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Preface

Scheduling theory, born in the middle of the 1950s, has become an established area
of operations research, with numerous widely quoted books and influential surveys
that cover various stages of development in scheduling or addressing a particular
range of its models. Journals are published, and regular conferences are held with
scheduling as the main topic. Hundreds of researchers around the world work on
further advancing this branch of knowledge, and thousands of students of all levels
study its aspects either as a full course or as a part of more general courses related to
operations research, operations management, industrial engineering, and logistics.

As with most areas of operations research, scheduling is motivated by practical
needs and its achievements are fed back into various areas of industry, service,
transport, etc. Whatever the motivation or application, scheduling problems are
normally formulated in terms of processing jobs on machines, with a purpose of
optimizing a certain objective function. In classical deterministic machine
scheduling, it is assumed that for a given job, its processing times on the machines
are known and remain unchanged during the planning horizon. Although the
classical scheduling models form a solid theoretical background, due to their too
ideal nature, their immediate practical applications are very rare. It is not by chance
that a major current trend of scheduling calls for studies of more realistic models
that combine scheduling decisions with logistics decisions such as batching,
transportation, and maintenance.

The models of classical scheduling are too static and do not respond to possible
changes of processing conditions. In reality, actual processing times of a job may be
affected by the fact that either these conditions get worse, or they may improve, or
undergo some changes which affect the processing time in a less predictable, not
necessarily monotone way. One aspect addressed in this book is related to the study
of such time-changing effects.

The studies of scheduling problems with time-changing effects were originated
by O.I. Melnikov and Y.M. Shafransky (both from Minsk, Belarus) in the late
1970s. By the mid-1990s, such studies had become a noticeable part of scheduling
research, and currently, the total number of publications exceeds several thousands.
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There has been a need for summarizing the obtained results, identifying most
influential ones and presenting them from a unified position. Partly, such a purpose
was achieved by the book “Time-Dependent Scheduling” written by S.
Gawiejnowicz (Poznan, Poland) and published by Springer in 2008. The book,
however, gives a systematic treatment of only one particular type of time-changing
effect, under which the actual processing times of jobs depend on their start times in
a schedule. There are other effects, still not covered in the monographic scheduling
literature, including positional effects (the actual processing times of jobs are
affected by their position in a sequence on a machine), cumulative effects (times are
affected by the total value of some parameter of previously scheduled jobs), or
combined effects, where a combination of the “pure” effects mentioned above are
applied together.

Another reason that has motivated us to undertake the task of writing this book is
a need for studying the possibility of including certain activities in a schedule that
alter the processing conditions. As a simple example, imagine process jobs using a
cutting tool which gradually loses its sharpness, so it takes longer to process a later
scheduled job. The decision-maker may decide to stop and sharpen the tool or
replace it by a new tool, and such a maintenance activity may appear to be bene-
ficial for the overall performance. We hope that this example, simple as it is,
demonstrates the need for studying the scheduling problems with time-changing
effects and rate-modifying activities; the reader will find these words in the title of
our book.

Our personal interest in the models that we study in this book does not have a
long history. Vitaly Strusevich, among his other scheduling-related studies, was
involved in several papers on scheduling with changing times, jointly written with
the late V.S. Gordon (Minsk, Belarus), and C.N. Potts and J.D. Whitehead (both
from Southampton, UK). Kabir Rustogi, who pursued his PhD at the University of
Greenwich, London, UK, wrote his PhD thesis on this topic, with Vitaly Strusevich
as the first supervisor. The thesis was awarded the Best PhD Prize of the
Operational Research Society (2013). The content of that thesis along with several
joint papers, some additionally co authored by H. Kellerer (Graz, Austria), has
determined the content of this book to a very large extent.

It would be impossible to include into a one-volume book all relevant major
results, known and new, for all scheduling systems and all objectives. We have,
therefore, decided to be selective and to limit our consideration only to those
models and solution methods that are sufficiently representative to be of interest to
the reader and, at the same time, fall within the scope of our own research interests
to reflect our own contributions to the area.

In this book, we focus on two-machine environments. Most of the presented
results address scheduling problems on a single machine; however, we also con-
sider problems on parallel machines (identical, uniform, or unrelated). Scheduling
systems that involve multi stage processing, such as the flow shop, appear to be
outside the scope of this book.

We also have decided to limit our consideration to two objective functions: the
maximum completion time, known as the makespan, and the total completion time,
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in both unweighted and weighted forms. We do not discuss scheduling problems
with the objective functions related to due dates, such as the maximum lateness or
the total tardiness. We also do not include the models that involve assignments of
due dates or due windows to jobs.

From a methodological point of view, our main goal has been to systematically
present the results related to the computational complexity and approximability
of the chosen range of problems. Mainly, we explore how the classical and simple
scheduling models can be extended to incorporate more features related to practical
needs but still remain polynomially solvable by an appropriate adaptation of the
classical solution methods. For those problems that are NP-hard, so that the exis-
tence of a polynomial-time solution algorithm is unlikely, we present approxima-
tion algorithms and schemes with provable running times and accuracy. Exact
methods of guided enumeration, such as branch-and-bound techniques, and
heuristic procedures, e.g., local search or evolutionary algorithms, are left beyond
the content of this book.

The material of this book contains 20 chapters split into three parts. We have
tried to make each chapter to be a self-sufficient document, complete with its
individual bibliography. Chapters 1, 6, and 12 are introductory chapters to each
part; they are of a bibliographic nature, so that unlike the other chapters, the
corresponding literature references are placed within the body of each of these
chapters. All other chapters are accompanied with a section entitled “Bibliographic
Notes,” which is essentially a review that points out the sources of the material in
the main body of a chapter and provides references to further reading on the
relevant topic.

Part I introduces all required concepts of the classical scheduling theory and
delivers reviews of methods and techniques widely used in the remaining part of
this book. In all scheduling problems of this part, no time-changing effects are
assumed; i.e., the processing times remain constant. Chapter 1 describes the main
notions of scheduling theory, introduces notation, and gives a brief informal
introduction to issues of computational complexity and approximability. Chapter 2
gives a description of the pairwise interchange argument, presents a matching
algorithm for minimizing a linear form over permutations, introduces the concept of
a 1-priority rule, and shows how the interchange techniques can be used to solve
various classical scheduling problems. Chapter 3 reviews the techniques of solving
problems under precedence constraints, in particular of minimizing a
priority-generating function under series-parallel precedence constraints. Many
scheduling problems reduce to solving problems of Boolean linear and nonlinear
programming, and Chap. 4 gives an overview of the relevant issues. It includes
algorithms for the linear assignment problem with square and rectangular cost
matrices and approximation schemes for the linear knapsack problem and problems
related to minimizing a non-separable quadratic function known as the half-product.
Chapter 5 discusses the issues of convexity and V-shapeness of finite sequences, as
well as presents useful facts on combinatorial counting. Thus, Part I produces a
toolkit to handle enhanced scheduling models in the forthcoming parts of the book.
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Part II is devoted to scheduling problems with time-changing effects. A review
of all studied effects, including rationales and illustrative examples, is given in
Chap. 6. The remaining chapters of Part II address single machine problems under
an effect of a particular type, except the last chapter of the part, Chap. 11, which
handles models with parallel machines. Positional effects are studied in Chap. 7.
Start-time-dependent effects, both pure and combined with a positional effect, are
analyzed in Chap. 8 (for an additive form of the effect) and in Chap. 9 (for a
multiplicative form of the effect). Chapter 10 addresses single machine problems
with both pure and combined cumulative effects. Most of the results on single
machine models under time-changing effects are polynomial-time algorithms based
on adaptation of the matching approach, priority rules, and reductions to the linear
assignment problem. The respective problems with series-parallel precedence
constraints are also analyzed, where appropriate. For the parallel machine models in
Chap. 11, the issues of complexity and approximability are additionally considered.

The most advanced scheduling models are studied in Part III. In the most general
case, we not only allow time-changing effects to affect the actual durations of the
jobs, but also present the decision-maker with a range of rate-modifying activities,
including but not limited to maintenance, that alter the processing conditions.
A review of the relevant issues, including a generic procedure for solving most
general single machine problems of the described range, is given in Chap. 12.
Similar to Part II, the remaining chapters of Part III deal with a single machine
environment, except the last chapter of the part, Chap. 20, which addresses the
parallel machine environment. We start with simple models with compulsory
maintenance activities to be introduced in a schedule that do not alter the processing
conditions and either are placed in fixed time intervals (in Chap. 14) or start no later
than a given deadline (in Chap. 13). For problems considered in these two chapters,
along with polynomial-time algorithms, we discuss the issues of complexity and
approximability. Scheduling problems with no time-changing effects but with
rate-modifying periods (RMPs) to be included in a schedule are studied in Chap. 15.
Fully enhanced models that allow both RMP introduction and time-changing effects
are addressed in Chap. 16 (for positional effects), in Chap. 17 (for
start-time-dependent effects), and in Chap. 18 (for combined effects). The main
focus of these four chapters is on the adaptation of the generic procedure described in
Chap. 12 for the respective problems. Single machine problems that combine a
cumulative effect and a maintenance activity are considered in Chap. 19 with a
purpose of developing fully polynomial approximation schemes by adapting the
schemes known for relevant Boolean programming problems. For the parallel
machine models, in Chap. 20, we present a generic procedure for solving enhanced
problems and its adaptations for particular versions of the main model.

We have tried to provide detailed proofs to most of the statements presented,
either by adapting the original proofs or by developing new proofs. The reader
familiar with the basics of operations research should be able to follow the book
without consulting external sources. We perceive that most of the readers will be
research students of master or doctoral levels and researchers in operations research,
industrial engineering, and logistics. We hope that the practitioners will find the
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collected results useful, especially on enhanced models that attempt to address the
practical needs.

We have benefitted through stimulating discussions with many colleagues who
have been ready to encourage us and to share their knowledge and expertise. Apart
from our co authors mentioned above, we are grateful to J. Blazewicz (Poznan,
Poland), B. Chen and V.I. Deineko (both from Warwick, UK), A.V. Kononov and
S.V. Sevastianov (both from Novosibirsk, Russia), M.Y. Kovalyov and Y.M.
Shafransky (Minsk, Belarus), D. Shabtay (Be’er Sheva, Israel), N.V. Shakhlevich
(Leeds, UK), A. Shioura (Tokyo, Japan), and A.J. Soper (Greenwich, UK).

We are especially grateful to G. Mosheiov (Jerusalem, Israel) and S.
Gawiejnowicz (Poznan, Poland), the most prominent researchers who have shaped
the area of scheduling with changing times. It would be fair to say that their work
has motivated us to turn to this area of scheduling. Vitaly Strusevich visited them
both in 2015 during his sabbatical leave and enjoyed their hospitality, most
favorable work conditions, and fruitful exchanges of ideas. It has been a privilege to
join Professors Gawiejnowicz and Mosheiov in setting up the program of
International Workshop on Dynamic Scheduling Problems, a satellite event of
EURO 2016 in Poznan. Initiated and organized by S. Gawiejnowicz, the workshop
has been the first international conference with a clear focus on scheduling prob-
lems with variable parameters and hopefully will open up a series of similar
meetings.

We gratefully acknowledge support from the Department of Mathematical
Sciences of the University of Greenwich, London, UK, and appreciation of our
work by our colleagues there.

We wish to extend our gratitude to our families whose love, attention, and care
we have always felt and enjoyed. For both of us, their understanding and help,
patience, and reassurance have been invaluable.

London, UK Vitaly A. Strusevich
New Delhi, India Kabir Rustogi
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Chapter 1
Models and Concepts of Classical Scheduling

In a typical scheduling system, a number of tasks must be performed, given certain
resources for that purpose. It is required to allocate resources to tasks during suitable
time slots in order to achieve a required performance. Scheduling problems arise in
virtually all areas of human activity:

• Manufacturing/production: Components of products are to be made (tasks) on
machine tools, possibly assisted by human operators (resources);

• Computing: Computational tasks are to be assigned to computers/processors
(resources);

• Transport: In an airport, landings and takeoffs (tasks) compete for a runway
(resource);

• Construction: Stages of a construction project (tasks) require heavy machinery
(resource) to be hired.

• Time-tabling: In an educational institution, classes (tasks) must be taught by
teachers (resources) in classrooms (another type of resources) during particular
time periods.

This list can be continued. Most of the problems that arise in classical scheduling
have common featureswhich allow formulating and handling these problemswithout
a reference to a particular application that has motivated the problem. Traditionally,
in classical scheduling, the problems are formulated in terms of jobs to be processed
on machines.

In this chapter,we provide a general background of the classical scheduling theory.
We define terminology and notation that is used throughout the book and introduce
some basic scheduling models that are related to this study. We briefly discuss the
classification of the models, as well as the issues of the computational complexity of
combinatorial optimization problems, including the concepts of exact and approxi-
mation algorithms, and of their running time and performance.

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
Research & Management Science 243, DOI 10.1007/978-3-319-39574-6_1
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4 1 Models and Concepts of Classical Scheduling

The readers who want to access a wider range of scheduling models are advised
to use two very successful books by Brucker (2007) and Pinedo (2016), and each of
these books has held five editions in recent years. Among other books that address
classical scheduling models are Conway et al. (1967), Tanaev et al. (1984, 1987),
Leung (2004), and Baker and Trietsch (2009). Scheduling problems that occur in
various application areas are addressed in Blazewicz et al. (2001), Pinedo (2005),
and Brucker and Knust (2012). Additional aspects of scheduling theory can be found
in survey papers byGraham et al. (1979), Chen et al. (1998), and Potts and Strusevich
(2009).

1.1 Classical Scheduling Models

Typical models of classical machine scheduling can be described in the following
setting. The jobs of set N = {1, 2, . . . , n} have to be processed on m ≥ 1 machines
M1, M2, . . . , Mm . If a job j ∈ N is assigned to machine Mi , 1 ≤ i ≤ m, then the
processing time of job j is equal to pi j , where we assume that all pi j values are
non-negative integers.

A schedule specifies for each machine Mi and each job j one or more time
intervals during which job j is processed on machine Mi . The actual representation
of a schedule may vary for different models. A useful visual representation of a
schedule is a Gantt chart.

The main assumptions of classical machine scheduling that are adopted in all
models discussed in this book are as follows:

• Each machine processes no more than one job at a time.
• No job is assigned to more than one machine a time.

A feasible schedule must satisfy the two assumptions stated above and possibly
additional conditions laid out by a particular problem type. Typically, a scheduling
problem is specified by three parameters:

• machine environment,
• job characteristics,
• an optimality criterion.

In the forthcoming sections, we consider these parameters in detail.

1.1.1 Machine Environment

A machine environment is defined by the configuration in which the machines are
available. Machine configurations can be broadly divided in to two classes: single-
stage systems and multi stage systems.
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In a single-stage system, each job requires exactly one operation. Such systems
involve either a single machine or m machines operating in parallel. In the case of
parallel machines, each machine has the same function. Traditionally, three types of
parallel machines are distinguished:

• Identical parallel machines: Each processing time is independent of the machine
performing a job;

• Uniform parallel machines: The machines operate at different speeds;
• Unrelated parallel machines: The processing time of a job depends on themachine
assignment.

The processing time notation pi j can be simplified for some of the single-stage
systems, other than those with unrelated machines. The subscript i is omitted if the
processing time of a job j is independent of the machine assignment. Thus, we write

• pi j = p j either for a single machine or for identical parallel machines;
• pi j = p j/si for uniform parallel machines, where si denotes the speed of machine

Mi .

In the main body of this book, we focus on single-stage systems only. However,
for completeness, below we give a brief description of multi stage systems as well.

For a multi stage system, the processing of a job consists of several stages, i.e.,
a job consists of several operations. The three main types of classical multi stage
systems are characterized by the processing routes of the jobs, i.e., by sequences
according to which the operations of a job must or may be performed:

• Flow shop: All jobs have the same route given by M1, M2, . . . , Mm;
• Open shop: Each job has to be processed on every machine, but the processing
routes are not given in advance and finding them is part of decision making;

• Job shop: The most general classical system, where each job has a fixed route that
may be different from the routes of other jobs; some machines may be missing in
the route, and some machines may occur more than once.

There are also generalizations and combinations of the scheduling systems intro-
duced above, e.g., the systems with some jobs having fixed routes (like in the job
shop or flow shop) and some jobs with the routes that are not fixed (like in the open
shop). There are also multiprocessor or hybrid variants of multi stage systems, where
each stage comprises of several parallel machines.

1.1.2 Job Characteristics

In addition to its processing time, a job j ∈ N may be characterized by the following
parameters:

• Weight: The weight w j of a job j ∈ N reflects the relative importance of the job;
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• Release date: The release date r j specifies the time at which a job j ∈ N becomes
available for processing;

• Due date: The due date d j specifies the date at which a job j ∈ N is expected
to complete; completion of a job after its due date is allowed, but a penalty is
incurred;

• Deadline: The deadline d j specifies the time by which a job j ∈ N must be
completed; unlike the due date, a deadline is a hard constraint.

Without loss of generality, we assume that all these values are non-negative
integers.

Due to various practical restrictions, some scheduling models allow precedence
constraints to be defined over the set of jobs. If job j has precedence over job k, then
k cannot start its processing until j is completed. Precedence constraints are usually
specified by a directed acyclic precedence graph G with vertices 1, . . . , n. There is
a directed path from vertex j to vertex k if and only if job j has precedence over
job k.

Some scheduling models allow preemption: The processing of any operation may
be interrupted and resumed at a later time, either on the same or on a different
machine.

For a scheduling model, we denote a feasible schedule by S. Schedule S must
satisfy all the assumptions and the processing requirements of the given model. For
a schedule S, the completion time of job j ∈ N is denoted by C j (S).

1.1.3 Optimality Criteria

Normally, the purpose of scheduling is to find a feasible schedule that guarantees
the best quality with respect to an accepted criterion. Such a criterion is usually
represented as a function that depends on the completion times of the jobs, and to
solve the problem, it is required to minimize that objective function �(S). In most
classical schedulingmodels, the objective function is regular, i.e., is a non-decreasing
function of the completion times. For a regular function, it is impossible to achieve
a smaller value by delaying the completion of a job. For an objective function �, a
schedule S∗ is called optimal if the inequality �(S∗) ≤ �(S) holds for any feasible
schedule S.

In the most general setting, a job j ∈ N can be associated with a function f j (S) =
f j (C j (S)) which defines the cost of completing job j at time C j (S). Popular forms
of function f j , apart from f j (S) = C j (S), are the following:

• Lateness L j (S) = C j (S) − d j , which is the deviation of the completion time of a
job from a due date; this quantity can be negative, zero of positive;

• Tardiness Tj (S) = max{C j (S) − d j , 0}, which shows by how much time a job is
completed after its due date; this quantity is always non-negative;

• Unit penalty U j (S) = 1 if C j (S) > d j , and Uj (S) = 0, otherwise.

If there is no ambiguity regarding the schedule under consideration, we can write
f j ,C j , L j , Tj , Uj , and f j .
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Table 1.1 Standard scheduling objective functions

Minmax/Minsum Cost Notation Name

� = max
{
f j | j ∈ N

}
f j fmax Maximum cost

f j = C j Cmax Makespan

f j = L j Lmax Maximum lateness

� = ∑
j∈N f j f j

∑
f j Total cost

f j = C j
∑

C j Total completion time

f j = C j
∑

w jC j Total weighted completion time

f j = Tj
∑

Tj Total tardiness

f j = w j Tj
∑

w j Tj Total weighted tardiness

f j = Uj
∑

Uj The number of late jobs

f j = w jU j
∑

w jU j The weighted number of late
jobs

Table1.1 lists typical regular objective functions that are studied in classical
machine scheduling. The functions are classified as minmax, i.e., to minimize the
maximum cost, or minsum, i.e., to minimize the total cost (see the first column).
The third column presents notation for the objective functions that is used in the
three-field classification scheme described below. Column 4 shows commonly
accepted names for these functions. Notice that alternative names are also possi-
ble, e.g., in this book along with the name “total weighted completion time,” we
often write “total weighted flow time” and “the sum of the weighted completion
times.”

We now present meaningful interpretations of some of the listed functions. For
simplicity, assume that the underlying scheduling model is a single machine model
in which the jobs are available at time zero, i.e., they do not have individual release
dates.

Suppose that to complete project j at time C j , the budget of f j
(
C j

)
must be

available (measured in appropriate monetary units). The maximum cost fmax gives
us an optimal upper bound on the budget of an individual project, i.e., each project
should be given no more than fmax monetary units, and this value is as small as
possible. Similarly, total cost

∑
f j gives the smallest cost for conducting the whole

range of projects.
The makespan Cmax is the time by which all jobs are completed. This is a very

popular qualitymeasure, which is studied for various schedulingmodels in this book.
The maximum lateness Lmax can be interpreted as follows: If all due dates are

simultaneously changed from d j to d ′
j = d j + Lmax, then there exists a schedule with

no late jobs with respect to the modified due dates d ′
j .

The total completion time
∑

C j is another function actively studied in this book.
The completion timeC j can be understood as the time that a job spends in the system.
If the value

∑
C j is divided by the total number of jobs, the result corresponds to the

average flow time, which shows how long on average a job stays in the system. This
is an important characteristic of a service system, also used extensively in queueing
theory.
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If a manufacturer pays a penalty w j for each order j that is delivered later than
an established due date, then the weighted number of late jobs

∑
w jU j gives the

total penalty to be paid. If w j is the penalty for every day that order j is late, then
the total weighted tardiness

∑
w j Tj corresponds to the overall penalty.

Other performance measures are also possible. For example, in the main body
of the book, we look at the functions

∑
Cz

j and a linear combination of the latter
function and the makespan Cmax.

1.2 Three-Field Classification Scheme

Looking at the developments in the classical scheduling theory from a historical
prospective, the main types of scheduling models were identified in the period of
1950–1970, with the arrival of the last classical machine environment, the open
shop, in 1976 (see Gonzalez and Sahni (1976)). Still, by the middle of the 1970s,
the area of scheduling lacked a unified terminology and generally accepted notation.
See a review on the history of scheduling by Potts and Strusevich (2009) for a wider
discussion of these issues.

The face of scheduling was dramatically changed by the survey by Graham et al.
(1979), which, arguably, is the most influential paper in the area. Among many
other achievements of that seminal paper is a three-field classification scheme, which
associates a scheduling problem to a three-field descriptor α|β|γ that captures the
most important features of the problem: α represents the machine environment, β
defines the job characteristics, and γ is the optimality criterion.

Below, we explain the use of the three-field classification scheme. Let ◦ denote
the empty symbol.

The first field takes the form α = α1α2, where α1 and α2 are interpreted as
follows:

• α1 ∈ {◦, P, Q, R, F, O, J }:
– α1 = ◦: a single machine;
– α1 = P: identical parallel machines;
– α1 = Q: uniform parallel machines;
– α1 = R: unrelated parallel machines;
– α1 = O: an open shop;
– α1 = F : a flow shop;
– α1 = J : a job shop;

• α2 = m: There is a fixed numberm of machines; for a multi machine environment,
position α2 can be omitted, and in this case, the number of machines m is seen as
variable.

Among characteristics that may appear in the second field β are the following:

• β1 ∈ {◦, r j }:
– β1 = ◦: No release dates are specified;
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– β1 = r j : Jobs have release dates;

• β2 ∈ {◦, pmtn}:
– β2 = ◦: No preemption is allowed;
– β2 = pmtn: Operations of jobs may be preempted;

• β3 ∈ {◦, prec}:
– β3 = ◦: No precedence constraints are specified;
– β3 = prec: Precedence constraints over the set of jobs are defined.

In particular, if field β is empty, then the jobs are available for processing from
time zero, they are processed with no preemption, and no precedence constraints are
imposed.

The third field defines the optimality criterion, which typically involves the min-
imization of a function listed in Table1.1.

To illustrate the use of the three-field descriptors, below we present several exam-
ples:

• 1|r j , prec| ∑ w jC j is the problemof scheduling jobswith release dates and prece-
dence constraints on a single machine to minimize the total weighted completion
time;

• R|pmtn|Lmax is the problem of preemptively scheduling jobs on an arbitrary
number of unrelated parallel machines to minimize the maximum lateness;

• Q3|| ∑w j Tj is the problem of scheduling jobs on three uniform machines to
minimize the total weighted tardiness.

Notice that the three-field classification scheme is an open structure, so that a
certain feature of the problem under consideration can be captured by adding the
required information to the relevant field using an appropriate encoding. Examples
of such extended problem descriptors are widely used in this book.

1.3 Computational Complexity

In this section, we discuss, in a rather informal manner, the issues of computational
complexity of problems of combinatorial optimization. The reader is referred to
the classical texts by Garey and Johnson (1979) and Papadimitriou (1994) for a
comprehensive exposition of computational complexity and related topics.

1.3.1 Time Complexity of Algorithms

As a mathematical discipline, scheduling is a part of combinatorial optimization. A
typical feature of a combinatorial optimization problem is that the set of feasible
solutions (permutations of a finite set, 0–1 vectors or matrices, subgraphs of a graph,
etc.) is finite. Given a problem of combinatorial optimization, it is often quite easy to
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decide whether the problem admits a feasible solution, and then, an optimal solution
can be found (at least, in theory) by checking all feasible solutions and taking the
best. However, for scheduling problems of modest dimensions (e.g., with dozens
of jobs), full enumeration of all feasible solutions is impossible within reasonable
time, even if performed on the fastest computers. Thus, not every method of solving
a problem should be seen as suitable, and the focus of research in combinatorial
optimization, including scheduling, has shifted toward a search for methods that
would deliver a solution fast. With the arrival of the seminal paper by Edmonds
(1965) on the matching problem, it became clear what should be called a fast, or, put
simply, a good solution algorithm. Edmonds (1965) argues that a “good” algorithm
is that whose running time depends polynomially on the length of the input (or
size) of the problem. A typical algorithm is a sequence of instructions such that
each instruction is followed by exactly one other instruction. Without going into
technicalities, the running time (also known as time complexity) of an algorithm is
determined as the number of elementary arithmetic and logical operations, such as
addition, multiplication, checking equality, and passing control to another instruction
to be performed in order to achieve the required output.

Since a computer uses the binary representation of the numbers, the length L of
the input of an instance of a problem is essentially bounded by the number of input
parameters times the length of the binary code of the longest of them. Recall that
the number of bits needed to encode an integer a is equal to log2 a. For example, the
length of the input for problem R|| ∑w jC j of minimizing the weighted sum of the
completion times on m unrelated machines is bounded by L = nm log

(
max pi j

) +
n log

(
maxw j

)
. An algorithm that requires O(Lk) time, where k is a constant that

does not depend on L , is called polynomial-time (or simply polynomial) algorithm.
Recall that for functions f (x) and g(x) with positive values, f (x) = O(g(x)) holds
if and only if there exist positive M and x0 values, such that f (x) ≤ Mg(x), for
all x ≥ x0. Intuitively, O(Lk) implies that the running time of the corresponding
algorithm grows at a similar rate as the polynomial Lk .

In scheduling, quite often, an optimal schedule is defined by a permutation of
jobs, and such a permutation can be found by sorting the jobs according to certain
assigned priorities. SeeChap.2 for a reviewof the results of this type for themodels of
classical scheduling. Typically, the running time of such an algorithm is determined
by sorting the priorities of n jobs, which can be done in O(n log n) time.

For most of guided enumeration algorithms, e.g., those based on the
branch-and-bound or dynamic programming techniques, it is possible to exhibit an
instance of the problem so that the behavior of the method is not much better than
full enumeration, and the running time grows at least exponentially with the growth
of the size of the problem.

However, some of dynamic programming algorithms exhibit interesting behavior.
Consider, for example, the algorithm presented by Lawler and Moore (1969) for
solving problem 1|| ∑w jU j of minimizing the weighted number of late jobs on
a single machine. This is a dynamic programming algorithm that requires O(nT )

time, where T = min
{
max d j ,

∑
p j

}
. If we assume the binary representation of

the input parameters, the algorithm requires time that is exponential with respect

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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to the size L of the problem, where L = n log
(
max

{
max p j ,maxw j ,max d j

})
.

However, assuming the unary representation under which an integer k is encoded as
k bits (so that, e.g., 5 becomes encoded as 11111), the running time of O(nT ) should
be qualified as polynomial. The algorithms that require polynomial time under the
unary encoding are called pseudopolynomial; they are of some interest too, but less
practical than polynomial algorithms, and their behavior strongly depends on the
size of input parameters.

Until 1979, it has remained an open question whether solving linear program-
ming problems can be achieved in polynomial time. Since linear programming is the
main modeling tool in operations research, finding an answer to this question had
been of great importance. The first polynomial-time algorithm for linear program-
ming is due to Khachiyan (1979); several alternative methods have become known
since. The fact that linear programming problems are polynomially solvable has
given rise to a number of algorithms for finding exact and approximate solutions to
scheduling problems. Notice that although the well-known simplex method is quite
computationally efficient in practice, it remains an open question whether it can be
implemented to run in polynomial time.

1.3.2 Hard and Easy Problems

Although the goal of searching for polynomial-time algorithms was established,
researchers in combinatorial optimization were not able to find such algorithms for
most problems of practical and theoretical interest. In the beginning of the 1970s, the
general feeling of the community, that most of these problems had some “built-in”
difficulty, found a solid justification.

The ground breaking paper by Cook (1971) delivered the message: Some prob-
lems are “easy,” i.e., polynomially solvable and some are indeed “hard” and for
the latter problems, the existence of polynomial-time algorithms is unlikely. It is
beyond the scope of this book to discuss the main statement of Cook (1971), which
was formulated and proved in terms of language recognition on deterministic and
non-deterministic Turing machines. For the operations research community, Cook’s
discovery was interpreted by Karp (1972), where the first entries into the list of
computationally hard problems appeared, including a scheduling problem, namely
1|| ∑w jU j .

Without going into a formal discussion, the findings of the theory of computational
complexity and their implications for scheduling can be stated as below. Our main
purpose is to provide enough information to the readers to enable them to follow the
computational complexity proofs presented in this book.

Most scheduling problems are optimization problems, in which we need to search
for a schedule S∗ that minimizes a certain objective function �(S). An optimization
problem can be associated with a decision problem, where it is required to give a
yes-or-no answer to the question of whether there exists a schedule S0 such that
�(S0) ≤ y holds for a given threshold value y. Clearly, if the decision version of the
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problem can be solved in polynomial time, then its optimization counterpart can be
solved by solving polynomially many decision problems, with the threshold values
generated, e.g., by binary search.

As mentioned in Sect. 1.3.1, standard or deterministic algorithms perform com-
putational instructions one by one, and each instruction is followed by exactly one.
Non-deterministic algorithms, on the other hand, for each instruction make a “good
guess” of the possible instructions to perform next. Decision problems that can be
solved (i.e., receive a yes-or-no answer) in polynomial time by deterministic algo-
rithms form the class P; decision problems that can be solved in polynomial time by
non-deterministic algorithms form the classNP. It is not known whether these two
classes coincide, and the answer to this question is seen as one of the most important
open issues of modern mathematics. In fact, the “P versus NP” problem is one
of the seven problems put forward by the Clay Mathematics Institute in 2000. A
solution to each of these problems will be awarded a so-called Millennium Prize of
one million American dollars. See Cook (2006) for the presentation of the “P versus
NP” problem among other problems nominated for the Millennium Prize.

Although the question regarding classes P and NP is not fully solved, a widely
accepted conjecture assumes that P �= NP . Moreover, numerous problems have
been identified that are no easier than any other problem in NP . These problems are
called NP-hard. If one of the NP-hard problems admits a polynomial-time algorithm
then all of them are polynomially solvable (and P = NP), while if we can prove
that for one of them there is no polynomial-time algorithm, then all of them cannot
be solved in polynomial time (and P �= NP). Informally, if a problem is proved to
be NP-hard, this means that it is no easier than any other problem that is perceived
as hard, and it is assumed that the existence of a polynomial-time algorithm for its
solution is unlikely.

To prove that a (decision) problem P is NP-hard, we need to take an arbitrary
instance of a certain decision problem Q, known to be NP-hard, and transform it
in polynomial time (with respect to the length of input of problem Q) to a specific
instance of problem P such that the established instance of P has a solution (i.e.,
the “yes” answer) if and only if problem Q has a solution. Such a transformation is
called a polynomial reduction of problem Q to problem P . Informally, to solve the
constructed instance of problem P, one has to be able to solve an NP-hard problem
Q, and therefore, problem P is no easier than problem Q, which is known to be hard.

Cook (1971) proves that a certain problem ofmathematical logic (3- Satisfiability)
is NP-hard by definition, i.e., no easier than any problem in NP . Using that fact,
Karp (1972) proves the NP-hardness of about twenty problems related to operations
research.

It was observed that some problems, while NP-hard with respect to the standard
binary encoding, are pseudopolynomially solvable. These problems have received
the name ofNP-hard in the ordinary sense or binary NP-hard. Those problemswhich
remain NP-hard under the unary encoding have been named NP-hard in the strong
sense or unary NP-hard. To prove that a (decision) problem P is NP-hard in the
strong sense, we need to take a problem Q known to be NP-hard in the strong sense
and to show that Q reduces to P in pseudopolynomial time.
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An NP-hard problem (either binary or unary) that itself belongs to class NP is
called NP-complete (either binary or unary, respectively).

Below, we present a list of decision problems that are used in this book in the
NP-hardness proofs.

Partition: Given positive integers e1, . . . , er and the index set R = {1, . . . , r} such
that e(R) = ∑

i∈R ei = 2R, is it possible to partition set R into disjoint subsets R1

and R2 such that e(R1) = ∑
i∈R1

ei = E and e(R2) = ∑
i∈R2

ei = E?

Even-Odd Partition: Given positive integers e1, . . . , e2r and the index set R =
{1, . . . , 2r} such that ei ≤ ei+1 for 1 ≤ i < 2r and e(R) = ∑

i∈R ei = 2R, is
it possible to partition set R into disjoint subsets R1 and R2 such that e(R1) =∑

i∈R1
ei = E and e(R2) = ∑

i∈R2
ei = E and for each i , 1 ≤ i ≤ r , each set R1

and R2 contains exactly one element of the pair {2i − 1, 2i}?
3- Partition:Givenpositive integers e1, e2, ..., e3r and the index set R = {1, . . . , 3r}
such that 1

4 E < ei < 1
2 E , i ∈ R, and e(R) = ∑

i∈R ei = r R, does there exist a
partition of set R into r disjoint subsets Rk such that e(Rk) = ∑

i∈Rk
ei = E for each

k, 1 ≤ k ≤ r?

Subset Product: Given the index set R = {1, . . . , r}, positive integers e1, . . . , er ,
and an integer V , does there exist a subset R′ ⊆ R such that

∏
j∈R′ e j = V ?

Product Partition: Given the index set R = {1, . . . , r} and positive integers
e1, . . . , er such that

∏
i∈R ei = E2, is it possible to partition set R into disjoint

subsets R1 and R2 such that
∏

i∈R1
ei = ∏

i∈R2
ei = E?

The first two problems are NP-hard in the ordinary sense, while 3-Partition is
NP-hard in the strong sense.

Subset Product is claimed in Garey and Johnson (1979) to be NP-hard in the
strong sense; however, the problem is in fact NP-hard in the ordinary sense; the
corresponding corrections are done in Johnson (1981) and Chen (1996). The fact
that Product Partition is NP-hard in the strong sense is established in Ng et al.
(2010).

1.3.3 Implications to Scheduling

Starting from the works by Cook (1971) and Karp (1972), scheduling theory, with its
variety of models, has provided researchers with a wide range of problems that have
been studied with the purpose of establishing a clear borderline between the easy
problems and the hard ones. These complexity studies have stimulated the appearance
of the three-field classification scheme described in Sect. 1.2.

Among scheduling problems proved to be NP-hard by Karp (1972) is problem
P2| |Cmax of minimizing the makespan on two identical parallel machines; its deci-
sion version is essentially equivalent toPartition. The first paper that systematically
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studies the complexity issues of scheduling problems and gives their classification
is due to Lenstra et al. (1977). It demonstrates the issues of polynomial reducibil-
ity between various scheduling models and gives numerous proofs of NP-hardness
based on standard NP-hard problems (Partition, 3-Partition, Clique, Hamil-
tonian Cycle, etc.). The paper introduces an early version of the classification
scheme for scheduling problems, which takes its final form in Graham et al. (1979).

Given a scheduling problem of unknown complexity, it is useful to find its place
among similar problems, for which the complexity status has been found. We can
track how its complexity is affected by various assumptions and additional restric-
tions. For illustration, take problem 1|| ∑w jC j , a single machine problem to min-
imize the sum of the weighted completion times, which can be solved O(n log n)

time due to Smith (1956) (see also Sect. 2.2). If each job j ∈ N has an individual
release date r j , then the resulting problem is NP-hard in the strong sense, even if
all weights w j are equal (see Lenstra et al. (1977)). If preemption is allowed, prob-
lem 1

∣
∣r j , pmtn

∣
∣∑w jC j with equal weights becomes solvable in O(n2) time due

to an algorithm by Schrage (1968). Notice that the latter algorithm only operates
if the job weights are equal, while problem 1

∣
∣r j , pmtn

∣
∣∑w jC j remains NP-hard

in the strong sense. Changing the machine environment by increasing the number
of machines clearly does not simplify the problem. Let us start again with a poly-
nomially solvable problem 1|| ∑w jC j . Considering its enhancement with several
parallel machines, Bruno et al. (1974) show that problem P2|| ∑w jC j with two
identical parallel machines is NP-hard in the ordinary sense, while if the weights are
equal, there is a polynomial-time algorithm to minimize

∑
C j on any number of

unrelated parallel machines (see also Sect. 4.1.2).
Using similar reasoning, a fairly full description of the complexity of the schedul-

ing problems, including the “minimum hard,” “maximum easy,” and open problems,
can be derived. All relevant information can also be found at the Web site http://
www.mathematik.uni-osnabrueck.de/research/OR/class/ initiated by Peter Brucker
and maintained by Sigrid Knust, University of Osnabrück, Germany.

The NP-hardness of an optimization problem suggests that it is not always pos-
sible to find an optimal solution quickly. Thus, a methodological implication can
be derived: If the users want the exact optimum, then they should be prepared that
finding such a solution will require considerable time and often cannot be found for
problems of larger size. Among methods that may deliver an exact optimum are the
branch-and-bound techniques, reductions to mathematical programming problems
(integer or mixed integer), and, if applicable, dynamic programming methods.

On the other hand, quite often, for practical purposes, it is sufficient to search for
a solution that is fairly close to the optimum, which can be found by faster heuristic
or approximation algorithms. The quality of the performance of such algorithms can
be judged based on experimental data, provided the algorithm is applied either to
known benchmark instances or to randomly generated instances. Another approach
is to apply probabilistic analysis and derive conclusions regarding the expected
performance, provided that input parameters are drawn from a certain probability
distribution.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://www.mathematik.uni-osnabrueck.de/research/OR/class/
http://www.mathematik.uni-osnabrueck.de/research/OR/class/
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A popular academic approach to evaluating the behavior of approximation algo-
rithms is the worst-case analysis, which is based on derived bounds on possible errors
produced by an algorithm that holds for all instances of the problem. In this book,
we discuss approximation algorithms from this point of view. The corresponding
definitions and a brief discussion are contained in the next section.

1.3.4 Approximation Algorithms

Below, we present the required definitions for scheduling problems only. Similar
definitions for the algorithms applicable to other problem areas, such as integer
programming, can be found in Chap.4.

Consider a scheduling problem in which the objective is to minimize a cost func-
tion �(S) ≥ 0, where S denotes any feasible schedule for the given problem. As
earlier, let S∗ denote an optimal schedule so that for any feasible schedule S, the
inequality �(S∗) ≤ �(S) holds. Further, assume that there exists a polynomial-time
approximation Algorithm H that generates a feasible schedule SH . Algorithm H is
called a ρ-approximation algorithm if the inequality

�(SH ) ≤ ρ�(S∗) (1.1)

holds for all instances of the problem. We refer to ρ ≥ 1 as a ratio guarantee for
Algorithm H. If ratio ρ is the smallest possible, then it is called the worst-case ratio
bound of Algorithm H. A bound ρ is called tight if there exists an instance of the
problem for which inequality (1.1) holds as equality.

The class of optimization problems for which there exists an approximation algo-
rithm with a ratio guarantee bounded by a constant is often denoted by APX .

A family of ρ-approximation algorithms is called a polynomial-time approxima-
tion scheme (PTAS) if ρ = 1 + ε for any ε > 0, and the running time of every
Algorithm Hε in such a family is polynomial with respect to the length of the prob-
lem input. Furthermore, if the running time of every Algorithm Hε of an PTAS is
bounded by a polynomial in the input size and 1/ε, then the family is called a fully
polynomial-time approximation scheme (FPTAS).

For two problems P and Q of classAPX , a notion of the PTAS reducibility can
be defined, which informally implies that problems P and Q either admit a PTAS
or do not admit a PTAS. Similar to the concept of the NP-hardness, problem P is
called APX-hard if there is a PTAS reduction from any problem inAPX to problem
P . Unless P = NP , an APX-hard problem does not admit a PTAS.

A good review on approximability issues of scheduling problems is contained
in Chen et al. (1998). The existence of PTAS for scheduling problems is discussed
in Hoogeveen et al. (2001). Challenging open problems in the area are formulated
in Schuurman and Woeginger (1999).

http://dx.doi.org/10.1007/978-3-319-39574-6_4


16 1 Models and Concepts of Classical Scheduling

References

Baker KR, Trietsch D (2009) Principles of sequencing and scheduling. Wiley, Chichester
Blazewicz J, Ecker KH, Pesch E, Schmidt G, Weglarz J (2001) Scheduling computer and manufac-
turing processes, 2nd edn. Springer, Berlin

Brucker P (2007) Scheduling algorithms, 5th edn. Springer, Guildford
Brucker P, Knust S (2012) Complex scheduling algorithms. Springer, Berlin
Bruno JL, Coffman EG Jr, Sethi R (1974) Scheduling independent tasks to reduce mean finishing
time. Commun ACM 17:382–387

Chen Z-L (1997) Erratum: parallel machine schedulingwith time dependent processing times. Discr
Appl Math 75:103

Chen B, Potts CN, Woeginger GJ (1998) A review of machine scheduling: complexity, algorithms
and approximability. In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization,
vol 3. Kluwer, Dordrecht, pp 21–169

Cook SA (1971) The complexity of theorem-proving procedures. Proceedings of the 3rd annual
ACM symposium on theory of computing. ACM, New York, pp 151–158

Cook SA (2006) The P vs NP problem. In: Carlson J, Jaffe A, Wiles A (eds) The Millennium prize
problems. Clay Mathematics Institute, Cambridge (MA) and American Mathematical Society,
Providence, pp 87–104

Conway RW, Maxwell WL, Miller LW (1967) Theory of scheduling. Addison Wesley, Reading
Edmonds J (1965) Paths, trees, and flowers. Canad J Math 17:449–467
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-
completeness. Freeman, San Francisco

Gonzalez T, Sahni S (1976) Open shop scheduling to minimize finish time. J Assoc Comput Mach
23:665–679

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation
in deterministic sequencing and scheduling: a survey. Ann Discr Math 5:287–326

Hoogeveen H, Schuurman P, Woeginger GJ (2001) Non-approximability results for scheduling
problems with minsum criteria. INFORMS J Comput 13:157–168

Johnson DS (1981) The NP-completeness column: an ongoing guide. J Algorithms 2:393–405
Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JM (eds)
Complexity of computer computations. Plenum Press, New York, pp 85–103

Khachiyan LG (1979) A polynomial algorithm in linear programming. Sov Math Dokl 20:191–194
Lawler EL, Moore JM (1969) A functional equation and its application to resource allocation and
sequencing problems. Manag Sci 16:77–84

Lenstra JK, Rinnooy Kan AHG, Brucker P (1977) Complexity of machine scheduling problems.
Ann Discr Math 1:343–362

Leung JY-T (2004) Handbook of scheduling: algorithms, models and performance analysis. Chap-
man & Hall/CRC, Boca Raton

Ng CT, Barketau MS, Cheng TCE, Kovalyov MY (2010) “Product Partition” and related problems
of scheduling and systems reliability: computational complexity and approximation. Eur J Oper
Res 207:601–604

Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Reading
PinedoM (2009) Planning and scheduling in manufacturing and services, 2nd edn. Springer, Berlin
Pinedo M (2016) Scheduling: theory, algorithms, and systems, 5th edn. Springer, Berlin
Potts CN, Strusevich VA (2009) Fifty years of scheduling: a survey of milestones. J Oper Res Soc
60:S41–S68

Schrage L (1968) A proof of the shortest remaining processing time processing discipline. Oper
Res 16:687–690

Schuurman P, Woeginger GJ (1999) Polynomial time approximation algorithms for machine
scheduling: ten open problems. J Sched 2:203–213

Smith WE (1956) Various optimizers for single stage production. Naval Res Logist Q 3:59–66



References 17

Tanaev VS, Gordon VS, Shafransky YM (1984) Scheduling theory. Single-stage systems. Nauka,
Moscow (in Russian); Kluwer, Dordrecht, 1994 (in English)

Tanaev VS, Sotskov YN, Stusevich VA (1987) Scheduling theory. Multi-stage systems. Nauka,
Moscow (in Russian); Kluwer, Dordrecht, 1994 (in English)



Chapter 2
Pairwise Interchange Argument
and Priority Rules

In this chapter, we consider a group of methods that are applicable to problems of
optimizing functions over a set of all permutations. The correctness of the basicmeth-
ods is typically proved by the pairwise interchange argument, and the basic methods
can be further extended to become applicable to solve more general problems.

In this chapter and throughout the book, for job j = π(r) that occupies
the r th position in the sequence π = (π(1),π(2), . . . ,π(n)) of jobs of set N =
{1, 2, . . . , n}, the completion time in a schedule S that processes the jobs on a single
machine in accordance with permutation π is denoted either by C j (S) or by Cπ(r).
The corresponding value can be written as

Cπ(r) =
r∑

u=1

pπ(u), 1 ≤ r ≤ n. (2.1)

If a schedule S is determined by a permutation π, instead of writing the objective
function as F(S) = ∑

C j (S), we may write F(π) = ∑
Cπ(r); the same is applied

to other functions, e.g., to the weighted sum of the completion times
∑

w jC j (S).
In Sect. 2.1, we give a proof of the classical result by Hardy et al. (1934) on mini-

mizing a linear form over a set of permutations and show its implications for various
scheduling problems, including problem 1| | ∑C j . The proofs provided are based on
the so-called pairwise interchange argument, which is an often used tool in this book.
We also introduce important concepts of a priority rule and of a 1-priority that are
widely used throughout this book. In Sect. 2.2, a priority rule is derived for problem
1| | ∑w jC j of minimizing the weighted sum of the completion times on a single
machine. In Sect. 2.3, the obtained results are extended to problems Pm| | ∑C j and
Qm| | ∑C j of minimizing total completion time on parallel (identical or uniform)
machines.

© Springer International Publishing Switzerland 2017
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2.1 Minimizing a Linear Form

Given two arrays a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), and two arbitrary
permutations π = (π(1),π(2), . . . ,π(n)) and σ = (σ(1),σ(2), . . . ,σ(n)), consider
an expression

L(π,σ) =
n∑

j=1

aπ( j)bσ( j) (2.2)

that is often called a linear form. The value L(π,σ) is the sum of products of
elements, with one element from array a and the other from array b. Introduce
the problem of minimizing a linear form, i.e., the problem of finding permutations
ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) and ψ = (ψ(1),ψ(2), . . . ,ψ(n)) such that

L(ϕ,ψ) ≤ L(π,σ).

The problem admits a natural graph theoretical interpretation. LetG = (U, V ; E)

be an undirected complete bipartite graph. The set of vertices consists of two parts
U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. The set E of its edges consists of
n2 edges

(
ui , v j

)
, where vertex ui ∈ U is associated with a number ai , while vertex

v j ∈ V is associated with a number b j . The weight of an edge
(
ui , v j

) ∈ E is defined
as the product aib j . A collection M ⊂ E of n edges is called a (perfect) matching, if
no two edges in M are adjacent to the same vertex. The matching defined by given
permutations π and σ is the set of edges

{(
uπ( j), vσ( j)

)|1 ≤ j ≤ n
}
. The weight of

a matching M is defined as the sum of all weights of edges in M . The problem of
minimizing the linear form L(π,σ) is equivalent to finding amatching of the smallest
total weight. If

(
ui , v j

) ∈ M , we say that the values ai and b j match.

Example 2.1 Figure2.1 shows a complete bipartite graphG = (U, V ; E)with three
vertices in each part. Let the values of (a1, a2, a3) and (b1, b2, b3) that are associated
with the vertices of set U and set V , respectively, be as given in Table2.1. Given
permutationsπ1 = (1, 2, 3) andσ1 = (1, 2, 3), thematchingM1 consists of the edges
(u1, v1), (u2, v2), and (u3, v3), so that the value of the linear form L(π,σ) can be
computed as

L(π1,σ1) = 5 × 2 + 2 × 1 + 4 × 3 = 24,

Fig. 2.1 A complete
bipartite graph
G = (U, V ; E) for
Example2.1
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Table 2.1 The arrays for
Example 2.1

j 1 2 3

a j 5 2 4

b j 2 1 3

while for the permutations π2 = (3, 1, 2) and σ2 = (1, 2, 3), the matching M2 con-
sists of the edges (u3, v1), (u1, v2), and (u2, v3), so that the value of the linear form
L(π,σ) can be computed as

L(π2,σ2) = 4 × 2 + 5 × 1 + 2 × 3 = 19.

The problem of minimizing a linear form can be simplified, so that only one
permutation is needed, e.g.,ϕ, that is defined with respect to a chosen permutationψ.
In particular, we may take a permutation ψ such that the sequence

(
bψ( j)|1 ≤ j ≤ n

)

is non-increasing. It is convenient to assume that the components of array b are
renumbered in such a way that

b1 ≥ b2 ≥ · · · ≥ bn. (2.3)

Under this numbering, a linear form can be written as

L(π) =
n∑

j=1

aπ( j)b j , (2.4)

and to minimize L(π), we need to find a permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n))

of the components of array a, such that the inequality

L(ϕ) =
n∑

j=1

aϕ( j)b j ≤ L(π) =
n∑

j=1

aπ( j)b j (2.5)

holds for any permutation π.
It is clear intuitively that L(π) will take smaller values if larger values of b j are

matched to smaller values of a j . The statement below formalizes this observation.

Theorem 2.1 Provided that (2.3) holds, permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n))

such that
aϕ(1) ≤ aϕ(2) ≤ · · · ≤ aϕ(n) (2.6)

satisfies (2.5), i.e., minimizes the linear form L(π).

Proof The proof given below utilizes the so-called pairwise interchange argument.
Assuming that there exists an optimal sequence that does not satisfy a certain rule,
a permutation that delivers a smaller value of the objective function can be obtained
by interchanging the two adjacent elements that do not obey that rule.
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In our case, suppose that ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) is a permutation that satis-
fies (2.5), but does not follow the rule (2.6). Then, there exists an index k < n such
that

aϕ(1) ≤ · · · ≤ aϕ(k−1) ≤ aϕ(k); aϕ(k) > aϕ(k+1). (2.7)

Consider the permutation ϕ′ = (ϕ′(1),ϕ′(2), . . . ,ϕ′(n)), obtained from ϕ by
swapping the elements ϕ(k) and ϕ(k + 1), i.e.,

ϕ′( j) = ϕ( j), 1 ≤ j ≤ k − 1; k + 1 ≤ j ≤ n; (2.8)

ϕ′(k) = ϕ(k + 1), ϕ′(k + 1) = ϕ(k).

Define � := L(ϕ) − L
(
ϕ′). Due to optimality of ϕ, we must have � ≤ 0. How-

ever,

� =
⎛

⎝
k−1∑

j=1

aϕ( j)b j + aϕ(k)bk + aϕ(k+1)bk+1 +
n∑

j=k+1

aϕ( j)b j

⎞

⎠

−
⎛

⎝
k−1∑

j=1

aϕ( j)b j + aϕ(k+1)bk + aϕ(k)bk+1 +
n∑

j=k+1

aϕ( j)b j

⎞

⎠

= (
aϕ(k)bk + aϕ(k+1)bk+1

) − (
aϕ(k+1)bk + aϕ(k)bk+1

)

= bk
(
aϕ(k) − aϕ(k+1)

) − bk+1
(
aϕ(k) − aϕ(k+1)

) = (bk − bk+1)
(
aϕ(k) − aϕ(k+1)

)
.

Since bk ≥ bk+1 due to (2.3) and aϕ(k) > aϕ(k+1) due to (2.7), we deduce that
� > 0.

Thus, permutation ϕ cannot be a solution that minimizes the linear form L(π).
Repeating this argument as many times as required, we conclude that for an optimal
permutation ϕ, the condition (2.6) must hold. �

Thus, we can describe the following algorithm for solving the problem of
minimizing a linear form. The permutation found by the algorithm matches larger
components of array b to smaller components of array a.

Algorithm Match

input: Two (unsorted) arrays a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
output: A permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) that satisfies (2.5)

Step 1. If required, renumber the components of array b so that (2.3) holds.
Step 2. Output a permutation ϕ such that (2.6) holds.

Algorithm Match reduces to two sorting procedures and therefore requires
O(n log n) time. Simple as it is, the algorithm still plays an important role in opti-
mization over permutations, including numerous scheduling applications discussed
in this book.
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Applying Algorithm Match to the data in Example 2.1, we first renumber the
items so that (2.3) holds, i.e., item 3 with the largest b-value becomes item 1, item 1
becomes item 2, and item 2 becomes item 3. With respect to this new numbering,

b1 = 3 > b2 = 2 > b3 = 1,

and Algorithm Match outputs permutation ϕ = (3, 1, 2), so that

aϕ(1) = a3 = 2 < aϕ(2) = a1 = 4 < aϕ(3) = a2 = 5,

and the minimum value of the linear form (the smallest weight of a matching in
graph shown in Fig. 2.1) is equal to

2 × 3 + 4 × 2 + 5 × 1 = 19,

i.e., smaller values in one array are matched to larger values in the other array.

2.1.1 Minimizing Total Completion Time on a Single
Machine

Consider a single machine problem, in which the jobs of set N = {1, 2, . . . , n} have
to be processed on a single machine. The processing time of job j ∈ N is equal to
p j . It is required to minimize total completion time, i.e., the sum of the completion
times. According to the three-field scheduling notation described in Sect. 1.2, the
problem can be denoted by 1| | ∑C j . Clearly, an optimal schedule for the problem
is defined by a permutation of jobs.

Suppose that the jobs are sequenced in accordance with some permutation π =
(π(1),π(2), . . . ,π(n)). In accordance with (2.1), the total completion time can be
written as

F(π) =
n∑

j=1

Cπ( j) =
n∑

j=1

j∑

i=1

pπ(i) = pπ(1) + (
pπ(1) + pπ(2)

) + (
pπ(1) + pπ(2) + pπ(3)

)

+ · · · + (
pπ(1) + pπ(2) + · · · + pπ(n−1)

) + (
pπ(1) + pπ(2) + · · · + pπ(n−1) + pπ(n)

)
.

It can be seen that the contribution of job π(1) to the objective function is npπ(1),
that of job π(2) is (n − 1)pπ(1), etc., so that the j th job in the sequence contributes
(n − j + 1)pπ( j), 1 ≤ j ≤ n. Thus, we can rewrite

F(π) =
n∑

j=1

(n − j + 1)pπ( j). (2.9)

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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Clearly, F(π) is a linear form similar to (2.4) with

a j = p j , b j = (n − j + 1), 1 ≤ j ≤ n,

so that the b-values form the decreasing sequence (n, n − 1, . . . , 1). As follows from
Theorem 2.1, a permutation ϕ that minimizes F(π) can be found by sequencing the
jobs in non-decreasing order of their processing times.

This means that function F(π) of the form (2.9) can be minimized by applying a
priority rule. This is very important concept that is widely used in this book.

Definition 2.1 For a scheduling problem of sequencing the jobs of set N =
{1, 2, . . . , n}, an objective function �(π) to be minimized over a set of permuta-
tions is said to admit a solution by a priority rule if job j can be associated with a
priority (or, more precisely, a 1-priority) ω( j), and an optimal permutation can be
found by sorting the jobs in accordance with these 1-priorities.

Unless confusion arises, wewill normally refer to the values ofω( j) as 1-priorities
and not priorities. The term “1-priority” stresses that the values ω( j) are associated
with individual jobs. We will use the term “priority” for problems with precedence
constraints (see, e.g., Chap. 3), where priorities will be associated with subsequences
of jobs, rather than with individual jobs.

Two priority rules are often used in scheduling and are of special importance in
this book.

Definition 2.2 The jobs of set N = {1, 2, . . . , n} are said to follow the SPT rule
(shortest processing time) if the jobs are renumbered so that

p1 ≤ p2 ≤ · · · ≤ pn, (2.10)

and to follow the LPT rule (longest processing time) if the jobs are renumbered so
that

p1 ≥ p2 ≥ · · · ≥ pn. (2.11)

Thus, the following has been proved.

Theorem 2.2 For problem 1| | ∑C j , an optimal permutation can be found in
O(n log n) time, by sequencing the jobs in accordance with the SPT rule.

As a rule, 1-priorities are defined in such a way that an optimal permutation
is found by sorting the jobs in non-increasing order of ω( j), i.e., the higher the
1-priority is, the earlier the corresponding job is scheduled. For problem 1| | ∑C j ,
its 1-priorities are defined either as ω( j) := −p j or as ω( j) := 1/p j , j ∈ N .

Notice that the SPT sequence of jobs solves problem 1| | ∑C j , provided that the
resulting permutation is formed from front to rear. It is also possible to fill an optimal
permutation from rear to front, so that the job with the largest processing time is
sequenced in the last position, the one with the second largest processing time takes

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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the position one before last, etc. This can be interpreted as follows: Scan the jobs in
accordance with the LPT sequence and assign the next job to the right most available
position of the resulting permutation.

The theorem below demonstrates an important role of the SPT rule for minim-
izing more general functions than the total completion time

∑
C j , such as

∑
Cz

j
where z is a given positive number, and ξCmax + η

∑
Cz

j , where ξ and η are positive
coefficients.

Theorem 2.3 Let π = (π(1), . . . ,π(n)) be a permutation, in which two jobs u and
v such that

pu > pv (2.12)

occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1). Let
permutation π′ be obtained from π by swapping the jobs u and v. For a single
machine problem, let Cπ(h) and Cπ′(h) denote the completion time of the job
sequenced in the hth position in permutation π and π′, respectively, 1 ≤ h ≤ n.
Then, the equalities

Cπ(h) − Cπ′(h) =
{
0, for 1 ≤ h ≤ n, h �= r
pu − pv for h = r; (2.13)

hold.

Proof It is convenient to represent permutation π as π = (π1, u, v,π2), where π1

and π2 are subsequences of jobs that precede job u and follow job v in permutation
π, respectively. Then, π′ = (π1, v, u,π2).

We present the proof assuming that both sequences π1 and π2 are non-empty;
otherwise, the corresponding part of the proof can be skipped.

The completion times of all jobs in sequence π1 are not affected by the swap of
jobs u and v, i.e., the equality (2.13) holds for each h, 1 ≤ h ≤ r − 1.

Define X as the completion time of the job in the (r − 1)th position in sequence π
(or, equivalently, in π′), i.e., X = Cπ(r−1) = Cπ′(r−1). For h = r , we see that Cπ(r) =
Cu(π) = X + pu and Cπ′(r) = Cv

(
π′) = X + pv , so that due to (2.12), the equality

(2.13) holds for h = r .
For h = r + 1, we derive that

Cπ(r+1) = Cv(π) = X + pu + pv;
Cπ′(r+1) = Cu

(
π′) = X + pv + pu,

so that (2.13) holds for h = r + 1.
The jobs that follow the position r + 1 form the same sequence π2 in both per-

mutations π and π′. Each of these jobs starts in permutation π′ exactly at the same
time as in permutation π, and therefore, (2.13) holds for each h, r + 2 ≤ h ≤ n.

This proves the theorem. �



26 2 Pairwise Interchange Argument and Priority Rules

For single machine problems to minimize a regular objective function �(π) that
depends only on the completion times, Theorem 2.3 demonstrates that in a sequence
that minimizes �(π), the jobs may be arranged in such a way that a job with a larger
processing time is not followed by a job with a smaller processing time. Examples
of such a function include, but not limited to

∑
Cz

j and ξCmax + η
∑

Cz
j . This

immediately implies the following statement.

Theorem 2.4 For problem1| |�, where� ∈
{∑

Cz
j , ξCmax + η

∑
Cz

j

}
,anoptimal

permutation can be found by the SPT rule.

Reformulating Theorem 2.4, we conclude that problem 1| |�, where � ∈{∑
Cz

j , ξCmax + η
∑

Cz
j

}
, admits the 1-priority ω( j) = 1/p j .

In Part 2 of this book, we present statements similar to Theorems 2.3 and 2.4 for
extended models with changing processing times.

We now formulate the following recipes for proving and disproving that a certain
function �(π) admits or does not admit 1-priorities.

Recipe 2.1. How to prove that a function �(π) admits 1-priorities.

To do this, apply the pairwise interchange technique. Take an arbitrary permutation
π = (π(1),π(2), . . . ,π(n)), select a position r , and introduce a permutation π′
obtained from π by swapping the elements π(r) and π(r + 1). Derive a function
ω : N → R such that for the inequality�(π) ≤ �

(
π′) to hold, it is sufficient that

ω(π(r)) ≥ ω(π(r + 1)).

Recipe 2.2. How to disprove that a function �(π) does not admit 1-priorities.

If �(π) admitted a 1-priority ω( j), then for any pair of jobs u and v such that
ω(u) ≥ w(v), the value of� for any permutation π in which u precedes v should
be no larger than the value of � for permutation π′ obtained from π by swapping
the jobs u and v. Thus, we should exhibit an instance of the problem of minim-
izing �(π) such that there exist two jobs u and v for which the following holds:

(i) There exists a permutation (π1, u,π2, v,π3) in which job u is scheduled before
job v such that �(π1, u,π2, v,π3) ≤ �(π1, v,π2, u,π3).

(ii) There exists another permutation
(
π̂1, u, π̂2, v, π̂3

)
in which job u is scheduled

before job v such that �
(
π̂1, u, π̂2, v, π̂3

)
> �

(
π̂1, v, π̂2, u, π̂3

)
.

2.1.2 Minimizing the Sum of Products

Given two arrays a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), where a j ≥ 0 and
either b j > 1 or b j < 1 for 1 ≤ j ≤ n, and a permutation π = (π(1),π(2), . . . ,
π(n)), introduce the expression
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K (π) =
n∑

j=1

aπ( j)

n∏

i= j+1

bπ(i) (2.14)

and consider the problem of minimizing K (π) over the set of all permutations, i.e.,
we are looking for permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) such that the inequality

K (ϕ) ≤ K (π) (2.15)

holds for all permutations π.
Associate each j , 1 ≤ j ≤ n, with the ratio

κ( j) = a j

b j − 1
. (2.16)

Theorem 2.5 Permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) such that

κϕ(1) ≤ κϕ(2) ≤ · · · ≤ κϕ(n) (2.17)

satisfies (2.15), i.e., minimizes the expression K (π), provided that all a j ’s are
non negative and all differences b j − 1 are of the same sign.

Proof The pairwise interchange argument is applied. Suppose that ϕ = (ϕ(1),
ϕ(2), . . . ,ϕ(n)) is a permutation that satisfies (2.15), but does not follow the rule
(2.17). Then, there exists an index k < n such that

κϕ(1) ≤ · · · ≤ κϕ(k−1) ≤ κϕ(k); κϕ(k) > κϕ(k+1).

Consider the permutation ϕ′ = (ϕ′(1),ϕ′(2), . . . ,ϕ′(n)), obtained from ϕ by
swapping the elements ϕ(k) and ϕ(k + 1), i.e., ϕ and ϕ′ satisfy (2.8).

Define � := K (ϕ) − K
(
ϕ′). Due to optimality of ϕ, we must have � ≤ 0.

However,

� =
⎛

⎝
k−1∑

j=1

aϕ( j)

n∏

i= j+1

bϕ(i) + aϕ(k)

n∏

i=k+1

bϕ(i)

+aϕ(k+1)

n∏

i=k+2

bϕ(i) +
n∑

j=k+1

aϕ( j)

n∏

i= j+1

bϕ(i)

⎞

⎠

−
⎛

⎝
k−1∑

j=1

aϕ( j)

n∏

i= j+1

bϕ(i) + aϕ(k+1)

(

bϕ(k)

n∏

i=k+2

bϕ(i)

)

+aϕ(k)

n∏

i=k+2

bϕ(i) +
n∑

j=k+1

aϕ( j)

n∏

i= j+1

bϕ(i)

⎞

⎠
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= aϕ(k)
(
bϕ(k+1) − 1

) n∏

i=k+2

bϕ(i) − aϕ(k+1)
(
bϕ(k) − 1

) n∏

i=k+2

bϕ(i)

=
n∏

i=k+2

bϕ(i)
(
aϕ(k)

(
bϕ(k+1) − 1

) − aϕ(k+1)
(
bϕ(k) − 1

))
.

By the choice of k, we have that

aϕ(k)

bϕ(k) − 1
>

aϕ(k+1)

bϕ(k+1) − 1
,

Since
(
bϕ(k) − 1

)(
bϕ(k+1) − 1

)
> 0, it follows that aϕ(k)

(
bϕ(k+1) − 1

)
> aϕ(k+1)(

bϕ(k) − 1
)
, and we deduce that � > 0.

Thus, permutation ϕ cannot be a solution that minimizes K (π). Repeating this
argument as many times as required, we conclude that for an optimal
permutation ϕ, the condition (2.17) must hold. �

Theorem 2.5 implies that the problem of minimizing the sum of products K (π)

admits a 1-priority ω( j) = −κ( j) = −a j/
(
b j − 1

)
. If we need to find a permutation

that maximizes the value of K (π), then the corresponding permutation can be found
by sorting the values κ( j) in non-increasing order.

2.2 Minimizing Total Weighted Completion Time

In this section, we consider problem 1| | ∑ w jC j , which differs from problem
1| | ∑C j discussed in Sect. 2.1.1 by the fact that each job j ∈ N is given a pos-
itive weight w j . The weights reflect the relative importance of the jobs, so that the
jobs with higher weights should be completed earlier.

Suppose that the jobs are sequenced in accordance with some permutation π =
(π(1),π(2), . . . ,π(n)). The completion time of job π( j) satisfies (2.1), so that the
objective function for problem 1| | ∑w jC j can be written as

Z(π) =
n∑

j=1

wπ( j)Cπ( j) =
n∑

j=1

wπ( j)

j∑

i=1

pπ(i). (2.18)

To solve problem 1| | ∑w jC j , we need to find a permutation ϕ = (ϕ(1),
ϕ(2), . . . ,ϕ(n)) of jobs such that Z(ϕ) ≤ Z(π) holds for all permutations π. We
show that using the pairwise interchange argument, problem 1| | ∑w jC j can be
solved by applying the following extension of the SPT priority rule.
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Definition 2.3 The jobs of set N = {1, 2, . . . , n} are said to follow theWSPT rule
(weighted shortest processing time) if the jobs are renumbered so that

p1
w1

≤ p2
w2

≤ · · · ≤ pn
wn

. (2.19)

The following statement holds.

Theorem 2.6 For problem 1| | ∑w jC j , an optimal permutation can be found in
O(n log n) time, by sequencing the jobs in accordance with the WSPT rule.

Proof The proof is along the same lines as the proof of Theorem 2.1. Suppose
that ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) is an optimal permutation of jobs for problem
1| | ∑w jC j , but it does not follow the rule (2.19). Then, there exist an index k < n
such that pϕ(1)

wϕ(1)
≤ · · · ≤ pϕ(k−1)

wϕ(k−1)
≤ pϕ(k)

wϕ(k)
; pϕ(k)

wϕ(k)
>

pϕ(k+1)

wϕ(k+1)
. (2.20)

Consider the permutation ϕ′ = (ϕ′(1),ϕ′(2), . . . ,ϕ′(n)), obtained from ϕ by
swapping the elements ϕ(k) and ϕ(k + 1), i.e., defined by (2.8).

For function Z(π) of the form (2.18), define � := Z(ϕ) − Z
(
ϕ′). Due to opti-

mality of ϕ, we must have � ≤ 0. However,

� =
⎛

⎝
k∑

j=1

wϕ( j)

j∑

i=1

pϕ(i) + wϕ(k)

k∑

i=1

pϕ(i) + wϕ(k+1)

k+1∑

i=1

pϕ(i) +
n∑

j=k+2

wϕ( j)

j∑

i=1

pϕ(i)

⎞

⎠

⎛

⎝−
k∑

j=1

wϕ( j)

j∑

i=1

pϕ(i) + wϕ(k+1)

(
k−1∑

i=1

pϕ(i) + pϕ(k+1)

)

+wϕ(k)

k+1∑

i=1

pϕ(i) +
n∑

j=k+2

wϕ( j)

j∑

i=1

pϕ(i)

⎞

⎠ = wϕ(k+1) pϕ(k) − wϕ(k) pϕ(k+1) > 0,

where the last strict inequality is due to (2.20).
Thus, permutation ϕ cannot deliver an optimal solution to problem 1| | ∑w jC j .

Repeating this argument as many times as required, we conclude that for an optimal
permutation ϕ, the condition (2.19) must hold. �

2.3 Minimizing Total Completion Time on Parallel
Machines

In this section, we consider the problem of minimizing the sum of the completion
times on parallel machines. We show how the results of the previous sections of this
chapter can be extended to solve the problems in the classical settings, as well as
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their capacitated version in which a machine cannot process more than a predefined
number of jobs.

2.3.1 Uniform Machines

We start with the classical problem, traditionally denoted by Qm||
∑

C j . Here,
each job j of set N = {1, 2, . . . , n} has to be assigned to be processed on one of
the m ≥ 2 parallel uniform machines. Machine Mi has speed si . Without loss of
generality, we may assume that the machines are numbered in non-increasing order
of their speeds, i.e.,

s1 ≥ s2 ≥ . . . ≥ sm . (2.21)

It is also convenient to assume that the speed of the slowest machine Mm is equal
to 1, and the processing time of job j ∈ N on machine Mm is equal to p j . In general,
if job j is assigned to be processed on machine Mi , then such processing takes p j/si
time units, 1 ≤ i ≤ m. A feasible schedule S is determined by

• a partition job N into m subsets N1, N2, . . . , N m , so that the jobs of set Ni and
only those are assigned to be processed on machine Mi , 1 ≤ i ≤ m;

• the sequence of jobs π[i] = (
π[i](1),π[i](2), . . . ,π[i](hi )

)
on machine Mi , where

hi = |Ni | and 1 ≤ i ≤ m.

Take a machine Mi , 1 ≤ i ≤ m, and suppose that in some schedule S, the jobs
π[i](1), . . . ,π[i](hi ) are processed on Mi in this order. We have that

Cπ[i](1) = pπ[i](1)/si ,

Cπ[i](2) = pπ[i](1)/si + pπ[i](2)/si ,

. . .

Cπ[i](hi ) = pπ[i](1)/si + . . . + pπ[i](hi )/si .

This implies that the contribution of the jobs of set Ni toward the objective function
is equal to

hi∑

j=1

Cπ[i]( j) =
hi∑

j=1

hi − j + 1

si
pπ[i]( j),

i.e., an individual contribution for each job assigned to machine Mi is equal to its
processing time multiplied by a positional factor of the form k/si , where k is a
position of the job from the rear of the processing sequence on machine Mi . In order
to minimize the total completion time, we need to match the processing times to the
n smallest positional factors of the form k/si , where 1 ≤ k ≤ n and 1 ≤ i ≤ m. As
follows from Sect. 2.1, in an optimal schedule, the larger values of the processing
times should be matched to smaller positional factors. This can be done by scanning
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the jobs in the LPT order and tomatch the next job to the smallest available positional
factor.

Formally, an algorithm for solving problem Qm| |
∑

C j can be stated as follows.

Algorithm QSum

input: The processing times p1, p2, . . . , pn numbered in accordance with the
LPT rule (2.11) and the machine speeds s1, s2, . . . , sm numbered in accordance
with (2.21)

output:For eachmachine,Mi , 1 ≤ i ≤ m, permutation π[i] that defines the process-
ing sequence of job on the machine in an optimal schedule

Step 1. For each machine Mi , i = 1, 2, . . . ,m, define the positional factors zi =
1/si and m empty sequences π[i].

Step 2. Scanning the jobs in the order of their numbering, for each job j from 1
to n, do

(a) Find the machine Mv , 1 ≤ v ≤ m, associated with the smallest positional factor,
i.e.,

zv := min{zi |1 ≤ i ≤ m}; (2.22)

If such a machine is not unique, break ties by setting v to be the largest index v

for which (2.22) holds.
(b) Assign job j to machine Mv and place it in front of the current permutation π[v],

i.e., define

π[v] := ( j,π[v]), zv := zv + 1

sv
.

The running time of the algorithm is O(n log n), including the renumbering of
the jobs.

For illustration, consider the following example.

Example 2.2 To test a new scheduling algorithm, a researcher wants to run six sets
of test data on three computers. Compared to Computer 3, Computer 1 is three times
faster, while Computer 2 is two times faster. The computation time (in minutes)
needed to run the test sets onComputer 3 is given inTable 2.2. It is required to organize
the computational experiment in such a way that the average completion time of a
data set is minimized. Interpreting the three computers as three machines M1, M2,
and M3, and the data sets as six jobs, we can reduce the original problem to problem

Table 2.2 Processing times of the tests sets on Computer 3 for Example 2.2

Set j 1 2 3 4 5 6

Processing
time p j

12 36 24 42 18 30
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Q3| | ∑C j and solve it by Algorithm QSum. We may assume that the speed of
machineM3 (i.e., that of Computer 3) is taken as 1, so that s1 = 3, s2 = 2, and s3 = 1.
Table2.3 shows how Algorithm QSum is run. The jobs are scanned in the LPT order.
Each row of Table2.3 shows the parameters after the corresponding job has been
assigned to themachine. Notice that when assigning jobs 3 and 5, the current smallest
positional factor is not unique, and we break ties giving preference to the machine
with the slowest speed (M3 for job 3 and M2 for job 5). The last column shows the
actual processing times of the jobs, i.e., the initial values p j fromTable 2.2 divided by
the speed of the machine the job is assigned to. Figure2.2 presents a Gantt chart of an
optimal schedule. The completion times of the jobs (test sets) are shown in Table2.4.
The average completion time is equal to (4 + 27 + 24 + 28 + 9 + 14)/6 = 17.667
min, i.e., 17 min 40 sec.

Notice that Algorithm QSum can be deduced from a solution procedure for a
more general scheduling problem Rm| | ∑C j on unrelated parallel machines (see
Sect. 4.1.2).

Table 2.3 Running Algorithm QSum for Example 2.2

j π[1] π[2] π[3] z1 z2 z3 Actual processing times

() () () 1
3

1
2 1

4 (4) () () 2
3

1
2 1 14

2 (4) (2) () 2
3 1 1 18

6 (6, 4) (2) () 1 1 1 10

3 (6, 4) (2) (3) 1 1 2 24

5 (6, 4) (5, 2) (3) 1 3
2 2 9

1 (1, 6, 4) (5, 2) (3) 4
3

3
2 2 4

Fig. 2.2 An optimal schedule for Example 2.2

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Table 2.4 Completion times of the test sets in an optimal schedule for Example 2.2

Set j 1 2 3 4 5 6

Completion time p j 4 27 24 28 9 14

Algorithm QSum above can be easily modified to handle a capacitated ver-
sion of the problem, in which additional restrictions regarding the number of jobs
to be assigned to a machine are imposed. Formally, suppose that in any feasi-
ble schedule, machine Mi processes no more than q [i] jobs, where

∑m
i=1 q

[i] ≥ n,
so that a feasible schedule exists. We denote the problem under consideration by
Qm

∣
∣∑m

i=1 q
[i] ≥ n

∣
∣ ∑C j . The algorithm below is a minor modification of Algo-

rithm QSum: If no more jobs can be assigned to a machine, the machine is excluded
from consideration by setting the corresponding positional factor to infinity.

Algorithm QSumCap

input: The processing times p1, p2, . . . , pn numbered in accordance with the LPT
rule (2.11) and themachine speeds s1, s2, . . . , sm numbered in accordancewith (2.21)
and machine capacities q [1], q [2], . . . , q [m]

output: For eachmachine,Mi , 1 ≤ i ≤ m, permutation π[i] that defines the process-
ing sequence of job on the machine in an optimal schedule

Step 1. For each machine Mi , i = 1, 2, . . . ,m, define the positional factors zi :=
1/si and m empty sequences π[i].

Step 2. Scanning the jobs in the order of their numbering, for each job j from 1
to n, do the following:

(a) Find the machine Mv , 1 ≤ v ≤ m, associated with the smallest positional factor
that satisfies (2.22). If such a machine is not unique, break ties by setting v to
be the largest index v for which (2.22) holds.

(b) Assign job j to machine Mv and place it in front of the current permutation
π[v], i.e., define π[v] := ( j,π[v]). If zv = q [v]

sv
, then exclude this machine from

consideration by defining zv := +∞; otherwise, define zv := zv + 1
sv
.

The running time of Algorithm QSumCap is O(n log n).

2.3.2 Identical Machines

The results of Sect. 2.3.1 can be adapted to solving the problem of minimizing total
completion time on identical parallel machines. The speeds of all machines are
assumed equal to 1, so that the processing time of job j ∈ N on any machine is equal
to p j . Problem Pm|β| ∑C j is a special case of problem Qm|β| ∑C j , where the
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field β either is empty or reads
∑m

i=1 q
[i] ≥ n. Thus, Algorithms QSum and QSum-

Cap solve the uncapacitated and capacitated versions of the problem on identical
machines, respectively.

Given a schedule S, let F(S) = ∑
C j (S) denote the total completion time. For

problem Pm| | ∑C j onm parallel machines, a schedule found by Algorithm QSum
is denoted by S∗(m). We exclude from consideration the case that m ≥ n, since it is
optimal to assign exactly one job to each of n arbitrarily chosen machines.

Recall that for a real number x , the ceiling �x� is equal to the smallest integer
that is no less than x . Assuming that the jobs are numbered in accordance with the
LPT rule (2.11), in schedule S∗(m), each of the first m jobs takes the last position
on one of the machines, each of the next m jobs takes the second from last position
on one of the machines, etc. This implies that job j contributes its processing time

to the objective function exactly
⌈

j
m

⌉
times, so that

F(S∗(m)) =
n∑

j=1

p j

⌈
j

m

⌉
. (2.23)

For problem Pm| | ∑C j , a solution algorithm can be designed based on differ-
ent principles, compared to Algorithm QSum. Indeed, an optimal solution can be
obtained by scanning the jobs in the SPT order (2.10) and building a schedule from
front to rear. Such an algorithm is presented below.

Algorithm PSumSPT

input: The processing times p1, p2, . . . , pn numbered in accordance with the SPT
rule (2.10)

output: A schedule SSPT that is defined by permutations π[i], 1 ≤ i ≤ m

Step 1 For each machine Mi , i = 1, 2, . . . ,m, define sequence π[i] := (i) that
consists of one job i .

Step 2 Scanning the jobs in the order of their numbering, for each job j from i + 1
to n, do the following:

For the current partial schedule, by checking the machines in the order of their
numbering, determine themachineMv , 1 ≤ v ≤ m, that completes its jobs earlier
than other machines. Assign job j to machine Mv , update π[v] := (

π[v], j
)
.

Algorithm PSumSPT requires linear time, provided that the SPT sequence of jobs
is available.

2.4 Bibliographic Notes

Theorem 2.1 is a classical result that traces back to Hardy et al. (1934), where it
is formulated as Theorem 368 on p. 262. Several different proofs are provided for
the theorem, starting from that based on the pairwise interchange argument. Another
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proof of the theorem is given in Sect. 4.1.3. More proofs of Theorem 2.1 and its
extensions can be found in Chap.6, Section A of the book by Marshall and Olkin
(1979).

A link between the problem of minimizing a linear form and a single-flight
low-risk helicopter transportation problem is established in Qian et al. (2012). The
latter problem arises in the oil and gas offshore mining, when employees are to be
delivered to and picked up from a number of offshore installations (rigs or plat-
forms) by a helicopter, so as to minimize the number of people exposed to landings
and takeoffs. If the number of people to be delivered to and picked up from an instal-
lation j is equal to Pj and Dj , respectively, then an optimal order of visits to the
installations can be found by Algorithm Match, so that the installations are visited
in non-decreasing order of Pj − Dj .

Theorem 2.5 is independently proved by Rau (1971) and Kelly (1982).
Historically, Theorem 2.6 on a priority rule for solving problem 1| | ∑ w jC j is

one of the first scheduling results. It is proved by Smith (1956), and this is why the
WSPT rule stated in Definition 2.3 is often referred to as Smith’s rule. Queyranne
(1993) presents a minimal linear description of the solution polyhedron defined as
the convex hull of feasible completion time vectors and deduces Smith’s rule using
the greedy algorithm known in optimization over polymatroids.

A special case of Theorem 2.4 for problem 1| | ∑C2
j is proved in Townsend

(1978).
A solution algorithm for problem Qm| | ∑C j is first described in the book by

Conway et al. (1967). Our exposition mainly follows the book by Brucker (2007).
Algorithm QSumCap for problem Qm

∣
∣∑m

i=1 q
[i] ≥ n

∣
∣ ∑C j is presented in Rustogi

and Strusevich (2012).
Algorithm PSumSPT is also first presented in Conway et al. (1967). It should be

seen as a version of the famous list scheduling algorithm by Graham (1966) with a
list found by the SPT rule.

For an environment with m parallel identical machines with the objective func-
tion � ∈ {

Cmax,
∑

C j
}
, Rustogi and Strusevich (2013) consider the problem of

determining machine impact which shows what can be gained if extra machines are
added.

The link between problem Pm| | ∑C j and the low-risk multiflight helicopter
transportation problem is established by Qian et al. (2015). That paper presents a
number of approximation algorithms for the capacitated version of the problem with
pickup only.

While problem 1| | ∑ w jC j is polynomially solvable, adding an additional
machine changes the complexity dramatically. Indeed, problem P2| | ∑ w jC j is
NP-hard even if p j = w j for all j ∈ N (see Bruno et al. (1974)).

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_6
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Chapter 3
Sequencing Under Precedence Constraints

In this chapter, we review scheduling problems on a single machine, provided that
precedence constraints are imposed on the set of jobs, so that not all permutations of
jobs are feasible.

The precedence constraints are normally given in the form of a directed graph
(digraph). We pay a special attention to the case when the constraints are defined
by a series-parallel graph, so that a scheduling problem of interest can be solved
in polynomial time, provided that its objective function is priority-generating. For
illustration, we often refer to the problem of minimizing the weighted sum of the
completion times on a single machine, denoted either by 1|prec| ∑w jC j (if the
precedence constraints are arbitrary) or by 1|SP − prec| ∑w jC j (if the constraints
are series-parallel).

This chapter is structured as follows. Section3.1 provides all required defini-
tions regarding the reduction graphs. The concept of a priority-generating func-
tion is introduced and explored in Sect. 3.2. In particular, it is shown that for the
problem of minimizing

∑
w jC j on a single machine, the objective function is

priority-generating, while for the problem of minimizing a linear form, the objective
function is not priority-generating. The issues of minimizing a priority-generating
function under series-parallel precedence constraints are addressed in Sect. 3.3.

3.1 Graphs, Posets, and Other Definitions

Consider the following generic single machine scheduling problem. The jobs of set
N = {1, 2, . . . , n} have to be processed with no preemption on a single machine,
and the processing of job j ∈ N takes p j time units. The jobs are simultaneously
available at time zero, and for each job j , a weight w j is given that indicates its
relative importance. Themachine canhandle only one job at a time and is permanently
available from time zero.

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
Research & Management Science 243, DOI 10.1007/978-3-319-39574-6_3
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For some schedule S, the completion time of job j ∈ N is denoted by C j (S). If a
schedule S is defined by a permutation π = (π(1),π(2), . . . ,π(n)) of jobs, we may
denote the completion time of job j by C j (π). If no confusion arises, we may write
C j , without making a reference to a particular schedule or sequence. The objective
is to minimize a function �(π), a non-decreasing function of C j , j ∈ N . Mainly,
we will focus on three functions: the makespan Cmax(π) = max

{
C j | j ∈ N

}
, the

total completion time F(π) = ∑
j∈N C j , and the weighted total completion time

Z(π) = ∑
j∈N w jC j .

It is often found in practice that some products are manufactured in a certain order
implied, for example, by technological, marketing, or assembly requirements. Thus,
in reality, not all permutations of jobs are permitted, and this can be modeled by
imposing precedence constraints onto set N of jobs to describe allowable (feasible)
sequences of jobs.

3.1.1 Reduction Graphs

Formally, precedence constraints among the jobs are defined by a binary relation→.
We write i → j and say that job i precedes job j if in any feasible schedule job i
must be completed before job j starts; in this case, i is a predecessor of j , and j is a
successor of i . Binary relation→ is a strong order relation, that is both asymmetric
(i → j implies that not j → i) and transitive (i → j and j → k imply i → k). We
write i ∼ j if jobs are independent, i.e., neither i → j nor j → i . A sequence (or a
permutation) of jobs is feasible if no pair of jobs violate the precedence constraints.
Precedence constraints are usually given by a directed circuit-free graph G in which
the set of vertices is identical with the set of jobs and there is a path from vertex i
to vertex j if and only if job i precedes job j . Recall that a graph is circuit-free (or
acyclic) if it contains no cycles, i.e., contains no oriented closed paths with the same
initial and terminal vertices. Moreover, any directed acyclic graph (dag) induces a
partial order on its vertices: i → j if and only if there is a path from vertex i to
vertex j in G.

Given a dag, the outdegree and the indegree of a vertex are equal to the number
of arcs going from and coming to the vertex, respectively; a vertex of both zero
outdegree and zero indegree is isolated.

In the presence of precedence constraints, the set of jobs is partially ordered. A
partially ordered set (poset) P = (N , R) is defined by a set N of jobs and an order
relation R. Relation R is a binary relation, given by a set of (ordered) pairs 〈i, j〉,
where i and j are distinct elements of N , and i precedes j , i.e.,

〈i, j〉 ∈ R if and only if i → j.

Thus, in our case, the notions of “precedence constraints,” “dag,” and “poset”
are interchangeable, and we will use that of these terms which we find the most
appropriate in a particular context.
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Fig. 3.1 a Dag G on five
vertices; b the transitive
closure of G

(a) (b)

For a dag, let (i, j) denote an arc that goes from vertex i to vertex j . The transitive
closure of a dag G is a dag GT such that GT contains an arc (i, j) if and only if
i �= j and there is a path from i to j in G. An arc from vertex i to vertex j in G is
transitive (or redundant) if there is a path from i to j which avoids the arc (i, j). The
graph obtained from G by removing all transitive arcs is called the reduction graph
and is denoted by GR . Notice that GR is the unique dag which has no transitive arcs
and has the same transitive closure as G. The partial order induced either by GT or
by GR is the same as that induced by G. Therefore, we may assume that given a
dag with set N of vertices and without transitive arcs, we are given a relation → of
strong order which defines precedence constraints on N and vice versa.

Figure3.1a shows dagG on five vertices, which is the reduction graph of the order
relation

R = {〈1, 2〉, 〈1, 3〉, 〈2, 4〉}.

Its transitive closure is shown in Fig. 3.1b; in this graph, the path from vertex 1 to
vertex 4 initiates the arc (1, 4).

In terms of scheduling, the four jobs 1, 2, 3, and 4 can only be sequenced in
accordance with one of the permutations

(1, 2, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3).

In graph G, vertex 5 is isolated. Thus, to produce a feasible sequence, job 5 can
be inserted into any position of any of the three sequences listed above.

3.1.2 Series-Parallel Graphs

Let G = (X,U ) be a dag, where X is the set of vertices and U is the set of arcs. A
dag G = (X,U ) is said to be the parallel composition of two dags G1 = (X1,U1)

and G2 = (X2,U2) such that X1 ∩ X2 = ∅, if X = X1 ∪ X2 and U = U1 ∪ U2. A
dag G = (X,U ) is said to be the series composition of two dags G1 = (X1,U1)

and G2 = (X2,U2) such that X1 ∩ X2 = ∅, if X = X1 ∪ X2 andU = U1 ∪U2 ∪ Ũ ,
where Ũ is the set of arcs going from each vertex of graph G1 with zero outdegree
to each vertex of graph G2 with zero indegree.

For illustration, look at two dags, G1 and G2 in Fig. 3.2a. If these two graphs are
considered as a single graph that consists of two connected components, then this



40 3 Sequencing Under Precedence Constraints

(a) (b)

(c)

Fig. 3.2 aTwodagsG1 andG2,b the series composition ofG1 andG2, and c the series composition
of G2 and G1

Fig. 3.3 Z -graph

graph is the parallel composition ofG1 andG2. Figure3.2b shows the graph obtained
as the series composition of G1 and G2 (applied in this order). The graph in Fig. 3.2c
is the series composition of G2 and G1 (applied in this order).

Definition 3.1 A directed graph is called series-parallel (or an SP-graph ) if it
either consists of only one vertex, or can be obtained from two series-parallel graphs
by subsequent application of the operations of series and/or parallel composition.

There are several properties that identify an SP-graph. One of them is formulated
in terms of subgraphs that are forbidden for an SP-graph. Recall that a graph G ′ =
(X ′,U ′) is a subgraph of another graph G = (X,U ) if X ′ ⊆ X and U ′ ⊆ U , i.e.,
G ′ is obtained form G by a removal of some vertices and/or arcs. Further, for any
subset X ′ of vertices in graph G, an induced subgraph is the maximal subgraph of
G with the vertex set X ′. A four-vertex graph shown in Fig. 3.3 is called a Z-graph.

Theorem 3.1 AdagG = (X,U )with no transitive arcs is series-parallel if and only
if its transitive closure does not contain a Z-graph shown in Fig.3.3 as an induced
subgraph.

Let us denote the operations of parallel and series compositions by the letters P
and S, respectively. We write G = G1PG2 and G = G1SG2 if graph G is either
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(a) (b)

Fig. 3.4 Tree representations a of parallel composition and b of series composition

the parallel composition or the series composition, respectively, of graphs G1 =
(X1,U1) and G2 = (X2,U2). Parallel and series compositions can be represented
by the so-called decomposition trees shown in Fig. 3.4 for graphs G = G1PG2 and
G = G1SG2.

In order to represent an SP-graph by a binary decomposition tree, we first associate
a one-node tree with each single-vertex graph which is used for constructing the
SP-graph and then use the rules shown in Fig. 3.4 to build larger trees from smaller
ones by applying operations P and S. Notice that several non-isomorphic binary
decomposition trees may correspond to the same SP-graph since the operation of
parallel composition is commutative, i.e., graphs G1 and G2 in Fig. 3.4a can be
swapped, and both operations S and P are associative. See Fig. 3.5 that illustrates

(a)

(b)

(c)

Fig. 3.5 Representations of the SP-graph a by decomposition trees b and c
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how the SP-graph shown in Fig. 3.5a can be represented by two non-isomorphic
decomposition trees in Fig. 3.5b and c.

Inwhat follows, we assume that SP-graphs have no transitive arcs and are given by
a decomposition tree. Notice that given an SP-graph G = (X,U ), its decomposition
tree can be found in O

(|X |2) time.

3.2 Priority-Generating Functions

There is a wide class of objective functions depending on the elements of a poset,
called priority-generating functions, which can be minimized in polynomial time,
provided that the precedence constraints are given by a series-parallel graph.

Consider a scheduling problem of processing a set N = {1, 2, . . . , n} of jobs, in
which a schedule is defined by a sequence in which the jobs are processed. Let�(π),

a non-decreasing function of C j , j ∈ N , be the objective function to be minimized.
Recall that for a scheduling problem that can be solved by some priority rule, a

1-priority of a job j is a function ω( j) such that in an optimal schedule, the jobs are
sequenced in non-increasing order of the ω( j) values (see Sect. 2.1.1). In particular,
the LPT rule corresponds to the 1-priority function ω( j) = p j , while for the SPT
rule either ω( j) = −p j or ω( j) = 1/p j .

In order to be able to handle scheduling problems under precedence constraints,
we need an extended notion of a priority function that is defined for subsequences
of jobs rather than just for individual jobs.

Definition 3.2 Let παβ = (π′αβπ′′) and πβα = (π′βαπ′′) be two permutations of n
jobs that differ only in the order of the subsequencesα andβ (each of the sequencesπ′
and π′′ may be empty). For a function �(π) that depends on a permutation, suppose
that there exists a function ω(π) such that for any two permutations παβ and πβα,
the inequality ω(α) > ω(β) implies that �(παβ) ≤ �(πβα), while the equality
ω(α) = ω(β) implies that �(παβ) = �(πβα). In this case, function � is called a
priority-generating function, while function ω is called its priority function . For a
(partial) permutation π, the value of ω(π) is called the priority of π.

Intuitively, a priority function allows us to rank not only individual jobs but also
partial permutations of jobs. A priority function applied to a single job becomes a
1-priority for that job. Thus, for function �(π) to be priority-generating, it is
necessary that the problem of minimizing �(π) can be solved by an application
of a priority rule. On the other hand, functions that admit a 1-priority do not neces-
sarily admit a priority in the sense of Definition 3.2.

We now formulate the following recipes for proving and disproving that a certain
function �(π) is priority-generating. Let παβ = (π′αβπ′′) and πβα = (π′βαπ′′)
be two permutations of all jobs that only differ in the order of the subsequences α
and β.

Recipe 3.1 How to prove that a function �(π) is priority-generating

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Derive a function ω(π) that depends only the elements of a partial permutation π
such that the sign of the difference �

(
παβ

) − �
(
πβα

)
depends on the sign of the

difference ω(α) − ω(β).

Recipe 3.2 How to disprove that a function �(π) is priority-generating

Exhibit an instance of the problem that �(παβ) < �(πβα) for some permutations
παβ = (π′αβπ′′) and πβα = (π′βαπ′′), while �(ϕαβ) > �(ϕβα) for some other
permutations ϕαβ = (ϕ′αβϕ′′) and ϕβα = (ϕ′βαϕ′′).

Given a (partial) permutation π, we denote the length of π, i.e., the number of
jobs in π, by |π|. Let {π} denote the set of jobs involved in permutation π. If a job
j ∈ N is associated with a parameter γ j , then γ(π) denotes the sum of all γ-values
for the jobs in π, i.e.,

γ(π) =
∑

j∈{π}
γ j .

In particular, for the processing times p j and the weights w j , we write

p(π) =
∑

j∈{π}
p j , w(π) =

∑

j∈{π}
w j .

3.2.1 Minimizing Total Weighted Completion Time

Consider problem 1| | ∑w jC j with the objective of minimizing the weighted sum
of the completion times, which we denote by Z(π). Recall that this function can
be minimized by sorting the jobs in non-increasing order of the 1-priorities ω( j) =
w( j)/p( j) (see Sect. 2.2). We show that function Z(π) is in fact priority-generating.

Theorem 3.2 For problem 1| | ∑w jC j , the objective function is priority-
generating and

ω(π) = w(π)

p(π)
(3.1)

is its priority function.

Proof Take permutations παβ = (π′αβπ′′) and πβα = (π′βαπ′′) that only differ in
the order of the subsequences α and β and apply Recipe 3.1.

Notice that if the jobs are processed in accordance with permutation παβ , then
the sequence of jobs α starts at time p

(
π′), the sequence of jobs β starts at time

p
(
π′α

) = p
(
π′) + p(α), etc. The value Z(α) is the weighted sum of the com-

pletion times of the jobs in α, provided that the sequence α starts at time zero.
In sequence παβ , each job in α starts p

(
π′) time units later, so that the weighted

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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sum of the completion times of the jobs in sequence α is given by the sum of
Z(α) + w(α)p

(
π′). This implies that

Z
(
π′αβπ′′) = Z(π′) + Z(α) + w(α)p

(
π′) + Z(β) + w(β)

(
p
(
π′) + p(α)

)

+Z(π′′) + w
(
π′′)((p

(
π′) + p(α) + p(β)

));
Z
(
π′βαπ′′) = Z(π′) + Z(β) + w(β)p

(
π′) + Z(α) + w(α)

(
p
(
π′) + p(β)

)

+Z(π′′) + w
(
π′′)((p

(
π′) + p(β) + p(α)

))
.

Define � := Z(παβ)− Z(πβα). In order to verify that in the case under consider-
ation, the objective function is priority-generating, we need to determine a sufficient
condition for the inequality � ≤ 0.

It follows that
� = w(β)p(α) − w(α)p(β),

which implies that � ≤ 0 if
w(β)

p(β)
≤ w(α)

p(α)
.

This proves that (3.1) is the required priority function. �

3.2.2 Minimizing a Linear Form

Below, we demonstrate how Recipe 3.2 can be used to disprove that a linear form

L(π) =
n∑

j=1

aπ( j)b j (3.2)

is priority-generating. The problem of minimizing function (3.2) is studied in
Sect. 2.1. Recall that if the condition

b1 ≥ b2 ≥ · · · ≥ bn (3.3)

holds, Theorem 2.1 asserts that an optimal permutation can be found by sorting the
1-priorities ω( j) = −a( j) in non-increasing order.

Theorem 3.3 Function L(π)of the form (3.2) is not priority-generating for arbitrary
a-values, even if the b-values are numbered in accordance with (3.3).

Proof Let παβ = (π′αβπ′′) and πβα = (π′βαπ′′) be two permutations of all jobs
that only differ in the order of the subsequences α and β.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Assume that

∣
∣π′∣∣ = q, |α| = u, |β| = v,

∣
∣παβ

∣
∣ = ∣

∣πβα
∣
∣ = r.

For convenience, assume that

παβ =
⎛

⎝π(1), . . . ,π(q)
︸ ︷︷ ︸

π′

,π(q + 1), . . . ,π(q + u)
︸ ︷︷ ︸

α

,

π(q + u + 1), . . . ,π(q + u + v)
︸ ︷︷ ︸

β

,π(q + u + v + 1), . . . ,π(r)
︸ ︷︷ ︸

π′′

⎞

⎟
⎠,

so that

πβα =
(

π(1), . . . ,π(q)
︸ ︷︷ ︸

,π(q + u + 1), . . . ,π(q + u + v)
︸ ︷︷ ︸

,

π(q + 1), . . . ,π(q + u)
︸ ︷︷ ︸

,π(q + u + v + 1), . . . ,π(r)
︸ ︷︷ ︸

)
.

It follows that

L
(
παβ

) =
q∑

j=1

aπ( j)b j +
q+u∑

j=q+1

aπ( j)b j +
q+u+v∑

j=q+u+1

aπ( j)b j +
r∑

j=q+u+v+1

aπ( j)b j ;

L
(
πβα

) =
q∑

j=1

aπ( j)b j +
q+v+u∑

j=q+u+1

aπ( j)b j−u +
q+u∑

j=q+1

aπ( j)b j+v +
r∑

j=q+u+v+1

aπ( j)b j .

Define � := L
(
παβ

) − L
(
πβα

)
. The inequality � ≤ 0 holds if and only if

q+u∑

j=q+1

aπ( j)
(
b j − b j+v

) ≤
q+v+u∑

j=q+u+1

aπ( j)
(
b j−u − b j

)
.

The latter inequality cannot be rewritten in the required form ω(α) ≥ ω(β), since
it depends not only on the sequences α and β, but also on the number of jobs in
sequence π′. �

3.2.3 Minimizing Makespan Versus Total Completion Time

The statement below is proved for the single machine models with constant process-
ing times. It demonstrates that the existence of a priority functionω for the sum of the
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completion times
∑

C j implies that ω is also a priority function for the makespan
criterion Cmax. This statement can easily be extended to scheduling models with
various effects applied to the processing times (see Part II).

Theorem 3.4 Consider a single machine problem with constant processing times,
in which a job may start at a time the previously scheduled job is completed. If ω is
a priority function for the sum of the completion times F(π) = ∑

C j , then ω is also
a priority function for the makespan Cmax(π).

Proof Take an arbitrary instance I of a singlemachine scheduling problem. Consider
any two permutations of the jobs of I that are of the form (π′αβπ′′) and (π′βαπ′′).We
assume without loss of generality that ω(α) ≥ ω(β) (otherwise, we can interchange
the labeling of α and β). Since ω is a priority function for the sum of the completion
times, we have F(π′αβπ′′) ≤ F(π′βαπ′′).

First, assume that ω(α) > ω(β). Suppose that ω is not a priority function for the
makespan objective, i.e., Cmax(π

′αβπ′′) > Cmax(π
′βαπ′′). Define

n′ :=
⌈

F(π′βαπ′′) − F(π′αβπ′′) + 1

Cmax(π′αβπ′′) − Cmax(π′βαπ′′)

⌉
. (3.4)

Extend instance I by adding n′ additional jobs, with each additional job j having
the processing time p j = ε, where ε is a small positive number. Denote the obtained
instance by I ′ and an arbitrary permutation of the added new jobs by σ′. Assuming
that ε → 0, we deduce that in permutations π′αβπ′′σ′ and π′βαπ′′σ′, each of the
jobs of σ′ completes at times Cmax(π

′αβπ′′σ′) and Cmax(π
′βαπ′′σ′), respectively.

Therefore,

lim
ε→0

{F(π′αβπ′′σ′) − F(π′βαπ′′σ′)} (3.5)

= (F(π′αβπ′′) − F(π′βαπ′′)) + n′(Cmax(π
′αβπ′′) − Cmax(π

′βαπ′′)).

It follows from (3.4) that the right-hand side of (3.5) is strictly positive. However,
this contradicts the fact that ω is a priority function for the sum of the completion
times. Therefore, Cmax(π

′αβπ′′) ≤ Cmax(π
′βαπ′′), as required.

Now, consider the alternative case that ω(α) = ω(β). Again, suppose that ω is not
a priority function for the makespan objective, i.e.,Cmax(π

′αβπ′′) �= Cmax(π
′βαπ′′).

Since ω is a priority function for the sum of the completion times, we have
F(π′αβπ′′) = F(π′βαπ′′). Consider an instance I ′′, which is obtained from instance
I similarly to instance I ′; however, now only one job n + 1 with pn+1 = ε is added.

Let σ′′ be the sequence that consists of one job n + 1. Considering the limiting
case when ε → 0, we deduce

lim
ε→0

{F(π′αβπ′′σ′′) − F(π′βαπ′′σ′′)} = (F(π′αβπ′′) − F(π′βαπ′′))

+(Cmax(π
′αβπ′′) − Cmax(π

′βαπ′′)). (3.6)

Since the first term in (3.6) is equal to zero and the second term is nonzero, we
deduce that F(π′αβπ′′σ′′) �= F(π′βαπ′′σ′′). Thus, again, we have a contradiction to
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the fact that ω is a priority function for the sum of the completion times. Therefore,
Cmax(π

′αβπ′′) = Cmax(π
′βαπ′′).

We have now verified that for the makespan objective function, the conditions of
Definition 3.2 are satisfied, and therefore, ω is its priority function. �

As the contrapositive statement to Theorem 3.4, we obtain the following corollary.

Corollary 3.1 Consider a single machine problem with constant processing times,
in which a job may start at a time the previously scheduled job is completed. If the
makespan objective function is not priority-generating, then neither is the sum of the
completion times priority-generating.

In the next section, we present an algorithm for minimizing a priority-generating
function subject to series-parallel constraints.

3.3 Minimizing Priority-Generating Functions Under
Series-Parallel Constraints

Let�(π) be a priority-generating function defined over a poset P = (N , R) andω(π)

be the corresponding priority function. Consider the problem of minimizing �(π)

over P = (N , R), provided that the poset P is defined by series-parallel precedence
constraints. Throughout this section, we assume that the constraints are given in the
form of a decomposition tree.

The key concept thatweneed for an algorithm thatminimizes a priority-generating
function is that of a job module.

Definition 3.3 Given a poset P = (N , R), a subset M ⊆ N is a (job) module of P
if for every job k ∈ N\M one of the following holds:

(a) k → i for all i ∈ M , or
(b) i → k for all i ∈ M , or
(c) i ∼ k for all i ∈ M .

Clearly, each job j ∈ N is a module, and the whole set N is a module. For
example, for the precedence constraints given by the graph in Fig. 3.2b, the set {3, 4}
is a module. Indeed, job 1 precedes both jobs 3 and 4, while each of the jobs 5, 6,
and 7 is a successor of both jobs 3 and 4; moreover, job 2 is independent of both jobs
3 and 4. On the other hand, the set {4, 5} is not a module, since 2 → 5 but 2 ∼ 4.

Figure3.6 shows a decomposition tree of the digraph in Fig. 3.2b. Use this graph
for checking the following property.

Lemma 3.1 For an SP-graph, a subtree of its decomposition tree defines a module.

Thus, we can identify the following non-trivial modules of the digraph in
Fig. 3.2b: {3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, {6, 7}.

The algorithm that minimizes a priority-generating function under series-parallel
precedence constraints is based on the following statement.
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Fig. 3.6 Decomposition tree
for the graph in Fig. 3.2b

Theorem 3.5 Let M be a module of a series-parallel graph G = (N ,U ) and σ be a
permutation that minimizes function � over set M. Then, there exists a permutation
that minimizes� over set N , in which the jobs of M appear in the same order as in σ.

Theorem 3.5 allows treating subsequences of σ as modules. It is convenient to
think of a module as consisting of subsequences (or strings) of jobs, rather than of
individual jobs.

The algorithm scans the decomposition tree of the given digraph from leaves to
the root. In each iteration, a composition operation (parallel or series, depending on
the type of the node) is performed, forming a new module of two initial modules.

In the case of parallel composition of two modules M ′ and M ′′, a new module
M is formed, which is the union of the elements of the two initial modules. For the
obtainedmoduleM , an optimal sequence σ can be obtained by sorting its elements in
non-increasingorder of their priorities. Such a sequence respects the givenprecedence
graph.

If series composition of two modules M ′ and M ′′ is to be performed, then the
resultingmoduleM is obtained as the union ofM ′ andM ′′, provided that the smallest
priority of an element of M ′ is larger than the largest priority of an element in M ′′.
Otherwise, the elements of M ′ with smaller priorities are merged with the elements
of M ′′ with larger priorities to form a string with the priority that is smaller than the
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smallest priority of the remaining elements of M ′ and larger than the largest priority
of the remaining elements of M ′′. The newmodule is formed to consist of the derived
string and the remaining elements of the two initial modules.

Formally, the procedure for series composition is outlined below. In the
description of the procedure, the elements of modules (i.e., jobs and strings) are
denoted by the Greek letters κ, λ, μ, etc. For a module, an element κ is called ω-
minimal (ω-maximal) if ω(κ) is smaller (respectively, larger) than the priority of all
other elements of the module. For consistency, it is assumed that module M ′ always
contains a dummy element with priority +∞, while module M ′′ always contains a
dummy element with priority −∞.

Procedure SerComp
(
M ′, M ′′)

Input: Two modules M ′ and M ′′

Output:Module M , a result of series composition of M ′ and M ′′

Step 1. Find a ω-minimal element λ in M ′ and a ω-maximal element μ in M ′′. If
ω(λ) > ω(μ), then return M = M ′ ∪ M ′′. Otherwise, remove the elements λ and
μ from their respective modules (i.e., updateM ′ := M ′\{λ} andM ′′ := M ′′\{μ}),
form the string κ := (λ,μ), and compute its priority ω(κ).

Step 2. Find a ω-minimal element λ in M ′.While ω(λ) ≤ ω(κ), do the following:
Remove λ from M ′ (i.e., update M ′ := M ′\{λ}), include it to string κ (i.e., update
κ := (λ,κ)), and compute the priority ω(κ).

Step 3. Find aω-maximal elementμ inM ′′.Whileω(μ) ≤ ω(κ), do the following:
Removeμ fromM ′′ (i.e., updateM ′′ := M ′′\{μ}), include it to stringκ (i.e., update
κ := (κ,μ)), and compute the priority ω(κ).

Step 4. Return M = M ′ ∪ M ′′ ∪ {κ}.
The overall algorithm for minimizing a priority-generating function under

series-parallel precedence constraints givenby thedecomposition tree canbedescribed
as follows.

Algorithm SerPar

Input: An instance of a scheduling problem with n jobs to minimize the
priority-generating objective function �, a decomposition tree of the precedence
digraph, and the priority function ω for �

Output: Permutation π∗ of jobs that minimizes �

Table 3.1 Instance for Example 3.1

Jobs 1 2 3 4 5 6 7

p j 2 6 4 3 2 7 2

w j 5 2 3 4 8 2 4

ω( j) 5
2

1
3

3
4

4
3 4 2

7 2
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Step 1. Scanning the decomposition tree from leaves to the root, for k = 1 to n−1,
do the following:

(a) Identify operation M ′OkM ′′, where M ′ and M ′′ are two modules and Ok

corresponds to an operation node of the decomposition tree.
(b) If Ok is an operation of parallel composition, then define Mk := M ′ ∪M ′′.
(c) If Ok is an operation of series composition, then Mk is the output of

Procedure SerComp
(
M ′, M ′′).

Step 2. Sort the elements of the module Mn−1 in non-increasing order of its
priorities. Output π∗ as the obtained permutation of the original jobs.

Algorithm SerPar can be implemented in O(n log n) time, provided that the
priority ω(π) for a given partial sequence π can be computed in O(n) time.

Example 3.1 In order to illustrate Algorithm SerPar, consider the problem of min-
imizing of the weighted sum of the completion times on a single machine, i.e.,
problem 1|SP − prec| ∑ w jC j . The numerical parameters of the seven jobs, as
well as their 1-priorities ω( j), are given in Table3.1. The precedence relation is
represented by the digraph inFig. 3.2b. Its decomposition tree is shown inFig. 3.6, and
the operation nodes are numbered in the order of iterations of Algorithm SerPar. The
run of Algorithm SerPar for this instance is presented in Table3.2. For iterations 1,
4, and 6, the steps of Procedure SerComp are shown in details. The final permutation
(1, 3, 4, 2, 5, 7, 6) is determined by module M6.

3.4 Bibliographic Notes

Scheduling problems with precedence constraints have always been among the most
studied types of problems. The first positive results have been derived for rather
simple types of reduction graphs, such as chains and trees. The seminal paper by
Lawler (1978) has given the first example of a polynomially solvable problem with
series-parallel precedence constraints. That paper initiated extensive studies of
scheduling problems under series-parallel precedence conducted in the late
1970s–early 1980s, which have resulted in an elegant theory briefly overviewed
in this chapter.

Theorem 3.1 is independently proved by Gordon (1981) and Valdes et al. (1982);
however, already Sidney (1975) and Lawler (1978) present the Z -graph as the sim-
plest digraph that is not series-parallel. Alternative conditions that are necessary and
sufficient for a dag G = (X,U ) to be series-parallel are proved in Gordon (1981)
(see also Gordon et al. (2005)). Theorem 3.1 is the basis of an algorithm that recog-
nizes an SP-graph in O

(|X |2) time (see Shafransky and Yanova (1980) and Valdes
et al. (1982)).

The concept of a priority-generating function has been independently introduced
by Shafransky (1978a), Reva (1979), Monma and Sidney (1979), and Burdyuk and
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Reva (1980). We mainly follow Chap.3 of the book by Tanaev et al. (1984) for a
systematic exposition of related issues.

A formal proof of Theorem 3.2 is given in Tanaev et al. (1984); however, already
Horn (1972) and Lawler (1978) essentially use function (3.1) as a priority function
for a subsequence of jobs. Theorem 3.3 is proved in Tanaev et al. (1984), while
Theorem 3.4 and Corollary 3.1 are due to Gordon et al. (2008) (for scheduling
models with a deterioration effect).

Definition 3.3 of a job module is given by Sidney (1975), who has established
various properties that lead to a decomposition algorithm for minimizing functions
under series-parallel constraints, including Lemma 3.1 and Theorem 3.5. There are
multiple versions of algorithms that solve various scheduling problems under series-
parallel precedence constraints; here, we only mention algorithms by Lawler (1978)
for minimizing the weighted sum of the completion times on a single machine and
by Gordon and Shafransky (1978), Monma (1979), and Sidney (1979) for the two-
machine flow shop problem to minimize the makespan. The algorithms for min-
imizing an arbitrary priority-generating function in O(n log n) time are given by
Shafransky (1978b), Monma and Sidney (1979), and Tanaev et al. (1984). In our
description of Algorithm SerPar, we mainly follow Lawler (1978).

Queyranne and Wang (1991) present a linear programming formulation of
problem 1|prec| ∑w jC j and prove that in the case of series-parallel precedence
constraints, their formulation completely describes the scheduling polyhedron. This
fact, as well as an alternative proof of the algorithm by Lawler (1978) for problem
1|SP − prec| ∑w jC j , is given in Goemans and Williamson (2000), who use an
elegant reasoning based on the so-called two-dimensional Gantt charts.

There is a more general type of precedence constraints that can be decomposed
into job modules of special structure. Provided that the objective function possesses
certain properties, it can be minimized over a poset in polynomial time. For com-
pleteness, below we give a brief discussion of this issue.

Let G = (N ,U ) be a dag corresponding to poset P = (N , R). Replacing all arcs
of its transitive closure GT by undirected edges, we obtain the (undirected) graph
G̃ = (N , E). We may assume that G̃ = (N , E) is given to us in the form of the
adjacency matrix. A module M is a set of vertices that is indistinguishable in graph
G̃ by the vertices outside M ; that is, in graph G̃, any vertex in N\M either is adjacent
to all vertices of M , or is adjacent to no vertex in M .

The complement graph of G̃ = (N , E) is the graph (N , E ′), where (u, v) ∈ E ′
if and only if (u, v) /∈ E . A graph is complement-connected if its complement
graph is connected. There are three distinct types of modules: parallel, series, and
neighborhood. Parallel modules are characterized by the property that the subgraph
induced by the vertices of the module is not connected. A module is a seriesmodule
if the subgraph induced by the vertices of the module is not complement-connected.
In a neighborhood module, the subgraph induced by the vertices of the module is
both connected and complement-connected.

For a poset P = (N , R), a subset S ⊆ N is initial if for each i ∈ S, all predecessors
of i are also in S. For an initial set S, define the set
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I (S) := { j | j ∈ S, j has no successors in S}.

The maximum size of any set I (S) is called the width of P . If the poset is
decomposed into modules, the size of any module does not exceed the width of
the original poset. The modular decomposition procedure of the original poset P is
implemented as an iterative process that is represented by a special data structure, a
composition tree, For details on the decomposition process and on the construction
of a composition tree, see Buer and Möhring (1983), Sidney and Steiner (1986), and
Muller and Spinrad (1989). Notice that the decomposition algorithm in Muller and
Spinrad (1989) requires O(n2) time.

One of the conditions under which an objective function� can be minimized over
a poset is the so-called job module property: If σ is a permutation that minimizes
function � over set M , then there exists a permutation that minimizes � over set
N , in which the jobs of M appear in the same order as in σ. In fact, Theorem 3.5
states that this property holds for series-parallel precedence constraints. For more
general constraints, it has to be assumed (see Sidney and Steiner (1986) and Monma
and Sidney (1987)). The corresponding sequencing algorithms are based on efficient
procedures by Möhring and Rademacher (1984) and Muller and Spinrad (1989).

Another condition is that function � can be computed recursively over initial
sets by a dynamic programming algorithm. If this property is combined with the
job module property, then function � can be minimized over a poset of width w

in O
(
nw+1

)
time, as demonstrated by Sidney and Steiner (1986) who combine the

dynamic programming algorithm with the decomposition algorithm byMöhring and
Rademacher (1984, 1985).

Scheduling problems under arbitrary precedence constraints are normally
NP-hard, even if the objective is priority-generating. For example, Lawler (1978)
proves the NP-hardness of minimizing the weighted sum of the completion times
on a single machine, i.e., of problem 1|prec| ∑w jC j . Other examples of NP-hard
scheduling problems under precedence constraints are contained in Abdel-Wahab
and Kameda (1978), Lenstra and Rinnooy Kan (1978), and Monma (1980, 1981)
(see Tanaev et al. (1984) for a review). Methods of reducing the search for an optimal
permutation under arbitrary precedence constraints can be found in Monma (1981)
and Tanaev et al. (1984).
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Chapter 4
Relevant Boolean Programming Problems

Quite often, an algorithm that finds either an exact or an approximate solution to
a scheduling problem can be derived from a reformulation of the original problem
in terms of another problem of combinatorial optimization, e.g., a Boolean pro-
gramming problem. In this chapter, we review some of the most popular Boolean
programming problems which are relevant to the content of this book.

In Sect. 4.1, we focus on different versions of the linear assignment problem,
including its forms with a square and rectangular cost matrix. We present several
polynomial-time algorithms, including Dinic’s algorithm for the rectangular assign-
ment problem. Besides, we link the linear assignment problem with a product cost
matrix to the problem of minimizing a linear form, studied in Sect. 2.1. In Sect. 4.2,
we address the linear knapsack problem and its versions, such as the subset-sumprob-
lem. Here, the main focus is on the design of fully polynomial-time approximation
schemes (FPTASs) by converting pseudopolynomial-time dynamic programming
algorithms. Section 4.3 is devoted to the problem of minimizing a specific quadratic
function of Boolean variables, known as the half-product. This problem and its vari-
ants, without and with an additional linear knapsack constraint, are known to serve
as mathematical models for many scheduling problems. Section 4.4 addresses prob-
lems with the objective that is a special form of the half-product. The main topic of
Sects. 4.3 and 4.4 is also the design of FPTAS.

4.1 Linear Assignment Problems

The linear assignment problem (LAP) is one of the most popular and intensively
studied problems in combinatorial optimization. Given a square or rectangular cost
matrix, the problem is to match each row to a different column in such a way that
the sum of the selected cost values is minimized.

A possible meaningful interpretation of the LAP is as follows. Suppose that n
jobs need to be assigned to m ≥ n candidates, exactly one job per candidate. It is
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known that ci j is the cost of assigning job i to candidate j . The objective is to find
an assignment so that the total cost is minimized.

It is convenient to arrange all costs as an n ×m cost matrix C = (
ci j
)
, where the

i th row, 1 ≤ i ≤ n, contains the elements ci1, ci2, . . . , cim, and the j th column, 1 ≤
j ≤ m, contains the elements c1 j , c2 j , . . . , cmj . It is required to select n elements,
exactly one from each row and at most one from each column, so that their sum is
minimized. The n ×m LAP is known as a rectangular assignment problem and can
be formulated as a Boolean programming problem in the following way:

minimize
n∑

i=1

m∑

j=1

ci j xi j

subject to
m∑

j=1

xi j = 1, i = 1, 2, . . . , n;
n∑

i=1

xi j ≤ 1, j = 1, 2, . . . ,m;
xi j ∈ {0, 1}, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

(4.1)

A special case of the n × m LAP is the n × n LAP with a square cost matrix.
Below, we give its formulation in terms of Boolean programming:

minimize
n∑

i=1

n∑

j=1

ci j xi j

subject to
m∑

j=1

xi j = 1, i = 1, 2, . . . , n;
n∑

i=1

xi j = 1, j = 1, 2, . . . , n;
xi j ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

(4.2)

In the next subsection, we present two algorithms that can be used to solve a
rectangular assignment problem of the form (4.1).

4.1.1 Methods for Solving the Rectangular Assignment
Problem

In this subsection, we reproduce the main steps of two algorithms known for solving
ann×m rectangularLAPof the form (4.1).When applied to a squaren×n costmatrix,
i.e. when the problem under consideration is of the form (4.2), these algorithms are
able to provide a solution in O

(
n3
)
time.
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We use the matrix terminology. Given a matrix C = (
ci j
)
n×m with m ≥ n, either

a row or a column is called a line of C; a collection of n elements, no two of which
belong to the same line is called a diagonal; and a collection of k < n elements, no
two of which belong to the same line is called a subdiagonal. In the linear assignment
problem, it is required to find a diagonal with the smallest sum of its elements.

The first of the presented algorithms reduces the original (positive) elements of
the cost matrix on a line-by-line basis, so that some of them become zero. Two zeros
that do not belong to the same line are called independent. There are two types of
labels applied to a zero: It can be starred to become 0∗ or primed to become 0′.
During the run of the algorithm, some lines are said to be covered. In all iterations
of the algorithm, the starred zeros are independent, and their number is equal to the
number of the covered lines, with each covered line containing exactly one 0∗. The
algorithm stops having found n starred zeros in the current matrix. The primed zeros
in a current partial solution are seen as potential candidates to become starred zeros.

Algorithm LAPBL

Step 0. Considering the rows of matrixC in the order of their numbering, subtract
the smallest element from each element in the row.

Step 1. Search for a zero, Z , in the matrix. If there is no starred zero in its row or
column, star Z . Repeat for each zero in the matrix.

Step 2. Cover every column containing a 0∗. If n columns are covered, the starred
zeros form the desired independent set; otherwise, go to Step 3.

Step 3. Choose a non-covered zero and prime it; then, consider the row containing
the primed zero. If there is no starred zero in this row, go to Step 4. If there is a
starred zero Z in this row, cover this row and uncover the column of Z . Repeat
until all zeros are covered. Go to Step 5.

Step 4. Construct a sequence of alternating starred and primed zeros as follows:
Let Z0 denote an uncovered 0′. Let Z1 denote a 0∗ in Z0’s column (if any). Let Z2

denote the 0′ in Z1’s row. Continue in a similar way until the sequence stops at a
0′, which has no 0∗ in its column. In the obtained sequence, unstar each starred
zero and star each primed zero. Erase all primes and uncover every line. Return
to Step 2.

Step 5. Let h denote the smallest non-covered element of the current matrix. Add
h to each covered row, and then subtract h from each uncovered column. Return
to Step 3 without altering any asterisks, primes, or covered lines.

Algorithm LAPBL can be implemented in O
(
n2m

)
time. An iteration of Algo-

rithmLAPBL is considered complete when all zeros are covered by the end of Step 3.
After this, a transition is made to Step 5, where we search for the minimal elements in
the uncovered part of the matrix and convert them to zero. At the end of an iteration,
one of the two outcomes is possible: New 0∗s are either added to the matrix, or not.
If the total number of 0∗s in the matrix is less than n, the existing 0∗s represent a
partial solution to the assignment problem. If the total number of 0∗s in the matrix
is equal to n, then the solution is considered complete and the optimal assignment is
given by the positions occupied by the 0∗s.
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Another algorithm for solving a rectangular LAP is based on a concept of a
potential. In any step of the algorithm, each column j , 1 ≤ j ≤ m associated with a
potential � j . Let � = (�1, . . . ,�m) be an array of these potentials. We introduce
a concept of �-difference

ci, j1
�− ci, j2 := (

ci, j1 − � j1

)− (
ci, j2 − � j2

)
.

Along this definition, a �-minimal element is the element which, when subtracted
from any other element from the same row, returns a nonnegative value of �-
difference.

During an iteration of the algorithm, some columns and rows will be highlighted
or labeled. The highlighted elements form a subdiagonal of the matrix. A line with
no highlighted or labeled elements is called free. Let R denote the set of free and/or
labeled columns. Let Q be the set of labeled rows. In the beginning of each iteration,
all rows and columns are seen as non-labeled. For each row i , let ci,π(i) be the �-
minimal element, and δi is the �-difference between the element that is �-minimal
among the elements of this row located in the columns in R and ci,π(i). Define δ as
the smallest δi over all non-labeled rows.

In the beginning of an iteration, we have a subdiagonal of � elements and an array
of potentials such that:

(i) Each highlighted element (i.e., an element of the current subdiagonal) of a
non-labeled row is �-minimal in its row;

(ii) The potentials of all free columns are equal.

Algorithm LAPD

Step 0. Find the smallest element in each row. For each column that contains
more than one such element, highlight any one of them. The highlighted elements
form the initial subdiagonal. Set all potentials to zero. Since there are no labeled
columns to begin with, R denotes the set of free columns. Compute δ and identify
the extremal element ci1 j1 , i.e., the element for which the difference that defines
δi is equal to δ.

Step 1. If � = n, and conditions (i) and (ii) are satisfied, accept the found diagonal
as a solution to the initial problem. If � < n, check that conditions (i) and (ii) are
satisfied, then go to Step 2 with k = 1.

Step 2. For current value of k, 1 ≤ k ≤ n, do:

(a) Increase the potentials of all columns in R by δ (element cik jk will become
�-minimal in its row, while each highlighted element remains �-minimal
in its row).

• If row ik is not free, then label row ik by “ jk” (the number of the column of
the extremal element cik jk ). In row ik , find the highlighted (subdiagonal)
element cik , j k and label column j k by “ik”. Go to Step 2(b).
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• If row ik is free, then update the subdiagonal as follows. Include cik jk into
the current subdiagonal (highlight it). If column jk is free, then complete
the iteration, update � := � + 1, and go to Step 1. If it is not free, it has a
label “i ” and contains the highlighted element ci, jk . Remove that element
from the subdiagonal. Row i is labeled “ j”. Include element ci, j into the
subdiagonal. This process is repeated until a free column occurs. Once
a free column is found, a new element is highlighted and the iteration
completed. Remove all labels, update � := � + 1, and go to Step 1.

(b) Update the sets R and Q. Compute δ and identify the extremal element cik+1 jk+1 .
Update k := k + 1 and go to Step 2.

It is useful to employ a special data structure, a dictionary q that consists of
records qi defined for each non-labeled row i . Record qi stores (i) the value δi and
(ii) column number j(i) such that element ci, j(i) is �-minimal among the elements
of row i located in the columns in R. Dictionary q is created before the preliminary
stage and before the start of each iteration. When moving from one step to the next
within an iteration, the dictionary can be updated in O(n) time. In particular, the

value δi := min

{
δi , ci,π(i)

�− ci j

}
, where j is the column labeled in the previous

step.
Ifm = n, the algorithm solves the assignment problem in O

(
n3
)
time. Ifm > n, it

can be implemented in O
(
n3 + nm

)
time. Below, we provide an example that walks

through each step of Algorithm LAPD.

Example 4.1 Consider a rectangular assignment problem with a cost matrix

C =

⎛

⎜
⎜
⎝

1 2 3 4 8
1 1 3 4 8
1 5 5 6 8
2 5 6 8 2

⎞

⎟
⎟
⎠.

