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Preface

Smart structures involve interactions between mechanical and electric fields.
Classical models for beams, plates, and shells were originally developed to
compute stress fields due to the application of mechanical loadings. These
classical models have demonstrated certain difficulties and limitations in the
analysis of smart structures. Electrical loadings are in fact “field loadings”
which require the use of advanced structural models. Smart structures, in most
applications, are layered structures with piezoelectric patches/layers. Layered
structures have, by definition, several “interfaces.” Interfaces lead to discon-
tinuous distributions along the thickness of both the electrical and mechanical
properties. This book presents a detailed analysis of classical and advanced
structural models that are able to deal with mechanical and electric field load-
ings. Assumptions are made on displacements, transverse stresses, electric
potential, and transverse electric displacements. Extensions of the principle of
virtual displacements (PVD) and of the Reissner mixed variational theorem
(RMVT) are used to derive governing equations and finite element matrices of
laminated plate/shell structures embedding piezoelectric layers. Assumptions
on the unknown variables are introduced through the application of the Carrera
Unified Formulation, where the accuracy of the models can be enriched by
preserving the form of governing equations and finite element matrices, which
are written in terms of a few fundamental nuclei. A large variety of plate/shell
models are built and compared. Classical theories, based on Kirchhoff-Love
and Reissner—Mindlin assumptions, are obtained as particular cases. The clas-
sical and advanced structural models discussed in this book have been coded
using the academic in-house software MUL2 (MULCtifield problems for MUL-
tilayered structures). MUL2 has been used in most of the quoted numerical
calculations. An updated version of these codes is available to buyers of this
book at http://www.mul2.com.

www.wiley.com/go/carrera



Introduction

In many national and international declarations, it has been stated that develop-
ments in advanced structures, in the automotive and shipbuilding industries, as
well as in aeronautical and space sciences, are subordinate to the development
of so-called smart structures.

The definition of smart structures has been extensively discussed since the
late 1970s. A workshop was organized by the US Army Research Office in
1988 in order to propose a definition of smart systems/structures to be adopted
by the scientific community (Ahmad 1988):

A system or material which has built-in or intrinsic sensor(s), actu-
ator(s) and control mechanism(s) whereby it is capable of sensing a
stimulus, responding to it in a predeterminated manner and extent,
in a short/appropriate time, and reverting to its original state as
soon as the stimulus is removed.

According to design practices, smart structures are systems that are capable
of sensing and reacting to their environment, through the integration of various
elements, such as sensors and actuators. Smart structures can allow their shape
to be varied to very high precision and without using classical mechanical
actuators, alleviate vibrations and acoustic noise, and even monitor their own
structural health.

Piezoelectric, piezomagnetic, electrostrictive, and magnetostrictive mate-
rials are of interest when designing smart structures. Shape memory alloys,

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



2 INTRODUCTION

electrorheological fluids, and fiber optics should also be mentioned. This book
deals with smart structures, taking advantage of piezoelectric effects.

Nowadays, it is difficult to foresee whether smart structures will be
employed to any great extent in the future. However, interest in a better un-
derstanding of the topic appears essential and could lead to many other uses
related to other extensive domains of application.

1.1 Direct and inverse piezoelectric effects

Piezoelectricity was discovered by Jacques and Pierre Curie in 1880, when they
realized that several kinds of crystals were able to generate positive or negative
electric charges when subjected to mechanical pressure (Curie and Curie 1880,
1881). When dealing with piezoelectric materials, a charge is generated when
molecular electrical dipoles are caused by a mechanical loading: that is, the
direct effect (sensor configuration). Conversely, when an electric charge is
applied, a slight change occurs in the shape of the structure: that is, the inverse
effect (actuator configuration). It has been demonstrated that piezoelectric
materials can be used at the same time as actuators and sensors, obtaining the
so-called self-sensing piezoelectric actuator (Dosh et al. 1992).

Piezoelectricity is a feature of some natural crystals (such as quartz and
tourmaline) or synthetic crystals (lithium sulfate), and several kinds of polymers
and polarized ceramics. The most common piezoelectric materials are the
piezoceramic barium titanate (BaTiO3) and piezo lead zirconate titanate (PZT).
The crystal lattice of piezoelectric materials is of the face-centered cubic (FCC)
kind. Metallic atoms are located at the vertex of the cube, while oxygen atoms
remain at the center of the cube’s faces. A heavier atom is located at the
center of the cube and it can shift slightly to positions with less energy, with
a consequent deformation of the crystal lattice (metastable structure). If an
electric field is applied to the structure, the central atom can exceed the potential
energy threshold and move to a lower energy configuration. This is followed by
a rupture of symmetry and the creation of an electric dipole (Figure 1.1). The
previous phenomenon is possible only below the so-called Curie temperature.
Above this temperature, the piezoelectric effect disappears due to high thermal
agitation. Polarized piezoceramics are obtained by heating them above their
Curie temperature and subjecting the material to an intense electric field during
thermal cooling. In so doing, all the dipoles become oriented in the same
direction and the material obtains a stable polarization. Moreover, apart from
a residual polarization, the crystal lattice of the polarized piezoceramic will
also undergo a residual deformation. After the polarization process, a very
small electric potential will be sufficient to obtain a temporary deformation and
vice versa.
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Figure 1.1 Piezoceramic cell before (left) and after (right) polarization.

Even if the electro mechanical coupling is a nonlinear phenomenon, piezo-
electric problems are usually studied through linear analysis. This leads to the
adoption of assumptions, which will be discussed in Chapter 2. Additional
details on this topic can be found in the works by Cady (1964), Tiersten (1969),
and Ikeda (1996).

1.2 Some known applications of smart structures

Smart structures have been used in sensing, actuating, diagnosing, and assessing
the health of structures, depending on the external stimuli. Sensors and actuators
should be integrated into the complete structures and this leads to unusual design
solutions, compared to traditional structural design solutions (Srinivasan and
McFarland 2001). In the most advanced design concepts, smart structures
could have the ability to save and analyze information in order to perform a
learning process.

Nowadays, smart structures are applied in many different domains, but
they all share the common feature of having a highly cross-disciplinary
design. Among other applications, the following current/potential ones can
be mentioned.

Structural health monitoring The strain field of some critical locations of
a generic structural system can be measured using embedded sensors in order to
identify possible damage and retain structural safety and reliability. Damage is
intended here as a variation of the material and/or geometric properties, which
could affect the performances of the systems. Self-diagnostic ability plays a
crucial role in the aeronautical and space industry, where sensing the strain
field of some relevant structural subcomponents helps in the conduction of an
appropriate maintenance program and in avoiding crack propagation. This topic
appears of particular interest for composite materials, whose failure prediction
is a challenging task. Composites are being progressively employed more and
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Figure 1.2 Smart system scheme of the Saint Anthony Falls Bridge for struc-
tural health monitoring.

more in aerospace engineering in order to replace metallic structures. As a con-
sequence, structural health monitoring will become a very important task in the
near future. In principle, crack propagation could be restrained by producing
compressive stresses around the failure through a proper network of embedded
actuators (Rogers, 1990). Rogers (1990) also mentioned the possibility of us-
ing skin-like tactile piezoelectric sensors to sense temperatures and pressures.
Structural health monitoring is also applied extensively in civil engineering.
The most well-known examples refer to the remote monitoring of bridge de-
flections, mode shapes, and the corresponding frequencies (Deix et al. 2009;
Spuler et al. 2009). The scheme of the Saint Anthony Falls Bridge in Figure
1.2 represents an example of a smart system with embedded devices that offers
optimal diagnostics (Foster 2009). Monitoring is usually performed by ana-
lyzing the dynamic response of a system through an array of properly located
sensors. Periodic observations and comparisons to previous measurements and
numerical simulations can indicate some local damage or structural/material
degradation resulting from the operational environment.

Vibration control Due to their high strain sensitivity (Sirohi and Chopra
2000), piezoelectric sensors and actuators are easily employed for vibration
damping/attenuation/suppression (Inman et al. 2001). Piezoceramics are used
to reduce noise and improve the comfort of vehicles, such as cars, trucks, and
helicopters, and to improve the performances of machine tools. The same tech-
nique is often employed in spacecraft carrying equipment in a pure operational
dynamic environment. Active vibration control is usually applied in engineer-
ing practice in order to suppress dangerous vibrations over a certain range of
frequencies, as in the case of helicopter blades (Chopra 2000). Piezoelectric
materials are also effective in passive damping: a part of the mechanical en-
ergy introduced into the structural system is converted into electrical energy,
according to the piezoelectric effect. Piezoelectric passive damping devices
are commonly embedded in high-performance sports devices, such as tennis
rackets, baseball bats, and skis (Gaudenzi 2009).
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Figure 1.3 Wings with conventional flaps (left) and with smart flexible flaps
(right).

actuators

Shape morphing Among the possible shape morphing industrial applica-
tions of structural components, focusing on the aeronautics field, it is worth
mentioning the advantages of a wing with variable shape. Commercial aircraft
have to respect increasing efficiency requirements and reduce emissions. One
possible solution is to propose a variable shape wing that is able to optimize
performances in all phases of the mission. The means that can be employed to
vary the shape of the wing are quite challenging and can vary in complexity,
depending on which properties have to be modified: sweep angle, profile, as-
pect ratio, etc. Swept wings (as a solution to reduce wave drag) were first used
on jet fighter aircraft. Variable shape wings, in a broad sense, could play a sig-
nificant role in future aircraft designs. The elementary wing shape changes for
take-off/cruise/landing are currently obtained by means of rigid body motions
of movable parts, e.g., flaps, slats, ailerons, and spoilers. It is understood that
a smart flexible wing, without secondary parts, that would be able to perform
proper shape changes, would lead to a remarkable reduction in drag, weight,
and overall system complexity; see Figure 1.3 for an example of a hingeless
flap that can be obtained from shape morphing.

Active optics Active optics, which are usually employed in large reflector
telescopes and can be considered as a particular case of shape morphing, allow
the shape of mirrors to be monitored and readjusted during operation. In this
way, it is possible to avoid effects due to gravity or wind (in the case of an
Earth-based telescope) or deformations due to thermo mechanical coupling or
structural imperfections (in the case of space telescopes). The use of accurate
actuators, together with an algorithm that is able to quantify the quality of
images, allow a precision to be obtained that goes well beyond the possibilities
of conventional reflector telescopes. Active optics are currently employed in
10 m class telescopes and are also going to be applied in the next generation of
40 m telescopes (Preumont et al. 2009).

Microelectromechanical systems (MEMS) MEMS consist of extremely
small mechanical devices driven by electricity. A device’s dimensions vary
from 20 um to 1 mm. MEMS devices can be used as multiple microsensors and
microactuators (Varadan and Varadan 2002). MEMS are particularly promising
in the medical field, where they can be employed as blood sugar sensors, insulin
delivery pumps, micromotor capsules that unclog arteries, or filters that expand
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after insertion into a blood vessel in order to trap blood clots (Srinivasan and
McFarland 2001).

Many potential benefits can be obtained due to the extensive use of smart
structures in industrial applications. Reducing maintenance costs, in the case
of self-diagnostic structural health monitoring, should be mentioned. In fact,
maintenance time is a crucial point for airlines, which, according to the low-
cost business philosophy, has greatly reduced profit margins. Another benefit
consists of the possibility of producing new components, according to new de-
sign concepts, like shape morphing and the integration of MEMS in structures.
It should also be emphasized that MEMS are currently enlarging medical per-
spectives, and opening up new scenarios for the future of health care programs.

Aim of this book This book aims to illustrate the classical techniques and
some advanced models that are able to describe mechanical and electrical vari-
ables in plate/shell structures that have piezoelectric layers embedded in the
lamination stacking sequence. Two-dimensional axiomatic models are consid-
ered through analytical and finite element approaches. Classical models (e.g.,
Kirchhoff, Mindlin, and equivalent single-layer kinematic descriptions) are
compared to advanced theories (mixed, layer wise, and higher order descrip-
tions) through several numerical examples. Most of the presented theories are
derived on the basis of the Carrera Unified Formulation, which probably is one
of the most modern and advanced tools for dealing with the theory of structures.
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Basics of piezoelectricity
and related principles

The phenomenon of piezoelectricity is described by referring to the most
common piezoelectric materials. Fundamental piezoelectricity equations are
discussed, the meaning of the coupling coefficients is dealt with in detail, and
some available data concerning electromechanical properties are given. The
physical and variational principles of piezoelectricity are introduced. First,
the principle of virtual displacements is extended to the electromechanical case
by simply adding the internal electrical work. Then, three extensions of the
Reissner mixed variational theorem, which permits one to consider a priori
some transverse mechanical and electrical variables, are briefly discussed. A
clear definition of the field variables is given. The constitutive equations of
piezoelectricity are explained in detail for the different variational statements
that are proposed.

2.1 Piezoelectric materials

The phenomenon of piezoelectricity is a particular feature of certain classes of
crystalline materials. The piezoelectric effect is due to a linear energy conver-
sion between the mechanical and electric fields. The linear conversion between
the two fields is in both directions, and it thus defines a direct or converse piezo-
electric effect. The direct piezoelectric effect generates an electric polarization

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



10 BASICS OF PIEZOELECTRICITY AND RELATED PRINCIPLES

by applying mechanical stresses. The converse piezoelectric effect instead in-
duces mechanical stresses or strains by applying an electric field. These two
effects represent the coupling between the mechanical and electric fields. The
first applications were in the field of submarine detection during World War 1.
Interest increased after the introduction of piezoceramic PZT (Lead Zirconate
Titanate) at the end of the first half of the twentieth century. These ceramic
materials offered much higher performances and have thus broadened the pos-
sible field of applications. These applications, however, were still limited to
sound and ultrasound devices. A description of the early piezoelectric materi-
als can be found in Cady (1964). Kawai (1979), in the late 1970s, discovered
another class of piezoelectric materials, the so-called polyvinylidene fluoride
(PVDF), a semi-crystalline polymer with high sensor capability. In recent years,
piezoelectricity has been the subject of renewed interest, as inactive intelligent
structures with self-monitoring and self-adaptive capabilities. Interesting re-
views on these topics can be found in Chopra (2002), Tani et al. (1998), and
Rao and Sunar (1994).

The first applications of piezoelectric materials were in sound and ultra-
sound sensors and sources. These applications are still topical, but in recent
years a new range of applications has evolved. The use of piezoelectric materi-
als in the so-called adaptive structures or smart structures has opened up a new
and interesting field over the last 20 years. A typical and very simple example of
a smart structure is the plate indicated in Figure 2.1, where a network of sensors
and actuators is embedded to control the deformations and apply corrections.

Different applications require different properties, such as high- or low-
frequency actuation, high deformation, high sensory capabilities, and so on. To
this end, different materials can have advantages in certain fields. Alternative

actuators

sensors

~’0..m\'\\w- Q»

iy w-“
";»

—~‘-

TARGET:
damping, noise,
shape control,
reduction,..

ower amplifier . . .
P p control unit measuring amplifier

Figure 2.1 Example of a smart structure: the sensor—actuator network for a
plate.
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Table 2.1 Material properties of some piezoelectric ceramics (PZT) and
polymers (PVDF).

Material: PZT-5H PZT-5A PIC 151 PVDF

Producer: Morgan Morgan PI Ceramic Kynar
E [GPa] 71 69 79 2
Es3 [GPa] 111 106 77 2
v [—] 0.31 — — —
o [kg/m?] 7450 7700 7800 1800
£11/€o [—1] — 1700 1980 12
£33/€0 [—] 3400 1730 2100 12
ds; [m/V] x 10712 593 374 450 -33
ds; [m/V] x 10712 —274 —171 —-210 23
dis [m/V] x 1012 741 585 580 —
Tc [°C] 195 365 250 —

smart materials to those treated in this work are shape memory alloys (SMAs),
polymer gels (PGs), or electromagnetostrictive materials, as described in
Carrera et al. (2009a,b).

In this book, the adaptive materials that have been considered for smart
structures are crystalline materials that show piezoelectric properties, and
piezoelectric polymers and semi-crystalline polymers with ferroelectric
properties. The crystalline material group includes natural crystals (e.g., quartz
(Si0,), Rochelle salt (KNa(C4H4Og) - 4H,0), tourmaline (SiO, + B, Al))
and manufactured ceramics (e.g., barium titanate (BaTiOj3), lead zir-
conate titanate (PZT)). The second group considers piezoelectric polymers
and semi-crystalline polymers, such as polyvinylidene fluoride (PVDF).
Table 2.1 shows the basic parameters of some typical piezoceramics (PZT)
and typical piezoelectric polymers (PVDF) (see also Ikeda 1996; Rogacheva
1994). E; and E33 are Young’s moduli, v is the Poisson ratio, and p is the
mass density. T¢ is the Curie temperature, and the relative permittivities
e11/€0 and e33/g¢ are expressed with respect to the reference permittivity
g0 = 8.85 x 10" A s /V m. The meaning of the piezoelectric coefficients d33,
ds1, and d,5 is clarified later on.

Crystalline materials must be polarized to express a piezoelectric effect. Po-
larized domains exist at the microscopic level, but their directions are randomly
distributed. An external polarization is necessary to activate the material. If a
sufficiently high electric field, expressed by the potential ®p, is applied to the
crystalline material, the domains reorder more or less in the same direction and
macroscopic polarization is produced. After poling, the material has a rema-
nent polarization and a remanent elongation, as can be seen from the hysteresis
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P
Remanent A . SA
Polarization First
Poling i First
Remanent Poling
! Polarization

E VARV

Figure 2.2 Poling of piezoelectric materials: hysteresis of polarization P
(left), hysteresis of strain S (right).

curves in Figure 2.2. In this activated state, any applied lower potential than the
polarization potential ®p leads to a temporary deformation and vice versa.
The chosen coordinate system for the polarization is indicated in Figure 2.3.
The definition of an appropriate reference system is fundamental: depending
on the chosen polarization, piezoelectric materials have a different coupling
between the electric field and the mechanical deformations or stresses. The
materials considered in this work are polarized in direction 3, as indicated in
Figure 2.3. For further details on this topic, readers can refer to Ikeda (1996),
Rogacheva (1994), and Yang and Yu (1993).

The effect of the electric field on the elastic field (converse effect), and of
the elastic field on the electric field (direct effect), is assumed to be linear. The
coupling is therefore represented by linear factors: the piezoelectric coefficients.
The mechanical system is represented by the stresses o and the strains €, while
the electrical system is represented by the dielectric displacement D and the
electric field €. Four possible definitions of the coefficients for the coupling of
the two systems are given in Ikeda (1996). These definitions are summarized in

gpol 3 A 2

Figure 2.3 Reference system for polarization of a piezoelectric material in
transverse direction.
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Table 2.2 Piezoelectric coefficients. Coupling
between mechanical and electrical fields.

Piezoelectric

coefficient Converse effect Direct effect
a o=a D E=ac
d e=dT &£ D=do
b e=b"D E=bo
e o=c¢ & D=ce

Table 2.2 . For each type of coefficient there exist different components which
relate one electric field component to one component of the mechanical field.
The typical notation is explained, as an example, for the converse effect
in the case of d. The components of the electric field £ are named &, &,
and & in the 1, 2, and 3 directions, respectively. The components of the strain
tensor in engineering notation are referred to as 1 to 6, and they represent the
components 11, 22, 33, 23, 13, and 12. The different components of d are thus
named dj;, with i referring to the electric field direction and j to the stress or
strain components. In the case of polarized polycrystalline ceramic materials
with the crystal symmetry associated to the crystallographic class, five different
coefficients dj; exist: dys, das, d31, d3, and d33, of which the first and second
pair have the same value. The array form of the piezoelectric coefficients states:

0 0 0 0 ds O
d=10 0 0 d 0 0 @.1)
dyy dxn dz 0 0 0

The meaning of coefficients d33, ds;, and ds is explained in Figure 2.4.

8 33 31

1 |2 V]ng f@‘g/

€3 €1 €s

Figure 2.4 Meaning and effects of some piezoelectric coefficients.
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2.2 Constitutive equations for piezoelectric
problems

The individual material and its reaction to applied loads are characterized
by constitutive equations. Their form, for the electromechanical problem, is
obtained in this section according to the form reported in Carrera et al. (2007,
2008). The general coupling between the mechanical, electric, and thermal
fields can be determined using thermodynamical principles and Maxwell’s
relations (Altay and Dokmeci 1996a; Tiersten 1969). To this end, it is necessary
to define a Gibbs free-energy function G and a thermopiezoelectric enthalpy
density H (Ikeda 1996; Nowinski 1978):

G(é,‘j, 5,', 9) = 0jj€;j — giD[ - 7’]9 (22)
H(ej, &, 0,9;) = G(ej, &, 0) — F (D)) (23)

where oj; and €;; are the stress and strain components, &; is the electric field
vector, D; is the electric displacement vector, 1 is the variation in entropy per
unit of volume, and 6 is the temperature considered with respect to the reference
temperature 7. The function F (¥;) is the dissipation function which depends
on the spatial temperature gradient ?9;:

1
F(z?,«) = EKijl?iﬂj — ‘L'o/’l,' (24)

where «;; is the symmetric, positive, semi-definite conductivity tensor. In the
second term, 7 is a thermal relaxation parameter and h ; 1s the temporal deriva-
tive of the heat flux /;. The thermal relaxation parameter is usually omitted in
the proposed multifield problems. Further details about the dissipation function
F(9;) can be found in Altay and Dokmeci (1996b), Yang et al. (2006), and
Cannarozzi and Ubertini (2001), where interesting considerations are made
about the inclusion or lack of inclusion of the dissipation function F (%;) (e.g.,
it must be considered in the thermo mechanical analysis of a structure with
temperature imposed on the surfaces).

The thermopiezoelectric enthalpy density H can be expanded in order to
obtain a quadratic form for a linear interaction:

1
H(ej, &, 0,0:) = 5 Qii€ijen — ej€&x — A€t

1 1 1
—§8k15k51 — P&l — 5)(92 - Eszl?fﬁj (2.5)
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where Qi is the elastic coefficient tensor considered for an orthotropic ma-
terial in the problem reference system (Reddy 2004). e;; are the piezoelectric
coefficients and gy are the permittivity coefficients (Rogacheva 1994). A;; are
thermo mechanical coupling coefficients, p; are the pyroelectric coefficients,
and x = pC,/ Ty, where p is the material mass density, C, is the specific heat
per unit mass, and T is the reference temperature (Ikeda 1996).

For the piezoelectricity problems proposed in this book, the thermal contri-
butions are not considered and the piezoelectric enthalpy density H coincides
with the Gibbs free-energy function G. Equation (2.5) can be rewritten as:

1 1
H(ej, &) = EQijklEijekl — ejjk€iir — 58k15k51 (2.6)

The constitutive equations are obtained by considering the following relations:

o _oH 0
o = —, = —— .
T D YT s

The constitutive equations for the electromechanical problem are obtained by
considering Equations (2.6) and (2.7):

oij = Qiuen — €k (2.8)
Dy = ejveij + ené (2.9)

These equations can be written in single-subscript notation by using the indexes
m=q=1,2,3,4,5,6andi = =1,2,3:

om = Omg€q — emi&i (2.10)
D; = ejgeq + ;€ (2.11)

From the equations written in single-subscript notation, it is very easy to write
their matrix form; the matrices and vectors are indicated in bold type. Consid-
ering a generic multilayered structure, Equations (2.10) and (2.11) are written
for a generic layer k in the problem reference system (x, y, z) as:

ok = QFet — T EF (2.12)
D = kel + eFEF (2.13)
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The 6 x 1 stress and strain component vectors are:

k k
O‘X.‘C EXX
Oyy €yy
Oz : €,
ok = , €= (2.14)
(o2 vz yyz
Oz Vxz
Oxy Vxy

D
D' =1D, (2.15)
D

The elastic coefficients matrix Q* of Hooke’s law in the problem reference
system for an orthotropic material is:

Q11 Qi Oi 0 0 Qi
O 0On 0»n 0 0 QO
t Oi Q0x 03 0 0 Qs
= 2.1
Q 0 0 0 Qu Qs O (2-16)
0 0 0 Qs O0Oss O

LO1s 0O QO3 O 0  QOes

The matrix e of the permittivity coefficients has 3 x 3 dimensions:

k
en e 0
€k = | €12 €&, 0 (217)
0 0 €33

The piezoelectric coefficients matrix e* has 3 x 6 dimensions:

0 0 0 €14 €15 0 ¢
=10 0 0 ey es 0 (2.18)

e3; exn ez 0 0 ez

In order to use the relations proposed in Equations (2.12) and (2.13) in the
variational statements presented in the following sections, it is convenient to
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split them into in-plane components (subscript p) and out-of-plane components
(subscript n). Another two new subscripts are introduced: the subscript C for
those variables in the variational statements which need the substitution of the
constitutive equations; the subscript G for those variables in the constitutive
equations which need the substitution of the geometrical relations (the latter are
introduced in the next section). The proposed constitutive equations are valid
for both plate and shell geometries; for this reason, a curvilinear reference
system (o, B, z) is introduced in place of the less general rectilinear one
(x, v, z). Geometrical relations for shells are obtained in Section 2.3 and their
degeneration into geometrical relations for plates is discussed. The split stress
and strain component vectors are:

k k k k
. Oaa . Oqz . €aa . Yaz
Opc =198 (> Onc= OBz (> €G=)€BB (> €= ) Ve: (2.19)
Oup (& YeoB €2

The 3 x 1 vectors of the electric field and electrical displacement, split into
in-plane and out-of-plane components, are:

&' k D, |* k
g;G:{E‘;}, =11, Dﬁcz{pz}, Dy ={D.}" (2.20)

The split form of Equations (2.12) and (2.13), considering Equations (2.19)
and (2.20), is:

= Qo+ Qhenc— el Erg — el Eng (2.21)
a’,;'c = Q). €rc+ Orng — € Eng — €rr Eng (2.22)
’Dﬁc = ek elk;G + e enG + e £pG + e[mSnG (2.23)
D)y = e, €5 + ey 6nc + e ,Erc + e, En (2.24)

The explicit forms of the new matrices in Equations (2.21)—(2.24) are:

e clastic coefficient matrices

On Qn O ‘ 0 0 O3
Qy,=|0n2 0n 0Qx|. Q,=|0 0 0Ox (2.25)
Ois Q% Oss 0 0 Qs
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0 0 07" 0ss Qs 07"
Q=10 0 0], Qf=|0s Qu O (2.26)
Oz O Oz 0 0 O
® piezoelectric coefficients
k k
0 00 e;s ey 0
ko K
€, = |:0 0 O:| . €, = |:e25 ers 0:| (2.27)
k k k k
e, = [631 e 636] . € = [O 0 e33] (2.28)
® permittivity coefficients
en enl 071"
P |En i
€PP - |:812 822:| ’ 8[’77 - I:Oi| (229)
' k k
e, = [0 0] e = [833] (2.30)

2.3 Geometrical relations for piezoelectric
problems

We define a thin shell as a three-dimensional body bounded by two closely
spaced curved surfaces, the distance between the two surfaces being small in
comparison to the other dimensions. The middle surface of the shell is the locus
of the points that lie midway between these surfaces. The distance between the
surfaces measured along the normal to the middle surface is the thickness of the
shell at that point (Leissa 1973). Shells may be seen as generalizations of a flat
plate (Leissa 1969); conversely, a flat plate is a special case of a shell with no
curvature (see Figure 2.5). Geometrical relations for plates are considered as a
particular case of those for shells. The material is assumed to be linearly elastic
and homogeneous, and displacements are assumed to be small, thereby yielding
linear equations; shear deformation and rotary inertia effects are neglected, and
the thickness is taken to be small.

In the case of shells with constant radii of curvature (see Figure 2.5), the in-
plane (p) and out-of-plane () strain components are linked to the displacement
vector by the equations:

ef)G = [eaaa €pp, Vaﬂ]kT = (DI;, + Al;,) uk (231)

ef;G = [Vaz’ YBzs Ezz]kT = (Dl:,p + DI;,Z — A];) uk (232)
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b

Figure 2.5 Geometry and notations for generic multilayered plates and shells.

where, for each layer £, the vector of displacement componentsis u = (u, v, w).
The explicit form of the introduced arrays follows:

- o _
— 0 0 B Oy
k —
H, , 00 7 5 0 0
ko 8 e P
Dp - 0 Hg 0 ’ D"]’_ O O a_ﬂk ’ Dnz_ O 8: O (233)
0 O Hﬂ 0 0 o,
wroar 00 0
| Hg Mo |
[0 0 F 1
HKRK HERE 0
A, = _L A= o (2.34)
r 00 ’ n 0 T 0 .
HiRy HERY
(00 0 .0 0 0

Details on Equations (2.31)—(2.34) are given in Carrera and Brischetto
(2007a,b). The symbols 9y, dg and 0. indicate the partial derivatives with
respect to the «, 8, and z coordinates, respectively. The parametric coefficients
are HO][‘ =+ zk/Ré) and HX = (1 + zk/Ré'), where Rg, and R/’_f} are the radii
of curvature in the o and B directions, respectively. The geometrical relations,
which link the electric field to the electric potential ®*, are also given in Carrera
and Brischetto (2007a,b):

s = [Ea, &1 = —DE, @ (2.35)
o =181 =-Df, o (2.36)
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where the meaning of the arrays is:

da
HE
D, = 5 | Di, =[0.] (2.37)
ok
Hg

The geometrical relations for the shells in Equations (2.31)—(2.37) degen-
erate into geometrical relations for plates when the radii of curvature Rf, and
Ré are infinite. The parameters H* and H g are therefore equal to one, and
the orthogonal curvilinear coordinates («, 8, z) degenerate into rectilinear ones

(x, y, 2):

€ho = [ea €. YT = D, u* (2.38)
€6 = Ve, Vors €1 = (D + D) U (2.39)
gﬁc = [&, Ey]kT =Dy o (2.40)
& =1&1" = —D,, (2.41)

The new differential operators do not depend on the k layer:

% 0 0 0 0 d 9. 0
D,=|0 9 Of, D,=[0 0 8|, D.,=|0 3 0
d 9 0 00 0 0 0 o
D _ [ D, =[] (2.42)
ep—-ay ) en — z .

The symbols in the differential operators matrices are: 9, = d/9x,
dy = 0/0y and 9. = 9/0z. Further details on the geometrical relations of plates
can be found in Carrera et al. (2007) for electromechanical problems.

2.4 Principle of virtual displacements

Recently, several two-dimensional approaches have successfully been extended
to multifield problems (Chopra 2002; Correira et al. 2000; Ossadzow-David
and Touratier 2003). Refined models can be obtained via the extension of the
principle of virtual displacements (PVD) to the electromechanical case.
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The PVD of an electroelastic medium can be derived from the Hamilton
principle, as indicated in Carrera et al. (2007, 2008):

t t t
5/ (E. — Ep)dt =0 = 5/ E.df — 5] Epdi =0 (2.43)

to 4] to

where E. and E, are the kinetic and potential energy, respectively. § is the
variational symbol, #y the initial time, and ¢ a generic instant (Carrera et al.
2008). The total potential energy E), includes the piezoelectric enthalpy density,
H, as described in Equation (2.6), and the work done by surface tractions 7; and
electric charge Q on the displacements u; and electric potential ®, respectively:

E, =f HdV — /(fjuj — Q®)dl (2.44)
\% r

where V is the volume and I" the boundary of the reference surface 2.
The variation in the kinetic energy E, is the well-known relation (Carrera
et al. 2007, 2008):

t t t
5/ Ecdt=8/ dt/ (%puiui)d\/://pu,-éuid\/dt
fo fo \4 thJV

t
Vv fhJV

and since du; vanishes at ¢y and #;, the following expression can be obtained:

t t t
$ f E.dt = — / / pii;Su;dVdt = — / SLdt (2.46)
to toJV fo

where p is the mass density, u#; and ii; are the first and second temporal
derivatives of displacement u;, respectively, and 6L, is the virtual variation of
the work done by the inertial loads.

