system
in the following way:

DB = ξ(DP + DL) + qB

rB

(
BB − B0

B

)
,

B0
B = 1

qB

(Y − I − T + WG − C),

DP = qP

rP

(
BP − B0

P

)
, B0

P = 1

qP

(Y − I − WP − θP Y ),

DL = qL

rL

(
BL − B0

L

)
, B0

L = 1

qL

(W − C − θLW),

DG = qG

rG

(
BG − B0

G

)
, B0

G = 1

qG

(T − G − WG).

(3.24)

These equations determine the quantities of deposits DP , DL, DG and DB in steady
state as functions of loans BP , BL, BG and BB . The quantities of deposits should be
considered non-negative, so that (3.24) determine the quantities of loans which are
necessary for the commercial bank to start to function. The quantities of loans with
zero indexes B0

P , B0
L, B0

G and B0
B can be interpreted, accordingly, as the minimum
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quantities of the capital of the commercial bank and the loan from the central bank
which allow the bank system to start operations.

The recorded equations allow us to define the constant in (3.23), which now can
be expressed in the form

BB − B0
B = ξ

(
BP − B0

P + BL − B0
L

)
. (3.25)

3.3.3.2 The Quantity of Circulating Money

This simple schematisation of real production-consumption processes allows one to
estimate the amount of paper and non-paper money needed for a stationary function-
ing of the production system. The quantity of paper money, M0, circulating in the
system can be found from the condition of non-profitness (3.17), which, undoubt-
edly, should be valid for the central bank in a steady-state situation. This condition
leads to the assessment of the quantity of paper money

M0 = 1

χ

{
T − G − WG + qBBB − rB

[
DB − ξ(DP + DL)

]}
. (3.26)

By using (3.21), one finds other forms of the expression for paper money,

M0 = 1

χ
(Y − I − G − C)

= 1

χ
(qP BP + qLBL − rP DP − rLDL + qGBG − rGDG). (3.27)

These equations show that the quantity of paper money is determined by the func-
tioning of the production system and is connected with the activity of the bank
system: a part of the output is presented in monetary form. The recorded equations,
in fact, do not determine an absolute quantity of paper money, but present a relation
between quantity of circulating money and value of production output and show that
this relation depends on the overall performance of the bank system.

The obtained relations allow one to record expressions for monetary base M0 +
BB , as the sums of (3.25) and (3.26), and for money mass M0 + DP + DL, as the
sums of expressions (3.24) and (3.26). These quantities are determined, naturally, by
the activity of the entire system of consumption-production, not only by the activity
of the bank system. The expressions for both monetary base and money mass can
be expressed through arbitrary amounts of the loan BB to a commercial bank from
the central bank. We recall that all relations are valid for steady-state situations, or,
as the economists say, for situations of equilibrium.

3.3.3.3 Efficiency of Social Production

It is convenient to introduce the characteristic of efficiency of the organisation of
social production, considering the ratio of the assessment of services of the bank
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system to the actual output of the production system I + G + C. The expression for
the GDP (3.19) can be rewritten in the form

Y = (1 + χθ)(I + G + C). (3.28)

The greater the quantity χθ , the more expenses for the maintenance of monetary
circulation one has, and the less effective is the social production.

Equations (3.27) and (3.28) allow one to present an expression for the quantity
of paper money in the form

M0 = θ(I + G + C), (3.29)

where the parameter of efficiency of the social production looks like

θ = 1/χ

I + G + C
(qP BP + qLBL − rP DP − rLDL + qGBG − rGDG). (3.30)

3.3.4 Unsteady Situations

The estimation of the quantity of money for unsteady situations of the system can
be executed on the basis of the system of equations (3.20). We have to note that,
considering non-stationary situations, it would be more correct to keep inequality
(3.9) in the system of equations, but one can keep the equality sign, assuming that
the parameter ξ in (3.10) is some effective quantity, which is not identical with its
value installed by the central bank.

3.3.4.1 The Program for Production Development

In the basement of any program of economic development, one can apparently find
the program of consumption and production. It is natural to believe that, by studying
the actual situation, the producers, the government and the consumers can formu-
late their programs of expenditure, which can be described by means of the time-
dependent rates of growth as

dI

dt
= σI I,

dG

dt
= σGG,

dC

dt
= σCC,

dWP

dt
= ψP WP ,

dWG

dt
= ψGWG.

(3.31)

Values of the growth rates σI , σG, σC , ψW , ψG are, generally speaking, functions
of time which are defined or appointed by operating agents.
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The mean values of the growth rates

σ = 1

I + G + C
(σI I + σGG + σCC),

ψ = 1

WP + WG

(ψP WP + ψGWG)

(3.32)

can be used accordingly as some characteristic values of the growth rates of the
production fluxes of money and wage payments to the workers.

3.3.4.2 Balanced Growth

To estimate the quantity of money in the developing system at given constant rates
of growth, it is necessary to address the system of equations (3.20). For harmonious
progress, the plan of issue of paper and credit money Ec, E0, Eg should conform to
the production situation, and the government and the central bank proceed to release
emission after the assessment of the situation. Normally, the emission should be
connected with the growth rate of production σ which, in this case, is equal to the
growth rate of wages σ = ψ , so that one has

E0 = σM0, Ec = ξσBB, Eg = 0. (3.33)

It is possible to assume that the plan of emission (3.33) provides the ‘correct’
balanced growth of paper and credit money, so that relation (3.29), that is, relation

M0 = θ(I + G + C) (3.34)

with constant coefficient of proportionality θ remains valid. The factor of propor-
tionality θ appears to be greater, the less effective the production-distribution system
is. This results in a greater share of the bank sector in a total national product.

3.3.4.3 Unbalanced Growth

When estimating the rates of real growth, humans can make involuntary mistakes,
and the correspondence of monetary streams to the streams of products can be dis-
turbed. In fact, neither the central bank nor commercial banks can directly adjust the
quantity of both paper and non-paper money, and the purchasing capacity of the unit
of money (rouble, dollar, euro and so on) can change in due course, as is observed
in reality. Besides, the banks, as active participants of economic processes, have a
temptation to receive additional profit from their activity, which tends to increase
the factor of proportionality in the ratio (3.34).

Generally, conditions for balanced growth are not fulfilled. One can consider the
simplest case, when the growth rate of production σ does not coincide with the rate
of growth of wages ψ . The emission of paper money is more likely connected with



3.4 About the Unit of Measurement of Value 67

the rate of growth of wages ψ , so that expressions for the emission should be written
as

E0 = ψM0, Ec = ξσBB, Eg = 0. (3.35)

In the general case, it is possible to retain the form of (3.34), which can be con-
veniently written as

M0 = θρ(I + G + C), (3.36)

where the bottom line means that the value of the output is measured in mone-
tary units of constant purchasing capacity. The quantity θ , as a characteristic of the
system, is considered to be constant, and the dependence of the factor of propor-
tionality on time is attributed to the price index ρ, which reflects all variations of
the monetary unit. Moreover, the money is distributed over the production sectors in
a non-uniform manner: some sectors have more money than necessary for normal
functioning, others have less, so that one needs to introduce many price indexes.
However, for simplicity, one can consider only one price index.

The relation (3.36) is usually discussed as a relation of the quantity theory of
money,2 in which the coefficient θ has been interpreted as the mean time from pro-
duction to consumption of final product. This quantity is a characteristic of the sys-
tem and does not depend on the amount of the circulating money M (at large M).
The reverse quantity to θ is interpreted as a velocity of money circulation.

3.4 About the Unit of Measurement of Value

The fluxes of products are estimated by means of some arbitrary monetary unit,
the value of which is defined in terms of quantities of products that can be bought
with this unit. This quantity can be established by parity (3.36), where the quantity
of paper money M0 introduced into the system is compared with production out-
put I + G + C, measured by some ‘physical’ measure, that is the quantity of some
product. It is known (see Sect. 2.2.2) that, in the practice of assessing of the fluxes of
products, the monetary unit of constant purchasing capacity is used. The assessment
of current fluxes of products with the monetary unit of constant purchasing capacity
excludes any price index and favours balanced development.

Throughout the centuries the role of ‘monetary unit’ was played by various prod-
ucts, but gold eventually achieved a special advantage, and the monetary unit before
the first world war almost everywhere was defined as a quantity of gold (the gold
standard). The ‘gold’ monetary unit is not a constant measure of value, but can be
a proxy of the unit of constant purchasing capacity. To be a proper unit of constant

2The relation of the quantity theory of money is also known as Fisher’s relation [3], though, ac-
cording to Harrod [10, p. 26] this law was classically exposed in the report of the British Bullion
Committee in 1810. Moreover, Harrod notes: ‘Of course, the Bullion Committee did not invent the
quantity theory. Traces of it may be found in writers dating back for centuries before that.’
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purchasing capacity, the changes in the effort involved in producing a unit of gold
have to correspond to the changes in effort for production of any other product.
Apparently, this condition cannot be fulfilled in practice.

The use of gold as a money unit leads to some difficulties for the government
and the central bank, which has caused a movement for imputation of the idea of the
gold standard. Thus it appears that modern monetary units do not adhere absolutely
to any ‘physical content.’ The price of gold grows in the conventional monetary
units, which testifies that the purchasing capacity of these units falls. The modern
and continuously changing money units, which are not connected with any ‘phys-
ical content,’ create severe difficulties, for both the functioning and the analysis of
economic systems. Although the ‘gold’ monetary unit is not an ideal measure of
purchasing capacity, it is better than any monetary unit not connected with ‘a phys-
ical content.’ Apparently, projects with a return to the gold standard will appear,
though these projects would have many powerful opponents from those who receive
income from a manipulation of monetary units.3

There is a question of whether some true scale of value similar to the kilogramme
or meter for mass and length can be introduced. Is it possible to find an objective
basis for the establishment of a monetary unit? The crisis situations of the past years
have shown that the problem is worth thinking about. We shall return to this question
in Chap. 10.
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Chapter 4
Many-Sector Model of Production System

Abstract In this chapter, the input–output model, already discussed in Chap. 2,
is considered in a linear approximation. This allows us to formulate the static and
dynamic equations for the vector of gross output. The model determines the growth
rate, which, in the considered case, when only internal restrictions for development
are taken into account, is the rate of potential growth. The restrictions imposed by
labour and energy will be introduced in the following chapters, and we will return
to the many-sector dynamic equations in Chap. 8.

4.1 Linear Approximation

A method of production first determines what one needs to create this or that thing,
determining the material side of the production process. Exploiting, due to Leontief
[1–3] and Sraffa [4], the many-sector model of the production system of an econ-
omy, one describes the transfer of products from one sector to another, which is
reflected in the balance equations (2.3) and (2.4), that is,

Xi =
n∑

j=1

X
j
i + Yi, Xi =

n∑
j=1

Xi
j + Zi. (4.1)

These equations contain the gross and final sector outputs Xj and Yj , intermediate
production consumption Xi

j and the sector production of value Zi . The equations
do not allow one to determine the output of the production system of the economy
without extra information. A fortunate idea was to reduce the number of variables,
by introducing quantities which are characteristics of the production system itself.
We shall discuss the simplest case of linear approximation, which was proposed
and investigated by Leontief [1, 2]. We will consider some assumptions to connect
the intermediate production consumption Xi

j and fixed production capital Ki
j with

the gross sector output Xj . This allows one to introduce fundamental technological
characteristics of technology: technological matrices (4.5) and (4.13).
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4.1.1 The Input–Output Matrix

Apparently, the greater the gross output of a sector, the more intermediate prod-
ucts are needed for production. This observation allows one to reduce intermediate
production consumption Xi

j to gross output Xi by introducing characteristics of
technology, which can be done in various ways. In the original description [1, 2], it
is assumed that the intermediate production consumption Xi

j is proportional to the
gross sector output,

Xi
j = ai

jXi (4.2)

with coefficients of proportionality ai
j reflecting the exploited technology and com-

prising a matrix. Otherwise, one can assume that a technological matrix can be
introduced as the ratio of the velocities of the quantities

dXi
j

dt
= ãi

j

dXi

dt
. (4.3)

The last relation defines a matrix of intermediate consumption coefficients, which
are characteristics of technology introduced in a given moment of time, while (4.2)
introduces a matrix of intermediate consumption coefficients, which are average
characteristics of all existing technology. It is easy to see that the matrices intro-
duced by the different methods are connected with each other

ãi
j = ai

j + 1

δi

dai
j

dt
, (4.4)

where δi = 1
Xi

dXi

dt
is the growth rate of the gross output. Of course, in the case

where the technology does not depend on time, components of matrices introduced
in alternative ways coincide. The difference can be negligible if the technology
changes slowly.

We shall follow Leontief [1, 2], who has chosen relation (4.2) to introduce the
matrix of intermediate consumption coefficients, or input–output matrix, which in
complete form can be written as

A =

∥∥∥∥∥∥∥∥∥∥∥

a1
1 a2

1 . . . an
1

a1
2 a2

2 . . . an
2

. . . . . . . . . . . .

a1
n a2

n . . . an
n

∥∥∥∥∥∥∥∥∥∥∥
. (4.5)

Matrix A is a phenomenological characteristic of the technological organisation ex-
isting in the production system at the moment. It changes if the technology organi-
sation changes during the time. The components of matrix ai

j represent a mixture of

all technologies, old and new. In contrast, the components of the matrix ãi
j represent

characteristics of newly introduced technology.
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4.1.2 Static Leontief Equation

One can use (4.2) to rewrite the balance relations (4.1) in the form

Xj =
n∑

i=1

ai
jXi + Yj , (4.6)

Xi = aiXi + Zi, ai =
n∑

l=1

ai
l . (4.7)

The first of these equations is known as the Leontief equation. Equations (4.6) and
(4.7) connect three vectors: the gross output Xj , the final output Yj and the sector
production of value Zi , so that only one of them can be considered to be indepen-
dent. All the variables Xj , Yj and Zj in (4.6) and (4.7) are referred to the same
moment of time.

The first equation in (4.7) allows one to specify the properties of matrix A.
A requirement of productivity is that the sector production of value has to be non-
negative,

Zi ≥ 0,

and taking into account (4.7), this is followed by the property

n∑
l=1

ai
l < 1, i = 1,2, . . . , n.

It is also natural to suppose that all components of matrix A are non-negative, so
that one has for each component of matrix A

0 ≤ ai
j < 1, i, j = 1,2, . . . , n. (4.8)

4.1.3 The Planning of Gross Output

To create a final product Yj , one needs the products of, generally speaking, all sec-
tors, so one has to consider production of the gross output in all sectors. Equa-
tion (4.6), which is known as the static Leontief equation, allows one to plan the
gross output Xj which is needed to get the final output Yj at a given technology. It
is convenient to rewrite (4.6) in vector form,

X = AX + Y. (4.9)

The formal solution of this equation

X = (E − A)−1 Y, (4.10)
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where E is the unity matrix, can be represented as

X =
(

E +
∞∑

k=1

Ak

)
Y. (4.11)

From property (4.8) of matrix A,

Ak → 0,

so that the series in (4.11) converges. The non-negativity of components of the ma-
trix ensures non-negativity of the gross output, when the final output is non-negative.
It can be tested directly that expression (4.11) satisfies (4.9). Indeed,

Y = (E − A)

(
E +

∞∑
k=1

Ak

)
Y

=
(

E +
∞∑

k=1

Ak − A −
∞∑

k=1

Ak+1

)
Y

=
(

E +
∞∑

k=1

Ak −
∞∑
i=1

Ai

)
Y = Y.

Note that in representation (4.11), matrix A is called the matrix of direct input,
matrix A2 is called the matrix of indirect input of the first order, and so on. The
matrix (E − A)−1 is called the matrix of total input.

4.1.4 The Capital-Output Matrix

To produce something, one also needs production equipment (production capital
stock); the greater the amount, the more the scale of production. In linear approxi-
mation, the fixed production capital (value of basic production equipment) of type
j in sector i is proportional to the gross sector output

Ki
j = bi

jXi. (4.12)

The coefficient of proportionality bi
j represents a mixture of all technologies, old

and new, if the technologies are changing during that time.1

1Instead of matrix B, one can use matrix B̃ which characterises currently introduced technology.
The relations between components of matrices B and B̃ are the same as those between components
of matrices A and Ã in (4.4).
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The relation (4.12) defines the matrix of fixed capital coefficients (capital-output
matrix)

B =

∥∥∥∥∥∥∥∥∥∥∥

b1
1 b2

1 . . . bn
1

b1
2 b2

2 . . . bn
2

. . . . . . . . . . . .

b1
n b2

n . . . bn
n

∥∥∥∥∥∥∥∥∥∥∥
. (4.13)

In line with the input–output matrix A, matrix B is also a characteristic of the tech-
nology used in the production system.

It is easy to get a relation between the amount of production equipment of a
certain kind Kj and sector capital Ki . Indeed, from the definitions of the quantities
in Sect. 2.3.2 and relation (4.12), one finds that the quantities are connected with
each other by means of components of the capital-output matrix

Kj =
n∑

i=1

b̄i
jK

i. (4.14)

Here a non-dimensional matrix of capital coefficients is introduced,

b̄i
j = (

bi
)−1

bi
j , bi =

n∑
l=1

bi
l . (4.15)

By definition, components of this matrix are connected by the relations

n∑
j=1

b̄i
j = 1, i = 1,2, . . . , n.

It is also possible to get a relation between the investment of product j in all
sectors Ij and total investment I i in sector i. To obtain such a relation, one can refer
to the equations for the dynamics of the total amount of equipment Kj and for the
dynamics of fixed sectoral capital Ki from Sect. 2.3.2, that is, to the equations

dKj

dt
= Ij − μKj , j = 1,2, . . . , n,

dKi

dt
= I i − μKi, i = 1,2, . . . , n.

(4.16)
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To get a relation between the investment of product j in all sectors Ij and total
investment I i in sector i, one can use relation (4.14) and rewrite (4.16) in the form

n∑
i=1

b̄i
j

dKi

dt
+

n∑
i=1

Ki
db̄i

j

dt
= Ij − μ

n∑
i=1

b̄i
jK

i, j = 1,2, . . . , n,

dKi

dt
= I i − μKi, i = 1,2, . . . , n.

(4.17)

Then, we can exclude the derivatives of sector capital from relations (4.17) to obtain

Ij =
n∑

i=1

b̄i
j I

i +
n∑

i=1

Ki
db̄i

j

dt
. (4.18)

The approximations made earlier are connected with representations of depreciated
capital, so we ought to consider relations (4.18) to be valid within the first terms
with respect to the growth rates.

4.2 Effects of Prices

Relations (4.6) and (4.7) are written with the implicit assumption that prices of
products are given and constant. To obtain a law of transformation of matrix A when
the prices are changing, we assume that there is a reference state with a set of the
fixed prices, which are considered to be all equal to unity, and an arbitrary state with
a given set of prices, so that components of the output in the reference (with sign ˆ )
and the arbitrary states are connected by relations

Xi = piX̂i, Yi = piŶi , i = 1,2, . . . , n, (4.19)

where pi is the price index in the arbitrary state. One can assume that the basic
balance equations are valid at any system of prices.

4.2.1 The Condition of Consistency

Equation (4.6) can then be rewritten in the form

X̂j =
n∑

i=1

ai
j

pi

pj

X̂i + Ŷj .

The balance equation should have the same form for any system of prices, so a
new input–output matrix must be introduced,

âi
j = ai

j

pi

pj

, ai
j = âi

j

pj

pi

. (4.20)
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Certainly, the description also must be covariant, if one chose another way of de-
scription using the matrix (4.4). In this case, in line with (4.6), one has the equation

dXj

dt
=

n∑
i=1

ãi
j

dXi

dt
+ dYj

dt
, (4.21)

which can be rewritten with the help of (4.19) in the form

pj

dX̂j

dt
+ X̂j

dpj

dt
=

n∑
i=1

ãi
j

(
pi

dX̂i

dt
+ X̂i

dpi

dt

)
+ pj

dYj

dt
+ Ŷj

dpj

dt
.

So as balance equations have the same form for any system of prices, one should
write two separate relations: a balance equation and an equation for prices,

dX̂j

dt
=

n∑
i=1

ˆ̃ai
j

dX̂i

dt
+ dŶj

dt
,

X̂j

d lnpj

dt
=

n∑
i=1

ˆ̃ai
j X̂i

d lnpi

dt
+ Ŷj

d lnpj

dt
,

(4.22)

where, similar to relations (4.20), one has

ˆ̃ai
j = ãi

j

pi

pj

, ãi
j = ˆ̃ai

j

pj

pi

.

Relation (4.22) can be considered as a set of equations for quantities

d lnpi

dt
, i = 1,2, . . . , n

which can have a non-trivial solution if the following condition is fulfilled:

∣∣(δi
j − ãi

j

)
Xi − Yj δ

i
j

∣∣ = 0. (4.23)

If ãi
j does not depend on time, relation (4.23) is always valid; otherwise, condition

(4.23) presents an equation for the growth rates of components ãi
j .

One can see that the prices of products cannot be quite arbitrary quantities.
A non-trivial solution of set (4.22) determines a relation between prices of differ-
ent products. However, the prices are appointed independently, and it is possible
to imagine a situation in which the prices are chosen in such a way that (4.22) is
not satisfied. This means an infringement of the value balance of products, which
cannot last long.

Note that it is convenient to rewrite relations (4.19) in vector form,

X = PX̂, X̂ = P−1X, Y = PŶ, Ŷ = P−1Y, (4.24)
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where the transformation matrices are introduced,

P =

∥∥∥∥∥∥∥∥∥∥∥

p1 0 . . . 0

0 p2 . . . 0

. . . . . . . . . . . .

0 0 . . . pn

∥∥∥∥∥∥∥∥∥∥∥
, P−1 =

∥∥∥∥∥∥∥∥∥∥∥

p−1
1 0 . . . 0

0 p−1
2 . . . 0

. . . . . . . . . . . .

0 0 . . . p−1
n

∥∥∥∥∥∥∥∥∥∥∥
. (4.25)

Then, the rules (4.20) for transformation of the technological matrix can be writ-
ten as

A = PÂP−1, Â = P−1AP. (4.26)

It is easy to see that analogous relations are valid for the matrix of capital coeffi-
cients,

B = PB̂P−1, B̂ = P−1BP.

One calls matrices Â and A, and also matrices B̂ and B, similar matrices [5]. To
separate changes of matrices that are connected with technology changes from the
changes influenced by price changes, one has to consider some invariant combina-
tions of components of the matrices. It is known that similar matrices have the same
eigenvalues that, thus, do not depend on the prices.

4.2.2 Dynamics of Sectoral Production of Value

In line with relation (4.7), an equation for the derivatives of the quantities can be
written

dZi

dt
= (

1 − ãi
)dXi

dt
. (4.27)

This relation, taking the formulae (4.19) into account, can be rewritten in the form

dZi

dt
= (

1 − ãi
)(

pi

dX̂i

dt
+ X̂i

dpi

dt

)
. (4.28)

The growth rate of the sector production of value in a new set of prices is broken
into two parts: a rate connected with a change of gross output in ‘natural’ units and
a rate connected with a change of the price.

One can consider the sector as an economic agent that plans its activity and can
make decisions about the amount of gross output. The aim of the sector is to obtain
a bigger amount of production of value Zj . One can assume that increase of output
is stimulated by increase of production of value in the sector. In the simplest case,

dX̂i

dt
= ki

dZi

dt
, (4.29)
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where ki (i = 1,2, . . . , n) are sensibility coefficients. The coefficient ki shows how
sector i reacts with an increase of production of value. We consider ki to be non-
negative and limited due to the possibilities of production

ki <
1

(1 − ãi )pi

. (4.30)

Relations (4.28) and (4.29) determine the rate of sector production of value,

dZi

dt
= (1 − ãi )Xi

[1 − ki(1 − ãi )pi]pi

dpi

dt
. (4.31)

From this equation, using relations (4.21) and (4.27), one can obtain formulae
for the growth rates of the gross and final products of the sector,

dXi

dt
= Xi

[1 − ki(1 − ãi )pi]pi

dpi

dt
, i = 1,2, . . . , n, (4.32)

dYj

dt
=

n∑
i=1

(δi
j − ãi

j )Xi

[1 − ki(1 − ãi )pi]pi

dpi

dt
, j = 1,2, . . . , n. (4.33)

The last expression defines the partial derivatives of the function Yj =
Yj (p1,p2, . . . , pn), which is called the supply function, as

∂Yj

∂pi

= (δi
j − ãi

j )Xi

[1 − ki(1 − ãi )pi]pi

. (4.34)

One can see that the final output of a sector is an increasing function of the price of
its own product, and a decreasing function of the prices of all other products.

4.3 Dynamics of Output

The relations given in the previous sections allow one to write the equations for
gross and final outputs at given matrices A and B as functions of time. To get a
dynamic equation for gross output, we differentiate relation (4.12), obtaining

dKi
j

dt
= bi

j

dXi

dt
+ Xi

dbi
j

dt
, i, j = 1,2, . . . , n,

and refer to (2.22) for the dynamics of value of basic production equipment Ki
j of

type j in sector i, that is to the equation

dKi
j

dt
= I i

j − μKi
j , i, j = 1,2, . . . , n. (4.35)



80 4 Many-Sector Model of Production System

A comparison of the above equations determines a set of dynamic equations for
gross output Xi in the form

bi
j

dXi

dt
+ Xi

dbi
j

dt
= I i

j − μbi
jXi, i, j = 1,2, . . . , n. (4.36)

It is assumed that matrix B and gross investment I i
j are given as functions of time.

4.3.1 Dynamic Leontief Equation

The situation becomes simpler if one assumes that time dependence of the matrix B
can be neglected. In this case, one can rewrite (4.36) as

n∑
i=1

bi
j

dXi

dt
= Ij − μ

n∑
i=1

bi
jXi, j = 1,2, . . . , n. (4.37)

The gross investment of product j in all sectors Ij is determined, according to
relation (2.11), as

Ij = Yj − Cj − Gj, j = 1,2, . . . , n, (4.38)

where Cj is the total personal consumption of product j , and Gj is investment in
storage of intermediate products.

Because of the non-negativity of the quantities Cj and Gj , the investments Ij

are certain parts of the final output, so they can be conveniently written as

Ij = sjYj , 0 < sj < 1, j = 1,2, . . . , n, (4.39)

and, then, from (4.6), as

Ij = sj

n∑
i=1

(
δi
j − ai

j

)
Xi, 0 < sj < 1, j = 1,2, . . . , n. (4.40)

The quantity sj is introduced here as the ratio of investment products to final product
of sector j .

The last relation allows us to rewrite (4.37) in the following form:

n∑
i=1

bi
j

dXi

dt
= sj

n∑
i=1

(
δi
j − ai

j

)
Xi − μ

n∑
i=1

bi
jXi, j = 1,2, . . . , n. (4.41)

This is a dynamic equation for gross sectoral output in a form which was origi-
nally derived by Leontief [2]. The equation can be conveniently rewritten in vector
form:

B
dX

dt
= [

S(E − A) − μB
]
X, (4.42)

where S is a symbol for the diagonal matrix with values sj on the diagonal.
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4.3.2 Balanced Growth

Equation (4.41) is applicable to a real system, if changes of matrices A and B due to
technological changes can be neglected. In the considered case, when all parameters
in (4.41) are constant, the gross output can be found in the form

Xj(t) = Xj(0)eσ t , (4.43)

where Xj(0) satisfy the set of algebraic equations
[

S(E − A) − (μ + σ)B
]
X(0) = 0. (4.44)

The solution (4.43) presents a trajectory of the balanced (homothetic) growth, when
the growth rates of the gross output in all sectors are the same.

There are non-trivial solutions of (4.44) if the determinator of the system (4.44)
is equal to zero, that is,

∣∣S(E − A) − (μ + σ)B
∣∣ = 0. (4.45)

This is an equation for the growth rate σ . However, it is easy to see that, if there is a
sector in the production system which does not create products for investment, the
determinant (4.45) is identically equal to zero at any value of σ .

In any case, the growth rate of the output is restricted. Specially developed meth-
ods [6] are used (see, for example, [7]) to calculate the growth rate for the homo-
thetic trajectories. To apply these methods, one can consider (4.41) in moments of
time t = 0,1,2, . . . and assume

Xi = Xi(t),
dXi

dt
= Xi(t + 1) − Xi(t),

which implies

n∑
i=1

bi
jXi(t + 1) =

n∑
i=1

[
sj

(
δi
j − ai

j

) + (1 − μ)bi
j

]
Xi, j = 1,2, . . . , n.

This equations can be rewritten in the form of the inequality

αBX ≤ (
E − A − (1 − μ)B

)
X, (4.46)

if one can introduce the ratio of growth

α = min
i=1÷n

Xi(t + 1)

Xi(t)
.

