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PREFACE

Welcome to Linear Algebra with Applications. This book is designed for use in
a standard linear algebra course for an applied audience, usually populated
by sophomores and juniors. While the majority of students in this type of

course are majoring in engineering, some also come from the sciences, economics, and
other disciplines. To accommodate a broad audience, applications covering a variety of
topics are included.

Although this book is targeted toward an applied audience, full development of
the theoretical side of linear algebra is included, so this textbook can also be used as an
introductory course for mathematics majors. I have designed this book so that instructors
can teach from it at a conceptual level that is appropriate for their individual course.

There is a collection of core topics that appear in virtually all linear algebra texts,
and these are included in this text. In particular, the core topics recommended by the
Linear Algebra Curriculum Study Group are covered here. The organization of these
core topics varies from text to text, with the recent trend being to introduce more of the
“abstract” material earlier rather than later. The organization here reflects this trend, with
the chapters (approximately) alternating between computational and conceptual topics.

Text Features

Early Presentation of Key Concepts. Traditional linear algebra texts initially focus on
computational topics, then treat more conceptual subjects soon after introducing abstract
vector spaces. As a result, at the point abstract vector spaces are introduced, students face
two simultaneous challenges:

(a) A change in mode of thinking, from largely mechanical and computational (solv-
ing systems of equations, performing matrix arithmetic) to wrestling with con-
ceptual topics (span, linear independence).

(b) A change in context from the familiar and concrete Rn to abstract vector spaces.

Many students cannot effectively meet both these challenges at the same time. The orga-
nization of topics in this book is designed to address this significant problem.

In Linear Algebra with Applications, we first address challenge (a). Conceptual topics
are explored early and often, blended in with topics that are more computational. This
spreads out the impact of conceptual topics, giving students more time to digest them.
The first six chapters are presented solely in the context of Euclidean space, which is
relatively familiar to students. This defers challenge (b) and also allows for a treatment
of eigenvalues and eigenvectors that comes earlier than in other texts.

Challenge (b) is taken up in Chapter 7, where abstract vector spaces are introduced.
Here, many of the conceptual topics explored in the context of Euclidean space are
revisited in this more general setting. Definitions and theorems presented are similar to
those given earlier (with explicit references to reinforce connections), so students have
less trouble grasping them and can focus more attention on the new concept of an abstract
vector space.

From a mathematical standpoint, there is a certain amount of redundancy in this
book. Quite a lot of the material in Chapters 7, 9, and 10, where the majority of the
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development of abstract vector spaces resides, has close analogs in earlier chapters. This
is a deliberate part of the book design, to give students a second pass through key ideas
to reinforce understanding and promote success.

Topics Introduced and Motivated Through Applications. To provide understanding
of why a topic is of interest, when it makes sense I use applications to introduce and
motivate new topics, definitions, and concepts. In particular, many sections open with
an application. Applications are also distributed in other places, including the exercises.
In a few instances, entire sections are devoted to applications.

Extensive Exercise Sets. Recently, I read a review of a text in which the reviewer stated,
in essence, “This text has a very nice collection of exercises, which is the only thing I care
about. When will textbook authors learn that the most important consideration is the
exercises?” Although this sentiment might be extreme, most instructors share it to some
degree, and it is certainly true that a text with inadequate problem sets can be frustrating.
Linear Algebra with Applications contains over 2600 exercises, covering a wide range of
types (computational to conceptual to proofs) and diffculty levels.

Ample Instructional Examples. For many students, a primary use of a mathematics
text is to learn by studying examples. Besides those examples used to introduce new
topics, this text contains a large number of additional representative examples. Perhaps
the number one complaint from students about mathematics texts is that there are not
enough examples. I have tried to address that in this text.

Support for Theory and Proofs. Many students in a first linear algebra course are usually
not math majors, and many have limited experience with proofs. Proofs of most theorems
are supplied in this book, but it is possible for a course instructor to vary the level of
emphasis given to proofs through choice of lecture topics and homework exercises.

Throughout the book, the goal of proofs is to help students understand why a
statement is true. Thus, proofs are presented in different ways. Sometimes a theorem
might be proved for a special case, when it is clear that no additional understanding
results from presenting the more general case (especially if the general case is more
notationally messy). If a proof is diffcult and will not help students understand why the
theorem is true, then it might be given at the end of the section or omitted entirely. If
it provides a source of motivation for the theorem, the proof might come before the
statement of the theorem. I have also written an appendix containing an overview of how
to read and write proofs to assist those with limited experience. (See the text website at
www.whfreeman.com/holt.)

Most linear algebra texts handle theorems and proofs in similar ways, although
there is some variety in the level of rigor. However, it seems that often there is not enough
concern for whether or not the proof is conveying why the theorem is true, with the goal
instead being to keep the proof as short as possible. Sometimes it is worth taking a bit
of extra time to give a complete explanation. For example, in Section 1.1, a system of
equations is reduced to “0 = 8.” At this point, most texts would state that this shows the
system has no solutions, and it is likely that most students would agree. However, it is
also possible that many students will not know why the system has no solutions, so a
brief explanation is included.

Organization of Material
Roughly speaking, the chapters alternate between computational and conceptual topics.
This is deliberate, in order to spread out the challenge of the conceptual topics and to give
students more time to digest them. The material in Chapters 1–6 and 8 is exclusively in

http://www.whfreeman.com/holt
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the context of Euclidean space and includes the core topics recommended by the Linear
Algebra Curriculum Study Group. Chapters 7, 9, and 10 cover topics in the context of
abstract vector space, and Chapter 11 contains a collection of optional topics that can be
included at the end of a course.

Those sections marked with an asterisk (∗) can be omitted without loss of continuity,
but in some cases they may be assumed in optional sections that come later. See the start
of each optional section for dependency information.

1. Systems of Linear Equations

1.1 Lines and Linear Equations

1.2 Linear Equations and Matrices

1.3 Numerical Solutions∗

1.4 Applications of Linear Systems∗

Chapter 1 is fairly computational, providing a comprehensive introduction to systems of
linear equations and their solutions. Iterative solutions to systems are also treated. The
chapter closes with a section containing in-depth descriptions of several applications
of linear systems. By the end of this chapter, students should be proficient in using
augmented matrices and row operations to find the set of solutions to a linear system.

2. Euclidean Space

2.1 Vectors

2.2 Span

2.3 Linear Independence

Chapter 2 shifts from mechanical to conceptual material. This chapter is devoted to
introducing vectors and the important concepts of span and linear independence, all in
the concrete context of Rn. These topics appear early so that students have more time to
absorb these important concepts.

3. Matrices

3.1 Linear Transformations

3.2 Matrix Algebra

3.3 Inverses

3.4 LU Factorization∗

3.5 Markov Chains∗

Chapter 3 shifts from conceptual back to (mostly) mechanical material, starting with a
treatment of linear transformations from Rn to Rm. This is used to motivate the definition
of matrix multiplication, which is covered in the next section along with other matrix
arithmetic. This is followed by a section on computing the inverse of a matrix, motivated
by finding the inverse of a linear transformation. Matrix factorizations, arguably related
to numerical methods, provide an alternate way of organizing computations. The chapter
closes with Markov chains, a topic not typically covered until after discussing eigenvalues
and eigenvectors. But this subject easily can be covered earlier, and as there are a number
of interesting applications of Markov chains, they are included here.

4. Subspaces

4.1 Introduction to Subspaces

4.2 Basis and Dimension

4.3 Row and Column Spaces
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In Chapter 4, we again shift back to a more conceptual topic, subspaces in Rn. The first
section provides the definition of subspace along with examples. The second section
develops the notion of basis and dimension for subspaces in Rn, and the last section
thoroughly treats row and column spaces. By the end of this chapter, students will have
been exposed to many of the central conceptual topics typically covered in a linear algebra
course. These are revisited (and eventually generalized) throughout the remainder of the
book.

5. Determinants

5.1 The Determinant Function

5.2 Properties of the Determinant∗

5.3 Applications of the Determinant∗

Chapter 5 develops the usual properties of determinants. This topic has moved around in
texts in recent years. For some time, the trend was to reduce the emphasis on determinants,
but lately they have made something of a comeback. This chapter is relatively short and
is introduced at this point in the text to support the introduction of eigenvalues and
eigenvectors in the next chapter. Those who want only enough of determinants for
eigenvalues can cover only Section 5.1.

6. Eigenvalues and Eigenvectors

6.1 Eigenvalues and Eigenvectors

6.2 Approximation Methods∗

6.3 Change of Basis

6.4 Diagonalization

6.5 Complex Eigenvalues∗

6.6 Systems of Differential Equations∗

Chapter 6 provides a treatment of eigenvalues and eigenvectors that comes earlier than
in most books. Section 6.2 covers numerical methods for approximating eigenvalues
and eigenvectors and can be deferred until later or omitted entirely. Diagonalization is
presented as a special type of change of basis and is revisited for symmetric matrices in
Chapter 8.

7. Vector Spaces

7.1 Vector Spaces and Subspaces

7.2 Span and Linear Independence

7.3 Basis and Dimension

Abstract vector spaces are first introduced in Chapter 7. This relatively late introduction
allows students time to internalize key concepts such as span, linear independence, and
subspaces before being presented with the challenge of abstract vector spaces. To further
smooth this transition, definitions and theorems in this chapter typically include specific
references to analogs in earlier chapters to reinforce connections. Since most proofs are
similar to those given in Euclidean space, many are left as homework exercises. Making the
parallels between Euclidean space and abstract vector spaces very explicit helps students
more easily assimilate this material.

The order of Chapter 7 and Chapter 8 can be reversed, so if time is limited, Chapter 8
can be covered immediately after Chapter 6. However, if both Chapters 7 and 8 are going
to be covered, it is recommended that Chapter 7 be covered first so that this new, more
abstract material is not appearing at the end of the course.
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8. Orthogonality

8.1 Dot Products and Orthogonal Sets

8.2 Projection and the Gram-Schmidt Process

8.3 Diagonalizing Symmetric Matrices and QR Factorization

8.4 The Singular Value Decomposition∗

8.5 Least Squares Regression∗

In Chapter 8, the context shifts back to Euclidean space and treats topics that are more
computational than conceptual. Chapter 7 is placed before Chapter 8 to allow for an
introduction to abstract vector spaces that does not come at the end of the course, and
to a degree preserves the chapter alternation between computational and conceptual.
However, the two chapters are interchangeable.

9. Linear Transformations

9.1 Definition and Properties

9.2 Isomorphisms

9.3 The Matrix of a Linear Transformation

9.4 Similarity

The focus of Chapter 9 shifts back to abstract vector spaces, with a general development
of linear transformations. As in Chapter 7, there is some deliberate redundancy between
the material in Chapter 9 and that presented in earlier chapters. Explicit references to
earlier analogous definitions and theorems are provided to reinforce connections and
improve understanding.

10. Inner Product Spaces

10.1 Inner Products

10.2 The Gram–Schmidt Process Revisited

10.3 Applications of Inner Products∗

Chapter 10 is in the context of abstract vector spaces. The content is somewhat parallel to
the first two sections of Chapter 8, with explicit analogs noted. The first section defines
the inner product and inner product spaces and gives numerous examples of each. The
second section generalizes the notion of projection and the Gram–Schmidt process to
inner product spaces, and the last section provides applications of inner products. For the
most part, Chapter 10 is independent of Chapter 9 (except for a small number of exercise
references to linear transformations), so Chapter 10 can be covered without covering
Chapter 9.

11. Additional Topics and Applications*

11.1 Quadratic Forms

11.2 Positive Definite Matrices

11.3 Constrained Optimization

11.4 Complex Vector Spaces

11.5 Hermitian Matrices

Chapter 11 provides a collection of topics and applications that most instructors consider
optional but that are nonetheless important and interesting. These can be inserted at the
end of a course as desired.



Holt-4100161 la˙fm November 15, 2012 9:47 xii

xii Preface

Course Coverage
Most schools teach linear algebra as a semester-long course that meets 3 hours per week.
This does not allow enough time to cover everything in this book, so decisions about
coverage are required.

The dependencies among chapters are fairly straightforward.

• The first six chapters are designed to be covered in order, although there are some
optional sections (flagged in the table of contents) that can be skipped.

• The order of Chapter 7 and Chapter 8 can be interchanged.

• The order of Chapter 9 and Chapter 10 can be interchanged (except for a small number
of exercises in Chapter 10 that use linear transformations).

• Chapter 9 assumes Chapter 7, and Chapter 10 assumes Chapter 7 and Chapter 8.

Below are a few options for course coverage. Note that some sections or even subsections
can be omitted to fine-tune the course to local needs.

• Modest Pace: Chapters 1–8. This course covers all key concepts in the context of
Euclidean space and provides an introduction to abstract vector spaces.

• Intermediate Pace: Chapters 1–9 or Chapters 1–8 and 10. This includes everything
from the Modest Pace course and either linear transformations on abstract vector
spaces (Chapter 9) or inner product spaces (Chapter 10).

• Brisk Pace: Chapters 1–10. This will include everything from the Modest Pace course,
as well as both linear transformations on abstract vector spaces and inner product
spaces. This is roughly the syllabus we follow at here at the University of Virginia,
although we omit a few optional sections and we give exams in the evening, which
makes available more lecture time. (A detailed list of sections that we cover is available
on request from the author.)

Chapter Transitions
Each chapter opens with the picture of a bridge and a brief description. These are included
for a number of reasons. One reason is to provide a metaphor: linear algebra provides
a bridge to higher understanding. Another reason is the clear engineering component.
Even if the mathematics behind bridge building is not discussed, it is implicitly present.
Finally, we discovered that many of the text reviewers are fans of bridges, with a number
willing to nominate favorites for inclusion here. We assume that they are not alone.

Supplements for Instructors
Instructor’s Solutions Manual

Instructor’s Resource Manual

Test Bank

PowerPoint Slides

Matlab Manual

Maple Manual

Mathematica Manual

TI Manual
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Supplements for Students
Student Solutions Manual

Matlab Manual

Maple Manual

Mathematica Manual

TI Manual

Media

P  RTALMATH www.yourmathportal.com MathPortal combines a fully customizable e-Book, excep-
tional student and instructor resources, and an online homework assignment center.
Included are algorithmically generated exercises, as well as diagnostic quizzes; interactive
applets; student solutions; online quizzes; Mathematica®, MapleTM, and MathLab® tech-
nology manuals; and homework management tools—all in one affordable, easy-to-use,
fully customizable learning space.

http://webwork.maa.org W. H. Freeman offers algorithmically generated
questions (with full solutions) through this free open source online homework system
developed at the University of Rochester.

Additional Media Resources

Online e-Book. In addition to being integrated into MathPortal, the e-Book for Holt’s
Linear Algebra with Applications is available as a stand-alone resource to be used with,
or instead of, the printed text. Access can also be packaged with the text at a substantial
discount.

Online Study Center. The Online Study Center helps students pinpoint where to focus
their study and provides a variety of resources tied to the text. The features include:

• Personalized Study Plan: Students take preliminary quizzes and are directed to specific
text sections and resources to review the questions they missed.

• Premium Resources, including:

– Interactive Applets

– Mathematica Manual

– Maple Manual

– MathLab Manual

– Student Solutions Manual

– Instructor Resources

With this innovative online tool, instructors can provide selected
secure solutions for any assignment from the textbook to their students.

The hassle-free solution created for educators by educators. For more information, visit
www.iclicker.com.

http://www.yourmathportal.com
http://webwork.maa.orgW
http://www.iclicker.com
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C H A P T E R

The New River Gorge Bridge

near Fayetteville, West Virginia is

the world’s third longest steel

single-span arch bridge, and one

of the highest vehicular bridges

at 876 feet above the ravine floor

below. Like all arch bridges, the

New River Gorge Bridge

transfers its weight and loads

onto a horizontal thrust

restrained by the abutments on

both sides. Before it was

completed, travelers faced a

45-minute drive along a winding

road to get from one side of the

New River Gorge to the other.

Now it takes less than a minute.

The bridge is commemorated on

West Virginia’s state quarter as a

monumental achievement in

engineering.

1Systems of Linear
Equations

T
here are endless applications of linear algebra in the sciences, social sciences, and
business, and many are included throughout this book. Chapter 1 begins our tour
of linear algebra in territory that may be familiar, systems of linear equations. In

Bridge suggested by Matt Clay,

Allegheny College (Pat & Chuck

Blackley/Alamy)

the first two sections, we develop a systematic method for finding the set of solutions to a
linear system. This method can be impractical for large linear systems, so in Section 1.3
we consider numerical methods for approximating solutions that can be applied to large
systems. Section 1.4 focuses on applications.

1.1 Lines and Linear Equations
The goal of this section is to provide an introduction to systems of linear equations. The
following example is a good place to start. Although not complicated, it contains the
essential elements of other applications and also serves as a gateway to our treatment of
more general systems of linear equations.

E X A M P L E 1 Fran is designing a solar hot water system for her home. The sys-
tem works by circulating a mixture of water and propylene glycol through rooftop
solar panels to absorb heat, and then through a heat exchanger to heat household
water (Figure 1). The glycol is included in the mixture to prevent freezing during
cold weather. Table 1 shows the percentage of glycol required for various minimum
temperatures.
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Flat plate
collector

Antifreeze fluid in
collector loop only

Pump

Active, Closed-Loop Solar Water Heater

Solar storage/
backup water
heater

Double-wall
heat exchanger

Cold water
supply

Hot water
to house

Figure 1 Schematic of a solar hot water system. (Source: U.S. Dept. of Energy).

Propylene
Minimum Glycol
Temp. (F) Volume (%)

20 18
10 29

0 36
−10 42
−20 46
−30 50
−40 54
−50 57

Table 1 Percentage of
Glycol Required to Prevent
Freezing

y

125 130 135 140

180

175

170

165

x

Figure 2 Graphs of
x + y = 300 (blue) and
0.18x + 0.50y = 108 (red) from
Example 1.

The lowest the temperature ever gets at Fran’s house is 0◦F. Fran can purchase
solutions of water and glycol that contain either 18% glycol or 50% glycol, which she
will combine for her 300-liter system. How much of each type of solution is required?

Solution To solve this problem, we start by translating the given information into
equations. Let x denote the required number of liters of the 18% solution, and y the
required number of liters of the 50% solution. Since the system requires a total of 300
liters, it follows that

x + y = 300

To prevent freezing at 0◦F, we must determine how much of each solution is needed for
the mixture. From Table 1, we see that we need a 36% glycol mixture. Thus the total
amount of glycol in the system must be 0.36(300) = 108 liters. We will get 0.18x liters
of glycol from the 18% solution and 0.50y liters of glycol from the 50% solution. This
leads to a second equation,

0.18x + 0.50y = 108

Both x + y = 300 and 0.18x + 0.50y = 108 are equations of lines. Figure 2 shows
their graphs on the same set of axes. In our problem, we are looking for values of x and
y that satisfy both equations, which means that the point with coordinates (x , y) will
lie on the graph of both lines—that is, at the point of intersection of the two lines.

Instead of trying to determine the exact point of intersection from the graph, we
use algebraic methods. Here are the two equations again,

x + y = 300

0.18x + 0.50y = 108
(1)

We can “eliminate” x by multiplying the first equation by −0.18 and then adding it to
the second equation,

−0.18x − 0.18y = −54
+ ( 0.18x + 0.50y = 108 )
⇒ 0.32y = 54
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Hence y = 54/0.32 = 168.75. Next, we substitute this back into the top equation in
(1) to find x . Plugging in y = 168.75 gives

x + 168.75 = 300

which simplifies to x = 131.25. Writing our solution in the form (x , y), we have
(131.25, 168.75). Referring back to Figure 2, we see that this looks like a plausible
candidate for the point of intersection. We can check our answer by substituting the
values x = 131.25 and y = 168.75 into the original pair of equations, to confirm
that

131.25 + 168.75 = 300

and

0.18(131.25) + 0.50(168.75) = 108

This verifies that a combination of 131.25 liters of the 18% solution and 168.75 liters of
the 50% solution should be used in the solar system. ■
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Figure 3 Graph of the
solutions to 3x1 −2x2 + x3 =5.

Systems of Linear Equations
The equations in the preceding problem are examples of linear equations. In general, aDefinition Linear Equation
linear equation has the form

a1x1 + a2x2 + a3x3 + · · · + anxn = b (2)

where a1, a2, · · · , an and b are constants and x1, x2, · · · , xn are variables or unknowns.
A solution (s1, s2, · · · , sn) to (2) is an ordered set of n numbers (sometimes called an

Definition Solution of Linear
Equation

n-tuple) such that if we set x1 = s1, x2 = s2, · · · , xn = sn, then (2) is satisfied. That is,
(s1, s2, · · · , sn) is a solution to (2) if

a1s1 + a2s2 + a3s3 + · · · + ansn = b

For example, (−2, 5, 1, 13) is a solution to 3x1 + 4x2 − 7x3 − 2x4 = −19, because

3(−2) + 4(5) − 7(1) − 2(13) = −19

The solution set for a linear equation such as (2) consists of the set of all solutionsDefinition Solution Set
to the equation. When the equation has two variables, the graph of the solution set is
a line. In three variables, the graph of a solution set is a plane. (See Figure 3 for an
example.) If n ≥ 4, then the solution set of all points that satisfy equation (2) is called
a hyperplane.Definition Hyperplane

The set of two linear equations in (1) is an example of a system of linear equations.
Other examples of systems of linear equations are

−3x1 + 5x2 − x3 = 4 4x1 − 2x2 − 8x3 + 5x4 = −1
− x2 − 9x3 = −4 and −x1 + 7x2 + 2x4 = 13

6x1 + 4x2 − 8x3 = 11 x3 − 2x4 = 5
−5x1 − 9x2 = 0

(3)

Our standard practice is to write all systems of linear equations as shown above, aligning
the variables vertically and with x1, x2, . . . appearing in order from left to right.
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D E F I N I T I O N 1.1 A system of linear equations is a collection of equations of the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2

a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(4)

Definition System of Linear
Equations

For brevity, we sometimes
use “linear system” or “system”
when referring to a system of
linear equations.

When reading the coefficients, for a32 we say “a-three-two” instead of “a-thirty-
two” because the “32” indicates that a32 is the coefficient from the third equation that is
multiplied by x2. For example, in the system on the right of (3) we have a14 = 5, a22 = 7,
a34 = −2, and a32 = 0. Here a32 = 0 because there is no x2 term in the third equation.

The system (4) has m equations with n unknowns. It is possible for m to be greater
than, equal to, or less than n, and we will encounter all three cases. A solution to the

Definition Solution for Linear
System, Solution Set for a

Linear System linear system (4) is an n-tuple (s1, s2, · · · , sn) that satisfies every equation in the system.
The collection of all solutions to a linear system is called the solution set for the system.

In Example 1, there was exactly one solution to the linear system. This is not always
the case.

E X A M P L E 2 Find all solutions to the system of linear equations

6x1 − 10x2 = 0
−3x1 + 5x2 = 8

(5)

Solution We will proceed as we did in Example 1, by eliminating a variable. This time
we multiply the first equation by 1

2 and then add it to the second,

3x1 − 5x2 = 0
+ ( −3x1 + 5x2 = 8 )

⇒ 0 = 8

The equation 0 = 8 tells us that there are no solutions to the system. Why? Because
if there were values of x1 and x2 that satisfied both the equations in (5), then we could
plug them in, work through the above algebraic steps with these values in place, and
prove that 0 = 8, which we know is not true. So, it must be that our original assumption
that there are values of x1 and x2 that satisfy (5) is false, and therefore we can conclude
that the system has no solutions. ■
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Figure 4 Graphs of
6x1 − 10x2 = 0 (blue) and
−3x1 + 5x2 = 8 (red) from
Example 2.

This explanation gives an ex-
ample of a mathematical proof
technique called “proof by con-
tradiction.” You can read about
this and other methods of proof
in the appendix “Reading and
writing proofs” posted on the
text website. (See the Preface
for the Web address.)

The graphs of the two equations in Example 2 are parallel lines (see Figure 4). Since
the lines do not have any points in common, there cannot be values that satisfy both
equations, confirming what we discovered algebraically.

If a linear system has at least one solution, then we say that it is consistent. If not (as
in Example 2), then it is inconsistent.

Definition Consistent Linear
System, Inconsistent Linear

System

E X A M P L E 3 Find all solutions to the system of linear equations

4x1 + 10x2 = 14
−6x1 − 15x2 = −21

(6)
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Solution This time, we multiply the first equation by 3
2 and then add,

6x1 + 15x2 = 21
+ ( −6x1 − 15x2 = −21 )

⇒ 0 = 0

Unlike Example 2, where we ended up with an equation that had no solutions, here we
find ourselves with the equation 0 = 0 that is satisfied by any choices of x1 and x2. This
tells us that the relationship between x1 and x2 is the same in both equations. In this
case we select one of the equations (either will work) and solve for x1 in terms of x2,
which gives us

x1 = 7 − 5x2

2

For every choice of x2 there will be a corresponding choice of x1 that satisfies the original
system (6). Therefore there are infinitely many solutions. To avoid confusing variables
with values satisfying the linear system, we describe the solutions to (6) by

x1 = (7 − 5s1)/2
x2 = s1

(7)

where s1 is called a free parameter and can be any real number. This is known as the
general solution because it gives all solutions to the system of equations.

We note that (7) is not the only way to describe the solutions. If we solve for x2

instead of x1, then we arrive at the formulation of the general solution

x1 = s1

x2 = (7 − 2s1)/5

where, as before, s1 is any real number. ■

Definition Free Parameter,
General Solution

Figure 5 shows the graphs of the two equations in (6). It looks like something is
missing, but there is only one line because the two equations have the same graph. Since
the graphs coincide, they have infinitely many points in common, which is consistent
with our algebraic conclusion that there are infinitely many solutions to the system of
linear equations.

321�1

x2

x1

1.5

1.0

0.5

Figure 5 Graphs of
4x1 + 10x2 = 14 (blue) and
−6x1 − 15x2 = −21 (red) from
Example 3.

In Examples 1–3, we have seen that a linear system can have a single solution, no
solutions, or infinitely many solutions.

Figure 6 shows that our examples illustrate all possibilities for two lines, which
are intersecting in exactly one point, being parallel and having no points in common,
or coinciding and having infinitely many points of intersection. Thus it follows that a
system of two linear equations with two variables can have zero, one, or infinitely many
solutions.
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Figure 6 Graphs of equations in Examples 1--3.
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(a) Parallel planes, no points
in common.

(b) Planes intersect, infinitely many 
points in common.

Figure 7 Graphs of systems of two equations with three variables.

Now consider systems of linear equations with three variables. Recall that the graph
of the solutions for each equation is a plane. To explore the solutions such a system can
have, you can experiment by using a few pieces of cardboard to represent planes.

Starting with two pieces, you will quickly discover that the only two possibilities for
the number of points of intersection is either none or infinitely many. (See Figure 7.)

This geometric observation is equivalent to the algebraic statement that a system
of two linear equations in three variables has either no solutions or infinitely many
solutions.

Now try three pieces of cardboard. There are more possible configurations, some
shown in Figure 8.

This time, we see that the number of points of intersection can be zero, one, or
infinitely many. (Note that this also held for a pair of lines.) In fact, this turns out to be
true in general, not only for planes but also for solution sets in higher dimensions. The
equivalent statement for systems of linear equations is contained in Theorem 1.2.

A theorem is a mathematical
statement that has been rigor-
ously proved to be true. As we
progress through this book, the-
orems will serve to organize our
expanding body of linear alge-
bra knowledge.

T H E O R E M 1.2 A system of linear equations has no solutions, exactly one solution, or infinitely many
solutions.

We will prove this theorem at the end of the next section.

Finding Solutions: Triangular Systems
Now that we know how many solutions a linear system can have, we turn to the problem
of finding the solutions. For the remainder of this section, we concentrate on special types
of linear systems.

In Section 1.2 we show how to
generalize the results given here
to find the solutions to any linear
system. Consider the two systems below. Although not obvious, these systems have exactly

the same solution set.

−2x1 + 4x2 + 11x3 − 4x4 = 4 x1 − 2x2 − 5x3 + 3x4 = 2
3x1 − 6x2 − 15x3 + 10x4 = 11 x2 + 3x3 − 4x4 = 7
2x1 − 4x2 − 10x3 + 6x4 = 4 x3 + 2x4 = −4

−3x1 + 7x2 + 18x3 − 13x4 = 1 x4 = 5

The one on the right looks easier to solve, so let’s find its solutions.
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(a) Parallel planes, no points
in common to all three.

(c) Planes intersect in a line,
infinitely many points in common.

(d) Planes intersect at a point,
unique point in common.

(b) Planes intersect in pairs, no
points in common to all three.

Figure 8 Graphs of systems of three equations with three variables.

Definition Back Substitution

E X A M P L E 4 Find all solutions to the system of linear equations

x1 − 2x2 − 5x3 + 3x4 = 2
x2 + 3x3 − 4x4 = 7

x3 + 2x4 = −4
x4 = 5

(8)

Solution The method that we use here is called back substitution. Looking at the
system, we see that the easiest place to start is at the bottom. Since x4 = 5, substituting
this back (hence the name for the method) into the next equation up gives us

x3 + 2(5) = −4

which simplifies to x3 = −14. Now we know the values of x3 and x4. Substituting these
back into the next equation up (second from the top) gives

x2 + 3(−14) − 4(5) = 7

so that x2 = 69. Finally, we substitute the values of x2, x3, and x4 back into the top
equation to get

x1 − 2(69) − 5(−14) + 3(5) = 2
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which simplifies to x1 = 55. Thus this system of linear equations has one solution,

x1 = 55, x2 = 69, x3 = −14, x4 = 5 ■

In Example 4, each variable x1, x2, x3, and x4 appears as the first term of an equation.
In a system of linear equations, a variable that appears as the first term in at least one
equation is called a leading variable. Thus in Example 4 each of x1, x2, x3, and x4 is aDefinition Leading Variable

leading variable. In the system

−4x1 + 2x2 − x3 + 3x5 = 7
− 3x4 + 4x5 = −7

x4 − 2x5 = 1
7x5 = 2

(9)

x1, x4, and x5 are leading variables, while x2 and x3 are not.
A key reason why the system in Example 4 is easy to solve is that every variable

is a leading variable in exactly one equation. This feature is useful because as we back
substitute from the bottom equation upward, at each step we are working with an equation
that has only one remaining unknown variable.

The system in Example 4 is said to be in triangular form, with the name suggested
by the triangular shape of the left side of the system. In general, a linear system is in
triangular form (and is said to be a triangular system) if it has the formDefinition Triangular Form,

Triangular System
a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a22x2 + a23x3 + · · · + a2nxn = b2

a33x3 + · · · + a3nxn = b3

. . .
...

...

annxn = bn

where a11, a22, . . . , ann are all nonzero. It is straightforward to verify that triangular
systems have the following properties.

P R O P E R T I E S O F T R I A N G U L A R S Y S T E M S

(a) Every variable of a triangular system is the leading variable of exactly one
equation.

(b) A triangular system has the same number of equations as variables.

(c) A triangular system has exactly one solution.

Figure 9 Golden Gate Bridge.
(Photo taken by John Holt.)

E X A M P L E 5 A bowling ball dropped off the Golden Gate bridge has height H
(in meters) above the water at time t (in seconds after release time) given by H(t) =
at2 + bt + c , where a , b, and c are constants. Using ideas from calculus, it follows
that the velocity is V(t) = 2at + b and the acceleration is A(t) = 2a . At t = 2, it is
known that the ball has height 47.4 m, velocity −19.6 m/s, and acceleration −9.8 m/s2.
(The velocity and acceleration are negative because the ball is moving in the negative
direction.) What is the height of the bridge and when does the ball hit the water?

Solution We need to find the values of a , b, and c in order to answer these questions.
At time t = 2, we have

47.4 = H(2) = 4a + 2b + c , −19.6 = V(2) = 4a + b, −9.8 = A(2) = 2a
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This gives us the linear system

4a + 2b + c = 47.4
4a + b = −19.6
2a = −9.8

(10)

Back substituting as usual, we find that

a = −4.9, b = 0, c = 67

so that the height function is H(t) = −4.9t2 + 67. At time t = 0 the ball is just starting
its descent, so the bridge has height H(0) = 67 meters. The ball strikes the water when
H(t) = 0, which leads to the equation

−4.9t2 + 67 = 0

The solution is t = √
67/4.9 ≈ 3.7 seconds after the ball is released. ■

Our model ignores forces
other than gravity. For falling
objects, wind resistance can be
significant. We chose to drop
a bowling ball to reduce the
effects of wind resistance to
make the model more accurate.

Finding Solutions: Echelon Systems
In the next example, we consider a linear system where each variable is a leading variable
for at most one equation. Although this system is not quite triangular, it is close enough
that the solutions still can be found using back substitution.

E X A M P L E 6 Find all solutions to the system of linear equations

2x1 − 4x2 + 2x3 + x4 = 11
x2 − x3 + 2x4 = 5

3x4 = 9
(11)

Solution We find the solutions by back substituting, just like with a triangular system.
Starting with the bottom equation yields x4 = 3.

The middle equation has x2 as the leading variable, but we do not yet have a value
for x3. We address this by setting x3 = s1, where s1 is a free parameter. We now have
values for both x3 and x4, which we substitute into the middle equation, giving us

x2 − s1 + 2(3) = 5

Thus x2 = −1 + s1. Substituting our values for x2, x3, and x4 into the top equation, we
have

2x1 − 4(−1 + s1) + 2s1 + 3 = 11

which simplifies to x1 = 2 + s1. Therefore the general solution is

x1 = 2 + s1

x2 = −1 + s1

x3 = s1

x4 = 3

where s1 can be any real number. Note that each distinct choice for s1 gives a new
solution, so the system has infinitely many solutions. ■

Definition Echelon Form,
Echelon System

Note that all triangular sys-
tems are in echelon form. The system (11) in Example 6 is in echelon form and is said to be an echelon system.

Such systems have the properties given in the definition below.
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D E F I N I T I O N 1.3 A linear system is in echelon form (and is called an echelon system) if

(a) Every variable is the leading variable of at most one equation.

(b) The system is organized in a descending “stair step” pattern so that the index
of the leading variables increases from the top to bottom.

(c) Every equation has a leading variable.

For example, the systems (11) and (12) are in echelon form, but the system (9) is
not, because x4 is the leading variable of two equations.

For a system in echelon form, any variable that is not a leading variable is called a
free variable. For instance, x3 is a free variable in Example 6. To find the general solutionDefinition Free Variable

to a system in echelon form, we use the following two-step algorithm.

(a) Set each free variable equal to a distinct free parameter.

(b) Back substitute to solve for the leading variables.

For a system in echelon form,
the total number of variables is
equal to the number of lead-
ing variables plus the number of
free variables.

E X A M P L E 7 Find all solutions to the system of linear equations

x1 + 2x2 − x3 + 3x5 = 7
x2 − 4x3 + x5 = −2

x4 − 2x5 = 1
(12)

Solution In this system x3 and x5 are free variables, so we set each equal to a free
parameter

x3 = s1 and x5 = s2

It remains to determine the values of the leading variables. Substituting x5 into the
bottom equation, we have

x4 − 2s2 = 1

so that x4 = 1 + 2s2. Substituting our values for x3 and x5 into the next equation up
gives

x2 − 4s1 + s2 = −2

so that x2 = −2+4s1 − s2. Finally, substituting in for x2, x3, and x5 in the top equation,
we have

x1 + 2(−2 + 4s1 − s2) − s1 + 3s2 = 7

Hence x1 = 11 − 7s1 − s2. Therefore the general solution is

x1 = 11 − 7s1 − s2

x2 = −2 + 4s1 − s2

x3 = s1

x4 = 1 + 2s2

x5 = s2

where s1 and s2 can be any real numbers. ■
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E X A M P L E 8 Find all solutions to the system of linear equations

x1 − 4x2 + x3 + 5x4 − x5 = −3
− x3 + 4x4 + 3x5 = 8

(13)

Solution We see that x2, x4, and x5 are free variables, so we set x2 = s1, x4 = s2, and
x5 = s3, where s1, s2, and s3 are free parameters.

Turning to the bottom equation, we substitute in our values for x4 and x5, yielding
the equation

−x3 + 4s2 + 3s3 = 8

so that x3 = −8 + 4s2 + 3s3. Back substituting into the top equation gives us

x1 − 4s1 + (−8 + 4s2 + 3s3) + 5s2 − s3 = −3

which simplifies to x1 = 5 + 4s1 − 9s2 − 2s3. Therefore the general solution is

x1 = 5 + 4s1 − 9s2 − 2s3

x2 = s1

x3 = −8 + 4s2 + 3s3

x4 = s2

x5 = s3

where s1, s2, and s3 can be any real numbers. ■

To sum up, there are two possibilities for a linear system in echelon form.

1. The system has no free variables. In this case, the system is also triangular and there
is exactly one solution.

2. The system has at least one free variable. In this case, the general solution has free
parameters and there are infinitely many solutions.

E X E R C I S E S
In each exercise set, problems marked with C are designed to
be solved using a programmable calculator or computer algebra
system.

1. Determine which of the points (1, −2), (−3, −3), and (−2, −3)
lie on the line 2x1 − 5x2 = 9.

2. Determine which of the points (1, −2, 0), (4, 2, 1), and
(2, −5, 1) lie in the plane x1 − 3x2 + 4x3 = 7.

3. Determine which of the points (−1, 2), (−2, 5), and (1, −5) lie
on both the lines 3x1 + x2 = −1 and −5x1 + 2x2 = 20.

4. Determine which of the points (3, 1), (2, −4), and (−4, 5) lie
on both the lines 2x1 − 5x2 = 1 and −4x1 + 10x2 = −2.

5. Determine which of the points (1, 2, 3), (1, −1, 1), and
(−1, −2, −6) satisfy the linear system

−2x1 + 9x2 − x3 = −10

x1 − 5x2 + 2x3 = 4

6. Determine which of the points (1, −2, −1, 3), (−1, 0, 2, 1), and
(−2, −1, 4, −3) satisfy the linear system

3x1 − x2 + 2x3 = 1

2x1 + 3x2 − x4 = −3

In Exercises 7–8, determine which of (a)–(d) form a solution to
the given system for any choice of the free parameter(s). (HINT: All
parameters of a solution must cancel completely when substituted
into each equation.)

7. −2x1 + 3x2 + 2x3 = 6

Note: This system has only one equation.

(a) (−3 + s1 + s2, s1, s2)

(b) (−3 + 3s1 + s2, 2s1, s2)

(c) (3s1 + s2, 2s1 + 2, s2)

(d) (s1, s2, 3 − 3s2/2 + s1)

8. 3x1 + 8x2 − 14x3 = 6
x1 + 3x2 − 4x3 = 1

(a) (5 − 2s1, 7 + 3s1, s1)

(b) (−5 − 5s1, s1, −(3 + s1)/2)

(c) (10 + 10s1, −3 − 2s1, s1)

(d) ((6 − 4s1)/3, s1, −(5 − s1)/4)
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In Exercises 9–14, find all solutions to the given system by elimi-
nating one of the variables.

9. 3x1 + 5x2 = 4
2x1 − 7x2 = 13

10. −3x1 + 2x2 = 1
5x1 + x2 = −4

11. −10x1 + 4x2 = 2
15x1 − 6x2 = −3

12. −3x1 + 4x2 = 0
9x1 − 12x2 = −2

13. 7x1 − 3x2 = −1
−5x1 + 8x2 = 0

14. 6x1 − 3x2 = 5
−8x1 + 4x2 = 1

In Exercises 15–22, determine if the given linear system is in eche-
lon form. If so, identify the leading variables and the free variables.
If not, explain why not.

15. x1 − x2 = 7
7x2 = 0

16. 6x1 − 5x2 = 12
−2x1 + 7x2 = 0

17. −7x1 − x2 + 2x3 = 11
6x3 = −1

18. 3x1 + 2x2 + 7x3 = 0
− 3x3 = −3

− x2 − 4x3 = 13

19. 4x1 + 3x2 − 9x3 + 2x4 = 3
6x2 + x3 = −2

− 5x2 − 8x3 + x4 = −4

20. 2x1 + 2x3 = 12
12x2 − 5x4 = −19

3x3 + 11x4 = 14
− x4 = 3

21. −2x1 − 3x2 + x3 − 13x4 = 2
2x3 = −7

22. −7x1 + 3x2 + 8x4 − 2x5 + 13x6 = −6
− 5x3 − x4 + 6x5 + 3x6 = 0

2x4 + 5x5 = 1

In Exercises 23–30, find the set of solutions for the given linear
system. Note that some systems have only one equation.

23. −5x1 − 3x2 = 4
2x2 = 10

24. x1 + 4x2 − 7x3 = −3
− x2 + 4x3 = 1

3x3 = −9
25. −3x1 + 4x2 = 2

26. 3x1 − 2x2 + x3 = 4
− 6x3 = −12

27. x1 + 5x2 − 2x3 = 0
− 2x2 + x3 − x4 = −1

x4 = 5

28. 2x1 − x2 + 6x3 = −3

29. −2x1 + x2 + 2x3 = 1
− 3x3 + x4 = −4

30. −7x1 + 3x2 + 8x4 − 2x5 + 13x6 = −6
− 5x3 − x4 + 6x5 + 3x6 = 0

2x4 + 5x5 = 1

In Exercises 31–34, each linear system is not in echelon form but
can be put in echelon form by reordering the equations. Write the
system in echelon form, and then find the set of solutions.

31. −5x2 = 4
3x1 +2x2 = 1

32. − 3x3 = −3
− x2 − 4x3 = 13

3x1 + 2x2 + 7x3 = 0

33. 2x2 + x3 − 5x4 = 0
x1 + 3x2 − 2x3 + 2x4 = −1

34. x2 − 4x3 + 3x4 = 2
x1 − 5x2 − 6x3 + 3x4 = 3

− 3x4 = 15
5x3 − 4x4 = 10

35. For what value(s) of k is the linear system consistent?

6x1 − 5x2 = 4
9x1 + kx2 = −1

36. For what value(s) of h is the linear system consistent?

6x1 − 8x2 = h
−9x1 + 12x2 = −1

37. Find values of h and k so that the linear system has no solutions.

2x1 + 5x2 = −1
hx1 + 5x2 = k

38. For what values of h and k does the linear system have infinitely
many solutions?

2x1 + 5x2 = −1
hx1 + kx2 = 3

39. A system of linear equations is in echelon form. If there are
four free variables and five leading variables, how many variables
are there? Justify your answer.

40. Suppose that a system of five equations with eight unknowns
is in echelon form. How many free variables are there? Justify your
answer.

41. Suppose that a system of seven equations with thirteen un-
knowns is in echelon form. How many leading variables are there?
Justify your answer.

42. A linear system is in echelon form. There are a total of nine
variables, of which four are free variables. How many equations
does the system have? Justify your answer.

FIND AN EXAMPLE For Exercises 43–50, find an example that
meets the given specifications.

43. A linear system with three equations and three variables that
has exactly one solution.

44. A linear system with three equations and three variables that
has infinitely many solutions.
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45. A linear system with four equations and three variables that
has infinitely many solutions.

46. A linear system with three equations and four variables that
has no solutions.

47. Come up with an application that has a solution found by
solving an echelon linear system. Then solve the system to find the
solution.

48. A linear system with two equations and two variables that has
x1 = −1 and x2 = 3 as the only solution.

49. A linear system with two equations and three variables that
has solutions x1 = 1, x2 = 4, x3 = −1 and x1 = 2, x2 = 5,
x3 = 2.

50. A linear system with two equations and two variables that has
the line x1 = 2x2 for solutions.

TRUE OR FALSE For Exercises 51–60, determine if the statement
is true or false, and justify your answer.

51. A linear system with three equations and two variables must
be inconsistent.

52. A linear system with three equations and five variables must
be consistent.

53. There is only one way to express the general solution for a
linear system.

54. A triangular system always has exactly one solution.

55. All triangular systems are in echelon form.

56. All systems in echelon form are also triangular systems.

57. A system in echelon form can be inconsistent.

58. A system in echelon form can have more equations than
variables.

59. If a triangular system has integer coefficients (including
the constant terms), then the solution consists of rational
numbers.

60. A system in echelon form can have more variables than
equations.

61. Referring to Example 1, suppose that the minimum outside
temperature is 10◦F. In this case, how much of each type of solution
is required?

62. Referring to Example 1, suppose that the minimum outside
temperature is −20◦F. In this case, how much of each type of
solution is required?

63. A total of 385 people attend the premiere of a new movie.
Ticket prices are $11 for adults and $8 for children. If the total
revenue is $3974, how many adults and children attended?

64. For tax and accounting purposes, corporations depreciate the
value of equipment each year. One method used is called “linear
depreciation,” where the value decreases over time in a linear man-
ner. Suppose that two years after purchase, an industrial milling
machine is worth $800,000, and five years after purchase, the ma-
chine is worth $440,000. Find a formula for the machine value at
time t ≥ 0 after purchase.

65. (Calculus required) Suppose that f (x) = a1e2x + a2e−3x is a
solution to a differential equation. If we know that f (0) = 5 and
f ′(0) = −1 (these are the initial conditions), what are the values
of a1 and a2? (HINT: f ′(x) = 2a1e2x − 3a2e−3x .)

66. An investor has $100,000 and can invest in any combination
of two types of bonds, one that is safe and pays 3% annually, and
one that carries risk and pays 9% annually. The investor would like
to keep risk as low as possible while realizing a 7% annual return.
How much should be invested in each type of bond?

67. Degrees Fahrenheit (F) and Celsius (C) are related by a linear
equation C = a F + b. Pure water freezes at 32◦F and 0◦C, and
boils at 212◦F and 100◦C. Use this information to find a and b.

68. A 60-gallon bathtub is to be filled with water that is exactly
100◦F. Unfortunately, the two sources of water available are 125◦F
and 60◦F. When mixed, the temperature will be a weighted average
based on the amount of each water source in the mix. How much
of each should be used to fill the tub as specified?

69. This problem requires about 8 nickels, 8 quarters, and a sheet
of 8.5-by-11-inch paper. The goal is to estimate the diameter of
each type of coin as follows: Using trial and error, find a com-
bination of nickels and quarters that, when placed side by side,
extend the height (long side) of the paper. Then do the same along
the width (short side) of the paper. Use the information obtained
to write two linear equations involving the unknown diameters
of each type of coin, then solve the resulting system to find the
diameter for each type of coin.

70. The Bixby Creek Bridge is located along California’s Big Sur
coast and has been featured in numerous television commercials.
Suppose that a bag of concrete is projected downward from the
bridge deck at an initial rate of 5 meters per second. After 3 sec-
onds, the bag is 25.9 meters from the Bixby Creek, has a velocity of
−34.4 m/s, and has an acceleration of −9.8 m/s2. Use the model
in Example 5 to find a formula for H(t), the height at time t.

Bixby Creek Bridge. (Dennis Frates/Alamy)

C In Exercises 71–76, use computational assistance to find the
set of solutions to the linear system.

71. −4x1 + 7x2 = −13
3x1 − 5x2 = 11
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72. 3x1 − 5x2 = 0
−7x1 − 2x2 = −2

73. 2x1 − 5x2 + 3x3 = 10
4x2 − 9x3 = −7

74. −x1 + 4x2 + 7x3 = 6
− 3x2 = 1

75. −2x1 − x2 + 5x3 + x4 = 20
3x2 + 6x4 = 13

− 4x3 + 7x4 = −6

76. 3x1 + 5x2 − x3 − x4 = 17
−x2 − 6x3 + 11x4 = 5

2x3 + x4 = 11

1.2 Linear Systems and Matrices
Systems of linear equations arise naturally in many applications, but the systems rarely
are in echelon form. For instance, consider the following projectile motion problem.
Suppose that a cannon sits on a hill and fires a ball across a flat field below. The path of
the ball is known to be approximately parabolic and so can be modeled by a quadratic
function E (x) = ax2 + bx + c , where E is the elevation (in feet) over position x , and
a , b, and c are constants.

Figure 1 shows the elevation of the ball at three separate places. Since every point on
its path is given by (x , E (x)), the data can be converted into three linear equations

100a + 10b + c = 117

900a + 30b + c = 171

2500a + 50b + c = 145

(1)

20

200

0 40

150

100

50

0
60 80

(10,117)

(30,171)

(50,145)

Figure 1 Positions and
elevations (x , E (x)) of an
airborne cannonball.

This system is not in echelon form, so back substitution is not easy to use here. We will
return to this system shortly, after developing the tools to find a solution.

Two linear systems are said to
be equivalent if they have the
same set of solutions.

The primary goal of this section is to develop a systematic procedure for trans-
forming any linear system into a system that is in echelon form. The key feature of our
transformation procedure is that it produces a new linear system that is in echelon form
(hence solvable using back substitution) and has exactly the same set of solutions as the
original system.

Elementary Operations
We can transform a linear system using a sequence of elementary operations. EachDefinition Elementary

Operations operation produces a new system that is equivalent to the old one, so the solution set is
unchanged. There are three types of elementary operations.

1. Interchange the position of two equations.The symbol ∼ indicates the
transformation from one linear
system to an equivalent linear
system.

This amounts to nothing more than rewriting the system of equations. For
example, we exchange the places of the first and second equations in the following
system.

3x1 − 5x2 − 8x3 = −4 x1 + 2x2 − 4x3 = 5
x1 + 2x2 − 4x3 = 5 ∼ 3x1 − 5x2 − 8x3 = −4

−2x1 + 6x2 + x3 = 3 −2x1 + 6x2 + x3 = 3

2. Multiply an equation by a nonzero constant.
For example, here we multiply the third equation by −2.Verifying that each elemen-

tary operation produces an
equivalent linear system is left
as Exercise 56.

x1 + 2x2 − 4x3 = 5 x1 + 2x2 − 4x3 = 5
3x1 − 5x2 − 8x3 = −4 ∼ 3x1 − 5x2 − 8x3 = −4

−2x1 + 6x2 + x3 = 3 4x1 − 12x2 − 2x3 = −6
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3. Add a multiple of one equation to another.
For this operation, we multiply one of the equations by a constant and then add

it to another equation, replacing the latter with the result. For example, below we
multiply the top equation by −4 and add it to the bottom equation, replacing the
bottom equation with the result.

x1 + 2x2 − 4x3 = 5 x1 + 2x2 − 4x3 = 5
3x1 − 5x2 − 8x3 = −4 ∼ 3x1 − 5x2 − 8x3 = −4
4x1 − 12x2 − 2x3 = −6 − 20x2 + 14x3 = −26

The third operation may look familiar. It is similar to the method used in the first
three examples of Section 1.1 to eliminate a variable. Note that this is exactly what
happened here, with the lower left coefficient becoming zero, transforming the system
closer to echelon form. This illustrates a single step of our basic strategy for transforming
any linear system into a system that is in echelon form.

Generic linear system

a11x1 + a12x2 +· · ·+ a1nxn = b1

a21x1 + a22x2 +· · ·+ a2nxn = b2

a31x1 + a32x2 +· · ·+ a3nxn = b3

...
...

...
...

am1x1 +am2x2 +· · ·+amnxn =bm

E X A M P L E 1 Find the set of solutions to the system of linear equations

x1 − 3x2 + 2x3 = −1
2x1 − 5x2 − x3 = 2

−4x1 + 13x2 − 12x3 = 11

Solution We begin by focusing on the variable x1 in each equation. Our goal is to
transform the system to echelon form, so we want to eliminate the x1 terms in the
second and third equations. This will leave x1 as the leading variable in only the top
equation.

NOTE: Going forward, we identify coefficients using the notation for a generic system
of equations introduced in Section 1.1 and shown again in the margin.

• Add a multiple of one equation to another (focus on x1).
We need to transform a21 and a31 to 0. We do this in two parts. Since a21 = 2,

if we take −2 times the first equation and add it to the second, then the resulting
coefficient on x1 will be (−2) · 1 + 2 = 0, which is what we want.

x1 − 3x2 + 2x3 = −1 x1 − 3x2 + 2x3 = −1
2x1 − 5x2 − x3 = 2 ∼ x2 − 5x3 = 4

−4x1 + 13x2 − 12x3 = 11 −4x1 + 13x2 − 12x3 = 11

The second part is similar. This time, since (4) · 1 − 4 = 0, we multiply 4 times the
first equation and add it to the third.

x1 − 3x2 + 2x3 = −1 x1 − 3x2 + 2x3 = −1
x2 − 5x3 = 4 ∼ x2 − 5x3 = 4

−4x1 + 13x2 − 12x3 = 11 x2 − 4x3 = 7

With these steps complete, the x1 terms in the second and third equations are gone,
exactly as we want.

Next, we focus on the x2 coefficients. Since our goal is to reach echelon form, we
do not care about the coefficient on x2 in the top equation, so we concentrate on the
second and third equations.
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• Add a multiple of one equation to another (focus on x2).
Here we need to transform a32 to 0. Since (−1) ·1+1 = 0, we multiply −1 times

the second equation and add the result to the third equation.

x1 − 3x2 + 2x3 = −1 x1 − 3x2 + 2x3 = −1
x2 − 5x3 = 4 ∼ x2 − 5x3 = 4
x2 − 4x3 = 7 x3 = 3

The system is now in echelon (indeed, triangular) form, and using back substitution
we can easily show that the solution (we know there is only one) is x1 = 50, x2 = 19,
and x3 = 3. To check our solution, we plug these values into the original system.

1(50) − 3(19) + 2(3) = −1
2(50) − 5(19) − 1(3) = 2

−4(50) + 13(19) − 12(3) = 11 ■

Using only the second and
third equations avoids reintro-
ducing x1 into the third equa-
tion.

E X A M P L E 2 Find the set of solutions to the linear system 1 from the start of the
section,

100a + 10b + c = 117
900a + 30b + c = 171

2500a + 50b + c = 145

Solution We follow the same procedure as in the previous example.

• Add a multiple of one equation to another (focus on x1).
We need to transform a21 and a31 to 0. Since a21 = 900, we multiply the first

equation by −9 and add it to the second, so that

100a + 10b + c = 117 100a + 10b + c = 117
900a + 30b + c = 171 ∼ − 60b − 8c = −882

2500a + 50b + c = 145 2500a + 50b + c = 145

The second part is similar. We multiply the first equation by −25 and add it to the
third.

100a + 10b + c = 117 100a + 10b + c = 117
− 60b − 8c = −882 ∼ − 60b − 8c = −882

2500a + 50b + c = 145 − 200b − 24c = −2780

• Multiply an equation by a nonzero constant (focus on x2).
Here we multiply the third equation by −0.3, so that the coefficients on b match

up (other than sign).

100a + 10b + c = 117 100a + 10b + c = 117
− 60b − 8c = −882 ∼ − 60b − 8c = −882
− 200b − 24c = −2780 60b + 7.2c = 834

• Add a multiple of one equation to another (focus on x2).
Thanks to the previous step, we need only add the second equation to the third

to transform a32 to 0.

100a + 10b + c = 117 100a + 10b + c = 117
− 60b − 8c = −882 ∼ − 60b − 8c = −882

60b + 7.2c = 834 − 0.8c = −48
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The system is now in triangular form. Using back substitution, we can show that the
solution is a = 0.1, b = 6.7, and c = 60, which gives us E (x) = 0.1x2 + 6.7x + 60.
Figure 2 shows a graph of the model together with the known points. ■
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(10,117)

(30,171)

(50,145)

Figure 2 Cannonball data
and the graph of the model.

Matrices and the Augmented Matrix
In the preceding examples, as we manipulated the equations the variables just served
as placeholders. One way to simplify our work is by transferring the coefficients to a
matrix, which for the moment we can think of as a rectangular table of numbers. When

Definition Matrix

a matrix contains all the coefficients of a linear system, including the constant terms on
the right side of each equation, it is called an augmented matrix. For instance, the system
in Example 1 is transferred to an augmented matrix by

Definition Augmented Matrix

Linear System Augmented Matrix

x1 − 3x2 + 2x3 = −1
2x1 − 5x2 − x3 = 2

−4x1 + 13x2 − 12x3 = 11

⎡
⎣ 1 −3 2 −1

2 −5 −1 2
−4 13 −12 11

⎤
⎦

The three elementary operations that we performed on equations can be translated
into equivalent elementary row operations for matrices.1Definition Elementary Row

Operations

E L E M E N T A R Y R O W O P E R A T I O N S

1. Interchange two rows.

2. Multiply a row by a nonzero constant.

3. Add a multiple of one row to another.

Borrowing from the terminology for systems of equations, we say that two matrices
are equivalent if one can be obtained from the other through a sequence of elementaryDefinition Equivalent Matrices

row operations. Hence equivalent augmented matrices correspond to equivalent linear
systems.

When discussing matrices, the rows are numbered from top to bottom, and the
columns are numbered from left to right. A zero row is a row consisting entirely of zeros,
and a nonzero row contains at least one nonzero entry. The terms zero column and
nonzero column are similarly defined.

Definition Zero Row, Zero
Column

In the examples that follow, we transfer the system of equations to an augmented
matrix, but our goal is the same as before, to find an equivalent system in echelon form.

E X A M P L E 3 Find all solutions to the system of linear equations

2x1 − 3x2 + 10x3 = −2

x1 − 2x2 + 3x3 = −2

−x1 + 3x2 + x3 = 4

Solution We begin by converting the system to an augmented matrix:⎡
⎢⎣

2 −3 10 −2

1 −2 3 −2

−1 3 1 4

⎤
⎥⎦

1The plural of matrix is matrices.
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• Interchange rows (focus on column 1).
We focus on the first column of the matrix, which contains the coefficients of x1.

Although this step is not required, exchanging Row 1 and Row 2 will move a 1 into
the upper left position and avoid the early introduction of fractions.⎡

⎣ 2 −3 10 −2
1 −2 3 −2

−1 3 1 4

⎤
⎦ ∼

⎡
⎣ 1 −2 3 −2

2 −3 10 −2
−1 3 1 4

⎤
⎦

• Add a multiple of one row to another (focus on column 1).
To transform the system to echelon form, we need to introduce zeros in the first

column below Row 1. This requires two operations. Focusing first on Row 2, since
(−2)(1) + 2 = 0, we add −2 times Row 1 to Row 2 and replace Row 2 with the result.⎡

⎣ 1 −2 3 −2
2 −3 10 −2

−1 3 1 4

⎤
⎦ ∼

⎡
⎣ 1 −2 3 −2

0 1 4 2
−1 3 1 4

⎤
⎦

Focusing now on Row 3, since (1)(1) + (−1) = 0 we add 1 times Row 1 to Row 3
and replace Row 3 with the result.⎡

⎣ 1 −2 3 −2
0 1 4 2

−1 3 1 4

⎤
⎦ ∼

⎡
⎣1 −2 3 −2

0 1 4 2
0 1 4 2

⎤
⎦

• Add a multiple of one row to another (focus on column 2).
With the first column complete, we move down to the second row and to the

right to the second column. Since (−1)(1) + (1) = 0, we add −1 times Row 2 to Row
3 and replace Row 3 with the result.⎡

⎣1 −2 3 −2
0 1 4 2
0 1 4 2

⎤
⎦ ∼

⎡
⎣1 −2 3 −2

0 1 4 2
0 0 0 0

⎤
⎦

We now extract the transformed system of equations from the matrix. The row of
zeros indicates that one of the equations in the transformed system is 0 = 0. Since
any choice of values for the variables will satisfy 0 = 0, this equation contributes no
information about the solution set and so can be ignored. The new equivalent system
is therefore

x1 − 2x2 + 3x3 = −2

x2 + 4x3 = 2

Back substitution can be used to show that the general solution is

x1 = 2 − 11s2

x2 = 2 − 4s1

x3 = s1

where s1 can be any real number. We can substitute into the original system to verify
our solution.

2(2 − 11s1) − 3(2 − 4s1) + 10s1 = 4 − 22s1 − 6 + 12s1 + 10s1 = −2,
(2 − 11s1) − 2(2 − 4s1) + 3s1 = 2 − 11s1 − 4 + 8s1 + 3s1 = −2,
−(2 − 11s1) + 3(2 − 4s1) + s1 = −2 + 11s1 + 6 − 12s1 + s1 = 4 ■

As with linear systems, we use
the symbol ∼ to indicate that
two matrices are equivalent.

We express this operation
compactly as R1 ⇔ R2.

We express this operation
compactly as −2R1 + R2 ⇒ R2.

We express this operation
compactly as R1 + R3 ⇒ R3.

We express this operation
compactly as −R2 + R3 ⇒ R3.
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Gaussian Elimination
The procedure that we used in Example 3 is known as Gaussianelimination. The resultingDefinition Gaussian

Elimination matrix is said to be in echelon form (or row echelon form) and will have the properties
given in Definition 1.4 below. In the definition, the leading term of a row is the leftmostDefinition Echelon Form

nonzero term in that row, and a row of all zeros has no leading term.Definition Leading Term

Gaussian elimination was
originally discovered by Chinese
mathematicians over 2000
years ago. It is named in honor
of German mathematician Carl
Friedrich Gauss, who indepen-
dently discovered the method
and introduced it to the West
in the nineteenth century.

D E F I N I T I O N 1.4 A matrix is in echelon form if

(a) Every leading term is in a column to the left of the leading term of the row
below it.

(b) Any zero rows are at the bottom of the matrix.

Note that the first condition in the definition implies that a matrix in echelon form
will have zeros filling out the column below each of the leading terms. Examples of
matrices in echelon form are

⎡
⎣5 1 −4 0 9 2

0 2 −3 −6 7 31
0 0 0 −2 4 9

⎤
⎦ and

⎡
⎢⎢⎢⎢⎣

−1 2 3 −2 17 9 7
0 0 9 −6 26 3 −6
0 0 0 0 0 −3 0
0 0 0 0 0 0 4
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (2)

For a matrix in echelon form, the pivot positions are those that contain a leadingDefinition Pivot Positions

term. The entries in the pivot positions for the matrices in (2) are shown in boldface. The
pivot columns are the columns that contain pivot positions, and a pivot is a nonzero
number in a pivot position that is used during row operations to produce zeros.Definition Pivot Columns, Pivot

In what follows, it will be handy to have a general matrix to refer to when talking
about entries in specific positions. We adopt a notation similar to that for a general system
of equations given in (4) of Section 1.1,⎡

⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n b1

a21 a22 a23 · · · a2n b2

a31 a32 a33 · · · a3n b3

...
...

...
...

...

am1 am2 am3 · · · amn bm

⎤
⎥⎥⎥⎥⎥⎦

In the previous example, the linear system had the same number of equations and
variables. However, this is not required.

E X A M P L E 4 Find all solutions to the system of linear equations

6x3 + 19x5 + 11x6 = −27
3x1 + 12x2 + 9x3 − 6x4 + 26x5 + 31x6 = −63

x1 + 4x2 + 3x3 − 2x4 + 10x5 + 9x6 = −17
−x1 − 4x2 − 4x3 + 2x4 − 13x5 − 11x6 = 22

Solution The augmented matrix for this system is⎡
⎢⎢⎣

0 0 6 0 19 11 −27
3 12 9 −6 26 31 −63
1 4 3 −2 10 9 −17

−1 −4 −4 2 −13 −11 22

⎤
⎥⎥⎦
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• Identify pivot position for Row 1.
Starting with the first column, we see that a11 = 0, which will not work for a

pivot. However, there are nonzero terms down the first column, so we interchange
Row 1 and Row 3 to place a 1 in the pivot position.

⎡
⎢⎢⎢⎣

0 0 6 0 19 11 −27

3 12 9 −6 26 31 −63

1 4 3 −2 10 9 −17

−1 −4 −4 2 −13 −11 22

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

3 12 9 −6 26 31 −63

0 0 6 0 19 11 −27

−1 −4 −4 2 −13 −11 22

⎤
⎥⎥⎥⎦

• Elimination.
Next, we need zeros down the first column below the pivot position. We already

have a31 = 0, and we arrange for a21 = 0 and a41 = 0 by using the operations shown
in the margin.

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

3 12 9 −6 26 31 −63

0 0 6 0 19 11 −27

−1 −4 −4 2 −13 −11 22

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

0 0 0 0 −4 4 −12

0 0 6 0 19 11 −27

0 0 −1 0 −3 −2 5

⎤
⎥⎥⎥⎦

• Identify pivot position for Row 2.
Moving down one row and to the right one column from a11, we find a22 = 0.

Since all the entries below a22 are also zero, interchanging with lower rows will not
put a nonzero term in the a22 position. Thus a22 cannot be a pivot position, so we
move to the right to the third column to determine if a23 is a suitable pivot position.
Although a23 is also zero, there are nonzero terms below, so we interchange Row 2
and Row 4, putting a −1 in the pivot position.

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

0 0 0 0 −4 4 −12

0 0 6 0 19 11 −27

0 0 −1 0 −3 −2 5

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

0 0 −1 0 −3 −2 5

0 0 6 0 19 11 −27

0 0 0 0 −4 4 −12

⎤
⎥⎥⎥⎦

• Elimination.
Down the remainder of the third column, we already have a43 = 0, so we need

only introduce a zero at a33 by using the operation shown in the margin.

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

0 0 −1 0 −3 −2 5

0 0 6 0 19 11 −27

0 0 0 0 −4 4 −12

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎣

1 4 3 −2 10 9 −17

0 0 −1 0 −3 −2 5

0 0 0 0 1 −1 3

0 0 0 0 −4 4 −12

⎤
⎥⎥⎥⎦

• Identify pivot position for Row 3.
From the Row 2 pivot position, we move down one row and to the right one

column to a34. This entry is 0, as is the entry below, so interchanging rows will not
yield an acceptable pivot. As we did before, we move one column to the right. Since
a35 = 1 is nonzero, this becomes the pivot for Row 3.

The operation is R1 ⇔ R3.

The elimination steps are used
to “eliminate” coefficients by
transforming them to zero.

The operations are

−3R1 + R2 ⇒ R2

R1 + R4 ⇒ R4

Do not be tempted to per-
form the operation R1 ⇔ R2.
This will undo the zeros in the
first column.

The operation is R2 ⇔ R4.

The operation is 6R2 + R3 ⇒
R3.
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• Elimination.
We introduce a zero in the a45 position by using the operation shown in the

margin.⎡
⎢⎢⎣

1 4 3 −2 10 9 −17
0 0 −1 0 −3 −2 5
0 0 0 0 1 −1 3
0 0 0 0 −4 4 −12

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 4 3 −2 10 9 −17
0 0 −1 0 −3 −2 5
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦

• Identify pivot position for Row 4.
Since Row 4 is the only remaining row and consists entirely of zeros, it has no

pivot position. The matrix is now in echelon form, so no additional row operations
are required. Converting the augmented matrix back to a linear system gives us

x1 + 4x2 + 3x3 − 2x4 + 10x5 + 9x6 = −17

− x3 − 3x5 − 2x6 = 5

x5 − x6 = 3

Using back substitution, we arrive at the general solution

x1 = −5 − 4s1 + 2s2 − 4s3

x2 = s1

x3 = −14 − 5s3

x4 = s2

x5 = 3 + s3

x6 = s3

where s1, s2, and s3 can be any real numbers. ■

The operation is 4R3 + R4 ⇒
R4.

Gaussian elimination can be applied to any matrix to find an equivalent matrix that
is in echelon form. If matrix A is equivalent to matrix B that is in echelon form, we
say that B is an echelon form of A. Different sequences of row operations can produce
different echelon forms of the same starting matrix, but all echelon forms of a given
matrix will have the same pivot positions.

The operations are

−3R1 + R2 ⇒ R2

R1 + R3 ⇒ R3

E X A M P L E 5 Use Gaussian elimination to find all solutions to the system of linear
equations

x1 + 4x2 − 3x3 = 2
3x1 − 2x2 − x3 = −1
−x1 + 10x2 − 5x3 = 3

Solution The augmented matrix for this system is⎡
⎣ 1 4 −3 2

3 −2 −1 −1
−1 10 −5 3

⎤
⎦

• Identify pivot position for Row 1, then elimination.
We have a11 = 1, so this is the pivot position for Row 1. We introduce zeros down

the first column with the row operations shown in the margin.⎡
⎣ 1 4 −3 2

3 −2 −1 −1
−1 10 −5 3

⎤
⎦ ∼

⎡
⎣1 4 −3 2

0 −14 8 −7
0 14 −8 5

⎤
⎦

■



Holt-4100161 la October 1, 2012 9:37 22

22 CHAPTER 1 Systems of Linear Equations

• Identify pivot position for Row 2, then elimination.⎡
⎣1 4 −3 2

0 −14 8 −7
0 0 0 −2

⎤
⎦

Before continuing, let’s consider what we have. We find ourselves with a matrix
in echelon form, but when we translate the last row back into an equation, we get
0 = −2, which clearly has no solutions. Thus this system has no solutions, and so is
inconsistent. ■

The operation is R2 + R3 ⇒
R3.

The preceding example illustrates a general principle. When applying row opera-
tions to an augmented matrix, if at any point in the process the matrix has a row of
the form

[
0 0 0 · · · 0 c

]
(3)

where c is nonzero, then stop. The system is inconsistent.

Gauss--Jordan elimination is
named for the previously en-
countered C. F. Gauss, and
Wilhelm Jordan (1842--1899), a
German engineer who popular-
ized this method for finding so-
lutions to linear systems in his
book on geodesy (the science of
measuring earth shapes).

Gauss--Jordan Elimination
Let’s return to the echelon form of the augmented matrix from Example 4,⎡

⎢⎢⎣
1 4 3 −2 10 9 −17
0 0 −1 0 −3 −2 5
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦

After extracting the linear system from this matrix, we back substituted and simplified to
find the general solution. We can make it easier to find the general solution by performing
additional row operations on the matrix. Specifically, we do the following:

1. Multiply each nonzero row by the reciprocal of the pivot so that we end up with a 1
as the leading term in each nonzero row.

2. Use row operations to introduce zeros in the entries above each pivot position.

Picking up with our matrix, we see that the first and third rows already have a 1 in the
pivot position. Multiplying the second row by −1 takes care of the remaining nonzero
row. ⎡

⎢⎢⎣
1 4 3 −2 10 9 −17
0 0 −1 0 −3 −2 5
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 4 3 −2 10 9 −17
0 0 1 0 3 2 −5
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦The operation is −R2 ⇒ R2.

The operations are

−3R3 + R2 ⇒ R2

−10R3 + R1 ⇒ R1

When implementing Gaussian elimination, we worked from left to right. To put zeros
above pivot positions, we work from right to left, starting with the rightmost pivot, which
in this case appears in the fifth column. Two row operations are required to introduce
zeros above this pivot.⎡

⎢⎢⎣
1 4 3 −2 10 9 −17
0 0 1 0 3 2 −5
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 4 3 −2 0 19 −47
0 0 1 0 0 5 −14
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦
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Next, we move up to the pivot in the second row, located in the third column. One row
operation is required to introduce a zero in the a13 position.

The operation is

−3R2 + R1 ⇒ R1

⎡
⎢⎢⎣

1 4 3 −2 0 19 −47
0 0 1 0 0 5 −14
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 4 0 −2 0 4 −5
0 0 1 0 0 5 −14
0 0 0 0 1 −1 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦ (4)

When using Gaussian and
Gauss-Jordan elimination, do
not yield to the temptation to
alter the order of the row oper-
ations. Changing the order can
result in a “circular” sequence of
operations that lead nowhere.

Naturally there are no rows above the pivot position in the first row, so we are done. Now
when we extract the linear system, it has the form

x1 + 4x2 − 2x4 + 4x6 = −5
x3 + 5x6 = −14

x5 − x6 = 3

Note that when the system is expressed in this form, the leading variables appear only
in the equation that they lead. Thus during back substitution we need only plug in free
parameters and then subtract to solve for the leading variables, simplifying the process
considerably.

The matrix on the right in (4) is said to be in reduced echelon form.

Definition Reduced Echelon
Form

D E F I N I T I O N 1.5 A matrix is in reduced echelon form (or reduced row echelon form) if

(a) It is in echelon form.

(b) All pivot positions contain a 1.

(c) The only nonzero term in a pivot column is in the pivot position.

Examples of matrices in reduced echelon form include⎡
⎢⎢⎣

0 1 0 −2 0 0 17
0 0 1 −6 0 3 −6
0 0 0 0 1 −2 5
0 0 0 0 0 0 0

⎤
⎥⎥⎦ and

⎡
⎣1 −3 0 0 −7 21

0 0 1 0 2 13
0 0 0 1 5 −9

⎤
⎦ .

Transforming a matrix to reduced echelon form can be viewed as having two parts:
The forward phase is Gaussian elimination, transforming the matrix to echelon form,Definition Forward Phase,

Backward Phase and the backward phase, which completes the transformation to reduced echelon form.
The combination of the forward and backward phases is referred to as Gauss–Jordan
elimination. Although a given matrix can be equivalent to many different echelon formDefinition Gauss–Jordan

Elimination matrices, the same is not true of reduced echelon form matrices.

T H E O R E M 1.6 A given matrix is equivalent to a unique matrix that is in reduced echelon form.

The proof of this theorem is omitted.

Going forward, we omit de-
tailed explanations and instead
just show the row operations in
the order performed.

E X A M P L E 6 Use Gauss–Jordan elimination to find all solutions to the system of
linear equations

x1 − 2x2 − 3x3 = −1
x1 − x2 − 2x3 = 1

−x1 + 3x2 + 5x3 = 2
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Solution The augmented matrix and row operations are shown below.⎡
⎣ 1 −2 −3 −1

1 −1 −2 1
−1 3 5 2

⎤
⎦ −R1+R2⇒R2

R1+R3⇒R3

∼

⎡
⎣1 −2 −3 −1

0 1 1 2
0 1 2 1

⎤
⎦

−R2+R3⇒R3

∼

⎡
⎣1 −2 −3 −1

0 1 1 2
0 0 1 −1

⎤
⎦

That completes the forward phase, yielding a matrix in echelon form. Next, we imple-
ment the backward phase to transform the matrix to reduced echelon form.⎡

⎣1 −2 −3 −1
0 1 1 2
0 0 1 −1

⎤
⎦ −R3+R2⇒R2

3R3+R1⇒R1

∼

⎡
⎣1 −2 0 −4

0 1 0 3
0 0 1 −1

⎤
⎦

2R2+R1⇒R1

∼

⎡
⎣1 0 0 2

0 1 0 3
0 0 1 −1

⎤
⎦

The reduced echelon form is equivalent to the linear system

x1 = 2
x2 = 3

x3 = −1

We see immediately that the system has unique solution x1 = 2, x2 = 3, and x3 = −1. ■

Homogeneous Linear Systems
A linear equation is homogeneous if it has the form

a1x1 + a2x2 + · · · + anxn = 0

Homogeneous linear systems are an important class of systems that are made up of
homogeneous linear equations.

Definition Homogeneous
Equation, Homogeneous

System

a11x1 + a12x2 + a13x3 + · · · + a1nxn = 0

a21x1 + a22x2 + a23x3 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = 0

Note that all homogeneous systems are consistent, because there is always one easy
solution, namely,

x1 = 0, x2 = 0, . . . , xn = 0

This is called the trivial solution. If there are additional solutions, they are called non-
trivial solutions. We determine if there are nontrivial solutions in the usual way, using
elimination methods.

Definition Trivial Solution,
Nontrivial Solution
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E X A M P L E 7 Use Gauss–Jordan elimination to find all solutions to the homoge-
neous system of linear equations

2x1 − 6x2 − x3 + 8x4 = 0
x1 − 3x2 − x3 + 6x4 = 0

−x1 + 3x2 − x3 + 2x4 = 0

Solution As the system is homogeneous, we know that it has the trivial solution. To
find the other solutions, we load the system into an augmented matrix and transform
to reduced echelon form.⎡

⎣ 2 −6 −1 8 0
1 −3 −1 6 0

−1 3 −1 2 0

⎤
⎦ R1⇔R2

∼

⎡
⎣ 1 −3 −1 6 0

2 −6 −1 8 0
−1 3 −1 2 0

⎤
⎦

−2R1+R2⇒R2

R1+R3⇒R3

∼

⎡
⎣1 −3 −1 6 0

0 0 1 −4 0
0 0 −2 8 0

⎤
⎦

2R2+R3⇒R3

∼

⎡
⎣1 −3 −1 6 0

0 0 1 −4 0
0 0 0 0 0

⎤
⎦

R2+R1⇒R1

∼

⎡
⎣1 −3 0 2 0

0 0 1 −4 0
0 0 0 0 0

⎤
⎦

The last matrix is in reduced echelon form. The corresponding linear system is

x1 − 3x2 + 2x4 = 0
x3 − 4x4 = 0

Back substituting yields the general solution

x1 = 3s1 − 2s2

x2 = s1

x3 = 4s2

x4 = s2

where s1 and s2 can be any real numbers. ■

Proof of Theorem 1.2
We are now in a position to revisit and prove Theorem 1.2 from Section 1.1. Recall the
statement of the theorem.

T H E O R E M 1.2 A system of linear equations has no solutions, exactly one solution, or infinitely many
solutions.

Proof We can take any linear system, form the augmented matrix, use Gaussian elim-
ination to reduce to echelon form, and extract the transformed system. There are three
possible outcomes from this process:

(a) The system has an equation of the form 0 = c for c 
= 0. In this case, the system has
no solutions.
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If (a) does not occur, then one of (b) or (c) must:

(b) The transformed system is triangular, and thus has no free variables and hence exactly
one solution.

(c) The transformed system is not triangular, and so has one or more free variables and
hence infinitely many solutions.

Homogeneous linear systems are even simpler. Since all such systems have the trivial
solution, (a) cannot happen. Therefore a homogeneous linear system has either a unique
solution or infinitely many solutions. ■

Computational Comments
• We can find the solutions to any system by using either Gaussian elimination or Gauss–

Jordan elimination. Which is better? For a system of n equations with n unknowns,
Gaussian elimination requires approximately 2

3 n3 flops (i.e., arithmetic operations) and
Gauss--Jordan requires about n3 flops. Back substitution is slightly more complicated
for Gaussian elimination than for Gauss–Jordan, but overall Gaussian elimination is
more efficient and is the method that is usually implemented in computer software.There are various similar def-

initions for what constitutes a
“flop.” Here we take a “flop” to
be one arithmetic operation, ei-
ther addition or multiplication.
Counting flops gives a measure
of algorithm efficiency.

• When elimination methods are implemented on computers, to control round-off error
they typically include an extra step called “partial pivoting,” which involves selecting
the entry having the largest absolute value to serve as the pivot. When performing row
operations by hand, partial pivoting tends to introduce fractions and leads to messy
calculations, so we avoided the topic. However, it is discussed in the next section.

E X E R C I S E S
In each exercise set, problems marked with C are designed to
be solved using a programmable calculator or computer algebra
system.

In Exercises 1–4, convert the given augmented matrix to the
equivalent linear system.

1.

[
4 2 −1 2

−1 0 5 7

]

2.

[ −2 1 0
13 −3 6

−11 7 −5

]

3.

⎡
⎢⎣

0 12 −3 −9 17
−12 5 −3 11 0

6 8 2 10 −8
17 0 0 13 −1

⎤
⎥⎦

4.

[−1 2
5 −7
3 0

]

In Exercises 5–10, determine those matrices that are in echelon
form, and those that are also in reduced echelon form.

5.

[
1 3 −2
0 2 6
0 0 0

]

6.

[
1 3 0 6 −2
0 0 1 5 3
0 0 0 0 0

]

7.

[
3 −3 1 1 0
0 0 −2 4 0
0 0 1 0 0

]

8.

⎡
⎢⎣

1 −3 1 −7
0 1 −2 4
0 0 1 −2
0 0 0 2

⎤
⎥⎦

9.

[
1 0 0 5 −1
0 2 0 −2 0
0 0 1 −3 2

]

10.

[
1 −1 0 9 0
0 0 1 8 0
0 0 0 0 1

]

In Exercises 11–14, the matrix on the right results after performing
a single row operation on the matrix on the left. Identify the row
operation.

11.

[ −2 1 0
13 −3 6

−11 7 −5

]
∼

[
4 −2 0

13 −3 6
−11 7 −5

]

12.

[
4 2 −1 2

−1 0 5 7

]
∼

[
1 2 14 23

−1 0 5 7

]

13.

[
2 −1 3 0
4 9 −2 3
6 7 5 −1

]
∼

[
2 −1 3 0
4 9 −2 3

−2 −11 9 −7

]
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14.

[
2 −1 3 0
4 9 −2 3
6 7 5 −1

]
∼

[
6 7 5 −1
4 9 −2 3
2 −1 3 0

]

In Exercises 15–18, a single row operation was performed on the
matrix on the left to produce the matrix on the right. Unfortu-
nately, an error was made when performing the row operation.
Identify the operation and fix the error.

15.

[
3 7 −2

−1 4 3
5 0 −3

]
∼

[−1 4 −3
3 7 −2
5 0 −3

]

16.

[
−2 −2 1 6

4 −1 0 −5

]
∼

[
−2 −2 1 6

0 5 2 7

]

17.

[
0 3 −1 2

−1 −9 4 1
5 0 7 2

]
∼

[
2 6 −2 4

−1 −9 4 1
5 0 7 2

]

18.

[
1 7 2 0
0 4 −8 −3
3 0 0 1

]
∼

[
1 7 2 0
0 4 −8 −3
1 −14 0 1

]

In Exercises 19–26, convert the given system to an augmented ma-
trix and then find all solutions by reducing the system to echelon
form and back substituting.

19. 2x1 + x2 = 1
−4x1 − x2 = 3

20. 3x1 − 7x2 = 0
x1 + 4x2 = 0

21. −2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = −1

7x1 − 17x2 + 34x3 = −16

22. 2x1 + 8x2 − 4x3 = −10
−x1 − 3x2 + 5x3 = 4

23. 2x1 + 2x2 − x3 = 8
−x1 − x2 = −3
3x1 + 3x2 + x3 = 7

24. −5x1 + 9x2 = 13
3x1 − 5x2 = −9

x1 − 2x2 = −2

25. 2x1 + 6x2 − 9x3 − 4x4 = 0
−3x1 − 11x2 + 9x3 − x4 = 0

x1 + 4x2 − 2x3 + x4 = 0

26. x1 − x2 − 3x3 − x4 = −1
−2x1 + 2x2 + 6x3 + 2x4 = −1
−3x1 − 3x2 + 10x3 = 5

In Exercises 27–30, convert the given system to an augmented
matrix and then find all solutions by transforming the system to
reduced echelon form and back substituting.

27. −2x1 − 5x2 = 0
x1 + 3x2 = 1

28. −4x1 + 2x2 − 2x3 = 10
x1 + x3 = −3

3x1 − x2 + x3 = −8

29. 2x1 + x2 = 2
−x1 − x2 − x3 = 1

30. −3x1 + 2x2 − x3 + 6x4 = −7
7x1 − 3x2 + 2x3 − 11x4 = 14

x1 − x4 = 1

For each of Exercises 31–36, suppose that the given row operation
is used to transform a matrix. Which row operation will transform
the matrix back to its original form?

31. 5R1 �⇒ R1

32. −2R3 �⇒ R3

33. R1 ⇐⇒ R3

34. R4 ⇐⇒ R1

35. −5R2 + R6 �⇒ R6

36. −3R1 + R3 �⇒ R3

FIND AN EXAMPLE For Exercises 37–42, find an example that
meets the given specifications.

37. A matrix with three rows and five columns that is in echelon
form, but not in reduced echelon form.

38. A matrix with six rows and four columns that is in echelon
form, but not in reduced echelon form.

39. An augmented matrix for an inconsistent linear system that
has four equations and three variables.

40. An augmented matrix for an inconsistent linear system that
has three equations and four variables.

41. A homogeneous linear system with three equations, four vari-
ables, and infinitely many solutions.

42. Two matrices that are distinct yet equivalent.

TRUE OR FALSE For Exercises 43–50, determine if the statement
is true or false, and justify your answer.

43. If two matrices are equivalent, then one can be transformed
into the other with a sequence of elementary row operations.

44. Different sequences of row operations can lead to different
echelon forms for the same matrix.

45. Different sequences of row operations can lead to different
reduced echelon forms for the same matrix.

46. If a linear system has four equations and seven variables, then
it must have infinitely many solutions.

47. If a linear system has seven equations and four variables, then
it must be inconsistent.

48. Every linear system with free variables has infinitely many so-
lutions.

49. Any linear system with more variables than equations cannot
have a unique solution.

50. If a linear system has the same number of equations and vari-
ables, then it must have a unique solution.

51. Suppose that the echelon form of an augmented matrix has
a pivot position in every column except the rightmost one. How
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many solutions does the associated linear system have? Justify your
answer.

52. Suppose that the echelon form of an augmented matrix has
a pivot position in every column. How many solutions does the
associated linear system have? Justify your answer.

53. Show that if a linear system has two different solutions, then
it must have infinitely many solutions.

54. Show that if a matrix has more rows than columns and is in
echelon form, then it must have at least one row of zeros at the
bottom.

55. Show that a homogeneous linear system with more variables
than equations must have an infinite number of solutions.

56. Show that each of the elementary operations on linear systems
(see pages 14–15) produces an equivalent linear system. (Recall two
linear systems are equivalent if they have the same solution set.)

(a) Interchange the position of two equations.

(b) Multiply an equation by a nonzero constant.

(c) Add a multiple of one equation to another.

C In Exercises 57–58 you are asked to find an interpolating
polynomial, which is used to fit a function to a set of data.

57. Figure 3 shows the plot of the points (1, 4), (2, 7), and (3, 14).
Find a polynomial of degree 2 of the form f (x) = ax2 + bx + c
whose graph passes through these points.

1

15

0 2

10

5

0
3 4

Figure 3 Exercise 57 data.

58. Figure 4 shows the plot of the points (1, 8), (2, 3), (3, 9),
(5, 1), and (7, 7). Find a polynomial of degree 4 of the form
f (x) = ax4 + bx3 + c x2 + dx + e whose graph passes through
these points.

2
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4

2

0
6 8

Figure 4 Exercise 58 data.

C Exercises 59–60 refer to the cannonball scenario described at
the start of the section. For each problem, the three ordered pairs
are (x , E (x)), where x is the distance on the ground from the po-
sition of the cannon and E (x) is the elevation of the ball. Find a
model for the elevation of the ball, and use the model to determine
where it hits the ground.

59. (20, 288), (40, 364), (60, 360)

60. (40, 814), (80, 1218), (110, 1311)

C In Exercises 61–68, the given matrix is the augmented matrix
for a linear system. Use technology to perform the row operations
needed to transform the matrix to reduced echelon form, and then
find all solutions to the system.

61.

[
2 7 −3 0

−3 0 5 1
−2 6 −5 4

]

62.

[
11 −5 0 0

2 −3 8 0
7 3 3 0

]

63.

[
5 −2 0 3 9
7 1 6 2 −2
2 0 −3 5 4

]

64.

[
9 −2 0 −4 6
0 7 −1 −1 3
8 12 −6 5 −8

]

65.

⎡
⎢⎣

8 −8 0 −1
6 2 −1 0
5 6 −3 10

−2 0 −1 −4

⎤
⎥⎦

66.

⎡
⎢⎣

5 3 7 5
4 −3 −2 0
0 3 17 −2
4 7 8 12

⎤
⎥⎦

67.

⎡
⎢⎣

6 5 1 0 −3 0
3 −2 −1 8 12 0

−7 1 3 0 11 0
13 2 0 −2 −7 0

⎤
⎥⎦

68.

⎡
⎢⎣

2 1 0 0 3 −5 7
0 5 −1 8 −1 4 0
3 11 −9 1 6 0 13
7 0 5 5 −3 2 11

⎤
⎥⎦
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1.3 Numerical SolutionsThis section is optional and
can be omitted without loss of
continuity. In theory, the elimination methods developed in Section 1.2 can be used to find the

solutions to any system of linear equations. And in practice, elimination methods work
fine as long as the system is not too large. However, when implemented on a computer,
elimination methods can lead to the wrong answer due to round-off error. Furthermore,
for very large systems elimination methods may not be efficient enough to be practical.
In this section we consider some shortcomings of elimination methods, and develop
alternative solution methods.

“In theory, there is no differ-
ence between theory and prac-
tice. In practice, there is.” ---Yogi

Berra (Also attributed to computer

scientist Jan L. A. van de Snepscheut

and physicist Albert Einstein.)
Round-off Error
No sensible person spends their day solving complicated systems of linear equations by
hand—they use a computer. But while computers are fast, they have drawbacks, one
being the round-off errors that can arise when using floating-point representations for
numbers.

For example, suppose that we have a simple computer that has only four digits of
accuracy. Using this computer and Gauss–Jordan elimination to solve the system

7x1 − 3x2 + 2x3 + 6x4 = 13
−3x1 + 9x2 + 5x3 − 2x4 = 9

x1 − 13x2 − 3x3 + 8x4 = −13
2x1 − x3 + 3x4 = −6

yields the solution x1 = 2, x2 = −0.999, x3 = 3.998, and x4 = −1.999. This differs from
the exact solution x1 = 2, x2 = −1, x3 = 4, and x4 = −2 because of round-off error
occurring while performing row operations. The degree of error here is not too large, but
this is a small system. Elimination methods applied to larger systems will require many
more arithmetic operations, which can result in accumulation of round-off errors, even
on a high-precision computer.

If the right combination of conditions exists, even small systems can generate sig-
nificant round-off errors.

The choice of four digits of
accuracy does not restrict us
to numbers less than 10,000.
For instance, a number such as
973,400 can be represented as
9.734 × 105.

The notation :≈ means that
rounding has occurred, and
that the value on the right is
being assigned to the indicated
variable.

E X A M P L E 1 Suppose that we are using a computer with four digits of accuracy.
Apply Gaussian elimination to find the solution to the system

3x1 + 1000x2 = 7006
42x1 − 36x2 = −168

(1)

Solution We need only one row operation to put the system in triangular form. The
exact computations are[

3 1000 7006
42 −36 −168

] −14R1+R2⇒R2

∼

[
3 1000 7006
0 −14036 −98252

]

Since our computer only carries four digits of accuracy, the number −14, 036 is rounded
to −14,040 and −98,252 is rounded to −98,250. Thus the triangular system we end up
with is

3x1 + 1000x2 = 7006
− 14,040x2 = −98,250

Solving for x2, we get

x2 = −98,250

−14,040
:≈ 6.998



Holt-4100161 la October 1, 2012 9:37 30

30 CHAPTER 1 Systems of Linear Equations

Back substituting to solve for x1 gives us

x1 = 7006 − 1000(6.998)

3
:≈ 2.667

The exact solution to the system is x1 = 2 and x2 = 7. Although the approximation
for x2 is fairly good, the approximation for x1 is off by quite a bit. The source of the
problem is that the coefficients in the equation

3x1 + 1000x2 = 7006

differ dramatically in size. During back substitution into this equation, the error in x2

is magnified by the coefficient 1000 and only can be compensated for by the 3x1 term.
But since the coefficient on this term is so much smaller, the error in x1 is forced to be
large. ■

One way to combat round-off error is to use partial pivoting, which adds a step toDefinition Partial Pivoting

the usual elimination algorithms. With partial pivoting, when starting on a new column
we first switch the row with the largest leading entry (compared using absolute values)
to the pivot position before beginning the elimination process.

For instance, with the system (1) we interchange the position of the two rows because
because |42| > |3|, which gives us

42x1 − 36x2 = −168
3x1 + 1000x2 = 7006

This time the single elimination step is (shown with four digits of accuracy)[
42 −36 −168
3 1000 7006

] − 1
14 R1+R2⇒R2

∼

[
42 −36 −168
0 1003 7018

]

From this we have x2 = 7018/1003 = 6.997, which is slightly less accurate than before.
However, when we back substitute this value of x2 into the equation

42x1 − 36x2 = −168

we get x1 = 1.997, a much better approximation for the exact value of x1.
When Gaussian and Gauss–Jordan elimination are implemented in computer soft-

ware, partial pivoting is often used to help control round-off errors. It is also possible to
implement full pivoting, where both rows and columns are interchanged to arrange forDefinition Full Pivoting

the largest possible leading coefficient. However, full pivoting is slower and so is employed
less frequently than partial pivoting.

Jacobi Iteration
It is not at all unusual for an application to yield a system of linear equations with
thousands of equations and variables. In such a case, even if round-off error is controlled,
elimination methods may not be efficient enough to be practical.

Here we turn our attention to a pair of related iterative methods that attempt to
find the solution to a system of equations through a sequence of approximations. These
methods do not suffer from the round-off problems described earlier, and in many cases
they are faster than elimination methods. However, they only work on systems where the
number of equations equals the number of variables, and sometimes they diverge—that
is, they fail to reach the solution. In the cases where a solution is found, we say that the

Definition Diverge, Converge
method converges.
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Our first approximation method is called Jacobi iteration. We illustrate this method
by using it to find the solution to the system

10x1 + 4x2 − x3 = 3
2x1 + 10x2 + x3 = −19

x1 − x2 + 5x3 = −2
(2)

Jacobi iteration is named for
German mathematician Karl
Gustav Jacobi (1804--1851).

Step 1: Solve the first equation of the system for x1, the second equation for x2, and so
on,

x1 = 0.3 − 0.4x2 + 0.1x3

x2 = −1.9 − 0.2x1 − 0.1x3

x3 = −0.4 − 0.2x1 + 0.2x2

(3)

Step 2: Make a guess at the values of x1, x2, and x3 that satisfy the system. If we have no
idea about the solution, then set each equal to 0,

x1 = 0, x2 = 0, x3 = 0

Table values are rounded to
four decimal places, and the
rounded values are carried to
the next iteration.

Step 3: Substitute the values for x1, x2, and x3 into (3). This is Iteration 1, and it gives
the updated values:

Iteration 1: x1 = 0.3 − 0.4(0) + 0.1(0) = 0.3
x2 = −1.9 − 0.2(0) − 0.1(0) = −1.9
x3 = −0.4 − 0.2(0) + 0.2(0) = −0.4

Now repeat the process, substituting the new values for x1, x2, and x3 into the equations
in Step 1.

Iteration 2: x1 = 0.3 − 0.4(−1.9) + 0.1(−0.4) = 1.02
x2 = −1.9 − 0.2(0.3) − 0.1(−0.4) = −1.92
x3 = −0.4 − 0.2(0.3) + 0.2(−1.9) = −0.84

We keep repeating this procedure until we have two consecutive iterations where
each value differs from its predecessor by no more than the accuracy desired. Table 1
shows the outcome from the first nine iterations, each rounded to four decimal places.
We see that the values have converged to x1 = 1, x2 = −2, and x3 = −1, which is the
exact solution to the system.

n x1 x2 x3

0 0 0 0
1 0.3000 −1.9000 −0.4000
2 1.0200 −1.9200 −0.8400
3 0.9840 −2.0200 −0.9880
4 1.0092 −1.9980 −1.0008
5 0.9991 −2.0018 −1.0014
6 1.0006 −1.9997 −1.0002
7 0.9999 −2.0001 −1.0001
8 1.0000 −2.0000 −1.0000
9 1.0000 −2.0000 −1.0000

Table 1 Jacobi Iterations (n is the iteration number)
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Figure 1 Grid Temperatures
for Example 2.

E X A M P L E 2 Figure 1 gives a diagram of a piece of heavy wire mesh. Each of the
eight wire ends has temperature held fixed as shown. When the temperature of the
mesh reaches equilibrium, the temperature at each connecting point will be the average
of the temperatures of the adjacent points and fixed ends. Determine the equilibrium
temperature at the connecting points x1, x2, x3, and x4.

Solution The temperature of each connecting point depends in part on the tempera-
ture of other connecting points. For instance, since x1 is adjacent to x2, x3, and the ends
held fixed at 48◦ and 20◦, its temperature at equilibrium will be the average

x1 = x2 + x3 + 48 + 20

4
= 0.25x2 + 0.25x3 + 17

Similarly, for the other connecting points we have the equations (after simplifying)

x2 = 0.25x1 + 0.25x4 + 3
x3 = 0.25x1 + 0.25x4 + 23
x4 = 0.25x2 + 0.25x3 + 21

Our four equations could be reorganized into the usual form of a linear equation and
solved using elimination methods. But since each equation has one variable written in
terms of the other variables, the problem sets up perfectly for Jacobi iteration. Starting
with initial choices x1 = x2 = x3 = x4 = 0, the first two iterations are

Iteration 1: x1 = 0.25(0) + 0.25(0) + 17 = 17
x2 = 0.25(0) + 0.25(0) + 3 = 3
x3 = 0.25(0) + 0.25(0) + 23 = 23
x4 = 0.25(0) + 0.25(0) + 21 = 21

Iteration 2: x1 = 0.25(3) + 0.25(23) + 17 = 23.5
x2 = 0.25(17) + 0.25(21) + 3 = 12.5
x3 = 0.25(17) + 0.25(21) + 23 = 32.5
x4 = 0.25(3) + 0.25(23) + 21 = 27.5

Table 2 shows additional Jacobi iterations.

n x1 x2 x3 x4

4 29.8750 18.1250 38.1250 33.8750
8 31.8672 19.8828 39.8828 35.8672

12 31.9917 19.9927 39.9927 35.9917
16 31.9995 19.9995 39.9995 35.9995
20 32.0000 20.0000 40.0000 36.0000
24 32.0000 20.0000 40.0000 36.0000

Table 2 Jacobi Iterations for Example 2

This suggests equilibrium temperatures of x1 = 32, x2 = 20, x3 = 40, and x4 = 36.
Substituting these values into our four equations confirms that this is correct. ■

To save space, only every
fourth iteration is given in
Table 2.

We encountered C. F. Gauss
earlier. Ludwig Philipp von Sei-
del (1821--1896) was a German
mathematician. Interestingly,
Gauss discovered the method
long before Seidel but discarded
it as worthless. Nonetheless,
Gauss’s name was attached to
the algorithm along with that
of Seidel, who independently
discovered and published it
after Gauss died.

Gauss--Seidel Iteration
At each step of Jacobi iteration we take the values from the previous step and plug them
into the set of equations, updating the values of all variables at the same time. We modify
this approach with a variant of Jacobi iteration called Gauss–Seidel iteration. With this
method, we always use the current value of each variable.
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To illustrate how Gauss–Seidel works, we use the system (2) considered before.

Step 1: As with Jacobi, we start by solving for x1, x2, and x3,

x1 = 0.3 − 0.4x2 + 0.1x3

x2 = −1.9 − 0.2x1 − 0.1x3

x3 = −0.4 − 0.2x1 + 0.2x2

Step 2: We set initial values for x1, x2, and x3. In the absence of any approximation for
the solution, we use

x1 = 0, x2 = 0, x3 = 0

Step 3: For the first part of Iteration 1, we have (again as with Jacobi)

x1 = 0.3 − 0.4(0) + 0.1(0) = 0.3

At this point the Jacobi and Gauss--Seidel methods begin to differ. To calculate the updated
value of x2, we use the most current variable values, which are x1 = 0.3 and x3 = 0.

x2 = −1.9 − 0.2(0.3) − 0.1(0) = −1.96

We finish this iteration by updating the value of x3, using the current values x1 = 0.3
and x2 = −1.96, so that

x3 = −0.4 − 0.2(0.3) + 0.2(−1.96) = −0.852

Subsequent iterations proceed in the same way, always incorporating the most current
variable values. The second iteration is

Iteration 2: x1 = 0.3 − 0.4(−1.96) + 0.1(−0.852) = 0.9988

x2 = −1.9 − 0.2(0.9988) − 0.1(−0.852) :≈ −2.0146

x3 = −0.4 − 0.2(0.9988) + 0.2(−2.01456) :≈ −1.0027

As with Jacobi, we continue until reaching the point where two consecutive iterations
yield values sufficiently close together. Table 3 gives the first six iterations of Gauss–Seidel
applied to our system.

Note that Gauss–Seidel converged to the solution faster than Jacobi. Since Gauss–
Seidel immediately incorporates new values into the computations, it seems reason-
able to expect that it would converge faster than Jacobi. Most of the time this is true,
but surprisingly not always—there are systems where Jacobi iteration converges more
rapidly.

n x1 x2 x3

0 0 0 0
1 0.3000 −1.9600 −0.8520
2 0.9988 −2.0146 −1.0027
3 1.0056 −2.0008 −1.0013
4 1.0002 −1.9999 −1.0000
5 1.0000 −2.0000 −1.0000
6 1.0000 −2.0000 −1.0000

Table 3 Gauss–Seidel Iterations
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Example 3 is based on the
work of Nobel Prize--winning
economist Wassily Leontief
(1906--1999). He divided the
economy into 500 sectors in
developing his input-output
model.

E X A M P L E 3 Imagine a simple economy that consists of consumers and just three
industries, which we refer to as A, B, and C. These industries have annual consumer
sales of 60, 75, and 40 (in billions of dollars), respectively. In addition, for every dollar
of goods A sells, A requires 10 cents of goods from B and 15 cents of goods from C
to support production. (For instance, maybe B sells electricity and C sells shipping
services.) Similarly, each dollar of goods B sells requires 20 cents of goods from A and
5 cents of goods from C, and each dollar of goods C sells requires 25 cents of goods
from A and 15 cents of goods from B. What output from each industry will satisfy both
consumer and between-industry demand?

Solution Let a , b, and c denote the total output from each of A, B, and C, respectively.
The entire output for A is 60 for consumers, 0.20b for B, and 0.25c for C. Totaling this
up yields the equation

a = 60 + 0.20b + 0.25c

Similar reasoning applied to industries B and C yields the equations

b = 75 + 0.10a + 0.15c
c = 40 + 0.15a + 0.05b

Here we apply Gauss–Seidel iteration to find a solution. Since we are given the consumer
demand for each industry, we take that as our starting point, initially setting a = 60,
b = 75, and c = 40. For the first two iterations, we have

Iteration 1: a = 60 + 0.20(75) + 0.25(40) = 85
b = 75 + 0.10(85) + 0.15(40) = 89.5
c = 40 + 0.15(85) + 0.05(89.5) = 57.225

Iteration 2: a = 60 + 0.20(89.5) + 0.25(57.225) :≈ 92.2063
b = 75 + 0.10(92.2063) + 0.15(57.225) :≈ 92.8044
c = 40 + 0.15(92.2063) + 0.05(92.8044) :≈ 58.4712

n a b c

0 60 75 40
1 85 89.5 57.225
2 92.2063 92.8044 58.4712
3 93.1787 93.0885 58.6312
4 93.2755 93.1222 58.6474
5 93.2863 93.1257 58.6492
6 93.2875 93.1261 58.6494
7 93.2876 93.1262 58.6494
8 93.2876 93.1262 58.6494

Table 4 Gauss–Seidel Iterations for Example 3

Additional iterations are shown in Table 4, and suggest convergence to a = 93.2876,
b = 93.1262, and c = 58.6494. These match the exact solution to four decimal places. ■

Convergence
Gaussian and Gauss–Jordan elimination are called direct methods, because they will always
yield the solution in a finite number of steps (ignoring the potential problems brought
about by round-off). On the other hand, as noted earlier, Jacobi and Gauss–Seidel are
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iterative methods and do not converge to a solution in all cases. For instance, applying
Gauss–Seidel iteration starting at x1 = x2 = 0 to the system

x1 + 3x2 = 6
2x1 − x2 = 1

(4)

yields the sequence shown in Table 5. The values grow quickly in absolute value, and do
not converge.

n x1 x2

0 0 0
1 6 11
2 −27 −55
3 171 341
4 −1017 −2035
5 6111 12221

Table 5 Gauss–Seidel
Iterations

One case where we are guaranteed convergence is if the coefficients of the system are
diagonally dominant. This means that for each equation of the system, the coefficient aii

Definition Diagonally
Dominant

(in equation i) along the diagonal has absolute value larger than the sum of the absolute
values of the other coefficients in the equation. For example, the system

7x1 − 3x2 + 2x3 = 6
x1 + 5x2 − 2x3 = 1

−3x1 + x2 − 6x3 = −4
(5)

is diagonally dominant because

|7| > | − 3| + |2|
|5| > |1| + | − 2|

| − 6| > | − 3| + |1|
On the other hand, the system

−2x1 + x2 − 9x3 = 0
6x1 − x2 + 4x3 = −12
−x1 + 4x2 − x3 = 3

(6)

is not diagonally dominant as expressed, but reordering the equations to

6x1 − x2 + 4x3 = −12
−x1 + 4x2 − x3 = 3

−2x1 + x2 − 9x3 = 0
(7)

makes it diagonally dominant.

Diagonal dominance is not
required in order for the it-
erative methods to converge.
There are instances where con-
vergence occurs without diago-
nal dominance.

E X A M P L E 4 Reverse the order of the equations in 4 to make the system diagonally
dominant, and then find the solution using Gauss–Seidel iteration.

Solution Reversing the order of the equations gives us

2x1 − x2 = 1

x1 + 3x2 = 6

which is diagonally dominant. Next, we solve for x1 and x2 (rounded to four decimal
places),

x1 = 0.5 + 0.5x2

x2 = 2 − 0.3333x1

Starting with x1 = 0 and x2 = 0, we have

Iteration 1: x1 = 0.5 + 0.5(0) = 0.5

x2 = 2 − 0.3333(0.5) :≈ 1.8333

Iteration 2: x1 = 0.5 + 0.5(1.8333) :≈ 1.4167

x2 = 2 − 0.3333(1.4167) :≈ 1.5278
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The first eight iterations are shown in Table 6, which shows convergence to x1 =
1.2857 and x2 = 1.5714. These match the exact solutions, which are x1 = 9/7 and
x2 = 11/7. ■

Computational Comments
• Our iterative methods do not suffer from the round-off errors that can afflict elimi-

nation methods. Since the values from one iteration can be thought of as an “initial
guess” for the next, there is no accumulation of errors. For the same reason, if a com-
putation error is made, the result still can be used in the next iteration. By contrast, if a
computation error is made when using elimination methods, the end result is almost
always wrong.

n x1 x2

0 0 0
1 0.5 1.8333
2 1.4167 1.5278
3 1.2639 1.5787
4 1.2894 1.5702
5 1.2851 1.5716
6 1.2858 1.5714
7 1.2857 1.5714
8 1.2857 1.5714

Table 6 Gauss–Seidel
Iterations for Example 4

• For a system of n equations with n unknowns, Jacobi and Gauss–Seidel both require
about 2n2 flops per iteration. As mentioned earlier, Gauss–Seidel usually converges in
fewer iterations than Jacobi, so Gauss–Seidel is typically the preferred method.

• If we ignore potential round-off issues and go solely by the number of flops, then
Gaussian elimination requires about 2n3/3 flops, versus 2n2 flops per iteration for
Gauss–Seidel. Hence, as long as Gauss–Seidel converges in fewer than n/3 iterations,
this will be the more efficient method.

• The rate of convergence of our iterative methods is influenced by the degree of diagonal
dominance of the system. If the diagonal terms are much larger than the others, then
iterative methods generally will converge relatively quickly. If the diagonal terms are
only slightly dominant, then although iterative methods eventually will converge, they
can be too slow to be practical. There are other iterative methods besides those presented
here that are designed to have better convergence properties.

See Matrix Computations by G.
Golub and C. Van Loan for a
more extensive discussion of it-
erative methods and an expla-
nation of why those described
here work.

• Iterative methods are particularly useful for solving sparse systems, which are linearDefinition Sparse System,
Sparse Matrix systems where most of the coefficients are zero. The augmented matrix of such a system

has mostly zero entries and is said to be a sparse matrix. Elimination methods applied
to sparse systems have a tendency to change the zeros to nonzero terms, removing the
sparseness.

E X E R C I S E S
In each exercise set, problems marked with C are designed to
be solved using a programmable calculator or computer algebra
system.

In Exercises 1–4, use partial pivoting with Gaussian elimination
to find the solutions to the given system.

1. −2x1 + 3x2 = 4
5x1 − 2x2 = 1

2. x1 − 2x2 = −1
−3x1 + 7x2 = 5

3. x1 + x2 − 2x3 = −3
3x1 − 2x2 + 2x3 = 9
6x1 − 7x2 − x3 = 4

4. x1 − 3x2 + 2x3 = 4
−2x1 + 7x2 − 2x3 = −7

4x1 − 13x2 + 7x3 = 12

C In Exercises 5–8, solve the system as given with Gaussian elim-
ination with three significant digits of accuracy. Then solve the
system again, incorporating partial pivoting.

5. 2x1 + 975x2 = 41
53x1 − 82x2 = −13

6. 3x1 − 813x2 = 32
71x1 − 93x2 = −5

7. 3x1 − 7x2 + 639x3 = 12
−2x1 + 5x2 + 803x3 = 7
56x1 − 41x2 + 79x3 = 10

8. 2x1 − 5x2 + 802x3 = −1
−x1 + 3x2 − 789x3 = −8
40x1 + 34x2 + 51x3 = 19

C In Exercises 9–12, compute the first three Jacobi iterations for
the given system, using 0 as the initial value for each variable. Then
find the exact solution and compare.

9. −5x1 + 2x2 = 6
3x1 + 10x2 = 2

10. 2x1 − x2 = −4
−4x1 + 5x2 = 11
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11. 20x1 + 3x2 + 5x3 = −26
−2x1 − 10x2 + 3x3 = −23

x1 − 2x2 − 5x3 = −13

12. −2x1 + x3 = 5
−x1 + 5x2 − x3 = 8
2x1 − 6x2 + 10x3 = 16

C In Exercises 13–16, compute the first three Gauss–Seidel iter-
ations for the given system, using 0 as the initial value for each
variable. Then find the exact solution and compare.

13. The system given in Exercise 9.

14. The system given in Exercise 10.

15. The system given in Exercise 11.

16. The system given in Exercise 12.

In Exercises 17–20, determine if the given system is diagonally
dominant. If not, then (if possible) rewrite the system so that it is
diagonally dominant.

17. 2x1 − 5x2 = 7
3x1 + 7x2 = 4

18. 4x1 + 2x2 − x3 = 13
−2x1 + 7x2 + 2x3 = −9

x1 + 3x2 − 5x3 = 6

19. 3x1 + 6x2 − x3 = 0
−x1 − 2x2 + 4x3 = −1
7x1 + 5x2 − 3x3 = 3

20. −2x1 + 6x2 = 12
5x1 − x2 = −4

C In Exercises 21–24, compute the first four Jacobi iterations for
the system as written, with the initial value of each variable set
equal to 0. Then rewrite the system so that it is diagonally dom-
inant, set the value of each variable to 0, and again compute 4
Jacobi iterations.

21. x1 − 2x2 = −1
2x1 − x2 = 1

22. x1 − 3x2 = −2
3x1 − x2 = 2

23. x1 − 2x2 + 5x3 = −1
5x1 + x2 − 2x3 = 8
2x1 − 10x2 + 3x3 = −1

24. 2x1 + 4x2 − 10x3 = −3
3x1 − x2 + x3 = 7
−x1 + 6x2 − 2x3 = −6

C In Exercises 25–28, compute the first four Gauss–Seidel it-
erations for the system as written, with the initial value of each
variable set equal to 0. Then rewrite the system so that it is di-
agonally dominant, set the value of each variable to 0, and again
compute four Gauss–Seidel iterations.

25. The system given in Exercise 21.

26. The system given in Exercise 22.

27. The system given in Exercise 23.

28. The system given in Exercise 24.

C In Exercises 29–30, the values from the first few Jacobi itera-
tions are given for an unknown system. Find the values for the
next iteration.

29. n x1 x2

0 0 0
1 1 −2
2 5 2
3 ? ?

30. n x1 x2 x3

0 0 0 0
1 −2 −1 1
2 −4 −4 5
3 −11 −4 5
4 ? ? ?

C In Exercises 31–32, the values from the first few Gauss–Seidel
iterations are given for an unknown system. Find the values for
the next iteration.

31. n x1 x2

0 0 0
1 3 4
2 −5 −12
3 ? ?

32. n x1 x2 x3

0 0 0 0
1 3 4 12
2 7 −24 −76
3 −25 176 556
4 ? ? ?

1.4 Applications of Linear Systems
In this section we consider in depth some applications of linear systems. These are but a
few of the many different possible applications that exist.

This section is optional. Al-
though some applications pre-
sented here are referred to later,
they can be reviewed as needed.

Traffic Flow
Arcata, on the northern coast of California, is a small college town with a central plaza
(Figure 1). Figure 2 shows the streets surrounding and adjacent to the town’s central
plaza. As indicated by the arrows, all streets in the vicinity of the plaza are one-way.
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Figure 2 Traffic volumes around the Arcata plaza.

Traffic flows north and south on G and H streets, respectively, and east and west on 8th
and 9th streets, respectively. The number of cars flowing on and off the plaza during
a typical 15-minute period on a Saturday morning is also shown. Our goal is to find
x1, x2, x3, and x4, the volume of traffic along each side of the plaza.

Figure 1 The Arcata plaza.
(Photo taken by Terrence
McNally of Arcata Photo.)

The four intersections are labeled A, B, C, and D. At each intersection, the number of
cars entering the intersection must equal the number leaving. For example, the number
of cars entering A is 100 + x1 and the number exiting is 20 + x2. Since these must be
equal, we end up with the equation

A: 100 + x1 = 20 + x2

Applying the same reasoning to intersections B, C, and D, we arrive at three more
equations,

B: x4 + 30 = x1 + 100

C: x2 + 25 = x3 + 95

D: x3 + 75 = x4 + 15

Rewriting the equations in the usual form, we obtain the system

x1 − x2 = −80

x1 − x4 = −70

x2 − x3 = 70

x3 − x4 = −60

To solve the system, we populate an augmented matrix and transform to echelon form.⎡
⎢⎢⎣

1 −1 0 0 −80
1 0 0 −1 −70
0 1 −1 0 70
0 0 1 −1 −60

⎤
⎥⎥⎦

−R1+R2⇒R2

∼

⎡
⎢⎢⎣

1 −1 0 0 −80
0 1 0 −1 10
0 1 −1 0 70
0 0 1 −1 −60

⎤
⎥⎥⎦

−R2+R3⇒R3

∼

⎡
⎢⎢⎣

1 −1 0 0 −80
0 1 0 −1 10
0 0 −1 1 60
0 0 1 −1 −60

⎤
⎥⎥⎦

R3+R4⇒R4

∼

⎡
⎢⎢⎣

1 −1 0 0 −80
0 1 0 −1 10
0 0 −1 1 60
0 0 0 0 0

⎤
⎥⎥⎦
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Back substitution yields the general solution

x1 = −70 + s1, x2 = 10 + s1, x3 = −60 + s1, x4 = s1

where s1 is a free parameter.
A moment’s thought reveals why it makes sense that this system has infinitely many

solutions. There can be an arbitrary number of cars simply circling the plaza, perhaps
looking for a parking space. Note also that since each of x1, x2, x3, and x4 must be
nonnegative, it follows that the parameter s1 ≥ 70.

The analysis performed here can be carried over to much more complex traffic
questions, or to other similar settings, such as computer networks.

The BCS Ranking System
The BCS (Bowl Championship Series) is a system for ranking college football teams. The
two teams ranked highest at the end of the regular season get to play in the national
championship game. A “BCS Index” is calculated to rank the teams. The BCS Index is
calculated by combining three team rankings from different sources:

USA: A survey of 62 college football coaches compiled by USA Today.

Harris: A survey of 114 college football experts compiled by Harris Interactive.

Computer: An average of computer-based rankings from various sources.

Table 1 gives the points awarded by each source to determine individual rankings
together with the BCS Index. The higher the BCS Index, the higher the BCS ranking.

A conjecture is the mathemat-
ical equivalent of an educated
guess.

This system can be solved
using the methods presented
in Section 1.2 or Section 1.3,
but here a computer algebra
system was used. There is a
small amount of rounding in the
solution.

The information in Table 1 appeared frequently in the media, but the formula for
computing the BCS Index rarely did. Our goal here is to deduce the BCS Index formula
using linear algebra. To find our formula, we start by conjecturing that the BCS Index is
a linear combination of the three components, so that each team’s data will satisfy

x1(USA) + x2(Harris) + x3(Computer) = BCS Index

for the right choice of x1, x2, and x3. For example, using the data for Oklahoma gives us
the equation

1482x1 + 2699x2 + 100x3 = 0.9757

Data from other schools can be used in the same way to obtain additional equations.
Since we have three unknowns, we need three equations in order to find the values of x1,
x2, and x3. Taking the top three schools, we arrive at the linear system

1482x1 + 2699x2 + 100x3 = 0.9757

1481x1 + 2776x2 + 89x3 = 0.9479

1408x1 + 2616x2 + 94x3 = 0.9298

Rank Team USA Harris Computer BCS Index

1 Oklahoma 1482 2699 100 0.9757
2 Florida 1481 2776 89 0.9479
3 Texas 1408 2616 94 0.9298
4 Alabama 1309 2442 81 0.8443
5 Southern Cal 1309 2413 75 0.8208
6 Penn State 1193 2186 66 0.7387

Table 1 The 2008 Final Regular Season BCS Ranks
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This system has unique solution

x1 = 0.0002151, x2 = 0.0001195, x3 = 0.003344

This gives us the formula

BCS Index = 0.0002151(USA) + 0.0001195(Harris) + 0.003344(Computer)

To check if we have the right formula, let’s test it out on some schools not represented in
our system, say, Alabama, Southern Cal, and Penn State.

Alabama: 0.0002151(1309) + 0.0001195(2442) + 0.003344(81) = 0.8443

Southern Cal: 0.0002151(1309) + 0.0001195(2413) + 0.003344(75) = 0.8207

Penn State: 0.0002151(1193) + 0.0001195(2186) + 0.003344(66) = 0.7386

Other than small differences due to rounding, the formula checks out. Thus it is reasonable
to assume that we have found the correct formula for the BCS index.

At the time of this writing, a
limited playoff system has been
approved.

Finally, we note that the BCS index formula has been changed several times in the
past, so it may no longer have this form. (See Exercise 32 for an older version that was
more complicated.) However, if you obtain a version of Table 1 for the most recent college
football season, you can probably perform the same analysis as we have here to find the
current formula for the BCS index.

Planetary Orbital Periods
Most people are aware that the planets that are closer to the sun take a shorter amount of
time to make one orbit around the sun than those that are farther out. Table 2 gives the
average distance from the sun and the number of Earth days required to make one orbit.

Our goal here is to develop an equation that describes the relationship between the
distance from the sun and the length of the orbital period. As a starting point, consider
the scatter plot of the data given in Figure 3.

There seems to be a pattern to the data. The points do not lie on a line, but the
curved shape suggests that for constants a and b, the data may come close to satisfying
the equation

p = adb (1)

where p is the orbital period and d is the distance from the sun. Here we proceed as in
the BCS example, substituting data to create a system of equations to solve. However,
before doing that, we note equation (1) is not linear in a and b, but it can be if we apply

Planet Distance from Sun (×106 km) Orbital Period (days)

Mercury 57.9 88
Venus 108.2 224.7
Earth 149.6 365.2
Mars 227.9 687
Jupiter 778.6 4331
Saturn 1433.5 10747
Uranus 2872.5 30589
Neptune 4495.1 59800

Table 2 Planetary Orbital Distances and Periods
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Figure 3 Orbital Distance vs. Orbit Period.

the logarithm function to both sides. This gives us

ln( p) = ln(adb)
= ln(a) + b ln(d)

If we let a1 = ln(a) and substitute the data from Mercury and Venus, we get the system
of two equations and two unknowns

a1 + b ln(57.9) = ln(88)

a1 + b ln(108.2) = ln(224.7)

The solution to this system is a1 ≈ −1.60771 and b ≈ 1.49925. Since a1 = ln(a), we
have a ≈ e−1.60771 = 0.200346, yielding the formula

p = (0.200346)d1.49925

Table 3 gives the actual and predicted (using the above formula) orbital period for each
planet.

Planet Distance Actual Period Predicted Period

Mercury 57.9 88 87.9988
Venus 108.2 224.7 224.696
Earth 149.6 365.2 365.214
Mars 227.9 687 686.482
Jupiter 778.6 4331 4330.96
Saturn 1433.5 10,747 10,814.6
Uranus 2872.5 30,589 30,644.3
Neptune 4495.1 59,800 59,999.8

Table 3 Planetary Orbital Distances and Periods

The predictions are fairly good, suggesting that our formula is on the right track.
However, the predictions become less accurate for those planets farther from the sun.
Because we used the data for Mercury and Venus to develop our formula, perhaps this is
not surprising. If instead we use Uranus and Neptune, we arrive at the formula

p = (0.20349)d1.497

Table 4 shows this formula produces better predictions.

Predicted
Planet Period

Mercury 88.6
Venus 225.8
Earth 366.8
Mars 688.8
Jupiter 4334
Saturn 10,806
Uranus 30,589
Neptune 59,799

Table 4 Predicted Orbital
Periods
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A natural idea is to incorporate more data into our formula, by using more planets to
generate a larger system of equations. Unfortunately, if we use more than two planets, we
end up with a system that has no solutions. (Try it for yourself.) Thus there are limitations
to what we can do with the tools we currently have available. In Chapter 8 we develop a
more sophisticated method that allows us to use all of our data simultaneously to come
up with a formula that provides a good estimate for a range of distances from the sun.

Balancing Chemical Equations
A popular chemical among college students is caffeine, which has chemical composition
C8H10N4O2. When heated and combined with oxygen (O2), the ensuing reaction pro-
duces carbon dioxide (CO2), water (H2O), and nitrogen dioxide (NO2). This chemical
reaction is indicated using the notation

x1C8H10N4O2 + x2O2 → x3CO2 + x4H2O + x5NO2 (2)

where the subscripts on the elements indicate the number of atoms. (No subscript
indicates one atom.) Balancing the equation involves finding values for x1, x2, x3, x4,
and x5 so that the number of atoms of each element is the same before and after the
reaction. Most chemistry texts describe a method of solution that is best described as
trial and error. However, there is no need for a haphazard approach—we can use linear
algebra.

O CH3

O

CH3

H3C

N

N

N

N

Figure 4 The caffeine
molecule. (Source: Wikimedia
Commons; Author:
NEUROtiker)

In the reaction in 2, let’s start with carbon. On the left side there are 8x1 carbon
atoms, while on the right side there are x3 carbon atoms. This yields the equation

8x1 = x3

For oxygen, we see that there are 2x1 + 2x2 atoms on the left side and 2x3 + x4 + 2x5 on
the right, producing another equation,

2x1 + 2x2 = 2x3 + x4 + 2x5

Similar analysis on nitrogen and hydrogen results in two additional equations,

4x1 = x5 and 10x1 = 2x4

To balance the chemical equation, we must find a solution that satisfies all four equations.
That is, we need to find the solution set to the linear system

2x1 + 2x2 − 2x3 − x4 − 2x5 = 0

4x1 − x5 = 0

8x1 − x3 = 0

10x1 − 2x4 = 0

The augmented matrix and row operations are⎡
⎢⎢⎣

2 2 −2 −1 −2 0
4 0 0 0 −1 0
8 0 −1 0 0 0

10 0 0 −2 0 0

⎤
⎥⎥⎦

−2R1+R2⇒R2

−4R1+R3⇒R3

−5R1+R4⇒R4

∼

⎡
⎢⎢⎣

2 2 −2 −1 −2 0
0 −4 4 2 3 0
0 −8 7 4 8 0
0 −10 10 3 10 0

⎤
⎥⎥⎦

−2R2+R3⇒R3

− 5
2 R2+R4⇒R4

∼

⎡
⎢⎢⎣

2 2 −2 −1 −2 0
0 −4 4 2 3 0
0 0 −1 0 2 0
0 0 0 −2 5

2 0

⎤
⎥⎥⎦
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Back substituting and scaling the free parameter gives the general solution

x1 = 2s1

x2 = 27s1

x3 = 16s1

x4 = 10s1

x5 = 8s1

where s1 can be any real number. Any choice of s1 yields constants that balance our
chemical equation, but it is customary to select the specific solution that makes each of
the coefficients x1, x2, x3, x4, and x5 integers that have no common factors. Setting s1 = 1
accomplishes this, yielding the balanced equation

2C8H10N4O2 + 27O2 → 16CO2 + 10H2O + 8NO2

E X E R C I S E S
In each exercise set, problems marked with C are designed to
be solved using a programmable calculator or computer algebra
system.

1. The volume of traffic for a collection of intersections is shown
in the figure below. Find all possible values for x1, x2, and x3. What
is the minimum volume of traffic from C to A?

C

A

B

x3

x1

x2

20

4535

10 50 40

2. C The volume of traffic for a collection of intersections is
shown in the figure below. Find all possible values for x1, x2, x3,
and x4. What is the minimum volume of traffic from C to D?
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3. C The volume of traffic for a collection of intersections is
shown in the figure below. Find all possible values for x1, x2, x3,
and x4. What is the minimum volume of traffic from C to A?
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4. C The volume of traffic for a collection of intersections is
shown in the figure below. Find all possible values for x1, x2, x3,
x4, x5, and x6.
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In Exercises 5–12, balance the given chemical equations.

5. Hydrogen burned in oxygen forms steam:

H2 + O −→ H2O

6. Hydrogen and nitrogen combine to form ammonia:

H2 + N2 −→ NH3

7. Iron and oxygen combine to form iron oxide:

Fe + O2 −→ Fe2O3

8. Sodium and water react to form sodium hydroxide (lye) and
hydrogen:

Na + H2O −→ NaOH + H2

9. When propane burns in oxygen, it produces carbon dioxide and
water:

C3H8 + O2 −→ CO2 + H2O

10. When acetylene burns in oxygen, it produces carbon dioxide
and water:

C2H2 + O2 −→ CO2 + H2O

11. Potassium superoxide and carbon dioxide react to form potas-
sium carbonate and oxygen:

KO2 + CO2 −→ K2CO3 + O2

12. Manganese dioxide and hydrochloric acid combine to form
manganese chloride, water, and chlorine gas:

MnO2 + HCl −→ MnCl2 + H2O + Cl2

In Exercises 13–16, find a model for planetary orbital period using
the data for the given planets.

13. Earth and Mars.
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14. Mercury and Uranus.

15. Venus and Neptune.

16. Jupiter and Saturn.

In Exercises 17–18, the data given provides the distance required
for a particular type of car to stop when traveling at a variety of
speeds. A reasonable model for braking distance is d = as k , where
d is distance, s is speed, and a and k are constants. Use the data in
the table to find values for a and k, and test your model. (HINT:
Methods similar to those used to find a model for planetary orbital
periods can be applied here.)

17.
Speed (MPH) 10 20 30 40

Distance (Feet) 4.5 18 40.5 72

18.
Speed (MPH) 10 20 30 40

Distance (Feet) 20 80 180 320

When using partial fractions to find antiderivatives in calculus, we
decompose complicated rational expressions into the sum of sim-
pler expressions that can be integrated individually. In Exercises
19–22, the required decomposition is given. Find the values of the
missing constants.

19.
1

x(x + 1)
= A

x
+ B

x + 1

20.
3x − 1

(x − 1)(x + 1)
= A

x − 1
+ B

x + 1

21.
1

x2(x − 1)
= A

x
+ B

x2
+ C

x − 1

22.
1

x(x2 + 1)
= A

x
+ B x + C

x2 + 1

23. The points (1, 3) and (−2, 6) lie on a line. Where does the line
cross the x-axis?

24. The points (2, −1, −2), (1, 3, 12), and (4, 2, 3) lie on a unique
plane. Where does this plane cross the z-axis?

25. The equation for a parabola has the form y = ax2 + bx + c ,
where a , b, and c are constants and a 
= 0. Find an equation for
the parabola that passes through the points (−1, −10), (1, −4),
and (2, −7).

26. C Find a polynomial of the form

f (x) = ax3 + bx2 + c x + d

such that f (0) = −3, f (1) = 2, f (3) = 5, and f (4) = 0.

27. C Find a polynomial of the form

g (x) = ax4 + bx3 + c x2 + dx + e

such that g (−2) = −17, g (−1) = 6, g (0) = 5, g (1) = 4, and
g (2) = 3.

C (Calculus required) In Exercises 28–29, find the values of the
coefficients a , b, and c so the given conditions for the function
f and its derivatives are met. (This type of problem arises in the
study of differential equations.)

28. f (x) = aex + be2x + ce−3x ; f (0) = 2, f ′(0) = 1, and
f ′′(0) = 19.

29. f (x) = ae−2x + bex + c xex ; f (0) = −1, f ′(0) = −2, and
f ′′(0) = 3.

C In Exercises 30–31, a new “LAI” (for Linear Algebra Index)
formula has been used to rank the eight college football teams
shown. The new formula uses the same components as the 2008
BCS formula described earlier. Determine the formula for the LAI,
and test it to be sure it is correct.

30. Rank Team LAI

1 Oklahoma 0.9655
2 Florida 0.9652
3 Texas 0.9237
4 Alabama 0.8538
5 Southern Cal 0.8436
6 Penn State 0.7646
7 Utah 0.7560
8 Texas Tech 0.7522

31. Rank Team LAI

1 Oklahoma 0.9895
2 Texas 0.9364
3 Florida 0.9204
4 Texas Tech 0.8285
5 Alabama 0.8284
6 Utah 0.8236
7 Southern Cal 0.7866
8 Penn State 0.7004

32. C The BCS ranking system was more complicated in 2001
than in 2008. The table below gives the BCS rankings at the end
of the regular season. (A lower BCS Index gave a higher rank.)

Table headings:

• AP and USA gives the rank of each team in the two opinion
polls of writers and coaches, respectively.

• SS stands for strength of schedule ranking, with 1 being the
most challenging.

• L is the number of losses during the season.

• CA (Computer Average) is the average of computer rankings
from various sources.

• QW (Quality Wins) gives a measurement of the number of vic-
tories over highly ranked teams.
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Rank Team AP USA SS L CA QW BCS Index

1 Miami 1 1 18 0 1.00 0.1 2.62
2 Nebraska 4 4 14 1 2.17 0.5 7.23
3 Colorado 3 3 2 2 4.50 2.3 7.28
4 Oregon 2 2 31 1 4.83 0.4 8.67
5 Florida 5 5 19 2 5.83 0.5 13.09
6 Tennessee 8 8 3 2 6.17 1.6 14.69
7 Texas 9 9 33 2 6.67 1.2 17.79
8 Illinois 7 7 37 1 9.83 0.0 19.31
9 Stanford 11 11 22 2 7.83 1.3 20.41

10 Maryland 6 6 78 1 11.17 0.0 21.29
11 Oklahoma 10 10 36 2 9.00 0.9 21.54
12 Washington St 13 13 42 2 10.83 0.6 26.91
13 LSU 12 12 10 3 13.33 1.0 27.73
14 South Carolina 14 14 40 3 19.17 0.0 37.77
15 Washington 21 20 21 3 14.83 1.0 38.17

Find the 2001 BCS ranking formula. Test it for three schools not used to develop your formula to
check for correctness. (HINT: To avoid a system with infinitely many solutions, include Washington
among the schools used to develop the formula. Explain why including Washington will accomplish
this.)
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C H A P T E R

The Willis Family Bridge

provides a walkway from the

main campus of Indiana

University--Purdue University

Fort Wayne to the Waterfield

Campus Student Housing. The

bridge was designed by Kurt

Heidenreich and dedicated in

2003. The triangular design

accommodates the need to cross

Crescent Ave. as well an area of

uneven terrain. The two angled

pylons and four support cables

suggest a diagram for the

addition of force vectors; the

ellipse at the top of the triangle is

formed by the intersection of two

circular cylinders.

2Euclidean Space

We can think of algebra as the study of the properties of arithmetic on the real
Bridge suggested by Adam Coffman,

Indiana University -- Purdue

University Fort Wayne

(James E. Whitcraft)

numbers. In linear algebra, we study the properties of arithmetic performed
on objects called vectors. As we shall see shortly, one use of vectors is to

compactly describe the set of solutions of a linear system, but vectors have many other
applications as well. Section 2.1 gives an introduction to vectors, arithmetic with vectors,
and the geometry of vectors. Section 2.2 and Section 2.3 describe important properties
of sets of vectors.

2.1 Vectors
In this section we introduce vectors, which for the moment we can think of as a list
of numbers. We start with a specific example of vectors that occur in plain sight, on
packages of plant fertilizer. Fertilizer is sold in bags labelled with three numbers that
indicate the amount of nitrogen (N), phosphoric acid (P2O5), and potash (K2O) present.
The mixture of these nutrients varies from one type of fertilizer to the next. For example,
a bag of Vigoro Ultra Turf has the numbers “29–3–4,” which means that 100 pounds of
this fertilizer contains 29 pounds of nitrogen, 3 pounds of phosphoric acid, and 4 pounds
of potash. Organizing these quantities vertically in a matrix, we have⎡

⎣29
3
4

⎤
⎦
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This representation is an example of a vector. Using a vector provides a convenient way to
record the amounts of each nutrient and also lends itself to compact forms of algebraic
operations that arise naturally. For instance, if we want to know the amount of nitrogen,
phosphoric acid, and potash contained in a ton (2000 pounds) of Ultra Turf, we just
multiply each vector entry by 20. If we think of this as multiplying the vector by 20, then
it is reasonable to represent this operation by

20

⎡
⎣29

3
4

⎤
⎦

so that we have

20

⎡
⎣29

3
4

⎤
⎦ =

⎡
⎣20 · 29

20 · 3
20 · 4

⎤
⎦ =

⎡
⎣580

60
80

⎤
⎦

Note that the “=” sign between the vectors means that the entries in corresponding
positions are equal.

Another type of fertilizer, Parker’s Premium Starter, has 18 pounds of nitrogen, 25
pounds of phosphoric acid, and 6 pounds of potash per 100 pounds, which is represented
in vector form by ⎡

⎣18
25

6

⎤
⎦

If we mix together 100 pounds of each type of fertilizer, then we can find the total amount
of each nutrient in the mixture by adding entries in each of the vectors. Thinking of this
as adding the vectors, we have⎡

⎣29
3
4

⎤
⎦ +

⎡
⎣18

25
6

⎤
⎦ =

⎡
⎣29 + 18

3 + 25
4 + 6

⎤
⎦ =

⎡
⎣47

28
10

⎤
⎦

Definition Vector

Vectors and Rn

We formalize our notion of vector with the following definition.

D E F I N I T I O N 2.1 A vector is an ordered list of real numbers u1, u2, . . . , un expressed as

u =

⎡
⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎦

or as u = (u1, u2, . . . , un). The set of all vectors with n entries is denoted by Rn.Definition Rn

Our convention will be to denote vectors using boldface, as in u. Each of the entries
u1, u2, . . . , un is called a component of the vector. A vector expressed in the vertical formDefinition Component
is also called a column vector, and a vector expressed in horizontal form is also called aDefinition Column Vector
row vector. It is customary to express vectors in column form, but we will occasionallyDefinition Row Vector
use row form to save space.

The fertilizer discussion provides a good model for how vector arithmetic works.
Here we formalize the definitions.
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D E F I N I T I O N 2.2 Let u and v be vectors in Rn given by

u =

⎡
⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎣

v1

v2

...

vn

⎤
⎥⎥⎥⎦

Suppose that c is a real number, called a scalar in this context. Then we have the
following definitions:

Equality: u = v if and only if u1 = v1, u2 = v2, . . . , un = vn.

Addition: u + v =

⎡
⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

v1

v2

...

vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u1 + v1

u2 + v2

...

un + vn

⎤
⎥⎥⎥⎦

Scalar Multiplication: cu = c

⎡
⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c · u1

c · u2

...

c · un

⎤
⎥⎥⎥⎦

The set of all vectors in Rn, taken together with these definitions of addition and scalar
multiplication, is called Euclidean space.

Definition Vector Arithmetic,
Scalar, Euclidean Space

Euclidean space is named
for the Greek mathematician
Euclid, the father of geometry.
Euclidean space is an example
of a vector space, discussed in
Chapter 7.

Two vectors can be equal only
if they have the same number of
components. Similarly, there is
no way to add two vectors that
have a different number of com-
ponents.

Although vectors with negative components and negative scalars do not make sense
in the fertilizer discussion, they do in other contexts and are included in Definition 2.2.

E X A M P L E 1 Suppose that

u =

⎡
⎢⎢⎣

2
−3

0
−1

⎤
⎥⎥⎦ and v =

⎡
⎢⎢⎣

−4
6

−2
7

⎤
⎥⎥⎦

Find u + v, −4v, and 2u − 3v.

Solution The solutions to the first two parts are

u + v =

⎡
⎢⎢⎣

2
−3

0
−1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

−4
6

−2
7

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 − 4
−3 + 6

0 − 2
−1 + 7

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2
3

−2
6

⎤
⎥⎥⎦

−4v = −4

⎡
⎢⎢⎣

−4
6

−2
7

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−4(−4)
−4( 6)
−4(−2)
−4( 7)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

16
−24

8
−28

⎤
⎥⎥⎦

The third computation has a slight twist because we have not yet defined the difference
of two vectors. But subtraction works exactly as we would expect and follows from the
natural interpretation that 2u − 3v = 2u + (−3)v.

2u − 3v = 2

⎡
⎢⎢⎣

2
−3

0
−1

⎤
⎥⎥⎦ − 3

⎡
⎢⎢⎣

−4
6

−2
7

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2( 2) − 3(−4)
2(−3) − 3( 6)
2( 0) − 3(−2)
2(−1) − 3( 7)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

16
−24

6
−23

⎤
⎥⎥⎦

■
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Many of the properties of arithmetic of real numbers, such as the commutative,
distributive, and associative laws, carry over as properties of vector arithmetic. These are
summarized in the next theorem.

The zero vector is given by

0 =

⎡
⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎦

and −u = (−1)u.

T H E O R E M 2.3 ( A L G E B R A I C P R O P E R T I E S O F V E C T O R S ) Let a and b
be scalars, and u, v, and w be vectors in Rn. Then

(a) u + v = v + u (e) a(bu) = (ab)u

(b) a(u + v) = au + av (f) u + (−u) = 0

(c) (a + b)u = au + bu (g) u + 0 = 0 + u = u

(d) (u + v) + w = u + (v + w) (h) 1u = u

Proof Let

u =

⎡
⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎣

v1

v2

...

vn

⎤
⎥⎥⎥⎦

Since the components of each vector are real numbers, we have

u1 + v1 = v1 + u1, . . . un + vn = vn + un

Hence

u + v =

⎡
⎢⎢⎢⎣

u1 + v1

u2 + v2

...

un + vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v1 + u1

v2 + u2

...

vn + un

⎤
⎥⎥⎥⎦ = v + u

which proves (a). For (b), suppose that a is a scalar. Since

a(u1 + v1) = au1 + av1, . . . a(un + vn) = aun + avn

it follows that

a(u + v) = a

⎡
⎢⎢⎢⎣

u1 + v1

u2 + v2

...

un + vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a(u1 + v1)
a(u2 + v2)

...

a(un + vn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

au1 + av1

au2 + av2

...

aun + avn

⎤
⎥⎥⎥⎦ = av + au

Therefore (b) is true. Proofs of the remaining properties are left as exercises. ■

Vectors and Systems of Equations
Let’s return to the fertilizer example from the beginning of this section. We have two
different kinds, Vigoro and Parker’s, with nutrient vectors given by

Vigoro: v =
⎡
⎣29

3
4

⎤
⎦ Parker’s: p =

⎡
⎣18

25
6

⎤
⎦



Holt-4100161 la October 1, 2012 11:20 51

SECTION 2.1 Vectors 51

By using vector arithmetic, we can find the nutrient vector for combinations of the two
fertilizers. For example, if 500 pounds of Vigoro and 300 pounds of Parker’s are mixed,
then the total amount of each nutrient is given by

5v + 3p = 5

⎡
⎣29

3
4

⎤
⎦ + 3

⎡
⎣18

25
6

⎤
⎦ =

⎡
⎣145 + 54

15 + 75
20 + 18

⎤
⎦ =

⎡
⎣199

90
38

⎤
⎦

The sum 5v + 3p is an example of a linear combination of vectors.

D E F I N I T I O N 2.4 If u1, u2, . . . , um are vectors and c1, c2, . . . , cm are scalars, then

c1u1 + c2u2 + · · · + cmum

is a linear combination of the vectors. Note that it is possible for scalars to be negative
or equal to zero.Definition Linear Combination

E X A M P L E 2 If possible, find the amount of Vigoro and Parker’s required to create
a mixture containing 148 pounds of nitrogen, 131 pounds of phosphoric acid, and 38
pounds of potash.

Solution We formulate the problem in terms of a linear combination. Specifically, we
need to find scalars x1 and x2 such that

x1

⎡
⎣29

3
4

⎤
⎦ + x2

⎡
⎣18

25
6

⎤
⎦ =

⎡
⎣148

131
38

⎤
⎦ (1)

Taking one component at a time, we see that this vector equation is equivalent to the
system of equations

29x1 + 18x2 = 148
3x1 + 25x2 = 131
4x1 + 6x2 = 38

The augmented matrix and echelon form are⎡
⎣29 18 148

3 25 131
4 6 38

⎤
⎦ ∼

⎡
⎣4 6 38

0 1 5
0 0 0

⎤
⎦ (2)

Back substitution gives the solution x1 = 2 and x2 = 5. ■

(1) is an example of a vector
equation.

The row operations used in
(2) are (in order performed):

R1 ⇔ R3
−(3/4)R1 + R2 ⇒ R2

−(29/4)R1 + R3 ⇒ R3
(51/41)R2 + R3 ⇒ R3

(2/41)R2 ⇒ R3

We were lucky in the mixture of components in Example 2. Had we needed 40 pounds
of potash instead of 38 pounds, there is no combination that works (see Exercise 37).

Solutions as Linear Combinations
The solution to Example 2 can be expressed in the form of a vector,

x =
[

x1

x2

]
=

[
2
5

]

In fact, the general solution to any system of linear equations can be expressed as a linear
combination of vectors, called the vector form of the general solution.Definition Vector Form
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E X A M P L E 3 Express the general solution to the linear system

2x1 − 3x2 + 10x3 = −2

x1 − 2x2 + 3x3 = −2

−x1 + 3x2 + x3 = 4

in vector form.

Solution In Example 3 of Section 1.2, we found the general solution to this system.
Separating the general solution into the constant term and the term multiplied by the
parameter s1, we have

x1 = 2 − 11s1 = 2 − 11s1

x2 = 2 − 4s1 = 2 − 4s1

x3 = s1 = 0 + 1s1

Thus the vector form of the general solution is

x =
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣2

2
0

⎤
⎦ + s1

⎡
⎣−11

−4
1

⎤
⎦

where s1 can be any real number. ■

A more complicated general solution arises in Example 4 of Section 1.2. There we found
the general solution

x1 = − 5 − 4s1 + 2s2 − 4s3 = −5 − 4s1 + 2s2 − 4s3

x2 = s1 = 0 + 1s1 + 0s2 + 0s3

x3 = −14 − 5s3 = −14 + 0s1 + 0s2 − 5s3

x4 = s2 = 0 + 0s1 + 1s2 + 0s3

x5 = 3 + s3 = 3 + 0s1 + 0s2 + 1s3

x6 = s3 = 0 + 0s1 + 0s2 + 1s3

where s1, s2, and s3 can be any real numbers. In vector form, the general solution is
given by

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−5
0

−14
0
3
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ s1

⎡
⎢⎢⎢⎢⎢⎢⎣

−4
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ s2

⎡
⎢⎢⎢⎢⎢⎢⎣

2
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ s3

⎡
⎢⎢⎢⎢⎢⎢⎣

−4
0

−5
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

x1

x2

(2, 3)

(3, �1)

Figure 1 Vectors in R2.

Geometry of Vectors
Vectors have a geometric interpretation that is most easily understood in R2. We plot

the vector

[
x1

x2

]
by drawing an arrow from the origin to the point (x1, x2) in the plane.

For example, the vectors (2, 3) and (3, −1) are illustrated in Figure 1. Using an arrow to
denote a vector suggests a direction, which is a common interpretation in physics and
other sciences, and will frequently be useful for us as well. We call the end of the vector
with the arrow the tip, and the end at the origin the tail.Definition Tip, Tail of Vector

Note that the ordered pair for the point (x1, x2) looks the same as the row vector
(x1, x2). The difference between the two is that vectors have an algebraic and geometric
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x1

x2

u � v

v

v

u

x1

x2

v

u

(a) (b)

Figure 2 (a) The vectors u and v. (b) The vector u + v.

structure that is not associated with points. Most of the time we focus on vectors, so use
that interpretation unless the alternative is clearly appropriate.

There are two related geometric procedures for adding vectors.

1. The Tip-to-Tail Rule: Let u and v be two vectors. Translate the graph of v,
preserving direction, so that its tail is at the tip of u. Then the tip of the translated v
is at the tip of u + v.

Figure 2(a) shows vectors u and v, and Figure 2(b) shows u, the translated v (dashed),
and u + v.

The Tip-to-Tail Rule makes sense from an algebraic standpoint. When we add v to
u, we add each component of v to the corresponding component of u, which is exactly
what we are doing geometrically. We also see in Figure 2(b) that we get to the same place
if we translate u instead of v.

The second rule follows easily from the first.

2. The Parallelogram Rule: Let vectors u and v form two adjacent sides of a par-
allelogram with vertices at the origin, the tip of u, and the tip of v. Then the tip of
u + v is at the fourth vertex.

Figure 3 illustrates the Parallelogram Rule. It is evident that the third and fourth sides
of the parallelogram are translated copies of u and v, which shows the connection to the
Tip-to-Tail Rule.

x1

x2

v

u

x1

x2

u � v

v

u

Figure 3 The Parallelogram Rule for vector addition.

Scalar multiplication and subtraction also have nice geometric interpretations.

Scalar Multiplication: If a vector u is multiplied by a scalar c , then the new vector
cu points in the same direction as u when c > 0 and in the opposite direction when
c < 0. The length of cu is equal to the length of u multiplied by |c |.
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x1

x2

u

�u

�2u

2.5u

Figure 4 Scalar multiples of the vector u.

u � v
v

wu

x1

x2

Figure 5 Subtracting vectors.

For example, −2u points in the opposite direction of u and is twice as long. (We will
consider how to find the length of a vector later in the book.) A few examples of scalar
multiples, starting with u = (−2, 3), are shown in Figure 4.

Subtraction: Draw a vector w from the tip of v to the tip of u. Then translate w,
preserving direction and placing the tail at the origin. The resulting vector is u − v.

The subtraction procedure is illustrated in Figure 5; it is considered in more detail
in Exercise 74.

E X E R C I S E S
For Exercises 1–6, let

u =
[

3
−2

0

]
v =

[−4
1
5

]
and w =

[
2

−7
−1

]

1. Compute u − v.

2. Compute −5u.

3. Compute w + 3v.

4. Compute 4w − u.

5. Compute −u + v + w.

6. Compute 3u − 2v + 5w.

In Exercises 7–10, express the given vector equation as a system of
linear equations.

7. x1

[
3
2

]
+ x2

[
−1

5

]
=

[
8

13

]

8. x1

[−1
6

−4

]
+ x2

[
9

−5
0

]
=

[ −7
−11

3

]

9. x1

[
−6

5

]
+ x2

[
5

−3

]
+ x3

[
0
2

]
=

[
4

16

]

10. x1

⎡
⎢⎣

2
7
8
3

⎤
⎥⎦+ x2

⎡
⎢⎣

0
2
4
2

⎤
⎥⎦+ x3

⎡
⎢⎣

5
1
6
1

⎤
⎥⎦+ x4

⎡
⎢⎣

4
5
7
0

⎤
⎥⎦ =

⎡
⎢⎣

0
4
3
5

⎤
⎥⎦

In Exercises 11–14, express the given system of linear equations as
a vector equation.

11. 2x1 + 8x2 − 4x3 = −10
−x1 − 3x2 + 5x3 = 4

12. −2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = −1

7x1 − 17x2 + 34x3 = −16

13. x1 − x2 − 3x3 − x4 = −1
−2x1 + 2x2 + 6x3 + 2x4 = −1
−3x1 − 3x2 + 10x3 = 5

14. −5x1 + 9x2 = 13
3x1 − 5x2 = −9

x1 − 2x2 = −2

In Exercises 15–18, the general solution to a linear system is given.
Express this as a linear combination of vectors.

15. x1 = −4 + 3s1

x2 = s1

16. x1 = 7 − 2s1

x2 = −3
x3 = s1

17. x1 = 4 + 6s1 − 5s2

x2 = s2

x3 = −9 + 3s1

x4 = s1

18. x1 = 1 − 7s1 + 14s2 − s3

x2 = s3

x3 = s2

x4 = −12 + s1

x5 = s1

In Exercises 19–22, find three different vectors that are a linear
combination of the given vectors.

19. u =
[

3
−2

]
, v =

[
−1
−4

]
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20. u =
[

7
1

−13

]
, v =

[
5

−3
2

]

21. u =
[−4

0
−3

]
, v =

[−2
−1

5

]
, w =

[
9
6

11

]

22. u =

⎡
⎢⎣

1
8
2
2

⎤
⎥⎦ , v =

⎡
⎢⎣

4
−2

5
−5

⎤
⎥⎦ , w =

⎡
⎢⎣

9
9
0
1

⎤
⎥⎦

In Exercises 23–26, a vector equation is given with some unknown
entries. Find the unknowns.

23. −3

[
a
3

]
+ 4

[
−1

b

]
=

[
−10

19

]

24. 4

[
4
a

]
+ 3

[
−3

5

]
− 2

[
b
8

]
=

[
−1

7

]

25. −
[−1

a
2

]
+ 2

[
3

−2
b

]
=

[
c

−7
8

]

26. −

⎡
⎢⎣

a
4

−2
−1

⎤
⎥⎦ + 2

⎡
⎢⎣

5
1
b
3

⎤
⎥⎦ −

⎡
⎢⎣

2
c

−3
−6

⎤
⎥⎦ =

⎡
⎢⎣

11
−4

3
d

⎤
⎥⎦

In Exercises 27–30, determine if b is a linear combination of the
other vectors. If so, write b as a linear combination.

27. a1 =
[
−2

5

]
, a2 =

[
7

−3

]
, b =

[
8
9

]

28. a1 =
[

2
−3

1

]
, a2 =

[
0
3

−3

]
, b =

[
1

−5
−2

]

29. a1 =
[

2
−3

1

]
, a2 =

[
0
3

−3

]
, b =

[
6
3

−9

]

30. a1 =
[

2
−3

1

]
, a2 =

[
0
3

−3

]
, a3 =

[−2
−1

3

]
, b =

[
2

−4
5

]

Exercises 31–32 refer to Vigoro and Parker’s fertilizers described
at the start of the section. Determine the total amount of nitrogen,
phosphoric acid, and potash in the given mixture.

31. 200 pounds of Vigoro, 100 pounds of Parker’s.

32. 400 pounds of Vigoro, 700 pounds of Parker’s.

Exercises 33–36 refer to Vigoro and Parker’s fertilizers described
at the start of the section. Determine the amount of each type
required to yield a mixture containing the given amounts of ni-
trogen, phosphoric acid, and potash.

33. 112 pounds of nitrogen, 81 pounds of phosphoric acid, and
26 pounds of potash.

34. 285 pounds of nitrogen, 284 pounds of phosphoric acid, and
78 pounds of potash.

35. 123 pounds of nitrogen, 59 pounds of phosphoric acid, and
24 pounds of potash.

36. 159 pounds of nitrogen, 109 pounds of phosphoric acid, and
36 pounds of potash.

Exercises 37–40 refer to Vigoro and Parker’s fertilizers described
at the start of the section. Show that it is not possible to combine
Vigoro and Parker’s to obtain the specified mixture of nitrogen,
phosphoric acid, and potash.

37. 148 pounds of nitrogen, 131 pounds of phosphoric acid, and
40 pounds of potash.

38. 100 pounds of nitrogen, 120 pounds of phosphoric acid, and
40 pounds of potash.

39. 25 pounds of nitrogen, 72 pounds of phosphoric acid, and 14
pounds of potash.

40. 301 pounds of nitrogen, 8 pounds of phosphoric acid, and 38
pounds of potash.

One 8.3 ounce can of Red Bull contains energy in two forms: 27
grams of sugar and 80 milligrams of caffeine. One 23.5 ounce
can of Jolt Cola contains 94 grams of sugar and 280 milligrams
of caffeine. In Exercises 41–44, determine the number of cans of
each drink that when combined will contain the specified nerve-
jangling combination of sugar and caffeine.

41. 148 grams sugar, 440 milligrams caffeine.

42. 309 grams sugar, 920 milligrams caffeine.

43. 242 grams sugar, 720 milligrams caffeine.

44. 457 grams sugar, 1360 milligrams caffeine.

One serving of Lucky Charms contains 10% of the percent daily
values (PDV) for calcium, 25% of the PDV for iron, and 25% of
the PDV for zinc. One serving of Raisin Bran contains 2% of the
PDV for calcium, 25% of the PDV for iron, and 10% of the PDV
for zinc. In Exercises 45–48, determine the number of servings of
each cereal required to get the given mix of nutrients.

45. 40% of the PDV for calcium, 200% of the PDV for iron, and
125% of the PDV for zinc.

46. 34% of the PDV for calcium, 125% of the PDV for iron, and
95% of the PDV for zinc.

47. 26% of the PDV for calcium, 125% of the PDV for iron, and
80% of the PDV for zinc.

48. 38% of the PDV for calcium, 175% of the PDV for iron, and
115% of the PDV for zinc.

49. An electronics company has two production facilities, A and
B. During an average week, facility A produces 2000 computer
monitors and 8000 flat panel televisions, and facility B produces
3000 computer monitors and 10,000 flat panel televisions.

(a) Give vectors a and b that give the weekly production amounts
at A and B , respectively.

(b) Compute 8b, and then describe what the entries tell us.

(c) Determine the combined output from A and B over a 6-week
period.

(d) Determine the number of weeks of production from A and B
required to produce 24,000 monitors and 92,000 televisions.
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50. An industrial chemical company has three facilities A, B, and
C. Each facility produces polyethylene (PE), polyvinyl chloride
(PVC), and polystyrene (PS). The table below gives the daily
production output (in metric tons) for each facility:

Facility
Product A B C

PE 10 20 40
PVC 20 30 70

PS 10 40 50

(a) Give vectors a, b, and c that give the daily production amounts
at each facility.

(b) Compute 20c, and describe what the entries tell us.

(c) Determine the combined output from all three facilities
over a 2-week period. (Note: The facility does not operate on
weekends.)

(d) Determine the number of days of production from each
facility required to produce 240 metric tons of polyethylene,
420 metric tons of polyvinyl chloride and 320 metric tons of
polystyrene.

Exercises 51–54 refer to the following: Let v1, . . . , vk be vectors,
and suppose that a point mass of m1, . . . , mk is located at the tip
of each vector. The center of mass for this set of point masses is

v = m1v1 + · · · + mk vk

m

where m = m1 + · · · + mk .

51. Let u1 = (3, 2) have mass 5kg, u2 = (−1, 4) have mass 3kg,
and u3 = (2, 5) have mass 2kg. Graph the vectors, and then de-
termine the center of mass.

52. Determine the center of mass for the vectors u1 = (−1, 0, 2)
(mass 4kg), u2 = (2, 1, −3) (mass 1kg), u3 = (0, 4, 3) (mass
2kg), and u4 = (5, 2, 0) (mass 5kg).

53. Determine how to divide a total mass of 11kg among the
vectors u1 = (−1, 3), u2 = (3, −2), and u3 = (5, 2) so that
the center of mass is

(
13/11, 16/11

)
.

54. Determine how to divide a total mass of 11kg among the
vectors u1 = (1, 1, 2), u2 = (2, −1, 0), u3 = (0, 3, 2), and
u4 = (−1, 0, 1) so that the center of mass is

(
4/11, 5/11, 12/11

)
.

FIND AN EXAMPLE For Exercises 55–62, find an example that
meets the given specifications.

55. Two nonzero vectors u and v in R3 such that u+v = (3, 2, −1).

56. Two nonzero vectors u and v in R4 such that u − v =
(4, −2, 0, −1).

57. Three nonzero vectors in R3 whose sum is the zero vector.

58. Three nonzero vectors in R4 whose sum is the zero vector.

59. Two vectors u and v in R2 that point in the same direction.

60. Two vectors u and v in R2 that point in opposite directions.

61. A linear system with two equations and two variables that has

x =
[

3
−2

]
as the only solution.

62. A linear system with two equations and three variables that

has x =
[

1
0
1

]
+ s

[
2
1

−1

]
as the general solution.

TRUE OR FALSE For Exercises 63–72, determine if the statement
is true or false, and justify your answer.

63. If u =
[
−3

5

]
, then −2u =

[
6

−10

]
.

64. If u =
[

1
3

]
and v =

[
−4

2

]
, then u − v =

[
−3

1

]
.

65. If u and v are vectors and c is a scalar, then c(u+v) = cu+ cv.

66. A vector can have positive or negative components, but a scalar
must be positive.

67. If c1 and c2 are scalars and u is a vector, then (c1 + u)c2 =
c1c2 + c2u.

68. The vectors

[
1

−2
4

]
and

[−2
4
8

]
point in opposite directions.

69.

[
−2

1

]
and (−2, 1) are the same when both are considered as

vectors.

70. The vector 2u is longer than the vector −3u.

71. The parallelogram rule for adding vectors only works in the
first quadrant.

72. The difference u − v is found by adding −u to v.

73. Prove each of the following parts of Theorem 2.3:

(a) Part (c). (b) Part (d). (c) Part (e).

(d) Part (f). (e) Part (g). (f) Part (h).

74. In this exercise we verify the geometric subtraction rule shown
in Figure 5 by combining the identity u − v = u + (−v) and the
Tip-to- Tail rule for addition. Draw a set of coordinate axes, and
then sketch and label each of the following:

(a) Vectors u and v of your choosing.

(b) The vector −v.

(c) The translation of −v so that its tail is at the tip of u.

(d) Using the Tip-to-Tail rule, the vector u + (−v).

Explain why the vector you get is the same as the one obtained
using the subtraction rule shown in Figure 5.

In Exercises 75–76, sketch the graph of the vectors u and v and
then use the Tip-to-Tail Rule to sketch the graph of u + v.

75. u =
[
−2

3

]
, v =

[
1
4

]

76. u =
[
−1
−2

]
, v =

[
3
1

]
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In Exercises 77–78, sketch the graph of the vectors u and v and
then use the Parallelogram Rule to sketch the graph of u + v.

77. u =
[

0
−3

]
, v =

[
2
2

]

78. u =
[

4
2

]
, v =

[
2
0

]
In Exercises 79–80, sketch the graph of the vectors u and v, and
then use the subtraction procedure shown in Figure 5 to sketch
the graph of u − v.

79. u =
[

3
2

]
, v =

[
1

−1

]

80. u =
[

1
3

]
, v =

[
2

−3

]
C In Exercises 81–82, find the solutions to the vector equation.

81. x1

[
2
7
3

]
+ x2

[
2
4
2

]
+ x3

[
5
1
6

]
=

[
0
3
5

]

82. x1

⎡
⎢⎣

1
−3

2
0

⎤
⎥⎦+ x2

⎡
⎢⎣

4
3
2
1

⎤
⎥⎦+ x3

⎡
⎢⎣

−4
2

−3
1

⎤
⎥⎦+ x4

⎡
⎢⎣

5
2

−4
0

⎤
⎥⎦ =

⎡
⎢⎣

1
7
2

−6

⎤
⎥⎦

2.2 Span
We open this section with a fictitious hypothetical situation. Imagine that you live in
the two-dimensional plane R2 and have just purchased a new car, the VecMobile II. The
VecMobile II is delivered at the origin (0, 0) and is a fairly simple vehicle. At any given
time, it can be pointed in the direction of

u1 =
[

0
1

]
or u2 =

[
2
1

]

both shown in Figure 1. The VecMobile II can also go in forward or reverse.

u1

u2

x1

x2

Figure 1 The VecMobile II
vectors.

Despite its simplicity, there are many places in R2 that we can go in the VecMobile II.
For instance, the point (2, 3) can be reached by first traversing 2u1, changing direction,
and then traversing u2, as shown in Figure 2. The trip also could be made in the reverse
order, first taking u2 and then 2u1. Since we are traversing vectors in a “tip-to-tail”
manner, the entire trip can be summarized by the sum

2u1 + u2 = 2

[
0
1

]
+

[
2
1

]
=

[
2
3

]
(2,3)

2u1

u2

x1

x2

Figure 2 2u1 + u2 = (2, 3).

Figure 3 depicts a more complicated path that arises from traversing 3u1, then −u2, then
−2u1, and finally 2u2. This simplifies algebraically to

3u1 − u2 − 2u1 + 2u2 = u1 + u2

x1

3u1

�2u1

2u2

�u2

x2

Figure 3 3u1 − u2 − 2u1 +
2u2 = (2, 2).

Any path taken in the VecMobile II can be similarly simplified, so that the set of all
possible destinations can be expressed as

x1u1 + x2u2

where x1 and x2 can be any real numbers. This set of linear combinations is called the
span of the vectors u1 and u2.

Although the VecMobile II is simple, we can go anywhere within R2 by first selecting
the multiple (positive or negative) of u2 to reach the horizontal position we desire and
then using a multiple of u1 to adjust the vertical position. For example, to reach (6, 5),

we start with 3u2 =
[

6
3

]
and then add 2u1 =

[
0
2

]
.

3u2 + 2u1 = 3

[
2
1

]
+ 2

[
0
1

]
=

[
6
5

]
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E X A M P L E 1 Show algebraically that the VecMobile II can reach any position in R2.

Solution Suppose that we want to reach an arbitrary point (a , b). To do so, we need
to find scalars x1 and x2 such that

x1

[
0
1

]
+ x2

[
2
1

]
=

[
a
b

]

This vector equation translates into the system of equations

2x2 = a
x1 + x2 = b

which has the unique solution x1 = b − a/2 and x2 = a/2. We now know exactly how
to find the scalars x1 and x2 required to reach any point (a , b), and so we can conclude
that the VecMobile II can get anywhere in R2. ■

The notion of span generalizes to sets of vectors in Rn.

D E F I N I T I O N 2.5 Let {u1, u2, . . . , um} be a set of vectors in Rn. The span of this set is denoted
span{u1, u2, . . . , um} and is defined to be the set of all linear combinations

x1u1 + x2u2 + · · · + xmum

where x1, x2, . . . , xm can be any real numbers.Definition Span

If span{u1, u2, . . . , um} = Rn, then we say that the set {u1, u2, . . . , um} spans Rn.

The VecMobile II in R3

Suppose that our world has expanded from R2 to R3. Happily, a VecMobile II model
exists in R3. Like the R2 version, this vehicle only can move in two directions—in this
case, that of the vectors

u1 =
⎡
⎣2

1
1

⎤
⎦ or u2 =

⎡
⎣1

2
3

⎤
⎦

x3

x1

x2

u1

u2

Figure 4 The VecMobile II
(in R3) vectors.

shown in Figure 4. Following the reasoning given earlier, we know that it is possible to
get to any location that can be described as a linear combination of the form

x1u1 + x2u2

That is, we can get anywhere within span{u1, u2}. This covers a lot of territory, but not
all of R3.

E X A M P L E 2 Show that the VecMobile II cannot reach the point (1, 0, 0).

Solution In order for the VecMobile II to reach (1, 0, 0), there need to be scalars x1

and x2 that satisfy the equation

x1

⎡
⎣2

1
1

⎤
⎦ + x2

⎡
⎣1

2
3

⎤
⎦ =

⎡
⎣1

0
0

⎤
⎦
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This is equivalent to the linear system

2x1 + x2 = 1
x1 + 2x2 = 0
x1 + 3x2 = 0

Transferring to an augmented matrix and reducing, we find⎡
⎣2 1 1

1 2 0
1 3 0

⎤
⎦ ∼

⎡
⎣1 2 0

0 1 0
0 0 1

⎤
⎦ (1)

The third row of the reduced matrix corresponds to the equation 0 = 1. Thus the system
has no solutions and hence the VecMobile II cannot reach the point (1, 0, 0). ■

The row operations used in
(1) are (in order performed):

R1 ⇔ R2
−2R1 + R2 ⇒ R2
−R1 + R3 ⇒ R3

R2 ⇔ R3
−3R2 + R3 ⇒ R3

Here is another way to visualize the span of two vectors in R3. Get two pieces of
string, about 3 feet long each, and tie them both to some solid object (like a refrigerator).
Get a friend to pull the strings tight and in different directions. These are your vectors.

Refrigerator Pizza

Figure 5 String vectors and
pizza box. Next get a light-weight flat surface (a pizza box works well) and gently rest it on the

strings (see Figure 5). Think of the surface as representing a plane. Then the span of the
two “string” vectors is the set of all vectors that lie within the plane. Note that no matter
the angle of the strings, if you are doing this correctly it is possible to rest the surface on
them.

u1

u2

x2

x1

x3

Figure 6 The plane is equal to
span{u1, u2}.

Figure 6 shows a plane resting on u1 and u2. The span{u1, u2} consists exactly of those
vectors that are contained in the plane. Therefore, if u3 is contained in span{u1, u2}, then
u3 will lie in the plane, as shown in Figure 7(a). On the other hand, if u3 is not contained
in span{u1, u2}, then u3 will be outside the plane, as in Figure 7(b).

The VecMobile III in R3

Continuing with our hypothetical line of cars, consumers disappointed by the limitations
of the VecMobile II in R3 can spend more money and buy the VecMobile III, which can
be pointed in the directions given by vectors

u1 =
⎡
⎣2

1
1

⎤
⎦ , u2 =

⎡
⎣1

2
3

⎤
⎦ , or u3 =

⎡
⎣1

0
0

⎤
⎦

With the addition of u3, it is clear that the point (1, 0, 0) can now be reached. But can
we get to all points in R3?

u1

u2

u3

u1

u2

u3
x2 x2

x1 x1

x3 x3

(a) (b)

Figure 7 In (a), u3 is in span{u1, u2}. In (b), u3 is not in span{u1, u2}.
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E X A M P L E 3 Show that the VecMobile III can reach any point in R3.

Solution To reach an arbitrary point (a , b, c), we need to find scalars x1, x2, and x3

such that

x1

⎡
⎣2

1
1

⎤
⎦ + x2

⎡
⎣1

2
3

⎤
⎦ + x3

⎡
⎣1

0
0

⎤
⎦ =

⎡
⎣a

b
c

⎤
⎦ (2)

The augmented matrix and equivalent reduced echelon form are⎡
⎣2 1 1 a

1 2 0 b
1 3 0 c

⎤
⎦ ∼

⎡
⎣1 0 0 ( 3b − 2c)

0 1 0 ( − b + c)
0 0 1 (a − 5b + 3c)

⎤
⎦ (3)

We see from the reduced echelon form that the solution is

x1 = 3b − 2c
x2 = − b + c
x3 = a − 5b + 3c

This shows that we can reach any point (a, b, c), and so span{u1, u2, u3} = R3. ■

The row operations used in
(3) are (in order performed):

R1 ⇔ R2
−2R1 + R2 ⇒ R2
−R1 + R3 ⇒ R3

R2 ⇔ R3
3R2 + R3 ⇒ R3

−2R2 + R1 ⇒ R1

The solution also shows how to get to any point. For example, if we want to get to
the point (−3, 1, 4), we substitute in a = −3, b = 1, and c = 4, which gives x1 = −5,
x2 = 3, and x3 = 4. Hence the linear combination we need is

−5u1 + 3u2 + 4u3

In Example 3, the vectors in (2) become the columns in the augmented matrix in (3),

u1 =
⎡
⎣2

1
1

⎤
⎦ , u2 =

⎡
⎣1

2
3

⎤
⎦ , u3 =

⎡
⎣1

0
0

⎤
⎦ , v =

⎡
⎣a

b
c

⎤
⎦ ⇒

⎡
⎣2 1 1 a

1 2 0 b
1 3 0 c

⎤
⎦ = [

u1 u2 u3 v
]

↑ ↑ ↑ ↑
u1 u2 u3 v

The same is true in general. Given the vector equation

x1u1 + x2u2 + · · · + xmum = v

the augmented matrix for the corresponding linear system is[
u1 u2 · · · um v

]
where the columns are given by the vectors u1, . . . , um, and v.

T H E O R E M 2.6 Let u1, u2, . . . , um and v be vectors in Rn. Then v is an element of span{u1, u2, . . . , um}
if and only if the linear system represented by the augmented matrix[

u1 u2 · · · um v
]

(4)

has a solution.

Proof The vector v is in span{u1, u2, . . . , um} if and only if there exist scalars x1, x2, . . . ,
xm that satisfy

x1u1 + x2u2 + · · · + xmum = v
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This is true if and only if the corresponding linear system has a solution. As noted above,
the linear system is equivalent to the augmented matrix (4), so the proof is complete. ■

How Many Vectors Are Needed to Span Rn ?
In the examples we have seen, a set of two vectors spanned R2 and a set of three vectors
spanned R3. This suggests the following question.

x1

x2

x1 � x2

span {v1, v2}

Figure 8 The span of {v1, v2}
in R2 in Example 4.

E X A M P L E 4 Is it always true that a set of n vectors will span Rn?

Solution Not always. For example, the span of the vectors

v1 =
[

1
1

]
, v2 =

[
2
2

]

is a line in R2 (shown in Figure 8) because v2 = 2v1, so is not all of R2.
A more subtle example is given by the set of vectors in R3,

u1 =
⎡
⎣2

1
1

⎤
⎦ , u2 =

⎡
⎣1

2
3

⎤
⎦ , and u3 =

⎡
⎣ 1

−4
−7

⎤
⎦

Note that u1 and u2 are the vectors from the VecMobile II in R3. It is straightforward to
verify that u3 is given by the linear combination

u3 = 2u1 − 3u2

Thus any vector that is a linear combination of u1, u2, and u3 can be written as a linear
combination of just u1 and u2 by substituting

x1u1 + x2u2 + x3u3 = x1u1 + x2u2 + x3(2u1 − 3u2)
= (x1 + 2x3)u1 + (x2 − 3x3)u2

Therefore span{u1, u2, u3} = span{u1, u2}, and since we have already shown (in Exam-
ple 2) that span{u1, u2} �= R3, it follows that span{u1, u2, u3} �= R3. ■

The preceding argument serves as a model for proving the next theorem.

T H E O R E M 2.7 Let u1, u2, . . . , um and u be vectors in Rn. If u is in span{u1, u2, . . . , um}, then

span{u, u1, u2, . . . , um} = span{u1, u2, . . . , um}.