Iteration 0. The following iterations as outlined in Algorithm LAPD will enable
us to find an optimal solution to the given assignment problem.

� j 0 0 0 0 0 Step 0
Label – – – – – �min �min R δi

– 1 2 3∗ 4 8 1 3 2∗

– 1 1 3 4 8 1 3 2
– 1 5 5 6 8 1 5 4
– 2 5 6 8 2 2 6 4

R ∈ {3, 4}, Q ∈ {∅}, δ = 2, ci1 j1 = c13

In this tableau and in other tableaux related to the solution of Example 4.1, the
elements in boxes represent the highlighted elements, i.e., the elements in the
subdiagonal, and the starred element represents the extremal element ci1 j1 . For
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each non-labeled row, Column �min contains the �-minimal element in that row,
while Column �min R contains the �-minimal element among those located in
that row and in the columns of set R. Notice that � = 3 < n = 4, and conditions
(i) and (ii) of a subdiagonal are satisfied.

Iteration 1. We proceed to a new iteration with k = 1.

� j 0 0 2 2 0 k = 1
Label 1 – – – – �min �min R δi

3 1 2 3 4 8 – – –
– 1 1 3 4 8 1 1 0
– 1∗ 5 5 6 8 1 1 0∗

– 2 5 6 8 2 2 2 0
R ∈ {1, 3, 4}, Q ∈ {1}, δ = 0, ci2 j2 = c31

Now, the iteration requires us to go back to Step 2 with k = 2. The potentials do
not change since δ = 0.We include the current extremal element ci2 j2 = c31 in the
subdiagonal. Also, note that ci2 j2 lies in Row 3which is free, but the corresponding
Column 1 is not free. Column 1 is associated with a label “1” and contains the
highlighted element c11. Also, note that Row 1 is associated with a label “3”. We
remove element c11 from the subdiagonal and include element c13 instead. The
resulting tableau is written as follows.

� j 0 0 2 2 0 k = 2
Label – – – – – �min �min R δi

– 1 2 3 4 8 – – –
– 1 1 3 4 8 – – –
– 1 5 5 6 8 – – –
– 2 5 6 8 2 – – –

� = 4. Iteration complete.

Notice that at the end of the first iteration, � = n = 4, and conditions (i) and (ii) are
satisfied. Thus, the current diagonal represents the optimal solution to the initial
problem. The optimal value of the objective function is given as 3+1+1+2 = 7.

We summarize the results discussed in this section as the following statement.

Theorem 4.1 An n ×m rectangular assignment problem can be solved in O
(
n2m

)

time by Algorithm LAPBL and in O
(
n3 + nm

)
time by Algorithm LAPD.



4.1 Linear Assignment Problems 63

4.1.2 Minimizing Total Completion Times of Unrelated
Machines

In this subsection, we illustrate how the rectangular linear assignment problem can
be used for solving a classical scheduling problem of minimizing the sum of the
completion times on m unrelated parallel machines, i.e., problem Rm| |∑C j .

Each job j of set N = {1, 2, . . . , n} has to be assigned to be processed on one
of the m ≥ 2 parallel unrelated machines. It is reasonable to assume that there are
more jobs than machines, i.e., n ≥ m. In general, if job j is assigned to be processed
on machine Mi , then such processing takes pi j time units, 1 ≤ i ≤ m. A feasible
schedule S is determined by

• a partition of set N into m subsets N1, N2, . . . , N m , so that the jobs of set Ni and
only those are assigned to be processed on machine Mi , 1 ≤ i ≤ m;

• the sequence of jobs π[i] = (
π[i](1),π[i](2), . . . ,π[i](hi )

)
on machine Mi , where

hi = |Ni | and 1 ≤ i ≤ m.

Take a machine Mi , 1 ≤ i ≤ m, and suppose that in some schedule S, the jobs
π[i](1), . . . ,π[i](hi ) are processed on Mi in this order. We have that

Cπ[i](1) = p(i,π[i](1)),

Cπ[i](2) = p(i,π[i](1)) + p(i,π[i](2)),

. . .

Cπ[i](hi ) = p(i,π[i](1)) + · · · + p(i,π[i](h1)),

where p(i,π[i](r)) is the processing time of a job j = π[i](r) scheduled in position r

of permutation π[i] on machine Mi . The above relations imply that the contribution
of the jobs of set Ni toward the objective function is equal to

hi∑

r=1

Cπ[i](r) =
hi∑

r=1

(hi − r + 1)p(i,π[i](r));

compare this with the reasoning presented in Sect. 2.3.1.
For a schedule S on unrelated machines defined by permutations π[i] =(

π[i](1),π[i](2), . . . ,π[i](hi )
)
, the total completion time of all jobs can be written as

follows:
n∑

j=1

C j (S) =
m∑

i=1

hi∑

r=1

(hi − r + 1)p(i,π[i](r)). (4.3)

To minimize the objective
∑

C j (S), let us define the cost function

c j,(i,r) := (hi − r + 1)pi j , (4.4)

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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which represents the contribution of a job j = π[i](r) to the objective function (4.3).
Notice that to compute the costs c j,(i,r), j ∈ N , 1 ≤ r ≤ hi , 1 ≤ i ≤ m, we require
knowledge of the number of jobs hi assigned to machine Mi . However, irrespective
of hi , if job j is assigned to machine Mi , it will contribute exactly one of the values
pi j , 2pi j , 3pi j , . . . , npi j . Thus, we may set the value hi = n, 1 ≤ i ≤ m and
compute all possible costs c j,(i,r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, by (4.4) for every job
j ∈ N .

Define a rectangular assignment problem with an n × k cost matrix C = (
c j,(i,r)

)

with n rows, each corresponding to a job j ∈ N and k = nm columns. Number the
columns by a string of the form (i, r), where i , 1 ≤ i ≤ m, refers to a machine
index and r , 1 ≤ r ≤ n, indicates a position in a permutation of jobs assigned to the
machine. More precisely, the value of element c j,(i,r) at the intersection of the j th
row and the vth column of matrix C for v, 1 ≤ v ≤ k, such that v = n(i − 1) + r ,
where 1 ≤ i ≤ m and 1 ≤ r ≤ n, is defined by the relation (4.4).

As a result, the problem of minimizing the objective function (4.3) reduces to a
rectangular assignment problem written as below:

minimize
n∑

j=1

m∑

i=1

n∑

r=1

c j,(i,r)y j,(i,r)

subject to
m∑

i=1

n∑

r=1

y j,(i,r) = 1, j = 1, . . . , n;
n∑

j=1

y j,(i,r) ≤ 1, i = 1, . . . ,m, r = 1, . . . , n;
y j,(i,r) ∈ {0, 1}, j = 1, . . . , n, i = 1, . . . ,m,

r = 1, . . . , n.

(4.5)

This problem can be solved by Algorithm LAPD outlined in Sect. 4.1.1. In our
case, the algorithm is applied to an n×k costmatrix and therefore requires O(n3+kn)

time, where k = nm. Thus, an optimal solution for problem (4.5) can be found in
O(n3) time, due to the assumption that n ≥ m. For the found solution, y j,(i,r) = 1
implies that job j is assigned to the r th position of machine Mi . The conditions of
(4.5) mean that each job will be assigned to a position and no position will be used
more than once. The following statement holds.

Theorem 4.2 Problem Rm| |∑C j can be solved in O
(
n3
)
time, by reduction to a

rectangular linear assignment problem.

4.1.3 Linear Assignment Problems with a Product Matrix

A special case of the LAP of the form (4.2) with a square cost matrix can be solved
faster if ci j = aib j , 1 ≤ i ≤ n, 1 ≤ j ≤ n, so that the input of the problem
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is determined by two arrays a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). Such
a problem is known as the linear assignment problem with a product matrix. This
problem can be seen as another representation of the problem of minimizing a linear
form

L(π) =
n∑

j=1

aπ( j)b j (4.6)

over a set of all permutations. Provided that

b1 ≥ b2 ≥ · · · ≥ bn (4.7)

holds, the problem reduces to finding a permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) of
the components of arraya, such that for anypermutationπ = (π(1),π(2), . . . ,π(n)),

the inequality
n∑

j=1

aϕ( j)b j ≤
n∑

j=1

aπ( j)b j (4.8)

holds. Section 2.1 of this book discusses this problem in detail and presents Theo-
rem 2.1, which is reproduced below, with an alternative proof.

The proof is based on the so-called Monge property of a matrix. A square matrix
C = (

ci j
)
n×n

is said to be a Monge matrix if its elements satisfy the following
property

ci j + crs ≤ cis + cr j , 1 ≤ i < r ≤ n, 1 ≤ j < s ≤ n. (4.9)

It is known that the linear assignment problem with a Monge cost matrix C =(
ci j
)
n×n has an optimal solution given by

xi j =
{
1, if i = j
0, otherwise,

so that theminimum total cost is equal to the sumof the elements of themain diagonal
of C.

Theorem 4.3 Provided that (4.7) holds, permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n))

such that
aϕ(1) ≤ aϕ(2) ≤ · · · ≤ aϕ(n)

satisfies (4.8), i.e., minimizes the linear form (4.6).

Proof Renumber the elements of array a = (a1, a2, . . . , an) in accordance with
permutation ϕ, so that a1 ≤ a2 ≤ · · · ≤ an . Then, matrix C = (

ci j
)
n×n with

ci j = aib j is a Monge matrix. Take arbitrary rows i and r , 1 ≤ i < r ≤ n, and
columns j and s, 1 ≤ j, s ≤ n. Write the cost matrix C = (

ci j
)
as

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1b1 · · · a1b j · · · a1bs · · · a1bn
... · · · ... · · · ... · · · ...

aib1 · · · aib j · · · aibs · · · aibn
... · · · ... · · · ... · · · ...

arb1 · · · arb j · · · arbs · · · arbn
... · · · ... · · · ... · · · ...

anb1 · · · anb j · · · anbs · · · anbn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the boxed elements are the costs ci j and crs , while the underlined elements
are the cis and cr j . Notice that the boxed elements and the underlined elements form
a rectangle, and the inequality (4.9) compares the sum of the diagonal elements of
this rectangle.

Suppose that the property (4.9) does not hold for the four chosen elements, i.e.,

ci j + crs > cis + cr j

or, equivalently,
aib j + arbs > aibs + arb j .

The latter inequality can be rewritten as

ai
(
b j − bs

)
> ar

(
b j − bs

)
.

Since (4.7) holds, we have ai > ar , which contradicts the chosen numbering a1 ≤
a2 ≤ · · · ≤ an . Thus, matrix C is a Monge matrix, and the smallest total cost is
equal to

∑n
j=1 a jb j and permutation ϕ = (ϕ(1),ϕ(2), . . . ,ϕ(n)) minimizes the

corresponding linear form. �

Finding a permutation ϕ that minimizes the linear form (4.6) requires the sorting
of two arrays of n numbers, which can be done in O(n log n) time. This permutation
matches the larger components of one of the two given arrays with smaller com-
ponents of the other array. This process is formally described in Algorithm Match
presented in Sect. 2.1.

See Sect. 4.5.1 for references and further discussion. In this book, we use different
versions of the linear assignment problem on several occasions.

4.2 Knapsack and Subset-Sum Problems

In this section, we give a brief discussion of the most popular problem of Boolean
programming, the linear knapsack problem, and its special case, the subset-sum

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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problem. The main focus of the discussion is on derivation of the fully polynomial-
time approximation schemes for these problems.

Let x =(x1, x2, . . . , xn) be a vector with n Boolean components, i.e., x j ∈ {0, 1},
1 ≤ j ≤ n. Consider the following problem:

maximize
n∑

j=1

β j x j

subject to
n∑

j=1

α j x j ≤ A

x j ∈ {0, 1}, j = 1, 2, . . . , n.

(4.10)

This problem is known as the (linear) knapsack problem. Its popular interpretation
is as follows. There are n items, and an item j is associated with a weight α j

and a profit value β j , 1 ≤ j ≤ n. All values of α j and β j , 1 ≤ j ≤ n, are
positive integers. The decision-maker wants to determine which of these items to
place into a knapsack of the weight capacity A in order to maximize the total profit
of the taken items. A Boolean decision variable x j is equal to 1 if item j is placed
into the knapsack; otherwise, it is equal to 0, 1 ≤ j ≤ n. Let a Boolean vector
x∗=(x∗

1 , x
∗
2 , . . . , x

∗
n

)
such that inequality

∑n
j=1 β j x∗

j ≥ ∑n
j=1 β j x j holds for all

feasible vectors x =(x1, x2, . . . , xn) be called an optimal solution of the problem.
A popular version of the knapsack problem is the subset-sum problem, which we

will also call Problem SSP. In this problem, it is assumed that β j = α j , 1 ≤ j ≤ n,
so that the problem becomes

maximize
n∑

j=1

α j x j

subject to
n∑

j=1

α j x j ≤ A

x j ∈ {0, 1}, j = 1, 2, . . . , n.

(4.11)

A possible interpretation of this problem can be presented in the following way.
Given a set of n items with an item j is associated with a weight α j , 1 ≤ j ≤ n, it is
required to find a subset of items of the largest total weight that does not exceed the
maximumweight capacity A. This problem is closely related to a scheduling problem
of finding a non-preemptive schedule that minimizes the makespan on two parallel
identical machines, i.e., problem P2| |Cmax. Indeed, if we interpret the value α j as
the processing time p j of job j ∈ N = {1, 2, . . . , n} and define A := 1

2 p(N ) =
1
2

∑
j∈N p j , then a solution to the problem (4.11) will determine the corresponding

optimal schedule: The jobs of set N1 = {
j ∈ N |x j = 1

}
are assigned to machine

M1, while the remaining jobs of set N2 = N\N1 are to be assigned to machine M2.
The value of the makespan is equal to max{p(N1), p(N2)}.
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The decision version of problem (4.11) is related to the well-known problem
Partition. Below, we reproduce its formulation from Sect. 1.3.2.

Partition: Given positive integers e1, . . . , er and the index set R = {1, . . . , r} such
that e(R) = ∑

i∈R ei = 2E , is it possible to partition set R into disjoint subsets R1

and R2 such that e(R1) = ∑
i∈R1

ei = E and e(R2) = ∑
i∈R2

ei = E?
To see the link between Partition and problem (4.11), given an arbitrary instance

of the former problem, define an instance of the latter problem such that n = r ,
α j = e j , 1 ≤ j ≤ n, and A = E . Due to this link, we deduce that Problem SSP is
NP-hard in the ordinary sense. The same complexity status has the general knapsack
problem (4.10).

The knapsack problem admits a solution by a dynamic programming (DP)
pseudopolynomial-time algorithm. We first outline a general idea of the algorithm
and then present its efficient implementation.

The DP algorithm scans the items in the order of their numbering and for next
item k ∈ N gives the variable xk a value of either 0 or 1, provided that the latter
option is feasible. The algorithm generates partial solutions associated with the states
of the form:

(k, Zk, yk),

where

k is the number of the assigned variables;
Zk is the current value of the objective function; and
yk := ∑k

j=1 α j x j , the total weight of the items put into the knapsack.

Algorithm KPDP1

Step 1. Start with the initial state (0, Z0, y0) = (0, 0, 0).
Step 2. For all k from 1 to n, make transitions from each state of the form

(k − 1, Zk−1, yk−1) (4.12)

into the states of the form
(k, Zk, yk) (4.13)

by assigning the next variable xk .

(a) Define xk := 1, provided that item k fits into the knapsack, i.e., if the
inequality yk−1+αk ≤ A holds. If feasible, the assignment xk: = 1 changes
a state (4.12) to a state of the form (4.13), where

Zk := Zk−1 + βk, yk := yk−1 + αk . (4.14)

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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(b) Define xk := 0, which is always feasible. This assignment changes a state
of the form (4.12) to a state of the form (4.13), where

Zk := Zk−1; yk := yk−1. (4.15)

Step 3. Find Z∗
n , the largest value of Zn among all found states of the form

(n, Zn, yn). Perform backtracking and find vector x∗ = (
x∗
1 , x

∗
2 , . . . , x

∗
n

)
that

leads to Z∗
n . Output x

∗ as the solution vector and Z∗
n as the optimal value of the

objective function.

Below, we present a more efficient implementation of the DP algorithm. It com-
putes an array Z = (Z(0), Z(1), . . . , Z(A)), where Z(d) represents the largest
current value of the objective function, provided that the size of the knapsack is
equal to d, 0 ≤ d ≤ D. The elements of the array can only be updated if the next
item k ∈ N fits the knapsack, for the values of d between αk and A, taken in the
decreasing order. The value Z(d) is only updated if placing an item into the knapsack
increases the current value of the function.

Algorithm KPDP2

Step 1. For all integer d from 0 to A, compute Z(d) := 0.
Step 2. For all k from 1 to n, do

For all integer d from A down to αk , do
if Z(d − αk) + βk > Z(d), then compute Z(d) := Z(d − αk) + βk .

Step 3. Perform backtracking and find vector x∗ = (
x∗
1 , x

∗
2 , . . . , x

∗
n

)
that leads

to Z(A). Output x∗ as the solution vector and Z(A) as the optimal value of the
objective function.

The running time of Algorithm KPDP2 is O(nA), which is pseudopolynomial
with respect to the length of input of the problem.

Algorithm KPDP2 computes “profits for weights,” i.e., computes the values of
the objective function (profits) for all possible values of the knapsack weight. It
is possible to design an alternative form of the DP algorithm, which computes the
knapsack weights for a range of possible values of profits. To determine such a range,
we need an upper bound U on the optimal value of the function.

For the knapsack problem, the “profit-weight” ratio α j/β j is called the efficiency
of item j ∈ N . Notice that for Problem SSP, all items are equally efficient. For
the knapsack problem of the form (4.10), assume that the items are renumbered in
non-increasing order of their efficiencies and consider the continuous relaxation of
the knapsack problem obtained from (4.10) by replacing the integrality condition
x j ∈ {0, 1} by the inequality 0 ≤ x j ≤ 1 for all j ∈ N . The following statement
holds.

Theorem 4.4 Let x∗=(x∗
1 , x

∗
2 , . . . , x

∗
n

)
and xC = (xC1 , xC2 , . . . , xCn

)
be optimal solu-

tions to the knapsack problem (4.10) and to its continuous relaxation, respectively.
Then, there exists an index t such that
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xCj =

⎧
⎪⎨

⎪⎩

1, 1 ≤ j ≤ t
1
αt

(
A −∑t−1

i=1 αi

)
, j = t

0 t + 1 ≤ j ≤ n.

Besides, the inequalities

n∑

j=1

β j x
∗
j ≤ U =

n∑

j=1

β j x
C
j ≤ 2

n∑

j=1

β j x
∗
j

hold.

Thus, if the solution to the continuous relaxation is not fully integer, it contains
exactly one fractional component, 0 < xCt < 1.

A DP algorithm, which can be seen as an alternative to Algorithm KPDP2, com-
putes “weights for profits”. More formally, it computes an array Y = (Y (0),Y (1),
. . . ,Y (U )), where Y (q) represents the minimal smallest current weight of the knap-
sack, provided that the current profit value is equal to q, 0 ≤ q ≤ U . The elements
of array Y can be updated if for an item k ∈ N , the value of q is between βk and U ,
taken in the decreasing order. The value Y (q) is only updated if placing an item into
the knapsack decreases the minimal current weight of q.

Algorithm KPDP3

Step 1. Compute an upper bound U and set Y (0) := 0.
Step 2. For all integer q from 1 to U , compute Y (q) := A + 1.
Step 3. For all k from 1 to n, do

For all integer q from U down to βk , do
if Y (q − βk) + αk < Y (q), then compute Y (q) := Y (q − βk) + αk .

Step 4. Find Z∗ = max{q|Y (q) ≤ A}. Perform backtracking and find vector x∗ =(
x∗
1 , x

∗
2 , . . . , x

∗
n

)
that leads to Z∗. Output x∗ as the solution vector and Z∗ as the

optimal value of the objective function.

The running time of Algorithm KPDP3 is O(nU ), which is pseudopolynomial
with respect to the length of input of the problem.

We now explain how a dynamic algorithm can be converted into a fully
pseudopolynomial-time approximation scheme (FPTAS), which is the best possi-
ble approximation algorithm an NP-hard problem may admit.

We need to revise the definitions of approximation algorithms and schemes given
in Sect. 1.3.4, which are presented for scheduling problems with a minimization
objective. For a collection of decision variables x, consider a problem of maximizing
a function ϕ(x), with a positive optimal value ϕ(x∗). A polynomial-time algorithm
that finds a feasible solution xH such that the inequality ϕ(xH )/ϕ(x∗) ≥ ρ holds
for all instances of the problem is called a ρ-approximation algorithm and ρ ≤ 1
worst-case ratio bound. A family of ρ-approximation algorithms is called a fully
polynomial-time approximation scheme (FPTAS) if ρ = 1 − ε for any ε > 0 and
the running time is polynomial with respect to both the length of the problem input

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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and 1/ε. A special attention is paid to the design of FPTASs that require strongly
polynomial running time, i.e., time bounded by a polynomial that depends on n and
1/ε only.

The easiest way to demonstrate that the knapsack problem admits an FPTAS
that requires strongly polynomial running time is to apply Algorithm KPDP3 to a
modified instance of the original problem, in which the profit values are scaled to
become β′

j = ⌊
β j/Q

⌋
, j ∈ N , where Q is a suitably chosen scaling factor.

Algorithm KPFPTAS

Step 1. For a given ε > 0, compute Q := εβmax

n , where βmax := max
{
β j | j ∈ N

}
.

Step 2. Run Algorithm KPDP3 for the instance in which the profit values β j are
replaced by β′

j = ⌊
β j/Q

⌋
, j ∈ N .

Step 3. For the found solution vector xε = (
xε
1, x

ε
2, . . . , x

ε
n

)
, compute the value

Z ε of the objective function with respect to the original profit values β j , j ∈ N .
Output xε as the vector of an approximate solution and Z ε as an approximated
value of the objective function.

It is clear that in the scaled instance used in Step 2, the inequalities β′
j ≤ n

ε
, j ∈ N ,

hold. This implies that the value nmax
{
β′
j | j ∈ N

}
≤ n2

ε
can be used as an upper

bound U on the objective function of the scaled instance, i.e., Step 2 will require
O(nU ) = O

(
n3/ε

)
time, i.e., the running time of Algorithm KPFPTAS is strongly

polynomial. It can be proved that it outputs a value Z ε ≥ (1 − ε)
∑

j∈N β j x∗
j .

There are various techniques that can be used to reduce both time and space
required for implementing an FPTAS for the knapsack problem. To the best of our
knowledge, the best FPTASrequires O

(
nmin

{
log n, log 1

ε

}
+ 1

ε2
log 1

ε min
{
n, 1

ε log 1
ε

})

time and O
(
n + 1

ε2

)
space, which makes it a practical algorithm for solving knapsack

problem of a reasonable size.
A better FPTAS is available the subset-sum problem (see the statement below).

Theorem 4.5 Problem SSP of the form (4.11) admits an FPTAS that for a given
positive ε, either finds an optimal solution x∗

j ∈ {0, 1}, j ∈ N, such that

∑

j∈N
α j x

∗
j < (1 − ε)A

or finds an approximate solution xε
j ∈ {0, 1}, j ∈ N, such that

(1 − ε)A ≤
∑

j∈N
p j x

ε
j ≤ A.

Such an FPTAS requires O
(
min

{
n/ε, n + 1

ε2
log
(
1
ε

)})
time and O

(
n + 1

ε

)
space.

Section 4.5.2 briefly discusses the related issues and provides necessary refer-
ences.
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4.3 Half-Product: Approximation and Relaxation

In this section, we give a brief discussion of the problem of quadratic Boolean
programming, known as the half-product problem. The main focus of the discussion
is on derivation of the fully polynomial-time approximation schemes for this and
related problems. We also present an approach to solving its continuous relaxation
in polynomial time.

4.3.1 Formulation and Approximation

Let x =(x1, x2, . . . , xn) be a vector with n Boolean components. Consider the func-
tion

H(x) =
n∑

1≤i< j≤n

αiβ j xi x j −
n∑

j=1

γ j x j , (4.16)

where for each j, 1 ≤ j ≤ n, the coefficients α j and β j are nonnegative integers,
while γ j is an integer that can be either negative or positive. The function H(x) is
called a half-product since its quadratic part consists of roughly half of the terms

of the product
(∑n

j=1 α j x j

)(∑n
j=1 β j x j

)
. Notice that we only are interested in

the instances of the problem for which the optimal value of the function is strictly
negative; otherwise, setting all decision variables to zero solves the problem.

We refer to the problem of minimizing function H(x) of the form (4.16), as
ProblemHP. Let aBoolean vector x∗=(x∗

1 , x
∗
2 , . . . , x

∗
n

)
such that inequality H(x∗) ≤

H(x) that holds for all Boolean vectors x =(x1, x2, . . . , xn) be called an optimal
solution of the problem. This problem is known to be NP-hard in the ordinary sense,
even ifα j = β j . It has numerous applications, mainly to machine scheduling. Notice
that in those applications, a scheduling objective function usually is written in the
form

F(x) = H(x) + K , (4.17)

where K is a given additive constant. We refer to the problem of minimizing function
F(x) of the form (4.17), as Problem HPAdd.

For illustration, below we give an example of a scheduling problem that can be
reformulated in terms of Problem HPAdd.

Consider the problem P2| |∑w jC j . The jobs of set N = {1, 2, . . . , n} have to
be assigned to be processed without preemption on one of the machines M1 or M2,
and each machine processes at most one job at a time. The processing of job j ∈ N
on anymachine takes p j time units. There is a positive weightw j associated with job
j , which indicates its relative importance. All values p j andw j are positive integers.
The goal is to minimize the weighted sum of the completion times.
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Assume that the jobs are numbered in such a way that

p1
w1

≤ p2
w2

≤ · · · ≤ pn
wn

. (4.18)

Recall from Sect. 2.2 that the sequence of jobs numbered in accordance with
(4.18) is called a WSPT weighted shortest processing time sequence. In an optimal
schedule for the classical single machine problem of minimizing the sum of the
weighted completion times

∑
j∈N w jC j , the jobs are processed according to the

WSPT sequence. Thus, for problem P2| |∑w jC j , there exists an optimal schedule
in which the jobs are processed on each machine in the order of their numbering.

Introduce Boolean decision variables and define

x j :=
{
1, if job j is scheduled on machine M1

0, otherwise
.

Then, for a schedule in which the jobs are considered in the order of a chosen
numbering, a job j assigned to machine M1 completes at time

C j =
j∑

i=1

pi xi ;

otherwise, its completion time is

C j =
j∑

i=1

pi (1 − xi ).

For problem P2| |∑w jC j , we derive

n∑

j=1

w jC j =
n∑

j=1

w j x j

j∑

i=1

pi xi +
n∑

j=1

w j
(
1 − x j

) j∑

i=1

pi (1 − xi ),

which due to x2j = x j , j ∈ N , can be rewritten as

n∑

j=1

w jC j =
n∑

j=1

w j x j

j−1∑

i=1

pi xi +
n∑

j=1

w j
(
1 − x j

) j−1∑

i=1

pi (1 − xi )

+
n∑

j=1

p jw j x j +
n∑

j=1

p jw j
(
1 − x j

)
(4.19)

=
n∑

j=1

w j x j

j−1∑

i=1

pi xi +
n∑

j=1

w j
(
1 − x j

) j−1∑

i=1

pi (1 − xi ) +
n∑

j=1

p jw j .

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Since

∑

1≤i< j≤n

piw j (1 − xi )(1 − x j ) =
∑

1≤i< j≤n

piw j xi x j +
∑

1≤i< j≤n

piw j

−
n∑

j=1

⎛

⎝w j

(
j−1∑

i=1

pi

)

+ p j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠

⎞

⎠x j ,

we deduce that

n∑

j=1

w jC j = 2
∑

1≤i< j≤n

piw j xi x j +
∑

1≤i< j≤n

piw j +
n∑

j=1

p jw j .

−
n∑

j=1

⎛

⎝w j

(
j−1∑

i=1

pi

)

+ p j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠

⎞

⎠x j

= 2
∑

1≤i< j≤n

piw j xi x j +
∑

1≤i≤ j≤n

piw j

−
n∑

j=1

⎛

⎝w j

(
j−1∑

i=1

pi

)

+ p j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠

⎞

⎠x j .

Thus, problem P2| |∑w jC j reduces to Problem HPAdd with

α j = 2p j , β j = w j , γ j = w j

⎛

⎝
j−1∑

i=1

pi

⎞

⎠+ p j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠, j ∈ N ; K =
∑

1≤i≤ j≤n

piw j .

Similarly to the problems related to the linear knapsack problem discussed in
Sect. 4.2, a major direction of research on the half-product problem and its vari-
ants is aimed at designing fully polynomial-time approximation scheme (FPTAS),
especially those of strongly polynomial time.

We need to refine the definition of an FPTAS for a problem of minimizing a
function ϕ(x)which takes both positive and negative values, which happens to Prob-
lem HP. For such a problem, an FPTAS delivers a feasible solution xH such that
ϕ(xH ) − ϕ(x∗) ≤ ε|ϕ(x∗)|.

Below, we present an FPTAS for Problem HP of minimizing function H(x),
without an additive constant. We start with a pseudopolynomial DP algorithm and
then explain how it can be converted into an approximation scheme.

The DP algorithm scans the items in the order of their numbering and for next
item k ∈ N gives the variable xk either a value of 0 or value of 1; here, both options
are feasible. The algorithm generates partial solutions associated with states of the
form (k, Zk, yk), which have the same meaning as in the case of Algorithm KPDP1



4.3 Half-Product: Approximation and Relaxation 75

from Sect. 4.2, except yk := ∑k
j=1 α j x j is not interpreted the total weight of the

items put into the knapsack. Since the optimal value of the function is negative, an
assignment xk = 1 is made only if it decreases the current value of the function.

Algorithm HPDP

Step 1. Define the initial state (0, Z0, y0) := (0, 0, 0) and store that state.
Step 2. For all k from 1 to n, do

(a) Define xk := 0 and change a stored state of the form (4.12) to a state of the
form (4.13) by setting

Zk := Zk−1, yk := yk−1. (4.20)

(b) If βk yk−1 − γk < 0, then define xk := 1 and change a state of the form
(4.12) to a state of the form (4.13) by setting

Zk := Zk−1 + βk yk−1 − γk; yk := yk−1 + αk . (4.21)

(c) For all generated states of the form (4.13) with the same value Zk , store
only one, with the smallest yk .

Step 3. Find Z∗
n , the largest value of Zn among all found states of the form

(n, Zn, yn). Perform backtracking and find vector x∗ = (
x∗
1 , x

∗
2 , . . . , x

∗
n

)
that

leads to Z∗
n . Output x

∗ as the solution vector and Z∗
n as the optimal value of the

objective function.

Algorithm HPDP can be implemented in O
(
n
∑

j∈N α j

)
time. Its correctness

follows from the fact that for two states (k, Zk, yk) and (k, Z ′
k, y

′
k) generated in

iteration k, we can keep only the former state, provided that Zk ≤ Z ′
k and yk ≤ y′

k .
To convert Algorithm HPDP into an FPTAS for Problem HP, a popular technique

of thinning the solution space can be used. For a given ε > 0, we want to make
sure that the number of states kept after each iteration is O(n/ε). For an iteration
k, 1 ≤ k ≤ n, compute LBk , the smallest objective function value among all states
(k, Zk, yk) generated after Step 2(b) of Algorithm HPDP. Recall that LBk , as well
as all other function values computed by the algorithm, is negative. Thus, since
LBk ≥ H(x∗), we deduce that |LBk | ≤ |H(x∗)|. For a given ε > 0, define �k :=
(ε|LBk |)/n = −εLBk/n. It follows that for each k, 0 ≤ k ≤ n − 1, the inequality
�k ≤ ε|H(x∗)|/n holds.

Now, we replace Step 2(c) by another storage mechanism:

(i) Divide the interval [LBk, 0] into subintervals of length �k .

(ii) From all states (k, Zk, yk) of the form (4.13) generated after Step 2(b) with Zk

in the same subinterval, retain the one with the smallest yk .

Algorithm HPDP with Step 2(c) replaced by the actions (i) and (ii) described
above will be referred to as Algorithm HPFPTAS. Let vector xε be found by this
algorithm. It can be proved that H(xε) − H(x∗) ≤ ε|H(x∗)|.
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Notice that the number of subintervals created in each iteration is O(n/ε). Since
for each subinterval, at most one state is kept with the function value in that subin-
terval, the total number of states kept in each iteration is O(n/ε).

Iteration k starts with O(n/ε) states of the form (4.12) kept, and each state will
make transitions to at most two new states. For each of these states (k, Zk, yk) of
the form (4.13), it takes constant time to identify a subinterval I of length �k that
contains the value Zk . If there is no kept state associated with subinterval I , the state
(k, Zk, yk) becomes a kept state; otherwise, state (k, Zk, yk) is compared with the
kept state associated with I and the one with the smaller value yk is kept. This means
that for each iteration, the storage mechanism outlined above can be implemented in
O(n/ε) time.

Thus, Algorithm HPFPTAS behaves as an FPTAS, and the following statement
holds.

Theorem 4.6 Problem HP admits an FPTAS that requires O
(
n2/ε

)
time.

Notice that this running time is the best possible, at least regarding the number n
of items, since it takes O

(
n2
)
time to compute the value of function H(x) for a given

Boolean vector x.
Algorithms that behave as an FPTAS for Problem HP do not necessarily deliver

an ε-approximate solution for Problem HPAdd of minimizing function (4.17). This
is due to the presence of an additive constant of the sign that is opposite to the sign
of the variable part of the function.

To illustrate this, consider a function of the form (4.17). If vector x∗ minimizes
function H(x) of the form (4.16), it will obviously minimize function F(x) as well.
Suppose that for minimizing function H(x), an FPTAS is available that delivers a
solution xε, such that H(xε) − H(x∗) ≤ ε|H(x∗)|.

For xε to be accepted as an ε-approximate solution for minimizing function F(x),
we must establish the inequality

F(xH ) ≤ (1 + ε)F(x∗). (4.22)

For a solution xε found by an FPTAS for minimizing H(x), we will have

F(xε) = H(xε) + K ≤ H(x∗) + ε
∣
∣H(x∗)

∣
∣+ K = F(x∗) + ε

∣
∣H(x∗)

∣
∣.

Since H(x∗) < 0, we have F(xε) ≤ F(x∗) − εH(x∗) ≤ (1 − ε)F(x∗) + εK .

If K > 0, there is no evidence that (4.22) will hold, and further analysis must be
performed.

There are several ways of achieving an FPTAS for ProblemHPAdd. It is especially
challenging to develop an FPTAS of the best possible running time O

(
n2/ε

)
.

Several of these approaches are mentioned below.

Theorem 4.7 Let xε be a solution found by an FPTAS for Problem HP. If
|H(x∗)/F(x∗)| ≤ ρ for some positive ρ > 0, then F(xε) − F(x∗) ≤ ερF(x∗).
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Proof It follows fromH(xε)−H(x∗) ≤ ε|H(x∗)| that F(xε)−F(x∗) = (H(xε) + K )

− (H(x∗) + K ) ≤ ε|H(x∗)|. Since by the theorem’s condition |H(x∗)| ≤ ρF(x∗),
we deduce that the theorem holds. �

Another approach is applicable if the ratio of an upper bound and a lower bound
on the optimal value of function (4.17) is bounded. For Problem HPAdd, suppose
that we know an upper bound UB on the optimal value F(x∗). The following DP
algorithm is a modification of Algorithm HPDP. It also manipulates the states of the
form (k, Zk, yk), but now Zk is the current value of the objective function (4.17).
The states with a value of Zk greater than UB are not kept, since the corresponding
partial solutions cannot be extended to an optimal solution.

Algorithm HPAddDP

Step 1. Start with the initial state (0, Z0, y0) := (0, K , 0) and store that state.
Step 2. For all k from 1 to n, do

(a) Define xk := 0 and change a state (4.12) to a state of the form (4.13) by
setting (4.20).

(b) If βk yk−1 − γk < 0, then define xk := 1 and change a state of the form
(4.12) to a state of the form (4.13), by setting (4.21).

(c) For a given upper boundUB, remove the states (k, Zk, yk) with Zk > UB.

(d) For generated all states of the form (4.13) with the same value Zk keep only
one, with the smallest yk .

Step 3. Find Z∗
n , the largest value of Zn among all found states of the form

(n, Zn, yn). Perform backtracking and find vector x∗ = (
x∗
1 , x

∗
2 , . . . , x

∗
n

)
that

leads to Z∗
n . Output x

∗ as the solution vector and Z∗
n as the optimal value of the

objective function.

Algorithm HPAddDP can be implemented in O(nU B) time. As for Algo-
rithm HPDP, the correctness of Algorithm HPAddDP follows from the fact that
for two states (k, Zk, yk) and (k, Z ′

k, y
′
k) generated in iteration k, we can keep only

the former state, provided that Zk ≤ Z ′
k and yk ≤ y′

k .
To convert Algorithm HPAddDP into an FPTAS for Problem HPAdd, a technique

similar to that used above for developing AlgorithmHPFPTAS can be employed. Let
LB be a lower bound on the optimal value F(x∗) such that UB/LB ≤ ρ for some
ρ ≥ 1. For an iteration k, 1 ≤ k ≤ n, compute UBk , the largest objective function
value among all states (k, Zk, yk) generated after Step 2(c) of Algorithm HPAddDP.
Define� := (εLB)/n. We need to replace Step 2(d) by another storage mechanism:

(i) Divide the interval [0,UBk] into subintervals of length �.

(ii) From all states (k, Zk, yk) of the form (4.13) generated after Step 2(c) with Zk

in the same subinterval, retain the one with the smallest yk .

Algorithm HPAddDP with Step 2(d) replaced by the actions (i) and (ii) described
above will be referred to as Algorithm HPRhoFPTAS.
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Theorem 4.8 For Problem HPAdd of minimizing function (4.17), denote the lower
and upper bounds on the value of F(x∗) by LB and U B, respectively, i.e., LB ≤
F(x∗) ≤ UB. If the ratio U B/LB is bounded from above by some ρ, then Algo-
rithm HPRhoFPTAS delivers a solution x0 such that F(x0) − LB ≤ εLB in
O(ρn2/ε) time.

If the value of ρ is bounded from above by a polynomial of the length of the input
of the problem, then Algorithm HPRhoFPTAS behaves as an FPTAS. Moreover,
if ρ is a constant, then such an FPTAS requires the best possible running time of
O
(
n2/ε

)
.

4.3.2 Convex Half-Product and Its Continuous Relaxation

Using the fact that for Boolean variables x2j = x j , j ∈ N , we can rewrite the
half-product function as

H(x) =
n∑

1≤i< j≤n

αiβ j xi x j −
n∑

j=1

γ j x j =
n∑

i=1

β j x j

j∑

i=1

αi xi −
n∑

j=1

(
γ j + α jβ j

)
x j .

(4.23)
The quadratic term of the above expression can be rewritten in the matrix form as

n∑

j=1

β j x j

j∑

i=1

ai xi − 1

2

n∑

j=1

α jβ j x j = 1

2
xTGx,

where

G =

⎡

⎢
⎢
⎢
⎣

α1β1 α1β2 · · · α1βn

α1β2 α2β2 · · · α2βn
...

...
. . .

...

α1βn α2βn · · · αnβn

⎤

⎥
⎥
⎥
⎦

. (4.24)

For illustration of the matrix representation of the half-product, consider the fol-
lowing example.

Example 4.2 Take the half-product function for n = 3 such that

α1 = 2, α2 = 3, α3 = 4; β1 = 3, β2 = 4, β4 = 5.

Then, for a Boolean vector x =(x1, x2, x3), we have that
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n∑

j=1

β j x j

j∑

i=1

ai xi = 3x1 × 2x1 + 4x2(2x1 + 3x2) + 5x3(2x1 + 3x2 + 4x3)

= 6x21 + 8x1x2 + 10x1x3 + 12x22 + 15x2x3 + 20x23

and
n∑

j=1

α jβ j x j =
n∑

j=1

α jβ j x
2
j = 6x21 + 12x22 + 20x33 ,

so that

n∑

j=1

β j x j

j∑

i=1

ai xi − 1

2

n∑

j=1

α jβ j x j = 3x21 + 8x1x2 + 10x1x3 + 6x22 + 15x2x3 + 10x23 .

On the other hand,

1

2

(
x1 x2 x3

)
⎛

⎝
2 × 3 2 × 4 2 × 5
2 × 4 3 × 4 3 × 5
2 × 5 3 × 5 4 × 5

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠

= 3x21 + 8x1x2 + 10x1x3 + 6x22 + 15x2x3 + 10x23 .

The following statement holds.

Theorem 4.9 MatrixG of the form (4.24) is positive semidefinite and function H(x)
is convex, provided that the items are numbered so that

α1

β1
≤ α2

β2
≤ · · · ≤ αn

βn
. (4.25)

Many known scheduling applications reduce tominimizing function (4.17), either
without any additional constraints, i.e., to Problem HPAdd, or with an additional
knapsack constraint

n∑

j=1

α j x j ≤ A. (4.26)

We can view the value α j as the weight of item j , 1 ≤ j ≤ n, i.e., x j = 1 means
that item j is placed into a knapsack with capacity A, while x j = 0 means that the
corresponding item is not placed into the knapsack. An important feature is that the
coefficients α j in the knapsack constraint are the same as in the quadratic terms of
the objective function.

Below, we present an approach to solving a continuous relaxation of Problem
HPAdd which works even if the knapsack constraint is imposed, provided that the
objective function is convex. The continuous relaxation is obtained from the original
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Boolean formulation by relaxing the integrality constraints and replacing the condi-
tion x j ∈ {0, 1} by 0 ≤ x j ≤ 1, j = 1, 2, . . . , n.

Introduce new decision variables χ j = α j x j , j = 1, 2, . . . , n, and using the
representation (4.23), rewrite the continuous relaxation of Problem HPAdd with the
knapsack constraint as

minimize Z =
n∑

j=1
c jχ j

j∑

i=1
χ j −∑n

j=1 γ′
jχ j + K ′

subject to
∑n

j=1 χ j ≤ A
0 ≤ χ j ≤ α j , j = 1, 2, . . . , n;

(4.27)

where c j = β j/α j , γ′
j = (

γ j + α jβ j
)
/α j , j ∈ N .We can reformulate the objective

function in an almost separable form

n∑

j=1

ciχi

j∑

i=1

χ j = 1

2

n∑

j=1

c jχ
2
j + 1

2

n−1∑

j=1

(
c j − c j+1

)
(

j∑

i=1

χi

)2

+ 1

2
cn

⎛

⎝
n∑

j=1

χ j

⎞

⎠

2

.

(4.28)
Due to the representation (4.28), the problem (4.27) can be reduced to finding a

flow of the minimum cost in a special network. Let G = (V, A) be a digraph called
network, where V is a set of vertices that contains a single source and a single sink
and A is the set of arcs. No arc enters the source, and no arc leaves the sink. A flow
f is a function that associates each arc of a network with a real number. Each arc
has a capacity, which is an upper bound on a feasible value of flow on that arc. The
value of the flow in a network is equal to the sum of flows on the arcs that leave the
source (or, equivalently, enter the sink). For all other vertices, the conservation law
must hold: The total flow that enters a vertex is equal to the total flow that leaves
that vertex. Additionally, each arc is associated with a cost of flow on that arc. In
the case that is most studied in the literature, the cost of flow f on an arc e is linear
and is equal to ce f . The problem of minimizing the sum of these costs is a classical
problem of network optimization known as the min-cost flow problem. Notice that
if the capacities of the arcs are integer, the min-cost flow is also integer.

Introduce the networkG with the set V of vertices and set E of arcs. Set V consists
of a single source vs , a single sink vt , the verticeswn, wn−1, . . . , w2, and the vertices
tn, tn−1, . . . , t1. Set E consists of the following arcs: (vs, wn) of capacity A, (w j , t j )
of capacityα j , and (w j , w j−1) of capacities

∑ j−1
i=1 αi for j = n, n−1, . . . , 3; (w2, t2)

and (w2, t1) of capacities α2 and α1, respectively; besides, for each j , 1 ≤ j ≤ n,
vertex t j is connected to the sink by the arc

(
t j , vt

)
of capacity α j . Let f be a

flow on an arc, then the cost of that flow is defined as 1
2cn f

2 for arc (vs, wn); as
1
2

(
c j−1 − c j

)
f 2 for each arc (w j , w j−1)where j = n, n−1, . . . , 3; as 1

2c j f
2−γ′

j f

for the arc that enters vertex t j , j = 2, 3, . . . , n; and as (c1 − 1
2c2) f

2 − γ′
1 f for arc

(w2, t1), while the cost of the flow on each arc that enters the sink is zero. It can be
verified that the minimum cost of the flow in the constructed network corresponds
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Fig. 4.1 A rooted tree for n = 4 with the leaves connected to the sink vt for Example 4.3

to the minimum value of Z − K , while the flow on the arc that enters vertex t j is
equal to the corresponding value of the decision variable χ j .

Example 4.3 For illustration, consider the example below for n = 4. The network
is shown in Fig. 4.1, while its parameters are given in Table 4.1.

Thus, the problem (4.27) reduces to finding the flow that minimizes a quadratic
convex cost function. The latter problem admits a polynomial-time algorithm, as
stated below.

Theorem 4.10 Let G = (V, E) be a network that is a series-parallel digraph with
an additional single source and a single sink. Then, the problem of finding a flow
of total value q that minimizes a convex quadratic cost function can be solved in
O(|V ||E | + |E | log|E |) time, the flow values being piecewise linear functions of q.

Consult Sect. 3.1.2 for the definition of a series-parallel digraph. In our case,
network G is a tree with a single source and a single sink, so that |V | = O(n) and
|E | = O(n). The value q of the total flow should be set equal either to

∑
j∈N α j if

no knapsack constraint is imposed or to A if the constraint (4.26) is added.
We conclude that the following statement holds.

Theorem 4.11 For a convex objective function, the continuous relaxation of Prob-
lemHPAdd, without and with the linear knapsack constraints, can be solved in O(n2)
time.

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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Table 4.1 Parameters of the network for Example 4.3

Arc Capacity Cost for flow f

(vs , w4) A 1
2 c4 f

2

(w4, w3) α1 + α2 + α3
1
2 (c3 − c4) f 2

(w4, t4) α4
1
2 c4 f

2 − γ′
4 f

(w3, w2) α1 + α2
1
2 (c2 − c3) f 2

(w3, t3) α3
1
2 c3 f

2 − γ′
3 f

(w2, t2) α2
1
2 c2 f

2 − γ′
2 f

(w2, t1) α1 (c1 − 1
2 c2) f

2 − γ′
1 f

(t1, vt ) α1 0

(t2, vt ) α2 0

(t3, vt ) α3 0

(t4, vt ) α4 0

Theorem 4.11 can be used for finding a lower bound on the optimal objective
function values for problems related to minimizing the half-product.

4.4 Symmetric Quadratic Functions

In this section, we address the issues of design of the approximation schemes for
minimizing special forms of the half-product, without additional constraints andwith
a linear knapsack constraint.

Consider the function

P(x) =
n∑

1≤i< j≤n

αiβ j xi x j +
n∑

j=1

μ j x j +
n∑

j=1

ν j
(
1 − x j

)+ K , (4.29)

where all coefficients α j ,β j , μ j , ν j , and K are nonnegative integers. The problem of
minimizing the function P(x) of the form (4.29) is called the positive half-product
problem or Problem PosHP. The knapsack-constrained variant of Problem PosHP
can be written as

minimize P(x) =
n∑

1≤i< j≤n

αiβ j xi x j +
n∑

j=1

μ j x j +
n∑

j=1

ν j
(
1 − x j

)+ K

subject to
n∑

j=1

α j x j ≤ A

x j ∈ {0, 1}, j = 1, 2, . . . , n,

(4.30)
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which we call the positive half-product knapsack problem and denote by Prob-
lem PosHPK.

Consider also another quadratic function

Z(x) =
∑

1≤i< j≤n

αiβ j xi x j +
∑

1≤i< j≤n

αiβ j (1 − xi )(1 − x j ) +
n∑

j=1

μ j x j +
n∑

j=1

ν j (1 − x j ) + K ,

(4.31)

where all coefficients are non-negative. We call function Z(x) of the form (4.31)
a symmetric quadratic function. The problem of minimizing function Z(x) without
additional constraints is calledProblemSQ, and its versionwith a knapsack constraint
(4.26) is called the symmetric quadratic knapsack problem, or Problem SQK. The
term “symmetric” is used because both the quadratic and the linear parts of the
objective function are separated into two terms: one depending on the variables x j ,
and the other depending on the variables (1 − x j ).

Function Z(x) of the form (4.31) is a generalization of function P(x) of the form
(4.29), since the former function contains an additional quadratic term. The objective
function Z(x) of the form (4.31) can be rewritten as

Z(x) =
n∑

i=1

⎛

⎝μi − αi

n∑

j=i+1

β j − βi

⎛

⎝
i−1∑

j=1

α j

⎞

⎠− νi

⎞

⎠xi (4.32)

2
n∑

1≤i< j≤n

αiβ j xi x j + K +
n∑

i=1

⎛

⎝αi

n∑

j=i+1

β j + νi

⎞

⎠,

i.e., in a form that used in the formulation of Problem HPAdd, i.e., both functions
(4.29) and (4.31) are special forms of the general half-product functions (4.17).

Table 4.2 summarizes the notation introduced above for all quadratic Boolean
programming problems considered in this and the previous sections.

The interest in functions (4.29) and (4.31) is motivated by the fact that for all
known scheduling problems that admit a reformulation as Problem HPAdd (with or
without the knapsack constraints), the objective function can in fact be rewritten as

Table 4.2 Notation for Boolean programming problems under consideration

Notation Objective/formulation Additional constraints

HP H(x) (4.16) None

HPAdd F(x) (4.17) None

PosHP P(x) (4.29) None

PosHPK P(x) (4.30) (4.26)

SQ Z(x) (4.31) None

SQK Z(x) (4.31) (4.26)
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either a positive half-product or a symmetric quadratic function. Specific features of
these functions allow us to design fast FPTASs for their minimization.

Theorem 4.12 Each Problem PosHP and Problem PosHPK admits an FPTAS that
requires O

(
n2/ε

)
time, provided that the objective function is convex.

As one of the ingredients of these schemes, finding a solution to the continuous
relaxation is required, as described in Sect. 4.3.

Problem SQK also admits an FPTAS under special conditions, which hold for all
its applications.

Theorem 4.13 Problem SQK of minimizing function (4.31) subject to a linear knap-
sack constraint (4.26) admits an FPTAS that requires O

(
n4/ε2

)
time, provided that

either the problem admits a constant ratio approximation algorithm that requires at
most O

(
n4
)
time, or the objective function is convex and ν j ≥ α jβ j , j ∈ N .

See Sect. 4.5.3 for a discussion and references.
In the remainder of this section,we derive an FPTAS forminimizing function Z(x)

of the form (4.31), provided that the function is convex. The resulting FPTAS takes
the best possible running time of O

(
n2/ε

)
and can be applied to various scheduling

problems, including problem P2| |∑w jC j discussed in Sect. 4.3.1.
First, notice that due to (4.32) function Z(x) is a form of the half-product, so

that we can rely on the results known for Problem HPAdd. The main ingredient for
developing the required FPTAS is Theorem 4.8. To be able to apply it, we need to
demonstrate that function Z(x) admits an upper bound UB and a lower bound LB
on its optimal value such that UB/LB ≤ ρ, where ρ is a constant.

If function Z(x) is convex, then Theorem 4.11 holds and the continuous relaxation
can be solved in O

(
n2
)
time.

Let xC = (xC1 , . . . , xCn ), 0 ≤ xCj ≤ 1, be the corresponding solution vector of the
continuous relaxation of the problem of minimizing a convex function Z(x). Clearly,
Z(xC ) ≤ Z(x∗), and we may set LB = Z(xC ).

To obtain an upper bound UB, we perform an appropriate rounding of the frac-
tional components of vector xC . A very simple rounding algorithm is described
below.

Algorithm SQRound

Step 1. Given a vector xC = (xC1 , . . . , xCn ), 0 ≤ xCj ≤ 1, a solution to the
continuous relaxation of the problem of minimizing function (4.31), determine

the sets I1 =
{
j ∈ N , xCj ≤ 1

2

}
and I2 =

{
j ∈ N , xCj > 1

2

}
and find vector

xH = (xH
1 , . . . , xH

n ) with components

xH
j =

{
0 if j ∈ I1
1 if j ∈ I2

.
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Step 2. Output vector xH = (xH
1 , . . . , xH

n ) as heuristic solution for the problem
of minimizing function (4.31).

The running time of Algorithm SQRound is O(n). Clearly, the inequalities
Z(xC ) ≤ Z(x∗) ≤ Z(xH ) hold, i.e., we may take Z(xH ) as an upper bound UB on
the optimal value Fλ(x∗). We now estimate the ratio UB/LB = Z(xH )/Z(xC ).

Theorem 4.14 Let xC be an optimal solution to the continuous relaxation of the
problem of minimizing function Z(x) of the form (4.31) and xH be a vector found by
Algorithm SQRound. Then,

ρ = Z(xH )

Z(xC)
≤ 4.

Proof For a vector xC , let I1 and I2 be the index sets found in Step 2 of Algo-
rithm SQRound. For a vector x = (x1, . . . , xn), where 0 ≤ x j ≤ 1, define

Z1(x) :=
∑

1≤i< j≤n
i, j∈I1

αiβ j xi x j +
∑

1≤i< j≤n
i, j∈I1

αiβ j (1 − xi )
(
1 − x j

);

Z2(x) :=
∑

1≤i< j≤n
i∈I1, j∈I2

αiβ j xi x j +
∑

1≤i< j≤n
i∈I1, j∈I2

αiβ j (1 − xi )
(
1 − x j

);

Z3(x) :=
∑

1≤i< j≤n
i∈I2, j∈I1

αiβ j xi x j +
∑

1≤i< j≤n
i∈I2, j∈I1

αiβ j (1 − xi )
(
1 − x j

);

Z4(x) :=
∑

1≤i< j≤n
i, j∈I2

αiβ j xi x j +
∑

1≤i< j≤n
i, j∈I2

αiβ j (1 − xi )
(
1 − x j

);

Z5(x) :=
∑

j∈I1
μ j x j +

∑

j∈I1
ν j
(
1 − x j

);

Z6(x) :=
∑

j∈I2
μ j x j +

∑

j∈I2
ν j
(
1 − x j

)
.

By the rounding conditions in Step 2 of Algorithm SQRound, we derive

Z2(xH ) = Z3(xH ) = 0,
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while

Z1(xH ) =
∑

1≤i< j≤n
i, j∈I1

αiβ j ; Z1(xC) ≥ 1

4

∑

1≤i< j≤n
i, j∈I1

αiβ j ;

Z4(xH ) =
∑

1≤i< j≤n
i, j∈I2

αiβ j ; Z4(x
C ) ≥ 1

4

∑

1≤i< j≤n
i, j∈I2

αiβ j ;

Z5(xH ) =
∑

j∈I1
ν j ; Z5(xC) ≥ 1

2

∑

j∈I1
ν j ;

Z6(xH ) =
∑

j∈I2
μ j ; Z6(xC) ≥ 1

2

∑

j∈I2
μ j ;

Thus, we have that

Z(xH ) =
6∑

k=1

Zk(xH ) + K = Z1(xH ) + Z4(xH ) + Z5(xH ) + Z6(xH ) + K

≤ 4Z1(xC ) + 4Z4(xC ) + 2Z5(xC) + 2Z6(xC) + K

≤ 4
6∑

k=1

Zk(xC) + 4K = 4Z(xC ),

as required. �

It follows immediately from Theorem 4.14 that for the problem of minimizing a
convex function (4.31), Theorem 4.8 is applied with ρ = 4. Hence, we obtain the
following statement.

Theorem 4.15 ProblemSQofminimizing a convex function (4.31) admits anFPTAS
that requires O

(
n2/ε

)
time.

For illustration, apply Theorem 4.15 to problem P2| |∑w jC j . First, notice that
the objective function in problem P2| |∑w jC j given by (4.19) is a special case of
function (4.31) with

α j = p j , β j = w j , μ j = 0, ν j = 0, j ∈ N ; K =
n∑

j=1

p jw j .

Moreover, function (4.19) is convex, which follows from the WSPT numbering
(4.18) (see Theorem 4.9). Thus, a direct application of Theorem 4.15 yields the
following result.

Theorem 4.16 Problem P2| |∑w jC j of minimizing the sum of the weighted com-
pletion times on two parallel identical machines admits an FPTAS that requires
O
(
n2/ε

)
time.
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4.5 Bibliographic Notes

In this section, we give a brief review of the relevant literature sources that address
the Boolean programming problems discussed in this chapter.

4.5.1 Assignment Problem

A comprehensive exposition of various aspects of solving the linear assignment
problem is given in the monograph Burkard et al. (2009).

One of the most famous results in the area is the Hungarian algorithm by Kuhn
(1955) that solves the linear assignment problem of the form (4.2) with a square cost
matrix. Munkres (1957) proves that the Hungarian algorithm requires O

(
n3
)
time.

Algorithm LAPBL in Sect. 4.1.1 for solving a rectangular linear assignment prob-
lem of the form (4.1) is due to Bourgeois and Lassale (1971); this explains the use
of “BL” in the name of the algorithm.

Algorithm LAPD is given by Dinic (1976); this explains “D” in the name of the
algorithm. Algorithm LAPD was first published in Russian (for the maximization
problem) and to the best of our knowledge has not been earlier reproduced in English.
The method is based on the traditional ideas of Kuhn (1955) and Dinic and Kronrod
(1969), and its running time of O

(
n3 + nm

)
is the fastest known for the rectangular

assignment problem.
Horn (1973) and Bruno et al. (1974) reduce problem Rm| |∑C j to a Boolean

programming problem similar to (4.5). The running time of O
(
n3
)
stated in Theo-

rem 4.2 can be derived without the use of Algorithm LAPD.
See Burkard et al. (1996) for applications of Monge matrices in combinatorial

optimization, including the property used in the proof of Theorem 4.3.

4.5.2 Linear Knapsack Problem

Various aspects of solving the linear knapsack problem, its variants, and extensions
are studied in detail in the monographs by Martello and Toth (1990) and by Kellerer
et al. (2004).

Algorithm KPDP1 implements a classical Bellman’s recursion given by Bellman
(1957). In our description of Algorithms KPDP2 and KPDP3, we follow Kellerer
et al. (2004). The basic FPTAS similar to that presented in Algorithm KPFPTAS can
be found in Kellerer et al. (2004) and Vazirani (2003).

Historically, the first FPTAS for the knapsack problem and for the subset-sum
problem is due to Ibarra and Kim (1975). The best-known FPTAS for the knapsack
problem is developed by Kellerer and Pferschy (1999, 2004) (see also Kellerer et al.
(2004)). Theorem4.5 on the best knownFPTAS for ProblemSSP is proved inKellerer
et al. (2003).
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4.5.3 Half-Product Problem and Its Variants

A detailed reviews on Boolean programming problems related to optimizing the
half-product and related functions are given in Kellerer and Strusevich (2012, 2016).

Problems of minimizing quadratic functions similar to (4.16) were introduced in
1990s as mathematical models for various scheduling problems by Kubiak (1995)
and Jurisch et al. (1997). Function (4.16) and the term “half-product” were intro-
duced by Badics and Boros (1998), who considered the problem of minimizing that
function H(x) with respect to Boolean decision variables with no additional con-
straints. Badics and Boros (1998) also prove that minimizing H(x) is NP-hard in
the ordinary sense even if α j = β j for all j = 1, 2, . . . , n. By contrast, maximizing
function H(x) of the form (4.16) with respect to Boolean decision variables with
no additional constraints requires O

(
n3
)
time, as demonstrated by Kellerer et al.

(2015b).
The half-product function is a special case of the general quadratic function of

Boolean variables. Let
(
qi j
)
n×n be a symmetric quadratic matrix. For a Boolean

vector x =(x1, x2, . . . , xn), define the function

Q(x) =
∑

1≤i< j≤n

qi j xi x j −
n∑

j=1

γ j x j .

The problem of optimizing function Q(x) subject to a knapsack constraint is
known as the quadratic knapsack problem. In general, this problem is NP-hard in
the strong sense. See Chap.12 of the book by Kellerer et al. (2004) and a survey by
Pisinger (2007) for an overviewof principal results on this problem.Badics andBoros
(1998) give an O(n4)-time algorithm that recognizes whether a quadratic function
Q(x) of n Boolean variables is a half-product.

Algorithm HPFPTAS based on converting Algorithm HPDP is due to Erel and
Ghosh (2008). This algorithm is the first FPTAS for the problem that requires strongly
polynomial time. It is proved in Sarto Basso and Strusevich (2016) that Algo-
rithm HPFPTAS can be modified to become an FPTAS for handling the problem
of minimizing function H(x) subject to a knapsack constraint (4.26).

Theorem 4.7 is proved by Kubiak (2005), while Theorem 4.8 is due to Erel and
Ghosh (2008). These theorems are used for deriving FPTASs for several scheduling
problems that can be reformulated as Problem HPAdd (see Kellerer and Strusevich
(2012, 2016)).

An approach to solving the continuous relaxation of the problem of minimiz-
ing a convex half-product function that is finalized in Theorem 4.11 is developed
by Kellerer and Strusevich (2010b). Theorem 4.9 is proved by Skutella (2001).
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The representation (4.28) is provided by Shioura (2009). Theorem 4.10 and the
corresponding algorithm for finding the min-cost flow with a convex quadratic func-
tion is due to Tamir (1993).

Problem PosHP of the form (4.29) and its knapsack-constrained version Prob-
lem PosHPK of the form (4.30) have been introduced by Janiak et al. (2005) and by
Kellerer and Strusevich (2013), respectively. Theorem 4.12 that demonstrates that
both problems admit the fastest possible FPTAS with the running time of O

(
n2/ε

)

is proved in Kellerer and Strusevich (2013).
The studies on Problem SQK of the form (4.31) have been initiated by Kellerer

and Strusevich (2010a, b) who prove Theorem 4.13. Notice that the assumptions
in Theorem 4.13 hold for all known scheduling applications of Problem SQK
(see, e.g., Sect. 13.4.2). For Problem SQK without any additional assumptions
regarding the structure of the objective, Xu (2012) gives an FPTAS that requires
O
(
n4 log log n + n4/ε2

)
time.

Theorems 4.14 and 4.15 which lead to the best possible FPTAS for Problem SQ
with a convex objective function are proved in Kellerer et al. (2015a).

For problem P2| |∑w jC j , Theorem 4.15 presents an alternative approach to
an FPTAS that requires O

(
n2/ε

)
time. There are at least two schemes of the same

running time (see Sahni (1976) and Erel and Ghosh (2008)), where the latter paper
uses a reformulation of the problem in terms of minimizing a half-product.
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Chapter 5
Convex Sequences and Combinatorial
Counting

In this chapter, we establish certain properties that are used on several occasions in
this book. The main results that we present here primarily revolve around the convex
and V -shaped finite sequences and the inequalities that govern them. We prove an
inequality that involves an arbitrary non-decreasing function that depends on ceiling
functions, thereby establishing the convexity and V -shapeness of the corresponding
sequence. This sequence often appears in scheduling problems, especially when the
jobs of a given set are to be divided into a known number of groups. The V -shapeness
of this sequence enables us to speed up the running times of several algorithms that
we consider in this book (see, e.g., Chaps. 16 and 17).

Apart from the results related to convex and V -shaped sequences, we also present
a discussion on combinatorial counting. Again, such concepts are required when the
jobs of a given set are to be divided into a known number of groups.

5.1 Introduction to Convex and V -Shaped Sequences

A sequence A(k), 1 ≤ k ≤ n, is called convex if

A(k) ≤ 1

2
(A(k − 1) + A(k + 1)), 2 ≤ k ≤ n − 1, (5.1)

i.e., any element is no larger than the arithmetic mean of its neighbors. For a convex
sequence, the rate ∇(k) = A(k+1)− A(k) does not decrease as k grows. A concept
of a convex sequence is closely related to the notion of a log-convex sequence, for
which

A(k) ≤ √
A(k − 1)A(k + 1), 2 ≤ k ≤ n − 1,

i.e., any element is no larger than the geometric mean of its neighbors. Any log-
convex sequence is also convex due to the inequality between the arithmetic and
geometric means.
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A sequence C(k), 1 ≤ k ≤ n, is called V -shaped if there exists a k0, 1 ≤ k0 ≤ n,
such that

C(1) ≥ · · · ≥ C(k0 − 1) ≥ C(k0) ≤ C(k0 + 1) ≤ · · · ≤ C(n).

If a finite sequence that contains n terms is V -shaped, then its minimum value
and the position k0 of that minimum in the sequence can be found by binary search
in at most

⌈
log2 n

⌉
comparisons.

There is also a somewhat dual concept of the �-shaped sequence, also known
as unimodal sequence or pyramidal sequence, in which the elements are placed in
non-decreasing order and then in non-increasing order.

Below, we give an elementary proof that a convex sequence is in fact V -shaped.

Lemma 5.1 A convex sequence C(k), 1 ≤ k ≤ n, is V -shaped.

Proof Suppose that a convex sequence C(k), 1 ≤ k ≤ n, is not V -shaped, i.e., there
exists a k1, 1 < k1 < n, such that

C(k1 − 1) ≤ C(k1) > C(k1 + 1).

Combining the inequalities

C(k1 − 1) ≤ C(k1),

C(k1) > C(k1 + 1),

we obtain

C(k1) >
1

2
(C(k1 − 1) + C(k1 + 1)).

The latter inequality contradicts (5.1). ��
The statement opposite to Lemma 5.1 is not true: Indeed, any monotone sequence

is V -shaped, but need not be convex.
It can be immediately verified that the sum of two convex sequences is convex and,

therefore, is V -shaped. On the other hand, the sum of two V -shaped sequences is not
necessarily V -shaped, which, e.g., is demonstrated by the following counterexample.
For an integer n, 0 ≤ n ≤ 9, both sequences

√|n − 1| and √|n − 9| are V -shaped,
but their sum is not, since the sum has two equal maxima at n = 0 and n = 5, as
well as two equal minima at n = 1 and n = 9.

As an illustration, consider the following situation that we formulate as an inven-
tory control problem. Suppose that the sequence A(k), 1 ≤ k ≤ n, represents the
annual holding cost of some product, provided that k orders are placed during a year.
Let T be the cost of placing one order, so that B(k) = T k is the total ordering cost for
k orders. The purpose is to determine the optimal number of orders that minimizes
the total cost C(k) = A(k) + B(k). Notice that the sequence B(k), 1 ≤ k ≤ n, is
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convex and the sequence A(k), 1 ≤ k ≤ n, is non-increasing (themore frequently we
order, the smaller the holding cost will be). Now, if the sequence A(k), 1 ≤ k ≤ n, is
convex, thenC(k), 1 ≤ k ≤ n, is also convex and therefore V -shaped by Lemma 5.1.
Thus, the optimal number of orders can be found by binary search by computing at
most

⌈
log2 n

⌉
elements of sequence C(k), 1 ≤ k ≤ n. On the other hand, if the

sequence A(k), 1 ≤ k ≤ n, is not convex, then we cannot guarantee that sequence
C(k), 1 ≤ k ≤ n, is V−shaped. To see this, consider the case that T = 20 and
n = 5, while the sequence A(k), 1 ≤ k ≤ n, is as below.

A(1) = 100, A(2) = 70, A(3) = 60, A(4) = 25, A(5) = 20.

The sequence A(k), 1 ≤ k ≤ n, is not convex, and it is easy to verify that the
resulting sequence C(k), 1 ≤ k ≤ n, is not V -shaped.

5.2 Convexity of a Sequence Involving Sums of Functions
of Ceilings

Recall that for a real number x , the ceiling �x	 is equal to the smallest integer that is
no less than x , while the floor 
x� is equal to the largest integer that does not exceed
x .

The main focus of this chapter is on a specially structured sequence of the form

P(k) =
n∑

j=1

p jg

(⌈
j

k

⌉)
, 1 ≤ k ≤ n, (5.2)

where p j , 1 ≤ j ≤ n, is a sequence of non-negative numbers and g is an arbitrary
non-negative non-decreasing function.

We start our consideration with a simpler sequence

G(k) =
n∑

j=1

g

(⌈
j

k

⌉)
, 1 ≤ k ≤ n. (5.3)

The sequenceG(k), 1 ≤ k ≤ n, is a special case of the sequence P(k), 1 ≤ k ≤ n,
defined by (5.2); however, it is of interest in its own right. Consider, e.g., the following
interpretation of the sequence G(k), 1 ≤ k ≤ n. Suppose that the customers are to be
assigned, in order, to one of k service centers. Provided that the assignment is done

to keep the centers uniformly loaded, a customer j will get the position
⌈

j
k

⌉
at one of

the centers. Thus, the value of function g
(⌈

j
k

⌉)
can be understood as dissatisfaction

of customer j with its position at the center. In this case, G(k) represents the service
cost measured as the total dissatisfaction of all customers, provided that k centers
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are open. Let T be the cost of running a center, so that T (k) = kT is the total
cost of running k centers. The purpose is to determine the number of centers to be
open so that the total cost C(k) = G(k) + T (k), 1 ≤ k ≤ n, is minimized. The
sequence T (k), 1 ≤ k ≤ n, is convex, and for the sequence C(k), 1 ≤ k ≤ n, to be
V -shaped, it is sufficient to show that the sequence G(k), 1 ≤ k ≤ n, is convex.

Below, we give an elementary proof of the convexity of the sequence (5.3).

Theorem 5.1 The sequence G(k), 1 ≤ k ≤ n, of the form (5.3) is convex.

Proof In accordance with (5.1), we need to prove that

2G(k) − G(k − 1) − G(k + 1) ≤ 0, 2 ≤ k ≤ n − 1, (5.4)

Given a value of k, 2 ≤ k ≤ n − 1, for a j , 1 ≤ j ≤ n, we can express j as

ak + b, where a is an integer in
{
0, 1, . . . ,

⌊
j
k

⌋}
and b ≤ k. We can write

G(k) =

 n

k �−1∑

a=0

k∑

b=1

g

(⌈
ak + b

k

⌉)
+

n−k
 n
k �∑

b=1

g

(⌈⌊
n
k

⌋
k + b

k

⌉)

=

 n

k �−1∑

a=0

k∑

b=1

g

(
a +

⌈
b

k

⌉)
+

n−k
 n
k �∑

b=1

g

(⌊n
k

⌋
+
⌈
b

k

⌉)
.

Since b ≤ k, it follows that
⌈
b
k

⌉ = 1, so that

G(k) =

 n

k �−1∑

a=0

k∑

b=1

g(a + 1) +
n−k
 n

k �∑

b=1

g
(⌊n

k

⌋
+ 1

)

= k

 n

k �∑
r=1

g(r) +
(
n − k

⌊n
k

⌋)
g
(⌊n

k

⌋
+ 1

)
,

where in the second line, r = a+1 is a new summation index. Similarly, we deduce

G(k + 1) = (k + 1)

 n

k+1�∑

r=1

g(r) +
(
n − (k + 1)

⌊
n

k + 1

⌋)
g

(⌊
n

k + 1

⌋
+ 1

)
;

G(k − 1) = (k − 1)

 n

k−1�∑

r=1

g(r) +
(
n − (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
.
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To prove (5.4), we rewrite the difference 2G(k) − G(k + 1) − G(k − 1) as

⎛

⎝k

 n

k �∑
r=1

g(r) − (k + 1)

 n

k+1�∑

r=1

g(r)

⎞

⎠+
⎛

⎝k

 n

k �∑
r=1

g(r) − (k − 1)

 n

k−1�∑

r=1

g(r)

⎞

⎠

+2
(
n − k

⌊n
k

⌋)
g
(⌊n

k

⌋
+ 1

)
−
(
n − (k + 1)

⌊
n

k + 1

⌋)
g

(⌊
n

k + 1

⌋
+ 1

)

−
(
n − (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)

and show that it is non-positive.
Notice that the expression

k

 n

k �∑
r=1

g(r) − (k + 1)

 n

k+1�∑

r=1

g(r)

can be simplified by canceling the values of the function g computed for the same
values of r . Since

⌊
n
k

⌋ ≥ ⌊
n

k+1

⌋
, we obtain

k

 n

k �∑
r=1

g(r) − (k + 1)

 n

k+1�∑

r=1

g(r) = k

 n

k �∑
r=
 n

k+1�+1

g(r) −

 n

k+1�∑

r=1

g(r).

Similarly, since
⌊

n
k−1

⌋ ≥ ⌊
n
k

⌋
, we obtain

k

 n

k �∑
r=1

g(r) − (k − 1)

 n

k−1�∑

r=1

g(r) =

 n

k−1�∑

r=1

g(r) − k


 n
k−1�∑

r=
 n
k �+1

g(r).

Combining the last two equalities displayed above, we deduce that

⎛

⎝k

 n

k �∑
r=1

g(r) − (k + 1)

 n

k+1�∑

r=1

g(r)

⎞

⎠+
⎛

⎝k

 n

k �∑
r=1

g(r) − (k − 1)

 n

k−1�∑

r=1

g(r)

⎞

⎠

= k

⎛

⎝

 n

k �∑
r=
 n

k+1�+1

g(r) −

 n

k−1�∑

r=
 n
k �+1

g(r)

⎞

⎠+

 n

k−1�∑

r=
 n
k+1�+1

g(r),
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which reduces to

⎛

⎝k

 n

k �∑
r=1

g(r) − (k + 1)

 n

k+1�∑

r=1

g(r)

⎞

⎠+
⎛

⎝k

 n

k �∑
r=1

g(r) − (k − 1)

 n

k−1�∑

r=1

g(r)

⎞

⎠

= (k + 1)

 n

k �∑
r=
 n

k+1�+1

g(r) − (k − 1)

 n

k−1�∑

r=
 n
k �+1

g(r).

Coming back to the initial difference in (5.4), we have that

2G(k) − G(k + 1) − G(k − 1)

= (k + 1)

 n

k �∑
r=
 n

k+1�+1

g(r) − (k − 1)

 n

k−1�∑

r=
 n
k �+1

g(r)

+2
(
n − k

⌊n
k

⌋)
g
(⌊n

k

⌋
+ 1

)

−
(
n − (k + 1)

⌊
n

k + 1

⌋)
g

(⌊
n

k + 1

⌋
+ 1

)

Recombining, we deduce

2G(k) − G(k + 1) − G(k − 1)

= (k + 1)


 n
k �∑

r=
⌊

n
k+1

⌋
+2

g(r) +
(

(k + 1) −
(
n − (k + 1)

⌊
n

k + 1

⌋))
g

(⌊
n

k + 1

⌋
+ 1

)

−(k − 1)

⌊
n

k−1

⌋

∑

r=
 n
k �+2

g(r) +
(
2n − 2k

⌊n
k

⌋
− (k − 1)

)
g
(⌊n

k

⌋
+ 1

)

−
(
n − (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
.

To prove (5.4), we collect together the terms that make a positive contribution X
and a negative contribution Y so that 2G(k) − G(k + 1) − G(k − 1) = X − Y , and
show that X ≤ Y . It follows that

X =
(

(k + 1)

(⌊
n

k + 1

⌋
+ 1

)
− n

)
g

(⌊
n

k + 1

⌋
+ 1

)

+(k + 1)

 n

k �∑
r=
 n

k+1�+2

g(r) + (2n + 1)g
(⌊n

k

⌋
+ 1

)
;
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Y =
(
2k
⌊n
k

⌋
+ k

)
g
(⌊n

k

⌋
+ 1

)
+ (k − 1)


 n
k−1�∑

r=
 n
k �+2

g(r) +

+
(
n − (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
.

In the expression for X , the range of arguments of the function g is from
⌊

n
k+1

⌋+1
to
⌊
n
k

⌋+ 1, while in the expression for Y , the range of arguments of the function g

is from
⌊
n
k

⌋+ 1 to
⌊

n
k−1

⌋+ 1, so that we can write

X =

 n

k �+1∑

r=
 n
k+1�+1

xrg(r), Y =

 n

k−1�+1∑

r=
 n
k �+1

yrg(r),

where xr and yr are suitably chosen non-negative coefficients.
Computing


 n
k �+1∑

r=
 n
k+1�+1

xr = (k + 1)

(⌊
n

k + 1

⌋
+ 1

)
− n

+(k + 1)

(⌊n
k

⌋
−
⌊

n

k + 1

⌋
− 1

)
+ (2n + 1),


 n
k−1�+1∑

r=
 n
k �+1

yr =
(
2k
⌊n
k

⌋
+ k

)
+ (k − 1)

(⌊
n

k − 1

⌋
−
⌊n
k

⌋
− 1

)

+
(
n − (k − 1)

⌊
n

k − 1

⌋)
,

we deduce that both sums above are equal to (k + 1)
⌊
n
k

⌋+ n + 1. Thus, each X and
Y can be seen as the sum of (k + 1)

⌊
n
k

⌋+ n + 1 values of the function g; however,
for any i , 1 ≤ i ≤ (k + 1)

⌊
n
k

⌋ + n + 1, the i th smallest value of g(r) involved in
the expression for X is no larger than the i th smallest value of g(r) involved in the
expression for Y . This proves that X ≤ Y , i.e., 2G(k) − G(k + 1) − G(k − 1) ≤ 0,
so that the sequence G(k), 1 ≤ k ≤ n, is convex. ��

Now, we extend the convexity proof to the sequence (5.2), provided that the values
p j , 1 ≤ j ≤ n, follow a non-increasing sequence

p1 ≥ p2 ≥ · · · ≥ pn. (5.5)

According to the terminology adopted in Sect. 2.1.1, the values p j form an LPT
sequence.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Theorem 5.2 The sequence P(k), 1 ≤ k ≤ n, of the form (5.2) is convex, provided
that (5.5) holds.

Proof For a given j , 1 ≤ j ≤ n, define

A j (k) =
[
2g

(⌈
j

k

⌉)
− g

(⌈
j

k + 1

⌉)
− g

(⌈
j

k − 1

⌉)]
, 2 ≤ k ≤ n − 1.

By Theorem 5.1, due to the convexity of the sequence G(k), 1 ≤ k ≤ n, we
deduce that

q∑

i=1

Ai (k) ≤ 0 (5.6)

for each k, 2 ≤ k ≤ n − 1, and all q, 1 ≤ q ≤ n.

In order to prove the theorem, we need to demonstrate that the inequality

n∑

j=1

p j A j (k) ≤ 0 (5.7)

holds for each k, 2 ≤ k ≤ n − 1.
Fix a k, 2 ≤ k ≤ n − 1, and transform

n∑

j=1

p j A j (k) = pn

(
n∑

i=1

Ai (k) −
n−1∑

i=1

Ai (k)

)

+ pn−1

(
n−1∑

i=1

Ai (k) −
n−2∑

i=1

Ai (k)

)

+ · · ·

+p1A1(k)

= pn

n∑

i=1

Ai (k) + (pn−1 − pn)
n−1∑

i=1

Ai (k) + (pn−2 − pn−1)

n−2∑

i=1

Ai (k) + · · ·

+p1A1(k)

=
n∑

j=2

⎡

⎣(p j−1 − p j )

j−1∑

i=1

Ai (k)

⎤

⎦+ pn

n∑

i=1

Ai (k).

The last right-hand expression is non-positive due to (5.6) and the LPT numbering
of p j , so that the desired inequality (5.7) holds and the sequence P(k), 1 ≤ k ≤ n,
is convex. ��

The convexity of the sequence P(k), 1 ≤ k ≤ n, as established in Theorem 5.2,
allows us to use an efficient binary search algorithm to solve several problems con-
sidered in this book (see, e.g., Sects. 16.2.4 and 17.4).

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_17
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5.3 Combinatorial Counting

Many scheduling problems reduce to enumeration of several feasible solutions, and
we are required to choose the best among them as an optimal solution. For complete-
ness, we provide a brief review of some basic principles of combinatorics, which are
often used in this book.

• Combinations: A v-combination of a set S is a subset of v distinct elements of
S. If |S| = u, then the number of v-combinations is equal to

(
u

v

)
= u!

v!(u − v)! .

Since u!
(u−v)! = u(u − 1) × · · · × (u − v + 1) ≤ uv , we estimate

(
u

v

)
≤ uv

v! , (5.8)

which for a fixed v yields (
u

v

)
= O(uv)

• Arrangements: A v-arrangement of a set S is an ordered subset of v distinct
elements of S. If |S| = u, then the number of v-arrangements is equal to

(
u

v

)
v! = O(uv), (5.9)

because (5.8) holds.
• Partitions: A partition of a positive integer u into exactly v positive summands
is a sequence (z1, z2, ..., zv) of integers such that u = z1 + z2 + · · · + zv and
z1 ≥ z2 ≥ · · · ≥ zv ≥ 1. The total number of partitions of u into at most v positive
summands (i.e., exactly v non-negative summands) is denoted by P (≤v)

u and can
be estimated as

uv−1

v!(v − 1)! = O
(
uv−1

)
.

The total number of partitions of u into exactly v positive summands is

P (v)
u = P (≤v)

u − P (≤v−1)
u = O

(
uv−1

)
. (5.10)

• Compositions: A composition of an integer u made of v summands is a sequence
(z1, z2, ..., zv) of positive integers such that u = z1 + z2 + · · · + zv. The total
number of compositions C (v)

u in exactly v summands is given by
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C (v)
u =

(
u − 1

v − 1

)
, (5.11)

which can be estimated as O
(
(u − 1)v−1

) = O
(
uv−1

)
because (5.8) holds. The

number of compositions into at most v positive summands (i.e., exactly v non-
negative summands) is

C (≤v)
u =

(
u + v − 1

v − 1

)
, (5.12)

which can be estimated as O
(
(u + v − 1)v−1

) = O
(
uv−1

)
, because (5.8) and

u ≥ v hold.
The number of compositions of all integers that do not exceed u into at most v

positive summands can be expressed as

C (≤v)

(≤u) = C (≤v+1)
u =

(
u + v

v

)
. (5.13)

5.4 Bibliographic Notes

Convex sequences play an important role in the derivation of various inequalities.
Wu and Debnath (2007) give a necessary and sufficient condition for a sequence
to be convex in terms of majorization, and this gives access to a powerful toolkit
that is systematically exposed by Marshall and Olkin (1979). Various applications
of convex sequences to the problems of combinatorics, algebra, and calculus are
studied byMercer (2005), Toader (1996), andWu andDebnath (2007). An additional
important link between convex and log-convex sequences is pointed out by Došlić
(2009). In Operations Research, an application of convex sequences to a special form
of the assignment problem and their relations to the famous Monge property (see
Sect. 4.1.3 for definitions) is discussed in Sect. 5.2 of the monograph by Burkard
et al. (2009).

The V -shaped sequences often arise in optimization over a set of permutations, in
particular in machine scheduling. For a number of scheduling problems, it is possible
to establish that an optimal sequence of jobs possesses the V -shaped property; e.g.,
the elements of the input sequence of the processing times can be interchanged so that
the resulting sequence is V -shaped. This property has been explored in numerous
papers. Here, we refer to only five, mostly with the words “V -shaped” in the title (see
Alidaee and Rosa (1995), Alturki et al. (1996), Federgruen and Mosheiov (1997),
Mittenhal et al. (1995), and Mosheiov (1991)).

Theorems 5.1 and 5.2 are proved in Rustogi and Strusevich (2011) and Rustogi
and Strusevich (2012).

The pyramidal or�-shaped sequences are the main objects of study in identifying
efficiently solvable combinatorial optimization problems, in particular, the traveling

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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salesman problem. Here, we only refer to the two most recent surveys by Burkard
et al. (1998) and Kabadi (2007).

The sequence (5.2), or some version of it, is commonly found in the scheduling
literature, especially in problems in which a given set of jobs needs to be divided
into a known number of groups. In Chaps. 16 and 17, we encounter such sequences
while studying the problem of scheduling jobs with rate-modifying activities.

It should be noticed that although the ceiling function and its counterpart, the
floor function find applications in many areas, publications that study the relations
that involve these functions are quite scarce; we mention only Chap.3 of Graham
et al. (1989) and Nyblom (2002). There are several papers devoted to obtaining

closed form expressions of the sums
∑n

j=1

⌈
j
k

⌉
and

∑n
j=1

⌊
j
k

⌋
, as well as for their

generalizations; see Sivakumar et al. (1997) and Tuenter (1999, 2000).
In Sect. 5.3, we mainly follow the terminology and notation of Flajolet and

Sedgewick (2009) and Mott et al. (1986).
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Part II
Scheduling with Time-Changing Effects



Chapter 6
Introduction to Time-Changing Effects

In the models of classical scheduling such as those reviewed in Part I of this book,
the processing times of the jobs are given in advance and remain unchanged during
the whole planning period. Since the early 1990s, there has been a considerable
interest in enhanced models which allow the processing times of jobs to be affected
by their locations in the schedule. The material of this part presents the approaches to
handling scheduling problems under such time-changing effects. These models are
further extended in Part III, where we additionally allow for introducing activities
on the processing machines that are similar in nature to maintenance and change the
processing capabilities of the machines.

The purpose of this chapter was to introduce the reader to various time-changing
effects. For simplicity, belowwe focus on a singlemachine environment.Weare given
jobs of set N = {1, 2, . . . , n} to be processed on a single machine. Each job j ∈ N is
associated with its “normal” processing time p j . It is convenient to think of normal
processing times as the time requirements under normal processing conditions of
the machine, which might change during the processing, thereby affecting the actual
processing time of a job.

In the literature on scheduling with time-changing processing times, traditionally
there is a distinction between the so-called deterioration effects and learning effects.

Informally, under a deterioration effect, the later a job is placed in a schedule, the
longer it takes to process it. A common rationale, often found in practice, is that as the
schedule evolves the processing conditions of the machine get worse. For example,
in manufacturing, if the machine is a cutting tool it may lose its initial sharpness and
that will increase the actual processing times of some jobs.

Under a learning effect, an opposite phenomenon is observed: The later a job is
scheduled, the shorter its actual processing time is. To motivate a learning effect,
think of the machine as a human operator who gains experience during the process,
which leads to a certain processing time reduction.

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
Research & Management Science 243, DOI 10.1007/978-3-319-39574-6_6
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There is no reason to limit consideration of time-changing effects to monotone
effects only, such as deterioration and learning. This gives rise to an effect which has a
non-trivial influence on the actual processing times. For example, if a human operator
processes jobs on a certain equipment, then during the process the equipment might
be subject to wear and tear, i.e., it might deteriorate with time; however, the operator
simultaneously gains additional skills by learning from experience.

Mathematically, time-changing effects are represented by formulae that explicitly
show how normal processing time of a job is affected. There are several main types
of effects studied in the literature, which informally can be classified as follows:

• Positional effects: The actual processing time of a job is a function of its normal
processing time and the position it takes in a schedule;

• Start-time-dependent effects: The actual processing time of a job is a function of
its normal processing time and its start time in a schedule;

• Cumulative effects: The actual processing time of a job depends on its normal
processing time and a function of the normal processing times of previously sched-
uled jobs;

• Combined effects: These are non-trivial effects which usually combine a positional
effect with either a start-time-dependent effect or a cumulative effect.

In the reminder of this chapter, we present a brief discussion of each of the above
effects, mainly for a single machine environment.

6.1 Positional Effects

In general, a positional effect on the actual processing time of job j is defined by a
functiong j (r),where r, 1 ≤ r ≤ n, is the position of job j in the processing sequence.
The actual processing time p j (r) of job j sequenced in position r is given by

p j (r) = p jg j (r), j ∈ N , 1 ≤ r ≤ n, (6.1)

where g j (r) is called a (job-dependent) positional factor. It is often assumed that
g j (1) = 1, j ∈ N , which guarantees that for the job that is sequenced first, i.e., in
position r = 1, the actual processing time is equal to its normal time.

The formula (6.1) is useful when we want to trace the influence of the positional
factors on the normal time p j ; otherwise, it suffices to say that actual processing
times are taken from a matrix P = (

p jr = p j (r)
)
n×n , where the rows represent the

jobs and the columns represent the positions. If each row of matrix P is monotone
non-decreasing (or non-increasing), then we have a situation of positional deterio-
ration (or of positional learning, respectively). In the most general setting, the rows
of matrix P need not be monotone. Among the first papers that consider scheduling
problems with a general positional effect (6.1) are Bachman and Janiak (2004) and
Mosheiov and Sarig (2009).
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A job-dependent positional effect implies that each job has a different (unique)
effect on the state of the machine. Quite often, though, a change in the machine’s
processing conditions reflects similarly on all jobs, in which case we may talk about
a positional job-independent effect given by

p j (r) = p jg(r), j ∈ N , 1 ≤ r ≤ n, (6.2)

where g(r), 1 ≤ r ≤ n, forms an array of positional factors that is common for all
jobs. Similar to the above, if array g(r), 1 ≤ r ≤ n, is monotone non-decreasing
(or non-increasing), then we have a situation of positional deterioration (or of
positional learning, respectively). For the most general job-independent positional
effect, we make no assumption regarding the monotonicity of the elements of array
g(r), 1 ≤ r ≤ n.

For an informal illustration of a positional deterioration effect, imagine that in a
manufacturing shop, there are several parts that need a hole of the same diameter to
be punched through by a pneumatic punching unit. Ideally, the time that is required
for such an operation depends on the thickness of the metal to be punched through,
and this will determine normal processing times for all parts. In reality, however,
there occurs an unavoidable gas leakage after each punch, due to which the punching
unit loses pressure, so that the later a part is subject to punching, the longer it takes to
perform it, as compared to the duration under perfect conditions. Clearly, a positional
deterioration effect is observed.

Being part of the academia, the authors have noticed that positional learning
takes place when a teacher marks a number of coursework scripts based on the same
question paper. It takes a reasonably long time to mark the first two or three scripts,
then the teacher realizes the key factors to be checked, typical strong orweak points to
be looked for, and themarking process goes faster and faster with eachmarked script.

Research on scheduling problems with positional effects conducted prior to the
critical review Rustogi and Strusevich (2012) has had several limitations, from the
point of viewof the studiedmodels. First, earlier authors focused onmonotone effects
only, such as learning and deterioration; moreover, these two types of effects have
been often considered separately despite noticeable methodological similarities in
their treatment. Second, assumptions on the exact shape of positional factors have
been made (i.e., polynomial or exponential), despite the fact that many results would
hold for an arbitrary array of positional factors, as defined, e.g., in (6.2).

Single machine problems under positional effects to minimize the makespan, the
total completion time, andmore general objective functions are considered inChap.7.
Problems on parallel machines under positional effects are addressed in Chap.11

6.2 Time-Dependent Effects

We distinguish between two types of a start-time-dependent effect: additive andmul-
tiplicative. Under the additive effect, the actual processing time of a job is obtained

http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_11


108 6 Introduction to Time-Changing Effects

as the sum of its normal processing time and a function that depends on its start time.
On the other hand, under themultiplicative effect, the actual processing time of a job
is obtained as the product of its normal processing time and a function that depends
on its start time. Let p j (τ ) denote the actual processing time of job j ∈ N that starts
at time τ ≥ 0. Then, under a general additive effect, we define

p j (τ ) = p j + f j (τ ), (6.3)

while under a general multiplicative effect, we define

p j (τ ) = p j f j (τ ), (6.4)

where f j is a job-dependent function of start time.
It is common to assume that in (6.3) for each j ∈ N , the equality f j (0) = 0 holds.

Similarly, in (6.4) for each j ∈ N , the equality f j (0) = 1 holds. These assumptions
make sure that for the job that is sequenced first, i.e., starts at time zero, the actual
processing time is equal to its normal time.

If in (6.3), the inequalities f j (τ ) ≥ 0, j ∈ N , hold, we deal with a deterioration
effect, while the inequalities f j (τ ) < 0, j ∈ N , define a learning effect. In the latter
case, additional assumptions are normally imposed that prevent actual processing
times from becoming negative.

Similarly, in (6.4), a deterioration effect and a learning effect are represented by
the inequalities f j (τ ) ≥ 1, j ∈ N , and 0 < f j (τ ) ≤ 1, j ∈ N , respectively.

A systematic expositionof various aspects of schedulingwith start-time-dependent
effects has been undertaken in the monograph by Gawiejnowicz (2008). In partic-
ular, Sect. 5.4 of this book presents numerous examples of practical applications of
scheduling problems. One of these examples, based on paper Gawiejnowicz et al.
(2008), describe a single worker who performs maintenance of corroded items, and
for an item treated later in a schedule, the maintenance time increases since the item
gets more corroded than in the beginning of the process.

Additive start-time-dependent effects are probably themost studied among known
time-changing effects that affect the actual processing time of jobs in a schedule.
Papers Shafransky (1978) and Melnikov and Shafransky (1980) must be seen as
historically the first that introduce not only scheduling models with (additive) start-
time-dependent effects, but open up the whole area of scheduling with changing
times. There are several influential surveys, such as Alidaee and Womer (1999) and
Cheng et al. (2004), that review the developments in the area. Reviews of start-
time-dependent models with learning effects and deterioration effects are provided
in Biskup (2008) and Janiak and Kovalyov (2006), respectively. Most of the results
for an additive start-time-dependent effect are derived in the case of linear functions
f j (τ ).
Among the first papers which address a multiplicative start-time-dependent effect

(with either polynomial or linear functions f j (τ )) are works by Kononov (1998) and
Kuo and Yang (2007), which, however, are not totally free from errors (see Sect. 9.3
for details).
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Apart from the start-time-dependent effects in the pure form, we also consider
their enhanced versions, combinedwith positional effects. For example, we introduce
a job-independent start-time-dependent additive effect combined with a general
job-independent positional effect, so that the actual processing time of job j that
is scheduled in the r th position and starts at time τ is given by

p j (τ ; r) = (
p j + f (τ )

)
g(r),

where f is a function, common to all jobs, and array g(r), 1 ≤ r ≤ n, is a monotone
sequence of positional factors and defines a positional effect. We also consider its
analogue given by

p j (τ ; r) = p j f (τ )g(r), (6.5)

i.e., a combination of a job-independent start-time-dependent multiplicative effect
combinedwith a general job-independent positional effect. Studies on a similar effect
have been initiated in Yin et al. (2009).

Scheduling problems with start-time-dependent effects, in the pure and combined
formats, are considered in Chap.8 (in the case of the additive effects) and in Chap. 9
(in the case of the multiplicative effects). Problems on parallel machines under pure
and combined start-time-dependent effects are addressed in Chap. 11

6.3 Cumulative Effects

Suppose that the jobs are processed on a single machine in accordance with a permu-
tation π = (π(1), . . . ,π(n)). Under a cumulative effect, the actual processing time
p j (r) of a job j scheduled in position r , 1 ≤ r ≤ n, depends on the normal process-
ing times of the previously sequenced jobs. One of the most general variants of a
pure cumulative effect defines the actual processing time of job j = π(r) sequenced
in position r , 1 ≤ r ≤ n, as

p j (r) = p j f (Pr ), (6.6)

where

Pr =
r−1∑

h=1

pπ(h)

is the sum of the normal processing times of the earlier sequenced jobs. In the case
of learning, f is a non-increasing function, while in the case of deterioration, f is a
non-decreasing function. One of the first versions of the cumulative effect given by

p j (r) = p j

(

1 +
r−1∑

h=1

pπ(h)

)A

, (6.7)

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_9
http://dx.doi.org/10.1007/978-3-319-39574-6_11
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is introduced by Kuo and Yang (2006a, b), who studied the effect in the learning
form, with A < 0.

A cumulative effect can be combined with a general job-independent positional
effect, so that the actual processing time of job j scheduled in the r th position of a
permutation π is given by

p j (r) = p j f (Pr )g(r), (6.8)

which is similar to (6.5). Studies on a similar effect have been initiated in Yin et al.
(2010).

It is assumed that in (6.6) and (6.8), the equalities f (0) = 1 and g(1) = 1 hold,
which guarantees that for the job which is the first in the processing sequence, the
actual processing time is equal to its normal time.

A common drawback of the scheduling models with a cumulative effect in the
form (6.6) is related to lack of convincing practical motivations. In particular, there
is no convincing justification why the actual processing time of the jobs must depend
on normal times of the previously sequenced jobs. Rustogi and Strusevich (2015)
introduce an alternative model which is more relevant to practice. Consider an effect
that arises when a job j ∈ N is associated not only with normal processing time p j

but also with two additional parameters, b j and q j . The actual processing time of job
j scheduled in the r th position of permutation π is defined by

p j (r) = p j

(

1 + b j

r−1∑

h=1

qπ(h)

)

. (6.9)

where b j > 0 under a deterioration effect and b j < 0 under a learning effect. No
explicit dependence on the normal time of the previously scheduled jobs is assumed,
and the values of b j can be understood as job-dependent rates that reflect how sen-
sitive a particular job is to the previously scheduled jobs.

For illustration of this generalized model, suppose that a floor sanding machine
is used to treat floors in several rooms. The normal time p j is the time requirement
for sanding floors in room j , provided that the new sanding belt/disk is used. The
value of q j can be seen as the amount of generated saw dust or an appropriately
measured wear of the sanding belt/disk, which depends on the area of room j and on
the initial quality of the floor in the room but not explicitly on the time of treatment.
For some rooms, the actual treatment time can be seriously affected by the quality
of the equipment, whereas for some rooms, the effect is less noticeable, which is
captured in the rate parameter b j . It is not difficult to identify a similar cumulative
deterioration effect in other activities/industries.

To illustrate the effect (6.9) in a learning environment, consider the following
situation. Suppose a computer programmer is supposed to write n software pieces
for a particular project. These pieces can be developed in any order. Developing
these pieces require particular transferable technical skills (such as manipulating
a certain data structure), which the programmer initially does not possess. In the
beginning of the process, a software piece j ∈ N can be completed in p j time units.
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Assume that after completing a particular software piece j , the technical skill of the
programmer increases by q j appropriately measured units and that skill might help
to speed up the creation of any piece to follow. Thus, the actual time needed to create
a particular piece depends on the accumulated skills gained during the development
of previously created pieces. Formally, the development time of a software piece
decreases linearly with the technical skill of the programmer, so that the actual time
taken to write a software piece j = π(r) is given by p j (π; r) = p j − a j

∑r−1
h=1 qπ(h),

where the quantity a j defines how sensitive the development time for software piece
j is to the gained technical skills. This formulation can be written in terms of the
effect (6.9) with b j = −a j/p j .

Scheduling problems under pure and combined cumulative effects are addressed
in Chap.10.
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Chapter 7
Scheduling with Positional Effects

In this chapter, we study the scheduling problems of minimizing makespan and total
completion time on a single machine, provided that the actual processing times of
the jobs are subject to a positional effect.

For a job j ∈ N = {1, 2, . . . , n}, its normal processing time p j is given. As stated
in Sect. 6.1, a general positional effect on the actual processing time of job j can be
definedby a function g j (r),where r, 1 ≤ r ≤ n, is a position of job j in the processing
sequence. The actual processing time p j (r) of job j sequenced in position r is given
by

p j (r) = p jg j (r), j ∈ N , 1 ≤ r ≤ n. (7.1)

where g j (r) is a (job-dependent) positional factor.
If we do not need to trace how exactly a given normal time p j is affected by a

positional factor, we say that the actual processing times are taken from a matrix
P = (

p jr = p j (r)
)
n×n , where the rows represent the jobs and the columns represent

the positions. In what follows, it is convenient to refer to an element p jr located in
Row j , 1 ≤ j ≤ n, and column r , 1 ≤ r ≤ n, of matrix P simply as p j (r). If each
row of matrix P is monotone non-decreasing (or non-increasing), then we have a
situation of positional deterioration (or of positional learning, respectively). In the
most general setting, the rows of matrix P need not be monotone.

As adopted throughout this book, if job j is sequenced in position π(r) of permu-
tation π = (π(1),π(2), . . . ,π(n)), its completion time is denoted either by C j (π)

or by Cπ(r), whichever is more convenient.
We denote the problems of minimizing the makespan and the total completion

time on a single machine subject to an effect (7.1) by 1
∣
∣p j (r) = p jg j (r)

∣
∣Cmax and

1
∣
∣p j (r) = p jg j (r)

∣
∣ ∑C j , respectively. We also consider the problem of

minimizing a linear combination of these two criteria, i.e., the function ξCmax +
η

∑
C j , where ξ and η are non-negative coefficients. The latter problem is denoted

by 1
∣
∣p j (r) = p jg j (r)

∣
∣ξCmax + η

∑
C j . In Sect. 7.1, we show that each of the
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problems 1
∣
∣p j (r) = p jg j (r)

∣
∣� with � ∈ {

Cmax,
∑

C j , ξCmax + η
∑

C j
}
under a

job-dependent positional effect (7.1) reduces to a square linear assignment problem
(LAP) and is solvable in O

(
n3

)
time.

In Sect. 7.2, we pay attention to the problems with a positional job-independent
effect given by

p j (r) = p jg(r), j ∈ N , 1 ≤ r ≤ n, (7.2)

where g(r), 1 ≤ r ≤ n, forms an array of (job-independent) positional factors that is
common for all jobs. Similar to the above, if array g(r), 1 ≤ r ≤ n, is monotone non-
decreasing (or non-increasing), thenwehave a situation of positional deterioration (or
of positional learning, respectively). For the most general job-independent positional
effect, we make no assumption regarding the monotonicity of the elements of array
g(r), 1 ≤ r ≤ n. The corresponding single machine problems with the objective
� ∈ {Cmax,

∑
C j , ξCmax + η

∑
C j

}
are denoted by 1

∣
∣p j (r) = p jg(r)

∣
∣�.

As a rule, scheduling problems with a job-independent positional effect of the
form (7.2) reduce to an n × n LAP with a product matrix, i.e., to minimizing a linear
form (see Sect. 4.1.3). For an arbitrary permutation π = (π(1),π(2), . . . ,π(n)) of
jobs, such a linear form can be generically written as

�(π) =
n∑

r=1

W (r)pπ(r) + �, (7.3)

where the values W (r) are positional weights that depend only on a position r ,
1 ≤ r ≤ n, of a job in sequenceπ. As stated in Sect. 2.1, a permutation thatminimizes
function�(π) of the form (7.3) over all permutations of jobs of set N can be found by
AlgorithmMatch which requires O(n log n) time. We also show that if the sequence
W (r), 1 ≤ r ≤ n, of positional weights is monotone, then an optimal permutation
can be found by ordering the jobs in accordance with a priority rule, typically either
the SPT or the LPT rule applied to the normal processing times p j . Recall that if the
jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn, (7.4)

while if they are numbered in accordance with the SPT rule, then

p1 ≤ p2 ≤ · · · ≤ pn. (7.5)

According to the terminology introduced in Sect. 2.1, if a problem is solv-
able by the LPT rule, it admits a 1-priority function ω( j) = p j , j ∈ N . For a
problem solvable by the SPT rule, a 1-priority function can be written as either
ω( j) = −p j , j ∈ N , or ω( j) = 1/p j , j ∈ N .

The existence of 1-priority functions is necessary (but not sufficient) for the
objective function to be priority-generating, which is important for solving relevant

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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problems under series-parallel precedence constraints. The latter topic is the focus
of Sect. 7.3. Please consult Chap. 3 for the relevant definitions and techniques, such
as the proof of an objective function to be priority-generating.

Recall that throughout this book for a (partial) permutation of jobs π, its length,
i.e., the number of elements in π, is denoted by |π|.

The remainder of this chapter is organized as follows. Problems of scheduling
independent jobs under a job-dependent and a job-independent positional effect are
considered in Sects. 7.1 and 7.2, respectively. Problems with series-parallel prece-
dence constrains are studied in Sect. 7.3.

7.1 Scheduling Independent Jobs Under Job-Dependent
Positional Effect

Given a matrix P = (
p jr = p j (r)

)
n×n of possible actual processing times, consider

problem 1
∣
∣p j (r) = p jg j (r)

∣
∣Cmax. In any feasible solution, the actual processing

time of job j ∈ N is determined by selecting exactly one element from Row j . Since
exactly one job must be assigned to a position r , 1 ≤ r ≤ n, it follows that exactly
one element from each column of P will be selected. Thus, a feasible solution is
associated with a choice of n elements of matrix P such that no two of them belong
to the same row or to the same column.

For problem 1
∣
∣p j (r) = p jg j (r)

∣
∣Cmax, the makespan is equal to the sum of actual

processing times. The actual times that deliver the smallest makespan can be found
by solving a linear assignment problem. Introduce n2 Boolean variables x jr , where

x jr =
{
1, job j is assigned to position r
0, otherwise; 1 ≤ j ≤ n, 1 ≤ r ≤ n.

Then, problem 1
∣
∣p j (r) = p jg j (r)

∣
∣Cmax can be formulated as the following linear

assignment problem (LAP)

minimize
n∑

j=1

n∑

r=1

p j (r)x jr

subject to
n∑

r=1

x jr = 1, 1 ≤ j ≤ n;
n∑

j=1

x jr = 1, 1 ≤ r ≤ n;
x jr ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ r ≤ n.

(7.6)

We now pass to problem 1
∣
∣p j (r) = p jg j (r)

∣
∣ ∑C j . It has been shown in

Sect. 2.1.1 that for a given sequence of jobs, the contribution of a job scheduled

http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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in position r is equal to its processing time multiplied by its position in the
sequence counted by the rear of the sequence. Formally, for an arbitrary permu-
tation π = (π(1),π(2), . . . ,π(n)), the total completion time F(π) is given by

F(π) =
n∑

r=1

(n − r + 1)pπ(r)(r), (7.7)

where pπ(r)(r) is the actual processing time of a job j = π(r) sequenced in position
r in permutation π (see (2.9)). This reduces problem 1

∣
∣p j (r) = p jg j (r)

∣
∣ ∑C j to

the following LAP

minimize
n∑

j=1

n∑

r=1

(n − r + 1)p j (r)x jr

subject to
n∑

r=1

x jr = 1, 1 ≤ j ≤ n;
n∑

j=1

x jr = 1, 1 ≤ r ≤ n;
x jr ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ r ≤ n.

(7.8)

It is straightforward to see that problem 1
∣
∣p j (r) = p jg j (r)

∣
∣ξCmax + η

∑
C j ,

where ξ and η are given non-negative coefficients, reduces to the following LAP

minimize
n∑

j=1

n∑

r=1

(ξ + (n − r + 1)η)p j (r)x jr

subject to
n∑

r=1

x jr = 1, 1 ≤ j ≤ n;
n∑

j=1

x jr = 1, 1 ≤ r ≤ n;
x jr ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ r ≤ n,

(7.9)

Since solving an n × n linear assignment problem requires O
(
n3

)
time (see

Sect. 4.1.1), we conclude that the following statement holds.

Theorem 7.1 Problem 1
∣
∣p j (r) = p jg j (r)

∣
∣∑C j , problem 1

∣
∣p j (r) = p jg j (r)

∣
∣

∑
C j and problem 1

∣
∣p j (r) = p jg j (r)

∣
∣ξCmax + η

∑
C j under a general positional

job-dependent effect (7.1) reduce to the linear assignment problem (7.6), (7.8) and
(7.9), respectively. Each of this problems is solvable in O

(
n3

)
time.

Example 7.1 For a single machine scheduling problem, consider the following
matrix of possible actual processing times

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Table 7.1 Solutions to the problems in Example 7.1

Objective function LAP solution matrix Optimal permutation Function value

Cmax

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3, 1, 4, 5, 2) 21

∑
C j

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1, 4, 5, 2, 3) 60

2Cmax + ∑
C j

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1, 4, 3, 5, 2) 102

P =

⎛

⎜
⎜
⎜
⎜
⎝

3 5 6 5 11
10 9 7 3 5
6 9 8 8 9
11 3 3 10 7
4 9 6 2 9

⎞

⎟
⎟
⎟
⎟
⎠

.

For scheduling problems with the objective functions Cmax,
∑

C j , and ξCmax +
η

∑
C j (with ξ = 2 and η = 1), Table7.1 presents optimal permutations as well as

solutions to the corresponding assignment problems.

7.2 Scheduling Independent Jobs Under Job-Independent
Positional Effect

For a single machine scheduling problem, a job-independent positional effect (7.2)
is defined by an array g(r), 1 ≤ r ≤ n. We refer to the value g(r) as a positional
factor. Notice that the elements of matrix P = (

p jr = p j (r)
)
n×n of possible actual

processing times can be written as p jr = p jg(r), 1 ≤ j ≤ n, 1 ≤ r ≤ n.



118 7 Scheduling with Positional Effects

7.2.1 Minimizing Makespan

Let the jobs beprocessed in accordancewith somepermutationπ = (π(1), . . . ,π(n))

and a job sequenced in position π(r) be associated with a positional factor g(r). Then
for problem 1

∣
∣p j (r) = p jg(r)

∣
∣Cmax, the makespan can be written as

Cmax(π) =
n∑

r=1

pπ(r)g(r),

which satisfies (7.3) with W (r) = g(r), 1 ≤ r ≤ n, and � = 0. Thus, an optimal
schedule can be found by Algorithm Match, and this will take O(n log n) time.

Notice that here we do not require that the positional factors are monotone.
However, as established in Sect. 2.1.1, a permutation that minimizes a linear form
(7.3) can be obtained by applying the LPT priority rule (or the SPT priority rule,
respectively), provided the sequence W (r), 1 ≤ r ≤ n, is non-decreasing (or non-
increasing, respectively).

If the positional factors g(r), 1 ≤ r ≤ n, are non-decreasing, i.e.,

g(1) ≤ g(2) ≤ · · · ≤ g(n), (7.10)

then we have a deterioration effect, so that an optimal permutation is obtained by
renumbering the jobs in the LPT order (7.4).

On the other hand, if the factors g(r) are non-increasing, i.e.,

g(1) ≥ g(2) ≥ · · · ≥ g(n) (7.11)

we have a learning effect, and an optimal permutation is obtained by renumbering
the jobs in the SPT order.

The following statement summarizes the status of problem 1
∣
∣p j (r) = p jg(r)

∣
∣

Cmax.

Theorem 7.2 Problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax under a general positional effect

(7.2) reduces to minimizing a linear form (7.3) with W (r) = g(r), 1 ≤ r ≤ n, and
� = 0, and is solvable in O(n log n) time by Algorithm Match. In the case of a
deterioration effect (7.10), an optimal permutation is obtained in O(n log n) time
by renumbering the jobs in the LPT order. In the case of a learning effect (7.11), an
optimal permutation is obtained in O(n log n) time by renumbering the jobs in the
SPT order.

In particular, the LPT priority rule is optimal for the following two popular dete-
rioration effects: for the polynomial positional deterioration effect that is defined by
the positional factors

g(r) = r A, 1 ≤ r ≤ n, A > 0, (7.12)

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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and for exponential positional deterioration effect that is defined by the positional
factors

g(r) = γr−1, 1 ≤ r ≤ n, γ > 1. (7.13)

Similarly, the SPT priority rule works for the following two popular learning
effects: for the polynomial positional learning effect that is defined by the positional
factors

g(r) = r A, 1 ≤ r ≤ n, A < 0, (7.14)

and for the exponential positional learning effect that is defined by the positional
factors

g(r) = γr−1, 1 ≤ r ≤ n, 0 < γ < 1. (7.15)

7.2.2 Minimizing Total Flow Time

Let the jobs be processed in accordance with some permutation π = (π(1), . . . ,
π(n)). For the objective function in problem 1

∣
∣p j (r) = p jg(r)

∣
∣∑C j the equality

(7.7) holds, where for job j = π(r) sequenced in position r of permutation π, its
actual processing time is given by pπ(r)(r) = g(r)p j . Then, the objective function
can be written as

F(π) =
n∑

j=1

C j (π) =
n∑

r=1

g(r)(n − r + 1)pπ(r), (7.16)

which satisfies (7.3) with W (r) = (n − r + 1)g(r), 1 ≤ r ≤ n. Thus, an optimal
schedule can be found by Algorithm Match, and this will take O(n log n) time. As
in the case of the makespan, the positional weights do not have to be monotone.

If the factors g(r), 1 ≤ r ≤ n, are non-increasing, i.e., satisfy (7.11), then we have
a learning effect. In this case, for any r , 1 ≤ r ≤ n − 1, we have that g(r) ≥ g(r + 1)
and n − r + 1 > n − (r + 1) + 1, so that

W (1) ≥ W (2) ≥ · · · ≥ W (n),

and an optimal solution is achieved by renumbering the jobs in the SPT order.
Factors g(r), 1 ≤ r ≤ n, that satisfy (7.10) define a deterioration effect. Since for

any r , 1 ≤ r ≤ n − 1, we have that g(r) ≤ g(r + 1), but n − r + 1 > n − (r + 1) +
1,we cannot guarantee that the positionalweightsW (r),1 ≤ r ≤ n, formamonotone
sequence. Thus, there is no evidence that a solution to problem 1

∣
∣p j (r) = p jg(r)

∣
∣

∑
C j with a deterioration effect can be obtained by a priority rule.
It is straightforward to verify that problem 1

∣
∣p j (r) = p jg(r)

∣
∣ξCmax + η

∑
C j

reduces to minimizing the linear form (7.3) with the positional weights W (r) =
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(ξ + (n − r + 1)η)g(r), 1 ≤ r ≤ n. Similar to the problemofminimizing total com-
pletion time, here in the case of a positional learning effect (7.11), the sequenceW (r),
1 ≤ r ≤ n, is non-increasing, so that the solution can be found by the SPT rule. Oth-
erwise, unless η = 0, the sequence of positional weights need not be monotone, so
that an optimal solution can be found by AlgorithmMatch, but not by a priority rule.

The following statement summarizes the status of problems 1
∣
∣p j (r) = p jg(r)

∣
∣

∑
C j and 1

∣
∣p j (r) = p jg(r)

∣
∣ξCmax + η

∑
C j .

Theorem 7.3 Under a general positional effect (7.2), problems 1
∣
∣p j (r) = p jg(r)

∣
∣

∑
C j and 1

∣
∣p j (r) = p jg(r)

∣
∣ξCmax + η

∑
C j reduce to minimizing a linear form

(7.3) with � = 0 and with W (r) = (n − r + 1)g(r), 1 ≤ r ≤ n, and W (r) =
(ξ + (n − r + 1)η)g(r), 1 ≤ r ≤ n, respectively. Both problems are solvable in
O(n log n) time by Algorithm Match. In the case of a learning effect (7.11), for
each of these problems an optimal permutation is obtained in O(n log n) time by
renumbering the jobs in the SPT order. In the case of a deterioration effect (7.10),
both problems do not admit a 1-priority function for an arbitrary non-decreasing
array g(r), 1 ≤ r ≤ n, of job-independent positional factors unless η = 0.

It is worth investigating whether 1
∣
∣p j (r) = p jg(r)

∣
∣∑C j can be solved by a

priority rule under additional assumptions regarding positional factors g(r), 1 ≤ r ≤
n, that define a deterioration effect.

Consider first an exponential deterioration effect given by (7.13).As proved below,
for some values of γ, problem 1

∣
∣p j (r) = p jg(r)

∣
∣ ∑C j is solvable by a priority rule.

Theorem 7.4 For problem 1
∣
∣p j (r) = p jg(r)

∣
∣∑C j under an exponential posi-

tional deterioration effect (7.13), the following holds

(a) for γ ≥ 2, ω( j) = p j , j ∈ N , is a 1-priority function, i.e., the problem is solv-
able by the LPT rule;

(b) for 1 < γ < 2, no 1-priority function exists.

Proof Let Cmax(π) and F(π), respectively, denote the makespan and the sum of the
completion times of the jobs sequenced in accordance with a (partial) permutation
π, provided that the sequence π starts at time zero. It can be seen from (7.16) that

F(π) =
|π|∑

k=1

(|π| − k + 1)pπ(k)γ
k−1. (7.17)

Let π = (π1, u, v,π2) and π′ = (π1, v, u,π2) be two permutations of all jobs that
only differ in the order of two consecutive jobs u and v. Assume that there are r − 1
jobs in permutation π′.

It follows that

F(π) = F(π1) + (Cmax(π1) + puγ
r−1) + (Cmax(π1) + puγ

r−1 + pvγ
r )

+|π2|(Cmax(π1) + puγ
r−1 + pvγ

r ) + γr F(π2)
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and by symmetry

F(π′) = F(π1) + (Cmax(π1) + pvγ
r−1) + (Cmax(π1) + pvγ

r−1 + puγ
r )

+|π2|(Cmax(π1) + pvγ
r−1 + puγ

r ) + γr F(π2).

Define � := F(π) − F(π′). Then,

� = γr−1((2 + |π2|)pu + γ pv(1 + |π2|) − (2 + |π2|)pv − γ pu(1 + |π2|))
= γr−1(pv − pu)(γ − |π2| + |π2|γ − 2).

Suppose first that γ ≥ 2, and apply Recipe 2.1 to prove that ω( j) = p j , j ∈ N , is
a 1-priority function; i.e., the problem is solvable by the LPT rule. If |π2| = 0, i.e., u
and v are the last two jobs in the permutations π and π′, then we conclude that� ≤ 0
if pu ≥ pv , which corresponds to the LPT rule. If γ = 2, then � = 0, and any order
of the jobs u and v is acceptable (including the one implied by the LPT rule).

If |π2| ≥ 1, then it can be verified that the function γ − |π2| + |π2|γ − 2 under
the constraint γ ≥ 2 stays positive. In fact, it reaches its minimum value of 1 for
γ = 2 and |π2| = 1, which again proves optimality of the LPT rule.

Assume now that 1 < γ < 2. Notice that γ − |π2| + |π2|γ − 2 = 0 if |π2| = (2 −
γ)/(γ − 1). Therefore, for any γ, 1 < γ < 2, there exist two consecutive integer
values of |π2| such that γ − |π2| + |π2|γ − 2 changes its sign. Due to Recipe 2.2,
this implies that the sign of � does not stay constant, and no 1-priority function
exists. �

We now pass to problem 1
∣
∣p j (r) = p jg(r)

∣
∣∑C j under a polynomial deteriora-

tion effect given by (7.12). Similar to its counterpart with an exponential deterioration
effect, our purpose is to find out for which range of A the problem admits a solution
in terms by a priority rule, either LPT or SPT.

For this model, the array of positional weights is given by

W (r) = (n − r + 1)r A, 1 ≤ r ≤ n. (7.18)

Considering W (r) as a function of a continuous positive argument, observe that

d

dr
(n − r + 1)r A = r A−1(A − r + An − Ar),

so that it has a singlemaximum rmax = A(n+1)
A+1 . This means that the function increases

for r ∈ (0, rmax) and decreases for r > rmax.
The consideration above implies that sequenceW (r) of the form (7.18) in general

consists of an increasing subsequence followed by a decreasing subsequence. A
sequence of this structure is often called a �-shaped sequence (see Sect. 5.1).

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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Notice that an optimal permutation for problem 1
∣
∣p j (r) = p jg(r)

∣
∣∑C j under a

polynomial positional deterioration effect (7.12) can be found by Algorithm Match,
which orders the jobs in such a way that smaller processing times are associated
with larger positional factors (7.18). This means that an optimal permutation of jobs
consists of a subsequence of jobs taken in non-increasing order of p j ’s, followed
by a subsequence of jobs taken in non-decreasing order of p j ’s. A sequence of this
structure is often called a V -shaped sequence (see Sect. 5.1).

For problem1
∣
∣p j (r) = p jg(r)

∣
∣ ∑C j under a polynomial positional deterioration

effect (7.12) to be solvable by a priority rule, either SPT or LPT, we need that the
sequence (7.18) is either monotone increasing or monotone decreasing, respectively.

Lemma 7.1 Problem 1
∣
∣p j (r) = p jg(r)

∣
∣ ∑C j under a positional polynomial dete-

rioration effect (7.12) is solvable by the SPT rule if A < log2
(

n
n−1

)
, and by the LPT

rule if A > 1
log2(

n
n−1 )

. Otherwise, an optimal permutation is V -shaped.

Proof As demonstrated above, sequence (7.18) of positional weights is in general
�-shaped, and an optimal permutation found byAlgorithmMatchmust be V -shaped.

If W (r0) > W (r0 + 1) for some value of r0, 1 ≤ r0 ≤ n, then the subsequence
W (r), r0 ≤ r ≤ n, is decreasing. Thus, if r0 = 1, i.e.,W (1) > W (2), then the whole
sequence (7.18) is decreasing. FromW (1) = n andW (2) = (n − 1)2A, the inequal-
ity n > (n − 1)2A implies that A < log2

(
n

n−1

)
. Thus, under the latter condition,

Algorithm Match will sort the jobs in non-decreasing order of normal processing
times, i.e., in accordance with the SPT rule.

Similarly, if W (n − 1) < W (n), then the whole sequence (7.18) is increas-
ing. From W (n − 1) = 2(n − 1)A and W (n) = nA, the inequality 2(n − 1)A < nA

implies that A > 1
log2(

n
n−1 )

. In an optimal permutation delivered by AlgorithmMatch,

the jobs are placed in non-increasing order of normal processing times, i.e., in accor-
dance with the LPT rule. �

Example 7.2 Consider problem 1
∣
∣p j (r) = p jg(r)

∣
∣∑C j under a polynomial posi-

tional deterioration effect (7.12) with n = 7 jobs. By Lemma 7.1, the largest A that
guarantees that the positional weights (7.18) form a decreasing sequence is equal
to log2

(
7
6

) = 0.222, while the smallest A for which the array of positional weights
(7.18) forms an increasing sequence is equal to 4.496. Table7.2 shows the positional
weights computed for A = 0.2 and A = 4.5. Clearly, the positional weightsW (r) are
suitably sorted. All reported computations are accurate up to three decimal places.

We conclude this section by presenting Table7.3 that summarizes the results for
problems 1

∣
∣p j (r) = p jg(r)

∣
∣� with � ∈ {

Cmax,
∑

C j , ξCmax + η
∑

C j
}
.

Table 7.2 Positional factors for Example 7.2

A W (1) W (2) W (3) W (4) W (5) W (6) W (7)

0.2 7 6.892 6.229 5.278 4.139 2.278 1.476

4.5 7 135.765 701.481 2048.000 4192.667 6349.077 6352.449

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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Table 7.3 Solution algorithms for single machine problems with a job-independent positional
effect

� Factors g(r) Algorithm

Cmax arbitrary Match

Cmax (7.10) LPT

Cmax (7.11) SPT
∑

C j arbitrary Match

ξCmax + η
∑

C j arbitrary Match
∑

C j (7.11) SPT

ξCmax + η
∑

C j (7.11) SPT
∑

C j (7.12), A < log2
(

n
n−1

)
LPT

∑
C j (7.12), A > log−1

2

(
n

n−1

)
SPT

∑
C j (7.13), γ ≥ 2 LPT

7.3 Scheduling with Series-Parallel Precedence Constraints
Under Positional Effects

In this section, we consider single machine problems to minimize an objective func-
tion � ∈ {

Cmax,
∑

C j
}
with specific job-independent positional effects. Unlike in

Sect. 7.2, here we assume that the jobs of set N are not independent and a precedence
relation given by a series-parallel reduction graph G = (N ,U ) is imposed over the
set N of jobs. The purpose of this section is to investigate whether for some of the
scheduling problems generically denoted by 1

∣
∣p j (r) = p jg(r), SP − prec

∣
∣�, the

objective function is priority-generating, so that the corresponding problem is solv-
able in O(n log n) time. See Chap.3 for definitions and main results on scheduling
under precedence constraints, including the concept of a priority-generating objec-
tive function and a priority function for partial permutations, as well as Recipes 3.1
and 3.2 that contain recommendations how to prove or disprove that an objective
function is priority-generating.

Recall that it follows from Chap.3 that for an objective function to be priority-
generating, the existence of a 1-priority function ω( j), j ∈ N , is necessary, so that
the best permutation among all permutations of jobs of set N can be found by
sorting the jobs in non-increasing order of their 1-priorities. In particular, if a prob-
lem is solvable by the LPT rule, then it admits a 1-priority function ω( j) = p j ,
j ∈ N , while if the SPT rule finds an optimal permutation, then the problem admits
a 1-priority function ω( j) = 1/p j , j ∈ N . As seen from Sect. 7.2, among the can-
didate problems that might have a priority-generating objective function are prob-
lems 1

∣
∣p j (r) = p jg(r)

∣
∣Cmax under either a positional deterioration effect (7.10) or a

positional learning effect (7.11), as well as problem 1
∣
∣p j (r) = p jg(r)

∣
∣ ∑C j under

a positional learning effect (7.11).

http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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It appears that the fact that the array g(r), 1 ≤ r ≤ n, is ordered is not enough
to guarantee that an objective function is priority-generating. Instead, we provide
analysis for two popular types of monotone positional effects, namely polynomial
and exponential, establishing both positive and negative results regarding priority-
generating objective functions.

Given a scheduling problem with a positional job-independent effect, let π be a
(partial) permutation of jobs contained as a subsequence in some schedule. Assume
that (i) the first job in this permutation is sequenced in the r th position in an overall
schedule and (ii) this first job starts at time t ≥ 0. Under these assumptions, let
Cmax(π; t; r) denote the maximum completion time of the jobs in π.

7.3.1 Exponential Positional Effect

In this subsection, we consider the single machine model in which the processing
time of a job depends exponentially on the position in which it is scheduled, i.e.,

g(r) = γr−1, 1 ≤ r ≤ n, (7.19)

where γ is a positive constant, not equal to 1.
We start with the problem of minimizing the makespan under a positional effect

(7.19), without making any assumption on value of γ; i.e., we do not distinguish
between a deterioration effect (γ > 1) or a learning effect (0 < γ < 1).

It immediately follows from (7.19) that for an arbitrary permutation π, we have
that

Cmax(π; 0; 1) =
|π|∑

j=1

pπ( j)γ
j−1,

and, if the first job in π is sequenced in the r th position and starts at time t in an
overall schedule, we deduce that

Cmax(π; t; r) = t + γr−1Cmax(π; 0; 1).

Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two permutations of all jobs that
only differ in the order of the subsequences α = (α(1), . . . ,α(u)) of u jobs and
β = (β(1), . . . ,β(v)) of v jobs.

Define

� := Cmax(π
αβ) − Cmax(π

βα) = Cmax(π
αβ; 0; 1) − Cmax(π

βα; 0; 1). (7.20)

In accordance with Recipe 3.1, we need to determine a sufficient condition for
the inequality � ≤ 0 to hold. The form of such a condition should be suitable for
defining a priority function.