The variation in the potential energy E, can be rewritten according to
Equations (2.2)—(2.6):

5/{0[ Epdt:8/tot [/V (G(e,-j,&))d\/—/r(t_juj - Q(b)d[‘]dt (2.47)

where G is the Gibbs free-energy function which is coincident with the piezo-
electric enthalpy density H in the proposed case (Altay and Dokmeci 1996b;
Yang et al. 2006; Cannarozzi and Ubertini 2001). The variables in the problem
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are the strain vector ¢;; and the electric field &;. The contribution given by the
external loads is the virtual variation in the external work:

SL, =4 / (fu; — Q@)dT (2.48)
r

Using Equation (2.48), Equation (2.47) can be rewritten as:

t t t
5 f E,dt=3§ f f (H(e,j,E;))dth— / SL,dt (2.49)
10 HJV fo

Differentiating each term in Equation (2.49):

t
/ E,dt = / / e + 85)dth— / SL.dr  (2.50)
fo 36,1 fo

Considering the relations given in Equation (2.7), Equation (2.50) can be
rewritten as:

t t t
5/ E,,dt:// (aijaeij—Diag,)dde—/ SLedt  (2.51)
to toJV fo

where oj; are the stress components and D; is the vector containing the electric
displacement components. Combining Equation (2.51) and Equation (2.46),
then according to Equation (2.43), the final version of the PVD in the case of
the electromechanical problems is:

t t t
f / (cgses — Dro&: )avar = / SLdt — f SLadi  (252)
fo \%4 fo fo

By discarding the dependence on the time ¢ and introducing the vectorial
form of the constitutive equations, split into in-plane (p) and out-of-plane (1)
components (see Equations (2.21)—(2.24)), Equation (2.52) can be rewritten as:

[ (&ZGWC +8el50,0 — 8ET; Dy — 5£,T,GD,,C)dv — 8L, — 8L, (2.53)
\%4

The bold letters in Equation (2.53) denote vectors; T stands for the transpose
of a vector. Subscripts C and G suggest the substitution of constitutive and
geometrical relations, respectively. V' is the total volume of the considered
multilayered plate or shell.

The general form of the governing equations is:

K,u+K,;®=p,—M,u (2.54)
Ko,u+ Kopop® =0 (2.55)
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The matrices K are already considered to be assembled at a multilayer level and
expanded for the chosen order in the thickness direction. The vectors contain
the degrees of freedom for the displacement u and the electric potential . M,
is the inertial matrix and u is the second temporal derivative of the displacement
vector. The mechanical load is p,,.

2.4.1 PVD for the pure mechanical case

In the case of pure mechanical problems, the PVD has only the displacement u
as the primary variable (Reddy 2004). The variational statement, the constitutive
equations, and the governing equations can be considered as particular cases
of the most general case illustrated in the previous section. The variational
statement is simplified, on the basis of Equation (2.53), by discarding the
internal electrical work:

f (ae;Gapc + 3e§Ganc)dv = 6L, — SL;, (2.56)
\4

The relative constitutive equations are the well-known Hooke’s law (Reddy
2004), which can be considered as a particular case of the constitutive equations
given in Equations (2.21)—(2.24):

ohe = Qb ere + Qhieng (2.57)
ohe = Qherc + QhiEnc (2.58)

By substituting Equations (2.57) and (2.58) into the variational state-
ment of Equation (2.56), the governing equation is obtained for the pure
mechanical case:

K, u= Pu — M,,u (259)

It is important to notice that Equation (2.59) can be obtained in a simpler
way by deleting the second line and the second column in Equations (2.54)
and (2.55); in fact, matrix K, is the same for both the pure mechanical and
electromechanical cases.

2.5 Reissner mixed variational theorem

The Reissner mixed variational theorem (RMVT) (Reissner 1984) allows one
to assume two independent sets of variables: a set of primary unknowns as in
the PVD case, and a set of extensive variables which are a priori modeled in the
thickness direction. The main advantage of using the RMVT is that a complete



24 BASICS OF PIEZOELECTRICITY AND RELATED PRINCIPLES

fulfillment of the C? requirements is obtained a priori for the modeled extensive
variables (Carrera 2001). Different extensions of the RMVT are given, in the
case of electromechanical problems, by starting from the electromechanical
PVD: transverse shear/normal stresses o, as the extensive variables; transverse
normal electric displacement D,, as the extensive variables; both o, and D,, as
the extensive variables. These three cases can be obtained as follows: a Lagrange
multiplier is added for o, in the former case, a different Lagrange multiplier is
considered for D, in the second case, and two Lagrange multipliers are added
in the last case. When a new Lagrange multiplier is added (Reissner 1984),
the constitutive equations must be rearranged in order to explicitly model the
variables. For this reason, each proposed extension of the RMVT should not
be seen as a particular case of the other two.

2.51 RMVT(u, ®,0,)

RMVT(u, @, 0,) is obtained, considering the variational statement in Equa-
tion (2.53) for the electromechanical PVD, by a priori modeling the transverse
shear/normal stresses 0,3 (the new subscript M is introduced to show that the
transverse stresses are now modeled and not obtained via constitutive equa-
tions). The added Lagrange multiplier is (SUZM (€,6 — €,¢). The condition that
is necessary to add this multiplier is that the transverse strains €,, calculated
by means of geometrical relations (G) and using the constitutive equations (C),
must be the same or almost the same. In this way, the balance of the internal
work does not change or remains almost the same:

/V (SG;GGpC + 85,{G0nM + SU,TLM(enG — €nc) — 68[{GD1)C
—35,{GDnc)dv = 6L, — 8Ly, (2.60)

The relative constitutive equations are obtained from Equations (2.21)—(2.24)
considering the transverse stresses o, as being modeled (M) and the transverse
strains €, as being obtained from constitutive equations (C):

ko pk k ok k ok k ok k

Opc = CopepepG + Ca[,ananM + Capgpé'pc + Ca,,&,gnG (2.61)
.= 10t ok 1Ot gl 4t g (2.62)
nC — Y€€, pG enananM €&, Y pG €, nG .

kL Ak Ak Ak
D) = CD,,E,,G[I;G + CD,,UHJI;IM + CD,,s,,g;];G +Cpe, E (263

L < Ak k A k A k
DnC - CDne[,epG + CDnananM + C'D,IEI,S]JG + CD,,&,gnG (264)
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According to Carrera et al. (2007, 2008), the meaning of coefficients C in
Equations (2.61)—(2.64) is:

~k

Ak k ok 1
CU,)e,, = Qpp Qpn an an’ CU,,U,, = Q[m an

Ak k1 o7 KT k1 o7 kT
CU,,S,, = Qpn an pn epp ’ a,, n Qpn an € enp

Ak Ak k —1

CE,,Er, = Qlﬂ’l I?p’ Cénan = an

Ak k=1 kr Ak k=1 kr

Ce,,é'p - an epn ) Ce,,é'/, - an € (265)

Ak k k ok =1 ok Ak k ok —1
CD,,E,, = epp - epn an an’ CDPG,, = epn sz

K k Ak — kT P~ k1 T 4 gk
CD,,SF = epn nn + 6‘pp’ CDFS,, = an € epn
. k k gk =1k - k ok —1
Dyep = enp € L an’ CD,,UN =€, %
~ k ok = kT k Ak k ok L kT k
Dy&p =€ %m epn + enp’ CD,,&, =€ € + Em

The governing equations are obtained by using the variational statement in
Equation (2.60), the constitutive relations in Equations (2.61)—(2.64), and an
opportune two-dimensional plate/shell model. In symbolic form, these equa-
tions are:

K,u+ K, 0,+K,s® = Pu — M, (266)
Ko u+K,,0,+Ky,® =0 (2.67)
Kou+ Kos0, + Koo® =0 (2.68)

The transverse shear/normal stresses o, in Equations (2.66)—(2.68) are pri-
mary variables of the problem, and are directly obtained from the governing
equations; this permits one to have transverse stresses that are a priori and
completely fulfill the C° requirements. This RMVT form has three variables
(u, 0,,and ®), while the PVD for the electromechanical case has two variables
(u and ®). It is important to notice that the matrices K for the PVD in Equa-
tions (2.54) and (2.55) are completely different from those in the RMVT in
Equations (2.66)—(2.68): this is because a Lagrange multiplier has been added
and the constitutive equations have been rewritten.

2.5.1.1 Pure mechanical case

The RMVT, with the transverse shear/normal stresses modeled a priori for the
case of pure mechanical problems, has the displacements u and the transverse
stresses o, as variables. The variational statement can be obtained as a particular
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case of RMVT(u, @, 0,) simply by discarding the internal electrical work, and
it is therefore possible from Equation (2.60) to obtain (Carrera and Demasi
2002a,b):

f (Se,{Gapc +8€! 0 + 807 (€0 — enc))dV = 6L, — 8Ly  (2.69)
\%4

No new Lagrange multipliers are added to RMVT(u, ®, ¢ ,), therefore the con-
stitutive equations can be considered as a particular case of those in Equations
(2.61)—(2.64):

ko Rk Ak k

apC - C(T,]e,,epG + Ca,,a,,“nM (270)
ko pk k Pk k

€ic = Ce e, €6 T C5,00m @2.71)

The governing equations can be obtained using Equation (2.69) and Equations
(2.70) and (2.71) (Carrera 1999a,b):

K,u+ K, o0, = Pu — M,u (272)
K, ,u+K,,0,=0 (2.73)

The governing equations in Equations (2.72) and (2.73) can be simply obtained
by eliminating the third column and the third line in Equations (2.66)—(2.68).
The remaining matrices K are the same as those in RMVT(u, ®, ¢,) and
RMVT(u, 6,). The matrix K, is completely different from that in Equation
(2.59), for the pure mechanical PVD, because of the introduction of a Lagrange
multiplier and the consequent rearrangement of the constitutive equations.

252 RMVT(u, ®,D,)

RMVT(u, ®, D,) is obtained, considering the variational statement in
Equation (2.53) for the electromechanical PVD(u, @), by a priori modeling
the transverse normal electric displacement D, (here, the new subscript
M is introduced to show that the transverse normal electric displacement is
now modeled and not obtained via the constitutive equations). The added
Lagrange multiplier is D7, (€, — €,¢). The condition necessary to add this
multiplier is that the transverse normal electric field £, calculated by means
of geometrical relations (G) and using the constitutive equations (C), must be
the same or almost the same. In this way the internal work does not change or
remains almost the same:

/v (56;GO’I,C +8€);0c — 8E,;Dpc — 8E ) Duu

—DT (En — £nc))dv — 8L, — 5L, (2.74)
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The relative constitutive equations are obtained from Equations (2.21)—(2.24)
considering the transverse normal electric displacement D,, as being modeled
(M) and the transverse normal electric field £, as being obtained from
constitutive equations (C):

k K k Ak k K k k

GpC = CrrpepépG + Crrpe/,enG + C(r,,f £ pG + C(r D, DnM (275)
k ~k k ~k k ~k k =, k

0,c = a,,e,,epG + Ca,,e,,enG + Cané'png + C(THD,,DVIM (276)

k ~k ~k Ak
D) = CDpe,,ﬂ];G + CD,,E,,GI;LG + CD,,E,,‘S;;G + CD,,D,,DﬁM @.77)

k k ~k k ~k k ~k k
Enc = Cee €6+ Ce e €46+ Ce e €46+ Cep, Dy (2.78)

According to Carrera et al. (2008), the meaning of coefficients C in Equations
(2.75)-(2.78) is:

Coe, = Qhp+elpel, ehy Cp =0, +eilel, e,

Cfr,,f,, = e];;€];1171€£p - ez;’ CI;FD,, = _eﬁ‘z];eﬁn71

_fr,,e,, = an + elr{u]; Ir{m lel;;p’ Cffnén = an + ek’{ N leﬁn

él;,,é'p = eﬁzeﬁn_]elr{w - ef}r{’ Cl:r,,D,, = - ﬁ;{ ﬁn_l

CkD,,e,, = eﬁp - €§n€§n_]eﬁp’ CkD,,e,, = eﬁn - eﬁneﬁn_leﬁn (279)
C kD,,E,, = ezlgp - e;ﬁnsﬁnileﬁp’ C_‘g,,D,, = ezneﬁr:l

_I;:ne,, == lr‘;n71 ﬁp’ lei‘,,s,, = _eﬁn71 ﬁn

Clg},fp = _eﬁn_leﬁp’ C];,',,Dn = el;m_l

It is possible to obtain the governing equations using the variational statement
in Equation (2.74), the constitutive relations in Equations (2.75)—(2.78),
and an opportune two-dimensional plate/shell model. In symbolic form,
these are:

K, u+ K, o® + KMDDM = Pu — Muuﬁ (280)
K¢l,u+K¢¢<I>+K¢D’Dn =0 (281)
Kpu+ Kpe® + KppD, =0 (2.82)

The transverse normal electric displacement D,, in Equations (2.80)—(2.82) is a
primary variable of the problem, and it is directly obtained from the governing
equations; this permits one to have the transverse normal electric displacement
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that a priori and completely fulfills the C? requirements. This RMVT has
three variables (u, ®, and D,,), while the PVD for the electromechanical cases
has two variables (u and @). It is important to notice that the matrices K in
Equations (2.54) and (2.55) are completely different from those in the RMVT
in Equations (2.80)—(2.82).

253 RMVT(u, ®,0,, D,)

The starting point is the variational statement in Equation (2.53) for the
electromechanical PVD(u, ®). RMVT(u, ®, 0, D,) is obtained by a priori
modeling both the transverse shear/normal stresses o ,), and the transverse
normal electric displacement D,,, (here, the new subscript M is introduced to
show that the transverse stresses and normal electric displacements are now
modeled and not obtained via the constitutive equations). The added Lagrange
multipliers are SGIM (€,6 — €,c)and (S’DZM (€,6 — E,c). The condition neces-
sary to include these multipliers is that the transverse strains €, and the normal
electric field £, calculated by means of geometrical relations (G) and using
constitutive equations (C), must be the same or almost the same. In this way
the internal work does not change or remains almost the same (Carrera and
Brischetto 2007a,b):

/v ((SGZGGPC +8€! ooy + 80 (€16 — €4c) — 55;(;'1),;6 —8EL D,y
—8D! (€ — Snc))dV =038L, —6Lj, (2.83)
The relative constitutive equations are obtained from Equations (2.21)—(2.24),
by considering the transverse stresses o, and the normal electric displacement

D, as being modeled (M) and the transverse strains €, and the normal electric
field £, as being obtained from constitutive equations (C):

ko _ pk Fk k Fk k Fk k
apC - Ca,,e,,epG + Ca,,ano-nM + Ca,,&',,ng + Ca,,D,,DnM (284)
ko _ @k Lk ~k ok Fk k ~k k
€0 = CénépepG + Ce,la,,o'nM + Ce,,E,,SpG + Ce,,D,I’DnM (285)
Dk =Ch €.+ Ch ok, +Ch . E+ O D, (2.86)
pC — “ Dpe, = pG D,,U,,GnM D,E,“ pG D,D, = nM .

k ko k Ak k K k K k
Ene =Cec, €6 T Ce 5,0, +Cec €6+ Cep Dy (2.87)
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According to Carrera and Brischetto (2007a,b), the meaning of coefficients C
in Equations (2.84)—(2.87) is:

—1
Ak ok k ok L Ak k ok =t kT KT\ ([ K kT
Ca,,ep_ Qpp_ pn X nn np pn X nn €in _enp € an e +€
k k ok 1 Ak
X (enp —Cn an an)
Cvk —Qka Q Q lkT T kalkT+ = kafl
0,0, — ZpnZnn on&an €nn ~Cup )\ €inLun €nn TEn €n Cnn
¢t —0F oF T kT Q -1 kT kT [k KT | gk -
o,y T Xpn = nn ep pn = nn €in enp €un & nn enn €

k ok —1 kT k
X (enn an epn +€np)

-1
-1 kT kT k ok L kT k
(Qpn erl’l nn e enn Ql’li’l enn + enn

-1
P k=1 ok k=1 kT ( k ok —L kT k ok L ok k
€€y =mn np~ Znn Con \ € Lnn enn +€nn €in Lnn np _enp
-1
Ak okl k=L kT ( k ok — T k ok
€,0p - an - nn e}’lﬂ eVlll nn Vlﬂ + € enn nn
-1
PN N v k=L kT ( k ok kT ko k 71kt
&y an epn - an € \ € an + snn € an pn + €
C‘k _ kL kr Lk ok KTy ok - (2.88)
e, D, — an emz enn an enn 6‘nn .
-1
-1 T (5 OF -1 &7 k k
CD[,E[, an an epn an nn ( € an nn + enn (enp ~Cm
Kook =l ok Nk k ok —1 ok
an an pn € an € +€nn enp ~Cm an an
-1
koo k ok L kT (& ok 1 T k ok 1
CDP(I,, - epn an - epn an € \ Cun an nn + 6‘nn €L
k k ok —L kT AR
_epn enn in‘l enn + si’ll’l enn nn
C‘k +e -1 T Q o Q ekr+€ -1 & Qk*l
Dpfp nn pn pn nn nn nn nn nn = nn
kT k k(b of T okT : kT
X epn + é‘np) - €np <enn nn rm + € ) (enn nn + enp)
C‘k —e k—lekT & oF kT+€ +€ ek oF kT+€ -
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—1
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-1

~k k ok 1 kT k k ok 1

Cé'non == (enn Qrm €nn + enn) €un & nn

~k k ok 1 kT K\ k ok LT k

CS,,Sp =- (enn nn €nn +€nn) (enn nn epn + €np>

~k k ok 1 kT K\

CS,,Dn = <enn m €nn + 6‘nn)

The governing equations are obtained from the variational statement in Equa-
tion (2.83), the constitutive relations in Equations (2.84)—(2.87), and using an
opportune two-dimensional plate/shell model. In symbolic form, these equa-
tions are:

K,u+K,,0,+ K, c®+ K, pD, =p, — M, u (2.89)
Kot + Kyo0, + Kyo® 4+ K,pD, =0 (2.90)
Ko,u + Koo0, + Koo® + KopD,, =0 (2.91)
Kp,u + Kp,0, + Kpe® + KppD, =0 (2.92)

The transverse shear/normal stresses o, and the normal electric displacement
D,, in Equations (2.89)—(2.92) are primary variables of the problem, and they
can be obtained directly from the governing equations; this fact permits their
C? requirements to be fulfilled a priori and completely. The proposed RMVT
has four primary variables (u, a,, ®, and D,,). It is important to notice that the
matrices K in Equations (2.89)—(2.92) are completely different from those of
the PVD and the other two extensions of the RMVT: two different Lagrange
multipliers have been added.
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Classical plate/shell theories

Two-dimensional plate/shell models are introduced in the axiomatic frame-
work. First, classical theories for shells/plates, such as the classical lamination
theory and the first-order shear deformation theory, are discussed for plate
geometries in the case of pure mechanical analysis. Their extensions to
piezoelectric problems is almost immediate, if a linear through-the-thickness
electric potential is included. Examples are given for equilibrium equations
in the case of smart structures; both the Kirchhoff and Reissner—-Mindlin
plate/shell theories are introduced in the case of a piezoelectric layer embedded
in a multilayered smart structure.

3.1 Plate/shell theories

The analysis, design, and construction of layered structures is a cumbersome
task. New, different, and complicated effects have arisen to add to those that are
already known for traditional one-layered isotropic structures (Carrera 2002).
Of all the possible topics, the present chapter is dedicated to aspects related to
two-dimensional modeling of layered plate and shell structures (Reddy 2004).
Classical two-dimensional models will be extended to piezoelectric problems.
Several approaches can be used to analyze plates and shells: three-
dimensional approaches; continuum-based methods; axiomatic and asymptotic
two-dimensional theories. The theories most commonly employed in this work
are axiomatic two-dimensional models. This chapter discusses only classical
theories, while refined and advanced ones can be found in Chapters 6-9.

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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3.1.1 Three-dimensional problems

A first obvious approach to multilayered plates and shells is that of three-
dimensional (3D) analysis. Such a 3D analysis can be implemented by solving,
in a strong or a weak form, the fundamental differential equations of 3D elastic-
ity: equilibrium equations, compatibility equations, and physical constitutive
relations (Carrera 2002). Arrays of differential operators in the equations are
defined in a 3D continuum body with domain ¥ and boundary I". The unknown
quantities, such as the displacements, stresses, and strains, are defined at each
point P(x, y, z) of a given reference system (x, y, z). When a plate/shell prob-
lem is dealt with using the direct solution of equilibrium, compatibility, and
constitutive equations, a 3D analysis has been acquired. Typical examples of
3D solutions for layered structures are given in Noor and Rarig (1974), Pagano
(1969, 1970), and Pagano and Hatfiled (1972) for pure mechanical problems.

However, 3D solutions are difficult to obtain, and often cannot be given
in strong form for each geometry, laminate layout, boundary or loading con-
dition case. Moreover, if we consider a finite element implementation of 3D
approaches, its computational costs often prove to be prohibitive for practi-
cal problems. For all these reasons, two-dimensional (2D) approaches have
become more popular than 3D ones.

3.1.2 Two-dimensional approaches

Plates and shells are, by definition, 2D structures, because one dimension,
in general the thickness #/, is at least one order of magnitude lower than
representative in-plane dimensions a and b that are measured on the reference
plate/shell surface 2. This fact makes it possible to reduce a 3D problem to a 2D
one. Such a reduction can be seen as a transformation of the problem defined at
each point Py (x, y, z) of the 3D continuum, occupied by the considered plate,
into a problem defined at each point Pq(x, y) of a reference plate surface Q2. A
typical multilayered plate is given in Figure 3.1, where (x, y, z) is an orthogonal

V/

y

z
A
X K-Ni \“ 2,0k /
K it e X,y
h by Zog L Xy L ;
Tk Q
- K1)y \

Figure 3.1 Geometrical notations for a multilayered plate.
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Figure 3.2 Geometrical notations for a multilayered shell.

rectilinear coordinate system, €2 is the middle reference surface of the
multilayered structure, and €2 is the reference surface for each k layer of
thickness /. A local orthogonal rectilinear coordinate system (xg, y, zx) can
be defined for each layer.

The reduction from a 3D problem to a 2D one can also be made for shell
structures; in this case, the considered structures are curved in the two in-
plane curvilinear directions « and 8. A typical multilayered shell is shown in
Figure 3.2. The reference surface €2 is a curvilinear surface and the 2D problem
is obtained by considering points Pq(«, 8) instead of points Py («, B, z). In
Figure 3.2, (@, B, z)is the curvilinear orthogonal reference system. Plates can be
considered as particular cases of shell geometries; however, in this book, plate
and shell refined models will be considered separately in order to help readers.

The 2D modeling of plates and shells is a classical problem of the theory of
structures. The elimination of the thickness coordinate z is usually performed
on integration of the equilibrium equations, compatibility equations, and phys-
ical constitutive relations. The elimination of the z-coordinate can be made
according to several methodologies; these methodologies lead to a significant
number of approaches and techniques (Green and Naghdi 1967; Koiter 1960;
Reissner 1967). A possible classification of 2D approaches, even though there
is a certain degree of conflict in the literature, can be made as follows:

e continuum-based or stress resultant-based models;
® asymptotic-type approaches;

® axiomatic-type approaches.
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3.1.2.1 Continuum-based or stress resultant-based models

According to Green and Naghdi (1967), plate and shell theories can be obtained
from a generalized continuum using the Cosserat surface concept (Cosserat
and Cosserat 1909). In this kind of approach, a 3D continuum, i.e., a shell,
is considered as a surface on which stress resultants are defined. Then 2D
approximations are introduced at a certain level and integration is performed in
the thickness direction. The most important advantage of these models is that
they allow both geometric and physical nonlinear behavior to be considered in
plate/shell theories.

3.1.2.2 Asymptotic-type approaches

In asymptotic approaches, a perturbation parameter §, which is usually the
ratio between the plate/shell thickness and a characteristic length (§ = h/a), is
defined. The 3D governing equations are expanded in terms of §. For instance,
the equilibrium equations E 'y, can be written as:

EZ%EIEBP‘+E%:8P2+...+E%’8PN 3.1)

where the exponents p; of the perturbation parameter § are in general real
numbers. The obtained 2D theories are related to the same order in §. Several
variational statements can be used to obtain the expansion in Equation (3.1).
Interesting asymptotic approaches for shell structures were given in Cicala
(1959, 1965). The main advantage of an asymptotic approach is that it gives
a consistent approximation: all the terms have the same order of magnitude
as the introduced perturbation parameter 6. The 3D solutions are approached
when § — 0. The extension of asymptotic approaches to multilayered struc-
tures introduces other difficulties; for example, in order to take into account
the anisotropy of composite layers, another mechanical parameter must be
introduced (e.g., the orthotropic ratio of lamina E; /E7).

3.1.2.3 Axiomatic-type approach

The 2D models which are dealt with in detail in this book are axiomatic
approaches. In this case, the displacement field and/or stress field are postulated
in the thickness direction z:

[, B, 2) = file, BF1(2) + fol, B)Fa(z) + - + fn(e, B)Fn(z)  (3.2)

where the generic function f can be the vector of displacements u = (u, v, w)
in the case of a displacement formulation, the vector of strain components €
in the case of a strain formulation, and the vector of stress components o in
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h/a

Figure 3.3 Comparison between some 2D approaches and the 3D exact
solution in the case of a generic function f.

the case of a stress formulation. Mixed formulations can also be taken into
account: for example, by considering both displacement components # and
transverse shear/normal stress components ¢, = (0q:, 03:, 0=;) as f functions.
The f; functions are the introduced unknowns that are defined on €2, and F;
are the polynomials which have been introduced as the base functions of the
expansion in z; in the case of a plate geometry, a rectilinear coordinate system
(x, y, z) is considered in place of the curvilinear one («, 8, z). N is the order
of expansion in the z direction. Different variational statements can be applied,
depending on the formulation: a displacement formulation is based on the PVD
(Reddy 2004), while a mixed formulation could use the RMVT (Reissner 1984).
This book considers electromechanical problems, so other unknowns can be
chosen as f functions: namely, the electric potential and the transverse normal
electric displacement.

Axiomatic-type approaches offer the advantage of introducing intuitive ap-
proximations into plate/shell behavior (Antona 1991). Two cases of axiomatic
and asymptotic approaches are compared in Figure 3.3 with respect to a 3D
solution for a generic function f.

3.2 Complicating effects of layered structures

In the case of multilayered structures, new, complicating effects can arise
with respect to isotropic one-layered plates and shells. These effects play a
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fundamental role in the development of any plate/shell theory. For these
reasons, classical 2D theories are often inadequate for the analysis of such
structures (Jones 1999). The main complicating effects introduced by multi-
layered structures are:

® in-plane anisotropy;

e transverse anisotropy: zigzag effects and interlaminar continuity
(C ? requirements).

3.2.1 In-plane anisotropy

In the case of laminates made of anisotropic layers, a high in-plane anisotropy
can be exhibited. This means that the structure has different mechanical—
physical properties in different in-plane directions (Reddy 2004). Compared
to traditional isotropic one-layered structures, multilayered composite
plates/shells could show higher transverse shear/normal flexibility with re-
spect to in-plane deformability. A consequence of this in-plane anisotropy is
coupling between shear and axial strains (Jones 1999). Such a coupling leads
to many complications in the solution procedure of an anisotropic structure.
The 2D models must consider these effects. An example is that of the higher
order shear deformation theory (HSDT); but, depending on the magnitude of
the in-plane anisotropy, such theories might not be sufficient.

3.2.2 Transverse anisotropy, zigzag effects, and
interlaminar continuity

A further complicating effect of multilayered structures is that of transverse
anisotropy: the structures exhibit different mechanical-physical properties in
the thickness direction z. Discontinuous transverse mechanical properties cause
a displacement field, u, in the thickness direction which can exhibit a rapid
change in its slopes corresponding to each layer interface. This effect is known
as the zigzag (ZZ) form of the displacement field in the thickness direction z
(Carrera 2003), and it is clearly visible in the sandwich structure (two stiffer
faces and a soft core) shown in Figure 3.4. In order to consider the ZZ form of
displacements in deformed multilayered structures, a layer-wise approach may
be necessary, as illustrated in Carrera and Brischetto (2009), or an opportune
zigzag function could be added to the displacement field, as in Carrera (2004)
and Demasi (2005). These topics are dealt with in more detail in the following
chapters. In-plane stresses 6, = (0uq» 08, Oup) Can, in general, be discontinu-
ous at each layer interface. The transverse stresses 0, = (0, 0g:, 0::), instead,
must be continuous at each layer interface for equilibrium reasons, as clearly
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Figure 3.4 Typical zigzag effect for a sandwich structure in bending response.

illustrated in Figure 3.5 for a multilayered plate (coordinates (x, y, z) instead of
the curvilinear ones (&, 8, z)). In the literature, these conditions are called in-
terlaminar continuity (IC) (Carrera 1997). The behavior that can be observed of
in-plane stresses, displacements, and transverse stresses through the thickness z
of amultilayered plate is clearly indicated in Figure 3.6, from a qualitative point
of view. The in-plane components of stress can be discontinuous or continuous
and they are only shown in the figure for comparison purposes. Displacements
must be continuous in the z direction for compatibility reasons, while trans-
verse shear/normal stresses must be continuous in the thickness z direction for
equilibrium reasons, therefore u and o, are C O_continuous functions in the z
direction. Moreover, displacements and transverse stresses have discontinuous
first derivatives corresponding to each interface, because the mechanical prop-
erties change in each layer (ZZ effect). In Carrera (1997) and Demasi (2008),
ZZ and IC conditions are referred to as C° requirements. The fulfillment of C°
requirements is a crucial point in the development of appropriate 2D models
for multilayered structures. Displacement formulations must fulfill the C? re-
quirements for the displacement components; mixed formulations must fulfill
the C? requirements for both displacements and transverse stresses. In the case
of multilayered anisotropic structures, classical theories, such as those based
on Cauchy—Poisson—Kirchhoff-Love (Cauchy 1828; Poisson 1829; Kirchhoff
1850; Love 1906) hypotheses or Reissner—-Mindlin (Reissner 1945; Mindlin
1951) hypotheses, which will be discussed in the next section, fulfill the IC
conditions for displacements, but not the ZZ form of u. For these reasons, they
can often turn out to be inappropriate for the study of multilayered composite
plates and shells. In this case, the use of refined and advanced 2D models (see
Chapters 6-8) could be mandatory.
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7

layer k+1
layer k

In-plane stresses Gp

Transverse stresses on
can be discontinuous

must be continuous

Figure 3.5 Interlaminar continuity in a multilayered plate: continuity and
discontinuity of stress components at layer interfaces.

In-plane stresses  Displacements Transverse stresses
o,0,. 0O [0 SN 0 Y 0
VA xx Cyy T xy z u vV W z xz U yz 7 zz
A A A
k=3 /
k=2 >x)y / >x;y Y >x1y

k=1 / ---------------------

Figure 3.6 C? requirements for displacements and stresses in a three-layered
composite plate.
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3.3 Classical theories

Classical theories were originally developed for one-layered isotropic
structures. These theories can be divided into two main groups: Love
first-approximation theories (LFAT) and Love second-approximation theories
(LSAT). LFAT are based on the well-known Cauchy—Poisson—Kirchhoff-Love
thin shell assumptions (Cauchy 1828; Poisson 1829; Kirchhoff 1850; Love
1906): normals to the reference surface 2 remain normal in the deformed
states and do not change in length. This means that transverse shear and trans-
verse normal strains are negligible with respect to the other strains. When one
or more of these LFAT postulates are removed, we obtain the so-called LSAT
(Koiter 1960), which means the effects of transverse shear and/or transverse
normal stresses can be taken into account. As a consequence of the introduction
of multilayered structures, several LFAT and LSAT were extended to multilay-
ered plates and shells. However, these extensions are part of the framework of
equivalent single layer (ESL) theories: the layers in the multilayered structure
are seen as only one equivalent plate or shell, and the 2D approximation does
not consider dependency on the index layer k.

3.3.1 Classical lamination theory

A possible application of LFAT to multilayered structures is the classical
lamination theory (CLT); see the books by Reddy (Reddy 2004) and Jones
(Jones 1999). CLT is based on Kirchhoff hypotheses (Kirchhoff 1850):

e straight lines that are perpendicular to the midsurface (i.e., transverse
normals) before deformation remain straight after the deformation;

e the transverse normals do not experience elongation (i.e., they
are inextensible);

o the transverse normals rotate so that they remain perpendicular to the
midsurface after the deformation.

These hypotheses are clearly summarized in Figure 3.7. The first two as-
sumptions imply that transverse displacement is independent of the transverse
(or thickness) coordinate and the transverse normal strain €,, is zero. The
third assumption results in zero transverse shear strains: y,. = y,. = 0. The
displacement field for a plate is:

BUJQ
ulx,y,z) =uplx,y) —z—
0x
Bwo
v(x,y,z) = vo(x,y) — ZW 3.3)

w(x, y?Z) = U)O(x, )’)
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2.
7

—

Figure 3.7 Undeformed and deformed geometry of a plate according to the
Kirchhoff hypotheses.