Proof Let S0 = span{u, u1, u2, . . . , um} and S1 = span{u1, u2, . . . , um}. We need to
show that sets S0 = S1, which we do by showing that each is a subset of the other. First
suppose that a vector v is in S1. Then there exist scalars a1, . . . , am such that

v = a1u1 + a2u2 + · · · + amum = 0u + a1u1 + a2u2 + · · · + amum

Hence v is also in S0, so S1 is a subset of S0.
Now suppose that v is in S0. Then there exist scalars b0, b1, . . . , bm such that v =

b0u + b1u1 + · · · + bmum. Since u is in S1, there also exist scalars c1, . . . , cm such that
u = c1u1 + · · · + cmum. Then

v = b0

(
c1u1 + c2u2 + · · · + cmum

) + b1u1 + b2u2 + · · · + bmum

= (b0c1 + b1)u1 + (b0c2 + b2)u2 + · · · + (b0cm + bm)um

Hence v is in S1, so S0 is a subset of S1. Since S0 and S1 are subsets of each other, it follows
that S0 = S1. ■
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E X A M P L E 5 Suppose that u1, u2, . . . , um are vectors in Rn. If m < n, can {u1,
u2, . . . , um} span Rn?

Solution The answer is no. If m < n, we can always construct b in Rn that is not in
the span of the given vectors u1, u2, . . . , um. We illustrate the procedure for vectors

u1 =

⎡
⎢⎢⎣

1
−2
−1

2

⎤
⎥⎥⎦ , u2 =

⎡
⎢⎢⎣

−3
7
4

−6

⎤
⎥⎥⎦ , and u3 =

⎡
⎢⎢⎣

2
0
2
5

⎤
⎥⎥⎦

in R4, but it will work in general. Start by forming the matrix with only our vectors as
columns,

[
u1 u2 u3

] =

⎡
⎢⎢⎣

1 −3 2
−2 7 0
−1 4 2

2 −6 5

⎤
⎥⎥⎦

Now perform the usual row operations needed to transform the matrix to echelon form,
recording each operation along the way. We need only perform enough operations to
introduce a row of zeroes on the bottom of the matrix, which must be possible because
there are more rows than columns (see Exercise 54 in Section 1.2). The “Forward
Operations” shown in the margin yields the transformation⎡

⎢⎢⎣
1 −3 2

−2 7 0
−1 4 2

2 −6 5

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 −3 2
0 1 4
0 0 1
0 0 0

⎤
⎥⎥⎦

The next step is to append a column to the right side of the echelon matrix,⎡
⎢⎢⎣

1 −3 2 0
0 1 4 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (5)

Viewing this new matrix as an augmented matrix, we see that the bottom row is
equivalent to the equation 0 = 1, so that the associated linear system has no solu-
tions. If we now reverse the row operations used previously (as shown in the margin),
the first three columns of the augmented matrix will be returned to their original form.
This gives us ⎡

⎢⎢⎣
1 −3 2 0
0 1 4 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 −3 2 0
−2 7 0 0
−1 4 2 1

2 −6 5 0

⎤
⎥⎥⎦ (6)

Since the system associated with the augmented matrix (5) has no solutions, the system
associated with the equivalent augmented matrix (6) also has no solutions. But this
system is represented by the vector equation

x1u1 + x2u2 + x3u3 = b where b =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

Forward Operations:

2R1 + R2 ⇒ R2
R1 + R3 ⇒ R3

−2R1 + R4 ⇒ R4
−R2 + R3 ⇒ R3

R3 ⇔ R4

Reverse Operations:

R3 ⇔ R4
R2 + R3 ⇒ R3

2R1 + R4 ⇒ R4
−R1 + R3 ⇒ R3

−2R1 + R2 ⇒ R2
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Thus this vector equation can have no solutions, and so it follows that b is not in the
span of {u1, u2, u3}. Therefore this set of vectors does not span R4. ■

As long as m < n, the argument described above generalizes to any set of vectors
{u1, u2, . . . , um} in Rn. Theorem 2.8 summarizes the main results of this subsection.

T H E O R E M 2.8 Let {u1, u2, . . . , um} be a set of vectors in Rn. If m < n, then this set does not span Rn.
If m ≥ n, then the set might span Rn or it might not. In this case, we cannot say more
without additional information about the vectors.

The proof of this theorem is left as an exercise.

The Equation Ax = b
By now we are comfortable with translating back and forth between vector equations
and linear systems. Here we give new notation that will be used for a variety of purposes,
including expressing linear systems in a compact form.

Let A be the matrix with columns a1 =
⎡
⎣10

5
7

⎤
⎦ and a2 =

⎡
⎣ 8

6
−1

⎤
⎦. That is,

A = [
a1 a2

] =
⎡
⎣10 8

5 6
7 −1

⎤
⎦

Also, let x =
[

x1

x2

]
. Then the product of the matrix A and the vector x is defined to be

Ax = [
a1 a2

] [
x1

x2

]
= x1a1 + x2a2

Thus Ax is a linear combination of the columns of A, with the scalars given by the
components of x. Now take it a step farther and let

b =
⎡
⎣18

31
3

⎤
⎦

Then Ax = b is a compact form of the vector equation x1a1 + x2a2 = b, which in turn
is equivalent to the linear system

10x1 + 8x2 = 18
5x1 + 6x2 = 31
7x1 − x2 = 3

Below is the general formula for multiplying a matrix by a vector.

D E F I N I T I O N 2.9 Let a1, a2, . . . , am be vectors in Rn. If

A = [
a1 a2 · · · am

]
and x =

⎡
⎢⎢⎢⎣

x1

x2

...

xm

⎤
⎥⎥⎥⎦ (7)

then Ax = x1a1 + x2a2 + · · · + xmam.

Remember: The product Ax
only is defined when the num-
ber of columns of A equals
the number of components (en-
tries) of x.
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E X A M P L E 6 Find A, x, and b so that the equation Ax = b corresponds to the
system of equations

4x1 − 3x2 + 7x3 − x4 = 13
−x1 + 2x2 + 6x4 = −2

x2 − 3x3 − 5x4 = 29

Solution Translating the system to the form Ax = b, the matrix A will contain the
coefficients of the system, the vector x has the variables, and the vector b will contain
the constant terms. Thus we have

A =
⎡
⎣ 4 −3 7 −1

−1 2 0 6
0 1 −3 −5

⎤
⎦ , x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ , b =

⎡
⎣ 13

−2
29

⎤
⎦

■

E X A M P L E 7 Suppose that

a1 =
⎡
⎣ 1

−2
0

⎤
⎦ , a2 =

⎡
⎣ 3

1
−1

⎤
⎦ , v1 =

⎡
⎣ 7

5
−2

⎤
⎦ , v2 =

[−6
4

]
, x =

[
x1

x2

]
, b =

⎡
⎣−1

2
5

⎤
⎦

Let A = [
a1 a2

]
. Find the following (if they exist):

(a) Av1 and Av2.

(b) The system of equations corresponding to Ax = b and Ax = v2.

Solution

(a) In order for Av1 to exist, the number of columns of A must equal the number of
components of v1. Since this is not the case, Av1 does not exist.

On the other hand, v2 has two components, so Av2 exists. We have

Av2 = −6a1 + 4a2 = −6

⎡
⎣ 1

−2
0

⎤
⎦ + 4

⎡
⎣ 3

1
−1

⎤
⎦ =

⎡
⎣ 6

16
−4

⎤
⎦

(b) Since x has two components, Ax exists. Moreover, Ax and b both have three
components, so the equation Ax = b is defined and corresponds to the system

x1 + 3x2 = −1
−2x1 + x2 = 2

− x2 = 5

For the second part, Ax exists and has three components, but v2 has only two
components, so Ax = v2 is undefined. ■

We close this section with a theorem that ties together several closely related ideas.

T H E O R E M 2.10 Let a1, a2, . . . , am and b be vectors in Rn. Then the following statements are equivalent.
That is, if one is true, then so are the others, and if one is false, then so are the others.

(a) b is in span{a1, a2, . . . , am}.
(b) The vector equation x1a1 + x2a2 + · · · + xmam = b has at least one solution.

(c) The linear system corresponding to
[

a1 a2 · · · am b
]

has at least one
solution.

(d) The equation Ax = b, with A and x given as in (7), has at least one solution.
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x2

x1

x3

b

a1

a2

Figure 9 span{a1, a2} includes b,
so (8) has a solution.

x2

x1

x3

b

a1

a2

a1

x3

b

a2

Figure 10 span{a1, a2} does not
include b, so (8) does not have a
solution.

The theorem follows directly from the definitions, so the proof is left as an exercise.
Although this result is not hard to arrive at, it is important because it explicitly states the
connection between these different formulations of the same basic idea.

As a quick application, note that the vector b in Figure 9 is in span{a1, a2}, so by
Theorem 2.10 it follows that

x1a1 + x2a2 = b (8)

has at least one solution. On the other hand, if a1, a2, and b are as shown in Figure 10,
then (8) has no solutions.

E X E R C I S E S
For Exercises 1–6, find three vectors that are in the span of the
given vectors.

1. u1 =
[

2
6

]
; u2 =

[
9

15

]

2. u1 =
[
−2

7

]
, u2 =

[
−3

4

]

3. u1 =
[

2
5

−3

]
, u2 =

[
1
0
4

]

4. u1 =
[

0
5

−2

]
, u2 =

[
1
2
6

]
, u3 =

[−6
7
2

]

5. u1 =
[

2
0
0

]
, u2 =

[
4
1
6

]
, u3 =

[−4
0
7

]

6. u1 =

⎡
⎢⎣

0
1
3
0

⎤
⎥⎦ , u2 =

⎡
⎢⎣

−1
8

−5
2

⎤
⎥⎦ , u3 =

⎡
⎢⎣

12
−1

1
0

⎤
⎥⎦

For Exercises 7–12, determine if b is in the span of the other given
vectors. If so, write b as a linear combination of the other vectors.

7. a1 =
[

3
5

]
, b =

[
9

−15

]

8. a1 =
[

10
−15

]
, b =

[
−30

45

]

9. a1 =
[

4
−2
10

]
, b =

[
2

−1
−5

]

10. a1 =
[−1

3
−1

]
, a2 =

[−2
−3

6

]
, b =

[−6
9
2

]

11. a1 =
[−1

4
−3

]
, a2 =

[
2
8

−7

]
, b =

[−10
−8

7

]

12. a1 =

⎡
⎢⎣

3
1

−2
−1

⎤
⎥⎦ , a2 =

⎡
⎢⎣

−4
2
3
3

⎤
⎥⎦ , b =

⎡
⎢⎣

0
10

1
5

⎤
⎥⎦

In Exercises 13–16, find A, x, and b such that Ax = b corresponds
to the given linear system.

13. 2x1 + 8x2 − 4x3 = −10
−x1 − 3x2 + 5x3 = 4

14. −2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = − 1

7x1 − 17x2 + 34x3 = −16

15. x1 − x2 − 3x3 − x4 = −1
−2x1 + 2x2 + 6x3 + 2x4 = −1
−3x1 − 3x2 + 10x3 = 5
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16. −5x1 + 9x2 = 13
3x1 − 5x2 = −9

x1 − 2x2 = −2

In Exercises 17–20, find an equation involving vectors that
corresponds to the given linear system.

17. 5x1 + 7x2 − 2x3 = 9
x1 − 5x2 − 4x3 = 2

18. 4x1 − 5x2 − 3x3 = 0
3x1 + 4x2 + 2x3 = 1
6x1 − 13x2 + 7x3 = 2

19. 4x1 − 2x2 − 3x3 + 5x4 = 12
− 5x2 + 7x3 + 3x4 = 6

3x1 + 8x2 + 2x3 − x4 = 2

20. 4x1 − 9x2 = 11
2x1 + 4x2 = 9

x1 − 7x2 = 2

In Exercises 21–24, determine if the columns of the given matrix
span R2.

21.
[

15 −6
−5 2

]

22.

[
4 −12
2 6

]

23.

[
2 1 0
6 −3 −1

]

24.

[
1 0 5

−2 2 7

]
In Exercises 25–28, determine if the columns of the given matrix
span R3.

25.

[
3 1 0
5 −2 −1
4 −4 −3

]

26.

[
1 2 8

−2 3 7
3 −1 1

]

27.

[
2 1 −3 5
1 4 2 6
0 3 3 3

]

28.

[−4 −7 1 2
0 0 3 8
5 −1 1 −4

]

In Exercises 29–34, a matrix A is given. Determine if the system
Ax = b (where x and b have the appropriate number of compo-
nents) has a solution for all choices of b.

29. A =
[

3 −4
4 2

]

30. A =
[
−9 21

6 −14

]

31. A =
[

8 1
0 −1

−3 2

]

32. A =
[

1 −1 2
−2 3 −1

1 0 5

]

33. A =
[−3 2 1

1 −1 −1
5 −4 −3

]

34. A =

⎡
⎢⎣

2 −3 0
0 1 2

−5 3 −9
3 0 9

⎤
⎥⎦

For Exercises 35–38, find a vector of matching dimension that is
not in the given span.

35. span

{[
1

−2

]
,

[
−3

6

]}

36. span

{[
3
1

]
,

[
6
2

]}

37. span

{[
1
3

−2

]
,

[
2

−1
1

]}

38. span

{[
1
2
1

]
,

[
3

−1
1

]
,

[−1
5
1

]}

39. Find all values of h such that the vectors {a1, a2} span R2,
where

a1 =
[

2
4

]
, a2 =

[
h
6

]
40. Find all values of h such that the vectors {a1, a2} span R2,
where

a1 =
[
−3

h

]
, a2 =

[
5

−4

]
41. Find all values of h such that the vectors {a1, a2, a3} span R3,
where

a1 =
[

2
4
5

]
, a2 =

[
h
8

10

]
, a3 =

[
1
2
6

]

42. Find all values of h such that the vectors {a1, a2, a3} span R3,
where

a1 =
[−1

h
7

]
, a2 =

[
4

−2
5

]
, a3 =

[
1

−3
2

]

FIND AN EXAMPLE For Exercises 43–50, find an example that
meets the given specifications.

43. Four distinct nonzero vectors that span R3.

44. Four distinct nonzero vectors that span R4.

45. Four distinct nonzero vectors that do not span R3.

46. Four distinct nonzero vectors that do not span R4.
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47. Two vectors u1 and u2 in R3 that span the set of all vectors of
the form v = (v1, v2, 0).

48. Three vectors u1, u2, and u3 in R4 that span the set of all vectors
of the form v = (0, v2, v3, v4).

49. Two vectors u1 and u2 in R3 that span the set of all vectors of
the form v = (v1, v2, v3) where v1 + v2 + v3 = 0.

50. Three vectors u1, u2, and u3 in R4 that span the set of all vectors
of the form v = (v1, v2, v3, v4) where v1 + v2 + v3 + v4 = 0.

TRUE OR FALSE For Exercises 51–64, determine if the statement
is true or false, and justify your answer.

51. If m < n, then a set of m vectors cannot span Rn .

52. If a set of vectors includes 0, then it cannot span Rn .

53. Suppose A is a matrix with n rows and m columns. If n < m,
then the columns of A span Rn .

54. Suppose A is a matrix with n rows and m columns. If m < n,
then the columns of A span Rn .

55. If A is a matrix with columns that span Rn , then Ax = 0 has
nontrivial solutions.

56. If A is a matrix with columns that span Rn , then Ax = b has
a solution for all b in Rn .

57. If {u1, u2, u3} spans R3, then so does {u1, u2, u3, u4}.
58. If {u1, u2, u3} does not span R3, then neither does
{u1, u2, u3, u4}.
59. If {u1, u2, u3, u4} spans R3, then so does {u1, u2, u3}.
60. If {u1, u2, u3, u4} does not span R3, then neither does
{u1, u2, u3}.
61. If u4 is a linear combination of {u1, u2, u3}, then

span{u1, u2, u3, u4} = span{u1, u2, u3}.
62. If u4 is a linear combination of {u1, u2, u3}, then

span{u1, u2, u3, u4} �= span{u1, u2, u3}.
63. If u4 is not a linear combination of {u1, u2, u3}, then

span{u1, u2, u3, u4} = span{u1, u2, u3}.
64. If u4 is not a linear combination of {u1, u2, u3}, then

span{u1, u2, u3, u4} �= span{u1, u2, u3}.
65. Which of the following sets of vectors in R3 can possibly span
R3? Justify your answer.

(a) {u1}
(b) {u1, u2}
(c) {u1, u2, u3}
(d) {u1, u2, u3, u4}
66. Which of the following sets of vectors in R3 cannot possibly
span R3? Justify your answer.

(a) {u1}
(b) {u1, u2}
(c) {u1, u2, u3}
(d) {u1, u2, u3, u4}
67. Prove that if c is a nonzero scalar, then span{u} = span{c u}.
68. Prove that if c1 and c2 are nonzero scalars, then span{u1, u2} =
span{c1u1, c2u2}.
69. Suppose that S1 are S2 are two finite sets of vectors, and that
S1 is a subset of S2. Prove that the span of S1 is a subset of the span
of S2.

70. Prove that if span{u1, u2} = R2, then
span{u1 + u2, u1 − u2} = R2.

71. Prove that if span{u1, u2, u3} = R3, then
span{u1 + u2, u1 + u3, u2 + u3} = R3.

72. Suppose that {u1, . . . , um} is a subset of Rn , with m > n. Prove
that if b is in span{u1, . . . , um}, then there are infinitely many ways
to express b as a linear combination of {u1, . . . , um}.
73. Prove Theorem 2.8.

74. Prove Theorem 2.10.

C For Exercises 75–78, determine if the claimed equality is true
or false.

75. span

{[
3
2
1

]
,

[
1
5
4

]
,

[−2
3
0

]}
= R3

76. span

{[
1
1
2

]
,

[
3
4

−1

]
,

[
4
6

−6

]}
= R3

77. span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

4
0
2
3

⎤
⎥⎦ ,

⎡
⎢⎣

7
−4

6
7

⎤
⎥⎦ ,

⎡
⎢⎣

1
3

−2
1

⎤
⎥⎦ ,

⎡
⎢⎣

3
2
0
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭ = R4

78. span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
−2

1
0

⎤
⎥⎦ ,

⎡
⎢⎣

8
5

−9
7

⎤
⎥⎦ ,

⎡
⎢⎣

1
6
2

−3

⎤
⎥⎦ ,

⎡
⎢⎣

2
−1

3
5

⎤
⎥⎦

⎫⎪⎬
⎪⎭ = R4

2.3 Linear Independence
The myology clinic at a university research hospital helps patients recover muscle mass
lost due to illness. After a full evaluation, patients receive exercise training and each is
given a nutritional powder that has the exact balance of protein, fat, and carbohydrates
required to meet his or her needs. The nutritional powders are created by combining
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Brand

A B C D

Protein 16 22 18 18
Fat 2 4 0 2
Carbohydrates 8 4 4 6

Table 1 Nutritional Powder Brand Components
(grams per serving)

some or all of four powder brands that the clinic keeps in stock. The components for
brands A, B, C, and D (in grams per serving) are shown in Table 1.

Stocking all four brands is expensive, as they have a limited shelf life and take up
valuable storage space. The clinic would like to eliminate unnecessary brands, but it does
not want to sacrifice any flexibility to create specialized combinations. Are all four brands
needed, or can they get by with fewer?

We can solve this problem using vectors, but first we need to develop some additional
concepts. Recall that in the previous section we noted the set of vectors

u1 =
⎡
⎣2

1
1

⎤
⎦ , u2 =

⎡
⎣1

2
3

⎤
⎦ , u3 =

⎡
⎣ 1

−4
−7

⎤
⎦ (1)

are such that the third is a linear combination of the first two, with

u3 = 2u1 − 3u2 (2)

Thus, in a sense, u3 depends on u1 and u2. We can also solve (2) for u1 or u2,

u1 = 3

2
u2 + 1

2
u3 or u2 = 2

3
u1 − 1

3
u3

so each of the vectors is “dependent” on the others. Rather than separating out one
particular vector, we can move all terms to one side of the equation, giving us

2u1 − 3u2 − u3 = 0

This brings us to the following important definition.Definition Linear Independence

D E F I N I T I O N 2.11 Let {u1, u2, . . . , um} be a set of vectors in Rn. If the only solution to the vector equation

x1u1 + x2u2 + · · · + xmum = 0

is the trivial solution given by x1 = x2 = · · · = xm = 0, then the set {u1, u2, . . . , um}
is linearly independent. If there are nontrivial solutions, then the set is linearly
dependent.

To determine if a set of vec-
tors is linearly dependent or in-
dependent, we almost always
use the method illustrated in
Example 1: Set the linear com-
bination equal to 0 and find the
solutions.

E X A M P L E 1 Determine if the set

u1 =

⎡
⎢⎢⎣

−1
4

−2
−3

⎤
⎥⎥⎦ , u2 =

⎡
⎢⎢⎣

3
−13

7
7

⎤
⎥⎥⎦ , u3 =

⎡
⎢⎢⎣

−2
1
9

−5

⎤
⎥⎥⎦

is linearly dependent or linearly independent.
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Solution To determine if the set {u1, u2, u3} is linearly dependent or linearly indepen-
dent, we need to find the solutions of the vector equation

x1u1 + x2u2 + x3u3 = 0

This is equivalent to the linear system

−x1 + 3x2 − 2x3 = 0
4x1 − 13x2 + x3 = 0

−2x1 + 7x2 + 9x3 = 0
−3x1 + 7x2 − 5x3 = 0

The corresponding augmented matrix and echelon form are⎡
⎢⎢⎣

−1 3 −2 0
4 −13 1 0

−2 7 9 0
−3 7 −5 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

−1 3 −2 0
0 −1 −7 0
0 0 6 0
0 0 0 0

⎤
⎥⎥⎦ (3)

Back substitution shows that the only solution is the trivial one, x1 = x2 = x3 = 0.
Hence the set {u1, u2, u3} is linearly independent. ■

The row operations used in
(3) are (in order performed):

4R1 + R2 ⇒ R2
−2R1 + R3 ⇒ R3
−3R1 + R4 ⇒ R4

R2 + R3 ⇒ R3
−2R2 + R4 ⇒ R4

(−5/2)R3 + R4 ⇒ R4

E X A M P L E 2 Determine if the myology clinic described earlier can eliminate any
of the nutritional powder brands with components given in Table 1.

Solution We start by determining if the nutrient vectors for the four brands

a =
⎡
⎣16

2
8

⎤
⎦ , b =

⎡
⎣22

4
4

⎤
⎦ , c =

⎡
⎣18

0
4

⎤
⎦ , d =

⎡
⎣18

2
6

⎤
⎦

are linearly independent. To do so, we must find the solutions to the vector equation
x1a + x2b + x3c + x4d = 0. The augmented matrix of the equivalent linear system and
the echelon form are⎡

⎣16 22 18 18 0
2 4 0 2 0
8 4 4 6 0

⎤
⎦ ∼

⎡
⎣2 4 0 2 0

0 −10 18 2 0
0 0 4 1 0

⎤
⎦ (4)

Back substitution leads to the general solution

x1 = − 1
2 s , x2 = − 1

4 s , x3 = − 1
4 s , x4 = s

which holds for all choices of s . Thus there exist nontrivial solutions, so the set of vectors
is linearly dependent. Letting s = 1, we have x1 = − 1

2 , x2 = − 1
4 , x3 = − 1

4 , and x4 = 1,
which gives us

− 1
2 a − 1

4 b − 1
4 c + d = 0 �⇒ d = 1

2 a + 1
4 b + 1

4 c

Thus we obtain a serving of brand D by combining a 1
2 serving of A, a 1

4 serving of B,
and a 1

4 serving of C. Hence there is no need to stock brand D. ■

The row operations used in
(4) are (in order performed):

R1 ⇔ R2
−8R1 + R2 ⇒ R2
−4R1 + R3 ⇒ R3

(−6/5)R2 + R3 ⇒ R3
(−5/22)R3 ⇒ R3

When working with a new concept, it can be helpful to start with simple cases. In this
spirit, suppose that we have a set with one vector, {u1}. Is this set linearly independent?
To check, we need to determine the solutions to the equation

x1u1 = 0 (5)
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At first glance, it seems that the only solution is the trivial one x1 = 0, and for most
choices of u1 that is true. Specifically, as long as u1 �= 0, then the only solution is x1 = 0
and the set {u1} is linearly independent. But if it happens that u1 = 0, then the set is
linearly dependent, because now there are nontrivial solutions to (5), such as

3u1 = 0

In fact, having 0 in any set of vectors always guarantees that the set will be linearly
dependent.

T H E O R E M 2.12 Suppose that {0, u1, u2, . . . , um} is a set of vectors in Rn. Then the set is linearly
dependent.

Proof We need to determine if the vector equation

x00 + x1u1 + x2u2 + · · · + xmum = 0

has any nontrivial solutions. Regardless of the values of u1, u2, . . . , um, setting x0 = 1
and x1 = x2 = · · · = xm = 0 gives us an easy (but legitimate) nontrivial solution, so
that the set is linearly dependent. ■

u1

u2

Figure 1 u1 and u2 are
linearly dependent vectors.

For a set of two vectors {u1, u2}, we already know what happens if one of these is 0.
Let’s assume that both vectors are nonzero and ask the same question as above: Is this set
linearly independent? As usual, we need to determine the nature of the solutions to

x1u1 + x2u2 = 0 (6)

If there is a nontrivial solution, then it must be that both x1 and x2 are nonzero. (Why?)
In this case, we can solve (6) for u1, giving us

u1 = − x2

x1
u2

Thus we see that the set {u1, u2} is linearly dependent if and only if u1 is a scalar multiple
of u2. Geometrically, the set is linearly dependent if and only if the two vectors point in
the same (or opposite) direction. (See Figure 1.)

When trying to determine if a set {u1, u2, . . . , um} of three or more vectors is linearly
dependent or independent, in general we have to find the solutions to

x1u1 + x2u2 + · · · + xmum = 0

However, there is a special case where virtually no work is required.

T H E O R E M 2.13 Suppose that {u1, u2, . . . , um} is a set of vectors in Rn. If n < m, then the set is linearly
dependent.

In other words, if the number of vectors m exceeds the number of components n,
then the set is linearly dependent.

Proof As usual when testing for linear independence, we start with the vector equation

x1u1 + x2u2 + · · · + xmum = 0 (7)

Since u1, . . . , um each have n components, this is equivalent to a homogeneous lin-
ear system with n equations and m unknowns. Because n < m, this system has more
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variables than equations, so there are infinitely many solutions (see Exercise 55 in
Section 1.2). Therefore (7) has nontrivial solutions, and hence the set {u1, u2, . . . , um}
is linearly dependent. ■

This theorem immediately tells us that the myology clinic’s set of four nutritional
powder brands must not all be needed, because we can represent them by four vectors
(a, b, c, d) in R3 (protein, fat, carbohydrates). However, the theorem does not tell us
which brand can be eliminated.

Note also that Theorem 2.13 tells us nothing about the case when n ≥ m. In this
instance, it is possible for the set to be linearly dependent, as in (1), where n = 3 and
m = 3. Or the set can be linearly independent, as in Example 1, where n = 4 and m = 3.

Span and Linear Independence
It is common to confuse span and linear independence, because although they are differ-
ent concepts, they are related. To see the connection, let’s return to the earlier discussion
about the set of two vectors {u1, u2}. This set is linearly dependent exactly when u1 is a
multiple of u2—that is, exactly when u1 is in span{u2}. This connection between span
and linear independence holds more generally.

T H E O R E M 2.14 Let {u1, u2, . . . , um} be a set of vectors in Rn. Then the set is linearly dependent if and
only if one of the vectors in the set is in the span of the other vectors.

Proof Suppose first that the set is linearly dependent. Then there exist scalars c1, . . . , cm,
not all zero, such that

c1u1 + c2u2 + · · · + cmum = 0

To simplify notation, assume that c1 �= 0. Then we can solve for u1,

u1 = − c2

c1
u2 − · · · − cm

c1
um

which shows that u1 is in span{u2, . . . , um}. This completes the “forward” direction of
the proof.

Now suppose that one of the vectors in the set is in the span of the remaining
vectors—say, u1 is in span{u2, . . . , um}. Then there exist scalars c2, c3, . . . , cm such that

u1 = c2u2 + · · · + cmum (8)

Moving all terms to the left side in (8), we have

u1 − c2u2 − · · · − cmum = 0

Since the coefficient on u1 is 1, this shows the set is linearly dependent. This completes
the “backward” direction, finishing the proof. ■

E X A M P L E 3 Give a linearly dependent set of vectors such that one vector is not a
linear combination of the others. Explain why this does not contradict Theorem 2.14.

Solution Theorem 2.14 tells us that in a linearly dependent set, at least one vector is a
linear combination of the other vectors. However, it does not say that every vector is a
linear combination of the others, so what we seek does not contradict Theorem 2.14.
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Let

u1 =
⎡
⎣−1

0
−2

⎤
⎦ , u2 =

⎡
⎣ 3

−2
2

⎤
⎦ , u3 =

⎡
⎣ 5

−2
6

⎤
⎦ , u4 =

⎡
⎣1

2
3

⎤
⎦

By Theorem 2.13, this set must be linearly dependent because there are four vectors with
three components. Theorem 2.14 says that one of the vectors is a linear combination of
the others, and indeed we have u3 = −2u1 + u2. On the other hand, the equation

x1u1 + x2u2 + x3u3 = u4 (9)

has corresponding augmented matrix and echelon form⎡
⎣−1 3 5 1

0 −2 −2 2
−2 2 6 3

⎤
⎦ ∼

⎡
⎣−1 3 5 1

0 −2 −2 2
0 0 0 −3

⎤
⎦ (10)

From the echelon form it follows that (9) has no solutions, so that u4 is not a linear
combination of the other vectors in the set. ■

The row operations used in
(10) are (in order performed):

−2R1 + R3 ⇒ R3
−2R2 + R3 ⇒ R3

Homogeneous Systems
In Section 2.2, we introduced the notation

Ax = x1a1 + x2a2 + · · · + xmam

where A = [
a1 a2 . . . am

]
and x = (x1, x2, . . . , xm), and noted that any linear

system can be expressed in the compact form

Ax = b

The system Ax = 0 is a homogeneous linear system, introduced in Section 1.2. There we
showed that homogeneous linear systems have either one solution (the trivial solution)
or infinitely many solutions.

The next theorem shows that there is a direct connection between the number of
solutions to Ax = 0 and whether the columns of A are linearly independent.

T H E O R E M 2.15 Let A = [
a1 a2 . . . am

]
and x = (x1, x2, . . . , xm). The set {a1, a2, . . . , am} is

linearly independent if and only if the homogeneous linear system

Ax = 0

has only the trivial solution.

Proof Written as a vector equation, the system Ax = 0 has the form

x1a1 + x2a2 + · · · + xmam = 0 (11)

Thus if Ax = 0 has only the trivial solution, then so does (11) and the columns of A
are linearly independent. On the other hand, if Ax = 0 has nontrivial solutions, then so
does (11) and the columns of A are linearly dependent. ■

If b �= 0, then the system Ax = b is nonhomogeneous, and the associated homo-
Definition Nonhomogeneous,

Associated Homogeneous
System geneous system is Ax = 0. There is a close connection between the set of solutions to
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a nonhomogeneous system Ax = b and the associated homogeneous system Ax = 0,
illustrated in the following example.

E X A M P L E 4 Find the general solution for the linear system

2x1 − 6x2 − x3 + 8x4 = 7
x1 − 3x2 − x3 + 6x4 = 6

−x1 + 3x2 − x3 + 2x4 = 4
(12)

and the general solution for the associated homogeneous system.

Solution Applying our usual matrix and row reduction methods, we find that the
general solution to (12) is

x =

⎡
⎢⎢⎣

1
0

−5
0

⎤
⎥⎥⎦ + s1

⎡
⎢⎢⎣

3
1
0
0

⎤
⎥⎥⎦ + s2

⎡
⎢⎢⎣

−2
0
4
1

⎤
⎥⎥⎦

The general solution to the associated homogeneous system was found in Example 7 of
Section 1.2. It is

x = s1

⎡
⎢⎢⎣

3
1
0
0

⎤
⎥⎥⎦ + s2

⎡
⎢⎢⎣

−2
0
4
1

⎤
⎥⎥⎦

For both solutions, s1 and s2 can be any real numbers. ■

Comparing the preceding solutions, we see that the only difference is the “constant”
vector ⎡

⎢⎢⎣
1
0

−5
0

⎤
⎥⎥⎦

This type of relationship between general solutions occurs in all such cases. To see
why, it is helpful to have the following result showing that the product Ax obeys the
distributive law.

T H E O R E M 2.16 Suppose that A = [
a1 a2 . . . am

]
, and let x = (x1, x2, . . . , xm) and y = (y1, y2,

. . . , ym). Then

(a) A(x + y) = Ax + Ay

(b) A(x − y) = Ax − Ay

Proof The results follow from the definition of the product and a bit of algebra. Starting
with (a), we have

x + y =

⎡
⎢⎢⎢⎣

x1 + y1

x2 + y2

...

xm + ym

⎤
⎥⎥⎥⎦
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so that

A(x + y) = (x1 + y1)a1 + (x2 + y2)a2 + · · · + (xm + ym)am

= (x1a1 + x2a2 + · · · + xmam) + (y1a1 + y2a2 + · · · + ymam)
= Ax + Ay

The proof of (b) is similar and left as an exercise. ■

Now let xp be any solution to Ax = b. We call xp a particular solution to theDefinition Particular Solution
system, and it can be thought of as any fixed solution to the system.

T H E O R E M 2.17 Let xp be a particular solution to

Ax = b (13)

Then all solutions xg to (13) have the form xg = xp + xh , where xh is a solution to the
associated homogeneous system Ax = 0.

Proof Let xp be a particular solution to (13), and suppose that xg is any solution to the
same system. Then

A(xg − xp) = Axg − Axp = b − b = 0

Hence if we let xh = xg − xp , then xh is a solution to the associated homogeneous system
Ax = 0. Solving for xg , we have

xg = xp + xh

so that xg has the form claimed. ■

x1

xp

xg

xh

�1�2�3 1 2 3

x2

4

3

2

1

�1

�2

Figure 2 Graphs of xg , xh ,
and xp from Example 5.

E X A M P L E 5 Find the general solution and solution to the associated homoge-
neous system for

4x1 − 6x2 = −14
−6x1 + 9x2 = 21

(14)

Solution Applying our standard solution procedures yields the vector form of the
general solution to (14)

xg =
[

1
3

]
+ s

[
3
2

]

which is a line when graphed in R2. The solutions to the associated homogeneous system
are

xh = s

[
3
2

]

which is also a line when graphed in R2. If we let xp =
[

1
3

]
, then every value of xg

can be expressed as the sum of xp and one of the homogeneous solutions xh . Thus the
general solution xg is a translation by xp of the general solution xh of the associated
homogeneous system. The graphs are shown in Figure 2. ■
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At the end of Section 2.2, Theorem 2.10 linked span with solutions to linear systems.
Theorem 2.18 is similar in spirit, this time linking linear independence with solutions to
linear systems.

T H E O R E M 2.18 Let a1, a2, . . . , am and b be vectors in Rn. Then the following statements are equivalent.
That is, if one is true, then so are the others, and if one is false, then so are the others.

(a) The set {a1, a2, . . . , am} is linearly independent.

(b) The vector equation x1a1 + x2a2 + · · · + xmam = b has at most one solution.

(c) The linear system corresponding to
[

a1 a2 · · · am b
]

has at most one
solution.

(d) The equation Ax = b, with A = [
a1 a2 · · · am

]
, has at most one solution.

Proof The equivalence of (b), (c), and (d) is immediate from the definitions, so all that
is needed to complete the proof is show that (a) and (b) are equivalent.

We start by showing that (a) implies (b). Let {a1, a2, . . . , am}be linearly independent,
and suppose to the contrary that

x1a1 + x2a2 + · · · + xmam = b

has more than one solution. Then there exist scalars r1, . . . , rm and s1, . . . , sm such that

r1a1 + r2a2 + · · · + rmam = b
s1a1 + s2a2 + · · · + smam = b

and so

r1a1 + r2a2 + · · · + rmam = s1a1 + s2a2 + · · · + smam

Moving all terms to one side and regrouping yields

(r1 − s1)a1 + (r2 − s2)a2 + · · · + (rm − sm)am = 0

Since {a1, a2, . . . , am} is linearly independent, each coefficient must be 0. Hence r1 = s1,
. . . , rm = sm, so there is just one solution to x1a1 + · · · + xmam = b.

Proving that (b) implies (a) is easier. Since b can be any vector, we can set b = 0. By
(b) there is at most one solution to

x1a1 + x2a2 + · · · + xmam = 0

Of course, there is the trivial solution x1 = · · · = xm = 0, so this must be the only
solution. Hence the set {a1, a2, . . . , am} is linearly independent, and (a) follows. ■

The Big Theorem -- Version 1
Next, we present the first version of the Big Theorem. This theorem is Big for two reasons:
(a) it is Big—as in important—because it will serve to tie together and unify many of
the ideas that we shall be developing, and (b) subsequent versions will include more and
more equivalent statements, making it Big in size.
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T H E O R E M 2.19 T H E B I G T H E O R E M --- V E R S I O N 1 Let A = {a1, . . . , an} be a set
of n vectors in Rn, and let A = [

a1 · · · an

]
. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

In all versions of the Big The-
orem, n is both the number
of vectors in A and the num-
ber of components in each vec-
tor. Thus A has n rows and n

columns.

Proof We start by showing that (a) and (b) are equivalent. First suppose that A spans
Rn. If A is linearly dependent, then one of a1, . . . , an—say, a1—is a linear combination
of the others. Then by Theorem 2.7, it follows that

span{a1, . . . , an} = span{a2, . . . , an}.
But this implies that Rn = span{a2, . . . , an}, contradicting Theorem 2.8. Hence it must
be that A is linearly independent. This shows that (a) implies (b).

To show that (b) implies (a), we assume that A is linearly independent. Now, if A
does not span Rn, then there exists a vector a that is not a linear combination of a1, . . . , an.
Since A is linearly independent, it follows that the set {a, a1, . . . , an} of n + 1 vectors is
also linearly independent, contradicting Theorem 2.13. Hence Amust span Rn. Thus (b)
implies (a), and therefore (a) is equivalent to (b).

Now suppose that (a) and (b) are both true. Then by Theorem 2.10, (a) implies that
Ax = b has at least one solution for every b in Rn. On the other hand, from Theorem 2.18
we know that (b) implies that Ax = b has at most one solution for every b in Rn. This
leaves us with only one possibility, that Ax = b has exactly one solution for every b in
Rn, confirming (c) is true.

Finally, suppose that (c) is true. Since Ax = b has a unique solution for every b in
Rn, then in particular Ax = 0 has only the trivial solution. Appealing to Theorem 2.15,
we conclude that A must be linearly independent and hence also spans Rn. ■

The row operations used in
(16) are (in order performed):

−7R1 + R2 ⇒ R2
2R1 + R3 ⇒ R3

R2 ⇔ R3
3R2 + R3 ⇒ R3

E X A M P L E 6 Suppose that

a1 =
⎡
⎣ 1

7
−2

⎤
⎦ , a2 =

⎡
⎣3

0
1

⎤
⎦ , a3 =

⎡
⎣ 5

2
−6

⎤
⎦ , and A = [

a1 a2 a3

]

Show that the columns of A are linearly independent and span R3, and that Ax = b has
a unique solution for every b in R3.

Solution We start with linear independence, so we need to find the solutions to

x1a1 + x2a2 + x3a3 = 0 (15)

The corresponding augmented matrix and echelon form are⎡
⎣ 1 3 5 0

7 0 2 0
−2 1 −6 0

⎤
⎦ ∼

⎡
⎣1 3 5 0

0 7 4 0
0 0 −21 0

⎤
⎦ (16)

From the echelon form it follows that (15) has only the trivial solution, so the columns
of A are linearly independent.

Because we have three vectors and each has three components, the other questions
follow immediately from the Big Theorem. Specifically, since {a1, a2, a3} is linearly
independent, the set must also span R3 and there is exactly one solution to Ax = b for
any b in R3. The Big Theorem and its successors to come are all very powerful. ■
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For one more application of Theorem 2.19, let’s return to the nutritional powder
problem described at the beginning of the section.

E X A M P L E 7 Use the Big Theorem to show that stocking powder brands A, B, and
C is efficient.

Solution We previously determined that the nutrient vectors a, b, c, and d are linearly
dependent, and we concluded that brand D can be eliminated. For the remaining three
brands, it can be verified that

x1a + x2b + x3c = 0

has only the trivial solution, which tells us that a, b, and c are linearly independent. By
Theorem 2.19, we can conclude the following:

• The vectors a, b, and c span all of R3. Therefore every vector in R3 can be expressed as
a linear combination of these three vectors. (Note, though, that some combinations
will require negative values of x1, x2, and x3, which is not physically possible when
combining powders.)

• Item (c) of the Big Theorem tells us that there is exactly one way to combine
brands A, B, and C to create any blend with a specific combination of protein, fat,
and carbohydrates. Thus stocking brands A, B, and C is efficient, in that there is no
redundancy. ■

E X E R C I S E S
For Exercises 1–6, determine if the given vectors are linearly
independent.

1. u =
[

3
−2

]
, v =

[
−1
−4

]

2. u =
[

6
−15

]
, v =

[
−4

−10

]

3. u =
[

7
1

−13

]
, v =

[
5

−3
2

]

4. u =
[−4

0
−3

]
, v =

[−2
−1

5

]
, w =

[ −8
2

−19

]

5. u =
[

3
−1

2

]
, v =

[
0
4
1

]
, w =

[
2
4
7

]

6. u =

⎡
⎢⎣

1
8
3
3

⎤
⎥⎦ , v =

⎡
⎢⎣

4
−2

5
−5

⎤
⎥⎦ , w =

⎡
⎢⎣

−1
2
0
1

⎤
⎥⎦

In Exercises 7–12, determine if the columns of the given matrix
are linearly independent.

7.

[
15 −6
−5 2

]

8.

[
4 −12
2 6

]

9.

[
1 0

−2 2
5 −7

]

10.

[
1 −1 2

−4 5 −5
−1 2 1

]

11.

[
3 1 0
5 −2 −1
4 −4 −3

]

12.

⎡
⎢⎣

−4 −7 1
0 0 3
5 −1 1
8 2 −4

⎤
⎥⎦

In Exercises 13–18, a matrix A is given. Determine if the homoge-
neous system Ax = 0 (where x and 0 have the appropriate number
of components) has any nontrivial solutions.

13. A =
[
−3 5

4 1

]

14. A =
[

12 10
6 5

]

15. A =
[

8 1
0 −1

−3 2

]

16. A =
[−3 2 1

1 −1 −1
5 −4 −3

]
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17. A =
[−1 3 1

4 −3 −1
3 0 5

]

18. A =

⎡
⎢⎣

2 −3 0
0 1 2

−5 3 −9
3 0 9

⎤
⎥⎦

In Exercises 19–24, determine by inspection (that is, with only
minimal calculations) if the given vectors form a linearly depen-
dent or linearly independent set. Justify your answer.

19. u =
[

14
−6

]
, v =

[
7

−3

]

20. u =
[

2
1

]
, v =

[
5
3

]

21. u =
[

3
−1

]
, v =

[
6

−5

]
, w =

[
1
4

]

22. u =
[

6
−4

2

]
, v =

[
3

−2
−1

]

23. u =
[

1
−8

3

]
, v =

[
0
0
0

]
, w =

[−7
1

12

]

24. u =

⎡
⎢⎣

1
2
3
4

⎤
⎥⎦ , v =

⎡
⎢⎣

1
2
3
4

⎤
⎥⎦ , w =

⎡
⎢⎣

4
3
2
1

⎤
⎥⎦

In Exercises 25–28, determine if one of the given vectors is in the
span of the other vectors. (HINT: Check to see if the vectors are
linearly dependent, and then appeal to Theorem 2.14.)

25. u =
[

6
2

−5

]
, v =

[
1
7
0

]

26. u =
[

2
7

−1

]
, v =

[
1
1
6

]
, w =

[
1
3
0

]

27. u =
[

4
−1

3

]
, v =

[
3
5

−2

]
, w =

[−5
7

−7

]

28. u =

⎡
⎢⎣

1
7
8
4

⎤
⎥⎦ , v =

⎡
⎢⎣

−1
3
5
2

⎤
⎥⎦ , w =

⎡
⎢⎣

3
1

−2
0

⎤
⎥⎦

For each matrix A given in Exercises 29–32, determine if Ax = b
has a unique solution for every b in R3. (HINT: the Big Theorem
is helpful here.)

29. A =
[

2 −1 0
1 0 1

−3 4 5

]

30. A =
[

3 4 7
7 −1 6

−2 0 2

]

31. A =
[

3 −2 1
−4 1 0
−5 0 1

]

32. A =
[

1 −3 −2
0 1 1
2 4 7

]

FIND AN EXAMPLE For Exercises 33–38, find an example that
meets the given specifications.

33. Three distinct nonzero linearly dependent vectors in R4.

34. Three linearly independent vectors in R5.

35. Three distinct nonzero linearly dependent vectors in R2 that
do not span R2.

36. Three distinct nonzero vectors in R2 such that any pair is lin-
early independent.

37. Three distinct nonzero linearly dependent vectors in R3 such
that each vector is in the span of the other two vectors.

38. Four vectors in R3 such that no vector is a nontrivial linear
combination of the other three. (Explain why this does not con-
tradict Theorem 2.14.)

TRUE OR FALSE For Exercises 39–52, determine if the statement
is true or false, and justify your answer.

39. If a set of vectors in Rn is linearly dependent, then the set must
span Rn .

40. If m > n, then a set of m vectors in Rn is linearly dependent.

41. If A is a matrix with more rows than columns, then the columns
of A are linearly independent.

42. If A is a matrix with more columns than rows, then the columns
of A are linearly independent.

43. If A is a matrix with linearly independent columns, then
Ax = 0 has nontrivial solutions.

44. If A is a matrix with linearly independent columns, then
Ax = b has a solution for all b.

45. If {u1, u2, u3} is linearly independent, then so is
{u1, u2, u3, u4}.
46. If {u1, u2, u3} is linearly dependent, then so is {u1, u2, u3, u4}.
47. If {u1, u2, u3, u4} is linearly independent, then so is
{u1, u2, u3}.
48. If {u1, u2, u3, u4} is linearly dependent, then so is {u1, u2, u3}.
49. If u4 is a linear combination of {u1, u2, u3}, then
{u1, u2, u3, u4} is linearly independent.

50. If u4 is a linear combination of {u1, u2, u3}, then
{u1, u2, u3, u4} is linearly dependent.

51. If u4 is not a linear combination of {u1, u2, u3}, then
{u1, u2, u3, u4} is linearly independent.

52. If u4 is not a linear combination of {u1, u2, u3}, then
{u1, u2, u3, u4} is linearly dependent.
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53. Which of the following sets of vectors in R3 could possibly be
linearly independent? Justify your answer.

(a) {u1}
(b) {u1, u2}
(c) {u1, u2, u3}
(d) {u1, u2, u3, u4}
54. Which of the following sets of vectors in R3 could possibly be
linearly independent and span R3? Justify your answer.

(a) {u1}
(b) {u1, u2}
(c) {u1, u2, u3}
(d) {u1, u2, u3, u4}
55. Prove that if c1, c2, and c3 are nonzero scalars and
{u1, u2, u3} is a linearly independent set of vectors, then so is
{c1u1, c2u2, c3u3}.
56. Prove that if u and v are linearly independent vectors, then so
are u + v and u − v.

57. Prove that if {u1, u2, u3} is a linearly independent set of vec-
tors, then so is {u1 + u2, u1 + u3, u2 + u3}.
58. Prove that if U = {u1, . . . , um} is linearly independent, then
any nonempty subset of U is also linearly independent.

59. Prove that if a set of vectors is linearly dependent, then adding
additional vectors to the set will create a new set that is still linearly
dependent.

60. Prove that if u and v are linearly independent and the set
{u, v, w} is a linearly dependent set, then w is in span{u, v}.
61. Prove that two nonzero vectors u and v are linearly dependent
if and only if u = cv for some scalar c .

62. Let A be an n × m matrix that is in echelon form. Prove that
the nonzero rows of A, when considered as vectors in Rm, are a
linearly independent set.

63. Prove part (b) of Theorem 2.16.

64. Let {u1, . . . , um} be a linearly dependent set of nonzero vec-
tors. Prove that some vector in the set can be written as a linear
combination of a linearly independent subset of the remaining
vectors, with the set of coefficients all nonzero and unique for the
given subset. (HINT: Start with Theorem 2.14.)

In Exercises 65–66, suppose that the given vectors are direction vec-
tors for a model of the VecMobile III (discussed in Section 2.2).

Determine if there is any redundancy in the vectors and if it is
possible to reach every point in R3.

65. u1 =
[

1
−2

5

]
, u2 =

[
4
2
0

]
, u3 =

[
2
6
3

]

66. u1 =
[

2
−5

1

]
, u2 =

[
1
3

−4

]
, u3 =

[−5
7
2

]

C In Exercises 67–70, determine if the given vectors form a lin-
early dependent or linearly independent set.

67.

[
2

−3
5

]
,

[
3

−4
2

]
,

[−1
1
7

]

68.

[−4
2
3

]
,

[
1
3
1

]
,

[−3
5
4

]

69.

⎡
⎢⎣

2
0
1

−1

⎤
⎥⎦ ,

⎡
⎢⎣

−3
2
5
6

⎤
⎥⎦ ,

⎡
⎢⎣

6
7
0

−5

⎤
⎥⎦ ,

⎡
⎢⎣

5
−3

7
−3

⎤
⎥⎦

70.

⎡
⎢⎣

3
5

−2
−4

⎤
⎥⎦ ,

⎡
⎢⎣

2
−4

3
−1

⎤
⎥⎦ ,

⎡
⎢⎣

−4
6
6
2

⎤
⎥⎦ ,

⎡
⎢⎣

−7
2
2
6

⎤
⎥⎦

C In Exercises 71–72, determine if Ax = b has a unique solution
for every b in R3.

71. A =
[

1 −2 4
5 −3 −1

−3 −7 −9

]
, x =

[
x1

x2

x3

]

72. A =
[

3 −2 5
2 0 −4

−2 7 1

]
, x =

[
x1

x2

x3

]

C In Exercises 73–74, determine if Ax = b has a unique solution
for every b in R4.

73. A =

⎡
⎢⎣

2 5 −3 6
−1 0 1 −1

5 2 −3 9
3 −4 6 8

⎤
⎥⎦ , x =

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦

74. A =

⎡
⎢⎣

5 1 0 8
−2 4 3 11
−3 8 2 5

0 3 −1 8

⎤
⎥⎦ , x =

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦
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C H A P T E R

The Brooklyn Bridge, completed

in 1883, was the first major

steel-wire suspension bridge in

the world. It was designed by

John Roebling, though the plan

was ultimately carried out by his

son Washington Roebling and

daughter-in-law Emily upon

John’s death in 1869. The bridge

employs a balance of tensile force

in the supporting cables, which

take on a parabolic shape, and

compressive force in the towers

through which the cables pass.

3Matrices

In this chapter we expand our development of matrices. Thus far we have used matrices

Bridge suggested by Mark Hunacek,

Iowa State University (Reflexstock)

to solve systems of equations and have defined how to multiply a matrix times a vector.
In Section 3.1 we use this multiplication to define an important type of function called

a linear transformation and investigate its properties and applications. Section 3.2 and
Section 3.3 focus on the algebra of matrices. In Section 3.4 we develop a factorization
method that uses matrix multiplication to efficiently find solutions to linear systems.
Section 3.5 is about Markov Chains, an application of matrix multiplication that arises
in a variety of contexts.

3.1 Linear Transformations
In this section we consider an important class of functions called linear transforma-
tions. These functions arise in many fields and are defined naturally in terms of matrix
multiplication. The following example gives a sense of how one might encounter linear
transformations.

A consumer electronics company makes three different types of MP3 players, the J8
(8 GB), the J40 (40 GB), and the J80 (80 GB). The manufacturing cost includes labor,
materials, and overhead (facilities, etc.). The company’s costs (in dollars) per unit for
each type are summarized in Table 1.
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J8 J40 J80

Labor 15 46 65
Materials 14 43 61
Overhead 20 60 81

Table 1 MP3 Manufacturing Costs

This table can be organized into three cost vectors,

J8: j8 =
⎡
⎣15

14
20

⎤
⎦ , J40: j40 =

⎡
⎣46

43
60

⎤
⎦ , J80: j80 =

⎡
⎣65

61
81

⎤
⎦

To determine costs for different manufacturing levels, we compute linear combinations
of these vectors. For instance, the cost vector for producing 12 J8’s, 10 J40’s, and 6 J80’s is

12j8 + 10j40 + 6j80 = 12

⎡
⎣15

14
20

⎤
⎦ + 10

⎡
⎣46

43
60

⎤
⎦ + 6

⎡
⎣65

61
81

⎤
⎦ =

⎡
⎣1030

964
1326

⎤
⎦

Thus, for this production mix, the company will incur costs of $1030 for labor, $964 for
materials, and $1326 for overhead. More generally, let

x =
⎡
⎣x1

x2

x3

⎤
⎦

where x1, x2, and x3 indicate desired production levels for J8’s, J40’s, and J80’s, respectively.
Let T be the function that takes the production vector x as input and produces the
corresponding total cost vector as output. Using the individual cost vectors, we have

T(x) = x1

⎡
⎣15

14
20

⎤
⎦ + x2

⎡
⎣46

43
60

⎤
⎦ + x3

⎡
⎣65

61
81

⎤
⎦

Now suppose that we define the 3 × 3 matrix

A = [
j8 j40 j80

] =
⎡
⎣15 46 65

14 43 61
20 60 81

⎤
⎦

Recalling the formula for multiplying a matrix by a vector (see Definition 2.9 in Sec-
tion 2.2), we see that we can write the cost function compactly as

T(x) =
⎡
⎣15 46 65

14 43 61
20 60 81

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ = Ax

Thus, for example, a production level of 10 J8’s, 20 J40’s, and 36 J80’s will have a cost
vector

T

⎛
⎝

⎡
⎣10

20
36

⎤
⎦

⎞
⎠ =

⎡
⎣15 46 65

14 43 61
20 60 81

⎤
⎦

⎡
⎣10

20
36

⎤
⎦ =

⎡
⎣3410

3196
4316

⎤
⎦
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Linear Transformations
The MP3 cost function is an example of an important class of functions that we now
describe, starting with some notation and terminology. Let

T : Rm → Rn

denote a function T that takes vectors in Rm as input and produces vectors in Rn as
output. Put another way, the domain of T is Rm and the codomain is Rn. For every
vector u in Rm, the vector T(u) is called the image of u under T . The set of all images of

Definition Domain, Codomain,
Image, Range

vectors u in Rm under T is called the range of T , denoted range(T). Thus the range of T
is a subset of the codomain of T .

Definition Linear
Transformation

D E F I N I T I O N 3.1 A function T : Rm → Rn is a linear transformation if for all vectors u and v in Rm

and all scalars r we have

(a) T(u + v) = T(u) + T(v)

(b) T(r u) = r T(u)

The MP3 cost function T is an example of a linear transformation. This claim follows
immediately from the next theorem, but before getting to that we need to introduce new
terminology.

Definition Matrix Dimensions,
Square Matrix

Suppose that A is a matrix with n rows and m columns. Then we say that A is an
n × m matrix and that A has dimensions n × m. If n = m, then A is a square matrix.
For instance, if

A =
⎡
⎣1 4 −2 0 9

3 0 1 9 11
2 −1 7 5 8

⎤
⎦ and B =

⎡
⎢⎢⎣

0 4 1 3
2 0 7 8

−1 3 5 9
8 6 −4 1

⎤
⎥⎥⎦

then A is a 3 × 5 matrix and B is a 4 × 4 (square) matrix.

We say that A is a “3-by-5”
matrix and B is a “4-by-4”
matrix.

T H E O R E M 3.2 Let A be an n × m matrix, and define T(x) = Ax. Then T : Rm → Rn is a linear
transformation.

Proof To show that T is a linear transformation, we must verify that the two conditions
in Definition 3.1 both hold. Starting with condition (a), given vectors u and v, we have

T(u + v) = A(u + v)
= Au + Av (by Theorem 2.16)
= T(u) + T(v)

That shows (a) holds. Condition (b) is covered in Exercise 57. Verifying the two conditions
completes the proof. ■

Since our MP3 cost function is T(x) = Ax, it follows immediately from Theorem 3.2
that T is a linear transformation. Furthermore, since A is a 3 × 3 matrix, the domain
and codomain of T are both R3.

It turns out that all linear transformations T : Rm → Rn are of the form T(x) = Ax
for some n × m matrix A. The proof is given later in this section.
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E X A M P L E 1 Let

A =
[

1 −2 4
3 0 −5

]
, u =

⎡
⎣1

2
1

⎤
⎦ , v =

⎡
⎣0

0
0

⎤
⎦ , and w =

[
3
4

]
(1)

Suppose that T : R3 → R2 with T(x) = Ax. Compute T(u) and T(v), and determine
if w is in the range of T .

Solution We start by computing

T(u) = Au =
[

1 −2 4
3 0 −5

]⎡
⎣1

2
1

⎤
⎦ =

[
1

−2

]

T(v) = Av =
[

1 −2 4
3 0 −5

]⎡
⎣0

0
0

⎤
⎦ =

[
0
0

]

Next, in order for w to be in the range of T , there must exist a solution to T(x) = w,
which is equivalent to the linear system Ax = w. The corresponding augmented matrix
and echelon form are[

1 −2 4 3
3 0 −5 4

]
∼

[
1 −2 4 3
0 6 −17 −5

]

Back substitution yields the general solution

x =
⎡
⎣ 4/3

−5/6
0

⎤
⎦ + s

⎡
⎣ 5/3

17/6
1

⎤
⎦

where s can be any real number. Thus w is the image of many different vectors and
hence is in the range of T . ■

Going forward, we usually
will not include the row opera-
tions.

T H E O R E M 3.3 Let A = [
a1 a2 · · · am

]
be an n×m matrix, and let T : Rm → Rn with T(x) = Ax

be a linear transformation. Then

(a) The vector w is in the range of T if and only if Ax = w is a consistent linear
system.

(b) range(T) = span{a1, . . . , am}.

Proof A vector w is in the range of T if and only if there exists a vector u such that
T(u) = w. As T(x) = Ax, this is equivalent to Au = w, which is true if and only if the
linear system Ax = w is consistent.

For part (b), from Theorem 2.10 it follows that Ax = w is consistent if and only if
w is in the span of the columns of A. Therefore range(T) = span{a1, . . . , am}. ■

The next example shows that not all functions T : Rm → Rn are linear
transformations.

E X A M P L E 2 Show that T : R3 → R2 defined by

T

⎛
⎝

⎡
⎣x1

x2

x3

⎤
⎦

⎞
⎠ =

[
x1 − 3x2

x2x2
3

]

is not a linear transformation.
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Solution We address this question by appealing to Definition 3.1. We only have to
find a single specific example where one of the required conditions does not hold. One
possibility is to let

x =
⎡
⎣1

2
3

⎤
⎦ and r = 2

Then we have

T(r x) = T

⎛
⎝

⎡
⎣2

4
6

⎤
⎦

⎞
⎠ =

[
2 − 3(4)
(4)(62)

]
=

[−10
144

]

and

r T(x) = 2T

⎛
⎝

⎡
⎣1

2
3

⎤
⎦

⎞
⎠ = 2

[
1 − 3(2)

(2)(32)

]
=

[−10
36

]

Since T(r x) �= r T(x), it follows that T is not a linear transformation. ■

Conditions (a) and (b) of Definition 3.1 can be combined into a single condition

T(r u + s v) = r T(u) + s T(v) (2)

for all vectors u and v and all scalars r and s . The proof that these are equivalent is covered
in Exercise 58. The following example shows that this is true for a specific case.

E X A M P L E 3 Let

A =
⎡
⎣ 4 −1

−2 2
0 3

⎤
⎦ , x =

[−1
−3

]
, and y =

[
2
5

]

Let r = 2 and s = −1. Verify that 2 holds for T(x) = Ax in this case.

Solution We have

r x + s y = 2

[−1
−3

]
−

[
2
5

]
=

[ −4
−11

]

so that T(r x + s y) = A

[ −4
−11

]
=

⎡
⎣ −5

−14
−33

⎤
⎦.

On the other hand, we also have

r T(x) + s T(y) = 2A

[−1
−3

]
− A

[
2
5

]

= 2

⎡
⎣−1

−4
−9

⎤
⎦ −

⎡
⎣ 3

6
15

⎤
⎦ =

⎡
⎣ −5

−14
−33

⎤
⎦

Thus T(r x + s y) = r T(x) + s T(y). ■
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Domain

(a) One-to-One and Onto

Codomain Domain Codomain

(b) Onto, not One-to-One

Domain

(c) One-to-One, not Onto

Codomain Domain Codomain

(d) Not One-to-One or Onto

Figure 1 Graphical depiction of various combinations of one-to-one and onto.

One-to-One and Onto Linear Transformations
Here we consider two special types of linear transformations.

D E F I N I T I O N 3.4 Let T : Rm → Rn be a linear transformation. Then

(a) T is one-to-one if for every vector w in Rn there exists at most one vector u in
Rm such that T(u) = w.

(b) T is onto if for every vector w in Rn there exists at least one vector u in Rm such
that T(u) = w.

Definition One-to-One, Onto

Put another way, T is one-to-one if every vector in the domain of T is sent to its “own”
unique vector in the range (see Figure 1(a) and 1(c)). T is onto if the range is equal to
the codomain (see Figure 1(a) and 1(b)).

An equivalent formulation (see Exercise 59) for the definition of one-to-one given
below.

D E F I N I T I O N ( A L T E R N A T E ) A linear transformation T is one-to-one if T(u) = T(v)
implies that u = v.

This version of one-to-one often is more convenient for proofs. It is used in the proof of
the next theorem, which provides an easy way to determine if a linear transformation is
one-to-one.

T H E O R E M 3.5 Let T be a linear transformation. Then T is one-to-one if and only if T(x) = 0 has
only the trivial solution x = 0.

Proof First suppose that T is one-to-one. Then there is at most one solution to T(x) = 0.
Moreover, since T is a linear transformation, it follows that T(0) = 0 (see Exercise 55),
so that T(x) = 0 has only the trivial solution.
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Now suppose that T(x) = 0 has only the trivial solution. If T(u) = T(v), then

T(u) − T(v) = 0 �⇒ T(u − v) = 0 (T is a linear transformation)

Since T(x) = 0 has only the trivial solution, it follows that u − v = 0 and hence u = v.
Therefore T is one-to-one. ■

E X A M P L E 4 Let A be as given in Example 3. Determine if T(x) = Ax one-to-one.

Solution By Theorem 3.5, we need only find the solutions to T(x) = 0, which is
equivalent to solving Ax = 0. Populating the augmented matrix and reducing to echelon
form gives ⎡

⎣ 4 −1 0
−2 2 0

0 3 0

⎤
⎦ ∼

⎡
⎣−2 2 0

0 3 0
0 0 0

⎤
⎦

From the echelon form we can see that Ax = 0 has only the trivial solution. Thus
T(x) = 0 has only the trivial solution and hence T is one-to-one. ■

The next two theorems follow from results on span and linear independence devel-
oped in Section 2.2 and Section 2.3.

T H E O R E M 3.6 Let A be an n × m matrix and define T : Rm → Rn by T(x) = Ax. Then

(a) T is one-to-one if and only if the columns of A are linearly independent.

(b) If n < m, then T is not one-to-one.

This proof is carried out by
applying results we have already
proved, and illustrates a few of
the many interconnections in
linear algebra.

Proof To prove part (a), note that by Theorem 3.5 T is one-to-one if and only if T(x) = 0
has only the trivial solution. By Theorem 2.15, T(x) = 0 has only the trivial solution if
and only if the columns of A are linearly independent.

For part (b), if A has more columns than rows, then by Theorem 2.13 the columns
are linearly dependent. Hence, by part (a), T is not one-to-one. ■

Returning to Example 4, we see that the two columns of A are linearly independent.
(Why?) Hence we can also conclude from Theorem 3.6 that the linear transformation T
is one-to-one.

The next theorem is the counterpart to Theorem 3.6 that shows when a linear
transformation is onto.

T H E O R E M 3.7 Let A be an n × m matrix and define T : Rm → Rn by T(x) = Ax. Then

(a) T is onto if and only if the columns of A span the codomain Rn.

(b) If n > m, then T is not onto.

Proof For part (a), if T is onto then range(T) = Rn. By Theorem 3.3, range(T) equals
the span of the columns of A. Hence T is onto if and only if the columns of A span Rn.

For part (b), by Theorem 2.8 if n > m then the columns of A cannot span Rn. Thus,
by part (a), T is not onto. ■

E X A M P L E 5 Suppose that A is the matrix given in Example 3. Determine if
T(x) = Ax is onto.

Solution Since A is a 3 × 2 matrix, by Theorem 3.7(b) it follows that T is not onto. ■
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E X A M P L E 6 Suppose that

A =
⎡
⎣2 1 1

1 2 0
1 3 0

⎤
⎦

Determine if the linear transformation T(x) = Ax is onto.

Solution In Section 2.2 we showed that the set of vectors⎧⎨
⎩

⎡
⎣2

1
1

⎤
⎦ ,

⎡
⎣1

2
3

⎤
⎦ ,

⎡
⎣1

0
0

⎤
⎦

⎫⎬
⎭

spans R3. Thus, by Theorem 3.7(a), T is onto. ■

In Theorem 3.2, we showed that a function T : Rm → Rn of the form T(x) = Ax
must be a linear transformation. The next theorem combines Theorem 3.2 with its
converse.

T H E O R E M 3.8 Let T : Rm → Rn. Then T(x) = Ax, where A is an n × m matrix, if and only if T is a
linear transformation.

Proof One direction of this theorem is proved in Theorem 3.2. For the other direction,
suppose that T is a linear transformation. Let

e1 =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ , e2 =

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ , e3 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
...

0

⎤
⎥⎥⎥⎥⎥⎦ , · · · , em =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

1

⎤
⎥⎥⎥⎥⎥⎦ (3)

be vectors in Rm, and then let A be the n × m matrix with columns T(e1), T(e2), . . . ,
T(em),

A = [
T(e1) T(e2) · · · T(em)

]
Note that any vector x in Rm can be written as a linear combination of e1, e2, . . . , em, by

x =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xm

⎤
⎥⎥⎥⎥⎥⎦ = x1

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ + x2

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ + · · · + xm

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

1

⎤
⎥⎥⎥⎥⎥⎦ = x1e1 + x2e2 + · · · + xmem

From the properties of linear transformations, we have

T(x) = T(x1e1 + x2e2 + · · · + xmem)

= x1T(e1) + x2T(e2) + · · · + xmT(em)

= Ax

Thus T has the required form and the proof is complete. ■
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E X A M P L E 7 Suppose that T : R3 → R4 is defined by

T

⎛
⎝

⎡
⎣x1

x2

x3

⎤
⎦

⎞
⎠ =

⎡
⎢⎢⎣

2x1 + x3

−x1 + 2x2

x1 − 3x2 + 5x3

4x2

⎤
⎥⎥⎦

Show that T is a linear transformation.

Solution We could solve this by directly appealing to Definition 3.1. But instead, let’s
apply Theorem 3.8 by finding the matrix A such that T(x) = Ax. We start by noting
that

T

⎛
⎝

⎡
⎣x1

x2

x3

⎤
⎦

⎞
⎠ =

⎡
⎢⎢⎣

2x1 + x3

−x1 + 2x2

x1 − 3x2 + 5x3

4x2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2x1 + 0x2 + 1x3

−1x1 + 2x2 + 0x3

1x1 − 3x2 + 5x3

0x1 + 4x2 + 0x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 0 1
−1 2 0

1 −3 5
0 4 0

⎤
⎥⎥⎦

⎡
⎣x1

x2

x3

⎤
⎦

Thus, if

A =

⎡
⎢⎢⎣

2 0 1
−1 2 0

1 −3 5
0 4 0

⎤
⎥⎥⎦

then T(x) = Ax. Hence, by Theorem 3.8, T is a linear transformation. ■

The Big Theorem, Version 2
Incorporating the preceding work, let us add two new conditions to the Big Theorem,
Version 1 (Theorem 2.19) that we proved in Section 2.3.

T H E O R E M 3.9 ( T H E B I G T H E O R E M , V E R S I O N 2 ) Let A = {a1, . . . , an} be a
set of n vectors in Rn, let A = [

a1 · · · an

]
, and let T : Rn → Rn be given by

T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

Proof From the Big Theorem, Version 1, we know that (a), (b), and (c) are equiva-
lent. It follows from Theorem 3.7 that (a) and (d) are equivalent, and it follows from
Theorem 3.6 that (b) and (e) are equivalent. Thus all five conditions are equivalent to
each other. ■

Geometry of Linear Transformations
One reason for the name of linear transformations is because they (usually) transform
lines in the domain to lines in the range. To see why, recall that (see Exercise 64) the line
segment from u to v can be parameterized by

(1 − s )u + s v, 0 ≤ s ≤ 1
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T1

T2

T1(x) � [        ] x

T1(u)
u

1   1
1   2

�2      1
    3   �1T2(x) � [              ] x

T1(v)

v

T2(v)

T2(u)

Figure 2 Image of the line segment between u and v under linear transformations T1(x) and
T2(x).

Applying a linear transformation T to this, we find that

T
[
(1 − s )u + s v

] = (1 − s )T(u) + s T(v), 0 ≤ s ≤ 1

which is the parameterization of a line in the range of T . Figure 2 illustrates this for two
different linear transformations, T1 : R2 → R2 and T2 : R2 → R2.

What effect do linear transformations have on regions? Figure 3 shows the effect of
applying three different linear transformations to the unit square S in the first quadrant.

T2(S)

T3(S)

S

T1(x) � [        ] x

T3

T1

T2

3

2

1

1 2 3

3

2

1

1 2 3

T1(S)

3

2

1

1 2 3

1 2 3

3   0
0   2

   2      1
�1   �2

T2(x) � [        ] x1   2
0   2

�3

�1

�2

T3(x) � [              ] x
Figure 3 The image of the unit square S (upper left) under three different linear
transformations.



Holt-4100161 la November 8, 2012 10:51 91

SECTION 3.1 Linear Transformations 91

Tx(x) � [            ] x1      0
0   �1

�1

�2

21

Tx(S)

(a) Reflection across x-axis

Ty(x) � [            ] x�1   0
   0   1

2

1

�2 �1

Ty(S)

(b) Reflection across y-axis

Tr(x) � [                           ] xcos(�)   �sin(�)
 sin(�)      cos(�)

Tr(S)

2

1

�1 1

(c) Rotation by angle �

�

Ts(S)

Ts(x) � [        ] x
2

1

1a 2

1   a
0   1

(d) Shear transformation

Figure 4 The image of the unit square S under reflection, rotation, and shear linear
transformations used in computer graphics.

Since linear transformations map lines to lines, the boundaries of S are mapped to
lines. When the linear transformation is one-to-one, the unit square S is mapped to a
parallelogram.

Linear transformations are used extensively in computer graphics. Figure 4 shows
the results of linear transformations that reflect, rotate, and shear the unit square S in
Figure 3.

Figure 5 Karl Jacobi (Source:
Smithsonian Institution
Libraries).

In Section 1.3 we encountered Karl Jacobi, whose picture is shown in Figure 5.
Reflection, rotation, and shear transformations applied to that picture are shown in
Figure 6.

(a) Reflection across x-axis (b) Reflection across y-axis (d) Shear, a = 1/3(c) Rotation by � = 30°

Figure 6 The linear transformations from Figure 4 applied to an image of Karl Jacobi.
(Source: Smithsonian Institution Libraries).
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E X E R C I S E S
In Exercises 1–4, let T(x) = Ax for the given matrix A, and find
T(u1) and T(u2) for the given u1 and u2.

1. A =
[

2 1
−3 5

]
, u1 =

[
−4
−2

]
, u2 =

[
1

−6

]

2. A =
[

1 0
2 −4
3 3

]
, u1 =

[
1
2

]
, u2 =

[
−5

0

]

3. A =
[

0 −4 2
3 1 −2

]
, u1 =

[
3
2
1

]
, u2 =

[
4

−5
−2

]

4. A =
[−2 5 −2

0 −1 −2
0 −1 −1

]
, u1 =

[
0
7

−2

]
, u2 =

[
3
5

−1

]

In Exercises 5–8, determine if the given vector is in the range of
T(x) = Ax, where

A =
[

1 −2 0
3 2 1

]

5. y =
[
−3

6

]

6. y =
[

1
−4

]

7. y =
[

2
7

]

8. y =
[

4
5

]
9. Suppose that a linear transformation T satisfies

T(u1) =
[

2
1

]
, T(u2) =

[
−3

2

]
Find T(−2u1 + 3u2).

10. Suppose that a linear transformation T satisfies

T(u1) =
[

3
−1
−2

]
, T(u2) =

[
1
1
4

]

Find T(3u1 − 2u2).

11. Suppose that a linear transformation T satisfies

T(u1) =
[
−3

0

]
, T(u2) =

[
2

−1

]
, T(u3) =

[
0
5

]
Find T(−u1 + 4u2 − 3u3).

12. Suppose that a linear transformation T satisfies

T(u1) =
[

3
−1
−2

]
, T(u2) =

[
1
1
4

]
, T(u3) =

[
6
0
0

]

Find T(u1 + 4u2 − 2u3).

In Exercises 13–20, determine if the given function is a linear trans-
formation. If so, identify the matrix A such that T(x) = Ax. If
not, explain why not.

13. T(x1, x2) = (3x1 + x2, −2x1 + 4x2)

14. T(x1, x2) = (x1 − x2, x1x2)

15. T(x1, x2, x3) = (2 cos(x2), 3 sin(x3), x1)

16. T(x1, x2, x3) = (−5x2, 7x3)

17. T(x1, x2, x3) = (−4x1 + x3, 6x1 + 5x2)

18. T(x1, x2, x3) = (−x1 + 3x2 + x3, 2x1 + 7x2 + 4, 3x3)

19. T(x1, x2) = (x2 sin(π/4), x1 ln(2))

20. T(x1, x2) = (3x2, −x1 + 5|x2|, 2x1)

For Exercises 21–28, let T(x) = Ax for the given matrix A. Deter-
mine if T is one-to-one and if T is onto.

21. A =
[

1 −3
−2 5

]

22. A =
[

3 2
9 6

]

23. A =
[

5 4 −2
3 −1 0

]

24. A =
[
−1 3 2

4 −12 −8

]

25. A =
[

1 −2
−3 5

2 −7

]

26. A =
[

2 −4
5 −10

−4 8

]

27. A =
[

2 8 4
3 2 3
1 14 5

]

28. A =
[

1 2 −5
3 7 −8

−2 −4 6

]

For Exercises 29–32, suppose that T(x) = Ax for the given A.
Sketch a graph of the image under T of the unit square in the first
quadrant of R2.

29. A =
[

3 0
0 3

]

30. A =
[
−2 0

0 4

]

31. A =
[

1 −2
3 1

]

32. A =
[
−3 1

6 −2

]
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FIND AN EXAMPLE For Exercises 33–38, find an example that
meets the given specifications.

33. A linear transformation T : R2 → R2 such that

T

([
1
0

])
=

[
2
3

]

34. A linear transformation T : R2 → R3 such that

T

([
0
1

])
=

[
1
4
5

]

35. A linear transformation T : R2 → R2 such that

T

([
3
1

])
=

[
7
0

]

36. A linear transformation T : R3 → R2 such that

T

([
3
1

−2

])
=

[
7

−1

]

37. A linear transformation T : R2 → R2 such that

T

([
2
1

])
=

[
0
7

]
and T

([
1
3

])
=

[
−5

6

]

38. A linear transformation T : R2 → R2 such that

T

([
−1

2

])
=

[
−1

8

]
and T

([
2

−3

])
=

[
2

−13

]

TRUE OR FALSE For Exercises 39–48, determine if the statement
is true or false, and justify your answer.

39. The codomain of a linear transformation is a subset of the
range.

40. The range of a linear transformation must be a subset of the
domain.

41. If T is a linear transformation and v is in range(T), then there
is at least one u in the domain such that T(u) = v.

42. If T(x) is not a linear transformation, then T(r x) �= r T(x)
for all r and x.

43. The function T(x) = Ax + b is a linear transformation only
when b = 0.

44. If T : R2 −→ R2 is a linear transformation, then the image
under T of the unit square in the first quadrant will be a parallel-
ogram.

45. If T1(x) and T2(x) are one-to-one linear transformations from
Rn to Rm, then so is W(x) = T1(x) + T2(x).

46. If T1(x) and T2(x) are onto linear transformations from Rn to
Rm, then so is W(x) = T1(x) + T2(x).

47. If a linear transformation T : R4 → R4 is one-to-one, then
T(x) = 0 has nontrivial solutions.

48. If a linear transformation T : R3 → R3 is one-to-one, then T
also must be onto.

49. A linear transformation T : R2 → R2 is called a dilation if
T(x) = r x for r > 1. (It is called a contraction if 0 < r < 1.)

(a) Find the matrix A such that T(x) = Ax.

(b) Let r = 2, and then sketch the graphs of x =
[

2
−1

]
and T(x).

50. Suppose that T : R3 → R2 is given by

T

([
x1

x2

x3

])
=

[
x1

x2

]

The T is called a projection transformation because it projects vec-
tors in R3 onto R2.

(a) Prove that T is a linear transformation.

(b) Find the matrix A such that T(x) = Ax.

(c) Describe the set of vectors in R3 such that T(x) = 0.

51. Suppose that x = (x1, . . . , xn) and y = (y1, . . . , yn) are vec-
tors in Rn . Then the dot product of x and y is given by

x · y = x1 y1 + · · · + xn yn

Now let u be a fixed vector in Rn , and define T(x) = u · x. Show
that T is a linear transformation.

52. Suppose that x = (x1, x2, x3) and y = (y1, y2, y3) are vectors
in R3. Then the cross product of x and y is given by

x × y =
[

x2 y3 − x3 y2

x3 y1 − x1 y3

x1 y2 − x2 y1

]

Now let u be a fixed vector in Rn , and define T(x) = u × x. Show
that T is a linear transformation.

53. Suppose that T : R3 → R2 is a linear transformation. Prove
that T is not one-to-one.

54. Suppose that T : R2 → R4 is a linear transformation. Prove
that T is not onto.

55. Suppose that T is a linear transformation. Show that T(0) = 0.

56. Suppose that T(x) = Ax is a linear transformation and that
there exists u �= 0 such that T(u) = 0. Show that the columns of
A must be linearly dependent.

57. Suppose that T(x) = Ax. Show that

T(r u) = r T(u)

for all scalars r and all vectors u.

58. Suppose that T : Rm → Rn .

(a) Show that if T is a linear transformation, then

T(r x + s y) = r T(x) + s T(y)

for all scalars r and s and all vectors x and y.

(b) Now show the converse: If

T(r x + s y) = r T(x) + s T(y)
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for all scalars r and s and all vectors x and y, then T is a linear
transformation.

59. Prove that a linear transformation T is one-to-one if and only
if T(u) = T(v) implies that u = v.

60. Suppose that T is a linear transformation and that u1 and
u2 are linearly dependent. Prove that T(u1) and T(u2) are also
linearly dependent.

61. Suppose that T is a linear transformation and that T(u1) and
T(u2) are linearly independent. Prove that u1 and u2 must be
linearly independent.

62. Suppose that T is a linear transformation and that u1 and u2

are linearly independent. Show that T(u1) and T(u2) need not be
linearly independent.

63. Suppose that y is in the range of a linear transformation T
and that there exists a vector u �= 0 such that T(u) = 0. Show
that there are infinitely many solutions x to T(x) = y. (HINT:
First, explain why T(r u) = 0 for any scalar r , and then show that
T(x + r u) = y when T(x) = y.)

64. Let u and v be two distinct vectors in R2. Show that the set of
points on the line segment connecting u and v is the same as the
set of points

(1 − s )u + s v, 0 ≤ s ≤ 1

65. Let T : R2 → R2 be a linear transformation with T(x) = Ax.
Prove that the image of the unit square in the first quadrant is a
parallelogram if the columns of A are linearly independent, and
a line segment (possibly of zero length) if the columns of A are
linearly dependent.

66. In graph theory, an adjacency matrix A has an entry of 1 at
ai j if there is an edge connecting node i with node j , and a zero
otherwise. (Such matrices come up in network analysis.) Suppose
that a graph with five nodes has adjacency matrix

A =

⎡
⎢⎢⎢⎣

0 1 0 1 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎦

Let T : R5 → R5 be given by T(x) = Ax.

(a) Describe how to use T(x) to determine the number of edges
connected to node j .

(b) How can one use T(x) to help determine the total number of
graph edges?

67. (Calculus required) Suppose that for each polynomial of
degree 2 or less, we identify the coefficients with a vector in
R3 by

ax2 + bx + c ↔
[

a
b
c

]

(a) Show that addition of polynomials corresponds to vector ad-
dition and that multiplication of a polynomial by a constant cor-
responds to scalar multiplication of a vector.

(b) Let T : R3 → R3 be the function that takes a polynomial vec-
tor as input and produces the vector of the derivative as output.
Prove that T is a linear transformation.

(c) Find the matrix A such that T(x) = Ax.

(d) Is T one-to-one? Onto? Give a proof or counter-example for
each.

68. (Calculus required) Complete Exercise 67 for polynomials of
degree 3 or less identified with vectors in R4.

(Calculus required) In Chapter 9 we extend the concept of a lin-
ear transformation by observing that the two conditions given in
Definition 3.1 exist for other types of mathematical operations.
Exercises 69–70 provide a sneak preview. Assume that f (x) and
g (x) are in the set of functions C∞(R) that have infinitely many
derivatives on R and that r is a real number.

69. Let T : C∞(R) → C∞(R) be defined by T
(

f (x)
) = f ′(x).

(a) Evaluate T
(

x2 + sin(x)
)

.

(b) Prove that T satisfies conditions analogous to those given in
Definition 3.1:

i. T
(

f (x) + g (x)
) = T

(
f (x)

) + T
(

g (x)
)

ii. T
(

r f (x)
) = r T

(
f (x)

)
70. Let T : C∞(R) → R be defined by

T
(

f (x)
) =

∫ 1

0
f (x) dx

(a) Evaluate T
(

4x3 − 6x2 + 1
)

.

(b) Prove that T satisfies conditions analogous to those given in
Definition 3.1:

i. T
(

f (x) + g (x)
) = T

(
f (x)

) + T
(

g (x)
)

ii. T
(

r f (x)
) = r T

(
f (x)

)
C In Exercises 71–74, refer to the MP3 scenario given at the begin-
ning of the section. Use the linear transformation T to determine
the cost vector that results from producing the specified number
of J8’s, J40’s, and J80’s.

71. 5 J8’s, 3 J40’s, and 6 J80’s.

72. 6 J8’s, 4 J40’s, and 10 J80’s.

73. 14 J8’s, 10 J40’s, and 9 J80’s.

74. 16 J8’s, 20 J40’s, and 18 J80’s.

C For Exercises 75–80, let T(x) = Ax for the given matrix A.
Determine if T is one-to-one and if T is onto.

75. A =
[

4 2 −5 2 6
7 −2 0 −4 1
0 3 −5 7 −1

]

76. A =
[

4 −2 5 2 1
5 14 4 −5 8

−1 6 −2 −3 2

]

77. A =

⎡
⎢⎣

2 −1 4 0
3 −3 1 1
1 −1 8 3
0 −2 1 4

⎤
⎥⎦
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78. A =

⎡
⎢⎣

3 2 0 5
0 1 2 −3

−2 −1 3 1
4 −2 3 −1

⎤
⎥⎦

79. A =

⎡
⎢⎢⎢⎣

2 −3 5 1
6 0 3 −2

−4 2 1 1
8 2 3 −4

−1 2 5 −3

⎤
⎥⎥⎥⎦

80. A =

⎡
⎢⎢⎢⎣

4 3 −2 9
−1 0 1 −1

3 0 −2 4
2 −4 3 3
5 −7 0 3

⎤
⎥⎥⎥⎦

3.2 Matrix Algebra
In this section, we develop the algebra of matrices. This algebraic structure has many
things in common with the algebra of the real numbers, but there are also some important
differences.

To get us started, consider a hypothetical natural foods store that sells organic
chicken eggs that come from two suppliers, The Happy Coop and Eggspeditious. Each
provides both white and brown eggs by the dozen in medium, large, and extra large sizes.
The store’s current inventory of 12–egg cartons is given in the following two tables.

The Happy Coop Eggspeditious

White Brown

Medium 5 3
Large 11 6

XLarge 4 6

White Brown

Medium 8 5
Large 3 6

XLarge 8 10

Table 1 Egg Inventories at a Natural Foods Store

This information can be transferred into a pair of matrices

H =
⎡
⎣ 5 3

11 6
4 6

⎤
⎦ and E =

⎡
⎣8 5

3 6
8 10

⎤
⎦

If we want to know the total number of egg cartons of each type in stock, we just add the
corresponding terms in each matrix, giving⎡

⎣ (5 + 8) (3 + 5)
(11 + 3) (6 + 6)

(4 + 8) (6 + 10)

⎤
⎦ =

⎡
⎣13 8

14 12
12 16

⎤
⎦

Thus, for instance, there are 13 cartons of medium white eggs in stock. If instead we want
to find the total number of each type of Eggspeditious eggs, we multiply each term in E
by 12: ⎡

⎣(12 · 8) (12 · 5)
(12 · 3) (12 · 6)
(12 · 8) (12 · 10)

⎤
⎦ =

⎡
⎣96 60

36 72
96 120

⎤
⎦

These computations illustrate addition and scalar multiplication of matrices, and
are analogous to those for vectors. As these operations suggest, two matrices are equal if
they have the same dimensions and if their corresponding entries are equal.

Definition Equal Matrices
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This example serves as a model for a formal definition of addition and scalar multi-
plication.

D E F I N I T I O N 3.10 Let c be a scalar, and let

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣

b11 b12 · · · b1m

b21 b22 · · · b2m

...
...

...

bn1 bn2 · · · bnm

⎤
⎥⎥⎥⎦

be n × m matrices. Then addition and scalar multiplication of matrices are defined as
follows:

(a) Addition: A + B =

⎡
⎢⎢⎢⎣

(a11 + b11) (a12 + b12) · · · (a1m + b1m)
(a21 + b21) (a22 + b22) · · · (a2m + b2m)

...
...

...

(an1 + bn1) (an2 + bn2) · · · (anm + anm)

⎤
⎥⎥⎥⎦

(b) Scalar Multiplication: c A =

⎡
⎢⎢⎢⎣

ca11 ca12 · · · ca1m

ca21 ca22 · · · ca2m

...
...

...

can1 can2 · · · canm

⎤
⎥⎥⎥⎦

Definition Addition, Scalar
Multiplication of Matrices

E X A M P L E 1 Let

A =
⎡
⎣4 −1

2 −3
7 0

⎤
⎦ and B =

⎡
⎣3 −1

5 0
0 2

⎤
⎦

Find 3A and A − 2B .

Solution We have

3A = 3

⎡
⎣4 −1

2 −3
7 0

⎤
⎦ =

⎡
⎣3(4) 3(−1)

3(2) 3(−3)
3(7) 3(0)

⎤
⎦ =

⎡
⎣12 −3

6 −9
21 0

⎤
⎦

and

A − 2B =
⎡
⎣4 −1

2 −3
7 0

⎤
⎦ − 2

⎡
⎣3 −1

5 0
0 2

⎤
⎦ =

⎡
⎣4 −1

2 −3
7 0

⎤
⎦ −

⎡
⎣ 6 −2

10 0
0 4

⎤
⎦ =

⎡
⎣−2 1

−8 −3
7 −4

⎤
⎦

■

Suppose that r , s , and t are real numbers. Recall the following laws for arithmetic:

(a) r + s = s + r (Commutative)

(b) (r + s ) + t = r + (s + t) (Associative)

(c) r (s + t) = r s + r t (Distributive)

(d) r + 0 = r (Additive Identity)

Similar laws hold for addition and scalar multiplication of matrices.
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T H E O R E M 3.11 Let s and t be scalars, A, B , and C be matrices of dimension n × m, and 0nm be the
n × m matrix with all zero entries. Then

(a) A + B = B + A

(b) s (A + B) = s A + s B

(c) (s + t)A = s A + t A

(d) (A + B) + C = A + (B + C )

(e) (s t)A = s (t A)

(f) A + 0nm = A

Proof The proof of each part follows from the analogous laws for the real numbers. We
prove part (e) here and leave the rest as exercises.

Let

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦

Then we have

(s t)A = (s t)

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s ta11 s ta12 · · · s ta1m

s ta21 s ta22 · · · s ta2m

...
...

...

s tan1 s tan2 · · · s tanm

⎤
⎥⎥⎥⎦

On the other hand,

s (t A) = s

⎡
⎢⎢⎢⎣

ta11 ta12 · · · ta1m

ta21 ta22 · · · ta2m

...
...

...

tan1 tan2 · · · tanm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s ta11 s ta12 · · · s ta1m

s ta21 s ta22 · · · s ta2m

...
...

...

s tan1 s tan2 · · · s tanm

⎤
⎥⎥⎥⎦

Both are the same, so (s t)A = s (t A). ■

Matrix Multiplication
It is tempting to expect that matrix multiplication would be defined in the same term-
by-term manner as addition, so that (for example) we would have

Warning: This is not correct!

[
1 2
3 4

] [
5 6
7 8

]
=

[
1 · 5 2 · 6
3 · 7 4 · 8

]
=

[
5 12

21 32

]

However, defining multiplication in this way is not helpful in most applications. Instead, it
is more useful to define matrix multiplication so that it is consistent with the composition
of linear transformations.

Let S : Rm → Rk and T : Rk → Rn be linear transformations. By Theorem 3.8,
there exists a k × m matrix B = [

b1 · · · bm

]
and an n × k matrix A such that

S(x) = Bx and T(y) = Ay
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where x is in Rm and y is in Rk . Now let

W(x) = T
(

S(x)
)

be the composition of T with S (see Figure 1). Then W : Rm → Rn and

W(x) = T
(

S(x)
)

= A
(

Bx
)

= A
(

x1b1 + x2b2 + · · · + xmbm

)
= x1(Ab1) + x2(Ab2) + · · · + xm(Abm)

= [
Ab1 Ab2 · · · Abm

]
︸ ︷︷ ︸

n × m matrix

⎡
⎢⎣

x1

...

xm

⎤
⎥⎦

Rm RnRk

T(S(x))
� W(x)

S T

W

x

Figure 1 The composition
W(x) = T

(
S(x)

)
.

Thus, if

C = [
Ab1 Ab2 · · · Abm

]
then C is an n × m matrix and W(x) = C x. Therefore, by Theorem 3.8, W is a linear
transformation. This also shows how to define the matrix product to make it consistent
with composition of linear transformations.

D E F I N I T I O N 3.12 Let A be an n × k matrix and B a k × m matrix. Then the product AB is an n × m
matrix given by

AB = [
Ab1 Ab2 · · · Abm

]Definition Matrix Multiplication

For AB to exist, the number
of columns of A must equal the
number of rows of B . In other words, the product AB is the product of the matrix A and each of the columns

of B . Note also that if S(x) = Bx and T(y) = Ay, then T
(

S(x)
) = ABx.

E X A M P L E 2 Let

A =
[

3 1
−2 0

]
and B =

[−1 0 2
4 −3 −1

]

Find (if they exist) AB and B A.

Solution Since A is a 2 × 2 matrix and B is a 2 × 3 matrix, it follows that C = AB
exists and is a 2 × 3 matrix, with columns

c1 = Ab1 = −1

[
3

−2

]
+ 4

[
1
0

]
=

[
1
2

]

c2 = Ab2 = 0

[
3

−2

]
− 3

[
1
0

]
=

[−3
0

]

c3 = Ab3 = 2

[
3

−2

]
− 1

[
1
0

]
=

[
5

−4

]

Thus

AB =
[

1 −3 5
2 0 −4

]

Turning to B A, since B is 2 × 3 and A is 2 × 2, B has three columns but A has two
rows. These do not match, so the product B A is not defined. ■
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The preceding example shows that even when AB is defined, B A still might not
be. Example 3 shows that even if both AB and B A are defined, they typically are
not equal.

E X A M P L E 3 Let

A =
[

2 −1
1 3

]
and B =

[
4 −2

−1 1

]

Find (if they exist) AB and B A.

Solution Since A and B both are 2 × 2 matrices, AB and B A are defined. If C = AB ,
then

c1 = Ab1 = 4

[
2
1

]
− 1

[−1
3

]
=

[
9
1

]

c2 = Ab2 = −2

[
2
1

]
+ 1

[−1
3

]
=

[−5
1

]

so that

AB =
[

9 −5
1 1

]

Reversing A and B , if D = B A, then

d1 = Ba1 = 2

[
4

−1

]
+ 1

[−2
1

]
=

[
6

−1

]

d2 = Ba2 = −1

[
4

−1

]
+ 3

[−2
1

]
=

[−10
4

]

and so

B A =
[

6 −10
−1 4

]

Thus we see that AB �= B A. ■

Example 3 shows that matrix
multiplication is not commuta-
tive.

In some applications, we need only a single entry of the matrix product AB . Assume
that A is an n × k matrix and B is a k × m matrix. Then C = AB is defined, with j th
column

c j = Ab j = b1 j a1 + b2 j a2 + · · · + bk j ak

for j = 1, . . . , m. Selecting the i th component from each of the vectors a1, . . . , ak gives
the formula for individual entries of C ,

ci j = ai1b1 j + ai2b2 j + · · · + aikbk j (1)

ci j � ai1b1j � ai2b2j � . . . � aikbkj

ai1  ai2  . . .  aik ci j

...

b2j

b1j

B
(k � m)Row i

A
(n � k)

Column j

bk j

C � AB
(n � m)

Figure 2 Computing an entry
in matrix multiplication.

Note that we are multiplying each term from row i of A times the corresponding term in
column j of B and then adding the resulting products. (This is called the dot prod-
uct, which we will study later.) Figure 2 shows a graphical depiction of computing
an entry.
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E X A M P L E 4 Use 1 to compute the entries of C = AB , where

A =
⎡
⎣2 −3

0 −1
1 4

⎤
⎦ and B =

[
2 3 −4 2
4 −2 5 −3

]

Solution Let’s start with c11. To compute this, we need the entries in row 1 of A and
column 1 of B . Setting i = 1 and j = 1, our formula 1 gives us

c11 = a11b11 + a12b21 = (2)(2) + (−3)(4) = −8

All entries of C are found in a similar manner, with

c11 = (2)(2) + (−3)(4) = −8 c13 = (2)(−4) + (−3)(5) = −23

c21 = (0)(2) + (−1)(4) = −4 c23 = (0)(−4) + (−1)(5) = −5

c31 = (1)(2) + (4)(4) = 18 c33 = (1)(−4) + (4)(5) = 16

c12 = (2)(3) + (−3)(−2) = 12 c14 = (2)(2) + (−3)(−3) = 13

c22 = (0)(3) + (−1)(−2) = 2 c24 = (0)(2) + (−1)(−3) = 3

c32 = (1)(3) + (4)(−2) = −5 c34 = (1)(2) + (4)(−3) = −10

This gives the product

AB = C =
⎡
⎣−8 12 −23 13

−4 2 −5 3
18 −5 16 −10

⎤
⎦

■

Some find that the method illustrated above is easier for computing products by hand
than that shown in Example 2 and Example 3. Both methods are perfectly fine, so use
whichever you prefer.

The Identity Matrix
Given an n × m matrix A = [

a1 · · · am

]
, we can see that the zero matrix 0nm satisfies

A + 0nm = A

For this reason, the matrix 0nm is called the additive identity. It is less apparent whichDefinition Additive Identity

matrix plays the role of the multiplicative identity—that is, the matrix I such that

A = AI

for all n × m matrices A. But we can deduce I . For AI to be defined and equal to A, I
must be an m × m matrix, so let Im = [

i1 i2 · · · im

]
. The first columns of A and AI

must be the same, so that

a1 = Ai1 = i11a1 + i21a2 + · · · + im1am

The only way that this will hold for every possible matrix A is if

i1 =

⎡
⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎦
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Taking each of the other columns in turn, similar arguments show that

i2 =

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ , i3 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
...

0

⎤
⎥⎥⎥⎥⎥⎦ , · · · im =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

1

⎤
⎥⎥⎥⎥⎥⎦

Note that i1 = e1, . . . , im = em, where e1, . . . , em are defined in (3) of Section 3.1. Thus
we find that if Im is the m × m matrix

Im = [
e1 e2 · · · em

] =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

then A = AIm for all n × m matrices A. Similarly, we have

A = In A (2)

for all n × m matrices A. (Verification of (2) is left as an exercise.) The matrices In for
n = 1, 2, . . . are referred to as identity matrices.Definition Identity Matrix

Properties of Matrix Algebra
As we have already seen, addition and scalar multiplication of matrices share many of
the same properties as addition and multiplication of real numbers. However, not all
properties of multiplication of real numbers carry over to multiplication of matrices.
Some of those that do are given in Theorem 3.13.

T H E O R E M 3.13 Let s be a scalar, and let A, B , and C be matrices. Then each of the following holds in
the cases where the indicated operations are defined:

(a) A(BC) = (AB)C

(b) A(B + C ) = AB + AC

(c) (A + B)C = AC + BC

(d) s (AB) = (s A)B = A(s B)

(e) AI = A

(f) I A = A

Here I denotes an identity matrix of appropriate dimension.

Proof We have already supplied a proof for part (e). Here we prove part (c) and leave
the rest as exercises.D = [di j ] is shorthand nota-

tion for

D =

⎡
⎢⎢⎣

d11 d12 · · · d1m

d21 d22 · · · d2m
...

...
...

dn1 dn2 · · · dnm

⎤
⎥⎥⎦

Suppose that A = [ai j ] and B = [bi j ] are n × m matrices and that C = [c i j ]
is an m × k matrix. Let F = [ fi j ] = (A + B)C and G = [gi j ] = AC + BC . It is
straightforward to verify that F and G both have dimension n × k. Using the formula
for calculating product entries given in 1, we find that

fi j = (ai1 + bi1)c1 j + (ai2 + bi2)c2 j + · · · + (aim + bim)cmj

= (ai1c1 j + ai2c2 j + · · · + aimcmj ) + (bi1c1 j + bi2c2 j + · · · + bimcmj )

= gi j

which shows that (A + B)C = AC + BC as claimed. ■



Holt-4100161 la November 8, 2012 10:51 102

102 CHAPTER 3 Matrices

E X A M P L E 5 Let

A =
[

2 −3
−1 5

]
, B =

[
0 7
4 −2

]
, and C =

[−3 −4
0 −1

]

Verify that A(BC) = (AB)C and A(B + C ) = AB + AC .

Solution We have

A(BC ) =
[

2 −3
−1 5

] ([
0 7
4 −2

] [−3 −4
0 −1

])

=
[

2 −3
−1 5

] [
0 −7

−12 −14

]
=

[
36 28

−60 −63

]

and

(AB)C =
([

2 −3
−1 5

] [
0 7
4 −2

]) [−3 −4
0 −1

]

=
[−12 20

20 −17

] [
0 −7

−12 −14

]
=

[
36 28

−60 −63

]

so that A(BC ) = (AB)C . We also have

A(B + C ) =
[

2 −3
−1 5

] ([
0 7
4 −2

]
+

[−3 −4
0 −1

])

=
[

2 −3
−1 5

] [−3 3
4 −3

]
=

[−18 15
23 −18

]

and

AB + AC =
[

2 −3
−1 5

] [
0 7
4 −2

]
+

[
2 −3

−1 5

] [−3 −4
0 −1

]

=
[−12 20

20 −17

] [−6 −5
3 −1

]
=

[−18 15
23 −18

]

Thus A(B + C ) = AB + AC . ■

Although many of the rules for the algebra of matrices are the same as the rules for
the algebra of real numbers, there are important differences. For instance, if a and b are
any real numbers, then ab = ba . The same is not true of matrices, where multiplication
is not generally commutative (see Example 3). This and two other properties of real
numbers that do not carry over to matrices are given in the next theorem.

Here 0 represents the zero
matrix of appropriate dimen-
sion.

T H E O R E M 3.14 Let A, B , and C be nonzero matrices.

(a) It is possible that AB �= B A.

(b) AB = 0 does not imply that A = 0 or B = 0.

(c) AC = BC does not imply that A = B or C = 0.

Proof Part (a) follows from Example 3. For part (b), let

A =
[

1 2
3 6

]
and B =

[−4 6
2 −3

]
�⇒ AB =

[
0 0
0 0

]
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Thus AB = 022 even though A and B are nonzero matrices. For (c), let

A =
[−3 3

11 −3

]
, B =

[−1 2
3 1

]
, C =

[
1 3
2 6

]

Although A �= B and C is a nonzero matrix, we have

AC =
[

3 9
5 15

]
and BC =

[
3 9
5 15

]
�⇒ AC = BC ■

Because of the results in Theorem 3.14, we must take care when performing algebra
with matrices.

Transpose of a Matrix
The transpose of a matrix A is denoted by AT and results from interchanging the rows

Definition Transpose

and columns of A. For example,

A =
⎡
⎣1 2 3 4

5 6 7 8
9 10 11 12

⎤
⎦ �⇒ AT =

⎡
⎢⎢⎣

1 5 9
2 6 10
3 7 11
4 8 12

⎤
⎥⎥⎦

Focusing on individual entries, the entry in row i and column j of A becomes the entry
in row j and column i of AT .

A few properties of matrix transposes are given in the next theorem.

Theorem 3.15(c) says that
the transpose of a product is the
product of transposes with the
order reversed.

T H E O R E M 3.15 Let A and B be n × m matrices, C an m × k matrix, and s a scalar. Then

(a) (A + B)T = AT + B T

(b) (s A)T = s AT

(c) (AC )T = C T AT

The proofs of parts (a) and (b) are straightforward and left as exercises. A general proof
of part (c) is not difficult but is notationally messy and is omitted. The next example
illustrates Theorem 3.15(c) for a specific pair of matrices.

E X A M P L E 6 Show that (AC )T = C T AT for

A =
[

1 −2 0
3 1 −4

]
and C =

⎡
⎣ 5 0

−1 2
0 3

⎤
⎦

Solution We have

AC =
[

7 −4
14 −10

]
�⇒ (AC )T =

[
7 14

−4 −10

]

On the other hand,

C T AT =
[

5 −1 0
0 2 3

]⎡
⎣ 1 3

−2 1
0 −4

⎤
⎦ =

[
7 14

−4 −10

]

Thus (AC )T = C T AT . ■
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A special class of square matrices are those such that A = AT . Matrices with this
property are said to be symmetric. For instance, ifDefinition Symmetric Matrix

A =
⎡
⎣1 2 4

2 2 −1
4 −1 −3

⎤
⎦ �⇒ AT =

⎡
⎣1 2 4

2 2 −1
4 −1 −3

⎤
⎦

then A is a symmetric matrix.

Powers of a Matrix
Suppose that A is the 2 × 2 matrix [

2 2
−3 −1

]

Then we let A2 denote A · A, so that

A2 =
[

2 2
−3 −1

] [
2 2

−3 −1

]
=

[−2 2
−3 −5

]

Similarly, A3 = A · A · A. By the associative law, we have A · (A · A) = (A · A) · A,
so that we can interpret A3 = A · A2 or A3 = A2 · A—either way, we get the same result.
For our matrix, we have

A3 = A · A2 =
[

2 2
−3 −1

] [−2 2
−3 −5

]
=

[−10 −6
9 −1

]

In general, if A is an n × n matrix, then

Ak = A · A · · · · A︸ ︷︷ ︸
k terms

As with A3, the associative law ensures that we get the same result regardless of how we
organize the products.

Cable Satellite

No TV

10%

5%

5%10%

10%5%

90%80%

85%

Figure 3 Customer transition
percentages between cable,
satellite, and no television.

E X A M P L E 7 In a small town there are 10,000 homes. When it comes to television
viewing, the residents have three choices: they can subscribe to cable, they can pay
for satellite service, or they watch no TV. (The town is sufficiently remote so that an
antenna does not work.) In a given year, 80% of the cable customers stick with cable,
10% switch to satellite, and 10% get totally disgusted and quit watching TV. Over the
same time period, 90% of satellite viewers continue with satellite service, 5% switch to
cable, and 5% quit watching TV. And of those people who start the year not watching
TV, 85% continue not watching, 5% subscribe to cable, and 10% get satellite service
(see Figure 3). If the current distribution is 6000 homes with cable, 2500 with satellite
service, and 1500 with no TV, how many of each type will there be a year from now?
How about two years from now? Three years from now?

Solution The information given is summarized in Table 2. Reading down each column,
we see the percentage of viewers in a given group that switches to one of the other groups.
At the start of the year, 6000 homes have cable, 2500 have satellite service, and 1500
have no TV. From our table we see that at the end of the year, the number of homes
with cable is

0.80 (6000) + 0.05 (2500) + 0.05 (1500) = 5000 (3)
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Start of Year

Cable Satellite No TV

Cable 80% 5% 5%
End of Year Satellite 10% 90% 10%

No TV 10% 5% 85%

Table 2 Rates of Customer Transitions

Similar calculations can be performed to determine the number of satellite customers
and the number with no TV at year’s end. We can simplify these calculations by letting
A be the matrix formed from the values in our table (converted from percentages
to proportions) and x be the vector containing the initial number of people in each
category,

A =
⎡
⎣0.80 0.05 0.05

0.10 0.90 0.10
0.10 0.05 0.85

⎤
⎦ and x =

⎡
⎣6000

2500
1500

⎤
⎦

Note that the top entry of Ax is the same as the left side of (3) and that in general
Ax gives the number of people in each category after a year has passed. We have

Ax =
⎡
⎣0.80 0.05 0.05

0.10 0.90 0.10
0.10 0.05 0.85

⎤
⎦

⎡
⎣6000

2500
1500

⎤
⎦ =

⎡
⎣5000

3000
2000

⎤
⎦

which shows that after one year the town will have 5000 cable subscribers, 3000 receiving
satellite service, and 2000 with no TV. If the proportion of homes switching among
categories remains unchanged, after two years the number of households in each group
will be

A(Ax) = A2x =
⎡
⎣0.65 0.0875 0.0875

0.18 0.82 0.18
0.17 0.0925 0.7325

⎤
⎦

⎡
⎣6000

2500
1500

⎤
⎦ =

⎡
⎣4250

3400
2350

⎤
⎦

Similarly, after three years, the number of homes in each group is

A3x =
⎡
⎣0.655375 0.115625 0.115625

0.244 0.756 0.244
0.2185 0.128375 0.640375

⎤
⎦

⎡
⎣6000

2500
1500

⎤
⎦ ≈

⎡
⎣3688

3720
2593

⎤
⎦

More generally, the number of households in each category after n years is given
by Anx. These results suggest that cable is losing customers to both satellite and no
TV, but eventually the populations stabilize. In Section 3.5, we see what happens as
n → ∞. ■

Here we have rounded the en-
tries to the nearest integer.

There are two types of matrices that retain their form when raised to powers. The
first of these is the diagonal matrix, which has the formDefinition Diagonal Matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ (4)
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The diagonal of A consists of the entries a11, . . . , ann, each of which can be zero or
nonzero. For instance,

⎡
⎣1 0 0

0 −3 0
0 0 4

⎤
⎦ and

⎡
⎢⎢⎣

2 0 0 0
0 0 0 0
0 0 7 0
0 0 0 5

⎤
⎥⎥⎦

are both diagonal matrices.

E X A M P L E 8 Compute A2 and A3 for the diagonal matrix

A =
⎡
⎣2 0 0

0 −3 0
0 0 5

⎤
⎦

Solution We have

A2 =
⎡
⎣2 0 0

0 −3 0
0 0 5

⎤
⎦

⎡
⎣2 0 0

0 −3 0
0 0 5

⎤
⎦ =

⎡
⎣22 0 0

0 (−3)2 0
0 0 52

⎤
⎦ =

⎡
⎣4 0 0

0 9 0
0 0 25

⎤
⎦

and

A3 = A2 · A =
⎡
⎣22 0 0

0 (−3)2 0
0 0 52

⎤
⎦

⎡
⎣2 0 0

0 −3 0
0 0 5

⎤
⎦

=
⎡
⎣23 0 0

0 (−3)3 0
0 0 53

⎤
⎦ =

⎡
⎣8 0 0

0 −27 0
0 0 125

⎤
⎦

■

In Example 8 the powers of the diagonal matrix A are just the powers of the diagonal
entries. This is true for any diagonal matrix.

T H E O R E M 3.16 If A is the diagonal matrix in (4), then for each integer k ≥ 1,

Ak =

⎡
⎢⎢⎢⎢⎢⎣

ak
11 0 0 · · · 0
0 ak

22 0 · · · 0
0 0 ak

33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ak
nn

⎤
⎥⎥⎥⎥⎥⎦

Proof We use induction for the proof. First, if k = 1, then Ak = A so that Ak clearly
has the form shown. Next is the induction hypothesis, which states that the theorem is
true for exponent k − 1, so that Ak−1 is diagonal and given by

Ak−1 =

⎡
⎢⎢⎢⎢⎢⎣

ak−1
11 0 0 · · · 0
0 ak−1

22 0 · · · 0
0 0 ak−1

33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ak−1
nn

⎤
⎥⎥⎥⎥⎥⎦
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Therefore

Ak = Ak−1 · A =

⎡
⎢⎢⎢⎢⎢⎣

ak−1
11 0 0 · · · 0
0 ak−1

22 0 · · · 0
0 0 ak−1

33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ak−1
nn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ak
11 0 0 · · · 0
0 ak

22 0 · · · 0
0 0 ak

33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ak
nn

⎤
⎥⎥⎥⎥⎥⎦

Hence Ak has the claimed form. ■

A second class of matrices whose form is unchanged when raised to a power are
triangular matrices. An n × n matrix A is upper triangular if it has the form

Definition Upper Triangular
Matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...

0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

That is, A is upper triangular if the entries below the diagonal are all zero. Similarly, an
n × n matrix A is lower triangular if the terms above the diagonal are all zero,

Definition Lower Triangular
Matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

As with diagonal matrices,
triangular matrices can have
entries equal to zero along
the diagonal. Note that this is
different than triangular linear
systems, where the leading
(diagonal) coefficients must be
nonzero.

A matrix is triangular if it is either upper or lower triangular. (Diagonal matrices are
both.) For example, the matrix

A =
⎡
⎣−1 0 1

0 −2 4
0 0 3

⎤
⎦

is upper triangular, as are the matrix powers

A2 =
⎡
⎣1 0 2

0 4 4
0 0 9

⎤
⎦ and A3 =

⎡
⎣−1 0 7

0 −8 28
0 0 27

⎤
⎦

In fact, powers of upper (or lower) triangular matrices are also upper (or lower) triangular.

T H E O R E M 3.17 Let A be an n × n upper (lower) triangular matrix and k ≥ 1 an integer. Then Ak is
also an upper (lower) triangular.
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The proof makes use of the fact that the product of two upper (lower) triangular
matrices is again an upper (lower) triangular matrix (see Exercises 57–58), and is left as
an exercise.

Partitioned Matrices
The material on partitioned

matrices is optional.
Some applications require working with really, really big matrices. (Think tens of millions
of entries.) In such situations, we can divide the matrices into smaller submatrices that
are more manageable.

For instance, the Google Page
Rank search algorithm uses a
matrix with several billion rows
and columns.

Let’s start with a concrete example, say,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −3 1 7
−1 4 2 0 4

6 −1 1 8 −3
0 2 7 −3 3
2 0 −6 9 0
1 −1 8 5 −1
4 6 9 7 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Below, A is shown partitioned into six different submatrices (called blocks),
Definition Partitioned Matrix,

Blocks

A =
⎡
⎣A11 A12

A21 A22

A31 A32

⎤
⎦

where

A11 =
⎡
⎣ 2 0 −3

−1 4 2
6 −1 1

⎤
⎦ A12 =

⎡
⎣1 7

0 4
8 −3

⎤
⎦

A21 =
[

0 2 7
2 0 −6

]
A22 =

[−3 3
9 0

]

A31 =
[

1 −1 8
4 6 9

]
A32 =

[
5 −1
7 8

]

Matrices can be partitioned in any manner desired. The advantage of working with
partitioned matrices is that we can do arithmetic on a few blocks at a time to make better
use of computer memory. In addition, if numerous processors are available, computations
can be distributed across them and simultaneously performed in parallel.

Of the arithmetic operations that can be performed on partitioned matrices, addition
and scalar multiplication are the easiest to understand. Suppose that A and B are n × m
matrices, partitioned into blocks as shown:

A =
[

A11 A12 A13

A21 A22 A23

]n1

n2

m3m2m1

B =
[

B11 B12 B13

B21 B22 B23

]n1

n2

m3m2m1

The notation around each matrix indicates the block dimensions. For example, A21

and B21 are both n2 × m1 submatrices. Since the corresponding blocks have the same
dimensions, they can be added together in the usual manner, yielding

A + B =
[

(A11 + B11) (A12 + B12) (A13 + B13)

(A21 + B21) (A22 + B22) (A23 + B23)

]
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The formula for scalar multiplication of partitioned matrices is quite natural,

r A =
[

r A11 r A12 r A13

r A21 r A22 r A23

]

E X A M P L E 9 Suppose that A and B are two matrices partitioned into blocks,

A =
⎡
⎣1 −2 0 3 4

4 2 1 1 −2
7 −3 5 0 −1

⎤
⎦ and B =

⎡
⎣6 2 4 1 0

3 7 −1 2 2
4 5 0 1 6

⎤
⎦

Use addition and scalar multiplication of partitioned matrices to find A + B and −4B .

Solution We have

A11 + B11 =
[

1 −2
4 2

]
+

[
6 2
3 7

]
=

[
7 0
7 9

]

A12 + B12 =
[

0 3 4
1 1 −2

]
+

[
4 1 0

−1 2 2

]
=

[
4 4 4
0 3 0

]

A21 + B21 = [
7 −3

] + [
4 5

] = [
11 2

]
A22 + B22 = [

5 0 −1
] + [

0 1 6
] = [

5 1 5
]

Pulling the block sums back together gives

A + B =
[

(A11 + B11) (A12 + B12)

(A21 + B21) (A22 + B22)

]
=

⎡
⎣ 7 0 4 4 4

7 9 0 3 0
11 2 5 1 5

⎤
⎦

To find −4B , we need

−4B11 = −4

[
6 2
3 7

]
=

[−24 −8
−12 −28

]

−4B12 = −4

[
4 1 0

−1 2 2

]
=

[−16 −4 0
4 −8 −8

]

−4B21 = −4
[
4 5

] = [−16 −20
]

−4B22 = −4
[
0 1 6

] = [
0 −4 −24

]
Putting everything back together yields

−4B =
[−4B11 −4B12

−4B21 −4B22

]
=

⎡
⎣ −24 −8 −16 −4 0

−12 −28 4 −8 −8
− 16 −20 0 −4 −24

⎤
⎦

■

Multiplication of partitioned matrices nicely mimics the usual multiplication of
matrices. Suppose that A is an n × k matrix and B is a k × m matrix, so that AB is
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defined. Partition A and B as shown:

A =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1i

A21 A22 · · · A2i

...
... · · · ...

A j 1 A j 2 · · · A j i

⎤
⎥⎥⎥⎦

n1

n2
...

n j

ki· · ·k2k1

B =

⎡
⎢⎢⎢⎣

B11 B12 · · · B1l

B21 B22 · · · B2l

...
... · · · ...

Bi1 Bi2 · · · Bil

⎤
⎥⎥⎥⎦

k1

k2
...

ki

ml· · ·m2m1

The only requirement when setting the size of the partitions is that the column sizes
for A must match the row sizes for B . (Here both are k1, k2, . . . , ki .) We can compute AB
using the blocks in exactly the same manner as we do with regular matrix multiplication.
For instance, the upper left block of AB is given by

A11 B11 + A12 B21 + · · · + A1i Bi1

Note that each product in this sum is an n1 × m1 matrix, so that the upper left block of
AB is also an n1 × m1 matrix.

E X A M P L E 10 Suppose that

A =

⎡
⎢⎢⎣

3 −1 2 4 0
0 2 1 −3 1
2 3 −4 0 −4
1 6 0 2 −2

⎤
⎥⎥⎦ =

[
A11 A12

A21 A22

]

B =

⎡
⎢⎢⎢⎢⎣

3 1 2
4 0 3

−1 7 0
2 4 1
0 −1 −1

⎤
⎥⎥⎥⎥⎦ =

[
B11 B12 B13

B21 B22 B23

]

Find AB using block multiplication with the given partitions.

Solution First, the block multiplication yields

AB =
[

A11 A12

A21 A22

] [
B11 B12 B13

B21 B22 B23

]

=
[

(A11 B11 + A12 B21) (A11 B12 + A12 B22) (A11 B13 + A12 B23)

(A21 B11 + A22 B21) (A21 B12 + A22 B22) (A21 B13 + A22 B23)

]

For the upper left block we need the products

A11 B11 =
⎡
⎣3 −1

0 2
2 3

⎤
⎦[

3
4

]
=

⎡
⎣ 5

8
18

⎤
⎦ and A12 B21 =

⎡
⎣ 2 4 0

1 −3 1
−4 0 −4

⎤
⎦

⎡
⎣−1

2
0

⎤
⎦ =

⎡
⎣ 6

−7
4

⎤
⎦

Thus the upper left block of AB is given by

A11 B11 + A12 B21 =
⎡
⎣ 5

8
18

⎤
⎦ +

⎡
⎣ 6

−7
4

⎤
⎦ =

⎡
⎣11

1
22

⎤
⎦
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Similar computations give us

A11 B12 + A12 B22 =
⎡
⎣ 33

−4
−30

⎤
⎦ , A11 B13 + A12 B23 =

⎡
⎣7

4
9

⎤
⎦ ,

A21 B11 + A22 B21 = [
31

]
, A21 B12 + A22 B22 = [

11
]

, A21 B13 + A22 B23 = [
24

]
Finally, we pull everything together to arrive at

AB =

⎡
⎢⎢⎣

11 33 7
1 −4 4

22 −30 9
31 11 24

⎤
⎥⎥⎦

■

E X E R C I S E S
In Exercises 1–6, perform the indicated computations when
possible, using the matrices given below. If a computation is not
possible, explain why.

A =
[
−3 1

2 −1

]
, B =

[
0 4

−2 5

]
, C =

[
5 0

−1 4
3 3

]

D =
[

1 0 −3
−2 5 −1

]
, E =

[
1 4 −5

−2 1 −3
0 2 6

]

1. (a) A + B , (b) AB + I2, (c) A + C

2. (a) AC , (b) C + DT , (c) C B + I2

3. (a) (AB)T , (b) C E , (c) (A − B)D

4. (a) A3, (b) BC T , (c) E C + I3

5. (a) (C + E )B , (b) B(C T + D), (c) E + C D

6. (a) AD − C T , (b) AB − DC , (c) D E + C B

In Exercises 7–10, find the missing values in the given matrix
equation.

7.

[
2 a
3 −2

][
b −3

−1 2

]
=

[
3 −8
5 c

]

8.

[
1 4
a 7

][
2 −1
b 3

]
=

[
6 d

11 c

]

9.

[
a 3 −2
3 −2 4

][
2 −1
0 b
c 1

]
=

[
4 d

−6 −5

]

10.

[
1 a
0 −2
5 b

][
3 c d

−2 1 2

]
=

[−3 3 7
e −2 −4
f −2 1

]

11. Find all values of a such that A2 = A for

A =
[

5 −10
a −4

]

12. Find all values of a such that A3 = 2A for

A =
[
−2 2
−1 a

]

13. Let T1 and T2 be linear transformations given by

T1

([
x1

x2

])
=

[
3x1 + 5x2

−2x1 + 7x2

]

T2

([
x1

x2

])
=

[
−2x1 + 9x2

5x2

]

Find the matrix A such that

(a) T1(T2(x)) = Ax

(b) T2(T1(x)) = Ax

(c) T1(T1(x)) = Ax

(d) T2(T2(x)) = Ax

14. Let T1 and T2 be linear transformations given by

T1

([
x1

x2

])
=

[
−2x1 + 3x2

x1 + 6x2

]

T2

([
x1

x2

])
=

[
4x1 − 5x2

x1 + 5x2

]

Find the matrix A such that

(a) T1(T2(x)) = Ax

(b) T2(T1(x)) = Ax

(c) T1(T1(x)) = Ax

(d) T2(T2(x)) = Ax

In Exercises 15–18, expand each of the given matrix expressions
and combine as many terms as possible. Assume that all matrices
are n × n.

15. (A + I )(A − I )

16. (A + I )(A2 + A)

17. (A + B2)(B A − A)

18. A(A + B) + B(B − A)

In Exercises 19–22, the given matrix equation is not true in general.
Explain why. Assume that all matrices are n × n.

19. (A + B)2 = A2 + 2AB + B2
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20. (A − B)2 = A2 − 2AB + B2

21. A2 − B2 = (A − B)(A + B)

22. A3 + B3 = (A + B)(A2 − AB + B2)

23. Suppose that A has four rows and B has five columns. If AB
is defined, what are its dimensions?

24. Suppose that A has four rows and B has five columns. If B A
is defined, what are its dimensions?

In Exercises 25–28,

A =

⎡
⎢⎣

1 −2 −1 3
−2 0 1 4
−1 2 −2 0

0 1 2 1

⎤
⎥⎦ , B =

⎡
⎢⎣

2 0 −1 1
−3 1 2 1

0 −1 −2 3
2 2 −1 −2

⎤
⎥⎦

25. Partition A and B into four 2 × 2 blocks, and then use them
to compute each of the following:

(a) A − B

(b) AB

(c) B A

26. Partition A and B into four blocks, with the upper left of each a
3×3 matrix , and then use them to compute each of the following:

(a) A + B

(b) AB

(c) B A

27. Partition A and B into four blocks, with the lower left of each a
3×3 matrix, and then use them to compute each of the following:

(a) B − A

(b) AB

(c) B A + A

28. Partition A and B into four blocks, with the lower right of
each a 3 × 3 matrix, and then use them to compute each of the
following:

(a) A + B

(b) AB

(c) B A

29. Suppose that A is a 3 × 3 matrix. Find a 3 × 3 matrix E such
that the product E A is equal to A with

(a) the first and second rows interchanged.

(b) the first and third rows interchanged.

(c) the second row multiplied by −2.

30. Suppose that A is a 4 × 3 matrix. Find a 4 × 4 matrix E such
that the product E A is equal to A with

(a) the first and fourth rows interchanged.

(b) the second and third rows interchanged.

(c) the third row multiplied by −2.

FIND AN EXAMPLE For Exercises 31–38, find an example that
meets the given specifications.

31. 3 × 3 matrices A and B such that AB �= B A.

32. 3 × 3 matrices A and B such that AB = B A.

33. 2×2 nonzero matrices A and B (other than those given earlier)
such that AB = 022.

34. 3 × 3 nonzero matrices A and B such that AB = 033.

35. 2 × 2 matrices A and B (other than those given earlier) that
have no zero entries and yet AB = 022.

36. 3 × 3 matrices A and B that have no zero entries and yet
AB = 033.

37. 2 × 2 matrices A, B , and C (other than those given earlier)
that are nonzero, where A �= B but AC = BC .

38. 3 × 3 matrices A, B , and C that are nonzero, where A �= B
but AC = BC .

TRUE OR FALSE For Exercises 39–48, determine if the statement
is true or false, and justify your answer. You may assume that A,
B , and C are n × n matrices.

39. If A and B are nonzero (that is, not equal to 0nn), then so is
A + B .

40. If A and B are diagonal matrices, then so is A − B .

41. If A is upper triangular, then AT is lower triangular.

42. AB �= B A

43. C + In = C

44. If A is symmetric, then so is A + In .

45. (ABC)T = C T B T AT

46. If AB = B A, then either A = In or B = In .

47. (AB + C )T = C T + B T AT

48. (AB)2 = A2 B2

49. Prove the remaining unproven parts of Theorem 3.11.

(a) A + B = B + A

(b) s (A + B) = s A + s B

(c) (s + t)A = s A + t A

(d) (A + B) + C = A + (B + C )

(f) A + 0nm = A

50. Prove the remaining unproven parts of Theorem 3.13.

(a) A(BC ) = (AB)C

(b) A(B + C ) = AB + AC

(d) s (AB) = (s A)B = A(s B)

(f) I A = A

51. Prove the remaining unproven parts of Theorem 3.15.

(a) (A + B)T = AT + B T

(b) (s A)T = s AT

52. Verify Equation (2): If A is an n ×m matrix and In is the n ×n
identity matrix, then A = In A.

53. Show that if A and B are symmetric matrices and AB = B A,
then AB is also a symmetric matrix.
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54. Let A and D be n × n matrices, and suppose that the only
nonzero terms of D are along the diagonal. Must AD = D A? If
so, prove it. If not, give a counter-example.

55. Let A be an n × m matrix.

(a) What are the dimensions of AT A?

(b) Show that AT A is symmetric.

56. Suppose that A and B are both n ×n diagonal matrices. Prove
that AB is also an n × n diagonal matrix. (HINT: The formula
given in (1) can be helpful here.)

57. Suppose that A and B are both n × n upper triangular matri-
ces. Prove that AB is also an n×n upper triangular matrix. (HINT:
The formula given in (1) can be helpful here.)

58. Suppose that A and B are both n×n lower triangular matrices.
Prove that AB is also an n × n lower triangular matrix. (HINT:
The formula given in (1) can be helpful here.)

59. Prove Theorem 3.17: If A is an upper (lower) triangular matrix
and k ≥ 1 is an integer, then Ak is also an upper (lower) triangular
matrix.

60. If A is a square matrix, show that A + AT is symmetric.

61. A square matrix A is skew symmetric if AT = −A.

(a) Find a 3 × 3 skew symmetric matrix.

(b) Show that the same numbers must be on the diagonal of all
skew symmetric matrices.

62. A square matrix A is idempotent if A2 = A.

(a) Find a 2 × 2 matrix, not equal to 022 or I , that is idempotent.

(b) Show that if A is idempotent, then so is I − A.

63. If A is a square matrix, show that (AT )T = A.

64. The trace of a square matrix A is the sum of the diagonal terms
of A and is denoted by tr(A).

(a) Find a 3×3 matrix A with nonzero entries such that tr(A) = 0.

(b) If A and B are both n × n matrices, show that tr(A + B) =
tr(A) + tr(A).

(c) Show that tr(A) = tr(AT ).

(d) Select two nonzero 2 × 2 matrices A and B of your choosing,
and check if tr(AB) = tr(A)tr(B).

65. C In Example 7, suppose that the current distribution is 8000
homes with cable, 1500 homes with satellite, and 500 homes with
no TV. Find the distribution one year, two years, three years, and
four years from now.

66. C In Example 7, suppose that the current distribution is 5000
homes with cable, 3000 homes with satellite, and 2000 homes with
no TV. Find the distribution one year, two years, three years, and
four years from now.

67. C In an office complex of 1000 employees, on any given day
some are at work and the rest are absent. It is known that if an
employee is at work today, there is an 85% chance that she will be
at work tomorrow, and if the employee is absent today, there is a
60% chance that she will be absent tomorrow. Suppose that today
there are 760 employees at work. Predict the number that will be
at work tomorrow, the following day, and the day after that.

68. C The star quarterback of a university football team has de-
cided to return for one more season. He tells one person, who in
turn tells someone else, and so on, with each person talking to
someone who has not heard the news. At each step in this chain,
if the message heard is “yes” (he is returning) then there is a 10%
chance it will be changed to “no,” and if the message heard is “no,”
then there is a 15% chance that it will be changed to “yes.” Deter-
mine the probability that the fourth person in the chain hears the
correct news.

C In Exercises 69–74, perform the indicated computations when
possible, using the matrices given below. If a computation is not
possible, explain why.

A =

⎡
⎢⎣

2 −1 0 4
0 3 3 −1
6 8 1 1
5 −3 1 −2

⎤
⎥⎦ , B =

⎡
⎢⎣

−6 2 −3 1
−5 2 0 3

0 3 −1 4
8 5 −2 0

⎤
⎥⎦

C =

⎡
⎢⎣

2 0 1 1 1
5 1 2 4 3
6 2 4 0 8
7 3 3 3 2

⎤
⎥⎦ , D =

⎡
⎢⎢⎢⎣

5 2 0 0
2 5 1 3
0 7 1 4
3 6 9 2
1 4 7 1

⎤
⎥⎥⎥⎦

69. (a) A + B , (b) B A − I4, (c) D + C

70. (a) AC , (b) C T − DT , (c) C B + I2

71. (a) AB , (b) C D, (c) (A − B)C T

72. (a) B4, (b) BC T , (c) D + I4

73. (a) (C + A)B , (b) C (C T + D), (c) A + C D

74. (a) AB − DT , (b) AB − DC , (c) D + C B

3.3 Inverses
In Section 3.1, we defined the linear transformation and developed the properties of
this type of function. In this section we consider the problem of “reversing” a linear
transformation. An application of this can be found in encoding messages so that they
cannot be read by anyone besides the intended recipient. The history of secret codes is
long, going back at least as far as Julius Caesar. Here we give a brief description of an
encoding method that uses linear transformations.
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We start by establishing numerical equivalencies between letters and numbers,

a = 1, b = 2, c = 3, . . . z = 26 (1)

One way to encode messages is to map each number 1, 2, . . . , 26 to some other number,
such as

1 → 4, 2 → 5, 3 → 6, . . . 26 → 29

We could also have numerical
equivalencies for spaces, punc-
tuation, and uppercase letters,
but these are not needed here.

This particular shift cipher is
called the Caesar cipher because
it is said to have been invented
by Julius Caesar.

This is called a shift cipher and gives encodings such as

“linear” = {12, 9, 14, 5, 1, 18}︸ ︷︷ ︸
numerical equiv.

−→ {15, 12, 17, 8, 4, 21}︸ ︷︷ ︸
encoded message

We could convert the encoded message back to letters before transmitting the message,
but that is not necessary — the string of encoded numbers can be sent. This type of
encoding system is easy to implement but not very secure. In particular, it is vulnerable
to frequency analysis, which involves breaking the code by matching up the numbers that
occur most frequently in the encoded message with the letters that occur most frequently
in the language of the original message (Table 1).

Letter Frequency

e 12.70%
t 9.06%
a 8.17%
o 7.51%
i 6.97%
n 6.75%
s 6.33%
h 6.09%
r 5.99%
d 4.53%

Table 1 Relative
Frequency of Letters in
English

One way to deter frequency analysis is by encoding letters in groups called blocks.
Although there are only 26 letters in English, there are 263 = 17,576 possible blocks of
three letters, making frequency analysis more difficult. We start by converting each letter
of a block using the equivalences in (1) and placing them in a vector in R3. For example,
we would have

“the” =
⎡
⎣20

8
5

⎤
⎦ and “dog” =

⎡
⎣ 4

15
7

⎤
⎦

We then apply a linear transformation to encode the vector. For instance, we could use
T(x) = Ax, where

A =
⎡
⎣ 1 3 2

−2 −7 2
2 6 5

⎤
⎦

For example, we encode “linear” by splitting it into blocks and then encoding as shown.

“linear” =
{⎡

⎣12
9

14

⎤
⎦

︸ ︷︷ ︸
“lin”

,

⎡
⎣ 5

1
18

⎤
⎦

︸ ︷︷ ︸
“ear”

}
−→

{
T

(⎡
⎣12

9
14

⎤
⎦

)
, T

(⎡
⎣ 5

1
18

⎤
⎦

)}
=

{⎡
⎣ 67

−59
148

⎤
⎦ ,

⎡
⎣ 44

19
106

⎤
⎦

}
︸ ︷︷ ︸

encoded message

Of course, it does no good to encode a message if it cannot be decoded. To see how we
decode, suppose that we have received the encoded block

y =
⎡
⎣ 109

−95
241

⎤
⎦

To decode, we need to find the corresponding vector x such that T(x) = y, or equivalently,
Ax = y. Expressed as a linear system, we have

x1 + 3x2 + 2x3 = 109

−2x1 − 7x2 + 2x3 = −95

2x1 + 6x2 + 5x3 = 241

(2)
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Our usual solution methods can be used to show that x1 = 18, x2 = 15, and x3 = 23,
so that

x =
⎡
⎣18

15
23

⎤
⎦ = “row”

In solving for x1, x2, and x3, we have computed the inverse of T for the vector y. The
notation for the inverse function is T−1, and we have the relationship

T(x) = y ⇐⇒ T−1(y) = x

A typical encoded message will consist of many blocks. Instead of repeatedly solving (2)
with only changes to the right-hand numbers, it is more efficient to find a formula for
T−1(y) for a generic vector y = (y1, y2, y3). To find T−1, we need to solve

x1 + 3x2 + 2x3 = y1

−2x1 − 7x2 + 2x3 = y2

2x1 + 6x2 + 5x3 = y3

(3)

for x1, x2, and x3 in terms of y1, y2, and y3. Transferring (3) to an augmented matrix and
transforming to reduced echelon form yields the solution

x1 = 47y1 + 3y2 − 20y3

x2 = −14y1 − y2 + 6y3

x3 = −2y1 + y3

Note that if we set

B =
⎡
⎣ 47 3 −20

−14 −1 6
−2 0 1

⎤
⎦

then we have T−1(y) = By. Therefore T(x) and T−1(y) are both linear transformations.
As a quick application of T−1(y) = By, we have

{⎡
⎣ 85

−132
179

⎤
⎦ ,

⎡
⎣ 74

−4
173

⎤
⎦

}
︸ ︷︷ ︸

encoded message

−→
{

T−1

(⎡
⎣ 85

−132
179

⎤
⎦

)
, T−1

(⎡
⎣ 74

−4
173

⎤
⎦

)}
=

{⎡
⎣19

16
9

⎤
⎦

︸ ︷︷ ︸
“spi”

,

⎡
⎣ 6

6
25

⎤
⎦

︸ ︷︷ ︸
“ffy”

}
= “spiffy”

Larger blocks and corresponding encoding matrices can be used if needed. More can
be learned about encoding messages in Cryptological Mathematics by Robert Lewand
(Mathematical Association of America Textbooks).

Rm Rn

x � T�1(y)

y � T(x)

Figure 1 The relationship
between T and T−1.

Inverse Linear Transformations
A linear transformation T : Rm → Rn that is one-to-one and onto pairs up each vector
x in Rm with a unique vector y = T(x) in Rn. The inverse T−1 creates the same pairs but
in reverse, so that T−1(y) = x (see Figure 1). Hence we can think of T−1 as reversing
T . Here we put the notion of inverse on a firmer footing with a definition of an inverse
linear transformation.
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D E F I N I T I O N 3.18 A linear transformation T : Rm → Rn is invertible if T is one-to-one and onto. When
T is invertible, the inverse function T−1 : Rn → Rm is defined by

T−1(y) = x if and only if T(x) = yDefinition Inverse, Invertible

If T is an invertible linear transformation, then the inverse T−1 is unique and satisfies

T
(

T−1(y)
) = y and T−1

(
T(x)

) = x

In our secret-code example, the encoding linear transformation mapped vectors in
R3 to other vectors in R3. We also observed that the inverse function for decoding was
another linear transformation. The next theorem gives a required condition for a linear
transformation to be invertible and tells us that the inverse of a linear transformation is
also a linear transformation.

T H E O R E M 3.19 Let T : Rm → Rn be a linear transformation. Then

(a) T has an inverse only if m = n.

(b) If T is invertible, then T−1 is also a linear transformation.

Proof For (a), note that Theorem 3.6 in Section 3.1 tells us that the only way T can be
one-to-one is if n ≥ m. Moreover, Theorem 3.7 in Section 3.1 tells us the only way that
T can be onto is if n ≤ m. Thus the only way that T can be one-to-one and onto, and
hence invertible, is if m = n.

For (b), let y1 and y2 be vectors in Rn. If T is invertible, then T is onto, so there exist
vectors x1 and x2 in Rn such that T(x1) = y1 and T(x2) = y2. Hence

T−1(y1 + y2) = T−1
(

T(x1) + T(x2)
)

= T−1
(

T(x1 + x2)
)

(T is a linear transformation)

= x1 + x2

= T−1(y1) + T−1(y2)

A similar argument can be used to show that T−1(r y) = r T−1(y) (see Exercise 69).
Therefore T−1 is a linear transformation. ■

Note that having m = n does not guarantee that T will have an inverse. For instance, if

A =
[

1 2
3 6

]

and T(x) = Ax, then T : R2 → R2 but is not invertible, because T is neither one-to-one
nor onto.

If T : Rn → Rn is an invertible linear transformation, then T−1 : Rn → Rn is also a
linear transformation. Hence there exist n × n matrices A and B such that T(x) = Ax
and T−1(x) = Bx. Furthermore, for each x in Rn we have

x = T
(

T−1(x)
) = T

(
Bx

) = ABx

Since ABx = x for all x in Rn, it follows that AB = In. We use this relationship to
characterize what it means for a matrix to be invertible.
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D E F I N I T I O N 3.20 An n × n matrix A is invertible if there exists an n × n matrix B such that AB = In.

Definition Invertible Matrix
A matrix A is invertible precisely when the associated linear transformation T(x) =

Ax is invertible.

E X A M P L E 1 Let

A =
⎡
⎣1 2 −1

2 5 −1
1 2 0

⎤
⎦ and B =

⎡
⎣ 2 −2 3

−1 1 −1
−1 0 1

⎤
⎦

Prove that A is invertible by showing AB = I3.

Solution We have

AB =
⎡
⎣1 2 −1

2 5 −1
1 2 0

⎤
⎦

⎡
⎣ 2 −2 3

−1 1 −1
−1 0 1

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I3

so A is invertible. ■

In Section 3.2 we showed that sometimes AB �= B A because, in general, matrix
multiplication is not commutative. However, somewhat surprisingly, if AB = In, then
B A = AB = In.

T H E O R E M 3.21 Suppose that A is an invertible matrix with AB = In. Then B A = In, and the matrix
B such that AB = B A = In is unique.

Proof Let x be in Rn. Since AB = In, we have

AB(Ax) = In(Ax) = Ax �⇒ A(B Ax) = Ax �⇒ A
(

B Ax − x
) = 0

Since A is invertible, Ay = 0 has only the trivial solution because the corresponding
linear transformation is one-to-one. Hence A

(
B Ax − x

) = 0 implies that

B Ax − x = 0 �⇒ B Ax = x

Since B Ax = x for all x in Rn, we may conclude that B A = In.
To show that B is unique, suppose that there is another n × n matrix C such that

AB = AC = In. Then

B(AB) = B(AC ) �⇒ (B A)B = (B A)C �⇒ B = C

because B A = In. Since B = C , it follows that B is unique. ■

As a quick application of Theorem 3.21, for the matrices A and B in Example 1 we
have

B A =
⎡
⎣ 2 −2 3

−1 1 −1
−1 0 1

⎤
⎦

⎡
⎣1 2 −1

2 5 −1
1 2 0

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I3

Since for an invertible matrix A there is exactly one matrix B such that AB = B A =
In, the next definition makes sense.
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D E F I N I T I O N 3.22 If an n × n matrix A is invertible, then A−1 is called the inverse of A and denotes the
unique n × n matrix such that AA−1 = A−1 A = In.

Definition Inverse Matrix

Definition Nonsingular,
Singular

A square matrix A that is invertible is also called nonsingular. If A does not have
an inverse, it is singular. Definition 3.22 is symmetric in that if A−1 is the inverse of A,
then A is the inverse of A−1.

Our next theorem gives several important properties of invertible matrices. Note the
distinction between (c) and (d) of Theorem 3.23 and those given in Theorem 3.14 in
Section 3.2.

T H E O R E M 3.23 Let A and B be invertible n × n matrices and C and D be n × m matrices. Then

(a) A−1 is invertible, with
(

A−1
)−1 = A.

(b) AB is invertible, with (AB)−1 = B−1 A−1.

(c) If AC = AD then C = D.

(d) If AC = 0nm, then C = 0nm.

Proof We prove (a) and (b) here and leave (c) and (d) as an exercise. For (a), since A
is invertible we know that A−1 A = In. This implies that A is the inverse of A−1 — that
is, A = (

A−1
)−1

.
For (b), note that

(AB)(B−1 A−1) = A(B B−1)A−1 = AIn A−1 = AA−1 = In

Hence AB is invertible and (AB)−1 = B−1 A−1. ■

Finding A−1

We now develop a method for computing A−1. Let’s start by supposing that A and B are
n × n matrices with AB = In, where

A = [
a1 · · · an

]
, B = [

b1 · · · bn

]
, and In = [

e1 · · · en

]
(Later we will set B = A−1, but for now using B simplifies notation.) If AB = In, then,
taking multiplication one column at a time, we have

Ab1 = e1, Ab2 = e2, . . . , Abn = en

Thus b1 is a solution to the linear system Ax = e1, b2 is a solution to the linear system
Ax = e2, and so on. We could solve these systems one at a time by transforming each of
the augmented matrices[

a1 · · · an e1

]
,

[
a1 · · · an e2

]
, . . .

[
a1 · · · an en

]
to reduced row echelon form. However, since we do the same row operations for each
matrix, we can save ourselves some work by setting up one large augmented matrix[

a1 · · · an e1 · · · en

]
and go through the row operations once to transform the left half from A to In. If this can
be done, then the right half will be transformed from In to B = A−1. In brief, we want[

A In

]
transformed to

[
In A−1

]
Let’s look at an example.
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E X A M P L E 2 Find the inverse of A =
[

1 3
2 5

]
.

Solution We begin by setting up the augmented matrix

[
A I2

] =
[

1 3 1 0
2 5 0 1

]

Now we use our usual row operations to transform the left half to I2,[
1 3 1 0
2 5 0 1

] −2R1+R2⇒R2

∼
[

1 3 1 0
0 −1 −2 1

]
−R2⇒R2

∼
[

1 3 1 0
0 1 2 −1

]
−3R2+R1⇒R1

∼
[

1 0 −5 3
0 1 2 −1

]

Thus we find that A−1 =
[−5 3

2 −1

]
. Let’s test it out:

AA−1 =
[

1 3
2 5

] [−5 3
2 −1

]
=

[
1 0
0 1

]

and

A−1 A =
[−5 3

2 −1

] [
1 3
2 5

]
=

[
1 0
0 1

]
■

For a given n × n matrix A, if A is invertible, then this procedure will find A−1. If A
is not invertible, then the reduced row echelon form of

[
A In

]
will not have In on the

left side.

E X A M P L E 3 Let T(x) = Ax, where A =
⎡
⎣ 1 −2 1

−3 7 −6
2 −3 0

⎤
⎦. Find T−1, if it exists.

Solution T−1 exists if and only if A−1 exists. To find A−1, we set up the augmented
matrix

[
A I3

]
and then use row operations to transform to

[
I3 A−1

]
:⎡

⎣ 1 −2 1 1 0 0
−3 7 −6 0 1 0

2 −3 0 0 0 1

⎤
⎦ 3R1+R2⇒R2

−2R1+R3⇒R3

∼

⎡
⎣1 −2 1 1 0 0

0 1 −3 3 1 0
0 1 −2 −2 0 1

⎤
⎦

−R2+R3⇒R3

∼

⎡
⎣1 −2 1 1 0 0

0 1 −3 3 1 0
0 0 1 −5 −1 1

⎤
⎦

3R3+R2⇒R2

−R3+R1⇒R1

∼

⎡
⎣1 −2 0 6 1 −1

0 1 0 −12 −2 3
0 0 1 −5 −1 1

⎤
⎦

2R2+R1⇒R1

∼

⎡
⎣1 0 0 −18 −3 5

0 1 0 −12 −2 3
0 0 1 −5 −1 1

⎤
⎦
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Thus we have T−1(x) = A−1x, where

A−1 =
⎡
⎣−18 −3 5

−12 −2 3
−5 −1 1

⎤
⎦

■

The next example shows what happens when there is no inverse.

E X A M P L E 4 Find the inverse, if it exists, of A =
⎡
⎣ 1 1 −2

2 1 −3
−3 −1 4

⎤
⎦.

Solution We set up the augmented matrix
[

A I3

]
, and using row operations we get⎡

⎣ 1 1 −2 1 0 0
2 1 −3 0 1 0

−3 −1 4 0 0 1

⎤
⎦ −2R1+R2⇒R2

3R1+R3⇒R3

∼

⎡
⎣1 1 −2 1 0 0

0 −1 1 −2 1 0
0 2 −2 3 0 1

⎤
⎦

2R2+R3⇒R3

∼

⎡
⎣1 1 −2 1 0 0

0 −1 1 −2 1 0
0 0 0 −1 2 1

⎤
⎦

We can stop right there. The left half of the bottom row consists entirely of zeros, so
there is no way to use row operations to transform the left half of the augmented matrix
to I3. Thus A has no inverse. ■

The next theorem highlights how invertibility is related to the solutions of linear
systems.

T H E O R E M 3.24 Let A be an n × n matrix. Then the following are equivalent:

(a) A is invertible.

(b) Ax = b has a unique solution for all b, given by x = A−1b.

(c) Ax = 0 has only the trivial solution.

Proof A is invertible if and only if T(x) = Ax is an invertible linear transformation,
which in turn is true if and only if T is one-to-one and onto. This implies that (a) and
(b) are equivalent. By setting b = 0, we see that (b) implies (c), so all that remains to
complete the proof is to show that (c) implies (a).

If Ax = 0 has only the trivial solution, then by Theorem 3.5 we know that T is
one-to-one. Therefore, since A is n × n, by Theorem 3.9 in Section 3.1, T also must be
onto. Since T is one-to-one and onto, we can conclude that T is invertible, and so A is
invertible. Therefore (c) implies (a).

Finally, we note that if A is invertible, then we have

Ax = b �⇒ A−1 Ax = A−1b �⇒ Inx = A−1b �⇒ x = A−1b
■

E X A M P L E 5 Find the unique solution to the linear system

x1 + 3x2 = 4

2x1 + 5x2 = −3

Solution Start by setting

A =
[

1 3
2 5

]
and b =

[
4

−3

]
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Then our system is equivalent to Ax = b, so that by Theorem 3.24, if A is invertible,
then the solution is given by x = A−1b. Happily, in Example 2 we found A−1, which we
use here to give us

x = A−1b =
[−5 3

2 −1

] [
4

−3

]
=

[−29
11

]
■

A Quick Formula
Typically, we use the row reduction method to compute inverses for matrices. However,
in the case of a 2 × 2 matrix

A =
[

a b
c d

]

there exists a quick formula. It can be shown that A has an inverse exactly when ad −bc �=
0, and that the inverse is

A−1 = 1

ad − bc

[
d −b

−c a

]

Instead of using an augmented matrix and row operations to verify the formula, we check
it by multiplying,

A−1 A = 1

ad − bc

[
d −b

−c a

] [
a b
c d

]
= 1

ad − bc

[
ad − bc 0

0 ad − bc

]
=

[
1 0
0 1

]
= I2

Since A−1 A = I2 and the inverse is unique, it must be that the formula for A−1 is correct.

E X A M P L E 6 Use the Quick Formula to find A−1 for

A =
[

2 7
1 5

]

Solution From the Quick Formula, we have

A−1 = 1

(2)(5) − (7)(1)

[
5 −7

−1 2

]
=

[
5/3 −7/3

−1/3 2/3

]
■

This updates the Big The-
orem, Version 2, from Sec-
tion 3.1.

The Big Theorem, Version 3
Summarizing the results we have proved about invertible matrices, we add one more
important condition to the Big Theorem.

T H E O R E M 3.25 ( T H E B I G T H E O R E M , V E R S I O N 3 ) Let A = {a1, . . . , an} be a
set of n vectors in Rn, let A = [

a1 · · · an

]
, and let T : Rn → Rn be given by

T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

(f) A is invertible.
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Proof From the Big Theorem, Version 2, we know that (a) through (e) are equivalent.
Moreover, from Theorem 3.24, we know that (c) and (f) are equivalent. Thus we can
conclude that all six conditions are equivalent. ■

The material on partitioned
matrices is optional.

Partitioned Matrices
For matrices in certain special forms, it is possible to use matrix partitions to efficiently
compute the inverse. For instance, suppose that

A =
[

A11 012

021 A22

]

where A11 is n1 × n1, A22 is n2 × n2, both A11 and A22 are invertible, and 012 and 021

represent matrices with all zero entries of dimension n1 × n2 and n2 × n1, respectively.
A is an example of a block diagonal matrix.

To find the inverse of A, let

B =
[

B11 B12

B21 B22

]

where the blocks of B have the appropriate dimensions so that AB is defined and can be
computed using block multiplication. Now we assume that AB = I , and from this we
determine the form required of B that will give us a formula for A−1.

To start, write

I =
[

In1 012

021 In2

]

where In1 and In2 are the n1 × n1 and n2 × n2 identity matrices, respectively, and 012 and
021 are defined as above. If AB = I , then from our block multiplication formulas we
must have

A11 B11 + 012 B21 = In1

A11 B12 + 012 B22 = 012

021 B11 + A22 B21 = 021

021 B12 + A22 B22 = In2

Focusing on the first and fourth equations, we see that these imply that B11 = A−1
11 and

B22 = A−1
22 . Next, the second equation reduces to A11 B12 = 012, and since A11 is invertible

it follows that B12 = 012. A similar argument can be used to show that B21 = 021, and so
we can conclude that

A−1 =
[

A−1
11 012

021 A−1
22

]
(4)

We can stretch this method further to find an inverse if A has the form

A =
[

A11 012

A21 A22

]

which is a block lower triangular matrix. Defining B as we did previously (with the
assumptions required for A so that the inverse exists) and computing the product AB
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using block multiplication, we arrive at the equations

A11 B11 + 012 B21 = In1

A11 B12 + 012 B22 = 012

A21 B11 + A22 B21 = 021

A21 B12 + A22 B22 = In2

Using the same line of reasoning as above, we find that B11 = A−1
11 , B12 = 012, B21 =

−A−1
22 A21 A−1

11 , and B22 = A−1
22 . That is,

A−1 =
[

A−1
11 012

−A−1
22 A21 A−1

11 A−1
22

]
(5)

E X A M P L E 7 Find the inverse for A =

⎡
⎢⎢⎢⎢⎣

2 3 0 0 0
3 4 0 0 0
1 −1 −2 0 0
2 −4 0 9 4
0 3 0 7 3

⎤
⎥⎥⎥⎥⎦.

Solution All of the zeros in the upper right of A suggest that we partition A into the
blocks

A11 =
[

2 3
3 4

]
A12 =

[
0 0 0
0 0 0

]

A21 =
⎡
⎣1 −1

2 −4
0 3

⎤
⎦ A22 =

⎡
⎣−2 0 0

0 9 4
0 7 3

⎤
⎦

Since A is block lower triangular, we can apply the formula given in (5). To do so, we
need A−1

11 and A−1
22 . As A11 is 2 × 2, we can apply our quick inverse formula to find

A−1
11 = 1

8 − 9

[
4 −3

−3 2

]
=

[−4 3
3 −2

]

The block A22 is itself block diagonal, so we can apply 4 to find A−1
22 . The upper-left

entry has inverse −1/2, and the quick inverse formula can be used to find the inverse
for the lower-right sub-block. Combining these gives us

A−1
22 =

⎡
⎣−1/2 0 0

0 −3 4
0 7 −9

⎤
⎦

Finally, we compute

−A−1
22 A21 A−1

11 = −
⎡
⎣−1/2 0 0

0 −3 4
0 7 −9

⎤
⎦

⎡
⎣1 −1

2 −4
0 3

⎤
⎦[−4 3

3 −2

]
=

⎡
⎣−7/2 5/2

−96 66
221 −152

⎤
⎦

Combining all these ingredients together as specified in 5, we arrive at

A−1 =

⎡
⎢⎢⎢⎢⎣

−4 3 0 0 0
3 −2 0 0 0

−7/2 5/2 −1/2 0 0
−96 66 0 −3 4
221 −152 0 7 −9

⎤
⎥⎥⎥⎥⎦

■
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The formulas illustrated here can readily be extended to other, more complex block
matrices.

E X E R C I S E S
In Exercises 1–4, use the Quick Formula to find the inverse of the
given matrix, if it exists.

1.

[
7 3
2 1

]

2.

[
5 −2

−4 3

]

3.

[
2 −5

−4 10

]

4.

[
−6 2

5 −1

]
In Exercises 5–16, use an augmented matrix and row operations
to find the inverse of the given matrix, if it exists.

5.

[
1 4
2 9

]

6.

[
4 13
1 3

]

7.

[
1 0 1
0 1 0
1 1 1

]

8.

[
0 1 1
0 1 0
1 0 1

]

9.

[
1 2 −1
0 1 3
0 0 1

]

10.

[
1 2 −1

−4 −7 7
−1 −1 5

]

11.

[
1 −3 1
2 −5 4

−2 3 −8

]

12.

[
3 −1 9
1 −1 4
2 −2 10

]

13.

⎡
⎢⎣

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎦

14.

⎡
⎢⎣

1 0 0 −2
0 1 −1 0
0 −2 3 0
2 0 0 −3

⎤
⎥⎦

15.

⎡
⎢⎣

1 3 1 −4
0 1 −2 2
0 0 1 1
0 0 0 1

⎤
⎥⎦

16.

⎡
⎢⎣

1 −3 1 −2
2 −5 4 −2

−3 9 −2 5
4 −12 4 −7

⎤
⎥⎦

17. Use the answer to Exercise 6 to find the solutions to the linear
system

4x1 + 13x2 = −3

x1 + 3x2 = 2

18. Use the answer to Exercise 10 to find the solutions to the linear
system

x1 + 2x2 − x3 = −2

−4x1 − 7x2 + 7x3 = 1

−x1 − x2 + 5x3 = −1

19. Use the answer to Exercise 12 to find the solutions to the linear
system

3x1 − x2 + 9x3 = 4

x1 − x2 + 4x3 = −1

2x1 − 2x2 + 10x3 = 3

20. Use the answer to Exercise 14 to find the solutions to the linear
system

x1 − 2x4 = −1

x2 − x3 = −2

−2x2 + 3x3 = 2

2x1 − 3x4 = −1

In Exercises 21–26, determine if the given linear transformation T
is invertible, and if so, find T−1. (HINT: Start by finding the matrix
A such that T(x) = Ax.)

21. T

([
x1

x2

])
=

[
4x1 + 3x2

3x1 + 2x2

]

22. T

([
x1

x2

])
=

[
2x1 − 5x2

−x1 + 4x2

x1 + x2

]

23. T

([
x1

x2

])
=

[
x1 − 5x2

−2x1 + 10x2

]

24. T

([
x1

x2

x3

])
=

[
x1 + x3

x2 − x3

x1 − x2 + x3

]

25. T

([
x1

x2

x3

])
=

[
x1 + 2x2 − x3

x1 + x2 − x3

]

26. T

([
x1

x2

x3

])
=

[
x1 + x2 − x3

x2 − x3

x1 − x2 + x3

]
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27. Let T1 and T2 be linear transformations given by

T1

([
x1

x2

])
=

[
2x1 + x2

x1 + x2

]

T2

([
x1

x2

])
=

[
3x1 + 2x2

x1 + x2

]

Find the matrix A such that

(a) T−1
1 (T2(x)) = Ax

(b) T1(T−1
2 (x)) = Ax

(c) T−1
2 (T1(x)) = Ax

(d) T2(T−1
1 (x)) = Ax

28. Let T1 and T2 be linear transformations given by

T1

([
x1

x2

])
=

[
3x1 + 5x2

4x1 + 7x2

]

T2

([
x1

x2

])
=

[
2x1 + 9x2

x1 + 5x2

]

Find the matrix A such that

(a) T−1
1 (T2(x)) = Ax

(b) T1(T−1
2 (x)) = Ax

(c) T−1
2 (T1(x)) = Ax

(d) T2(T−1
1 (x)) = Ax

In Exercises 29–34, use an appropriate partitioning of the matrix
A to find A−1.

29. A =
[

1 0 0
0 2 7
0 1 4

]

30. A =
[

5 2 0
2 1 0
0 0 1

]

31. A =

⎡
⎢⎣

2 5 0 0
3 8 0 0
0 0 1 4
0 0 1 3

⎤
⎥⎦

32. A =

⎡
⎢⎣

1 3 0 0
3 8 0 0

−1 2 2 5
4 3 1 3

⎤
⎥⎦

33. A =

⎡
⎢⎢⎢⎣

1 3 0 0 0
3 8 0 0 0

−1 2 1 2 −2
4 3 0 1 0
1 −2 0 0 1

⎤
⎥⎥⎥⎦

34. A =

⎡
⎢⎢⎢⎣

7 2 0 0 0
4 1 0 0 0
1 3 1 0 0

−2 3 0 1 −2
5 −2 0 3 −5

⎤
⎥⎥⎥⎦

FIND AN EXAMPLE For Exercises 35–40, find an example that
meets the given specifications.

35. A diagonal 3 × 3 invertible matrix A.

36. A singular 3 × 3 matrix A that has no zero entries.

37. 2 × 2 matrices A and B such that AB = 3I2.

38. 3 × 3 matrices A and B such that B A = −2I2.

39. A 2 × 3 matrix A and a 3 × 2 matrix B such that AB = I2 but
B A �= I3.

40. A 3 × 4 matrix A and a 4 × 3 matrix B such that AB = I3 but
B A �= I4.

TRUE OR FALSE For Exercises 41–50, determine if the statement
is true or false, and justify your answer.

41. If A is an invertible n×n matrix, then the number of solutions
to Ax = b depends on the vector b in Rn .

42. A must be a square matrix to be invertible.

43. If an n × n matrix A is equivalent to In , then A−1 is also
equivalent to In .

44. If an n × n matrix A is singular, then the columns of A must
be linearly independent.

45. The Caesar cipher encoding system is an example of a linear
transformation.

46. If the columns of an n×n matrix A span Rn , then A is singular.

47. If A and B are invertible n × n matrices, then the inverse of
AB is B−1 A−1.

48. If A and B are invertible n × n matrices, then the inverse of
A + B is A−1 + B−1.

49. If A is invertible, then
(

A−1
)−1 = A.

50. If AB = 2I3, then B A = 2I3.

In Exercises 51–54, solve for the matrix X . Assume that all matrices
are n × n and invertible as needed.

51. AX = B

52. B X = A + C X

53. B(X + A)−1 = C

54. AX(D + B X)−1 = C

55. Find all 2 × 2 matrices A such that A−1 = A.

56. Suppose that A is a square matrix with two equal rows. Is A
invertible? Justify your answer.

57. Suppose that A is a square matrix with two equal columns. Is
A invertible? Justify your answer.

58. Let A =
[

a 0
0 d

]
be a 2 × 2 diagonal matrix. For what values

of a and d will A be invertible?

59. For what values of c will A =
[

1 1
c c 2

]
be invertible?
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60. Suppose that A−1 =
[

4 −6
2 14

]
. Find (2A)−1.

61. Let A be an n × n matrix and b be in Rn . If Ax = b has a
unique solution, show that A must be invertible.

62. Suppose that A = P D P −1, where all matrices are square.
Find an expression for each of A2 and A3, and then give a general
formula for An .

63. Suppose that A, B , and C are n × n invertible matrices. Solve
AC = C B for B .

64. Suppose that A is an invertible n × n matrix and that X and
B are n × m matrices. If AX = B , prove that X = A−1 B .

65. Suppose that A is an invertible m × m matrix and that B and
C are n × m matrices. If (B − C)A = 0nm, prove that B = C .

66. Let A and B be n × n matrices, and suppose that B and AB
are both invertible. Prove that A is also invertible.

67. Let A and B be n ×n matrices. Prove that if B is singular, then
so is AB .

68. Let A and B be n ×n matrices. Prove that if A is singular, then
so is AB .

69. Complete the proof of Theorem 3.19: If T is an invertible
linear transformation, then T−1(r x) = r T−1(x).

70. Complete the proof of Theorem 3.23: Let A be an invertible
n × n matrix and C and D be n × m matrices.

(a) If AC = AD, then C = D.

(b) If AC = 0nm, then C = 0nm.

C For Exercises 71–74, refer to the MP3 scenario given at the
beginning of the Section 3.1. There a linear transformation T(x)
is defined that gives the costs associated with a production vector
x. Determine T−1, and use it to find the production level for each
type of player that will result in the given costs. If the given costs
are not possible, explain why.

71. Labor = $1070, Materials = $1002, and Overhead = $1368.

72. Labor = $1148, Materials = $1076, and Overhead = $1452.

73. Labor = $2045, Materials = $1965, and Overhead = $2615.

74. Labor = $2348, Materials = $2200, and Overhead = $2983.

C Suppose that you are in the garden supply business. Naturally,
one of the things that you sell is fertilizer. You have three brands
available: Vigoro and Parker’s as introduced in Section 2.1, and a
third brand, Bleyer’s SuperRich. The amount of nitrogen, phos-
phoric acid, and potash per 100 pounds for each brand is given by
the nutrient vectors

v =
[

29
3
4

]
p =

[
18
25

6

]
b =

[
50
19

9

]

Vigoro Parker’s Bleyer’s

In Exercises 75–78, determine the linear transformation T : R3 →
R3 that takes a vector of brand amounts (in hundreds of pounds) as
input and gives the nutrient vector as output. Then find a formula

for T−1, and use it to determine the amount of Vigoro, Parker’s,
and Bleyer’s required to produce the specified nutrient mix.

75. 409 pounds of nitrogen, 204 pounds of phosphoric acid, and
81 pounds of potash.

76. 439 pounds of nitrogen, 147 pounds of phosphoric acid, and
76 pounds of potash.

77. 1092 pounds of nitrogen, 589 pounds of phosphoric acid, and
223 pounds of potash.

78. 744 pounds of nitrogen, 428 pounds of phosphoric acid, and
156 pounds of potash.

C In Exercises 79–82, the given set of vectors are the encoded
version of a short message. Decode the message, given that the
encoding matrix is

A =
[

1 −3 2
2 −7 9

−4 14 −17

]

79.

{[
41

161
−306

]
,

[
7

79
−142

]}

80.

{[−30
−45

96

]
,

[
1

22
−39

]}

81.

{[
7

75
−136

]
,

[−25
−37

79

]
,

[
47

158
−303

]}

82.

{[
44

157
−300

]
,

[ −46
−105

211

]
,

[
23
88

−167

]
,

[
40

152
−289

]}

C In Exercises 83–86, find A−1 if A is invertible.

83. A =

⎡
⎢⎣

3 1 −2 0
2 2 5 1

−3 0 −2 2
4 1 2 3

⎤
⎥⎦

84. A =

⎡
⎢⎣

5 2 −1 0
2 −3 1 4
2 1 −3 2
3 5 −2 −4

⎤
⎥⎦

85. A =

⎡
⎢⎢⎢⎣

5 1 2 1 2
−3 2 2 1 0

2 3 1 0 1
5 −1 −1 −1 3
0 0 3 2 1

⎤
⎥⎥⎥⎦

86. A =

⎡
⎢⎢⎢⎣

2 2 9 0 4
9 5 5 2 1
2 3 0 0 5
9 5 0 7 0
4 9 9 5 1

⎤
⎥⎥⎥⎦
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3.4 LU FactorizationThis section is optional. How-
ever, elementary matrices (in-
troduced in this section) are
used in optional Section 5.2 and
LU factorizations are revisited in
optional Section 11.2.

In this section we revisit the problem of finding solutions to a system of linear equations,
but we develop a new approach using matrices that can be more efficient in certain
situations.

Figure 1 shows a diagram of three one-way streets that intersect. The arrows indicate
the direction of traffic flow, and the numbers shown give the number of cars per minute
passing along that stretch of road at a particular time. Our goal is to use this information
to find x1, x2, and x3.

b

c

a

x3

x1

x2

60

70
3020

Figure 1 Traffic flow rates.
(See Section 1.4 for additional
discussion about this type of
problem.)

The number of cars entering and exiting an intersection must be equal, so that for
our three intersections a, b, and c we have the following equations:

a: 20 + x3 = x1

b: 70 + x1 = 30 + x2

c: x2 = 60 + x3

In addition, there is a safety metering system in place that constrains x1 + x2 = 160.
Combining these four equations into a linear system gives us

x1 + x2 = 160
x1 − x3 = 20
x1 − x2 = −40

x2 − x3 = 60

(1)

E X A M P L E 1 Find the solution to the linear system 1.

Solution This system can be expressed in matrix form Ax = b, where

A =

⎡
⎢⎢⎣

1 1 0
1 0 −1
1 −1 0
0 1 −1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

160
20

−40
60

⎤
⎥⎥⎦

Here we use a new approach to find the solutions to this system. It can be shown (we
will see how later) that

A =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 2 1 0
0 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1 0
0 −1 −1
0 0 2
0 0 0

⎤
⎥⎥⎦

Denoting the left matrix L (for Lower triangular) and the right by U (for Upper trian-
gular, which it nearly is), we have A = LU . Thus the system can be written

LU x = b

which looks more complicated but actually allows us to break the problem into two
systems that can both be solved with back substitution.

The first step is to set y = U x, so that our system reduces to L y = b, or⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 2 1 0
0 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

160
20

−40
60

⎤
⎥⎥⎦
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This is equivalent to the system

y1 = 160

y1 + y2 = 20

y1 + 2y2 + y3 = −40

− y2 − y3 + y4 = 60

To find the solution, we modify our usual back substitution method by starting at the
top (the details are left to the reader) to find

y =

⎡
⎢⎢⎣

160
−140

80
0

⎤
⎥⎥⎦

Now that we know y, we can return to the system y = U x, or⎡
⎢⎢⎣

1 1 0
0 −1 −1
0 0 2
0 0 0

⎤
⎥⎥⎦

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎢⎢⎣

160
−140

80
0

⎤
⎥⎥⎦

This is equivalent to

x1 + x2 = 160

− x2 − x3 = −140

2x3 = 80

This system can be solved using standard back substitution, which gives us x1 = 60,
x2 = 100, and x3 = 40. ■

In the previous example, having L and U made it easier to find the solution, but
usually L and U are not known. Below we present the method for finding L and U , but
before we get to that, we pause to discuss whether doing so is worth the trouble.

The number of computations required to find L and U from A, then perform the
two back substitutions, is about the same as simply reducing A to echelon form and back
substituting, so for a single system Ax = b there is no benefit to finding L and U first.
However, some applications require the solutions to many systems that all have the same
coefficient matrix,

Ax = b1, Ax = b2, Ax = b3, . . .

For instance, the traffic rates in our example are likely to change from minute to minute,
each time generating new systems with the same coefficient matrix. In such situations,
once we have L and U we can use them over and over. Thus, from the second system on,
all we have to do are the two back substitutions, which is much faster than solving each
individual system from scratch.

Definition LU factorization

Finding L and U
If A = LU , where U is in echelon form and L is lower triangular with 1’s on the diagonal
(making L unit lower triangular), then the product is called an LU factorization of A. In
the following examples, we show how to find an LU factorization.
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The • symbol represents a
matrix entry that has not yet
been determined.

E X A M P L E 2 Find an LU factorization for

A =
⎡
⎣−3 1 2

6 2 −5
9 5 −6

⎤
⎦

Solution We obtain U by reducing A to echelon form, and build up L one column at
a time as we transform A.

Step 1a: Take the first column of A, divide each entry by the pivot (−3), and use the
resulting values to form the first column of L .

A =
⎡
⎣−3 1 2

6 2 −5
9 5 −6

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

−2 • •
−3 • •

⎤
⎦

Step 1b: Perform row operations on A as usual to introduce zeros down the first column
of A.

Note: Do not scale rows by constants (i.e., dividing the first row by −3). Doing so will
give incorrect results.

A =
⎡
⎣−3 1 2

6 2 −5
9 5 −6

⎤
⎦ 2R1+R2⇒R2

3R1+R3⇒R3

∼

⎡
⎣−3 1 2

0 4 −1
0 8 0

⎤
⎦ = A1

Step 2a: Take the second column of A1, starting from the pivot entry (4) down (the
entries are shown in boldface), and divide each entry by the pivot. Use the resulting
values to form the lower portion of the second column of L .

A1 =
⎡
⎣−3 1 2

0 4 −1
0 8 0

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

−2 1 •
−3 2 •

⎤
⎦

Step 2b: Perform row operations on A1 to introduce zeros down the second column of
A1.

A1 =
⎡
⎣−3 1 2

0 4 −1
0 8 0

⎤
⎦ −2R2+R3⇒R3

∼

⎡
⎣−3 1 2

0 4 −1
0 0 2

⎤
⎦ = A2

Step 3: Now that the original matrix is in echelon form (indeed, it is upper triangular),
two small items remain. First, set U equal to A2, our echelon form of A. Second, finish
filling in L . Since L must be unit lower triangular, the only choice is to add a 1 in the
lower right corner and fill in the remain entries with zeros. Thus we end up with

L =
⎡
⎣ 1 0 0

−2 1 0
−3 2 1

⎤
⎦ and U =

⎡
⎣−3 1 2

0 4 −1
0 0 2

⎤
⎦

as in the previous example. Standard matrix multiplication can be used to verify that
A = LU . ■

It is possible to modify this
procedure to allow row scal-
ing, but it makes the algorithm
more complicated. Since scaling
is not necessary to reduce a ma-
trix to echelon form, we leave it
out.

Not all matrices have an LU factorization. The following theorem gives a condition
that will insure such a factorization exists.

T H E O R E M 3.26 Let A be an n × m matrix. If A can be transformed to echelon form without inter-
changing rows, then there exists an n ×n unit lower triangular matrix L and an n ×m
echelon matrix U such that A = LU .
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Note that if U is a square matrix, then since it is an echelon matrix it is also upper tri-
angular. Later in this section, we explain why the algorithm for finding an LU factorization
works and justify Theorem 3.26. For now let’s consider additional examples.

E X A M P L E 3 Find an LU factorization for

A =

⎡
⎢⎢⎣

2 1 0 4
−4 −3 5 −10

6 4 −8 17
2 −3 29 −9

⎤
⎥⎥⎦

Solution We proceed in the same manner as in the previous example.

Step 1a: Divide by the pivot to form the first column of L .

A =

⎡
⎢⎢⎣

2 1 0 4
−4 −3 5 −10

6 4 −8 17
2 −3 29 −9

⎤
⎥⎥⎦ �⇒ L =

⎡
⎢⎢⎣

1 • • •
−2 • • •

3 • • •
1 • • •

⎤
⎥⎥⎦

Step 1b: Perform row operations on A to introduce zeros down the first column.