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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Assume that there are r − 1 jobs in permutation π1. It follows that Cmax(π1αβπ2;
0; 1) = Cmax(π1; 0; 1) + Cmax(αβπ2; 0; r) and Cmax(π1βαπ2; 0; 1) = Cmax(π1;
0; 1) + Cmax(βαπ2; 0; r), so that

� = Cmax(αβπ2; 0; r) − Cmax(βαπ2; 0; r).

Further, we deduce that

Cmax(αβπ2; 0; r) − Cmax(βαπ2; 0; r)
= Cmax(π2;Cmax(αβ; 0; r); r + u + v) − Cmax(π2;Cmax(βα; 0; r); r + u + v)

=
⎛

⎝Cmax(αβ; 0; r) + γr+u+v−1
|π2|∑

j=1

pπ( j)γ
j−1

⎞

⎠

−
⎛

⎝Cmax(βα; 0; r) + γr+u+v−1
|π2|∑

j=1

pπ( j)γ
j−1

⎞

⎠

= Cmax(αβ; 0; r) − Cmax(βα; 0; r) = γr−1Cmax(αβ; 0; 1) − γr−1Cmax(βα; 0; 1).

Thus, the sign of � depends on the sign of the difference Cmax(αβ; 0; 1) −
Cmax(βα; 0; 1). We deduce

Cmax(αβ; 0; 1) − Cmax(βα; 0; 1)
= Cmax(β;Cmax(α; 0; 1); u + 1) − Cmax(α;Cmax(β; 0; 1); v + 1)

= (
Cmax(α; 0; 1) + γuCmax(β; 0; 1)) − (Cmax(β; 0; 1) + γvCmax(α; 0; 1))

= Cmax(β; 0; 1)(γu − 1
) − Cmax(α; 0; 1)(γv − 1).

Therefore, � ≤ 0 if

Cmax(β; 0; 1)(γu − 1
) ≤ Cmax(α; 0; 1)(γv − 1), (7.21)

and the following statement holds.

Theorem 7.5 For problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax under an exponential positional

effect (7.19), the objective function is priority-generating and

ω(π) = Cmax(π; 0; 1)
γ|π| − 1

=

|π|∑

j=1
pπ( j)γ

j−1

γ|π| − 1
(7.22)

is its priority function. Problem 1
∣
∣p j (r) = p jg(r), SP − prec

∣
∣Cmax is solvable in

O(n log n) time.

Proof Dividing both sides of (7.21) by (γu − 1)(γv − 1), which is positive for all
positive γ not equal to 1, we derive that � ≤ 0, provided that
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Cmax(α; 0; 1)
γu − 1

≥ Cmax(β; 0; 1)
γv − 1

.

For an arbitrary (partial) permutation π, define the function ω(π) by (7.22),

since Cmax(π; 0; 1) =
|π|∑

j=1
pπ( j)γ

j−1. It is easily verified that ω(α) > ω(β) implies

Cmax(π
αβ) ≤ Cmax(π

βα), while ω(α) = ω(β) implies Cmax(π
αβ) = Cmax(π

βα), as
required by Definition 3.2. �

Notice that if (7.22) is applied to a single job j , i.e., to a permutation of length
one, then the right-hand side of (7.22) boils down to p j/(γ − 1). This correlates well
with Theorem 7.2, which implies that for problem 1

∣
∣p j (r) = p jg(r)

∣
∣Cmax under an

exponential positional effect (7.19):

• For 0 < γ < 1 (learning), ω( j) = −p j is a 1-priority function, and SPT is an
optimal priority rule.

• Forγ > 1 (deterioration),ω( j) = p j is a 1-priority function, andLPT is an optimal
priority rule.

Notice that for a slightly more general effect

p j (r) = p jγ
r−1 + q j ,

the makespan remains priority-generating and

ω(π) =

|π|∑

j=1
pπ( j)γ

j−1

γ|π| − 1

remains a priority function.
We now pass to consideration of the single machine problem to minimize the sum

of the completion times
∑

C j under an exponential positional effect (7.19).
Problem 1

∣
∣p j (r) = p jg(r)

∣
∣∑C j under an exponential positional effect (7.19)

due to Theorem 7.3 is solvable by the SPT rule in the case of learning (0 < γ < 1),
while by Theorem 7.4, it is solvable by the LPT rule in the case of fast deterioration
(γ ≥ 2). These facts, however, do not imply that the objective function is priority-
generating for the relevant values of γ. We demonstrate this below for two particular
values of γ.

Recall from Sect. 3.2 that in accordance with Recipe 3.2, in order to dis-
prove that an objective function � is priority-generating, the following approach
can be employed. An instance of the problem should be exhibited such that
�(παβ) < �(πβα) for some permutations παβ = (π1αβπ2) and πβα = (π1βαπ2),
while �(ϕαβ) > �(ϕβα) for some other permutations ϕαβ = (ϕ′αβϕ′′) and ϕβα =
(ϕ′βαϕ′′).

All counterexamples in the lemma below and the lemmas in the following sub-
section have a similar structure: There are four jobs, and permutations α = (1, 2),

http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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β = (3) and π2 = (4) are selected. In the proofs, we compare two pairs of permu-
tations: παβ = (αβ, 4) = (1, 2, 3, 4) and πβα = (βα, 4) = (3, 1, 2, 4), as well as
ϕαβ = (4,αβ) = (4, 1, 2, 3) and ϕβα = (4,βα) = (4, 3, 1, 2).

Lemma 7.2 For problem 1
∣
∣p j (r) = p jg(r)

∣
∣∑C j under an exponential positional

effect (7.19) with γ = 2 and γ = 1
2 the objective function is not priority-generating.

Proof For γ = 2, consider the following instance of the problem in question. Take
four jobs with the normal processing times

p1 = 4, p2 = 1, p3 = 3, p4 = 1

and select permutations α = (1, 2), β = (3). Let F(π) denote the sum of the com-
pletion times of the jobs sequenced in accordance with a permutation π, defined by
(7.17). Comparing permutations παβ = (αβ, 4) and πβα = (βα, 4), we see that

F(αβ, 4) = 4 × (4 × 1) + 3 × (
1 × 21

) + 2 × (
3 × 22

) + 1 × 23 = 54

> F(βα, 4) = 4 × (3 × 1) + 3 × (
4 × 21

) + 2 × (
1 × 22

) + 1 × 23

On the other hand, comparing permutations ϕαβ = (4,αβ) and ϕβα = (4,βα),
we compute

F(4,αβ) = 60 < F(4,βα) = 62.

For γ = 1
2 , consider the four-job instance with the normal processing times

p1 = 19, p2 = 1, p3 = 14, p4 = 1

and select permutations α = (1, 2), β = (3). We see that F(αβ, 4) = 845
8 <

F(βα, 4) = 851
8 , but F(4,αβ) = 343

4 > Cmax(4,βα) = 345
8 .

This proves the lemma. �

7.3.2 Polynomial Positional Effect

We start this subsection with analyzing problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax, where

g(r) = r A, 1 ≤ r ≤ n. (7.23)

In the beginning, we do not make any assumption on the sign of A, i.e., do not
distinguish between learning and deterioration. On the other hand, we limit our
consideration to integer values of A.

Similar to Sect. 7.3.1, below we also manipulate values Cmax(π; t; r). It immedi-
ately follows from (7.23) that for an arbitrary permutation π, we have that
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Cmax(π; 0; 1) =
|π|∑

j=1

pπ( j) j
A;

Cmax(π; 0; r) =
|π|∑

j=1

pπ( j)(r + j − 1)A;

Cmax(π; t; r) = t +
|π|∑

j=1

pπ( j)(r + j − 1)A = t + Cmax(π; 0; r). (7.24)

Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two permutations of all jobs that
only differ in the order of the subsequences α (of u jobs) and β (of v jobs). Define
� by (7.20).

Following Recipe 3.1, in order to verify that in the case under consideration, the
objective function is priority-generating, we need to determine a sufficient condition
for the inequality � ≤ 0 to hold.

Assume that thereare r − 1 jobs in permutation π1 and denote Cmax(π1; 0; 1)
by t ′. Since Cmax(π1αβπ2; 0; 1) = Cmax(αβπ2; t ′; r), it follows from (7.24) that
Cmax(π1αβπ2; 0; 1) = t ′ + Cmax(αβπ2; 0; r); similarly,Cmax(π1βαπ2; 0; 1) = t ′ +
Cmax(βαπ2; 0; r), so that

� = Cmax(αβπ2; 0; r) − Cmax(βαπ2; 0; r).

Besides, Cmax(αβπ2; 0; r) = Cmax(αβ; 0; r) + Cmax(π2; 0; r + u + v) and Cmax

(βαπ2; 0; r) = Cmax(βα; 0; r) + Cmax(π2; 0; r + v + u), so that

� = Cmax(αβ; 0; r) − Cmax(βα; 0; r).

We obtain

Cmax(αβ; 0; r) =
u∑

i=1

pα(i)(r + i − 1)A +
v∑

j=1

pβ( j)(r + u + j − 1)A;

Cmax(βα; 0; r) =
v∑

j=1

pβ( j)(r + j − 1)A +
u∑

i=1

pα(i)(r + v + i − 1)A,

so that

� =
u∑

i=1

pα(i)
(
(r + i − 1)A − (r + v + i − 1)A

)
(7.25)

+
v∑

j=1

pβ( j)
(
(r + u + j − 1)A − (r + j − 1)A

)
.

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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For A = 1, (7.25) simplifies to

� = −v

u∑

i=1

pα(i) + u
v∑

j=1

pβ( j). (7.26)

and the following statement holds.

Theorem 7.6 For problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax under the deterioration effect

(7.12) with A = 1, the objective function is priority-generating and

ω(π) =
∑|π|

j=1 pπ( j)

|π| (7.27)

is its priority function. Under these conditions problem 1
∣
∣p j (r) = p jg(r),

SP − prec|Cmax is solvable in O(n log n) time.

Proof Taking (7.26) and dividing the left-hand by uv, we deduce that � ≤ 0, pro-
vided that ∑u

i=1 pα(i)

u
≥

∑v
j=1 pβ( j)

v
.

For an arbitrary (partial) permutation π, define the function ω(π) by (7.27). It
is easily verified that ω(α) > ω(β) implies Cmax(π

αβ) ≤ Cmax(π
βα), while ω(α) =

ω(β) implies Cmax(π
αβ) = Cmax(π

βα), as required by Definition 3.2. �
The meaning of ω(π) of the form (7.27) is the average normal processing time

of the jobs in sequence π, which correlates well with the fact that w( j) = p j is a
1-priority function for the problem.

The existence of the priority function for the case above is due to the fact that for
determining the sign of the difference�, we are able to (i) remove all parameters that
are not related to permutations α and β, and (ii) to separate the parameters associated
with permutation α from those related to β.

It is unlikely that a priority function exists for other (integer) values of A. The
exhibited counterexamples in the statements below follow the same pattern as in
Sect. 7.3.1.

The lemma below demonstrates that there is no priority function for A = 2.

Lemma 7.3 For problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax under the deterioration effect

(7.12) with A = 2 the objective function is not priority-generating.

Proof Consider the following instance of the problem in question. Take four jobs
with the normal processing times

p1 = 1, p2 = 6, p3 = 4, and p4 = 1.

and select permutationsα = (1, 2),β = (3). Comparingpermutationsπαβ = (αβ, 4)
and πβα = (βα, 4), we see that

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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Cmax(αβ, 4) = 1 + 6 × 22 + 4 × 32 + 1 × 42 = 77

< Cmax(βα, 4) = 4 + 1 × 22 + 6 × 32 + 1 × 42 = 78.

On the other hand, comparing permutations ϕαβ = (4,αβ) and ϕβα = (4,βα),
we compute

Cmax(4,αβ) = 123 > Cmax(4,βα) = 122,

which proves the lemma. �

Lemma 7.3 can be extended to the problem under the deterioration effect (7.12)
with integer A > 2.

Now we consider problem 1
∣
∣, p j (r) = p jg(r)

∣
∣∑C j under the deterioration

effect (7.12) for integer A. Recall that Corollary 3.1 states that for a scheduling
model, the fact that the makespan is not a priority-generating function implies that
neither the total completion time is a priority-generating function. Due to Lemma 7.3,
we only need to look at the case of A = 1. However, Lemma 7.1 states that an opti-
mal permutation for A = 1 is V -shaped; i.e., the problem does not admit a 1-priority
function. This means that for A = 1, the objective function is not priority-generating.

We now turn to the models with a learning effect (7.14). Unlike for its deterio-
ration counterpart, where at least one particular effect is associated with a priority-
generating function, a learning effect does not lead to a priority-generating objective
function, for both objectives, the makespan and the total completion time.

Lemma 7.4 For problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax under the learning effect (7.14)

with A = −1 and A − 2 the objective function is not priority-generating.

Proof For A = −1, consider the following instance of the problem in question. Take
four jobs with the normal processing times

p1 = 12, p2 = 96, p3 = 36, and p4 = 4

and select permutations α = (1, 2) and β = (3). We see that Cmax(αβ, 4) = 73 <

Cmax(βα, 4) = 75, but Cmax(4,αβ) = 51 > Cmax(4,βα) = 50.
For A = −2, consider the four-job instance with the normal processing times

p1 = 36, p2 = 252, p3 = 72, p4 = 4

and select permutationsα = (1, 2) and β = (3). We see thatCmax(αβ, 4) = 1071
4 <

Cmax(βα, 4) = 1091
4 , but Cmax(4,αβ) = 451

2 > Cmax(4,βα) = 413
4 .

This proves the lemma. �

Due to Corollary 3.1 and Lemma 7.4, we deduce that for problem 1
∣
∣p j (r) =

p jg(r)
∣
∣∑C j under the learning effect (7.14) with A = −1 and A − 2, the objective

function is not priority-generating.

http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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7.4 Bibliographic Notes

In this section, we only review the publications relevant to the content of this
chapter. The problems with parallel machines under positional effects are discussed
in Chap.11. For other relevant models and problems with other objective functions,
the reader is referred to focused surveys Janiak and Rudek (2006) and Rustogi and
Strusevich (2012b).

Among the first papers that consider scheduling problems with a general position
effect (7.1) are Bachman and Janiak (2004) and Mosheiov and Sarig (2009). How-
ever, reductions to a full form linear assignment problems similar to those presented
in Sect. 7.1 appear in Biskup (1999) and Mosheiov and Sidney (2003). Although
the authors of the two latter papers consider problems with a learning effect, the
assumption on learning in not used in the reduction.

Research on scheduling problems with positional effects conducted before the
critical review Rustogi and Strusevich (2012b) has had several limitations. First,
earlier authors focused on monotone effects only, such as learning and deterioration;
moreover, these two types of effects have been considered separately despite their
similarities. Second, assumptions on the exact shape of positional factors have been
made (i.e., polynomial or exponential), despite the fact that many results would hold
for an arbitrary array of positional factors. Third, the choice of solution approaches
has included only simple priority rules, such as either the LPT or the SPT, and a
reduction to a full form of the linear assignment problem, while a possible use of
Algorithm Match has been neglected.

Surprisingly, the fact that problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax for an arbitrary array

g(r), 1 ≤ r ≤ n, of positional factors is solvable in O(n log n) time has been estab-
lished only in Rustogi and Strusevich (2012b). The same can be said about optimality
of the LPT rule for the a general positional deterioration effect (7.10) and about opti-
mality of the SPT rule for a general positional learning effect (7.11). For special
cases of the general position deterioration effect, optimality of the LPT rule has been
established earlier: for the polynomial deterioration (7.12) by Mosheiov (2005) and
for the exponential deterioration (7.13) by Gordon et al. (2008). Similarly, optimality
of the SPT rule has been established for the polynomial learning (7.14) by Mosheiov
(2001) and for the exponential learning (7.15) by Gordon et al. (2008).

Notice that some authors study scheduling problems with alternative forms of
position-dependent processing times. For example, Bachman and Janiak (2004) con-
sider a single machine problem to minimize the makespan in which the processing
time of job j scheduled in position r is given by p j (r) = A j + b jr , where A j is
the normal processing time and b j is a job-dependent rate (positive in the case of
deterioration and negative in the case of learning). As shown in Rustogi and Stru-
sevich (2012b), even for a more general situation, e.g., when the actual time of job
j scheduled in position r is defined by p j (r) = A j

(
a j + b jg(r)

)
, for an arbitrary

permutation π of jobs, the makespan can be written as

http://dx.doi.org/10.1007/978-3-319-39574-6_11


132 7 Scheduling with Positional Effects

Cmax(π) =
n∑

r=1

Aπ(r)aπ(r) +
n∑

r=1

Aπ(r)bπ(r)g(r),

which satisfies (7.3) with W (r) = g(r), 1 ≤ r ≤ n, p j = A jb j , j ∈ N , and � =∑n
j=1 A ja j , so that the problem of minimizing the makespan is solvable by Algo-

rithm Match in O(n log n) time.
Rustogi and Strusevich (2012a, b) solve problem 1

∣
∣p j (r) = p jg(r)

∣
∣∑C j for

an arbitrary array g(r), 1 ≤ r ≤ n, of positional factors by Algorithm Match in
O(n log n) time. They also prove optimality of the SPT rule under a general positional
learning effect (7.11). Optimality of the SPT rule for the case of a polynomial learning
effect (7.14) has been proved by Biskup (1999) and for an exponential learning effect
(7.15) by Gordon et al. (2008). Surprisingly, for problem 1

∣
∣p j (r) = p jg(r)

∣
∣∑C j

with a deterioration effect (7.10), no polynomial algorithm faster than O
(
n3

)
time

has been known prior to Rustogi and Strusevich (2012a, b). Theorem 7.4 which
resolves the issue of the existence of a 1-priority function for the problem under
an exponential positional effect (7.13) is proved in Gordon et al. (2008). Mosheiov
(2005) demonstrates that for the problem with a polynomial deterioration effect
defined by (7.12), an optimal permutation is V -shaped; his proof is different from the
reasoning given in Sect. 7.2.2. Yang and Yang (2010) claim that the latter problem
can be solved by a technique used by Biskup (1999), which, however, cannot be
transferred to deterioration.

As mentioned above, the single machine problem to minimize the makespan with
the effect p j (r) = A + b jr, introduced by Bachman and Janiak (2004), is solvable
in O(n log n) time, even in more general settings. By contrast, if the objective is
the total completion time, the problem does not reduce to minimizing (7.3) and it is
essential to use a full form linear assignment problem for its solution (see Yang and
Yang (2010)).

The material of Sect. 7.3 is based on paper Gordon et al. (2008).
Regarding related objective functions, notice that Mosheiov (2001) shows that

problem 1
∣
∣p j (r) = p jg(r)

∣
∣∑w jC j under a polynomial learning effect (7.14) can-

not be solved by the WSPT rule, even for a two-job instance. The exact status of the
problem remains unresolved.
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Chapter 8
Scheduling with Pure and Combined
Additive Start-Time-Dependent Effects

In this chapter, we study the problems of minimizing the makespan and the total
completion time on a single machine, provided that the actual processing times of
the jobs are subject to a special form of a start-time-dependent effect. We also study
effects in which such a start-time-dependent effect is combined with a positional
effect.

For a job j ∈ N = {1, 2, . . . , n}, its normal processing time p j is given. Suppose
that the jobs are processed on a single machine in accordance with a permutation
π = (π(1), . . . ,π(n)). As defined in Sect. 6.2, if the actual processing time of a job
depends on its normal processing time and its start time in the schedule, we call such
an effect start-time-dependent.

Following Sect. 6.2, we distinguish between two types of a start-time-dependent
effect: additive and multiplicative. Let p j (τ ) denote the actual processing time of
job j ∈ N that starts at time τ ≥ 0. Then, under a general additive effect, we define

p j (τ ) = p j + f j (τ ), (8.1)

while under a general multiplicative effect, we define

p j (τ ) = p j f j (τ ), (8.2)

where f j is a job-dependent function of the start-time.
Scheduling problems with a multiplicative start-time-dependent effect are con-

sidered in Chap. 9. In this chapter, we focus on the problems with an additive effect
of the form (8.1). We also study additive models in which the function f j (τ ) is
job-independent, so that the additive effect is of the form

p j (τ ) = p j + f (τ ). (8.3)
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In fact, we shall study a more general form of the effect (8.3) that combines a job-
independent start-time-dependent effect with a general job-independent positional
effect, so that the actual processing time of job j that is scheduled in the r th position
and starts at time τ is given by

p j (τ ; r) = (
p j + f (τ )

)
g(r), (8.4)

where

• f : [0,+∞) → R is a continuous differentiable function, common to all jobs, that
depends on the start time τ of the job in the r th position;

• Array g(r), 1 ≤ r ≤ n, is a monotone sequence of positional factors and defines
a positional effect.

Notice that if function f is non-negative and non-decreasing (non-positive and
non-increasing), we deal with a start-time-dependent deterioration (learning) effect.
In the case of a learning effect, an additional assumption

f (τ ) < min{p1, p2, . . . , pn}, τ > 0, (8.5)

is required. This assumption guarantees that under a learning effect, the actual
processing times remain non-negative for each job j ∈ N .

Problems with positional effects are considered in Chap.7. Recall that if the
sequence g(r), 1 ≤ r ≤ n, of positional factors is non-decreasing (non-increasing),
we deal with a positional deterioration (learning) effect.

In this chapter, we assume that f (0) = 0 and g(1) = 1, which guarantees that for
the job which is the first in the processing sequence, the actual processing time is
equal to its normal time.

As adopted throughout this book, if job j is sequenced in position π(r) of per-
mutation π, its completion time is denoted either by C j (π) or by Cπ(r), whichever is
more convenient.

Many problems from the considered range admit a solution by a priority rule.
Recall that if the jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn, (8.6)

while if they are numbered in accordance with the SPT rule, then

p1 ≤ p2 ≤ · · · ≤ pn. (8.7)

This chapter is structured as follows. Section8.1 studies single machine problems
with no precedence constraints under various effects, including a combined effect
(8.4) and linear job-dependent and job-independent effects. Section8.2 considers
problems with series-parallel precedence constraints, mainly under pure start-time-
dependent linear effects.

http://dx.doi.org/10.1007/978-3-319-39574-6_7
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8.1 Scheduling Independent Jobs

In this section, we address various versions of single machine scheduling problems,
provided that no precedence constraint is imposed on the set of jobs and the actual
processing times are subject to an additive start-time-dependent effect of the form
(8.1) or a combined effect of the form (8.4).

8.1.1 Combined Effects

Consider a job-independent nonlinear additive start-time-dependent effect which
is combined with a positional effect so that the actual processing time of a job
is given by (8.4). For the combined effect (8.4), the problems of minimizing
the makespan and the total completion time on a single machine are denoted by
1
∣
∣p j (τ ; r) = (

p j + f (τ )
)
g(r)

∣
∣Cmax and by 1

∣
∣p j (τ ; r) = (

p j + f (τ )
)
g(r)

∣
∣

∑
C j , respectively.
Function f can take both positive and negative values; in the latter case, it satisfies

(8.5).
We start with a rather general statement, which should be seen as an extension of

Theorem2.3.

Theorem 8.1 Let π = (π(1), . . . ,π(n)) be a permutation, in which two jobs u and
v such that

pu > pv, (8.8)

occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1). Let
permutation π′ be obtained from π by swapping the jobs u and v. Then for a single
machine problem with a combined effect (8.4) the inequality

Cπ(h) ≥ Cπ′(h) (8.9)

holds for all h, 1 ≤ h ≤ n, provided that function f is non-decreasing and the array
g(r), 1 ≤ r ≤ n, is non-increasing, i.e., it follows

1 = g(1) ≥ g(2) ≥ · · · ≥ g(n). (8.10)

Proof It is convenient to represent permutation π as π = (π1, u, v,π2), where π1

and π2 are subsequences of jobs that precede job u and follow job v in permutation
π, respectively. Then, π′ = (π1, v, u,π2).

We present the proof assuming that both sequences π1 and π2 are non-empty;
otherwise, the corresponding part of the proof can be skipped.

The actual processing times and the completion times of all jobs in sequence π1

are not affected by the swap of jobs u and v, i.e., (8.9) holds as equality for each h,
1 ≤ h ≤ r − 1.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Define X as the completion time of the job in the (r − 1)th position in sequence
π (or, equivalently, in π′), i.e., X = Cπ(r−1) = Cπ′(r−1). For h = r , we derive that

Cπ(r) = Cu(π) = X + (pu + f (X))g(r);
Cπ′(r) = Cv

(
π′) = X + (pv + f (X))g(r).

Due to (8.8), we see that inequality (8.9) holds for h = r .
For h = r + 1, we derive that

Cπ(r+1) = Cv(π) = X + (pu + f (X))g(r)

+(pv + f (X + (pu + f (X))g(r)))g(r + 1);
Cπ′(r+1) = Cu

(
π′) = X + (pv + f (X))g(r)

+(pu + f (X + (pv + f (X))g(r)))g(r + 1).

Define
� := Cπ′(r+1) − Cπ(r+1).

Writing out the actual processing times of jobs u and v in permutations π and π′,
we obtain

� = (pv − pu)(g(r) − g(r + 1)) (8.11)

+( f (X + (pv + f (X))g(r)) − f (X + (pu + f (X))g(r)))g(r + 1).

Due to (8.8) and (8.10), we have that

(pv − pu)(g(r) − g(r + 1)) < 0.

Besides, X + (pv + f (X))g(r) = Cπ′(r) ≤ Cπ(r) = X + (pu + f (X))g(r), so
that

f (X + (pv + f (X))g(r)) − f (X + (pu + f (X))g(r)) ≤ 0,

since f is non-decreasing. Thus, � ≤ 0, i.e., (8.9) holds for h = r + 1.
The jobs that follow the position r + 1 form the same sequence π2 in both per-

mutations π and π′. Each of these jobs starts in permutation π′ no later than in
permutation π, and therefore, (8.9) holds for each h, r + 2 ≤ h ≤ n.

This proves the theorem. �

Since the positional factors satisfy (8.10), it follows that Theorem8.1 addresses
a single machine model in which a start-time-dependent deterioration effect is com-
bined with a positional learning effect. Theorem8.1 demonstrates that in a sequence
that minimizes any objective function �(π) that depends only on the completion
times, the jobs may be arranged in such a way that a job with a larger normal
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processing time is not followed by a job with a smaller normal processing time.
Examples of such a function include, but not limited to Cmax,

∑
Cz

j , where z is a
given positive number, and their linear combination ξCmax + η

∑
Cz

j .

Theorem 8.2 For problem 1
∣
∣p j (τ ; r) = (

p j + f (τ )
)
g(r)

∣
∣�, where � ∈{

Cmax,
∑

Cz
j , ξCmax + η

∑
Cz

j

}
, under an effect (8.4) that combines an additive

start-time-dependent deterioration effect and a positional learning effect an optimal
permutation can be found in O(n log n) time by sorting the jobs in accordance with
the SPT rule (8.7), provided that function f is non-decreasing and the positional
factors g(r), 1 ≤ r ≤ n, are non-increasing, i.e., (8.10) holds.

Reformulating Theorem8.2, we conclude that problem 1
∣
∣p j (τ ; r) =

(
p j + f (τ )

)
g(r)

∣
∣�,where� ∈

{
Cmax,

∑
Cz

j , ξCmax + η
∑

Cz
j

}
, under a combined

effect (8.4) with a non-decreasing function f and non-increasing positional factors
g(r), 1 ≤ r ≤ n, admits the 1-priority ω( j) = 1/p j .

It appears that the analysis of a combined effect (8.4) with an additive start-
time-dependent learning effect and a positional deterioration effect, defined by a
non-increasing function f and non-decreasing positional factors g(r), 1 ≤ r ≤ n, is
not fully symmetric to that presented in Theorem8.1. We need additional conditions
on the derivative of f , and even then only a less general statement can be proved.

Before we present the next result, we reproduce a classical statement, known in
mathematical analysis as the Lagrange’s mean value theorem.

Theorem 8.3 If a function f is continuous on a closed interval [a, b], where a < b,
and differentiable on the open interval (a, b), then there exists a point ζ ∈ (a, b)

such that
f (a) − f (b) = f ′(ζ)(a − b).

Theorem8.3 is used in the proof of the theorem below.

Theorem 8.4 Let π = (π(1), . . . ,π(n)) be a permutation, in which two jobs u and
v such that

pu < pv,

occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1). Let
permutation π′ be obtained from π by swapping the jobs u and v. Then for prob-
lem 1

∣
∣p j (τ ; r) = (

p j + f (τ )
)
g(r)

∣
∣Cmax with a combined effect (8.4) the inequality

Cmax
(
π′) ≤ Cmax(π) holds, provided that

(i) f is differentiable and non-increasing on [0,+∞);
(ii) positional factors g(r), 1 ≤ r ≤ n, are non-decreasing, i.e.,

1 = g(1) ≤ g(2) ≤ · · · ≤ g(n), (8.12)

and
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(iii)
∣
∣ f ′(τ )

∣
∣ ≤ 1/g(n) for τ ∈ [0,+∞).

Proof The first part of the proof follows that of Theorem8.1. We represent permuta-
tions π and π′ as π = (π1, u, v,π2), where π1 and π2 are subsequences of jobs that
precede job u and follow job v in permutation π, respectively. We present the proof
assuming that both sequences π1 and π2 are non-empty; otherwise, the corresponding
part of the proof can be skipped.

The actual processing times and the completion times of all jobs in sequence π1

are not affected by the swap of jobs u and v. Define X as the completion time
of the job in the (r − 1)th position in sequence π (or, equivalently, in π′), i.e.,
X := Cπ(r−1) = Cπ′(r−1). For h = r , we have that Cπ(r) = X + (pu + f (X))g(r)

andCπ′(r) = X + (pv + f (X))g(r). Notice that pu < pv , which implies thatCπ(r) <

Cπ′(r). This explains why under the conditions of Theorem8.4 it is not possible to
prove a more general statement, similar to Theorem8.1.

Further, for the jobs in position r + 1, as in the proof of Theorem8.1, define
� := Cπ′(r+1) − Cπ(r+1), which can be rewritten as (8.11). Since pu < pv , g(r) ≤
g(r + 1) due to (8.12), and function f is non-increasing, we deduce that � ≤ 0, i.e.,
Cπ′(r+1) ≤ Cπ(r+1).

The rest of the proof relies on condition (iii) and is done by induction. Assume
that the inequality (8.9) holds for each h, where r + 1 ≤ h ≤ q − 1 ≤ n − 1. We
prove that (8.9) holds for h = q.

The jobs that follow the position r + 1 form the same sequence π2 in both per-
mutations π and π′. Let x be the job scheduled in position q, i.e., x = π(q) = π′(q).
We deduce that

Cπ(q) = Cx (π) = Cπ(q−1) + (
px + f

(
Cπ(q−1)

))
g(q);

Cπ′(q) = Cx
(
π′) = Cπ′(q−1) + (

px + f
(
Cπ′(q−1)

))
g(q).

Define δ := Cπ(q−1) − Cπ′(q−1). If δ = 0, then Cπ(q) = Cπ′(q); otherwise, by the
induction assumption, δ > 0.

By Theorem8.3 and due to the fact that f is non-increasing, there exists a point
ζ ∈ [

Cπ′(q−1), Cπ(q−1)
]
such that

f
(
Cπ′(q−1)

) − f
(
Cπ′(q−1) + δ

) = −δ f ′(ζ) = δ
∣
∣ f ′(ζ)

∣
∣.

By condition (iii), we have that
∣
∣ f ′(ζ)

∣
∣ ≤ 1/g(n), which implies that f

(
Cπ′(q−1)

)

− f
(
Cπ′(q−1) + δ

) ≤ δ/g(n). Thus, we deduce that

Cπ′(q) − Cπ(q) = (
Cπ′(q−1) − Cπ(q−1)

) + (
f
(
Cπ′(q−1)

) − f
(
Cπ(q−1)

))
g(q)

= −δ + (
f
(
Cπ′(q−1)

) − f
(
Cπ′(q−1) + δ

))
g(q) ≤ −δ + δ

g(n)
g(q) ≤ 0,

where the last inequality holds because g(q) ≤ g(n) due to (8.12).
We conclude that the inequality (8.9) holds for each h, r + 1 ≤ h ≤ n. In partic-

ular, Cπ′(n) ≤ Cπ(n), i.e., Cmax
(
π′) ≤ Cmax(π). This proves the theorem. �
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Notice that if f is additionally non-positive, the start-time-dependent compo-
nent of the combined effect (8.4) represents a learning effect. Condition (iii) of
Theorem8.4 ensures that the learning rate is not too large, so that the actual process-
ing times of jobs never become negative.

Theorem8.4 immediately leads to the following statement regarding single
machine scheduling problems to minimize the makespan.

Theorem 8.5 For problem 1
∣
∣p j (τ ; r) = (

p j + f (τ )
)
g(r)

∣
∣Cmax under the com-

bined effect (8.4), an optimal permutation can be found in O(n log n) time by sorting
the jobs in accordance with the LPT rule (8.6), provided that the conditions of The-
orem8.4 are satisfied.

Notice that the proof of Theorem8.4 in fact demonstrates that the inequality (8.9)
holds for each h other than r , while Cπ(r) < Cπ′(r). This fact does not allow us to
derive any conclusions regarding the status of problem 1

∣
∣p j (τ ; r) = (

p j + f (τ )
)

g(r)| ∑ C j , provided that function f is non-increasing on [0,+∞). Below, we
present a counterexample that demonstrates that the problem can be solved neither by
the SPT rule nor by the LPT rule, even if a pure additive start-time-dependent effect
is considered, i.e., even if g(r) = 1, 1 ≤ r ≤ n. Notice that if g(r) = 1, 1 ≤ r ≤ n,
then condition (iii) of Theorem8.4 simply becomes

∣
∣ f ′(τ )

∣
∣ ≤ 1 for τ ∈ [0,+∞).

Example 8.1 Consider an instance of problem 1
∣
∣p j (τ ) = p j + f (τ )

∣
∣∑ C j to min-

imize the sum of completion times under the additive effect (8.3) with the function
f (τ ) = −1 + 1/(1 + τ ), τ > 0. There are 8 jobs with the normal processing times
listed below

p1 = 1, p2 = 2, p3 = 3, p4 = 4, p5 = 5, p6 = 5, p7 = 6, p8 = 6.

It is clear that f (0) = 0 and function f is decreasing. Also, its derivative
∣
∣ f ′(τ )

∣
∣ =

1
(τ+1)2 ≤ 1, for τ ∈ [0,+∞). Thus, f satisfies the conditions of Theorem8.4. For this
instance, the total completion time

∑
C j is minimized neither by the SPT sequence,

Table 8.1 Computations for Example8.1

π = (1, 2, 3, 4, 5, 6,
7, 8) [S PT ]

π = (8, 7, 6, 5, 4, 4,
3, 2, 1) [L PT ]

π = (2, 1, 3, 4, 5,
6, 7, 8)

Cπ(1) 1.00 6.00 2.00

Cπ(2) 2.50 11.14 2.33

Cπ(3) 4.79 15.23 4.63

Cπ(4) 7.96 19.29 7.81

Cπ(5) 12.07 22.34 11.92

Cπ(6) 16.15 24.38 16.00

Cπ(7) 21.21 25.42 21.06

Cπ(8) = Cmax(π) 26.25 25.46 26.11
∑

Cπ( j) 91.92 149.24 91.87



142 8 Scheduling with Pure and Combined Additive Start-Time-Dependent Effects

Table 8.2 Results for scheduling independent jobs on a single machine with an additive start-time-
dependent effect

Condition on
g

Condition on
f

Condition on
f ′

Objective Rule Statement

g ↘ f ↗ − Cmax SPT Theorem8.2

g ↘ f ↗ − ∑
Cz

j SPT Theorem8.2

g ↘ f ↗ − ξCmax +
η

∑
Cz

j

SPT Theorem8.2

g ↗ f ↘, ∃ f ′ ∣
∣ f ′∣∣ ≤ 1/g(n) Cmax LPT Theorem8.5

g = 1 f ↘, ∃ f ′ ∣
∣ f ′∣∣ ≤ 1

∑
C j Open Example8.1

nor by the LPT sequence. The corresponding computations (accurate to 2 decimal
places) are shown in Table8.1.We see that permutation (2, 1, 3, 4, 5, 6, 7, 8) delivers
a smaller value of the total completion time than that produced by each of the SPT
and the LPT sequences.

The results presented in Sect. 8.1.1 are summarized in Table8.2. Here, we write
g = 1 to indicate that g(r) = 1, 1 ≤ r ≤ n; besides, in the first and the second
columns, we use symbols ↗ and ↘ to indicate that either the sequence g(r) or
the function f is non-decreasing or non-increasing, respectively.

8.1.2 Job-Dependent Linear Effects

In this subsection, we address a single machine scheduling problem under pure linear
additive job-dependent start-time-dependent effects. Each job j ∈ N is associated
with a normal processing time p j and a non-negative rate a j . We study the effects,
under which the actual processing time p j (τ ) of job j that starts at time τ is given
either by

p j (τ ) = p j + a jτ , (8.13)

or by
p j (τ ) = p j − a jτ . (8.14)

Here, a j is a positive number that represents either a deterioration rate (in the case
of effect (8.13)) or a learning rate (in the case of effect (8.14)) of job j ∈ N .

It is clear that both effects (8.13) and (8.14) are versions of the general additive
effect (8.1) with either f j (τ ) = a jτ or f j (τ ) = −a jτ , respectively. Notice that in
the case of the learning effect (8.14), an additional assumption

a j < 1, a j

(
n∑

i=1

pi − p j

)

< p j , j ∈ N , (8.15)
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is required. The first part of this assumption guarantees that for minimizing a regular
objective function, an unnecessary delay in starting a job is counterproductive, and
the second part which follows from (8.5) guarantees that the actual processing times
are kept non-negative.

First, we provide a closed form formula for computing the completion times on a
single machine under the effects (8.13) and (8.14).

Lemma 8.1 Let the jobs be processed on a single machine in accordance with
a permutation π = (π(1),π(2), . . . ,π(n)). Under the effect (8.13) the completion
times can be computed by the formula

Cπ(k) =
k∑

j=1

pπ( j)

k∏

i= j+1

(
1 + aπ(i)

)
, 1 ≤ k ≤ n, (8.16)

while under the effect (8.14) they can be computed as

Cπ(k) =
k∑

j=1

pπ( j)

k∏

i= j+1

(
1 − aπ(i)

)
, 1 ≤ k ≤ n. (8.17)

Proof We present the derivation of (8.16); the derivation of (8.17) is similar. The

proof is by induction. Recall that by a standard agreement,
v∏

i=u

(·) = 1, provided that

u > v.
For k = 1, we see that the actual processing time of job π(1) is pπ(1), so that

Cπ(1) = pπ(1), as required for the basis of induction.
Assume that (8.16) holds for all k, where 1 ≤ k ≤ q − 1 < n − 1. We prove that

(8.16) holds for k = q. By definition and the induction assumption, we have that

Cπ(q) = Cπ(q−1) + pπ(q) + aπ(q)Cπ(q−1) = pπ(q) + (
1 + aπ(q)

)
Cπ(q−1)

= pπ(q) + (
1 + aπ(q)

) q−1∑

j=1

pπ(k)

q−1∏

i= j+1

(
1 + aπ(i)

)

= pπ(q) +
q−1∑

j=1

pπ(k)

q∏

i= j+1

(
1 + aπ(i)

) =
q∑

j=1

pπ(k)

q∏

i= j+1

(
1 + aπ(i)

)
,

which proves the lemma. �

We denote the single machine problems for minimizing a function � under the
effects (8.13) and (8.14) by 1

∣
∣p j (τ ) = p j + a jτ

∣
∣� and 1

∣
∣p j (τ ) = p j − a jτ

∣
∣�,

respectively.
Lemma8.1 together with Theorem2.5 onminimizing the sum of products implies

the following statement.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Theorem 8.6 For problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, with a deterioration effect

(8.13), an optimal permutation can be found in O(n log n) time by sorting the jobs in
non-decreasing order of the ratios p j/a j . For problem 1

∣
∣p j (τ ) = p j − a jτ

∣
∣Cmax,

with a learning effect (8.14) under the assumption (8.15), an optimal permutation
can be found in O(n log n) time by sorting the jobs in non-increasing order of the
ratios p j/a j .

Proof It follows from Lemma8.1 that for a given permutation π, we have

Cmax(π) = Cπ(n) =
n∑

j=1

pπ( j)

n∏

i= j+1

(
1 + aπ(i)

)

for problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, while

Cmax(π) = Cπ(n) =
n∑

j=1

pπ( j)

n∏

i= j+1

(
1 − aπ(i)

)

for problem 1
∣
∣p j (τ ) = p j − a jτ

∣
∣Cmax. In either case, minimizing Cmax(π) is

equivalent tominimizing the sumof products K (π) defined by (2.14). The conditions
of Theorem2.5 regarding components b j hold, since in the case of problem
1
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, all differences b j − 1 = (

1 + a j
) − 1 = a j are

non-negative, while in the case of problem 1
∣
∣p j (τ ) = p j − a jτ

∣
∣Cmax, all differences

b j − 1 = (
1 − a j

) − 1 = −a j are non-positive. �

Reformulating Theorem8.6 in terms of 1-priorities, we conclude that prob-
lem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax admits a 1-priority function either ω( j) = a j/p j

or ω( j) = −p j/a j , while problem 1
∣
∣p j (τ ) = p j − a jτ

∣
∣Cmax admits a 1-priority

function ω( j) = p j/a j . Sequencing jobs in non-increasing order of 1-priorities
solves the corresponding problem.

We now pass to problems of minimizing functions related to the sum of the
completion times.

Theorem 8.7 Problems 1
∣
∣p j (τ ) = p j + a jτ

∣
∣∑ C j and 1

∣
∣p j (τ ) = p j − a jτ

∣
∣

∑
C j do not admit a 1-priority function.

Proof We present the proof for problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑ C j ; the proof

for problem 1
∣
∣p j (τ ) = p j − a jτ

∣
∣∑ C j is similar. To prove the theorem, we use

Recipe 2.2 from Sect. 2.1.1. Consider an instance of problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣

∑
C j with four jobs such that p1 = · · · = p4 = 1 and

a1 = 1, a2 = 2, a3 = 1, a4 = 1.

Let F(π) denote the sum of the completion times of the jobs sequenced in accor-
dance with a permutation π. If F(π) admitted a 1-priority function ω( j), then for
any pair of jobs u and v such that ω(u) ≥ w(v), the value of F for any permutation

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Table 8.3 Computation for the proof of Theorem8.7

π = ((1, 2), 3, 4) π = ((2, 1), 3, 4) π = (3, 4, (1, 2)) π = 3, 4, (2, 1)

Cπ(1) 1 1 1 1

Cπ(2) 4 3 3 3

Cπ(3) 9 7 7 10

Cπ(4) 19 15 22 21

F(π) 33 26 33 35

π in which u precedes v should be no larger than the value of F for permutation π′
obtained from π by swapping the jobs u and v.

Table8.3 presents the details of relevant computation that is based on (8.16). We
see that

F((1, 2), 3, 4) = 33 > F((2, 1), 3, 4) = 26;
F(3, 4, (1, 2)) = 33 < F(3, 4, (2, 1)) = 35.

For the first pair of permutations (those which finish with 3, 4), ordering the jobs
1 and 2 as (1, 2) gives a better value of the function compared to the order (2, 1) of
these jobs. On the other hand, for the second pair of permutations (those which start
with 3, 4), the opposite phenomenon is observed. We conclude that no 1-priority
function exists. �

The problem of minimizing the weighted sum of the completion times
∑

w j C j

under the effect (8.13) is NP-hard, as proved below by polynomial reduction in the
following problem.

Non-Numerical 3-Partition. Given positive integers e1, e2, . . . , e3r and the
index set R = {1, . . . , 3r} such that

• ei is bounded by a polynomial of r , i ∈ R,
• 1

4 E < ei < 1
2 E , i ∈ R, and

• e(R) = ∑
i∈R ei = r R,

does there exist a partition of set R into r disjoint subsets Rk such that e(Rk) =∑
i∈Rk

ei = E for each k, 1 ≤ k ≤ r?

Theorem 8.8 Problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑w j C j is NP-hard in the ordinary

sense.

Proof We show that Non-numerical 3-Partition reduces to the decision version
of problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣∑ w j C j . The difference between 3-Partition

formulated in Sect. 1.3.2 and Non-numerical 3-Partition is that in the latter
problem, it is additionally assumed that each ei is bounded by a polynomial of r .

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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Given an instanceof Non-numerical 3-Partition, define the following instance
of problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑w j C j . Compute

D = r(r + 3), y = r(r + 3)D(r+1)E .

There are n = 4r + 1 jobs, which are split into two classes: the U -jobs, denoted by
Ui , 1 ≤ i ≤ 3r , and the V -jobs, denoted by Vk , k ∈ {0, 1, . . . , r}. For the U -jobs,
the parameters are set equal to

pUi = 0, aUi = Dei − 1, wUi = 1, 1 ≤ i ≤ 3r.

For the V -jobs, define

pV0 = 1, aV0 = 0, wV0 = y + 1;
pVk = Dk E , aVk = 0, wVk = D(r+1−k)E .

We show that Non-numerical 3-Partition has a solution if and only if for
the constructed instance of problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣∑ w j C j there exists a

schedule S0 for which the value of the objective function is at most 2y + 1.
First, assume that Non-numerical 3-Partition has a solution, and Rk, 1 ≤

k ≤ r , are the found sets. Then, a required schedule S0 exists and can be found as
follows: The V -jobs are scheduled in the sequence V0, V1, . . . Vk , and between each
pair of jobs Vk−1 and Vk , a triple of jobs Ui with i ∈ Rk are processed.

To demonstrate that for schedule S0, the value of the objective function is at most
y + 1, compute the contribution Fk = wVk CVk for each V -job.

It is clear that job V0 completes at time 1, so that F0 = y + 1. Suppose that
R1 = {i1, i2, i3} and assume that in schedule S0, jobs Ui1 , Ui2 and Ui3 are processed
in this order. Finally, jobUi1 starts at time 1, its actual processing time is Dei1 − 1 and
it completes at time Dei1 . Similarly, job Ui2 starts at time Dei1 , its actual processing
time is (Dei2 − 1) Dei1 , and it completes at time Dei1 Dei2 . Finally, job Ui3 completes
at time Dei1 Dei2 Dei3 = De(R1). Notice that the completion time of the block of these
three jobs, i.e., the start time of job V1, does not depend on the order of the jobs
within the block. Thus, we deduce

F1 = (
De(R1) + DE

)
Dr E = De(R1)+r E + D(r+1)E .

Similarly, we obtain that the start time of job V2 is
(
De(R1) + DE

)
De(R2), so that

F2 = ((
De(R1) + DE

)
De(R2) + D2E

)
D(r−1)E

= De(R1)+e(R2)+(r−1)E + De(R2)+r E + D(r+1)E .

Extending, we derive that for an arbitrary k, 1 ≤ k ≤ r , the equality
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Fk =
k∑

u=1

D
(∑k

v=u e(Rv)
)
+(r+u−k)E + D(r+1)E (8.18)

holds for an arbitrary k, 1 ≤ k ≤ r .
Since Non-numerical 3-Partition has a solution, we know that e(Rk) = E ,

1 ≤ k ≤ n, which implies that

Fk = (k + 1)D(r+1)E , 1 ≤ k ≤ r,

so that
r∑

k=1

Fk = 1

2
r(r + 3)D(r+1)E .

Each U -job completed between jobs Vk−1 and Vk makes a contribution to the
objective function which is no larger than the completion time of job Vk , i.e., Fk/wVk .
Since Fk/wVk < Fk/wVm , it follows that a triple of the U -jobs completed between
jobs Vk−1 and Vk makes a total contribution that is no larger than 3Fk/DE .

For schedule S0, the objective function is the sum of
∑r

k=0 Fk plus the total
contribution of the U -jobs which does not exceed

(y + 1) +
r∑

k=1

Fk + 3

DE

r∑

k=1

Fk < (y + 1) + 2
r∑

k=1

Fk = 2y + 1,

as required.
Now assume that there exists a required schedule S0, in which the sum ofweighted

completion times does not exceed 2y + 1.
It immediately follows that job V0 must be scheduled in the time interval [0, 1];

otherwise, its contribution F0 > 2wV0 is at least 2y + 2.
Using Theorem2.6 on optimality of theWSPT rule for problem 1| | ∑ w j C j , it is

easy to show that in schedule S0, the V -jobs should be sequenced in non-decreasing
order of the ratios pVk /wVk , i.e., in the order of their numbering FV1 , FV2 , . . . , FVm .

Let Rk denote the index set of the U -jobs sequenced between the jobs Fk−1 and
Fk , 1 ≤ k ≤ r . Suppose that for some k, we have that e(Rk) > E . Then, it follows
from (8.18) that

Fk > De(Rk )+r E + D(r+1)E ≥ D(E+1)+r E + D(r+1)E = D(r+1)E (D + 1) > y.

Therefore, we must have that e(Rk) ≤ E for each k, 1 ≤ k ≤ r . This together
with e(R) = r E yields e(Rk) = E , 1 ≤ k ≤ r ; i.e., the sets Rk form a solution to
Non-numerical 3-Partition, as required.

The presented reduction requires time that is polynomial in r and E . Although
Non-numerical 3-Partition is NP-complete in the strong sense, the presented
reduction is polynomial, not pseudopolynomial, which only allows us to conclude
that problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣∑ w j C j is NP-hard in the ordinary sense. �

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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8.1.3 Job-Independent Linear Effects

In this subsection, we address a single machine scheduling problem under linear
additive job-independent start-time-dependent effects. We study these effects in
combination with positional effects. If each job j ∈ N is associated with a nor-
mal processing time p j , then under the studied effect, the actual processing time
p j (τ ) of job j that starts at time τ and is placed in position r , 1 ≤ r ≤ n, is given
either by

p j (τ ; r) = (
p j + aτ

)
g(r) (8.19)

or by
p j (τ ; r) = (

p j − aτ
)
g(r). (8.20)

Here, a is a positive number that represents either a deterioration rate (in the
case of effect (8.19)) or a learning rate (in the case of effect (8.20)), and this rate
is common for all jobs j ∈ N . Array g(r), 1 ≤ r ≤ n, is a possibly non-monotone
sequence of positional factors and defines an arbitrary positional effect. In general,
the sequence g(r), 1 ≤ r ≤ n, need not bemonotone; however, if it is non-decreasing
(non-increasing), it represents a positional deterioration (learning) effect. Notice that
both effects (8.19) and (8.20) are special cases of (8.4).

As usual, it is assumed that g(1) = 1, which guarantees that for the job which is
the first in the processing sequence, the actual processing time is equal to its normal
time. Notice that in the case of a start-time-dependent learning effect (8.20), we must
also adopt the additional assumption

a <
1

max{g(1), g(2), . . . , g(n)} , aτ < min{p1, p2, . . . , pn}, τ > 0, (8.21)

which follows from (8.5) and (8.15) and guarantees that there is no idle time before
the processing of a job and the actual processing times do not assume negative values.

For the combined effect (8.19), the following statement immediately follows from
Theorem8.2.

Theorem 8.9 For problem 1
∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣�, where � ∈{

Cmax,
∑

Cz
j , ξCmax + η

∑
Cz

j

}
, under an effect (8.19) that combines an additive

start-time-dependent deterioration effect and a positional learning effect, an optimal
permutation can be found in O(n log n) time by sorting the jobs in accordance with
the SPT rule, provided that the array g(r), 1 ≤ r ≤ n, is non-increasing, i.e., (8.10)
holds.

Reformulating Theorem8.9 in terms of 1-priorities, we conclude that problem

1
∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣� for � ∈

{
Cmax,

∑
Cz

j , ξCmax + η
∑

Cz
j

}
admits a

1-priority function either ω( j) = 1/p j or ω( j) = −p j , provided that (8.10) holds.
For the combined effect (8.20) with a negative sign, the following statement

follows from Theorem8.5.
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Theorem 8.10 For problem 1
∣
∣p j (τ ; r) = (

p j − aτ
)
g(r)

∣
∣Cmax, under an effect

(8.20) that combines an additive start-time-dependent learning effect and a posi-
tional deterioration effect, an optimal permutation can be found in O(n log n) time
by sorting the jobs in accordance with the LPT rule, provided that the condition
(8.21) holds, and the array g(r), 1 ≤ r ≤ n, is non-decreasing, i.e., (8.12) holds.

Theorem8.5 is applicable because for problem 1
∣
∣p j (τ ; r) = (

p j − aτ
)

g(r)|Cmax, the start-time-dependent function f (τ ) = −aτ decreases on [0,∞), and
due to the assumption (8.21) we have that

∣
∣ f ′(τ )

∣
∣ = a < 1/g(n).

Reformulating Theorem8.10 in terms of 1-priorities, we conclude that problem
1
∣
∣p j (τ ; r) = (

p j − aτ
)
g(r)

∣
∣Cmax admits a 1-priority function either ω( j) = p j or

ω( j) = −1/p j , provided that (8.12) holds.
Now, we show that single machine problems with the combined effects (8.19)

and (8.20) are polynomially solvable for a range of objective functions, even if
the sequence g(r), 1 ≤ r ≤ n, is not monotone. As demonstrated in Chap.7, many
single machine scheduling problems with a positional job-independent effect reduce
to minimizing a function

�(π) =
n∑

r=1

W (r)pπ(r), (8.22)

where W (r), 1 ≤ r ≤ n, is a suitably defined positional weight which denotes the
contribution of a job scheduled in the r th position to the objective function. Function
(8.22) is in a linear form, and an optimal permutation can be found in O(n log n)

time by Algorithm Match given in Sect. 2.1.

Theorem 8.11 Problems 1
∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣� and 1

∣
∣p j (τ ; r) =(

p j − aτ
)
g(r)

∣
∣�, where � ∈ {

Cmax,
∑

C j , ξCmax + η
∑

C j
}
, under no assump-

tion on the array g(r), 1 ≤ r ≤ n, can be reduced to minimizing a generic objec-
tive function (8.22). Each of the problems can be solved by Algorithm Match in
O(n log n) time.

Proof We present a detailed proof for effect (8.19); effect (8.20) can be treated
similarly. Let π = (π(1),π(2), . . . ,π(n)) be an arbitrary permutation of jobs. It is
easy to deduce from Lemma8.1 that the completion times of jobs can computed as

Cπ(1) = pπ(1)g(1);
Cπ(2) = Cπ(1) + (

pπ(2) + aCπ(1)
)
g(2) = pπ(2)g(2) + Cπ(1)(1 + ag(2))

= pπ(1)g(1)(1 + ag(2)) + pπ(2)g(2);
...

Cπ(r) =
r∑

k=1

pπ(k)g(k)

r∏

i=k+1

(1 + ag(i)), 1 ≤ r ≤ n, (8.23)

where, as before, for k + 1 > r , an empty product
r∏

i=k+1
(·) equals one.

http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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For the makespan objective, i.e., for problem 1
∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣Cmax,

adopting (8.23), we deduce that

Cmax(π) =
n∑

r=1

pπ(r)

(

g(r)

n∏

i=r+1

(1 + ag(i))

)

,

which can be rewritten as (8.22) with

W (r) = g(r)

n∏

i=r+1

(1 + ag(i)), 1 ≤ r ≤ n. (8.24)

Clearly, problem 1
∣
∣p j (τ ; r) = (

p j − aτ
)
g(r)

∣
∣Cmax reduces to minimizing

(8.22) with the positional weights

W (r) = g(r)

n∏

i=r+1

(1 − ag(i)), 1 ≤ r ≤ n. (8.25)

For the total completion time objective, i.e., for problem 1
∣
∣p j (τ ; r) = (

p j + aτ
)

g(r)| ∑ C j , adopting (8.23), we deduce that

∑
C j (π) =

n∑

r=1

(
r∑

k=1

pπ(k)g(k)

r∏

i=k+1

(1 + ag(i))

)

.

Changing the order of summation, we get

∑
C j (π) =

n∑

r=1

pπ(r)g(r)

(
n∑

k=r

k∏

i=r+1

(1 + ag(i))

)

which can be rewritten as (8.22) with

W (r) = g(r)

(
n∑

k=r

k∏

i=r+1

(1 + ag(i))

)

, 1 ≤ r ≤ n. (8.26)

Clearly, problem1
∣
∣p j (τ ; r) = (

p j − aτ
)
g(r)

∣
∣∑ C j reduces tominimizing (8.22)

with the positional weights

W (r) = g(r)

(
n∑

k=r

k∏

i=r+1

(1 − ag(i))

)

, 1 ≤ r ≤ n. (8.27)

Finally, using the above relations together with (8.24) and (8.25), we reduce prob-
lems 1

∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣ξCmax + η

∑
C j and 1

∣
∣p j (τ ; r) = (

p j − aτ
)
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g(r)|ξCmax + η
∑

C j to minimizing a generic objective function of the form (8.22)
with the positional weights defined by

W (r) = ξ

[

g(r)

n∏

i=r+1

(1 + ag(i))

]

+ η

[

g(r)

(
n∑

k=r

k∏

i=r+1

(1 + ag(i))

)]

, 1 ≤ r ≤ n, (8.28)

and

W (r) = ξ

[

g(r)

n∏

i=r+1

(1 − ag(i))

]

+ η

[

g(r)

(
n∑

k=r

k∏

i=r+1

(1 − ag(i))

)]

, 1 ≤ r ≤ n,

respectively.
As stated in Sect. 2.1, a permutation that minimizes function �(π) of the form

(8.22) over all permutations of jobs of set N can be found by AlgorithmMatch which
requires O(n log n) time. �

Theorem8.11 guarantees that an optimal solution to problem 1
∣
∣p j (τ ; r) =(

p j ± aτ
)
g(r)

∣
∣�, where � ∈ {

Cmax,
∑

C j , ξCmax + η
∑

C j
}
can be obtained in

O(n log n) time under much more general assumptions that those imposed in Theo-
rems8.9 and 8.10. In general, for problem 1

∣
∣p j (τ ; r) = (

p j ± aτ
)
g(r)

∣
∣� an optimal

permutation need not be obtained by a simple priority rule, such as SPT or LPT.
According to Theorem8.9, an optimal permutation for problem 1

∣
∣p j (τ ; r) =(

p j + aτ
)
g(r)

∣
∣�, where � ∈ {

Cmax,
∑

C j , ξCmax + η
∑

C j
}
and the array g(r),

1 ≤ r ≤ n, are non-increasing, can be found by the SPT rule. The same conclusion
can be derived from Theorem8.11, which reduces the problem to minimizing a func-
tion (8.22) by Algorithm Match. Indeed, it is easy to verify that for each of these
problems, the sequence of the positional weights W (r), 1 ≤ r ≤ n, is non-increasing.
For illustration, observe that in the case of the makespan objective, it follows from
(8.24) that for any r , 1 ≤ r ≤ n − 1, the inequality

W (r)

W (r + 1)
= g(r)

g(r + 1)
(1 + ag(r + 1)) > 1

holds. Recall that according to Algorithm Match, in order to minimize the objec-
tive function (8.22), the jobs must be sequenced in non-decreasing order of their
processing times, i.e., in accordance with the SPT rule.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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On the other hand, notice that Theorem8.9 guarantees that a permutation that is
optimal for problem 1

∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣∑ Cz

j can be found by the SPT
rule, while such a conclusion does not follow from Theorem8.11.

Notice that Theorem8.10 does not resolve the status of problem 1
∣
∣p j (τ ) =(

p j − aτ
)
g(r)

∣
∣∑ C j , while this can be easily done by applying Theorem8.11, even

if the array g(r), 1 ≤ r ≤ n, is not monotone. Moreover, if g(r) = 1, 1 ≤ r ≤ n,
Theorem8.11 implies the following statement.

Corollary 8.1 For problem 1
∣
∣p j (τ ) = p j − aτ

∣
∣ ∑ C j , under a pure additive

start-time-dependent learning effect, an optimal permutation can be found in O(n log n)

time by sorting the jobs in accordance with the SPT rule, provided that (8.21) holds,
i.e., a < 1.

Proof According toTheorem8.11, for problem1
∣
∣p j (τ ) = p j − aτ

∣
∣ ∑ C j , the objec-

tive function can be written in the form of a generic objective function (8.22) with
the positional weights given by (8.27), applied with g(r) = 1, 1 ≤ r ≤ n. We get

W (r) =
n∑

k=r

k∏

i=r+1

(1 − a) =
n∑

k=r

(1 − a)k−r = 1 − (1 − a)n−r+1

a
, 1 ≤ r ≤ n.

(8.29)

Notice that since a < 1, the positional weights W (r), 1 ≤ r ≤ n, given by (8.29),
form a non-increasing sequence. Thus, in an optimal permutation generated byAlgo-
rithmMatch, the jobs are sequenced in non-decreasing order of their normal process-
ing times, i.e., in accordance with the SPT rule. �

Reformulating Corollary8.1 in terms of 1-priorities, we conclude that problem
1
∣
∣p j (τ ) = p j − aτ

∣
∣ ∑ C j admits a 1-priority function ω( j) = 1/p j .

Theorem8.11 reduces several problems to an assignment problem with a product
matrix, a tool which is extensively used in Chap. 7 to study problems with positional
effects. In fact, for an objective function � ∈ {

Cmax,
∑

C j
}
, there are interesting

links between problems 1
∣
∣p j (τ ) = p j − aτ

∣
∣� and 1

∣
∣p j (τ ) = p j + aτ

∣
∣�, on one

hand, and problems of minimizing Cmax with positional effects (see Sect. 7.2.1).
Theorem8.11 implies the following statement.

Corollary 8.2 The following problems are equivalent:

(a) problem 1
∣
∣p j (τ ) = p j − aτ

∣
∣Cmax under a pure additive start-time-dependent

learning effect and problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax with a positional exponen-

tial deterioration effect (7.13); both problems are solvable by the LPT rule;
(b) problem 1

∣
∣p j (τ ) = p j + aτ

∣
∣Cmax under a pure additive start-time-dependent

deterioration effect and problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax with a positional expo-

nential learning effect (7.15); both problems are solvable by the SPT rule;
(c) problem 1

∣
∣p j (τ ) = p j − aτ

∣
∣ ∑ C j and problem 1

∣
∣p j (τ ) = p j + aτ

∣
∣ ∑ C j , on

one hand, and problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax with a positional learning effect,

on the other hand; all these problems are solvable by the SPT rule.

http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
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Proof In order to prove statement (a), take problem 1
∣
∣p j (τ ) = p j − aτ

∣
∣Cmax.

According to Theorem8.11, for problem 1
∣
∣p j (τ ) = p j − aτ

∣
∣Cmax, the objective

function can be written in the form of a generic objective function (8.22) with the
positional weights given by (8.25). Substituting g(r) = 1, 1 ≤ r ≤ n, we get

W (r) =
n∏

i=r+1

(1 − a) = (1 − a)n−r , 1 ≤ r ≤ n.

Define γ := 1/(1 − a) and rewrite

W (r) = (1 − a)n−1γr−1, 1 ≤ r ≤ n.

Notice that γ > 1, since 0 < a < 1. Disregarding the sequence-independent mul-
tiplicative constant (1 − a)n−1, we see that problem 1

∣
∣p j (τ ) = p j − aτ

∣
∣Cmax is

equivalent to the problem of minimizing the function
∑n

r=1 pπ(r)γ
r−1. The latter

function is the objective function in problem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax with a posi-

tional exponential deterioration effect of the form (7.13). According to Theorem7.2,
the latter problem is solvable by the LPT rule, which complies with the earlier proved
Theorem8.10.

The proof of statement (b) is similar. In this case, problem 1
∣
∣p j (τ ) = p j + aτ

∣
∣

Cmax is equivalent to the problem of minimizing the function
∑n

r=1 pπ(r)γ
r−1,

where γ = 1/(1 + a) < 1. The latter function is the objective function in problem
1
∣
∣p j (r) =p jg(r)

∣
∣Cmax with a positional exponential learning effect (7.15). Accord-

ing to Theorem7.2, the latter problem is solvable by the SPT rule, which complies
with the earlier proved Theorem8.9.

The proof of statement (c) follows from Corollary 8.1. Problem 1
∣
∣p j (τ ) =

p j + aτ
∣
∣ ∑ C j is equivalent to the problem ofminimizing the function (8.22), where

W (r) = (1 + a)n−r+1 − 1

a
, 1 ≤ r ≤ n,

which form a non-increasing sequence, i.e., W (1) ≥ W (2) ≥ · · · ≥ W (n). For
g(r) = W (r), 1 ≤ r ≤ n, problem 1

∣
∣p j (τ ) = p j + aτ

∣
∣∑ C j is equivalent to prob-

lem 1
∣
∣p j (r) = p jg(r)

∣
∣Cmax with a positional learning effect that satisfies (7.2) and

(7.11). According to Theorem7.2, the latter problem is solvable by the SPT rule,
which complies with the earlier proved Theorem8.9.

Problem1
∣
∣p j (τ ) = p j − aτ

∣
∣ ∑ C j can be handled similarly,with non-increasing

sequence of the positional weights given by (8.29) (see the proof of Corollary 8.1).
Thus, problem 1

∣
∣p j (τ ) = p j − aτ

∣
∣∑ C j reduces to problem 1

∣
∣p j (r) =

p jg(r)
∣
∣Cmax with g(r) = W (r), 1 ≤ r ≤ n. The latter problem is solvable by the

SPT rule, which complies with Corollary 8.1. �

The results of Sect. 8.1.3 are summarized in Table8.4.

http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
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Table 8.4 Results for scheduling independent jobs on a single machine with additive start-time-
dependent job-independent linear effects

Effect Condition on g Objective Rule Statement
(

p j + aτ
)
g(r) g ↘ Cmax SPT Theorem8.9

(
p j + aτ

)
g(r) g ↘ ∑

Cz
j SPT Theorem8.9

(
p j + aτ

)
g(r) g ↘ ξCmax + η

∑
Cz

j SPT Theorem8.9
(

p j − aτ
)
g(r) g ↗ Cmax LPT Theorem8.10

p j − aτ –
∑

C j SPT Corollary8.1
(

p j ± aτ
)
g(r) Arbitrary Cmax Algorithm Match Theorem8.11

(
p j ± aτ

)
g(r) Arbitrary

∑
C j Algorithm Match Theorem8.11

(
p j ± aτ

)
g(r) Arbitrary ξCmax + η

∑
C j Algorithm Match Theorem8.11

8.2 Scheduling Under Precedence Constraints

In this section, we consider single machine problems under additive start-time-
dependent effects. Unlike in Sect. 8.1, here we assume that the jobs of set N are
not independent and a precedence relation given by a series-parallel reduction graph
G = (N , U ) is imposed over the set N of jobs.

In the remainder of this section, we focus on problems 1
∣
∣p j (τ ) = p j+

a jτ , S P − prec
∣
∣Cmax and 1

∣
∣p j (τ ) = p j − a jτ , S P − prec

∣
∣Cmax, as well as on

problems 1
∣
∣p j (τ ) = p j + aτ , S P − prec

∣
∣ ∑ C j and 1

∣
∣p j (τ ) = p j − aτ , S P−

prec| ∑ C j . We show that in these problems, the objective function is priority-
generating, which means that each of these problems is solvable in O(n log n) time.
See Chap.3 for definitions and main results on scheduling under precedence con-
straints.

Given a scheduling problem with an additive start-time-dependent effect, let π be
a (partial) permutation of jobs contained as a subsequence in some schedule. The
length of a permutation π, i.e., the number of elements in π, is denoted by |π|.

Assuming that the first job in a partial permutation π starts at time t ≥ 0, let C (t)
π(k)

denote the completion time of the job sequenced in the kth position. Let Cmax(π; t)
denote the maximum completion time of the jobs in π.

8.2.1 Job-Dependent Linear Effects

We present our reasoning for problem 1
∣
∣p j (τ ) = p j + a jτ , S P − prec

∣
∣Cmax; the

reasoning for problem1
∣
∣p j (τ ) = p j − a jτ , S P − prec

∣
∣Cmax is similar. For a partial

permutation π, rewrite (8.16) in an equivalent form

C (0)
k (π) =

k∑

j=1

pπ( j)

k∏

i= j+1

(
1 + aπ(i)

)
, 1 ≤ k ≤ |π|. (8.30)

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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For our analysis, we need the following auxiliary result.

Lemma 8.2 For problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, if the jobs are sequenced in

accordance with a permutation π and the first job starts at time t, then the completion
time C (t)

π(k) of the job in position k, 1 ≤ k ≤ |π|, is given by

C (t)
π(k) = C (0)

π(k) + t
k∏

i=1

(
1 + aπ(i)

)
(8.31)

=
k∑

j=1

pπ( j)

k∏

i= j+1

(
1 + aπ(i)

) + t
k∏

i=1

(
1 + aπ(i)

)
.

Proof The proof is by induction. First, observe that

C (t)
π(1) = t + (pπ(1) + aπ(1)t) = pπ(1) + t (1 + aπ(1)) = C (0)

π(1) + t (1 + aπ(1)),

which corresponds to (8.31) for k = 1.
Assume that (8.31) holds for all k such that k ≤ q − 1 ≤ n − 1. We derive

C (t)
π(q) = C (t)

π(q−1) +
(

pπ(q) + aπ(q)C
(t)
π(q−1)

)
= C (t)

π(q−1)(1 + aπ(q)) + pπ(q).

By the induction hypothesis,

C (t)
π(q) = (1 + aπ(q))

⎛

⎝
q−1∑

j=1

pπ( j)

q−1∏

i= j+1

(
1 + aπ(i)

) + t
q−1∏

i=1

(
1 + aπ(i)

)
⎞

⎠ + pπ(q)

=
q−1∑

j=1

pπ( j)

q∏

i= j+1

(
1 + aπ(i)

) + pπ(q) + t
q∏

i=1

(
1 + aπ(i)

) = C (0)
π(q) + t

q∏

i=1

(
1 + aπ(i)

)
,

as required. �

We now demonstrate that the makespan under the deterioration effect (8.13) is
priority-generating. Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two permutations
of all jobs that only differ in the order of the subsequences α (containing u jobs) and
β (containing v jobs). Define

� := Cmax(π
αβ) − Cmax(π

βα) = Cmax(π
αβ; 0) − Cmax(π

βα; 0).

In order to verify that the objective function is priority-generating, we need to
determine a sufficient condition for the inequality � ≤ 0 to hold. From Lemma8.2,
we obtain
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Cmax(π1αβπ2; 0) = Cmax(π2; Cmax(π1αβ; 0))

= Cmax(π2; 0) + Cmax(π1αβ; 0)
|π2|∏

j=1

(
1 + aπ2( j)

);

Cmax(π1βαπ2; 0) = Cmax(π2; C(π1βα; 0))

= Cmax(π2; 0) + Cmax(π1βα; 0)
|π2|∏

j=1

(
1 + aπ2( j)

)
,

so that� = (Cmax(π1αβ; 0) − Cmax(π1βα; 0))
|π2|∏

j=1

(
1 + aπ2( j)

)
.ApplyingLemma8.2

again, we obtain

Cmax(π1αβ; 0) = Cmax(αβ; 0) + Cmax(π1; 0)
u∏

j=1

(
1 + aα( j)

) v∏

j=1

(
1 + aβ( j)

);

Cmax(π1βα, 0) = Cmax(βα; 0) + Cmax(π1; 0)
u∏

j=1

(
1 + aα( j)

) v∏

j=1

(
1 + aβ( j)

)
,

so that � = (Cmax(αβ; 0) − Cmax(βα; 0))
|π2|∏

j=1

(
1 + aπ2( j)

)
. Another application of

Lemma 8.2 gives

Cmax(αβ; 0) = Cmax(β; 0) + Cmax(α; 0)
v∏

j=1

(
1 + aβ( j)

);

Cmax(βα; 0) = Cmax(α; 0) + Cmax(β; 0)
u∏

j=1

(
1 + aα( j)

)
,

and this yields

� =
|π2|∏

j=1

(
1 + aπ2( j)

)
(8.32)

×
⎛

⎝Cmax(α, 0)

⎛

⎝
v∏

j=1

(
1 + aβ( j)

) − 1

⎞

⎠ − Cmax(β, 0)

⎛

⎝
u∏

j=1

(
1 + aα( j)

) − 1

⎞

⎠

⎞

⎠.

Using (8.32), we can establish the following result.
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Theorem 8.12 For problem 1
∣
∣p j (τ ) = p j + a jτ , S P − prec

∣
∣Cmax, the objective

function is priority-generating and

ω(π) =

|π|∏

j=1

(
1 + aπ( j)

) − 1

Cmax(π; 0) =

|π|∏

j=1

(
1 + aπ( j)

) − 1

∑|π|
j=1 pπ( j)

|π|∏

i= j+1

(
1 + aπ(i)

)
(8.33)

is its priority function. Problem 1
∣
∣p j (τ ) = p j + a jτ , S P − prec

∣
∣Cmax is solvable

in O(n log n) time.

Proof Dividing (8.32) by Cmax(α; 0)Cmax(β; 0), we deduce that � ≤ 0, provided
that

u∏

j=1

(
1 + aα( j)

) − 1

Cmax(α; 0) ≥

v∏

j=1

(
1 + aβ( j)

) − 1

Cmax(β; 0) .

For an arbitrary (partial) permutation π, define the function ω(π) by (8.33). It
is easily verified that ω(α) > ω(β) implies Cmax(π

αβ) ≤ Cmax(π
βα), while ω(α) =

ω(β) implies Cmax(π
αβ) = Cmax(π

βα), as required. �

Observe that if (8.33) is applied to a single job j , then for the corresponding prob-
lem with independent jobs, ω( j) = a j/p j is a 1-priority function, which complies
with Theorem8.6.

For problem 1
∣
∣p j (τ ) = p j − a jτ , S P − prec

∣
∣Cmax, a result similar to

Theorem8.12 is easy to derive. The corresponding priority function is

ω(π) =

|π|∏

j=1

(
1 − aπ( j)

) − 1

Cmax(π; 0) =

|π|∏

j=1

(
1 − aπ( j)

) − 1

∑|π|
j=1 pπ( j)

|π|∏

i= j+1

(
1 − aπ(i)

)
,

which in the case of a single job complies with Theorem8.6.
The results obtained for the makespan cannot be extended to the minsum

objective functions of completion times. Indeed, Theorem8.7 states that problem
1
∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑ C j does not admit a 1-priority function.

8.2.2 Job-Independent Linear Effects

We present our reasoning for problem 1
∣
∣p j (τ ) = p j + aτ , S P − prec

∣
∣∑ C j ; the

reasoning for problem 1
∣
∣p j (τ ) = p j − aτ , S P − prec

∣
∣∑ C j is similar. First, we

derive a preliminary result on the function and
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F(π; t) =
|π|∑

k=1

C (t)
k (π)

which represents the total completion time for a partial permutation π, provided that
the first job in this permutation starts at time t . Notice that it directly follows from
Lemma8.2 that

C (t)
π(k) = C (0)

π(k) + t(1 + a)k =
k∑

j=1

pπ( j)(1 + a)k− j + t(1 + a)k . (8.34)

Lemma 8.3 For problem 1
∣
∣p j (τ ) = p j + aτ

∣
∣ ∑ C j , if the jobs are sequenced from

time 0 according to a permutation (π′π′′π′′′), then

F(π′π′′π′′′; 0) = F(π′; 0) + F(π′′; 0) + F(π′′′; 0) + Cmax(π
′; 0)

|π′′ |∑

k=1

(1 + a)k (8.35)

+Cmax(π
′, 0)(1 + a)|π2|

|π′′′ |∑

k=1

(1 + a)k + Cmax(π
′′, 0)

|π′′′ |∑

k=1

(1 + a)k .

Proof Denote t ′ := Cmax(π
′; 0). Applying Lemma8.2 successively, we obtain

F(π′π′′π′′′; 0) = F(π′; 0) + F(π′′; t ′) + F(π′′′, Cmax(π
′π′′; 0))

= F(π′; 0) +
⎛

⎝F(π′′; 0) + t ′
|π′′|∑

k=1

(1 + a)k

⎞

⎠

+
⎛

⎝F(π′′′; 0) + Cmax(π
′π′′; 0)

|π′′′|∑

k=1

(1 + a)k

⎞

⎠.

Further, since

Cmax(π
′π′′; 0) = Cmax(π

′′; t ′) = Cmax(π
′′; 0) + t ′(1 + a)|π

′′|

we obtain the desired expression (8.35) for F(π′π′′π′′′; 0). �

It can be verified that Theorem3.4 formulated for constant processing times holds
for a deterioration effect (8.13). Thus, if a priority function exists for the objective∑

C j , it must be given by the function ω which serves as the priority function for
minimizing the makespan. In our case, the required function can be obtained by
adapting (8.33) to the case of equal rates a j = a, j ∈ N , and can be written as

ω(π) = (1 + a)|π| − 1

Cmax(π; 0) = (1 + a)|π| − 1
∑|π|

j=1 pπ( j)(1 + a)|π|− j
. (8.36)

http://dx.doi.org/10.1007/978-3-319-39574-6_3
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We now establish that ω given by (8.36) is indeed the required priority function.

Theorem 8.13 For problem 1
∣
∣p j (τ ) = p j + aτ , S P − prec

∣
∣ ∑ C j , the objective

function is priority-generating and (8.36) is its priority function. Problem
1
∣
∣p j (τ ) = p j + aτ , S P − prec

∣
∣ ∑ C j is solvable in O(n log n) time.

Proof Letπαβ = (π1αβπ2) andπβα = (π1βαπ2)be twopermutations of all jobs that
only differ in the order of the subsequences α (containing u jobs) and β (containing
v jobs). Define

� := F(παβ; 0) − F(πβα; 0) = F(π1αβπ2; 0) − F(π1βαπ2; 0).

Using (8.35) for π′ = π1, π′′ = αβ, and π′′′ = π2, and for π′ = π1, π′′ = βα, and
π′′′ = π2, we obtain

� = (F(αβ; 0) − F(αβ; 0)) + (Cmax(αβ; 0) − Cmax(βα; 0))
|π2|∑

k=1

(1 + a)k .

(8.37)

A further application of (8.35) for π′ = α, π′′ = β, and for π′ = β, π′′ = α, where
π′′′ is empty in both cases, yields

F(αβ; 0) − F(αβ; 0) = Cmax(α; 0)
v∑

k=1

(1 + a)k − Cmax(β; 0)
u∑

k=1

(1 + a)k (8.38)

=
(

(1 + a)Cmax(α; 0)Cmax(β; 0)
a

)(
(1 + a)v − 1

Cmax(β; 0) − (1 + a)u − 1

Cmax(α; 0)
)

.

Suppose that ω(α) > ω(β). From (8.38), the value of F(αβ, 0) − F(αβ, 0) is
negative, while the value of Cmax(αβ, 0) − Cmax(βα, 0) is non-positive since ω is a
priority function for the makespan. Thus, we deduce from (8.38), that � is negative.
Similarly, for ω(α) = ω(β), we obtain F(αβ, 0) = F(αβ, 0) and Cmax(αβ, 0) =
Cmax(βα, 0), so we deduce from (8.38) that � = 0. This completes the proof. �

Observe that if (8.36) is applied to a single job j , then ω(π) reduces to a/p j , i.e.,
ω( j) = 1/p j is a 1-priority function, which complies with Theorem8.9.

For problem 1
∣
∣p j (τ ) = p j − a jτ , S P − prec

∣
∣Cmax, a result similar to Theo-

rem8.13 is easy to derive. The corresponding priority function is

ω(π) = (1 − a)|π| − 1
∑|π|

j=1 pπ( j)(1 − a)|π|− j
,

which in the case of a single job complies with Theorem8.10.
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8.3 Bibliographic Notes

Papers by Shafransky (1978) and Melnikov and Shafransky (1980) must be seen
as historically the first ones that introduce not only scheduling models with start-
time-dependent effects, but open up the whole area of scheduling with changing
times.

Start-time-dependent effects are probably the most studied among known effects
that affect the actual processing time of jobs in a schedule. There are several influ-
ential surveys, such as Alidaee and Womer (1999) and Cheng et al. (2004) that
review the developments in the area. Reviews of start-time-dependent models with
learning effects and deterioration effects are provided in Biskup (2008) and Janiak
and Kovalyov (2006), respectively. A systematic exposition of various aspects of
scheduling with start-time-dependent effects has been undertaken in the monograph
by Gawiejnowicz (2008).

8.3.1 General Additive Job-Independent Effects

We are not aware of any prior work on the models that combine a general additive
start-time-dependent effect with a positional effect. However, models that combine a
linear additive start-time-dependent effect with a positional effect have been studied
before.

Wang (2006) and Yang and Kuo (2009) consider a model of the form (8.19)
with time-dependent deterioration and polynomial positional learning, i.e., g(r) =
rb, b < 0, and prove that each of the problems of minimizing the makespan and the
total completion time is solvable by the SPT rule. Theorem8.9 is a generalization of
the results presented in these papers.

Yang (2010) consider a model of the form (8.20) with time-dependent learning
and polynomial positional deterioration, i.e., g(r) = rb, b > 0, and prove that the
LPT rule is optimal for the problem of minimizing the makespan. Theorem8.10 is
a generalization of this result. For the problem of minimizing the total completion
time, Yang (2010) reduces the problem to minimizing (8.22), so that the results of
Theorem8.11 are applicable.

A pure additive start-time-dependent effect (8.3) is introduced by Melnikov and
Shafransky (1980). For the pure effect, simplified versions of Theorems8.1 and 8.4
follow from Melnikov and Shafransky (1980) (in the case of the makespan). For
minimizing the total completion time, an analogue of Theorem8.1 is formulated as
Theorem 6.146 in the book Gawiejnowicz (2008). However, the provided sketch of
its proof refers to a statement similar to Theorem2.5 on minimization of the sum of
products, and it remains unclear how that statement may be used.

The results presented in Kuo and Yang (2007) should be seen as a special case
of Theorem8.1 applied to a particular function f (τ ) = ∑m

i=1 λiτ
ri , where for some

integer m, the values λi and ri , 1 ≤ i ≤ m, are given non-negative constants.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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8.3.2 Linear Additive Job-Dependent Effects

The linear additive job-dependent deterioration effect (8.13) has been introduced by
Shafransky (1978), while its learning counterpart (8.14) togetherwith the assumption
(8.15) is due to Ho et al. (1993) and Ng et al. (2002).

For problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, analogues of Theorem8.6 have been

independently proved by many authors, including Shafransky (1978), Tanaev et al.
(1984), Gupta and Gupta (1988), Brownie and Yechiali (1990) (in the stochastic
settings), and Gawiejnowicz and Pankowska (1995). In Sect. 6.1.3 of the book by
Gawiejnowicz (2008), several alternative proofs of the part of Theorem8.6 that con-
cerns problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax with a deterioration effect are presented.

An analogue of Theorem8.6 for problem 1
∣
∣p j (τ ) = p j − a jτ

∣
∣Cmax with a learn-

ing effect is given in Ho et al. (1993), where it is interpreted as a feasibility problem,
in which all jobs have a common deadline.

The presented proof of Theorem8.8 on the NP-hardness of problem 1
∣
∣p j (τ ) =

p j + a jτ
∣
∣ ∑w j C j is based on Bachman et al. (2002).

The fact that problem 1
∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑ C j does not admit a 1-priority

function is established in Gordon et al. (2008) see Theorem8.7. It is stated in Cheng
et al. (2004) that problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣∑ C j is NP-hard in the strong sense,

provided that themakespan is bounded by a given value (or, equivalently, all jobs have
to be complete by a common deadline). Various properties of an optimal schedule for
problem 1

∣
∣p j (τ ) = 1 + a jτ

∣
∣∑ C j are established in Mosheiov (1991), where it is

proved that an optimal sequence is V -shaped with respect to the a j values. However,
still the complexity status of problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑ C j remains unknown,

even if p j = 1, j ∈ N , which is confirmed in Cheng et al. (2004), Gawiejnowicz
(2008), and Janiak and Kovalyov (2006). Kubale and Ocetkiewicz (2009) show that
problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣ ∑ C j is solvable in polynomial time, provided that

all deterioration rates a j are different and the difference between any two rates is
bounded from below. Ocetkiewicz (2009) presents an algorithm that behaves as an
FPTAS for problem 1

∣
∣p j (τ ) = p j + a jτ

∣
∣∑ C j , provided that deterioration rates

are different and no smaller than a certain constant.

8.3.3 Linear Additive Job-Independent Effects

Most of the presented results for single machine problems with an additive lin-
ear job-independent effect are special cases of more general results. For problem
1
∣
∣p j (τ ) = p j − aτ

∣
∣ ∑ C j , Corollary8.1 is due to Ng et al. (2002) (notice the mis-

leadingwords “deteriorating jobs” in the title of that paperwhich studies only learning
models). Their proof is based on the equality (8.29); however, no working is pro-
vided in the original paper that demonstrates that the equality holds. An analogue of
Corollary8.1 presented in the book Gawiejnowicz (2008) is not accompanied by a
detailed proof, either.
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For problem 1
∣
∣p j (τ ) = p j + aτ

∣
∣∑ w j C j ofminimizing the sumof theweighted

completion times, Mosheiov (1996) gives a characterization of an optimal per-
mutation, provided that the weights w j are proportionate to the normal process-
ing times p j ; i.e., the ratio p j/w j is constant. An optimal permutation is unique
and is an alternating �-shaped sequence with respect to normal processing times
p j ; i.e., if the jobs are numbered in accordance with the SPT rule, then the
optimal sequence is (1, 3, 5, . . . , n, . . . , 4, 2). Such a permutation can be found
in O(n log n) time, but not by a single sorting of jobs. This implies that problem
1
∣
∣p j (τ ) = p j + aτ

∣
∣ ∑w j C j under the additional condition on the constant ratio

p j/w j does not admit a 1-priority function.

8.3.4 Scheduling with Precedence Constraints

Theorem8.12 is proved in Shafransky (1978) (see also Tanaev et al. (1984)).
Theorem8.13 is due to Gordon et al. (2008).
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Chapter 9
Scheduling with Pure and Combined
Multiplicative Start-Time-Dependent Effects

In this chapter, we study the problems of minimizing the makespan and the total
completion time on a single machine, provided that the actual processing times of
the jobs are subject to a special form of a start-time-dependent effect. We also study
effects in which such a start-time-dependent effect is combined with a positional
effect.

For a job j ∈ N = {1, 2, . . . , n}, its normal processing time p j is given. Suppose
that the jobs are processed on a single machine in accordance with a permutation
π = (π(1), . . . ,π(n)). As defined in Sect. 6.2, if the actual processing time of a job
depends on its normal processing time and its start time in the schedule, we call such
an effect start-time-dependent.

Following Sect. 6.2, we distinguish between two types of a start-time effect: addi-
tive and multiplicative. Let p j (τ ) denote the actual processing time of job j ∈ N
that starts at time τ ≥ 0. Then, under a general additive effect, we define

p j (τ ) = p j + f j (τ ), (9.1)

while under a general multiplicative effect, we define

p j (τ ) = p j f j (τ ), (9.2)

where f j is a job-dependent function of start time.
Scheduling problems with an additive start-time-dependent effect are considered

in Chap.8. In this chapter, we focus on the problems with a multiplicative effect of
the form (9.2). In the case of learning, f j : [0,+∞) → (0, 1] is a non-increasing
function, while in the case of deterioration, f j : [0,+∞) → [1,+∞) is a non-
decreasing function.

We also study multiplicative models in which the function f (τ ) is job-
independent, so that the multiplicative effect is of the form

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
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p j (τ ) = p j f (τ ). (9.3)

In fact, we shall study a more general form of the effect (9.3) that combines a job-
independent start-time-dependent effect with a general job-independent positional
effect, so that the actual processing time of job j that is scheduled in the r th position
and starts at time τ is given by

p j (τ ; r) = p j f (τ )g(r), (9.4)

where

• f is a continuous differentiable function, common to all jobs, that depends on the
start time τ of the job and takes positive values;

• array g(r), 1 ≤ r ≤ n, is a monotone sequence of positional factors and defines a
positional effect.

It is assumed that f (0) = 1 and g(1) = 1, which guarantee that for the job which
is the first in the processing sequence, the actual processing time is equal to its normal
time.

As adopted throughout this book, if job j is sequenced in position π(r) of per-
mutation π, its completion time is denoted either by C j (π) or by Cπ(r), whichever is
more convenient.

Many problems from the considered range admit a solution by a priority rule.
Recall that if the jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn, (9.5)

while if they are numbered in accordance with the SPT rule, then

p1 ≤ p2 ≤ · · · ≤ pn. (9.6)

This chapter is structured as follows. Section9.1 studies single machine problems
with no precedence constraints under various effects, including a combined effect
(9.4) and linear job-dependent and job-independent effects. Section9.2 considers
problems with series-parallel precedence constraints, mainly under pure start-time-
dependent linear effects.

9.1 Scheduling Independent Jobs

In this section, we address various versions of single machine scheduling prob-
lems, provided that no precedence constraint is imposed on the set of jobs and the
actual processing times are either subject to a combined effect of the form (9.4) or a
multiplicative job-dependent start-time-dependent effect of the form (9.2).
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9.1.1 Job-Independent Combined Multiplicative
Nonlinear Effects

In this section, we provide results for a combined effect given by (9.4). For the
combined effect (9.4), the problems of minimizing a regular objective function � on
a single machine are denoted by 1

∣
∣p j (τ ) = p j f (τ )g(r)

∣
∣�.

For our reasoning, the behavior of the following auxiliary function

ϕ(t) = (1 − λ) f (X) + λμ f (X + t) − μ f (X + λt), (9.7)

is important.

Lemma 9.1 For function ϕ(t) defined by (9.7) with X ≥ 0, the inequality

ϕ(t) ≤ 0

holds for all t ≥ 0 if

(a) λ ≥ 1, 0 < μ ≤ 1 and function f is convex on [0,+∞), or
(b) 0 < λ ≤ 1,μ ≥ 1 and function f is concave on [0,+∞).

Proof Notice that

ϕ(0) = (1 − λ) f (X) + λμ f (X) − μ f (X) = (μ − 1)(λ − 1) f (X),

which is non-positive, since the differencesμ − 1 andλ − 1 are of the opposite signs.
To prove the lemma, we show that its conditions (a) and (b) imply that func-

tion ϕ(t) is monotone non-increasing on [0,+∞). Differentiating function ϕ(t), we
obtain

ϕ′(t) = λμ
(
f ′(X + t) − f ′(X + λt)

)
.

Under conditions (a), t ≤ λt and since f is convex, i.e., f ′ is non-decreasing,
we have that ϕ′(t) ≤ 0. Under conditions (b), t ≥ λt and since f is concave, i.e.,
f ′ is non-increasing, we again have ϕ′(t) ≤ 0. This means that in any case ϕ′(t) is
monotone non-increasing, i.e.,

ϕ(t) ≤ ϕ(0) = f (X)(μ − 1)(λ − 1) < 0,

as required. �
Apart from the above result, we need the Lagrange mean value theorem used in
Sect. 8.1.1. For completeness, we reproduce it below.

Theorem 9.1 If a function f is continuous on a closed interval [a, b], where a < b,
and differentiable on the open interval (a, b), then there exists a point ζ ∈ (a, b)
such that

http://dx.doi.org/10.1007/978-3-319-39574-6_8
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f (a) − f (b) = f ′(ζ)(a − b).

We start with an effect that combines a start-time-dependent effect with positional
learning. Define pmax := max{pj|j ∈ N}.
Theorem 9.2 Let π = (π(1), . . . ,π(n)) be a permutation, in which two jobs u and
v such that

pu > pv, (9.8)

occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1). Let
permutation π′ be obtained from π by swapping the jobs u and v. Then for a single
machine problem with a combined effect (9.4) the inequality

Cπ(h) ≥ Cπ′(h) (9.9)

holds for all h, 1 ≤ h ≤ n, provided that

(i) function f is convex on [0,+∞),
(ii) the array g(r), 1 ≤ r ≤ n, is non-increasing, i.e., it follows

1 = g(1) ≥ g(2) ≥ · · · ≥ g(n), (9.10)

(iii) either f ′(0) ≥ −1/pmax or function f is non-decreasing on [0,+∞).

Proof We represent permutations π and π′ as π = (π1, u, v,π2) and as π′ =
(π1, v, u,π2), respectively, where π1 and π2 are subsequences of jobs that precede
job u and follow job v in permutation π, respectively.

We present the proof assuming that both sequences π1 and π2 are non-empty;
otherwise, the corresponding part of the proof can be skipped.

The actual processing times and the completion times of all jobs in sequence π1

are not affected by the swap of jobs u and v, i.e., (9.9) holds as equality for each h,
1 ≤ h ≤ r − 1.

Define X as the completion time of the job in the (r − 1)th position in sequence
π (or, equivalently, in π′), i.e., X := Cπ(r−1) = Cπ′(r−1). For h = r , we derive that

Cπ(r) = Cu(π) = X + pu f (X)g(r);
Cπ′(r) = Cv

(
π′) = X + pv f (X)g(r).

Due to (9.8), we see that inequality (9.9) holds for h = r .
For h = r + 1, we derive that

Cπ(r+1) = Cv(π) = X + pu f (X)g(r) + pv f (X + pu f (X)g(r))g(r + 1);
Cπ′(r+1) = Cu

(
π′) = X + pv f (X)g(r) + pu f (X + pv f (X)g(r))g(r + 1).

Define
� := Cπ′(r+1) − Cπ(r+1).
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We show that � ≤ 0. Writing out the actual processing times of jobs u and v in
permutations π and π′, we obtain

� = pv f (X)g(r) + pu f (X + pv f (X)g(r))g(r + 1) − pu f (X)g(r)

− pv f (X + pu f (X)g(r))g(r + 1).

Define
λ := pu/pv (9.11)

and

μ := g(r + 1)

g(r)
(9.12)

and rewrite the expression for � as

� = pvg(r)((1 − λ) f (X) + λμ f (X + pv f (X)g(r))

− μpv f (X + λpv f (X)g(r))).

Applying (9.7) with t = pv f (X)g(r), we deduce that

� = pvg(r)ϕ(pv f (X)g(r)). (9.13)

Since λ > 1, μ < 1, and f is convex, it follows that condition (a) of Lemma 9.1
is valid. Thus, ϕ(pv f (X)g(r)) ≤ 0 and � ≤ 0, as required.

The rest of the theorem is proved by induction with respect to h. Assume that the
inequality (9.9) holds for all h, 1 ≤ h ≤ q − 1, where r + 2 ≤ q ≤ n. We prove that
it holds for h = q.

Let x be the job scheduled in position q, i.e., x = π(q) = π′(q). We deduce that

Cπ(q) = Cx (π) = Cπ(q−1) + px f
(
Cπ(q−1)

)
g(q);

Cπ′(q) = Cx
(
π′) = Cπ′(q−1) + px f

(
Cπ′(q−1)

)
g(q),

where by the induction assumption Cπ(q−1) ≥ Cπ′(q−1).
IfCπ(q−1) = Cπ′(q−1), then it follows thatCπ(q) = Cπ′(q), and (9.9) holds as equal-

ity for h = q.
Assume now that Cπ(q−1) > Cπ′(q−1). If function f is non-decreasing, then

f
(
Cπ(q−1)

) ≥ f
(
Cπ′(q−1)

)
and (9.9) holds for h = q.

In the remainder of this proof, assume that f is not necessarily non-decreasing, so
that the theorem’s condition (iii) means that f ′(0) ≥ −1/pmax. Since the derivative
f ′ is non-decreasing, we deduce that f ′(τ ) ≥ −1/pmax for all τ ∈ [0,+∞).
By Theorem 9.1, there exists a point ζ ∈ [

Cπ′(q−1),Cπ(q−1)
]
such that

f
(
Cπ(q−1)

) − f
(
Cπ′(q−1)

) = f ′(ζ)
(
Cπ(q−1) − Cπ′(q−1)

)
.
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Then

Cπ(q) − Cπ′(q) = (
Cπ(q−1) − Cπ′(q−1)

) + px
(
f
(
Cπ(q−1)

) − f
(
Cπ′(q−1)

))
g(q)

= (
Cπ(q−1) − Cπ′(q−1)

) + pxg(q) f ′(ζ)
(
Cπ(q−1) − Cπ′(q−1)

)
.

Since g(q) ≤ 1, we deduce from f ′(ζ) ≥ −1/pmax that 1 + pxg(q) f ′(ζ) ≥ 0.
The theorem is fully proved. �

For singlemachine problems, tominimize a regular objective function�(π) under
a combined effect (9.4), Theorem 9.2 sets conditions on functions f and g that define
the effect, which guarantee that in a sequence that minimizes �(π) the jobs may be
arranged in such a way that a job with a larger normal processing time is not followed
by a job with a smaller normal processing time.

Theorem 9.3 For problem 1
∣
∣p j (τ ; r) = p j f (τ )g(r)

∣
∣� with � ∈

{
Cmax,

∑
Cz

j ,

ξCmax + η
∑

Cz
j

}
under an effect (9.4) that combines a start-time dependent effect

with a positional learning effect, an optimal permutation can be found in O(n log n)

time by sorting the jobs in accordance with the SPT rule, provided that the conditions
of Theorem 9.2 hold.

Reformulating Theorem9.3, we conclude that problem1
∣
∣p j (τ ; r) = p j f (τ )g(r)|�,

where� ∈
{
Cmax,

∑
Cz

j , ξCmax + η
∑

Cz
j

}
with an effect (9.4) admits the 1-priority

ω( j) = 1/p j , provided that f and g satisfy the conditions of Theorem 9.2.
Notice that the analysis of the effect (9.4) defined by a concave function f is not

fully symmetric to that presented in Theorem 9.2, and only a less general statement
can be proved.

Theorem 9.4 Let π = (π(1), . . . ,π(n)) be a permutation, in which two jobs u and
v such that

pu < pv,

occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1). Let
permutation π′ be obtained from π by swapping the jobs u and v. Then for prob-
lem 1

∣
∣p j (τ ; r) = p j f (τ )g(r)

∣
∣Cmax with an effect (9.4) the inequality Cmax

(
π′) ≤

Cmax(π) holds, provided that

(i) function f is concave and non-decreasing on [0,+∞),
(ii) the array g(r), 1 ≤ r ≤ n, is non-decreasing, i.e., it follows

1 = g(1) ≤ g(2) ≤ · · · ≤ g(n). (9.14)

Proof As in the proof of Theorem 9.2, we represent permutations π and π′ as
π = (π1, u, v,π2) and as π′ = (π1, v, u,π2), respectively, where π1 and π2 are
subsequences of jobs that precede job u and follow job v in permutation π, respec-
tively.
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We present the proof assuming that both sequences π1 and π2 are non-empty;
otherwise, the corresponding part of the proof can be skipped.

The actual processing times and the completion times of all jobs in sequenceπ1 are
not affected by the swap of jobs u and v. Define X as the completion time of the job
in the (r − 1)th position in sequence π (or, equivalently, in π′), i.e., X = Cπ(r−1) =
Cπ′(r−1). It is clear that Cπ(r) = X + pu f (X)g(r) and Cπ′(r) = X + pv f (X)g(r).
Notice that pu < pv , which implies that Cπ(r) < Cπ′(r). This explains why under
the conditions of Theorem 9.4 it is not possible to prove a more general statement,
similar to Theorem9.2.

Wenowprove that� = Cπ′(r+1) − Cπ(r+1) ≤ 0.As in the proof of Theorem9.2,�
canbe rewritten as (9.13),whereλ andμ are definedby (9.11) and (9.12), respectively.

Since λ < 1, μ ≥ 1, and f is concave by the theorem’s condition, it follows
that condition (b) of Lemma 9.1 is valid. Thus, ϕ(pv f (X)g(r)) ≤ 0 and � ≤ 0, as
required.

Notice that function f is non-decreasing, as in one of the conditions (iii) of
Theorem 9.2. Following the proof of that theorem, we deduce that the inequality
Cπ′(q) ≤ Cπ(q) holds for each q, r + 2 ≤ q ≤ n. In particular, Cπ′(n) ≤ Cπ(n), i.e.,
Cmax

(
π′) ≤ Cmax(π), as required. �

For a single machine problem with a combined effect (9.4), Theorem 9.4 sets
conditions on functions f and g, which guarantee that in a sequence that minimizes
themakespanCmax(π), the jobsmay be arranged in such away that a jobwith a larger
normal processing time is not followed by a job with a smaller normal processing
time.

Theorem 9.5 For problem 1
∣
∣p j (τ ; r) = p j f (τ )g(r)

∣
∣Cmax, with a multiplicative

start-time dependent effect (9.4) an optimal permutation can be found in O(n log n)

time by sorting the jobs in accordance with the LPT rule, provided that functions
f and g satisfy the conditions of Theorem 9.4.

ReformulatingTheorem9.5,we conclude that problem1
∣
∣p j (τ ; r) = p j f (τ )g(r)|

Cmax with an effect (9.4) admits the 1-priority ω( j) = p j , provided that functions
f and g satisfy the conditions of Theorem9.4.
Notice that the proof of Theorem 9.5 demonstrates that the inequality (9.9) holds

for each h other than r , whileCπ(r) < Cπ′(r). This fact does not allow us to derive any
conclusions regarding the status of the problem of minimizing the total completion
time for an effect that satisfies the conditions of Theorem 9.4. The status of this
problem remains open even if g(r) = 1, 1 ≤ r ≤ n.

Below we present a counterexample that demonstrates that for problem
1
∣
∣p j (τ ) = p j f (τ )

∣
∣∑C j with a function f that satisfies the conditions of Theo-

rem 9.4 neither the LPT sequence nor the SPT sequence is optimal.

Example 9.1 Consider an instance of a single machine problem tominimize the sum
of the completion times under effect (9.3) with the function f (τ ) = (1 + τ )

1
2 . It is

clear that function f is concave and increasing on [0,+∞), i.e., the conditions of
Theorem9.4 hold. There are 3 jobs with the normal processing times listed below
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p1 = 6, p2 = 7, p3 = 9.

For this instance, the total completion time
∑

C j is minimized neither by the SPT
sequence, nor by the LPT sequence. The corresponding computations, accurate up to
three decimal places, are shown in Table9.1. We see that permutation (2, 1, 3) deliv-
ers a smaller value of the total completion time than that produced by the SPT and
the LPT sequences.

In Sect. 9.1.2, we present another example of a similar nature.
The results on single machine scheduling problem with an effect that combines

a multiplicative time-dependent effect with a positional effect are summarized in
Table9.2. Here, in the first and the third columns, we use symbols ↗ and ↘ to
indicate whether the corresponding function or arrays are non-decreasing or non-
increasing, respectively. Additionally, we write g = 1 if g(r) = 1, 1 ≤ r ≤ n.

Table 9.1 Computations for Example9.1

π = (1, 2, 3) [SPT] π = (3, 2, 1) [LPT] π = (2, 1, 3)

Cπ(1) 6.000 9.000 7.000

Cπ(2) 24.520 31.136 23.971

Cπ(3) = Cmax(π) 69.986 65.149 68.944
∑

Cπ( j) 100.506 105.285 99.914

Table 9.2 Results for scheduling on a single machine with a combined effect (9.4)

Condition on
f

Condition on
f ′

Condition on
g

Objective Rule Statement

f convex ↗ – g ↘ Cmax SPT Theorem 9.3

f convex ↗ – g ↘ ∑
Cz

j SPT Theorem 9.3

f convex ↗ – g ↘ ξCmax +
η

∑
Cz

j

SPT Theorem9.3

f convex f ′(0) ≥
−1/pmax

g ↘ Cmax SPT Theorem 9.3

f convex f ′(0) ≥
−1/pmax

g ↘ ∑
Cz

j SPT Theorem 9.3

f convex f ′(0) ≥
−1/pmax

g ↘ ξCmax +
η

∑
Cz

j

SPT Theorem 9.3

f concave ↗ – g ↗ Cmax LPT Theorem 9.5

f concave ↗ – g = 1
∑

C j Open Example 9.1
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9.1.2 Job-Independent Combined Multiplicative
Polynomial Effects

In this subsection, we consider single machine scheduling problems with an effect
that combines a multiplicative start-time-dependent polynomial effect of the form

f (τ ) = (1 + bτ )A (9.15)

or
f (τ ) = (1 − bτ )A, (9.16)

with a positional effect given by an array g(r), 1 ≤ r ≤ n. In both (9.15) and (9.16),
b is a positive job-independent rate. For the effect (9.16), we additionally assume
that the inequality

bτ < 1, (9.17)

holds for all τ > 0. This inequality guarantees that the actual processing times of
the jobs will remain non-negative. Recall that an assumption of a similar nature has
been made regarding learning effects studied in Chap.8.

A direct application of Theorems 9.3 and 9.5 yields the following statement.

Theorem 9.6 Given problem 1
∣
∣p j (τ ; r) = p j (1 + bτ )Ag(r)

∣
∣�, where � ∈{

Cmax,
∑

Cz
j , ξCmax + η

∑
Cz

j

}
, with an effect of the form (9.4) that combines a

start-time-dependent effect (9.15)with a positional learning effect definedbyanarray
g(r), 1 ≤ r ≤ n, an optimal permutation can be found in O(n log n) time by sorting
the jobs in accordance with the SPT rule, provided that (9.10) holds and either A ≥ 1
or−1/(bpmax) ≤ A < 0. Besides, for problem 1

∣
∣p j (τ ; r) = p j (1 + bτ )Ag(r)

∣
∣Cmax,

with a positional deterioration effect, an optimal permutation can be found in
O(n log n) time by sorting the jobs in accordance with the LPT rule, provided that
(9.14) holds and 0 < A < 1.

Proof The proof is by checking the conditions of Theorems 9.3 and 9.5.
It is clear that for A > 0 (a time-dependent deterioration effect), function f (τ ) =

(1 + bτ )A is increasing. Its second-order derivative f ′′ = A(A − 1)b2(1 + bτ )A−2

is non-negative for A ≥ 1, so that function f is convex, i.e., the conditions of Theo-
rem 9.2 hold and Theorem 9.3 applies. On the other hand, if 0 < A < 1, then f ′′ is
negative, so that function f is concave, i.e., the conditions of Theorem 9.4 hold and
Theorem 9.5 applies.

For A < 0 (a time-dependent learning effect), function f (τ ) = (1 + bτ )A is
decreasing. Its second-order derivative f ′′ is positive, so that function f is convex.
Since f ′(0) = Ab, it follows that for Ab ≥ −1pmax, the conditions of Theorem 9.2
hold and Theorem 9.3 applies. �

Notice that Theorem 9.6 guarantees that no priority rule exists for problems
1
∣
∣p j (τ ; r) = p j (1 + bτ )Ag(r)

∣
∣Cmax and 1

∣
∣p j (τ ; r) = p j (1 + bτ )Ag(r)

∣
∣ ∑C j ,

http://dx.doi.org/10.1007/978-3-319-39574-6_8
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Table 9.3 Computations for Example9.2

π = (1, 2, 3) [SPT] π = (2, 1, 3)

Cπ(1) 10.0000 11.0000

Cπ(2) 10.0909 11.0694

Cπ(3) = Cmax(π) 30.4146 28.2314
∑

Cπ( j) 50.5055 50.3008

provided that A < −1/bpmax. Example 9.2 below demonstrates that for effect (9.15)
with g(r) = 1, 1 ≤ r ≤ n, and A = −2, an optimal permutation is obtained neither
by the SPT rule nor by the LPT rule.

Example 9.2 Consider an instance of a single machine problem tominimize the sum
of completion times under effect (9.3) with the function f (τ ) = (1 + τ )−2. It is clear
that function f is concave and is decreasing on [0,+∞), i.e., neither the conditions
of Theorem 9.3 nor those of Theorem 9.5 are satisfied. There are 3 jobs with the
normal processing times listed below

p1 = 10, p2 = 11, p3 = 2500.

For this instance, the total completion time
∑

C j is minimized by neither the SPT
sequence, nor the LPT sequence. The corresponding computations, accurate up to
four decimal places, are shown in Table9.3. The computation for the LPT sequence
is not presented, since in this sequence job 3 is scheduled first to complete at time
2500. We see that permutation (2, 1, 3) delivers smaller values of both the makespan
and the total completion time as compared to those produced by the SPT and the
LPT sequences. In fact, (2, 1, 3) is an optimal permutation for both these functions.

For the problems with the effect (9.16), a statement similar to Theorem 9.6 can
be proved.

Theorem 9.7 Given problem 1
∣
∣p j (τ ; r) = p j (1 − bτ )Ag(r)

∣
∣�, where � ∈{

Cmax,
∑

Cz
j , ξCmax + η

∑
Cz

j

}
, with an effect of the form (9.4) that combines a

start-time-dependent effect (9.16) with a positional learning effect given by an array
g(r), 1 ≤ r ≤ n, an optimal permutation can be found in O(n log n) time by sorting
the jobs in accordance with the SPT rule, provided that (9.10) holds and either A < 0
or 1 ≤ A ≤ 1/(bpmax).

9.1.3 Pure Multiplicative Linear Effects

In this section, we consider single machine scheduling problems with a pure
multiplicative linear effect, so that in the main formula (9.2) for non-negative rate
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b j , j ∈ N , either
f j (τ ) = 1 + b jτ (9.18)

(in the case of deterioration) or

f j (τ ) = 1 − b jτ (9.19)

(in the case of learning). We also consider special cases of the above effects with
constant rates, i.e., for b j = b, j ∈ N .

First, observe that the multiplicative effect (9.18) should be seen as a special case
of the additive effect (8.13). Indeed, under the effect (8.13), the actual processing time
of job j ∈ N that starts at time τ is equal to p j (τ ) = p j + a jτ , while under the effect
(9.18), we have that p j (τ ) = p j

(
1 + b jτ

) = p j + p jb jτ . A similar equivalence is
observed between the learning effects (9.19) and (8.14). Thus, the results derived in
Sect. 8.1.2 applied with a j = p jb j carry over for the problems with the effects (9.18)
and (9.19), respectively. Notice also that for learning effect (9.19) to be meaningful,
we adapt the assumption (8.15) to become

b j

(
n∑

i=1

pi − p j

)

< 1, 1 ≤ j ≤ n, (9.20)

which makes the learning rates b j rather small numbers. See also the earlier used
assumption (9.17) for the case of equal b j .

It follows from Sect. 8.1.2 that for a permutation π = (π(1), . . . ,π(n)), the
makespan under the effect (9.18) can be written as

Cmax(π) = Cπ(n) =
n∑

j=1

pπ( j)

n∏

i= j+1

(
1 + pπ(i)bπ(i)

)
,

while under the effect (9.19)

Cmax(π) = Cπ(n) =
n∑

j=1

pπ( j)

n∏

i= j+1

(
1 − pπ(i)bπ(i)

)
.

Adapting Theorem 8.6 for a j = p jb j , we obtain the following statement.

Theorem 9.8 For problem 1
∣
∣p j (τ ) = p j

(
1 + b jτ

)∣∣Cmax, with a deterioration effect
(9.18), an optimal permutation can be found in O(n log n) time by sorting the jobs
in non-increasing order of b j . For problem 1

∣
∣p j (τ ) = p j

(
1 − b jτ

)∣∣Cmax, with a
learning effect (9.19) under the assumption (9.20), an optimal permutation can be
found in O(n log n) time by sorting the jobs in non-decreasing order of b j .

Reformulating Theorem 9.8 in terms of 1-priorities, we conclude that problem
1
∣
∣p j (τ ) = p j

(
1 + b jτ

)∣∣Cmax admits a 1-priority function ω( j) = b j , while prob-

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
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lem 1
∣
∣p j (τ ) = p j

(
1 − b jτ

)∣∣Cmax admits a 1-priority function either ω( j) = 1/b j

or ω( j) = −b j . Sequencing jobs in non-increasing order of 1-priorities solves the
corresponding problem.

Notice that problem 1
∣
∣p j (τ ) = p j

(
1 + b jτ

)∣∣∑C j with p j = 1, j ∈ N ,
becomes 1

∣
∣p j (τ ) = 1 + b jτ

∣
∣∑C j , i.e., for a j = b j , problem 1

∣
∣p j (τ ) =

p j
(
1 + b jτ

)∣∣∑C j coincides with problem 1
∣
∣p j (τ ) = 1 + a jτ

∣
∣∑C j considered

in Chap.8. The complexity status of the latter problem remains open; see Sect. 8.3.
In the remainder of this section, we consider the case of a constant rate, i.e., we

assume that effects (9.18) and (9.19) are applied with b j = b for all j ∈ N .

Lemma 9.2 Let the jobs be processed on a single machine in accordance with a
permutation π = (π(1),π(2), . . . ,π(n)). Under the effect (9.18) applied with b j =
b, j ∈ N, the completion times can be computed by the formula

Cπ(k) = 1

b

k∏

i=1

(
1 + bpπ(i)

) − 1

b
, 1 ≤ k ≤ n, (9.21)

while for the effect (9.19) applied with b j = b, j ∈ N, the completion times can be
computed by the formula

Cπ(k) = 1

b
− 1

b

k∏

i=1

(
1 − bpπ(i)

)
, 1 ≤ k ≤ n, (9.22)

Proof We present the proof of (9.21) for the deterioration effect; the proof for the
learning counterpart is similar. The proof is by induction.

By definition, Cπ(1) = pπ(1). On the other hand, from (9.21) with k = 1, we get
Cπ(1) = 1

b

(
1 + bpπ(1)) − 1

b

) = pπ(1). This establishes the basis of induction.
Assume that (9.21) holds for all k, where 1 ≤ k ≤ q − 1 < n − 1. We prove that

(9.21) holds for k = q. By definition and the induction assumption, we have that

Cπ(q) = Cπ(q−1) + pπ(q)(1 + bCπ(q−1)) = pπ(q) + Cπ(q−1)
(
1 + bpπ(q)

)

= pπ(q) +
(
1

b

q−1∏

i=1

(
1 + bpπ(i)

) − 1

b

)
(
1 + bpπ(q)

)

= pπ(q) + 1

b

q∏

i=1

(
1 + bpπ(i)

) − 1

b

(
1 + bpπ(q)

) = 1

b

q∏

i=1

(
1 + bpπ(i)

) − 1

b
,

as required. �

Applying (9.21) with k = n, we immediately deduce the following statement.

Corollary 9.1 For problem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣Cmax the makespan can be writ-

ten as

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8


9.1 Scheduling Independent Jobs 177

Cmax(π) = 1

b

n∏

i=1

(
1 + bpπ(i)

) − 1

b
,

while for problem 1
∣
∣p j (τ ) = p j (1 − bτ )

∣
∣Cmax the makespan is

Cmax(π) = 1

b
− 1

b

n∏

i=1

(
1 − bpπ(i)

)
.

In either case, the makespan is sequence independent.

We now pass to considering problems with the objective functions related to the
sum of the completion times. First, Theorems 9.6 and 9.7 applied with A = 1 yield
the following statement.

Corollary 9.2 For each problem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣� and 1

∣
∣p j (τ ) =

p j (1 − bτ )
∣
∣�, where � ∈

{∑
Cz

j , ξCmax + η
∑

Cz
j

}
, an optimal permutation can

be found in O(n log n) time by the SPT rule.

Reformulating Corollary 9.2 in terms of 1-priorities, we conclude that for � ∈{∑
Cz

j , ξCmax + η
∑

Cz
j

}
each problem 1

∣
∣p j (τ ) = p j (1 + bτ )

∣
∣� and

∣
∣p j (τ ) =

p j (1 − bτ )
∣
∣� admits a 1-priority function either ω( j) = 1/p j or ω( j) = −p j .

Sequencing jobs in non-increasing order of 1-priorities solves the corresponding
problem.

Unlikemanyothermodelswith changing times, for themodel under consideration,
it is possible to deduce a positive result regarding minimization of the weighted sum
of completion times.

Theorem 9.9 Problem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣∑w jC j is solvable in O(n log n)

time by sorting the jobs in non-increasing order of the ratios
w j(1+bp j)

bp j
. Problem

1
∣
∣p j (τ ) = p j (1 − bτ )

∣
∣∑ w jC j is solvable in O(n log n) time by sorting the jobs

in non-increasing order of the ratios
w j(1−bp j)

bp j
.

Proof We present the proof for problem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣ ∑w jC j with a

deterioration effect; the proof for its learning counterpart is similar. Both proofs
follow Recipe2.1.

For an arbitrary permutation of jobs π = (π(1),π(2), . . . ,π(n)), using (9.21) we
can write out the objective function as

n∑

k=1

wπ(k)Cπ(k) = 1

b

n∑

k=1

wπ(k)

(
k∏

i=1

(
1 + bpπ(i)

) − 1

)

.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Define

�(π) =
(

n∏

i=1

(1 + bpi )
−1

)(
n∑

k=1

wπ(k)

k∏

i=1

(
1 + bpπ(i)

)
)

.

The problem of minimizing
∑n

k=1 wπ(k)Cπ(k) is equivalent to that of minimizing
�(π). We rewrite the expression for �(π) in the form that is similar to the sum of
products (2.14):

�(π) =
n∑

k=1

wπ(k)

n∏

i=k+1

(
1 + bpπ(i)

)−1.

It follows from Theorem 2.5 that a permutation that minimizes �(π) the jobs can
be sorted in non-decreasing order of

κ( j) = w j(
1 + bp j

)−1 − 1
= −w j

(
1 + bp j

)

bp j
,

as required.
For problem 1

∣
∣p j (τ ) = p j (1 − bτ )

∣
∣∑w jC j , the sequence-dependent term can

written as

�(π) = −
n∑

k=1

wπ(k)

n∏

i=k+1

(
1 − bpπ(i)

)−1,

and a permutation that minimizes �(π) the jobs can be sorted in non-decreasing
order of

κ( j) = −w j(
1 − bp j

)−1 − 1
= −w j

(
1 − bp j

)

bp j
.

The theorem is proved. �

Reformulating Theorem 9.9 in terms of 1-priorities, we conclude that prob-

lem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣∑w jC j admits a 1-priority function ω( j) = w j(1+bp j)

bp j
,

while problem 1
∣
∣p j (τ ) = p j (1 − bτ )

∣
∣∑w jC j admits a 1-priority function ω( j) =

w j(1−bp j)
bp j

. Sequencing jobs in non-increasing order of 1-priorities solves the corre-
sponding problem. Notice that since b > 0, it can be removed from the denominators
in the expressions for the 1-priorities.

The results presented in Sect. 9.1.3 are summarized in Table9.4.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Table 9.4 Results for scheduling independent jobs on a single machine with a multiplicative linear
start-time-dependent effect

Effect Objective 1-Priority Statement

p j (τ ) = p j
(
1 + b j τ

)
Cmax b j Theorem 9.8

p j (τ ) = p j
(
1 − b j τ

)
Cmax 1/b j Theorem 9.8

p j (τ ) = p j
(
1 + b j τ

) ∑
C j Open

p j (τ ) = p j
(
1 − b j τ

) ∑
C j Open

p j (τ ) = p j (1 + bτ ) Cmax ∀ Corollary 9.1

p j (τ ) = p j (1 − bτ ) Cmax ∀ Corollary 9.1

p j (τ ) = p j (1 + bτ )
∑

Cz
j 1/p j Corollary 9.2

p j (τ ) = p j (1 + bτ ) ξCmax + η
∑

Cz
j 1/p j Corollary 9.2

p j (τ ) = p j (1 − bτ )
∑

Cz
j 1/p j Corollary 9.2

p j (τ ) = p j (1 − bτ ) ξCmax + η
∑

Cz
j 1/p j Corollary 9.2

p j (τ ) = p j (1 + bτ )
∑

w jC j
w j (1+bp j )

bp j
Theorem 9.9

p j (τ ) = p j (1 − bτ )
∑

w jC j
w j (1−bp j )

bp j
Theorem 9.9

9.2 Scheduling Under Precedence Constraints

In this section, we consider single machine problems under the multiplicative start-
time-dependent effects (9.18) and (9.19) applied with b j = b, j ∈ N . Unlike in
Sect. 9.1, here we assume that the jobs of set N are not independent and a precedence
relation given by a reduction graph G = (N ,U ) is imposed over the set N of jobs.

It follows immediately from Corollary 9.1 that for each problem 1
∣
∣p j (τ ) =

p j (1 + bτ ), prec
∣
∣Cmax and 1

∣
∣p j (τ ) = p j (1 − bτ ), prec

∣
∣Cmax with arbitrary prece-

dence constraints, any permutation that is feasible with respect to graph G deliv-
ers an optimal solution. Problems 1

∣
∣p j (τ ) = p j

(
1 + b jτ

)
, SP − prec

∣
∣Cmax and

1
∣
∣p j (τ ) = p j

(
1 − b jτ

)
, SP − prec

∣
∣Cmax are special cases of problems 1

∣
∣p j (τ )

= p j + a jτ , SP − prec
∣
∣Cmax and 1

∣
∣p j (τ ) = p j − a jτ , SP − prec

∣
∣Cmax with an

additive start-time-dependent effect. The latter problems are proved solvable in
O(n log n) time in Sect. 8.2.1.

In the remainder of this section, we focus on problems 1
∣
∣p j (τ ) = p j (1 + bτ ),

SP − prec| ∑w jC j and 1
∣
∣p j (τ ) = p j (1 − bτ ), SP − prec

∣
∣ ∑w jC j with

precedence constraints given by a series-parallel graph. We show that in these prob-
lems, the objective function is priority-generating, which means that each of these
problems is solvable in O(n log n) time. See Chap.3 for definitions and main results
on scheduling under precedence constraints.

Given a scheduling problem with a multiplicative start-time-dependent effect, let
π be a (partial) permutation of jobs contained as a subsequence in some schedule.
The length of a permutation π, i.e., the number of elements in π, is denoted by |π|.

Assuming that the first job in partial permutation π starts at time t ≥ 0, let
C (t)

π(k) denote the completion time of the job sequenced in the kth position. Also,

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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let Cmax(π; t) denote the maximum completion time of the jobs in π, and

Z(π; t) =
|π|∑

k=1

wπ(k)C
(t)
k (π)

denote the sum of weighted completion times for permutation π.
We present our reasoning for problem 1

∣
∣p j (τ ) = p j (1 + bτ ), SP − prec

∣
∣

∑
w jC j with a deterioration effect; the proof for the learning counterpart is similar.
First, it is straightforward to extend Lemma 9.2 and to prove that for any t ≥ 0

and any partial permutation π, the completion times of jobs can be computed as

C (t)
π(k) = 1 + bt

b

k∏

i=1

(
1 + bpπ(i)

) − 1

b
, 1 ≤ k ≤ |π|. (9.23)

Indeed, for k = 1, we have that Cπ(1) = t + pπ(1)(1 + bt) = pπ(1) +(
1 + bpπ(1)

)
t , while it follows from (9.23) that Cπ(1) = 1+bt

b

(
1 + bpπ(1)

) − 1
b =

pπ(1) + (
1 + bpπ(1)

)
t , as required. Then, assuming that (9.23) holds for all k,

1 ≤ k ≤ q − 1 ≤ |π| − 1, we derive for k = q that

C (t)
π(q) = pπ(q) + C (t)

π(q−1)

(
1 + bpπ(q)

)

= pπ(q) +
⎛

⎝1 + bt

b

q−1∏

i=1

(
1 + bpπ(i)

) − 1

b

⎞

⎠
(
1 + bpπ(q)

)

= pπ(q) + 1 + bt

b

q∏

i=1

(
1 + bpπ(i)

) − 1

b

(
1 + bpπ(q)

) = 1 + bt

b

q∏

i=1

(
1 + bpπ(i)

) − 1

b
.

In particular,

Cmax(π; t) = 1 + bt

b

|π|∏

i=1

(
1 + bpπ(i)

) − 1

b
. (9.24)

Weprove that function Z(π; t0) is priority-generating for any positive t0. The proof
follows Recipe 3.1. Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two permutations
of all jobs that only differ in the order of the subsequences α = (α(1), . . . ,α(u))

of u jobs and β = (β(1), . . . ,β(v)) of v jobs. Define

� := Z(παβ; t0) − Z(πβα; t0) = Z(π1αβπ2; t0) − Z(π1βαπ2; t0).

We need to determine a sufficient condition for the inequality� ≤ 0. Let t ′ denote
the completion time of the last job in permutation π1, i.e., t ′ = Cmax(π1; t0). Then,
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Z(π1αβπ2; t0) = Z(π1; t0) + Z(α; t ′) + Z(β;Cmax(α; t ′)) + Z(π2;Cmax(αβ; t ′)),

and

Z(π1βαπ2; t0) = Z(π1; t0) + Z(β; t ′) + Z(α;Cmax(β, t ′)) + Z(π2;Cmax(βα; t ′)).

Since for the effect under consideration the makespan is sequence-independent,
we deduce that Cmax(αβ, t ′) = Cmax(βα, t ′), and therefore,

� = Z(α; t ′) + Z(β;Cmax(α; t ′)) − Z(β; t ′) − Z(α;Cmax(β; t ′)).

For simplicity, for an arbitrary partial permutation, define

xπ(k) =
k∏

j=1

(
1 + bpπ( j)

)
, 1 ≤ k ≤ |π|.

Using this definition and (9.23), we obtain

� =
(
1 + bt ′

b

u∑

k=1

wα(k)xα(k) − 1

b

)

+
(
1 + bCmax(α; t ′)

b

v∑

k=1

wβ(k)xβ(k) − 1

b

)

−
(
1 + bt ′

b

v∑

k=1

wβ(k)xβ(k) − 1

b

)

−
(
1 + bCmax(β; t ′)

b

u∑

k=1

wα(k)xα(k) − 1

b

)

.

From (9.24), we have

Cmax(α; t ′) = 1 + bt ′

b

u∏

j=1

(
1 + aα( j)

) − 1

b
= 1 + bt ′

b
xα(u) − 1

b
;

Cmax(β; t ′) = 1 + bt ′

b
xβ(v) − 1

b
,

so that

1 + bCmax(α; t ′)
b

=
1 + b

(
1+bt ′
b xα(u) − 1

b

)

b
= 1 + bt ′

b
xα(u);

1 + bCmax(β; t ′)
b

=
1 + b

(
1+bt ′
b xβ(v) − 1

b

)

b
= 1 + bt ′

b
xβ(v).
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Thus,

� = 1 + bt ′

b

(
(
1 − xβ(v)

) u∑

k=1

wα(k)xα(k) − (
1 − xα(u)

) v∑

k=1

wβ(k)xβ(k)

)

, (9.25)

from which we can derive the following result.