Only three degrees of freedom are used for this 2D theory: the displace-
ments in the three directions refer to the midsurface 2. In CLT for pure me-
chanical problems, in order to avoid the Poisson locking phenomenon, the
0., = 0 condition must be enforced in the constitutive equations. For further
details about this topic, readers can refer to Carrera and Brischetto (2008a,b).
Typical displacements through the thickness direction z for the case of a three-
layered plate are given in Figure 3.8. Figure 3.9 shows the typical behavior
of in-plane displacement components u, v (linear and equivalent single layer)
and transverse shear stresses (zero for all the multilayer) in the thickness
direction z.

3.3.2 First-order shear deformation theory

A one of the typical LSAT for the case of multilayered structures is the
first-order shear deformation theory (FSDT). The third part of the Kirchhoff
hypotheses is removed, therefore the transverse normals do not remain perpen-
dicular to the midsurface after deformation. In this way, transverse shear strains
¥xz and y,. are included in the theory. However, the inextensibility of the trans-
verse normal remains, therefore displacement w is constant in the thickness
direction z. FSDT is an extension of the so-called Reissner—Mindlin model
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CLT and FSDT

irayE.

Figure 3.8 Displacement components through the thickness direction z for
the case of CLT and FSDT.

(Reissner 1945; Mindlin 1951) to multilayered structures. The displacement
model, in the case of FSDT for a plate, is:

u(x,y,z) = uolx, y) + z&.(x, y)

v(x, y, z) = vo(x, y) + 2Py (x, y) (3.4)

w(x, Vs Z) = wo(x’ Y)

z r4
CLT
Displacements Transverse stresses

Figure 3.9 CLT: displacements « and v, and transverse shear stresses through
the thickness direction z.



44 CLASSICAL PLATE/SHELL THEORIES

&
{ -dim/dx

-dwo/dx

Uo

Figure 3.10 Undeformed and deformed geometries of a plate according to
the Reissner—-Mindlin hypotheses.

The hypotheses of FSDT are clearly shown in Figure 3.10. The dis-
placement field of FSDT has five unknowns (there were three for CLT): the
midsurface displacements (i, vy, wo) and the rotations of a transverse normal
around the x- and y-axes (®,, ®.). In the case of CLT, the rotations coincide
with the derivatives ®, = —dwp/dx and &, = —dwy/dy. Only strain €. is
zero, therefore stresses o, and o, are different from zero. Figure 3.11 shows

FSDT

Displacements Transverse stresses

Figure 3.11 FSDT: displacements # and v, and transverse shear stresses
through the thickness direction z.
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the typical behavior of in-plane displacement components u, v (linear and
equivalent single layer) and transverse shear stresses (constant in each layer) in
the thickness direction z. Poisson locking phenomena exist because the trans-
verse normal strain €., remains zero, but it can be avoided by enforcing the
0., = 0 condition in constitutive equations, as seen in Carrera and Brischetto
(2008a,b) for pure mechanical problems.

3.3.3 Vlasov-Reddy theory

A refinement of the Reissner—Mindlin theory was produced by Vlasov for the
case of one-layered isotropic structures (Vlasov 1957). This theory permits
the homogeneous conditions for the transverse shear stresses to be fulfilled,
corresponding to the top and bottom of the plate/shell. Reddy (1984) and
Reddy and Phan (1985) showed that such an inclusion leads to significant
improvements compared to FSDT for layered structures (static and dynamic
analysis). The resulting model is called the Vlasov—Reddy theory (VRT), and
its displacement model for a plate is:

4 ow
— 3 0
u(x, y,z) = uo(x, y) +z®.(x, y) + z (— W) (<I>x + W)
3 4 3U)()
U(X,y,Z): vo(x,y)+zd>y(x,y)+z _W q)y+g (35)

w(x, y?Z) = U)O(X, )’)

The model in Equation (3.5), like any ESL theory with transverse displacement
w constant or linear in z, needs correction for the Poisson locking phenomena
(Carrera and Brischetto 2008a,b) for the case of pure mechanical problems.

3.4 Classical plate theories extended to smart
structures

3.4.1 CLT plate theory extended to smart structures

CLT is extended here to smart structures by assuming a linear electric poten-
tial through the thickness of the piezoelectric layer in the multilayered plate.
We consider a plate of total thickness 4 composed of an orthotropic layer
(thickness /,) and a piezoelectric layer at the top (thickness /). The geometry
of the plate and its coordinate systems are indicated in Figure 3.12. The global
reference system is (x, y, z) and it coincides with the middle surface of the
plate; in this case, we indicate the top and the bottom of the kth layer by z; and
zr+1, respectively. Therefore, the thickness of the kth layer is hy = zx41 — k.
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k=1
k=2

h1

h/2 1 —T 3z
s il

h/2 @ &

z‘ y

Figure 3.12 Geometry and notations for a generic orthotropic plate embed-
ding a piezoelectric layer.

By considering the Kirchhoff hypothesis (Kirchhoff 1850) and the depen-
dency on time ¢ in the dynamic case, it is possible, from Equation (3.3), to
obtain the extension to smart structures:

dwo(x, y, t
ux,y, z,t) = ug(x, y, t) — L dwolx, v, 1)
0x
dwo(x, y,
v(x, v, z, 1) = vo(x, y, 1) — Z% 5
y

w(x,y,z,t) = wox, y,t)

Dr(x, y,z,1) = ®f(x, y, 1) + (z — Z)DE(x, y, 1)
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In Equation (3.6), uy, vg, and wy are three displacement components in the
middle plane of the plate; the other two unknowns are CDS and CD’{ and these
permit the linear electric potential to be expressed in the electrical layer (in this
case the electric potential is in layer 1). We can consider an electric potential at
the top @’i and at the bottom ®* of the generic piezoelectric layer k. The linear
electric potential through the thickness is defined by means of the mean value
<I>’6 = (<I>k+ + ®*)/2 and the slope Cbll‘ = (PF — Cb’i)/hk. In order to refer the
thickness coordinate to the midsurface of the kth piezoelectric layer, the value
Zk = (Zk + Zk+1)/2 is defined.

The piezoelectric constitutive equations for the CLT case, referring to Equa-
tions (2.12)—(2.18), can be written for each k layer as:

oy | 01, 0, Q/1<6 €xx 00 e]3<1 &
o =10 0% Q% ||ey|—]0 0 &y |]&| 3D
o | L0k Q% Q] 7w 0 0 e | [
DT To o0 o €xx ekel, 0 &k
DEl=10 0 0 ||ey|+]|e, & 0| |BY
25 i L e e e Vxy 0 0 & &x

The in-plane strains (€, €,,, ¥y,) do not depend on the & layer because the dis-
placements are in ESL form. No correction for the Poisson locking phenomena
is made in this book for the electromechanical CLT case. Instead, the Poisson
locking phenomenon clearly appears for the pure mechanical CLT case, and it
can be contrasted by means of the reduced elastic coefficients given in Carrera
and Brischetto (2008a,b) for plate and shell geometries, respectively.

The geometrical relations are obtained in Reddy (2004). The strain and
electric field components, in the case of CLT analysis, are linked to the dis-
placements and electric potential by means of the following relations:

ou oug 32wy ©) 0
€xx = a = W — ZW = EXX +Z€)(X (39)
ov dvg 32wy ©) )
€yy = @ = E — Za—y2 = Eyy +Z€yy (310)
ou Jdv oug 2wy dv 32wy
ny:_+_=_—2— —_— —Z
dy  0x ay dxdy  ox dxdy
au() Bvo 82w0
=—t+—-22——=y9 o 3.11
dy ax Zaxay Yo ¥y G
ok dDf adk ok :
&= =051 1Oy gkh (312

T ax ax 0x 0x
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dPt  adp 8P 9P

e =g L L= g0 4280 313

) dy dy o ay : dy y 2y (3.13)
Pk v

=0, =—%=5" G.14)

The dynamic version of the PVD, already proposed in Reddy (2004), where
t is the time which goes from 0 to 7', states:

T
0= / (BU + 8V — §K)dt (3.15)
0

where the virtual internal work §U (volume integral of §Uj), in the case of
electromechanical coupling, is a summation of §U,, (virtual strain energy)
and U, (virtual electrical internal work). The term §U, is not considered for
a partial electromechanical coupling and the electrical contribution is only
considered by means of the second term in Equation (3.7). A fully electrome-
chanical coupling is accounted for in this work. §V is the virtual work done
by the applied forces, and it permits one to obtain the mechanical forces for
the case of sensor applications; no mechanical forces are considered for actu-
ator applications and the electric potential can be directly applied at the top
and bottom of the considered piezoelectric actuator layer. 6K is the virtual
kinetic energy.
The virtual internal work 8U is given by:

SU = 8U,, + 8U, = /8U0dv = /(wo,,, + 8Uqe) dv

v

/2
= /Q (/ [(o{fxéem + aykyﬁeyy + O’)]:y(S)/Xy)
.\

h/2

+ (—Dy8E; — DySE; — DLSEY) ]dz>dxdy

% e k 0 1 k 0 1
N /Qo (Z /hk/z [0 (3eiy + 28€L0) + 0, (e + 28€))
k=1%"
oy, (871 +287) — DLBE +286,)
— D&, + z8&,V) — DL (35§<°>)]dz>dxdy (3.16)

where v is the volume of the plate, 2 is the reference midsurface of the whole
multilayered plate, £ indicates the layer, and N; is the number of embedded
layers. The strains in Equation (3.16) do not depend on the k layer because the
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displacements are in ESL form, while the electric field instead depends on the

k layer since the electric potential is in layer-wise form.
The virtual work done by applied forces §V is given by:

%

- / [qb(X, Y)(Sw(x, Y, h/2) + Clz(x, Y)Sw(x, Y, _h/z)]dXdy
Qo

2
_/ (/ [&,,nBu,,—l—&,,S(Sus—l—c?nz(Sw]dz)ds
Iy —h/2

h/2

- /Q [(gp(x, ¥) + q:(x, y)dwo|dxdy — fr ( f [61n(S1u0n

—h/2

— (z08wq)/0n) + 6,5(Sups — z(38wy)/ds) + 6n25w0]dz>ds (3.17)

where g, and ¢, are the distributed forces at the bottom and top of the mul-
tilayered plate, respectively. The bottom and top coordinates are z = 4 /2 and
z = —h/2, respectively. &,,, 6,5, and 6, are the stress components on portion
I'; of boundary I'. The subscripts n and s indicate the normal and tangential
directions, therefore §ug, and du, are the virtual displacements in the normal
and tangential directions, respectively.

The virtual kinetic energy 6K is given by:

h/2
SK = / (/ oy 181 + 080 + u')8u'1]a'z>dxdy
Q —h/2

h/2
= f (/ pg[(uo — z(dwg)/0x)(S1tg — zd8wy/dx)
Qo -

h/2

+ (Do — z(d1i)/ ) (Do — 2(d80)/dY) + wOSwo]dz)dxdy (3.18)

where p(’)‘ is the mass density of the kth layer. The overdot denotes the derivative
with respect to time, e.g., iy = dug/0t.

We define the following integrals in the z direction of the multilayered
plate:

- r_k k
Ny h/2 Ox M h/2 Oxx
k k
Ny, =/1/2 Oy dz My, =/1/2 Ty zdz (3.19)
—hn , —n
ny_ _O')éy Mxy ‘f{y

Nnn ] h/2 _6nn Mrm h/2 Gun
. R dz N = R zdz (3.20)
ns | —h/2 L Ons Mns —h/2 | Ons
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. n2 Io ny2 1
0, = / 6,: dz L | = / z | pidz (3.21)
iy —h/2
153
O« h/2 Dy Py h/2 Dy
o, | = D_/f, dz P, =f Dly‘ zdz (3.22)
07 —h/2 ,Dk P" —]‘1/2 ,Df

where (N, N,y, Ny,) are the in-plane force resultants per unit length and
(M, Myy, M) are the moment resultants per unit length in Equation (3.19).
Qn denotes the transverse force resultant, and (/y,/1,/,) are the mass moments
of inertia in Equation (3.21). We define (O,, Oy, O:) as the electric charge
resultants per unit length, and (Py, Py, P) as the electric moment resultants per
unit length in Equation (3.22).

Considering Equations (3.16), (3.17), and (3.18) for §U, 8V, and K,
respectively, and substituting them in Equation (3.15) (considering Equations
(3.19)-(3.22)), we obtain:

T
0 1 0 1 0
0= /0 </Q [N“‘Seix) + M, 8€) + Nyyae;; + Myyée;)? + N)(ygﬁy)
0
+ MX},BVS)) _ Oxggf(o) _ angf(l) _ 0},85;"(0) _ P}Bé’f(l) . 02555(0)
8wy . dwg

s
0x "o+ 0x 1o

adwy . o . dwg 06wy dwg Idwy
+ Vo + —81)0 — 12 _— + — dxdy
dy ay ax dx dy dy

—qdwy — Lo(ttoSttg + VoSV + wodwo) + 1 <

88w0 ~ 3811)0

- / NnnSMOn + an8u0s - Mnn_ - Mns_ + QAnst ds |dt
r, an s

(3.23)

where the integral through the thickness direction z has been obtained by means
of Equations (3.19)—(3.22), and ¢ = g} + ¢; is the total transverse load.

The virtual strain and electric field components can be written in terms of
virtual displacements and virtual electric potential in the same way as for the
true strain and electric field components, in terms of the true displacements and
electric potential (see Equations (3.9)—(3.14)):

a4 328
50 = a—”" pell) = 2220 (3.24)
X ox
56(0) _ 331)0 M _ _82811)0
yy ’ yy 8y2

(3.25)
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dSug  3Svy 978w
5y © = ., sy =2 3.26
Vey dy + 0x Vay dxdy (3.26)
ISPk 3o Dk I8P}
SEHO = _ 04z L sEF = 1 (3.27)
0x 0x ox
k k k
sero — 90%0 0D goky _ 90P (3.28)
y ay dy ) dy
$EF0 = st (3.29)

We can substitute Equations (3.24)—(3.29) into Equation (3.23) and then
integrate by parts to reveal the virtual displacements (Su¢,5vp,0wp) and the
virtual electric potential variables (§ @k 5 <I>’f ). In the notation, a comma fol-
lowed by subscripts denotes differentiation with respect to the subscripts, e.g.,
Nix.x = ON,,/0x. Note that both spatial and time integrations by parts are
used to obtain the final expression. n, and n, are the unit vectors in the x and y
direction, respectively:

T
= / { / [ - Nxx,x(su() - Mxx,xx5w0 - Nyy,ySU() _ My}',yy8w0
0 Q

— Ny y8ttg — Ny 80 — 2My 8wy — q8wo — O (8D + O, 515D
— P 8DF — 0,80 + 0, 518D — Py ;8L + 0.8 + Iy(iigduo

2wy 9% diig At
8 8 -1 8 I\ —d8wy— —36
+ Updvo + wodwo) 2(82+82>w0+ l(ax wo — —~=8uo

a1t o B
+ —UO(S wy — _w Svy ) |dxdy —I—f Nondug— M n, o
ay ay r ox

00w
+ M,y xndwy + Nyyny,dvg — Myyn, 8y0 + M,y ynydwy + Nyynydug

ddwy ddwy
+ Nyndvg — Myyn,—— 5 + My nydwy—M,yn,—— or + M,y yndwg
y

+ 0,1 8D — 0,2, 8D5 + Pon, SO} + Oyny8dF — 0,20, 6}

A " ~ 00 ~ 06
+ Pyny(S(DIl( ds — / Nnnfsu()n + an(SMOS - Mnn il - Mnx il
r, on as

) v i
+0,8wo |ds + f B(E2 0+ 2200 ) — Li(igny + tiony) |Swods Ydt
r ax ay

(3.30)
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Grouping terms with respect to Sug, dvg, Swo, s}, and &%, and noting
that the virtual displacements are zero on I',,, Equation (3.30) can be written as:

T . dwo
0= - Nxx,x"'ny,v _10u0+11_ 5”0_ Nyy,y+ny,x
0 Q . ax

ow
- IOi)'() + 11 8_yo>8vo - (Mxx,xx + Myy,yy + 2Mxy,xy +q — IO wO

3211)0 821110 Buo av() k
L—+1 — 11— — 11— Jéwy — (O O SO
+28x2+28y2 . ]8y>wo (Oxx + 0,,,)5

—(Pyy — O Zp+ Pyy — Oy 5 — 02)8d>’f:|dxdy

+ / I:(Nxxnx + nyny)5140 + (nynx + Nyyny)svo + <Mxx,xnx
I's

91 91 i

+Myy yny + My cny + My yne + h—— 5% n + L— By y — Lyugny
. 88w0

_IlvOny Swo — (M n, + Mxynv) (M”I’l} + Mxynx)

+(Osny + Oyny)8®y + (Peny + Pyny — Oy Zgn, — 0},2kny)8<1>]fi|ds

88w0 . Mn 3511)0
on as

- / I:Nnn(SMOn + an(sum - Mnn + QnSLUo:|dS}d[
Iy

(3.31)
The Euler-Lagrange equations of the CLT plate theory, extended to smart

structures, can be obtained by setting the coefficients §uq, vy, dwy, & CIDI(‘), and
8(1)’{ in Equation (3.31) to zero separately:

8Nxx 8ny 82u0 82 8w0
Suo: —1 (&
wr ety T %2 T e\
N aN, a2 3% (0
Svo: o T Vo L owo
ox dy 012 a2\ dy
PM.. M., M, 92wo
Sw: L 4 o8 Ty Wy g = [ 20
wor e Ty T ey 4T

It 82 82w0 4 2o 82w0 ' 32 8MQ 4 8vo
92\ ax2 T gy2 Ya2\ax T ay
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30, 90
$Of: — 4+ —2 =0
ax dy
aP, 30, 9P, _ 30
sk, —=2 724 Y _5-—"2_0,=0 (3.32)
ax ax dy dy

Further details about boundary

conditions can be found in Reddy (2004).

In order to write Equations (3.32) in terms of displacements and electric
potential, it is necessary to consider the laminate constitutive equations. The

stress resultants are given by:

P

Nix N Zkt1 Ax
Ny, | = / a)’,‘y dz
Ny =1 ol
k k k 0 1
N o1 0% Q| [ e +zel
_ k k k 0) )
= /  Ohn Q%% || €y +zey
—1 7% k k k 0 1
k= Ol 0% Q] LV +27)
0 0 &7 [&O4 kD
—10 0 &, 5;‘(0) + ZS;‘(D dz (3.33)
0 0 e || EO420
The moment resultants are given by:
Mxx N, - _(TAI,(X
M, | = Zf o}lfy zdz
M.y = ey
k k kT 0 1
Nz o Oh O [ el +zell
k k k 0 1
= Z/ On O0n 03 €y +z€})
=17% k k k 0 1
k=t 016 Q0% Qe _V)Ey) + Z)/.x{y)
0 0 5| [&Q+z&]
—10 0 e | | EO +2EW | | zdz (3.34)
0 0 e | [EY+20
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The electric charge per unit length resultants are given by:

Ox Ni Zk+1 _D{f

0,|=> f Dt | dz

0.| =7% | Dt
Moo, ([0 0 0] [l +zel
:Z/ 0 0 0 |]e9+zel)
k=17 k k

ey ey e | L +ory
8]1‘1 8'1‘2 0 54‘(0)—{—25)’(‘(1)

+ el &5, 0 | |EQ 4280 | |dz (3.35)
0 0 & |0 +20

The electric moment resultants are given by:

R’C Ni Zk+1 _D)]f

Py, | = Z/ D'; zdz

P, k=1 Y%k D]f
0
0

0 1
Ni 0 0 6,5‘,&‘) + Zei’x)

e ©) 4 o)

= E f 0 0 €yy T z€)y
=V Kook Lk 0 1
= €31 €3 €3¢ y,x(y) +Zy,x('y)

e e 0] [E@+:260
0 || &0 4280 | | zdz (3.36)
0 0 & [&E420

The summation in Equations (3.33)—(3.36) is done for the total number of
layers N;, and the integrals in the thickness direction are done for each
k layer.

Aj; are the extensional stiffnesses, D;; are the bending stiffnesses, and B;;
are the bending—extensional coupling stiffnesses, which are defined as:

Ni Zk+1
(A By D=y [ Q4c1.z. 2z (3.37)
k=1 %k

E;; are the electromechanical coupling extensional stiffnesses, Gj
are the electromechanical coupling bending stiffnesses, and F;; are the
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electromechanical coupling bending—extensional coupling stiffnesses, which

are defined as:

Ni Zkt1
(Eijs Fip, Gy) =y / ek(l, 2, 2%)dz
k=1 Y%k

(3.38)

R;; are called dielectric extensional stiffnesses, S;; are the dielectric bending
stiffnesses, and T); are the dielectric bending—extensional coupling stiffnesses,

which are defined as:

N Zkt1
(Rij, Sy T) =y / ek(1, 2, 2%)dz (3.39)
k=1 Y%k
Using Equations (3.37)-(3.39), Equations (3.33)~(3.36) can be
rewritten as:
Niyx A A A | [ € Biy Bix Big el
Ny | =] A An Ay || €9 |+ | B2 Bn By || €
Ny Al Ay A | | 7Y Bis By Bes | | 1)
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P, 0 0 0 €9 0O 0 0 e
Pol=l0 0 o[ |+] 0 0o o0 |]eY
P, F31 F3 Fs 7/,‘(-8) G311 Gxn Gs 7/)5,1,)
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+ | Su S» O O+ Ty Tn 0 &w
0 0 Syu||&o 0 0 Tyul|| 0
(3.43)

{€°} and {e'} are the membrane and bending strains in Equations (3.40)—
(3.43). (XD} and {£FD} are the membrane and bending electric field
components. These four vectors are defined as:

6gov) 6)(JK) 5)1:(0) g)lcc(l)
(=D fet=|e|. (M =]&O0 |, (gD =] &m
vy vy £ko 0
(3.44)

The laminate constitutive equations can be written in compact form as:

{N} A B —-E -F {9

My| | B D -F -G {e) (N}?

(oy| | ET FT R S (EkO) _|:{M}”:| (3.45)
{P} FT 6¢T s T {gkDy

where T means the transpose of a matrix, and the vectors containing the me-
chanical loads have the superscript p.

The Euler-Lagrange equations of the CLT plate theory, extended to smart
structures (see Equations (3.32)), can be written using Equations (3.40)—(3.43)
and Equations (3.9)—(3.14) in terms of displacements and electric potential.
These substitutions are a good exercise for interested readers.

3.4.2 FSDT plate theory extended to smart structures

FSDT, like the CLT case, can also be extended to smart structures by assuming
a linear electric potential through the thickness of the piezoelectric layer of the
multilayered plate.
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Considering the Reissner—Mindlin hypothesis (Reissner 1945; Mindlin
1951) and the dependency on time ¢, it is possible to obtain the model,
extended to smart structures, from Equation (3.4):

u(xa y,Z,t) = UO(X, yat)+zq>x(-xa Yat)

v(x, y,z, 1) = vo(x, y, 1) +zPy(x, y, 1)
(3.46)
w(xv y,z, t) = wO(-xv Yy, t)

D (x, y,z,1) = Df(x, y, 1) + (z — Z)PE(x, y, 1)

There are now seven unknowns in Equation (3.46) (for the CLT case there
were five); ®, and @, are the two additional rotations that are not considered
in the Kirchhoff hypotheses. The main limitation of classical theories (CLT
and FSDT) extended to smart structures is the use of a linear electric potential
through the thickness which gives a constant electric field; this limitation leads
to the so-called electrical locking. The piezoelectric constitutive equations for
the FSDT case, with reference to Equations (2.12)—(2.18), can be written for
each k layer as:

% If1 Qlfz Qlfs 0 0 €xx 0 0 e §1
U;’{y 0y, 05 0% O 0 €yy 0 0 ¢ &
Ufy =0 Q% Q% 0 0 Vo [ =] 0 0 e g}’g
o). 0 0 0 Qf Oi||n: ey &y 0 &
ok | 0 0 0 QO 05%]|n: els €5 0
(3.47)
€xx
Dk 0 0 0 € e’l"5 €yy ey el O &
Dil=]0 0 0 &, es|]|r |+ e & 0 &y
D: 5 € e 00 Vyz 0 0 e || &
Vxz
(3.48)

In this book, it was decided to adopt no correction of the Poisson locking for
the electromechanical version of FSDT. The transverse shear strains y,. and
yx. are different from zero and the geometrical relations are (see Equations
(3.9)-(3.14)):

ou _ oug L

— = 4= =€0 M 3.49
ox ox te ox €ox T 260 ( )

€xx =



58 CLASSICAL PLATE/SHELL THEORIES
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Using the PVD given in Equation (3.15), it is possible to obtain the Euler—
Lagrange equations for the FSDT plate theory extended to smart structures.
The complete procedure will be presented in the next chapter, but only for the
case of finite element applications.

3.5 Classical shell theories extended to smart
structures

The extensions of CLT and FSDT shell theories to smart structures do not
introduce any further difficulties with respect to the already proposed plate
cases. For these reasons, only some information will be given in this section;
the complete procedures might be a good exercise for those readers who are
interested. The kinematics equations and the constitutive equations are the
same as those presented in the previous section, but a curvilinear reference
system («,f,z) is employed instead of a rectilinear one (x, y, z). The main
differences concern geometrical relations, which will be explained in detail in
the following section.
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3.5.1 CLT and FSDT shell theories extended
to smart structures

The FSDT kinematic model extended to shell geometries considers a curvi-
linear reference system («,f,z) instead of the rectilinear one (x, y, z) given in
Equation (3.46):

u(e, B, z,t) = up(a, B, t) + 2Py (a, B, t)
v(a, B,z,1) = vola, B, 1) + zPg(a, B, 1)

w(a, B,z,1) = wo(a, B, 1)
ok, B, z,1) = Ph(a, B, 1) + (z — 2) DX (a, B, 1)

(3.57)

In the case of the FSDT shell theory, the following geometrical relations
are stated (see Equations (2.31)—(2.37) and Equation (3.57)):
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1 9k 1 9k 1 99k 1 9dF
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Z

For shell geometries, even though the displacements are in ESL form, both
the strain and electric field components depend on the k layer because of
the curvature.

In order to obtain the kinematic model for CLT, in the case of a shell
geometry, we impose yf’,‘ = y* =0 in Equations (3.61) and (3.62). In this
way, we obtain the relations for &g and ®:

1 1 dwy\ HERL
%= (e~ 7 a7 ) s s (00
Y] s B piip —*
o 1 1 dwe\ HERE .67
e =|—F=t0o———)—F771— .
H'RE ™ HE 9o JHIRE — 2

In the CLT and FSDT cases, ®g and ®, do not depend on the & layer, if we
consider the mean value at the mid-reference surface for the radii of curvature
R¥ and R§ of the multilayered structure.

By substituting Equations (3.66) and (3.67) into Equation (3.57), we obtain
the kinematic model for CLT for the case of a shell geometry. In the same way,
it is possible to write the geometrical relations for the CLT case by starting
from the geometrical relations for the FSDT case (Equations (3.58)—(3.65)),
where yg. = 4. = 0, and Equations (3.66) and (3.67) give the rotations ®g
and ®,.
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Finite element applications

The aim of this chapter is to obtain the finite element method governing equa-
tions of the static and dynamic electromechanical analysis for multilayered
plates embedding piezoelectric layers. Such equations are dealt with in detail
for the FSDT case, extended to smart plates, in analogy with the previous
chapter where the equations were detailed for the CLT plate case extended to
smart structures.

4.1 Preliminaries

The investigations required to find the solution of generic scientific or technical
problems in general make use of numerical models which are either discrete
or continuous. Discrete problems involve a finite number of components with
a limited number of degrees of freedom (DOFs).

Generally, only a small subset of simplified continuous problems can be
solved by mathematical manipulation. The corresponding solutions are called
exact solutions. When analytical solutions are not available, a discretization is
commonly introduced and the problem is expressed in terms of a finite number
of discrete variables by involving a finite number of DOFs. Thus, the solution
of the continuous problem is approximated by solving the discrete problem.
The error due to discretization can be reduced by increasing the number of
discrete variables. Exact solutions and, more in general, convergence studies
permit one to verify the accuracy of the approximated solution.

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Different techniques can be applied to discretize the continuous problems.
Among these, finite difference approximations (Allen 1955; Southwell 1946),
and weighted residual procedures (Crandall 1958; Finlayson 1972), have been
proposed by mathematicians in order to find the stationary points of appropri-
ate functionals. As an alternative, engineers introduced the analogy between
continuous subdomains and discrete elements (Argyris 1960; Hrenikoft 1941;
McHenry 1943; Newmark 1949). The term “finite element” (FE) was first used
in the work by Clough (1960) according to the latter approach.

Since the 1960s, a great deal of progress has been made. The discretiza-
tion procedures of continuous problems have been extensively standardized
and generalized. An excellent reference on this topic is given by the work of
Zienkiewicz and Taylor (1967), where a unified treatment of “standard discrete
problems” is presented by defining the finite element process as a method of
approximation to continuous problems so that:

® the continuum is divided into a finite number of parts (elements), the
behavior of which is specified by a finite number of parameters; and

® the solution of the complete system, as an assembly of its elements,
follows precisely the same rules as those applicable to standard
discrete problems.

The above approximation technique is commonly known as the finite ele-
ment method (FEM).

4.2 Finite element discretization

The PVD, as proposed in Equations (3.15) and (3.16), can also be solved by
means of the FEM (Zienkiewicz and Taylor 1967), which introduces several
generic elements of the surface €2 (mesh of the plate) into the plate. Each
generic element can be transformed into a master element {2 with a given
number of nodes, see Figure 4.1. Each considered master element can have a
certain number of nodes where the variables are considered, and these elements
can have four nodes (Q4), eight nodes (Q8), or nine nodes (Q9) (Zienkiewicz
and Taylor 1967). In the FEM, the unknowns are expressed in terms of their
nodal values, via the shape functions »;. The latter assume unit values in the
nodes, and permit the unknowns to be expressed at points that are different
from the nodes as linear combinations of the 4, 8, or 9 values in the nodes
(Zienkiewicz and Taylor 1967). In Figure 4.2, the Q4, Q8, and Q9 elements
are clearly indicated, and a natural coordinate system (&, ) is defined which
always goes from —1 to +1. The approach employed here for the plate is an
isoparametric approach (Newmark 1949). The shape functions N; for the Q4,
Q8, and Q9 elements are the well-known formulas given in Zienkiewicz and
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n
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a

Figure 4.1 Mesh for a generic plate by means of several master elements.

Taylor (1967). Therefore, the generic variable a, defined in the xy-plane, and
its virtual variation da;, can be expressed in terms of nodal values ¢; and d¢ ;
via the shape functions N; and N;:

a.(x,y)=N;q,, dasx,y)=N;éq,, i,j=12,...,N, (4.1)

where N,, denotes the number of nodes of the considered element.
N;(x, y) indicates the shape function for the ith node. It is convenient to
recover the shape functions from the natural coordinates (&, n) (see Figure 4.2)

QI

Figure 4.2 Finite element method: 4-, 8-, and 9-node master elements with
natural coordinate system and node enumeration.
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and not from the global ones (x, y). The shape functions of each considered
element (Q4, Q8 and QY) are obtained by means of the condition:

Ni=1 if E=&n=mn

. 4.2)
N; =0 otherwise

It is clear how N;(&,n) depends on natural coordinates, because of
N;(x(&, 1), y(&, n)). In the case of rectangular elements, as indicated in the
upper part of Figure 4.1, the relation is:

B 2x —x1) —a

§= P 4.3)
2y —y)— b
= % (4.4)

where x; and y; are the global coordinates of the first node of the element,
and a and b are the dimensions of the element in the global directions x
and y, respectively.

In the case of no rectangular elements (see the bottom of Figure 4.1) the
relations between global and natural coordinates are:

Nug

X = inf\?i(f, ) 4.5)
i=1
Nue

y=> yilNi& n (4.6)

i=1

where N; are the shape functions in the case of a generic geometry of the
element (in general Ni # N; when N, # N,), and N, is the number of
nodes for the change in variables (G means generic geometry). Equations (4.5)
and (4.6) degenerate into Equations (4.3) and (4.4) for rectangular elements.
The isoparametric approach is considered when N, = N,, and N; = N;.