A =

⎡
⎢⎢⎣

2 1 0 4
−4 −3 5 −10

6 4 −8 17
2 −3 29 −9

⎤
⎥⎥⎦

2R1+R2⇒R2

−3R1+R3⇒R3

−R1+R4⇒R4

∼

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 1 −8 5
0 −4 29 −13

⎤
⎥⎥⎦ = A1

Step 2a: Divide by the pivot to form the second column of L .

A1 =

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 1 −8 5
0 −4 29 −13

⎤
⎥⎥⎦ �⇒ L =

⎡
⎢⎢⎣

1 • • •
−2 1 • •

3 −1 • •
1 4 • •

⎤
⎥⎥⎦

Step 2b: Perform row operations on A1 to introduce zeros down the second column.

A1 =

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 1 −8 5
0 −4 29 −13

⎤
⎥⎥⎦

R2+R3⇒R3

−4R2+R4⇒R4

∼

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 0 −3 3
0 0 9 −5

⎤
⎥⎥⎦ = A2

Step 3a: Divide by the pivot to form the third column of L .

A2 =

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 0 −3 3
0 0 9 −5

⎤
⎥⎥⎦ �⇒ L =

⎡
⎢⎢⎣

1 • • •
−2 1 • •

3 −1 1 •
1 4 −3 •

⎤
⎥⎥⎦

Step 3b: Perform row operations on A2 to introduce zeros down the third column.

A2 =

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 0 −3 3
0 0 9 −5

⎤
⎥⎥⎦ 3R3+R4⇒R4

∼

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 0 −3 3
0 0 0 4

⎤
⎥⎥⎦ = A3
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Step 4: Finish up by placing in L a 1 in the bottom right entry and zeros elsewhere and
setting U = A3.

L =

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0

3 −1 1 0
1 4 −3 1

⎤
⎥⎥⎦ and U =

⎡
⎢⎢⎣

2 1 0 4
0 −1 5 −2
0 0 −3 3
0 0 0 4

⎤
⎥⎥⎦

Thus L is unit lower triangular, U is in echelon form (and upper triangular), and it is
easily verified that A = LU . ■

E X A M P L E 4 Find an LU factorization for

A =
⎡
⎣ 2 1 −1

−4 −2 5
6 2 11

⎤
⎦

Solution Since A has three rows, L will be a 3 × 3 matrix.

Step 1a: Divide by the pivot to form the first column of L :

A =
⎡
⎣ 2 1 −1

−4 −2 5
6 2 11

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

−2 • •
3 • •

⎤
⎦

Step 1b: Perform row operations on A to introduce zeros down the first column:

A =
⎡
⎣ 2 1 −1

−4 −2 5
6 2 11

⎤
⎦ 2R1+R2⇒R2

−3R1+R3⇒R3

∼

⎡
⎣2 1 −1

0 0 3
0 −1 14

⎤
⎦ = A1

At this point, we can see from the second column of A1 that there is no way to transform
A to echelon form without interchanging the second and third rows. Our algorithm
will not work, so we stop. There is no LU factorization. ■

The matrix A need not be square to have an LU factorization. In general, if A is
n × m, then L will be n × n and U will be n × m. The next two examples consider
nonsquare matrices.

E X A M P L E 5 Find an LU factorization for

A =
⎡
⎣ 4 −3 −1 5 2

−16 12 2 −17 −7
8 −6 −12 22 10

⎤
⎦

Solution Since A has three rows, L will be a 3 × 3 matrix. The solution method is
similar to previous examples.

Step 1a: Divide by the pivot to form the first column of L .

A =
⎡
⎣ 4 −3 −1 5 2

−16 12 2 −17 −7
8 −6 −12 22 10

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

−4 • •
2 • •

⎤
⎦
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Step 1b: Perform row operations on A to introduce zeros down the first column.

A =
⎡
⎣ 4 −3 −1 5 2

−16 12 2 −17 −7
8 −6 −12 22 10

⎤
⎦ 4R1+R2⇒R2

−2R1+R3⇒R3

∼

⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 −10 12 6

⎤
⎦ = A1

Step 2a: Since the second and third entries in the second column of A1 are both zero,
we bypass it and move to the third column. Divide by the pivot of the third column to
form the next column of L .

A1 =
⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 −10 12 6

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

−4 1 •
2 5 •

⎤
⎦

Step 2b: Perform row operations on A1 to introduce zeros down the third column.

A1 =
⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 −10 12 6

⎤
⎦ −5R2+R3⇒R3

∼

⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 0 −3 1

⎤
⎦ = A2

Step 3: Our matrix is now in echelon form. We place a one in the lower-right position
of L and zeros elsewhere and set U = A2, giving us

L =
⎡
⎣ 1 0 0

−4 1 0
2 5 1

⎤
⎦ , U =

⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 0 −3 1

⎤
⎦

■

E X A M P L E 6 Find an LU factorization for

A =

⎡
⎢⎢⎢⎢⎣

3 −1 4
9 −5 15

15 −1 10
−6 2 −4
−3 −3 10

⎤
⎥⎥⎥⎥⎦

Solution Since A has five rows, L will be a 5 × 5 matrix.

Step 1a: Divide by the pivot to form the first column of L .

A =

⎡
⎢⎢⎢⎢⎣

3 −1 4
9 −5 15

15 −1 10
−6 2 −4
−3 −3 10

⎤
⎥⎥⎥⎥⎦ �⇒ L =

⎡
⎢⎢⎢⎢⎣

1 • • • •
3 • • • •
5 • • • •

−2 • • • •
−1 • • • •

⎤
⎥⎥⎥⎥⎦

Step 1b: Perform row operations on A to introduce zeros down the first column.

A =

⎡
⎢⎢⎢⎢⎣

3 −1 4
9 −5 15

15 −1 10
−6 2 −4
−3 −3 10

⎤
⎥⎥⎥⎥⎦

−3R1+R2⇒R2

−5R1+R3⇒R3

2R1+R4⇒R4

R1+R5⇒R5

∼

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 4 −10
0 0 4
0 −4 14

⎤
⎥⎥⎥⎥⎦ = A1
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Step 2a: Divide by the pivot to form the second column of L .

A1 =

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 4 −10
0 0 4
0 −4 14

⎤
⎥⎥⎥⎥⎦ �⇒ L =

⎡
⎢⎢⎢⎢⎣

1 • • • •
3 1 • • •
5 −2 • • •

−2 0 • • •
−1 2 • • •

⎤
⎥⎥⎥⎥⎦

Step 2b: Perform row operations on A1 to introduce zeros down the second column.

A1 =

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 4 −10
0 0 4
0 −4 14

⎤
⎥⎥⎥⎥⎦

2R2+R3⇒R3

−2R2+R5⇒R5

∼

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 0 −4
0 0 4
0 0 8

⎤
⎥⎥⎥⎥⎦ = A2

Step 3a: Divide by the pivot to form the third column of L .

A2 =

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 0 −4
0 0 4
0 0 8

⎤
⎥⎥⎥⎥⎦ �⇒ L =

⎡
⎢⎢⎢⎢⎣

1 • • • •
3 1 • • •
5 −2 1 • •

−2 0 −1 • •
−1 2 −2 • •

⎤
⎥⎥⎥⎥⎦

Step 3b: Perform row operations on A2 to introduce zeros down the third column.

A2 =

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 0 −4
0 0 4
0 0 8

⎤
⎥⎥⎥⎥⎦

R3+R4⇒R4

2R3+R5⇒R5

∼

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 0 −4
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ = A3

Step 4: Since A3 is in echelon form, we can set U = A3. However, we still need the last
two columns of L . Since the bottom two rows of U are all zeros, a moment’s thought
reveals that the product LU will be the same no matter which entries are in the last
two columns of L . (See Exercise 70.) Since we need L to be unit lower triangular and
in applications we do back substitution, the smart way to fill out the last two columns
of L is with the last two columns of I5. Thus we end up with

L =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
3 1 0 0 0
5 −2 1 0 0

−2 0 −1 1 0
−1 2 −2 0 1

⎤
⎥⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 0 −4
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

■

Regarding the LU factorization algorithm:

• The number of zero rows in U at the end of the algorithm is equal to the number of
columns from I (taken from the right side) required to fill out the remainder of L (see
Example 6).

• There can be more than one LU factorization for a given matrix.

• As seen in Example 4, if at any point in the algorithm a row interchange is required,
stop. The matrix does not have an LU factorization.
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LDU Factorization
A variant of LU factorization is called LDU factorization. Starting with a matrix A, now
the goal is to write A = L DU , where L and U are as in LU factorization (except that
U has 1’s in the pivot positions) and D is a diagonal matrix with the same dimensions
as L . To find the LDU factorization, we follow the same procedure as in finding the LU
factorization and then at the end form D and modify U .

E X A M P L E 7 Find an LDU factorization for

A =
⎡
⎣ 2 8 0

4 18 −4
−2 −2 −13

⎤
⎦

Solution We start by finding an LU factorization. Since A has three rows, L will be a
3 × 3 matrix.

Step 1a: Take the first column of A, divide each entry by the pivot, and use the resulting
values to form the first column of L .

A =
⎡
⎣ 2 8 0

4 18 −4
−2 −2 −13

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

2 • •
−1 • •

⎤
⎦

Step 1b: Perform row operations on A as usual to introduce zeros down the first
column.

A =
⎡
⎣ 2 8 0

4 18 −4
−2 −2 −13

⎤
⎦ −2R1+R2⇒R2

R1+R3⇒R3

∼

⎡
⎣2 8 0

0 2 −4
0 6 −13

⎤
⎦ = A1

Step 2a: Take the second column of A1, starting from the pivot entry (2), and divide
each entry by the pivot. Use the resulting values to form the second column of L .

A1 =
⎡
⎣2 8 0

0 2 −4
0 6 −13

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

2 1 •
−1 3 •

⎤
⎦

Step 2b: Perform row operations on A1 to introduce zeros down the second column
of A1.

A1 =
⎡
⎣2 8 0

0 2 −4
0 6 −13

⎤
⎦ −3R2+R3⇒R3

∼

⎡
⎣2 8 0

0 2 −4
0 0 −1

⎤
⎦ = A2

Step3: The matrix A2 is in echelon form. We have

L =
⎡
⎣ 1 0 0

2 1 0
−1 3 1

⎤
⎦ and U =

⎡
⎣2 8 0

0 2 −4
0 0 −1

⎤
⎦

Step 4a: We now have A = LU . The diagonal matrix D has entries taken from the
pivots of U .

U =
⎡
⎣2 8 0

0 2 −4
0 0 −1

⎤
⎦ �⇒ D =

⎡
⎣2 0 0

0 2 0
0 0 −1

⎤
⎦
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Step 4b: We modify U by dividing each row by the row pivot, leaving 1’s in the pivot
positions.

(old) U =
⎡
⎣2 8 0

0 2 −4
0 0 −1

⎤
⎦ �⇒ (new) U =

⎡
⎣1 4 0

0 1 −2
0 0 1

⎤
⎦

It is not hard to check that⎡
⎣2 8 0

0 2 −4
0 0 −1

⎤
⎦ =

⎡
⎣2 0 0

0 2 0
0 0 −1

⎤
⎦

⎡
⎣1 4 0

0 1 −2
0 0 1

⎤
⎦

Setting U = (new) U , we have A = L DU , where

L =
⎡
⎣ 1 0 0

2 1 0
−1 3 1

⎤
⎦ , D =

⎡
⎣2 0 0

0 2 0
0 0 −1

⎤
⎦ , U =

⎡
⎣1 4 0

0 1 −2
0 0 1

⎤
⎦

■

E X A M P L E 8 Find an LDU factorization for the matrix in Example 5,

A =
⎡
⎣ 4 −3 −1 5 2

−16 12 2 −17 −7
8 −6 −12 22 10

⎤
⎦

Solution In Example 8 we found that A = LU , where

L =
⎡
⎣ 1 0 0

−4 1 0
2 5 1

⎤
⎦ , U =

⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 0 −3 1

⎤
⎦

All that is left is to form the 3 × 3 matrix D and modify U .

Step 1a: Form the 3 × 3 diagonal matrix D, with the diagonal terms coming from the
values in the pivot positions of U (in boldface).

U =
⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 0 −3 1

⎤
⎦ �⇒ D =

⎡
⎣4 0 0

0 −2 0
0 0 −3

⎤
⎦

Step 1b: Modify U by dividing each row by its pivot, leaving 1’s in the pivot positions.

(old) U =
⎡
⎣4 −3 −1 5 2

0 0 −2 3 1
0 0 0 −3 1

⎤
⎦ �⇒ U =

⎡
⎣1 −3/4 −1/4 5/4 1/2

0 0 1 −3/2 −1/2
0 0 0 1 −1/3

⎤
⎦

By forming D and modifying U in this manner, it follows that the product DU is equal
to the matrix U found earlier. Therefore we have A = L DU , where

L =
⎡
⎣ 1 0 0

−4 1 0
2 5 1

⎤
⎦ , D =

⎡
⎣4 0 0

0 −2 0
0 0 −3

⎤
⎦ , U =

⎡
⎣1 −3/4 −1/4 5/4 1/2

0 0 1 −3/2 −1/2
0 0 0 1 −1/3

⎤
⎦
■
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E X A M P L E 9 Find an LDU factorization for the matrix in Example 6,

A =

⎡
⎢⎢⎢⎢⎣

3 −1 4
9 −5 15

15 −1 10
−6 2 −4
−3 −3 10

⎤
⎥⎥⎥⎥⎦

Solution In Example 6 we found that A = LU , where

L =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
3 1 0 0 0
5 −2 1 0 0

−2 0 −1 1 0
−1 2 −2 0 1

⎤
⎥⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎢⎣

3 −1 4
0 −2 3
0 0 −4
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

The last steps are to form the 5 × 5 matrix D and modify U .

Step 1a: To find the terms of D, we start as in Example 8, setting the diagonal terms
in the first three columns equal to the pivots of U . As with L , we have A = L DU
regardless of which entries are in the last two diagonal positions of D. In applications
it is convenient to have D invertible, so we put 1’s in the last two diagonal positions.

D =

⎡
⎢⎢⎢⎢⎣

3 0 0 0 0
0 −2 0 0 0
0 0 −4 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

Step 1b: As in the previous example, we modify U by dividing each nonzero row by its
pivot. Doing so, we have A = L DU , where

L =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
3 1 0 0 0
5 −2 1 0 0

−2 0 −1 1 0
−1 2 −2 0 1

⎤
⎥⎥⎥⎥⎦, D =

⎡
⎢⎢⎢⎢⎣

3 0 0 0 0
0 −2 0 0 0
0 0 −4 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦, U =

⎡
⎢⎢⎢⎢⎣

1 −1/3 4/3
0 1 −3/2
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

■

Why Does the Algorithm Work?
As illustrated in our examples, a central part of the LU factorization algorithm is using
elementary row operations to reduce the original matrix to echelon form. For example,
for the following matrix A, the first step toward echelon form in the LU factorization
algorithm is

A =
⎡
⎣3 1 −1 2

6 −2 0 1
4 0 1 −1

⎤
⎦ −2R1+R2⇒R2

∼

⎡
⎣3 1 −1 2

0 −4 2 −3
4 0 1 −1

⎤
⎦ = A1

Now suppose that we start with the 3 × 3 identity matrix, and perform the same row
operation,

I3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ −2R1+R2⇒R2

∼

⎡
⎣ 1 0 0

−2 1 0
0 0 1

⎤
⎦ = E
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Forming the product E A, we get

E A =
⎡
⎣ 1 0 0

−2 1 0
0 0 1

⎤
⎦

⎡
⎣3 1 −1 2

6 −2 0 1
4 0 1 −1

⎤
⎦ =

⎡
⎣3 1 −1 2

0 −4 2 −3
4 0 1 −1

⎤
⎦ = A1

It turns out that we can perform any row operation by using the same approach. Given
an n×m matrix A and a desired row operation, all we do is start with In, perform the row
operation on In to produce a new matrix E , and then compute E A. (See Exercise 71.)
Such matrices E are called elementary matrices.Definition Elementary Matrix

Some examples of row operations on a matrix A and the corresponding 3 × 3
elementary matrices:

Row Operation Multiply A by the
Performed on A Elementary Matrix

−4R1 + R3 ⇒ R3

⎡
⎣ 1 0 0

0 1 0
−4 0 1

⎤
⎦

5R2 ⇒ R2

⎡
⎣1 0 0

0 5 0
0 0 1

⎤
⎦

R1 ⇔ R2

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

Now let’s return to LU factorization. The algorithm involves a number of row oper-
ations to transform the original matrix A to echelon form, producing the matrix U . Let
E 1, E 2, . . . , E k denote the elementary matrices corresponding to the row operations, in
the order performed. Then we have

(E k · · · E 2 E 1)A = U (2)

In our algorithm, the only type of row operation that we perform involves adding a
multiple of one row to a row below. The elementary matrix corresponding to such a
row operation will be unit lower triangular. Thus each of E 1, E 2, . . . , E k is unit lower
triangular, and it follows that

(E k · · · E 2 E 1) and (E k · · · E 2 E 1)−1

also are both unit lower triangular (see Exercise 72).
Returning to 2 and solving for A, we have

A = (E k · · · E 2 E 1)−1U

Thus, if we let L = (E k · · · E 2 E 1)−1, then A = LU where L is unit lower triangular
and U is in echelon form. This shows that an LU factorization is possible. To see why the
construction of L in the algorithm works, note that

(E k · · · E 2 E 1)L = I

Comparing to 2, we see that the same sequence of row operations that transform A into
U will also transform L into I . This provides the rationale for the construction method
for L — we set the columns of L so that the row operations that transform A to U will
also transform L to I .
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Computational Comments
• For many systems, interchanging rows is necessary when reducing to echelon form,

especially when partial pivoting is being used to minimize round-off error. It is possible
to modify the LU factorization algorithm given here to accommodate row swaps,
although one ends up with a matrix L that is permuted lower triangular, meaning that
the rows can be reorganized to form a lower triangular matrix.

• When presented with the problem of solving many systems of the form

Ax = b1, Ax = b2, Ax = b3, . . .

where A is a square invertible matrix, it is tempting to compute A−1 and then use this
to find the solution to each system. However, for an n × n matrix A, it takes about
2n3/3 flops to find L and U as opposed to 2n3 flops to find A−1. In addition, if A is a
sparse matrix (that is, most of the entries are 0), then L and U typically will be sparse,
while A−1 will not. In this instance, using the LU factorization usually will be more
efficient than using A−1.

E X E R C I S E S
In Exercises 1–4, a few terms are missing from the given LU
factorization for A. Find them.

1.

[
1 0

−7 1

][
2 2 −3
0 1 −4

]
=

[
2 a −3
b −13 17

]

2.

[
1 0 0

−4 1 0
−2 −1 1

][−2 0 3
0 1 1
0 0 2

]
=

[−2 a 3
8 1 b
c −1 −5

]

3.

[
1 0 0
3 1 0
a 2 1

][
5 2
0 b
0 0

]
=

[
5 c

15 9
20 14

]

4.

[
1 0
a 1

][
4 2 3 b
0 2 3 1

]
=

[
4 c 3 1
8 6 d 3

]

In Exercises 5–12, use the given LU factorization to find all
solutions to Ax = b.

5. A =
[

1 0
−2 1

][
2 −2
0 3

]
, b =

[
2
2

]

6. A =
[

1 0
3 1

][
1 4
0 −2

]
, b =

[
−7

−17

]

7. A =
[

1 0 0
−1 1 0

2 −2 1

][
2 −1 3
0 1 2
0 0 −2

]
, b =

[
4
0

−4

]

8. A =
[

1 0 0
−2 1 0

1 3 1

][
1 −2 0
0 3 −1
0 0 −2

]
, b =

[−4
11

5

]

9. A =
[

1 0 0
2 1 0

−3 4 1

][
1 −2
0 1
0 0

]
, b =

[
0
1
4

]

10. A =
[

1 0
3 1

][
1 −1 2
0 −2 −1

]
, b =

[
2

13

]

11. A =

⎡
⎢⎣

1 0 0 0
−2 1 0 0

0 3 1 0
2 −1 0 1

⎤
⎥⎦

⎡
⎢⎣

1 −2 0 −1
0 1 1 3
0 0 1 −1
0 0 0 1

⎤
⎥⎦,

b =

⎡
⎢⎣

0
0

−1
0

⎤
⎥⎦

12. A =

⎡
⎢⎣

1 0 0 0
2 1 0 0

−1 3 1 0
−3 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 3 1
0 1 2
0 0 1
0 0 0

⎤
⎥⎦, b =

⎡
⎢⎣

−1
−3
−2

3

⎤
⎥⎦

In Exercises 13–24, find an LU factorization for A.

13. A =
[

1 −4
−2 9

]

14. A =
[

2 3
6 10

]

15. A =
[−2 −1 1
−6 0 4

2 −2 −1

]

16. A =
[−3 2 1
−6 2 3

0 −8 6

]

17. A =

⎡
⎢⎣

−1 0 −1 2
1 3 2 −2

−2 −9 −3 3
−1 9 −2 5

⎤
⎥⎦

18. A =

⎡
⎢⎣

−3 2 1 4
0 2 0 3
6 −6 −1 −6

−6 2 −1 −9

⎤
⎥⎦
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19. A =
[−1 2 1 3

4 −7 −7 −17
−2 6 −3 −2

]

20. A =
[−2 0 −1 1 3

4 1 −1 2 −5
−2 3 −8 14 5

]

21. A =

⎡
⎢⎣

1 1 0
1 0 −1
1 −1 0
0 1 −1

⎤
⎥⎦

22. A =

⎡
⎢⎣

−1 2 4
4 −6 −17

−3 2 15
2 −4 −9

⎤
⎥⎦

23. A =

⎡
⎢⎢⎢⎣

−2 1 3
2 0 8

−4 1 12
2 0 −10

−4 2 7

⎤
⎥⎥⎥⎦

24. A =

⎡
⎢⎢⎢⎣

1 3 2
−1 −5 −1

0 −6 −3
1 5 7

−3 9 3

⎤
⎥⎥⎥⎦

In Exercises 25–30, find an LDU factorization for A given in the
referenced exercise.

25. Exercise 5.

26. Exercise 8.

27. Exercise 10.

28. Exercise 13.

29. Exercise 15.

30. Exercise 19.

In Exercises 31–36, assume that A is a matrix with three rows. Find
the elementary matrix E such that E A gives the matrix resulting
from A after the given row operation is performed.

31. 4R1 ⇒ R1

32. −3R2 ⇒ R2

33. R2 ⇔ R1

34. R3 ⇔ R2

35. 2R1 + R3 ⇒ R3

36. −4R3 + R2 ⇒ R2

In Exercises 37–42, assume that A is a matrix with three rows. Find
the matrix B such that B A gives the matrix resulting from A after
the given row operations are performed.

37. −2R1 + R2 ⇒ R2,
5R3 ⇒ R3

38. −6R2 + R3 ⇒ R3,
R1 ⇔ R3

39. R2 ⇔ R1,
3R1 + R2 ⇒ R2

40. −2R1 ⇒ R1,
7R2 + R3 ⇒ R3

41. −3R1 ⇒ R1,
R1 ⇔ R2,

4R1 + R2 ⇒ R2

42. −3R1 + R2 ⇒ R2,
2R1 + R3 ⇒ R3,
−R2 + R3 ⇒ R3

In Exercises 43–48, assume that A is a matrix with four rows. Find
the elementary matrix E such that E A gives the matrix resulting
from A after the given row operation is performed. Then find E −1

and give the elementary row operation corresponding to E −1.

43. −6R2 ⇒ R2

44. 2R4 ⇒ R4

45. R3 ⇔ R4

46. R1 ⇔ R3

47. −5R1 + R2 ⇒ R2

48. 2R3 + R1 ⇒ R1

If L and U are invertible, then (LU )−1 = U−1 L−1. In Exercises
49–54, find A−1 from the LU factorization for A given in the
referenced exercise.

49. Exercise 5.

50. Exercise 8.

51. Exercise 11.

52. Exercise 13.

53. Exercise 16.

54. Exercise 17.

FIND AN EXAMPLE For Exercises 55–60, find an example that
meets the given specifications.

55. A matrix A that has an LU factorization where L is 4 × 4 and
U is 4 × 3.

56. A matrix A that has an LU factorization where L is 3 × 3 and
U is 3 × 6.

57. A 2 × 2 matrix A that has an LU factorization where U is
diagonal.

58. A 3 × 2 matrix A that has an LU factorization where L is
diagonal.

59. A 4 × 4 matrix A that has an LU factorization where L and U
are both diagonal.

60. A 3×4 matrix A that has an LDU factorization where D = I3.

TRUE OR FALSE For Exercises 61–68, determine if the statement
is true or false, and justify your answer.

61. The dimensions of L and U are the same in an LU factoriza-
tion.

62. A matrix has an LU factorization provided that it can be trans-
formed to echelon form without the use of row interchanges.
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63. If an n × n matrix A is lower triangular, then A has an LU
factorization.

64. If A is a nonsingular n × n matrix, then A has an LU factor-
ization.

65. The LU factorization for a given matrix is unique.

66. If E is an n ×n elementary matrix corresponding to swapping
two rows, then E 2 = In .

67. Suppose that E 1 and E 2 are two elementary matrices. Then
E 1 E 2 = E 2 E 1.

68. If A is an n × n upper triangular matrix, we can have L = In

in an LU factorization of A.

69. Let U be an n × m matrix that is in echelon form, and let D
be an n × n diagonal matrix. Prove that the product DU is equal
to the matrix U with each row multiplied by the corresponding
diagonal entry of D. (That is, the first row of U multiplied by d11,
the second row of U multiplied by d22, and so on.)

70. Let U be an n × m matrix in echelon form, with the bottom
k rows of U having all zero entries. Suppose that L 1 and L 2 are
both n × n matrices and that the leftmost n − k columns of both
are identical. Prove that L 1U = L 2U .

71. Let A be an n × m matrix and In the n × n identity matrix.
Prove that the matrix obtained after performing a given row op-
eration on A is the same as the matrix obtained when computing
E A, where E is the matrix obtained by performing the same row
operation on In .

72. Let L 1, L 2, . . . , L k be unit lower triangular matrices.

(a) Prove that L 2 L 1 is unit lower triangular.

(b) Use induction to prove that L k · · · L 2 L 1 is unit lower
triangular.

(c) Prove that L−1
i is unit lower triangular for i = 1, . . . , k.

(d) Prove that (L k · · · L 2 L 1)−1 is unit lower triangular.

73. C In graph theory, an adjacency matrix A has an entry of 1
at ai j if there is an edge connecting node i with node j , and a zero
otherwise. (Such matrices come up in network analysis.) Figure 2
shows a cyclic graph with six nodes.

6 3

21

45

Figure 2 A cyclic graph with six nodes.

The adjacency matrix for this graph is

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

If possible find an LU factorization for the matrix A.

74. C Band matrices arise in numerous applications, such as fi-
nite difference problems in engineering. Such matrices have their
nonzero entries clustered along the diagonal, as with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2
3 1 1

2 2 1
1 2 1

2 1 3
1 4 1

3 2

⎤
⎥⎥⎥⎥⎥⎥⎦

The missing entries are zero. Find an LU factorization for the ma-
trix A.

C In Exercises 75–76, find an LU factorization for A if one exists.
Note that some computer algorithms do not compute LU factor-
izations in the same manner as presented here, so use caution.

75. A =

⎡
⎢⎣

10 2 0 −4 2
5 1 −14 5 22

10 2 0 −9 2
15 3 −4 −3 −7

⎤
⎥⎦

76. A =

⎡
⎢⎣

−15 −3 21
−10 3 29

5 −1 3
5 4 −26

⎤
⎥⎦
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3.5 Markov Chains
Sequences of vectors arise naturally in certain applications. In those considered here,
each vector in the sequence is found by multiplying a special matrix times the preceding
vector. To illustrate this, we begin by recalling the following scenario, first introduced in
Example 7, Section 3.2.

This section is optional and
can be omitted without loss of
continuity.

E X A M P L E 1 In a small town there are 10,000 homes. When it comes to television
viewing, the residents have three choices: they can subscribe to cable, they can pay
for satellite service, or they watch no TV. (The town is sufficiently remote so that an
antenna does not work.) In a given year, 80% of the cable customers stick with cable,
10% switch to satellite, and 10% get totally disgusted and quit watching TV. Over the
same time period, 90% of satellite viewers continue with satellite service, 5% switch to
cable, and 5% quit watching TV. And of those people who start the year not watching
TV, 85% continue not watching, 5% subscribe to cable, and 10% get satellite service
(see Figure 1). If the current distribution is 6000 homes with cable, 2500 with satellite
service, and 1500 with no TV, how many of each type will there be a year from now?
How about two years from now? Three years from now? ■

Cable Satellite

No TV

10%

5%

5%10%

10%5%

90%80%

85%

Figure 1 Customer transition
percentages between cable,
satellite, and no television.

To answer the questions posed, we started by forming the matrix

A =
⎡
⎣0.80 0.05 0.05

0.10 0.90 0.10
0.10 0.05 0.85

⎤
⎦

A square matrix like A that has nonnegative entries and columns that each add to 1 is
called a stochastic matrix. If a stochastic matrix also has rows that add to 1, then it is aDefinition Stochastic Matrix,

Doubly Stochastic Matrix doubly stochastic matrix.
Previously, we formed the vector x giving the initial number of homes with each of

satellite, cable, and no television. This time, we start with the vector that gives the initial
proportion of homes of each type,

x0 =
⎡
⎣0.60

0.25
0.15

⎤
⎦ 60% of homes have cable

25% of homes have satellite
15% of homes have no television

Here x0 denotes the initial state vector. Each entry in x0 can be thought of as representingDefinition Initial State Vector

the probability that a household falls into one of the television-watching groups. In
general, any vector that has nonnegative entries that add up to 1 is called a probability

Definition Probability Vector vector. Thus a stochastic matrix consists of columns that are probability vectors.
After one year has passed, the distribution of households changes. The new distri-

bution is given by

x1 = Ax0 =
⎡
⎣0.80 0.05 0.05

0.10 0.90 0.10
0.10 0.05 0.85

⎤
⎦

⎡
⎣0.60

0.25
0.15

⎤
⎦ =

⎡
⎣0.50

0.30
0.20

⎤
⎦A is called a transition matrix

because it is used to make the
transition from one state vector
to the next.

That is, after one year, 50% have cable, 30% have satellite, and 20% have no television.
Two and three years later we have, respectively,

x2 = Ax1 =
⎡
⎣0.425

0.340
0.235

⎤
⎦ and x3 = Ax2 =

⎡
⎣0.3688

0.3720
0.2592

⎤
⎦
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Each vector in a sequence generated in this manner is called a state vector and is found
Definition State Vector by multiplying the stochastic matrix by the previous state vector. This process can be

continued indefinitely — additional vectors are given below. (Some intermediate vectors
are not shown to save space.)

One can also compute state
vectors using the formula xi =
Ai x0 (as in Example 7, Sec-
tion 3.2). However, calculat-
ing matrix powers A2, A3, . . . is
more computationally intensive
than using the recursive defini-
tion xi+1 = Axi .

x4 =
⎡
⎣0.3266

0.3976
0.2758

⎤
⎦, x5 =

⎡
⎣0.2949

0.4181
0.2770

⎤
⎦, x6 =

⎡
⎣0.2712

0.4345
0.2943

⎤
⎦, x7 =

⎡
⎣0.2534

0.4476
0.2990

⎤
⎦, x8 =

⎡
⎣0.2400

0.4581
0.3019

⎤
⎦

x10 =
⎡
⎣0.2225

0.4732
0.3043

⎤
⎦, x12 =

⎡
⎣0.2127

0.4828
0.3045

⎤
⎦, x14 =

⎡
⎣0.2071

0.4890
0.3039

⎤
⎦, x16 =

⎡
⎣0.2040

0.4930
0.3030

⎤
⎦, x20 =

⎡
⎣0.2013

0.4971
0.3016

⎤
⎦

x24 =
⎡
⎣0.2004

0.4988
0.3008

⎤
⎦, x28 =

⎡
⎣0.2001

0.4995
0.3004

⎤
⎦, x32 =

⎡
⎣0.2000

0.4998
0.3002

⎤
⎦, x36 =

⎡
⎣0.2000

0.4999
0.3001

⎤
⎦, x40 =

⎡
⎣0.2000

0.5000
0.3000

⎤
⎦

In general, a sequence of vectors x0, x1, . . . generated in this way is called a MarkovDefinition Markov Chain
Chain.Informally, by converging we

mean that the entries in the se-
quence of vectors are getting
closer and closer to fixed values.

Examining the state vectors x0, x1, . . . , x40 above, we see that our sequence appears
to be converging toward the vector

x =
⎡
⎣0.2

0.5
0.3

⎤
⎦ (1)

Since xi+1 = Axi , if for large i we have xi+1 ≈ xi , then this implies that Axi ≈ xi . Hence
the vector x that we are looking for should satisfy Ax = x. Let’s try this out for our A
and x in 1.

Ax =
⎡
⎣0.80 0.05 0.05

0.10 0.90 0.10
0.10 0.05 0.85

⎤
⎦

⎡
⎣0.2

0.5
0.3

⎤
⎦ =

⎡
⎣0.2

0.5
0.3

⎤
⎦ = x

The vector x is called a steady-state vector for A.Definition Steady-State Vector

Crash No crash
40%

8%

60%92%

Figure 2 Transition
percentages between crashing
and noncrashing computers.

E X A M P L E 2 The computer support group at a large corporation maintains thou-
sands of machines using a well-known operating system. As the computers age, some
tend to become less reliable. Based on past records, if a given computer crashes this
week, then there is a 92% chance that it will crash again next week. On the other hand, if
a computer did not crash this week, then there is a 60% chance that it will not crash next
week (see Figure 2). Suppose that 70% of computers crashed this week. What percentage
will crash two weeks from now? Is there a steady-state vector? If so, what is it?

Solution The information given is summarized in the table and corresponding tran-
sition matrix A below.

Next Week

This Week

Crash No Crash

Crash 92% 40%

No Crash 8% 60%

�⇒ A =
[

0.92 0.40

0.08 0.60

]
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This week 70% of computers crashed and 30% did not, giving an initial state vector of

x0 =
[

0.70
0.30

]

The next two vectors in the sequence are

x1 = Ax0 =
[

0.92 0.40
0.08 0.60

] [
0.70
0.30

]
=

[
0.764
0.236

]

and

x2 = Ax1 =
[

0.92 0.40
0.08 0.60

] [
0.764
0.236

]
=

[
0.7973
0.2027

]

From x2 we see that two weeks from now we can expect 79.73% of computers to crash.
Calculating more state vectors in the sequence gives us

x3 =
[

0.8146
0.1854

]
, x4 =

[
0.8236
0.1764

]
, x5 =

[
0.8283
0.1717

]
, x6 =

[
0.8307
0.1693

]

x7 =
[

0.8320
0.1680

]
, x8 =

[
0.8326
0.1674

]
, x9 =

[
0.8330
0.1670

]
, x10 =

[
0.8331
0.1669

]

x11 =
[

0.8332
0.1668

]
, x12 =

[
0.8333
0.1667

]
, x13 =

[
0.8333
0.1667

]
, x14 =

[
0.8333
0.1667

]

This suggests a steady-state vector x =
[

5
6

1
6

]
. Let’s test it out:

Ax =
[

0.92 0.40
0.08 0.60

][
5
6

1
6

]
=

[
5
6

1
6

]

This confirms our observation. ■

In practice, it may take many terms in the sequence for a steady-state vector to emerge,
so computing lots of state vectors is usually not a practical way to find a steady-state vector.
Fortunately, there is a direct algebraic method that we can use.

Finding Steady-State Vectors
We know that a steady-state vector x satisfies Ax = x. Since x = I x, we have

Ax = x �⇒ Ax = I x �⇒ Ax − I x = 0 �⇒ (A − I )x = 0

Thus a steady-state vector for A will satisfy the homogeneous system with coefficient
matrix A − I . For the matrix A in Example 2, we have

A − I =
[−0.08 0.40

0.08 −0.40

]

The homogeneous system (A − I )x = 0 has augmented matrix

[−0.08 0.40 0
0.08 −0.40 0

]
∼

[−0.08 0.40 0
0 0 0

]
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This leaves the single equation −0.08x1 + 0.40x2 = 0. Setting x2 = s and back-
substituting gives the general solution

x = s

[
5
1

]

Since x is to be a probability vector, the entries need to add to 1. Setting s = 1
5+1 = 1

6
gives

x = 1
6

[
5
1

]
=

[
5
6

1
6

]

which is the steady-state vector found earlier.

E X A M P L E 3 Find a steady-state vector for the matrix A given in Example 1.

A =
⎡
⎣0.80 0.05 0.05

0.10 0.90 0.10
0.10 0.05 0.85

⎤
⎦

Solution The augmented matrix for the system (A − I )x = 0 and corresponding
echelon form are⎡

⎣−0.20 0.05 0.05 0
0.10 −0.10 0.10 0
0.10 0.05 −0.15 0

⎤
⎦ ∼

⎡
⎣−0.20 0.05 0.05 0

0 −0.75 −0.125 0
0 0 0 0

⎤
⎦

Back substitution yields the general solution

x = s

⎡
⎣0.2

0.5
0.3

⎤
⎦

Setting s = 1 gives the steady-state vector and matches the vector in (1) found
earlier. ■

Properties of Stochastic Matrices
The next theorem summarizes some properties of stochastic matrices. Proofs are left as
exercises.

T H E O R E M 3.27 Let A be an n × n stochastic matrix and x0 a probability vector. Then

(a) If xi+1 = Axi for i = 0, 1, 2, . . ., then each of x1, x2, . . . in the Markov chain is
a probability vector.

(b) If B is another n × n stochastic matrix, then the product AB is also an n × n
stochastic matrix.

(c) For each of i = 2, 3, 4, . . ., Ai is an n × n stochastic matrix.

In the examples considered thus far, we could always find a steady-state vector for a
given initial state vector. However, not all stochastic matrices have a steady-state vector
for each initial state vector. For instance, if

A =
[

0 1
1 0

]
and x0 =

[
1
0

]
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then it is easy to verify that

x1 =
[

0
1

]
, x2 =

[
1
0

]
, x3 =

[
0
1

]
, x4 =

[
1
0

]
, . . .

so that we will not reach a steady-state vector for this choice of x0. On the other hand, if

we start with x0 =
[

0.5
0.5

]
, then we have

x1 =
[

0.5
0.5

]
, x2 =

[
0.5
0.5

]
, x3 =

[
0.5
0.5

]
, . . .

Thus this choice for x0 yields a steady-state vector. In fact, for the matrix A, this choice
for x0 is the only initial state vector that leads to a steady-state vector. (See Exercise 42.)

A stochastic matrix may have many different steady-state vectors, depending on the
initial state vector. For instance, suppose

A =
⎡
⎣1 0 1/3

0 1 1/3
0 0 1/3

⎤
⎦

Then it can be verified (see Exercise 52) that

Initial State: x0 =
⎡
⎣ 0.5

0.25
0.25

⎤
⎦ �⇒ steady-state vector: x =

⎡
⎣0.625

0.375
0

⎤
⎦

and

Initial State: x0 =
⎡
⎣0.2

0.6
0.2

⎤
⎦ �⇒ steady-state vector: x =

⎡
⎣0.3

0.7
0

⎤
⎦

In general for this case, solving the system (A − I )x = 0 yields the general solution

x = s1

⎡
⎣1

0
0

⎤
⎦ + s2

⎡
⎣0

1
0

⎤
⎦ =

⎡
⎣s1

s2

0

⎤
⎦

Thus being a stochastic matrix is not enough to ensure that there will be a unique
steady-state vector. It turns out that we need one additional condition.

D E F I N I T I O N 3.28 Let A be a stochastic matrix. Then A is regular if for some integer k ≥ 1 the matrix
Ak has all strictly positive entries.

Definition Regular Matrix

Note that both A =
[

0 1
1 0

]
and A =

⎡
⎣1 0 1/3

0 1 1/3
0 0 1/3

⎤
⎦ are not regular. On the other

hand, even though

B =
⎡
⎣1/2 1/2 1/2

1/2 0 1/2
0 1/2 0

⎤
⎦ and B2 =

⎡
⎣1/2 1/2 1/2

1/4 1/2 1/4
1/4 0 1/4

⎤
⎦



Holt-4100161 la November 8, 2012 10:51 146

146 CHAPTER 3 Matrices

both have zero entries, B is regular because B3 has all positive entries,

B 3 =
⎡
⎣1/2 1/2 1/2

3/8 1/4 3/8
1/8 1/4 1/8

⎤
⎦

T H E O R E M 3.29 Let A be a regular stochastic matrix. Then

(a) For any initial state vector x0, the Markov chain x0, x1, x2, . . . converges to a
unique steady-state vector x.

(b) The sequence A, A2, A3, . . . converges to the matrix
[

x x · · · x
]
, where x

is the unique steady-state vector given in part (a).

Proof The proof of part (a) is beyond the scope of this book, but it can be found in
texts on Markov chains. To prove part (b), we begin by noting that

An = An−1 A

= An−1
[

a1 a2 · · · an

]
= [

An−1a1 An−1a2 · · · An−1an

]
From part (a) we know that as n grows, An−1a j converges to x for each of j = 1, 2, . . . , n.
Thus it follows that

An → [
x x · · · x

]
completing the proof. ■

Theorem 3.29 shows that a regular stochastic matrix will have a unique steady-state
vector that is independent of the initial state vector, which explains why we had no trouble
solving our earlier examples.

E X E R C I S E S
In Exercises 1–4, determine if A is a stochastic matrix.

1. A =
[

0.2 0.6
0.8 0.4

]

2. A =
[

1.5 0.15
−0.5 0.85

]

3. A =

⎡
⎢⎣

1
5 1 0
2
5 0 1

2
2
5 0 1

2

⎤
⎥⎦

4. A =

⎡
⎢⎣

3
14

3
8

1
2

1
2

3
8

1
2

3
14

1
4

1
2

⎤
⎥⎦

In Exercises 5–8, fill in the missing values to make A a stochastic
matrix.

5. A =
[

a 0.45
0.65 b

]

6. A =
[

a 0.7 0.2
0.35 b 0.4

0.2 0.25 c

]

7. A =

⎡
⎢⎣

2
13

3
7 c

a 3
7

1
5

3
13 b 7

10

⎤
⎥⎦

8. A =

⎡
⎢⎣

a 0.5 0.2 0.05
0.45 0.15 0.4 d

0.1 b c 0.25
0 0.2 0.30 0.15

⎤
⎥⎦

In Exercises 9–12, if possible, fill in the missing values to make A
a doubly stochastic matrix.

9. A =
[

a 0.3
0.3 b

]

10. A =
[

0.4 0.6
a b

]
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11. A =
[

0.2 a 0.3
b 0.1 c
d 0.4 0.2

]

12. A =
[

a 0.5 b
0.2 c 0.2
0.5 0.1 d

]

In Exercises 13–16, find the state vector x3 for the given stochastic
matrix and initial state vector.

13. A =
[

0.2 0.6
0.8 0.4

]
, x0 =

[
0.2
0.8

]

14. A =
[

0.5 0.3
0.5 0.7

]
, x0 =

[
0.3
0.7

]

15. A =
[ 1

3
2
5

2
3

3
5

]
, x0 =

[ 1
2
1
2

]

16. A =
[ 1

4
3
7

3
4

4
7

]
, x0 =

[ 1
3
2
3

]

In Exercises 17–20, find all steady-state vectors for the given
stochastic matrix.

17. A =
[

0.8 0.5
0.2 0.5

]

18. A =
[

0.3 0.6
0.7 0.4

]

19. A =
[

0.4 0.5 0.3
0.2 0.3 0.4
0.4 0.2 0.3

]

20. A =
[

0.3 0 0
0.2 1 0
0.5 0 1

]

In Exercises 21–24, determine if the given stochastic matrix is reg-
ular.

21. A =
[

1 0.4
0 0.6

]

22. A =
[

0.3 0
0.7 1

]

23. A =
[

0.7 0.2 0.1
0.3 0.8 0.4

0 0 0.5

]

24. A =
[

0 0.2 0.5
0.9 0 0.5
0.1 0.8 0

]

FIND AN EXAMPLE For Exercises 25–30, find an example that
meets the given specifications.

25. A 4 × 4 stochastic matrix.

26. A 4 × 4 doubly stochastic matrix.

27. A 2 × 2 stochastic matrix A that has

[
2/3
1/3

]
for a steady-state

vector.

28. A 2 × 3 stochastic matrix A that has

[
0.5

0.25
0.25

]
for a steady-state

vector.

29. A 3×3 stochastic matrix A and initial state vector x0 such that
the Markov chain Ax0, A2x0, . . . does not converge to a steady-
state vector.

30. A 3 × 3 stochastic matrix A that has exactly one initial state
vector x0 that will generate a Markov chain with a steady-state
vector.

TRUE OR FALSE For Exercises 31–36, determine if the statement
is true or false, and justify your answer.

31. If A is a stochastic matrix, then so is AT .

32. If A is an n × n stochastic matrix and

x =

⎡
⎢⎣

1/n
...

1/n

⎤
⎥⎦ , then Ax =

⎡
⎢⎣

1
...

1

⎤
⎥⎦

33. If A and B are stochastic n × n matrices, then AB T is also
stochastic.

34. If A is a symmetric stochastic matrix, then A is doubly
stochastic.

35. All Markov chains converge to a steady-state vector.

36. Every 2 × 2 stochastic matrix has at least one steady-state
vector.

37. Prove Theorem 3.27(a): Show that each state vector is a
probability vector.

38. Prove Theorem 3.27(b): Show that the product of two stochas-
tic matrices is a stochastic matrix. (HINT: Appeal to Theo-
rem 3.27(a).)

39. Prove Theorem 3.27(c): Show that if A is a stochastic
matrix, then so is A2, A3, . . .. (HINT: Use induction and appeal to
Theorem 3.27(b).)

40. Suppose that A is a regular stochastic matrix. Show that A2 is
also a regular stochastic matrix.

41. Let A =
[

a b
c d

]
be a doubly stochastic matrix. Prove that

a = d and b = c .

42. If A =
[

0 1
1 0

]
, prove that x0 =

[
0.5
0.5

]
is the only initial state

vector that will lead to a steady-state vector.

43. Let A be a regular stochastic matrix, and suppose that k is
the smallest integer such that Ak has all strictly positive en-
tries. Show that each of Ak+1, Ak+2, . . . will have strictly positive
entries.

44. Let A be an upper or lower triangular stochastic matrix. Show
that A is not regular.
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45. Suppose that A =
[

α 0
(1 − α) 1

]
, where 0 < α < 1.

(a) Explain why A is a stochastic matrix.

(b) Find a formula for Ak , and use it to show that A is not regular.

(c) As k → ∞, what matrix does Ak converge to?

(d) Find the one steady-state vector for A. (Note that this
shows the converse of Theorem 3.29 does not hold: A stochas-
tic matrix that is not regular can still have a unique steady-state
vector.)

46. C In an office complex of 1000 employees, on any given day
some are at work and the rest are absent. It is known that if an
employee is at work today, there is an 85% chance that she will be
at work tomorrow, and if the employee is absent today, there is a
60% chance that she will be absent tomorrow. Suppose that today
there are 760 employees at work.

(a) Find the transition matrix for this scenario.

(b) Predict the number that will be at work five days from
now.

(c) Find the steady-state vector.

47. C The star quarterback of a university football team has
decided to return for one more season. He tells one person, who
in turn tells someone else, and so on, with each person talking to
someone who has not heard the news. At each step in this chain,
if the message heard is “yes” (he is returning), then there is a 10%
chance it will be changed to “no,” and if the message heard is “no,”
then there is a 15% chance that it will be changed to “yes.”

(a) Find the transition matrix for this scenario.

(b) Determine the probability that the sixth person in the chain
hears the wrong news.

(c) Find the steady-state vector.

48. C It has been claimed that the best predictor of today’s
weather is yesterday’s weather. Suppose that in the town of Spring-
field, if it rained yesterday, then there is a 60% chance of rain today,
and if it did not rain yesterday, then there is an 85% chance of no
rain today.

(a) Find the transition matrix describing the rain probabilities.

(b) If it rained Tuesday, what is the probability of rain Thursday?

(c) If it did not rain Friday, what is the probability of rain
Monday?

(d) If the probability of rain today is 30%, what is the probability
of rain tomorrow?

(e) Find the steady-state vector.

49. C Consumers in Shelbyville have a choice of one of two
fast food restaurants, Krusty’s and McDonald’s. Both have trou-
ble keeping customers. Of those who last went to Krusty’s, 65%
will go to McDonald’s next time, and of those who last went to
McDonald’s, 80% will go to Krusty’s next time.

(a) Find the transition matrix describing this situation.

(b) A customer goes out for fast food every Sunday, and just went
to Krusty’s.

i. What is the probability that two Sundays from now she will
go to McDonald’s?
ii. What is the probability that three Sundays from now she will

go to McDonald’s?

(c) Suppose a consumer has just moved to Shelbyville, and there
is a 40% chance that he will go to Krusty’s for his first fast food
outing. What is the probability that his third fast food experience
will be at Krusty’s?

(d) Find the steady-state vector.

50. C An assembly line turns out two types of pastries, Chocolate
Zots and Rainbow Wahoos. The pastries come out one at a time;
40% of the time, a Wahoo follows a Zot, and 25% of the time, a
Zot follows a Wahoo.

(a) If a Zot has just emerged from the line, what is the probability
that a Wahoo will come two pastries later?

(b) If a Zot has just emerged from the line, what is the probability
that a Zot will come three pastries later?

(c) What is the long-term probability that a randomly emerging
pastry will be a Wahoo?

51. C A medium-size town has three public library branches,
designated A, B, and C. Patrons checking out books can return
them to any of the three branches, where the books stay until
checked out again. History shows that books borrowed from each
branch are returned to a given location based on the following
probabilities:

Borrowed
A B C

A 0.4 0.1 0.2
Returned B 0.3 0.7 0.7

C 0.3 0.2 0.1

(a) If a book is borrowed from A, what is the probability that it
ends up at C after two more circulations?

(b) If a book is borrowed from B, what is the probability that it
ends up at B after three more circulations?

(c) What is the steady-state vector?

52. C Let A =
[

1 0 1/3
0 1 1/3
0 0 1/3

]
.

Numerically verify that each initial state vector x0 has the given
steady-state vector x.

(a) x0 =
[

0.5
0.25
0.25

]
�⇒ x =

[
0.625
0.375

0

]

(b) x0 =
[

0.2
0.6
0.2

]
�⇒ x =

[
0.3
0.7
0

]

C For Exercises 53–54, determine to six decimal places the steady-
state vector corresponding to the given initial state vector. Also find
the smallest integer k such that xk = xk+1 to 6 decimal places for
all entries. (NOTE: Even if it is less computationally efficient, it may
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be easier to compute state vectors using powers of A instead of the
recursive formula.)

53. A =

⎡
⎢⎣

0.2 0.3 0.1 0.4
0.3 0.5 0.6 0.2
0.1 0.1 0.2 0.2
0.4 0.1 0.1 0.2

⎤
⎥⎦ , x0 =

⎡
⎢⎣

0.25
0.25
0.25
0.25

⎤
⎥⎦

54. A =

⎡
⎢⎣

0 1 0.2 0.5
0.2 0 0.3 0
0.5 0 0.4 0.5
0.3 0 0.1 0

⎤
⎥⎦ , x0 =

⎡
⎢⎣

0.1
0.2
0.3
0.4

⎤
⎥⎦

C For Exercises 55–56, use computational experimentation to
find two initial state vectors that lead to different steady-state

vectors. (NOTE: Even if it is less computationally efficient, it may
be easier to compute state vectors using powers of A instead of the
recursive formula.)

55. A =

⎡
⎢⎣

0.5 0 0 0.5
0 1 0 0
0 0 1 0.5

0.5 0 0 0

⎤
⎥⎦

56. A =

⎡
⎢⎣

1 0 0 0
0 0.5 0 0.5
0 0 1 0.5
0 0.5 0 0

⎤
⎥⎦
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C H A P T E R

The Oresund Bridge connects

Denmark and Sweden in a

combination of an above ground,

cable-stayed bridge and

underground tunnel. The bridge

allows vehicular traffic to reach

either country from the other in

less than 10 minutes. At 1,611

feet, its cable-stayed main span is

the longest in the world. The

span joins the Drogden tunnel on

the artificial island of Peberholm,

compiled of rock and soil

excavated during construction.

The undersea tube tunnel, which

is made from prefabricated,

interlocking concrete segments,

carries both roads and railroad

tracks.

Subspaces

Subspaces are a special type of subset of Euclidean space Rn. They arise naturally
in connection with spanning sets, linear transformations, and systems of linear
equations. Section 4.1 provides an introduction to, and includes examples of, sub-

spaces and a general procedure for determining if a subset is a subspace. Section 4.2

Bridge suggested by Alain D’Amour,

Southern Connecticut State

University (Pierre

Mens/Øresundsbro)
introduces an important type of vector set and a means for measuring (roughly) the size
of a subspace. Section 4.3 connects the concept of subspaces to matrices.

4.1 Introduction to Subspaces

u1

u2

x3

x1

x2

Figure 1 Subspace traversed
by the VecMobile II.

In Section 2.2, we introduced the hypothetical VecMobile II in R3, the vehicle that can
move only in the direction of vectors

u1 =
⎡
⎣2

1
1

⎤
⎦ and u2 =

⎡
⎣1

2
3

⎤
⎦

Recall that this model of the VecMobile II can travel to any location in span{u1, u2}, the
set of all linear combinations of u1 and u2, which forms a plane in R3 (Figure 1). This
subset of R3 is an example of a subspace. In many ways, a subspace of Rn resembles Rm

for some m ≤ n.
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D E F I N I T I O N 4.1 A subset S of Rn is a subspace if S satisfies the following three conditions:

(a) S contains 0, the zero vector.

(b) If u and v are in S, then u + v is also in S.

(c) If r is a real number and u is in S, then r u is also in S.

Definition Subspace

A subset of Rn that satisfies condition (b) above is said to be closed under addition,
Definition Closed Under

Addition, Closed Under Scalar
Multiplication and if it satisfies condition (c), then it is closed under scalar multiplication. Closure

under addition and scalar multiplication ensures that arithmetic performed on vectors
in a subspace produce other vectors in the subspace.Geometrically, condition (a)

says that the graph of a sub-
space must pass through the
origin. Is S a Subspace?

To determine if a given subset S is a subspace, an easy place to start is with condition (a)
of Definition 4.1, which states that every subspace must contain 0. A moment’s thought
reveals that this is equivalent to the statement

If 0 is not in a subset S, then S is not a subspace.

Note that the converse is not true. Just because 0 is in S does not guarantee that S
is a subspace, because conditions (b) and (c) must also be satisfied. For example, despite
containing 0, the subset of R2 consisting of the x-axis and y-axis (Figure 2) is not a
subspace of R2, because the set is not closed under addition. (However, it is closed under
scalar multiplication.)

x

y

Figure 2 The coordinate axes
are not a subspace of R2.

E X A M P L E 1 Let S consist of all solutions x = (x1, x2) to the linear system

−3x1 + 2x2 = 17
x1 − 5x2 = −1

Is S a subspace of R2?

Solution We know that S is a subset of R2. However, note that x = (0, 0) is not a solution
to the given system. Hence 0 is not in S, and so S cannot be a subspace of R2. ■

This section opened with the statement that the span of two vectors forms a subspace
of R3. This claim generalizes to the span of any finite set of vectors in Rn and provides a
useful way to determine if a set of vectors is a subspace.

T H E O R E M 4.2 Let S = span{u1, u2, . . . , um} be a subset of Rn. Then S is a subspace of Rn.

Theorem 4.2 also holds for
the span of an infinite set of
vectors. However, we do not
require this case and including
it would introduce additional
technical issues, so we leave it
out.

Proof To show that a subset is a subspace, we need to verify that the three conditions
given in the definition are satisfied.

(a) Since 0 = 0u1 + · · · + 0um, it follows that S contains 0.

(b) Suppose that v and w are in S. Then there exist scalars r1, r2, . . . rm and s1, s2, . . . sm

such that

v = r1u1 + r2u2 + · · · rmum

w = s1u1 + s2u2 + · · · smum

Then

v + w = (r1u1 + r2u2 + · · · rmum) + (s1u1 + s2u2 + · · · smum)
= (r1 + s1)u1 + (r2 + s2)u2 + · · · (rm + sm)um

so v + w is in span{u1, u2, . . . , um} = S.
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(c) If t is a real number, then taking v as in part (b), we have

tv = t(r1u1 + r2u2 + · · · rmum)
= tr1u1 + tr2u2 + · · · trmum

so that tv is in S.

Since parts (a)–(c) of the definition hold, S is a subspace. ■

If S = span{u1, u2, . . . , um}, then it is common to say that S is the subspace spanned
(or subspace generated) by {u1, u2, . . . , um}.Definition Subspace Spanned,

Subspace Generated

D E T E R M I N I N G I F S I S A S U B S P A C E To determine if a subset
S is a subspace, apply the following steps.

Step 1. Check if 0 is in S. If not, then S is not a subspace.

Step 2. If you can show that S is generated by a set of vectors, then by Theorem 4.2
S is a subspace.

Step 3. Try to verify that conditions (b) and (c) of the definition are met. If so, then
S is a subspace. If you cannot show that they hold, then you are likely to uncover a
counterexample showing that they do not hold, which demonstrates that S is not a
subspace.

Let’s try this out on some examples.

�1

x

y

Figure 3 �1 is a subspace.

E X A M P L E 2 Determine if S = {0} and S = Rn are subspaces of Rn.

Solution Since 0 is in both S = {0} and S = Rn, Step 1 is no help, so we move to
Step 2. Since {0} = span{0}, by Theorem 4.2 the set S = {0} is a subspace. We also have
Rn = span{e1, e2, . . . , en}, where

e1 =

⎡
⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎦ , e2 =

⎡
⎢⎢⎣

0
1
...

0

⎤
⎥⎥⎦ , · · · , en =

⎡
⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎦ (1)

Thus Rn is a subspace of itself. (These are sometimes called the trivial subspaces
of Rn.) ■

�2

x

y

Figure 4 �2 does not pass
through the origin, so is not a
subspace.

E X A M P L E 3 Let �1 denote a line through the origin in R2 (Figure 3), and let �2

denote a line that does not pass through the origin in R2 (Figure 4). Do the points on
�1 form a subspace? Do the points on �2 form a subspace?

Solution Since �1 passes through the origin, 0 is on �1, so Step 1 is not helpful. Moving
to Step 2, suppose that we pick any nonzero vector u on �1. Then all points on �1 have
the form r u for some scalar r . Thus �1 = span{u}, so �1 is a subspace.

Focusing now on the line �2, we note that it does not contain 0, so �2 is not a
subspace. ■
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E X A M P L E 4 Let S be the subset of R3 consisting of all vectors of the form

v =
⎡
⎣v1

v2

v3

⎤
⎦

such that v1 + v2 + v3 = 0. Is S a subspace of R3?

Solution Starting with Step 1, we see that setting v1 = v2 = v3 = 0 implies 0 is in S,
so we still cannot conclude anything from this. A spanning set for S is not immediately
presenting itself (although we could find one), so let’s skip to Step 3 and determine if
conditions (b) and (c) of the definition are satisfied.

(b) Let u =
⎡
⎣u1

u2

u3

⎤
⎦ and v =

⎡
⎣v1

v2

v3

⎤
⎦ be in S. Then

u + v =
⎡
⎣u1 + v1

u2 + v2

u3 + v3

⎤
⎦

and since

(u1 + v1) + (u2 + v2) + (u3 + v3) = (u1 + u2 + u3) + (v1 + v2 + v3)
= 0 + 0 = 0

it follows that u + v is in S.

(c) With v =
⎡
⎣v1

v2

v3

⎤
⎦ in S as above, for any scalar r we have r v =

⎡
⎣rv1

rv2

rv3

⎤
⎦. Since

rv1 + rv2 + rv3 = r (v1 + v2 + v3) = 0

r v is also in S.

Since all conditions of the definition are satisfied, we conclude that S is a subspace
of R3. ■

It is not hard to extend the result in Example 4 to Rn. Let S be the set of all vectors
of the form

v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

such that v1 + · · · + vn = 0. Then S is a subspace of Rn (see Exercise 15).

Homogeneous Systems and Null Spaces
The set of solutions to a homogeneous linear system forms a subspace. For instance, let
A be the 3 × 4 matrix

A =
⎡
⎣ 3 −1 7 −6

4 −1 9 −7
−2 1 −5 5

⎤
⎦
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Using our usual algorithm, we find that all solutions to the homogeneous linear system
Ax = 0 have the form

x = s1

⎡
⎢⎢⎣

−2
1
1
0

⎤
⎥⎥⎦ + s2

⎡
⎢⎢⎣

1
−3

0
1

⎤
⎥⎥⎦

where s1 and s2 can be any real numbers. Thus the set of solutions to Ax = 0 is equal to

span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−2
1
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−3

0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and so the set of solutions is a subspace of R4. This result generalizes to the set of solutions
of any homogeneous linear system.

T H E O R E M 4.3 If A is an n × m matrix, then the set of solutions to the homogeneous linear system
Ax = 0 forms a subspace of Rm.

Proof We verify the three conditions from Definition 4.1 to show that the set forms a
subspace.

(a) Since x = 0 is a solution to Ax = 0, the zero vector 0 is in the set of solutions.

(b) Suppose that u and v are both solutions to Ax = 0. Then

A(u + v) = Au + Av = 0 + 0 = 0

so that u + v is in the set of solutions.

(c) Let u be a solution to Ax = 0, and let r be a scalar. Then

A(r u) = r (Au) = r 0 = 0

and so r u is also in the set of solutions.

Since all three conditions of the definition are met, the set of solutions to Ax = 0 is a
subspace of Rn. ■

A subspace given by the set of solutions to a homogeneous linear system goes by a
special name.

D E F I N I T I O N 4.4 If A is an n × m matrix, then the set of solutions to Ax = 0 is called the null space of
A and is denoted by null(A).

Definition Null Space

From Theorem 4.3 it follows that a null space is a subspace.

Ethane is a gas similar to
propane. Its primary use in the
chemical industry is to make
polyethylene, a common form
of plastic.

E X A M P L E 5 Ethane burns in oxygen to produce carbon dioxide and steam. The
chemical reaction is described using the notation

x1C2H6 + x2O2 −→ x3CO2 + x4H2O

where the subscripts on the elements indicate the number of atoms in each molecule.
Describe the subspace of values that will balance this equation.
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Solution To balance the equation, we need to find values for x1, x2, x3, and x4 so that
the number of atoms for each element is the same on both sides of the equation. Doing
so yields the linear system

2x1 − x3 = 0 (carbon atoms)
6x1 − 2x4 = 0 (hydrogen atoms)

2x2 − 2x3 − x4 = 0 (oxygen atoms)

Applying our usual methods, we find that the general solution to this system is

x1 = 2s
x2 = 7s
x3 = 4s
x4 = 6s

or x = s

⎡
⎢⎢⎣

2
7
4
6

⎤
⎥⎥⎦

where s can be any real number. Put another way, the set of solutions is equal to

span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
7
4
6

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

which makes it clear that the set is a subspace of R4. ■

Balancing chemical equa-
tions is discussed in detail in
Section 1.4.

Kernel and Range of a Linear Transformation
There are two sets associated with any linear transformation T that are subspaces. Recall
that the range of T is the set of all vectors y such that T(x) = y for some x and is denoted
by range(T). The kernel of T is the set of vectors x such that T(x) = 0. The kernel ofDefinition Kernel
T is denoted by ker(T) (see Figure 5). Theorem 4.5 shows that the range and kernel are
subspaces.

T H E O R E M 4.5 Let T : Rm → Rn be a linear transformation. Then the kernel of T is a subspace of
the domain Rm and the range of T is a subspace of the codomain Rn.

Proof Because T : Rm → Rn is a linear transformation, it follows (Theorem 3.8,
Section 3.1) that there exists an n × m matrix A = [

a1 · · · am

]
such that T(x) = Ax.

Thus T(x) = 0 if and only if Ax = 0. This implies that

ker(T) = null(A)

and therefore by Theorem 4.3 the kernel of T is a subspace of the domain Rm.

Rm Rn

ker (T) range (T)

T(x)

0

Figure 5 The kernel and range
of T .

Now consider the range of T . By Theorem 3.3(b), we have

range(T) = span{a1, . . . , am}
Since range(T) is equal to the span of a set of vectors, by Theorem 4.2 the range of T is
a subspace of the codomain Rn. ■

E X A M P L E 6 Suppose that T : R2 −→ R3 is defined by

T

([
x1

x2

])
=

⎡
⎣ x1 − 2x2

−3x1 + 6x2

2x1 − 4x2

⎤
⎦

Find ker(T) and range(T).
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Solution We have T(x) = Ax for

A =
⎡
⎣ 1 −2

−3 6
2 −4

⎤
⎦

To find the null space of A, we solve the homogeneous linear system Ax = 0. We have⎡
⎣ 1 −2 0

−3 6 0
2 −4 0

⎤
⎦ ∼

⎡
⎣1 −2 0

0 0 0
0 0 0

⎤
⎦

which is equivalent to the single equation x1 − 2x2 = 0. Since ker(T) = null(A), it
follows that if we let x2 = s , then x1 = 2s and thus

ker(T) = s

[
2
1

]
(s real) or ker(T) = span

{[
2
1

]}

Because the range of T is equal to the span of the columns of A, we have

range(T) = span{a1, a2} = span

⎧⎨
⎩

⎡
⎣ 1

−3
2

⎤
⎦ ,

⎡
⎣−2

6
−4

⎤
⎦

⎫⎬
⎭ = span

⎧⎨
⎩

⎡
⎣ 1

−3
2

⎤
⎦

⎫⎬
⎭

because a1 = −2a2. ■

Remember that the kernel is
a subspace of the domain, while
the range is a subspace of the
codomain.

In Theorem 3.5 in Section 3.1 we showed that a linear transformation T is one-to-
one if and only if T(x) = 0 has only the trivial solution. The next theorem formulates
this result in terms of ker(T).

T H E O R E M 4.6 Let T : Rm → Rn be a linear transformation. Then T is one-to-one if and only if
ker(T) = {0}.

The proof is covered in Exercise 72. As a quick application, in Example 6 we saw that
ker(T) �= {0}, so we can conclude from Theorem 4.6 that T is not one-to-one.

This updates the Big The-
orem, Version 3, from Sec-
tion 3.3.

The Big Theorem, Version 4
Theorem 4.6 gives us another condition to add to the Big Theorem.

T H E O R E M 4.7 ( T H E B I G T H E O R E M , V E R S I O N 4 ) Let A = {a1, . . . , an} be a
set of n vectors in Rn, let A = [

a1 · · · an

]
, and let T : Rn → Rn be given by

T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

(f) A is invertible.

(g) ker(T) = {0}.
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Proof From The Big Theorem, Version 3, we know that (a) through (f) are equivalent.
From Theorem 4.6 we know that T is one-to-one if and only if ker(T) = {0}, so (e) and
(g) are equivalent. Thus (a)–(g) are all equivalent. ■

E X E R C I S E S
In Exercises 1–16, determine if the described set is a subspace. If
so, give a proof. If not, explain why not. Unless stated otherwise,
a , b, and c are real numbers.

1. The subset of R3 consisting of vectors of the form

[
a
0
b

]
.

2. The subset of R3 consisting of vectors of the form

[
a
a
0

]
.

3. The subset of R2 consisting of vectors of the form

[
a
b

]
, where

a + b = 1.

4. The subset of R3 consisting of vectors of the form

[
a
b
c

]
, where

a = b = c .

5. The subset of R4 consisting of vectors of the form

⎡
⎢⎣

a
1
0
b

⎤
⎥⎦.

6. The subset of R4 consisting of vectors of the form

⎡
⎢⎣

a
a + b

2a − b
3b

⎤
⎥⎦.

7. The subset of R2 consisting of vectors of the form

[
a
b

]
, where

a and b are integers.

8. The subset of R3 consisting of vectors of the form

[
a
b
c

]
, where

c = b − a .

9. The subset of R3 consisting of vectors of the form

[
a
b
c

]
, where

abc = 0.

10. The subset of R2 consisting of vectors of the form

[
a
b

]
, where

a2 + b2 ≤ 1.

11. The subset of R3 consisting of vectors of the form

[
a
b
c

]
, where

a ≥ 0, b ≥ 0, and c ≥ 0.

12. The subset of R3 consisting of vectors of the form

[
a
b
c

]
, where

at most one of a , b, and c is nonzero.

13. The subset of R2 consisting of vectors of the form

[
a
b

]
, where

a ≤ b.

14. The subset of R2 consisting of vectors of the form

[
a
b

]
, where

|a| = |b|.

15. The subset of Rn consisting of vectors of the form

v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

such that v1 + · · · + vn = 0.

16. The subset of Rn (n even) consisting of vectors of the form

v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

such that v1 − v2 + v3 − v4 + v5 − · · · − vn = 0.

In Exercises 17–20, the shaded region is not a subspace of R2.
Explain why.

17.

18.

19.
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20.

In Exercises 21–32, find the null space for A.

21. A =
[

1 −3
0 1

]

22. A =
[

3 5
6 4

]

23. A =
[

1 0 −5
0 1 2

]

24. A =
[

1 2 −2
0 1 4

]

25. A =
[

1 −2 2
−2 5 −7

]

26. A =
[

3 0 −4
−1 6 2

]

27. A =
[

1 3
−2 1

3 2

]

28. A =
[

2 −10
−3 15

1 −5

]

29. A =
[

1 −1 1
0 1 3
0 0 3

]

30. A =
[

1 2 0
−3 −4 −1

2 −2 3

]

31. A =
[

1 1 −2 1
0 1 1 −1
0 0 0 2

]

32. A =

⎡
⎢⎣

1 0 0 1
0 2 1 0
0 0 1 0
1 0 1 1

⎤
⎥⎦

In Exercises 33–36, let T(x) = Ax for the matrix A. Determine if
the vector b is in the kernel of T and if the vector c is in the range
of T .

33. A =
[

1 −2
−3 −1

]
, b =

[
2
1

]
, c =

[
4

−7

]

34. A =
[

2 −3 0
1 4 −2

]
, b =

[
6
4

11

]
, c =

[
4

13

]

35. A =
[

4 −2
1 3
2 7

]
, b =

[
−5

2

]
, c =

[
1
3

]

36. A =
[

1 2 3
4 5 6
7 8 9

]
, b =

[
1

−2
1

]
, c =

[
2
5
8

]

FIND AN EXAMPLE For Exercises 37–44, find an example that
meets the given specifications.

37. An infinite subset of R2 that is not a subspace of R2.

38. Two subspaces S1 and S2 of R3 such that S1 ∪ S2 is not a
subspace of R3.

39. Two nonsubspace subsets S1 and S2 of R3 such that S1 ∪ S2 is
a subspace of R3.

40. Two nonsubspace subsets S1 and S2 of R3 such that S1 ∩ S2 is
a subspace of R3.

41. A linear transformation T : R2 → R2 such that range(T) =
span

{[
1
1

]}
.

42. A linear transformation T : R2 → R3 such that range(T) =

span

{[
1

−1
2

]}
.

43. A linear transformation T : R3 → R3 such that range(T) = R3.

44. A linear transformation T : R3 → R3 such that range(T) =

span

{[
3
1
4

]
,

[
1
2

−2

]}
.

TRUE OR FALSE For Exercises 45–60, determine if the statement
is true or false, and justify your answer.

45. If A is an n × n matrix and b �= 0 is in Rn , then the solutions
to Ax = b do not form a subspace.

46. If A is a 5 × 3 matrix, then null(A) forms a subspace of R5.

47. If A is a 4 × 7 matrix, then null(A) forms a subspace of R7.

48. Let T : R6 → R3 be a linear transformation. Then ker(T) is a
subspace of R6.

49. Let T : R5 → R8 be a linear transformation. Then ker(T) is a
subspace of R8.

50. Let T : R2 → R7 be a linear transformation. Then range(T)
is a subspace of R2.

51. Let T : R3 → R9 be a linear transformation. Then range(T)
is a subspace of R9.

52. The union of two subspaces of Rn forms another subspace
of Rn .

53. The intersection of two subspaces of Rn forms another sub-
space of Rn .
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54. Let S1 and S2 be subspaces of Rn , and define S to be the set of
all vectors of the form s1 + s2, where s1 is in S1 and s2 is in S2.
Then S is a subspace of Rn .

55. Let S1 and S2 be subspaces of Rn , and define S to be the set of
all vectors of the form s1 − s2, where s1 is in S1 and s2 is in S2.
Then S is a subspace of Rn .

56. The set of integers forms a subspace of R.

57. A subspace S �= {0} can have a finite number of vectors.

58. If u and v are in a subspace S, then every point on the line
connecting u and v is also in S.

59. If S1 and S2 are subsets of Rn but not subspaces, then the union
of S1 and S2 cannot be a subspace of Rn .

60. If S1 and S2 are subsets of Rn but not subspaces, then the
intersection of S1 and S2 cannot be a subspace of Rn .

61. Show that every subspace of R is either {0} or R.

62. Suppose that S is a subspace of Rn and c is a scalar. Let c S
denote the set of vectors cs where s is in S. Prove that c S is also a
subspace of Rn .

63. Prove that if b �= 0, then the set of solutions to Ax = b is not
a subspace.

64. Describe the geometric form of all subspaces of R2.

65. Describe the geometric form of all subspaces of R3.

66. Some texts use just conditions (b) and (c) in Definition 4.1,
along with S nonempty, as the definition of a subspace. Explain
why this is equivalent to our definition.

67. Let A be an n × m matrix, and suppose that y �= 0 is in Rn .
Show that the set of all vectors x in Rm such that Ax = y is not a
subspace of Rm.

68. Let A = [
a1 a2 a3 a4

]
, and suppose that x =

(2, −5, 4, 1) is in null(A). Write a4 as a linear combination of
the other three vectors.

69. Let A be a matrix and T(x) = Ax a linear transformation.
Show that ker(T) = {0} if and only if the columns of A are lin-
early independent.

70. If T is a linear transformation, show that 0 is always in ker(T).

71. Prove that if u and v are in a subspace S, then so is u − v.

72. Prove Theorem 4.6: If T is a linear transformation, then T is
one-to-one if and only if ker(T) = {0}.
C In Exercises 73–76, use Example 5 as a guide to find the sub-
space of values that balances the given chemical equation.

73. Glucose ferments to form ethyl alcohol and carbon dioxide.

x1C6H12O6 −→ x2C2H5OH + x3CO2

74. Methane burns in oxygen to form carbon dioxide and steam.

x1CH4 + x2O2 −→ x3CO2 + x4H2O

75. An antacid (calcium hydroxide) neutralizes stomach acid (hy-
drochloric acid) to form calcium chloride and water.

x1Ca(OH)2 + x2HCl −→ x3CaCl2 + x4H2O

76. Ethyl alcohol reacts with oxygen to form vinegar and water.

x1C2H5OH + x2O2 −→ x3HC2H3O2 + x4H2O

C In Exercises 77–80, find the null space for the given matrix.

77. A =
[

1 7 −2 14 0
3 0 1 −2 3
6 1 −1 0 4

]

78. A =
[−1 0 0 4 5 2

6 2 1 2 4 0
3 2 −5 −1 0 2

]

79. A =

⎡
⎢⎢⎢⎣

3 1 2 4
5 0 2 −1
2 2 2 2

−1 0 3 1
0 2 0 4

⎤
⎥⎥⎥⎦

80. A =

⎡
⎢⎢⎢⎣

2 0 5
−1 6 2

4 4 −1
5 1 0
4 1 1

⎤
⎥⎥⎥⎦

4.2 Basis and Dimension
In this section we combine the concepts of linearly independent sets and spanning sets
to learn more about subspaces. Let S = span{u1, u2, . . . , um} be a subspace of Rn. Then
every element s of S can be written as a linear combination

s = r1u1 + r2u2 + · · · + rmum

If u1, . . . , um is a linearly dependent set, then by Theorem 2.14 we know that one of the
vectors in the set – say, u1 – is in the span of the remaining vectors. Thus it follows that
every element of S can be written as a linear combination of u2, . . . , um, so that

S = span{u2, . . . , um}
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If after eliminating u1 the remaining set of vectors is still linearly dependent, then we
can repeat this process to eliminate another dependent vector. We can do this over and
over, and since we started with a finite number of vectors the process must eventually
lead us to a set that both spans S and is linearly independent. Such a set is particularly
important and goes by a special name.

Definition Basis

D E F I N I T I O N 4.8 A set B = {u1, . . . , um} is a basis for a subspace S if

(a) B spans S.

(b) B is linearly independent.

Figure 1 and Figure 2 show basis vectors for R2 and R3, respectively. Note that there
is one subspace for which the above procedure will not work: S = {0} = span{0}, the
zero subspace. The set {0} is not linearly independent, and there are no vectors that can
be removed. The zero subspace is the only subspace of Rn that does not have a basis.

x1

x2

u2

u1

Figure 1 Any two nonzero vectors
that do not lie on the same line forms
a basis for R2.

x3

x1

x2

u1

u2

u3

Figure 2 Any three nonzero
vectors that do not lie in the same
plane forms a basis for R3.

Each basis has the following important property.

T H E O R E M 4.9 Let B = {u1, . . . , um} be a basis for a subspace S. Then every vector s in S can be
written as a linear combination

s = s1u1 + · · · + smum

in exactly one way.

Proof Because B is a basis for S, the vectors in B span S, so that every vector s can be
written as a linear combination of vectors in B in at least one way. To show that there can
only be one way to write s, let’s suppose that there are two, say,

s = r1u1 + · · · + rmum and s = t1u1 + · · · + tmum

Then r1u1 + · · · + rmum = t1u1 + · · · + tmum, so that after reorganizing we have

(r1 − t1)u1 + · · · + (rm − tm)um = 0

Since B is a basis, it is also a linearly independent set, and therefore it must be that
r1 − t1 = 0, . . . , rm − tm = 0. Hence r1 = t1, . . . , rm = tm, so that there is just one way
to express s as a linear combination of the vectors in B. ■
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This is important enough to repeat: Theorem 4.9 tells us that every vector in a
subspace S can be expressed in exactly one way as a linear combination of vectors in a
basis B.

Finding a Basis
Frequently, a subspace S is described as the span of a set of vectors; that is, S =
span{u1, u2, . . . , um}. Example 1 demonstrates a way to find a basis in this situation.
Before getting to the example, we pause to give a theorem that we will need soon. The
proof is left as an exercise.

Recall that two matrices A
and B are equivalent if A can be
transformed into B through a
sequence of elementary row op-
erations.

T H E O R E M 4.10 Let A and B be equivalent matrices. Then the subspace spanned by the rows of A is
the same as the subspace spanned by the rows of B .

The next example shows one way to find a basis from a spanning set.

E X A M P L E 1 Let S be the subspace of R4 spanned by the vectors

u1 =

⎡
⎢⎢⎣

2
−1

3
1

⎤
⎥⎥⎦ , u2 =

⎡
⎢⎢⎣

7
−6

5
2

⎤
⎥⎥⎦ , u3 =

⎡
⎢⎢⎣

−3
4
1
0

⎤
⎥⎥⎦

Find a basis for S.

Solution Start by using the vectors u1, u2, u3 to form the rows of a matrix.

A =
⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣ 2 −1 3 1

7 −6 5 2
−3 4 1 0

⎤
⎦

Next, use row operations to transform A into the equivalent matrix B that is in echelon
form.

A =
⎡
⎣ 2 −1 3 1

7 −6 5 2
−3 4 1 0

⎤
⎦ ∼

⎡
⎣5 0 13 4

0 5 11 3
0 0 0 0

⎤
⎦ = B

By Theorem 4.10, we know that the subspace spanned by the rows of B is the same as
the subspace spanned by the rows of A, so the rows of B span S. Moreover, since B is in
echelon form, the nonzero rows are linearly independent (see Exercise 62, Section 2.3).
Thus the set ⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

5
0

13
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
5

11
3

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

forms a basis for S. ■

Summarizing this solution method: To find a basis for S = span{u1, . . . , um},
1. Use the vectors u1, . . . , um to form the rows of a matrix A.

2. Transform A to echelon form B .

3. The nonzero rows of B give a basis for S.
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Before proceeding, we pause to state the following useful result that will be used
to show a second method for finding a basis for a subspace S. (The proof is left as an
exercise.)

T H E O R E M 4.11 Suppose that U = [
u1 · · · um

]
and V = [

v1 · · · vm

]
are two equivalent matri-

ces. Then any linear dependence that exists among the vectors u1, . . . , um also exists
among the vectors v1, . . . , vm.

For example, Theorem 4.11 tells us that

if 3v1 − 2v4 + v6 = 5v2 then 3u1 − 2u4 + u6 = 5u2

Theorem 4.11 gives us another way to find a basis from a spanning set.

E X A M P L E 2 Let S be the subspace of R4 spanned by the vectors u1, u2, and u3

given in Example 1. Find a basis for S.

Solution This time we start by using the vectors u1, u2, u3 to form the columns of a
matrix

A = [
u1 u2 u3

] =

⎡
⎢⎢⎣

2 7 −3
−1 −6 4

3 5 1
1 2 0

⎤
⎥⎥⎦

Using row operations to transform A to echelon form, we have

B = [
v1 v2 v3

] =

⎡
⎢⎢⎣

1 6 −4
0 1 −1
0 0 0
0 0 0

⎤
⎥⎥⎦

The nice thing about the matrix B is that it is not hard to find the dependence relationship
among the columns. For instance, we can readily verify that

2v1 − v2 = v3

Now we apply Theorem 4.11. Since 2v1 − v2 = v3, then we also have 2u1 − u2 = u3.
Therefore

2

⎡
⎢⎢⎣

2
−1

3
1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

7
−6

5
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−3
4
1
0

⎤
⎥⎥⎦

For B we have

span{v1, v2, v3} = span{v1, v2}
and v1 and v2 are linearly independent. Hence it follows that for A,

S = span{u1, u2, u3} = span{u1, u2}
and that u1 and u2 are linearly independent. Thus the set⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

2
−1

3
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

7
−6

5
2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

forms a basis for S. ■
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Summarizing this solution method: To find a basis for S = span{u1, . . . , um},

1. Use the vectors u1, . . . , um to form the columns of a matrix A.

2. Transform A to echelon form B . The pivot columns of B will be linearly independent,
and the other columns will be linearly dependent on the pivot columns.

3. The columns of A corresponding to the pivot columns of B form a basis for S.

The solution method in Example 1 will usually produce a subspace basis that is
relatively “simple” in that the basis vectors will contain some zeros. The solution method
in Example 2 produces a basis from a subset of the original spanning vectors, which is
sometimes desirable. In general, each method will produce a different basis, so that a
basis need not be unique.

Dimension
Example 1 and Example 2 show that a subspace can have more than one basis. However,
note that each basis has two vectors. Although a given nonzero subspace will have more
than one basis, the next theorem shows that a nonzero subspace has a fixed number of
basis vectors.

T H E O R E M 4.12 If S is a subspace of Rn, then every basis of S has the same number of vectors.

A proof of this theorem is given at the end of the section.
Since every basis for a subspace S has the same number of vectors, the following

definition makes sense.

D E F I N I T I O N 4.13 Let S be a subspace of Rn. Then the dimension of S is the number of vectors in any
basis of S.Definition Dimension

The zero subspace S = {0} has no basis and is defined to have dimension 0. At the
other extreme, Rn is a subspace of itself, and in Example 2, Section 4.1, we showed that
{e1, . . . , en} spans Rn. It is also clear that these vectors are linearly independent, so that
{e1, . . . , en} forms a basis—called the standard basis—of Rn (see Figure 3). Thus theDefinition Standard Basis

dimension of Rn is n. It can be shown that Rn is the only subspace of Rn of dimension n
(see Exercise 57).

e3

e2e1
x2

x1

x3

1
1

1

Figure 3 The standard basis
for R3.

E X A M P L E 3 Suppose that S is the subspace of R5 given by

S = span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

−1
2
5

−1
−4

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

3
−6

−15
3

12

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

−3
8

19
−5

−18

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

5
−3

−11
−2
−1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Find the dimension of S.

Solution Since our set has four vectors, we know that the dimension of S will be 4 or
less. To find the dimension, we need to find a basis for S. It makes no difference how
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we do this, so let’s use the solution method given in Example 2. Our vectors form the
columns of the matrix on the left, with an echelon form given on the right.⎡

⎢⎢⎢⎢⎣
−1 3 −3 5

2 −6 8 −3
5 −15 19 −11

−1 3 −5 −2
−4 12 −18 −1

⎤
⎥⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎢⎣

−1 3 −3 5
0 0 2 7
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

Since the first and third columns of the echelon matrix are the pivot columns, we
conclude that the first and third vectors from the original set⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

−1
2
5

−1
−4

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

−3
8

19
−5

−18

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

form a basis for S. Hence the dimension of S is 2. ■

In many instances it is handy to be able to modify a given set of vectors to serve as a
basis. The following theorem gives two cases when this is possible.

T H E O R E M 4.14 Let U = {u1, . . . , um} be a set of vectors in a subspace S �= {0} of Rn.

(a) If U is linearly independent, then either U is a basis for S or additional vectors
can be added to U to form a basis for S.

(b) If U spans S, then either U is a basis for S or vectors can be removed from U to
form a basis for S.

Proof Taking part (a) first, if U also spans S, then we are done. If not, then select a
vector s1 from S that is not in the span of U and form a new set

U1 = {u1, . . . , um, s1}
Then U1 must also be linearly independent, for if not then s1 would be in the span ofU . If
U1 spans S, then we are done. If not, select a vector s2 that is not in the span of U1 and let

U2 = {u1, . . . , um, s1, s2}
As before, U2 must be linearly independent. If U2 spans S, then we are done. If not,
repeat this procedure again and again, until we finally have a linearly independent set
that also spans S, giving a basis.

The process cannot go on in-
definitely. Since all of the vec-
tors are in Rn, no set can have
more than n linearly indepen-
dent vectors (see Theorem 2.13,
Section 2.3).

For part (b), we start with a spanning set. All we need to do is employ the solution
method from Example 2, which will give a subset of U that forms a basis for S. (Or we
can use the method described at the beginning of the section, removing one vector at a
time until reaching a basis.) ■

E X A M P L E 4 Expand the set U =
⎧⎨
⎩

⎡
⎣ 1

1
−2

⎤
⎦ ,

⎡
⎣ 3

2
−4

⎤
⎦

⎫⎬
⎭ to a basis for R3.

Solution Since R3 has dimension 3, we know that U does not have enough vectors
to be a basis. We can see that the two vectors in U are linearly independent, so by
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Theorem 4.14(a) we can expand U to a basis of R3. We know that the standard basis
{e1, e2, e3} forms a basis for R3, so that

R3 = span

⎧⎨
⎩

⎡
⎣ 1

1
−2

⎤
⎦ ,

⎡
⎣ 3

2
−4

⎤
⎦ ,

⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦

⎫⎬
⎭

Now we form the matrix

A =
⎡
⎣ 1 3 1 0 0

1 2 0 1 0
−2 −4 0 0 1

⎤
⎦

and then apply the solution method from Example 2, which will give us a basis for R3.
Since we placed the vectors that we want to include in the left columns, we are assured
that they will end up among the basis vectors. Employing our usual row operations, we
find an echelon form equivalent to A is

A =
⎡
⎣ 1 3 1 0 0

1 2 0 1 0
−2 −4 0 0 1

⎤
⎦ ∼

⎡
⎣2 0 −4 0 −3

0 2 2 0 1
0 0 0 2 1

⎤
⎦ = B

Since the pivots are in the 1st, 2nd, and 4th columns of B , referring back to A we see
that the vectors ⎧⎨

⎩
⎡
⎣ 1

1
−2

⎤
⎦ ,

⎡
⎣ 3

2
−4

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦

⎫⎬
⎭

must be linearly independent and span R3, so the set forms a basis for R3. ■

E X A M P L E 5 The vector x1 is in the null space of A,

x1 =

⎡
⎢⎢⎣

7
3

−6
4

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

−3 3 −6 −6
2 6 0 −8
0 −8 4 12

−3 −7 −1 9
2 10 −2 −14

⎤
⎥⎥⎥⎥⎦

Find a basis for the null space that includes x1.

Solution In Example 4, we were able to exploit the fact that we knew a basis for R3.
Here we do not know a basis for the null space, so we start by determining the vector
form of the general solution to Ax = 0 and use the vectors to form the initial basis. We
skip the details and just report the news that

null(A) = span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−1
3
0
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
1
2
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ (1)
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From this point we follow the procedure in Example 4, by forming the matrix with our
given vector x1 and the two basis vectors in (1), and then finding an echelon form.⎡

⎢⎢⎣
7 −1 −3
3 3 1

−6 0 2
4 2 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

3 0 −1
0 3 2
0 0 0
0 0 0

⎤
⎥⎥⎦

Since the pivots are in the first two columns, it follows that⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

7
3

−6
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
3
0
2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ (2)

forms a basis for the null space of A that contains x1.
Note that (2) is not the only basis containing x1. For instance, if we reverse

the order of the two vectors in (1) and follow the same procedure, we end up with
the basis ⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

7
3

−6
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
1
2
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

■

The nullity of a matrix A is the dimension of the null space of A and is denoted byDefinition Nullity

nullity(A). Thus in Example 5 we have nullity(A) = 2.
If we happen to know the dimension of a subspace S, then the following theorem

makes it easier to determine if a given set forms a basis.

T H E O R E M 4.15 Let U = {u1, . . . , um} be a set of m vectors in a subspace S of dimension m. If U is
either linearly independent or spans S, then U is a basis for S.

Proof First, suppose that U is linearly independent. If U does not span S, then by
Theorem 4.14 we can add additional vectors to U to form a basis for S. But this gives a
basis with more than m vectors, contradicting the assumption that the dimension of S
equals m. Hence U also must span S and so is a basis.

A similar argument can be used to show that if U spans S then U is a basis. The
details are left as an exercise. ■

E X A M P L E 6 Suppose that S is a subspace of R3 of dimension 2 containing the
vectors in the set

U =
⎧⎨
⎩

⎡
⎣−1

2
0

⎤
⎦ ,

⎡
⎣3

7
1

⎤
⎦

⎫⎬
⎭

Show that U is a basis for S.

Solution Since S has dimension 2 and U has two vectors, by Theorem 4.15 all we need
to do to show that U is a basis for S is verify that U is linearly independent or spans S.
We do not know enough about S to show that U spans S, but since the two vectors are
not multiples of each other, U is a linearly independent set. Hence we can conclude that
U is a basis for S. ■
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Theorems 4.16 and 4.17 present more properties of the dimension of a subspace that
are useful in certain situations. The proofs are left as exercises.

T H E O R E M 4.16 Suppose that S1 and S2 are both subspaces of Rn and that S1 is a subset of S2. Then
dim(S1) ≤ dim(S2), and dim(S1) = dim(S2) only if S1 = S2.

T H E O R E M 4.17 Let U = {u1, . . . , um} be a set of vectors in a subspace S of dimension k.

(a) If m < k, then U does not span S.

(b) If m > k, then U is not linearly independent.

This updates the Big Theo-
rem, Version 4, given in Sec-
tion 4.1.

The Big Theorem, Version 5
The results of this section give us another condition for the Big Theorem.

T H E O R E M 4.18 ( T H E B I G T H E O R E M , V E R S I O N 5 ) Let A = {a1, . . . , an} be a
set of n vectors in Rn, let A = [

a1 · · · an

]
, and let T : Rn → Rn be given by

T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

(f) A is invertible.

(g) ker(T) = {0}.
(h) A is a basis for Rn.

Proof From The Big Theorem, Version 4, we know that (a) through (g) are equivalent.
By Definition 4.8, (a) and (b) are equivalent to (h), completing the proof. ■

E X A M P L E 7 Let x1, x2, . . . , xn be real numbers. The Vandermonde matrix, which
arises in signal processing and coding theory, is given by

V =

⎡
⎢⎢⎢⎣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

⎤
⎥⎥⎥⎦

Show that if x1, x2, . . . , xn are distinct, then the columns of V form a basis for Rn.

Solution By The Big Theorem, Version 5, we can show that the columns of V form a
basis for Rn by showing that the columns are linearly independent. Given real numbers
a0, a1, . . . , an−1, we have

a0

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ + a1

⎡
⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎦ + · · · + an−1

⎡
⎢⎢⎣

xn−1
1

xn−1
2
...

xn−1
n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 + a1x1 + · · · + an−1xn−1
1

a0 + a1x2 + · · · + an−1xn−1
2

...

a0 + a1xn + · · · + an−1xn−1
n

⎤
⎥⎥⎦ (3)
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If the polynomial f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1, then the right side of (3)
is equal to ⎡

⎢⎢⎢⎣
f (x1)

f (x2)
...

f (xn)

⎤
⎥⎥⎥⎦

This is the zero vector only if each of x1, x2, . . . , xn are roots of the polynomial f . But
since the roots are distinct and f has degree at most n −1, the only way this can happen
is if f (x) = 0, the identically zero polynomial. Hence a0 = · · · = an−1 = 0, and so the
columns of V are linearly independent. Therefore the columns of V form a basis for
Rn. ■

One consequence of the
Fundamental Theorem of Algebra

(proved by Gauss) is that a
polynomial of degree m can
have at most m distinct roots.

Proof of Theorem 4.12
We state the theorem again:

T H E O R E M 4.12 If S is a subspace of Rn, then every basis of S has the same number of vectors.

Proof Suppose that we have a subspace S with two bases of different sizes. The argument
that follows can be generalized (this is left as an exercise), but to simplify notation we
assume that S has bases

U = {u1, u2} and V = {v1, v2, v3}
SinceU spans S, it follows that v1, v2, and v3 can each be expressed as linear combinations
of u1 and u2,

v1 = c11u1 + c12u2

v2 = c21u1 + c22u2 (4)

v3 = c31u1 + c32u2

Now consider the equation

a1v1 + a2v2 + a3v3 = 0 (5)

Substituting into (5) from (4) for v1, v2, and v3 gives

0 = a1(c11u1 + c12u2) + a2(c21u1 + c22u2) + a3(c31u1 + c32u2)

= (a1c11 + a2c21 + a3c31)u1 + (a1c12 + a2c22 + a3c32)u2

Since U is linearly independent, we must have

a1c11 + a2c21 + a3c31 = 0

a1c12 + a2c22 + a3c32 = 0

Now view a1, a2, and a3 as variables in this homogeneous system. Since there are more
variables than equations, the system must have infinitely many solutions. But this means
that there are nontrivial solutions to (5), which implies that V is linearly dependent, a
contradiction. (Remember that V is a basis.) Hence our assumption that there can be
bases of two different sizes is incorrect, so all bases for a subspace must have the same
number of vectors. ■
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E X E R C I S E S
In Exercises 1–4, determine if the vectors shown form a basis for
R2. Justify your answer.

1.

x1

x2

u2

u1

2.

x1

x2

u2

u1

3.

x1

x2

u2

u3

u1

4.

x1

x2

u2
u3

u1

In Exercises 5–10, use the solution method from Example 1 to find
a basis for the given subspace and give the dimension.

5. S = span

{[
1

−4

]
,

[
−5
20

]}

6. S = span

{[
3
5

]
,

[
9

−2

]}

7. S = span

{[
1
3

−2

]
,

[
2
4
1

]
,

[−1
1

−8

]}

8. S = span

{[
2

−1
3

]
,

[
4

−1
2

]
,

[
2
1

−5

]}

9. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
−2

3
−2

⎤
⎥⎦ ,

⎡
⎢⎣

0
2

−5
1

⎤
⎥⎦ ,

⎡
⎢⎣

2
−2

1
−3

⎤
⎥⎦

⎫⎪⎬
⎪⎭

10. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0

−1
1

⎤
⎥⎦ ,

⎡
⎢⎣

2
1
0
2

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
2
0

⎤
⎥⎦ ,

⎡
⎢⎣

3
1

−1
3

⎤
⎥⎦

⎫⎪⎬
⎪⎭

In Exercises 11–16, use the solution method from Example 2 to
find a basis for the given subspace and give the dimension.

11. S = span

{[
1
3

]
,

[
4

−12

]}

12. S = span

{[
2

−6

]
,

[
−5
15

]}

13. S = span

{[
1
2
4

]
,

[
0
1

−3

]
,

[
3

−2
−1

]}

14. S = span

{[
1
2
3

]
,

[
3
7
5

]
,

[−1
−3

1

]}

15. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
−1

0
2

⎤
⎥⎦ ,

⎡
⎢⎣

2
−5

9
7

⎤
⎥⎦ ,

⎡
⎢⎣

0
1

−3
−1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

16. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0
3
1

⎤
⎥⎦ ,

⎡
⎢⎣

4
2

13
4

⎤
⎥⎦ ,

⎡
⎢⎣

2
1
6
3

⎤
⎥⎦ ,

⎡
⎢⎣

−1
1

−2
−2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

In Exercises 17–22, find a basis for the given subspace by delet-
ing linearly dependent vectors, and give the dimension. Very little
computation should be required.

17. S = span

{[
2

−6

]
,

[
−3

9

]}

18. S = span

{[
12
−3

]
,

[
−18

6

]}

19. S = span

{[
1
1
1

]
,

[
2
2
2

]
,

[
3
3
3

]}

20. S = span

{[
1

−1
1

]
,

[−5
5

−5

]
,

[
4
3
2

]}
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21. S = span

{[
0
0
0

]
,

[
3
0
0

]
,

[
2
1
0

]
,

[
1
2
3

]}

22. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
2
3
4

⎤
⎥⎦ ,

⎡
⎢⎣

5
5
5
5

⎤
⎥⎦ ,

⎡
⎢⎣

4
2
2
1

⎤
⎥⎦ ,

⎡
⎢⎣

6
7
8
9

⎤
⎥⎦

⎫⎪⎬
⎪⎭

In Exercises 23–24, expand the given set to form a basis for R2.

23.

{[
1

−3

]}

24.

{[
0
4

]}
In Exercises 25–28, expand the given set to form a basis for R3.

25.

{[−1
2
1

]}

26.

{[
1
0
5

]}

27.

{[
1
3

−2

]
,

[
2

−1
0

]}

28.

{[
2
1
3

]
,

[
3
2
6

]}

In Exercises 29–32, find a basis for the null space of the given
matrix and give nullity(A).

29. A =
[
−2 −5

1 3

]

30. A =
[

2 1 0
1 1 1

]

31. A =
[

1 1 2 1
0 0 1 −3

]

32. A =
[

1 0 −2 1 −1
0 1 0 2 0
0 0 0 1 4

]

FIND AN EXAMPLE For Exercises 33–40, find an example that
meets the given specifications.

33. A set of four vectors in R2 such that, when two are removed,
the remaining two are a basis for R2.

34. A set of three vectors in R4 such that, when one is removed
and then two more are added, the new set is a basis for R4.

35. A subspace S of Rn with dim(S) = m, where 0 < m < n.

36. Two subspaces S1 and S2 of R5 such that S1 ⊂ S2 and
dim(S1) + 2 = dim(S2).

37. Two two-dimensional subspaces S1 and S2 of R4 such that
S1 ∩ S2 = {0}.

38. Two three-dimensional subspaces S1 and S2 of R5 such that
dim(S1 ∩ S2) = 1.

39. Two vectors u1 and u2 in R3 that produce the same set of vec-
tors when the methods of Example 1 and Example 2 are applied.

40. Three vectors u1 and u2 in R3 that produce the same set of vec-
tors when the methods of Example 1 and Example 2 are applied.

TRUE OR FALSE For Exercises 41–54, determine if the statement
is true or false, and justify your answer.

41. If S1 and S2 are subspaces of Rn of the same dimension, then
S1 = S2.

42. If S = span{u1, u2, u3}, then dim(S) = 3.

43. If a set of vectors U spans a subspace S, then vectors can be
added to U to create a basis for S.

44. If a set of vectors U is linearly independent in a subspace S,
then vectors can be added to U to create a basis for S.

45. If a set of vectors U spans a subspace S, then vectors can be
removed from U to create a basis for S.

46. If a set of vectors U is linearly independent in a subspace S,
then vectors can be removed from U to create a basis for S.

47. Three nonzero vectors that lie in a plane in R3 might form a
basis for R3.

48. If S1 is a subspace of dimension 3 in R4, then there cannot
exist a subspace S2 of R4 such that S1 ⊂ S2 ⊂ R4 but S1 �= S2

and S2 �= R4.

49. The set {0} forms a basis for the zero subspace.

50. Rn has exactly one subspace of dimension m for each of
m = 0, 1, 2, . . . , n.

51. Let m > n. ThenU = {u1, u2, . . . , um} in Rn can form a basis
for Rn if the correct m − n vectors are removed from U .

52. Let m < n. ThenU = {u1, u2, . . . , um} in Rn can form a basis
for Rn if the correct n − m vectors are added to U .

53. If {u1, u2, u3} is a basis for R3, then span{u1, u2} is a plane.

54. The nullity of a matrix A is the same as the dimension of the
subspace spanned by the columns of A.

55. Suppose that S1 and S2 are nonzero subspaces, with S1 con-
tained inside S2. Suppose that dim(S2) = 3.

(a) What are the possible dimensions of S1?

(b) If S1 �= S2, then what are the possible dimensions of S1?

56. Suppose that S1 and S2 are nonzero subspaces, with S1 con-
tained inside S2. Suppose that dim(S2) = 4.

(a) What are the possible dimensions of S1?

(b) If S1 �= S2, then what are the possible dimensions of S1?

57. Show that the only subspace of Rn that has dimension n is Rn .

58. Explain why Rn (n > 1) has infinitely many subspaces of
dimension 1.

59. Prove the converse of Theorem 4.9: If every vector s of a sub-
space S can be written uniquely as a linear combination of the
vectors s1, . . . , sm (all in S), then the vectors form a basis for S.
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60. Complete the proof of Theorem 4.15: Let U = {u1, . . . , um}
be a set of m vectors in a subspace S of dimension m. Show that
if U spans S, then U is a basis for S.

61. Prove Theorem 4.16: Suppose that S1 and S2 are both sub-
spaces of Rn , with S1 a subset of S2. Then dim(S1) ≤ dim(S2),
and dim(S1) = dim(S2) only if S1 = S2.

62. Prove Theorem 4.17: Let U = {u1, . . . , um} be a set of vectors
in a subspace S of dimension k.

(a) If m < k, show that U does not span S.

(b) If m > k, show that U is not linearly independent.

63. Suppose that a matrix A is in echelon form. Prove that the
nonzero rows of A are linearly independent.

64. If the set {u1, u2, u3} spans R3 and

A = [
u1 u2 u3

]
,

what is nullity(A)?

65. Suppose that S1 and S2 are subspaces of Rn , with dim(S1) =
m1 and dim(S2) = m2. If S1 and S2 have only 0 in common, then
what is the maximum value of m1 + m2?

66. Prove Theorem 4.10: Let A and B be equivalent matrices.
Then the subspace spanned by the rows of A is the same as the
subspace spanned by the rows of B .

67. Prove Theorem 4.11: Suppose that U = [
u1 · · · um

]
and

V = [
v1 · · · vm

]
are two equivalent matrices. Then any linear

dependence that exists among the vectors u1, . . . , um also exists
among the vectors v1, . . . , vm.

68. Give a general proof of Theorem 4.12: If S is a subspace of Rn ,
then every basis of S has the same number of vectors.

C In Exercises 69–70, determine if the given set of vectors is a
basis of R3. If not, then determine the dimension of the subspace
spanned by the vectors.

69.

{[
2

−1
5

]
,

[−3
4

−2

]
,

[−5
10

4

]}

70.

{[
4
2

−7

]
,

[−1
5

−3

]
,

[
3
7

−9

]}

C In Exercises 71–72, determine if the given set of vectors is a
basis of R4. If not, then determine the dimension of the subspace
spanned by the vectors.

71.

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
0
1

−2

⎤
⎥⎦ ,

⎡
⎢⎣

2
−4

5
0

⎤
⎥⎦ ,

⎡
⎢⎣

−2
7
0
4

⎤
⎥⎦ ,

⎡
⎢⎣

−2
5

−5
4

⎤
⎥⎦

⎫⎪⎬
⎪⎭

72.

⎧⎪⎨
⎪⎩

⎡
⎢⎣

6
0

−5
2

⎤
⎥⎦ ,

⎡
⎢⎣

5
−1

1
3

⎤
⎥⎦ ,

⎡
⎢⎣

−3
4
1

−5

⎤
⎥⎦ ,

⎡
⎢⎣

7
−2

6
8

⎤
⎥⎦

⎫⎪⎬
⎪⎭

C In Exercises 73–74, determine if the given set of vectors is a
basis of R5. If not, then determine the dimension of the subspace
spanned by the vectors.

73.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
1

−1
1
1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

−1
0
1
2

−1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

2
1

−2
1
2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

−2
1
2
1

−2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1
2

−1
0
1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

74.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
2
3
4
5

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

2
3
4
5
1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

3
4
5
1
2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

4
5
1
2
3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

5
1
2
3
4

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4.3 Row and Column Spaces
In Example 7 of Section 4.2, it was shown that if x1, . . . , xn are distinct real numbers,
then the columns of the Vandermonde matrix

V =

⎡
⎢⎢⎢⎣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

⎤
⎥⎥⎥⎦

form a basis for Rn. But suppose that the xi ’s are not distinct. Can we tell if the columns
are linearly independent or linearly dependent? One result that we shall develop will
make this question easy to answer.

In this section we round out our knowledge of subspaces of Rn. As we have seen,
subspaces arise naturally in the context of a matrix. For instance, suppose that

A =
⎡
⎣ 1 −2 7 5

−2 −1 −9 −7
1 13 −8 −4

⎤
⎦
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The row vectors of A come from viewing the rows of A as vectors. For the matrix A, theDefinition Row Vectors
set of row vectors is ⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

1
−2

7
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−2
−1
−9
−7

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
13
−8
−4

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Similarly, the column vectors of A come from viewing the columns of A as vectors, soDefinition Column Vectors
in this case we have ⎧⎨

⎩
⎡
⎣ 1

−2
1

⎤
⎦ ,

⎡
⎣−2

−1
13

⎤
⎦ ,

⎡
⎣ 7

−9
−8

⎤
⎦ ,

⎡
⎣ 5

−7
−4

⎤
⎦

⎫⎬
⎭

Taking the span of the row or column vectors yields the subspaces defined below.

Definition Row Space

D E F I N I T I O N 4.19 Let A be an n × m matrix.

(a) The row space of A is the subspace of Rm spanned by the row vectors of A and
is denoted by row(A).

(b) The column space of A is the subspace of Rn spanned by the column vectors
of A and is denoted by col(A).

Definition Column Space

In Section 4.2 we proved Theorem 4.10 and Theorem 4.11, which concern the rows
and columns of matrices and can be used to find a basis for a subspace. Theorem 4.20 is
a reformulation of those theorems, stated in terms of row and column spaces.

T H E O R E M 4.20 Let A be a matrix and B an echelon form of A.

(a) The nonzero rows of B form a basis for row(A).

(b) The columns of A corresponding to the pivot columns of B form a basis for
col(A).

E X A M P L E 1 Find a basis and the dimension for the row space and the column
space of A.

A =
⎡
⎣ 1 −2 7 5

−2 −1 −9 −7
1 13 −8 −4

⎤
⎦

Solution To use Theorem 4.20, we start by finding an echelon form of A, which is
given by

A =
⎡
⎣ 1 −2 7 5

−2 −1 −9 −7
1 13 −8 −4

⎤
⎦ ∼

⎡
⎣1 −2 7 5

0 −5 5 3
0 0 0 0

⎤
⎦ = B

By Theorem 4.20(a), we know that a basis for the row space of A is given by the nonzero
rows of B , ⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

1
−2

7
5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
−5

5
3

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
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By Theorem 4.20(b), we know that a basis for the column space of A is given by the
columns of A corresponding to the pivot columns of B , which in this case are the first
and second columns. Thus a basis for col(A) is⎧⎨

⎩
⎡
⎣ 1

−2
1

⎤
⎦ ,

⎡
⎣−2

−1
13

⎤
⎦

⎫⎬
⎭

Since both row(A) and col(A) have two basis vectors, the dimension of both subspaces
is 2. ■

In Example 1, the row space and the column space of A have the same dimension.
This is not a coincidence.

T H E O R E M 4.21 For any matrix A, the dimension of the row space equals the dimension of the column
space.

Proof Given a matrix A, use the usual row operations to find an equivalent echelon
form matrix B . From Theorem 4.20(a), we know that the dimension of the row space of
A is equal to the number of nonzero rows of B . Next note that each nonzero row of B
has exactly one pivot, and that different rows have pivots in different columns. Thus the
number of pivot columns equals the number of nonzero rows. But by Theorem 4.20(b),
the number of pivot columns of B equals the number of vectors in a basis for the
column space of A. Thus the dimension of the column space is equal to the number
of nonzero rows of B , and so the dimensions of the row space and column space are
the same. ■

Now let’s return to the question about the Vandermonde matrix from the start of
the section.

E X A M P L E 2 Suppose that two or more of x1, . . . , xn are the same. Are the columns
of

V =

⎡
⎢⎢⎢⎣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

⎤
⎥⎥⎥⎦

linearly independent or linearly dependent?

Solution If two or more of x1, . . . , xn are the same, then two or more of the rows of
V are the same. Hence the rows of V are linearly dependent, so by The Big Theorem
(applied to the rows of V) the rows of V do not span Rn. Therefore the dimension of
row(V) is less than n, and thus by Theorem 4.21 the dimension of col(V) is less than
n. Finally, again by The Big Theorem (applied to the columns of V), we conclude that
the columns are linearly dependent. ■

Because the dimensions of the row and column spaces for a given matrix A are the
same, the following definition makes sense.

Definition Rank of a Matrix

D E F I N I T I O N 4.22 The rank of a matrix A is the dimension of the row (or column) space of A, and is
denoted by rank(A).
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Recall that the nullity is the
dimension of the null space.

E X A M P L E 3 Find the rank and the nullity for the matrix

A =
⎡
⎣1 −2 3 0 −1

2 −4 7 −3 3
3 −6 8 3 −8

⎤
⎦

Solution Applying the standard row operation procedure to A yields the echelon form

A =
⎡
⎣1 −2 3 0 −1

2 −4 7 −3 3
3 −6 8 3 −8

⎤
⎦ ∼

⎡
⎣1 −2 3 0 −1

0 0 1 −3 5
0 0 0 0 0

⎤
⎦ = B

Since B has two nonzero rows, the rank of A is 2. To find the nullity of A, we need
to determine the dimension of the subspace of solutions to Ax = 0. Adding a column
of zeros to A and B gives the augmented matrix for Ax = 0 and the corresponding
echelon form. (Why?)⎡

⎣1 −2 3 0 −1 0
2 −4 7 −3 3 0
3 −6 8 3 −8 0

⎤
⎦ ∼

⎡
⎣1 −2 3 0 −1 0

0 0 1 −3 5 0
0 0 0 0 0 0

⎤
⎦

The matrix on the right corresponds to the system

x1 − 2x2 + 3x3 − x5 = 0
x3 − 3x4 + 5x5 = 0

(1)

For this system, x2, x4, and x5 are free variables, so we assign the parameters x2 = s1,
x4 = s2, and x5 = s3. Back substitution gives us

x3 = 3x4 − 5x5 = 3s2 − 5s3

x1 = 2x2 − 3x3 + x5 = 2s1 − 3(3s2 − 5s3) + s3 = 2s1 − 9s2 + 16s3

In vector form, the general solution is

x = s1

⎡
⎢⎢⎢⎢⎣

2
1
0
0
0

⎤
⎥⎥⎥⎥⎦ + s2

⎡
⎢⎢⎢⎢⎣

−9
0
3
1
0

⎤
⎥⎥⎥⎥⎦ + s3

⎡
⎢⎢⎢⎢⎣

16
0

−5
0
1

⎤
⎥⎥⎥⎥⎦

The three vectors in the general solution form a basis for the null space, which shows
that nullity(A) = 3. ■

Once we know that the sys-
tem Ax = 0 has three free
variables, we can conclude that
nullity(A) = 3. For the sake
of completeness, we continue to
the vector form of the solution.

Let’s look at another example and see if a pattern emerges.

E X A M P L E 4 Determine the rank and nullity for the matrix A given in Example 5
of Section 4.2.

Solution In Example 5, Section 4.2, we showed that a basis for the null space of A is
given by ⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

−1
3
0
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
1
2
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
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so that nullity(A) = 2. Since we did not show an echelon form for A earlier, we report
it at right.

A =

⎡
⎢⎢⎢⎢⎣

−3 3 −6 −6
2 6 0 −8
0 −8 4 12

−3 −7 −1 9
2 10 −2 −14

⎤
⎥⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎢⎣

1 1 1 −1
0 2 −1 −3
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

From the echelon form, we see that the rank of A is 2. ■

Let’s review what we have seen:

• Example 3: rank(A) = 2, nullity(A) = 3, total number of columns is 5.

• Example 4: rank(A) = 2, nullity(A) = 2, total number of columns is 4.

In both cases, rank(A) + nullity(A) equals the number of columns of A. This is not a
coincidence.

T H E O R E M 4.23 ( R A N K -- N U L L I T Y T H E O R E M ) Let A be an n × m matrix. Then

rank(A) + nullity(A) = m.

Proof Transform A to echelon form B .

• The rank of A is equal to the number of nonzero rows of B . Each nonzero row has
a pivot, and each pivot appears in a different column. Hence the number of pivot
columns equals rank(A).

• Every nonpivot column corresponds to a free variable in the system Ax = 0. Each free
variable becomes a parameter, and each parameter is multiplied times a basis vector
of null(A). (This is shown in detail in Example 3.) Therefore the number of nonpivot
columns equals nullity(A).

Since the number of pivot columns plus the number of nonpivot columns must equal
the total number of columns m, we have

rank(A) + nullity(A) = m ■

E X A M P L E 5 Suppose that A is a 5 × 13 matrix and that T(x) = Ax. If the
dimension of the kernel of T is 9, what is the dimension of the range of T ?

Solution Since Theorem 4.23 is expressed in terms of the properties of a matrix A, we
first convert the given information into equivalent statements about A. We are told that
the dimension of ker(T) equals 9. Since ker(T) = null(A), then nullity(A) = 9. By
Theorem 4.23, m − nullity(A) = rank(A), so rank(A) = 4 because A has 13 columns.
Recall that range(T) is equal to the span of the columns of A (Theorem 3.3), which is
the same as col(A). Therefore the dimension of range(T) is 4. ■

E X A M P L E 6 Find a linear transformation T that has kernel equal to span {x1, x2},
where

x1 =

⎡
⎢⎢⎣

1
0

−2
1

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

0
1
3
2

⎤
⎥⎥⎦
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Solution Since T is a linear transformation, we know that there exists a matrix A such
that T(x) = Ax. Since the kernel of T equals the null space of A, another way to state
our problem is that we need a matrix A such that null(A) = span {x1, x2}.

To get us started, since x1 and x2 are linearly independent (why?), they form a basis
for null(A), and so nullity(A) = 2. Moreover, A must have four columns because x1

and x2 are in R4. Thus rank(A) = 4 − 2 = 2 by the Rank–Nullity Theorem. This tells
us that A must have at least two rows, so let’s assume that A has the form and see if we
can solve the problem.

A =
[

a b c d
e f g h

]

In order for x1 and x2 to be in null(A), we must have Ax1 = 0 and Ax2 = 0.
Computing the first entry of Ax1 and Ax2 and setting each equal to zero produces the
linear system

a − 2c + d = 0
b + 3c + 2d = 0

The system is in echelon form, and after back substituting we find that the general
solution is given by ⎡

⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎦ = s1

⎡
⎢⎢⎣

2
−3

1
0

⎤
⎥⎥⎦ + s2

⎡
⎢⎢⎣

−1
−2

0
1

⎤
⎥⎥⎦ (2)

There are many choices for s1 and s2, but let’s make it easy on ourselves by setting s1 = 1
and s2 = 0, so that a = 2, b = −3, c = 1, and d = 0. This gives us half of A,

A =
[

2 −3 1 0
e f g h

]

In order to find e , f, g , and h, we could repeat the same analysis. However, we will just
get the same answers, with e , f, g , and h replacing a , b, c , and d . So we can set s1 = 0
and s2 = 1 and use the second vector in (2) as the second row of A,

A =
[

2 −3 1 0
−1 −2 0 1

]

Since the two rows of A are linearly independent, we know that rank(A) = 2. This
ensures that nullity(A) = 2, so that null(A) = span {x1, x2}. ■

We wrap up this subsection with a theorem that relates row and column spaces to
other topics that we previously encountered. The proofs of both parts are left as exercises.

T H E O R E M 4.24 Let A be an n × m matrix and b a vector in Rn.

(a) The system Ax = b is consistent if and only if b is in the column space of A.

(b) The system Ax = b has a unique solution if and only if b is in the column space
of A and the columns of A are linearly independent.

This updates the Big Theo-
rem, Version 5, given in Sec-
tion 4.2.

The Big Theorem, Version 6
We can add three more conditions to the Big Theorem based on our work in this section.
The Big Theorem is starting to get really big. This theorem provides great flexibility—
do not hesitate to use it.
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T H E O R E M 4.25 ( T H E B I G T H E O R E M , V E R S I O N 6 ) Let A = {a1, . . . , an} be a
set of n vectors in Rn, let A = [

a1 · · · an

]
, and let T : Rn → Rn be given by

T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

(f) A is invertible.

(g) ker(T) = {0}.
(h) A is a basis for Rn.

(i) col(A) = Rn.

(j) row(A) = Rn.

(k) rank(A) = n.

Proof From the Big Theorem, Version 5, we know that (a) through (h) are equivalent.
Theorem 4.21 and Definition 4.22 imply that (i), (j), and (k) are equivalent, and by
definition (a) and (i) are equivalent. Hence the 11 conditions are all one big equivalent
family. ■

E X E R C I S E S
In Exercises 1–4, find bases for the column space of A, the row
space of A, and the null space of A. Verify that the Rank–Nullity
Theorem holds. (To make your job easier, an equivalent echelon
form is given for each matrix.)

1. A =
[

1 −3 2
−2 5 0
−3 8 −2

]
∼

[
1 0 −10
0 1 −4
0 0 0

]

2. A =
[

1 0 −4 −3
−2 1 13 5

0 1 5 −1

]
∼

[
1 0 −4 −3
0 1 5 −1
0 0 0 0

]

3. A =
[

1 0 −4 −3
−2 1 13 5

0 1 5 −1

]
∼

[
1 0 −4 −3
0 1 5 −1
0 0 0 0

]

4. A =

⎡
⎢⎢⎢⎣

1 −2 5
2 4 1

−4 0 2
1 −2 0
3 1 1

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎦

In Exercises 5–8, find bases for the column space of A, the row
space of A, and the null space of A. Verify that the Rank–Nullity
Theorem holds.

5. A =
[

1 −2 2
2 −2 3

−1 −2 0

]

6. A =
[

1 2 −1 1
2 1 −1 4
1 −4 1 5

]

7. A =
[

1 3 2 0
3 11 7 1
1 1 4 0

]

8. A =

⎡
⎢⎣

1 4 −1 1
3 11 −1 4
1 5 2 3
2 8 −2 2

⎤
⎥⎦

In Exercises 9–12, find all values of x so that rank(A) = 2.

9. A =
[

1 −4
−2 x

]

10. A =
[

2 3 4
−1 x 0

]

11. A =
[−1 2 1

3 1 11
4 3 x

]

12. A =
[−2 1 0 7

0 1 x 9
1 0 −3 1

]

13. Suppose that A is a 6 × 8 matrix. If the dimension of the row
space of A is 5, what is the dimension of the column space of A?
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14. Suppose that A is a 9 × 7 matrix. If the dimension of col(A)
is 5, what is the dimension of row(A)?

15. Suppose that A is a 4 × 7 matrix that has an echelon form
with one zero row. Find the dimension of the row space of A, the
column space of A, and the null space of A.

16. Suppose that A is a 6 × 11 matrix that has an echelon form
with two zero rows. Find the dimension of the row space of A, the
column space of A, and the null space of A.

17. A 8 × 5 matrix A has a null space of dimension 3. What is the
rank of A?

18. A 5 × 13 matrix A has a null space of dimension 10. What is
the rank of A?

19. A 7 × 11 matrix A has rank 4. What is the dimension of the
null space of A?

20. A 14 × 9 matrix A has rank 7. What is the dimension of the
null space of A?

21. Suppose that A is a 6 × 11 matrix and that T(x) = Ax. If
nullity(A) = 7, what is the dimension of the range of T ?

22. Suppose that A is a 17 × 12 matrix and that T(x) = Ax. If
rank(A) = 8, what is the dimension of the kernel of T ?

23. Suppose that A is a 13 × 5 matrix and that T(x) = Ax. If T is
one-to-one, then what is the dimension of the null space of A?

24. Suppose that A is a 5 × 13 matrix and that T(x) = Ax. If T is
onto, then what is the dimension of the null space of A?

25. Suppose that A is a 5 × 13 matrix. What is the maximum pos-
sible value for the rank of A, and what is the minimum possible
value for the nullity of A?

26. Suppose that A is a 12 × 7 matrix. What is the minimum pos-
sible value for the rank of A, and what is the maximum possible
value for the nullity of A?

In Exercises 27–32, suppose that A is a 9 × 5 matrix and that B is
an equivalent matrix in echelon form.

27. If B has three nonzero rows, what is rank(A)?

28. If B has two pivot columns, what is rank(A)?

29. If B has three nonzero rows, what is nullity(A)?

30. If B has one pivot column, what is nullity(A)?

31. If rank(A) = 3, how many nonzero rows does B have?

32. If rank(A) = 1, how many pivot columns does B have?

33. Suppose that A is an n ×m matrix, that col(A) is a subspace of
R7, and that row(A) is a subspace of R5. What are the dimensions
of A?

34. Suppose that A is an n × m matrix, with rank(A) = 4,
nullity(A) = 3, and col(A) a subspace of R5. What are the di-
mensions of A?

FIND AN EXAMPLE For Exercises 35–42, find an example that
meets the given specifications.

35. A 2 × 3 matrix A with nullity(A) = 1.

36. A 4 × 3 matrix A with nullity(A) = 0.

37. A 9 × 4 matrix A with rank(A) = 3.

38. A 5 × 7 matrix A with rank(A) = 4.

39. A matrix A with rank(A) = 3 and nullity(A) = 1.

40. A matrix A with rank(A) = 2 and nullity(A) = 2.

41. A 2 × 2 matrix A such that row(A) = col(A).

42. A 2 × 2 matrix A such that row(A) = col(A).

TRUE OR FALSE For Exercises 43–54, determine if the statement
is true or false, and justify your answer.

43. If A is a matrix, then the dimension of the row space of A is
equal to the dimension of the column space of A.

44. If A is a square matrix, then row(A) = col(A).

45. The rank of a matrix A cannot exceed the number of rows
of A.

46. If A and B are equivalent matrices, then row(A) = row(B).

47. If A and B are equivalent matrices, then col(A) = col(B).

48. If Ax = b is a consistent linear system, then b is in row(A).

49. If x0 is a solution to Ax = b, then x0 is in row(A).

50. If A is a 4 × 13 matrix, then the nullity of A could be equal
to 5.

51. Suppose that A is a 9×5 matrix and that T(x) = Ax is a linear
transformation. Then T can be onto.

52. Suppose that A is a 9×5 matrix and that T(x) = Ax is a linear
transformation. Then T can be one-to-one.

53. Suppose that A is a 4 × 13 matrix and that T(x) = Ax is a
linear transformation. Then T can be onto.

54. Suppose that A is a 4 × 13 matrix and that T(x) = Ax is a
linear transformation. Then T can be one-to-one.

55. Prove that if A is an n × m matrix then rank(A) = rank(AT ).

56. Prove that if A is an n × m matrix and c �= 0 is a scalar, then
rank(A) = rank(c A).

57. Prove that if A is an n × m matrix and rank(A) < m, then
Ax = 0 has nontrivial solutions.

58. Prove that if A is an n × m matrix and rank(A) < n, then the
reduced row echelon form of A has a row of zeros.

59. Suppose that A is an n × m matrix with n �= m. Prove that
either nullity(A) > 0 or nullity(AT ) > 0 (or both).

60. Prove Theorem 4.24: Let A be an n × m matrix and b a vector
in Rn .

(a) Show that the system Ax = b is consistent if and only if b is
in the column space of A.

(b) Show that the system Ax = b has a unique solution if and
only if b is in the column space of A and the columns of A are
linearly independent.
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C In Exercises 61–64, determine the rank and nullity of the given
matrix.

61. A =
[

1 3 2 4 −1
1 5 −3 3 −4
2 8 −1 7 −5

]

62. A =

⎡
⎢⎣

2 −1 0 1
5 2 1 −4

−1 −4 −1 6
−8 −5 −2 9

⎤
⎥⎦

63. A =

⎡
⎢⎢⎢⎣

4 8 2
3 5 1
9 19 5
7 13 3
5 11 3

⎤
⎥⎥⎥⎦

64. A =

⎡
⎢⎢⎢⎢⎢⎣

4 3 2 1
5 −1 3 2
2 1 3 6
7 10 3 1
6 4 5 7

−2 −2 1 5

⎤
⎥⎥⎥⎥⎥⎦
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Perhaps the most famous, and

undeniably the most

photographed, bridge in the

world, San Francisco’s Golden

Gate Bridge has been declared

one of the modern Wonders of

the World by the American

Society of Civil Engineers. In

1987, the bridge was closed to

vehicular traffic for its 50th

anniversary to allow pedestrians

to walk across the bridge.

Estimations before the

celebration suggested 75,000

people would be on the bridge,

but more than 300,000 ended up

on the bridge at the same time.

As a result, the suspension

bridge lost its characteristic arch

(left photo) until the pedestrian

traffic cleared. For the 75th

anniversary in 2012, the

pedestrian bridge walk was not

repeated.

Determinants

T
he determinant is a function that takes a matrix as input and produces a real
number as output. Determinants have a rich history and a variety of useful in-

Bridge suggested by Jeff Holt,

Author, University of Virginia

(Courtesy of Maurice Bizzarri;

Stefano Politi Markovina/Alamy)

terpretations. In Section 5.1 we define the determinant and find formulas for
the determinant for certain special types of matrices. The properties of the determinant
are further developed in Section 5.2, including how row operations and matrix arith-
metic influence the determinant. In Section 5.3 we see how to use the determinant to
find the solution to a linear system and a matrix inverse, and how determinants give us
information about the behavior of linear transformations.

5.1 The Determinant Function
The determinant of a square matrix A combines the entries of A to produce a single
real number. There are several different interpretations and characterizations of the
determinant, and the formulas are generally complicated. The development that we give
here is guided by an important property of the determinant, namely, that a square matrix
is invertible exactly when it has a nonzero determinant.

Let’s start with the easiest case. Let A = [
a11

]
be a 1 × 1 matrix. Then A is invertible

exactly when a11 �= 0. This motivates our first definition.
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D E F I N I T I O N 5.1 Let A = [
a11

]
be a 1 × 1 matrix. Then the determinant of A is given by

det(A) = a11
Definition Determinant of a

1 × 1 Matrix

Thus a 1 × 1 matrix A is invertible if and only if det(A) �= 0.
Next, suppose that

A =
[

a11 a12

a21 a22

]
(1)

In Section 3.3 we developed the “Quick Formula” for the inverse of A, which says that

A−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
(2)

provided that a11a22 − a12a21 �= 0. If a11a22 − a12a21 = 0, then (2) is undefined and A
has no inverse. Hence a11a22 − a12a21 is nonzero exactly when A is invertible, so we take
this as the definition of the determinant for a 2 × 2 matrix A.

Definition Determinant of a
2 × 2 Matrix

D E F I N I T I O N 5.2 Let A be the 2 × 2 matrix in (1). Then the determinant of A is given by

det(A) = a11a22 − a12a21 (3)

Summarizing, we have that A is invertible if and only if det(A) �= 0. This gives us an
easy-to-apply formula for determining when a 2 × 2 matrix is invertible.

E X A M P L E 1 Let A =
[

3 5
−1 4

]
. Find det(A) and determine if A is invertible.

Solution Applying Definition 5.2, we have

det(A) = (3)(4) − (5)(−1) = 17

Since det(A) �= 0, we can conclude that A is invertible. ■

The row operations are (in
order performed):

a11 R2 ⇒ R2
a11 R3 ⇒ R3

−a21 R1 + R2 ⇒ R2
−a31 R1 + R3 ⇒ R3

The definition of the determinant is more complicated for larger matrices. Let’s
consider the 3 × 3 case. Suppose

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ (4)

In order for A to be invertible, at least one of a11, a21, or a31 must be nonzero. For the
moment, assume that a11 �= 0. Applying the row operations listed in the margin, we have

A ∼
⎡
⎣a11 a12 a13

0 (a11a22 − a12a21) (a11a23 − a13a21)
0 (a11a32 − a12a31) (a11a33 − a13a31)

⎤
⎦

Since a11 �= 0, the matrix on the right is invertible exactly when[
(a11a22 − a12a21) (a11a23 − a13a21)
(a11a32 − a12a31) (a11a33 − a13a31)

]
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is invertible. The determinant of this 2 × 2 matrix is

(a11a22 − a12a21)(a11a33 − a13a31) − (a11a23 − a13a21)(a11a32 − a12a31)
= a11

[
a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

]
Since a11 �= 0, A is invertible if and only if the expression in brackets is nonzero. Other
than a sign change, the bracketed expression is the same if we start with a21 or a31.
Furthermore, this expression is zero if a11 = a21 = a31 = 0. Hence the term in brackets
is nonzero exactly when A is invertible, so we use it for the determinant.

D E F I N I T I O N 5.3 Let A be the 3 × 3 matrix in (4). Then the determinant of A is given by

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 (5)
−a12a21a33 − a13a22a31

Definition Determinant of a
3 × 3 Matrix

E X A M P L E 2 Find det(A) for

A =
⎡
⎣−3 1 2

5 5 −8
4 2 −5

⎤
⎦

Solution From (5) we have

det(A) = (−3)(5)(−5) + (1)(−8)(4) + (2)(5)(2)
−(−3)(−8)(2) − (1)(5)(−5) − (2)(5)(4)

= 75 − 32 + 20 − 48 + 25 − 40 = 0

Note that this implies that A is not invertible. ■

We replace
[ ]

with | | around
a matrix to indicate the determi-
nant. For example,∣∣∣∣4 2

3 7

∣∣∣∣ = (4)(7) − (2)(3) = 22

Our formulas for determinants may appear unconnected, but in fact the 3 × 3
determinant is related to the 2 × 2 determinant. To see how, we start by reorganizing (5)
and factoring out common terms,

det(A) = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31) (6)

Each expression in parentheses can be viewed as the determinant of a 2 × 2 matrix. For
instance,

a22a33 − a23a32 =
∣∣∣∣a22 a23

a32 a33

∣∣∣∣
Combining this observation with (6) gives us

det(A) = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ (7)

Each of these 2 × 2 matrices can be found within A by crossing out the row and column
containing a11, a12, and a13, respectively, then forming 2 × 2 matrices from the entries
that remain.

a11 ⇒
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ a12 ⇒

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ a13 ⇒

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

In general, if A is an n × n matrix, then Mi j denotes the (n − 1) × (n − 1) matrix that we
get from A after deleting the row and column containing ai j . The determinant det(Mi j )
is called the minor of ai j .Definition Minor
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E X A M P L E 3 Suppose

A =

⎡
⎢⎢⎣

4 −1 1 0
1 7 3 5
0 −3 −2 1
2 4 8 −1

⎤
⎥⎥⎦

Find M23 and M42.

Solution The term a23 is located in row 2 and column 3 of A. To find M23, we cross
out row 2 and column 3,⎡

⎢⎢⎣
4 −1 1 0
1 7 3 5
0 −3 −2 1
2 4 8 −1

⎤
⎥⎥⎦ �⇒ M23 =

⎡
⎣ 4 −1 0

0 −3 1
2 4 −1

⎤
⎦

Similarly, M42 is found by deleting row 4 and column 2,⎡
⎢⎢⎣

4 −1 1 0
1 7 3 5
0 −3 −2 1
2 4 8 −1

⎤
⎥⎥⎦ �⇒ M42 =

⎡
⎣4 1 0

1 3 5
0 −2 1

⎤
⎦

■

Referring to (7), we see that our formula for the determinant of a 3 × 3 matrix can
be expressed in terms of minors as

det(A) = a11 det(M11) − a12 det(M12) + a13 det(M13)

This formula can be further simplified with the introduction of Ci j , the cofactor of ai j ,
given by

Ci j = (−1)i+ j det(Mi j )

Thus we have

det(A) = a11C11 + a12C12 + a13C13 (8)

The formula (8) provides us with a model for the general definition of the determinant.

Definition Cofactor

D E F I N I T I O N 5.4 Let A be the n × n matrix

A =

⎡
⎢⎣

a11 a12 · · · a1n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎦ (9)

Then the determinant of A is

det(A) = a11C11 + a12C12 + · · · + a1nC1n (10)

where C11, . . . , C1n are the cofactors of a11, . . . , a1n, respectively. When n = 1, A =[
a11

]
and det(A) = a11.

Definition Determinant

Definition 5.4 is an example of a recursive definition, because the determinant of an
n × n matrix is defined in terms of the determinants of (n − 1) × (n − 1) matrices.
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E X A M P L E 4 Use Definition 5.4 and cofactors to find det(A) for

A =
⎡
⎣ 2 −1 3

1 4 0
3 1 2

⎤
⎦

Solution The first step is to find the cofactors C11, C12, and C13:

C11 = (−1)1+1

∣∣∣∣ 4 0
1 2

∣∣∣∣ = (1)
(
(4)(2) − (0)(1)

) = 8

C12 = (−1)1+2

∣∣∣∣ 1 0
3 2

∣∣∣∣ = (−1)
(
(1)(2) − (0)(3)

) = −2

C13 = (−1)1+3

∣∣∣∣ 1 4
3 1

∣∣∣∣ = (1)
(
(1)(1) − (4)(3)

) = −11

By Definition 5.4 we have

det(A) = 2(8) + (−1)(−2) + 3(−11) = −15 ■

The determinants for the co-
factors were calculated using
the formula (3).

We can use induction and Definition 5.4 to prove that det(In) = 1.

T H E O R E M 5.5 For n ≥ 1 we have det(In) = 1.

This chapter contains the-
orems and exercises requiring
proof by induction. If you are
unfamiliar with this method of
proof or are just a bit rusty, con-
sult the appendix “Reading and
Writing Proofs.”

Proof We shall carry out this proof by induction on n, the number of rows. First suppose
that n = 1. Then

I1 = [
1
] �⇒ det(I1) = 1

so that the theorem is true in this case. Next suppose that n ≥ 2 and that the theorem
is true for In−1. (This is the induction hypothesis.) Since the top row of In has a single 1
followed by zeros, by Definition 5.4 we have

det(In) = (1)C11 + (0)C12 + · · · + (0)C1n = C11 = (−1)2 det(M11) = det(M11)

Since M11 is the matrix we get from deleting the first row and column of In, we have

M11 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ = In−1

By the induction hypothesis we know det(In−1) = 1. Therefore

det(In) = det(M11) = det(In−1) = 1

The two parts of the induction proof are verified, so the proof is complete. ■

A remarkable fact about the general definition of the determinant given in Defini-
tion 5.4 is that it has the same property as the determinant of 2 × 2 and 3 × 3 matrices,
namely, that for any n × n matrix A, det(A) is nonzero exactly when A is invertible.

T H E O R E M 5.6 Let A be an n × n matrix. Then A is invertible if and only if det(A) �= 0.
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We have already see that Theorem 5.6 is true when n = 1, 2, and 3. The proof of
Theorem 5.6 for larger matrices is given in Section 5.2.

Theorem 5.6 allows us to add a condition involving the determinant to the Big
Theorem.

This updates the Big Theo-
rem, Version 6, given in Sec-
tion 4.3.

T H E O R E M 5.7 ( T H E B I G T H E O R E M , V E R S I O N 7 ) Let A = {a1, . . . , an} be a
set of n vectors in Rn, let A = [

a1 · · · an

]
, and let T : Rn → Rn be given by

T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

(f) A is invertible.

(g) ker(T) = {0}.
(h) A is a basis for Rn.

(i) col(A) = Rn.

(j) row(A) = Rn.

(k) rank(A) = n.

(l) det(A) �= 0.

Proof From the Big Theorem, Version 6 in Section 4.3, we know that (a) through (k)
are equivalent. Theorem 5.6 tells us that (f) and (l) are equivalent, and so we conclude
that all 12 conditions are equivalent. ■

The Shortcut Method
For 2 × 2 and 3 × 3 matrices there exist nice visual aids for computing determinants that
we refer to as the Shortcut Method. For the 2 × 2 case, start by drawing diagonal arrows
through the terms of the matrix, labeled with + and − as shown below. Multiply the
terms of each arrow, and then add or subtract as indicated by the + or −.[

a11 a12������−
a21

������+
a22

]
�⇒

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

Note that this matches the formula given in (3).

Warning! The Shortcut
Method does not work for 4 × 4
or larger matrices.

For a 3×3 matrix, we write down the matrix, copy the left two columns to the right,
and then draw six diagonal arrows with labels as shown.⎡

⎣ a11 a12 a13 a11 a12

− − − + + +

-

-

a21 a22 a23 a21 a22

��������a31

��������a32

��������

��������a33

��������a31

��������a32

As in the 2 × 2 case, for each arrow we multiply terms and then add or subtract based
on the labels. This yields

a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

which matches the formula given in (5).
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E X A M P L E 5 Find det(A) from Example 4 using the Shortcut Method.

Solution Adding on the two extra columns and drawing the diagonals, we have

2 −1 3 2 −1

− − − + + +
1 4 0 1 4

�������3

�������1

�������

�������2

�������3

�������1
�⇒ det(A) = (16 + 0 + 3) − (36 + 0 − 2) = −15

which matches what we found earlier. ■

E X A M P L E 6 Show that the set

A =
⎧⎨
⎩

⎡
⎣ 3

−1
5

⎤
⎦ ,

⎡
⎣−2

0
7

⎤
⎦ ,

⎡
⎣4

3
1

⎤
⎦

⎫⎬
⎭

forms a basis for R3.

Solution Let

A =
⎡
⎣ 3 −2 4

−1 0 3
5 7 1

⎤
⎦

By the Big Theorem, Version 7, A is a basis for R3 if and only if det(A) �= 0. Applying
the Shortcut Method, we find that

3 −2 4 3 −2

− − − + + +
− 1 0 3 −1 0

�������5

�������7

�������

�������1

�������5

�������7
�⇒ det(A) = (0 − 30 − 28) − (0 + 63 + 2) = −123

Since det(A) �= 0, A is a basis for R3. ■

Cofactor Expansion
In our definition of the determinant, we use cofactors for the entries along the top row of
the matrix. The next theorem allows us to generalize to entries in other rows or columns.
The proof is omitted.

T H E O R E M 5.8 Let A be the n × n matrix in (9). Then

(a) det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin (Expand across row i)

(b) det(A) = a1 j C1 j + a2 j C2 j + · · · + anj Cnj (Expand down column j )

where Ci j denotes the cofactor of ai j . These formulas are referred to collectively as the
cofactor expansions.Definition Cofactor Expansions

Theorem 5.8 tells us that we can compute the determinant by taking cofactors along
any row or column of the matrix. This theorem is handy in cases where a matrix has a
row or column containing several zeros, because we can save ourselves some work.

E X A M P L E 7 Find det(A) for

A =

⎡
⎢⎢⎣

−2 1 4 −1
1 0 −1 2
5 −1 2 1
0 0 3 −1

⎤
⎥⎥⎦
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Solution The cofactor expansion down the 2nd column is

det(A) = a12C12 + a22C22 + a32C32 + a42C42

Since a22 = 0 and a42 = 0, there is no need to calculate C22 and C42. The cofactors C12

and C32 are given by

C12 = (−1)1+2

∣∣∣∣∣∣
1 −1 2
5 2 1
0 3 −1

∣∣∣∣∣∣ = (−1)(20) = −20

C32 = (−1)3+2

∣∣∣∣∣∣
−2 4 −1

1 −1 2
0 3 −1

∣∣∣∣∣∣ = (−1)(11) = −11

Pulling everything together, we have

det(A) = 1 · C12 + (−1) · C32 = 1(−20) + (−1)(−11) = −9

Other than the amount of work involved, it makes no difference which row or column
we choose. Expanding along the 4th row of A, we have

det(A) = a41C41 + a42C42 + a43C43 + a44C44

Since a41 = a42 = 0, we need only compute C43 and C44, which are

C43 = (−1)4+3

∣∣∣∣∣∣
−2 1 −1

1 0 2
5 −1 1

∣∣∣∣∣∣ = (−1)(6) = −6

C44 = (−1)4+4

∣∣∣∣∣∣
−2 1 4

1 0 −1
5 −1 2

∣∣∣∣∣∣ = (1)(−9) = −9

Therefore

det(A) = 3 · C43 + (−1) · C44 = 3(−6) + (−1)(−9) = −9

as before. ■

The 3 × 3 determinants in Ex-
ample 7 were found using the
Shortcut Method.

Matrices that have certain special forms or characteristics have determinants that
are easy to compute.

E X A M P L E 8 Find det(A) for

A =

⎡
⎢⎢⎢⎢⎣

−1 2 7 −5 8
0 3 4 1 −9
0 0 −2 4 11
0 0 0 −4 5
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

Solution Note that A is upper triangular. Let’s take advantage of all the zeros in the
first column. Since the first entry in that column is the only one that is nonzero, the
cofactor expansion down the first column is

det(A) = (−1)C11 = (−1)(−1)2 det(M11) = (−1)

∣∣∣∣∣∣∣∣
3 4 1 −9
0 −2 4 11
0 0 −4 5
0 0 0 1

∣∣∣∣∣∣∣∣
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For the remaining determinant det(M11), we again use cofactor expansion down the
first column, giving us

det(A) = (−1)(3)C11 = (−1)(3)

∣∣∣∣∣∣
−2 4 11

0 −4 5
0 0 1

∣∣∣∣∣∣
The remaining 3 × 3 determinant can be computed using the Shortcut Method,
which produces only one nonzero term, the product of the diagonal (−2)(−4)(1).
Therefore

det(A) = (−1)(3)(−2)(−4)(1) = −24 ■

In Example 8, A is a square triangular matrix and det(A) is equal to the product of
the diagonal terms. This suggests the next theorem.

T H E O R E M 5.9 If A is a triangular n × n matrix, then det(A) is the product of the terms along the
diagonal.

The proof of Theorem 5.9 is left as an exercise.
Recall that if we interchange the rows and columns of a matrix A, we get AT , the

transpose of A. Interestingly, taking the transpose has no effect on the determinant.

T H E O R E M 5.10 Let A be a square matrix. Then det(AT ) = det(A).

For

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎦

the transpose is

AT =

⎡
⎢⎢⎢⎢⎣

a11 a21 a31 · · · an1

a12 a22 a32 · · · an2

a13 a23 a33 · · · an3
...

...
...

. . .
...

a1n a2n a3n · · · ann

⎤
⎥⎥⎥⎥⎦

Proof We use induction. First note that if A = [
a11

]
is a 1 × 1 matrix, then A = AT so

that det(A) = det(AT ).
Now for the induction hypothesis: Suppose that n ≥ 2 and that the theorem holds

for all (n − 1) × (n − 1) matrices. If A is an n × n matrix, then the cofactor expansion
along the top row of A gives us

det(A) = a11 det(M11) − a12 det(M12) + · · · + (−1)n+1a1n det(M1n)

Since M11, . . . , M1n are all (n − 1) × (n − 1) matrices, by the induction hypothesis we
have det(M11) = det(MT

11), . . . , det(M1n) = det(MT
1n). Hence

det(A) = a11 det(MT
11) − a12 det(MT

12) + · · · + (−1)n+1a1n det(MT
1n) (11)

Next note that the first column of AT has entries a11, . . . , a1n. Thus the right side of (11)
also gives the cofactor expansion down the first column of AT , and so it follows that
det(AT ) = det(A). ■

E X A M P L E 9 Show that det(A) = det(AT ) for

A =
⎡
⎣2 3 −1

4 2 0
5 −2 −4

⎤
⎦
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Solution Applying the Shortcut Method twice, we find that

det(A) =
∣∣∣∣∣∣
2 3 −1
4 2 0
5 −2 −4

∣∣∣∣∣∣ = (−16 + 0 + 8
) − (−10 + 0 − 48

) = 50

det(AT ) =
∣∣∣∣∣∣

2 4 5
3 2 −2

−1 0 −4

∣∣∣∣∣∣ = (−16 + 8 + 0
) − (−10 + 0 − 48

) = 50

Hence det(A) = det(AT ). ■

T H E O R E M 5.11 Let A be a square matrix.

(a) If A has a row or column of zeros, then det(A) = 0.

(b) If A has two identical rows or columns, then det(A) = 0.

Proof The proof of both parts of this theorem are left as exercises. ■

E X A M P L E 10 Show that det(A) = 0 and det(B) = 0, where

A =

⎡
⎢⎢⎣

3 0 0 2
0 4 0 5
9 0 0 7
1 1 0 0

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

−1 4 2 0
6 2 5 −4

−1 4 2 0
0 8 4 7

⎤
⎥⎥⎦

Solution Since the third column of A consists of zeros, by Theorem 5.11(a) we have
det(A) = 0. Since rows 1 and 3 of B are identical, by Theorem 5.11(b) we have
det(B) = 0. ■

Multiplying matrices and computing determinants are both processes requiring
numerous arithmetic operations. However, the relationship between the determinant of
the product of two matrices and the product of the individual determinants is remarkably
simple, as shown in Theorem 5.12.

T H E O R E M 5.12 If A and B are both n × n matrices, then

det(AB) = det(A) det(B)

A proof of Theorem 5.12, and further discussion of the determinant of products of
matrices, is given in Section 5.2.

E X A M P L E 11 Show that det(AB) = det(A) det(B) for the matrices

A =
[

2 −4
−1 1

]
and B =

[
3 −1
2 1

]

Solution Starting with A and B , we have

det(A) = (2)(1) − (−4)(−1) = −2 and det(B) = (3)(1) − (−1)(2) = 5
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Hence det(A) det(B) = −10. Computing AB , we have

AB =
[

2 −4
−1 1

] [
3 −1
2 1

]
=

[−2 −6
−1 2

]

Therefore det(AB) = (−2)(2) − (−6)(−1) = −10 = det(A) det(B). ■

Computational Comment
Except when a matrix has mostly zero entries, computing determinants using cofactor ex-
pansion is slow for even a modest-sized matrix. Working recursively eventually generates
a lot of 3×3 determinants that all require evaluation. For an n ×n matrix, the number of
multiplications needed is about n!. Thus, for example, a 20×20 matrix will require about
20! = 2,432,902,008,176,640,000 multiplications, far more than is remotely practical.
In the next section, we see how to use row operations to speed things up.

E X E R C I S E S
In Exercises 1–6, find M23 and M31 for the given matrix A.

1. A =
[

7 0 −4
3 6 2
5 1 5

]

2. A =
[−5 3 1

6 2 2
4 4 0

]

3. A =

⎡
⎢⎣

6 1 −1 5
0 2 3 0
7 1 1 1
4 3 1 2

⎤
⎥⎦

4. A =

⎡
⎢⎣

0 −2 4 0
5 1 −1 0
0 2 −1 0
3 6 1 6

⎤
⎥⎦

5. A =

⎡
⎢⎢⎢⎣

4 3 2 1 0
6 1 2 0 5
3 2 2 4 4
5 1 0 0 3
2 2 4 1 0

⎤
⎥⎥⎥⎦

6. A =

⎡
⎢⎢⎢⎣

1 0 1 0 1
3 7 9 4 5
8 1 0 0 2
2 5 3 4 1
6 1 2 3 3

⎤
⎥⎥⎥⎦

In Exercises 7–10, find C13 and C22 for the given matrix A.

7. A =
[

2 1 3
0 −1 4
4 0 1

]

8. A =
[

6 1 0
2 −1 −3
3 4 1

]

9. A =
[

6 1 2
4 3 0
1 1 1

]

10. A =
[

0 −1 −1
3 2 1
4 0 2

]

In Exercises 11–18, find the determinant for the given matrix A in
two ways, by using cofactor expansion (a) along the row of your
choosing, and (b) along the column of your choosing. Use the
determinant to decide if T(x) = Ax is invertible.

11. A =
[

1 2 −3
0 4 0
5 −1 0

]

12. A =
[−2 0 0

4 5 0
3 0 6

]

13. A =

⎡
⎢⎣

−1 1 −1 2
0 3 2 0
1 4 0 1
0 −1 3 −1

⎤
⎥⎦

14. A =

⎡
⎢⎣

2 1 3 0
1 2 0 1
4 2 0 1
0 1 2 0

⎤
⎥⎦

15. A =

⎡
⎢⎣

−1 1 0 0
2 3 3 2
0 −1 0 5
3 1 4 −1

⎤
⎥⎦

16. A =

⎡
⎢⎣

0 2 5 4
3 0 −1 0
1 1 −2 1

−2 0 3 0

⎤
⎥⎦

17. A =

⎡
⎢⎢⎢⎣

4 2 1 0 1
0 3 −1 1 2
0 −1 0 0 1
0 1 2 0 3
0 0 1 0 1

⎤
⎥⎥⎥⎦
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18. A =

⎡
⎢⎢⎢⎣

1 −1 0 1 0
3 0 0 −1 1

−1 1 0 −2 0
0 0 1 2 0
2 0 −2 0 1

⎤
⎥⎥⎥⎦

In Exercises 19–26, when possible use the Shortcut Method to com-
pute det(A). If the Shortcut Method is not applicable, explain why.

19. A =
[

4 6
−1 2

]

20. A =
[

5 1
−3 −2

]

21. A =
[

1 2 −1
3 1 0

]

22. A =
[

6 −1
1 0
2 2

]

23. A =
[

3 1 −1
2 0 4
1 6 1

]

24. A =
[

2 2 3
−1 4 1

3 1 −2

]

25. A =

⎡
⎢⎣

6 1 2 1
3 1 0 0
0 2 2 1
1 2 3 −1

⎤
⎥⎦

26. A =

⎡
⎢⎣

2 1 −1 2
3 1 1 0
5 1 2 1
4 3 −3 2

⎤
⎥⎦

In Exercises 27–34, find all values of a such that the given matrix is
not invertible. (HINT: Think determinants, not row operations.)

27. A =
[

2 3
6 a

]

28. A =
[

12 a
a 3

]

29. A =
[

a a
3 −1

]

30. A =
[

a −3
2 a

]

31. A =
[

1 −1 3
0 a −2
2 4 3

]

32. A =
[−1 2 a

0 1 1
3 0 −1

]

33. A =
[

1 a −2
−1 0 1

a 3 −4

]

34. A =
[

0 4 a
a 1 3
0 a 1

]

In Exercises 35–40, find det(A). No cofactor expansions are re-
quired, but you should explain your answer.

35. A =

⎡
⎢⎣

2 0 0 0
5 −1 0 0
7 2 1 0

13 37 11 4

⎤
⎥⎦

36. A =

⎡
⎢⎣

3 4 5 7
0 −2 5 −9
0 0 1 6
0 0 0 5

⎤
⎥⎦

37. A =

⎡
⎢⎣

6 1 0 4
0 2 0 3
1 0 0 6
6 1 0 −7

⎤
⎥⎦

38. A =

⎡
⎢⎣

2 0 0 1
0 0 0 0
4 1 0 2
0 1 2 3

⎤
⎥⎦

39. A =

⎡
⎢⎣

2 1 6 2
3 −2 4 1
2 1 6 2
3 5 2 4

⎤
⎥⎦

40. A =

⎡
⎢⎢⎢⎣

1 4 3 1 4
3 2 4 3 2
0 1 6 0 −1
2 −1 1 2 1
1 2 0 1 −1

⎤
⎥⎥⎥⎦

In Exercises 41–44, verify that det(A) = det(AT ).

41. A =
[

3 −2
4 1

]

42. A =
[

6 1
2 3

]

43. A =
[

0 7 1
2 3 1
4 −1 −1

]

44. A =
[−1 2 1

2 −1 0
1 0 4

]

In Exercises 45–48, determine all real values of λ such that
det(A − λI2) = 0 for the given matrix A.

45. A =
[

2 4
5 3

]

46. A =
[

0 3
5 2

]

47. A =
[

1 0
−5 1

]
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48. A =
[

3 −6
2 −1

]
In Exercises 49–52, determine all real values of λ such that
det(A − λI3) = 0 for the given matrix A.

49. A =
[

1 0 0
5 3 0

−4 7 −2

]

50. A =
[−5 −2 −3

0 0 6
0 0 4

]

51. A =
[

0 2 0
1 0 2
2 −1 0

]

52. A =
[

0 1 2
1 1 1
2 −1 0

]

In Exercises 53–56, for each given matrix A, first compute det(A).
Then interchange two rows of your choosing and compute the
determinant of the resulting matrix. Form a conjecture about the
effect of row interchanges on determinants.

53. (a) A =
[

3 5
−2 4

]
(b) A =

[
1 2 −1
3 0 2
0 1 −1

]

54. (a) A =
[

1 0
2 1

]
(b) A =

[
2 2 1
1 −1 2
1 0 0

]

55. (a) A =
[

3 1 0
1 2 3
0 2 1

]
(b) A =

[
4 −1 0
0 2 1
1 1 1

]

56. (a) A =
[

0 −1 1
−1 2 1

4 0 3

]
(b) A =

[
3 2 1
0 1 1
0 0 −2

]

In Exercises 57–60, for each given matrix A, first compute det(A).
Then multiply a row of your choosing by 3 and compute the de-
terminant of the resulting matrix. Form a conjecture about the
effect on determinants of multiplying a row times a scalar.

57. (a) A =
[

3 5
−2 4

]
(b) A =

[
1 2 −1
3 0 2
0 1 −1

]

58. (a) A =
[

1 0
2 1

]
(b) A =

[
2 2 1
1 −1 2
1 0 0

]

59. (a) A =
[

3 1 0
1 2 3
0 2 1

]
(b) A =

[
4 −1 0
0 2 1
1 1 1

]

60. (a) A =
[

0 −1 1
−1 2 1

4 0 3

]
(b) A =

[
3 2 1
0 1 1
0 0 −2

]

FIND AN EXAMPLE For Exercises 61–68, find an example that
meets the given specifications.

61. A 2 × 2 matrix A with det(A) = 12.

62. A 3 × 3 matrix A with det(A) = 21.

63. A 2 × 2 matrix A with nonzero entries and det(A) = −3.

64. A 3 × 3 matrix A with nonzero entries and det(A) = 5.

65. A 3 × 3 matrix A with

M11 =
[

0 4
6 −3

]
, M23 =

[
5 −1
2 6

]

66. A 4 × 4 matrix A with

M14 =
[

3 1 4
4 5 0

−1 7 3

]
, M33 =

[
1 −2 1
3 1 0

−1 7 6

]

67. A 3 × 3 matrix A with cofactors C12 = −8 and C31 = −5.

68. A 3 × 3 matrix A with cofactors C22 = −2, C11 = 6, and
C32 = −2.

TRUE OR FALSE For Exercises 69–76, determine if the statement
is true or false, and justify your answer.

69. Every matrix A has a determinant.

70. If A is an n × n matrix, then each cofactor of A is an
(n − 1) × (n − 1) matrix.

71. If A is an n×n matrix with all positive entries, then det(A) > 0.

72. If A is an n × n matrix such that Ci1 = · · · = Cin = 0 for
some i , then det(A) = 0.

73. If A is an upper triangular n × n matrix, then det(A) �= 0.

74. If A is a diagonal matrix, then Mi j is also diagonal for all i
and j .

75. If the cofactors of an n × n matrix A are all nonzero, then
det(A) �= 0.

76. If A and B are 2 × 2 matrices, then det(A − B) = det(A) −
det(B).

77. Let (x1, y1) and (x2, y2) be two distinct points in the plane.
Prove that

∣∣∣∣∣
x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣ = 0

gives an equation for the line passing through (x1, y1) and (x2, y2).

78. Find a general formula for the determinant of

A =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0 a1n

0 · · · 0 a2(n−1) a2n

0 · · · a3(n−2) a3(n−1) a3n
... · · ·

...
...

...

an1 · · · an(n−2) an(n−1) ann

⎤
⎥⎥⎥⎥⎦
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79. Let

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎤
⎥⎥⎦

Let C j 1, . . . , C j n be the cofactors of A along row j . For i �= j
prove that

ai1C j 1 + ai2C j 2 + · · · + ainC j n = 0

80. Use induction to complete the proof of Theorem 5.9: If A is
an n × n lower triangular matrix, then det(A) is the product of
the terms along the diagonal of A.

81. Prove Theorem 5.11(a): Let A be a square matrix. If A has a
row or column of zeros, then det(A) = 0.

82. Prove Theorem 5.11(b): Let A be a square matrix. If A has
two identical rows or columns, then det(A) = 0. (HINT: Use
induction.)

C In Exercises 83–86, find det(A).

83. A =

⎡
⎢⎣

3 −4 0 5
2 1 −7 1
0 −3 2 2
5 8 −2 −1

⎤
⎥⎦

84. A =

⎡
⎢⎣

0 3 7 9
−1 4 −1 0

2 9 −4 3
2 3 −3 −2

⎤
⎥⎦

85. A =

⎡
⎢⎢⎢⎣

3 5 0 0 2
0 1 −2 −3 −2
7 −2 −1 0 0
4 1 1 1 4

−5 −1 0 5 3

⎤
⎥⎥⎥⎦

86. A =

⎡
⎢⎢⎢⎣

3 2 1 2 3
7 8 9 1 3

−1 −2 3 −2 −1
3 6 9 6 2
4 2 1 9 4

⎤
⎥⎥⎥⎦

5.2 Properties of the Determinant
This section is optional and

can be omitted without loss of
continuity.

At the end of Section 5.1, we noted that computing determinants using cofactor expansion
is too slow for use with even modest-sized matrices. In this section we show how to use
row operations to make computing determinants more efficient. We will also develop
additional properties of the determinant.

We already noted that it
takes about n! multiplications
to compute the determinant of
an n × n matrix using cofactor
expansion. By contrast, using
row operations requires roughly
n3 multiplications to compute
the determinant. The difference
is modest for small matrices
but highly significant for larger
matrices.

Instead of using cofactor expansion to compute the determinant, it is typically faster
to first convert the matrix to echelon form using row operations and then multiply
the terms on the diagonal. Example 1 examines the influence of row operations on the
determinant.

E X A M P L E 1 Suppose that A =
⎡
⎣ 2 −1 4

−6 3 −3
1 5 0

⎤
⎦. Compare det(A) with det(B),

where B is the matrix we get from A after performing the given row operation.

(a) Interchange Row 1 and Row 3 (R1 ⇔ R3).

(b) Multiply Row 2 by 1
3 ( 1

3 R2 ⇒ R2).

(c) Add −2 times Row 1 to Row 3 (−2R1 + R3 ⇒ R3).

Solution We use the Shortcut Method to compute the determinants in this example,
starting with

det(A) = (0 + 3 − 120) − (12 + 0 − 30) = −99

For part (a), we interchange Row 1 with Row 3 and then compute the determinant.

B =
⎡
⎣ 1 5 0

−6 3 −3
2 −1 4

⎤
⎦ �⇒ det(B) = (12 − 30 + 0) − (0 − 120 + 3) = 99
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Hence det(A) = − det(B), so interchanging two rows changed the sign of the deter-
minant. For part (b), multiplying the second row of A by 1

3 and then computing the
determinant gives us

B =
⎡
⎣ 2 −1 4

−2 1 −1
1 5 0

⎤
⎦ �⇒ det(B) = (0 + 1 − 40) − (4 + 0 − 10) = −33

Thus det(A) = 3 det(B). For part (c), we add −2 times Row 1 to Row 3 and then
compute the determinant.

B =
⎡
⎣ 2 −1 4

−6 3 −3
−3 7 −8

⎤
⎦ �⇒ det(B) = (−48−9−168)−(−36−48−42) = −99

This time det(A) = det(B), so adding a multiple of one row to another did not change
the determinant. ■

Theorem 5.13 summarizes the influence of row operations on determinants.

Theorem 5.13 is also true
if the rows are replaced with
columns.

T H E O R E M 5.13 Let A be a square matrix.

(a) Suppose that B is produced by interchanging two rows of A. Then det(A)=− det(B).

(b) Suppose that B is produced by multiplying a row of A by c . Then
det(A) = 1

c · det(B).

(c) Suppose that B is produced by adding a multiple of one row of A to another. Then
det(A) = det(B).

A proof of Theorem 5.13 is given at the end of the section.

E X A M P L E 2 Use row operations together with Theorem 5.13 to find det(A) for

A =

⎡
⎢⎢⎣

−2 1 4 −1
1 0 −1 2
5 −1 2 1
0 0 3 −1

⎤
⎥⎥⎦

Solution In Example 7 of Section 5.1, we used cofactor expansion to show that
det(A) = −9. Here we use row operations to transform A to triangular form while
applying Theorem 5.13 to track the effect of the row operations on det(A).

To reduce A to triangular form, we start with the first column. It is handy to have
a 1 in the pivot position, so we start by interchanging the first two rows.

A =

⎡
⎢⎢⎣

−2 1 4 −1
1 0 −1 2
5 −1 2 1
0 0 3 −1

⎤
⎥⎥⎦

R1⇔R2∼
⎡
⎢⎢⎣

1 0 −1 2
−2 1 4 −1

5 −1 2 1
0 0 3 −1

⎤
⎥⎥⎦ = A1

By Theorem 5.13(a) we have det(A) = − det(A1). Next, we introduce zeros down the
first and second columns (the row operations are combined for brevity) with

A1 =

⎡
⎢⎢⎣

1 0 −1 2
−2 1 4 −1

5 −1 2 1
0 0 3 −1

⎤
⎥⎥⎦

2R1+R2⇒R2
−5R1+R3⇒R3

R2+R3⇒R3
∼

⎡
⎢⎢⎣

1 0 −1 2
0 1 2 3
0 0 9 −6
0 0 3 −1

⎤
⎥⎥⎦ = A2
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By Theorem 5.13(c), none of these row operations changes the determinant, so that
det(A1) = det(A2) and hence det(A) = − det(A1) = − det(A2).

Next we multiply the third row of A2 by (−1/3) to introduce a −3 in the pivot
position of the third column.

A2 =

⎡
⎢⎢⎣

1 0 −1 2
0 1 2 3
0 0 9 −6
0 0 3 −1

⎤
⎥⎥⎦

− 1
3 R3⇒R3

∼
⎡
⎢⎢⎣

1 0 −1 2
0 1 2 3
0 0 −3 2
0 0 3 −1

⎤
⎥⎥⎦ = A3

By Theorem 5.13(b) we have det(A2) = 1/(−1/3) det(A3) = −3 det(A3), so that

det(A) = − det(A2) = −(−3) det(A3) = 3 det(A3)

The last step is to introduce a zero at the bottom of the third column of A3.

A3 =

⎡
⎢⎢⎣

1 0 −1 2
0 1 2 3
0 0 −3 2
0 0 3 −1

⎤
⎥⎥⎦

R3+R4⇒R4
∼

⎡
⎢⎢⎣

1 0 −1 2
0 1 2 3
0 0 −3 2
0 0 0 1

⎤
⎥⎥⎦ = A4

Since this row operation has no effect on the determinant, we have det(A3) = det(A4)
and so det(A) = 3 det(A3) = 3 det(A4). Since A4 is a triangular matrix, by Theorem 5.9

det(A4) = (1)(1)(−3)(1) = −3

and hence det(A) = 3 det(A4) = −9, matching the answer we obtained using cofactor
expansion. ■

E X A M P L E 3 Use row operations and Theorem 5.13 to find det(A) for

A =

⎡
⎢⎢⎣

1 −2 3 −1
3 −6 11 1

−2 4 −9 4
2 −4 8 1

⎤
⎥⎥⎦

Solution We proceed just as in Example 2. Starting with the first column, we introduce
zeros with the row operations⎡

⎢⎢⎣
1 −2 3 −1
3 −6 11 1

−2 4 −9 4
2 −4 8 1

⎤
⎥⎥⎦

−3R1+R2⇒R2
2R1+R3⇒R3

−2R1+R4⇒R4
∼

⎡
⎢⎢⎣

1 −2 3 −1
0 0 2 4
0 0 −3 2
0 0 2 3

⎤
⎥⎥⎦

By Theorem 5.13(c), none of these row operations changes the determinant, so that

det(A) =

∣∣∣∣∣∣∣∣
1 −2 3 −1
0 0 2 4
0 0 −3 2
0 0 2 3

∣∣∣∣∣∣∣∣
We can continue row operations to triangular form, but the zero in the a22 position will
remain. Hence the product of the diagonal terms of any eventual triangular matrix will
be zero. Since det(A) is a multiple of this product, it must be that det(A) = 0. ■

This step could be combined
with the one that follows.

Theorem 5.13 gives us the tools to prove Theorem 5.6 from Section 5.1. The theorem
is stated again below.

T H E O R E M 5.6 Let A be an n × n matrix. Then A is invertible if and only if det(A) �= 0.
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Proof We can transform any square matrix A to an upper triangular matrix B using
two types of row operations:

• Row interchanges, which only change the sign of the determinant.

• Adding a multiple of one row to another, which does not change the determinant.

Therefore det(A) = ± det(B). Since B is triangular, det(B) is equal to the product of
the diagonal terms of B . Thus det(A) �= 0 exactly when all the diagonal terms of B are
nonzero.

When the diagonal terms of B are all nonzero, all of the pivots are also nonzero.
Hence transforming B to reduced echelon form will yield the identity matrix In, which
implies A is invertible. On the other hand, if there is a zero among the diagonal terms of
B , then det(A) = 0. In this case, the zero pivot means that the reduced echelon form of
A cannot be equal to In, so that A is not invertible. Hence A is invertible if and only if
det(A) �= 0. ■

E X A M P L E 4 Suppose that T(x) = Ax is a linear transformation, with

A =

⎡
⎢⎢⎣

2 0 0 8
1 −7 −5 0
3 8 6 0
0 7 5 4

⎤
⎥⎥⎦

Determine if T is invertible.

Solution The linear transformation T is invertible if and only if A is invertible. To
apply Theorem 5.6, we need the determinant of A. There are enough zeros in A to make
cofactor expansion attractive, so we use that approach. Expanding along the top row of
A, we have

det(A) = 2

∣∣∣∣∣∣
−7 −5 0

8 6 0
7 5 4

∣∣∣∣∣∣ − 8

∣∣∣∣∣∣
1 −7 −5
3 8 6
0 7 5

∣∣∣∣∣∣
= 2

[
(−168 + 0 + 0) − (0 + 0 − 160)

] − 8
[
(40 + 0 − 105) − (0 − 105 + 42)

]
= 2(−8) − 8(−2) = 0

Since det(A) = 0, we conclude that A is not invertible, so T is not invertible. ■

The 3 × 3 determinants were
computed using the Shortcut
Method.

Determinants of Products
We now return to Theorem 5.12 from Section 5.1, which says that the determinant of
the product of two matrices is equal to the product of the individual determinants. The
theorem is stated again below.

T H E O R E M 5.12 If A and B are both n × n matrices, then det(AB) = det(A) det(B).

We will get to the proof of Theorem 5.12 shortly. First, note that an interesting
consequence of Theorem 5.12 is that while generally AB �= B A, it is true that det(AB) =
det(B A), because

det(AB) = det(A) det(B) = det(B) det(A) = det(B A)

Here we used the fact that det(A) det(B) = det(B) det(A) because multiplication of real
numbers is commutative. Let’s look at a specific example illustrating Theorem 5.12.
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E X A M P L E 5 Show that det(AB) = det(A) det(B) for the matrices

A =
[

1 3
2 5

]
and B =

[
4 −5

−3 2

]

Then show that det(A + B) �= det(A) + det(B).

Solution Starting with A and B , we have

det(A) = (1)(5) − (3)(2) = −1 and det(B) = (4)(2) − (−5)(−3) = −7

Hence det(A) det(B) = 7. Multiplying the matrices, we find that

AB =
[

1 3
2 5

] [
4 −5

−3 2

]
=

[−5 1
−7 0

]

Therefore det(AB) = (−5)(0) − (−7)(1) = 7 = det(A) det(B). Turning to A + B , we
have

A + B =
[

5 −2
−1 7

]

Thus det(A + B) = (5)(7) − (−2)(−1) = 33 and det(A) + det(B) = −8, so det(A +
B) �= det(A) + det(B). ■

For n × n matrices A and B ,
in general

det(A + B) �= det(A) + det(B)

To prove Theorem 5.12, we start with a special case involving elementary matrices.
Recall that elementary matrices, introduced in Section 3.4, are square matrices E such
that the product EA performs an elementary row operation on A.

T H E O R E M 5.14 If E and B are both n × n matrices and E is an elementary matrix, then det(EB) =
det(E ) det(B).

Proof Suppose that E is an elementary matrix corresponding to interchanging two rows.
Then E is equal to In after the same two rows have been interchanged. Since det(In) = 1,
it follows from Theorem 5.13(a) that det(E ) = −1. As the product EB is the same as B
with two rows interchanged, we have (again by Theorem 5.13(a)) det(EB) = − det(B).
Therefore

det(E B) = − det(B) = det(E ) det(B)

completing the proof for this type of elementary matrix. The proofs for the other two
types of elementary matrices are similar and are left as exercises. ■

We now use Theorem 5.14 to prove Theorem 5.12.

Proof of Theorem 5.12 First, if A is singular, then so is AB (see Exercise 68, Section 3.3),
so that det(A) det(B) = 0 and det(AB) = 0, proving the theorem in this case. Now
suppose that A is nonsingular and hence has an inverse. Then there exists a sequence of
row operations that will transform A into In. Let E 1, E 2, . . . E k denote the corresponding
elementary matrices, with E 1 inducing the first row operation, E 2 the second, and so on.
Then E k · · · E 2 E 1 A = In, so that

A = (E k · · · E 2 E 1)−1 = E −1
1 E −1

2 · · · E −1
k

It is not hard to verify that the inverse of an elementary matrix is another elementary
matrix (see Exercise 68), so that A is the product of elementary matrices. By repeatedly
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applying Theorem 5.14, we have

det(AB) = det(E −1
1 E −1

2 · · · E −1
k B)

= det(E −1
1 ) det(E −1

2 · · · E −1
k B)

...