This quantity depends on the vector X which can be chosen in such a way that α

would take the greatest value,

α̂ = max
x

α(X).
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This value of α determines the optional balance trajectory of the quickest growth,

Xi(t) = X̂i(0)α̂t = Xi(0)eσ̂ t . (4.47)

4.3.3 Potential Investment

One can avoid the restriction of the previous section and formulate dynamic equa-
tions for the general case, when components of technological matrices A and B are
assumed to be functions of time. By combining (4.6) and (4.12), the final output can
be defined as a linear function of the sectoral capital stock,

Yj =
n∑

i=1

ξ i
j Ki, ξ i

j = δi
j − ai

j

bi
, (4.48)

where a matrix of marginal productivities of sectoral capital with components ξ i
j is

introduced. Capital stock Ki is governed by the dynamic equation (2.26), that is, by
the equation

dKi

dt
= I i − μKi, (4.49)

where sectoral investments I i obey, according to formulae (4.18) and (4.39), a sys-
tem of algebraic equations

n∑
i=1

b̄i
j I

i = sjYj −
n∑

i=1

Ki
db̄i

j

dt
. (4.50)

Equations (4.50) do not determine the sectoral investment I i in a unique way: the
number of equations is less than the number of variables. For given values of pa-
rameters, (4.48)–(4.50) determine a set of dynamic trajectories of a many-sector
system. To separate a unique trajectory of evolution of the dynamic system, one has
to complete the system of (4.50) or use an extra condition.

One can say about any extra condition which one needs to determine a trajectory
of evolution as about principle of development. It is convenient to require some
criterion to be optimal. For example, the criterion can be connected with the growth
rates of the final output,

dYj

dt
=

n∑
i=1

ξ i
j

dKi

dt
+

n∑
i=1

Ki
dξ i

j

dt
. (4.51)

It is enough to consider the rate of the total of the final products and to require it to
have a maximum value at the given technology, that is,

max
dY

dt
= max

n∑
i=1

ξ i
(
I i − μKi

)
, ξ i =

n∑
j=1

ξ i
j , (4.52)
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while relations (4.50) ought to be considered as restrictions that must be rewritten
in the form

n∑
i=1

b̄i
j I

i ≤ sjYj . (4.53)

In this way, investments are specified as a function of the parameters of the problem

Ĩ i = Ĩ i
(
ξ i, bi

j , sj , Yj

)
.

In the considered case, the principle of development means that the society manages
its resources in the best way.

When investments are known, dynamic equations (4.48), (4.49) determine a
unique trajectory: the trajectory of the largest potential growth. One can imagine
that the trajectory of evolution will be sought by numerical methods, while the max-
imisation problem (4.52), (4.53) has to be solved by standard methods of linear
programming in every step of the solution of the Cauchy problem.

Instead of the described procedure for calculating the investment, other proce-
dures can be invented, but in any case, it is assumed here that the final consumption
and the storage of intermediate products are given; in this way the potential in-
vestments Ĩ i can be determined. It was assumed that there is no restriction due to
material resources and no other restrictions. The availability of labour and energy
impose some strong restrictions on the development of the production system and
should be included in the theory. Real investments appear to be no more than the
potential investments Ĩ i determined from the described procedure. The final con-
sumption and the storage of intermediate products appear to be consequences of the
system evolution. We shall discuss this question in the following chapters and return
to the many-sector model in Chap. 8.

In the simplest way, the potential investment can be specified as an investment
of homothetic trajectory. In this case, the growth rate of all sectors are equal to the
growth rate of the entire system, and, from the expressions for the real investment,
which for the entire system, due to (4.39) and (4.48), can be written as

I =
n∑

i,j=1

sj ξ i
j Ki, ξ i

j = δi
j − ai

j

bi
,

the potential investment can be determined. This allows one to define the potential
growth rate of the gross output in any sector l as

δ̃l = −μ + 1

K

n∑
i,j=1

sj ξ i
j Ki, l = 1,2, . . . , n. (4.54)

4.4 Enterprise and Basic Technological Processes

From a microeconomic point of view, a production system consists of numerous
enterprises, each of them including one or more basic technological processes. The
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Fig. 4.1 Input–output space.
All trajectories are situated
(similar to the trajectory A B)
inside sector restricted by
straight lines which represent
basic technological processes

latter can be considered as atoms of the production system. Methods to describe the
resources of an enterprise consisting of a finite or an infinite set of basic technolog-
ical processes were proposed by von Neumann [6] and Gale [8], respectively. We
shall consider a finite set of basic technological processes, namely, the von Neumann
model of enterprise.

Every enterprise produces one or several products, and it consumes some prod-
ucts. In other words, the enterprise transforms a set of the input products xj , xi, . . . ,
where the labels of products j, i, . . . are fixed, into an output set xl, xm, . . . , where
the labels of products l, m, . . . are also fixed. It is convenient to introduce the input
and output vectors u and v with non-negative components uk and vk , k = 1,2, . . . , n.
Some of the components are equal to zero.

We assume that the components of the vectors are measured in units of value, so
the final output of the enterprise is

y =
n∑

j=1

(vj − uj ). (4.55)

This is a contribution of the enterprise to the gross national product.
A couple of vectors (u, v) characterise the technology used in production or, to

put it differently, the technological process is represented as a couple of vectors
(u, v). The technological process can be depicted as a point in Euclidean space of
dimension 2n (Fig. 4.1).

One can assume that there are basic technological processes, each of which can-
not be divided or changed, for example, a car assembly line, the characteristics of
which are constant. The only action the manager can perform is to switch the line on
and off. One can assume that the enterprise consists of a set of basic technological
processes, which can be used in different combinations, so that the technological
process of the enterprise can be represented as an expansion over the basic techno-



4.4 Enterprise and Basic Technological Processes 85

logical processes,

(u, v) =
r∑

j=1

(
aj ,hj

)
zj , (4.56)

where zj ≥ 0 is the intensity of the use of the basic technological process labelled j .
For given basic technological processes and an arbitrary vector z =

(z1, z2, . . . , zr ), relation (4.56) determines a set of possible technological processes
of the enterprise, that is, a technological set which is a specific characteristic of the
enterprise.

The aim of the enterprise and of its investigator is to find a value of z such that
the final output (4.55) takes the greatest value.

It is convenient to use the following representation for the components of the
input and output vectors:

ui =
r∑

j=1

a
j
i zj , vi =

r∑
j=1

h
j
i zj , (4.57)

where a
j
i and h

j
i are components of input and output matrices A and H, respectively.

One can say that the von Neumann model is given if matrices A and H are given.
Then, the final output of the enterprise can be written as

y(z) =
n∑

i=1

r∑
j=1

(
h

j
i − a

j
i

)
zj . (4.58)

One can introduce a potential output–input ratio

α(z) = min
j=1,2,...,n; vi �=0

vi

ui

(4.59)

which depends on the intensity z = (z1, z2, . . . , zr ).
Because the final output is non-negative, it follows from relation (4.58) that

Az ≤ Hz

or, using definition (4.59),

αAz ≤ Hz. (4.60)

To find the maximum value of output (4.55), we have to find the greatest rate of
growth α. One can see that this problem is quite similar mathematically to the prob-
lem considered in the previous section (compare (4.46) and (4.60)).

One can assume that intensity z is a function of time, so the von Neumann model
can describe dynamic processes or, in geometrical terms, the trajectory in input–
output space (Fig. 4.1). If the basic technological processes are unchanged during
time, vector z = constant and the production trajectory is a straight line in technolog-
ical space—the von Neumann ray. Otherwise, more complicated problems appear.
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Hundreds of papers have been written about the properties of von Neumann-type
growth models, the golden rules of capital accumulation, turnpike theorems and so
on. However, all this is concerned with potential trajectories of a production system.
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Chapter 5
Production Factors and Technology

Abstract The description of production processes in the previous chapter assumes
that something can be made from something else and that there are tools for making
things. Now we are going to look at the production process from the energy side,
including the effect of basic production equipment, as a set of sophisticated devices
allowing human beings to attract energy from natural sources to the production of
commodities. We are introducing two sets of quantities which, in the macroeco-
nomical approach, reflect the level of technology in the economy: (1) potential rates
of growth of production factors ν̃ and η̃ and (2) technological coefficients λ and ε,
which show how much labour and substitutive work are needed to introduce a unit
of investment in the production system. In this chapter, the first set of quantities
will be considered as exogenous factors, whereas the second set is connected with
internal characteristics of technology. Technological coefficients appear to be ap-
propriate and convenient characteristics of technology instilled in an economy and
can be easily estimated considering the performance of production equipment.

5.1 Dynamics of Production Factors

To describe the process of production in a proper way, one should take into ac-
count fixed production equipment (fixed production capital stock) and two factors:
manpower and the work of production equipment substituting for manpower. The
production system is considered as consisting of n sectors. Each of them is char-
acterised by the basic production equipment Ki and production factors Li and P i

which are needed to animate the basic production equipment of the sector. In this
chapter, it will be more convenient to proceed considering the production system
as consisting of only one sector, which is characterised by aggregate amounts of
production factors

K =
n∑

i=1

Ki, L =
n∑

i=1

Li, P =
n∑

i=1

P i. (5.1)
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5.1.1 Dynamics of Capital

To develop a proper description of a technological process, it is necessary to take
into account that equipment with different technological characteristics is intro-
duced into the production process at different moments in time. Therefore, the age
of existing production capital is different and, similar to formula (2.19), we can
write an expression for the structure of fixed production capital

K(t) =
∫ t

−∞
k(t, s) ds, (5.2)

where k(t, s) is the part of the fixed capital existing at time t which was introduced
at time s during a unit of time. This part of the capital stock is depreciating according
to the law

∂k(t, s)

∂t
= −μ(t, s)k(t, s) (5.3)

from the initial amount

k(s, s) = I (s). (5.4)

Equation (5.3) can be integrated with respect to s, which gives the expression

dK

dt
= I −

∫ t

−∞
μ(t, s)k(t, s) ds. (5.5)

One can introduce an effective coefficient of depreciation

μ(t) = 1

K

∫ t

−∞
μ(t, s)k(t, s) ds

to rewrite (5.5) in the conventional [1] form

dK

dt
= I − μK. (5.6)

One can see that a solution of this equation, if μ = const, can be written, in accor-
dance with (5.2), as

K(t) =
∫ t

−∞
k(t, s) ds, k(t, s) = e−μ(t−s)I (s). (5.7)

5.1.2 Dynamics of Substitutive Work and Labour

The existing technology determines how many workers’ efforts and how much extra
energy is needed in order for the production mechanism to be in action; therefore,
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the dynamic equations for labour and substitutive work must contain characteristics
of technology. Further, we reconsider the derivation developed in works [2, 3].

Similar to the presentation of capital, the amounts of production factors can be
represented by the formulae

L(t) =
∫ t

−∞
l(t, s) ds, P (t) =

∫ t

−∞
e(t, s) ds, (5.8)

where l(t, s) and e(t, s) are the labour and substitutive work which are necessary
for part of the fixed capital k(t, s) to be in action, so the following relations can be
written:

l(t, s) = λ(t, s)k(t, s), e(t, s) = ε(t, s)k(t, s). (5.9)

From relation (5.4),

l(s, s) = λ(s)I (s), λ(s) = λ(s, s),

e(s, s) = ε(s)I (s), ε(s) = ε(s, s),
(5.10)

where I (s) is the gross investment at time s.
The coefficients λ(s) > 0 and ε(s) > 0 determine the required amount of labour

and substitutive work, delivered by external energy sources, per unit of increase in
capital; therefore, they can be denominated as the labour requirement and energy
requirement, respectively. The values of these coefficients are determined by the
applied technology, and we call them the technological coefficients.

One can see that, from (5.3), equations for the dynamics of quantities (5.9) can
be written as follows:

∂l(t, s)

∂t
= −μL(t, s)l(t, s), μL(t, s) = μ(t, s) − 1

λ(t, s)

∂λ(t, s)

∂t
,

∂e(t, s)

∂t
= −μP(t, s)e(t, s), μP(t, s) = μ(t, s) − 1

ε(t, s)

∂ε(t, s)

∂t
.

(5.11)

The last terms in the definitions of the depreciation coefficients μL(t, s) and μP(t, s)

are connected with the change of quality of the production equipment after it has
been installed at time s.

One can use definitions (5.8) to determine the required amount of the production
factors,

dL

dt
= λI −

∫ t

−∞
μL(t, s)l(t, s) ds,

dP

dt
= εI −

∫ t

−∞
μP(t, s)e(t, s) ds.

(5.12)

The first terms on the right side of these relationships describe the increase in the
quantities of interest, caused by gross investments I ; the second terms reflect the
decrease of the corresponding quantities due to both the change of the quality of
production equipment after installation and the removal of a part of the production
equipment from the service.
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We can rewrite (5.12), introducing a special notation for the last parts of the
equations, as

dL

dt
= λI − (μ + ν′)L,

dP

dt
= εI − (μ + η′)P . (5.13)

One can consider the quantities μ + ν′ and μ + η′ as the effective depreciation
coefficients of the production factors. Also, one can consider the quantities 1

L
dL
dt

+ν′
and 1

P
dP
dt

+ η′ to be the effective growth rates of labour and productive energy.

If, for example, the installed technological equipment requires more labour dur-
ing ageing, ν′ < 0, which means a decrease in the effective depreciation coefficient.
If the technological equipment does not change its quality over time, that is the tech-
nological coefficients in (5.9) do not depend on the argument t , the quantities ν′ = 0
and η′ = 0 and all the depreciation coefficients in (5.6) and (5.13) will appear to be
the same.

5.2 Macroeconomic Characteristics of Technology

Technology is commonly understood as methods of production, so characteristics of
tools, machines, materials, techniques and sources of power are needed to describe
the technology of production of useful things. Below we consider the introduced
phenomenological characteristics of production equipment.

5.2.1 Technological Coefficients

To discuss the meaning and properties of the technological coefficients λ(t) and
ε(t) in the dynamic equations (5.13), one can neglect the quantities ν′ and η′ for
simplicity. It is easy to see from dynamic equations (5.6) and (5.13) that the constant
technological coefficients can be expressed as

λ = L

K
, ε = P

K
.

For example, in the case when

λ <
L

K
, ε <

P

K

labour-saving and energy-saving technology is being introduced. It is convenient to
introduce the non-dimensional technological quantities

λ̄ = λ
K

L
, ε̄ = ε

K

P
. (5.14)
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These quantities play an essential role in the description of the production system
and appear to be independent variables in the set of equations of evolution of the sys-
tem. It is natural to consider the technological coefficients to be non-negative; one
can hardly imagine a situation where one of them would be negative. Apart from
this, the requirement of positivity of the marginal productivities (Chap. 6, Sect. 6.1)
puts some restrictions (formula (6.10)) on the values of the technological coeffi-
cients, namely,

λ̄ < 1 < ε̄ or λ̄ > 1 > ε̄. (5.15)

Note that the quantities reciprocal to the technological coefficients can be inter-
preted as the costs of the equipment needed to introduce a unit of labour or a unit
of substitutive work into the production process or, in other words, the prices of
introduction of the corresponding production factors

1

λ
= K

λ̄L
,

1

ε
= K

ε̄ P
. (5.16)

For an unchangeable technology, the costs of introduction are

1

λ
= K

L
,

1

ε
= K

P
.

It is essential to note that the price of introduction of substitutive work as a pro-
duction factor is different from the price of use of substitutive work as a production
factor, defined by (2.35). The latter is not the price of an energy carrier with the cor-
responding energy content, but the price of equipment (capital) which allows energy
to be converted usefully into other forms.

5.2.2 Technological Index

Equations (5.6) and (5.13) can be considered as relations which determine a demand
of the production factors for a given technology and investment. In other words, the
values of investment and production factors cannot be quite arbitrary and have to
correspond to values of the technological coefficients, which are subjects of the
restrictions (5.15). If any discrepancy in empirical data is observed, consistency
could be achieved by considering the quantities ν′ and η′ to be the proper corrections
for the growth rates of labour and substitutive work. These quantities could also
compensate possible errors.

It is convenient to introduce special notation for the growth rate of capital and
the effective rates of growth of labour and substitutive work,

δ = 1

K

dK

dt
, ν = ν′ + 1

L

dL

dt
, η = η′ + 1

P

dP

dt
. (5.17)
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This allows us to rewrite equations (5.6) and (5.13) in the following form:

δ = I

K
− μ, ν = λ̄

I

K
− μ, η = ε̄

I

K
− μ, (5.18)

where the symbols for the non-dimensional technological quantities (5.14) are used.
Equations (5.18) describe exact relations between the rates of real growth of

production factors δ(t), ν(t), and η(t) and technological coefficients in the form

λ̄ = ν + μ

δ + μ
, ε̄ = η + μ

δ + μ
. (5.19)

The depreciation coefficient μ can be excluded from relations (5.19). Therefore, we
can obtain a relation between the different rates of real growth,

δ = ν + α(η − ν), α = 1 − λ̄

ε̄ − λ̄
. (5.20)

The technological index α is introduced here. The condition of productivity of
the production factors (5.15) imposes a certain restriction on the values of the tech-
nological index,

0 < α < 1. (5.21)

Moreover, some other estimates of this quantity can be made. It will be shown in
Chap. 6 that the technological index α has the meaning of the share of expenses
for maintenance of substitutive work as a production factor in the total expenses for
maintenance of production factors (labour L and substitutive work P ).

Let us recall that the quantities ν and η represent the effective growth rates of
production factors and can coincide with the rates of real growth, if corrections ν′
and η′ can be neglected.

5.3 Investment and Dynamics of Technology

5.3.1 Investment and Three Modes of Development

To determine investment, one must take into account the restriction imposed by
internal (the limiting output and necessary level of consumption) and external cir-
cumstances. According to (4.54), if no restrictions are imposed by the availability
of labour and substitutive work, the potential growth rate of capital can be written
in terms of a many-sector model as

δ̃ = −μ + 1

K

n∑
j,l=1

sjK
lξ l

j . (5.22)
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Because the quantity sj , which is a share of the investment product in the final
product of the sector j , changes from 0 to 1 in every sector, the rate of potential
growth of investment δ̃ is restricted by the inequalities

−μ < δ̃ <
Y

K
− μ.

The other restrictions emerge from non-availability of other production factors.
One can assume here that there are external sources of labour and energy, so that the
amounts of available labour L̃ and substitutive work P̃ are known. It is convenient
to consider them solutions of the equations

dL̃

dt
= ν̃ L̃,

dP̃

dt
= η̃ P̃ . (5.23)

Though the rates of potential growth ν̃ and η̃ can be, in principle, calculated as
was discussed in Chap. 2 (see Sects. 2.4.2 and 2.5.5), later on they are assumed
to be given as functions of time. Thus, we assume the rates of potential growth of
production factors to be known as functions of time,

δ̃ = δ̃(t), ν̃ = ν̃(t), η̃ = η̃(t).

In any case, the rates of real growth δ, ν and η, defined by (5.18), do not exceed the
rates of potential growth δ̃, ν̃ and η̃, that is,

δ ≤ δ̃, ν ≤ ν̃, η ≤ η̃.

This determines the restrictions for investments in the production sector,

I ≤ (μ + δ̃)K, I ≤ μ + ν̃

λ
L, I ≤ μ + η̃

ε
P . (5.24)

The real investments are determined by a competition between potential invest-
ments from one side and labour and energy supplies from the other side. One can
assume that the production system tries to swallow up all available production fac-
tors. In this case, for investments we should write

I = (δ + μ)K = min

⎧⎪⎪⎨
⎪⎪⎩

(δ̃ + μ)K,

(ν̃ + μ)K/λ̄,

(η̃ + μ)K/ε̄.

(5.25)

The rates of real growth of production factors δ, ν and η are different from the
rates of potential growth. According to the three lines of relation (5.25), one can
define three modes of economic development for which we have different formulae
for calculation. From (5.18) and (5.25), the real rates of growth can be calculated
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for the three modes as

δ = δ̃, ν = (δ̃ + μ)λ̄ − μ, η = (δ̃ + μ)ε̄ − μ,

δ = (ν̃ + μ)
1

λ̄
− μ, ν = ν̃, η = (ν̃ + μ)

ε̄

λ̄
− μ,

δ = (η̃ + μ)
1

ε̄
− μ, ν = (η̃ + μ)

λ̄

ε̄
− μ, η = η̃.

(5.26)

The first set of equations is valid in the case of lack of investment, and abundance
of labour, substitutive work and raw materials. The second line is valid in the case
of lack of labour, and abundance of investment, substitutive work and raw materi-
als. The last line of equations is valid in the case of lack of substitutive work, and
abundance of investment, labour and raw materials.

5.3.2 Unemployment and Principle of Development

According to the preceding speculation, the rates of real growth of production fac-
tors are not bigger than the potential ones. If, indeed, the production system is trying
to devour all available production factors, the growth of one of the production factors
coincides with potential growth. This means that the gaps between real and poten-
tial amounts of production factors, for example, a gap between labour supply L̃ and
labour demand L, will increase. Therefore, one can see that the index of unemploy-
ment u = (L̃−L)/L̃, for example, cannot shrink in a ‘natural’ way. Considering the
situation in a one-sector approach, in order to decrease the gaps between real and
potential amounts of production factors, an intervention in the form of governmental
investments is needed, and to take it into account, one can rewrite relation (5.26) in
the form

I = (δ + μ)K = χ(u)K + min

⎧⎪⎪⎨
⎪⎪⎩

(δ̃ + μ)K,

(ν̃ + μ)K/λ̄,

(η̃ + μ)K/ε̄,

(5.27)

where quantity χ(u) is designed to regulate the gaps between supply and demand
of production factors. One has to reserve some amount of products for investments
to be regulated. In this case, three modes of economic development exist as well. In
the many-sector approach, the intervention is defined in similar way, but the inter-
pretation can be different (see Sect. 8.1.2).

5.3.3 Dynamics of Technological Coefficients

To determine the law of evolution of the technological coefficients in time, one
has to consider again the restrictions on investments. According to the three modes
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defined by relations (5.26), one can obtain three sets of equations for the non-
dimensional technological quantities λ̄, ε̄ and their ratio Θ = ε̄/λ̄

1 = δ̃ + μ

δ + μ
, λ̄ ≤ ν̃ + μ

δ + μ
, λ̄ ≤ ν̃ + μ

δ̃ + μ
, ε̄ ≤ η̃ + μ

δ + μ
, ε̄ ≤ η̃ + μ

δ̃ + μ
,

1 ≤ δ̃ + μ

δ + μ
, λ̄ = ν̃ + μ

δ + μ
, λ̄ ≥ ν̃ + μ

δ̃ + μ
, ε̄ ≤ η̃ + μ

δ + μ
, Θ ≤ η̃ + μ

ν̃ + μ
,

1 ≤ δ̃ + μ

δ + μ
, λ̄ ≤ ν̃ + μ

δ + μ
, ε̄ = η̃ + μ

δ + μ
, ε̄ ≥ η̃ + μ

δ̃ + μ
, Θ ≥ η̃ + μ

ν̃ + μ
,

(5.28)

In the first case, there is an internal restriction to growth. In the last two lines, one
of the production factors, L or P , is limited.

One can assume that there are internal technological changes, which lead to al-
teration of the technological coefficients, where the economic system tries to use all
available resources. This means that the technological coefficients have tendencies
to change such that the inequalities in conditions (5.28) are trending to turn into
equalities. These processes are connected with the invention of new technologies
and the propagation of known ones.

One can consider the rates of growth

dΘ

dt
,

dλ̄

dt
,

dε̄

dt

to be functions of differences

Θ − η̃ + μ

ν̃ + μ
, λ̄ − ν̃ + μ

δ̃ + μ
, ε̄ − η̃ + μ

δ̃ + μ
.

In the first approximation, the tendencies to changes can be described by equations
for the quantities

dΘ

dt
= − 1

τθ

(
Θ − η̃ + μ

ν̃ + μ

)
, (5.29)

dλ̄

dt
= − 1

τλ

(
λ̄ − ν̃ + μ

δ̃ + μ

)
, (5.30)

dε̄

dt
= − 1

τε

(
ε̄ − η̃ + μ

δ̃ + μ

)
. (5.31)

So as Θ = ε̄/λ̄, only two of (5.29)–(5.31) are independent. For (5.29), (5.30) and
(5.31) to be consistent, relaxation times τλ and τε should be equated and connected
with relaxation time τθ as follows:

τλ = τε = 1

λ̄

ν̃ + μ

δ̃ + μ
τθ .
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Equations (5.29)–(5.31) are the first-order approximations to the relaxation equa-
tions with respect to the quantities in the brackets, so one should take the zero-order
terms of the relaxation times in these equations. This means that, in the considered
approximation, all relaxation times are equal to each other, namely,

τλ = τε = τθ = τ, (5.32)

so that the subscripts to the relaxation times in (5.29)–(5.31) can be omitted in the
following exposition. The meaning of τ is the time of crossover from one technolog-
ical situation to another, when external parameters ν̃ and η̃ change. It is determined
by internal processes of developing and attracting the proper technology.

It is easy to see that, if the rates of growth are constant, (5.29), for example, at
initial value

Θ(0) = (1 − �)
η̃ + μ

ν̃ + μ

has a simple solution

Θ(t) = η̃ + μ

ν̃ + μ

[
1 − � exp

(
− t

τ

)]
. (5.33)

5.3.4 Dynamics of the Technological Index

Now we can directly calculate changes of the technological index

α = 1 − λ̄

ε̄ − λ̄
.

After differentiating the quantity and making use of (5.30) and (5.31), one gets the
relation

dα

dt
= δ̃ − ν̃ − α (η̃ − ν̃)

τ (ε̄ − λ̄)(δ̃ + μ)
. (5.34)

To specify the change of the technological index, we have to compare the rate of
capital potential growth δ̃ with the combination of the rates of potential growth of
the other factors ν̃ + α (η̃ − ν̃). If the first quantity is bigger than the second, the
technological index grows. One can assume that, in a steady-state situation, there is
a relation

δ̃ = ν̃ + α (η̃ − ν̃), (5.35)

which is similar to relation (5.20) for the rates of real growth of production factors.
In this case, the technological index α appears to be constant during evolution; in
other words, the technological index appears to be the first integral of evolution. One
can expect that there are social mechanisms which ensure the validity of (5.35). Of
course, this equation should be considered as an approximate equality, which can be
violated by disturbances in the social life.
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Fig. 5.1 Space of production
factors. The area inside the
sector presents a set of more
effective technologies in
comparison with initial
technology A

5.4 Mechanism of Evolution of Production System

In this section, we turn to the microeconomic approach and consider the produc-
tion system to consist of numerous enterprises, each of them including one or more
technological processes, as was discussed in Sect. 4.4. Each technological process
consumes some products in order to output other ones. In other words, the enterprise
transforms the input set of products xj , xi, . . . , where the labels of products j, i, . . .

are fixed, into an output set xl, xm, . . . , where the labels of products l, m, . . . are also
fixed. It is convenient to use the input and output vectors u and v with non-negative
components uk and vk , k = 1,2, . . . , n. This side of the technological process was
described in Sect. 4.4.

In addition, each technological process is characterised by equipment with value
K and the production factors: the labour L and substitutive work P needed to ani-
mate the production equipment. So, the technological process or the enterprise can
be given by a set of five quantities

u, v, K, L, P

or, considering the scale of production as non-essential, by four quantities

u

K
,

v

K
, r1 = L

K
, r2 = P

K
. (5.36)

The technological process can be depicted by a point in a many-dimensional
space which consists of input–output space (Fig. 4.1) and production-factor space
(Fig. 5.1).

According to Schumpeter [4], the mechanism of evolution of the production sys-
tem can be imagined as the emergence, growth and disappearance of technological
processes. An essential moment in this scheme is the emergence of a new enter-
prise, which can use a known technology or create a new one. In the first case one
speaks of diffusion of the known technology. The values of quantities (5.36) are the
same for all enterprises with similar technology. One says that the production ex-
pands extensively. In the second case new technological processes appear. The new
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enterprise (technological process) produces either known products by new meth-
ods (process innovation), or completely new products (product innovation). In any
case, the values of quantities (5.36) have been arising in new combinations. Some
people take the risk of investigating new combinations of production factors and
setting up a new technological process. The people running such businesses—the
new entrepreneurs, according to Schumpeter [4]—are central figures of economic
development.

One can imagine a simple scheme of development of a production system con-
sisting of many enterprises. We do not discuss stages of infancy, adolescence, matu-
rity and senescence of an enterprise. For simplicity, we assume that a technological
process remains unchanged until the moment of disappearance and consider elemen-
tary acts of evolution of a production system to be emergence and reproduction of a
new technological process. We can enumerate all technological processes according
to the time of their emergence by a label α (α = 1,2, . . .). An enterprise (technolog-
ical process) with characteristics Kα, Lα, P α emerges at moment tα and disappears
at moment tα + τ . For simplicity, the time of existence of the enterprises τ is as-
sumed to be equal for all enterprises. The quantities Kα, Lα, P α and tα are random
ones, so an emergence distribution function should be introduced. It is convenient
to use variables tα, rα

1 , rα
2 (α = 1,2, . . .) as arguments of the emergence function.