In order to integrate along the in-plane directions, in accordance with the
Gauss method, it is necessary to express everything in terms of natural coordi-

nates (&, n):

ONi(x(€,m), y(&,m) _ 3N; dx  9N; dy
JE © 0x 08 0y 0

INix(E, ). y(E.m) _ ON; dx | 9N; dy
an dx dIn ady an

4.7

4.8)
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Equations (4.7) and (4.8) can be rewritten as:
aN; dx  dy ON;
d dE D ox
£ |_|o 9 || o wo)
N, ax dy IN;
an an  9n dy
In Equation (4.9) the Jacobian matrix is defined as:
dx dy
a d
J = ; 5 (4.10)
dx dy
an  9n
Considering the inverse of the Jacobian matrix in Equation (4.10), it is possible
to write:
aN,' 8N1
ox | 9
= - 4.11
IN; [J] oN, (4.11)
dy on
where
. N R
== (4.12)
S I

Using Equations (4.11) and (4.12), the derivatives of the shape functions, with
respect to global coordinates, can be written as linear combination of the
derivatives with respect to natural coordinates (&,7):

%=Nix=-]1*1%+-]*% 4.13)
ax * o 129y
N N, 0N e
8y Ly 21 a%. 22 an

In the case of integration along in-plane directions, we can consider the master
element €2 in the natural coordinates (£,17) or the generic element €2 in the
global coordinates (x,y). The relation between the two element areas is:

d = dx dy = detJ d& dn (4.15)
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Equations (4.13)—(4.15) will be very useful for the next section, where the
governing equations will be obtained for the FSDT extended to a multilayered
plate, embedding a piezoelectric layer, in the case of a FE approximation.

4.3 FSDT finite element plate theory extended to
smart structures

The smart structure analyzed is the same one that was examined in Section 3.4.1,
for the case of CLT extended to electromechanical problems, considering the
analytical solution. Figure 4.3 shows the geometry of the plate and its coordinate
systems. A linear electric potential through the thickness of the piezoelectric
layer is assumed in this smart structure. We consider a plate of total thickness
h composed of an orthotropic layer (thickness h,) and a piezoelectric layer at
the top (thickness 4;); the same notation as Section 3.4.1 is employed.

@ by r1
o X

® hzl ]

z

Figure 4.3 Geometry and notations for a generic orthotropic plate embedding
a piezoelectric layer.
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In the case of FSDT, based on the Reissner—Mindlin hypotheses (Mindlin
1951; Reissner 1945) extended to smart structures, only the last relation in
Equation (3.6) remains (the electric potential is linear through the thickness
in layer-wise form). Considering Equation (3.4), the model extended to smart
structures becomes:

ulx,y,z,t) =uo(x,y,t) + 29, (x, y, 1)
v(x, y,z,1) = vo(x, y, 1) + 2Py (x, y, 1)
w(x, y,z,1) = wo(x, y, 1)
D (x, y,z,1) = Df(x, y, 1) + (z — Z) P (x, y, 1)

(4.16)

The Poisson locking phenomenon remains, as for the analytical CLT case of
the previous section, and it can be overcome, in the case of pure mechan-
ical problems, by utilizing the plane stress conditions given in Carrera and
Brischetto (2008).

g, vo, and wy in Equation (4.16) are three displacement components in the
middle plane of the plate, and ®, and ®, are the two additional rotations with
respect to the CLT case. The two electrical unknowns are ® and ®*; these allow
one to express the linear electric potential through the thickness direction of the
k layer where it is considered (in this case the electric potential is in layer 1). It
is possible to consider an electric potential at the top <I>’jL and at the bottom ®*
of the generic piezoelectric layer k. The linear electric potential through the
thickness is defined by means of the mean value <I>/(‘) = (dﬁ + ®*)/2 and the
slope ®f = (®* — @k )/hy. The value Zx = (zx + zx+1)/2 is defined in order
to refer the thickness coordinate to the midsurface of the kth piezoelectric layer.

If we consider the FE discretization in Equation (4.1), for the seven degrees
of freedom involved in this model, it is possible to write:

a.(x,y)=N,;q, “4.17)

where i denotes the nodes of the considered element, and the two vectors are:

Z%0) Guyi
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where, in Equation (4.18), the vector g.; contains the nodal values. The same
relations can also be written for the virtual variations:

das(x,y) = N;dqy; (4.19)

where j denotes the nodes of the considered element, and the two
vectors are:

Sug 361'401'
dvo 551110_/'
dwo aqwoj
sa, = | 5% | g, = | 290 (4.20)
(Scby 56143‘,/'
k
5@6 Sq‘boj
L 3®]1( _ L Sql‘;’lj _

Using the FE discretization in Equations (4.17) and (4.18), the electromechan-
ical model of Equation (4.16) can be written as:

u(x,y,z,t) = Niquyi + 2Niqo,i
v(x, y,2,1) = Niqui + zNiqo,i
w(x, y,z,1) = Niquy
D(x, y, 2, 1) = Nigg,; + (2 — ZONiqs,;

21

The FE discretization employed in Equation (4.21) can also be used for the
virtual variations using Equations (4.19) and (4.20):

Sulx, y, z,1) = Njdqu,j + zN;8qa, j
Su(x, y,z,1) = N;jdqyj + 2N;dqe,;
Sw(x, y,z,1) = Njdqu,,
SDF(x, v,2,1) = Njéqé,oj +(z — Zk)Nj5Q§>]j

(4.22)

The piezoelectric constitutive equations for the FSDT case, with reference
to Equations (2.12)—(2.18), have transverse shear strains (y,, and y,;) and
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stresses (0, and o,;) in addition to the components already considered for the

CLT case in Equations (3.7) and (3.8):
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(4.24)

The geometrical relations are obtained as indicated in Reddy (2004). Trans-
verse shear strains are added to the strain and electric field components that
were already discussed for the CLT case in Equations (3.9)—(3.14). Considering
Equations (2.38)—(2.42) and introducing the derivation of the shape functions,
as discussed in the previous section (Equations (4.13)—(4.14)), it is possible to
write the electromechanical geometrical relation for the FSDT model, extended
to multilayered piezoelectric plates, for the case of FE analysis (see Equations
(3.49)—(3.57) of the analytical version of FSDT for comparison purposes):

GXX

€yy

VXZ

ou

o = Nixduoi + 2N qo,i = €O + zell

dv © )

5 = Niyqui + 2Niyqo,i = €, + z¢€;

ou v

3 + P NiyGuoi + NixGuyi + 2(Niyqa,i + Nixqo,i)
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v+ zyf)

v Jow (0)

E + E == [qq));i + Ni,quoi = yyz

ou Jw (0)

. + Fie Niqo,i + NixGuyi = Vi

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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£ =~ B (Ninth + ENisb) — 2Niaahys = 10+ 280
(4.30)
8,{:_3;()/‘:(_1\,“ k 45N k ) — zN; k .ng(O)_i_ gk(l)
¥ 3y ivdoy T 2UNiyde, ;) — 2Viyde,; y ¢y
431)
£ = ‘aa%k = —Nigy,; =& (4.32)

As in Equations (4.25)—(4.32), it is possible to write the same relations for
the virtual strain and electric field components (see Equations (4.19), (4.20),
and (4.22)):

8eQ) = Nji8quyj.  8el) = Nj.8qs,; 4.33)
Se) = Niydquj,  8€y) = Nj,\dqa, 4.34)
57;3) = Njy8quyj + Njx8uyj» 5%5;) = Njy8q0,j + Nji8qs,;
(4.35)
8\ = N;dqo,; + Njy8qu,; (4.36)
37 = Ni8qw,; + Njxdquyj 4.37)
86D = —N; . 8qk,; + 2N 8q%, ;. 8EW = —N;.8q5, ;  (4.38)
86D = —N;\8qk,; + 2N 0q%, ;- 86V = —N; 895, (439
8KV = —N;bqy, (4.40)

The same rules of shape functions N; are also valid for shape functions N; as
described in Equations (4.13) and (4.14).

The dynamic version of the PVD, which was first proposed in Reddy (2004),
where ¢ is the time which goes from O to 7, states, as in the previous chapter
for the CLT case of Equation (3.15), that:

T
0= / (U + 8V — §K)dt 4.41)
0

where the virtual internal work U (volume integral of §Uj) in the case of
electromechanical coupling is a summation of §U,, (virtual strain energy) and
8U, (virtual electrical internal work). The term 8U, is not considered for a
partial electromechanical coupling and the electrical contribution is only con-
sidered by means of the second term in Equation (4.23). In this work, a fully
electro mechanical coupling is accounted for, because both §U,, and §U, are
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considered. 6V is the virtual work done by the applied forces, and it permits
one to obtain the mechanical forces for sensor applications; no mechanical
forces are considered for actuator applications and the electric potential can be
applied directly to the top and bottom of the considered piezoelectric actuator
layer. § K is the virtual kinetic energy.

For the sake of brevity, we only give details on the virtual internal work U ;
further details concerning the virtual work done by applied forces §V and the
virtual kinetic energy 6 K can be found in the previous chapter and in Reddy
(2004). The virtual internal work §U is given by:

sU =6U,, + 48U, = /SUodv = /(SUom + 8Uo,)dv

v v
h/2
_ / ks ks ks ks ks
Ja hy2 Oy 0€xx 0y 0€yy + 0y 0Vxy + 0,:0Yxz + 00y
A

+ (- Dloek - Disel — Dhoet ) dz)dxdy
N

- [ (=

/2
/ [a)’fx (86}32 + zSeSj) +oy, (36;(;) + Z(SE;ly))
k=1 7~

)2
k 0) (€] k ©) k 0)
+ oy (8)/)0, + z5yxy) +o,, ((Syxz ) + (fyz(éyyZ )
— D (8640125840 ) ~ D (510 + 2581V ) ~ D (564 ) [dz) dxay
(4.42)

After substitution of the constitutive relations (Equations (4.23)—(4.24)), Equa-
tion (4.42) has the following form:

N,
0= [ (3 [ (08 (0 ze) + (e + ze) + 0 (1
Qo Ny d—hi/2

+27)) = 4 V) (56 + 28e) + (O (e + 2eV)

+ 09 +2el)) + O (19 +2rD) — k0 (66 + 25¢))

+ (060 +2el) + Qho(e +2€ll) + ks (10 + 21 )

— ko) (879 + 2oy D) + iy + Qsr?

— ey (810 4 cEHV) — &, (840 4 2810) ) (5112)

k.0 kO k (eko k(1
+ <Q45V,»(~z) + 0%y — €l (Ex( )+ 2&y )>
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— ¢k, (5;‘(0) i ZES(I)))(ay(O)) (614%(2) + by ®
<gk(0) + ng(l)) + ek <5k(0) i nga))) ((Sgk(O) 4 1851‘(1)>
- (9243’;2) + sy + 8]1(2(5)]5(0) + zEf”)
+ 3’52(5;‘(0) + Zgic(l)))(sg;c«» n Z55§(1>)
(A1 (€9 4+ 2e) 4 eby (€9 + )
+ e (%52) + zy“>) + ¢k 5"“”) (asjf(‘)))]dz)dxdy 4.43)
The next step is the substitution of the geometrical relations for the electro me-

chanical components and their virtual variations (see Equations (4.25)—(4.32)
and (4.33)—(4.40)) in the virtual internal work §U of Equation (4.43):

N,

(SU:/QO(;‘ 7

_/hk/z [(Qllei,x%oi + 205 Nixqo,i + Qlszi,quoi
P he/2

+ 204, Nivga,i + QYeNiyGuyi + Qi Nixqui + 246 Niyqa,i
+ ZQIIGNi,xq(I{‘.i + eglNiqéli) (Nj,x&luoj + zNj,x&ij)

+ (Qlszi,xquoi + 200N xqo.i + Q5 Niyqui + 205 Ni yqa,i
+ Q56 NiyGuyi + Q5 Nixuyi + 205 Nivqo.i + 205N <o,
+ e'ﬁzNi4§>1i> (Nj,yfsqvoj + ZNj,y&chyj) + (Q'fsNi,xquoi

+ 20%Nixqo.i + Q5 Ni yquyi + ZQlﬁgNi,yqq>yi + QFeNiyQuyi
+ OfsNixquyi + 2086 Niyqo.i + ZQIésNi,xqtbyi + e§6Niq§>|[>
X (Nj,yéquoj + Njx0qy,j +2Njy8q0,; + ZNJ"X(SQQ).J')

+ (QIL;NI‘%,I‘ + Q%aNiyquoi + Qs Nigo,i + Qs Ni xGuyi

+ e1aNixd,i — €14ZeNind,; + €1azNinds, + €3 Niyda,

- e§4szi,y‘]§>1i + e§4ZNi,y‘1§>1i> (Nj‘sqcbyj + N/',y&Iwoj)

+ (QisNiCIdDyi + Q4 Ni yquyi + O%sNiqa,i + Q5 Nixquyi

k k = k k k k k
+ €i5Nixda,; — €152k Nixqp,; + €152Nixqe,; + €35 Ni yqq,i
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— &5%Niyqe,; + e'ﬁsZNi,nyé,J (Nj&lcbxj + Nj,x&lwoj)

- (€]f4N561q>,,5 + €}f4Ni,y61woi + €5, Niqa,i + €54 Ni < Quyi — 8]1(1Ni,xq§>0i
+ glflszi,qué,i - 81f1ZNi,xQ§>1i - 5]162Ni,y‘1§1>0i + Sllczszi,ng,i

— ehyzNisgh, ) (= Nibab,, + %N;bab,; — 2N 8db, )

- (612(4Ni%yi + &5 NiyGui + €5sNiqo.i + 5sNixGuyi — €1, Nixqh,;
+ glszkNi,qué,i - 81{21Ni,x61§>15 - 512<2Ni,y‘1§>05 + 8§2ZkNi,.vq§>,i

— ehyzNi gl ) ( = Njbab, + 2uN; 0ah,; — N84, )

- (€§1Ni,x6]u0i + €5 zZNi xqo.i + €§2Ni,quoi + 6]36221\71‘,,\:6]@}.[

+ €56 NiyGuoi + €36NixGuyi + €562 Niyqo, i

+ 52N qo,i — k3 Nigh, )( . Nj8q§>lj)]dz)dxdy (4.44)

By developing the products in Equation (4.44), and collecting terms with respect
to vectors ¢ ,; and 8¢ ,; in Equations (4.18) and (4.20), respectively, it is possible

to define the components of the stiffness matrix K*/. The system of governing
equations is:

8q,: K q,;, =F; (4.45)

where F; is the vector that contains the mechanical forces. In the case of an
actuator configuration, the electric potential is applied directly to vector ¢q ;.
The form of the stiffness matrix K*/ is:

o kij kij kij kij kij kij kij ]
Kuouo Kuovo Kuowo Ku[)(bx Kuo(by Kuocbg Kug(bl

kij kij kij kij kij kij kij
Koy Kugvy  Kuowy,  Kyo, K K Ko,

U()d)y UU¢0
kij kij kij kij kij kij kij
Kwnuo Kwovo Kwowo KwOCDX ngtbv wo Py wod
kij _ kij kij kij kij kij kij kij
K - D ug P, v D, wo K(bx P, KcDX D, Kd}t [oN chx P,

kij kij kij kij kij kij kij
KCD)‘MO K(])yuo KCD)‘wO K(I)),<I)X K(I)yc])y KCD}»(DO K(qu)]

kij kij kij kij kij kij kij
KCI)()M(] K(I)(]U() KCID()wo K‘bocbx K(DOCI)‘, KCD[)‘D(] K(j)(]c[)l

kij kij kij kij kij kij kij
_K<1>1u(J Koty Koy, Koo, Koo, Koo, Kd>1<1>1_

(4.46)

y
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By separating the mechanical degrees of freedom ¢, = (qu,i Guyi Guoi Go,i
qs, )T from the electric ones q’fb = (quol. qéli)T, it is possible to write Equation
(4.46) in a more concise form, where the pure mechanical part, the pure elec-
trical part, and the electromechanical coupling contributions are easily noted:

(4.47)

Kkl] — [ uu
kij kij
KCDM K<D<1>

Matrix Kﬁ’uf has the dimension 5 x 5, Kﬁg is5 x 2, K]gi is2 x 5,and K]gép has
the dimension 2 x 2. In order to write the explicit form of each contribution, it
is necessary to define the integrals along the in-plane and thickness directions,
as suggested in Equations (4.48) and (4.49), respectively:

.o, = (...)dxdy (4.48)
Q0
N hie/2
Ao Dy = Z / (..)dz (4.49)
k=1 Y —he/2

where it is necessary to recall Equation (4.15) for a generic element 2; this
equation can also be considered for the generic element €2 at the middle plane.
The explicit forms of each component of Equations (4.46) or (4.47) are:

KM = 90k 5 aN; o N g, + 0% >naN N 1bg,

Uolo

+ <X haNi  Nj Do, + <0k>n<aNi  Nj Do, (4.50)
Ky = 901,0haN; yNj Do, + <905651aN; yNj yba,

+ 0¥ >uaN;  Nj o, + <90k B<aN;  Nj >a, 4.51)
K =0 (4.52)
K,f(l)jcp =k Qlflbthi,xNj,xDQO + <z Qlf6l>h<lN,-,yNj,x>QO

k k
+ <]ZQ1(,[>h<]Ni.xNj,yDQO + «z Q(,(,|>h<]Ni,yNj,y[>Qo (4.53)
kij k k
Ko, = 2Q1PpdN; yNj Do, + 2 QiePrIN; « Nj P,

+ 2 QAPnaN; yNj o, + <2 OkBiaN; (N ybo,  (4.54)
K = <aQ,0p<N; .« Njy>a, + 1Q5651<N; y Nj y>a,

+ 9Ok AN, Nj >q, + 905 DuaN; N >, (4.55)
KNI = 9Q5,5,aN; yN;j g, + 9050h<aN; o Ny,

Voo

+ <9Q8>haN;  Nj >q, + 90K LN N (>, (4.56)
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K =0 (4.57)
K = < QhpyalN; oNj b, + 205Ny Nj g,

+ <1z QPn<N; « Nj o, + <2 Qeebn<Ni yNj g, (4.58)
Kfé{b = <1zQ%,>1aN; yN; >q, + 2 O8bnaNi N b,

+ <z Q56BnaN; yNj >ay + 2 OQbPr<Ni xNj o, (4.59)

Kyl =0 (4.60)
Ky =0 4.61)
Kll;loij = A0%,>,aN; yNj s>, + 1Q%s54<N; N yba,

+ QXN yNj o, + <905B1<aN;  Nj >, (4.62)
Kllj)lonh = qusthNiNj,yDQo + <]Q]§5[>h<]NiNj,xl>Qo (4.63)
Klﬁ’()’q) = 9QX NN o, + <Q%sou<Ni N g, (4.64)

Ky = <204 bpaN; o Nj xbg, + 20 bialN; yN; 1ba,
+ 2Ok PnaN;  Nj ybo, + <2 OEBnaN; yNj o, (4.65)
ngvo = 2 Q},>4<dIN; yNj >, + 2 QePraN; N g,
+ 2 QAPnaN;  Nj yo, + <2 OEBRaN;  Nj o, (4.66)
Ky, = 90o4aN; xNjbg, + 90%554aN; y Njbg, (4.67)
ng<1>x = <2 Q% > aN; N 1 Dg, + <22 QX bi<aNi yNj >,
+ <z? Qlf6[>h<]Ni,xNj,yl>QU + <z? Qéﬁbthi,yNj,stzo
+ Q4> N g, (4.68)
Kgfq)y = <22 0% 04N N 1o, + <922 OF BN LN 1ba,
+ 922 Qkn<Ni N >a, + <22 Q4>naN; N ybg,
+ <9Qhs>p<aN; N>, (4.69)
Kﬁf{uo = 1zQ%,>aN; N >q, + 208N N b,
+ @ OYBnaN; o Nj oo, + 2 OEnIN;  Njybo,  (4.70)
Kg'y, = Q5P alNiy Njypa, +<2QPiaNisNj ba,
+ <z Q56BnaN; N >ay + 2 QfePn<Ni xNj o, (4.71)
Koy, = <042naN; yNipg, + <90Qks>1aN; Njpo, (4.72)
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kij 2 Ak 2 Ak
Ko o, = 2 Q1pPrINixNj o, + <927 Q36>nNi y Nj yPg,
2 Nk 2 Nk
+ <z Q16[>h<1Ni,x Nj’XDQO + <z Q66[>h<]Ni,yNj,xDQO
+ AQ4s>4<N; Nj>g, (4.73)
kij 2 Ak 2 Ak
K‘l?'yﬁpy =z Q22[>h<1Ni,yNj.y[>Qg + <z Q26Dh<]Ni,xNj,yl>Qg

2 Nk 2 Nk
+ <27 Q26PN y Nj xPq, + <2 QeePnINix Nj xPg,

k
+ 4Q44[>h<Nl’NjI>QU (474)
kij
Ko, =0 4.75)
kij k k
K, o, = <€5,>p<IN; N; (>, + <e3¢>p<N; N y>q, (4.76)
kij
Ko, =0 @4.77
kij k k
K, o, = e3Pp<INiNj >, + <e3n<N; Nj o >q, (4.78)
ki — ek opaN; N ybao 4 <€, opaN; yNi o>
wody — IC14Ph<AUNi IV j yPQ, €24 UV y IV j vy
+ <ebs>p<aN;  Ni1Dg, + <essonaN; N Do, (4.79)
ki —  aziek op<dNi N g, + <9zek opaNi N o>
wed, — Ck€1aPR NG x IV j yP Qg 21 4PnUN; x IV j yP0y
=k k
— ke Ny NjyPo, + 2epbraNiy N be,
-k k
— Qe sPp<AN; x Nj (Do, + <ze|sPp<AN; N (D>,
_ ok k
— <]Zk925|>h<1Ni,yNj,x‘>QO + <12€25I>h<Ni,yNj,xl>Qo (4.80)
kij k k
K(I)x‘i"o = <1€15[>h<1N,‘ny/‘DQO + <1€25Dh<1N,‘ny/'DQO (4.81)

kij k ke
K¢ o, = 2e3 Pp<IN;Nj (Do, + <zezebn<IN; N o,

— ZpefsopaN; N g, + <zeksbnaN; N jbg,
— <GpehsppaN; N g, + <azebsbnaN; yNjbg, (4.82)
kij  _ _k k
Kq,y% = e ,>p<N; N j>q, + <ey >, <N; yNj>g, (4.83)

kij .k k
Ko o, = 2eypbnaNiNj >, + 2e3snaNiNj g,

— <lee]1(4l>h<1Ni7x NjI>QO + <]Ze]1(4[>h<]Ni,x NJ'[>QO

— <]Zk612{4[>h<]Ni,yNj[>QU =+ <]Ze§4>h<Ninyj>QO (484)
Kyl =0 (4.85)
Kk — o (4.86)

Dovy
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kij k k
Ky, = <€14>n<IN; yNj (>q, + <€y <AN; ¢ Nj (o,
k k
+ e3>, <IN; N Do, + €55, <N; N Do 4.87)
kij k k
K%Q = ey, Pp<IN; N ,>q, + <eysbp<Ni N >, (4.88)
kij k k
Ko, = <ePrINiNj >, + <ep>nINi Nj \ba, (4.89)
kij ok k
Ky, = <€5,23<AN; x NjP>g, + <e3c>p<AN; y Njg, (4.90)
kij __ _ k k
qu0 = de3,>p<IN; N j>q, + <e3cbyp<N; x N>, 4.91)
Mii 2ok opaNi N ba, — <Zeek,sp<aN; (N >
Prwy Zk€14Pn NG y N j Py — WCr€PrUN; 2 N j xP @y
k k
+ <ze[Lp<AN; yNj (>g, + <2e5,>p<AN;  Nj >,
=k =k
— <WkepPnAN; y Nj oy — <ZkeysPrN;« Nj P,
k k
+ <ze5,>p<AN; yNj Doy + <ze55bp<N; N >, 4.92)
kij =k k
K<I>1<I>X = — dZkeryPp<AN; N (D, + <zey <N N >q,
k k
+ <zejsPp<AN; N Do, + <ze3 >p<N; (N>,
k
+ <zeigbpaN; yN>g, (4.93)
KN = — @z opaNi N g, + <zekop<NiNj >
&0, — k€1aPR NN j x>0y 24PN IV j <@y
I = k
— <12k€24[>h<1Ni NjnyQU — <IZk€25l>h<1N,' Nj,yl>g20
k k
+ <ze5,Bp<AN; N Do, + <ze3,>p<N; y N g,
k
+ <ze3e>p<AN; N jbg, (4.94)
KNI — — ek ppaN N g, — <eXompaN; N o>
DDy — RSV x IV j x Qg 12Vh SV y 2V jx 28
k k
— <ERPRAN; (N Do, — <€5,>,<N; N Do, (4.95)

kij -k k
K%q)] = <Zk&1>p<IN; N >, — <z2&|>p<N; N >q,
I k
+ <ZpePR<AN; yNj Do, — <z2€1,>4<IN; yNj 1 >o,
=k k
+ <QCEDRPRAN; N Doy — <2€1,>4IN; N y>o,
=k k
+ <]Zk822[>h<1Ni,yNj,y[>Qo — QZgzzthNi,yNj,yDQU (496)
KT = <7k mpaN; (N, K bp<N; <N,
&0y = RiE11PrIN N jxPoy — €€ PN IV j xP@y
=k k
+ <ZpePR<AN; yNj Do, — <z2€1,>4<IN; yNj 1 >o,
-k k
+ <QEDRPRAN; N Doy — <2e,>4IN; N y>o,

-k k
+ <]Zk822[>h<1Ni,yNj,y[>Qo — QZgzzthNi,yNj,yDQU 4.97)
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Kgljcbl = - 45;381f1>h<1Ni.xNj,X>QO + <122k81f11>h<1Ni,xNj_xDQO
— Zref ouaN; y N >ay + 9Zzebbn<aN; y N g,
+ @zl DpaN N g, — <226k DpaN; N bg,
+ <22k X p ANy Nj Da, — <22e,0n<N; N 1B,
+ <1Z2k8]1<21>h<1N,',xNj,yl>Qo — <IZ,%8]1<21>h<1N[,yNj,yl>Qo
+ <ZZk8§21>h<Ni,yNj,y>QO + <%k z&55><IN; N; o,
— 4128/162[>h<]Ni,xNj,yD§20 =+ <]ZkZ81262[>h<]Ni,yNj,y[>Qo

2 k k
— AZ7eDp<AN; yNj Do, — <€x3>p<N; N g, (4.98)

The governing equations can also be written in terms of force and moment
resultants, as already done for the analytical closed-form solution in Chapter 3.
It is now possible to define the following integrals in the z direction of the
multilayered plate:

Nyx ot My ol
h2 XX h2 xx
Nyy :/ afy dz, M, :/ o}’,‘y zdz (4.99)
N —h)2 o —h/2 .
xy xy xy Xy
0. w2 ok,
= .|z (4.100)
0, —h/2 | Oy,
0, Dk P, Dk
h/2 h/2
0, =/ D} | dz, Py =f Dy |zdz  (4.101)
—h/2 . —h/2
z Dz z z

As already seen for the CLT case in Chapter 3, (Nyy,Nyy,N,,) are the in-plane
force resultants per unit length in Equation (4.99) and (M,,M,,,M,,) are the
moment resultants per unit length. In Equation (4.101), we define (0y,0,,0;)
as the electric charge resultants per unit length, and (P,,P,,P.) as the electric
moment resultants per unit length; the additional forces for FSDT analysis are
(Ox,0,), as in Equation (4.100), which denotes the transverse force resultants
per unit length.
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If we consider the constitutive relations in Equations (4.23) and (4.24), the

explicit form of Equations (4.99)—(4.101) is obtained. The force resultants are
given by:

Ny ok
Ny 21 xx
Nyy | = f oy | dz
k=1 Zk k
Xy ny
k k k €W 4 z¢W)
N On Qn Qi xx T 2€xx
N[ k k k €W 4 ze)
= Z 0, 03 0% yy Y
k=1 Y% (

0 1
Q]f6 Q§6 Qéﬁ yx},)—l—zy)gy)

0 0 &[N 4D
—10 0 €, || &0+ | |dz (4.102)

00 613‘6 EZ"(O)—i—zO

The moment resultants are given by:

Mxx U)Iccx
Ni Zk+1 :
My, | =) / oy, | 2dz
k=1 Y% k
M., Ty
k k k 0) (1)
N Q]] Q]2 Q16 6)c)c + Zexx

Tk+1
_ k k k ) (1)
= § :/ On 9% 0% €yy T 2€yy
Zk
k k k 0 1
Qs Q% Qs V;Ey) + Zny)

0 0 &7 [EO 4z
=10 0 & || EO+2ED | | 2dz (4.103)
0 0 e || EO+20
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The transverse force resultants (they are in addition to the CLT case) are

given by:
0. N Zht1 —(T)]Ci,
= [ |
0, k=1 [ Oyz

oy o]
= k k
k=1 Y% Q45 Q55 V;g)

EKO) 4 7ghD)

811(4 812(4 0 k(0) k(1)
-1 . & EW +z2Ey dz (4.104)
ers e 0 £(0)
&P+ 20
The electric charge per unit length resultants are given by:
ka
O, N "
0, | = Z / ’)‘ dz
— Zk
o.| D
el ]
k k (0) (1
N 0 0 0 ey e €yy T 26y
— / 0 0 0 & || rV+z)
k=1 Zk
e§1 e§2 e§6 0 0 Vy(g
L on?
k(O k(1
ek, 0 ECO + 260
k(O k(1
+et, e o || E&YHEY | 4z (4.105)
0 0 & |EY+20

33
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The electric moment resultants are given by:

o [P
P, :Z/ DX | zdz
e+l
IR
=3 f 0 0 0 & &l|r9+zp®
= e € e 00 Vie
ST

ek, efy 07 [ MO 4 zgkD
+ ety & 0 || EO 4280 | | zdz (4.106)
0 0 & [E0+20

The summation in Equations (4.102)—(4.106) is done for the total number of
N layers.