= det(E −1
1 ) det(E −1

2 ) · · · det(E −1
k ) det(B)

= det(E −1
1 E −1

2 · · · E −1
k ) det(B) = det(A) det(B)

so that det(AB) = det(A) det(B). ■

Theorem 5.15 is an immediate consequence of Theorem 5.12.

T H E O R E M 5.15 Let A be an n × n invertible matrix. Then

det(A−1) = 1

det(A)

Proof Since A is invertible, A−1 exists and AA−1 = In. Therefore

1 = det(In) = det(AA−1) = det(A) det(A−1)

with the last equality holding by Theorem 5.12. Since det(A) det(A−1) = 1, we have

det(A−1) = 1

det(A) ■

Partitioned matrices were in-
troduced in Section 3.2. Recall
that 0nm denotes an n × m ma-
trix with all entries equal to zero.

Determinants of Partitioned Matrices

Suppose that we have the 5 × 5 partitioned matrix P =
[

A 023

032 D

]
with blocks

A =
[

a11 a12

a21 a22

]
and D =

⎡
⎣d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦

Our goal is to find a formula for det(P ) in terms of det(A) and det(D). Thinking about
2 × 2 matrices, we have ∣∣∣∣ a 0

0 d

∣∣∣∣ = ad

which suggests the possibility that det(P ) = det(A) det(D). To see if this is true, we
employ cofactor expansion across the top row of P , which produces

det(P ) = a11

∣∣∣∣∣∣∣∣
a22 0 0 0

0 d11 d12 d13

0 d21 d22 d23

0 d31 d32 d33

∣∣∣∣∣∣∣∣
− a12

∣∣∣∣∣∣∣∣
a21 0 0 0

0 d11 d12 d13

0 d21 d22 d23

0 d31 d32 d33

∣∣∣∣∣∣∣∣
Applying cofactor expansion across the top rows of both determinants, we have

det(P ) = a11a22

∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

d31 d32 d33

∣∣∣∣∣∣ − a12a21

∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

d31 d32 d33

∣∣∣∣∣∣
= (a11a22 − a12a21) det(D) = det(A) det(D)
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Hence it is true that det(P ) = det(A) det(D). Looking back over our computations, we
see that we would have arrived at the same formula even if

P =
[

A 023

C D

]

for any 3 × 2 matrix C , because the entries of C would not contribute to the cofactor
expansions. This is again consistent with∣∣∣∣ a 0

c d

∣∣∣∣ = ad

A similar argument using cofactor expansions down columns can be used to show that∣∣∣∣ A B
032 D

∣∣∣∣ = det(A) det(D)

for any 2 × 3 matrix B (see Exercise 70). These observations generalize to partitioned
square matrices of higher dimension.

T H E O R E M 5.16 Let P be a partitioned n × n matrix of the form

P =
[

A B
0 D

]
or P =

[
A 0
C D

]

where A and D are square block submatrices. Then det(P ) = det(A) det(D).

A proof can be formulated using induction on the dimension of P . This is left as an
exercise.

It is tempting to speculate that∣∣∣∣ A B
C D

∣∣∣∣ = det(A) det(D) − det(B) det(C )

when A, B , C , and D are square submatrices, but this turns out not to be true in general.
See Exercises 33–34 for counterexamples.

Proof of Theorem 5.13

Proof of Theorem 5.13 We take each part of the theorem in turn.

(a) Suppose that the matrix B results from A by interchanging two adjacent rows Ri

and Ri+1. Using cofactor expansion along Ri of A gives

det(A) = ai1(−1)i+1 det(Mi1) + · · · + ain(−1)i+n det(Min)

Now suppose that we compute det(B) by using cofactor expansion along Ri+1 of B .
Since we interchanged Ri and Ri+1 to get B , the entries of Ri+1 of B are the same as
those of Ri of A, as are the matrices Mi j corresponding to these entries. Hence

det(B) = ai1(−1)i+2 det(Mi1) + · · · + ain(−1)i+1+n det(Min)

= (−1)
{

ai1(−1)i+1 det(Mi1) + · · · + ain(−1)i+n det(Min)
} = − det(A)

Keeping this in mind, let’s consider the general case. Suppose that B results from A
by the operation Ri ⇔ R j (interchanging rows Ri and R j ), where for convenience
we assume that i < j . This operation can be accomplished by two sequences of
interchanges of adjacent rows. Start with the sequence Ri ⇔ Ri+1, Ri+1 ⇔ Ri+2,
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. . . , R j−1 ⇔ R j . When these j − i interchanges are complete, the elements of rows
i + 1 through j are shifted up one row, and the elements in row i are moved to row
j (see Figure 1).

∼
Row i

Row j

...

ri

ri �1

...

...

rj

rj �1

...

ri �1

ri �1

...

...

ri

rj

Figure 1 The result of the first
j − i adjacent row
interchanges.

∼
Row i

Row j

...

rj

ri �1

...

...

ri

rj �1

...

ri �1

ri �1

...

...

ri

rj

Figure 2 The result of the
second j − i − 1 adjacent row
interchanges.

We shift the elements originally in row j up to row i with the sequence of j −i −1
interchanges of adjacent rows R j−2 ⇔ R j−1, R j−3 ⇔ R j−2, . . . , Ri ⇔ Ri+1 (see
Figure 2). At this point we have Ri ⇔ R j , and all the other rows are back where they
started.

Returning to the relationship between det(A) and det(B), by our earlier obser-
vation each interchange of adjacent rows multiplied the determinant by −1. Since
there are a total of 2( j − i) − 1 such interchanges, we have

det(B) = (−1)2( j−i)−1 det(A) = − det(A)

as stated in part (a) of the theorem.

(b) Suppose that B is produced by multiplying row i of A by a scalar c . Using cofactor
expansion along row i of B , we find that

det(B) = cai1Ci1 + · · · + cainCin

= c (ai1Ci1 + · · · + ainCin) = c det(A)

so that det(A) = 1
c det(B).

(c) Suppose that B results from applying to A the row operation c Ri + R j ⇒ R j . Using
cofactor expansion along row j of B yields

det(B) = (cai1 + a j 1)C j 1 + · · · + (cain + a j n)C j n

= (
a j 1C j 1 + · · · + a j nC j n

) + c
(
ai1C j 1 + · · · + ainC j n

)
The term in the left parentheses is the cofactor expansion along row j of A and so is
equal to det(A). The term in the right parentheses is equal to zero (see Exercise 79
in Section 5.1). Hence

det(B) = det(A) + c(0) = det(A)

completing the proof of part (c) and the theorem. ■

E X E R C I S E S
In Exercises 1–6, compute the determinant of the given matrix A
by using row operations to reduce to echelon form, as illustrated
in Example 2.

1. A =
[

2 8
−1 −3

]

2. A =
[

9 −1
3 2

]

3. A =
[

1 −1 −3
−2 2 6
−3 −3 10

]

4. A =
[−4 2 −2

1 0 1
3 −1 1

]

5. A =

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦

6. A =

⎡
⎢⎣

−3 2 −1 6
7 −3 2 −11
0 0 0 −2
1 0 0 −1

⎤
⎥⎦

In Exercises 7–14, the given row operations, when performed on
a matrix A, result in the given matrix B . Find the determinant of
A, and decide if A is invertible.

7. R1 ⇔ R2

2R1 + R2 ⇒ R2
�⇒ B =

[
1 −5
0 −4

]
8. −3R1 ⇒ R1

−R1 + R2 ⇒ R2
�⇒ B =

[
1 7
0 3

]
9. R3 ⇔ R1

−2R1 + R2 ⇒ R2

5R2 + R3 ⇒ R3

�⇒ B =
[

1 −4 9
0 −3 2
0 0 7

]

10. (1/2)R1 ⇒ R1

5R1 + R2 ⇒ R2

R2 ⇔ R3

−4R2 + R3 ⇒ R3

�⇒ B =
[

2 0 −7
0 −1 1
0 0 6

]
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11. −7R2 ⇒ R2

−3R1 + R3 ⇒ R3

5R2 + R3 ⇒ R3

�⇒ B =
[−6 2 −1

0 0 1
0 0 −4

]

12. R1 ⇔ R3

2R1 + R3 ⇒ R3

R2 ⇔ R3

−3R3 ⇒ R3

�⇒ B =
[

1 −2 0
0 4 3
0 0 −2

]

13. R1 ⇔ R4

−5R1 + R3 ⇒ R3

−2R1 + R4 ⇒ R4

R2 ⇔ R4

�⇒ B =

⎡
⎢⎣

1 0 5 2
0 1 2 0
0 0 2 1
0 0 0 4

⎤
⎥⎦

14. R2 ⇔ R3

R2 + R3 ⇒ R3

−7R2 + R4 ⇒ R4

R3 ⇔ R4

−5R4 ⇒ R4

�⇒ B =

⎡
⎢⎣

1 2 0 0
0 3 1 1
0 0 1 6
0 0 0 5

⎤
⎥⎦

In Exercises 15–18, suppose that

det(A) =
∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣ = 3

and find the determinant of the given matrix.

15.

[
d e f
a b c
g h i

]

16.

[
d e f
g h i
a b c

]

17.

[
a b c

−2d −2e −2 f
a + g b + h c + i

]

18.

[
a b c

5g 5h 5i
d e f

]

In Exercises 19–22, verify that det(A) det(B) = det(AB) and that
det(A + B) �= det(A) + det(B).

19. A =
[

2 3
1 −4

]
, B =

[
0 −1
3 7

]

20. A =
[
−1 5

2 4

]
, B =

[
7 3
2 1

]

21. A =
[

2 0 −1
1 1 0
0 1 1

]
, B =

[
2 2 1
2 0 4

−1 3 1

]

22. A =
[

0 0 −2
2 0 3
1 1 1

]
, B =

[
1 −2 0
1 −1 3
1 4 −1

]

23. Suppose that A is a square matrix with det(A) = 3. Find each
of the following:

(a) det(A2) (c) det(A2 AT )

(b) det(A4) (d) det(A−1)

24. Suppose that B is a square matrix with det(B) = −2. Find
each of the following:

(a) det(B3) (c) det(B B T )

(b) det(B5) (d) det((B−1)3)

25. Suppose that A and B are n ×n matrices with det(A) = 3 and
det(B) = −2. Find each of the following:

(a) det(A2 B3) (c) det(B3 AT )

(b) det(AB−1) (d) det(A2 B3 B T )

26. Suppose that A and B are n ×n matrices with det(A) = 4 and
det(B) = −3. Find each of the following:

(a) det(B3 A2) (c) det(A2 B T )

(b) det(A−2 B4) (d) det(B−2 A3 AT )

In Exercises 27–32, partition the matrix A in order to compute
det(A).

27. A =

⎡
⎢⎣

1 −3 0 0
2 5 0 0
0 0 5 −1
0 0 3 3

⎤
⎥⎦

28. A =

⎡
⎢⎢⎢⎣

−2 0 2 0 0
1 3 1 0 0
2 0 4 0 0
0 0 0 −3 2
0 0 0 1 2

⎤
⎥⎥⎥⎦

29. A =

⎡
⎢⎣

4 2 1 1
3 1 5 9
0 0 3 2
0 0 1 0

⎤
⎥⎦

30. A =

⎡
⎢⎢⎢⎣

1 2 6 7 9
2 3 8 2 5
0 0 1 2 1
0 0 2 1 3
0 0 3 2 1

⎤
⎥⎥⎥⎦

31. A =

⎡
⎢⎣

9 3 0 0
3 1 0 0
3 9 2 2
8 1 3 1

⎤
⎥⎦

32. A =

⎡
⎢⎢⎢⎣

2 3 0 0 0
−1 5 0 0 0

6 7 1 3 2
−4 1 0 3 1

0 5 2 1 0

⎤
⎥⎥⎥⎦

In Exercises 33–34, for the given matrices A, B , C , and D verify

that

∣∣∣∣ A B
C D

∣∣∣∣ �= det(A) det(D) − det(B) det(C).

33. A =
[

1 2
0 4

]
, B =

[
−1 0

5 1

]
,

C =
[

0 −2
−1 3

]
, D =

[
2 1
4 0

]
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34. A =
[
−1 0

2 4

]
, B =

[
0 1

−3 2

]
,

C =
[

3 2
0 −3

]
, D =

[
1 −1
5 1

]
In Exercises 35–40, determine if a unique solution exists for the
given linear system.

35. 6x1 − 5x2 = 12
−2x1 + 7x2 = 0

36. 10x1 − 5x2 = 5
−4x1 + 2x2 = −3

37. 3x1 + 2x2 + 7x3 = 0
− 3x3 = −3

− x2 − 4x3 = 13

38. −2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = −1

7x1 − 17x2 + 34x3 = −16

39. x1 + x2 − 2x3 = −3
3x1 − 2x2 + 2x3 = 9
6x1 − 7x2 − x3 = 4

40. x1 − 3x2 + 2x3 = 4
−2x1 + 7x2 − 2x3 = −7

4x1 − 13x2 + 7x3 = 12

FIND AN EXAMPLE For Exercises 41–46, find an example that
meets the given specifications.

41. A nonzero 2 × 2 matrix A such that 3 det(A) = det(3A).

42. A nonzero 3 × 3 matrix A such that −2 det(A) = det(−2A).

43. Find 2 × 2 matrices A and B , both nonzero, such that
det(A + B) = det(A) + det(B). (NOTE: This identity is not gen-
erally true, but there are examples where it holds.)

44. Find 3 × 3 matrices A and B , both nonzero, such that
det(A + B) = det(A) + det(B). (NOTE: This identity is not gen-
erally true, but there are examples where it holds.)

45. Find a 3 × 3 matrix A such that det(A) = 1 and all entries
of A are nonzero. (HINT: Start with an upper triangular matrix
that has the specified determinant, then use row operations to
obtain A.)

46. Find a 4×4 matrix A such that det(A) = 1 and all entries of A
are nonzero. (HINT: Start with an upper triangular matrix that has
the specified determinant, then use row operations to obtain A.)

TRUE OR FALSE For Exercises 47–56, determine if the statement
is true or false, and justify your answer.

47. Interchanging the rows of a matrix has no effect on its deter-
minant.

48. If det(A) �= 0, then the columns of A are linearly independent.

49. If E is an elementary matrix, then det(E ) = 1.

50. If A and B are n × n matrices, then det(A + B) = det(A) +
det(B).

51. If A is a 3 × 3 matrix and det(A) = 0, then rank(A) = 0.

52. If A is a 4 × 4 matrix and det(A) = 4, then nullity(A) = 0.

53. Suppose A, B , and S are n×n matrices, and that S is invertible.
If B = S−1 AS, then det(A) = det(B).

54. If A is an n × n matrix with all entries equal to 1, then
det(A) = n.

55. Suppose that A is a 4 × 4 matrix and that B is the ma-
trix obtained by multiplying the third column of A by 2. Then
det(B) = 2 det(A).

56. If A is an invertible matrix, then at least one of the submatrices
Mi j of A is also invertible.

In Exercises 57–66, assume that A is an n × n matrix.

57. Prove that if A has two identical rows, then det(A) = 0.

58. Prove that if A has two identical columns, then det(A) = 0.
(HINT: Apply Theorem 5.10 and Exercise 57.)

59. Prove that det(AT A) ≥ 0.

60. Suppose that det(A) = 2. Prove that A−1 cannot have all
integer entries.

61. Prove that det(−A) = (−1)n det(A).

62. Prove that det(c A) = c n det(A).

63. Suppose that A is idempotent, which means A = A2. What
are the possible values of det(A)?

64. Suppose that A is skew symmetric, which means A = −AT .
Show that if n is odd, then det(A) = 0.

65. Prove that if n is odd, then A2 �= −In . (HINT: Compare
determinants of A2 and −In .)

66. Show that if the entries of each row of A add to zero, then
det(A) = 0. (HINT: Think linear independence and The Big
Theorem.)

67. Prove that a square matrix A has an echelon form B such that
det(A) = ± det(B).

68. Suppose that E is an elementary matrix. Show that E −1 is also
an elementary matrix.

69. This exercise completes the proof of Theorem 5.14. Let B be
an n × n matrix and E be an n × n elementary matrix.

(a) Suppose that E corresponds to multiplying a row by a scalar
c . Show that det(E B) = det(E ) det(B) = c det(B).

(b) Suppose that E corresponds to adding a multiple of one row
to another. Show that det(E B) = det(E ) det(B) = det(B).

70. Prove that ∣∣∣∣ A B
032 D

∣∣∣∣ = det(A) det(D)

where A is a 2 × 2 matrix, B is a 2 × 3 matrix, D is a 3 × 3 matrix,
and 032 is a 3 × 2 matrix with all entries equal to zero.

71. Prove Theorem 5.16: Let M be a partitioned n × n matrix of
either of the forms

M =
[

A B
0 D

]
or M =

[
A 0
C D

]
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where A and D are square block submatrices. Then det(M) =
det(A) det(D). (HINT: Show the formula holds for the first form
of M using induction on the number of rows of M, and then take
the transpose to show that the formula holds for the second form.)

72. The Vandermonde matrix is given by

V =

⎡
⎢⎢⎢⎢⎣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

...
...

...
. . .

...

1 xn x2
n . . . xn−1

n

⎤
⎥⎥⎥⎥⎦

(a) For the Vandermonde matrix with n = 3, show that∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣ = (x3 − x2)(x3 − x1)(x2 − x1)

(b) For any n > 1, prove that

det(V) =
∏

1≤i< j≤n

(x j − xi )

C In Exercises 73–74, verify Sylvester’s determinant theorem,
which states that

det(Im + AB) = det(In + B A)

for any m × n matrix A and n × m matrix B .

73. A =

⎡
⎢⎣

3 −2 6
4 0 5
2 −9 1
5 −1 −4

⎤
⎥⎦

B =
[

0 −3 2 6
1 4 4 2

−8 3 0 5

]

74. A =
[

6 2 3 −1 4
7 0 −2 4 5

−8 2 4 9 0

]

B =

⎡
⎢⎢⎢⎣

2 4 −6
0 5 2

−3 7 7
0 2 8

−9 3 5

⎤
⎥⎥⎥⎦

5.3 Applications of the Determinant
This section is optional and

can be omitted without loss of
continuity.

In this section we consider a few applications of the determinant, beginning with a
method for using determinants to find the solution to the linear systems Ax = b when
A is an invertible square matrix. From the Big Theorem, Version 7, we know that in this
case there will be a unique solution.

Before stating the theorem, we need to introduce some notation. If A =[
a1 a2 · · · an

]
is an n × n matrix and b is in Rn, then let Ai denote the matrix

A after replacing ai with b. That is,

Ai = [
a1 · · · ai−1 b ai+1 · · · an

]
For instance, if

A =

⎡
⎢⎢⎣

4 −1 2 0
3 7 5 −2

−5 2 0 4
0 6 1 1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

8
9
2

−3

⎤
⎥⎥⎦

then

A1 =

⎡
⎢⎢⎣

8 −1 2 0
9 7 5 −2
2 2 0 4

−3 6 1 1

⎤
⎥⎥⎦ and A3 =

⎡
⎢⎢⎣

4 −1 8 0
3 7 9 −2

−5 2 2 4
0 6 −3 1

⎤
⎥⎥⎦

Matrices of this type are used in the next theorem.

T H E O R E M 5.17 ( C R A M E R’ S R U L E ) Let A be an invertible n × n matrix. Then the com-
ponents of the unique solution x to Ax = b are given by

xi = det(Ai )

det(A)
for i = 1, 2, . . . , n
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The proof of Theorem 5.17 is given at the end of this section. For now, let’s look at an
example.

E X A M P L E 1 Use Cramer’s Rule to find the solution to the system

3x1 + x2 = 5
−x1 + 2x2 + x3 = −2

−x2 + 2x3 = −1

Solution The system is equivalent to Ax = b, where

A =
⎡
⎣ 3 1 0

−1 2 1
0 −1 2

⎤
⎦ and b =

⎡
⎣ 5

−2
−1

⎤
⎦

We have

A1 =
⎡
⎣ 5 1 0

−2 2 1
−1 −1 2

⎤
⎦ , A2 =

⎡
⎣ 3 5 0

−1 −2 1
0 −1 2

⎤
⎦ , A3 =

⎡
⎣ 3 1 5

−1 2 −2
0 −1 −1

⎤
⎦

Computing determinants gives us det(A) = 17, det(A1) = 28, det(A2) = 1, and
det(A3) = −8. Therefore, by Cramer’s Rule, the solution to Ax = b is

x1 = det(A1)

det(A)
= 28

17
, x2 = det(A2)

det(A)
= 1

17
, x3 = det(A3)

det(A)
= −8

17 ■

The determinants in Exam-
ple 1 were computed using the
Shortcut Method.

Cramer’s Rule is easy to implement when the coefficient matrix A is 2 × 2 or 3 ×
3. Unfortunately, for larger systems all the required determinants generally make this
method computationally impractical. (See the “Computational Comment” at the end of
Section 5.1.)

Inverses from Determinants
In Chapter 3 we showed how to adapt our row operation algorithm for finding the
solutions to a linear system to determine the inverse of a square matrix. Here we do
something similar, using Cramer’s Rule to develop a formula for finding inverses. We
start with a statement of the formula and then explain why it works.

Definition Cofactor Matrix For an n × n matrix A, the cofactor matrix is given by

C =

⎡
⎢⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

...

Cn1 Cn2 · · · Cnn

⎤
⎥⎥⎥⎦

where the cofactors Ci j are as defined in Section 5.1. Now we define the adjoint of A,Definition Adjoint Matrix
denoted adj(A), by

adj(A) = C T =

⎡
⎢⎢⎢⎣

C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn

⎤
⎥⎥⎥⎦
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T H E O R E M 5.18 If A is an invertible matrix, then

A−1 = 1

det(A)
adj(A) (1)

Proof We prove this theorem by showing that A
(

1
det(A) adj(A)

)
= In. Start by forming

the product

A
(
adj(A)

) =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn

⎤
⎥⎥⎥⎦

The entry in row i and column j of A
(
adj(A)

)
is

ai1C j 1 + ai2C j 2 + · · · + ainCin (2)

When i = j , (2) is the cofactor expansion across row i of A and is equal to det(A) by
Theorem 5.8, Section 5.1. If i �= j , then (2) is equal to zero (see Exercise 79 in Section 5.1).
Hence we have

A
(
adj(A)

) = det(A)In �⇒ A

(
1

det(A)
adj(A)

)
= In

and so A−1 = 1
det(A) adj(A). ■

E X A M P L E 2 Use Theorem 5.18 to find the inverse of the matrix

A =
⎡
⎣ 3 1 0

−1 2 1
0 −1 2

⎤
⎦

Solution From Example 1 we know that det(A) = 17. Since A is 3 × 3, A has nine
cofactors. Four of them are

C11 = (−1)2

∣∣∣∣ 2 1
−1 2

∣∣∣∣ = 5 C21 = (−1)3

∣∣∣∣ 1 0
−1 2

∣∣∣∣ = −2

C31 = (−1)4

∣∣∣∣ 1 0
2 1

∣∣∣∣ = 1 C12 = (−1)3

∣∣∣∣−1 1
0 2

∣∣∣∣ = 2

The remaining five are computed similarly, yielding C22 = 6, C32 = −3, C13 = 1,
C23 = 3, and C33 = 7. Filling out the adjoint of A gives the inverse

A−1 = 1

det(A)
adj(A) = 1

17

⎡
⎣5 −2 1

2 6 −3
1 3 7

⎤
⎦ =

⎡
⎢⎢⎣

5
17 − 2

17
1

17

2
17

6
17 − 3

17

1
17

3
17

7
17

⎤
⎥⎥⎦

■

In Section 3.3, we encountered the “Quick Formula” for computing the inverse of a
2 × 2 matrix. This is revisited in the next example.
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E X A M P L E 3 Use Theorem 5.18 to find the inverse of the matrix

A =
[

a b
c d

]

Solution We have det(A) = ad − bc , which we know must be nonzero for an inverse
to exist. The cofactors of A are

C11 = d , C21 = −b, C12 = −c , C22 = a

Therefore

A−1 = 1

det(A)
adj(A) = 1

ad − bc

[
d −b

−c a

]
as given in Section 3.3. ■

Area and Determinants
There is a striking relationship between area, determinants, and linear transformations.
Although we focus on R2 here, the results developed are also true in higher dimensions.

LetS denote the unit square in the first quadrant of R2, and suppose that T : R2 → R2

is a linear transformation. Let A = [
a1 a2

]
be the 2 × 2 matrix such that T(x) = Ax. If

P = T(S) denotes the image of S under T and A is invertible, then P is a parallelogram
in R2 (see Exercise 65 in Section 3.1). An example is shown in Figure 1.

S

T

1

1 1 a2

a1

T(S) � P

1

Figure 1 The square S and P = T (S), where T(x) = Ax and A = [a1 a2].

Theorem 5.19 shows how the area of P is related to the determinant of A.

T H E O R E M 5.19 Let S be the unit square in the first quadrant of R2, and let T : R2 → R2 with
T(x) = Ax. If P = T(S) is the image of S under T , then

area(P) = | det(A)| (3)

where area(P) denotes the area of P .

Proof Let A = [
a1 a2

]
. First suppose that the columns of A are linearly dependent.

Then T(S) is a line segment (see Exercise 65, Section 3.1) so that area(P) = 0. We also
have det(A) = 0 by the Big Theorem, Version 7, and so (3) is true in this case.

Next suppose that the columns of A are linearly independent, so that P is a paral-
lelogram. Rotate P about the origin through the angle θ so that the rotated image of a1

ends up on the x-axis and the rotated parallelogramP∗ is above the x-axis (see Figure 2).



Holt-4100161 la October 1, 2012 12:32 208

208 CHAPTER 5 Determinants

Tr

a2

a1

P
P*

b2 � [      ]b21
b22

b1 � [      ]b11
0

�

Figure 2 Rotating P about the origin by an angle θ yields a new region P∗ of equal area.

Rotation preserves area, so that

area(P) = area(P∗) (4)

The rotation of P to P∗ is achieved with the linear transformation Tr (x) = C x, where
(see Section 3.1)

C =
[

cos θ − sin θ

sin θ cos θ

]

If B = [
b1 b2

]
, where b1 and b2 are as in Figure 2, then formulas from geometry tell

us that

area(P∗) = |b11b22| = | det(B)| (5)It is possible that b11 < 0.
Absolute values are included so
that (5) is true in general. If T1(x) = Bx, then

T1(e1) = [
b1 b2

] [
1
0

]
= b1 = Tr (a1) = Tr

(
T(e1)

)
T1(e2) = [

b1 b2

] [
0
1

]
= b2 = Tr (a2) = Tr

(
T(e2)

)
Since {e1, e2} is a basis for R2, it must be that T1(x) and Tr

(
T(x)

)
are the same linear

transformation. Since T1(x) = Bx and Tr

(
T(x)

) = C Ax, we have B = C A. Therefore

det(B) = det(C A) = det(C ) det(A) = det(A) (6)det(C ) = cos2 θ + sin2 θ = 1

Combining (4), (5), and (6), we conclude that area(P) = | det(A)|. ■(3, 2)

(4, �2)

(1, �4)

Figure 3 A parallelogram in R2.

E X A M P L E 4 Use Theorem 5.19 to find the area of the parallelogram in Figure 3.

Solution Let A =
[

3 1
2 −4

]
. Then T(x) = Ax will map S , the unit square in the first

quadrant, onto P . Hence, by Theorem 5.19,

area(P) = | det(A)| = | − 14| = 14 ■

We now generalize Theorem 5.19 to arbitrary regions of finite area.
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T H E O R E M 5.20 Let D be a region of finite area in R2, and suppose that T : R2 → R2 with T(x) = Ax.
If T(D) denotes the image of D under T , then

area
(

T(D)
) = | det(A)| · area(D) (7)

Proof We give a complete proof for rectangular regions R, and after that we sketch the
method of proof for general regions D.

R

b1

b2

T

T(R)

Figure 4 A rectangular region R and its image T (R).

Our proof strategy is to find the linear transformation T1 such that T1(S) = T(R)
(S denotes the unit square) and then apply Theorem 5.19 (Figure 4). If TB (x) = Bx for

B =
[

b1 0
0 b2

]

then TB (S) = R (see Figure 5 and Exercise 51).

R
S

1

1

b1

b2TB

Figure 5 The image of S under TB is the rectangular region R.

The area of R is b1b2.

Since T(R) is the image of R under T , then T(R) is also the image of S under the
composition

T1(x) = T
(

TB (x)
)

That is, T1(S) = T(R). Since T(x) = Ax, we have T1(x) = T
(

TB (x)
) = ABx. Hence,

by Theorem 5.19, we have

area
(

T(R)
) = | det(AB)|

= | det(A) · det(B)|
= |b1b2 · det(A)|
= | det(A)| · area(R)

Thus (7) is true in this case.
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An arbitrary rectangular region R∗ with sides parallel to the coordinate axes (see
Figure 6) has the form v + R, where v is a fixed vector and R is a rectangular region of
the type in Figure 4.

R*

R

v

T
T(v)

T(R)

T(R*)

Figure 6 A rectangular region R∗ and its image T(R∗).

Since each vector r∗ in R∗ has the form v + r for some r in R, we have

T(r∗) = T(v + r) = T(v) + T(r)

Hence T(R∗) is a translation of T(R), with T(R∗) = T(v) + T(R). As translation
does not change area, we have area(R∗) = area(R) and area

(
T(R∗)

) = area
(

T(R)
)
.

Therefore

area
(

T(R∗)
) = area

(
T(R)

)
= | det(A)| · area(R) (by the previous case)

= | det(A)| · area(R∗)

so (7) also holds for translated rectangles. ■

With the formal proof for rectangles complete, now suppose that D is a general
region such as the one shown in Figure 7. Then (7) also holds for this case. The proof
uses techniques found in calculus—we give the basic elements of the argument here.

D

(a) (b)

D

Figure 7 (a) A grid of squares over D. (b) In general, a finer grid of squares over D gives a
more accurate area estimate.

We can approximate the area of D by superimposing a grid of squares and then
counting the number of squares that are insideD (see Figure 7). Multiplying this count by
the area of a single square—which we can easily calculate—gives the area approximation.



Holt-4100161 la October 1, 2012 12:32 211

SECTION 5.3 Applications of the Determinant 211

We can make the approximation as accurate as we like by making the grid of squares
sufficiently fine.

When we apply a linear transformation T to D, each grid square is mapped to a
corresponding parallelogram (see Figure 8).

T

Figure 8 A grid of squares over D and the corresponding parallelograms over T(D).

There is a one-to-one correspondence between grid squares withinD and parallelograms
within T(D). Furthermore, from (7) we have

(area of parallelogram) = | det(A)| · (area of grid square)

Since the grid squares provide an approximation to the area of D and the parallelograms
provide an approximation to the area of T(D), and there are the same number of each,
then

area
(

T(D)
) ≈ | det(A)| · area(D)

In general, the approximation gets better as the grid of squares becomes finer, so that as
the size of the grid squares shrinks, in the limit we get (7).

Theorem 5.20 has a higher-dimensional analog, stated below without proof. See
Exercises 33–36 for a brief discussion of this theorem in R3.

T H E O R E M 5.21 Let D be a region of finite volume in Rn, and suppose that T : Rn → Rn with
T(x) = Ax. If T(D) denotes the image of D under T , then

volume
(

T(D)
) = | det(A)| · volume(D) (8)

E X A M P L E 5 Use Theorem 5.20 and the known area of the unit circle U to find
the area of the ellipse E in Figure 9.

Solution The regions inside the unit circle U and the ellipse E are given by the set of
all (x1, x2) such that

x2
1 + x2

2 ≤ 1
( x1

a

)2

+
( x2

b

)2

≤ 1

Unit circle U Ellipse E
The linear transformation

T

([
x1

x2

])
=

[
ax1

bx2

]
=

[
a 0
0 b

]
︸ ︷︷ ︸

A

[
x1

x2

]



Holt-4100161 la October 1, 2012 12:32 212

212 CHAPTER 5 Determinants

a

U E

1

1

b

Figure 9 The region inside the unit circle U is related by a linear transformation to the region
inside the ellipse E .

gives a one-to-one correspondence from U to E (see Exercise 52). Since T(x) = Ax and
the area of U is π , by Theorem 5.20 we have

area(E) = | det(A)| · area(U) = abπ ■

Proof of Theorem 5.17 (Cramer’s Rule)

Proof of Theorem 5.17 Since A is invertible, the system Ax = b has a unique solution.
If In, i denotes the n × n identity matrix with the i th column replaced by x (see margin),
then we have

In, i =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · x1 · · · 0
0 1 · · · x2 · · · 0
...

...
...

...

0 0 · · · xi · · · 0
...

...
...

...

0 0 · · · xn · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Column i
�

AIn, i = A
[

e1 · · · x · · · en

]
= [

Ae1 · · · Ax · · · Aen

]
= [

a1 · · · b · · · an

] = Ai

where we replace Ax with b. Since AIn, i = Ai , it follows that det(AIn, i ) = det(Ai ).
Applying Theorem 5.12, we have det(AIn, i ) = det(A) det(In, i ), so that det(In, i ) =
det(A)/ det(Ai ). On the other hand, cofactor expansion along the i th row of In, i yields
det(In, i ) = xi det(In−1) = xi . Therefore

xi = det(Ai )

det(A)

as stated in the theorem. ■

E X E R C I S E S
In Exercises 1–6, determine if Cramer’s Rule can be applied to find
the solution for the given linear system, and if so, then find the
solution.

1. 6x1 − 5x2 = 12
−2x1 + 7x2 = 0

2. 10x1 − 5x2 = 5
−4x1 + 2x2 = −3

3. 3x1 + 2x2 + 7x3 = 0
− 3x3 = −3

− x2 − 4x3 = 13

4. −2x1 + 5x2 − 10x3 = 4
x1 − 2x2 + 3x3 = −1

7x1 − 17x2 + 34x3 = −16

5. x1 + x2 − 2x3 = −3
3x1 − 2x2 + 2x3 = 9
6x1 − 7x2 − x3 = 4

6. x1 − 3x2 + 2x3 = 4
−2x1 + 7x2 − 2x3 = −7

4x1 − 13x2 + 7x3 = 12

In Exercises 7–12, find the value of x2 in the unique solution of
the given linear system.

7. −2x1 + 3x2 = 3
−3x1 − 7x2 = −1

8. x1 − 4x2 = 11
−3x1 + x2 = −2
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9. 3x1 + 2x3 = 1
3x2 + 2x3 = 3

2x1 + 3x2 + x3 = −4

10. x1 − x2 = 0
3x1 − x2 − 3x3 = 2

x1 − 3x2 − 2x3 = −3

11. 3x2 − 3x4 = 1
2x1 − x2 + 3x3 − 3x4 = −2

−2x1 + 3x2 + 2x3 + 2x4 = 0
2x1 + 2x3 + x4 = −1

12. 3x1 − 3x2 − 3x4 = 5
−x1 + 2x3 + x4 = 0

x1 + 3x3 = 3
− 2x2 + 3x3 + 3x4 = 1

In Exercises 13–18, for the given matrix A, find adj(A) and then
use it to compute A−1.

13. A =
[

2 5
3 7

]

14. A =
[

1 7
1 6

]

15. A =
[

0 1 0
0 0 1
1 0 0

]

16. A =
[

2 0 1
0 0 2
1 1 0

]

17. A =
[

1 2 1
0 1 2
0 0 1

]

18. A =
[

3 0 0
1 2 0
1 1 1

]

In Exercises 19–22, sketch the parallelogram with the given ver-
tices, then determine its area using determinants.

19. (0, 0), (2, 3), (5, 1), (7, 4)

20. (0, 0), (2, 7), (4, −5), (6, 2)

21. (2, 3), (−1, 4), (5, 7), (2, 8)

22. (3, −1), (0, −2), (5, −6), (2, −7)

In Exercises 23–28, find the area of T(D) for T(x) = Ax.

23. D is the rectangle with vertices (2, 2), (7, 2), (7, 5), (2, 5), and

A =
[

3 −1
5 2

]
.

24. D is the rectangle with vertices (−3, 4), (5, 4), (5, 7), (−3, 7),

and A =
[
−2 7

3 4

]
.

25. D is the parallelogram with vertices (0, 0), (5, 1), (2, 4), (7, 5),

and A =
[

1 4
2 5

]
.

26. D is the parallelogram with vertices (0, 0), (−2, 3), (3, 5),

(1, 8), and A =
[

5 2
9 1

]
.

27. D is the parallelogram with vertices (1, 2), (6, 4), (2, 6), (7, 8),

and A =
[

1 4
2 5

]
.

28. D is the parallelogram with vertices (−2, 1), (−4, 4), (1, 6),

(−1, 9), and A =
[

5 2
9 1

]
.

In Exercises 29–32, find a linear transformation T that gives a
one-to-one correspondence between the unit circle and the given
ellipse.

29.

3

5

30.

4

2

31.

6

3

45°
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32.

7

4

120°

For Exercises 33–36: In three dimensions, Theorem 5.21 states that
if D is a region of finite volume in R3, and T : R3 → R3 with
T(x) = Ax, then

volume
(

T(D)
) = | det(A)| · volume(D) (9)

The image of the unit sphere (below left) under a linear transfor-
mation is an ellipsoid (example below right).

In Exercises 33–34, use (9) to determine the volume of the de-
scribed ellipsoid.

33. An ellipsoid centered at the origin with axis intercepts x = ±4,
y = ±3, and z = ±5.

34. An ellipsoid centered at the origin with axis intercepts x = ±2,
y = ±6, and z = ±4.

The image of the unit cube (below left) under a linear transfor-
mation is a parallelepiped (example below right).

In Exercises 35–36, use (9) to determine the volume of the de-
scribed parallelepiped.

35. The parallelepiped with sides described by the vectors[
3
5
2

]
,

[
6
1
3

]
,

[
2
0
4

]

36. The parallelepiped with sides described by the vectors[−1
3
5

]
,

[
0
4
2

]
,

[
6
1
1

]

FIND AN EXAMPLE For Exercises 37–42, find an example that
meets the given specifications.

37. A linear system with two equations and two unknowns that is
consistent but cannot be solved with Cramer’s Rule.

38. A linear system with three equations and three unknowns that
is consistent but cannot be solved with Cramer’s Rule.

39. A parallelogram that has vertices with integer coordinates and
area 5.

40. A parallelogram with area 7 that has vertices with integer co-
ordinates that are not on the coordinate axes.

41. A 2 × 2 matrix A such that adj(A) =
[

5 −3
−2 1

]
.

42. A 2 × 2 matrix A such that adj(A) =
[

2 3
5 7

]
.

TRUE OR FALSE For Exercises 43–50, determine if the statement
is true or false, and justify your answer.

43. Cramer’s Rule can be used to find the solution to any system
that has the same number of equations as unknowns.

44. If A is a square matrix with integer entries, then so is adj(A).

45. If A is a 3 × 3 matrix, then adj(2A) = 2adj(A).

46. If A is a square matrix that has all positive entries, then so does
adj(A).

47. If A is a 2 × 2 matrix, S is the unit square, and T(x) = Ax,
then T(S) is a parallelogram of nonzero area.

48. If A is an n × n matrix with det(A) = 1, then A−1 = adj(A).

49. Suppose that A is an invertible n × n matrix with integer en-
tries. If det(A) = 1, then A−1 also has integer entries.

50. If A is a square matrix, then
(

adj(A)
)T = adj(AT ).

51. Prove that the linear transformation T(x) = Bx with

B =
[

b1 0
0 b2

]

gives a one-to-one correspondence between the interior of the unit
square S and the interior of the rectangle R shown in Figure 5.

52. Prove that the linear transformation T(x) = Ax with

A =
[

a 0
0 b

]

gives a one-to-one correspondence between the interior of the unit
circle U and the interior of the ellipse E shown in Figure 9.

53. Suppose that A is a 3×3 matrix with det(A) = −2. Show that
A · adj(A) is a 3 × 3 diagonal matrix, and determine the diagonal
terms.

54. Prove that if A is an n × n matrix with linearly independent
columns, then so is adj(A).

55. Show that if A is an n × n symmetric matrix, then adj(A) is
also symmetric.

56. Prove that if A is an n × n diagonal matrix, then so is adj(A).

57. Suppose that A is an n × n matrix and c is a scalar. Prove that
adj(c A) = c n−1adj(A).
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58. Prove that if A is an invertible n×n matrix, then det(adj(A)) =(
det(A)

)n−1
.

59. Suppose that A is an invertible n × n matrix. Show that(
adj(A)

)−1 = adj(A−1).

60. Suppose that A is an invertible n × n matrix and that both A
and A−1 have integer entries. Show that det(A) = ±1.

61. Prove that if A is a diagonal matrix, then so is adj(A).

62. In this problem, we show that

area(T ) = 1
2 | det(A)|,

where area(T ) is the area of the triangle T with vertices (x1, y1),
(x2, y2), and (x3, y3) (Figure 10) and

A =
[

x1 y1 1
x2 y2 1
x3 y3 1

]

(x2, y2)

(x1, y1)

(x3, y3)T

Figure 10 The triangle T .

(a) Explain why area(T ) = area(T ∗), where T ∗ is the triangle
with vertices (0, 0), (x2 − x1, y2 − y1), and (x3 − x1, y3 − y1)
(Figure 11).

(x2 � x1, y2 � y1)

(x3 � x1, y3 � y1)T*

Figure 11 The triangle T ∗.

(b) Show that area(T ∗) = 1
2 | det(B)|, where

B =
[

(x2 − x1) (y2 − y1)
(x3 − x1) (y3 − y1)

]
HINT: Apply Theorem 5.19 to compute the area of the parallelo-
gram in Figure 12, and use the fact that det(B) = det(B T ).

(x2 � x1, y2 � y1)

(x3 � x1, y3 � y1)

T*

Figure 12 T ∗ and parallelogram.

(c) Show that det(B) = det(C ), where

C =
[

x1 y1 1
(x2 − x1) (y2 − y1) 0
(x3 − x1) (y3 − y1) 0

]

(d) Use row operations to show that det(C) = det(A), and from
this conclude that area(T ) = 1

2 | det(A)|.
C In Exercises 63–66, use Cramer’s Rule to find the solution to
the system.

63. −x1 + 7x2 + 5x3 = 13
6x1 − 2x2 + x3 = 9
3x1 + 11x2 − 9x3 = 4

64. 8x1 − 5x2 = 6
−2x1 − 4x2 + 8x3 = −13

5x1 + 7x2 − 11x3 = 17

65. 3x1 + 5x2 − x3 − 4x4 = −5
−2x1 − 4x2 − 3x3 + 7x4 = 0

x1 + 2x2 + 4x3 − 2x4 = 2
4x1 + x2 − 5x3 − x4 = 4

66. −5x1 + 3x2 + 2x3 + x4 = 2
x1 − 7x2 − 5x3 + 7x4 = −3

4x1 + x2 + x3 + 2x4 = 0
−4x1 − 11x2 − 5x4 = −9

C In Exercises 67–70, for the given matrix A, find adj(A) and
then use it to compute A−1.

67. A =
[

4 −2 5
8 3 0

−1 7 9

]

68. A =
[

0 3 7
−3 6 2

5 11 −1

]

69. A =

⎡
⎢⎣

4 2 5 −1
−2 3 0 6

5 7 2 11
3 0 1 −5

⎤
⎥⎦

70. A =

⎡
⎢⎣

8 −2 1 1
−5 3 5 3

0 4 4 −4
3 1 9 2

⎤
⎥⎦
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C H A P T E R

The Mackinac Bridge crosses the

Straits of Mackinac and connects

Michigan’s Upper and Lower

Peninsulas. Five miles long, the

bridge, also known as “Big Mac,”

is currently the third-longest

suspension bridge in the U.S.

The total length of wire in the

cables is 42,000 miles. Though

discussions of a bridge that

crossed the Straits began in the

1880s, the bridge was not

actually completed until 1957.

The designer, David B. Steinman,

studied the 1940 collapse of the

Tacoma Narrows Bridge. In his

design for Big Mac, Steinman

responded to the Tacoma

Narrows failure by incorporating

stiffening trusses and an

open-grid road deck to combat

potential bridge instability

caused by high winds.

Eigenvalues and
Eigenvectors

T
he focus of this chapter is eigenvalues and eigenvectors, which are characteristics
of matrices and linear transformations. Eigenvalues and eigenvectors arise in a
wide range of fields, including finance, quantum mechanics, image processing,

and mechanical engineering.
In Section 6.1 we define eigenvalues and eigenvectors and develop an algebraic

method for finding them. Algebraic methods typically are not practical for large matrices,

Bridge suggested by Robert Fossum,

University of Illinois Urbana-

Champaign (Vito Palmisano/

Getty Images)

so in Section 6.2 we develop a numerical approach similar to the one used to solve systems
of linear equations (Section 1.3). In Section 6.3 and Section 6.4 we focus on change of
basis transformations and using an eigenvector basis to diagonalize a matrix. Section 6.5
treats eigenvalues and eigenvectors involving complex numbers, and Section 6.6 focuses
on solving systems of differential equations by using eigenvalues and eigenvectors.

6.1 Eigenvalues and Eigenvectors
Let T : R2 → R2 be a linear transformation, with T(x) = Ax for a 2 × 2 matrix A. For
a given vector u in R2, we can think of the multiplication Au as changing the direction

and length of u. Figure 1 shows u and Au for several vectors u and A =
[

1 1
2 0

]
.
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u3

u4

u1

u2

Au1

Au3

Au2

Au4

1�1�2 2

A � [        ]1   1
2   0

2

�2

�1

1

Figure 1 Plots of u and Au for the vectors u1, u2, u3, and u4.

Note that u1 and Au1 are
parallel, which means that they
point in the same (or opposite)
direction. This is also true of u3

and Au3.

Of particular importance in applications and in analyzing the behavior of a linear
transformation are those vectors u such that u and Au are parallel. In Figure 1, u1 and
u3 are such vectors. Algebraically, u and Au are parallel if there exists a scalar λ such that
Au = λu. Nonzero vectors that satisfy this equation are called eigenvectors.

D E F I N I T I O N 6.1 Let A be an n × n matrix. Then a nonzero vector u is an eigenvector of A if there
exists a scalar λ such that

Au = λu (1)

The scalar λ is called an eigenvalue of A.

Definition Eigenvector,
Eigenvalue

When λ and u are related as in equation (1), we say that λ is the eigenvalue associated
with u and that u is an eigenvector associated with λ.

Note that an eigenvalue λ can
be equal to zero, but an eigen-
vector u must be a nonzero
vector.

E X A M P L E 1 Let A =
[

3 5
4 2

]
. Determine if each of

u1 =
[

5
4

]
, u2 =

[
4

−1

]
, and u3 =

[−1
1

]

is an eigenvector of A. For those that are, find the associated eigenvalue.

Solution Starting with u1, we have

Au1 =
[

3 5
4 2

] [
5
4

]
=

[
35
28

]
= 7

[
5
4

]
= 7u1

Thus Au1 = 7u1, so u1 is an eigenvector of A with associated eigenvalue λ = 7.
Calculating Au2, we have

Au2 =
[

3 5
4 2

] [
4

−1

]
=

[
7

14

]

Since Au2 is not a multiple of u2, this tells us that u2 is not an eigenvector of A. Finally,

Au3 =
[

3 5
4 2

] [−1
1

]
=

[
2

−2

]
= −2

[−1
1

]
= −2u3

Since Au3 = −2u3, it follows that u3 is an eigenvector of A with associated eigenvalue
λ = −2. See Figure 2 for graphs of vectors. ■
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Au1

Au2

Au3
u1

u2

u3

Figure 2 Graphs of vectors from Example 1. If u and Au are parallel vectors, then u is an
eigenvector.

Referring back to u1 in Example 1, suppose u4 = 3u1 = 3

[
5
4

]
=

[
15
12

]
. Then we

have

Au4 =
[

3 5
4 2

] [
15
12

]
=

[
105
84

]
= 7

[
15
12

]
= 7u4

Therefore u4 = 3u1 is also an eigenvector of A associated with λ = 7. We could have used
any nonzero scalar in place of 3 and achieved the same result, so any nonzero multiple
of u1 is also an eigenvector of A associated with λ = 7. Theorem 6.2 generalizes this
observation.

T H E O R E M 6.2 Let A be a square matrix, and suppose that u is an eigenvector of A associated with
eigenvalue λ. Then for any scalar c �= 0, cu is also an eigenvector of A associated
with λ.

We require c �= 0 because
eigenvectors must be nonzero.

Proof Let u be an eigenvector of A with associated eigenvalue λ. Then for any scalar
c �= 0, we have

A(cu) = c(Au) = c(λu) = λ(cu)

so that cu is also an eigenvector of A associated with eigenvalue λ. ■

Finding Eigenvectors
Here we consider the problem of finding the eigenvectors associated with a known eigen-We address the problem of

finding the eigenvalues shortly. value. Let’s start with an example.

E X A M P L E 2 Take as known that λ = 3 and λ = 2 are eigenvalues for

A =
⎡
⎣4 4 −2

1 4 −1
3 6 −1

⎤
⎦

Find the eigenvectors associated with each eigenvalue.

Solution Starting with λ = 3, we need to find all nonzero vectors u such that Au = 3u.
Since 3u = 3I3u, our equation becomes

Au = 3I3u �⇒ Au − 3I3u = 0 �⇒ (A − 3I3)u = 0
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Thus we need to find the solutions to the homogeneous system with coefficient matrix

A − 3I3 =
⎡
⎣4 4 −2

1 4 −1
3 6 −1

⎤
⎦ −

⎡
⎣3 0 0

0 3 0
0 0 3

⎤
⎦ =

⎡
⎣1 4 −2

1 1 −1
3 6 −4

⎤
⎦

Forming an augmented matrix and performing the indicated row operations, we have

⎡
⎣1 4 −2 0

1 1 −1 0
3 6 −4 0

⎤
⎦

−R1+R2⇒R2

−3R1+R3⇒R3

−2R2+R3⇒R3

∼

⎡
⎣1 4 −2 0

0 −3 1 0
0 0 0 0

⎤
⎦

After back substitution, we find that the system (A − 3I3)u = 0 has general solution

u = s

⎡
⎣2

1
3

⎤
⎦

We can verify that u is an eigenvector associated with λ = 3 by computing

Au =
⎡
⎣4 4 −2

1 4 −1
3 6 −1

⎤
⎦

⎛
⎝s

⎡
⎣2

1
3

⎤
⎦

⎞
⎠ = s

⎡
⎣4 4 −2

1 4 −1
3 6 −1

⎤
⎦

⎡
⎣2

1
3

⎤
⎦ = s

⎡
⎣6

3
9

⎤
⎦ = 3u

The procedure is the same for λ = 2. This time we need to find the general solution to
the homogeneous system (A − 2I3)u = 0, where

A − 2I3 =
⎡
⎣4 4 −2

1 4 −1
3 6 −1

⎤
⎦ −

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦ =

⎡
⎣2 4 −2

1 2 −1
3 6 −3

⎤
⎦

The augmented matrix and corresponding echelon form are

⎡
⎣2 4 −2 0

1 2 −1 0
3 6 −3 0

⎤
⎦

R1⇔R2

−2R1+R2⇒R2

−3R1+R3⇒R3

∼

⎡
⎣1 2 −1 0

0 0 0 0
0 0 0 0

⎤
⎦

After back substitution, we find that this system has general solution

u = s1

⎡
⎣−2

1
0

⎤
⎦ + s2

⎡
⎣1

0
1

⎤
⎦ (2)

As long as at least one of s1 and s2 is nonzero, then u will be an eigenvector associated
with λ = 2. We can check our answer by computing

Au = A

⎛
⎝s1

⎡
⎣−2

1
0

⎤
⎦ + s2

⎡
⎣1

0
1

⎤
⎦

⎞
⎠ = s1 A

⎡
⎣−2

1
0

⎤
⎦ + s2 A

⎡
⎣1

0
1

⎤
⎦

= s1

⎡
⎣−4

2
0

⎤
⎦ + s2

⎡
⎣2

0
2

⎤
⎦ = 2

⎛
⎝s1

⎡
⎣−2

1
0

⎤
⎦ + s2

⎡
⎣1

0
1

⎤
⎦

⎞
⎠ = 2u

■
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If the zero vector is included, the eigenvectors in Example 2 associated with each
eigenvalue form a subspace. This is always true of the set of eigenvectors associated with
a given eigenvalue.

Recall that a nonempty set
of vectors is a subspace if the
set is closed under addition and
scalar multiplication.

T H E O R E M 6.3 Let A be an n × n matrix with eigenvalue λ. Let S denote the set of all eigenvectors
associated with λ, together with the zero vector 0. Then S is a subspace of Rn.

Proof We show S is a subspace by verifying the three required conditions of Defini-
tion 4.1. First, by definition 0 is in S. Second, Theorem 6.2 tells us that if u is an eigenvector
associated with λ, then so is cu for c �= 0. If c = 0, then cu = 0 is in S, so S is closed under
scalar multiplication. Third, if u1 and u2 are both eigenvectors associated with λ, then

A(u1 + u2) = Au1 + Au2 = λu1 + λu2 = λ(u1 + u2)

so that u1 + u2 is also an eigenvector associated with λ. Therefore S is closed under
addition, and so S is a subspace. ■

D E F I N I T I O N 6.4 Let A be a square matrix with eigenvalue λ. The subspace of all eigenvectors associated
with λ, together with the zero vector, is called the eigenspace of λ.Definition Eigenspace

Each distinct eigenvalue has
its own associated eigenspace.

For instance, in Example 2 we see from (2) that the set⎧⎨
⎩

⎡
⎣−2

1
0

⎤
⎦ ,

⎡
⎣1

0
1

⎤
⎦

⎫⎬
⎭

forms a basis for the eigenspace of λ = 2.

Finding Eigenvalues
Let’s review what we have learned so far. If we know an eigenvalue λ for a given n×n matrix
A, then we can find the associated eigenvectors by solving the linear system Au = λu, or
equivalently, the homogeneous system

(A − λIn)u = 0 (3)

If we know the eigenvalue, then this is a problem that we know how to solve. Finding
the eigenvalues is a different problem that we have not yet considered. The next theorem
shows how to use determinants to find eigenvalues.

T H E O R E M 6.5 Let A be an n×n matrix. Then λ is an eigenvalue of A if and only if det(A−λIn) = 0.

Proof λ is an eigenvalue of A if and only if there exists a nontrivial solution to Au = λu.
This is equivalent to the existence of a nontrivial solution to (3), which by the Big Theorem,
Version 7 is true if and only if det(A − λIn) = 0. ■
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E X A M P L E 3 Find the eigenvalues for A =
[

3 3
6 −4

]
.

Solution Our strategy is to determine the values of λ that satisfy det(A − λI2) = 0.
We have

A − λI2 =
[

3 3
6 −4

]
−

[
λ 0
0 λ

]
=

[
(3 − λ) 3

6 (−4 − λ)

]

Next, we compute the determinant,

det(A − λI2) = (3 − λ)(−4 − λ) − 18 = λ2 + λ − 30

Setting det(A − λI ) = 0, we have

λ2 + λ − 30 = 0 �⇒ (λ − 5)(λ + 6) = 0 �⇒ λ = 5 or λ = −6

Thus the eigenvalues for A are λ = 5 and λ = −6. ■

The polynomial that we get from det(A−λI ) is called the characteristic polynomial
of A, and the equation det(A − λI ) = 0 is called the characteristic equation. TheDefinition Characteristic

Polynomial, Characteristic
Equation

eigenvalues for a matrix A are given by the real roots of the characteristic equation. (It is
also possible to consider the complex roots. They are covered in Section 6.5.)

E X A M P L E 4 Find the eigenvalues and a basis for each eigenspace for the matrix

A =
[

2 −1
−1 2

]

Solution We start by finding the eigenvalues of A by computing

det(A − λI2) =
∣∣∣∣ (2 − λ) −1

−1 (2 − λ)

∣∣∣∣
= (2 − λ)2 − 1
= λ2 − 4λ + 3 = (λ − 1)(λ − 3)

Therefore the eigenvalues are λ1 = 1 and λ2 = 3. Next, we find the eigenvectors, starting
with those associated with λ1 = 1. We find the associated eigenvectors by solving the
homogeneous linear system (A − 1 · I2)u = (A − I2)u = 0. Since

A − I2 =
[

1 −1
−1 1

]

the augmented matrix and corresponding echelon form are

[
1 −1 0

−1 1 0

] R1+R2⇒R2

∼
[

1 −1 0
0 0 0

]

Back substitution gives us

General Solution: u1 = s

[
1
1

]
�⇒ Basis for Eigenspace of λ1 = 1:

{[
1
1

]}

The eigenvectors associated with λ2 = 3 are found by solving the homogeneous linear
system (A − 3I2)u = 0. We have

A − 3I2 =
[−1 −1
−1 −1

]
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so the augmented matrix and corresponding echelon form are

[−1 −1 0
−1 −1 0

] −R1+R2⇒R2

∼
[−1 −1 0

0 0 0

]

Back substitution gives us

General Solution: u2 = s

[−1
1

]
�⇒ Basis for Eigenspace of λ2 = 3:

{[−1
1

]}
■

E X A M P L E 5 Find the eigenvalues and a basis for each eigenspace of

A =
⎡
⎣1 −3 3

2 −2 2
2 0 0

⎤
⎦

Solution We determine the eigenvalues of A by calculating the characteristic polyno-
mial,

det(A−λI3) =
∣∣∣∣∣∣

(1 − λ) −3 3
2 (−2 − λ) 2
2 0 (0 − λ)

∣∣∣∣∣∣ = −λ3 −λ2 +2λ = −λ(λ+2)(λ−1)

Hence the eigenvalues are λ1 = −2, λ2 = 0, and λ3 = 1. Taking them in order, the
eigenvectors associated with λ1 = −2 are found by solving the homogeneous system
(A + 2I3)u = 0. The augmented matrix and echelon form are

⎡
⎣3 −3 3 0

2 0 2 0
2 0 2 0

⎤
⎦

R1⇔R2

− 3
2 R1+R2⇒R2

−R1+R3⇒R3

∼

⎡
⎣2 0 2 0

0 −3 0 0
0 0 0 0

⎤
⎦

Back substitution gives us

General Solution: u1 = s

⎡
⎣ 1

0
−1

⎤
⎦ �⇒ Basis for Eigenspace of λ1 = −2:

⎧⎨
⎩

⎡
⎣ 1

0
−1

⎤
⎦

⎫⎬
⎭

For λ2 = 0, the homogeneous system is (A−0 · I2)u = Au = 0. The augmented matrix
and echelon form are

⎡
⎣1 −3 3 0

2 −2 2 0
2 0 0 0

⎤
⎦

−2R1+R2⇒R2

−2R1+R3⇒R3

− 3
2 R2+R3⇒R3

∼

⎡
⎣1 −3 3 0

0 4 −4 0
0 0 0 0

⎤
⎦

This time back substitution yields

General Solution: u2 = s

⎡
⎣0

1
1

⎤
⎦ �⇒ Basis for Eigenspace of λ2 = 0:

⎧⎨
⎩

⎡
⎣0

1
1

⎤
⎦

⎫⎬
⎭
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The final eigenvalue is λ3 = 1. The homogeneous system is (A − I3)u = 0, and the
augmented matrix and echelon form are

⎡
⎣0 −3 3 0

2 −3 2 0
2 0 −1 0

⎤
⎦

R1⇔R3

−R1+R2⇒R2

−R2+R3⇒R3

∼

⎡
⎣2 0 −1 0

0 −3 3 0
0 0 0 0

⎤
⎦

With back substitution, we find

General Solution: u3 = s

⎡
⎣1

2
2

⎤
⎦ �⇒ Basis for Eigenspace of λ3 = 1:

⎧⎨
⎩

⎡
⎣1

2
2

⎤
⎦

⎫⎬
⎭

■

E X A M P L E 6 Find the eigenvalues and a basis for each eigenspace of

A =
⎡
⎣ 1 −2 1

−1 0 1
−1 −2 3

⎤
⎦

Solution We start out by finding the eigenvalues for A by computing

det(A − λI3) =
∣∣∣∣∣∣

(1 − λ) −2 1
−1 −λ 1
−1 −2 (3 − λ)

∣∣∣∣∣∣ = −λ3 + 4λ2 − 4λ = −λ(λ − 2)2

From the factored form we see that our matrix has two distinct eigenvalues, λ1 = 0 and
λ2 = 2.

Now we find the eigenvectors. Starting with those associated with λ1 = 0, we solve
the homogeneous system (A − 0 · I3)u = Au = 0. The augmented matrix and echelon
form are

⎡
⎣ 1 −2 1 0

−1 0 1 0
−1 −2 3 0

⎤
⎦

R1+R2⇒R2

R1+R3⇒R3

−2R2+R3⇒R3

∼
⎡
⎣1 −2 1 0

0 −2 2 0
0 0 0 0

⎤
⎦

Back substitution produces

General Solution: u1 = s

⎡
⎣1

1
1

⎤
⎦ �⇒ Basis for Eigenspace of λ1 = 0:

⎧⎨
⎩

⎡
⎣1

1
1

⎤
⎦

⎫⎬
⎭

Turning to the eigenvalue λ2 = 2, we form the augmented matrix for the system
(A − 2I3)u = 0 and reduce to echelon form,

⎡
⎣−1 −2 1 0

−1 −2 1 0
−1 −2 1 0

⎤
⎦

−R1+R2⇒R2

−R1+R3⇒R3

∼
⎡
⎣−1 −2 1 0

0 0 0 0
0 0 0 0

⎤
⎦

This time back substitution produces

General Solution: u2 = s1

⎡
⎣1

0
1

⎤
⎦ + s2

⎡
⎣−2

1
0

⎤
⎦

�⇒ Basis for Eigenspace of λ2 = 2:

⎧⎨
⎩

⎡
⎣1

0
1

⎤
⎦ ,

⎡
⎣−2

1
0

⎤
⎦

⎫⎬
⎭

■
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Multiplicities
In Example 6 the factored form of the characteristic polynomial is

−λ(λ − 2)2 = −(λ − 0)1(λ − 2)2

The multiplicity of an eigenvalue is equal to its factor’s exponent. In this case, we say that
λ = 0 has multiplicity 1 and λ = 2 has multiplicity 2.

In general, for a polynomial P (x), a root α of P (x) = 0 has multiplicity r ifDefinition Multiplicity
P (x) = (x − α)r Q(x) with Q(α) �= 0. When discussing eigenvalues, the phrase “λ has
multiplicity r ” means that λ is a root of the characteristic polynomial with multiplicity r .Informally, the multiplicity is

the number of times a root is
repeated.

Reviewing our previous examples, we see that the dimension of the eigenspaces
matched the multiplicities of the associated eigenvalues. This happens most of the time,
but not always.

E X A M P L E 7 Find the eigenvalues and a basis for each eigenspace of

A =
⎡
⎣0 2 −1

1 −1 0
1 −2 0

⎤
⎦

Solution The characteristic polynomial of A is

det(A − λI3) =
∣∣∣∣∣∣
−λ 2 −1

1 (−1 − λ) 0
1 −2 −λ

∣∣∣∣∣∣ = −λ3 − λ2 + λ + 1 = −(λ − 1)(λ + 1)2

Thus A has two distinct eigenvalues, λ1 = −1 (multiplicity 2) and λ2 = 1 (multi-
plicity 1).

To find the eigenvectors associated with λ1 = −1, we solve the homogeneous
system (A + I3)u = 0. The augmented matrix and echelon form are

⎡
⎣1 2 −1 0

1 0 0 0
1 −2 1 0

⎤
⎦

−R1+R2⇒R2

−R1+R3⇒R3

−2R2+R3⇒R3

∼

⎡
⎣1 2 −1 0

0 −2 1 0
0 0 0 0

⎤
⎦

Back substitution produces

General Solution: u1 = s

⎡
⎣0

1
2

⎤
⎦ �⇒ Basis for Eigenspace of λ1 = −1:

⎧⎨
⎩

⎡
⎣0

1
2

⎤
⎦

⎫⎬
⎭

Note that although the eigenvalue λ1 = −1 has multiplicity 2, the eigenspace has
dimension 1.

For λ2 = 1, the augmented matrix for the system (A − I3)u = 0 and echelon form
are

⎡
⎣−1 2 −1 0

1 −2 0 0
1 −2 −1 0

⎤
⎦

R1+R2⇒R2

R1+R3⇒R3

−2R2+R3⇒R3

∼

⎡
⎣−1 2 −1 0

0 0 −1 0
0 0 0 0

⎤
⎦

Back substitution gives us

General Solution: u2 = s

⎡
⎣2

1
0

⎤
⎦ �⇒ Basis for Eigenspace of λ2 = 1:

⎧⎨
⎩

⎡
⎣2

1
0

⎤
⎦

⎫⎬
⎭

■
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As demonstrated in Example 7, it is possible for the dimension of an eigenspace to
be less than the multiplicity of the associated eigenvalue. However, the opposite cannot
happen.

T H E O R E M 6.6 Let A be a square matrix with eigenvalue λ. Then the dimension of the associated
eigenspace is less than or equal to the multiplicity of λ.

The proof is beyond the scope of this book and is omitted.
The methods developed in this section work well for small matrices, but they can be

impractical for large complicated matrices. For instance, suppose

A =

⎡
⎢⎢⎢⎢⎣

245 −254 −252 −46 −224
161 −168 −174 −32 −148
−39 40 45 7 38

27 −28 −32 −6 −26
110 −113 −110 −21 −101

⎤
⎥⎥⎥⎥⎦ (4)

Computing the determinant by hand to find the characteristic polynomial for A is not
easy. Using computer software, we find that

det(A − λI5) = −λ5 + 15λ4 − 3λ3 − 287λ2 − 192λ + 468

This polynomial is challenging to factor. In fact, there is no general algorithm for factoring
polynomials of degree 5 or more. (Not even on a computer.) Thus we cannot find the
eigenvalues and eigenvectors using our existing methods.

Numerous applications require eigenvalues and eigenvectors from large matrices. In
principle, we could use numerical methods to find approximations to the roots of the
characteristic polynomial (and hence the eigenvalues) and use these to find the eigenvec-
tors. However, for various reasons this does not work well in practice. Instead, there are
algorithms that lead directly to approximations to the eigenvectors, bypassing the need
to first find the eigenvalues. These are described in Section 6.2, where we analyze the
matrix A in (4).

The Big Theorem, Version 8
Although u = 0 is not allowed as an eigenvector, it is fine to have λ = 0 as an eigenvalue.
From Theorem 6.5, we know that λ = 0 is an eigenvalue of an n × n matrix A if and
only if det(A − 0In) = det(A) = 0. Put another way, λ = 0 is not an eigenvalue of A if
and only if det(A) �= 0. This observation provides us with another condition for the Big
Theorem.

T H E O R E M 6.7 ( T H E B I G T H E O R E M , V E R S I O N 8 ) Let A = {a1, . . . , an} be
a set of n vectors in Rn, let A = [a1 · · · an], and let T : Rn → Rn be given by
T(x) = Ax. Then the following are equivalent:

(a) A spans Rn.

(b) A is linearly independent.

(c) Ax = b has a unique solution for all b in Rn.

(d) T is onto.

(e) T is one-to-one.

(f) A is invertible.
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(g) ker(T) = {0}.
(h) A is a basis for Rn.

(i) col(A) = Rn.

(j) row(A) = Rn.

(k) rank(A) = n.

(l) det(A) �= 0.

(m) λ = 0 is not an eigenvalue of A.

Proof From the Big Theorem, Version 7, we know that (a) through (l) are equivalent.
The comments above show that (l) and (m) are equivalent, and so it follows that all 13
conditions are equivalent. ■

E X A M P L E 8 Show that λ = 0 is an eigenvalue for the matrix

A =
⎡
⎣3 −1 5

2 1 0
4 1 2

⎤
⎦

Solution From the Big Theorem, Version 8, λ = 0 is an eigenvalue of A if and only if
det(A) = 0. By the Shortcut Method, we have

det(A) = (6 + 0 + 10) − (20 − 4 + 0) = 0

so λ = 0 is an eigenvalue of A. ■

E X E R C I S E S
In Exercises 1–6, determine which of x1, x2, and x3 is an eigenvec-
tor for the matrix A. For those that are, determine the associated
eigenvalue.

1. A =
[

1 3
2 2

]
, x1 =

[
−3

2

]
,

x2 =
[

1
−1

]
, x3 =

[
−2
−2

]

2. A =
[
−1 2

0 3

]
, x1 =

[
0
2

]
,

x2 =
[

1
3

]
, x3 =

[
1
2

]

3. A =
[

2 7 2
0 −1 0
0 −2 1

]
, x1 =

[−3
1
1

]
,

x2 =
[−2

0
1

]
, x3 =

[
1
0
0

]

4. A =
[

3 −1 0
−1 3 0
−1 1 2

]
, x1 =

[
1
1
1

]
,

x2 =
[

1
1
0

]
, x3 =

[
1
2

−1

]

5. A =

⎡
⎢⎣

6 −3 1 0
0 3 1 0

−6 6 0 0
−3 3 −2 3

⎤
⎥⎦ , x1 =

⎡
⎢⎣

1
1
0
0

⎤
⎥⎦ ,

x2 =

⎡
⎢⎣

1
2

−1
0

⎤
⎥⎦ , x3 =

⎡
⎢⎣

1
1

−3
−2

⎤
⎥⎦

6. A =

⎡
⎢⎣

5 5 1 8
8 2 1 8

−6 6 −9 0
−7 −1 −2 −10

⎤
⎥⎦ , x1 =

⎡
⎢⎣

1
1
0

−2

⎤
⎥⎦ ,

x2 =

⎡
⎢⎣

1
1
0
0

⎤
⎥⎦ , x3 =

⎡
⎢⎣

1
2

−2
−1

⎤
⎥⎦

In Exercises 7–10, use the characteristic polynomial to determine
if λ is an eigenvalue for the matrix A.

7. A =
[

2 7
−1 6

]
, λ = 3

8. A =
[

1 5
4 2

]
, λ = 6
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9. A =
[

0 2 0
2 0 0
2 2 −2

]
, λ = −2

10. A =
[

6 3 −1
−4 −1 1
18 6 −4

]
, λ = 1

In Exercises 11–20, find a basis for the eigenspace of A associated
with the given eigenvalue λ.

11. A =
[

1 −3
1 5

]
, λ = 4

12. A =
[
−2 4

3 −1

]
, λ = −5

13. A =
[

6 −10
2 −3

]
, λ = 2

14. A =
[
−11 12
−8 9

]
, λ = −3

15. A =
[

6 −3 7
4 1 5
4 −3 9

]
, λ = 4

16. A =
[−2 5 −7
−2 11 −13
−2 5 −7

]
, λ = −4

17. A =
[

5 −1 2
2 2 2
2 −1 5

]
, λ = 6

18. A =
[ −1 2 −7
−10 2 2
−10 2 2

]
, λ = 9

19. A =

⎡
⎢⎣

11 −3 −3 8
13 −5 −5 8

2 −2 −2 0
−3 3 3 0

⎤
⎥⎦ , λ = −4

20. A =

⎡
⎢⎣

15 −3 −15 8
21 −9 −17 8

2 −2 −6 0
−3 3 15 4

⎤
⎥⎦ , λ = −8

In Exercises 21–30, find the characteristic polynomial, the eigen-
values, and a basis for each eigenspace for the matrix A.

21. A =
[

2 0
4 −3

]

22. A =
[

2 6
1 1

]

23. A =
[

1 −2
2 −3

]

24. A =
[
−2 8

1 −4

]

25. A =
[

3 0 0
1 2 0

−4 5 −1

]

26. A =
[

0 0 1
1 0 0
0 1 0

]

27. A =
[

2 5 1
0 −3 −1
2 14 4

]

28. A =
[

0 −3 −1
−1 2 1

3 −9 −4

]

29. A =

⎡
⎢⎣

−1 0 0 0
5 −2 0 0
0 3 1 0
2 0 1 1

⎤
⎥⎦

30. A =

⎡
⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎦

FIND AN EXAMPLE For Exercises 31–36, find an example that
meets the given specifications.

31. A 2 × 2 matrix A with eigenvalues λ = 1 and λ = 2.

32. A 2 × 2 matrix A with eigenvalues λ = −3 and λ = 0.

33. A 3 × 3 matrix A with eigenvalues λ = 1, λ = −2, and λ = 3.

34. A 3 × 3 matrix A with eigenvalues λ = −1 (multiplicity 2)
and λ = 4.

35. A 2 × 2 matrix that has no real eigenvalues.

36. A 4 × 4 matrix that has no real eigenvalues.

TRUE OR FALSE For Exercises 37–46, determine if the statement
is true or false, and justify your answer.

37. An eigenvalue λ must be nonzero, but an eigenvector u can be
equal to the zero vector.

38. The dimension of an eigenspace is always less than or equal to
the multiplicity of the associated eigenvalue.

39. If u is a nonzero eigenvector of A, then u and Au point in the
same direction.

40. If λ1 and λ2 are eigenvalues of a matrix, then so is λ1 + λ2.

41. If A is a diagonal matrix, then the eigenvalues of A lie along
the diagonal.

42. If 0 is an eigenvalue of an n × n matrix A, then the columns
of A span Rn .

43. If 0 is an eigenvalue of A, then nullity(A) > 0.

44. Row operations do not change the eigenvalues of a matrix.

45. If 0 is the only eigenvalue of A, then A must be the zero
matrix.
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46. The product of the eigenvalues (counting multiplicities)
of A is equal to the constant term of the characteristic polynomial
of A.

47. Suppose that A is a square matrix with characteristic polyno-
mial (λ − 3)3(λ − 2)2(λ + 1).

(a) What are the dimensions of A?

(b) What are the eigenvalues of A?

(c) Is A invertible?

(d) What is the largest possible dimension for an eigenspace of A?

48. Suppose that A is a square matrix with characteristic polyno-
mial −λ(λ − 1)3(λ + 2)3.

(a) What are the dimensions of A?

(b) What are the eigenvalues of A?

(c) Is A invertible?

(d) What is the largest possible dimension for an eigenspace of A?

49. Let T : Rn → Rn be given by T(x) = Ax. Prove that if 0 is
not an eigenvalue of A, then T is onto.

50. Prove that if λ is an eigenvalue of A, then 4λ is an eigenvalue
of 4A.

51. Prove that if λ = 1 is an eigenvalue of an n × n matrix A, then
A − In is singular.

52. Prove that if u is an eigenvector of A, then u is also an eigen-
vector of A2.

53. Prove that u cannot be an eigenvector associated with two
distinct eigenvalues λ1 and λ2 of A.

54. Prove that if 5 is an eigenvalue of A, then 25 is an eigenvalue
of A2.

55. If u = 0 was allowed to be an eigenvector, then which val-
ues of λ would be associated eigenvalues? (This is one reason why
eigenvectors are defined to be nonzero.)

56. Suppose that A is a square matrix that is either upper or lower
triangular. Show that the eigenvalues of A are the diagonal terms
of A.

57. Let A be an invertible matrix. Prove that if λ is an eigenvalue
of A with associated eigenvector u, then λ−1 is an eigenvalue of
A−1 with associated eigenvector u.

58. Let A =
[

a b
c d

]
. Find a formula for the eigenvalues of A in

terms of a , b, c , and d . (HINT: The quadratic formula can be handy
here.)

59. Suppose that A and B are both n × n matrices, and that u is
an eigenvector for both A and B . Prove that u is an eigenvector
for the product AB .

60. Suppose that A is an n × n matrix with eigenvalue λ and as-
sociated eigenvector u. Show that for each positive integer k, the
matrix Ak has eigenvalue λk and associated eigenvector u.

61. Suppose that the entries of each row of a square matrix A add
to zero. Prove that λ = 0 is an eigenvalue of A.

62. Suppose that A =
[

a b
c d

]
, where a , b, c , and d satisfy a+b =

c + d . Show that λ1 = a + b and λ2 = a − c are both eigenvalues
of A.

63. Suppose that A is a square matrix. Prove that if λ is an eigen-
value of A, then λ is also an eigenvalue of AT . (HINT: Recall that
det(A) = det(AT ).)

64. Suppose that A is an n × n matrix and c is a scalar. Prove that
if λ is an eigenvalue of A with associated eigenvector u, then λ− c
is an eigenvalue of A − c In with associated eigenvector u.

65. Suppose that the entries of each row of a square matrix A add
to c for some scalar c . Prove that λ = c is an eigenvalue of A.

66. Let A be an n × n matrix.

(a) Prove that the characteristic polynomial of A has degree n.

(b) What is the coefficient on λn in the characteristic polynomial?

(c) Show that the constant term in the characteristic polynomial
is equal to det(A).

(d) Suppose that A has eigenvalues λ1, . . . , λn that are all real
numbers. Prove that det(A) = λ1λ2 · · · λn .

C In Exercises 67–70, find the eigenvalues and bases for the
eigenspaces of A.

67. A =

⎡
⎢⎣

0 0 −2 −1
1 1 6 5
2 0 4 1

−2 0 −2 1

⎤
⎥⎦

68. A =

⎡
⎢⎣

−20 −9 14 18
40 17 −18 −28
17 9 −10 −11

−17 −9 14 15

⎤
⎥⎦

69. A =

⎡
⎢⎢⎢⎣

10 0 1 −3 3
23 −1 6 −3 2

−24 0 −1 9 −9
14 0 1 −5 5

−10 0 −1 3 −3

⎤
⎥⎥⎥⎦

70. A =

⎡
⎢⎢⎢⎣

5 0 2 1 −1
6 1 4 3 −3

−6 0 −3 −3 3
2 0 2 3 −2

−4 0 −2 −1 2

⎤
⎥⎥⎥⎦
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6.2 Approximation Methods
This section is optional and

can be omitted without loss of
continuity.

In Section 6.1 we saw how to use the characteristic polynomial to find the eigenvalues
(and then the eigenvectors) for matrices. Such methods work fine for the small matrices
considered there, but they are not practical for many larger matrices.

Since large matrices turn up in all kinds of applications, we need another way to find
eigenvalues and eigenvectors. Several related approaches for dealing with large matrices
are described in this section. All have their basis in the Power Method, so we start with that.

The Power Method
The Power Method is an iterative algorithm that gets its name from how it is implemented.
Given a square matrix A, we start with a fixed vector x0 and compute the sequence Ax0,
A2x0, A3x0, . . . . Remarkably, in many cases the resulting sequence of vectors will approach
an eigenvector of A. We begin with an example and leave the discussion of when and
why the Power Method works for later in this section.

Suppose that

A =
[

1 3
2 2

]
, x0 =

[
1
0

]
(1)

and let

x1 = Ax0, x2 = Ax1 = A2x0, x3 = Ax2 = A3x0, . . .

Table 1 gives x0 to x7 for A and x0 above.

k 0 1 2 3 4 5 6 7

xk

[
1
0

] [
1
2

] [
7
6

] [
25
26

] [
103
102

] [
409
410

] [
1639
1638

] [
6553
6554

]

Table 1 xk = Akx0 for k = 0, 1, . . . , 7

Often the components of xk grow with k when forming this type of sequence. Since
scalar multiples of eigenvectors are still eigenvectors, we control the size of each vector
in the sequence by scaling.

T H E P O W E R M E T H O D : For each k ≥ 0,

(a) Let sk denote the largest component (in absolute value) of Axk . (We call sk a
scaling factor.)

(b) Set xk+1 = 1

sk
Axk .

Repeat (a) and (b) to generate the sequence x0, x1, x2, . . ..

Definition Scaling Factor

Scaling in this way ensures that the largest component (in absolute value) of each vector
is either 1 or −1. For example, starting with x0 and A in (1), we compute x1 by

Ax0 =
[

1 3
2 2

] [
1
0

]
=

[
1
2

]
�⇒ s0 = 2 �⇒ x1 = 1

2
Ax0 =

[
0.5
1

]

We then compute x2 by

Ax1 =
[

1 3
2 2

] [
0.5
1

]
=

[
3.5
3

]
�⇒ s1 = 3.5 �⇒ x2 = 1

3.5
Ax1 =

[
1

0.8571

]
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Table 2 shows x0 to x7, together with the scaling factors.

x1

x3

x0

x2

x4

x51.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Figure 1 Vectors x0, . . . , x5

from Table 2.

k 0 1 2 3 4 5 6 7

xk

[
1
0

] [
0.5
1

] [
1.000
0.8571

] [
0.9615
1.000

] [
1.000
0.9903

] [
0.9976
1.000

] [
1.000
0.9994

] [
0.9998
1.000

]
sk 2 3.5 3.714 3.962 3.981 3.998 3.999 4.000

Table 2 The Power Method applied to A and x0 in (1)

The entries in Table 2 and Figure 1 suggest that the sequence of vectors is getting

closer and closer to u =
[

1
1

]
. Computing Au, we find that

Au =
[

1 3
2 2

] [
1
1

]
=

[
4
4

]
= 4u (2)

Hence u =
[

1
1

]
is an eigenvector of A with associated eigenvalue of λ = 4.

In Table 2, not only does the sequence of vectors converge to an eigenvector, but the
sequence of scaling factors converges to the associated eigenvalue. This latter observation
makes sense, because our scaling rule xk+1 = 1

sk
Axk can be expressed as

Axk = skxk+1

Since the vectors are getting closer to an eigenvector (and each other), it follows that sk

must be getting closer to an eigenvalue.
Typically, any nonzero x0 can be used as an initial vector for the Power Method.

(However, see the note in the Computational Comments at the end of the section.) If an
approximate value of an eigenvector is known, then using it for x0 can speed convergence.

The matrix A is from (4) in
Section 6.1.

To save space, in this section
we often write vectors horizon-
tally instead of vertically.

E X A M P L E 1 Find an eigenvector and associated eigenvalue for the matrix

A =

⎡
⎢⎢⎢⎢⎣

245 −254 −252 −46 −224
161 −168 −174 −32 −148
−39 40 45 7 38

27 −28 −32 −6 −26
110 −113 −110 −21 −101

⎤
⎥⎥⎥⎥⎦ (3)

Solution We apply the Power Method starting with x0 = (1, 1, 1, 1, 1). Table 3 gives
the vectors x1, . . . x9.

k xk s k

1 (1.0000, 0.6798, −0.1714, 0.1224, 0.4426) 10.74
2 (1.0000, 0.6693, −0.1717, 0.1124, 0.4431) 13.83
3 (1.0000, 0.6688, −0.1683, 0.1126, 0.4438) 12.94
4 (1.0000, 0.6674, −0.1676, 0.1116, 0.4442) 13.07
5 (1.0000, 0.6671, −0.1670, 0.1114, 0.4443) 13.01
6 (1.0000, 0.6668, −0.1668, 0.1112, 0.4444) 13.01
7 (1.0000, 0.6668, −0.1667, 0.1112, 0.4444) 13.00
8 (1.0000, 0.6667, −0.1667, 0.1111, 0.4444) 13.00
9 (1.0000, 0.6667, −0.1667, 0.1111, 0.4444) 13.00

Table 3 The Power Method Applied to A in Example 1
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The sequence settles to the vector (1.0000, 0.6667, −0.1667, 0.1111, 0.4444), and
the sequence of scaling factors to 13.00. The components of the vector are recognizable
as decimal approximations to rationals. Changing the decimals to equivalent rationals
and multiplying by 18 to eliminate the fractions gives us

u =

⎡
⎢⎢⎢⎢⎣

1.0000
0.6667

−0.1667
0.1111
0.4444

⎤
⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎣

1
2/3

−1/6
1/9
4/9

⎤
⎥⎥⎥⎥⎦ �⇒ u =

⎡
⎢⎢⎢⎢⎣

18
12
−3

2
8

⎤
⎥⎥⎥⎥⎦

To test our answer, we calculate

Au =

⎡
⎢⎢⎢⎢⎣

245 −254 −252 −46 −224
161 −168 −174 −32 −148
−39 40 45 7 38

27 −28 −32 −6 −26
110 −113 −110 −21 −101

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

18
12
−3

2
8

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

234
156
−39

26
104

⎤
⎥⎥⎥⎥⎦ = 13

⎡
⎢⎢⎢⎢⎣

18
12
−3

2
8

⎤
⎥⎥⎥⎥⎦

confirming that u is an eigenvector and that λ = 13 is the associated eigenvalue. ■

We express the entries as frac-
tions and multiply by 18 to
make it easier to check our an-
swer. This would not be done in
applications. Instead, typically
we would compute enough iter-
ations to achieve a desired accu-
racy and take the last vector in
the sequence as the eigenvector.

The Power Method will frequently find an eigenvalue and associated eigenvector.
But which ones? To find out, first suppose that a matrix A has eigenvalues λ1, λ2, . . . , λn

such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

In this case λ1 is called the dominant eigenvalue of A.
Definition Dominant

Eigenvalue
The next theorem tells us that the Power Method will (usually) converge to an

eigenvector associated with the dominant eigenvalue. The proof of this theorem is given
at the end of the section.

T H E O R E M 6.8 Let A be an n × n matrix with linearly independent eigenvectors u1, u2, . . . , un and
associated eigenvalues λ1, λ2, . . . , λn, where λ1 is dominant. Suppose that

x0 = c1u1 + · · · + cnun

where c1 �= 0. Then multiples of Ax0, A2x0, . . . converge to a scalar multiple of the
eigenvector u1.

The Shifted Power Method
The Power Method can be used to find eigenvectors other than those associated with the
dominant eigenvalue. Suppose that λ1 is the dominant eigenvalue of A, and then let λ be
the dominant eigenvalue of A − λ1 In with associated eigenvector u2. Then

(A − λ1 In)u2 = λu2 �⇒ Au2 = (λ + λ1)u2

Thus, if λ2 = λ+λ1, then λ2 is an eigenvalue of A. Furthermore, since λ is the dominant
eigenvalue of A − λ1 In and λ = λ2 − λ1, it follows that λ2 is the eigenvalue of A that is
farthest from λ1. (Why?) Hence applying the Power Method to A − λ1 In will produce
another eigenvalue and eigenvector of A. This is called the Shifted Power Method and is
illustrated in the next example.

Definition Shifted Power
Method
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E X A M P L E 2 For the matrix A given in Example 1, find the eigenvalue (and an
associated eigenvector) farthest from λ1 = 13.

Solution To find λ2, the eigenvalue of A farthest from λ1 = 13, we first apply the
Power Method to the matrix

B = A − 13I5 =

⎡
⎢⎢⎢⎢⎣

232 −254 −252 −46 −224
161 −181 −174 −32 −148
−39 40 32 7 38

27 −28 −32 −19 −26
110 −113 −110 −21 −114

⎤
⎥⎥⎥⎥⎦

As in Example 1, we start with x0 = (1, 1, 1, 1, 1). In this case, the convergence is slower,
so we report only every 10th iteration in Table 4.

k xk sk

10 (1.0000, 0.7033, −0.1483, 0.1483, 0.4450) −15.76
20 (1.0000, 0.7078, −0.1461, 0.1461, 0.4383) −15.86
30 (1.0000, 0.7107, −0.1447, 0.1447, 0.4340) −15.92
40 (1.0000, 0.7123, −0.1438, 0.1438, 0.4315) −15.96
50 (1.0000, 0.7132, −0.1434, 0.1434, 0.4302) −15.98
60 (1.0000, 0.7137, −0.1431, 0.1431, 0.4294) −15.99
70 (1.0000, 0.7140, −0.1430, 0.1430, 0.4290) −15.99
80 (1.0000, 0.7141, −0.1429, 0.1429, 0.4288) −16.00
90 (1.0000, 0.7142, −0.1429, 0.1429, 0.4287) −16.00

100 (1.0000, 0.7142, −0.1429, 0.1429, 0.4286) −16.00

Table 4 The Shifted Power Method Applied to B = A − 13I5

We see that sk → −16, which implies that λ = −16 is an eigenvalue for B . Therefore
λ2 = −16 + 13 = −3 is the eigenvalue of A farthest from λ1 = 13. Table 4 shows
u = (1.000, 0.7142, −0.1429, 0.1429, 0.4286) is the associated eigenvector. We check
this by computing

Au =

⎡
⎢⎢⎢⎢⎣

245 −254 −252 −46 −224
161 −168 −174 −32 −148
−39 40 45 7 38

27 −28 −32 −6 −26
110 −113 −110 −21 −101

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1.0000
0.7142

−0.1429
0.1429
0.4286

⎤
⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎣

−2.9758
−2.1266

0.4246
−0.4258
−1.2751

⎤
⎥⎥⎥⎥⎦ ≈ −3

⎡
⎢⎢⎢⎢⎣

0.9919
0.7089

−0.1415
0.1419
0.4250

⎤
⎥⎥⎥⎥⎦ ≈ −3u

The approximations are a bit rough, but they can be refined by carrying more decimal
places and computing additional iterations (see margin). ■

Carrying more decimal places
in Example 2 gives (after 250
iterations)

u =

⎡
⎢⎢⎢⎣

1.00000000
0.71428571

−0.14285714
0.14285714
0.42857143

⎤
⎥⎥⎥⎦

Then

Au =

⎡
⎢⎢⎢⎣

−3.00000000
−2.14285714

0.42857143
−0.42857143
−1.28571428

⎤
⎥⎥⎥⎦

= −3

⎡
⎢⎢⎢⎣

1.00000000
0.71428571

−0.14285714
0.14285714
0.42857143

⎤
⎥⎥⎥⎦ = −3u

The Inverse Power Method
For the matrix A in Examples 1 and 2, we have found eigenvalues λ1 = 13 and λ2 = −3,
and we also know that these are the positive and negative eigenvalues farthest from 0.
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Here we develop a method for finding the eigenvalue λ3 that is closest to 0. Exercise 57
in Section 6.1 showed that if A is an invertible matrix with eigenvalue λ and asso-
ciated eigenvector u, then λ−1 is an eigenvalue of A−1 with associated eigenvector u.
Thus, in particular, if λ is the largest (in absolute value) eigenvalue of A−1, then λ−1

must be the smallest (in absolute value) eigenvalue of A. (Why?) Therefore, apply-
ing the Power Method to A−1 will yield the smallest eigenvalue (and corresponding
eigenvector) of A.

For large matrices it can be
difficult to compute A−1 accu-
rately due to round-off error.
This can be avoided by multiply-
ing each side of (4) by A, yield-
ing the sequence of linear sys-
tems

Axk+1 = 1

sk
xk

Applying LU-factorization (or
a related method) to A can
greatly improve computational
efficiency when solving these
systems.

E X A M P L E 3 For the matrix A in Example 1, find the smallest eigenvalue (in ab-
solute value) and an associated eigenvector.

Solution Here we apply the Power Method to

A−1 = 1

78

⎡
⎢⎢⎢⎢⎢⎣

−646 698 −420 −1430 620

−461 487 −306 −988 448

99 −112 70 221 −86

−27 40 −64 −143 14

−290 329 −178 −663 264

⎤
⎥⎥⎥⎥⎥⎦

generating a sequence of vectors of the form

xk+1 = 1

sk
A−1xk (4)

For a change of pace (and another reason to be discussed later), let’s take the initial
vector to be x0 = (1, 2, 3, 4, 5). Table 5 gives the results of every other iteration.

k xk s k

2 (1.0000, 0.6842, −0.1565, 0.1178, 0.4734) −1.253
4 (1.0000, 0.6887, −0.1556, 0.0921, 0.4669) 2.185
6 (1.0000, 0.6912, −0.1544, 0.0811, 0.4632) 1.168
8 (1.0000, 0.6920, −0.1540, 0.0780, 0.4620) 1.037

10 (1.0000, 0.6922, −0.1539, 0.0772, 0.4616) 1.009
12 (1.0000, 0.6923, −0.1539, 0.0770, 0.4616) 1.002
14 (1.0000, 0.6923, −0.1538, 0.0769, 0.4615) 1.001
16 (1.0000, 0.6923, −0.1538, 0.0769, 0.4615) 1.000

Table 5 The Inverse Power Method Applied to A−1

From the output, we see that A−1 has eigenvalue λ = 1, so that λ3 = λ−1 = 1 is an
eigenvalue of A. We check the vector u = (1.0000, 0.6923, −0.1538, 0.0769, 0.4615)
from Table 5 by computing

Au =

⎡
⎢⎢⎢⎢⎣

245 −254 −252 −46 −224
161 −168 −174 −32 −148
−39 40 45 7 38

27 −28 −32 −6 −26
110 −113 −110 −21 −101

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1.0000
0.6923

−0.1538
0.0769
0.4615

⎤
⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎣

1.0000
0.6920

−0.1537
0.0768
0.4617

⎤
⎥⎥⎥⎥⎦ ≈ u

Thus u is an eigenvector associated with eigenvalue λ3 = 1. ■
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The Shifted Inverse Power Method
So far we have found three eigenvalues (and associated eigenvectors) for A,

• The largest (in absolute value) λ1.

• The eigenvalue λ2 that is farthest from λ1.

• The eigenvalue λ3 that is closest to the origin.

Another way to look for eigenvalues is to start with the matrix B = A− c In for some
scalar c . Applying the Inverse Power Method to B will find the eigenvalue λ of B that is
closest to the origin. Since B = A − c In, λ + c is the eigenvalue of A that is closest to c .

E X A M P L E 4 For the matrix A given in Example 1, find the eigenvalue that is closest
to c = 4.

Solution We start by setting

B = A − 4I5 =

⎡
⎢⎢⎢⎢⎣

241 −254 −252 −46 −224
161 −172 −174 −32 −148
−39 40 41 7 38

27 −28 −32 −10 −26
110 −113 −110 −21 −105

⎤
⎥⎥⎥⎥⎦

Now we apply the Inverse Power Method to B , starting out with the vector x0 =
(5, 4, 3, 2, 1). Table 6 includes every fifth iteration.

k xk s k

5 (1.0000, 0.5363, −0.0292, 0.0141, 0.4931) 0.9416
10 (1.0000, 0.4936, 0.0051, −0.0026, 0.5013) 0.4616
15 (1.0000, 0.5008, −0.0006, 0.0003, 0.4998) 0.5053
20 (1.0000, 0.4999, 0.0001, 0.0000, 0.5000) 0.4993
25 (1.0000, 0.5000, 0.0000, 0.0000, 0.5000) 0.5001
30 (1.0000, 0.5000, 0.0000, 0.0000, 0.5000) 0.5000
35 (1.0000, 0.5000, 0.0000, 0.0000, 0.5000) 0.5000

Table 6 The Shifted Inverse Power Method (Example 4)

We can see that λ = 0.5 is an eigenvalue for B−1, so that λ = 2 is an eigenvalue for B .
By shifting back, we find that λ4 = 2 + 4 = 6 is an eigenvalue for A, with associated
eigenvector u = (1, 0.5, 0, 0, 0.5). We check this by computing

Au =

⎡
⎢⎢⎢⎢⎣

245 −254 −252 −46 −224
161 −168 −174 −32 −148
−39 40 45 7 38

27 −28 −32 −6 −26
110 −113 −110 −21 −101

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1.0
0.5
0
0

0.5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

6
3
0
0
3

⎤
⎥⎥⎥⎥⎦ = 6u

■

Applying the Shifted Inverse Power Method with different choices of c can yield other
eigenvalues and eigenvectors. It is typically not efficient to do this for random values of c ,
but in some applications rough estimates of the eigenvalues are known. In these instances,
the Shifted Inverse Power Method can turn estimates into accurate approximations.
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Computational Comments
Some general remarks about the Power Method and related techniques discussed in this
section:

• Similar to the approximation methods for finding solutions to linear systems given in
Section 1.3, the Power Method is not overly sensitive to round-off error. In fact, each
successive vector can be viewed as a starting point for the algorithm, so even if an error
occurs, it typically will be corrected.

• The rate of convergence has differed in the examples we have considered. With the
Power Method and its relatives, the larger the dominant eigenvalue is relative to the
other eigenvalues, the faster the rate of convergence.

• The Power Method is guaranteed to work only on matrices whose eigenvectors span
Rn. However, in practice this method often also will work on other matrices, although
convergence may be slower.

• Earlier we stated that the choice of starting vector x0 does not matter, and in virtu-
ally all cases this will be true. However it is possible to get misleading results from
an unlucky choice of x0. For instance, in Example 3 we used x0 = (1, 2, 3, 4, 5)
in place of (1, 1, 1, 1, 1), claiming at the time that this was done for “a change of
pace.” However, there was another reason. Table 7 gives the results when starting with
x0 = (1, 1, 1, 1, 1).

k s k xk

5 −0.4559 (1.0000, 0.6758, −0.1624, 0.1624, 0.4866)
10 −0.4928 (1.0000, 0.6681, −0.1660, 0.1660, 0.4979)
15 −0.4990 (1.0000, 0.6669, −0.1666, 0.1666, 0.4997)
20 −0.4999 (1.0000, 0.6667, −0.1667, 0.1667, 0.5000)
25 −0.5000 (1.0000, 0.6667, −0.1667, 0.1667, 0.5000)
30 −0.5000 (1.0000, 0.6667, −0.1667, 0.1667, 0.5000)

Table 7 New Application of the Inverse Power Method

This gives us λ = −2, which is an eigenvalue of A but not the eigenvalue closest to
0. We did not find λ = 1 because this choice of x0 happens to be in the span of the
eigenvectors not associated with λ = 1. If we look at the statement of Theorem 6.8
again, we see that one of the conditions is violated.

In most applications, the entries of a matrix A are decimals and are subject to some
degree of rounding. The likelihood of such an unlucky choice of x0 happening in
practice is small.

• In cases where the eigenvalues satisfy

|λ1| = |λ2| = · · · = |λk | > |λk+1| ≥ · · · ≥ |λn|
and λ1 = λ2 = · · · = λk , the Power Method will still work fine. However, if (for
example) instead λ1 = −λ2, then the Power Method can produce strange results (see
Exercises 41–42).

Proof of Theorem 6.8
Proof of Theorem 6.8 To understand why the Power Method works, suppose that we
have an n × n matrix A that has eigenvalues λ1, · · · , λn such that

|λ1| > |λ2| ≥ · · · ≥ |λn| (5)
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Assume that the associated eigenvectors u1, . . . , un form a basis for Rn. If x0 is an arbitrary
vector, then there exist scalars c1, . . . , cn such that

x0 = c1u1 + c2u2 + · · · + cnun

Since Aku j = λk
j u j for each eigenvector u j and each positive integer k (see Exercise 60

in Section 6.1), if we form the product Akx0, we get

Akx0 = Ak (c1u1 + c2u2 + · · · + cnun)
= c1λ

k
1u1 + c2λ

k
2u2 + · · · + cnλ

k
nun

Next, divide both sides by λk
1. (This is similar to our scaling in each step of the Power

Method.) This gives us(
1

λk
1

)
Akx0 = c1u1 +

(
λ2

λ1

)k

u2 + · · · +
(

λn

λ1

)k

un

By (5), as k gets large, each of

(
λ2

λ1

)k

, . . . ,

(
λn

λ1

)k

gets smaller. Hence as k → ∞,

(
1

λk
1

)
Akx0 → c1u1

as claimed and observed in our examples. ■

Note that the larger |λ1| is relative to |λ2|, . . . , |λn|, the faster
(

λ2

λ1

)k

, . . . ,
(

λn

λ1

)k

converge to 0. This is why the Power Method converges more rapidly when the dominant
eigenvalue is much larger than the other eigenvalues.

E X E R C I S E S
In Exercises 1–6, compute the first three iterations of the Power
Method without scaling, starting with the given x0.

1. A =
[

1 −3
1 5

]
, x0 =

[
1
0

]

2. A =
[
−2 4

3 −1

]
, x0 =

[
0
1

]

3. A =
[

6 −3 7
4 1 5
4 −3 9

]
, x0 =

[
1
0
0

]

4. A =
[−2 5 −7
−2 11 −13
−2 5 −7

]
, x0 =

[
1
1
0

]

5. A =
[

5 −1 2
2 2 2
2 −1 5

]
, x0 =

[
1
0

−1

]

6. A =
[ −1 2 −7
−10 2 2
−10 2 2

]
, x0 =

[
0
0
1

]

In Exercises 7–12, compute the first two iterations of the Power
Method with scaling, starting with the given x0. Round any nu-
merical values to two decimal places.

7. A =
[

2 −1
0 1

]
, x0 =

[
0
1

]

8. A =
[

3 1
2 0

]
, x0 =

[
−1

1

]

9. A =
[−1 0 2

1 1 0
0 −2 1

]
, x0 =

[
0
1
0

]

10. A =
[−2 1 1

0 3 −2
2 0 0

]
, x0 =

[−1
1
0

]

11. A =
[

1 0 0
−1 3 0

2 −1 1

]
, x0 =

[
0
1

−1

]

12. A =
[

0 2 −1
0 2 1
2 0 0

]
, x0 =

[−1
1
1

]

In Exercises 13–18, the eigenvalues of a 3 × 3 matrix A are given.
Determine if it is assured that the Power Method will converge to
an eigenvector and eigenvalue, and if so, identify the eigenvalue.

13. λ1 = 5, λ2 = −2, λ3 = 7

14. λ1 = 3, λ2 = −4, λ3 = 0
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15. λ1 = −6, λ2 = 2, λ3 = 2

16. λ1 = 5, λ2 = 5, λ3 = 4

17. λ1 = −4, λ2 = 4, λ3 = 6

18. λ1 = 3, λ2 = −3, λ3 = 2

In Exercises 19–22, the given λ is the dominant eigenvalue for A.
To which matrix B would you apply the Power Method in order
to find the eigenvalue that is farthest from λ?

19. A =
[

1 2
3 2

]
, λ = 4

20. A =
[
−1 0

2 3

]
, λ = 3

21. A =
[ −1 2 −7
−10 2 2
−10 2 2

]
, λ = 9

22. A =
[

5 −1 2
2 2 2
2 −1 5

]
, λ = 6

In Exercises 23–26, to which matrix B would you apply the Inverse
Power Method in order to find the eigenvalue that is closest to c ?

23. A =
[
−3 1

5 2

]
, c = 4

24. A =
[

1 2
3 4

]
, c = −5

25. A =
[

3 1 4
1 5 9
2 6 1

]
, c = −1

26. A =
[

2 7 1
8 2 8
1 8 2

]
, c = 3

27. Below is the output resulting from applying the Inverse Power
Method to a matrix A. Identify the eigenvalue and eigenvector.

k xk s k

5 (1.0000, 0.5363, −0.0292) 0.4415
10 (1.0000, 0.4837, −0.0026) 0.3623
15 (1.0000, 0.5091, −0.0006) 0.2503
20 (1.0000, 0.4997, −0.0001) 0.2501
25 (1.0000, 0.5000, 0.0000) 0.2500

28. Below is the output resulting from applying the Shifted Inverse
Power Method to a matrix A with c = 3. Identify the eigenvalue
and eigenvector.

k xk s k

2 (0.3577, 0.0971, 1.0000) 0.5102
4 (0.4697, 0.1021, 1.0000) 0.5063
6 (0.4925, 0.1007, 1.0000) 0.5021
8 (0.4997, 0.1002, 1.0000) 0.5003

10 (0.5000, 0.1000, 1.0000) 0.5000

FIND AN EXAMPLE For Exercises 29–34, find an example that
meets the given specifications.

29. A 2 × 2 matrix A and an initial vector x0 such that the Power
Method converges immediately. That is, x0 = x1 = · · ·.
30. A 3 × 3 matrix A and an initial vector x0 such that the Power
Method converges immediately. That is, x0 = x1 = · · ·.
31. A 2 × 2 matrix A and an initial vector x0 such that the
Power Method alternates between two different vectors. Thus
x0 = x2 = · · · and x1 = x3 = · · ·, but x0 �= x1.

32. A 3 × 3 matrix A and an initial vector x0 such that the
Power Method alternates between two different vectors. Thus
x0 = x2 = · · · and x1 = x3 = · · ·, but x0 �= x1.

33. A 2 × 2 matrix A and an initial vector x0 such that the Power
Method without scaling alternates between three different vectors.
Thus x0 = x3 = · · ·, x1 = x4 = · · ·, and x2 = x5 = · · ·, with
x0, x1, and x2 distinct.

34. A 3 × 3 matrix A and an initial vector x0 such that the
Power Method alternates between three different vectors. Thus
x0 = x3 = · · ·, x1 = x4 = · · ·, and x2 = x5 = · · ·, with x0, x1,
and x2 distinct.

TRUE OR FALSE For Exercises 35–40, determine if the statement
is true or false, and justify your answer.

35. If a square matrix A has a dominant eigenvalue, then the Power
Method will converge.

36. The Power Method is generally sensitive to round-off error.

37. The Inverse Power Method can only be applied to invertible
matrices.

38. If the Power Method converges, then it will converge to the
same eigenvector for any initial vector x0.

39. Typically, the closer an initial vector x0 is to a dominant eigen-
vector u, the faster the Power Method will converge.

40. If λ1 = λ2 are the two largest eigenvalues of a matrix A, then
the Power Method will not converge.

41. For the matrix A and vector x0, compute the first four iter-
ations of the Power Method, and then explain the behavior that
you observe.

A =
[

1 1
0 −1

]
, x0 =

[
0
1

]
42. For the matrix A and vector x0, compute the first four iter-
ations of the Power Method with scaling, and then explain the
behavior that you observe.

A =
[
−2 0

1 2

]
, x0 =

[
1
0

]
43. For the matrix A, λ = 2 is the largest eigenvalue. Use the given
value of x0 to generate enough iterations of the Power Method to
estimate an eigenvalue. Explain the results that you get.

A =
[

1 0
2 2

]
, x0 =

[
−1

2

]
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44. For the matrix A, λ = 3 is the largest eigenvalue. Use the given
value of x0 to generate enough iterations of the Power Method to
estimate an eigenvalue. Explain the results that you get.

A =
[

1 2
2 1

]
, x0 =

[
−1

1

]

C In Exercises 45–50, compute the first six iterations of the Power
Method without scaling, starting with the given x0.

45. A =
[

1 −3
1 5

]
, x0 =

[
1
0

]

46. A =
[
−2 4

3 −1

]
, x0 =

[
0
1

]

47. A =
[

6 −3 7
4 1 5
4 −3 9

]
, x0 =

[
1
0
0

]

48. A =
[−2 5 −7
−2 11 −13
−2 5 −7

]
, x0 =

[
1
1
0

]

49. A =
[

5 −1 2
2 2 2
2 −1 5

]
, x0 =

[
1
0

−1

]

50. A =
[ −1 2 −7
−10 2 2
−10 2 2

]
, x0 =

[
0
0
1

]

C In Exercises 51–56, compute as many iterations of the Power
Method with scaling as are needed to estimate an eigenvalue and
eigenvector for A, starting with the given x0.

51. A =
[

2 −1
0 1

]
, x0 =

[
0
1

]

52. A =
[

3 1
2 0

]
, x0 =

[
−1

1

]

53. A =
[−1 1 2

1 3 −2
2 −2 1

]
, x0 =

[
0
1
0

]

54. A =
[−2 1 1

0 3 −2
2 0 0

]
, x0 =

[−1
1
0

]

55. A =
[

1 0 0
−1 3 0

2 −1 1

]
, x0 =

[
0
1

−1

]

56. A =
[

0 2 −1
0 2 1
2 0 0

]
, x0 =

[−1
1
1

]

6.3 Change of Basis
We have seen that there are numerous different bases for Rn (or a subspace of Rn). In this
section we develop a general procedure for changing from one basis to another.

One use for a change of basis is to analyze linear transformations. Suppose that
T : R2 → R2 is given by T(x) = Ax, where A is a 2×2 matrix with linearly independent
eigenvectors {u1, u2} and corresponding eigenvalues {λ1, λ2}. Then for any v in R2 there
exist scalars c1 and c2 such that

v = c1u1 + c2u2

Because u1 and u2 are eigenvectors of A, expressing v in this form makes T(v) easy to
compute:

T(v) = A
(
c1u1 + c2u2

) = c1 Au1 + c2 Au2 = c1λ1u1 + c2λ2u2

Thus expressing v in terms of an eigenvector basis makes clearer the behavior of T . There
is more on using different bases to analyze linear transformations in later sections.

To develop a systematic procedure for changing from one basis to another, we start
with the standard basis for R2,

S = {e1, e2} =
{[

1
0

]
,

[
0
1

]}

Then, for example, if x =
[

3
−2

]
, we have

x = 3e1 − 2e2
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We can view the entries in

[
3

−2

]
as the coefficients needed to write x as a linear combi-

nation of {e1, e2}.
Now suppose that

B = {u1, u2} =
{[

2
7

]
,

[
1
4

]}

Then B is another basis for R2. It is not difficult to verify that if x =
[

3
−2

]
, then

x = 14u1 − 25u2. The compact notation that we use to express this relationship is

xB =
[

14
−25

]
BAlthough we continue to use

set notation for bases, in this
section the order of the vectors
in the basis matters.

More generally, suppose that B = {u1, . . . , un} forms a basis for Rn. If y = y1u1 + · · · +
ynun, then we write

yB =

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦
B

for the coordinate vector of y with respect toB. As above, the coordinate vector containsDefinition Coordinate Vector
the coefficients required to express y as a linear combination of the vectors in basis B.

Now define the n × n matrix U = [
u1 · · · un

]
. Multiplying as usual, we have

U

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦
B

= y1u1 + · · · + ynun

Hence multiplying byU transforms the coordinate vector with respect toB to the standard
basis. Put symbolically, we have y = U yB.

E X A M P L E 1 Let

B =
⎧⎨
⎩

⎡
⎣ 1

3
−2

⎤
⎦ ,

⎡
⎣2

0
1

⎤
⎦ ,

⎡
⎣ 4

5
−1

⎤
⎦

⎫⎬
⎭ and xB =

⎡
⎣−2

3
1

⎤
⎦
B

Then B forms a basis for R3. Find x with respect to the standard basis S .

Solution Start by setting U =
⎡
⎣ 1 2 4

3 0 5
−2 1 −1

⎤
⎦. Then we have

x = U xB =
⎡
⎣ 1 2 4

3 0 5
−2 1 −1

⎤
⎦

⎡
⎣−2

3
1

⎤
⎦
B

=
⎡
⎣ 8

−1
6

⎤
⎦
S

Thus x =
⎡
⎣ 8

−1
6

⎤
⎦
S

with respect to the standard basis. ■

When working with coordinate vectors, there is potential for confusion about which
basis is in use.
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N O T A T I O N C O N V E N T I O N
If no subscript is given on a vector, then it is expressed with respect to the standard
basis. For any other basis, a subscript will be included.

The matrix U in Example 1, called a change of basis matrix, allows us to switchDefinition Change of Basis
Matrix from a basis B to the standard basis S . Example 2 shows how to go the other direction,

from the standard basis S to another basis B.

E X A M P L E 2 Let

x =
[

3
−2

]
and B = {u1, u2} =

{[
2
7

]
,

[
1
4

]}

as before, and set U = [
u1 u2

]
. Find the change of basis matrix from S to B.

Solution To write x in terms of B, we need to find x1 and x2 such that

x1u1 + x2u2 =
[

3
−2

]
�⇒ U

[
x1

x2

]
=

[
3

−2

]

Since the columns of U are linearly independent, U is invertible, and hence the
solution is [

x1

x2

]
= U −1

[
3

−2

]

This shows that the change of basis matrix is U −1. To test this, we compute (using the
Quick Formula from Section 3.3)

U −1 =
[

4 −1
−7 2

]

Then

U −1

[
3

−2

]
=

[
4 −1

−7 2

] [
3

−2

]
=

[
14

−25

]

which tells us that

xB =
[

14
−25

]
B

as we saw previously. ■

Recall the Quick Formula,[
a b
c d

]−1

= 1

ad − bc

[
d −b

−c a

]

Example 2 illustrates a general fact: If U is the change of basis matrix from B to S ,
then U −1 is the change of basis matrix from S to B. This approach generalizes to Rn and
is summarized in Theorem 6.9. The full proof is left as an exercise; a graphical depiction
is given in Figure 1.

U

U�1

B S

Figure 1 Change of basis
between S and B.

T H E O R E M 6.9 Let x be expressed with respect to the standard basis, and let B = {u1, . . . , un} be any
basis for Rn. If U = [

u1 . . . un

]
, then

(a) x = U xB

(b) xB = U −1x
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E X A M P L E 3 Let

x =
⎡
⎣3

4
4

⎤
⎦ and B =

⎧⎨
⎩

⎡
⎣1

0
1

⎤
⎦ ,

⎡
⎣ 1

−3
0

⎤
⎦ ,

⎡
⎣2

1
2

⎤
⎦

⎫⎬
⎭

Find xB, the coordinate vector of x with respect to the basis B.

Solution We start by letting U be the matrix with columns given by the vectors
in B,

U =
⎡
⎣1 1 2

0 −3 1
1 0 2

⎤
⎦

Then by Theorem 6.9, we have

xB = U −1x =
⎡
⎣−6 −2 7

1 0 −1
3 1 −3

⎤
⎦

⎡
⎣3

4
4

⎤
⎦ =

⎡
⎣ 2

−1
1

⎤
⎦
B ■

Two Nonstandard Bases
Now suppose that we have nonstandard bases B1 = {u1, . . . , un} and B2 = {v1, . . . , vn}
for Rn. How do we get from xB1 to xB2 —that is, from x expressed with respect to B1 to x
expressed with respect to B2?

The simple solution uses two steps. We apply Theorem 6.9 twice, first to go from
xB1 to xS , and then to go from xS to xB2 . Matrix multiplication is used to combine the
steps.

T H E O R E M 6.10 Let B1 = {u1, . . . , un} and B2 = {v1, . . . , vn} be bases for Rn. If U = [
u1 · · · un

]
and V = [

v1 · · · vn

]
, then

(a) xB2 = V−1U xB1

(b) xB1 = U −1V xB2

Proof If U = [
u1 · · · un

]
and V = [

v1 · · · vn

]
, then by Theorem 6.9 we know

that

U xB1 = xS and V−1xS = xB2

Combining these gives

xB2 = V−1xS = V−1(U xB1 ) = V−1U xB1

Thus the change of basis matrix from B1 to B2 is V−1U . The change of basis matrix from
B2 to B1 is the inverse,

(V−1U )−1 = U −1V

A graphical depiction is given in Figure 2. ■
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V�1U

V�1

U�1V

VU�1

B1 B2S

U

Figure 2 Change of basis between B1 and B2.

E X A M P L E 4 Suppose that

B1 =
{[

1
3

]
,

[
2
7

]}
and B2 =

{[
3
5

]
,

[
2
3

]}

Find xB2 if xB1 =
[−1

4

]
B1

.

Solution We start by setting U =
[

1 2
3 7

]
and V =

[
3 2
5 3

]
. Then by Theorem 6.10,

the change of basis matrix from B1 to B2 is

V−1U =
[−3 2

5 −3

] [
1 2
3 7

]
=

[
3 8

−4 −11

]

Hence it follows that

xB2 = V−1U xB1 =
[

3 8
−4 −11

] [−1
4

]
B1

=
[

29
−40

]
B2

Therefore we have

[−1
4

]
B1

=
[

29
−40

]
B2

. We can check our results by converting both[−1
4

]
B1

and

[
29

−40

]
B2

to the standard basis. We have

U xB1 =
[

1 2
3 7

] [−1
4

]
B1

=
[

7
25

]
and V xB2 =

[
3 2
5 3

] [
29

−40

]
B2

=
[

7
25

]

which also shows that

[−1
4

]
B1

=
[

29
−40

]
B2

. ■

E X A M P L E 5 Suppose that

B1 =
⎧⎨
⎩

⎡
⎣1

1
3

⎤
⎦ ,

⎡
⎣1

4
2

⎤
⎦ ,

⎡
⎣2

1
6

⎤
⎦

⎫⎬
⎭ and B2 =

⎧⎨
⎩

⎡
⎣1

0
1

⎤
⎦ ,

⎡
⎣ 1

−3
0

⎤
⎦ ,

⎡
⎣2

1
2

⎤
⎦

⎫⎬
⎭

Find xB1 if xB2 =
⎡
⎣3

2
1

⎤
⎦
B2

.
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Solution We start by setting

U =
⎡
⎣1 1 2

1 4 1
3 2 6

⎤
⎦ and V =

⎡
⎣1 1 2

0 −3 1
1 0 2

⎤
⎦

By Theorem 6.10 we have

xB1 = U −1V xB2

=
⎡
⎣−22 2 7

3 0 −1
10 −1 −3

⎤
⎦

⎡
⎣1 1 2

0 −3 1
1 0 2

⎤
⎦

⎡
⎣3

2
1

⎤
⎦
B2

=
⎡
⎣−129

16
60

⎤
⎦
B1 ■

E X A M P L E 6 Suppose that S = span{v1, v2} is a subspace of R3, where

v1 =
⎡
⎣ 2

−1
1

⎤
⎦ and v2 =

⎡
⎣1

0
1

⎤
⎦

Let T : R3 → R3 be the linear transformation T(x) = Ax, where

A =
⎡
⎣−22 −24 18

17 19 −13
−10 −10 10

⎤
⎦

Express T(S), the image of S under T , in terms of a basis of eigenvectors of A.

Solution As noted at the section opening, it is easy to evaluate a linear transformation
when the input value is given as a linear combination of eigenvectors—we just multiply
each eigenvector by the associated eigenvalue. To exploit this, we shall use a change of
basis to express v1 and v2 in terms of eigenvectors of A.

We need two bases to apply Theorem 6.10. For the first, we let v3 = e3 and then
define

V = [
v1 v2 v3

] =
⎡
⎣ 2 1 0

−1 0 0
1 1 1

⎤
⎦

Since det(V) = 1, the set B2 = {v1, v2, v3} is a basis for R3 and V is a change of basis
matrix from B2 to S. The basis B2 is attractive because the coordinate vectors of v1 and
v2 are simple.

Our second basis B1 = {u1, u2, u3} is made up of eigenvectors of A. We find these
using the methods from Section 6.1, starting with the characteristic polynomial

det(A − λI3) = −λ3 + 7λ2 − 10λ = −λ(λ − 2)(λ − 5)

The calculations to find the associated eigenvectors are similar to those in Section 6.1
and so are omitted. We have

λ1 = 5 ⇒ u1 =
⎡
⎣ 4

−3
2

⎤
⎦ , λ2 = 2 ⇒ u2 =

⎡
⎣−1

1
0

⎤
⎦ , λ3 = 0 ⇒ u3 =

⎡
⎣ 3

−1
1

⎤
⎦

Setting

U = [
u1 u2 u3

] =
⎡
⎣ 4 −1 3

−3 1 −2
2 0 1

⎤
⎦
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we have det(U ) = −1, so that B1 is also a basis and U is a change of basis matrix from
B1 to S . By Theorem 6.10 the change of basis matrix from B2 to B1 is

U −1V =
⎡
⎣−1 −1 1

1 2 1
2 2 −1

⎤
⎦

⎡
⎣ 2 1 0

−1 0 0
1 1 1

⎤
⎦ =

⎡
⎣0 0 1

1 2 1
1 1 −1

⎤
⎦

The next step is to use the change of basis matrix to express v1 and v2 in terms of the
eigenvectors. Since v1 is the first vector in B2, we have

[v1]B2 =
⎡
⎣1

0
0

⎤
⎦
B2

�⇒ [v1]B1 = U −1V[v1]B2 =
⎡
⎣0 0 1

1 2 1
1 1 −1

⎤
⎦

⎡
⎣1

0
0

⎤
⎦
B2

=
⎡
⎣0

1
1

⎤
⎦
B1

= u2 + u3

Similarly,

[v2]B2 =
⎡
⎣0

1
0

⎤
⎦
B2

�⇒ [v2]B1 = U −1V[v2]B2 =
⎡
⎣0 0 1

1 2 1
1 1 −1

⎤
⎦

⎡
⎣0

1
0

⎤
⎦
B2

=
⎡
⎣0

2
1

⎤
⎦
B1

= 2u2 + u3

Since u2 and u3 are eigenvectors of A associated with eigenvalues λ2 = 2 and λ3 = 0,
we have

T(u2) = Au2 = 2u2 and T(u3) = Au3 = 0u3 = 0

If v = c1v1 + c2v2 is a typical element of the subspace S, then

v = c1(u2 + u3) + c2(2u2 + u3) = (c1 + 2c2)u2 + (c1 + c2)u3

Therefore

T(v) = T
(
(c1 + 2c2)u1 + (c1 + c2)u2

)
= (c1 + 2c2)T(u2) + (c1 + c2)T(u3) = 2(c1 + 2c2)u2

Thus S is mapped by T to the span of a single eigenvector u2. ■

The square brackets in terms
such as [v1]B2 are to separate
the two subscripts.

Change of Basis in Subspaces
Suppose that a subspace S of Rn has two bases B1 = {u1, . . . , uk} and B2 = {v1, . . . , vk}.
There exists a change of basis matrix, but it cannot be found using Theorem 6.10, because
the matrices U and V are not square and so are not invertible. Instead, we can use
Theorem 6.11.

T H E O R E M 6.11 Let S be a subspace of Rn with bases B1 = {u1, . . . , uk} and B2 = {v1, . . . , vk}. If

C = [
[u1]B2 · · · [uk]B2

]
then xB2 = C xB1 .
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Proof For a vector x in S, there exist scalars x1, . . . , xk such that

x = x1u1 + · · · + xkuk =

⎡
⎢⎣

x1

...

xk

⎤
⎥⎦
B1

Therefore

C xB1 = [
[u1]B2 · · · [uk]B2

]
⎡
⎢⎣

x1

...

xk

⎤
⎥⎦
B1= x1[u1]B2 + · · · + xk[uk]B2

= [x1u1 + · · · + xkuk]B2 (See Exercise 48)

= xB2 ■

When S = Rn, the matrix C in Theorem 6.11 is equal to the matrix V−1U given in
Theorem 6.10 (see Exercise 49).

E X A M P L E 7 Let

B1 =
⎧⎨
⎩

⎡
⎣ 1

−5
8

⎤
⎦ ,

⎡
⎣ 3

−8
3

⎤
⎦

⎫⎬
⎭ and B2 =

⎧⎨
⎩

⎡
⎣ 1

−3
2

⎤
⎦ ,

⎡
⎣−1

2
1

⎤
⎦

⎫⎬
⎭

be two bases of a subspace S of R3. Find the change of basis matrix from B1 to B2, and

find xB2 if xB1 =
[

3
−1

]
B1

.

Solution To apply Theorem 6.11, we need to write each vector in B1 in terms of the
vectors in B2. The system ⎡

⎣ 1
−5

8

⎤
⎦ = c11

⎡
⎣ 1

−3
2

⎤
⎦ + c21

⎡
⎣−1

2
1

⎤
⎦

has solution c11 = 3 and c21 = 2, so that

⎡
⎣ 1

−5
8

⎤
⎦ =

[
3
2

]
B2

. Similarly, the system

⎡
⎣ 3

−8
3

⎤
⎦ = c12

⎡
⎣ 1

−3
2

⎤
⎦ + c22

⎡
⎣−1

2
1

⎤
⎦

has solution c12 = 2 and c22 = −1, so that

⎡
⎣ 3

−8
3

⎤
⎦ =

[
2

−1

]
B2

. Thus

C =
[

3 2
2 −1

]

By Theorem 6.11,

xB2 = C xB1 =
[

3 2
2 −1

] [
3

−1

]
B1

=
[

7
7

]
B2 ■
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E X E R C I S E S
In Exercises 1–6, convert the coordinate vector xB from the given
basis B to the standard basis.

1. B =
{[

3
−2

]
,

[
2
5

]}
, xB =

[
1

−1

]
B

2. B =
{[

−5
3

]
,

[
−2

1

]}
, xB =

[
−2

3

]
B

3. B =
{[

4
3

]
,

[
2
1

]}
, xB =

[
2

−4

]
B

4. B =
{[

−6
1

]
,

[
5

−3

]}
, xB =

[
−3

2

]
B

5. B =
{[

1
−2
−1

]
,

[−1
2
0

]
,

[
2

−1
3

]}
, xB =

[
1
2
1

]
B

6. B =
{[

0
3
1

]
,

[
1
2
3

]
,

[
0

−1
2

]}
, xB =

[
1
1

−2

]
B

In Exercises 7–12, find the change of basis matrix from the stan-
dard basisS toB, and then convert x to the coordinate vector with
respect to B.

7. B =
{[

1
2

]
,

[
1
3

]}
, x =

[
3

−1

]

8. B =
{[

5
4

]
,

[
1
1

]}
, x =

[
1
2

]

9. B =
{[

−2
1

]
,

[
5

−3

]}
, x =

[
1

−1

]

10. B =
{[

7
5

]
,

[
4
3

]}
, x =

[
4

−3

]

11. B =
{[

1
0
0

]
,

[−1
2
1

]
,

[
1

−1
0

]}
, x =

[
1
2

−1

]

12. B =
{[

2
2

−1

]
,

[−1
−2

1

]
,

[
1

−1
1

]}
, x =

[−2
1
2

]

In Exercises 13–18, find the change of basis matrix from B1 to B2.

13. B1 =
{[

2
1

]
,

[
1
1

]}
, B2 =

{[
5
7

]
,

[
3
4

]}

14. B1 =
{[

2
1

]
,

[
3
2

]}
, B2 =

{[
3
1

]
,

[
7
2

]}

15. B1 =
{[−1

0
4

]
,

[
2
3
3

]
,

[
1

−1
−2

]}

B2 =
{[

1
3

−1

]
,

[
0
1

−1

]
,

[
3
7
0

]}

16. B1 =
{[

2
3
0

]
,

[
1

−1
2

]
,

[−4
1
5

]}

B2 =
{[

1
3
2

]
,

[−2
−5
−4

]
,

[
1
2
3

]}

17. B1 =
{[

3
−5

5

]
,

[−1
4

−3

]}
B2 =

{[
2

−1
2

]
,

[
1
3

−1

]}

18. B1 =
{[

5
−6

3

]
,

[−1
4
3

]}
B2 =

{[
2

−1
3

]
,

[−3
5
0

]}

In Exercises 19–24, find the change of basis matrix from B2

to B1.

19. B1 =
{[

2
1

]
,

[
1
1

]}
, B2 =

{[
5
7

]
,

[
3
4

]}

20. B1 =
{[

2
1

]
,

[
3
2

]}
, B2 =

{[
3
1

]
,

[
7
2

]}

21. B1 =
{[−1

1
−1

]
,

[
1
0
2

]
,

[−2
5
0

]}

B2 =
{[−2

1
3

]
,

[
2
0
1

]
,

[
4
1

−1

]}

22. B1 =
{[−1

−3
1

]
,

[
1
4

−2

]
,

[−2
−3
−2

]}

B2 =
{[

1
4
1

]
,

[
4
2
0

]
,

[
3
1

−2

]}

23. B1 =
{[−1

4
2

]
,

[
2
3
1

]}
B2 =

{[
1
7
3

]
,

[−4
5
3

]}

24. B1 =
{[−3

1
1

]
,

[
2

−5
4

]}
B2 =

{[−5
6

−3

]
,

[
1

−9
9

]}

25. For B1 and B2 in Exercise 13, find xB2 if xB1 =
[

2
−1

]
B1

.

26. For B1 and B2 in Exercise 16, find xB2 if xB1 =
[

1
3

−2

]
B1

.

27. For B1 and B2 in Exercise 17, find xB2 if xB1 =
[

2
5

]
B1

.

28. For B1 and B2 in Exercise 19, find xB1 if xB2 =
[

1
2

]
B2

.
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29. For B1 and B2 in Exercise 21, find xB1 if xB2 =
[−1

1
3

]
B2

.

30. For B1 and B2 in Exercise 24, find xB1 if xB2 =
[
−2

3

]
B2

.

31. Suppose that B1 = {u1, u2} and B2 = {u2, u1} are bases of

R2. Find xB2 if xB1 =
[

a
b

]
B1

.

32. Suppose that B1 = {u1, u2, u3} and B2 = {u2, u3, u1} are

bases of R3. Find xB1 if xB2 =
[

a
b
c

]
B2

.

FIND AN EXAMPLE For Exercises 33–38, find an example that
meets the given specifications.

33. A basis B of R2 such that

[
1
3

]
B

=
[
−2

1

]
.

34. A basis B of R3 such that

[
3
1

−2

]
B

=
[

1
2
5

]
.

35. Bases B1 and B2 of R2 such that

[
2

−2

]
B1

=
[

4
1

]
B2

.

36. Bases B1 and B2 of R3 such that

[
3
0

−1

]
B1

=
[

2
−4

1

]
B2

.

37. Bases B1 and B2 of R2 with change of basis matrix C =[
1 3
2 7

]
from B1 to B2.

38. Bases B1 and B2 of R3 with change of basis matrix C =[
1 −1 2

−2 3 0
1 4 1

]
from B2 to B1.

TRUE OR FALSE For Exercises 39–44, determine if the statement
is true or false, and justify your answer.

39. If U is a change of basis matrix between bases B1 and B2 of
Rn , then U must be an n × n matrix.

40. A change of basis matrix from one basis of Rn to another basis
of Rn is unique.

41. If U is a change of basis matrix between bases B1 and B2 of
Rn , then U must be invertible.

42. Any change of basis matrix must have linearly independent
columns.

43. Let B1 = {u1, u2} and B2 = {v1, v2} be two bases of R2, and
suppose that u1 = av1 + bv2 and u2 = cv1 + dv2. Then the

change of basis matrix from B1 to B2 is

[
a b
c d

]
.

44. If C1 is the change of basis matrix from B1 to B2 and C2 is the
change of basis matrix from B2 to B3, then C1C2 is the change of
basis matrix from B1 to B3.

45. Let B be a basis. Prove that [u + v]B = uB + vB for vectors u
and v.

46. Let B be a basis. Prove that [cu]B = cuB , where u is a vector
and c a scalar.

47. Let T : Rn → Rn be given by T(x) = xB for a basis B. Prove
that T is a linear transformation.

48. Let B be a basis, c1, . . . , ck be scalars, and u1, . . . , uk vectors.
Prove that

c1[u1]B + · · · + ck[uk]B = [c1u1 + · · · ck uk]B

49. Prove that if S = Rn , then the matrix C in Theorem 6.11 is
equal to the matrix V−1U given in Theorem 6.10.

50. Let B1 = {u1, . . . , un} and B2 = {v1, . . . , vn} be bases

for Rn , and set U = [
u1 · · · un

]
and V = [

v1 · · · vn
]

.

Show that the change of basis matrix from B1 to B2 can be found
by extracting the right half of the row reduced echelon form
of

[
V U

]
.

C In Exercises 51–56, find the change of basis matrix from B1

to B2.

51. B1 =
{[

3
5
9

]
,

[
4

−2
7

]
,

[
2

11
−6

]}

B2 =
{[

3
2

−7

]
,

[
2
5
8

]
,

[−4
−6

1

]}

52. B1 =
{[

6
4
2

]
,

[
5
0

−5

]
,

[−3
3
2

]}

B2 =
{[

7
−2
−1

]
,

[
4
3
9

]
,

[−8
1
5

]}

53. B1 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0
1

−1

⎤
⎥⎦ ,

⎡
⎢⎣

2
−2
−5

3

⎤
⎥⎦ ,

⎡
⎢⎣

5
0
0

−2

⎤
⎥⎦ ,

⎡
⎢⎣

3
7

−9
−2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

B2 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
4

−2
1

⎤
⎥⎦ ,

⎡
⎢⎣

7
−2
−1

0

⎤
⎥⎦ ,

⎡
⎢⎣

5
−3

2
3

⎤
⎥⎦ ,

⎡
⎢⎣

4
0
3

−1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

54. B1 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

7
−2
−2

3

⎤
⎥⎦ ,

⎡
⎢⎣

−3
0
1
1

⎤
⎥⎦ ,

⎡
⎢⎣

0
4

−4
7

⎤
⎥⎦ ,

⎡
⎢⎣

5
4
3
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

B2 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
5
7

−8

⎤
⎥⎦ ,

⎡
⎢⎣

−3
−4
−5
−6

⎤
⎥⎦ ,

⎡
⎢⎣

2
0
1
4

⎤
⎥⎦ ,

⎡
⎢⎣

1
7
4
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭
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55. B1 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−10
4
2

−5

⎤
⎥⎦ ,

⎡
⎢⎣

−5
5
0

−4

⎤
⎥⎦ ,

⎡
⎢⎣

−8
5
2

−6

⎤
⎥⎦

⎫⎪⎬
⎪⎭

B2 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

2
1
0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

−3
0
2

−2

⎤
⎥⎦ ,

⎡
⎢⎣

6
−3

2
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

56. B1 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

7
−7
−4

5

⎤
⎥⎦ ,

⎡
⎢⎣

−5
3
4

−5

⎤
⎥⎦ ,

⎡
⎢⎣

−12
11

7
−9

⎤
⎥⎦

⎫⎪⎬
⎪⎭

B2 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
−2
−1

2

⎤
⎥⎦ ,

⎡
⎢⎣

4
−1
−1

3

⎤
⎥⎦ ,

⎡
⎢⎣

−5
4
3

−4

⎤
⎥⎦

⎫⎪⎬
⎪⎭

6.4 Diagonalization
If D is a diagonal matrix, then it is relatively easy to analyze the behavior of the linear
transformation T(x) = Dx because for x in Rn,

D =

⎡
⎢⎢⎢⎣

d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...

0 0 · · · dnn

⎤
⎥⎥⎥⎦ �⇒ Dx =

⎡
⎢⎢⎢⎣

d11x1

d22x2

...

dnnxn

⎤
⎥⎥⎥⎦

In this section we develop a procedure for expressing a square matrix A as the product
of three matrices. The process is called diagonalizing A, because the middle matrix in the
product is diagonal.

D E F I N I T I O N 6.12 An n × n matrix A is diagonalizable if there exist n × n matrices D and P , with D
diagonal and P invertible, such that

A = PDP−1
Definition Diagonalizable

Matrix

Because D is a diagonal matrix, expressing A = PDP−1 makes it easier to analyze
the linear transformation T(x) = Ax. Diagonalizing A also allows for more efficient
computation of matrix powers A2, A3, . . ., which arise in modeling systems that evolve
over time. Matrix powers are discussed at the end of the section.

E X A M P L E 1 Let A =
[−2 2
−6 5

]
. Show that if

P =
[

1 2
2 3

]
and D =

[
2 0
0 1

]

then A = PDP−1 and hence A is diagonalizable.

Solution Applying the Quick Formula for the inverse of a 2 × 2 matrix (Section 3.3),

we find that P −1 =
[−3 2

2 −1

]
. Thus we have

PDP−1 =
[

1 2
2 3

] [
2 0
0 1

] [−3 2
2 −1

]
=

[−2 2
−6 5

]
= A

Therefore A is diagonalizable. ■
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We now turn to the problem of how to find matrices P and D to diagonalize a matrix
A. The key is to view the problem in terms of changing bases. Suppose that A is an n × n
matrix with linearly independent eigenvectors u1, . . . , un, and let

B = {u1, . . . , un}
Since B forms a basis for Rn, we know that for every vector x in Rn there exists a unique
set of scalars c1, . . . , cn such that

x = c1u1 + · · · + cnun =

⎡
⎢⎣

c1

...

cn

⎤
⎥⎦
B

Recall that the subscript B
indicates the coordinate vector
with respect to the basis B.

Since u1, . . . , un are eigenvectors of A, we have

Ax = A(c1u1 + · · · + cnun)

= c1 Au1 + · · · + cn Aun

= c1λ1u1 + · · · + cnλnun

=

⎡
⎢⎣

c1λ1

...

cnλn

⎤
⎥⎦
B

where λ1, . . . , λn are the eigenvalues associated with u1, . . . , un, respectively. Thus the
product Ax is the entries c1, . . . , cn of xB multiplied by λ1, . . . , λn. We can produce the
same product using the diagonal matrix

D =

⎡
⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2

...
...

. . . 0
0 · · · 0 λn

⎤
⎥⎥⎥⎥⎦

We have

DxB =

⎡
⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2

...
...

. . . 0
0 · · · 0 λn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

c1

...

cn

⎤
⎥⎦
B

=

⎡
⎢⎣

c1λ1

...

cnλn

⎤
⎥⎦
B

= Ax

This shows that we can compute Ax by:

1. Converting x from the standard basis to xB, where B is an eigenvector basis.

2. Computing DxB, where D is diagonal with diagonal entries λ1, . . . , λn.

3. Converting DxB from the eigenvector basis back to the standard basis.

To implement these steps, we start by forming the matrix

P = [
u1 · · · un

]
where u1, . . . , un are eigenvectors of A that form a basis for Rn. From Section 6.3 we
know that to convert from the standard basis to the basis B, we compute

xB = P −1x

Next, we compute

DxB = D
(

P −1x
) = D P −1x
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Finally, to convert back to the standard basis, we multiply by P. Hence

Ax = P
(
DP−1x

) = PDP−1x

Since this holds for all vectors x, it follows that A = PDP−1, which diagonalizes A. To sum
up, if {u1, . . . un} are linearly independent eigenvectors of A with associated eigenvalues
{λ1, . . . , λn}, and

P = [
u1 · · · un

]
and D =

⎡
⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2

...
...

. . . 0
0 · · · 0 λn

⎤
⎥⎥⎥⎥⎦

then A = PDP−1.

To check diagonalization
computations, we can save
the trouble of computing P −1

by instead verifying that PD =
AP.

E X A M P L E 2 Find matrices P and D to diagonalize A =
[

3 1
−2 0

]
.

Solution To diagonalize A, we need to find the eigenvalues and eigenvectors. Starting
with the eigenvalues, we have

det(A − λI2) =
∣∣∣∣ 3 − λ 1

−2 −λ

∣∣∣∣
= (3 − λ)(−λ) − (−2) = λ2 − 3λ + 2 = (λ − 2)(λ − 1)

Thus we have eigenvalues λ1 = 1 and λ2 = 2. Starting with λ1 = 1, the homogeneous
system (A − I2)u = 0 has augmented matrix and echelon form

[
2 1 0

−2 −1 0

] R1+R2⇒R2

∼
[

2 1 0
0 0 0

]

Back substitution gives us the associated eigenvector

u1 =
[

1
−2

]

For λ2 = 2, the system (A − 2I2)u = 0 has augmented matrix and echelon form

[
1 1 0

−2 −2 0

] 2R1+R2⇒R2

∼
[

1 1 0
0 0 0

]

This time back substitution gives us the eigenvector

u2 =
[

1
−1

]

Now we define P and D, with

P = [
u1 u2

] =
[

1 1
−2 −1

]
and D =

[
λ1 0
0 λ2

]
=

[
1 0
0 2

]

To check our work, we compute P −1 and then the product

PDP−1 =
[

1 1
−2 −1

] [
1 0
0 2

] [−1 −1
2 1

]
=

[
3 1

−2 0

]
= A

■
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We can use the diagonalization formula to construct a matrix A that has specified
eigenvalues and eigenvectors.

E X A M P L E 3 Find a 2 × 2 matrix A that has eigenvalues λ1 = −1 and λ2 = 2 and

corresponding eigenvectors u1 =
[

5
3

]
and u2 =

[
3
2

]
.

Solution We start by defining the diagonalization matrices P and D and multiply to
find A. Let

P = [
u1 u2

] =
[

5 3
3 2

]
and D =

[
λ1 0
0 λ2

]
=

[−1 0
0 2

]

We have P −1 =
[

2 −3
−3 5

]
from the Quick Formula for 2 × 2 matrix inverses, so that

A = PDP−1 =
[

5 3
3 2

] [−1 0
0 2

] [
2 −3

−3 5

]
=

[−28 45
−18 29

]

To verify that A has the required specifications, we compute

Au1 =
[−28 45
−18 29

] [
5
3

]
=

[−5
−3

]
= (−1)

[
5
3

]
= λ1u1

Au2 =
[−28 45
−18 29

] [
3
2

]
=

[
6
4

]
= (2)

[
3
2

]
= λ2u2

Hence {λ1, λ2} are eigenvalues of A associated with eigenvectors {u1, u2}. ■

Most square matrices are diagonalizable, but not all. The next theorem tells us exactly
when a matrix is diagonalizable.

T H E O R E M 6.13 An n × n matrix A is diagonalizable if and only if A has eigenvectors that form a basis
for Rn.

Proof We have seen how to diagonalize A if A has eigenvectors that form a basis for Rn,
so half of the proof is done. For the other half, suppose that A is diagonalizable, with

A = PDP−1 (1)

where p1, . . . , pn are the columns of P and d11, . . . , dnn are the diagonal entries of D.
Since P is invertible, the columns p1, . . . , pn of P are nonzero and linearly independent.
Multiplying by P on the right of both sides of (1), we have AP = P D. Since column i
of AP is equal to Api and column i of P D is equal to dii pi , we have

Api = dii pi

Therefore pi is an eigenvector of A with associated eigenvalue dii . Since P is invertible,
A has eigenvectors that form a basis for Rn. ■

The proof tells us both when A is diagonalizable and how A is diagonalized. The
diagonal elements of D must be the eigenvalues and the columns of P must be associated
eigenvectors. Of course, there are many possibilities for the associated eigenvectors, so
the diagonalization is not unique. However, we now know the only path for finding a
diagonalization of an n × n matrix A.



Holt-4100161 la November 8, 2012 11:10 253

SECTION 6.4 Diagonalization 253

D I A G O N A L I Z I N G A N n × n M A T R I X A Find the eigenvalues and
the associated linearly independent eigenvectors.

• If A has n linearly independent eigenvectors u1, . . . , un, then A is diagonalizable,
with P = [

u1 . . . un

]
and the diagonal entries of D given by the corresponding

eigenvalues.

• If there are not n linearly independent eigenvectors, then A is not diagonalizable.

Note that the order of the eigenvalues in D does not matter, as long as it matches the
order of the corresponding eigenvectors in P .

The next theorem tells us that eigenvectors associated with distinct eigenvalues must
be linearly independent. This theorem comes in handy when trying to diagonalize a
matrix.

T H E O R E M 6.14 If {λ1, . . . , λk} are distinct eigenvalues of a matrix A, then a set of associated eigen-
vectors {u1, . . . , uk} is linearly independent.

Proof Suppose that the set of eigenvectors {u1, . . . , uk} is linearly dependent. Since all
eigenvectors are nonzero, it follows from Theorem 2.14 and Exercise 64 of Section 2.3 that
one of the eigenvectors can be written as a linear combination of a linearly independent
subset of the remaining eigenvectors, with the coefficients nonzero and unique for the
given subset. Thus, without loss of generality, let c2, . . . , c j be nonzero scalars such that

u1 = c2u2 + · · · + c j u j (2)

Then

λ1u1 = Au1 = A
(
c2u2 + · · · + c j u j

)
= c2 Au2 + · · · + c j Au j

= c2λ2u2 + · · · + c j λ j u j

If λ1 �= 0, then

u1 = c2

(
λ2

λ1

)
u2 + · · · + c j

(
λ j

λ1

)
u j

which is a different linear combination equal to u1, contradicting the uniqueness of (2).
If λ1 = 0, then

c2λ2u2 + · · · + c j λ j u j = 0

Since c2, . . . , c j and λ2, . . . , λ j are nonzero, this contradicts the linear independence of
{u2, . . . , u j }. Hence either way we reach a contradiction, so it must be that the set of
eigenvectors {u1, . . . , uk} is linearly independent. ■

E X A M P L E 4 If possible, diagonalize the matrix A =
⎡
⎣ 1 1 1

−2 −2 −1
0 0 −1

⎤
⎦.

Solution We start by finding the eigenvalues by factoring the characteristic polynomial
of A,

det(A − λI3) = −λ3 − 2λ2 − λ = −λ(λ + 1)2
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Thus we have eigenvalues λ1 = 0 and λ2 = −1. Starting with λ1 = 0, the augmented
matrix for the system (A − 0I3)u = 0 and the corresponding echelon form are

⎡
⎣ 1 1 1 0

−2 −2 −1 0
0 0 −1 0

⎤
⎦

2R1+R2⇒R2

R2+R3⇒R3

∼
⎡
⎣1 1 1 0

0 0 1 0
0 0 0 0

⎤
⎦

Back substitution can be used to show that a basis for the eigenspace associated with

λ1 = 0 is

⎧⎨
⎩

⎡
⎣ 1

−1
0

⎤
⎦

⎫⎬
⎭.

For λ2 = −1, the augmented matrix and echelon form are

⎡
⎣ 2 1 1 0

−2 −1 −1 0
0 0 0 0

⎤
⎦

R1+R2⇒R2

∼
⎡
⎣2 1 1 0

0 0 0 0
0 0 0 0

⎤
⎦

Back substituting shows that the eigenspace of λ2 = −1 has dimension 2 and basis⎧⎨
⎩

⎡
⎣ 1

−2
0

⎤
⎦ ,

⎡
⎣ 1

0
−2

⎤
⎦

⎫⎬
⎭. By Theorem 6.14 we know that eigenvectors associated with distinct

eigenvalues are linearly independent. Hence the set⎧⎨
⎩

⎡
⎣ 1

−1
0

⎤
⎦ ,

⎡
⎣ 1

−2
0

⎤
⎦ ,

⎡
⎣ 1

0
−2

⎤
⎦

⎫⎬
⎭

is linearly independent and thus forms a basis for R3. Since there are two linearly
independent eigenvectors associated with λ2 = −1, this eigenvalue appears twice in D.
We have

D =
⎡
⎣0 0 0

0 −1 0
0 0 −1

⎤
⎦ and P =

⎡
⎣ 1 1 1

−1 −2 0
0 0 −2

⎤
⎦

Note that the eigenvalues along the diagonal of D are in columns corresponding to the
columns of P containing the associated eigenvectors. We check that D and P are correct
by computing

PD =
⎡
⎣ 1 1 1

−1 −2 0
0 0 −2

⎤
⎦

⎡
⎣0 0 0

0 −1 0
0 0 −1

⎤
⎦ =

⎡
⎣0 −1 −1

0 2 0
0 0 2

⎤
⎦

and

AP =
⎡
⎣ 1 1 1

−2 −2 −1
0 0 −1

⎤
⎦

⎡
⎣ 1 1 1

−1 −2 0
0 0 −2

⎤
⎦ =

⎡
⎣0 −1 −1

0 2 0
0 0 2

⎤
⎦

Since AP = PD and P is invertible, we have A = PDP−1. ■

The next theorem provides a set of conditions required for a matrix to be diagonal-
izable.

Recall that an eigenspace is the
subspace of eigenvectors asso-
ciated with a particular eigen-
value.
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T H E O R E M 6.15 Suppose that an n × n matrix A has only real eigenvalues. Then A is diagonalizable
if and only if the dimension of each eigenspace is equal to the multiplicity of the
corresponding eigenvalue.See Section 6.1 for the defi-

nition of the multiplicity of an
eigenvector. Proof This theorem follows from things that we already know:

• An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. (This is from Theorem 6.13.)

• Each eigenspace has a dimension no greater than the multiplicity of its associated
eigenvector. (This is from Theorem 6.6 in Section 6.1.)

• If A is an n × n matrix, then the multiplicities of the eigenvalues sum to n. (This is
because the degree of the characteristic polynomial is equal to n, and the multiplicities
must add up to the degree.)

• Vectors from distinct eigenspaces are linearly independent. (This is from Theorem 6.14.)

Pulling these together, we see that A is diagonalizable when the dimension of each
eigenspace is as large as possible. Otherwise, there will not be enough linearly independent
eigenvectors to form a basis. If the dimension of each eigenspace is as large as possible,
then since vectors from distinct eigenspaces are linearly independent, we are assured that
there will be enough linearly independent eigenvectors to form a basis for Rn. ■

E X A M P L E 5 If possible, diagonalize the matrix A =
⎡
⎣ 3 6 5

3 2 3
−5 −6 −7

⎤
⎦.

Solution The characteristic polynomial for A is

det(A − λI3) = −(λ + 2)2(λ − 2)

giving us eigenvalues λ1 = −2 and λ2 = 2. For λ1 = −2, the augmented matrix for the
system (A + 2I3)u = 0 and the corresponding echelon form are

⎡
⎣ 5 6 5 0

3 4 3 0
−5 −6 −5 0

⎤
⎦

− 3
5 R1+R2⇒R2

R1+R3⇒R3

∼
⎡
⎣5 6 5 0

0 2
5 0 0

0 0 0 0

⎤
⎦

Back substitution shows that the eigenspace associated with λ1 = −2 has basis

⎧⎨
⎩

⎡
⎣1

1
0

⎤
⎦

⎫⎬
⎭.

Clearly this eigenspace has dimension 1, which is less than the multiplicity of λ1 = −2.
By Theorem 6.15, we know immediately that A is not diagonalizable. ■

In general, we cannot tell simply by looking at a matrix if it will be diagonalizable.
Usually we must determine the eigenvalues and eigenvectors, comparing the multiplicity
of the eigenvalues with the dimensions of the eigenspaces. However, there is one special
case where we are guaranteed a matrix will be diagonalizable.

T H E O R E M 6.16 If A is an n × n matrix with n distinct real eigenvalues, then A is diagonalizable.

Proof Every eigenvalue has an eigenvector, ensuring that the associated eigenspace has
dimension at least 1. On the other hand, if the eigenvalues are distinct, then each has
multiplicity 1, so that each eigenspace must have dimension 1—there is no other option.
Thus, by Theorem 6.15, A is diagonalizable. ■
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E X A M P L E 6 If possible, diagonalize the matrix A =
⎡
⎣ 5 0 0

−4 3 0
1 −3 −2

⎤
⎦.

Solution Since A is lower triangular, the eigenvalues lie along the main diagonal (Ex-
ercise 56, Section 6.1), with λ1 = 5, λ2 = 3, and λ3 = −2. These are distinct, so we
know from Theorem 6.16 that A is diagonalizable. Bases for the associated eigenspaces
are (computations omitted)

λ1 = 5 ⇒
⎧⎨
⎩

⎡
⎣ 1

−2
1

⎤
⎦

⎫⎬
⎭ , λ2 = 3 ⇒

⎧⎨
⎩

⎡
⎣ 0

−5
3

⎤
⎦

⎫⎬
⎭ , λ3 = −2 ⇒

⎧⎨
⎩

⎡
⎣0

0
1

⎤
⎦

⎫⎬
⎭

Therefore A = PDP−1, with

D =
⎡
⎣5 0 0

0 3 0
0 0 −2

⎤
⎦ and P =

⎡
⎣ 1 0 0

−2 −5 0
1 3 1

⎤
⎦

■

Matrix Powers
Suppose that A is diagonalizable, with A = PDP−1. Then

A2 = (
PDP−1

)(
PDP−1

) = PD
(

P −1 P
)

D P −1 = PD2 P −1

A3 = A
(

A2
) = (

PDP−1
)(

PD2 P −1
) = PD

(
P −1 P

)
D2 P −1 = PD3 P −1

and in general

Ak = PDk P −1

Next, note that

D =

⎡
⎢⎢⎢⎢⎣

d11 0 · · · 0

0 d22

...
...

. . . 0
0 · · · 0 dnn

⎤
⎥⎥⎥⎥⎦ �⇒ Dk =

⎡
⎢⎢⎢⎢⎣

dk
11 0 · · · 0

0 dk
22

...
...

. . . 0
0 · · · 0 dk

nn

⎤
⎥⎥⎥⎥⎦

For example, if D =
[−3 0

0 2

]
, then

D2 =
[−3 0

0 2

] [−3 0
0 2

]
=

[
9 0
0 4

]
=

[
(−3)2 0

0 22

]

D3 =
[−3 0

0 2

] [
(−3)2 0

0 22

]
=

[
(−3)3 0

0 23

]

and so on. Hence we see that while directly calculating Ak can take many computations,
calculating Dk is relatively easy.
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E X A M P L E 7 Suppose that A =
[

1
3

2
9

2
3

7
9

]
. Find P and D so that A = PDP−1, and

then use this to give a formula for Ak .

Solution Leaving out the computational details, the eigenvalues and associated eigen-
vectors of A are

λ1 = 1 ⇒ u1 =
[

1
3

]
, λ2 = 1

9
⇒

[−1
1

]

Therefore if

P =
[

1 −1
3 1

]
and D =

[
1 0
0 1

9

]

then A = PDP−1. To compute Ak , we use

Ak = PDk P −1 =
[

1 −1
3 1

]⎡
⎣1k 0

0

(
1

9

)k

⎤
⎦

⎡
⎢⎣

1

4

1

4

−3

4

1

4

⎤
⎥⎦

= 1

4

⎡
⎢⎢⎢⎣

1 + 3

(
1

9

)k

1 −
(

1

9

)k

3 − 3

(
1

9

)k

3 +
(

1

9

)k

⎤
⎥⎥⎥⎦

Since

(
1

9

)k

→ 0 as k → ∞, it follows that Ak → 1

4

[
1 1
3 3

]
as k → ∞. ■

A is an example of a probabil-

ity matrix, because the entries are
nonnegative and each column
adds to 1. Probability matrices
are discussed in Section 3.5.

E X E R C I S E S

In Exercises 1–4, compute A5 if A = PDP−1.

1. P =
[

4 3
1 1

]
, D =

[
2 0
0 −1

]

2. P =
[

2 1
7 3

]
, D =

[
1 0
0 −3

]

3. P =
[

1 3 1
0 −1 2
0 0 −1

]
, D =

[
1 0 0
0 2 0
0 0 −1

]

4. P =
[

1 1 −1
1 0 1
1 0 2

]
, D =

[
3 0 0
0 1 0
0 0 1

]

In Exercises 5–8, find the matrix A that has the given eigenvalues
and corresponding eigenvectors.

5. λ1 = 1 ⇒
{[

2
3

]}
, λ2 = −1 ⇒

{[
3
5

]}

6. λ1 = 3 ⇒
{[

4
7

]}
, λ2 = 1 ⇒

{[
1
2

]}

7. λ1 = −1 ⇒
{[

1
1
0

]}
, λ2 = 0 ⇒

{[
1
2
1

]}
,

λ3 = 1 ⇒
{[−1

1
1

]}

8. λ1 = 2 ⇒
{[

1
3
1

]}
, λ2 = 1 ⇒

{[
2
1

−1

]
,

[
0
2
1

]}

In Exercises 9–18, diagonalize the given matrix, if possible.

9.

[
1 −2
0 1

]

10.

[
−2 2

0 0

]

11.

[
7 −8
4 −5

]

12.

[
7 −10
2 −2

]

13.

[
1 2 1
0 −3 −2
2 4 2

]

14.

[
4 −1 −2

−6 3 4
8 −2 −4

]
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15.

[
0 1 −1
1 0 1
1 −1 2

]

16.

[
3 5 3

−5 −7 −3
3 3 1

]

17.

⎡
⎢⎣

1 0 0 1
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎦

18.

⎡
⎢⎣

1 0 0 0
1 1 0 0
1 0 0 0

−1 0 1 −1

⎤
⎥⎦

In Exercises 19–22, compute A1000 for the given matrix A.

19. A =
[
−3 4
−2 3

]

20. A =
[

5 −4
2 −1

]

21. A =
[

7 −8
4 −5

]

22. A =
[

7 −10
2 −2

]
23. Suppose that a 4 × 4 diagonalizable matrix has two distinct
eigenvalues, one with an eigenspace of dimension 2. What is the
dimension of the other eigenspace?

24. Suppose that a 7 × 7 diagonalizable matrix has three distinct
eigenvalues, one with an eigenspace of dimension 1 and another
with an eigenspace of dimension 2. What is the dimension of the
third eigenspace?

FIND AN EXAMPLE For Exercises 25–30, find an example that
meets the given specifications.

25. A 2 × 2 matrix that is diagonalizable but not invertible.

26. A 3 × 3 matrix that is diagonalizable but not invertible.

27. A 2 × 2 matrix that is invertible but is not diagonalizable.

28. A 3 × 3 matrix that is invertible but is not diagonalizable.

29. A 3×3 diagonalizable (but not diagonal) matrix that has three
distinct eigenvalues.

30. A 3 × 3 diagonalizable (but not diagonal) matrix that has two
distinct eigenvalues.

TRUE OR FALSE For Exercises 31–38, determine if the statement
is true or false, and justify your answer.

31. Suppose a square matrix A has only real eigenvalues. If each
eigenspace of A has dimension equal to the multiplicity of the
associated eigenvalue, then A is diagonalizable.

32. If an n × n matrix A has n distinct eigenvectors, then A is
diagonalizable.

33. If A is not invertible, then A is not diagonalizable.

34. If A is diagonalizable, then so is AT .

35. If A is a diagonalizable n × n matrix, then rank(A) = n.

36. If A and B are diagonalizable n × n matrices, then so is AB .

37. If A and B are diagonalizable n ×n matrices, then so is A+ B .

38. If A is a diagonalizable n × n matrix, then there exist eigen-
vectors of A that form a basis for Rn .

39. Suppose that λ1 �= λ2 are eigenvalues of a 2 × 2 matrix A
with associated eigenvectors u1 and u2. Prove that det(U ) �= 0 for
U = [

u1 u2
]

.

40. Prove that if A is diagonalizable and c �= 0 is a scalar, then c A
is also diagonalizable.

41. Prove that if A is diagonalizable, then there are infinitely many
distinct matrices P and D such that A = PDP−1.

42. Suppose that A is an n × n matrix with eigenvectors that form
a basis for Rn . Prove that there exists an invertible matrix Q such
that Q AQ−1 is a diagonal matrix.

43. Prove that if A is diagonalizable, then so is AT .

44. Suppose that A is a matrix that can be diagonalized using ma-
trices P and D as in Definition 6.12. Prove that det(A) = det(D).

45. Suppose that A and B are n × n matrices that can both be
diagonalized using the same matrix P . Prove that AB = B A.

46. Suppose that A is a diagonalizable matrix with distinct nonzero
eigenvalues. Prove that A2 has positive eigenvalues.

C In Exercises 47–50, diagonalize the given matrix, if possible.

47.

⎡
⎢⎣

3 0 −2 −1
−1 2 5 4

6 0 −5 −3
−6 0 4 2

⎤
⎥⎦

48.

⎡
⎢⎣

0 −1 −1 −1
10 3 2 −4
−8 −2 −1 −5
−4 2 2 0

⎤
⎥⎦

49.

⎡
⎢⎢⎢⎣

2 −1 0 1 0
−4 3 0 −5 −4

5 −2 −1 1 −1
−6 2 0 −4 −2

2 −1 0 1 0

⎤
⎥⎥⎥⎦

50.

⎡
⎢⎢⎢⎣

3 −5 3 2 −3
5 −7 3 1 1
6 −6 2 −1 5
0 0 0 1 3
0 0 0 0 2

⎤
⎥⎥⎥⎦
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6.5 Complex Eigenvalues
Up until now we have only considered eigenvalues that are real numbers. However,
some characteristic polynomials have roots that are not real numbers. For instance, the
matrix

A =
[

3 −4
1 3

]
This section is optional.

However, complex numbers
and eigenvalues are revisited
in optional Section 11.4 and
optional Section 11.5.

has characteristic polynomial

|A − λI2| = (3 − λ)2 + 4

This characteristic polynomial has no real roots. If we are willing to expand our hori-
zons, we can consider complex roots. Although previously we avoided them, complex
eigenvalues and eigenvectors are useful. We will get to some applications later in this
section and in the next. We start here with a brief review of the properties of complex
numbers.

Complex Numbers
We are not going to fully develop the complex numbers, but instead just focus on the
aspects that are needed later. If a and b are real numbers, then a typical complex number
has the form

z = a + ib

where i satisfies i 2 = −1, making i the square root of −1. Here a is called the real part of
z, denoted by Re(z), and b is the imaginary part, denoted by Im(z). (Note that both the

Definition Real Part, Imaginary
Part

real and imaginary parts are real numbers.) The set of all complex numbers is denoted
by C.

3 � i

321

i y

x

3i

2i

i

2 � 3i

Figure 1 z1 = 3 + i and
z2 = 2 + 3i .

To add complex numbers z1 = a1 + ib1 and z2 = a2 + ib2, we just add the real parts
and the imaginary parts separately,

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

For example, if z1 = 3 + i and z2 = 2 + 3i , then

z1 + z2 = (3 + i) + (2 + 3i) = (3 + 2) + i(1 + 3) = 5 + 4i

Adding complex numbers is similar to adding vectors in R2, with each component added
separately.

We can also represent complex numbers geometrically just as we do vectors in R2,
with Re(z) on the x-axis and Im(z) on the y-axis. For example, z1 and z2 from above are
shown in Figure 1.

The product of complex numbers is found by multiplying term by term and then
simplifying using the identity i 2 = −1,

z1z2 = (a1 + ib1)(a2 + ib2)

= a1a2 + ia1b2 + ia2b1 + i 2b1b2 = (a1a2 − b1b2) + i(a1b2 + a2b1)

For our two complex numbers z1 = 3 + i and z2 = 2 + 3i , we have

z1z2 = (3 + i)(2 + 3i) = (
(3)(2) − (1)(3)

) + i
(
(3)(3) + (2)(1)

) = 3 + 11i
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An alternate way to represent a complex number is to use polar coordinates. Define
the modulus of a complex number z = a + ib byDefinition Modulus

|z| = √
a2 + b2.

The modulus generalizes the absolute value to complex numbers and gives the
distance from z to the origin. The argument of z, denoted by arg(z), is the angle θDefinition Argument
(in radians) in the counter clockwise direction from the positive x-axis to the ray from
the origin to z (see Figure 2). Note that the argument is not unique, because we can
always add or subtract multiples of 2π .

arg(z)

i y

x

z

|z
|

Figure 2 |z| and arg(z).

tan�1(b/a)

a

i y

x

ib a � ib

a2
 �

 b
2

Figure 3 Converting from
rectangular to polar
coordinates.

If r = |z| and θ = arg(z), then we can express z in polar form as

z = r
(
cos(θ) + i sin(θ)

)
For instance, if r = 5 and θ = π/3, then we can convert to rectangular coordinates by
evaluating, with

z = 5
(
cos(π/3) + i sin(π/3)

) = 5

2
+ i

5
√

3

2

Converting from rectangular to polar coordinates is depicted in Figure 3. For z = a + ib,
we set r = |z| = √

a2 + b2 and have

tan(θ) = b

a
�⇒ θ = tan−1

(
b

a

)

For example, in the case of z1 = 3 + i , we have

r = √
32 + 12 = √

10 and θ = tan−1

(
1

3

)
≈ 0.3218 radians

An interesting formula arises when multiplying complex numbers written in polar
form. If

z1 = r1

(
cos(θ1) + i sin(θ1)

)
and z2 = r2

(
cos(θ2) + i sin(θ2)

)
then we have

z1z2 = r1

(
cos(θ1) + i sin(θ1)

) · r2

(
cos(θ2) + i sin(θ2)

)
= r1r2

{(
cos(θ1) cos(θ2) − sin(θ1) sin(θ2)

) + i
(
cos(θ1) sin(θ2) + cos(θ2) sin(θ1)

)}
= r1r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
with the last line following from trigonometric identities. This formula tells us that

|z1z2| = |z1||z2| and arg(z1z2) = arg(z1) + arg(z2)

Applying this repeatedly (by induction) to z = r
(
cos(θ) + i sin(θ)

)
, we find that for

each positive integer k,

zk = r k
(
cos(kθ) + i sin(kθ)

)
In the special case where z = cos(θ) + i sin(θ) (that is, r = 1), this yields DeMoivre’s
Formula, (

cos(θ) + i sin(θ)
)k = cos(kθ) + i sin(kθ)
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For z = a + ib, the exponential function e x extends to the complex numbers by the
definition

ea+ib = ea
(
cos(b) + i sin(b)

)
Note that if z = a is real, then ez = ea reduces to the usual exponential function. On the
other hand, if z = ib is purely imaginary, then

eib = cos(b) + i sin(b)

and |eib| = 1.
The complex conjugate of z = a + ib is given by z = a − ib. Complex conjugationDefinition Complex Conjugate

distributes across addition and multiplication, so that if z and w are complex numbers,
then

z + w = z + w and zw = z · w

One interesting consequence of these properties is that for polynomials with real coeffi-
cients, complex roots come in conjugate pairs. That is, if

f (z) = anzn + · · · + a1z + a0

has real coefficients and f (z0) = 0, then f (z0) = 0. To see why, note that x = x for any
real number x . If f (z0) = 0, then

0 = 0 = f (z0) = anzn
0 + · · · + a1z0 + a0

= anzn
0 + · · · + a1z0 + a0

= an(z0)n + · · · + a1z0 + a0 = f (z0)

which tells us that f (z0) = 0 as well. For example, if f (z) = z2 + 2z + 4, then the
solutions to f (z) = 0 can be found by applying the quadratic formula,

z = −2 ± √
22 − 4(1)(4)

2(1)
= −2 ± √−12

2
= −1 ± i

√
3

Therefore we have two solutions, z = −1 + i
√

3 and the conjugate z = −1 − i
√

3.
One benefit of expanding from the real numbers to the complex numbers is that we

can completely factor polynomials. Specifically, any polynomial f (z) of degree n with
real or complex coefficients can be factored completely to

f (z) = c(z − z1)(z − z2) · · · (z − zn)

where c , z1, . . . zn are complex numbers.
Given an n×n matrix A, we know that the characteristic polynomial will have degree

n. When working in the complex numbers, the characteristic polynomial has exactly n
roots (counting multiplicities), so that A must have exactly n eigenvalues (again, counting
multiplicities).

Complex Eigenvalues and Eigenvectors
Now that we have refreshed our knowledge of complex numbers, let’s return to our
opening problem.
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E X A M P L E 1 Find the eigenvalues and associated eigenvectors for the matrix

A =
[

3 −4
1 3

]

Solution We know that det(A−λI2) = (3−λ)2 +4. Setting this equal to 0 and solving
for λ, we have

(3 − λ)2 = −4 �⇒ 3 − λ = ±√−4 = ±2i �⇒ λ = 3 ± 2i

In general, it is algebraically messy to find complex eigenvectors by hand. However, it is
manageable for 2 × 2 matrices. For the eigenvector λ1 = 3 − 2i , we have

A − λ1 I2 = A − (3 − 2i)I2 =
[

2i −4
1 2i

]

The augmented matrix of (A − λ1 I2)u = 0 and the corresponding echelon form are[
2i −4 0
1 2i 0

]
1
2 i R1+R2⇒R2

∼

[
2i −4 0
0 0 0

]

The echelon form is equivalent to the equation 2i x1 − 4x2 = 0. A nontrivial solution

is x1 = 2 and x2 = i , which gives us the eigenvector u1 =
[

2
i

]
. Similar calculations

applied to λ2 = 3 + 2i can be used to produce the associated eigenvector u2 =
[

2
−i

]
. ■

The eigenvalues in Example 1 are a conjugate pair, with λ2 = λ1. The corresponding
eigenvectors are similarly related, with u2 = u1. This is true for any square matrix with
real entries.

For a vector z, the complex
conjugate z means that we take
the complex conjugate for each
entry of z. An analogous defi-
nition holds for A, the complex
conjugate of the matrix A.

T H E O R E M 6.17 Suppose that A is a real matrix with eigenvalue λ and associated eigenvector u. Then
λ is also an eigenvalue of A, with associated eigenvector u.

Proof If A is a real matrix, then the characteristic polynomial has real coefficients.
Previously we showed that complex roots of polynomials with real coefficients come in
conjugate pairs. Thus, if λ is a complex eigenvalue of a matrix A, then so is λ.

Next suppose that u is an eigenvector of A associated with λ. Since A has real entries,
we have A = A, so that

Au = Au = Au = λu = λu

Hence u is an eigenvector of A associated with eigenvalue λ. ■

E X A M P L E 2 Find the eigenvalues and associated eigenvectors for the matrix

A =
⎡
⎣−1 3 −4

−2 3 −4
1 1 3

⎤
⎦

Solution Starting with the characteristic polynomial, we have

det(A − λI3) = −λ3 + 5λ2 − 17λ + 13 = −(λ − 1)(λ2 − 4λ + 13)
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Thus one eigenvalue is λ1 = 1. Applying the quadratic formula to the quadratic term
shows the other eigenvalues are λ2 = 2 + 3i and λ3 = λ2 = 2 − 3i .

For the eigenvectors associated with λ1 = 1, the augmented matrix and corre-
sponding echelon form are

⎡
⎣−2 3 −4 0

−2 2 −4 0
1 1 2 0

⎤
⎦

−R1+R2⇒R2
1
2 R1+R3⇒R3
5
2 R2+R3⇒R3

∼
⎡
⎣−2 3 −4 0

0 −1 0 0
0 0 0 0

⎤
⎦

Back substitution yields the eigenvector u1 =
⎡
⎣ 2

0
−1

⎤
⎦. For λ2 = 2 + 3i , we have

⎡
⎣(−3 − 3i) 3 −4 0

−2 (1 − 3i) −4 0
1 1 (1 − 3i) 0

⎤
⎦ ∼

⎡
⎣(−3 − 3i) 3 −4 0

0 −2i −(8 + 4i)/3 0
0 0 0 0

⎤
⎦

After back substitution and scaling, we find that u2 =
⎡
⎣−1 + 5i

−2 + 4i
3

⎤
⎦.

There is no need for row operations to find u3. Since λ3 = λ2, we know from

Theorem 6.17 that u3 = u2 =
⎡
⎣−1 − 5i

−2 − 4i
3

⎤
⎦. ■

The row operations are

− 2

3 + 3i
R1 + R2 ⇒ R2,

1

3 + 3i
R1 + R3 ⇒ R3,

−1 + 3i

4
R2 + R3 ⇒ R3

Rotation--Dilation Matrices
One application of complex eigenvalues and eigenvectors is in analyzing the behavior of
a special class of 2 × 2 matrices. Suppose that x1, . . . , x8 are the eight vectors distributed
evenly around the unit circle as shown in Figure 4(a). Now define the matrix

A =
[

1 −2
2 1

]

Figure 4(b) shows the vectors Ax1, . . . , Ax8.

5Radius �

(a) (b)

Radius � 1

Ax2

Ax3

Ax4

Ax5 Ax6

Ax7

Ax1

Ax8

x3

x7

x2x4

x8x6

x1x5

Figure 4 (a) The vectors x1, . . . , x8 are evenly spaced around the unit circle. (b) The vectors
x1, . . . , x8 after multiplication by A, which rotates each by 63.43◦ and dilates each by

√
5.