Then, one can define the technological progress in terms of microeconomical
variables r1 and r2. The empirical data for the progressively developing U.S. econ-
omy, demonstrated with formulae (2.29), (2.30) and (2.37), show that the rate of
capital growth exceeds the rates of growth of labour, whereas the rate of substitutive
work growth exceeds the rate of capital growth; so, in order for an enterprise to be a
partner in the technological progress, the relations between the variables should be

rα
1 < r0

1 , rα
2 > r0

2 , rα
2 /rα

1 > r0
2/r0

1 , (5.37)

where the superscript ‘zero’ denotes values of quantities of the foregoing (initial)
technology. It can be seen in Fig. 5.1 that a point corresponding to a progressively
new technology falls in a sector of more productive technologies.

Now, expressions for the production factors can be defined. One can neglect de-
terioration of the equipment and write

K(t) =
∑
α

〈
Kα

[
θ
(
t − tα

) − θ
(
t − τ − tα

)]〉
,

L(t) =
∑
α

〈
Lα

[
θ
(
t − tα

) − θ
(
t − τ − tα

)]〉
,

P (t) =
∑
α

〈
P α

[
θ
(
t − tα

) − θ
(
t − τ − tα

)]〉
,

(5.38)

where the symmetric step function θ(x) and, later, the Dirac delta function δ(x) are
used (see, for example, Korn and Korn [5] for an explanation of the properties of
these functions). The angle brackets in formula (5.38) denote averaging with respect
to the emergence function.
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To calculate the technological coefficient on the basis of relations (5.38), it is
necessary to know the emergence distribution function or, in other words, the spe-
cific mechanism of evolution of production system should be estimated. Without
discussing the specific mechanism, one can assume that the emergence function is
steady state; that is, it does not depend explicitly on time. This assumption allows
one to calculate the derivative of (5.38) and to find expressions for the investment
and technological coefficients,

I (t) =
∑
α

〈
Kα

[
δ
(
t − tα

) − δ
(
t − τ − tα

)]〉
,

λ(t) = 1

I (t)

∑
α

〈
rα

1 Kα
[
δ
(
t − tα

) − δ
(
t − τ − tα

)]〉
,

ε(t) = 1

I (t)

∑
α

〈
rα

2 Kα
[
δ
(
t − tα

) − δ
(
t − τ − tα

)]〉
.

(5.39)

Time dependence of the technological coefficients is determined by the depen-
dence of variables r1 and r2 on index α. To estimate the behaviour of the technolog-
ical coefficients, one can introduce two non-dimensional functions of the index,

rα
1 = r0

1

(
1 − ϕ1(α)

)
, rα

2 = r0
2

(
1 + ϕ2(α)

)
, (5.40)

where ϕ1(α) and ϕ2(α) are assumed to be small positive quantities in the case of
progressive evolution of a production system.

This allows one to see an obvious result: the technological coefficient λ(t) is a
diminishing function of time in this case. This approach allows us to investigate
details of the mechanism of evolution of the production system.
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Chapter 6
Production of Value

Abstract In this chapter, the relationship between the production of value and the
original (primary) sources of value, the production factors, is considered. From the
input–output relations (Chap. 4), an increase in production of value is connected
with an increase in production equipment (capital stock), and the capital stock is
conventionally considered a production factor. On the other hand, production of
value can be associated with an increase in technological work, that is, an increase
in the efforts of labourers and the work of production equipment (Chap. 1). In all,
we have three production factors to consider: machine work and labour inputs act
as substitutes for each other, but capital stock and the total technological work are
complements to each other. An approximation of the production function allows
us to find explicit forms of marginal productivities which are connected with each
other. The roles of production factors are different: labour and substitutive work
are the true sources of value. Capital stock presents the means by which the labour
and energy resources are attracted to the production, allowing workers’ efforts to be
substituted by a machine’s work.

6.1 Output and Production Factors

The final output Y represents the value of the products created by the production
system per year. It is assumed that this scale of value is chosen so that the purchasing
capacity of the monetary unit remains identical at all times. Otherwise, the price
index ρ appears, and the production of value in current money units has to be written
as

dŶ = ρ(dY )ρ + Ŷ d lnρ,

where (dY )ρ is the production of value at constant prices.

6.1.1 Specification of the Production Function

In Sect. 1.4, we briefly discussed the history of the search for appropriate production
factors. One can came to the conviction that functioning of the production system,
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in the most simple approximation, can be correctly described by means of three
variables: fixed capital stock K , expenditures of labour L and substitutive work P .
The output Y must be considered to depend on the three production factors

Y = Y(K,L,P ). (6.1)

To specify this general form1 of the law of production of value, one has to take into
account two issues. First, as far as there is a relation (5.20) among the growth rates of
the production factors, the variables K , L and P appear to be interdependent: only
two of the production factors are independent.2 Then, the technological description
assumes that the machine’s work and labour inputs act as substitutes to each other,
and the amount of production equipment, universally measured by its value K , must
be considered to be a complement to the technological work (L and P ) of the pro-
duction equipment.3 All this motivates one to write the relation between output and
production factors in the form of two alternative lines,

Y =
{

Y(K),

Y (L,P ),
dY − �dt =

{
ξ(K)dK,

β(L,P )dL + γ (L,P )dP,
(6.2)

where �dt is a part of the increment of production of value which is connected with
the change of characteristics of the production system (the structural and technolog-
ical change). When � = 0, the marginal productivities ξ , β and γ correspond to the
value produced by the addition of a unit of capital, or by the addition of a unit of
labour input at constant external energy consumption or by the addition of a unit of
energy at constant labour input, respectively. In line with the existing practise, these
quantities can be labelled as marginal productivities of the corresponding produc-
tion factors. The written relation can be considered an expression of a substitution
law.

The forms (6.2) seem to be consistent with some different approaches to the the-
ory of production of value [4, 5]. The present theory keeps the main attributes of
the neo-classical approach, i.e., the concept of value produced by the production
factors (donor value) and the concept of the production factors themselves, and can
be considered as a generalisation and extension of the conventional neo-classical
approach. In the conventional, neo-classical theory, capital as a variable played two

1Note that, in the more general case, it is possible to admit that production of value Y (t) is a func-
tion of the arguments L(t − s) and P (t − s) taken at previous points in time, i.e., that production of
value is a function of a trajectory of evolution. This possibility was considered earlier [1], though,
as is clear from the analysis, there is no indispensability to use this concept of production function.
2One can see that (6.8) is an inexplicit relation for the production factors.
3The relationship of complementarity and substitutability among capital K , labour L and primary
energy E has been analysed by some researchers. For example, Berndt and Wood [2] remark on
p. 351 ‘. . . that E − K complementarity and E − L substitutability are consistent with the recent
high-employment, low-investment recovery path of the U.S. economy.’ Patterson [3, p. 382], found
‘for New Zealand (1960–1985) that energy and labour inputs acted as mild substitutes to each other,
and energy and capital inputs were mild complements to each other.’ These research works dealt
with the total primary consumption of energy E and could not discover the relationship of exact
substitution between labour L and substitutive work P , which is a part of the primary energy.
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distinctive roles: capital stock as value of production equipment and capital service
as a substitute of labour. We consider capital stock to be the means of attracting
labour and energy services to the production, while human work and the work of
external energy sources are considered to be the true sources of value.4 Human
work is replaced by the work of external energy sources using different sophisti-
cated appliances. In contrast to the conventional theory, the perfect substitution of
labour and energy does not lead to any discrepancies. One can imagine a factory
working without energy or without labour, but one cannot imagine a factory without
production equipment.

We shall use formulae (6.2) as a starting point for the productivity theory to
obtain relations between marginal productivities of capital on one side and of labour
and energy on the other side (see formulae (6.8)). Note that, just as capital consists
of many parts with their own productivity, labour and energy can be divided into
separate parts according to their qualities, so that (6.2) can be generalised. In this
chapter, however, we shall use the simplest approach.

6.1.2 Principle of Productivity

One uses production factors to create things and services, and an addition of any of
the production factors has to increase production. Therefore, one has to consider all
marginal productivities to be positive. This statement is known as the principle of
productivity.

It was discovered by Marx [8] that the labour force is a commodity that gives
surplus value. In our notation, Marx’s statement can be written as

(β − w)dL > 0, (6.3)

where w is the price of labour (see Sect. 2.4.2). To explain the modern surplus in
industrial societies, one should take the other production factor, substitutive work P ,
into account and write

(β − w)dL + (γ − p)dP > 0, (6.4)

where p is the price of production consumption of energy providing the substitutive
work (see (2.35)). Both the first and the second terms in formula (6.4) are expected
to be positive. This statement can be considered as the strong principle of produc-
tivity.

4Some argue that, in this case, labour can be reduced to energy, and one has only the argument
energy as a source of value [6, 7]. However, labour and energy are measured in different units, and
nobody knows how to calculate the real work provided by these production factors and compare
them. Besides, even if possible, such a comparison could not be universal, so it is better to deal
with the two separate arguments.
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6.2 Productivities and Technological Coefficients

To link marginal productivities with technological coefficients, one can refer to dif-
ferential expressions (6.2) for the production of value. We can rewrite them in the
form

dY

dt
− � =

⎧⎪⎪⎨
⎪⎪⎩

ξ
dK

dt
,

β
dL

dt
+ γ

dP

dt
,

(6.5)

where ξ , β and γ are marginal productivities of corresponding production factors.
The derivatives of the production factors can be written on the basis of (5.6) and
(5.13) in the form

dK

dt
=

(
I

K
− μ

)
K,

dL

dt
=

(
λ̄

I

K
− ν′ − μ

)
L,

dP

dt
=

(
ε̄

I

K
− η′ − μ

)
P,

(6.6)

where λ̄ = λK/L and ε̄ = εK/P are the non-dimensional technological variables
which characterise the quality of introduced equipment. Both the technological co-
efficients λ, ε and the non-dimensional technological variables λ̄, ε̄ are functions of
time.

Combining (6.5) and (6.6) and assuming, for the start, that the quantities ν′ and
η′ in (6.6) can be neglected, one rewrites production of value in the form

dY

dt
− � =

⎧⎪⎪⎨
⎪⎪⎩

ξ

(
I

K
− μ

)
K,

(βλ̄L + γ ε̄P )
I

K
− μ(βL + γP ).

(6.7)

Comparing the right-hand sides of (6.7) on the assumption that the investment I

has arbitrary value, one finds relations between the characteristic parameters of the
system,

λ̄βL + ε̄γ P = ξK,

βL + γP = ξK.

The relations ought to be considered as a set of equations for the marginal produc-
tivities β and γ . Then, in accordance with [9], one can find the expressions of the
marginal productivities through the technological coefficients

ξ = β
L

K
+ γ

P

K
, (6.8)

β = ξ
ε̄ − 1

ε̄ − λ̄

K

L
, γ = ξ

1 − λ̄

ε̄ − λ̄

K

P
. (6.9)
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One can see that the marginal productivities are positive, if

λ̄ < 1 < ε̄ or λ̄ > 1 > ε̄. (6.10)

However, it is possible that one of the marginal productivities is negative, if the
technological coefficients are unrestricted. But they cannot both be negative. It is
natural to expect that the mean marginal productivities must be positive for some
span of time, that is, that one of the sets of requirements (6.10) is fulfilled, which
was discussed in Sect. 5.2.2. One can consider inequalities (6.10) as a formulation
of the productivity principle.

In the general case, when ν′ �= 0, η′ �= 0, that is, the change of technology dur-
ing the time of exploitation is taken into account, the relations between marginal
productivities (6.8) and (6.9) can be generalised as

ξ = β

(
1 + ν′

μ

)
L

K
+ γ

(
1 + η′

μ

)
P

K
,

β = ξ
ε̄ − (1 + η′

μ
)

ε̄(1 + ν′
μ

) − λ̄(1 + η′
μ

)

K

L
, γ = ξ

(1 + ν′
μ

) − λ̄

ε̄(1 + ν′
μ

) − λ̄(1 + η′
μ

)

K

P
.

6.3 Approximation of Marginal Productivities

The production function is assumed to satisfy some requirements. One of them—
the principle of productivity—has been discussed in the previous sections. Then,
one should take into account that the arguments of the production function must be
relative quantities, so the production function can be written as

Y = Y0f

(
L

L0
,

P

P0

)
,

where L0 and P0 are values of labour and capital services in the base year. In this
section, we shall consider restrictions imposed on the production function by the
requirements of uniformity and universality.

6.3.1 Principle of Universality

This requirement means that a proposed production function can be used not only
for a given case, but for many different situations. For example, the initial point can
be chosen arbitrarily, but the form of production function must not be affected by
this arbitrariness. If, for example, two initial points, t0 and t1 > t0, are chosen, one
must write for the production of value

Y = Y1f

(
L

L1
,

P

P1

)
, Y1 = Y0f

(
L1

L0
,
P1

P0

)
.
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This can be rewritten as

Y = Y0f

(
L1

L0
,
P1

P0

)
f

(
L

L1
,

P

P1

)
,

so that, in order for the description to be universal, that is, independent of the arbi-
trary choice of initial point (to be consistent), the production function must satisfy
the following relation:

Y0f

(
L

L0
,

P

P0

)
= Y0f

(
L1

L0
,
P1

P0

)
f

(
L

L1
,

P

P1

)
.

One must choose a form of function f (·) such that values of L1,P1 on the right-
hand side of the last formula would disappear. This requirement puts some restric-
tions on the form of the production function. One can see that a production function
of the form

Y = Y0

(
L

L0

)α(
P

P0

)β

(6.11)

obeys the above requirement. The parameters α and β do not depend on the initial
point and can be considered as characteristics of the production system. Of course,
one can consider them functions of production factors, which can be represented by
an expansion series in the powers of quantities ln L

L0
, ln P

P0
. For example, in linear

approximation,

α = α0 + a ln
L

L0
+ b ln

P

P0
,

where the parameters a, b are also characteristics of the production system.5 As for
any other forms of the production function in the literature, it is worth testing them
for consistency before using them.

6.3.2 Principle of Uniformity

One expects the production output for a large system to be proportional to the scale
of production. This means that the production function has to be a homogeneous,
uniform function of first order, that is,

Y(λL,λP ) = λY(L,P ).

5The first-order terms of expansion determine the first-order function

Y = Y0

(
L

L0

)β0
(

P

P0

)γ0

exp
1

2

(
βl ln2 L

L0
+ (βe + γl) ln

L

L0
ln

P

P0
+ γe ln2 P

P0

)
,

which under the condition of uniformity takes the following form:

Y = Y0
L

L0

(
L0

L

P

P0

)α

exp

(
1

2
b ln2

(
L0

L

P

P0

))
, b = −βl = βe = γl = −γe.
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Under this condition function (6.11) can be written as

Y = Y0
L

L0

(
L0

L

P

P0

)α

. (6.12)

The constant Y0 is determined by the initial conditions, so that the only parameter
which remains unknown in the expression for the production function, to say noth-
ing of the initial values of the variables, is the quantity α = γ0 = 1 − β0. It is a
characteristic of the production system, which, as shown below, coincides with the
technological index introduced in Sect. 5.2.2. The productivity principle restricts
values of the technological index, 0 < α < 1.

6.3.3 Marginal Productivities

Function (6.12) has the exact form of the neo-classical, i.e., Cobb–Douglas produc-
tion function (1.4), in which capital K stands for substitutive work P . This function,
in accordance with (6.5), provides the following expressions for marginal produc-
tivities and the contribution from technological and structural change:

β = Y0
1 − α

L0

(
L0

L

P

P0

)α

, γ = Y0
α

P0

(
L0

L

P

P0

)α−1

, (6.13)

� = Y ln

(
L0

L

P

P0

)
dα

dt
(6.14)

where L0 and P0 are values of labour and capital services in the base year.
Comparing expressions (6.9) and (6.13) for the marginal productivities, one ob-

tains

ξ = Y0
L

L0K

(
L0

L

P

P0

)α

, α = 1 − λ̄

ε̄ − λ̄
. (6.15)

Thus, the index α in (6.12) is, indeed, the same quantity as the technological index
introduced in (5.20). In addition, all available information about the technological
performance could be introduced by estimating this quantity. Moreover, a condition
regarding the optimal use of production factors enables us to establish a relation be-
tween the parameter α on one hand and the shared costs of production factors on the
other (see Sect. 6.6). This provides a different means of estimating the technological
index.

The condition of productivity 0 < α < 1 means that the marginal productivities
are increasing functions of the ratio of substitutive work to labour, that is,

dβ

d(P/L)
> 0,

dγ

d(P/L)
> 0.
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6.4 Decomposition of the Growth Rate of Output

The preceding results allow us to record output Y as a function of production factors
K , L and P , whereas properties of the production system itself are fixed by the
internal characteristics α and ξ . From these findings, formula (6.2) can be specified
as

Y =

⎧⎪⎨
⎪⎩

ξK,

Y0
L

L0

(
L0

L

P

P0

)α (6.16)

and the growth rate of the output in terms of the present theory can be written in the
form of two alternative expressions,

1

Y

dY

dt
=

⎧⎪⎪⎨
⎪⎪⎩

1

K

dK

dt
+ 1

ξ

dξ

dt
,

(1 − α)
1

L

dL

dt
+ α

1

P

dP

dt
+ ln

(
L0

L

P

P0

)
dα

dt
.

(6.17)

The first terms in the first and second lines on the right-hand side of this formula
represent the contribution to growth due to the growth of production factors: capital,
labour and substitutive work. The last ones are due to the change of the production
system itself; changes of quantities ξ and α are connected with technological and
structural changes. The last terms cannot be reduced to any function of production
factors.

Let us note that variations of characteristics of production system ξ and α are
connected with each other. To find a formula for a change of capital marginal pro-
ductivity, we differentiate relation (6.15)

1

ξ

dξ

dt
= − 1

K

dK

dt
+ (1 − α)

1

L

dL

dt
+ α

1

P

dP

dt
+ ln

(
L0

L

P

P0

)
dα

dt
.

To simplify this relation, one can use the dynamic equations for production fac-
tors (6.6), on the assumption ν′ �= 0, η′ �= 0, and obtain

1

ξ

dξ

dt
= ln

(
L0

L

P

P0

)
dα

dt
, (6.18)

so that, in line with (6.14), one has

� = Y
1

ξ

dξ

dt
. (6.19)
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Returning now to the expression for the output growth rate (6.17) and using
(5.26) for the growth rates of production factors in three possible cases, one can
record

1

Y

dY

dt
= 1

ξ

dξ

dt
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ, if
dλ̄

dt
> 0 and

dε̄

dt
> 0,

(ν + μ)
1

λ̄
− μ, if

dλ̄

dt
< 0 and

dε̄

dt
> 0,

(η + μ)
1

ε̄
− μ, if

dλ̄

dt
> 0 and

dε̄

dt
< 0.

(6.20)

It is assumed that the characteristics of the equipment do not change after its instal-
lation, that is, ν′ = 0 and η′ = 0; otherwise, the expression for the growth rate takes
a more complicated form.

The growth rate of the output is expressed by three different relations for three
modes of development. The first line of (6.20) is valid in the case of lack of invest-
ment, and abundance of labour, substitutive work and raw materials. The second
line is valid in the case of lack of labour, and abundance of investment, substitutive
work and raw materials. The last line of equations is valid in the case of lack of
substitutive work, and abundance of investment, labour and raw materials.

To simplify relations (6.20), one can use (5.20) to express the energy requirement
and the growth rate of substitutive work through the technological index as

ε̄ = 1 − (1 − α)λ̄

α
, η = δ − (1 − α)ν

α
, 0 < α < 1.

These relations allow one to identify the expressions in the second and the third lines
of (6.20). Moreover, one can see that these relations practically exclude the first line,
so that (6.20) reduce to a universal expression for the growth rate of output,

1

Y

dY

dt
= ν + (1 − λ̄)μ

λ̄
+ 1

ξ

dξ

dt
. (6.21)

One can see that the growth rate of the output is determined by four quantities:

◦ Productivity of capital stock ξ . This is a fundamental quantity connected with the
fundamental technological matrices (see (8.23)), when one refers to the many-
sector approach. Technological and structural changes are introduced through this
quantity.

◦ The non-dimensional technological coefficient λ̄. If the quantity λ̄ < 1, the con-
sumption (for unit of capital stock) of labour decreases and consumption of pro-
ductive energy (substitutive work of production equipment) increases. The situa-
tion is opposite, if the quantity λ̄ > 1.

◦ The coefficient of depreciation μ. This quantity does not affect the rate of output
growth, if λ̄ = 1.

◦ The rate of growth of labour ν. The rate of output growth coincides with this
quantity, if λ̄ = 1.

All the quantities are characteristics of the method of production, that is, charac-
teristics of technology.
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6.5 Productivity of Labour

The scientific and technical progress could be reduced to processes of introduction
of innovations, that is, consecutive replacement of instruments, materials, designs,
adaptations and other objects with more perfect ones, from some point of view.
Among all processes of replacement, the outstanding role is played by the processes
of replacement of workers’ efforts by machine work with the assistance of forces
of nature. The substitution of worker efforts with machine work is a unique process
of replacement which influences the labour productivity, which is understood as the
ratio of the value of output, measured in value units of constant purchasing capacity,
to the expenditures of labour. According to (6.12), the productivity of labour can be
written as

B = Y

L
= Y0

L0

(
L0

L

P

P0

)α

.

This quantity depends on the ratio of substitutive work to workers’ efforts P/L and
is the same labour productivity, the increase of which determines change of one so-
cial formation by another, more perfect one. The increase in labour productivity can-
not be understood without considering the phenomenon accompanying the progress
of production—the attraction of natural energy sources (animals, wind, water, coal,
oil and others) for performing work that replaces human efforts in production. One
should check that, at the definition of labour productivity, the output is measured in
value units of constant purchasing capacity, as one says, to represent a ‘physical’
measure of output.

The expression for the growth rate of labour productivity follows from (6.21)
written on the assumption that characteristics of the equipment do not change after
its installation, that is, ν′ = 0 and η′ = 0,

1

B

dB

dt
= (1 − λ̄)(ν + μ)

λ̄
+ 1

ξ

dξ

dt
. (6.22)

In this equation, besides the known factor of amortisation μ, there is a non-
dimensional quantity λ̄, which characterises the technology introduced into the pro-
duction. The labour requirement λ̄ appears to be the most important quantity to
determine the growth rate of labour productivity. Below it will be demonstrated that
this quantity is a measure of the substitution of labour by energy. If λ̄ = 1, variations
in technology do not occur, labour productivity is constant, and all incrementing of a
product is connected only with an increase in human efforts. Human efforts are, cer-
tainly, the main motive power, but, under the condition λ̄ < 1, the workers’ efforts
are partially replaced with the work of machines movable by outer energy sources,
and the labour productivity increases. This is a general description of the influence
of scientific and technological progress, which occurs naturally in a picture of the
progress of mankind.

To introduce a global characteristic of labour efficiency in a different form, one
can start with expression (6.7) for the production of value, which can be rewritten
as

dY

dt
= (βλ + γ ε)

(
I − Ĭ

)
, (6.23)
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where

Ĭ = μ
βL + γP

βλ + γ ε
= μ

βL + γP

βλ̄L + γ ε̄P
K. (6.24)

When output is constant, that is dY/dt = 0, according to (6.23) and (6.24), in-
vestments are determined as

I = μ
βL + γP

βλ + γ ε
. (6.25)

Though the output does not change, the production factors are changing accord-
ing to relations (6.6) and (6.25), as

dL

dt
= −μγ

εL − λP

βλ + γ ε
,

dP

dt
= μβ

εL − λP

βλ + γ ε
. (6.26)

One can see that, at constant output, the amount of labour decreases, that is, the
productivity of labour increases, if

Θ = ε̄

λ̄
= εL

λP
> 1. (6.27)

Otherwise, the productivity of labour decreases.
The quantity Θ can be called a general index of labour productivity growth that

is connected with technological progress, and relation (6.27) can be considered as
a condition of increase in the efficiency of labour. This is a condition of the labour
productivity growth.

The index of labour productivity growth obeys (5.29), that is,

dΘ

dt
= − 1

τ

(
Θ − η̃ + μ

ν̃ + μ

)
. (6.28)

One can see that the general index of labour productivity follows the ratio of
potential rates of production factors with a lag, which is determined by time τ . This
time is a time of introduction of production equipment. We refer to formulae (5.19)
to write the index of technical progress as

Θ = η + μ

ν + μ
. (6.29)

It follows from this relation that, when (6.27) is valid,

η > ν

which means that the growth rate of consumption of productive energy exceeds the
growth rate of labour, when technological progress has occurred.

6.6 The Best Utilisation of Production Factors

One can assume that production factors L and P are chosen in such amounts to
be the most effective in production, that is, their values maximise the production
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function at given total expenses for production factors. The question of the choice
of production factors can be interpreted as a problem of finding the maximum value
of function Y(L,P ) at condition

cL + pP = V,

where c and p are prices of ‘consumption’ of production factors, and V is a part of
the gross output, which goes for maintenance of production factors. The discussion
of prices c and p is given in Sects. 2.4.2 and 2.5.3 (see (2.35)).

One can follow a general method of searching a conditional extremum [10], so
that we look for the unconditional maximum of the Lagrange function

Y(L,P ) − κ(cL + pP − V ), (6.30)

where κ is a Lagrange multiplier.
Therefore, we obtain equations for a point of the conditional extremum

∂Y

∂L
= κc,

∂Y

∂P
= κp,

which can be rewritten, remembering the definitions of the marginal productivities,
as

β = κc, γ = κp.

From the last relations it follows that the ratio of the prices of production factors
is equal to the ratio of marginal productivities or, referring to (6.9), is inversely
proportional to the ratio of production factors

c

p
= β

γ
= ε̄ − 1

1 − λ̄

P

L
.

The relation between the prices of production factors, taking definition (5.20) for
the technological index into account, can also be written as

c

p
= β

γ
= 1 − α

α

P

L
.

Therefore, the index α can be expressed through the prices and the amounts of
production factors,

α = pP

cL + pP
. (6.31)

This relation means that the technological index α in the equilibrium situation can
be interpreted as follows: it is a share of the expenses, needed for utilisation of
substitutive work as a production factor, within the total expenses for production
factors. If the production factors are chosen as optimal, then

0 < α < 1,

which implies the known restrictions on values of technological variables

λ̄ < 1 < ε̄ or λ̄ > 1 > ε̄.
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In terms of the growth rates, the restricting conditions are read as

ν < δ < η or ν > δ > η. (6.32)

These conditions coincide with conditions of positivity of marginal productivities
(see formulae (6.10) in Sect. 6.2).

Expression (6.31) allows one to estimate the technological index α due to the
estimates of the cost of consumption of production factors. Remembering the defi-
nition of the cost of substitutive work (2.35), one can define the cost of labour as

c = μ
ε̄ − 1

1 − λ̄

K

L
= μ

1 − α

α

K

L
. (6.33)

Note that the cost of labour c, which is the value of products needed to compensate
current living expenses, does not include, in contrast to the price of labour (wage),
any accumulation. It is the value of the minimum amount of products which are
needed for humans to subsist.

6.7 On the Choice Between Consumption and Saving

The production system of an economy is driven by the desires of economic subjects,
first of all by the desires of producers to produce as much as they can. The produc-
tion system tries to swallow all available resources, and three modes of economic
development for which we have different formulae for calculation are possible (see
Sect. 5.3.1). In the case of abundance of labour and energy, the desires of producers
can meet restrictions from the side of consumers. In this case, a nation must decide
how much it should save or consume, taking into account present and future con-
sumption. According to Blanchard and Fisher [11], there are two basic models for
solving this problem: the infinite horizon optimising model [12] and the overlapping
generations model with finite horizon [13–15].

Frank Ramsay [12] used a simple model consisting of the neo-classical produc-
tion function (1.4) and the equation for capital dynamics (5.6). According to the
conventional conviction of that time, he supposed that a trajectory of evolution can
be chosen in such a way that the consumption for the time T is the biggest one. In
other words, one ought to maximise the function

U(T ) =
∫ T

0
u(c)e−θs ds, (6.34)

where consumption c is a function of time s, u(c) is a concave objective function
and T is the horizon of planning.

We have no need to consider the original version of the Ramsay solution (it can
be found, for example, in the monograph by Blanchard and Fisher [11]); instead,
we consider the problem as applying to evolution equations (5.6) and (5.13) which
were formulated in Sect. 5.1. To introduce the consumption into equations, one can
take the relation

I = Y − cL (6.35)
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and rewrite the equation of the second line in formula (6.7) for production of value
in another form to get the system of equations

dY

dt
= (βλ + γ ε)Y − (βλ + γ ε)cL − μ(βL + γP ),

dK

dt
= Y − cL − μK,

dL

dt
= λY − (λc + μ)L,

dP

dt
= εY − εcL − μP.