Aj; are the extensional stiffnesses,, D;; are the bending stiffnesses, and B;;
are the bending—extensional coupling stiffnesses. They are defined as:

M 2kt
(Aij, Bij, Dij) = Z/ 05,(1,z.2%)dz (4.107)
k=1 "%

Ej; are the electromechanical coupling extensional stiffnesses, G;; are
the electro mechanical coupling bending stiffnesses, and Fj; are the electro-
mechanical coupling bending—extensional stiffnesses. They are defined as:

Ny Zk+1
(Eij, Fij, Gij) = Z/ 65(1, z.20)dz (4.108)
k=1 "%

k
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R;; are the dielectric extensional stiffnesses, S;; are the dielectric bending
stiffnesses, and Tj; are the dielectric bending—extensional coupling stiffnesses.
They are defined as:

N Zk+1
(Rij, Sij» Tij) = Z/ eli(1. 2, 2)dz (4.109)
k=1 "%

Ck

Using Equations (4.107)—(4.109), Equations (4.102)—(4.106) can be rewrit-
ten as:

Nix Al Ap A | [ €9 By B B | [ €l
Ny | = A An Ax|| €Y |+|Bo Bn Bx|| €
Nyy Al Az Ass | VY Bis By Bes | | V)
0 0 Es|[&MO@ 0 0 Fs | [&W
—10 0 En|| &P =10 0 Fn||&W | (4110)
0 0 Es || &0 0 0 Fs 0
£k0)
0 Aw Ass| [ 7D Eyy Exn O y
X _ vz _ 5]((0)
Q) Y
0, Ags Ass || Vs, Eis Ey O £k
Zz
5‘)];(1)
Fiy Fu 0
_ 56(1) 4.111)
Fis F»s 0 '0

The following matrices can be defined in Equation (4.111) with the subscript
s, which stands for the shear components:

| Au Asgs _|Eus Ex O | Fis Fxy O
As_[A45 Ass]’ Ex_[Els Exs 0]’ F = Fis Fs 0

(4.112)
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The other equations for the moments and electrical contributions are:

M By By B |[€? Dy,
My, | =|Biz Bxn Bx||€) |+]|Dn
M, Bis By Bes %52) Dis
0 0 Fy[&oO 0 0
—0 0 Fyu||&©@ 0 0
0 0 Fy | & 0 0
O, 0O 0 0 €9 0
Oy|=10 0 0| |+]|0
0. E3 Exp Es )/)58) | F3
(Ews Eis O [Ri1 R
+ | Eos  Ess |: ):)):|+ Ri1 Rp
0o o |- 00
[S11 S 0 gL
+{Sn1 S» 0 &
(0 0 Su]l| 0
P, 0 0 0 €0 0
Pil=10 0 0[P {+]0
P, F31 Fyno Fi J/}(y)) Gj
[ Fiu  Fis L0 NTRENT
+ | Fos Fos |:yy(;):|+ St S»
0 0 B 0 0
Ty T, 07 &M
+({Th T O 55(1)
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(4.114)
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0 o
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(4.115)
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{€°} and {€'} in Equations (4.110)—(4.115) are the membrane and bending
strains, and {€”} are the shear strains which are typical of FSDT applications.
{EXO} and {£¥D} are the membrane and bending electric field components.
These five vectors are defined as:

_E)(c(,)x) eii) o
Yyz
(@)= | (=] e ’{6‘?}2[ <0}
y© yD Viz
L Yxy xy
-5)1:(0) 5)1;(1)
{£K0y = 5’:2; , (&K = | gkm (4.116)
EX 0

The force, transverse force, and moment resultants for the mechanical part,
and the electric charge and electric moment resultants, are grouped in the
following vectors:

NXX Q M.XX
{N}: Nyy ) {Q}: |:Qxi|’ {M}: M_vy
Ny y M,
O, Py
{O}=]0,|, {P}=]| P, |. 4.117)
0, P,

In the case of a sensor configuration, mechanical loads are applied to vectors
{N}?, {Q}?, and {M}?. The electric potential for the actuator configuration is
imposed directly on the vector of the unknowns. The laminate constitutive
equations can be written in compact form as:

[ {N}] A 0 B —-E -F[ {7
{0) 0 A 0 -E —F|| () (N}
My|=8 0 D —-F -G ey | =1 oy
{0} ET ET FT R S {EH0y {M}r
Py | |F" KT G s T | |{&"M}]

(4.118)
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where T means the transpose of a matrix. When the fourth and fifth columns
and rows in Equation (4.118) are deleted, the pure mechanical problem is
investigated. We can also consider a partial electro-mechanical problem by
deleting only the fourth and fifth rows. Equation (4.118), for the FSDT case,
compared to Equation (3.45), for the CLT case, also has the shear contributions
due to the transverse shear strains y,, and y, . ; the other components are formally
the same.
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Numerical evaluation
of classical theories and
their limitations

Some preliminary results are given here in order to show the main limitations
of classical theories for the static and dynamic analyses of one-layered and
multilayered structures embedding piezoelectric layers. The proposed analyses
compare some 3D or quasi-3D results found in the open literature to the classi-
cal theories introduced in Chapters 3 and 4 and extended there to multilayered
piezoelectric plates and shells. These theories are the well-known classical lam-
ination theory (CLT) and first order shear deformation theory (FSDT) based
on the Kirchhoff and Reissner—-Mindlin hypotheses, respectively, where the
electric potential is described in layer-wise (LW) form with linear expansion
in the thickness direction. Only analytical closed-form solutions are given and
the readers can find other results (including FE analysis) in the last chapter
of this book. In the present chapter, the limitations of CLT and FSDT analy-
ses are shown for simply supported plates and shells and for harmonic loads.
The extensions of CLT and FSDT to the electromechanical case are indicated
as CLT(u, ®) and FSDT(u, ®), respectively, where the primary variables are
indicated in parentheses. The limitations of the classical theories depend on
the thickness ratios, the stacking lamination sequence, transverse and in-plane
anisotropy, the type of loads (sensor or actuator configurations), the type of
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electromechanical variables investigated, and the order of frequencies and vi-
bration modes in the case of dynamic analysis. The results are organized as
follows: static analysis of multilayered piezoelectric plates in both sensor and
actuator configurations; static analysis of one-layered and multilayered piezo-
electric ring and cylindrical shells in both sensor and actuator configurations;
free-vibration analysis of multilayered piezoelectric plates in closed-circuit
configurations; and free-vibration analysis of multilayered piezoelectric shells
in closed-circuit configurations (the electric potential is zero at the top and
bottom surfaces).

5.1 Static analysis of piezoelectric plates

The considered multilayered piezoelectric plate is simply supported with
harmonic loads applied to its top surface. As suggested in Figure 5.1, the
sensor configuration has a bisinusoidal transverse mechanical load with
amplitude p, = 1 Pa, and the actuator configuration has a bisinusoidal electric
voltage with amplitude & = 1 V; in both cases, the imposed wave numbers
are m = n = 1 and the electric potential at the bottom surface is set to zero.
The plate is square, @ = b, with two external piezoelectric layers in PZT-4
and two internal composite layers in graphite/epoxy (Gr/Ep) with a lamination
sequence of 0°/90°. The total thickness is indicated as /4, the two external
piezoelectric layers have a thickness h; = hsy = 0.1h, and the two internal
composite layers have a thickness 1, = h3 = 0.4h. The material data for PZT-4
are: Young’s moduli £; = E, = 81.3 GPa and E3 = 64.5 GPa, Poisson ratios
Vi = 0.329 and Vi3 = V3 = 0432, shear moduli G23 = G13 =25.6 GPa
and G» = 30.6 GPa, dielectric coefficients 1] = g3 = 13060 pC/V m and
e33 = 11510 pC/V m, piezoelectric coefficients ej5 = ey = 12.72 C/mz,
e31 = e3p = —5.20 C/m? and e33 = 15.08 C/m’. The material data for the

A (X)) .. (T
(e, =, sin(Din%) ®, (x,) = b, sin( 2sin( %)

;;;;;;;;;;

Figure 5.1 Multilayered piezoelectric plate: sensor configuration (left) and
actuator configuration (right). Bi-sinusoidal distribution analyzed via analytical
solution in closed form.
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Table 5.1 Multilayered piezoelectric plate in sensor configuration: in-plane
normal stress oy, at the top z = h/2.

alh 2 4 10 100
3D — 6.5643 — —

Ref. 3.2208 6.5642 32.776 3142.1
CLT(u, ®) 1.4726 5.8912 36.821 3682.1
FSDT(u, ®) 1.4836 5.9023 36.832 3682.1

Gr/Ep are: Young’s moduli £; = 132.38 GPa and E, = E3 = 10.756 GPa,
Poisson ratios v, =vi3 =024 and vy;3 =049, shear moduli
Go3 =3.606 GPa and Gy = G3 = 5.6537 GPa, dielectric coefficients
€11 = 30.9897 pC/Vm and &y = e33 = 26.563 pC/V m. The exact 3D
solution for both the actuator and sensor cases has been proposed by Heyliger
(1997), while other quasi-3D solutions, based on refined models (Ref.), have
been given in Carrera and Brischetto (2007) for several thickness ratio values
a/h.CLT(u, ®) and FSDT(u, ®) are compared in Tables 5.1 and 5.2 to 3D and
quasi-3D results for the sensor and actuator cases, respectively. In Table 5.1,
the in-plane normal stress o, at the top z = //2 of the plate is given by the 3D
solution (Heyliger, 1997) for a thick plate in a sensor configuration (a/h = 4).
The refined theory proposed in Carrera and Brischetto (2007), by means of the
CUF theory and MUL?2 software, can be considered as a quasi-3D result, as
will be demonstrated in Chapter 9; it gives the in-plane normal stress o, at the
top z = h/2 for both thick and thin plates (thickness ratios from a/h =2 to
a/h = 100). Classical theories are completely inadequate to calculate such a
variable for either thick or thin plates; they calculate the electric potential to an
acceptable approximation (consequently the electric field by means of geomet-
rical relations), but the three displacement components and their derivatives
are not correctly calculated to obtain the strains and, as a consequence, the
input data for electromechanical constitutive equations are not adequate to

Table 5.2 Multilayered piezoelectric plate in actuator configuration: electric
potential & at the middle z = 0.

alh 2 4 10 100
3D — 0.4477 — —

Ref. 0.3330 0.4477 0.4910 0.4999
CLT(u, ®) 0.3244 0.4469 0.4910 0.4999

FSDT(u, ®) 0.3219 0.4461 0.4908 0.4999
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obtain satisfactory values for in-plane stresses. The use of refined theories is
mandatory to obtain the correct values of such variables, since the plate is
multilayered and moderately thick with significant anisotropy. In Table 5.2,
the electric potential @ at the middle z = 0 of the plate has been calculated as
a 3D result, according to Heyliger (1997), for a thick plate in an actuator con-
figuration (a/h = 4). The proposed refined theory, based on the CUF theory
and MUL2 software by Carrera and Brischetto (2007), is a quasi-3D result,
as will be demonstrated in Chapter 9; it gives the electric potential ® at the
middle z = 0 for both thick and thin plates (thickness ratios from a/h = 2 to
a/h = 100). Classical theories give satisfactory values of the electric potential
(in particular for thin and moderately thin plates) because it is a primary
variable in both CLT(u, ®) and FSDT(u, ®) analyses, which means that it
is obtained directly from the governing equations in LW form by means of a
linear expansion in the thickness direction for each layer k. Some differences
are exhibited for thick plates, as a linear expansion in the thickness direction
is not sufficient to achieve a 3D description through the multilayered structure.

5.2 Static analysis of piezoelectric shells

This section describes some results of the static analysis of one-layered and
multilayered cylindrical panels and shells embedding piezoelectric layers; both
geometries are considered either in sensor or actuator configuration. The pro-
posed quasi-3D results, indicated as Ref. solutions and shown for comparison
purposes, are based on refined models obtained by means of the MUL2 soft-
ware in the framework of CUF theory (see the results described in Carrera and
Brischetto 2007).

The first case covers a simply supported one-layered cylindrical panel in
PZT-4 (see the material data in Section 5.1). The geometry, as described in
Figure 5.2, has a radius of curvature R, = 10 m in the « direction and infinite
radius of curvature Rg in the B direction. The two in-plane dimensions are
a =m /3R, in the « direction and » = 1 m in the B direction. The sensor
configuration has a sinusoidal transverse mechanical load with amplitude
p. = 1 Pa, and the actuator configuration has a sinusoidal electric voltage with
amplitude & =1 V; in both cases, the imposed wave numbers are m = 1 and
n = 0, and the electric potential at the bottom surface is set to zero. A compari-
son between the Ref. solution by Carrera and Brischetto (2007) and the classical
CLT(u, ®) and FSDT(u, ®) theories is shown in Tables 5.3 and 5.4 for the sen-
sor and actuator configurations, respectively. The transverse displacement  is
evaluated in the middle of the panel (z = 0) for thick and thin shells (thickness
ratios from R, /h = 2 to R, /h = 100). In the sensor case shown in Table 5.3,
it is clear how neither the CLT(u, ®) nor FSDT(u, ®) analyses achieve the 3D
result, even though the shell is thin; similar conclusions can be confirmed for
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p(,p)=p. sin[%) cD,(a,B):tf)‘sin[ﬂ]
a

Figure 5.2 One-layered and multilayered piezoelectric cylindrical panels:
sensor configuration (left) and actuator configuration (right). Cylindrical dis-
tribution analyzed via analytical solution in closed form.

the actuator case shown in Table 5.4 for the electric potential calculated in the
middle of the shell where CLT(u, ®) and FSDT(u, ®) exhibit some difficulties
because the electric potential profile is linear from the bottom, where ®;, = 0,
to the top value @, = 1 V; for this reason, the results are acceptable for very
thin shells where the electric potential is almost linear in the thickness direction.
Figure 5.3 shows the differences between classical CLT(u, ®) and FSDT(u, ®)
theories and quasi-3D descriptions (Ref.) for the evaluation of the transverse
displacement through the thickness direction in the case of thick, one-layered
piezoelectric panels in a sensor configuration, and a comparison between
classical theories and the Ref. solution for the evaluation of the in-plane normal
stress 0y through the thickness direction of a moderately thick, one-layered
piezoelectric shell panel in an actuator configuration. The inadequacy of

Table 5.3 One-layered piezoelectric cylindrical panel in sensor
configuration: transverse normal displacement w = w x 10° at the middle
z=0.

Ry/h 2 4 10 100
Ref. 0.2740 1.4459 18.748 17508
CLT(u, ®) 0.1298 0.9619 14.140 13554

FSDT(u, ®) 0.2642 1.2078 14.716 13560
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Table 5.4 One-layered piezoelectric cylindrical panel in actuator
configuration: electric potential ® at the middle z = 0.

Ry/h 2 4 10 100

Ref. 0.4213 0.4903 0.5057 0.5012
CLT(u, ®) 0.5000 0.5000 0.5000 0.5000
FSDT(u, ) 0.5000 0.5000 0.5000 0.5000

classical theories shown in Tables 5.3 and 5.4 is also confirmed by the results
in Figure 5.3.

The second multilayered case has the same geometry as the one-layered
piezoelectric case; the panel is simply supported and both the mechanical and
electrical loads (for sensor and actuator configurations, respectively) are applied
at the top in sinusoidal form (m = 1 and n = 0). The stacking layer sequence
is the same one that was shown in Section 5.1 for the plate geometry (two
external piezoelectric PZT-4 layers and two internal composite layers with a
lamination sequence of 90°/0° and not the 0°/90° of the plate case) and the
geometry and loading conditions are as summarized in Figure 5.2. Table 5.5
shows the transverse displacement w at z = 0 for the multilayered piezoelectric
sensor panel for different thickness ratios R,/#h; the combination of thick
geometry and transverse anisotropy makes classical theories inadequate for
such problems, even though it can be observed that FSDT(u, ®) works better
than CLT(u, ®). These considerations can be confirmed by looking at the
relative actuator case analyzed in Table 5.6. The use of refined theories for the
actuator case is more desirable for thick geometries, and the electric potential
for thin shells can be correctly calculated using each proposed 2D model.

1 Ref.——
FSDT e
CLT -
0.5
E el
N N
-0.5
-1

04 06 08 1 12 14 16
w[10” m]

Figure 5.3 One-layered piezoelectric cylindrical panel: transverse normal
displacement w vs. z for the sensor case with R,/h = 4 (left) and in-plane
normal stress o, VS. z for the actuator case with R, /h = 10 (right).
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Table 5.5 Multilayered piezoelectric cylindrical panel in sensor
configuration: transverse normal displacement = w x 10” at the middle
z=0.

Ro/h 2 4 10 100

Ref. 1.0304 3.3031 29.832 25202
CLT(u, ®) 0.2086 1.4620 21.015 19957
FSDT(u, ®) 0.6148 2.1808 22.682 19973

Figure 5.4 shows the electric potential through the thickness direction z for
a multilayered cylindrical sensor panel and the transverse normal electric dis-
placement along z for a multilayered cylindrical actuator panel. The considered
shell is moderately thick (R, /& = 10) and classical theories (CLT(u, ®) and
FSDT(u, ®)) are compared to a refined theory (proposed as a quasi-3D solution
in Carrera and Brischetto 2007). For the sensor case, classical theories satisfy
the boundary conditions for the electric potential and its evaluation through the
thickness, even though the correct values are only obtained by means of the
Ref. model. In the actuator case, classical theories are completely inadequate
for a correct evaluation of the transverse normal electric displacement, and
only the quasi-3D solution gives the interlaminar continuity of the transverse
normal electric displacement through the interfaces.

The third case considers the same one-layered piezoelectric configuration as
the first case, embedded in a cylindrical shell geometry, as shown in Figure 5.5.
The radii of curvature are R, = 10 m and infinite Rg with shell dimensions
a =2n R, and b =40 m. The cylindrical shell is considered to be simply
supported and two different conditions are investigated: a sensor case, when a
mechanical load is applied at the top, p. = p, sin(mma/a) sin(nwB/b), with
amplitude p, = 1 Paand wave numbers m = 8 and n = 1; and an actuator case,
when an electric voltage is applied at the top, ® = ® sin(mma/a) sin(nm/b)
with amplitude & = 1 V and wave numbers m = 8 and n = 1. The electric
potential in the sensor configuration is set to zero at the top and bottom surfaces,

Table 5.6 Multilayered piezoelectric cylindrical panel in actuator
configuration: electric potential ® at the middle z = 0.

Ry/h 2 4 10 100
Ref. 0.4528 0.4981 0.5056 0.5009
CLT(u, ®) 0.4504 0.4979 0.5056 0.5010

FSDT(u, ®) 0.4491 0.4975 0.5055 0.5010
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Figure 5.4 Multilayered piezoelectric cylindrical panel: electric potential
vs. z for the sensor case with R, /h = 10 (left) and transverse normal electric
displacement D, vs. z for the actuator case with R,/ h = 10 (right).

while in the actuator case the electric potential is set to zero at the shell bottom.
The electric potential ® in Figure 5.6 is given through the thickness direction
z of the sensor configuration (left) and actuator configuration (right). The use
of the Ref. solution is mandatory for the sensor configuration since, when
zero electric potential is imposed at the top and bottom of the shell, classical
theories (CLT(u, ®) and FSDT(u, ®)), which have a linear electric potential
in the thickness direction, can only give a zero electric potential all over the
thickness of the shell. A linear electric potential through the thickness, which
goes from 0 to 1V, is obtained for the actuator configuration for a moderately
thin one-layered shell; for this reason, it can be stated that classical theories are

a=2nRy

Figure 5.5 One-layered and multilayered piezoelectric cylindrical shell ge-
ometry: both sensor and actuator configurations can be considered.
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Figure 5.6 One-layered piezoelectric cylindrical shell: electric potential ®
vs. z for the sensor case with R,/h = 10 (left) and electric potential ® vs. z
for the actuator case with R, /h = 10 (right).

able to satisfy such conditions and behavior. Table 5.7 considers the transverse
normal electric displacement at the top z = & /2 for the actuator case. Classical
theories are completely inadequate for such an analysis for each considered
thickness ratio R,/ h; the use of refined models, where D. is a primary variable,
is mandatory.

The last case considers the same cylindrical shell already described in Fig-
ure 5.5 with the same boundary conditions, geometrical parameters, and applied
loads for the sensor and actuator cases already given for the third case. The only
difference, with respect to the third case, is the lamination sequence; in this last
case, we consider a four-layered configuration with two internal composite lay-
ers and two external piezoelectric ones, as already shown in this section for the
second case. The transverse normal electric displacement is given through the
thickness direction of the sensor configuration of the multilayered piezoelectric
cylindrical shell on the left side of Figure 5.7. It has clearly been demonstrated
how classical theories are completely inadequate and the Ref. model gives a
satisfactory analysis and ensures interlaminar continuity (interlaminar conti-
nuity of a transverse electromechanical variable is only ensured by means of
opportune RMVT applications as will be shown in the subsequent chapters). A

Table 5.7 One-layered piezoelectric cylindrical shell in actuator
configuration: transverse normal electric displacement D, = D. x 10% at the
topz = h/2.

Ry/h 2 4 10 100
Ref. —0.5848 —0.7840 —1.6156 —16.266
CLT(u, ®) —0.2351 —0.4692 —1.1711 —10.738

FSDT(u, ®) —0.2475 —0.4822 —1.1843 —10.747
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Figure 5.7 Multilayered piezoelectric cylindrical shell: transverse normal
electric displacement D, vs. z for the sensor case with R,/h = 4 (left) and
electric potential ® vs. z for the actuator case with R,/ h = 4 (right).

correct evaluation of the electric potential through z is given on the right side of
Figure 5.7 for the relative actuator configuration; each considered theory gives
correct results as the electric potential is always a primary variable, and it also
satisfies the boundary load conditions for an actuator configuration (electric
potential equal to the imposed value at the top and zero at the bottom). Table
5.8 shows the transverse normal electric displacement D, at the top z = //2
for the actuator configuration; the error obtained by means of classical theories
for each thickness ratio R,/ is clearly observed, even though such an error
decreases with the thickness ratio.

5.3 Vibration analysis of piezoelectric plates

The free-vibration problem of multilayered piezoelectric plates is investi-
gated here in order to show the main limitations of classical theories such as
CLT(u, ®) and FSDT(u, ®). The corresponding vibration modes are obtained
by imposing the wave numbers in the in-plane directions when an analytical

Table 5.8 Multilayered piezoelectric cylindrical shell in actuator
configuration: transverse normal displacement D, = D, x 10'° at the top
z=h/2.

Ry/h 2 4 10 100
Ref. —10.660 —6.6070 —3.2710 —3.6226
CLT(u, ®) —3.7634 —2.3546 —1.3225 —3.3559

FSDT(u, ®) —4.6977 —3.2782 —2.1875 —3.9044
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Figure 5.8 Closed-circuit configuration (electric potential @ zero at the ex-
ternal surfaces) for the free-vibration analysis of a multilayered piezoelectric
plate.

closed-form solution is assumed. The number of frequencies is equal to the
number of degrees of freedom through the thickness, according to the consid-
ered kinematics.

A five-layered plate is considered (see Figure 5.8). The two external layers
are made of piezoelectric material with a thickness 4 = hs = h/10, while the
three internal layers consist of reinforced carbon fiber layers with lamination
sequence 0°/90°/0° and thickness ) = h3 = hy = 14—5h. The elastic and elec-
trical properties of the multilayered plate are the same as those given in Section
5.1 for the PZT-4 and Gr/Ep materials. The 3D solution was first proposed by
Heyliger and Saravanos (1995). The considered plate has a square geometry
(a = b) in a closed-circuit configuration (electric potential applied at the top
and bottom equal to zero, as indicated in Figure 5.8). In order to obtain the
reference 3D solution, Heyliger and Saravanos (1995) employed a mass den-
sity p = 1 kg/m? for both materials; this operation does not have any physical
meaning but it is nevertheless acceptable for the proposed preliminary assess-
ment. The results are given as the first three fundamental circular frequencies
o = w/100 = 27 f/100 (for wave numbers m = n = 1). Two thickness ratios
are investigated: a thick plate (a/h = 4 with 7 = 0.01 m) and a moderately
thin plate (a/h = 50 with 2 = 0.01 m). Table 5.9 clearly shows how classical
theories are completely inadequate for such an investigation. The plate is mul-
tilayered with a given transverse anisotropy. The errors given by the CLT(u, )
and FSDT(u, ®) theories increase with the thickness value and also depend on
the mode considered (e.g., modes 2 and 3 in Table 5.9 are in-plane modes and
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Table 5.9 Multilayered piezoelectric plate: 3D results vs. classical theories.
m = n = 1, first three modes.

a/h =4 a/h =50

Mode 1 Mode2 Mode3 Model Mode?2 Mode3

3D 57074.5 191301 250769 618.118 15681.6 21492.8
CLT(u, ®) 103030 198465 286795 692.254 15877.2 22943.9
FSDT(u, ®) 741059 198465 286795 689.870 15877.2 22943.9

in this case classical theories work better than in the first mode case, which
is a thickness mode). It is clear why the use of refined models is mandatory
for a complete dynamic investigation, since, when classical theories are em-
ployed, some modes are tragically lost because of the small number of degrees
of freedom employed for the description through the thickness.

The case proposed in Heyliger and Saravanos (1995) is a well-known
3D benchmark; however, they assumed a mass density p = 1 kg/m’ for
both piezoelectric and composite materials. This assumption does not have
any physical meaning, therefore real mass densities p = 7600 kg/m> and
p = 1578 kg/m?> for PZT-4 and Gr/Ep materials, respectively, were consid-
ered in Carrera et al. (2010). The first three circular frequencies @ = w/100
for m = n = 1 are considered in Table 5.10. The most refined theory proposed
in Carrera et al. (2010) is used as a reference solution (Ref.) for the case of
real mass density as it gives a quasi-3D description of the multilayered piezo-
electric plate. No further results are obtained by the introduction of different
mass densities from 1 kg/m® since, although the mass density influences the
frequency values, it does not add any new effects to the comparison of classical
theories. For both cases (unit or real mass densities), it can be seen how classi-
cal theories obtain satisfactory results for those frequencies that are related to
in-plane vibration modes.

Table 5.10 Multilayered piezoelectric plate with real mass densities: 3D
results vs. classical theories. m = n = 1, first three modes.

a/h =4 a/h =50

Mode1l Mode2 Mode3 Model Mode?2 Mode 3

Ref. 1078.98 3460.68 4328.96 11.7167 297.176 407.510
CLT(u, ®) 1393.79 3762.48 5437.02 13.0758 300.999 434.969
FSDT(u, ) 1898.84 3762.48 5437.02 13.1210 300.999 434.969
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5.4 Vibration analysis of piezoelectric shells

The free-vibration problem of multilayered shells, including thickness-
polarized piezoelectric layers, is now investigated. As in the plate case, the
corresponding vibration modes have been obtained by imposing the wave
numbers in the in-plane directions. The number of frequencies is equal to
the number of degrees of freedom through the thickness of the considered
kinematics model.

A two-layered ring shell and a multilayered cylindrical panel have been
considered. The geometry of these shells is given in Figures 5.9 and 5.10 for
the ring shell and the cylindrical panel, respectively. The free-vibration problem
for both geometries has been investigated in a closed-circuit configuration, as
clearly indicated in Figure 5.10: the electric potential is zero at the top and
bottom of the shell (&, = &, = 0).

The cylindrical ring shell has two layers, an internal layer in titanium and
an external one in piezoelectric PZT-4. The properties of PZT-4 have already
been given in the previous sections and it has a mass density p = 7600 kg/m?,
while the properties of the titanium, which is an isotropic material, are:
Young’s modulus £ = 114 GPa, Poisson ratio v = 0.3, dielectric coefficient
¢ = 8.850 pC/V m and mass density p = 2768 kg/m?>. The 3D solution was
given by Heyliger et al. (1996): the first fundamental frequency in Hz is given
by imposingm = Oand n = 4, 8, 12, 16, 20. The thickness ratio Rg/ h is equal
to 72.75 (where the total thickness is 27 = 0.004 m, and the radii of curvature

—,
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\/
=
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a=0.3048

< '

PZ1-4

AN

Ti

Figure 5.9 Closed-circuit configuration (electric potential ® zero at the ex-
ternal surfaces) for the free-vibration analysis of a multilayered piezoelectric
ring shell.
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R — @,=0

Figure 5.10 Closed-circuit configuration (electric potential @ zero at the ex-
ternal surfaces) for the free-vibration analysis of a multilayered piezoelectric
cylindrical panel.

at the midsurface are R, = oo and Rg = 0.291 m). The dimensions are
a =0.3048 m and b = 2w Rg = 1.82841 m. The PZT-4 layer has a thickness
of 0.001 m and the titanium layer thickness is 0.003 m. In Table 5.11, the shell
is moderately thin, so the errors, in terms of frequency, are remarkable for
classical theories, and these errors increase with the wave number 7. For higher
values of m, the use of refined models is mandatory. When the wave numbers
m and n are fixed, classical theories work quite well for the fundamental
frequency, but they are inadequate for the higher frequency values.

The cylindrical panel has two external layers in piezoelectric material
PTZ-4 with a thickness h| = hs = hyor/10 and three internal layers in
graphite-epoxy Gr/Ep with a lamination sequence 0°/90°/0° and thickness
hy =hy = hy = %hTOT. The elastic and electric properties of these two ma-
terials have already been given in the previous sections. The dimensions
are b=1mand a = 7w /3R, = 10.471 97 m (radii of curvature Rg = oo and
R, = 10 m). This assessment is a sort of extension of the plate case, which
was proposed in the previous section, to a shell geometry. In this case, the

Table 5.11 Ring in PZT-4 and titanium, closed-circuit configuration; 3D
results vs. CLT and FSDT analysis, fundamental mode for m = 0.

n 4 8 12 16 20
3D 31.27 170.42 407.29 745.21 1190.48
CLT(u, ®) 35.54 192.83 457.44 828.11 1304.49

FSDT(u, ®) 35.54 192.74 456.96 826.56 1300.69
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Table 5.12 Closed-circuit vibration problem for multilayered piezoelectric
cylindrical panel, fundamental frequency

o= 0)\/ R (p)pzT-4/(E3)p7T.4h%0r Obtained by using classical theories.
m=n=1.

Ry/h 2 4 10 100

Ref. 30.435 51.885 127.74 472.30
CLT(u, ®) 43.661 87.448 218.70 556.01
FSDT(u, ) 39.970 77.039 178.81 539.08

reference solution (Ref) is the refined quasi-3D model already discussed in
Carrera et al. (2010). The results are given as the first fundamental circu-

lar frequency w = a)\/ Rg(p)pT7-4/(E 3)PTZ-4h%OT' Four thickness ratios are
investigated: Rg/h = 2,4, 10, and 100 (where the values of the total thick-
ness are h = 5, 2.5, 1, and 0.1 m). Tables 5.12 and 5.13 give the fundamental
frequencies of the shell for different thickness ratios and for wave numbers
m =n = 1and m = n = 10, respectively. Table 5.12 is for low values of the
imposed wave numbers and, when the thickness ratio increases (thin shells),
the results given by classical theories improve, even though the CLT(u, ®)
theory is always inadequate. It can be concluded that the results obtained using
classical theories are inappropriate for each thickness ratio. The inadequacy of
classical theories is much more notable for higher values of wave numbers, as
clearly shown in Table 5.13 for m = n = 10. In both tables, the results obtained
by means of FSDT(u, @) are better than the CLT(u, ®) analysis, but they are
not sufficient for a quasi-3D description, and for this reason the use of refined
models must be considered.

Table 5.13 Closed-circuit vibration problem for multilayered piezoelectric
cylindrical panel, fundamental frequency

w = a)\/ R ﬁ4(p)PZT-4 / (E3)PZT-4h%OT obtained by using classical theories.
m=n = 10.

Ry/h 2 4 10 100
Ref. 328.90 664.37 1763.6 12651
CLT(u, ®) 436.61 874.49 2187.2 21875

FSDT(u, ®) 418.66 834.95 2055.2 17802
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Refined and advanced
theories for plates

In refined and advanced models, higher orders of expansion in the thickness
direction are assumed for both the electrical and mechanical components. These
axiomatic 2D models can be considered in ESL or in LW form. The Carrera
Unified Formulation (CUF) is a technique that permits one to handle a large
variety of plate models in a unified manner. According to the CUF, the obtained
theories can have an order of expansion which goes from first- to higher order
values, and, depending on the thickness functions that are used, a model can be
ESL or LW. The CLT and FSDT plate theories obtained in Chapters 3 and 4 can
also be obtained in the CUF as particular cases of ESL theories. CLT, FSDT,
ESL, and LW refined and advanced mixed theories have been implemented
by means of the in-house academic code MUL2 (an acronym of MULtifield
problems for MULtilayered structures).

6.1 Unified formulation: refined models

We define refined models as those displacement models where higher orders of
expansion in the thickness direction z are assumed for all three displacement
components. These axiomatic 2D models can be seen in ESL form when the
layers included in the multilayer are considered as one equivalent structure,
and in LW form when each layer embedded in the multilayer is separately

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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considered in order to write the expansions in z for each layer k. In the case
of electromechanical problems, refined models are those where the extension
is made by considering the electric potential and the displacement vector as
the primary variables. These models are obtained using the principle of virtual
displacements (PVD) (Carrera 2002), and its extensions to multifield problems
(Carrera et al. 2007; Tkeda 1996).

The CUF is a technique which can handle a large variety of plate/shell
models in a unified manner (Carrera 1995). According to the CUF, the gov-
erning equations are written in terms of a few fundamental nuclei which do
not formally depend on the order of expansion N used in the z direction
and on the description of the variables (LW or ESL) (Demasi 2008a,b). The
application of a 2D method for plates allows one to express the unknown
variables as a set of thickness functions that only depend on the thickness
coordinate z and the corresponding variable that depends on the in-plane coor-
dinates x and y. The generic variable f(x, y, z), for instance a displacement,
and its variation 8 f (x, y, z) are therefore written according to the following
general expansion:

Sy, 2) = F@f(x,y), 8f(x,y,2) = F(2)8 f(x,y),
with 7,5 =1,...,N (6.1)

where the bold letters denote arrays, (x,y) are the in-plane coordinates, and z the
thickness. The summing convention is assumed with repeated indexes 7 and s.
The order of expansion N goes from first- to higher order values, and, depending
on the thickness functions used, a model can be either ESL, when the variable
is assumed for the whole multilayer and a Taylor expansion is employed as the
thickness functions F'(z), or LW, when the variable is considered independent in
each layer and a combination of Legendre polynomials is used as the thickness
functions F(z). In the CUF, the maximum order of expansion N in the z direction
is the fourth.