(NOTE: Figures are not drawn to scale.)
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Comparing xi with Axi , we see that multiplication by A causes each xi to be rotated and
dilated by the same amount. It turns out that the same thing will happen for any vector
x when multiplied by A.

This rotation–dilation behavior happens with any real matrix of the form

A =
[

a −b
b a

]

To see why, first note that if x =
[

x1

x2

]
, then

Ax =
[

a −b
b a

] [
x1

x2

]
=

[
ax1 − bx2

bx1 + ax2

]

It can be shown that λ = a + ib is an eigenvalue of A (see Exercise 47). Next note that if
we let x = x1 + i x2, then

λx = (a + ib)(x1 + i x2) = (ax1 − bx2) + i(bx1 + ax2)

Thus the components of Ax match the real and imaginary parts of λx , so the two products
can be viewed as equivalent. From the properties of the products of complex numbers,
we know that

arg(λx) = arg(λ) + arg(x) (Rotation of x in C by the angle arg(λ))

|λx| = |λ||x| = √
a2 + b2|x| (Dilation of x in C by the multiple |λ|)

Therefore the eigenvalue tells us the amount of rotation and dilation induced by A.
Returning to our matrix

A =
[

1 −2
2 1

]

we have λ = 1 + 2i , so that Ax will produce

Rotation by arg(λ) = tan−1(2/1) ≈ 1.107 radians

Dilation by |λ| = √
12 + 22 = √

5

Note that this is consistent with Figure 4.

E X A M P L E 3 Determine the rotation and dilation that result from multiplying x
in R2 by

A =
[

7 −4
4 7

]

Solution An eigenvalue of A is λ = 7 + 4i , so that we have

Rotation by tan−1(4/7) ≈ 0.5191 radians

Dilation by
√

72 + 42 = √
65 ■

The Hidden Rotation--Dilation Matrix
As it happens, any 2 × 2 real matrix with complex eigenvalues has a rotation–dilation
hidden within it. Finding this rotation–dilation requires a procedure reminiscent of



Holt-4100161 la November 8, 2012 11:10 265

SECTION 6.5 Complex Eigenvalues 265

diagonalization. We start by illustrating using the matrix from the beginning of this
section,

A =
[

3 −4
1 3

]

We have previously shown that u =
[

2
i

]
is an eigenvector of A. Now form the matrix

P = [
Re(u) Im(u)

] =
[

2 0
0 1

]

where Re(u) and Im(u) denote the vectors formed by taking the real and imaginary parts
of each component of u. Then we compute

P −1 AP = 1
2

[
1 0
0 2

] [
3 −4
1 3

] [
2 0
0 1

]
=

[
3 −2
2 3

]
= B

Thus A = PBP−1, where B is a rotation–dilation matrix. Note that the first row of B
corresponds to the real and imaginary parts of the eigenvalue λ = 3 − 2i of A associated
with u. This example is generalized in the next theorem.

T H E O R E M 6.18 Let A be a nonzero real 2×2 matrix with complex eigenvalue λ = a−ib and associated
eigenvector u. If P = [

Re(u) Im(u)
]
, then

A = PBP−1

where B =
[

a −b
b a

]
is a rotation–dilation matrix.

We do not give a proof here, but most of the pieces required are covered in Exercise 49. The
form PBP−1 suggests viewing the transformation Ax as the composition of transforma-
tions. The first is a change to the basis {Re(u), Im(u)}, the second is a rotation–dilation,
and the third is a change back to the standard basis. Note that the rotation–dilation is
not applied to x, but to the coordinate vector of x relative to the basis {Re(u), Im(u)}.

E X A M P L E 4 Find the hidden rotation–dilation matrix within

A =
[

1 5
−2 3

]

Solution The characteristic polynomial is det(A − λI2) = λ2 − 4λ + 13. A quick
application of the quadratic formula reveals that one of the eigenvalues is λ = 2 −
3i . (What is the other?) The usual procedure yields an associated eigenvector u =[

1 + 3i
2

]
=

[
1
2

]
+ i

[
3
0

]
. Applying Theorem 6.18 with λ = 2 − 3i , we have

P =
[

1 3
2 0

]
and B =

[
2 −3
3 2

]

Clearly B has the form of a rotation–dilation matrix. We can check our calculations
with the computation

PBP−1 =
[

1 3
2 0

] [
2 −3
3 2

] (
− 1

6

[
0 −3

−2 1

])
=

[
1 5

−2 3

]
= A

■
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E X E R C I S E S
In Exercises 1–2, suppose that z1 = 5 − 2i and z2 = 3 + 4i are
both complex numbers.

1. Compute each of the following:

(a) z1 + z2

(b) 2z1 + 3z2

(c) z1 − z2

(d) z1z2

2. Compute each of the following:

(a) −4z1

(b) 3z1 + 2z2

(c) z2 − z1

(d) (−5z1)(3z2)

In Exercises 3–8, find the eigenvalues and a basis for each
eigenspace for the given matrix.

3.

[
3 1

−5 1

]

4.

[
1 −1
2 3

]

5.

[
1 −2
1 3

]

6.

[
1 3

−3 1

]

7.

[
4 2

−1 2

]

8.

[
5 2

−5 −1

]
In Exercises 9–14, determine the rotation and dilation for the given
matrix.

9.

[
2 −1
1 2

]

10.

[
3 −2
2 3

]

11.

[
1 −1
1 1

]

12.

[
3 −4
4 3

]

13.

[
4 3

−3 4

]

14.

[
5 2

−2 5

]
In Exercises 15–20, find the rotation–dilation matrix within the
given matrix.

15.

[
3 1

−5 1

]

16.

[
1 −1
2 3

]

17.

[
1 −2
1 3

]

18.

[
1 3

−3 1

]

19.

[
4 2

−1 2

]

20.

[
5 2

−5 −1

]
21. Suppose that some of the roots of a degree 5 polynomial with
real coefficients are 2, 1 + 2i , and 3 − i . What are the other roots,
and what are the multiplicities of all roots?

22. Suppose that some of the roots of a degree 7 polynomial with
real coefficients are −3, −2 + i , 5 + i , and i . What are the other
roots, and what are the multiplicities of all roots?

FIND AN EXAMPLE For Exercises 23–30, find an example that
meets the given specifications.

23. A complex number z such that |z| = 3 and Re(z) = 2Im(z).

24. A complex number z such that |z| = 5 and 2Re(z) = −Im(z).

25. A rotation–dilation matrix A that rotates vectors by 90◦ and
dilates vectors by 2.

26. A rotation–dilation matrix A that rotates vectors by −45◦ and
dilates vectors by 1

2 .

27. A 2 × 2 matrix A that is not itself a rotation–dilation matrix

but does have the rotation–dilation matrix B =
[

1 −2
2 1

]
hidden

within it.

28. A 2 × 2 matrix A that is not itself a rotation–dilation matrix

but does have the rotation–dilation matrix B =
[

3 −1
1 3

]
hidden

within it.

29. A 2×2 matrix A that has complex entries but real eigenvalues.

30. A 4×4 matrix with real entries and only complex eigenvalues.

TRUE OR FALSE For Exercises 31–40, determine if the statement
is true or false, and justify your answer.

31. If z and w are complex numbers, then |zw | = |z||w |.
32. A 2 × 2 matrix A with real eigenvalues has a rotation–dilation
matrix hidden within it.

33. If A is a square matrix with real entries and complex eigenvec-
tors, then A has complex eigenvalues.

34. If z is a complex number, then |z| = |z|.
35. If z and w are complex numbers, then |z + w | = |z| + |w |.
36. The amount of dilation imparted by a rotation–dilation matrix
A is equal to |λ|, where λ is an eigenvalue of A.
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37. If z is a complex number, then z = z.

38. If A is a rotation–dilation matrix, then the angle between a
vector x0 and Ax0 is the same for all nonzero x0 in R2.

39. If A =
[

a −b
b a

]
is a rotation–dilation matrix with eigenval-

ues λ1 and λ2, then |λ1| = |λ2|.
40. If A is a 2×2 matrix with complex entries, then the eigenvalues
of A cannot be complex conjugates.

41. If z and w are complex numbers, prove that

(a) z + w = z + w

(b) zw = z · w

42. Suppose z is a complex number.

(a) Prove that zz = |z|2.

(b) If w is also complex, use (a) to show that
w

z
= w z

|z|2 for z �= 0.

(c) Use part (b) to simplify
2 + i

4 − 3i
to the form a + ib, where a

and b are real.

43. If c is a complex scalar and v is a vector with complex entries,
prove that c · v = cv.

44. If A is a matrix with complex entries and v is a vector with
complex entries, prove that Av = Av.

45. Suppose that λ is complex and t is real. Prove that eλt = eλt .

46. If z is complex, prove that

(a) 1
2

(
z + z

) = Re(z)

(b) 1
2i

(
z − z

) = Im(z)

47. Prove that λ = a + ib is an eigenvalue of the matrix A =[
a −b
b a

]
.

48. Prove that if n is odd and A is a real n × n matrix, then there
exists a nonzero vector u such that Au = cu, where c is a real
number.

49. In this exercise we prove that AP = P C for the matrices
in Theorem 6.18. (This combined with Exercise 50 proves the
theorem.)

(a) Show that A
(

Re(u)
) = Re(Au) and A

(
Im(u)

) = Im(Au).
(HINT: Recall that A is a real matrix.)

(b) Use (a) and the identity u = Re(u) + i Im(u) to show that

A
(

Re(u)
) = aRe(u) + bIm(u),

A
(

Im(u)
) = −bRe(u) + aIm(u)

(HINT: Recall that u is an eigenvector of A with eigenvalue
λ = a − ib.)

(c) Apply (b) to show that the columns of AP are the same as the
columns of P C , and conclude AP = P C .

50. In this exercise we prove that the columns of P in Theo-
rem 6.18 are linearly independent and therefore P is invertible.
The proof is by contradiction: Suppose that Re(u) and Im(u)
are linearly dependent. Then there exists a real scalar c such that
Re(u) = c Im(u).

(a) Prove that

u = Re(u) + i Im(u) = (c + i)Im(u)

and from this show λu = λ(c + i)Im(u).

(b) Show that Re(λu) = c Im(λu) by evaluating A
(

Re(u)
)

and

A
(

c Im(u)
)

and setting the results equal to each other. (HINT:
Use (a) from Exercise 49 and that u is an eigenvector with
eigenvalue λ.)

(c) Show that λu = Re(λu) + i Im(λu), and combine this with
the result from (b) to prove that λu = (c + i)Im(λu).

(d) Prove that λ(c + i)Im(u) = (c + i)Im(λu). Show that
λIm(u) = Im(λu), and explain why this implies λ is a real
number.

(e) Explain why λ being a real number is a contradiction, and
from this complete the proof.

C In Exercises 51–54, find the complex eigenvalues and a basis
for each associated eigenspace for the given matrix.

51. A =
[

1 3 2
4 2 1
0 5 −2

]

52. A =
[

4 −3 1
2 2 7
1 −4 2

]

53. A =

⎡
⎢⎣

0 5 3 −1
2 2 −1 2
4 0 2 4
3 9 7 9

⎤
⎥⎦

54. A =

⎡
⎢⎣

2 −5 3 1
7 0 −3 −4
5 2 1 1
6 2 0 1

⎤
⎥⎦
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6.6 Systems of Differential Equations
In a variety of applications, systems of equations arise involving one or more functions
and the derivatives of those functions. One example can be found in a simplified model
of the concentration of insulin and glucose in an individual. Insulin is a hormone that
reduces glucose concentrations.

This section is optional and
can be omitted without loss of
continuity.

Suppose that y1(t) and y2(t) give the deviation from normal of insulin and glucose
concentrations, respectively. Then the rates of change y ′

1(t) and y ′
2(t) of insulin and

glucose concentrations are related by

y ′
1(t) = ay1(t) + by2(t)

y ′
2(t) = c y1(t) + dy2(t)

where a , b, c , and d are constants. This is an example of a system of linear differential
equations. We will return to this example shortly, after developing a method for finding
the solutions to such systems.

If y = y(t), one of the simplest differential equations isHere we assume a basic fa-
miliarity with differential equa-
tions, and so only provide a brief
background.

y ′ = ay (1)

where a is a constant. Setting y = ceat for any constant c , we have y ′ = aceat , so that our
function y satisfies y ′ = ay. Our function is called a solution to the differential equation,
and in fact, the only solutions to this differential equation have this form.

In this section we describe how to find the solutions to a system of linear first-order
differential equations, which has the form

y ′
1 = a11 y1 + a12 y2 + a13 y3 + · · · + a1n yn

y ′
2 = a21 y1 + a22 y2 + a23 y3 + · · · + a2n yn

y ′
3 = a31 y1 + a32 y2 + a33 y3 + · · · + a3n yn

...
...

...
...

y ′
n = an1 y1 + an2 y2 + an3 y3 + · · · + ann yn

(2)

Here we assume that y1 = y1(t), . . . , yn = yn(t) are each differentiable functions. The
system is linear because the functions are linearly related, and it is first-order because
only the first derivative appears. If we denote

y =

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦ , y′ =

⎡
⎢⎣

y ′
1
...

y ′
n

⎤
⎥⎦ , and A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

then the system (2) can be expressed compactly as y′ = Ay. This matrix equation
resembles the differential equation (1), which suggests that a solution to our system
might have the form

y =

⎡
⎢⎢⎢⎣

u1eλt

u2eλt

...

uneλt

⎤
⎥⎥⎥⎦ = eλt u

If y is so defined, then y′ = λeλt u = eλt (λu) and Ay = A
(
eλt u

) = eλt
(

Au
)
. Since

eλt �= 0, this tells us that y is a solution to y′ = Ay exactly when

Au = λu

That is, y = eλt u is a solution when λ is an eigenvalue of A with associated eigenvector u.
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In many cases, an n × n matrix A will have n linearly independent eigenvectors
u1, . . . , un with associated eigenvalues λ1, . . . , λn. If we form the linear combination

y = c1eλ1t u1 + · · · + cneλnt un

where c1, . . . , cn are constants, then y′ = c1λ1eλ1t u1 + · · · + cnλneλnt un and

Ay = A
(
c1eλ1t u1 + · · · + cneλnt un

)
= c1eλ1t Au1 + · · · + cneλnt Aun

= c1λ1eλ1t u1 + · · · + cnλneλnt un = y′

Thus y is a solution to y′ = Ay. It turns out that all solutions to this type of system of
differential equations will have this form. The set of all solutions is called the general
solution for the system. This is summarized in the next theorem.

T H E O R E M 6.19 Suppose that y′ = Ay is a first-order linear system of differential equations. If A is an
n × n diagonalizable matrix, then the general solution to the system is given by

y = c1eλ1t u1 + · · · + cneλnt un

where u1, . . . , un are n linearly independent eigenvectors with associated eigenvalues
λ1, . . . , λn, and c1, . . . , cn are constants.

Note that if A is diagonalizable, then there must be n linearly independent eigenvectors.
Also, the eigenvalues may be repeated to reflect multiplicities.

E X A M P L E 1 The concentrations of insulin and glucose in an individual interact
with each other and vary over time. A mathematical model for the concentrations of
insulin and glucose in an individual is given by the system

y ′
1 = −0.05y1 + 0.225y2

y ′
2 = −0.3y1 − 0.65y2

Find the general solution for this system.

Solution The coefficient matrix is A =
[−0.05 0.225

−0.3 −0.65

]
. Applying our standard

methods, we find that the eigenvalues and eigenvectors are

λ1 = −0.5 ⇒ u1 =
[−1

2

]
, λ2 = −0.2 ⇒ u2 =

[
3

−2

]

By Theorem 6.19, the general solution is

y = c1e−0.5t u1 + c2e−0.2t u2 = c1e−0.5t

[−1
2

]
+ c2e−0.2t

[
3

−2

]

The functions giving the insulin and glucose concentrations are

y1 = −c1e−0.5t + 3c2e−0.2t

y2 = 2c1e−0.5t − 2c2e−0.2t
■

Arms Races
After the end of World War I, Lewis F. Richardson (who pioneered the use of mathematics
in meteorology) proposed a model to describe the evolution of an arms race between



Holt-4100161 la November 8, 2012 11:10 270

270 CHAPTER 6 Eigenvalues and Eigenvectors

two countries. Here we consider a simplified version of this model. Let y1 = y1(t) and
y2 = y2(t) denote the quantity of arms held by two different nations. The derivatives
y ′

1 and y ′
2 represent the rate of change in the size of each nation’s arsenal. Each nation

is concerned about security against the other and acquires arms in proportion to those
held by its opponent. There is also a cost of acquiring arms, which tends to reduce the
rate of additions to each nation’s arsenal in proportion to arsenal size. These factors are
incorporated into the system of differential equations

y ′
1 = −dy1 + ey2

y ′
2 = f y1 − g y2

(3)

The constants d , e , f , and g are all positive and depend on the particular situation, with
e and f dictated by the degree of fear that each country has of the other and d and g the
level of aversion to additional spending on arms in each country.

E X A M P L E 2 Suppose that we have two countries in an arms race modeled by the
system of differential equations

y ′
1 = −3y1 + 2y2

y ′
2 = 3y1 − 2y2

Find the general solution for this system. Then find the formula for y1(t) and y2(t) if
y1(0) = 5 and y2(0) = 15.

Solution The coefficient matrix for this system is A =
[−3 2

3 −2

]
. Applying our usual

methods for finding the eigenvalues and eigenvectors, we have

λ1 = −5 ⇒ u1 =
[−1

1

]
, λ2 = 0 ⇒ u2 =

[
2
3

]

Therefore, by Theorem 6.19, the general solution for this system is

y = c1e−5t u1 + c2e0u2 = c1e−5t

[−1
1

]
+ c2

[
2
3

]

Extracting the two functions y1 and y2, we have

y1 = −c1e−5t + 2c2

y2 = c1e−5t + 3c2

Evaluating these functions at t = 0 and using the equations y1(0) = 5 and y2(0) = 15
yield the system

−c1 + 2c2 = 5

c1 + 3c2 = 15

This linear system has unique solution c1 = 3 and c2 = 4. Hence

y1 = −3e−5t + 8

y2 = 3e−5t + 12 ■

The next example shows what we do if the coefficient matrix for a first-order linear
system has repeated real eigenvalues.
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E X A M P L E 3 Find the general solution for the system

y ′
1 = 2y1 + y2 − y3

y ′
2 = 2y1 + 3y2 − 2y3

y ′
3 = −3y1 − 3y2 + 4y3

Solution Here the coefficient matrix is given by

A =
⎡
⎣ 2 1 −1

2 3 −2
−3 −3 4

⎤
⎦

The characteristic polynomial for A is −(λ − 7)(λ − 1)2, and bases for the eigenspaces
are

λ1 = 7 ⇒ Basis:

⎧⎨
⎩

⎡
⎣ 1

2
−3

⎤
⎦

⎫⎬
⎭ , λ2 = 1 ⇒ Basis:

⎧⎨
⎩

⎡
⎣1

0
1

⎤
⎦ ,

⎡
⎣ 1

−1
0

⎤
⎦

⎫⎬
⎭

Although λ2 = 1 has multiplicity 2, since the eigenspace also has dimension 2, Theo-
rem 6.19 still applies. (The case where an eigenspace has less than maximal dimension
is more complicated and not included here.) We just repeat the term corresponding
to λ2 = 1 twice, once for each of the linearly independent eigenvectors. The general
solution is

y = c1e7t

⎡
⎣ 1

2
−3

⎤
⎦ + c2et

⎡
⎣1

0
1

⎤
⎦ + c3et

⎡
⎣ 1

−1
0

⎤
⎦

Writing the individual functions, we have

y1 = c1e7t + (c2 + c3)et

y2 = 2c1e7t − c3et

y3 = −3c1e7t + c2et ■

Complex Eigenvalues
Suppose that our system of linear differential equations has a real coefficient matrix A
with complex eigenvalues. We can express the general solution just as we did with real
eigenvalues. However, when λ and associated eigenvector u are both complex, the product
eλt u typically is as well. It is generally preferable to have solutions free of complex terms,
and with a bit of extra thought we can.

To get us started, we recall a few properties of complex numbers. (All are given in
Section 6.5.)

• ea+ib = ea
(
cos(b) + i sin(b)

) • eλt = eλt

• 1
2

(
z + z

) = Re(z) • 1
2 i

(
z − z

) = Im(z)

Now let A be a real matrix with complex eigenvalue λ = a + ib and associated
eigenvector u. Then λ = a − ib is also an eigenvalue and has associated eigenvector u.
Instead of taking linear combinations of eλt u and eλt u for the general solution, we take
linear combinations of

y1 = 1

2

(
eλt u + eλt u

) = Re
(
eλt u

)
y2 = 1

2
i
(
eλt u − eλt u

) = Im
(
eλt u

)
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Note that both Re
(
eλt u

)
and Im

(
eλt u

)
are real-valued, so that the general solution will

be made up of real-valued functions. To find Re
(
eλt u

)
and Im

(
eλt u

)
, we compute

eλt u = eat+ibt u

= eat
(
cos(bt) + i sin(bt)

)(
Re(u) + i Im(u)

)
= eat

(
cos(bt)Re(u) − sin(bt)Im(u)

) + i eat
(
sin(bt)Re(u) + cos(bt)Im(u)

)
Separating the real and imaginary parts, we have

y1 = eat
(
cos(bt)Re(u) − sin(bt)Im(u)

)
y2 = eat

(
sin(bt)Re(u) + cos(bt)Im(u)

) (4)

E X A M P L E 4 Find the general solution for the system

y ′
1 = 6y1 − 5y2

y ′
2 = 5y1 − 2y2

Solution Here the coefficient matrix is

A =
[

6 −5
5 −2

]

The characteristic polynomial for this matrix is det(A−λI2) = λ2 − 4λ+ 13. Applying
the quadratic formula and the usual matrix manipulations yields the eigenvalues and
eigenvectors

λ1 = 2 + 3i ⇒ u1 =
[

4 + 3i
5

]
, λ2 = 2 − 3i ⇒ u2 =

[
4 − 3i

5

]

The two eigenvalues are a complex conjugate pair, so we use the formulas for y1 and y2

given in (4) to find

y1 = e2t
(
cos(3t)Re(u1) − sin(3t)Im(u1)

) = e2t

(
cos(3t)

[
4
5

]
− sin(3t)

[
3
0

])

y2 = e2t
(
sin(3t)Re(u1) + cos(3t)Im(u1)

) = e2t

(
sin(3t)

[
4
5

]
+ cos(3t)

[
3
0

])

Hence the general solution is

y = c1y1 + c2y2

= c1e2t

(
cos(3t)

[
4
5

]
− sin(3t)

[
3
0

])
+ c2e2t

(
sin(3t)

[
4
5

]
+ cos(3t)

[
3
0

])

The individual functions are

y1 = (
(4c1 + 3c2) cos(3t) + (4c2 − 3c1) sin(3t)

)
e2t

y2 = (
5c1 cos(3t) + 5c2 sin(3t)

)
e2t

■

The next example features a system with a combination of real and complex
eigenvalues.



Holt-4100161 la November 8, 2012 11:10 273

SECTION 6.6 Systems of Differential Equations 273

E X A M P L E 5 Find the general solution for the system

y ′
1 = −10y1 + 6y2 − 3y3

y ′
2 = −12y1 + 6y2 − 5y3

y ′
3 = 8y1 − 4y2 + 3y3

Solution The coefficient matrix is

A =
⎡
⎣−10 6 −3

−12 6 −5
8 −4 3

⎤
⎦

and the characteristic polynomial is

det(A − λI3) = −λ3 − λ2 − 4λ − 4 = −λ2(λ + 1) − 4(λ + 1) = −(λ2 + 4)(λ + 1)

giving us eigenvalues λ = −1, ±2i . The associated eigenvectors are

λ1 = −1 ⇒ u1 =
⎡
⎣−1

−1
1

⎤
⎦, λ2 = 2i ⇒ u2 =

⎡
⎣ 9 − 3i

12 − 2i
− 8

⎤
⎦, λ3 = −2i ⇒ u3 =

⎡
⎣ 9 + 3i

12 + 2i
− 8

⎤
⎦

We treat the real and complex eigenvalues separately and form a linear combination of
the components at the end. For λ1 = −1, we have

y1 = e−t u1 = e−t

⎡
⎣−1

−1
1

⎤
⎦

For the complex conjugate pair ±2i , we have

y2 = e0
(
cos(2t)Re(u2) − sin(2t)Im(u2)

) = cos(2t)

⎡
⎣ 9

12
−8

⎤
⎦ − sin(2t)

⎡
⎣−3

−2
0

⎤
⎦

y3 = e0
(
sin(2t)Re(u2) + cos(2t)Im(u2)

) = sin(2t)

⎡
⎣ 9

12
−8

⎤
⎦ + cos(2t)

⎡
⎣−3

−2
0

⎤
⎦

The general solution is then

y = c1y1 + c2y2 + c3y3

for y1, y2, and y3 above. ■

E X E R C I S E S

In Exercises 1–10, the coefficient matrix for a system of linear dif-
ferential equations of the form y′ = Ay has the given eigenvalues
and eigenspace bases. Find the general solution for the system.

1. λ1 = −1 ⇒
{[

1
1

]}
, λ2 = 2 ⇒

{[
1

−1

]}

2. λ1 = 1 ⇒
{[

2
−1

]}
, λ2 = 3 ⇒

{[
3
1

]}

3. λ1 = 2 ⇒
{[

4
3
1

]}
, λ2 = −2 ⇒

{[
1
2
0

]
,

[
2
3
1

]}

4. λ1 = 3 ⇒
{[

1
1
0

]}
, λ2 = 0 ⇒

{[
1
5
1

]
,

[
2
1
4

]}
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5. λ1 = 2i ⇒
{[

1 + i
2 − i

]}
, λ2 = −2i ⇒

{[
1 − i
2 + i

]}

6. λ1 = 3 + i ⇒
{[

2i
i

]}
, λ2 = 3 − i ⇒

{[
−2i
−i

]}

7. λ1 = 4 ⇒
{[

3
1
5

]}
, λ2 = 1 + i ⇒

{[
4 + i
−2i

3 + i

]}
,

λ3 = 1 − i ⇒
{[

4 − i
2i

3 − i

]}

8. λ1 = −1 ⇒
{[

1
0
3

]}
, λ2 = 3i ⇒

{[
2 − i
1 + i

7i

]}
,

λ3 = −3i ⇒
{[

2 + i
1 − i
−7i

]}

9. λ1 = 1 ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

6
2
5
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , λ2 = 1 + i ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3 + 2i
6

2 − 3i
−5i

⎤
⎥⎦

⎫⎪⎬
⎪⎭ ,

λ3 = 4 ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
2
3
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , λ4 = 1 − i ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3 − 2i
6

2 + 3i
5i

⎤
⎥⎦

⎫⎪⎬
⎪⎭

10. λ1 = −2 ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
0
1
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , λ2 = 4i ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−5
4 + 3i

3i
1 − i

⎤
⎥⎦

⎫⎪⎬
⎪⎭ ,

λ3 = 0 ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

4
2
1
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , λ4 = −4i ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−5
4 − 3i
−3i
1 + i

⎤
⎥⎦

⎫⎪⎬
⎪⎭

In Exercises 11–18, find the general solution for the system.

11. y ′
1 = y1 + 4y2

y ′
2 = y1 + y2

12. y ′
1 = 4y1 + 2y2

y ′
2 = 6y1 + 3y2

13. y ′
1 = 7y1 − 8y2

y ′
2 = 4y1 − 5y2

14. y ′
1 = 7y1 − 10y2

y ′
2 = 2y1 − 2y2

15. y ′
1 = 3y1 + y2

y ′
2 = −5y1 + y2

16. y ′
1 = y1 − y2

y ′
2 = 2y1 + 3y2

17. y ′
1 = 7y1 + 2y2 − 8y3

y ′
2 = −3y1 + 3y3

y ′
3 = 6y1 + 2y2 − 7y3

18. y ′
1 = y2 − y3

y ′
2 = y1 + y3

y ′
3 = y1 − y2 + 2y3

In Exercises 19–24, find the solution for the system that satisfies
the conditions at t = 0.

19. y ′
1 = 8y1 − 10y2,

y ′
2 = 5y1 − 7y2,

y1(0) = 4
y2(0) = 1

20. y ′
1 = −4y1 + 10y2,

y ′
2 = −3y1 + 7y2,

y1(0) = 1
y2(0) = 1

21. y ′
1 = y1 + 3y2,

y ′
2 = −3y1 + y2,

y1(0) = 2
y2(0) = −1

22. y ′
1 = 2y1 + 4y2,

y ′
2 = −2y1 − 2y2,

y1(0) = −1
y2(0) = 3

23. y ′
1 = 2y1 − y2 − y3,

y ′
2 = 6y1 + 3y2 − 2y3,

y ′
3 = 6y1 − 2y2 − 3y3,

y1(0) = −1

y2(0) = 0

y3(0) = −4

24. y ′
1 = 3y1 − 2y2,

y ′
2 = 5y1 − 3y2,

y ′
3 = y1 + 1y2 − 1y3,

y1(0) = 1
y2(0) = −1
y3(0) = 2

In Exercises 25–26, the given system of linear differential equations
models the concentrations of insulin and glucose in an individual,
as described earlier in this section. Find the general solution for
the system.

25. y ′
1 = −0.1y1 + 0.2y2

y ′
2 = −0.3y1 − 0.6y2

26. y ′
1 = −0.44y1 + 0.12y2

y ′
2 = −0.08y1 − 0.16y2

27. For the system of differential equations given in Exercise 25,
suppose that it is known that at time t = 0 the concentrations of
insulin and glucose, respectively, are

y1(0) = 10, y2(0) = 20

Find a formula for y1(t) and y2(t).

28. For the system of differential equations given in Exercise 26,
suppose that it is known that at time t = 0 the concentrations of
insulin and glucose, respectively, are

y1(0) = 15, y2(0) = 50

Find a formula for y1(t) and y2(t).

In Exercises 29–30, the given system of linear differential equations
models a two-country arms race, as described in this section. Find
the general solution for the system, and provide a brief interpre-
tation of the results.

29. y ′
1 = −3y1 + 5y2

y ′
2 = 4y1 − 4y2
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30. y ′
1 = y1 + y2

y ′
2 = 4y1 + y2

31. For the system of differential equations given in Exercise 29,
suppose that it is known that the initial quantity of arms in each
country’s arsenal is

y1(0) = 1, y2(0) = 2

Find a formula for y1(t) and y2(t).

32. For the system of differential equations given in Exercise 30,
suppose that it is known that the initial quantity of arms in each
country’s arsenal is

y1(0) = 4, y2(0) = 1

Find a formula for y1(t) and y2(t).

FIND AN EXAMPLE For Exercises 33–38, find an example that
meets the given specifications.

33. A system of two first-order linear differential equations that
has general solution y1 = c1e−3t and y2 = c2e2t .

34. A system of two first-order linear differential equations that
has general solution y1 = c1et and y2 = c2e−2t .

35. A system of two first-order linear differential equations that has
general solution y1 = 2c1et −c2e−2t and y2 = −3c1et +2c2e−2t .
(HINT: Section 6.4 contains an example showing how to construct
a matrix with specific eigenvalues and eigenvectors.)

36. A system of two first-order linear differential equations that has
general solution y1 = 3c1e−t + 7c2e4t and y2 = c1e−t + 2c2e4t .
(HINT: Section 6.4 contains an example showing how to construct
a matrix with specific eigenvalues and eigenvectors.)

37. A system of three first-order linear differential equations with
general solution that is made up of linear combinations of et , e−2t ,
and e5t .

38. A system of two first-order linear differential equations with
general solution that is made up of linear combinations of only
trigonometric functions.

TRUE OR FALSE For Exercises 39–42, determine if the statement
is true or false, and justify your answer.

39. The general solution to y ′ = ky is y = cekt .

40. Every system of linear differential equations y′ = Ay can be
solved using the methods presented in this section.

41. The solution to any system of linear differential equations
always includes a real exponential function ect for some nonzero
constant c .

42. If ya and yb are solutions to the system of linear differential
equations y′ = Ay, then so is a linear combination ca ya + cbyb .

C For Exercises 43–46, find the general solution for the system.

43. y ′
1 = 2y1 − 3y2 + 6y3

y ′
2 = −3y1 − 5y2 − 7y3

y ′
3 = 4y1 + 4y2 + 4y3

44. y ′
1 = 7y1 + 2y2 + y3

y ′
2 = y1 + 6y2 − y3

y ′
3 = 2y1 + 3y2 + 4y3

45. y ′
1 = 3y1 − y2 + 5y4

y ′
2 = −2y1 + 3y2 + 7y3

y ′
3 = 4y1 − 3y2 − y3 − y4

y ′
4 = 5y1 + 2y2 + y3 + y4

46. y ′
1 = −y1 − 5y2 + 4y3 + y4

y ′
2 = y1 + y2 − 3y3 − 2y4

y ′
3 = −3y1 + y2 − 6y3 − 7y4

y ′
4 = 2y1 − y2 − y3 − 5y4

C For Exercises 47–50, find the solution for the system that sat-
isfies the conditions at t = 0.

47. y′
1 = 3y1 − y2 + 4y3,

y ′
2 = −2y1 − 6y2 + y3,

y ′
3 = 4y1 + 5y2 + 5y3,

y1(0) = −1
y2(0) = −4
y3(0) = 3

48. y ′
1 = −4y1 + 7y2 + 2y3,

y ′
2 = 2y1 + 4y2 + 3y3,

y ′
3 = 3y1 − 2y2 + 4y3,

y1(0) = 1

y2(0) = −5

y3(0) = 2

49. y ′
1 = −2y1 + 3y2 − 4y3 + 5y4,

y ′
2 = −y1 + 2y2 − 3y3 + 4y4,

y ′
3 = 4y1 − 3y2 − 2y3 + y4,

y ′
4 = 5y1 + 6y2 + 7y3 + 8y4,

y1(0) = 7

y2(0) = 2

y3(0) = −2

y4(0) = −5

50. y ′
1 = 7y1 − 3y2 + 5y3 − y4,

y ′
2 = 4y1 + 2y2 − 3y3 − 6y4,

y ′
3 = −y1 + 4y2 − 4y4,

y ′
4 = 3y2 − 4y3 − 2y4,

y1(0) = 2

y2(0) = −9

y3(0) = −4

y4(0) = 3
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C H A P T E R

The Chesapeake Bay

Bridge-Tunnel (CBBT) provides

direct vehicular passage between

Virginia’s Eastern Shore and

south Hampton Roads, Virginia,

where once only ferry service was

available. Although elevated

bridges were originally

considered, the U.S. Navy

objected, citing that either

accidental or deliberate collapse

would block access to the

Atlantic Ocean from Norfolk

Navy Base. The CBBT includes

12 miles of low-level trestle, two

mile-long tunnels, two bridges,

two miles of causeway, and four

manmade islands. Shortly after

opening in 1964, the

bridge-tunnel was designated

“One of Seven Engineering

Wonders of the Modern World”

by the American Society of Civil

Engineers.

Vector Spaces

Over the first six chapters we have focused our attention on understanding the
structure of vectors in Euclidean space. In this chapter we adapt these results
to a more general setting, where we adopt a broader notion of vectors and the

spaces containing them.
In Section 7.1 we generalize the definition of vector and define a vector space.

Section 7.2 describes how the concepts of span and linear independence carry over

Bridge suggested by Eddie Boyd, Jr.,

University of Maryland --

Eastern Shore (Hyunsoo Leo Kim)

from Euclidean space to vector spaces, and in Section 7.3 we revisit the topics of basis
and dimension.

This chapter is relatively brief because all of the material has analogs among the
concepts that we developed for Euclidean space Rn. References to comparable ear-
lier definitions and theorems are provided to reinforce connections. As you read this
chapter, think about how the concepts presented match up with those from Euclidean
space.

The order of Chapter 7 and
Chapter 8 can be reversed if
needed.

7.1 Vector Spaces and Subspaces
In this section we describe how to expand the concept of Euclidean space and subspaces
from Rn to a more general setting. To get us started, let P2 be the set of all polynomials



Holt-4100161 la November 8, 2012 11:39 278

278 CHAPTER 7 Vector Spaces

with real coefficients that have degree 2 or less. A typical element of P2 has the form
p(x) = a2x2 + a1x + a0, where a0, a1, and a2 are real numbers. Let’s compare R3 and P2.

• If p(x) = a2x2 + a1x + a0 and q(x) = b2x2 + b1x + b0 are two polynomials in P2,
then the sum is

p(x) + q(x) = (a2 + b2)x2 + (a1 + b1)x + (a0 + b0)

When adding polynomials, we add together the coefficients of like terms. This is similar
to the componentwise addition of elements in R3.

• If c is a real number and p(x) is as above, then

c p(x) = (ca2)x2 + (ca1)x + (ca0)

Scalar multiplication of polynomials distributes across terms, similar to how scalar
multiples distribute across components in R3.

• Just as R3 is closed under addition and scalar multiplication, so is P2. The sum of two
polynomials in P2 has degree no greater than 2, as is the degree of the scalar multiple of
a polynomial in P2. (Note that these operations might decrease the degree but cannot
increase it.)

• The zero polynomial z(x) = 0 satisfies p(x) + z(x) = p(x) for every polynomial in

P2, so that z(x) plays the same role as 0 =
⎡
⎣0

0
0

⎤
⎦ does in R3.

• For every polynomial p(x) in P2, there is another polynomial

−p(x) = −a2x2 − a1x − a0

such that p(x) + (−p(x)
) = 0 = z(x). This is also true in R3, where for each

⎡
⎣a

b
c

⎤
⎦

there exists

⎡
⎣−a

−b
−c

⎤
⎦ such that

⎡
⎣a

b
c

⎤
⎦ +

⎡
⎣−a

−b
−c

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ = 0.

• The definitions of addition and scalar multiplication on P2 satisfy the same distributive
and associative laws as those of R3 given in Theorem 2.3 in Section 2.1.

Although they look different, R3 and P2 have many similar features. Theorem 2.3 in
Section 2.1 lists the algebraic properties of elements in Rn. The preceding discussion shows
that the polynomials in P2 have similar properties. Other sets of mathematical objects,
such as matrices and continuous functions, also possess these properties. Theorem 2.3
serves as a guide for our broader definition of a vector space.

Definition Vector Space, Vector

Technically, Definition 7.1 is
the definition of a real vector
space, and we could replace the
real scalars with complex num-
bers with minimal changes. But
for our purposes real scalars will
suffice, so from here on we as-
sume that “vector space” refers
to a real vector space.

D E F I N I T I O N 7.1 A vector space consists of a set V of vectors together with operations of addition and
scalar multiplication on the vectors that satisfy each of the following:

(1) If v1 and v2 are in V , then so is v1 + v2. Hence V is closed under addition.

(2) If c is a real scalar and v is in V , then so is cv. Hence V is closed under scalar
multiplication.

(3) There exists a zero vector 0 in V such that 0 + v = v for all v in V .

(4) For each v in V there exists an additive inverse (or opposite) vector −v in V
such that v + (−v) = 0 for all v in V .
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(5) For all v1, v2, and v3 in V and real scalars c1 and c2, we have

(a) v1 + v2 = v2 + v1

(b) (v1 + v2) + v3 = v1 + (v2 + v3)

(c) c1(v1 + v2) = c1v1 + c1v2

(d) (c1 + c2)v1 = c1v1 + c2v1

(e) (c1c2)v1 = c1(c2v1)

(f) 1 · v1 = v1

Note that Euclidean space Rn is a vector space. P2, together with the usual operations
of addition and scalar multiplication, also forms a vector space.

Three important points:

• To describe a vector space, we need to specify both the set of vectors and the arithmetic
operations (addition and scalar multiplication) that are performed on them. The set
alone is not enough.

• Vectors are not always columns of numbers! (For instance, in P2 the polynomials are
the vectors.) This takes getting used to but is crucial, so say it to yourself every night as
you fall asleep until it sinks in. It is fine to think of a column of numbers as an example
of a vector, as long as you do not assume that a vector is always a column of numbers.

• The phrase “vector space” refers to any set satisfying Definition 7.1. The phrase “Eu-
clidean space” will be used for the specific vector space Rn with the standard definition
of addition and scalar multiplication.

E X A M P L E 1 Let V = R2×2 denote the set of real 2 × 2 matrices, together with the
usual definition of matrix addition and multiplication by a constant scalar. Show that
R2×2 is a vector space.

Solution We have a clearly defined set of vectors (the real 2×2 matrices) and definitions
for addition and scalar multiplication. It remains to verify that the five conditions of
Definition 7.1 hold:

(1) If A and B are real 2 × 2 matrices, then we already know that A + B is also a real
2 × 2 matrix. Hence R2×2 is closed under addition.

(2) If c is a real scalar and A is in R2×2, then c A is also a real 2 × 2 matrix. Thus R2×2

is closed under scalar multiplication.

(3) If 022 =
[

0 0
0 0

]
and A =

[
a11 a12

a21 a22

]
, then

022 + A =
[

0 0
0 0

]
+

[
a11 a12

a21 a22

]
=

[
(0 + a11) (0 + a12)
(0 + a21) (0 + a22)

]
=

[
a11 a12

a21 a22

]
= A

Hence 022 + A = A for all real 2 × 2 matrices, so that 022 is the zero vector in R2×2.

(4) If A =
[

a11 a12

a21 a22

]
, then −A =

[−a11 −a12

−a21 −a22

]
satisfies

A + (−A) =
[

a11 a12

a21 a22

]
+

[−a11 −a12

−a21 −a22

]
=

[
0 0
0 0

]
= 022

so that each vector in R2×2 has an additive inverse.

(5) The six conditions (a)–(f) all follow directly from properties of the real numbers.
Verification is left as an exercise.

Since all the required conditions hold, the set R2×2 together with the given arithmetic
operations form a vector space. ■
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E X A M P L E 2 Let Q2 denote the set of polynomials with real coefficients that have
degree equal to 2, together with the usual definition of addition and scalar multiplication
for polynomials. Is Q2 a vector space?

Solution The set Q2 satisfies some of the conditions of Definition 7.1, but it falls short
on others. For instance, if q1(x) = x2 and q2(x) = 5 − x2, then q1 and q2 are both in
Q2, but (q1 + q2)(x) = q1(x) + q2(x) = 5 is not, so Q2 is not closed under addition.
Hence Q2 is not a vector space. ■

Q2 consists of polynomials of
degree 2, while P2 is the polyno-
mials of degree 2 or less.

Before moving on to the next example, we pause to report several properties of vector
spaces that are consequences of Definition 7.1.

T H E O R E M 7.2 Let V be a vector space and suppose that v is in V . Then:

(a) If 0 is a zero vector of V , then v + 0 = v.

(b) If −v is an additive inverse of v, then −v + v = 0.

(c) v has a unique additive inverse −v.

(d) The zero vector 0 is unique.

(e) 0 · v = 0.

(f) (−1) · v = −v.

Proof These may seem obvious based upon past experience with real numbers, but re-
member, all we can assume about a vector space are the properties given in Definition 7.1.
We give a proof of (a) and (c), and leave the rest as Exercise 49.

For (a), we know from (3) of Definition 7.1 that there exists a zero vector 0 such that

0 + v = v

Property (5a) of Definition 7.1 (the Commutative Law) lets us interchange the order of
addition. Doing so on the left above gives us the equation

v + 0 = v

proving part (a) of our theorem.
For part (c), note that (4) of Definition 7.1 states that every vector in V has at least

one additive inverse. To prove that the additive inverse is unique, we suppose to the
contrary that there exists a vector v in V with two additive inverses v1 and v2. Then

v + v1 = 0 and v + v2 = 0

so that

v + v1 = v + v2

Property (5a) of Definition 7.1 (the Commutative Law) lets us interchange the order of
addition, so we also have

v1 + v = v2 + v

To cancel out v, we start by adding v1 to both sides of the equation.

(v1 + v) + v1 = (v2 + v) + v1 �⇒ v1 + (v + v1) = v2 + (v + v1)
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The grouping on the right is justified by (5b) of Definition 7.1 (the Associative Law).
Since v + v1 = v + v2 = 0, our equation simplifies to

v1 + 0 = v2 + 0 �⇒ v1 = v2

with the cancellation of the zero vector 0 justified by part (a) of this theorem. Since
v1 = v2, it follows that the additive inverse is unique. ■

E X A M P L E 3 Let R∞ denote the set of all infinite sequences of real numbers v =
(v1, v2, . . .), so the elements in R∞ have an infinite number of components. Addition
and scalar multiplication are defined componentwise, by

(v1, v2, . . .) + (u1, u2, . . .) = (v1 + u1, v2 + u2, . . .)

and

c(v1, v2, . . .) = (cv1, cv2, . . .)

Show that R∞ is a vector space.

Solution Here R∞ looks somewhat like Rn but with an infinite number of components.
It is not hard to see that R∞ is closed under addition and scalar multiplication, and that
the zero vector is given by

0 = (0, 0, 0, . . .)

Also, if v = (v1, v2, . . .), then −v = (−v1, −v2, . . .) satisfies v+ (−v) = 0, so each vec-
tor in R∞ has an additive inverse. Finally, the six conditions given in (5) of Definition 7.1
are inherited from the real numbers. Hence R∞ is a vector space. ■

E X A M P L E 4 Suppose that a < b are real numbers, and let C [a , b] denote the set
of all real-valued continuous functions on [a , b]. For f and g in C [a , b] and a real
scalar c , we define ( f + g )(x) = f (x) + g (x) and (c f )(x) = c · f (x). (These are the
usual pointwise definitions of addition and scalar multiplication of functions.) Show
that C[a , b] is a vector space.

Solution The set C [a , b] looks different than the other vector spaces we have seen,
where the vectors had entries reminiscent of components of vectors in Rn. Here, we
have a set consisting of functions such as f (x) = sin(x) and g (x) = e−x .

To determine if C [a , b] is a vector space, we avoid being distracted by superficial
appearances by focusing on the definition. First, the set C [a , b] together with addition
and scalar multiplication are clearly defined. Next we need to determine if the five
conditions of Definition 7.1 are all met. We verify the first three here and leave the
remaining conditions as Exercise 3.

(1) Is C [a , b] closed under addition?
If f and g are both in C [a , b], then both are continuous on the interval [a , b].

The sum of two continuous functions is also a continuous function, so that f + g is
in C [a , b]. Hence C [a , b] is closed under addition.

(2) Is C [a , b] closed under scalar multiplication?
If f is in C [a , b] and c is a scalar, then c · f (x) is continuous on [a , b], so that

c f is also in C [a , b]. Thus C [a , b] is also closed under scalar multiplication.

(3) Is there a zero function?
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If z(x) = 0, the identically zero function, then z(x) is continuous on [a , b] and
so is in C [a , b]. Thus if f is in C [a , b], then z(x) + f (x) = f (x) for all x in [a , b].
Hence z + f = f for all f in C [a , b], so that z is the zero function.

The remaining questions that need to be answered are:

(4) Does each function have an additive inverse?

(5) Do the six commutative, distributive, and associative laws hold?

Verifying that the answer to each is yes is left as an exercise. Therefore C [a , b] is a vector
space. ■

Below is a brief list of vector spaces. Some have already been verified as vector spaces,
and others are left as exercises.

• Euclidean space Rn (n > 0 an integer), together with the standard addition and scalar
multiplication of vectors.

This list is far from exhaus-
tive. There are many other vec-
tor spaces not included.

• Pn (n ≥ 1 an integer), the set of polynomials with real coefficients and degree no greater
then n, together with the usual addition and scalar multiplication of polynomials.

• Rm×n, the set of real m×n matrices together with the usual definition of matrix addition
and scalar multiplication.

• P, the set of polynomials with real coefficients and any degree, together with the usual
addition and scalar multiplication of polynomials.

• R∞, together with addition and scalar multiplication of vectors described in Example 3.

• C[a , b], the set of real-valued continuous functions on the interval [a , b], together
with the usual addition and scalar multiplication of functions.

• C(R), the set of real-valued continuous functions on the real numbers R, together with
the usual addition and scalar multiplication of functions.

• T(m, n), the set of linear transformations T : Rm → Rn, together with the usual
addition and scalar multiplication of functions.

Subspaces
Just as in Euclidean space, a subspace of a vector space can be thought of as a vector space
contained within another vector space. Since a subspace inherits the properties of the
parent vector space, all that is required to certify its subspace status is that it be closed
under addition and scalar multiplication. The formal definition is essentially identical to
the one given for Euclidean space.

Definition Subspace

D E F I N I T I O N 7.3 A subset S of a vector space V is a subspace if S satisfies the following three conditions:

(a) S contains 0, the zero vector.

(b) If u and v are in S, then u + v is also in S.

(c) If c is a scalar and v is in S, then cv is also in S.
Definition 7.3 generalizes

Definition 4.1 in Section 4.1.

E X A M P L E 5 Let S denote the set of all polynomials p with real coefficients such
that p(0) = 0. Is S a subspace of P, the set of all polynomials with real coefficients?

Solution First, we note that S is a subset of P. Next, we do the same thing that we
did to show that a subset of Rn is a subspace: We check if the three conditions of the
definition hold.
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(a) The zero polynomial z(x) = 0 (the identically zero function) satisfies z(0) = 0
and hence is in S, so S contains the zero vector.

(b) If p and q are both in S, then p(0) = 0 and q(0) = 0. Therefore ( p + q)(0) =
p(0) + q(0) = 0, so that p + q is also in S.

(c) If p is in S and c is a real scalar, then (c p)(0) = c
(

p(0)
) = 0. Hence c p is also

in S.

Since the three conditions of Definition 7.3 hold, S is a subspace of P. ■

E X A M P L E 6 Suppose that m < n are both integers. Is Pm a subspace of Pn?

Solution First, we note that Pm is a subset of Pn. Moreover, since Pm is itself a vector
space, we know that it contains the zero vector, is closed under addition, and is closed
under scalar multiplication. Thus the three subspace conditions are met, so that Pm is
a subspace of Pn. ■

E X A M P L E 7 Suppose that m < n are both integers. Is Rm a subspace of Rn?

Solution While it is true that Rm is itself a vector space, it is not a subset of Rn and so
cannot be a subspace of Rn. ■

E X A M P L E 8 The trace of a square matrix is the sum of the diagonal terms. Suppose
that S is the subset of R2×2 consisting of matrices with trace equal to 0. Is S a subspace
of R2×2?

Solution By definition S is a subset of R2×2. Let’s check the three conditions of Defi-
nition 7.3.

(a) The zero matrix of R2×2 is 022 =
[

0 0
0 0

]
, which has trace 0. Hence 022 is in S.

(b) Suppose that A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
are both in S. Then a11 +

a22 = 0 and b11 + b22 = 0. Since

A + B =
[

(a11 + b11) (a12 + b12)
(a21 + b21) (a22 + b22)

]

the trace of A + B is equal to

(a11 + b11) + (a22 + b22) = (a11 + a22) + (b11 + b22) = 0

Hence A + B is also in S.

(c) For a scalar c and A in S as in (b), we have

c A =
[

ca11 ca12

ca21 ca22

]

Therefore the trace of c A is

ca11 + ca22 = c(a11 + a22) = 0

which implies that c A is also in S.

Since all three conditions for a subspace are satisfied, S is a subspace. ■

The trivial subspaces carry over from Euclidean space. Proof of the next theorem is
left as an exercise.
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T H E O R E M 7.4 Suppose that V is a vector space. Then S = {0} and S = V are both subspaces of V ,
sometimes called the trivial subspaces.Theorem 7.4 generalizes the

result found in Example 2 of
Section 4.1. The last two examples require some knowledge of calculus.

E X A M P L E 9 Let C (a , b) be the set of functions continuous on (a , b), and suppose
S is the subset of C (a , b) that consists of the set of differentiable functions on (a , b). Is
S a subspace of C (a , b)?

Solution By definition, S is a subset of C (a , b). Since z(x) = 0 is differentiable (z′(x) =
0), the zero vector is in S. Also, from calculus we know that sums and constant multiples
of differentiable functions are differentiable, so that S is closed under addition and scalar
multiplication. Hence S is a subspace of C (a , b). ■

E X A M P L E 10 Let C (R) denote the set of functions that are continuous on all of R.
Let S denote the subset of C (R) consisting of functions y(t) that satisfy the differential
equation

y ′′(t) + y(t) = 0 (1)

Show that S is a subspace of C (R).

Solution Differential equations of this type arise in the modeling of simple harmonic
motion, such as a mass moving up and down while suspended by a spring (see Figure 1).

To show that S is a subspace, we start by noting that if y(t) = 0 is the zero function,
then y ′′(t) = 0 and this function satisfies 1.

Next, suppose that y1 and y2 both satisfy (1). Then(
y1(t) + y2(t)

)′′ + (
y1(t) + y2(t)

) = y ′′
1 (t) + y ′′

2 (t) + y1(t) + y2(t)
= (

y ′′
1 (t) + y1(t)

) + (
y ′′

2 (t) + y2(t)
) = 0

so y1 + y2 is also in S.
Finally, given a scalar c and a solution y1 of (1), we have(

c y1(t)
)′′ + c y1(t) = c

(
y ′′

1 (t) + y1(t)
) = 0

Thus c y1 is also in S, and therefore S is a subspace. ■

y(t)

Figure 1 A mass--spring
system. y(t) gives the vertical
displacement at time t.

We close this section with a reminder. As mentioned earlier, often it is difficult to
transition away from the notion that elements of Rn are the only type of “vector.” As we
have seen, viewed from a more general perspective, we can think of polynomials, matrices,
and continuous functions as vectors. So remember: Vectors are not always columns of
numbers!

E X E R C I S E S

1. Complete Example 1: Verify that R2×2 with the usual defini-
tion of matrix addition and scalar multiplication satisfies the six
conditions of (5) given in Definition 7.1.

2. Determine which properties of Definition 7.1 are not met by
the set Q2 given in Example 2.

In Exercises 3–8, prove that V is a vector space.

3. V = C[a , b], the set of continuous functions defined on the
interval [a , b], together with the standard pointwise definition of

addition and scalar multiplication of functions. (Portions of this
exercise are completed in Example 4.)

4. V = Rm×n , the set of real m × n matrices together with the
usual definition of matrix addition and scalar multiplication.

5. V = Pn , the set of polynomials with real coefficients and degree
no greater than n, together with the usual definition of polynomial
addition and scalar multiplication.
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6. V = P, the set of polynomials with real coefficients and any
degree, together with the usual addition and scalar multiplication
of polynomials.

7. V = C(R), the set of real-valued continuous functions defined
on R, together with the usual pointwise addition and scalar mul-
tiplication of functions.

8. V = T(m, n), the set of linear transformations T : Rm → Rn ,
together with the usual addition and scalar multiplication of
functions.

In Exercises 9–12, a set V is given, together with definitions of ad-
dition and scalar multiplication. Determine if V is a vector space,
and if so, prove it. If not, identify a condition of Definition 7.1 that
is not satisfied.

9. V is the set of polynomials with real coefficients and degree 2
or less. Addition is defined by

(a2x2 + a1x + a0) + (b2x2 + b1x + b0)
= (a0 + b0)x2 + (a1 + b1)x + (a2 + b2)

and scalar multiplication by

c(a2x2 + a1x + a0) = ca0x2 + ca1x + ca2

10. V is the set of lines in the plane through the origin, excluding
the y-axis. Addition of lines is defined by adding slopes, and scalar
multiplication by the scalar multiple of the slope.

11. V is the set of vectors in R2 with the following definitions of
addition and scalar multiplication:

Addition:

[
a1

b1

]
+

[
a2

b2

]
=

[
0

b1 + b2

]

Scalar multiplication: c

[
a1

b1

]
=

[
ca1

cb1

]
12. V is the set of vectors in R2 with the following definitions of
addition and scalar multiplication:

Addition:

[
a1

b1

]
+

[
a2

b2

]
=

[
0

b1 + b2

]

Scalar multiplication: c

[
a1

b1

]
=

[
0

cb1

]
In Exercises 13–18, prove that the set S is a subspace of the vector
space V .

13. V = R3×3 and S is the set of upper triangular 3 × 3 matrices.

14. V = P5 and S is the set of polynomials of the form p(x) =
a4x4 + a2x2 + a0.

15. V = C(R) and S is the subset of functions f in V such that
f (4) = 0.

16. V = P and S is the set of all polynomials with terms of only
even degree. (Thus 1, x2, x4, . . . are allowed, but not x , x3, . . ..)

17. V = T(2, 2) and S is the set of linear transformations T such
that

T

([
x1

x2

])
=

[
a1x1

a2x2

]
where a1 and a2 are scalars.

18. V = R∞ and S consists of those vectors with a finite number
of nonzero components.

In Exercises 19–28, a vector space V and a subset S are given. Deter-
mine if S is a subspace of V , and if so, prove it. If not, give an exam-
ple showing one of the conditions of Definition 7.3 is not satisfied.

19. V = C [−2, 2] and S = P.

20. V = C[−4, 7] and S consists of functions of the form aebx

(a , b are real constants).

21. V = R∞ and S is the subset consisting of vectors where
the second component is equal to zero—that is, vectors v =
(v1, 0, v3, v4, . . .).

22. V = R∞ and S is the subset consisting of vectors where the
components are all integers.

23. V = R∞ and S is the subset of R∞ consisting of vectors where
all but a finite number of components are not equal to zero.

24. V = C [−3, 3] and S is the set of real-valued functions f such
that f (−1) + f (1) = 0.

25. V = P4 and S is the set of real-valued functions g in P3 such
that g (2) + g (3) = 0.

26. V = T(4, 5) and S is the set of linear transformations that are
one-to-one.

27. V = T(3, 3) and S is the set of invertible linear transforma-
tions.

28. V = C[−3, 3] and S is the set of real-valued functions h in
C [−3, 3] such that h(0) = 1.

Calculus Required In Exercises 29–32, a vector space V and a
subset S are given. Determine if S is a subspace of V , and if so,
prove it. If not, explain which conditions of Definition 7.3 are not
satisfied. (Assume a < b as needed.)

29. V = C(a , b) and S = C n(a , b), the set of functions on (a , b)
with n continuous derivatives.

30. V = C(R) and S is the set of all solutions to the differential
equation y′(t) − 4y(t) = 0.

31. V = C [a , b] and S is the set of functions g such that∫ b

a
g (x) dx = (b − a)

32. V = C (R) and S is the set of functions h such that∫ ∞

−∞
e−x2

h(x) dx = 0

FIND AN EXAMPLE For Exercises 33–38, find an example that
meets the given specifications.

33. A failed vector space—that is, a set of vectors and definitions
of addition and scalar multiplication that meet some but not all
of the conditions of Definition 7.1.

34. A vector space V not given in this section.

35. A vector space V and a subset S that is almost a subspace: S
contains 0 and is closed under addition, but S is not closed under
scalar multiplication.
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36. A vector space V and a subset S that is almost a subspace: S
contains 0 and is closed under scalar multiplication, but S is not
closed under addition.

37. A single set of vectors and two different definitions of addition
and scalar multiplication to produce two different vector spaces
V1 and V2.

38. A vector space V and an infinite sequence of subspaces S1 ⊂
S2 ⊂ S3 ⊂ · · ·, with each subset proper.

TRUE OR FALSE For Exercises 39–46, determine if the statement
is true or false, and justify your answer.

39. A vector space V consists of a set of vectors together with
definitions of addition and scalar multiplication of the vectors.

40. No two vector spaces can share the same set of vectors.

41. If v1 and v2 are in a vector space V , then so is v1 − v2.

42. If v1 + v2 is in a subspace S, then v1 and v2 must be in S.

43. If S1 and S2 are subspaces of a vector space V , then the inter-
section S1 ∩ S2 is also a subspace of V .

44. If S1 and S2 are subspaces of a vector space V , then the union
S1 ∪ S2 is also a subspace of V .

45. Suppose S1 and S2 are subspaces of a vector space V , and de-
fine S1 + S2 to be the set of all vectors of the form s1 + s2, where
s1 is in S1 and s2 is in S2. Then S1 + S2 is a subspace of V .

46. A vector space V must have an infinite number of distinct
elements.

47. Prove that Definition 7.3 is unchanged if condition (a) is re-
placed with the condition “S is nonempty.”

48. Prove Theorem 7.4: Suppose that V is a vector space. Prove
that S = {0} and S = V are subspaces of V .

49. Complete the proof of Theorem 7.2: Let V be a vector space
and suppose that v is in V .

(a) If −v is an additive inverse of v, then −v + v = 0.

(b) The zero vector 0 is unique.

(c) 0 · v = 0.

(d) (−1) · v = −v.

7.2 Span and Linear Independence
In this section we extend the concepts of span and linear independence from Euclidean
space to vector spaces. The definitions here are similar to those for Euclidean space, so
lean on your previous knowledge.

Definition Linear Combination

Span
Just as in Rn, a linear combination of a set of vectors {v1, v2, . . . , vm} is a sum of the
form

c1v1 + c2v2 + · · · + cmvm (1)

where c1, c2, . . . , cm are real numbers. For instance, for the vectors f (x) = cos(x) and
g (x) = log(x) in C [1, 5], one possible linear combination is

7 cos(x) − π log(x)

As in Euclidean space, the span of a set is defined in terms of linear combinations.

Definition Span

Definition 7.5 generalizes
Definition 2.5 in Section 2.2.

D E F I N I T I O N 7.5 Let V = {v1, v2, . . . , vm} be a nonempty set of vectors in a vector space V . The span
of this set is denoted span{v1, v2, . . . , vm} and is defined to be the set of all linear
combinations of the form

c1v1 + c2v2 + · · · + cmvm

where c1, c2, . . . , cm can be any real numbers.
If V consists of infinitely many vectors, then we define span(V) to be the set of all

linear combinations of finite subsets of V .
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E X A M P L E 1 Let S = span{x2 − 2x + 3, −2x2 + 3x + 1} be a subset of P2.
Determine if p(x) = 10x2 − 17x + 9 is in S.

Solution The vector p(x) = 10x2 − 17x + 9 is in S if there exist real numbers c1 and
c2 such that

c1

(
x2 − 2x + 3

) + c2

(−2x2 + 3x + 1
) = 10x2 − 17x + 9

Reorganizing the left side to collect common factors, we have

(c1 − 2c2)x2 + (−2c1 + 3c2)x + (3c1 + c2) = 10x2 − 17x + 9 (2)

The only way that two polynomials are equal is if coefficients of like terms are equal.
Thus 2 is true only if there exist c1 and c2 that satisfy the system

c1 − 2c2 = 10
−2c1 + 3c2 = −17

3c1 + c2 = 9

Applying our usual solution methods, we can determine that the system has the unique
solution c1 = 4 and c2 = −3. Hence p(x) is in S. ■

E X A M P L E 2 Let S = span{1, cos(x), cos(2x)} be a subset of C [0, π]. Determine
if f (x) = sin2(x) is in S.

Solution At first glance it may not appear that f (x) is in S. However, recall from
trigonometry the identity

sin2(x) = 1 − cos(2x)

2

Hence it follows that sin2(x) is a linear combination of two vectors in S, with

sin2(x) = 1
2 (1) − 1

2 cos(2x)

Therefore f (x) = sin2(x) is in S. ■

The preceding examples both involved spanning subsets S of a vector space. In
Euclidean space Rn, such sets are subspaces. The same is true in vector spaces.

T H E O R E M 7.6 Suppose thatV is a (possibly infinite) subset of a vector space V , and let S = span(V).
Then S is a subspace of V .

Theorem 7.6 generalizes
Theorem 4.2 in Section 4.1.

The proof follows from verifying that the three conditions required of a subspace (Defi-
nition 7.3 in Section 7.1) are met. It is left as an exercise.

E X A M P L E 3 Let S = span

{[
1 0
2 1

]
,

[
0 −1
1 3

]
,

[
4 1

−2 1

]}
be a subspace of the

vector space R2×2. Is v =
[

2 5
−3 4

]
in S?

Solution In order for v to be in S, there must exist scalars c1, c2, and c3 such that

c1

[
1 0
2 1

]
+ c2

[
0 −1
1 3

]
+ c3

[
4 1

−2 1

]
=

[
2 5

−3 4

]

�⇒
[

(c1 + 4c3) (−c2 + c3)
(2c1 + c2 − 2c3) (c1 + 3c2 + c3)

]
=

[
2 5

−3 4

]
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For the components to be equal, c1, c2, and c3 must satisfy the linear system

c1 + 4c3 = 2
− c2 + c3 = 5

2c1 + c2 − 2c3 = −3
c1 + 3c2 + c3 = 4

Our standard solution methods can be used to show that this system has no solutions,
so v is not in S. ■

As we can see from our examples, even though vector spaces can be made up of
polynomials, matrices, or other objects, answering questions about spanning sets often
boils down to something that we have done again and again: solving a system of linear
equations. But this is not always the case.

E X A M P L E 4 Can a finite set of vectors span P, the set of polynomials with real
coefficients?

Solution Suppose that { f1(x), f2(x), . . . , fm(x)} is a set of polynomials in P, sorted
by degree with

deg( f1) ≥ deg( f2) ≥ · · · ≥ deg( fm)

Then any linear combination

c1 f1(x) + c2 f2(x) + · · · + cm fm(x)

has degree at most that of f1(x) (and possibly less, if there is cancellation). Thus, if
n = deg( f1) + 1, then g (x) = xn has degree greater than any linear combination of
our set and hence cannot be in the span of the set. As there is nothing special about our
set, this argument shows that no finite set of vectors can possibly span all of P. ■

The argument in Example 4 that shows that a finite set cannot span P does not apply
to the infinite set {1, x , x2, x3, . . .}. This infinite set does span P. Verification is left as an
exercise.

Linear Independence
We now turn to the definition of linear independence. The definition is a near duplicate
of the definition given in Section 2.3 for vectors in Euclidean space.

Definition Linearly
Independent, linearly

Dependent

Definition 7.7 generalizes
Definition 2.11 in Section 2.3.

D E F I N I T I O N 7.7 Let V = {v1, v2, . . . , vm} be a set of vectors in a vector space V . Then V is linearly
independent if the equation

c1v1 + c2v2 + · · · + cmvm = 0

has only the trivial solution c1 = · · · = cm = 0. The set V is linearly dependent if
the equation has any nontrivial solutions.

As with span, the definition of linear independence extends to infinite sets. If V
consists of infinitely many vectors, then V is linearly independent if every finite subset of
V is linearly independent.
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E X A M P L E 5 Determine if

{x3 − 2x + 4, x3 + 2x2 − 2, 2x3 + x2 − 3x + 5}
is a linearly independent subset of P3.

Solution Just as in Euclidean space, we start by setting

c1(x3 − 2x + 4) + c2(x3 + 2x2 − 2) + c3(2x3 + x2 − 3x + 5) = 0

and then determine the values of c1, c2, and c3 that satisfy the equation. Collecting
common factors gives us the equivalent equation

(c1 + c2 + 2c3)x3 + (2c2 + c3)x2 + (−2c1 − 3c3)x + (4c1 − 2c2 + 5c3) = 0

Our polynomial is identically zero if and only if the coefficients are all zero. This will be
true for any solution to the homogeneous system

c1 + c2 + 2c3 = 0

2c2 + c3 = 0

−2c1 − 3c3 = 0

4c1 − 2c2 + 5c3 = 0

Applying our standard solution methods shows that the system has infinitely many solu-
tions, among them c1 = 3, c2 = 1, and c3 = −2. Since a nontrivial linear combination
of our vectors equals the zero vector, our set is linearly dependent. ■

E X A M P L E 6 Determine if the subset{[
1 0 2

−1 1 0

]
,

[
3 1 0
2 2 2

]}

of R2×3 is linearly independent.

Solution We proceed just as we did in the preceding example, by setting up the equation

c1

[
1 0 2

−1 1 0

]
+ c2

[
3 1 0
2 2 2

]
=

[
0 0 0
0 0 0

]

Comparing the components on each side gives the linear system

c1 + 3c2 = 0

c2 = 0

2c1 = 0

−c1 + 2c2 = 0

c1 + 2c2 = 0

2c2 = 0

We can see that this system has only the trivial solution c1 = c2 = 0, so the set is linearly
independent. ■

A few observations about linear independence carry over from Euclidean space
(proofs left as exercises):

• The set {0, v1, · · · , vm} is linearly dependent for all vectors v1, · · · , vm.
This generalizes Theo-

rem 2.12 in Section 2.3. • A set of two nonzero vectors {v1, v2} is linearly dependent if and only if one is a scalar
multiple of the other. (We could solve Example 6 using this fact.)

• A set with just one vector {v1} is linearly dependent if and only if v1 = 0.
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E X A M P L E 7 Determine if {1, x , x2, x3, . . .} is a linearly independent subset of P,
the set of all polynomials with real coefficients.

Solution Here we are working with an infinite set, so we must show that every finite
subset is linearly independent. Let’s take a typical finite subset

{xa1 , xa2 , . . . , xam}
where a1, a2, . . . , am are distinct nonnegative integers. Suppose that

c1xa1 + c2xa2 + · · · + cmxam = 0

We have the trivial solution c1 = c2 = · · · = cm = 0, but are there others? The
answer is no, because a polynomial is identically zero (that is, zero for all x) only if all
the coefficients are zero. Since we have only the trivial solution, our subset is linearly
independent. Since our subset is arbitrary, it follows that all finite subsets are linearly
independent and therefore our original infinite set is linearly independent. ■

E X A M P L E 8 Determine if {1, x , e x} is a linearly independent subset of C[0, 10].

Solution Just as in the other examples, we ask ourselves if there exist nontrivial scalars
c1, c2, and c3 such that

c1(1) + c2x + c3e x = 0 (3)

An equivalent formulation is

c1 + c2x = −c3e x

Note that regardless of choice for c1 and c2, the left side is a linear equation. Since e x is
an exponential function, the only way the right side is linear is if c3 = 0. This in turn
forces c1 = c2 = 0 as well, which shows that the only solution to our original equation
is the trivial one. Therefore our set is linearly independent. ■

In Example 8 we used the fact that e x is not a linear function. But suppose we did
not know that? Let’s look at this example again, this time using a different approach.

E X A M P L E 9 Determine if {1, x , e x} is a linearly independent subset of C[0, 10].

Solution Suppose that c1, c2, and c3 satisfy (3). Then the equation is satisfied for every
value of x , and hence in particular for each of x = 0, x = 1, and x = 2. Setting x equal
to each of these values and plugging into (3) yields the homogeneous linear system

c1 + c3 = 0

c1 + c2 + ec3 = 0

c1 + 2c2 + e2c3 = 0

(4)

By applying our standard methods, we can verify that the system (4) has only the trivial
solution c1 = c2 = c3 = 0. Hence the only possible solution to (3) is also the trivial one,
because any nontrivial solution to (3) would also satisfy (4). Therefore the set {1, x , e x}
is linearly independent. ■

A note of warning: The method in Example 9 cannot be used to show that a set of
functions is linearly dependent. To see why, suppose that f (x) = −x3 + 3x2 − 2x and
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f(x)

g(x)1

0.5

�0.5

�1

21.510.5

Figure 1 f (x) = −x3 + 3x2 − 2x and g (x) = sin(2πx).

g (x) = sin(2πx). Then

f (0) = g (0), f (1) = g (1), f (2) = g (2)

So if we apply the approach in Example 9, we get a linear system

c1 + c2 = 0

c1 + c2 = 0

c1 + c2 = 0

Clearly this system has nontrivial solutions. However, the functions f (x) and g (x) are
not multiples of each other (see Figure 1) and so are linearly independent. Functions
as vectors are linearly dependent only if the dependence relation holds for all domain
values, not just a few isolated values.

Span and Linear Independence
Sometimes it is difficult to keep straight the concepts of span and linear independence.
The last two theorems in this section highlight the distinction between the two concepts.

T H E O R E M 7.8 The set V = {v1, v2, . . . , vm} of nonzero vectors is linearly dependent if and only if
one vector in the set is in the span of the others.Theorem 7.8 generalizes

Theorem 2.14 in Section 2.3.
The proof of Theorem 7.8 is left as an exercise.

E X A M P L E 10 Determine if the set of vectors

{1, cos(x), cos(2x), sin2(x)} (5)

is a linearly independent subset of C [0, 10].

Solution In Example 2 we showed that sin2(x) is in span{1, cos(x), cos(2x)}. Hence
by Theorem 7.8 the set of vectors in (5) is linearly dependent. ■

Theorem 7.9 generalizes The-
orem 2.10 in Section 2.2 and
Theorem 2.18 in Section 2.3.

T H E O R E M 7.9 Let V = {v1, v2, . . . , vm} be a subset of a vector space V . Then:

(a) The setV is linearly independent if and only if the equation c1v1+· · ·+cmvm = v
has at most one solution for each v in V .

(b) The set V spans V if and only if the equation c1v1 + · · ·+ cmvm = v has at least
one solution for each v in V .
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The proof is left as an exercise. Note that Theorem 7.9 applies to subspaces as well as
vector spaces.

E X A M P L E 11 Let S be the subspace of T(2, 2) of linear transformations of the form

T

([
x1

x2

])
=

[
a1x1

a2x2

]
(6)

where a1 and a2 are scalars (see Exercise 17 of Section 7.1). Suppose that

T1

([
x1

x2

])
=

[
x1

0

]
and T2

([
x1

x2

])
=

[
0
x2

]

Show that the set {T1, T2} is linearly independent and spans S.

Solution Suppose that T is a linear transformation in S and hence has the form in (6).
To apply Theorem 7.9, we need to determine the number of solutions to the equation
c1T1(x) + c2T2(x) = T(x). This equation is equivalent to

c1

[
x1

0

]
+ c2

[
0
x2

]
=

[
a1x1

a2x2

]

For this to hold for all x1 and x2, we must have c1 = a1 and c2 = a2. Thus the equation
c1T1(x) + c2T2(x) = T(x) has exactly one solution for any a1 and a2. Therefore by
Theorem 7.9(a) the set {T1, T2} is linearly independent, and by Theorem 7.9(b) the set
{T1, T2} spans S. ■

E X E R C I S E S

In Exercises 1–4, determine if the vector is in the subspace of P2

given by

span{3x2 + x − 1, x2 − 3x + 2}

1. v = 3x2 + 11x − 8

2. v = 2x2 − 9x + 7

3. v = 10x − 7

4. v = 7x2 − x

In Exercises 5–8, determine if the vector is in the subspace of P3

given by

span{x3 + x − 2, x2 + 2x + 1, x3 − x2 + x}

5. v = x3 + 2x2 − 3x

6. v = 3x2 + 4x

7. v = x2 + 4x + 4

8. v = x2 + 2x − 1

In Exercises 9–12, determine if the vector is in the subspace of
R2×3 given by

span

{[
1 2 1
0 1 3

]
,

[
0 3 1

−1 1 0

]}

9. v =
[
−1 4 1
−2 1 −3

]

10. v =
[

2 1 1
1 1 5

]

11. v =
[

2 −5 −1
3 −1 6

]

12. v =
[

3 3 2
1 2 9

]
In Exercises 13–16, determine if the vector is in the subspace of
R2×2 given by

span

{[
−1 3

4 1

]
,

[
0 2
5 −3

]
,

[
1 4
2 1

]}

13. v =
[
−4 3

5 5

]

14. v =
[

2 3
3 −3

]

15. v =
[
−2 −1

2 0

]

16. v =
[

1 2
−3 4

]
In Exercises 17–26, determine if the subset is linearly independent
in the given vector space.

17. {x2 − 3, 3x2 + 1} in P2
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18. {2x3 − x + 3, −4x3 + 2x − 6} in P3

19. {x3 + 2x + 4, x2 − x − 1, x3 + 2x2 + 2} in P3

20. {x2 + 3x + 2, x3 − 2x2, x3 + x2 − x − 1} in P3

21.

{[
2 −1
1 3

]
,

[
−4 2
−2 −6

]}
in R2×2

22.

{[
−1 3

4 1

]
,

[
3 5
0 1

]
,

[
1 4
2 1

]}
in R2×2

23.

{[
1 0 1
2 1 4

]
,

[
3 1 2
0 3 3

]}
in R2×3

24.

{[
1 2
0 1
1 4

]
,

[
5 4
1 5
4 10

]
,

[
3 0
1 3
2 3

]}
in R3×2

25. {sin2(x), cos2(x), 1} in C[0, π]

26. {sin(2x), cos(2x), sin(x) cos(x)} in C[0, π]

FIND AN EXAMPLE For Exercises 27–32, find an example that
meets the given specifications.

27. A subset of R2×2 that spans R2×2 but is not linearly indepen-
dent.

28. An infinite subset of P that is linearly independent but does
not span P.

29. A vector space V and an infinite linearly independent
subset V .

30. A set of nonzero vectors that is linearly dependent and yet has
a vector in the set that is not a linear combination of the other
vectors. Explain why this does not contradict Theorem 7.8.

31. Two infinite linearly independent subsets V1 and V2 of R∞
such that span(V1) ∩ span(V2) = {0}.
32. A subset of T(2, 2) that is linearly independent and spans
T(2, 2).

TRUE OR FALSE For Exercises 33–42, determine if the statement
is true or false, and justify your answer.

33. Vectors must be columns of numbers.

34. A linearly independent set cannot have an infinite number of
vectors.

35. A set of vectors V in a vector space V can be linearly indepen-
dent or can span V , but cannot do both.

36. Suppose that f and g are linearly dependent functions in
C[1, 4]. If f (1) =− 3g (1), then it must be that f (4) = −3g (4).

37. Suppose that V1 ⊂ V2 are sets in a vector space V . If V1 is
linearly independent, then so is V2.

38. Let {v1, . . . , vk} be a linearly independent subset of a vector
space V . If c �= 0 is a scalar, then {cv1, . . . , cvk} is also linearly
independent.

39. Suppose that V1 ⊂ V2 are sets in a vector space V . If V2 spans
V , then so does V1.

40. Let {v1, . . . , vk} be a linearly independent subset of a vector
space V . For any v �= 0 in V , the set {v + v1, . . . , v + vk} is also
linearly independent.

41. If {v1, v2, v3} is a linearly independent set, then so is {v1, v2 −
v1, v3 − v2 + v1}.
42. If V1 and V2 are linearly independent subsets of a vector
space V and V1 ∩ V2 is nonempty, then V1 ∩ V2 is also linearly
independent.

43. In Example 7 it is shown that {1, x , x2, . . .} is linearly inde-
pendent. Prove {1, x , x2, . . .} also spans P.

44. Prove Theorem 7.8: A set {v1, v2, . . . , vm} of nonzero vectors
is linearly dependent if and only if one vector in the set is in the
span of the others. (HINT: This is similar to Theorem 2.14 in Sec-
tion 2.3.)

45. Prove that the subset {0, v1, . . . , vm} of a vector space must
be linearly dependent. (HINT: This is similar to Theorem 2.12 in
Section 2.3.)

46. Prove that any set of two nonzero vectors {v1, v2} is linearly
dependent if and only if one is a scalar multiple of the other.

47. Prove that a set consisting of one vector {v1} is linearly depen-
dent if and only if v1 = 0.

48. LetV = {v1, v2, . . . , vm} be a subset of a vector space V . Prove
Theorem 7.9 by proving each of the following:

(a) The set V is linearly independent if and only if the equation
c1v1 + · · · + cmvm = v has at most one solution for each v in V .

(b) The set V spans V if and only if the equation c1v1 + · · · +
cmvm = v has at least one solution for each v in V .

49. Prove that no finite subset of R∞ can span R∞.

50. Suppose that V1 ⊂ V2 are sets in a vector space V . Prove that
if V1 spans V , then so does V2.

51. Suppose that V1 ⊂ V2 are nonempty sets in a vector space V .
Prove that if V2 is linearly independent, then so is V1.

52. Let v1, . . . , vm and v be vectors in a vector space V . If v is in
the span of the set {v1, . . . , vm}, prove that

span{v, v1, . . . , vm} = span{v1, . . . , vm}
53. Suppose that V = {v1, . . . , vm} spans a vector space V , and
suppose that v is in V but not in V . Prove that {v, v1, . . . , vm} is
linearly dependent.

54. Suppose that V = {v1, v2, . . . , vm} is a linearly indepen-
dent subset of a vector space V . Prove that {v2, . . . , vm} does not
span V .

C In Exercises 55–58, if possible use the method demonstrated in
Example 9 to determine if the given subset is linearly independent
in the given vector space. If this is not possible, explain why.

55. {x , sin(πx/2), ex } in C [0, π]

56. {x , sin(x), cos(x)} in C[0, π]

57. {ex , cos2(x), cos(2x), 1} in C[0, π]

58. {cos(2x), sin(2x), cos2(x), sin2(x)} in C[0, π]
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7.3 Basis and Dimension
Now that we have developed the concepts of span and linear independence in the context
of a vector space, we are ready to consider the notion of basis and dimension in the
same setting. As with much of this chapter, the definitions of basis and dimension are
essentially the same as in Euclidean space. Let’s start with basis.

D E F I N I T I O N 7.10 LetV be a subset of a vector space V . ThenV is a basis of V ifV is linearly independent
and spans V .

Definition Basis

Definition 7.10 generalizes
Definition 4.8 in Section 4.2. E X A M P L E 1 Is the set {x2 + 4x − 3, x2 + 1, x − 2} a basis for P2?

Solution We need to determine if the given set is linearly independent and spans P2.
Of the two, span is generally more difficult to verify, so let’s tackle that first. (We will also
find out about linear independence along the way.) A typical vector in P2 has the form
a2x2 + a1x + a0, and for each such vector we need to know if there exist corresponding
scalars c1, c2, and c3 such that

c1(x2 + 4x − 3) + c2(x2 + 1) + c3(x − 2) = a2x2 + a1x + a0

Reorganizing the left side to collect common terms, we have

(c1 + c2)x2 + (4c1 + c3)x + (−3c1 + c2 − 2c3) = a2x2 + a1x + a0

Comparing coefficients gives us the linear system

c1 + c2 = a2

4c1 + c3 = a1

−3c1 + c2 − 2c3 = a0

(1)

Using our standard solution methods, we find that for each choice of a0, a1, and a2, the
system has unique solution

c1 = −a2 + 2a1 + a0

4
, c2 = 5a2 − 2a1 − a0

4
, c3 = a2 − a1 − a0

Applying both parts of Theorem 7.9 in Section 7.2, we can conclude that our set is both
linearly independent and spans P2. Hence the set is a basis of P2. ■

The method of solution in Example 1 suggests the following general theorem.

T H E O R E M 7.11 The set V = {v1, . . . , vm} is a basis for a vector space V if and only if the equation

c1v1 + · · · + cmvm = v (2)

has a unique solution c1, . . . , cm for every v in V .Theorem 7.11 generalizes
Theorem 4.9 in Section 4.2.

The proof follows from applying Theorem 7.9 in Section 7.2 and is left as an exercise.

E X A M P L E 2 Verify that the set {1, x , x2, . . . , xn} is a basis for Pn. (This is called
the standard basis for Pn.)

Solution Suppose that anxn +· · ·+a1x +a0 is a typical vector in Pn. Forming a linear
combination of our set and setting it equal to our typical vector produces

c1(1) + c2(x) + · · · + cn+1(xn) = anxn + · · · + a1x + a0
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Comparing coefficients instantly shows that the unique linear combination is given by
c1 = a0, c2 = a1, . . . , cn+1 = an. Since this works for every vector in Pn, by Theorem 7.11
our set forms a basis for Pn. ■

Setting n = 2 in Example 2 gives another basis for P2. Note that this basis has the
same number of elements as the basis in Example 1, illustrating the following theorem,
which carries over from Euclidean space.

T H E O R E M 7.12 Suppose that V1 and V2 are both bases of a vector space V . Then V1 and V2 have the
same number of elements.

Theorem 7.12 generalizes
Theorem 4.12 in Section 4.2.

The proof is left as an exercise. The theorem also applies to vector spaces with bases
that have infinitely many vectors: If one basis has infinitely many vectors, then they all do.

E X A M P L E 3 Show that every basis for P has infinitely many elements.

Solution In Example 7 of Section 7.2, it is shown that the set {1, x , x2, . . .} is linearly
independent, and in Exercise 43 of Section 7.2 it is shown that {1, x , x2, . . .} spans P.
Therefore the set {1, x , x2, . . .} is a basis for P, and thus by Theorem 7.12 every basis
for P must have infinitely many elements. ■

Since every basis for a vector space has the same number of vectors, the following
definition makes sense.

D E F I N I T I O N 7.13 The dimension of a vector space V is equal to the number of vectors in any basis of V .
If a basis of V has infinitely many vectors, then we say that the dimension is infinite.

Definition Dimension

Definition 7.13 generalizes
Definition 4.13 in Section 4.2.

For example, we have seen that Pn has dimension n+1 and P has infinite dimension.
Put briefly, dim(Pn) = n + 1 and dim(P) = ∞.

Note that a trivial vector space V = {0} consisting only of the zero vector has no
basis because it has no linearly independent subsets. We define dim(V) = 0 when V is a
trivial vector space.

E X A M P L E 4 Find the dimension of R2×2, the vector space of real 2 × 2 matrices.

Solution All we need to do is find any basis for R2×2 and then count the vectors. The
standard basis is given by{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Verification that this is a basis for R2×2 is left as an exercise. Hence it follows that
dim(R2×2) = 4. ■

A similar argument to the one in Example 4 can be used to show that dim(Rn×m) = nm
(see Exercise 50).

Since subspaces are essentially vector spaces within vector spaces, they also have
dimensions.

E X A M P L E 5 Find the dimension of the subspace S = span{T1, T2, T3} of T(2, 2),
where

T1

([
x1

x2

])
=

[
x1 − x2

2x1

]
, T2

([
x1

x2

])
=

[
x2

2x1 + x2

]
, T3

([
x1

x2

])
=

[
2x1 − 5x2

−2x1 − 3x2

]
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Solution Let’s check if the set is linearly independent. If so, then the dimension is 3
and we are done. If not, then we will identify a linear relation among the vectors that
will allow us to remove one.

The zero vector in T(2, 2) is the linear transformation T0(x) = 0. We need to find
the values of c1, c2, and c3 such that

c1T1(x) + c2T2(x) + c3T3(x) = T0(x)

is true for all x in R2. This is equivalent to the equation

c1

[
x1 − x2

2x1

]
+ c2

[
x2

2x1 + x2

]
+ c3

[
2x1 − 5x2

−2x1 − 3x2

]
=

[
0
0

]

which in turn is equivalent to the system

c1(x1 − x2) + c2x2 + c3(2x1 − 5x2) = 0
c1(2x1) + c2(2x1 + x2) + c3(−2x1 − 3x2) = 0

Reorganizing to separate out x1 and x2 gives us

x1(c1 + 2c3) + x2(−c1 + c2 − 5c3) = 0
x1(2c1 + 2c2 − 2c3) + x2(c2 − 3c3) = 0

Since the system must be satisfied for all values of x1 and x2, we require that

c1 + 2c3 = 0
−c1 + c2 − 5c3 = 0
2c1 + 2c2 − 2c3 = 0

c2 − 3c3 = 0

Using our standard methods, we can show that this system has infinitely many solutions,
among them c1 = 2, c2 = −3, and c3 = −1. Therefore

2T1(x) − 3T2(x) − T3(x) = T0(x)

or

2T1(x) − 3T2(x) = T3(x)

Since T3 is a linear combination of T1 and T2, it follows (see Exercise 52 in Section 7.2)
that S = span{T1, T2}. It is straightforward to verify that T1 and T2 are not multiples of
each other and so are linearly independent. Hence {T1, T2} is a basis for S, and therefore
dim(S) = 2. ■

In Example 5, we started with a set that spanned a subspace S and removed a vector
to form a basis for S. The following theorem formalizes this process, along with the
process of expanding a linearly independent set to a basis.

Theorem 7.14 generalizes
Theorem 4.14 in Section 4.2.

T H E O R E M 7.14 Let V = {v1, . . . , vm} be a subset of a nontrivial finite dimensional vector space V .

(a) If V spans V , then either V is a basis for V or vectors can be removed from V
to form a basis for V .

(b) If V is linearly independent, then either V is a basis for V or vectors can be
added to V to form a basis for V .
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The proof is left as an exercise. Note that Theorem 7.14 also applies to subspaces of vector
spaces.

E X A M P L E 6 Extend the set V = {x2 + 2x + 1, x2 + 6x + 3} to a basis for P2.

Solution We know that {x2, x , 1} is a basis for P2, so the combined set

{x2 + 2x + 1, x2 + 6x + 3, x2, x , 1} (3)

spans P2. To find a basis that includes V , we need to determine the dependences among
the vectors in 3. We start with the equation

c1(x2 + 2x + 1) + c2(x2 + 6x + 3) + c3x2 + c4x + c5 = 0

which is equivalent to

(c1 + c2 + c3)x2 + (2c1 + 6c2 + c4)x + (c1 + 3c2 + c5) = 0

Setting each coefficient equal to zero yields the linear system

c1 + c2 + c3 = 0

2c1 + 6c2 + c4 = 0

c1 + 3c2 + c5 = 0

The augmented matrix and corresponding echelon form are⎡
⎢⎣

1 1 1 0 0 0

2 6 0 1 0 0

1 3 0 0 1 0

⎤
⎥⎦ ∼

⎡
⎢⎣

1 1 1 0 0 0

0 2 −1 0 1 0

0 0 0 1 −2 0

⎤
⎥⎦

Since the leading terms appear in columns 1, 2, and 4 of the echelon matrix, it follows
that the vectors associated with c1, c2, and c4 are linearly independent. To see why, note
that if the vectors x2 and 1 were eliminated from 3, then we would have the linear system

c1 + c2 = 0

2c1 + 6c2 + c4 = 0

c1 + 3c2 = 0

The augmented matrix and echelon form are as before, only with the third and fifth
columns removed. (The row operations are the same as before.)⎡

⎢⎣
1 1 0 0

2 6 1 0

1 3 0 0

⎤
⎥⎦ ∼

⎡
⎢⎣

1 1 0 0

0 2 0 0

0 0 1 0

⎤
⎥⎦

We see that the new system has a unique solution, so the set

V1 = {x2 + 2x + 1, x2 + 6x + 3, x}
is linearly independent. Furthermore, if V1 is not a basis, then by Theorem 7.14(b) we
can add vectors to V1 to form a basis for P2. But this would mean that dim(P2) > 3,
which we know is false. Therefore V1 is a basis. ■

Dimension gives us a way to measure the size of a vector space. Thus if one vector
space is contained in another, it seems reasonable that the dimension of the former be
smaller than that of latter. This was true in Euclidean space, and also is here.
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T H E O R E M 7.15 Let V1 and V2 be vector spaces with V1 a subset of V2, and suppose both have the same
definition of addition and scalar multiplication. Then dim(V1) ≤ dim(V2).

Theorem 7.15 is similar to
Theorem 4.16 in Section 4.2. Proof If dim(V2) = ∞, then the theorem is true regardless of the dimension of V1.

(Similar reasoning applies if dim(V1) = 0.) Now suppose that dim(V2) is finite, and let
V1 be a basis for V1. Since V1 is a subset of V2, V1 is a linearly independent subset of
V2. Thus, by Theorem 7.14(b), V1 is a basis for V2 or can be expanded to a basis for V2.
Therefore the number of vectors in V1 is less than or equal to dim(V2). Since V1 is a basis
of V1, we conclude that dim(V1) ≤ dim(V2). ■

Note that in Theorem 7.15, V1 can also be considered a subspace of V2.

E X A M P L E 7 Show that dim(C (R)) = ∞ without finding a basis for C (R).

Solution We have already shown that dim(P) = ∞. Since all polynomials are con-
tinuous functions, then P is a subspace of C (R). Hence by Theorem 7.15 we have
dim(C(R)) = ∞. ■

T H E O R E M 7.16 Let V = {v1, . . . , vm} be a subset of a vector space V with dim(V) = n.

(a) If m < n, then V does not span V .

(b) If m > n, then V is linearly dependent.Theorem 7.16 generalizes
Theorem 4.17 in Section 4.2.

The proof is left as an exercise. As with previous theorems in this section, Theorem 7.16
also applies to subspaces.

E X A M P L E 8 Determine by inspection which of the subsets cannot span R2×2 and
which must be linearly dependent.

V1 =
{[

2 1
4 3

]
,

[
5 0
1 2

]
,

[
8 3
5 6

]}

V2 =
{[

5 9
0 4

]
,

[
7 6
1 2

]
,

[
4 3
7 8

]
,

[
6 2
7 1

]}

V3 =
{[

3 6
9 0

]
,

[
1 4
3 8

]
,

[
3 2
0 1

]
,

[
0 1
6 6

]
,

[
3 2
5 5

]}

Solution In Example 4, we showed that dim(R2×2) = 4. Hence by Theorem 7.16(a),
V1 cannot span R2×2 because it has fewer than four vectors. By Theorem 7.16(b), V3

must be linearly dependent because it has more than four vectors.
Note that Theorem 7.16 cannot tell us if a set spans a vector space or is linearly

independent. Hence we cannot conclude that V2 or V3 spans R2×2, nor can we conclude
that V1 or V2 is linearly independent. ■

T H E O R E M 7.17 Let V = {v1, . . . , vm} be a subset of a vector space V with dim(V) = m < ∞. If V is
linearly independent or spans V , then V is a basis for V .

Theorem 7.17 generalizes
Theorem 4.15 in Section 4.2.

Theorem 7.17 also applies to subspaces. This theorem tells us that if a set has the
same number of vectors as the dimension of the vector space, then we need only verify
either span or linear independence to determine if the set is a basis.
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E X A M P L E 9 Show that the set

V = {x3 − x2 − 5x + 1, 2x2 + 3x , x3 + 3x2 − 4x + 2, −3x2 + 5}
is a basis for P3.

Solution We have dim(P3) = 4 and V has four elements, so by Theorem 7.17 we need
only show V is linearly independent or spans P3 to prove that V is a basis for P3. Let’s
show that V is linearly independent. Suppose that c1, c2, c3, and c4 are scalars such that

c1(x3 − x2 − 5x + 1) + c2(2x2 + 3x) + c3(x3 + 3x2 − 4x + 2) + c4(−3x2 + 5) = 0

Reorganizing to collect common terms and setting each coefficient equal to zero
gives us

c1 + c3 = 0

−c1 + 2c2 + 3c3 − 3c4 = 0

−5c1 + 3c2 − 4c3 = 0

c1 + 2c3 + 5c4 = 0

To determine linear independence, all we need to know is if this system has any
nontrivial solutions. Instead of transforming to an augmented matrix and perform-
ing row operations, let’s define the coefficient matrix

C =

⎡
⎢⎢⎣

1 0 1 0
−1 2 3 −3
−5 3 −4 0

1 0 2 5

⎤
⎥⎥⎦

By applying techniques from Chapter 5, we can show that det(C ) = −59. Since the
determinant of the coefficient matrix C is nonzero, it follows from Theorem 5.7 (the Big
Theorem, Version 7) in Section 5.2 that our linear system has only the trivial solution.
Therefore V is a linearly independent set and is a basis for P3. ■

E X E R C I S E S
For Exercises 1–6, determine by inspection if the set V could pos-
sibly be a basis for V . Explain your answer.

1. V = {x2 + 7, 3x + 5}, V = P2

2. V = {x3 + 3, 4x2 + x − 1, 3x3 + 5, x}, V = P3

3. V =
{[

2 1
0 4

]
,

[
0 3
1 5

]
,

[
6 2
2 1

]
,

[
9 0
0 2

]}
, V = R2×2

4. V =
{[

6 0
0 1
3 3

]
,

[
0 1
5 5
4 1

]
,

[
1 1
1 1
1 1

]
,

[
2 2
1 7
0 3

]}
, V = R3×2

5. V = {x4 + 3, 4x3 + x − 1, 3x4 + 5, x2}, V = P4

6. V = {x , x3, x5, x7, . . .}, V = P

For Exercises 7–12, determine if the set V is a basis for V .

7. V = {2x2 + x − 3, x + 1, −5}, V = P2

8. V = {x2 − 5x + 3, 3x2 − 7x + 5, x2 − x + 1}, V = P2

9. V =
{[

1 2
2 1

]
,

[
3 1
0 3

]
,

[
2 2
1 1

]
,

[
3 3
3 4

]}
, V = R2×2

10. V =
{[

4 3
2 1

]
,

[
0 1
2 3

]
,

[
0 0
2 1

]
,

[
0 0
0 1

]}
, V = R2×2

11. V = {(1, 0, 0, 0, 0, . . .), (1, −1, 0, 0, 0, . . .),
(1, −1, 1, 0, 0, . . .), (1, −1, 1, −1, 0, . . .), . . .}, V = R∞

12. V = {1, x + 1, x2 + x + 1, x3 + x2 + x + 1, . . .}, V = P

For Exercises 13–18, find a basis for the subspace S and determine
dim(S).

13. S is the subspace of R3×3 consisting of matrices with trace
equal to zero. (The trace is the sum of the diagonal terms of a
matrix.)

14. S is the subspace of P2 consisting of polynomials with graphs
crossing the origin.

15. S is the subspace of R2×2 consisting of matrices with compo-
nents that add to zero.

16. S is the subspace of T(2, 2) consisting of linear transforma-
tions T : R2 → R2 such that T(x) = ax for some scalar a .

17. S is the subspace of T(2, 2) consisting of linear transforma-
tions T : R2 → R2 such that T(v) = 0 for a specific vector v.
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18. S is the subspace of P consisting of polynomials p such that
p(0) = 0.

For Exercises 19–20, determine the dimension of the subspace S.
Justify your answer.

19. S is the subspace of C(R) consisting of functions f such that
f (k) = 0 for k = 0, 1, 2.

20. S is the subspace of C(R) consisting of functions f such that
f (0) = f (1) = f (2).

For Exercises 21–24, extend the linearly independent set V to a
basis for V .

21. S = {2x2 + 1, 4x − 3}, V = P2

22. V = {x3, x2 + x + 1, x}, V = P3

23. V =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
1 0

]}
, V = R2×2

24. V =
{[

1 0
1 0
1 0

]
,

[
0 1
0 1
0 1

]
,

[
1 0
1 0
0 0

]
,

[
0 0
0 0
0 1

]}
, V = R3×2

For Exercises 25–26, remove vectors from V to yield a basis for V .

25. V = {x + 1, x + 2, 2x + 1}, V = P1

26. V = {x2 + x , x + 1, x2 + 1, x2 + x + 1}, V = P2

C Exercises 27–30 assume some knowledge of calculus.

27. Let S be the subspace of C(R) consisting of solutions y(t)
to the differential equation y ′′(t) + y(t) = 0. (This equation
is discussed in Example 10 of Section 7.1.) All solutions to this
equation have the form

y(t) = c1 cos(t) + c2 sin(t).

Prove that dim(S) = 2.

28. Find a basis for the subspace S of P4 consisting of polynomials
p(x) such that p′(x) = 0.

29. Find a basis for the subspace S of P6 consisting of polynomials
p(x) such that p′′(x) = 0.

30. Determine the dimension of the subspace S of P consisting of
polynomials p such that

∫ 1

−1
p(x) dx = 0.

FIND AN EXAMPLE For Exercises 31–36, find an example that
meets the given specifications.

31. An infinite dimensional vector space V and a finite dimen-
sional subspace S.

32. A vector space V and a subspace S such that dim(S) = 5.

33. A vector space V and subspace S such that dim(V) =
1 + dim(S).

34. A vector space V and subspace S such that dim(V) = 2 ·
dim(S).

35. A vector space V and an infinite subset V that is linearly
independent but does not span V .

36. A vector space V and subspace S such that dim(V) = dim(S)
but S �= V .

TRUE OR FALSE For Exercises 37–46, determine if the statement
is true or false, and justify your answer.

37. The size of a vector space basis varies from one basis to another.

38. There is no linearly independent subset V of P5 containing
seven elements.

39. No two vector spaces can share the same dimension.

40. If V is a vector space with dim(V) = 6 and S is a subspace of
V with dim(S) = 6, then S = V .

41. If V is a finite dimensional vector space, then V cannot contain
an infinite linearly independent subset V .

42. If V1 and V2 are vector spaces and dim(V1) < dim(V2), then
V1 ⊂ V2.

43. If V spans a vector space V , then vectors can be added to V to
produce a basis for V .

44. If V is a finite dimensional vector space, then every subspace
of V must also be finite dimensional.

45. If {v1, . . . , vk} is a basis for a vector space V , then so is
{cv1, . . . , cvk}, where c is a scalar.

46. If S1 is a subspace of a vector space V and dim(S1) = 1, then
the only proper subspace of S1 is S2 = {0}.
47. Prove that if {v1, v2, . . . , vk} is a basis for a vector space V ,
then so is {v1, 2v2, . . . , kvk}.
48. Prove that dim(R∞) = ∞.

49. Show that{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

is a basis for R2×2.

50. Give a basis for Rn×m, and justify that your set forms a basis.
Prove that dim(Rn×m) = mn.

51. If V is a vector space with dim(V) = m, prove that there exist
subspaces S0, S1, . . . , Sm of V such that dim(Sk) = k.

52. Prove that dim(T(m, n)) = mn. (HINT: Recall that if
T : Rm → Rn is a linear transformation, then T(x) = Ax
for some n × m matrix A.)

53. Prove Theorem 7.11: The set {v1, . . . , vm} is a basis for a vector
space V if and only if the equation

c1v1 + · · · + cmvm = v

has a unique solution c1, . . . , cm for every v in V . (HINT: See
Theorem 7.9.)

54. Prove Theorem 7.12: Suppose that V1 and V2 are both bases
of a vector space V . Prove that V1 and V2 have the same number
of elements. (NOTE: Be sure to address the possibility that V1 and
V2 both have infinitely many vectors.)
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55. Let V1 and V2 be vector spaces with V1 a subset of V2.

(a) If dim(V2) is finite, prove that dim(V1) = dim(V2) if and
only if V1 = V2.

(b) Give an example showing that (a) need not be true if
dim(V2) = ∞.

56. Prove Theorem 7.14: Let V = {v1, . . . , vm} be a subset of a
finite dimensional vector space V , and suppose that V is not a
basis of V .

(a) Prove that if V spans V , then vectors can be removed from V
to form a basis for V .

(b) Prove that if V is linearly independent, then vectors can be
added to V to form a basis for V .

57. Prove Theorem 7.16: Let V = {v1, . . . , vm} be a subset of a
vector space V with dim(V) = n.

(a) Prove that if m < n, then V does not span V .

(b) Prove that if m > n, then V is linearly dependent.

58. Prove Theorem 7.17: Let V = {v1, . . . , vm} be a subset of a
vector space V with dim(V) = m. If V is linearly independent or
spans V , then V is a basis for V .
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C H A P T E R

The oldest steel bridge in the

United States, the Smithfield

Street Bridge in Pittsburgh,

Pennsylvania is a lenticular truss

bridge offering little clearance

between its lowest point and the

Monongahela River. When

transportation officials in

Pennsylvania tried to demolish

the bridge and replace it with a

modern bridge, the Pittsburgh

History and Landmarks

Foundation acted to preserve the

bridge. Instead of demolition,

the bridge was renovated to

include a widened deck, and a

new color and lighting scheme

that highlighted its architectural

features. Abandoned rail lines

were transformed into an extra

traffic lane and a light-controlled

bus lane was installed for peak

traffic hours.

Orthogonality

In this chapter we shift our focus from vector spaces back to Euclidean space Rn.
In Section 8.1 we introduce and study the dot product, which provides an algebraic
formula for determining if two vectors are perpendicular, or equivalently, orthogonal.

The familiar notions of perpendicular, angle, and length in R2 and R3 still hold here and
are extended to higher dimensions by using the dot product. Section 8.2 introduces pro-

Bridge suggested by Tim Flaherty,

Carnegie Mellon University (Johnny

Stockshooter/Alamy)

jections of vectors and the Gram–Schmidt process, which is an algorithm for converting
a linearly independent set of vectors into an orthogonal set of vectors. The remaining
three sections are applications of orthogonal vectors. Section 8.3 and Section 8.4 focus
on matrix factorizations, and Section 8.5 on the problem of fitting functions to data.

The order of Chapter 7 and
Chapter 8 can be reversed if
needed.

8.1 Dot Products and Orthogonal Sets
The dot product of two vectors is a form of multiplication of vectors in Rn. Unlike vector
addition, which produces a new vector, the dot product of two vectors yields a scalar.



Holt-4100161 la October 8, 2012 14:50 304

304 CHAPTER 8 Orthogonality

D E F I N I T I O N 8.1 Suppose that

u =

⎡
⎢⎣

u1

...

un

⎤
⎥⎦ and v =

⎡
⎢⎣

v1

...

vn

⎤
⎥⎦

are both in Rn. Then the dot product of u and v is given by

u · v = u1v1 + · · · + unvn

Definition Dot Product

An alternative way to define
the dot product of u and v is
with matrix multiplication, by

u · v = uT v

This is discussed in Exercise 71.

E X A M P L E 1 Find u · v for u =
⎡
⎣−1

3
2

⎤
⎦ and v =

⎡
⎣ 7

1
−5

⎤
⎦.

Solution Applying Definition 8.1, we have

u · v = (−1)(7) + (3)(1) + (2)(−5) = −14 ■

It is not hard see that u · v = v · u. Theorem 8.2 includes this and other properties
of the dot product. Note the similarity to properties of arithmetic of real numbers.

T H E O R E M 8.2 Let u, v, and w be in Rn, and let c be a scalar. Then

(a) u · v = v · u

(b) (u + v) · w = u · w + v · w

(c) (cu) · v = u · (cv) = c(u · v)

(d) u · u ≥ 0, and u · u = 0 only when u = 0

Note that the properties given
in Theorem 8.2 are similar to
properties of arithmetic of the
real numbers.

The proof of Theorem 8.2 is left as Exercise 62. By combining the properties (b) and (c),
it can be shown (see Exercise 63) for u1, . . . , uk and w in Rn and scalars c1, . . . , ck that

(c1u1 + c2u2 + · · · + ckuk) · w = c1(u1 · w) + c2(u2 · w) + · · · + ck(uk · w) (1)

E X A M P L E 2 Suppose that

u =

⎡
⎢⎢⎣

2
1

−3
2

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎣

−1
4
0
3

⎤
⎥⎥⎦ , w =

⎡
⎢⎢⎣

5
0
1
2

⎤
⎥⎥⎦

and c = −3. Show that Theorem 8.2(b) and Theorem 8.2(c) hold for these vectors and
this scalar.

Solution Starting with Theorem 8.2(b), we have

(u + v) · w =

⎡
⎢⎢⎣

1
5

−3
5

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

5
0
1
2

⎤
⎥⎥⎦ = 5 + 0 − 3 + 10 = 12

and

u · w + v · w = (10 + 0 − 3 + 4) + (−5 + 0 + 0 + 6) = 11 + 1 = 12
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Thus (u + v) · w = u · w + v · w. For Theorem 8.2(c), we compute

(−3u) · v =

⎡
⎢⎢⎣

−6
−3

9
−6

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

−1
4
0
3

⎤
⎥⎥⎦ = (6 − 12 + 0 − 18) = −24

u · (−3v) =

⎡
⎢⎢⎣

2
1

−3
2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

3
−12

0
−9

⎤
⎥⎥⎦ = (6 − 12 + 0 − 18) = −24

−3(u · v) = −3(−2 + 4 + 0 + 6) = −24

Therefore (−3u) · v = u · (−3v) = −3(u · v). ■

x
x2

x1

Figure 1 x =
[

x1

x2

]
.

The dot product can be used to measure distance. Suppose that x =
[

x1

x2

]
is a vector

in R2, as shown in Figure 1. If we denote the length of x by ‖x‖, then from the Pythagorean
Theorem we know that

‖x‖2 = x2
1 + x2

2

By the definition of the dot product, x · x = x2
1 + x2

2 , so that we have

‖x‖2 = x · x �⇒ ‖x‖ = √
x · x

This suggests a way to extend the definition of “length” to vectors in Rn. In this setting
we generally refer to this as the norm of a vector.

D E F I N I T I O N 8.3 Let x be a vector in Rn. Then the norm (or length) of x is given by

‖x‖ = √
x · xDefinition Norm of a Vector

For a scalar c and a vector x, it follows from Theorem 8.2c (see Exercise 64) that

‖cx‖ = |c |‖x‖ (2)

E X A M P L E 3 Find ‖x‖ and ‖ − 5x‖ for x =
⎡
⎣−3

1
4

⎤
⎦.

Solution We have x · x = (−3)2 + (1)2 + (4)2, so

‖x‖ = √
9 + 1 + 16 = √

26

By 2,

‖ − 5x‖ = | − 5|‖x‖ = 5
√

26 ■

Among the real numbers, we measure the distance between r and s by computing
|r − s |. This serves as a model for using norms to define the distance between vectors.

D E F I N I T I O N 8.4 For two vectors u and v in Rn, the distance between u and v is given by ‖u − v‖.

Definition Distance Between
Vectors
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E X A M P L E 4 Compute the distance between u =
⎡
⎣−1

3
2

⎤
⎦ and v =

⎡
⎣ 7

1
−5

⎤
⎦.

Solution We have u − v =
⎡
⎣−8

2
7

⎤
⎦, so that

‖u − v‖ =
√

(−8)2 + (2)2 + (7)2 = √
117 ■

Orthogonal Vectors
Suppose that we have two vectors

u =
[

u1

u2

]
and v =

[
v1

v2

]

in R2 that have equal length and are perpendicular to each other, as shown in Figure 2.
Rotating u by 90◦ gives us v, so that v1 = u2 and v2 = −u1. Therefore we have

u · v = u1v1 + u2v2 = u1u2 − u2u1 = 0

Even if the vectors are not the same length, after scaling we can use this argument to
show that if two vectors are perpendicular, then u · v = 0. (See Exercise 72 for another
way to show this.) The reverse holds as well: If u · v = 0, then u and v are perpendicular.
The same is true in R3, which suggests using the dot product to extend the notion of
perpendicular to higher dimensions. The term orthogonal is more commonly used and
is equivalent to perpendicular.

u

v

u2

v1u1

u1

Figure 2 u and v are
perpendicular vectors.

D E F I N I T I O N 8.5 Vectors u and v in Rn are orthogonal if u · v = 0.

Definition Orthogonal Vectors

E X A M P L E 5 Determine if any pair among u, v, and w is orthogonal.

u =

⎡
⎢⎢⎣

2
−1

5
−2

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎣

3
2

−4
0

⎤
⎥⎥⎦ , w =

⎡
⎢⎢⎣

2
9
6
4

⎤
⎥⎥⎦

Solution We have

u · v = (2)(3) + (−1)(2) + (5)(−4) + (−2)(0) = −16 �⇒ Not Orthogonal

u · w = (2)(2) + (−1)(9) + (5)(6) + (−2)(4) = 17 �⇒ Not Orthogonal

v · w = (3)(2) + (2)(9) + (−4)(6) + (0)(4) = 0 �⇒ Orthogonal ■

Figure 3 shows the orthogonal vectors u and v from Figure 2, together with u + v.
Note that the vectors v and u + v together with the dashed line (which is u translated)
form a right triangle. Hence, by the Pythagorean Theorem, we expect

‖u + v‖2 = ‖u‖2 + ‖v‖2

u

u � v

v

Figure 3 The vectors u + v
and v together with the dashed
line (which is u translated)
form a right triangle.

This formulation of the Pythagorean Theorem extends to Rn and is true exactly when u
and v are orthogonal—that is, when u · v = 0.

T H E O R E M 8.6 ( P Y T H A G O R E A N T H E O R E M ) Suppose that u and v are in Rn. Then

‖u + v‖2 = ‖u‖2 + ‖v‖2 if and only if u · v = 0
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Proof It is possible to verify the theorem in R2 using geometric arguments, but that
approach is hard to extend to Rn. Instead, we use an algebraic argument that works for
any dimension. We have

‖u + v‖2 = (u + v) · (u + v)
= u · u + u · v + v · u + v · v
= ‖u‖2 + ‖v‖2 + 2(u · v)

Thus the equality

‖u + v‖2 = ‖u‖2 + ‖v‖2

holds exactly when u · v = 0. ■

E X A M P L E 6 Verify the Pythagorean Theorem for the vectors v and w in Example 5.

Solution In Example 5 we showed that v · w = 0, so by the Pythagorean Theorem we
expect that ‖v + w‖2 = ‖v‖2 + ‖w‖2. Computing each term, we find

‖v + w‖2 =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

5
11
2
4

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥

2

= 52 + 112 + 22 + 42 = 166

‖v‖2 = 32 + 22 + (−4)2 + 02 = 29

‖w‖2 = 22 + 92 + 62 + 42 = 137

Since 29 + 137 = 166, we have ‖v + w‖2 = ‖v‖2 + ‖w‖2. ■

Orthogonal Subspaces
Now that we are acquainted with orthogonal vectors, let’s turn to the matter of how sets
and vectors can be orthogonal.

D E F I N I T I O N 8.7 Let S be a subspace of Rn. A vector u is orthogonal to S if u · s = 0 for every vector
s in S. The set of all such vectors u is called the orthogonal complement of S and is
denoted by S⊥.Definition Orthogonal

Complement

Figure 4 shows an example in R3, where we have a subspace S and an orthogonal
vector u. Note that the orthogonal complement S⊥ consists precisely of the multiples of
u, so that S⊥ is also a subspace of R3. This is true for the orthogonal complement of any
subspace.

T H E O R E M 8.8 If S is a subspace of Rn, then so is S⊥.

S

u

Figure 4 A subspace S and
orthogonal vector u.

Proof Recall from Definition 4.1, Section 4.1, that a subspace must satisfy three condi-
tions.

(a) Since 0 · s = 0 for all s in S, it follows that S⊥ contains 0.

(b) Suppose that u1 and u2 are in S⊥. For any s in S, we have

(u1 + u2) · s = u1 · s + u2 · s = 0 + 0 = 0

Hence u1 + u2 is in S⊥, so that S⊥ is closed under addition.

S⊥ typically is said aloud
as “S-perpendicular” or just
“S-perp.”
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(c) If c is a scalar and u is in S⊥, then for any s in S we have

(cu) · s = c(u · s) = c(0) = 0

Therefore cu is also in S⊥ and hence S⊥ is closed under scalar multiplication.

Since parts (a)–(c) of Definition 4.1 hold, S⊥ is a subspace. ■

How do we find S⊥? Since a nonzero subspace S contains an infinite number of
vectors, it appears that determining if u is in S⊥ will require checking that u · s = 0 for
every s in S. Fortunately, there is another option. Theorem 8.9 shows that we need only
check the basis vectors.

T H E O R E M 8.9 Let S = {s1, . . . , sk} be a basis for a subspace S and u be a vector. Then

u · s1 = 0, u · s2 = 0, . . . , u · sk = 0

if and only if u is in S⊥.

Proof First, suppose that u · s1 = 0, . . . , u · sk = 0. If s is in S, then since S is a basis
there exist unique scalars c1, . . . , ck such that

s = c1s1 + · · · + cksk

Therefore

u · s = u · (c1s1 + · · · + cksk) = c1(u · s1) + · · · + ck(u · sk) = 0

and so u is in S⊥.
The reverse direction of the proof is easier. If u is in S⊥, then since each of s1, . . . , sk

are in S, it follows that u · s1 = 0, . . . , u · sk = 0. ■

E X A M P L E 7 Let

s1 =

⎡
⎢⎢⎣

2
−1

3
0

⎤
⎥⎥⎦ , s2 =

⎡
⎢⎢⎣

1
4

−2
−1

⎤
⎥⎥⎦ , and u =

⎡
⎢⎢⎣

3
6
0
5

⎤
⎥⎥⎦

Suppose that S = span {s1, s2}. Determine if u is in S⊥, and find a basis for S⊥.

Solution To check if u is in S⊥, by Theorem 8.9 we need only determine if s1 · u = 0
and s2 · u = 0.

s1 · u = 6 − 6 + 0 + 0 = 0
s2 · u = 3 + 24 + 0 − 5 = 22

Since s2 · u 	= 0, we know that u is not in S⊥. To find a basis for S⊥, we start by forming
the matrix

A =
[

2 −1 3 0
1 4 −2 −1

]
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Note that the rows of A are made up of the components of s1 and s2, so that if u is in
R4, then

Au =
[

s1 · u
s2 · u

]

Thus u is in S⊥ exactly when Au = 0. To solve this equation we use our standard
procedure for determining the general solution of a linear system; we find that

u = c1

⎡
⎢⎢⎣

−10
7
9
0

⎤
⎥⎥⎦ + c2

⎡
⎢⎢⎣

1
2
0
9

⎤
⎥⎥⎦

The two vectors in the general solution give a basis for S⊥, so we have

S⊥ = span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−10
7
9
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2
0
9

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

■

Orthogonal Sets
We have defined what it means for a vector to be orthogonal to another vector and to a set
of vectors. Our next step is to define what it means for a set of vectors to be orthogonal.

D E F I N I T I O N 8.10 A set of vectors V in Rn form an orthogonal set if vi · v j = 0 for all vi and v j in V
with i �= j .

Definition Orthogonal Set

E X A M P L E 8 Show that {v1, v2, v3} is an orthogonal set, where

v1 =
⎡
⎣ 1

4
−1

⎤
⎦ , v2 =

⎡
⎣ 11

−1
7

⎤
⎦ , v3 =

⎡
⎣ 3

−2
−5

⎤
⎦

Solution We show that {v1, v2, v3} is an orthogonal set by showing that each distinct
pair of vectors is orthogonal.

v1 · v2 = 11 − 4 − 7 = 0
v1 · v3 = 3 − 8 + 5 = 0
v2 · v3 = 33 + 2 − 35 = 0

Since the dot products are all zero, the set is orthogonal. ■

A useful feature of orthogonal sets of nonzero vectors is that they are linearly
independent.

T H E O R E M 8.11 An orthogonal set of nonzero vectors is linearly independent.

Proof Let {v1, . . . , vk} be a set of nonzero orthogonal vectors. Suppose that the linear
combination

c1v1 + · · · + ckvk = 0 (3)
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To show that {v1, . . . , vk} is a linearly independent set, we need to show that 3 holds only
when c1 = · · · = ck = 0. To do so, we start by noting that since v1 is orthogonal to
v2, . . . , vk ,

v1 · (c1v1 + · · · + ckvk) = c1(v1 · v1) + c2(v1 · v2) + · · · + ck(v1 · vk)

= c1‖v1‖2 + c2(0) + · · · + ck(0) = c1‖v1‖2

Because c1v1 + · · · + ckvk = 0, it follows that v1 · (c1v1 + · · · + ckvk) = 0, and thus

c1‖v1‖2 = 0

Since v1 	= 0, we know that ‖v1‖2 	= 0, and so it must be that c1 = 0. Repeating this
argument with each of v2, . . . , vk shows that c2 = 0, . . . , ck = 0, and hence {v1, . . . , vk}
is a linearly independent set. ■

A basis made up of orthogonal vectors is called an orthogonal basis. OrthogonalDefinition Orthogonal Basis

sets are particularly useful for forming a basis, in part because orthogonal vectors are
automatically linearly independent, and also because the dot product can be used to form
linear combinations.

T H E O R E M 8.12 Let S be a subspace with an orthogonal basis {s1, . . . , sk}. Then any vector s in S can
be written as

s = c1s1 + · · · + cksk

where ci = si · s

‖si‖2
for i = 1, . . . , k.

Proof The proof is similar to that of Theorem 8.11. We know that there exist unique
scalars c1, . . . , ck such that

s = c1s1 + · · · + cksk

Taking the dot product of s1 with s, we have

s1 · s = s1 · (c1s1 + · · · + cksk)

= c1(s1 · s1) + c2(s1 · s2) + · · · + ck(s1 · sk)

= c1(s1 · s1) + c2(0) + · · · + ck(0)

= c1(s1 · s1) = c1‖s1‖2

Solving for c1, we find that

c1 = s1 · s

‖s1‖2

A similar argument gives the formulas for c2, . . . , ck . ■

E X A M P L E 9 Verify that the set

s1 =
⎡
⎣−2

1
−1

⎤
⎦ , s2 =

⎡
⎣ 1

−1
−3

⎤
⎦ , s3 =

⎡
⎣ 4

7
−1

⎤
⎦

forms an orthogonal basis for R3, and write s =
⎡
⎣ 3

−1
5

⎤
⎦ as a linear combination of s1,

s2, and s3.
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Solution We verify orthogonality by computing dot products, which are

s1 · s2 = −2 − 1 + 3 = 0
s1 · s3 = −8 + 7 + 1 = 0
s2 · s3 = 4 − 7 + 3 = 0

By Theorem 8.11 the vectors are linearly independent, and since there are three of them
in R3, the set also spans and hence is a basis for R3.

To write s as a linear combination of s1, s2, and s3, we apply Theorem 8.12, starting
with the computations

c1 = s1 · s

‖s1‖2
= −6 − 1 − 5

4 + 1 + 1
= −12

6
= −2

c2 = s2 · s

‖s2‖2
= 3 + 1 − 15

1 + 1 + 9
= −11

11
= −1

c3 = s3 · s

‖s3‖2
= 12 − 7 − 5

16 + 49 + 1
= 0

66
= 0

Therefore we have s = −2s1 − s2. ■

E X E R C I S E S
Exercises 1–8 refer to the vectors u1 to u8.

u1 =
[−3

1
2

]
, u2 =

[
1
1
1

]
, u3 =

[
2
0

−1

]
, u4 =

[
1

−3
2

]
,

u5 =
[

2
1
1

]
, u6 =

[
0
3

−1

]
, u7 =

[
3

−4
−2

]
, u8 =

[−1
−1

3

]

1. Compute the following dot products.

(a) u1 · u5

(b) u3 · (−3u2)

(c) u4 · u7

(d) 2u4 · u7

2. Compute the following dot products.

(a) 3u7 · u3

(b) u1 · u1

(c) u2 · (−2u5)

(d) 2u2 · (−u5)

3. Compute the norms of the given vectors.

(a) u7

(b) −u7

(c) 2u5

(d) −3u5

4. Compute the norms of the given vectors.

(a) u8

(b) 3u8

(c) −u2

(d) −2u2

5. Compute the distance between the given vectors.

(a) u1 and u2

(b) u3 and u8

(c) 2u6 and −u3

(d) −3u2 and 2u5

6. Compute the distance between the given vectors.

(a) u5 and u1

(b) u2 and u8

(c) −2u3 and u8

(d) 4u2 and −2u6

7. Determine if the given vectors are orthogonal.

(a) u1 and u3

(b) u3 and u4

(c) u2 and u5

(d) u1 and u8

8. Determine if the given vectors are orthogonal.

(a) u2 and u3

(b) u1 and u2

(c) u8 and u5

(d) u3 and u6

For Exercises 9–12, find all values of a so that u and v are
orthogonal.

9. u =
[

a
2

−3

]
, v =

[
4
a
3

]
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10. u =
[−1

a
5

]
, v =

[
7
a

−2

]

11. u =

⎡
⎢⎣

2
a

−3
−1

⎤
⎥⎦ , v =

⎡
⎢⎣

−5
4
6
a

⎤
⎥⎦

12. u =

⎡
⎢⎣

1
−5

a
0

⎤
⎥⎦ , v =

⎡
⎢⎣

−4
1
a

−2

⎤
⎥⎦

For Exercises 13–16, determine if the given vectors form an
orthogonal set.

13. u1 =
[

1
−2

]
, u2 =

[
4
3

]

14. u1 =
[

1
2
3

]
, u2 =

[
5

−4
1

]
, u3 =

[
1
1

−1

]

15. u1 =
[

2
2

−1

]
, u2 =

[−5
13
16

]
, u3 =

[
5

−4
2

]

16. u1 =

⎡
⎢⎣

1
2
0

−1

⎤
⎥⎦ , u2 =

⎡
⎢⎣

5
2
4
9

⎤
⎥⎦ , u3 =

⎡
⎢⎣

−2
2

−3
2

⎤
⎥⎦

In Exercises 17–18, find all values of a (if any) so that the given
vectors form an orthogonal set.

17. u1 =
[−1

0
2

]
, u2 =

[
4
3
2

]
, u3 =

[
6
a
3

]

18. u1 =

⎡
⎢⎣

1
−3

2
−1

⎤
⎥⎦ , u2 =

⎡
⎢⎣

4
2
1
0

⎤
⎥⎦ , u3 =

⎡
⎢⎣

−1
0
a
7

⎤
⎥⎦

In Exercises 19–20, find all values of a and b (if any) so that the
given vectors form an orthogonal set.

19. u1 =
[

2
1

−1

]
, u2 =

[
3

−4
2

]
, u3 =

[
2
a
b

]

20. u1 =

⎡
⎢⎣

1
−3

6
1

⎤
⎥⎦ , u2 =

⎡
⎢⎣

2
1
a

−5

⎤
⎥⎦ , u3 =

⎡
⎢⎣

0
−4

3
b

⎤
⎥⎦

For Exercises 21–24, verify that the Pythagorean Theorem holds
for the given orthogonal vectors.

21. u1 =
[

3
−1

]
, u2 =

[
1
3

]

22. u1 =
[

6
8

]
, u2 =

[
−4

3

]

23. u1 =
[

2
−3

1

]
, u2 =

[
4
3
1

]

24. u1 =

⎡
⎢⎣

5
−2

4
2

⎤
⎥⎦ , u2 =

⎡
⎢⎣

2
9
3

−2

⎤
⎥⎦

25. Suppose that u1 and u2 are orthogonal vectors, with ‖u1‖ = 2
and ‖u2‖ = 5. Find ‖3u1 + 4u2‖.

26. Suppose that u1 and u2 are orthogonal vectors, with ‖u1‖ = 3
and ‖u2‖ = 4. Find ‖2u1 − u2‖.

For Exercises 27–28, determine if u is orthogonal to the subspace S.

27. u =
[

2
−3

1

]
, S = span

{[
1
2

−1

]
,

[
3

−1
1

]}

28. u =

⎡
⎢⎣

0
1
0
1

⎤
⎥⎦ , S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
1
0
1

⎤
⎥⎦ ,

⎡
⎢⎣

1
0
1
0

⎤
⎥⎦ ,

⎡
⎢⎣

1
1
1
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

For Exercises 29–32, find a basis for S⊥ for the subspace S.

29. S = span

{[
1

−3

]}

30. S = span

{[
2
5

]}

31. S = span

{[
1
1

−2

]}

32. S = span

{[−1
2
1

]
,

[
2

−3
2

]}

For Exercises 33–34, show that the given basis for S is orthogonal,
and then write s as a linear combination of the basis vectors.

33. S = span

{[
1
1
0

]
,

[
1

−1
4

]}
, s =

[
1
2

−2

]

34. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0
1

−1

⎤
⎥⎦ ,

⎡
⎢⎣

3
3
1
4

⎤
⎥⎦ ,

⎡
⎢⎣

−2
3
1

−1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , s =

⎡
⎢⎣

1
0
0
1

⎤
⎥⎦

FIND AN EXAMPLE For Exercises 35–44, find an example that
meets the given specifications.

35. Two vectors u and v such that u · v = 12.

36. A vector that is orthogonal to both

[
1
0

]
and

[
0
1

]
.

37. A vector u such that ‖u‖ = 1 and u is orthogonal to

[
−2

1

]
.

38. An orthogonal basis for R2 that includes

[
3
4

]
.
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39. Two linearly independent vectors that are both orthogonal

to

[
2
0

−1

]
.

40. Two vectors in R2 that are orthogonal but do not span R2.

41. A subspace S of R3 that has dim(S⊥) = 2.

42. Two vectors u and v such that u, v, and

[
1
1
1

]
form an

orthogonal set.

43. Three vectors in R3 that form an orthogonal set but not an
orthogonal basis.

44. A subspace S of R4 such that dim(S) = dim(S⊥) = 2.

TRUE OR FALSE For Exercises 45–56, determine if the statement
is true or false, and justify your answer.

45. If ‖u − v‖ = 3, then the distance between 2u and 2v is 12.

46. If u and v have nonnegative entries, then u · v ≥ 0.

47. ‖u + v‖ = ‖u‖ + ‖v‖ for all u and v in Rn .

48. Suppose that {s1, s2, s3} is an orthogonal set and that c1, c2,
and c3 are scalars. Then {c1s1, c2s2, c3s3} is also an orthogonal
set.

49. If S is a one-dimensional subspace of R2, then so is S⊥.

50. If A is an n × n matrix and u is in Rn , then ‖u‖ ≤ ‖Au‖.

51. If u1 · u2 = 0 and u2 · u3 = 0, then u1 · u3 = 0.

52. If A is an n × n matrix with orthogonal columns, then AT A
is a diagonal matrix.

53. If u and v are orthogonal, then the distance between u and v
is

√
‖u‖2 + ‖v‖2.

54. If ‖u − v‖ = ‖u + v‖, then u and v are orthogonal.

55. If A = [
a1 a2

]
and S = span{a1, a2}, then S⊥ = null(A).

56. Even if S is merely a nonempty subset of Rn , the orthogonal
complement S⊥ is still a subspace.

57. Prove that Theorem 8.9 is true even if the set S = {s1, . . . , sk}
only spans the subspace S instead of being a basis for S.

58. Prove that the zero vector 0 in Rn is orthogonal to all vectors
in Rn .

59. Prove that the standard basis {e1, . . . , en} of Rn is an orthog-
onal basis.

60. Prove that if u1 and u2 are both orthogonal to v, then so is
u1 + u2.

61. Prove that if c1 and c2 are scalars and u1 and u2 are vectors,
then (c1u1) · (c2u2) = c1c2(u1 · u2).

62. Let u, v, and w be in Rn , and let c be a scalar. Prove each part
of Theorem 8.2.

(a) u · v = v · u

(b) (u + v) · w = u · w + v · w

(c) (cu) · v = u · (cv) = c(u · v)

(d) u · u ≥ 0, and u · u = 0 only when u = 0

63. Use the properties of Theorem 8.2 to prove 1, which says that

(c1u1 + · · · + ck uk) · w = c1(u1 · w) + · · · + ck(uk · w)

64. Prove 2, that ‖cx‖ = |c |‖x‖ for a scalar c and vector x.

65. Prove that if u 	= 0 and v = 1

‖u‖u, then ‖v‖ = 1.

66. Let u be a vector in Rn , and then define Tu : Rn → R by
Tu(v) = u · v. Show that Tu is a linear transformation.

67. Let S be a subspace. Prove that S ∩ S⊥ = {0}.
68. Prove that

‖u + v‖2 + ‖u − v‖2 = 2
(‖u‖2 + ‖v‖2

)
.

69. For a matrix A, show that
(

col(A)
)⊥ = Null(AT ).

70. Prove that if S is a subspace, then S = (
S⊥)⊥

.

71. Let u and v be in Rn and A be an n × n matrix.

(a) Explain why u · v and uT v are essentially the same.

(b) Show that (Au) · v = u · (AT v
)

.

72. In this problem we show that if u and v are perpendicular vec-
tors in R2, then u · v = 0. The method of proof is different from
the one given at the start of the subsection “Orthogonal Vectors.”

(a) Given nonzero vectors u and v orthogonal in R2, show that
‖u‖, ‖v‖, and ‖u−v‖ are the lengths of the sides of a right triangle.

(b) Use the version of the Pythagorean Theorem you learned in
high school geometry to show that

‖u‖2 + ‖v‖2 = ‖u − v‖2

(c) Write the equation in (b) in terms of dot products and then
simplify to show that u · v = 0.

C For Exercises 73–74, let

u1 =

⎡
⎢⎢⎢⎣

3
−1

5
0
2

⎤
⎥⎥⎥⎦ , u2 =

⎡
⎢⎢⎢⎣

7
4
0
2
8

⎤
⎥⎥⎥⎦ , u3 =

⎡
⎢⎢⎢⎣

0
3

−4
4

−3

⎤
⎥⎥⎥⎦

73. Compute each of the following:

(a) u2 · u3

(b) ‖u1‖
(c) ‖2u1 + 5u3‖
(d) ‖3u1 − 4u2 − u3‖
74. Compute each of the following:

(a) u2 · u1

(b) ‖u3‖
(c) ‖3u2 + 4u3‖
(d) ‖ − 2u1 + 5u2 − 3u3‖
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C For Exercises 75–76, find a basis for S⊥.

75. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

2
−1

3
5

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
7
4

⎤
⎥⎦

⎫⎪⎬
⎪⎭

76. S = span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

6
0
2
5

−1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

5
3
0
8

−6

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

8.2 Projection and the Gram--Schmidt Process
In Section 8.1 we developed the idea of an orthogonal basis. There are numerous applica-
tions of orthogonal bases, some explored in the other sections of this chapter. Of course,
not every basis is an orthogonal basis. For example, suppose that

S = span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
2
0
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
−1

1
5

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

It can be shown that this basis for S is not orthogonal. However, we can construct an
orthogonal basis for S from this basis. The key to understanding how this is done is vector
projection, so we start there.

Projection onto Vectors
Suppose that we have two nonzero vectors u and v in R2, as shown in Figure 1a. Draw
the line perpendicular to v that passes through the tip of u (dashed in Figure 1b). The
projection of u onto v (denoted projvu) is the vector parallel to v with tip at the intersection
of v and the dashed perpendicular line (Figure 1c).

u

v

u

v

u

v
projv u

(a) (b) (c)

Figure 1 Constructing projvu in R2.

We can think of projvu as the component of u in the direction of v.

u

v

u � projv u

projv u

Figure 2 v and u − projvu are
orthogonal.

Our next step is to develop a formula for projvu. Note that the vectors v and u−projvu
are orthogonal to each other (see Figure 2). Therefore

v · (u − projvu) = 0 (1)

Since projvu is parallel to v, there exists a scalar c such that projvu = cv. We can find a
formula for c by substituting into (1) and solving for c .

v · (u − cv) = 0 �⇒ v · u − c(v · v) = 0 �⇒ c = v · u

v · v
= v · u

‖v‖2

Thus we have

projvu = cv = v · u

‖v‖2
v
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Although this formula was developed in R2, it can also be evaluated for vectors in Rn, so
we use it to generalize projection to any dimension.

D E F I N I T I O N 8.13 Let u and v be vectors in Rn, with v nonzero. Then the projection of u onto v is given
by

projvu = v · u

‖v‖2
v (2)Definition Projection Onto a

Vector

E X A M P L E 1 Find projvu for

u =
⎡
⎣ 7

14
4

⎤
⎦ and v =

⎡
⎣−2

5
1

⎤
⎦

Solution Applying formula 2, we have

projvu = v · u

‖v‖2
v = (−14 + 70 + 4)

(4 + 25 + 1)

⎡
⎣−2

5
1

⎤
⎦ = 60

30

⎡
⎣−2

5
1

⎤
⎦ =

⎡
⎣−4

10
2

⎤
⎦

Projections onto vectors have several important properties that are summarized in
the next theorem. ■

T H E O R E M 8.14 Let u and v be vectors in Rn (v nonzero) and c be a nonzero scalar. Then

(a) projvu is in span{v}.
(b) u − projvu is orthogonal to v.

(c) If u is in span{v}, then u = projvu.

(d) projvu = projcvu.

Proof We take each part in turn.

(a) Since projvu = v · u

‖v‖2
v is multiple of v, projvu must be in span{v}.

(b) We verify that v is orthogonal to u − projvu by computing the dot product.

v · (u − projvu) = v ·
(

u − v · u

‖v‖2
v

)

= v · u − v · u

‖v‖2
(v · v)

= v · u − v · u

‖v‖2
‖v‖2 = v · u − v · u = 0

(c) If u is in span{v}, then there exists a constant c such that u = cv. Hence

projvu = v · (cv)

‖v‖2
v = c

v · v

‖v‖2
v = cv = u

(d) For any nonzero scalar c ,

projcvu = (cv) · u

‖cv‖2
(cv) = c 2

|c |2

v · u

‖v‖2
v = v · u

‖v‖2
v = projvu ■
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Projections onto Subspaces
We can extend the idea of projecting onto a vector to projecting onto subspaces. In
a sense, we have already taken a step in this direction. Since Theorem 8.14d shows
projvu = projcvu, we can think of projvu as projecting u onto the subspace span{v}, the
line through the origin in the direction of v.

Given a nonzero subspace S and a vector u, we denote the projection of u onto S
by projS u. Although we do not yet have a definition for projS u, its properties should be
analogous to those for projvu given in Theorem 8.14. In particular, if u is in S, then we
want projS u = u. At this point, it helps to recall Theorem 8.12 in Section 8.1, which says
that if {v1, . . . , vk} is an orthogonal basis for S, then any s in S can be expressed

s = v1 · s

‖v1‖2
v1 + v2 · s

‖v2‖2
v2 + · · · + vk · s

‖vk‖2
vk (3)

Given our requirements for projS u, then projS u must equal the right side of (3) when u
is in S. Moreover, the right side of (3) is also equal to the sum of the projection of u onto
each of v1, . . . , vk . All of this suggests the following definition.

D E F I N I T I O N 8.15 Let S be a nonzero subspace with orthogonal basis {v1, . . . , vk}. Then the projection
of u onto S is given by

projS u = v1 · u

‖v1‖2
v1 + v2 · u

‖v2‖2
v2 + · · · + vk · u

‖vk‖2
vk (4)Definition Projection Onto a

Subspace

See Figure 3 for a graphical depiction of projection onto a plane.

E X A M P L E 2 Find projS u for S = span{v1, v2}, where

u =
⎡
⎣ 18

−20
10

⎤
⎦ , v1 =

⎡
⎣ 4

−1
−5

⎤
⎦ , v2 =

⎡
⎣3

2
2

⎤
⎦

Solution The vectors v1 and v2 are orthogonal, so we may apply (4). We have

projS u = v1 · u

‖v1‖2
v1 + v2 · u

‖v2‖2
v2 = 42

42

⎡
⎣ 4

−1
−5

⎤
⎦ + 34

17

⎡
⎣3

2
2

⎤
⎦ =

⎡
⎣ 10

3
−1

⎤
⎦

■

Regarding Definition 8.15:

• If S = span{v} is a one-dimensional subspace, then (4) reduces to the formula for
projvu.

• We can express projS u by

projS u = projv1
u + projv2

u + · · · + projvk
u

• The basis {v1, . . . , vk} for S must be orthogonal in order to apply the formula for
projS u.

The next theorem shows that projS u does not depend on the choice of orthogonal
basis for S.

S

u

projS u

Figure 3 Projection of a
vector u in R3 onto a
two-dimensional subspace S.
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T H E O R E M 8.16 Let S be a nonzero subspace of Rn with orthogonal basis {v1, . . . , vk}, and let u be a
vector in Rn. Then

(a) projS u is in S.

(b) u − projS u is orthogonal to S.

(c) if u is in S, then u = projS u.

(d) projS u is independent of the choice of orthogonal basis for S.

This extends Theorem 8.14 to
subspaces.

The proof of Theorem 8.16 is given at the end of the section.

E X A M P L E 3 Let

u =

⎡
⎢⎢⎣

3
−1

1
5

⎤
⎥⎥⎦ , v1 =

⎡
⎢⎢⎣

1
0

−1
2

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

2
−1

2
0

⎤
⎥⎥⎦ , w1 =

⎡
⎢⎢⎣

1
−1

3
−2

⎤
⎥⎥⎦ , w2 =

⎡
⎢⎢⎣

7
−2

1
6

⎤
⎥⎥⎦

It can be shown that {v1, v2} and {w1, w2} both form orthogonal bases for the same
subspace S. Show that projS u is the same for both bases.

Solution Starting with S = span{v1, v2}, we have

projS u = v1 · u

‖v1‖2
v1 + v2 · u

‖v2‖2
v2 = 12

6

⎡
⎢⎢⎣

1
0

−1
2

⎤
⎥⎥⎦ + 9

9

⎡
⎢⎢⎣

2
−1

2
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
−1

0
4

⎤
⎥⎥⎦

On the other hand, S = span{w1, w2} yields

projS u = w1 · u

‖w1‖2
w1 + w2 · u

‖w2‖2
w2 = −3

15

⎡
⎢⎢⎣

1
−1

3
−2

⎤
⎥⎥⎦ + 54

90

⎡
⎢⎢⎣

7
−2

1
6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
−1

0
4

⎤
⎥⎥⎦

Both bases produce the same projection vector, as promised by Theorem 8.16. ■

The Gram--Schmidt Process
Now that we know how to find projections of vectors onto subspaces, we are ready to
develop a method for finding an orthogonal basis for a subspace. Let’s start with a simple
case, an arbitrary two-dimensional subspace S = span{s1, s2} in Rn. Our goal is to find
an orthogonal basis for S. Let

v1 = s1

v2 = s2 − projv1
s2

Then v1 and v2 are orthogonal by Theorem 8.14b. Moreover, since v1 = s1, it follows that
projv1

s2 = projs1
s2 = cs1 for some nonzero scalar c . Therefore v2 = s2 − cs1, so v1 and

v2 are both in S. By Theorem 8.11 in Section 8.1, v1 and v2 are also linearly independent.
Since dim(S) = 2, we may conclude that {v1, v2} is an orthogonal basis for S.

E X A M P L E 4 Let S = span{s1, s2}, where

s1 =
⎡
⎣ 1

−2
3

⎤
⎦ and s2 =

⎡
⎣ 3

5
−7

⎤
⎦

Find an orthogonal basis for S.
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Solution By the above formulas, we define

v1 = u1 =
⎡
⎣ 1

−2
3

⎤
⎦

v2 = u2 − projv1
u2 =

⎡
⎣ 3

5
−7

⎤
⎦ − −28

14

⎡
⎣ 1

−2
3

⎤
⎦ =

⎡
⎣ 5

1
−1

⎤
⎦

From the above discussion we know that v1 ·v2 = 0 and that span{s1, s2} = span{v1, v2}.
Thus {v1, v2} forms an orthogonal basis for S. ■

The Gram–Schmidt process extends the procedure illustrated in Example 4 and allows
us to generate an orthogonal basis for any nonzero subspace.

T H E O R E M 8.17 ( T H E G R A M -- S C H M I D T P R O C E S S ) Let S be a subspace with
basis {s1, s2, . . . , sk}. Define v1, v2, . . . , vk , in order, by

v1 = s1

v2 = s2 − projv1
s2

v3 = s3 − projv1
s3 − projv2

s3

v4 = s4 − projv1
s4 − projv2

s4 − projv3
s4

...
...

vk = sk − projv1
sk − projv2

sk − · · · − projvk−1
sk

Then {v1, v2, . . . , vk} is an orthogonal basis for S.

Jörgen Gram (1850--1916)
was a Danish actuary who
worked on the mathematics
of accident insurance, and
Erhardt Schmidt (1876--1959)
was a German mathematician
who taught at Berlin University.

At each step of the Gram–Schmidt process, the new vector v j is orthogonal to the
subspace

span{v1, . . . , v j−1} = span{s1, . . . , s j−1}

so we build up our basis for S by adding vectors orthogonal to those already in place,
ensuring an orthogonal basis at the end. A proof that the Gram–Schmidt process works
can be carried out by induction and is left as an exercise.

Let’s return to the problem we encountered at the beginning of the section.

E X A M P L E 5 Find an orthogonal basis for the subspace S = span{s1, s2, s3}, where

s1 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ , s2 =

⎡
⎢⎢⎣

0
2
0
3

⎤
⎥⎥⎦ , s3 =

⎡
⎢⎢⎣

−3
−1

1
5

⎤
⎥⎥⎦

Solution The first step of the Gram–Schmidt process is the easiest, setting v1 = s1.
Moving to the next step, we let

v2 = s2 − projv1
s2 = s2 − v1 · s2

‖v1‖2
v1 =

⎡
⎢⎢⎣

0
2
0
3

⎤
⎥⎥⎦ − 3

3

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦
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For the last step, we have

v3 = s3 − projv1
s3 − projv2

s3 = s3 − v1 · s3

‖v1‖2
v1 − v2 · s3

‖v2‖2
v2

=

⎡
⎢⎢⎣

−3
−1

1
5

⎤
⎥⎥⎦ − 3

3

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ − 10

10

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−3
−3

1
2

⎤
⎥⎥⎦

This gives us the orthogonal basis⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−3
−3

1
2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

■

Orthonormal Bases
In Theorem 8.12 we showed that if S is a subspace with orthogonal basis {v1, . . . , vk},
then any vector s in S can be expressed

s = v1 · s

‖v1‖2
v1 + v2 · s

‖v2‖2
v2 + · · · + vk · s

‖vk‖2
vk

If each of the vectors vi also satisfies ‖vi‖ = 1, then this formula simplifies to

s = (v1 · s)v1 + (v2 · s)v2 + · · · + (vk · s)vk (5)

D E F I N I T I O N 8.18 A set of vectors {w1, . . . , wk} is orthonormal if the set is orthogonal and ‖w j ‖ = 1
for each of j = 1, 2, . . . k.Definition Orthonormal Set

To obtain an orthonormal basis for a subspace S = span{s1, . . . , sk} of dimension
k, we first use Gram–Schmidt to find an orthogonal basis {v1, . . . , vk} for S and then let

w j = 1

‖v j ‖v j for j = 1, 2, . . . k

This step is called normalizing the vectors. Since each w j is a multiple of v j , the setDefinition Normalizing

{w1, . . . , wk} is orthogonal and span{v1, . . . , vk} = span{w1, . . . , wk}. Furthermore, as

‖w j ‖ =
∥∥∥∥ 1

‖v j ‖v j

∥∥∥∥ = 1

‖v j ‖‖v j ‖ = 1

the set {w1, . . . , wk} is an orthonormal basis for S.

E X A M P L E 6 Find an orthonormal basis for the subspace S given in Example 5.

Solution We already have the orthogonal basis

v1 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

−3
−3

1
2

⎤
⎥⎥⎦
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All that remains is to normalize each of v1, v2, and v3 by dividing by their respective
lengths. Since ‖v1‖ = √

3, ‖v2‖ = √
10, and ‖v3‖ = √

23, the orthonormal basis is⎧⎪⎪⎨
⎪⎪⎩

1√
3

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ ,

1√
10

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦ ,

1√
23

⎡
⎢⎢⎣

−3
−3

1
2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

■

E X A M P L E 7 Let S = span{s1, s2, s3}, where

s1 =
⎡
⎣ 1

2
−2

⎤
⎦ , s2 =

⎡
⎣ 1

0
−4

⎤
⎦ , s3 =

⎡
⎣5

2
0

⎤
⎦ , and s =

⎡
⎣ 1

1
−1

⎤
⎦

Use the Gram–Schmidt process to find an orthonormal basis for S, and then write s as
a linear combination of the orthonormal basis vectors.

Solution We start by finding an orthogonal basis. After setting v1 = s1, we have

v2 = s2 − projv1
s2 = s2 − s2 · v1

‖v1‖2
v1 =

⎡
⎣ 1

0
−4

⎤
⎦ − 9

9

⎡
⎣ 1

2
−2

⎤
⎦ =

⎡
⎣ 0

−2
−2

⎤
⎦

and

v3 = s3 − projv1
s3 − projv2

s3 = s3 − s3 · v1

‖v1‖2
v1 − s3 · v2

‖v2‖2
v2

=
⎡
⎣5

2
0

⎤
⎦ − 9

9

⎡
⎣ 1

2
−2

⎤
⎦ − (−4)

8

⎡
⎣ 0

−2
−2

⎤
⎦ =

⎡
⎣ 4

−1
1

⎤
⎦

Now that we have an orthogonal basis, we obtain an orthonormal basis by normalizing
each of v1, v2, and v3:

w1 = 1

‖v1‖v1 = 1

3

⎡
⎣ 1

2
−2

⎤
⎦

w2 = 1

‖v2‖v2 = 1√
8

⎡
⎣ 0

−2
−2

⎤
⎦ = 1√

2

⎡
⎣ 0

−1
−1

⎤
⎦

w3 = 1

‖v3‖v3 = 1√
18

⎡
⎣ 4

−1
1

⎤
⎦ = 1

3
√

2

⎡
⎣ 4

−1
1

⎤
⎦

To write s as a linear combination of w1, w2, and w3, we apply the formula in (5). This
produces

s = (w1 · s)w1 + (w2 · s)w2 + (w3 · s)w3

=
(

5

3

)
w1 + (0) w2 +

(√
2

3

)
w3 = 5

3
w1 +

√
2

3
w3

We can check that this is correct by computing

(
5

3

)
w1 +

(√
2

3

)
w3 =

(
5

3

)
· 1

3

⎡
⎣ 1

2
−2

⎤
⎦+

(√
2

3

)
· 1

3
√

2

⎡
⎣ 4

−1
1

⎤
⎦=

⎡
⎣ 1

1
−1

⎤
⎦= s

■



Holt-4100161 la October 8, 2012 14:50 321

SECTION 8.2 Projection and the Gram--Schmidt Process 321

Computational Comments
When implemented on a computer, the Gram–Schmidt process can suffer from significant
round-off error. As the orthogonal vectors are computed, some dot products vi ·v j might
not be close to zero when |i − j | is large. There is a modified version of the Gram–Schmidt
process that requires more operations, but it is also more numerically stable and hence
is not as prone to loss of orthogonality due to round-off error.

Proof of Theorem 8.16
Proof of Theorem 8.16 Part (a) follows from the definition of projS u, and part (c)
follows from Theorem 8.12. For part (b), suppose that {v1, . . . , vk} is an orthogonal
basis for S. Then

v1 · (u − projS u) = v1 · u − v1 ·
(

v1 · u

‖v1‖2
v1 + v2 · u

‖v2‖2
v2 + · · · + vk · u

‖vk‖2
vk

)

= v1 · u −
(

v1 · u

‖v1‖2
(v1 · v1) + v2 · u

‖v2‖2
(v1 · v2) + · · · + vk · u

‖vk‖2
(v1 · vk)

)

= v1 · u −
(

v1 · u

‖v1‖2
‖v1‖2 + v2 · u

‖v2‖2
(0) + · · · + vk · u

‖vk‖2
(0)

)

= v1 · u − v1 · u = 0

The same argument can be used to show that each of

v2 · (u − projS u) = 0, . . . , vk · (u − projS u) = 0

Thus, by Theorem 8.9, u − projS u is orthogonal to S.
To verify part (d), suppose that {ṽ1, . . . , ṽk} is another orthogonal basis for S, and

let projSv
u and projSṽ

u denote the projections for bases {v1, . . . , vk} and {ṽ1, . . . , ṽk},
respectively. By part (b), both u − projSv

u and u − projSṽ
u are in S⊥, and since S⊥ is a

subspace, the difference

(u − projSv
u) − (u − projSṽ

u) = projSṽ
u − projSv

u

is in S⊥. But by part (a), both projSṽ
u and projSv

u are also in the subspace S, so that
projSṽ

u − projSv
u is as well. However, S ∩ S⊥ = {0} (see Exercise 67 of Section 8.1),

which implies projSṽ
u − projSv

u = 0. Hence projSṽ
u = projSv

u, and therefore projS u is
independent of choice of basis for S. ■

E X E R C I S E S
Exercises 1–6 refer to the vectors given below.

u1 =
[−3

1
2

]
, u2 =

[
1
1
1

]
, u3 =

[
2
0

−1

]
, u4 =

[
1

−3
2

]

u5 =
[

2
1
1

]
, u6 =

[
0
3

−1

]
, u7 =

[
3

−4
−2

]
, u8 =

[−1
−1

3

]

1. Compute the following projections.

(a) proju3
u2

(b) proju1
u2

2. Compute the following projections.

(a) proju5
u1

(b) proju5
u8

3. Compute projS u2, where S = span{u3, u4}.
4. Compute projS u8, where S = span{u5, u7}.
5. Normalize the given vectors.

(a) u1

(b) u4

6. Normalize the given vectors.

(a) u3

(b) u6
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For Exercises 7–14, apply the Gram–Schmidt process to find an
orthogonal basis for the given subspace.

7. S = span

{[
1
3

]
,

[
4
2

]}

8. S = span

{[
2

−1

]
,

[
4
3

]}

9. S = span

{[−2
2
1

]
,

[
3
4

−2

]}

10. S = span

{[
1
0

−2

]
,

[
1
3
3

]}

11. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
−1

0
1

⎤
⎥⎦ ,

⎡
⎢⎣

4
1
2
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

12. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−1
0
1
2

⎤
⎥⎦ ,

⎡
⎢⎣

4
2
0

−1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

13. S = span

{[−1
0
1

]
,

[
3
4
1

]
,

[
4
1
6

]}

14. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
1
0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

1
3
0
1

⎤
⎥⎦ ,

⎡
⎢⎣

4
2
2
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

For Exercises 15–22, find projS u.

15. S = subspace in Exercise 7; u =
[

1
1

]
.

16. S = subspace in Exercise 8; u =
[
−1

1

]
.

17. S = subspace in Exercise 9; u =
[

1
0
2

]
.

18. S = subspace in Exercise 10; u =
[

1
1
1

]
.

19. S = subspace in Exercise 11; u =

⎡
⎢⎣

1
−1

0
1

⎤
⎥⎦.

20. S = subspace in Exercise 12; u =

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦.

21. S = subspace in Exercise 13; u =
[

1
0
2

]
.

22. S = subspace in Exercise 14; u =

⎡
⎢⎣

1
0
1
0

⎤
⎥⎦.

For Exercises 23–30, find an orthonormal basis for the given
subspace.

23. S = subspace in Exercise 7.

24. S = subspace in Exercise 8.

25. S = subspace in Exercise 9.

26. S = subspace in Exercise 10.

27. S = subspace in Exercise 11.

28. S = subspace in Exercise 12.

29. S = subspace in Exercise 13.

30. S = subspace in Exercise 14.

FIND AN EXAMPLE For Exercises 31–36, find an example that
meets the given specifications.

31. Two vectors u and v in R2 with projvu = u.

32. Two vectors u and v in R3 with projvu = v.

33. Two vectors u and v in R2 with projvu = 0.

34. A two-dimensional subspace S in R3 and a vector u such that
projS u = u.

35. Two nonparallel vectors u and v with projvu =
[

1
2

]
.

36. A two-dimensional subspace S in R3 and a vector u not in S

such that projS u =
[

3
0
1

]
.

TRUE OR FALSE For Exercises 37–46, determine if the statement
is true or false, and justify your answer. Assume S is nontrivial and
u and v are both nonzero.

37. Every subspace S of Rn has an orthonormal basis.

38. If u is in R5 and S is a three-dimensional subspace of R5, then
projS u is in R3.

39. If S is a subspace, then projS u is in S.

40. If u and v are vectors, then projvu is a multiple of u.

41. If u and v are orthogonal, then projvu = 0.

42. If projS u = u, then u is in S.

43. If u is in S, then projS⊥ u = 0.

44. For a vector u and a subspace S,

projS

(
projS u

) = projS u

45. For vectors u and v,

proju

(
projvu

) = u

46. For every subspace S there exists a nonzero vector u such that
projS u = 2u.
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47. Let {v1, . . . , vk} be the orthogonal set generated in the course
of applying the Gram–Schmidt process to a basis, and define

S j = span{v1, . . . , v j } for j = 1, . . . , k

(a) Prove that if i < j , then Si is a subspace of S j .

(b) Prove that if i < j , then S⊥
j is a subspace of S⊥

i .

48. Suppose that {u1, u2} are linearly independent and that u3 is
in span{u1, u2}. Suppose further that the Gram–Schmidt process
is applied to {u1, u2, u3} to generate a new set {v1, v2, v3}. What
is v3? Explain your answer.

49. Suppose that u and v are nonzero vectors and that S is a sub-
space. Prove that if u is in S and v is in S⊥, then u + v is not in S
or S⊥.

50. Suppose that {w1, . . . , wn} is an orthonormal set and that
x = c1w1 + · · · + cnwn . Prove that

‖x‖2 = c 2
1 + · · · + c 2

n

51. Let v �= 0 be a fixed vector in Rn . Prove that T : Rn → Rn

given by Tv(u) = projvu is a linear transformation.

52. Let S be a nonzero subspace. Prove that T : Rn → Rn given
by TS (u) = projS u is a linear transformation.

53. Here we prove that the Gram–Schmidt process works. Sup-
pose that {u1, . . . , uk} are linearly independent vectors, and that
{v1, . . . , vk} are the vectors generated by the Gram–Schmidt
process.

(a) Use induction to show {v1, . . . , v j } is an orthogonal set for
j = 1, . . . , k.

(b) Use induction to show span{u1, . . . , u j } = span{v1, . . . , v j }
for j = 1, . . . , k.

(c) Explain why (a) and (b) imply that the Gram–Schmidt process
yields an orthogonal basis.

54. Prove that for any nonzero vectors u and v,

‖u‖2 = ‖projvu‖2 + ‖u − projvu‖2 (6)

(HINT: Apply Theorem 8.14 and Theorem 8.6.)

55. Prove that for any vector u and nonzero subspace S,

‖u‖2 = ‖projS u‖2 + ‖u − projS u‖2

(HINT: Apply Theorem 8.16 and Theorem 8.6.)

56. If u and v are nonzero vectors in Rn , then the angle θ between
u and v is defined in terms of the formula

cos(θ) = u · v

‖u‖‖v‖ (7)

In this exercise, we use trigonometry to prove that this is true in R2.
The equation in (7) is an extension from R2 to Rn .

(a) Refer to Figure 4 and use it to explain why

cos(θ) = ‖projvu‖
‖u‖ = |u · v|

‖u‖‖v‖

u

�
v

projv u

Figure 4 The angle θ between u and v.

(b) Explain why |u · v| = u · v in Figure 4. (HINT: projvu = cv.
Is c positive or negative?) Conclude that (7) holds for θ < 90◦.

(c) Draw a new diagram with u and v arranged so that θ > 90◦.
Explain why in this case |u · v| = −u · v, and conclude that (7)
also holds in this case.

(d) Complete the proof by showing that (7) holds when θ = 90◦.

57. In this exercise we prove the Cauchy–Schwarz inequality, which
states that

|u · v| ≤ ‖u‖‖v‖ (8)

for vectors u and v in Rn .

(a) Prove that ‖projvu‖ ≤ ‖u‖. (HINT: See (6).)

(b) Use (a) and the definition of projection to show that (8) holds.

(c) Show that |u · v| = ‖u‖‖v‖ if and only if u = cv. Hence there
is equality in the Cauchy–Schwarz inequality exactly when u is a
scalar multiple of v.

58. Here we prove that

u = projS u + projS⊥ u (9)

for a vector u and a nontrivial subspace S.

(a) Explain why u − projS u and projS⊥ u are both in S⊥, and use
this to prove that

u − projS u − projS⊥ u (10)

is in S⊥.

(b) Explain why u − projS⊥ u and projS u are both in S, and use
this to prove that the expression in (10) is also in S.

(c) Combine (a) and (b) to show that

u − projS u − projS⊥ u = 0

and from this conclude that (9) is true.

C In Exercises 59–60, find an orthonormal basis for S.

59. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
2

−4
−1

⎤
⎥⎦ ,

⎡
⎢⎣

−3
0
5

−2

⎤
⎥⎦ ,

⎡
⎢⎣

0
7
2

−6

⎤
⎥⎦

⎫⎪⎬
⎪⎭
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60. S = span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

2
−1

0
−2

3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

4
−2

1
−4
−2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

5
−1

2
0

−4

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

4
0
2

−3
−3

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

C In Exercises 61–62, compute projS u.

61. S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
−1
−2

7

⎤
⎥⎦ ,

⎡
⎢⎣

2
1
6
3

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , u =

⎡
⎢⎣

3
−1
−1

4

⎤
⎥⎦

62. S = span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

2
1
7
1
0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

3
−2
−5

0
4

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

5
2
1
1
4

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, u =

⎡
⎢⎢⎢⎣

3
−1
−1

4
0

⎤
⎥⎥⎥⎦

8.3 Diagonalizing Symmetric Matrices
and QR Factorization
We start this section by revisiting the problem of diagonalizing matrices. As we discovered
in Section 6.4, not all square matrices can be diagonalized, and in general it is not easy to
tell if a given matrix can be diagonalized. However, the situation is different if the matrix
is symmetric. Let’s consider an example.

Recall that a square matrix A

is symmetric if AT = A.
E X A M P L E 1 If possible, diagonalize the matrix

A =
⎡
⎣ 1 −1 4

−1 4 −1
4 −1 1

⎤
⎦

Solution The characteristic polynomial for A is

det(A − λI ) = −λ3 − 6λ2 − 9λ − 54 = −(λ − 6)(λ − 3)(λ + 3)

so the eigenvalues are λ = 6, 3, −3. Since the eigenvalues each have multiplicity 1,
we know that A is diagonalizable. Following our usual procedure, we find that an
eigenvector associated with each eigenvalue is

λ = 6 ⇒ u1 =
⎡
⎣ 1

−1
1

⎤
⎦ , λ = 3 ⇒ u2 =

⎡
⎣1

2
1

⎤
⎦ , λ = −3 ⇒ u3 =

⎡
⎣−1

0
1

⎤
⎦

Forming the diagonal matrix D and the matrix of eigenvectors P , we have

D =
⎡
⎣6 0 0

0 3 0
0 0 −3

⎤
⎦ and P =

⎡
⎣ 1 1 −1

−1 2 0
1 1 1

⎤
⎦

■

We know from previous work that eigenvectors associated with distinct eigenvalues
are linearly independent. In Example 1, even more is true: The eigenvectors are orthog-
onal. This is not a coincidence—it always happens when A is a symmetric matrix.

T H E O R E M 8.19 If A is a symmetric matrix, then eigenvectors associated with distinct eigenvalues are
orthogonal.
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Proof Let A be a symmetric matrix, and suppose that λ1 	= λ2 are distinct eigenvalues
of A with associated eigenvectors u1 and u2, respectively. We now compute (Au1)T u2 in
two different ways. First, we have

Note that xT
1 x2 = x1 ·x2. (See

Exercise 71 of Section 8.1.)

(Au1)T u2 = (λ1u1)T u2 = λ1uT
1 u2 = λ1(u1 · u2)

Second, A symmetric means A = AT . Thus

(Au1)T u2 = (uT
1 AT )u2 = (uT

1 A)u2 = uT
1 (Au2)

= uT
1 (λ2u2) = λ2(uT

1 u2) = λ2(u1 · u2)

Hence λ1(u1 · u2) = λ2(u1 · u2), or equivalently,

(λ1 − λ2)(u1 · u2) = 0

Since λ1 	= λ2, then u1 · u2 = 0. Therefore u1 and u2 are orthogonal. ■

Returning to Example 1, if we compute P T P we find that

P T P =
⎡
⎣ 1 −1 1

1 2 1
−1 0 1

⎤
⎦

⎡
⎣ 1 1 −1

−1 2 0
1 1 1

⎤
⎦ =

⎡
⎣3 0 0

0 6 0
0 0 2

⎤
⎦

Thus P T P is a diagonal matrix. To further simplify P T P , we redefine P to have nor-
malized columns (i.e., columns that have length 1),

P =

⎡
⎢⎢⎣

1√
3

1√
6

− 1√
2

− 1√
3

2√
6

0

1√
3

1√
6

1√
2

⎤
⎥⎥⎦

Since each column is a constant multiple of its predecessor, it is still an eigenvector asso-
ciated with the same eigenvalue. Thus we could use this definition of P to diagonalize A.
Although this choice of P is not as tidy as the previous one, it does have the nice property
that

P T P =

⎡
⎢⎢⎣

1√
3

− 1√
3

1√
3

1√
6

2√
6

1√
6

− 1√
2

0 1√
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1√
3

1√
6

− 1√
2

− 1√
3

2√
6

0

1√
3

1√
6

1√
2

⎤
⎥⎥⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I3

That is, P T P = I3, so that P T = P −1. A square matrix with orthonormal columns is
called an orthogonal matrix, and will always have this property.

Definition Orthogonal Matrix

It might be better if an
“orthogonal matrix” was called
an “orthonormal matrix,” but
“orthogonal matrix” is standard
in linear algebra. There is no
special name for a matrix with
nonnormalorthogonalcolumns.

T H E O R E M 8.20 If P is an n × n orthogonal matrix, then P −1 = P T .

Proof When computing the matrix product P T P , we are just computing the dot prod-
ucts of the columns of P . The diagonal terms of P T P come from the dot product of a
column with itself, with each equal to 1 because of the normality. The nondiagonal terms
come from the dot products of distinct columns, and so are zero because the columns
are orthogonal. Thus P T P = In, and hence P −1 = P T . ■
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For example, since the following matrix P is orthogonal, we have P −1 = P T .

P =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ �⇒ P −1 = P T =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦

Orthogonally Diagonalizable Matrices
Next, we show how to find diagonalizing matrices D and P in the special case where P
is an orthogonal matrix.

D E F I N I T I O N 8.21 A square matrix A is orthogonally diagonalizable if there exists an orthogonal matrix
P and a diagonal matrix D such that A = PDP−1.Definition Orthogonally

Diagonalizable

Since we can write the symmetric matrix A in Example 1 as A = PDP−1 for

D =
⎡
⎣6 0 0

0 3 0
0 0 −3

⎤
⎦ and P =

⎡
⎢⎢⎣

1√
3

1√
6

− 1√
2

− 1√
3

2√
6

0

1√
3

1√
6

1√
2

⎤
⎥⎥⎦

it follows that A is orthogonally diagonalizable. It is not hard to show that any orthogo-
nally diagonalizable matrix must be symmetric.

T H E O R E M 8.22 Let A be an orthogonally diagonalizable matrix. Then A is symmetric.

Proof If A is orthogonally diagonalizable, then there exists an orthogonal matrix P
and diagonal matrix D such that A = PDP−1. Using the fact that P −1 = P T (by
Theorem 8.20) and DT = D (because D is diagonal), we have

AT = (PDP−1)T = (PDPT )T = (P T )T DT P T = PDPT = PDP−1 = A

Since AT = A, it follows that A is symmetric. ■

Remarkably, the converse of Theorem 8.22 is also true: If A is a symmetric matrix,
then A is orthogonally diagonalizable.

T H E O R E M 8.23 ( S P E C T R A L T H E O R E M ) A matrix A is orthogonally diagonalizable if
and only if A is symmetric.

A complete proof of the Spectral Theorem is difficult and is not included here. Two
consequences of the Spectral Theorem:

• All eigenvalues of a symmetric matrix A are real.

• Each eigenspace of a symmetric matrix A has dimension equal to the multiplicity of
the associated eigenvalue.

E X A M P L E 2 Orthogonally diagonalize the symmetric matrix

A =

⎡
⎢⎢⎣

1 3 −3 −3
3 −3 3 −1

−3 3 1 −3
−3 −1 −3 −3

⎤
⎥⎥⎦
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Solution Finding the characteristic polynomial of A (which has degree 4) and then
factoring by hand is difficult, but using computer software we find that

det(A − λI ) = λ4 + 4λ3 − 48λ2 − 64λ + 512 = (λ + 8)(λ + 4)(λ − 4)2

Thus we have eigenvalues λ = −8, λ = −4 (both multiplicity 1), and λ = 4 (multi-
plicity 2). Our usual methods produce bases for each eigenspace,

λ = −8 ⇒

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1

1
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ ; λ = −4 ⇒

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ ; λ = 4 ⇒

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Since our goal is to orthogonally diagonalize A, we first need an orthogonal basis for
each eigenspace. The bases for λ = −8 and λ = −4 are fine as is, but we need to apply
Gram–Schmidt to the basis for λ = 4. Designate

u1 =

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦ , u2 =

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦

Setting v1 = u1, the second vector v2 is given by

v2 = u2 − v1 · u2

‖v1‖2
v1 =

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦ − 2

2

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1
−1
−1

1

⎤
⎥⎥⎦

This gives us four orthogonal eigenvectors⎡
⎢⎢⎣

1
−1

1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
−1
−1

1

⎤
⎥⎥⎦

Next, we normalize each vector,⎡
⎢⎢⎢⎢⎢⎢⎣

1
2

− 1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1√
2

0

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0

1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2

− 1
2

− 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

Finally, we form D and P ,

D =

⎡
⎢⎢⎣

−8 0 0 0
0 −4 0 0
0 0 4 0
0 0 0 4

⎤
⎥⎥⎦ and P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 0 − 1√

2
− 1

2

− 1
2

1√
2

0 − 1
2

1
2 0 1√

2
− 1

2

1
2

1√
2

0 1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

■

We know the vectors are
orthogonal by Theorem 8.19,
which says that for a symmetric
matrix, eigenvectors associated
with distinct eigenvalues are
orthogonal.
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E X A M P L E 3 Orthogonally diagonalize the matrix AT A for

A =
⎡
⎣1 2

2 0
0 2

⎤
⎦

Solution We have

AT A =
[

1 2 0
2 0 2

]⎡
⎣1 2

2 0
0 2

⎤
⎦ =

[
5 2
2 8

]

AT A is symmetric and hence by the Spectral Theorem orthogonally diagonalizable.
The characteristic polynomial is λ2 − 13λ + 36 = (λ − 4)(λ − 9), yielding eigenvalues
λ1 = 9 and λ2 = 4. The corresponding normalized eigenvectors are

λ = 9 ⇒
{[ 1√

5

2√
5

]}
; λ = 4 ⇒

{[ 2√
5

− 1√
5

]}

Thus, if we define

D =
[

9 0
0 4

]
and P =

[ 1√
5

2√
5

2√
5

− 1√
5

]

then P is orthogonal and AT A = P D P T . ■

All matrices of the form AT A
are symmetric. (See Exercise 55
of Section 3.2.)

Since AT A is a symmetric matrix, we know from the Spectral Theorem that the
eigenvalues are real. In fact, for symmetric matrices of this form, it turns out that the
eigenvalues will be nonnegative. Since this result is handy to know in the next section,
we state and prove it here.

T H E O R E M 8.24 If A is a real matrix, then AT A has nonnegative eigenvalues.

Proof Suppose that λ is an eigenvalue of AT A with associated eigenvector u. Then

‖Au‖2 = (Au) · (Au) = (Au)T (Au) = (uT AT )(Au)

= uT (AT Au) = uT (λu) = λ(uT u) = λ‖u‖2

In summary, ‖Au‖2 = λ‖u‖2. Since both ‖Au‖2 and ‖u‖2 are nonnegative, it must be
that λ is nonnegative as well. ■

QR Factorization
Diagonalizing a matrix is one type of matrix factorization. Diagonalizing is always possible
when a matrix is symmetric, but it may or may not be otherwise. Here we consider
another type of factorization, which applies to any matrix that has linearly independent
columns.