(6.36)

Further, it is convenient to use the variables

y = Y

L
, ε = P

L
, � = L

K

to write a system of evolutionary equations in the form

dy

dt
= (

β(ε) − y
)[

λ̄(y − c)� − μ
] + γ (ε)

[
ε̄(y − c)� − μ

]
ε,

dε

dt
= (ε̄ − λ̄)(y − c)ε�,

d�

dt
= (λ̄ − 1)(y − c)�2.

(6.37)

The technological variables λ̄ = λK/L, ε̄ = εK/S are determined by (5.30)
and (5.31). It is assumed that the marginal productivities are given, for example,
by formula (6.13).

One can use the standard procedure to find a trajectory which maximises function
(6.34) under restrictions (6.37). The result is a differential equation for consumption
as a function of time.

The second model—the overlapping generation model [13–15]—assumes that at
any time individuals of different generations are alive and may be interacting with
one another. The investment is generated by individuals who save during their lives
to ensure their consumption during retirement. In this way, preferences of individu-
als determine investment into the production system.

The models that we have discussed in this section can be very useful in estimating
potential investment and potential rate of capital growth. However, it is necessary to
take the availability of labour and energy into account to obtain a real trajectory of
evolution.
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Chapter 7
Application to the U.S. Economy

Abstract In this chapter, to illustrate and test the theory, we refer to time series for
the U.S. economy for years 1890–2009 collected in Appendix B. The choice of this
case is justified by the availability and reliability of the data, which can be easily
found on webpages of the U.S. Census Bureau and the U.S. Bureau of Economic
Analysis. These organisations have been permanently improving methods of esti-
mation of time series, and the data has been permanently revised in order for the
numbers to be as accurate as possible. We have used the latest available series to
illustrate the methods of estimation of some quantities: substitutive work, techno-
logical index, marginal productivities and technological coefficients.

7.1 Production Factors

The empirical time series of output Y , capital K and labour L are usually known,
and, for the U.S. economy, are collected in Appendix B. The methods of direct es-
timation of the third production factor—substitutive work P —are not perfect at the
moment (see Sect. 2.5.2), so a method of indirect estimation of substitutive work P

is developed in Sect. 7.1.2. It also allows simultaneous calculation of the technologi-
cal index α. When time series for all production factors are known, the technological
characteristics of the production system can be estimated.

7.1.1 Personal Consumption and the Technological Index

The technological index α appears to be a very important characteristic of the pro-
duction system. An estimate of the technological index can be obtained when the
optimal use of production factors is considered. According to Sect. 6.6 (formula
(6.31)), the technological index α can be expressed through prices and amounts of
production factors as

α = pP

cL + pP
. (7.1)

This means that the technological index α represents the share of expenses needed
for utilisation of capital services as a production factor (substitutive work) within
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the total expenses for production factors. Expression (7.1) allows one to estimate
the technological index α from estimates of the cost of consumption of production
factors.

The current consumption C = cL is defined as the value of the minimum amount
of products which are needed for the labour force to maintain. The cost of main-
tenance of labour can be estimated (see Sect. 2.2.4) through the poverty threshold
c∗ as cL = c∗N , where N is the number of the population. Measured in this way,
the consumption in year 1996 was C = 2,120 billion dollars compared with the
expenses for maintenance of consumption of capital services pP = μK = 1,378
billion dollars (1996). So, for the latest decade of the twentieth century, one can
obtain α ≈ 0.4, which means that about 40% of the total expenses for production
factors take energy as substitute of labour.

7.1.2 Substitutive Work and the Technological Index

A simple method allows us to calculate both substitutive work P and values of the
technological index α, if the empirical time series for output Y , capital K and labour
L are known.

The value of the technological index α can be represented, from (6.12), as

α = ln ( Y
Y0

L0
L

)

ln (
L0
L

P
P0

)
. (7.2)

However, the amount of substitutive work P itself depends on the value of the tech-
nological index α. The growth rate of substitutive work, from (5.20), is calculated
as

η = δ − (1 − α)ν

α
, 0 < α < 1, (7.3)

where ν is defined by (5.17) and includes a possible correction determined by rela-
tion (7.7). Then, the time dependence of substitutive work can be restored by solving
the equation

dP

dt
= η(α)P . (7.4)

Equations (7.2)–(7.4) allow one to estimate the technological index α and substitu-
tive work P at given time series for Y , K and L.

The results of calculation for α are depicted on the plot of Fig. 7.1 in line with the
values of α calculated due to formula (7.1). Note that the choice of initial value of
the technological index allows us to move the whole curve of α up and down, so it is
important to have at least one point where the absolute value of α is known, which,
according to the estimation in Sect. 7.1.1, is taken as α ≈ 0.4 in year 1997. The
calculated values of the technological index are used to estimate the total personal
consumption. The results for the U.S. in the twentieth century are shown in Fig. 2.4
in Sect. 2.2.4.2.
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Fig. 7.1 Technological
index. The solid line
represents values of α found
according to (7.2)–(7.4). The
dashed line represents values
calculated due to
formula (7.1). Reproduced
from [1] with permission of
Elsevier

The estimated values of the technological index allow us to calculate the growth
rate of substitutive work η and to restore the time dependence of the quantity. The
results for P are shown in Fig. 2.8 in Sect. 2.5.1 in line with the total (primary)
consumption of energy in the U.S. economy. One can see that the substitutive work
grew on average faster than the total consumption of energy in years 1900–2000;
however, there are some years of recession.

7.1.3 Estimation of the Technological Coefficients

From formula (5.20), the technological index α can also be calculated through the
technological coefficients λ̄ and ε̄, which can be estimated independently. Values
of the coefficients of labour and substitutive work requirement can be found from
(5.6) and (5.13), if one has time series of the production factors and investment. The
equations for the production factors can be rewritten in terms of the non-dimensional
technological coefficients as

dL

dt
=

(
λ̄

I

K
− ν′ − μ

)
L,

dP

dt
=

(
ε̄

I

K
− η′ − μ

)
P. (7.5)

These equations allow one to develop methods of estimation of the technological
coefficients λ̄ and ε̄, whereas one has to take into account the conditions (6.10) of
non-negativity of the marginal productivities (principle of productivity), which, in
terms of the technological index, can be rewritten as

0 < λ̄ <
1

1 − α
, 0 < ε̄ <

1

α
, 0 < α < 1. (7.6)

The depreciation coefficient μ in (7.5) is estimated from the time series of I

and K ; these empirical values are determined in Sect. 2.2.4.1 and shown in Fig. 2.3.
The conditions (7.6) allow one to separate the extra depreciation rate of labour



120 7 Application to the U.S. Economy

and substitutive work ν′ and η′ on the basis of time series of quantities I/K , L

and P .
One can assume that all consumption of labour L is productive, thus values of

the labour requirement λ̄ can be calculated directly from the first equation from
the set (7.5). An attempt to exploit this procedure, considering ν′ = 0, determines
negative values of the technological coefficients (see the solid lines on the top plot
in Fig. 7.2), which can be connected with errors in estimating the amount of labour
and must be corrected by the quantity ν′. To ensure the fulfilment of relations (7.6),
one has to set the amendment ν′ as

ν′ = − 1

L

dL

dt
− μ +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̄0
I

K
,

1

L

dL

dt
+ μ < λ̄0

I

K
, λ̄0 <

1

1 − α
,

1 − αε̄0

1 − α

I

K
,

1

L

dL

dt
+ μ >

1 − αε̄0

1 − α

I

K
, ε̄0 <

1

α
,

(7.7)

where the positive quantities λ̄0 and ε̄0 are the prescribed bottom values of the tech-
nological coefficients.

The corrected results of the technological coefficients λ̄ are shown by the solid
lines on the bottom plot in Fig. 7.2. Values of the extra rate of depreciation ν′ ap-
pear to be noticeable in the first half of the century, but quite insignificant after
year 1950. It is known that estimates of the economic quantities for the first half
of the century are less reliable than those for the second half, so the deviation of
the quantity ν′ from zero can be connected not only with performance of techno-
logical equipment, but with some possible errors in estimating economic quanti-
ties.

Then, one can turn to the estimation of the second technological coefficient—
substitutive work requirement ε̄. The dotted lines on the top plot in Fig. 7.2
shows values of primary energy requirement, calculated on the basis of the sec-
ond equation from the set (7.5), in which primary energy E stands for substi-
tutive work P . The dotted line on the bottom plot in Fig. 7.2 shows values of
substitutive work requirement, calculated, at known values of the labour require-
ment and technological index α (see the previous section), according to the for-
mula

ε̄ = 1 − (1 − α)λ̄

α
. (7.8)

For a relatively reliable data of period 1950–2000, the technological coefficients
do not change much, thus one can estimate mean values

λ̄ = 0.758, ε̄ = 1.367.

The first quantity is less than unity. It means that on average labour-saving tech-
nologies are introduced during this span of time. One can see that the technological
coefficients are determined by two controversial tendencies. In order to save labour
and energy, they both must be less than unity. However, one of the technological
coefficients must be greater than unity in order for the marginal productivity to be
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Fig. 7.2 Technological
coefficients for the U.S.
economy. Top: Labour (solid
lines) and primary energy
(dotted lines) requirements
are calculated according to
relations from (7.5) (for
labour at ν′ = 0) on the basis
of time series for capital
stock, labour, primary energy
and investment. One can see
that sometimes inequalities
(7.6) are not fulfilled. Bottom:
Corrected labour (solid lines)
and substitutive work (dotted
lines) requirements are
calculated due to relations
(7.5) and (7.8) (at ν′ �= 0).
Values of ν′ are estimated due
to (7.7) at λ̄0 = ε̄0 = 0.5

positive. As a result, it appears that the technological coefficients pulsate around
unity.

7.1.4 Trajectories of Development

To illustrate the applicability of the theory, in this section we apply the dynamic
equations, obtained in Chap. 5, which allow us to calculate trajectories of evolution
of the production factors. The empirical values of production factors K , L and P

for the period 1900–2000 (see Appendix B), represented on the chart of Fig. 7.3,
allow one to test the adequacy of the obtained equations and to extrapolate results
for the future.

7.1.4.1 The System of Equations

First of all, we collect the dynamic equations for the production factors, that is, (5.6),
(5.13), (5.25), (5.30), (5.31) and (5.34) of Chap. 5,
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dK

dt
= I − μK,

dL

dt
=

(
λ̄

I

K
− μ

)
L,

dP

dt
=

(
ε̄

I

K
− μ

)
P,

I

K
= min

{
(δ̃ + μ), (ν̃ + μ)

1

λ̄
, (η̃ + μ)

1

ε̄

}
,

dα

dt
= δ̃ − ν̃ − α(η̃ − ν̃)

τ (ε̄ − λ̄)(δ̃ + μ)
, (7.9)

dλ̄

dt
= − 1

τ

(
λ̄ − ν̃ + μ

δ̃ + μ

)
,

dε̄

dt
= − 1

τ

(
ε̄ − η̃ + μ

δ̃ + μ

)
, α = 1 − λ̄

ε̄ − λ̄
.

There are five independent differential equations for seven variables K , L, P , I ,
λ̄, ε̄ and α, so one can choose five independent variables. It is assumed that the initial
values of the five independent variables as well as the rates of potential growth of
production factors

δ̃ = δ̃(t), ν̃ = ν̃(t), η̃ = η̃(t)

together with the time of crossover from one technological situation to another τ

and the coefficient of amortisation μ are given. These equations allow us to analyse
the evolution of an economic system.

7.1.4.2 Exponential Growth

One can see on the plot in Fig. 7.3 that the time dependence of production factors
K , L and P for the relatively calm period of years 1950–2000 can be approximately
depicted by straight lines, so that, for these years, the growth of production factors
can be described by exponential functions, as was demonstrated in Chap. 2 (see
formulae (2.29), (2.30) and (2.37)), with the rates of growth (in units of year−1)

1

K

dK

dt
= 0.0316,

1

L

dL

dt
= 0.0147,

1

P

dP

dt
= 0.0585. (7.10)

The exponential laws are known as the ‘stylised’ facts of economic growth.
In the simplest case, when all rates of growth are given as constant:

δ = δ̃, ν = ν̃, η = η̃,

the system of equations (7.9) has a simple asymptotic solution

K = K0e
δt , L = L0e

νt , P = P0e
ηt ,

I

K
= δ + μ, λ̄ = ν + μ

δ + μ
, ε̄ = η + μ

δ + μ
, α = δ − ν

η − ν
.

(7.11)

This solution corresponds to the ‘stylised’ facts of economic growth described by
exponential functions. In this case, the rates of potential growth of production factors
coincide with the real ones.

Formulae (7.11) allow one to estimate the technological coefficients as well as
the technological index, as far as the constant rates of growth of production factors
are known. One can consider the rates of growth in the period of 1950–2000 as
approximately constant and equal to the mean values defined by (7.10), so that one
can estimate a value of the technological index as

α = 0.39.



7.1 Production Factors 123

This estimate is naturally close to the previous one, which means that the rates of
real growth of production factors can be considered approximately constant in the
described period.

7.1.4.3 Scenarios of Development

In the general case, the system (7.9) describes development of the production system
at the rates of potential growth of the capital, expenditures of labour and substitutive
work, δ̃, ν̃ and η̃, as functions of time. At the given initial values of the variables, the
problem reduces to a Cauchy problem, which can be solved by numerical methods.
However, the greatest difficulty is that the rates of potential growth remain unknown
and should be the object of special research. To test the applicability of the theory to
reality, we have considered [1] the past development of the United States economy,
when the rates of potential growth can be estimated, and we can specify hypothetical
scripts of progress.

Scenarios of development can be obtained, if one sets the rates of potential
growth of capital, labour and productive energy δ̃, ν̃ and η̃ as function of time.
Otherwise, empirical values of the technological index α and the rates of potential
growth of labour and productive energy can be chosen as exogenous quantities. Be-
fore the year 2000, the rates of potential growth of labour and productive energy
ν̃ and η̃ are taken to be a little bit more than the rates of real growth to reproduce
the empirical dependencies of L and P . One can see that the calculated trajectory
approximates the real time dependence of production factors, though some details,
for example, the behaviour in the turmoil years 1930–1940, are not reproduced cor-
rectly. Beyond the year 2000, we explore two scenarios of development. In both
cases, the rate of growth of labour ν̃ coincides with the rate of population growth,
namely, ν̃ = 0.01 for the U.S. The first scenario corresponds to the value η̃ = 0.05
for all years. The second one shows the effect of diminishing the energy supply for
the substitutive work in the economy: the value of η̃ = 0.05 in year 2000 decreases
to zero in year 2010. The thin lines in Fig. 7.3 show the results of calculation of the
production factors at values of the depreciation coefficient μ calculated according to
cited statistical data (μ ≈ 0.02 before year 1925 and increases from 0.026 to 0.068
over years 1925–2000) and time of technological rearrangement τ = 1 year.

The initial values of all variables, apart from the technological variables, are
known from empirical data. The initial values of the technological variables can be
chosen arbitrarily, because, due to the relaxation equations from the set (7.9), the
initial values of the technological variables are forgotten in τ ≈ 1 year. However,
the choice of the technological variables must correspond to the value of the tech-
nological index α.

The rates of potential growth for the past development are chosen such that de-
fined trajectories of production factors conform with the actual ones. The restric-
tions for growth are interchangeable between lack of humans’ work and lack of
substitutive work (but not investments). It is possible to assume that this is a typical
situation.
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Fig. 7.3 Production factors
in the U.S. economy. Basic
production equipment (capital
stock) K in million dollars
(1996); consumption of
labour L in million
man-hours per year; primary
energy E and substitutive
work P , correspondingly, in
quads (1 quad = 1018 joules)
per year. The thick solid lines
represent empirical values,
while the thin lines show the
results of calculation.
Reproduced from [1] with
permission from Elsevier

One can see that the system of equations (7.9) allows us to draw scenarios of
evolution of national economies for possible development of available production
factors. However, the potential rates of growth should be considered as endogenous
quantities in the problem of evolution of human population on the Earth. This prob-
lem was discussed in Chap. 2, but there is no solution yet.

7.1.5 Decomposition of Primary Energy

One can assume that, in accordance with the speculations of Sect. 2.5.2, the total
primary energy E can be broken down into two parts,

E = EC + EP . (7.12)

The last part is the amount of energy carriers providing, after some transformation,
the pure work of production equipment P , which is only a small part of total pri-
mary energy E. The two constituents of primary energy as functions of time behave
differently with respect to labour L as a function of time. The property of produc-
tion factor P to be a substitute for labour allows us to state that an increase in
consumption of substitutive work, which corresponds to an increase in consumption
of primary substitutive work, can lead to a decrease in consumption of labour and
otherwise. One expects the change of the first part EC to correlate with the change
of labour, and the change of the second part EP to anti-correlate.

To analyse the situation, following [2], one has to consider the growth rates of
the production factors, which, as was shown earlier, are connected with the invest-
ment I , depreciation coefficient μ and technological characteristics, λ̄ and ε̄, of a
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production system by (7.9). The non-dimensional technological coefficients λ̄ and
ε̄ are characteristics of production equipment, which denote the required amount of
labour and substitutive work per unit of introduced equipment (measured in units of
total amount of capital K), respectively. The technological coefficients apparently
have to be considered for characterisation of the process of substitution. From the
definition of substitutive work and empirical investigation of these quantities (see
Fig. 7.2), one has to define the correlation1 of the technological coefficients as

corr(λ̄, ε̄) = −1. (7.13)

Additionally, one has to consider changes of primary energy E and its parts EC
and EP, the last being primary substitutive work. We assume that each quantity is
also characterised by its own technological coefficients, so that, in line with (7.9),
one can write three more balance equations,

dE

dt
=

(
ε̄E

I

K
−μ

)
E,

dEC

dt
=

(
ε̄C

I

K
−μ

)
EC,

dEP

dt
=

(
ε̄P

I

K
−μ

)
EP.

(7.14)

The second terms on the right sides of these equations reflect the decrease in the
production factors due to the removal of a part of the production equipment from
service. For simplicity, it is assumed that the depreciation coefficients of all quan-
tities in (7.14) are equal to the depreciation coefficient μ of production equipment
(capital stock). This is true for the case when installed technological equipment does
not change its quality during the time of service, which is assumed in the above
equations.

One can presume the quantity ε̄ to be a proxy of the quantity ε̄P, and the quantity
ε̄C to be proportional to quantity λ̄,

ε̄C = 〈ε̄C〉
〈λ̄〉 λ̄, ε̄P = ε̄, (7.15)

so that some of the correlations of the technological coefficients have to be defined
as

corr(λ̄, ε̄C) = 1, corr(λ̄, ε̄P) = −1, corr(ε̄, ε̄P) = 1. (7.16)

Note that these relations are the consequences of assumptions (7.15) and, in contrast
to relation (7.13), have to be considered as approximate ones.

1The correlation and covariance of two quantities a and b are defined as

corr(a, b) = cov(a, b)

�a�b
, (�a)2 = 1

n

n∑
j=1

(
aj − 〈a〉)2

,

cov(a, b) = 1

n

n∑
j=1

(
aj − 〈a〉)(bj − 〈b〉), 〈a〉 = 1

n

n∑
j=1

aj .
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Fig. 7.4 Share of primary
substitutive work. The ratio of
primary substitutive work to
total primary work EP/E is
calculated according to (7.23)

One can see that, due to (7.12) and (7.14), some of the technological coefficients
are connected by the relation

ε̄E = (1 − x)ε̄C + xε̄P, x = EP

E
. (7.17)

This equation can be easily obtained, if one sums the last two equations from (7.14)
and compares the result with the first equation from the same set.

To find an equation for the ratio x, we consider statistical characteristics of the
technological coefficients. Relation (7.17) is followed by the relations for mean val-
ues, covariances and correlations, respectively,

〈ε̄E〉 = (1 − x)〈ε̄C〉 + x〈ε̄P〉, (7.18)

cov(λ̄, ε̄E) = (1 − x) cov(λ̄, ε̄C) + x cov(λ̄, ε̄P), (7.19)

corr(λ̄, ε̄E)�ε̄E = (1 − x) corr(λ̄, ε̄C)�ε̄C + x corr(λ̄, ε̄P)�ε̄P. (7.20)

The last relation, taking (7.16) into account, can be rewritten as

corr(λ̄, ε̄E)�ε̄E = (1 − x)�ε̄C − x�ε̄P. (7.21)

One can use relations (7.15) and (7.18) to find the deviations of the quantities

�ε̄C = 〈ε̄C〉
〈λ̄〉 �λ̄, �ε̄P = �ε̄, 〈ε̄C〉 = 〈ε̄E〉 − x〈ε̄P〉

1 − x
. (7.22)

Equations (7.21) and (7.22) determine a formula for calculation of the ratio of
primary substitutive work to total primary energy

EP

E
= 〈ε̄E〉�λ̄ − 〈λ̄〉 corr(λ̄, ε̄E)�ε̄E

〈ε̄〉�λ̄ + 〈λ̄〉�ε̄
. (7.23)

The formula contains statistical characteristics of the quantities λ̄, ε̄ and ε̄E, which
can be estimated directly according to (7.9) and (7.14) on the basis of values of
substitutive work and time series for capital K , labour L, primary energy E and
investment from Table of Appendix B. The values of the ratio for the U.S. economy
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are represented in Fig. 7.4. According to these results, absolute values of primary
substitutive work are shown in Fig. 2.8 of Sect. 2.5.1. The results are realistic (close
to the direct estimates of this quantity) and show ups and downs of the quantity in
contrast to oversimplified direct estimates. The deviations of the calculated values of
primary substitutive work from empirical ones are quite understandable, consider-
ing the rather arbitrary assumptions made at the empirical estimation of the quantity.
For years 1911–1917, 1927–1934, 1962–1963 and 1971–1988, the calculated values
are unrealistically small; one can suppose that assumptions (7.15), which are con-
sequences of assumptions about the rates of depreciation of quality of production
equipment, are too coarse in these cases.

7.2 Marginal Productivities

The differential formulae (6.2) and (6.14), that is,

dY − �dt =
{

ξ dK,

β dL + γ dP,
� = Y ln

(
L0

L

P

P0

)
dα

dt
(7.24)

allow one to estimate directly the marginal productivities ξ , β and γ due to empirical
data. We assume that the time series for output Y , production factors K , L and P and
the technological index α are known (the last two quantities obtained by exploiting
the method of calculation described in Sect. 7.1.2).

From expressions (6.8), (6.13) and (6.15), the marginal productivities are con-
nected with each other, that is,

ξ = β
L

K
+ γ

P

K
, β = ξ(1 − α)

K

L
, γ = ξα

K

P
(7.25)

which allows us to test the theory using alternative estimates of the marginal pro-
ductivities.

7.2.1 Productivity of Capital Stock

One way to calculate the capital marginal productivity ξ is a direct use of the for-
mula

dY − �dt = ξ dK. (7.26)

Another way is to use the bulk productivity of capital Ξ defined by the relation

Y = ΞK (7.27)

and calculate the marginal productivity through the bulk productivity as

ξ = Ξ + K
dΞ

dK
. (7.28)
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Fig. 7.5 Marginal
productivity of capital stock.
The solid line represents
direct estimates of ξ from the
empirical data and the
equation dY − �dt = ξdK .
The dashed line shows the
marginal productivity
calculated according
to (7.25), while β and γ are
estimated directly due to the
empirical data and the
equation
dY − �dt = β dL + γ dP .
The dotted line represents the
ratio Y/K

The two methods of calculation give almost identical results, which are shown
in Fig. 7.5 by a solid line. For years 1950–2000, the mean values of the marginal
productivity and its standard deviation can be estimated as

ξ = (0.307 ± 0.044) year−1. (7.29)

Note that the differences dY and dK cannot be determined with great accuracy,
thus negative and very large values of the marginal productivity are excluded as
erroneous. It is not out of place to remember here the words of Morgenstern [3, p. 4]:
‘There are many reasons why one should be deeply concerned with the “accuracy”
of quantitative economic data and observations.’

One more way to estimate the capital marginal productivity is to use the first of
relations (7.25), assuming that the labour and energy marginal productivities, β and
γ , respectively, are directly calculated from empirical data, as will be demonstrated
in the next subsection. The quantity ξ , calculated in this way, is shown in Fig. 7.5 by
the dashed line. For years 1950–2000, in this case, the mean values of the marginal
productivity and its standard deviation can be estimated as

ξ = (0.337 ± 0.039) year−1. (7.30)

The values of the marginal productivity (7.29) and (7.30) practically coincide
with the averaged bulk productivity Y/K , which is (0.321 ± 0.009) year−1; this is
evidence that the capital marginal productivity does not depend on argument K .
According to numerous observations [3, 4], the growth of Y is approximately equal
to the rate of growth of capital K , which can be confirmed by comparing formulae
(2.14) and (2.29), so that the bulk productivity of capital Y/K is approximately
constant in the U.S. economy in the second half of the twentieth century.
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7.2.2 Productivities of Labour and Substitutive Work

The direct way to calculate the marginal productivities of labour and substitutive
work is to use the formula

dY − �dt = β dL + γ dP. (7.31)

Otherwise, the marginal productivities β and γ can be expressed through the bulk
productivities of labour and substitutive work, B and Γ , which are considered to be
functions of the ratio P/L and are defined by the relations

Y = B(P/L)L, Y = Γ (P/L)P. (7.32)

Indeed, having calculated the total differential of the output from the first equation,
one obtains

β = B + P

L

dB

d(P/L)
, γ = dB

d(P/L)
. (7.33)

Similarly, one can obtain, having calculated the total differential of the output from
the second equation of the set (7.32),

β = −
(

P

L

)2
dΓ

d(P/L)
, γ = Γ + P

L

dΓ

d(P/L)
. (7.34)

Calculations with the use of relations (7.33) or relations (7.34) give slightly different
values for the marginal productivities: one can use mean values of the two calcula-
tions. In comparison with (7.31), (7.33) and (7.34) give an alternative method of
direct estimation of the marginal productivities.

The non-dimensional marginal productivities βL/K and γE/K , estimated di-
rectly according to formula (7.31), are shown in the plot of Fig. 7.6 by the solid
lines. The marginal productivities are pulsating functions of time, and a maximum
of one of the marginal productivities corresponds to a minimum of the other and
vice versa. Averaged values of the quantities for years 1950–2000 are estimated as

β
L

K
= (0.211 ± 0.048) year−1,

γ
P

K
= (0.117 ± 0.012) year−1.

(7.35)

Note that negative and very large values of marginal productivities are omitted as
connected with erroneous values of production factors.

Alternatively, the marginal productivities β and γ can be estimated from relations
(7.25), assuming that capital productivity ξ and values of the technological index α

are known. The dashed lines in Fig. 7.6 show the alternative estimates of marginal
productivities at empirical values of ξ and empirical values of the technological
index α calculated in Sect. 7.1.2. For years 1950–2000 the alternative mean values
of the marginal productivities and their standard deviations can be estimated as

β
L

K
= (0.192 ± 0.025) year−1,

γ
P

K
= (0.129 ± 0.018) year−1.

(7.36)
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Fig. 7.6 Marginal
productivities of labour and
substitutive work. Solid
curves show direct estimate
productivities of labour (top)
and substitutive work
(bottom) according to (7.31).
Dashed curves represent
results of calculation
according to (7.25) at known
values of capital stock
productivity

These values should be compared with the above estimates (formulae (7.35)) of the
same quantities.

The dotted lines in Fig. 7.6 represents the results of calculation of marginal pro-
ductivities according to formulae (7.25) at empirical values of Y/K and empirical
values of the technological index α calculated in Sect. 7.1.2.

7.2.3 What is Productivity of Capital?

The results of estimating the marginal productivities confirm that relations (7.25)
are valid for the U.S. economy. Thus, indeed, the marginal productivity of capital
stock can be considered as the ‘sum’ of the marginal productivities of labour and
substitutive work, and no other factors need to be included in the production func-
tion. Although one needs production equipment (capital stock) to attract an extra
amount of external energy to substitute labour, work (labour services) can be re-
placed only by work (capital services), not by capital stock. Productivity of capital
stock is, in fact, productivity of labour and energy, and the main result of techno-
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logical progress is the substitution of human efforts by the work of external energy
sources by means of different sophisticated appliances. The production system of
society is a mechanism which attracts a huge amount of energy to transform matter
into things that are useful for human beings.

According to expression (6.18), the productivity of capital changes if the tech-
nological coefficients and/or the production factors change. The former causes fast
pulsation, while the latter provokes slow trends of the capital productivity. This
quantity apparently depends on the definition of production capital K . Let us recall
that the notion of production capital has to be refined by excluding some commodi-
ties from production investment. The share of core production capital in the total
production investment remains unknown, but more importantly, the growth rate of
the core production capital can differ from the growth rate estimated on available
statistical data.