6.1.1 ESL theories

The displacement u = (u, v, w) is described according to the ESL description
if the unknowns are the same for the whole plate (Librescu and Wu 1977; Li-
brescu and Schmidt 1988). The z expansion is obtained via Taylor polynomials,
that is:

u=rFu + Fru, +---+ Fyuy = F;u,
v=Fyv + Fivi, +---+ Fyuvy = F; v, (6.2)
w=Fywy + Frw, +---+ Fy wy = F; w,
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witht =0, 1,..., N; N is the order of expansion and ranges from 1 (linear)
to 4:

Fo=2"=1, Fi=z'=z, ..., Fy=2" (6.3)
Equation (6.2) can be written in vectorial form:

u(-xs y1 Z) - F‘L’(Z)u‘r('xv y)v Su(.x, yv Z) - FS(Z)(SuS(-xa y)v
with 7,s=1,...,N (6.4)

The 2D models obtained from Equations (6.2)—(6.4) are denoted by the acronym
EDN, where E indicates that an ESL approach has been employed, D indicates
that the theory is a displacement formulation, and N indicates the order of ex-
pansion in the thickness direction. For example, an ED2 model has a quadratic
expansion in z, an ED4 has a fourth- order of expansion in z, and so on. A
typical displacement field is shown in Figure 6.1 for a three-layered struc-
ture for the case of an ED4 model. Figure 6.2 considers the displacement
and the transverse stresses along the z direction for an ED2 model: displace-
ments are quadratic in z, therefore the transverse stresses are linear (no longer
constant, as in classical theories), but discontinuous at each interface. Sim-
pler theories can be obtained from EDN models, such as those that discard
the €., effect; in this case, it is sufficient to impose that the transverse dis-
placement w is constant in z. Such theories are denoted as EDNd. The ED1d
model coincides with the FSDT. CLT is obtained from FSDT via an oppor-
tune penalty technique which imposes an infinite shear correction factor. It is
important to recall that all the EDNd theories, which have constant transverse

ED4

xy

Figure 6.1 ED4: displacements u, v and w through the thickness direction z.
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ED2

Displacements Transverse stresses

Figure 6.2 ED2: displacements and transverse shear stresses through the
thickness direction z.

displacement and zero transverse normal strain €,,, and the ED1 model show
Poisson locking phenomenon in the case of pure mechanical problems; this can
be overcome via plane stress conditions in constitutive equations (Carrera and
Brischetto 2008a,b).

6.1.2 Murakami zigzag function

The proposed ESL models in the previous section do not consider the zigzag
(ZZ) form of displacements in the z direction, which is typical of multi-
layered structures with transverse anisotropy (Carrera 2003). A remedy for
this limitation is the introduction of an opportune zigzag function in the
ESL displacement model, in order to recover the ZZ form of displacements
without the use of LW models. The latter have intrinsic ZZ behavior, but
are more computationally expansive compared to ESL models (Carrera and
Brischetto 2009a,b). A possible choice for the zigzag function is the so-called
Murakami zigzag function (MZZF) (Murakami 1985, 1986). MZZF can be
simply added to a displacement model and leads to remarkable improvements
in the solution as it satisfies the typical ZZ form of displacements in multi-
layered structures.
MZZF Z(z) is defined as:

Fz; = Z(z) = (=g (6.5)

with the non-dimensioned layer coordinate & = (2zx)/hy, where zj is the
transverse thickness coordinate of the k layer and 4 is the thickness of the k
layer, therefore —1 < ¢ < 1. Z(z) has the following properties: it is a piece-
wise linear function of the layer coordinates z;; Z(z) has unit amplitude for the
whole layers; and the slope Z'(z) = dZ /dz assumes an opposite sign between
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two-adjacent layers. Its amplitude is layer thickness independent (Murakami
1986). The displacement model that includes MZZF is:

u=Fu + Fruy, +---+ Fyuy + Fzuy; = F, u,
v=Fv+ Frvy +---+ Fyuoy + Fzvz;, = F; v, (6.6)
w=Fw + FFw +--4+ Fywy + Fzwz = F; w;

where 7 =0, 1,...,(N 4+ 1), and N is the order of expansion ranging from 1
(linear) to 4:

Fh=:"=1, Fi=z7'=z,...,Fy=2", Fyu =F;=(=D'¢ (6.7)

The acronym used to indicate this kind of model is EDZN, where E stand for the
ESL approach, D for the displacement formulation, and N is the order of expan-
sion in the z direction. Z indicates that MZZF has been added (Brischetto et al.
2009a). The following remarks can be made: the additional degree of freedom
uz has the meaning of displacement; the amplitude u; is layer independent
since # 7 has an intrinsic equivalent single-layer description; and MZZF can be
used for both in-plane and out-of-plane displacement components (Brischetto
et al.,2009b,c). Figure 6.3 clearly explains the meaning of MZZF and how
to add it to displacement components. The MZZF F, = Z(z) = (—1)f¢
is considered as the (N + 1)th thickness function in the vectorial form of
Equation (6.6):

u(x,y,z) = Fe(Qu.(x,y), dulx,y,z)= Fi(z2)dus(x,y),
with z,s=1,....,(N+1) (6.8)

Typical displacements and transverse shear stresses along the thickness z
are shown in Figure 6.4 for an EDZ1 model: the inclusion of MZZF allows

X,y

Figure 6.3 Displacement models in the EDZ1 and EDZ3 theories. Inclusion
of MZZF in an ESL model.
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Figure 6.4 EDZI: displacements and transverse shear stresses through the
thickness direction z.

one to recover the typical ZZ form of the displacement vector for case of
multilayered transverse-anisotropy structures. Like the EDN models, there is
the possibility of imposing constant transverse displacements w. Such models
are denoted as EDZNd models. EDZNd models require the Poisson locking
phenomena to be corrected, as indicated in Carrera and Brischetto (2008a,b),
for the case of pure mechanical problems.

6.1.3 LW theories

When each layer of a multilayered structure is described as an indepen-
dent plate, a LW approach is necessary (Reddy 2004). The displacement
u* = (u, v, w)* is described for each k layer. In this way, the ZZ form of dis-
placement is easily obtained in multilayered transverse-anisotropy structures
(Hsu and Wang 1970, 1971; Robbins and Reddy 1993; Srinivas 1973). The
recovery of the ZZ effect via LW models is dealt with in detail in Carrera and
Brischetto (2009a,b) and in Figure 6.5. The z expansion for the displacement
components is made for each k layer:

uk = Foul + Frub +---+ Fyuk, = F, ut
vk:ngg—i—Flv’f—i—-n—i— FNvf‘v:F,v’T‘ (6.9)
w":Fowé + F w’f +---4+ Fy w’l‘v = F; w’rc
wherer =0, 1, ..., N, and N is the order of expansion ranging from 1 (linear)
to4; k =1,..., N, where N, indicates the number of layers. Equation (6.9) is
written in vectorial form as:
u (x,y,2) = Fr(ub(x,y), duf(x,y,2) = Fi(2)du(x, y),
with 7,s =¢t,b,r and k=1,..., N, (6.10)
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X,y

Figure 6.5 Linear expansion in the z direction for the displacement compo-
nents: LW approach vs. ESL approach.

where ¢ and b indicate the top and bottom of each k layer, respectively; N; is
the number of total layers, and r indicates the higher orders of expansion in the
thickness direction: » = 2, ..., N. The thickness functions F; (&) and Fy(&y)
have now been defined at the k-layer level, where they are a linear combination
of Legendre polynomials P; = P;(¢;) of the jth-order defined in the £;- domain
(&k = 2zx/hy with the z; local coordinate and Ay thickness, both referring to the
kth layer, therefore —1 < ¢ < 1). The first five Legendre polynomials are:

Ba’—1) 56 3G
Ph=1, Pi=¢, Pb=—"—— Pj=—"— — —,
0 1 =% P2 > 3 > >
35t 1542 3
= - - 6.11
4 3 2 + 8 (6.11)
and their combinations for the thickness functions are:
Py+ Py Py — P,
F, = F = N F,=F = )
t 0 5 b 1 )
F.=P.—P._, with r=2,...,N (6.12)
The chosen functions have the following interesting properties:
=1 F=1, F,=0; F, =0 atthetop (6.13)

Gr=—1:. F,=0;, F,=1; F, =0 atthe bottom (6.14)

In other words, interface values of the variables are considered as variable
unknowns. This fact allows one to easily impose the compatibility conditions
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x,y

Figure 6.6 1D2: displacements u, v, and w through the thickness direction z.

for the displacements at each layer interface. The acronym to indicate such
theories is LDN, where L stands for the LW approach, D indicates the dis-
placement formulation, and N is the order of expansion in each k layer. Typical
displacement behavior for a three-layered structure is indicated in Figure 6.6
for an LD2 model. Figure 6.7 indicates the displacements and transverse shear
stresses for an LD3 model. The transverse shear/normal stresses are obtained
via constitutive equations but this fact does not ensure interlaminar continuity
(IC). IC could be enforced by a priori modeling of the transverse shear/normal
stresses. In LW models, even though a linear expansion in z is considered for
transverse displacement w, the Poisson locking phenomenon does not appear
for a pure mechanical problem: the transverse normal strain €., is piece-wise
constant in the thickness direction (Carrera and Brischetto 2008a,b).

Displacements Transverse stresses

Figure 6.7 LD3: displacements and transverse shear stresses through the
thickness direction z.
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6.1.4 Refined models for the electromechanical case

In the case of electromechanical problems, the primary variables are the dis-
placement vector u = (u, v, w) and the scalar electric potential ®. Considering
the higher spatial gradient of the electric potential, the variable ®* is always
modeled as LW (Brischetto and Carrera 2009; Carrera and Brischetto 2007a,b):

Dr(x, y,2) = Fr ()@ (x, y), 80 (x,y,2) = F(2)8PX(x, y)
with 7,s =¢,b,r and k=1,..., N, (6.15)

where ¢ and b indicate the top and bottom of each k layer, respectively; N,
indicates the number of total layers, and r indicates the higher orders of ex-
pansion in the thickness direction: » = 2, ..., N. The thickness functions are
a combination of Legendre polynomials, as indicated in the previous section.
A 2D model for electromechanical problems is defined as ESL, ESL+MZZF,
or LW, depending on the choice made for the displacement vector: the elec-
tric potential is always considered LW (Ballhause er al. 2005; Carrera and
Boscolo 2007).

6.2 Unified formulation: advanced mixed models

In the case of electromechanical problems, we define advanced mixed mod-
els as those 2D models that are obtained by employing the Reissner mixed
variational theorem (RMVT) (Reissner 1984) and its extensions to electro-
mechanical coupling (Carrera et al. 2008). These extensions allow one to a
priori model some transverse quantities, which are obtained in PVD applica-
tions via post-processing. Transverse shear/normal stresses 6, = (0x, 0y;, 02;)
and/or transverse normal electric displacement D,, = (D,) are a priori modeled
and considered in LW form. The main advantage of obtaining these variables
directly from the governing equations is the fulfillment of Interlaminar Con-
tinuity (IC) (Brischetto 2009; Brischetto and Carrera 2010). These advanced
models are obtained by means of the CUF (Carrera 2002) which has been dealt
with in detail in previous sections.

6.2.1 Transverse shear/normal stress modeling

An advanced mixed model for a pure mechanical problem consid-
ers both displacements u = (u, v, w) and transverse shear/normal stresses
0,m = (0y;, 0y, 0;;) as the primary variables (Brischetto and Carrera 2010).
The displacements can be modeled as ESL (Section 6.1.1), ESL+-MZZF
(Section 6.1.2), or LW (Section 6.1.3), and this choice allows one to define
the considered advanced model as ESL, ESL4+MZZF, or LW, respectively:
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the transverse shear/normal stresses o,y are always LW (the subscript M
means that the stresses are modeled and not obtained from the constitutive
equations). The LW model for stresses is:

cr)fz =F Ufzo + F szl +.--+ Fy osz = F, szr
of.=Foj,+ Fioy, +--+ Fyoyy = Fo}, (6.16)
O—Zk." ZFOszzO + F O'zkzl +ot FNo—zkzN = FTUZ{(Z‘L'

wheret =0, 1, ..., N, and N is the order of expansion ranging from 1 (linear)

to4; k=1,..., N; where N; indicates the number of layers. Equation (6.16)
is written in vectorial form as:

ok, v, 2) = Fo(2)ak (x,y), 80k, (x, v, 2) = Fi(2)80%,,,(x, ),
with 7.s=7.b,r and k=1,... N, 6.17)

where ¢ and b indicate the top and bottom of each k layer, respectively; r indi-
cates the higher orders of expansion in the thickness direction: r =2, ..., N.
The thickness functions F; () and F;(¢;) have now been defined at the k-layer
level, and they are a linear combination of Legendre polynomials. The use of
such thickness functions, based on the property pointed out in Equations (6.13)
and (6.14), allows one to easily write IC for the transverse stresses:

ok, = o5 with k=1,...,(N,— 1) (6.18)

n

which means the top value of the & layer in each interface is equal to the bottom
value of the (k + 1) layer. The same property can be used for displacements in
LW form, in order to impose the compatibility conditions:

ub =uf™ with k=1,...,(N,—1) (6.19)

Those models with displacements in the ESL form (E) and transverse
stresses in the LW form are known as EMN models, where M means mixed
formulation (use of RMVT), and N is the order of expansion, which is the same
for both variables. EMZN models consider the displacements modeled in ESL
form but they also include MZZF. LMN models consider both displacements
and transverse stresses in LW form. Figure 6.8 shows the displacements and
transverse stresses for an EM2 model. The displacements are considered ESL,
while the transverse stresses are a priori modeled and directly obtained from the
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EM2

constitutive eqs.

Displacements Transverse stresses

Figure 6.8 EM2: displacements and transverse shear stresses through the
thickness direction z.

governing equations: they are considered in LW form, and this makes it possible
to satisfy both the ZZ form and IC. If transverse stresses are obtained from
constitutive equations via post-processing, IC might not be ensured. Figure
6.9 shows displacements and stresses for an LM2 model. In this case, the
displacements are also LW, and the ZZ form and IC are ensured for both
the displacement and transverse stress components. The transverse stresses
obtained from the constitutive equations could not satisfy IC (Brischetto 2009).

6.2.2 Advanced mixed models for the electromechanical
case

Several extensions of RMVT can be considered for electromechanical problems
(Reissner 1984; Carrera et al. 2008). In such models, the u displacements and

-
N

constitutive egs.

Displacements Transverse stresses

Figure 6.9 LM2: displacements and transverse shear stresses through the
thickness direction z.
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electric potential @ are always considered in the governing equations, the
electric potential ® is always modeled in LW form, as discussed for the PVD
case in the previous sections, the displacement components # are modeled
as ESL, ESL+MZZF, or LW, and this choice decides whether the considered
advanced model is ESL, ESL+MZZF, or LW.

Three different extensions of RMVT to electromechanical problems are
possible and in addition to displacements u and electric potential @, the other
modeled variables are:

1. Using only one Lagrange multiplier (Reissner 1984), the transverse
stresses o ) are a priori modeled (LW form as described in previous
sections) (Carrera and Brischetto 2007b).

2. Using only one Lagrange multiplier, the transverse normal electric
displacement D,y = D, is a priori obtained in LW form (Carrera
et al. 2008).

3. Considering two Lagrange multipliers, both the transverse stresses and
transverse normal electric displacement are a priori modeled in LW form
(Carrera and Brischetto 2007a).

The LW expansion for the transverse normal electric displacement
D,y =D, is:

Di(x,y,2) = F(2)D5 (x,y),  8D(x,y,2) = Fy(2)8D5 (x, y),
with 7,5 =1,b,r and k=1,..., N (6.20)

where ¢ and b indicate the top and bottom of each k layer, respectively, and r in-
dicates the higher orders of expansion in the thickness direction: r =2, ..., N.
The modeled variables for these three advanced models are:

1. displacements u, transverse stresses 0,7, and electric potential @ for
case 1;

2. displacements u, electric potential ®, and transverse normal electric
displacement D,,y; = D, for case 2;

3. displacements u, electric potential ®, transverse stresses 0 )7, and trans-
verse normal electric displacement D,,; = D, for case 3.

The acronyms for such advanced mixed models are explained at the end of
this chapter, after the discussion on the variational statements.
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6.3 PVD(u, ®) for the electromechanical plate case

The PVD has been obtained for electromechanical problems as in Equa-
tion (2.53) in Chapter 2:

/V (aelfca,,c +8eT 0 — 3£gDc)dv = 6L, — 8Ly 6.21)

It is not necessary to split the electric displacement for the PVD case. By
considering a laminate of N, layers, and the integral on the volume Vj of
each k layer as an integral on the in-plane domain €2, plus the integral in the
thickness-direction domain Ay, it is possible to write:

Z// Se[,G Upc+5€nc ok —SSkTDk}kodz

k=1 A,
N[ Nl

= 8Lt =) 5L, (6.22)
k=1 k=1

where §L* and §L% are the external and inertial virtual work at the k-layer
level, respectively. The relative constitutive equations are those obtained in
Equations (2.21)—(2.24); if the electric displacement and electric field are not
split into in-plane and out-of-plane components, the relations are:

QppepG + Qpn nG eI]()Tng (6.23)
aﬁc = 0} €hi + 0 €h —eb £ (6.24)
Dt = e e vG T ek +efEL (6.25)

By substituting Equations (6.23)—(6.25), and the geometrical relations
(2.38)—(2.41) in Chapter 2 for plates, in the variational statement of Equa-
tion (6.22), and considering a generic k layer (Carrera et al. 2007):

/Q fA DSu (Q,,,,D +0) (anwm))u"+e;T<De,,+Dm)<I>")
k k

- ((anwnz)auk) (04,0, + QD+ D)t + € (Dot D))

T
+ (D +D)50") ((ehD, + eh(Doy+ D))t — e (Dey + Den)) |

xdQ dz = 8L* — L%

m

(6.26)
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The CUF (Carrera 1995), as presented in previous sections, can be introduced
into Equation (6.26) for the 2D approximation:

T
[ [ L(2orand) (04, + @4 D1y Do) et
€5 (Dop+ Do) Fe %) + (D + D) Evaufy
% (@4, D) + 04D+ D)) Fotdh + &' (Dot Do) F 0 )
+ ((DevaDm)Fs(S(b’;)T ((e’;D,, + (Dt D) Fod

— "Dy + Do) Fr ) |dy dz = SLE - 5L, (6.27)
In order to obtain a strong form of differential equations on domain €2; and
the relative boundary conditions on edge I'; in Equation (6.27), integration
by parts is used, which permits one to move the differential operator from
the infinitesimal variation of the generic variable 8a* to the finite quantity a*
(Carrera 1995). For a generic variable a*, the integration by parts is:

f (Dosd") a“dey = —/ sa*" (DLa") dy +f sat" (15a")dTy
Qe o

Ty

(6.28)

where Q2 = p, np, ep. The matrices needed to perform the integration by parts
have the following form, like the matrices for the geometrical relations:

10 0 00 1 |
1,=|0 1 0|, I,=]0 0 1], Iepz[l} (6.29)
110 00 0

The governing equations have the following form (Brischetto and
Carrera 2009):
suf . KFTsuk 4 KR @k = pk o — METS ik

uu uu T

k kts o k kts k (630)
S(Ds: K<1>Ll ur+KCI>CI> CDr:O

where MX™* is the inertial contribution in the fundamental nucleus form, u* is

the vector of the degrees of freedom for the displacements, ® is the vector
of the degrees of freedom for the electric potential, and u’; is the second
temporal derivative of u’i. The array pﬁs indicates the variationally consistent
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mechanical loading that is useful for the sensor configuration, while, for the
case of an actuator configuration, the electric potential is applied directly to
the vector ®X. Along with these governing equations, the following boundary
conditions on edge I'; of the in-plane integration domain €2; hold:

it 0 = I a4 8
] (6.31)
Mt I 0 = T a4 T 9

By comparing Equation (6.27), after the integration by parts (see Equa-
tion (6.28)), to Equations (6.30) and (6.31), the following fundamental nuclei
can be obtained:

T
ki = [ [~ 01(25,s + Dy + D)+ (= Doy + D)

np

[
( £ D, + 0k (D, + Dnz)>]F3F,dz (6.32)
Kk = [ - D’ (e’[‘,T(De,, + De,l)> + (— D,, + Dnz)T
(el Doy + Do) |FiFrdz (6.33)

T
5= [[(- 2 0) (670, e+

A
(6.34)
T
Ky = f [( ~ D, + Den) ( — e"(D,, + De,,)) ]FJF,dz (6.35)
Ag
MY = / (p*I)F,F.dz (6.36)
A

where p* is the mass density of the kth layer and I is the (3 x 3) identity
matrix. The nuclei for the boundary conditions at edge I'y are (Carrera and
Brischetto 2007b):

H'Z,ZS = / [Ig(Q],{;pr + Ql;m(an + Dnz))
Ax

+10,(04,D, + 0, (Dyy + D) | FFrdz (6.37)
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w5 = [ [15(e7 0y + Do) + 14, (7 D,y + Do) | Rz
Ak
(6.38)
g, = / :pr(ef,TDp + e (Dyy +Dnz))]Fstdz (6.39)
A
Mgy = f 1 5,,( —&"(Dp + Den)) ]Fstdz (6.40)
Ax

In order to write the explicit form of the nuclei in Equations (6.32)-(6.36),
the following integrals in the z thickness direction are defined:

oF; oF, 0F; 0F;
(e gl ghese gl = f FeFy, ——Fy, F——, dz
0z dz 0z 0z

Ak

6.41)

and by developing the matrix products in Equations (6.32)—(6.36) and employ-
ing a Navier-type closed-form solution (Carrera and Brischetto 2007b), the
algebraic explicit form of the nuclei can be obtained.

The fundamental nucleus KX** of dimension (3 x 3) is:

Kkrs — ngsjkrzsz + Qlfljkrs&Z + ng6jkt552

uuyy

Kuiy, = J°p(Q1 + Qo)

Kff,f‘f} = 04,/ a - O, J @
K& = T aB(0, + Q)
Kk = Q4 Tk 4+ Q8 JFs B2 4 Qk Jhes G (6.42)

Kifh = Qs — 04y f
Ky, = 055" a — 031" &
Kif, = 0497 f — 0% J4p
Kl = 0%J" @ 4 04,5 B* + Q%3 757

uuz3

The fundamental nucleus KX% is of (3 x 1) dimension because ®F is scalar:

Ki, = a(=7k0ef + Jely)
Kyy = BI*el, — b, Jhm) (6.43)

kts =2k 7gkts a2k gkts k  ykt.s;
Ky, = ejsJ™ + By J™ + 33
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The fundamental nucleus Ky k” is of (1 x 3) dimension:

kts = k rkts, kt.s
Koy, = —aeis/ +aes;J
kts __ a k rkts. a kt.s
KK = — Bk, J¥m 4 Beky T (6.44)
kts __ =2 k gykts R2 k gkts k ykt,s.
duy = —@es S = Brep JU — ez

The fundamental nucleus K ks » 1s of (1 x 1) dimension:
Ké(;:g” — kas&2811 + JkISBZEZZ +833Jk1’353 (645)

The fundamental nucleus MX™* is of (3 x 3) dimension and only the diagonal

elements are different from zero:

My =My =My = ph gk (6.46)

@ =mm/a and B =nm /b, m and n are the wave numbers in in-plane
directions, and a and b are the plate dimensions in the x and y directions,
respectively. A Navier-type closed-form solution is obtained via substitution
of the harmonic expressions for the displacements and electric potential and
by considering the following material coefficients equal to zero: Q16 = Qa6 =
036 = Q45 =0 and eys = e14 = e36 = €12 = 0. The harmonic assumptions
used for the displacements and the electric potential are:

x) sin (”’TTy) L k=LN  (647)

y _
T)’ t=t.br (648

wk = mz (m;”) sin ?) Fr=2,N (649
ok = mz (’";”) sin (””Ty) (6.50)

where U¥, V¥, W¥ are the displacement amplitudes and ®* is the electric
potential amplitude; k indicates the layer and N, the total number of layers. 7 is
the index for the order of expansion where ¢ and b indicate the top and bottom
of the layer, respectively, while r indicates the higher orders of expansion until
N = 4. Details on the assembly procedure of the fundamental nuclei and on
the acronyms are given in Sections 6.7 and 6.8, respectively.
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64 RMVT(u, ®,0,) for the electromechanical
plate case

A possible extension of the RMVT (Reissner 1984) for electromechani-
cal coupling is that indicated in Equation (2.60) in Chapter 2, where the
internal electrical work is added (Carrera and Boscolo 2007; Carrera and
Brischetto 2007b):

/ ((SGIT,GUI,C + 86,{60,”‘4 + 80,{M(e,,g — €,0)
\%4
—5€7,D,c — ae,fG’Dnc)dv = 6L, — 8Ly 6.51)

For RMVT applications, we split the electrical work into in-plane and out-of-
plane contributions, and this splitting will be useful for those RMVT extensions
in which the transverse normal electric displacement is a primary variable of
the problem. By considering a laminate of N, layers, and the integral on volume
Vi of each k layer as an integral on the in-plane domain €2y, plus the integral in
the thickness-direction domain Ay, it is possible to write Equation (6.51) as:

Ni
kT k kT k kT k k
Z//[SGPG 0'pC—i_(SenG GnM+86nM (enG_EnC)

k=1 & 4,
T T
085" Dl — 085 Dl |
N, N,
dQdz =) LY =) 5Lk, (6.52)
k=1 k=1

where §L* and SL% are the external and inertial virtual work at the k-layer
level, respectively. The relative constitutive equations are those obtained in
Equations (2.61)—(2.64) and considering the transverse stresses o, as modeled
(M) and the transverse strains €, as obtained from constitutive equations (C)
(D’Ottavio and Kréplin 2006):

k
Ip€p

k 7 k Ak k A~k k Ak k
aPC = C GpG —+ CGPG,,GnM -+ CapgpS[’G =+ CU,,gngnG (653)

~k

Ak ~k ~k
Gln(C = CG,,GPGI;G + CGUO'UGEM + CG,I(‘:],S];G + C & g];G (6.54)

€ncn
ko Nk k Ak k Ak k Ak k
Dye =Cp,, €6 +Cp 0,0, +Cp e, €6+ Cp e, €4 (6.55)

k Rk Ak k Ak k Ak k
Dic =Cp,,€p6 T Cp,0,0um + Cp,e, €6+ Cpe,Eg  (6.56)

n€p
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The meaning of the C coefficients has already been given in Equations (2.65).
Substituting Equations (6.53)-(6.56), and the geometrical relations (2.38)-
(2.41) in Chapter 2 for plates, in the variational statement of Equation (6.52),
and considering a generic layer k (Carrera and Boscolo 2007; Carrera et al.
2007; Carrera and Brischetto 2007b), we obtain:

T /ak A~k Ak
/Q /A [(D,Jﬁuf) (CGPGPD,, Fouk + €, Feoky, — € o Doy F @)
k k
Aok k N\’ k e \!
— CU,,En DenF'rcD.L. + (an + D,,Z)Fs(Sus FfanM'{ —|— FSSG}’[MS
Ak ~k ~k
x ((an + D) Folt — €. Dy Fok — €, Froby, + €L e D, F @
Pk k T ( pk k| pk k
+Ch o Do Fe®) + (D F3®Y) (€5, D, Fouk + €y, Froky,
Ak k A~k k k T ok k
—C ¢ DopFy @ — € o Doy F, ) + (D F39Y) (€3, D, Foutk

~k Ak ~k
+ € Fe0hyge — Cy e, Dop Fo @4 = €1 0 Doy Fo %) a5y dz

=8LF —sLt (6.57)
The CUF (Carrera 1995), as presented in the previous sections for the 2D
approximation, has already been introduced. In order to obtain a strong form
of differential equations on domain €2; and the relative boundary conditions at
edge 'y in Equation (6.57), integration by parts is used, and this permits the
differential operator to be moved from the infinitesimal variation of the generic
variable 8a to the finite quantity a* (Carrera 1995). For a generic variable
a®, the integration by parts is given in Equation (6.28) with the matrices of
Equations (6.29). The governing equations have the following form (Carrera
and Boscolo 2007; Carrera et al. 2007; Carrera and Brischetto 2007b):

k. kts .k kts _k kts pk — pk _ kts -k
aus . Kuu uf+Kuo GnMr+Ku¢ (Dr = DPus Muu u;
k . kts .k kts _k kts gk _
80’ns . Ktru uz + KU’(T o'nM-r + Ka<I> (Dr =0 (658)

k. kts ok kts _k kts k __
Sq)s‘ K<Du uz'—'—I<Cl>or o.ier+K<1><1> q)r_o

where MXS is the inertial contribution in the form of the fundamental nucleus,

uk is the vector of the degrees of freedom for the displacements, ® is the

T
vector of the degrees of freedom for the electric potential, aﬁ ¢ 18 the vector
of the degrees of freedom for the transverse stresses, and #* is the second
temporal derivative of u’;. The p’,js array indicates the variationally consistent

mechanical loading used for the sensor configuration. In the case of the actuator
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configuration, the electric potential is directly imposed in the vector ®*. Along
with these governing equations, the following boundary conditions on the edge
't of the in-plane integration domain €2; hold:

kts ok kts _k kts gk _ yrkTs 7k kts =~k kts gk
Huu u; + Hua GnMr + Hu<I> q)r - Huu u; + Hua anMr + HuCD CD‘L'
kts _ k kts _k kts k __ kts =k kts —k kts Fk
H(bu uz + HCDU O M + H<I><I> (Dr - HCIJM u; + HCIDJ O Mt + HCIDCID CDI

(6.59)

Comparing Equation (6.57), after the integration by parts, to the Equations
(6.58) and (6.59), the fundamental nuclei can be obtained:

_ Ak
Kk = / [— DIT,CUPEFDP]FSFsz (6.60)
A
Kft.([rs = f I: - D;C;)”” + (_an + Dnz)T]FstdZ (661)
Ax

Kﬁg = / [_ Dg(_él;pngep - C‘I‘;pgn Del‘l)] FSFIdZ (662)

Ak

ou

Kb / (D + D) — €, D, | FyFedz (6.63)

Ax

B A~k
i = / - ¢, | R (6.64)
kS = / (Coe, Doy + € g, Don | FyFrdz (6.65)
r Ak Ak
Ko = / (~D., €} . + DenTCDnep)Dp]Fs F.dz  (6.66)

Kk = / [~ D, "¢, + Dmré’;m]a F.dz (6.67)

kts __ [ T K K
K<I><I> - / - Dep (_CDPS,,DL’P - CDPS,, D.,)
Ax

+ DenT(_éIZ()“ngep - ékD”gn Dgn):l FSFTdZ (668)
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The nuclei for the boundary conditions on edge I'y are ( D’Ottavio and Kroplin
2006; Carrera and Brischetto 2007b):

ks — / 17¢,, . D, | FyFuds (6.69)
Ax i
e = / 17¢C, , + IZP]FS F.dz (6.70)
A
s [ ~k ~k
M5 = / 1,(=Co e, Dey —Ca,,g,,Den>]Fstdz (6.71)
Ag
Mg, = / [prélé,,é,,Dp]Fstdz 6.72)
Ak
s ~k
gy = / [IET,,CDN,,]FYFrdz (6.73)
A
kts T ~k ~k
mis — [Iep(—CDPgPDep ~Chpe. Dm)] F,F.dz (6.74)
Ag

In order to perform the integration by parts (see Equation (6.28)), the matrices
I,,1,, andI,, which are presented in Equation (6.29) must be introduced. To
write the explicit form of the nuclei in Equations (6.60)—(6.68), the integrals
in the z thickness- direction are defined as in Equation (6.41). By developing
the matrix products in Equations (6.60)—(6.68) and employing a Navier-type
closed-form solution (Carrera and Brischetto 2007b), the explicit algebraic
form of the nuclei can be obtained.
Nucleus KXT* of dimension (3 x 3) is:

kts _ =2 ykts Ak 22 rkts Ak
Kuu“ - J C(rpepll + ﬁ J C(r,)ep33

krs _ pkus(fok Ak -
Ky, =177 (Cq e 12+ Co 33)0P

uuy

kts _ krs _  gks Ak Ak =0 6.75
Kuu13 - O’ Kuu21 =J (CIT[,GI,ZI + C(T,,E,,33)aﬁ ( )
kts _ p2 ykts Ak =2 rkts Ak kts __
Kuuzz - /3 J Ca,,e,,22 +a J Ca,,e,,33’ Kuuzg =0
kts __ kts __ kts
KMM31 - O’ Kuu3z - O’ KM”S} - 0

Nucleus KX of dimension (3 x 3) is:

Kks — Jktsz’ Kkts =0, Kkts — _&Jkrsék

uoy uon uo|3 0,0,13
kts __ kts _ gkts, kts _ _ @ rkts Ak
KL =0, Kloo =gk, Kl = —pJrect (6.76)

Kkrs _ &Jkrs Kkrs _ ﬂ']krs Kkrs _ Jkrs:
= s = s =

uos| uosp uos3
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Nucleus K% of dimension (3 x 1) is:
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kts __ = ykt;s Ak kts __ R rkt.s Ak kts __
KM‘I’H =aJ Capr‘:nll’ Ku<1>21 =pJ Co'pg’lzli Ku<1>3] =0 (6.77)
Nucleus K*™* of dimension (3 x 3) is:
kts __ gkt.s kts __ kts _ 5 gykts
KUM11 = J%=, Kau12 =0, Kmm =aJ
kts __ kts __ gkts kts _ (3 rkts
Ko =0, Kio =J, Ko, = BJETE, 6.78)
Kkrs — &Jkrsék (©.
ous; 6,16,,31
kts _ @ rkts fk kts _ gkt;s
Kau32 - ﬂ‘] CE,,EI,32’ Kdu33 =J
Nucleus K™ of dimension (3 x 3) is:
kts _ _ gkts Ak kts __ kts __
Koall - J Cenanll’ Kaalz - 0’ K0013 - O
kts __ kts __ kts Ak kts __
Kk =0, Kk o= —jgkeék gkt =0 (6.79)
kts __ kts __ kts _ __ gkts Pk
KUO'B] =0, Kmfsz =0, K6633 =-J Ce,,c,,33
Nucleus K* of dimension (3 x 1) is:
kts __ o ykts Ak kts __ g rkts Ak kts __ gkts Ak
KO'@]] - aJ Ce,,gl,ll’ KO’CPQ] - ﬂ‘[ CE,,SPZZ’ KU(D31 - J Ce,,g,,31

Nucleus K4 of dimension (1 x 3) is:

kts ~ rkts; Ak kts _ _ @ ykts; Ak
Koy, =—aJ"Cpc 11s Koy, = =B Cp ¢ 125

Nucleus K47 of dimension (1 x 3) is:

kts __ = ykts Ak kts __ [ ykts Ak kts
Koy, =aJ"Cp 5110 Koo, =BT Cp6m: Kog,,

Nucleus K7 of dimension (1 x 1) is:
kes
begll

The fundamental nucleus for the inertial matrix M
given in Equations (6.36) and (6.46).