Theorem 9.10 For problem 1
∣
∣p j (τ ) = p j (1 + bτ ), SP − prec

∣
∣∑ w jC j , the

objective function is priority-generating for any positive start time t0 and

ω(π) = 1 − ∏|π|
j=1

(
1 + bpπ( j)

)

∑|π|
k=1 wπ(k)

∏k
j=1

(
1 + bpπ( j)

) (9.26)

is its priority function. Problem 1
∣
∣p j (τ ) = p j (1 + bτ ), SP − prec

∣
∣ ∑w jC j is

solvable in O(n log n) time.

Proof Dividing (9.25) by
∑u

k=1 wα(k)xα(k)
∑v

k=1 wβ(k)xβ(k), we deduce that � ≤ 0,
provided that

1 − xα(u)∑u
k=1 wα(k)xα(k)

≥ 1 − xβ(v)∑v
k=1 wβ(k)xβ(k)

.

For an arbitrary (partial) permutation π, define the function ω(π) by (9.26). It
is easily verified that ω(α) > ω(β) implies Z(παβ; t0) ≤ Z(πβα; t0), while ω(α) =
ω(β) implies Z(παβ; t0) = Z(πβα; t0) for any t0, as required. �

Observe that if (9.26) is applied to a single job j , then it follows that for the
corresponding problem with independent jobs, ω( j) = −bp j/(w j (1 + bp j )) is a
1-priority function, which can also be written as ω( j) = w j (1 + bp j )/bp j , which
complies with Theorem 9.9.

By applying symmetric reasoning, it can be proved that for problem 1
∣
∣p j (τ ) =

p j (1 − bτ ), SP − prec
∣
∣ ∑ w jC j , the objective function is priority-generating for

any positive start time t0 and its priority function is given by

ω(π) = 1 − ∏|π|
j=1

(
1 − bpπ( j)

)

∑|π|
k=1 wπ(k)

∏k
j=1

(
1 − bpπ( j)

) .

9.3 Bibliographic Notes

The results presented in Sect. 9.1.1 on the generalmultiplicative start-time-dependent
effect of the form (9.4) build up on the work by Yin et al. (2010) where this effect
(in the learning form) is combined with a general positional learning effect. The
assumption that function f is non-increasingly used in Yin et al. (2010) is not always
needed, and therefore, more general statements Theorems 9.2 and 9.4 can be proved.
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Not all published results related to pure multiplicative start-time-dependent effect
appear to be correct, and this section fixes some of the discovered flaws.

The polynomial effect (9.6) with A < 0 (learning) has been introduced by Yang
and Kuo (2010) who claim that each problem 1

∣
∣p j (τ ) = p j (1 + bτ )A

∣
∣� with � ∈{∑

Cz
j , ξCmax + η

∑
Cz

j

}
is solvable by the SPT rule for all A < 0. Unfortunately,

this is wrong; see Sect. 9.1.2 and, in particular, Theorems 9.6 and 9.7, as well as
Example 9.2.

Statements similar toTheorem9.9 are presented inKononov (1998) andZhao et al.
(2003) (for problem 1

∣
∣p j (τ ) = p j (1 + bτ )

∣
∣∑ w jC j ). However, Kononov (1998)

simply states without a proof that for problem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣ ∑w jC j , the

1-priority function is ω( j) = w j

(
1
p j

+ 1
)
. This expression is also quoted in Theo-

rem 6.197 of the book Gawiejnowicz (2008), but in fact, it needs to be corrected as
given in Theorem 9.9. A simple counterexample demonstrates that the job sequences
obtained by sorting the jobs in non-increasing order of the 1-priorities computed as
suggested in Kononov (1998) are not optimal. Consider an instance of problem
1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣∑ w jC j with b = 0.05 and two jobs such that

p1 = 5, w1 = 2; p2 = 2, w2 = 1.

Computing the 1-priorities as suggested in Kononov (1998), we obtain

ω(1) = 2.4,ω(2) = 1.5,

which implies that the sequence (1, 2) should be optimal with the value of the objec-
tive function 17.5. However, computation in accordance with Theorem 9.9 yields

ω(1) = 10,ω(2) = 11,

so that the optimal permutation is (2, 1) with the value of the objective function 17.
Statements similar to Corollary 9.1 are independently proved in Kononov (1998)

and Zhao et al. (2003) (for problem 1
∣
∣p j (τ ) = p j (1 + bτ )

∣
∣Cmax) and in Wang and

Xia (2005) (for problem 1
∣
∣p j (τ ) = p j (1 − bτ )

∣
∣Cmax).

The results presented in Kuo and Yang (2007) should be seen as a special case
of Theorem 9.3 applied to a particular function f (τ ) = ∑m

i=1 λiτ
ri , where for some

integer m, the values λi and ri , 1 ≤ i ≤ m, are given non negative constants.
Theorem 9.10 is presented inWang et al. (2008) with no detailed proof. The proof

given in Sect. 9.2 follows the proof techniques outlined in Tanaev et al. (1984) and
Gordon et al. (2008).
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Chapter 10
Scheduling with Pure and Combined
Cumulative Effects

In this chapter, we study single machine scheduling problems, provided that the
actual processing times of the jobs are subject to a cumulative effect. We also study
effects in which a cumulative effect is combined with a positional effect.

For a job j ∈ N = {1, 2, . . . , n}, its normal processing time p j is given. Suppose
that the jobs are processed on a single machine in accordance with a permutation
π = (π(1), . . . ,π(n)). As stated in Sect. 6.3, under a general cumulative effect, the
actual processing time p j (r) of a job j = π(r) sequenced in position r , 1 ≤ r ≤ n,
depends on the normal times of the previously sequenced jobs, which is given by

p j (r) = p j f (Pr ), (10.1)

where

Pr =
r−1∑

h=1

pπ(h)

is the sum of the normal processing times of the earlier sequenced jobs. In the case
of learning, f : [0,+∞) → (0, 1] is a non-increasing function, while in the case of
deterioration, f : [0,+∞) → [1,+∞) is a non-decreasing function.

As adopted throughout this book, if job j is sequenced in position π(r) of per-
mutation π, its completion time is denoted either by C j (π) or by Cπ(r), whichever is
more convenient.

We denote the problems of minimizing an objective function � on a single
machine subject to an effect (10.1) by 1

∣
∣p j (r) = p j f (Pr )

∣
∣�. Typically, we will

have either � = Cmax in the case of minimizing makespan or � = ∑
C j in the

case of minimizing total completion time. Whenever possible, we also consider the
problems of minimizing more general objective functions, such as

∑
Cz

j , where z
is a given positive number, and the linear combination ξCmax + η

∑
Cz

j with positive
coefficients.
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In this book, we often turn to the most popular cumulative effect given by

p j (r) = p j

(

1 + b
r−1∑

h=1

pπ(h)

)A

, (10.2)

where b is either a positive or a negative constant suitably assigned to ensure that
the actual processing times do not become too high, or too low or negative. Provided
that b > 0, the constant A is negative in the case of learning and is positive in the
case of deterioration. We denote the problems of minimizing an objective function
� on a single machine subject to an effect (10.2) by 1

∣
∣p j (r) = p j (1 + bPr )A

∣
∣�.

In this chapter, we also study more general effects, e.g., an effect that combines
a general cumulative effect with a general monotone positional effect, so that the
actual processing time of job j scheduled in the r th position of a permutation π is
given by

p j (r) = p j f (Pr )g(r), (10.3)

where

• f is a continuous differentiable function, common to all jobs, that depends on the
sum Pr of normal processing times of jobs scheduled in the previous positions and
takes positive values;

• array g(r), 1 ≤ r ≤ n, is a monotone sequence and defines a positional effect.

It is assumed that f (0) = 1 and g(1) = 1, which guarantees that for the job which
is the first in the processing sequence, the actual processing time is equal to its normal
time.

Many problems from the considered range admit a solution by a priority rule.
Recall that if the jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn, (10.4)

while if they are numbered in accordance with the SPT rule, then

p1 ≤ p2 ≤ · · · ≤ pn. (10.5)

This chapter is structured as follows. Section10.1 studies single machine prob-
lemswith no precedence constraints under various forms of a combined effect (10.3).
In Sect. 10.2, we consider problems with pure cumulative effects, including a gener-
alized linear effect (6.9), under which the actual processing time depends on accumu-
lated values of a parameter different from the normal processing time. Section10.3
considers problems with series-parallel precedence constraints, mainly under pure
cumulative effects.

http://dx.doi.org/10.1007/978-3-319-39574-6_6
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10.1 Scheduling Independent Jobs with a Combined
Job-Independent Cumulative Effect

In this section, we consider single machine problems under the combined effect
(10.3). We prove general statements that compare the completion times of jobs in
two permutations that differ only by the positions of two consecutive jobs. Then, we
show its implications for problems of minimizing the makespan, the total completion
time, and their generalizations.

Similarly toSect. 9.1 that considers a combinedmultiplicative start-time-dependent
effect of the form (9.4), which resembles (10.3), in this section our reasoning relies
on the behavior of function

ϕ(t) = (1 − λ) f (Pr ) + λμ f (Pr + t) − μ f (Pr + λt), (10.6)

which is established in Lemma9.1. To make this chapter self-consistent, below we
repeat the formulation of that lemma.

Lemma 10.1 For function ϕ(t) defined by (9.7) with Pr ≥ 0, the inequality

ϕ(t) ≤ 0

holds for all t ≥ 0 if

(a) λ ≥ 1, 0 < μ ≤ 1 and f is convex on [0,+∞), or
(b) 0 < λ ≤ 1,μ ≥ 1 and f is concave on [0,+∞).

We split our further consideration into two parts. Our analysis and the final results
depend on the behavior of function f that defines a cumulative effect (10.1) and
whether the array of positional factors g(r) represents a learning effect or a deterio-
ration effect.

10.1.1 Combining General Cumulative Effects with
Positional Effects

Let us first analyze scheduling problems with a combined effect (10.3), provided that
function f is convex and the array g(r), 1 ≤ r ≤ n, is non-increasing, i.e., represents
a positional learning effect. Under this assumption, it is possible to prove a rather
general statement, which should be seen as an extension of Theorem 2.3.

Theorem 10.1 Let π be a permutation, in which two jobs u and v such that

pu > pv, (10.7)

http://dx.doi.org/10.1007/978-3-319-39574-6_9
http://dx.doi.org/10.1007/978-3-319-39574-6_9
http://dx.doi.org/10.1007/978-3-319-39574-6_9
http://dx.doi.org/10.1007/978-3-319-39574-6_9
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1),
where 1 ≤ r ≤ n − 1. Let permutation π′ be obtained from π by swapping the jobs u
and v. Then for a single machine problemwith a combined effect (10.3) the inequality

Cπ(h) ≥ Cπ′(h) (10.8)

holds for all h, 1 ≤ h ≤ n, provided that

1 = g(1) ≥ g(2) ≥ · · · ≥ g(n), (10.9)

and f is convex on [0,+∞).

Proof It is convenient to represent permutation π as π = (π1, u, v,π2), where π1

and π2 are subsequences of jobs that precede job u and follow job v in permutation
π, respectively. Then, π′ = (π1, v, u,π2).

Define
λ := pu/pv. (10.10)

We present the proof assuming that both sequences π1 and π2 are non-empty;
otherwise, the corresponding part of the proof can be skipped.

The actual processing times and the completion times of all jobs in sequence
π1 are not affected by the swap of jobs u and v, i.e., the inequality (10.7) holds as
equality for each h, 1 ≤ h ≤ r − 1.

Denote Pr = ∑r−1
h=1 pπ(h) and define Y as the completion time of the job in the

(r − 1)th position in sequenceπ (or, equivalently, inπ′), i.e.,Y =Cπ(r−1) = Cπ′(r−1).
For h = r , we derive that

Cπ(r) = Cu(π) = Y + pu f (Pr )g(r);
Cπ′(r) = Cv

(
π′) = Y + pv f (Pr )g(r).

Due to (10.7), we see that inequality (10.8) holds for h = r .
For h = r + 1, we derive that

Cπ(r+1) = Cv(π) = Cu(π) + pv f (Pr + pu)g(r + 1)

Cπ′(r+1) = Cu
(
π′) = Cv

(
π′) + pu f (Pr + pv)g(r + 1).

Define
� := Cπ′(r+1) − Cπ(r+1). (10.11)

We show that � ≤ 0. Writing out the actual processing times of jobs u and v in
permutations π and π′, we obtain

� = pv f (Pr )g(r) + pu f (Pr + pv)g(r + 1) − pu f (Pr )g(r)

− pv f (Pr + pu)g(r + 1).
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Using (10.10), � can be rewritten as

� = pv

(
f (Pr )g(r) + pu

pv

f (Pr + pv)g(r + 1)

− pu
pv

f (Pr )g(r) − f (Pr + pu)g(r + 1)

)

= pv( f (Pr )g(r) + λ f (Pr + pv)g(r + 1) (10.12)

−λ f (Pr )g(r) − f (Pr + λpv)g(r + 1))

= pv((1 − λ) f (Pr )g(r) + λ f (Pr + pv)g(r + 1) − f (Pr + λpv)g(r + 1)).

Further, denote

μ := g(r + 1)

g(r)
, (10.13)

and rewrite (10.12) as

� = pvg(r)((1 − λ) f (Pr ) + λμ f (Pr + pv) − μ f (Pr + λpv))

Applying (10.6) with t = pv , we deduce that

� = pvg(r)ϕ(pv). (10.14)

By assumption (10.7), we have that λ > 1, and due to (10.9), the inequality μ < 1
holds. Since f is convex by the theorem’s condition, it follows that condition (a) of
Lemma10.1 is valid. Thus, ϕ(pv) ≤ 0 and � ≤ 0, as required.

The actual processing times of all jobs in the sequence π2 are not affected by
the swap of jobs u and v. Besides, due to (10.8) proved for h = r + 1, each job in
position h, r + 2 ≤ h ≤ n, starts in the schedule associated with permutation π no
earlier than in the schedule associated with π′. This means that (10.8) holds for each
h, r + 2 ≤ h ≤ n. The theorem is fully proved. �

Theorem 10.1 immediately implies that for the combined effect (10.3) defined
by a convex function f and a non-increasing array (10.9), any regular objective
function �(π) that depends only on the completion times is minimized if the jobs
are arranged in a sequence in which a job with a larger normal processing time is not
followed by a jobwith a smaller normal processing time. Examples of such a function
include, but not limited to Cmax,

∑
Cz

j , where z is a given positive number, and their
linear combination ξCmax + η

∑
Cz

j .

Theorem 10.2 For problem 1
∣
∣p j (r) = p j f (Pr )g(r)

∣
∣� with � ∈

{
Cmax,

∑
Cz

j ,

ξCmax + η
∑

Cz
j

}
under an effect (10.3) that combines a cumulative effect with

a positional learning effect, an optimal permutation can be found in O(n log n) time
by sorting the jobs in accordance with the SPT rule, provided that f is convex on
[0,+∞).
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The latter theorem should be seen as an extension of Theorem 2.4.
Reformulating Theorem 10.2 in terms of 1-priorities, we conclude that prob-

lem 1
∣
∣p j (r) = p j f (Pr )g(r)

∣
∣�, where � ∈

{
Cmax,

∑
Cz

j , ξCmax + η
∑

Cz
j

}
, with

an effect (10.3) admits the 1-priority ω( j) = 1/p j , provided that functions f and g
satisfy the conditions of Theorem 10.1.

Now, we pass to analyzing scheduling problems with a combined effect (10.3),
provided function f is concave and the array g(r), 1 ≤ r ≤ n, is non-decreasing,
i.e., represents a positional deterioration effect.

It appears that the analysis of the effect (10.3) defined by a function convex f
and positional factors defined by a non-decreasing array g(r), 1 ≤ r ≤ n, is not fully
symmetric to that presented in Theorem 10.1. A certain symmetry is observed only
for the problem of minimizing makespan: If function f is concave and the array
g(r), 1 ≤ r ≤ n, is non-decreasing, then an optimal permutation can be found by
the LPT rule. On the other hand, for minimizing the total completion time, an LPT
permutation need not be optimal for such an effect.

Theorem 10.3 Let π be a permutation, in which two jobs u and v such that

pu < pv,

occupy two consecutive positions r and r + 1, i.e., u = π(r) and v = π(r + 1). Let
permutation π′ be obtained from π by swapping the jobs u and v. Let permutation π′
be obtained from π by swapping the jobs u and v. Then for a single machine problem
with a cumulative effect (10.3) the inequality Cmax

(
π′) ≤ Cmax(π) holds, provided

that
1 = g(1) ≤ g(2) ≤ · · · ≤ g(n), (10.15)

and f is concave on [0,+∞).

Proof As in the proof of Theorem 10.1, we represent permutations π and π′ as
π = (π1, u, v,π2) and as π′ = (π1, v, u,π2), where π1 and π2 are subsequences of
jobs that precede job u and follow job v in permutation π, respectively.

We present the proof assuming that both sequences π1 and π2 are non-empty;
otherwise, the corresponding part of the proof can be skipped.

The actual processing times and the completion times of all jobs in sequenceπ1 are
not affected by the swap of jobs u and v. Denote Pr = ∑r−1

h=1 pπ(h) and define Y as the
completion time of the job in the (r − 1)th position in sequence π (or, equivalently,
in π′), i.e., Y = Cπ(r−1) = Cπ′(r−1). It is clear that Cπ(r) = Y + pu f (Pr )g(r) and
Cπ′(r) = Y + pv f (Pr )g(r). Notice that pu < pv , which implies that Cπ(r) < Cπ′(r).
This explains why under the conditions of Theorem 10.3 it is not possible to prove
a more general statement, similar to Theorem 10.1.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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We now prove that Cπ′(r+1) ≤ Cπ(r+1). As in the proof of Theorem 10.1, define �

by (10.11). Defining λ by (10.10) and μ by (10.13), rewrite � as (10.14).
Unlike in the proof of Theorem 10.1, here λ < 1 and μ ≥ 1, so that condition (b)

of Lemma10.1 is valid. Thus, ϕ(pv) ≤ 0 and � ≤ 0, as required.
The actual processing times of all jobs in the sequence π2 are not affected by the

swap of jobs u and v. Besides, since Cπ′(r+1) ≤ Cπ(r+1), it follows that each job in
position h, r + 2 ≤ h ≤ n, starts in the schedule associated with permutation π no
earlier than in the schedule associated with π′. This means that Cmax

(
π′) ≤ Cmax(π)

holds, which proves the theorem. �
Theorem 10.3 immediately leads to the following statement regarding single

machine scheduling problems to minimize the makespan.

Theorem 10.4 For problem 1
∣
∣p j (r) = p j f (Pr )g(r)

∣
∣Cmax under an effect (10.3)

that combines a cumulative effect with a positional deterioration effect, an optimal
permutation can be found in O(n log n) time by sorting the jobs in accordance with
the LPT rule, provided that function f is concave on [0,+∞).

Reformulating Theorem 10.4, we conclude that problem 1
∣
∣p j (r) = p j f (Pr )

g(r)|Cmax with an effect (10.3) admits the 1-priority ω( j) = p j , provided that func-
tions f and g satisfy the conditions of Theorem 10.3.

Notice that the proof of Theorem 10.3 in fact demonstrates that the inequality
(10.8) holds for each h other than r , while Cπ(r) < Cπ′(r). This fact does not allow
us to derive any conclusions regarding the status of the problem of minimizing
total completion time under an effect (10.3), provided that function f is concave on
[0,+∞) and (10.15) holds. The status of this problem remains open even if g(r) = 1,
1 ≤ r ≤ n.

Below, we now present a counterexample that demonstrates that problem
1
∣
∣p j (r) = p j f (Pr )

∣
∣∑C j can be solved neither by the SPT nor by the LPT rule.

Example 10.1 Consider an instance of a single machine problem to minimize the
sumof completion times under the cumulative effect (10.1)with the function f (Pr ) =
(1 + Pr )

1
2 . It is clear that f is concave on [0,+∞). There are 3 jobs with the normal

processing times listed below

p1 = 6, p2 = 7, p3 = 9.

For this instance, the total completion time
∑

C j is minimized neither by the SPT
sequence, nor by the LPT sequence. The corresponding computations, accurate up to
three decimal places, are shown in Table10.1. We see that permutation (2, 1, 3)
delivers a smaller value of the total completion time than that produced by the SPT
and the LPT sequences.
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Table 10.1 Computations for Example 10.1

π = (1, 2, 3) [SPT] π = (3, 2, 1) [LPT] π = (2, 1, 3)

Cπ(1) 6.000 9.000 7.000

Cπ(2) 24.520 31.136 23.971

Cπ(3) = Cmax(π) 58.195 55.875 57.645
∑

Cπ( j) 88.715 96.011 88.616

10.1.2 Combining Polynomial Cumulative Effects
with Positional Effects

Below, we consider the implications of the general statements proved above for
effects with a specific function f .

Let us first consider the combined effect (10.3) in which f (Pr ) = (1 + bPr )A, so
that the resulting effect is given by

p j (r) = p j (1 + bPr )
Ag(r). (10.16)

Recall that b is a suitably defined constant which can be either positive or negative.
For the problem of minimizing the makespan, Theorems 10.2 and 10.4 imply the
following statement.

Theorem 10.5 For problem 1
∣
∣p j (r) = p j (1 + bPr )Ag(r)

∣
∣Cmax under an effect

(10.16) applied with either A < 0 or with A ≥ 1, and g(r) defined according to
(10.9), an optimal permutation can be found in O(n log n) time by sorting the jobs
in accordance with the SPT rule, while if the effect is applied with 0 < A ≤ 1, and
g(r) is defined according to (10.15), then an optimal permutation can be found in
O(n log n) time by sorting the jobs in accordance with the LPT rule.

Proof To see that the theorem holds, apply Theorems 10.2 and 10.4 to the function
f (Pr ) = (1 + bPr )A. We see that the second-order derivative

d2 f

d P2
r

= A(A − 1)b2(1 + bPr )
A−2

is non-negative, i.e., f is convex, provided that either A < 0 or A ≥ 1. On the other
hand, d2 f

d P2
r
is non-positive (and f is concave) if 0 < A ≤ 1. �

Assuming that b > 0, Theorem 10.5 implies that problem 1
∣
∣p j (r) =

p j (1 + bPr )Ag(r)
∣
∣Cmax for A < 0 (a learning cumulative effect) or A ≥ 1 (a fast

deterioration cumulative effect) along with a positional learning effect is solvable
in O(n log n) time, and an optimal permutation is found by sequencing jobs in
the SPT order, i.e., ω( j) = 1/p j is the 1-priority. On the other hand, for problem
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Table 10.2 Results for scheduling on a single machine with a combined effect (10.3)

Condition on f Condition on
g

Objective Rule Statement

f convex g ↘ Cmax SPT Theorem 10.2

f convex g ↘ ∑
Cz

j SPT Theorem 10.2

f convex g ↘ ξCmax + η
∑

Cz
j SPT Theorem 10.2

f concave g ↗ Cmax LPT Theorem 10.4

f concave g = 1
∑

C j open Example 10.1

f = (1 + bPr )A,

A < 0 or A ≥ 1
g ↘ Cmax SPT Theorem 10.5

f = (1 + bPr )A,

A < 0 or A ≥ 1
g ↘ ∑

Cz
j SPT Theorem 10.5

f = (1 + bPr )A,

A < 0 or A ≥ 1
g ↘ ξCmax + η

∑
Cz

j SPT Theorem 10.5

f = (1 + bPr )A,

0 < A ≤ 1
g ↗ Cmax LPT Theorem 10.6

f = (1 + bPr )A,

0 < A < 1
g = 1

∑
C j open Example 10.1

1
∣
∣p j (r) = p j (1 + bPr )Ag(r)

∣
∣Cmax with 0 < A ≤ 1 (a slow deterioration cumula-

tive effect) and a positional deterioration effect, an optimal solution can be found in
O(n log n) time by the LPT rule, i.e., ω( j) = p j is the 1-priority.

Reformulating Theorem 10.5, we conclude that for problem 1
∣
∣p j (r) =

p j (1 + bPr )Ag(r)
∣
∣Cmax under an effect (10.16), the 1-priority is eitherω( j) = 1/p j

(if A < 0 or A ≥ 1, and g(r) is defined by (10.9)) or ω( j) = p j (if 0 < A ≤ 1, and
g(r) is defined by (10.15)).

For other singlemachineproblems,Theorem10.2 leads to the following statement.

Theorem 10.6 Let z be a positive number. For problem 1
∣
∣p j (r) =

p j (1 + bPr )A g(r)|� under an effect (10.16) applied with either A < 0 or with
A ≥ 1, and g(r) defined according to (10.9), an optimal permutation can be found

for all� ∈
{∑

Cz
j , ξCmax + η

∑
Cz

j

}
in O(n log n) time by sorting the jobs in accor-

dance with the SPT rule.

The proof of this theorem is the same as that of Theorem 10.5.
Thus, problem 1

∣
∣p j (r) = p j (1 + bPr )Ag(r)

∣
∣ ∑Cz

j for A < 0 (a learning
effect) or A ≥ 1 (a fast deterioration effect) along with a positional learning effect
is solvable in O(n log n) time, and an optimal permutation is found by sequencing
jobs in the SPT order. Reformulating Theorem 10.6, we conclude that for problem
1
∣
∣p j (r) = p j (1 + bPr )Ag(r)

∣
∣∑Cz

j under an effect (10.16), the 1-priority is either
ω( j) = 1/p j (if A < 0 or A ≥ 1, and g(r) is defined by (10.9)) or ω( j) = p j (if
0 < A ≤ 1, and g(r) is defined by (10.15)).
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The status of problem1
∣
∣p j (r) = p j (1 + bPr )Ag(r)

∣
∣∑C j for 0 < A < 1 (a slow

deterioration effect in the case of b > 0) is left undecided. As demonstrated in Exam-
ple 10.1, for this problem even if g(r) = 1, 1 ≤ r ≤ n, there exists an instance for
which neither the SPT sequence nor the LPT sequence is optimal.

The results presented in Sect. 10.1 for combined effects are summarized in
Table10.2. Here, in the second column,we use symbols↗ and↘ to indicatewhether
the sequence g(r), 1 ≤ r ≤ n, is non-decreasing or non-increasing, respectively.
Additionally, we write g = 1 if g(r) = 1, 1 ≤ r ≤ n.

10.2 Pure Cumulative Effects

Many results for a pure cumulative effect can be easily obtained from the statements
in the previous section by setting g(r) = 1, 1 ≤ r ≤ n; see, e.g., Table10.3. This is
why in this section we focus of the results which cannot be derived from considering
an effect of the form (10.3).

10.2.1 Job-Dependent Linear Generalized Cumulative Effect

Consider an effect that arises when a job j ∈ N is associated not only with normal
processing time p j but also with two additional parameters, b j and q j . The actual
processing time of job j scheduled in the r th position of permutation π is defined by

p j (r) = p j

(

1 + b j

r−1∑

h=1

qπ(h)

)

, (10.17)

where b j > 0 under a deterioration effect and b j < 0 under a learning effect. No
explicit dependence on the normal time of previously scheduled jobs is assumed, and
the values of b j can be understood as job-dependent rates that reflect how sensitive
a particular job is to the previously scheduled jobs.

As pointed out in Sect. 6.3, this effect more realistically reflects situations of
practical interest.

In this section, we demonstrate that under effect (10.17), the problem of mini-
mizing the makespan can be solved by a variant of the WSPT rule, which delivers
an optimal solution to a single machine problem 1| | ∑w jC j of minimizing the
weighted sum of the completion times. Assume that in problem 1| | ∑ w jC j , the
processing time of job j ∈ N is denoted by q j . Then, the value of the objective
function for a schedule associated with a permutation π = (π(1),π(2), . . . ,π(n)) is
given by

http://dx.doi.org/10.1007/978-3-319-39574-6_6
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n∑

h=1

wπ(h)Cπ(h) =
n∑

k=1

wπ(h)

h∑

r=1

qπ(r),

and an optimal permutation can be found in O(n log n) time by sorting the jobs in
accordance with the WSPT rule (also known as Smith’s rule), i.e., in non-decreasing
order of the ratios q j/w j ; see Theorem 2.6.

Theorem 10.7 For a single machine problem of minimizing the makespan under the
effect (10.17), an optimal permutation can be found in O(n log n) time by sorting
the jobs in non-decreasing order of q j/

(
p jb j

)
.

Proof To prove the theorem, we reduce the problem under consideration to problem
1| | ∑w jC j , with the processing times equal to q j and the weights defined by

w j := b j p j , j ∈ N . (10.18)

For the original problem, we have

Cmax(π) = pπ(1) +
n∑

r=2

pπ(r)

(

1 + bπ(r)

r−1∑

h=1

qπ(h)

)

=
n∑

r=1

pπ(r) +
n∑

r=2

bπ(r) pπ(r)

r−1∑

h=1

qπ(h)

=
n∑

r=1

pπ(r) +
n∑

r=1

bπ(r) pπ(r)

r−1∑

h=1

qπ(h),

where the last equality is due to
∑0

h=1 qπ(h) = 0.
Using (10.18), we further rewrite

Cmax(π) =
n∑

r=1

pπ(r) +
n∑

r=1

wπ(r)

r−1∑

h=1

qπ(h)

=
n∑

r=1

pπ(r) +
n∑

r=1

wπ(r)

r∑

h=1

qπ(h) −
n∑

r=1

wπ(r)qπ(r)

=
n∑

r=1

wπ(r)

r∑

h=1

qπ(h) +
n∑

j=1

(
p j − w j q j

)
.

Thus,Cmax(π) is minimized if theminimum of
∑n

r=1 wπ(r)
∑r

h=1 qπ(h) is attained.
The latter expression is the objective function in problem 1| | ∑w jC j , so that the
optimal permutation can be found by theWSPT rule. In terms of the original problem,
an optimal permutation is obtained by sorting the jobs in non-decreasing order of the
ratios q j/

(
b j p j

)
. �

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Reformulating Theorem 10.7, we conclude that for the problem of minimizing
the makespan under an effect (10.17), the 1-priority is ω( j) = b j p j/q j .

Corollary 10.1 If effect (10.17) is applied with q j = p j , then the resulting problem
1
∣
∣p j (π; r) = p j

(
1 + b j Pr

)∣∣Cmax is solvable in O(n log n) time by sequencing jobs
in non-increasing order of b j .

10.2.2 Job-Independent Linear Cumulative Effect

In the remainder of this section, we consider a pure cumulative effect of the form
(10.2) applied with A = 1, i.e., a linear effect given by

p j (r) = p j

(

1 + b
r−1∑

h=1

pπ(h)

)

. (10.19)

According to Theorem 10.5, for an effect (10.16) if A = 1 and g(r) is defined
according to (10.9), an optimal permutation for minimizing the makespan can be
found by sorting the jobs in accordance with the SPT rule, and if A = 1 and
g(r) is defined according to (10.15), an optimal permutation for minimizing the
makespan can be found by sorting the jobs in accordance with the LPT rule. Notice
that effect (10.19) can be seen as a special case of effect (10.16) with A = 1 and
g(r) = 1, 1 ≤ r ≤ n, so that both (10.9) and (10.15) are satisfied. Thus, Theorem10.5
implies that both SPT and LPT rules will result in an optimal solution for problem
1
∣
∣p j (r) = p j (1 + bPr )

∣
∣Cmax. In fact, we can prove an even more general statement.

Lemma 10.2 For problem 1
∣
∣p j (r) = p j (1 + bPr )

∣
∣Cmax with a cumulative effect of

the form (10.19), the value of the objective functiondoes not dependon the sequencing
of jobs.

Proof A possible proof of the lemma demonstrates that for an arbitrary permutation
π = (π(1), . . . ,π(n)), the expression for Cmax(π) can be written in a sequence-
independent way. Due to (10.19), we have that

Cmax(π) = pπ(1) +
n∑

r=2

pπ(r)

(

1 + b
r−1∑

h=1

pπ(h)

)

=
n∑

r=1

pπ(r) + b
n∑

r=2

pπ(r)

r−1∑

h=1

pπ(h).
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Table 10.3 Results for scheduling independent jobs on a single machine with a pure cumulative
effect

p j (r) Condition Objective 1-Priority Statement

p j f (Pr ) f convex Cmax 1/p j Theorem 10.2

p j f (Pr ) f convex
∑

Cz
j 1/p j Theorem 10.2

p j f (Pr ) f convex ξCmax + η
∑

Cz
j 1/p j Theorem 10.2

p j f (Pr ) f concave Cmax p j Theorem10.4

p j (1 + bPr )A A = 1 Cmax ∀ Lemma10.2

p j (1 + bPr )A A < 0 or A ≥ 1 Cmax 1/p j Theorem 10.5

p j (1 + bPr )A 0 < A ≤ 1 Cmax p j Theorem 10.5

p j (1 + bPr )A A < 0 or A ≥ 1
∑

Cz
j 1/p j Theorem 10.6

p j (1 + bPr )A A < 0 or A ≥ 1 ξCmax + η
∑

Cz
j 1/p j Theorem 10.6

p j (1 + bPr )A 0 < A < 1
∑

C j open Example 10.1

(10.17) Cmax q j/
(
b j p j

)
Theorem 10.7

p j
(
1 + b j Pr

)
Cmax b j Corollary 10.1

Changing the order of summation, we obtain

Cmax(π) =
n∑

r=1

pπ(r) + b
n−1∑

r=1

pπ(r)

n∑

h=r+1

pπ(h) =
n∑

r=1

pπ(r) + b
∑

1≤r<h≤n

pπ(r) pπ(h).

Since (
n∑

r=1

pπ(r)

)2

=
n∑

r=1

p2π(r) + 2
∑

1≤r<h≤n

pπ(r) pπ(h),

we deduce
∑

1≤r<h≤n

pπ(r) pπ(h) = 1

2

(
n∑

r=1

pπ(r)

)2

− 1

2

n∑

r=1

p2π(r),

so that

Cmax(π) =
n∑

r=1

pπ(r) + b

2

(
n∑

r=1

pπ(r)

)2

− b

2

n∑

r=1

p2π(r).

The right-hand side of the above expression is in fact sequence-independent, so
that it can be written as

Cmax(π) =
n∑

j=1

p j + b

2

⎛

⎝
n∑

j=1

p j

⎞

⎠

2

− b

2

n∑

j=1

p2j ,
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which implies that for problem1
∣
∣p j (r) = p j (1 + bPr )

∣
∣Cmax with a cumulative effect

(10.19), the makespan is a constant that does not depend on the order of jobs.
Another evidence that Lemma10.2 holds comes from Theorem 10.7. Indeed,

since for problem 1
∣
∣p j (r) = p j (1 + bPr )

∣
∣Cmax, Theorem 10.7 applies with q j =

p j , b j = b, j ∈ N , and we see that any permutation is optimal. �

The results for pure cumulative effects that follow from Sects. 10.1 and 10.2
are summarized in Table10.3. Here, we use symbol ∀ to indicate that an arbitrary
permutation is optimal.

10.3 Scheduling Under Precedence Constraints

In this section, we consider single machine problems to minimize an objective
function � ∈ {

Cmax,
∑

C j
}
with a deterioration cumulative effect (10.2) applied

with A ≥ 1. Unlike in Sects. 10.1 and 10.2, here, we assume that the jobs of
set N are not independent and a precedence relation given by a reduction graph
G = (N ,U ) is imposed over the set N of jobs. We denote the corresponding prob-
lems by 1

∣
∣p j (r) = p j (1 + bPr )A, prec

∣
∣� (for arbitrary precedence constraints)

and by 1
∣
∣p j (r) = p j (1 + bPr )A, SP − prec

∣
∣� (for series-parallel precedence con-

straints). SeeChap.3 for definitions andmain results on scheduling under precedence
constraints.

Let π be a (partial) permutation of jobs contained as a subsequence in some
schedule. The length of a permutation π, i.e., the number of elements in π, is denoted
by |π|.

10.3.1 Minimizing Makespan

We start with considering the problem with the makespan objective function.
First, observe that Lemma10.2 immediately implies that for problem 1

∣
∣p j (r) =

p j (1 + bPr ), prec
∣
∣Cmax with a cumulative effect (10.2) applied with A = 1, any

permutation that respects the given precedence constraints is optimal. Such a per-
mutation can be found in O(n) time.

Now, we pass to considering the problem of minimizing the makespan with a
cumulative effect (10.2) applied with A = 2 and show that the objective function is
priority-generating. Recall that Cmax admits a 1-priority for A > 1, which is a neces-
sary requirement for the objective function to be priority-generating. In accordance
with Sect. 3.2, we apply Recipe 3.1.

In the proofs below, the following notation is used. For a partial permutation π
that is contained as a subsequence in some schedule, assume that (i) the first job
in π starts at time τ and (ii) the sum of the normal processing times p j of the jobs
that precede the first job in π, i.e., those completed by time τ , is equal to ζ. Under

http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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these assumptions, let Cmax(π; τ ; ζ) denote the maximum completion time of the
jobs in π.

Theorem 10.8 For the single machine problem to minimize the makespan under the
deterioration effect (10.2) applied with A = 2 and b > 0, the objective function is
priority-generating and

ω(π) =
∑|π|

j=1 pπ( j)
∑|π|

j=1 p
2
π( j)

(10.20)

is its priority function. In the case A = 2 and b < 0, the priority function is
−ω(π). Problem 1

∣
∣p j (r) = p j (1 + bPr )A, SP − prec

∣
∣Cmax with A = 2 is solvable

in O(n log n) time.

Proof We present the proof for the case b > 0. For problem 1
∣
∣p j (r) = p j

(1 + bPr )A
∣
∣Cmax, by definition, we have that

Cmax(π; τ ; ζ) = τ + Cmax(π; 0; ζ) = τ +
|π|∑

j=1

pπ( j)

(

1 + b

(

ζ +
j−1∑

i=1

pπ(i)

))2

.

(10.21)
Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two permutations of all jobs that

only differ in the order of the subsequences α (containing u jobs) and β (containing
v jobs).
Define

� := Cmax(π
αβ) − Cmax(π

βα) = Cmax(π
αβ; 0; 0) − Cmax(π

βα; 0; 0).

Let ζ ′ denote the total sum of the normal processing times of the jobs in π1. It
follows from (10.21) that

Cmax(π1αβπ2; 0; 0) = Cmax(π1; 0; 0) + Cmax(αβπ2; 0; ζ ′),
Cmax(π1αβπ2, 0, 0) = Cmax(π1; 0; 0) + Cmax(βαπ2; 0; ζ ′);

so that �C = Cmax(αβπ2; 0; ζ ′) − Cmax(βαπ2; 0; ζ ′). Furthermore,

Cmax(αβπ2; 0; ζ ′) = Cmax(αβ; 0; ζ ′)

+
|π2|∑

k=1

pπ2(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
u∑

i=1

pα(i) +
v∑

j=1

pβ( j) +
k−1∑

i=1

pπ2(i)

⎞

⎠

⎞

⎠

2

,

Cmax(βαπ2; 0; ζ ′) = Cmax(βα; 0; ζ ′)

+
|π2|∑

k=1

pπ2(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
v∑

j=1

pβ( j) +
u∑

i=1

pα(i) +
k−1∑

i=1

pπ2(i)

⎞

⎠

⎞

⎠

2

,

so that �C = Cmax(αβ; 0; ζ ′) − Cmax(βα; 0; ζ ′).
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Next, we deduce

Cmax(αβ; 0; ζ ′) = Cmax(α; 0; ζ ′) +
v∑

k=1

pβ(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
u∑

i=1

pα(i) +
k−1∑

j=1

pβ( j)

⎞

⎠

⎞

⎠

2

=
u∑

k=1

pα(k)

(

1 + b

(

ζ ′ +
k−1∑

i=1

pα(i)

))2

+
v∑

k=1

pβ(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
u∑

i=1

pα(i) +
k−1∑

j=1

pβ( j)

⎞

⎠

⎞

⎠

2

,

Cmax(βα; 0; ζ ′) = Cmax(β; 0; ζ ′) +
u∑

k=1

pα(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
v∑

j=1

pβ( j) +
k−1∑

i=1

pα(i)

⎞

⎠

⎞

⎠

2

=
v∑

k=1

pβ(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
k−1∑

j=1

pβ( j)

⎞

⎠

⎞

⎠

2

+
u∑

k=1

pα(k)

⎛

⎝1 + b

⎛

⎝ζ ′ +
v∑

j=1

pβ( j) +
k−1∑

i=1

pα(i)

⎞

⎠

⎞

⎠

2

,

so that for �, we derive

� =
u∑

k=1

pα(k)

⎛

⎝

(

1 + b

(

ζ ′ +
k−1∑

i=1

pα(i)

))2

−
⎛

⎝1 + b

⎛

⎝ζ ′ +
v∑

j=1

pβ( j) +
k−1∑

i=1

pα(i)

⎞

⎠

⎞

⎠

2⎞

⎠

+
v∑

k=1

pβ(k)

⎛

⎝

⎛

⎝1 + b

⎛

⎝ζ ′ +
u∑

i=1

pα(i) +
k−1∑

j=1

pβ( j)

⎞

⎠

⎞

⎠

2

−
⎛

⎝1 + b

⎛

⎝ζ ′ +
k−1∑

j=1

pβ( j)

⎞

⎠

⎞

⎠

2⎞

⎠.

Proceeding further, we obtain

� = −
u∑

k=1

pα(k)

⎛

⎝2
v∑

j=1

pβ( j)

(

1 + b

(

ζ ′ +
k−1∑

i=1

pα(i)

))

+ b

(
v∑

i=1

pβ(i)

)2
⎞

⎠

+
v∑

k=1

pβ(k)

⎛

⎝2
u∑

i=1

pα(i)

⎛

⎝1 + b

⎛

⎝ζ ′ +
k−1∑

j=1

pβ( j)

⎞

⎠

⎞

⎠ + b

(
u∑

i=1

pα(i)

)2⎞

⎠
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= 2b
u∑

i=1

pα(i)

⎛

⎝
∑

1≤ j<k≤v

pβ( j) pβ(k)

⎞

⎠ + b
v∑

k=1

pβ(k)

(
u∑

i=1

pα(i)

)2

− 2b
u∑

i=1

pβ(i)

⎛

⎝
∑

1≤ j<k≤u

pα( j) pα(k)

⎞

⎠ − b
u∑

k=1

pα(k)

(
v∑

i=1

pβ(i)

)2

.

Adding and subtracting b
∑u

k=1 pα(k)
∑v

j=1 p
2
β( j) and b

∑v
k=1 pβ(k)

∑u
i=1 p

2
α(i),

we obtain

� = b
u∑

k=1

pα(k)

(
v∑

i=1

pβ(i)

)2

+ b
v∑

k=1

pβ(k)

(
u∑

i=1

pα(i)

)2

− b
u∑

k=1

pα(k)

v∑

i=1

p2β(i)

− b
v∑

k=1

pβ(k)

(
u∑

i=1

pα(i)

)2

− b
u∑

k=1

pα(k)

(
v∑

i=1

pβ(i)

)2

+ b
v∑

k=1

pβ(k)

u∑

i=1

p2α(i),

which reduces to

� = b
v∑

k=1

pβ(k)

u∑

i=1

p2α(i) − b
u∑

k=1

pα(k)

v∑

i=1

p2β(i). (10.22)

Dividing both sides of (10.22) by b
∑u

k=1 p
2
α(k)

∑v
i=1 p

2
β(i), we deduce from b > 0

that � ≤ 0, provided that

∑u
i=1 pα(i)∑u
i=1 p

2
α(i)

≥
∑v

i=1 pβ(i)∑v
i=1 p

2
β(i)

.

For an arbitrary (partial) permutation π, define the function ω(π) by (10.20). It
is easily verified that for b > 0, the inequality ω(α) > ω(β) implies Cmax(π

αβ) ≤
Cmax(π

βα), while the equality ω(α) = ω(β) implies Cmax(π
αβ) = Cmax(π

βα), as
required by the definition of the priority function.

For b < 0, the inequality � ≤ 0 holds, provided that

∑u
i=1 pα(i)∑u
i=1 p

2
α(i)

≤
∑v

i=1 pβ(i)∑v
i=1 p

2
β(i)

,

which leads to a priority function that is the negation of ω(π) defined by
(10.20). �

Observe that if (10.20) is applied to a single job j , i.e., to a permutation of length
one, then the priority function becomes a 1-priority function ω( j) = 1/p j , which is
consistent with the SPT being an optimal priority rule for the corresponding problem
with independent jobs; see Theorem 10.5.
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It is unlikely that a priority function exists for A greater than 2, as the lemma
below demonstrates for A = 3.

Lemma 10.3 For the single machine problem under the deterioration model (10.2)
with A = 3 the makespan is not a priority-generating objective function.

Proof In order to disprove that an objective function� is priority-generating, we rely
on Recipe 3.2. outlined in Sect. 3.2. An instance of the problem should be exhibited
such that �(παβ) < �(πβα) for some permutations παβ = (π1αβπ2) and πβα =
(π1βαπ2), while �(ϕαβ) > �(ϕβα) for some other permutations ϕαβ = (ϕ′αβϕ′′)
and ϕβα = (ϕ′βαϕ′′).

Consider the following instance of the problem in question. There are four jobs
with

p1 = 3, p2 = 8, p3 = 7, p4 = 6.

Let α = (1, 2), β = (3), and π2 = (4) with permutation π1 being empty, so that
παβ = (αβ, 4) and πβα = (βα, 4). We have that

Cmax(αβ, 4) = 3 × 13 + 8 × (1 + 3)3 + 7 × (1 + 3 + 8)3 + 6 × (1 + 3 + 8 + 7)3

= 53765;
Cmax(βα, 4) = 7 × 13 + 3 × (1 + 7)3 + 8 × (1 + 7 + 3)3 + 6 × (1 + 7 + 3 + 8)3

= 53345,

so that Cmax(αβ, 4) > Cmax(βα, 4).
On the other hand, taking ϕ′ = (4) and empty permutation ϕ′′′ we obtain

Cmax(4,αβ) = 49859 < Cmax(4,βα) = 49943,

which proves the lemma. �

Wenowpass to consider a pure job-dependent generalized linear cumulative effect
(10.17).

Theorem 10.9 For the single machine problem to minimize the makespan under the
cumulative effect (10.17), the objective function is priority-generating and

ω(π) =
∑|π|

j=1 pπ( j)bπ( j)
∑|π|

j=1 qπ( j)

(10.23)

is its priority function. The problem is solvable in O(n log n) time.

http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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Proof We present the proof for the case b > 0. For the problem under consideration,

Cmax(π; τ ; ζ) = τ + Cmax(π; 0; ζ) = τ +
|π|∑

j=1

pπ( j)

(

1 + bπ( j)

(

ζ +
j−1∑

i=1

qπ(i)

))

.

As in the proof of Theorem 10.8, let παβ = (π1αβπ2) and πβα = (π1βαπ2) be
two permutations of all jobs that only differ in the order of the subsequences α
(containing u jobs) and β (containing v jobs). Define� := Cmax(π

αβ) − Cmax(π
βα),

and let ζ ′ denote the total sum of the normal processing times of the jobs in π1. Then,
� = Cmax(αβπ2; 0; ζ ′) − Cmax(βαπ2; 0; ζ ′). Furthermore,

Cmax(αβπ2; 0; ζ ′) = Cmax(αβ; 0; ζ ′)

+
|π2|∑

k=1

pπ2(k)

⎛

⎝1 + bπ2(k)

⎛

⎝ζ ′ +
u∑

i=1

qα(i) +
v∑

j=1

qβ( j) +
k−1∑

i=1

qπ2(i)

⎞

⎠

⎞

⎠,

Cmax(βαπ2; 0; ζ ′) = Cmax(βα; 0;

ζ ′) +
|π2|∑

k=1

pπ2(k)

⎛

⎝1 + bπ2(k)

⎛

⎝ζ ′ +
v∑

j=1

qβ( j) +
u∑

i=1

qα(i) +
k−1∑

i=1

qπ2(i)

⎞

⎠

⎞

⎠,

so that �C = Cmax(αβ; 0; ζ ′) − Cmax(βα; 0; ζ ′).
Next, we deduce

Cmax(αβ; 0; ζ ′) = Cmax(α; 0; ζ ′) +
v∑

k=1

pβ(k)

⎛

⎝1 + bβ(k)

⎛

⎝ζ ′ +
u∑

i=1

qα(i) +
k−1∑

j=1

qβ( j)

⎞

⎠

⎞

⎠

=
u∑

k=1

pα(k)

(

1 + bα(k)

(

ζ ′ +
k−1∑

i=1

qα(i)

))

+
v∑

k=1

pβ(k)

⎛

⎝1 + bβ(k)

⎛

⎝ζ ′ +
u∑

i=1

qα(i) +
k−1∑

j=1

qβ( j)

⎞

⎠

⎞

⎠,

Cmax(βα; 0; ζ ′) = Cmax(β; 0; ζ ′) +
u∑

k=1

pα(k)

⎛

⎝1 + bα(k)

⎛

⎝ζ ′ +
v∑

j=1

qβ( j) +
k−1∑

i=1

qα(i)

⎞

⎠

⎞

⎠

=
v∑

k=1

pβ(k)

⎛

⎝1 + bβ(k)

⎛

⎝ζ ′ +
k−1∑

j=1

qβ( j)

⎞

⎠

⎞

⎠

+
u∑

k=1

pα(k)

⎛

⎝1 + bα(k)

⎛

⎝ζ ′ +
v∑

j=1

qβ( j) +
k−1∑

i=1

qα(i)

⎞

⎠

⎞

⎠,
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so that for �, we derive

� =
u∑

k=1

pα(k)

((

1 + bα(k)

(

ζ ′ +
k−1∑

i=1

qα(i)

))

−
⎛

⎝1 + bα(k)

⎛

⎝ζ ′ +
v∑

j=1

qβ( j) +
k−1∑

i=1

qα(i)

⎞

⎠

⎞

⎠

⎞

⎠

+
v∑

k=1

pβ(k)

⎛

⎝

⎛

⎝1 + bβ(k)

⎛

⎝ζ ′ +
u∑

i=1

qα(i) +
k−1∑

j=1

qβ( j)

⎞

⎠

⎞

⎠

−
⎛

⎝1 + bβ(k)

⎛

⎝ζ ′ +
k−1∑

j=1

qβ( j)

⎞

⎠

⎞

⎠

⎞

⎠.

Performing cancellations, we obtain

� = −
u∑

k=1

pα(k)bα(k)

v∑

j=1

qβ( j) +
v∑

k=1

pβ(k)bβ(k)

u∑

i=1

qα(i).

Dividing by
∑u

k=1 qα(k)
∑v

i=1 qβ(i), we deduce that � ≤ 0, provided that

∑u
k=1 pα(k)bα(k)∑u

k=1 qα(k)
≥

∑v
i=1 pβ(i)bβ(k)∑v

i=1 qβ(i)
.

For an arbitrary (partial) permutation π, define the function ω(π) by (10.23). It
is easily verified that ω(α) > ω(β) implies Cmax(π

αβ) ≤ Cmax(π
βα), while ω(α) =

ω(β) implies Cmax(π
αβ) = Cmax(π

βα), as required by the definition of the priority
function. �

Observe that if (10.23) is applied to a single job j , i.e., to a permutation of length
one, then the priority function becomes a 1-priority function ω( j) = b j p j/q j , which
is consistent with Theorem 10.7.

10.3.2 Minimizing Total Completion Time

Consider now the problem of minimizing the sum of the completion times F(π) =∑
C j under the deterioration model (10.2).
Suppose that some subset of jobs is processed starting at time zero in accordance

with a permutation π. The sum of their completion times can be written as
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F(π) =
|π|∑

k=1

(|π| − k + 1)pπ(k)

⎛

⎝1 +
k−1∑

j=1

pπ( j)

⎞

⎠

A

, (10.24)

which can be deduced by replacing constant processing times in (2.9) by their actual
processing times found by (10.2).

Below, we demonstrate that no priority function exists for the problem of mini-
mizing F(π) = ∑

C j for small integer-valued A.
First, recall that Theorem3.4 of Chap. 3 states that for a single machine problem,

the priority function for the total completion time objective remains the priority
function for themakespan. It is straightforward to verify that the proof of Theorem3.4
carries over if the jobs are subject to a deterioration effect of the form (10.2). In fact,
in that proof all new jobs that should be added to the initial instance should be
given normal time p j = ε. Further, as the contrapositive statement to Theorem3.4,
we derive that if for the problem of minimizing the makespan the objective is not
priority-generating, then neither is the objective of minimizing the total completion
time. Combining this with Lemma10.3, we deduce the following statement.

Lemma 10.4 For the single machine problem under the deterioration model (10.2)
with A = 3 the sum of the completion times

∑
C j is not a priority-generating objec-

tive function.

Thus, in the remainder of this section, we focus on the problem with a cumulative
deterioration effect applied with A ∈ {1, 2}.
Lemma 10.5 For the single machine problem under the deterioration model (10.2)
with A ∈ {1, 2} the sum of the completion times F(π) = ∑

Cπ( j) is not a priority-
generating objective function.

Proof Theproof is similar to that of Lemma10.3 and is based onRecipe3.2.Consider
the instance of the problem with four jobs with normal processing times

p1 = 1, p2 = 6, p3 = 4, p4 = 7,

and let α = (1, 2) and β = (3).
Applying (10.24) for A = 1, we compare

F(αβ, 4) = 188 > F(βα, 4) = 187;
F(4,αβ) = 220 < F(4,βα) = 226.

Similarly, for A = 2, we compare

F(αβ, 4) = 1596 > F(βα, 4) = 1531;
F(4,αβ) = 2092 < F(4,βα) = 2098.

This demonstrates that a priority function exists neither for A = 1 nor for
A = 2. �

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
http://dx.doi.org/10.1007/978-3-319-39574-6_3
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10.4 Bibliographic Notes

The cumulative effects have been introduced by Kuo and Yang in a series of
papers. They focus on the learning effect (10.2) with b = 1 and A < 0. For A < 0,
the optimality of the SPT rule for problems 1

∣
∣p j (r) = p j (1 + Pr )A

∣
∣Cmax and

1
∣
∣p j (r) = p j (1 + Pr )A

∣
∣∑C j is proved in Kuo and Yang (2006a) and in Kuo and

Yang (2006b), respectively. See Janiak et al. (2011) for a review of scheduling with
pure cumulative effects.

The results similar to Theorem 10.1 are proved byYin et al. (2009), who, however,
make an unnecessary assumption that function f is non-increasing.

A special case of effect (10.2) is introduced by Koulamas and Kyparisis (2007).
The authors define the actual processing time of job j scheduled in r th position of
permutation π as

p j (r) = p j

(

1 −
∑r−1

h=1 pπ(h)

p(N )

)A

, (10.25)

where p(N ) = ∑n
j=1 p j . It is easy to see that in the case of learning A ≥ 1, func-

tion f (Pr ) = (1 − Pr/p(N ))A has a non-decreasing derivatives, i.e., due to Theo-
rems 10.5 and 10.6 for a single machine scheduling problem to minimize function

� ∈
{
Cmax,

∑
Cz

j , ξCmax + η
∑

Cz
j

}
under the cumulative learning effect (10.25),

an optimal schedule can be found by the SPT rule. Koulamas and Kyparisis (2007)
prove this for� = Cmax and� = ∑

C j from the first principles. Notice that (10.25)
can be rewritten as

p j (r) = p j

(∑n
h=r pπ(h)∑n
h=1 pπ(h)

)A

,

which means that the learning effect depends not on the earlier processed jobs, but
on the jobs which follow job π(r). We share an opinion of Biskup (2008), who finds
such a dependence strange. Indeed, as argued in Biskup (2008), if p j = 1, j ∈ N ,
and A = 1, then the actual processing time of the job in the second position is 0.8,
0.9, and 0.95 for n = 5, n = 10, and n = 20, respectively; however, the learning
experience gained prior processing and the second job is exactly the same in all three
instances.

Cheng et al. (2008) consider a version of a combined cumulative effect such that

p j (r) = p j

(∑n
h=r pπ(h)∑n
h=1 pπ(h)

)A

ra,

where A ≥ 1, a < 0. The authors prove that the SPT rule is optimal for minimizing
the makespan, as well as for minimizing the sum of the completion times.

A special case of problem 1
∣
∣p j (r) = p j (1 + bPr )Ag(r)

∣
∣Cmax with b =

1/p(N ), g(r) = ra , is studied by Lu et al. (2015) for 0 < A < 1, a > 1, and by
Wu and Lee (2008) for A < 0, a < 0. The result proved by Lu et al. (2015) is a
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corollary of Theorem 10.5. For the problem of minimizing the sum of the completion
times under the same effect, Lu et al. (2015) prove that an optimal permutation is
V -shaped with respect to the normal processing times. On the other hand, Wu and
Lee (2008) prove that the SPT rule is optimal for minimizing the makespan, as well
as for minimizing the sum of the completion times; both these results follow from
Theorem 10.5.

Huang andWang (2015) consider a version of a combined cumulative effect such
that

p j (r) = p j

(

1 +
r−1∑

h=1

b(h)pπ(h)

)A

,

where A ≥ 1 and array b(r), 1 ≤ r ≤ n, is non-increasing, i.e., represents a positional
learning effect. It is proved that for each problem of minimizing a function � ∈{
Cmax,

∑
Cz

j , ξCmax + η
∑

Cz
j

}
on a single machine, an optimal permutation can

be found by the SPT rule.
Job-dependent linear cumulative generalized effect has not been studied prior to

Rustogi and Strusevich (2016), even for the variant with q j = p j ; see Theorem 10.7.
The material of Sect. 10.3 is based on Gordon et al. (2008) and Rustogi and

Strusevich (2016).
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Chapter 11
Scheduling on Parallel Machines
with Various Effects

In this chapter, we consider scheduling problems on parallel machines, provided that
actual processing times of the jobs are subject to various effects.

In a basicmodel, the jobs of set N = {1, 2, . . . , n} are to be processed onm parallel
machines M1, M2, . . . , Mm . Without loss of generality, we assume that n ≥ m.

Givenm parallel machines, a schedule S is associatedwith a partition of set N into
m subsets N1, N2, . . . , Nm , some ofwhichmay be empty. The jobs of set Ni , and only
those, are assigned to machine Mi and are processed on that machine in accordance
with a sequence π[i] = (

π[i](1),π[i](2), . . . ,π[i]
(
n[i]

))
,where n[i] = Ni , 1 ≤ i ≤ m.

Notice that we can see the jobs being split into several machines as being split into
several groups, and starting from this chapter, the group-dependent parameters are
accompanied by a superscript of the form [x], where x is the group number. This is
why in the above text, we write π[i] and n[i].

If a job j ∈ N is scheduled on machine Mi , 1 ≤ i ≤ m, it is associated with a
normal processing time pi j . The actual processing time of a job may depend on its
position on the machine it is assigned to, or on its start time, or on a combination of
both.

Unless stated otherwise, in all problems considered in this chapter, the objective
is the total completion time, i.e., the sum of the completion times. Recall that in
the case of the makespan objective, problem P2| |Cmax on two identical parallel
machines is NP-hard in the ordinary sense, even if the processing times are constant;
see Sect. 1.3.3.

The following statement is frequently used to solve the problems considered in
this chapter.

Lemma 11.1 Suppose n jobs are to be scheduled on m machines, such that machine
Mi , i ∈ {1, 2, . . . ,m} has n[i] jobs assigned to it, sequenced in accordancewith a per-
mutation π[i] = (

π[i](1), . . . ,π[i](n[i])
)
, where

∑m
i=1 n

[i] = n. Further, sequencing
a job j in a position π[i](r) generates a positional weight W [i](r), so that the overall
contribution of job j to the objective function is equal to W [i](r)p j = W [i](r)pπ[i](r).
A generic objective function can be written as

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
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Research & Management Science 243, DOI 10.1007/978-3-319-39574-6_11
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�(π) =
m∑

i=1

n[i]∑

r=1

W [i](r)pπ[i](r), (11.1)

which can beminimized by using AlgorithmMatch, if the obtained positional weights
are job-independent.

The proof for the above statement follows from Theorem2.1.

11.1 Combined Effects

In this section, we address parallel machine scheduling problems under combined
effects considered in Sect. 8.1.3. The jobs are subject to an additive linear job-
independent start-time-dependent effect of the form similar to (8.19). The actual
processing time pi j (τ ; r) of job j that is sequenced in position r, 1 ≤ r ≤ n, and
starts at time τ > 0, on machine Mi , is given by

pi j (τ ; r) = (
pi j ± a[i]τ

)
g[i](r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, j ∈ N , (11.2)

where

• the factor g[i](r) is used to incorporate a job-independent positional effect, and the
superscript “[i]” is used to stress that the effect is machine-dependent, i.e., for the
same job, a different positional effect may be applied depending on its assignment
to particular machine;

• a[i] > 0 is a given machine-dependent rate which is common for all jobs; in the
case of pi j + a[i]τ , we have a deterioration effect, while pi j − a[i]τ defines a
learning effect.

Notice that if a machine Mi , 1 ≤ i ≤ m, is under a start-time-dependent learn-
ing effect, i.e., a negative sign is used in (11.2), we must also adopt an additional
assumption of the form (8.21), which guarantees that the actual processing times do
not assume negative values. Other than this additional assumption, the treatment for
both deterioration and learning versions of the effect (11.2) is the same and does not
depend on the sign used in front of a[i]τ .

For each machine Mi , the function g[i] is given as an array of n numbers, which in
general need not be monotone. If array g[i](r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, is monotone
non-decreasing, so that an analogue of (7.10) holds (or non-decreasing, so that an
analogue of (7.11) holds), then we have a situation of positional deterioration (or of
positional learning, respectively).

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_7
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11.1.1 Identical and Uniform Machines

First, let us consider the problem of minimizing the total completion time on uniform
machines under a combined effect (11.2). The actual processing time of a job j ∈ N ,

if processed on machine Mi , 1 ≤ i ≤ m, starting at time τ ≥ 0, at a position r ≥ 1
of permutation π[i] is given by

pi j (τ ; r) =
(
p j ± a[i]τ

)
g[i](r)

si
, 1 ≤ r ≤ n, 1 ≤ i ≤ m, (11.3)

where p j is the normal processing time of job j and si is the speed of machine Mi .
The factors g[i](r) incorporate an arbitrary positional effect, so that the sequence
g[i](r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, is not necessarily monotone. We denote this problem
by Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j .

Recall from Sect. 8.1.3 that for problem 1
∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣∑C j on

a single machine, the total completion time is given by (8.26). Adopting (8.26) for
a schedule S defined by permutations π[i] = (

π[i](1),π[i](2), . . . ,π[i]
(
n[i]

))
, where∑m

i=1 n
[i] = n, the total completion time of all n[i] jobs on a machine Mi under the

effect (11.3) can be given by

n[i]∑

r=1

Cπ[i](r) =
n[i]∑

r=1

pπ[i](r)g
[i](r)

si

⎛

⎝
n[i]∑

k=r

k∏

q=r+1

(
1 ± a[i]g[i](q)

)
⎞

⎠.

Thus, for schedule S, the total completion time for all jobs on all machines can
be written as

n∑

j=1

C j (S) =
m∑

i=1

n[i]∑

r=1

pπ[i](r)g
[i](r)

si

⎛

⎝
n[i]∑

k=r

k∏

q=r+1

(
1 ± a[i]g[i](q)

)
⎞

⎠, (11.4)

which can be rewritten as the generic objective function (11.1) with the positional
weights

W [i](r) = g[i](r)

si

⎛

⎝
n[i]∑

k=r

k∏

q=r+1

(
1 ± a[i]g[i](q)

)
⎞

⎠, 1 ≤ r ≤ n[i], 1 ≤ i ≤ m. (11.5)

Notice that the positional weights given by (11.5) are job-independent; thus, due
to Lemma11.1, an optimal solution may be delivered by Algorithm Match. How-
ever, none of the positional weights W [i](r) can be computed without exact knowl-
edge of the number n[i] of jobs assigned to machine Mi . If the number of jobs
to be scheduled on each machine is known in advance, so that

∑m
i=1 n

[i] = n,

then we will have a total of n positional weights. In order to solve problem
Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j , the obtained n positional weights

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
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must be matched with n jobs, so that the generic objective function (11.1) is
minimized, and this can be achieved in O(n log n) time by Algorithm Match.

Unfortunately, for problem Qm
∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j in its

general form, the number of jobs n[i], 1 ≤ i ≤ m, is not known in advance.Moreover,
there is no easyway to determine the optimal values of n[i], 1 ≤ i ≤ m.Thus, to solve
problem Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j , we must generate all possi-

ble values for n[i], 1 ≤ i ≤ m, so that
∑m

i=1 n
[i] = n, and for each instance, solve

the resulting problem Qm
∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j

by Algorithm Match. Finally, the instance that results in the smallest value of the
objective function is chosen as the optimal solution.

To generate all possible values for n[i], 1 ≤ i ≤ m, we need to gener-
ate all compositions of n into at most m summands. See Sect. 5.3 for a discus-
sion on combinatorial counting. This generates O(nm−1) instances of problem
Qm

∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j , with known values of

n[i], 1 ≤ i ≤ m. The SPT sequence of jobs can be found in advance, and accord-
ing to Algorithm Match, to match the jobs to the n weights W [i](r), 1 ≤ r ≤
n[i], 1 ≤ i ≤ m, these weights have to be sorted in non-decreasing order. For each
instance of problem Qm

∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j ,

this sorting requires O(n log n) time for an arbitrary positional effect. Thus, problem
Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j can be solved in O(nm log n) time.

A similar solution approach can be used to solve the problem on identical parallel
machines. For that model, we assume that g[i](r) = g(r), 1 ≤ r ≤ n, and a[i] = a,

si = 1, for all 1 ≤ i ≤ m. Let us denote the resulting problem with identical
parallel machines by Pm

∣
∣pi j (τ ; r) = (

p j ± aτ
)
g(r)

∣
∣∑C j . There are two impor-

tant points of differences between problems Pm
∣
∣pi j (τ ; r) = (

p j ± aτ
)
g(r)

∣
∣∑C j

and Qm
∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j . First, in the case of uniform

machines, even for the classical problem Qm| |∑C j , an optimal schedule need
not use all machines, leaving slower machines empty, whereas in the case of iden-
tical machines, an optimal schedule belongs to the class of those schedules in
which all machines are used, provided that n ≥ m. Second, in the case of uni-
form machines, the machines are not identical with respect to their speeds and
positional factors. Thus, for problem Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j ,

we need to generate all compositions of n into at most m summands, whereas for
problem Pm

∣
∣pi j (τ ; r) = (

p j ± aτ
)
g(r)

∣
∣∑C j , we need to generate all partitions

of n into exactly m summands. This still generates O(nm−1) instances of problem
Pm

∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

p j ± aτ
)
g(r)

∣
∣∑C j , with known values of n[i],

1 ≤ i ≤ m. Thus, problem Pm
∣
∣pi j (τ ; r) = (

p j ± aτ
)
g(r)

∣
∣∑C j can be solved in

at most O(nm log n) time, i.e., it is not simpler computationally than its counterpart
on uniform machines.

The following algorithm formally describes the steps required to solve the problem
Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j .

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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Algorithm QSumCombi1

input: An instance of problem Qm
∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j

output: An optimal schedule S defined by the processing sequences π[i], 1 ≤ i ≤ m

Step 1. Form a list L of jobs by sorting the values p j , j ∈ N , in the SPT order.
Step 2. For each choice of values n[i], 1 ≤ i ≤ m, do

(a) For each i , 1 ≤ i ≤ m, compute the values W [i](r) by (11.5) and store them
in a list Gi .

(b) Merge the lists Gi 1 ≤ i ≤ m, into a single list G, sorted in non-increasing
order of its elements.

(c) Compute the contribution of each job to the objective function, bymultiplying
the j th element of list L by the j th element of the list G, 1 ≤ j ≤ n. If an
element of G that is matched to job j is W [i](r), then job j is placed into the
r th position of sequence π[i]. Compute the objective function as the sum of
all found products.

Step 3. Output a schedule defined by the processing sequences π[i], 1 ≤ i ≤ m,
that correspond to the choice of n[i], 1 ≤ i ≤ m, that leads to the smallest value
of the objective function.

In AlgorithmQSumCombi1 applied to the problem on uniform parallel machines,
the values n[i] are generated as possible compositions of n into at mostm summands.
To solve the problem on identical machines, the same algorithm can be used for
g[i](r) = g(r) and a[i] = a, si = 1, 1 ≤ i ≤ m, provided that the values n[i] are
generated as possible partitions of n into exactly m summands.

The following statement holds.

Theorem 11.1 Problems Qm
∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j and Pm∣

∣pi j (τ ; r) = (
p j ± aτ

)
g(r)

∣
∣∑C j can be solved by Algorithm QSumCombi1 in

O(nm log n) time, even if the sequence g[i](r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, is not
necessarily monotone.

Notice that if a pure positional effect is considered, the corresponding problems
Qm

∣
∣pi j (r) = p jg

[i](r)/si
∣
∣∑C j and Pm

∣
∣pi j (r) = p jg(r)

∣
∣∑C j can still be solved

by Algorithm QSumCombi1 applied with a[i] = 0, 1 ≤ i ≤ m. This still requires
O(nm log n) time, i.e., the problems with a pure positional effect are not compu-
tationally simpler than their counterparts with a combined effect. However, if a
pure start-time-dependent effect is considered, the running time can be considerably
improved, as shown in Sect. 11.3.

11.1.2 Unrelated Machines

We are given m unrelated parallel machines. The combined effect is applied, so that
the actual processing time of job j assigned to the r th position on machine Mi and
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starting at time τ ≥ 0 is given by (11.2), where the factors g[i](r) incorporate an
arbitrary job-independent positional effect, so that the sequence g[i](r), 1 ≤ r ≤
n, 1 ≤ i ≤ m, is not necessarily monotone. We denote the problem of minimizing
the total completion time by Rm

∣
∣pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j .

Under the effect (11.2), for a schedule S on unrelated machines defined by per-
mutations π[i] = (

π[i](1),π[i](2), . . . ,π[i]
(
n[i]

))
, 1 ≤ i ≤ m, the total completion

time of all jobs can be adopted from (11.4) and be written as

n∑

j=1

C j (S) =
m∑

i=1

n[i]∑

r=1

p(i,π[i](r))g
[i](r)

⎛

⎝
n[i]∑

k=r

k∏

q=r+1

(
1 ± a[i]g[i](q)

)
⎞

⎠, (11.6)

where p(i,π[i](r)) is the normal processing time of a job j = π[i](r) scheduled in

position r of permutation π[i] on machine Mi .

To minimize the objective
∑

C j (S), let us define the cost

c j,(i,r) = pi jg
[i](r)

⎛

⎝
n[i]∑

k=r

k∏

q=r+1

(
1 ± a[i]g[i](q)

)
⎞

⎠, (11.7)

which represents the contribution of a job j = π[i](r), to the objective function.
Notice that none of the costs c j,(i,r), j ∈ N , 1 ≤ r ≤ n[i], 1 ≤ i ≤ m, can be
computed without exact knowledge of the number n[i] of jobs assigned to machine
Mi . Thus, similar to the solution to problem Qm

∣
∣pi j (τ ; r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣

∑
C j presented in Sect. 11.1.1, we must generate all possible values for n[i],

1 ≤ i ≤ m, so that
∑m

i=1 n
[i] = n, and for each instance, solve the resulting prob-

lem Rm
∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j . To obtain all possi-

ble values for n[i], 1 ≤ i ≤ m, we need to generate all compositions of n into at
most m summands, which according to (5.12) can be done in O(nm−1) ways.

Notice that the objective function
∑

C j (S) given by (11.6) cannot be expressed as
(11.1) because the value of the normal processing time is dependent on the machine
it is assigned to. Therefore, Lemma11.1 cannot be applied.

To solve problem Rm
∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j ,

define a linear assignment problem with an n × n cost matrix C = (
c j,(i,r)

)
hav-

ing n rows, each corresponding to a job j ∈ N , and n columns, each corresponding
to an available position; see Sect. 4.1 for information on the linear assignment prob-
lem (LAP). Number the columns by a string of the form (i, r), where i, 1 ≤ i ≤ m,
refers to a machine index, and r, 1 ≤ r ≤ n[i], indicates a position in permutation π[i]

of jobs assigned to machine Mi . More precisely, the value of element c j,(i,r) at the
intersection of the j th row and the vth column of matrix C is defined by the relation
(11.7); here, v = n[1] + n[2] + · · · + n[i−1] + r , where 1 ≤ i ≤ m and 1 ≤ r ≤ n[i].

As a result, the problem of minimizing the objective function (11.6) reduces to
LAP written out below

http://dx.doi.org/10.1007/978-3-319-39574-6_5
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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minimize
n∑

j=1

m∑

i=1

n[i]∑

r=1

c j,(i,r)x j,(i,r)

subject to
m∑

i=1

n[i]∑

r=1

x j,(i,r) = 1, j = 1, . . . , n;
n∑

j=1

x j,(i,r) = 1, i = 1, . . . ,m, r = 1, . . . , n[i];
x j,(i,r) ∈ {0, 1}, j = 1, . . . , n, i = 1, . . . ,m,

r = 1, . . . , n[i].

(11.8)

The algorithm to solve an assignment problem of the form (11.8) has been
outlined in Sect. 4.1. The running time of this algorithm is O(n3). Suppose that
for some i, 1 ≤ i ≤ m, the solution of the assignment problem (11.8) related to
problem Rm

∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j is found, then

x j,(i,r) = 1 implies that job j is assigned to the r th, 1 ≤ r ≤ n[i], position of
machine Mi , 1 ≤ i ≤ m. This process is repeated O

(
nm−1

)
times, for each gener-

ated instance of problem Rm
∣
∣∑m

i=1 n
[i] = n, pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j ,

and the instance that delivers the smallest value of the objective function is chosen to
produce an optimal solution to problem Rm

∣
∣pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j .

The following statement holds.

Theorem 11.2 Problem Rm
∣
∣pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j , in which

unrelated machines are under a combined job-independent effect (11.2), can be
solved in O

(
nm+2

)
time, by reducing the problem to solving a series of linear assign-

ment problems, even if the sequence g[i](r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, j ∈ N , is not
necessarily monotone.

Notice that if a pure positional effect is considered, i.e., a[i] = 0, 1 ≤ i ≤ m, the
resulting problem Rm

∣
∣pi j (r) = pi jg[i](r)

∣
∣∑C j cannot be solved any faster than in

O
(
nm+2

)
time. However, for the same running time, it may be possible to consider

a more general positional effect instead.

Consider problem Rm
∣
∣
∣pi j (r) = pi jg

[i]
j (r)

∣
∣
∣
∑

C j , with job-dependent positional

effects, so that the actual processing time pi j (r) of job j that is sequenced in position
r on machine Mi is given by

pi j (r) = pi jg
[i]
j (r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, j ∈ N . (11.9)

For each machine Mi and job j ∈ N , the function g[i]j is given as an array of n
numbers, which in general need not be monotone. If monotone, the array represents
either a positional deterioration effect

1 = g[i]j (1) ≤ g[i]j (2) ≤ · · · ≤ g[i]j (n), 1 ≤ i ≤ m, j ∈ N , (11.10)

or a positional learning effect

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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1 = g[i]j (1) ≥ g[i]j (2) ≥ · · · ≥ g[i]j (n), 1 ≤ i ≤ m, j ∈ N . (11.11)

Under the effect (11.9) with non-monotone positional factors, for a schedule
S on unrelated machines defined by permutations π[i] = (

π[i](1),π[i](2), . . . ,
π[i]

(
n[i]

))
, the total completion time of all jobs can be adopted from (11.6) and

be written as

n∑

j=1

C j (S) =
m∑

i=1

n[i]∑

r=1

p(i,π[i](r))

(
n[i] − r + 1

)
g[i]

π[i](r)(r).

To minimize the objective
∑

C j (S), define the cost

c j,(i,r) = pi j
(
n[i] − r + 1

)
g[i]j (r),

for known values of n[i], 1 ≤ i ≤ m, and solve an LAP of the form (11.8). Similar
to problem Rm

∣
∣pi j (τ ; r) = (

pi j ± a[i]τ
)
g[i](r)

∣
∣∑C j , all possible values for n[i],

1 ≤ i ≤ m, can be generated in O(nm−1) ways, and for each composition, an LAP
can be solved in O

(
n3
)
time, so that the following statement holds.

Theorem 11.3 Problem Rm
∣
∣
∣pi j (r) = pi jg

[i]
j (r)

∣
∣
∣
∑

C j , in which unrelated

machines are under a job-dependent positional effect (11.9), can be solved in
O
(
nm+2

)
time, by reducing the problem to solving a series of linear assignment

problems, even if the sequence g[i]j (r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, j ∈ N , is not
necessarily monotone.

Note that if a pure time-dependent effect is considered, the running time can be
considerably improved, as shown in Sect. 11.3.

11.2 Start-Time-Dependent Job-Dependent Linear Effects

In this section, we address a problem of scheduling jobs on m identical parallel
machines under an additive job-dependent linear deterioration effect. Each job j ∈ N
is associated with a normal processing time p j and a non-negative rate a j . We study a
deterioration effect under which the actual processing time p j (τ ) of job j that starts
at time τ is given by

p j (τ ) = p j + a jτ . (11.12)

For the problems on a single machine, this effect is considered in Sect. 8.13.
For the purpose of establishing the complexity status of relevant scheduling prob-

lems, we consider a simplified effect p j (τ ) = a jτ . Such an effect can be seen as
a special case of the linear additive effect (11.12), provided that p j = 0, j ∈ N .
Besides, it is also a special case of a multiplicative effect p j (τ ) = p ja jτ , provided
that p j = 1, j ∈ N .

http://dx.doi.org/10.1007/978-3-319-39574-6_8
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Unlike other start-time-dependent effects considered in this book, under the effect
p j (τ ) = a jτ , there is no guarantee that for the job that is scheduled first the actual
start time is equal to its normal time. Moreover, if the first job starts at time zero, then
the problem degenerates, with all actual processing times and all completion times
to become zero. To avoid such a degeneracy phenomenon, it is common to assume
that the first job on each machine starts at time τ0 > 0.

Consider a schedule S associated with permutations π[i] = (
π[i](1),π[i](2), . . . ,

π[i]
(
n[i]

))
, 1 ≤ i ≤ m. We deduce

Cπ[i](1) = τ0 + aπ[i](1)τ0 = τ0
(
1 + aπ[i](1)

);
Cπ[i](2) = Cπ[i](1) + aπ[i](2)Cπ[i](1) = (

1 + aπ[i](2)

)
Cπ[i](1) = τ0

(
1 + aπ[i](1)

)(
1 + aπ[i](2)

)
.

Extending this argument, it is easy to verify that

Cπ[i](r) = τ0

r∏

k=1

(
1 + aπ[i](k)

)
, 1 ≤ r ≤ n[i].

For schedule S onm parallel machines, denote the completion time of the last job
scheduled on machine Mi by C (i), 1 ≤ i ≤ m.

11.2.1 Minimizing Makespan: Complexity
and Approximation Scheme

We show that problem P2
∣
∣p j (τ ) = a jτ

∣
∣Cmax of minimizing the makespan on two

identical parallel machines is NP-hard in the strong sense, but still even a more
general problem Pm

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax admits an FPTAS.Recall that problem

P2| |Cmax is NP-hard in the ordinary sense.
In order to establish the complexity status of problem P2

∣
∣p j (τ ) = a jτ

∣
∣Cmax, we

provide polynomial reduction of Product Partition to a decision version of prob-
lem P2

∣
∣p j (τ ) = a jτ

∣
∣Cmax. For completeness, we formulate Product Partition

below.

Product Partition: Given the index set R = {1, . . . , r} and positive integers
e1, . . . , er such that

∏
i∈R ei = E2, is it possible to partition set R into disjoint

subsets R1 and R2 such that
∏

i∈R1
ei = ∏

i∈R2
ei = E?

Recall that Product Partition is NP-complete in the strong sense, see
Sect. 1.3.2 for discussion. Notice that without loss of generality, we may assume
that e j ≥ 2.

Theorem 11.4 Problem P2
∣
∣p j (τ ) = a jτ

∣
∣Cmax is NP-hard in the strong sense.

Proof Given an arbitrary instance of Product Partition, define the following
instance of the decision version of problem P2

∣
∣p j (τ ) = a jτ

∣
∣Cmax.

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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There are n = r + 2 jobs, such that

a j = e j − 1, 1 ≤ j ≤ r;
ar+1 = ar+2 = 2E − 1.

Weshow that Product Partition has a solution if andonly if for the constructed
instance of problem P2

∣
∣p j (τ ) = a jτ

∣
∣Cmax there exists a schedule S0 for which the

value of the objective function is at most Y = 2τ0E2 for an arbitrary chosen start
time τ0 > 0.

First, assume that Product Partition has a solution, and R1 and R2 are the
found subset of R, i.e.,

∏
i∈R1

ei = ∏
i∈R2

ei = E . Then, a required schedule S0
exists and can be found as follows:

• machine M1 processes jobs of set R1 in the order of their numbering, followed by
job r + 1;

• machine M2 processes jobs of set R2 in the order of their numbering, followed by
job r + 2.

We see that

Cr+1 = τ0

⎛

⎝
∏

j∈R1

(
1 + a j

)
⎞

⎠(1 + ar+1) = τ0E(2E) = 2τ0E
2;

Cr+2 = τ0

⎛

⎝
∏

j∈R2

(
1 + a j

)
⎞

⎠(1 + ar+2) = τ0E(2E) = 2τ0E
2,

so that Cmax(S0) = 2τ0E2 = Y .
Now assume that there exists a required schedule S0, in which the makespan does

not exceed Y .
If in schedule S0 jobs r + 1 and r + 2 are processed on the same machine, then

the completion time of the later scheduled job is at least τ0(1 + ar+1)(1 + ar+2) =
τ0(2E)(2E) = 4τ0E2 > Y . Thus, jobs r + 1 and r + 2 are assigned to different
machines. Without loss of generality, we may assume that in S0 job r +1 is assigned
to machine M1, while job r + 2 is assigned to machine M2.

Let T ⊆ R denote the set of jobs that in schedule S0 are processed onmachineM1.
Compute

C (1) = τ0

⎛

⎝
∏

j∈T

(
1 + a j

)
⎞

⎠(1 + ar+1) = 2τ0

⎛

⎝
∏

j∈T

(
1 + a j

)
⎞

⎠E;

C (2) = τ

⎛

⎝
∏

j∈R\T

(
1 + a j

)
⎞

⎠(1 + ar+2) = 2τ0

⎛

⎝
∏

j∈R\T

(
1 + a j

)
⎞

⎠E .
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Since Cmax(S0) = max
{
C (1),C (2)

} ≤ Y , we deduce that

max

⎧
⎨

⎩

∏

j∈T

(
1 + a j

)
,
∏

j∈R\T

(
1 + a j

)
⎫
⎬

⎭
≤ E .

This is only possible if

∏

j∈T

(
1 + a j

) =
∏

j∈R\T

(
1 + a j

) = E,

i.e., if sets T and R\T form a solution to Product Partition.
Since Product Partition is NP-complete in the strong sense, it follows that

problem P2
∣
∣p j (τ ) = a jτ

∣
∣Cmax is NP-hard in the strong sense. �

Unlikemajority problems that are NP-hard in the strong sense, problem P2
∣
∣p j (τ )

= a jτ
∣
∣Cmax and, in fact its generalization, problem Pm

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax

admit a fully polynomial-time approximation scheme (FPTAS); see Sect. 1.3.4 for
relevant definitions and discussions.

Any schedule for problem Pm
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax is defined by

(a) a split of the set of jobs N into m subsets N1, N2,. . . , Nm such that the jobs of
set Ni and only those are processed on machine Mi , 1 ≤ i ≤ m;

(b) a sequence in accordance with which the jobs of set Ni are processed onmachine
Mi , 1 ≤ i ≤ m.

It follows from Theorem8.6 that given a partition N1, N2,. . . , Nm intom subsets, the
smallest makespan is attained if the jobs of set Ni are sequenced in non-decreasing
order of the ratios p j/a j . Thus, throughout this section, we assume that the jobs are
numbered in such a way that

p1
a1

≤ p2
a2

≤ · · · ≤ pn
an

. (11.13)

This allows us to develop a dynamic programming (DP) algorithm for solving
problem Pm

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax. Informally, a DP algorithm scans the jobs

in the order of their numbering and tries to assign the next job to become the last
on a machine. Formally, let x = (x1, x2, . . . , xn) be an n dimensional assignment
vector with integer components from the set {0, 1, . . . ,m}. Each vector x defines a
(partial) schedule for problem Pm

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax in the following way: If

x j = i ≥ 1, then job j, 1 ≤ j ≤ n, is processed on machine Mi , 1 ≤ i ≤ m, while
x j = 0, then job j is not yet assigned for processing.

Given a vector x = (x1, x2, . . . , xn) and a k, 1 ≤ k ≤ n, let x[k] = (x1, x2, . . . , xk,
0, . . . , 0) denote a “truncated” vector obtained from x by replacing n−k last compo-
nents by zero. Each vector x[k] is a partial assignment vector and is associated withm
values Fi

[k]

(
x[k]

)
, 1 ≤ i ≤ m, so that under the assignment x[k] the last job assigned

to machine Mi completes at time Fi
[k]

(
x[k]

)
.

http://dx.doi.org/10.1007/978-3-319-39574-6_1
http://dx.doi.org/10.1007/978-3-319-39574-6_8
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Algorithm ParMachLinDeterDP

Step 1. If required, renumber the jobs in accordance with (11.13). Define x[0] :=
(0, 0, . . . , 0), and Fi

[0]

(
x[0]

) := 0, 1 ≤ i ≤ m.

Step 2. For k from 1 to n do

(a) For each vector x[k−1] ∈ Yk−1, form m vectors x[k] obtained from x[k−1] by
keeping all its components unchanged, except the k -th component x (k)

[k] which
is made equal to i, 1 ≤ i ≤ m.

(b) For each vector x[k] obtained from a vector x[k−1] compute

Fi
[k]

(
x[k]

) :=
{
Fi
[k−1]

(
x[k−1]

) + pk + ak Fi
[k−1]

(
x[k−1]

)
, if x(k)

k = i
Fi
[k−1]

(
x[k−1]

)
, otherwise.

(11.14)

Step 3. The optimal makespan is equal to minmax
{
Fi
[n]

(
x[n]

)|1 ≤ i ≤ m
}
, where

the minimum is taken over all vectors x[n]. An optimal assignment can be found
by backtracking.

Notice that the running timeofAlgorithmParMachLinDeterDP is not pseudopoly-
nomial with respect to the length of the input of the problem. Still, the algorithm can
be converted into an FPTAS.

Before we present an FPTAS for problem Pm
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, we

describe the following auxiliary partitioning procedure. Let A be a subset of the
assignment vectors and H(x) be a function which puts a positive number into corre-
spondence to a vector x ∈ A. For a given positive v, we want to partition set A into
rH disjoint subsets AH

1 , . . . AH
rH such that the inequality

∣
∣H

(
x′) − H

(
x′′)∣∣ ≤ vmin

{
H
(
x′), H

(
x′′)} (11.15)

holds for any pairs x′ and x′′ of vectors of each set A�, 1 ≤ � ≤ rH .

Procedure Parti(A, H, v)

Step 1. If required, renumber the vectors of set A in accordance with

0 ≤ H(x1) ≤ · · · ≤ H
(
x|A|

)
. (11.16)

Define h1 := 0. Set � := 1.
Step 2. Starting from vector xh�−1+1, try to determine the index h� such that

H
(
xh�

) ≤ (1 + v)H
(
xh�−1+1

)
, H

(
xh�+1

)
> (1 + v)H

(
xh�−1+1

)
.

Ifh� exists andh� < |A|, formset AH
� := {

xh�−1+1, . . . , xh�

}
, update � := �+1 and

repeat Step 2; otherwise, define rH := � − 1, form set AH
rH := {

xh�−1+1, . . . , x|A|
}

and Stop.
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If the values H(x) are known for all x ∈ A, then the procedure requires O(|A| log|A|)
time. Lemmas below establish several properties that hold for a partition found by
Procedure Parti(A, H, v).

Lemma 11.2 Let subsets AH
1 , . . . AH

rH form a partition of set A found by Proce-
dure Parti(A, H, v). Then (11.15) holds for any pair x′ and x′′ of vectors of each set
AH

� , 1 ≤ � ≤ rH .

Proof Take an arbitrary set AH
� which contains at least two vectors x′ and x′′. Due

to the numbering (11.16), we have that

min
{
H
(
x′), H

(
x′′)} ≥ H

(
xh�−1+1

)
, max

{
H
(
x′), H

(
x′′)} ≤ (1 + v)H

(
xh�−1+1

)
.

Sincemax
{
H
(
x′), H

(
x′′)}−min

{
H
(
x′), H

(
x′′)} = ∣

∣H
(
x′) − H

(
x′′)∣∣, it follows

that ∣
∣H

(
x′) − H

(
x′′)∣∣ ≤ vH

(
xh�−1+1

) ≤ vmin
{
H
(
x′), H

(
x′′)},

as required. �

Lemma 11.3 Let the vectors of set A be numbered in accordance with (11.16). If
H(x1) ≥ 1 and v ≤ 1, then Procedure Parti(A, H, v) finds a partition of A in rH
subsets such that

rH ≤ log H
(
x|A|

)

v
+ 2. (11.17)

Proof Since log H
(
x|A|

)
> 0 for H

(
x|A|

) ≥ 1, we see that (11.17) holds, provided
that rH ≤ 2.

For rH > 2, we see that

H
(
xh1+1

)
> (1 + v)H

(
xh0+1

) = (1 + v)H(x1)

and
H
(
xh�+1

)
> (1 + v)H

(
xh�−1+1

) ≥ (1 + v)�H(x1) 2 ≤ � ≤ rH − 1,

so that
H
(
x|A|

) ≥ H
(
xhrH −1+1

)
> (1 + v)rH−1H(x1),

from which (11.17) can be derived. �

Now, we are ready to state and analyze an FPTAS for problem Pm
∣
∣p j (τ ) = p j+

a jτ
∣
∣Cmax.
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Algorithm ParMachLinDeterFPTAS

Step 1. If required, renumber the jobs in accordance with (11.13). Define x[0] :=
(0, 0, . . . , 0), and Fi

[0]

(
x[0]

) := 0, 1 ≤ i ≤ m. Form set Y0 := {
x[0]

}
. For a given

ε, compute v := ε
en , where e = limn→∞

(
1 + 1

n

)
n = 2.71828 . . . Set k := 1.

Step 2. For the current k, perform the following

(a) For each vector x[k−1] ∈ Yk−1 form m vectors x[k] obtained from x[k−1] by
keeping all its components unchanged, except the kth component x (k)

[k] which
is made equal to i, 1 ≤ i ≤ m. Call the resulting set of vectors Y ′

k .
(b) For each vector x[k] ∈ Y ′

k obtained from a vector x[k−1] ∈ Yk−1, compute
Fi
[k]

(
x[k]

)
by (11.14).

(c) If k = n, go to Step 3.
(d) If k < n, then for each i, 1 ≤ i ≤ m, call Procedure Parti(Y ′

k, F
i
[k], v) to

obtain a partition of Y ′
k into disjoint sets Y Fi

1 , . . . ,Y Fi

rFi
. For each choice of

integers ui ∈ {
1, . . . , rFi

}
, 1 ≤ i ≤ m, introduce string

(
u1, u2, · · · , um

)
.

Using string
(
u1, u2, · · · , um

)
as an identifier, define a set

Y(u1,u2,··· ,um ) :=
m⋂

i=1

Y Fi
ui ,

and for each non-empty set Y(u1,u2,··· ,um ) find the assignment vector
x(u1,u2,··· ,um ) which delivers the smallest makespan for all associated partial
schedules, i.e.,

max
{
Fi
[k]

(
x(u1,u2,··· ,um )

)|1 ≤ i ≤ m
}

= min
{
max

{
Fi
[k]

(
x[k]

)|1 ≤ i ≤ m
}|x[k] ∈ Y(u1,u2,··· ,um )

}
.

Form the set

Yk := {
x(u1,u2,··· ,um ) ∈ Y(u1,u2,··· ,um )|ui ∈ {

1, . . . , rFi
}
, 1 ≤ i ≤ m

}
.

Update k := k + 1 and repeat Step 2.

Step 3. Output vector xε ∈ Yn such that

max
{
Fi
[n](xε)|1 ≤ i ≤ m

} = min
{
max

{
Fi
[n]

(
x[n]

)|1 ≤ i ≤ m
}|x[n] ∈ Yn

}
.

A schedule that correspond to this solution can be found by determining an assign-
ment jobs to machines backtracking. The makespan of the corresponding schedule
is equal to max

{
Fi
[n](xε)|1 ≤ i ≤ m

}
.

Define
v1 := v; vk := v + (1 + v)vk−1, 2 ≤ k ≤ n. (11.18)
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For problem Pm
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, let x∗ = (

x∗
1 , x

∗
2 , . . . , x

∗
n

)
be an

assignment vector that defines an optimal schedule S∗. For k, 1 ≤ k ≤ n, let
x∗
[k] = (

x∗
1 , . . . , x

∗
k , 0, . . . 0

)
denote the truncated optimal assignment vector that

differs from x∗ by the fact that its last n − k components are zero.
In order to evaluate the accuracy of Algorithm ParMachLinDeterFPTAS, we first

prove the following auxiliary statement.

Lemma 11.4 For each k, 1 ≤ k ≤ n, Algorithm ParMachLinDeterFPTAS finds a
vector x′

[k] ∈ Y ′
k with the last n − k zero components such that for the truncated

optimal assignment vector x∗
[k] the inequality

∣
∣Fi

[k]

(
x∗
[k]

) − Fi
[k]

(
x′
[k]

)∣∣ ≤ vk F
i
k[k]

(
x∗
[k]

)
(11.19)

holds for each i , 1 ≤ i ≤ m.

Proof The proof is by induction. For k = 1, suppose that a string
(
u1, u2, · · · , um

)

is such that x∗
[1] = (

x∗
1 , 0, . . . , 0

) ∈ Y(u1,u2,··· ,um ) ⊆ Y ′
1. Let x(u1,u2,··· ,um ) be an

assignment vector found in set Y(u1,u2,··· ,um ) in Step 2(d) of the first iteration of the
scheme. It is possible that x(u1,u2,··· ,um ) is different from x∗

[1]; however, it follows from
Lemma11.2 applied to A = Y ′

1 and H = Fi
[1] that inequality

∣
∣Fi

[1]

(
x∗
[1]

) − Fi
[1]

(
x(u1,u2,··· ,um )

)∣∣ ≤ vFi
[1]

(
x∗
[1]

) = v1F
i
[1]

(
x∗
[1]

)

holds for each i , 1 ≤ i ≤ m. Thus, we may set x′
[1] := x(u1,u2,··· ,um ) to obtain a

required vector.
Assume now that for each k, 1 ≤ k ≤ q < n, the inequality (11.19) holds for

each i , 1 ≤ i ≤ m.
Suppose that for some a string (u1, u2, · · · , um), x′

[q] = x(u1,u2,··· ,um ), i.e.,

∣
∣Fi

[q]

(
x∗
[q]

) − Fi
[q]

(
x(u1,u2,··· ,um )

)∣∣ ≤ vq F
i
[q]

(
x∗
[q]

)

holds for each i , 1 ≤ i ≤ m. Take vector x∗
[q+1] =

(
x∗
1 , x

∗
2 , . . . , x

∗
q , x

∗
q+1, 0, . . . , 0

)

and define vector x̃(u1,u2,··· ,um ) obtained from vector x(u1,u2,··· ,um ) by making its
(q + 1)th component equal to x∗

q+1. Recall that the value x∗
q+1 corresponds to the

number of machine to which job q + 1 is assigned in an optimal schedule. For i =
x∗
q+1, compute

∣
∣Fi

[q+1]

(
x∗
[q+1]

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)∣∣

= ∣
∣Fi

[q]

(
x∗
[q]

) + pq+1 + aq+1F
i
[q]

(
x∗
[q]

)

−Fi
[q]

(
x(u1,u2,··· ,um )

) − pq+1 − aq+1F
i
[q]

(
x(u1,u2,··· ,um )

)∣∣

= ∣
∣(1 + aq+1

)(
Fi
[q]

(
x∗
[q]

) − Fi
[q]

(
x(u1,u2,··· ,um )

))∣∣ ≤ (
1 + aq+1

)
vq F

i
[q]

(
x∗
[q]

)

≤ vq
(
Fi
[q]

(
x∗
[q]

) + pq+1 + aq+1F
i
[q]

(
x∗
[q]

)) = vq F
i
[q+1]

(
x∗
[q+1]

)
.
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For i 
= x∗
k+1, we deduce

∣
∣Fi

[q+1]

(
x∗
[q+1]

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)∣∣ = ∣
∣Fi

[q]

(
x∗
[q]

) − Fi
[q]

(
x(u1,u2,··· ,um )

)∣∣.

Thus, the inequality

∣
∣Fi

[q+1]

(
x∗
[q+1]

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)∣∣ ≤ vq F
i
[q+1]

(
x∗
[q+1]

)
(11.20)

holds for each i , 1 ≤ i ≤ m. In particular, (11.20) implies that

Fi
[q+1]

(
x̃(u1,u2,··· ,um )

) ≤ (
1 + vq

)
Fi
[q+1]

(
x∗
[q+1]

)
(11.21)

holds for each i , 1 ≤ i ≤ m.
Now, let a string (v1, v2, · · · , vm) be such that x̃(u1,u2,··· ,um ) ∈ Y(v1,v2,··· ,vm ) ⊆ Y ′

q+1.
Let x(v1,v2,··· ,vm ) be an assignment vector found in set Y(v1,v2,··· ,vm ) in Step 2(d) of the
(q + 1)th iteration of the scheme. It is possible that x(v1,v2,··· ,vm ) is different from
x̃(u1,u2,··· ,um ); however, it follows from Lemma11.2 applied to A = Y ′

q+1 and H =
Fi
[q+1] that inequality

∣
∣Fi

[q+1]

(
x̃(u1,u2,··· ,um )

) − Fi
[q+1]

(
x(v1,v2,··· ,vm )

)∣∣ (11.22)

≤ vFi
[q+1]

(
x̃(u1,u2,··· ,um )

) ≤ v
(
1 + vq

)
Fi
[q+1]

(
x∗
[q+1]

)

holds for each i , 1 ≤ i ≤ m, where the last inequality of (11.22) is due to (11.21).
Using (11.20) and (11.22), we deduce

∣
∣Fi

[q+1]

(
x∗
[q+1]

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)∣∣

= ∣
∣Fi

[q+1]

(
x∗
[q+1]

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)

+(
Fi
[q+1]

(
x̃(u1,u2,··· ,um )

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

))∣∣

≤ ∣
∣Fi

[q+1]

(
x∗
[q+1]

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)∣∣

+∣
∣Fi

[q+1]

(
x̃(u1,u2,··· ,um )

) − Fi
[q+1]

(
x̃(u1,u2,··· ,um )

)∣∣

≤ vq F
i
[q+1]

(
x∗
[q+1]

) + v
(
1 + vq

)
Fi
[q+1]

(
x∗
[q+1]

) = vq+1F
i
[q+1]

(
x∗
[q+1]

)
,

as required. �

Lemma11.4 is the basis of the main statement of this section.

Theorem 11.5 For problem Pm
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax, Algorithm ParMachLin-

DeterFPTAS behaves as an FPTAS.



11.2 Start-Time-Dependent Job-Dependent Linear Effects 225

Proof Let S∗ be an optimal schedule, associated with an optimal assignment vector
x∗, so that

Cmax
(
S∗) = max

{
Fi
[n]

(
x∗)|1 ≤ i ≤ m

}
.

Also, let Sε be a schedule associated with the vector xε found by Algorithm
ParMachLinDeterFPTAS, so that

Cmax(Sε) = max
{
Fi
[n](xε)|1 ≤ i ≤ m

}
.

It follows from Lemma11.4 that

Cmax(Sε) ≤ (1 + vn)Cmax
(
S∗).

It is easy to verify that (11.18) implies that

vn = (1 + v)n − 1.

Recall that

e =
∞∑

k=0

1

k! ,

so that

e − 1 =
∞∑

k=1

1

k! .

We deduce that

(1 + v)n − 1 =
n∑

k=0

(
n

k

)
vk − 1 =

n∑

k=1

n!
(n − k)!k!nk

(
ε

e − 1

)k

≤
n∑

k=1

1

k!
(

ε

e − 1

)k

≤
(

ε

e − 1

) n∑

k=1

1

k! ≤ ε,

so that
Cmax(Sε) ≤ (1 + ε)Cmax

(
S∗),

as required.
To complete the proof of the theorem, we need to estimate the running time of

Algorithm ParMachLinDeterFPTAS.
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Define

pmax = max
{
p j |1 ≤ j ≤ n

};
amax = max

{
a j |1 ≤ j ≤ n

};
L = logmax{n, 1/ε, pmax, 1 + amax}.

For each k, 1 ≤ k ≤ n, the kth iteration of Step 2 of Algorithm ParMachLinDe-
terFPTAS requires O

(∣∣Y ′
k

∣
∣ log

∣
∣Y ′

k

∣
∣) time. We see from Step 2(a) and Step 2(d) that∣

∣Y ′
k

∣
∣ ≤ m|Yk−1|, where

|Yk−1| ≤
m∏

i=1

rFi .

We deduce from Lemma11.3 that

rFi ≤ (
log(npmax(1 + amax)

n)
)
/v + 2 ≤ en(n + 2)L/ε + 2, 1 ≤ i ≤ m,

so that ∣
∣Y ′

k

∣
∣ = O

(
mn2mLm/εm

)
,

and
O
(∣∣Y ′

k

∣
∣ log

∣
∣Y ′

k

∣
∣) = O

(
m2n2mLm+1/εm

)
.

Thus, we conclude that the running time of Algorithm ParMachLinDeterFPTAS
is O

(
m2n2m+1Lm+1/εm

)
, which is polynomial with respect to the length of the prob-

lem’s input. �

11.2.2 Minimizing Total Flow Time: Complexity

In this subsection, we still consider the start-time-dependent effect p j (τ ) = a jτ ,
j ∈ N , and prove that problem P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j to minimize the sum of the

completion times on two identical parallel machines is NP-hard in the ordinary sense.
The following problem is used for reduction.

Subset Product: Given the index set R = {1, . . . , r}, positive integers e1, . . . , er ,
and an integer V , does there exist a subset R′ ⊆ R such that

∏
j∈R′ e j = V ?

Recall that Subset Product is NP-hard in the ordinary sense; see Sect. 1.3.2
for a discussion. Notice that without loss of generality, we may assume that e j ≥ 2,
since if e j = 1 then item j can be always included into set R′.

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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Denote
U :=

∏

j∈R

e j ; W := U/V . (11.23)

It can be assumed that W is an integer, since otherwise Subset Product does
not have a solution.

We will need the following auxiliary statement.

Lemma 11.5 Given an instance of Subset Product, for any set T ⊆ R the
inequality

W
∏

j∈T
e j + V

∏

j∈R\T
e j ≥ 2U, (11.24)

holds. Moreover, (11.24) holds as equality if and only if
∏

j∈T e j = V (and hence∏
j∈R\T e j = W).

Proof Indeed, denote

w := W
∏

j∈T
e j , v := V

∏

j∈R\T
e j ,

so that U = √
wv, since U = VW and U = ∏

j∈T e j
∏

j∈R\T e j . Then, by the
classical inequality on the arithmetic mean and the geometric mean, we have that
w + v ≥ 2

√
wv, and the equality holds if and only if w = v. �

Now, we are ready to prove that Subset Product polynomially reduces to a
decision version of problem P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j .

Theorem 11.6 Problem P2
∣
∣p j (τ ) = a jτ

∣
∣∑C j is NP-hard in the ordinary sense.

Proof Given an arbitrary instance of Subset Product, define the following
instance of the decision version of problem P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j .

There are n = r + 4 jobs, such that

a j = e j − 1, 1 ≤ j ≤ r,

ar+1 = UV − 1, ar+2 = UW − 1,

ar+3 = ar+4 = U 3 − 1.

We show that Subset Product has a solution if and only if for the constructed
instance of problem P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j there exists a schedule S0 for which

the value of the objective function is at most Y = τ0
(
2U 5 +U 4

)
, where τ0 is an

arbitrarily chosen start time of the first job on each machine.
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First, assume that Subset Product has a solution, and R′ is the found subset
of R, i.e.,

∏
j∈R′ e j = V and

∏
j∈R\R′ e j = W . Then, a required schedule S0 exists

and can be found as follows:

• machine M1 processes jobs of set R′ in the order of their numbering, followed by
the sequence (r + 2, r + 3) of jobs;

• machine M2 processes jobs of set R\R′ in the order of their numbering, followed
by the sequence (r + 1, r + 4) of jobs.

We see that

Cr+1 = τ0

⎛

⎝
∏

j∈R\R′

(
1 + a j

)
⎞

⎠(1 + ar+1) = τ0W (UV ) = τ0U
2;

Cr+2 = τ0

⎛

⎝
∏

j∈R′

(
1 + a j

)
⎞

⎠(1 + ar+2) = τ0V (UW ) = τ0U
2;

Cr+3 = Cr+2(1 + ar+3) = τ0U
5;

Cr+4 = Cr+1(1 + ar+4) = τ0U
5.

Notice that C j < Cr+2 = Cr+1 for j ∈ R′ and C j < Cr+1 for j ∈ R\R′, so that

∑

j∈R

C j < rCr+1.

Thus, for schedule S0, we compute

r+4∑

j=1

C j (S0) =
∑

j∈R

C j + Cr+1 + Cr+2 + Cr+3 + Cr+4

< (r + 2)Cr+1 + 2Cr+3 = (r + 2)τ0U
2 + 2τ0U

5

< τ0
(
2U 5 +U 4

)
,

where the last inequality is due to U 2 > U ≥ 2r > r + 2.
Now assume that there exists a required schedule S0, in which the sum of the

completion times does not exceed Y .
If in schedule S0 jobs r + 3 and r + 4 are processed on the same machine, then

the completion time of the later scheduled job is at least τ0(1 + ar+3)(1 + ar+4) =
τ0U 6 > Y . Thus, jobs r + 3 and r + 4 are assigned to different machines.
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If in schedule S0 jobs r+1 and r+2 are processed on the samemachine, then either
job r+3 or job r+4 is also assigned to thatmachine, and the completion time of that of
these three jobs that is scheduled last is at least τ0(1 + ar+1)(1 + ar+2)(1 + ar+3) =
τ0(UV )(UW )U 3 = τ0U 6 > Y . Thus, jobs r + 1 and r + 2 are assigned to different
machines.

Without loss of generality, we may assume that in S0 jobs r + 2 and r + 3 are
assigned to machine M1, while jobs r + 1 and r + 4 are assigned to machine M2.
Let T ⊆ R denote the set of jobs that are processed on machine M1.

Compute

C (1) = τ0

⎛

⎝
∏

j∈T

(
1 + a j

)
⎞

⎠(1 + ar+2)(1 + ar+3)

= τ0

⎛

⎝
∏

j∈T

(
1 + a j

)
⎞

⎠(UV )U 3 = τ0

⎛

⎝W
∏

j∈T

(
1 + a j

)
⎞

⎠U 4;

C (2) = τ0

⎛

⎝
∏

j∈R\T

(
1 + a j

)
⎞

⎠(1 + ar+1)(1 + ar+4)

= τ0

⎛

⎝
∏

j∈R\T

(
1 + a j

)
⎞

⎠(UW )U 3 = τ0

⎛

⎝V
∏

j∈R\T

(
1 + a j

)
⎞

⎠U 4.

We have that

r+4∑

j=1

C j (S0) ≥ C (1) + C (2) = τ0U
4

⎛

⎝W
∏

j∈T

(
1 + a j

) + V
∏

j∈R\T

(
1 + a j

)
⎞

⎠.

If Subset Product does not have a solution, i.e.,
∏

j∈T
(
1 + a j

) 
= V and
∏

j∈R\T
(
1 + a j

) 
= W , we derive from Lemma11.5 that

W
∏

j∈T

(
1 + a j

) + V
∏

j∈R\T

(
1 + a j

)
> 2U,

so that
r+4∑

j=1

C j (S0) > τ0U
4(2U + 1) = Y.

Thus, if schedule S0 with
∑r+4

j=1 C j (S0) ≤ Y exists, Subset Product must have
a solution.
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The presented reduction requires time that is polynomial in r and W . Since
Subset Product is NP-complete in the ordinary sense, it follows that problem
P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j has the same complexity status. �

11.3 Start-Time-Dependent Job-Independent Linear
Effects

In is section, we address parallel machine scheduling problems to minimize the sum
of the completion times under linear additive start-time-dependent job-independent
effects. The jobs of set N = {1, 2, . . . , n} are to be processed onm parallel machines.
If a job j ∈ N scheduled on machine Mi , 1 ≤ i ≤ m, is associated with a normal
processing time pi j , then the actual processing time pi j (τ ) of job j that starts at time
τ is given by

pi j (τ ) = pi j ± a[i]τ , (11.25)

where a[i] > 0 is a given machine-dependent rate which is common for all jobs;
in the case of pi j + a[i]τ , we have a deterioration effect, while pi j − a[i]τ defines
a learning effect. Notice that if a machine is under a start-time-dependent learning
effect, i.e., the negative sign is used in (11.25), we must also adopt the additional
assumption a[i] < 1, 1 ≤ i ≤ m, which follows from (8.15) and guarantees that
the actual processing times do not assume negative values. Other than this additional
assumption, the treatment for both deterioration and learning versions of the effect
(11.25) is the same and does not depend on the sign used in front of a[i]τ .

11.3.1 Identical and Uniform Machines

First, let us consider problem Qm
∣
∣pi j (τ ) = p j/si ± a[i]τ

∣
∣∑C j on uniform

machines under an additive linear job-independent effect (11.25), so that we have
pi j = p j/si , 1 ≤ i ≤ m, j ∈ N . As in Sect. 11.1.1, to solve problem
Pm

∣
∣pi j (τ ) = p j ± aτ

∣
∣∑C j on identical parallel machines under the effect

(11.25), we can use the same algorithm as for problem Qm
∣
∣pi j (τ ) = p j/si ± a[i]τ

∣
∣

∑
C j , applied with si = 1 and a[i] = a, 1 ≤ i ≤ m.

Under the effect (11.25), for a schedule S on uniform machines defined by per-
mutations π[i] = (

π[i](1),π[i](2), . . . ,π[i]
(
n[i]

))
, 1 ≤ i ≤ m, the total completion

time can be easily obtained by substituting g[i](r) = 1, 1 ≤ r ≤ n, 1 ≤ i ≤ m,

in (11.4), which is an expression for the total completion time for the more general
problem Qm

∣
∣pi j (r) = (

p j ± a[i]τ
)
g[i](r)/si

∣
∣∑C j . We deduce that for problem

Qm
∣
∣pi j (τ ) = p j/si ± a[i]τ

∣
∣∑C j , the sum of the completion times for all jobs on

all machines can be written as

http://dx.doi.org/10.1007/978-3-319-39574-6_8
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n∑

j=1

C j (S) =
m∑

i=1

n[i]∑

r=1

pπ[i](r)

si

⎛

⎝
n[i]∑

k=r

k∏

q=r+1

(
1 ± a[i]

)
⎞

⎠

=
m∑

i=1

n[i]∑

r=1

pπ[i](r)

si

n[i]∑

k=r

(
1 ± a[i]

)k−r
(11.26)

=
m∑

i=1

n[i]∑

r=1

pπ[i](r)

si

⎛

⎝±
(
1 ± a[i]

)n[i]−r+1 − 1

a[i]

⎞

⎠,

which can be rewritten as the generic objective function (11.1) with

W [i](r) =
(
1 + a[i]

)
n[i]−r+1 − 1

sia[i]
, 1 ≤ r ≤ n[i], 1 ≤ i ≤ m, (11.27)

for the case of deterioration and

W [i](r) = 1 − (
1 − a[i]

)
n[i]−r+1

sia[i]
, 1 ≤ r ≤ n[i], 1 ≤ i ≤ m, (11.28)

for the case of learning. Notice that the positional weights given by (11.27) and
(11.28) are job-independent; thus, a solution of the corresponding problem can be
found by Algorithm Match due to Lemma11.1. Below, we present a procedure for
solving problem Qm

∣
∣pi j (τ ) = p j/si + a[i]τ

∣
∣∑C j with a deterioration effect. Solu-

tion to problem Qm
∣
∣pi j (τ ) = p j/si − a[i]τ

∣
∣∑C j with a learning effect can be

found in a similar way.
Denote

χ[i](r) = (
1 + a[i]

)
r − 1, 1 ≤ r ≤ n, 1 ≤ i ≤ m,

and set the value n[i] = n, 1 ≤ i ≤ m. Compute all possible positional weights
W [i](r), 1 ≤ r ≤ n, 1 ≤ i ≤ m, by (11.27). These weights can be organized in an
n × m matrix such that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

χ[1](n)/
(
s1a[1]

)
χ[2](n)/

(
s2a[2]

) · · · χ[m](n)/
(
sma[m]

)

χ[1](n − 1)/
(
s1a[1]

)
χ[2](n − 1)/

(
s2a[2]

) · · · χ[m](n − 1)/
(
sma[m]

)

.

.

.
.
.
.

.

.

.
.
.
.

χ[1](2)/
(
s1a[1]

)
χ[2](2)/

(
s2a[2]

) · · · χ[m](2)/χ[2](n)

χ[1](1)/
(
s1a[1]

) = 1/s1 χ[2](1)/
(
s2a[2]

) = 1/s2 · · · χ[m](1)/
(
sma[m]

) = 1/sm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(11.29)

where each column of the matrix represents all possible positional weights that can
be associated with a particular machine, the first element of column i representing
a weight associated with the first position of machine Mi , while the last element
of column i , representing a weight associated with the last, i.e., the nth position
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on machine Mi , 1 ≤ i ≤ m. Notice that the elements of each column form a
non-increasing sequence of the weights, i.e.,

W [i](1) ≥ W [i](2) ≥ · · · ≥ W [i](n).

The above inequality will also hold for problem Qm
∣
∣pi j (τ ) = p j/si − a[i]τ

∣
∣

∑
C j for a learning effect. Also notice that the elements of matrix (11.29) can

be found recursively for each column by using

W [i](r) :=
((
W [i](r + 1)sva[i] + 1

)(
1 + a[i]

) − 1
)

sia[i]
, 1 ≤ r ≤ n − 1, 1 ≤ i ≤ m,

(11.30)
for a deterioration effect and

W [i](r) :=
((
W [i](r + 1)sva[i] − 1

)(
1 − a[i]

) + 1
)

sia[i]
, 1 ≤ r ≤ n − 1, 1 ≤ i ≤ m,

(11.31)
for a learning effect.

The following statement explains how problem Qm
∣
∣pi j (τ ) = p j/si + a[i]τ

∣
∣

∑
C j can be solved, without prior knowledge of the values n[i], 1 ≤ i ≤ m.

Theorem 11.7 Given problem Qm
∣
∣pi j (τ ) = p j/si + a[i]τ

∣
∣∑C j , where 1 ≤ i ≤

m, compute the matrix (11.29) of all possible positional weights W [i](r) and choose
the n smallest among them. If in each column the chosen elements occupy consecutive
positions starting from the last row, then assigning the jobs with the largest normal
processing times to the positions associated with the smallest positional weights will
ensure that the objective function (11.1) is minimized.

Proof In a schedule for problem Qm
∣
∣pi j (τ ) = p j/si + a[i]τ

∣
∣∑C j , at most n posi-

tions can be used on each machine. Matrix (11.29) provides the weights for nm
positions, in which n jobs can be potentially scheduled on m machines. Recall that
the contribution of a job j = π[i](r) to the objective function is given by W [i](r)p j .

Thus, in order to ensure the smallest value of the objective function, we must choose
n positions that correspond to the smallest positional weights. The smallest posi-
tional weight for a machine is associated with the last position on that machine,
irrespective of the number of the assigned jobs, i.e., for machine Mi , in accordance
with (11.27) the smallest weight is W [i]

(
n[i]

) = 1/si . The next smallest positional
weight on machine Mi is located immediately above in the same column, and so on.
Thus, the n smallest positional weights are found in the consecutive positions of the
columns at the bottom of the matrix (11.29).

For each machine Mi , either the found positions form a block of n[i] consecutive
positions that completes at the last row of the i th column of matrix (11.29) or no
positions are taken from the i th column. In the former case, we have a list of n[i]

positional weights that will be associated with the n[i] jobs assigned to Mi . In the
latter case, n[i] = 0, so that no jobs are assigned to machine Mi .
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An optimal schedule can be found by matching the n found smallest positional
weights to the jobs with the largest processing times, which is performed by
Algorithm Match. �

Notice that Theorem11.7 is only applicable to solving those scheduling problems
with changing processing times, forwhich all possible positionalweights can be com-
puted in advance, which is not the case, e.g., for problem Pm

∣
∣pi j (r) = (

p j + aτ
)

g(r)|∑C j considered in Sect. 11.1.
The problem of finding the n smallest positional weights and matching them to

the appropriate jobs is structurally similar to that of problem Qm||∑C j . The latter
problem can be solved by a method described in Sect. 2.3.1.

Adapting this approach to our problem, consider the jobs in the LPT order. To
assign the first job, compare the m values 1/si , 1 ≤ i ≤ m and assign the job to the
last position of the machine associated with the smallest value of 1/si , 1 ≤ i ≤ m.
The next positional weight that can be taken from this machine is computed and
replaces the previously used one. The process continues, and for the current job,
the smallest of the m available positional weights determines the machine and the
position within the machine, where the job should be assigned. This approach does
not require any advance knowledge of the number of jobs n[i] in each machine, or
in fact, even an advance knowledge of the full matrix (11.29) since the recursive
formulae (11.30) or (11.31) may be used.

A formal description of the algorithm is given below.

Algorithm NSmallQM
input: An instance of problem Qm

∣
∣pi j (τ ) = p j/si + a[i]τ

∣
∣∑C j

output:An optimal schedule S defined by the processing sequences π[i], 1 ≤ i ≤ m

Step 0. Renumber the jobs in the LPT order.
Step 1. For each machine Mi , 1 ≤ i ≤ m, define an empty processing sequence

π[i] := (∅) and the weight W [i] := 1/si . Create a non-decreasing list � of the
values W [i], 1 ≤ i ≤ m.

Step 2. For each job j from 1 to n do

(a) Take the first elementW [v] in list �, the smallest available positional weight.
(b) Assign job j to machine Mv and place it in front of the current per-

mutation π[v], i.e., update π[v] := ( j,π[v]) and associate job j with the
positional weight W [v]. Remove W [v] from the list �. Update W [v] :=((
W [v]sva[v] + 1

)(
1 + a[v]

) − 1
)
/
(
sva[v]

)
in accordance with (11.30) and

insert the updated value W [v] into �, while maintaining the list � non-
decreasing.

Step 3. With the found permutations π[i], 1 ≤ i ≤ m, compute the optimal value
of the objective function

∑
C j (S) by substituting appropriate values in (11.1).

The same algorithm may be used to solve problem Qm
∣
∣pi j (τ ) = p j/si − a[i]τ

∣
∣

∑
C j by updating the recursive formula in Step 2(b) in accordance with (11.31).
Step 0 of Algorithm NSmallQM requires O(n log n) time. In Step 1, list� can be

created in O(m logm) time. Each iteration of the loop in Step 2 requires O(logm)

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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time, since the insertion of the updated weight into a sorted list can be done by binary
search. Since n ≥ m, the following statement holds.

Theorem 11.8 Algorithm NSmallQM solves problem Qm
∣
∣pi j (τ ) = p j/si ± a[i]τ

∣
∣

∑
C j on uniform machines under an additive linear job-independent effect (11.25)

in O(n log n) time.

Let us now consider problem Pm
∣
∣pi j (τ ) = p j ± aτ

∣
∣∑C j on identical parallel

machines under an additive linear job-independent effect (11.25), with pi j = p j and
a[i] = a, 1 ≤ i ≤ m. To solve problem Pm

∣
∣pi j (τ ) = p j ± aτ

∣
∣∑C j , we simply

need to run Algorithm NSmallQM with values si = 1, a[i] = a, 1 ≤ i ≤ m. Due
to this simplification, Steps 1 and 2 can be completed faster, but Step 0 still requires
O(n log n) time. The following statement holds.

Corollary 11.1 Algorithm NSmallQM solves problem Pm
∣
∣pi j (τ ) = p j ± aτ

∣
∣

∑
C j , in which identical machines are under an additive linear job-independent

effect (11.25), in O(n log n) time. The optimal schedule has a balanced load on
all machines, i.e., the difference between the number of jobs assigned to any two
machines is no more than 1.

Proof We show that for problem Pm
∣
∣pi j (τ ) = p j ± aτ

∣
∣∑C j , Algorithm

NSmallQM can be simplified; however, it will still require O(n log n) time.
Let us recompute the matrix (11.29) with values si = 1, a[i] = a, 1 ≤ i ≤ m,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

±((1 ± a)n − 1)/a ±((1 ± a)n − 1)/a · · · ±((1 ± a)n − 1)/a
±(

(1 ± a)n−1 − 1
)
/a ±(

(1 ± a)n−1 − 1
)
/a · · · ±(

(1 ± a)n−1 − 1
)
/a

...
...

...
...

±(
(1 ± a)2 − 1

)
/a ±(

(1 ± a)2 − 1
)
/a · · · ±(

(1 ± a)2 − 1
)
/a

1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Notice that the positional weights for each machine are identical for a given
position r, 1 ≤ r ≤ n. Obviously, the n smallest weights are found in consecutive
positions at the bottomof thematrix. The smallestm positionalweights are associated
with the last position on each of the m machines. The next smallest m positional
weights are associated with the second last positions of each of the m machines,
and so on. Assuming that n = λm + μ, where λ and μ are non-negative integers,
μ ≤ m − 1, the optimal number of jobs in each group can be given by

n[i] =
⎧
⎨

⎩

⌈
n
m

⌉ = λ + 1, 1 ≤ i ≤ μ

⌊
n
m

⌋ = λ, μ + 1 ≤ i ≤ m.



11.3 Start-Time-Dependent Job-Independent Linear Effects 235

With known values of n[i] and W [i](r), 1 ≤ i ≤ m, 1 ≤ r ≤ n[i], Steps 1 and
2 of algorithm can be completed in constant time. Step 0 still requires O(n log n)

time; thus, an optimal solution to problem Pm
∣
∣pi j (τ ) = p j ± aτ

∣
∣∑C j is found in

O(n log n) time. �

11.3.2 Unrelated Machines

Now, we study problem Rm
∣
∣pi j (τ ) = pi j ± a[i]τ

∣
∣∑C j on unrelated parallel

machines under an additive linear job-independent effect (11.25).
Consider a schedule S on unrelated machines defined by permutations π[i] =(

π[i](1),π[i](2), . . . ,π[i]
(
n[i]

))
, 1 ≤ i ≤ m. Under the effect (11.25), for schedule

S, the total completion time of all jobs can be adopted from (11.26) and be written
as

n∑

j=1

C j (S) =
m∑

i=1

n[i]∑

r=1

pi,π[i](r)

⎛

⎝±
(
1 ± a[i]

)n[i]−r+1 − 1

a[i]

⎞

⎠, (11.32)

where p(i,π[i](r)) is the normal processing time of a job j = π[i](r) scheduled in

position r of permutationπ[i] onmachineMi .Notice that the above objective function
cannot be expressed as (11.1) because the value of the normal processing time is
dependent on themachine it is assigned to. Therefore, Lemma11.1 cannot be applied.

To minimize the objective
∑n

j=1 C j (S), let us define the cost

c j,(i,r) = pi j

⎛

⎝±
(
1 ± a[i]

)n[i]−r+1 − 1

a[i]

⎞

⎠, (11.33)

which represents the contribution of a job j = π[i](r), to the objective function.
Next, set the value n[i] = n, 1 ≤ i ≤ m, and compute all possible costs c j,(i,r),
1 ≤ r ≤ n, 1 ≤ i ≤ m, by (11.33) for every job j ∈ N .

Define a rectangular assignment problem with an n × k cost matrix C = (
c j,(i,r)

)

having n rows, each corresponding to a job j ∈ N , and k = nm columns. Number
the columns by a string of the form (i, r), where i, 1 ≤ i ≤ m, refers to a machine
index, and r, 1 ≤ r ≤ n, indicates a position within the machine. More precisely,
the value of element c j,(i,r) at the intersection of the j th row and the vth column of
matrix C for v, 1 ≤ v ≤ k, such that v = n(i − 1) + r , where 1 ≤ i ≤ m and
1 ≤ r ≤ n, is defined by the relation (11.33). Notice that the matrix C represents a
set of all possible values of c j,(i,r) and can be computed in O

(
n2m

)
time.

As a result, problem of minimizing the objective function (11.32) reduces to a
rectangular assignment problem written out below
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min
n∑

j=1

m∑

i=1

n∑

r=1

c j,(i,r)y j,(i,r)

subject to
m∑

i=1

n∑

r=1

y j,(i,r) = 1, j = 1, . . . , n;
n∑

j=1

y j,(i,r) ≤ 1, i = 1, . . . ,m, r = 1, . . . , n;
y j,(i,r) ∈ {0, 1}, j = 1, . . . , n, i = 1, . . . ,m,

r = 1, . . . , n.

(11.34)

The algorithm to solve a rectangular assignment problem of the form (11.34)
is outlined in Sect. 4.1.1. The running time of Algorithm LAPD is O(n3 + kn),

k = nm ≥ n, for an n×k cost matrix. Thus, an optimal solution for problem (11.34)
can be found in O(n3) time due to n ≥ m.

Suppose that for some i, 1 ≤ i ≤ m, the solution to the assignment problem
(11.34) related to problem Rm

∣
∣pi j (τ ) = pi j ± a[i]τ

∣
∣∑C j is found. Then, y j,(i,r) =

1 implies that job j is assigned to the r th position of machine Mi . The conditions
of (11.34) mean that each job will be assigned to a position and no position will
be used more than once. Moreover, the fact that the cost function c j,(i,r) defined by
(11.33) forms a monotone non-increasing sequence with respect to r, 1 ≤ r ≤ n,

i.e., c j,(i,1) ≥ c j,(i,2) ≥ · · · ≥ c j,(i,n), 1 ≤ i ≤ m, j ∈ N , guarantees that the found
assignment admits a meaningful scheduling interpretation, because for each of the
m machines either several consecutive positions starting from the first are filled or
the machine is not used at all.

Notice that the sign in front of the rate a[i] in (11.25) has no influence on the
solution procedure outlined above, i.e., the method works for both deterioration and
learning effects. The following statement holds.