7.3 Production of Value

From the results of the previous chapter, the production of value can be estimated
from the production function, which can be rewritten as

Y =

⎧⎪⎨
⎪⎩

ξK,

Y0
L

L0

(
L0

L

P

P0

)α

.
(7.37)

The function contains both characteristics of the production system: the techno-
logical index α and productivity of capital ξ , and the exploited production factors:
capital stock K , labour services L and substitutive work P . The second line in rela-
tions (7.37) represents the well-known Cobb–Douglas production function in which
productive energy P stands in the place of capital stock K .

Empirical values of the Gross Domestic Product (GDP) and production factors K

and L for the U.S. economy for years 1900–2000 are known (see Appendix B) and
are depicted on the plots of Fig. 2.1 (Sect. 2.2.3), Fig. 2.3 (Sect. 2.2.4.1) and Fig. 2.7
(Sect. 2.4.1). Methods of direct estimates of substitutive work P are feasible (see
Sect. 2.5.2), but are not developed sufficiently to estimate the substituting work with
enough accuracy. Therefore, substitutive work P and also the technological index
α are calculated according to the time series of the GDP Y and production factors
K and L. At given time dependence of labour services L and at calculated values
of the technological index α and substitutive work P , the time dependence of the
output naturally identically coincides with the empirical one.

7.3.1 Exponential Growth

There is some interest in writing approximate relations for relatively calm periods
of development to describe the ‘stylised’ facts of economic growth, that is, the ex-
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Fig. 7.7 Decomposition of
the Solow residual. The
conventional ‘total factor
productivity growth’ consists
of the difference between the
growth rates of capital
services and capital stock
(black area) and the true
residual connected with
changes of the production
system itself (the
technological and structural
changes)

ponential growth of output when the exponential growth of production factors is
given,

K = K0e
δt , L = L0e

νt , P = P0e
ηt .

For exponential growth of production factors, an expression for output follows im-
mediately by relations (7.37) and can be written in the following form:

Y = Y0e
[ν+α(η−ν)]t = Y0e

δt . (7.38)

One can see that the theory describes the ‘stylised’ facts of economic growth, while
the growth rate of output is equal to the growth rate of capital and is connected with
the growth rates of labour and substitutive work.

Returning to the empirical data for the U.S. economy, one uses the values of the
growth rates of production factors given in Sect. 7.1.4.2 (formulae (7.10)), that is,

δ = 0.0316, ν = 0.0147, η = 0.0585.

For years 1950–2000, the empirical growth of the GDP of the U.S. can be considered
to be approximately exponential (see formula (2.14))

Y = 1.69 × 1012 · e0.0326t dollar(1996)/year.

Time t is measured in years, and t = 0 corresponds to year 1950.
In accordance with relation (7.38), the empirical averaged growth rate of out-

put 0.0326 is approximately equal to the growth rate of capital δ = 0.0316, which
is confirmed by numerous observations [4, 5].2 The difference between the growth

2Here the reader can be pertinently reminded of the contradictions arising if one uses for an as-
sessment of output the neo-classical production function in the Cobb–Douglas form,

Y = Y0
L

L0

(
L0

L

K

K0

)α′

, 0 < α′ < 1.

Considering exponential growth (7.10), the expression for output is determined in the form of

Y = Y0e
[(1−α′)ν+α′δ]t .
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rates of capital and output seems to be quite unreliable, given the rough estimate
of the parameters of the problem, although under more detailed consideration, the
difference can be attributed to an intrasectoral technological change and to the dif-
ference of the growth rates of sector outputs (see Sect. 8.2.2, formula (8.19)).

The rate of growth of output can be broken into two parts. On average a fraction
of the rate (1 − α)ν ≈ 0.0112 is connected with growth of expenditures of labour,
and the other part αη ≈ 0.0235 with growth of substitutive work. The capital is the
means of attracting the production factors to production, thus an increase in con-
sumption of the production factors is connected with an increase in capital. One can
formally separate the growth rate of capital δ within the growth rate of substitutive
work η to get a breakdown of the growth rate of output in conventional terms: the
contribution from the labour growth (1 − α)ν ≈ 0.0112 and the contribution from
the capital growth αδ ≈ 0.0126. One can see that the Solow residual (total factor
productivity) can be expressed through the technological index and the growth rates
as

Solow Residual = α(η − δ) = (1 − α)(δ − ν) ≈ 0.0109. (7.39)

Structural and technological changes, if they exist, compensate each other in this
simple case of exponential growth. A detailed decomposition of the Solow residual
for the U.S. economy is shown in Fig. 7.7.

7.3.2 Pulsating Character of Production Development

The empirical data demonstrates the pulsating character of development of produc-
tion. An example of well-documented dynamics of the U.S. economy (see Fig. 2.2
in Sect. 2.2.3) shows that the period of pulsations of the growth rate of the GDP is
about four years. The considered theory of production allows for description of the
cyclic character of development naturally. In a simple approximation, when charac-
teristics of the equipment do not change after its installation, the rate of growth of
the GDP, according to (6.21) is recorded as

1

Y

dY

dt
= ν + (1 − λ̄)μ

λ̄
+ 1

ξ

dξ

dt
. (7.40)

The rate of growth of output is connected with four quantities, while the change
of the growth rate of the labour demand is connected with the coefficient of labour
requirement λ̄, which is a strongly pulsating quantity, as is possible to see on the
charts of Fig. 7.2. One can see that, if the technological coefficients are equal to

It is easy to see that the Cobb–Douglas production function describes empirical data for the U.S.
for years 1950–2000 at α′ ≈ 1, which excludes the influence of labour. Moreover, the index α′ can
be interpreted as a share of capital in total expenses for maintenance of production factors—the
quantity that is equal to 0.3–0.4 for the U.S. economy. This is a well-known fact [4, p. 4] which
has led to the introduction of the full factor of productivity [6] and to numerous modifications of
the neo-classical production function [7, 8].
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unity, labour productivity is constant and all addition of a product is connected only
with an increase in the number of workers.

The condition, when the labour requirement λ̄ is less than unity, shows that efforts
of workers are partially replaced with the work of machines movable by outer energy
sources; it is a typical situation for the U.S. economy in the second half of the
twentieth century. The existence of pulsations of output can be connected with the
existence of the three alternative types of functioning of the production system,
which were described in Sect. 5.3. In the considered period, the second and third
cases (see Sect. 7.1.4) are realised for production of the U.S., that is, the processes
are running at deficiency of labour and abundance of investments, substitutive work
and raw materials, when dλ̄

dt
< 0; or at deficiency of substitutive work and abundance

of investments, work and raw materials, when dλ̄
dt

> 0.
To describe an ideal cycle, one can start from the point where the coefficient of

labour requirement has its minimum value. In the case when dλ̄
dt

> 0, the produc-
tion system is experiencing a deficiency of substitutive work, whereas the creation
of working places is restricted, and, at small values of the coefficient of labour re-
quirement, the index of unemployment starts to increase. The coefficient of labour
requirement is also growing, according to (5.30); the production system attracts
more labour, but it appears insufficient to decrease the index of unemployment im-
mediately, and the index grows simultaneously with the technological coefficient.
The growth of unemployment stops when the production system succeeds in using
all the extra supply of labour, and the technological coefficient reaches its potential
value at dλ̄

dt
= 0. The situation is being balanced at the peak of unemployment, and,

at this point, the change of the growth mode has occurred. Further, when dλ̄
dt

< 0,
the production system is functioning at a deficiency of labour and is able to use
all available resources of workers: the index of unemployment decreases simulta-
neously with decrease in labour demand, until at some point in time a new balance
occurs at dλ̄

dt
= 0, where the type of functioning of the production system is chang-

ing again: a new cycle begins. The period of a cycle in this case is connected with
the mechanism of propagation of exploited technologies.

To design a mathematical model of an ideal business cycle, apparently, aside
from the output, technological coefficients and labour demand, one must include
some other variables, first of all, labour supply and wage, and refer to some re-
lations between output, wages and labour supply. There remain many reasons for
the observable real cycles not to be ideal. However, empirical data for the U.S.
economy confirm the general patterns of business cycle phenomena: the changes
of the coefficient of labour requirement and the index of unemployment corre-
late.

The considered approximation of a national economy as a uniform sector allows
us to describe the dynamics of short cycles in the U.S. economy in the last century
from the point of view of production functioning. In reality the national economy
consists of many sectors, and each sector is characterised by technological coef-
ficients with different times of propagations of technology. Thus it appears to be
possible to have a wider set of modes of development leading to the occurrence of
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cycles of various durations; these were detected empirically when the functioning
of the world economy was investigated [9]. Apparently, it is possible to also ex-
plain observable long cycles from the point of view of production and changes of
modes of development. Also, the majority of researchers specify introduction of in-
novations into the production as one of the essential circumstances connected with
cycles. For the appropriating analysis it is necessary to consider an empirical situa-
tion in the production sectors and, except for time series for the GDP, to involve in
the discussion time series for expenditures of labour, substitutive work, capital and
investment for the considered sectors.

7.3.3 Trajectories of Output

From relation (7.37), a trajectory of development of output can be easily calculated
if values of the production factors are known; for example, as in the case when the
exponential growth in Sect. 7.3.1 was investigated. To calculate the evolution of
production factors, according to the system of equations (7.9), in which the techno-
logical index α is also treated as a variable, one has to know the rates of potential
growth of production factors. Due to the difficulties of judging the potential amount
of production factors, one can consider the problem in another way, assuming that
some other characteristics of the production system are given.

One can see that the growth rate of the output, from (7.40), can be calculated on
the assumption that the four quantities: capital stock productivity ξ(t), the rate of
labour growth ν(t), the depreciation coefficient μ(t) and the non-dimensional tech-
nological coefficient λ̄(t), are given as functions of time. To find the time depen-
dence of the output, there is no need to know the time dependence of the production
factors, though it is convenient to formulate a simple scheme which allows one to
calculate trajectories of the production factors as well. The above results allow one
to write the system of equations

Y = ξK, ξ = ξ(t),

dK

dt
= δK, δ = ν + (1 − λ̄)μ

λ̄
, μ = μ(t), λ̄ = λ̄(t),

dL

dt
= νL, ν = ν(t),

dP

dt
= ηP, η = δ − (1 − α)ν

α
, α = ln ( Y

Y0

L0
L

)

ln (
L0
L

P
P0

)
.

(7.41)

The system determines the time dependence of the variables Y , K , L, P and α, if
the four quantities ξ , μ, ν and λ̄ are given as functions of time. Initial values of all
five variables have to be given, and the initial value of capital stock must correspond
to the initial values of output and marginal productivity K0 = Y0/ξ(0), while the
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Fig. 7.8 Output and national
wealth in the U.S. economy.
The empirical (solid shorter
line for GDP) and calculated
values of the total national
wealth W and GDP in
millions of dollars for year
1996. Two scenarios are
shown; the lower line after
year 2010 corresponds to a
diminishing supply of energy

initial values of labour L0 and substitutive work P0 can be chosen arbitrarily. Note
also that these quantities are connected by (6.15), that is,

ξ = Y0
L

L0K

(
L0

L

P

P0

)α

, (7.42)

which shows that one has to require consistency of the solution to the given quan-
tity ξ .

To illustrate the procedure of drawing a scenario and deviations arising due to
approximations, we refer to the U.S. data for years 1900–2000. Empirical values
of the capital stock productivity ξ(t), the rate of labour growth ν(t), the depre-
ciation coefficient μ(t) and the non-dimensional technological coefficient λ̄ were
introduced. The thick solid line in Fig. 7.8 depicts empirical values of the GDP. One
can see that the calculated time dependence of output (thin lines) approximates the
real-time dependence of the GDP before the year 2000 in all details, which confirms
the consistency of the theory.

One can assume that a development will continue beyond year 2000. One can
imagine any program of future development of technology after year 2000 in terms
of the four quantities ξ , μ, ν and λ̄ to have an outline of output Y and production
factors K , L, P for the U.S. economy. The outputs of two scenarios of development
of the U.S. economy for years 2000–2040, which correspond to the growth rates of
labour and energy described in Sect. 7.1.4, are presented in Fig. 7.8 by thin lines. In
both cases, the growth rate of labour ν coincides with the rate of population growth,
namely, ν = 0.01 for the U.S. economy. The first scenario corresponds to the values
of μ and λ̄ in year 2000, that is, μ = 0.68 and λ̄ = 0.78 for all years. The second
one shows the effect of diminishing the energy supply in the economy: the value
of λ̄ increases to unity in year 2010. One can see a decrease in the growth rate of
the output in the case when the growth rate of productive consumption of energy
is decreasing. Of course, these results should be considered as an illustration of a
method of forecasting rather than as the forecast itself. One needs to know the future
availability of labour and substitutive work to do a real prediction.

We can have the picture of development for any economy, if we set the values
of variables Y , L and α in the initial year and the program of development for the
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future in terms of the four quantities ξ , μ, ν and λ̄. No procedure of adjustment is
needed, but, to set initial values and to imagine a program of development, we must
know something about the investigated economy.

7.3.4 National Wealth

In accordance with the definitions of Chap. 2, the total national wealth W (see
Sect. 2.3) consists of the capital stock K and the storage of products, which are
mostly non-material products of value R,

W = K + R.

The separate parts of the national wealth, in accordance with (2.27) and (2.28),
can be estimated from the equations

dK

dt
= I − μK,

dR

dt
= Y − I − C − μR,

where I is the investment in the stock of production capital and C is the current
consumption, which can be calculated, according to (6.33), as the cost of labour,

C = cL = 1 − α

α
μK. (7.43)

It is assumed that the depreciation coefficient has the same value for both tangible
and non-tangible stocks.

Then, from the above relations, the total national wealth is determined by the
equation

dW

dt
= Y − C − μW. (7.44)

Results of calculations of national wealth W for the U.S., in line with GDP Y , for
the two above-described scenarios are shown in Fig. 7.8 by thin lines.
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Chapter 8
Dynamics of Production in Many-Sector
Approach

Abstract In this chapter, we are returning to the many-sector model of production
system, discussed in Chap. 4. One can assume that production of value and dynam-
ics of production factors in every sector are described in the same way as for the
whole economy, according to the rules set up in Chaps. 5 and 6. This involves, in
addition to the internal restriction discussed in Chap. 4, the restrictions imposed by
the availability of labour and substitutive work. The schematisation of the produc-
tion process allows us to formulate the simplest theory including only three produc-
tion factors in every sector. This allows one to draw a picture of economic growth,
taking into account the specific features of each sector.

8.1 Description of the Sector Dynamics

The methods of description of the production system developed by Leontief [1–3]
and Sraffa [4] assume the many-sector model of an economic production system.
Following the speculations of Chap. 4, we consider the production system of an
economy consisting of n production sectors, each of them creating its own prod-
uct. The sectors are interacting with each other, but to develop a description of the
dynamic behaviour of the system, we have to first consider a formulation for each
separate sector.

8.1.1 Dynamics of Production Factors

Similar to the entire production system, the sector can be thought of as a collec-
tion of production equipment Ki , which is activated by labour Li and substitutive
work P i [5]. One can assume that all speculations of Chap. 5 can be reproduced for
a separate sector, so that (5.6) and (5.13) for the production factors can be rewritten
in a simplified form as

dKi

dt
= I i − μKi,

dLi

dt
= λiI i − μLi,

dP i

dt
= εiI i − μP i. (8.1)
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The technological coefficients λi and εi (i = 1,2, . . . , n) characterise a quality of
the production equipment introduced in sector i. The coefficient of depreciation μ

has to be given as a parameter of the problem.
It is also convenient to introduce the non-dimensional technological variables for

every sector,

λ̄i = λiKi/Li, ε̄i = εiKi/P i

and assume that the speculations of Sect. 5.3 can be repeated for each sector, so
that one supposes the technological variables are determined by equations similar
to (5.30) and (5.31), that is,

dλ̄i

dt
= − 1

τ i

(
λ̄i − ν̃i + μ

δ̃i + μ

)
,

dε̄i

dt
= − 1

τ i

(
ε̄i − η̃i + μ

δ̃i + μ

)
. (8.2)

The time of crossover from one technological situation to another τ i can be different
for different sectors. It is determined by internal processes of replacement of tech-
nology within the sector. The symbols for the rates of potential growth of capital,
labour and substitutive work in every sector, δ̃i , ν̃i and η̃I (i = 1,2, . . . , n), are in-
troduced here. These quantities apparently relate to the rates of potential growth of
the production factors for the entire production system and are assumed to be given
as functions of time.

It is also convenient to write an equation for the sectoral technological index,

dαi

dt
= δ̃i − ν̃i − αi(η̃i − ν̃i )

τ i(ε̄i − λ̄i )(δ̃i + μ)
. (8.3)

One can see that, if the potential rate of capital growth δ̃i (t) is determined by equa-
tion

δ̃i = ν̃i + αi
(
η̃i − ν̃i

)
,

the technological index appears to be an integral of evolution and, therefore, can be
considered as a very important characteristic of the production system.

8.1.2 Investment

To determine investment I i in (8.1), one has to take into account internal and exter-
nal restrictions on the development of the system. The internal restrictions, imposed
by the technological structure of the production system and by necessary private
consumption, determine the potential growth rate of capital stock δ̃i , which is con-
nected with the potential investments in sector i,

Ĩ i = (δ̃i + μ)Ki.

It is assumed that there is a method, for example, the method described in Sect. 4.3.3,
to calculate the sector potential investments and, consequently, according to the
above relation, the rate of potential growth of capital stock.
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The external restrictions are imposed by the availability of labour and substitutive
work, which is assumed to be described by their rates of potential growth for every
sector ν̃i (t) and η̃i (t). These exogenous characteristics are given functions of time.

Therefore, one can rewrite relation (5.27) for each sector,

I i = χiKi + min
{
Ĩ i ,

(
ν̃i + μ

)
Li/λi,

(
η̃i + μ

)
P i/εi

}
, (8.4)

where χi is a central-planning intervention in sector i. In the many-sector model,
interventions χi can be understood as coefficients of re-allocation of investments
among different sectors, so that

n∑
i=1

χiKi = 0.

By relation (8.4), three modes of the development of each sector are determined.
The first choice in relation (8.4) corresponds to the internal restrictions. The sec-
ond choice in (8.4) is valid in the case of abundance of substitutive work and raw
materials and a lack of labour. In this case, labour is used completely and there is
a possibility of attracting extra substitutive work. The latter is a reason for techno-
logical changes. Internal processes lead to decrease of labour and increase of sub-
stitutive work in production processes. The last choice in (8.4) is valid in the case
of a lack of substitutive work and an abundance of labour and raw materials. Ap-
proaching the production system with the many-sector model, one has three modes
of development for every sector, and, consequently, there are many possible modes
of development of the production system.

8.1.3 Sector Production of Value

8.1.3.1 Sector Production Functions

As was described in Chap. 2, the output of a sector i is characterised by three quanti-
ties: gross output Xi = Xi , final output Yi and sector production of value Zi . These
quantities are connected with each other by (4.6) and (4.7), which can be written in
the form

Xi = 1

1 − ai
Zi, Yj =

n∑
i=1

δi
j − ai

j

1 − ai
Zi, ai =

n∑
i=1

ai
j (8.5)

where ai
j is a component of the matrix of intermediate production consumption (the

input–output matrix) introduced by relation (4.2).
Our immediate task is to determine the output vectors as functions of produc-

tion factors. From relation (4.12) and the above relations, the gross output Xi = Xi ,
final output Yi and production of value Zi in each sector (i = 1,2, . . . , n) are con-
nected with the vector of amount of sectoral production equipment or sectoral capi-
tal stock Ki ,
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Xi = 1

bi
Ki, bi =

n∑
j=1

bi
j , (8.6)

Yj =
n∑

i=1

ξ i
jK

i, ξ i
j = δi

j − ai
j

bi
= ξ i

δi
j − ai

j

1 − ai
, (8.7)

Zi = ξ iKi, ξ i =
n∑

j=1

ξ i
j = 1 − ai

bi
, i, j = 1,2, . . . , n, (8.8)

where coefficients ai
j comprise a matrix of intermediate production consumption

(the input–output matrix) and coefficients bi
j comprise a matrix of fixed capital (the

capital-output matrix). The components of the fundamental technological matrices
ai
j and bi

j are combined to form components ξ i
j of a matrix of capital productivities.

The quantities ξ i
j show how an increase in production equipment in sector i affects

the final output in sector j . One can see that, to calculate the final product, all the
components of the matrix of capital productivity are needed.

Formulae (8.6)–(8.8) connect the vector characteristics of output Xi , Yj and Zi

with the amount of sector capital Ki . On the other hand, production of value is con-
nected with the sector consumption of production factors: labour Li and productive
energy P i . In the general case, the sectoral productivities can depend on the produc-
tion factors consumed in all the other sectors. It is possible to expect that quantities
of marginal productivities are determined by a mutual market of production factors.
In the simplest case, one can consider production of value Zi in a sector to be de-
termined by consumption of production factors in the same sector. In this case, we
refer to the procedure which was used in Sect. 6.3 to determine

Zi = Zi
0

(
Li

0

Li

P i

P i
0

)αi

, αi = 1 − λ̄i

ε̄i − λ̄i
. (8.9)

The constant Zi
0 is controlled by initial values of variables. Then, the gross output

Xi and the final output Yi can be easily found with the help of relations (8.5).

8.1.3.2 Marginal Productivities and Technological Change

Equations (8.8) and (8.9) present two complementary expressions for production of
value in sector i,

Zi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ iKi, ξ i = 1 − ai

bi
,

Zi
0

(
Li

0

Li

P i

P i
0

)αi

, αi = 1 − λ̄i

ε̄i − λ̄i
,

i = 1,2, . . . , n,
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so that, comparing them, one can obtain

ξ i = Zi
0

Li

Li
0K

i

(
Li

0

Li

P i

P i
0

)αi

, αi = 1 − λ̄i

ε̄i − λ̄i
. (8.10)

To separate the effects of production factors and technological change, one can
consider the differential of production of value

dZi − �idt =
{

ξ i dKi,

βi dLi + γi dP i,
i = 1,2, . . . , n (8.11)

where capital marginal productivity ξ i is defined above and, from the above defini-
tions,

βi = ξ i
(
1 − αi

)Ki

Li
, γi = ξ iαi K

i

P i
, (8.12)

�i = −Ki

bi

dai

dt
− (1 − ai)Ki

bi

dbi

dt
= Zi ln

(
Li

0

Li

P i

P i
0

)
dαi

dt
= Zi 1

ξ i

dξ i

dt
. (8.13)

The quantity �i is connected with changes of components of the technological ma-
trices A and B and can be called the technological change within the sector labelled i.

Let us note that relations (8.11) are valid for the case when all prices of products
do not depend on time. In the opposite case, we ought to use a new quantity Ẑi ,
namely, production of value measured in the current money unit, for which we have

dẐi

dt
= pi

(
dZi

dt

)
pi

+ Ẑi d lnpi

dt
, (8.14)

where ( dZi

dt
)pi

is the derivation of production of value in sector i at constant prices
given by formula (8.11). The indexes of prices of products pi must be considered
to be new variables. One needs extra equations to include them for consideration in
this case. Some equations will be discussed in Chap. 9. Further, we restrict ourselves
to the case when all prices are constant.

8.2 Rules of Aggregation and Structural Shift

8.2.1 Production Factors

To return to the one-sector description of the system, we can refer to natural defini-
tions (which were discussed in Sect. 2.3.2, (2.24) and in Sect. 5.1, (5.1)) of produc-
tion factors as sums of corresponding sectoral quantities,

K =
n∑

i=1

Ki, L =
n∑

i=1

Li, P =
n∑

i=1

P i.
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One can sum (8.1) for the dynamics of sectoral production factors to obtain (5.6) and
(5.13) for the dynamics of production factors for the production system as a whole.
The procedure defines the technological coefficients for the production system as a
whole,

λ =
n∑

j=1

I j

I
λj , ε =

n∑
j=1

I j

I
εj , (8.15)

where I j is the gross investment in sector j , and I = ∑n
j=1 I j is the gross invest-

ment in the entire economy.
It is convenient to introduce the symbols for the growth rates of sector production

factors: capital, labour and substitutive work, δi , νi , ηi , respectively, and to define
the growth rates of production factors for the entire system by the relations

δ = 1

K

n∑
i=1

δiKi, ν = 1

L

n∑
i=1

νiLi, η = 1

P

n∑
i=1

ηiP i. (8.16)

The introduced averaged growth rates depend, generally speaking, on time, even if
the sectoral growth rates do not.

In the introduced symbols (8.1)–(8.4) can be rewritten as

I i = (
δi + μ

)
Ki, λi = νi + μ

δi + μ

Li

Ki
, εi = ηi + μ

δi + μ

P i

Ki
, (8.17)

and one can easily see that formulae (8.16) and (8.17) allow us to return to expres-
sions (written in Sect. 5.2.2) for investment and the technological coefficients of the
production system as a whole,

I = (δ + μ)K, λ = ν + μ

δ + μ

L

K
, ε = η + μ

δ + μ

P

K
.

8.2.2 Production of Value

The final output of the entire system has to be calculated according to one of the
two equations

Y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
j=1

Yj

n∑
i=1

Zi

while the sectoral production of value Zi is defined by expressions (8.8) and (8.9).
One can use (8.8) to obtain the final output and its derivative

Y =
n∑

i=1

ξ iKi,
dY

dt
=

n∑
i=1

Zi

(
δi + 1

ξ i

dξ i

dt

)
. (8.18)
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One can separate the growth rate of the total capital stock δ and use (8.13) for the
technological change �i to obtain an expression for the growth rate of output in the
form

1

Y

dY

dt
= δ + 1

Y

n∑
i=1

[
�i + Zi

(
δi − δ

)]
. (8.19)

The deviations of the growth rate of final output from the growth rate of capital δ

are connected with the technological change of the production system and with the
non-homogeneity of sectoral development. Comparison of this equation with (6.17)
and (6.19) allows us to determine an expression for the total of technological change
and structural shift,

� =
n∑

i=1

[
�i + Zi

(
δi − δ

)]
. (8.20)

It allows us to calculate the technological index according to the equation

dα

dt
= 1

Y
ln−1

(
L0

L

P

P0

) n∑
i=1

[
�i + Zi

(
δi − δ

)]
. (8.21)

Let us note that the growth rate of the sectoral final output δj is, generally speak-
ing, different from the growth rate of the production of value in sector δi . The quan-
tities are connected, due to (8.5), by the relation

δj =
n∑

i=1

δi
δi
j − ai

j

1 − ai

Zi

Yj

. (8.22)

8.3 Equations of Growth

The preceding results allow one to write a closed set of equations for the dynamics
of the production system, which is assumed to consist of n sectors and is charac-
terised by the parameters listed below. The equations can be written in different
equivalent forms, by making use of the different sets of assumptions and variables.
Here, we refer to the method used for the one-sector approach and considered in
Sect. 7.3.3, and we assume that every sector (labelled i, i = 1,2, . . . , n) is described
by variables:

Zi production of value,
Ki value of production equipment,
Li consumption of labour,
P i consumption of substitutive work,
αi technological index.

Additionally, the gross and final outputs can be calculated according to (8.5), that
is,

Xi = 1

1 − ai
Zi, Yj =

n∑
i=1

ξ i
j

ξ i
Zi, ξ i =

n∑
i=1

ξ i
j .
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It is convenient to list the fundamental characteristics of a production system,
which are needed for the description:

ξ i
j the components of the matrix of capital marginal productivity. The components

have to be given as functions of time or can be calculated through the com-
ponents of the fundamental technological matrices: input–output matrix ai

j and

capital-output matrix bi
j as

ξ i
j = δi

j − ai
j

bi
, bi =

n∑
l=1

bi
l . (8.23)

Components of the matrices ai
j and bi

j ought to be estimated empirically from
definitions (4.2) and (4.12).

sj share of investment product in final output of sector j . One can assume that
investment sectors are separated, so that for them sj = 1, whereas for others
sj = 0.

μi coefficient of depreciation of production equipment. As a simplification, it can
be accepted that it has the same value for all products in all situations and is
constant.

ν̃i the rate of potential growth of labour in every sector should be given as a function
of time.

λ̄i the dimensionless technological coefficient should be given as a function of time.
If the quantity λ̄i < 1, the consumption (for unit of capital stock) of labour de-
creases and the consumption of substitutive work (work of production equip-
ment) increases. The situation is opposite, if the quantity λ̄i > 1.

One can see that these quantities determine the applied technology of the production
system, and we can say that the technology in an input–output model is given if we
know these parameters.

We refer to the results of Chap. 6 and this chapter to collect the set of equations
for the listed variables:

Zi = ξ iKi,

dKi

dt
= δiKi, δi = −μi + min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
l,j=1

sj
Kl

K
ξ l
j , K =

n∑
l=1

Kl,

ν̃i + μi

λ̄i
,

dLi

dt
= νiLi, νi = (

δi + μi
)
λ̄i − μi,

dP i

dt
= ηiP i, ηi = δi − (1 − αi)νi

αi
, αi =

ln
(

Zi

Zi
0

Li
0

Li

)

ln
(Li

0
Li

P i

P i
0

) .