_ kt.s. Ak =2 rkts Ak a2 rkts Ak
=-J CD,,E,,I] —aJ Cpl,s,,n - pJ CD,,g,,zz

(6.80)

Kgs =0
(6.81)

__ gkts, Ak
=J"Cp 13

(6.82)

(6.83)

and its components were
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@ = mm/a and B = nm /b, where m and n are the wave numbers in the in-
plane directions and a and b are the plate dimensions in the x and y directions,
respectively. A Navier-type closed-form solution is obtained via substitution of
the harmonic expressions for the displacements, electric potential, and trans-
verse stresses and by considering the following material coefficients to be
equal to zero: Q16 = Oz = Q36 = Q45 = 0 and ey5 = e14 = e36 = €12 = 0.
The harmonic assumptions used for the displacements, the electric potential,
and the transverse stresses are:

x) sin(?), k=1,N,

W0l = 3 0, 6L cos (=

(6.84)
ok oy N mmx nwy .
(vr,cryzr) = mz,; (V7,6 )U)sm( P ) cos (T) , T=t,b,r
(6.85)

kK _k k k Ak ky i (TTXN . (NTTY
(wr,azzf,fbf):mzr;(W ZZT,(I—‘»f)sm( - )mn(T), r=2,N

(6.86)

where U¥, V¥, W" are the displacement amplitudes, ®* is the electric potential
amphtude and &k, ay',‘zr, and 6% are the transverse stress amplitudes; k indi-
cates the layer and N, is the total number of layers. 7 is the index for the order of
expansion, where ¢ and b indicate the top and bottom of the layer, respectively,
while r indicates the higher orders of expansion until N = 4. Details on the
assembly procedure of the fundamental nuclei and on the acronyms used are
given in Sections 6.7 and 6.8, respectively.

The meaning of the C coefficients for Equations (6.53)—(6.56) is given in
Equations (2.65). The following equations give the explicit form of each of

their components.

The él;,,e,, array has a (3 x 3) dimension with components for each k layer:

% Q1302
& & 13023
Cope,11 = Q11 — E, Cope,i2 = Q12 — “Oom Cope,13 =0
A 01303 A 05 4
Cope,21 = 012 — “om Cope,2 = 00 — 0%’ Co,e,23 =0 (6.87)
C(T,,s,,Sl =0

Coe,2 =0, Co,c,33 = oo
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£k . . .
The C, ,, array has a (3 x 3) dimension with components for each k layer:
A A A O A
Copoo11 =0, Co5,12=0, Co,5,13= O’ Cop0,21 =0
33
. . 0 & A (6.88)
Co',,on22 = 07 CU,,U,,23 = -, Ca,,a,l31 = O, Ca,,a,,32 =0
. 033
C0p0”33 =0

o (6.89)

The € ];p g, array has a (3 x 2) dimension with components for each & layer:
. Core31 = Coye,30 =0

PN PN

Co,e11 = Co,e,12 = Co 6,01 = Co 00 =
Ak . . .
The C 0,€, Array has a (3 x 1) dimension with components for each k layer:

€302 4
Co,e,31 =0

)

—e3 +

e33013 -
IR 033
(6.90)

éa 11 = —e3 +
e 033

[@%

The € :lep array has a (3 x 3) dimension with components for each k layer:

Cenepll = Cs,,e,,lZ = Cene,,l’j = Cs,,e,,21 = Ce,,e,,22 = Cs,,sp23 =0

~ Oz 4 Oxn A (6.91)

Ce,,e,,31 - T Ce,,e,,32 - T Ce,lep33 =0
O3 033

_array has a (3 x 3) dimension with components for each & layer:

Ak
The C_
N 1 . . N A 1
Ce,,o’,,ll = Q_v Ce,,a,112 = Ce,,an13 = Ce,,o’,,Zl = 07 Ce,,(r,,22 = Q_
55 44 6.92
R R . . 1 (6.92)
Ce,,a,,23 - Ce,,zr,,31 - Ce,,a,,32 - 07 Ce,la,,33 - Q_
33

The é’i ¢, array has a (3 x 2) dimension with components for each k layer:

N €15 A A A €24
Ceoet = —, Cee12=Cqe21 =0, Ceemn=—
Oss Ous (6.93)

PN

Ceg,31 = Ceg,32 =0
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The é’i ¢, array has a (3 x 1) dimension with components for each & layer:

A A A €33
Cocl = Ce61 =0, Cegz = O (6.94)
33

£k . . .
The CDpe,, array has a (2 x 3) dimension with components for each k layer:
Cp,e,11 = Cp,e,12 = Cp,e,13 = Cppe,21 = Cpye,z = Cpoe,o3 =0 (6.95)

The é’kDp{,n array has a (2 x 3) dimension with components for each k layer:

A €15 A A A
Cp,o,11 = —, Cp,5,12=Cp,5,13 = Cp,5,21 =0,
55
(6.96)
A €24 A
Cp,0,22=—",Cp,5,23=0
Qa4

The C'kDp g, array has a (2 x 2) dimension with components for each k layer:

2 2

A e N A A e
i5 24
Cp,e1 = +éu, Cp,gi2=Cp,eo1 =0, Cpem= + e
0Oss Qa4

(6.97)

The € kDp ¢, array has a (2 x 1) dimension with components for each k layer:
Cp,e11 = Cp,e01 =0 (6.98)

The € anep array has a (1 x 3) dimension with components for each k layer:

A e30i 4 33023 4
Cp,e,11 = €31 — s Cpye,i2=e€3 — s Cpe,13 =0 (6.99)
033 033

The é’;ngn array has a (1 x 3) dimension with components for each k layer:

€33

— 6.100
033 ¢ )

Cp,o,11 = Cp,5,12 =0, Cp,5,13 =

The C'I;Jn ¢, array has a (1 x 2) dimension with components for each k layer:

CA’D,,g,,n = C'an,n =0 (6.101)



130 REFINED AND ADVANCED THEORIES FOR PLATES

The é’kD” ¢, array has a (1 x 1) dimension with components for each k layer:

A _ e§3
Cp,en = —— + ¢33 (6.102)
033

6.5 RMVT(u, ®, D,) for the electromechanical
plate case

A second possible extension of the RMVT (Reissner 1984) for electromechani-
cal coupling is that indicated in Equation (2.74) in Chapter 2, where the internal

electrical work has been considered and a Lagrange multiplier has been added
for the transverse normal electric displacement (Carrera et al. 2010a,b):

/V (5e;GapC + 8¢l ;00 — SEL;D e — 8D
—8D]y(Enc — £40))dV = 6L, — 8Ly, (6.103)

where the subscript M means a priori modeled variable. Considering a laminate
of N; layers, and the integral on the volume V;, of each k layer as an integral on
the in-plane domain €2, plus the integral in the thickness-direction domain Ay,
it is possible to write Equation (6.103) as:

N
3 / / [sehs ok + 56k ohe — 888, Dl — 0E8, DY,

k=1 A,
T
_8D£M (‘SﬁG - Sﬁc)}
N[ N[
dQdz =Y SLE—) SLY, (6.104)
k=1 k=1

where 8L and §L% are the external and inertial virtual work at the k-layer
level, respectively. The relative constitutive equations are those obtained from
Equations (2.75)—(2.78), in which the transverse normal electric displacement
D,, is modeled (M) and the transverse normal electric field £, is obtained from
constitutive equations (C) (Carrera et al. 2010a,b):

~k

OJ;C = CO-IIGIJGI;G + C];hfn GﬁG + C];I’gpglz;G + C];FD”DI;M (6105)

k =k k Ak k ~k k Ak k
Oue = Ca,,e,,epG + Co,,e,,enG + Ca,,Epng + Ca,,DnDnM (6106)
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k K k 7k k 7k k K k
DpC = CD,,epepG + CD,,E,,enG + C’Dpé'pSpG + CD,,D,,DnM (6107)

~k =k =k =k
Erc = Cee, €46+ Cr €16+ Ce,, €16+ Cep, Doy (6:108)

The meaning of the C coefficients was given in Equations (2.79). By substi-
tuting Equations (6.105)—(6.108), and the geometrical relations (2.38)—(2.41)
in Chapter 2 for plates, in the variational statement of Equation (6.104), and
considering a generic layer k (Carrera et al. 2010a,b), we obtain:

p,Fsut) (T8 D, Fut +C (D, + Do) Fodt
plisOU opEp P Tl + open( np + nz) Uy
& J AL
~k k | ik k K\’
—Ch o Doy F @k + €4y FDhy, ) + (D + Dy Fibut)
~k ~k ~k
x (€., DyFetts + €L (D + Dy)Fotth = Ch ¢ Doy Fo 0%
Ak k K\ (#k ko gk
+ Ca,,D,, FTDnMr) + (Deﬂ FYBq)v) (CDPG,,DI’ Ffur + CDpe/,(D"l’
k —k k =k k k r
+ D) Feuk — €y ¢ Doy Fe®t +Ch FanMT) + (Den Fséd}y)
r ~k
x (F,’ijMf> - (Fsapfm) ( — D, F.® — Ci, D,Fout

~k ~k A~k
— b, (Dup + Dy Fdub + € o Dy o — €t FDLy, )|

xdQ dz = 8LF —5LF, (6.109)

The CUF (Carrera 1995), as presented in previous sections, has already been
introduced for the 2D approximation. In order to obtain a strong form of
differential equations on domain €2; and the relative boundary conditions at
edge I'; in Equation (6.109), integration by parts is used. This permits one to
move the differential operator from the infinitesimal variation of the generic
variable 8a* to the finite quantity a* (Carrera 1995). The integration by parts
for a generic variable a® is given in Equation (6.28); it has matrices as in
Equations (6.29). The governing equations have the following form (Carrera
et al. 2010a,b):

k . kts .k kts k kts gk _ k kts sk
6us : Kuu ur+KuD DnMr+KL1® q)r _pux_M u

uu T

§DE 1 K& uwk 4+ KA DY, + KA oF =0 (6.110)

ns

0 KU ut+ K3 Dl + K 94 =0
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where METS is the inertial contribution in the form of the fundamental nucleus,
ur is the vector of the degrees of freedom for the displacements, <I>’; is the vector
of the degrees of freedom for the electric potential, D¥,, is the vector of the
degrees of freedom for the transverse normal electric displacement, and #* is
the second temporal derivative of u*. The array pX_ indicates the variationally
consistent mechanical loading employed for the sensor configuration; the elec-
tric potential is directly imposed in the vector ®* for the case of the actuator
configuration. Along with these governing equations, the following boundary
conditions, on the edge I'; of the in-plane integration domain €2, hold:
I b + T3 D)y, + TG ©F = M7 &k + W5 D), + G &

Mt 155 Dl + 14 06 = T o 10 D, 115G 0%
6.111)

Comparing Equation (6.109), after the integration by parts, to Equations (6.110)
and (6.111), the fundamental nuclei can be obtained:

K. = /A [ -D,’ (C_'];pep D,+ C-'I;pén (Dup + Di2))
k
HDye— D) (€, Dy +C (Dt D,l,))]F F,dz (6.112)
K5 = [ [D,1€, 0+ 0u = DT, Rz O
Ak

&)

Kig Z/ -D T( Caé‘ Dep)+(Dnz_an) ( Cg, " ep)]
AL

X Fy Fy dz 6.114)

K& = [A (CL. D, +Ch, (Dy+ Dnz)] F.F, dz (6.115)
i

KL = /A Cip, |FeFs dz (6.116)
.

K53 = /A D, —Ch DEP]F,FS dz 6.117)
i

K& = /A k ~ D, (€, D+ Ch . (Dyy+ D,",))] F.F,dz (6.118)

K& = /A [— D.,"Ch 5 + DenT]FIFS dz (6.119)
.

Kk = [A k [— D, (~Ch o De,,)] F.F, dz (6.120)
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The inertial arrays are no different from those of the previous sections. The
nuclei for the boundary conditions are (Carrera ef al. 2010a,b):

kts __ T Ak ~k
Huu - /:Ak [Ip (Cape,, DP + Ca,,s,, (D"P + DnZ))

+17 (Ct. D, +C.. (D, + Dnz))]Fr F.dz  (6.121)

On€p

(T/,

Ts =~k
o5 =/ ITC p, T 1, CUUD"]FTFX dz (6.122)
Ap -
Hﬁ$=/A IT( ng Dep)+1 (— Cag De,,)]FF dz (6.123)
k
ng, = fA 10, (€ Dy+Ch (Do + D) |FeFydz (6124)
L

s i =k
g = fA 1}, CDFDH]FIFS dz (6.125)
L

gy = /A _IET,, (—C'{a,,g,, Dep)]Fst dz (6.126)

In order to perform the integration by parts (see Equation (6.28)), the matrices
I, 1,, and I,,, which are those presented in Equation (6.29), are intro-
duced. To write the explicit form of the nuclei in Equations (6.112)—(6.120),
the integrals in the z thickness direction are defined as in Equation (6.41).
By developing the matrix products in Equations (6.112)—(6.120) and employ-
ing a Navier-type closed-form solution (Carrera et al. 2010a,b; Carrera and
Brischetto 2007b) the explicit algebraic form of the nuclei can be obtained.
Nucleus KX of (3 x 3) dimension is:

Kkﬂ — Ca . llasz” + C§ . 3352Jkrs + Cvk Jkrzsz

uuy openll
kts k kts
Kuulz ( opepll + Co € 33)0”3']
kts _ kts. kt.s
Kuu13 - Cape lSa‘] + CU €, lla']
kts __ k kts
Kubm ( op€epl2 + Ctr,,51733)aﬂ']
kts __ kt.s, ~k R2 ykts k 2 ykts
Kuuzz - Ca,,e,,ZZJ + Ca[,51,2213 J + CU,,EP33O[ J (6127)
kts _ [k R rkt.s _ /~k R rkts;
Kuu23 - Ca,le,,ZZﬂJ CU,,G,,23/3J
kts __ kt.s k =~ rkts;
Kuugl - Ca €, 13“‘] + C pEn 110[.]
kts __ kt.s k 2 rkts;
Kuuzz - _Cape,12313‘] + Co 5,12213‘]
kts ~k kt.s. ~k R2 ykts k 2 ykts
Kuuzg Ca,,e,,33‘] wr Ca,le,,ZZIB J + Ca,,e,,lla J
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Nucleus K¥% of (3 x 1) dimension is:

kts _ _ Ok =~ ykt.s kts _ _ [~k 2 7kt.s
Koy, = =Coe,n@", Ko, = —Coe,087
kts _ _ ;k =2 rkts _ o~k a2 rkts
Ku<I>31 - Ca,,fplla J Cang,,Zlﬂ J

Nucleus KI5 of (3 x 1) dimension is:

kts _ _ ~k ~ 1kts kts _ _ ok 2 7kts
Kip, = —Cee, @™, K.p, = CE,,e,,lZIBJ
kts _ _ Ok kt.s
KuD;” - CU,,D,,SIJ

Nucleus K4 of (1 x 3) dimension is:

kts _ (Ck 5 Tkts; kts __ A~k 3 rkts;
Koy, = Cp,e,10J°, Koy, = Cp,e,0B

krs _ A 2 ykts | A a2 kes
Kau, = Cp,e,1@"J" " + Cp e, 007 J"

Nucleus K7 of (1 x 1) dimension is:

Nucleus K475 of (1 x 1) dimension is:
Ké)g” — Jkl’zS

Nucleus K ’g; of (1 x 3) dimension is:

kts _ _ ;~k = 7kts kts _ _ ok A 7kts
Kpu, = =Cee, @™, KD, = =Ce e 1P

kts _ _ ~k kts,

Du13 - Cg,lé,ll3

Nucleus K473 of (1 x 1) dimension is:
K%Tqin _ Jkrs:
Nucleus K455 of (1 x 1) dimension is:

kts __ /~k kts
KDDH - CS,IDWIIJ

(6.128)

(6.129)

(6.130)

(6.131)

(6.132)

(6.133)

(6.134)

(6.135)

The fundamental nucleus for the inertial matrix M*™* and its components were

uu

given in Equations (6.36) and (6.46).

@ = mm/a and B = nm /b, where m and n are the wave numbers in the in-
plane directions and a and b are the plate dimensions in the x and y directions,
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respectively. A Navier-type closed-form solution is obtained via substitution of
the harmonic expressions for the displacements, electric potential, and trans-
verse stresses and by considering the following material coefficients to be
equal to zero: Q16 = Q2 = Q36 = Q45 = 0 and ez5 = e14 = e36 = €12 = 0.
The harmonic assumptions used for the displacements, the electric potential,
and the transverse normal electric displacement are:

(u’;):Z(Uf)cos(mzx)sin<$), k=1,N, (6.136)

W = mZ (V,")sin<m;”> cos (?) t=1,br (6.137)
m;”) sin (?) . r=2N

(6.138)

(wk, @, D) = 3 (WE, &, DE)sin

m,n

where U, V¥, W¥ are the displacement amplitudes, ®* is the electric potential
amplitude, and ﬁft is the transverse normal electric displacement amplitude; k
indicates the layer and &V, is the total number of layers. 7 is the index for the order
of expansion, where ¢ and b indicate the top and bottom of the layer, respectively,
while r indicates the higher orders of expansion until N = 4. Details on the
assembly procedure of the fundamental nuclei and on the acronyms are given
in Sections 6.7 and 6.8, respectively.

The meaning of the C coefficients for Equations (6.105)—(6.108) has been
given in Equations (2.79). The following equations give the explicit form of
each of their components.

The C ];pep array has a (3 x 3) dimension with components for each k layer:

2

— e - €31€32 —

31
Cope,i1 = Qi+ —, Coe,2=01n+ s Cope,13=0

€33 €33
2 (6.139)

A €31€32 A €3 A :
Cope,21 = Q12 + v Cope2=0n+ ==, Coe,23=0

€33 €33

Core31 =0, Coe,32=0, Coe,33= Qss

The C];pe,, array has a (3 x 3) dimension with components for each k layer:
A ~ ~ €31€33
Coest1 =0, Cop,12=0, Cs13=013+
€33
A A A €32€33 6.140
Core21 =0, Co2=0, Cse23= 02+ o ( )
33

Core31 =0, Co,,32=0, Cs,33=0
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The C I;F g, array has a (3 x 2) dimension with components for each & layer:

éapspn =0, C:‘apg,,lz =0, Cja g21 =0 6.141)
Coe,2=0, Coe,31 =0, Coe,32=0

The C'];,]Dn array has a (3 x 1) dimension with components for each k layer:

- e - e -
Co,p,t = ——, Copo1=——, Co;p31=0 (6.142)
€33 €33

The C];ne,, array has a (3 x 3) dimension with components for each k layer:

Cane,,ll = 05 Caneplz = 07 Co,,e,,lS =0

Ca,,e,,ZI = O’ 601151722 = 0’ 60"61723 =0 (6143)

- €133 - €633
Coe,31 = Q13+ v Coe32= 03+ v Coe33 =0
€33 €33

The C’f,” _array has a (3 x 3) dimension with components for each & layer:

€

C_‘(r,,e,,l] = Q55a C_'(r,,e,712 = 07 C(f,,e,,lS =0
Coe1 =0, Coe=Qu, Coe3=0 (6.144)

2
e
a3l =0, Cue30=0, Coe33=03+2

£33

(@]

The C ]:, g, array has a (3 x 2) dimension with components for each k layer:

@]l

w11 = —€15, Coe12=0, Coeo =0
_ _ _r (6.145)
Coe2 = —eu, Coe31 =0, Coen=

The Cl:rnDn array has a (3 x 1) dimension with components for each k layer:

~ ~ ~ €33
Co,p,11 =0, Cop21 =0, Copia1= - (6.146)
33

The CkD,,e,, array has a (2 x 3) dimension with components for each k layer:

Cp,e,i1 =0, Cp,e,12=0, Cp,,13=0

_ _ _ (6.147)
Cp,e,21 =0, Cp,e,2=0, Cp,,o3=0



RMVT(u, ®,0,, D,) FOR THE ELECTROMECHANICAL PLATE CASE 137
The C kD,,e,, array has a (2 x 3) dimension with components for each k layer:

Cp,e1 =€is, Cpein=0, Cpei13=0
! _ ! (6.148)
Cp,e21 =0, Cp,22=-eu, Cp,r=0

The C kDp g, array has a (2 x 2) dimension with components for each k layer:
Cpe,i=¢n. Cpein=0, Cpeau=0 Cpen=¢en (6.149)

The (_,’kDpD” array has a (2 x 1) dimension with components for each k layer:
CDPD,,II =0, CDPD,,21 =0 (6.150)

The C'];;”Ep array has a (1 x 3) dimension with components for each k layer:

= €3] = en =
Ceepit = ——, Cee,n=——, Cg,
€33 €33

3=0 (6.151)

The C'];;”E" array has a (1 x 3) dimension with components for each k layer:

Ceet1 =0, Cegen=0, Ceeiz= _ (6.152)

€33

The C'];;” g, array has a (1 x 2) dimension with components for each k layer:
Cg,,s,,n =0, C_'gns,,lz =0 (6.153)

The C ];,,Dn array has a (1 x 1) dimension with components for each k layer:

- 1
Cepi1 = — (6.154)
£33

6.6 RMVT(u, ®,0,, D,) for the
electromechanical plate case
The third possible extension of the RMVT (Reissner 1984) is that indicated

in Equation (2.83) in Chapter 2, where the internal electrical work has been
considered and two Lagrange multipliers have been added for the transverse
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stress components and the transverse normal electric displacement (Carrera
and Brischetto 2007a; Carrera et al. 2008):

/‘; ((SGIT,GGPC + SegcanM + SG;M(enG — €,0) — 8£[T,G’Dpc — (SSZG’D,[M
—§D7, (Eng — Snc)>dV = 6L, — 8Ly (6.155)

where the subscript M means a priori modeled variables. Considering the
multilayered structure of N; layers, the integral on the volume V in Equation
(6.155) can be rewritten as:

N;

Z kT _k kT k k T k k
//{sepG UpC+8€nG GnM+86nM (enG_GnC)

k=1 A

—8€4 D — €8, DY, — 5Dk, (€ - 8’,;C)}d§2kdz
N] Nl

= sLE - 5L, (6.156)
k=1 k=1

where §L* and §L¥ are the external and inertial virtual work at the k-layer
level, respectively. The relative constitutive equations are those obtained from
Equations (2.84)—(2.87) where the transverse normal electric displacement D,,
is modeled (M) and the transverse normal electric field £, is obtained from
constitutive equations (C); the transverse stresses o,, are modeled (M) and the
transverse strains €, are obtained from the constitutive equations (C) (Carrera
and Brischetto 2007a; Carrera et al. 2008):

P Cﬁpa,,dﬁM + C";pgpg’;c + Cf,ppnpﬁM (6.157)
ehe=CL ebo+Ch ok +Che €y +Clp Dy (6.158)
~k ~k ~ k ~k
D];c = CDPEI,GI;G + CD,,ano'ﬁM + CD,,s,,gl;G + CDpDuDﬁM (6.159)
Enc = Cre o+ Ch by + Cop €+ Cep Doy (6.160)
The meaning of the C coefficients was given in Equations (2.88). Substi-

tuting Equations (6.157)—(6.160), and the geometrical relations (2.38)—(2.41)
for plates in Chapter 2 in the variational statement of Equation (6.156), and
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considering a generic layer k (Carrera and Brischetto 2007a; Carrera et al.
2008), we obtain:

Tk ~ k ~ k
fg /A [(Dstau’;) (CUPEPDPFIuII‘+Cop(,anaﬁMf—CapngepFICI)’;
k k

Ak k K\" k k r
+C¢7,,’D” FTDier + (D"P + D"Z)Fssus‘ FTGIIMT + FsaanMs

~k ~k ~k

x ((an + D) Feut — Co . Dy Fout — Ch Fraby,, + €L e D, F, @

vk k T ( pk k ik k
B CGHD” FTDnMr) T (DestSCDS> (CDpéprFfut + C’D,)Gn Ffaier

~k k ~k & k T L
— Cp,e, Doy F 0 + € 3y FDly,. ) + (D Fi80%) (FDLy,)
—(rsDt, ) (- D k_ ¢ D, Fuk -t k

s nMs enFthl— angp PFfur CE,,(T”FTO'nMr

+Che, Doy Fo ¥t = C p F Dby, ) |dSu dz =61 = 8L, (6.161)
The CUF (Carrera 1995), as presented in the previous sections, has already
been introduced for the 2D approximation. In order to obtain a strong form of
differential equations on the domain €2, and the relative boundary conditions at
edge I'y in Equation (6.161), integration by parts is used, and this permits one
to move the differential operator from the infinitesimal variation of the generic
variable 8a to the finite quantity a* (Carrera 1995). The integration by parts
is given in Equation (6.28) for a generic variable a*, and matrices are shown in
Equations (6.29). The governing equations have the following form (Carrera
and Brischetto 2007a; Carrera et al. 2008):

Su s Kyt ul+ Ko oy + Kig O+ Ky Dy, = ply — My i
bo s KoL wi+ K3 oy, + K5 @+ K Dy, =0

0L Ky wy + Ko oy, + KGG @ + K¢ Dy, =0
8D+ K5y wi+ K3 o)y + K5y @ + K Dy =0

(6.162)

where M is the inertial contribution in the form of the fundamental nucleus,
uk is the vector of the degrees of freedom for the displacements, ®F is the
vector of the degrees of freedom for the electric potential, D%, is the vector
of the degrees of freedom for the transverse normal electric displacement, o°%
is the vector of the degrees of freedom for the transverse stress components,
and ii* is the second temporal derivative of u*. The array p_ indicates the vari-
ationally consistent mechanical loading that is applied in the case of the sensor
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configuration; in the case of an actuator configuration, the electric potential is
applied directly to the vector ®*. Along with these governing equations, the
following boundary conditions on edge 'y of the in-plane integration domain
€ hold:

krs krs kts gk kts k
H u + H nMr + Hu<l> qu + HuD DnMr
krs —k kts —k kts FHk kts A3k
H + Huo nMt + Hu<1> CDI + HuD DnMr

Mt + T by, + 145 04+ 15 Dy,
= I ak+ 0§ 6, + IG3 &% + NG5 D,

(6.163)

T

Comparing Equation (6.161), after the integration by parts, to Equations (6.162)
and (6.163), the fundamental nuclei can be obtained:

Khes / [—DIT,C'];]JEpDP]FsF,dz (6.164)

K’;?=/_—DTC 4+ (=D, + D,;) ]Fstdz (6.165)

A
Kﬁg = / i - Dg(_é(kypngep)] FF.dz (6.166)
Ag
K5 = / [ D,T,C'ZPD”]FXFsz (6.167)
Ax i
Ky = / (Dyp + Dy;) — éﬁ,lé,,D,,]Fs F.dz (6.168)
Ax i
Ky = / [ @f,,%]Fstdz (6.169)
Ak i
Ts [ >k
Ky = / _Csng,,De,,]FsF,dz (6.170)
Ax
s ~ k
Ky = [— Cenpn]Fstdz 6.171)
A
K]&Jrlj = /[ epCD €p [):IFVF‘[dZ (6172)
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s [ ~k
K]:DTU = / i - DZpCDPgn]FVF‘[dZ (6173)
A
KICCDTCI; = / :DZpékDpéjpDep]FsFrdZ (6.174)
Ag
s r ~k
Kkss = / ~DLCp o + DZ,,]FSFsz (6.175)
Ak
Ts [~k
K. = / _Cg,,epDﬁ]FsFrdz (6.176)
Ax
Ky, = / _Cﬁm]FsFtdz (6.177)
Ag
Kl’lgdi = / :Den - Cf;,ngep:IFthdZ (6.178)
Ag
TS ik
Kpp = / [anp,,]Fstdz (6.179)
Ay

The inertial array is the same as that of the previous sections. The nuclei for the
boundary conditions are (Carrera and Brischetto 2007a; Carrera et al. 2008):

TS [ ~k
s = / I,T,CU,,G,,DP]Fstdz (6.180)
Ag
e = / ek, +IZP]FSF,dz (6.181)
A
nk”:/'—ﬂé" D ]FFdz (6.182)
ud L p o,y ep sit .
Ax
3 = / [I;CI;FD”:IFSFrdZ (6.183)
A
s ~k
ng’u = / I:IZpCDpe[,Dp]FYFrdZ (6184)

A
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[~k
mtr = / 10,85, | FiFedz
A

[ ~ k
mte — / - IeTpCngpDep]FsF,dz
Ax

s — / :IZPC'I;pD”]FSFrdz

Ak

(6.185)

(6.186)

(6.187)

In order to perform the integration by parts (see Equation (6.28)), the matrices
1,,1,, andI,,, which are those presented in Equation (6.29), are introduced.
To write the explicit form of the nuclei in Equations (6.164)—(6.179), the
integrals in the z thickness direction are defined as in Equation (6.41). By
developing the matrix products in Equations (6.164)—(6.179) and employing a
Navier-type closed-form solution (Carrera and Brischetto 2007a; Carrera et al.

2008), the explicit algebraic form of the nuclei can be obtained.
Nucleus KX of (3 x 3) dimension is:

Kkrs — C_VZJkUCk . + BZJktka

uuyy 0p€p 0p€,33
Kkm _ kaS(Ck + Ck )O_llg

uuyy op€epl2 0p€p33

kts __ kts _ gktsg ok ~k ~a
KWB =0, KWzl =J (CJPGPZI + Capep33)a13

kts __ B2 ykts vk =2 rkts Fk kts __
Ky = BT Ch 0 + Q7T C, 330 Ky, =0

uu uus3

Kkm =0 Kkm =0 kas =0

uuszy uuz uuszz

Nucleus KX of (3 x 3) dimension is:

Kkm — Jkrsj Kkts =0 Kkm — —&kaék

uoy| uo uo3 0,0,13
kts __ kts __ gkts, kts _ __ @ 7kts £k
KWTZl =0, Klmzz =J ’ Ku023 - /3‘] Ctr,,zr,,23
kts __ 5 ykts kts _ @ ykts kts __ gkts.
KWSI =al™, Kuazz =pJ, Ku033 =J
Nucleus KX% of (3 x 1) dimension is:
kts kts __ yprkts __
Ku<1>11 - Ku<1>21 - Ku‘bsl =0
Nucleus KI5 of (3 x 1) dimension is:
kts __ — rkts F~k kts 2 rkts Ak kts
KuD“ =-aJ Ca[,D,,ll’ KuD;, =-pJ C(r,,D,,Zl’ KuD;]

=0

(6.188)

(6.189)

(6.190)

(6.191)
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Nucleus KX of (3 x 3) dimension is:

Kkrs — Jkrzs Kkrs :07 Kkrs :&Jk”

oul ’ ou oul3
kts __ krs __ gkt.s kts _ g rkts kts _ 5 ykts ok
K(Tuz] - 0’ Kouzz =J ’ Ku<723 - ﬂ‘] ’ K0u31 =aJ C€n€1,31
ks __ 4 1kts ik kts __ gkt.s
Kau32 - ,BJ Ce,,ep32’ KO’M33 =J
(6.192)
Nucleus KX of (3 x 3) dimension is:
kts _ _ gkts ok kts __ kts __
KUUH =-J Cenanll’ KUUIZ - 0’ Kazr]3 =0
kts __ kts __ __ ykts/k kts __
Kooy =0, Koo, = =J"C 500 K35, =0 (6.193)
kts __ kts __ kts _ _ ykts/k
Kacm - 0’ Ka<732 - 0’ KUO'33 - J Cé,,(r,,33

Nucleus K¥% of (3 x 1) dimension is:
Kggu = &kaéég,,uv K!;Eﬁg = BJk”angpzzv Kf,‘f,f}l =0 (6.194)

Nucleus K75 of (3 x 1) dimension is:

kts kts kts kts ~k

K;p, =Kyp, =0, K;p, = —J"C;p3 (6.195)

Nucleus K& of (1 x 3) dimension is:

kts kts kts

Kgy, = Kgp, = Kg,. =0 (6.196)

Nucleus K4 of (1 x 3) dimension is:
Ké()?l] = O_lewégnﬂnll’ Ké’zslz = BJkUC%pUnzz’ Ké?m =0 (6.197)

Nucleus K& of (1 x 1) dimension is:
Kga, = —@J"Ch ¢ 1) — B Ch ¢ 0o (6.198)

Nucleus K% of dimension (1 x 1) is:
Kgp, = J° (6.199)

Nucleus K47* of (1 x 3) dimension is:

KES = —atCh, . KK = —fICE, b KK =0 (6200)
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Nucleus K% of (1 x 3) dimension is:
Kps =Kps, =0, Kpo =JCg 0 (6.201)
Nucleus K43 of (1 x 1) dimension is:
Kpg, = J% (6.202)
Doy — .
Nucleus K’m of (1 x 1) dimension is:
Kpp, =J"CE 1y (6.203)

The fundamental nucleus for the inertial matrix M*™ and its components were
given in Equations (6.36) and (6.46).