Theorem 11.9 Problem Rm
∣
∣pi j (τ ) = pi j ± a[i]τ

∣
∣∑C j , in which unrelated

machines are under an additive linear job-independent effect (11.25), can be solved
in O

(
n3
)
time, by reducing the problem to a rectangular assignment problem.

11.4 Bibliographic Notes

We are not aware of any publications that study combined effects on parallel
machines. Below, we review several important results, related to pure positional
or time-dependent effects on parallel machines.

Mosheiov (2001) studies problem Pm
∣
∣pi j (r) = p jrb

∣
∣∑C j with a polynomial

positional learning effect on identical machines.Mosheiov and Sidney (2003) study a
more general problem Qm

∣
∣pi j (r) = pi jrb

∣
∣∑C j with a job-dependent polynomial

positional learning effect on uniform machines. Both papers claim to solve the prob-
lem of minimizing the total completion time in O

(
nm+3

)
time (as reported in Biskup

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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2008), whereas according to Theorem11.3, a more general problem can be solved in
O
(
nm+2

)
time. The higher running time obtained byMosheiov (2001) andMosheiov

and Sidney (2003) is due to the fact that they overestimate the number of LAPs to
solve as O(nm), instead of O(nm−1). Rustogi and Strusevich (2012) study problem
Qm

∣
∣pi j (r) = p jg

[i](r)/si
∣
∣∑C j , with a job-independent, possibly non-monotone

positional effect on uniform machines and show that the problem can be solved
in O(nm log n) time by reducing the problem to solving a series of linear assign-
ment problems with a product matrix. Theorem11.1 presents a generalization of

this result. Gara-Ali et al. (2016) study problem Rm
∣
∣
∣pi j (r) = pi jg

[i]
j (r)

∣
∣
∣
∑

C j with

a job-dependent, possibly non-monotone positional effect on unrelated machines.
Similarly to Theorem11.3, they show that the problem of minimizing the total com-
pletion time can be solved in O

(
nm+2

)
time.

Theorem11.4 on the complexity status of problem P2
∣
∣p j (τ ) = a jτ

∣
∣Cmax is due

to Kononov (1997). The fact that Product Partition is NP-hard in the strong
sense is established in Ng et al. (2010).

Our presentation of the FPTAS for problem Pm
∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax follows

the paper Kang and Ng (2007), which in turn is heavily based on the work by
Kovalyov and Kubiak (1998) that develops an FPTAS for a single machine problem
with a special deterioration effect. In our description,we have fixedmultiple technical
and presentational flaws contained in Kang and Ng (2007). Notice that problem
Pm

∣
∣p j (τ ) = p j + a jτ

∣
∣Cmax belongs to a rare type of combinatorial optimization

problems for which a pseudopolynomial-time dynamic programming algorithm is
not possible unless P=NP , but an FPTAS exists. See Kang and Ng (2007) and
Kovalyov and Kubiak (2012) for discussion.

The proof of Theorem11.6 on the complexity status of problem P2
∣
∣p j (τ ) =

p j + a jτ
∣
∣∑C j is due to Chen (1996); an alternative proof is given by Kononov

(1997). Notice that in the original paper by Chen (1996), it is stated that problem
P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j is NP-hard in strong sense, since the author assumed the

unary NP-hardness of Subset Product, as claimed in Garey and Johnson (1979).
However, in fact, both Subset Product and problem P2

∣
∣p j (τ ) = a jτ

∣
∣∑C j are

NP-hard in the ordinary sense; the corresponding corrections are done in Johnson
(1981) and Chen (1997), respectively. See Kang and Ng (2007) and Sect. 1.3.2 for
discussion.

The result of Corollary11.1 follows from Kuo and Yang (2008), who study prob-
lem Pm

∣
∣pi j (τ ) = p j ± aτ

∣
∣∑C j , inwhich identicalmachines are under an additive

linear job-independent effect (11.25).
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Scheduling with Rate Modifying Activities



Chapter 12
General Framework for Studying Models
with Rate-Modifying Activities

The importance of the planning of machine maintenance for production enterprises
and service organizations is widely recognized by both practitioners and manage-
ment scientists; see for example, popular books on maintenance Palmer (2012) and
Nyman and Levitt (2010), as well as various Internet emporiums such as www.plant-
maintenance.com, www.maintenanceworld.com, www.maintenanceresources.com.

We will distinguish between several types of maintenance and rate-modifying
activities that take place in a certain time period. Essentially, during such a period,
the machine is not available for processing jobs, and activities done during the period
may alter the processing conditions and therefore affect the processing times of jobs
scheduled after the period.

In this introductory chapter, we use the single machine environment to introduce
all concepts that are needed further in this part of the book.

In Sect. 12.1, we introduce problems with compulsory maintenance, i.e., a main-
tenance activity should take place in a given interval. Section12.2 addresses a more
flexible situation, where a maintenance activity must start before a given deadline.
Maintenance activities which modify processing rates of the jobs that follow that
activity are presented in Sect. 12.3. Finally, Sect. 12.4 considers scheduling prob-
lems for which the jobs are subject to various effects studied in Part II of this book
and rate-modifying activities. For each model, we introduce decisions that should
be taken in order to solve the corresponding problems. For the most general model
given in Sect. 12.4, we present a generic procedure aimed at solving the relevant prob-
lems on a single machine. This procedure and its extension to the parallel machine
environment presented in Chap.20 are widely used throughout the remainder of the
book.

© Springer International Publishing Switzerland 2017
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12.1 Compulsory Maintenance

Suppose that the jobs of set N = {1, 2, . . . , n} are processed on a single machine.
Consider the simplest situation that the machine is not available during the time
interval [s, t], which is known is advance. This interval can be understood as the
period of planned compulsory maintenance, and we will refer to it as the compulsory
maintenance period (CMP). The decision-maker may alter neither the start of the
CMP nor its duration. Typically, a CMP may correspond to a compulsory break/rest
period, or the end of a work period. The processing time of each job is not affected
by a position of the job, before or after the CMP, i.e., it remains constant throughout
the whole planning horizon.

For a given sequence of jobs, a job � ∈ N that starts before a CMP but cannot
be fully completed before it begins is called a crossover job. Depending on how a
crossover job is handled, we distinguish between two scenarios:

• resumable: A crossover job is interrupted when a CMP begins and resumes after
the CMP from the point of interruption;

• non-resumable: A crossover job restarts from scratch after the CMP.

Example 12.1 To illustrate the model with a single CMP and the two scenarios of
handling the crossover job, consider a lecturer who cannot finish proving a theorem
by the end of the lecturing hour. If she has another hour of lecturing after a short
five or ten minute break, she may proceed with the proof from where it was stopped
before the break, expecting the students to remember the details of the proved part.
However, if that was the last lecturing hour for today, and the next lecture takes place
only in a week’s time, then it will be wise to start the proof from the very beginning,
since the gap is too big for most of the students to be fully engaged. This example
represents the resumable and the non-resumable scenarios.

It is not within the scope of this book to give a comprehensive exposition of
scheduling problems with CMPs. The main reason is that in these models the
decision-maker simply faces the CMPs as intervals of machine non-availability and
they do not affect the processing times of jobs. This does not correspond to the spirit
of this book, which focuses on changing processing times and those maintenance
periods that may alter processing conditions. The reader is advised to consult the
survey papers Lee (1996, 2004) andMa et al. (2010) for a comprehensive exposition
of scheduling problems with CMPs.

In this book, we only discuss the single machine problems with a single CMP
to minimize the makespan Cmax, the total completion time

∑
Cj, and its weighted

counterpart
∑

wjCj; see Chap.13. In order to find a schedule that minimizes a certain
function that depends on the completion times, the decision-maker should take two
decisions:

CMP Decision 1. Splitting in groups: To split the jobs into groups, one before the
first CMP and others after each CMP.

http://dx.doi.org/10.1007/978-3-319-39574-6_13
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CMP Decision 2. Sequencing within groups: To sequence the jobs of each group
so that the resulting schedule delivers an optimal value of the chosen objective
function.

The reason why in Chap.13 we mainly discuss the models with a single CMP
can be explained by the fact that the relevant problems with more than one CMPs
are not only hard to solve, but also hard to approximate. A noticeable exception is
the situation that the CMPs should be introduced into a schedule on a periodic basis,
so that exactly T time units should elapse between two consecutive CMPs. A model
with periodic compulsory maintenance is also among those studied in Chap.13.

12.2 Flexible Maintenance

An extension of the CMPmodel described above givesmore freedom to the decision-
maker. In reality, a maintenance period (MP) does not always start exactly at a pre-
scribed time. Inmost practical situations, it is required that anMPeither starts before a
given deadlineDMP or should take place within a given window [s, t]. Such situations
occur when manufacturers insist that the users should perform equipment mainte-
nance after so many working hours/days, e.g., car servicing. Alternative examples
include mobile phone recharging or vehicle refilling.

Compared to the CMPmodel, the above model with a single flexibleMP provides
more control to the decision-maker who now has to make the following decision:

Start MP Decision. When an MP starts: To assign a start time τ for an MP.

Once the Start MP Decision is taken, the position of the MP becomes fixed, and
to solve the corresponding scheduling problem, we need to take CMP Decisions 1
and 2 above.

A certain flexibility regarding the start time of anMP allows us to introduce amore
enhanced and again more applicable model, which also reduces to the sequence of
decisions: Start MPDecision, CMPDecision 1, and CMPDecision 2. This enhanced
model assumes that the duration of an MP is not a constant but a non-decreasing
function�(τ ) of its start time τ . Typically, the later maintenance starts, the worse are
the equipment conditions andmorework is needed to improve them. Themodelswith
start-time-dependent maintenance have been introduced by Kubzin and Strusevich
(2005, 2006) for the two-machine shop environments.

We discuss the single machine problems with a single flexibleMP tominimize the
makespanCmax, the total completion time

∑
Cj, and itsweighted counterpart

∑
wjCj

in Chap.14. We look at the models with a start-time deadline, the MP window, and
also at the models in which an MP is repeated in an “almost” periodic basis, with a
regular pattern for the windows in which the next MP should be placed.

http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_14
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12.3 Rate-Modifying Activities

A common drawback of the models with machine maintenance discussed earlier in
this chapter is that they fail to address the issue of changing processing conditions,
i.e., do not alter the processing times of the jobs scheduled before and after an MP.
Thus, the introduced periods are maintenance periods only by name, not by nature.
This calls for a study of enhanced models which treat a maintenance period as a
rate-modifying activity.

One of the first papers that study an effect ofmaintenance on processing conditions
is that by Lee and Leon (2001), who in fact have introduced the term “rate-modifying
activity” into the scheduling literature. They look at the problem of scheduling a
single MP and assume that the processing time of a job j that is sequenced before
the MP is pj, while if it is sequenced after the MP, the processing time becomes λjpj,
where λj > 0 is a rate-modifying multiplier for job j. Notice that if an RMP is a
maintenance period that improves processing conditions, then, following Lee and
Leon (2001), we may assume that λj < 1; however, λj > 1 is possible, e.g., when
an MP alters the machine to prevent a breakdown, but the alterations make it work
slower.

In Chap.15, we consider single machine scheduling problems with a single rate-
modifying maintenance period (RMP). In the case of a single RMP, the decisions to
be taken reduce to Start MP Decision, CMP Decision 1, and CMP Decision 2, as
above.

The model with a single RMP can be extended to a general situation, in which
the decision-maker is presented with a list (RMP[1], RMP[2], . . ., RMP[K]) of K ≥ 1
possible rate-modifying activities, which can be either distinct or alike. The decision-
maker may decide which of the listed RMPs to insert into a schedule, on which
machine (in the case of parallel machines) and in which order. Notice that an order
in which the selected RMPs are introduced on a machine can be different from the
order in which the RMPs appear in the list.

Each RMP may have a different effect on the machine conditions, i.e., different
RMPs may have different sets of the rate-modifying multiplies. Such a situation
is natural if the selected RMPs are different in nature, e.g., one RMP replaces the
cutting tool of the machine, whereas the other refills gas in the system. However,
a similar situation can also arise if the RMPs are identical, but their efficiency in
performing the desired task changes depending on their position in the schedule. For
instance, consider a scenario in which the RMP is aimed at improving the machine
conditions by running maintenance. In real life, it is often observed that even after
a maintenance activity, some wear and tear might still remain in the machine, and if
the same RMPs are performed every time, this deviation might get accumulated.

Consider a scheduling problem of minimizing an objective function �, provided
that several RMPs can be chosen from a given list of K RMPs and to be included
into a schedule. The decision-maker must make the following decisions:

RMP Decision 1. The number of RMPs: Decide how many of the K available
RMPs are to be included in the schedule.

http://dx.doi.org/10.1007/978-3-319-39574-6_15
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RMP Decision 2. The choice of RMPs: For the chosen number of the RMPs,
decide which particular available RMPs are to be included in the schedule.

RMP Decision 3. The sequence of RMPs: Determine the optimal order in which
the selected RMPs are scheduled on a machine.

Suppose that RMP Decisions 1–3 have been taken. If out of the K available RMPs
k − 1 are selected and included in a schedule on some machine, then the jobs on
that machine will be divided into k, 1 ≤ k ≤ K + 1 groups, one to be scheduled
before the first RMP and one after each of the k − 1 RMPs. Since the RMPs are
known to affect the machine conditions differently, it follows that the jobs contained
in different groups are treated differently. In general, we allow groups to be empty,
i.e., two or more RMPs can be scheduled as a block, one immediately after another.

We present further explanations assuming that the jobs of setN are to be processed
on a single machine; it is not hard to extend the notions introduced above to parallel
machines, see Chap.20. If k − 1 RMPs are chosen to be introduced into a schedule,
then renumber those RMPs in the order they appear in the schedule. The set of jobs
is then split into k groups, N [x], 1 ≤ x ≤ k. The set of jobs N [x] forms group x, i.e.,
the jobs of this group are scheduled either before the first RMP (if x = 1) or between
the (x − 1)th RMP and the xth RMP (if 1 < x ≤ k).

In general, the duration of each of the chosen RMPs is start-time-dependent. In
the most studied linear model, the duration of RMP[y] is associated with its own
duration parameters, ζ [y] and η[y], 1 ≤ y ≤ K , so that its duration�[y](τ ) is given by

�[y](τ ) = ζ [y]τ + η[y], (12.1)

where τ is the start time of the RMP, measured either from time zero in the case
of the first RMP or from the completion time of the previous RMP. The value of
η[y] can be understood as the duration of all tests that form the mandatory part of a
maintenance procedure, while ζ[y]τ reflects any additional maintenance work that
depends on how long the machine has worked without maintenance. If RMP[y] is
inserted into a schedule as the xth RMP, then τ is the total actual processing time of
the jobs of group N [x], 1 ≤ x ≤ k − 1.

A special case of (12.1) with ζ [y] = 0, 1 ≤ y ≤ K corresponds to the situation
that the duration of RMP[y] is given by a constant η[y].

A more general interpretation of the variable duration of the RMP has been intro-
duced by Finke et al. (2016). For a schedule with k − 1 selected RMPs, the duration
�̄[x] of the xth RMP, 1 ≤ x ≤ k − 1, is determined as a linear function of the actual
durations of the jobs in the preceding group. Assuming that the actual processing
time of job j ∈ N [x] is equal to p[x]j , this job contributes ζ [x]j p[x]j toward �̄[x] of the xth
RMP, so that

�̄[x] =
∑

j∈N [x]

ζ [x]j p[x]j + η[x], (12.2)

where ζ [x]j is a positive job-dependent coefficient.Notice that if ζ [x]j is job-independent,

i.e., ζ [x]j = ζ [x] for all jobs in group x, then �̄[x] satisfies (12.1).

http://dx.doi.org/10.1007/978-3-319-39574-6_20
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Thus, as a result of taking RMP Decisions 1–3, we determine k − 1 ≤ K RMPs,
their type and the order in which they are inserted into a schedule. Then, we need to
split the jobs into k groups, one before the first RMP and others after each RMP. To
find the resulting schedule, we need to find a sequence of jobs in each group. These
actions are essentially equivalent to the CMP Decisions 1 and 2. The latter decisions
will determine the start times of each RMP in accordance with a chosen sequence.
In more detail, the main principles of solving relevant problems are formulated in
Sect. 12.4, for more general settings.

The decision-making in the presence of multiple RMPs is illustrated in Chaps. 15
and 20, based on scheduling problems on a singlemachines and on parallel machines,
respectively.

12.4 Changing Processing Times and Rate-Modifying
Activities

Scheduling problems with various time-changing effects that define the actual
processing times of the jobs have been considered in detail in Part II of this book. It
must be admitted that the practical impact of research on scheduling models with a
learning/deterioration effect alone is somewhat questionable. In practical situations,
it is often observed that the machines/operators are subject to (periodic) maintenance
activities or replacements. These activities modify the rate of change of processing
times, so that the learning/deterioration process is disrupted. Indeed, for a large
number of jobs, if the processing conditions are not altered by some sort of a rate-
modifying activity, the processing times will either reduce to zero in the case of a
learning effect or will grow to unacceptably large values in the case of deterioration.
Such situations are not realistic.

This implies that to address practically relevant situations, we need integrated
scheduling models that address (i) possible changes in actual processing times of
the jobs due to learning/deterioration or an alternative non-monotone effect, and
(ii) introduction of rate-modifying activities that alter the processing conditions and
therefore influence the processing times of the jobs that follow such an RMP. In the
most natural models of this type, the jobs are subject to deterioration and the RMPs
are understood as maintenance periods that bring the processing machines to better
conditions.

The following quotation from the influential paper byGopalakrishnan et al. (1997)
is especially close to the spirit of this book:

Industrial systems used in the production of goods are subject to deterioration and wear
with usage and age. System deterioration results in increased breakdowns leading to higher
production costs and lower product quality. A well-implemented, planned preventive main-
tenance (PM) program can reduce costly breakdowns... Deciding what PM tasks to do, and
when, constitutes a critical resource allocation and scheduling problem.

http://dx.doi.org/10.1007/978-3-319-39574-6_15
http://dx.doi.org/10.1007/978-3-319-39574-6_20
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As seen from the quotation above, in the planning of rate-modifying activities
in a processing sequence, the decision-maker is faced with a trade-off between
two processes: (i) change of the processing conditions and (ii) allocation of a rate-
modifying period in order to control the changing conditions. However, until very
recently, the processes (i) and (ii) have not been fully integrated in the models studied
in the scheduling literature. One of the purposes of Part III of this book is to provide
a uniform formal treatment of such integrated scheduling models.

A systematic studyof integratedmodels that includebothvarious rules of changing
the processing times and the introduction of the RMPs of different nature has been
conducted by Rustogi and Strusevich (2012a, b, 2014, 2015). These papers make the
basis of Chaps. 16–20. The consideredmodels address most of known time-changing
effects: positional, cumulative, start-time-dependent, and their combinations. Rate-
modifying activities of different nature are considered.

If an RMP is an actual maintenance, there is no need to assume that such an RMP
fully restores the machine to its default state every time it is performed. Besides,
RMPs to be inserted into a schedule should not be limited to maintenance periods
only. It is possible that introducing an RMP in fact slows down the processing, which
happens, e.g., if the RMP is related to the replacement of an experienced operator
by a trainee. Under another possible effect, an RMP is used to further enhance the
learning capabilities of themachines/operators. In any case, as a result of introduction
of several RMPs, the jobs are split into the corresponding groups, and the actual
processing time of a job will be dependent on the group it is scheduled in. We
refer to such an effect as a group-dependent effect. To the best of our knowledge,
the group-dependent effects in conjunction with rate-modifying and maintenance
activities have been first introduced in Rustogi and Strusevich (2012a).

Below,we give an illustration of a possible application of group-dependent effects.

Example 12.2 Ahuman operator uses a tool to process n jobs. During the processing
of the jobs, the tool undergoes deterioration, whereas the performance of the operator
is influenced by both deterioration and learning effects. It is known that two RMPs
will be included in the schedule. ThefirstRMP is amaintenance periodwhich restores
the machine to its original condition. However, the deterioration rate of the machine
becomes greater after the maintenance period, since original spare parts are not used.
This RMP also provides the operator with sufficient rest, so that after this first RMP,
the operator is as fresh as he/she was at the beginning of the schedule. Additionally,
the operator gets a technical briefing from his supervisor, so that his learning curve
changes. The second RMP does not repair the machine at all; instead, a new operator
is brought in. Below, we give details how these effects are modeled mathematically
and compute the resulting positional factors g[x](r). The actual processing time of
job j scheduled in position r of group x is defined equal to g[x](r)pj.

We distinguish between the positional factors associated with the machine and
the operator by using the subscript “m” for the machine and “w” for the operator
(worker), respectively. The actual positional factor is defined as the product g[x](r) :=
g[x]m (r)g[x]w (r).

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_20
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In a feasible schedule, the jobs will be split into k = 3 groups; let n[x] denote the
number of jobs in the xth group. For the machine, a positional exponential deterio-
ration effect with a rate A1 > 0 is applied before the first RMP and a similar effect
with a rate A2 after the first RMP, where A2 > A1. As a result, the positional factors
associated with the machine for the three groups are given as g[1]m (r) = (A1)

r−1,
g[2]m (r) = (A2)

r−1, and g[3]m (r) = (A2)
n[2]+r−1, respectively. The two operators are

subject to a positional polynomial deterioration effect with rates B1 > 0 and B2 > 0,
respectively. They are also subject to positional polynomial learning effects. The rate
with which Operator 1 learns before the first RMP is C1 < 0, while the rate with
which she learns after the RMP is C2 < C1 < 0. The learning rate of Operator 2
is given by C3 < 0. As a result, the positional factors associated with the operators
for the three groups are given as g[1]w (r) = rB1+C1 , g[2]w (r) = rB1

(
n[1] + r

)
C2 , and

g[3]w (r) = rB2+C3 , respectively. Thus, the positional factors for the entire processing
system can be given as

g[1](r) = g[1]m (r)g[1]w (r) = (A1)
r−1rB1+C1;

g[2](r) = g[2]m (r)g[2]w (r) = (A2)
r−1rB1

(
n[1] + r

)
C2;

g[3](r) = g[3]m (r)g[3]w (r) = (A2)
n[2]+r−1rB2+C3 .

Notice that this model allows us to assume that during an RMP, if Operator 1 is
not replaced, he/she does not lose his/her skills which have been improved due to
learning in the earlier groups of the schedule. Similarly, if during an RMP a machine
is not fully repaired, our model is capable of handling the resulting situation in which
the deterioration effect from the group before the RMP must be carried forward to
the next group. These issues are captured by adjusting the relative position of a job
in the relevant group. For example, the learning factor involved in the computation
of g[2](r) is given by

(
n[1] + r

)
C2 (implying that Operator 1 has completed n[1] jobs

before group 2 starts), and the deterioration factor involved in the computation of
g[3](r) is given by (A2)

n[2]+r−1 (implying that since its last RMP, the machine has
completed n[2] jobs before group 3 starts).

Below, we discuss some general principles of solving single machine schedul-
ing problems in which the jobs are subject to certain effects (positional, start-time
related or combined), and the RMPs may be inserted into a schedule. The jobs of
set N = {1, 2, . . . , n} are to be processed on a single machine. Each job j ∈ N is
associated with a normal processing time pj. The decision-maker is presented with
a list (RMP[1], RMP[2], . . ., RMP[K]) of K ≥ 1 possible rate-modifying activities.
Let 1|β,RMP(K)|� denote a generic problem of minimizing an objective function
�(S), where the string β denotes additional conditions, such as a time-changing
effect and/or a rule for computing the duration of the RMPs chosen to be inserted
into a schedule.

The original problem 1|β,RMP(K)|� reduces to a sequence of the auxiliary
problems, which we denote by 1|β,RMP(k − 1)|�. An instance of each problem
1|β,RMP(k − 1)|� is defined by
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(A1) an outcome of the RMP Decisions 1–3;
(A2) a numbering of the chosen k − 1 RMPs by integers x, 1 ≤ x ≤ k − 1, in the

order of their appearance in a schedule.

To solve problem 1|β,RMP(k − 1)|�, we need to take three decisions, which can
be seen as extensions of the CMP Decisions 1 and 2 from Sect. 12.1:

(B1) to determine the number n[x] of jobs in group N [x], 1 ≤ x ≤ k, where the jobs
of group N [x] are sequenced before the xth RMP, and the jobs of group N [k]

are scheduled after the last RMP;
(B2) determine a partition of the jobs of set N into k groups N [x], 1 ≤ x ≤ k;
(B3) find a permutation π[x] for the jobs of group N [x].

At the moment, we focus on the most general situation, in which there is no
obvious way of taking Decision (B1) above, i.e., there is no method that would allow
us to determine the number of jobs in each group in a schedule that is optimal for
problem 1|β,RMP(k − 1)|�. In this situation, we will need to generate all possible
values n[x], 1 ≤ x ≤ k.

For a particular outcome of Decision (B1), introduce a schedule SB1(k) for an
auxiliary problem 1|β,RMP(k − 1)|� associated with certain outcomes of Deci-
sions (B2) and (B3). In schedule SB1(k), the jobs are organized in groups N [x],
1 ≤ x ≤ k; each group N [x] contains n[x] jobs, where

∑k
x=1 n

[x] = n. Fur-
ther, let the jobs in N [x] be sequenced in accordance with a permutation π[x] =(
π[x](1),π[x](2), . . . ,π[x]

(
n[x]

))
, 1 ≤ x ≤ k. The actual processing time of a job

j = π[x](r), scheduled in position r, 1 ≤ r ≤ n[x], of the xth group, 1 ≤ x ≤ k, is
denoted by p[x]j (r) and depends on particular features of themodel, normally captured
by the string β.

Associate schedule SB1(k) with an overall permutation of jobs π = (π[1],π[2],

. . . ,π[k]) of set N . In most problems considered in Chaps. 15–18, the objective func-
tion for schedule SB1(k) admits a generic representation

�(SB1(k)) = �(π) =
k∑

x=1

n[x]∑

r=1

W [x]
π[x](r)(r)pπ[x](r) + �(k), (12.3)

where �(k) depends only on k and some constant terms, while W [x]
π[x](r)(r) is a posi-

tional weight that in general is both job-dependent and group-dependent. The product
W [x]

π[x](r)(r)pπ[x](r) represents the contribution of job j = π[x](r) scheduled in position

r, 1 ≤ r ≤ n[x], of group x, 1 ≤ x ≤ k, to the objective function (12.3).
For an outcome of Decision (B1), let S∗

B1(k) be the best schedule that is defined
by taking Decisions (B2) and (B3) in such a way that schedule S∗

B1(k) minimizes
function (12.3), i.e.,�

(
S∗
B1(k)

) ≤ �(SB1(k)) holds for all possible schedules SB1(k).
Further, let S∗(k) denote a schedule that is optimal for problem 1|β,RMP(k − 1)|�,
i.e., �(S∗(k)) ≤ �

(
S∗
B1(k)

)
holds for all possible outcomes of Decision (B1).

Assuming that for a particular outcome of Decision (B1), each weight W [x]
j (r),

j ∈ N , 1 ≤ x ≤ k, 1 ≤ r ≤ n[x], can be computed in advance in constant time, finding

http://dx.doi.org/10.1007/978-3-319-39574-6_15
http://dx.doi.org/10.1007/978-3-319-39574-6_18
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schedule S∗
B1(k) can be reduced to solving a linear assignment problem (LAP); see

Sect. 4.1 for definitions and a review.
Suppose first that the weights W [x]

j (r) are job-dependent. In order to minimize
�(SB1(k)), define a LAP with an n×n cost matrixC = (

cj,(x,r)
)
. Each row of matrix

C corresponds to a job j ∈ N . It is convenient to label the columns of C by strings of
the form (x, r), where x, 1 ≤ x ≤ k, refers to a group index, and r indicates a position
in a permutation of jobs assigned to a group. Since

∑k
x=1 n

[x] = n, there are exactly
n columns in matrix C. Notice that the first n[1] columns (1, 1), (1, 2), · · · , (1, n[1])
of matrix C are associated with the positions in group 1, the next n[2] columns
(2, 1), (2, 2), · · · , (2, n[2]) are associated with the positions in group 2, and so on. It
follows that the elements of the cost matrix of the LAP can be written as

cj,(x,r) = W [x]
j (r)pj, 1 ≤ x ≤ k, 1 ≤ r ≤ n[x]. (12.4)

With the cost values defined by (12.4), the problem of minimizing function (12.3)
reduces to the following LAP

minimize
n∑

j=1

k∑

x=1

n[x]∑

r=1

cj,(x,r)zj,(x,r)

subject to
k∑

x=1

n[x]∑

r=1

zj,(x,r) = 1, 1 ≤ j ≤ n;
n∑

j=1

zj,(x,r) = 1, 1 ≤ x ≤ k, 1 ≤ r ≤ n[x];
zj,(x,r) ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ x ≤ k, 1 ≤ r ≤ n[x].

(12.5)

A problem of the form (12.5) can be solved in O(n3) time, as follows from The-
orem4.1. For the found solution, zj,(x,r) = 1 implies that in schedule S∗

B1(k), job j is
assigned to the rth position of group x. The conditions of (12.5) mean that each job
will be assigned to a position and no position will be used more than once.

In several scheduling problems, the positional weights appear to be job indepen-
dent, i.e., for each j ∈ N the equalities W [x]

j (r) = W [x](r) hold for 1 ≤ x ≤ k,
1 ≤ r ≤ n[x]. In this case, the matrix with the elements (12.4) becomes a product
matrix and the corresponding LAP can be solved in O(n log n) time by adapting
Algorithm Match; see Sect. 4.1.3.

In any case, we can write out a generic procedure for finding a schedule S∗ that
is optimal for problem 1|β,RMP(K)|�.

Procedure RMP1

Step 1. Given problem 1|β,RMP(K)|�, for each outcome (A1) and (A2) do

(a) Define an auxiliary problem 1|β,RMP(k − 1)|�.
(b) For each outcome of Decision (B1) do

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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(i) Compute appropriate positionalweightsW [x]
j (r), j ∈ N , 1 ≤ x ≤ k, 1 ≤

r ≤ n[x], and the constant �(k) that define the objective (12.3).
(ii) Create the cost matrix C = (

cj,(x,r)
)
with the elements (12.4).

(iii) Find schedule S∗
B1(k) by solving the linear assignment problem, either

in the full form (12.5) or with a product matrix, if appropriate.
(c) Determine schedule S∗(k) that is optimal for the current problem

1|β,RMP(k − 1)|�, i.e., such that �(S∗(k)) ≤ �
(
S∗
B1(k)

)
holds for all

schedules S∗
B1(k) found in Step 1(b).

Step 2. Determine schedule S∗ that is optimal for the original problem
1|β,RMP(K)|�, i.e., such that �(S∗) ≤ �(S∗(k)) holds for all schedules S∗(k)
found in Step 1.

Notice that Procedure RMP1 is presented under the assumption that all out-
comes (A1) and (A2) as well as all outcomes of Decision (B1) should be generated.
There are, however, situations when this full enumeration is not needed, and faster
approaches can be employed. Without going into technicalities, this happens when
all possible positional weights W [x]

j (r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, can be found without
any prior knowledge of the values n[x], and the computed positional weights form a
monotone sequence for each group.

The lemma below gives an estimation of the number of possible outcomes (A1)
and (A2) in Step 1 of Procedure RMP1, as well as the number of all possible Deci-
sions (B1) to be taken for a particular outcome (A1) and (A2). These estimations
are used in the remaining chapters of this part for a purpose of evaluating the run-
ning times of algorithms based on Procedure RMP1. To count the number of the
related instances, we use various combinatorial configurations and identities listed
in Sect. 5.3. In the presented estimations, we assume that the number K of avail-
able RMPs is a constant, which is reasonable since usually the number of possible
rate-modifying activities to be performed is fairly small.

Lemma 12.1 The number of outcomes (A1) and (A2) in Step 1 of Procedure RMP1
can be estimated as O

(
KK

)
. For a particular combination of outcomes (A1) and

(A2), the number of possible outcomes of Decision (B1) that may lead to an overall
optimal schedule S∗ is O

(
nk−1

)
. Moreover, the total number of all possible outcomes

(A1) and (A2) and outcomes of Decision (B1), i.e., the number of the assignment
problems to be solved, is O

(
nK

)
.

Proof For a particular k, 1 ≤ k ≤ K + 1, the number of ways of selecting k − 1
RMPs from K available RMPs and order them (RMP Decision 2 and 3) is equal to
the corresponding number of arrangements

( K
k−1

)
(k − 1)!, which according to (5.9)

does not exceed Kk−1. Trying all possible values of k, 1 ≤ k ≤ K + 1 (i.e., trying
all possible options of RMP Decision 1), an upper bound on the number of auxiliary
problems 1|β,RMP(k − 1)|� to be solved is

∑K+1
k=1 Kk−1.

The number of all possible outcomes of Decision (B1) that need to be generated
for each auxiliary problem 1|β,RMP(k − 1)|� is equal to the number of all non

http://dx.doi.org/10.1007/978-3-319-39574-6_5
http://dx.doi.org/10.1007/978-3-319-39574-6_5
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negative integers n[x], 1 ≤ x ≤ k, such that
∑k

x=1 n
[x] = n. Thus, the number of all

values n[x], 1 ≤ x ≤ k, that may lead to an overall optimal schedule S∗ is equal to the
number of compositions C(≤k)

n of n in at most k positive summands. Applying (5.12)
with u = n and v = k, we have that the total number of all values n[x], 1 ≤ x ≤ k,
to be generated for each auxiliary problem 1|β,RMP(k − 1)|� is

(
n + k − 1

k − 1

)
≤ nk−1

(k − 1)! = O
(
(n + k)k−1

)
.

Since we may assume that there are less RMPs than jobs, i.e., k ≤ n, we further
deduce O

(
(n + k)k−1

) = O
(
nk−1

)
.

Finally, the total number of the linear assignment problems to be solved is given by

K+1∑

k=1

(
K

k − 1

)
(k − 1)!

(
n + k − 1

k − 1

)
≤

K+1∑

k=1

(
K

k − 1

)
(n + k)k−1

≤
K+1∑

k=1

(
K

k − 1

)
(2n)k−1 = (2n + 1)K = O

(
nK

)
,

as required. ��
In Chaps. 15–18, the described Procedure RMP1 forms the basis of the design

of the solution algorithms for single machine scheduling problems in which various
(group-dependent) effects are combined with the introduction of available RMPs. An
extension of Procedure RMP1 to parallel machines and examples of its adaptation
to relevant scheduling problems is contained in Chap.20.
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Chapter 13
Scheduling with Fixed Compulsory
Maintenance Periods

A large volume of research address scheduling models in which a machine is not
permanently available but may become non-available for processing during one
or more given intervals. Such intervals are referred to as intervals of machine
non-availability. One of the possible meaningful interpretations of a machine
non-availability interval is that amandatorymachinemaintenancemust be performed
during such an interval.

In this chapter, we consider single machine problems, provided that several such
compulsory maintenance periods (CMPs) have to be inserted into any
feasible schedule.

In a general case, assume that the total number of CMPs is equal to K ≥ 1, and
the kth CMP is denoted by Ik = [sk, tk], 1 ≤ k ≤ K . The duration of a CMP Ik is
denoted by �k = tk − sk .

For a job j ∈ N = {1, 2, . . . , n}, its processing time pj is given and remains con-
stant throughout the planning period. For a given sequence of jobs, a job � that starts
before a CMP but cannot be fully completed before it begins is called a crossover job.
Depending on how a crossover job is handled, we distinguish between two scenarios:

• resumable: a crossover job is interrupted when a CMP begins and resumes after
the CMP from the point of interruption;

• non-resumable: a crossover job restarts from scratch after the CMP.

It is not within the scope of this book to give a comprehensive exposition of
scheduling problems with CMPs. The main reason is that in these models the
decision-maker simply faces the CMPs as intervals of machine non-availability,
they do not affect the processing times of jobs which remain constant. This does
not correspond to the spirit of this book, which focuses on changing times and
the maintenance periods that may alter processing conditions. Thus, in this chapter
we overview known results on scheduling with CMPs for a basic single machine
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environment. The main focus will be on the complexity and approximability issues
of the problems under the resumable and non-resumable scenarios. In fact, unless
stated otherwise, in the problems considered in the main body of the chapter there
will be only one CMP. Alternatively, we will consider the model with periodic main-
tenance.

As elsewhere in the book, wemainly consider the objective functions ofmakespan
and (weighted) total flow time. Notice that problems of this range have generated
most publications in the area of scheduling with machine non-availability intervals.
Section13.5 contains discussions and reviews of relevant results not presented in
detail in the main body of this chapter.

In scheduling problems discussed in this chapter, a job j ∈ N may be associated
with a weight wj associated with job j, which indicates its relative importance. All
values pj and wj are positive integers. The machine processes at most one job at a
time, with no processing during the CMPs. The completion time of job j ∈ N in a
feasible schedule S is denoted by Cj(S), or shortly Cj if it is clear which schedule is
referred to.

Extending standard notation for the scheduling problems, we generically denote
the problem considered in this chapter by 1|CMP(K), Sc|�, where CMP(K) means
that there are K ≥ 1 CMPs in a schedule, � ∈ {

Cmax,
∑

Cj,
∑

wjCj
}
denotes the

objective function and Sc ∈ {Res,N − Rres} specifies either the resumable sce-
nario or the non-resumable scenario. Throughout this chapter, we often use notation
F(S) = ∑

Cj(S) and Z(S) = ∑
wjCj(S). Let S∗ denote a schedule that is optimal

for a scheduling problem of minimizing a function �(S), i.e., �(S∗) ≤ �(S) for all
feasible schedules S.

For those problems which are NP-hard, we present the results on design and
analysis of approximation algorithms and schemes. As defined in Sect. 1.3.4, a
polynomial-time algorithm that finds a feasible schedule SH such that the inequality
�(SH)/�(S∗) ≤ ρ holds for all instances of the problem is called a ρ-approximation
algorithm and ρ ≥ 1 is called a worst-case ratio bound. A fully polynomial-time
approximation scheme (FPTAS) is a family of ρ-approximation algorithms such that
for any positive ε > 0 (i) ρ = 1 + ε and (ii) the running time depends polynomially
on the length of the problem’s input and 1/ε.

For problem 1|CMP(1),Res|� under the resumable scenario, suppose that the
jobs are sequenced in accordance with some permutation π = (π(1),π(2), . . . ,
π(n)), and let � denote the position of the crossover job, i.e., π(�) is the job that
cannot be competed before time s and is resumed after time t. Under the resum-
able scenario, the crossover job starts at time

∑�−1
j=1 pπ(j) and then is processed for

xπ(�) = s − ∑�−1
j=1 pπ(j) time units, is interrupted at time s, and is processed after

time t for yπ(�) time units, where yπ(�) = pπ(�) − xπ(�) = ∑�
j=1 pπ(j) − s. Thus, the

completion times for the jobs can be written as

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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Cπ(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r∑

j=1

pπ(j), 1 ≤ r ≤ � − 1;

� +
�∑

j=1

pπ(j), � ≤ i ≤ n,

(13.1)

where � = t − s is the duration of the CMP.
A feasible schedule for problem 1|CMP(1),N − Res|� under the

non-resumable scenario is defined by a partition of set N into two groups N [1] and
N [2], and the sequences π[1] and π[2] of these jobs, respectively, such that

(i) the jobs of the first group N [1] are processed from time zero as a block,
without intermediate idle, follow sequence π[1], and complete before time s, i.e.,
p
(
N [1]

) ≤ s;
(ii) the jobs of the second group N [2] are processed from time t as a block, without

intermediate idle, and follow sequence π[2].

Scanning the jobs of set N in a certain order introduces a Boolean variable xj in
such a way that

xj =
{
1, if job j completes before the CMP I
0, otherwise.

(13.2)

Thus, N [1] = {
j ∈ N |xj = 1

}
and N [2] = N\ N [1]. For problem 1|CMP(1),

N − Res|�with� ∈ {
Cmax,

∑
Cj,

∑
wjCj

}
a feasible schedule S is associated with

a vector x =(x1, x2, . . . , xn) with n Boolean components such that

n∑

j=1

pjxj ≤ s, (13.3)

which corresponds to the requirement that the jobs of the first group N [1] must be
completed by time s. In what follows, we may refer to the value of the objective
function computed not with respect to a particular schedule S but with respect to
the associated vector x, so that we may write �(S) and �(x), whichever is more
convenient.

The structure of this chapter is as follows. In Sect. 13.1, we consider the comp-
lexity and approximability issues of the problem of minimizing the makespan under
both scenarios, including the model with periodic maintenance. The complexity of
the problem of minimizing the sum of the weighted completion times with a single
CMP is resolved in Sect. 13.2 (for the non-resumable scenario) and in Sect. 13.3 (for
the resumable scenario). Approximation algorithms and schemes for these problems
are presented in Sect. 13.4.



258 13 Scheduling with Fixed Compulsory Maintenance Periods

13.1 Makespan: Complexity and Approximation

In this section, we consider the problems ofminimizing themakespan in the presence
of a single compulsory maintenance period (CMP) I = [s, t] with a fixed start time
s and of fixed duration � = t − s. The resumable and non-resumable scenarios are
studied. Besides, we also consider the model in which a CMP of duration � occurs
periodically, after each T time units.

13.1.1 Single Maintenance

It is fairly easy to establish the complexity status of the problem 1|CMP(K), Sc|
Cmax, of minimizing the makespan with Sc ∈ {Res,N − Res}.

Problem 1|CMP(1),Res|Cmax, is trivially solvable. Indeed, for a schedule SRes
associated with an arbitrary permutation π of jobs, the equalities (13.1) imply that

Cmax(SRes) = � +
n∑

j=1

pπ(j) = � + p(N). (13.4)

This observation can be extended to any number of CMPs.

Theorem 13.1 Problem 1|CMP(K),Res|Cmax, for any K ≥ 1 is solvable in O(n)
by sequencing the jobs arbitrary.

To resolve the complexity status of problem 1|CMP(1),N − Res|Cmax, using
(13.2), define a vector x =(x1, x2, . . . , xn) with n Boolean components such that
(13.3) holds. The value of the makespan for a schedule S associated with a feasible
vector x is given by

Cmax(S) = Cmax(x) = t +
n∑

j=1

pj
(
1 − xj

) = t + p(N) −
n∑

j=1

pjxj. (13.5)

Disregarding the additive constant t + p(N), finding a schedule S∗ that is optimal
for problem 1|CMP(1),N − Res|Cmax, can be reduced to the subset-sum problem,
see Sect. 4.2. In such a problem, it is required to find a vector x∗=(

x∗
1, x

∗
2, . . . , x

∗
n

)
,

which delivers an optimal solution to the problem

maximize
n∑

j=1

pjxj

subject to
n∑

j=1

pjxj ≤ s

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(13.6)

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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According toSect. 4.2, this problem isNP-hard but is solvable in pseudopolynomial
time, so that we deduce the following statement.

Theorem 13.2 Problem1|CMP(1),N − Res|Cmax, isNP-hard in theordinary sense.

Recall that the subset-sum problem is known to admit a fully polynomial-time
approximation scheme (FPTAS) that requires O(n/ε) time; see Theorem 4.5. Based
on this scheme, we establish the approximability status of problem 1|CMP(1),N −
Res|Cmax.

Theorem 13.3 Problem 1|CMP(1),N − Res|Cmax admits an FPTAS that requires
O(n/ε) time.

Proof Problem 1|CMP(1),N − Res|Cmax, reduces to the subset-sum problem
(13.6). According to Theorem 4.5, an FPTAS for the problem (13.6) either finds
an optimal solution x∗

j ∈ {0, 1}, j ∈ N , such that

∑

j∈N
pjx

∗
j < (1 − ε)s

or finds an approximate solution xε
j ∈ {0, 1}, j ∈ N , such that

(1 − ε)s ≤
∑

j∈N
pjx

ε
j ≤ s.

In the case of the first outcome, associate the vector x∗=(
x∗
1, x

∗
2, . . . , x

∗
n

)
that

delivers an optimal solution to the problem (13.6) with a schedule in which the

jobs of the set H [1] =
{
x∗
j = 1|j ∈ N

}
form the first group, while the jobs of the set

H [2] = N\H [1] form the second group. For any partition of set N into two subsets
N1 and N2 such that p(N1) ≤ s, we have that p

(
H [2]

) ≤ p(N2), i.e., due to (13.5) a
schedule associated with the partitionN = H [1] ∪ H [2] is an optimal schedule S∗

N−Res
with the makespan Cmax

(
S∗
N−Res

) = t + p
(
H [2]

)
.

In the case of the second outcome, define two groups of jobs N [1] :=
{
xε
j = 1|

j ∈ N
}

and N [2] := N\N [1] and consider the associated schedule Sε. Since

p
(
N [1]

) ≥ (1 − ε)s, we have that p
(
N [2]

) = p(N)− p
(
N [1]

) ≤ p(N) − (1 − ε)s. It
follows that

Cmax(S
ε) = t + p

(
N [2]

) ≤ (t − s) + p(N) + εs.

Due to (13.4), we have that Cmax
(
S∗
N−Res

) ≥ Cmax
(
S∗
Res

) = � + p(N), and
besides, Cmax

(
S∗
N−Res

) ≥ s. This results in

Cmax(S
ε) ≤ Cmax

(
S∗
N−Res

) + εCmax
(
S∗
N−Res

)
,

which proves the theorem. �

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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The approximability status of the problem changes dramatically if more than one
CMPs is introduced, as demonstrated below.

Theorem 13.4 Forafixedρ ≥ 1, the existenceof apolynomial-timeρ-approximation
Algorithm H for problem 1|CMP(2),N − Res|Cmax implies that P = NP .

Proof To prove the theorem, we show that Algorithm H, if existed, would solve to
optimality an NP-hard problem 1|CMP(1),N − Res|Cmax.

Let S∗
1 be a schedule that is optimal for problem 1|CMP(1),N − Res|Cmax, with a

single CMP I1. Consider an arbitrary instance of the decision version of this problem,
in which it is required to verify whether there exists a schedule S such thatCmax(S) ≤
y for a given y.

Define the instance of problem 1|CMP(2),N − Res|Cmax, which is obtained from
the taken instance of the decision version of problem 1|CMP(1),N − Res|Cmax, by
inserting an extra CMP I2 = [

y, ρy
]
. Let S∗

2 be a schedule that is optimal for this
problem with two CMPs.

IfCmax(S∗
1) ≤ y, thenCmax(S∗

2) = Cmax(S∗
1).Otherwise, the jobs that are processed

after time y in schedule S∗
1 have to be processed after time ρy in schedule S∗

2 . Since
no preemption is allowed, it follows that Cmax(S∗

2) ≥ ρy + Cmax(S∗
1) − y.

Apply Algorithm H to the defined instance of problem 1|CMP(2),N − Res|Cmax.
It will find a schedule SH such that

Cmax(SH)

Cmax(S∗
2)

≤ ρ.

We show that by verifying the value of Cmax(SH) it is possible to deduce whether
for problem 1|CMP(1),N − Res|Cmax, a schedule S∗

1 with Cmax(S∗
1) ≤ y exists.

Suppose that Cmax(SH) ≤ ρy. Then, the actual completion time of schedule SH is
before the second CMP, i.e., Cmax(SH) ≤ y. It is obvious then that

Cmax(S
∗
1) ≤ Cmax(S

∗
2) ≤ Cmax(SH) ≤ y,

so that for problem 1|CMP(1),N − Res|Cmax the required schedule exists.
Suppose now thatCmax(SH) > ρy. Then, the inequalityCmax(S∗

2) ≤ ywould imply

Cmax(SH)

Cmax(S∗
2)

>
ρy

y
= ρ,

a contradiction. Therefore, Cmax(S∗
2) > y. If Cmax(S∗

1) ≤ y, then we would have
Cmax(S∗

2) = Cmax(S∗
1) ≤ y, a contradiction. Thus, for problem 1|CMP(1),

N − Res|Cmax the required schedule does not exist. �
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13.1.2 Periodic Maintenance

In industrial environment, the compulsory maintenance often takes place
periodically, with a fixed period of time T that should elapse before the first CMP
and between any pair of consecutive CMPs. In the remainder of this section, we
consider the problem of minimizing the makespan under the non-resumable sce-
nario and periodic maintenance. As before, let � denote the duration of a CMP.
We refer to this problem as 1|CMP(period),N − Res|Cmax. It is assumed that
T ≥ max

{
pj|j ∈ N

}
; otherwise, the problem has no feasible solution.

In any schedule S that is feasible for problem 1|CMP(period),N − Res|Cmax,
the set N of jobs is split into b ≥ 1 groups N [1],N [2], . . . ,N [b], where the jobs in
group N[q] are processed in any order in the time interval

[
(q − 1)(T + �), qT+

(q − 1)�
]
, 1 ≤ q ≤ b − 1, while the jobs of group N [b] are processed starting from

time (b − 1)(T + �). In other words, the jobs of group N [1] are processed before
the first CMP, the jobs of each group N[q] are processed between the (q − 1)th CMP
and the qth CMP, 2 ≤ q ≤ b − 1, while the jobs of group N [b] are processed after

the last used CMP. Due to feasibility, p
(
N[q]

)
≤ T , 1 ≤ q ≤ b.

Below we show that for problem 1|CMP(period),N − Res|Cmax

a 2-approximation algorithm is the best possible. The proof uses the following
NP-complete problem; see Sect. 1.3.2.

Partition: Given positive integers e1, . . . , er and the index set R = {1, . . . , r} such
that e(R) = ∑

i∈R ei = 2R, is it possible to partition set R into disjoint subsets R1 and
R2 such that e(R1) = ∑

i∈R1
ei = E and e(R2) = ∑

i∈R2
ei = E?

Theorem 13.5 If there exists a polynomial-time Algorithm H, which for prob-
lem 1|CMP(period),N − Res|Cmax finds a schedule SH such that for some ε,
0 < ε < 1, the bound Cmax(SH)/Cmax(S∗) ≤ 2 − ε holds, then P = NP .

Proof Given an instance of Partition, we define a particular instance of problem
1|CMP(period),N − Res|Cmax, such that from a solution found by Algorithm H
applied to that instance it would be possible to deduce whether Partition has a
solution.

Take an ε, 0 < ε < 1, define

N = R; n = r; pj = ej; T = E; � = �2E(1 − ε)/ε�.

Suppose that Partition has a solution, and R1 and R2 are found subsets of R
with e(R1) = e(R2) = E. For the constructed instance of problem 1|CMP(period),

N − Res|Cmax, consider a schedule S, with two groups N[q] = Rq, q ∈ {1, 2}. Since
p
(
N [1]

) = E, the jobs of this group are completed before time T , i.e., before the
first CMP. Thus, schedule S is feasible and Cmax(S) = p(N) + � = 2E + �, i.e.,
this schedule is in fact an optimal schedule S∗, due to (13.4). Thus, if Cmax(S∗) >

2E + �, then Partition has no solution.
On the other hand, if Partition has no solution, then in any feasible schedule S

for the first groupN [1], we have that p
(
N [1]

) ≤ E − 1. To process the remaining jobs,

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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they have to be partitioned in at least two groups N [2] and N [3], with p
(
N [3]

) ≥ 1.
This implies that Cmax(S∗) ≥ p(N) + 2� + 1 = 2E + 2� + 1. Thus, if Cmax(S∗) ≤
2E + 2�, then Partition has a solution.

Suppose that Algorithm H exists and for the constructed instance of prob-
lem 1|CMP(period),N − Res|Cmax outputs a schedule SH such that Cmax(SH)/

Cmax(S∗) ≤ 2 − ε.
IfCmax(SH) ≤ 2(E + �), thenCmax(S∗) ≤ 2(E + �), and Partition has a solu-

tion. Otherwise, if Cmax(SH) > 2(E + �), then

Cmax
(
S∗) ≥ Cmax(SH)

2 − ε
>

2(E + �)

2 − ε
.

By definition of �, we derive that �ε ≥ 2E(1 − ε), so that ε ≥ 2E/(2E + �).
Substituting this inequality, we obtain

Cmax
(
S∗) >

2(E + �)

2 − 2E
2E+�

= 2E + �,

and Partition has no solution. �

In fact, problem 1|CMP(period),N − Res|Cmax admits several polynomial-time
2-approximation algorithms, which due to Theorem 13.5 should be seen as best
possible. Most of these algorithms are applicable to problems more general than
1|CMP(period),N − Res|Cmax; some of them are discussed in Sect. 14.2.2. Below,
for illustration, we present one such algorithm.

Assume that the jobs are numbered in non-increasing order of their processing
times, i.e., in the LPT order given by

p1 ≥ p2 ≥ · · · ≥ pn. (13.7)

Consider the following approximation algorithm for problem 1|CMP(period),

N − Res|Cmax.

Algorithm LPT_Period

Step 1. If required, renumber the jobs in accordance with (13.7). Define

b := 1, N [1] := ∅, p(N [1]) := 0, q := 1.

Step 2. For j from 1 to u do

(a) If p
(
N[q]

)
+ pj > T , then go to Step 2(b); otherwise, update

N[q] := N[q] ∪ {j}; p
(
N[q]

)
:= p

(
N[q]

)
+ pj

and go to Step 2(c).

http://dx.doi.org/10.1007/978-3-319-39574-6_14
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(a)

(b)

Fig. 13.1 a An optimal schedule S∗; b schedule SLPT

(b) If q < b, then update q := q + 1 and return to Step 2(a); otherwise,
define

b := b + 1, N [b] := {j}, p(N [b]) := pj.

(c) Restore q := 1 and take the next job.

Step 3. Output a schedule SLPT that consists of b found groupsN [1],N [2], . . . ,N [b].

Algorithm LPT_Period takes the jobs in the LPT order and assigns the next job to
the first available group it fits. If the job does not fit into any available group, then a
new group is started. The running time of the algorithm is O

(
n2

)
. To see that, notice

that in the worst case to find a placement for job j up to j − 1 comparisons may be
needed. The following theorem regarding its worst-case performance can be proved.

Theorem 13.6 For schedule SLPT the following bound

Cmax(SLPT)

Cmax(S∗)
≤ 2 (13.8)

holds, and this bound is tight.

Adiscussion of algorithms similar toAlgorithmLPT_Period is given in Sect. 13.5.
The proof of Theorem 13.6 can be deduced from the proofs of more general state-
ments given in Sect. 14.2.2. Below we only present a numerical example which
demonstrates that a worst-case bound of 2 in (13.8) is tight.

Example 13.1 To see that the bound (13.8) is tight, consider the instance of problem
1|CMP(period),N − Res|Cmax with the following parameters

p1 = 6, p2 = p3 = p4 = 4, p5 = p6 = 3;T = 12,

and the duration of a CMP set equal to some value �.

An optimal schedule S∗ shown in Fig. 13.1a has no gaps and uses only one CMP
and all jobs are completed by the beginning of the second CMP, so that Cmax(S∗) =
24 + �. Schedule SLPT shown in Fig. 13.1b has two gaps of total duration 3 and uses
two CMPs, so that Cmax(SLPT) = 27 + 2�. We deduce that

http://dx.doi.org/10.1007/978-3-319-39574-6_14
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Cmax(SLPT)

Cmax(S∗)
= 27 + 2�

24 + �
,

and this ratio approaches 2 as � → ∞.

13.2 Weighted Total Flow Time: Complexity
for the Non-resumable Scenario

In this section, we consider problem 1|CMP(1),N − Res| ∑wjCj of minimizing the
sum of the weighted completion times with a single compulsory maintenance period
(CMP) represented by a given time interval I = [s, t] of length� = t − s. The focus
is on the non-resumable scenario.

13.2.1 Properties of the Objective Function

We state the properties of the objective function and establish the link between
problem 1|CMP(1),N − Res| ∑ wjCj and the knapsack problem with a quadratic
objective function related to the half-product; see Sects. 4.3 and 4.4. Consider a
schedule SN−Res that is feasible for problem 1|CMP(1),N − Res| ∑wjCj. Assume
that SN−Res is associated with two groups N[q] which are ordered in accordance with

permutation π[q], respectively, q ∈ {1, 2}. Denote n[q] =
∣
∣
∣N[q]

∣
∣
∣, let π[q](i) be the

job located in the ith position of permutation π[q], where 1 ≤ i ≤ n[q]. We deduce
that

Cπ[1](j) =
j∑

i=1

pπ[1](i), 1 ≤ j ≤ n[1]; Cπ[2](j) = t +
j∑

i=1

pπ[2](i), 1 ≤ j ≤ n[2]. (13.9)

Thus, for a schedule SN−Res associated with the partition N [1] and N [2] and
sequences π[1] and π[2], the value of the objective function can be written as

Z(SN−Res) =
n[1]∑

j=1

wπ[1](j)

j∑

i=1

pπ[1](i) +
n[2]∑

j=1

wπ[2](j)

(
j∑

i=1

pπ[2](i) + t

)

(13.10)

=
n[1]∑

j=1

wπ[1](j)

j∑

i=1

pπ[1](i) +
n[2]∑

j=1

wπ[2](j)

j∑

i=1

pπ[2](i) + t
n[2]∑

j=1

wπ[2](j).

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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It is clear that if a partition N = N [1] ∪ N [2] is fixed, then in order to minimize
Z(S) of the form (13.10) we need to minimize the sum of the weighted completion
times of the jobs in set N [1] and in set N [2]. This can be done by solving prob-
lems 1| | ∑ wjCj with a permanently available machine for the jobs of set N [1]

and for those of set N [2]. It follows from Theorem 2.6 that for this purpose the
jobs of each set must be ordered in accordance with the WSPT rule, i.e., in non-
decreasing order of the ratios pj/wj. Thus, for problem 1|CMP(1),N − Res| ∑ wjCj

throughout of this chapter, unless stated otherwise, the jobs are numbered in such a
way that

p1
w1

≤ p2
w2

≤ · · · ≤ pn
wn

. (13.11)

Notice that for the unweightedversionof theproblem, i.e., for problem1|CMP(1),
N − Res| ∑Cj, we assume that the jobs are numbered in accordance with the SPT
rule, i.e., in such a way that

p1 ≤ p2 ≤ · · · ≤ pn. (13.12)

Thus, our further consideration of the problems under the non-resumable scenario
is based on the following statement.

Lemma 13.1 For problem 1|CMP(1),N − Res| ∑ wjCj (correspondingly, problem
1|CMP(1),N − Res| ∑Cj) there exists an optimal schedule in which the jobs sched-
uled before the CMP and those scheduled after the CMP are processed in the WSPT
order (correspondingly, in the SPT order).

For function � ∈ {F,Z}, consider the value �0(π) of the objective function in
problem 1| |�, with a continuously available machine. In particular, define

F0(π) :=
n∑

j=1

j∑

i=1

pπ(i) (13.13)

Z0(π) :=
n∑

j=1

wπ(j)

j∑

i=1

pπ(i). (13.14)

For the numbering (13.11), let πWSPT be the identity permutation (1, 2, . . . , n). It
follows from Theorem 2.6 that the inequality

Z0
(
πWSPT

) =
∑

1≤i≤j≤n

piwj ≤ Z0(π) (13.15)

holds for any permutation π.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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We now establish links between problem 1|CMP(1),N − Res| ∑wjCj and
problems of Boolean quadratic programming.

Using (13.2), take the jobs in the order of their numbering and define a vec-
tor x =(x1, x2, . . . , xn) with n Boolean components such that (13.3) holds. If job j
completes before interval I , then

Cj =
j∑

i=1

pixi, (13.16)

while if it completes after interval I , then

Cj = t +
j∑

i=1

pj(1 − xj),

Thus, for a vector x =(x1, x2, . . . , xn)with n Boolean components, the sum of the
weighted completion times can be written as

Z(x) =
n∑

j=1

wjxj

j∑

i=1

pixi +
n∑

j=1

wj(1 − xj)

(

t +
j∑

i=1

pi(1 − xi)

)

=
∑

1≤i≤j≤n

piwjxixj +
∑

1≤i≤j≤n

piwj(1 − xi)(1 − xj) + t
n∑

j=1

wj(1 − xj).

For a vector x =(x1, x2, . . . , xn) with Boolean components, define

f (x) :=
∑

1≤i≤j≤n

piwjxixj +
∑

1≤i≤j≤n

piwj(1 − xi)(1 − xj), (13.17)

so that

Z(x) = f (x) + t
n∑

j=1

wj(1 − xj). (13.18)

Taking into account that
x2j = xj, j ∈ N (13.19)

which holds for xj ∈ {0, 1}, we deduce that problem 1|CMP(1),N − Res| ∑ wjCj

can be formulated as the following Boolean quadratic programming problem
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minimize Z(x) =
∑

1≤i<j≤n

piwjxixj +
∑

1≤i<j≤n

piwj(1 − xi)(1 − xj)

+t
n∑

j=1

wj(1 − xj) +
n∑

j=1

pjwj

subject to
n∑

j=1

pjxj ≤ s

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(13.20)

Recall the definition (4.31) of a symmetric quadratic function. If in (4.31) we
define

αj = pj, βj = wj, μj = 0, νj = wjt, j = 1, 2, . . . , n; A = s, K =
n∑

j=1

pjwj,

then the objective function in (13.20) becomes a special case of (4.31). Thus, accord-
ing to the terminology adapted in Sect. 4.4 problem (13.20) is an instance of a sym-
metric quadratic knapsack problem.

13.2.2 Useful Lower Bounds

Notice that the value f (x) defined by (13.17) can be understood as the sum of
the weighted completion times in problem P2| | ∑ wjCj on two parallel identical
machines for a schedule in which the jobs of set

{
j ∈ N |xj = 1

}
are assigned to one

machine, while the other jobs are assigned to the other, and on each machine the jobs
are processed in accordance with their numbering given by (13.11); see Sect. 4.3.1.
Intuitively, f (x) should not be larger than Z0

(
πWSPT

)
defined in (13.15). The formal

proof of this fact is below.

Lemma 13.2 For any Boolean vector x = (x1, . . . , xn), the inequality

Z0
(
πWSPT

)
=

∑

1≤i≤j≤n

piwj ≥
∑

1≤i≤j≤n

piwjxixj +
∑

1≤i≤j≤n

piwj(1 − xi)(1 − xj) = f (x) (13.21)

holds.

Proof For any Boolean vector x = (x1, . . . , xn), we have that for any pair of indices
i and j, 1 ≤ i ≤ j ≤ n, the inequality xixj + (1 − xi)(1 − xj) ≤ 1 holds, so that

∑

1≤i≤j≤n

piwj ≥
∑

1≤i≤j≤n

piwjxixj +
∑

1≤i≤j≤n

piwj(1 − xi)(1 − xj) = f (x),

as required. �

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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The following lower bound can be derived.

Lemma 13.3 For problem (13.20), let x = (x1, . . . , xn) be a Boolean vector that
defines a feasible solution vector, and x∗ = (x∗

1, . . . , x
∗
n) be a Boolean vector that is

associated with an optimal solution. The following lower bound

f (x∗) + s
n∑

j=1

wj(1 − x∗
j ) ≥ f (x). (13.22)

holds.

Proof Notice that
∑

1≤i≤j≤n piwjx∗
i x

∗
j + ∑

1≤i≤j≤n piwj(1 − x∗
i )(1 − x∗

j ) + s∑n
j=1 wj(1 − x∗

j ) is the value of the objective function in a single machine scheduling
problem to minimize the sum of the weighted completion times, provided that each
job j with x∗

j = 1 completes before time s, and each job j with x∗
j = 0 starts after

time s. Thus,

∑

1≤i≤j≤n

piwjx
∗
i x

∗
j +

∑

1≤i≤j≤n

piwj(1 − x∗
i )(1 − x∗

j ) + s
n∑

j=1

wj(1 − x∗
j ) ≥

∑

1≤i≤j≤n

piwj,

where the right-hand side is equal to Z0
(
πWSPT

)
, the optimal value of the objective

function in problem 1| | ∑wjCj. The required lower bound follows immediately
from Lemma 13.2. �

Lemma 13.3 is used in the analysis of approximation algorithms for problem
1|CMP(1),N − Res| ∑wjCj.

13.2.3 Computational Complexity

We resolve the complexity status of problem 1|CMP(1),N − Res| ∑wjCj by show-
ing that problem 1|CMP(1),N − Res| ∑Cj with the unweighted objective function
is NP-hard. In the proof of the NP-hardness, the following NP-complete problem is
used for reduction; see Sect. 1.3.2.

Even-Odd Partition: Given positive integers e1, . . . , e2r and the index set
R = {1, . . . , 2r} such that ei ≤ ei+1 for 1 ≤ i < 2r and e(R) = ∑

i∈R ei = 2R, is
it possible to partition set R into disjoint subsets R1 and R2 such that e(R1) =∑

i∈R1
ei = E and e(R2) = ∑

i∈R2
ei = E and for each i, 1 ≤ i ≤ r, each set R1 and

R2 contains exactly one element of the pair {2i − 1, 2i}?
Theorem 13.7 Problem 1|CMP(1),N − Res| ∑Cj is NP-hard in the ordinary
sense.

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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Proof Given an instance of Even-Odd Partition, choose integers M and P such
that

M > 2rE; P > Q,

where

Q =
r∑

i=1

(r − i + 1)(e2i−1 + ei) + (
2r2 + 4r + 1

)
M + (r + 2)E.

Define the instance of problem 1|CMP(1),N − Res| ∑Cj with

n = 2r + 1; pj = M + ei, 1 ≤ i ≤ 2r; p2r+1 = P;
s = rM + E; � = M; t = (r + 1)M + E.

We show that Even-Odd Partition has a solution if and only if in the const-
ructed instance of the problem there exists a schedule S0 such that F(S0) ≤ y =
Q + P.

Suppose that Even-Odd Partition has a solution represented by the sets R1 and
R2. Then, schedule S0 with Cmax(S0) = y exists and can be found as follows. Define
N[q] := Rq and letϕ[q] denote a sequence of jobs of setN[q] sorted in the SPT order,
q ∈ {1, 2}. In schedule S0, process the jobs of the first group N [1] in accordance with
sequenceϕ[1] before the CMP, and the jobs of in the second groupN [2] in accordance
with sequence ϕ[2] starting at time t. Additionally, assign job 2r + 1 to be processed
last. Notice that the structure of schedule S0 satisfies Lemma 13.1.

It follows that

∑

i∈N[q]

pi = rM +
∑

i∈Rq

ei = rM + E, q ∈ {1, 2}.

Since p
(
N [1]

) = s, we see that schedule S0 is feasible. Using (13.9), compute

r∑

i=1

Cϕ[1](i) =
r∑

i=1

(r − i + 1)pϕ[1](i);
r∑

i=1

Cϕ[2](i) = rt +
r∑

i=1

(r − i + 1)pϕ[2](i)

= r((r + 1)M + E) +
r∑

i=1

(r − i + 1)pϕ[2](i);

C2r+1 =
∑

i∈N [1]

pi + � +
∑

i∈N [2]

pi + p2r+1 = 2(rM + E) + M + P

= (2r + 1)M + 2E + P.
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Since the e-values form a non-decreasing sequence, we obtain

2r+1∑

i=1

Ci(S0) =
r∑

i=1

(r − i + 1)pϕ[1](i) +
r∑

i=1

(r − i + 1)pϕ[2](i)

+ r((r + 1)M + E) + (2r + 1)M + 2E + P

=
r∑

i=1

(r − i + 1)(e2i−1 + e2i) + 2M
r∑

i=1

(r − i + 1)

+ r((r + 1)M + E) + (2r + 1)M + 2E + P

=
r∑

i=1

(r − i + 1)(e2i−1 + e2i) + r(r + 1)M

+ r((r + 1)M + E) + (2r + 1)M + 2E + P

=
r∑

i=1

(r − i + 1)(e2i−1 + e2i)

+ 2r(r + 1)M + (2r + 1)M + (r + 2)E + P

= Q + P = y,

i.e., S0 is indeed a required schedule.
Suppose now that a schedule S0 such that

∑2r+1
i=1 Ci(S0) ≤ y exists, and set N [1]

(set N [2]) is the subset of jobs of set {1, 2, . . . , 2r} processed before the CMP (after
the CMP, respectively) in schedule S0. Since p2r+1 > s, job 2r + 1must be processed
after the CMP. Due to Lemma 13.1, we may assume that the jobs of each set N [1]

and N [2] ∪ {2r + 1} are processed in the SPT order; in particular, this implies that
job 2r + 1 is the last job. For q ∈ {1, 2}, denote the sequences of jobs of set N[q] by

π[q] and n[q] =
∣
∣
∣N[q]

∣
∣
∣.

Since
pi > M, 1 ≤ i ≤ 2r, (13.23)

and s = rM + E < (r + 1)M, it follows that n[1] ≤ r. Suppose that n[1] ≤ r − 1, so
that n[2] ≥ r + 1. Compute

2r+1∑

i=1

Ci(S0) =
n[1]∑

i=1

(
n[1] − i + 1

)
pπ[1](i) +

n[2]∑

i=1

(
n[2] − i + 1

)
pπ[2](i)

+n[2]((r + 1)M + E) + C2r+1.

Due to (13.23), ignoring the contributions of the e-values to the processing times,
we have

n[q]∑

i=1

(
n[q] − i + 1

)
pπ[q](i) >

n[q]
(
n[q] + 1

)

2
M, q ∈ {1, 2}.
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Notice that

n[1]
(
n[1] + 1

)

2
+ n[2]

(
n[2] + 1

)

2

= n[1]
(
n[1] + 1

)

2
+

(
2r − n[1]

)(
2r − n[1] + 1

)

2

= 2r2 − 2rn[1] + r + (
n[1]

)
2 = (

r2 + r2
) − 2rn[1] + r + (

n[1]
)2

= r(r + 1) + (r − n1)
2 > r(r + 1) + 1,

where the last inequality is due to n1 ≤ r − 1.
The block of jobs of set N [2] starts at time t = (r + 1)M + E, so that C2r+1 >

(r + 1)M + E + n[2]M + P. Thus, due to n[2] ≥ r + 1 we deduce

2r+1∑

i=1

Ci(S0) > r(r + 1)M + M + (r + 1)((r + 1)M + E)

+(r + 1)M + E + (r + 1)M + P

= r(r + 1)M + M + r(r + 1)M + (r + 1)E + 3(r + 1)M + E + P

= 2r(r + 1)M + 3(r + 1)M + (r + 2)E + M + P

= (
2r2 + 4r + 1

)
M + (r + 2)E + (r + 3)M + P.

Observe that

r∑

i=1

(r − i + 1)(e2i−1 + e2i) < r
r∑

i=1

(e2i−1 + e2i) = 2rE < M < (r + 3)M,

so that
2r+1∑

i=1

Ci(S0) > y,

and we deduce that n[1] = n[2] = r. Compute

2r+1∑

i=1

Ci(S0) =
r∑

i=1

(r − i + 1)pπ[1](i) +
(

r∑

i=1

(r − i + 1)pπ[2](i) + rt

)

+ C2r+1

=
r∑

i=1

(r − i + 1)pπ[1](i) +
(

r∑

i=1

(r − i + 1)pπ[2](i) + rt

)

+
(

t +
r∑

i=1

pπ[2](i)

)

+ P
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=
r∑

i=1

(r − i + 1)pπ[1](i) +
r∑

i=1

(r − i + 1)pπ[2](i) +
r∑

i=1

pπ[2](i)

+(r + 1)((r + 1)M + E) + P.

Transforming further, we obtain

2r+1∑

i=1

Ci(S0) =
(

r∑

i=1

(r − i + 1)eπ[1](i) + r(r + 1)

2
M

)

+
(

r∑

i=1

(r − i + 1)eπ[2](i) + r(r + 1)

2
M

)

+
(

r∑

i=1

eπ[2](i) + rM

)

+(r + 1)((r + 1)M + E) + P

=
r∑

i=1

(r − i + 1)eπ[1](i) +
r∑

i=1

(r − i + 1)eπ[2](i) +
r∑

i=1

eπ[2](i)

+(
2r2 + 4r + 1

)
M + (r + 1)E + P.

Since
∑2r+1

i=1 Ci(S0) ≤ y, we must have that

r∑

i=1

(r − i + 1)eπ[1](i) +
r∑

i=1

(r − i + 1)eπ[2](i) +
r∑

i=1

eπ[2](i)

≤
r∑

i=1

(r − i + 1)(e2i−1 + ei) + E.

Wemay think of the expression
∑r

i=1(r − i + 1)(e2i−1 + ei) as the smallest value
of the sum of the completion times on two identical parallel machines for 2r jobs
with the processing times ei, 1 ≤ i ≤ 2r, since this expression gives the value of the
objective function delivered by Algorithm PSumSPT presented in Sect. 2.3.2. Thus,

r∑

i=1

(r − i + 1)eπ[1](i) +
r∑

i=1

(r − i + 2)eπ[2](i) ≥
r∑

i=1

(r − i + 1)(e2i−1 + ei),

which implies that
r∑

i=1

eπ[2](i) ≤ E.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Since S0 is a feasible schedule, the inequality

r∑

i=1

pπ[1](i) ≤ s

holds, which simplifies to
r∑

i=1

eπ[1](i) ≤ E.

Thus, we deduce that

r∑

i=1

eπ[1](i) =
r∑

i=1

eπ[2](i) = E.

If we set Rq = N[q], q ∈ {1, 2}, we obtain a solution to Even-Odd Partition.
�

To fully resolve the complexity status of problem 1|CMP(1),N − Res| ∑wjCj,
we show that it can be solved in pseudopolynomial time by a dynamic programming
(DP) algorithm. We present the corresponding algorithm in terms of solving the
symmetric quadratic knapsack problem (13.20).

The decision variables x1, x2, . . . , xn are scanned in the order of their numbering
and are given either the value of 1 (an item is put into the knapsack) or 0 (an item is
not put into the knapsack).

Define

Ak :=
k∑

j=1

pj, k = 1, 2, . . . , n.

and suppose that the values x1, x2, . . . , xk have been assigned. The described DP
algorithm deals with partial solutions associated with states of the form

(k,Zk, yk),

where

k is the number of the assigned variables;
Zk is the current value of the objective function;
yk := ∑k

j=1 pjxj, the total weight of the items put into the knapsack.

We now give a formal statement and implementation details of the DP algorithm.

Algorithm NResDP

Step 1. Start with the initial state (0,Z0, y0) = (0,
∑

pjwj, 0).Compute the values
Ak = ∑k

j=1 pj, k = 1, 2, . . . , n.
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Step 2. For all k from 0 to n − 1 make transitions from each stored state of the
form (k,Zk, yk) into the states of the form (k + 1,Zk+1, yk+1) by assigning the
next variable xk+1.

(a) Define xk+1 = 1, provided that item k + 1 fits into the knapsack, i.e., if the
inequality yk + pk+1 ≤ s holds. If feasible, the assignment xk+1 = 1 changes
a state (k,Zk, yk) to a state of the form (k + 1,Zk+1, yk+1) where

Zk+1 = Zk + wk+1yk, yk+1 = yk + pk+1.

(b) Define xk+1 = 0, which is always feasible. This assignment changes a state
(k,Zk, yk) to a state of the form (k + 1,Zk+1, yk+1) such that

Zk+1 = Zk + wk+1(Ak − yk) + wk+1t; yk+1 = yk .

Step 3. Output the optimal value of the function that corresponds to the smallest
value of Zn among all found states of the form (n,Zn, yn).

Algorithm NResDP can be implemented in O(ns) time.

13.3 Weighted Total Flow Time: Complexity
for the Resumable Scenario

In this section, we consider problem 1|CMP(1),Res| ∑ wjCj of minimizing the sum
of the weighted completion times with a single compulsory maintenance period
(CMP) represented by a given time interval I = [s, t] of length� = t − s. The focus
is on the resumable scenario.

13.3.1 Properties of the Objective Function

For problem 1|CMP(1),Res| ∑wjCj under the resumable scenario, given a permu-
tation permutation π of jobs with the crossover job π(�), we may assume that the
jobs of set N\{π(�)} are split into two subsets, N1(π) and N2(π) such that the jobs
of set N1(π) = {π(1), , . . . ,π(� − 1)} are sequenced before the crossover job, while
the jobs of set N2(π) = {π(� + 1), , . . . ,π(n)} are sequenced after the crossover job.
Similarly to the non-resumable scenario, for the purpose of minimizing the total
weighted completion time the jobs prior to the crossover job and those after the
crossover job should be ordered in the WSPT order. Thus, the following statement
holds.
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Lemma 13.4 For problem 1|CMP(1),Res| ∑wjCj (correspondingly, problem
1|CMP(1),Res| ∑Cj) there exists an optimal schedule in which the jobs scheduled
before the crossover job and those scheduled after the crossover job are processed
in the WSPT order (correspondingly, in the SPT order).

Notice that unlike in Lemma 13.4 that handles the non-resumable scenario,
Lemma 13.4 does not say anything about the crossover job itself. For example,
in the case of problem 1|CMP(1),Res| ∑wjCj in an optimal schedule associated
with a permutation π of jobs with a crossover job π(�) the sign of each of differences
pπ(�−1)

wπ(�−1)
− pπ(�)

wπ(�)
and pπ(�)

wπ(�)
− pπ(�+1)

wπ(�+1)
can be arbitrary.

For problem 1|CMP(1),Res| ∑wjCj, we use (13.1) to write out the objective
function for a schedule SRes associated with a permutation π and the crossover job
π(�) as

Z(SRes) =
�−1∑

j=1

wπ(j)

j∑

i=1

pπ(i) + wπ(�)

(

t +
(

�∑

i=1

pπ(j) − s

))

+
n∑

j=�+1

wπ(j)

(

t +
(

j∑

i=1

pπ(j) − s

))

=
�−1∑

j=1

wπ(j)

j∑

i=1

pπ(i) + wπ(�)

�∑

j=1

pπ(j) +
n∑

j=�+1

wπ(j)

j∑

i=1

pπ(i)

+
n∑

j=�

wπ(j)(t − s).

Using (13.14), we may write

Z(SRes) =
n∑

j=1

wπ(j)

j∑

i=1

pπ(i) +
n∑

j=�

wπ(�)(t − s) = Z0(π) + (t − s)
n∑

j=�

wπ(j).

(13.24)
For problem 1|CMP(1),Res|∑ wjCj, suppose that a certain job is chosen as the

crossover job. Denote the processing time and the weight of the chosen crossover
job by p and w, respectively, and renumber the remaining jobs taken according to
the WSPT rule by the integers 1, 2, . . . ,m, where m = n − 1.

A feasible schedule for problem 1|CMP(1),Res|∑ wjCj with a fixed crossover
job can be found by inserting the crossover job into a schedule for processing the
jobs 1, 2, . . . ,m under the non-resumable scenario. For problem 1|CMP(1),Res|∑

wjCj, let S∗ denote the optimal schedule that delivers the smallest value Z(S∗)
of the objective function, while S(p, w) denote a feasible schedule with a fixed
crossover job with the processing time p and weight w. Denote the smallest value of
the function among all schedules with the chosen crossover job by Z∗(p, w).

Define the Boolean decision variables xj such that (13.2) holds for each j,
1 ≤ j ≤ m. It follows from (13.20) that for an arbitrary assignment of variables xj
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the sum of the weighted completion times of the corresponding schedule Sm under
the non-resumable scenario is given by

Zm =
∑

1≤i<j≤m

piwjxixj +
∑

1≤i<j≤m

piwj(1 − xi)(1 − xj) + t
m∑

j=1

wj(1 − xj) +
m∑

j=1

pjwj,

where
m∑

j=1

pjxj ≤ s, xj ∈ {0, 1}, j = 1, 2, . . . ,m.

To convert a schedule Sm into a schedule S(p, w) that is feasible for problem
1|CMP(1),Res|∑ wjCj with the chosen crossover job, we process the crossover job
for px time units before the non-availability interval starting at time

ym =
m∑

j=1

pjxj,

where either x = 1, if
p < s − ym,

or
x = s − ym

p
,

otherwise. The former case should be ignored, since the chosen job completes earlier
than time s and is not a crossover job. In the latter case, the chosen job is the crossover
job that is additionally processed for p(1 − x) time units starting at time t, and this
increases the starting (and the completion) time of each job with xj = 0 by p(1 − x).

The value of the objective function of the resulting schedule S(p) can be written
as

Z(p) = Zm + H(ym,Wm, x), (13.25)

where Wm = ∑m
j=1 wj(1 − xj) and

H(ym,Wm, x) = w(t + p(1 − x)) + Wmp(1 − x).

13.3.2 Computational Complexity

First, we establish that problem 1|CMP(1),Res| ∑Cj to minimize the sum of the
completion times under the resumable scenario can be solved in polynomial time.
In fact, the corresponding optimal schedule is specified by a sequence of jobs sorted
in the SPT order, i.e., in non-decreasing order of their processing times. This should



13.3 Weighted Total Flow Time: Complexity for the Resumable Scenario 277

be seen as an extension of the classical result which states that problem 1| | ∑Cj is
solvable by the SPT rule; see Theorem 2.2.

Theorem 13.8 For problem 1|CMP(1),Res| ∑Cj, an optimal schedule can be
found in O(n log n) time, by sequencing the jobs in accordance with the SPT rule.

Proof Take an arbitrary time τ > 0, and let for a permutation π of jobs the number
of jobs that are completed by time τ be denoted by n(τ ;π).

For an arbitrary sequence π of jobs, the equality (13.24) applied to problem
1|CMP(1),Res| ∑Cj can be written as

F(SRes) =
n∑

j=1

j∑

i=1

pπ(i) +
n∑

j=�

(t − s) = F0(π) + (t − s)(n − n(s;π)).

The nature of the SPT ordering is such that for the sequence πSPT = (1, 2, . . . , n)
the inequality n

(
τ ;πSPT

) ≥ n(τ ;π) holds for any τ and any π. Since for any permu-
tation π, the inequalities

F0
(
πSPT

) ≤ F0(π), n − n
(
s;πSPT

) ≤ n − n(s;π),

hold, it follows that a schedule associated with permutation πSPT is optimal. �

The complexity status of the problem under the resumable scenario changes if the
function become the sum of the weighted completion times. Below, we prove that
problem 1|CMP(1),Res| ∑ wjCj is NP-hard. As in the proof of Theorem 13.5, we
use Partition to prove the NP-hardness.

Theorem 13.9 Problem 1|CMP(1),Res| ∑wjCj is NP-hard in the ordinary sense,
even if pj = wj , j ∈ N.

Proof Given an instance of Partition, define the instance of problem 1|CMP(1),
Res| ∑wjCj with

N = R; pj = wj = ej, j ∈ N; s = E, t = 2E.

We show that Partition has a solution if and only if in the constructed problem
there exists a schedule S0 such that Z(S0) ≤ y = ∑

1≤i≤j≤n

(
eiej

) + E2.

Suppose that Partition has a solution represented by the sets R1 and R2. Then,
schedule S0 with Z(S0) = y exists and can be found as follows. Define Nq := Rq,

q ∈ {1, 2} and let in S0 the jobs of set N1 be processed before the CMP, while the
jobs of set N2 be processed as a block starting from time t. Notice that since pj = wj,
j ∈ N , the jobs of each set Nq can be processed in any order. Since p(N1) = e(R1)

= s, S0 is a feasible schedule in which the jobs of set N1 are completed before time
s and there is no crossover job. Notice also that w(N2) = E.

Due to (13.24), we have that

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Z(S0) =
n∑

j=1

wj

j∑

i=1

pi + (t − s)
∑

j∈N2

wj =
∑

1≤i≤j≤n

(
eiej

) + E2 = y,

as required.
Suppose now that a schedule S0 such that Cmax(S0) ≤ y exists. Assume that

in this schedule the jobs are processed in accordance with a permutation
π = (π(1),π(2), . . . ,π(n)), and Nq, q ∈ {1, 2} are the sets of jobs completed before
the CMP and after the CMP, respectively. Thus, due to (13.24),

Z(S0) = Z0(π) + (t − s)
∑

j∈N2

wj ≤ y.

The value Z0(π) reaches its minimum if the jobs are ordered in the WSPT order;
however, in our case, since pj = wj, j ∈ N , we have that

Z0(π) ≥
n∑

j=1

wj

j∑

i=1

pi =
∑

1≤i≤j≤n

(
eiej

)
.

Since S0 is a feasible schedule, we must have that p(N1) ≤ E, which implies that
w(N2) ≥ E.

Thus,
y ≥ Z(S0) ≥

∑

1≤i≤j≤n

(
eiej

) + E2 = y,

which is only possible when Z(S0) = y and w(N2) = E, so that p(N1) = E.

If we set Rq = Nq, q ∈ {1, 2, }, we obtain a solution to Partition. �
Based on the consideration presented in Sect. 13.3.1, we may apply the following

approach tofinding a scheduleS∗ that is feasible for problem1|CMP(1),Res|∑ wjCj.

For j from 1 to n, choose job j as the crossover job. Let the processing time of the
chosen job be p and its weight be w. Then,

(i) Find and store an optimal schedule under the non-resumable scenario.
(ii) Temporarily remove the chosen crossover job. Find schedule Sm that minimizes

the sum of the weighted completion times for the remaining m = n − 1 jobs
under the non-resumable scenario.

(iii) Insert the chosen job into schedule Sm to start at the completion time of the
last job completed before the CMP in schedule Sm. Ignore the situation that
the inserted job also completes before the CMP; otherwise, store the resulting
schedule S(p, w).

(iv) Among the stored schedules, find the one that minimizes the objective function
and output it as schedule S∗.

This approach is based on solving O(n) problems 1|CMP(1),N − Res|∑ wjCj

with O(n) jobs. It follows from Sect. 13.2.3 that each such problem can be solved in
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O(ns) time. Thus, we conclude that 1|CMP(1),Res|∑ wjCj is solvable
in O

(
n2s

)
time, i.e., admits a pseudopolynomial algorithm. Together with

Theorem 13.9, this observation fully resolves the complexity issue of problem
1|CMP(1),Res|∑ wjCj.

13.4 Weighted Total Flow Time: Approximation
Algorithms and Schemes

As shown in Sects. 13.2 and 13.3, problems 1|CMP(1),N − Res|∑wjCj and
1|CMP(1),Res|∑ wjCj are NP-hard, even in the case of a single CMP. This fact
has stimulated a large volume of research on design of approximation algorithms
and schemes for relevant problems.

13.4.1 Constant Ratio Approximation Algorithms

Given the role that the WSPT rule plays in minimizing the sum of the weighted
completion times, it is most natural to study the worst-case performance of the
algorithm in which the jobs are processed in the order of their numbering given by
(13.11). In our description of the algorithm, we exclude from consideration the case
that p(N) ≤ s, i.e., when all jobs can be completed before the CMP and the WSPT
sequence is optimal.

Algorithm CMP_WSPT

Step 1. Scanning jobs in the order of their numbering (13.11), assign them to be
processed from time zero until a job � is identified such that

�−1∑

j=1

pj ≤ s,
�∑

j=1

pj > s.

Step 2. If
∑�−1

j=1 pj = s, then irrespective of the scenario start job � at time t; other-
wise, either start job � at time t (for the non-resumable scenario) or start job � at
time

∑�−1
j=1 pj, interrupt its processing at time s, and resume at time t to complete

at time
∑�

j=1 pj + �.
Step 3. Assign the remaining jobs in the order of their numbering to be processed

starting from the completion time of job �. Call the resulting schedule SWSPT
Sc

where Sc ∈ {Res,N − Res}.
The running time of Algorithm CMP_WSPT is O(n log n). Below we analyze its

worst-case performance.
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(a)

(b)

(c)

Fig. 13.2 a Schedule SWSPT for the non-resumable scenario; b schedule SWSPT for the resumable
scenario; c optimal schedule S∗

Lemma 13.5 For problem 1|CMP(1), Sc|∑ wjCj with Sc ∈ {Res,N − Res}, let S∗
Sc

and SWSPT
Sc be an optimal schedule and a schedule found by Algorithm CMP_WSPT,

respectively. Then the ratio Z
(
SWSPT
Sc

)
/Z

(
S∗
Sc

)
can be arbitrary large.

Proof Consider an instance of problem 1|CMP(1), Sc|∑ wjCj with two jobs such
that

p1 = w1 = 1; p2 = W + 1, w2 = W ; s = W + 1, t = W 2 + W + 1.

In schedule SWSPT
Sc , the jobs are processed in the order (1, 2), so that irrespective of

the scenario C1
(
SWSPT
Sc

) = 1. For problem 1|CMP(1),N − Res|∑ wjCj, job 2 starts
after the CMP, so that

C2
(
SWSPT
N−Res

) = (
W 2 + W + 1

) + (W + 1) = W 2 + 2W + 2;

see Fig. 13.2a.
On the other hand, for problem 1|CMP(1),Res|∑ wjCj job 2 in schedule SWSPT

Res
is the crossover job that is processed for 1 time unit after the CMP, so that

C2
(
SWSPT
Res

) = W 2 + W + 2;

see Fig. 13.2b.
Thus, for the non-resumable scenario,

Z
(
SWSPT
N−Res

) = 1 · 1 + W
(
W 2 + 2W + 2

) = W 3 + 2W 2 + 2W + 1.

while for the resumable scenario,
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Z
(
SWSPT
Res

) = 1 · 1 + W
(
W 2 + W + 2

) = W 3 + W 2 + 2W + 1.

No matter which scenario is chosen, in an optimal schedule S∗
Sc the sequence of

jobs is (2, 1), so that

C2
(
S∗
Sc

) = W + 1, C1
(
S∗
Sc

) = W 2 + W + 2,

and
Z
(
S∗
Sc

) = W (W + 1) + 1 · (
W 2 + W + 2

) = 2W 2 + 2W + 2;

see Fig. 13.2c.
In either case, the ratio Z

(
SWSPT
Sc

)
/Z

(
S∗
Sc

)
goes to infinity, as W → ∞. �

Define
δ := t

s
. (13.26)

The lemma below analyzes the performance of Algorithm CMP_WSPT with
respect to δ for the resumable scenario.

Lemma 13.6 For problem 1|CMP(1),Res|∑ wjCj the bound

Z
(
SWSPT
Res

)

Z
(
S∗
Res

) ≤ δ (13.27)

holds.

Proof For problem 1|CMP(1),Res|∑ wjCj, let π∗ = (π∗(1),π∗(2), . . .,
π∗(n)) be the sequence according to which the jobs are processed in an optimal
schedule S∗

Res. Let πWSPT = (1, 2, . . . , n) be the permutation in which the jobs are
scheduled in the order of their numbering that defines the corresponding schedule
SWSPT
Res .
Assume that in schedule SWSPT

Res job � is the crossover job and let N1 and N2 denote
the sets of jobs that in schedule SWSPT

Res precede and follow job �, respectively, i.e.,
N1 = {1, . . . , � − 1} and N2 = {� + 1, . . . , n}. For an optimal schedule S∗

Res, define
the sets N∗

q of jobs that complete before and after the CMP, respectively, q ∈ {1, 2}.
Using (13.24), we have that

Z
(
SWSPT
Res

) = Z0
(
πWSPT

) + (t − s)w(N2 ∪ {�});
Z
(
S∗
Res

) = Z0
(
π∗) + (t − s)w

(
N∗
2

)
.

Since Z
(
SWSPT
Res

) ≥ Z
(
S∗
Res

)
and Z0

(
πWSPT

) ≤ Z0(π∗), it follows that
w(N2 ∪ {�}) ≥ w

(
N∗
2

)
.

For an optimal schedule S∗
Res, define sets

N ′ = {
j ∈ N |Cj

(
S∗) ≤ C�

(
SWSPT
Res

)}; N ′′ = N\N ′.
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The nature of the WSPT ordering is such that the total weight of jobs completed
by time τ = C�

(
SWSPT
Res

)
in schedule SWSPT

Res is no less than the total weight of jobs
completed by time τ in a feasible schedule S associated with an arbitrary permutation
π. In particular, for π = π∗ this means that

w(N1 ∪ {�}) ≥ w
(
N ′),

so that we deduce

w(N2) = w(N) − w(N1 ∪ {�}) ≤ w(N) − w
(
N ′) = w

(
N ′′).

Notice that since job � is the crossover job in schedule SWSPT
Res , it follows that

C�(SWSPT) ≥ t, so that

N∗
2 = {

j ∈ N |Cj
(
S∗) > t

} ⊇ {
j ∈ N |Cj

(
S∗) > C�

(
SWSPT
Res

)} = N ′′,

and therefore
w(N2) ≤ w

(
N ′′) ≤ w

(
N∗
2

)
.

This and (13.24) applied to schedule SWSPT
Res allow us to deduce an estimate of the

value Z
(
SWSPT
Res

)
as follows

Z
(
SWSPT
Res

) = Z0
(
πWSPT

) + (t − s)w(N2 ∪ {�})
≤ Z0

(
π∗) + (t − s)w(N2) + (t − s)w�

≤ Z0
(
π∗) + (t − s)w

(
N∗
2

) + (t − s)w�

= Z
(
S∗
Res

) + (t − s)w� = Z
(
S∗
Res

) + (δ − 1)sw�.

Besides, since job � is the crossover job in schedule SWSPT
Res , it follows that∑�

i=1 pi ≥ s, and therefore, we derive a lower bound

Z
(
S∗
Res

) ≥ Z0
(
π∗) ≥ Z0

(
πWSPT

) =
n∑

j=1

wj

j∑

i=1

pi ≥ w�

�∑

i=1

pi ≥ sw�.

Thus, for the resumable scenario, we obtain

Z
(
SWSPT
Res

) ≤ Z
(
S∗
Res

) + (δ − 1)Z
(
S∗
Res

) = δZ
(
S∗
Res

)
,

so that (13.27) holds. �

For problem 1|CMP(1), Sc|∑ wjCj, introduce the following minimization linear
knapsack problem, which we call Problem KP.
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minimize
n∑

j=1

wjyj

subject to
n∑

j=1

pj yj ≥
n∑

j=1

pj − s

yj ∈ {0, 1}, j = 1, . . . , n.

In Problem KP, we aim at finding the smallest possible total weight of the jobs
processed after the CMP (for these jobs yj = 1), provided that the other jobs will
complete before the CMP (this is represented by the knapsack constraint). We can
think of this problem as the problem 1

∣
∣dj = s

∣
∣∑wjUj of minimizing the weighted

number of late jobs, provided that the jobs have a common due date s.
Suppose that a vector y = (y1, . . . , yn) delivers an optimal solution to Problem

KP, and we have found its approximate solution associated with a Boolean vector
yH = (yH1 , . . . , yHn ) such that

n∑

j=1

wjy
H
j ≤ ρ

n∑

j=1

wjyj, (13.28)

where ρ ≥ 1. Based on this approximate solution, we can define a heuristic sched-
ule SH that is feasible for problem 1|CMP(1),N − Res|∑ wjCj, and, therefore, for
problem 1|CMP(1),Res|∑ wjCj.

Algorithm HKP(ρ)

Step 1. For Problem KP, find a Boolean vector yH = (yH1 , . . . , yHn ) such that
(13.28) holds for some ρ ≥ 1.

Step 2. Define the variables xHj = 1− yHj = 0, 1 ≤ j ≤ n, and define the sets of

jobs NH
1 =

{
j ∈ N |xHj = 1

}
and NH

2 = N\NH
1 . Output schedule S

H , in which the

block of jobs of set NH
1 , is processed starting from time zero, and the block of

jobs of set NH
2 is processed starting from time t; within each block, the jobs are

processed in the order of their numbering.

We now analyze the worst-case performance of Algorithm HKP(ρ).

Theorem 13.10 For problem 1|CMP(1), Sc|∑ wjCj with Sc ∈ {Res,N − Res}, let
S∗
Sc be an optimal schedule, and S

H be a schedule found by Algorithm HKP(ρ). The
bounds

Z(SH)

Z
(
S∗
N−Res

) ≤ 1 + ρ (13.29)

and
Z(SH)

Z
(
S∗
Res

) ≤ ρ + 1

δ
, (13.30)

hold, where δ is defined by (13.26).
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Proof For a Boolean vector x =(x1, x2, . . . , xn) define

w(x) =
n∑

j=1

wj(1 − xj).

Let xH = (
xH1 , xH2 , . . . , xHn

)
be the vector found in Step 2 of Algorithm HKP(ρ).

For problem 1|CMP(1), Sc|∑ wjCj with Sc ∈ {Res,N − Res}, an optimal schedule
S∗
Sc can be associated with a Boolean vector x

∗
Sc=

(
x∗
1, x

∗
2, . . . , x

∗
n

)
such that job j ∈ N

is completed before the CMP if and only if x∗
j = 1.

Since for vector yH the knapsack constraint in Problem KP is satisfied, it follows
that p

(
NH
1

) ≤ s, i.e., the obtained schedule SH is feasible. Due to (13.28), we deduce

w(xH) =
n∑

j=1

wjy
H
j ≤ ρ

n∑

j=1

wjyj.

Since vector ȳ delivers an optimal solution to ProblemKP, for any Boolean vector
x the inequality

n∑

j=1

wjyj ≤
n∑

j=1

wj
(
1 − xj

)

holds. In particular, for vector x∗
Sc we have that

n∑

j=1

wjyj ≤
n∑

j=1

wj
(
1 − x∗

j

) = w
(
x∗
Sc

)
,

so that
w(xH) ≤ ρw

(
x∗
Sc

)
. (13.31)

It follows from (13.18) that

Z
(
SH

) = Z(xH) = f (xH) + tw(xH), (13.32)

and due to (13.22), we obtain

Z(xH) ≤ f (x∗
N−Res) + sw(x∗

N−Res) + tw(xH)

≤ f (x∗
N−Res) + sw(x∗

N−Res) + ρtw(x∗
N−Res)

≤ Z
(
x∗
N−Res

) + sw(x∗
N−Res) + (ρ − 1)tw(x∗

N−Res)

≤ Z
(
x∗
N−Res

) + ρtw(x∗
N−Res) ≤ (1 + ρ)Z

(
x∗
N−Res

)
,
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where the last inequality due to

Z
(
x∗
Sc

) = Z
(
S∗
Sc

) ≥
n∑

j=1

wj
(
1 − x∗

j

) j∑

i=1

(
pi

(
1 − x∗

i

) + t
) ≥ tw(x∗

Sc). (13.33)

Thus, for the non-resumable scenario (13.29) holds.
In order to analyze the resumable scenario, we apply Lemma 13.2 with x = xH

to derive

f (xH) =
∑

1≤i≤j≤n

piwjx
H
i x

H
j +

∑

1≤i≤j≤n

piwj(1 − xHi )(1 − xHj )

≤
n∑

j=1

wj

j∑

i=1

pi = Z0
(
πWSPT) ≤ Z0

(
π∗),

where πWSPT = (1, 2, . . . , n) and π∗ is an optimal permutation according to which
the jobs are processed in schedule S∗

Res. We deduce from and (13.31) and (13.32) that

Z
(
SH

)
= Z(xH) = f (xH) + tw(xH) ≤ Z0

(
π∗) + tw(xH) ≤ Z0

(
π∗) + ρtw(x∗

Res)

= Z0
(
π∗) + (t − s)w(x∗

Res) + (ρ − 1)tw(x∗
Res) + sw(x∗

Res).

Using (13.24), we further obtain

Z
(
SH

) ≤ Z
(
S∗
Res

) + (ρ − 1)tw(x∗
Res) + sw

(
x∗
Res

)
,

and applying (13.26) and (13.33), we finally deduce

Z
(
SH

) ≤ Z
(
S∗
Res

) +
(

ρ − 1 + 1

δ

)
tw(x∗

Res) ≤
(

ρ + 1

δ

)
Z
(
S∗
Res

)
,

i.e., (13.30) holds as required. �

Notice that Problem KP admits a fully polynomial-time approximation scheme
(FPTAS) that requires O(n/ε) time for any positive ε; see Sect. 4.2 for a discussion
of the FPTAS for the linear knapsack problem in the maximization form. Thus, in
Step 1 of Algorithm HKP(ρ) we may apply such an FPTAS, which guarantees that
ρ = 1 + ε. This results in the following statement on constant ratio algorithms for
problems problem 1|CMP(1), Sc|∑ wjCj with Sc ∈ {Res,N − Res}.
Theorem 13.11 For problem 1|CMP(1), Sc|∑ wjCj with Sc ∈ {Res,N − Res}, let
S∗
Sc be an optimal schedule, and S

H be a schedule found by Algorithm HKP(ρ) with
ρ = 1 + ε. Additionally, let SWSPT

Res be an a schedule found by Algorithm CMP_WSPT
for the problem under the resumable scenario. The following bounds hold:

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Z(SH)

Z
(
S∗
N−Res

) ≤ 2 + ε (13.34)

and
min

{
Z
(
SWSPT
Res

)
,Z(SH)

}

Z
(
S∗
Res

) ≤ ε + δ0, (13.35)

where δ0 = 1
2

√
5 + 1

2 = 1. 618 . . . is the positive root of the equation δ = 1 + 1
δ
.

Proof The inequality (13.34) follows immediately from (13.29) applied with ρ =
1 + ε.

For the resumable scenario, Lemma 13.6 and Theorem 13.10 (applied with ρ =
1 + ε) guarantee that

min
{
Z
(
SWSPT
Res

)
,Z(SH)

} ≤ min

{
δ, 1 + ε + 1

δ

}
Z
(
S∗
Res

) ≤ (ε + δ0)Z
(
S∗
Res

)
,

as required. �

Notice that finding schedules that deliver the bounds stated in Theorem 13.11
requires O(n log n + n/ε) time.

13.4.2 Approximation Schemes

Consider a problem of minimizing a function Z(x), where x is a collection of deci-
sion variables, e.g., a Boolean vector or a schedule. Recall that if x∗ is an optimal
solution such that Z(x∗) > 0, an FPTAS delivers a feasible solution xε such that
Z(xε) ≤ (1 + ε)Z(x∗).

Each problem 1|CMP(1), Sc|∑ wjCj with Sc ∈ {Res,N − Res} is known to
admit an FPTAS; however, the corresponding schemes are rather technical and their
detailed description is beyond the scope of this book. Below, we only briefly present
the ideas based on which an FPTAS can be designed.

As follows from (13.20), problem 1|CMP(1),N − Res|∑wjCj reduces to a sym-
metric quadratic knapsack problem, denoted byProblemSQK inSect. 4.4.According
to Theorem 4.13, Problem SQK admits an FPTAS, provided that is admits a constant
ratio approximation algorithm.We know fromTheorem 13.11 that such an algorithm
exists and requires O(n log n + n/ε) time. Thus, Theorem 4.13 is applicable and the
following statement holds.

Theorem 13.12 Problem 1|CMP(1),N − Res|∑wjCj admits an FPTAS that
requires O

(
n4/ε2

)
time. In the unweighted case, the running time becomes O

(
n3/ε2

)
.

We know that a schedule for problem 1|CMP(1),Res|∑ wjCj can be obtained
by inserting one of the jobs as the crossover job into a schedule found for problem

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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1|CMP(1),N − Res|∑wjCj with the set of the remaining jobs. Thus, an FPTAS
from Theorem 13.12 can be used as a subroutine for each choice of the crossover
job. Besides, extra care should be taken regarding the total weight of the jobs sched-
uled after the CMP, which additionally requires O(n/ε) time for each choice of the
crossover job. Thus, the following statement holds.

Theorem 13.13 Problem 1|CMP(1),Res|∑ wjCj admits an FPTAS that requires
O

(
n6/ε3

)
time.

See Sect. 13.5 for references and discussions.

13.5 Bibliographic Notes

This section provides a brief bibliographic review of the relevant results. Additional
information can be found in surveys by Lee (2004) and Ma et al. (2010).

13.5.1 Minimizing Makespan

Theorem 13.4 is proved in Breit et al. (2003).
The studies on problem 1|CMP(period),N − Res|Cmax, have been initiated in

Ji et al. (2007), where Algorithm LPT_Period is introduced and Theorem 13.6
is proved. An alternative 2-approximation algorithms for problem 1|CMP(period),

N − Res|Cmax, is given in Yu et al. (2014), where a detailed analysis of the number
of groups in schedules created by various approximation algorithms is presented.

Analysis of approximation algorithms in Ji et al. (2007) and Yu et al. (2014)
is based on a useful link between problem 1|CMP(period),N − Res|Cmax, and a
well-studied problem of combinatorial optimization, known as the bin-packing. The
bin-packing problem is NP-hard, and the main focus of its studies in on design and
analysis of approximation algorithms. In termsof bin-packing, an instance of problem
1|CMP(period),N − Res|Cmax, can be interpreted as follows. The jobs correspond
to items; the size of item j ∈ N is equal to the processing time pj of job j. The items
are to be packed into bins of size T . In the bin-packing problem, it is required to find
the smallest number of bins, which we denote by b∗. For schedule S∗ that is optimal
for problem 1|CMP(period),N − Res|Cmax, the number of groups is denoted by b∗,
and it is equal to the number of bins used in an optimal solution to the associated
bin-packing problem. Although the objective in problem 1|CMP(period),N −
Res|Cmax, and in the associated bin-packing problem is different, similar decisions
should be taken to solve these problems, so that various algorithmic ideas known in
the bin-packing studies can be employed to handle problem 1|CMP(period),N −
Res|Cmax. In particular, Algorithm LPT_Period can be seen as a scheduling adap-
tation of a bin-packing algorithm that implements the strategy known as First Fit
Decreasing; see, e.g., Simchi-Levi (1994).
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13.5.2 Minimizing Weighted Total Flow Time: Complexity

The reformulation of problem 1|CMP(1),N − Res| ∑wjCj in terms of a symmetric
quadratic knapsack problem (13.20) is presented in Kellerer and Strusevich (2010);
see also the survey Kellerer and Strusevich (2012) and its updated version Kellerer
and Strusevich (2016). The presented proof of Theorem 13.7 is given by
Lee and Liman (1992). Their proof is simpler than a previously known proof by
Adiri et al. (1989).

Algorithm NResDP is an adaptation of a dynamic programming algorithm for
solving a symmetric quadratic knapsack problem given in Kellerer and Strusevich
(2010).

Lee (1996) studies problem 1|CMP(1),Res| ∑wjCj. He proves the formulation
of the objective function in the form (13.24) and mentions the fact that problem
1|CMP(1),Res| ∑Cj is solvable by ordering the jobs in the SPT order.

Theorem 13.9 on the complexity of problem 1|CMP(1),Res| ∑wjCj,
is proved byLee (1996). For problem1|CMP(1),Res| ∑wjCj, Lee (1996) gives aDP
algorithm that requiresO(nspmax) time, where pmax = max

{
pj|j ∈ N

}
. The approach

to solving problem 1|CMP(1),Res| ∑ wjCj, by inserting a chosen crossover job into
a schedule for the non-resumable scenario, that results into an algorithm that requires
O

(
n2s

)
time, is developed in Kellerer and Strusevich (2010).

13.5.3 Minimizing Weighted Total Flow Time: Approximation

The first approximation algorithms for the problems of the range under consideration
have been developed for problem 1|CMP(1),N − Res|∑Cj, with the unweighted
objective function. Lee and Liman (1992) by refining the analysis by Adiri et al.
(1989) demonstrate that an algorithm that finds schedule SSPT in which the jobs
are sequenced in the SPT order is a (9/7)-approximation algorithm. An algorithm
with a worst-case performance ratio of 20/17 is given by Sadfi (2005). A further
improvement is done by Breit (2007). A polynomial-time approximation scheme
(PTAS) for the problem is presented in He et al. (2006).

Lemma 13.5 has been proved by several authors, e.g., by Lee (1996) for the
resumable scenario and by Kacem and Chu (2008) for the non-resumable scenario;
see also Megow and Verschae (2009). For the non-resumable scenario, Kacem and
Chu (2008) provide amodified algorithm that outputs a schedule SMWSPT. They show
that under some additional assumptions min{Z(SMWSPT),Z(SWSPT)} ≤ 3Z(S∗), but
in general, the performance of the modified algorithm remains arbitrary bad. For the
resumable scenario, Lee (1996) provides an algorithm that combines the WSPT
heuristic and an attempt to schedule the jobs with large weights before time s.
It is proved that for schedule SComb produced by this combined algorithm the
inequalityZ(SComb) ≤ 2Z(S∗) holds, provided that pj = wj, j ∈ N ; but in general, the
performance of the combined algorithm remains arbitrary bad.
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For problem 1|CMP(1),Res|∑ wjCj, Wang et al. (2005) design a
2-approximation algorithm that requires O

(
n2

)
time. Kellerer et al. (2009) demon-

strate that the existence of a ρ-approximation algorithm for problem 1|CMP(1),
Res| ∑wjCj implies the existence of a (2ρ)-approximation algorithm for problem
1|CMP(1),N − Res|∑wjCj with the same set of jobs.

Lemma 13.6 is proved in Megow and Verschae (2009). Theorems 13.10 and
13.11 for the non-resumable case are given in Kellerer et al. (2009), while their
versions for the resumable scenario are proved in Epstein et al. (2012). For problem
1|CMP(1),N − Res|∑wjCj, a 2-approximation algorithm that requiresO

(
n2

)
time

is due to Kacem (2008).
An FPTAS for Problem KP that is needed for Algorithm HKP(ρ) applied with

ρ = 1 + ε can be found in Kellerer et al. (2004); see also Sect. 4.2.
Theorems 13.12 and 13.13 are proved in Kellerer and Strusevich (2010). This

paper also presents detailed descriptions of the corresponding approximation
schemes. Problem 1|CMP(1),N − Res|∑ wjCj, is known to admit a
faster FPTAS that requires O

(
n3/ε2

)
time; see Epstein et al. (2012) and Kacem

and Mahjoub (2009).
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Chapter 14
Scheduling with Flexible Maintenance

In most problems considered in Chap.13, a single machine is subject to a single
compulsory maintenance, and the start time s of the compulsory maintenance period
(CMP) and its duration � are fixed. In this chapter, we also consider single machine
scheduling problems with maintenance activities; however, now, the location of a
maintenance period (MP) is less restrictive, and in fact, it is a decision variable so that
its value may affect the objective function. Unless stated otherwise, in scheduling
problems discussed in this chapter, the jobs of set N = {1, 2, . . . , n} are to be
processed on a single machine. The processing of job j ∈ N takes p j time units.
There is a weight w j associated with job j , which indicates its relative importance.
All values p j and w j are positive integers. The machine processes at most one job
at a time. The completion time of job j ∈ N in a feasible schedule S is denoted by
C j (S), or shortly C j , if it is clear which schedule is referred to.

In one of the simplest models, a single flexible machine maintenance inter-
val can be viewed as a non-availability period of length � that may start at
any time τ that does not exceed a given deadline DMP . For an objective func-
tion � ∈ {

Cmax,
∑

C j ,
∑

w jC j
}
, we denote problems of this type either by

1|τ ≤ DMP ,�|�, provided that the duration of an MP is constant and is equal to �,
or by 1|τ ≤ DMP ,�(τ )|�, provided that the duration of an MP is a non-decreasing
function of its start time τ .

An extension of the model with the maintenance start-time deadline is the model
with the due window, where it is assumed that the MP must start and finish within
a given time window [s, t]. Similar to the above, we denote problems of this type
either by 1|MP ∈ [s, t],�|�, provided that the duration of an MP is constant and
is equal to �, or by 1|MP ∈ [s, t],�(τ )|�, provided that the duration of an MP is
a non-decreasing function of its start time τ , where τ ≥ s and τ + �(τ ) ≤ t .

For those problems which are NP-hard, we present the results on design and
analysis of approximation algorithms and schemes. Let S∗ denote a schedule that
is optimal for a scheduling problem of minimizing a function �(S), i.e., �(S∗) ≤
�(S) for all feasible schedules S. Recall that a polynomial-time algorithm that finds
a feasible schedule SH such that the inequality �(SH )/�(S∗) ≤ ρ holds for all
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instances of the problem is called a ρ-approximation algorithm and ρ ≥ 1 is called a
worst-case ratio bound. A fully polynomial-time approximation scheme (FPTAS) is
a family of ρ -approximation algorithms such that for any positive ε > 0 (i) ρ = 1+ε
and (ii) the running time depends polynomially on the length of the problem’s input
and 1/ε.

The structure of this chapter is as follows. InSect. 14.1,we consider the complexity
and approximability issues of the problem of minimizing the makespan, the total
flow time, and the sum of the weighted completion times, provided that a single
flexiblemaintenance period (either of a constant duration or of a start-time-dependent
duration) must start before a given due date. Section14.2 considers the model with
an MP that must be scheduled within a given window, including its extension to
periodic maintenance.

14.1 Flexible Maintenance: Start-Time Deadline

We start with single machine models in which a single maintenance has to be com-
pleted before a given deadline.

Recall that in the case of a compulsory maintenance periods, in Chap.13, we
consider a possible resumable scenario of processing the jobs that might be affected
by the introduction of the MP. Below, we show that for the flexible maintenance,
there is no advantage in using the resumable scenario.

Lemma 14.1 For problem 1|τ ≤ DMP ,�(τ )|�, where � ∈ {
Cmax,

∑
C j ,∑

w jC j
}
, there exists an optimal schedule in which no job is interrupted and the

MP starts at the completion time of some job.

Proof For problem 1|τ ≤ DMP ,�(τ )|�, consider a feasible schedule S, in which
the jobs are processed according to the sequence π = (π(1), . . . ,π(n)) and the MP
starts at time τ . Let π(�) be the crossover job that starts at time

∑�−1
j=1 pπ( j), but

cannot be completed before time τ . The transformation of schedule S is illustrated in
Fig. 14.1, where it is for simplicity assumed that the duration of the MP is constant
and is equal to �.

Under the resumable scenario, job π(�) is processed for x time units before the
MP and resumes at time τ +�(τ ), so that the duration of its processing after the MP
is pπ(�) − x (see Fig. 14.1a). Transform schedule S into a schedule S′ by swapping
the MP and the time interval of length x in which the part of the crossover job is
processed before the MP. In schedule S′, the MP starts at the completion time of
job π(� − 1) and completes at time τ − x + �(τ − x), and is now followed by the
whole job π(�); i.e., S′ is feasible for the original problem 1|τ ≤ DMP ,�(τ )|� (see
Fig. 14.1b). In schedule S′, the duration of the MP is no longer than it is in schedule
S, and the completion time of each job π(�),π(�+1), . . . ,π(n) in S′ does not exceed
that in S, i.e., �(S′) ≤ �(S). �

http://dx.doi.org/10.1007/978-3-319-39574-6_13
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(a)

(b)

Fig. 14.1 a Schedule S; b schedule S′

Further in this chapter, unless stated otherwise, we only consider schedules in
which theMP starts at the completion time of some job. Similar to the non-resumable
scenario for problems with a single CMP considered in Chap.13, a feasible schedule
S is defined by a partition of set N into two groups N [1] and N [2] and the sequences
π[1] and π[2] of these jobs, respectively, such that

(i) the jobs of the first N [1] are processed from time zero as a block, without inter-
mediate idle time, follow sequence π[1], and the MP starts at time p

(
N [1]

);
(ii) the jobs of the second group N [2] are processed after the MP as a block, without

intermediate idle time time, and follow sequence π[2].

First, observe that problem 1|τ ≤ DMP ,�(τ )|Cmax is trivial, since it is optimal
to start the MP at time zero and create a schedule in which the MP is followed by
an arbitrary sequence of all jobs. The makespan of such a schedule is p(N ) + �(0),
which is obviously the smallest possible. If the MP duration is constant and equal to
�, then optimal makespan becomes p(N )+�, so that theMP can start either at time
zero or after a suitable number of jobs. In any case, the following statement holds.

Theorem 14.1 Problem 1|τ ≤ DMP ,�(τ )|Cmax is solvable is O(n) time.

For minimizing the total flow time F(S) = ∑
C j , it is useful to renumber the

jobs in the SPT order given by

p1 ≤ p2 ≤ p3 ≤ · · · ≤ pn, (14.1)

since, as shown in Theorem 2.2, permutation (1, 2, . . . , n) delivers an optimal solu-
tion to problem 1| | ∑C j , with a continuously available machine.

For problem 1|τ ≤ DMP ,�(τ )| ∑C j , it is easy to verify that there exists an
optimal schedule, the jobs of the first group and the jobs of the second group are
processed in the SPT order. Moreover, a stronger property holds: Below, we prove
that there exists an optimal schedule, in which the jobs are processed in the SPT
order.

http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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Lemma 14.2 For any non-decreasing function �(τ ) of the MP duration, problem
1|τ ≤ DMP ,�(τ )|Cmax admits an optimal schedule S∗ in which the jobs are
sequenced in the SPT order.

Proof Assume that the jobs are numbered in accordance with (14.1), and let π0 =
(1, 2, . . . , n) be the SPT sequence of jobs.

For problem 1| | ∑C j with continuously available machines, for a schedule S
associated with an arbitrary permutation π, the objective function can be written as

F0(π) =
n∑

j=1

j∑

i=1

pπ(i). (14.2)

For problem 1|τ ≤ DMP ,�(τ )| ∑C j , introduce two feasible schedules Sk and
S′
k such that (i) in schedule Sk , the jobs are processed in accordance with permutation

π0; (ii) in schedule S′
k , the jobs are processed in accordance with some permutation

permutation π = (π(1),π(2), . . . ,π(n)); and (iii) in both schedules, the MP starts
at the completion time of the first k jobs. Notice that due to the SPT ordering, if a
schedule S′

k is feasible, then schedule Sk is also feasible, but not vice versa. It follows
that

F(Sk) =
n∑

j=1

C j (Sk) =
k∑

j=1

j∑

i=1

pi +
n∑

j=k+1

j∑

i=1

(

pi + �

(
k∑

i=1

pi

))

(14.3)

= F0(π0) + (n − k)�

(
k∑

i=1

pi

)

;

F
(
S′
k

) =
n∑

j=1

j∑

i=1

pπ(i) + (n − k)�

(
k∑

i=1

pπ(i)

)

= F0(π) + (n − k)�

(
k∑

i=1

pπ(i)

)

.

Due to Theorem 2.2, we know that F0(π0) ≤ F0(π). Besides, due to the SPT
ordering, the expression

∑k
i=1 pi is the smallest sum of arbitrary selected k jobs of set

N , and since�(τ ) is non-decreasing, it follows that�
(∑k

i=1 pi
)

≤ �
(∑k

i=1 pπ(i)

)
.

As a result, we deduce that F(Sk) ≤ F
(
S′
k

)
, which proves the lemma. �

Lemma14.2 implies that in order tofind anoptimal schedule,weneed to determine
the position of the MP within the SPT sequence. Such a position can be found by
comparing values F(Sk) defined by (14.3).

Algorithm MP1TFT_DD

Step 1. For problem 1|τ ≤ DMP ,�(τ )| ∑C j , renumber the jobs in accordance
with (14.1) and let π0 = (1, 2, . . . , n). Compute

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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F0(π0) =
n∑

j=1

j∑

i=1

pi =
n∑

j=1

(n − j + 1)p j . (14.4)

Compute F(S0) := F0(π0) + n�(0).
Step 2. Considering the jobs in accordance with permutation π0, find the job �

such that
�−1∑

j=1

p j ≤ DMP ,

�∑

j=1

p j > DMP .

Step 3. Compute the values τk := ∑k
j=1 p j , k = 1, . . . , � − 1.

Step 4. For each k from 1 to � − 1, compute F(Sk) := F0(π0) + (n − k)�(τk).
Step 5. Determine k∗, 1 ≤ k∗ ≤ � − 1, such that F(Sk∗) := min{F(Sk)|0

≤ k ≤ � − 1}. Output an optimal schedule S∗ = Sk∗ , in which N [1] = {1, . . . , k},
N [2] = {k + 1, . . . , n} and the MP starts at time τk = ∑k

j=1 p j , where k = k∗.

Algorithm MP1TFT_DD requires O(n log n) time due to the SPT ordering; the
other steps of the algorithm can be implemented in O(n) time, under the assumption
that for any τ , the value of �(τ ) can be computed in constant time. The algorithm
determines an optimal way of inserting the MP into the SPT sequence of jobs. Thus,
the following statement holds.

Theorem 14.2 Problem 1|τ ≤ DMP ,�(τ )| ∑C j is solvable in O(n log n) time by
Algorithm MP1TFT_DD.

Notice that in the case of problem 1|τ ≤ DMP ,�| ∑C j , with a constant duration
of the MP, Algorithm MP1TFT_DD can be slightly simplified, since it is optimal
to insert the MP after job � − 1 found in Step 2. Indeed, comparing F(S�−1) =
F0(π0) + (n − � + 1)� and F(Sk) = F0(π0) + (n − k)�, we obtain that

F
(
S∗) = F(S�−1) ≤ min{F(Sk)|0 ≤ k ≤ � − 1}.

Now, we consider problem 1|τ ≤ DMP ,�| ∑ w jC j to minimize the weighted
total flow time Z(S) = ∑

w jC j (S). Introduce the associated problem 1|CMP(1),
Res| ∑ w jC j studied in Sect. 13.3, in which the fixed CMP of length� is defined by
[s, t] = [DMP , DMP + �], while the processing times of the jobs and their weights
remain equal to p j and w j , respectively, and the resumable scenario applies.

Lemma 14.3 Problem 1|τ ≤ DMP ,�| ∑ w jC j and the associated problem
1|CMP(1), Res|∑ w jC j are equivalent.

Proof For the associated problem 1|CMP(1), Res|∑ w jC j , consider a schedule
SRes inwhich the jobs are processed according to the sequenceπ = (π(1), . . . ,π(n)),
with π(�) as the crossover job. Applying the transformation described in the proof of
Lemma14.1, weobtain schedule S inwhich theMPnowstarts at time τ = ∑�−1

i=1 pπ(i)

and is followed by the whole job π(�). Schedule S is feasible for the original problem

http://dx.doi.org/10.1007/978-3-319-39574-6_13
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1|τ ≤ DMP ,�| ∑ w jC j , and in S, the completion times of all jobs remain as in
schedule SRes, so that Z(S) = Z(SRes) (see Fig. 14.1 for illustration).

Now, for problem 1|τ ≤ DMP ,�| ∑ w jC j , consider a feasible schedule S in
which the jobs are processed according to the sequence π = (π(1), . . . ,π(n)). Due
to Lemma 14.1, we may assume that the MP of length � starts exactly when the
first � − 1 jobs are completed, i.e., at time τ = ∑�−1

j=1 pπ( j) ≤ DMP . Compute
y := DMP − τ . We only need to consider the case that y > 0. The processing of
job π(�) that follows the MP can be seen as consisting of two parts: part 1, of y time
units, that starts at time τ + � and completes at time τ + � + y = DMP + �, and
part 2 that starts at time DMP + � (see Fig. 14.2).

Interchange part 1 of the processing of job π(�)with the MP. The obtained sched-
ule SRes is feasible for the associated problem 1|CMP(1), Res|∑ w jC j , with the
MP that starts at time τ + y = DMP and with job π(�) as the crossover job. In
schedule SRes, the completion times of all jobs remain as in schedule S, so that
Z(SRes) = Z(S). �

Lemma 14.3 implies that any schedule feasible for the associated problem
1|CMP(1), Res|∑ w jC j , can be transformed into a schedule for the original prob-
lem 1|τ ≤ DMP ,�| ∑ w jC j , and vice versa, without any change in the objective
function value. Due to Lemma 14.3, we may use Theorems13.9 and 13.13 to deduce
the complexity and approximability statuses of problem 1|τ ≤ DMP ,�| ∑ w jC j .

Theorem 14.3 Problem 1|τ ≤ DMP ,�| ∑ w jC j is NP-hard in the ordinary sense,
even if p j = w j , j ∈ N, and admits an FPTAS that requires O

(
n6/ε3

)
time.

In the rest of this subsection, we consider problem 1|τ ≤ DMP ,�(τ )| ∑w jC j ,
in which a single MP has to be introduced into a schedule so that (i) its start time τ
does not exceed a given deadline DMP and (ii) its duration �(τ ) is a non-decreasing
concave function of τ . It is required to find a schedule S∗ that minimizes the sum of
the weighted completion times, i.e., function Z(S) = ∑

w jC j (S).

Each feasible schedule S is associated with a partition of set N into two groups
N [1] and N [2], where the jobs of group N [q] are scheduled in accordance with a
permutation π[q], q ∈ {1, 2}. We only consider schedules, in which the MP starts
exactly at the completion time of the block of jobs N [1]. Similar to Sect. 13.2, the
jobs are assumed to be numbered according to the WSPT rule, i.e.,

p1
w1

≤ p2
w2

≤ · · · ≤ pn
wn

. (14.5)

Fig. 14.2 Schedule S

http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
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Problem 1|τ ≤ DMP ,�(τ )| ∑w jC j is NP-hard (see Theorem 14.3 for the
complexity of its special case with the MP of a constant duration). Consider the
following approximation algorithm.

Algorithm MP1WTFT_DD

Step 1. Scanning the jobs in the order of their numbering given by (14.5), deter-
mine the job k1 ∈ N such that

k1−1∑

j=1

p j ≤ DMP <

k1∑

j=1

p j .

Step 2. Define a schedule S0 in which the first group is empty, the second group
of jobs consists of all jobs and the MP starts at time zero.

Step 3. For each k, 1 ≤ k ≤ k1 − 1, define a schedule Sk in which the first group
and the second group of jobs are given by {1, . . . , k} and by {k + 1, . . . , n},
respectively, and the MP starts at time τk = ∑k

j=1 p j .
Step 4. Introduce the following minimization linear knapsack problem, which we

call Problem KP.

minimize
n∑

j=1

w j y j

subject to
n∑

j=1

p j y j ≥
n∑

j=1

p j − DMP

y j ∈ {0, 1}, j = 1, . . . , n.

Use an FPTAS for the linear knapsack problem that finds a Boolean vector yH =
(yH1 , . . . , yHn ). Define schedule Sk1 in which the first group and the second group

of jobs are given by
{
j ∈ N |yHj = 0

}
and by

{
j ∈ N |yHj = 1

}
, respectively, and

the MP starts at time τk1 = ∑
j∈N p j

(
1 − yHj

)
.

Step 5. Output schedule SH , which is the best of the found schedules.

Step 3 of Algorithm MP1WTFT_DD is similar to actions performed by Algo-
rithm HKP(ρ) of Sect. 13.4.1. Both algorithms involve finding an approximate solu-
tion to Problem KP, aimed at determining the smallest possible total weight of the
jobs processed after the MP (for these jobs y j = 1), provided that the other jobs
will complete before the MP (this is represented by the knapsack constraint). We
can think of this problem as the problem of minimizing the weighted number of late
jobs, provided that the jobs have a common due date DMP .