T H E O R E M 8.25 ( Q R F A C T O R I Z A T I O N ) Let A = [
a1 · · · am

]
be an n × m matrix

with linearly independent columns. Then A can be factorized as A = Q R, where
Q = [

q1 · · · qm

]
is an n × m matrix with orthonormal columns and R is an

m × m upper triangular matrix with positive diagonal entries.
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Proof Suppose that {q1, . . . , qm} is the orthonormal set of vectors we get by apply-
ing the Gram–Schmidt process to the set of columns {a1, . . . , am}. Now define Q =[

q1 · · · qm

]
. From the Gram–Schmidt construction, for each 1 ≤ k ≤ m the vector

ak is in the span of the orthonormal set {q1, . . . , qk}. Hence by equation (5) in Section 8.2
we have

ak = (q1 · ak)q1 + (q2 · ak)q2 + · · · + (qk · ak)qk (1)

Now define rik = qi · ak for 1 ≤ k ≤ m and 1 ≤ i ≤ k, and let

R =

⎡
⎢⎢⎢⎢⎢⎣

r11 r12 r13 · · · r1n

0 r22 r23 · · · r2n

0 0 r33 · · · r3n

...
...

...
. . .

...

0 0 0 · · · rmm

⎤
⎥⎥⎥⎥⎥⎦

Since Q = [
q1 · · · qm

]
, the kth column of the product Q R is equal to

r1kq1 + r2kq2 + · · · + rkkqk = ak

by (1) and the definition of rik . Since ak is the kth column of A, it follows that A = Q R.
Finally, since ak is not in span{q1, . . . , qk−1} (why?), it must be that rkk 	= 0. If rkk < 0,

then we replace qk with −qk , which will make rkk > 0 while keeping the columns of Q
orthonormal and the column space col(Q) unchanged. Hence the diagonal entries of R
are positive. ■

Before considering an example, we note that once Q has been found we can use
matrix multiplication to compute R. Since A = Q R we have

QT A = QT Q R = R

because QT Q = Im. It also can be shown directly that the entries of QT A are equal to
the entries of R (see Exercise 61).

E X A M P L E 4 Find the QR factorization for

A =

⎡
⎢⎢⎣

1 0 −3
0 2 −1
1 0 1
1 3 5

⎤
⎥⎥⎦

Solution The columns of A are the vectors from Examples 5–6 in Section 8.2, where
applying the Gram–Schmidt process we found the corresponding orthonormal set⎧⎪⎪⎨

⎪⎪⎩
1√
3

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ ,

1√
10

⎡
⎢⎢⎣

−1
2

−1
2

⎤
⎥⎥⎦ ,

1√
23

⎡
⎢⎢⎣

−3
−3

1
2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Therefore we define

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
3

− 1√
10

− 3√
23

0 2√
10

− 3√
23

1√
3

− 1√
10

1√
23

1√
3

2√
10

2√
23

⎤
⎥⎥⎥⎥⎥⎥⎦
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We find R by computing

R = QT A =

⎡
⎢⎢⎣

1√
3

0 1√
3

1√
3

− 1√
10

2√
10

− 1√
10

2√
10

− 3√
23

− 3√
23

1√
23

2√
23

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 −3
0 2 −1
1 0 1
1 3 5

⎤
⎥⎥⎦ =

⎡
⎣

√
3

√
3

√
3

0
√

10
√

10
0 0

√
23

⎤
⎦

Thus we have the factorization

Q R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
3

− 1√
10

− 3√
23

0 2√
10

− 3√
23

1√
3

− 1√
10

1√
23

1√
3

2√
10

2√
23

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

√
3

√
3

√
3

0
√

10
√

10
0 0

√
23

⎤
⎦ =

⎡
⎢⎢⎣

1 0 −3
0 2 −1
1 0 1
1 3 5

⎤
⎥⎥⎦ = A

■

E X E R C I S E S
In Exercises 1–8, determine if the given matrix is symmetric.

1.

[
1 −2
2 1

]

2.

[
4 3
3 5

]

3.

[
3 2 1
2 1 3
1 3 2

]

4.

[
2 0 1
0 2 0
0 0 2

]

5.

[
3 −1 4

−1 4 3

]

6.

[−5 2 −1
2 1 0

−1 0 −6

]

7.

⎡
⎢⎣

1 7 −3
7 2 4

−3 0 −6
4 −6 −1

⎤
⎥⎦

8.

⎡
⎢⎣

4 2 0 −2
2 3 4 5
0 4 2 0

−2 5 0 1

⎤
⎥⎦

In Exercises 9–14, determine if the given matrix is orthogonal.

9.

[
1 −2
2 1

]

10.

[ 1√
10

3√
10

3√
10

− 1√
10

]

11.

[− 5
13

12
13

12
13

5
13

]

12.

[
1 0 1
0 1 0

−1 0 1

]

13.

⎡
⎢⎢⎣

1
2

1
3

1
4

− 1
2

1
3

1
4

0 1
3 − 1

2

⎤
⎥⎥⎦

14.

⎡
⎢⎢⎣

2√
14

1√
3

4√
42

1√
14

1√
3

− 5√
42

− 3√
14

1√
3

1√
42

⎤
⎥⎥⎦

In Exercises 15–18, the eigenvalues and corresponding eigenvec-
tors for a symmetric matrix A are given. Find matrices D and P
of an orthogonal diagonalization of A.

15. λ1 = 2, u1 =
[

1
2

]
; λ2 = −3, u2 =

[
−2

1

]

16. λ1 = −1, u1 =
[

3
4

]
; λ2 = 1, u2 =

[
−4

3

]

17. λ1 = 0, u1 =
[

1
1
1

]
; λ2 = 2, u2 =

[
1

−1
0

]
;

λ3 = −1, u3 =
[−1
−1

2

]

18. λ1 = −1, u1 =
[

2
1
0

]
; λ2 = 0, u2 =

[
1

−2
1

]
;

λ3 = 3, u3 =
[−1

2
5

]

In Exercises 19–24, the eigenvalues for the symmetric matrix A are
given. Find the matrices D and P of an orthogonal diagonalization
of A.
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19. A =
[

4 2
2 1

]
, λ = 0, 5

20. A =
[

3 4
4 3

]
, λ = −1, 7

21. A =
[

0 1 2
1 1 1
2 1 0

]
, λ = −2, 0, 3

22. A =
[

1 2 3
2 1 3
3 3 0

]
, λ = −3, −1, 6

23. A =
[

0 0 1
0 1 0
1 0 0

]
, λ = −1, 1

24. A =
[

1 1 1
1 1 1
1 1 1

]
, λ = 0, 3

In Exercises 25–28, verify that the eigenvalues of AT A are non-
negative.

25. A =
[

1 1
2 1
1 2

]

26. A =
[

0 2
1 0
2 1

]

27. A =
[

0 2 1
1 0 0

]

28. A =
[

2 2 3
1 1 0

]
In Exercises 29–32, the given matrix Q has orthogonal columns.
Find Q−1 without using row operations. (HINT: Exercise 60 could
be helpful. If you use it, explain why it works.)

29. Q =
[

1 2
−2 1

]

30. Q =
[

4 5
5 −4

]

31. Q =
[

0 2 0
1 0 1

−1 0 1

]

32. Q =
[

1 1 5
2 1 −4
3 −1 1

]

In Exercises 33–40, find the QR factorization for the matrix A.

33. A =
[

3 −2
2 3

]

34. A =
[
−4 3

2 6

]

35. A =
[

1 4
3 2

]

36. A =
[

2 4
−1 3

]

37. A =
[

1 2
1 −3
5 1

]

38. A =
[

0 −3
6 −3
9 2

]

39. A =
[−2 3

2 4
1 −2

]

40. A =
[

1 1
0 3

−2 3

]

FIND AN EXAMPLE For Exercises 41–48, find an example that
meets the given specifications.

41. A 2 × 2 matrix A that has eigenvalues λ1 = 1 and λ2 = 2 and
is orthogonally diagonalizable.

42. A 3 × 3 matrix A that has eigenvalues λ1 = 2, λ2 = 3, and
λ3 = 5 and is orthogonally diagonalizable.

43. A 2×2 matrix A that is orthogonally diagonalizable, has eigen-
values λ1 = −1 and λ2 = 2, and corresponding eigenvectors

u1 =
[

1
2

]
, u2 =

[
−2

1

]
44. A 3×3 matrix A that is orthogonally diagonalizable, has eigen-
values λ1 = −3, λ2 = 0, and λ3 = 4, and has corresponding
eigenvectors

u1 =
[

1
0
2

]
, u2 =

[
4

−1
−2

]
, u3 =

[
2

10
−1

]

45. A 2 × 2 matrix A that does not have a QR factorization.

46. Two 3×3 matrices A and B that both have a QR factorization,
but A + B does not.

47. A 2 × 2 matrix A that is diagonalizable but not orthogonally
diagonalizable.

48. A 2 × 2 matrix A that is orthogonally diagonalizable but not
invertible.

TRUE OR FALSE For Exercises 49–58, determine if the statement
is true or false, and justify your answer.

49. If A is a symmetric matrix, then A is diagonalizable.

50. If A is a square matrix, then A is diagonalizable.

51. If A is orthogonally diagonalizable, then A = AT

52. The eigenvalues of a square matrix A are real.

53. AT A is symmetric for any matrix A.

54. All matrices have a QR factorization.

55. In the QR factorization of a matrix A, the matrix R has
columns that span the column space of A.
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56. If A and B are orthogonal n × n matrices, then so is A + B .

57. If A = Q R is a QR factorization for a matrix A, then R is
invertible.

58. If AT A = AAT for a square matrix A, then A is an orthogonal
matrix.

59. Prove that if A is orthogonal, then det(A) = ±1.

60. Suppose Q = [
q1 · · · qn

]
has orthogonal columns. Show

that

Q−1 =

⎡
⎣ 1

‖q1‖2 qT
1

· · ·
1

‖qn‖2 qT
n

⎤
⎦

61. Let A and Q be the matrices in Theorem 8.25. Prove that the
entry in position (i, k) of QT A is equal to qi · ak .

62. Prove that if A is an orthogonal matrix, then so is AT .

63. Prove that if A is orthogonally diagonalizable, then so is AT .

64. Prove that if A and B are orthogonally diagonalizable matrices,
then so is A + B .

65. Prove that if A is orthogonally diagonalizable, then so is A2.

66. Suppose that P is an orthogonal matrix. Show that for any
vector x, ‖P x‖2 = ‖x‖2 and therefore any eigenvector of P satis-
fies |λ| = 1.

C In Exercises 67–70, find an orthogonal diagonalization for the
matrix A.

67. A =
[

2 1 3
1 0 −4
3 −4 5

]

68. A =
[−1 −3 0
−3 2 7

0 7 4

]

69. A =

⎡
⎢⎣

2 1 4 0
1 3 2 −5
4 2 −1 3
0 −5 3 2

⎤
⎥⎦

70. A =

⎡
⎢⎣

0 −8 3 2
−8 −1 2 7

3 2 0 −1
2 7 −1 4

⎤
⎥⎦

C In Exercises 71–74, find a QR factorization for the matrix A.

71. A =
[−1 3 3

0 2 4
1 1 5

]

72. A =
[

4 2 0
1 5 −2
3 −3 1

]

73. A =

⎡
⎢⎣

1 1 4
1 3 2
1 0 2

−1 1 4

⎤
⎥⎦

74. A =

⎡
⎢⎣

2 −1 1
4 2 3
0 3 −2
5 1 0

⎤
⎥⎦

8.4 The Singular Value Decomposition
This section is optional and

can be omitted without loss of
continuity.

In this section we develop another type of matrix factorization that is a generalization
of diagonalization. This new type of matrix factorization is called the singular value
decomposition (SVD), and it can be applied to any type of matrix, even those that are not
square. We start by developing the factorization method and then describe applications
to image processing and estimating the rank of a matrix.

Definition Singular Value
Decomposition

Suppose that we have an n × m matrix A. If n ≥ m, then the singular value
decomposition is the factorization of A as the product A = U�V T , where

• U is an n × n orthogonal matrix.
0(n−m)m is the (n − m) × m

matrix with all entries equal to
zero.

• � is an n × m matrix of the form � =
[

D
0(n−m)m

]
, where D is a diagonal matrix with

D =

⎡
⎢⎢⎢⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm

⎤
⎥⎥⎥⎦

and σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are the singular values of A. The singular values are
given by σi = √

λi , where λi is an eigenvalue of AT A.

• V is an m × m orthogonal matrix.

If n < m, then � = [
Dn n 0n(m−n)

]
with everything else the same.
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T H E O R E M 8.26 Every n × m matrix A has a singular value decomposition.

The proof of this theorem is given at the end of the section. For now, let’s look at an
example that illustrates how we find the SVD.

By Theorem 8.24, the eigen-
values of AT A are always non-
negative.

Recall that col(A) is the col-
umn space of A.

V T = V−1 because V is an
orthogonal matrix.

E X A M P L E 1 Find the SVD for the 3 × 2 matrix

A =
⎡
⎣1 2

2 0
0 2

⎤
⎦

Solution We find the SVD A = U�V T by applying the following sequence of steps.

1. Orthogonally Diagonalize AT A to find V . Since AT A is symmetric, the Spectral
Theorem guarantees that it is orthogonally diagonalizable. Our matrix A appears
in Example 3 of Section 8.3, where we showed that the eigenvalues of AT A are
λ1 = 9 and λ2 = 4 and that the orthogonal diagonalizing matrix is

V =
[ 1√

5
2√
5

2√
5

− 1√
5

]

This is the matrix V in the SVD of A.

2. Find �. The singular values for a matrix A are given by σi = √
λi , the square

roots of the eigenvalues of AT A. Here we have σ1 = √
9 = 3 and σ2 = √

4 = 2, so
that

� =
⎡
⎣3 0

0 2
0 0

⎤
⎦

3. Find U . We determine the columns of U in two steps, one for the columns cor-
responding to positive singular values, and the other for the columns that form an
orthonormal basis for

(
col(A)

)⊥
. (We will see why later.)

3a. Positive Singular Values. Our ultimate goal is to find U so that A = U�V T ,
or equivalently, AV = U�. Note that the i th column of AV is Avi , while the
i th column of U� is σi ui . Thus, for AV = U�, we must have Avi = σi ui .
When σi > 0, we arrange for this by defining

ui = 1

σi
Avi

In this example, we have

u1 = 1

σ1
Av1 = 1

3

⎡
⎣1 2

2 0
0 2

⎤
⎦

[ 1√
5

2√
5

]
= 1

3
√

5

⎡
⎣5

2
4

⎤
⎦

u2 = 1

σ2
Av2 = 1

2

⎡
⎣1 2

2 0
0 2

⎤
⎦

[ 2√
5

− 1√
5

]
= 1√

5

⎡
⎣ 0

2
−1

⎤
⎦

Two important observations:

(a) u1 and u2 are orthonormal.

(b) span{u1, u2} = col(A), the column space of A.
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This is not a coincidence, but rather a consequence of our method for finding U . We
will show why in our proof of Theorem 8.26.

3b. Filling Out U . We now have the first two columns of U . Since the third row of �
consists of zeros, the product U� will be the same regardless of our choice of u3.
We want U to be an orthogonal matrix, which we can accomplish by extending
span{u1, u2} to an orthonormal basis for R3. Since span{u1, u2} = col(A),
we proceed by finding an orthonormal basis for

(
col(A)

)⊥
, the orthogonal

complement of the column space of A. We do this by noting that
(
col(A)

)⊥ =
null(AT ) (see Exercise 69 of Section 8.1). The null space of AT is equal to the
set of solutions to AT x = 0. The augmented matrix and echelon form are[

1 2 0 0
2 0 2 0

]
∼

[
1 2 0 0
0 −2 1 0

]

Back substitution and normalizing the solution yield

u3 =

⎡
⎢⎣

− 2
3
1
3
2
3

⎤
⎥⎦

The vector u3 gives the final column of U . We have

U = [
u1 u2 u3

] =

⎡
⎢⎢⎣

5
3
√

5
0 − 2

3

2
3
√

5
2√
5

1
3

4
3
√

5
− 1√

5
2
3

⎤
⎥⎥⎦

We can check our work by computing

U�V T =

⎡
⎢⎢⎣

5
3
√

5
0 − 2

3

2
3
√

5
2√
5

1
3

4
3
√

5
− 1√

5
2
3

⎤
⎥⎥⎦

⎡
⎣3 0

0 2
0 0

⎤
⎦

[ 1√
5

2√
5

2√
5

− 1√
5

]
=

⎡
⎣1 2

2 0
0 2

⎤
⎦ = A

■

This procedure will lead to the SVD for any matrix A. We find � and V by or-
thogonally diagonalizing AT A, so we can see that this is always possible. The develop-
ment of U is not as transparent. The key subtle fact that makes our procedure work is
that if σ1, . . . , σk are the positive singular values of an n × m matrix A with associated
orthonormal eigenvectors v1, . . . , vk of AT A, then the set

ui = 1

σi
Avi , 1 ≤ i ≤ k

forms an orthonormal basis for col(A). Finding an orthonormal basis for
(
col(A)

)⊥ =
null(AT ) allows us to extend the set {u1, . . . , uk} to an orthonormal basis for Rn and gives
the remaining columns uk+1, . . . , un of U . Since rows k + 1, . . . , n of � are made up of
zeros, the product U� is independent of uk+1, . . . , un, and the definition of u1, . . . , uk

ensures that AV = U�.
Our example covered the case of an n × m matrix A where n > m. The same

procedure can be used if n = m, but suppose that n < m? In this case, we can take
transposes. Let B = AT , and suppose B = U�V T is the SVD. Since A = B T , we have
A = (

U�V T
)T = V�T U T , the form required by the SVD.

Since U and V are orthog-
onal, so are U T and V T (see
Exercise 62 of Section 8.3).
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E X A M P L E 2 Find the SVD for the matrix

A =
[

1 2 1 0
2 0 1 1

]

Solution We start by setting

B = AT =

⎡
⎢⎢⎣

1 2
2 0
1 1
0 1

⎤
⎥⎥⎦

Now we apply our algorithm to find the SVD of B .

1. Orthogonally Diagonalize B T B to find V . We have

B T B =
[

6 3
3 6

]

which has eigenvalues and eigenvectors

λ1 = 9 ⇒ v1 =
[ 1√

2

1√
2

]
; λ2 = 3 ⇒ v2 =

[− 1√
2

1√
2

]

Thus the orthogonal diagonalizing matrix is

V =
[ 1√

2
− 1√

2

1√
2

1√
2

]

2. Find �. The singular values for a matrix B are σ1 = 3 and σ2 = √
3. Hence

� =

⎡
⎢⎢⎣

3 0
0

√
3

0 0
0 0

⎤
⎥⎥⎦

3. Find U . As before, determining the columns of U is performed in two steps.

3a. Positive Singular Values. For these we have ui = 1
σi

Bvi , so that

u1 = 1

σ1
Bv1 = 1

3

⎡
⎢⎢⎣

1 2
2 0
1 1
0 1

⎤
⎥⎥⎦

[ 1√
2

1√
2

]
= 1

3
√

2

⎡
⎢⎢⎣

3
2
2
1

⎤
⎥⎥⎦

u2 = 1

σ2
Bv2 = 1√

3

⎡
⎢⎢⎣

1 2
2 0
1 1
0 1

⎤
⎥⎥⎦

[− 1√
2

1√
2

]
= 1√

6

⎡
⎢⎢⎣

1
−2

0
1

⎤
⎥⎥⎦

3b. Filling Out U . We need two columns to complete U , and we get them from
an orthonormal basis for

(
col(B)

)⊥ = null(B T ). Solving B T x = 0 using our
standard procedure and then applying the Gram–Schmidt process gives us

u3 = 1

3

⎡
⎢⎢⎣

0
1

−2
2

⎤
⎥⎥⎦ , u4 = 1√

3

⎡
⎢⎢⎣

−1
0
1
1

⎤
⎥⎥⎦
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Combining the four vectors into U yields

U = [
u1 u2 u3 u4

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
6

0 − 1√
3

2
3
√

2
− 2√

6
1
3 0

2
3
√

2
0 − 2

3
1√
3

1
3
√

2
1√
6

2
3

1√
3

⎤
⎥⎥⎥⎥⎥⎥⎦

Since A = B T , we have A = (
U�V T

)T = V�T U T . Checking the calculations,
we have

V�T U T =
[ 1√

2
− 1√

2

1√
2

1√
2

] [
3 0 0 0
0

√
3 0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

1√
2

2
3
√

2
2

3
√

2
1

3
√

2

1√
6

− 2√
6

0 1√
6

0 1
3 − 2

3
2
3

− 1√
3

0 1√
3

1√
3

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

1 2 1 0
2 0 1 1

]
= A

■

Image Compression
SVDs can be used to store and transfer digital images efficiently. A digital black-and-
white photo can be stored in matrix form, with each entry representing the gray level
(the proportion of black to white) for a particular pixel. To simplify the discussion, let’s
assume that we have a square n × n matrix A made up of nonnegative entries that are
the gray levels for a photo. Such a matrix has n2 entries, which grows quickly with n and
can have significant implications for storage and transmission of digital images.

To work more efficiently, we can take advantage of the fact that pixels near one
another in a digital photo frequently have similar gray levels. Hence there can be a lot of
redundant information in the image matrix, so that it may be possible to represent the
image using much less storage space while still retaining the essential elements. One way
to do this is to use the singular value decomposition of the image matrix A = U�V T .
We can use the outer product expansion (see Exercise 36) to express

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values. The terms with the largest singular
values often contain most of the “information” in an image, while those associated with
the smallest singular values frequently contribute relatively little. We can sometimes
discard many—or even most—of the terms and still have a good approximation of the
original image, by just taking the first k terms,

Ak = σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k

Figure 1 shows the results of using 2, 7, 14, and 28 of the original 273 singular values
from a famous photo of a famous American (See Figure 2 for the original.) Although
the image using 28 singular values requires only about 20% of the storage capacity of the
original image, it is still fairly good.

Estimating the Rank of a Matrix
In most applications, matrix calculations are carried out on a computer. Unfortunately,
the finite precision arithmetic employed by computers can sometimes lead to subtle but
critical round-off of matrix entries, which can make it very difficult to determine that
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Figure 1 A photo of Abraham Lincoln processed with (from left to right) 2, 7, 14, and 28 of
the 273 singular values. (Source: Library of Congress)

rank of the matrix. For example, an n × n matrix A might have true rank n but appear
to the computer to have a lower rank, which we refer to as the numerical rank of the
matrix. Here we briefly describe how to use singular values to find the numerical rank of
a matrix.Figure 2 Abraham Lincoln

image. (Source: Library of
Congress)

A computer’s sensitivity to round-off depends on the degree of precision used in
storing numerical values. The machine ε provides a measure of this sensitivity. Roughly
speaking, the machine ε gives an upper bound on the relative error that can occur when
representing a number in the computer’s floating point memory.Definition Machine ε

For simplicity in notation we
consider only square matrices,
but the discussion can be ex-
tended to nonsquare matrices.

There are different ways to define the numerical rank of an n × n matrix A. One
method employs the singular values σ1 ≥ σ2 ≥ · · · ≥ σn. Using a machine ε as an upper
bound of the relative error, we let

b = σ1 · ε · n

Now define k to be the largest integer such that σk ≥ b. Then k is the numerical rank
of A.

E X A M P L E 3 Suppose that A is a 4 × 4 matrix with singular values σ1 = 3, σ2 = 1,
σ3 = 10−8, and σ4 = 10−9. If we have ε = 10−10, what is the numerical rank of A?

Solution We have the bound

b = 3 · 10−10 · 4 = 1.2 × 10−9

Since σ3 ≥ b but σ4 < b, it follows that the numerical rank of A is 3. ■

Proof of Theorem 8.26
We have verified most of the elements required to show that an SVD always exists. All
that remains is to show that the key fact mentioned earlier is true: If σ1, . . . , σk are the
positive singular values of an n × m matrix A with associated orthonormal eigenvectors
(of AT A) v1, . . . , vk , then the set

ui = 1

σi
Avi , 1 ≤ i ≤ k

forms an orthonormal basis for col(A). Once this is established, the Rank-Nullity
Theorem and Gram–Schmidt process ensure the existence of an orthonormal basis
{uk+1, . . . , un} for

(
col(A)

)⊥ = null(AT ), so we are assured that the required orthogonal
matrix U can be formed.

First, note that for 1 ≤ i, j ≤ k we have

ui · u j =
(

1

σi
Avi

)
·
(

1

σ j
Av j

)
= 1

σiσ j
(Avi )

T (Av j )

= 1

σiσ j
vT

i (AT Av j ) = 1

σiσ j
vT

i (λ j v j ) = λ j

σiσ j
(vi · v j )
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If i 	= j , then vi · v j = 0 and so ui · u j = 0. On the other hand, if i = j , then
vi · vi = λi

σ 2
i

= 1 and hence ui · ui = 1. Thus {u1, · · · , uk} are orthonormal and therefore

also linearly independent.
Next, since ui = 1

σi
Avi , each ui (1 ≤ i ≤ k) is in col(A). So if we can show that

dim
(
col(A)

) = k, we are done because {u1, · · · , uk} is an orthonormal basis for col(A).
To see why this is true, we note the following:

(a) rank(AT A) = rank(A). (See Exercise 37.)

(b) The eigenvectors {v1, . . . , vk} associated with the nonzero eigenvalues of AT A form
a basis for col(A). (See Exercise 38.)

Thus, if we have positive singular values σ1, . . . , σk , then rank(AT A) = k, which implies
that rank(A) = k. Hence dim

(
col(A)

) = k, completing the proof. ■

E X E R C I S E S
Find the singular values for the matrices given in Exercises 1–8.

1.

[
1 2

−1 2

]

2.

[
1 2

−2 2

]

3.

[
3 −1

−1 3

]

4.

[
2 −2
4 1

]

5.

[
1 2
0 2
2 −1

]

6.

[
3 1

−1 0
1 2

]

7.

[
1 2 1
0 1 −1

]

8.

[
−1 3 2

1 1 −1

]
Find a singular value decomposition for the matrices given in
Exercises 9–16.

9.

[
1 2
2 1

]

10.

[
2 2

−2 1

]

11.

[
2 1

−1 3
1 0

]

12.

[
1 −2
2 1
0 2

]

13.

[
−1 1 0

2 2 1

]

14.

[
1 2 0
2 −1 −2

]

15.

[
2 2 1 0
1 −1 0 1

]

16.

[
1 3 3 2
1 2 −1 1

]
For Exercises 17–20, determine the numerical rank of the matrix A.

17. A is a 3 × 3 matrix with singular values σ1 = 10, σ2 = 6,
σ3 = 10−8; ε = 10−9.

18. A is a 4 × 4 matrix with singular values σ1 = 5, σ2 = 3,
σ3 = 10−7, σ4 = 10−8; ε = 10−8.

19. A is a 4 × 4 matrix with singular values σ1 = 12, σ2 = 4,
σ3 = 10−6, σ4 = 10−9; ε = 10−7.

20. A is a 5 × 5 matrix with singular values σ1 = 15, σ2 = 8,
σ3 = 10−6, σ4 = 10−8, σ5 = 10−9; ε = 10−7.

TRUE OR FALSE For Exercises 21–26, determine if the statement
is true or false, and justify your answer.

21. If A is an n × m matrix, then A has a singular value decom-
position only if n > m.

22. The singular values of a matrix A are all positive.

23. If A is an invertible matrix with singular value σ , then A−1

has singular value σ−1.

24. If A is a square matrix, then the singular value decomposition
of A is the same as the diagonalization of A.

25. If A is a square matrix, then | det(A)| is equal to the product
of the singular values of A.

26. The largest singular value of an orthogonal matrix is 1.

27. For the matrix in Exercise 11, compute σ1u1vT
1 and σ1u1vT

1 +
σ2u2vT

2 , and compare your results to the original matrix.

28. For the matrix in Exercise 12, compute σ1u1vT
1 and σ1u1vT

1 +
σ2u2vT

2 , and compare your results to the original matrix.

29. For the matrix in Exercise 15, compute σ1u1vT
1 and σ1u1vT

1 +
σ2u2vT

2 , and compare your results to the original matrix.
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30. Prove that if A is a symmetric matrix with eigenvalue λ, then
A has singular value |λ|.
31. Prove that the positive singular values of A and AT are the
same.

32. Prove that if σ is a singular value of A, then there exists a
nonzero vector x such that

σ = ‖Ax‖
‖x‖

For Exercises 33–36, assume that A is an n × n matrix with SVD
A = U�V T .

33. If A is invertible, find a SVD of A−1.

34. Prove that the columns of U are eigenvectors of AAT .

35. If P is an orthogonal n ×n matrix, prove that PA has the same
singular values as A.

36. Let U = [
u1 · · · un

]
and V = [

v1 · · · vn
]

.

(a) If n = 2, show that A = σ1u1vT
1 + σ2u2vT

2 .

(b) For n ≥ 1, show that A = σ1u1vT
1 + · · · + σnunvT

n .

37. Suppose that A is an m × n matrix. Prove that rank(AT A) =
rank(A) by verifying each of the following:

(a) Show that if x is a solution to Ax = 0, then x is a solution to
AT Ax = 0.

(b) Suppose that x satisfies AT Ax = 0. Show that Ax is in(
col(A)

)⊥
. Since Ax is also in col(A) (justify!), show that this

means that Ax = 0.

(c) Combine (a) and (b) to show that nullity(AT A) =
nullity(A), and then apply the Rank–Nullity theorem to conclude
that rank(AT A) = rank(A).

38. Prove that the orthogonal eigenvectors {v1, . . . , vk} associated
with the nonzero eigenvalues of AT A form a basis for col(A) by
verifying each of the following:

(a) Apply Exercise 37 to show that dim (col(AT A)) =
dim(col(A)).

(b) Apply the Spectral Theorem to explain why the orthogonal
eigenvectors {v1, . . . , vk} associated with the nonzero eigenvalues
of AT A form a basis for col(AT A).

(c) Combine (a) and (b) to reach the desired conclusion.

C Find a singular value decomposition for the matrices given
in Exercises 39–42, following the steps illustrated in this section
but using computer software to assist with finding the required
eigenvalues, eigenvectors, and orthogonal bases.

39.

[
3 5

−1 2

]

40.

[
2 −1 6

−3 0 2

]

41.

[−5 0 2
1 −1 3
0 4 2

]

42.

[
2 3 −1 0
1 2 1 3

−2 −1 1 3

]

8.5 Least Squares Regression
This section is optional. How-

ever, least squares regression
is revisited in optional Sec-
tion 10.3.

A problem that arises in a wide variety of disciplines is that of finding algebraic formulas to
describe data. A simple example involving the relationship between barometric pressure
and the boiling point of water is described below.

°F

Inches HG

210

205

200

195

190
3230282624222018

Figure 1 Scatter plot of
pressure against boiling point.

E X A M P L E 1 The boiling point of water is known to vary depending on the baro-
metric pressure. To determine the relationship between boiling point and pressure,
boiling points were found experimentally at several different barometric pressures. The
results are summarized in Table 1 and the data plotted in Figure 1. Find a linear equation
of the form T = c0 + c1 P that will allow us to make accurate predictions of boiling
point T for a given barometric pressure P .

Barometric Pressure (inches HG) 20.2 22.1 24.5 27.3 30.1

Boiling Point (◦F) 195 197 202 209 212

Table 1 Boiling Point of Water at Different Barometric Pressures
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Solution To find the coefficients c0 and c1, we could try plugging T and P for each
data point into T = c0 + c1 P , yielding the linear system

c0 + 20.2c1 = 195
c0 + 22.1c1 = 197
c0 + 24.5c1 = 202
c0 + 27.3c1 = 209
c0 + 30.1c1 = 212

(1)

Unfortunately, this system cannot have any solutions. If it did, then our points would
lie exactly on a line, but we see in Figure 1 that they do not. However, since the points
all lie close to a line, the system (1) “almost” has a solution.

In this section we develop an approximation method that gives us a way to change
a linear system that has no solutions into a new system that has a solution. Our method
is such that we change the system as little as possible, so that the solution to the new
system can serve as an approximate solution for the original system. We will return to
this example when we have the tools we need to find an answer. ■

Example 1 suggests a more general problem—namely, that of finding an “approxi-
mate” solution to a linear system

Ax = y (2)

that has no solutions. We solve this problem by changing the vector y in (2) into a new
vector ŷ such that

Ax = ŷ (3)

has a solution. In order for (3) to have a solution, we must select ŷ from among the vectors
in col(A), the column space of A. We want the systems (2) and (3) to be as similar as
possible, so we choose ŷ in order to minimize

‖y − ŷ‖2 = (y1 − ŷ1)2 + (y2 − ŷ2)2 + · · · + (yn − ŷn)2 (4)

Thus we want to find ŷ as close as possible to y, subject to the constraint that ŷ is in
col(A). This is depicted in Figure 2.

The vector ŷ that minimizes
(4) also minimizes ‖y − ŷ‖.
Squaring the distance simplifies
calculations by eliminating the
square root in the norm for-
mula.

(x2, y2)
(x1, y1)

(x1, y1)

(x2, y2)

(x3, y3)

(x3, y3)

y � c0 � c1x

Figure 2 The data points are (xi , yi ), and (xi , ŷi ) are the corresponding points on the line
ŷ = c0 + c1x. The sum of the squares of the lengths of the dotted lines equals the
expression (4). The coefficients c0 and c1 are chosen to make (4) as small as possible.

To find ŷ, we use projections developed in Section 8.2. A key property of projections
is contained in the next theorem. A proof is given at the end of the section.
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T H E O R E M 8.27 Let y be a vector and S a subspace. Then the vector closest to y in S is given by
ŷ = projS y.

To sum up, given a linear system Ax = y that has no solutions, we find an approximate
solution by solving Ax = ŷ, where ŷ = projS y and S = col(A). This approach is called
Least Squares Regression (or Linear Regression), and a solution x̂ to Ax = ŷ is called a
least squares solution.

Definition Least Squares
Solution

E X A M P L E 2 Find the least squares solution x̂ to Ax = y, where

A = [
a1 a2

] =
⎡
⎣ 1 4

−3 3
5 1

⎤
⎦ and y =

⎡
⎣−16

28
6

⎤
⎦

Solution The first step is to find ŷ. If S = col(A), then by Theorem 8.27 the vector ŷ
in S that is closest to y is ŷ = projS y. Since the columns of A are orthogonal, we can
apply the projection formula in Definition 8.15 in Section 8.2 to compute

ŷ = projS y = a1 · y

‖a1‖2
a1 + a2 · y

‖a2‖2
a2 = −70

35

⎡
⎣ 1

−3
5

⎤
⎦ + 26

26

⎡
⎣4

3
1

⎤
⎦ =

⎡
⎣ 2

9
−9

⎤
⎦

We find the least squares solution x̂ by solving the system Ax = ŷ, which is

x1 + 4x2 = 2
−3x1 + 3x2 = 9

5x1 + x2 = −9

Using our usual solution methods, we find that x̂ =
[−2

1

]
. ■

An alternative definition of least squares solution is given below.

D E F I N I T I O N 8.28 If A is an n × m matrix and y is in Rn, then a least squares solution to Ax = y is a
vector x̂ in Rm such that

‖Ax̂ − y‖ ≤ ‖Ax − y‖
for all x in Rm.

Definition Least Squares
Solution

If Ax = y has a solution x0, then x̂ = x0. If A has linearly independent columns,
then x̂ will be unique. If not, then there are infinitely many least squares solutions x̂.

The solution method using projection demonstrated in Example 2 requires an or-
thogonal basis for S = col(A). The following theorem is more convenient to use because
it does not have this requirement.

The equations in (5) are
called the normal equations for
Ax = y.

When A has linearly indepen-
dent columns, the formula for
x̂ in (6) can be applied. How-
ever, for large data sets numer-
ical issues can arise in calculat-
ing (AT A)−1 that may make us-
ing (5) attractive.

T H E O R E M 8.29 The set of least squares solutions to Ax = y is equal to the set of solutions to the
system

AT Ax = AT y (5)

If A has linearly independent columns, then there is a unique least squares solution
given by

x̂ = (AT A)−1 AT y (6)

Otherwise, there are infinitely many least squares solutions.
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Proof Starting with (5), suppose that x̂ is a solution to Ax = ŷ, where ŷ = projS y and
S = col(A). By Theorem 8.16 in Section 8.2, y − ŷ = y − projS y is in S⊥. Since S⊥ =(
col(A)

)⊥ = null(AT ) (see Exercise 69 of Section 8.1), it follows that AT (y − ŷ) = 0. As
Ax̂ = ŷ, we have

AT (y − Ax̂) = 0 �⇒ AT Ax̂ = AT y

The reasoning also works in the reverse direction, completing the proof of (5).
To prove (6), note that AT A is invertible if and only if A has linearly independent

columns (see Exercise 33). Hence (5) has a unique solution if A has linearly independent
columns, with the solution given by (6). Otherwise, AT A is not invertible, and (5) has
infinitely many solutions. ■

E X A M P L E 3 Complete Example 1 by finding the coefficients c0 and c1 for the line
T = c0 + c1 P that best fits the data in Table 1.

Solution We need to find the least squares solution ĉ for the linear system (1), which
is equivalent to Ac = t, where

A =

⎡
⎢⎢⎢⎢⎣

1 20.2
1 22.1
1 24.5
1 27.3
1 30.1

⎤
⎥⎥⎥⎥⎦ , c =

[
c0

c1

]
, and t =

⎡
⎢⎢⎢⎢⎣

195
197
202
209
212

⎤
⎥⎥⎥⎥⎦

Although the notation is different than in our general development of least squares
solutions, the method of solution is the same. Since the columns of A can be seen to be
linearly independent, we have

ĉ = (
AT A

)−1
AT t =

[
157.17
1.845

]

Therefore the equation that best fits the data is T = 157.17 + 1.845P . A graph of the
data and line is shown in Figure 3. ■

210
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200
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190
3230282624222018
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Figure 3 T = 157.17 + 1.845P
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Figure 4 Consumer
confidence index data.

Fitting Functions to Data

E X A M P L E 4 An economist conducts quarterly surveys to measure consumer con-
fidence. The confidence indices for six consecutive quarters are given in Table 2. Find a
cubic polynomial that approximates the data.

Quarter 1 2 3 4 5 6

Confidence Index 5 9 8 4 6 8

Table 2 Quarterly Consumer Confidence Index Data

Solution The data set is displayed in Figure 4. We want to fit to it a cubic polynomial
of the form

g (t) = c0 + c1t + c2t2 + c3t3
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For each data point, we plug the quarter number into g and set the result equal to the
corresponding index. We get the system of equations

(1, 5) �⇒ c0 + c1 + c2 + c3 = 5
(2, 9) �⇒ c0 + 2c1 + 4c2 + 8c3 = 9
(3, 8) �⇒ c0 + 3c1 + 9c2 + 27c3 = 8
(4, 4) �⇒ c0 + 4c1 + 16c2 + 64c3 = 4
(5, 6) �⇒ c0 + 5c1 + 25c2 + 125c3 = 6
(6, 8) �⇒ c0 + 6c1 + 36c2 + 216c3 = 8

The system is equivalent to Ac = y, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64
1 5 25 125
1 6 36 216

⎤
⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ , y =

⎡
⎢⎢⎢⎢⎢⎢⎣

5
9
8
4
6
8

⎤
⎥⎥⎥⎥⎥⎥⎦

The columns of A can be verified to be linearly independent, so that by Theorem 8.29
we have (some rounding is included)

ĉ = (
AT A

)−1
AT y =

⎡
⎢⎢⎣

−5.33
15.07
−5.02

0.48

⎤
⎥⎥⎦

Hence the best-fitting cubic polynomial is

g (t) = −5.33 + 15.07t − 5.02t2 + 0.48t3

A plot of g (t) together with the data is shown in Figure 5. ■
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Figure 5 g (t) and the
consumer confidence index
data.
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Figure 6 Length of day data.
The time t = 0 corresponds to
March 20, the vernal equinox.

E X A M P L E 5 The times from sunrise to sunset in Vancouver BC on selected days
in 2010 are given in Table 3 and plotted in Figure 6. The length of day can be modeled
by a function of the form L (t) = c1 + c2 sin(2π t), where t is time in years. Find the
coefficients c1 and c2 that will give the best fit to the data.

Date Mar 20 June 1 Aug 12 Oct 25

Day Length (hours) 12.17 16.23 12.12 8.18

Table 3 The Time from Sunrise to Sunset on Selected Days in Vancouver, BC

Solution If we let t = 0 correspond to March 20, then the remaining dates occur at
t = 0.2, t = 0.4, and t = 0.6, respectively. Evaluating L (t) at each of the four times, we
obtain the system

(0, 12.17) �⇒ c1 + c2 sin(0) = c1 = 12.17

(0.2, 15.95) �⇒ c1 + c2 sin(0.4π) = c1 + 0.951c2 = 15.95

(0.4, 14.55) �⇒ c1 + c2 sin(0.8π) = c1 + 0.588c2 = 14.55

(0.6, 10.22) �⇒ c1 + c2 sin(1.2π) = c1 − 0.588c2 = 10.22
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The equivalent system is Ac = y, where

A =

⎡
⎢⎢⎣

1 0
1 0.951
1 0.588
1 −0.588

⎤
⎥⎥⎦ , c =

[
c1

c2

]
, y =

⎡
⎢⎢⎣

12.17
15.95
14.55
10.22

⎤
⎥⎥⎦

The columns of A are linearly independent, so that by Theorem 8.29 we have (some
rounding is included)

ĉ = (
AT A

)−1
AT y =

[
12.33
3.75

]

Therefore the best fit is given by L (t) = 12.33 + 3.75 sin(2π t). A graph of the data and
L (t) are shown in Figure 7. ■
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Figure 7 Length of day data
and the graph of L (t).

Planetary Orbits Revisited
In Section 1.4 we considered the problem of finding a model that predicts the orbital
period (time required to circle the sun) for a planet based on the planet’s distance from
the sun. We start with the model

p = adb

where p is the orbital period, d is the distance from the sun, and a and b are constants we
estimate from the data. To make the model linear, we take the logarithm on both sides
of the equation and set a1 = ln(a), giving us

ln( p) = a1 + b ln(d)

Our goal here is to find values for a1 and b. Previously, we did not have the tools to
simultaneously incorporate all of our data into the model, because doing so would have
resulted in a system with no solutions. However, now we can find a least squares solution
to the system that does incorporate all of the data.

Since the model involves ln( p) and ln(d), as a first step we need the logarithms of
the periods and distances. This is given in Table 4.

ln(d)0
3 4 5 6 7 8

ln(p)

10

8

6

4

2

Figure 8 Scatter plot of data
(ln(d), ln( p)). The graph in Figure 8 shows a plot of the points (ln(d), ln( p)). The points lie very

close to a line, suggesting that we are on the right track. Substituting each of the points

Planet Distance (×106 km) Orbital Period (Days) ln(d) ln(p)

Mercury 57.9 88 4.059 4.477
Venus 108.2 224.7 4.684 5.415
Earth 149.6 365.2 5.008 5.900
Mars 227.9 687 5.429 6.532
Jupiter 778.6 4331 6.657 8.374
Saturn 1433.5 10,747 7.268 9.282
Uranus 2871.5 30,589 7.963 10.328
Neptune 4495.1 59,800 8.411 10.999

Table 4 Planetary Orbital Distances and Periods
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into the equation ln( p) = a1 + b ln(d) yields the system of equations Ax = y, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4.059
1 4.684
1 5.008
1 5.429
1 6.657
1 7.268
1 7.963
1 8.411

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =
[

a1

b

]
, y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.477
5.415
5.900
6.532
8.374
9.282

10.328
10.999

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since A has linearly independent columns, we can use (6) to compute

x̂ = (
AT A

)−1
AT y =

[−1.60322
1.49827

]

Therefore a1 = −1.60322 and b = 1.49827. Since a1 = ln(a), it follows that a =
e−1.60322 = 0.201247. Thus our model is

p = 0.201247d1.49827

This is consistent with Kepler’s third law of motion, which predicts that the expo-
nent should be 3/2. Table 5 gives the predicted values for the orbital periods. Note
that the model provides generally better predictions than those we came up with in
Section 1.4.

Proof of Theorem 8.27

Proof of Theorem 8.27 Let s be a vector in S, and let ŷ = projS y. Then by Theorem 8.16
in Section 8.2, y − ŷ is in S⊥. Also, both ŷ and s are in S, so ŷ − s is in S because S is
a subspace. Therefore y − ŷ and ŷ − s are orthogonal, so by Theorem 8.6 in Section 8.1
(the Pythagorean Theorem) we have

‖y − s‖2 = ‖(y − ŷ) − (ŷ − s)‖2 = ‖y − ŷ‖2 + ‖ŷ − s‖2

Since ‖ŷ − s‖2 ≥ 0, we may conclude that ‖y − s‖2 ≥ ‖y − ŷ‖2 for all s in S. Therefore
no vector in S is closer to y than ŷ, so ŷ = projS y is the vector in S that is closest to y.
Furthermore, there is equality only when ŷ = s, so ŷ is the unique closest point. ■

Planet Distance (× 106 km) Orbital Period (Days) Predicted Period

Mercury 57.9 88 88.0
Venus 108.2 224.7 224.7
Earth 149.6 365.2 365.1
Mars 227.9 687 685.9
Jupiter 778.6 4331 4322.2
Saturn 1433.5 10,747 10,786.1
Uranus 2871.5 30,589 30,543.0
Neptune 4495.1 59,800 59,775.1

Table 5 Orbital Distances, Periods, and Predicted Periods
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E X E R C I S E S
In Exercises 1–4, find the vector in the subspace S closest to y.

1. y =
[

1
2

]
, S = span

{[
1

−1

]}

2. y =
[

2
−3

]
, S = span

{[
3
1

]}

3. y =
[

1
−1

2

]
, S = span

{[
1
3

−2

]
,

[
5

−1
1

]}

4. y =
[

3
0
1

]
, S = span

{[
0
2

−1

]
,

[
4

−1
−2

]}

In Exercises 5–8, find the normal equations for the given system.

5. 2x1 − x2 = 4
x1 + 2x2 = 3

3x1 − x2 = 4

6. 4x1 + 2x2 = 3
−2x1 − x2 = 1

3x1 + 2x2 = 0

7. x1 + x2 − x3 = 2
2x1 − x2 + 2x3 = −1

x1 + 4x2 − 5x3 = 6

8. −x1 − 2x2 + 2x3 = −3
2x1 + x2 − 3x3 = 8
−x1 − 5x2 + 3x3 = 0

In Exercises 9–12, find the least squares solution(s) for the given
system.

9. −x1 − x2 = 3
2x1 + 3x2 = −1

−3x1 + 2x2 = 2

10. x1 + 2x2 = −1
3x1 − 2x2 = 1
−x1 − 3x2 = −2

11. 2x1 − x2 − x3 = 1
−x1 + x2 + 3x3 = −1
3x1 − 2x2 − 4x3 = 3

12. 3x1 + 2x2 − x3 = −2
2x1 + 3x2 − x3 = 1
−x1 − 4x2 + x3 = −3

13. Find the normal equations for the parabolas that best fit the
points (0, 1) and (2, 5), and explain why the system should have
infinitely many solutions.

14. Find the normal equations for the cubic polynomials that best
fit the points (0, 1), (1, 4), and (3, −1), and explain why the system
should have infinitely many solutions.

FIND AN EXAMPLE For Exercises 15–20, find an example that
meets the given specifications.

15. A linear system with three equations and two variables that
has no solutions and a unique least squares solution.

16. A linear system with four equations and three variables that
has no solutions and a unique least squares solution.

17. A linear system with four equations and two variables that has
no solutions and infinitely many least squares solutions.

18. A linear system with four equations and three variables that
has no solutions and infinitely many least squares solutions.

19. A linear system with three equations and three variables that
has a unique solution and a unique least squares solution.

20. A linear system with four equations and three variables that
has a unique solution and a unique least squares solution.

TRUE OR FALSE For Exercises 21–28, determine if the statement
is true or false, and justify your answer.

21. A least squares solution can be found only for a linear system
that has more equations than variables.

22. If a linear system has infinitely many solutions, then it also has
infinitely many least squares solutions.

23. If A is an n × m matrix, then any least squares solution of
Ax = y must be in Rm.

24. The linear system Ax = y has a unique least squares solution
if the columns of A are linearly independent.

25. A least squares solution to Ax = y is a vector x̂ such that Ax̂
is as close as possible to y.

26. The system of normal equations for the linear system Ax = y
has solutions if and only if Ax = y has solutions.

27. If x̂1 and x̂2 are least squares solutions of Ax = y, then so is
x̂1 + x̂2.

28. A linear system must be inconsistent in order for there to be
infinitely many least squares solutions.

29. Prove that if the matrix A has orthogonal columns, then
Ax = y has a unique least squares solution.

30. Suppose that A is a nonzero matrix and S = col(A). Prove
that if Ax = y has a solution, then y = projS y.

31. Prove that if A is an orthogonal matrix, then any least squares
solution of Ax = y is a linear combination of the rows of A.

32. Prove that if x̂ is a least squares solution of Ax = y and x0 is in
null(AT A), then x̂ + x0 is also a least squares solution of Ax = y.

33. For a matrix A, prove that AT A is invertible if and only if
A has linearly independent columns. (HINT: See Exercise 37 of
Section 8.4.)

34. Prove that if A has orthonormal columns, then x̂ = AT y is
the unique least squares solution to Ax = y.

C In Exercises 35–38, find the equation for the line that best fits
the given data.

35. (−2, 1.3), (0, 1.8), (1, 3)

36. (−3, −1.6), (−1, −1.9), (1, −2.5)

37. (−2, 2.0), (−1, 1.7), (1, 2.6), (3, 2.1)
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38. (1, 3.1), (2, 2.6), (4, 1.9), (5, 2.1)

C In Exercises 39–42, find the equation for the parabola that best
fits the given data.

39. (−2, 3), (−1, 2), (1, 2.1), (2, 3.4)

40. (−3, −1), (−1, 2), (1, 4), (2, 1)

41. (−2, 0), (−1, 1.5), (0, 2.5), (1, 1.3), (2, −0.2)

42. (0, 4), (1, 3), (2, 1), (3, 2), (4, 5)

C In Exercises 43–46, find constants a and b so that the model
y = aebx best fits the given data.

43. (−1, 0.3), (0, 1.3), (1, 3.1), (2, 5.7)

44. (1, 2.1), (3, 3.2), (4, 3.9), (6, 5.8), (9, 10.8)

45. (2, 11.3), (4, 8.2), (5, 7.1), (7, 5.3), (10, 3.2)

46. (−1, 5.1), (0, 1.9), (1, 0.8), (2, 0.3)

C In Exercises 47–50, find constants a and b so that the model
y = axb best fits the given data.

47. (2, 5.4), (4, 13.5), (5, 17.6), (7, 26.0), (9, 40.2)

48. (1, 4.0), (3, 25.2), (4, 42.1), (6, 78.3), (8, 130.4)

49. (2, 26.1), (3, 21.7), (5, 15.8), (7, 12.7), (10, 11.2)

50. (3, 24.1), (4, 18.2), (6, 15.1), (8, 11.9), (9, 10.9)

51. C Apply least squares regression to the data for the planets
Venus, Earth, and Mars to develop a model to predict orbital pe-
riod from distance.

52. C Apply least squares regression to the data for the planets
Mercury, Earth, Jupiter, and Uranus to develop a model to predict
orbital period from distance.

53. C On January 10, 2010, Nasr Al Niyadi and Omar Al Hege-
lan parachuted off a platform suspended from a crane attached
to the 160th floor of the Burj Khalifa, the tallest building in the
world. Suppose that an anvil was dropped from the same plat-
form, located 2205 feet above the ground. Measurements of the
elevation of the anvil t seconds after release are given in the table
below.

t Elevation

1 2185 ft
2 2140 ft
3 2055 ft
4 1943 ft

Find the quadratic polynomial that best fits the data, and use it to
predict how long it will take for the anvil to hit the ground.

54. C Warren invests $100,000 into a fund that combines stocks
and bonds. The return varies from year to year. The balance at
5-year intervals is given in the table below.

t Balance (× 1000)

5 142
10 230
15 314
20 483

Find constants a and b such that the model y = aebt best fits the
data. Use your model to predict when the investment fund balance
will reach 1 million dollars.

55. C The isotope Polonium-218 is unstable and subject to rapid
radioactive decay. The quantity of a sample is measured at various
times, with the results in the table below.

t (min) Mass (g)

2 1.50
4 0.97
6 0.57
8 0.41

Find constants a and b such that the model y = aebt best fits the
data. Use your model to predict the initial size of the sample and
the amount that will be present at t = 15.

56. C Measurements of CO2 in the atmosphere have been taken
regularly over the last 50 years at the Mauna Loa Observatory in
Hawaii. In addition to a general upward trend, the CO2 data also
has an annual cyclic behavior. The table below has the monthly
measurements (in parts per million) for 2009.

Month CO2 Month CO2

1 386.92 7 387.74
2 387.41 8 385.91
3 388.77 9 384.77
4 389.46 10 384.38
5 390.18 11 385.99
6 389.43 12 387.27

Find constants a , b, and c such that the model y = a + bt +
c sin(tπ/6) best fits the data, where t is time in months. Use your
model to predict the CO2 level in January 2020.
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C H A P T E R

Opened in 1930, the Old

Vicksburg Bridge crosses the

mighty Mississippi. Though the

bridge is now closed to vehicular

traffic, since replaced by a new

bridge, it is still used by the

railways. The Old Vicksburg

Bridge employs a cantilever truss

design. Trusses usually apply

lower cord tension and upper

cord compression to maintain

the structural integrity of the

bridge, but a cantilever truss is

reversed over a portion of the

span. Most cantilever truss

bridges utilize a balanced

cantilever, allowing construction

to move from a central vertical

spar in each direction toward the

piers.

Linear Transformations

In Chapter 3 we defined and studied the properties of linear transformations in
Euclidean space Rn. In Chapter 7 we developed the concept of a vector space. In this

Bridge suggested by Seth

Oppenheimer, Mississippi State

University (Jeff Greenberg/age

fotostock)

chapter we combine these by extending the definition of linear transformations to
vector spaces.

Section 9.1 introduces the definition and basic properties of a linear transformation
in the context of a vector space. Most of the definitions, such as one-to-one, onto, kernel,
and range, carry over almost word-for-word from Rn. Section 9.2 focuses on a special type
of linear transformation called an isomorphism and develops methods for determining
when two different vector spaces have the same essential structure. In Section 9.3 we
establish matrix representations for linear transformations that are similar to those for
linear transformations in Euclidean space. Section 9.4 considers similar matrices, which
is a way to group matrices based on their relationship to a linear transformation.

9.1 Definition and Properties
In Section 3.1 we gave the definition for a linear transformation T : Rm → Rn. Recall
that such a function preserves linear combinations by satisfying

T(c1v1 + c2v2) = c1T(v1) + c2T(v2)
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In Chapter 7 we defined the vector space, an extension of Euclidean space that
allows vectors to be polynomials, matrices, continuous functions, and other types of
mathematical objects.

We start this section by extending the definition of linear transformation to allow
domains and codomains that are vector spaces.

Definition Linear
Transformation

Definition 9.1 generalizes
Definition 3.1 in Section 3.1.

D E F I N I T I O N 9.1 Let V and W be vector spaces. Then T : V → W is a linear transformation if for all
v1 and v2 in V and all real scalars c , the function T satisfies

(a) T(v1 + v2) = T(v1) + T(v2)

(b) T(cv1) = c T(v1)

For a linear transformation T : V → W, the vector space V is the domain and the
vector space W is the codomain.Definition Domain, Codomain

Recall that Pn denotes the
vector space of polynomials
with real coefficients that have
degree n or less.

E X A M P L E 1 Let T : R2 → P2 be given by

T

([
a1

a2

])
= a1x2 + (a1 − a2)x − a2.

Show that T is a linear transformation.

Solution We need to verify that the two conditions given in Definition 9.1 are satisfied.

Suppose that a =
[

a1

a2

]
and b =

[
b1

b2

]
. Starting with condition (a), we have

T(a + b) = T

([
a1

a2

]
+

[
b1

b2

])

= T

([
a1 + b1

a2 + b2

])
= (a1 + b1)x2 + (

(a1 + b1) − (a2 + b2)
)

x − (a2 + b2)

= (
a1x2 + (a1 − a2)x − a2

) + (
b1x2 + (b1 − b2)x − b2

)
= T

([
a1

a2

])
+ T

([
b1

b2

])
= T(a) + T(b)

Thus condition (a) of Definition 9.1 is satisfied. For condition (b), let c be a real scalar.
Then we have

T(ca) = T

(
c

[
a1

a2

])
= T

([
ca1

ca2

])
= ca1x2 + (ca1 − ca2)x − ca2

= c
(
a1x2 + (a1 − a2)x − a2

) = c T

([
a1

a2

])
= c T(a)

Hence condition (b) of Definition 9.1 is also satisfied, so T is a linear transformation. ■

Before moving on to the next example, we report the following useful theorem that
wraps the two conditions of Definition 9.1 into a single package.

On the left of (1) we have the
transformation of a linear com-
bination of two vectors, and on
the right we have the same linear
combination of the images of
the vectors. Hence linear trans-
formations preserve linear com-
binations.

T H E O R E M 9.2 T : V → W is a linear transformation if and only if

T(c1v1 + c2v2) = c1T(v1) + c2T(v2) (1)

for all vectors v1 and v2 in V and real scalars c1 and c2.
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The proof follows from applications of Definition 9.1 and is left to Exercise 58. Some
consequences of Theorem 9.2:

• The expression (1) can be extended to

T(c1v1 + c2v2 + · · · + cmvm) = c1T(v1) + c2T(v2) + · · · + cmT(vm)

where v1, . . . , vm are in V and c1, . . . , cm are real scalars (see Exercise 54).

• If 0V denotes the zero vector in V and 0W the zero vector in W, then T(0V ) = 0W (see
Exercise 55).

• For any v in V , we have T(−v) = −T(v) (see Exercise 56).

E X A M P L E 2 Let T : P2 → P4 be given by

T
(

p(x)
) = x2 p(x)

Show that T is a linear transformation.

Solution Here we apply Theorem 9.2, so that only one condition needs to be verified.

T
(
c1 p1(x) + c2 p2(x)

) = x2
(
c1 p1(x) + c2 p2(x)

)
= c1x2 p1(x) + c2x2 p2(x)

= c1T
(

p1(x)
) + c2T

(
p2(x)

)
Therefore Theorem 9.2 is satisfied, so T is a linear transformation. ■

E X A M P L E 3 Suppose that T : C [0, 1] → C [0, 1] is defined by

T
(

f (x)
) = (

f (x)
)2

Prove that T is not a linear transformation.

Solution All we need to do is show that Definition 9.1 fails to hold for at least one
scalar or vector. Given a scalar c and continuous function f , we have

T
(
c f (x)

) = (
c f (x)

)2 = c 2
(

f (x)
)2 = c 2T

(
f (x)

)
Thus if c = 2, then

T(2 f (x)) = 4T( f (x)) �= 2T( f (x))

Condition (b) of Definition 9.1 is violated, so T is not a linear transformation. ■

Image, Range, and Kernel
The definitions and notation for image, range, and kernel carry over essentially unchanged
from Euclidean space.

• If v is a vector in V , then T(v) is the image of v under T .Definition Image

• If S is a subspace of V , then T(S) denotes the subset of W consisting of all images of
elements of S.

Definition Range • The range of T is denoted range(T) and is the subset of W consisting of all images of
elements of V (also can be written T(V)).

Definition Kernel • The kernel of T is denoted ker(T) and is the set of all elements v in V such that
T(v) = 0W .

Note that ker(T) is a subset of V , while range(T) is a subset of W.
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Recall that a subspace S is a subset closed under linear combinations. Since linear trans-
formations preserve linear combinations, it makes sense that the image T(S) is also a
subspace, as shown in the next theorem.

Theorem 9.3 generalizes
Theorem 4.5 in Section 4.1.

T H E O R E M 9.3 Let T : V → W be a linear transformation. Then ker(T) is a subspace of V . If S is a
subspace of V , then T(S) is a subspace of W.

Proof We leave the proof that ker(T) is a subspace of V as Exercise 57 and prove that
T(S) is a subspace of W here. Recall that we must verify the three conditions required of
a subspace.

(a) As T(0V ) = 0W and 0V must be in S, it follows that 0W is in T(S).

(b) Suppose that w1 and w2 are both in T(S). Then there exist vectors v1 and v2 in S
such that T(v1) = w1 and T(v2) = w2. Since v1 + v2 must be in S and

T(v1 + v2) = T(v1) + T(v2) = w1 + w2

it follows that w1 + w2 is also in T(S). Thus S is closed under addition.

(c) Suppose that w is in T(S) and that c is a scalar. Then there exists a vector v in S such
that T(v) = w. As cv is also in S and

T(cv) = c T(v) = cw

we have cw in T(S). Hence T(S) is also closed under scalar multiplication.

Since (a), (b), and (c) are all satisfied, T(S) is a subspace of W. ■

E X A M P L E 4 Let T : R2×2 → R be given by

T(A) = tr(A)

where tr(A) denotes the trace of A. Determine range(T) and ker(T).

Solution Recall that tr(A) is the sum of the diagonal elements of a square matrix A,
so that

tr

([
a11 a12

a21 a22

])
= a11 + a22

Then T is a linear transformation. (Verifying this is left as Exercise 9.) Note that for any
real number r , we have

tr

([
r 0
0 0

])
= r

Therefore every real number is the image of an element of R2×2, so we may conclude
that range(T) = R.

Next, A =
[

a11 a12

a21 a22

]
is in ker(T) if

tr(A) = a11 + a22 = 0

or a22 = −a11. Therefore ker(T) is the set of all 2 × 2 real matrices of the form[
a11 a12

a21 −a11

]
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Since this matrix can be written[
a11 a12

a21 −a11

]
=

[
a11 0

0 −a11

]
+

[
0 a12

0 0

]
+

[
0 0

a21 0

]

a basis for ker(T) (which we already know is a subspace) is given by{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
■

One-to-One and Onto Linear Transformations
The definitions of one-to-one and onto for linear transformations carry over almost
word-for-word from Chapter 3.

Definition One-to-One, Onto

D E F I N I T I O N 9.4 Let T : V → W be a linear transformation. Then

(a) T is one-to-one if for each w in W there is at most one v in V such that T(v) = w.

(b) T is onto if for each w in W there is at least one v in V such that T(v) = w.Definition 9.4 generalizes
Definition 3.4 in Section 3.1.

One way to determine if a linear transformation is one-to-one is to find ker(T) and
then apply the next theorem.

Theorem 9.5 generalizes
Theorem 3.5 in Section 3.1.

T H E O R E M 9.5 Let T : V → W be a linear transformation. Then T is one-to-one if and only if
ker(T) = {0V }.

The proof is similar to that of Theorem 3.5 in Section 3.1 and is left as Exercise 59.

E X A M P L E 5 Let T : R2×2 → P2 be given by

T

([
a b
c d

])
= (a − d)x2 − bx + c

Then T is a linear transformation (see Exercise 8). Determine if T is onto or one-to-one.

Solution A typical element of P2 has the form h(x) = ex2 + f x + g . Thus, for T to
be onto, we need to be able to find a solution to

T

([
a b
c d

])
= (a − d)x2 − bx + c = ex2 + f x + g

Comparing coefficients yields the linear system

a − d = e
−b = f

c = g

This system has infinitely many solutions, among them

a = e , b = − f, c = g , d = 0

Hence T is onto. Moreover, for the special case where e = f = g = 0, a solution to the
system is a = d = 1, b = c = 0. Therefore

T

([
1 0
0 1

])
= 0

so that ker(T) is nontrivial. Hence T is not one-to-one by Theorem 9.5. ■
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The next theorem shows how a linear transformation T : V → W can relate linearly
independent sets in V and W.

T H E O R E M 9.6 Let T : V → W be a linear transformation. Suppose thatV = {v1, . . . , vm} is a subset
of V , W = {w1, . . . , wm} is a subset of W, and T(vi ) = wi for i = 1, . . . , m. If W is
linearly independent, then so is V .

Proof Suppose that

c1v1 + · · · + cmvm = 0V (2)

Since

T(c1v1 + · · · + cmvm) = c1T(v1) + · · · + cmT(vm) = c1w1 + · · · + cmwm

and T(0V ) = 0W , we have

c1w1 + · · · + cmwm = 0W

As W is a linearly independent set, it must be that c1 = · · · = cm = 0, so that (2) has
only the trivial solution. Hence V is also linearly independent. ■

Note that the reverse is not always true. Just because V is linearly independent does not
guarantee that W is linearly independent (see Exercise 37). However, if T is one-to-one
and V is a linearly independent set, then that is enough to ensure that W is also linearly
independent (see Exercise 61).

E X A M P L E 6 Let T : C [0, 1] → R2 be defined by

T( f ) =
[

f (0)
f (1)

]

Use T to prove that the set {cos(xπ/2), sin(xπ/2)} is linearly independent.

Solution It is shown in Exercise 6 that T is a linear transformation. Next, note that

T
(
cos(xπ/2)

) =
[

cos(0)
cos(π/2)

]
=

[
1
0

]

T
(
sin(xπ/2)

) =
[

sin(0)
sin(π/2)

]
=

[
0
1

]

Since the set

{[
1
0

]
,

[
0
1

]}
is linearly independent, then by Theorem 9.6 the set

{cos(xπ/2), sin(xπ/2)} is also linearly independent. ■

Our next theorem relates the dimensions of V , ker(T), and range(T) for a linear
transformation T : V → W.

Theorem 9.7 generalizes
Theorem 4.23 in Section 4.3.

T H E O R E M 9.7 Let T : V → W be a linear transformation, with V and W finite dimensional. Then

dim(V) = dim
(
ker(T)

) + dim
(
range(T)

)
(3)

Proof We start by letting {v1, . . . , vk} be a basis for ker(T), so that dim
(
ker(T)

) = k.
Now extend this set to a basis {v1, . . . , vk , vk+1, . . . , vm} for V . Hence dim(V) = m. For
i = k + 1, . . . , m, let wi = T(vi ). Our goal is to show that {wk+1, . . . , wm} is a basis for
range(T).
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Given real scalars c1, . . . , cm, we have

T(c1v1 + · · · + ckvk + ck+1vk+1 + · · · + cmvm)

= c1T(v1) + · · · + ck T(vk) + ck+1T(vk+1) + · · · + cmT(vm)

= c10W + · · · + ck0W + ck+1wk+1 + · · · + cmwm

= ck+1wk+1 + · · · + cmwm

The cases dim(V) = 0 and
dim

(
ker(T)

) = 0 are left to the
reader.

As range(T) is the set of all such elements, it follows that {wk+1, . . . , wm} spans range(T).
Moreover, if

ck+1wk+1 + · · · + cmwm = 0W

then ck+1vk+1 +· · ·+ cmvm is in ker(T). Since vk+1, . . . , vm are linearly independent and
none are in ker(T), this implies ck+1 = · · · = cm = 0. Hence {wk+1, . . . , wm} is also
linearly independent and thus is a basis for range(T). Therefore dim

(
range(T)

) = m−k,
and so (3) is true. ■

For example, recall T : R2×2 → R given by T(A) = tr(A) in Example 4. There, it is
shown that a basis for ker(T) is{[

1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

so that dim
(
ker(T)

) = 3. Since range(T) = R, we have dim
(
range(T)

) = 1. We also
have dim(R2×2) = 4, which is exactly as predicted by Theorem 9.7.

Another application of Theorem 9.7 is given in the next theorem.

T H E O R E M 9.8 Let T : V → W be a linear transformation, with V and W finite dimensional.

(a) If T is onto, then dim(V) ≥ dim(W).

(b) If T is one-to-one, then dim(V) ≤ dim(W).

Proof If T is onto, then range(T) = W. Therefore dim
(
range(T)

) = dim(W), so that
by Theorem 9.7,

dim(V) = dim
(
ker(T)

) + dim(W)

Since dim
(
ker(T)

) ≥ 0, it follows that dim(V) ≥ dim(W), so (a) is true.
For part (b), if T is one-to-one, then by Theorem 9.5 we have ker(T) = {0V }. Hence

dim
(
ker(T)

) = 0, and so by Theorem 9.7,

dim(V) = dim
(
range(T)

) ≤ dim(W)

because range(T) is a subset of W. Hence (b) is also true. ■

E X E R C I S E S

1. Let T : V → R2 be a linear transformation satisfying

T(v1) =
[

1
2

]
, T(v2) =

[
−3

1

]
Find T(v2 − 2v1).

2. Let T : V → P2 be a linear transformation satisfying

T(v1) = x2 + 1
T(v2) = −x2 + 3x
T(v3) = 4x − 2

Find T(2v1 + v2 − 3v3).

3. Let T : P2 → R2 be a linear transformation satisfying

T(x2 + 1) =
[
−1

3

]
, T(4x + 3) =

[
2
1

]

Find T(2x2 − 4x − 1). (HINT: Write 2x2 − 4x − 1 as a linear
combination of x2 + 1 and 4x + 3.)
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4. Let T : R2×2 → P2 be a linear transformation satisfying

T

([
1 −2

−1 3

])
= x2 − x + 3

T

([
2 4
1 −1

])
= 3x2 + 4x − 1

Find T

([
7 2

−1 7

])
. (HINT: Write

[
7 2

−1 7

]
as a linear combi-

nation of

[
1 −2

−1 3

]
and

[
2 4
1 −1

]
.)

For Exercises 5–10, prove that the given function is a linear trans-
formation.

5. T : P2 → P2 with

T(ax2 + bx + c) = c x2 + bx + a

6. T : C[0, 1] → R2 with T( f ) =
[

f (0)
f (1)

]
7. T : Pn → C[0, 1] with T( p(x)) = ex p(x)

8. T : R2×2 → P2 with

T

([
a b
c d

])
= (a − d)x2 − bx + c

9. T : R2×2 → R with T(A) = tr(A) (the trace of A).

10. T : V → W with T(v) = 0W for all v.

For Exercises 11–22, determine if the given function is a linear
transformation. Be sure to completely justify your answer.

11. T : Rn → Rn with T(v) = −4v

12. T : R2 → R2 with

T

([
a
b

])
= −

[
a
b

]
+

[
3
2

]

13. T : R2 → R2 with T

([
a
b

])
=

[
b
a

]

14. T : Rn → Rn with T(v) =

⎡
⎢⎣

0
...

0

⎤
⎥⎦

15. T : P2 → R2 with T(ax2 + bx + c) =
[

a − b
b + c

]
16. T : R2×2 → R with T(A) = det(A)

17. T : Rn×n → Rn×n with T(A) = AT

18. T : C[0, 1] → R with T( f ) = f (2)

19. T : Rn×n → R with T(A) = tr(A)

20. T : C[0, 1] → C[0, 1] with T( f ) = x + f (x)

21. T : R3×2 → R2×2 with T(A) = AT A

22. T : R2 → C[0, 1] with T

([
a
b

])
= aebx

In Exercises 23–26, describe the kernel and range of the given linear
transformation.

23. T : P1 → R with T(ax + b) = a − b

24. T : P1 → P2 with T( f ) = x f (x)

25. T : P2 → R2×2 with

T(ax2 + bx + c) =
[

a b
b c

]

26. T : C[0, 1] → P2 with

T( f ) = f (0)x2 + f (1)

In Exercises 27–30, determine if the given linear transformation is
onto and/or one-to-one.

27. T : P2 → R2 with T( f ) =
[

f (1)
f (2)

]
28. T : P2 → P3 with T( f ) = x f (x)

29. T : C [0, 1] → R with T( f ) = f (1)

30. T : R2 → P2 with

T

([
a
b

])
= ax2 + (b − a)x + (a − b)

FIND AN EXAMPLE For Exercises 31–38, find an example of
vector spaces V and W and a function T : V → W that meets the
given specifications.

31. T is a linear transformation that is one-to-one but not onto.

32. T is a linear transformation that is onto but not one-to-one.

33. T is a linear transformation that is neither onto nor one-to-
one.

34. T is a linear transformation that is both onto and one-to-one.

35. T is a linear transformation such that dim
(

ker(T)
) = 1 and

dim
(

range(T)
) = 3.

36. T is a linear transformation such that dim
(

ker(T)
) = 4 and

dim
(

range(T)
) = 2.

37. T is a linear transformation such that, for any set of linearly
independent vectors {v1, . . . , vk} the set {T(v1), . . . , T(vk)} is
linearly dependent.

38. T satisfies condition (b) but not condition (a) of Definition 9.1.

TRUE OR FALSE For Exercises 39–48, determine if the statement
is true or false, and justify your answer.

39. If T : V → W is a linear transformation, then T(v1 − v2) =
T(v1) − T(v2).

40. If T : V → W is a linear transformation, then T(v) = 0W

implies that v = 0V .

41. If T : V → W is a linear transformation and S is a subspace
of V , then T(S) is a subspace of W.

42. If T : V → W is a linear transformation, then dim
(

ker(T)
) ≤

dim
(

range(T)
)

.
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43. If T : V → W is a linear transformation and {v1, . . . , vk} is a
linearly independent set, then so is {T(v1), . . . , T(vk)}.
44. If T : V → W is a linear transformation and {v1, . . . , vk} is a
linearly dependent set, then so is {T(v1), . . . , T(vk)}.
45. If T : R2×2 → P6, then is it impossible for T to be onto.

46. If T : P4 → R6, then it is impossible for T to be one-to-one.

47. Let T : V → W be a linear transformation and w a nonzero
vector in W. Then the set of all v in V such that T(v) = w forms
a subspace.

48. For every pair of vector spaces V and W, it is always possible
to define a linear transformation T : V → W.

49. Let T : R5 → C[0, 1] be a linear transformation, and suppose
that dim(ker(T)) = 2. What is dim(range(T))?

50. Let T : R4×3 → P be a one-to-one linear transformation.
What is dim(range(T))?

51. Prove that if T : V → W is a linear transformation with
T(v1) = T(v2), then v1 − v2 is in ker(T).

52. Prove that if T : V → W is an onto and one-to-one linear
transformation, and both V and W are of finite dimension, then
dim(V) = dim(W).

53. Suppose that T1 : V → W and T2 : V → W are both linear
transformations. Prove that T1 +T2 is also a linear transformation
from V to W.

54. Prove the extended version of Theorem 9.2: If T : V → W is
a linear transformation, then

T(c1v1 + c2v2 + · · · + cmvm)

= c1T(v1) + c2T(v2) + · · · + cmT(vm),

where v1, . . . , vm are in V and c1, . . . , cm are real scalars.

55. Prove that if T : V → W is a linear transformation, then
T(0V ) = 0W .

56. Prove that if T : V → W is a linear transformation, then for
any v in V we have T(−v) = −T(v).

57. Prove part of Theorem 9.3: Let T : V → W. Then ker(T) is a
subspace of V .

58. Prove Theorem 9.2: T : V → W is a linear transformation if
and only if

T(c1v1 + c2v2) = c1T(v1) + c2T(v2)

for all vectors v1 and v2 in V and real scalars c1 and c2.

59. Prove Theorem 9.5: Let T : V → W be a linear transforma-
tion. Then T is one-to-one if and only if ker(T) = {0V }. (HINT:
Theorem 3.5 is similar.)

60. Suppose that T1 : V → W and T2 : W → Y are both linear
transformations. Prove that T2

(
T1(v)

)
is also a linear transforma-

tion from V to Y .

61. Prove a partial converse of Theorem 9.6: Let T : V → W
be a one-to-one linear transformation, with V = {v1, . . . , vm} a
subset of V , and W = {w1, . . . , wm} a subset of W. Suppose that
T(vi ) = wi for i = 1, . . . , m. If V is linearly independent, then
so is W .

62. Prove Theorem 9.8, but with the condition that V and W are
finite dimensional removed.

(Calculus required) For Exercises 63–68, some basic knowledge of
calculus is required.

63. Let C 1(a , b) denote the set of functions that are continuously
differentiable on the interval (a , b). Prove that T : C 1(a , b) →
C (a , b) given by

T( f ) = f ′(x)

is a linear transformation.

64. Let T : C [a , b] → R be given by

T( f ) =
∫ b

a
f (x) dx.

Prove that T is a linear transformation.

65. Determine if T : P4 → P2 with T( p) = p′′(x) is a linear
transformation.

66. Determine if T : P3 → R with

T( p) =
∫ b

a
xp(x) dx

is a linear transformation.

67. Determine if T : P4 → P5 with T( p) = (
x2 p(x)

)′
is a linear

transformation.

68. Determine if T : P3 → R with

T( p) =
∫ b

a
ex − x2 p(x) dx

is a linear transformation.

9.2 Isomorphisms
At the beginning of Section 7.1, we compared the features of R3 and P2 and concluded that
these two vector spaces have a lot in common. In fact, many superficially different vector
spaces are essentially the same in important ways. In this section we define precisely what
it means for two vector spaces to be essentially the same, and determine which vector
spaces are essentially the same.
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Definition of Isomorphism
Our mechanism for establishing when two vector spaces are essentially the same is through
a special type of linear transformation called an isomorphism.

Definition Isomorphism,
Isomorphic

D E F I N I T I O N 9.9 A linear transformation T : V → W is an isomorphism if T is both one-to-one and
onto. If such an isomorphism exists, then we say that V and W are isomorphic vector
spaces.

Regarding isomorphisms and isomorphic vector spaces:
The word isomorphism has

Greek origins and means “same
structure.” • Some pairs of vector spaces are isomorphic, while others are not. For instance, R3 and

P2 are isomorphic (see Example 1 below), while R2×3 and C [0, 1] are not. (We will
explain why later.)

• If T : V → W is an isomorphism, then there will also exist an isomorphism S : W → V .
(This is developed in more detail later in this section.) Thus the notion of isomorphic
is symmetric. If V and W are isomorphic, then W and V are also isomorphic.

• The requirement that T : V → W be both onto and one-to-one ensures that there
is an exact correspondence between the elements of V and W, called a one-to-one
correspondence: Every v in V is paired up with a specific w in W by T(v) = w.
Matching up elements of V and W in this manner is one part of establishing that V
and W are essentially the same.

• Since T is a linear transformation, addition and scalar multiplication work the same
between corresponding elements of V and W. For instance, if T(vi ) = wi for i = 1, 2, 3
and v1 + v2 = v3, then

w1 + w2 = T(v1) + T(v2) = T(v1 + v2) = T(v3) = w3

That is, v1 + v2 = v3 implies that w1 + w2 = w3, so that addition works the same in
V and W. This principle also holds for scalar multiplication.

Since an isomorphism between two vector spaces V and W matches up vectors and
preserves the respective arithmetic operations, from the standpoint of vector spaces V
and W are essentially the same.

To establish that V and W are
isomorphic, we need only find
one isomorphism T : V → W.

Let’s consider some examples.

E X A M P L E 1 Show that R3 and P2 are isomorphic.

Solution To show that two vector spaces V and W are isomorphic, we need to find an
isomorphism T : V → W. That is, T must be a linear transformation that is onto and
one-to-one.

Since our goal is to show that R3 and P2 are isomorphic, we choose a linear trans-
formation T : R3 → P2 that is as simple as possible while still meeting the requirements
of an isomorphism. Often something obvious makes a good choice. Here we try

T

⎛
⎝

⎡
⎣a0

a1

a2

⎤
⎦

⎞
⎠ = a2x2 + a1x + a0
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We have

T

⎛
⎝

⎡
⎣a0

a1

a2

⎤
⎦ +

⎡
⎣b0

b1

b2

⎤
⎦

⎞
⎠ = T

⎛
⎝

⎡
⎣a0 + b0

a1 + b1

a2 + b2

⎤
⎦

⎞
⎠ = (a2 + b2)x2 + (a1 + b1)x + (a0 + b0)

= (a2x2 + a1x + a0) + (b2x2 + b1x + b0) = T

⎛
⎝

⎡
⎣a0

a1

a2

⎤
⎦

⎞
⎠ + T

⎛
⎝

⎡
⎣b0

b1

b2

⎤
⎦

⎞
⎠

and

T

⎛
⎝c

⎡
⎣a0

a1

a2

⎤
⎦
⎞
⎠= T

⎛
⎝

⎡
⎣ca0

ca1

ca2

⎤
⎦
⎞
⎠= ca2x2 + ca1x + ca0 = c(a2x2 + a1x + a0) = c T

⎛
⎝

⎡
⎣a0

a1

a2

⎤
⎦
⎞
⎠

so that T is a linear transformation. We can see from the definition of T that every

vector a2x2 + a1x + a0 in P2 is matched up by T with exactly one vector

⎡
⎣a0

a1

a2

⎤
⎦ in R3,

and that every vector in R3 is matched up with a vector in P2. Therefore T is one-to-one
and onto, and thus is an isomorphism. This proves that R3 and P2 are isomorphic. ■

x2

x1

x3

S

Figure 1 The subspace S

in R3.

It is possible for a subspace of one vector space to be isomorphic to a vector space
or even another subspace.

E X A M P L E 2 Show that R2 and the subspace

S = span

⎧⎨
⎩

⎡
⎣1

2
0

⎤
⎦ ,

⎡
⎣3

1
1

⎤
⎦

⎫⎬
⎭ (1)

of R3 are isomorphic.

Solution The subspace S is a plane in R3 (Figure 1), so it resembles the coordinate
plane R2. Hence it seems plausible that the two would be isomorphic. But this is not a
proof.

To prove that S and R2 are isomorphic, we need to find an isomorphism. Let
T : R2 → S be given by T(x) = Ax, where

A =
⎡
⎣1 3

2 1
0 1

⎤
⎦

Then T is a linear transformation. Since S = col(A), the column space of A, it follows
that T is onto. Furthermore, since the columns of A are linearly independent, T is
one-to-one by Theorem 3.6 in Section 3.1. Therefore T is an isomorphism, and S and
R2 are isomorphic. ■

In both of the examples we have considered, the isomorphic vector spaces had the
same dimension. This is not a coincidence.

T H E O R E M 9.10 Suppose that finite dimensional vector spaces V and W are isomorphic. Then dim(V) =
dim(W).
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Proof Since V and W are isomorphic, there exists an isomorphism T : V → W. Now
recall from Theorem 9.8 that

• If T is onto, then dim(V) ≥ dim(W).

• If T is one-to-one, then dim(V) ≤ dim(W).

Since T is onto and one-to-one, both inequalities must hold. The only way this can
happen is if dim(V) = dim(W). ■

Theorem 9.10 provides a quick and easy way to show that two vector spaces are not
isomorphic, because

If dim(V) �= dim(W), then V and W are not isomorphic.

E X A M P L E 3 Show that R3×2 and P4 are not isomorphic.

Solution Since dim(R3×2) = 6 and dim(P4) = 5, these two vector spaces cannot be
isomorphic. ■

Theorem 9.10 also holds for infinite-dimensional vector spaces. If V and W are
isomorphic and one is infinite dimensional, then so is the other. Such vector spaces can
lead to interesting and counter-intuitive results.

E X A M P L E 4 Let Pe denote the set of polynomials with real coefficients and only
even-powered terms, and let P be the set of all polynomials with real coefficients. Then
Pe is a subspace of P. Is Pe isomorphic to P?

Solution Viewed one way, it seems unlikely that Pe is isomorphic to P. After all, Pe

is a proper subspace of P, so how could a one-to-one correspondence—required of an
isomorphism—possibly exist between these two sets? But intuition can be misleading
when it comes to infinite-dimensional vector spaces.

Suppose that we define T : Pe → P by

T(anx2n + an−1x2(n−1) + · · · + a1x2 + a0) = anxn + an−1xn−1 + · · · + a1x + a0

It is not hard to verify that T is a linear transformation, and that T is also onto and
one-to-one. Therefore, perhaps surprisingly, Pe and P are isomorphic. ■

Thus far we know that if V and W are isomorphic, then dim(V) = dim(W). Now
we consider the reverse direction. Do the dimensions of V and W tell us anything about
whether or not V and W are isomorphic?

T H E O R E M 9.11 Let V and W be finite-dimensional vector spaces with dim(V) = dim(W) = m,
where m > 0. Suppose that

V = {v1, . . . , vm} and W = {w1, . . . , wm}
are bases for V and W, respectively. Now define T : V → W as follows: For v in V ,
let c1, . . . , cm be such that v = c1v1 + · · · + cmvm. Then set

T(v) = T(c1v1 + · · · + cmvm) = c1w1 + · · · + cmwm

Then T is an isomorphism, and V and W are isomorphic vector spaces.

The proof of Theorem 9.11 is not hard, but it is a bit long and so is given at the end
of the section. Here we report the significant implication of this theorem.
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T H E O R E M 9.12 Finite dimensional vector spaces V and W are isomorphic if and only if dim(V) =
dim(W).

Proof By Theorem 9.11, if two finite-dimensional vector spaces V and W have the
same dimension, then they are isomorphic. The converse follows from Theorem 9.10,
which tells us that two finite-dimensional isomorphic vector spaces must have the same
dimension. ■

If we think of dimension as giving a measure of the size of a vector space, then
Theorem 9.12 tells us that size is all that matters when determining if two vector spaces
are isomorphic. Now we can easily answer questions such as:

• Are P7 and R4×2 isomorphic? (Yes. Both have dimension 8.)

• Are R2×3 and C [0, 1] isomorphic? (No. dim(R2×3) = 6 and dim(C [0, 1]) = ∞.)

• Are R5 and S = span{cos(x), sin(x), cos(2x), sin(2x)} in C [0, 1] isomorphic? (No.
dim(R5) = 5 and dim(S) ≤ 4.)

• Are R7×5 and R35 isomorphic? (Yes. Both have dimension 35.)

• Are R∞ and P isomorphic? (Maybe. We cannot tell because Theorem 9.12 does not
apply to a pair of vector spaces having infinite dimension. Not every question is easily
answered.)

Another consequence of Theorem 9.12 is contained in the next theorem.

T H E O R E M 9.13 If V is a vector space and dim(V) = n, then V is isomorphic to Rn.

In a way, this brings our development of vector spaces full circle. Since all n-
dimensional vector spaces are isomorphic to n-dimensional Euclidean space, it is not
so surprising that our Euclidean space results carried over so readily to vector spaces.

Inverses
We now revisit the notion of inverse functions, first treated in Section 3.3. Here is a
definition, updated from earlier to our current more general setting.

Definition Inverse, Invertible

D E F I N I T I O N 9.14 A linear transformation T : V → W is invertible if T is one-to-one and onto. When
T is invertible, the inverse function T−1 : W → V is defined by

T−1(w) = v if and only if T(v) = w

Much of the development of Section 3.3 carries over directly to vector spaces. The
main points are:

• A linear transformation T is invertible exactly when T is an isomorphism.

• If a linear transformation T is invertible, then the inverse T−1 is unique.

• If T : V → W is an isomorphism, then T−1 : W → V is also an isomorphism.

The proofs of these properties are left as exercises. Let’s consider an example.

E X A M P L E 5 Let T : P1 → R2 be the linear transformation given by

T
(

p(x)
) =

[
p(0)
p(1)

]
Show that T is an isomorphism by showing that T is one-to-one and onto, and find
T−1.
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Solution Elements of P1 are all polynomials of the form p(x) = ax + b, so that
p(0) = b and p(1) = a + b. Thus

T(ax + b) =
[

b
a + b

]

For any real numbers c and d , the vector equation[
b

a + b

]
=

[
c
d

]

has unique solution a = d−c and b = c . Therefore T is one-to-one and onto. Moreover,
the unique solution also shows us how to define T−1 : R2 → P1. Since a = d − c and
b = c , it follows that

T
(
(d − c)x + c

) =
[

c
d

]
�⇒ T−1

([
c
d

])
= (d − c)x + c

We can check that this is correct by computing

T−1
(

T(ax + b)
) = T−1

([
b

a + b

])
= ((a + b) − b)x + b = ax + b

and

T

(
T−1

([
c
d

]))
= T

(
(d − c)x + c

) =
[

c
(d − c) + c

]
=

[
c
d

]
■

Proof of Theorem 9.11
Proof of Theorem 9.11 First, since V = {v1, . . . , vm} is a basis for V , for any v there
is exactly one set of scalars c1, . . . , cm such that v = c1v1 + · · · + cmvm. Therefore T is
actually a well-defined function.

Second, suppose that u is also in V , with u = d1v1 + · · · + dmvm. For v = c1v1 +
· · · + cmvm as above and scalars a and b, we have

T(av + bu) = T
(
(ac1 + bd1)v1 + · · · + (acm + bdm)vm

)
= (ac1 + bd1)w1 + · · · + (acm + bdm)wm

= a(c1w1 + · · · + cmwm) + b(d1w1 + · · · + dmwm) = aT(v) + bT(u).

Hence T is a linear transformation.
Third, since W = {w1, . . . , wm} is a basis, every element w in W can be expressed

in the form w = c1w1 + · · · + cmwm for unique c1, . . . , cm. For such a w, we see that
v = c1v1 + · · · + cmvm satisfies T(v) = w, and therefore T is onto.

Finally, as W is a basis, the only linear combination c1w1 + · · · + cmwm = 0W is
when c1 = · · · = cm = 0. Therefore the only v in V such that T(v) = 0W is v = 0V ,
which implies that T is also one-to-one. Thus T is an isomorphism, and therefore V and
W are isomorphic vector spaces. ■

E X E R C I S E S
For Exercises 1–6, use dimensions when possible to determine if
the given vector spaces are isomorphic. If not possible, explain
why.

1. V = R8 and W = P9

2. V = R5×3 and W = R15

3. V = R3×6 and W = P17

4. V = R∞ and P20

5. V = R13 and C [0, 1]

6. V = R∞ and C[0, 1]
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For Exercises 7–10, prove that the given function is an isomor-
phism.

7. T : R3 → P2 with T

([
a
b
c

])
= c x2 + bx + a

8. T : P1 → R2 with T( p) =
[

p(−2)
p(1)

]
9. T : P3 → R2×2 with T(ax3 + bx2 + c x + d) =[

(a + b + c + d) (a + b + c)
(a + b) a

]
10. T : R2×2 → R2×2 with T(A) = AT

For Exercises 11–14, determine if the given linear transformation
is an isomorphism.

11. T : P1 → R2 with T(ax + b) =
[

a + b
b − a

]
12. T : P → P with T( f ) = xp(x)

13. T : C(R) → R∞ with T( f ) = ( f (1), f (2), f (3), . . .)

14. T : R2×2 → P3 with

T(A) = tr(A)x3 + a11x2 + a21x − a12

For Exercises 15–18, find T−1 for the given isomorphism T .

15. T : P1 → R2 with T(ax + b) =
[

2b
a − b

]
16. T : R2×2 → R2×2 with T(A) = AT

17. T : P2 → P2 with T(ax2 + bx + c) = c x2 − bx + a

18. T : P3 → R2×2 with

T(ax3 + bx2 + c x + d) =
[
−a c
−d b

]
19. Let S be the subspace of R3 given by

S = span

{[
1
0
0

]
,

[
0
1
0

]}

Show that T : R2 → S given by

T

([
a1

a2

])
=

[
a1

a2

0

]

is an isomorphism.

20. Let S be the subspace of R4 given by

S = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ ,

⎡
⎢⎣

0
0
0
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Show that T : R2 → S given by

T

([
a1

a2

])
=

⎡
⎢⎣

a1

0
0
a2

⎤
⎥⎦

is an isomorphism.

21. Let Pe be the subspace of P defined in Example 4. Show that
T : Pe → P given by

T(anx2n + an−1x2(n−1) + · · · + a1x2 + a0)
= anxn + an−1xn−1 + · · · + a1x + a0

is an isomorphism.

22. Let Po be the subspace of P consisting of polynomials with only
odd-powered terms, and the zero polynomial. Define T : Po → P
by

T(anx2n+1 + an−1x2n−1 + · · · + a1x3 + a0x)

= anxn + an−1xn−1 + · · · + a1x + a0

and T(0) = 0 for the zero polynomial. Is T a linear transforma-
tion?

FIND AN EXAMPLE For Exercises 23–30, find an example that
meets the given specifications. Prove your claim.

23. An isomorphism T : R5 → P4.

24. An isomorphism T : R2×3 → R6.

25. An isomorphism T : R2×2 → P3.

26. An isomorphism T : R4 → S, where S is the subspace of P6 of
polynomials that have only terms with even-powered exponents.

27. A subspace of R2×3 that is isomorphic to P3.

28. A subspace of P that is isomorphic to R4.

29. A subspace of R∞ that is isomorphic to P.

30. A proper subspace of R∞ that is isomorphic to R∞.

TRUE OR FALSE For Exercises 31–44, determine if the statement
is true or false, and justify your answer.

31. Every linear transformation is also an isomorphism.

32. Every finite dimensional vector space V is isomorphic to Rn

for some n.

33. If T : Rn → Rn is a one-to-one linear transformation, then T
is an isomorphism.

34. There exists a subspace of P10 that is isomorphic to R3×3.

35. If V and W are isomorphic, then there is a unique linear trans-
formation T : V → W that is an isomorphism.

36. Every three-dimensional subspace of a vector space V is iso-
morphic to P2.

37. If T1 : V → W and T2 : V → W are isomorphisms, then so
is T1 + T2.

38. If T : V → W is an isomorphism and {v1, v2, v3} is a basis
for V , then {T(v1), T(v2), T(v3)} is a basis for W.

39. If T : P → P is a linear transformation and range(T) = P,
then T is an isomorphism.

40. If T : P → P is defined by T( p(x)) = p(2x + 1), then T is
an isomorphism.

41. (Calculus required) Let C∞(a , b) denote the set of func-
tions that have an infinite number of continuous derivatives on
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the interval (a , b). Then T : C∞(a , b) → C∞(a , b) given by
T( f ) = f ′(x) is an isomorphism.

42. (Calculus required) Let T : C[a , b] → R be given by

T( f ) =
∫ b

a
f (x) dx

Then T is an isomorphism.

43. (Calculus required) The linear transformation T : P4 → P4

with T( p) = xp′(x) is an isomorphism.

44. (Calculus required) If T : P1 → P1 with

T( p) = x −
∫ b

a
p(x) dx

then T is an isomorphism.

45. Prove that a linear tranformation T is an isomorphism if and
only if T has an inverse.

46. Prove that if the linear transformation T has an inverse, then
it is unique.

47. Prove that if T : V → W is an isomorphism, then T−1 :
W → V is also an isomorphism.

48. Prove that if a linear transformation T : V → W is either
onto or one-to-one, and dim(V) = dim(W) are both finite, then
T is an isomorphism.

49. Suppose that T : V → W is a one-to-one linear transforma-
tion. Prove that V and range(T) are isomorphic.

50. Suppose that T1 : V → W and T2 : W → Y are isomor-
phisms. Prove that V and Y are isomorphic vector spaces.

9.3 The Matrix of a Linear Transformation
In Section 3.1 we defined the linear transformation T : Rm → Rn and showed that it
has the form T(x) = Ax for an n × m matrix A. If V and W are finite-dimensional
vector spaces, then we can establish a similar connection between linear transformations
T : V → W and matrices. Before getting to that, we first revisit coordinate vectors to
see how they are applied to vector spaces.

Coordinate Vectors
To establish a connection between linear transformations and vector spaces, we need a
way to express vectors in the form of elements of Rm. This can be done using coordinate
vectors as defined below.

Definition Coordinate Vector

D E F I N I T I O N 9.15 Let V be a vector space with basis G = {g1, . . . , gm}. For each v = c1g1 + · · · + cmgm

in V , we define the coordinate vector of v with respect to G by

vG =

⎡
⎢⎣

c1

...

cm

⎤
⎥⎦
G

In this section and the next,
we will sometimes need to refer
to more than one basis for a vec-
tor space. To avoid the appear-
ance of favoring one basis over
another (and additional clutter-
ing subscripts), we depart from
our customary use of V and W
to represent bases for V and W,
respectively.

Regarding Definition 9.15:

• Although vG is expressed in terms of a vector in Euclidean space, it represents a vector
in V .

• The choice of basis matters. Different bases will yield different coordinate vectors for
the same vector v.

• The order of the basis vectors matters. Our convention is to read a list of basis vectors
from left to right, taking them in that order.

• Since G is a basis for V , the scalars c1, . . . , cm are unique, so that for each v there is
exactly one coordinate vector with respect to a given basis G.

E X A M P L E 1 Two bases for P2 are

G = {x2, x , 1} and H = {x2 + 2x − 4, x + 1, x2 − x}
Find the coordinate vector of v = x2 −6x +2 with respect to G and with respect to H.
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Solution Starting with G, it is not difficult to see that

v = (1)x2 + (−6)x + (2) �⇒ vG =
⎡
⎣ 1

−6
2

⎤
⎦
G

For the basis H, we need to find scalars a , b, and c such that

v = x2 − 6x + 2 = a(x2 + 2x − 4) + b(x + 1) + c(x2 − x)

Using our standard methods, it can be shown that a = −1, b = −2, and c = 2. Hence

v = (−1)(x2 + 2x − 4) + (−2)(x + 1) + (2)(x2 − x) �⇒ vH =
⎡
⎣−1

−2
2

⎤
⎦
H ■

E X A M P L E 2 Find the coordinate vector of v =
[

3 2
5 7

]
with respect to the basis

for R2×2 given by

G =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Solution The set G is the standard basis for R2×2 and can be especially easy to use. We
see that

v =
[

3 2
5 7

]
= 3

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ 5

[
0 0
1 0

]
+ 7

[
0 0
0 1

]
�⇒ vG =

⎡
⎢⎢⎣

3
2
5
7

⎤
⎥⎥⎦
G ■

E X A M P L E 3 Suppose that G = {sin(x), cos(x), e−x} is a basis for a subspace of
C[0, 1]. Find v if

vG =
⎡
⎣ 5

−3
2

⎤
⎦
G

Solution Here we are given the coordinate vector vG and need to extract v. All we have
to do is multiply the basis vectors by the scalars given in vG . We have

v = 5 sin(x) − 3 cos(x) + 2e−x

■

Transformation Matrices
Now that we have an understanding of coordinate vectors, let’s consider how matrices
can be used to represent linear transformations. Suppose that T : V → W is a linear
transformation, and that G = {g1, . . . , gm} and Q = {q1, . . . , qn} are bases of V and W,
respectively. Our goal is to find a matrix A such that[

T(v)
]
Q = AvG

where

vG = coordinate vector of v with respect to G
AvG = coordinate vector of T(v) with respect to Q
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If A = [
a1 · · · am

]
and v = c1g1 + · · · + cmgm =

⎡
⎣c1

...
cm

⎤
⎦
G

, then

AvG = A

⎡
⎣c1

...
cm

⎤
⎦
G

= c1a1 + · · · + cmam

On the other hand, we also have

T(v) = c1T(g1) + · · · + cmT(gm)

Thus, in order for AvG = [T(v)]Q, we should set ai = [T(gi )]Q for each i = 1, . . . , m.
This brings us to our next definition.

Definition Matrix of a Linear
Transformation

D E F I N I T I O N 9.16 Let T : V → W be a linear transformation, G = {g1, . . . , gm} a basis of V , and let
Q = {q1, . . . , qn} a basis of W. If A = [

a1 · · · am

]
with

ai = [T(gi )]Q

for each i = 1, . . . , m, then A is the matrix of T with respect to G and Q.

The matrix A in Definition 9.16 is also called a transformation matrix.
Definition Transformation

Matrix

E X A M P L E 4 Let T : P2 → P1 be given by

T(ax2 + bx + c) = (2a + c − 3b)x + (c + 4b + 3a)

and let G = {x2, x , 1} be a basis for P2 and Q = {x , 1} a basis for P1. Find the matrix
of T with respect to G and Q, and then use it to compute T(2x2 − 4x + 1).

Solution Finding A requires us to compute [T(gi )]Q for each basis vector of G. We
have

T(x2) = 2x + 3 �⇒ [T(x2)]Q =
[

2
3

]
Q

T(x) = −3x + 4 �⇒ [T(x)]Q =
[−3

4

]
Q

T(1) = x + 1 �⇒ [T(1)]Q =
[

1
1

]
Q

Therefore, by Definition 9.16,

A =
[

[T(x2)]Q [T(x)]Q [T(1)]Q
]

=
[

2 −3 1
3 4 1

]

Now let’s use A to compute T(2x2 − 4x + 1). We have 2x2 − 4x + 1 =
⎡
⎣ 2

−4
1

⎤
⎦
G

, so that

T(2x2 − 4x + 1) = A

⎡
⎣ 2

−4
1

⎤
⎦
G

=
[

17
−9

]
Q

= 17x − 9

To check our work, let’s compute directly,

T(2x2 − 4x + 1) = (
2(2) + (1) − 3(−4)

)
x + (

(1) + 4(−4) + 3(2)
) = 17x − 9 ■
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In Example 4 we used the standard bases for P2 and P1. While this simplified com-
putations, there is no reason why other bases cannot be used. Let’s try Example 4 again,
this time with different choices for G and Q.

E X A M P L E 5 Repeat Example 4, this time with bases

G = {x2 − 2, 2x − 1, x2 + 4x − 1} and Q = {2x + 1, 5x + 3}
Solution As before, the columns of our transformation matrix A are given by [T(gi )]Q.
Starting with g1, we have T(x2 − 2) = 1. Finding the coordinate vector with respect to
Q requires more work than before. Here we need to find scalars a and b such that

1 = a(2x + 1) + b(5x + 3)

Applying our usual methods yields the solution a = −5 and b = 2. Hence

[T(x2 − 2)]Q =
[−5

2

]
Q

Applying the same procedure to the other basis vectors yields

T(2x − 1) = −7x + 7 = −56(2x + 1) + 21(5x + 3) �⇒ [T(2x − 1)]Q =
[−56

21

]
Q

and

T(x2 + 4x − 1) = −11x + 18 = −123(2x + 1) + 47(5x + 3)

�⇒ [T(x2 + 4x − 1)]Q =
[−123

47

]
Q

Therefore this time the transformation matrix is

B =
[−5 −56 −123

2 21 47

]

To test this out by computing T(2x2 − 4x + 1), we need to determine the coordinate
vector of 2x2 − 4x + 1 with respect to G. To do so, we need to find scalars a , b, and c
such that

2x2 − 4x + 1 = a(x2 − 2) + b(2x − 1) + c(x2 + 4x − 1)

Our usual methods produce a = 1, b = −4, and c = 1, so that 2x2 −4x +1 =
⎡
⎣ 1

−4
1

⎤
⎦
G

.
Hence

T(2x2 − 4x + 1) = B

⎡
⎣ 1

−4
1

⎤
⎦
G

=
[

96
−35

]
Q

= 96(2x + 1) − 35(5x + 3) = 17x − 9

which agrees with our earlier work. ■

Here we use B to denote the
transformation matrix to avoid
confusing this matrix with the
matrix A found in Example 4.
In Section 9.4 we will see that
there is a relationship between
two transformation matrices A
and B representing the same lin-
ear transformation with respect
to different bases.

Inverses
Let T : V → W be an isomorphism of finite-dimensional vector spaces. By Theo-
rem 9.10, we know that dim(V) = dim(W) = m for some m. Now suppose that A is the
transformation matrix of T with respect to bases G and Q, and that T(v) = w. Then A
is an m × m matrix with

AvG = wQ (1)
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As T is an isomorphism, T must be onto and one-to-one, so that by the Big Theorem
(Version 3 or later), A is an invertible matrix. Multiplying by A−1 on both sides of 1 yields

A−1wQ = vG

Thus A−1 reverses T , so we can conclude that A−1 is the matrix of T−1 with respect to
Q and G. (Note that the domain and codomain reverse when switching from T to T−1.)

E X A M P L E 6 In Example 5 of Section 9.2, it is shown that the linear transformation
T : P1 → R2 given by

T( p) =
[

p(0)
p(1)

]

is an isomorphism. Let G = {x , 1} andQ = {e1, e2} be bases for P1 and R2, respectively.
Find the matrix of T−1 with respect to G and Q.

Solution We have

T(x) =
[

0
1

]
�⇒ [T(x)]Q =

[
0
1

]
Q

T(1) =
[

1
1

]
�⇒ [T(1)]Q =

[
1
1

]
Q

Therefore

A =
[

0 1
1 1

]

is the matrix of T with respect to G and Q. By the preceding comments, the matrix of
T−1 with respect to Q and G is given by

A−1 =
[−1 1

1 0

]

For a typical vector w =
[

c
d

]
in R2, we have w = ce1 + de2, so that

T−1(w) = A−1

[
c
d

]
Q

=
[−1 1

1 0

] [
c
d

]
Q

=
[−c + d

c

]
G

= (d − c)x + c

which matches T−1 found in Example 5 of Section 9.2. ■

E X E R C I S E S
For Exercises 1–4, find v given the coordinate vector vG with
respect to the basis G.

1. vG =
[
−4

1

]
G

; G =
{[

3
2

]
,

[
1
4

]}

2. vG =
[

2
5

]
G

; G = {−3x + 1, 2x − 4}

3. vG =
[−1

0
3

]
G

; G = {
x2 − x + 3, 3x2 + 4, −5x − 2

}

4. vG =

⎡
⎢⎣

1
2
3
1

⎤
⎥⎦
G

; G =
{[

1 1
2 1

]
,

[
1 2
2 2

]
,

[
0 2
1 0

]
,

[
2 1
0 3

]}

For Exercises 5–12, find the coordinate vector of v with respect to
the given basis G.

5. v =
[

8
9

]
; G =

{[
2
0

]
,

[
0
3

]}
6. v = −14x + 15; G = {2x , 5}
7. v = 12x2 − 15x + 30; G = {

4x2, 3x , 5
}
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8. v =
[
−6 6
20 −7

]
;

G =
{[

2 0
0 0

]
,

[
0 3
0 0

]
,

[
0 0
5 0

]
,

[
0 0
0 1

]}

9. v =
[

5
−5

]
; G =

{[
1
2

]
,

[
3
1

]}
10. v = −11x ; G = {−3x + 2, 2x − 5}
11. v = 9x + 1; G = {

x2 − 1, 2x + 1, 3x2 − 1
}

12. v =
[

0 3
1 −1

]
;

G =
{[

1 0
1 0

]
,

[
0 2
1 1

]
,

[
1 −1
0 1

]
,

[
0 0
1 1

]}
For Exercises 13–18, A is the matrix of linear transformation
T : V → W with respect to bases G and Q, respectively. Find
T(v) for the given vG .

13. A =
[

1 3
2 −1

]
; vG =

[
4

−3

]
G

; Q =
{[

1
1

]
,

[
2
3

]}

14. A =
[

4 0
3 1

]
; vG =

[
2
2

]
G

; Q = {3x − 2, x + 5}

15. A =
[

1 1 2
0 1 3
0 1 1

]
; vG =

[
1
3
4

]
G

;

Q = {
x2 − 2x , x2 + x + 4, 3x + 1

}
16. A =

[−1 3 1
4 0 1
1 −1 0

]
; vG =

[
2
0

−1

]
G

;

Q =
{[

3
1

−2

]
,

[
2
4
0

]
,

[
1
2
3

]}

17. A =
[

0 4 3
2 −1 −3
2 −2 −1

]
; vG =

[
2

−3
1

]
G

;

Q = {
sin(x), cos(x), e−x

}

18. A =

⎡
⎢⎣

0 0 1 1
1 0 1 0
2 0 0 1
1 1 0 0

⎤
⎥⎦ ; vG =

⎡
⎢⎣

3
2
1

−1

⎤
⎥⎦
G

;

Q =
{[

1 0
1 2

]
,

[
2 −1
0 2

]
,

[
1 4
2 1

]
,

[
3 1
2 4

]}
For Exercises 19–26, find the matrix A of the linear transformation
T : V → W with respect to bases G and Q, respectively.

19. T

([
a
b

])
= bx − a ; G = {e1, e2}; Q = {x , 1}

20. T(ax +b) = ax2 + (a +b)x −b; G = {x , 1}; Q = {x2, x , 1}
21. T( f (x)) = f ′(x); G = {x2, x , 1}; Q = {x , 1}
22. T( f (x)) = x f ′(x) + f (0); G = {x2 + 3, x − 2, x2 + x};
Q = {x2, x , 1}

23. T

([
a
b

])
=

[
b − a

a + 2b

]
; G = {e1, e2}; Q =

{[
1
1

]
,

[
1
2

]}
24. T(ax + b) = (b − a)x − (a + b); G = {x , 1};
Q = {x + 1, x + 2}

25. T

([
a
b

])
= −bx + a + b; G =

{[
2
1

][
3
2

]}
;

Q = {5x + 3, 2x + 1}

26. T

([
a b
c d

])
=

[
a + b
b + c
c + d

]
;

G =
{[

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}
;

Q =
{[

1
0
0

]
,

[
1
1
0

]
,

[
1
1
1

]}

For Exercises 27–30, suppose that

A =
[

a b c
d e f

]
is the matrix of T : V → W with respect to basesG = {g1, g2, g3}
and Q = {q1, q2}, respectively. Find the matrix of T with respect
to the given bases H and R.

27. (a) H = {g1, g2, g3}, R = {2q1, q2}
(b) H = {3g1, g2, g3}, R = {q1, q2}
28. (a) H = {g3, g2, g1}, R = {q1, q2}
(b) H = {g1, g2, g3}, R = {q2, q1}
29. (a) H = {g3, g1, g2}, R = {q1, q2}
(b) H = {g1, g3, g2}, R = {q2, q1}
30. (a) H = {g1, 5g2, g3}, R = {q1, 2q2}
(b) H = {g2, g1, 3g3}, R = {4q2, q1}
31. Suppose that T : P1 → P1 has matrix A =

[
1 3
0 1

]
with

respect to the basis G = {x + 1, x − 1} for the domain and
Q = {1, x} for the codomain. Use the inverse of A to find T−1(x).

32. Suppose that T : P1 → P1 has matrix A =
[

2 7
1 3

]
with

respect to the basis G = {2x + 1, 3x − 1} for the domain and
Q = {1, x + 3} for the codomain. Use the inverse of A to find
T−1(x + 2).

33. Suppose that T : R2 → P1 has matrix A =
[

2 1
3 2

]
with

respect to the basis G =
{[

1
3

]
,

[
2
1

]}
for the domain and

Q = {x , 2x + 1} for the codomain. Use the inverse of A to find
T−1(x + 1).

34. Suppose that T : R2 → P1 has matrix A =
[

1 3
1 4

]
with

respect to the basis G =
{[

2
5

]
,

[
1
3

]}
for the domain and

Q = {3x , 2x − 1} for the codomain. Use the inverse of A to
find T−1(x − 2).
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FIND AN EXAMPLE For Exercises 35–40, find an example that
meets the given specifications. Prove your claim.

35. An element v and basis G of P2 such that

vG =
[

2
0

−3

]
G

36. An element v and basis G of R2×2 such that

vG =

⎡
⎢⎣

1
−7

4
−4

⎤
⎥⎦
G

37. A basis G of R2 such that[
−3

4

]
G

=
[

7
5

]

38. A basis G of P1 such that[
3

−5

]
G

= 4x − 11

39. Vector spaces V and W, bases for each, and a linear transfor-
mation T : V → W that has matrix

A =
[

2 1 2
0 3 1

]
with respect to the bases.

40. Vector spaces V and W, bases for each, and a linear transfor-
mation T : V → W that has matrix

A =
[

6 1
3 3

−2 5

]

with respect to the bases.

TRUE OR FALSE For Exercises 41–46, determine if the statement
is true or false, and justify your answer.

41. The matrix of any linear transformation between finite-
dimensional vector spaces must be square.

42. The matrix of a linear transformation T : V → W is unique.

43. If

[
a
b

]
G

is the coordinate vector of a vector with respect to a

basis G, then

[
2a

−3b

]
G

is the coordinate vector with respect to G
of some vector.

44. If v =
[

a
b

]
G

for G = {g1, g2}, then v =
[

b
a

]
G̃

for G̃ = {g2, g1}.

45. If 0 is the zero vector of a finite-dimensional vector space V ,
then

0V =

⎡
⎢⎣

0
...

0

⎤
⎥⎦
G

for every basis G of V .

46. If G and H are two distinct bases for a finite-dimensional vec-
tor space V , then vG and vH cannot have the same entries for any
element v of V .

47. Let G be a basis for a vector space V of dimension m. Show
that a set of vectors {v1, . . . , vk} is linearly independent in V if
and only if the coordinate vectors {[v1]G , . . . , [vk]G} are linearly
independent in Rm.

48. LetG be a basis for a vector space V , and suppose that vG = wG .
Prove that v = w.

49. Let G be a basis for a vector space V of dimension m. Show
that a linear combination of vectors v1, . . . , vk is equal to v in V if
and only if there is a linear combination of the coordinate vectors
[v1]G , . . . , [vk]G that is equal to the coordinate vector vG in Rm.

50. Suppose that A is the matrix of linear transformation T : V →
W with respect to bases G and Q, respectively.

(a) Show that v is in the kernel of T if and only if vG is in the null
space of A.

(b) Show that w is in the range of T if and only if wQ is in the
column space of A.

51. Suppose that A is the matrix of linear transformation T : V →
V with respect to basis G for both the domain and codomain. Let
T2(v) = T ◦ T(v) = T(T(v)) denote the composition of T with
itself.

(a) Show that A2 is the matrix of the linear transformation
T 2 : V → V with respect to basis G for both the domain and
codomain.

(b) If T n denotes the n-fold composition of T with itself, then
show that An is the matrix of the linear transformation T n : V →
V with respect to basis G for both the domain and codomain.

9.4 Similarity
In this section we continue our exploration of matrix representatives of linear transfor-
mations, now focusing on the special case T : V → V , where the same basis G is used
for both the domain and codomain. Let’s start with an example.
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E X A M P L E 1 Let T : R3 → R3 be given by T(x) = Ax, where

A =
⎡
⎣1 0 1

0 1 −4
2 1 −1

⎤
⎦

and x is with respect to the standard basis. Find the matrix B of T with respect to the
basis

G =
⎧⎨
⎩

⎡
⎣ 2

−4
1

⎤
⎦ ,

⎡
⎣−1

3
0

⎤
⎦ ,

⎡
⎣0

1
1

⎤
⎦

⎫⎬
⎭ = {g1, g2, g3}

Solution Even though we are working with a linear transformation from a vector space
to itself, and the same basis is being used for both the domain and codomain, we still
follow the same procedure as we used in Section 9.3. For each gi in G, we need to find
the coordinate vector of T(gi ) with respect to G. Starting with g1, we have

T(g1) = T

⎛
⎝

⎡
⎣ 2

−4
1

⎤
⎦

⎞
⎠ = A

⎡
⎣ 2

−4
1

⎤
⎦ =

⎡
⎣ 3

−8
−1

⎤
⎦

To determine [T(g1)]G , we need to find c1, c2, and c3 such that⎡
⎣ 3

−8
−1

⎤
⎦ = c1

⎡
⎣ 2

−4
1

⎤
⎦ + c2

⎡
⎣−1

3
0

⎤
⎦ + c3

⎡
⎣0

1
1

⎤
⎦ =

⎡
⎣ 2 −1 0

−4 3 1
1 0 1

⎤
⎦

⎡
⎣c1

c2

c3

⎤
⎦

Setting S = [
g1 g2 g3

] =
⎡
⎣ 2 −1 0

−4 3 1
1 0 1

⎤
⎦, we have S−1 =

⎡
⎣ 3 1 −1

5 2 −2
−3 −1 2

⎤
⎦,

so that ⎡
⎣c1

c2

c3

⎤
⎦ = S−1

⎡
⎣ 3

−8
−1

⎤
⎦ =

⎡
⎣ 3 1 −1

5 2 −2
−3 −1 2

⎤
⎦

⎡
⎣ 3

−8
−1

⎤
⎦ =

⎡
⎣ 2

1
−3

⎤
⎦

Therefore [T(g1)]G =
⎡
⎣ 2

1
−3

⎤
⎦
G

. Since we have S−1, computing [T(g2)]G and [T(g3)]G
is easier. They are

T(g2) =
⎡
⎣−1

3
1

⎤
⎦ �⇒ [T(g2)]G = S−1

⎡
⎣−1

3
1

⎤
⎦ =

⎡
⎣−1

−1
2

⎤
⎦
G

T(g3) =
⎡
⎣ 1

−3
0

⎤
⎦ �⇒ [T(g3)]G = S−1

⎡
⎣ 1

−3
0

⎤
⎦ =

⎡
⎣ 0

−1
0

⎤
⎦
G

Thus the matrix B of T with respect to the basis G is

B =
⎡
⎣ 2 −1 0

1 −1 −1
−3 2 0

⎤
⎦

■

Looking back at our work, we see that since T(x) = Ax, computing each col-
umn bi of B amounted to first computing T(gi ) = Agi , and from this computing
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S−1
(

T(gi )
) = S−1 Agi . Thus we have

bi = S−1 Agi for i = 1, 2, 3

But since B = [
b1 b2 b3

]
and S = [

g1 g2 g3

]
, it follows that

B = S−1 AS

This form is reminiscent of the diagonalization of matrices, and it results from an un-
derlying change of basis that is taking place. Specifically, recall from Section 6.3 that S is
the change of basis matrix from G to the standard basis for R3. Thus we can think of the
product S−1 ASvG as doing the following:

(a) Multiplying S by vG converts vG from the coordinate vector with respect to G to the
standard basis.

(b) Multiplying A by SvG performs the linear transformation T .

(c) Multiplying S−1 by ASvG converts from the standard basis back to the coordinate
vector with respect to G.

The same change of basis can be performed between two bases of any finite-
dimensional vector space.

Change of Basis
Suppose that G = {g1, . . . , gm} and H = {h1, . . . , hm} are bases for a vector space V .
Then for each gi , there exists a unique set of scalars s1i , . . . , smi such that

gi = s1i h1 + · · · + smi hm

Now set

S =

⎡
⎢⎢⎢⎣

s11 s12 · · · s1m

s21 s22 · · · s2m

...
...

. . .
...

sm1 sm2 · · · smm

⎤
⎥⎥⎥⎦ (1)

Then for v = a1g1 + · · · + amgm, we have⎡
⎢⎣

a1

...

am

⎤
⎥⎦
G

= a1g1 + · · · + amgm

= a1(s11h1 + · · · + sm1hm) + · · · + am(s1mh1 + · · · + smmhm)

= (a1s11 + · · · + ams1m)h1 + · · · + (a1sm1 + · · · + amsmm)hm

=

⎡
⎢⎣S

⎡
⎢⎣

a1

...

am

⎤
⎥⎦

⎤
⎥⎦
H

Therefore

v =

⎡
⎢⎣

a1

...

am

⎤
⎥⎦
G

=

⎡
⎢⎣S

⎡
⎢⎣

a1

...

am

⎤
⎥⎦

⎤
⎥⎦
H

Thus multiplication by the matrix S changes the coordinate vector with respect to G into
the coordinate vector with respect to H.
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D E F I N I T I O N 9.17 The matrix S in 1 is called the change of basis matrix from G to H.

Definition Change of Basis
Matrix Note that the change can be reversed with the inverse matrix: S−1 converts a coordinate

vector with respect to H into the equivalent coordinate vector with respect to G.

E X A M P L E 2 Find the change of basis matrix S from basisG to basisH of P1, where

G = {2x + 5, x + 3}, H = {2x − 1, x − 1}

Then use S to find vH for v =
[−1

3

]
G

, and find the change of basis matrix from H to G.

Solution Starting with the first vector in G, we have

2x + 5 = s11(2x − 1) + s21(x − 1)

Regrouping and comparing coefficients yields the linear system

2s11 + s21 = 2
−s11 − s21 = 5

which has the unique solution s11 = 7, s21 = −12. The second vector x + 3 gives rise
to the equation

x + 3 = s12(2x − 1) + s22(x − 1)

Solving the equivalent linear system yields the unique solution s12 = 4, s22 = −7.
Therefore

S =
[

7 4
−12 −7

]

and so

vH = SvG =
[

7 4
−12 −7

] [−1
3

]
G

=
[

5
−9

]
H

Thus we can conclude that

−(2x + 5) + 3(x + 3) = 5(2x − 1) − 9(x − 1)

(Both are equal to x + 4.) The change of basis matrix from H to G is given by

S−1 =
[

7 4
−12 −7

]

Note that S−1 = S, so the change of basis matrix is the same from H to G as it is from
G to H. This is not typical, but it is possible. ■

Transformation Matrices Revisited
Now that we know how change of basis matrices are defined for a general vector space V ,
we can combine this with what we learned in Section 9.3 about transformation matrices.

T H E O R E M 9.18 Let T : V → V be a linear transformation. Suppose that A and B are the matrices
of T with respect to the bases G and H, respectively, and let S be the change of basis
matrix from G to H. Then A = S−1 B S.
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Proof For a typical vector v in V , the product AvG produces [T(v)]G , the coordinate
vector of T(v) with respect to the basis G. On the other hand,

(a) SvG converts vG to vH, the coordinate vector with respect to H.

(b) B
(

SvG
)

yields [T(v)]H, the coordinate vector of T(v) with respect to the basis H.

(c) S−1
(

B SvG
)

converts [T(v)]H back to [T(v)]G .

Therefore AvG and S−1 B SvG are the same for all v, and hence A = S−1 B S. ■

Two matrices A and B related as in Theorem 9.18 go by a special name.

Definition Similar Matrices,
Similarity Transformation

D E F I N I T I O N 9.19 A square matrix A is similar to matrix B if there exists an invertible matrix S such
that A = S−1 B S. The change from B to A is called a similarity transformation.

Note that if A = S−1 B S, then B = S AS−1. Hence setting R = S−1 gives

R−1 AR = (
S−1

)−1
AS−1 = S AS−1 = B

so that B is also similar to A. Thus it makes sense to simply say that A and B are similar
matrices.

E X A M P L E 3 Let matrices

A =
⎡
⎣4 1 −3

0 2 5
1 −1 3

⎤
⎦ , B =

⎡
⎣ 4 3 −8

−109 −16 151
−16 −1 21

⎤
⎦ , S =

⎡
⎣1 3 −2

2 7 2
1 3 −1

⎤
⎦

Show that A and B are similar matrices with similarity transformation matrix S.

Solution First, we note that det(S) = 1, so that S is an invertible matrix. To show
that A and B are similar, we shall show that S A = B S, which saves us the trouble of
computing S−1. We have

S A =
⎡
⎣1 3 −2

2 7 2
1 3 −1

⎤
⎦

⎡
⎣4 1 −3

0 2 5
1 −1 3

⎤
⎦ =

⎡
⎣ 2 9 6

10 14 35
3 8 9

⎤
⎦

and

B S =
⎡
⎣ 4 3 −8

−109 −16 151
−16 −1 21

⎤
⎦

⎡
⎣1 3 −2

2 7 2
1 3 −1

⎤
⎦ =

⎡
⎣ 2 9 6

10 14 35
3 8 9

⎤
⎦

Since S A = B S and S is invertible, then A = S−1 B S and hence A and B are similar
matrices. ■

T H E O R E M 9.20 Two matrices A and B are similar if and only if A and B are the transformation
matrices of linear transformation T : V → V with respect to different bases of V .

Proof Combining Theorem 9.18 and Definition 9.19, we have that if A and B are
transformation matrices for the same linear transformation T but with respect to different
bases, then A and B are similar.

Now suppose that A and B are similar matrices with A = S−1 B S and S =[
s1 · · · sm

]
. Then G = {s1, . . . , sm} is a basis for Rm because S is invertible.
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Let T : Rm → Rm be given by T(v) = Bv. Then B is the transformation matrix
with respect to the standard basis, and as S is the change of basis matrix from G to the
standard basis, it follows that A is the transformation matrix of T with respect to G.
Hence A and B are both transformation matrices for T . ■

Note that given two matrices A and B , generally there is no simple way to determine
if they are similar. One approach that is sure to work is illustrated in the next example.

E X A M P L E 4 Determine if the given matrices A and B are similar.

A =
[−2 −9

2 7

]
, B =

[
3 −1

−2 2

]

Solution A and B are similar if there exists an invertible matrix S such that A =
S−1 B S, or equivalently, S A = B S. Letting S =

[
s11 s12

s21 s22

]
and multiplying out S A

and B S, we have[−2s11 + 2s12 −9s11 + 7s12

−2s21 + 2s22 −9s21 + 7s22

]
=

[
3s11 − s21 3s12 − s22

−2s11 + 2s21 −2s12 + 2s22

]

Setting the components equal to one another yields the homogeneous linear system

5s11 − 2s12 − s21 = 0
9s11 − 4s12 − s22 = 0
2s11 − 4s21 + 2s22 = 0

2s12 − 9s21 + 5s22 = 0

The system has the trivial solution, but since we require S to be invertible, we are not
interested in that solution. However, there are also nontrivial solutions—for instance,
s11 = 1, s12 = 2, s21 = 1, and s22 = 1. These give us

S =
[

1 2
1 1

]

As det(S) = −1 �= 0, it follows that S is invertible. We can check that A = S−1 B S by
computing

S A =
[

1 2
1 1

] [−2 −9
2 7

]
=

[
2 5
0 −2

]

and

B S =
[

3 −1
−2 2

] [
1 2
1 1

]
=

[
2 5
0 −2

]

Hence S A = B S, so that A and B are similar. ■

Note that in Example 4, any nonzero scalar multiple of S would also serve as a solution
to S A = B S, showing us that such matrices S are not unique.

Two matrices that are similar have several interesting properties in common.

T H E O R E M 9.21 If A and B are similar matrices, then they have the same characteristic polynomial
and the same eigenvalues (including multiplicities), and det(A) = det(B).
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Proof If A and B are similar matrices, then there exists an invertible matrix S such that
A = S−1 B S. Hence

det(A − λI ) = det(S−1 B S − λI )

= det(S−1 B S − S−1(λI )S)

= det(S−1(B − λI )S)

= det(S−1)det(B − λI )det(S)

= det(B − λI )

Thus the characteristic polynomials of A and B are the same, and therefore the eigenvalues
(including multiplicities) are also the same. Setting λ = 0 above shows that det(A) =
det(B), completing the proof. ■

Here we use the fact that
det(C D) = det(C ) det(D) for
n × n matrices C and D, and if
C is invertible then det(C−1) =(

det(C )
)−1

.

The last part of Theorem 9.21 tells us that if det(A) �= det(B), then A and B are not
similar. However, note that if det(A) = det(B), then we cannot draw any conclusion.

E X A M P L E 5 Use determinants to try to determine if the pairs of matrices A and
B are similar.

(a) A =
[

3 2
4 5

]
, B =

[
5 1
2 1

]

(b) A =
⎡
⎣1 0 3

2 1 3
0 2 2

⎤
⎦ , B =

⎡
⎣2 3 0

4 1 2
3 0 1

⎤
⎦

Solution For the matrices in (a), we have det(A) = 7 and det(B) = 4. Since the
determinants differ, the two matrices cannot be similar.

For (b), both det(A) = 8 and det(B) = 8. Thus determinants tell us nothing about
whether or not the two matrices are similar. ■

Although determinants are not helpful for part (b), we can apply another part of
Theorem 9.21. If A and B are similar, then they have the same eigenvalues. For the
matrices in part (b), it can be shown that they have different eigenvalues and so cannot
be similar matrices.

Computational Comments
There are a number of algorithms for estimating eigenvalues that exploit the fact that
similar matrices have the same eigenvalues. The popular QR algorithm produces a se-
quence of similar matrices that become successively closer to upper triangular. It starts by
producing the QR factorization (see Section 8.4) A = Q1 R1, where Q is an orthogonal
matrix and R is upper triangular. Next, we let A1 = R1 Q1, so that

A1 = R1 Q1 = Q−1
1 Q1 R1 Q1 = Q−1

1 AQ1 (2)

Thus A and A1 are similar matrices and hence by Theorem 9.21 have the same eigenvalues.
For i > 1, we let Ai = Qi+1 Ri+1 be the QR factorization for Ai and then define
Ai+1 = Ri+1 Qi+1. By the same reasoning as in 2, Ai and Ai+1 are similar matrices.
Therefore the sequence A, A1, A2, . . . of matrices all have the same eigenvalues. Under
certain conditions, the sequence of matrices converges to a triangular matrix that has
eigenvalues along the diagonal.
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Another (older) algorithm called Jacobi’s Method is applicable to symmetric matri-
ces A. This method resembles matrix diagonalization, starting with A1 = A and setting

Ai+1 = P −1
i Ai Pi for i = 1, 2, . . .

Note that Pi is not the same as the orthogonal matrix found when diagonalizing a
symmetric matrix, and Ai is not diagonal. (How Pi and Ai are defined is beyond the
scope of this discussion.) However, the sequence of matrices A1, A2, . . . are all similar,
and they converge to a diagonal matrix with the eigenvalues of A on the diagonal.

E X E R C I S E S
For Exercises 1–8, find the change of basis matrix from G to H.

1. G = {2x − 1, 5x + 4}, H = {x , 1}
2. G = {x2 − 7x + 5, 3x2 + 1, 7x − 3}, H = {x2, x , 1}

3. G =
{[

3 2
1 0

]
,

[
4 0
0 2

]
,

[
1 7
5 1

]
,

[
0 6
2 3

]}
,

H =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
4. G = {x + 3, 4x + 1}, H = {1, x}
5. G = {x − 2, x2 + 9x , x2 − x − 1}, H = {x , 1, x2}

6. G =
{[

6 1
0 0

]
,

[
5 2
3 8

]
,

[
2 5
9 7

]
,

[
1 3
2 0

]}

H =
{[

0 1
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
1 1

]}
7. G = {7x + 4, 3x + 2}, H = {2x + 1, 5x + 3}
8. G = {x2 + 2x + 1, x2 + 1, x2 − x + 2}
H = {x2 + x + 1, x + 1, 1}
For Exercises 9–12, B is the matrix of T : V → V with respect to
a basis H, and S is the change of basis matrix from a basis G to H.
Find the matrix A of T with respect to G.

9. B =
[

2 3
−4 1

]
, S =

[
1 3
2 7

]

10. B =
[

5 0
1 7

]
, S =

[
4 3
3 2

]

11. B =
[

1 0 2
0 1 1
1 2 −1

]
, S =

[
1 0 0
2 1 0
1 3 1

]

12. B =
[

3 1 1
1 4 1
4 2 3

]
, S =

[
0 1 0
1 0 1
1 0 0

]

For Exercises 13–16, B is the matrix of T : V → V with respect
to the basis H. Find the matrix A of T with respect to G.

13. B =
[

1 2
1 1

]
, H = {x , 1}, G = {3x + 1, 2x + 1}

14. B =
[

1 2 1
0 1 1
1 0 2

]
, H = {x2, x , 1},

G = {x2 + x + 1, x + 1, 1}

15. B =
[

2 2
4 1

]
, H = {x + 3, 2x + 5},

G = {2x − 1, −3x + 2}

16. B =
[

3 −1 0
2 −1 1
1 1 4

]
, H = {1, x2 + 1, x − 1},

G = {x − 3, x2 − 2x + 4, 1}
For Exercises 17–20, determine if A and B are similar matrices.

17. A =
[

1 3
2 5

]
, B =

[
2 1
3 2

]

18. A =
[

2 1
−1 0

]
, B =

[
1 0
1 1

]

19. A =
[

1 −1 3
1 −3 −3
0 1 2

]
, B =

[
1 1 2
1 0 1
0 1 −1

]

20. A =
[

1 2 1
3 1 −1
0 1 −2

]
, B =

[
1 1 −1

−2 3 1
1 0 −2

]

FIND AN EXAMPLE For Exercises 21–24, find an example that
meets the given specifications. Prove your claim.

21. A vector space V with bases G and H related by the matrix S
in (1) for

S =
[

3 4
2 3

]

22. A vector space V with bases G and H related by the matrix S
in (1) for

S =
[

1 3 −2
1 4 4
2 6 −3

]

23. Two similar matrices A and B that are related by

S =
[

5 2
8 3

]

24. Two similar matrices A and B that are related by

S =
[

3 4 −2
2 3 −4
3 4 6

]



Holt-4100161 la September 26, 2012 10:30 378

378 CHAPTER 9 Linear Transformations

TRUE OR FALSE For Exercises 25–34, determine if the statement
is true or false, and justify your answer.

25. If A = S−1 B S, then A and B are similar.

26. The matrix of a linear transformation T : V → V is unique
for a fixed basis G of V .

27. If A and B have the same rank, then they are similar.

28. Two similar matrices have the same eigenvectors.

29. If A and B are not similar and B and C are not similar, then
A and C are not similar.

30. If A, B , and C are similar, then AB and BC are similar.

31. If there exists a matrix S such that S A = B S, then A and B
are similar matrices.

32. For every A there exists a distinct B such that A and B are
similar matrices.

33. If A and B are similar matrices, then null(A) = null(B).

34. If A and B are similar matrices, then AB and B A are similar
matrices.

35. Suppose that A and B are similar matrices, related by A =
S−1

1 B S1, and that B and C are also similar matrices, related
by B = S−1

2 C S2. Find the matrix D that relates A and C by
A = D−1C D.

36. Prove that similarity of matrices is transitive: if A is similar to
B and B is similar to C , then A is similar to C .

37. Suppose that A and B are both diagonalizable matrices that
have the same eigenvalues, including multiplicities. Prove that A
and B are similar matrices.

38. Prove that if A and B are similar matrices, then so are Ak

and Bk .

39. Prove that if A and B are similar matrices, then so are AT

and B T .

40. Suppose that A and B are similar matrices and that A is
invertible. Prove that B is also invertible and that A−1 and B−1

are also similar.

C For Exercises 41–44, determine if the given matrices are similar.

41. A =
[

1 −2 4
5 1 2
0 1 −3

]
, B =

[
1 −1 1
5 0 0
0 1 2

]

42. A =
[

3 2 −2
1 4 0

−2 1 −1

]
, B =

[
1 3 −1
3 3 1

−2 1 2

]

43. A =

⎡
⎢⎣

1 0 1 3
−1 2 4 1

2 3 −1 0
0 2 −2 −2

⎤
⎥⎦ , B =

⎡
⎢⎣

1 2 1 1
−3 −3 4 −1

2 5 2 −1
0 2 0 0

⎤
⎥⎦

44. A =

⎡
⎢⎣

2 1 −1 2
3 0 1 0

−1 2 4 1
0 0 3 −1

⎤
⎥⎦ , B =

⎡
⎢⎣

4 0 1 −3
2 3 4 −4
1 0 0 2

−2 −1 0 2

⎤
⎥⎦
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The cable-stayed Penobscot

Narrows Bridge spans the

Penobscot River, connecting

Verona Island and Prospect,

Maine. It was planned, designed,

and constructed in just

42 months as a replacement for

the deteriorating

Waldo-Hancock Bridge (slated

for deconstruction in 2012--13).

The bridge is notable for its

engineering innovations, such as

the use of carbon composite

cables and a cradle system to

house the cables, making it easier

to replace cables individually as

necessary. In addition, the bridge

supports the Penobscot

Narrows Observatory, the first

bridge observation tower in the

U.S., atop its northern tower.

Inner Product Spaces

In Chapter 8 we introduced dot products, which provided an algebraic way to deter-
mine when vectors in Euclidean space Rn are orthogonal. There we also developed
applications of the dot product, including projections of vectors, the Gram–Schmidt

process, and orthonormal bases.Bridge suggested by Lawrence

Thomas, University of Virginia

(Randy Duchaine/Alamy)
In this chapter we introduce inner products, which extend the dot product from

Euclidean space to vector spaces. In Section 10.1 we define the inner product, provide a
number of examples of inner products, and give some results that are generalizations of
those in Chapter 8. In Section 10.2 we develop the Gram–Schmidt process in the context
of an inner product space. Section 10.3 is devoted to a few applications of inner products.

In previous chapters, topics involving calculus were separated from other material.
Since some of the most important examples of inner products involve calculus, examples
from calculus are more fully integrated into this chapter.

10.1 Inner Products
Since the dot product proved so useful in Euclidean space Rn, we would like to extend
the dot product to a similar product in other vector spaces. The four properties of dot
products given in Theorem 8.2 of Section 8.1 are really what make the dot product
useful. For instance, much of the development of the Gram–Schmidt process relies on
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these properties. Hence it makes sense that a generalized product on a vector space should
have these same properties. In fact, it makes so much sense that we adapt the properties
in Theorem 8.2 as a definition.

Definition Inner Product, Inner
Product Space

D E F I N I T I O N 10.1 Let u, v, and w be elements of a vector space V , and let c be a scalar. An inner product
on V is a function that takes two vectors in V as input and produces a scalar as
output. An inner product function is denoted by 〈u, v〉 and must satisfy the following
conditions:

(a) 〈u, v〉 = 〈v, u〉
(b) 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
(c) 〈cu, v〉 = 〈u, cv〉 = c〈u, v〉
(d) 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 only when u = 0

A vector space V with an inner product defined on it is called an inner product
space.

Since this definition is guided by properties of the dot product, it follows that the
dot product is an inner product on Rn. But this is only one of many inner products on
vector spaces. In fact, we can modify the usual dot product to produce a “weighted dot
product” on Rn.

Here u =

⎡
⎢⎣

u1
...

un

⎤
⎥⎦ , v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦

E X A M P L E 1 Let t1, . . . , tn be positive scalars, which are the “weights.” Show that

〈u, v〉 = t1u1v1 + t2u2v2 + · · · + tnunvn (1)

is an inner product on Rn.

Solution A function taking two vectors as input and producing a scalar as output is
an inner product if it satisfies conditions (a)–(d) in Definition 10.1. We verify (a) and
(d) here, leaving (b) and (c) as an exercise.

To show that condition (a) is met, note that

〈u, v〉 = t1u1v1 + t2u2v2 + · · · + tnunvn

= t1v1u1 + t2v2u2 + · · · + tnvnun = 〈v, u〉
To verify (d), we start by computing

〈u, u〉 = t1u2
1 + t2u2

2 + · · · + tnu2
n

Since u2
i ≥ 0 for i = 1, . . . , n and the weights t1, . . . , tn are all positive, we have

〈u, u〉 ≥ 0. Furthermore, because the weights are positive, the only way that 〈u, u〉 = 0
is if u1 = · · · = un = 0, which implies u = 0. Hence condition (d) holds and the
weighted dot product is an inner product. ■

E X A M P L E 2 Let u =
⎡
⎣ 1

3
−2

⎤
⎦ and v =

⎡
⎣ 4

−1
1

⎤
⎦ be in R3. Compute 〈u, v〉 using the

weighted dot product defined in Example 1 with weights t1 = 2, t2 = 3, and t3 = 1.

Solution We have

〈u, v〉 = t1u1v1 + t2u2v2 + t3u3v3

= (2)(1)(4) + (3)(3)(−1) + (1)(−2)(1) = −3 ■
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E X A M P L E 3 Let p(x) and q(x) be polynomials in Pn, and suppose x0, x1, . . . , xn

are n + 1 distinct real numbers. Prove that

〈p, q〉 = p(x0)q(x0) + p(x1)q(x1) + · · · + p(xn)q(xn) (2)

is an inner product on Pn.

Solution Properties (a)–(c) of Definition 10.1 follow readily from the properties of
real numbers and are left as an exercise. For (d) we have

〈p, p〉 = (
p(x0)

)2 + (
p(x1)

)2 + · · · + (
p(xn)

)2

Since each term on the right must be nonnegative, it follows that 〈p, p〉 ≥ 0 for any
polynomial p in Pn. Moreover, 〈p, p〉 = 0 exactly when p(x0) = p(x1) = · · · =
p(xn) = 0. But the only way a polynomial of degree n or less can have n + 1 distinct
roots is if it is the zero polynomial. Thus property (d) is also satisfied, so that (2) defines
an inner product. ■

E X A M P L E 4 Suppose that p(x) = x2 − 3x + 2 and q(x) = 2x2 + 4x − 1 are in
P2, and that x0 = −1, x1 = 1, and x2 = 4. Compute 〈p, q〉 using the inner product
defined in Example 3.

Solution We have

〈p, q〉 = p(−1)q(−1) + p(1)q(1) + p(4)q(4) = (6)(−3) + (0)(5) + (6)(47) = 264

■

Note that a weighted version of this inner product (2) can also be defined (see
Exercise 53).

z(x) = 0 for all x in [−1, 1].

E X A M P L E 5 Let f and g be two continuous functions in C [−1, 1]. Show that

〈 f, g 〉 =
∫ 1

−1

f (x)g (x) dx (3)

defines an inner product on C [−1, 1].

Solution Properties (a)–(c) of Definition 10.1 follow readily from basic properties of

the definite integral. If f is in C [−1, 1], then
(

f (x)
)2 ≥ 0 for all x in [−1, 1], so that

〈 f, f 〉 =
∫ 1

−1

(
f (x)

)2
dx ≥ 0

The second part of property (d) follows from the more subtle but plausible fact from
real analysis that for a continuous function f (x),∫ 1

−1

(
f (x)

)2
dx > 0

except when f (x) = z(x), the identically zero function. Therefore this is the only
function for which 〈 f, f 〉 = 0, and hence (3) gives an inner product. ■

E X A M P L E 6 Let f (x) = x2 + 4x and g (x) = 5x2 − 3. Evaluate 〈 f, g 〉 using the
inner product defined in Example 5.
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Solution The inner product of f (x) and g (x) is

〈 f, g 〉 =
∫ 1

−1

(x2 + 4x)(5x2 − 3) dx =
∫ 1

−1

(
5x4 + 20x3 − 3x2 − 12x

)
dx = 0 ■

Orthogonality and Norms
In Chapter 8 two vectors u and v in Rn were defined to be orthogonal if u · v = 0. We
extend this to inner products in a natural way.

Definition Orthogonal Vectors

D E F I N I T I O N 10.2 Two vectors u and v in an inner product space V are orthogonal if and only if
〈u, v〉 = 0.

For instance, in Example 6 we showed that the vectors f (x) = x2 + 4x and g (x) =
5x2 − 3 are orthogonal with respect to the inner product given in Example 5.

E X A M P L E 7 Which pairs among p1(x) = x2 − 5x + 4, p2(x) = x2 − x − 2,
and p3(x) = 3x2 − x − 4 are orthogonal with respect to the inner product on P2 in
Example 4?

Solution We have

〈p1, p2〉 = p1(−1) p2(−1) + p1(1) p2(1) + p1(4) p2(4) = 0
〈p1, p3〉 = p1(−1) p3(−1) + p1(1) p3(1) + p1(4) p3(4) = 0
〈p2, p3〉 = p2(−1) p3(−1) + p2(1) p3(1) + p2(4) p3(4) = 404

Hence p1(x) and p2(x) are orthogonal, p1(x) and p3(x) are orthogonal, but p2(x) and
p3(x) are not. ■

E X A M P L E 8 If V = C [−1, 1], then we can show that

〈 f, g 〉 =
∫ 1

−1

(x2 + 1) f (x)g (x) dx

is an inner product on V , a weighted version of the inner product in Example 5 (see
Exercise 54). Compute 〈 f, g 〉 for f (x) and g (x) in Example 6.

Solution Here we have

〈 f, g 〉 =
∫ 1

−1

(x2 + 1)(x2 + 4x)(5x2 − 3) dx = 8

35

so that f (x) and g (x) are not orthogonal with respect to this inner product. ■

In Section 10.1 we defined the norm (length) of a vector in Rn in terms of the dot
product. Here we define the norm in terms of an inner product. Just as in Euclidean
space, the norm on a vector space gives us a way to define the length of each vector in the
space (the norm of the vector) and to measure the distance between vectors (the norm
of the difference).

Definition Norm

D E F I N I T I O N 10.3 Let v be a vector in an inner product space V . Then the norm of v is given by

‖v‖ =
√

〈v, v〉
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E X A M P L E 9 If A and B are matrices in R3×3, then it can be shown that (see
Exercise 57)

〈A, B〉 = tr(AT B)

is an inner product. Compute ‖A‖ for A =
⎡
⎣ 1 −2 −1

3 2 0
−1 1 1

⎤
⎦.

Solution We have

‖A‖2 = 〈A, A〉 = tr(AT A) = tr

⎛
⎝

⎡
⎣ 11 3 −2

3 9 3
−2 3 2

⎤
⎦

⎞
⎠ = 22

Hence ‖A‖ = √
22 ≈ 4.69. ■

Recall that tr(C) denotes the
trace of C , the sum of the diago-
nal entries of C .

E X A M P L E 10 Suppose that the vector space P1 has inner product

〈p, q〉 = p(0)q(0) + 3p(1)q(1) + 2p(3)q(3)

Determine which of p(x) = 3x −2 and q(x) = −2x +4 is longer, and find the distance
between the two vectors.

Solution The length of each vector is given by the norm, so that

‖p‖ =
√

〈p, p〉 =
√

(−2)2 + 3(1)2 + 2(7)2 = √
105 ≈ 10.247

‖q‖ =
√

〈q , q〉 =
√

(4)2 + 3(2)2 + 2(−2)2 = √
36 = 6

Since ‖p‖ > ‖q‖, p is longer than q . (Remember that the results might be different
with another inner product.) The distance between our vectors is given by ‖p − q‖.
Since p(x) − q(x) = 5x − 6, we have

‖p − q‖ =
√

〈p − q , p − q〉 =
√

(−6)2 + 3(−1)2 + 2(9)2 = √
201 ≈ 14.177 ■

In Euclidean space we formulated the Pythagorean Theorem in terms of norms. We
can do the same with inner product spaces.

T H E O R E M 10.4 ( P Y T H A G O R E A N T H E O R E M ) Let u and v be vectors in an inner
product space V . Then u and v are orthogonal if and only if

‖u‖2 + ‖v‖2 = ‖u + v‖2 (4)

Theorem 10.4 generalizes
Theorem 8.6 in Section 8.1.

Proof The proof only uses properties from the definition of an inner product, without
any reference to a specific inner product. We have

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 〈u, v〉 + 〈v, u〉 + 〈v, v〉
= ‖u‖2 + ‖v‖2 + 2〈u, v〉

Since u and v are orthogonal if and only if 〈u, v〉 = 0, then u and v are orthogonal if and
only if (4) is true. ■
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E X A M P L E 11 Verify the Pythagorean Theorem for the vectors p1(x) = x2 −5x +4
and p2(x) = x2 − x − 2 in the inner product space given in Example 4.

Solution We saw in Example 7 that 〈p1, p2〉 = 0, so by the Pythagorean Theorem we
expect that ‖p1‖2 + ‖p2‖2 = ‖p1 + p2‖2. To verify this, we compute

‖p1‖2 = 〈p1, p1〉 = (
p1(−1)

)2 + (
p1(1)

)2 + (
p1(4)

)2 = 100

‖p2‖2 = 〈p2, p2〉 = (
p2(−1)

)2 + (
p2(1)

)2 + (
p2(4)

)2 = 104
‖p1 + p2‖2 = 〈p1 + p2, p1 + p2〉

= (
p1(−1) + p2(−1)

)2 + (
p1(1) + p2(1)

)2 + (
p1(4) + p2(4)

)2 = 204

Therefore ‖p1‖2 + ‖p2‖2 = ‖p1 + p2‖2. ■

Projection and Inequalities
When studying dot products in Euclidean space, we developed the projection of one
vector onto another and extended this to the projection of a vector onto a subspace. Here
we shall generalize projections onto a vector in a vector space. We treat projections onto
subspaces in the next section.

In Section 8.2, the formula for the projection of one vector onto another was defined
in terms of dot products. Hence it is reasonable to generalize projections to inner product
spaces by changing the dot products into inner products.

Definition Projection onto a
Vector

D E F I N I T I O N 10.5 Let u and v be vectors in an inner product space V , with v nonzero. Then the projection
of u onto v is given by

projvu = 〈v, u〉
〈v, v〉 v = 〈v, u〉

‖v‖2
v (5)

E X A M P L E 12 Determine projvu for the vectors u, v, and the inner product space
given in Example 2.

Solution In Example 2 we showed that 〈v, u〉 = −3. The inner product of v with
itself is

〈v, v〉 = v2
1 t1 + v2

2 t2 + v2
3 t3 = (4)2(2) + (−1)2(3) + (1)2(1) = 36

Therefore

projvu = 〈v, u〉
〈v, v〉 v = −3

36

⎡
⎣ 4

−1
1

⎤
⎦ = − 1

12

⎡
⎣ 4

−1
1

⎤
⎦ =

⎡
⎢⎢⎣

− 1
3
1

12

− 1
12

⎤
⎥⎥⎦

■

Our new definition for projection will be a disappointment if it does not have prop-
erties similar to those of the Euclidean space version of projection. Happily, everything
carries over to inner product spaces with no significant changes.

Theorem 10.6 generalizes
Theorem 8.14 in Section 8.2.

T H E O R E M 10.6 Let u and v be vectors in an inner product space V , with v nonzero, and let c be a
nonzero scalar. Then

(a) projvu is in span{v}.
(b) u − projvu is orthogonal to v.

(c) If u is in span{v}, then u = projvu.

(d) projvu = projcvu.
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Proof We give the proofs of parts (a) and (b) here and leave the proofs of parts (c) and
(d) as an exercise. To prove (a), we note that since

projvu = 〈v, u〉
〈v, v〉 v

then projvu is a scalar multiple of v and so is in span{v}.
For part (b), we have

〈u − projvu, v〉 = 〈u, v〉 − 〈projvu, v〉

= 〈u, v〉 −
〈 〈v, u〉

〈v, v〉 v, v

〉

= 〈u, v〉 − 〈v, u〉
〈v, v〉 〈v, v〉 = 〈u, v〉 − 〈v, u〉 = 0

because 〈u, v〉 = 〈v, u〉. Therefore u − projvu is orthogonal to v. ■

Combining (a) and (b) of Theorem 10.6 tells us that projvu and u − projvu are
orthogonal (see Exercise 64), so that by the Pythagorean Theorem,

‖u‖2 = ‖projvu‖2 + ‖u − projvu‖2

Since ‖u − projvu‖2 ≥ 0, it follows that

‖projvu‖ ≤ ‖u‖ (6)

This inequality is useful for proving the next theorem.

T H E O R E M 10.7 ( T H E C A U C H Y – S C H W A R Z I N E Q U A L I T Y ) For all u and v in
an inner product space V ,

|〈u, v〉| ≤ ‖u‖‖v‖ (7)

Theorem 10.7 generalizes
Exercise 57 in Section 8.2.

Proof First, if either u = 0 or v = 0, then both sides of (7) are equal to 0 and we are
done. So let’s assume that both u and v are nonzero vectors. Then

‖projvu‖ =
∥∥∥∥ 〈v, u〉

‖v‖2
v

∥∥∥∥ = |〈v, u〉|
‖v‖2

‖v‖ = |〈v, u〉|
‖v‖

Combining this with (6) yields the inequality

|〈v, u〉|
‖v‖ ≤ ‖u‖

Hence (7) holds, completing the proof. ■

E X A M P L E 13 Verify that the Cauchy–Schwarz inequality holds for the inner prod-
uct given in Example 9 when applied to the matrices

A =
⎡
⎣ 2 0 −1

1 1 2
−2 −1 0

⎤
⎦ and B =

⎡
⎣ 1 0 1

−2 1 2
0 1 1

⎤
⎦
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Solution We have

〈A, B〉 = tr(AT B) = tr

⎛
⎝

⎡
⎣ 0 −1 2

−2 0 1
−5 2 3

⎤
⎦

⎞
⎠ = 3

‖A‖ =
√

〈A, A〉 =
√

tr(AT A) =

√√√√√tr

⎛
⎝

⎡
⎣9 3 0

3 2 2
0 2 5

⎤
⎦

⎞
⎠ = √

16

‖B‖ =
√

〈B , B〉 =
√

tr(B T B) =

√√√√√tr

⎛
⎝

⎡
⎣ 5 −2 −3

−2 2 3
−3 3 6

⎤
⎦

⎞
⎠ = √

13

Since 3 <
√

16
√

13 ≈ 14.422, the Cauchy–Schwarz inequality is verified for this pair
of matrices. ■

The Cauchy–Schwarz inequality makes it easy to prove a second important inequality.

T H E O R E M 10.8 ( T H E T R I A N G L E I N E Q U A L I T Y ) For all u and v in an inner prod-
uct space V ,

‖u + v‖ ≤ ‖u‖ + ‖v‖ (8)

Proof We have

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 〈u, v〉 + 〈v, u〉 + 〈v, v〉
= ‖u‖2 + ‖v‖2 + 2〈u, v〉
≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ (By Cauchy–Schwarz inequality)

= (‖u‖ + ‖v‖)2

Taking square roots on both sides yields (8) and completes the proof. ■

 �u �

 �v �

 �u � v  �

x1

x2

Figure 1 ‖u + v‖ ≤ ‖u‖ + ‖v‖.

If we think of u and v placed tip-to-tail to form two sides of a triangle (see Figure 1),
then u+v gives the third side. It is geometrically evident in R2 that the sum of the lengths
of two sides of a triangle must be at least as great as the length of the third side. The
triangle inequality tells us that the same is true in any inner product space.

E X E R C I S E S
For Exercises 1–8, compute the indicated inner product.

1. 〈u, v〉 for u =
[

1
2
1

]
, v =

[
3
4
2

]
, and the inner product given in

Example 2.

2. 〈u, v〉 for u =
[

2
5
2

]
, v =

[
1
3
0

]
, and the inner product given in

Example 2 with weights t1 = 3, t2 = 1, and t3 = 4.

3. 〈p, q〉 for p(x) = 3x+2, q(x) = −x+1, and the inner product
given in Example 3 with x0 = −1, x1 = 0, and x2 = 2.

4. 〈p, q〉 for p(x) = x2 +1, q(x) = 2x −3, and the inner product
given in Example 3 with x0 = −1, x1 = 1, x2 = 2, and x3 = 5.

5. 〈 f, g 〉 for f (x) = x + 3, g (x) = x2, and the inner product
given in Example 5.

6. 〈 f, g 〉 for f (x) = x , g (x) = ex , and the inner product given
in Example 5.

7. 〈A, B〉 = tr(AT B) for A =
[

2 −1
3 4

]
, B =

[
5 2

−3 −2

]
.

8. 〈A, B〉 = tr(AT B) for A =
[

7 −3
2 6

]
, B =

[
4 2
0 5

]
.
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9. Suppose that u =
[

1
0

−1

]
and v =

[
2
1
2

]
are orthogonal with

respect to the inner product given in Example 2 with weights
t1 = 3, t2 = 1, and t3 = a . What are the possible value(s) of a?

10. Suppose that u =
[

3
2
2

]
and v =

[
5

−1
2

]
are orthogonal with

respect to the inner product given in Example 2 with weights
t1 = 1, t2 = b, and t3 = 2. What are the possible value(s) of b?

11. Suppose that p(x) = x + 2, q(x) = −3x + 1 are orthogonal
with respect to the inner product given in Example 3 with x0 = −1,
x1 = a , and x2 = 2. What are the possible value(s) of a?

12. Suppose that p(x) = x2−3x−1, q(x) = x+2 are orthogonal
with respect to the inner product given in Example 3 with x0 = −2,
x1 = 0, x2 = 1, and x3 = a . What are the possible value(s) of a?

13. Suppose that f (x) = 2x and g (x) = x + b. For what value(s)
of b are f and g orthogonal with respect to the inner product in
Example 5?

14. Suppose that f (x) = x2 and g (x) = x + b. For what value(s)
of b are f and g orthogonal with respect to the inner product in
Example 5?

For Exercises 15–22, compute the norm with respect to the indi-
cated inner product.

15.

∥∥∥∥∥
[

1
−3

2

]∥∥∥∥∥ for the inner product given in Example 2.

16.

∥∥∥∥∥
[

2
0

−5

]∥∥∥∥∥ for the inner product given in Example 2 with

weights t1 = 1, t2 = 5, and t3 = 2.

17. ‖3x − 5‖ for the inner product given in Example 3 with
x0 = −2, x1 = 1, and x2 = 4.

18. ‖− x2 + x −4‖ for the inner product given in Example 3 with
x0 = 0, x1 = 3, x2 = 2, and x3 = 6.

19. ‖x3‖ for the inner product given in Example 5.

20. ‖xe−x‖ for the inner product given in Example 5.

21. ‖A‖ for A =
[

3 −1
2 0

]
and 〈A, B〉 = tr(AT B).

22. ‖A‖ for A =
[

2 3 0
1 −3 −1
2 5 2

]
and 〈A, B〉 = tr(AT B).

For Exercises 23–30, compute the indicated projection with respect
to the given inner product.

23. projuv for u =
[

1
2
1

]
, v =

[
3
4
2

]
, and the inner product given in

Example 2.

24. projuv for u =
[

2
5
2

]
, v =

[
1
3
0

]
, and the inner product given in

Example 2 with weights t1 = 3, t2 = 1, and t3 = 4.

25. projpq for p(x) = 3x + 2, q(x) = −x + 1, and the inner
product given in Example 3 with x0 = −1, x1 = 0, and x2 = 2.

26. projpq for p(x) = x2 + 1, q(x) = 2x − 3, and the inner
product given in Example 3 with x0 = −1, x1 = 1, x2 = 2, and
x3 = 5.

27. proj f g for f (x) = x , g (x) = x2, and the inner product given
in Example 5.

28. proj f g for f (x) = sin(x), g (x) = 1 − x2, and the inner
product given in Example 5.

29. projA B for A =
[

2 −1
1 0

]
, B =

[
2 3
0 −2

]
, and 〈A, B〉 =

tr(AT B).

30. projA B for A =
[

3 4
−1 −3

]
, B =

[
1 5

−2 1

]
, and 〈A, B〉 =

tr(AT B).

FIND AN EXAMPLE For Exercises 31–40, find an example that
meets the given specifications.

31. An orthogonal basis for R2 with respect to the inner product
〈u, v〉 = 3u1v1 + 2u2v2.

32. An orthogonal basis for P1 with respect to the inner product
〈p, q〉 = ∫ 1

0 p(x)q(x) dx .

33. A vector u such that ‖u‖ = 2 and u is orthogonal to

[
2
3

]
with respect to a weighted dot product of the form 〈u, v〉 =
t1u1v1 + t2u2v2.

34. An inner product on P2 such that ‖p‖ = 3 for p(x) =
x2 − 4x + 3.

35. A nonidentity matrix A such that 〈u, v〉 = uT Av is an inner
product on R3.

36. A nonidentity matrix A such that 〈u, v〉 = uT Av is not an
inner product on R3.

37. An inner product of your creation on P2.

38. An inner product of your own creation on C [0, 1].

39. A function 〈p, q〉 that is almost an inner product on P2: It
satisfies (a)–(c) of Definition 10.1, but not (d).

40. A function 〈A, B〉 that is a poor attempt at an inner product
on R3×3: It satisfies (a) of Definition 10.1, but not (b)–(d).

TRUE OR FALSE For Exercises 41–50, determine if the statement
is true or false, and justify your answer. Here u and v are vectors
in an inner product space V .

41. If 〈u, v〉 = 3, then 〈2u, −4v〉 = −24.

42. ‖u + v‖2 = ‖u‖2 + ‖v‖2 for all u and v in V .

43. If u and v are orthogonal with ‖u‖ = 3 and ‖v‖ = 4, then
‖u + v‖ = 5.

44. If u = cv 	= 0 for a scalar c , then u = projuv.

45. If {u, v} is an orthogonal set and c1 and c2 are scalars, then
{c1u, c2v} is also an orthogonal set.

46. −‖u‖‖v‖ ≤ 〈u, v〉 for all u and v in V .
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47. ‖u − v‖ ≤ ‖u‖ − ‖v‖ for all u and v in V .

48. 〈 f, g 〉 = ∫ 1
−1 x f (x)g (x) dx is an inner product on C[−1, 1].

49. 〈p, q〉 = p(x0)q(x0) + p(x1)q(x1) is an inner product on P2

when x0 	= x1.

50. If T : V → R is a linear transformation, then 〈u, v〉 =
T(u) · T(v) is an inner product.

51. Complete Example 1. Prove that the weighted dot product on
Rn given by

〈u, v〉 = t1u1v1 + t2u2v2 + · · · + tnunvn

where t1, t2, . . . , tn are all positive, is an inner product

52. Complete Example 3. Show that properties (a)–(c) of Defini-
tion 10.1 are true for the inner product

〈p, q〉 = p(x0)q(x0) + · · · + p(xn)q(xn)

53. A weighted version of the inner product given in Example 3
is defined as follows: For p(x) and q(x) in Pn and distinct real
numbers x0, x1, . . . , xn , let

〈p, q〉 = t(x0) p(x0)q(x0) + · · · + t(xn) p(xn)q(xn)

where t(x) takes positive values on x0, . . . , xn . Show that 〈p, q〉
is an inner product on Pn .

54. Let f and g be continuous functions in C[−1, 1]. Show that
the weighted version of (3) given by

〈 f, g 〉 =
∫ 1

−1
t(x) f (x)g (x) dx

where t(x) > 0 is continuous for all x in [−1, 1], defines an inner
product on C[−1, 1].

55. Let f and g be continuous functions in C[−π, π]. Show that

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

defines an inner product on C[−π, π].

56. Complete the proof of Theorem 10.6, by showing that parts
(c) and (d) are true.

57. Prove that 〈A, B〉 = tr(AT B) is an inner product on R3×3.

58. For nonzero vectors u and v, show that there is equality in the
Cauchy–Schwarz inequality exactly when u = cv for some scalar
c . (HINT: The key lies with the inequality (6).)

For Exercises 59–68, u, v, and w (and their subscripted associates)
are vectors in an inner product space V .

59. Prove that ‖cv‖ = |c |‖v‖ for every v and scalar c .

60. Prove that ‖v‖ ≥ 0 for every v in V , with equality holding
only for v = 0.

61. Prove that

〈c1u1 + · · · + ck uk , w〉 = c1〈u1, w〉 + · · · + ck〈uk , w〉
62. Prove that the zero vector 0 is orthogonal to all vectors in V .

63. Prove that if v 	= 0, then w = 1

‖v‖v satisfies ‖w‖ = 1.

64. Prove that projvu and u − projvu are orthogonal.

65. For a fixed v in V , define Tv : V → R by Tv(u) = 〈u, v〉. Show
that Tv is a linear transformation.

66. For a fixed v in V , define Tv : V → V by
Tv(u) = projvu. Show that Tv is a linear transformation.

67. Prove that if u and v are orthogonal, then the distance between

u and v is
√

‖u‖2 + ‖v‖2.

68. Prove that

‖u + v‖2 + ‖u − v‖2 = 2
(‖u‖2 + ‖v‖2

)
If S is a subspace of a finite-dimensional inner product space V , a
vector v is orthogonal to S if 〈v, s〉 = 0 for every vector s in S. The
set of all such vectors v is called the orthogonal complement of S
and is denoted by S⊥. In Exercises 69–72, prove that the statement
involving S⊥ is true.

69. If S is a subspace, then so is S⊥.

70. If S is a subspace, then
(

S⊥)⊥ = S.

71. If s is in S and s⊥ is in S⊥, then

‖s ± s⊥‖2 = ‖s‖2 + ‖s⊥‖2.

72. If S is a subspace, then S ∩ S⊥ = {0}.

10.2 The Gram–Schmidt Process Revisited
Our main goal for this section is to develop a version of the Gram–Schmidt process for
an inner product space. Before we can do that, we need to carry over some concepts from
Euclidean space, starting with the definition of an orthonormal set.

Recall that the Gram–
Schmidt process allows us to
transform a basis into an or-
thogonal basis. See Section 8.2
for details.

Definition Orthogonal Set
D E F I N I T I O N 10.9 The vectors {v1, . . . , vk} in an inner product space V form an orthogonal set if

〈vi , v j 〉 = 0 for i 	= j .
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E X A M P L E 1 Let V be the inner product space consisting of vectors in R3 and the
weighted dot product 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3. Show that the vectors

v1 =
⎡
⎣4

5
1

⎤
⎦ , v2 =

⎡
⎣−3

2
−6

⎤
⎦ , v3 =

⎡
⎣ 16

−7
−23

⎤
⎦

form an orthogonal set.

Solution The inner products of each pair are

〈v1, v2〉 = (2)(4)(−3) + (3)(5)(2) + (1)(−6) = 0
〈v1, v3〉 = (2)(4)(16) + (3)(5)(−7) + (1)(−23) = 0
〈v2, v3〉 = (2)(−3)(16) + (3)(2)(−7) + (−6)(−23) = 0

and therefore the set {v1, v2, v3} is orthogonal. ■

E X A M P L E 2 Let V = C [−π, π] be the inner product space of continuous func-
tions on [−π, π] with respect to the inner product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

Show that the set {1, cos(x), sin(x)} is orthogonal.

Solution As in Example 1, we need to compute the inner products of the three possible
pairs of vectors:

〈1, cos(x)〉 = 1

π

∫ π

−π

(1)(cos(x)) dx = 1

π

(
sin(π) − sin(−π)

) = 0

〈1, sin(x)〉 = 1

π

∫ π

−π

(1)(sin(x)) dx = − 1

π

(
cos(π) − cos(−π)

) = 0

〈cos(x), sin(x)〉 = 1

π

∫ π

−π

(cos(x))(sin(x)) dx = 1

π

∫ π

−π

1

2
sin(2x) dx

= − 1

4π

(
cos(2π) − cos(−2π)

) = 0

Thus our set of vectors is orthogonal. ■

Recall the identity
2 cos(x) sin(x) = sin(2x).

When studying orthogonality in Euclidean space, we saw that an orthogonal set of
nonzero vectors must be linearly independent. The same is true of such a set in an inner
product space.

T H E O R E M 10.10 Let V = {v1, . . . , vm} be an orthogonal set of nonzero vectors in an inner product
space V . Then V is linearly independent.Theorem 10.10 generalizes

Theorem 8.11 in Section 8.1.

The proof is left as an exercise. An interesting consequence of Theorem 10.10 is that if
a given set of nonzero vectors is orthogonal with respect to just one inner product, then
the set must be linearly independent. We also can flip this around: If the set is linearly
dependent, then it cannot be orthogonal with respect to any inner product, no matter
how cleverly selected.

An orthogonal set of vectors that forms a basis for an inner product space is called
an orthogonal basis.Definition Orthogonal Basis
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E X A M P L E 3 An important class of orthogonal polynomials are the Legendre poly-
nomials. There is an infinite sequence of them—the first four are

p0(x) = 1, p1(x) = x , p2(x) = 1
2 (3x2 − 1), p3(x) = 1

2 (5x3 − 3x)

(See Figure 1.) Show that this set of polynomials is a basis for P3 by showing they are
an orthogonal set with respect to the inner product

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx

Solution The inner products of each pair of polynomials are

〈p0, p1〉 =
∫ 1

−1

x dx = 0 〈p1, p2〉 =
∫ 1

−1

1

2
(3x3 − x) dx = 0

〈p0, p2〉 =
∫ 1

−1

1

2
(3x2 − 1) dx = 0 〈p1, p3〉 =

∫ 1

−1

1

2
(5x4 − 3x2) dx = 0

〈p0, p3〉 =
∫ 1

−1

1

2
(5x3 − 3x) dx = 0 〈p2, p3〉 =

∫ 1

−1

1

4
(15x5 − 14x3 + 3x) dx = 0

Therefore the set {p0(x), p1(x), p2(x), p3(x)} is orthogonal and hence by The-
orem 10.10 is linearly independent. Since dim(P3) = 4, it follows that this set is a basis
for P3. ■

0.5�0.5�1 1

1

�1

�0.5

0.5
p1p2

p3

p0
y

x

Figure 1 Graphs of the first
four Legendre polynomials

An orthogonal basis is handy because the inner product can be used to easily deter-
mine how to express vectors as a linear combination of basis vectors. The next theorem
shows how this is accomplished.

Theorem 10.11 generalizes
Theorem 8.12 in Section 8.1.

T H E O R E M 10.11 Let V = {v1, . . . , vk} be an orthogonal basis for an inner product space V . Then any
vector v in V can be written as

v = s1v1 + · · · + skvk

where si = 〈vi , v〉
〈vi , vi 〉 = 〈vi , v〉

‖vi‖2
for i = 1, . . . , k.

The proof is left as an exercise.

E X A M P L E 4 Use Theorem 10.11 to write p(x) = 10x3 +3x2 −11x +2 as a linear
combination of the Legendre polynomials in Example 3.

Solution We know that {p0(x), p1(x), p2(x), p3(x)} is a basis for P3, so p(x) must
be a linear combination of these vectors. Since the basis is orthogonal, we can apply
Theorem 10.11 to find the scalars. The squares of the norms of p0, p1, p2, and p3 are

〈p0, p0〉 =
∫ 1

−1

(
p0(x)

)2
dx =

∫ 1

−1

(
1
)2

dx = 2

〈p1, p1〉 =
∫ 1

−1

(
p1(x)

)2
dx =

∫ 1

−1

(
x
)2

dx = 2/3

〈p2, p2〉 =
∫ 1

−1

(
p2(x)

)2
dx =

∫ 1

−1

(
1
2 (3x2 − 1)

)2
dx = 2/5

〈p3, p3〉 =
∫ 1

−1

(
p3(x)

)2
dx =

∫ 1

−1

(
1
2 (5x3 − 3x)

)2
dx = 2/7
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It is left to the reader to verify the other required inner products, namely,

〈p0, p〉 = 6, 〈p1, p〉 = −10/3, 〈p2, p〉 = 4/5, 〈p3, p〉 = 8/7

By Theorem 10.11 we have

p(x) = 〈p0, p〉
〈p0, p0〉 p0(x) + 〈p1, p〉

〈p1, p1〉 p1(x) + 〈p2, p〉
〈p2, p2〉 p2(x) + 〈p3, p〉

〈p3, p3〉 p3(x)

= 6

2
p0(x) + −10/3

2/3
p1(x) + 4/5

2/5
p2(x) + 8/7

2/7
p3(x)

= 3p0(x) − 5p1(x) + 2p2(x) + 4p3(x)

We can check our calculations by computing

3p0(x) − 5p1(x) + 2p2(x) + 4p3(x)

= 3(1) − 5(x) + 2
(

1
2 (3x2 − 1)

) + 4
(

1
2 (5x3 − 3x)

)
= 10x3 + 3x2 − 11x + 2 = p(x) ■

Orthonormal Sets
The formula for the scalars si given in Theorem 10.11 is simplified if ‖vi‖ = 1. In this
case, the vectors are said to be normal, and such a set of vectors is called an orthonormalDefinition Normal Vector,

Orthonormal Basis basis. When we have an orthonormal basis, Theorem 10.11 can be simplified to the
following form.

T H E O R E M 10.12 Let V = {v1, . . . , vk} be an orthonormal basis for an inner product space V . Then
any vector v in V can be written as

v = 〈vi , v〉v1 + · · · + 〈vk , v〉vk

The proof of Theorem 10.12 is left as an exercise.

The details of evaluating the
integrals in this example are left
to the reader.