(8.24)

It is assumed that there are no other restrictions.
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This is a set of evolutionary equations, so the initial values of all the variables,
that is,

Zi(0), Ki(0), Li(0), P i(0), αi(0) (8.25)

should be given, while the initial value of capital stock must correspond to the initial
values of output and marginal productivity K(0) = Y(0)/ξ(0). The initial values of
labour L(0) = L0 and substitutive work P(0) = P0 can be chosen independently.

The problem—in this case one has a Cauchy problem—can be solved by numer-
ical methods. The equations determine a trajectory of evolution of the production
system. The final consumption and the storage of intermediate products appear to
be the consequence of evolution of the system.

Note that the above system of equations is valid for the case when all prices are
considered to be constant during time. The system can be reformulated for the case
when prices change. In this case, one has to introduce the new variables for the final
output measured in the current money unit Ẑi instead of variables Zi (using (8.14)).
Some equations for the indexes of prices of the product pi , i = 1,2, . . . , n, that must
be considered to be new variables, have to be added as well. Some principles of the
design of equations for the price indexes will be discussed in Chap. 9.

One supposes that the equations reflect some universal features of production
systems. In our theory, economic growth is coupled with growth of consumed en-
ergy and technological changes. Understanding of the energy-economy coupling
in production systems was considered crucial for the design of proper models to
generate scenarios of development, and much effort and money has been spent to
create some simulation models of energy-economy systems [6]. Such models pro-
vide us with many details of internal processes but require much input information
(many empirical parameters). In contrast, phenomenological models, such as the
one above, deal with aggregate variables and look simpler. They can be helpful in
generating reliable scenarios of the evolution of global and national economies in
macroeconomic terms for government use and research.

8.4 Three-Sector System

As a simple example, we consider the dynamics of the production system consist-
ing of the three sectors that were described in Sect. 2.1. The first sector produces
the means for production and supplies all sectors with material resources, which are
necessary for the production in all sectors. The second sector creates principles of
organisation (codification, science, research and development). The third sector pro-
duces goods and services for current personal and social consumption. The balance
relation for the sectors can be written as

X1 = X11 + X12 + X13 + Y1,

X2 = X21 + X22 + X23 + Y2, (8.26)

X3 = Y3.
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The final product of the first sector, Y1, is invested into all the sectors,

Y1 = I 1 + I 2 + I 3. (8.27)

The second sector creates an intermediate non-material product, part of which, Y2,
is stored. The final product of the third sector, Y3, is being totally consumed. Only
the first sector produces the products for investment, so, in this situation, s1 = 1,
s2 = s3 = 0 in (8.24). We assume that the other characteristics of the system can
also be given as described below.

8.4.1 Fundamental Matrices

The components of the matrices A and B are defined by relations (4.2) and (4.12)
and can be estimated using available empirical data and known statistical methods
of evaluation. For the considered case of a three-sector system, the numbers below
were inspired by the data for the Soviet Union economy in year 1987 [7]. However,
the estimates are quite uncertain; thus these numbers can be considered only as an
illustrative example.

A =
∥∥∥∥∥∥

0.581 0.207 0.0712
0.0102 0.0451 0.0134

0 0 0

∥∥∥∥∥∥ , (8.28)

B =
∥∥∥∥∥∥

1.28 2.34 2.14
0.098 0.90 0.214

0 0 0

∥∥∥∥∥∥ year. (8.29)

It is seen that all components of the matrices are non-negative. Note that the matrices
are degenerate. This is not an exception but the rule.

The components of the matrices A and B combine, according to the rule (8.23),
to create the fundamental matrix of capital marginal productivity

Ξ =
∥∥∥∥∥∥

0.304 −0.0639 −0.031
−0.0074 0.295 −0.0058

0 0 0.418

∥∥∥∥∥∥ year−1. (8.30)

The matrix Ξ describes the quality of capital, which is improving over time. The
components of matrices as functions of time can be approximated, considering that,
as a result of technological achievements, one needs less materials and less labour
to create products. We consider the case when the component ξ1

1 of matrix (8.30)
increases slowly with time.

8.4.2 Program of Development

As an example, we consider the development of the system from an initial state with
values of output and capital in each sector,
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Fig. 8.1 Impact of
parameters on the sectoral
output. The labelled lines
depict output in
corresponding sectors. The
thick line represents output
for the entire economy

Y1(0) = 40, Y2(0) = 90, Y3(0) = 120,

K1(0) = 226, K2(0) = 317, K3(0) = 282.

The depreciation coefficients, the rates of potential growth of labour and the tech-
nological coefficients are considered to be constant until year 140. In year 140, the
technological coefficient in sector 3 decreases to 0.7.

μ1 = 0.05, μ2 = 0.05, μ3 = 0.05,

ν1 = 0.01, ν2 = 0.01, ν3 = 0.01,

λ̄1 = 0.9, λ̄2 = 0.9, λ̄3 =
{

0.9, before year 140,

0.7, after year 140.

The results, depicted in Fig. 8.1, show the effects of change of the parameters.
The increase in the productivity of the first sector brings a change of modes of de-
velopment. The initial development of the system is restricted by investment. About
year 100 the change of modes occurs: after this year, labour appears to be the limit-
ing factor. The impact of the replacement of labour by substitutive work is illustrated
for sector 3. The decrease of the technological coefficient in year 140 provokes an
increase in the growth rate of output in this sector, as can be seen in Fig. 8.1.

8.5 Technological Coefficients and Technological Matrices

To characterise the technology of the production system, two pairs of quantities
were introduced earlier: the fundamental technological matrices A and B in Chap. 4
and technological coefficients λ and ε in Sect. 5.2. We can guess that these pairs
of quantities are connected with each other, or at least we can try to establish some
relations in the frame of the many-sector economic model.
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One can assume that the production equipment, produced in sector i, is charac-
terised by the primary technological coefficients λi and εi . The basic production
equipment of sector j is a mixture of products with different technological coeffi-
cients,

λj =
n∑

i=1

I
j
i

I j
λi, εj =

n∑
i=1

I
j
i

I j
εi, I j =

n∑
i=1

I
j
i , (8.31)

where I
j
i is the gross investment of product i in sector j .

These last relations can be written in another form. First of all, we transform the
first of (8.31) by summing up as follows:

n∑
i=1

λiI i =
n∑

l=1

λlIl.

Then we use formulae (4.18), assuming that coefficients b̄i
l are constant, for invest-

ment Il , which gives
n∑

i=1

λiI i =
n∑

i,l=1

b̄i
l λlI

i

and, from the arbitrary values of the sectoral investments I i , we have for the tech-
nological coefficients

λj =
n∑

i=1

b̄
j
i λi, εj =

n∑
i=1

b̄
j
i εi . (8.32)

It is clear that the primary technological coefficients λi and εi depend only on
the amount of products used in production. Therefore,

λi = λi

(
Xi

1,X
i
2, . . . ,X

i
n

)
,

εi = εi

(
Xi

1,X
i
2, . . . ,X

i
n

)
.

We can assume that the technological coefficients do not depend on a scale of
production, so we can consider the technological coefficients to be uniform func-
tions of the zeroth power, that is, their arguments have to be combined in ratios.
From (4.2), the technological coefficients can be written as a function of compo-
nents of technological matrix A,

λi = λi

(
ai

1, a
i
2, . . . , a

i
n

)
,

εi = εi

(
ai

1, a
i
2, . . . , a

i
n

)
,

(8.33)

where i is the label of the sectors which create the production equipment.
Thus, one can write for the sectoral technological coefficients

λj =
n∑

i=1

b̄
j
i λi

(
ai

1, a
i
2, . . . , a

i
n

)
,

εj =
n∑

i=1

b̄
j
i εi

(
ai

1, a
i
2, . . . , a

i
n

)
.

(8.34)
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The technological coefficients are determined as functions of the components of
the fundamental technological matrices A and B, which are considered to depend
on time (see Sect. 4.1). Further on, dependence (8.34) ought to be approximated
from empirical data, and one can see that the possible approximation depends on
our choice of the sectors. The number of sectors we should take into account must
be rather large to describe the technological changes properly.

We can illustrate relations (8.34) by our simple example of the three-sector pro-
duction system, in which only one sector produces production equipment with tech-
nological coefficients λ1 and ε1. In this simple case, all basic equipment in all sec-
tors consists of the product of the first sector. Therefore,

λ1 = λ2 = λ3 = λ1, ε1 = ε2 = ε3 = ε1.

According to expression (8.33), the technological coefficients can be written as a
function of components of technological matrix A,

λ1 = λ1
(
a1

1, a1
2

)
, ε1 = ε2

(
a1

1, a1
2

)
.

The values of the technological coefficients are determined by technological re-
search and the level of development of science. Therefore, we assume that an in-
crease of products of science, research and development (the products of sector 2)
ensures technological progress, so that dependence can be approximated in a simple
way by the relations

λ1 ∼
(

a1
2

a1
1

)−v

, ε1 ∼
(

a1
2

a1
1

)−u

.

These relations determine a decrease in the values of coefficients λ1 and ε1 at posi-
tive values of indexes v and u.
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Chapter 9
Mechanism of Social Estimation of Value

Abstract In previous chapters, the notion of price was introduced and understood
as an empirical estimate of the value of a product. The price is not an intrinsic char-
acteristic of the product as a thing, but it appears as a result of a bilateral assessment:
the producer estimates the efforts and expenses necessary to create a thing, and the
consumer estimates the usefulness of that thing for him. The price emerges as a re-
sult of the agreement between the producer and the consumer, and it thus appears
connected with features of behaviour of economic agents. However, this does not
mean that price is a subjective quantity; the price of a product exceeds expenses
(cost) of manufacture for an amount which the consumer can pay willingly, so that
the attribution of value of a set of products to the production factors is not unreason-
able. The relationship between producers and consumers in a process of exchange
of products is a market of products. The theory of prices is a theory of the market.
In this chapter, the theory of prices is considered for a simple scheme that can be
described in macroeconomic terms.

9.1 The System of Production and Consumption

In the basis of the economic activity of human beings, one can detect explicit or
implicit desires of people to satisfy vital needs. In a society, each member needs
the services of other persons, which he receives in exchange for his services to other
members of the society. Thus, it is possible to assert that the essential content of eco-
nomic activities of a person is an exchange of services. It is the main thing which
unites human beings in society. ‘Every man thus lives by exchanging or becomes in
some measure a merchant, and the society itself grows to be what is properly a com-
mercial society’ [1, Chap. 4]. The exchange of services has the form of exchange of
products.

9.1.1 Economic Agents

An economic agent (actor) as a carrier of will and a source of decisions on the
operation of exchange appears in the theory. Strictly speaking, each active member
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of the society is an economic agent (actor). Moreover, each economic agent is a
consumer and a producer simultaneously. As a consumer, he uses a set of products
x̌1, x̌2, . . . , x̌n. As a producer, the individual spends some efforts of various types
ê1, ê2, . . . , êm to create products. It is assumed that every agent knows what is good
and what is bad for him; in other words, he has a certain system of values, which
can be different for different agents, though some values can be mutual ones. Every
economic agent tries to improve his situation, however beautiful it may be.

It is possible to assume that each individual, as an economic agent, tries to
spend less effort to get more products. To describe formally the behaviour of an
economic agent and the aspiration to improve one’s situation, we traditionally in-
troduce, following Walras [2] and many others, the characteristic of the economic
agent, namely, the function of utility,

u(ê, x̌) = u(ê1, ê2, . . . , êm, x̌1, x̌2, . . . , x̌n). (9.1)

It is a decreasing function in relation to coordinates ê1, ê2, . . . , êm and an increasing
function in relation to coordinates x̌1, x̌2, . . . , x̌n. It is regarded as more convincing
to start with a description of the preferences of the agent to formally determine the
agent’s subjective utility function. We will return to it in Sect. 9.2.

As a producer, the economic agent tries to reduce his efforts and, as a consumer,
he tries to increase the amount of products that he can obtain for the efforts; thus,
speaking formally, the agent aspires to reach the greatest value of the function
of utility at some restrictions. For a single economic agent, the restriction can be
recorded in the form of an inequality,

n∑
i=1

pix̌i ≤
m∑

j=1

wj êj , (9.2)

where pi is the price of a product with index i, and wj is a money estimate of a unit
of effort of type j . Restriction (9.2) means that the agent cannot spend more than he
or she gets for the efforts. Some other restrictions can be taken into account as well.

In modern societies, a single person can be considered as a consumer, but prod-
ucts are usually created by enterprises, which unite the efforts of several (many) in-
dividuals and should be considered as economic agents themselves. The behaviour
of an enterprise is determined by the tendency to get the greatest profit at given
prices pi and wj ; speaking formally, the aim of the enterprise is to maximise an
object function

π(ě, x̂) =
n∑

i=1

pix̂i −
m∑

j=1

wj ěj ≥ 0. (9.3)

Here we suppose that among a set of products x̂1, x̂2, . . . , x̂n there can be quantities
both with a positive sign (output), and with a negative one (input). The enterprise
aims to increase the output (at the same time to reduce expenses) x̂1, x̂2, . . . , x̂n and
to decrease the consumed effort ě1, ě2, . . . , ěm.
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9.1.2 Elementary Economic System

The theory of the market was originally developed by Walras [2] for a system con-
sisting of an assembly of individual consumers and production units, co-operating
only through the prices of products and services. A simple heuristic model of the
society allowed Walras to consider the mechanism of estimation of value.

To develop an appropriate theory, one has to consider all the economic subjects
simultaneously, assuming that economic agents depend on each other through the
exchange of efforts and products. According to Walras [2], the economic system can
be imagined as consisting of many agents, say, s consumers and r producers. Each
consumer (α = 1,2, . . . , s) is characterised by an offer of efforts êα and a demand
of products x̌α , the variables being the arguments of the function of utility of type
(9.1). Each producer (γ = 1,2, . . . , r) is characterised by a demand of efforts ěγ

and a supply of products x̂γ , the variables being the arguments of the function of
profit of a type (9.3). All economic agents are independently running businesses
according to their rules, but, nevertheless, they depend on each other through the
exchange of efforts and products.

To calculate the amounts of efforts and products, it is necessary to find the max-
imum points of s functions of utility of type (9.1) and r functions of profit of type
(9.3), considering restrictions which follow from the balance of efforts, products
and profits. Walras [2] recorded a system of the algebraic equations for all vari-
ables, which, naturally, also appear the equations for the prices of products and
wages, p1,p2, . . . , pn and w1,w2, . . . ,wm. Later, Wald [3], McKenzie [4] and Ar-
row and Debreu [5] showed that the system of equations has a non-negative solu-
tion, which confirms the consistency of a considered model. The proof has required
powerful and esoteric mathematical tools, fascinating a few generations of mathe-
matical economists who have written thousands of papers.1 Thus, it was shown that
the proposed mechanism of exchanges can be taken as a basis for explaining the
mechanism of human estimation of prices and, consequently, of the value of any set
of products.

Note that Walras’s classical results describe only equilibrium situations,2 when
all variables have constant values. This circumstance limits the area of applicability
of the theory, which has been noted by many researchers [7–9]. The real dynamics of
the production-consumption system must be represented by a system of stochastic
equations, whose structure reflects the real structure of the economic system, and it
may be very complex. Examples of construction of the theory for some simple cases
are considered by Weidlich [9]; however, there is ample opportunity for research.

1Mark Blaug [6, p. 17] paradoxically evaluates that ‘The result of all this is that we now understand
almost less of how actual markets work than did Adam Smith or even Léon Walras.’
2Economic equilibrium assumes that all macroeconomic variables which define the economic sys-
tem are constant, aside from fluctuations. From the point of view of thermodynamics, it is a steady-
state situation, where the processes of production and consumption of products are occurring. Eco-
nomic equilibrium is an idealisation of reality, which has been emphasised many times. However,
this concept appears to be a very useful idealisation, just like thermodynamic equilibrium or a
steady-state situation in physics.
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The theory of Walras and his followers, though valid only for equilibrium sit-
uations, has a unique importance. The theory refers to principles of behaviour of
economic agents, which, in general form, are universal; they are applicable to any
economic system, whether it be capitalism or socialism. These formal principles are
laid in the foundation of the theory of exchange, or the theory of the market. At the
same time, this theory is a theory of prices.

9.1.3 Problem of Management and Co-ordination

The presentation of the economic system as an assembly of individual consumers
and production associations, co-operating only through the prices of products and
services, can be considered as a very idealised model. Though some general princi-
ples of behaviour of the producers and consumers appear to be universal, the results
of the theory of the market appear to depend on assumptions about the architecture
of the system, which can be rather complicated and cannot be universal.

Modern economic systems are characterised by a complex hierarchical organi-
sation: production activity is organised in the scale of the whole society, whereas
the sovereign government (state) is the highest body governing production and dis-
tribution of products. At the same time, numerous economic associations of both
producers and consumers take part in the organisation and functioning of the pro-
duction processes. Both the government and the associations, acting according to
their interests and reasons, decide what part of their income should be used, and
what part should be kept for future development. There is a problem of the optimum
organisation of production and distribution, one that takes into account the interests
of both the entire society and the different associations of producers and consumers.

Apparently, various patterns of the organisation of production and the mecha-
nisms of management can be imagined, whereby it is possible to separate the lim-
iting cases about which one speaks in terms of a centrally planned economy and
a market economy. In the previous section, we considered an idealised model of a
completely disaggregated market economy: interests of producers and consumers
are taken into account completely, whereas the possible interests and demands of
the society as a whole are entirely ignored. In another idealised model of the or-
ganisation of production, the central government on behalf of all society and in the
general interest organises production and decides what part of the social product
can be used for direct consumption and what part should be saved for investment in
the production. None of the models is actually realised in these extreme formula-
tions; the real picture for all countries always appears to be an intermediate version
between the two extreme cases.

Even in the post-war Soviet Union, when it was declared that all means of pro-
duction belonged to the society, the personal property of some things and the possi-
bility of usage of the land areas allowed persons to be engaged in productive activity
which could not be controlled by the state. Moreover, there was production activ-
ity on a greater scale which was not advertised, so that, to adequately describe the
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national economy, it was necessary to consider, apparently, that production activity
existed outside of the government’s control.

On the other hand, when a private property on the means of production flourishes,
the government is compelled to keep the decisive influence on the enterprises of
those industries, which matter for the country as a whole, but are ignorant by private
proprietors. It can be power, transport, communication, protection against epidemics
and acts of nature, roads, mail, education, information service, a security, social
insurance, care of old people and invalids and more. The state establishes tools to
take a part of the income of the enterprises and provides order and protection against
external enemies, stability of the national currency and social protection.

Thus, the problem is to investigate systems with complex architectures that pro-
vide us with the modern theory of prices. Some works have demonstrated the diver-
sity of architecture of economic systems and the variety of behaviour of economic
agents (e.g., [10, 11]).

9.2 Subjective Utility Function

The modern introduction of the utility function [12, 13] starts with a formalisation
of human preferences. Introduced in this way, a subjective utility function is a char-
acteristic of an economic agent rather than a characteristic of a fixed set of products,
which is an argument of the utility function and can be represented as a vector,

x =

∥∥∥∥∥∥∥
x1
...

xn

∥∥∥∥∥∥∥
. (9.4)

The first candidate for the function which can characterise the given amount of
products in their relation to a human’s needs is the value of these products. However,
one has to decline this candidate: the value of a set of products does not appear to be
a function of amounts of products at all (see Sect. 10.2). Instead of the value func-
tion, one uses the utility function, which we introduce here, following the classics
[12, 13], in the following way.

To compare two sets of products, that is, vectors x1 and x2, one introduces rela-
tions between the vectors. A human as a consumer can estimate if he prefers a set
x1 to a set x2, or, on the contrary, a set x2 to a set x1, or if he cannot distinguish
between two sets, respectively:

x1 � x2, x2 � x1, x1 ∼ x2.

It was shown [12] that a monotonically increasing function can be defined on the
space of dimension n in such a way that

x1 � x2 ⇒ u
(
x1

)
> u

(
x2

)
,

x1 ∼ x2 ⇒ u
(
x1

) = u
(
x2

)
.

(9.5)

The arrow ⇒ shows that the right-hand side relation follows the left-hand side one.
The properties of the utility function u(x) follow simple assumptions.
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If the amount of at least one single product in the set x1 is more than the amount
of the same product in the set x2, then

x1 � x2 ⇒ u
(
x1) > u

(
x2).

This means that all partial derivatives of the utility function are positive,

∂u

∂xj

> 0. (9.6)

Then, it is assumed that a mixture of two sets x1 and x2 is preferred to any of the
sets; consequently,

u
(
λx1 + (1 − λ)x2) > u

(
x1),

u
(
λx1 + (1 − λ)x2) > u

(
x2), 0 < λ < 1.

The property is followed by the relation

u
(
λx1 + (1 − λ)x2) > λu

(
x1) + (1 − λ)u

(
x2).

This means that the utility function u is strictly convex and a matrix of second partial
derivatives,

uij = ∂2u

∂xi∂xj

, (9.7)

that is, the Hesse matrix is negatively determined.
The described function u(x1, x2, . . . , xn) is called a utility function, or more pre-

cisely, a subjective utility function. The properties of the utility function are deter-
mined by postulates which are the reflection of empirical evidence. Note that any
monotonically increasing transformation of variables of the utility function deter-
mines a new utility function with the same properties. These functions should be
considered identical.

9.3 Demand Functions

One can consider a separate consumer who has to decide which products are the
most necessary ones for him. The consumer has some income M that is obtained in
exchange for his efforts ei , while label i (i = 1,2, . . . ,m) enumerates types of ef-
forts. This income has a money form and increases when the agent’s efforts increase,
so in the simplest case, one can write

M =
m∑

i=1

wiei, (9.8)

where wi is a money estimate of a unit of effort of type i.
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The money is spent to acquire products according to the consumer’s preferences.
One can assume that the main thing is to get money; if it is obtained, there is no
difficulty to acquire any thing. This assertion can be formalised in the theory [2] as

p1x1 + p2x2 + · · · + pnxn ≤ M, (9.9)

where pi is the price of product, and xi is the quantity of acquiring products. We
suppose here that there are no other restrictions.

However, the assumption about the unrestricted market distribution of products is
not always valid. In certain societies, there is another mechanism for the distribution
of products. In centrally planned societies, the existence of money does not mean
that a person can buy any products; it is necessary to have a special right to buy
products. This right is reached by efforts to achieve a certain social rank, so the
main aim of a person’s activity is to increase in social rank [14]. It is not surprising
that ‘scientific norms of consumption’ were elaborated in such societies.

One can then assume that the consumer is characterised by a subjective utility
function,

u(x1, x2, . . . , xn),

where x1, x2, . . . , xn are amounts of products.
On the assumption that the consumer chooses a set of products that will give the

utility function the biggest value, one can describe the consumer’s behaviour as an
attempt to maximise the utility function,

maxu(x1, x2, . . . , xn)

with restriction (9.9). The amount of money M for acquiring the desirable set of
products is fixed, as well as the prices pi of all products. Note that budget restriction
(9.9) can be written in the form of an equality, and the problem of the choice of
products can be solved as a problem of searching for a conditional maximum,

maxu(x1, x2, . . . , xn),

n∑
i=1

pixi = M, x ≥ 0. (9.10)

There are no difficulties in adding other restrictions, if any.
To solve the problem, one starts with the Lagrange function

L(x, λ) = u(x) − λ

(
n∑

i=1

pixi − M

)
,

where λ is a Lagrange multiplier. One should equate partial derivatives of the La-
grange function to zero to obtain a set of equations for the unknown quantities,

∂u

∂xj

− λpj = 0, (9.11)

M −
n∑

i=1

pixi = 0. (9.12)
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The first of the equations determines the ratio of product prices as a ratio of the
marginal utilities of the products, that is, as a ratio of the first derivatives of the
utility function,

∂u

∂xi

: ∂u

∂xj

= pi

pj

, i, j = 1,2, . . . , n. (9.13)

These relations were written by Marshall ([15], Mathematical Appendix II).
Solutions of (9.11) and (9.12) can be represented as functions of the quantities xi

and λ depending on the parameters of the problem,

xi = xi(p,M), λ = λ(p,M). (9.14)

A change of scale of value does not change the problem, so one can define a
demand function as a uniform function of its arguments, that is,

xi = xi

(
p

M

)
. (9.15)

The effects of prices and money on demand can be investigated without knowl-
edge of the utility function in explicit form [16, 17]. If the utility function is given,
the demand functions can be found easily. For example, for the utility function

u = x
α1
1 x

α2
2 · · ·xαn

n ,

n∑
i=1

αi < 1

a solution of the problem (9.10) is

xi(p,M) = αiM

αpi

, λ(p,M) = α
u

M
, α =

n∑
i=1

αi. (9.16)

The speculations in this section determine the demand functions, which them-
selves can be set in the foundation of the theory. In fact, one should assume special
properties of the utility function in order for the demand functions (9.15) to describe
the empirical facts. However, the demand function can be determined from empir-
ical data independently. The demand functions are usually decreasing functions of
prices, though there are some exceptions to this rule.

9.4 Welfare Function

The utility function considered in Sect. 9.2 is based on the consumer’s subjective
preferences and can be called a subjective utility function. It can be introduced for
each consumer, who tries to choose a situation to maximise this function. To inves-
tigate links between these utility functions and the objective utility function, which
will be considered in the next chapter, one has to introduce a subjective utility func-
tion for the whole community.
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Consider a society consisting of s independent consumers, who together hold
some amount of products

Q1,Q2, . . . ,Qn,

while the consumer α owns parts of the products

xα
1 , xα

2 , . . . , xα
n , α = 1,2, . . . , s,

where
s∑

α=1

xα
i = Qi, i = 1,2, . . . , n. (9.17)

One assumes that a consumer’s utility function

uα
(
x1, x2, . . . , xs

)
, α = 1,2, . . . , s (9.18)

depends both on variables with label α and on all other variables, while

∂uα

∂xα
i

> 0, α = 1,2, . . . , s, i = 1,2, . . . , n,

∂uα

∂xν
i

≤ 0, α �= ν, α, ν = 1,2, . . . , s, i = 1,2, . . . , n.

Every consumer maximises his utility function, as was described in the previous
section, but now we should consider maximisation of s functions simultaneously.
There is apparently no single point which gives maximum values for all functions
simultaneously. However, one can exclude all points where values of the utility
functions can be enlarged simultaneously. The remaining points make up what is
called the Pareto-optimal set. No consumer in the Pareto-optimal point can improve
his/her welfare without diminishing someone’s else welfare. The problem of distri-
bution of products among the members of the society was posed and investigated by
Pareto [18].

To find a Pareto-optimal set, one can construct the welfare function for the entire
community,

U
(
x1, x2, . . . , xs

) =
s∑

ν=1

ανu
ν
(
x1, x2, . . . , xs

)
, αν ≥ 0,

s∑
ν=1

αν = 1. (9.19)

A point of maximum of function (9.19) at any values of multipliers αν belongs to
the Pareto-optimal set.

To find Pareto-optimal points, we can use the Lagrange method for solving the
problem of maximisation of function (9.19) at restrictions (9.17), and we find that
the Pareto-optimal points are obeyed for the set of equations

s∑
ν=1

αν

∂uν

∂x
μ
i

− pi = 0, μ = 1,2, . . . , s; i = 1,2, . . . , n, (9.20)

where pi are the Lagrange multipliers of the problem which are functions of the
multipliers αν .
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One can reasonably assume that the consumer’s utility function depends mainly
on his own choice, so that relation (9.20) can be rewritten in a simpler form,

αν

∂uν

∂xν
i

− pi = 0, ν = 1,2, . . . , s; i = 1,2, . . . , n.

This gives the relation for every consumer,

∂uν

∂xν
i

: ∂uν

∂xν
j

= pi

pj

, ν = 1,2, . . . , s; i, j = 1,2, . . . , n. (9.21)

The equation for each consumer has the same form as (9.13), and one can assert that
the set of Lagrange multipliers of the problem is a set of prices, which are identical
for all the participants.

Welfare function (9.19) is a function of amounts of products distributed among
the members of the society. In line with this function, one can consider a function
of the entire amounts of products,

U(Q1,Q2, . . . ,Qn), Qi =
s∑

α=1

xα
i , i = 1,2, . . . , n.

To relate this function to function (9.19), we assume that all consumers are in iden-
tical situations, that is, the amounts of products are distributed equally among all
consumers, which means that the quantity xν in function (9.19) does not depend on
the index ν and can be replaced by the quantity Q/s. Then, for every consumer,

αν

∂uν

∂xν
j

= ∂U

∂Qj

, ν = 1,2, . . . , s; j = 1,2, . . . , n.

One can see that the following relation is valid:

∂U

∂Qi

: ∂U

∂Qj

= pi

pj

, i, j = 1,2, . . . , n. (9.22)

One can compare the properties of the welfare function as a function of the entire
amounts of products with the properties of the objective utility function introduced
in Sect. 10.2. The relation (9.22) is exactly relation (10.7) in which U is an objective
utility function. Therefore, one can suppose that, as characteristics of a set of prod-
ucts, the objective utility function and the welfare function are indistinguishable.
Although the objective utility function does not present the value of a set of prod-
ucts, nevertheless, one expects that the function is connected with the estimations of
value.