The running time of Algorithm MP1WTFT_DD is defined by (i) sorting the jobs
in the WSPT order, which requires O(n log n) time, and (ii) solving Problem KP
by an FPTAS, which can be done in O(n/ε) time. Thus, the overall running time is
O(n log n + n/ε).

http://dx.doi.org/10.1007/978-3-319-39574-6_13
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Below, we analyze the worst-case performance of the algorithm. In particular, we
prove the following statement.

Theorem 14.4 For problem 1|τ ≤ DMP ,�(τ )| ∑w jC j with a concave function
�(τ ) of the MP duration, suppose that in an optimal schedule S∗ the MP starts at
time τ ∗. If τ ∗ ≤ τk1−1 then

min
{
Z
(
Sk

)|0 ≤ k ≤ k1 − 1
} ≤ 4

3
Z
(
S∗).

In order to prove Theorem 14.4, we start with proving several auxiliary state-
ments. Suppose that the value of τ ∗ is known. Scanning the jobs in the order of their
numbering, determine the job � ∈ N such that

�−1∑

j=1

p j < τ ∗ ≤
�∑

j=1

p j ,

and find such a θ, 0 ≤ θ < 1, that

�−1∑

j=1

p j + θp� = τ ∗.

Modify the set N of jobs by replacing job � by a pair of jobs �′ and �′′ such that

p�′ = θp�, w�′ = θw�; p�′′ = (1 − θ)p�, w�′′ = (1 − θ)w�.

Denote the modified set of jobs by N(�), i.e., define N(�) = {
1, . . . , � − 1, �′, �′′,

� + 1, . . . , n}. For jobs of set N(�), consider a schedule S(�) such that the sequence
of jobs

(
1, . . . , � − 1, �′) is processed before time τ ∗, while the sequence of jobs(

�′′, � + 1, . . . , n
)
is processed after the MP. It follows that

Z
(
S(�)

) =
�−1∑

j=1

w j

j∑

i=1

pi + θw�

(
�−1∑

i=1

pi + θp�

)

+(1 − θ)w�

(
�∑

i=1

pi + �

(
�−1∑

i=1

pi + θp�

))

(14.6)

+
n∑

j=�+1

w j

(
j∑

i=1

pi + �

(
�−1∑

i=1

pi + θp�

))

.
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Lemma 14.4 The lower bound

Z
(
S∗) ≥ Z

(
S(�)

)

holds.

Proof Suppose that in schedule S∗, job � starts at time R�. Take schedule S∗ and
replace job � by a sequence of jobs

(
�′, �′′) and let the modified schedule be called

S′. The completion times of all jobs other than � are the same in both schedules, S∗
and S′. We also have

w�C�

(
S∗) = w�(R� + p�);

w�′C�′
(
S′) = θw�(R� + θp�);

w�′′C�′′
(
S′) = (1 − θ)w�(R� + p�),

so that

w�C�

(
S∗) − w�′C�′

(
S′) + w�′′C�′′

(
S′) = θ(1 − θ)w� p� ≥ 0,

which proves the lemma. �

If in schedule S(�) the pair of jobs �′ and �′′ is replaced by job �, then the resulting
schedule is not feasible for the original problem 1|τ ≤ DMP ,�(τ )| ∑w jC j , since
job � is partitioned. Convert S(�) into schedules, called SA

(�) and SB
(�), that do not allow

any job splitting.
In schedule SA

(�), the MP starts at the completion time of job � − 1, while job �

starts immediately after the MP, so that

Z
(
SA

(�)

) =
�−1∑

j=1

w j

j∑

i=1

pi +
n∑

j=�

w j

(
j∑

i=1

pi + �

(
�−1∑

i=1

pi

))

. (14.7)

Since in schedule SA
(�) the MP starts no later than in schedule S∗, we know that

SA
1 is feasible for the original problem.
In schedule SB

(�), the MP starts at the completion time of job �, while job � + 1
starts immediately after the MP, so that

Z
(
SB

(�)

) =
�∑

j=1

w j

j∑

i=1

pi +
n∑

j=�+1

w j

(
j∑

i=1

pi + �

(
�∑

i=1

pi

))

. (14.8)

There is no guarantee that schedule SB
(�) is feasible for the original problem, since

the MP may start after the deadline.
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Lemma 14.5 The inequality

min
{
Z
(
SA

(�)

)
, Z

(
SB

(�)

)} ≤ 4

3
Z
(
S(�)

)

holds.

Proof Since function �(τ ) is concave, we have that

�

(
�−1∑

i=1

pi + θp�

)

≥ θ�

(
�∑

i=1

pi

)

+ (1 − θ)�

(
�−1∑

i=1

pi

)

.

Compare Z
(
S(�)

)
and θZ

(
SB

(�)

)
. Notice that

�−1∑

j=1

w j

j∑

i=1

pi + θw�

(
�−1∑

i=1

pi + θp�

)

− θ

�∑

j=1

w j

j∑

i=1

pi

=
�−1∑

j=1

w j

j∑

i=1

pi + θw�

�−1∑

i=1

pi + θ2w� p� − θ

�−1∑

j=1

w j

j∑

i=1

pi − θw�

�−1∑

i=1

pi − θw� p�

= (1 − θ)

�−1∑

j=1

w j

j∑

i=1

pi + θ(θ − 1)w� p�.

Besides, since function �(τ ) is concave, the inequality

(1 − θ)w�

�∑

i=1

pi + �

(
�−1∑

i=1

pi + θp�

)

≥ (1 − θ)w�

(
�∑

i=1

pi + �

(
�−1∑

i=1

pi

))

holds. Further, we deduce that

n∑

j=�+1

w j

j∑

i=1

pi + �

((
�−1∑

i=1

pi + θp�

))

− θ

n∑

j=�+1

w j

(
j∑

i=1

pi + �

(
�∑

i=1

pi

))

= (1 − θ)

n∑

j=�+1

w j

j∑

i=1

pi +
n∑

j=�+1

w j

(

�

(
�−1∑

i=1

pi + θp�

)

− θ�

(
�∑

i=1

pi

))

≥ (1 − θ)

n∑

j=�+1

w j

j∑

i=1

pi + (1 − θ)

n∑

j=�+1

w j�

(
�−1∑

i=1

pi

)

= (1 − θ)

n∑

j=�+1

w j

(
j∑

i=1

pi + �

(
�−1∑

i=1

pi

))

.



14.1 Flexible Maintenance: Start-Time Deadline 301

Thus, the following inequality

Z
(
S(�)

) − θZ
(
SB

(�)

) ≥ (1 − θ)

�−1∑

j=1

w j

(
j∑

i=1

pi

)

+ θ(1 − θ)w� p�

+(1 − θ)w�

(
�∑

i=1

pi + �

(
�−1∑

i=1

pi

))

+(1 − θ)

n∑

j=�+1

w j

(
j∑

i=1

pi + �

(
�−1∑

i=1

pi

))

= (1 − θ)Z
(
SA

(�)

) + θ(θ − 1)w� p�

holds.
Since θ < 1, we obtain 0 > θ(θ − 1)w� p� ≥ θ(θ − 1)Z

(
SB

(�)

)
, so that

Z
(
S(�)

) − θZ
(
SB

(�)

) ≥ (1 − θ)Z
(
SA

(�)

) + θ(θ − 1)Z
(
SB

(�)

)
,

i.e.,

Z
(
S(�)

) ≥ (1 − θ)Z
(
SA

(�)

) + θ2Z
(
SB

(�)

) ≥ (
θ2 − θ + 1

)
min

{
Z
(
SA

(�)

)
, Z

(
SB

(�)

)}
.

It is easy to verify that the minimum of θ2 − θ + 1 is achieved for θ = 1
2 and is

equal to 3
4 , which proves the lemma. �

If we knew the value of τ ∗, we would be able to find schedules SA
(�) and SB

(�), and
provided that the latter schedule is feasible, for the better of the two schedules the
value of the function would be at most 4

3 times the optimum. Having found job k1
in Step 1 of Algorithm MP1WTFT_DD, divide the time interval [0, DMP ] into k1
intervals

[0, p1], (p1, p1 + p2], . . . ,

⎛

⎝
k1−2∑

j=1

p j ,

k1−1∑

j=1

p j

⎤

⎦,

⎛

⎝
k1−1∑

j=1

p j , DMP

⎤

⎦,

or, equivalently, into the intervals

[τ0, τ1], [τ1, τ2], . . . ,
[
τk1−2, τk1−1

]
,
[
τk1−1, DMP

]
.

The optimal start time τ ∗ belongs to one of these intervals. The assumption of The-
orem 14.4 says that τ ∗ belongs to one of the intervals [τ0, τ1], [τ1, τ2], . . . ,

[
τk1−2,

τk1−1
]
. Under this assumption, job � is one of the jobs 1, 2, . . . , k1 − 1. Thus, both

schedules SA
(�) and SB

(�) are contained among schedules Sk , 1 ≤ k ≤ k1 − 1, and
Theorem 14.4 follows from Lemmas 14.4 and 14.5.
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Table 14.1 Complexity and approximability of problems 1|τ ≤ DMP ,�(τ )|�
Objective Function � �(τ )

Cmax O(n) O(n)

F(S) = ∑
C j O(n log n) O(n log n)

Z(S) = ∑
w jC j NP-hard NP-hard

FPTAS O
(
n6/ε3

) (
1 +

√
2
2 + ε

)
-approximation

To complete the analysis of Algorithm MP1WTFT_DD, we must consider the
assumption that τ ∗ ∈ [

τk1−1, DMP
]
. The following statement can be proved.

Theorem 14.5 For problem 1|τ ≤ DMP ,�(τ )| ∑w jC j with a concave function
�(τ ) of the MP duration, suppose that in an optimal schedule S∗ the MP starts at
time τ ∗ ∈ [

τk1−1, DMP
]
. Then

min
{
Cmax

(
Sk1−1

)
,Cmax

(
Sk1

)} ≤
(

1 +
√
2

2
+ ε

)

Cmax
(
S∗).

The proof of this theorem is rather technical and is not presented here (see
Sect. 14.3 for details).

The results of this section on the complexity and approximability of the problems
with a single MP that has to start by a given deadline are summarized in Table14.1.

14.2 Flexible Maintenance Within a Window

In this section, we study extended versions of the problems considered in Sect. 14.1,
in which the MP should be placed within a given window [s, t]. The focus is on the
problems with a constant duration MP.

14.2.1 Minimizing Makespan: Single Maintenance

In a schedule that is feasible for problem 1|MP ∈ [s, t],�|Cmax, the MP starts at
time τ such that τ ≥ s and τ + � ≤ t . If it is allowed to interrupt the processing
of a job by the MP and resume it immediately after the MP, i.e., if the resumable
scenario is applied, then it is trivial to find a schedule that is optimal for the problem
of minimizing the makespan. Indeed, in such a schedule, the jobs are processed in
an arbitrary order and the MP starts at time s. This schedule remains optimal even if
the duration of the MP is given by a non-decreasing function �(τ ) that depends on
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start time τ of the maintenance period. The makespan in such a schedule is equal to
p(N ) + �(s), which cannot be reduced.

Below, we assume that the non-resumable scenario is applied. In a feasible sched-
ule S, the jobs are split into two groups: N [1] scheduled in accordancewith a sequence
π[1] before the MP and N [2] scheduled in accordance with a sequence π[2] after the
MP. We discuss the complexity status of problem 1|MP ∈ [s, t],�|Cmax and prove
that the problem is NP-hard. We also demonstrate that an FPTAS for the subset-sum
problem can be adapted to result into an FPTAS for problem 1|MP ∈ [s, t],�|Cmax.

In the proof of the NP-hardness, the following NP-complete problem is used for
reduction (see Sect. 1.3.2).

Partition: Given positive integers e1, . . . , er and the index set R = {1, . . . , r} such
that e(R) = ∑

i∈R ei = 2E , is it possible to partition set R into disjoint subsets R1

and R2 such that e(R1) = ∑
i∈R1

ei = E and e(R2) = ∑
i∈R2

ei = E?

Theorem 14.6 Problem 1|MP ∈ [s, t],�|Cmax is NP-hard in the ordinary sense.

Proof Given an instance of Partition, define the instance of problem 1|MP ∈
[s, t],�|Cmax with

N = R; p j = 3e j , j ∈ N ; s = 3E − 1, t = 3E + 1, � = 1.

Thus, in a feasible schedule, the MP of duration � = 1 must be placed within the
window [3E − 1, 3E + 1] of length 2.

We show that Partition has a solution if and only if in the constructed problem
there exists a schedule S0 such that Cmax(S0) ≤ 6E + 1.

Suppose that Partition has a solution represented by the sets R1 and R2. Then,
schedule S0 with Cmax(S0) = 6E + 1 exists and can be found as follows. Define
N [q] = Rq , q ∈ {1, 2}, and let in S0 the jobs of set N [1] be processed before the MP,
while the jobs of set N [2] be processed as a block starting from time t . Notice that the
jobs of each set N [q] can be processed in any order. Since p

(
N [1]

) = e(R1) = 3E ,
the MP starts at time 3E ∈ [s, t] and completes at time t = 3E + 1. Thus, we have
that

Cmax(S0) = p
(
N [1]

) + � + p
(
N [2]

) = 3E + 1 + 3E = 6E + 1,

as required.
Now suppose that a schedule S0 such that Cmax(S0) ≤ 6E + 1 exists. The MP

cannot start after time 3E . Let N [1] denote the set of jobs completed before the MP.
If p

(
N [1]

)
< 3E − 1, then in S0 the machine is idle before the MP may start, and we

have that Cmax(S0) ≥ s + � + p
(
N\N [1]

)
> (3E − 1) + 1 + (3E + 1) = 6E + 1,

which is impossible.
Thus, 3E − 1 ≤ p

(
N [1]

) ≤ 3E . Since each p j is an integer that is a multiple
of 3, we may only have that p

(
N [1]

) = 3E . Thus, if we define R1 := N [1] and
R2 := N\N [1], we obtain a solution to Partition. �

Since the value τ − � serves as the deadline for the completion time of the jobs
of the first group, the NP-hardness of problem 1|MP ∈ [s, t],�|Cmax, can also be

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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deduced from Theorem 13.2 that proves that problem 1|CMP(1), N − Res|Cmax is
NP-hard in the ordinary sense.

Associate problem 1|MP ∈ [s, t],�|Cmax with the following subset-sum prob-
lem studied in Sect. 4.2. In such a problem, it is required to find a vector x∗=(
x∗
1 , x

∗
2 , . . . , x

∗
n

)
, which delivers an optimal solution to the problem

maximize
n∑

j=1

p j x j

subject to
n∑

j=1

p j x j ≤ t − �

x j ∈ {0, 1}, j = 1, 2, . . . , n.

(14.9)

Any feasible solution x =(x1, x2, . . . , x2) defines a feasible schedule S for prob-
lem 1|MP ∈ [s, t],�|Cmax, in which the jobs are split into two sets, N [1] ={
j ∈ N |x j = 1

}
and N [2] = {

j ∈ N |x j = 0
}
. The block of jobs N [1] is processed

starting from time zero, the MP starts at time τ = max
{
s, p

(
N [1]

)}
, and the block of

jobs N [2] starts on the completion of the MP. In particular, an optimal schedule S∗ is
defined by the two groups H [1] :=

{
j ∈ N |x∗

j = 1
}
and H [2] :=

{
j ∈ N |x∗

j = 0
}
.

Recall that the subset-sum problem is known to admit a fully polynomial-time
approximation scheme (FPTAS) that requires O(n/ε) time (see Theorem 4.5).
Based on this scheme, we establish the approximability status of problem 1|MP ∈
[s, t],�|Cmax.

Theorem 14.7 Problem 1|MP ∈ [s, t],�|Cmax admits an FPTAS that requires
O(n/ε) time.

Proof Let the vector with the components xε
j ∈ {0, 1}, j ∈ N , be a solution

delivered by the FPTAS for problem (14.9). Define N [1] :=
{
j ∈ N |xε

j = 1
}
,

N [2] :=
{
j ∈ N |xε

j = 0
}
, and let Sε be a schedule associated with these sets. Con-

sider an optimal schedule S∗ in which the block of jobs H [1] is processed before the
MP and the block of jobs H [2] is processed after the MP. According to Theorem 4.5,
the inequality

p
(
N [1]

) ≥ (1 − ε)p
(
H [1]

)
(14.10)

holds. We want to prove that

Cmax(S
ε) ≤ (1 + ε)Cmax

(
S∗). (14.11)

If p
(
N [1]

) ≥ s, then in schedule Sε the MP may start at time p
(
N [1]

)
, so that

Cmax(Sε) = p
(
N [1]

)+�+ p
(
N [2]

) = p(N )+� and this schedule is in fact optimal.
Thus, in the rest of this proof, we assume that p

(
N [1]

)
< s, so that Cmax(Sε) =

s + � + p
(
N [2]

) = s + � + p(N ) − p
(
N [1]

)
.

http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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If p
(
H [1]

) ≥ s, we deduce

s − p
(
N [1]

) ≤ p
(
H [1]

) − p
(
N [1]

) ≤ εp
(
H [1]

)
,

so that

Cmax(S
ε) = s+�+ p(N )− p

(
N [1]

) ≤ �+ p(N )+εp
(
H [1]

) ≤ (1 + ε)Cmax
(
S∗),

On the other hand, if p
(
H [1]

)
< s, then Cmax(S∗) = s +�+ p

(
H [2]

) = s +�+
p(N ) − p

(
H [1]

)
, so that due to (14.10), we have that

Cmax(S
ε) = s + � + p(N ) − p

(
N [1]

) = Cmax
(
S∗) − (

p
(
N [1]

) − p
(
H [1]

))

≤ Cmax
(
S∗) − (1 − ε)p

(
H [1]

) + p
(
H [1]

) ≤ Cmax
(
S∗) + εp

(
H [1]

)

and (14.11) holds. �

14.2.2 Minimizing Makespan: Periodic Maintenance

In Sect. 13.1.2, we consider a single machine problem to minimize the makespan in
which the compulsory maintenance takes place periodically, with a fixed period of
time T that should elapse before the first CMP and between any pair of consecutive
CMPs. In this subsection,we consider amoregeneral versionof that problem inwhich
each maintenance should be placed inside a window that is repeated periodically.

More formally, let� denote the duration of anMP. For consistency of explanation,
assume that each schedule includes a dummy “zero” MP that starts and completes at
time T0 = 0. For q ≥ 1, let N [q] be the group of jobs that is scheduled between time
Tq−1, the completion of the (q − 1)th MP, and the beginning of the qth MP. The qth
MP must start no earlier than s time units since the completion of the previous MP
andmust finish no later than t time units since the completion of the previousMP, i.e.,
the qth MP must be placed into a window

[
Tq−1 + s, Tq−1 + t

]
. If the jobs of group

N [q] complete within the window, i.e., if Tq−1 + p
(
N [q]

) ∈ [
Tq−1 + s, Tq−1 + t

]
,

or equivalently, p
(
N [q]

) ∈ [s, t], then the qth MP starts at time τq := Tq−1 + p(
N [q]

)
; otherwise, if p

(
N [1]

)
< s, then the qth MP starts at time τq := Tq−1 + s.

We refer to this problem as 1|MP(period),�|Cmax. It is assumed that s ≥
max

{
p j | j ∈ N

}
; otherwise, the problem has no feasible solution.

Problem 1|CMP(period), N −Res|Cmax studied in Sect. 13.1.2 is a special case
of problem 1|MP(period),�|Cmax, and the two problems coincide if t = s + �,
i.e., if each MP starts exactly after s time units after the completion of the previous
MP.

For problem 1|CMP(period), N − Res|Cmax, Theorem 13.5 states that the
problem does not accept a ρ-approximation algorithm with ρ < 2, unless P = NP .
This immediately implies that for problem 1|MP(period),�|Cmax, the best

http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
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approximation algorithm we could hope for is a 2-approximation algorithm. One
such algorithm is presented below.

Algorithm LS_Period

Step 1. Define
b := 1, N [1] := ∅, p(N [1]) := 0, q := 1.

Step 2. For j from 1 to n do

(a) If p
(
N [q]

) + p j > t then go to Step 2(b); otherwise update

N [q] := N [q] ∪ { j}; p
(
N [q]

) := p
(
N [q]

) + p j

and go to Step 2(c).
(b) If q < b then update q := q + 1 and return to Step 2(a); otherwise define

b := b + 1, N [b] := { j}, p(N [b]) := p j .

(c) Restore q := 1 and take the next job.

Step 3. Output a schedule SLS that consists of b found groups N [1], N [2], . . . , N [b].

Algorithm LS_Period implements the idea of list scheduling (see Sect. 2.4). It
scans the jobs in an arbitrary order and assigns the next job to the first available
group it fits. If the job does not fit into any available group, then a new group is
started. The running time of the algorithm is O

(
n2

)
.

Theorem 14.8 For schedule SLS the following bound

Cmax(SLS)

Cmax(S∗)
≤ 2 (14.12)

holds, and this bound is tight.

Proof Consider schedule SLS with b groups. If b = 1, then all jobs are completed
before the first MP, so that SSL is in fact an optimal schedule. Thus, throughout the
remainder of this proof we assume that b ≥ 2.

Since for each q, 1 ≤ q ≤ b, we have that p
(
N [q]

) ≤ t − �. It follows that

Cmax(SLS) ≤ b(t − �) + (b − 1)�.

For any two groups N [q1] and N [q2] such that 1 ≤ q1, q2 ≤ b, q1 	= q2, we have
that

p
(
N [q1]

) + p
(
N [q2]

)
> t − �; (14.13)

otherwise, these groups could be merged into one.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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If b is even then we may split the groups into b/2 pairs N [q1] and N [q2] for which
(14.13) holds, so that

p(N ) >
b

2
(t − �). (14.14)

If b is odd, then there is a group N [q3] such that p
(
N [q3]

)
> 1

2 (t − �); otherwise,
(14.13) would not hold for any pair of groups. Taking such a group and splitting
the remaining groups in (b − 1)/2 pairs N [q1] and N [q2] for which (14.13) holds, we
obtain

p(N ) >
1

2
(t − �) + b − 1

2
(t − �),

so that again (14.14) holds.
This implies that there must be at least 
b/2� MPs in any optimal schedule S∗,

i.e.,

Cmax
(
S∗) ≥ p(N ) + 
b/2�� >

b

2
(t − �) + 
b/2��.

Since b − 1 ≤ 2
b/2�, we deduce

Cmax(SLS) ≤ b(t − �) + (b − 1)� ≤ b(t − �) + 2
b/2�� ≤ 2Cmax
(
S∗),

which proves the bound (14.12).
To see that the bound (14.12) is tight, consider the instance of problem 1|MP

(period),�|Cmax in which the duration of an MP set equal to some value �, while
the other parameters are as follows:

p1 = 5, p2 = 6, p3 = 5, p4 = 6, p5 = 2; s = 9; t − � = 12,

i.e., in any feasible schedule an MP starts no earlier that 9 and no later than 12 time
units from the completion of the previous MP.

An optimal schedule S∗ shown in Fig. 14.3a uses only one MP, and all jobs are
completed by the beginning of the second MP, so that Cmax(S∗) = 24 + �. Sched-
ule SLS obtained by scanning the jobs in the order of their numbering is shown in
Fig. 14.3b. It uses two MPs, so that Cmax(SLS) = 24 + 2�. We deduce that

(a)

(b)

Fig. 14.3 a An optimal schedule S∗; b schedule SLS
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Cmax(SLS)

Cmax(S∗)
= 24 + 2�

24 + �
,

and this ratio approaches 2 as � → ∞. �

14.2.3 Minimizing Total Completion Time

In this subsection, we study problem 1|MP ∈ [s, t],�| ∑C j of minimizing the
sum of the completion times, i.e., the objective function F(S) = ∑

C j (S).
If it is allowed to interrupt the processing of a job by the MP and resume it

immediately after the MP, i.e., if the resumable scenario is applied, then problem
1|MP ∈ [s, t],�| ∑C j becomes equivalent to problem 1|CMP(1), Res| ∑C j ,
provided that in the latter problem, the maintenance period start at time s, the left
point of the window in problem 1|MP ∈ [s, t],�| ∑C j . Thus, Theorem 13.8
applies and leads to the following statement.

Theorem 14.9 Under the resumable scenario problem 1|MP ∈ [s, t],�| ∑C j is
solvable in O(n log n) time by processing jobs in accordance with the SPT sequence
(14.1).

Further below in this subsection, we focus on the non-resumable version of
problem 1|MP ∈ [s, t],�| ∑C j . In a schedule that is feasible for problem
1|MP ∈ [s, t],�| ∑C j , the jobs are split into two groups, N [1] and N [2], scheduled
before and after the MP, respectively, and the MP starts at time τ such that τ ≥ s
and τ + � ≤ t .

The value τ − � serves as the deadline for the completion time of the jobs of
the first group scheduled before the MP; therefore, due to similarity of problems
1|MP ∈ [s, t],�| ∑C j and 1|CMP(1), N − Res|∑C j , the following statement
can be deduced from Lemma 13.1 and Theorem 13.7.

Lemma 14.6 Under the non-resumable scenario, in an optimal schedule for
problem 1|MP ∈ [s, t],�| ∑C j , the jobs are sequenced in SPT order before and
after the MP. Finding an optimal schedule is NP-hard in the ordinary sense.

In this section, we present and analyze the following algorithm for solving
problem 1|MP ∈ [s, t],�| ∑C j . In the algorithm, we exclude from consider-
ation the situation that p(N ) ≤ t − �, since then it is optimal to schedule all
jobs in the SPT sequence before the MP. By symmetry, we ignore the case that
min

{
p j | j ∈ N

}
> t − �, since then all jobs must be scheduled in the SPT order

after the MP.

Algorithm MP1TFT_Win

Step 1. For problem 1|MP ∈ [s, t],�| ∑C j , renumber the jobs in accordance
with (14.1) and let π0 := (1, 2, . . . , n).

http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
http://dx.doi.org/10.1007/978-3-319-39574-6_13
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Step 2. Considering the jobs in accordance with permutation π0, find the job �

such that
�−1∑

j=1

p j ≤ t − �,

�∑

j=1

p j > t − �.

Step 3. Compute A := ∑�−1
j=1 p j and τ := max{A, s}.

Step 4. Output schedule SSPT in which the jobs of the first group N [1] :=
{1, . . . , � − 1} and processed as a block starting from time zero, are followed
by the MP that starts at time τ , which is followed by the block of jobs of the
second group N [2] := {�, . . . , n} that starts at time τ + �.

The running time of Algorithm MP1TFT_Win is O(n log n). Below we analyze
its worst-case performance.

Theorem 14.10 For problem 1|MP ∈ [s, t],�| ∑C j , let S∗ be an optimal sched-
ule and SSPT be a schedule found by Algorithm MP1TFT_Win. The bound

F(SSPT)

F(S∗)
≤ 9

7
, (14.15)

and this bound is tight.

Proof For schedule SSPT, define n[1] := � − 1 = ∣
∣N [1]

∣
∣ and n[2] := ∣

∣N [2]
∣
∣. We know

that in schedule SSPT, both groups N [1] and N [2] are non-empty, i.e., n[1] ≥ 1 and
n[2] ≥ 1. Also, define the sequences π[1] = (

1, . . . , n[1]
)
, π[2] = (

n[1] + 1, . . . , n[2]
)

and πSPT = (
π[1],π[2]

)
.

Suppose that in an optimal schedule S∗, the jobs are processed in accordance with
a sequence σ = (σ(1),σ(2), . . . ,σ(n)). Introduce two sets H [1] and H [2], and the
corresponding sequences σ[1] and σ[2], such that

(i) set H [1] contains n[1] jobs that are processed from time zero and follow the
sequence σ[1] = (

σ[1](1),σ[1](2), . . . ,σ[1]
(
n[1]

))
;

(ii) set H [2] contains n[2] jobs that are processed in accordance with the sequence
σ[2] = (

σ[2](1),σ[2](2), . . . ,σ[2]
(
n[2]

))
.

Notice that the sets H [1] and H [2] need not form the groups that are processed before
and after the MP in schedule S∗.

For schedule SSPT, define δ := τ − A. This is the length of a possible idle time
between the completion of the jobs of group N [1] and the start of the MP. Similarly,
let δ∗ denote a possible idle time in an optimal schedule S∗. Clearly, δ∗ is no larger
than the idle time in any other feasible schedule, so that

δ ≥ δ∗.

By the SPT ordering, set N [1] contains n[1] shortest jobs of the instance, i.e.,
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∑

j∈N [1]

p j =
�−1∑

j=1

p j ≤
n[1]∑

r=1

pσ[1](r) =
∑

j∈H [1]

p j

holds. Besides, if we add the processing time of the first job of the sets N [2] and H [2]

to both sides of the above inequality, we get

n[1]∑

j=1

p j + pn[1]+1 ≤
n[1]∑

r=1

pσ[1](r) + pσ[2](1). (14.16)

The inequality (14.16) holds because its left-hand side is the sum of the n[1] + 1
shortest processing times. By construction,

n[1]∑

j=1

p j + pn[1]+1 = A + p� > t − �,

and it follows that in schedule S∗, the last job of set H [1] completes after the MP, and
the block of jobs H [2] also starts after the MP.

Inequality (14.16) implies that

∑

j∈N [1]

p j + pn[1]+1 + δ + δ∗ + � ≤
∑

j∈H [1]

p j + pσ[2](1) + δ + δ∗ + �,

which is equivalent to

Cπ[2](1)(SSPT) + δ∗ ≤ Cσ[2](1)
(
S∗) + δ,

i.e.,
Cπ[2](1)(SSPT) ≤ Cσ[2](1)

(
S∗) + (

δ − δ∗).

The above inequality can be generalized to all subsequent jobs, i.e., to

Cπ[2](i)(SSPT) ≤ Cσ[2](i)

(
S∗) + (

δ − δ∗), 1 ≤ i ≤ n[2]. (14.17)

Define F(S) as the sum of the completion times for all jobs in schedule S, and
define FV (S) as the sum of the completion times for all jobs in schedule S that belong
to a set V ⊆ N . It follows from (14.17) that

FN [2](SSPT) ≤ FH [2]

(
S∗) + n[2]

(
δ − δ∗). (14.18)

For schedule S∗, let σ[1](u) be the last job completed before the MP, i.e., the MP
starts at time τ ∗ = ∑u

r=1 pσ[1](r) + δ∗.
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If δ = 0, then δ∗ = 0 and there is no idle time in both schedules SSPT and S∗. For
an arbitrary permutation π of jobs, recall the definition of F0(π), given by (14.2).
Using the representation (14.2), we may write

F(SSPT) = F0(πSPT) + n[2]�; F
(
S∗) = F0(σ) + (n − u)�

and since F0(πSPT) ≤ F0(σ) and n[2] = n − n[1] ≤ n − u, we deduce that SSPT is an
optimal schedule. In the remainder of this proof, we assume that δ > 0.

If δ∗ = 0, then it can be immediately verified that

n[1]∑

j=1

p j + δ = Cπ[1](n[1])(SSPT) + δ

= s ≤
u∑

r=1

pσ[1](r) ≤ Cσ[1](n[1])

(
S∗) ≤ Cσ[1](n[1])

(
S∗) + δ∗,

while if δ∗ > 0, we have

Cπ[1](n[1])(SSPT) + δ = Cσ[1](u)

(
S∗) + δ∗ ≤ Cσ[1](n[1])

(
S∗) + δ∗.

Thus, in any case for δ∗ ≥ 0, we deduce

Cπ[1](n[1])(SSPT) ≤ Cσ[1](n[1])(S∗) − (
δ − δ∗).

Moreover, since all jobs in π[1] are in SPT order, it follows that

Cπ[1](i)(SSPT) ≤ Cσ[1](i)

(
S∗), 1 ≤ i ≤ n[1].

From the last two inequalities, we derive that

FN [1](SSPT) ≤ FH [1]

(
S∗) − (

δ − δ∗). (14.19)

Combining (14.18) and (14.19), we obtain FN [1](SSPT) + FN [2](SSPT) ≤ FH [1](S∗)
− (δ − δ∗) + FH [2](S∗) + n[2](δ − δ∗), which yields

F(SSPT) ≤ F
(
S∗) + (

n[2] − 1
)(

δ − δ∗). (14.20)

Recall that if in schedule SSPT there exists an idle time of length δ before the start
of the MP, then all jobs of set N [2] are longer than the duration of the idle time, i.e.,
p j > δ, j ∈ N [2]; otherwise, the algorithm would include them into set N [1]. Using
this observation, we can derive the following lower bound
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FN [2]

(
S∗) ≥ δ + 2δ + · · · + n[2]δ = n[2]

(
n[2] + 1

2

)
δ

≥ n[2]
(
n[2] + 1

)

2

(
δ − δ∗). (14.21)

If schedule SSPT is not optimal, then sets N [1] and H [1] are different, which implies
that there exists a job i which is assigned to set N [1] in schedule SSPT, but is assigned
to set H [2] in schedule S∗. Thus, we have the following relation

FN [1]

(
S∗) ≥ F{i}

(
S∗) = Ci

(
S∗) ≥ s ≥ δ ≥ δ − δ∗. (14.22)

Combining (14.21) and (14.22), we obtain

FN [1]

(
S∗) + FN [2]

(
S∗) = F

(
S∗) ≥

(
n[2]

(
n[2] + 1

) + 2

2

)
(
δ − δ∗). (14.23)

Using the bounds (14.20) and (14.23), we have

ρ ≤ F(S)

F(S∗)
≤ 1 +

(
n[2] − 1

)
(δ − δ∗)

F(S∗)

≤ 1 +
(
n[2] − 1

)
(δ − δ∗)

(
n[2](n[2]+1)+2

2

)
(δ − δ∗)

= 1 + 2
(
n[2] − 1

)

n[2]
(
n[2] + 1

) + 2
. (14.24)

Taking the derivative of the function

f (x) = 2(x − 1)

x(x + 1) + 2
, 1 ≤ x ≤ n − 1,

with respect to x, we obtain

f ′(x) = 2(x − 3)(x + 1)

(x(x + 1) + 2)2
.

We see that function f (x) achieves a maximum value of 2/7 for x = 3, and the
worst-case performance bound given by (14.24) can be updated as

ρ ≤ 1 + 2

7
= 9

7
.

To see that the bound (14.15) is tight, consider the following instance of problem
1|MP ∈ [s, t],�| ∑C j :

p1 = 1, p2 = p3 = p4 = W, s = W − 1, t = W + 1,� = 1,
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where W ≥ 2 is a large given number.
Algorithm MP1TFT_Win will schedule the jobs in the sequence π[1] = (1) and

π[2] = (2, 3, 4). The completion time of job π[1](1) is given by Cπ[1](1) = 1. The MP
of length 1 unit starts at time τ = W − 1, leaving the machine idle for δ = W − 2
units. The completion times of the remaining jobs are given by Cπ[2](1) = 2W,

Cπ[2](2) = 3W , and Cπ[2](3) = 4W. The sum of completion times is equal to 9W + 1.
On the other hand, in an optimal schedule, the jobs are processed in accordance

with the sequence (2, 1, 3, 4), so that σ[1] = (2) and σ[2] = (1, 3, 4). The completion
time of job σ[1](1) is given by Cσ[1](1) = W. AnMP of length 1 starts at time τ = W,

leaving no machine idle time. The completion times of the remaining jobs are given
byCσ[2](1) = W+2,Cσ[2](2) = 2W+2 andCσ[2](3) = 3W+2.The sum of completion
times is equal to 7W + 6.

The performance ratio given by (9W + 1)/(7W + 2) tends to 9/7 as W goes to
infinity. �

14.3 Bibliographic Notes

The models with maintenance periods whose duration depends on their start time
have been introduced by Kubzin and Strusevich (2005, 2006), for two-machine shop
scheduling problems such as flow shop, flow shop no-wait, and open shop.

The fact that problem 1|τ ≤ DMP ,�(τ )|Cmax can be solved by starting theMP at
time zero, as well as an alternative proof of Lemma 14.2, is stated in Luo et al. (2015)
(see also Graves and Lee (1999) for the case of a constant duration MP and exten-
sions). Luo et al. (2015) also present an algorithmsimilar toAlgorithmMP1TFT_DD,
but implemented in O

(
n2

)
time.

For problem 1|τ ≤ DMP ,�| ∑ w jC j , Lemma 14.3 is proved by Kellerer
and Strusevich (2010). A direct proof of the NP-hardness of problem 1|τ ≤
DMP ,�| ∑ w jC j is given in Graves and Lee (1999).

As pointed out in Kellerer and Strusevich (2010), problem 1|τ ≤ DMP ,�|∑
w jC j is closely related to one of the singlemachine scheduling problemswith two

competing agents, studied by Agnetis et al. (2004) among other two-agent schedul-
ing problems. Suppose that two agents intend to use a single machine. Agent A owns
the A-jobs, while Agent B owns the B-jobs. Agent A wants to minimize the sum
of the weighted completion times of the A-jobs, while Agent B wants to have all
the B-jobs completed by a given deadline d. It is easily verified that in any feasible
schedule, the B-jobs can be processed as a block, without intermediate idle time,
and this will not increase the objective function of Agent A. Thus, provided that the
processing times and weights of the A-jobs are equal to p j and w j , respectively, and
the total processing time of the B-jobs is equal to�, the two-agent problem is equiv-
alent to problem 1|τ ≤ DMP ,�| ∑ w jC j with DMP = d. Notice that the two-agent
problem is proved NP-hard in the ordinary sense (see Agnetis et al. (2004)).
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Algorithm MP1WTFT_DD and the full proof of Theorem 14.5 are given in Luo
et al. (2010).

The proof of Theorem 14.6 is based on the work by Yang et al. (2002).
The study on problem 1|MP(period),�|Cmax has been initiated by Chen (2006,

2008). In particular, Chen (2008) presents a version of Algorithm LS in which the
jobs are organized in the LPT list (see Sect. 13.1.2 for a similar algorithm for prob-
lem 1|CMP(period), N − Res|Cmax). The running time of Chen’s algorithm is
O

(
n2

)
, although in the original paper Chen (2008), the running time is estimated

as O
(
n2 log n

)
. Xu et al. (2009) show that Chen’s LPT algorithm is in fact a 2-

approximation for problem 1|MP(period),�|Cmax. Algorithm LS_Period and its
analysis in Theorem 14.8 are due to Xu and Yin (2011); in fact, in the latter paper, the
result of Theorem 14.8 is extended to the online version of the problem. An extension
of problem 1|MP(period),�|Cmax is considered in Low et al. (2010), where it is
additionally required not to process more than k jobs between any two consecutive
MPs; for k ≥ 2, a (2 − 2/k)-approximation algorithm is developed based on the
LPT scheduling.

Analysis of Algorithm MP1TFT_Win is performed by Yang et al. (2002), who
base their reasoning on the work by Lee and Liman (1992), where a similar SPT
9
7 -approximation algorithm applied to a less general problem 1|CMP(1), N −
Res| ∑C j , is analyzed.
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Chapter 15
Scheduling with Rate-Modifying Activities

In this chapter, we discuss scheduling problems on a single machine, provided that
rate-modifying activities can be inserted into a schedule. We are given the jobs of
set N = {1, 2, . . . , n} with known normal processing times. The actual processing
time of the job is affected by its relative position with respect to the rate-modifying
periods (RMPs) that might be introduced into a schedule.

As described in Sect. 12.3, the decision-maker is presented with a list (RMP[1],
RMP[2], . . ., RMP[K ]) of K ≥ 1 possible rate-modifying activities, which can be
either distinct or alike. The decision-maker may decide which of the listed RMPs to
insert into a schedule and in which order.

The algorithms presented in this chapter for solving relevant problems are adapta-
tions of the generic Procedure RMP1 from Sect. 12.4. As a rule, to solve scheduling
problems under consideration, it is required to generate all outcomes of certain deci-
sions to produce auxiliary problems with fixed parameters, such as the number of
RMPs to be inserted, and/or the number of jobs in a group. To count the number
of the related outcomes, we use various combinatorial configurations and identities
listed in Sect. 5.3. As agreed earlier, in the estimations of the running times of the
presented algorithms, we assume that the number K of available RMPs is a constant.

Whenever possible, we discuss faster solution algorithms, not based on full enu-
meration of certain decisions.

As often is the case in this book, two sequences of the jobs are important. Recall
that if the jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn, (15.1)

while if they are numbered in accordance with the SPT rule, then

p1 ≤ p2 ≤ · · · ≤ pn. (15.2)

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
Research & Management Science 243, DOI 10.1007/978-3-319-39574-6_15

317

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_5


318 15 Scheduling with Rate-Modifying Activities

We start with considering problems on a singlemachine tominimize themakespan
and the total completion time, provided that at most one RMP can be inserted into
a schedule (see Sect. 15.1). The problem of minimizing the makespan and the total
completion time for the case of multiple RMPs is studied in Sect. 15.2. The problems
of minimizing the total completion time on parallel machines are considered in
Chap.20.

15.1 Single Rate-Modifying Maintenance on a Single
Machine

We start with a simple model, in which the jobs of set N = {1, 2, . . . , n} have to be
scheduled on a single machine, and a single RMP can be inserted into a schedule.
All jobs are available at time zero, and no preemption is allowed. For a job j ∈ N , its
(normal) processing time p j is given and remains constant throughout the planning
period if job j is processed before the RMP. On the other hand, if job j is processed
after the RMP, then the processing time is given by λ j p j , where λ j > 0 is the rate-
modifying factor.

In general, there are no restrictions imposed on the value of λ j . If λ j < 1 for
some job j ∈ N , then the introduction of the RMP is beneficial for the job and its
actual processing time becomes shorter than the normal time. If λ j < 1 for all jobs
j ∈ N , then the rate-modifying activity can be understood as maintenance. We do
not exclude from consideration that the rate-modifying factors are smaller than 1 for
some jobs and larger than 1 for other jobs.

In this section, we address the situation that the duration of the RMP depends
linearly on its start time τ . Adopting the formula (12.1) for a single RMP, the duration
�(τ ) of the RMP is given by

�(τ ) = ζτ + η, (15.3)

where ζ and η are positive constants. If ζ = 0, then the duration of the RMP is
constant equal to η.

The objective functions considered in this section are the makespan and total
completion time. For each of these objective functions, the respective problems are
denoted by 1|RMP(1),�(τ )|Cmax and 1|RMP(1),�(τ )| ∑C j .

In the case of a single available RMP, outcomes (A1) and (A2) from Sect. 12.4
boil down to deciding whether to include the RMP into a schedule or not. Thus, in
accordance with the reasoning presented in Sect. 12.4, a schedule S∗ that is optimal
for problem 1|RMP(1),�(τ )|� is the better of the two schedules S∗(1) and S∗(2),
which are optimal for the corresponding auxiliary problems1|RMP(k − 1),�(τ )|�,
where k ∈ {1, 2}.

If k = 1, i.e., k − 1 = 0 and no RMP is to be included, then in schedule S∗(1)
all jobs are scheduled as one group starting form time zero. If � = Cmax, then the

http://dx.doi.org/10.1007/978-3-319-39574-6_20
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http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12


15.1 Single Rate-Modifying Maintenance on a Single Machine 319

sequence of this jobs is arbitrary, while for � = ∑
C j , the jobs must be sequenced

in accordance with the SPT rule (15.2), as follows from Theorem2.2.
In the consideration below, we discuss how to find an optimal schedule S∗(2), in

which the RMP is inserted.
Let S be a schedule with a single inserted RMP, in which the n jobs are partitioned

in twogroups, N [1] and N [2], with
∣
∣N [x]

∣
∣ = n[x], where x ∈ {1, 2} andn[1] + n[2] = n.

Further, the jobs of the x th group are sequenced in accordance with a permutation
π[x] = (

π[x](1),π[x](2), . . . ,π[x]
(
n[x]

))
; i.e., schedule S is associated with a permu-

tation of jobs π = (
π[1],π[2]

)
. In order to find an optimal schedule S∗(2), we need

to find the optimal value of n[1] (or n[2]) and the job sequence π, so that the objective
function � ∈ {

Cmax,
∑

C j
}
is minimized.

15.1.1 Minimizing Makespan

For a schedule S associated with a permutation π, the makespan can be written as

Cmax(S) =
n[1]∑

r=1

pπ[1](r) +
⎛

⎝ζ

n[1]∑

r=1

pπ[1](r) + η

⎞

⎠ +
n[2]∑

r=1

λπ[2](r) pπ[2](r)

= (1 + ζ)

n[1]∑

r=1

pπ[1](r) +
n[2]∑

r=1

λπ[2](r) pπ[2](r) + η.

It is fairly easy to find schedule S∗(2) that minimizes this function and, therefore,
to find schedule S∗ that is optimal for the overall problem 1|RMP(1),�(τ )|�.

Algorithm RMP1Cmax

Step 1. For each j from 1 to n do
If (1 + ζ) ≤ λ j , j ∈ N , then add job j to group 1; otherwise, add job j to group 2.

Step 2. Permute the jobs arbitrarily in each group and create a schedule S∗(2)
associated with the obtained permutation.

Step 3. If
∑n[2]

r=1

(
(1 + ζ)pπ[2](r) − λπ[2](r) pπ[2](r)

)
> η, then output schedule S∗(2) as

an optimal schedule S∗; otherwise, output an optimal schedule S∗(1) in which all
jobs are arbitrary sequenced in one group and no RMP is involved.

Theorem 15.1 Algorithm RMP1Cmax returns an optimal solution for problem
1|RMP(1),�(τ )|Cmax in O(n) time.

Proof Step 1 compares the contribution of a job to themakespan,when it is scheduled
before and after the RMP. If a job is found to contribute less before the RMP, it is
scheduled in group 1; otherwise, it is sent to group 2. Notice that the sequence of jobs

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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in a particular group has no impact on the makespan; hence, they can be scheduled
arbitrarily. Steps 1 and 2 can be completed in O(n) time. Step 3 gives a condition
which allows us to choose the better of the two schedules S∗(1) or S∗(2). Step 3 can
also be completed in O(n) time. �

If the RMP’s duration is assumed to be a constant, i.e., ζ = 0, then the resulting
problem 1|RMP(1),�|Cmax will still be solvable by Algorithm RMP1Cmax that
requires O(n) time.

The following statement immediately follows for simpler versions of problem
1|RMP(1),�(τ )|Cmax.

Corollary 15.1 For problem 1|RMP(1),�(τ )|Cmax, if theRMP is a period ofmain-
tenance that improves the running times of all jobs, i.e.,λ j ≤ 1, j ∈ N, or if the factor
λ j is job-independent, i.e., λ j = λ, j ∈ N, then an optimal schedule is the better
of the two schedules: S∗(1) in which no RMP is run and the jobs are processed
from time zero; or S∗(2), in which the RMP is run from time zero and all jobs are
sequenced after the RMP.

15.1.2 Minimizing Total Completion Time

For problem 1|RMP(1),�(τ )| ∑C j , we show how to adapt Procedure RMP1 to
its solution. We only consider the situation that the RMP is included into a schedule.
Consider an arbitrary outcome of Decision (B1), i.e., fix the number of jobs in the
second group to be equal to �, 1 ≤ � ≤ n. Then, n[1] = n − �. For a schedule SB1(2),
associated with a permutation of jobs π = (

π[1],π[2]
)
, the completion time of a job

j = π[1](r) sequenced in position r , 1 ≤ r ≤ n[1], of the first group can be written
as

Cπ[1](r) =
r∑

i=1

pπ[1](i),

while the completion time of a job j = π[2](r) sequenced in position r , 1 ≤ r ≤ n[2],
of the second group can be written as

Cπ[2](r) = (1 + ζ)

n[1]∑

r=1

pπ[1](r) +
r∑

i=1

λπ[2](i) pπ[2](i) + η.

Extending formula (2.9), the sum of completion times for a schedule SB1(2) can
be written by

F(SB1(2)) =
n[1]∑

r=1

(
n − r + 1 + ζn[2]

)
pπ[1](r) +

n[2]∑

r=1

(
n[2] − r + 1

)
λπ[2](r) pπ[2](r) + n[2]η.

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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The above expression can be represented as

F(SB1(2)) =
2∑

x=1

n[x]∑

r=1

W [x]
π[x](r)(r)pπ[x](r) + n[2]η, (15.4)

where

W [x]
π[x](r)(r) =

{
n − r + 1 + ζn[2], 1 ≤ r ≤ n[x], x = 1,(
n[2] − r + 1

)
λπ[x](r), 1 ≤ r ≤ n[x], x = 2,

(15.5)

is a job-dependent positional weight, such that for a job j = π[x](r) scheduled in
position r , 1 ≤ r ≤ n[x], of group x , 1 ≤ x ≤ 2, the product W [x]

π[x](r)(r)pπ[x](r) repre-
sents the contribution of the job to the objective function (15.4).

Thus, the objective function (15.4) admits a generic representation (12.3), so that
Procedure RMP1 is applicable.

Notice that to compute the weightsW [x]
π[x](r)(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ 2, j ∈ N ,

given by (15.5), we require knowledge of the number of jobs n[x] assigned to group
x , and these values are determined by Decision (B1), i.e., by the choice n[2] = �. The
total completion time of all jobs in schedule SB1(2) associated with a permutation
π = (

π[1],π[2]
)
with n[2] = � can be written as a function of �, 1 ≤ � ≤ n, given by

F(SB1(2)) =
2∑

x=1

n[x]∑

r=1

cπ[x](r),(x,r) + �η, (15.6)

where the costs cπ[x](r),(x,r) are defined by

c j,(x,r) :=
{(

n − r + 1 + ζn[2]
)
p j , 1 ≤ r ≤ n[1] = n − �, x = 1,

(� − r + 1)λ j p j , 1 ≤ r ≤ n[2] = �, x = 2.
(15.7)

As discussed in Sect. 12.4, a schedule S∗
B1(2) such that F

(
S∗
B1(2)

) ≤ F(SB1(2))
holds for all schedules SB1(2) with the same number � of jobs in the second group
can be found by solving the linear assignment problem (LAP) (12.5) with an n × n
cost matrix C = (

c j,(x,r)
)
defined by (15.7). Such an LAP can be solved in O(n3)

time, as follows from Theorem4.1. For the found solution, z j,(x,r) = 1 implies that
in schedule F

(
S∗
B1(2)

)
job j is assigned to the r th position of group x .

Trying all values of �, we will find schedule S∗(2) which is optimal among all
schedules with a single inserted RMP, i.e., F(S∗(2)) ≤ F

(
S∗
B1(2)

)
holds for all out-

comes of Decision (B1). An overall optimal schedule S∗ is the best of the schedules
S∗(1), with no RMP, and S∗(2), so that the following statement holds.

Theorem 15.2 Problem 1|RMP(1),�(τ )| ∑C j reduces to O(n) square linear
assignment problems and can be solved in O

(
n4

)
time.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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If the RMP’s duration is assumed to be a constant, i.e., ζ = 0, then solving the
resulting problem 1|RMP(1),�| ∑C j still requires O

(
n4

)
time, due to a similar

reduction in O(n) linear assignment problems.
Now, let us consider a special case in which the rate-modifying multiplier is job-

independent, i.e., λ j = λ, for all j ∈ N . Under this assumption, the formula (15.4)
for the sum of the completion times for a schedule SB1(2) can be written as

F(SB1(2)) =
2∑

x=1

n[x]∑

r=1

W [x](r)pπ[x](r) + n[2]η, (15.8)

where

W [x](r) =
{
n − r + 1 + ζn[2], 1 ≤ r ≤ n[x], x = 1,(
n[2] − r + 1

)
λ, 1 ≤ r ≤ n[x], x = 2,

(15.9)

is a job-independent positional weight, such that for a job j = π[x](r) scheduled in
position r , 1 ≤ r ≤ n[x], of group x , 1 ≤ x ≤ 2, the productW [x](r)pπ[x](r) represents
the contribution of the job to the objective function (15.8).

Thus, the objective function (15.8) admits a generic representation (12.3), so that
Procedure RMP1 is applicable.

Notice that to compute the weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ 2, given by
(15.9), we still require knowledge of the values n[x], which are determined by the
choice n[2] = �. The total completion time of all jobs in schedule SB1(2) associated
with a permutation π = (

π[1],π[2]
)
with n[2] = � can be written similar to (15.6),

where the cost function is given by c j,(x,r) = W [x](r)p j , 1 ≤ r ≤ n[x], 1 ≤ x ≤ 2.
As discussed in Sect. 12.4, a schedule S∗

B1(2) such that F
(
S∗
B1(2)

) ≤ F(SB1(2)) holds
for all schedules SB1(2) with the same number � of jobs in the second group can be
found by solving an LAP with a cost matrixC = (

c j,(x,r)
)
.Notice that matrixCwith

the elements c j,(x,r) = W [x](r)p j , 1 ≤ r ≤ n[x], 1 ≤ x ≤ 2,may be represented as a
product matrix, which makes the LAP solvable using AlgorithmMatch (see Sect. 4.1
for details). For a given value of �, AlgorithmMatch requires O(n) time, since within
a group, the positional weightsW [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ 2, are monotone, and
hence, they can be sorted in O(n) time.

Trying all values of �, we will find schedule S∗(2) which is optimal among all
schedules with a single inserted RMP, i.e., F(S∗(2)) ≤ F

(
S∗
B1(2)

)
holds for all out-

comes of Decision (B1). An overall optimal schedule S∗ is the best of the schedules
S∗(1), with no RMP, and S∗(2), so that the following statement holds.

Theorem 15.3 Problem 1|RMP(1),�(τ )| ∑C j with job-independent rate-
modifying multipliers, i.e., λ j = λ, for all j ∈ N, reduces to O(n) linear assign-
ment problems with a product matrix and can be solved in O

(
n2

)
time.

If the RMP’s duration is assumed to be a constant, i.e., ζ = 0, then solving the
resulting problem 1|RMP(1),�| ∑C j will still require O

(
n2

)
time, due to a similar

reduction to a series of linear assignment problems with a product matrix.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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15.2 Multiple Rate-Modifying Maintenance Periods
on a Single Machine

The model with a single RMP can be extended to a general situation, in which the
decision-maker is presented with a list (RMP[1], RMP[2], . . ., RMP[K ]) of K ≥ 1
possible rate-modifying activities. Each RMP can have a different effect on the
machine conditions, so that inserting RMP[y] will modify the processing time of a
job j scheduled after it by a factor of λ

[y]
j , 1 ≤ y ≤ K . Notice that the factor λ

[y]
j

applies not only to all jobs that are scheduled in the group that immediately follows
that RMP, but also to all jobs in all subsequent groups.

Example 15.1 For illustration, take a list of K ≥ 4 RMPs and suppose that only two
RMPs, namely RMP[2] and RMP[4], are chosen to be inserted into a schedule and
performed in this order. Then, all jobs will be split into three groups. The processing
times of the jobs scheduled in the first group, before the first scheduled RMP, i.e.,
RMP[2], will be unaffected. For each job j scheduled in the second group, i.e.,
between RMP[2] and RMP[4], the actual processing time becomes λ[2]

j p j . For each
job j scheduled in the third group, i.e., after RMP[4], the actual processing time
becomes λ[2]

j λ[4]
j p j .

If k − 1 RMPs are chosen from the available K options, then the jobs are divided
into k, 1 ≤ k ≤ K + 1 groups. Depending on which RMPs are chosen and the order
in which they are performed, the actual processing time of a job j ∈ N , scheduled
in position r of the x th group, can be given by

p[x]j (r) = μ[x]
j p j , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (15.10)

where μ[x]
j represents a group-dependent rate-modifying multiplier for job j , which

depends on the previously scheduled RMPs and can be written as

μ[x]
j =

x−1∏

v=1

λ[v]
j , 1 ≤ x ≤ k. (15.11)

For illustration, referring to Example15.1 above, if RMPDecisions 1–3 determine
that RMP[2] andRMP[4] are chosen to be inserted into a schedule in this order, thenwe
have μ[1]

j = 1, μ[2]
j = λ[2]

j , and μ[3]
j = λ[2]

j λ[4]
j , for all j ∈ N , where for the λ-values

wemaintain the numbering as in the initial list. On the other hand, if the chosenRMPs
are inserted in the opposite order, then μ[1]

j = 1, μ[2]
j = λ[4]

j , and μ[3]
j = λ[2]

j λ[4]
j .

As described in Sect. 12.3, the duration �̄[x] of the x th RMP is given by

�̄[x] =
∑

j∈N [x]

ζ [x]j p[x]j (r) + η[x], (15.12)

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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where ζ [x]
j , j ∈ N , and η[x] are known parameters. It is assumed that in a schedule

jobs that belong to set N [x] are scheduled in group x , i.e., before the x th RMP, and
the contribution of a job j ∈ N [x] toward the actual duration �̄[x] of the x th RMP is
equal to ζ [x]j p[x]j (r). Here, p[x]j (r) is the actual processing time of job j as defined in
(15.10).

The problem of minimizing the makespan and the total completion time, respec-
tively, under the settings defined by (15.10) and (15.12) is denoted by 1|RMP(K ),

�̄[x]
∣
∣�, for � ∈ {

Cmax,
∑

C j
}
, where the first term in the middle field represents

that a list of K RMPs is available for maintenance activities and the second term
indicates that the durations of the RMPs follow a rule given by (15.12).

In order to solve problem 1
∣
∣RMP(K ), �̄[x]

∣
∣� for � ∈ {

Cmax,
∑

C j
}
, we adapt

Procedure RMP1 outlined in Sect. 12.4. Fix outcomes (A1) and (A2), and for a par-
ticular outcome of Decision (B1), introduce a schedule SB1(k) for an auxiliary prob-
lem 1

∣
∣RMP(k − 1), �̄[x]

∣
∣�, associated with certain outcomes of Decisions (B2)

and (B3). In schedule SB1(k), the jobs are organized in groups N [x], 1 ≤ x ≤ k, each
group N [x] contains n[x] jobs,where

∑k
x=1 n

[x] = n. The jobs in N [x] are sequenced in
accordance with a permutation π[x] = (

π[x](1),π[x](2), . . . ,π[x]
(
n[x]

))
, 1 ≤ x ≤ k.

We now derive an expression for the total time it takes to process all jobs in a group
x , 1 ≤ x ≤ k, in a schedule SB1(k). It follows from (15.10) that the total processing
time of the jobs assigned to group x can be given by

Ex =
n[x]∑

r=1

μ[x]
π[x](r) pπ[x](r), 1 ≤ x ≤ k. (15.13)

In accordance with (15.12), the duration �̄[x] of the RMP scheduled after the x th
group is given by

Tx =
n[x]∑

r=1

ζ [x]π[x](r)μ
[x]
π[x](r) pπ[x](r) + η[x], 1 ≤ x ≤ k − 1. (15.14)

15.2.1 Minimizing Makespan

For a schedule SB1(k), the makespan can be written as

Cmax(SB1(k)) = E1 + T1 + E2 + T2 + · · · + Ex−1 + Tx−1 + Ex .

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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It follows from (15.13) and (15.14) that

Cmax(SB1(k)) =
k−1∑

x=1

n[x]∑

r=1

(1 + ζ [x]π[x](r))μ
[x]
π[x](r) pπ[x](r) (15.15)

+
n[k]∑

r=1

μ[k]
π[k](r) pπ[k](r) +

k−1∑

x=1

η[x].

The above can be represented as

Cmax(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x]
π[x](r) pπ[x](r) +

k−1∑

x=1

η[x], (15.16)

where

W [x]
π[x](r) =

{(
1 + ζ [x]π[x](r)

)
μ[x]

π[x](r), if 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

μ[k]
π[k](r), if 1 ≤ r ≤ n[x], x = k,

(15.17)

is a job-dependent positional weight, such that the product W [x]
π[x](r) pπ[x](r) represents

the contribution of job j = π[x](r) scheduled in position r , 1 ≤ r ≤ n[x], of group
x , 1 ≤ x ≤ k, to the objective function (15.15).

The function (15.16) admits a generic representation (12.3), so that Proce-
dure RMP1 is in principle applicable. However, in this case, a faster approach can
be employed, which neither requires full enumeration of possible outcomes of Deci-
sion (B1), nor requires the solution of a linear assignment problem in Step 1(b).

Notice that W [x]
π[x](r) depends on the group only, not on the position of a job within

the group. Thus, for each job j , we can compute all weights without any knowledge
of the number of jobs in a group as

W [x]
j =

{(
1 + ζ [x]j

)
μ[x]

j , if 1 ≤ x ≤ k − 1,

μ[k]
j , if x = k.

(15.18)

Let S∗(k) denote a schedule that is optimal for problem 1
∣
∣RMP(k − 1), �̄[x]

∣
∣

Cmax, for all possible outcomes of Decision (B1). Schedule S∗(k) can be found by
the following algorithm.

Algorithm RMPkCmax

Step 1. For each job j ∈ N , compute the multipliers μ[x]
j by (15.11) and the weights

W [x]
j by (15.18).

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Step 2. For j from 1 to n do

Identify a group index x j such that W [x j]
j = min

{
W [x]

j |1 ≤ x ≤ k
}
. Assign job

j ∈ N to a group N [x j].
Step 3. Permute the jobs arbitrarily in each group and output schedule S∗(k) asso-

ciated with the obtained permutation.

Algorithm RMPkCmax places each job into a group where it is matched to the
smallest weight available for that job. The following statement obviously holds.

Lemma 15.1 AlgorithmRMPkCmax returns schedule S∗(k) that is optimal for prob-
lem 1

∣
∣RMP(k − 1), �̄[x]

∣
∣Cmax in O(nk) time.

Thus, in the case under consideration, we may simplify Procedure RMP1 by
replacing Steps 1(b) and 1(c) by the following:

Step 1(b)′. Find schedule S∗(k) by running Algorithm RMPkCmax.

In an optimal schedule S∗(k), for an instance of problem 1
∣
∣RMP(k − 1), �̄[x]

∣
∣

Cmax, it is possible that some of the k groups do not receive any jobs at all. Such a
situation can occur if many RMPs, when performed back to back, are able to restore
the machine to a better state, as compared to that achieved when a single RMP is
performed. Moreover, the reduction in processing times of jobs scheduled after these
RMPs is greater than the constant time it takes to perform the RMPs.

As proved in Lemma12.1, the number of all possible outcomes (A1) and (A2)
can be estimated as

∑K+1
k=1 Kk−1. Since Algorithm RMPkCmax requires O(nk) time

to run for a given k, 1 ≤ k ≤ K + 1, the total running time required to solve prob-

lem 1
∣
∣RMP(K ), �̄[x]

∣
∣Cmax can be estimated as O

(
n

∑K+1
k=1 kK k−1

)
= O(nK K+1),

which is linear in n for a constant K . Thus, the following statement holds.

Theorem 15.4 An optimal solution for problem 1
∣
∣RMP(K ), �̄[x]

∣
∣Cmax can be

found in O
(
nK K+1

)
time by using Algorithm RMPkCmax as a subroutine.

Notice that the running time of O
(
nK K+1

)
may be reduced if we have a situation

in which some of the RMP Decisions do not need to be taken. For example, if all
available RMPs are identical, then only RMP Decision 1 must be taken; i.e., we
only need to find the optimal number of the RMPs in the schedule. In this case, the
running time required to solve problem 1

∣
∣RMP(K ), �̄[x]

∣
∣Cmax can be estimated as

O
(∑K+1

k=1 nk
)

= O
(
nK 2

)
. If K = 1, then the running time reduces to O(n), which

complies with Theorem15.1.
Now, let us consider a special case in which the found positional weights are job-

independent, i.e., when λ[x]
j = λ[x], 1 ≤ x ≤ K + 1, and ζ [x]j = ζ [x], 1 ≤ x ≤ K , for

all j ∈ N . Such a case corresponds to a situation, in which each RMP has the same
effect on every job, and every job has the same effect on the duration of each RMP.
Under these circumstances, Step 2 of Algorithm RMPkCmax requires constant time
only, instead of O(nk) time, since it can be proved that each job will be scheduled in

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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the last group. To see this, we adapt (15.18) and rewrite the found positional weights
as

W [x] =
{(

1 + ζ [x]
)
μ[x], if 1 ≤ x ≤ k − 1,

μ[k], if x = k.
(15.19)

It is clear that in an optimal schedule, only those RMP[y] for which λ[y] < 1,
1 ≤ y ≤ K , will be inserted, since they guarantee that the processing time of every
job scheduled after an inserted RMP[y] is less than its normal processing time. Other
RMPs can be ignored. If several such RMPs with λ[y] < 1 are inserted in a schedule,
it is easy to verify from (15.19) that the last group is associated with the smallest
value of W [x], 1 ≤ x ≤ k. As a result, all jobs will be scheduled in the last group,
leaving the first k − 1 groups empty.

Finally, to know which RMPs to schedule, we are required to enumerate all pos-
sibilities of outcomes (A1) and (A2), since each RMP is associated with different
duration parameters and affects the subsequent processing times differently. Notice
that the positional weights found by (15.19) are not affected by the order of the
inserted RMPs, since only the positional weights associated with the last group are
significant. Moreover, for given outcomes (A1) and (A2), the value of the makespan
can be found in constant time, if the sum of all processing times is known in advance.
The latter can be done in O(n) time. As proved in Lemma12.1, the number of all
possible outcomes (A1) and (A2) can be estimated as

∑K+1
k=1

( K
k−1

) = 2K , since the
order of jobs is not important.

Since Algorithm RMPkCmax requires O(k) time to run for a given k, 1 ≤ k ≤
K + 1, the total running time required to solve problem 1

∣
∣RMP(K ),�[x]

∣
∣Cmax,

can be estimated as O
(
n + ∑K+1

k=1 k
( K
k−1

)) = O(n + 2K K ) = O(n). The following

statement holds.

Theorem 15.5 Anoptimal solution for problem1
∣
∣RMP(K ),�[x]

∣
∣Cmax, withλ[x]

j =
λ[x], 1 ≤ x ≤ K + 1, and ζ [x]j = ζ [x], 1 ≤ x ≤ K, for all j ∈ N, can be found in
O(n) time by using Algorithm RMPkCmax as a subroutine.

15.2.2 Minimizing Total Completion Time

For a schedule SB1(k), the completion time of a job j = π[x](r) scheduled in position
r of the x th group can be given by

Cπ[x](r) = E1 + T1 + E2 + T2 + · · · + Ex−1 + Tx−1 +
r∑

u=1

μ[x]
π[x](u)

pπ[x](u).

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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It follows from (15.13) and (15.14) that

Cπ[x](r) =
x−1∑

v=1

n[v]∑

u=1

(1 + ζ [v]π[v](u)
)μ[v]

π[v](u)
pπ[v](u)

+
r∑

u=1

μ[x]
π[x](u)

pπ[x](u) +
x−1∑

v=1

η[v].

Thus, the sum of the completion times F(SB1(k)) = ∑
C j (SB1(k)) can be written

as

F(SB1(k))

=
k∑

x=1

n[x]∑

r=1

⎡

⎣
x−1∑

v=1

n[v]∑

u=1

(1 + ζ [v]π[v](u)
)μ[v]

π[v](u)
pπ[v](u) +

r∑

u=1

μ[x]
π[x](u)

pπ[x](u) +
x−1∑

v=1

η[v]
⎤

⎦

Substitute the constant term

�(k) =
k∑

x=1

n[x]∑

r=1

x−1∑

v=1

η[v] (15.20)

and rearrange the above expression to obtain

F(SB1(k)) =
k∑

x=1

⎡

⎣n[x]
x−1∑

v=1

n[v]∑

u=1

(1 + ζ[v]
π[v](u)

)μ[v]
π[v](u)

pπ[v](u) +
n[x]∑

r=1

r∑

u=1

μ[x]
π[x](u)

pπ[x](u)

⎤

⎦

+�(k)

=
k∑

x=1

⎛

⎝
n[x]∑

r=1

(1 + ζ[x]
π[x](r)

)μ[x]
π[x](r)

pπ[x](r)

⎞

⎠

(
k∑

v=x+1

n[v]
)

+
k∑

x=1

n[x]∑

r=1

(
n[x] − r + 1

)
μ[x]

π[x](r)
pπ[x](r) + �(k)

=
k∑

x=1

n[x]∑

r=1

[(
k∑

v=x+1

n[v]
)

(1 + ζ[x]
π[x](r)

) + (
n[x] − r + 1

)
]

μ[x]
π[x](r)

pπ[x](r)

+�(k).
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The above can be represented as

F(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x]
π[x](r)(r)pπ[x](r) + �(k), (15.21)

where

W [x]
π[x](r)(r) =

[(
k∑

v=x+1

n[v]
)

(1 + ζ [x]π[x](r)) + (
n[x] − r + 1

)
]

μ[x]
π[x](r),

1 ≤ x ≤ k, 1 ≤ r ≤ n[x],

is a job-dependent positional weight, such that the product W [x]
π[x](r) pπ[x](r) represents

the contribution of job j = π[x](r) scheduled in position r , 1 ≤ r ≤ n[x], of group
x , 1 ≤ x ≤ k, to the objective function

∑
C j (SB1(k)).

The function (15.21) admits a generic representation (12.3), so that Proce-
dure RMP1 is in principle applicable. In particular, for each outcome of Deci-
sion (B1), i.e., for fixed values n[x], 1 ≤ x ≤ k, of the numbers of jobs in each
group, schedule S∗

B1(k) that corresponds to the smallest value of function (15.21)
can be found by solving an LAP. Notice that the weights are job-dependent so that
for each outcome of Decision (B1), the corresponding LAP will have an n × n cost
matrix (see Sect. 12.4).

Thus, in order to solve problem 1
∣
∣RMP(K ), �̄[x]

∣
∣ ∑C j , we apply Procedure

RMP1, which involves solving a linear assignment problem (LAP) in the full form
as a subroutine in Step 1(b). According to Lemma12.1, the number of times an LAP
will have to be solved is equal to O

(
nK

)
. The running time required to solve an n × n

LAP (see Sect. 4.1) is equal to O
(
n3

)
. Thus, the following statement holds.

Theorem 15.6 An optimal solution for problem 1
∣
∣RMP(K ), �̄[x]

∣
∣ ∑C j can be

found in O
(
nK+3

)
time applying Procedure RMP1 and solving a series of n × n

linear assignment problems.

Now, let us consider a special case in which the found positional weights are job-
independent, i.e., when λ[x]

j = λ[x], 1 ≤ x ≤ K + 1, and ζ [x]j = ζ [x], 1 ≤ x ≤ K , for
all j ∈ N , so that we have

W [x](r) =
⎡

⎣

⎛

⎝
k∑

v=x+1

n[v]

⎞

⎠(1 + ζ[x]) +
(
n[x] − r + 1

)
⎤

⎦μ[x], 1 ≤ x ≤ k, 1 ≤ r ≤ n[x].

If the positional weights are given as above, the function (15.21) admits a generic
representation (12.3), so that Procedure RMP1 is in principle applicable. Since the
weights are job-independent, Procedure RMP1 involves solving a linear assignment
problemwith a productmatrix as a subroutine inStep 1(b).According toLemma12.1,
the number of times an LAP will have to be solved is equal to O

(
nK

)
. The running

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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time required to solve an LAP with a product matrix is equal to O(n log n); see
Sect. 12.4. Thus, the following statement holds.

Theorem 15.7 Anoptimal solution for problem1
∣
∣RMP(K ),�[x]

∣
∣Cmax, withλ[x]

j =
λ[x], 1 ≤ x ≤ K + 1, and ζ [x]j = ζ [x], 1 ≤ x ≤ K, for all j ∈ N, can be found in

O
(
nK+1 log n

)
time applying Procedure RMP1 and solving a series of linear assign-

ment problems with a product matrix.

15.3 Bibliographic Notes

The concept of rate-modifying maintenance activities was first introduced by Lee
and Leon (2001). It is described how this idea is relevant in the electronic man-
ufacturing industry. They consider a range of problems for a model in which the
processing times of jobs vary depending on whether the job is scheduled before
or after the RMP. The main model uses a rate-modifying multiplier λ j , which is
job-dependent; however, simplified models with job-independent rates are also con-
sidered. The objectives considered in Lee and Leon (2001) are the makespan, the
sum of the completion times, the weighted sum of the completion times, and the
maximum lateness. Polynomial-time algorithms are provided for the first two objec-
tives; however, pseudo polynomial-time algorithms are provided for the latter two.
Mosheiov and Sidney (2010) extend that work and study a situation in which the
duration of the RMP is not constant but is a non-decreasing linear function of its
start time. They provide polynomial-time algorithms for the problems of minimizing
the makespan, the sum of the completion times, the maximum lateness, the total
earliness, tardiness, and due-date cost, and the number of tardy jobs. In particular,
Theorem15.1 is proved in Lee and Leon (2001) for the RMP of a constant dura-
tion, while Corollary15.1 is proved in Mosheiov and Sidney (2010), provided that
the duration of the RMP is linear and satisfies (15.3). Similarly, Theorem15.2 is
proved in Lee and Leon (2001) and in Mosheiov and Sidney (2010), for the RMP of
a constant duration and of the duration given by (15.3), respectively.

Lee and Lin (2001) consider a situation in which the machine is allowed to break
down if an MP is not inserted until a given instant. This instant is a random variable,
with a known probability density function. If the machine is found to break down,
then a repair activity must be performed, which takes considerably longer than an
MP. Similar to Lee and Leon (2001), this paper also assumes that the processing
times of jobs vary depending on whether the job is scheduled before or after the
MP. The rate-modifying multiplier λ j is, however, assumed to be job-independent.
The objectives considered by Lee and Lin (2001) are the makespan, the sum of the
completion times, and the maximum lateness. Both resumable and non-resumable
scenarios are considered.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Chapter 16
Scheduling with Maintenance
and Positional Effects

In this chapter,wediscuss singlemachine scheduling problemswith positional effects
and rate-modifying activities to minimize the makespan. Our main focus will be to
explore models with both job-dependent and job-independent deterioration effects
and maintenance activities. We provide a variety of solution approaches that effi-
ciently solve different versions of the general problem. We provide a full account of
the entire range of single machine problems that can be solved using the developed
solution approaches.

In the problems considered in this chapter, the jobs of set N = {1, 2, . . . , n} are
to be processed on a single machine. Each job j ∈ N is associated with a normal
processing time pj. The actual processing time of the job is affected by its position
in the processing sequence, as well as by its relative position with respect to the
rate-modifying periods (RMPs) introduced in a schedule.

As described in Chap.7, under a job-dependent positional effect, the actual
processing time pj(r) of a job j sequenced in position r is given by

pj(r) = pjgj(r), j ∈ N, 1 ≤ r ≤ n,

where gj(r), j ∈ N , is a job-dependent positional factor. Recall that if the values gj(r),
1 ≤ r ≤ n, form a non-decreasing sequence for each j ∈ N , we deal with a positional
deterioration effect. Such a model represents a scenario in which each job wears out
the machine in a different way; hence, each job j ∈ N is associated with a unique set
of positional factors. On the other hand, if the sequence is non-increasing for each
j ∈ N , a learning effect is observed.

Under a job-independent positional effect, the actual processing time pj(r) of a
job j sequenced in position r is given by

pj(r) = pjg(r), j ∈ N, 1 ≤ r ≤ n,
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where g(r), 1 ≤ r ≤ n, forms an array of positional factors that is common for all
jobs. Similar to the above, if array g(r), 1 ≤ r ≤ n, is monotone non-decreasing (or
non-increasing), then we have a situation of positional deterioration (or of positional
learning, respectively). Assuming that the processing machines are continuously
available, scheduling problems with positional effects and their generalizations are
studied in Chap. 7.

In this chapter, we consider enhanced single machine scheduling models in which
the processing times of the jobs are subject to positional effects and various RMPs
can be introduced on the processing machine.

Consider a general situation, outlined in Sect. 12.4, in which the decision-maker is
presentedwith a list (RMP[1],RMP[2], . . ., RMP[K]) ofK ≥ 1possible rate-modifying
activities. The decision-maker may decide which of the listed RMPs to insert into
a schedule and in which order. Chapter15 presents the results on scheduling with
RMPs, provided that the normal processing times of the jobs are only affected by
the rate-modifying multipliers associated with the inserted RMPs.

If k − 1 RMPs are chosen from the available K options, then the jobs are divided
into k, 1 ≤ k ≤ K + 1 groups. Depending on which RMPs are chosen and the order
in which they are performed, the actual processing time of a job j ∈ N , scheduled in
position r of the xth group, can be given by

p[x]j (r) = pjg
[x]
j (r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, (16.1)

where g[x]j (r) is a job-dependent group-dependent positional factor. The presence of
group-dependent positional factors implies that the actual processing time of a job
is dependent on the position of the job in a group and also on the group that job
is scheduled in. This is the most general positional factor known, since it allows a
three-way dependency, namely on a job, a group, and a position.

If the positional effect is job-independent, the actual processing time of a job
j ∈ N , scheduled in position r of the xth group, can be given by

p[x]j (r) = pjg
[x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, (16.2)

where g[x](r) is a group-dependent positional factor.
If a pure deterioration model is considered, then the positional factors within a

group x are in non-decreasing order

1 ≤ g[x]
j (1) ≤ g[x]

j (2) ≤ · · · ≤ g[x]
j (n), 1 ≤ x ≤ k, j ∈ N, (16.3)

whereas if a pure learning model is considered, then the positional factors within a
group x are in non-increasing order

1 ≥ g[x]
j (1) ≥ g[x]

j (2) ≥ · · · ≥ g[x]
j (n), 1 ≤ x ≤ k, j ∈ N . (16.4)

http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Notice that the group-dependent positional factors g[x]j (r) reflect an influence that
the RMPs may have on actual processing times, and as such, they include possible
rate-modifying multipliers λ[x]

j that are used in the models studied in Chap.15.
If the positional effect is job-independent, then the inequalities (16.3) and (16.4)

hold without the subscript j, for a deterioration effect and a learning effect, respec-
tively. As discussed in Chap.7, it is also possible to have an arbitrary non-monotone
positional effect, which could possibly arise due to a combination of deterioration
and learning effects. We study such combined effects with different types of RMPs
in Chap.18.

In this chapter, we focus on the problems of minimizing the makespan under
a pure deterioration effect, so that (16.3) holds, with and without job dependence.
In this case, the RMPs can be understood as maintenance periods, which might be
included into a schedule in order to handle the deteriorating machine conditions.

See Example 12.2 for an illustration and a description of a practical situation that
corresponds to the problem with group-dependent positional effects.

Problems of minimizing the makespan with RMPs and learning effects are con-
sidered in Chap. 18 among the problems with more general scenarios. Chapter 18
also considers problems of minimizing the total completion time under positional
and more general effects.

The algorithms presented in this chapter for solving relevant problems are adap-
tations of the generic Procedure RMP1 from Sect. 12.4.

To count the number of the related instances, we use various combinatorial con-
figurations and identities listed in Sect. 5.3. In the estimations of the running times
of the presented algorithms, we assume that the number K of available RMPs is a
constant, which is reasonable since usually the number of possible rate-modifying
activities to be performed is fairly small.

As often is the case in this book, the LPT sequencing of the jobs is important.
Recall that if the jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn. (16.5)

16.1 Job-Dependent Deterioration Effects

In this section, we study job-dependent positional deterioration effects along with
rate-modifying maintenance activities. The duration of an RMP included in a sched-
ule is determined as a linear combination of the actual processing times of the jobs
in the preceding group. It is assumed that in some schedule, jobs that are scheduled
in group x, before the xth RMP, form set N [x], and the contribution of a job j ∈ N [x]

toward the actual duration �̄[x] of the xth RMP is equal to ζ [x]j p[x]j (r). Here, p[x]j (r)
is the actual processing time of job j scheduled in position r within the xth group,
defined as p[x]j (r) = pjg

[x]
j (r), where the positional factors satisfy (16.3), i.e., a dete-

rioration effect within a group is observed. Thus, the duration of the xth RMP is
given by

http://dx.doi.org/10.1007/978-3-319-39574-6_15
http://dx.doi.org/10.1007/978-3-319-39574-6_7
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_5
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�̄[x] =
∑

j∈N [x]

ζ [x]j p[x]j (r) + η[x], (16.6)

as defined in (12.2).
The problem of minimizing the makespan, under the general settings defined

by (16.1) and (16.6), is denoted by 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax, where

the first term in the middle field represents the presence of job-dependent positional
factors which follow (16.3), the second term points out that the list of K RMPs is
available for maintenance activities, and the third term indicates that the durations
of the RMPs follow a rule given by (16.6).

Similar to a less general problem 1
∣
∣RMP(K), �̄[x]

∣
∣Cmax studied in Sect. 15.2, an

optimal solution to problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax can be found

by adapting Procedure RMP1 fromSect. 12.4. Inwhat follows, we show that problem

1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax reduces to a linear assignment problem in

its full form and can be solved in polynomial time.

16.1.1 Computing Positional Weights

For problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax, in accordance with Proce-

dure RMP1 fix outcomes (A1) and (A2), and for a particular outcome of Deci-

sion (B1) introduce a schedule SB1(k) for an auxiliary problem 1

∣
∣
∣
∣p

[x]
j (r) = pjg

[x]
j (r),

RMP(k − 1), �̄[x]

∣
∣
∣
∣Cmax associatedwith certain outcomesofDecisions (B2) and (B3).

In schedule SB1(k), the jobs are organized into groupsN [x], 1 ≤ x ≤ k, in which each
group N [x] contains n[x] jobs, where

∑k
x=1 n

[x] = n. The jobs inN [x] are sequenced in
accordance with a permutation π[x] = (

π[x](1),π[x](2), . . . ,π[x]
(
n[x]

))
, 1 ≤ x ≤ k.

It follows that in schedule SB1(k), the total processing time of the jobs assigned
to group x can be given by

Ex =
n[x]∑

r=1

pπ[x](r)g
[x]
π[x](r)(r), 1 ≤ x ≤ k.

In accordance with (16.6), the duration �̄[x] of the RMP scheduled after the xth
group is given by

Tx =
n[x]∑

r=1

ζ [x]π[x](r)pπ[x](r)g
[x]
π[x](r)(r) + η[x], 1 ≤ x ≤ k − 1.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_15
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Thus, for a schedule SB1(k), the makespan can be written as

Cmax(SB1(k)) = E1 + T1 + E2 + T2 + · · · + Ex−1 + Tx−1 + Ex

=
k−1∑

x=1

n[x]∑

r=1

(1 + ζ [x]π[x](r))g
[x]
π[x](r)(r)pπ[x](r) (16.7)

+
n[k]∑

r=1

g[k]
π[k](r)(r)pπ[k](r) +

k−1∑

x=1

η[x].

The above can be represented as

Cmax(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x]
π[x](r)(r)pπ[x](r) + �(k), (16.8)

where the constant term is defined as

�(k) =
k−1∑

x=1

η[x], (16.9)

and

W [x]
π[x](r)(r) =

{(
1 + ζ [x]π[x](r)

)
g[x]π[x](r)(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g[k]
π[k](r)(r), 1 ≤ r ≤ n[x], x = k,

(16.10)

is a job-dependent weight, such that the product W [x]
π[x](r)pπ[x](r) represents the contri-

bution of job j = π[x](r) scheduled in position r, 1 ≤ r ≤ n[x], of group x, 1 ≤ x ≤ k,
to the objective function (16.7).

The function (16.8) admits a generic representation (12.3), and Procedure RMP1
is in principle applicable. In particular, for each outcome of Decision (B1), i.e., for
fixed values n[x], 1 ≤ x ≤ k, of the numbers of jobs in each group, schedule S∗

B1(k)
that corresponds to the smallest value of function (16.7) can be found by solving a
linear assignment problem (LAP). Below, we give implementation details of a less
straightforward implementation of Procedure RMP1, which is based on the fact that
the positional factors follow (16.3), i.e., are non-decreasing.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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16.1.2 Reduction to Rectangular LAP

In this subsection, we describe a solution approach, which is able to solve problem

1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1), �̄[x]

∣
∣
∣Cmax without prior knowledgeof the number

of jobs n[x] in each group, i.e., no specific outcome of Decision (B1) is needed.
The only prerequisite condition is that the computed positional weights W [x]

j (r),
1 ≤ r ≤ n[x], should be monotone within each group, i.e., should follow

W [x]
j (1) ≤ W [x]

j (2) ≤ · · · ≤ W [x]
j (n[x]), 1 ≤ x ≤ k, j ∈ N . (16.11)

It is easy to notice that because the positional factors g[x]j (r) follow (16.3), the

computed positional weights W [x]
j (r), 1 ≤ r ≤ n[x], defined by (16.10), are non-

decreasing within each group x, 1 ≤ x ≤ k, for each job j ∈ N .
In the case under consideration, Step 1 of Procedure RMP1 can be simplified, and

finding schedule S∗(k) defined in Step 1(c) can be reduced to solving an LAP.
Define an LAP with a rectangular cost matrix that has n rows, each corresponding

to a job j ∈ N , and m = nk columns. Number the columns by a string of the form
(x, r), where x refers to a group, 1 ≤ x ≤ k, and r, 1 ≤ r ≤ n, indicates a position
within the group. Create an n × m cost matrix C = (

cj,(x,r)
)
by setting n[x] = n,

1 ≤ x ≤ k, and computing all values of the costs cj,(x,r) by

cj,(x,r) = W [x]
j (r)pj, 1 ≤ r ≤ n, 1 ≤ x ≤ k, j ∈ N, (16.12)

where the valuesW [x]
j (r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, come from (16.10).More precisely,

the value of the element cj,(x,r) located at the intersection of the jth row and the vth
column of matrix C for v, 1 ≤ v ≤ m, such that v = n(x − 1) + r, corresponds to
the contribution of job j to the objective function, if it is scheduled at the rth position
of the xth group, where 1 ≤ x ≤ k and 1 ≤ r ≤ n. Notice that matrix C represents a
set of all possible values of cj,(x,r) and can be computed in O

(
n2k

)
time.

As a result, the problem of minimizing the generic objective function (16.8)
reduces to a rectangular assignment problem written as below:

minimize
∑

j∈N

k∑

x=1

n∑

r=1

cj,(x,r)zj,(x,r)

subject to
∑

j∈N
zj,(x,r) ≤ 1, 1 ≤ x ≤ k, 1 ≤ r ≤ n;

k∑

x=1

n∑

r=1

zj,(x,r) = 1, j ∈ N;
zj,(x,r) ∈ {0, 1}, j ∈ N, 1 ≤ x ≤ k, 1 ≤ r ≤ n.

(16.13)
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Recall that a rectangular assignment problem of the form (16.13) can be solved by
Algorithm LAPD outlined in Sect. 4.1.1. The running time of this algorithm applied
to a LAPwith an n × m cost matrix,m ≥ n, isO(n3 + nm). Thus, an optimal solution
for problem (16.13) can be found in O(n3 + n2k) time.

Suppose that for some k, 1 ≤ k ≤ K + 1, the solution of the assignment prob-

lem (16.13) related to an auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1), �̄[x]

∣
∣
∣

Cmax is found. Then, zj,(x,r) = 1 implies that in the corresponding schedule S∗(k),
job j is assigned to the rth position of group x. The conditions of (16.13) mean that
each job will be assigned to a position and no position will be used more than once.
The condition (16.11) guarantees that the found assignment admits a meaningful
scheduling interpretation, because for each of the k groups either several consec-
utive positions starting from the first are filled or the group is not used at all. In
principle, the same solution approach remains valid even for the case with non-
monotone positional factors, since setting n[x] = n, 1 ≤ x ≤ k, does indeed generate
a set of all possible cost functions cj,(x,r) for the latter case as well. However, since
the condition (16.11) does not hold for the case with arbitrary positional effects, it
cannot be guaranteed that consecutive positions (starting from the first position) are
filled in each group, thereby resulting in an infeasible solution. To ensure feasibility
of the obtained solution, it is essential that the obtained positional weights should be
monotonically ordered within a group.

Thus, in the case under consideration, we modify Procedure RMP1 by replacing
Step 1 by the following:

Step 1′. Given problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax, for each out-

come (A1) and (A2), do

(a) Define �(k) by (16.9) and compute positional weights W [x]
j (r), j ∈ N , 1 ≤

r ≤ n, by (16.10) applied with n[x] = n, 1 ≤ x ≤ k.
(b) Create the cost matrix C = (

cj,(x,r)
)
with the elements (16.12).

(c) Find schedule S∗(k) by solving the linear assignment problem (16.13).

The following statement holds.

Lemma 16.1 An auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1), �̄[x]

∣
∣
∣

Cmax under a positional deterioration effect (16.3) can be solved in O(n3 + n2k)
time by reduction to a rectangular LAP of the form (16.13).

In accordance with the modified Procedure RMP1, in order to obtain a sched-
ule S∗ that is optimal for the original problem 1

∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣

Cmax, we need to generate all possible outcomes (A1) and (A2), to find sched-

ule S∗(k) for each generated auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1),

�̄[x]
∣
∣Cmax and identify the best of the found schedules.
As proved in Lemma 12.1, the number of all possible outcomes (A1) and (A2) can

be estimated as
∑K+1

k=1 Kk−1. Since for a k, 1 ≤ k ≤ K + 1, solving the correspond-
ing rectangular LAP requires O

(
n3 + n2k

)
time, the total running time required to

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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solve the general version of problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax by

the modified Procedure RMP1 can be estimated as O
(
n3KK + n2

∑K+1
k=1 kKk−1

)
.

Due to
K+1∑

k=1

kKk−1 = 1

(K − 1)2
+ 1

K
KK+2 K2 − 2

(K − 1)2
= O

(
KK+1

)
,

the overall running time can be written as O(n3KK + n2KK+1) = O
(
n2KK(n + K)

)
,

which is polynomial in n for a constant K .

Theorem 16.1 Problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax under a

positional deterioration effect (16.3) can be solved in O
(
n2KK(n + K)

)
time by

reduction to O
(
KK

)
rectangular linear assignment problems.

Notice that the running time stated in Theorem 16.1may be reduced if we consider
a less general situation, in which some of RMP Decisions do not need to be taken.
Let us evaluate the number of different combinations for RMPDecisions 1–3 that are
needed to solve less general versions of the problem.Wemay consider in total 23 = 8

versions of problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax, distinguishing them

based on the three criteria:

(a) The RMPs are identical or distinct;
(b) Deterioration factors are group-independent or group-dependent, and
(c) Durations of the RMPs are constant or defined by (16.6).

Notice that the model with the RMPs of constant duration is a special case of
(16.6) with all coefficients ζ [x]j equal to zero. More specifically, the duration of an

RMP[y], 1 ≤ y ≤ K , in the given list is equal to η[y].

For each version, an individual auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),

RMP (K), �̄[x]
∣
∣Cmax is solved by reduction to a rectangular LAP, as discussed above.

Table16.1 states the numbers of possible outcomes (A1) and (A2), i.e., the

number of auxiliary problems 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1), �̄[x]

∣
∣
∣Cmax that are

needed to be solved in order to solve a version of problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),

RMP(K), �̄[x]
∣
∣Cmax. In the rows of Table16.1 and several other tables presented

later in this chapter, we write either GI or GD, depending on whether the deteriora-
tion factors are group-independent or group-dependent, respectively.

Notice that if all available RMPs are identical, then only RMP Decision 1
must be taken, i.e., only an optimal number of the RMPs in the schedule has to

be determined. Thus, problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1), �̄[x]

∣
∣
∣Cmax must

be solved K + 1 times. In this case, the running time required to solve problem
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Table 16.1 Number of subproblems to solve for different versions of problem 1
∣
∣
∣p[x]j (r)

= pjg
[x]
j (r),RMP(K),�

[x]
j (τ )

∣
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI K + 1 K + 1 K + 1 2K

GD K + 1
∑K+1

k=1

( K
k−1

)
(k − 1)! K + 1

∑K+1
k=1

( K
k−1

)
(k − 1)!

1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax can be estimated as O

(
n3(K + 1)+

∑K+1
k=1 n2k

)
= O

(
n2K(n + K)

)
.

Now, consider the situation when the RMPs are distinct, but the deterioration
effects are group-independent. This problem corresponds to a scenario, in which
distinct RMPs are performed in the schedule, but they all restore the machine to the
same state. Thus, the order of the RMPs is irrelevant (i.e., any outcome of RMP
Decision 3 may be accepted), and the decision regarding the choice of the RMPs
to be included into a schedule (RMP Decision 2) is made only on the basis of the
durations of the RMPs.

If the durations of the RMPs are constant, then for each k, 1 ≤ k ≤ K + 1, we
need to take k − 1 RMPs with the smallest values of η[y], which can be found in
O(K logK) time by sorting and renumbering the list of the RMPs in non-decreasing
order of their durations, so that

η[1] ≤ η[2] ≤ · · · ≤ η[K]. (16.14)

holds. Thus, if RMP Decision 1 is assumed to be taken, so that k − 1 RMPs are to
be included in the schedule, 1 ≤ k ≤ K + 1, then RMP[1], . . ., RMP[k−1] are to be
chosen and inserted into a schedule in the order of their numbering. Finally, K + 1
options need to be evaluated in order to make RMP Decision 1.

On the other hand, if the durations are determined by (16.6), there is no easy way
of selecting the best k − 1 RMPs from the K available RMPs. Thus, all possible
selections need to be tried and this can be done in

( K
k−1

)
ways. Trying all possible

values of k, 1 ≤ k ≤ K + 1 (i.e., taking RMPDecision 1), the total number of options
can be estimated by

∑K+1
k=1

( K
k−1

) = 2K . Thus, the total running time required to solve

this version of problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax can be estimated

as O
(
n32K + ∑K+1

k=1 n2k
( K
k−1

)) = O
(
n22K(n + K)

)
.

The corresponding running times required to solve different versions of problem

1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(K), �̄[x]

∣
∣
∣Cmax are given in Table16.2.
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Table 16.2 Running time required for different versions of problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),

RMP(K),�
[x]
j (τ )

∣
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI O
(
n2K(n + K)

)
O

(
n2K(n + K)

)
O

(
n2K(n + K)

)
O(n22K (n + K))

GD O
(
n2K(n + K)

)
O

(
n2KK (n + K)

)
O

(
n2K(n + K)

)
O

(
n2KK (n + K)

)

16.2 Job-Independent Effects

In this section, we study job-independent positional deterioration effects along with
rate-modifying maintenance activities. The duration of an RMP is given by

�[y](τ ) = ζ[y]τ + η[y], (16.15)

as introduced in (12.1), where τ is the starttime of the RMP, measured either from
time zero in the case of the first RMP or from the completion time of the previous
RMP. Notice that the duration given by (16.15) is simply the job-independent version
of (16.6).

The problem of minimizing the makespan, under the general settings defined

by (16.2) and (16.15), can be denoted by 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣

Cmax, where the first term in the middle field represents the presence of job-
independent positional factors which follow (16.3), the second term points out that
K RMPs are available for maintenance activities, and the third term points out that
the duration of the RMPs follows a job-independent rule as given by (16.15).

An optimal solution to problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣

Cmax can be found by adapting Procedure RMP1 from Sect. 12.4. In what follows, we

show that problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K)�[x](τ )

∣
∣
∣Cmax reduces to a series of

linear assignment problems with a product matrix and can be solved in polynomial
time.

16.2.1 Computing Positional Weights

For problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[y](τ )

∣
∣
∣Cmax, in accordance with Pro-

cedure RMP1 fix outcomes (A1) and (A2), and for a particular outcome of Deci-

sion (B1), introduce a schedule SB1(k) for an auxiliary problem 1
∣
∣
∣p[x]j

(r) = pjg[x](r),RMP(k − 1),�[y](τ )

∣
∣
∣Cmax associatedwith certain outcomesofDeci-

sions (B2) and (B3). In schedule SB1(k), the jobs are organized into groups N [x],

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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1 ≤ x ≤ k, and each group N [x] contains n[x] jobs, where
∑k

x=1 n
[x] = n. The jobs in

N [x] are sequenced in accordance with a permutation π[x] = (
π[x](1),π[x](2), . . . ,

π[x]
(
n[x]

))
, 1 ≤ x ≤ k.

Computing the value of the makespan for schedule SB1(k) is quite similar to that
presented in Sect. 16.1.1. It follows that for a schedule SB1(k), the makespan can be
written as

Cmax(SB1(k)) =
k−1∑

x=1

n[x]∑

r=1

(1 + ζ [x])g[x](r)pπ[x](r) +
n[k]∑

r=1

g[k](r)pπ[k](r) +
k−1∑

x=1

η[x].

(16.16)

The above can be represented as a generic objective function of the form

Cmax(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x](r)pπ[x](r) + �(k), (16.17)

where �(k) is defined by (16.9) and

W [x](r) =
{(

1 + ζ [x]
)
g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g[k](r), 1 ≤ r ≤ n[x], x = k,
(16.18)

is a job-independent weight, such that the productW [x]
π[x](r)pπ[x](r) represents the contri-

bution of job j = π[x](r) scheduled in position r, 1 ≤ r ≤ n[x], of group x, 1 ≤ x ≤ k,
to the objective function (16.16).

The function (16.8) admits a generic representation (12.3), and Procedure RMP1
is in principle applicable. Notice that the weights are job-independent so that for
each outcome of Decision (B1), the corresponding linear assignment problem will
have a product cost matrix(see Sect. 12.4).

Below, we consider eight versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),

�[y](τ )

∣
∣
∣Cmax distinguishing between them based on three criteria (a), (b), and

(c) listed in Sect. 16.1.2. We present three solution approaches, which handle dif-

ferent versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax. All three

approaches are able to take Decision (B1), i.e., to find the optimal values of n[x],
1 ≤ x ≤ k, on the fly. The approaches differ in how outcomes (A1) and (A2) are
generated. Based on these differences, we study different versions of the main prob-
lem in three separate subsections. The three solution approaches require different
running times, but they all use a subroutine which implements the ideas of Algo-
rithm Match, i.e., the corresponding optimal permutation of jobs is obtained by
matching jobs with large normal processing times to small positional weights.

Table16.3 lists the different versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),

RMP (K),�[x](τ )
∣
∣Cmax considered in this chapter and gives references to the

appropriate sections.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Table 16.3 Different versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI Sect. 16.2.4 Sect. 16.2.4 Sect. 16.2.3 Sect. 16.2.2

GD Sect. 16.2.3 Sect. 16.2.2 Sect. 16.2.2 Sect. 16.2.2

16.2.2 Reduction to LAP with a Product Matrix

Let us begin our consideration with the most general version of problem 1
∣
∣
∣p[x]j (r) =

pjg[x](r),RMP(K),�[x](τ )
∣
∣Cmax, with group-dependent deterioration factors and

distinct RMPs of start-time-dependent durations. We describe a solution approach,

which is able to solve the auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),

�[x](τ )
∣
∣Cmax without prior knowledge of the number n[x] of jobs in each group. Sim-

ilar to (16.11), we require a prerequisite condition that computed positional weights
W [x](r), 1 ≤ r ≤ n[x], should follow

W [x](1) ≤ W [x](2) ≤ · · · ≤ W [x](n[x]), 1 ≤ x ≤ k. (16.19)

It is easy to notice that because the positional factors g[x](r) follow (16.3), the
computed positional weights W [x](r), 1 ≤ r ≤ n[x], are non-decreasing within each
group x, 1 ≤ x ≤ k.

Theorem 16.2 Given an auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),

�[x](τ )
∣
∣Cmax, where 1 ≤ k ≤ K + 1, compute all possible positional weights

W [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, using (16.18) with n[x] = n and choose the n smallest
among them. For a particular group, if the chosen elements occupy consecutive posi-
tions, then assigning the jobswith the largest normal processing times to the positions
associated with the smallest positional weights will create a schedule S∗(k) which
minimizes the objective function (16.17).

Proof The proof of the theorem is rather straightforward. Notice that at most n posi-
tions can be used in each group. In a schedule with k groups, we have a choice of
at most nk positions, in which n jobs can be potentially scheduled. Each of these
positions has a certain positional weight associated with them. Recall that the contri-
bution of a job j = π[x](r) to the objective function Cmax(S(k)) is given byW [x](r)pj.
Thus, following from Sect. 2.1, in order to ensure the smallest value of the objective
function, we must choose n positions that generate the smallest positional weights.
Since all possible values of W [x](r) are known, we can identify these positions.
Moreover, due to (16.19), it can be ensured that for each group, the found positions
form a block of consecutive positions starting from position 1. These positions may
be used to create a feasible schedule. For a group x, the number of chosen positions
gives us the value n[x], 1 ≤ x ≤ k. �

http://dx.doi.org/10.1007/978-3-319-39574-6_2
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We now apply Theorem 16.2 to finding an optimal solution S∗(k) to problem

1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),�[x](τ )

∣
∣
∣Cmax. This can be done by the following

algorithm. In the description of the algorithm, it is assumed that the jobs are numbered
in the LPT order (16.5).

Algorithm NSmallPosi

input: An instance of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),�[x](τ )

∣
∣
∣Cmax

output: An optimal schedule S∗(k) defined by the processing sequences π[x], 1 ≤
x ≤ k

Step 1. For each group x, 1 ≤ x ≤ k, define an empty processing sequence
π[x] := (∅) and the weightW [x] := W [x](1) computed as in (16.18). Create a non-
decreasing list � of the values W [x], 1 ≤ x ≤ k; to break ties, place the weight
associated with a group with a smaller index x earlier in the list.

Step 2. For each job j from 1 to n, do

(a) Take the first elementW [v] in list�, the smallest available positional weight.
(b) Assign job j to group v and place it after the current permutation π[v],

i.e., update π[v] := (π[v], j) and associate job j with the positional weight
W [v]. Remove W [v] from list �. Compute r = ∣

∣π[v]
∣
∣. Use (16.18) to update

W [v] := W [v](r + 1), and insert the updated valueW [v] into�, maintaining
list � non-decreasing.

Step 3. The found permutation π∗ = (
π[1],π[2], . . . ,π[k]

)
defines an optimal

schedule S∗(k). Compute the optimal value of the objective function Cmax(S∗(k))
by (16.17).

In Step 1 of Algorithm NSmallPosi, list � can be created in O(k log k) time. Each
iteration of the loop in Step 2 requiresO(log k) time, since the insertion of the updated
weight into a sorted list can be done by binary search. Notice that the total number
of the weights computed in Steps 1 and 2 does not exceed n + k. Since n ≥ k, the
following statement holds.

Lemma 16.2 For an auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),

�[x](τ )
∣
∣Cmax under a positional job-independent deterioration effect, Algorithm

NSmallPosi finds an optimal schedule S∗(k) in O(n log n) time, or in O(n log k)
time, provided that the LPT sequence of the jobs is known.

Thus, in the case under consideration, we modify Procedure RMP1 by replacing
Step 1(b) and (c) by the following:

Step 1(b′). For each outcome of Decision B(1), do

Find schedule S∗(k) by applying Algorithm NSmallPosi.
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Table 16.4 Running time required for diffrent versions of problem 1

∣
∣
∣
∣p

[x]
j (r) = pjg[x](r),

RMP(K),�[x](τ )

∣
∣
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI Sect. 16.2.4 Sect. 16.2.4 Sect. 16.2.3 O
(
n2K logK

)

GD Sect. 16.2.3 O
(
nKK logK

)
O(nK logK) O

(
nKK logK

)

As proved in Lemma 12.1, the number of all possible outcomes (A1) and (A2)
can be estimated as

∑K+1
k=1 Kk−1. Since Algorithm NSmallPosi requires O(n log k)

time to run for a given k, 1 ≤ k ≤ K + 1, the total running time required to solve the

most general version of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax can

be estimated as O
(
n

∑K+1
k=1 Kk−1 log k

)
= O

(
nKK logK

)
, which is linear in n for a

constant K .
Now, let us consider other less general versions of problem 1

∣
∣
∣p[x]j (r) = pjg[x](r),

RMP(K),�[x](τ )
∣
∣Cmax. Similar to Sect. 16.1.2, we consider 8 versions of problem

1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax. For each version, the auxiliary prob-

lem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax is solved in

O(n log k) time by applying Algorithm NSmallPosi. Again, similar to the job-
dependent version of the problem, Table16.1 states the number of times the auxiliary

problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),�[x](τ )

∣
∣
∣Cmax must be solved in order to

solve different versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),

�[x](τ )
∣
∣Cmax.

The corresponding running times required to solve different versions of prob-

lem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax are given in Table16.4. Notice

that although Algorithm NSmallPosi is able to solve all eight versions of problem

1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax, for some cases, it is possible to make

RMP Decisions 1–3 on the fly by using another solution approach, which allows the
optimal solution to be found faster. For such cases, a reference to the relevant section
is made in Table16.4.

Below, we present examples of situations in which the outlined approach based
on Algorithm NSmallPosi is not applicable.

First, the approach cannot be used for the problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),

RMP (K),�[x](τ )
∣
∣Cmax of minimizing the makespan with non-monotone positional

factors. Although setting n[x] = n. 1 ≤ x ≤ k does indeed generate a set of all possi-
ble positional weights W [x](r), still the condition (16.19) does not necessarily hold,
and it cannot be guaranteed that the n smallest positional weights come from the

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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consecutive positions (starting from the first position) of a group, thereby resulting
in an infeasible solution.

Second, the approach cannot be extended to minimizing another objective func-
tion, i.e., the total completion time. For illustration, take problem 1

∣
∣p(r) = pjra,

RMP(K),�(τ )| ∑Cj with a group-independent polynomial deterioration effect,
i.e., g[x](r) = ra, a > 0, and K identical maintenance periods that have start-time-
dependent durations, i.e., ζ [x] = ζ and η[x] = η, 1 ≤ x ≤ K . It can be proved that
for this problem, solving an auxiliary problem 1

∣
∣p(r) = pjra,RMP(k − 1),�(τ )

∣
∣

∑
Cj reduces to minimizing a generic function of the form (16.17) with the posi-

tional weights

W [x](r) =
{ [(

n − ∑x
v=1 n

[v])(1 + ζ) + (
n[x] − r + 1

)]
ra, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,(

n[x] − r + 1
)
ra 1 ≤ r ≤ n[x], x = k.

(16.20)

Notice that for the positional weights defined above, it is not possible to generate a
set of all possible values ofW [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,without prior knowledge
of the number n[x] of jobs in each group. Thus, Theorem 16.2 does not hold, and as
a result, Algorithm NSmallPosi cannot be used.

We revisit both situations in Chap.18 and solve the corresponding problems
and their generalizations. In particular, problem 1

∣
∣p(r) = pjra,RMP(k − 1),�(τ )

∣
∣

∑
Cj will be proved solvable in O

(
nk log n

)
time by full enumeration of possible

outcomes of Decision (B1), i.e., of all possible values of n[x], 1 ≤ x ≤ k.

16.2.3 On the Fly Decision Making

In this subsection, we present a solution approach that allows making RMP Deci-
sions 1–3 on the fly, without enumerating all possible options. This gives the desired
outputs (A1) and (A2) and helps us to considerably reduce the running time for

solving variants of the original problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣

Cmax listed below.

Problem Posi1: This is a version of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),

�[x](τ )
∣
∣Cmax with group-dependent deterioration factors and distinct RMPs of

constant durations. Assume that for each RMP[y] from a given list, ζ[y] = 0,
1 ≤ y ≤ K , holds and the RMPs are numbered in non-decreasing order of their
durations, i.e., (16.14) holds. The positional factors g[1](r), 1 ≤ r ≤ n, are asso-
ciated with jobs of the first group that is created before the first RMP. If a certain
RMP[y], 1 ≤ y ≤ K , is included in the schedule, then the jobs of the group that
follows that RMP are associated with the positional factors g[y+1](r), 1 ≤ r ≤ n.
Under the numbering of the RMPs given by (16.14), the factors associated with
a certain position in group form a non-decreasing sequence, i.e.,

http://dx.doi.org/10.1007/978-3-319-39574-6_18
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g[1](r) ≤ g[2](r) ≤ · · · ≤ g[K+1](r), 1 ≤ r ≤ n. (16.21)

Problem Posi1 is a generalization of one of the cases found in Table16.4, in which
group-dependent deterioration factors are considered along with identical RMPs
of constant duration, i.e., ζ[y] = 0, η[y] = η, 1 ≤ y ≤ K . For the latter problem,
it is reasonable to assume that (16.21) and (16.14) hold simultaneously, based on
the following argument. If identical RMPs of equal duration are performed on the
machine, then after an RMP the condition of the machine can be no better than
its condition after the previous RMP. In such a case, every position (including the
first position) in a group after an RMP will have a worse deterioration factor than
its counterpart in an earlier group.

Problem Posi2: This is a version of problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(K),

�[y] (τ )|Cmax with group-independent deterioration factors, i.e., g[x](r) =
g(r), 1 ≤ r ≤ n, 1 ≤ x ≤ K + 1, and distinct RMPs with start-time-dependent
durations with agreeable parameters, i.e., ζ[y1] ≤ ζ[y2] implies η[y1] ≤ η[y2] for
every pair of the RMP indices y1 and y2. Assume that the given K RMPs are
numbered in such a way that

ζ [1] ≤ ζ [2] ≤ · · · ≤ ζ [K] (16.22)

and (16.14) hold simultaneously. This version is a generalization of one of the
cases found in Table16.4, in which group-independent positional factors are con-
sidered along with identical RMPs of start-time-dependent duration, i.e., ζ [x] = ζ,
η[x] = η, 1 ≤ x ≤ K . The latter problem corresponds to a scenario in which iden-
tical RMPs are performed in the schedule and they all restore the machine to the
same state.

In order to solve both versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),

�[x](τ )
∣
∣Cmax described above, an optimal choice for RMP Decisions 2 and 3 can be

made easily. If RMPDecision 1 is assumed to be taken, so that k − 1, 1 ≤ k ≤ K + 1,
RMPs are to be included in the schedule, then for both problems, RMP[1], . . .,
RMP[k−1] are to be chosen and inserted into a schedule in the order of their num-
bering. For a chosen k, this gives the best outputs (A1) and (A2) for Problem Posi1,
since the chosen RMPs have the shortest durations, and moreover, the created groups
will be associated with the smallest deterioration factors, since (16.21) and (16.14)
hold simultaneously. This gives the best outputs (A1) and (A2) for Problem Posi2
as well, since the groups are identical from the point of view of the associated posi-
tional factors, and the RMPs with smaller indices have smaller values of the duration
parameters, because (16.22) and (16.14) hold simultaneously.

For an assumed value of k, let RMP Decisions 2–3 be made, and let problem

1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(k − 1),�[x](τ )

∣
∣
∣Cmax be the resulting auxiliary problem.

This problem can be solved by minimizing the generic objective function of the
form (16.17). For Problem Posi1, obtain the required positional weights W [x](r) by
substituting ζ [x] = 0, 1 ≤ x ≤ k, in (16.18) so that
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W [x](r) = g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (16.23)

while for Problem Posi2, substitute g[x](r) = g(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, so that

W [x](r) =
{

(1 + ζ [x])g(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,
g(r) 1 ≤ r ≤ n[x], x = k.

(16.24)

Take k = K + 1 and define n[x] := n, 1 ≤ x ≤ k. Compute all positional weights
W [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ K + 1, for each problem by using the formulae above.
Notice that the computed positional weights represent a list of all possible values of
W [x](r) across all possible groups.

Definition 16.1 If for each auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg[x](r), RMP(k − 1),

�[x](τ )
∣
∣Cmax, 1 ≤ k ≤ K + 1, associated with problem 1

∣
∣
∣p[x]j (r) = pjg[x](r),

RMP(K),�[x](τ )
∣
∣Cmax, for each possible position r the positional weight in group

x does not exceed the positional weight in the same position in another group y,
group x is said to dominate group y, 1 ≤ x ≤ k, 1 ≤ y ≤ k, x �= y. If all available
groups can be linearly orderedwith respect to the introduced dominance relation, then

problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax is said to satisfy the “K-domi”

condition.

Both Problems Posi1 and Posi2 satisfy the K-domi condition. For Problem Posi1,
due to (16.21), the positional weights associated with a position r are ordered so that
for each k, 1 ≤ k ≤ K + 1, we have

W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k](r), 1 ≤ r ≤ n,

while for Problem Posi2, due to (16.22), the positional weights are ordered so that
for each k, 1 ≤ k ≤ K + 1, we have

W [k](r) ≤ W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k−1](r), 1 ≤ r ≤ n.

These observations guarantee the required dominance for any pair of groups in
any of these two problems.

For versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax that simul-

taneously satisfy (16.14) and the K-domi condition, it is possible to take all RMP
Decisions 1–3 and to compute the optimal values of n[x], 1 ≤ x ≤ k, on the fly.
Recall that for Problems Posi1 and Posi2, for a fixed outcome of RMP Decision 1,
we know the optimal outcomes of RMP Decisions 2 and 3. Thus, in order to solve
these problems, we apply the following methodology that is based on Theorem 16.2.

Similar to Algorithm NSmallPosi from Sect. 16.2.2, the method presented below
also finds an optimal schedule S∗(k)with k groups, 1 ≤ k ≤ K + 1, by searching for
the n smallest positional weights and assigns the jobs with the largest values of pj to
the positions corresponding to the smallest positional weights. The main difference
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between the two algorithms lies in the way the list of the n smallest positional
weights is found. For each k, 1 ≤ k ≤ K + 1, Algorithm NSmallPosi searches for
the n smallest positionalweights by comparing nk positionalweights across k groups.
On the other hand, for each k, 2 ≤ k ≤ K + 1, the method presented below searches
for the n smallest positional weights by comparing the n positional weights used in
schedule S∗(k − 1) and the n positional weights that are obtained, if the kth group is
opened. As a result, the problem reduces to finding the n smallest elements from at
most 2n candidates, as opposed to nk candidates.

Formally, the approach outlined above is implemented by manipulating two
lists, which we denote by G(k − 1) and H(k). List G(k − 1) contains all the posi-
tional weights corresponding to the positions used in the previously found schedule
S∗(k − 1), while list H(k) contains the positional weights that will be introduced if
the kth group is opened.

List H(v), 1 ≤ v ≤ K + 1, is defined differently for Problems Posi1 and Posi2.
For Problem Posi1, H(v) contains the positional weights W [v](r), 1 ≤ r ≤ n −
v + 1, for n[x] = n, so that by (16.23), we have H(v) := (

g[v](1), g[v](2), . . . , g[v]

(n − v + 1)), 1 ≤ v ≤ K + 1. For Problem Posi2, notice that the values of the
positional weights given by (16.24) change dynamically as the value of k is
changed. Thus, we define H(v) so that this effect is incorporated; initialize H(1) :=
(g(1), g(2), . . . , g(n)) and defineH(v) := ((

1 + ζ [v−1]
)
g(1),

(
1 + ζ [v−1]

)
g(2), . . . ,(

1 + ζ [v−1]
)
g(n − v + 1

)
, 2 ≤ v ≤ K + 1. Notice that for both problems, list H(v)

has at most n − v + 1 elements sorted in a non-decreasing order, 1 ≤ v ≤ K + 1. It
suffices to keep only n − v + 1 elements in list H(v), since the condition K-domi
guarantees that each of the v − 1 earlier groups will have at least one job scheduled
in them.

For k = 1, list G(1) is defined essentially as a copy of list H(1). For each k,
2 ≤ k ≤ K + 1, list G(k) is obtained be merging the lists G(k − 1) and H(k) and
taking the n smallest elements of this merger, keeping them in non-decreasing order.

Define P(S∗(k)) as the sum of actual durations of the jobs in an optimal schedule
with k groups. Let γi(k) denote the ith element in the sorted listG(k), so thatG(k) =
(γ1(k), γ2(k), . . . , γn(k)). This implies that

P(S∗(k)) =
n∑

j=1

pjγj(k),

so that

Cmax
(
S∗(k)

) = P(S∗(k)) + �(k) =
n∑

j=1

pjγj(k) +
k−1∑

x=1

η[x]. (16.25)

where �(k) is a constant term as defined in (16.9).

The following algorithm solves an instance of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),

RMP(K),�[x](τ )
∣
∣Cmax and returns the optimal number of RMPs, k∗ − 1, to be
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included in the schedule (RMP Decision 1) along with the optimal schedule S∗(k∗)
with k∗ groups.

Algorithm NSmallPosi2

input: An instance of either Problem Posi1 or Problem Posi2 with the jobs renum-
bered in the LPT order
output: An optimal schedule S∗(k∗) defined by the processing sequences π[x],
1 ≤ x ≤ k∗

Step 1. For Problem Posi1, define H(1) := (
g[1](1), g[1](2), . . . , g[1](n)

)
, while

for Problem Posi2, define H(1) := (g(1), g(2), . . . , g(n)). For a given prob-
lem, set G(1) := H(1). Compute Cmax(S∗(1)) by formula (16.25). Define k′ :=
K + 1.

Step 2. For k from 2 to k′, do

(a) Create the listG(k) = (γ1(k), γ2(k), . . . , γn(k)) that contains the n smallest
elements in the merger of the lists G(k − 1) and H(k).

(b) ComputeCmax(S∗(k))by formula (16.25). IfP(S∗(k)) = P(S∗(k − 1)), then
define k′ := k − 1 and break the loop by moving to Step 3; otherwise, con-
tinue the loop with the next value of k.

Step 3. Find the value k∗, 1 ≤ k∗ ≤ k′, such that

Cmax
(
S∗(k∗)

) = min
{
Cmax

(
S∗(k)

)|1 ≤ k ≤ k′}.

Step 4. Run Algorithm NSmallPosi for the found value of k∗ to obtain the optimal
processing sequence π∗ = (

π[1],π[2], . . . ,π[k∗]).

Our method is justified, because list G(k − 1) already contains the n smallest posi-
tional weights coming from the first k − 1 groups. Thus, to search for the n smallest
weights needed for schedule S(k), there is no need to scan the first k − 1 groups
again. In other words, we utilize the fact that if a certain position in the first k − 1
groups is not used in schedule S∗(k − 1), it will not be used in schedule S∗(k) either.

In Step 2, for every k, both listsG(k − 1) andH(k) have at most n elements sorted
in a non-decreasing order; therefore, each Step 2(a) and Step 2(b) can be completed in
O(n) time. If the loop in Step 2 is not broken throughout the run ofAlgorithmNSmall-
Posi2, the final value of k′ remains equal toK + 1, i.e., it is possible that all RMPswill
be run and all groups will be opened in an optimal schedule. The loop in Step 2 may
be stopped when in Step 2b the condition P(S∗(k)) = P(S∗(k − 1)) is achieved. This
condition implies that the opening of the kth group does not provide any positional
weights smaller than those contained in the list G(k − 1). If this happens for the
kth group, all groups that could be opened after this would provide even worse posi-
tional weights, because listH(k + 1) is dominated by listH(k), 1 ≤ k ≤ K . Thus, the
makespan cannot be reduced by running more RMPs after the k′th group is opened,
so that there is no need to examine further values of k. With the found value of k′,
the overall optimal schedule will be found among the schedules S∗(k), 1 ≤ k ≤ k′.
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Table 16.5 Run of Algorithm NSmall2 for Example16.1

j pj G(1) pjγj H(2) G(2) pjγj H(3) G(3) pjγj H(4) G(4) pjγj

1 10 1 10 2 1 10 2 1 10 3 1 10

2 9 2 18 4 2 18 4 2 18 6 2 18

3 6 2 12 4 2 12 4 2 12 6 2 12

4 3 3 9 6 2 6 6 2 6 2 6

5 3 3 9 6 3 9 2 6 2 6

6 2 4 8 3 6 3 6 3 6

P(S∗(1)) 66 P(S∗(2)) 61 P(S∗(3)) 58 P(S∗(4)) 58

�(1) 0 �(2) 1 �(3) 3 �(4) 6

Cmax(S∗(1)) 66 Cmax(S∗(2)) 62 Cmax(S∗(3)) 61 Cmax(S∗(4)) 64

Theorem 16.3 Algorithm NSmallPosi2 solves an instance either of Problem Posi1
or of Problem Posi2 in O(nK) time, provided that the LPT order of the jobs is known.

Example 16.1 We illustrate Algorithm NSmallPosi2 by considering an instance of

version Problem Posi2, i.e., a version of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),

�[x](τ )
∣
∣Cmax. Six jobs are to be scheduled which have the following normal process-

ing times listed in an LPT order

p1 = 10, p2 = 9, p3 = 6, p4 = 3, p5 = 3, p6 = 2.

The decision-maker has a choice of K = 5 RMPs, with the following parameters

RMP[1] : ζ [1] = 1, η[1] = 1;
RMP[2] : ζ [2] = 1, η[2] = 2;
RMP[3] : ζ [3] = 2, η[3] = 3;
RMP[4] : ζ [4] = 2, η[4] = 4;
RMP[5] : ζ [5] = 3, η[5] = 4,

so that they obey (16.14) and (16.22) simultaneously. Each of the RMPs restores the
machine to an “as good as new” state. The group-independent positional factors are
as follows:

g(1) = 1, g(2) = 2, g(3) = 2, g(4) = 3, g(5) = 3, g(6) = 4.

Table16.5 shows the details of the run of Algorithm NSmallPosi2 for the above
instance. Since γr(3) = γr(4), for each r, 1 ≤ r ≤ 6, the algorithm stops after the
iteration k = 4, so that k′ = 3. The algorithm outputs the minimum value of the
makespan from the set {Cmax(S∗(k))|1 ≤ k ≤ 3}, which isCmax(S∗(3)). In an optimal
schedule for k∗ = 3, the sequence of jobs π[1] = (1, 2, 3, 6) is processed in the first
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group, the sequence of jobs π[2] = (4) is processed in the second group, and the
sequence of jobs π[3] = (5) is processed in the third group. The makespan of the
resulting schedule is 61.

Algorithm NSmallPosi2 can also be applied to solve problem 1
∣
∣
∣p[x]j (r) =

pjg[x] (r),RMP(K),�[x](τ )
∣
∣Cmax with group-independent deterioration factors and

constant duration RMPs (both identical and distinct). This is possible since both
conditions (16.14) and the K-domi condition can be satisfied simultaneously. The
required running time is againO(nK). We do not discuss the solution of this problem
here, as it is possible to solve it faster using another solution approach, presented in
Sect. 16.2.4.

Now, consider a version of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣

Cmax in which the conditions K-domi and (16.14) do not hold simultaneously. Algo-
rithm NSmallPosi2 can still be used to obtain an optimal value for RMP Decision 1
and to find an optimal permutation of jobs, but to make RMP Decisions 2 and 3, full
enumeration of options might be required. As a result, the overall running time to

solveproblem1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax turns out to beno smaller

than that obtained by using the general solution approach presented in Sect. 16.2.2.

16.2.4 Binary Search in Convex Sequences

In this section, we deal with problems in which the computed positional weights are
group-independent, i.e., of the form W [x](r) = W (r), 1 ≤ x ≤ k, and additionally,
they are ordered in a way such that W (1) ≤ W (2) ≤ · · · ≤ W (n). Such a situa-

tion arises for versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax, in

which the deterioration factors are group-independent, i.e.,g[x](r) = g(r), 1 ≤ r ≤ n,
1 ≤ x ≤ K + 1, while the RMPs are of constant duration, i.e., ζ[y] = 0, 1 ≤ y ≤ K .
Below, we assume that the RMPs are distinct; the problem with identical RMPs is
its special case, and no faster solution algorithm than that described below is known.

Formally, we denote the described problem by 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(K),

�[x]
∣
∣Cmax. In the middle field, the first term is used to notify that the deterioration

factors are group-independent, the second term RMP(K) is used to notify that a total
of K RMPs are available to be included in the schedule, and the third term is used to
notify that the RMPs are of constant duration, but their values are group-dependent.

As in Sect. 16.2.3, we assume that the RMPs are numbered in such a way
that (16.14) holds. Thus, if k − 1, 1 ≤ k ≤ K + 1, RMPs are to be included in
the schedule, then RMP[1], . . ., RMP[k−1] are to be chosen and inserted into a
schedule in the order of their numbering. The resulting problem 1

∣
∣
∣p[x]j (r) = pjg(r),

RMP(k − 1),�[x]
∣
∣Cmax can be solved by minimizing the generic objective function

(16.17).Obtain the requiredpositionalweightsW [x](r)by substitutingg[x](r) = g(r),
1 ≤ r ≤ n, and ζ [x] = 0, 1 ≤ x ≤ k, in (16.18), so that we have
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W [x](r) = g(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

Below, we outline a approach to solving problem 1
∣
∣
∣p[x]j (r) = pjg(r),

RMP(k − 1), �[x]
∣
∣Cmax, which is again based on Theorem 16.2.

Notice that for a given position r, 1 ≤ r ≤ n, the positional weights are the same
for every group, andwithin each group, they are sorted in a non-decreasing order. This
implies that unlike for the problems studied in Sect. 16.2.3, the n smallest positional
weights for this problem are known. The k smallest positional weights are due to the
first positions of each of the k groups. The next k smallest positional weights are due
to the second positions of each of the k groups and so on. Assuming that n = λk + μ,
where λ and μ are non-negative integers, μ ≤ k − 1, the optimal number of jobs in
each group can be given by

n[x] =
{⌈

n
k

⌉ = λ + 1, 1 ≤ x ≤ μ⌊
n
k

⌋ = λ, μ + 1 ≤ x ≤ k.
(16.26)

With known values of W [x](r), 1 ≤ r ≤ n[x], and n[x], 1 ≤ x ≤ k, an optimal

makespan Cmax(S∗(k)) for problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(k − 1),�[x]

∣
∣
∣Cmax can

be found by performing an appropriate matching. If the jobs are considered in the
LPT order, the first k jobswill be assigned to the first positions in each of the k groups,
the next k jobs will be assigned to the second positions in each of the k groups, and
so on, until all jobs have been scheduled. The following statement holds.

Theorem 16.4 Problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(k − 1),�[x]

∣
∣
∣Cmax in O(n)

time, provided that the LPT order of the jobs is known.

To determine the optimal solution for problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(K),

�[x]
∣
∣Cmax, all options associated with RMP Decisions 1–3 must be enumerated.

RMP Decisions 2 and 3 have already been taken optimally; thus, we only need
to determine the optimal value of the number of RMPs to be included into a
schedule. A straightforward approach would involve solving all auxiliary problems

1
∣
∣
∣p[x]j (r) = pjg(r),RMP(k − 1),�[x]

∣
∣
∣Cmax, 1 ≤ k ≤ K + 1, and choosing the sched-

ule S∗(k) with the smallest makespan as an overall schedule S∗. This brute-force
algorithm solves problem 1

∣
∣
∣p[x]j (r) = pjg(r),RMP(K),�[x]

∣
∣
∣Cmax in O(nK) time.

This running time can be improved, sincewe prove that the sequenceCmax(S∗(k)),
1 ≤ k ≤ K + 1, is in factV -shaped, so that in order to search for the smallest value of
Cmax(S∗(k)), we only need to evaluate

⌈
log2(K + 1)

⌉
options of k, 1 ≤ k ≤ K + 1.
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Recall from Sect. 5.1 that a sequence A(k) is called V -shaped if there exists a k0,
1 ≤ k0 ≤ K + 1, such that

A(1) ≥ · · · ≥ A(k0 − 1) ≥ A(k0) ≤ A(k0 + 1) ≤ · · · ≤ A(K + 1).