E X A M P L E 5 Let S be the subspace of C [−π, π] with basis {1, cos(x), sin(x)}.
Convert this to an orthonormal basis with respect to the inner product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

Then express f (x) = sin2(x/2) (which is in S) as a linear combination of the orthonor-
mal basis functions.

Solution In Example 2 we showed that the basis functions are orthogonal, so all that
remains is to scale each so that they have norm 1. For any norm, if v 	= 0 and w = 1

‖v‖ v,
then ‖w‖ = 1 (see Exercise 63 in Section 10.1). Hence we can convert an orthogonal
basis to an orthonormal basis by dividing each vector by its norm. For our basis vectors
we have

‖1‖2 = 1

π

∫ π

−π

12 dx = 2 ⇒ g1(x) = 1√
2

1 = 1√
2

‖ cos(x)‖2 = 1

π

∫ π

−π

cos2(x) dx = 1 ⇒ g2(x) = 1√
1

cos(x) = cos(x)

‖ sin(x)‖2 = 1

π

∫ π

−π

sin2(x) dx = 1 ⇒ g3(x) = 1√
1

sin(x) = sin(x)



Holt-4100161 la October 8, 2012 15:37 392

392 CHAPTER 10 Inner Product Spaces

Then {g1(x), g2(x), g3(x)} is an orthonormal basis for S. To express f (x) = sin2(x/2)
as a linear combination of the basis functions, we compute the inner products

〈g1, f 〉 = 1

π

∫ π

−π

1√
2

sin2(x/2) dx = 1√
2

〈g2, f 〉 = 1

π

∫ π

−π

cos(x) sin2(x/2) dx = −1

2

〈g3, f 〉 = 1

π

∫ π

−π

sin(x) sin2(x/2) dx = 0

Therefore, by Theorem 10.12,

sin2(x/2) = 1√
2

g1(x) − 1

2
g2(x) + 0g3(x)

= 1√
2

(
1√
2

)
− 1

2
cos(x) = 1 − cos(x)

2

which agrees with the half-angle formula for sine. ■

Projections Onto Subspaces
Theorem 10.11 provides a formula for expressing a vector v in a vector space V as a
linear combination of orthogonal basis vectors {v1, . . . , vm}. Similar to our approach in
Section 8.2, we use the formula from Theorem 10.11 to serve as a guide for the formula
for projecting a vector onto a subspace.

Definition Projection onto a
Subspace

D E F I N I T I O N 10.13 Let S be a subspace of an inner product space V , and suppose that S has orthogonal
basis {v1, . . . , vk}. Then the projection of v onto S is given by

projS v = 〈v1, v〉
‖v1‖2

v1 + 〈v2, v〉
‖v2‖2

v2 + · · · + 〈vk , v〉
‖vk‖2

vk (1)

As in Euclidean space, the following are true about projections onto inner product
subspaces:

• If S = span{v1} is a one-dimensional subspace, then (1) reduces to the formula for
projv1

v.

• The basis {v1, . . . , vk} for S must be orthogonal in order to apply the formula for
projS v. If the basis is orthonormal, then (1) reduces to

projS v = 〈v1, v〉v1 + 〈v2, v〉v2 + · · · + 〈vk , v〉vk (2)

• The vector projS v does not depend on the choice of orthogonal basis for S.

Theorem 10.14 generalizes
Theorem 8.16 in Section 8.2.

T H E O R E M 10.14 Let S be a nonzero finite-dimensional subspace of an inner product space V , and v a
vector in V . Then

(a) projS v is in S.

(b) v − projS v is orthogonal to S.

(c) If v is in S, then v = projS v.

(d) projS v is independent of the choice of orthogonal basis for S.

The proof of Theorem 10.14 is similar to that of Theorem 8.16 in Section 8.2 and is left
as an exercise.
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E X A M P L E 6 Let S = span{v1, v2}, where

v1 =
⎡
⎣4

5
1

⎤
⎦ , v2 =

⎡
⎣−3

2
−6

⎤
⎦ , v =

⎡
⎣ 3

25
33

⎤
⎦

Find projS v using the inner product 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3 from Example 1.

Solution In Example 1 we showed that v1 and v2 are orthogonal with respect to our
inner product, so all that remains is to apply the formula (1). To do so, we need

〈v1, v〉 = (2)(4)(3) + (3)(5)(25) + (1)(1)(33) = 432
〈v2, v〉 = (2)(−3)(3) + (3)(2)(25) + (1)(−6)(33) = −66
‖v1‖2 = 〈v1, v1〉 = (2)(4)2 + (3)(5)2 + (1)(1)2 = 108
‖v2‖2 = 〈v2, v2〉 = (2)(−3)2 + (3)(2)2 + (1)(−6)2 = 66

Therefore

projS v = 432

108
v1 + −66

66
v2 = 4v1 − v2 = 4

⎡
⎣4

5
1

⎤
⎦ −

⎡
⎣−3

2
−6

⎤
⎦ =

⎡
⎣19

18
10

⎤
⎦

■

E X A M P L E 7 Let S = span{1/
√

2, cos(x), sin(x)} be a subspace of C[−π, π].
Find the projection of h(x) = x2 onto S with respect to the inner product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

Solution In Example 5 we showed the basis of S is orthonormal. Hence we can compute
the projection using the simplified formula (2), which only requires the inner products

〈1/
√

2, h〉 = 1

π

∫ π

−π

1√
2

· x2 dx =
√

2π 2

3

〈cos(x), h〉 = 1

π

∫ π

−π

cos(x) · x2 dx = −4

〈sin(x), h〉 = 1

π

∫ π

−π

sin(x) · x2 dx = 0

Therefore the projection is given by

projS h =
√

2π 2

3

(
1√
2

)
− 4 cos(x) = π 2

3
− 4 cos(x)

A graph of h(x) = x2 together with projS h is given in Figure 2. Note that the two graphs
are fairly close together. ■

�1�2�3 1 2 3

10

8

6

4

2

y

x

Figure 2 h(x) = x2 (blue) and
projS h (red) from Example 7.

The Gram--Schmidt Process
We are now ready to recast the Gram–Schmidt process in the setting of an inner product
space. The goal of the Gram–Schmidt process is the same here as in Euclidean space, to
convert a basis into an orthogonal basis. (Which can then be made into an orthonormal
basis by normalizing each vector.)

The basic procedure for implementing the Gram–Schmidt process in an inner prod-
uct space is exactly the same as in Euclidean space. The only computational change is
that we replace the dot products with inner products when computing projections.
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T H E O R E M 10.15 ( T H E G R A M – S C H M I D T P R O C E S S ) Let S be a subspace with ba-
sis {s1, s2, . . . , sk}. Define v1, v2, . . . , vk , in order, by

v1 = s1

v2 = s2 − projv1
s2

v3 = s3 − projv1
s3 − projv2

s3

v4 = s4 − projv1
s4 − projv2

s4 − projv3
s4

...
...

vk = sk − projv1
sk − projv2

sk − · · · − projvk−1
sk

Then {v1, v2, . . . , vk} is an orthogonal basis for S.

The proof is left as an exercise. After using Gram–Schmidt to find an orthogonal basis
{v1, . . . , vk}, we can find an orthonormal basis {w1, . . . , wk} by setting

wi = 1

‖vi‖vi

for each i = 1, . . . , k.

E X A M P L E 8 Starting with the vectors

s1 =
⎡
⎣1

1
1

⎤
⎦ , s2 =

⎡
⎣1

1
0

⎤
⎦ , s3 =

⎡
⎣1

0
0

⎤
⎦

implement the Gram–Schmidt process to find basis for R3 that is orthogonal with respect
to the inner product 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3 from Example 1.

Solution The first step requires no computation: v1 = s1. For the second vector, we
have

v2 = s2 − projv1
s2 = s2 − 〈v1, s2〉

〈v1, v1〉v1 =
⎡
⎣1

1
0

⎤
⎦ − 5

6

⎡
⎣1

1
1

⎤
⎦ =

⎡
⎣ 1/6

1/6
−5/6

⎤
⎦

Since any multiple of an orthogonal vector is still orthogonal, we multiply v2 by 6 to
clear the fractions and make future computations easier. This gives us

v2 =
⎡
⎣ 1

1
−5

⎤
⎦

Finally, for v3 we have

v3 = s3 − projv1
s3 − projv2

s3

= s3 − 〈v1, s3〉
〈v1, v1〉v1 − 〈v2, s3〉

〈v2, v2〉v2

=
⎡
⎣1

0
0

⎤
⎦ − 2

6

⎡
⎣1

1
1

⎤
⎦ − 2

30

⎡
⎣ 1

1
−5

⎤
⎦ =

⎡
⎣ 3/5

−2/5
0

⎤
⎦

For the sake of consistency, we again clear fractions by multiplying v3 by 5. This leaves
us with the orthogonal basis ⎧⎨

⎩
⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣ 1

1
−5

⎤
⎦ ,

⎡
⎣ 3

−2
0

⎤
⎦

⎫⎬
⎭

■
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E X A M P L E 9 The monomials {1, x , x2, x3} give a basis for P3. Apply the Gram–
Schmidt process to find a basis that is orthonormal with respect to the inner product

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx

Solution We are asked for an orthonormal basis, but we start by finding an orthogonal
basis, and then normalize at the end. Let p1(x) = 1, p2(x) = x , p3(x) = x2, and
p4(x) = x3. The first basis vector is q1(x) = p1(x) = 1. For the second basis vector, we
have

q2(x) = p2(x) − projq1
p2 = x − 〈q1, p2〉

〈q1, q1〉 q1 = x − 0

2/3
(1) = x

We have q2(x) = p2(x) because p2(x) is orthogonal to p1(x), which is why projq1
p2 = 0.

Proceeding to q3(x),

q3(x) = p3(x) − projq1
p3 − projq2

p3

= p3(x) − 〈q1, p3〉
〈q1, q1〉 q1 − 〈q2, p3〉

〈q2, q2〉 q2

= x2 − 2/3

2
(1) − 0

2/3
(x) = x2 − 1

3 = 1
3 (3x2 − 1)

For the last polynomial, q4(x), we have

q4(x) = p4(x) − projq1
p4 − projq2

p4 − projq3
p4

= p4(x) − 〈q1, p4〉
〈q1, q1〉 q1 − 〈q2, p4〉

〈q2, q2〉 q2 − 〈q3, p4〉
〈q3, q3〉 q3

= x3 − 0

2
(1) − 2/5

2/3
(x) − 0

8/45

(
1
3 (3x2 − 1)

)
= x3 − 3

5 x = 1
5 (5x3 − 3x)

The last step is to normalize each polynomial to produce an orthonormal basis. While
implementing the Gram–Schmidt process, we computed

‖q1‖2 = 〈q1, q1〉 = 2, ‖q2‖2 = 〈q2, q2〉 = 2

3
, ‖q3‖2 = 〈q3, q3〉 = 8

45

We also have

‖q4‖2 = 〈q4, q4〉 =
∫ 1

−1

(
1
5 (5x3 − 3x)

)2
dx = 8

175

Therefore the orthonormal polynomials are

r1(x) = 1

‖q1‖q1(x) = 1√
2

r2(x) = 1

‖q2‖q2(x) =
√

3

2
x

r3(x) = 1

‖q3‖q3(x) =
√

45

8
· 1

3
(3x2 − 1) =

√
5

8
(3x2 − 1)

r4(x) = 1

‖q4‖q4(x) =
√

175

8
· 1

5
(5x3 − 3x) =

√
7

8
(5x3 − 3x)

These orthogonal polynomi-
als are familiar—they are all
scalar multiples of the Legen-
dre polynomials introduced ear-
lier. One way to define Legendre
polynomials is in terms of the
result of applying the Gram–
Schmidt process to 1, x , x2,
x3, . . . and scaling.



Holt-4100161 la October 8, 2012 15:37 396

396 CHAPTER 10 Inner Product Spaces

The orthonormal basis is

{
1√
2

,

√
3

2
x ,

√
5

8
(3x2 − 1),

√
7

8
(5x3 − 3x)

}
■

The exact values of these in-
tegrals are somewhat compli-
cated, so decimal approxima-
tions are reported.

E X A M P L E 10 Use the orthonormal basis found in Example 9 to find the projection
of f (x) = sin(x) + cos(x) onto P3.

Solution Since we have an orthonormal basis {r1(x), r2(x), r3(x), r4(x)}, we can apply
(2) to find projP3 f . The required inner products are

〈r1, f 〉 =
∫ 1

−1

1√
2

(sin(x) + cos(x)) dx ≈ 1.1900

〈r2, f 〉 =
∫ 1

−1

√
3

2
x(sin(x) + cos(x)) dx ≈ 0.7377

〈r3, f 〉 =
∫ 1

−1

√
5

8
(3x2 − 1)(sin(x) + cos(x)) dx ≈ −0.1962

〈r4, f 〉 =
∫ 1

−1

√
7

8
(5x3 − 3x)(sin(x) + cos(x)) dx ≈ −0.0337

Hence we have

projP3 f ≈ 1.19
1√
2

+ 0.7377

√
3

2
x − 0.1962

√
5

8
(3x2 − 1) − 0.0337

√
7

8
(5x3 − 3x)

≈ −0.1576x3 − 0.4653x2 + 0.9981x + 0.9966

The graph of f (x) = sin(x) + cos(x) and projP3 f are shown in Figure 3(a). The two
graphs are virtually indistinguishable because the difference between f (x) and projP3 f
on [−1, 1] is quite small. The graph of the difference f (x) − projP3 f in Figure 3(b) is
more revealing. Among the polynomials of degree 3, the projection provides an excellent
approximation to f (x) = sin(x) + cos(x).

0.5�0.5�1.0 1.0

0.010

�0.004

0.008

0.006

0.004

0.002

�0.002

0.5

1.0

0.5�0.5�1.0 1.0

y

x

y

x

(a) Graphs of f (x) and projP3 f (b) Graph of f (x) − projP3 f

Figure 3 f (x) and projP3 f . ■
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E X E R C I S E S
1. Convert the set {v1, v2, v3} from Example 1 into an ortho-
normal set with respect to the inner product 〈u, v〉 = 2u1v1 +
3u2v2 + u3v3.

2. Verify that the set

{x + 1, −9x + 5, 6x2 − 6x + 1}
is orthogonal with respect to the inner product

〈p, q〉 =
∫ 1

0
p(x)q(x) dx

and then make the set orthonormal.

In Exercises 3–4, determine the values of a (if any) that will
make the given set of vectors orthogonal in R3 with respect to
the weighted dot product with t1 = 2, t2 = 3, and t3 = 1. If
possible, normalize the vectors to make the set orthonormal.

3.

{[
2

−1
1

]
,

[
2
1
a

]
,

[
1
2
2

]}

4.

{[
1
1
a

]
,

[−5
1
7

]
,

[
3
a
6

]}

In Exercises 5–6, determine the values of a (if any) that will make
the given set of vectors orthogonal in P2 with respect to the inner
product

〈p, q〉 = p(−1)q(−1) + p(0)q(0) + p(2)q(2)

If possible, normalize the vectors to make the set orthonormal.

5.
{

x2 + x , x2 + ax − 2, x2 − 2x
}

6.
{

3x2 − 2x − 1, ax2 + x − 1, 5x2 + ax − 9
}

7. Use Theorem 10.11 to write v =
[

1
34
22

]
as a linear combination

of the vectors given in Example 1.

8. Use Theorem 10.11 to write f (x) = 12x2 − 6x − 6 as a linear
combination of the vectors given in Exercise 2.

9. Let v =
[

1
0

−1

]
. Find projS v for the subspace S spanned by the

vectors v1 and v2 and the inner product in Example 1.

10. Let f (x) = x . Find projS f for the inner product and subspace
S spanned by the functions in Exercise 2.

11. Let f (x) = x . Find projS f for the inner product and subspace
S in Example 7.

12. Find projS f for f (x) = ex , where S = span{1, x} and the
inner product is

〈 f, g 〉 =
∫ 1

−1
f (x)g (x) dx

In Exercises 13–18, use the Gram–Schmidt process to convert the
given set of vectors to an orthogonal basis with respect to the given
inner product.

13. The set

{[
1

−1
0

]
,

[
2
0
1

]}
with respect to the inner product

given in Example 1.

14. The set

{[
0
1
0

]
,

[
2
1
1

]
,

[
1
0
1

]}
with respect to the inner product

given in Example 1.

15. The set {1, x2} with respect to the inner product given in
Exercise 2.

16. The set {x2 + 1, 4x , −3} with respect to the inner product
given in Exercise 2.

17. The set {x , 1} with respect to the inner product given in
Exercises 5–6.

18. The set {2x + 1, x2, 3} with respect to the inner product given
in Exercises 5–6.

FIND AN EXAMPLE For Exercises 19–24, find an example that
meets the given specifications.

19. An orthogonal basis for R2 with respect to the inner product

〈u, v〉 = 3u1v1 + 2u2v2 that includes u1 =
[

1
2

]
.

20. An orthogonal basis for R3 with respect to the inner product

〈u, v〉 = u1v1 + 3u2v2 + 2u3v3 that includes u1 =
[−1

2
1

]
.

21. An orthogonal basis for P1 with respect to the inner product
〈p, q〉 = ∫ 1

0 p(x)q(x) dx that contains p1(x) = 3x + 1.

22. An orthogonal basis for P2 with respect to the inner product
〈p, q〉 = ∫ 1

−1 p(x)q(x) dx that contains p1(x) = x2 + 4x − 1.

23. Three distinct functions in C [−π, π] that are orthogonal,
but cannot be made orthonormal, with respect to the inner
product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

24. A basis for Rn that is orthogonal with respect to any weighted
dot product.

TRUE OR FALSE For Exercises 25–32, determine if the statement
is true or false, and justify your answer.

25. If {v1, v2, v3} is an orthonormal set in an inner product space
V , then so is {c1v1, c2v2, c3v3}, where c1, c2, and c3 are nonzero
scalars.
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26. The set {1, cos(2x), sin(2x)} is orthogonal in C[−π, π] with
respect to the inner product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

27. Any finite linearly independent set in an inner product space
V can be converted to an orthonormal set by applying the
Gram–Schmidt process.

28. Every set of orthogonal vectors is linearly independent.

29. If v is a nonzero vector in an inner product space V and S is a
nonzero finite-dimensional subspace of V , then projS v 	= 0.

30. If a set of vectors in an inner product space V is linearly de-
pendent, then the set cannot be orthogonal.

31. If the Gram–Schmidt process is applied to a linearly dependent
set, then one of the vectors produced will be the zero vector 0.

32. If V = {v1, v2, v3, v4} is a set of nonzero vectors in R3, then V
is not an orthogonal set with respect to any inner product.

33. Prove Theorem 10.10. (HINT: See the proof of Theorem 8.11.)

34. Prove Theorem 10.11. (HINT: See the proof of Theorem 8.12.)

35. Apply Theorem 10.11 to prove Theorem 10.12.

36. Prove Theorem 10.14. (HINT: See the proof of Theorem 8.16.)

For Exercises 37–42, u and v (and their subscripted relatives) are
vectors in an inner product space V , and S is a nonzero finite-
dimensional subspace of V .

37. Prove that projS u = projS

(
projS u

)
.

38. Prove that T : V → V given by T(u) = projS u is a linear
transformation.

39. Suppose that u is in S, and that S⊥ is nonzero.

(a) What is projS u?

(b) What is projS⊥ u?

40. Let {u1, u2} be nonzero vectors, and define

v1 = u1, v2 = u2 − projv1
u2

Prove that span{u1, u2} = span{v1, v2}.
41. Let {v1, . . . , vk} be an orthonormal basis of V . Prove that for
any v in V , we have

‖v‖2 = 〈v1, v〉2 + · · · + 〈vk , v〉2

42. Here we prove that the Gram–Schmidt process works. Sup-
pose that {u1, . . . , uk} are linearly independent vectors, and that
{v1, . . . , vk} are as defined in the statement of the Gram–Schmidt
process.

(a) Use induction to show {v1, . . . , v j } is an orthogonal set for
j = 1, . . . , k.

(b) Use induction to show span{u1, . . . , u j } = span{v1, . . . , v j }
for j = 1, . . . , k.

(c) Explain why (a) and (b) imply that Gram–Schmidt yields an
orthogonal basis.

10.3 Applications of Inner Products
This section is optional and

can be omitted without loss of
continuity.

In this section we consider a few applications of inner products. These applications exploit
our ability to do the following: Given a vector v in an inner product space V , we can use
the projection to find the vector s in a subspace S of V that is closest to v.

A vector s is “closest” to v when the norm of their difference ‖v − s‖ is as small
as possible. We encountered this when fitting lines to data in Euclidean space, where
we found the required vector by using projections. The same approach works here, by
applying this key theorem.

Theorem 10.16 generalizes
Theorem 8.29 in Section 8.5.

T H E O R E M 10.16 Let S be a finite-dimensional subspace of an inner product space V , and suppose that
v is in V . Then the closest vector in S to v is given by projS v. That is,

‖v − projS v‖ ≤ ‖v − s‖
for all s in S, with equality holding exactly when s = projS v.

Proof The proof is similar to that of Theorem 8.29. If s is in S, then since projS v is also
in S, the difference projS v − s must be in S. On the other hand, v − projS v is in S⊥ (by
Theorem 10.14 in Section 10.2). Therefore by the Pythagorean theorem (Theorem 10.4
in Section 10.1), we have

‖(v − projS v) − (projS v − s)‖2 = ‖v − projS v‖2 + ‖projS v − s‖2
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As (v − projS v) − (projS v − s) = v − s, it follows that

‖v − s‖2 = ‖v − projS v‖2 + ‖projS v − s‖2

Since ‖projS v − s‖2 ≥ 0, we have ‖v − s‖ ≥ ‖v − projS v‖. Furthermore, there is equality
in this inequality exactly when ‖projS v − s‖ = 0. That is, when s = projS v. ■

Weighted Least Squares Regression
In Section 8.5 we used projection onto a subspace to fit a line to a data set of the form
(x1, y1), . . . , (xn, yn). There we treated each data point as being equally important, but
now suppose that we view some points as more important than others. For instance,
those that have the most extreme x-coordinates could be viewed as potential outliers. We
might want to adjust our inner product so that these points have less influence on the
model than those near the “center” of the data set.

We adopt the same notation as in Section 8.5. Given a line ŷ = c0 +c1x , for each data
point (xi , yi ) we define ŷ i = c0 + c1xi . The goal of ordinary least squares regression is
to select c0 and c1 so that

(y1 − ŷ1)2 + (y2 − ŷ2)2 + · · · + (yn − ŷn)2

is as small as possible. With weighted least squares regression, we minimize the expres-
sion

t1(y1 − ŷ1)2 + t2(y2 − ŷ2)2 + · · · + tn(yn − ŷn)2 (1)

where t1, t2, . . . , tn are the positive weights. If we set

y =

⎡
⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎦ and ŷ =

⎡
⎢⎢⎢⎣

ŷ1

ŷ2

...

ŷn

⎤
⎥⎥⎥⎦

then (1) is equal to ‖y − ŷ‖2, where the norm is with respect to the weighted dot product
with weights t1, t2, . . . , tn. Since ŷ = c0 + c1x , if we define

A =

⎡
⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎦ and x =

[
c0

c1

]

then we need a solution to ŷ = Ax, where ŷ is the vector in S = col(A) (the column
space of A) that is closest to y. Thus, by Theorem 10.16, we should set

ŷ = projS y.

Let’s consider an example that shows how this process works.

�6 6�4 �2 42

3.0

2.5

2.0

1.5

1.0

0.5

y

x

Figure 1 Scatter plot of data
for Example 1.

E X A M P L E 1 Use least squares regression to fit a line to the data set (scatter plot
shown in Figure 1)

(−6, 2.9), (−3, 1.5), (−2, 2), (2, 2.7), (3, 3.3), (6, 1.1)

Then use weighted least squares regression with weights designed to emphasize the four
points in the middle of the data set.
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Solution Instead of using the formula for least squares regression developed in Sec-
tion 8.5, we will use projection onto a subspace to find the equation for the regression line
because that method generalizes to weighted least squares regression. Let A = [

a1 a2

]
,

where

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

and a2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−6
−3
−2

2
3
6

⎤
⎥⎥⎥⎥⎥⎥⎦

We need to find ŷ = projS y, where S = span{a1, a2}. We have

a1 · a2 = (1)(−6) + (1)(−3) + (1)(−2) + (1)(6) + (1)(3) + (1)(2) = 0

so that {a1, a2} is an orthogonal basis of S with respect to the dot product. Therefore
we can apply the projection formula

ŷ = projS y = a1 · y

a1 · a1
a1 + a2 · y

a2 · a2
a2

= 13.5

6
a1 + −4

98
a2 ≈ 2.25a1 − 0.0408a2

Since Ax = c0a1 + c1a2 and ŷ = 2.25a1 − 0.0408a2, the solution to Ax = ŷ is c0 = 2.25
and c1 = −0.0408. Hence the least squares regression line is ŷ = 2.25 − 0.0408x . A
graph of the line together with the data is shown in Figure 2. The central four points lie
roughly on a line, but the fit is poor due to the influence of the extreme points (−6, 2.9)
and (6, 1.1).

We now repeat the analysis, but this time using a weighted dot product. We can
diminish the “pull” of the extreme points with the weights

t = (t1, t2, t3, t4, t5, t6) = (1, 5, 5, 5, 5, 1)

This gives the four data points closest to the middle 5 times the weight of the outer two
points. It is not hard to verify that the column vectors a1 and a2 satisfy 〈a1, a2〉 = 0
with respect to this weighted dot product. Thus we can use them for the projection
function,

ŷ = projS y = 〈a1, y〉
〈a1, a1〉a1 + 〈a2, y〉

〈a2, a2〉a2

The required inner products are

〈a1, y〉 = 51.5, 〈a2, y〉 = 23.2, 〈a1, a1〉 = 22, 〈a2, a2〉 = 202

Hence the projection is

ŷ = projS y = 51.5

22
a1 + 23.2

202
a2 ≈ 2.34a1 + 0.115a2

By the same reasoning as before, the equation of the weighted least squares regres-
sion line is ŷ = 2.34 + 0.115x . The data and graph of this line are shown in Figure 3.
Although the line has positive slope and is an improvement over ordinary least squares
regression, it still does not fit the central data very well. Two more lines, with weights
even more extreme to further diminish the effects of the extreme points, are shown in
Figure 4.

The 1’s in a1 are multiplied
times the constant term in the
regression equation.
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Figure 2 Scatter plot of data
and ŷ = 2.25 − 0.0408x.
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Figure 3 Scatter plot of data
and ŷ = 2.34 − 0.115x.
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(a) t = (1, 10, 10, 10, 10, 1) (b) t = (1, 25, 25, 25, 25, 1)
ŷ = 2.36 + 0.172x ŷ = 2.37 + 0.221x

Figure 4 The graphs of weighted least squares regression lines with weights as shown.

The line in (b) of Figure 4 fits the central data fairly well, but the weights are
so extreme that we are close to simply discarding the two outside points. In practice,
one would typically make decisions about weights before collecting data, and it might
happen that a linear equation is not appropriate for describing the data. ■

Fourier Approximations
We now return to the vector space V = C [−π, π] together with the inner product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx (2)

In Example 2 (Section 10.2), we showed that the set {1, cos(x), sin(x)} forms an orthog-
onal set in V . This can be expanded to a larger orthogonal set.

T H E O R E M 10.17 For each integer k ≥ 1, the set

{1, cos(x), cos(2x), . . . , cos(kx), sin(x), sin(2x), . . . , sin(kx)} (3)

is orthogonal in V = C [−π, π] with the inner product (2).

Proof The proof involves computing a number of definite integrals to verify the
orthogonality. Two are given here, and the rest are left as exercises. Starting with 1 and
cos(2kπx), we have

〈1, cos(kx)〉 = 1

π

∫ π

−π

cos(kx) dx = 1

kπ

[
sin(kx)

∣∣π
−π

= 0

so 1 and cos(kx) are orthogonal for any k ≥ 1.f is an odd function if f (−x) =
− f (x). If f is odd, then for any
b we have∫ b

−b
f (x) dx = 0

Since the product sin( j x) cos(kx) is an odd function for any positive integers j and
k, we have

〈sin( j x), cos(kx)〉 = 1

π

∫ π

−π

sin( j x) cos(kx) dx = 0

As noted above, the remaining integrals are left as exercises. ■

Now let Fn denote the subspace of V = C [−π, π] spanned by the orthogonal basis
given in Theorem 10.17. For any f in V , the best approximation in Fn to f is given by

fn(x) = projFn
f = a0 +a1 cos(x)+· · ·+an cos(nx)+b1 sin(x)+· · ·+bn sin(nx) (4)
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The function fn(x) is called the nth-order Fourier approximation of f . Since the basis
functions of Fn are orthogonal, from the projection formula we have

Definition nth-Order Fourier
Approximation

ak = 〈 f, cos(kx)〉
〈cos(kx), cos(kx)〉 (k ≥ 1)

bk = 〈 f, sin(kx)〉
〈sin(kx), sin(kx)〉 (k ≥ 1)

For k ≥ 1 we have 〈cos(kx), cos(kx)〉 = 〈sin(kx), sin(kx)〉 = 1 (see Exercises 37–38),
so that the formulas for ak and bk simplify to

ak = 1

π

∫ π

−π

f (x) cos(kx) dx and bk = 1

π

∫ π

−π

f (x) sin(kx) dx (5)

Since 〈1, 1〉 = 2, the constant term is

a0 = 1

2π

∫ π

−π

f (x) dx

The ak ’s and bk ’s are called the Fourier coefficients of f .Definition Fourier Coefficients

E X A M P L E 2 Find the Fourier coefficients for f (x) = x on [−π, π].

Solution We start with

a0 = 1

2π

∫ π

−π

f (x) dx = 1

2π

∫ π

−π

x dx = 0

because x is an odd function. As x cos(kx) is also an odd function, then by the same
reasoning we have

ak = 1

π

∫ π

−π

x cos(kx) dx = 0

For k ≥ 1, an application of integration by parts (the details are left as an exercise) gives
us

bk = 1

π

∫ π

−π

x sin(kx) dx = 2

k
(−1)k+1

Therefore our nth-order Fourier approximation to f (x) = x is given by

fn(x) =
n∑

k=1

2

k
(−1)k+1 sin(kx)

= 2 sin(x) − sin(2x) + 2

3
sin(3x) − · · · + 2

n
(−1)n+1 sin(nx)

The graphs of fn for n = 2, 4, 6, and 8 are given in Figure 5.
If the Fourier coefficients decrease in size sufficiently quickly, then we can extend

the nth-order Fourier approximation fn to a Fourier series

a0 +
∞∑

k=1

(
ak cos(kx) + bk sin(kx)

)
Under the right conditions, the infinite series is equal to f (x). The theory of Fourier
series is covered in more advanced mathematics courses. ■
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(a) f (x) = x (dashed) and f2(x) (solid) (b) f (x) = x (dashed) and f4(x) (solid)

(c) f (x) = x (dashed) and f6(x) (solid) (d) f (x) = x (dashed) and f8(x) (solid)

Figure 5 The graph of f (x) = x and fn(x) for n = 2, 4, 6, and 8. Note that the
approximation improves with larger n.

Discrete Fourier Transforms
Often in applications we would like to find a Fourier approximation for a function f
but do not have a formula for the function. Instead, we might know only values of f (x)
at discrete values of x , so we cannot directly apply the formulas given in (5) to find the
Fourier coefficients.

Here we assume that f has
domain [−π, π]. A change of
variables can be used to accom-
modate other domains.

We use a numerical integration technique to get around this problem. Suppose that
for a function g , all we know are function values at n points evenly distributed in [−π, π],

g

(
2π

n
− π

)
, g

(
4π

n
− π

)
, g

(
6π

n
− π

)
, . . . , g

(
2nπ

n
− π

)
= g (π)

Then we can approximate the definite integral of g with the numerical integration formula

1

π

∫ π

−π

g (x) dx ≈ 2

n

n∑
j=1

g

(
2 jπ

n
− π

)
(6)

(6) is just one of many numer-
ical integration formulas.

To find a Fourier approximation for a function f with values known only at the
discrete points

f

(
2π

n
− π

)
, f

(
4π

n
− π

)
, f

(
6π

n
− π

)
, . . . , f

(
2nπ

n
− π

)
= f (π)

we use the numerical integration formula (6) to approximate ak and bk given by the
definite integrals in (5) with the approximations

c0 = 1

n

n∑
j=1

f

(
2 jπ

n
− π

)

ck = 2

n

n∑
j=1

f

(
2 jπ

n
− π

)
cos

(
2 j kπ

n
− kπ

)
(k ≥ 1) (7)

dk = 2

n

n∑
j=1

f

(
2 jπ

n
− π

)
sin

(
2 j kπ

n
− kπ

)
(k ≥ 1)
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The ck ’s and dk ’s are called discrete Fourier coefficients. In general, the larger the number
of function values that are known (that is, the larger the value of n), the closer ck is to ak

and dk is to bk . We examine this computationally in the next example.

Definition Discrete Fourier
Coefficients

Other than sign, the values of
ck are the same for each k. This
is not typical and an idiosyn-
crasy of this particular example.

E X A M P L E 3 Let f (x) = x . Compare the values of the Fourier coefficients ak and
bk of f with the discrete Fourier coefficients ck and dk .

Solution In Example 5 we determined that ak = 0 for each k ≥ 0, so we expect that
ck should get smaller as n (the number of discrete function values) gets larger. Table 1
gives the values of ck for 0 ≤ k ≤ 10 and n = 50, n = 100, n = 500, and n = 1000. We
can see that the values of ck get smaller, and hence closer to ak = 0, as n gets larger.

k ak ck (n = 50) ck (n = 100) ck (n = 500) ck (n = 1000)

0 0 −0.125664 −0.062832 −0.012566 −0.006283
1 0 0.125664 0.062832 0.012566 0.006283
2 0 −0.125664 −0.062832 −0.012566 −0.006283
3 0 0.125664 0.062832 0.012566 0.006283
4 0 −0.125664 −0.062832 −0.012566 −0.006283
5 0 0.125664 0.062832 0.012566 0.006283
6 0 −0.125664 −0.062832 −0.012566 −0.006283
7 0 0.125664 0.062832 0.012566 0.006283
8 0 −0.125664 −0.062832 −0.012566 −0.006283
9 0 0.125664 0.062832 0.012566 0.006283

10 0 −0.125664 −0.062832 −0.012566 −0.006283

Table 1 The Values of ak and ck for f (x) = x

For f (x) = x we have bk = 2
k (−1)k+1 for k ≥ 1. Table 2 gives the values of bk for

1 ≤ k ≤ 10 and n = 50, n = 100, n = 500, and n = 1000. The table values suggest
that dk is getting closer to bk as n gets larger.

k bk dk (n = 50) dk (n = 100) dk (n = 500) dk (n = 1000)

1 2.00000 1.99737 1.99934 1.99997 1.99999
2 −1.00000 −0.99473 −0.99868 −0.99995 −0.99999
3 0.66667 0.65875 0.66469 0.66659 0.66665
4 −0.50000 −0.48943 −0.49737 −0.49990 −0.49997
5 0.40000 0.38675 0.39671 0.39987 0.39997
6 −0.33333 −0.31739 −0.32938 −0.33318 −0.33329
7 0.28571 0.26705 0.28109 0.28553 0.28567
8 −0.25000 −0.22858 −0.24471 −0.24979 −0.24995
9 0.22222 0.19801 0.21627 0.22199 0.22216

10 −0.20000 −0.17296 −0.19338 −0.19974 −0.19993

Table 2 The Values of bk and dk for f (x) = x

■

Definition nth-Order Discrete
Fourier Approximation

The nth-order discrete Fourier approximation is defined by

gn(x) = c0 + c1 cos(x) + · · · + cn cos(nx) + d1 sin(x) + · · · + dn sin(nx).

The only difference between fn(x) and gn(x) is in how the coefficients are computed.
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E X A M P L E 4 Find discrete Fourier approximations for the data set shown in
Figure 6.

Solution There are 50 points shown in Figure 6. We have no formula for the function
that generated the data, so finding the exact Fourier coefficients is out of the question.
But we can use the discrete Fourier approximation and the formulas in (7) to compute
approximations. The functions g2(x), g4(x), g8(x), and g12(x) are shown with the data
in Figure 7. ■
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Figure 6 Data set for
Example 4.
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(a) Plot of data and g2(x) (b) Plot of data and g4(x)

(c) Plot of data and g8(x) (d) Plot of data and g12(x)

Figure 7 Scatter plot of data for Example 4 and plot of discrete Fourier approximations of
degree 2, 4, 8, and 12.

Computational Comment
Calculating coefficients for the discrete Fourier approximation can be computationally
intensive. To address this, various methods known collectively as fast Fourier transforms
(FFT) have been developed to improve computational efficiency. A popular FFT method
developed by J. W. Cooley and J. W. Tukey works recursively by factoring n, the number
of points, as n = n1n2 and then focusing on the smaller n1 and n2. Interestingly, there is
evidence that Gauss knew about this method in the early 1800s. (There seems to be little
about linear algebra that was unknown to Gauss.)

E X E R C I S E S
1. Find the weighted least-squares line for the data set {(−2, 0),
(−1, 2), (1, 3), (2, 5)}, with the inner two points weighted twice
as much as the outer two points.

2. Find the weighted least-squares line for the data set {(−2, −2),
(−1, 0), (1, 3), (2, 6)}, with the inner two points weighted three
times as much as the outer two points.

Exercises 3–4 refer to the points shown in Figure 8.

3. Suppose that a line�1 is fitted to the points shown using ordinary
least squares regression, and then a second line �2 is fitted using
weighted least squares regression, with the two extreme points
having half the weight of the others. How would you expect the
slope of �1 to compare to that of �2? Explain your answer.
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Figure 8

4. Suppose that a line�1 is fitted to the points shown using ordinary
least squares regression, and then a second line �2 is fitted using
weighted least squares regression, with the two extreme points
having triple the weight of the others. How would you expect the
slope of �1 to compare to that of �2? Explain your answer.

5. Suppose that all of the points in a weighted least-squares ap-
proximation have their weights tripled. Will it change the equation
of the resulting line? Explain your answer.

6. Suppose that all of the points in a weighted least-squares ap-
proximation have their weights increased by a factor of 10. Will it
change the equation of the resulting line? Explain your answer.

7. Find the Fourier approximation f2 for

f (x) =
{

1 if −π
2 ≤ x < π

2
0 otherwise

8. Find the Fourier approximation f2 for

f (x) =
{

1 if −π ≤ x < −π
2 and π

2 ≤ x < π

0 otherwise

9. Find the Fourier approximation f2 for

f (x) =
{

0 if −π ≤ x < 0
1 if 0 ≤ x < π

10. Find the Fourier approximation f2 for

f (x) =
{

1 if −π ≤ x < 0
0 if 0 ≤ x < π

11. Find the Fourier approximation f2 for f (x) = x + 1.

12. Find the Fourier approximation f2 for f (x) = 3 − 2x .

13. Find the Fourier approximation f2 for f (x) = x2.

14. Find the Fourier approximation f2 for f (x) = |x|.
In Exercises 15–18, find the Fourier coefficients for the given func-
tion without performing any integrals.

15. f (x) = cos(2x) − sin(3x)

16. f (x) = −2 + 3 cos(2x) − 4 sin(4x)

17. f (x) = 1 + sin2(4x)

18. f (x) = 1 − cos2(6x)

19. Find the discrete Fourier approximation g1(x) for f (x) based
on the table information.

x 0 π

f (x) 1 2

20. Find the discrete Fourier approximation g2(x) for f (x) based
on the table information.

x 0 π

f (x) −1 3

21. Find the discrete Fourier approximation g1(x) for f (x) based
on the table information.

x −π
2 0 π

2 π

f (x) 0 1 3 −2

22. Find the discrete Fourier approximation g2(x) for f (x) based
on the table information.

x −π
2 0 π

2 π

f (x) −2 −1 0 2

FIND AN EXAMPLE For Exercises 23–28, find an example that
meets the given specifications.

23. A data set such that the ordinary least squares regression line
has slope zero, but the weighted least squares regression line,
with triple weight on the right-most data point, has a negative
slope.

24. A data set such that the ordinary least squares regression line
has slope zero, but the weighted least squares regression line, with
triple weight on the right-most and left-most data points, has a
negative slope.

25. A function f (x) such that the Fourier coefficients are all zero
except for a0 which is nonzero.

26. A function f (x) such that the Fourier coefficients b1 = b2 =
b3 = · · · = 0.

27. A function f (x) such that the Fourier coefficients a1 = a2 =
a3 = · · · = 0 and a0 = 1.

28. A function f (x) such that the Fourier coefficients b1 = b2 =
b3 = · · · = 0 and a0 = −2.

TRUE OR FALSE For Exercises 29–34, determine if the statement
is true or false, and justify your answer.

29. In weighted least squares regression, the weights must all be
positive.

30. In weighted least squares regression, the weights must all be
greater than or equal to one.

31. Weighted least squares can only be applied to data sets where
the corresponding matrix A has orthogonal columns.

32. The Fourier approximation can only be applied to positive
functions.

33. If it is possible to compute Fourier coefficients for a function
f , then it is also possible to compute discrete Fourier coefficients
for f .

34. In general, the higher the number of discrete function values
used, the better the approximation given by the discrete Fourier
approximation.
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In Exercises 35–38, we evaluate the remaining integrals required
to show that the set given in Theorem 10.17 is orthogonal on
C[−π, π] with respect to the inner product

〈 f, g 〉 = 1

π

∫ π

−π

f (x)g (x) dx

We also find the norms of these functions.

35. Show that 〈1, sin(kx)〉 = 0 for all integers k ≥ 1.

36. Show that ‖1‖ = √
2.

37. Use the identity 2 sin2(a) = 1 − cos(2a) to show that
‖ sin(kx)‖ = 1 for all integers k ≥ 1.

38. Use the identity 2 cos2(a) = 1 + cos(2a) to show that
‖ cos(kx)‖ = 1 for all integers k ≥ 1.

39. Use integration by parts to show that

1

π

∫ π

−π

x cos(kx) dx = 0 (k ≥ 1)

40. Use integration by parts to show that

1

π

∫ π

−π

x sin(kx) dx = 2

k
(−1)k+1 (k ≥ 1)

41. Use the trigonometric identities

cos(a − b) = cos(a) cos(b) + sin(a) sin(b)
sin(a − b) = sin(a) cos(b) − sin(b) cos(a)

to prove that the formulas for ck and dk in (7) can be simplified to

ck = 2

n

n∑
j=1

(−1)k f
( 2 jπ

n − π
)

cos
( 2 j kπ

n

)
(k ≥ 1)

dk = 2

n

n∑
j=1

(−1)k f
( 2 jπ

n − π
)

sin
( 2 j kπ

n

)
(k ≥ 1)

42. C Discrete values of f are given in the table below. Use
this information to find the discrete Fourier approximation
g3(x).

x − 3π
4 −π

2 −π
4 0 π

4
π
2

3π
4 π

f (x) 3.1 3.5 3.3 3.0 2.7 2.6 2.8 3.0

43. C Discrete values of f are given in the table below. Use
this information to find the discrete Fourier approximation
g5(x).

x − 3π
4 −π

2 −π
4 0 π

4
π
2

3π
4 π

f (x) 2.4 2.8 3.0 3.5 2.9 2.6 2.4 2.1

44. C Suppose that f (x) = x2 + 1. Find f3(x). Then generate a
list of values of f corresponding to x = 0.02, 0.04, . . . , 1.0, and
use these to find g3(x).

45. C Suppose that f (x) = ex . Find f3(x). Then generate a list
of values of f corresponding to x = 0.02, 0.04, . . . , 1.0, and use
these to find g3(x).
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The Quebec Bridge, opened in

1919, crosses the St. Lawrence

River at Levis and west of Quebec

City. At 3,239 feet in length,

it maintains its status as the

longest cantilever bridge in the

world. The bridge plays a noto-

riously important role in bridge

engineering, as it collapsed twice

during construction. The collapse

of 1907 resulted in the death of

75 workers; the collapse of 1916

caused 13 deaths. The disasters

raised questions about the con-

trol held by one engineer on such

a project. Engineers, worried

about potentially strict

governmental intervention,

organized to create professional

engineering societies that served

both to educate their members

and to administer licensing

requirements and exams.

Additional Topics
and Applications

Bridge suggested by Pont de Quebec

(Martin St-Amant-Wikipedia-

CC-BY-SA-3.0)

11.1 Quadratic Forms

The sections in this chapter
are optional.

In Chapter 3 we showed that every linear transformation T : Rm → Rn has the form
T(x) = Ax for some n × m matrix A. In this section we study a function Q : Rn → R
called a quadratic form that also can be defined in terms of matrix and vector multipli-
cation. Such functions arise naturally in a variety of disciplines, including engineering
(control theory), physics, economics, and mathematics.

Definition Quadratic Form

D E F I N I T I O N 11.1 A quadratic form is a function Q : Rn → R that has the form

Q(x) = xT Ax (1)

where A is an n × n symmetric matrix called the matrix of the quadratic form.

Definition Matrix of the
Quadratic Form
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E X A M P L E 1 Suppose that x =
[

x1

x2

]
. Evaluate Q(x) = xT Ax for each of the

matrices

(a) A =
[

2 0
0 5

]
(b) A =

[
3 1
1 −2

]

Solution (a) xT Ax = [
x1 x2

] [
2 0
0 5

] [
x1

x2

]
= [

x1 x2

] [
2x1

5x2

]
= 2x2

1 + 5x2
2 .

(b) Since A is not diagonal, this quadratic form is a bit more complicated. We have

xT Ax = [
x1 x2

] [
3 1
1 −2

] [
x1

x2

]

= [
x1 x2

] [
3x1 + x2

x1 − 2x2

]
= x1(3x1 + x2) + x2(x1 − 2x2) = 3x2

1 + 2x1x2 − 2x2
2 ■

We interpret a quadratic
form xT Ax as a scalar instead
of as a 1 × 1 matrix.

Note that in both parts, the coefficients on x2
1 and x2

2 come directly from the diagonal
entries of A. In (b), we see that the coefficient on the cross-product term x1x2 is the sum
of the nondiagonal matrix entries. (This is also happening in part (a), but is not visible
because the nondiagonal entries are 0.) These observations generalize so that it is not too
hard to construct the matrix of a quadratic form from the equation.

E X A M P L E 2 Suppose that Q is the quadratic form

Q(x) = 3x2
1 − 7x2

3 − 4x1x2 + 10x2x3

Directly compute Q(x0) for x0 =
⎡
⎣ 1

3
−2

⎤
⎦. Then find the 3 × 3 matrix A of the quadratic

form and use it to recompute Q(x0) by applying the formula Q(x) = xT Ax.

Solution For our given x0 we have x1 = 1, x2 = 3, and x3 = −2. Hence

Q(x0) = 3(1)2 − 7(−2)2 − 4(1)(3) + 10(3)(−2) = −97

To find the matrix A of this quadratic form, we start by noting that the terms 3x2
1 and

−7x2
3 indicate that there should be a 3 and −7 in the first and third diagonal entries,

respectively. Since there is no x2
2 term, the second diagonal entry is 0. Thus the diagonal

portion of A is

A =
⎡
⎣3 • •

• 0 •
• • −7

⎤
⎦

The coefficient −4 on the cross-product term −4x1x2 should be evenly split across
the (1, 2) and (2, 1) entries to ensure that A is symmetric. Similarly, we evenly split
the coefficient 10 from 10x2x3 across the (2, 3) and (3, 2) entries. Since that accounts
for all of the terms of Q, any other entries of A should be zero. Therefore we end
up with

A =
⎡
⎣ 3 −2 0

−2 0 5
0 5 −7

⎤
⎦
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Now we test this by computing xT
0 Ax0. We have

xT
0 Ax0 = [

1 3 −2
] ⎡
⎣ 3 −2 0

−2 0 5
0 5 −7

⎤
⎦

⎡
⎣ 1

3
−2

⎤
⎦ = [

1 3 −2
] ⎡
⎣ −3

−12
29

⎤
⎦ = −97

■

Quadratic forms can be easier to apply when there are no cross-product terms to
complicate things. Happily, we can use a change of variables to arrange for this.

T H E O R E M 11.2 ( P R I N C I P A L A X E S T H E O R E M ) If A is a symmetric matrix, then
there exists an orthogonal matrix P such that the transformation y = P T x changes
the quadratic form xT Ax into the quadratic form yT Dy (where D is diagonal) that
has no cross-product terms.

The “principal axes” in Theo-
rem 11.2 are the columns of P ,
which are eigenvectors of A. The
name will be explained shortly.

Proof Since A is a symmetric matrix, by the Spectral Theorem (Section 8.3) A can be
diagonalized as A = P D P −1, where P is an orthogonal matrix with eigenvectors of A
for columns and D is a diagonal matrix with eigenvalues of A for diagonal entries. Since
P is orthogonal, we have P −1 = P T , so that

A = P D P T �⇒ D = P T AP

If we set y = P −1x = P T x, then x = P y so that

xT Ax = (
P y

)T
A
(

P y
) = yT P T AP y = yT

(
P T AP

)
y = yT Dy

Hence the matrix of the quadratic form is diagonal with respect to the change of variables
y = P −1x. ■

In this chapter the details
of computing eigenvalues and
eigenvectors are often left to the
reader.

E X A M P L E 3 Find a change of variables to express the quadratic form with matrix

A =
[

5 2
2 8

]

as a quadratic form with no cross-product terms.

Solution The quadratic form with matrix A is

Q(x) = 5x2
1 + 8x2

2 + 4x1x2 (2)

To eliminate the cross-product term, we need to find a matrix P that orthogonally
diagonalizes A. Computing the roots of the characteristic polynomial reveals that the
eigenvalues of this matrix are λ1 = 9 and λ2 = 4. The corresponding normalized
eigenvectors are

λ1 = 9 ⇒ p1 = 1√
5

[
1
2

]
λ2 = 4 ⇒ p2 = 1√

5

[−2
1

]

Therefore we have

D =
[
λ1 0
0 λ2

]
=

[
9 0
0 4

]
and P = [

p1 p2

] =
[ 1√

5
− 2√

5

2√
5

1√
5

]

Hence for y =
[

y1

y2

]
= P T x,

Q(y) = 9y2
1 + 4y2

2 (3)
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We can test out the two versions of the quadratic form by starting with a specific

vector—say, x0 =
[

2
1

]
. Evaluating (2) directly, we find that

Q

([
2
1

])
= 5(2)2 + 8(1)2 + 4(2)(1) = 36

For this choice of x0, the corresponding y0 is

y0 = P T x0 =
[ 1√

5
2√
5

− 2√
5

1√
5

] [
2
1

]
=

[ 4√
5

− 3√
5

]

Therefore from (3) we have

9y2
1 + 4y2

2 = 9

(
4√
5

)2

+ 4

(
− 3√

5

)2

= 9

(
16

5

)
+ 4

(
9

5

)
= 180

5
= 36

■

Definition Principal Axes

Geometry of Quadratic Forms
In the Principal Axes Theorem, the columns of P —which are eigenvectors of A—are
the principal axes of the quadratic form xT Ax. The use of the word “axes” makes more
sense when we view quadratic forms geometrically. Consider the set of vectors x in R2

that satisfy the equation

xT Ax = c (4)

where c is a fixed constant and A is an invertible 2 × 2 symmetric matrix. It turns out
that graph of the solution set can be one of the following: an ellipse (including circles), a
hyperbola, two intersecting lines, a single point, or the empty set. Here we focus on the
ellipse and hyperbola.

�

c
b

c
b

c
a

c
a

�

x1

x2

Figure 1 Graph of the
solutions to ax2

1 + bx2
2 = c . The

axis intercepts are as shown.

If A =
[

a 0
0 b

]
is diagonal, then (4) is equivalent to

ax2
1 + bx2

2 = c

When a , b, and c are all positive, the graph of the solution set is the ellipse in Figure 1.
The graph of the solution set of a quadratic form with no cross-product terms is said to
be in standard position. Since A is diagonal, the eigenvectors of A point in the direction
of the coordinate axes, which coincide with the major and minor axes of the ellipse. This
carries over to quadratic forms that have cross-product terms.

Definition Standard Position

E X A M P L E 4 Graph the set of solutions to the quadratic form

3x2
1 + 6x2

2 + 4x1x2 = 40

Solution The quadratic form 3x2
1 + 6x2

2 + 4x1x2 has matrix A =
[

3 2
2 6

]
. The eigen-

values and normalized eigenvectors of A are

λ1 = 2 ⇒ p1 = 1√
5

[
2

−1

]
, λ2 = 7 ⇒ p2 = 1√

5

[
1
2

]

Now let

D =
[
λ1 0
0 λ2

]
=

[
2 0
0 7

]
and P = [

p1 p2

] =
[ 2√

5
1√
5

− 1√
5

2√
5

]



Holt-4100161 la October 22, 2012 16:49 413

SECTION 11.1 Quadratic Forms 413

42�4 �2

2
1

�1
�2
�3

3

42�4 �2

2
1

�1
�2
�3

3

x1y1

x2y2

(a) Graph of 2y2
1 + 7y2

2 = 40 (b) Graph of 3x2
1 + 6x2

2 + 4x1x2 = 40

Figure 2 In (a), the graph of yT Dy = 40, which is in standard position. Rotating this graph
to align the ellipse axes (dashed) with the eigenvectors p1 and p2 of A gives the graph of
xT Ax = 40 in (b).

Then yT Dy = 40 is equivalent to 2y2
1 + 7y2

2 = 40. Since there are no cross-product
terms, we can use Figure 1 as a model for the graph of yT Dy = 40, which is given in
Figure 2(a).

By the Principal Axes Theorem, xT Ax = c and yT Dy = c are the same equation
when y = P T x, or equivalently, x = P y. Therefore the graph of all x that satisfy
xT Ax = c is the same as the graph of all y that satisfy yT Dy = c after applying the
transformation x = P y. Since P is an orthogonal matrix, this transformation is a
rotation or reflection (see Exercise 46), so the graph of xT Ax = c is a rotation or
reflection of the graph of yT Dy = c . Furthermore, since e1 and e2 are parallel to the
major and minor axes of the ellipse yT Dy = c , then P (e1) = p1 and P (e2) = p2 are
parallel to the axes of xT Ax = c . The graph is given in Figure 2(b). ■

Recall that {e1, e2} are the
standard basis for R2,

e1 =
[

1
0

]
, e2 =

[
0
1

]

Summing up the solution to Example 4, we did the following:

• Found D and P for A.

• Graphed yT Dy = c , which is not difficult, because it is in standard form.

• Rotated the graph so that the axes of symmetry align with the principal axes of A to
graph xT Ax = c .

Turning to hyperbolas, if a , b, and c are still positive, then the graph of ax2
1 −bx2

2 = c
is a hyperbola in standard position with asymptotes x2 = ±√

a
b x1 (Figure 3). We can use

the same approach as in Example 4 to graph hyperbolas that are not in standard position.

a
bx2 � �      x1

a
bx2 �      x1

x1

x2

Figure 3 Graph of the
solutions to ax2

1 − bx2
2 = c .

The asymptotes (dashed) have
equations shown.

E X A M P L E 5 Graph the set of solutions to the quadratic form

4x2
1 − x2

2 + 12x1x2 = 10

Solution Here the matrix of the quadratic form is A =
[

4 6
6 −1

]
, which has eigenval-

ues and normalized eigenvectors

λ1 = 8 ⇒ p1 = 1√
13

[
3
2

]
, λ2 = −5 ⇒ p2 = 1√

13

[−2
3

]

Hence the matrices D and P from the Principal Axes Theorem are

D =
[

8 0
0 −5

]
and P =

[ 3√
13

− 2√
13

2√
13

3√
13

]
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42�4 �2

2

4

�2

�4

42�4 �2

2

4

�2

�4

Conjugate

axis

Transve
rse

axis

x1

x2

y1

y2

(a) Graph of 8y2
1 − 5y2

2 = 10 (b) Graph of 4x2
1 − x2

2 + 12x1x2 = 10

Figure 4 In (a), the graph of 8y2
1 − 5y2

2 = 10, which is in standard position. Rotating this
graph to align the axes of symmetry with the eigenvectors of A gives the graph of
4x2

1 − x2
2 + 12x1x2 = 10 in (b).

The equation 8y2
1 −5y2

2 = 10 is in standard form, and the graph is a hyperbola with

asymptotes y2 = ±
√

8
5 y1 (Figure 4(a)). Hyperbolas also have two axes of symmetry,

the transverse axis (the x-axis in Figure 4(a)) and the conjugate axis (the y-axis in
Figure 4(a)).

As with ellipses, we get the graph of xT Ax = 10 by applying the transformation
x = P y to the graph of yT Dy = 10. The axes of symmetry of the graph of yT Dy = 10
are rotated to align with the eigenvectors of A, yielding the graph in Figure 4(b). ■

Types of Quadratic Forms
We can classify a quadratic form Q(x) = xT Ax based on the values of Q(x) as x ranges
over different possibilities in Rn.

D E F I N I T I O N 11.3 Let Q(x) = xT Ax be a quadratic form.

(a) Q is positive definite if Q(x) > 0 for all nonzero vectors x in Rn, and Q is
positive semidefinite if Q(x) ≥ 0 for all x in Rn.

(b) Q is negative definite if Q(x) < 0 for all nonzero vectors x in Rn, and Q is
negative semidefinite if Q(x) ≤ 0 for all x in Rn.

(c) Q is indefinite if Q(x) is positive for some x’s in Rn and negative for others.

Definition Positive Definite,
Negative Definite, Indefinite,

Positive Semidefinite, Negative
Semidefinite

The graphs in Figure 5 show quadratic forms that are positive definite, negative
definite, and indefinite.

It might seem difficult to classify a quadratic form, but it turns out that the eigenvalues
of the matrix of a quadratic form tell the story.

T H E O R E M 11.4 Let A be an n × n symmetric matrix, and suppose that Q(x) = xT Ax. Then

(a) Q is positive definite exactly when A has only positive eigenvalues.

(b) Q is negative definite exactly when A has only negative eigenvalues.

(c) Q is indefinite exactly when A has positive and negative eigenvalues.

Proof Since A is a symmetric matrix, there exist matrices P and D such that P T AP =
D, where the columns of P are orthonormal eigenvectors of A and the diagonal entries
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(a) z � x1
2 � 2x2

2 (b) z � � 2x1
2 � x2

2

z

x2

x1
x2

x2

x1

x1

(c) z � x1
2 � x2

2

z z

Figure 5 Plots of (a) positive definite, (b) negative definite, and (c) indefinite quadratic
forms.

of D are the eigenvalues λ1, . . . , λn of A. Since P is invertible, for a given x we can define
y = P −1x, so that x = P y. Then

Q(x) = xT Ax = (P y)T A(P y)

= yT (P T AP )y = yT Dy = λ1 y2
1 + · · · + λn y2

n

If the eigenvalues are all positive, then Q(x) > 0 except when y = 0, which implies
x = 0. Hence Q is positive definite. On the other hand, suppose that A has a nonpositive
eigenvalue—say, λ1 ≤ 0. If y has y1 = 1 and the other components are 0, then for the
corresponding x �= 0 we have

Q(x) = λ1 ≤ 0

so that Q is not positive definite. This proves part (a). The other parts are similar and
left as an exercise. ■

E X A M P L E 6 Determine if Q(x) = x2
2 +2x1x2 +4x1x3 +2x2x3 is positive definite,

negative definite, or indefinite.

Solution The matrix of this quadratic form is

A =
⎡
⎣0 1 2

1 1 1
2 1 0

⎤
⎦

The eigenvalues of A are λ1 = −2, λ2 = 0, and λ3 = 3. Thus, by Theorem 11.4, Q is
indefinite. ■

Applying Theorem 11.4 requires knowing the eigenvalues of A, which can sometimes
be hard to find. In the next section we will see how to use determinants to accomplish
the same thing.

E X E R C I S E S
For Exercises 1–4, evaluate Q(x) for the given x0.

1. Q(x) = x2
1 − 5x2

2 + 6x1x2; x0 =
[

3
1

]

2. Q(x) = x2
1 + 4x2

2 − 3x2
3 + 6x1x2; x0 =

[
1
0
2

]
3. Q(x) = 3x2

1 + x2
2 − x2

3 + 6x1x3; x0 =
[

0
3
1

]

4. Q(x) = −2x2
1 + 7x2

2 − 8x1x2 − 4x1x3 + 2x2x3; x0 =
[

0
3
1

]
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For Exercises 5–12, find a formula for the quadratic form with the
given matrix A.

5. A =
[

4 0
0 1

]

6. A =
[
−3 0

0 7

]

7. A =
[

1 3
3 2

]

8. A =
[

5 −2
−2 0

]

9. A =
[

1 0 0
0 3 0
0 0 −2

]

10. A =
[

2 1 −3
1 0 0

−3 0 5

]

11. A =

⎡
⎢⎣

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

⎤
⎥⎦

12. A =

⎡
⎢⎣

5 0 1 0
0 2 0 0
1 0 0 3
0 0 3 4

⎤
⎥⎦

For Exercises 13–18, find a matrix A such that Q(x) = xT Ax.

13. Q(x) = x2
1 − 5x2

2 + 6x1x2

14. Q(x) = x2
1 + 4x2

2 − 3x2
3 + 6x1x2

15. Q(x) = 3x2
1 + x2

2 − x2
3 + 6x1x3

16. Q(x) = −2x2
1 + 7x2

2 − 8x1x2 − 4x1x3 + 2x2x3

17. Q(x) = 5x2
1 − x2

2 + 3x2
3 + 6x1x3 − 12x2x3

18. Q(x) = x2
2 + x2

3 + 2x1x2 − 4x1x3 − 8x2x3

In Exercises 19–26, determine if the quadratic form Q(x) =
xT Ax is positive definite, negative definite, indefinite, or none of
these.

19. A =
[

1 2
2 1

]

20. A =
[

5 1
1 1

]

21. A =
[

2 2
2 −1

]

22. A =
[

5 8
8 −1

]

23. A =
[

0 1 0
1 0 0
0 0 1

]

24. A =
[

0 0 1
0 1 0
1 0 1

]

25. A =

⎡
⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎦

26. A =

⎡
⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎦

FIND AN EXAMPLE For Exercises 27–34, find an example that
meets the given specifications.

27. A quadratic form Q(x) and a constant c such that Q(x) = c
has no solutions.

28. A quadratic form Q(x) and a constant c such that Q(x) = c
has exactly one solution.

29. A quadratic form Q(x) and a constant c such that the graph
of Q(x) = c is two intersecting lines.

30. A quadratic form Q : R → R.

31. A quadratic form Q(x) that is also a linear transformation.

32. A quadratic form Q : R4 → R that is indefinite.

33. A quadratic form Q : R3 → R that is positive semidefinite
but not positive definite.

34. A quadratic form Q : R2 → R that is negative semidefinite
but not negative definite.

TRUE OR FALSE For Exercises 35–40, determine if the statement
is true or false, and justify your answer.

35. The matrix A of a quadratic form Q must be symmetric.

36. If Q is a quadratic form, then Q(x) = Q(−x).

37. If Q is a quadratic form, then

Q(x1 + x2) = Q(x1) + Q(x2)

38. If A is a diagonal matrix and the matrix of a quadratic form
Q, then Q is positive definite.

39. If Q1(x) and Q2(x) are quadratic forms, then so is Q1(x) +
Q2(x).

40. If A is the matrix of the quadratic form Q(x), then c A is the
matrix of the quadratic form c Q(x).

41. Prove that a quadratic form Q : R → R cannot be indefinite.

42. Prove that if Q(x) = xT Ax and QT (x) = xT AT x, then
Q(x) = QT (x).

43. Show that Q(x) = ‖x‖2 is a quadratic form and give the
matrix of the quadratic form. Then show that Q is positive
definite.

44. Show that Q(x) = ‖Ax‖2 is a quadratic form and give the
matrix of the quadratic form. Then show that Q is positive
definite if and only if null(A) = {0}.
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45. Prove that Q(0) = 0 for every quadratic form Q.

46. In this exercise we show that if P is an orthogonal 2×2 matrix,
then the transformation P y = x is a rotation or reflection.

(a) Prove that ‖P y‖ = ‖y‖ for y in R2.

(b) Prove that if x and y are in R2, then the angle between x
and y is the same as the angle between P x and P y. HINT: Recall

the formula

cos(θ) = x · y

‖x‖‖y‖
(c) Combine (a) and (b) to explain why P y = x is a rotation or
reflection.

11.2 Positive Definite Matrices
Definition 11.3 in Section 11.1 gives, for a quadratic form, the meaning of positive definite,
positive semidefinite, and so on. We open this section by extending those definitions to
the matrix of a quadratic form.

D E F I N I T I O N 11.5 A symmetric n × n matrix A is positive definite if the corresponding quadratic form
Q(x) = xT Ax is positive definite. Analogous definitions apply for negative definite
and indefinite.

Definition Positive Definite

By Theorem 11.4 in Section 11.1, we know that one way to determine if a symmetric
matrix A is positive definite is to examine the eigenvalues of A. If all the eigenvalues are
positive, then A is positive definite. The shortcoming of this approach is that it can be
difficult to find the eigenvalues, so it would be useful to have another method available.
The next theorem gives us a start in this direction.

T H E O R E M 11.6 If A is a symmetric positive definite matrix, then A is nonsingular and det(A) > 0.

Proof Since A is positive definite, by Theorem 11.4 in Section 11.1, all of the eigenvalues
of A are positive and hence nonzero. Thus, by The Big Theorem, Version 8 (Section 6.1),
A is nonsingular. Next, recall that

det(A) = λ1λ2 · · · λn

where λ1, λ2, . . . , λn are the eigenvalues of A (see Exercise 66 in Section 6.1). Since the
eigenvalues are positive, so is their product, and therefore det(A) > 0. ■

E X A M P L E 1 Show that Theorem 11.6 holds for the matrix

A =
⎡
⎣ 3 −1 0

−1 3 −1
0 −1 3

⎤
⎦

Solution The eigenvalues of A are

λ1 = 3 − √
2 ≈ 1.586, λ2 = 3, λ3 = 3 + √

2 ≈ 4.414

Since the eigenvalues are all positive, by Theorem 11.4 in Section 11.1 the associated
quadratic form, and hence the matrix A, is positive definite. We also have det(A) =
21 > 0. This implies A is nonsingular and shows that Theorem 11.6 is true for this
matrix. ■

Suppose that

A =
[
−2 0

0 −1

]

Then det(A) = 2, but A has
negative eigenvalues −2 and −1
and so is not positive definite.

It would be nice if the converse of Theorem 11.6 was true, so that det(A) > 0 would
be enough to guarantee that A is positive definite, but that is not true. (See the example
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in the margin.) However, let’s not abandon determinants yet. If

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

then the leading principal submatrices of A are given byDefinition Leading Principal
Submatrix

A1 = [
a11

]
, A2 =

[
a11 a12

a21 a22

]
, A3 =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

and so on through An = A.

T H E O R E M 11.7 A symmetric positive definite matrix A has leading principal submatrices A1, A2, . . . ,
An that are also positive definite.

Proof Let 1 ≤ m ≤ n, and suppose that xm �= 0 is in Rm. If we set

x =

⎡
⎢⎢⎣

xm

0
...

0

⎤
⎥⎥⎦ in Rn

then we have

xT
m Amxm = xT Ax > 0

because A is positive definite. Since this works for any nonzero xm, it follows that Am is
positive definite. ■

E X A M P L E 2 Show that the leading principal submatrices of the positive definite
matrix A in Example 1 are also positive definite.

Solution Since A1 = [
3
]

has associated quadratic form Q(x) = 3x2 that is positive
definite, then A1 is positive definite. The matrix

A2 =
[

3 −1
−1 3

]

has positive eigenvalues λ1 = 2 and λ2 = 4. Hence A2 is also positive definite by
Theorem 11.4 in Section 11.1. We have already shown that A3 = A is positive definite,
so all leading principal submatrices of A are positive definite. ■

Combining Theorem 11.6 and Theorem 11.7 shows that if A is positive definite, then
the leading principal submatrices satisfy det(A1) > 0, det(A2) > 0, . . . , det(An) > 0.
Interestingly, the converse is also true.

T H E O R E M 11.8 A symmetric matrix A is positive definite if and only if the leading principal subma-
trices satisfy

det(A1) > 0, det(A2) > 0, . . . , det(An) > 0 (1)

The proof of Theorem 11.8 is given at the end of the section.
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E X A M P L E 3 Determine if the matrix

A =
⎡
⎣ 4 8 −8

8 25 11
−8 11 98

⎤
⎦

is positive definite.

Solution We have

det(A1) = 4, det(A2) =
∣∣∣∣ 4 8

8 25

∣∣∣∣ = 36, det(A3) =
∣∣∣∣∣∣

4 8 −8
8 25 11

−8 11 98

∣∣∣∣∣∣ = 36

Since all three determinants are positive, A is positive definite. ■

LU-Factorization Revisited
In Section 3.4 we discussed LU-factorization, which involves expressing a matrix A as
the product A = LU , where L is lower triangular and U is upper triangular. There we
showed that A has an LU-factorization if A can be reduced to echelon form without the
use of row interchanges. Previously, the only way to tell if this was true was to try it, but
here we give a class of matrices that are guaranteed to have LU-factorizations.

T H E O R E M 11.9 Suppose that the leading principal submatrices of a symmetric matrix A satisfy (1).
Then A can be reduced to row echelon form without using row interchanges, and the
pivot elements will all be positive.

Proof We proceed by induction on n, where A is an n × n symmetric positive definite
matrix. First, if n = 1, then A = [a11] is automatically in row echelon form, so no row
interchanges are required. Moreover, we have

a11 = det(A) > 0

so that the sole pivot element is positive.
Now suppose that the theorem holds for (n − 1) × (n − 1) symmetric matrices, and

let A be an n × n symmetric matrix that satisfies (1). We can partition A as

A = An−1

⎡
⎢⎢⎢⎣

a1n

...

a(n−1)n

an1 · · · an(n−1) ann

⎤
⎥⎥⎥⎦

where the leading principal submatrix An−1 is symmetric and satisfies the induction
hypothesis. When reducing A to row echelon form, the values of all but the last pivot are
dictated entirely by elements of An−1. Thus, by the induction hypothesis, we can reduce
A to the form

A∗ =

⎡
⎢⎢⎢⎢⎢⎣

a∗
11 a12 · · · a1n

0 a∗
22 · · · a2n

...
...

. . .
...

0 · · · a∗
(n−1)(n−1) a(n−1)n

0 · · · 0 ann

⎤
⎥⎥⎥⎥⎥⎦
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where the pivots a∗
11, . . . , a∗

(n−1)(n−1) are all positive and no row interchanges are required.
Because there are no row interchanges, the determinant is unchanged, so that

det(A) = det(A∗) = det(An−1) · ann �⇒ ann = det(A)

det(An−1)

Since both det(A) > 0 and det(An−1) > 0, we have ann > 0, which completes the proof. ■

The matrix in Example 3 satisfies the hypotheses of Theorem 11.9, so it must have
an LU-factorization.

E X A M P L E 4 Find an LU-factorization for the matrix in Example 3,

A =
⎡
⎣ 4 8 −8

8 25 11
−8 11 98

⎤
⎦

Solution Since Section 3.4 contains several examples showing how to find the LU-
factorization, some details are omitted here. Recall that we obtain U by reducing A to
echelon form, and build up L one column at a time as we transform A.

Step 1a: Take the first column of A, divide each entry by the pivot 4, and use the
resulting values to form the first column of L .

A =
⎡
⎣ 4 8 −8

8 25 11
−8 11 98

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

2 • •
−2 • •

⎤
⎦

Step 1b: Perform row operations as usual to introduce zeros down the first column
of A.

A =
⎡
⎣ 4 8 −8

8 25 11
−8 11 98

⎤
⎦ ∼

⎡
⎣4 8 −8

0 9 27
0 27 82

⎤
⎦ = A1

Step 2a: Take the second column of A1, starting down from the pivot entry 9, and
divide each entry by the pivot. Use the resulting values to form the lower portion of the
second column of L .

A1 =
⎡
⎣4 8 −8

0 9 27
0 27 82

⎤
⎦ �⇒ L =

⎡
⎣ 1 • •

2 1 •
−2 3 •

⎤
⎦

Step 2b: Perform row operations as usual to introduce zeros down the second column
of A1.

A1 =
⎡
⎣4 8 −8

0 9 27
0 27 82

⎤
⎦ ∼

⎡
⎣4 8 −8

0 9 27
0 0 1

⎤
⎦ = A2

Step 3: Set U equal to A2, and finish filling in L .

L =
⎡
⎣ 1 0 0

2 1 0
−2 3 1

⎤
⎦ and U =

⎡
⎣4 8 −8

0 9 27
0 0 1

⎤
⎦

Standard matrix multiplication can be used to verify that A = LU . ■
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In Section 3.4 we extended the LU-factorization to A = L DU , where L is as before,
D is diagonal, and U is an upper triangular matrix with 1’s along the diagonal. Although
the LU-factorization is not unique, the LDU-factorization is unique (see Exercise 37).

To find the LDU-factorization, we start by finding the LU-factorization. Once that
is done, we write U as the product of a diagonal matrix and an upper triangular matrix,

U =

⎡
⎢⎢⎢⎢⎢⎣

u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

...
. . .

...

0 0 0 · · · unn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

u11 0 0 · · · 0
0 u22 0 · · · 0
0 0 u23 · · · 0
...

...
...

. . .
...

0 0 0 · · · unn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 u12

u11

u13

u11
· · · u1n

u11

0 1 u23

u22
· · · u2n

u22

0 0 1 · · · u3n

u33

...
...

...
. . .

...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

with the left matrix being D and the right the new U . For instance, taking U from the
factorization in Example 4, we have⎡

⎣4 8 −8
0 9 27
0 0 1

⎤
⎦ =

⎡
⎣4 0 0

0 9 0
0 0 1

⎤
⎦

⎡
⎣1 2 −2

0 1 3
0 0 1

⎤
⎦ = DU

The matrix U looks familiar—it is L T . This is not a coincidence.

T H E O R E M 11.10 A symmetric matrix A that satisfies (1) can be uniquely factored as A = LDLT , where
L is lower triangular with 1’s on the diagonal, and D is a diagonal matrix with all
positive diagonal entries.

Proof By Theorem 11.9 we know that A can be expressed uniquely as A = LDU , and
since A is symmetric, we have

LDU = A = AT = (LDU)T = U T DT L T = U T DL T

Because the factorization is unique, it follows that U = L T . That the diagonal entries of
D are positive also follows from Theorem 11.9. ■

Since the diagonal entries of D are all positive in the factorization given in Theo-
rem 11.10, we can define the matrix

D1/2 =

⎡
⎢⎢⎢⎣

√
u11 0 0 · · · 0
0

√
u22 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · √
unn

⎤
⎥⎥⎥⎦

If we set L c = L D1/2, then we have

A = LDLT = L D1/2 D1/2 L T = (
L D1/2

)(
L D1/2

)T = L c L T
c

The factorization A = L c L T
c is called the Cholesky decomposition of A. By Theo-Definition Cholesky

Decomposition rem 11.10, every symmetric matrix A satisfying (1) has a Cholesky decomposition.
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E X A M P L E 5 Find the Cholesky decomposition for the matrix A in Example 4.

Solution We have

L c = LD1/2 =
⎡
⎣ 1 0 0

2 1 0
−2 3 1

⎤
⎦

⎡
⎣

√
4 0 0
0

√
9 0

0 0
√

1

⎤
⎦

=
⎡
⎣ 1 0 0

2 1 0
−2 3 1

⎤
⎦

⎡
⎣2 0 0

0 3 0
0 0 1

⎤
⎦ =

⎡
⎣ 2 0 0

4 3 0
−4 9 1

⎤
⎦

We can verify the decomposition by computing

L c L T
c =

⎡
⎣ 2 0 0

4 3 0
−4 9 1

⎤
⎦

⎡
⎣2 4 −4

0 3 9
0 0 1

⎤
⎦ =

⎡
⎣ 4 8 −8

8 25 11
−8 11 98

⎤
⎦ = A

■

Roughly speaking, the
Cholesky decomposition can be
thought of as the square root of
a matrix. When it exists, it can
be applied in the same manner
as an LU decomposition to find
the solution to a linear system.

Proof of Theorem 11.8
We are now in the position to prove Theorem 11.8. Recall the statement of the theorem.

T H E O R E M 11.8 A symmetric matrix A is positive definite if and only if the leading principal subma-
trices satisfy

det(A1) > 0, det(A2) > 0, . . . , det(An) > 0 (1)

Proof As noted earlier, combining Theorem 11.6 and Theorem 11.7 shows that if A is
positive definite, then the leading principal submatrices satisfy det(A1) > 0, det(A2) > 0,
. . . , det(An) > 0. This completes one direction of the proof.

To complete the second direction of the proof, suppose that A is a symmetric ma-
trix and that the leading principal submatrices satisfy det(A1) > 0, det(A2) > 0, . . . ,
det(An) > 0. Then A has a Cholesky decomposition A = L c L T

c . Moreover, since
det(A) > 0, it follows that A is nonsingular and hence L T

c is also nonsingular. Thus
if x �= 0, then L T

c x �= 0. Therefore

xT Ax = xT L c L T
c x = (

L T
c x

)T(
L T

c x
) = ‖L T

c x‖2 > 0

so that A is positive definite. ■

E X E R C I S E S
In Exercises 1–6, find the principal submatrices of the given
matrix.

1. A =
[

3 5
5 7

]

2. A =
[

1 −6
−6 2

]

3. A =
[

1 4 −3
4 0 2

−3 2 5

]

4. A =
[

3 0 2
0 −4 1
2 1 −1

]

5. A =

⎡
⎢⎣

2 1 0 −1
1 3 4 1
0 4 0 −2

−1 1 −2 1

⎤
⎥⎦

6. A =

⎡
⎢⎣

1 −2 3 0
−2 4 2 −3

3 2 3 1
0 −3 1 0

⎤
⎥⎦

In Exercises 7–12, determine if the given matrix is positive definite.

7. A =
[

2 1
1 −2

]

8. A =
[

1 3
3 5

]
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9. A =
[

1 2 −1
2 5 1

−1 1 11

]

10. A =
[

1 −3 2
−3 10 −7

2 −7 6

]

11. A =

⎡
⎢⎣

1 1 2 1
1 2 1 0
2 1 6 3
1 0 3 6

⎤
⎥⎦

12. A =

⎡
⎢⎣

1 −2 2 1
−2 5 −1 −3

2 −1 14 −1
1 −3 −1 3

⎤
⎥⎦

In Exercises 13–16, show that the given matrix is positive definite,
and then find the LU-factorization.

13. A =
[

1 −2
−2 5

]

14. A =
[

1 3
3 10

]

15. A =
[

1 −2 2
−2 5 −5

2 −5 6

]

16. A =
[

1 1 −1
1 10 −4

−1 −4 11

]

In Exercises 17–20, show that the given matrix is positive definite,
and then find the LDU-factorization.

17. A =
[

1 −2
−2 8

]

18. A =
[

4 −4
−4 5

]

19. A =
[

1 3 2
3 10 8
2 8 9

]

20. A =
[

1 1 1
1 5 1
1 1 5

]

In Exercises 21–24, show that the given matrix is positive definite,
and then find the Cholesky decomposition.

21. A =
[

1 2
2 5

]

22. A =
[

4 2
2 10

]

23. A =
[

1 2 3
2 5 6
3 6 10

]

24. A =
[

1 4 1
4 25 7
1 7 6

]

FIND AN EXAMPLE For Exercises 25–30, find an example that
meets the given specifications.

25. A 2 × 2 matrix A such that det(A1) < 0 but det(A2) > 0.

26. A 2 × 2 matrix A such that det(A1) > 0 but det(A2) < 0.

27. A 3 × 3 matrix A such that det(A1) < 0 and det(A3) < 0, but
det(A2) > 0.

28. A 3 × 3 matrix A such that det(A1) > 0, but det(A2) < 0,
and det(A3) < 0.

29. A 3 × 3 matrix A such that det(A) > 0 but A is not positive
definite.

30. A 3 × 3 matrix A such that det(A) < 0 but A is not negative
definite.

TRUE OR FALSE For Exercises 31–36, determine if the statement
is true or false, and justify your answer.

31. A symmetric matrix A is positive definite if and only if
det(A) > 0.

32. If L c L T
c is the Cholesky decomposition of A, then L T

c L c is
the Cholesky decomposition of AT .

33. If A and B are n × n positive definite matrices, then so is AB .

34. If A and B are n × n positive definite matrices, then so is
A + B .

35. If A is a positive definite matrix, then so is A−1.

36. If the determinants of the leading principal submatrices of a
symmetric matrix A are all negative, then A is negative definite.

37. Let A = L 1 D1U1 and A = L 2 D2U2 be two LDU-
factorizations of A. Prove that L 1 = L 2, D1 = D2, and U1 = U2,
which shows that the LDU factorization is unique.

11.3 Constrained Optimization
In this section we consider the following problem: Find the maximum and/or minimum
value of a quadratic form Q(x), where x ranges over a set of vectors x that satisfy some
constraint.

Our problem is easiest to solve when the quadratic form has no cross-product terms,
so let’s start by looking at an example of that case.

E X A M P L E 1 Find the maximum and minimum values of Q(x) = 4x2
1 −3x2

2 +7x2
3 ,

subject to the constraint ‖x‖ = 1.
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Solution First, note that if ‖x‖ = 1, then ‖x‖2 = 1 and therefore

x2
1 + x2

2 + x2
3 = 1

Each of x2
1 , x2

2 , and x2
3 is nonnegative, so that

Q(x) = 4x2
1 − 3x2

2 + 7x2
3 ≤ 7x2

1 + 7x2
2 + 7x2

3 = 7(x2
1 + x2

2 + x2
3 ) = 7

Thus Q(x) ≤ 7. Moreover, if x1 = x2 = 0 and x3 = 1, then ‖x‖ = 1 and Q(x) = 7.
Therefore, subject to the constraint ‖x‖ = 1, the maximum value is Q(x) = 7.

A similar argument can be used to show that subject to the same constraint, the
minimum value is equal to the minimum coefficient, so that the minimum value is
Q(x) = −3. ■

Example 1 illustrates a more general fact that is described in the next theorem.

T H E O R E M 11.11 Suppose that Q : Rn → R is a quadratic form

Q(x) = q1x2
1 + q2x2

2 + · · · + qnx2
n

that has no cross-product terms. Let qi and q j be the maximum and minimum,
respectively, of the coefficients q1, q2, . . . , qn. Then subject to the constraint ‖x‖ = 1,
we have

(a) The maximum value of Q(x) is qi , attained at x = ei .

(b) The minimum value of Q(x) is q j , attained at x = e j .

Recall that

ek =

⎡
⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎦ ← entry k

The proof is similar to the solution to Example 1 and is left as an exercise.

E X A M P L E 2 Find the maximum and minimum values of

Q(x) = 2x2
1 − 4x2

2 + 5x2
3 − x2

4

subject to the constraint ‖x‖ = 1.

Solution By Theorem 11.11, the maximum value of Q(x) is 5 and the minimum value
is −4. The maximum and minimum values are attained at, respectively,

x3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ and x2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦

■

Theorem 11.11 tells us what to do with a quadratic form that is free of cross-product
terms, so now we consider general quadratic forms Q : Rn → R.

T H E O R E M 11.12 Let Q(x) = xT Ax, where A is a symmetric n×n matrix. Suppose that A has eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn, and let u1, . . . , un be the associated normalized eigenvectors.
Then subject to the constraint ‖x‖ = 1, we have

(a) The maximum value of Q(x) is λn, attained at x = un.

(b) The minimum value of Q(x) is λ1, attained at x = u1.

Proof Recall from Section 11.1 that for such a matrix A, there exists an orthogonal
matrix P (with columns that are eigenvectors of A) and a diagonal matrix D (diagonal
entries are the eigenvalues of A) such that if x = P y, then

xT Ax = yT Dy
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Since D is diagonal, the quadratic form yT Dy has no cross-product terms, so that The-
orem 11.11 applies. Moreover, if ‖y‖ = 1, then

‖x‖ = ‖P y‖ = 1

(See Exercise 66, Section 8.3.) Therefore the maximum value of xT Ax subject to the
constraint ‖x‖ = 1 is equal to the maximum value of yT Dy subject to the constraint
‖y‖ = 1. (The same holds if “maximum” is replaced with “minimum.”)

Returning to Theorem 11.11, the matrix of the quadratic form is diagonal with
diagonal entries q1, . . . , qn. For our matrix D, the diagonal entries are the eigenvalues
of A, so that Theorem 11.11 applies to the set {λ1, . . . , λn}, which yields the claimed
maximum and minimum values. Observing that P ek = uk completes the proof. ■

E X A M P L E 3 Find the maximum and minimum values of

Q(x) = x2
2 + 2x1x2 + 4x1x3 + 2x2x3

subject to the constraint ‖x‖ = 1.

Solution The matrix of this quadratic form is

A =
⎡
⎣0 1 2

1 1 1
2 1 0

⎤
⎦

Using our usual methods, we find that the eigenvalues of A are λ1 = −2, λ2 = 0, and
λ3 = 3. Thus, by Theorem 11.12, the maximum value of Q(x) is 3 and the minimum
value is −2. The maximum and minimum values are attained at the eigenvectors

Maximum attained at u3 =

⎡
⎢⎢⎣

1√
3

1√
3

1√
3

⎤
⎥⎥⎦ Minimum attained at u1 =

⎡
⎢⎢⎣

− 1√
2

0

1√
2

⎤
⎥⎥⎦

■

Varying the Constraint
In the next two examples, we modify the constraint requirements. In both cases, the
problem can be solved by changing variables and then using earlier methods.

E X A M P L E 4 Find the maximum and minimum values of

Q(x) = 5x2
2 + 8x2

2 + 4x1x2

subject to the constraint ‖x‖ = c , where c > 0 is a positive constant.

Solution Let’s start by solving the problem with the constraint ‖x‖ = 1. The matrix
of the quadratic form is

A =
[

5 2
2 8

]

which has eigenvalues λ1 = 4 and λ2 = 9. Hence, subject to ‖x‖ = 1, the maximum
value of Q(x) is 9 and the minimum value is 4. To finish, note that ‖x‖ = 1 if and only
if ‖cx‖ = c and Q(cx) = c 2 Q(x) (see Exercise 39). Therefore, subject to the constraint
‖x‖ = c , the maximum value of Q(x) is 9c 2 and the minimum value is 4c 2. ■
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E X A M P L E 5 Find the maximum and minimum values of

Q(x) = 2x2
2 + 5x2

2 + 4x1x2

subject to the constraint 4x2
1 + 25x2

2 = 100.

Solution The first step is to use a change of variables to adjust the constraint equation
so that it once again describes unit vectors. Let

w1 = x1

5
and w2 = x2

2

so that the constraint equation becomes

4(5w1)2 + 25(2w2)2 = 100 �⇒ w 2
1 + w 2

2 = 1

and hence we have the constraint ‖w‖ = 1. With this variable change, the quadratic
form becomes

Q(x) = Q

([
x1

x2

])
= Q

([
5w1

2w2

])

= 2(5w1)2 + 5(2w2)2 + 4(5w1)(2w2)

= 50w 2
1 + 20w 2

2 + 40w1w2

The matrix of the quadratic form 50w 2
1 + 20w 2

2 + 40w1w2 is

A =
[

50 20
20 20

]

which has eigenvalues λ1 = 10 and λ2 = 60. Hence the maximum value of Q(x) is 60
and the minimum value is 10. To determine where the maximum and minimum values
are attained, we note that the normalized eigenvectors of A are

λ1 = 10 ⇒ w1 =
[ 1√

5

2√
5

]
, λ2 = 60 ⇒ w2 =

[ 2√
5

1√
5

]

Thus the maximum of 50w 2
1 + 20w 2

2 + 40w1w2 subject to ‖w‖ = 1 is attained at

[ 2√
5

1√
5

]
= w2 =

[
w1

w2

]
=

[
x1/5
x2/2

]

so that the maximum of Q(x) = 2x2
2 + 5x2

2 + 4x1x2 subject to 4x2
1 + 25x2

2 = 100 is
attained at

x2 =
[

5w1

2w2

]
=

[
2
√

5√
5

]

By a similar argument, the minimum is attained at x1 =
[−√

5
2
√

5

]
. ■

Adding Orthogonality to the Constraint
In some applications, it is handy to be able to constrain x so that both ‖x‖ = 1 and x are
orthogonal to un, the eigenvector associated with the largest eigenvalue λn.
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E X A M P L E 6 Find the maximum value of Q(x) = 4x2
1 − 3x2

2 + 7x2
3 , subject to the

constraints ‖x‖ = 1 and x · u3 = 0, where u3 = (0, 0, 1).

Solution This is the quadratic form from Example 1, where we asked for the maximum
subject only to the constraint ‖x‖ = 1. Since we have added another constraint, the
maximum can be no larger (and possibly is smaller) than the maximum found before.

Due to the extra constraint, we cannot apply Theorem 11.11, but we can apply the
same line of reasoning as used in Example 1. The constraint x · u3 = 0 implies that the
third component x3 = 0, so that the two constraints together impose the requirement
x2

1 + x2
2 = 1. Therefore we have

Q(x) = 4x2
1 − 3x2

2 + 7x2
3 = 4x2

1 − 3x2
2 ≤ 4x2

1 + 4x2
2 = 4(x2

1 + x2
2 ) = 4

This puts an upper bound of 4 on the maximum. Moreover, if x = (1, 0, 0), then x
satisfies the constraints and Q(x) = 4. Thus the maximum value is 4, attained when
x = (1, 0, 0). ■

In Example 6 the vector u3 = (0, 0, 1) is the eigenvector associated with the largest
eigenvalue λ3 = 7 of A, the matrix of the quadratic form. Note that the maximum 4
is equal to the second-largest eigenvalue of A and is attained when x is an associated
eigenvector. This is not a coincidence.

Theorem 11.13 only makes
sense if n > 1.

T H E O R E M 11.13 Let Q(x) = xT Ax, where A is a symmetric n×n matrix with eigenvaluesλ1 ≤ λ2 ≤ · · ·
≤ λn and associated orthonormal eigenvectors u1, u2, . . . , un. Then subject to the
constraints ‖x‖ = 1 and x · un = 0,

(a) The maximum value of Q(x) is λn−1, attained at x = un−1.

(b) The minimum value of Q(x) is λ1, attained at x = u1.

Proof Since the eigenvectors u1, u2, . . . , un are orthonormal, they form a basis for Rn.
Moreover, for a given x if ci = x · ui for i = 1, . . . , n, then

x = c1u1 + c2u2 + · · · + cnun

Since one constraint is that x · un = 0, it follows that cn = 0, so that

x = c1u1 + · · · + cn−1un−1

Because u1, . . . , un−1 are orthonormal, we have

‖x‖2 = c 2
1 + · · · + c 2

n−1

(See Exercise 50 of Section 8.2.) Since ‖x‖ = 1, we have c 2
2 + · · · + c 2

n = 1. Thus

xT Ax = xT A(c1u1 + · · · + cn−1un−1)

= (c1u1 + · · · + cn−1un−1) · (c1λ1u1 + · · · + cn−1λn−1un−1)

= c 2
1λ1 + · · · + c 2

n−1λn−1

≤ c 2
1λn−1 + · · · + c 2

n−1λn−1

= λn−1(c 2
1 + · · · + c 2

n−1) = λn−1

This shows that Q(x) ≤ λn−1. Furthermore, if x = un−1, then cn−1 = 1 and c1 = · · · =
cn−2 = 0, and hence

Q(un−1) = λn−1

Therefore the maximum value of Q(x) is λn−1, attained when x = un−1. The minimum
value is not changed by the constraint x · un = 0, so (b) follows from Theorem 11.12. ■
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E X A M P L E 7 Find the maximum and minimum values of

Q(x) = x2
2 + 2x1x2 + 4x1x3 + 2x2x3

subject to the constraints ‖x‖ = 1 and x · u3 = 0, where u3 = (1, 1, 1).

Solution This is the quadratic form in Example 3, which has matrix

A =
⎡
⎣0 1 2

1 1 1
2 1 0

⎤
⎦

There we showed that the eigenvalues of A are λ1 = −2, λ2 = 0, and λ3 = 3. Also
note that Au3 = 3u3, so that u3 is an eigenvector associated with the largest eigenvalue
λ3 = 3. Therefore by Theorem 11.13, subject to our constraints, the maximum value
of Q(x) is λ2 = 0 and the minimum value is λ1 = −2. ■

E X E R C I S E S
For Exercises 1–6, find the maximum and minimum values of the
quadratic form Q(x) subject to the constraint ‖x‖ = 1.

1. Q(x) = 2x2
1 − 3x2

2

2. Q(x) = 6x2
1 + 5x2

2

3. Q(x) = 3x2
1 − 3x2

2 − 5x2
3

4. Q(x) = −x2
1 + 4x2

2 + 8x2
3

5. Q(x) = x2
1 − x2

2 − 4x2
3 + 2x2

4

6. Q(x) = 3x2
1 − 4x2

2 − 2x2
3 + x2

4

For Exercises 7–12, find the maximum and minimum values of
the quadratic form Q(x) subject to the constraint ‖x‖ = 1.

7. Q(x) = 4x2
1 + x2

2 + 4x1x2

8. Q(x) = 3x2
1 + 3x2

2 + 8x1x2

9. Q(x) = x2
2 + 2x1x3

10. Q(x) = x2
1 + 4x2

2 + x2
3 + 4x2x3

11. Q(x) = x2
1 + 2x1x2 + 2x1x3 + 2x2x3 + x2

2 + x2
3

12. Q(x) = x2
1 + 4x1x2 + 6x1x3 + 6x2x3 + x2

2 (HINT: The eigen-
values are λ = −3, −1, 6.)

For Exercises 13–16, find the maximum and minimum values of
the quadratic form Q(x) subject to the given constraint.

13. Q(x) = x2
1 + 4x2

2 + 4x1x2; ‖x‖ = 2

14. Q(x) = 3x2
1 + 3x2

2 + 8x1x2; ‖x‖ = 0.5

15. Q(x) = x2
1 + 2x2x3; ‖x‖ = 10

16. Q(x) = 4x2
1 + x2

2 + x2
3 + 4x1x3; ‖x‖ = 5

For Exercises 17–20, find the maximum and minimum values of
the quadratic form Q(x) subject to the given constraint.

17. Q(x) = 4x2
1 + x2

2 + 4x1x2; 4x2
1 + 25x2

2 = 100

18. Q(x) = 2x2
1 + 2x2

2 + 10x1x2; 9x2
1 + 16x2

2 = 144

19. Q(x) = 4x2
1 + 4x2

2 + 6x1x2; 9x2
1 + x2

2 = 9

20. Q(x) = 3x2
1 + 3x2

2 + 8x1x2; x2
1 + 4x2

2 = 4

For Exercises 21–24, find the maximum and minimum values of
the quadratic form Q(x) subject to the constraint ‖x‖ = 1 and
x · u3 = 0.

21. Q(x) = 4x2
1 + x2

2 + 3x2
3 ; u3 = (1, 0, 0)

22. Q(x) = −2x2
1 + x2

2 − 5x2
3 ; u3 = (0, 1, 0)

23. Q(x) = x2
1 + 4x2

2 + x2
3 + 4x2x3; u3 = (0, 2, 1)

24. Q(x) = x2
1 + 4x1x2 + 6x1x3 + 6x2x3 + x2

2 ; u3 = (1, 1, 1)
(HINT: Eigenvalues are λ = −3, −1, 6.)

FIND AN EXAMPLE For Exercises 25–30, find an example that
meets the given specifications.

25. A quadratic form Q: R2 → R that has maximum value 5,
subject to the constraint that ‖x‖ = 1.

26. A quadratic form Q: R3 → R that has minimum value 4,
subject to the constraint that ‖x‖ = 1.

27. A quadratic form Q: R2 → R that has maximum value 6 and
minimum value 1, subject to the constraint that ‖x‖ = 1.

28. A quadratic form Q: R3 → R that has maximum value −2
and minimum value −7, subject to the constraint that ‖x‖ = 1.

29. A quadratic form Q: R2 → R that has maximum value 4 and
minimum value −1, subject to the constraint that ‖x‖ = 3.

30. A quadratic form Q: R3 → R that has maximum value 8 and
minimum value −3, subject to the constraint that ‖x‖ = 4.

TRUE OR FALSE For Exercises 31–36, determine if the statement
is true or false, and justify your answer.

31. A quadratic form Q: Rn → R has a maximum and minimum
when constrained to ‖x‖ = 1.

32. If M is the maximum value of a quadratic form Q(x) subject
to the constraint ‖x‖ = 1, then c M is the maximum value of Q(x)
subject to the constraint ‖x‖ = c .

33. If M and m are, respectively, the maximum and minimum
values of a quadratic form Q(x) subject to the constraint ‖x‖ = 1,
then m < M.
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34. If x1 maximizes a quadratic form Q(x) subject to the constraint
‖x‖ = 1, then so does −x1.

35. The minimum value of a quadratic form Q(x) subject to the
constraint ‖x‖ = 2 must be less than the minimum value of Q(x)
subject to the constraint ‖x‖ = 1.

36. It is possible for a quadratic form to attain its constrained
maximum at more than one point.

37. Prove Theorem 11.11: Suppose that Q : Rn → R is a quadratic
form

Q(x) = q1x2
1 + q2x2

2 + · · · + qnx2
n

that has no cross-product terms. Let qi and q j be the maximum
and minimum, respectively, of the coefficients q1, q2, . . . , qn .
Then subject to the constraint ‖x‖ = 1, we have

(a) Maximum value of Q(x) = qi , attained at x = ei .

(b) Minimum value of Q(x) = q j , attained at x = e j .

38. Prove the following generalized version of Theorem 11.12: Let
A be a symmetric n × n matrix, and let Q : Rn → R be the

quadratic form

Q(x) = xT Ax

If A has eigenvalues λ1 ≤ . . . ≤ λn , then subject to the constraint
‖x‖ = c (c > 0), the maximum value of Q(x) is c 2λn and the
minimum value is c 2λ1.

39. Prove that if Q(x) is a quadratic form and c is a constant, then
Q(cx) = c 2 Q(x).

40. Prove the following extension of Theorem 11.13. Let A be a
symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and
associated orthonormal eigenvectors u1, u2, . . . , un . Then subject
to the constraints

‖x‖ = 1, x · un = 0, x · un−1 = 0, . . . , x · un− j+1 = 0

prove that the maximum value of the quadratic form Q(x) =
xT Ax is λn− j , with the maximum attained at un− j .

11.4 Complex Vector Spaces
Here we assume a basic un-

derstanding of the properties of
complex numbers. A review of
some of these properties is given
in Section 6.5.

In this section we define complex vector spaces, which are a fairly straightforward exten-
sion of the real vector spaces defined in Definition 7.1 in Section 7.1. In fact, the only
change when moving to complex vector spaces is that we allow the scalars to be complex
numbers.

Definition Complex Vector
Space, Vector

D E F I N I T I O N 11.14 A complex vector space consists of a set V of vectors together with operations
of addition and scalar multiplication on the vectors that satisfy each of the
following:

(1) If v1 and v2 are in V , then so is v1 + v2. Hence V is closed under addition.

(2) If c is a complex scalar and v is in V , then so is cv. Hence V is closed under scalar
multiplication.

(3) There exists a zero vector 0 in V such that 0 + v = v for all v in V .

(4) For each v in V , there exists an additive inverse (or opposite) vector −v in V
such that v + (−v) = 0 for all v in V .

(5) For all v1, v2, and v3 in V and complex scalars c1 and c2, we have

(a) v1 + v2 = v2 + v1

(b) (v1 + v2) + v3 = v1 + (v2 + v3)

(c) c1(v1 + v2) = c1v1 + c1v2

(d) (c1 + c2)v1 = c1v1 + c2v1

(e) (c1c2)v1 = c1(c2v1)

(f) 1 · v1 = v1

We have seen that all finite-dimensional real vector spaces are isomorphic to Rn

for some n, so these are arguably the most important of the real vector spaces. If we
allow complex numbers in place of real numbers, then we get Cn, the set of vectors of
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the form

v =

⎡
⎢⎣

v1

...

vn

⎤
⎥⎦

where v1, . . . , vn are complex numbers. With addition and scalar multiplication defined
as it is on Rn, the set Cn is a vector space.

E X A M P L E 1 Compute v1 + v2 and iv1 for

v1 =
[

i + 3
−2i

]
, v2 =

[
2 − 3i
5i + 1

]

Solution Adding real and imaginary parts in each component, we have

v1 + v2 =
[

(i + 3) + (2 − 3i)
−2i + (5i + 1)

]
=

[
5 − 2i
1 + 3i

]

Using the identity i 2 = −1 allows us to simplify:

iv1 =
[

i(i + 3)
i(−2i)

]
=

[
i 2 + 3i
−2i 2

]
=

[−1 + 3i
2

]
■

E X A M P L E 2 Show that the set C2×2 of 2 × 2 matrices with complex entries forms
a complex vector space when addition and scalar multiplication are defined in the usual
manner for matrices.

Solution We show that two of the requirements of Definition 11.14 hold and leave the
rest as an exercise. First, if

A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]

are both in C2×2, then

A + B =
[

(a11 + b11) (a12 + b12)
(a21 + b21) (a22 + b22)

]

is also in C2×2. Thus the set is closed under addition, so that (1) of Definition 11.14 is
satisfied. Second, the zero matrix

0 =
[

0 0
0 0

]

from R2×2 also serves as the zero matrix for C2×2, so that (3) is satisfied. The remaining
properties are left as an exercise. ■

E X A M P L E 3 Suppose that f : R → R and g : R → R, and define

h(x) = f (x) + ig (x)

Then h : R −→ C is a complex-valued function of a real variable. Show that the set of
all such functions forms a complex vector space under the usual definition for addition
and scalar multiplication of functions.



Holt-4100161 la October 22, 2012 16:49 431

SECTION 11.4 Complex Vector Spaces 431

Solution As with Example 2, here we verify some conditions of Definition 11.14 and
leave the rest to the exercises. First, suppose that h(x) = f (x) + ig (x) is in our set of
functions, and let c = a + ib be a complex scalar. Then

ch(x) = (a + ib)
(

f (x) + ig (x)
)

= (
a f (x) − bg (x)

) + i
(
ag (x) + b f (x)

)
Since both a f −bg and ag +b f are real functions of real variables, it follows that ch(x)
is a complex-valued function of a real variable. Hence our set is closed under scalar
multiplication, as required by (2) of Definition 11.14.

Next, for h(x) = f (x) + ig (x), if we let −h(x) = − f (x) − ig (x), then −h(x) is
also in our set, and

h(x) + (−h(x)
) = (

f (x) + ig (x)
) + (− f (x) − ig (x)

) = 0 + 0i = 0

Thus each vector in our set has an additive inverse in the set, which shows that (4)
of Definition 11.14 is also true. Verification of the remaining conditions is left as an
exercise. ■

Concepts such as linear combination, linear independence, span, basis, and subspace
carry over to complex vector spaces in a natural and essentially unchanged
manner. For instance, to show that a set of vectors {v1, . . . , vk} is linearly indepen-
dent in a complex vector space, we need to show that the only solution among complex
scalars c1, . . . , ck to

c1v1 + · · · + ckvk = 0

is the trivial c1 = · · · = ck = 0.

Complex Inner Product Spaces
In Chapter 10 we developed the notion of an inner product on a real vector space and
considered some of the properties of an inner product. Here we provide an account of
the analog for complex vector spaces, starting with the definition of an inner product.
(Note the similarities between this and Definition 10.1.)

Definition Inner Product,
Complex Inner Product Space,

Unitary Space

D E F I N I T I O N 11.15 Let u, v, and w be elements of a complex vector space V , and let c be a complex scalar.
An inner product on V is a function denoted by 〈u, v〉 that takes any two vectors in
V as input and produces a scalar as output. An inner product on a complex vector
space satisfies the conditions:

(a) 〈u, v〉 = 〈v, u〉
(b) 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
(c) 〈cu, v〉 = c〈u, v〉
(d) 〈u, u〉 is a nonnegative real number, and 〈u, u〉 = 0 only when u = 0

A complex vector space V with an inner product defined on it is called a complex
inner product space or a unitary space.

Definition Complex Dot
Product

A complex inner product space of particular importance is the vector space Cn

together with the complex dot product, defined by

u · v = u1v1 + u2v2 + · · · + unvn
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For example, if

u =
⎡
⎣1 + i

−2i
4

⎤
⎦ and v =

⎡
⎣ 5i

2 − i
1 + 3i

⎤
⎦

then

u · v = (1 + i)(5i) + (−2i)(2 − i) + (4)(1 + 3i)

= (1 + i)(−5i) + (−2i)(2 + i) + (4)(1 − 3i) = 11 − 21i

Note that

u · u = u1u1 + u2u2 + · · · + unun = |u1|2 + |u2|2 + · · · + |un|2 ≥ 0

with equality holding only if u = 0. Thus (d) of Definition 11.15 holds for the complex dot
product. Proving that the other conditions also hold is left as an exercise (see Exercise 46).

The following theorem gives three properties of inner products that follow from
Definition 11.15. Of these, the first two are the same as for real inner products, but the
third is different because of the complex conjugation in (a) of the definition.

T H E O R E M 11.16 Let u, v, and w be elements of a complex vector space V , and let c be a complex scalar.
Then an inner product defined on V satisfies each of the following:

(a) 〈0, u〉 = 〈u, 0〉 = 0

(b) 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉
(c) 〈u, cv〉 = c〈u, v〉

The proof is left as an exercise (see Exercise 47).

E X A M P L E 4 Show that the set C2×2 of 2 × 2 matrices with complex entries (as in
Example 2) is a complex inner product space using the following for an inner product:
For each

A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]

in C2×2, we set

〈A, B〉 = a11b11 + a12b12 + a21b21 + a22b22

Solution We already know from Example 2 that C2×2 is a complex vector space. Thus
all that remains is to show that our proposed inner product is an inner product.

To proceed, we could work through the four conditions of Definition 11.15. How-
ever, looking at our function closely, we can see that it is really just a thinly disguised
version of the complex dot product on C4. The only difference (essentially a cosmetic
one) is that the entries of our matrices are arranged in two rows of two each, instead of
a single column as in C4. Since the complex dot product is an inner product, so is the
function defined here. ■

Given a vector u in a complex inner product space V , the norm (or length) of u is
defined just as it is in a real inner product space, by

‖u‖ =
√

〈u, u〉



Holt-4100161 la October 22, 2012 16:49 433

SECTION 11.4 Complex Vector Spaces 433

Once we have the norm, we define the distance from u to v by

Distance from u to v = ‖v − u‖
The norm has the properties given in the next theorem.

T H E O R E M 11.17 Let u and v be elements of a complex inner product space V , and suppose that c be a
complex scalar. Then

(a) ‖u‖ ≥ 0 (with equality only if u = 0)

(b) ‖cu‖ = |c |‖u‖
(c) |〈u, v〉| ≤ ‖u‖‖v‖ (This is the Cauchy–Schwarz inequality)

(d) ‖u + v‖ ≤ ‖u‖ + ‖v‖ (This is the Triangle inequality)

The proof is similar to the real case and is left as exercises.

E X A M P L E 5 Let u =
[−1 + i

−2i

]
and v =

[
2

1 − i

]
be in C2. Compute 〈u, v〉, ‖u‖2,

‖v‖2, and ‖u + v‖2 using the complex dot product for the inner product.

Solution We have

〈u, v〉 = (−1 + i)(2) + (−2i)(1 + i) = (−2 + 2i) + (2 − 2i) = 0

‖u‖2 = (−1 + i)(−1 − i) + (−2i)(2i) = 2 + 4 = 6

‖v‖2 = (2)(2) + (1 − i)(1 + i) = 4 + 2 = 6

‖u + v‖2 = (1 + i)(1 − i) + (1 − 3i)(1 + 3i) = 2 + 10 = 12 ■

Regarding complex inner products:

• Note that we have 〈u, v〉 = 0. The definition of orthogonal is the same for complex
inner product spaces as it is for the real counterparts:

Vectors u and v are orthogonal if and only if 〈u, v〉 = 0.

Thus our two vectors are orthogonal with respect to the complex dot product.

• In Example 5 we have 〈u, v〉 = 0, ‖u‖2 = 6, ‖v‖2 = 6, and ‖u + v‖2 = 12. In general,
for a complex inner product, if 〈u, v〉 = 0 then ‖u‖2 +‖v‖2 = ‖u + v‖2. Interestingly,
the converse is not true. (See Exercise 31 and Exercise 48.)

• The definitions of orthonormal, orthogonal set, orthonormal set, and other related
concepts are analogous to those for real vector spaces.

• The Gram–Schmidt process also works when applied to a complex inner product space.

Suppose that h1(x) and h2(x) are from the set of complex-valued functions of a real
variable, described in Example 3. Let’s add one additional condition—namely, that both
functions are continuous. Then a complex inner product is given by

〈h1, h2〉 =
∫ 1

0

h1(x)h2(x) dx (1)

There is nothing special
about using 0 and 1 for the
limits of integration. As long
as a < b, we also get an inner
product using∫ b

a
h1(x)h2(x) dx

Note that

〈h1, h1〉 =
∫ 1

0

h1(x)h1(x) dx =
∫ 1

0

|h1(x)|2 dx
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Thus 〈h1, h1〉 ≥ 0, with equality holding only if h1(x) = 0. (This is where the continuity
requirement is used.) The other conditions required of an inner product can be readily
verified.

E X A M P L E 6 Let h1(x) = x + i and h2(x) = 1 − 3xi , and let S be the subspace
spanned by these two functions. Use the Gram–Schmidt process to find an orthogonal
basis for S.

Solution If we let j1(x) and j2(x) denote the orthogonal basis vectors, then by Gram–
Schmidt we have

j1(x) = h1(x)

j2(x) = h2(x) − 〈h2, j1〉
〈 j1, j1〉 j1(x)

We start by setting j1(x) = x + i . To find j2(x), we compute

〈h2, j1〉 =
∫ 1

0

(1 − 3xi)(x − i) dx =
∫ 1

0

(−2x − i(1 + 3x2)
)

dx = −1 − 2i

〈 j1, j1〉 =
∫ 1

0

|(x + i)|2 dx =
∫ 1

0

(x2 + 1) dx = 4

3

Therefore

j2(x) = (1 − 3xi) − 3

4
(−1 + 2i)(x + i) = 1

4

(
(3x − 2) + i(3 − 6x)

)
■

E X E R C I S E S
For Exercises 1–10, let

u =
[

2 + 3i
−1

3 + 4i

]
, v =

[
2

3 − i
1 + 5i

]
,

w =
[

2 + i
2 − i

4 − 3i

]

1. Find each linear combination:

(a) u − v (b) w + 3v (c) −u + 2iw − 5v

2. Find each linear combination:

(a) 2u + w (b) w − iu (c) −iw − 3v + 2iu

3. Determine if there exists a constant c such that u + iv = cw.

4. Determine if there exists a nontrivial linear combination such
that c1u + c2v + c3w = 0.

5. Is (−5 + 2i, −3, −5 + i) in the span of {u, v, w}?
6. Is (−2 + i, −9, −1 + 16i) in the span of {u, v, w}?
7. Compute each using the complex dot product.

(a) 〈u, v〉 (b) 〈iv, −2w〉 (c) ‖w‖
8. Compute each using the complex dot product.

(a) 〈2w, 3iu〉 (b) 〈−iv, 5v〉 (c) ‖w + iu‖
9. Normalize u and v using the complex dot product.

10. Normalize u + v and v − w using the complex dot product.

For Exercises 11–20, let

A =
[

2 + i 3
1 − i 2 + 3i

]
, B =

[
−i 4

2 + 2i 1 + 4i

]
, C =

[
0 3 + i

−4i 1 + i

]
11. Find each linear combination:

(a) A − iC (b) 2B − A − 4iC

12. Find each linear combination:

(a) C − (1 + i)A (b) i A − (1 − i)B − 3C

13. Determine if there exists a constant c such that A − c B = iC .

14. Determine if there exists a nontrivial linear combination

such that c1 A + c2 B + c3C =
[

0 0
0 0

]
.

15. Is

[
3 + 2i −3 − 7i
4 + 8i 5 + 2i

]
in the span of {A, B , C }?

16. Is

[
4 − 3i 6 + 5i
2 + 5i 13 − 7i

]
in the span of {A, B , C}?

17. Compute each using the inner product given in Example 4.

(a) 〈A, C 〉 (b) 〈i B , −2A〉 (c) ‖B‖
18. Compute each using the inner product given in Example 4.

(a) 〈C , B〉 (b) 〈3C , (1 − i)A〉 (c) ‖A + iC − B‖
19. Normalize A and C using the inner product given in
Example 4.

20. Normalize A − C and A + B − C using the inner product
given in Example 4.
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For Exercises 21–30, let h1(x) = 1 + i x , h2(x) = i − x , and
h3 = 3 − (1 + i)x , and (when appropriate) use the inner product
given in (1).

21. Find each linear combination.

(a) h1(x) + (4 − i)h2(x) (b) ih1(x) − h2(x) + 3h3(x)

22. Find each linear combination.
(a) ih3(x) − (2 − i)h1(x) (b) h3(x) + 2ih2(x) − 4h1(x)

23. Determine if there exists a constant c such that h3(x)+h2(x) =
ch1(x).

24. Determine if there exists a nontrivial linear combination such
that c1h1(x) + c2h2(x) + c3h3(x) = 0.

25. Determine if (2 + i) + (3 − 2i)x is in

span{h1(x), h2(x), h3(x)}
26. Determine if (2 − 2i) − (2 − 3i)x is in

span{h1(x), h2(x), h3(x)}
27. Compute each of the following.

(a) 〈h1, h3〉 (b) 〈ih2, −2h3〉 (c) ‖h1‖
28. Compute each of the following.
(a) 〈h3, h2〉 (b) 〈3h2, ih1〉 (c) ‖h2 + 3ih3‖
29. Normalize h1 and h2.

30. Normalize h2 − ih3 and h2 + 3h3 − (1 + i)h1.

FIND AN EXAMPLE For Exercises 31–36, find an example that
meets the given specifications.

31. A complex vector space V and vectors u and v such that
‖u‖2 + ‖v‖2 = ‖u + v‖2 but 〈u, v〉 �= 0.

32. A complex vector space V not given in this section.

33. An inner product on Cn other than one given in this section.

34. An inner product on Pn
c , the polynomials of degree n or less

with complex coefficients.

35. A complex vector space V and a nonempty subset S that is
closed under addition and multiplication by real scalars.

36. A pair of vectors that are linearly independent when the scalars
are restricted to the reals but linearly dependent when the scalars
are complex.

TRUE OR FALSE For Exercises 37–42, determine if the statement
is true or false, and justify your answer.

37. A complex vector space V must be closed under addition and
scalar multiplication of the vectors.

38. A complex vector space can have only one inner product de-
fined on it.

39. The norm of any nonzero vector in a complex inner product
space must be a positive real number.

40. If v1 and v2 are in a complex vector space V , then so is
iv1 − (1 + i)v2.

41. If u and v are in a complex inner product space V , then
〈u, v〉 = 〈v, u〉.
42. If S1 and S2 are subspaces of a complex vector space V , then
the intersection S1 ∩ S2 is also a subspace of V .

43. Finish Example 2 by showing that the remaining unverified
conditions for a complex vector space hold.

44. Finish Example 3 by showing that the remaining unverified
conditions for a complex vector space hold.

45. Prove that R2×2 with standard operations is not a complex
vector space, by finding a condition of Definition 11.14 that is
not met.

46. Prove that the complex dot product is an inner product on Cn .
(Condition (d) has already been verified, so you need only show
that (a)–(c) are true.)

47. Prove Theorem 11.16: Let u, v, and w be elements of a com-
plex vector space V , and let c be a complex scalar. Then an inner
product defined on V satisfies each of the following:

(a) 〈0, u〉 = 〈u, 0〉 = 0

(b) 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉
(c) 〈u, cv〉 = c〈u, v〉
48. Prove that if 〈u, v〉 = 0, then ‖u‖2 + ‖v‖2 = ‖u + v‖2.

In Exercises 49–52, we prove each part of Theorem 11.17. Assume
that u and v are elements of a complex vector space V , and suppose
that c is a complex scalar.

49. Prove that ‖u‖ ≥ 0, with equality only if u = 0.

50. Prove that ‖cu‖ = |c |‖u‖.

51. Prove that |〈u, v〉| ≤ ‖u‖ · ‖v‖. (This is the Cauchy–Schwarz
Inequality.)

52. Prove that ‖u + v‖ ≤ ‖u‖ + ‖v‖. (This is the Triangle
Inequality.)

11.5 Hermitian Matrices
See Section 6.5 for a review of

the basic properties of complex
numbers.

In Section 8.3 we encountered the Spectral Theorem, which says that a matrix A with real
entries is orthogonally diagonalizable exactly when A is symmetric. In this section we
consider what happens if we allow A to have complex entries. Since the reals are a subset
of the complex numbers, a reasonable guess is that the Spectral Theorem just generalizes,
so that a matrix A with complex entries is orthogonally diagonalizable if and only if A is
symmetric. However, this is not quite correct. The central goal of this section is to find
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the correct analog of the Spectral Theorem for complex matrices, but before we can do
that, we need to develop a few new ideas.

Definition Complex Conjugate,
Conjugate Transpose Unitary Matrices

If A is a complex matrix, then the complex conjugate of A is denoted by A, and is found
by taking the complex conjugate of each entry of A. The conjugate transpose of A is

Recall that if c = a + ib, then
the complex conjugate is c =
a − ib.

denoted by A∗ and defined

A∗ = A
T

E X A M P L E 1 Find A∗ for

A =
⎡
⎣2 + i 3

−5i 1 + 4i
6 1 − 2i

⎤
⎦

Solution We have

A =
⎡
⎣2 + i 3

−5i 1 + 4i
6 1 − 2i

⎤
⎦ �⇒ A =

⎡
⎣2 − i 3

5i 1 − 4i
6 1 + 2i

⎤
⎦

�⇒ A∗ = A
T =

[
2 − i 5i 6

3 1 − 4i 1 + 2i

]
■

Note that the order of conjugation and transposition makes no difference in A∗. For the
matrix in Example 1, we could just as well have computed

AT =
[

2 + i −5i 6
3 1 + 4i 1 − 2i

]
�⇒ A∗ = AT =

[
2 − i 5i 6

3 1 − 4i 1 + 2i

]

A general proof that A
T = AT is left as Exercise 32.

Conjugate transposes have properties similar to those of transposes of real matrices.
These are summarized in the theorem below, with the proof of each part left as exercises.

T H E O R E M 11.18 Suppose that A and B are matrices with complex entries and that c is a complex scalar.
Then

(a) (A∗)∗ = A

(b) (A + B)∗ = A∗ + B∗

(c) (AB)∗ = B∗ A∗

(d) (c A)∗ = c A∗

Definition Unitary Matrix

Recall that a square matrix with real entries is orthogonal if the matrix columns form
an orthonormal set with respect to the usual dot product. Equivalently, a real matrix A
is orthogonal if and only if A−1 = AT . The counterpart of orthogonal matrices for a
matrix A with complex entries is called a unitary matrix, which requires that

A−1 = A∗

It can be shown that a square matrix A is unitary if and only if the columns of A are
orthonormal with respect to the complex dot product (see Exercise 37).
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E X A M P L E 2 Show that

A =
[ 1√

2
− 1+i

2

1√
2

1+i
2

]

is a unitary matrix.

Solution One way to solve this is to compute AA∗. If the product is the identity matrix,
then we know that A∗ = A−1 and can conclude that A is unitary. Instead, we shall show
directly that the columns are orthonormal with respect to the complex dot product.
Setting A = [

a1 a2

]
, we have

a1 · a2 =
(

1√
2

) (
−1 − i

2

)
+

(
1√
2

) (
1 − i

2

)
= 0

‖a1‖ = √
a1 · a1 =

√(
1√
2

)2

+
(

1√
2

)2

= 1

‖a2‖ = √
a2 · a2 =

√(
−1 + i

2

) (
−1 − i

2

)
+

(
1 + i

2

) (
1 − i

2

)
= 1

Hence the columns are orthonormal and therefore A is unitary. ■

Definition Unitarily
Diagonalizable

Diagonalizing Matrices
We say that a complex matrix A is unitarily diagonalizable if there exist a diagonal matrix

“Unitarily diagonalizable” is
an awkward phrase, so from
here on we will just say “diago-
nalizable” with the understand-
ing the P must be unitary.

D and a unitary matrix P such that

A = P D P −1 = P D P ∗

As with real matrices, the diagonal entries of D are the eigenvalues of A, and the columns
of P are the corresponding eigenvectors (see Theorem 6.13 in Section 6.4). The question
is, when will a complex matrix be diagonalizable?

Let’s recall what happens for real matrices. A real matrix A is orthogonally diago-
nalizable if and only if A = AT —that is, when A is symmetric. The analog of symmetric
for complex matrices is

A = A∗ (1)

A matrix A satisfying (1) is called Hermitian. From the definition, we see thatDefinition Hermitian

Charles Hermite (1822--
1901) was a French mathemati-
cian who made contributions
to a variety of areas of math-
ematics, among them linear
algebra.

a Hermitian matrix is unchanged by taking its conjugate transpose. For example, the
matrix A below is Hermitian, because

A =
[

3 2 − i
2 + i 4

]
�⇒ A =

[
3 2 + i

2 − i 4

]

�⇒ A∗ =
[

3 2 − i
2 + i 4

]
= A

Note that any Hermitian matrix must have real diagonal entries. (Why?) Unfortunately,
the Hermitian matrices still are not exactly the set that we seek.

While all Hermitian matrices are diagonalizable, it turns out that there are some
complex matrices that are diagonalizable but not Hermitian. We need to expand the set
of Hermitian matrices to the larger set of normal matrices, which are those complex
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matrices A such that

A∗ A = AA∗

Note that all unitary matrices are normal, because

A∗ A = A−1 A = I = AA−1 = AA∗

Similarly, Hermitian matrices are also normal, because

A∗ A = AA = AA∗

There are normal matrices that are not Hermitian (or unitary, for that matter).

E X A M P L E 3 Show that

A =
[

i −i
i i

]

is normal but is not Hermitian or unitary.

Solution We have

A∗ A =
[−i −i

i −i

] [
i −i
i i

]
=

[
2 0
0 2

]

AA∗ =
[

i −i
i i

] [−i −i
i −i

]
=

[
2 0
0 2

]

Hence A is normal. On the other hand, since A∗ �= A our matrix is not Hermitian, and
as A∗ A �= I2, it follows that A∗ �= A−1 and thus A is not unitary. ■

The following is a complex version of the Spectral Theorem (Section 8.3), given
without proof.

T H E O R E M 11.19 A complex matrix A is unitarily diagonalizable if and only if A is normal.

Now we have an easy way to determine if a complex matrix is diagonalizable, by
checking if it is normal. If A is an n × n diagonalizable matrix, then we find the diago-
nalization of A using the same procedure as with real matrices.

1. Find the eigenvalues and eigenvectors of A.

2. For each distinct eigenvalue, apply Gram–Schmidt as needed to find an orthonormal
basis for the associated eigenspace. As with real symmetric matrices, eigenvectors
associated with distinct eigenvalues of a normal matrix are orthogonal. Thus, once
we have orthonormal bases for each eigenspace, they can be combined to form an
orthonormal basis for Cn.

3. Define D to be the diagonal matrix with the eigenvalues of A along the diagonal, and
define P to be the unitary matrix with the corresponding eigenvectors for columns.

Applying this procedure by hand to a large, complicated matrix is difficult. But it is
manageable if the matrix is not too complicated.
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E X A M P L E 4 Diagonalize the matrix A =
[

i −i
i i

]
.

Solution We have already seen that A is normal and so must be diagonalizable. Our
first step is to find the eigenvalues, which are the roots of the characteristic polynomial

det(A − λI2) = (i − λ)2 + i 2 = (i − λ)2 − 1

Setting this equal to 0 and solving for λ yields two eigenvalues, λ1 = 1 + i and λ2 =
−1 + i . To find the eigenvectors associated with λ1, we need to find the solutions to the
homogeneous system with coefficient matrix A−λ1 I2 = A−(1+ i)I2. The augmented
matrix is [

i − (1 + i) −i 0
i i − (1 + i) 0

]
=

[−1 −i 0
i −1 0

]
i R1+R2⇒R2∼

[−1 −i 0
0 0 0

]

Back substitution and normalization produces the eigenvector

p1 =
[− i√

2

1√
2

]

Following a similar procedure, we find that a normalized eigenvector associated with
λ2 = −1 + i is

p2 =
[ i√

2

1√
2

]

Since each eigenspace has dimension 1, we are spared the work of applying the Gram–
Schmidt process to find orthogonal eigenvectors. Thus all that remains is to define P
and D, which are

P =
[− i√

2
i√
2

1√
2

1√
2

]
and D =

[
1 + i 0

0 −1 + i

]

We can check our work by computing

PDP∗ =
[− i√

2
i√
2

1√
2

1√
2

] [
1 + i 0

0 −1 + i

][ i√
2

1√
2

− i√
2

1√
2

]
=

[
i −i
i i

]
= A

■

In Section 8.3 it is noted that a real symmetric matrix must have real eigenvalues.
(This follows from the Spectral Theorem.) On the other hand, the preceding example
shows that a normal matrix can have complex eigenvalues. In between these two sets are
the Hermitian matrices, which also happen to have real eigenvalues.

T H E O R E M 11.20 If A is a Hermitian matrix, then A has real eigenvalues.

Proof Suppose that λ is an eigenvalue of A with associated eigenvector u. Then
Au = λu, and hence

u∗ Au = u∗(λu) = λ(u∗u) = λ‖u‖2
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We know that ‖u‖2 is a real number. Also, because A is Hermitian we have

(u∗ Au)∗ = u∗ A∗(u∗)∗ = u∗ Au

This shows that u∗ Au is also Hermitian and therefore has real diagonal entries. But u∗ Au
has only one entry (it is the complex dot product of u and Au), so this implies that u∗ Au
is real. Since u∗ Au = λ‖u‖2, we may conclude that λ is also real. ■

E X A M P L E 5 Show that

A =
[

5 2i
−2i 2

]

is Hermitian and has real eigenvalues.

Solution We have

A =
[

5 −2i
2i 2

]
⇒ A∗ = A

T =
[

5 2i
−2i 2

]
= A

so A is Hermitian. The characteristic polynomial of A is

det(A − λI2) = (5 − λ)(2 − λ) − (−2i)(2i) = λ2 − 7λ + 6 = (λ − 6)(λ − 1)

Hence the eigenvalues are λ1 = 1 and λ2 = 6, which are both real. ■

E X E R C I S E S
In Exercises 1–6, find A∗ for the given A.

1. A =
[

1 + i 3i
2 − i 1 + 4i

]

2. A =
[

−7i 3 − 2i
1 + 5i 8

]

3. A =
[

3 + i 5i 1 − i
1 − 4i −8 6 + i
2 + 2i 0 −7i

]

4. A =
[

5 −i 2 + 7i
4i 5i 31

5 − i 6i 13

]

5. A =

⎡
⎢⎣

1 −2i 3 4i
2i 5 −6i 1 + i
3 6i 7 3 + 2i

−4i 1 − i 3 − 2i 11

⎤
⎥⎦

6. A =

⎡
⎢⎣

4 1 − 2i 12 1 + 3i
11i 6 − 5i 6i 3i
−7i 1 − i 3i 4 − 5i
2 + i 1 − 2i 4 − 7i 0

⎤
⎥⎦

In Exercises 7–12, determine if the given matrix is Hermitian.

7. A =
[

1 + i 3i
3i 2

]

8. A =
[

4 3 − 2i
3 + 2i 3

]

9. A =
[

3 5i 1 − i
−5i −5 0
1 + i 0 7

]

10. A =
[

5 −i 2 + 7i
i 3 6i

2 + 7i 6i 4

]

11. A =

⎡
⎢⎣

1 −2i 3 4i
2i 5 −6i 1 + i
3 6i 7 3 + 2i

−4i 1 − i 3 − 2i 11

⎤
⎥⎦

12. A =

⎡
⎢⎣

0 1 − 2i −12 2 − i
1 + 2i 5 6i 3i

12 −6i 2 4 − 5i
2 + i −3i 4 + 5i 8

⎤
⎥⎦

In Exercises 13–18, determine if the given matrix is normal.

13. A =
[

1 2 − 5i
2 + 5i 3

]

14. A =
[

3 3 − 2i
1 + i −4

]

15. A =
[
−i −i

i −i

]

16. A =
[

2i i
i 3i

]
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17. A =
[ −1 −i 1 − i

i 5 −2i
1 + i 2i 0

]

18. A =
[

2 3 − i i
3 − i 1 −2i
−i 3i −1

]

FIND AN EXAMPLE For Exercises 19–22, find an example that
meets the given specifications.

19. A 3 × 3 matrix A that is symmetric but not Hermitian.

20. A 3 × 3 matrix A that is normal but not Hermitian.

21. A 3 × 3 unitary matrix that is not in R3×3.

22. A 2×2 matrix that has eigenvalues λ1 = 2+ i and λ2 = 2− i .

TRUE OR FALSE For Exercises 23–30, determine if the statement
is true or false, and justify your answer.

23. A matrix A is unitarily diagonalizable if and only if A is normal.

24. If A is normal, then A is symmetric.

25. If A has complex entries and A = AT , then A is Hermitian.

26. If A has complex entries, then det(A) cannot be real.

27. If A and B are n × n Hermitian matrices, then so is A + B .

28. If A and B are n×n complex matrices, then A∗ B is Hermitian.

29. A unitary matrix has orthonormal columns.

30. A Hermitian matrix must have some real entries.

31. Prove that if A has real entries, then A∗ = AT .

32. Prove that if A has complex entries, then (A)T = (AT ). This
shows that the order of conjugation and transposition in A∗ does
not matter.

In Exercises 33–36, suppose that A and B are matrices with com-
plex entries and that c is a complex scalar.

33. Prove that (A∗)∗ = A.

34. Prove that (A + B)∗ = A∗ + B∗.

35. Prove that (AB)∗ = B∗ A∗.

36. Prove that (c A)∗ = c A∗.

37. Show that a square matrix A is unitary if and only if the
columns of A are orthonormal with respect to the complex dot
product.

38. Prove that any Hermitian matrix must have real diagonal en-
tries.

39. Show that if A is upper (or lower) triangular and normal, then
A must be a diagonal matrix.

40. Suppose that A = P D P −1, where D is diagonal and P is
unitary. Show that the diagonal entries of D are the eigenvalues of
A, and the columns of P are the corresponding eigenvectors.
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GLOSSARY

Below is a glossary of definitions and other terms presented
in this book. In some cases, due to the complicated nature
of a definition or term, it is only described here in general
terms. Visit the section referenced for more details.

Additive identity matrix The n × m matrix 0nm consist-
ing of all zeros satisfies A + 0nm = A for all n × m
matrices A. (Sect. 3.2)

Adjoint matrix The adjoint of an n × n matrix A is given
by

adj(A) = C T =

⎡
⎢⎢⎢⎣

C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn

⎤
⎥⎥⎥⎦

where C is the cofactor matrix of A. (Sect. 5.3)

Argument The argument of a nonzero complex number
z, denoted by arg(z), is the angle θ (in radians) in the
counterclockwise direction from the positive x-axis to
the ray that points from the origin to z. Note that the
argument is not unique, because we can always add or
subtract multiples of 2π . (Sect. 6.5)

Associated homogeneous linear system A linear system
of the form Ax = b, where b �= 0, has associated
homogeneous linear system Ax = 0. (Sect. 2.3)

Augmented matrix A matrix that contains all of the coef-
ficients of a linear system, including the constant terms.
(Sect. 1.2)

Back substitution A method of solution applicable to a
system of linear equations in echelon form. Imple-
mented by substituting known values back into re-
maining equations. (Sect. 1.1)

Basis A set B = {u1, . . . , um} is a basis for a subspace S if
B spans S and B is linear independent. (Sect. 4.2; see
also Sect. 7.3)

BCS rankings A continually evolving system for attempt-
ing to rank the competitive strength of college football
teams and that consistently underrates the University
of Texas. (Sect. 1.4)

Block diagonal matrix A partitioned matrix with nondi-
agonal blocks that are zero matrices. (Sect. 3.3)

Change of basis matrix A square matrix used to express
a vector in Rn given in terms of one basis into a vector

given in terms of a different basis. (Sect. 6.3; see also
Sect. 9.4)

Characteristic equation Let A be an n × n matrix. Then
the characteristic equation is given by det(A − λIn) =
0, where In is the identity matrix. The solutions to the
characteristic equation are the eigenvalues of A. (Sect.
6.1)

Characteristic polynomial Let A be an n×n matrix. Then
the characteristic polynomial is given by det(A −λIn),
where In is the identity matrix. (Sect. 6.1)

Closed under addition S is closed under addition if u and
v in S implies u + v is also in S. (Sect. 4.1)

Closed under scalar multiplication S is closed under
scalar multiplication if r is a real number and u in
S implies r u is also in S. (Sect. 4.1)

Codomain A set containing all possible outputs for a func-
tion. (Note that this contains the range, which is equal
to the set of possible outputs for a function.) (Sect. 3.1;
see also Sect. 9.1)

Cofactor Given a matrix A, the cofactor of ai j is equal to

Ci j = (−1)i+ j det(Mi j )

where Mi j is the (n − 1) × (n − 1) matrix that we get
from A after deleting the row and column containing
ai j . Put another way, Ci j is equal to (−1)i+ j times the
minor of ai j . (Sect. 5.1)

Cofactor expansion Let A be the n × n matrix [ai j ] and
let Ci j denote the cofactor of ai j . Then the cofactor
expansions are given by

(a) det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

(Expand across row i)

(b) det(A) = a1 j C1 j + a2 j C2 j + · · · + anj Cnj

(Expand down column j )

(Sect. 5.1)

Cofactor matrix For an n × n matrix A, the cofactor ma-
trix is given by

C =

⎡
⎢⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

...

Cn1 Cn2 · · · Cnn

⎤
⎥⎥⎥⎦

where Ci j is the cofactor of ai j . (Sect. 5.3)
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A2 Glossary

Column space Let A be an n × m matrix. The column
space of A is the subspace of Rn spanned by the col-
umn vectors of A, and is denoted by col(A). (Sect. 4.3)

Column vector A vector in Euclidean space expressed in
the form of a column matrix. Also used to indicate
the vectors formed from the columns of a matrix A.
(Sect. 2.1)

Complex conjugate The complex conjugate of z = a +ib
is given by z = a − ib. (Sect. 6.5)

Complex dot product The complex dot product is de-
fined on Cn by

u · v = u1v1 + u2v2 + · · · + unvn

(Sect. 11.4)

Complex inner product space A complex vector space V
with an inner product defined on it. (Also called a uni-
tary space.) (Sect. 11.4)

Complex vector space A complex vector space consists of
a nonempty set V of vectors together with operations of
addition and scalar multiplication on the vectors that
satisfy each of the following:

(1) If v1 and v2 are in V , then so is v1 + v2. Hence
V is closed under addition.

(2) If c is a complex scalar and v is in V , then so is
cv. Hence V is closed under scalar multiplication.

(3) There exists a zero vector 0 in V such that
0 + v = v for all v in V .

(4) For each v in V there exists an additive inverse
(or opposite) vector −v in V such that v+(−v) =
0 for all v in V .

(5) For all v1, v2, and v3 in V and complex scalars
c1 and c2, we have
(a) v1 + v2 = v2 + v1

(b) (v1 + v2) + v3 = v1 + (v2 + v3)
(c) c1(v1 + v2) = c1v1 + c1v2

(d) (c1 + c2)v1 = c1v1 + c2v1

(e) (c1c2)v1 = c1(c2v1)
(f) 1 · v1 = v1

(Sect. 11.4)

Component A single entry in a vector in Euclidean space.
(Sect. 2.1)

Conjecture The mathematical equivalent of an educated
guess. (Sect. 1.4)

Conjugate transpose The conjugate transpose of a com-
plex matrix A is denoted by A∗ and defined

A∗ = A
T

(Sect. 11.5)

Consistent linear system A linear system that has at least
one solution. (Sect. 1.1)

Converge An iterative process is said to converge if the
outcome of a sequence of steps approaches a specific
value. (Sect. 1.3; see also Sect. 3.5 and Sect. 6.2)

Coordinate vector Suppose that B = {u1, . . . , un} forms
a basis for Rn. If y = y1u1 + · · · + ynun, then

yB =

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦
B

is the coordinate vector of y with respect to B. (Sect.
6.3; see also Sect. 9.3)

Cramer’s Rule Let A = [
a1 · · · an

]
be an invertible

n × n matrix. Then the components of the unique so-
lution x to Ax = b are given by

xi = det(Ai )

det(A)
for i = 1, 2, . . . , n

where

Ai = [
a1 · · · ai−1 b ai+1 · · · an

]
(Ai is just A with column i replaced by b.) (Sect. 5.3)

Determinant If A = [
a11

]
is a 1 × 1 matrix, then the

determinant of A is given by det(A) = a11.

If

A =
[

a11 a12

a21 a22

]

then the determinant is given by

det(A) = a11a22 − a12a21

For the n × n matrix

A =

⎡
⎢⎣

a11 a12 · · · a1n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎦

the determinant of A is defined recursively by

det(A) = a11C11 + a12C12 + · · · + a1nC1n

where C11, . . . , C1n are the cofactors of a11, . . . , a1n,
respectively. (Sect. 5.1)
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Diagonal matrix A diagonal matrix has the form

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

(Sect. 3.2)

Diagonalizable matrix An n × n matrix A is diagonal-
izable if there exist n × n matrices D and P , with D
diagonal and P invertible, such that

A = P D P −1

(Sect. 6.4)

Diagonally dominant A linear system with the same
number of equations and variables is diagonally dom-
inant if the diagonal coefficients (a11, a22, . . .) are each
larger in absolute value than the sum of the absolute
values of the other terms in the same row. (Sect. 1.3)

Dimension (subspace) Let S be a nonzero subspace. Then
the dimension of S is the number of vectors in any basis
of S. (Sect. 4.2; see also Sect. 7.3)

Distance between vectors For two vectors u and v, the
distance between u and v is given by ‖u − v‖. (Sect.
8.1; see also Sect. 10.1)

Diverge An iterative process is said to diverge if the out-
come of a sequence of steps fails to approach a specific
value. (Sect. 1.3; see also Sect. 3.5 and Sect. 6.2)

Domain The set of possible inputs for a function. (Sect.
3.1; see also Sect. 9.1)

Dominant eigenvalue Suppose that a square matrix A has
eigenvalues λ1, λ2, . . . , λn such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|
In this case λ1 is the dominant eigenvalue of A.
(Sect. 6.2)

Dot product Suppose

u =

⎡
⎢⎣

u1

...

un

⎤
⎥⎦ and v =

⎡
⎢⎣

v1

...

vn

⎤
⎥⎦

are both in Rn. Then the dot product of u and v is given
by

u · v = u1v1 + · · · + unvn

The dot product can also be expressed u · v = uT v.
(Sect. 8.1)

Doubly stochastic matrix A square matrix A that has
nonnegative entries, and has rows and columns that
each add to 1. (Sect. 3.5)

Echelon form (linear system) A linear system satisfying
the following conditions: Every variable is the lead-
ing variable of at most one equation; the system is
organized in a descending “stair step” pattern so that
the index of the leading variables increases from the
top to bottom; and every equation has a leading
variable. Such a system is called an echelon system.
(Sect. 1.1)

Echelon form (matrix) Also called row echelon form, a
matrix is in echelon form if every leading term is in a
column to the left of the leading term of the row below
it, and any zero rows are at the bottom of the matrix.
(Sect. 1.2)

Eigenspace Let A be a square matrix with eigenvalue λ.
The subspace of all eigenvectors associated with λ,
together with the zero vector, is the eigenspace of λ.
Each distinct eigenvalue of A has its own associated
eigenspace. (Sect. 6.1)

Eigenvalue Let A be an n × n matrix. Suppose that λ is a
scalar and u �= 0 is a vector satisfying

Au = λu

The scalar λ is called an eigenvalue of A. (Sect. 6.1)

Eigenvector Let A be an n × n matrix. Suppose that λ is
a scalar and u �= 0 is a vector satisfying

Au = λu

Then u is called an eigenvector of A. (Sect. 6.1)

Elementary (equation) operations Three operations that
can be performed on a linear system that do not change
the set of solutions, so yield an equivalent system. They
are (1) interchanging two equations, (2) multiplying
an equation by a nonzero constant, and (3) adding a
multiple of one equation to another. (Sect. 1.2)

Elementary matrix A square matrix E such that the prod-
uct E A induces an elementary row operation on A.
(Sect. 3.4)

Elementary row operations Three row operations that
can be performed on an augmented matrix that do not
change the set of solutions to the corresponding linear
system. They are (1) interchanging two rows, (2) mul-
tiplying a row by a nonzero constant, and (3) adding a
multiple of one row to another. (Sect. 1.2)

Equivalent matrices Two matrices are equivalent if one
can be transformed into the other through a sequence
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of elementary row operations. If the matrices in ques-
tion are augmented matrices, then the corresponding
linear systems have the same set of solutions. (Sect. 1.2)

Equivalent systems Two linear systems are equivalent if
they have the same set of solutions. (Sect. 1.2)

Euclidean space The set of all vectors in Rn together
with the “standard” definitions for vector arithmetic.
(Sect. 2.1)

Fourier approximation The nth order Fourier approxi-
mation for a function f in C[−π, π] is given by

fn(x) = a0 + a1 cos(x) + · · · + an cos(nx)

+b1 sin(x) + · · · + bn sin(nx)

where the coefficients are given by

a0 = 1

2π

∫ π

−π

f (x) dx

ak = 1

π

∫ π

−π

f (x) cos(kx) dx (k ≥ 1)

bk = 1

π

∫ π

−π

f (x) sin(kx) dx (k ≥ 1)

The ak ’s and bk ’s are called the Fourier coefficients of
f . (Sect. 10.3)

Free parameter An unspecified numerical quantity that
can be equal to any real number. (Sect. 1.1)

Free variable Any variable in a linear system in echelon
form that is not a leading variable. (Sect. 1.1)

Full pivoting An extension of partial pivoting where both
row and column interchanges are performed to re-
duce round-off error when implementing elimination
methods. This method is not covered in this text, but
it is described in more advanced texts on numerical
linear algebra. (Sect. 1.3)

Gauss–Jordan elimination An algorithm that extends
Gaussian elimination, applying row operations in a
manner that will transform a matrix to reduced eche-
lon form. (Sect. 1.2)

Gauss–Seidel iteration A variant of Jacobi iteration,
Gauss–Seidel iteration is an iterative method for ap-
proximating the solutions to a linear system that has
the same number of equations as variables. (Sect. 1.3)

Gaussian elimination An algorithm for applying row op-
erations in a manner that will transform a matrix to
echelon form. (Sect. 1.2)

General solution A description of the set of all solutions
to a linear equation or linear system. (Sect. 1.1)

Hermitian matrix A complex matrix A is Hermitian if

A = A∗

(Sect. 11.5)

Homogeneous equation A linear equation is homoge-
neous if it has the form

a1x1 + a2x2 + a3x3 + · · · + anxn = 0

Such equations always have the trivial solution, so are
consistent. (Sect. 1.2)

Homogeneous system A linear system is homogeneous
if it has the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = 0
a21x1 + a22x2 + a23x3 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = 0

Such systems always have the trivial solution, so
are consistent. This system can also be expressed by
Ax = 0. (Sect. 1.2; see also Sect. 2.3)

Hyperplane The set of all solutions to a linear equation
in four or more variables. (Sect. 1.1)

Idempotent matrix A square matrix A is idempotent if
A2 = A. (Sect. 3.2)

Identity matrix The n × n identity matrix is given by

In = [
e1 e2 · · · em

] =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

(Sect. 3.2)

Image The output of a function from a particular input.
(Sect. 3.1; see also Sect. 9.1)

Imaginary part If a and b are real numbers, then a typical
complex number has the form

z = a + ib

where i satisfies i 2 = −1. Here b is the imaginary part
of z, denoted by Im(z). (Sect. 6.5)

Inconsistent linear system A linear system that has no
solutions. (Sect. 1.1)

Indefinite matrix A symmetric matrix A is indefinite
if A is the matrix of an indefinite quadratic form.
(Sect. 11.2)

Indefinite quadratic form Let Q(x) = xT Ax be a
quadratic form. Then Q is indefinite if Q(x) is positive
for some x’s in Rn and negative for others. (Sect. 11.1)
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Initial state vector A vector with nonnegative entries
that add to 1. This vector typically represents the
initial probability distribution for a Markov chain.
(Sect. 3.5)

Inner product (complex) Let u, v, and w be elements of a
complex vector space V , and let c be a complex scalar.
An inner product on V is a function denoted by 〈u, v〉
that takes any two vectors in V as input and produces a
scalar as output. An inner product on a complex vector
space satisfies the following conditions:

(a) 〈u, v〉 = 〈v, u〉
(b) 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
(c) 〈cu, v〉 = c〈u, v〉
(d) 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 only when u = 0

(Sect. 11.4)

Inner product (real) Let u, v, and w be elements of a vec-
tor space V , and let c be a scalar. An inner product on
V is a function that takes two vectors in V as input and
produces a scalar as output. An inner product func-
tion is denoted by 〈u, v〉, and satisfies the following
conditions:

(a) 〈u, v〉 = 〈v, u〉
(b) 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
(c) 〈cu, v〉 = 〈u, cv〉 = c〈u, v〉
(d) 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 only when u = 0

(Sect. 10.1)

Inner product space A vector space V with an inner prod-
uct defined on it. (Sect. 10.1)

Inverse linear transformation A linear transformation
T : Rm → Rn is invertible if T is one-to-one and
onto. When T is invertible, the inverse function
T−1 : Rn → Rm is defined by

T−1(y) = x if and only if T(x) = y

(Sect. 3.3; see also Sect. 9.2)

Invertible matrix An n × n matrix A is invertible if there
exists an n × n matrix B such that AB = In. The
matrix B is called the inverse of A and is denoted A−1.
(Sect. 3.3)

Isomorphic vector spaces V and W are isomorphic vec-
tor spaces if there exists an isomorphism T : V → W.
(Sect. 9.2)

Isomorphism A linear transformation T : V → W is an
isomorphism if T is both one-to-one and onto. If such
an isomorphism exists, then we say that V and W are
isomorphic vector spaces. (Sect. 9.2)

Jacobi iteration An iterative method for approximating
the solutions to a linear system that has the same
number of equations as variables. (Sect. 1.3)

Kernel Given a linear transformation T , the set of all
vectors v such that T(v) = 0 is the kernel of T (de-
noted ker(T)) and is a subspace of the domain of T .
(Sect. 4.1; see also Sect. 9.1)

LDU factorization A variant of LU factorization, with
A = L DU , where U is unit upper triangular, D is
diagonal, and L is lower triangular with 1’s on the
diagonal. (Sect. 3.4)

Leading principal submatrix Let

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

Then the leading principal submatrices of A are given
by

A1 = [
a11

]
, A2 =

[
a11 a12

a21 a22

]
,

A3 =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

and so on through An = A. (Sect. 11.2)

Leading term In a matrix, the leading term for a row is
the leftmost nonzero entry in that row. A row of zeros
has no leading term. (Sect. 1.2)

Leading variable The leftmost variable in a linear equa-
tion that has a nonzero coefficient. In a linear system
in echelon form, the leading variables are the leftmost
variables in each equation. (Sect. 1.1)

Least squares solution If A is an n × m matrix and y is in
Rn, then a least squares solution to Ax = y is a vector
x̂ in Rm such that

‖Ax̂ − y‖ ≤ ‖Ax − y‖
for all x in Rm. (Sect. 8.5)

Linear combination If u1, u2, . . . , um are vectors and
c1, c2, . . . , cm are scalars, then

c1u1 + c2u2 + · · · + cmum

is a linear combination of the vectors. Note that it is
possible for scalars to be negative or equal to zero.
(Sect. 2.1)
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Linear dependence Let {u1, u2, . . . , um} be a set of
vectors. If the vector equation

x1u1 + x2u2 + · · · + xmum = 0

has nontrivial solutions, then the set is linearly
dependent. (Sect. 2.3; see also Sect. 7.2)

Linear equation An equation of the form

a1x1 + a2x2 + a3x3 + · · · + anxn = b

where a1, a2, · · · , an and b are constants and
x1, x2, · · · , xn are variables or unknowns. (Sect. 1.1)

Linear independence Let {u1, u2, . . . , um} be a set of
vectors. If the only solution to the vector equation

x1u1 + x2u2 + · · · + xmum = 0

is the trivial solution x1 = x2 = · · · = xm = 0, then the
set is linearly independent. (Sect. 2.3; see also Sect. 7.2)

Linear transformation A function T : Rm → Rn is a
linear transformation if for all vectors u and v in Rm

and all scalars r we have

(a) T(u + v) = T(u) + T(v)

(b) T(r u) = r T(u)

(Sect. 3.1; see also Sect. 9.1)

Lower triangular matrix An n × n matrix A is lower
triangular if the terms above the diagonal are all zero,

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

(Sect. 3.2)

LU factorization If A = LU , where U is upper triangular
and L is lower triangular with 1’s on the diagonal, then
the product is called an LU factorization of A. (Sect. 3.4)

Markov chain A sequence of state vectors x0, x1, . . .

generated recursively by xi+1 = Axi , where A is a
transition matrix. (Sect. 3.5)

Matrix A rectangular table of numbers, upon which var-
ious algebraic operations are defined and can be per-
formed. The plural of matrix is matrices. (Sect. 1.2)

Matrix addition The component-wise rule for adding
one matrix to another of identical dimension.
(Sect. 3.2)

Matrix dimensions The number of rows and columns
for a matrix. Generally displayed as n × m, where n
is the number of rows and m the number of columns.
(Sect. 3.1)

Matrix multiplication The rules for multiplying two ma-
trices to produce a new matrix. If A is n×m and B is r ×
s , then the product AB is defined when m = r . If this
is true, then n× s are the dimensions of AB . (Sect. 3.2)

Matrix of a linear transformation Let T : V → W
be a linear transformation, G = {g1, . . . , gm} a ba-
sis of V , and Q = {q1, . . . , qn} a basis of W. If
A = [

a1 · · · am

]
with

ai = [T(gi )]Q

for each i = 1, . . . , m, then A is the matrix of T with
respect to G and Q. (Sect. 9.3)

Matrix of a quadratic form An n × n matrix A used to
define the quadratic form

Q(x) = xT Ax

(Sect. 11.1)

Matrix powers If A is an n × n matrix, then

Ak = A · A · · · · A︸ ︷︷ ︸
k terms

(Sect. 3.2)

Matrix-vector multiplication Let a1, a2, . . . , am be vectors
in Rn. If

A = [
a1 a2 · · · am

]
and x =

⎡
⎢⎢⎢⎣

x1

x2

...

xm

⎤
⎥⎥⎥⎦

then Ax = x1a1 + x2a2 + · · · + xmam. (Sect. 2.2)

Minor If A is an n × n matrix, let Mi j denote the
(n − 1) × (n − 1) matrix that we get from A af-
ter deleting the row and column containing ai j . The
determinant det(Mi j ) is the minor of ai j . (Sect. 5.1)

Modulus The modulus of a complex number z = a + ib
is given by

|z| = √
a2 + b2

(Sect. 6.5)

Multiplicity of a root Given a polynomial P (x), a root α

of P (x) = 0 has multiplicity r if P (x) = (x −α)r Q(x)
with Q(α) �= 0. (Sect. 6.1)

Negative definite matrix A symmetric matrix A is neg-
ative definite if A is the matrix of a negative definite
quadratic form. (Sect. 11.2)

Negative definite quadratic form Let Q(x) = xT Ax be a
quadratic form. Then Q is negative definite if Q(x) < 0
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for all nonzero vectors x in Rn, and Q is negative
semidefinite if Q(x) ≤ 0 for all x in Rn. (Sect. 11.1)

Nonhomogeneous linear system A linear system of the
form Ax = b where b �= 0. (Sect. 2.3)

Nonsingular matrix A square matrix that has an inverse.
(Sect. 3.3)

Nontrivial solution A solution to a homogeneous lin-
ear equation (or homogeneous linear system) where
some of the variables are nonzero. Although all ho-
mogeneous linear equations (systems) have the trivial
solution, not all have nontrivial solutions. (Sect. 1.2)

Norm of a vector Let x be a vector in Rn. Then the norm
(or length) of x is given by

‖x‖ = √
x · x

If x is in an inner product space, then the norm is given
by

‖x‖ =
√

〈x, x〉
(Sect. 8.1; see also Sect. 10.1)

Normal equations Given a linear system Ax = y, the
normal equations for this system are

AT Ax = AT y

The set of solutions to the normal equations is the
same as the set of least squares solutions to Ax = y.
If A has linearly independent columns, then there is a
unique least squares solution given by

x̂ = (
AT A

)−1
AT y

(Sect. 8.5)

Normal matrix A complex matrix A is normal if

A∗ A = AA∗

All unitary matrices are normal, but the reverse is not
true. (Sect. 11.5)

Null space If A is an n×m matrix, then the set of solutions
to Ax = 0 is called the null space of A and is denoted
by null(A). It is a subspace of Rm. (Sect. 4.1)

Nullity If A is an n × m matrix, then the nullity of A
(denoted nullity(A)) is the dimension of null(A).
(Sect. 4.2)

One-to-one A linear transformation T : Rm → Rn is one-
to-one if for every vector w in Rn there exists at most one
vector u in Rm such that T(u) = w. Alternate defini-
tion: A linear transformation T is one-to-one if T(u) =
T(v) implies that u = v. (Sect. 3.1; see also Sect. 9.1)

Onto A linear transformation T : Rm → Rn is onto if
for every vector w in Rn there exists at least one vec-
tor u in Rm such that T(u) = w. (Sect. 3.1; see also
Sect. 9.1)

Orthogonal basis A basis is orthogonal if it is an orthog-
onal set. (Sect. 8.1; see also Sect. 10.2)

Orthogonal complement Let S be a subspace. A vector u
is orthogonal to S if u is orthogonal to every vector s in
S. The set of all such vectors u is called the orthogonal
complement of S and is denoted by S⊥. (Sect. 8.1; see
also Sect. 10.1)

Orthogonal matrix A square matrix is orthogonal if the
columns form an orthonormal set. (Sect. 8.3)

Orthogonal set A set of vectors is orthogonal if each pair
of distinct vectors is orthogonal to each other. (Sect.
8.1; see also Sect. 10.2)

Orthogonal vectors Vectors u and v in Rn are orthogonal
if u · v = 0. If u and v are in an inner product space,
then they are orthogonal if 〈u, v〉 = 0. (Sect. 8.1; see
also Sect. 10.1)

Orthogonally diagonalizable matrix A square matrix A
is orthogonally diagonalizable if there exists an or-
thogonal matrix P and a diagonal matrix D such that
A = PDP−1. (Sect. 8.3)

Orthonormal basis A basis is orthonormal if it forms an
orthonormal set. (Sect. 8.2; see also Sect. 10.2)

Orthonormal set A set of vectors {w1, . . . , wk} is or-
thonormal if the set is orthogonal and ‖w j ‖ = 1 for
each of j = 1, 2, . . . k. (Sect. 8.2; see also Sect. 10.2)

Parallelogram Rule A geometric interpretation of vector
addition that involves viewing vectors as two of the
four sides of a parallelogram. (Sect. 2.1)

Partial pivoting An additional step in Gaussian elimi-
nation (or Gauss–Jordan elimination) where a row
interchange is performed to move the largest term (in
absolute value) for a column into the pivot position.
This is done to reduce roundoff error. (Sect. 1.3)

Particular solution Any specific solution to a linear sys-
tem Ax = b. (Sect. 2.3)

Partitioned matrix A matrix that has been divided into
smaller submatrices. (Sect. 3.2)

Pivot columns The columns containing pivot positions
for a matrix in echelon form. (Sect. 1.2)

Pivot position For a matrix in echelon form, the pivot
positions are the locations of the leading terms.
(Sect. 1.2)
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Pivot rows The rows containing pivot positions for a
matrix in echelon form. (Sect. 1.2)

Positive definite matrix A symmetric matrix A is pos-
itive definite if A is the matrix of a positive definite
quadratic form. (Sect. 11.2)

Positive definite quadratic form Let Q(x) = xT Ax be a
quadratic form. Then Q is positive definite if Q(x) > 0
for all nonzero vectors x in Rn, and Q is positive
semidefinite if Q(x) ≥ 0 for all x in Rn. (Sect. 11.1)

Power method An iterative method for approximating an
eigenvector and corresponding eigenvalue for a square
matrix. (Sect. 6.2)

Principal axes The normalized orthogonal eigenvectors
of a symmetric matrix A used to define a quadratic
form. (Sect. 11.1)

Probability vector A vector with nonnegative entries that
add to 1. These vectors are encountered in the context
of Markov chains. (Sect. 3.5)

Projection onto subspaces Let S be a subspace with or-
thogonal basis {v1, . . . , vk}. Then the projection of u
onto S is given by

projS u = v1 · u

‖v1‖2
v1 + v2 · u

‖v2‖2
v2 + · · · + vk · u

‖vk‖2
vk

For an inner product space, the dot products are re-
placed by inner products in the definition. (Sect. 8.2;
see also Sect. 10.2)

Projection onto vectors Let u and v be vectors in Rn with
v nonzero. Then the projection of u onto v is given by

projvu = v · u

‖v‖2
v

If u and v are in an inner product space, then the
projection of u onto v is given by

projvu = 〈v, u〉
‖v‖2

v

(Sect. 8.2; see also Sect. 10.1)

QR factorization The QR factorization of an n×m matrix
A is given by A = Q R, where Q is n × m with or-
thonormal columns and R is m × m, upper triangular,
and has positive diagonal terms. (Sect. 8.3)

Quadratic form A quadratic form is a function Q : Rn →
R that has the form

Q(x) = xT Ax

where A is an n×n symmetric matrix called the matrix
of the quadratic form. (Sect. 11.1)

Rn The set of all vectors with n real numbers for compo-
nents. (Sect. 2.1)

Range The set of outputs for a function. (Sect. 3.1; see
also Sect. 9.1)

Rank of a matrix The dimension of the row space of a
matrix A, or the dimension of the column space of A,
which is the same. (Sect. 4.3)

Rank–Nullity theorem Given an n × m matrix A, the
Rank–Nullity theorem states that

rank(A) + nullity(A) = m

(Sect. 4.3)

Real part If a and b are real numbers, then a typical
complex number has the form

z = a + ib

where i satisfies i 2 = −1. Here a is called the real part
of z, denoted by Re(z). (Sect. 6.5)

Reduced echelon form Also called row reduced echelon
form, a matrix in this form is in echelon form and each
pivot column consists entirely of zeros except for in the
pivot position, which contains a 1. (Sect. 1.2)

Regular matrix A stochastic matrix A is regular if for
some integer k ≥ 1 the matrix Ak has all strictly
positive entries. (Sect. 3.5)

Row space Let A be an n × m matrix. The row space of A
is the subspace of Rm spanned by the row vectors of A
and is denoted by row(A). (Sect. 4.3)

Row vector A vector in Euclidean space expressed in the
form of a horizontal n-tuple. This term is also used
to indicate a vector formed from a row of a matrix A.
(Sect. 2.1)

Scalar A real number when viewed as a multiple of a
vector. (Sect. 2.1)

Scalar multiplication (matrices) The multiplication of
each term of a matrix by a real number. (Sect. 3.2)

Scalar multiplication (vectors) The multiplication of
each component of a vector by a real number. (Sect. 2.1)

Similar matrices A square matrix A is similar to ma-
trix B if there exists an invertible matrix S such that
A = S−1 B S. The change from B to A is called a
similarity transformation. (Sect. 9.4)

Singular matrix A square matrix that does not have an
inverse. (Sect. 3.3)

Singular value decomposition Suppose that A is an n×m
matrix. If n ≥ m, then the singular value decom-
position is the factorization of A as the product
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A = U�V T , where

• U is an n × n orthogonal matrix.

• � is an n × m matrix of the form � =
[

D
0(n−m)m

]
,

where D is a diagonal matrix with

D =

⎡
⎢⎢⎢⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm

⎤
⎥⎥⎥⎦

and σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are the singular values
of A. The singular values are given by σi = √

λi ,
where λi is an eigenvalue of AT A.

• V is an m × m orthogonal matrix.

If n < m, then � = [
D 0n(m−n)

]
with everything

else the same. (Sect. 8.4)

Skew symmetric matrix A square matrix A is skew sym-
metric if AT = −A. (Sect. 3.2)

Solution, linear equation An n-tuple (s1, . . . , sn) that
satisfies a linear equation. (Sect. 1.1)

Solution, linear system An n-tuple (s1, . . . , sn) that sat-
isfies a linear system. (Sect. 1.1)

Solution set The set of all solutions to a linear equation
or a linear system. (Sect. 1.1)

Span Let {u1, . . . , um} be a set of vectors. The span of this
set is denoted span{u1, u2, . . . , um} and is defined to
be the set of all linear combinations

x1u1 + x2u2 + · · · + xmum

where x1, x2, . . . , xm can be any real numbers.
(Sect. 2.2; see also Sect. 7.2)

Square matrix A matrix with the same number of rows
and columns. (Sect. 3.1)

Standard basis (Rn) Given by the vectors

e1 =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ , e2 =

⎡
⎢⎢⎢⎣

0
1
...

0

⎤
⎥⎥⎥⎦ , · · · , en =

⎡
⎢⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎥⎦

State vector A probability vector that is part of the se-
quence of vectors in a Markov chain. (Sect. 3.5)

Steady-state vector A state vector x that satisfies Ax = x,
where A is a transition matrix for a Markov chain.
(Sect. 3.5)

Stochastic matrix A square matrix A that has nonnega-
tive entries and columns that each add to 1. (Sect. 3.5)

Subspace A subset S of vectors is a subspace if S satisfies
the following three conditions: (1) S contains 0, the
zero vector, (2) if u and v are in S, then u + v is also in
S, and (3) if r is a real number and u is in S, then r u
is also in S. (Sect. 4.1; see also Sect. 7.1)

Subspace spanned If S = span{u1, u2, . . . , um}, then S
is the subspace spanned (or subspace generated) by
{u1, u2, . . . , um}. (Sect. 4.1)

Symmetric matrix A matrix A is symmetric if AT = A.
(Sect. 3.2)

System of linear equations A collection of linear equa-
tions of the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2

a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(Sect. 1.1)

System of linear first-order differential equations The
general form for such a system is

y ′
1 = a11 y1 + a12 y2 + a13 y3 + · · · + a1n yn

y ′
2 = a21 y1 + a22 y2 + a23 y3 + · · · + a2n yn

y ′
3 = a31 y1 + a32 y2 + a33 y3 + · · · + a3n yn

...
...

...
...

y ′
n = an1 y1 + an2 y2 + an3 y3 + · · · + ann yn

Here we assume that y1 = y1(t), . . . , yn = yn(t)
are each differentiable functions. The system is linear
because the functions are linearly related, and it is
first-order because only the first derivative appears.
(Sect. 6.6)

Theorem A mathematical statement that has been rigor-
ously proved to be true. (Sect. 1.1)

Tip-to-Tail rule A geometric interpretation of vector ad-
dition that involves translating one vector so that its
initial point (the tail) is situated at the end point (the
tip) of the other. (Sect. 2.1)

Transformation matrix Another term for the matrix of
a linear transformation. (Sect. 9.3)

Transition matrix A stochastic matrix A used to proceed
from one state vector to the next in a Markov chain via
the relationship xi+1 = Axi . (Sect. 3.5)

Transpose The transpose of a matrix A is denoted by AT

and results from interchanging the rows and columns
of A. (Sect. 3.2)
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Triangular form A linear system of the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a22x2 + a23x3 + · · · + a2nxn = b2

a33x3 + · · · + a3nxn = b3

. . .
...

...

annxn = bn

where a11, a22, . . . , ann are all nonzero. Also called a
triangular system. (Sect. 1.1)

Trivial solution The solution to a homogeneous linear
equation (or homogeneous linear system) where all
variables are set equal to zero. (Sect. 1.2)

Trivial subspaces S = {0} and S = Rn are the trivial sub-
spaces of Rn. For a vector space V , the trivial subspaces
are S = {0} and S = V . (Sect. 4.1; see also Sect. 7.1)

Unitarily diagonalizable A complex matrix A is unitarily
diagonalizable if there exist a diagonal matrix D and a
unitary matrix P such that

A = PDP−1 = PDP∗

As with real matrices, the diagonal entries of D are
the eigenvalues of A, and the columns of P are the
corresponding eigenvectors. (Sect. 11.5)

Unitary matrix The counterpart of orthogonal matrices
for a matrix A with complex entries is called a unitary
matrix, which requires that

A−1 = A∗

(Sect. 11.5)

Unitary space A complex vector space V with an inner
product defined on it. (Also called a complex inner
product space.) (Sect. 11.4)

Upper triangular matrix An n × n matrix A is upper
triangular if it has the form

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...

0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

That is, A is upper triangular if the entries below the
diagonal are all zero. (Sect. 3.2)

VecMobile An imaginary vehicle created to illustrate the
notion of span. (Sect. 2.2)

Vector In Euclidean space, an ordered list of real numbers
usually presented in a vertical column. In general, a
vector can be any number of different mathematical
objects, including matrices and continuous functions.
(Sect. 2.1; see also Sect. 7.1)

Vector arithmetic The “standard” definition of equality,
addition, and scalar multiplication as it is applied to
vectors in Euclidean space. (Sect. 2.1)

Vector form A specific way to describe the general solu-
tion to a linear system using a linear combination of
vectors. (Sect. 2.1)

Vector space A vector space consists of a nonempty set
V of vectors together with operations of addition and
scalar multiplication on the vectors that satisfy each of
the following:

(1) If v1 and v2 are in V , then so is v1 + v2. Hence V
is closed under addition.

(2) If c is a real scalar and v is in V , then so is cv.
Hence V is closed under scalar multiplication.

(3) There exists a zero vector 0 in V such that 0+v = v
for all v in V .

(4) For each v in V there exists an additive inverse (or
opposite) vector −v in V such that v + (−v) = 0
for all v in V .

(5) For all v1, v2, and v3 in V and real scalars c1 and
c2, we have

(a) v1 + v2 = v2 + v1

(b) (v1 + v2) + v3 = v1 + (v2 + v3)

(c) c1(v1 + v2) = c1v1 + c1v2

(d) (c1 + c2)v1 = c1v1 + c2v1

(e) (c1c2)v1 = c1(c2v1)

(f) 1 · v1 = v1

(Sect. 7.1)

Zero column A matrix column consisting entirely of
zeros. (Sect. 1.2)

Zero row A matrix row consisting entirely of zeros.
(Sect. 1.2)

Zero vector In Rn, a vector with zeros for each compo-
nent. In a vector space, a vector that is the counterpart
to 0 in the real numbers. (Sect. 2.1)
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Chapter 1

Section 1.1

1. Only (−3, −3) lies on line.

3. Only (−2, 5) lies on both lines.

5. None satisfies the linear system.

7. Only (b), (c), and (d) are solutions to the linear system.

9. x1 = 3, x2 = −1.

11. x1 = s1, x2 = 1
2 + 5

2 s1.

13. x1 = − 8
41 , x2 = − 5

41 .

15. Echelon form; x1, x2 leading variables, no free variables.

17. Echelon form; x1, x3 leading variables, x2 a free variable.

19. Not in echelon form.

21. Echelon form; x1, x3 leading variables, x2, x4 free variables.

23. x1 = − 19
5 , x2 = 5.

25. x1 = − 2
3 + 4

3 s1, x2 = s1.

27. x1 = 10 − 1
2 s1, x2 = −2 + 1

2 s1, x3 = s1, x4 = 5.

29. x1 = 5
6 + 1

2 s1 + 1
3 s2, x2 = s1, x3 = 4

3 + 1
3 s2, x4 = s2.

31. Reverse order of equations; x1 = 13
15 , x2 = − 4

5 .

33. Reverse order of equations; x1 = −1 + 7
2 s1 − 19

2 s2,
x2 = − 1

2 s1 + 5
2 s2, x3 = s1, x4 = s2.

35. k �= − 15
2 .

37. h = 2, k �= −1.

39. 9 variables.

41. 7 leading variables.

43. For example,

x1 = 0
x2 = 0
x3 = 0

45. For example,

x1 + x2 = 0
x1 + x2 − x3 = 0

x3 = 0
x1 + x2 + x3 = 0

47. On Monday, I bought 3 apples and 4 oranges and spent $0.55.
On Tuesday I bought 6 oranges and spent $0.60. How much
does each apple and orange cost?

Answer: apples cost 5 cents each and oranges cost 10 cents
each.

49. For example,

x1 − x2 = −3
3x1 − x3 = 4

51. False

53. False

55. True

57. False

59. True

61. 196.875 liters of 18% solution, 103.125 liters of 50% solution.

63. 298 adults and 87 children.

65. a1 = 14
5 and a2 = 11

5

67. a = 5
9 and b = − 160

9

69. The published values from the United States Mint are q =
0.955 in and n = 0.835 in.

71. x1 = 12, x2 = 5

73. x1 = 33
8 s1, x2 = 9

4 s1 − 23
11 , x3 = s1 − 5

33

75. x1 = 47
8 s1, x2 = −2s1 + 69

47 , x3 = 7
4 s1 + 565

141 , x4 = s1 + 202
141

Section 1.2

1. 4x1 + 2x2 − x3 = 2
−x1 + 5x3 = 7

3. 12x2 − 3x3 − 9x4 = 17
−12x1 + 5x2 − 3x3 + 11x4 = 0

6x1 + 8x2 + 2x3 + 10x4 = −8
17x1 + 13x4 = −1

5. Echelon form.

7. Not in echelon form.

9. Echelon form.

11. −2R1 ⇒ R1

13. −2R2 + R3 ⇒ R3

15. R1 ⇔ R2,

[−1 4 3
3 7 −2
5 0 −3

]

17. 2R1 ⇒ R1,

[
0 6 −2 4

−1 −9 4 1
5 0 7 2

]

19.

[
2 1 1

−4 −1 3

]
; x1 = −2, x2 = 5.

21.