9.5 The Simplest Markets

Not only a separate individual, but a group of people, or even a society as a whole
can be considered to be an economic agent. Further, in this section, we shall con-
sider very simple cases, which will allow us to demonstrate equations for prices. To
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consider special examples in more detail, we assume that the economy consists of n

producers—each sector is a separate producer, which outputs a single product—and
only one consumer, the society as a whole. Every one of the n + 1 economic agents
has its own aims, plans its activity and can make decisions.

The aim of a sector is to obtain a bigger amount of production of value Zj . To
imitate the behaviour of the sector, we solve a maximisation problem, that is, we
find the amount of gross output which determines the greatest value of Zj . We refer
to the results of Sect. 4.2.2 to say that the gross output should be planned to be as big
as possible at the restriction given by the production factors, so a supply function
for each product can be determined as a function of prices,

Y
supply
j (p) = Yj (p1,p2, . . . , pn), j = 1,2, . . . , n. (9.23)

The aim of the entire society is to obtain the greatest usefulness from the prod-
ucts, that is, to find quantities of the output which would maximise a utility function
at a restricted amount of money M . In this way, one can determine the demand
functions,

Y demand
j (p,M) = Yj (p1,p2, . . . , pn,M), j = 1,2, . . . , n. (9.24)

9.5.1 Free-Price Market

The problem of simultaneous maximisation of n + 1 objective functions can be
reduced to the problem of simultaneous consideration of the demand and supply
functions for each product. One can consider each product separately and introduce
the excess demand function

Zj (p,M) = Y demand
j (p,M) − Y

supply
j (p), j = 1,2, . . . , n, (9.25)

where in contrast to what will be considered in the next section, one assumes that
there is only one price for each product on the market.

In the situations which we call economic equilibrium,3 demand is equal to supply,
so that

Zj (p,M) = 0, j = 1,2, . . . , n. (9.26)

This system of equations defines equilibrium prices, whereby it is assumed that
the demand and supply functions have dependencies of prices such that a stable

3Economic equilibrium assumes that all macroeconomic variables which define an economic sys-
tem are constant, aside from fluctuations. It recalls the definition of equilibrium in thermodynam-
ics: all thermodynamic variables are constant on average, though there is movement of constituent
particles of the thermodynamic system. Similarly, the material constituents of an economic system
at equilibrium are not in thermodynamic equilibrium: there are processes of production and con-
sumption of products. Economic equilibrium is an idealisation of reality, which has been stressed
many times [7]; nevertheless, it is a very useful idealisation, like that of thermodynamic equilib-
rium in physics.
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Fig. 9.1 Situations in a
free-price market of a single
product. The intersection of
the demand and supply curves
determines an equilibrium
point (pe,Ye). At MB > MA,
the demand increases and a
new equilibrium price and a
new equilibrium quantity,
which are greater than the
previous ones, appear

solution of system (9.26) exists. One can consider the demand and supply functions
of a chosen product as functions of its own price only. Situations in the market, as
have usually been considered [19], are depicted on the plot of Fig. 9.1, which shows
demand and supply curves.

The conditions for equilibrium prices can be written in the form of the Walras
law,

n∑
i=1

piZi(p,M) = 0. (9.27)

The last relation defines equilibrium prices pj ≥ 0, if the relation is valid at
Zi(p) ≤ 0. The existence of a system of prices is connected with the behaviour of
the excess demand functions Zi(p). So, as we rely on the empirical observation that
equilibrium prices exist, the problem is in defining a class of functions which can
describe demand and supply. The problem has been studied in many details [19].

The essential component of a real market is money, which is considered as a
special product. The amount of money M should correspond to the value of the
commodities in the sense discussed in Chap. 3. Relation (9.27) is valid for equilib-
rium situations and is an analogy of relation (3.29) in Chap. 3. In non-equilibrium
situations there is an excess of money, which should be equated to the excess de-
mand,

�M =
n∑

i=1

piZi(p,M). (9.28)

If money is taken as a separate product, the situation with the demand excess can
be considered as an equilibrium, but it is convenient to refer to such situations as
non-equilibrium ones. The name is justified, as the system trends to an equilibrium
state when relation (9.27) is valid.

Empirical observations assure us that excess demand for a product provokes an
increase in the price and vice versa. At small deviations of the demand from the
supply, one can write a simple rule for the growth rate of price,

dpi

dt
= kiZi(p,M), ki ≥ 0. (9.29)
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On the plot of Fig. 9.1, a point A of intersection of curves determines the equi-
librium price and quantity of the product. An excess or shortage of money causes
a displacement of the demand curve up (MB > MA) or down (MB < MA). A new
point B of equilibrium appears, whereby the price and quantity of the product take
new values. However, the trajectory of the approach to the equilibrium point can
differ from a straight line and can resemble a cobweb, as has been described many
times [19, 20].

Thus, the money excess provokes changes of prices, which can be determined
with the help of relations (9.28) and (9.29). One should know the demand and sup-
ply functions to determine these changes. However, when we restrict ourselves to
investigating a system which includes only one sector which needs money, the situ-
ation is simple. We can assume that, in the case of the discussed three-sector model,
money is only needed for products of the third sector. Therefore, (9.28) and (9.29)
can be rewritten as

dM

dt
= p3Z3(p1,p2,p3,M),

dp3

dt
= k3Z3(p1,p2,p3,M).

One can see that these equations are followed by the simple relation

dp2
3

dt
= 2k3

dM

dt
. (9.30)

The growth rate of the squared price of the commodities for immediate consump-
tion is equal to the amount of emitted money.

9.5.2 Fixed-Price Market

In cases when there is a monopoly on the production of all commodities, fixed prices
of the commodities can be set. This is a case of a centrally planned economy, de-
signed in countries where the state is the only owner of the whole production system.
Analysis shows [14] that the real owner of the production is a nomenclature class
which governs the economy on the behalf of the state.

As in the previous section, we consider a market where n producing sectors and
only one consumer are participating. We assume that the economic agents are char-
acterised by demand and supply functions, but, in contrast to the assumption in the
previous section, we suppose that each product has, generally speaking, two prices:
a wholesale price p′ for the producer and a retail price p′′ for the consumer. The
existence of the two sets of prices is, according to Polterovich [21, p. 185], ‘a phe-
nomenon of centrally planned economy.’ To describe a situation on the market, in-
stead of function (9.25), one should introduce an excess demand function which, in
contrast to the function in the previous section, depends on the two sets of prices,

Zj (p
′,p′′,M) = Y demand

j (p′′,M) − Y
supply
j (p′), j = 1,2, . . . , n. (9.31)
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Instead of (9.26), equilibrium situations are defined by the relations

Zj (p
′,p′′,M) = 0, j = 1,2, . . . , n. (9.32)

The profound meaning of the two-price-set market for the owner, the state, is the
possibility to obtain income that is equal to the quantity

n∑
i=1

(p′′
i − p′

i )Yi . (9.33)

The state declares (and has the means to persuade its citizens) that the state’s (or
one can read: the nomenclature’s) interests are the most important ones, so that, in
addition to the optimisation criteria for each participant of the market considered in
the previous section, the situation in the market is determined by the requirement of
maximisation of quantity (9.33) as well.

Though the state controls the prices, the fixed prices p′
i and p′′

i cannot be set quite
arbitrarily. One can see that system (9.32) can determine a set of equilibrium retail
prices, if a set of the wholesale prices is given, and vice versa. Aside from this, the
enterprises of the production system keep some independence and interest in obtain-
ing profit. This is provoked by the requirements of finance for self-support of each
enterprise. Therefore, the wholesale prices are fixed at such levels that enterprises
(at least, some) have to obtain some moderate profit.

The equilibrium quantity of the product, which is being sold and bought, can be
less or greater than the coordinate of the point of intersection of the demand and
supply curves (the true equilibrium value which could be reached in the free-price
market), as is shown on the plots of Fig. 9.2. It is a well-known fact [21] that there
are commodities of both types in a centrally planned economy. Initial equilibrium
situations for different products are depicted with lines A′′ −A′ and A′ −A′′. In one
case, at p′′ > p′, the state gets a profit, which is called the turnover tax; in the other
case, at p′ > p′′, the state is urged to subsidise the poor sectors.

It is supposed above, that, in the equilibrium situation, there is no excess or deficit
of money. In the non-equilibrium case, instead of (9.32), one should write the rela-
tion

�M =
n∑

i=1

p′′
i Zi(p

′,p′′,M). (9.34)

The excess of money provokes crossover to a new equilibrium situation (line
B ′′ − B ′ in Fig. 9.2 (top) and B ′ − B ′′ in Fig. 9.2 (bottom)) which has to be de-
termined by the state, as it controls both production and prices. To begin with, the
state usually announces some changes in wholesale prices. This announcement is
accompanied by statements that the decision does not concern retail prices. Despite
the statements, after some time, the retail prices go up.

The rules of crossover can be understood on the basis of relation (9.32) and the
requirement to get the greatest value of criterion (9.33). One can see that the greater
the quantity of the profit product and the difference between the retail and wholesale
prices p′′ −p′ are, the greater the profit, which is favourable for the state. However,
as one can see from Fig. 9.2 (bottom), these requirements are conflicting for the
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Fig. 9.2 Situations in a
fixed-price market of a single
product. Top: Subsidised
product. The wholesale price
is greater than the retail price
(p′

e > p′′
e ), and the

government is urged to pay
subsidies (p′

e − p′′
e )Ye to the

sector. Bottom: Profit product.
The wholesale price is less
than the retail price
(p′

e < p′′
e ), and the

government obtains a profit
(p′′

e − p′
e)Ye

profit products, and it is difficult to forecast the resulting equilibrium situation in
this case.

For the subsidised products, in contrast, the lower both the quantity of the out-
put and the difference between the prices are, the better for the state. These are not
conflicting requirements, so one expects that the output would not be greater in the
new equilibrium situation (Fig. 9.2, top). Therefore, it is favourable for the state in-
terest to have a low level of production and consumption of the subsidised products,
which included in the USSR almost all food products except vodka and, perhaps, a
few other things. However, there was apparently a ‘natural’ lower level of consump-
tion; the production system has to provide for the survival and reproduction of the
labour force.
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Chapter 10
Value from a Physicist’s Point of View

Abstract As a specific concept of economics, value does not need to be reduced
to any scientific concepts, but as far as a production process can be considered
as a process of transformation of ‘wild’ forms of matter into forms useful for hu-
mans (dwellings, food, clothes, machinery and so on), one can look for analogies in
thermodynamics. The phenomenon of production can be considered from a general
point of view, assuming all our environment to be a thermodynamic system, which
is in a far-from-equilibrium state. Thermodynamic laws are quite general and are
applicable to any system, no matter how big and complicated it is, while they do not
require a knowledge of the structure of the system in all details. A flux of informa-
tion and work eventually determines a new organisation of matter, which acquires
forms of different commodities (complexity), whereby the production process is
considered as a process of materialisation of information. The cost of materialisa-
tion of information is the work of the production system. To maintain complexity in
a thermodynamic system, fluxes of matter and energy must flow through the system.

10.1 Energy Principle of Evolution

10.1.1 Thermodynamics of the Earth

One can consider the upper layers of the Earth as a thermodynamic system in a non-
equilibrium state. Due to Prigogine [1, 2], we know that stable dissipative structures
can exist in such states. All biological organisms and all artificial things on the
Earth can be considered dissipative structures which exist due to fluxes of energy
[2, 3]. There are also dissipative structures of larger scale: convection flows in the
atmosphere and oceans, ecological systems, socio-economic systems, systems of
knowledge and others. The human population itself is an example of a large-scale
dissipative structure. However, we only begin to recognise and describe large-scale
dissipative structures in the upper layers of the Earth.

In the most rough approximation, the Earth, as a thermodynamic system, can be
characterised by internal energy E, temperature T and entropy S. These quantities
are connected with each other by the first law of thermodynamics, which, assum-
ing that the work of the external gravitational forces, leading to deformation of the
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Fig. 10.1 The energy flows in terrestrial systems. The main fluxes of chemical energy (single
lines) and mechanical energy (double lines) are shown. Estimates of fluxes are in joules per year,
according to [4]

Earth’s form, can be neglected in comparison with other terms, is recorded in the
form of

dE = T dS. (10.1)

Values of the internal energy E and entropy S of the Earth, as an open thermo-
dynamic system, are influenced by external fluxes and internal processes, so that a
variation of the entropy of the Earth is defined by the formula

T dS = �Q −
∑

i

Ξi�ξi +
K∑

j=1

μj�Nj . (10.2)

This fundamental equation1 shows that various influences on the system lead to the
variation of one universal quantity—entropy—and the variation can be connected
both with the fluxes of heat �Q and substances �Nj through the borders of the
system, and with variations of the internal structure of the system. It is assumed

1One can note that (10.2) represents a generalisation of the equation for variation of entropy,
recorded by Prigogine [5, equation 3.52] for systems with chemical reactions (see also [6]). One
of the methods of generalisation can be found in work [7].
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that the internal complexity of the system is described with a set of some internal
variables ξ1, ξ2, . . . .

The non-equilibrium state of the Earth is supported eventually by the energy
fluxes: the Earth receives the fluxes of radiant energy from the Sun and re-radiates
heat, and a number of transformations take place with the energy on its way through
the system (Fig. 10.1). By modern assessments [8, 9], about a third of the total
incoming radiation energy, which is 5.5 · 1024 joules (J) per year, is reflected by
clouds and the surface of the Earth, and another part (about 3 · 1024 J per year) is
absorbed by the atmosphere and the surface of the Earth. Assessments show that
photosynthesis is the basic mechanism of absorbing the solar energy. The flux of
the external radiation energy has caused changes of thermodynamic characteristics
of the Earth during the time of its evolution.

In the current epoch, the energy influx from the Sun is balanced by a radiation
outflow [8], so the Earth can be considered to be in a steady state, which implies that
the thermodynamic characteristics of the Earth do not change. Though the entropy
of the stationary Earth is constant, there is internal production of entropy in the sys-
tem, as in any non-equilibrium thermodynamic system. The production of entropy
is connected with the variation of the internal variables,

diS = − 1

T

∑
j

Ξj dξj , diS ≥ 0. (10.3)

To estimate this quantity in the case when the Earth is considered to be in a steady
state, we note that the internal production of entropy is compensated by a change of
entropy, due to the outgoing fluxes of energy,

diS = −deS = − 1

T

(
�Q +

K∑
j=1

μj�Nj

)
. (10.4)

The Earth receives a solar flux of high-energy photons (appropriating temperature
about 6000 K with chemical potential μ = 0) and radiates heat at a much lower
temperature, about 300 K. These fluxes of radiation energy contribute to a change
of entropy of the Earth deS that has been estimated by many researchers [9, 10] and
appears to be negative deS < 0. From (10.4), this evidences the internal production
of entropy, which can be considered a measure of complexity of the Earth. To cre-
ate and maintain the special complexity (far-from-equilibrium objects or dissipative
structures), as in any thermodynamic system [1–3], there is a need for energy fluxes
moving through the system.

10.1.2 Human Population and Fluxes of Energy

The life of every biological population is based on energy fluxes which come to the
population through food and organisms of species. One can refer to those fluxes as
biologically organised fluxes of energy. For the human population, for example, the
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biologically organised flux of energy is about 4 ·109 J/year ·man = 4 ·106 Btu/year ·
man in all the centuries of human existence (see the discussion in Sect. 2.4.1).2

In line with the biologically organised fluxes of energy, the human population has
socially organised fluxes of energy, where the production system of society plays the
role of a mechanism attracting energy from out-of-body sources. Prime sources of
energy (the remains of the former biospheres: wood, coal, oil; direct and indirect
solar energy in the form of wind, water, tides: energy of fission and fusion of nuclei)
are used via different appliances to transform matter of the natural environment into
things of the artificial environment that are useful for the human complexity. The
ways in which energy has been utilised by humans has been considered in previous
chapters in some detail.

The socially organised consumption of energy per capita from traditional sources
(mainly firewood and charcoal, animal dung and agricultural wastes) and com-
mercial sources (oil, coal, gas, hydroelectricity, nuclear power and so on) for the
world and for some countries is shown in Fig. 10.2. This quantity has reached the
amount of the biologically organised flux of energy during the agricultural era.
In the middle of the nineteenth century, the amounts of the two fluxes were ap-
proximately equal. Nowadays, in developed countries, the socially organised flux
exceeds by 50–100 times the biologically organised flux of energy. For the U.S.
economy, for example, the consumption of primary energy is equal approximately
4 × 108 Btu ≈ 4 × 1011 J per person per year in year 2000. The entire population of
the world would need more than 3 × 1021 J per year to live as the U.S. citizens live
now. This is only one thousand times less than the amount of energy received by the
Earth from the Sun!

10.1.3 Principle of Evolution

According to the energy principle of evolution, those populations and their associa-
tions (ecosystems) which can utilise the greater amount of energy from their envi-
ronment have an advantage for survival [11–13]. One can state, taking into account
the existence of the two fluxes of energy, that the energy principle of evolution is
also valid for the human population. Indeed, as was argued in the previous chapters,
the principle according to which the production system is developing can be stated
as a principle of the maximal captivation of available resources: the production sys-
tem tries to swallow up all available production factors. In fact, this principle of
progress is a principle of evolution, stated by Lotka [11], Pechurkin [12] and Odum
[13, p. 20]: the trajectory of evolution of a system is defined by trends of the system
to use the greatest quantity of available energy.

This formal statement is a description of a total of the joint actions of many
entrepreneurs trying to obtain the largest profits. The real path of evolution of the

2British thermal unit (Btu) = 252 cal = 1053.36 J ≈ 103 J.
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Fig. 10.2 Socially organised flux of energy per capita. An increase in consumption of energy is
connected with the invention of more and more sophisticated devices for energy utilisation (e.g.,
wind, running water, coal, oil). The pictured data does not include the work of animals, which
should be added to the fluxes. These corrections are essential for Uganda and Nepal, but can be
neglected for other countries. Values for points are taken from Energy Statistics Yearbook (2003
and previous issues)

production system is determined by the availability of labour and energy. The de-
velopment of the production system is eventually determined by the growth of the
labour supply and by possibilities of attracting an extra amount of external energy,
so that the set of evolution equations of the production system contains two impor-
tant quantities: potential growth rates of labour and substitutive work, ν̃(t) and η̃(t).
These quantities have to be given as exogenous functions of time, but, as we argued
in Sects. 2.4.2 and 2.5.5, in fact, they are endogenous characteristics in the problem
of evolution of human population on the Earth.

Plenty of energy is used by the human population through the improvements
of technology. Managing the huge amount of energy allows the human population
to survive in every climate zone of the Earth and expand itself in great measure.
Moreover, one can see from the history of mankind that the nations which controlled
the available energy had an advantage over other nations. One can refer to the classic
example: the industrial revolution and prosperity of Britain began from the invention
of the steam engine proper, which allowed utilisation of energy stored in coal in
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great amounts. The history of nations can be rewritten as the history of the struggle
for fluxes of energy.

In the beginning of the twenty-first century, the main primary sources of energy
are oil, gas and coal—the remains of the former biospheres. It is assumed that en-
ergy needs will increase; however, the peak of the fossil era has passed. Fossil fuel
consumption will grow more slowly than total primary energy needs. The future
development of mankind is connected with available energy. Only an abundance
of available energy would ensure the prosperous development of the human pop-
ulation. Can we then get energy directly from the Sun, which gives to the Earth
3 · 1024 J per year or 3 · 1021 Btu per year, or can we find new sources of energy?

10.2 Thermodynamic Interpretation of Value

One can note that all the artificial things around us have special forms and are ad-
justed for use in special tasks. This means that there is some complexity in the en-
vironment, a complexity that is created by man and for man. A human being is
encircled by artificial products that can be sorted and counted, so one consider the
amounts of quantities in natural units of measurement,

Q1,Q2, . . . ,Qn.

All these objects: buildings, machines, vehicles, sanitation, clothes, home appli-
ances and so on make up the national wealth, which can be characterised from dif-
ferent points of view. However, a general characteristic of artificial objects appears
to be value. As a specific concept of economy, value should not be reduced to any
other known concepts, but, as processes of production can be considered as pro-
cesses of transformation of ‘wild’ forms of substances into forms useful to people
(mainly, without variation of internal energy), it is possible to look for analogies in
thermodynamics.

10.2.1 Value of a Stock of Products

From a conventional point of view, a stock of products is characterised by its value,
and an empirical estimate of the value of a product exists. The value of a unit of a
product is its price. It is assumed that the prices of all products are given,

pi, i = 1,2, . . . , n.

This allows one to estimate the increase in value of a stock of products,

dW =
n∑

j=1

pj dQj . (10.5)

It is necessary to take into account that the price of a product is not an intrinsic
characteristic of the product. As was already noted earlier in Sect. 2.2, the price
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depends on the quantities of all products which are in existence at the moment. As a
rule, the price decreases if the quantity of the product increases, though the situation
can be more complicated. One can observe that there are coupled sets of products,
such that an increase in the quantity of one product in a couple is followed by an
increase (in the case of a couple of complementary products) or a decrease (in the
case of a couple of substituting products) of the price of the other product of the
couple. Therefore, one ought to consider the price of a product to be a function of
quantities of, generally speaking, all products,

pi = pi(Q1,Q2, . . . ,Qn).

The dependence of prices pi on the amounts of products is arbitrary, so that
one can hardly expect that form (10.5) is a total differential of some function
W(Q1,Q2, . . . ,Qn). One cannot say that W is a characteristic of the set of the
products which is independent of the history of their creation. In other words, value
is not a function of a state of the system. However, a function of a state, which is
closely related to value, can be introduced.

10.2.2 Objective Utility Function

Using some assumptions, a function of a state of a system, which is called the utility
function, can be introduced on the basis of relation (10.5). Indeed, the linear form
(10.5) can be multiplied by a certain function, called the integration factor,

φ = φ(Q1,Q2, . . . ,Qn),

so that, instead of form (10.5), one has a total differential of a new function,

dU =
n∑

j=1

φ(Q1,Q2, . . . ,Qn)pj (Q1,Q2, . . . ,Qn)dQj . (10.6)

Requirements on the integrating multiplier are connected with properties of
prices as functions of products, so existence of the function U depends on the prop-
erties of prices. The integrating multiplier can be taken to be positive, so the linear
form (10.6) defines a monotonically increasing function of each variable. It resem-
bles the behaviour of value. One can also expect other properties of function U to
relate to the properties of value. In particular, as one could expect for the partial
derivatives of the value function (if it exists), the ratio of the partial derivatives of
the function U is equal to the ratio of the prices

∂U

∂Qi

: ∂U

∂Qj

= pi

pj

. (10.7)

One can see that the important properties of the artificial environment can be
characterised by a function U . The introduced function U is called the (objective)
utility function, taking into account that the properties of function U coincide with
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those of the conventional utility function which is introduced as a subjective utility
function, connected with the sensation of preference of one aggregate of products
against another (see Sect. 9.2). As a matter of fact, these functions have to be con-
sidered identical, because the utility function is defined with accuracy to monotonic
transformation of its variables. Moreover, one can ensure that the utility function
exists, as far as the proof was achieved for the subjective utility function. The above
transformation of value to utility reminds us of the transformation of heat to entropy.
In other terms, an analogy between the theory of utility and the theory of heat was
discussed by von Neumann and Morgenstern [14] (see item 3.2.1 of their work).

The understanding of the fact that utility function U can replace a non-existing
value function in theoretical considerations was achieved in the second half of the
nineteenth century and is considered as a revolution in economic theory [15], com-
pleted by the work of prominent investigators.

10.2.3 Thermodynamics of Production

The internal processes which provide an increase and/or a decrease in entropy are
connected with structural inhomogeneity. The parts of the system which are in
favourable situations to grasp more energy than others can act on the other parts
and provoke numerous processes, producing dissipative structures, according to Pri-
gogine [1]. To include processes of production for consideration, it is convenient to
consider two subsystems of the entire environment. One can allocate an artificial en-
vironment, which includes humans and their direct environment: buildings, clothes,
cars, sewer networks and all other objects created by humans. The natural char-
acteristics of the artificial environment are quantities of products Q1,Q2, . . . ,Qn.
The artificial things together with a human population can be considered as one of
the subsystems. The other part—the natural environment—includes woods, lakes,
rocks and similar natural objects. This part is regarded as a habitat of dwelling (the
environment), containing all natural formations which are not touched by the hand
of a human, and it represents a subsystem of natural environment.

Thus, the set of numbers Q1,Q2, . . . ,Qn defines borders between the two con-
sidered subsystems. Each of the subsystems is an open thermodynamic system, ex-
changing heat and substances with each other and with an outer space. For further
consideration we use a simplified schematisation: the natural environment subsys-
tem receives energy from the Sun and passes it to the other subsystem in chemical
form. For maintenance and development of the artificial environment, there is a pro-
duction system that fulfils work, which becomes, after many transformations, the
work of energy from the Sun. The results of the production processes are the changes
in both the natural and artificial environments that are described by the changes in
the amount of products Q1,Q2, . . . ,Qn. We note that this set unites both useful
products, and also useless, sometimes harmful, but inevitable consequences of pro-
duction. When new products appear, the borders between the two systems move.

In conformity with the general laws of thermodynamics, it is possible to for-
mulate thermodynamic relations for the considered subsystems. Designating with
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a prime symbol the characteristic quantities related to the subsystem of the human
population and artificial things, one records

dE′ = T dS′ − dA, dA = 1

T

∑
j

aj dQj ,

dS′ = −Q′

T
− 1

T

∑
j

Ξ ′
j dξ ′

j + G

T
,

(10.8)

where T is temperature, dA is work of the system of human population and artifi-
cial environment on the shift of borders with a natural environment, aj is work on
creation of unit of a product j , Q′ is a flux of heat from the considered subsystem
in the environment and G is a flux of chemical energy from the natural environment
subsystem to the considered subsystem. Work dA is fulfilled by people and exter-
nal power sources by means of the production equipment and energy sources. This
work changes both the natural and the artificial environment.

The subsystem of the natural environment does not fulfil any work, so that for it

dE′′ = T dS′′, dS′′ = Q′ − Q

T
− 1

T

∑
j

Ξ ′′
j dξ ′′

j − G

T
, (10.9)

where Q is a flux of heat disseminated by the Earth, Q′ is a flux of heat from the
subsystem of artificial things and G is a flux of chemical energy from the subsystem
of the natural environment to the subsystem of the artificial environment.

The sum of parities (10.8) and (10.9) give naturally the description of the ther-
modynamics of the Earth, disposed in Sect. 10.1.1, in particular, relation (10.1),
whereby one gets an expression for the increment of entropy,

dE = T dS, dS = −Q

T
− 1

T

∑
j

Ξj dξj − 1

T

∑
j

aj dQj . (10.10)

The last two terms in the formula for the increment of entropy have an identical
form; consequently, this formula shows that quantities of products Q1,Q2, . . . ,Qn

can be introduced into the list of internal variables (parameters of internal complex-
ity) of the thermodynamic system of the Earth. Like any internal variables, these
variables, left to themselves, disappear, which leads to additional dissipation of en-
ergy. The creation of artificial things is connected with the reduction of entropy of
the Earth,

dS = − 1

T

∑
j

aj dQj , (10.11)

where aj is the work for creation of a unit of product j . It is the work of the produc-
tion system, and is, eventually after many conversions, the work of the energy flux
which the Earth receives from the Sun.

The process of creation of artificial things (the production process) can be in-
terpreted as a process of creation complexity, or negative entropy, of the system.
Negative entropy −S is a natural measure of complexity of a non-equilibrium state
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of the system, in this case, the quantities and complexities of the artificial envi-
ronment. The total work on the environment, done by humans and by mechanisms
which use external sources of energy, is work as it is understood by thermodynam-
ics, so the above relation is the known thermodynamic relation between entropy S

and work A,

−dS = 1

T
dA. (10.12)

This simple scheme becomes complicated: simultaneously with useful products,
the production system also creates useless and harmful products (waste and pollu-
tion), while all real processes are irreversible. The Earth is not an isolated system,
and heat is radiated into space. The production of useful things also stimulates pro-
cesses of mixing, dispersion and diffusion, so that matter necessary for production
will become progressively unavailable [16]. In other words, the chemical elements
become increasingly mixed together and thus more and more difficult to separate
from each other. Substances necessary for manufacture all become more and more
inaccessible. But given the availability of energy, the materials could be recovered
from waste, like an ore pile [17]. The Earth is not waiting for a diffusion death: de-
spite some processes of degradation of matter, the essence of production processes
is the creation of useful complexity in the environment.