For a schedule S(k)), let P(S(k)) denote the sum of the actual durations of the
jobs, and �(k) be the total duration of all k − 1 RMPs defined by (16.9), so that
Cmax(S(k)) = P(S(k)) + �(k) holds. The following statement holds.

Lemma 16.3 For problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(k − 1),�[x]

∣
∣
∣Cmax, if the jobs be

numbered in the LPT order, then the makespan of the optimal schedule can be written
as

Cmax(S
∗(k)) = P(S∗(k)) + �(k) =

n∑

j=1

pjg

(⌈
j

k

⌉)
+

k−1∑

x=1

η[x], 1 ≤ k ≤ K + 1.

(16.27)

Proof The value Cmax(S(k)) can be seen as P(S(k)) + �(k), where P(S(k)) denotes
the sum of the actual durations of the jobs in a schedule S(k) and �(k) is the total
duration of all k − 1 RMPs defined by (16.9). Recall that if the jobs are numbered in
the LPT order, then to minimize the value P(S(k)), we need to assign the first k jobs
to the first positions in each of the k groups, then the next k jobs going to the second
positions in each of the k groups, and so on, until all jobs have been sequenced.

Formally, if j = λk, then the predecessors of j are placed into the firstλ positions of
groups 1, 2, . . . , k − 1 and take λ − 1 positions of group k, so that job j is assigned to

positionλ =
⌈

j
k

⌉
of group k. If j = λk + μ for 1 ≤ μ ≤ k − 1, then the predecessors

of jwill take the firstλ positions in each group and additionally the (λ + 1)th position

in each of the groups 1, 2, . . . ,μ − 1, so that job j gets positionλ + 1 =
⌈

j
k

⌉
in group

μ.
It follows that the actual processing time of a job j ∈ N in an optimal schedule

S∗(k) is equal to pjg
(⌈

j
k

⌉)
, and the total processing time for all jobs is equal to

P(S∗(k)) =
n∑

j=1

pjg

(⌈
j

k

⌉)
, 1 ≤ k ≤ K + 1, (16.28)

as required. �

Theorem 16.5 For problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(K),�[x]

∣
∣
∣Cmax, the

sequence Cmax(S∗(k)) = P(S∗(k)) + �(k), 1 ≤ k ≤ K + 1, given by (16.27), is V -
shaped.

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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Proof The proof is based on the concept of a convex sequence, a discrete analog of a
convex function. Recall from Chap.5 that a sequence �(k), 1 ≤ k ≤ K + 1, is called
convex if

�(k) ≤ 1

2
(�(k − 1) + �(k + 1)), 2 ≤ k ≤ K .

Also recall Theorem 5.2, in which it is stated that a sequence

P(k) =
n∑

j=1

pjg

(⌈
j

k

⌉)
, 1 ≤ k ≤ n,

is convex, provided that the jobs are ordered in the LPT order and the sequence g(r),
1 ≤ r ≤ n, is non-decreasing. It immediately follows that the sequence P(S∗(k)),
1 ≤ k ≤ K + 1, given by (16.28) is convex.

The sequence�(k) = ∑k−1
x=1 η[x], 1 ≤ k ≤ K + 1, can also be proved to be convex.

Indeed, (16.14) corresponds to the inequalities η[x−1] ≤ η[x], 2 ≤ x ≤ K , which can
be rewritten as η[x−1] ≤ 1

2η
[x−1] + 1

2η
[x], 2 ≤ x ≤ K . Taking a k, 2 ≤ k ≤ K , and

summing up, we deduce

k∑

x=2

η[x−1] ≤ 1

2

(
k∑

x=2

η[x−1] +
k∑

x=2

η[x]

)

;
k−1∑

x=1

η[x] ≤ 1

2

(
k−2∑

x=1

η[x] +
k∑

x=1

η[x]

)

+ 1

2
η[k−1] − 1

2
η[1]

≤ 1

2

(
k−2∑

x=1

η[x] +
k∑

x=1

η[x]

)

.

The last inequality is true since (16.14) holds, so that

�(k) ≤ 1

2
(�(k − 1) + �(k + 1)), 2 ≤ k ≤ K,

and the sequence �(k), 1 ≤ k ≤ K + 1, is convex. Note that the latter inequalities
become equalities if the RMPs have identical durations.

Since the sum of two convex sequences is convex, the sequence Cmax(S∗(k)) =
P(S∗(k)) + �(k), 1 ≤ k ≤ K + 1, is also convex and by Lemma 5.1 is
V -shaped. �

Theorem 16.5 allows us to find the optimal number of groups k∗, 1 ≤ k∗ ≤ K + 1,
to be created by the following binary search algorithm.

http://dx.doi.org/10.1007/978-3-319-39574-6_5
http://dx.doi.org/10.1007/978-3-319-39574-6_5
http://dx.doi.org/10.1007/978-3-319-39574-6_5
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Algorithm BinSearchPosi

input: An instance of problem 1
∣
∣
∣p[x]j (r) = pjg(r),RMP(K),�[x]

∣
∣
∣Cmax

output: The optimal number of RMPs to include in the schedule

Step 0. If required, renumber the jobs in an LPT order and renumber the RMPs in
a non-decreasing order of their durations so that η[1] ≤ η[2] ≤ · · · ≤ η[K].

Step 1. Define k := 1, k := K + 1 and k̃ := �(K + 1)/2	. ComputeCmax(S∗(k)) by
formula (16.27) for k ∈

{
k, k̃, k

}
.

Step 2. If Cmax
(
S∗(k)

) ≤ Cmax
(
S∗(̃k)

)
, then go to Step 3; otherwise, go to Step 4

Step 3. Redefine k := k̃, Cmax

(
S∗(k)

)
:= Cmax

(
S∗(̃k)

)
and go to Step 5.

Step 4. Redefine k := k̃, Cmax
(
S∗(k)

) := Cmax
(
S∗(̃k)

)
and go to Step 5.

Step 5. Redefine k̃ :=
⌈(

k + k
)
/2

⌉
. If k = k̃ = k, then output k∗ = k, and stop;

otherwise, compute Cmax
(
S∗(̃k)

)
and go to Step 2.

It is clear that due to the V -shapeness of the sequenceCmax(S∗(k)), 1 ≤ k ≤ n, the
inequality Cmax

(
S∗(k)

) ≤ Cmax
(
S∗(̃k)

)
implies that the subsequence Cmax(S∗(k)),

k̃ ≤ k ≤ n, is monotone non-decreasing, so that the minimum should be sought
between the values k and k̃. Similarly, the inequality Cmax

(
S∗(k)

)
> Cmax

(
S∗(̃k)

)

implies that the minimum should be sought between the values k̃ and k. All together,
Algorithm BinSearchPosi explores at most

⌈
log2(K + 1)

⌉
values of k and the fol-

lowing statement holds.

Theorem 16.6 Algorithm BinSearchPosi solves an instance of problem 1
∣
∣
∣p[x]j (r) =

pjg(r),RMP(K),�[x]
∣
∣Cmax in O(n logK) time, provided that the LPT order of the

jobs is known.

Table16.6 summarizes the corresponding running times required to solve different

versions of problem 1
∣
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣
∣Cmax, provided the jobs

are available in the LPT order.

Table 16.6 Running time required for different versions of problem 1

∣
∣
∣
∣p

[x]
j (r) = pjg[x](r),

RMP(K),�[x](τ )

∣
∣
∣
∣Cmax

Constant duration MPs Start-time-dependent MPs

Identical Distinct Identical Distinct

Group-indep O(n logK) O(n logK) O(nK) O
(
n2K logK

)

Group-dep O(nK) O
(
nKK logK

)
O(nK logK) O

(
nKK logK

)
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16.3 Bibliographic Notes

One of the first papers that study the problem of changing processing times with
rate-modifying activities is due to Kuo and Yang (2008). They study problem

1
∣
∣
∣p[x]j (r) = pjra, a > 0,RMP(n),�

∣
∣
∣Cmax, with a group-independent polynomial

deterioration effect, i.e., g[x](r) = ra, a > 0, and identical RMPs, whose duration

is assumed to be constant. To solve the resulting auxiliary problem 1
∣
∣
∣p[x]j (r) =

pjra, a > 0,RMP(k − 1),�
∣
∣Cmax with k − 1 RMPs, they prove the so-called group

balance principle, according to which in an optimal schedule with k groups the dif-
ference between the numbers of jobs in any two groups is at most one. With a known
number of jobs in each group, they apply a method similar to Algorithm NSmall-

Posi to solve problem 1
∣
∣
∣p[x]j (r) = pjra, a > 0,RMP(k − 1),�

∣
∣
∣Cmax. Trying all pos-

sible values of k, 1 ≤ k ≤ n, an optimal solution to problem 1
∣
∣
∣p[x]j (r) = pjra, a > 0,

RMP(n),�|Cmax is obtained in O
(
n2

)
time. It should be noted that Kuo and Yang

(2008) claim that their algorithm requires O(n log n) time. In fact, they do not take
into account the linear time that is needed to compute the value of the makespan for
each k, 1 ≤ k ≤ n. In Sect. 16.2.4, we prove that the running time for solving prob-

lem 1
∣
∣
∣p[x]j (r) = pjra, a > 0,RMP(n),�

∣
∣
∣Cmax can indeed be reduced to O(n log n),

since Algorithm BinSearchPosi is applicable.
Zhao and Tang (2010) study a problem similar to that in Kuo and Yang (2008),

but with job-dependent polynomial effects. Due to the group balance principle, the

auxiliary problem 1
∣
∣
∣p[x]j (r) = pjraj , aj > 0,RMP(k − 1),�

∣
∣
∣Cmax is reduced to an

LAP, which is solvable in O
(
n3

)
time. Trying all possible values of k, 1 ≤ k ≤ n, a

solution to problem 1
∣
∣
∣p[x]j (r) = pjraj , aj > 0,RMP(n),�

∣
∣
∣Cmax is found in O

(
n4

)

time. Yang and Yang (2010) study a problem similar to that in Zhao and Tang
(2010), but the durations of the RMPs are given as a linear function of their start

time, so that the resulting problem is denoted as 1
∣
∣
∣p[x]j (r) = pjraj , aj > 0,RMP(n),

�(τ )|Cmax. Yang and Yang (2010) solve the auxiliary problem 1
∣
∣
∣p[x]j (r) = pjraj ,

aj > 0,RMP(k − 1),�(τ )
∣
∣Cmax by proving the group balance principle for the first

k − 1 groups, which allows them to guess the number of jobs in those groups.
However, for the last group, they are not able to guess the number of jobs, so
they resort to enumerating all possible options for the number of jobs in that
group. As a result, the running time needed to solve this problem is n times
greater than that required by Zhao and Tang (2010), thereby making problem

1
∣
∣
∣p[x]j (r) = pjraj , aj > 0,RMP(n),�(τ )

∣
∣
∣Cmax solvable in O

(
n5

)
time.

Rustogi and Strusevich (2012) further generalize the problems considered by Kuo
and Yang (2008), Zhao and Tang (2010), and Yang and Yang (2010), by introducing
general group-dependent positional effects, so that the actual processing time of a
job is dependent on both the position of a job in a group and the position of the group
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in a schedule. This is the first paper in which the RMPs are allowed to be distinct;
however, the choice and order of the RMPs are fixed in advance. For the most
general problem 1

∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(n),�[x](τ )

∣
∣
∣Cmax with job-dependent

deterioration effects, the auxiliary problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1),

�[x](τ )
∣
∣Cmax is solved by reduction to a rectangular linear assignment problem. The

resulting problem is solved by Algorithm LAPBL (see Chap.4 for details) which
requires O

(
n3k

)
time. Trying all possible values of k, 1 ≤ k ≤ n, a solution to prob-

lem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(n),�[x](τ )

∣
∣
∣Cmax is found inO

(
n5

)
time. Rustogi and

Strusevich (2012) also provide a faster solution approach that requiresO
(
n4

)
time for

two special cases of problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(n),�[x](τ )

∣
∣
∣Cmax, i.e., when

(i) duration of RMPs is constant and known in advance and (ii) duration of RMPs is
start-time-dependent, but positional factors are group-independent. For these special
cases, it is proved that the rectangular assignment problem can be solved in O

(
n3

)

time due to a special structure observed in the cost matrix, therebymaking the overall
problem solvable in O

(
n4

)
time. In the same paper, problems with job-independent

deterioration effects are also considered and a solution approach is presented that is
similar to Algorithm NSmallPosi2.

Finke et al. (2016) generalize the problem considered by Rustogi and Struse-
vich (2012) by introducing RMPs with the durations of the form (16.6). Similar
to Rustogi and Strusevich (2012), they prove that for their problem denoted by

1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(n), �̄[x](τ )

∣
∣
∣Cmax, the resulting auxiliary problemdenoted

by 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),RMP(k − 1), �̄[x](τ )

∣
∣
∣Cmax can be solved by reduction to a

rectangular linear assignment problem. However, instead of Algorithm LAPBL, as
used by Rustogi and Strusevich (2012), they use a more efficient Algorithm LAPD
(see Chap.4 for details) which requires O

(
n3 + n2k

)
time. Trying all possible

values of k, 1 ≤ k ≤ n, a solution to the general problem 1
∣
∣
∣p[x]j (r) = pjg

[x]
j (r),

RMP(n), �̄[x](τ )
∣
∣Cmax is found in O

(
n4

)
time.

References

Finke G, Gara-Ali A, Espinouse ML, Jost V, Moncel J (2016) Unified matrix approach to solve
production-maintenance problems on a single machine. Omega. doi:10.1016/j.omega.2016.02.
005

Kuo W-H, Yang D-L (2008) Minimising the makespan in a single-machine scheduling problem
with the cyclic process of an aging effect. J Oper Res Soc 59:416–420

Rustogi K, Strusevich VA (2012) Single machine scheduling with general positional deterioration
and rate-modifying maintenance. Omega 40:791–804

Yang S-J, Yang D-L (2010)Minimising the makespan single-machine scheduling with aging effects
and variable maintenance activities. Omega 38:528–533

Zhao C-L, Tang H-Y (2010) Single machine scheduling with general job-dependent aging effect
and maintenance activities to minimise makespan. Appl Math Model 34:837–841

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1016/j.omega.2016.02.005
http://dx.doi.org/10.1016/j.omega.2016.02.005


Chapter 17
Scheduling with Maintenance
and Start-Time-Dependent Effects

In this chapter, we discuss single machine scheduling problems with time-dependent
deterioration effects and rate-modifying maintenance activities. The structure of this
chapter is similar to that of Chap.16. We provide a full account of the entire range
of single machine problems to minimize the makespan that can be solved using the
developed solution approaches.

In the problems considered in this chapter, the jobs of set N = {1, 2, . . . , n} are
to be processed on a single machine. Each job j ∈ N is associated with a normal
processing time pj. As described in Chap.8, in the case of time-dependent effects,
one of the most studied models is given by a linear function of the start time of a job,
so that the actual processing time pj(τ ) of a job j ∈ N that starts at a time τ ≥ 0 is
given by

pj(τ ) = pj + ajτ , (17.1)

where aj is a constant, which is strictly positive in the case of deterioration and strictly
negative in the case of learning. In this chapter, we mainly concentrate on effects that
are derived from a job-independent version of (17.1) and are given by

pj(τ ) = pj + aτ , (17.2)

where in the case of deterioration the rate a > 0 is common for all jobs.
In this chapter, we consider enhanced singlemachine schedulingmodels, in which

the processing times of the jobs are subject to time-dependent deterioration effects
of the form (17.2) and various rate-modifying periods (RMP) can be introduced on
the machine to restore the processing conditions, either fully or at least partly.

Consider a general situation, outlined in Sect. 12.4, in which the decision-maker
is presented with a list (RMP[1], RMP[2], . . . , RMP[K]) of K ≥ 1 possible rate-
modifying activities. The decision-maker may decide which of the listed RMPs to
insert into a schedule and in which order. Each RMP may restore the machine to a
different state, so that different deterioration rates are applied in different groups. For
each RMP[y] in the list, we are given the deterioration rate a[y+1] > 0, 1 ≤ y ≤ K,
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that applies to the jobs sequenced in the group that follows RMP[y], provided it is
included into a schedule. As part of the input, we are also given the deterioration
rate a[1] > 0 that applies to the first group that starts at time zero, before the first
scheduled RMP.

If k − 1 RMPs are chosen from the available K options, then the jobs are divided
into k, 1 ≤ k ≤ K + 1, groups. Depending on which RMPs are chosen and the order
in which they are performed, the actual processing time p[x]j (τ ) of a job j ∈ N that
is located in the xth group and starts at time τ measured from the beginning of the
group is given by

p[x]j (τ ) = pj + a[x]τ , τ ≥ 0, 1 ≤ x ≤ k, (17.3)

where a[x] > 0 is the deterioration rate. For a particular schedule, the inserted RMPs
are renumbered in the order of their appearance, so that a group sequenced after the
xth RMP is associated with a deterioration rate a[x+1] > 0, 1 ≤ x ≤ k − 1, and it is
assumed that the time τ is reset after every RMP. Notice that these group-dependent
deterioration rates a[x] > 0 are analogous to the group-dependent positional factors
studied in Chap. 16 and imply that the actual processing time of a job is dependent
on the starting time of a job in a group and also on the group that job is scheduled in.

Recall that during each RMP no job processing takes place. The duration of an
RMP[y], 1 ≤ y ≤ K, is given by

�[y](τ ) = ζ[y]τ + η[y], (17.4)

as introduced in (12.1), where τ is the start time of the RMP, measured either from
time zero (in the case of the first RMP) or from the completion time of the previous
RMP.

In this chapter, we mainly focus on the problems of minimizing the makespan
under the general settings defined by (17.3) and (17.4). The most general problem of

this range is denoted by 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax, where the

first term in the middle field indicates that the actual processing times are start time
dependent as given by (17.3), the second term points out that the list of K RMPs is
available for maintenance activities, and the third term indicates that the durations
of the RMPs follow the rule (17.4).

Similarly to problem 1
∣
∣p[x]j (r) = pjg[x](r),RMP(K),�[x](τ )

∣
∣Cmax studied in

Sect. 16.2, an optimal solution to problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x](τ )
∣
∣Cmax can be found by adapting Procedure RMP1 from Sect. 12.4. Recall

that in particular Procedure RMP1 requires taking the RMP Decisions 1–3.
The example below illustrates a situation where the problem defined above may

be applicable.

Example 17.1 Six jobs should be processed by a human operator who has equipment
with multiple cutting tools. The processing times (in appropriate time units) of these
jobs under perfect conditions of both the operator and the tools are given by

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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p1 = 10, p2 = 9, p3 = 6, p4 = 3, p5 = 3, p6 = 2.

During the processing, the operator gets tired and the tool loses its sharpness,
which leads to extending the actual processing time, i.e., to a deterioration effect.
During the planning period, up to K = 5 types of maintenance activities can be
performed. Some can be seen as rest periods for the operator (leaving the tools’
conditions unchanged), and some of them are related to improving the cutting capa-
bilities of one or several tools (with the operator having rest as well). In any case, the
duration of RMP[y], 1 ≤ y ≤ 5, is defined in accordance with (17.4) andmay include
a constant term η[y], which can be seen as the duration of mandatory standard tests
to be run for the maintenance activity of this type, as well as the start-time-dependent
term ζ[y]τ , which is understood as the duration of repair activities that depends on
the conditions of the tool(s). The rates ζ[y] are different for different types of main-
tenance activities, since they involve work on different tools. Any RMP improves
the processing conditions, but not to an initial (perfect) state, so that a different dete-
rioration rate might be in effect after each RMP. As a result, the jobs are split into
several groups, one before the first RMP and one after each scheduled RMP. The
actual processing times of the jobs follow the rule (17.3). For a group x, the job dete-
rioration rate a[x] is set by the preceding (x − 1)th RMP. The default deterioration
rate is given as a[1] = 0.1. The other numerical parameters are given by

RMP[1]: ζ [1] = 0.05, η[1] = 10, a[2] = 0.15;
RMP[2] : ζ [2] = 0.10, η[2] = 8, a[3] = 0.20;
RMP[3] : ζ [3] = 0.025, η[3] = 6, a[4] = 0.25;
RMP[4] : ζ [4] = 0.15, η[4] = 2, a[5] = 0.20;
RMP[5] : ζ [5] = 0.2, η[5] = 0, a[6] = 0.15.

In the setting of this example, RMPDecision 1 is to choose k types ofmaintenance
activities to be included into the schedule, e.g., 3 out of 5. Then RMP Decision 2
selects particular types of maintenance, e.g., RMP[1], RMP[3], and RMP[4]. RMP
Decision 3 determines the sequence in which the three chosen RMPs are included
into the schedule, e.g., RMP[3], RMP[4], and RMP[1]. In the resulting schedule, there
will be 4 groups, with the job deterioration rates equal to 0.1, 0.25, 0.20 and 0.15,
respectively.

In what follows, we show that problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x](τ )
∣
∣Cmax reduces to a series of linear assignment problems with a product matrix

and can be solved in polynomial time. As a rule, to solve scheduling problems under
consideration, it is required to generate several instances of auxiliary problems with
fixed parameters, such as the number of RMPs to be inserted, and/or the number
of jobs in a group. To count the number of the related instances, we use various
combinatorial configurations and identities listed in Sect. 5.3. In the estimations of
the running times of the presented algorithms, we assume that the numberK of avail-
able RMPs is a constant, which is reasonable since usually the number of possible
rate-modifying activities to be performed is fairly small.

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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As often is the case in this book, the LPT sequencing of the jobs is important.
Recall that if the jobs are numbered in accordance with the LPT rule, then

p1 ≥ p2 ≥ · · · ≥ pn. (17.5)

17.1 Computing Positional Weights

For problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax, in accordancewith Pro-

cedure RMP1 fix outcomes (A1) and (A2), and for a particular outcome of

Decision (B1), introduce a schedule SB1(k) for an auxiliary problem 1
∣
∣
∣p[x]j (τ ) = pj +

a[x]τ , RMP(k − 1),�[x](τ )
∣
∣Cmax associated with certain outcomes of Decisions

(B2) and (B3). In schedule SB1(k), the jobs are organized into groupsN [x], 1 ≤ x ≤ k,
and each group N [x] contains n[x] jobs, where

∑k
x=1 n

[x] = n. The jobs in N [x]

are sequenced in accordance with a permutation π[x] = (
π[x](1),π[x](2), . . . ,π[x]

(
n[x]

))
, 1 ≤ x ≤ k.

For schedule SB1(k), denote the total processing time of the jobs assigned to group
x by Fx. In accordance with (17.4), the duration �[x](τ ) of the RMP scheduled after
the xth group is given by

Tx = ζ [x]Fx + η[x], 1 ≤ x ≤ k − 1. (17.6)

Let us denote the total duration of the first r jobs in a group x by F(x,r), 1 ≤ x ≤ k,
1 ≤ r ≤ n[x]. It follows from (17.3) that F(x,1) = pπ[x](1). The actual processing time
of the second job in the group is given by pπ[x](2) + a[x]F(x,1), which implies that

F(x,2) = F(x,1) + (
pπ[x](2) + a[x]F(x,1)

) = (
1 + a[x]

)
pπ[x](1) + pπ[x](2).

Similarly, for the third job in group x, the actual processing time is given by
pπ[x](3) + a[x]F(x,2), so that

F(x,3) = F(x,2) + (
pπ[x](3) + a[x]F(x,2)

) = (
1 + a[x]

)((
1 + a[x]

)
pπ[x](1) + pπ[x](2)

) + pπ[x](3)

= (
1 + a[x]

)2pπ[x](1) + (
1 + a[x]

)
pπ[x](2) + pπ[x](3).

Extending, we deduce that for the jobs in the first r positions in group x, the
formula

F(x,r) =
r∑

u=1

(
1 + a[x]

)
r−upπ[x](u), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

holds.
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Thus, the total time it takes to process all jobs in a group x can be given by

Fx = F(x,n[x]) =
n[x]∑

r=1

(
1 + a[x]

)n[x]−r
pπ[x](r), 1 ≤ x ≤ k. (17.7)

The makespan of a schedule SB1(k) is the sum of the durations of all scheduled
groups and the RMPs and is given by

Cmax(SB1(k)) = F1 + T1 + F2 + T2 + · · · + Fk−1 + Tk−1 + Fk,

where Tx is the duration of the RMP scheduled after the xth group. Substituting the
value of Tx from (17.6) into the above equation, we get

Cmax(SB1(k)) =
k−1∑

x=1

(1 + ζ [x])Fx + Fk +
k−1∑

x=1

η[x].

Now substituting the value of Fx from (17.7), we get

Cmax(SB1(k)) =
k−1∑

x=1

n[x]∑

r=1

(1 + ζ [x])
(
1 + a[x]

)n[x]−r
pπ[x](r) (17.8)

+
n[k]∑

r=1

(
1 + a[k]

)n[k]−r
pπ[k](r) +

k−1∑

x=1

η[x].

We see that in (17.8) a job j scheduled in position r of group x, 1 ≤ x ≤
k − 1, 1 ≤ r ≤ n[x], will contribute to its normal processing time pj = pπ[x](r) taken

(1 + ζ [x])
(
1 + a[x]

)n[x]−r
times. If job j is scheduled in the last group x = k, then its

contribution is
(
1 + a[k]

)n[k]−r
times pj. This implies that the objective function (17.8)

can be written as a generic function of the form

Cmax(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x](r)pπ[x](r) + �(k), (17.9)

where the constant term is defined by

�(k) =
k−1∑

x=1

η[x], (17.10)

and
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W [x](r) =
{

(1 + ζ [x])
(
1 + a[x]

)n[x]−r
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

(
1 + a[k]

)n[k]−r
, 1 ≤ r ≤ n[x], x = k,

(17.11)

is a job-independent weight, such that the product W [x]pπ[x](r) represents the contri-
bution of job j = π[x](r) scheduled in position r, 1 ≤ r ≤ n[x], of group x, 1 ≤ x ≤ k,
to the objective function (17.8).

The function (17.9) admits a generic representation (12.3), and Procedure RMP1
is applicable. Notice that the weights are job-independent, so that for each outcome
of Decision (B1) the corresponding linear assignment problem will have a product
cost matrix (see Sect. 12.4).

Similarly to Chap.16, below we consider eight versions of problem 1
∣
∣
∣p[x]j (τ ) =

pj + a[x]τ ,RMP(K),�[x](τ )
∣
∣Cmax distinguishing between them based on three cri-

teria:

(a) the RMPs are identical or distinct;
(b) deterioration factors are group-independent or group-dependent, and
(c) durations of the RMPs are constant or defined by (17.4).

We present three solution approaches, which handle different versions of prob-

lem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax. All three approaches are able to

take Decision (B1), i.e., to find the optimal values of n[x], 1 ≤ x ≤ k, on the fly.
The approaches differ in how outcomes (A1) and (A2) are generated. Based on
these differences, we study different versions of the main problem in three separate
subsections. The three solution approaches require different running times, but they
all use a subroutine which implements the ideas of Algorithm Match; i.e., the corre-
sponding optimal permutation of jobs is obtained bymatching jobs with large normal
processing times to small positional weights.

Table17.1 lists different versions of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x] (τ )|Cmax considered in this chapter and gives references to the appropriate sec-
tions. In the rows of Table 17.1 and several other tables presented later in this chapter,
we write either GI or GD, depending on whether the deterioration factors are group-
independent or group-dependent, respectively.

Table 17.1 Different versions of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x]

∣
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI Sect. 17.4 Sect. 17.4 Sect. 17.3 Sect. 17.2

GD Sect. 17.3 Sect. 17.2 Sect. 17.2 Sect. 17.2

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_16


17.2 Reduction to LAP with a Product Matrix 367

17.2 Reduction to LAP with a Product Matrix

In this section, we describe a solution approach which solves problem 1
∣
∣
∣p[x]j (τ ) =

pj + a[x]τ ,RMP(K),�[x](τ )
∣
∣Cmax in the most general setting, i.e., when the deteri-

oration rates are group-dependent and the K RMPs are known to be distinct, with
start-time-dependent durations. We describe a solution approach, which is able to

solve the auxiliary problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣Cmax with-

out prior knowledge of the number n[x] of jobs in each group. The only condition is
that the computed positional weights W [x](r), 1 ≤ r ≤ n[x], should follow

W [x](1) ≥ W [x](2) ≥ · · · ≥ W [x](n[x]), 1 ≤ x ≤ k. (17.12)

Set the value n[x] = n, 1 ≤ x ≤ k, and compute all possible positional weights
W [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, by (17.11), where for conveniencewe denoteU [x] :=(
1 + ζ [x]

)
, 1 ≤ x ≤ k − 1, and U [k] := 1. The resulting n × k matrix is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U [1]
(
1 + a[1]

)
n−1 U [2]

(
1 + a[2]

)n−1 · · · U [k]
(
1 + a[k]

)n−1

U [1]
(
1 + a[1]

)n−2
U [2]

(
1 + a[2]

)n−2 · · · U [k]
(
1 + a[k]

)n−2

...
... · · · ...

U [1]
(
1 + a[1]

)2
U [2]

(
1 + a[2]

)2 · · · U [k]
(
1 + a[k]

)2

U [1]
(
1 + a[1]

)
U [2]

(
1 + a[2]

) · · · U [k]
(
1 + a[k]

)

U [1] U [2] · · · U [k]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17.13)

Each column of the above matrix represents all possible positional weights that
can be associated with a particular group. The first element of column x represents a
weight associated with the first position in group x, while the last element of column
x represents a weight associated with the last, i.e., the first from the rear end position
of group x, 1 ≤ x ≤ k. We allow up to n positions in each group. Notice that the
elements of each column form a non-increasing sequence of the weights, so that
(17.12) holds.

The following statement explains how problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,

RMP (k − 1),�[x](τ )
∣
∣Cmax can be solved, without prior knowledge of the values

n[x], 1 ≤ x ≤ k.

Theorem 17.1 Given problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣

Cmax, where 1 ≤ k ≤ K + 1, compute the matrix (17.13) of all possible positional
weights W [x](r) and choose the n smallest among them. If in each column the chosen
elements occupy consecutive positions starting from the last row, then assigning the
jobs with the largest normal processing times to the positions associated with the
smallest positional weightswill ensure that the objective function (17.9) isminimized.
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Notice that Theorem 17.1 is only applicable to solving those scheduling problems
with changing processing times, for which all possible positional weights can be
computed in advance, which is not the case, e.g., for problems of minimizing the
total flow time or for problems with combined effects. We study these problems in
Chap.18.

The proof of Theorem 17.1 is straightforward and is similar to the proof of
Theorem 16.2. According to Theorem 16.2, an optimal schedule can be found by
choosing the n smallest positional weights and assigning the jobs with the largest
processing times to the positions corresponding to the smallest positional weights.
Notice that the n smallest positional weights are found in consecutive positions of the
columns at the bottomof thematrix (17.13). The smallest positionalweight in a group
is associated with the last position in that group, irrespective of the number of jobs in
that group, i.e., for group x, in accordance with (17.11) the weightW [x]

(
n[x]

) = U [x].
The next smallest positional weight in group x is located immediately above in the
same column, and so on.

The problem of finding the n smallest positional weights andmatching them to the
appropriate jobs is structurally similar to that of scheduling jobs on uniform parallel
machines to minimize the total flow time (see Sect. 2.3.1 for details). According to
this method, the jobs are scanned in the LPT order and the machines are filled in the
reversed order, from the last position to the first one.

Adapting this approach to our problem, consider the jobs in the LPT order. To
assign the first job, compare the k multipliers U [x], 1 ≤ x ≤ k, and assign the job to
the last position of the group associated with the smallest value of U [x], 1 ≤ x ≤ k.
The next positional weight that can be taken from this group is computed and replaces
the previously used one. The process continues, and for the current job the smallest
of the k available positional weights determines the group and the position within
the group, where the job should be assigned. This approach does not require any
advance knowledge of the number of jobs n[x] in each group or, in fact, even an
advance knowledge of the full matrix (17.13).

A formal description of the algorithm is given below.

Algorithm NSmallTime

Input: An instance of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣

Cmax with the jobs renumbered in the LPT order
Output: An optimal schedule S∗(k) defined by the processing sequences π[x], 1 ≤
x ≤ k

Step 1. For each group x, 1 ≤ x ≤ k, define an empty processing sequence π[x] :=
(∅) and the weight W [x] = U [x]. Create a non-decreasing list � of the values
W [x], 1 ≤ x ≤ k; to break ties, we place the weight associated with a group with
a smaller index x earlier in the list.

Step 2. For each job j from 1 to n do

(a) Take the first elementW [v] in list�, the smallest available positional weight.
(b) Assign job j to group v and place it in front of the current permutation π[v],

i.e., update π[v] := (j,π[v]) and associate job j with the positional weight

http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_2
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W [v]. Remove W [v] from list �. Update W [v] := W [v]
(
1 + a[v]

)
and insert

the updated value W [v] into �, while maintaining list � non-decreasing.

Step 3. With the found permutation π∗ = (
π[1],π[2], . . . ,π[k]

)
, compute the opti-

mal value of the objective functionCmax(S∗(k)) by substituting appropriate values
in (17.9).

In Step 1 of Algorithm NSmallTime, list � can be created in O(k log k) time.
Each iteration of the loop in Step 2 requires O(log k) time, since the insertion of
the updated weight into a sorted list can be done by binary search. Since n ≥ k, the
following statement holds.

Lemma 17.1 For an auxiliary problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),

�[x](τ )
∣
∣Cmax under a time-dependent deterioration effect, Algorithm NSmallTime

finds an optimal schedule S∗(k) in O(n log n) time, or in O(n log k) time, provided
that the LPT sequence of the jobs is known.

Thus, in the case under consideration, we modify Procedure RMP1 by replacing
Step 1(b) and (c) by the following:

Step 1(b′). For each outcome of Decision B(1) do

Find schedule S∗(k) by applying Algorithm NSmallTime.

Example 17.2 We illustrate Algorithm NSmallTime by solving the instance
described in Example 17.1, provided that three RMPs chosen from the original list
are RMP[3], RMP[4], and RMP[1], and they are scheduled in this order. The parame-
ters ζ [y], η[y], and a[y] are renumbered according to the order in which the groups
appear in the schedule. After renumbering, the parameters become

a[1] = 0.10;
ζ [1] = 0.025, η[1] = 6, a[2] = 0.25;
ζ [2] = 0.150, η[2] = 2, a[3] = 0.20;
ζ [3] = 0.050, η[3] = 10, a[3] = 0.15.

The computation is shown inTable17.2. For each job, the chosen positionalweight
is shown in a box in the previous row.

In the resulting schedule, the sequence of jobs (4, 2) formsGroup 1,whileGroup 2
and Group 3 consist of job 5 and job 3, respectively, and the last Group 4 processes
the sequence of jobs (6, 1). The makespan of this schedule can be computed by
(17.9), where �(3) is equal to η[1] + η[2] + η[3] = 18, so that the resulting makespan
is equal to 34.6575 + 18 = 52.6575.

As suggested in Procedure RMP1, to determine an optimal solution for the

general problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax, all options asso-

ciated with outcomes (A1) and (A2) must be enumerated and the solutions of
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Table 17.2 Run of Algorithm NSmallTime for Example17.2 with the chosen sequence of MPs

j pj Group 1 Group 2 Group 3 Group 4 Contribution
of job j

W [1] π[1] W [2] π[2] W [3] π[2] W [4] π[4]

1.025 ∅ 1.15 ∅ 1.05 ∅ 1 ∅

1 10 1.025 ∅ 1.15 ∅ 1.05 ∅ 1 ∗ 1.15 (1) 1 ∗ 10

2 9 1.025 ∗ 1.1 (2) 1.15 ∅ 1.05 ∅ 1.15 (1) 1.025 ∗ 9

3 6 1.1275 (2) 1.15 ∅ 1.05 ∗ 1.2 (3) 1.15 (1) 1.05 ∗ 6

4 3 1.1275 ∗ 1.1 (4, 2) 1.15 ∅ 1.26 (3) 1.15 (1) 1.1275 ∗ 3

5 3 1.24025 (4, 2) 1.15 ∗ 1.25 (5) 1.26 (3) 1.15 (1) 1.15 ∗ 3

6 2 1.24025 (4, 2) 1.4375 (5) 1.26 (3) 1.15 ∗ 1.15 (6, 1) 1.15 ∗ 2

the resulting auxiliary problems 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣Cmax

be compared.
For a known k, 1 ≤ k ≤ K + 1, the number of ways to select k − 1 RMPs

from K available RMPs (RMP Decision 2) is equal to
( K
k−1

)
. Notice that the

positional weights (17.11) that are associated with the first k − 1 groups do not
depend on the order of the RMPs. However, the kth group is differently struc-
tured from the others, since for this group U [k] = 1, so it matters which RMP is
to be scheduled last, i.e., at the (k − 1)th position. Thus, the number of choices
for RMP Decision 3 is equal to k − 1. Trying all possible values of k (RMP
Decision 1), 1 ≤ k ≤ K + 1, the total number of options to be evaluated is given
by

∑K+1
k=1

( K
k−1

)
(k − 1) = 2K−1K . Since Algorithm NSmallTime requires O(n log k)

time to run for a given k, 1 ≤ k ≤ K + 1, the total running time required to solve the

most general version of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax can

be estimated as O
(
n

∑K+1
k=1 log k

( K
k−1

)
(k − 1)

)
= O(n2KK logK), which is linear in

n for a constant K .
Now, let us consider other less general versions of problem 1

∣
∣
∣p[x]j (τ ) = pj +

a[x]τ ,RMP(K),�[x](τ )
∣
∣Cmax. Similar to Chap. 16, we consider 8 versions of prob-

lem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax. For each version, the auxiliary

problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣Cmax is solved in O(n log k)

time by applying AlgorithmNSmallTime. Table 17.3 states the number possible out-

comes (A1) and (A2), i.e., the number of auxiliary problems 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,

RMP(k − 1),�[x](τ )
∣
∣Cmax that are needed to be solved in order to solve a version

of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax.

Notice that if all available RMPs are identical, then only RMP Decision 1
must be taken; i.e., only an optimal number of the RMPs in the schedule has

to be determined. Thus, problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣Cmax

must be solved K + 1 times. In this case, the running time required to solve

http://dx.doi.org/10.1007/978-3-319-39574-6_16
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Table 17.3 Number of auxiliary problems to solve for different versions of problem

1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI Sect. 17.4 Sect. 17.4 Sect. 17.3 2K

GD Sect. 17.3 2K K + 1 2KK

problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax can be estimated as

O
(
n

∑K+1
k=1 log k) = O(nK logK).

Now consider the situation when the RMPs are distinct, but the deterioration
rates are group-independent, i.e., a[x] = a, 1 ≤ x ≤ k. This problem corresponds
to a scenario, in which distinct RMPs are performed in the schedule, but they all
restore the machine to the same state. Thus, the order of the RMPs is irrelevant (i.e.,
RMPDecision 3 need not be taken), and RMPDecision 2 regarding the choice of the
RMPs to be included into a schedule is made only on the basis of the durations of the
RMPs. If the durations are determined by (17.4), there is no easy way of selecting
the best k − 1 RMPs from the K available RMPs. Thus, all possible selections need
to be tried and this can be done in

( K
k−1

)
ways. Trying all possible values of k,

1 ≤ k ≤ K + 1 (i.e., taking RMP Decision 1), the total number of options can be
estimated by

∑K+1
k=1

( K
k−1

) = 2K . Thus, the total running time required to solve this

version of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax can be estimated

as O
(
n

∑K+1
k=1

( K
k−1

)
log k

)
= O

(
n2K logK

)
, a factor of K less than in the general

case.
For the problem with group-dependent deterioration rates and distinct RMPs of

constant durations, i.e., ζ [x] = 0, 1 ≤ x ≤ k − 1, the computed positional weights
can be written as

W [x](r) = (
1 + a[x]

)n[x]−r
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

by making appropriate substitutions in (17.11). Clearly, the found positional weights
are dependent on the type of the RMP, but not on their order. Thus, as above the total
number of options can be given by

∑K+1
k=1

( K
k−1

)
and the total running time required

to solve this version of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax can

be estimated as O
(
n2K logK

)
.

The corresponding running times required to solve different versions of prob-

lem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax are given in Table 17.4. Notice

that although Algorithm NSmallTime is able to solve all eight versions of problem

1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax, for some cases it is possible to make

RMP Decisions 1–3 on the fly by using another solution approach, which allows the
optimal solution to be found faster. For such cases, a reference to the relevant section
is made in Table 17.4.
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Table 17.4 Running time required for different versions of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,

RMP(K),�[x](τ )
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI Sect. 17.4 Sect. 17.4 Sect. 17.3 O
(
n2K logK

)

GD Sect. 17.3 O
(
n2K logK

)
O(nK logK) O(n2KK logK)

17.3 On the Fly Decision Making

In this subsection, we present a solution approach that allows us to make RMP
Decisions 1–3 on the fly, without enumerating all possible options. This gives the
desired outputs (A1) and (A2) and helps us to considerably reduce the running time

for solvingvariants of the original problem1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣

Cmax listed below:

Problem Time1: This is a version of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x](τ )
∣
∣Cmax with group-dependent deterioration rates and distinct RMPs of

constant durations. Assume that for each RMP[y] from a given list, ζ [x] = 0,
1 ≤ x ≤ K , holds and the RMPs can be ordered such that

a[1] ≤ a[2] ≤ · · · ≤ a[K+1], (17.14)

and
η[1] ≤ η[2] ≤ · · · ≤ η[K], (17.15)

hold simultaneously. This version is a generalization of one of the cases found
in Table17.1, in which group-dependent deterioration rates are considered along
with identical RMPs of constant duration, i.e., ζ [x] = 0, η[x] = η, 1 ≤ x ≤ K .

For the latter problem, it is reasonable to assume that (17.14) and (17.15) hold
simultaneously, based on the following argument. If identical RMPs of equal
duration are performed on the machine, then after an RMP the condition of the
machine can be no better than its condition after the previous RMP. In such a case,
the deterioration rates do not decrease as more groups are created.

Problem Time2: This is a version of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x](τ )
∣
∣Cmax with group-independent deterioration rates, i.e., a[x] = a, 1 ≤ x ≤

K + 1, and distinct RMPs of start-time-dependent durations, subject to the con-
dition that the duration parameters of the RMPs can be ordered such that

ζ [1] ≤ ζ [2] ≤ · · · ≤ ζ [K], (17.16)

and (17.15) hold simultaneously. This version is a generalization of one of
the cases found in Table17.1, in which group-independent positional rates are
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considered along with identical RMPs of start-time-dependent duration, i.e.,
ζ [x] = ζ, η[x] = η, 1 ≤ x ≤ K .

In order to solve both versions of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x](τ )
∣
∣Cmax described above, the optimal choice for RMP Decisions 2 and 3 can be

made easily. If RMPDecision 1 is assumed to be taken, so that k − 1, 1 ≤ k ≤ K + 1,
RMPs are to be included in the schedule, then for both problems, RMP[1], . . .,
RMP[k−1] are to be chosen and inserted into a schedule in the order of their number-
ing. For a chosen k, this gives the best outputs (A1) and (A2) for Problem Time1,
since the chosen RMPs have the shortest durations and, moreover, the created groups
will be associated with the smallest deterioration factors, since (17.14) and (17.15)
hold simultaneously. This gives the best outputs (A1) and (A2) for Problem Time2
as well, since the groups are identical from the point of view of the associated posi-
tional factors, and the RMPs with smaller indices have smaller values of the duration
parameters, because (17.15) and (17.16) hold simultaneously.

For an assumed value of k, let RMP Decisions 2–3 be made, and let problem

1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(k − 1),�[x](τ )

∣
∣
∣Cmax be the resulting auxiliary prob-

lem. This problem can be solved by minimizing the generic objective function of the
form (17.9). For Problem Time1, obtain the required positional weights W [x](r) by
substituting ζ [x] = 0, 1 ≤ x ≤ k, in (16.18) so that

W [x](r) = (
1 + a[x]

)n[x]−r
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (17.17)

while for Problem Time2, substitute a[x] = a, 1 ≤ x ≤ k, so that

W [x](r) =
{

(1 + ζ [x])(1 + a)n
[x]−r, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

(1 + a)n
[x]−r

, 1 ≤ r ≤ n[x], x = k.
(17.18)

Set the value n[x] = n, 1 ≤ x ≤ k, and k = K + 1, and compute all positional
weightsW [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ K + 1, for both problems by using the formulae
above. Notice that the computed positional weights represent a set of all possible
values of W [x](r) across all possible groups.

Notice that both Problems Time1 and Time2 satisfy theK-domi condition, defined
in Definition 16.1. Inequality (17.14) ensures that the positional weights associated
with Problem Time1 are ordered so that for each k, 1 ≤ k ≤ K + 1, we have

W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k](r), 1 ≤ r ≤ n,

while because of (17.16), the positional weights for Problem Time2 are ordered so
that for each k, 1 ≤ k ≤ K + 1, we have

W [k](r) ≤ W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k−1](r), 1 ≤ r ≤ n.

These observations guarantee the required dominance for any pair of groups in
any of these two problems.

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
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For instances of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax that

simultaneously satisfy (17.15) and the K-domi condition, it is possible to compute
the optimal values of n[x], 1 ≤ x ≤ k, and take all RMP Decisions 1–3 on the fly.
Recall that for a fixed outcome of RMP Decision 1, the optimal outcomes for RMP
Decisions 2 and 3 are already known. Thus, in order to solve these problems,we apply
the following methodology that is based on similar ideas as Algorithm NSmallPosi2
outlined in Sect. 16.2.3.

Recall that Algorithm NSmallPosi2 is implemented by manipulating two lists,
which we denote by G(k − 1) and H(k). List G(k − 1) contains all the posi-
tional weights corresponding to the positions used in the previously found schedule
S∗(k − 1), while list H(k) contains the positional weights that will be introduced if
the kth group is opened.

List H(v), 1 ≤ v ≤ K + 1, is defined differently for Problems Time1 and Time2.
For Problem Time1, H(v) contains the positional weights W [v](r), v ≤ r ≤ n, so
that by (17.17) we have

H(v) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
1 + a[v]

)n−v

(
1 + a[v]

)
n−(v+1)

...
(
1 + a[v]

)2
(
1 + a[v]

)

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 1 ≤ v ≤ K + 1.

For Problem Time2, notice that the values of the positional weights given by
(17.18) change dynamically as the value of k is changed. Thus, we define H(v) so
that this effect is incorporated: Initialize

H(1) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 + a)n−1

(1 + a)n−2

...

(1 + a)2

(1 + a)
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and define

H(v) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U [v−1](1 + a)n−v

U [v−1](1 + a)n−(v+1)

...

U [v−1](1 + a)2

U [v−1](1 + a)
U [v−1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 2 ≤ v ≤ K + 1,

where U [v−1] = (
1 + ζ [v−1]

)
, 2 ≤ v ≤ K + 1.

http://dx.doi.org/10.1007/978-3-319-39574-6_16
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Notice that for both problems, list H(v) has at most n − v + 1, 1 ≤ v ≤ K +
1, elements sorted in non-increasing order. It suffices to consider only n − v + 1
positions in list H(v), since condition K-domi guarantees that each of the v − 1
earlier groups will have at least one job scheduled in it.

For k = 1, list G(1) is defined essentially as a copy of list H(1). For each k,
2 ≤ k ≤ K + 1, list G(k) is obtained be merging the lists G(k − 1) and H(k) and
taking the n smallest elements of this merger, keeping them in non-decreasing order.

Define P(S∗(k)) as the sum of actual durations of the jobs in an optimal schedule
with k groups. Let γi(k) denote the ith element in the sorted listG(k), so thatG(k) =
(γ1(k), γ2(k), . . . , γn(k)). This implies that

P(S∗(k)) =
n∑

j=1

pjγj(k),

so that

Cmax
(
S∗(k)

) = P(S∗(k)) + �(k) =
n∑

j=1

pjγj(k) +
k−1∑

x=1

η[x]. (17.19)

where �(k) is a constant term as defined in (17.10).

The following algorithm solves an instance of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,

RMP(K),�[x](τ )
∣
∣Cmax and returns the optimal number of RMPs, k∗ − 1, to be

included in the schedule (RMP Decision 1) along with the optimal schedule S∗(k∗)
with k∗ groups.

Algorithm NSmallTime2

Input: An instance of either Problem Time1 or Problem Time2 with the jobs renum-
bered in the LPT order
Output: An optimal schedule S∗(k∗) defined by the processing sequences π[x], 1 ≤
x ≤ k∗

Step 1. For k = 1, find list H(1) for the problem at hand. Define a sorted list G(1)
by reordering the elements of H(1) in the opposite order. Compute Cmax(S∗(1))
by formula (17.19). Define k′ := K + 1.

Step 2. For k from 2 to k′ do

(a) Create the list G(k) = (γ1(k), γ2(k), . . . , γn(k)) that contains n smallest ele-
ments in the merger of the lists G(k − 1) and H(k).

(b) Compute Cmax(S∗(k)) by formula (17.19). If P(S∗(k)) = P(S∗(k − 1)), then
define k′ := k − 1 and break the loop by moving to Step 3; otherwise, con-
tinue the loop with the next value of k.

Step 3. Find the value k∗, 1 ≤ k∗ ≤ k′, such that

Cmax
(
S∗(k∗)

) = min
{
Cmax

(
S∗(k)

)|1 ≤ k ≤ k′}.
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Step 4. Run Algorithm NSmallTime for the found value of k∗ to obtain the optimal
processing sequence π∗ = (

π[1],π[2], . . . ,π[k∗]).

Notice that similar to Algorithm NSmallTime, Step 2 of the above algorithm also
follows Theorem 17.1 and searches for the n smallest positional weights for a given
k, 1 ≤ k ≤ K + 1, and assigns the jobs with largest values of pj to the positions
corresponding to the smallest positional weights. The main difference between the
two algorithms lies in the way the list of n smallest positional weights is found. For
each k, 1 ≤ k ≤ K + 1,AlgorithmNSmallTime searches for the n smallest positional
weights by comparing the positional weights across all groups. On the other hand,
Algorithm NSmallTime2 in each iteration compares the elements in only two lists,
G(k − 1) and H(k). Our method is justified, because list G(k − 1) already contains
the n smallest positional weights coming from the first k − 1 groups. Thus, to search
for the n smallest weights needed for schedule S∗(k), there is no need to scan the
first k − 1 groups again. In other words, we utilize the fact that if a certain position
in the first k − 1 groups is not used in schedule S∗(k − 1), then it will not be used in
schedule S∗(k) either.

In Step 2, for every k each listG(k − 1) andH(k) has at most n elements sorted in
a non-decreasing order; therefore, each Step 2(a) and Step 2(b) can be completed in
O(n) time. If the loop in Step 2 is not broken throughout the run ofAlgorithmNSmall-
Time2, the final value of k′ remains equal to K + 1; i.e., it is possible all RMPs will
be run and all groups will be opened in an optimal schedule. The loop in Step 2 may
be stopped when in Step 2b the condition P(S∗(k)) = P(S∗(k − 1)) is achieved. This
condition implies that the opening of the kth group does not provide any positional
weights smaller than those contained in the list G(k − 1). If this happens for the
kth group, all groups that could be opened after this would provide even worse posi-
tional weights, because listH(k + 1) is dominated by listH(k), 1 ≤ k ≤ K .Thus, the
makespan cannot be reduced by running more RMPs after the k′th group is opened,
so that there is no need to examine further values of k. With the found value of k′,
the overall optimal schedule will be found among the schedules S∗(k), 1 ≤ k ≤ k′.

Theorem 17.2 Algorithm NSmallTime2 solves an instance either of Problem Time1
or of Problem Time2 in O(nK) time, provided that the LPT order of the jobs is known.

Example 17.3 We illustrate the working of Algorithm NSmallTime2 by an instance
of Problem Time2, obtained by modifying the generic instance of Example 17.1. For
Problem Time2, the deterioration rate is group-independent and is known to be equal
to a = 0.1. Such a situation arises when each RMP is able to restore the processing
conditions to an “as good as new” state. We also modify the duration parameters of
the RMPs to make them obey (17.15) and (17.16) simultaneously, so that they are
now given as

RMP[1]: ζ [1] = 0.025, η[1] = 2;
RMP[2]: ζ [2] = 0.05, η[2] = 4;
RMP[3]: ζ [3] = 0.15, η[3] = 4;
RMP[4]: ζ [4] = 0.25, η[4] = 6;
RMP[5]: ζ [5] = 0.25, η[5] = 6.
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The rest of the setting of this example remains similar to Example 17.1, with the
normal processing times given by

p1 = 10, p2 = 9, p3 = 6, p4 = 3, p5 = 3, p6 = 2.

Table17.5 shows the details of the run of Algorithm NSmallTime2 for the above
instance. Sinceγr(4) = γr(3) for each r, 1 ≤ r ≤ 6, the algorithm stops after iteration
k = 4, so that k′ = 3. The algorithm outputs the minimum value of the makespan
from the set {Cmax(S∗(k))|1 ≤ k ≤ 3}, which is Cmax(S∗(2)). Optimal sequences

Table 17.5 Run of Algorithm NSmallTime2 for Example17.3

k = 1 r H(1) G(1) γr(1)pr

1 1.61051 1 10

2 1.4641 1.1 9.9

3 1.331 1.21 7.26

4 1.21 1.331 3.993

5 1.1 1.4641 4.3923

6 1 1.61051 3.22102

Cmax(S∗(1)) = ∑6
r=1 γr(1)pr = 38.76632

k = 2 r G(1) H(2) G(2) γr(2)pr
1 1 1.500703 1 10

2 1.1 1.364275 1.025 9.225

3 1.21 1.24025 1.1 6.6

4 1.331 1.1275 1.1275 3.3825

5 1.4641 1.025 1.21 3.63

6 1.61051 1.24025 2.4805

Cmax(S∗(2)) = ∑6
r=1 γr(2)pr + β[1] = 35.318 + 2 = 37.318

k = 3 r G(2) H(3) G(3) γr(3)pr
1 1 1.53065 1 10

2 1.025 1.3915 1.025 9.225

3 1.1 1.265 1.1 6.6

4 1.1275 1.15 1.1275 3.3825

5 1.21 1.15 3.45

6 1.24025 1.21 2.42

Cmax(S∗(3)) = ∑6
r=1 γr(3)pr + β[1] + β[2] = 35.0775 + 2 + 4 = 41.0775

k = 4 r G(3) H(4) G(4) γr(4)pr
1 1 1.5125 1 10

2 1.025 1.375 1.025 9.225

3 1.1 1.25 1.1 6.6

4 1.1275 1.1275 3.3825

5 1.15 1.15 3.45

6 1.21 1.21 2.42

Cmax(S∗(4)) = ∑6
r=1 γr(4)pr + β[1] + β[2] + β[3] = 35.0775 + 2 + 4 + 4 = 45.0775
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of jobs in the two groups can be obtained by running Algorithm NSmallTime and
are found to be π[1] = (5, 3, 1) and π[2] = (6, 4, 2). The makespan of the resulting
schedule is 37.318.

Algorithm NSmallTime2 can also be applied to solve problem 1
∣
∣
∣p[x]j (τ ) = pj+

a[x]τ ,RMP(K),�[x](τ )
∣
∣Cmax with group-independent deterioration rates and con-

stant duration RMPs (both identical and distinct). This is possible since both con-
ditions K-domi and (17.15) can be satisfied simultaneously. The required running
time is again O(nK). We do not discuss the solution of this problem here, since
it is possible to solve it even faster using another solution approach, discussed in
Sect. 17.4.

Now consider a version of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣

Cmax in which the conditions K-domi and (17.15) do not hold simultaneously. Algo-
rithm NSmallTime2 can still be used to obtain an optimal value for RMP Decision
1 and to find an optimal permutation of jobs, but to make RMP Decisions 2 and 3,
a full enumeration of options might be required. As a result, the overall running

time to solve problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x](τ )

∣
∣
∣Cmax turns out to be

no smaller than that obtained by using the general solution approach presented in
Sect. 17.2.

We view the material of this subsection as a strong evidence of similarity between
the problems with time-dependent effects and positional effects. These two models
have been traditionally considered as different in nature.

17.4 Binary Search in Convex Sequences

In this subsection, we deal with problems in which the computed positional weights
are group-independent, i.e., are of the form W [x](r) = W (r), 1 ≤ x ≤ k, and addi-
tionally, they are ordered in a way such that W (1) ≥ W (2) ≥ · · · ≥ W (n). Such

a situation arises for the versions of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),

�[x](τ )
∣
∣Cmax, in which the deterioration rates are group-independent, i.e., a[x] =

a, 1 ≤ x ≤ K + 1, while RMPs are of constant duration, i.e., ζ [x] = 0, 1 ≤ x ≤
K . Formally, we denote the described problem by 1

∣
∣
∣p[x]j (τ )= pj + aτ ,RMP(K),

�[x]
∣
∣Cmax. We focus on the problem in which RMPs are distinct, since the problem

with identical RMPs is not known to admit a faster solution algorithm.

Notice that for problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(K),�[x]

∣
∣
∣Cmax, the optimal

choice for RMP Decisions 2 and 3 can be made easily. Assume that for prob-

lem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(K),�[x]

∣
∣
∣Cmax, an optimal schedule includes k − 1

RMPs, so that the jobs are divided into k, 1 ≤ k ≤ K + 1, groups. Since it is known
that the RMPs create groups associated with the same deterioration rates, it follows
that the order in which the RMPs are performed is immaterial. Further, it is obvious
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that in order to choose k − 1 RMPs out of the available K ones, the RMPs with
smaller durations must be given priority. To ensure that the shortest k − 1 RMPs are
chosen in an optimal schedule, we renumber the K available RMPs in a way that
(17.15) holds and selects the ones with indices 1, 2, . . . , k − 1, and include them
into a schedule in the order of their numbering.

With RMP Decisions 1–3 having been made (for an assumed value of k), the aux-

iliary problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(k − 1),�[x]

∣
∣
∣Cmax can be solved by mini-

mizing the generic objective function (17.9). Obtain the required positional weights
W [x](r) by substituting a[x] = a, ζ [x] = 0, 1 ≤ x ≤ k, in (17.11) so that we have

W [x](r) = (1 + a)n
[x]−r, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

Notice that, unlike for most previously considered models, here the positional
weights in the last group are computed similarly to all other groups.

To solve an instance of problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(k − 1),�[x]

∣
∣
∣Cmax,

below we outline a solution approach which is again based on Theorem 17.1.
First, set the value n[x] = n, 1 ≤ x ≤ k, and from the resulting set of positional

weights ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 + a)n−1 (1 + a)n−1 · · · (1 + a)n−1

(1 + a)n−2 (1 + a)n−2 · · · (1 + a)n−2

...
... · · · ...

(1 + a)2 (1 + a)2 · · · (1 + a)2

(1 + a) (1 + a) · · · (1 + a)
1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17.20)

choose the n smallest of them. Obviously, the n smallest weights are found in consec-
utive positions at the bottom of the matrix. The smallest k positional weights are due
to the last positions of each of the k groups. The next smallest k positional weights
are due to the second last positions of each of the k groups, and so on. Assuming
that n = λk + μ, where λ and μ are non-negative integers, μ ≤ k − 1, the optimal
number of jobs in each group can be given by

n[x] =
{⌈

n
k

⌉ = λ + 1, 1 ≤ x ≤ μ⌊
n
k

⌋ = λ, μ + 1 ≤ x ≤ k.

With known values of W [x](r), 1 ≤ r ≤ n[x], and n[x], 1 ≤ x ≤ k, an opti-

mal makespan Cmax(S∗(k)) for problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(k − 1),�[x]

∣
∣
∣

Cmax can be found in O(n) time by running the matching algorithm.

To determine the optimal solution for problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(K),

�[x]
∣
∣Cmax, all options associated with RMP Decisions 1–3 must be enumerated.

RMP Decisions 2 and 3 have already been taken optimally; thus, we only need to
determine the optimal value of the number of RMPs. We can do this by solving
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problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(k − 1),�[x]

∣
∣
∣Cmax for all values of k, 1 ≤ k ≤

K + 1, and choosing the instance that delivers the smallest value of Cmax(S∗(k)).
Thus, problem 1

∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(k − 1),�[x]

∣
∣
∣Cmax can be solved inO(nK)

time. However, we prove that the sequence Cmax(S∗(k)), 1 ≤ k ≤ K + 1, is in fact
V -shaped and thus, in order to search for the smallest value of Cmax(S∗(k)), we only
need to evaluate

⌈
log2(K + 1)

⌉
options of k, 1 ≤ k ≤ K + 1. Recall that a sequence

A(k) is called V-shaped if there exists a k0, 1 ≤ k0 ≤ K + 1, such that

A(1) ≥ · · · ≥ A(k0 − 1) ≥ A(k0) ≤ A(k0 + 1) ≤ · · · ≤ A(K + 1).

If we define

h(q) := (1 + a)q−1, 1 ≤ q ≤ n, (17.21)

then a column of the matrix (17.20) of positional weights becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎝

h(n − 1)
h(n − 2)
...

h(2)
h(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

For a schedule S(k) with k groups, let P(S(k)) denote the sum of the actual
durations of the jobs, and �(k) be the total duration of all k − 1 RMPs defined by
(17.10).

Lemma 17.2 For problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(k − 1),�[x]

∣
∣
∣Cmax, if the jobs

are numbered in the LPT order, then the makespan of the optimal schedule can be
written as

Cmax(S
∗(k)) = P(S∗(k)) + �(k) =

n∑

j=1

pjh

(⌈
j

k

⌉)
+

k−1∑

x=1

η[x], 1 ≤ k ≤ K + 1,

(17.22)
where we denote h(q) := (1 + a)q−1, 1 ≤ q ≤ n.

Proof It is clear that Cmax(S(k)) = P(S(k)) + �(k). If the jobs are numbered in the
LPT order, then to minimize the value P(S(k)) we need to assign the jobs one by
one to an available position with the smallest positional weight. Irrespective of the
number of jobs in each group, this can be done by distributing the first k jobs to the
last positions in each of the k groups, then the next k jobs to the second last positions
in each of the k groups, and so on, until all jobs have been sequenced.

If j = λk, then the predecessors of j are placed into the last λ positions of groups
1, 2, . . . , k − 1 and the last λ − 1 positions of group k, so that job j is assigned to
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group k and gets position λ =
⌈

j
k

⌉
from the rear. If j = λk + μ for 1 ≤ μ ≤ k − 1,

then the predecessors of j take the last λ positions in each group and additionally
the (λ + 1)th last position in each of the groups 1, 2, . . . ,μ − 1, so that job j gets

position λ + 1 =
⌈

j
k

⌉
from the rear in group μ.

It follows that in an optimal schedule S∗(k), the contribution of a job j ∈ N to the

objective function is equal to pj(1 + a)
⌈

j
k

⌉
−1
, and the total processing time for all

jobs is equal to

P(S∗(k)) =
n∑

j=1

pjh

(⌈
j

k

⌉)
, (17.23)

as required. �

Theorem 17.3 For problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(K),�[x]

∣
∣
∣Cmax, the

sequence Cmax(S∗(k)), 1 ≤ k ≤ K + 1, given by (17.22), is V−shaped.

Notice that the sequence h(q) := (1 + a)q−1, 1 ≤ q ≤ n, is non-decreasing, so
the proof of Theorem 17.3 is similar to the proof of Theorem 16.5.

Theorem 17.3 allows us to find an optimal schedule with an optimal number of
groups k∗ by performing binary search in sequence Cmax(S∗(k)), 1 ≤ k ≤ K + 1,
with respect to k. This can be done by an appropriate adaptation of Algorithm Bin-
SearchPosi from Sect. 16.2.4. As a result, at most

⌈
log2(K + 1)

⌉
values of k need to

be explored, so that the optimal solution for problem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(K),

�[x]
∣
∣Cmax can be found in O(n logK) time.

As in Sect. 17.3, the approach we use for the problem with group-independent
start-time-dependent effects is very similar to the one used in Sect. 16.2.4 for schedul-
ing with group-independent positional effects. This is another evidence that the two
types of models with changing processing times are closer than has been perceived
(see Corollary 8.2 that establishes the equivalence of some single machine problems
with additive start-time-dependent effects and with positional effects).

Table17.6 summarizes all the problems considered in this paper along with the
running times needed to solve them, provided that the jobs are taken in the LPT order
of their normal processing times.

Table 17.6 Computational complexities of different versions of problem 1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,

RMP(K), �[x](τ )
∣
∣Cmax

Constant duration RMP Variable duration RMP

Identical Distinct Identical Distinct

GI O(n logK) O(n logK) O(nK) O
(
n2K logK

)

GD O(nK) O
(
n2K logK

)
O(nK logK) O

(
n2KK logK

)

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_8
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17.5 Bibliographic Notes

Although many papers have considered the problem of time-dependent deterioration
with maintenance periods, most of them, however, only see an RMP as a fixed
non-availability period, which does not necessarily improve the machine conditions.
Only a handful of studies have considered problems in which an RMP is actually
used to restore the machine to its original state, so that the effects of time-dependent
deterioration are repaired.

Lodree and Geiger (2010) study problem 1
∣
∣
∣p[x]j (τ ) = ajτ ,RMP(1),�

∣
∣
∣Cmax, with

a time-dependent effect of the form pj(τ ) = ajτ , aj ≥ 1, and a single RMP in the
schedule. They provide an optimal policy to determine the number of jobs to be
included in each of the two created groups. According to this policy, if n is even,
both groups should contain

(
n
2 + 1

)
jobs, whereas if n is odd, one group should

contain
(
n+1
2

)
jobs and the other should contain

(
n+3
2

)
jobs.

Rustogi and Strusevich (2015) solve the problem of minimizing the makespan
for a linear time-dependent deterioration effect which is enhanced by including
various maintenance activities in the schedule. They show that even in the pres-
ence of distinct maintenance activities and group dependence, the problem of min-
imizing the makespan can be solved by an efficient polynomial algorithm, which
does not involve full enumeration. Rustogi and Strusevich (2015) study enhanced
models that allow the deterioration rates to be group-dependent and the RMPs
to have different duration parameters. Similar to the structure of this chapter,
they propose three solution approaches that solve different versions of problem

1
∣
∣
∣p[x]j (τ ) = pj + a[x]τ ,RMP(K),�[x]

∣
∣
∣Cmax. Most of the material presented in this

chapter is based on Rustogi and Strusevich (2015).
Notice that to the best of our knowledge, apart from the problems studied by

Lodree and Geiger (2010) and Rustogi and Strusevich (2015), all other problems
related to time-dependent effects and rate-modifying activities require the prior
knowledge of the number of jobs in each group, and therefore, the resulting run-
ning times contain at least a multiple nK , since the optimal number of jobs in
each group is often found by full enumeration. Yang and Yang (2010) study prob-

lem 1
∣
∣
∣p[x]j (τ ) = pj + aτ ,RMP(K),�

∣
∣
∣
∑

Cj, with a linear time-dependent deterio-

ration effect with a known number, K , of RMPs and provide an optimal solution in
O

(
nK+1 log n

)
time. The same method is extended by Yang (2010) and Yang (2012),

to study different versions of problem 1
∣
∣
∣p[x]j (r, τ ) = (

pj + aτ
)
rb,RMP(K),�

∣
∣
∣

F, F ∈ {
Cmax,

∑
Cj

}
, with a combined effect and a known number, K , of RMPs.

For their respective models, both papers claim to solve the problem of minimizing
the makespan and the problem of minimizing the total flow time in O

(
nK+1 log n

)

time each. Rustogi and Strusevich (2014) also show that the running times of
O

(
nK+1 log n

)
are applied to a range of much more general problems with group-

dependent combined effects (see Chap.18).

http://dx.doi.org/10.1007/978-3-319-39574-6_18
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Chapter 18
Scheduling with Rate-Modifying Activities
and Enhanced Effects

In this chapter, we study enhanced models which combine various effects that
determine the actual processing times of the jobs discussed so far, including

• Positional and time-dependent effects;
• Learning and deterioration effects;
• Rate-modifying activities.

We develop a general model and solve the problems of minimizing the makespan
and the total completion time by reducing them to a series of linear assignment
problems with a product matrix.

In all problems that we consider, we assume that the jobs of set N = {1, 2, . . . , n}
have to be processed on a single machine. At time zero, all jobs are available and
the machine is assumed to be in a perfect processing state, in which case the normal
processing time of job j ∈ N is equal to p j . The processing conditionsmight change,
with respect to both the elapsed time and the number of processed jobs. As outlined in
Sect. 12.4, the decision-maker is presented with a list (RMP[1], RMP[2], . . ., RMP[K ])
of K ≥ 1 possible rate-modifying activities. The decision-maker may decide which
of the listed RMPs to insert into a schedule and in which order.

Recall that in Sect. 8.1.3 we have reviewed models in which a linear time-
dependent effect is combined with a positional effect, so that the actual processing
time of a job j ∈ N sequenced in position r and starting at time τ ≥ 0 of a schedule
is given by

p j (τ ; r) = (
p j + aτ

)
g(r), (18.1)

where a represents a rate that is common for all jobs j ∈ N and is either positive (for
a deterioration effect) or negative (for a learning effect). Array g(r), 1 ≤ r ≤ n, is a
sequence of positional factors that defines an arbitrary positional effect. In general,
the sequence g(r), 1 ≤ r ≤ n, need not bemonotone; however, if it is non-decreasing
(non-increasing), then it represents a positional deterioration (learning) effect.

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
Research & Management Science 243, DOI 10.1007/978-3-319-39574-6_18
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For the objective functions under consideration, it is proved in Theorem 8.11 that
problem 1

∣
∣p j (τ ; r) = (

p j + aτ
)
g(r)

∣
∣� with � ∈ {

Cmax,
∑

C j
}
under no assump-

tion on the sign of a and on themonotonicity of array g(r), 1 ≤ r ≤ n, can be reduced
to minimizing a generic objective function (8.22), so that the corresponding optimal
schedule can be found by Algorithm Match in O(n log n) time.

In this chapter, we extend the results of Theorem 8.11 by studying the effect that
combines the introduction of rate-modifying activities and the time-changing effects
of the form (18.1). Such a model allows handling many quite general situations,
in particular simultaneous learning and deterioration effects of both types (time-
dependent and positional).

So far in this book, we have mainly considered problems in which an RMP is
treated as a maintenance period and is used to compensate deterioration effects.
However, in this chapter, an RMP is allowed to have any arbitrary effect on the
machine conditions. It can still be seen as a maintenance period, which is aimed
at restoring the machine conditions to a better state, so that the processing times
become smaller. On the other hand, we now allow an RMP to be an activity in which,
e.g., a machine/operator is replaced, so that all learning advantages are lost and the
actual processing times of jobs become larger. Another form of an RMP may allow
the learning rate of the machine to be further enhanced after running the RMP.

An illustration of a schedule with different types of RMPs is provided in Exam-
ple 12.2, in which we combine learning and deterioration effects for a pure positional
model. In the same example, we also consider a situation in which the positional fac-
tors g[x](r) are found to be dependent on the number of jobs in previous groups. In
this chapter, we extend such a model by combining it with a time-dependent effect.
As a result, in our main model the actual processing time of a job is seen as affected
by the following factors:

• the group of a job is assigned to;
• the position of the job within its group;
• the number of jobs scheduled in each of the previous groups;
• the time elapsed before processing the job within its group;
• the time elapsed in each of the previous groups.

18.1 Enhanced Model Description

In order to solve the described problems, we adapt Procedure RMP1 from Sect. 12.4.
Assume that outcomes (A1) and (A2) are known and a certain outcome of Deci-
sion (B1) is determined. Consider a schedule SB1(k), in which k − 1 RMPs are
chosen from the available K options, so that the jobs are divided into k, 1 ≤
k ≤ K + 1 groups. Assume that each group contains a total of n[x] jobs, so that
π[x] = (

π[x](1),π[x](2), . . . ,π[x]
(
n[x]

))
, 1 ≤ x ≤ k, where

∑k
x=1 n

[x] = n. Depend-
ing on which RMPs are chosen and the order in which theyare performed, the actual

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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processing time of a job j = π[x](r), scheduled in position r , 1 ≤ r ≤ n[x], of the
x th group, 1 ≤ x ≤ k, is given by

p[x]
j (τ ; r) =

(
pπ[x](r) + a[x]1 F1 + a[x]2 F2 + · · · + a[x]x−1Fx−1 + a[x]x F(x,r−1)

)
g[x](r),

1 ≤ r ≤ n[x], 1 ≤ x ≤ k,
(18.2)

where Fv denotes the total processing time of all jobs scheduled in a group v,
1 ≤ v ≤ x − 1, while F(x,r) represents the total duration of the first r jobs in a group
x . For completeness, it is assumed that F0 = F(x,0) := 0. The terms g[x](r) represent
positive group-dependent job-independent positional factors, which do not have to
be monotone within a particular group. The terms a[x]1 , a[x]2 , . . . , a[x]x are real num-
bers and represent the group-dependent rates associated with time-dependent effects.
Notice that some of the rates a[x]1 , a[x]2 , . . . , a[x]x may be negative, which corresponds
to a learning effect. Without going into technical details, in what follows we assume
that the rates a[x]1 , a[x]2 , . . . , a[x]x are such that the processing times remain positive
(see, e.g., Sect. 8.1.3), where the required conditions are explicitly written out for a
less general combined effect.

For a group x , 1 ≤ x ≤ k, a coefficient a[x]v reflects the influence of the total
duration Fv of jobs in group v, 1 ≤ v ≤ x − 1, on the actual processing time of any
job in group x . Notice that such an influence can be different for different groups; i.e.,

for the same value of v the rates, a[
x ′]

v and a[
x ′′]

v do not have to be equal for x ′ �= x ′′.
For a job j scheduled in position r of group x , the rates a[x]1 , a[x]2 , . . . , a[x]x−1 determine
how the length of each previous group affects the job’s processing time, whereas a[x]x
determines how the processing time of the job is affected by the time elapsed since
the opening of the x th group till job j starts. The superscript [x] associated with these
rates stresses that the rates are group-dependent and can assume different values and
signs depending on the group x , 1 ≤ x ≤ k, a job is scheduled in. For example,
to determine the actual processing time of a job scheduled in the third group, the
required rates are a[3]1 , a[3]2 , and a[3]3 , whereas if a job is placed in the fourth group,
the required rates are a[4]1 , a[4]2 , a[4]3 , and a[4]4 .

If anRMP[y], 1 ≤ y ≤ K , is inserted into a schedule, its duration,whichwe denote
by �[y](τ ;�), depends on time τ elapsed and the number of jobs � processed,
relative to a certain reference point. The nature of such a reference point is content-
dependent, and it will become clear from the explanations to follow. Provided that a
reference point is identified, the general formula that defines the duration of RMP[y]

is given by

�[y](τ ;�) = (
ζ [y]τ + η[y]

)
h[y](�), (18.3)

where, as in (12.1), the coefficients ζ [y] and η[y] > 0 are known, while h[y](�)

represents a positional factor.
Notice that (18.3) is a generalization of the definition of the RMP duration�[y](τ )

given in (12.1). First, the Formula (18.3) additionally allows a positional factor, so
that the duration of the RMP is dependent not only on the start time of the RMP,

http://dx.doi.org/10.1007/978-3-319-39574-6_8
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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but also on the position of the RMP in the processing sequence. Second, for �[y](τ )

defined by (12.1) τ is the duration of the group that immediately precedes RMP[y],
so that the reference point for measuring τ is the start time of that group and it is
not affected by any of the earlier scheduled groups; on the other hand, in (18.3) the
reference point for computing �[y](τ ;�) for RMP[y] may go back to the starting
point of any earlier group, which can be located several groups away from RMP[y].

It is always assumed that during an RMP the system undergoes neither learning
nor deterioration. Thus, the actual processing times of the jobs and the RMPs are
independent of the duration of the previously scheduled RMPs.

For a schedule SB1(k), we will explain how to compute Tx , the duration of an
RMP after the x th group, by (18.3), so that Tx is expressed as a function of the values
Fv , 1 ≤ v ≤ x .

Let us start this with a small-sized example. Consider an instance in which a
machine is a device controlled by an operator. The machine undergoes deteriora-
tion and learning simultaneously. Two RMPs are to be included into the processing
sequence, the first being used as a training period for the operator, while the second
being a maintenance activity which repairs the device. As a result, three groups are
created, with the number of jobs in each being n[1], n[2] and, n[3], and the duration
of these groups being F1, F2, and F3, respectively.

The first RMP starts when the first group is completed, so that time zero, the
beginning of the first group, is taken as the reference point for applying (18.3). Thus,
we have

T1 = [
ζ [1]F1 + η[1]

]
h[1]

(
n[1]

) = ζ [1]h[1]
(
n[1]

)
F1 + η[1]h[1]

(
n[1]

)
.

The secondRMPstartswhen the secondgroup is completed.Thedevice undergoes
continuous deterioration during the first two groups, since the first RMP does not
affect the state of the device. In this case, again time zero, the beginning of the first
group, is taken as the reference point for applying (18.3). The time elapsed until the
second RMP starts is equal to F1 + F2, while the number of jobs scheduled until that
point is equal to n[1] + n[2]. According have

T2 = [
ζ [2](F1 + F2) + η[2]

]
h[2]

(
n[1] + n[2]

)

= ζ [2]h[2]
(
n[1] + n[2]

)
(F1 + F2) + η[2]h[2]

(
n[1] + n[2]

)
.

For the first RMP, define

ζ [1]
1 := ζ [1]h[1]

(
n[1]

)
, η̂[1] := η[1]h[1]

(
n[1]

)
,

and for the second RMP, define

ζ [2]
1 = ζ [2]

2 := ζ [2]h[2]
(
n[1] + n[2]

)
, η̂[2] := η[2]h[2]

(
n[1] + n[2]

)
,

so that we can write

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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T1 = ζ [1]
1 F1 + η̂[1];

T2 = ζ [2]
1 F1 + ζ [2]

2 F2 + η̂[2].

Extending this example, we can write out an expression for Tx , the duration of the
x th RMP, 1 ≤ x ≤ k − 1, in schedule SB1(k), provided that the nature of the RMP
delivers an appropriate reference point for applying (18.3). The suggested expression
can generically be written as

Tx = ζ [x]
1 F1 + ζ [x]

2 F2 + · · · + ζ [x]
x Fx + η̂[x], 1 ≤ x ≤ k − 1, (18.4)

where the values ζ [x]1 , ζ [x]2 , . . . , ζ [x]x determine how the length of each previous group
affects the duration of the RMP scheduled after the x th group, and η̂[x] > 0 is a
constant, 1 ≤ x ≤ k − 1. Typically, η̂[x] is function of η[x] and h[x], where the factor
h[x] depends on all or some n[v], 1 ≤ v ≤ x . The coefficients ζ [x]1 , ζ [x]2 , . . . , ζ [x]x can
be seen as analogues of the rates a[x]1 , a[x]2 , . . . , a[x]x−1, defined in (18.2). Similarly to

the rates, the values ζ
[x ′]
v and ζ

[x ′′]
v can be different for different groups x ′ and x ′′.

Notice that the values ζ [x]1 , ζ [x]2 , . . . , ζ [x]x can assume any sign as long as it is ensured
that the duration of the RMPs is positive. They allow us to incorporate RMPs of a
different nature in a schedule.

For an objective function � ∈ {
Cmax,

∑
C j

}
, we extend the standard three-field

notation to denote the problem of single machine processing subject to the described
effects by 1|Effect (18.2), RMP(K ),�[x](τ ;�) |�. Here, in the middle field we
write “Effect (18.2)” to stress that the processing times are subject to a combined
effect (18.2), we write “RMP(K )” to indicate that a total of K rate-modifying
activities are available, and we write “�[x](τ ;�) ” to indicate that the duration of
RMP[x] is found in accordance with (18.3).

For problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |�, in accordance with Pro-
cedure RMP1 fix outcomes (A1) and (A2), determine a certain outcome of Decision
(B1) and denote the resulting auxiliary problem as 1|Effect (18.2), RMP(k − 1),
�[x](τ ;�) |�, where � ∈ {

Cmax,
∑

C j
}
. The required input for problem 1|Effect

(18.2), RMP(k − 1),�[x](τ ;�) |� includes:

• the processing times p1, p2, . . . , pn , of jobs;
• the rates a[x]1 , a[x]2 , . . . , a[x]x , for each x , 1 ≤ x ≤ k;
• the positional factors g[x](r), 1 ≤ r ≤ n, for each x , 1 ≤ x ≤ k;
• the values ζ [x]1 , ζ [x]2 , . . . , ζ [x]x , η̂[2] related to the duration of the x th RMP, for each
x , 1 ≤ x ≤ k − 1.

The introduced model allows us to handle a wide range of practical problems,
which have not been studied in the scheduling literature until very recently. Com-
plicated as it looks, the model essentially incorporates and generalizes almost every
job-independent effect known in scheduling with changing processing times. It is
flexible enough to serve as a model of many plausible scenarios that may be found
in practice, e.g., in the area manufacturing or shop floor production planning. Below
we give an illustration of a possible application.
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Example 18.1 A human operator (Operator 1) uses a tool to process n jobs. During
the processing of the jobs, two RMPs will be included in the schedule. It is known
that the first RMP, associated with the coefficients ζ ′ and η′, is actually amaintenance
periodwhich restores themachine to its original condition.However, the deterioration
rate of the machine becomes greater after the maintenance period, since the original
spare parts are not used. This RMP also provides the operator with sufficient rest, so
that after the first RMP the operator is as fresh as he/she was at the beginning of the
schedule. The duration of this RMP is dependent on its start time, so that for x = 1,
we have ζ [1]1 = ζ ′ and η̂[1] = η′. The second RMP takes a constant time η′′, i.e.,
ζ [2]1 = ζ [2]2 = 0 and η̂[2] = η′′, but does not repair the machine at all. Instead, a new
operator (Operator 2) is brought in. Below, we distinguish between the learning and
deterioration parameters for the machine and those for the operator(s) by using the
subscript “m” for the machine and “w” for the operator(s)/worker(s), respectively.

In a feasible schedule, the jobswill be split into k = 3 groups. Themachine suffers
from a linear time-dependent deterioration effect, the deterioration rate being equal
to d ′

m > 0 before the first RMP (the first group), and equal to d ′′
m > d ′

m > 0 after
the first RMP (for the second and the third groups). Additionally, the machine is
also affected by a positional exponential deterioration effect of the form

(
d ′
m + 1

)
r−1

before the first RMP and of the form
(
d ′′
m + 1

)
r−1 after that RMP. The operators

are also subject to time-dependent effects; the deterioration and learning rates for
Operator 1 are d ′

w > 0 and l ′w < 0, respectively, and those for Operator 2 are d ′′
w >

0 and l ′′w < 0, respectively. It is known that in addition to the skills gained while
processing the jobs, Operator 2 also passively learns with a rate l ′′′w < 0, while she
observes Operator 1 processing the jobs in groups 1 and 2. Last, the performance of
the workers is also affected by a polynomial positional effect and is quantified by
r δ , where the appropriate value of δ is one of d ′

w, l
′
w, d

′′
w and, l ′′w, depending on the

scenario. There is no positional effect associated with the passive learning effect of
Operator 2.

For the described example, the parameters of our model (18.2) can be set as shown
in Table18.1.

Notice that our model allows us to assume that during an RMP, if the operator is
not replaced, they do not lose their skills, which have been improved due to learning
in the earlier groups of the schedule. Similarly, if during an RMP a machine is not
fully repaired, our model is capable of handling the resulting situation, in which the
deterioration effect from the group before the RMP must be carried forward to the
next group. The same phenomenon is also observed in the passive learning effect of
Operator 2, in which the skills gained during groups 1 and 2 are carried forward to
group 3. The time-dependent effects can be captured by the group-dependent para-
meters a[x]v , 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k. Thus, to model the situation in the given
example, we define a[2]1 := l ′w (implying that during F1 time units Operator 1 has
gained an experience), a[3]1 := l ′′′w (implying that Operator 2 has gained a passive
learning experience during F1 time units) and a[3]2 := d ′′

m + l ′′′w (implying that dur-
ing F2 time units the machine has deteriorated and Operator 2 has gained a passive
learning experience). The associated positional effects can be easily captured by
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Table 18.1 Parameters for Example 18.1

Group Parameter Value

1 a[1]1 d ′
m + d ′

w + l ′w
g[1](r)

(
d ′
m + 1

)
r−1rd

′
w+l ′w , 1 ≤ r ≤ n[1]

2 a[2]1 l ′w
a[2]2 d ′′

m + d ′
w + l ′w

g[2](r)
(
d ′′
m + 1

)
r−1

(
n[1] + r

)
l ′wrd

′
w , 1 ≤ r ≤ n[2]

3 a[3]1 l ′′′w

a[3]2 d ′′
m + l ′′′w

a[3]3 d ′′
m + d ′′

w + l ′′w
g[3](r)

(
d ′′
m + 1

)
n[2]+r−1rd

′′
w+l ′′w , 1 ≤ r ≤ n[3]

adjusting the relative position of a job in the relevant group, as illustrated in Exam-
ple 12.1.

As demonstrated in the above example, with an appropriate use of the parameters
a[x]v , ζ [x]v , 1 ≤ v ≤ x , g[x](r), 1 ≤ r ≤ n, and η̂[x], for each x , 1 ≤ x ≤ k, our model
as defined by (18.2) and (18.4) can be used to represent a wide range of practical
situations.

In what follows, we show that problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |
�, for � ∈ {

Cmax,
∑

C j
}
reduces to a series of linear assignment problems with a

product matrix and can be solved in polynomial time.
For all problems considered in this chapter, we are required to perform full enu-

meration to determine the number of jobs to schedule in a particular group, so that
the resulting running times contain at least a multiple nK .

18.2 Computing the Completion Times

For problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |�, in accordance with
Procedure RMP1 fix outcomes (A1) and (A2), and for a particular outcome of
Decision (B1), introduce a schedule SB1(k) for an auxiliary problem 1|Effect (18.2),
RMP(k − 1),�[x](τ ;�) |�, associated with certain outcomes of Decisions (B2)
and (B3). In schedule SB1(k), the jobs are organized into groups N [x], 1 ≤ x ≤ k,
and each group N [x] contains n[x] jobs, where

∑k
x=1 n

[x] = n. The jobs in N [x] are
sequenced
in accordance with a permutation π[x] = (

π[x](1),π[x](2), . . . ,π[x]
(
n[x]

))
,

1 ≤ x ≤ k.
We now derive an expression for the total time it takes to process all jobs in a

group x , 1 ≤ x ≤ k, in a schedule SB1(k).

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Recall that throughout this book, it is assumed that an empty product is equal to

one, while an empty sum is equal to zero, i.e.,
∏r

i= j
(·) = 1 and

∑r
i= j (·) = 0, for

j > r .

Lemma 18.1 Given a group x, 1 ≤ x ≤ k, and job j = π[x](r) sequenced in the rth
position, 1 ≤ r ≤ n[x], of the group, the completion time F(x,r) of the job with respect
to the start time of the group is given by

F(x,r) =
r∑

u=1

(
A[x] + pπ[x](u)

)
B[x](u, r), (18.5)

where A[x] := ∑x−1
v=1 a

[x]
v Fv , and

B[x](u, r) := g[x](u)

r∏

i=u+1

(
1 + a[x]x g[x](i)

)
, 1 ≤ u ≤ r. (18.6)

Proof We prove this lemma by induction. For job j = π[x](r), the value F(x,r) for
r = 1 is given in accordance with (18.2) by

p[x]
j (1) =

(
pπ[x](1) + a[x]1 F1 + a[x]2 F2 + · · · + a[x]x−1Fx−1

)
g[x](1)

= (
pπ[x](1) + A[x]

)
g[x](1) = (

pπ[x](1) + A[x]
)
B[x](1, 1),

which corresponds to the right-hand side of (18.5).
Assume that for r , 1 < r ≤ n[x], the equality

F(x,r−1) =
r−1∑

u=1

(
A[x] + pπ[x](u)

)
B[x](u, r − 1), (18.7)

holds. We know that
F(x,r) = F(x,r−1) + p[x]

j (r).

Substituting (18.2), we get

F(x,r) = F(x,r−1) + (
pπ[x](r) + A[x] + a[x]x F(x,r−1)

)
g[x](r)

= (
1 + a[x]x g[x](r)

)
F(x,r−1) + (

pπ[x](r) + A[x]
)
g[x](r).

Substituting the value of F(x,r−1) from (18.7), we obtain

F(x,r) = (
1 + a[x]x g[x](r)

) r−1∑

u=1

(
A[x] + pπ[x](u)

)
B[x](u, r − 1) + (

A[x] + pπ[x](r)
)
g[x](r).
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It can be easily verified that
(
1 + a[x]x g[x](r)

)
B[x](u, r − 1) = B[x](u, r) and

g[x](r) = B[x](r, r), so that we obtain

F(x,r) =
r−1∑

u=1

(
A[x] + pπ[x](u)

)
B[x](u, r) + (

A[x] + pπ[x](r)
)
B[x](r, r)

=
r∑

u=1

(
A[x] + pπ[x](u)

)
B[x](u, r),

which proves the lemma. �

Due to Lemma 18.1, the total processing time of a group x , 1 ≤ x ≤ k, can be
written as

Fx = F(x,n[x]) =
n[x]∑

r=1

(
A[x] + pπ[x](r)

)
B[x]

(
r, n[x]

)

=
n[x]∑

r=1

(
x−1∑

v=1

a[x]v Fv

)

B[x]
(
r, n[x]

) +
n[x]∑

r=1

pπ[x](r)B
[x]
(
r, n[x]

)

=
x−1∑

v=1

⎛

⎝a[x]v

n[x]∑

r=1

B[x]
(
r, n[x]

)
⎞

⎠Fv +
n[x]∑

r=1

pπ[x](r)B
[x]
(
r, n[x]

)
.

For convenience, denote

D[x] :=
n[x]∑

r=1

pπ[x](r)B
[x]
(
r, n[x]

)
, 1 ≤ x ≤ k, (18.8)

and

b[x]v := a[x]v

n[x]∑

r=1

B[x]
(
r, n[x]

)
, 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k. (18.9)

Then Fx can be rewritten as

Fx = b[x]1 F1 + b[x]2 F2 + · · · + b[x]x−1Fx−1 + D[x]. (18.10)

Lemma 18.2 The total processing time of a group x, 1 ≤ x ≤ k, is given by

Fx =
x∑

v=1

E [v,x]D[v], (18.11)

where E [x,x] := 1 and for v ≤ x − 1
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E [v,x] :=
x−v∑

w=1

∑

v=v0<v1<···<vw=x

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]

vw−1
, (18.12)

where in (18.12) for each w, 1 ≤ w ≤ x − v, the second summation is taken over
all increasing sequences of w + 1 distinct integers (v0, v1, . . . , vw) with v0 = v and
vw = x.

Proof Please notice the zigzag pattern of the subscripts and superscripts in the right-
hand side of (18.12), as outlined below.

[v1] [v2] . . .
[
vw−1

]
[vw]

↗ ↘ ↗ ↘ ↗ . . . ↗ ↘ ↗
v0 v1 v2 . . . vw−1

The proof of the lemma is by induction. For x = 1, it follows from (18.10) that
F1 = D[1]. On the other hand, for x = 1, (18.11) reduces to F1 = E [1,1]D[1], and
since E [1,1] = 1 by definition, we also obtain F1 = D[1].

Assume now that the lemma holds for all groups 1, 2, . . . , x − 1, and prove that
it holds for group x ≤ k. Starting with (18.10), we write

Fx =
x−1∑

v=1

b[x]v Fv + D[x],

and use the induction assumption to substitute (18.11) into the above expression to
obtain

Fx =
x−1∑

v=1

b[x]v

v∑

y=1

E [y,v]D[y] + D[x] =
x−1∑

v=1

x−1∑

y=v

b[x]y E [v,y]D[v] + D[x]

=
x−1∑

v=1

⎛

⎝b[x]v E [v,v] +
x−1∑

y=v+1

b[x]y E [v,y]

⎞

⎠D[v] + D[x].

Further, using the induction assumption, replace E [v,v] by 1 and substitute
E [v,y], v < y, in accordance with (18.12). We deduce

Fx =
x−1∑

v=1

⎛

⎝b[x]v +
x−1∑

y=v+1

b[x]y

( y−v∑

w=1

∑

v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw ]

vw−1

)⎞

⎠D[v] + D[x]

=
x−1∑

v=1

⎛

⎝b[x]v +
x−1∑

y=v+1

y−v∑

w=1

∑

v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw ]

vw−1
b[x]y

⎞

⎠D[v] + D[x]

=
x−1∑

v=1

⎛

⎝b[x]v +
x−1∑

y=v+1

y−v∑

w=1

∑

v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw ]

vw−1
b[x]vw

⎞

⎠D[v] + D[x].
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Observe that for a fixed w the equality

x−1∑

y=v+1

∑

v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw ]

vw−1
b[x]vw

=
∑

v=v0<v1<···<vw≤x−1

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw ]

vw−1
b[x]vw

holds, where the summation in the right-hand side is taken over all increasing
sequences of w + 1 distinct integers (v0, v1, . . . , vw) with v0 = v and vw ≤ x − 1.

Notice that for y = v + 1 and for y = x − 1, we have that w = 1 and w = x −
v − 1, respectively, i.e., 1 ≤ w ≤ x − v − 1. This means that

Fx =
x−1∑

v=1

⎛

⎝b[x]v +
x−v−1∑

w=1

∑

v=v0<v1<···<vw≤x−1

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]

vw−1
b[x]vw

⎞

⎠D[v] + D[x].

Replacing w with w − 1, rewrite

Fx =
x−1∑

v=1

⎛

⎝b[x]v +
x−v∑

w=2

∑

v=v0<v1<···<vw−1≤x−1

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw−1]

vw−2 b[x]vw−1

⎞

⎠D[v] + D[x].

It can be easily verified that

b[x]v =
1∑

w=1

∑

v=v0<v1<···<vw−1<vw=x

b[v1]v0
b[v2]v1

· · · b[vw−1]
vw−2 b[vw]

vw−1
, 1 ≤ v ≤ x − 1,

so that Fx , 1 ≤ x ≤ k, can be rewritten as

Fx =
x−1∑

v=1

(
x−v∑

w=1

∑

v=v0<v1<···<vw−1<vw=x

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw−1]

vw−2 b[vw]
vw−1

)

D[v] + D[x]

=
x−1∑

v=1

E [v,x]D[v] + E [x,x]D[x] =
x∑

v=1

E [v,x]D[v],

which proves the lemma. �

The expressions in Lemma 18.2 look heavy; below we illustrate them for small
values of x , e.g., x ≤ 4. Recall that for x = 1, we have F1 = D[1]. For x = 2, the
formula (18.10) gives F2 = b[2]1 F1 + D[2] = b[2]1 D[1] + D[2], which complies with
(18.11) for x = 2, since E [1,2] = b[2]1 and E [2,2] = 1. Similarly, for x = 3, the formula
(18.10) reduces to

F3 = b[3]1 F1 + b[3]2 F2 + D[3] = b[3]1 D[1] + b[3]2

(
b[2]1 D[1] + D[2]

)
+ D[3]

=
(
b[3]1 + b[2]1 b[3]2

)
D[1] + b[3]2 D[2] + D[3].
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It can be easily verified that this complies with (18.11) for x = 3. For x = 4, using
(18.10) we obtain

F4 = b[4]1 F1 + b[4]2 F2 + b[4]3 F3 + D[4]

= b[4]1 D[1] + b[4]2

(
b[2]1 D[1] + D[2]

)
+ b[4]3

((
b[3]1 + b[2]1 b[3]2

)
D[1] + b[3]2 D[2] + D[3]

)
+ D[4]

=
(
b[4]1 + b[2]1 b[4]2 + b[3]1 b[4]3 + b[2]1 b[3]2 b[4]3

)
D[1] +

(
b[4]2 + b[3]2 b[4]3

)
D[2] + b[4]3 D[3] + D[4].

On the other hand, using (18.11) we obtain

F4 = E [1,4]D[1] + E [2,4]D[2] + E [3,4]D[3] + E [4,4]D[4]

=
⎛

⎝
3∑

w=1

∑

1=v0<v1<···<vw=4

b[v1]v0
b[v2]v1

· · · b[vw ]
vw−1

⎞

⎠D[1]

+
⎛

⎝
2∑

w=1

∑

2=v0<v1<···<vw=4

b[v1]v0
b[v2]v1

· · · b[vw ]
vw−1

⎞

⎠D[2]

+
⎛

⎝
1∑

w=1

∑

3=v0<v1<···<vw=4

b[v1]v0
b[v2]v1

· · · b[vw ]
vw−1

⎞

⎠D[3] + D[4]

=
⎛

⎝
∑

1=v0<v1=4

b[v1]v0
+

∑

1=v0<v1<v2=4

b[v1]v0
b[v2]v1

+
∑

1=v0<v1<v2<v3=4

b[v1]v0
b[v2]v1

b[v3]v2

⎞

⎠D[1] +
⎛

⎝
∑

2=v0<v1=4

b[v1]v0
+

∑

2=v0<v1<v2=4

b[v1]v0
b[v2]v1

⎞

⎠D[2] +
⎛

⎝
∑

3=v0<v1=4

b[v1]v0

⎞

⎠D[3] + D[4]

=
(
b[4]1 + b[2]1 b[4]2 + b[3]1 b[4]3 + b[2]1 b[3]2 b[4]3

)
D[1] +

(
b[4]2 + b[3]2 b[4]3

)
D[2] + b[4]3 D[3] + D[4].

Notice that the number of terms contained in the expression∑
v=v0<v1<···<vw=x b

[v1]
v0

b[v2]v1
b[v3]v2

· · · b[vw]
vw−1

, involved in the right-hand side of (18.12),

is
(x−v−1

w−1

)
. Thus, to determine all values of E [v,x], 1 ≤ v ≤ x − 1, 2 ≤ x ≤ k, the total

number of products to be computed is
∑k

x=2

∑x−1
v=1

∑x−v
w=1

(x−v−1
w−1

) = 2k − k − 1.
Recall that the durations of the RMPs are given by (18.4). Including the time

spent on rate-modifying activities, the completion time Cπ[x](r) of a job scheduled in
position r , 1 ≤ r ≤ n[x], of the x th group, 1 ≤ x ≤ k, can be written as

Cπ[x](r) = F1 + T1 + F2 + T2 + · · · + Fx−1 + Tx−1 + F(x,r)

=
x−1∑

v=1

[

1 +
x−1∑

w=v

ζ [w]
v

]

Fv + F(x,r) +
x−1∑

v=1

η̂[v].
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For convenience, denote

ξ[v,x−1] := 1 +
x−1∑

w=v

ζ [w]
v , 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k, (18.13)

and rewrite

Cπ[x](r) =
x−1∑

v=1

ξ[v,x−1]Fv + F(x,r) +
x−1∑

v=1

η̂[v]. (18.14)

Applying the results of Lemmas 18.1 and 18.2, the completion time can be written
in terms of the original problem parameters.

18.3 Minimizing the Makespan

Let us now specifically consider an auxiliary problem 1|Effect (18.2), RMP(k − 1),
�[x](τ ;�) |Cmax. For a schedule SB1(k), denote the makespan by Cmax(SB1(k)).
If schedule SB1(k) is associated with a permutation π = (

π[1],π[2], . . . ,π[k]
)
, then

Cmax(SB1(k)) is equal to Cπ[k](n[k]), the completion time of the last job in the last kth
group. From (18.14), we have

Cmax(SB1(k)) = Cπ[k](n[k]) =
k−1∑

x=1

ξ[x,k−1]Fx + Fk + �(k),

where the constant term is defined as

�(k) =
k−1∑

x=1

η̂[x]. (18.15)

Using (18.11), rewrite

Cmax(SB1(k)) =
k−1∑

x=1

ξ[x,k−1]

(
x∑

v=1

E [v,x]D[v]

)

+
k∑

v=1

E [v,k]D[v] + �(k).

Rearranging the terms, we get

Cmax(SB1(k)) =
k∑

x=1

(
k−1∑

v=x

ξ[v,k−1]E [x,v] + E [x,k]

)

D[x] + �(k).
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Substituting the value of D[x] from (18.8), we further derive

Cmax(SB1(k)) =
k∑

x=1

(
k−1∑

v=x

ξ[v,k−1]E [x,v] + E [x,k]

)
n[x]∑

r=1

pπ[x](r)B
[x]
(
r, n[x]

) + �(k)

=
k∑

x=1

n[x]∑

r=1

pπ[x](r)B
[x]
(
r, n[x]

)
(

k−1∑

v=x

ξ[v,k−1]E [x,v] + E [x,k]

)

+ �(k).

The above can be represented as

Cmax(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x](r)pπ[x](r) + �(k), (18.16)

where

W [x](r) = B[x](r, n[x]
)
(
k−1∑

v=x

(

1 +
k−1∑

w=v

ζ[w]
v

)

E [x,v] + E [x,k]

)

, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

(18.17)
is a job-independentweight, such that the productW [x] pπ[x](r) represents the contribu-
tion of job j = π[x](r) scheduled in position r , 1 ≤ r ≤ n[x], of group x , 1 ≤ x ≤ k,
to the objective function. The expression for computing the positionalweights (18.17)
can be written in terms of the original parameters by the use of (18.6), (18.9), and
(18.12).

Let T (W ) denote the time required for computing the positional weights for
an auxiliary problem 1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |� expressed as a
function of n and k.

Finding all values of B[x]
(
r, n[x]

)
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, by (18.6) requires

O
(∑k

x=1 n
[x]
)

= O(n) time. After that, all values of b[x]v , 1 ≤ v ≤ x − 1, 1 ≤ x ≤
k, can be found by (18.9) in O

(
k2
)
time. Following Sect. 18.2, computing all val-

ues E [v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k, requires O
(
2k
)
time. Finally, all n positional

weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, will be computed in O(n) time, pro-
vided that all other quantities have been found. Thus, for an auxiliary problem
1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |Cmax is T (W ) = O

(
2n + k2 + 2k

) =
O(n), provided that k is a given constant.

The function (18.16) admits a generic representation (12.3), and Procedure RMP1
is in principle applicable. In particular, for each outcome of Decision (B1), i.e., for
fixed values n[x], 1 ≤ x ≤ k, of the numbers of jobs in each group, schedule S∗

B1(k)
that corresponds to the smallest value of function (18.16) can be found by solving
an LAP. Notice that the weights are job-independent so that for each outcome of
Decision (B1) the correspondingLAPwill have a product costmatrix (see Sect. 12.4).

Notice that the computed positional weights W [x](r), 1 ≤ r ≤ n[x], given by
(18.17) may be non-monotonically ordered within each group x , 1 ≤ x ≤ k. Addi-
tionally, the term n[x] appears in (18.17), and thus, it is not possible to generate a set

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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of all possible values ofW [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, without prior knowledge of
the number n[x] of jobs in each group. As a result, Theorem 16.2 does not hold and
none of the solution approaches presented in Chaps. 16 and 17 can be applied.

Thus, in order to solve problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax, we
apply Procedure RMP1, which involves solving an LAP with a product matrix as a
subroutine in Step 1(b), so that the following statement holds.

Theorem 18.1 Problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax can be
solved in O

(
nK+1 log n

)
time by applying Procedure RMP1 and using Algorithm

Match as a subroutine.

Proof According to Lemma 12.1, the number of times an LAPwill have to be solved
is equal to O

(
nK

)
. It takes T (W ) = O(n) time to compute all positional weights

given by (18.17). The running time required to run AlgorithmMatch used for solving
an LAP with a product matrix is equal to O(n log n). Thus, the total running time
required to solve problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax is given by
O
(
(n + n log n)nK

) = O
(
nK+1 log n

)
. �

At the end of Sect. 18.4, we present a numerical example, in which we solve the
problem of minimizing the makespan for the situation discussed in Example 18.1.

18.4 Minimizing the Total Completion Time

We now address problem 1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |∑C j . For a
schedule SB1(k) with k groups associated with a permutation π = (

π[1],

π[2], . . . ,π[k]
)
, the total completion time can be written as

F(SB1(k)) =
∑

C j (SB1(k)) =
k∑

x=1

n[x]∑

r=1

Cπ[x](r).

Substituting (18.5) into (18.14), we rewrite the expression for Cπ[x](r) as

Cπ[x](r) =
x−1∑

v=1

ξ[v,x−1]Fv +
r∑

u=1

(
A[x] + pπ[x](u)

)
B[x](u, r) +

x−1∑

v=1

η̂[v]

=
x−1∑

v=1

ξ[v,x−1]Fv + A[x]
r∑

u=1

B[x](u, r) +
r∑

u=1

pπ[x](u)B
[x](u, r) +

x−1∑

v=1

η̂[v].

Substituting A[x] = ∑x−1
v=1 a

[x]
v Fv , into the above equation, we obtain

Cπ[x](r) =
x−1∑

v=1

(

ξ[v,x−1] + a[x]v

r∑

u=1

B[x](u, r)

)

Fv +
r∑

u=1

pπ[x](u)B
[x](u, r) +

x−1∑

v=1

η̂[v].

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_17
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Thus, the total completion time of schedule SB1(k) can be written as

F(SB1(k)) =
k∑

x=1

n[x]∑

r=1

[
x−1∑

v=1

(

ξ[v,x−1] + a[x]v

r∑

u=1

B[x](u, r)

)

Fv +
r∑

u=1

pπ[x](u)B
[x](u, r)

]

+ �(k)

=
k∑

x=1

⎡

⎣
x−1∑

v=1

⎛

⎝n[x]ξ[v,x−1] + a[x]v

n[x]∑

r=1

r∑

u=1

B[x](u, r)

⎞

⎠Fv +
n[x]∑

r=1

r∑

u=1

pπ[x](u)B
[x](u, r)

⎤

⎦

+�(k),

where the constant term is given by

�(k) :=
k∑

x=1

n[x]∑

r=1

x−1∑

v=1

η̂[v]. (18.18)

It can be easily verified that the term
∑n[x]

r=1

∑r
u=1 pπ[x](u)B[x](u, r) can be rewritten

as
∑n[x]

r=1 pπ[x](r)
∑n[x]

u=r B
[x](r, u), 1 ≤ x ≤ k, so that we have

F(SB1(k)) =
k∑

x=1

⎡

⎣
x−1∑

v=1

⎛

⎝n[x]ξ[v,x−1] + a[x]v

n[x]∑

r=1

n[x]∑

u=r
B[x](r, u)

⎞

⎠Fv +
n[x]∑

r=1

pπ[x](r)
n[x]∑

u=r
B[x](r, u)

⎤

⎦

+�(k).

For convenience, substitute the value ξ[v,x−1] from (18.13) and denote

G[v,x] := n[x]

⎛

⎝1 +
x−1∑

w=v

ζ[
w]

v

⎞

⎠ + a[x]v

n[x]∑

r=1

n[x]∑

u=r
B[x](r, u), 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k,

(18.19)
so that we have

F(SB1(k)) =
k∑

x=1

⎛

⎝
x−1∑

v=1

G[v,x]Fv +
n[x]∑

r=1

pπ[x](r)

n[x]∑

u=r

B[x](r, u)

⎞

⎠ + �(k).

Substituting the value of Fv from (18.11) into the above equation, we deduce

F(SB1(k)) =
k∑

x=1

⎛

⎝
x−1∑

v=1

G[v,x]
v∑

w=1

E [w,v]D[w] +
n[x]∑

r=1

pπ[x](r)

n[x]∑

u=r

B[x](r, u)

⎞

⎠ + �(k)

=
k∑

x=1

⎡

⎣
x−1∑

v=1

(
x−1∑

w=v

G[w,x]E [v,w]

)

D[v] +
n[x]∑

r=1

pπ[x](r)

n[x]∑

u=r

B[x](r, u)

⎤

⎦ + �(k)
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=
k∑

x=1

k∑

v=x+1

(
v−1∑

w=x

G[w,v]E [x,w]

)

D[x] +
k∑

x=1

n[x]∑

r=1

pπ[x](r)

n[x]∑

u=r

B[x](r, u) + �(k)

=
k∑

x=1

D[x]
k∑

v=x+1

v−1∑

w=x

G[w,v]E [x,w] +
k∑

x=1

n[x]∑

r=1

pπ[x](r)

n[x]∑

u=r

B[x](r, u) + �(k).

Further, substituting the value of D[x] from (18.8) and rearranging terms, we
obtain

F(SB1(k)) =
k∑

x=1

⎡

⎣

⎛

⎝
n[x]∑

r=1

pπ[x](r)B
[x](r, n[x]

)
⎞

⎠
k∑

v=x+1

v−1∑

w=x

G[w,v]E [x,w]

+
n[x]∑

r=1

pπ[x](r)

n[x]∑

u=r

B[x](r, u)

⎤

⎦ + �(k)

=
k∑

x=1

n[x]∑

r=1

pπ[x](r)

⎛

⎝B[x](r, n[x]
) k∑

v=x+1

v−1∑

w=x

G[w,v]E [x,w] +
n[x]∑

u=r

B[x](r, u)

⎞

⎠

+�(k).

Thus, the total completion time can be represented as

F(SB1(k)) =
k∑

x=1

n[x]∑

r=1

W [x](r)pπ[x](r) + �(k), (18.20)

with the positional weights defined by

W [x](r) = B[x]
(
r, n[x]

) k∑

v=x+1

v−1∑

w=x
G[w,v]E [x,w] +

n[x]∑

u=r
B[x](r, u), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

(18.21)

The expression for the positional weights (18.18) can be written in terms of the
original parameters by the use of (18.6), (18.19), (18.12), and (18.9).

All values B[x](u, r), 1 ≤ u ≤ r ≤ n[x], 1 ≤ x ≤ k, can be computed by (18.6) in

O
(∑k

x=1
n[x](n[x]+1)

2

)
= O(n2) time. After that, all values of G[v,x], 1 ≤ v ≤ x − 1,

1 ≤ x ≤ k, can be found by (18.19) in O
(
k2
)
time. As discussed in Sect. 18.3, com-

puting all values E [v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k, requiresO
(
2k
)
time. Finally, alln

positional weightsW [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, will be computed in O(n) time,
provided that all other quantities have been found. Thus, the overall running time
needed to compute the positional weights for an auxiliary problem 1|Effect (18.2),
RMP(k − 1),�[x](τ ;�) |∑C j is T (W ) = O

(
n + n2 + k2 + 2k

) = O
(
n2

)
,

provided that k is a given constant.
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Similar to Sect. 18.3, the function (18.20) admits a generic representation (12.3).
Thus, in order to solve problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax, we
apply Procedure RMP1, which involves solving an LAP with a product matrix as a
subroutine in Step 1(b), so that the following statement holds.

Theorem 18.2 Problem1|Effect (18.2), RMP(K ),�[x](τ ;�) |∑C j canbe solved
in O

(
nK+2

)
time-applying Procedure RMP1 and using Algorithm Match as a sub-

routine.

Proof The proof of Theorem 18.2 is similar to the proof of Theorem 18.1. The only
difference is that it takes T (W ) = O

(
n2

)
time to compute all positionalweights given

by (18.21). Thus, the total running time required to solve problem 1|Effect (18.2),
RMP(K ),�[x](τ ;�) |∑C j is given by O

((
n2 + n log n

)
nK

) = O
(
nK+2

)
. �

Below we provide a numerical example, in which we solve the problems of min-
imizing the makespan and the total completion time for the situation discussed in
Example 18.1. We present the solution for a particular combination of outcomes
(A1), (A2) and, (B1).

Example 18.2 Eight jobs must be processed on a single machine. The normal
processing times of the jobs, after renumbering them in LPT order, are:

p1 = 8, p2 = 7, p3 = 6, p4 = 6, p5 = 4, p6 = 2, p7 = 1, p8 = 1.

The number of jobs in each of the three groups is known in advance as

n[1] = 3, n[2] = 2, n[3] = 3.

The values of the parameters for the machine and the operators as defined in
Example 18.1 are also known and given by

d ′
m = 0.1, d ′′

m = 0.15, d ′
w = 0.2, l ′w = −0.15, d ′′

w = 0.15, l ′′w = −0.1, l ′′′w = −0.02,

ζ ′ = 2, η′ = 5, η′′ = 6.

Using the formulae provided in Table18.1, the functions for the positional factors
reduce to

g[1](r) = (
d ′
m + 1

)
r−1rd

′
w+l ′w = (1.1)r−1r0.05, 1 ≤ r ≤ 3;

g[2](r) = (
d ′′
m + 1

)
r−1

(
n[1] + r

)
l ′wrd

′
w = (1.15)r−1 r0.2

(r + 3)0.15
, 1 ≤ r ≤ 2;

g[3](r) = (
d ′′
m + 1

)
n[2]+r−1rd

′′
w+l ′′w = (1.15)r+1r0.05, 1 ≤ r ≤ 3,

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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Table 18.2 Values of B[x](u, r), 1 ≤ u ≤ r ≤ n[x], 1 ≤ x ≤ 3, for Example 18.2

Group 1 B[1](1, 1) = 1.00;
B[1](1, 2) = 1.17, B[1](2, 2) = 1.14;
B[1](1, 3) = 1.40, B[1](2, 3) = 1.36, B[1](3, 3) = 1.28;

Group 2 B[2](1, 1) = 0.81;
B[2](1, 2) = 0.98, B[2](2, 2) = 1.04;

Group 3 B[3](1, 1) = 1.32;
B[3](1, 2) = 1.74, B[3](2, 2) = 1.57;
B[3](1, 3) = 2.38, B[3](2, 3) = 2.16, B[3](3, 3) = 1.85.

and all required input parameters are computed as

g[1](1) = 1.00, g[1](2) = 1.14, g[1](3) = 1.28; a[1]1 = 0.15;
g[2](1) = 0.81, g[2](2) = 1.04; a[2]1 = −0.15, a[2]2 = 0.20;
g[3](1) = 1.32, g[3](2) = 1.57, g[3](3) = 1.85; a[3]1 = −0.02, a[3]2 = 0.13, a[3]3 = 0.20.

and
ζ [1]1 = 2, η̂[1] = 5, ζ [2]1 = ζ [2]2 = 0, η̂[2] = 6.

Notice that while solving this example, we have computed all values with high
precision, but here and below for the ease of presentation we report them rounded to
two decimal places. Applying (18.6), all values of B[x](u, r), 1 ≤ u ≤ r ≤ n[x], 1 ≤
x ≤ 3, are computed and are presented in Table 18.2. For the problem of minimizing
the makespan, we will only need to use the values given in the last row of each block
in Table18.2, whereas for the problem of minimizing the total completion time we
will require all of them.

Applying (18.9), all values of b[x]v , 1 ≤ v ≤ x − 1, 1 ≤ x ≤ 3, are computed as

b[2]1 = (−0.15)(0.98 + 1.04) = −0.30;
b[3]1 = (−0.02)(2.38 + 2.16 + 1.85) = −0.13,

b[3]2 = (0.13)(2.38 + 2.16 + 1.85) = 0.83.

Applying (18.12), all values of E [v,x], 1 ≤ v ≤ x, 1 ≤ x ≤ 3, are computed as

E [1,1] = 1.00;
E [1,2] = b[2]1 = −0.30, E [2,2] = 1.00;
E [1,3] = b[3]1 + b[2]1 b[3]2 = −0.38, E [2,3] = b[3]2 = 0.83, E [3,3] = 1.00.

Finally, applying (18.17), the positionalweightsW [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ 3,
for the problem of minimizing the makespan can be rewritten as
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W [1](r) = B[1](r, 3)
((

1 + ζ[1]1 + ζ[2]1

)
E [1,1] +

(
1 + ζ[2]2

)
E [1,2] + E [1,3]

)
, 1 ≤ r ≤ 3;

W [2](r) = B[2](r, 2)
((

1 + ζ[2]2

)
E [2,2] + E [2,3]

)
, 1 ≤ r ≤ 2;

W [3](r) = B[3](r, 3)
(
E [3,3]

)
, 1 ≤ r ≤ 3,

and their values computed as

W [1](1) = 3.23, W [1](2) = 3.15, W [1](3) = 2.96;
W [2](1) = 1.80, W [2](2) = 1.90;
W [3](1) = 2.38, W [3](2) = 2.16, W [3](3) = 1.85.

To solve problem 1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |Cmax, the com-
puted positional weights are sorted in non-decreasing order and stored in list
L ′ := (

γ′
1, γ

′
2, . . . , γ

′
8

)
. The constant term �(3) can be computed as �(3) = η̂[1] +

η̂[2] = 11.00. The resulting optimal schedule S′(3) is associated with a permutation
μ∗ = (

μ[1],μ[2],μ[3]
)
; all relevant computation is presented in Table18.3.

Next, for the problem of minimizing the total completion time, we also must
additionally compute the values of G[v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ 3. Using (18.19)
and the values obtained in Table 18.2, we compute

G[1,2] = 5.58, G[1,3] = 8.78, G[2,3] = 4.43.

Applying (18.21), the positional weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ 3, for
the problem of minimizing the total completion time can be rewritten as

W [1](r) = B[1](r, 3)
(
G[1,2]E [1,1] + G[1,3]E [1,1] + G[2,3]E [1,2]

)
+

3∑

u=r

B[1](r, u), 1 ≤ r ≤ 3;

W [2](r) = B[2](r, 2)
(
G[2,3]E [2,2]

)
+

2∑

u=r

B[2](r, u), 1 ≤ r ≤ 2;

W [3](r) =
3∑

u=r

B[3](r, u), 1 ≤ r ≤ 3,

and their values computed as

W [1](1) = 21.72, W [1](2) = 20.16, W [1](3) = 17.91;
W [2](1) = 6.14, W [2](2) = 5.64;
W [3](1) = 5.44, W [3](2) = 3.73, W [3](3) = 1.85.

To solve problem 1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |∑C j , the com-
puted positional weights are sorted in non-decreasing order and stored in list
L ′′ := (

γ′′
1 , γ

′′
2 , . . . , γ

′′
n

)
. The constant term �(3) can be computed as �(3) =
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Table 18.3 Calculation of the optimal value of the makespan and the optimal value of the total
flow time for the problem outlined in Example 18.2

j p j γ′
j μ∗ γ′

j p j γ′′
j ϕ∗ γ′′

j p j

Makespan Flow time

1 8 1.80 μ[2](1) 14.36 1.85 ϕ[3](3) 14.78

2 7 1.85 μ[3](3) 12.93 3.73 ϕ[3](2) 26.12

3 6 1.90 μ[2](2) 11.39 5.44 ϕ[3](1) 32.66

4 6 2.16 μ[3](2) 12.94 5.64 ϕ[2](2) 33.82

5 4 2.38 μ[3](1) 9.53 6.14 ϕ[2](1) 24.56

6 2 2.96 μ[1](3) 5.93 17.91 ϕ[1](3) 35.83

7 1 3.15 μ[1](2) 3.15 20.16 ϕ[1](2) 20.16

8 1 3.23 μ[1](1) 3.23 21.72 ϕ[1](1) 21.72

Total 73.46 Total 209.65

Cmax
(
S′(3)

) = 73.46 + 11.00 = 84.46
∑

C j
(
S′′(3)

) = 209.65 + 43.00 = 252.65

μ∗ = (8, 7, 6, 1, 3, 5, 4, 2); ϕ∗ = (8, 7, 6, 5, 4, 3, 2, 1)

η̂[1]n[2] + (
η̂[1] + η̂[2]

)
n[3] = 43.00. The resulting optimal schedule S′′(3) is associ-

ated with a permutation ϕ∗ = (
ϕ[1],ϕ[2],ϕ[3]

)
; all relevant computation is presented

in Table18.3.

18.5 Some Reduced Models

In this section, we explore single machine models which can be expressed as spe-
cial cases of the general problems 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax and
1|Effect (18.2), RMP(K ),�[x](τ ;�) |∑C j . We look at their simplified versions
with effects less general than that given by (18.2) and (18.3), and possibly with
additional simplifications. The main purpose of this section is to verify whether
the running time of the solution approach given in Sects. 18.3 and 18.4 for the
general problems 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax and 1|Effect (18.2),
RMP(K ),�[x](τ ;�) |∑C j , respectively, can be reduced for their simplified coun-
terparts.

18.5.1 Simple Combined Effects

First, we demonstrate that as long as a time-changing effect combines both a posi-
tional effect and a (linear) start-time-dependent effect, the running times established
in Sects. 18.3 and 18.4 for the general problems cannot be reduced.
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Consider a situation in which a machine undergoes time-dependent deterioration
and positional polynomial learning. Moreover, the machine is subject to K identical
maintenance periods with constant duration equal to η, all of which must be run.
The model assumes that the effects are group-independent and after an RMP, the
learning advantages are lost and both the operator and the machine are brought to the
original conditions. For a schedule S(k), with k = K + 1 groups, assume that each
group contains a total of n[x] jobs, so that π[x] = (

π[x](1),π[x](2), . . . ,π[x]
(
n[x]

))
,

1 ≤ x ≤ k, where
∑k

x=1 n
[x] = n. The actual processing time of a job j = π[x](r),

scheduled in position r , 1 ≤ r ≤ n[x], of the x th group, 1 ≤ x ≤ k, is given by

p[x]
j (τ ; r) = (

p j + aτ
)
rb, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (18.22)

where a > 0, and b < 0.
The resulting problem is denoted as 1|Effect (18.22), RMP(K ),� |�, for

� ∈ {
Cmax,

∑
C j

}
. Notice that for this problem, RMP Decisions 1–3 need not be

taken, since the RMPs are identical and all of them are known to be included in any
order, e.g., in the order of their numbering. As a result, problem 1|Effect (18.22),
RMP(K ),� |� can be written as a special case of problem 1|Effect (18.2),
RMP(K ),�[x](τ ;�) |� with the parameters g[x](r) = rb, and a[x]1 = a[x]2 = · · · =
a[x]x−1 = 0, a[x]x = a, for all x , 1 ≤ x ≤ k, and ζ [x]1 = ζ [x]2 = · · · = ζ [x]x−1 = ζ [x]x = 0,
and η̂[x] = η, for all x , 1 ≤ x ≤ k − 1 = K .

It follows that the objective function for problem 1|Effect (18.22), RMP(K ),� |
Cmax may be written in the form (18.16), with the positional weights found by mak-
ing appropriate substitutions in (18.17). It can be easily verified that the resulting
positional weights for problem 1|Effect (18.22), RMP(K ),� |Cmax can be found as

W [x](r) = rb
n[x]∏

i=r+1

(
1 + aib

)
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ K + 1. (18.23)

Similar to computing the positional weights for an auxiliary problem, associ-
ated with the general problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax, the
running time required to compute the positional weights for an auxiliary prob-
lem 1|Effect (18.22), RMP(k − 1),� |Cmax (with k = K + 1) using (18.23) is
given by T (W ) = O(n). Also, notice that the computed positional weights W [x](r),
1 ≤ r ≤ n[x], 1 ≤ x ≤ K + 1, are non-monotonically ordered within each group x ,
1 ≤ x ≤ k, since the terms a and b are of opposite signs. Additionally, the term n[x]

appears in (18.23), and thus, it is not possible to generate a set of all possible values of
W [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, without prior knowledge of the number of jobs, n[x],
in each group. As a result, Theorem 16.2 does not hold and in order to solve prob-
lem 1|Effect (18.22), RMP(K ),� |Cmax, we must apply Procedure RMP1 which
involves full enumeration of outcomes of Decision (B1) and solving an LAP with
a product matrix as a subroutine in Step 1(b). According to Lemma 12.1, the num-
ber of these outcomes for k = K + 1 is O

(
nK

)
. Thus, the results of Theorem 18.1

are applicable, so that the resulting running time to solve problem 1|Effect (18.22),

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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RMP(K ),� |Cmax is equal to O
(
nK+1 log n

)
, which is the same as that required for

solving the general problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |Cmax.
Notice that problem 1|Effect (18.22), RMP(K ),� |Cmax may admit a faster run-

ning time if the terms a and b are of the same sign. We are still required to generate
all values of n[x], since they appears in (18.23), but because a and b have the same
sign, the found positional weights W [x](r), 1 ≤ r ≤ n[x], are monotonically ordered
in each group, x , 1 ≤ x ≤ k. Thus, sorting all positional weights in a non-decreasing
order requires O(nmin{K , log n}) time instead of O(n log n) time. As a result, Algo-
rithm Match requires O(nmin{K , log n}) time and the overall running time of the
problem can be given as O

(
(n + nmin{K , log n})nK

) = O
(
nK+1 min{K , log n}).

Now, let us consider problem1|Effect (18.22), RMP(K ),� |∑C j . The resulting
objective function may be written in the form (18.20), with positional weights found
by making appropriate substitutions in (18.21). It can be easily verified that the
resulting positional weights for problem 1|Effect (18.22), RMP(K ),� |∑C j can
be found as

W [x](r) =
(

n −
x∑

v=1

n[v]
)

rb
n[x]∏

i=r+1

(
1 + aib

)
+ rb

n[x]∑

u=r

u∏

i=r+1

(
1 + aib

)
, (18.24)

1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

Similar to computing the positional weights for an auxiliary problem, associated
with the general problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |∑C j , the run-
ning time required to compute the positional weights for an auxiliary problem
1|Effect (18.22), RMP(k − 1),� |∑C j (with k = K + 1) using (18.24) is given
by T (W ) = O

(
n2

)
, since the total number of terms to be calculated is O

(
n2

)
. Also,

notice that the term n[x] appears in (18.24), and thus, similar to the situation of
problem 1|Effect (18.22), RMP(K ),� |Cmax, we apply Procedure RMP1, which
involves full enumeration of outcomes of Decision (B1) and solving an LAP with
a product matrix as a subroutine in Step 1(b). Thus, the results of Theorem 18.2
are applicable, so that the resulting running time to solve problem 1|Effect (18.22),
RMP(K ),� |∑C j is equal to O

(
nK+2

)
, which is the same as that required for

solving the general problem 1|Effect (18.2), RMP(K ),�[x](τ ;�) |∑C j .

Theorem 18.3 Problem 1|Effect (18.22), RMP(K ),�[x](τ ;�) |�, for � ∈{
Cmax,

∑
C j

}
can be solved in O

(
nK+1 log n

)
and O

(
nK+2

)
time, respectively, by

applying Procedure RMP1 and using Algorithm Match as a subroutine.