[−2 5 −10 4
1 −2 3 −1
7 −17 34 −16

]
; x1 =− 12, x2 =− 10, x3 =− 3.

23.

[
2 2 −1 8

−1 −1 0 −3
3 3 1 7

]
; x1 = 3 − s1, x2 = s1, x3 = −2.

25.

[
2 6 −9 −4 0

−3 −11 9 −1 0
1 4 −2 1 0

]
;

x1 = 35s1, x2 = −8s1, x3 = 2s1, x4 = s1.
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27.

[
−2 −5 0

1 3 1

]
; x1 = −5, x2 = 2.

29.

[
2 1 0 2

−1 −1 −1 1

]
; x1 = 3+s1, x2 = −4−2s1, x3 = s1.

31. (1/5)R1 ⇒ R1

33. R1 ⇔ R3

35. 5R2 + R6 ⇒ R6

37. An example:

[
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1

]

39. An example:

⎡
⎢⎣

1 0 0 4
0 1 0 3
0 0 1 2
0 0 0 1

⎤
⎥⎦

41. An example:

x1 = 0
x2 = 0

x3 + x4 = 0

43. True

45. False

47. False

49. True

51. Exactly one solution.

53. HINT: Show that the system must have at least one free variable.

55. HINT: Show that the system must have at least one free variable.

57. f (x) = 2x2 − 3x + 5

59. E (x) = − 1
10 x2 + 49

5 x + 132

61. x1 = − 157
181 , x2 = 20

181 , x3 = − 58
181

63. x1 = 7
9 − s1, x2 = − 23

9 − s1, x3 = − 22
27 + s1, x4 = s1.

65. No solutions.

67. x1 = 46
579 s1, x2 = − 745

579 s1, x3 = − 2264
579 s1,

x4 = − 655
386 s1, x5 = s1.

Section 1.3

1. x1 = 1, x2 = 2.

3. x1 = 79
49 , x2 = 22

49 , x3 = 124
49 .

5. No partial pivot: x1 = −0.219, x2 = 0.0425
With partial pivot: x1 = −0.180, x2 = 0.0424.

7. No partial pivot: x1 = −0.407, x2 = −0.757, x3 = 0.0124
With partial pivot: x1 = −0.392, x2 = −0.755, x3 = 0.0124.

9. n x1 x2

0 0 0
1 −1.2 0.2
2 −1.12 0.56
3 −0.976 0.536

Exact solution: x1 = −1, x2 = 0.5.

11. n x1 x2 x3

0 0 0 0
1 −1.3 2.3 2.6
2 −2.295 3.34 1.42
3 −2.156 3.185 0.805

Exact solution: x1 = −2, x2 = 3, x3 = 1.

13. n x1 x2

0 0 0
1 −1.2 0.56
2 −0.976 0.4928
3 −1.0029 0.5009

Exact solution: x1 = −1, x2 = 0.5.

15. n x1 x2 x3

0 0 0 0
1 −1.3 2.56 1.316
2 −2.013 3.0974 0.9584
3 −2.0042 2.9884 1.0038

Exact solution: x1 = −2, x2 = 3, x3 = 1.

17. Not diagonally dominant. Not possible to reorder to obtain
diagonal dominance.

19. Not diagonally dominant. Not possible to reorder to obtain
diagonal dominance.

21. Jacobi iteration of given linear system:

n x1 x2

0 0 0
1 −1 −1
2 −3 −3
3 −7 −7
4 −15 −15

Diagonally dominant system:

2x1 − x2 = 1
x1 − 2x2 = −1

Jacobi iteration of diagonally dominant system:

n x1 x2

0 0 0
1 0.5 0.5
2 0.75 0.75
3 0.875 0.875
4 0.9375 0.9375

23. Jacobi iteration of given linear system:

n x1 x2 x3

0 0 0 0
1 −1 8 −0.3333
2 16.67 12.33 27
3 −111.3 −21.33 29.67
4 −192 624 2.778
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Diagonally dominant system:

5x1 + x2 − 2x3 = 8
2x1 − 10x2 + 3x3 = −1

x1 − 2x2 + 5x3 = −1

Jacobi iteration of diagonally dominant system:

n x1 x2 x3

0 0 0 0
1 1.6 0.1 −0.2
2 1.5 0.36 −0.48
3 1.336 0.256 −0.356
4 1.406 0.2604 −0.3648

25. Gauss–Seidel iteration of given linear system:

n x1 x2

0 0 0
1 −1 −3
2 −7 −15
3 −31 −63
4 −127 −255

Diagonally dominant system:

2x1 − x2 = 1
x1 − 2x2 = −1

Gauss–Seidel iteration of diagonally dominant system:

n x1 x2

0 0 0
1 0.5 0.75
2 0.875 0.9375
3 0.9688 0.9844
4 0.9922 0.9961

27. Gauss–Seidel iteration of given linear system:

n x1 x2 x3

0 0 0 0
1 −1 13 43.67
2 −193.3 1062 3669
3 −1.622 × 104 8.844 × 104 3.056 × 105

4 −1.351 × 106 7.367 × 106 2.546 × 107

Diagonally dominant system:

5x1 + x2 − 2x3 = 8
2x1 − 10x2 + 3x3 = −1

x1 − 2x2 + 5x3 = −1

Gauss–Seidel iteration of diagonally dominant system:

n x1 x2 x3

0 0 0 0
1 1.6 0.42 −0.352
2 1.375 0.2694 −0.3673
3 1.399 0.2697 −0.3712
4 1.397 0.2679 −0.3723

29. x1 = −3, x2 = 18.

31. x1 = 27, x2 = 52.

Section 1.4

1. Minimum = 20 vehicles.

3. Minimum = 25 vehicles.

5. H2+O −→ H2O

7. 4Fe + 3O2 −→ 2Fe2O3

9. C3H8 + 5O2 −→ 3CO2 + 4H2O

11. 4KO2 + 2CO2 −→ 2K2CO3 + 3O2

13. p = (0.19847) d1.5011

15. p = (0.20120) d1.49835

17. d = 0.045s 2

19. A = 1, B = −1.

21. A = −1, B = −1, C = 1.

23. x = 4

25. y = −2x2 + 3x − 5

27. g (x) = −x4 + 2x3 + x2 − 3x + 5

29. f (x) = 2
3 e−2x − 5

3 ex + xex

31. LAI = 0.0001100 (USA) + 0.0000586 (Harris) + 0.0066823(
Computer

)

Chapter 2

Section 2.1

1.

[
7

−3
−5

]
3.

[−10
−4
14

]
5.

[−5
−4

4

]

7. 3x1 − x2 = 8

2x1 + 5x2 = 13

9. −6x1 + 5x2 = 4

5x1 − 3x2 + 2x3 = 16

11. x1

[
2

−1

]
+ x2

[
8

−3

]
+ x3

[
−4

5

]
=

[
−10

4

]

13. x1

[
1

−2
−3

]
+ x2

[−1
2

−3

]
+ x3

[−3
6

10

]
+ x4

[−1
2
0

]
=

[−1
−1

5

]

15.

[
x1

x2

]
=

[
−4

0

]
+ s1

[
3
1

]

17.

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦ =

⎡
⎢⎣

4
0

−9
0

⎤
⎥⎦ + s1

⎡
⎢⎣

6
0
3
1

⎤
⎥⎦ + s2

⎡
⎢⎣

−5
1
0
0

⎤
⎥⎦
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19. 1u + 0v = u =
[

3
−2

]
, 0u + 1v = v =

[
−1
−4

]
,

1u + 1v =
[

3
−2

]
+

[
−1
−4

]
=

[
2

−6

]

21. 1u + 0v + 0w = u =
[−4

0
−3

]
, 0u + 1v + 0w = v =

[−2
−1

5

]
,

0u + 0v + 1w = w =
[

9
6

11

]

23. a = 2 and b = 7

25. a = 3, b = 5, and c = 7

27. b = 3a1 + 2a2

29. b = 3a1 + 4a2

31. 76 pounds of nitrogen, 31 pounds of phosphoric acid, and 14
pounds of potash.

33. Two bags of Vigoro and three bags of Parker’s.

35. Three bags of Vigoro and two bags of Parker’s.

37. No solution possible.

39. No solution possible.

41. Two cans of Red Bull and one can of Jolt Cola.

43. Two cans of Red Bull and two cans of Jolt Cola.

45. Three servings of Lucky Charms and five servings of Raisin
Bran.

47. Two servings of Lucky Charms and three servings of Raisin
Bran.

49. (a) a =
[

2000
8000

]
, b =

[
3000

10,000

]

(b) 8b = (8)

[
3000

10,000

]
=

[
24,000
80,000

]
.

The company produces 24,000 computer monitors and
80,000 flat panel televisions at facility B in 8 weeks.

(c) 30,000 computer monitors and 108,000 flat panel televi-
sions.

(d) 9 weeks of production at facility A and 2 weeks of pro-
duction at facility B.

51. v =
[ 8

5
16
5

]
;

u3

u1

u2

�1 321

5

4

3

2

1

53. 6kg of u1, 3kg of u2, 2kg of u3

55. For example, u = (0, 0, −1) and v = (3, 2, 0).

57. For example, u = (1, 0, 0), v = (1, 0, 0), and w = (−2, 0, 0).

59. For example, u = (1, 0) and v = (2, 0).

61. x1 = 3 and x2 = −2

63. True

65. True

67. False

69. True

71. False

75.

u

�1�2�3 1

7

6

5

4

3

2

1

v u � v

77.

�1 321

2

1

�3

�1

�2

u�

u

u � v

v�

v

79.

u

v

u � v

(u � v)�

3 421

3

2

1

�2

�1

81. x1 = 4, x2 = −6.5, and x3 = 1.

Section 2.2

1. 0u1 + 0u2 =
[

0
0

]
, 1u1 + 0u2 =

[
2
6

]
, 0u1 + 1u2 =

[
9

15

]
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3. 0u1 + 0u2 =
[

0
0
0

]
, 1u1 + 0u2 =

[
2
5

−3

]
, 0u1 + 1u2 =

[
1
0
4

]

5. 0u1 + 0u2 + 0u3 =
[

0
0
0

]
, 1u1 + 0u2 + 0u3 =

[
2
0
0

]
,

0u1 + 1u2 + 0u3 =
[

4
1
6

]

7. b is not in the span of a1.

9. b is not in the span of a1.

11. b is not in the span of a1 and a2.

13. A =
[

2 8 −4
−1 −3 5

]
, x =

[
x1

x2

x3

]
, b =

[
−10

4

]

15. A =
[

1 −1 −3 −1
−2 2 6 2
−3 −3 10 0

]
, x =

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦, b =

[−1
−1

5

]

17. x1

[
5
1

]
+ x2

[
7

−5

]
+ x3

[
−2
−4

]
=

[
9
2

]

19. x1

[
4
0
3

]
+ x2

[−2
−5

8

]
+ x3

[−3
7
2

]
+ x4

[
5
3

−1

]
=

[
12
6
2

]

21. Columns do not span R2.

23. Columns span R2.

25. Columns span R3.

27. Columns do not span R3.

29. For every choice of b there is a solution of Ax = b.

31. There is a choice of b for which there is no solution to Ax = b.

33. There is a choice of b for which there is no solution to Ax = b.

35. Example: b =
[

0
1

]

37. Example: b =
[

0
0
1

]

39. h �= 3

41. h �= 4

43. Example: u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1),
u4 = (1, 1, 1)

45. Example: u1 = (1, 0, 0), u2 = (2, 0, 0), u3 = (3, 0, 0),
u4 = (4, 0, 0)

47. Example: u1 = (1, 0, 0), u2 = (0, 1, 0)

49. Example: u1 = (1, −1, 0), u2 = (1, 0, −1)

51. True

53. False

55. False

57. True

59. False

61. True

63. False

65. (c) and (d) can possibly span R3.

67. HINT: Show that span {u} ⊆ span {cu} and that span {cu} ⊆
span {u}

69. HINT: Let S1 = {u1, . . . , uk} be a subset of S2, and show that
every linear combination c1u1 + · · · ck uk is in span(S1).

71. HINT: Start with a linear combination b = c1u1+c2u2+c3u3.
Show how to reorganize to write b as a linear combination of
the set {u1 + u2, u1 + u3, u2 + u3}.

73. HINT: Generalize the argument given in Example 5.

75. True

77. False

Section 2.3

1. Linearly independent.

3. Linearly independent.

5. Linearly independent.

7. Linearly dependent.

9. Linearly independent.

11. Linearly independent.

13. System has only trivial solution.

15. System has only trivial solution.

17. System has only trivial solution.

19. Linearly dependent.

21. Linearly dependent.

23. Linearly dependent.

25. Vectors are linearly independent; none in span of the others.

27. Vectors are linearly independent; none in span of the others.

29. System does not have a unique solution for all b.

31. System does not have a unique solution for all b.

33. u = (1, 0, 0, 0), v = (0, 1, 0, 0), w = (1, 1, 0, 0)

35. u = (1, 0), v = (2, 0), w = (3, 0)

37. u = (1, 0, 0), v = (0, 1, 0), w = (1, 1, 0)

39. False

41. False

43. False

45. False

47. True

49. False

51. False
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53. (a), (b), and (c) can be linearly independent; (d) cannot.

55. HINT: Start by assuming that {c1u1, c2u2, c3u3} is linearly
dependent, so the equation x1(c1u1)+x2(c2u2)+x3(c3u3) =
0 has a nontrivial solution. Show this implies that {u1, u2, u3}
is also linearly dependent, a contradiction.

57. HINT: Start by assuming that {u1 + u2, u1 + u3, u2 + u3} is
linearly dependent, so the equation x1(u1+u2)+x2(u1+u3)+
x3(u2 + u3) = 0 has a nontrivial solution. Show this implies
that {u1, u2, u3} is also linearly dependent, a contradiction.

59. HINT: Write the initial set of vectors as a nontrivial linear com-
bination equal to 0 and then show that this linear combination
can be extended to the new larger set of vectors.

61. HINT: If u = cv, then u − cv = 0.

63. HINT: Modify the proof of part (a) of Theorem 2.16.

65. No redundancy.

67. Linearly independent.

69. Linearly independent.

71. Unique solution for all b.

73. Does not have a unique solution for all b.

Chapter 3

Section 3.1

1. T(u1) =
[

−10
2

]
, T(u2) =

[
−4

−33

]

3. T(u1) =
[

−6
9

]
, T(u2) =

[
16
11

]
5. y is in the range of T .

7. y is in the range of T .

9. T(−2u1 + 3u2) =
[

−13
4

]

11. T(−u1 + 4u2 − 3u3) =
[

11
−19

]

13. Linear transformation, with A =
[

3 1
−2 4

]
.

15. Not a linear transformation.

17. Linear transformation, with A =
[

−4 0 1
6 5 0

]
.

19. Linear transformation, with A =
[

0 sin π
4

ln 2 0

]
.

21. T is both one-to-one and onto.

23. T is not one-to-one but is onto.

25. T is one-to-one but not onto.

27. T is neither one-to-one nor onto.

29.

321

4

3

2

1

T(S)

31.

1�2 �1

4

3

2

1

T(S)

33. T(x) =
[

2 0
3 0

]
x

35. T(x) =
[

7/3 0
0 0

]
x

37. T(x) =
[

1 −2
3 1

]
x

39. False

41. True

43. True

45. False

47. False

49. (a) A =
[

r 0
0 r

]

(b)

3 42
�1

�3

�2

�4

T(x)

x

1

51. HINT: Show that T(x+y) = T(x)+T(y) and T(r x) = r T(x).

53. HINT: Let T(x) = Ax, where A is a 2 × 3 matrix. Explain why
Ax = 0 must have a nontrivial solution.
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55. HINT: Show that T(0) = T(0 + 0) = T(0) + T(0).

57. HINT: Use properties of matrix algebra.

59. HINT: Use the fact that T is one-to-one if and only if T(x) = 0
has only the trivial solution.

61. HINT: Start by assuming that x1u1 +x2u2 = 0 has a nontrivial
solution, and arrive at a contradiction.

63. HINT: Use hint given with problem.

65. HINT: The unit square consists of all vectors x = s u + tv,
where u = (1, 0), v = (0, 1), 0 ≤ s ≤ 1, and 0 ≤ t ≤ 1.

67. (c) T(x) = Ax =
[

0 0 0
2 0 0
0 1 0

]
x

(d) T is neither one-to-one nor onto.

69. (a) T(x2 + sin(x)) = 2x + cos(x)

71. T

([
5
3
6

])
=

[
603
565
766

]

73. T

([
14
10
9

])
=

[
1255
1175
1609

]

75. T is onto but not one-to-one.

77. T is neither one-to-one nor onto.

79. T is one-to-one but not onto.

Section 3.2

1. (a) A + B =
[

−3 5
0 4

]

(b) AB + I2 =
[

−1 −7
2 4

]
(c) A + C is not possible.

3. (a) (AB)T =
[

−2 2
−7 3

]
(b) C E is not defined.

(c) (A − B) D =
[

3 −15 12
16 −30 −6

]
5. (a) (C + E ) B is not possible.

(b) B
(

C T + D
) =

[
−8 36 8
−22 47 10

]

(c) E + C D =
[

6 4 −20
−11 21 −4
−3 17 −6

]

7. a = −1, b = 1, c = −13

9. a = −1, b = 3, c = −3, d = 8

11. a = 2

13. (a) A =
[

−6 52
4 17

]

(b) A =
[

−24 53
−10 35

]

(c) A =
[

−1 50
−20 39

]

(d) A =
[

4 27
0 25

]
15. A2 − I

17. AB A − A2 + B3 A − B2 A

19. The right side assumes that AB = B A, which is not true in
general.

21. The right side assumes that AB = B A, which is not true in
general.

23. AB is 4 × 5.

25. (a) A − B =

⎡
⎢⎢⎣

−1 −2
1 −1

0 2
−1 3

−1 3
−2 −1

0 −3
3 3

⎤
⎥⎥⎦

(b) AB =

⎡
⎢⎢⎣

14 5
4 7

−6 −10
−4 −7

−8 4
−1 1

9 −5
−3 5

⎤
⎥⎥⎦

(c) B A =

⎡
⎢⎢⎣

3 −5
−7 11

2 7
2 −4

4 −1
−1 −8

9 −1
−2 12

⎤
⎥⎥⎦

27. (a) B − A =

⎡
⎢⎣

1 2 0 −2
−1 1 1

1 −3 0
2 1 −3

−3
3

−3

⎤
⎥⎦

(b) AB =

⎡
⎢⎣

14 5 −6 −10
4 7 −4

−8 4 9
−1 1 −3

−7
−5

5

⎤
⎥⎦

(c) B A + A =

⎡
⎢⎣

4 −7 1 10
−9 11 3

3 1 7
−1 −7 0

0
−1
13

⎤
⎥⎦

29. (a) E =
[

0 1 0
1 0 0
0 0 1

]

(b) E =
[

0 0 1
0 1 0
1 0 0

]

(c) E =
[

1 0 0
0 −2 0
0 0 1

]

31. For example, A =
[

0 1 0
0 0 0
0 0 0

]
, B =

[
1 0 0
0 0 0
0 0 0

]
.

33. For example, A =
[

0 1
0 0

]
, B =

[
1 0
0 0

]
.
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35. For example, A =
[

1 1
1 1

]
, B =

[
1 1

−1 −1

]
.

37. For example, A =
[

1 2
2 1

]
, B =

[
2 1
1 2

]
, C =

[
1 1
1 1

]
.

39. False

41. True

43. False

45. True

47. True

53. HINT: Start with (AB)T , and use AT = A, B T = B because
A, B are symmetric.

55. (a) AT A is m × m.

(b) HINT: Show (AT A)T = AT A.

57. HINT: Follow hint given in exercise.

59. HINT: A proof by induction works well for this one.

61. (a) For example, A =
[

0 1 2
−1 0 3
−2 −3 0

]
.

(b) HINT: Look at your example for part (a).

65. After one year:

[
6500
2200
1300

]
; after two years:

[
5375
2760
1865

]
;

after three years: ≈
[

4531
3208
2261

]
;

after four years: ≈
[

3898
3566
2535

]
.

67. Tomorrow:

[
742
258

]
; the next day: ≈

[
734
266

]
;

the day after that: ≈
[

730
270

]
.

69. (a) A + B =

⎡
⎢⎣

−4 1 −3 5
−5 5 3 2

6 11 0 5
13 2 −1 −2

⎤
⎥⎦

(b) B A − I4 =

⎡
⎢⎣

−26 −15 4 −31
5 1 9 −28

14 −11 11 −12
4 −9 13 24

⎤
⎥⎦

(c) D + C is not possible.

71. (a) AB =

⎡
⎢⎣

25 22 −14 −1
−23 10 −1 21
−68 36 −21 34
−31 −3 −12 0

⎤
⎥⎦

(b) C D =

⎡
⎢⎣

14 21 17 7
42 65 60 22
42 82 62 30
52 76 47 29

⎤
⎥⎦

(c) (A − B) C T is not possible.

73. (a) (C + A)B is not possible.

(b) C
(

C T + D
) =

⎡
⎢⎣

21 40 41 29
61 120 124 84
66 146 182 106
74 138 123 109

⎤
⎥⎦

(c) A + C D =

⎡
⎢⎣

16 20 17 11
42 68 63 21
48 90 63 31
57 73 48 27

⎤
⎥⎦

Section 3.3

1.

[
1 −3

−2 7

]
3. Inverse does not exist.

5.

[
9 −4

−2 1

]
7. Inverse does not exist.

9.

[
1 −2 7
0 1 −3
0 0 1

]

11. Inverse does not exist.

13.

⎡
⎢⎣

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎦

15.

⎡
⎢⎣

1 −3 −7 17
0 1 2 −4
0 0 1 −1
0 0 0 1

⎤
⎥⎦

17. x1 = 35 and x2 = −11

19. x1 = − 15
4 , x2 = 29

4 and x3 = 5
2

21. T−1 (x) =
[

−2x1 + 3x2

3x1 − 4x2

]
23. T−1 does not exist.

25. T−1 does not exist.

27. (a)

[
2 1

−1 0

]

(b)

[
1 −1
0 1

]

(c)

[
0 −1
1 2

]

(d)

[
1 1
0 1

]

29.

⎡
⎣ 1 0 0

0
0

4 −7
−1 2

⎤
⎦
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31.

⎡
⎢⎢⎣

8 −5
−3 2

0 0
0 0

0 0
0 0

−3 4
1 −1

⎤
⎥⎥⎦

33.

⎡
⎢⎢⎢⎣

−8 3
3 −1

0 0 0
0 0 0

−32 13
23 −9
14 −5

1 −2 2
0 1 0
0 0 1

⎤
⎥⎥⎥⎦

35.

[
1 0 0
0 1 0
0 0 1

]

37. A =
[

1 0
0 1

]
, B =

[
3 0
0 3

]

39. A =
[

1 0 0
0 1 0

]
, B =

[
1 0
0 1
0 0

]

41. False

43. True

45. True

47. True

49. True

51. X = A−1 B

53. X = C−1 B − A

55. A =
[

±1 0
0 ±1

]
and A =

[
a b

1−a2

b −a

]
where b �= 0.

57. HINT: Apply The Big Theorem.

59. c �= 0 and c �= 1

61. HINT: If A is n ×n and not invertible, then the system Ax = 0
has a nontrivial solution x0.

63. B = C−1 AC

65. HINT: Right-multiply by A−1.

67. HINT: Since B is singular, there is a nontrivial solution to
Bx = 0.

71. 6 J8’s, 10 J40’s, 8 J80’s.

73. This combination is not possible.

75. 3 Vigoro, 4 Parker’s, 5 Bleyer’s.

77. 10 Vigoro, 14 Parker’s, 11 Bleyer’s.

79. “laptop”

81. “final exam”

83.

⎡
⎢⎢⎢⎣

8
145 − 14

145 − 23
145

4
29

67
145

64
145

43
145 − 10

29

− 27
145

11
145 − 13

145
1

29

− 3
29 − 2

29
5

29
7

29

⎤
⎥⎥⎥⎦

85. Inverse does not exist.

Section 3.4

1. a = 2, b = −14

3. a = 4, b = 3, c = 2

5. x =
[

3
2

]

7. x =
[−1

0
2

]

9. x =
[

2
1

]

11. x =

⎡
⎢⎣

2
1

−1
0

⎤
⎥⎦

13. L =
[

1 0
−2 1

]
and U =

[
1 −4
0 1

]

15. L =
[

1 0 0
3 1 0

−1 −1 1

]
and U =

[−2 −1 1
0 3 1
0 0 1

]

17. L =

⎡
⎢⎣

1 0 0 0
−1 1 0 0

2 −3 1 0
1 3 −2 1

⎤
⎥⎦

U =

⎡
⎢⎣

−1 0 −1 2
0 3 1 0
0 0 2 −1
0 0 0 1

⎤
⎥⎦

19. L =
[

1 0 0
−4 1 0

2 2 1

]
and U =

[−1 2 1 3
0 1 −3 −5
0 0 1 2

]

21. L =

⎡
⎢⎣

1 0 0 0
1 1 0 0
1 2 1 0
0 −1 −1 1

⎤
⎥⎦ and U =

⎡
⎢⎣

1 1 0
0 −1 −1
0 0 2
0 0 0

⎤
⎥⎦

23. L =

⎡
⎢⎢⎢⎣

1 0 0 0 0
−1 1 0 0 0

2 −1 1 0 0
−1 1 − 18

17 1 0

2 0 1
17 0 1

⎤
⎥⎥⎥⎦

U =

⎡
⎢⎢⎢⎣

−2 1 3
0 1 11
0 0 17
0 0 0
0 0 0

⎤
⎥⎥⎥⎦

25. L =
[

1 0
−2 1

]
, D =

[
2 0
0 3

]
, U =

[
1 −1
0 1

]

27. L=
[

1 0
3 1

]
, D =

[
1 0
0 −2

]
, U =

[
1 −1 2
0 1 1

2

]
.
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29. L=
[

1 0 0
3 1 0

−1 −1 1

]
, D =

[−2 0 0
0 3 0
0 0 1

]
,

U =

⎡
⎣ 1 1

2 − 1
2

0 1 1
3

0 0 1

⎤
⎦

31. E =
[

4 0 0
0 1 0
0 0 1

]

33. E =
[

0 1 0
1 0 0
0 0 1

]

35. E =
[

1 0 0
0 1 0
2 0 1

]

37. B =
[

1 0 0
−2 1 0

0 0 5

]

39. B =
[

0 1 0
1 3 0
0 0 1

]

41. B =
[

0 1 0
−3 4 0

0 0 1

]

43. E =

⎡
⎢⎣

1 0 0 0
0 −6 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

E −1 =

⎡
⎢⎣

1 0 0 0
0 − 1

6 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ ↔ {− 1

6 R2 ⇒ R2
}

45. E =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦

E −1 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ ↔ {R3 ⇔ R4}

47. E =

⎡
⎢⎣

1 0 0 0
−5 1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦

E −1 =

⎡
⎢⎣

1 0 0 0
5 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ ↔ {5R1 + R2 ⇒ R2}

49. A−1 =
[ 7

6
1
3

2
3

1
3

]

51. A−1 =

⎡
⎢⎣

17 1 −2 −7
8 0 −1 −4

−6 −2 1 1
0 1 0 1

⎤
⎥⎦

53. A−1 =

⎡
⎢⎣

3 − 5
3

1
3

3 − 3
2

1
4

4 −2 1
2

⎤
⎥⎦

55. A =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎦ = LU =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎦

57. A =
[

1 0
0 1

]
= LU =

[
1 0
0 1

][
1 0
0 1

]

59. A =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦= LU =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

61. False 63. False 65. False 67. False

69. HINT: Apply properties of matrix multiplication.

71. HINT: Take each case separately and apply properties of matrix
multiplication.

73. This matrix does not have an LU factorization.

75. L =

⎡
⎢⎣

1 0 0 0
1
2 1 0 0
1 0 1 0
3
2

2
7 − 1

5 1

⎤
⎥⎦

U =

⎡
⎢⎣

10 2 0 −4 2
0 0 −14 7 21
0 0 0 −5 0
0 0 0 0 −16

⎤
⎥⎦

Section 3.5

1. Stochastic 3. Stochastic

5. a = 0.35, b = 0.55

7. a = 8
13 , b = 1

7 , c = 1
10

9. a = 0.7, b = 0.7

11. a = 0.5, b = 0.4, c = 0.5, d = 0.4

13. x3 =
[

0.4432
0.5568

]

15. x3 =
[ 2531

6750
4219
6750

]

17. x =
[

0.71429
0.28571

]
=

[
5/7
2/7

]

19. x =
[

0.39807
0.29126
0.31067

]

21. Not regular.

23. Not regular.
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25. A =

⎡
⎢⎣

0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2
0.3 0.3 0.3 0.3
0.4 0.4 0.4 0.4

⎤
⎥⎦

27. A =
[ 1

3
2
3

2
3

1
3

]

29. A =
[

1 0 0
0 0 1
0 1 0

]
, x0 =

[
0
1
0

]

31. False

33. False

35. False

37. HINT: Let Y = [
1 1 · · · 1

]
, show that Y A = Y , and

then show Y (Ax) = 1.

39. HINT: See exercise for hint.

43. HINT: Each column of Ak+1 is a linear combination, with
nonnegative scalars, of the columns of Ak .

45. HINTS: (b) Compute A2 then A3, then look for a pattern.

(c) Ak →
[

0 0
1 1

]
(d) x =

[
0
1

]

47. (a) A =
[

0.9 0.15
0.1 0.85

]
(b) Probability that the sixth person in the chain hears the

wrong news is 0.32881.

(c) x =
[

0.6
0.4

]

49. (a) A =
[

0.35 0.8
0.65 0.2

]
(b) i. Probability that she will go to McDonald’s two

Sundays from now is 0.3575.

ii. Probability that she will go to McDonald’s three
Sundays from now is 0.48913.

(c) Probability that his third fast-food experience will be at
Krusty’s will be 0.521.

(d) x =
[

0.55173
0.44827

]
51. (a) Probability that a book is at C after two more circulations

is 0.21.

(b) Probability that the book is at B after three more circula-
tions is 0.64.

(c) x =
[

0.17105
0.63158
0.19737

]

53. x9 = x10 =

⎡
⎢⎣

0.266666
0.399999
0.133333
0.200000

⎤
⎥⎦; the steady-state vector is

x =

⎡
⎢⎢⎢⎣

4
15
2
5
2

15
1
5

⎤
⎥⎥⎥⎦

55. A

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ so

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ has itself as its steady-state vector.

Also A

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ =

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ so

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ has itself as its steady-state

vector.

Chapter 4

Section 4.1

1. This is a subspace, equal to span

{[
1
0
0

]
,

[
0
0
1

]}
.

3. Not a subspace, because 0 is not in this set.

5. Not a subspace, because 0 is not in this set.

7. Not a subspace, because it is not closed under scalar multipli-
cation.

9. Not a subspace, because it is not closed under addition.

11. Not a subspace, because it is not closed under scalar multipli-
cation.

13. Not a subspace, because it is not closed under scalar multipli-
cation.

15. A subspace, equal to null
([

1 1 · · · 1
])

.

17. Not closed under scalar multiplication.

19. Not closed under addition.

21. null(A) =
{[

0
0

]}

23. null(A) = span

{[
5

−2
1

]}

25. null(A) = span

{[
4
3
1

]}

27. null(A) =
{[

0
0

]}

29. null(A) =
{[

0
0
0

]}

31. null(A) = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
−1

1
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭
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33. b is not in ker(T); c is in range(T).

35. b is not in ker(T); c is not in range(T).

37. For example, S =
{[

x
y

]
: x > 0

}
.

39. For example, S1 =
{[

x
0

]
: x ≥ 0

}

and S2 =
{[

x
0

]
: x < 0

}
.

41. Let T(x) = Ax, where A =
[

1 0
1 0

]
.

43. Let T(x) = Ax, where A = I3.

45. True

47. True

49. False

51. True

53. True

55. True

57. False

59. False

61. HINT: If x �= 0 is in a subspace S, show that every real number
must be in S.

63. HINT: Determine if 0 is in the set of solutions.

65. The vector 0 alone, lines and planes through the origin, and
all of R3.

67. HINT: Determine if 0 is in the set of solutions.

69. HINT: Show that x �= 0 and Ax = 0 if and only if the columns
of A are linearly dependent.

71. HINT: Note that u − v = u + (−1)v.

73. span

{[
1
2
2

]}

75. span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
2
1
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

77. span

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

3
7

− 13
7
5
7
1
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

− 43
56

− 5
56

− 39
56

0
1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

79.

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Section 4.2

1. Not a basis, since u1 and u2 are not linearly independent.

3. Not a basis, since three vectors in a two-dimensional space
must be linearly dependent.

5. Basis is

{[
1

−4

]}
; dimension = 1.

7. Basis is

{[
1
3

−2

]
,

[
0

−2
5

]}
; dimension = 2.

9. Basis is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
−2

3
−2

⎤
⎥⎦ ,

⎡
⎢⎣

0
2

−5
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭; dimension = 2.

11. Basis is

{[
1
3

]
,

[
4

−12

]}
; dimension = 2.

13. Basis is

{[
1
2
4

]
,

[
0
1

−3

]
,

[
3

−2
−1

]}
; dimension = 3.

15. Basis is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
−1

0
2

⎤
⎥⎦ ,

⎡
⎢⎣

2
−5

9
7

⎤
⎥⎦

⎫⎪⎬
⎪⎭; dimension = 2.

17. Basis is

{[
2

−6

]}
; dimension is 1.

19. Basis is

{[
1
1
1

]}
; dimension is 1.

21. Basis is

{[
3
0
0

]
,

[
2
1
0

]
,

[
1
2
3

]}
; dimension is 3.

23. One extension is

{[
1

−3

]
,

[
1
0

]}
.

25. One extension is

{[−1
2
1

]
,

[
1
0
0

]
,

[
0
1
0

]}
.

27. One extension is

{[
1
3

−2

]
,

[
2

−1
0

]
,

[
1
0
0

]}
.

29. null(A) =
{[

0
0

]}
. This subspace has no basis, and nullity

(A) = 0.

31. The null space has basis

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−7
0
3
1

⎤
⎥⎦ ,

⎡
⎢⎣

−1
1
0
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭,

and nullity(A) = 2.

33. For example,

{[
1
0

]
,

[
1
1

]
,

[
0
1

]
,

[
−1

1

]}
.

35. For example, the span of the first m vectors of the n standard
basis vectors of Rn .
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37. For example, S1 = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

and S2 = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ ,

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭.

39. For example, u1 =
[

1
0
0

]
and u2 =

[
0
1
0

]
.

41. False

43. False

45. False

47. False

49. False

51. False

53. True

55. (a) 1, 2, or 3.

(b) 1 or 2.

57. HINT: Use the Big Theorem.

59. HINT: Show separately that the set is linearly independent and
spans S.

61. HINT: A basis for S1 can be expanded to a basis for S2.

63. HINT: The entries below each pivot are equal to zero.

65. n

69. Subspace has basis

{[
2

−1
5

]
,

[−3
4

−2

]}
, with dimension 2.

The vectors are not a basis for R3.

71. Subspace has basis⎧⎪⎨
⎪⎩

⎡
⎢⎣

3
0
1

−2

⎤
⎥⎦ ,

⎡
⎢⎣

2
−4

5
0

⎤
⎥⎦ ,

⎡
⎢⎣

−2
7
0
4

⎤
⎥⎦ ,

⎡
⎢⎣

−2
5

−5
4

⎤
⎥⎦

⎫⎪⎬
⎪⎭, with dimension

4. The vectors form a basis for R4.

73. Subspace has basis⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
1

−1
1
1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

−1
0
1
2

−1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

2
1

−2
1
2

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, with dimension 3.

The vectors therefore do not span R5.

Section 4.3

1. Column space basis:

{[
1

−2
−3

]
,

[−3
5
8

]}

Row space basis:

{[
1
0

−10

]
,

[
0
1

−4

]}

Null space basis:

{[
10

4
1

]}

rank = 2, nullity = 1, m = 3

3. Column space basis:

{[
1

−2
0

]
,

[
0
1
1

]}

Row space basis:

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
0

−4
−3

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
5

−1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Null space basis:

⎧⎪⎨
⎪⎩

⎡
⎢⎣

4
−5

1
0

⎤
⎥⎦ ,

⎡
⎢⎣

3
1
0
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

rank = 2, nullity = 2, m = 4

5. Column space basis:

{[
1
2

−1

]
,

[−2
−2
−2

]}

Row space basis:

{[
1

−2
2

]
,

[
0
2

−1

]}

Null space basis:

⎧⎨
⎩

⎡
⎣−1

1
2
1

⎤
⎦

⎫⎬
⎭

rank = 2, nullity = 1, m = 3

7. Column space basis:

{[
1
3
1

]
,

[
3

11
1

]
,

[
2
7
4

]}

Row space basis:

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
3
2
0

⎤
⎥⎦ ,

⎡
⎢⎣

0
2
1
1

⎤
⎥⎦ ,

⎡
⎢⎣

0
0
3
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Null space basis:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

5
3

− 1
3

− 1
3

1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

rank = 3, nullity = 1, m = 4

9. x �= 8

11. x = 18

13. dim(col(A)) = 5

15. dim(row(A)) = 3, dim(col(A)) = 3, nullity(A) = 4.

17. rank(A) = 2

19. nullity(A) = 7

21. dim(range(T)) = 4

23. nullity(A) = 0
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25. Maximum for rank(A) = 5,
minimum for nullity(A) = 8.

27. rank(A) = 3

29. nullity(A) = 2

31. B has 3 nonzero rows.

33. A is 7 × 5.

35. For example, A =
[

1 0 0
0 1 0

]
.

37. For example, A =
[

I3×3 03×1

06×3 06×1

]
.

39. For example, A =
[

1 0 0 0
0 1 0 0
0 0 1 0

]
.

41. For example, A =
[

1 0
0 1

]
.

43. True

45. True

47. False

49. False

51. False

53. True

55. HINT: row(A) = col(AT ).

57. HINT: Apply the Rank–Nullity Theorem.

59. HINT: First suppose n < m and apply the Rank–Nullity
Theorem to A, then suppose that m < n and apply the
Rank–Nullity Theorem to AT

61. rank(A) = 2, nullity(A) = 3.

63. rank(A) = 2, nullity(A) = 1.

Chapter 5

Section 5.1

1. M23 =
[

7 0
5 1

]
, M31 =

[
0 −4
6 2

]

3. M23 =
[

6 1 5
7 1 1
4 3 2

]
, M31 =

[
1 −1 5
2 3 0
3 1 2

]

5. M23 =

⎡
⎢⎣

4 3 1 0
3 2 4 4
5 1 0 3
2 2 1 0

⎤
⎥⎦, M31 =

⎡
⎢⎣

3 2 1 0
1 2 0 5
1 0 0 3
2 4 1 0

⎤
⎥⎦

7. C13 = 4, C22 = −10

9. C13 = 1, C22 = 4

11. |A| = 60; T is invertible.

13. |A| = 20; T is invertible.

15. |A| = 51; T is invertible.

17. |A| = 8; T is invertible.

19. |A| = 14

21. |A| is not defined.

23. |A| = −82

25. The shortcut method does not apply.

27. a = 9

29. a = 0

31. a = 4

33. a = 1 or a = 3

35. |A| = −8 (A upper triangular)

37. |A| = 0 (column of zeros)

39. |A| = 0 (two equal rows)

41. |A| = |AT | = 11

43. |A| = |AT | = 28

45. λ = −2 or λ = 7

47. λ = 1

49. λ = −2, λ = 1, or λ = 3

51. λ = 2

53. (a) |A| = 22, determinant after row interchange = −22.
(b) |A| = 1, determinant after row interchange = −1.
Conjecture: Row interchanges change the sign of the
determinant.

55. (a) |A| = −13, determinant after row interchange = 13.
(b) |A| = 3, determinant after row interchange = −3.
Conjecture: Row interchanges change the sign of the deter-
minant.

57. (a) |A| = 22, determinant after multiplying row 1 by 3 is 66.
(b) |A| = 1, determinant after multiplying row 1 by 3 is 3.
Conjecture: Multiplying row 1 by 3 change the determinant
by a factor of 3.

59. (a) |A| = −13, determinant after multiplying row 1 by 3 is
−39.
(b) |A| = 3, determinant after multiplying row 1 by 3 is 9.
Conjecture: Multiplying row 1 by 3 changes the determinant
by a factor of 3.

61. For example, A =
[

12 0
0 1

]
.

63. For example, A =
[

1 4
1 1

]
.

65. For example, A =
[

5 −1 π

e 0 4
2 6 −3

]
.

67. For example, A =
[

π 0 5
8 1 0
0 e 1

]
.
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69. False

71. False

73. False

75. False

77. HINT: Show that the determinant gives a linear equation in x
and y, then plug in (x1, y1) and (x2, y2) separately to show
they satisfy the equation.

79. HINT: Show that the given expression is equal to the determi-
nant of the matrix obtained by replacing row j of A with row i .

81. HINT: Cofactor expansion along row or column of zeros.

83. |A| = −26

85. |A| = 1215

Section 5.2

1. |A| = 2

3. |A| = 0

5. |A| = 1

7. |A| = 4; A is invertible.

9. |A| = 21; A is invertible.

11. |A| = 0; A is not invertible.

13. |A| = 8; A is invertible.

15. Determinant = −3

17. Determinant = −6

19. det(AB) = det(A) det(B) = (−11)(3) = −33
det(A + B) = −2 �= −11 + 3 = det(A) + det(B)

21. det(AB) = det(A) det(B) = (1)(−30) = −30
det(A + B) = −76 �= 1 − 30 = det(A) + det(B)

23.(a) |A2| = 9

(b) |A4| = 81

(c) |A2 AT | = 27

(d) |A−1| = 1
3

25.(a) |A2 B3| = −72

(b) |AB−1| = − 3
2

(c) |B3 AT | = −24

(d) |A2 B3 B T | = 144

27. |A| = 198

29. |A| = 4

31. |A| = 0

33.

∣∣∣∣ A B
C D

∣∣∣∣ = −3, |A||D| − |B ||C | = −18

35. Unique solution exists.

37. Unique solution exists.

39. Unique solution exists.

41. A =
[

1 2
2 4

]

43. A =
[

1 2
2 4

]
, B =

[
−1 −2
−2 −4

]

45. For example, det

([
1 1 1
1 2 2
1 1 2

])
= 1.

47. False

49. False

51. False

53. True

55. True

57. HINT: Subtract one of the identical rows from the other, then
apply cofactor expansion to the resulting matrix.

59. HINT: |A| = |AT |.
61. HINT: Remove a factor of (−1) from each of the n rows.

63. HINT: |A2| = |A|2.

65. HINT: See hint given with problem.

67. HINT: Explain why a matrix can be transformed to echelon
form without multiplying a row times a constant.

69. (a) HINT: E is diagonal, with a c for one diagonal entry and
ones for the remaining diagonal entries.
(b) HINT: E is triangular, with ones along the diagonal.

71. HINT: See hint given with problem.

73. |I4 + AB | = |I3 + B A| = −45, 780

Section 5.3

1. x1 = 21
8 , x2 = 3

4

3. x1 = 9, x2 = −17, x3 = 1

5. x1 = 79
49 , x2 = 22

49 , x3 = 124
49

7. x2 = 11
23

9. x2 = − 25
21

11. x2 = 14
39

13. adj (A) =
[

7 −5
−3 2

]
, A−1 =

[
−7 5

3 −2

]

15. adj (A) =
[

0 0 1
1 0 0
0 1 0

]
, A−1 =

[
0 0 1
1 0 0
0 1 0

]

17. adj (A) =
[

1 −2 3
0 1 −2
0 0 1

]
, A−1 =

[
1 −2 3
0 1 −2
0 0 1

]
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19.

1

5

2

4

3

2

1

3 4 5 876

area =13

21.

1 2�1

4

3

2

1

8

7

6

5

3 4 5

area =15

23. area (T (D)) = 165

25. area (T (D)) = 54

27. area (T (D)) = 54

29. T (x) =
[

5 0
0 3

]
x is one possible solution.

31. T (x) =
[ 3

2

√
2 3

√
2

− 3
2

√
2 3

√
2

]
x is one possible solution.

33. volume = 80π

35. volume = 82

37. For example,

x1 + x2 = 1
2x1 + 2x2 = 2

39. For example, let the parallelogram have vertices (0, 0), (5, 0),
(5, 1), and (0, 1) .

41. For example, A =
[

1 3
2 5

]
.

43. False

45. False

47. False

49. True

51. HINT: |B | �= 0, so T is one-to-one. It remains to show that T
is onto R.

53. HINT: Use |A|−1adj(A) = A−1.

55. HINT: Show that the cofactor matrix of a symmetric matrix is
also symmetric.

57. HINT: Consider the change in the cofactors when A is multi-
plied by c .

59. HINT: Start by replacing A with A−1 in A = |A|−1adj(A).

61. HINT: Mi j has a column (and row) of zeros when i �= j .

63. x1 = 1221
752 , x2 = 811

752 , x3 = 133
94

65. x1 = 704
245 , x2 = − 14

5 , x3 = 247
245 , x4 = − 17

49

67. adj (A) =
[

27 53 −15
−72 41 40

59 −26 28

]
,

A−1 =

⎡
⎢⎣

27
547

53
547 − 15

547

− 72
547

41
547

40
547

59
547 − 26

547
28

547

⎤
⎥⎦

69. adj (A) =

⎡
⎢⎣

−21 −126 60 −15
−36 207 −18 216
118 3 −35 −97

11 −75 29 −113

⎤
⎥⎦

A−1 =

⎡
⎢⎢⎢⎣

− 7
141 − 14

47
20

141 − 5
141

− 4
47

23
47 − 2

47
24
47

118
423

1
141 − 35

423 − 97
423

11
423 − 25

141
29

423 − 113
423

⎤
⎥⎥⎥⎦

Chapter 6

Section 6.1

1. x1 is an eigenvector with associated eigenvalue λ = −1; x2

is not an eigenvector; x3 is an eigenvector with associated
eigenvalue λ = 4.

3. x1 is an eigenvector with associated eigenvalue λ = −1; x2

is an eigenvector with associated eigenvalue λ = 1; x3 is an
eigenvector with associated eigenvalue λ = 2.

5. x1 is an eigenvector with associated eigenvalue λ = 3; x2 is not
an eigenvector; x3 is an eigenvector with associated eigenvalue
λ = 0.

7. λ = 3 is not an eigenvalue of A.

9. λ = −2 is an eigenvalue of A.

11. A basis for the λ = 4 eigenspace is

{[
−1

1

]}
.

13. A basis for the λ = 2 eigenspace is

{[
5
2

]}
.

15. A basis for the λ = 4 eigenspace is

{[
1
3
1

]}
.

17. A basis for the λ = 6 eigenspace is

{[
1
1
1

]}
.
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19. A basis for the λ = −4 eigenspace is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−3
−5
−2

3

⎤
⎥⎦

⎫⎪⎬
⎪⎭.

21. det (A − λI2) = λ2 + λ − 6; basis for λ = −3 eigenspace is{[
0
1

]}
; basis for λ = 2 eigenspace is

{[
5
4

]}
.

23. det (A − λI2) = λ2 + 2λ + 1;

basis for λ = −1 eigenspace is

{[
1
1

]}
.

25. det (A − λI3) = − (λ − 2) (λ − 3) (λ + 1) ;

basis for λ = 2 eigenspace is

{[
0
3
5

]}
;

basis for λ = 3 eigenspace is

{[
4
4
1

]}
;

basis for λ = −1 eigenspace is

{[
0
0
1

]}
.

27. det (A − λI3) = −λ3 + 3λ2 − 2λ

basis for λ = 0 eigenspace is

{[
1

−1
3

]}
;

basis for λ = 1 eigenspace is

{[
1

−1
4

]}
;

basis for λ = 2 eigenspace is

{[
2

−1
5

]}
.

29. det (A − λI4) = (λ + 2) (λ + 1) (λ − 1)2 ;

basis for λ = −2 eigenspace is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0
3

−3
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ ;

basis for λ = −1 eigenspace is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

4
20

−30
11

⎤
⎥⎦

⎫⎪⎬
⎪⎭ ;

basis for λ = 1 eigenspace is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ .

31. For example, A =
[

1 0
0 2

]
.

33. For example, A =
[

1 0 0
0 −2 0
0 0 3

]
.

35. For example, A =
[

0 1
−1 0

]
.

37. False

39. False

41. True

43. True

45. False

47. (a) A is 6 × 6.

(b) λ = 3, λ = 2, and λ = −1.

(c) A is invertible.

(d) The largest possible dimension of an eigenspace is 3.

49. HINT: Apply the Big Theorem.

51. HINT: Explain why det(A − In) = 0.

53. HINT: What is Au if u is associated with two distinct eigen-
values?

55. HINT: Which values of λ would not be eigenvalues?

57. HINT: Show A−1u = λ−1u.

59. HINT: Suppose that λ1 is the eigenvalue of A associated with
u and λ2 is the eigenvalue of B associated with u. Determine
ABu.

61. HINT: What is Au when u = (1, 1, . . . , 1)?

63. HINT: Note that det (A − λIn) = det
(

(A − λIn)T
)

.

65. HINT: What is Au when u = (1, 1, . . . , 1)?

67. Basis for λ = 1 eigenspace is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦ ,

⎡
⎢⎣

1
0

−1
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ ;

basis for λ = 2 eigenspace is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−1
5
1
0

⎤
⎥⎦ ,

⎡
⎢⎣

−1
9
0
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭ .

69. Basis for λ = 0 eigenspace is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

0
−1

0
1
1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

;

basis for λ = 1 eigenspace is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

−1
0
3

−1
1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

;

basis for λ = 2 eigenspace is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

−1
−2

2
−1

1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

;

basis for λ = −2 eigenspace is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

−1
−3

3
−2

1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

;
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basis for λ = −1 eigenspace is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Section 6.2

1. x1 =
[

1
1

]
, x2 =

[
−2

6

]
, x3 =

[
−20

28

]

3. x1 =
[

6
4
4

]
, x2 =

[
52
48
48

]
, x3 =

[
504
496
496

]

5. x1 =
[

3
0

−3

]
, x2 =

[
9
0

−9

]
, x3 =

[
27

0
−27

]

7. x1 =
[

−1
1

]
, x2 =

[
1.00

−0.33

]

9. x1 =
[

0.00
−0.50

1.00

]
, x2 =

[
1.00

−0.25
1.00

]

11. x1 =
[

0.00
1.00

−0.67

]
, x2 =

[
0.00
1.00

−0.56

]

13. The Power Method will converge, with eigenvalue λ = 7.

15. The Power Method will converge, with eigenvalue λ = −6.

17. The Power Method will converge, with eigenvalue λ = 6.

19. B =
[

−3 2
3 −2

]

21. B =
[−10 2 −7

−10 −7 2
−10 2 −7

]

23. B =
[

−7 1
5 −2

]

25. B =
[

4 1 4
1 6 9
2 6 2

]

27. λ = 1
1/4 = 4; the eigenvector is

[
1

1/2
0

]
.

29. For example, A =
[

1 0
0 0

]
and x0 =

[
1
0

]
.

31. For example, A =
[

0 1
1 0

]
and x0 =

[
1
0

]
.

33. For example, A =
[

0 −1
1 −1

]
and x0 =

[
1
0

]
.

35. False

37. True

39. True

41. x1 =
[

1
−1

]
, x2 =

[
0
1

]
, x3 =

[
1

−1

]
, x4 =

[
0
1

]
.

The sequence xk does not converge, it alternates. The eigenval-
ues of A are λ = 1 and λ = −1, and so there is no dominant
eigenvalue, and convergence is not assured.

43. x1 =
[− 1

2

1

]
, x2 =

[− 1
2

1

]
, . . . and the sequence converges

to the eigenvalue λ = 1 because x0 =
[

−1
2

]
is an eigenvector

associated with λ = 1.

45. x1 =
[

1
1

]
, x2 =

[
−2

6

]
, x3 =

[
−20

28

]
, x4 =

[
−104

120

]
,

x5 =
[

−464
496

]
, x6 =

[
−1952

2016

]

47. x1 =
[

6
4
4

]
, x2 =

[
52
48
48

]
, x3 =

[
504
496
496

]
, x4 =

[
5008
4992
4992

]
,

x5 =
[

50,016
49,984
49,984

]
, x6 =

[
500,032
499,968
499,968

]

49. x1 =
[

3
0

−3

]
, x2 =

[
9
0

−9

]
, x3 =

[
27

0
−27

]
, x4 =

[
81

0
−81

]
,

x5 =
[

243
0

−243

]
, x6 =

[
729

0
−729

]
.

51. λ = 2; eigenvector =

[
−1

0

]
.

53. λ = 4.2458; eigenvector =

[−0.0579
1.0000

−0.6518

]
.

55. λ = 3; eigenvector =

[
0
1

−0.5

]
.

Section 6.3

1. x =
[

1
−7

]

3. x =
[

0
2

]

5. x =
[

1
1
2

]

7. xB =
[

10
−7

]

9. xB =
[

2
1

]

11. xB =
[

4
−1
−4

]
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13.

[
−5 −1

9 2

]

15.

[−19 −4 16
15 1 −14

6 2 −5

]

17.

[
2 −1

−1 1

]

19.

[
−2 −1

9 5

]

21.

[
31 −15 −49
17 −7 −25
−6 3 10

]

23.

[
1 2
1 −1

]

25. xB2 =
[

−9
16

]
B2

27. xB2 =
[
−1
3

]
B2

29. xB1 =
[−193

−99
39

]
B1

31.

[
a
b

]
B1

=
[

b
a

]
B2

33. For example, B =
{[

−2
0

]
,

[
0

1/3

]}
.

35. For example, B1 =
{[

2
0

]
,

[
0

−1/2

]}

and B2 =
{[

1
0

]
,

[
0
1

]}
.

37. For example, B1 =
{[

1
2

]
,

[
3
7

]}

and B2 =
{[

1
0

]
,

[
0
1

]}
.

39. True

41. True

43. False

45. HINT: Write u and v in terms of the basis vectors of B.

47. HINT: Focus on showing that the two properties required of
a linear transformation both hold.

49. HINT: Explain why for each column ui of U , the product
V−1ui = [ui ]B2

.

51.

⎡
⎢⎣

61
35

48
5 − 316

35
17
7 8 − 51

7
62
35

51
5 − 382

35

⎤
⎥⎦

53.

⎡
⎢⎢⎢⎣

− 49
538

55
269

3
538

364
269

37
538

211
269

393
538

340
269

− 45
269

112
269 − 129

269 − 369
269

219
538 − 416

269
305
538 − 205

269

⎤
⎥⎥⎥⎦

55.

[
1 2 2
2 1 2

−1 −1 −1

]

Section 6.4

1. A5 =
[

131 −396
33 −100

]

3. A5 =
[

1 −93 −184
0 32 66
0 0 −1

]

5. A =
[

19 −12
30 −19

]

7. A =
[

2 −3 4
0 −1 2

−1 1 −1

]

9. The matrix is not diagonalizable.

11. P =
[

1 2
1 1

]
, D =

[
−1 0

0 3

]

13. P =

⎡
⎣

1
3

1
2

1
2

− 2
3 − 1

2 −1
1 1 1

⎤
⎦ , D =

[
0 0 0
0 1 0
0 0 −1

]

15. P =
[−1 1 −1

1 1 0
1 0 1

]
, D =

[
0 0 0
0 1 0
0 0 1

]

17. P =

⎡
⎢⎢⎣

1 0 0 1
3

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , D =

⎡
⎢⎣

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎦

19. A1000 =
[

1 0
0 1

]

21. A1000 =
[

2
(

31000
) − 1 2 − 2

(
31000

)
31000 − 1 2 − 31000

]
23. Dimension = 2.

25. For example, A =
[

0 0
0 1

]
.

27. For example, A =
[

1 1
0 1

]
.

29. For example, A =
[

0 1 0
0 1 0
0 0 2

]
has eigenvalues 0, 1, and 2.

31. True

33. False

35. False

37. False
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39. HINT: u1 and u2 must be linearly independent.

41. HINT: Each eigenvalue has infinitely many distinct associated
eigenvectors.

43. HINT: What is AT if A = PDP−1?

45. HINT: Let A = PD1 P −1 and B = PD2 P −1, then show that
AB = BA.

47. P =

⎡
⎢⎢⎢⎣

−1 − 2
3 − 1

3 0

2 2
3

1
3 1

−3 −2 − 2
3 0

2 2 2
3 0

⎤
⎥⎥⎥⎦

D =

⎡
⎢⎣

−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎤
⎥⎦

49. P =

⎡
⎢⎢⎢⎢⎢⎣

0 0 2
3 2 4

4 0 − 2
3 −2 −8

4 1 4
3 4 8

4 0 −2 −4 −8

0 0 4
3 2 4

⎤
⎥⎥⎥⎥⎥⎦

D =

⎡
⎢⎢⎢⎣

−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

⎤
⎥⎥⎥⎦

Section 6.5

1. (a) 8 + 2i
(b) 19 + 8i
(c) 2 − 6i
(d) 23 + 14i

3. λ1 = 2 + 2i ; eigenspace basis =

{[
1 + 2i

− 5

]}

λ2 = 2 − 2i ; eigenspace basis =

{[
1 − 2i

− 5

]}

5. λ1 = 2 + i ; eigenspace basis =

{[
1 − i

−1

]}

λ2 = 2 − i ; eigenspace basis =

{[
1 + i

−1

]}

7. λ1 = 3 + i ; eigenspace basis =

{[
1 + i

−1

]}

λ2 = 3 − i ; eigenspace basis =

{[
1 − i

−1

]}
9. Rotation is by tan−1 (1/2) ≈ 0.4636 radians; the dilation is

by
√

5.

11. Rotation is by tan−1 (1) = π
4 radians; the dilation is by

√
2.

13. Rotation is by tan−1 (−3/4) ≈ −0.6435 radians; the dilation
is by 5.

15. The rotation–dilation matrix is B =
[

2 −2
2 2

]
.

17. The rotation–dilation matrix is B =
[

2 −1
1 2

]
.

19. The rotation–dilation matrix is B =
[

3 −1
1 3

]
.

21. Other roots are 1−2i and 3+i , the multiplicity of each root is 1.

23. For example, z = 6
√

5
5 + 3

√
5

5 i .

25. B =
[

0 −2
2 0

]

27. For example, A =
[

1 1
0 1

][
1 −2
2 1

][
1 1
0 1

]−1

=
[

3 −4
2 −1

]
.

29. For example, A =
[

i i
−i −i

]
.

31. True

33. False

35. False

37. True

39. True

41. HINT: Start with z = x + i y and w = u + iv, then apply the
properties of complex conjugation.

43. HINT: Apply Exercise 41(b).

45. HINT: Start with λ = x + i y, then apply the properties of
complex conjugation.

47. HINT: |A − λI | = (a − λ)2 + b2.

49. (a) HINT: Write u = Re(u) + i Im(u).
(b) HINT: Use hint given with this part of problem.
(c) HINT: Show that the real and imaginary parts of AP and
P C are the same.

51. λ1,2 = −2.507 ± 1.692i ⇒
{[

0.2373 ± 0.3607i
0.0862 ∓ 0.2878i

−0.8505

]}

λ3 = 6.013 ⇒
{[

0.5837
0.6889
0.4298

]}

53. λ1,2 = 2.5948 ± 0.4119i ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0.6638
0.1906 ± 0.2156i
0.0472 ∓ 0.2804i

−0.6280 ∓ 0.0368i

⎤
⎥⎦

⎫⎪⎬
⎪⎭

λ3 = 13.2693 ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0.0639
0.1441
0.3504
0.9232

⎤
⎥⎦

⎫⎪⎬
⎪⎭
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λ4 = −5.4589 ⇒

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0.6812
−0.3472
−0.5476

0.3399

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Section 6.6

1. y1 = c1e−t + c2e2t

y2 = c1e−t − c2e2t

3. y1 = 4c1e2t + c2e−2t + 2c3e−2t

y2 = 3c1e2t + 2c2e−2t + 3c3e−2t

y3 = c1e2t + c3e−2t

5. y1 = c1 (cos 2t − sin 2t) + c2 (cos 2t + sin 2t)
y2 = c1 (2 cos 2t + sin 2t) − c2 (cos 2t − 2 sin 2t)

7. y1 = 3c1e4t − c2 (sin t − 4 cos t) et + c3 (cos t + 4 sin t) et

y2 = c1e4t − 2c3 (cos t) et + 2c2 (sin t) et

y3 = 5c1e4t − c2 (sin t − 3 cos t) et + c3 (cos t + 3 sin t) et

9. y1 = 6c1et + c2e4t + c3 (3 cos t − 2 sin t) et+
c4 (2 cos t + 3 sin t) et

y2 = 2c1et + 2c2e4t + 6c3 (cos t) et + 6c4 (sin t) et

y3 = 5c1et + 3c2e4t + c3 (2 cos t + 3 sin t) et−
c4 (3 cos t − 2 sin t) et

y4 = 2c2e4t + 5c3 (sin t) et − 5c4 (cos t) et

11. y1 = 2c1e−t + 2c2e3t

y2 = −c1e−t + c2e3t

13. y1 = c1e−t + 2c2e3t

y2 = c1e−t + c2e3t

15. y1 = −c1 (cos 2t − 2 sin 2t) e2t − c2 (2 cos 2t + sin 2t) e2t

y2 = 5c1 (cos 2t) e2t + 5c2 (sin 2t) e2t

17. y1 = 2c1 + c2e−t − c3et

y2 = c1 + 3c3et

y3 = 2c1 + c2e−t

19. y1 = −2e−2t + 6e3t

y2 = −2e−2t + 3e3t

21. y1 = − (sin 3t) et + 2 (cos 3t) et

y2 = − (cos 3t) et − 2 (sin 3t) et

23. y1 = 2et − e2t − 2e−t

y2 = −2et + 2e2t

y3 = 4et − 2e2t − 6e−t

25. y1 = c1e(−0.3)t + 2c2e(−0.4)t

y2 = −c1e(−0.3)t − 3c2e(−0.4)t

27. y1 = 70e−0.3t − 60e−0.4t

y2 = 90e−0.4t − 70e−0.3t

29. y1 = −c1e−8t + 5c2et , and y2 = c1e−8t + 4c2et . As t
gets large, y1 ≈ 5c2et and y2 ≈ 4c2et , and hence the ratio
y1/y2 ≈ 5/4.

31. y1 = 5
3 et − 2

3 e−8t , y2 = 4
3 et + 2

3 e−8t

33. For example, y ′
1 = −3y1 and y ′

2 = 2y2.

35. For example,

y ′
1 = 10y1 + 6y2

y ′
2 = −18y1 − 11y2

37. For example,

y ′
1 = −6y1 + 4y2 + 7y3

y ′
2 = −7y1 + 5y2 + 7y3

y ′
3 = −4y1 + 4y2 + 5y3

39. True

41. False

43. y1 ≈ −0.7811c1e7.065t − 0.7041c2 (cos 2.580t) e(−3.033t)

− 0.7041c3 (sin 2.580t) e(−3.033t)

y2 ≈ 0.4471c1e7.065t − c2(0.1528 cos (2.580t)
+0.4597 sin (2.580t))e(−3.033t) − c3(0.1528 sin (2.580t)
−0.4597 cos (2.580t))e(−3.033t)

y3 ≈ −0.4359c1e7.065t + c2(0.5141 cos (2.580t)
+0.0729 sin (2.580t))e(−3.033t) + c3(0.5141 sin (2.580t)
−0.0729 cos (2.580t))e(−3.033t)

45. y1 ≈ −0.8167c1e−4.114t + 1.139c2e7.297t

+ c3 (0.2576 sin (4.698t) − 0.5848 (cos 4.698t)) e1.408t

− c4 (0.2576 cos (4.698t) + 0.5848 sin (4.698t)) e1.408t

y2 ≈ −0.8101c1e−4.114t + 0.1064c2e7.297t

− c3 (2.336 sin (4.698t) − 2.858 cos (4.698t)) e1.408t

+ c4 (2.336 cos (4.698t) + 2.858 sin (4.698t)) e1.408t

y3 ≈ 0.5896c1e−4.114t + 0.39c2e7.297t

− c3e1.408t (2.385 cos (4.698t) + 1.314 sin (4.698t))
− c4e1.408t (2.385 sin (4.698t) − 1.314 cos (4.698t))
y4 ≈ c1e−4.114t + c2e7.297t

+ c3 cos (4.698t) e1.408t + c4 sin (4.698t) e1.408t

47. y1 ≈ 0.5746e8.01t − 0.3412e1.106t − 1.233e−7.115t

y2 ≈ −0.03121e8.01t + 0.1231e1.106t − 4.092e−7.115t

y3 ≈ 0.7118e8.01t + 0.1924e1.106t + 2.096e−7.115t

49. y1 ≈ 11.63 (cos 2.153t) e−3.179t − 0.4729e12.53t

− 4.158e−0.1732t + 7.978 (sin 2.153t) e−3.179t

y2 ≈ 8.266 (cos 2.153t) e−3.179t − 0.3908e12.53t

− 5.876e−0.1732t + 6.113 (sin 2.153t) e−3.179t

y3 ≈ 2.928e−0.1732t − 0.1355e12.53t

− 4.792 (cos 2.153t) e−3.179t + 3.693 (sin 2.153t) e−3.179t

y4 ≈ 4.349e−0.1732t − 1.249e12.53t

− 8.101 (cos 2.153t) e−3.179t − 7.601 (sin 2.153t) e−3.179t

Chapter 7

Section 7.1

1. HINT: The required properties follow from the same proper-
ties of the real numbers.

3. HINT: You may assume that the sum of two continuous func-
tions is a continuous function, as is the scalar multiple of a
continuous function.

5. HINT: Adding two polynomials cannot produce a polynomial
of degree greater than that of those being added. The scalar
multiple of a polynomial produces a new polynomial that has
the same degree or is equal to zero.

7. HINT: The hint from Exercise 3 applies here.

9. V is not a vector space under the given arithmetic operations.
For instance, there is no vector 0 such that v + 0 = v for all v.
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11. V is not a vector space. Property 5(d) does not always hold. For

instance, (1 + 0)
[

1
0

]
=

[
1
0

]
but (1)

[
1
0

]
+ (0)

[
1
0

]
=

[
0
0

]
.

13. HINT: Show that the three requirements for a subspace are met.

15. HINT: Show that the three requirements for a subspace are met.

17. HINT: Show that the three requirements for a subspace are met.

19. S is a subspace.

21. S is a subspace.

23. S is not a subspace. S is not closed under addition.

25. S is a subspace.

27. S is not a subspace. The zero vector is not in S.

29. S is a subspace.

31. S is not a subspace.

33. For example, the set of vectors in the first quadrant of R2, with
the usual definition of addition and scalar multiplication.

35. For example, the set of vectors in the first quadrant of R2, with
the usual definition of addition and scalar multiplication.

37. Aside from V1 = Rn with the usual definition of addition and
scalar multiplication, we can also have V2 = Rn , but we let w
be a fixed vector and then define addition by u⊕v = u+v−w
and scalar multiplication by c � u = c(u − w) + w. In this
case, w is the zero vector for V2.

39. True

41. True

43. True

45. True

47. HINT: Construct 0 by using u in S (S is nonempty) and
observing that there must be a corresponding −u in S.

49. HINTs:
(a) Use the fact that addition of vectors is commutative.
(b) Assume that there are two zero vectors 0a and 0b , then
show that 0a = 0b .
(c) Use v + 0 · v = (1 + 0)v = v.
(d) Use v + (−1)v = (

1 + (−1)
)

v = 0 · v together with (c).

Section 7.2

1. v is in span
{

3x2 + x − 1, x2 − 3x + 2
}

.

3. v is in span
{

3x2 + x − 1, x2 − 3x + 2
}

.

5. v = x3 + 2x2 − 3x is not in
span

{
x3 + x − 2, x2 + 2x + 1, x3 − x2 + x

}
.

7. v = x2 + 4x + 4 is in
span

{
x3 + x − 2, x2 + 2x + 1, x3 − x2 + x

}
.

9. v is in span

{[
1 2 1
0 1 3

]
,

[
0 3 1

−1 1 0

]}
.

11. v is in span

{[
1 2 1
0 1 3

]
,

[
0 3 1

−1 1 0

]}
.

13. v is in span

{[
−1 3

4 1

]
,

[
0 2
5 −3

]
,

[
1 4
2 1

]}
.

15. v is in span

{[
−1 3

4 1

]
,

[
0 2
5 −3

]
,

[
1 4
2 1

]}
.

17.
{

x2 − 3,3x2 + 1
}

is linearly independent in P2.

19.
{

x3 + 2x + 4,x2 − x − 1,x3 + 2x2 + 2
}

is not linearly
independent in P3.

21.

{[
2 −1
1 3

]
,

[
−4 2
−2 −6

]}
is not linearly independent in R2×2.

23.

{[
1 0 1
2 1 4

]
,

[
3 1 2
0 3 3

]}
is linearly independent in R2×3.

25.
{

sin2 (x) , cos2 (x) , 1
}

is not linearly independent in
C [0, π].

27. For example,{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

[
1 1
1 1

]}
spans R2×2 but is not linearly independent.

29. For example, let V = P, then
{

1, x , x2, x3, . . .
}

is an infinite
linearly independent subset.

31. Let V1 = {(1, 0, 0, . . .) , (0, 0, 1, 0, 0 . . .),
(0, 0, 0, 0, 1, 0, 0, . . .)} and
V2 = {(0, 1, 0, 0, . . .), (0, 0, 0, 1, 0, 0 . . .),
(0, 0, 0, 0, 0, 1, 0, 0, . . .)}. ThenV1 andV2 are infinite linearly
independent subsets of R∞ and span (V1) ∩ span (V2) = {0}.

33. False

35. False

37. False

39. False

41. True

43. HINT: Show each polynomial is a linear combination of the
given set.

45. HINT: See hint given with problem.

47. HINT: Consider cases v1 = 0 and v1 �= 0 separately.

49. HINT: Suppose that {v1, . . . , vm} spans R∞. Truncate each
vector to the first m + 1 components. Then the new vectors
must also span Rm+1, but cannot.

51. HINT: Apply Theorem 7.9(a).

53. HINT: v is a linear combination of {v1, . . . , vm}.
55. {x , sin (πx/2) , ex } is linearly independent.

57. {ex , cos2(x), cos(2x), 1} is linearly dependent, so method
shown in Example 9 will not work.

Section 7.3

1. V has too few vectors to be a basis for P2.

3. V could be a basis for R2×2, since dim
(

R2×2
) = 4 and V has

4 vectors.
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5. V has too few vectors to be a basis for P4.

7. V is a basis.

9. V is not a basis.

11. V is not a basis.

13. dim (S) = 8, and a basis for S is[−1 0 0
0 1 0
0 0 0

]
,

[−1 0 0
0 0 0
0 0 1

]
,

[
0 1 0
0 0 0
0 0 0

]
,

[
0 0 1
0 0 0
0 0 0

]
,

[
0 0 0
1 0 0
0 0 0

]
,

[
0 0 0
0 0 1
0 0 0

]
,

[
0 0 0
0 0 0
1 0 0

]
,

[
0 0 0
0 0 0
0 1 0

]

15. dim (S) = 3, and a basis for S is{[
−1 0

0 1

]
,

[
0 −1
0 1

]
,

[
0 0

−1 1

]}

17. HINT: S is equivalent to the set of 2 × 2 matrices A such that
Av = 0.

19. dim (S) = ∞. For example,

{x(x − 1)(x − 2), x2(x − 1)(x − 2), x3(x − 1)(x − 2), . . .}
is an infinite set of linearly independent vectors in C (R), each
of which vanishes at k = 0, 1, 2.

21. We extend V to
{

2x2 + 1, 4x − 3, 1
}

to obtain a basis for P2.

23. We extend V to{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
1 0

]
,

[
0 1
0 0

]}

to obtain a basis for R2×2.

25. We reduce the set V to {x + 1, x + 2} to obtain a basis for P1.

27. HINT: Show that {cos(t), sin(t)} is a basis for S.

29. A basis for S is the set {1, x}.
31. For example, let V = P, and S = span {1}.
33. For example, let V = P1, and S = span {1}.
35. For example, let V = P, and let S = span

{
1, x2, x4, x6, . . .

}
.

37. False

39. False

41. True

43. False

45. False

47. HINT: It is enough to show that {v1, 2v2, . . . , kvk} is linearly
independent.

49. HINT: Show that the set is linearly independent and spans
R2×2.

51. HINT: Start with a basis for V , and remove one vector at a
time to obtain a basis for each of Sm−1, Sm−2, . . ..

53. HINT: See hint given with problem.

55. HINT: For part (a), show that a basis for V1 must also be a
basis for V2.

57. HINT: See proof of corresponding theorem in Section 4.2.

Chapter 8

Section 8.1

1. (a) u1 · u5 = −3

(b) u3 · (−3u2) = −3

(c) u4 · u7 = 11

(d) 2u4 · u7 = 22

3. (a) ‖u7‖ = √
29

(b) ‖−u7‖ = √
29

(c) ‖2u5‖ = 2
√

6

(d) ‖−3u5‖ = 6
√

2

5. (a) ‖u1 − u2‖ = √
17

(b) ‖u3 − u8‖ = √
26

(c) ‖2u6 − (−u3)‖ = 7

(d) ‖−3u2 − 2u5‖ = 3
√

11

7. (a) u1 · u3 = −8 �= 0, so u1 and u3 are not orthogonal.

(b) u3 · u4 = 0, so u3 and u4 are orthogonal.

(c) u2 · u5 = 4 �= 0, so u2 and u5 are not orthogonal.

(d) u1 · u8 = 8 �= 0, so u1 and u8 are not orthogonal.

9. a = 3
2

11. a = 28
3

13. Set is not orthogonal.

15. Set is not orthogonal.

17. a = −10

19. a = 7 and b = 11

21. ‖u1‖2 = 10, ‖u2‖2 = 10, ‖u1 + u2‖2 = 20

23. ‖u1‖2 = 14, ‖u2‖2 = 26, ‖u1 + u2‖2 = 40

25. ‖3u1 + 4u2‖ = 2
√

109

27. u is not orthogonal to S.

29. A basis for S⊥ is

{[
3
1

]}
.

31. A basis for S⊥ is

{[−1
1
0

]
,

[
2
0
1

]}
.

33. Let s1 =
[

1
1
0

]
and s2 =

[
1

−1
4

]
. Then s = 3

2 s1 − 1
2 s2.
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35. For example, u =
[

12
0

]
and v =

[
1
0

]
.

37. For example, u =
[

1/
√

5
2/

√
5

]
.

39. For example,

[
0
1
0

]
and

[
1
0
2

]
.

41. For example, S = span

{[
1
0
0

]}
.

43. For example,

{[
0
0
0

]
,

[
1
0
0

]
,

[
0
1
0

]}
.

45. False

47. False

49. True

51. False

53. True

55. False

57. HINT: Every vector s in S is a linear combination of a spanning
set S .

59. HINT: Show that ei · e j = 0 whenever i �= j .

61. HINT: Apply Theorem 8.2(c) twice.

63. HINT: Use the properties of Theorem 8.2.

65. HINT: Apply equation (2) that follows Definition 8.3.

67. HINT: Suppose that v is in both S and S⊥. Use this to show
that v · v = 0.

69. HINT: If a in Rn is a column of A and x = (x1, . . . , xn), then
aT x = a · x.

71. HINTS: (a) Compare definitions of u · v and uT v.
(b) Start with (Au) · v = (Au)T v.

73. (a) u2 · u3 = −4

(b) ‖u1‖ = √
39

(c) ‖2u1 + 5u3‖ = √
826

(d) ‖3u1 − 4u2 − u3‖ = √
1879

75.

⎧⎪⎨
⎪⎩

⎡
⎢⎣

−5
−7

1
0

⎤
⎥⎦ ,

⎡
⎢⎣

− 9
2−4
0
1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Section 8.2

1. (a) proju3
u2 =

⎡
⎣ 2

5

0
− 1

5

⎤
⎦

(b) proju1
u2 =

[
0
0
0

]

3. projS u2 =

⎡
⎣ 2

5

0
− 1

5

⎤
⎦

5. (a)
1

‖u1‖u1 =

⎡
⎢⎣

− 3
14

√
14

1
14

√
14

1
7

√
14

⎤
⎥⎦

(b)
1

‖u4‖u4 = k

⎡
⎢⎣

1
14

√
14

− 3
14

√
14

1
7

√
14

⎤
⎥⎦

7. An orthogonal basis for S is{[
1
3

]
,

[
3

−1

]}

9. An orthogonal basis for S is

{[−2
2
1

]
,

[
3
4

−2

]}
.

11. An orthogonal basis for S is⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
−1

0
1

⎤
⎥⎦ ,

⎡
⎢⎣

3
2
2

−1

⎤
⎥⎦

⎫⎪⎬
⎪⎭ .

13. An orthogonal basis for S is{[−1
0
1

]
,

[
2
4
2

]
,

[
3

−3
3

]}
.

15. projS u =
[

1
1

]

17. projS u =

⎡
⎢⎣

− 3
29

− 4
29
2

29

⎤
⎥⎦

19. projS u =

⎡
⎢⎣

1
−1

0
1

⎤
⎥⎦

21. projS u =
[

1
0
2

]

23. An orthonormal basis for S is

{[ 1
10

√
10

3
10

√
10

]
,

[ 3
10

√
10

− 1
10

√
10

]}
.

25. An orthonormal basis for S is

⎧⎪⎨
⎪⎩

⎡
⎢⎣

− 2
3
2
3
1
3

⎤
⎥⎦ ,

⎡
⎢⎣

3
29

√
29

4
29

√
29

− 2
29

√
29

⎤
⎥⎦

⎫⎪⎬
⎪⎭.

27. An orthonormal basis for S is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎣

1
3

√
3

− 1
3

√
3
0

1
3

√
3

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

1
2

√
2

1
3

√
2

1
3

√
2

− 1
6

√
2

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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29. An orthonormal basis for S is⎧⎪⎨
⎪⎩

⎡
⎣− 1

2

√
2
0

1
2

√
2

⎤
⎦ ,

⎡
⎢⎣

1
6

√
6

1
3

√
6

1
6

√
6

⎤
⎥⎦ ,

⎡
⎢⎣

1
3

√
3

− 1
3

√
3

− 1
3

√
3

⎤
⎥⎦

⎫⎪⎬
⎪⎭ .

31. For example, let u =
[

1
0

]
and v =

[
1
0

]
.

33. For example, let u =
[

1
0

]
and v =

[
0
1

]
.

35. For example, let u =
[

3
1

]
and v =

[
1
2

]
.

37. True

39. True

41. True

43. True

45. False

47. HINTS:

(a) Show that Si is a subset of S j for i < j .

(b) Reverse the hint for (a).

49. HINT: Show that u · (u + v) �= 0 and v · (u + v) �= 0.

51. HINT: Show the two required properties of a linear transfor-
mation hold.

55. HINT: Recall that projS u and u − projS u are orthogonal and
use the Pythagorean theorem.

57. HINTS:

(a) Use the hint given with this part of the problem.

(b) ‖projvu‖ = |u·v|
‖v‖ .

(c) Show ‖projvu‖ = ‖u‖ only when u = cv.

59. An orthonormal basis is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1
22

√
22

1
11

√
22

− 2
11

√
22

− 1
22

√
22

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣

− 9
1738

√
22

√
395

21
4345

√
22

√
395

13
4345

√
22

√
395

− 13
1738

√
22

√
395

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣

86
69757

√
395

√
883

929
1046355

√
395

√
883

782
1046355

√
395

√
883

4
209271

√
395

√
883

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

61. projS u =

⎡
⎢⎢⎢⎣

2902
1477

− 1713
2954

− 1447
1477
1903
422

⎤
⎥⎥⎥⎦

Section 8.3

1. Not symmetric

3. Symmetric

5. Not symmetric

7. Not symmetric

9. Not orthogonal

11. Orthogonal

13. Not orthogonal

15. P =
[ 1

5

√
5 − 2

5

√
5

2
5

√
5 1

5

√
5

]
, D =

[
2 0
0 −3

]

17. P =

⎡
⎢⎣

1
3

√
3 1

2

√
2 − 1

6

√
6

1
3

√
3 − 1

2

√
2 − 1

6

√
6

1
3

√
3 0 1

3

√
6

⎤
⎥⎦ , D =

[
0 0 0
0 2 0
0 0 −1

]

19. P =
[− 1

5

√
5 2

5

√
5

2
5

√
5 1

5

√
5

]
, D =

[
0 0
0 5

]

21. P =

⎡
⎢⎣

− 1
2

√
2 1

6

√
6 1

3

√
3

0 − 1
3

√
6 1

3

√
3

1
2

√
2 1

6

√
6 1

3

√
3

⎤
⎥⎦ , D =

[−2 0 0
0 0 0
0 0 3

]

23. P =

⎡
⎣−

√
2

2 0
√

2
2

0 1 0√
2

2 0
√

2
2

⎤
⎦ , D =

[−1 0 0
0 1 0
0 0 1

]

25. λ1 = 1 and λ2 = 11.

27. λ1 = 0, λ2 = 1, and λ3 = 5

29. Q−1 =
[ 1

5 − 2
5

2
5

1
5

]

31. Q−1 =

⎡
⎢⎣

0 1
2 − 1

2
1
2 0 0

0 1
2

1
2

⎤
⎥⎦

33. Q =
[ 3

13

√
13 − 2

13

√
13

2
13

√
13 3

13

√
13

]
, R =

[√
13 0
0

√
13

]

35. Q =
[ 1

10

√
10 3

10

√
10

3
10

√
10 − 1

10

√
10

]
, R =

[√
10

√
10

0
√

10

]
.

37. Q =

⎡
⎢⎣

1
9

√
3 25

1629

√
1086

1
9

√
3 − 85

3258

√
1086

5
9

√
3 7

3258

√
1086

⎤
⎥⎦ , R =

[
3
√

3 4
9

√
3

0 1
9

√
1086

]

39. Q =

⎡
⎢⎣

− 2
3

3
29

√
29

2
3

4
29

√
29

1
3 − 2

29

√
29

⎤
⎥⎦, R =

[
3 0
0

√
29

]

41. For example, A =
[

1 0
0 2

]
.

43. For example, A =
[ 7

5 − 6
5

− 6
5 − 2

5

]
.

45. For example, A =
[

0 0
0 0

]
.

47. For example, A =
[

−2 2
−6 5

]
(Example 1, Section 6.4).

49. True

51. True

53. True
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55. False

57. True

59. HINT: AT A = I .

61. For vectors u and v, uT v = u · v.

63. HINT: How is A related to AT ?

65. HINT: Show that A2 is symmetric.

67. D ≈
[

8.0463 0 0
0 2.2795 0
0 0 −3.3258

]

P ≈
[

0.3603 −0.8287 −0.4282
−0.3790 −0.5495 0.7446

0.8524 0.1060 0.5120

]

69. D ≈

⎡
⎢⎣

7.624 0 0 0
0 −1.211 0 0
0 0 5.639 0
0 0 0 −6.051

⎤
⎥⎦

P ≈

⎡
⎢⎣

−0.1376 −0.6216 0.7118 0.2968
−0.7426 0.5164 0.1391 0.4038
−0.0078 0.3699 0.6127 −0.6984

0.6558 0.4585 0.3140 0.5110

⎤
⎥⎦

71. Q =

⎡
⎢⎣

− 1
2

√
2 1

3

√
3 1

6

√
6

0 1
3

√
3 − 1

3

√
6

1
2

√
2 1

3

√
3 1

6

√
6

⎤
⎥⎦ ,

R =

⎡
⎣

√
2 −√

2
√

2
0 2

√
3 4

√
3

0 0 0

⎤
⎦

73. Q =

⎡
⎢⎢⎢⎣

1
2

1
70

√
35 47

6790

√
6790

1
2

9
70

√
35 − 16

3395

√
6790

1
2 − 3

70

√
35 17

3395

√
6790

− 1
2

1
10

√
35 7

970

√
6790

⎤
⎥⎥⎥⎦ ,

R =

⎡
⎢⎣

2 3
2 2

0 1
2

√
35 22

35

√
35

0 0 2
35

√
6790

⎤
⎥⎦

Section 8.4

1. σ1 = √
8 and σ2 = √

2

3. σ1 = √
16 = 4 and σ2 = √

4 = 2

5. σ1 = 3 and σ2 = √
5

7. σ1 =
√

4 + √
5 ≈ 2.497 and σ2 =

√
4 − √

5 ≈ 1.328

9. V =
[ 1

2

√
2 − 1

2

√
2

1
2

√
2 1

2

√
2

]
, � =

[
3 0
0 1

]
,

U =
[ 1

2

√
2 1

2

√
2

1
2

√
2 − 1

2

√
2

]

11. V ≈
[

0.2298 0.9732
−0.9732 0.2298

]
, � ≈

[
3.199 0

0 2.401
0 0

]
,

U ≈
[−0.1606 0.9064 −0.3906

−0.9845 −0.1182 0.1302
0.07183 0.4053 0.9113

]

13. A = V�T U T , where V =
[

0 1
1 0

]
, � =

⎡
⎣ 3 0

0
√

2
0 0

⎤
⎦,

U =

⎡
⎢⎣

2
3 − 1

2

√
2 − 1

6

√
2

2
3

1
2

√
2 − 1

6

√
2

1
3 0 2

3

√
2

⎤
⎥⎦

15. A = V�T U T , where V =
[

1 0
0 1

]
, � =

⎡
⎢⎣

3 0
0

√
3

0 0
0 0

⎤
⎥⎦ ,

U =

⎡
⎢⎢⎣

2
3

1
3

√
3 − 1

6

√
2 − 1

6

√
6

2
3 − 1

3

√
3 − 1

6

√
2 1

6

√
6

1
3 0 2

3

√
2 0

0 1
3

√
3 0 1

3

√
6

⎤
⎥⎥⎦

17. Numerical rank of A is 2.

19. Numerical rank of A is 2.

21. False

23. True

25. True

27. σ1u1vT
1 =

[−0.1181 0.5000
−0.7237 3.065

0.0528 −0.2236

]

σ1u1vT
1 + σ2u2vT

2 =
[

2.000 1.0
−0.9999 3.000

0.9998 2.419 × 10−5

]

29. σ1u1vT
1 =

[
2 2 1 0
0 0 0 0

]
σ1u1vT

1 +σ2u2vT
2 =

[
2 2 1 0
1 −1 0 1

]

31. HINT: If A = U�V T , then AT = V�T U T . Compare the
nonzero terms of � and �T .

33. HINT: Since U and V are orthogonal, U−1 = U T and
V−1 = V T .

35. HINT: Simplify (P A)T P A, using P orthogonal.

37. HINTS:

(a) Note that AT Ax = AT (Ax).

(b) Recall that
(

col(A)
)⊥ = null(AT ).

(c) Show that null(A) and null(AT A) are subsets of each
other.

39. V ≈
[

0.4527 0.8916
0.8916 −0.4528

]
, � ≈

[
5.9667 0

0 1.8436

]
,

U ≈
[

0.9748 0.2228
0.2230 −0.9748

]
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41. V ≈
[

0.8224 0.4739 0.3147
−0.2477 0.7963 −0.5519
−0.5121 0.3760 0.7722

]
,

� ≈
[

5.5371 0 0
0 4.3320 0
0 0 3.2518

]
,

U ≈
[ −0.9276 −0.3734 −0.008949

−0.08420 0.1860 0.9789
−0.3639 0.9089 −0.2039

]

Section 8.5

1. projS y =
[− 1

2
1
2

]

3. projS y =

⎡
⎢⎣

199
189

− 299
189
218
189

⎤
⎥⎦

5. 14x1 − 3x2 = 23
−3x1 + 6x2 = −2

7. 6x1 + 3x2 − 2x3 = 6
3x1 + 18x2 − 23x3 = 27

−2x1 − 23x2 + 30x3 = −34

9. x1 = − 152
195 and x2 = − 17

195

11. x1 = −2t, x2 = −5t − 4
3 , and x3 = t

13. The normal equations are[
2 2 4
2 4 8
4 8 16

][
c1

c2

c3

]
=

[
6

10
20

]
.

We obtain infinitely many solutions since there are infinitely
many parabolas that pass through two given points.

15. For example,

x1 = 0
x2 = 0

x1 + x2 = 1

17. For example,

x1 + x2 = 0
2x1 + 2x2 = 0
3x1 + 3x2 = 0
4x1 + 4x2 = 1

19. For example,

x1 = 0
x2 = 0

x3 = 0

21. False

23. True

25. True

27. False

29. HINT: Make the columns of A orthonormal—then this is true.

31. HINT: AT A is an identity matrix.

33. HINT: Use hint given with problem.

35. y = 2.2071 + 0.5214x

37. y = 2.081 + 0.07458x

39. y = 1.667 + 0.09x + 0.3833x2

41. y = 2.191 − 0.06x − 0.5857x2

43. y = 0.9975e0.9702x

45. y = 15.49e−0.1564x

47. y = 2.173x1.306

49. y = 38.51x−0.5491

51. p = 0.2001d1.499

53. f (t) = 2199.8 + 2.65t − 16.75t2, t = 11.539 seconds to hit
the ground.

55. y ≈ 2.307e−0.2211t . The initial size of the sample is y ≈ 2.307
grams. The amount present at t = 15 is y ≈ 0.08370 grams.

Chapter 9

Section 9.1

1. T (v2 − 2v1) =
[

−5
−3

]

3. T
(

2x2 − 4x − 1
) =

[
−4

5

]
5. HINT: Focus on Definition 9.1 or Theorem 9.2.

7. HINT: Focus on Definition 9.1 or Theorem 9.2.

9. HINT: Focus on Definition 9.1 or Theorem 9.2.

11. T is a linear transformation. Apply Theorem 9.2 to show this.

13. T is a linear transformation. Apply Theorem 9.2 to show this.

15. T is a linear transformation. Apply Theorem 9.2 to show this.

17. T is a linear transformation. Apply Theorem 9.2 to show this.

19. T is a linear transformation. Apply Theorem 9.2 to show this.

21. T is not a linear transformation.

23. ker (T) = {p (x) : p (x) = ax + a}, range(T) = R

25. ker (T) = {0P2 }
range (T) = span

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
27. T is not one-to-one, but is onto.

29. T is not one-to-one, but is onto.

31. V = R and W = R2, and define T (a) =
([

a
0

])
.

33. V = R2 and W = R2, and define T

([
a
b

])
=

[
a
0

]
.
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35. V = R4 and W = R3, and define T

⎛
⎜⎝

⎡
⎢⎣

a
b
c
d

⎤
⎥⎦

⎞
⎟⎠ =

[
a
b
c

]
.

37. V = Rk and W = R, and define T (v) = 0.

39. True

41. True

43. False

45. True

47. False

49. dim
(

range (T)
) = 3

51. HINT: Use property (a) of a linear transformation.

53. HINT: Apply Theorem 9.2

55. HINT: Use 0V + 0V = 0V .

57. HINT: Exercise 55 can be used here to show one of the required
properties of a subspace.

59. HINT: Use the hint with the problem.

61. HINT: Use the extended version of Theorem 9.2.

63. HINT: Recall that differentiation distributes across sums of
functions.

65. HINT: Recall that differentiation distributes across sums of
functions.

67. HINT: (x2 p(x))′ = 2xp(x) + x2 p′(x)

Section 9.2

1. dim (V) = dim
(

R8
) = 8, and dim (W) = dim

(
P9

) = 10.
Since dim (V) �= dim (W), the vector spaces are not
isomorphic.

3. dim (V) = dim
(

R3×6
) = 18, and dim (W) = dim

(
P17

) =
18. Since dim (V) = dim (W), the vector spaces are
isomorphic.

5. dim (V) = dim
(

R13
)=13, and dim (W) = dim (C [0, 1]) =

∞. Since dim (V) �= dim (W), the vector spaces are not
isomorphic.

7. HINT: A polynomial is identically zero exactly when all of its
coefficients are zero. This can be used to show that T is one-
to-one. You need also show that T is a linear transformation
and is onto.

9. HINT: A matrix is zero exactly when all of its entries are zero.
This can be used to show that T is one-to-one. You need also
show that T is a linear transformation and is onto.

11. T is an isomorphism.

13. T is not an isomorphism.

15. T−1

([
c
d

])
= (c/2 + d) x + c/2

17. T−1(ax2 + bx + c) = c x2 − bx + a , so that T−1 = T .

19. HINT: Note that all vectors in S have the form

[
a1

a2

0

]
.

21. HINT: Focus carefully on the form of a general vector in Pe .
It is helpful to consider a few concrete cases.

23. T

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

a
b
c
d
e

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = ax4 +bx3 +c x2 +dx +e is an isomorphism.

25. T

([
a b
c d

])
= ax3 + bx2 + c x + d is an isomorphism.

27. S = span

{[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]}

29. Let S be the set of all vectors of the form
(a1, a2, . . . an , 0, 0, 0, . . .). That is, all infinite vectors with
entries equal to zero from some point on.

31. False

33. True

35. False

37. True

39. False

41. False

43. False

45. HINT: T must be one-to-one and onto to have an inverse.

47. HINT: The proof of Theorem 3.19 can be used as a model for
showing that T−1 is also a linear transformation.

49. HINT: T is always onto range(T).

Section 9.3

1. v =
[

−11
−4

]
3. v = −x2 − 14x − 9

5. vG =
[

4
3

]
G

7. vG =
[

3
−5

6

]
G

9. v =
[

−4
3

]
G

11. v =

⎡
⎢⎣

21
4
9
2

− 7
4

⎤
⎥⎦
G
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13. T
(

vG
) =

[
17
28

]
15. T

(
vG

) = 27x2 + 12x + 67

17. T
(

vG
) = 4 cos x − 9 sin x + 9e−x

19. A =
[

0 1
−1 0

]

21. A =
[

2 0 0
0 1 0

]

23. A =
[

−3 0
2 1

]

25. A =
[

7 12
−18 −31

]

27. (a)

[
a/2 b/2 c/2

d e f

]
(b)

[
3a b c
3d e f

]

29. (a)

[
c a b
f d e

]
(b)

[
d f e
a c b

]
31. T−1 (x) = −2x − 4

33. T−1 (x + 1) =
[

7
−4

]
35. v = 2x2 − 3, and G = {

x2, x , 1
}

37. G =
{[

−7/3
0

]
,

[
0

5/4

]}

39. V = R3 and W = R2, and let G =
{[

1
0
0

]
,

[
0
1
0

]
,

[
0
0
1

]}

be the basis for V , and Q =
{[

1
0

]
,

[
0
1

]}
be the basis for

W. Define T (v) = Av, where A =
[

2 1 2
0 3 1

]
.

41. False

43. True

45. True

47. HINT: The general results [cv]G = c [v]G and [v1 + v2]G =
[v1]G + [v2]G are useful here.

49. HINT: A more general version of the results given in the answer
to Exercise 47 can be used here.

51. HINT: The proof of part (b) follows from induction on n.

Section 9.4

1. S =
[

2 5
−1 4

]

3. S =

⎡
⎢⎣

3 4 1 0
2 0 7 6
1 0 5 2
0 2 1 3

⎤
⎥⎦

5. S =
[

1 9 −1
−2 0 −1

0 1 1

]

7. S =
[

1 −1
1 1

]

9. A =
[

62 204
−18 −59

]

11. A =
[

3 6 2
−3 −8 −3
10 17 6

]

13. A =
[

−3 −2
7 5

]

15. A =
[

−889 1411
−562 892

]
17. A and B are not similar matrices.

19. A and B are similar matrices.

21. V = R2, and let G =
{[

3
2

]
,

[
4
3

]}
and H ={[

1
0

]
,

[
0
1

]}

23. B =
[

1 2
3 4

]
and A =

[
31 12

−67 −26

]
, related by S =

[
5 2
8 3

]
.

25. True

27. False

29. False

31. False

33. False

35. D = S2 S1

37. HINT: A and B have the same diagonal matrix D in their
diagonalizations.

39. HINT: If S is invertible, then
(

S−1
)T = (

ST
)−1

.

41. A and B are not similar matrices.

43. A and B are similar matrices.

Chapter 10

Section 10.1

1. 〈u, v〉 = 32

3. 〈p, q〉 = −8

5. 〈 f, g 〉 = 2

7. 〈A, B〉 = −9

9. a = 3

11. No value of a will make p and q orthogonal.

13. No value of b will make f and g orthogonal.

15. Norm =
√

33

17. Norm =
√

174
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19. Norm =
√

2
7

21. ‖A‖ = √
14

23. projuv =

⎡
⎢⎣

32
15
64
15
32
15

⎤
⎥⎦

25. projpq = − 8
23 x − 16

69

27. proj f g = 0

29. projA B =
[ 1

3 − 1
6

1
6 0

]

31. u =
[

1
0

]
and v =

[
0
1

]

33. u =
[

6/
√

13
−4/

√
13

]
, t1 = t2 = 1

35. A =
[

1 0 0
0 2 0
0 0 3

]

37. Let w (x) = cos(x), and define 〈p, q〉 =∫ 1
0 p (x) q (x) w (x) dx .

39. 〈p, q〉 = 0 for all p and q in P2.

41. True

43. True

45. True

47. False

49. False

51. HINT: Use the distributive property of the real numbers to
establish (b) and (c) of the definition of inner product.

53. HINT: The solution to Exercise 51 can be used as a model for
this problem.

55. HINT: Example 5 can serve as a guide for this proof.

57. HINT: Review the properties of matrix transposes.

59. HINT: ‖cv‖2 = 〈cv, cv〉
61. HINT: Use induction on k.

63. HINT:

∥∥∥∥ 1

‖v‖v

∥∥∥∥ =
∣∣∣∣ 1

‖v‖

∣∣∣∣ ‖v‖ by Exercise 59.

65. HINT: Use properties of inner products to verify the required
properties of a linear transformation.

67. HINT: ‖u − v‖2 = 〈u − v, u − v〉
69. HINT: See Theorem 8.8 in Section 8.1.

71. HINT: Apply Exercise 67.

Section 10.2

1.

⎧⎪⎨
⎪⎩

⎡
⎢⎣

2
9

√
3

5
18

√
3

1
18

√
3

⎤
⎥⎦ ,

⎡
⎢⎣

− 1
22

√
66

1
33

√
66

− 1
11

√
66

⎤
⎥⎦ ,

⎡
⎢⎣

8
99

√
33

− 7
198

√
33

− 23
198

√
33

⎤
⎥⎦

⎫⎪⎬
⎪⎭

3. a = −5,

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
3

√
3

− 1
6

√
3

1
6

√
3

⎤
⎥⎦ ,

⎡
⎢⎣

1
3
1
6

− 5
6

⎤
⎥⎦ ,

⎡
⎢⎣

1
6

√
2

1
3

√
2

1
3

√
2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

5. a = −1,
{

1
6 x2 + 1

6 x , 1
2 x2 − 1

2 x − 1, 1
3 x2 − 2

3 x
}

7. v = (5)

[
4
5
1

]
+ (1)

[−3
2

−6

]
+ (−1)

[
16
−7

−23

]

9. projS v =

⎡
⎣

7
27
35

108
7

108

⎤
⎦

11. projS f = 2 sin (x)

13.

⎧⎨
⎩

[
1

−1
0

]
,

⎡
⎣

6
5
4
5

1

⎤
⎦

⎫⎬
⎭

15.
{

1, x2 − 1
3

}
17.

{
x , − 1

5 x + 1
}

19. For example, let u2 =
[

4
−3

]
.

21. For example, let p2 (x) = 5x − 3.

23. For example, f1 (x) = 0, f2 (x) = 1, and f3 (x) = cos (x) .

25. False

27. True

29. False

31. True

33. HINT: Apply hint given with problem.

35. HINT: The suggested approach works well.

37. HINT: projS u is in S.

39. (a) u

(b) 0

41. HINT: Use ‖v‖2 = 〈v, v〉 and Theorem 10.12.

Section 10.3

1. y = 5
2 + 1x

3. The slope of �1 would be greater than the slope of �2.

5. The resulting line will be the same.

7. f2 (x) = 1
2 + 2

π
cos (x)

9. f2 (x) = 1
2 + 2

π
sin (x)

11. f2 (x) = 1 + 2 sin (x) − sin (2x)

13. f2 (x) = 1
3 π2 − 4 cos (x) + cos (2x)

15. a2 = 1 and b3 = −1, with all other coefficients zero.

17. a0 = 3
2 and a8 = − 1

2 , with all other Fourier coefficients zero.

19. g1 (x) = 3
2 − cos (x)
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21. g1 (x) = 1
2 + 3

2 cos (x) + 3
2 sin (x)

23. For example, consider the data set {(−1, −1) , (0, 1) , (1, −1)}.
This set has ordinary least squares regression line y = 0, and
weighted least squares regression line with triple the weight
on the right-most point y = − 2

5 − 1
2 x .

25. For example, let f (x) = 1. Then, a0 = 1, and all other
Fourier coefficients are zero.

27. f (x) = 1 + x

29. True

31. False

33. True

35. HINT: 〈1, sin (kx)〉 = 1
π

∫ π

−π
sin (kx) dx

37. HINT: ‖sin (kx)‖2 = 1
π

∫ π

−π
sin2 (kx) dx

39. HINT: Take u = x and dv = cos(kx)dx in the integration by
parts formula.

41. HINT: cos(kπ) = (−1)k and sin(kπ) = 0 for all integers k.

43. g5 (x) ≈ 2.7125 + 0.5445 cos (x) + 0.05 cos (2x)
+ 0.1555 cos (3x) + 0.075 cos (4x) + 0.1555 cos (5x)
− 0.06768 sin (x) − 0.025 sin (2x) + 0.03232 sin (3x)
− 0.03232 sin (5x)

45. f3 (x) ≈ 3.6761 − 3.6761 cos (x) + 1.4704 cos (2x)
− 0.7352 cos (3x) + 3.6761 sin (x) − 2.9409 sin (2x)
+ 2.2056 sin (3x)

Chapter 11

Section 11.1

1. Q (x0) = 22

3. Q (x0) = 8

5. Q (x) = 4x2
1 + x2

2

7. Q (x) = x2
1 + 2x2

2 + 6x1x2

9. Q (x) = x2
1 + 3x2

2 − 2x2
3

11. Q (x) = 2x2
1 + x2

2 + 2x2
3 + 3x2

4

13. A =
[

1 3
3 −5

]

15. A =
[

3 0 3
0 1 0
3 0 −1

]

17. A =
[

5 0 3
0 −1 −6
3 −6 3

]

19. A is indefinite.

21. A is indefinite.

23. A is indefinite.

25. A is indefinite.

27. Q(x) = x2
1 + x2

2 , and c = −1

29. For example, let Q(x) = x2
1 − x2

2 , and c = 0. Then Q(x) =
x2

1 − x2
2 = 0 ⇒ (x1 − x2) (x1 + x2) = 0, and the graph

consists of the intersecting lines x1 − x2 = 0 and x1 + x2 = 0.

31. The only quadratic form which is also a linear transformation
is Q(x) = 0 for all x.

33. Q(x) = x2
1 + x2

2

35. True

37. False

39. True

41. HINT: What form must such a quadratic form take?

43. Q(x) = xT I x = xT x = ‖x‖2, so the identity matrix In is the
matrix of Q(x) = ‖x‖2.

45. HINT: Evaluate 0T A0.

Section 11.2

1. A1 = [3], A2 =
[

3 5
5 7

]

3. A1 = [1], A2 =
[

1 4
4 0

]
, A3 =

[
1 4 −3
4 0 2

−3 2 5

]

5. A1 = [2], A2 =
[

2 1
1 3

]
, A3 =

[
2 1 0
1 3 4
0 4 0

]
,

A4 =

⎡
⎢⎣

2 1 0 −1
1 3 4 1
0 4 0 −2

−1 1 −2 1

⎤
⎥⎦

7. det (A1) = 2 > 0, det (A2) = −5 < 0, so A is not positive
definite.

9. det (A1) = 1 > 0, det (A2) = 1 > 0, det (A3) = 1 > 0, so A
is positive definite.

11. det (A1) = 1 > 0, det (A2) = 1 > 0, det (A3) = 1 > 0,
det (A4) = 4 > 0, so A is positive definite.

13. det (A1) = 1 > 0, det (A2) = 1 > 0, so A is positive definite.

L =
[

1 0
−2 1

]
, U =

[
1 −2
0 1

]
15. det (A1) = 1 > 0, det (A2) = 1 > 0, det (A3) = 1 > 0, so A

is positive definite.

L =
[

1 0 0
−2 1 0

2 −1 1

]
, U =

[
1 −2 2
0 1 −1
0 0 1

]

17. det (A1) = 1 > 0, det (A2) = 4 > 0, so A is positive definite.

L =
[

1 0
−2 1

]
, D =

[
1 0
0 4

]
U =

[
1 −2
0 1

]
19. det (A1) = 1 > 0, det (A2) = 1 > 0, det (A3) = 1 > 0, so A

is positive definite.

L =
[

1 0 0
3 1 0
2 2 1

]
, D =

[
1 0 0
0 1 0
0 0 1

]
, U =

[
1 3 2
0 1 2
0 0 1

]
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21. det (A1) = 1 > 0, det (A2) = 1 > 0, so A is positive definite.

L c =
[

1 0
2 1

]
23. det (A1) = 1 > 0, det (A2) = 1 > 0, det (A3) = 1 > 0, so A

is positive definite.

L c =
[

1 0 0
2 1 0
3 0 1

]

25. A =
[

−1 0
0 −1

]

27. A =
[−1 0 0

0 −1 0
0 0 −1

]

29. A =
[−1 0 0

0 −1 0
0 0 1

]

31. False

33. False

35. True

Section 11.3

1. max = 2, min = −3

3. max = 3, min = −5

5. max = 2, min = −4

7. max = 5, min = 0

9. max = 1, min = −1

11. max = 3, min = 0

13. max = 20, min = 0

15. max = 100, min = −100

17. max = 104, min = 0

19. max = 19 + √
370, min = 19 − √

370

21. max = 3, min = 1

23. max = 1, min = 0

25. Q(x) = x2
1 + 5x2

2

27. Q(x) = x2
1 + 6x2

2

29. Q(x) = − 1
9 x2

1 + 4
9 x2

2

31. True

33. False

35. False

37. HINTS: q j ≤ qk for all k = 1, 2, . . . , n, and qk ≤ qi for all
k = 1, 2, . . . , n.

39. HINT: Q(cx) = (cx)T A(cx)

Section 11.4

1. (a)

[
3i

−4 + i
2 − i

]
(b)

[
8 + i

11 − 4i
7 + 12i

]
(c)

[ −14 + i
−12 + 9i
−2 − 21i

]

3. c does not exist.

5. Yes.

7. (a) 24 − 6i (b) 44 (c)
√

35

9. Divide u by
√

39, divide v by 2
√

10.

11. (a)

[
2 + i 4 − 3i

−3 − i 3 + 2i

]
(b)

[
−2 − 3i 9 − 12i

−13 + 5i 4 + i

]
13. c does not exist.

15. Yes.

17. (a) 18 + 2i (b) 14 − 50i (c)
√

42

19. Divide A by
√

29, divide C by 2
√

7.

21. (a) (2 + 4i) − (4 − 2i) x (b) 9 − (3 + 3i) x

23. c does not exist.

25. (2 + i) + (3 − 2i) x = (− 2
17 − 43

17 i
)

(1 + i x)

+ (
12
17 + 20

17 i
)

(3 − (1 + i) x)

27. (a) 13
6 + 5

3 i

(b) 13
3 + 10

3 i

(c) 2
3

√
3

29. Divide h1 by 2
3

√
3, divide h2 by 2

3

√
3.

31. u = 1, v = i in C.

33. 〈u, v〉 = 2u1v1 + · · · + 2unvn

35. V = C, and S = R

37. True

39. True

41. False

43. HINT: Apply the properties of complex numbers and arith-
metic.

45. HINT: Consider property (2).

47. HINT: Combine properties of complex numbers with defini-
tion of inner product space.

49. HINT: Apply property (d) of definition of inner product space.

51. HINT: Note that 0 ≤
∥∥∥u − 〈u,v〉

‖v‖2 v
∥∥∥2

Section 11.5

1. A∗ =
[

1 − i 2 + i
−3i 1 − 4i

]

3. A∗ =
[

3 − i 1 + 4i 2 − 2i
−5i −8 0

1 + i 6 − i 7i

]

5. A∗ =

⎡
⎢⎣

1 −2i 3 4i
2i 5 −6i 1 + i
3 6i 7 3 + 2i

−4i 1 − i 3 − 2i 11

⎤
⎥⎦

7. A is not Hermitian.
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9. A is Hermitian.

11. A is Hermitian.

13. A is normal.

15. A is normal.

17. A is normal.

19. A =
[

0 i i
i 0 i
i i 0

]

21. A =
[

i 0 0
0 i 0
0 0 i

]

23. True

25. False

27. True

29. True

31. HINT: If A has real entries, then so does AT .

33. HINT: Apply the result in Exercise 32.

35. HINT: Apply the result in Exercise 32.

37. HINT: A unitary implies that A−1 = A∗, so A∗ A = In .

39. HINT: Compute A∗ A for A normal and upper triangular.
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A
A−1 computation, inverse matrices, 118–121
Absolute values, area and determinants,

208–212
Addition

complex numbers, 259–261
complex vector spaces, 430–434
of matrices, 96
partitioned matrices, 108–111
vectors, 49
vector space, 281–282
vector subspaces, 283–284
See also Closed under addition

Additive identity
identity matrix, 100–101
matrix multiplication, 96

Additive inverse vectors, 278–282
complex vector spaces, 429–434

Adjoint matrix, Cramer’s rule, 205–207
Algebra, matrix algebra, 95–111
Algebraic properties of vectors, 50
Algorithms, LU factorization, 133, 136–138
Approximation methods

computational comments, 236
eigenvalues and eigenvectors, 230–237
Fourier approximations, 401–405
Inverse Power Method, 233–234
least squares regression, 340–345
Power Method, 230–232
Shifted Inverse Power Method, 235
Shifted Power Method, 232–233

Arch bridges, linear equations, 1
Area, determinants and, 207–212
Argument, complex numbers, 260
Arithmetic

determinant computation, 190
of vectors, 49–50

Arms races problems, differential equations,
269–271

Associated homogeneous linear systems,
72–75

Associative law
additive inverse vectors, 281–282
matrix multiplication, 96
powers of a matrix, 104

Asymptotes, quadratic form geometry,
413–414

Augmented matrix
A−1 computation, inverse matrices,

118–121
chemical equations, 42–43
complex eigenvalues and eigenvectors,

262–263

diagonizability, 254
dimensional vector space, 297–299
eigenvalues, 222–224
eigenvector identification, 220
Gauss-Jordan elimination, 22–24
homogeneous linear systems, 25–26
linear combination of vectors, 51
linear independence, 69, 72
linear systems, 17–18
linear transformation, 84
one-to-one linear transformation, 87
singular value decomposition, 334–338
steady-state vector, 143–144
traffic flow example, 38–39
vector span, 59–65

Ax = b
determinants, 204–205
LU factorization, 128
span of vectors, 63–65

B
Back substitution

chemical equations, 43
complex eigenvalues and eigenvectors, 263
diagonizable matrix, 251–257
echelon systems, 9–11
eigenvalues identification, 223–224
eigenvector identification, 220
linear combination of vectors, 51
linear independence, 69
LU factorization, 128
multiplicities of eigenvalues, 225–226
rank of a matrix, 175–176
round-off error, 30
singular value decomposition, 334–338
traffic flow example, 39
triangular systems, 7–9
unitarily diagonalizable matrices,

439–440
Backward phase

Gauss-Jordan elimination, 23–24
linear independence, 71–72

Bases (basis) functions
changes, in linear transformation, 372–377
coordinate vectors, linear transformation,

364–365
defined, 161, 294
diagonizable matrix, 250–257
eigenvalue identification, 222–224
eigenvector changes, 239–246
Gram-Schmidt vector projection, 318–319
inner product spaces, Gram-Schmidt

process, 388–398

location, 162–164
multiplicities of eigenvalues, 225–226
nonstandard bases, eigenvector changes,

242–245
null space, 166–167
orthogonal basis, 310–311, 389–391
orthogonal subspaces, 308–309
orthonormal bases, 319–320
orthonormal sets, 391–392
similarity in linear transformation, 372
standard basis, 164–165
in subspaces, changes to, 245–246
vector spaces, 294–299, 308

Basis vectors, orthonormal sets,
391–392

Berra, Yogi, 29
Big Theorem

area and determinants, 208
determinants, 186
eigenvalues and eigenvectors, 226–227
Euclidean space and, 75–77
inverse matrices, 121–122, 367–368
linear transformations, 89
positive definite matrices, 417–419
row and column spaces, 177–178
shortcut method, 187
subspaces, 157–158, 168–169

Block diagonal matrix, 122–123
Block lower triangular matrix, 122–123
Blocks

inverse matrices, 114
partitioned matrices, 108–111

Boiling point of water, 339–340
Bowl Championship Series (BCS) ranking

system, linear systems for, 39–40
Brooklyn Bridge, 81

C
Caesar cipher, 114
Caffeine molecule, 42
Calculus

area and determinants, 210–212
vector subspaces, 284

Cauchy-Schwarz inequality
complex inner product space, 433–434
inner product space, 385–386

Change of basis matrix
basis changes to eigenvectors, 241–245
nonstandard bases, 242–245
similarity and, 373–377
in subspaces, 245–246

Characteristic equation, eigenvalues,
222–224
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Characteristic polynomial
coefficient matrix, differential

equation, 271
complex eigenvalues, 259–265, 272–273
complex eigenvectors, 262–263
diagonizable matrices, 253–257
eigenvalues, 222–224
multiplicity of eigenvalues, 225–226
similarity transformation, 375–376

Chemical equations
linear systems and balancing of, 42–43
subspaces, 155–156

Chesapeake Bay Bridge-Tunnel (CBBT), 277
Cholesky decomposition, 421–422
Closed under addition, subspaces, 152
Closed under scalar multiplication, 152
Coding, inverse matrices, 113–123
Codomain, linear transformation, 83, 86,

350–355
Coefficient matrix

complex eigenvalues, 271–273
Cramer’s rule, 205
differential equations, 270–271
eigenvector identification, 220
LU factorization, 128
steady-state vector, 143–144
vector space dimensions, 299

Cofactor, determinants, 184–185
Cofactor expansion

computation, 191
Cramer’s rule, 212
determinants, 187–189
invertible matrix, 206–207
partitioned matrix determinants, 199–200
row operations for determinants, 197,

200–201
Cofactor matrix, Cramer’s rule, 205–207
Column spaces, 172–178

defined, 173
row operations on determinants, 195
singular value decomposition, 333–338
vector spaces, 279

Column vector, 48
defined, 173
equivalent matrices, 163–164
span of vectors, 62–65
weighted least squares regression,

400–401
Commutative Law, additive inverse vectors,

280, 282
Commutative properties

matrix multiplication, 96, 99–100
product determinants, 197–199

Complex conjugation
complex eigenvalues, 272–273
complex eigenvalues and eigenvectors,

262–263
complex numbers, 261
unitary matrices, 436–437

Complex dot product, 431–434
Complex eigenvalues, 259–265

complex numbers, 259–261
differential equations, 271–273
eigenvectors and, 261–263
hidden rotation-dilation matrix, 264–265
rotation-dilation matrices, 263–264

Complex eigenvectors, 261–263
hidden rotation-dilation matrix, 264–265
rotation-dilation matrices, 263–264

Complex inner product spaces, 431–434
Complex numbers, complex eigenvalues and,

259–261, 271–273
Complex vector spaces, 429–434
Components of vectors, 48
Computation

determinants, 190–191
diagonal matrix, 106–107
LU factorization, 128, 138
matrix multiplication, 99–100

Computer graphics, linear transformation
in, 91

Conjecture, defined, 39–40
Conjugate axes, quadratic form geometry,

413–414
Conjugate transpose

Hermitian matrices, 437–440
unitary matrices, 436–437

Consistent linear systems, 4
Constant multiples, vector subspaces, 284
Constant vectors, homogeneous linear

systems, 73–75
Constrained optimization, 423–428

orthogonality, 426–428
variations, 425–426

Constraint equation, variable constrained
optimization, 426

Consumer confidence indices, least squares
regression, 342–343

Continuous functions
complex inner product space, 433–434
inner product spaces, 381–382, 389
vector spaces, 281–282
vector subspaces, 284

Convergence
Jacobi iterations, 30–32
Markov Chain, 142
numerical solutions, 34–36
Power Method approximations, 231–232
Shifted Power Method approximations,

232–233
Cooley, J. W., 405
Coordinated axes, subspaces, 152–154
Coordinate vectors

basis changes to eigenvectors, 240–245
change of basis matrix, 242
complex numbers, 260–261
diagonizable matrix, 250
linear transformation matrices, 364–365

similarity in linear transformation,
371–377

transformation matrices, 365–367
Cramer’s rule

determinant applications, 204–205
inverses from determinants, 205–207
proof of, 212

Cross-product terms
geometry of quadratic forms, 412–414
quadratic form, 410–411

Cubic polynomials, data fitting, 343–344
Customer transitions, matrix powers and,

104–105

D
Data sets

discrete Fourier approximations, 405
least squares regression, 342–344
weighted least squares regression,

399–401
Decimal approximations

Gram-Schmidt process, 396
Power Method calculations, 232
Shifted Power Method, 233

DeMoivre’s Theorem, complex numbers,
260–261

Determinants, 181–212
applications, 204–212
area and, 207–212
cofactor, 184–185
cofactor expansion, 187–189
Cramer’s rule, 204–205
defined, 181
eigenvalues, 221–224
elementary matrices, 198–199
function, 181–191
inverses from, 205–207
matrix products, 190–191
minor determinant, 183–184
partitioned matrices, 199–200
positive definite matrices, 417–419
of products, 197–199
properties, 194–197
recursive definition, 184–185
shortcut method, 186–190
similarity transformation, 375–376
square matrix, 181–183, 189–190

Diagonal dominance, convergence and, 35
Diagonalizable matrix

differential equations, 269–273
eigenvectors and eigenvalues, 249–257
Hermitian matrices, 437–440
orthogonality, 324–328
singular value decomposition,

332–338
unitary matrices, 437–440

Diagonal matrix, 105–107, 249–257
constrained optimization, 424–428
LDU factorization, 134–136
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Differential equations
arms races, 269–271
complex eigenvalues, 271–273
eigenvalues and eigenvectors, 268–273
vector subspaces, 284

Dimensions
defined, 295
linear transformation, 354–355
matrix, 83–84
subspaces, 164–169
vector spaces, 294–299

Discrete Fourier coefficients, 404
Discrete Fourier transforms, inner product

space, 403–405
Distance measurement

complex inner product space, 432–433
dot product, 305–306

Distributive law
additive inverse vectors, 282
homogeneous linear systems, 73–74
matrix multiplication, 96

Divergence, Jacobi iterations, 30–32
Domain

discrete Fourier transforms, 403–405
linear transformation, 83, 85, 350–355
subspace of, 157

Dominant eigenvalue, 232
Dot product

complex dot products, 431–432
inner products, 379–386
matrix multiplication, 99–100
orthogonal basis, 311
orthogonality, 303–306
orthogonal matrix, 325–326
projection and inequalities, 384–386
unitary matrices, 436–437
weighted least squares regression, 399–401

Doubly stochastic matrix, Markov chains,
141–146

E
Echelon form/echelon systems, 9–11

complex eigenvalues and eigenvectors,
262–263

determinant properties, 194–197
diagonizable matrices, 254
dimensional vector space, 297–299
eigenvalues, 222–224
eigenvector identification, 220–221
equivalent matrices, 163–164
Gaussian elimination, 19–22
Gauss-Jordan elimination, 22–24
LDU factorization, 134–136
linear combination of vectors, 51
linear independence, 69, 72
LU factorization, 128–133, 419–422
matrix linear transformation, 84
multiplicities of eigenvalues, 225–226
one-to-one linear transformation, 87

rank-nullity theorem, 177
rank of a matrix, 176
row and column spaces, 173–174
singular value decomposition, 334–338
span of vectors, 62–65
steady-state vector, 144
subset dimensions, 165
traffic flow example, 38–39
transformation of, 14–16

Economics, Gauss-Seidel iteration, 34
Eigenspace

defined, 221
diagonizable matrices, 254–257
eigenvalues identification, 223–224
multiplicities, 225–226, 271
Spectral Theorem, 326–328

Eigenvalues, 217–272
approximation methods, 230–237
associated eigenvectors, 219–221
complex eigenvalues, 259–265
constrained optimization, 424–428
defined, 217–218
determinants for finding, 221–224
diagonalization, 249–257
diagonizable matrices, 255–257
differential equation systems, 268–273
dominant eigenvalues, 232
eigenspace in, 221
Inverse Power Method, 233–234
multiplicities, 225–226
orthogonal diagonalization, 324–328
positive definite matrices, 417–419
Power Method approximation, 230–232
Principal Axes theorem, 411–412
quadratic form classification, 414–415
quadratic form geometry, 412–414
Shifted Inverse Power Method, 235
Shifted Power Method, 232–233
similarity transformation, 375–376
singular value decomposition, 333–338
Spectral Theorem, 326–328
unitarily diagonalizable matrices,

438–440
See also Complex eigenvalues

Eigenvectors, 217–272
approximation methods, 230–237
associated eigenvalues, 219–221
basis changes, 239–246
change of basis matrix, 242–245
complex eigenvectors, 261–263
constrained optimization, 427–428
defined, 217–218
diagonalization, 249–257
differential equation systems, 268–273
Inverse Power Method, 233–234
multiplicities, 225–226
orthogonal diagonalization, 324–328
orthogonally diagonizable matrices,

327–328

Power Method approximation, 230–232
Principal Axes theorem, 411–412
quadratic form geometry, 412–414
Shifted Inverse Power Method, 235
Shifted Power Method, 232–233
singular value decomposition, 337–338
unitarily diagonalizable matrices, 438–440
See also Complex eigenvectors

Einstein, Albert, 29
Elementary matrices

determinants, 198–199
LU factorization, 137–138

Elementary operations, linear systems, 14–17
Elimination methods

Gaussian elimination, 20–22, 26
Gauss-Jordan elimination, 22–24, 26
numerical solutions, 29–36
round-off error, 29–30

Ellipses
area and determinants, 211–212
quadratic form geometry, 412–414

Equality, vectors, 49
Equal matrices, 95–96
Equivalent linear systems, 14

linear independence of vector space,
290–291

Equivalent matrices, 17–18
subspaces, 162–164

Euclidean space (Rn), 47–77, 48–49
Big Theorem and, 75–77
defined, 49
dot products, 303–306
geometry of, 52–54
inner products, 379–386
isomorphisms, 361
linear independence, 67–76
orthogonality and norms, 382–384
span, 57–65
span requirements, 61–65
standard basis, 164–165
subspaces, 151, 153, 169
vectors, 47–54
vector spaces, 279, 282
vector subspaces, 283–284

F
Fast Fourier transform (FFT), 405
Finite area region, determinants, 209
Finite-dimensional subspaces, projection

onto, 392–393, 398–399
Finite-dimensional vector spaces, 359–362

complex vector spaces, 429–434
Flops in arithmetic operation

defined, 26
iterations and, 36

Forward operations, span of vectors, 62–65
Forward phase, Gaussian elimination, 23–24
Fourier approximations, inner product/inner

product space, 401–405
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Fourier coefficients, defined, 402
Fourier series, inner product space, 402
Free parameter

chemical equations, 43
linear equations, 5
traffic flow example, 39

Free variable, echelon systems, 10–11
Frequency analysis, inverse matrices, 114
Full pivoting, round-off error, 30
Fundamental Theorem of Algebra, 169

G
Gauss, Carl Friedrich, 19, 22
Gaussian elimination

computational comments, 26
echelon matrices, 19–22
round-off error, 29–30

Gauss-Jordan elimination, 22–24
computational comments, 26
homogeneous linear systems, 25–26
round-off error, 30

Gauss-Seidel iteration, 32–34
computational comments, 36
diagonal dominance and, 35–36

General solution
associated homogeneous linear system,

74–75
chemical equations, 43
differential equations, 269–273
eigenvalues identification, 223–224
eigenvector identification, 220
homogeneous linear systems, 73–75
linear equations, 5
linear independence, 69
matrices, 18
multiplicities of eigenvalues, 225–226
stochastic matrices, 145–146
vector form of, 51–52

Geometry
linear transformation, 89–90
quadratic form, 412–414
subspace, 152–154

Golden Gate Bridge, 8, 181
Gram, Jörgen, 318
Gram-Schmidt process

complex inner product space, 433–434
computational comments, 320
inner product spaces, 388–398, 393–396
orthogonally diagonizable matrices,

327–328
orthonormal bases, 319–320
QR factorization, 329–330
singular value decomposition, 335–338
unitarily diagonalizable matrices,

438–440
vector projection, 317–319

Graphs
associated homogeneous linear system,

74–75

inner products, Gram-Schmidt
process, 396

least squares regression, 344
Legendre polynomials, 390
of linear equations, 1–3, 5–6
lines in, 1–2
projection onto subspaces, 316
quadratic form geometry, 412–414
weighted least squares regression, 400–401

Grid of squares, area and determinants,
210–212

Grid temperatures, Jacobi iterations, 32

H
Harmonic motion, vector subspaces, 284
Hermite, Charles, 437
Hermitian matrices, 435–440

diagonalizability, 437–440
Hidden rotation-dilation matrix, 264–265
Homogeneous linear systems, 24–26

bases of, 169
diagonizable matrix, 251–257
eigenvalues, 221–224
eigenvector identification, 220
linear independence and, 72–75
linear independence of vector space,

290–291
multiplicities of eigenvalues, 225–226
steady-state vector, 143–144
subspaces, 154–156

Hyperbolas, quadratic form geometry,
413–414

Hyperplane, in linear equations, 3

I
Identity matrix, 100–101

Cramer’s rule, 212
determinant row operations, 197
LU factorization, 136–138
unitary matrices, 437

Images
linear transformation, 83, 351–353
singular value decomposition and

compression of, 336–337
Imaginary part, complex numbers, 259
Inconsistent linear systems, 4
Indefinite quadratic form, 414–415
Induction hypothesis

determinant cofactor expansion, 189
determinant theorems, 185–186
diagonal matrix, 106–107

Inequalities, inner product space, 384–386
Infinite dimension, vector space, 295–299,

360–362
Infinite series, Fourier series as, 402
Initial state vector

Markov Chain, 141
stochastic matrices, 144–146

Inner product/inner product spaces, 379–405

applications, 398–405
Cauchy-Schwarz inequality, 385–386
complex inner product spaces, 431–434
defined, 380
discrete Fourier transforms, 403–405
Fourier approximations, 401–405
Gram-Schmidt process, 388–398
orthogonal basis, 389–391
orthogonality and norms, 382–384
projection and inequalities, 384–386
projection onto subspaces, 393
Pythagorean Theorem, 383–384, 398–399
triangle inequality, 386
weighted least squares regression, 399–401

Integral values, inner products,
Gram-Schmidt process, 396

Integration limits, complex inner product
space, 433–434

Interchange row
LU factorization, 419–422
matrices, 18

Intersecting planes, triangular systems, 7
Inverse linear transformation, 116–118

isomorphisms, 361–362
Inverse matrices, 113–123

A−1 computation, 118–121
Big Theorem, 121–122
linear transformation, 115–118
multiplication formula, 121
partitioned matrices, 122–123
Quick Formula for, 121, 207
transformation matrix, 367–368

Inverse Power Method
computational comments on, 236
eigenvalue/eigenvector approximations,

233–234
Invertible linear transformation, 116

isomorphisms, 361–362
least squares solution, 342

Invertible matrix
Cramer’s rule, 204–205, 206–207, 212
defined, 117
determinant row operations, 196–197
determinants, 181–183
diagonizability of, 249
LDU factorization, 136
product determinants, 199
quadratic form geometry, 412–414
similarity transformation, 376
square matrix as, 138

Isomorphisms
defined, 358
inverse transformation, 361–362
linear transformation, 357–362

Iterative methods
computational comments, 36
Gauss-Seidel iteration, 32–34
Jacobi iterations, 30–32
Power Method approximation, 230–232
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J
Jacobi, Karl Gustav, 31, 91
Jacobi iterations

computational comments, 36
linear systems, 30–32

Jacobi’s method, similarity transformation,
377

Jordan, Wilhelm, 22

K
Kernel

linear transformation, 351–353
rank-nullity theorem, 176–177
subspaces, 156–157

L
LDU factorization

matrices, 134–136
positive definite matrices, 421–422

Leading term, Gaussian elimination, 19–22
Leading variable

echelon systems, 9–11
triangular systems, 8

Least squares regression, 339–345
data fitting, 342–344
inner product/inner product spaces,

399–401
planetary orbital periods, 344–345

Least squares solution, defined, 341
Legendre polynomials

Gram-Schmidt process, 395–396
inner product spaces, 390–391

Length of data, least squares regression,
343–344

Leontief, Wassily, 34
Linear algebra, one-to-one linear

transformation, 87
Linear combination of vectors, 51–52

dimension of vector spaces, 296–299
linear independence and, 68–76
orthogonal basis, 311
orthonormal bases, 320, 391–392
span of vectors and, 57–65
span of vector space, 286–288

Linear dependence
defined, 68, 288
theorem, 70
vector space dimensions, 298–299

Linear equations, 1–42
free parameter, 5
general solution, 5
hyperplane in, 3
Jacobi iterations, 30–32
linear independence of vector space,

290–291
lines and, 1–11
multiples of, 14–16
numerical solutions, 29–36

round-off error, 29–30
solution, 3–4
solution set, 3–4, 15
systems of, 3–6
theorems for, 6

Linear first-order differential equations,
eigenvectors and eigenvalues, 268–273

Linear independence
basis and dimension of vector space,

294–299
defined, 68, 288
dimension of vector spaces, 296–299
eigenvectors

diagonalization and, 253–254
differential equations, 269–273
dominant eigenvalues and, 232

Euclidean space and, 67–76
homogeneous linear systems, 72–75
inner product spaces, 389–390
linear system solutions, 75
one-to-one linear transformation, 87,

354–355
orthogonal sets, nonzero vectors, 309–311
QR factorization, 328–330
span of vectors and, 71–72
subspaces, 160–169
vector space, 288–292

Linear regression. See Least squares
regression

Linear systems
applications, 37–43
augmented matrix, 17–18
Ax = b, 64–65
balanced chemical equations, 42–43
basis and dimension of vector space,

294–299
Bowl Championship Series rankings,

39–40
determinants, 204–205
echelon systems, 9–11
elementary operations, 14–17
equivalent systems, 14
Gaussian elimination, 19–22
Gauss-Jordan elimination, 22–24
homogeneous systems, 24–26
Inverse Power Method

eigeinvalue/eigenvector
approximation, 234

Jacobi iterations, 30–32
LU factorization, 127–128
matrices and, 14–26
planetary orbital periods, 40–42
round-off error, 29–30
traffic flow application, 37–39
triangular systems, 6–9

Linear transformation, 349–377
area and determinants, 207–212
basis changes to eigenvectors, 239–246
Big Theorem and, 89

coordinate vectors, 364–365
defined, 83, 349–355
determinant row operations, 197
dimension of vector spaces, 296–299
eigenvalues and eigenvectors, 218
geometry of, 89–90
image, range, and kernel, 351–353
inverse transformation, 115–118, 361–362,

367–368
isomorphisms, 357–362
matrices, 81–91, 364–368
matrix multiplication, 97–98
one-to-one transformation, 86–89
onto transformation, 86–89
properties, 349–355
quadratic form, 409–410
similarity, 370–377
subspaces, 156–157
vector encoding, 114–115
vector space, 282

Lines
linear equations and, 1–11
linear transformation of segments, 90

Logarithmic function, planetary orbital
periods, 41–42

Lower triangular matrix, 107
block lower triangular matrix, 122–123
diagonizability, 256–257
elementary matrix, 137–138
LU factorization, 128–133, 129–133

LU factorization
elementary matrix, 137–138
Inverse Power Method

eigeinvalue/eigenvector
approximation, 234

matrices, 127–138
positive definite matrices, 419–422

M
Machine ε, singular value decomposition,

337–338
Mackinac Bridge, 217
Markov chains

matrices, 141–146
probability vector, 141141
steady-state vectors, 142–144
stochastic matrix properties, 144–146

Mass-spring system, vector subspaces, 284
Matrices, 81–146

addition of, 96–97, 279
adjoint matrix, 205–207
block diagonal matrix, 122–123
change of basis matrix, 241–245
cofactor matrix, 205–207
diagonalizable matrix, 249–257, 324–328
diagonal matrix, 105–106
dimensions, 83–84
doubly stochastic matrix, 141–146
elementary matrix, 137–138, 198–199
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Matrices (Continued )
equal matrices, 95–96
Gaussian elimination, 19–22
Hermitian matrices, 435–440
hidden rotation-dilation matrix, 264–265
homogeneous linear systems, 73–75
identity matrix, 100–101
inverses, 113–123
invertible matrix, 117, 199
LDU factorization, 134–136
linear systems and, 17–26
linear transformations, 81–91, 364–368
LU factorization, 127–133
Markov chains, 141–146
multiplication, 97–100, 190, 194, 197–199,

242–245, 279, 420–422
nonsingular matrix, 118
nonzero matrices, 102–103
nullity of, 167–169
n × m matrix, 83
one-to-one and onto linear

transformation, 86–89
orthogonally diagonizable matrices,

326–328
orthogonal matrix, 325–328
partitioned matrices, 108–111, 122–123,

199–200
positive definite matrices, 417–419
powers of, 104–108
QR factorization, 328–330
quadratic form, 409–411
rank of a matrix, 174–176, 336–337
regular matrix, 145–146
rotation-dilation matrices, 263–264
row and column spaces, 174
scalar multiplication of, 96–97
singular matrix, 118
singular value decomposition, 332–338
sparse matrix, 36
square matrix, 83
stochastic matrix, 141–146, 144–146
symmetric matrix, 104
transformation matrices, 365–367
transition matrix, 141–143
transpose of, 103–104
triangular matrices, 107–108
Vandermonde matrix, 168–169,

172–174
vector spaces, 282
zero matrices, 102–103

Matrix algebra, 95–111
addition, 96–97
identity matrix, 100–101
matrix multiplication, 97–100
partitioned matrices, 108–111
powers of matrix, 104–108
properties of, 101–103
scalar multiplication, 96–97
transpose of matrix, 103–104

Matrix powers, 249
diagonizable matrices, 256–257

Maximum value, constrained optimization,
423–428

Minimum value, constrained optimization,
423–428

Minor determinants, 183–184
Modulus, complex numbers, 260
Monomials, Gram-Schmidt process, 395
Multiple rows, matrices, 18
Multiplication

complex numbers, 259–261
determinant properties, 194–197, 200–201
inverse matrix, 121
matrix multiplication, 97–100, 190, 194,

197–199, 242–245, 279, 420–422
partitioned matrices, 109–111
vector space, 279–282

Multiplicative identity, matrix, 100–101
Multiplicity

diagonizable matrices, 255–257
eigenspace, 271
eigenvalues, 225–226
orthogonal diagonalization, 324–328
orthogonally diagonizable matrices,

327–328
similarity transformation, 375–376

m × m matrix, identity matrices,
100–101

N
Negative definite quadratic form,

414–415
Negative semidefinite quadratic form,

414–415
Nondiagonal matrices, quadratic form, 410
Nonempty vector sets, eigenvector

identification, 221
Nonhomogeneous linear systems, 72–75
Nonnegative values

constrained optimization, 424–428
orthogonal matrices, 328

Nonpivot columns, rank-nullity
theorem, 176

Nonsingular matrix, 118
positive definite matrices, 417–419

Nonsquare matrices, LU factorization,
131–133

Nonstandard bases, change of basis matrix,
242–245

Nontrivial solution
complex eigenvalues and eigenvectors,

262–263
dimension of vector spaces, 296–299
eigenvalues, 221–224
homogeneous linear systems, 24–26
linear independence of vector space,

289–291
Nonzero constant, linear equations, 14–16

Nonzero determinant
induction proof, 185–186
square matrix, 181–183

Nonzero matrix, 105–107
Nonzero subspaces, 308

finite-dimensional subspaces, 392–393
projection onto, 316–317

Nonzero vectors
eigenvectors, 218–221
Gram-Schmidt projection, 317–319
inner product spaces, 384–385, 389
linear independence, 290–291
orthogonal sets, 309–311
projection onto, 314–315
span and, 291–292
subspace, 161

Normal equations, least squares solution,
341–342

Normalization
orthonormal bases, 319–320
polynomials, Gram-Schmidt process,

395–396
singular value decomposition, 333–338
unitarily diagonalizable matrices,

439–440
Normal matrices, Hermitian matrices as,

437–440
Norms of vectors

complex vector space, 432–433
defined, 305
inner products, 382–384, 391–392,

398–405
nth-order discrete Fourier approximation,

404–405
nth-order Fourier approximation, 402–405
Nullity

defined, 167–169
rank of a matrix, 175–176

Null space, 154–156
basis for, 166–167
kernel, 157

Numbers, complex numbers, 259–261
Numerical integration, discrete Fourier

transforms, 403–405
Numerical solutions

convergence, 34–36
Gauss-Seidel iteration, 32–34
Jacobi iterations, 30–32
linear equations, 29–36
machine ε, 337–338
round-off error, 29–30

n × m matrix, 83–84
homogeneous linear system, 155
identity matrices, 100–101

O
Odd functions, Fourier approximations,

inner product space, 401–402
Old Vicksburg Bridge, 349
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One-dimensional subspace, projection
onto, 316

One-to-one correspondence, isomorphisms,
358–362

One-to-one linear transformation, 86–89,
353–355

invertibility, 120, 362
Onto linear transformation, 86–89,

354–355
invertibility, 120, 362

Opposite vector, 278
complex vector spaces, 429–434

Oresund Bridge, 151
Orthogonal basis, 310–311

Gram-Schmidt process, 394–396
inner product sets, 389–391
projection onto subspaces, 393
weighted least squares regression, 400–401

Orthogonal complement, 307
Orthogonality, 303–345

complex inner product space, 433–434
computational comments, 321
constrained optimization, 426–428
diagonalization of matrices, 324–328,

333–338
dot products, 303–306
Gram-Schmidt process, 317–319
inner products, 382–384
least squares regression, 339–345
orthogonal sets, 309–311
orthogonal subspaces, 307–309
orthogonal vectors, 306–307
orthonormal bases, 319–320
projection onto subspaces, 316–317
projection onto vectors, 314–315
QR factorization, 328–330
singular value decomposition, 332–338
unitary matrices, 436–437

Orthogonally diagonizable matrices
factorization, 326–328
singular value decomposition, 333–338

Orthogonal matrix, 325–328
constrained optimization, 424–428
Principal Axes theorem, 411–412
quadratic form geometry, 413–414
singular value decomposition, 332–338

Orthogonal sets, 309–311
Fourier approximations, inner product

space, 401–405
inner product spaces, Gram-Schmidt

process, 388–389
Orthogonal subspaces, 307–309
Orthogonal vectors, 306–307

Gram-Schmidt process, 394–396
Orthonormal bases, 319–320

complex inner product space, 433–434
constrained optimization, 427–428
Gram-Schmidt process, 394–396
inner product spaces, 391–392

QR factorization, 329–330
singular value decomposition, 334–338
unitary matrices, 437

Orthonormal sets
complex inner product space, 433–434
inner product spaces, 391–392

Outer product expansion, image
compression, 336–337

P
Parallelograms

area and determinants, 207–212
vector geometry, 53

Parallel planes, triangular systems, 7
Parallel vectors, eigenvalues and

eigenvectors, 218–219
Partial pivoting

elimination methods, 26
round-off error, 30

Particular solutions, homogeneous linear
system, 74

Partitioned matrices, 108–111
determinants, 199–200
inverse matrices, 122–123

Penobscot Narrows Bridge, 397
Permuted lower triangular matrix, 138
Perpendicular vectors. See Orthogonality
Pivot, defined, 19
Pivot columns

Gaussian elimination, 19
LU factorization, 419–422
rank-nullity theorem, 176
row and column spaces, 173–174
subset dimensions, 165

Pivot positions
determinant row operations, 195–197
Gaussian elimination, 19–22
LDU factorization, 134–136
LU factorization, 129–133, 419–422
subspaces, 165–166

Plane, projection onto, 316–317
Planetary orbital periods

least squares regression, 344–345
linear systems in, 40–42

Pointwise definitions, vector spaces,
281–282

Polar coordinates, complex numbers,
260–261

Polynomials
complex numbers, 261
eigenvalues, 222–224
Fundamental Theorem of Algebra and, 169
Gram-Schmidt process, 395–396
inner products, 381
isomorphic vector space, 360–362
Legendre polynomials, 390–391
linear independence of vector space,

289–292
multiplicities of eigenvalues, 226

orthogonal diagonalization, 324–328
orthogonally diagonizable matrices,

326–328
span of vector space, 287–288
vector spaces, 280, 282, 350
vector subspaces, 283–284

Positive definite matrices, 417–419
Positive definite quadratic form, 414–415
Positive semidefinite quadratic form,

414–415
Positive singular values, singular value

decomposition, 333–338
Power Method

computational comments on, 236
eigenvalue and eigenvector approximation,

230–232
Powers of a matrix, 104–108
Principal axes, quadratic form geometry,

412–414
Principal Axes theorem, 411–412
Principal Axes Theorem, quadratic form

geometry, 413–414
Probability matrices, diagonizability, 257
Probability vector, Markov Chain, 141
Product

complex numbers, 259–261
determinants of, 197–199
matrix multiplication, 98–100

Projectile motion, linear systems, 14
Projection formula

Fourier approximation, inner product
space, 402–405

Gram-Schmidt process, inner product
spaces, 393–396

inner product space, 384–386
onto subspaces, 316–317, 321, 392–393
onto vectors, 314–315
weighted least squares regression, 400–401

Proof by contradiction, in linear
equations, 4

Pythagorean Theorem
dot product, 305–306
inner product spaces, 383–384, 398–399
orthogonal vectors, 306–307

Q
QR factorization

linear independent matrices, 328–330
similarity transformation, 376–377

Quadratic form/formula, 409–415
classification of, 414–415
complex eigenvectors, 263
complex numbers, 261
constrained optimization, 423–428
defined, 409–410
geometry of, 412–414
Principal Axes theorem, 411–412

Quadratic function, parabolic path and, 14
Quebec Bridge, 409



Holt-4100161 la˙Index November 14, 2012 17:20 I8

I8 Index

Quick Formula
change of basis matrix, 241–245
diagonizable matrix, 249–257
inverse matrix computation, 121, 207

R
Ranges, linear transformation, 83, 351–353
Rank-Nullity theorem, 176, 337–338
Rank of a matrix, 174–175

singular value decomposition, 336–337
Rate constants, differential equations, 268
Real coefficients

linear independence of vector space, 290
vector spaces, 280

Real eigenvalues, complex conjugation,
271–273

Real numbers
inner products, 381
inverse linear transformation, 362
matrix algebra vs., 102–103
span of vector space, 286–288
vector spaces, 281–282

Real part, complex numbers, 259
Real vector spaces, complex vector spaces,

429–434
Rectangular coordinates, complex numbers,

260–261
Rectangular regions, area and determinants,

208–212
Reduced echelon form

Gauss-Jordan elimination, 23–24
homogeneous linear systems, 25–26
inverse matrices, 115

Reflection, linear transformation, 91
Regions, linear transformation of, 90–91
Regular matrix, 145–146
Reverse operations, span of vectors, 62–65
Rotation

area and determinants, 208–212
linear transformation, 91

Rotation-dilation matrices, complex
eigenvalues/eigenvectors, 263–264

Round-off error
BCS index example, 39–40
linear equations, 29–30
powers of matrix and, 105
singular value decomposition, 336–337

Row echelon form
A−1 computation, inverse matrices,

118–121
chemical equations, 42–43
Gaussian elimination, 19–22
Gauss-Jordan elimination, 23–24

Row operations
A−1 computation, inverse matrices,

118–121
augmented matrix, 17–18
Big Theorem and, 75–77
chemical equations, 42–43

determinants, 182, 194–197
eigenvector identification, 220
elementary matrix, 137–138
equivalent matrices, 163–164
LDU factorization, 134–136
linear independence, 69–76
LU factorization, 128–133, 420–422
matrix linear transformation, 84
vector span, 58–65

Row reduction, homogeneous linear systems,
73–75

Row scaling, LU factorization, 129–133
Row spaces, 172–178

defined, 173
Row vector, 48

defined, 173

S
Scalar multiplication

complex vector spaces, 430–434
eigenvector sets, 221
linear transformation, 352–353
of matrices, 96
partitioned matrices, 108–111
Power Method approximation of vectors,

230–232
vector geometry, 53–54
vectors, 49
vector spaces, 279, 281–282
vector subspaces, 283–284
See also Closed under scalar multiplication

Scalars
complex vector spaces, 431–434
dot products, 303–306
eigenvalues and eigenvectors, 218–219
Gram-Schmidt vector projection,

317–319
inner products, 380–386
linear independence, 71–72
linear transformation, 350–351
matrix algebra, 101
matrix linear transformation, 83–84
nonzero vectors, inner product space,

384–385
orthogonal basis, 310–311, 390–391
orthogonal subspaces, 308–309
projection onto vectors, 314–315
quadratic form, 410
span of vectors and, 57–65
vectors, 49–51

Scaling factor
Gram-Schmidt process, 395–396
LU factorization, 129–133
Power Method approximation of vectors,

230–232
Scatter plots

least squares regression, planetary orbital
periods, 344–345

weighted least squares regression, 399–401

Schmidt, Erhardt, 318
Search algorithms, partitioned matrices,

108–111
Seidel, Ludwig Phillipp von, 32
Sequence of vectors

Inverse Power Method
eigeinvalue/eigenvector
approximation, 234

Power Method approximation, 230–232
Set of all vectors (Rn), 48–49

change of basis matrix, 241–245
determinants, 186
diagonizable matrices, 252, 255–257
eigenvector identification, 221
geometry of, 52–54
linear independence and span of, 291–292
Power Method approximation, 232, 237
span requirements, 61–65
vector subspaces, 282–284

Shear, linear transformation, 91
Shift cipher, 114
Shifted Inverse Power Method,

eigenvalues/eigenvectors, 235
Shifted Power Method,

eigenvalue/eigenvector approximation,
232–233

Shortcut method
determinants, 186–190, 194–195
eigenvalues and eigenvectors, 227
row operations for determinants, 197

Similarity transformation, 370–377
change of basis, 372–373
computational comments, 376–377
transformation matrices, 374–377

Singular matrix, 118
positive definite matrices, 417–419

Singular value decomposition (SVD),
332–338

defined, 332
Smithfield Street Bridge, 303
Solar hot water system, linear equations

example, 1–2
Solutions

associated homogeneous linear system,
74–75

equivalent matrix subspace, 163–164
least squares solution, 341
linear combination of vectors, 51–52
in linear equations, 3–6
linear independence, 69–70

Solution set
in linear equations, 3–4, 15
quadratic form geometry, 412–414

Spanning sets, subspaces, 160–169
Span of vectors, 57–65

linear independence and, 71–72
one-to-one linear transformation, 87
orthonormal bases, 319–320
projection onto vectors, 315
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subspaces and, 152–154
vector spaces, 286–288, 291–292

Sparse matrix, defined, 36
Sparse systems, defined, 36
Spectral Theorem, 326–328

Hermitian matrices, 435–436
Principal Axes theorem and, 411–412
unitarily diagonalizable matrices, 438–440

Square matrix, 83–84
block submatrices, 200
determinant row operations, 196–197
determinants of, 181–183, 189–190
diagonizability of, 252–257
eigenvalues, 221
inverse of, 205–207
invertibility of, 118, 138
linear transformation, 352–353
LU factorization, 130–133
multiplicities of eigenvalues, 226
orthogonal diagonalization, 324–328
partitioned matrix, determinants, 200
Power Method approximation, 230–232
shortcut method with, 186–187
similarity, 374
singular value decomposition, 337–338
unitary matrices, 436–437
vector subspaces, 283–284

Squares, area and determinants, 210–212
Standard basis, 164–165

basis and dimension of vector space,
294–295

diagonizable matrix, 250–257
Standard position, quadratic form geometry,

412–414
State vectors, Markov chain, 142–143
Steady-state vector, 142–144

stochastic matrices, 144–146
Stochastic matrix, Markov chains, 141–146,

144–146
Submatrices

LU factorization, 419–422
positive definite matrices, 418

Subsets
dimensions, 164–169
vector spaces, dimensions, 298–299

Subset S
linear transformation, 352–353
as subspace, 152–154

Subspaces, 151–178
basis, 160–169
change of basis in, 245–246
definition, 152
dimension of vector spaces, 295–299
eigenvector identification, 221
generated, 153
Gram-Schmidt vector projection, 317–319
homogeneous systems and null spaces,

154–156
isomorphisms, 361–362

kernel and range of linear transformation,
156–157

linear transformation, 352–353
models of, 151–152
orthogonal subspaces, 307–309
projection onto, 316–317, 392–393
row and column spaces, 172–178
spanned, 153
trivial subspace, 153
vector spaces, 277, 282–284

Subtraction, vector geometry, 54
Sum of squares, least squares regression,

340–345
Sums, vector subspaces, 284
Symmetric matrix, 104

Cholesky decomposition, 421–422
constrained optimization, 424–428
orthogonal diagonalization, 324–328
positive definite matrices, 417–419
Principal Axes theorem, 411–412
quadratic form classification, 414–415
quadratic form geometry, 412–414
unitarily diagonalizable matrices, 439–440

T
Theorem

algebraic properties of vectors, 50
associated homogeneous linear system, 74
Ax = b, 64
basis and dimension of vector space, 294
basis of subspaces, 167
Carmer’s rule, 204–205, 212
Cauchy-Schwarz inequality, 385–386
change of basis matrix, 241–242
cofactor expansion, 187–188
complex eigenvalues and eigenvectors,

262–263
complex inner product space, 433–434
complex vector space, 432–433
constrained optimization, 424, 427
defined, 6
determinant row operations, 195–197,

200–201
determinants, 185–186
diagonizable matrices, 252
dimensions, 164
dominant eigenvalue, 232
dot product, 304–305
eigenvalues, 221–224
eigenvector sets, 221
elementary matrix determinants, 198–199
equivalent matrices, 163
finite-dimensional vector space, 360–362
Gram-Schmidt process, 318–319, 394–396
hidden rotation-dilation matrix, 265
homogeneous linear systems, 73–74, 155
inner product spaces, 398
inverse linear transformation, 116, 120
inverse matrix, 118

invertible matrix, 117, 120, 199, 206–207
isomorphism, 359–362
LDU factorization, 421–422
least squares regression, 341
least squares solution, 341–342, 345
linear dependence, 70
linear equations, 6, 25
linear first-order differential

equations, 269
linear independence, 71–72, 75, 291–292
linearly independent eigenvectors,

253–254
linear transformation, 157, 350–351,

354–355
LU factorization, 129
matrix algebra, 101
matrix linear transformation, 83–84
matrix product determinants, 190–191
multiplicities of eigenvalues, 226
nonnegative eigenvalues, symmetric

matrices, 328
nonstandard bases, 242–245
nontrival finite dimensional vector space,

296–297
nonzero matrices, 102–103
one-to-one linear transformation, 86–87,

354–355
onto linear transformation, 87–88
orthogonal basis, 310–311, 390
orthogonal diagonalization,

eigenvectors/eigenvalues, 324–325
orthogonally diagonizable matrices,

326–328
orthogonal matrix, 325–328
orthogonal sets, Fourier approximations,

401–402
orthogonal sets, nonzero vectors, 309–311
orthogonal subspaces, 307–308
orthonormal sets, 391–392
positive definite matrices, 417–419
Power Method approximation, 232, 237
Principal Axes theorem, 411–412
product determinants, 197–199
projection onto subspaces, 317, 321,

392–393
projection onto vectors, 315
Pythagorean theorem, 306–307, 383–384
QR factorization, 328–330
quadratic form classification, 414–415
rank-nullity theorem, 176
reduced echelon form, 23
regular stochastic matrix, 146
row and column spaces, 173–174, 177
row determinants, 195–196, 198
set of all vectors, 63
similarity transformation, 374–375
singular value decomposition, 333,

337–338
span of vectors, 60–61, 152–154
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Theorem (Continued )
span of vector space, 287–288, 291–292
spectral theorem, 326–328
square matrix determinants, 189–190, 195
standard basis of vector space, 294–295
stochastic matrices, 144–146
subsets of vector spaces, dimensions,

298–299
subspace change of basis, 245–246
subspace dimensions, 168
subspaces, 161–162, 169
subspace vectors, 165, 352–353
symmetric matrix submatrices, LU

factorization, 419–422
transformation matrices, 373–374
triangle inqeuality, 386
triangular matrix, 107
unitarily diagonalizable matrices, 438–440
unitary matrices, 436–437
vector space dimensions, 297–298
zero vector, 280

Three-dimensional plane, span of vectors
and, 58–65

Tip-to-tail rule
triangle inequality, 386
vector geometry, 52–54
vector span, 57–65

Traffic flow management
linear systems for, 37–39
LU factorization, 127–128

Transformation matrices, 365–367
similarity, 373–377

Transition matrix, state vectors, 141–143
Translated rectangles, area and determinants,

210–212
Transpose of matrix, 103–104

unitary matrices, 436–437
Transverse axes, quadratic form geometry,

413–414
Triangle, orthogonal vectors, 306–307
Triangle inequality

complex inner product space, 433–434
inner product space, 386

Triangular form/triangular systems
determinant row operations, 195–197
linear equations in, 6–9, 16–17
properties of, 8

Triangular matrices, 107–108
block lower triangular matrix, 122–123
determinant row operations, 196–197
determinants, 188–189
LU factorization, 129–133

Trigonometry, span of vector space, 287–288
Trivial solution

homogeneous linear systems, 24–26, 72–75

linear independence of vector space,
289–291

similarity transformation, 375
Trivial subspace, 153

vector subspaces as, 283–284
Tukey, J. W., 405
Two-dimensional plane, vector span, 57–65

U
Unitary matrices, 436–437

diagonalizability, 437–440
Unitary space, complex inner product spaces,

431–434
Unit circle, area and determinants, 211–212
Unit square

area and determinants, 207–212
linear transformation of, 90–91

Upper triangular matrix, 107
determinants, 188–189, 197
LU factorization, 130–133

V
Vandermonde matrix, 168–169

row and column spaces, 172–174
Van de Snepscheut, Jan L. A., 29
Variables, constrained optimization, 425–426
Vector equation, 51–52

Ax = b, 63–65
homogeneous linear systems, 72–75
inverse linear transformation, 362
linear independence, 70–76

Vector form, defined, 51–52
Vectors, 47–54

algebraic properties, 50
arithmetic, 49
Ax = b, 63–65
complex vector spaces, 429–434
defined, 48, 278
dot product, 304–306
eigenvalues and eigenvectors, 218–219
geometry of, 52–54
Gram-Schmidt process, 394–396
Gram-Schmidt projection, 317–319
initial state vector, 141–146
inner product space, 380–386
inverse matrices, 114–123
least squares regression, 340
linear combinations of, 51–52
linear independence and, 68–76
Markov Chain analysis, 141–146
matrix linear transformation, 83–84
norm of, 305
orthogonal sets, 309–311, 389
orthogonal vectors, 306–307
powers of matrix and, 105

projection onto, 314–315
set of all vectors (Rn), 48–49
span of, 57–65
state vector, 142
steady-state vector, 142–144
subspaces, 165
systems of equations, 50–51

Vector spaces, 277–299
basis and dimension, 294–299
complex spaces, 429–434
defined, 278
Euclidean space as, 49
finite-dimensional vector space, 360–362
Fourier approximations, inner product

space, 401–405
infinite dimension vector space, 360–361
isomorphisms, 358–362
linear independence, 288–292
polynomials, 350
projection and inequalities, 384–386
projections onto subspaces, 316–317,

392–393
span of, 286–288, 291–292
subspaces and, 277–284
See also Inner product/inner product

spaces

W
Weighted dot product, 380–381

orthogonality and norms, 382–384
Weighted least squares regression, inner

product/inner product spaces, 399–401
Weights, inner product/inner product spaces,

399–401
Willis Family Bridge, 47

Z
Zero column, matrices, 17–18
Zero function

inner products, 381–382
vector spaces, 281–282
vector subspaces, 284

Zero matrix, 102–103
complex vector spaces, 430–434
diagonal matrix, 105–107

Zero polynomials, inner products, 381
Zero row, matrices, 17–18
Zero subspace, 161
Zero vectors, 50

complex vector spaces, 429–434
defined, 278
dimension of vector spaces, 296–299
eigenvector identification, 221
theorem for, 280–281
vector subspaces, 282–284
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FREQUENTLY USED DEFINITIONS

Here and on the inside of the back cover is a list of def-
initions that are used regularly throughout the book. A
full glossary is given in Appendix A. (See the referenced
sections for more details.)

Augmented matrix A matrix that contains all of the coef-
ficients of a linear system, including the constant terms.
(Sect. 1.2)

Back substitution A method of solution applicable to a
system of linear equations in echelon form. Imple-
mented by substituting known values back into re-
maining equations. (Sect. 1.1)

Basis A set B = {u1, . . . , um} is a basis for a subspace S if
and B spans S and B is linear independent. (Sect. 4.2;
see also Sect. 7.3)

Characteristic equation Let A be an n × n matrix. Then
the characteristic equation is given by det(A − λIn) =
0, where In is the identity matrix. The solutions to
the characteristic equation are the eigenvalues of A.
(Sect. 6.1)

Characteristic polynomial Let A be an n×n matrix. Then
the characteristic polynomial is given by det(A −λIn),
where In is the identity matrix. (Sect. 6.1)

Cofactor Given a matrix A, the cofactor of ai j is equal to

Ci j = (−1)i+ j det(Mi j )

where Mi j is the (n − 1) × (n − 1) matrix that we get
from A after deleting the row and column containing
ai j . Put another way, Ci j is equal to (−1)i+ j times the
minor of ai j . (Sect. 5.1)

Cofactor expansion Let A be the n × n matrix [ai j ] and
let Ci j denote the cofactor of ai j . Then the cofactor
expansions are given by

(a) det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

(Expand across row i)

(b) det(A) = a1 j C1 j + a2 j C2 j + · · · + anj Cnj

(Expand down column j )

(Sect. 5.1)

Column space Let A be an n × m matrix. The column
space of A is the subspace of Rn spanned by the col-
umn vectors of A, and is denoted by col(A). (Sect. 4.3)

Consistent linear system A linear system that has at least
one solution. (Sect. 1.1)

Coordinate vector Suppose that B = {u1, . . . , un} forms
a basis for Rn. If y = y1u1 + · · · + ynun, then

yB =

⎡
⎢⎣

y1

...

yn

⎤
⎥⎦
B

is the coordinate vector of y with respect to B. (Sect.
6.3; see also Sect. 9.3)

Determinant If A = [
a11

]
is a 1 × 1 matrix, then the

determinant of A is given by det(A) = a11.

If

A =
[

a11 a12

a21 a22

]

then the determinant is given by

det(A) = a11a22 − a12a21

For the n × n matrix

A =

⎡
⎢⎣

a11 a12 · · · a1n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎦

the determinant of A is defined recursively by

det(A) = a11C11 + a12C12 + · · · + a1nC1n

where C11, . . . , C1n are the cofactors of a11, . . . , a1n,
respectively. (Sect. 5.1)

Diagonalizable matrix An n × n matrix A is diagonal-
izable if there exist n × n matrices D and P , with D
diagonal and P invertible, such that

A = PDP−1

(Sect. 6.4)

Dot product Suppose

u =

⎡
⎢⎣

u1

...

un

⎤
⎥⎦ and v =

⎡
⎢⎣

v1

...

vn

⎤
⎥⎦
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are both in Rn. Then the dot product of u and v is given
by

u · v = u1v1 + · · · + unvn

The dot product can also be expressed u · v = uT v.
(Sect. 8.1)

Eigenspace Let A be a square matrix with eigenvalue λ.
The subspace of all eigenvectors associated with λ, to-
gether with the zero vector, is the eigenspace of λ.
Each distinct eigenvalue of A has its own associated
eigenspace. (Sect. 6.1)

Eigenvalue Let A be an n × n matrix. Suppose that λ is a
scalar and u �= 0 is a vector satisfying

Au = λu

The scalar λ is called an eigenvalue of A. (Sect. 6.1)

Eigenvector Let A be an n × n matrix. Suppose that λ is
a scalar and u �= 0 is a vector satisfying

Au = λu

Then u is called an eigenvector of A. (Sect. 6.1)

Elementary row operations Three row operations that
can be performed on an augmented matrix that do
not change the set of solutions to the corresponding
linear system. They are interchanging two rows; mul-
tiplying a row by a nonzero constant (1), (2), and (3)
adding a multiple of one row to another. (Sect. 1.2)

Equivalent matrices Two matrices are equivalent if one
can be transformed into the other through a sequence
of elementary row operations. If the matrices in ques-
tion are augmented matrices, then the corresponding
linear systems have the same set of solutions. (Sect. 1.2)

Equivalent systems Two linear systems are equivalent if
they have the same set of solutions. (Sect. 1.2)

Free variable Any variable in a linear system in echelon
form that is not a leading variable. (Sect. 1.1)

Gauss–Jordan elimination An algorithm that extends
Gaussian elimination, applying row operations in a
manner that will transform a matrix to reduced eche-
lon form. (Sect. 1.2)

Gaussian elimination An algorithm for applying row op-
erations in a manner that will transform a matrix to
echelon form. (Sect. 1.2)

General solution A description of the set of all solutions
to a linear equation or linear system. (Sect. 1.1)

Homogeneous system A linear system is homogeneous if
it has the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = 0
a21x1 + a22x2 + a23x3 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = 0

Such systems always have the trivial solution, so
are consistent. This system can also be expressed by
Ax = 0. (Sect. 1.2; see also Sect. 2.3)

Identity matrix The n × n identity matrix is given by

In = [
e1 e2 · · · em

] =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

(Sect. 3.2)

Inconsistent linear system A linear system that has no so-
lutions. (Sect. 1.1)

Inner product (real) Let u, v, and w be elements of a vec-
tor space V , and let c be a scalar. An inner product on
V is a function that takes two vectors in V as input and
produces a scalar as output. An inner product func-
tion is denoted by 〈u, v〉, and satisfies the following
conditions:

(a) 〈u, v〉 = 〈v, u〉
(b) 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉
(c) 〈cu, v〉 = 〈u, cv〉 = c〈u, v〉
(d) 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 only when u = 0

(Sect. 10.1)

Inner product space A vector space V with an inner prod-
uct defined on it. (Sect. 10.1)

Invertible matrix An n × n matrix A is invertible if there
exists an n×n matrix B such that AB = In. The matrix
B is called the inverse of A and is denoted A−1. (Sect.
3.3)

Isomorphic vector spaces V and W are isomorphic vec-
tor spaces if there exists a isomorphism T : V → W.
(Sect. 9.2)

(Continues on the inside of the back cover.)
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(Continued from the inside of the front cover.)

Isomorphism A linear transformation T : V → W is an
isomorphism if T is both one-to-one and onto. If such
an isomorphism exists, then we say that V and W are
isomorphic vector spaces. (Sect. 9.2)

Kernel Given a linear transformation T , the set of all vec-
tors v such that T(v) = 0 is the kernel of T (denoted
ker(T)) and is a subspace of the domain of T . (Sect.
4.1; see also Sect. 9.1)

Linear combination If u1, u2, . . . , um are vectors and
c1, c2, . . . , cm are scalars, then

c1u1 + c2u2 + · · · + cmum

is a linear combination of the vectors. Note that it is
possible for scalars to be negative or equal to zero. (Sect.
2.1)

Linear independence Let {u1, u2, . . . , um} be a set of vec-
tors. If the only solution to the vector equation

x1u1 + x2u2 + · · · + xmum = 0

is the trivial solution x1 = x2 = · · · = xm = 0, then
the set is linearly independent. (Sect. 2.3; see also Sect.
7.2)

Linear transformation A function T : Rm → Rn is a lin-
ear transformation if for all vectors u and v in Rm and
all scalars r we have

(a) T(u + v) = T(u) + T(v)

(b) T(r u) = r T(u)

(Sect. 3.1; see also Sect. 9.1)

LU factorization If A = LU , where U is upper triangular
and L is lower triangular with 1’s on the diagonal, then
the product is called an LU factorization of A. (Sect.
3.4)

Matrix A rectangular table of numbers, upon which var-
ious algebraic operations are defined and can be per-
formed. The plural of matrix is matrices. (Sect. 1.2)

Matrix-vector multiplication Let a1, a2, . . . , am be vectors
in Rn. If

A = [
a1 a2 · · · am

]
and x =

⎡
⎢⎢⎢⎣

x1

x2

...

xm

⎤
⎥⎥⎥⎦

then Ax = x1a1 + x2a2 + · · · + xmam. (Sect. 2.2)

Nonsingular matrix A square matrix that has an inverse.
(Sect. 3.3)

Norm of a vector Let x be a vector in Rn. Then the norm
(or length) of x is given by

‖x‖ = √
x · x

If x is in an inner product space, then the norm is given
by

‖x‖ =
√

〈x, x〉

(Sect. 8.1; see also Sect. 10.1)

Null space If A is an n×m matrix, then the set of solutions
to Ax = 0 is called the null space of A and is denoted
by null(A). It is a subspace of Rm. (Sect. 4.1)

Nullity If A is an n × m matrix, then the nullity of A
(denoted nullity(A)) is the dimension of null(A).
(Sect. 4.2)

One-to-one A linear transformation T : Rm → Rn is
one-to-one if for every vector w in Rn there exists at
most one vector u in Rm such that T(u) = w. Alternate
definition: A linear transformation T is one-to-one if
T(u) = T(v) implies that u = v. (Sect. 3.1; see also
Sect. 9.1)

Onto A linear transformation T : Rm → Rn is onto if
for every vector w in Rn there exists at least one vec-
tor u in Rm such that T(u) = w. (Sect. 3.1; see also
Sect. 9.1)

Orthogonal basis A basis is orthogonal if it is an orthog-
onal set. (Sect. 8.1; see also Sect. 10.2)

Orthogonal complement Let S be a subspace. A vector u
is orthogonal to S if u is orthogonal to every vector s in
S. The set of all such vectors u is called the orthogonal
complement of S and is denoted by S⊥. (Sect. 8.1; see
also Sect. 10.1)

Orthogonal set A set of vectors is orthogonal if each pair
of distinct vectors is orthogonal to each other. (Sect.
8.1; see also Sect. 10.2)

Orthogonal vectors Vectors u and v in Rn are orthogonal
if u · v = 0. If u and v are in an inner product space,
then they are orthogonal if 〈u, v〉 = 0. (Sect. 8.1; see
also Sect. 10.1)



Holt-4100161 la˙endpaper November 14, 2012 17:57 5

Pivot position For a matrix in echelon form, the pivot
positions are the locations of the leading terms.
(Sect. 1.2)

Projection onto vectors Let u and v be vectors in Rn with
v nonzero. Then the projection of u onto v is given by

projvu = v · u

‖v‖2
v

If u and v are in an inner product space, then the pro-
jection of u onto v is given by

projvu = 〈v, u〉
‖v‖2

v

(Sect. 8.2; see also Sect. 10.1)

Rank of a matrix The dimension of the row space of a
matrix A, or the dimension of the column space of A,
which is the same. (Sect. 4.3)

Rank–Nullity theorem Given an n × m matrix A, the
Rank–Nullity theorem states that

rank(A) + nullity(A) = m

(Sect. 4.3)

Row space Let A be an n × m matrix. The row space of A
is the subspace of Rm spanned by the row vectors of A
and is denoted by row(A). (Sect. 4.3)

Similar matrices A square matrix A is similar to ma-
trix B if there exists an invertible matrix S such that
A = S−1 B S. The change from B to A is called a simi-
larity transformation. (Sect. 9.4)

Singular matrix A square matrix that does not have an
inverse. (Sect. 3.3)

Span Let {u1, . . . , um} be a set of vectors. The span of this
set is denoted span{u1, u2, . . . , um} and is defined to
be the set of all linear combinations

x1u1 + x2u2 + · · · + xmum

where x1, x2, . . . , xm can be any real numbers. (Sect.
2.2; see also Sect. 7.2)

Subspace A subset S of vectors is a subspace if S satisfies
the following three conditions: (1) S contains 0, the
zero vector. (2) if u and v are in S, then u + v is also in
S. (3) if r is a real number and u is in S, then r u is also
in S. (Sect. 4.1; see also Sect. 7.1)

Symmetric matrix A matrix A is symmetric if AT = A.
(Sect. 3.2)

System of linear equations A collection of linear equa-
tions of the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2

a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
...

...
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(Sect. 1.1)

Transpose The transpose of a matrix A is denoted by AT

and results from interchanging the rows and columns
of A. (Sect. 3.2)

Trivial subspaces S = {0} and S = Rn are the trivial sub-
spaces of Rn. For a vector space V , the trivial subspaces
are S = {0} and S = V . (Sect. 4.1; see also Sect. 7.1)

Vector In Euclidean space, an ordered list of real num-
bers usually presented in a vertical column. In general,
a vector can be any number of different mathematical
objects, including matrices and continuous functions.
(Sect. 2.1; see also Sect. 7.1)

Vector space A vector space consists of a nonempty set
V of vectors together with operations of addition and
scalar multiplication on the vectors that satisfy each of
the following:

(1) If v1 and v2 are in V , then so is v1 + v2. Hence V
is closed under addition.

(2) If c is a real scalar and v is in V , then so is cv. Hence
V is closed under scalar multiplication.

(3) There exists a zero vector 0 in V such that 0+v = v
for all v in V .

(4) For each v in V there exists an additive inverse (or
opposite) vector −v in V such that v + (−v) = 0
for all v in V .

(5) For all v1, v2, and v3 in V and real scalars c1 and
c2, we have the following:
(a) v1 + v2 = v2 + v1

(b) (v1 + v2) + v3 = v1 + (v2 + v3)
(c) c1(v1 + v2) = c1v1 + c1v2

(d) (c1 + c2)v1 = c1v1 + c2v1

(e) (c1c2)v1 = c1(c2v1)
(f) 1 · v1 = v1

(Sect. 7.1)
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