10.2.4 Do Negative Entropy and the Utility Function Coincide?

From relation (10.11), negative entropy −S can be a natural characteristic of com-
plexity of the artificial environment from the thermodynamic point of view, while
quantities of products Q1,Q2, . . . ,Qn can be considered as internal (complexity)
parameters. Note that an increment of entropy includes both useful complexity and
useless, sometimes harmful, but inevitable consequences of production. The other
characteristic of a set of products is its utility U , defined by (10.6). In contrast to
negative entropy, the utility function conventionally describes only useful complex-
ity, though estimates of damage of the environment are included in prices of the
products.

One has two functions: U and −S as characteristics of a set of commodities.
Either function is a monotonically increasing function of all variables; the function
can be identified if one neglects all by-products: useless and harmful complexity
connected with production.3 One can choose the function U to be a characteristic

3The existence of the utility function is justified by the fact that there is a preference relation on the
set of products. Similar to that, the existence of entropy is justified by an acceptability relation on
the space of thermodynamic variables. The similarity between the utility representation problem
in economics and the entropy representation problem in thermodynamics was demonstrated by
Candeal et al. [18]. Astonishingly, it seems to be not just a formal analogy: the two functions
appear to be different estimates of a set of products.
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function which describes useful man-made complexity in the system, and interpret
this function as negative entropy of the system of useful artificial things.

Due to (10.6) and (10.11), one might think that value appears to be an analogy
to negative entropy which can be considered as a measure of complexity in the
system—in our case, the complexity which is useful for human beings. The cor-
respondence is not accurate, because entropy is a function of state, in contrast to
value, which is not a function of state. The increase in value dW is close, but might
be different from a change of negative entropy dS. From relation (10.12), as far
as the change of internal energy of the system can be neglected and the conditions
considered to be isothermal, one has proportionality between increase in value of a
product and total work done on the system, that is,

dW ∼ dA. (10.13)

Proportionality between increase in value dW and total work dA was found with
the analysis of empirical data for the U.S. economy [19, 20]. The authors consider
these and similar results as confirmation of what is called the embodied energy the-
ory of value. However, it is not energy but complexity which is left in matter after the
work has been done. This complexity exists and can be, in principle, estimated in an-
other way. Besides, in contrast to relation (10.12), there is no exact relation between
completed work and produced value. Therefore, the attempts to calculate embodied
energy in artificial things remind us of the attempts to calculate the amount of phlo-
giston in a body. From all points of view, it is better to regard value as something
which is very close to negative entropy of our close environment. Fluxes of products
should be considered as fluxes of negative entropy, not as fluxes of energy.

10.3 Energy Content of a Monetary Unit

In Marx’s theory of value, it is postulated that expenditure of labour is an abso-
lute measure of value, a source of all created wealth (products). When one ac-
counts the effect of substitution of labour with true work of the production equip-
ment, one could expect that the total amount of work, including properly accounted
labour work and work of production equipment, could be an absolute measure
of value [21]. We shall test this statement, following the work by Beaudreau and
Pokrovskii [22].

The total work on the production of value in a unit of time is the sum of the work
of substitution P , measured in power units, and the work of humans hL, where h ≈
4,18 · 105 J/hour is an estimate of the work of one person per hour (see Sect. 2.4.1).
The total can be recorded as

A = P + hL. (10.14)

This work fulfils ‘useful’ changes in our environment (in the form of useful con-
sumer goods and services) which can be estimated by production of value Y (in
money units, for year, for example), written, from relations (6.12) and (6.13), as

Y = βL + γP = γ

(
P + β

γ
L

)
. (10.15)
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Fig. 10.3 ‘Energy content’ of monetary units. Curves show the amount of work necessary for
creation of a product with a value of one dollar of 1996 (top curve) and one rouble of 2000 (bottom
curve) in different years. Reproduced from [22] with permission of Elsevier

If value is estimated by monetary units of constant purchasing capacity, marginal
productivities β and γ depend on production factors. For a choice of monetary unit
with constant ‘energy content,’ the marginal productivities appear to be constant.

Expressions (10.14) and (10.15) allow us to determine the true work necessary to
complete a thing or service, which costs one monetary unit or, in other words, ‘the
energy content’ of the monetary unit,

A

Y
= 1

γ

P + hL

P + (β/γ )L
= 1

Y
(P + hL). (10.16)

The assessments of ‘energy content’ of a monetary unit for the economic systems
of the United States and Russian Federations are shown in Fig. 10.3. The ‘energy
content’ of the dollar is (1–2) × 105 J per dollar of 1996; its mean value in the
last years of the century (1960–2000) is 1.4 × 105 J. The ‘energy content’ of the
2000 rouble is less: the mean value for the same years (1960–2000) is 0.1 × 105 J.
Pulsations of this quantity (see Fig. 10.3) can be connected with natural variations
in the contribution of work (in terms of energy), contrary to our assumption of a
constancy of the coefficient h. The ‘energy content’ of the dollar is 14 times that
of the rouble, whereas the exchange rate was about 30 roubles per dollar. These
differences can be attributed to the difference of values for h in the American and
Russian economies. One could also attribute this to the absence of purchasing power
parity (disequilibrium exchange rate). Lastly, it should be noted that the Russian data
is, in general, less reliable than the U.S. data.

The values of the ‘energy content’ shown in Fig. 10.3 appear not to be constant
in time: when the contribution of the substitutive work is dominating, which was
the case in the U.S. in the second half of the last century (see Chap. 2, Fig. 2.9), the
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expression (10.16) for ‘the energy content’ can be written as

A

Y
≈ P

Y
, P � hL.

So as substitutive work increases faster than output, when the production grows,
this relation shows that ‘the energy content’ is an increasing function of time. At
exponential growth, when the variables are given by (2.30) and (2.37), ‘the energy
content’ of a money unit grows as

A

Y
∼ e(η−δ)t . (10.17)

For the U.S. in the second half of the last century, for example, η − δ = 0.0272.
Indeed, one can see the increase of ‘the energy content’ on the plot of Fig. 10.3 for
the U.S. economy after year 1950.

Here it is necessary to recollect that output in expressions (10.15)–(10.17) is
estimated by a special monetary measure with constant purchasing capacity at all
times, but this unit of value apparently changes with time. An absolute measure of
value is equivalent to some amount of energy. Thus, the expression for output can
be written as

Y = A

εref
, (10.18)

where work A is determined by expression (10.14), and εref represents some stan-
dard reference ‘energy content’ of a monetary unit. To measure production of value
in the U.S., it is possible to accept the amount of 105 J, but, to draw a distinctive
curve in Fig. 2.1, we calculate time dependence of production of value (GDP of the
U.S. economy) according to the formula (10.18) at εref = 50000 J.

Other approaches [13, 23, 24] are giving the assessments of the total consump-
tion of energy (or exergy) for output, taking into account all ‘previous’ expenditures
of energy needed for production ‘from the very beginning.’ Such estimates include
all losses of energy during production. In this case universality is lost: these esti-
mates of ‘energy content’ depend on the efficiency of transformation of energy in
processes of production. Note that our assessments of ‘energy content’ of a mone-
tary unit naturally appear to be lower than ‘the total exergy or energy content’ [13,
23], because substitutive work is a small part of the total consumed energy.

10.4 Thermodynamics of Production Cycle

The performance of thermic machines, which are designed to transform heat into
mechanical work, is described by thermodynamics by means of thermodynamic cy-
cles. Thermodynamics itself has emerged from studying this kind of thermodynamic
cycle [6]. Investigating the processes of production, one deals with thermodynamic
cycles of another kind, i.e., production cycles which are designed to transform the
‘wild’ forms of substances into ‘useful’ forms (dwellings, food, clothes, machinery
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and so on). We shall consider a simple example of production cycle and demonstrate
what one needs in order to create a non-equilibrium state of matter artificially.

The main elements of a production process are production equipment, which is
able to perform special operations, remaining (excluding wear and tear) unchanged
after the cycle, and some substances, the forms of which (one can assume that the
change of energy can be neglected) are being changed due to special work of the
production equipment. A production cycle can be considered to be a sequence of
elementary operations j1, j2, . . . , while a set of elementary operations is given. The
index jl is an index of an elementary operation which is fulfilled as number l in the
sequence of operations. The unique choice of indexes determines where, when and
how forces are allowed to act to perform work which can be calculated as a sum of
work at elementary operations,

�A = Aj1 + Aj2 + · · · .

10.4.1 A Simple Production Process

So as not to be too abstract, let us consider, as an example, a system of 2N particles
(ideal gas) in a container consisting of two compartments of volume V each, as
shown in Fig. 10.4. There are some devices which allow the compartments to be
connected or isolated (let us call this operation A) and the volume of the second
department to be diminished or restored to its previous volume (operation B).

Let us assume that in an initial state each compartment has volume V and the
compartments are connected with each other, while the gas is in an equilibrium state,
so that each compartment has on average N particles. One can imagine that a delib-
erate sequence of operations can be applied to the system. We consider isothermal
processes consisting of several elementary operations, while the operation is ful-
filled in a reversible manner. After one has performed the sequence B—decreasing
of volume 2 in �V , A—isolating of the compartments, B—increasing of volume 2
in �V , and A—connecting the compartments, the configuration of the outer devices
is initial, but the gas appears to be in a non-equilibrium state. The mean number of
particles in each compartment can be found to be

N1 = N(1 + ξ), N2 = N(1 − ξ), ξ = (�V/2V )

1 − (�V/2V )
. (10.19)

The entropy of the system can be directly estimated according to Boltzmann
formulae applied to this case,

S = k lnW, W = (2N)!
N1!N2! ,

so that the change of entropy of the system can be calculated as

�S = −kNξ2. (10.20)
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Fig. 10.4 Scheme of the production container. The compartments contain a gas, the state of which
can be affected by a sequence of the two production operations: A—the compartments can be
connected or isolated and B—the volume of the second department can be diminished or restored
to its previous volume

The terms of third order and higher are neglected here and further on.
The work �A which is needed to pass the system through the cycle can be calcu-

lated as work of/on the ideal gas in every four steps of the cycle. One finds eventually
that external forces have to produce extra work during the cycle,

�A = kT Nξ2. (10.21)

The internal energy of the system

E = 3NkT

as the internal energy of the ideal gas does not change in the process, so the first
law of thermodynamics can be written, considering every step of the process to be
reversible, in the form

T �S = −�A,

and the change of entropy of the system in the process can be estimated as

�S = −kNξ2. (10.22)

The considered particular non-equilibrium state cannot be created without work
of external forces and without the deliberate choice of sequence of elementary op-
erations. Somebody possesses certain sources of energy and has the aim to create
a unique non-equilibrium form of matter. To achieve the goal, the creator sends the
message in codes of elementary operations: BABA. No other messages can be help-
ful. The information content of the deliberate message can be estimated if one takes
into account that this message is one of 8 possibilities. So, the message carries the
information entropy in the amount

�I = − log2
1

8
= 3. (10.23)

The information content of the message can be considered to be materialised in non-
equilibrium form (complexity) of matter. The cost of materialisation is the work of
production system �A.
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10.4.2 Output of the Production Cycle

Returning to the general case, the inputs of information �I and work �A even-
tually determine a new organisation of matter which, due to production processes,
acquires forms of different objects. This is a special complexity, which, from a ther-
modynamic point of view, can be characterised by negative entropy. The decrease
in entropy of the entire environment �S due to processes of production can be con-
nected with special work of the production system,

−�S = 1

T
�A. (10.24)

This is the same relation as (10.12), and one can state that only properly organised
work of the production system is needed to transform the natural environment into
an artificial environment.

The artificial things created in the process of production can also be estimated
by their value, so that a decrease in entropy can correspond to the output of the
production system in money units,

Y ∼ −dS,

which means that the output should correspond to work during the production pro-
cesses,

Y ∼ �A. (10.25)

Useful work �A includes muscle work by animals or humans, work by electric mo-
tors, mobile engine power as delivered, for example, to the rear wheels of vehicles,
but, in this context, not useful heat, as delivered in a space in a building or in a
process.
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Appendix A
NAICS Codes and Titles

The current analysis of the US economy uses a classification system that is based
on the 6-digit North American Industry Classification System (NAICS) introduced
in year 1997 (http://www.census.gov/eos/www/naics/). The table below shows the
3-digit list of industries (commodities).

Code Description

11 Agriculture, Forestry, Fishing and Hunting

111 Crop Production

112 Animal Production

113 Forestry and Logging

114 Fishing, Hunting and Trapping

115 Support Activities for Agriculture and Forestry

21 Mining

211 Oil and Gas Extraction

212 Mining (except Oil and Gas)

213 Support Activities for Mining

22 Utilities

221 Utilities

23 Construction

233 Building, Developing, and General Contracting

234 Heavy Construction

235 Special Trade Contractors

V.N. Pokrovskii, Econodynamics, New Economic Windows 12,
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Code Description

31–33 Manufacturing

311 Food Manufacturing

312 Beverage and Tobacco Product Manufacturing

313 Textile Mills

314 Textile Product Mills

315 Apparel Manufacturing

316 Leather and Allied Product Manufacturing

321 Wood Product Manufacturing

322 Paper Manufacturing

323 Printing and Related Support Activities

324 Petroleum and Coal Products Manufacturing

325 Chemical Manufacturing

326 Plastics and Rubber Products Manufacturing

327 Non-metallic Mineral Product Manufacturing

331 Primary Metal Manufacturing

332 Fabricated Metal Product Manufacturing

333 Machinery Manufacturing

334 Computer and Electronic Product Manufacturing

335 Electrical Equipment, Appliance, and Component Manufacturing

336 Transportation Equipment Manufacturing

337 Furniture and Related Product Manufacturing

339 Miscellaneous Manufacturing

42 Wholesale Trade

421 Wholesale Trade, Durable Goods

422 Wholesale Trade, Nondurable Goods

44–45 Retail Trade

441 Motor Vehicle and Parts Dealers

442 Furniture and Home Furnishings Stores

443 Electronics and Appliance Stores

444 Building Material and Garden Equipment and Supplies Dealers

445 Food and Beverage Stores

446 Health and Personal Care Stores

447 Gasoline Stations

448 Clothing and Clothing Accessories Stores

451 Sporting Goods, Hobby, Book, and Music Stores

452 General Merchandise Stores

453 Miscellaneous Store Retailers

454 Nonstore Retailers
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Code Description

48–49 Transportation and Warehousing

481 Air Transportation

482 Rail Transportation

483 Water Transportation

484 Truck Transportation

485 Transit and Ground Passenger Transportation

486 Pipeline Transportation

487 Scenic and Sightseeing Transportation

488 Support Activities for Transportation

491 Postal Service

492 Couriers and Messengers

493 Warehousing and Storage

51 Information

511 Publishing Industries

512 Motion Picture and Sound Recording Industries

513 Broadcasting and Telecommunications

514 Information Services and Data Processing Services

52 Finance and Insurance

521 Monetary Authorities—Central Bank

522 Credit Intermediation and Related Activities

523 Securities, Commodity Contracts,
and Other Financial Investments and Related Activities

524 Insurance Carriers and Related Activities

525 Funds, Trusts, and Other Financial Vehicles

53 Real Estate and Rental and Leasing

531 Real Estate

532 Rental and Leasing Services

533 Lessors of Nonfinancial Intangible Assets
(except Copyrighted Works)

54 Professional, Scientific, and Technical Services

541 Professional, Scientific, and Technical Services

55 Management of Companies and Enterprises

551 Management of Companies and Enterprises

56 Administrative and Support
and Waste Management and Remediation Services

561 Administrative and Support Services

562 Waste Management and Remediation Services
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Code Description

61 Educational Services

611 Educational Services

62 Health Care and Social Assistance

621 Ambulatory Health Care Services

622 Hospitals

623 Nursing and Residential Care Facilities

624 Social Assistance

71 Arts, Entertainment, and Recreation

711 Performing Arts, Spectator Sports, and Related Industries

712 Museums, Historical Sites, and Similar Institutions

713 Amusement, Gambling, and Recreation Industries

72 Accommodation and Food Services

721 Accommodation

722 Food Services and Drinking Places

81 Other Services (except Public Administration)

811 Repair and Maintenance

812 Personal and Laundry Services

813 Religious, Grantmaking,
Civic, Professional, and Similar Organizations

814 Private Households

92 Public Administration

921 Executive, Legislative, and Other General Government Support

922 Justice, Public Order, and Safety Activities

923 Administration of Human Resource Programs

924 Administration of Environmental Quality Programs

925 Administration of Housing Programs,
Urban Planning, and Community Development

926 Administration of Economic Programs

927 Space Research and Technology

928 National Security and International Affairs



Appendix B
Data on the U.S. Economy

Time series on an annual basis provide the basic empirical data for the test of every
theory of economic growth. National statistical compilations contain information
about gross national product, labour, energy, and other quantities. High art and hard
work are needed to elaborate time series for economic quantities. Sometimes, it
needs in courage as well.

The population estimates were found on a website of the U.S. Census Bureau
(http://www.census.gov). Values of gross national product Y , gross investment I

and capital K are available on a website of the U.S. Bureau of Economic Analy-
sis (http://www.bea.gov). The dollar (1996) values for Y from year 1929 and for I

and K from year 1925 are reproduced in the Table. Investment I is understood,
in terms of the U.S. Bureau of Economic Analysis, as a sum of investments in
private fixed assets, in government fixed assets and in consumer durable goods
which make up capital K . The time series for labour L for the latest decades
(from year 1948) are found on a website of the U.S. Bureau of Labour Statis-
tics (http://www.stats.bls.gov). The series of quantities compiled by different re-
searchers are used to restore absolute values of quantities Y , I , K and L for the ear-
lier years, whereas there is no need to discuss the discrepancies between series from
different sources here, for we use the series not for analysis of economic growth but
only for illustration of methods of analysis. Data for total consumption of energy E

are taken from a website of the U.S. Department of Energy (http://www.eia.gov) for
years from 1949 and from Historical Statistics (Historical Statistics of the United
States: Colonial Times to 1970, Parts 1 & 2. U.S. Department of Commerce, Wash-
ington, 1975.) for the earlier years. The Table contains also values of substitutive
work P estimated in Chap. 7.
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Year Population GNP Investment Capital Labour Substitutive
work

Primary
energy

N · 10−3 Y · 10−6

$ (1996)
I · 10−6

$ (1996)
K ·10−6

$ (1996)
L · 10−6

man-hour
P

quad
E

quad

1891 – 214,663 47,059 967,288 39,927 0.0028 7.04

1892 – 236,357 60,567 1,047,614 41,640 0.0033 7.33

1893 – 222,488 45,865 1,123,236 41,071 0.0037 7.63

1894 – 216,891 43,545 1,172,219 39,234 0.0053 7.93

1895 – 246,560 54,564 1,231,646 42,384 0.0054 8.23

1896 – 241,260 44,133 1,287,255 42,398 0.0065 8.62

1897 – 267,115 53,596 1,331,494 44,119 0.0066 9.02

1898 – 272,514 50,050 1,382,140 44,483 0.0076 9.42

1899 – 305,550 62,951 1,432,732 48,624 0.0077 9.91

1900 76,090 308,472 71,130 1,489,105 49,404 0.0088 10.70

1901 77,580 343,044 79,186 1,543,855 52,181 0.0089 11.69

1902 79,160 340,172 82,638 1,601,086 55,141 0.0090 13.38

1903 80,630 355,526 81,633 1,666,279 57,160 0.0096 15.06

1904 82,170 348,691 67,877 1,716,012 56,213 0.0111 16.06

1905 83,820 378,409 73,291 1,774,784 59,734 0.0113 16.35

1906 85,450 431,208 98,273 1,858,641 62,715 0.0114 13.78

1907 87,010 434,922 96,940 1,947,528 64,516 0.0127 14.67

1908 88,710 387,770 60,558 2,018,638 61,265 0.0144 16.06

1909 90,490 443,541 96,205 2,071,670 65,471 0.0145 15.46

1910 92,410 442,748 95,114 2,137,790 67,694 0.0149 16.35

1911 93,860 457,558 83,589 2,199,302 69,182 0.0159 17.94

1912 95,360 476,230 98,175 2,251,571 71,857 0.0160 18.43

1913 97,230 495,300 109,430 2,326,498 72,900 0.0180 17.74

1914 99,110 446,562 58,553 2,398,262 71,077 0.0205 17.54

1915 100,550 460,975 56,161 2,445,923 70,822 0.0229 17.94

1916 101,960 537,895 94,979 2,494,075 77,346 0.0231 20.12

1917 103,270 513,626 75,380 2,548,021 79,096 0.0236 20.91

1918 103,210 543,839 69,314 2,596,922 78,440 0.0264 21.70

1919 104,510 575,043 116,507 2,643,806 75,961 0.0287 21.70

1920 106,460 587,921 157,481 2,707,472 77,128 0.0305 19.62

1921 108,540 552,754 65,451 2,763,599 69,459 0.0348 20.12

1922 110,050 581,482 82,070 2,814,941 75,597 0.0350 18.63

1923 111,950 672,617 135,455 2,917,966 82,960 0.0353 19.23

1924 114,110 693,915 86,915 3,039,886 80,919 0.0397 21.31

1925 115,830 704,811 127,210 3,161,810 84,418 0.0403 20.70

1926 117,400 755,827 134,742 3,288,677 88,209 0.0415 20.42

1927 119,040 760,285 131,413 3,405,460 88,573 0.0458 21.61

1928 120,510 816,254 133,016 3,515,442 89,667 0.0504 21.61

1929 121,770 822,198 141,193 3,635,742 92,218 0.0532 22.10



B Data on the U.S. Economy 193

Year Population GNP Investment Capital Labour Substitutive
work

Primary
energy

N · 10−3 Y · 10−6

$ (1996)
I · 10−6

$ (1996)
K ·10−6

$ (1996)
L · 10−6

man-hour
P

quad
E

quad

1930 123,080 751,500 119,147 3,702,810 85,803 0.0577 22.10

1931 124,040 703,600 95,211 3,719,694 77,930 0.0616 19.62
1932 124,840 611,800 69,100 3,685,926 68,577 0.0641 18.43
1933 125,580 603,300 63,036 3,642,074 68,744 0.0627 18.43
1934 126,370 668,300 72,261 3,628,941 69,262 0.0619 18.63
1935 127,250 728,300 84,404 3,639,025 73,774 0.0615 18.93
1936 128,050 822,500 108,340 3,695,540 81,575 0.0618 19.62
1937 128,820 865,800 116,353 3,762,608 87,334 0.0620 18.83
1938 129,820 835,600 102,012 3,797,784 80,190 0.0655 19.62
1939 130,880 903,500 120,585 3,862,507 85,803 0.0657 20.76
1940 132,120 980,700 136,303 3,945,521 91,125 0.0661 23.69

1941 133,400 1,148,800 183,970 4,096,776 103,518 0.0670 25.47
1942 134,860 1,360,000 229,151 4,329,638 113,359 0.0681 27.85
1943 136,740 1,583,700 269,298 4,591,813 120,357 0.0692 29.14
1944 138,400 1,714,100 276,264 4,804,742 119,483 0.0757 30.13
1945 139,930 1,693,300 242,855 4,896,667 113,651 0.0804 31.22
1946 141,390 1,505,500 215,735 4,929,967 116,640 0.0794 30.62
1947 144,130 1,495,100 257,875 5,019,781 120,868 0.0792 30.13
1948 146,630 1,560,000 291,303 5,140,316 122,909 0.0827 30.62
1949 149,190 1,550,900 294,899 5,285,005 117,809 0.0894 32.01
1950 152,270 1,686,600 345,504 5,494,417 122,919 0.0948 33.30

1951 154,880 1,815,100 356,476 5,716,491 124,413 0.1023 33.30
1952 157,550 1,887,300 367,447 5,937,394 125,663 0.1116 34.29
1953 160,180 1,973,900 392,164 6,188,547 127,280 0.1221 37.56
1954 163,030 1,960,500 391,654 6,414,843 122,270 0.1329 39.35
1955 165,930 2,099,500 433,277 6,684,991 127,953 0.1381 38.85
1956 168,900 2,141,100 430,935 6,924,888 131,174 0.1473 38.85
1957 171,980 2,183,900 435,866 7,157,984 130,269 0.1598 39.84
1958 174,880 2,162,800 418,833 7,340,662 126,309 0.1720 41.72
1959 177,830 2,319,000 463,953 7,594,864 132,272 0.1775 43.51
1960 180,670 2,376,700 466,357 7,836,872 133,578 0.1905 43.71

1961 183,690 2,432,000 470,568 8,072,548 133,225 0.2055 44.30
1962 186,540 2,578,900 514,763 8,354,421 134,940 0.2191 47.83
1963 189,240 2,690,400 546,897 8,663,731 137,276 0.2340 49.65
1964 191,890 2,846,500 587,743 9,012,907 140,097 0.2513 51.83
1965 194,300 3,028,500 645,272 9,411,797 144,126 0.2691 54.02
1966 196,560 3,227,500 683,714 9,835,779 146,916 0.2917 57.02
1967 198,710 3,308,300 693,556 10,231,152 147,620 0.3183 58.91
1968 200,710 3,466,100 747,120 10,653,728 150,607 0.3441 62.41
1969 202,680 3,571,400 760,064 11,071,613 153,556 0.3663 65.63
1970 205,050 3,578,000 739,764 11,424,775 152,147 0.3968 67.86
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Year Population GNP Investment Capital Labour Substitutive
work

Primary
energy

N · 10−3 Y · 10−6

$ (1996)
I · 10−6

$ (1996)
K ·10−6

$ (1996)
L · 10−6

man-hour
P

quad
E

quad

1971 207,660 3,697,700 783,096 11,804,436 151,990 0.4284 69.31

1972 209,900 3,898,400 863,164 12,258,669 158,838 0.4459 72.76

1973 211,910 4,123,400 935,651 12,756,051 164,395 0.4700 75.81

1974 213,850 4,099,000 894,004 13,155,176 165,966 0.5004 74.08

1975 215,970 4,084,400 840,255 13,466,597 161,152 0.5382 72.04

1976 218,040 4,311,700 907,749 13,838,519 167,209 0.5485 76.07

1977 220,240 4,511,800 1,007,912 14,290,877 173,140 0.5661 78.12

1978 222,590 4,760,600 1,104,643 14,814,054 180,386 0.5864 80.12

1979 225,060 4,912,100 1,150,502 15,341,921 184,244 0.6162 81.04

1980 227,760 4,900,900 1,080,070 15,752,771 182,185 0.6630 78.44

1981 229,940 5,021,000 1,097,206 16,147,910 184,644 0.6970 76.57

1982 232,170 4,919,300 1,041,772 16,447,136 181,172 0.7458 73.44

1983 234,300 5,132,300 1,138,894 16,824,687 184,208 0.7683 73.32

1984 236,370 5,505,200 1,317,892 17,359,824 194,388 0.7752 76.97

1985 238,490 5,717,100 1,430,937 17,943,972 194,400 0.8266 76.78

1986 240,680 5,912,400 1,498,944 18,534,452 199,432 0.8701 77.07

1987 242,840 6,113,300 1,523,250 19,087,645 204,292 0.9017 79.63

1988 245,060 6,368,400 1,554,809 19,636,149 208,570 0.9402 83.07

1989 247,340 6,591,800 1,618,728 20,167,768 212,477 0.9790 84.72

1990 249,910 6,707,900 1,602,374 20,650,376 214,686 1.0840 84.34

1991 252,640 6,676,400 1,515,484 20,931,321 211,162 1.1560 84.52

1992 255,420 6,879,529 1,606,935 21,299,101 213,181 1.1949 85.87

1993 258,140 7,063,412 1,719,528 21,748,774 216,989 1.2295 87.58

1994 260,680 7,347,348 1,817,471 22,246,928 223,330 1.2505 89.25

1995 262,803 7,531,325 1,916,976 22,787,433 225,363 1.3137 91.22

1996 265,229 7,810,009 2,054,615 23,410,780 227,962 1.3851 94.22

1997 267,784 8,161,271 2,232,978 24,089,180 234,445 1.4373 94.73

1998 270,248 8,502,032 2,469,906 24,873,020 237,892 1.5234 95.15

1999 272,691 8,880,300 2,674,882 25,723,677 240,859 1.6329 96.77

2000 282,172 9,205,400 2,607,368 27,655,636 245,567 1.7130 98.91

2001 285,040 9,274,509 2,608,868 28,468,773 243,494 1.8540 96.38

2002 287,727 9,422,759 2,608,868 29,216,898 241,983 1.9884 98.03

2003 290,211 9,659,247 2,715,579 29,983,768 242,761 2.1063 98.16

2004 292,892 10,010,697 2,876,488 30,792,361 245,433 2.2113 100.35

2005 295,561 10,304,854 3,029,802 31,585,756 250,541 2.2839 100.51

2006 298,363 10,591,133 3,110,069 32,444,607 256,064 2.3627 99.86

2007 301,290 10,805,961 3,106,975 33,214,996 258,936 2.4608 101.60

2008 304,060 10,926,080 3,020,894 255,441 99.40
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