Hence, it can be seen that as long as a model incorporates a combined time-
dependent and a positional effect, even the simplest versions of the general problem
1|Effect (18.2), RMP(K ),�[x](τ ;�) |�, for � ∈ {

Cmax,
∑

C j
}
, require

O
(
nK+1 log n

)
and O

(
nK+2

)
time, respectively. However, if either a pure positional

effect or a pure time-dependent effect is considered, faster solutions are possible.
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18.5.2 Pure Positional Effects

In this subsection, we discuss a version general problem of the form 1|Effect (18.2),
RMP(K ),�[x](τ ;�) |� with a pure positional effect, so that for schedule SB1(k)
associated with a relevant auxiliary problem, the actual processing time of a job j
scheduled in position r of a group x , 1 ≤ x ≤ k, is given by

p[x]j (r) = p jg
[x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k. (18.25)

A similar model is considered in Chap. 16 for a deterioration environment, in
which the positional factors g[x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, are in a non-decreasing
order and the RMPs are understood as maintenance periods. Moreover, in Chap.16
wedonot allow the positional factors to be dependent on the number of jobs scheduled
in previous groups.

In this subsection, we study positional effects without these restrictions, so that
the positional factors can be non-monotone within a group and the RMPs can be of
an arbitrary nature with their durations given by (18.3). In other words, we consider
position-dependent models that combine deterioration and learning effects with rate-
modifying activities. An illustration of such a scenario is presented in Example 12.1.
Let us denote problems of this type by 1|Effect (18.25), RMP(K ),�[x](τ ;�) |�,
where � ∈ {

Cmax,
∑

C j
}
.

Assuming that a particular combination of outcomes (A1) and (A2) is known
and a certain outcome of Decision (B1) is chosen, the resulting auxiliary problem
1|Effect (18.25), RMP(k − 1),�[x](τ ;�) |� can be seen as a special case of prob-
lem 1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |� with a[x]1 = a[x]2 = · · · = a[x]x−1 =
a[x]x = 0, for all x , 1 ≤ x ≤ k.

To solve an auxiliary problem 1|Effect (18.25), RMP(k − 1),�[x](τ ;�) |
Cmax, the required positional weights can be obtained by making relevant substi-
tutions in (18.17), so that we have

W [x](r) =
{(

1 + ∑k−1
w=x ζ [w]

x

)
g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g[x](r) 1 ≤ r ≤ n[x], x = k.
(18.26)

The running time required to compute the above positional weights is given by
T (W ) = O(n), as for a more general problem considered in Sect. 18.3.

To solve problem 1|Effect (18.25), RMP(k − 1),�[x](τ ;�) |∑C j ,
the required positional weights can be derived from (18.21), so that we have

W [x](r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[∑k
v=x+1 n

[v]
(
1 + ∑v−1

w=x ζ[w]
x

)
+ (

n[x] − r + 1
)]

g[x](r), 1 ≤ r ≤ n[x],
1 ≤ x ≤ k − 1,(

n[x] − r + 1
)
g[x](r), 1 ≤ r ≤ n[x],

x = k.
(18.27)

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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To calculate the running time required to compute the above positional weights,
rewrite (18.27), so that for each r , 1 ≤ r ≤ n[x], the weights are found by

W [x](r) =

⎧
⎪⎪⎨

⎪⎪⎩

((
n − r + 1 − ∑x−1

v=1 n
[v]

)
+ ∑k−1

v=x ζ
[v]
x

(
n − ∑v

w=1 n
[w]

))
g[x](r), 1 ≤ x ≤ k − 1;

(
n[x] − r + 1

)
g[x](r), x = k.

Notice that for a given group x , 1 ≤ x ≤ k, the term
(
n − ∑x−1

v=1 n
[v]
)

+ ∑k−1
v=x ζ [v]x(

n − ∑v
w=1 n

[w]
)
is constant and essentially requires the summation of (k − x + 1)

terms, so that it can be computed in O(k − x + 1) time. If the value of this term
is known, the value of the positional weight W [x](r), for a given r , 1 ≤ r ≤ n[x],
1 ≤ x ≤ k, can be found in constant time. Thus, for a given group, the total num-
ber of operations required is O

(
k − x + 1 + n[x]

)
, 1 ≤ x ≤ k. For all groups, the

running time to compute all required positional weights will be equal to T (W ) =
O
(∑k

x=1

(
x + n[x]

)) = O
(
n + k2

) = O(n), assuming k is a constant.

It can be observed that the found positional weights for both problems are possi-
bly non-monotonically ordered within each group. Moreover, they do not allow us
to generate a set of all possible values of W [x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, without
prior knowledge of the number of jobs, n[x], in each group. Therefore, we apply
Procedure RMP1, which involves full enumeration of outcomes of Decision (B1)
and solving an LAP with a product matrix as a subroutine in Step 1(b), so that the
following statement holds.

Theorem 18.4 Problem 1|Effect (18.25), RMP(K ),�[x](τ ;�) |�, for� ∈ {Cmax,∑
C j

}
can be solved in O

(
nK+1 log n

)
time by applying Procedure RMP1 and using

Algorithm Match as a subroutine.

The proof of Theorem18.4 is similar to that of Theorem18.1. It can be noted that
although there is no change in status for the problem ofminimizing themakespan, the
problem ofminimizing the total completion time is solved faster for this model with a
pure positional effect. This speed up is possible because of the time taken to compute
the positional weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, for an auxiliary problem
1|Effect (18.25), RMP(K ),�[x](τ ;�) |∑C j is T (W ) = O(n), one order of mag-
nitude less than required for the corresponding general problem 1|Effect (18.2),
RMP(k − 1),�[x](τ ;�) |∑C j .

Let us now extend our consideration to problems in which a pure job-dependent
positional effect is observed, so that for known outcomes (A1) and (A2), the actual
processing time of a job j scheduled in position r of a group x , 1 ≤ x ≤ k, in schedule
SB1(k) is given by

p[x]j (r) = p jg
[x]
j (r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, (18.28)

Recall that we consider such a model in Chap. 16 for a deterioration environment,
in which the positional factors g[x]j (r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, are in a non-decreasing

http://dx.doi.org/10.1007/978-3-319-39574-6_16
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order for each j ∈ N , and the RMPs are understood as maintenance periods.
Below, we study job-dependent positional effects without these restrictions. Denote
the resulting problems by 1|Effect (18.28), RMP(K ),�[x](τ ;�) |�, where � ∈{
Cmax,

∑
C j

}
. It can be easily verified by analogy with the job-independent case

studied above that an individual auxiliary problem 1|Effect (18.28), RMP(k − 1),
�[x](τ ;�) |� reduces to minimizing a generic objective function

�(π) =
k∑

x=1

n[x]∑

r=1

W [x]
π[x](r)(r)pπ[x](r) + �(k), (18.29)

of the form (12.3).
For problem 1|Effect (18.28), RMP(K ),�[x](τ ;�) |Cmax, the constant term

�(k) is given by (18.15), and for each j ∈ N the job-dependent positional weights
W [x]

j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, can be found by appropriately modifying (18.26),
so that we have

W [x]
j (r) =

{(
1 + ∑k−1

w=x ζ [w]
x

)
g[x]
j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g[x]
j (r) 1 ≤ r ≤ n[x], x = k.

(18.30)

For problem 1|Effect (18.28), RMP(K ),�[x](τ ;�) |∑C j , the constant term
�(k) is given by (18.18), and for each j ∈ N the job-dependent positional weights
W [x]

j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, can be found by appropriately modifying (18.27),
so that we have

W [x]
j (r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[∑k
v=x+1 n

[v]
(
1 + ∑v−1

w=x ζ[w]
x

)
+ (

n[x] − r + 1
)]

g[x]j (r), 1 ≤ r ≤ n[x],
1 ≤ x ≤ k − 1,(

n[x] − r + 1
)
g[x]j (r), 1 ≤ r ≤ n[x],

x = k.
(18.31)

Notice that for both problems, all positional weights for a given j ∈ N can be
computed by (18.30) and (18.31), respectively, in O(n) time each. The computation
is done similarly to the job-independent version of the problem. As a result, for
every j ∈ N , positional weights W [x]

j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, j ∈ N , can be
computed in T (W ) = O

(
n2

)
time, for both problems.

The function (18.29) admits a generic representation (12.3), and Procedure RMP1
is applicable. Again, the found positionalweights for both problems are possibly non-
monotonically ordered within each group, and all n[x] values must be generated. As
a result, the solution approach presented in Chap. 16 for job-dependent positional
effects cannot be applied. Thus, in order to solve both problems, which involve full
enumeration of outcomes of Decision (B1) and solving an LAP with an n × n cost
matrix as a subroutine in Step 1(b), so that the following statement holds.

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_16
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Theorem 18.5 Problem 1|Effect (18.28), RMP(K ),�[x](τ ;�) |�, for� ∈ {Cmax,∑
C j

}
can be solved in O

(
nK+3

)
time by applying Procedure RMP1 and solving a

series of n × n linear assignment problems.

Proof According to Lemma 12.1, the number of times an LAP will have to be
solved is equal to O

(
nK

)
. The running time required to solve an n × n LAP (see

Sect. 4.1) is equal to O
(
n3

)
. Moreover, it takes T (W ) = O

(
n2

)
time to compute

all positional weights given by (18.30) and (18.31), respectively. Thus, the total
running time required to solve problem 1|Effect (18.28), RMP(K ),�[x](τ ;�) |�,
for � ∈ {

Cmax,
∑

C j
}
is given by O

((
n2 + n3

)
nK

) = O
(
nK+3

)
. �

18.5.3 Pure Time-Dependent Effects

In this subsection, we discuss a variant of the general problem of the form 1|Effect
(18.2), RMP(K ),�[x](τ ;�) |�with a pure time-dependent effect, so that for sched-
ule SBP1(k) associated with a relevant auxiliary problem, the actual processing time
of a job j scheduled in position r of a group x , 1 ≤ x ≤ k, is given by

p[x]
j (r) = pπ[x](r) + a[x]1 F1 + a[x]2 F2 + · · · + a[x]x−1Fx−1 + a[x]x F(x,r−1), 1 ≤ r ≤ n, 1 ≤ x ≤ k.

(18.32)

Notice that effect (18.32) is obtained from the general effect (18.2), by removing
the positional factor g[x](r). A reduced form of the time-dependent effect (18.32)
is considered in Chap.17, in which, however, we do not allow the duration of the
previous groups to affect the actual processing time of the current job, so that a[x]1 =
a[x]2 = · · · = a[x]x−1 = 0, for all x , 1 ≤ x ≤ k. Moreover, in Chap.17, we only study a
deterioration environment, so that a[x]x > 0, 1 ≤ x ≤ k, and the RMPs are understood
as maintenance periods. In this subsection, we do not impose these restrictions,
so that the rates a[x]1 , a[x]2 , . . . , a[x]x , 1 ≤ x ≤ k, can be of an arbitrary sign and the
RMPs can be of an arbitrary nature with their durations given by (18.3). Let us
denote problems of this type by 1|Effect (18.32), RMP(K ),�[x](τ ;�) |�, where
� ∈ {

Cmax,
∑

C j
}
.

Assuming that a particular combination of outcomes (A1) and (A2) is known
and a certain outcome of Decision (B1) is chosen, the resulting auxiliary problem
1|Effect (18.32), RMP(k − 1),�[x](τ ;�) |� can be seen as a special case of prob-
lem 1|Effect (18.2), RMP(k − 1),�[x](τ ;�) |� with g[x](r) = 1, 1 ≤ r ≤ n, for
all x , 1 ≤ x ≤ k.

To solve problem 1|Effect (18.32), RMP(k − 1),�[x](τ ;�) |Cmax, the
required positional weights can be obtained by making relevant substitutions in
(18.17), so that we have

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_17
http://dx.doi.org/10.1007/978-3-319-39574-6_17
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W [x](r) = (
1 + a[x]x

)n[x]−r

(
k−1∑

v=x

(
1 + ζ[v]

)
E [x,v] + E [x,k]

)

, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (18.33)

where the quantities E [v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k, are given by (18.12), and by
(18.9) the quantities b[x]v reduce to

b[x]v = a[x]v

a[x]x

((
1 + a[x]x

)n[x] − 1
)
, 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k.

Notice that all positional weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, can be com-
puted by (18.33) in T (W ) = O(n) time.

Similarly, to solve problem 1|Effect (18.32), RMP(k − 1),�[x](τ ;�) |∑C j ,
the required positional weights can be obtained by making relevant substitutions in
(18.21), so that we have

W [x](r) = (
1 + a[x]x

)n[x]−r
k∑

v=x+1

v−1∑

w=x

G[w,v]E [x,w] +
n[x]∑

u=r

B[x](r, u), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

(18.34)

where the quantities G[v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k, are given by (18.19), while
by (18.6) the quantities B[x](r, u) reduce to

B[x](u, r) = (
1 + a[x]x

)
r−u, 1 ≤ u ≤ r ≤ n[x], 1 ≤ x ≤ k.

For a fixed x , 1 ≤ x ≤ k, the difference r − u takes at most n[x] − 1 values, so that
at most n[x] − 1 distinct values of B[x](u, r) need to be computed. Summing up for all
x , we deduce that the number of all distinct values B[x](u, r) to be found in order to
compute the positional weights W [x](r) is O(n). As a result, all positional weights
W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, can be computed by (18.34) in T (W ) = O(n)

time.
It can be observed that the found positional weights for both problems, given

by (18.33) and (18.34), respectively, are possibly non-monotonically ordered within
each group, and as for most problems in this chapter, all possible values of n[x]

have to be generated. Therefore, we apply Procedure RMP1, which involves full
enumeration of outcomes of Decision (B1) and solving an LAP with a product
matrix as a subroutine in Step 1(b). so that the following statement holds.

Theorem 18.6 Problem 1|Effect (18.32), RMP(K ),�[x](τ ;�) |�, for� ∈ {Cmax,∑
C j

}
can be solved in O

(
nK+1 log n

)
time by applying Procedure RMP1 and using

Algorithm Match as a subroutine.

The proof of Theorem 18.6 is similar to that of Theorem 18.1. It can be noted that
although there is no change in status for the problem of minimizing the makespan,
the problem of minimizing the total completion time is solved faster for a model
with a pure start-time-dependent effect. This speed up is possible because of
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the time taken to compute the positional weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤
k, for problem 1|Effect (18.32), RMP(K ),�[x](τ ;�) |∑C j is T (W ) = O(n),
as opposed to T (W ) = O

(
n2

)
required for problem 1|Effect (18.2), RMP(K ),

�[x](τ ;�) |∑C j .

18.6 Bibliographic Notes

Most of the results in this chapter follow from Rustogi and Strusevich (2014). The
models introduced in this chapter cover most previously known models related to
combined effects. Historically, several papers have been published with different
combinations of learning and deterioration effects, for various objective functions.
Below, we review several important publications, related to minimization of the
makespan and the total completion time.

Yang (2010) studies problem 1
∣
∣
∣p[x]j (τ ; r) = (

p j − aτ
)
rb, RMP(1),�(τ )

∣
∣
∣�,

where � ∈ {
Cmax,

∑
C j

}
, with a time-dependent learning effect and a polynomial

deterioration effect, i.e., g[x](r) = rb, b > 0, along with a single RMP of variable
duration. The paper claims to solve the problem of minimizing the makespan and
the problem of minimizing the total completion time in O

(
n2 log n

)
time each.

Yang (2012) studies problem 1
∣
∣
∣p[x]j (τ ; r) = (

p j + aτ
)
rb, RMP(K ),�(τ )

∣
∣
∣�,

where � ∈ {
Cmax,

∑
C j

}
, with a time-dependent deterioration effect and a polyno-

mial learning effect, i.e.,g[x](r) = rb,b < 0, alongwith K identicalRMPsof variable
duration.
The paper claims to solve the problem of minimizing the makespan and the problem
of minimizing the total completion time in O

(
nK+1 log n

)
time each. We notice,

however, that the paper underestimates the running time needed to solve the problem
of minimizing the total completion time. This is because the running time needed
to compute the values of the positional weights has been ignored. It can be easily
verified that this running time is O

(
n2

)
, for the problem of minimizing the total

completion time. Thus, problem 1
∣
∣
∣p[x]j (τ ; r) = (

p j + aτ
)
rb, RMP(K ),�

∣
∣
∣
∑

C j

cannot be solved in less than O
(
nK+2

)
time.

Yang andYang (2010) study three reducedproblemswith pure positional and time-

dependent effects. First, they solve problem 1
∣
∣
∣p[x]j (r) = p jrb j , RMP(K ),�(τ )

∣
∣
∣

∑
C j , with a job-dependent polynomial deterioration effect, i.e., with g[x](r) = rb j ,

b j > 0, j ∈ N , along with K identical RMPs of variable duration. They reduce the
problem to solving a series of linear assignment problems and present a solution
approach that requires O

(
nK+3

)
time. Second, they solve a job-independent version

of the first problem, i.e., with g[x](r) = rb, b > 0, and present a solution approach
that reduces the problem to solving a series of linear assignment problems with
a product matrix and requires O

(
nK+1 log n

)
time to minimize the total comple-

tion time. Third, they solve problem 1
∣
∣
∣p[x]j (τ ) = p j + aτ , RMP(K ),�(τ )

∣
∣
∣
∑

C j ,
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with a linear time-dependent deterioration effect, along with K RMPs of variable
duration. This problem reduces to a problem to solving a series of linear assignment
problems with a product matrix and requires O

(
nK+1 log n

)
time to minimize the

total completion time.
Ji and Cheng (2010) study a relatively more complicated problem with a job-

dependent group-dependent polynomial learning effect, so that g[x]j (r) = λ[x]
j(∑x−1

y=1 n
[y] + r

)a j

, a j < 0, j ∈ N , whereλ[x]
j , 0 < λ[x]

j ≤ 1, 1 ≤ x ≤ k, j ∈ N , rep-

resents a job-dependent group-dependent learning factor with λ[1]
j = 1, j ∈ N . This

is the first paper of its kind, which combines a learning effect with a rate-modifying
activity. The RMPs are aimed at further enhancing the learning rate of the opera-
tor. Notice that the positional factors in this model are dependent on the number of
jobs scheduled in the previous groups. This indicates a continuous learning process
across groups. The duration of each RMP is a constant. Ji and Cheng (2010) reduce
the problem to solving a series of linear assignment problems and present a solution
approach that requires O

(
nK+3

)
time. They further extend this model to a parallel

machine environment and show that an optimal solution can be found in O
(
nm+K+2

)

time, where m is the number of machines.
The work by Lee andWu (2009) on positionally dependent setup times for models

that arise in group technology scheduling forms a background for formula (18.3),
which allows the duration of an RMP to be dependent on its start time, as well as on
its position in the processing sequence.
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Chapter 19
Scheduling with Maintenance and Linear
Cumulative Effects

In this chapter, we study single machine scheduling problems, provided that the
actual processing times of the jobs are subject to a cumulative deterioration effect
and a single rate-modifying maintenance period is inserted into a schedule.

For a job j ∈ N = {1, 2, . . . , n}, its normal processing time p j is given. Suppose
that the jobs are processed on a single machine in accordance with a permutation
π = (π(1), . . . ,π(n)). The most general model studied in this chapter, a job j ∈ N ,
is additionally associated with two parameters, b j and q j > 0. The actual processing
time of job j scheduled in the r th position of permutation π is defined by

p j (r) = p j

(

1 + b j

r−1∑

h=1

qπ(h)

)

, (19.1)

where b j > 0 can be understood as a job-dependent deterioration rate that reflects
how sensitive a particular job is to the accumulated q-value Qr of previously sched-
uled jobs, i.e.,

Qr =
r−1∑

h=1

qπ(h). (19.2)

Problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)∣∣Cmax of minimizing the makespan under the
effect (19.1) is studied in Chap.10, where it is proved that an optimal permutation
can be found by scheduling the jobs in non-increasing order of the ratios b j p j

q j
, j ∈ N

(see Theorem 10.7). This is why throughout this chapter we assume the jobs are
renumbered in such a way that

p1b1
q1

≥ p2b2
q2

≥ · · · ≥ pnbn
wn

. (19.3)

As a special case of effect (19.1), we also consider a less general linear effect
given by

p j (r) = p j

(

1 + b
r−1∑

h=1

pπ(h)

)

. (19.4)
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Here, the deterioration rate b is the same for all jobs, and the actual processing
time explicitly depends on Pr , the accumulated normal processing times of previously
scheduled jobs, i.e.,

Pr =
r−1∑

h=1

pπ(h). (19.5)

Problem 1
∣
∣p j (r) = p j (1 + bPr )

∣
∣Cmax under the effect (19.4) and its generaliza-

tions are also studied in Chap.10. In particular, for problem 1
∣
∣p j (r) =

p j (1 + bPr )|Cmax it is proved that any permutation of jobs is optimal (see
Lemma 10.2). Notice that for problem 1

∣
∣p j (r) = p j (1 + bPr )

∣
∣Cmax all ratios

b j p j

q j

in (19.3) are equal to b, since q j = p j and b j = b, j ∈ N .
A single maintenance period (MP) can be introduced into a schedule to prevent

uncontrolled deterioration. As usual, during an MP no processing takes place, and
after the MP the processing facility is in better processing conditions. The duration
of anMP is either a constant or depends on its start time τ . The most general problem
studied in this chapter is denoted by 1

∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax,where

MP(λ) means that the duration of the MP is λτ + η, where η and λ are given
constants; in particular,MP(0) corresponds to theMP of constant duration η. Unless
stated otherwise, we additionally assume that in problem 1

∣
∣p j (r) = p j

(
1 + b j Qr

)
,

MP(λ)|Cmax the MP does not fully restore the initial processing conditions. More
precisely, it is assumed that for a job j ∈ N scheduled after the MP, the normal
processing time changes from p j to σ p j , where σ ≥ 1 is a given constant.

The results presented in this section are fully polynomial-time approximation
schemes (FPTAS) for the scheduling problems with a cumulative deterioration and
a single MP. The approximation schemes are developed by adapting schemes known
forBooleanprogrammingproblems such as the problemofminimizing ahalf-product
and the subset-sum problem. The reader is advised to refer to Chap. 4, which contains
a detailed discussion of related issues.

This chapter is organized as follows. In Sect. 19.1, we demonstrate that problem
1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax reduces to Problem HPAdd introduced in

Sect. 4.3, i.e., to the problem of minimizing a Boolean quadratic function known
as the half-product. The simplest version of the original problem, namely prob-
lem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1 is shown to reduce to the

subset-sum problem, and in Sect. 19.2, we show how to adapt an FPTAS known
for the subset-sum problem to finding an ε -approximate solution to this schedul-
ing problem in O(n/ε) time. Finally, in Sect. 19.3, we use Theorem4.8 on the
existence of an FPTAS for Problem HPAdd to develop an FPTAS for problem
1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax that requires O

(
n2/ε

)
time.

http://dx.doi.org/10.1007/978-3-319-39574-6_10
http://dx.doi.org/10.1007/978-3-319-39574-6_10
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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19.1 Half-Product Reformulations

In this section, we establish links between problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,

MP (λ)|Cmax and its variants to Boolean programming problems. This will help
us to establish the complexity of the simplest problem of this range, i.e., problem
1
∣
∣p j (r) =p j (1 + bPr ),MP(0)

∣
∣Cmax with the deterioration effect (19.4), an MP of

a constant duration and σ = 1.
Recall from Sect. 4.3 that the half-product is the function

H(x) =
n∑

1≤i< j≤n

αiβ j xi x j −
n∑

j=1

γ j x j , (19.6)

defined for a vector x =(x1, x2, . . . , xn)with n Boolean components; the coefficients
α j and β j are non negative integers, while γ j is an integer that can be either negative
or positive.

For problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax, in a schedule with a single

MP the jobs are split into two groups: group 1 consists of the jobs scheduled before
the maintenance and group 2 contains all other jobs. Let N [i] be the set of jobs in
group i and

∣
∣N [i]

∣
∣ = n[i], for i ∈ {1, 2}. Recall that due to Theorem 10.7, we may

only consider schedules in which the jobs of each group are sequenced in the order
of their numbering given by (19.3).

Introduce a Boolean variable x j in such a way that

x j =
{
1, if job j is scheduled in the first group
0, otherwise

for each job j, 1 ≤ j ≤ n.
Taking the jobs in order of their numbering, if job j ∈ N is scheduled in the first

group then it completes at time

C j = p j x j

(

1 + b j

j−1∑

i=1

qi xi

)

,

so that the MP starts at time

τ =
n∑

j=1

p j x j

(

1 + b j

j−1∑

i=1

qi xi

)

.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_10
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If job j is scheduled in the second group, then its completion time is given by

C j = τ + (λτ + η) + σ p j (1 − x j )

⎛

⎝1 + b j

j−1∑

i=1

qi (1 − xi )

⎞

⎠

= (λ + 1)
n∑

j=1

p j x j

⎛

⎝1 + b j

j−1∑

i=1

qi xi

⎞

⎠ + σ p j (1 − x j )

⎛

⎝1 + b j

j−1∑

i=1

qi (1 − xi )

⎞

⎠ + η.

This implies that in order to solve problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣

Cmax, we need to minimize the function

Y (x) = (λ + 1)
n∑

j=1

p j x j

⎛

⎝1 + b j

j−1∑

i=1

qi xi

⎞

⎠ + σ

n∑

j=1

p j (1 − x j )

⎛

⎝1 + b j

j−1∑

i=1

qi (1 − xi )

⎞

⎠ + η

=
n∑

j=1

(λ + 1)b j p j x j

⎛

⎝
j−1∑

i=1

qi xi

⎞

⎠ +
n∑

j=1

σb j p j (1 − x j )

⎛

⎝
j−1∑

i=1

qi (1 − xi )

⎞

⎠

+ (λ + 1)
n∑

j=1

p j x j + σ

n∑

j=1

p j (1 − x j ) + η.

Define w j := b j p j , j ∈ N , and rewrite Y (x) as

Y (x) =
∑

1≤i< j≤n

(λ + 1)qiw j xi x j +
∑

1≤i< j≤n

σqiw j (1 − xi )(1 − x j )

+ (λ + 1)
n∑

j=1

p j x j + σ

n∑

j=1

p j (1 − x j ) + η. (19.7)

This function reminds a so-called symmetric quadratic function (4.31) with non-
negative coefficients reproduced below as

Z(x) =
∑

1≤i< j≤n

αiβ j xi x j +
∑

1≤i< j≤n

αiβ j (1 − xi )(1 − x j ) +
n∑

j=1

μ j x j +
n∑

j=1

ν j (1 − x j ) + K ,

(19.8)

which can be seen if we define

α j = q j , β j = w j , μ j = (λ + 1)p j , ν j = σ p j , j ∈ N ; K = η.

In fact, (19.7) is more general than (19.8). Indeed, the quadratic terms in (19.7)
are not entirely symmetric, since they contain additional factors of λ + 1 and σ,
respectively.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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This loss of symmetry does not prevent us from reformulating (19.7) as a special
case of the half-product function (19.6), as demonstrated below.

Since

∑

1≤i< j≤n

qiw j (1 − xi )(1 − x j ) =
∑

1≤i< j≤n

qiw j xi x j +
∑

1≤i< j≤n

qiw j

−
n∑

j=1

⎛

⎝w j

(
j−1∑

i=1

qi

)

+ q j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠

⎞

⎠x j ,

function Y (x) derived above may be written as

Y (x) =
∑

1≤i< j≤n

(λ + σ + 1)qiw j xi x j

+
n∑

j=1

⎛

⎝(λ − σ + 1)p j − σ

⎛

⎝w j

⎛

⎝
j−1∑

i=1

qi

⎞

⎠ + q j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠

⎞

⎠

⎞

⎠x j (19.9)

+
⎛

⎝η + σ

⎛

⎝
n∑

j=1

p j +
∑

1≤i< j≤n

qiw j

⎞

⎠

⎞

⎠.

The variable terms of (19.9) can be written in the form (19.6) of

α j = (λ + σ + 1)w j , β j = q j ,

γ j = (λ − σ + 1)p j − σ

⎛

⎝w j

(
j−1∑

i=1

qi

)

+ q j

⎛

⎝
n∑

i= j+1

wi

⎞

⎠

⎞

⎠, j ∈ N ,

so that function Y (x) is a special case of function

F(x) = H(x) + K . (19.10)

Recall that in Sect. 4 the Boolean programming problem of minimizing a function
of the form (19.10) is called Problem HPAdd.

Thus, we obtain the following statement.

Theorem 19.1 Problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax reduces to mini-

mizing function (19.7) over the set of all n-dimensional Boolean vectors, which is a
special case of Problem HPAdd.

Consider the simplest form of problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax

with q j = p j , b j = b, j ∈ N , λ = 0 and σ = 1, i.e., problem 1
∣
∣p j (r) =

p j (1 + bPr ),MP(0)
∣
∣Cmax. Notice that for this problem the assumption σ = 1 is

made, which implies that the processing conditions after the maintenance period are
fully restored.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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It follows directly from Theorem 19.1 and they made simplifying assumptions
that problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax reduces to minimizing function

Y0(x) =
n∑

j=1

p j x j

⎛

⎝1 + b
j−1∑

i=1

pi xi

⎞

⎠ +
n∑

j=1

p j (1 − x j )

⎛

⎝1 + b
j−1∑

i=1

pi (1 − xi )

⎞

⎠ + η.

(19.11)

Notice that the first quadratic term of function Y0(x) defined by (19.11) can be
rewritten as

n∑

j=1

p j x j

(

1 + b
j−1∑

i=1

pi xi

)

=
n∑

j=1

p j x j + b
n∑

j=1

p j x j

j−1∑

i=1

pi xi

=
n∑

j=1

p j x j + b

2

⎛

⎝
n∑

j=1

p2j x
2
j + 2

n∑

j=1

p j x j

j−1∑

i=1

pi xi −
n∑

j=1

p2j x
2
j

⎞

⎠

=
n∑

j=1

p j x j + b

2

⎛

⎝
n∑

j=1

p j x j

⎞

⎠2 − b

2

n∑

j=1

p2j x
2
j .

Since x j ∈ {0, 1}, we deduce that

n∑

j=1

p j x j

(

1 + b
j−1∑

i=1

pi xi

)

= b

2

⎛

⎝
n∑

j=1

p j x j

⎞

⎠2 +
n∑

j=1

p j x j − b

2

n∑

j=1

p2j x j .

Recall that in a schedule associated with a Boolean vector x, the jobs of the first
group form the set N [1] = {

j ∈ N |x j = 1
}
, so that we may further rewrite

n∑

j=1

p j x j

(

1 + b
j−1∑

i=1

pi xi

)

= b

2

⎛

⎝
∑

j∈N [1]

p j

⎞

⎠2 +
∑

j∈N [1]

p j − b

2

∑

j∈N [1]

p2j ,

which, using our standard notation p(Q) = ∑
j∈Q p j , can be expressed as

n∑

j=1

p j x j

(

1 + b
j−1∑

i=1

pi xi

)

= b

2
p
(
N [1]

)2 + p
(
N [1]

) − b

2

∑

j∈N [1]

p2j .
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In a similar way, the second quadratic term of function Y0(x) defined by (19.11)
can be expressed in terms of the set N [2] := N\N [1] of jobs of the second group as

n∑

j=1

p j (1 − x j )

(

1 + b
j−1∑

i=1

pi (1 − xi )

)

= b

2
p
(
N [2]

)
2 + p

(
N [2]

) − b

2

∑

j∈N [2]

p2j .

Thus, for problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1 a schedule

S is determined by splitting the set of jobs into two subsets N [1] and N [2], so that the
objective function can be written as

Cmax(S) = b

2

(
p
(
N [1]

)
2 + p

(
N [2]

)
2
) + p(N ) − b

2

∑

j∈N
p2j + η. (19.12)

This implies that in order to achieve the smallest makespan in problem 1
∣
∣p j (r) =

p j (1 + bPr ),MP(0)
∣
∣Cmax with σ = 1, we only need to partition the set N of jobs

into two subsets, N [1] and N [2], in such a way that the value p
(
N [1]

)
2 + p

(
N [2]

)
2 is

as small as possible.
The obtained representation allows us to give an easy proof that problem

1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax is NP-hard in the ordinary sense, even if

σ = b = 1. In the proof of the NP-hardness given below, the following well-known
NP-complete problem is used for reduction (see Sect. 1.3.2).

Partition: Given positive integers e1, . . . , er and the index set R = {1, . . . , r} such
that e(R) = ∑

i∈R ei = 2R, is it possible to partition set R into disjoint subsets R1

and R2 such that e(R1) = ∑
i∈R1

ei = E and e(R2) = ∑
i∈R2

ei = E?

Theorem 19.2 Problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax is NP-hard in the

ordinary sense, even if σ = b = 1.

Proof Given an instance of Partition, define the instance of problem 1
∣
∣p j (r) =

p j (1 + bPr ),MP(0)
∣
∣Cmax with

N = R; p j = e j , j ∈ N ; σ = b = 1; η = E2 − 1.

We show that Partition has a solution if and only if in the constructed problem
there exists a schedule S0 such that Cmax(S0) ≤ y := 2E2 + 2E − 1

2

∑
j∈R e

2
j − 1.

Suppose that Partition has a solution represented by the sets R1 and R2. Then
schedule S0 withCmax(S0) = y exists and can be found as follows.Define N [i] := Ri ,

i ∈ {1, 2} and let in S the jobs of set N [1] form the first group, while the jobs of set
N [2] form the second group. It follows from (19.12) that

http://dx.doi.org/10.1007/978-3-319-39574-6_1
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Cmax(S0) = 1

2

(
E2 + E2

) + 2E − 1

2

∑

j∈R

e2j + (
E2 − 1

)

= 2E2 + 2E − 1

2

∑

j∈R

e2j − 1 = y,

as required.
Suppose now that a schedule S0 such that Cmax(S0) ≤ y exists and N [i] for

i ∈ {1, 2} are the sets of jobs processed in the first and the second groups, respectively.
Thus, due to (19.12),

Cmax(S0) = 1

2

(
p
(
N [1]

)
2 + p

(
N [2]

)
2
) + p(N ) − 1

2

∑

j∈N
p2j + (

E2 − 1
)

= 1

2

(
p
(
N [1]

)
2 + p

(
N [2]

)
2
) + 2E − 1

2

∑

j∈N
p2j + (

E2 − 1
) ≤ y

Denote
E1 := p

(
N [1]

)
, E2 := p

(
N [2]

)
.

For schedule S0, we must have

1

2

(
E2
1 + E2

2

) ≤ E2.

However, the minimum of the expression 1
2

(
E2
1 + E2

2

)
under the condition E1 +

E2 = 2E is equal to E2 and is achieved for E1 = E2 = E . Thus, if we set Ri = N [i],
i ∈ {1, 2, }, we obtain a solution to Partition. �

It is clear that problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = b = 1

is the simplest version of problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax. Thus,

the best possible approximation result that can be derived for either problem is an
FPTAS. In the subsequent sections, we develop such approximation schemes.

19.2 Constant Maintenance: FPTAS via Subset-Sum

In this section, we present an FPTAS for problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣

Cmax with σ = 1. Although the problem has been reduced to quadratic Boolean pro-
gramming, we demonstrate that the problem in fact is related to the subset-sum prob-
lem, with a linear objective function. The latter problem admits an FPTAS (see the
discussion in Sect. 4.2). We demonstrate that an FPTAS available for the subset-sum
problem can be adapted to handle problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax.

First, we show that the smallest value of p(N [1])2 + p(N [2])2 can be achieved
if the values p(N [1]) and p(N [2]) are as close as possible. The latter problem can

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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be formulated as the well-known subset-sum problem discussed in Sect. 4.2. The
generic formulation of the subset-sum problem is

maximize
n∑

j=1

α j x j

subject to
n∑

j=1

α j x j ≤ A

x j ∈ {0, 1}, j = 1, 2, . . . , n;

(19.13)

however, for the purposes of this section, we will use the formulation written in terms
of normal processing times of problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax:

maximize
∑

j∈N
p j x j

subject to
∑

j∈N
p j x j ≤ T

x j ∈ {0, 1}, j ∈ N ,

(19.14)

with
T =: p(N )/2. (19.15)

Assume that a schedule S∗ that is optimal for problem 1|p j (r) = p j (1 + bPr ),
MP(0)|Cmax is associated with the partition of the jobs into two groups H [1] and
H [2], processed before and after the MP, respectively.

Lemma 19.1 Suppose that x∗
j ∈ {0, 1}, j ∈ N, are the optimal values of the decision

variables for the problem (19.14). Define N ∗
1 :=

{
j ∈ N |x∗

j = 1
}
and N ∗

2 = N\N ∗
1 .

Then for problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1 there exists an

optimal schedule S∗ in which the jobs of set H [1] = N ∗
1 are scheduled in one group

and the jobs of set H [2] = N ∗
2 are scheduled in the other group.

Proof Without loss of generality, we may assume that p(N ∗
1 ) ≤ p(N ∗

2 ), so that there
exists a non negative δ such that

p(N ∗
1 ) = T − δ, p(N ∗

2 ) = T + δ.

Suppose that the sets N ∗
1 and N ∗

2 defined by an optimal solution to the subset-
sum problem (19.14) do not define an optimal schedule, i.e., in schedule S∗ the first
group and the second group consists of the jobs of set H [1] = N ′

1 and H [2] = N ′
2,

respectively, such that

p(N ′
1)

2 + p(N ′
2)

2 < p(N ∗
1 )

2 + p(N ∗
2 )

2.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Without loss of generality, we may assume that p(N ′
1) ≤ p(N ′

2). Since the sets
N ′
1 and N ′

2 are not defined by an optimal solution to (19.14), we deduce that there
exists a positive ν such that

p(N ′
1) = p(N ∗

1 ) − ν, p(N ′
2) = p(N ∗

2 ) + ν.

If we set ε = δ + ν > δ, we obtain

p(N ′
1) = T − ε, p(N ′

2) = T + ε.

On the other hand,

p(N ′
1)

2 + p(N ′
2)

2 = (T − ε)2 + (T + ε)2 = 2T 2 + 2ε2;
p(N ∗

1 )
2 + p(N ∗

2 )
2 = (T − δ)2 + (T + δ)2 = 2T 2 + 2δ2 < p(N ′

1)
2 + p(N ′

2)
2.

The obtained contradiction proves the lemma. �
Lemma 19.1 implies that for solving problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣

Cmax with σ = 1 it suffices to find a solution to the subset-sum problem (19.14).
The latter problem being a special case of the linear knapsack problem admits an
FPTAS (see the discussion in Sect. 4.2), in particular Theorem 4.5. For convenience,
we reformulate that theorem below.

Theorem 19.3 Problem SSP of the form (19.14) admits an FPTAS that for a given
positive ε, either finds an optimal solution x∗

j ∈ {0, 1}, j ∈ N, such that

∑

j∈N
p j x

∗
j < (1 − ε)T

or finds an approximate solution xε
j ∈ {0, 1}, j ∈ N, such that

(1 − ε)T ≤
∑

j∈N
p j x

ε
j ≤ T .

Such an FPTAS requires O
(
min

{
n/ε, n + 1

ε2
log

(
1
ε

)})
time and O

(
n + 1

ε

)
space.

Below we explain how an FPTAS that exists for the subset-sum problem can be
adapted for solving problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1. It

can be seen from (19.12) that the objective function in the scheduling problem under
consideration consists of a variable part and a constant part. Due to Lemma 19.1,
an FPTAS available for the subset-sum problem can be used to approximate the
variable part of the objective function. However, since the variable part p

(
N [1]

)2 +
p
(
N [2]

)2
is positive and the constant part p(N ) − b

2

∑
j∈N p2j + η can be negative,

a solution delivered by an FPTAS for minimizing the variable part need not be to an
ε-approximate solution for the overall function.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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To illustrate this, consider a function of the form

F(x) = G(x) + K ,

where G(x) represents a variable part of the overall function F(x) to be minimized,
and K is a constant. Ifx∗ minimizes the functionG(x), then itwill obviouslyminimize
the function F(x) as well. Assume that G(x∗) ≥ 0 and suppose that for minimizing
function G(x), an FPTAS is available that delivers a solution xε, such that G(xε) −
G(x∗) ≤ εG(x∗).

For xε to be accepted as an ε-approximate solution for minimizing the function
F(x), we must establish the inequality

F(xε) ≤ (1 + ε)F(x∗). (19.16)

For a solution xε found by an FPTAS for minimizing G(x), we will have

F(xε) = G(xε)+K ≤ (1 + ε)G(x∗)+K = F(x∗)+εG(x∗) = (1 + ε)F(x∗)−εK .

If K ≥ 0, the inequality (19.16) holds; however, if K < 0, there is no direct
evidence that (19.16) will hold, and further analysis must be performed. Recall that
we have faced a similar situation in Sect. 4.3, where for Problem HPAdd the variable
part of the objective function is negative and an additive constant is positive, and
therefore converting an FPTAS that exists for Problem HP of minimizing a half-
product function with no additive constant to an FPTAS for Problem HPAdd is
non-trivial.

In the remainder of this section, we prove that in order to obtain an FPTAS with
the accuracy ε for problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1, we

may apply an FPTAS with ε0 = ε
ε+1 to problem (19.14).

Algorithm EpsCumuMP0

Input: An instance of 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1 and an

ε > 0

Output: A schedule Sε such that Cmax(Sε) ≤ (1 + ε)Cmax(S∗)

Step 1. For a given ε > 0 define ε0 := ε
ε+1 .

Step 2. With the defined ε0, run an FPTAS for problem (19.14) to find the values

xε
j ∈ {0, 1}, j ∈ N . Define N ε

1 :=
{
j ∈ N |xε

j = 1
}
and N ε

2 := N\N ε
1 .

Step 3. Output schedule Sε for the original scheduling problem, in which the jobs
of set N [1] := N ε

1 are assigned to one group and sequenced before themaintenance
and the jobs of set N [2] := N ε

2 are assigned to the other group to be scheduled
after the maintenance. Stop.

We prove that Algorithm EpsCumuMP0 gives an appropriate treatment to the
negative constant and therefore allows us to adapt an FPTAS that is guaranteed by
Theorem 19.3 to deliver an ε-approximate solution for minimizing the makespan in
the scheduling problem under consideration.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Theorem 19.4 For problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax with σ = 1,

Algorithm EpsCumuMP0 is an FPTAS that runs in O

(
min

{
n/ε,

n + (
1 + 1

ε

)2
log

(
1 + 1

ε

)
})

time.

Proof Using an FPTAS from Theorem 19.3 with ε0 = ε
ε+1 , we observe that

O(n/ε0) = O
(
n ε+1

ε

) = O(n/ε) and 1
ε20
log

(
1
ε0

)
= (

1 + 1
ε

)
2 log

(
1 + 1

ε

)
, so that

the required running time is achieved. To complete the proof, we need to prove that
Cmax(Sε) ≤ (1 + ε)Cmax(S∗).

For our analysis, we will need a lower bound

Cmax(S
∗) ≥ bT 2 + p(N ) − b

2

∑

j∈N
p2j + η, (19.17)

where T is defined by (19.15).
To see that (19.17) holds, apply (19.12) and observe that for any partition of set

N into subsets N1 and N2 the inequality p(N1)
2 + p(N2)

2 ≥ 2T 2 holds. The latter
fact is used in the proof of Theorem 19.2.

Due to Theorem 19.3, we only need to consider the case that the FPTAS used as a
subroutine in Step 2 of Algorithm EpsCumuMP0 does not find an optimal solution to
problem (19.14); otherwise, schedule Sε is optimal. Therefore, belowwe only look at
the instances of problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax for which p j ≤ T ,

j ∈ N , since otherwise an optimal solution can be obtained by scheduling the largest
job in one group and the remaining jobs in the other.

It follows from Theorem 19.3 that

(1 − ε0)T ≤ p(N ε
1 ) < T .

There exists a δ, δ ≤ ε0, such that

(1 − ε0)T ≤ p(N ε
1 ) = T (1 − δ) < T ;

p(N ε
2 ) = (1 + δ)T .

Applying (19.12) and (19.17), we have that

Cmax(S
ε) = b

2

(
p(N ε

1 )
2 + p(N ε

2 )
2
) + p(N ) − b

2

∑

j∈N
p2j + η

= b
(
T 2 + δ2T 2

) + p(N ) − b

2

∑

j∈N
p2j + η ≤ Cmax(S

∗) + bδ2T 2.

Belowwe demonstrate that bδ(1−δ)T 2 is a lower bound on the optimalmakespan
Cmax(S∗). Consider the problem
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max
∑

j∈N
p2j

subject to
∑

j∈N ε
1

p j = (1 − δ)T

∑

j∈N ε
2

p j = (1 + δ)T

0 ≤ p j ≤ T, j ∈ N .

(19.18)

The problem of this structure is known to be solvable by the greedy algorithm,
which in the case under consideration scans the values p j in any order and gives each
of them the largest possible value. Thus, the greedy algorithm will find an optimal
solution to (19.18) in which one of the p j ’s is equal to T , one to (1 − δ)T , and one
to δT , while all others are equal to zero. We deduce that

∑

j∈N
p2j ≤ (1 − δ)2T 2 + T 2 + (δT )2 = 2T 2(δ2 − δ + 1)

provides an upper bound on the sum of squares of the processing times for all
instances of the original scheduling problem for which Step 2 of
Algorithm EpsCumuMP0 delivers p(N ε

1 ) = T (1 − δ) and p(N ε
2 ) = (1 + δ)T ,

including the instance under consideration.
Substituting this upper bound into (19.17), we derive a lower bound

Cmax(S
∗) ≥ b

(
δ − δ2

)
T 2 + p(N ) + η ≥ bδ(1 − δ)T 2.

This lower bound implies that bT 2 ≤ Cmax(S∗)
δ(1−δ)

, so that

Cmax(S
ε) ≤ Cmax(S

∗) + bδ2T 2 ≤
(
1 + δ

1 − δ

)
Cmax(S

∗).

Since δ
1−δ

increases and δ ≤ ε0, we have that

Cmax(S
ε) ≤

(
1 + ε0

1 − ε0

)
Cmax(S

∗).

Thus, if we use an FPTAS for problem (19.14) applied with ε0 = ε
ε+1 , we obtain

an FPTAS for our scheduling problem which has the accuracy ε. �
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19.3 The General Problem: FPTAS via Half-Product

We now turn to the general problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax. As

shown in Sect. 19.1, this problem reduces to minimizing a quadratic function of the
form (19.7), which is a special case of the objective function in Problem HPAdd.

Section4.3 discusses several approaches to converting an FPTAS available for
the problem of minimizing the half-product function (19.6) into an FPTAS for Prob-
lem HPAdd, in which the objective function (19.10) contains an additive constant.
One of these approaches is addressed in Theorem 4.8, which for convenience is
reproduced below.

Theorem 19.5 ForProblemHPAddofminimizing function (19.10), denote the lower
and upper bounds on the value of F(x∗) by LB and U B, respectively, i.e., LB ≤
F(x∗) ≤ UB. If the ratio U B/LB is bounded from above by some ρ, then there
exists an algorithm that delivers a solution x0 such that F(x0) − LB ≤ εLB in
O(ρn2/ε) time.

Section4.3.1 presents an algorithm that is guaranteed by Theorem 19.5, namely
Algorithm HPRhoFPTAS. If the value of ρ is bounded from above by a constant,
then Algorithm HPRhoFPTAS is an FPTAS that requires the best possible running
time of O

(
n2/ε

)
.

Section4.4 describes an approach to developing an FPTAS for minimizing a
symmetric quadratic function (19.8), provided that the function is convex. Prob-
lem 1

∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax reduces to minimizing a slightly more

general and not entirely symmetric quadratic function (19.7); however, an FPTAS
for this problem can be developed in a very similar way.

First, notice that the convexity of function (19.7) is guaranteed by the numbering
(19.3) (see Theorem 4.9). Since the variable part of function Y (x) defined by (19.7),
or rather by (19.9), is a special form of the half-product, it follows that Theorem 4.11
holds, so that the continuous relaxation of the problem of minimizing function (19.9)
can be solved in O

(
n2

)
time.

Let xC = (xC1 , . . . , x
C
n ), 0 ≤ xCj ≤ 1, be the corresponding solution vector of the

continuous relaxation of the problem of minimizing a convex function Y (x). Clearly
Y (xC ) ≤ Y (x∗), and we may set LB := Y (xC ), as a lower bound that is required by
Theorem 19.5.

To obtain an upper bound UB, we perform a simple rounding of the fractional
components of vector xC , as described below.

Algorithm SQRound2

Step 1. Given a vector xC = (xC1 , . . . , x
C
n ), 0 ≤ xCj ≤ 1, a solution to the contin-

uous relaxation of the problem of minimizing a convex function Y (x) of the form

(19.9) determines the sets I1 =
{
j ∈ N , xCj ≤ 1

2

}
and I2 =

{
j ∈ N , xCj > 1

2

}

and finds vector xH = (xH
1 , . . . , xH

n ) with components

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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xH
j =

{
0 if j ∈ I1
1 if j ∈ I2

.

Step 2. Output vector xH = (xH
1 , . . . , xH

n ) as heuristic solution for the problem
of minimizing function (19.9).

The running time of Algorithm SQRound2 is O(n). Clearly, the inequalities
Y (xC ) ≤ Y (x∗) ≤ Y (xH ) hold; i.e., we may take Y (xH ) as an upper bound UB
on the optimal value Y (x∗). We now estimate the ratio UB/LB = Y (xH )/Y (xC ).

Lemma 19.2 Let xC be an optimal solution to the continuous relaxation of the
problem of minimizing function Y (x) of the form (19.9) and xH be a vector found by
Algorithm SQRound2. Then,

ρ = Y (xH )

Y (xC )
≤ 4.

Proof For a vector xC , let I1 and I2 be the index sets found in Step 2 of Algo-
rithm SQRound2. For a vector x = (x1, . . . , xn), where 0 ≤ x j ≤ 1, define

Y1(x) := (λ + 1)
∑

1≤i< j≤n
i, j∈I1

qiw j xi x j + σ
∑

1≤i< j≤n
i, j∈I1

qiw j (1 − xi )
(
1 − x j

);

Y2(x) := (λ + 1)
∑

1≤i< j≤n
i∈I1, j∈I2

qiw j xi x j + σ
∑

1≤i< j≤n
i∈I1, j∈I2

qiw j (1 − xi )
(
1 − x j

);

Y3(x) := (λ + 1)
∑

1≤i< j≤n
i∈I2, j∈I1

qiw j xi x j + σ
∑

1≤i< j≤n
i∈I2, j∈I1

qiw j (1 − xi )
(
1 − x j

);

Y4(x) := (λ + 1)
∑

1≤i< j≤n
i, j∈I2

qiw j xi x j + σ
∑

1≤i< j≤n
i, j∈I2

qiw j (1 − xi )
(
1 − x j

);

Y5(x) := (λ + 1)
∑

j∈I1
p j x j + σ

∑

j∈I1
p j

(
1 − x j

);

Y6(x) := (λ + 1)
∑

j∈I2
p j x j + σ

∑

j∈I2
p j

(
1 − x j

)
.

It follows from (19.7) that

Y (x) =
6∑

k=1

Yk(x) + η.

By the rounding conditions in Step 2 of Algorithm SQRound2, we derive

Y2(xH ) = Y3(xH ) = 0,
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while

Y1(xH ) = σ
∑

1≤i< j≤n
i, j∈I1

qiw j ; Y1(xC ) ≥ σ

4

∑

1≤i< j≤n
i, j∈I1

qiw j ;

Y4(xH ) = (λ + 1)
∑

1≤i< j≤n
i, j∈I2

qiw j ; Y4(xC) ≥ (λ + 1)

4

∑

1≤i< j≤n
i, j∈I2

qiw j ;

Y5(xH ) = σ
∑

j∈I1
p j ; Y5(xC ) ≥ σ

2

∑

j∈I1
p j ;

Y6(xH ) = (λ + 1)
∑

j∈I2
p j ; Y6(xC ) ≥ λ + 1

2

∑

j∈I2
p j ;

Thus, we have that

Y (xH ) =
6∑

k=1

Yk(xH ) + η = Y1(xH ) + Y4(xH ) + Y5(xH ) + Y6(xH ) + η

≤ 4Y1(xC) + 4Y4(xC) + 2Y5(xC) + 2Y6(xC) + η

≤ 4
6∑

k=1

Yk(xC) + 4η = 4Y (xC ),

as required. �

It follows immediately from Lemma 19.2 that for problem 1
∣
∣p j (r) =

p j
(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax Theorem 19.5 with ρ = 4 is applicable. Hence, we

obtain the following statement.

Theorem 19.6 Problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax admits an

FPTAS that requires O
(
n2/ε

)
time.

19.4 Bibliographic Notes

Kellerer et al. (2013) study problems 1
∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax and

1
∣
∣p j (r) = p j (1 + bPr ),MP(λ)

∣
∣Cmax (in a slightly general form) with exactly one

MP introduced into a schedule and σ = 1. In other words, for the problems studied
in Kellerer et al. (2013) the MP is assumed to fully restore the processing conditions,
so that after the maintenance the machine is “as good as new.”

It is shown in Kellerer et al. (2013) that problem 1
∣
∣p j (r) = p j (1 + bPr ),

MP(0)|Cmax is related to the subset-sum problem and an FPTAS presented in
Sect. 19.2 is developed. The FPTAS for the subset-sum problem in Theorem 19.3 is
due to Kellerer and Pferschy (2004) (see also Sect. 4.2).

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Problem (19.18) is related to one of the basic problems of submodular
optimization, a so-called resource allocation problemwith a convex separable objec-
tive function. This explains the fact that problem (19.18) admits a solution by the
greedy algorithm (see Hochbaum and Hong (1995) and Katoh and Ibaraki (1998)
for details on optimizing convex functions under submodular constraints).

The general problem 1
∣
∣p j (r) = p j

(
1 + b j Qr

)
,MP(λ)

∣
∣Cmax with a single main-

tenance period is introduced and studied by Rustogi and Strusevich (2016). Unlike
in Kellerer et al. (2013), here the MP is a rate-modifying activity, in a sense used by
Lee and Leon (2001) (see also Chap.14).

Theorem 19.5 is due to Erel and Ghosh (2008), the algorithm for solving the
continuous relaxation of the problem of minimizing 19.9 is given in Rustogi and
Strusevich (2016) (see also Sect. 4.3.2). Lemma 19.2 and Theorem 19.6 are from
Rustogi and Strusevich (2016).

Kellerer et al. (2013) in their study of problem 1
∣
∣p j (r) = p j (1 + bPr ),MP(λ)

∣
∣

Cmax with λ > 0 and σ = 1 also rely on Theorem 19.5, but an approxi-
mate solution to problem 1

∣
∣p j (r) = p j (1 + bPr ),MP(0)

∣
∣Cmax is used as a lower

bound LB, and the ratio UB/LB is bounded by a linear function of λ. To make
Theorem 19.5 applicable, an additional assumption is needed, that λ ≤ 1. The
approach described by Rustogi and Strusevich (2016) and in Sect. 19.3, based on
the rounding algorithm and Lemma 19.2 can also be applied to handling problem
1
∣
∣p j (r) = p j (1 + bPr ),MP(λ)

∣
∣Cmax with λ > 0 and σ = 1. It will lead to an

FPTAS with the running time of O
(
n2/ε

)
, as in Kellerer et al. (2013), but no addi-

tional assumption regarding the value of λ is needed.
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Chapter 20
Scheduling with Rate-Modifying Activities
on Parallel Machines Under Various Effects

Unlike in the preceding chapters of this part, in this chapter we turn to the mod-
els on parallel machines. The jobs of a set N = {1, 2, . . . , n} have to be processed
on m parallel machines M1,M2, . . . ,Mm, where m ≤ n. Additionally, the decision-
maker is presented with a list (RMP[1], RMP[2], . . . , RMP[K]) of K ≥ 1 possible
rate-modifying activities. The decision-maker may decide which of the listed RMPs
to insert into a schedule, onwhichmachine and inwhich order.We present algorithms
that solve problems on parallel machines, provided that the processing times of the
jobs are subject to various time-changing effects, and rate-modifying activities can
be inserted into a schedule. We aim at designing algorithms with a running time that
is polynomial in n. The only considered objective function is the total completion
time F(S) = ∑

Cj(S), since minimizing the objectives Cmax and
∑

wjCj is NP-hard
even on two parallel identical machines.

As a rule, the problems that we consider in this chapter are reduced to solving
a series of linear assignment problems (LAP). Recall from Chap.4 that solving an
LAP with a full-form n × n square cost matrix takes O

(
n3

)
time, while for a product

cost matrix Algorithm Match is applicable, which requires O(n log n) time.
In order to count the number of the LAPs to be solved, we use various combi-

natorial configurations and identities listed in Sect. 5.3. In the estimations presented
in this chapter, we assume that the number K of available RMPs and the number of
machines m are constants.

20.1 Generic Procedure for Parallel Machines

Recall that in Sect. 12.4 we develop a generic Procedure RMP1 that handles all single
machinemodels that combine time-changing effects and rate-modifying activities. In
this section, we present an extension of that procedure to solving problems on parallel

© Springer International Publishing Switzerland 2017
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machines. The generic problem to be solved is denoted by αm|β,RMP(K)| ∑Cj,
where α ∈ {P,Q,R}, depending on whether the parallel machines are identical, uni-
form, or unrelated. In the presentation below, we consider the most general case of
the unrelated machines, so that the normal processing time of job j ∈ N on machine
Mi is equal to pij.

Similarly to a generic single machine model considered in Sect. 12.4, here the
original problem αm|β,RMP(K)| ∑Cj reduces to a sequence of the auxiliary prob-
lems. Such an auxiliary problem is denoted by αm′|β,RMP(k − 1)| ∑Cj, where
m′, 1 ≤ m′ ≤ m, denotes the number of busy machines, i.e., the machines that
will be assigned at least one job. Notice that in the case of unrelated or uni-
form machines, some machines are not necessarily used. Each auxiliary problem
αm′|β,RMP(k − 1)| ∑Cj is defined by the following outcomes:

(AP1) a collection of m′ busy machines, 1 ≤ m′ ≤ m, which will have jobs
assigned to each of them; if required, the selected busy machines are renum-
bered to become M1, M2, . . . ,Mm′ ;

(AP2) an outcome of the RMP Decisions 1–3 and a distribution of the RMPs over
the chosen m′ machines, i.e., by a selection of k − 1 RMPs from a list of K
available RMPs and an assignment of the selected RMPs to busy machines,
so that a busy machine Mi, 1 ≤ i ≤ m′, is assigned ki − 1 RMPs in a given
order, where

∑m′
i=1 ki = k − 1;

(AP3) a numbering of the ki − 1 RMPs chosen to be introduced on a each busy
machine Mi by strings (i, x), 1 ≤ x ≤ ki − 1, in the order of their appearance
in a schedule.

To solve an auxiliary problem αm′|β,RMP(k − 1)| ∑Cj, we need to take three
decisions, which essentially are multi-machine extensions of Decisions (B1)-(B3)
from Sect. 12.4:

(BP1) split the jobs into such a way that qi jobs are assigned to be processed
on machine Mi, 1 ≤ i ≤ m′, where

∑m′
i=1 q

[i] = n, and determine the number
n[i,x] of jobs in group N [i,x], 1 ≤ x ≤ ki, where for a machine Mi, 1 ≤ i ≤ m′,
the equality

∑ki
x=1 n

[i,x] = qi holds, and the jobs of group N [i,x] are sequenced
before the xth RMP, while the jobs of group N [i,ki] are scheduled after the last
RMP;

(BP2) for each busy machine Mi, 1 ≤ i ≤ m′, determine a partition of its qi jobs
into ki groups N [i,x], 1 ≤ x ≤ ki;

(BP3) find a permutation π[i,x] for the jobs in each group N [i,x], 1 ≤ i ≤ m′, 1 ≤
x ≤ ki.

Extending the reasoning presented in Sect. 12.4, for a particular outcome
of Decision (BP1), introduce a schedule SBP1(k) for an auxiliary problem
αm′|β,RMP(k − 1)| ∑Cj associated with certain outcomes of Decisions (BP2) and
(BP3). In schedule SBP1(k), on each busy machine Mi, 1 ≤ i ≤ m′, the jobs are
organized into groups N [i,x], 1 ≤ x ≤ ki, and each group N [i,x] contains n[i,x] jobs,
where

∑ki
x=1 n

[i,x] = qi. Further, let the jobs inN [i,x] be sequenced in accordance with

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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a permutation π[i,x] = (
π[i,x](1),π[i,x](2), . . . ,π[i,x]

(
n[i,x]

))
, 1 ≤ x ≤ ki. The actual

processing time of a job j = π[i,x](r), scheduled in position r, 1 ≤ r ≤ n[i,x], of the
xth group, 1 ≤ x ≤ k, on machineMi, 1 ≤ i ≤ m′, is denoted by p[i,x]j (r) and depends
on particular features of the model, normally captured by the strings α and β. In any
case, the total number of groups is equal tom′ + k − 1, which counts

∑m
i=1 ki groups

scheduled before all RMPs and one group scheduled on each busy machine after the
last RMP.

Associate schedule SBP1(k) with m′ permutations π[i] = (
π[i,1],π[i,2], . . . ,

π[i,ki]
)
, which specify the sequence of jobs on each busy machine Mi, 1 ≤ i ≤ m′.

In most problems on parallel machines considered later in this chapter, the sum of
the completion times Gi(SBP1(k)) on machine Mi, 1 ≤ i ≤ m′, in schedule SBP1(k)
admits a generic representation

Gi(SBP1(k)) = G
(
π[i]

) =
ki∑

x=1

n[i,x]∑

r=1

W [i,x]
π[i,x](r)(r)pi,π[i,x](r) + �(ki), 1 ≤ i ≤ m′, (20.1)

where �(ki) depends only on ki and some constant terms, while W [i,x]
π[i,x](r)(r) is a

positional weight that in general is job-, machine- and group-dependent. The prod-
uct W [i,x]

π[i,x](r)(r)pi,π[i,x](r) represents the contribution of job j = π[i,x](r) scheduled

in position r, 1 ≤ r ≤ n[i,x], of group x, 1 ≤ x ≤ ki, on machine Mi, 1 ≤ i ≤ m′,
to the expression (20.1). Since F(SBP1(k)) = ∑m

i=1 Gi(SBP1(k)), it follows that
W [i,x]

π[i,x](r)(r)pi,π[i,x](r) defines the contribution of the respective job into the overall
value of the total completion time, which can be written as

F(SBP1(k)) =
m′∑

i=1

ki∑

x=1

n[i,x]∑

r=1

W [i,x]
π[i,x](r)(r)pi,π[i,x](r) +

m′∑

i=1

�(ki). (20.2)

For an outcome of Decision (BP1), let S∗
BP1(k) be the best schedule that is defined

by taking Decisions (BP2) and (BP3) in such a way that schedule S∗
BP1(k) mini-

mizes function (20.2), i.e., F
(
S∗
BP1(k)

) ≤ F(SBP1(k)) holds for all possible sched-
ules SBP1(k). Further, let S∗(k) denote a schedule that is optimal for problem
αm′|β,RMP(k − 1)| ∑Cj, i.e., F(S∗(k)) ≤ F

(
S∗
BP1(k)

)
holds for all possible out-

comes of Decision (BP1).
Assuming that for a particular outcome of Decision (BP1) each weight W [i,x]

j (r),
j ∈ N , 1 ≤ x ≤ ki, 1 ≤ r ≤ n[i,x], can be computed in advance, finding schedule
S∗
BP1(k) can be reduced to solving a linear assignment problem (LAP) with an n × n
cost matrix C = (

cj,(i,x,r)
)
with the cost values equal to

cj,(i,x,r) = W [i,x]
j (r)pij, 1 ≤ r ≤ n[i,x], 1 ≤ i ≤ m′, 1 ≤ x ≤ ki, j ∈ N . (20.3)

In the cost matrix C, each of the n rows correspond to a job j ∈ N . We number
the columns of matrix C by strings of the form (i, x, r), i.e., (machine, group on the
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machine, position in the group). For each machine Mi, 1 ≤ i ≤ m′, the first n[i,1] of
n available positions are related to group N [i,1], the next n[i,2] positions are related to
group N [i,2], and so on. The first

∑k1
x=1 n

[1,x] columns of matrix C correspond to the
available positions associated with machine M1, and the next

∑k2
x=1 n

[2,x] columns
are associated with the positions on machine M2, etc. Since n = ∑m′

i=1

∑ki
x=1 n

[i,x],
there will be exactly n columns in matrix C.

As a result, finding schedule S∗
BP1(k) reduces to an LAP written out below

minimize
n∑

j=1

m′∑

i=1

ki∑

x=1

n[i,x]∑

r=1

cj,(i,x,r)zj,(i,x,r)

subject to
m∑

i=1

ki∑

x=1

n[i,x]∑

r=1

zj,(i,x,r) = 1, 1 ≤ j ≤ n;
n∑

j=1

zj,(i,x,r) = 1, 1 ≤ i ≤ m′, 1 ≤ x ≤ ki,

1 ≤ r ≤ n[i,x];
zj,(i,x,r) ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ i ≤ m′,

1 ≤ x ≤ ki, 1 ≤ r ≤ n[i,x].

(20.4)

Extending Procedure RMP1 from Sect. 12.4, we can set up a generic procedure
for finding a schedule S∗ that is optimal for problem αm|β,RMP(K)| ∑Cj.

Procedure RMPPar

Step 1. Given problem αm|β,RMP(K)| ∑Cj, for each combination of outcomes
(AP1)-(AP3) do

(a) Define an auxiliary problem αm′|β,RMP(k − 1)| ∑Cj.
(b) For each outcome of Decision (BP1) do

(i) For each busymachineMi, 1 ≤ i ≤ m′, compute appropriate positional
weights W [i,x]

j (r), j ∈ N , 1 ≤ x ≤ ki, 1 ≤ r ≤ n[i,x], and the constant
�(ki) that define (20.2).

(ii) Find scheduleS∗
BP1(k)by solving the linear assignment problem (20.4)

or its suitable version that is applicable for a particular version of the
generic model αm|β,RMP(K)| ∑Cj.

(c) Determine schedule S∗(k) that is optimal for the current auxiliary problem
αm′|β,RMP(k − 1)| ∑Cj, i.e., such that F(S∗(k)) ≤ F

(
S∗
BP1(k)

)
holds for

all schedules S∗
BP1(k) found in Step 1(b).

Step 2. Determine schedule S∗ that is optimal for the original problem αm|β,
RMP (K)| ∑Cj, i.e., such that F(S∗) ≤ F(S∗(k)) holds for all schedules S∗(k)
found in Step 1.

The lemma below gives an estimation of the number of possible outcomes (AP1)-
(AP3) in Step 1 of Procedure RMPPar, as well as the number of all possible Deci-
sions (BP1) to be taken for a particular combination of outcomes (AP1)-(AP3). These

http://dx.doi.org/10.1007/978-3-319-39574-6_12
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estimations are used in the forthcoming sections of this chapter for a purpose of
evaluating the running times of algorithms based on Procedure RMPPar. Below, the
counting arguments are presented for the most general environment, with unrelated
parallel machines.

Lemma 20.1 For problem αm|β,RMP(K)| ∑Cj, the number of outcomes (AP1)-
(AP3) in Step 1 of Procedure RMPPar can be estimated as O

(
KKnm−1

)
. For a par-

ticular combination of outcomes (AP1)-(AP3), the number of possible outcomes
of Decision (BP1) that may lead to an overall optimal schedule S∗ is O

(
nm+k−2

)
.

Moreover, the total number of all possible outcomes (AP1)-(AP3) and outcomes of
Decision (BP1), i.e., the number of the assignment problems to be solved in order to
find an overall optimal schedule S∗ is O

(
nm+K−1

)
.

Proof For an outcome (AP1), there are
(m
m′

)
ways to choose a value of m′. It follows

from Lemma12.1 that the number of ways that k − 1 RMPs can be selected from
the given list of K available RMPs and ordered is

( K
k−1

)
(k − 1)! ≤ Kk−1. Now, we

need to find a way of sharing m′ + k − 1 groups between m′ machines. The number
of options is equal to the number of compositions C(m′)

m′+k−1 of m
′ + k − 1 in exactly

m′ positive summands. Applying (5.11) with u = m′ + k − 1 and v = m′, we have
that the number of generated options is

(
m′ + k − 2

m′ − 1

)
≤

(
m′ + k − 2

)m′−1

(m′ − 1)! .

Recall that with k − 1 RMPs introduced into a schedule on m′ parallel machines
the total number of groups is m′ + k − 1 ≤ n, so that

(
m′ + k − 2

)m′−1

(m′ − 1)! ≤ (n − 1)m
′−1

(m′ − 1)! .

Finally, an upper bound on the number of outcomes (AP1)-(AP3) can be estimated
as

K+1∑

k=1

Kk−1
m∑

m′=1

nm
′−1

(m′ − 1)! ≤ nm−1
K+1∑

k=1

Kk−1 = O
(
KKnm−1

)
,

as required.
In order to count all possible outcomes of Decision (BP1) we need to count

the number of ways that integer n can be split in exactly m′ + k − 1 positive sum-
mands n[i,x]. The required number is equal to the number of compositionsC(≤m′+k−1)

n
and applying (5.11) with u = n and v = m′ + k − 1, we have that the total number
of all values n[i,x], 1 ≤ i ≤ m, 1 ≤ x ≤ ki, to be generated for each auxiliary prob-
lemαm′|β,RMP(k − 1)| ∑Cj is

(n+m′+k−2
m′+k−2

) ≤ ( 2n
m′+k−2

)
, since the number of groups

m′ + k − 1 does not exceed the number of jobs n. Thus, we have that

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_5
http://dx.doi.org/10.1007/978-3-319-39574-6_5
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(
2n

m′ + k − 2

)
≤ (2n)m

′+k−2 = O
(
nm

′+k−2
)
,

as required.
The total number of the linear assignment problems to be solved is given by

K+1∑

k=1

(
K

k − 1

)
(k − 1)!

m∑

m′=1

(
m

m′

)(
m′ + k − 2

m′ − 1

)(
n + m′ + k − 2

m′ + k − 2

)

≤
K+1∑

k=1

(
K

k − 1

)
(k − 1)!

m∑

m′=1

(
m

m′

)(
m′ + k − 2

m′ − 1

)
(2n)m

′+k−2

(m′ + k − 2)! ,

where the inequality follows from (5.8) applied with u = n − 1 and v = m + k − 2.
Further, (

m′ + k − 2

m′ − 1

)
1

(m′ + k − 2)! = 1

(m′ − 1)!(k − 1)! ,

so that

K+1∑

k=1

(
K

k − 1

)
(k − 1)!

m∑

m′=1

(
m

m′

)(
m′ + k − 2

m′ − 1

)
(2n)m

′+k−2

(m′ + k − 2)!

≤
K+1∑

k=1

(
K

k − 1

) m∑

m′=1

(
m

m′

)
(2n)m

′+k−2

(m′ − 1)!

≤
K+1∑

k=1

(
K

k − 1

)
(2n)m+k−2

m∑

m′=1

(
m

m′

)
1

(m′ − 1)!

≤ 22m+K
K+1∑

k=1

(
K

k − 1

)
nm+k−2 = 22m+Knm−1

K+1∑

k=1

(
K

k − 1

)
nk−1

= 22m+Knm−1(n + 1)K = O
(
nm+K−1

)
,

which proves the lemma. �

Notice that if the machines are identical, then all machines will be busy in an
optimal schedule, while in the case of uniformmachines them′ fastest machines will
be selected as busy, i.e., there are 1,m and 2m possible outcomes (AP1) for identical,
uniform and unrelated parallel machines, respectively. This observation, however,
does not affect the order of magnitude of all estimates presented in Lemma20.1.

In the forthcoming sections of this chapter, Procedure RMPPar forms the basis
of the design of the solutions algorithms for scheduling problems, in which various
effects are combined with the introduction of available RMPs.

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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20.2 Models with Rate-Modifying Activities

In this section, we show how to adapt Procedure RMPPar from Sect. 20.1 to solving
scheduling problems on parallel machines, provided that multiple RMPs can be
introduced into a schedule and they may affect the production rate of the jobs that
are scheduled after such an RMP. The models we study here are extensions of a
single machine model addressed in Sect. 15.2.

20.2.1 Unrelated Machines

Formally, the jobs of a set N = {1, 2, . . . , n} have to be processed on m unrelated
machines M1,M2, . . . ,Mm, where m ≤ n. Additionally, the decision-maker is pre-
sented with a list of K ≥ 0 possible rate-modifying activities, which can be either
distinct or alike. For an RMP[y], 1 ≤ y ≤ K , it is known if that RMP is introduced
on machine Mi, 1 ≤ i ≤ m, then the normal processing time of every job j sched-

uled after that RMP is multiplied by λ
[i,y]
j . Further, the duration �̄[i,x] of each RMP

introduced into a schedule is given by an extension of the general formula (12.2);
see (20.6) below for details. Under these conditions, the problem of minimizing the
sum of completion times can be denoted by Rm

∣
∣RMP(K), �̄[i,x]

∣
∣∑Cj.

In order to solve problem Rm
∣
∣RMP(K), �̄[i,x]

∣
∣ ∑Cj, we adapt Procedure

RMPPar. Fix outcomes (AP1)-(AP3). Recall that the machines are renumbered in
such a way that in accordance with an outcome (AP1), the machines M1, . . . ,Mm′

and only those are busy. For a particular outcome of Decision (BP1), introduce a
schedule SBP1(k) for problem Rm′∣∣RMP(k − 1), �̄[i,x]

∣
∣∑Cj associated with certain

outcomes of Decisions (BP2) and (BP3). In schedule SBP1(k), the jobs are organized
in groups N [i,x], 1 ≤ i ≤ m′, 1 ≤ x ≤ ki, so that each group N [i,x] contains n[i,x] jobs,
where

∑ki
x=1 n

[i,x] = qi. Further, let the jobs inN [i,x] be sequenced in accordance with
a permutation π[i,x] = (

π[i,x](1),π[i,x](2), . . . ,π[i,x]
(
n[i.x]

))
, 1 ≤ i ≤ m′, 1 ≤ x ≤ ki.

Associate schedule SBP1(k) with m permutations π[i] = (
π[i,1],π[i,2], . . . ,π[i,ki]

)
,

which specify the sequence of jobs on each machine Mi, 1 ≤ i ≤ m.
Depending on outcomes (AP1)-(AP3), i.e., on which RMPs are chosen, on which

busy machines they are to be performed and in which order, the actual processing
time of a job j = π[i,x](r), scheduled in position r of the xth group of machineMi is
given by

p[i,x]j (r) = μ[i,x]
j pij, 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ k, 1 ≤ i ≤ m′,

where μ[i,x]
j represents a group-dependent rate-modifying multiplier, which depends

on the previously scheduled RMPs and can be written as

http://dx.doi.org/10.1007/978-3-319-39574-6_15
http://dx.doi.org/10.1007/978-3-319-39574-6_12
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μ[i,x]
j =

x−1∏

v=1

λ[i,x−1]
j , 1 ≤ x ≤ k. (20.5)

For a schedule SBP1(k) with k − 1 selected RMPs, the duration �̄[i,x] of the x-th
RMP on a busy machine Mi, 1 ≤ x ≤ k − 1, 1 ≤ i ≤ m′, is determined as a linear
function of the actual durations of the jobs in the preceding group. The corresponding
formula is a multi-machine extension of (12.2) and can be written as

�̄[i,x] =
∑

j∈N [x]

ζ [i,x]j p[i,x]j + η[i,x], (20.6)

where ζ [i,x]j and η[i,x] are given positive coefficients. Assuming that the actual process-

ing time of job j ∈ N [i,x] is equal to p[i,x]j , this job contributes ζ [i,x]j p[i,x]j towards the
duration �̄[i,x] of the x-th RMP on machine Mi.

It follows from (15.21), where the sum of the completion times has been computed
for a single machine under the same effect that the sum of the completion times
Gi(SBP1(k)) on a busy machine Mi, 1 ≤ i ≤ m′, in schedule SBP1(k) can be written
as

Gi(SBP1(k)) =
ki∑

x=1

n[i,x]∑

r=1

W [i,x]
π[i,x](r)(r)pi,π[i,x](r) + �(ki), 1 ≤ i ≤ m′, (20.7)

where the constant term is given by

�(ki) =
ki∑

x=1

n[i,x]∑

r=1

x−1∑

v=1

η[i,v], (20.8)

and

W [i,x]
π[i,x](r)(r) =

[(
ki∑

v=x+1

n[i,v]
)

(1 + ζ [i,x]
π[i,x](r)) + (

n[i,x] − r + 1
)
]

μ[i,x]
π[i,x](r), (20.9)

1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m′,

is a job-dependent positional weight, such that the productW [i,x]
π[i,x](r)pπ[i,x](r) represents

the contribution of job j = π[i,x](r) scheduled in position r, 1 ≤ r ≤ n[i,x], of group
x, 1 ≤ x ≤ ki, on machine Mi, 1 ≤ i ≤ m′, to the objective function F(SBP1(k)).

Thus, for schedule SBP1(k) the total completion time on all busy machines can be
written as

F(SBP1(k)) =
m′∑

i=1

ki∑

x=1

n[i,x]∑

r=1

W [i,x]
π[i,x](r)(r)pi,π[i,x](r) +

m′∑

i=1

�(ki). (20.10)

http://dx.doi.org/10.1007/978-3-319-39574-6_12
http://dx.doi.org/10.1007/978-3-319-39574-6_15
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The objective (20.10) admits a generic representation (20.2), so that Proce-
dure RMPPar is applicable. Let S∗

BP1(k) denote a schedule such that F
(
S∗
BP1(k)

) ≤
F(SBP1(k)) for a fixed outcome of Decision (BP1).

We know from Sect. 20.1 that finding schedule S∗
BP1(k) reduces to solving an LAP

(20.4) with a square cost matrix defined by

cj,(i,x,r) = W [i,x]
j (r)pij, 1 ≤ i ≤ m′, 1 ≤ x ≤ ki 1 ≤ r ≤ n[i,x], (20.11)

where the positional weights are defined by (20.9). Notice that solving each of these
linear assignment problems requires O

(
n3

)
time, and the total number of these

problems is O
(
nm+K−1

)
as proved in Lemma20.1. Thus, a direct application of

Procedure RMPPar with full enumeration of all outcomes (AP1)-(AP3) and all
outcomes of Decision (BP1) leads to the following statement.

Theorem 20.1 Problem Rm
∣
∣RMP(K), �̄[i,x]

∣
∣∑Cj reduces to solving O

(
nm+K−1

)

linear assignment problems of the form (20.4), each of which requires O
(
n3

)
time

to solve, so that the overall running time needed to find an optimal schedule is
O

(
nm+K+2

)
.

Below we present an alternative, less straightforward approach. Recall that in
order to compute the positional weightsW [i,x]

π[i,x](r)(r), 1 ≤ r ≤ n[i,x], 2 ≤ x ≤ ki, 1 ≤
i ≤ m′, we require prior knowledge of the number of jobs n[i,x] in each group, which
is determined by an outcome of Decision (BP1). However, for the first group on every
machine, i.e., for x = 1, the positional weights W [i,1]

π[i,1](r)(r) can be computed without

that knowledge. It is easy to verify that irrespective of the number of jobs n[i,1] in the
first group on a busy machine Mi, the positional weights can be computed as

W [i,1]
j

(
n[i,1]

) =
[(

ki∑

v=2

n[i,v]
)

(1 + ζ [i,1]j ) + 1

]

μ[i,1]
j ;

W [i,1]
j

(
n[i,1] − 1

) =
[(

ki∑

v=2

n[i,v]
)

(1 + ζ [i,1]j ) + 2

]

μ[i,1]
j ;

...

W [i,1]
j (1) =

[(
ki∑

v=2

n[i,v]
)

(1 + ζ [i,1]j ) + n[i,1]
]

μ[i,1]
j .

The above formulae for the positional weights hold for all values of n[i,1],
1 ≤ n[i,1] ≤ n, 1 ≤ i ≤ m′. Now, assume that we know the number of jobs n[i,x] in
each group x, 2 ≤ x ≤ ki, 1 ≤ i ≤ m′, in advance, so that

∑m′
i=1

∑ki
x=2 n

[i,x] ≤ n. Thus,
for a busy machineMi, the maximum value of n[i,1] can be h[i,1] = n − ∑ki

x=2 n
[i,x]. In

such a situation, the function
∑

Cj of the form (20.10) can beminimized by reducing
the problem to an LAP of the form (4.1) with a rectangular cost matrix. The number

http://dx.doi.org/10.1007/978-3-319-39574-6_4
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of jobs n[i,1], 1 ≤ n[i,1] ≤ h[i,1], to be scheduled in the first group of each machine
Mi, 1 ≤ i ≤ m, can be found on the fly using this procedure.

Define an LAPwith a cost matrixC = (
cj,(i,x,r)

)
that has n rows and nm′ columns.

The cost values are still given by (20.11), with W [i,x]
j (r) defined according to (20.9).

In the cost matrix C, each of the n rows corresponds to a job j ∈ N , and each of the
nm columns corresponds to positions available on m′ busy machines, where each
machine has n positions associated with it. We number the columns of matrix C
by strings of the form (i, x, r), i.e., machine, group on the machine, and position
in the group. The first n columns of matrix C correspond to the available positions
associated with machineM1, the next n columns are associated with the positions on
machineM2, etc. For each busy machineMi, 1 ≤ i ≤ m′, the first h[i,1] of n available
positions are related to groupN [i,1], the next n[i,2] positions are related to groupN [i,2],
and so on. Recall that h[i,1] + ∑ki

x=2 n
[i,x] = n, 1 ≤ i ≤ m.

As a result, the problem of minimizing the objective function
∑

Cj reduces to a
rectangular assignment problem written out below

minimize
n∑

j=1

m′∑

i=1

ki∑

x=1

n[i,x]∑

r=1

cj,(i,x,r)zj,(i,x,r)

subject to
m∑

i=1

ki∑

x=1

n[i,x]∑

r=1

zj,(i,x,r) = 1, 1 ≤ j ≤ n;
n∑

j=1

zj,(i,1,r) ≤ 1, 1 ≤ i ≤ m′, 1 ≤ r ≤ h[i,1];
n∑

j=1

zj,(i,x,r) = 1, 1 ≤ i ≤ m′, 2 ≤ x ≤ ki,

1 ≤ r ≤ n[i,x];
zj,(i,x,r) ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ i ≤ m′,

1 ≤ x ≤ ki, 1 ≤ r ≤ n[i,x].

(20.12)

For the found solution, zj,(i,x,r) = 1 implies that in the associated schedule S∗
BP1(k)

job j is assigned to the rth position of the xth group on a busy machine Mi. The
conditions of (20.12)mean that each jobwill be assigned to a position and no position
will be used more than once. Notice that the above problem of the form (20.12) is
more constrained, compared to the rectangular assignment problem defined in (4.1).
The third constraint in the above formulation is added to ensure that n[i,x] jobs are
scheduled in each group x, 2 ≤ x ≤ ki, 1 ≤ i ≤ m′, provided that ki ≥ 2. On the other
hand, the number of jobs scheduled in the first group of each machine can be given
by n[i,1] = ∑n

j=1

∑h[i,1]

r=1 zj,(i,1,r), 1 ≤ i ≤ m′.
A constrained linear assignment problem of the form (20.12) can be solved by a

version of Algorithm LAPBL outlined in Sect. 4.1.1, while a faster Algorithm LAPD
apparently is not applicable. In our case, the algorithm is applied to an n × (

nm′)

cost matrix and therefore requires O(n3m′) time.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_4
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Thus, for solving the original problemRm
∣
∣RMP(K), �̄[i,x]

∣
∣∑Cj, wemaymodify

the generic Procedure RMPPar by replacing Step 1(b) by the following

Step 1(b)′. For each choice of values n[i,x], 1 ≤ i ≤ m′, 2 ≤ x ≤ ki, such that∑m′
i=1

∑ki
x=2 n

[i,x] ≤ n do

(i) For each busy machine Mi, 1 ≤ i ≤ m′, define h[i,1] := n − ∑ki
x=2 n

[i,x],
compute the positional weights W [i,x]

j (r) and the constant �(ki) by (20.9)
and (20.8), respectively, applied with n[i,1] = h[i,1].

(ii) Find schedule S∗
BP1(k) by solving the linear assignment problem (20.12).

In accordance with Procedure RMPPar, in order to find schedule S∗(k) that is the
best among all generated in Step 1(b)′, the LAP defined in (20.12) must be solved
for all assumed values of n[i,x] in each group x, 1 ≤ i ≤ m′, 2 ≤ x ≤ ki, so that∑m′

i=1

∑ki
x=2 n

[i,x] ≤ n. Since
∑m′

i=1(ki − 1) = k − 1, and there is at least one, first
group on each machine, finding all values n[i,x], 1 ≤ i ≤ m′, 2 ≤ x ≤ ki, requires
enumeration of integer compositions of integers that do not exceed n in at most
k − 1 positive parts. Applying (5.13) with u = n and v = k − 1, this value is equal
to

(n+k−1
k−1

)
, which does not exceed (n+k−1)k−1

(k−1)! . Thus, since k is a constant, problem

Rm′∣∣RMP(k − 1), �̄[i,x]
∣
∣∑Cj can be solved in O

(
m′nk+2

)
time.

Lemma 20.2 A schedule S∗(k) that is optimal for an auxiliary problem Rm′
∣
∣RMP(k − 1), �̄[i,x]

∣
∣ ∑Cj can be found in O

(
m′nk+2

)
time by reducing the problem

to a series of O
(
nk−1

)
constrained linear assignment problems of the form (20.12)

with a rectangular cost matrix.

To determine schedule S∗ that is optimal for the general problem Rm|RMP(K),

�̄[i,x]
∣
∣∑Cj, all outcomes (AP1)-(AP3) must be enumerated and the solutions of the

resulting auxiliary problems Rm′∣∣RMP(k − 1), �̄[i,x]
∣
∣ ∑Cj be compared. Applying

Lemma20.1, the total number of auxiliary problems Rm′∣∣RMP(k − 1), �̄[i,x]
∣
∣∑Cj

that must be solved is given by
∑K+1

k=1

( K
k−1

)
(k − 1)! ∑m

m′=1

(m
m′

)(m′+k−2
m′−1

)
.

Thus, the running time required to solve problem Rm
∣
∣RMP(K), �̄[i,x]

∣
∣∑Cj can

be estimated as

O

(
K+1∑

k=1

(
K

k − 1

)
(k − 1)!

m∑

m′=1

(
m

m′

)(
m′ + k − 2

m′ − 1

)
! m

′nk+2

(k − 1)!

)

= O

(

m′
K+1∑

k=1

(
K

k − 1

)
nk+2

m∑

m′=1

(
m

m′

)(
m′ + k − 2

m′ − 1

))

.

Recall that as in the proof of Lemma20.1, the term
(m′+k−2

m′−1

)
is shown to have an

upper bound of nm
′−1/

(
m′ − 1

)!, so that
m∑

m′=1

(
m

m′

)(
m′ + k − 2

m′ − 1

)
≤ 2m

m∑

m′=1

nm
′−1 = O

(
nm−1).

http://dx.doi.org/10.1007/978-3-319-39574-6_5
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Besides,
∑K+1

k=1

( K
k−1

)
nk+2 = n3(n + 1)K = O

(
nK+3

)
. Thus, the overall running

time can be written as O
(
nm+K+2

)
.

Theorem 20.2 An optimal solution for problem Rm
∣
∣RMP(K), �̄[i,x]

∣
∣∑Cj can be

found inO
(
nm+K+2

)
time by reduction to a sequence of rectangular linear assignment

problems.

Both approaches, a straightforward one and a more elaborated one, considered in
Theorems20.1 and 20.2, respectively, result in the same running time for the general
problem. One disadvantage of the former approach is that solving each auxiliary
problem Rm′∣∣RMP(k − 1), �̄[i,x]

∣
∣∑Cj requires O

(
nm+k+1

)
time, since according

to Lemma20.1 there are O
(
nm+k−2

)
LAPs to solve, in O

(
n3

)
time each. For the

latter approach, Lemma20.2 holds that gives a better running time for each auxiliary
problem.

The difference between the two approaches becomes noticeable if we apply them
to simpler versions of the general problem. For example, assume that all givenK ≤ m
RMPs are identical and no more than one RMP is allowed on a single machine.
The number of all possible outcomes (AP1)-(AP3) does not depend on n. For the
straightforward approach, the overall running time due to Theorem20.1 isO

(
n2m+2

)
.

For the elaborated approach, it can be seen that the overall running time is O
(
nm+3

)

(see Sect. 20.4 for a discussion and references).

20.2.2 Uniform Machines

We now consider the problem of minimizing the total completion time F(S) =∑
Cj(S) on m uniform parallel machines. There are three main points of difference

between the problem under consideration and problem Rm
∣
∣RMP(K), �̄[i,x]

∣
∣∑Cj

considered in Sect. 20.2.1:

• the rate-modifying multipliers associated with RMP[y] are job-independent and

machine-independent, i.e., λ[
y]
j = λ[y], j ∈ N , 1 ≤ x ≤ K .

• the jobs of a set N = {1, 2, . . . , n} have to be processed on m uniform machines
M1,M2, . . . ,Mm, m ≤ n, where the speed of machine Mi, 1 ≤ i ≤ m, is equal to
si, so that we have pij = pj/si, for j ∈ N;

• the duration of RMP[y] chosen to be performed on machine Mi is given by

�[i,y](τ ) = ζ[i,y]τ + η[i,y], (20.13)

where τ is the start time of the RMP, measured from either time zero or from the

completion time of the previous RMP on Mi, so that ζ
[i,y]
j = ζ[i,y] for j ∈ N .

We denote the resulting problem by Qm
∣
∣RMP(K),�[i,x](τ )

∣
∣∑Cj. Similarly

to Sect. 20.2.1, fix outcomes (AP1)-(AP3) and for a particular outcome of Deci-
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sion (BP1), introduce a schedule SBP1(k) for an auxiliary problemQm′|RMP(k − 1),
�[i,x](τ )

∣
∣∑Cj associated with certain outcomes of Decisions (BP2) and (BP3).

Making the above-mentioned changes in (20.9) and (20.10), we deduce that for
schedule SBP1(k) the total completion time on all busy machines can be written as

F(SBP1(k)) =
m′∑

i=1

ki∑

x=1

n[i,x]∑

r=1

W [i,x](r)pπ[i,x](r) +
m′∑

i=1

�(ki), (20.14)

where the constant term �(ki) is given by (20.8) and

W [i,x](r) =
[(

ki∑

v=x+1

n[i,v]
)

(1 + ζ [i,x]) + (
n[i,x] − r + 1

)
]

μ[i,x]

si
,

1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m′,

is a job-independent positional weight, such that the productW [i,x]pπ[i,x](r) represents
the contribution of job j = π[i,x](r) scheduled in position r, 1 ≤ r ≤ n[i,x], of group
x, 1 ≤ x ≤ ki, on machine Mi, 1 ≤ i ≤ m′, to the objective function F(SBP1(k)).

The objective (20.14) admits a generic representation (20.2), so that Proce-
dure RMPPar is applicable. Let S∗

BP1(k) denote a schedule such that F
(
S∗
BP1(k)

) ≤
F(SBP1(k)) for a fixed outcome of Decision (BP1). We know from Sect. 20.1 that
finding schedule S∗

BP1(k) reduces to solving a linear assignment problem. Since the
weights W [i,x](r) are job-independent, it follows that the cost matrix of such an
LAP is a product matrix and the problem can be solved by Algorithm Match (see
Sect. 4.1.3).

Assume that the jobs are numbered in accordance with the LPT rule, so that

p1 ≥ p2 ≥ · · · ≥ pn. (20.15)

holds. Finding this sequence is done once, for all auxiliary problems to be solved.
Algorithm Match will match the uth largest processing time to the uth smallest
positional weight, 1 ≤ u ≤ n. Notice that within each group N [i,x] the positional
weights W [i,x](r), 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m, are monotone, so that a
sorted sequence of all positional weights can be obtained in O(n) time. Thus, if we
know the number of jobs scheduled in each group, then schedule S∗

BP1(k) can be
found in O(n) time.

Todetermine the optimal solution for the general problemQm
∣
∣RMP(K),�[i,x](τ )

∣
∣

∑
Cj, all options associated with outcomes (AP1)-(AP3) have to be generated and

the solutions to the resulting auxiliary problems Qm′∣∣RMP(k − 1),�[i,x](τ )
∣
∣∑Cj

must be compared. As established in Lemma20.1, the total number of options to be
enumerated can be estimated asO

(
nm+K−1

)
, and we deduce the following statement.

Theorem 20.3 An optimal solution for problem Qm
∣
∣RMP(K),�[i,x](τ )

∣
∣∑Cj can

be found in O
(
nm+K

)
time by using Algorithm Match as a subroutine.

Notice that for m = 1 and K = 1, Theorem20.3 complies with the result of The-
orem15.3.

http://dx.doi.org/10.1007/978-3-319-39574-6_4
http://dx.doi.org/10.1007/978-3-319-39574-6_15
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20.3 Models with Changing Processing Times
and Rate-Modifying Activities

In this section, we extend our results from Chap.18 to the problems of minimizing
total completion times on parallel machines with time-changing effects and rate-
modifying activities.

Formally, the jobs of a set N = {1, 2, . . . , n} have to be processed on m parallel
machines M1,M2, . . . ,Mm, where m ≤ n, which may be subject to effects of the
forms (18.2), (18.25), (18.28), or (18.32), which correspond to an enhanced com-
bined effect, an enhanced positional effect, or an enhanced time-dependent effect,
respectively, as presented in Chap. 18. Additionally, the decision-maker is presented
with a list (RMP[1],RMP[2], . . . ,RMP[K]) of K ≥ 1 possible rate-modifying activi-
ties. The duration of each RMP is given by the general formula (18.4).

If an RMP is inserted into a schedule to become the xth RMP on machine Mi,
denote its duration by �[i,x](τ ;	). It depends on time τ elapsed and the number of
jobs	 processed onmachineMi before the RMP starts, relative to a certain reference
point. Such a reference point is content-dependent, and its nature can be explained
as in Chap.18, for single machine models. The way to compute the durations of the
RMPs is explained below, see (20.16). The range of the resulting problem is generi-
cally denoted by αm

∣
∣Effect (e),RMP(K),�[i,x](τ ;	)

∣
∣ ∑Cj, where α ∈ {P,Q,R},

and e ∈ {(18.2), (18.25), (18.28), (18.32)}.
Given a problem αm

∣
∣Effect (e),RMP(K),�[i,x](τ ;	)

∣
∣ ∑Cj of the indicated

range, fix outcomes (AP1)-(AP3). Recall that the machines are renumbered in such
a way that in accordance with an outcome (AP1), the machines M1, . . . ,Mm′ and
only those are busy. For a particular outcome of Decision (BP1), introduce a sched-
uleSBP1(k) for an auxiliary problemαm′∣∣Effect (e),RMP(k − 1),�[i,x](τ ;	)

∣
∣∑Cj

associated with certain outcomes of Decisions (BP2) and (BP3). In schedule SBP1(k),
the jobs are organized in groups N [i,x], 1 ≤ i ≤ m′, 1 ≤ x ≤ ki, so that each group
N [i,x] contains n[i,x] jobs, where

∑ki
x=1 n

[i,x] = qi. Further, let the jobs in N [i,x]

be sequenced in accordance with a permutation π[i,x] = (
π[i,x](1),π[i,x](2), . . . ,

π[i,x]
(
n[i.x]

))
, 1 ≤ i ≤ m′, 1 ≤ x ≤ ki. Associate schedule SBP1(k) with m′ permu-

tations π[i] = (
π[i,1],π[i,2], . . . ,π[i,ki]

)
, which specify the sequence of jobs on each

machine Mi, 1 ≤ i ≤ m′.
For schedule SBP1(k), letFi,x denote the durations of the xth group onmachineMi,

1 ≤ i ≤ m′. Extending (18.4), we can write out an expression for Ti,x, the duration
of the xth RMP, 1 ≤ x ≤ ki − 1, on machine Mi in schedule SBP1(k), as

Ti,x = ζ [i,x]
i,1 Fi,1 + ζ [i,x]

i,2 Fi,2 + · · · + ζ [i,x]
i,x Fi,x + η̂[i,x], 1 ≤ x ≤ k − 1, (20.16)

where for machineMi, 1 ≤ i ≤ m′, the values ζ [i,x]i,1 , ζ [i,x]2 , . . . , ζ [i,x]i,x , determine how
the length of each previous group affects the duration of the RMP scheduled after
the x-th group, and η̂[i,x] > 0 is a constant, 1 ≤ x ≤ k − 1.

http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
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20.3.1 Unrelated Machines

Let us beginwith problemRm|Effect (18.28), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj, inwhich

unrelated parallel machines are subject to positional effects of the form (18.28).
Depending on outcomes (AP1)-(AP3), i.e., on which RMPs are chosen, on which
busy machine they are to be performed and in which order, the actual processing
time of a job j = π[i,x](r), scheduled in position r of the xth group of machineMi is
given by

p[i,x]j (r) = pijg
[i,x]
j (r), 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m′. (20.17)

It follows from Sect. 18.5.2, where the sum of the completion times has been
computed for a single machine under an effect of the form (20.17), that the sum of
the completion times Gi(SBP1(ki)) on a busy machine Mi, 1 ≤ i ≤ m′, in schedule
SBP1(k) can bewritten in the form (20.7). The constant term�(ki) is given by (18.18),
and the positional weights are given by (18.31), so that for a machineMi, 1 ≤ i ≤ m′,
we have

�(ki) =
ki∑

x=1

n[i,x]∑

r=1

x−1∑

v=1

η̂[i,v],

and

W [i,x]
j (r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[∑ki
v=x+1 n

[i,v]
(
1 + ∑v−1

w=x ζ
[i,w]
i,x

)
+

(
n[i,x] − r + 1

)]
g
[i,x]
j (r), 1 ≤ r ≤ n[i,x],

1 ≤ x ≤ ki − 1,(
n[i,x] − r + 1

)
g
[i,x]
j (r), 1 ≤ r ≤ n[i,x],

x = ki.
(20.18)

where the latter is a job-dependent positionalweight, such that the productW [i,x]
π[i,x](r)(r)

pπ[i,x](r) represents the contribution of job j = π[i,x](r) scheduled in position r, 1 ≤ r ≤
n[i,x], of group x, 1 ≤ x ≤ ki, on machine Mi, 1 ≤ i ≤ m′, to the objective function
F(SBP1(k)).

Thus, for schedule SBP1(k) the total completion time on all busy machines can
be written in the form (20.10), which admits a generic representation (20.2), so
that Procedure RMPPar is applicable. As explained for problem 1|Effect (18.28),
RMP(K),�[i,x](τ ;	)

∣
∣∑Cj considered in Sect. 18.5.2, all positional weights

W [i,x]
j (r), 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m′, j ∈ N , can be computed by (18.31)

in O
(
n2

)
time. Since the found positional weights are job-dependent, a full-form

LAP will be employed in Step 1(b) of Procedure RMPPar. Solving each of these
LAPs requires O

(
n3

)
time, and the total number of these problems is O

(
nm+K−1

)

as proved in Lemma20.1. Thus, a direct application of Procedure RMPPar with full
enumeration of all outcomes (AP1)-(AP3) and all outcomes of Decision (BP1) leads
to the following statement.
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Theorem 20.4 Problem Rm|Effect (18.28), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj reduces

to solving O
(
nm+K−1

)
linear assignment problems of the form (20.4). Each such

assignment problem can be created in O
(
n2

)
time and solved in O

(
n3

)
time, so that

the overall running time needed to find an optimal schedule is O
(
nm+K+2

)
.

Similar to the solution of problem Rm|Effect (18.28), RMP(K),�[i,x](τ ;	)
∣
∣

∑
Cj, problem Rm|Effect (18.32), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj with a time-

dependent effect of the form (18.32), and problem Rm|Effect (18.2), RMP(K),�[i,x]

(τ ;	)| ∑Cj with a combined effect of the form (18.2), may also be solved. We
skip most of the technical details. It suffices to state that the objective function for
each of these problems reduces to the form (20.10), which admits a generic repre-
sentation (20.2), so that Procedure RMPPar is applicable. The relevant positional
weights may be found by adapting the positional weights (18.34) and (18.21), found
for problems 1|Effect (18.32), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj and 1|Effect (18.2),

RMP(K),�[i,x](τ ;	)
∣
∣∑Cj, respectively, in Chap.18. Notice that for each prob-

lem, the positional weights can be computed in O(n) and O
(
n2

)
time, respectively.

Please also notice that although the positional weights found for the latter prob-
lem are of job-independent nature, a full-form LAP is still required to be solved in
Step 1(b) of Procedure RMPPar in order to solve each problem Rm|Effect (18.32),
RMP(K),�[i,x](τ ;	)

∣
∣∑Cj and Rm|Effect (18.2), RMP(K),�[i,x](τ ;	)

∣
∣ ∑Cj.

This is because the resulting square cost matrix C = (
cj,(i,x,r)

)
n×n, where

cj,(i,x,r) = W [i,x](r)pij, 1 ≤ i ≤ m′, 1 ≤ x ≤ ki 1 ≤ r ≤ n[i,x],

does not satisfy the Monge property (4.9). Intuitively, this happens because the value
of the normal processing time is dependent on the machine it is assigned to. Thus,
the following statement follows from Lemma20.1.

Theorem 20.5 Each of problems Rm|Effect (18.32), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj

and Rm|Effect (18.2), RMP(K),�[i,x](τ ;	)
∣
∣ ∑Cj reduces to solving O

(
nm+K−1

)

linear assignment problems of the form (20.4), so that the overall running time needed
to find an optimal schedule is O

(
nm+K+2

)
.

20.3.2 Uniform Machines

Let us beginwith problemQm|Effect (18.25), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj, inwhich

uniform parallel machines are subject to positional effects of the form (18.25).
Depending on outcomes (AP1)-(AP3), i.e., on which RMPs are chosen, on which
busy machine they are to be performed and in which order, the actual processing
time of a job j = π[i,x](r), scheduled in position r of the xth group of machineMi is
given by

p[i,x]j (r) =
(
pj
si

)
g[i,x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, 1 ≤ i ≤ m′.
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Redefining the positional factors ĝ[i,x](r) := g[i,x](r)
si

, 1 ≤ r ≤ n, 1 ≤ x ≤ k, 1 ≤
i ≤ m′, we can write

p[i,x]j (r) = pjĝ
[i,x](r), 1 ≤ r ≤ n, 1 ≤ x ≤ k, 1 ≤ i ≤ m′. (20.19)

It follows from Sect. 18.5.2, where the sum of the completion times has been
computed for a single machine under an effect of the form (20.19) that the sum of
the completion times Gi(SBP1(ki)) on a busy machine Mi, 1 ≤ i ≤ m′, in schedule
SBP1(k) can bewritten in the form (20.7). The constant term�(ki) is given by (18.18),
and the positional weights are given by (18.27), so that for a machineMi, 1 ≤ i ≤ m′,
we have the constant term �(ki) as before and

W [i,x](r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[∑ki
v=x+1 n

[i,v]
(
1 + ∑v−1

w=x ζ
[i,w]
i,x

)
+

(
n[i,x] − r + 1

)]
ĝ[i,x](r), 1 ≤ r ≤ n[i,x],

1 ≤ x ≤ ki − 1,(
n[i,x] − r + 1

)
ĝ[i,x](r), 1 ≤ r ≤ n[i,x],

x = ki.

(20.20)

where the latter is a job-independent positional weight, such that the product
W [i,x](r)pπ[i,x](r) represents the contribution of job j = π[i,x](r) scheduled in position
r, 1 ≤ r ≤ n[i,x], of group x, 1 ≤ x ≤ ki, on machineMi, 1 ≤ i ≤ m′, to the objective
function F(SBP1(k)).

Thus, for schedule SBP1(k) the total completion time on all busy machines can
be written in the form (20.10), which admits a generic representation (20.2), so
that Procedure RMPPar is applicable. As explained for problem 1|Effect (18.25),
RMP(K),�[i,x](τ ;	)

∣
∣∑Cj considered in Sect. 18.5.2, all positional weights

W [i,x](r), 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m′, can be computed by (20.20) inO(n)
time. Since the found positional weights are job-independent, an LAPwith a product
matrix will have to be solved in Step 1(b) of Procedure RMPPar (see Sect. 20.2.2 for
details). Solving each of these LAPs requires O(n log n) time, and the total number
of these problems isO

(
nm+K−1

)
as proved in Lemma20.1. Thus, a direct application

of Procedure RMPPar with full enumeration of all outcomes (AP1)-(AP3) and all
outcomes of Decision (BP1) leads to the following statement.

Theorem 20.6 Problem Qm|Effect (18.25), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj reduces

to solving O
(
nm+K−1

)
linear assignment problems with a product matrix, each of

which is solved using AlgorithmMatch in O(n log n) time, so that the overall running
time needed to find an optimal schedule is O

(
nm+K log n

)
.

Similar to the solution of problem Qm|Effect (18.25), RMP(K),�[i,x](τ ;	)
∣
∣

∑
Cj, problem Qm|Effect (18.32), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj with a time-

dependent effect of the form (18.32), and problem Qm|Effect (18.2), RMP(K),

�[i,x](τ ;	)
∣
∣∑Cj with a combined effect of the form (18.2), may also be solved.

To do this, the approaches outlined in Sect. 20.3.1 for the respective problems in
an environment with unrelated machines can be adopted, and the only difference
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Table 20.1 Computational complexities of different versions of problem
αm|Effect (e),RMP(K),�[i,x](τ ; 	)

∣
∣ ∑Cj

Problem Reference Running time

Rm|Effect (18.28), RMP(K),�[i,x](τ ; 	)
∣
∣∑Cj Theorem20.4 O

(
nm+K+2

)

Rm|Effect (18.32), RMP(K),�[i,x](τ ; 	)
∣
∣∑Cj Theorem20.5 O

(
nm+K+2

)

Rm|Effect (18.2), RMP(K),�[i,x](τ ; 	)
∣
∣ ∑Cj Theorem20.5 O

(
nm+K+2

)

Qm|Effect (18.25), RMP(K),�[i,x](τ ; 	)
∣
∣ ∑Cj Theorem20.6 O

(
nm+K log n

)

Qm|Effect (18.32), RMP(K),�[i,x](τ ; 	)
∣
∣ ∑Cj Theorem20.7 O

(
nm+K log n

)

Qm|Effect (18.2), RMP(K),�[i,x](τ ; 	)
∣
∣∑Cj Theorem20.7 O

(
nm+K+1

)

is that since the machines are uniform, there is no need to employ a full-form
LAP in Step 1(b) of Procedure RMPPar. In fact, problems Qm|Effect (18.32),
RMP(K),�[i,x](τ ;	)

∣
∣∑Cj and Qm|Effect (18.2), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj

may be solved by reduction toO
(
nm+K−1

)
linear assignment problemswith a product

matrix, and each of which can be solved in O(n log n) time. Recall that the relevant
positional weights for problems Qm|Effect (18.32), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj

and Qm|Effect (18.2), RMP(K),�[i,x](τ ;	)
∣
∣ ∑Cj may be computed by using the

formulae (18.34) and (18.21) in O(n) and O
(
n2

)
time, respectively. Thus, the fol-

lowing statement follows.

Theorem 20.7 Each of problems Qm|Effect (18.32), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj

and Qm|Effect (18.2), RMP(K),�[i,x](τ ;	)
∣
∣∑Cj reduces to solving O

(
nm+K−1

)

linear assignment problems with a product matrix. Each of these assignment prob-
lems can be created in O(n) and O

(
n2

)
time, respectively, and solved in O(n log n)

time for both problems, so that the overall running time needed to find an optimal
schedule is O

(
nm+K log n

)
and O

(
nm+K+1

)
, respectively.

The main results of this section are summarized in Table20.1.

20.4 Bibliographic Notes

For the models with no time-changing effects, the problems on parallel machines
to minimize the total completion time, provided that at most one RMP per machine
can be introduced into a schedule, are studied by Wang et al. (2011), for identical
machines, and by Cheng et al. (2011) for unrelated machines. Wang et al. (2011)
present a rather straightforward result, similar to Theorem20.1, to minimize the
total flow time, so that a solution can be found in O

(
n2m+3

)
time. Notice that this

running time has been overestimated, since applying Theorem20.1 with K = m will
result in a running time ofO

(
n2m+2

)
. Cheng et al. (2011) present an algorithm that is

based on the elaborated approach discussed in Sect. 20.2.1 and allows the problem of
minimizing the flow time to be solved in O

(
nm+3

)
time. The material of Sect. 20.2.1
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is a generalization of the method presented by Cheng et al. (2011) for models with
multiple RMPs (see Theorem20.2).

Theorems20.5 and 20.7, related to models with rate-modifying activities and
combined or time-dependent effects, follow from Rustogi and Strusevich (2014).
We are not aware of any others publications that study these effects on parallel
machines.

Gara-Ali et al. (2016) study problem Rm
∣
∣
∣p[i,x]ij (r) = pijg

[i,x]
j (r),RMP(K), �̄[x]

∣
∣
∣

∑
Cj, with job-dependent positional effects on unrelatedmachines and RMPswhose

durations are given by (16.6). They propose a solution approach similar to that
discussed in Theorem20.4, so that the problem of minimizing the total flow time
is solvable in O

(
nm+K+2

)
time. Rustogi and Strusevich (2012) also solve the same

problem in O
(
nm+K+2

)
time, but for a model in which the RMP durations are given

by a simpler formula of the form (16.15). Notice that the solution approach presented
in Sect. 20.3.1 for solving problem Rm|Effect (18.28), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj

can easily be extended so that it is able to handle RMP durations of the form (16.6).
Another special case of problem Rm|Effect (18.28), RMP(K),�[i,x](τ ;	)

∣
∣∑Cj is

considered by Ji andCheng (2010),who study the effect ofRMPs on identical parallel
machines that are subject to a job-dependent learning effect. Ji and Cheng (2010)
show that the problem of minimizing the total flow time is solvable in O

(
nm+K+2

)

time (see Sect. 18.6 for a review of this model for a single machine environment).

Rustogi and Strusevich (2012) study problem Qm
∣
∣
∣p[i,x]ij (r) = pijg[i,x](r),

RMP(K),�[x]
∣
∣ ∑Cj with job-independent positional effects on uniform machines

and RMPs whose durations are given by (16.15). They propose a solution approach
similar to that discussed in Theorem20.6, so that the problem of minimizing the total
flow time is solvable in O

(
nm+K log n

)
time.

References

Cheng TCE, Hsu CJ, Yang DL (2011) Unrelated parallel-machine scheduling with deteriorating
maintenance activities. Comput Ind Eng 60:602–605

Gara-AliA, FinkeG,EspinouseML (2016) Parallel-machine schedulingwithmaintenance: praising
the assignment problem. Eur J Oper Res 252:90–97

Ji M, Cheng TCE (2010) Scheduling with job-dependent learning effects and multiple rate-
modifying activities. Inf Process Lett 110:460–463

Rustogi K, Strusevich VA (2012) Simple matching vs linear assignment in scheduling models with
positional effects: a critical review. Eur J Oper Res 222:393–407

RustogiK,StrusevichVA(2014)Combining time andpositiondependent effects on a singlemachine
subject to rate-modifying activities. Omega 42:166–178

Wang J-J, Wang J-B, Liu F (2011) Parallel machines scheduling with a deteriorating maintenance
activity. J Oper Res Soc 62:1898–1902

http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_16
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_18
http://dx.doi.org/10.1007/978-3-319-39574-6_16


Index

A
Algorithm, 10

NSmallQM, 233
approximation, 14

fully polynomial-time approximation
scheme (FPTAS), 15
polynomial-time approximation

scheme (PTAS), 15
ratio guarantee of, 15
worst-case ratio bound, 15

BinSearchPosi, 357
ρ-approximation, 15
CMP_WSPT, 279
deterministic, 12
EpsCumuMP0, 425
HKP(ρ), 283
heuristic, 14
HPAddDP, 77
HPDP, 75
HPFPTAS, 75
HPRhoFPTAS, 77
KPDP1, 68
KPDP2, 69
KPDP3, 70
KPFPTAS, 71
LAPBL, 59
LAPD, 60
LPT_Period, 262
LS_Period, 306
Match, 22
MP1TFT_DD, 294
MP1TFT_Win, 308
MP1WTFT_DD, 297
NResDP, 273
NSmallPosi, 345

NSmallPosi2, 351
NSmallTime, 368
NSmallTime2, 375
ParMachLinDeterDP, 220
ParMachLinDeterFPTAS, 222
polynomial, 10
pseudopolynomial, 11
PSumSPT, 34
QSum, 31
QSumCap, 33
QSumCombi1, 212
RMP1Cmax, 319
RMPkCmax, 325
running time of, 10
SQRound2, 428
time complexity of, 10

Arrangements, 99

C
Ceiling, 34, 93
Combinations, 99
Compositions, 99

D
Decision

(B1), 249
(B2), 249
(B3), 249
(BP1), 434
(BP2), 434
(BP3), 434
CMP Decision 1, 242
CMP Decision 2, 243
RMP Decision 1, 244

© Springer International Publishing Switzerland 2017
V.A. Strusevich and K. Rustogi, Scheduling with Times-Changing Effects
and Rate-Modifying Activities, International Series in Operations
Research & Management Science 243, DOI 10.1007/978-3-319-39574-6

453



454 Index

RMP Decision 2, 245
RMP Decision 3, 245
Start MP Decision, 243

E
Effect

combined, 106
cumulative, 106
deterioration, 105
group-dependent, 247
learning, 105
positional, 106

deterioration, 106
job-dependent, 106
job-independent, 107
learning, 106

start-time-dependent, 106
additive, 107
multiplicative, 108

F
Factor

positional
job-dependent, 106
job-independent, 107

Floor, 93
Form

linear, 20
Function

half-product, 72
objective, 6

regular, 6
priority, 42
priority-generating, 42
symmetric quadratic, 83

G
Graph

Z -graph, 40
acyclic, 38
circuit-free, 38
complement, 52
complement-connected, 52
composition

parallel, 39
series, 39

decomposition tree, 41
directed, 37
directed acyclic (dag), 38
matching

perfect, 20

network, 80
sink, 80
source, 80

reduction, 39
series-parallel, 40
SP-graph, 40
subgraph, 40

induced, 40
transitive closure, 39

Group balance principle, 358

I
Interval

machine non-avaiability, 255
flexible, 291

J
Job, 4, 5

completion time of, 6
crossover, 242, 255
deadline of, 6
due date of, 6
operation of, 5
processing time of, 4

normal, 105
release date of, 6
weight of, 5

M
Machine, 4

speed of, 5
Machine environment, 4
Maintenance

compulsory, 242, 255
flexible, 243
rate-modifying activity (RMA), 244
scenario, 242, 255

non-resumable, 242, 255
resumable, 242, 255

Matrix
diagonal of, 59
line of, 59
Monge, 65
product, 65
subdiagonal of, 59

Module, 47
neighborhood, 52
parallel, 52
series, 52



Index 455

P
Partitions, 99
Positional

deterioration, 106
effect

exponential deterioration, 119
exponential learning, 119
job-dependent, 106
job-independent, 107, 114
polynomial deterioration, 118
polynomial learning, 119

factor, 117
job-dependent, 106
job-independent, 107

learning, 106
weight, 114

Precedence
constraints, 38

Precedence constraints, 6
Predecessor, 38
Preemption, 6
Priority, 42

1-priority, 24
rule, 24

LPT, 24
Smith, 35
SPT, 24
WSPT, 29

Problem
bin-packing, 287
decision, 11
HP, 72
HPAdd, 72

continuous relaxation, 79
knapsack

linear, 67
linear, continuous relaxation, 69
positive half-product (PosHPK), 83
quadratic, 88
symmetric quadratic (SQK), 83

linear assignment, 57
product matrix, 65
rectangular, 58
square, 58

min-cost flow, 80
NP-complete, 13
NP-hard, 12

binary, 12
in the ordinary sense, 12
in the strong sense, 12

unary, 12
optimization, 11
positive half-product (PosHP), 82
SQ, 83
subset-sum (SSP), 67

Procedure
Parti(A, H, v), 220
RMP1, 250
RMPPar, 436

R
Relation

asymmetric, 38
binary, 38
precedence, 38
strong order, 38
transitive, 38

S
Schedule, 4

feasible, 4
optimal, 6

Scheduling, 3
classical, 3
three-field classification scheme, 8

Scheduling Systems
multistage, 4
single-stage, 4

parallel machines identical, 5
parallel machines uniform, 5
parallel machines unrelated, 5
single machine, 5

Sequence
convex, 91
�-shaped, 92, 121
log-convex, 91
V -shaped, 92

Set
partially ordered (poset), 38

Successor, 38

V
Vertex

indegree of, 38
isolated, 38
outdegree of, 38


	Preface
	Contents
	About the Authors
	List of Figures
	List of Tables
	Part I Models and Methods of Classical Scheduling
	1 Models and Concepts of Classical Scheduling
	1.1 Classical Scheduling Models
	1.1.1 Machine Environment
	1.1.2 Job Characteristics
	1.1.3 Optimality Criteria

	1.2 Three-Field Classification Scheme
	1.3 Computational Complexity
	1.3.1 Time Complexity of Algorithms
	1.3.2 Hard and Easy Problems
	1.3.3 Implications to Scheduling
	1.3.4 Approximation Algorithms

	References

	2 Pairwise Interchange Argument  and Priority Rules
	2.1 Minimizing a Linear Form
	2.1.1 Minimizing Total Completion Time on a Single Machine
	2.1.2 Minimizing the Sum of Products

	2.2 Minimizing Total Weighted Completion Time
	2.3 Minimizing Total Completion Time on Parallel Machines
	2.3.1 Uniform Machines
	2.3.2 Identical Machines

	2.4 Bibliographic Notes
	References

	3 Sequencing Under Precedence Constraints
	3.1 Graphs, Posets, and Other Definitions
	3.1.1 Reduction Graphs
	3.1.2 Series-Parallel Graphs

	3.2 Priority-Generating Functions
	3.2.1 Minimizing Total Weighted Completion Time
	3.2.2 Minimizing a Linear Form
	3.2.3 Minimizing Makespan Versus Total Completion Time

	3.3 Minimizing Priority-Generating Functions Under Series-Parallel Constraints
	3.4 Bibliographic Notes
	References

	4 Relevant Boolean Programming Problems
	4.1 Linear Assignment Problems
	4.1.1 Methods for Solving the Rectangular Assignment Problem
	4.1.2 Minimizing Total Completion Times of Unrelated Machines
	4.1.3 Linear Assignment Problems with a Product Matrix

	4.2 Knapsack and Subset-Sum Problems
	4.3 Half-Product: Approximation and Relaxation
	4.3.1 Formulation and Approximation
	4.3.2 Convex Half-Product and Its Continuous Relaxation

	4.4 Symmetric Quadratic Functions
	4.5 Bibliographic Notes
	4.5.1 Assignment Problem
	4.5.2 Linear Knapsack Problem
	4.5.3 Half-Product Problem and Its Variants

	References

	5 Convex Sequences and Combinatorial Counting
	5.1 Introduction to Convex and V-Shaped Sequences
	5.2 Convexity of a Sequence Involving Sums of Functions of Ceilings
	5.3 Combinatorial Counting
	5.4 Bibliographic Notes
	References

	Part II Scheduling with Time-Changing Effects
	6 Introduction to Time-Changing Effects
	6.1 Positional Effects
	6.2 Time-Dependent Effects
	6.3 Cumulative Effects
	References

	7 Scheduling with Positional Effects
	7.1 Scheduling Independent Jobs Under Job-Dependent Positional Effect
	7.2 Scheduling Independent Jobs Under Job-Independent Positional Effect
	7.2.1 Minimizing Makespan
	7.2.2 Minimizing Total Flow Time

	7.3 Scheduling with Series-Parallel Precedence Constraints Under Positional Effects
	7.3.1 Exponential Positional Effect
	7.3.2 Polynomial Positional Effect

	7.4 Bibliographic Notes
	References

	8 Scheduling with Pure and Combined Additive Start-Time-Dependent Effects
	8.1 Scheduling Independent Jobs
	8.1.1 Combined Effects
	8.1.2 Job-Dependent Linear Effects
	8.1.3 Job-Independent Linear Effects

	8.2 Scheduling Under Precedence Constraints
	8.2.1 Job-Dependent Linear Effects
	8.2.2 Job-Independent Linear Effects

	8.3 Bibliographic Notes
	8.3.1 General Additive Job-Independent Effects
	8.3.2 Linear Additive Job-Dependent Effects
	8.3.3 Linear Additive Job-Independent Effects
	8.3.4 Scheduling with Precedence Constraints

	References

	9 Scheduling with Pure and Combined Multiplicative Start-Time-Dependent Effects
	9.1 Scheduling Independent Jobs
	9.1.1 Job-Independent Combined Multiplicative  Nonlinear Effects
	9.1.2 Job-Independent Combined Multiplicative Polynomial Effects
	9.1.3 Pure Multiplicative Linear Effects

	9.2 Scheduling Under Precedence Constraints
	9.3 Bibliographic Notes
	References

	10 Scheduling with Pure and Combined Cumulative Effects
	10.1 Scheduling Independent Jobs with a Combined Job-Independent Cumulative Effect
	10.1.1 Combining General Cumulative Effects with Positional Effects
	10.1.2 Combining Polynomial Cumulative Effects  with Positional Effects

	10.2 Pure Cumulative Effects
	10.2.1 Job-Dependent Linear Generalized Cumulative Effect
	10.2.2 Job-Independent Linear Cumulative Effect

	10.3 Scheduling Under Precedence Constraints
	10.3.1 Minimizing Makespan
	10.3.2 Minimizing Total Completion Time

	10.4 Bibliographic Notes
	References

	11 Scheduling on Parallel Machines  with Various Effects
	11.1 Combined Effects
	11.1.1 Identical and Uniform Machines
	11.1.2 Unrelated Machines

	11.2 Start-Time-Dependent Job-Dependent Linear Effects
	11.2.1 Minimizing Makespan: Complexity  and Approximation Scheme
	11.2.2 Minimizing Total Flow Time: Complexity

	11.3 Start-Time-Dependent Job-Independent Linear Effects
	11.3.1 Identical and Uniform Machines
	11.3.2 Unrelated Machines

	11.4 Bibliographic Notes
	References

	Part III Scheduling with Rate Modifying Activities
	12 General Framework for Studying Models with Rate-Modifying Activities
	12.1 Compulsory Maintenance
	12.2 Flexible Maintenance
	12.3 Rate-Modifying Activities
	12.4 Changing Processing Times and Rate-Modifying Activities
	References

	13 Scheduling with Fixed Compulsory Maintenance Periods
	13.1 Makespan: Complexity and Approximation
	13.1.1 Single Maintenance
	13.1.2 Periodic Maintenance

	13.2 Weighted Total Flow Time: Complexity  for the Non-resumable Scenario
	13.2.1 Properties of the Objective Function
	13.2.2 Useful Lower Bounds
	13.2.3 Computational Complexity

	13.3 Weighted Total Flow Time: Complexity  for the Resumable Scenario
	13.3.1 Properties of the Objective Function
	13.3.2 Computational Complexity

	13.4 Weighted Total Flow Time: Approximation Algorithms and Schemes
	13.4.1 Constant Ratio Approximation Algorithms
	13.4.2 Approximation Schemes

	13.5 Bibliographic Notes
	13.5.1 Minimizing Makespan
	13.5.2 Minimizing Weighted Total Flow Time: Complexity
	13.5.3 Minimizing Weighted Total Flow Time: Approximation

	References

	14 Scheduling with Flexible Maintenance
	14.1 Flexible Maintenance: Start-Time Deadline
	14.2 Flexible Maintenance Within a Window
	14.2.1 Minimizing Makespan: Single Maintenance
	14.2.2 Minimizing Makespan: Periodic Maintenance
	14.2.3 Minimizing Total Completion Time

	14.3 Bibliographic Notes
	References

	15 Scheduling with Rate-Modifying Activities
	15.1 Single Rate-Modifying Maintenance on a Single Machine
	15.1.1 Minimizing Makespan
	15.1.2 Minimizing Total Completion Time

	15.2 Multiple Rate-Modifying Maintenance Periods  on a Single Machine
	15.2.1 Minimizing Makespan
	15.2.2 Minimizing Total Completion Time

	15.3 Bibliographic Notes
	References

	16 Scheduling with Maintenance  and Positional Effects
	16.1 Job-Dependent Deterioration Effects
	16.1.1 Computing Positional Weights
	16.1.2 Reduction to Rectangular LAP

	16.2 Job-Independent Effects
	16.2.1 Computing Positional Weights
	16.2.2 Reduction to LAP with a Product Matrix
	16.2.3 On the Fly Decision Making
	16.2.4 Binary Search in Convex Sequences

	16.3 Bibliographic Notes
	References

	17 Scheduling with Maintenance  and Start-Time-Dependent Effects
	17.1 Computing Positional Weights
	17.2 Reduction to LAP with a Product Matrix
	17.3 On the Fly Decision Making
	17.4 Binary Search in Convex Sequences
	17.5 Bibliographic Notes
	References

	18 Scheduling with Rate-Modifying Activities and Enhanced Effects
	18.1 Enhanced Model Description
	18.2 Computing the Completion Times
	18.3 Minimizing the Makespan
	18.4 Minimizing the Total Completion Time
	18.5 Some Reduced Models
	18.5.1 Simple Combined Effects
	18.5.2 Pure Positional Effects
	18.5.3 Pure Time-Dependent Effects

	18.6 Bibliographic Notes
	References

	19 Scheduling with Maintenance and Linear Cumulative Effects
	19.1 Half-Product Reformulations 
	19.2 Constant Maintenance: FPTAS via Subset-Sum
	19.3 The General Problem: FPTAS via Half-Product 
	19.4 Bibliographic Notes
	References

	20 Scheduling with Rate-Modifying Activities  on Parallel Machines Under Various Effects
	20.1 Generic Procedure for Parallel Machines
	20.2 Models with Rate-Modifying Activities
	20.2.1  Unrelated Machines
	20.2.2 Uniform Machines

	20.3 Models with Changing Processing Times  and Rate-Modifying Activities
	20.3.1 Unrelated Machines
	20.3.2 Uniform Machines

	20.4 Bibliographic Notes
	References

	Index