@ = mm /a and B = ni /b, where m and n are the wave numbers in the in-
plane directions and a and b are the plate dimensions in the x and y directions,
respectively. A Navier-type closed-form solution is obtained via substitution of
the harmonic expressions for the displacements, electric potential, transverse
stresses, transverse normal electric displacement, and considering the follow-
ing material coefficients to be equal to zero: Q16 = Q26 = Q36 = Q45 = 0and
€5 = e14 = e3¢ = €12 = 0. The harmonic assumptions used for the displace-
ments, the electric potential, the transverse stresses, and the transverse normal

electric displacement are:
) (), k=1

(uh ol = Y- (OF 6L cos (=

m,n

(6.204)

N . /mTX nwy
(U]-,f, O-}I'(ZT) - ; (Vk vkzr)sln ( ) Ccos (T) s T=1t, b’ r
(6.205)
mimx . [/hT
(w cI>’< D]z('w zu:) = Z (Wk cpk D];z’ AZkZT)sm< p ) sin (Ty) ,

m,n

r=2,N (6.206)

where U¥, V¥, W¥ are the displacement amplitudes, ®* is the electric potential

amplitude, lﬁ’zfr is the transverse normal electric displacement amplitude, and
&k, 6ka, 6% are the transverse stress amplitudes; k indicates the layer and N,
is the total number of layers. 7 is the index for the order of expansion where ¢
and b indicate the top and bottom of the layer, respectively, while r indicates
the higher orders of expansion until N = 4. Details on the assembly procedure
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of the fundamental nuclei and on the acronyms are given in Sections 6.7 and

6.8, respectively.

The meaning of the C coefficients for Equations (6.157)—(6.160) has been
given in Equations (2.88). The following equations give the explicit form of
each of their components.

The C]:f,,e,, array has a (3 x 3) dimension with components for each k layer:

3,011 — 2e3133013 — 0633 + O33(ed; + Q11633)

C(r e, 1l —
nr €33 + 03363
Cope,12 =
en(—e33013 +e31033) — On(esress + O13€33) ~
Q12+ 5 ’C(r/,ep]3 =0
e33 + 033633
¢ O+ ex(—e33013 +e31033) — Ors(esress + 0Q13€33)
o2l = 012
" e3; + O
C(Tpe,,ZZ -
3302 — 2e3e33003 — 033633 + O33(e3, + 0ne33) & 0
s Loe,23 —
€33 + 03363 r
Cope31 = Cooe,32 =0, Co 6,33 = Qoo
(6.207)

The C’f,p _array has a (3 x 3) dimension with components for each & layer:

Oy

= = esres3 + Q13833
Capa,,ll = Copo,,l2 = 07 CapanIS =52 A .
e33 + 033633
6.208
~ ~ ~ exe3s + 023833 ( )
Ca,,a,,Zl = Ca,,an22 = 07 Ca,,(rn23 2 A
e33 + 033633

C(r,,(r,,3l = C(r,,(r,,32 = C(r,,(r,,33 =0

The C']:,p ¢, array has a (3 x 2) dimension with components for each k layer:

(@}

ol = Co,e,12 = Co,e,01 =0 (6.209)
Coe,22 = Co,e,31 = Coe,32 =0
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The CJ;,,Dn array has a (3 x 1) dimension with components for each k layer:

= e3013 —e31033 -~ e33023 —en03 -
Copni=—————, Copu=—F—"—"— GC;pn=0
e33 + 033633 e3; + 033633
(6.210)

The C'I;ep array has a (3 x 3) dimension with components for each k layer:

Ce,,e,,ll = CE,,EPIZ = Ce,,e,,l?) = Ce,,Ele = Ce,,e,,22 = C5n51,23 =0

_ —2€3,013 + 3133033 — 013033633

é n ,31 —

o O33(e3; + 033633) (6.211)
A —23;,003 + €32633033 — 003033633 ~
Cene,,32 = > 5 Cene,,33 =0

033(e33 + 033833)
The C’];G" array has a (3 x 3) dimension with components for each k layer:
¢ L ¢ ¢ ¢ 0, € !
ponll = no,12 = n0,13 = 0,21 = U, n0p22 =
‘ Oss ‘ ¢ ¢ © Ous

~ ~ 2 ~ £33
Ce0,3 = Ce0,31 = Ce0,32 =0, Cep33=—F5—"——
e33 + 033633

(6.212)

The C‘I; g, array has a (3 x 2) dimension with components for each & layer:

~ €1s ~ ~
Cee,11 = Oss’ Cee,12 = Cee,21 =0
55
(6.213)
~ €24 ~ ~
Cee,2 = 0’ Cee31 = Cee,2 =0
44

The C’];D” array has a (3 x 1) dimension with components for each k layer:

~ ~ ~ €33
Cepi1 =Cep,21 =0, Cepszi=—F5—7—" (6.214)
e33 + 033633
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The C‘kpm array has a (2 x 3) dimension with components for each k layer:
Cp,e,11 = Cpye,12 = Cp,e,13 = Cppe,1 = Cpey2 = Cpye,3 =0 (6.215)

The C ];)p(fn array has a (2 x 3) dimension with components for each k layer:

~ €1s ~ ~
Cp,o,11 = @, Cp,0,12=Cp,5,13 =0
(6.216)
~ ~ €24 ~
Cp,6,21=0, Cp22=—, Cp,r23=0
Qa4

The C’;p ¢, array has a (2 x 2) dimension with components for each k layer:

Copen = LIz Coper = Copen =0, Gy = 24
D,E,11 = +é1, Cpe,12=Cp,e,21 =0, Cp,eo= 0 +éen
55 44

(6.217)

The CkD,,Dn array has a (2 x 1) dimension with components for each k layer:
Cp,p,11 = Cp,p,21 =0 (6.218)
The Cge,, array has a (1 x 3) dimension with components for each k layer:

= e3013 —e31033 ~ 33023 — e 033 ~
Cee it = ———————, Cgen=—F"——""""—, Cg13=0
e33 + 033633 e33 + 033633

(6.219)
The C ];ngn array has a (1 x 3) dimension with components for each k layer:

€33

Ceoit = Ce0,12 =0, Cgoi3=—5—"—"—
e33 + 033633

(6.220)

The C ]; g, array has a (1 x 2) dimension with components for each k layer:

Ceeon = Cee,12=0 (6.221)
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>k . . .
The C¢ p array has a (1 x 1) dimension with components for each k layer:

N 1
Cepr1 = ——— (6.222)
Pl e32/0n + €33

6.7 Assembly procedure for fundamental nuclei

The models proposed in Section 6.3 are based on the extension of the PVD
to electromechanical problems, PVD(u, ®), and have two primary variables
in the governing equations: the displacement vector u* = (u*, v, w¥) and the
electric potential ®F. Three extensions of the RMVT to electromechamcal prob-
lems are possible. Section 6.4 shows RMVT(u, ®, 0,) in which three primary
variables are considered in the governing equations: the displacement vector
uk = (uk, vk, k) the electric potential ®*, and the transverse stress compo-
nents vector o* (ow, o z,) Section 6.5 contains RMVT(u D, ’Dn) in
which the three primary variables are displacement vector u* = (u*, v, w¥),
the electric potential ®*, and the transverse normal electric drsplacement

= (D¥). Finally, RMVT(u, ®, 0,,, D,) in Section 6.6 has four primary
variables: the displacement vector, the electric potential, the transverse normal
electric displacement, and the transverse stress components.

The choice made in this book is that the displacement ut = wk, vk, wh)
can be modeled in both ESL and LW form; the other three variables are always
modeled in LW form, which means that an electromechanical model is defined
as ESL or LW, depending on the choice made for the displacement unknowns.
Each modeled variable, regardless of which multilayer assembly procedure
is considered (ESL or LW), has the same order of expansion in the thickness
direction (from linear N = 1 to fourth order N = 4). A typical Taylor expansion
is used in the case of an ESL assembly procedure, while a combination of
Legendre polynomials is used as thickness functions in the case of an LW
assembly procedure. In the ESL approach, the multilayered plate is considered
as one equivalent plate and the stiffnesses of each embedded layer are simply
summed, while in the LW approach, each embedded layer is considered as
an independent plate and in the global stiffness matrix each contribution is
partially summed considering the compatibility and/or equilibrium conditions
at each layer interface.

Fundamental nuclei K** can be assembled in ESL or LW form, as indi-
cated in Figure 6.10. Here, an example is given for a three-layered plate. The
stiffness is first obtained for each layer by expansion via the indexes t and s,
which consider the order of expansion in the thickness direction, then the three
stiffnesses obtained for each layer can be assembled at the multilayer level in
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Figure 6.10 Assembly procedure for fundamental nuclei in ESL form (left)
and LW form (right).

ESL form (on the left) by means of a simple summation, or assembled at the
multilayer level in LW form (on the right) by considering the compatibility
conditions for the displacement components at each layer interface.

Fundamental nuclei K75, K% KX, KX%5 ) KA5s, K555 KX5S, KA, and
K*75 are always assembled in LW form, as indicated on the right of Figure 6.10;
in these cases, the partial summation of the stiffness matrices of each layer, for
the multilayer assembly procedure, is done by imposing the continuity of the
electric potential and/or the transverse stresses and/or the transverse normal
electric displacement at each layer interface.

Fundamental nuclei K*™*, K*%5 and KX can be assembled in LW form,

uo

as indicated on the right of Figure 6.10, by imposing the continuity of the
displacements and/or transverse stresses and/or electric potential and/or trans-
verse normal electric displacement at each layer interface. They can also be
assembled in a partial ESL form, as indicated on the left of Figure 6.11, where
the global stiffness matrix at the multilayer level is obtained by assembling the
displacements in ESL form (see the rows) and the other variables in LW form
(see the columns).

Fundamental nuclei K%, K%' and K%* can be assembled in LW form,
as indicated on the right of Figure 6.10, by imposing the continuity of the
displacements and/or transverse stresses and/or electric potential and/or trans-
verse normal electric displacement at each layer interface. They can also be

assembled in partial ESL form, as indicated on the right of Figure 6.11, where
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Figure 6.11 Assembly procedure for fundamental nuclei in ESL form for
nuclei of type K ’;;S (left) and for nuclei of type K '(‘,if (right).

the global stiffness matrix at the multilayer level is obtained by assembling the
other variables in LW form (see the rows) and the displacements in ESL form
(see the columns).

In the general fundamental nucleus K kts the index k for the kth layer
permits the multilayer assembly procedure (both ESL and LW approaches),
while the indexes t and s permit the expansion in the thickness direction until
the considered order N. In the case of the finite element (FE) approach, the
general nucleus K kzsij has two further indexes, i and J, which permit the FE
assembly procedure in the plane by means of the nodes and shape functions.
Details on the FE procedure can be found in Chapters 4 and 8.

6.8 Acronyms for refined and advanced models

The refined and advanced electromechanical models obtained in this chapter
by means of the PVD and the three extensions of the RMVT can be defined by
means of a system of acronyms that explains the multilayer approach (ESL or
LW) for the displacements (the other variables are always LW), the employed
variational statement (PVD or a possible extension of RMVT), and the order
of expansion in the thickness direction, which is the same for all the variables
(from linear to fourth order). This acronym system is shown in Figure 6.12.
The letter E is used to indicate ESL displacements, while the letter L is used
for the displacements in LW form; D means PVD and M stands for mixed
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(PVD)

(zig-zag function,
optional)

(order 1-4)

(PVD)

. Di__
L (RMVT)
Vi

Figure 6.12 Acronyms scheme for the refined and advanced plate models.

N (order 1-4)

models based on one of the three possible RMVT applications; the optional
letter Z is added when the Murakami zigzag function (MZZF) is included
in the ESL displacement field in order to recover the typical zigzag form of
displacements in multilayered plates; a number from 1 to 4, which is the same
for all the modeled variables, is used for the order of expansion in the thickness
direction. The modeled a priori variables are given at the end of the acronym in
parentheses. For the PVD in Section 6.3, we have (u, ®), while for the RMVT
in Section 6.4 the variables are (u, ®, 0,,). For the RMVT in Section 6.5 we
add (u, ®, D,) and finally, for the RMVT in Section 6.6, the modeled variables
are (u, ®,0,,D,).

For example, an ESL model based on the PVD in Section 6.3 with a third
order of expansion in the thickness direction for the modeled variables has the
acronym ED3(u, ®). If we add the MZZF for the displacement to the same
model, the acronym becomes EDZ3(u, ®). An LW model, based on the RMVT
in Section 6.6, with a second order of expansion in the thickness direction for
the modeled variables has the acronym LM2(u, ®, o, D,,).

6.9 Pure mechanical problems as particular cases,
PVD(u) and RMVT(u, 5,)

Pure mechanical models can be considered as particular cases of the electrome-
chanical models proposed in this chapter. Pure mechanical refined models are



152 REFINED AND ADVANCED THEORIES FOR PLATES

obtained from the variational statement PVD(u), which is a particular case of
the electromechanical PVD(u, ®) given in Section 6.3 (Carrera 2002; Carrera
et al. 2008). Pure mechanical advanced mixed models are obtained from the
variational statement RMVT(u, 0,,), which is a particular case of the elec-
tromechanical RMVT(u, @, ¢,) shown in Section 6.4 (Carrera and Boscolo
2007, Carrera et al. 2008; Brischetto and Carrera 2010).

PVD(u) is obtained from Equation (6.22) simply by discarding the internal

electrical work 6& kG ’ D]é :

N N N
3 // {ae’;GTa’;,c +ae’;GTaf;C}kodz =S sk =Y sLk, (6.223)
k=1 k=1

k=& A,

The relative constitutive equations are obtained from Equations (6.23)—(6.25)
simply by discarding the electrical contributions and the electromechanical
coupling:

ohe =0, €+ Q€ (6.224)

ohe = Q)€+ O €ng (6.225)

As already illustrated in Section 6.3, by substituting Equations (6.224)—(6.225)
in the variational statement of Equation (6.223) and referring to the CUF for the
2D approximation (Carrera 1995), after the integration by parts the governing
equations and the relative fundamental nuclei can be obtained. However, the
governing equations can be obtained in a simpler way from Equations (6.30)
simply by discarding the second row and column:

suf . K'uk = pko— MET ik (6.226)

uu T

The fundamental nuclei K** and M*"* are the same as already given in

Equations (6.32) and (6.36), respectively.
RMVT(u, 0,) is obtained from Equation (6.52) simply by discarding the

. . T
internal electrical work 88"6 ’Dlé:

N
Z / / {‘Sel;cral;c +8€k; ok + o0k, (€l — fﬁc)]kodZ
k=18 Al

= 8Lt =) 5L}, (6.227)
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The relative constitutive equations are obtained from Equations (6.53)—(6.56)
simply by discarding the electrical contributions and the electromechanical
coupling:

ko kK Aok k
0pc = Copel,epG + Capa”a”M (6.228)
k=0 40t ot (6.229)
6nC - e,,e,,epG e,,(rno'nM .

As already illustrated in Section 6.4, by substituting Equations (6.228)—(6.229)
in the variational statement of Equation (6.227) and referring to the CUF for the
2D approximation (Carrera 1995), after the integration by parts the governing
equations and the relative fundamental nuclei can be obtained. However, the
governing equations can be obtained in a simpler way from Equations (6.58)
simply by discarding the third row and column:

k . kts .k kts _k _ ok kts sk
5us : Kuu u; + Kuzr Oume = Pus — Muu u: (6 230)
k . kts ok kts _k _ :
8ans . Kau ur + Kaa Oume = 0

The fundamental nuclei K, K**s, K**5 K*5 and M*™ are the same as

uu uo ou oo’ uu

already given in Equations (6.60), (6.61), (6.63), (6.64), and (6.36), respectively.

6.10 Classical plate theories as particular cases of
unified formulation

Pure mechanical classical plate theories as already given in Section 3.3 can
also be obtained as particular cases of the CUF theory. The ED1(u) theory is
an ESL model where the three displacement components are linear through the
thickness direction z:

u(x,y,z) =uo(x,y) +zui(x,y)
v(x, y,2) = vo(x, y) + zvi(x, y) (6.231)
w(x, y,z) = wolx, y) + zwi(x, y)

First-order shear deformation theory (FSDT) (see Equation (3.4)) can be ob-
tained by a typical penalty technique applied to the global stiffness matrix which
allows us to discard the term zw;(x, y) in Equation (6.231). Both ED1(u) and
FSDT(u) have the Poisson locking phenomenon which can be overcome by
means of reduced elastic coefficients in the constitutive equations imposing
the condition o,;, = 0 in Equations (6.224)—(6.225). Further details about this
phenomenon can be found in Carrera and Brischetto (2008a).
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Classical lamination theory (CLT) (see Equation (3.3)) can be considered
a particular case of the above FSDT(u) model. In CLT(u) transverse shear
strains yx; and y,. are zero, therefore in the FSDT(x) model we can penalize
the coefficients Qss and Q44 in Equations (2.22) and (2.26) in order to impose
Yxz = Vyz = 0. In CLT(u) the Poisson locking appears too as for the FSDT(u)
and EDI(u) cases and it can be corrected in the same way (Carrera and
Brischetto 2008a).

In the case of electromechanical problems, CLT and FSDT extended to
smart structures have been discussed in this book in Sections 3.4 and 4.3, re-
spectively. Governing equations have been extensively written in the cases of the
closed-form solution and FE method by considering a LW linear through-the-
thickness electric potential. CLT(u, ®) and FSDT(u, ®) can also be obtained
from the CUF by considering the variational statement PVD(u, ®) in Equation
(6.22) and the relative governing relations in Equation (6.30). They can be con-
sidered as particular cases of the ED1(u, ®) model where the mechanical part
is penalized as described for the pure mechanical case and the electric potential
remains LW and linearly expanded through the thickness-layer direction. No
Poisson locking corrections are considered for FSDT(u, ®) and CLT(u, ®) for
the cases investigated in this book.

References

Ballhause D, D’Ottavio M, Kroplin B, and Carrera E 2005 A unified formulation
to assess multilayered theories for piezoelectric plates. Comput. Struct. 83, 1217—
1235.

Brischetto S 2009 Classical and mixed advanced models for sandwich plates embedding
functionally graded cores. J. Mech. Mater. Struct. 4, 13-33.

Brischetto S and Carrera E 2009 Refined 2D models for the analysis of functionally
graded piezoelectric plates. J. Intell. Mater. Syst. Struct. 20, 1783-1797.

Brischetto S and Carrera E 2010 Advanced mixed theories for bending analysis of
functionally graded plates. Comput. Struct. 88, 1474—1483.

Brischetto S, Carrera E, and Demasi L 2009a Improved bending analysis of sandwich
plates using a zig-zag function. Comp. Struct. 89, 408—415.

Brischetto S, Carrera E, and Demasi L 2009b Free vibration of sandwich plates and
shells by using zig-zag function. Shock Vib. 16, 495-503.

Brischetto S, Carrera E, and Demasi L 2009¢ Improved response of unsymmetrically
laminated sandwich plates by using zig-zag functions. J. Sandwich Struct. Mater. 11,
257-267.

Carrera E 1995 A class of two-dimensional theories for anisotropic multilayered plates
analysis. Accad. Sci. Torino, Mem. Sci. Fis. 19-20, 1-39.

Carrera E 2002 Theories and finite elements for multilayered anisotropic, composite
plates and shells. Arch. Comput. Meter. Eng. 9, 87-140.



REFERENCES 155

Carrera E 2003 Historical review of zig-zag theories for multilayered plates and shells.
App. Mech. Rev. 56, 287-309.

Carrera E and Boscolo M 2007 Classical and mixed finite elements for static and
dynamic analysis of piezoelectric plates. Int. J. Num. Meth. Eng. 70, 1135-1181.

Carrera E, Boscolo M, and Robaldo A 2007 Hierarchic multilayered plate elements
for coupled multifield problems of piezoelectric adaptice structures: formulation and
numerical assessment. Arch. Comput. Methods Eng. 14, 383-430.

Carrera E and Brischetto S 2007a Piezoelectric shell theories with “a priori” continuous
transverse electromechanical variables. J. Mech. Mater. Struct. 2, 377-398.

Carrera E and Brischetto S 2007b Reissner mixed theorem applied to static analysis of
piezoelectric shells. J. Intell. Mater. Syst. Struct. 18, 1083-1107.

Carrera E and Brischetto S 2008a Analysis of thickness locking in classical, refined and
mixed multilayered plate theories. Comp. Struct. 82, 549-562.

Carrera E and Brischetto S 2008b Analysis of thickness locking in classical, refined and
mixed theories for layered shells. Comp. Struct. 85, 83-90.

Carrera E and Brischetto S 2009a A survey with numerical assessment of classical and
refined theories for the analysis of sandwich plates. Appl. Mech. Rev. 62, 1-17.

Carrera E and Brischetto S 2009b A comparison of various kinematic models for
sandwich shell panels with soft core. J. Compos. Mater. 43, 2201-2221.

Carrera E, Brischetto S, and Nali P 2008 Variational statements and computational
models for multifield problems and multilayered structures. Mech. Adv. Mater: Struct.
15, 182-198.

Carrera E, Brischetto S, and Cinefra M 2010a Variable kinematics and advanced vari-
ational statements for free vibrations analysis of piezoelectric plates and shells.
Comput. Model. Eng. Sci. 65, 259-341.

Carrera E, Nali P, Brischetto S, and Cinefra M 2010b Hierarchic plate and shell theories
with direct evaluation of transverse electric displacement. In Proceedings of 17th
AIAA/ASME/AHS Adaptive Strutctures Conference.

Demasi L 2008a oo? hierarchy plate theories for thick and thin composite plates: the
generalized unified formulation. Comp. Struct. 84, 256-270.

Demasi L 2008b 2D, quasi 3D and 3D exact solutions for bending of thick and thin
sandwich plates. J. Sand. Struct. Mater. 10, 271-310.

D’Ottavio M and Kroplin B 2006 An extension of Reissner mixed variational theorem
to piezoelectric laminates. Mech. Adv. Mater. Struct. 13, 139-150.

Hsu T and Wang JT 1970 A theory of laminated cylindrical shells consisting of layers
of orthotropic laminae. AIAA J. 8, 2141-2146.

Hsu T and Wang JT 1971 Rotationally symmetric vibrations of orthotropic layered
cylindrical shells. J. Sound Vib. 16, 473-487.

Ikeda T 1996 Fundamentals of Piezoelectricity. Oxford University Press.

Librescu L and Schmidt R 1988 Refined theories of elastic anisotropic shells accounting
for small strains and moderate rotations. Int. J. Non-linear. Mech. 23, 217-229.

Librescu L and Wu EM 1977 A higher-order theory of plate deformation. Part 2:
laminated plates. J. Appl. Mech. 44, 669-676.



156 REFINED AND ADVANCED THEORIES FOR PLATES

Murakami H 1985 Laminated composite plate theory with improved in-plane responses.
In ASME Proceedings of Pressure Vessels & Piping Conference.

Murakami H 1986 Laminated composite plate theory with improved in-plane responses.
J. Appl. Mech. 53, 661-666.

Reddy JN 2004 Mechanics of Laminated Composite Plates and Shells; Theory and
Analysis. CRC Press.

Reissner E 1984 On a certain mixed variational theory and a proposed application. Int.
J. Numer. Methods. Eng. 20, 1366—1368.

Robbins DH Jr. and Reddy JN 1993 Modeling of thick composites using a layer-wise
theory. Int. J. Numer. Methods. Eng. 36, 655-677.

Srinivas S 1973 A refined analysis of composite laminates. J. Sound Vib. 30, 495-507.



Refined and advanced
theories for shells

Higher orders of expansion in the thickness direction are assumed in refined
and advanced models for shells for both the electrical and mechanical variables.
These axiomatic 2D models can be considered in ESL or in LW form. The CUF
is a technique which allows one to handle a large variety of shell models in a
unified manner. According to the CUF, the obtained theories can have an order
of expansion which goes from first- to higher order values, and, depending
on the thickness functions used, a model can be ESL or LW. The CLT and
FSDT shell theories discussed in Chapter 3 can also be obtained in the CUF
as particular cases of the ESL theories. CLT, FSDT, ESL, and LW refined
and advanced mixed theories have been implemented by means of the in-house
academic code MUL2. The proposed shell models consider the curvature effect
that is not included in the plate cases proposed in Chapter 6.

7.1 Unified formulation: refined models

Refined models for multilayered shells are those displacements models in which
higher orders of expansion in the thickness direction z are assumed for all three
displacement components. These axiomatic 2D models can be seen in ESL
form, when the layers included in the multilayered shell are considered as
one equivalent structure, and in LW form, when each layer embedded in the
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multilayered shell is separately considered in order to write the expansions in
z for each layer k. Refined models for electromechanical problems have, as the
primary variables, the electric potential in addition to the displacement vector.
These models are obtained by using the PVD (Carrera 2002) and its extensions
to multifield problems (Carrera et al. 2007; Ikeda 1996).

The CUF is a technique which handles a large variety of shell models
in a unified manner (Carrera 1995) (for plate models readers should refer to
Chapter 6). According to the CUF, the governing equations are written in terms
of a few fundamental nuclei which do not formally depend on the order of
expansion N used in the z direction and on the description of variables (LW or
ESL) (Carrera 1999a,b). The application of a 2D method for shells allows one to
express the unknown variables as a set of thickness functions that depend only
on the thickness coordinate z and the corresponding variable that depends on the
curved in-plane coordinates « and 8. Therefore, the generic variable f(«, 8, z),
for instance a displacement, and its variation § f(«, 8, z), are written according
to the following general expansion:

Sfla, B,2) = F.(2) f (o, B), 8 f(a, B, z) = Fy(2)d f ((a, B),
with 7,s =1,...,N (7.1)

where the bold letters denote arrays, («,f) are the in-plane coordinates, and z
the thickness one. A summing convention, with repeated indexes t and s, is
assumed. The order of expansion N goes from first- to higher order values, and,
depending on the thickness functions used, a model can be either ESL, when
the variable is assumed for the whole multilayer and a Taylor expansion is
employed as thickness functions F(z), or LW, when the variable is considered
independent in each layer and a combination of Legendre polynomials used as
the thickness functions F(z). In the CUF, the maximum order of expansion N
in the z direction is the fourth.

7.1.1 ESL theories

The displacement u = (u, v, w) is described according to the ESL description,
if the unknowns are the same for the whole shell (Librescu and Wu 1977; Li-
brescu and Schmidt 1988). The z expansion is obtained via Taylor polynomials,
that is:

u=Fyuyo+Fiu +---+Fyuy =F; u;
v=Fyvg+ Firv+---+ Fy oy = F; v, (7.2)
w=Fywy+ FLw +- -4+ Fy wy =F; w;



UNIFIED FORMULATION: REFINED MODELS 159

Figure 7.1 EDA4: displacements u, v, and w through the thickness direction z.

with t =0, 1,..., N; N is the order of expansion and ranges from 1 (linear)
to 4:

Fo=:"=1, F=z'=z,..., Fy=z" (7.3)
Equation (7.2) can be written in vectorial form:

ua, B, z) = Fe(2)u(a, B), Su(e, B, z) = Fy(2)dus(a, B),
with 7,5 =1,...,N (7.4)

The 2D models obtained from Equations (7.2)—(7.4) are denoted by the acronym
EDN, where E indicates that an ESL approach has been employed, D indicates
that the theory is a displacement formulation, and N indicates the order of
expansion in the thickness direction. For example, an ED2 model has a quadratic
expansion in z, an ED4 has a fourth order of expansion in z, and so on. A typical
displacement field is indicated in Figure 7.1 for a three-layered shell for the
case of an ED4 model. Figure 7.2 considers the displacement and the transverse
stresses along the z direction of the shell for an ED2 model: the displacements
are quadratic in z, therefore the transverse stresses are linear (no longer constant,
as in classical theories) but discontinuous at each interface. Simpler theories
can be obtained from EDN models, such as those which discard the €., effect;
in this case, it is sufficient to impose that the transverse displacement w is
constant in z. Such theories are denoted as EDNd. The ED1d model coincides
with FSDT. CLT is obtained from FSDT via an opportune penalty technique,
which imposes an infinite shear correction factor. It is important to recall that
all the EDNd theories which have constant transverse displacement and zero



160 REFINED AND ADVANCED THEORIES FOR SHELLS

ED2

Displacements  Transverse stresses

Figure 7.2 ED2: displacements and transverse shear stresses through the
thickness direction z.

transverse normal strain €., the ED1 model and FSDT and CLT theories, show
the Poisson locking phenomenon for pure mechanical problems; this can be
overcome via plane stress conditions in constitutive equations (Carrera and
Brischetto 2008a,b).

7.1.2 Murakami zigzag function

The ESL models proposed in the previous section do not consider the typical
zigzag (ZZ) form of displacements in the z direction, which is typical of
multilayered structures with transverse anisotropy (Carrera 2003). A remedy
for this limitation is the introduction of an opportune zigzag function in the
ESL displacement model, in order to recover the ZZ form of the displacements
without the use of LW models. The latter have intrinsic ZZ behavior, but
are more computationally expansive than ESL models (Carrera and Brischetto
2009a,b; Reddy 2004). A possible choice for the zigzag function is the so-called
Murakami zigzag function (MZZF) (Murakami 1985, 1986). MZZF can be
simply added to a displacement model and leads to remarkable improvements
in the solution by satisfying the typical ZZ form of displacements in multi-
layered shells.
MZZF Z(z) is defined as:

Fz =2() = (=D (7.5)

with the non-dimensioned layer coordinate ¢ = (2z;)/hy, where z; is the
transverse thickness coordinate in the k layer and /7 is the thickness of the &
layer, therefore —1 < ¢ < 1. Z(z) has the following properties: it is a piece-
wise linear function of the layer coordinates z;; Z(z) has unit amplitude for
the whole layers; the slope Z'(z) = dZ /dz assumes an opposite sign between
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two-adjacent layers. The amplitude of MZZF is layer thickness independent
(Murakami 1986). The displacement model that includes MZZF is:

M=F0M0+F1M1+~-~+FNMN+F2L{ZZFTMT
v=Fv+Fv+---+Fyuvy+Fzvz = F; v, (7.6)
w=Fywy+Frw +---+Fyvwy+Fzrwy = F;, w,

where T =0,1,...,(N + 1), and N is the order of expansion, which ranges
from 1 (linear) to 4:

Fo=2"=1, Fi=z'=z ..., Fy =z, Fyy =F; =(=Dr¢
(1.7)

The acronym to indicate such models is EDZN, where E stands for the ESL
approach, D for displacement formulation, and N the order of expansion in the z
direction. Z indicates that MZZF has been added (Brischetto et al. 2009a). The
following remarks can be made: the additional degree of freedom u; has the
meaning of displacement; the amplitude u is layer independent since u; has
an intrinsic ESL description; MZZF can be used for both in-plane and out-of-
plane displacement components (Brischetto et al. 2009b,c). Figure 7.3 clearly
shows the meaning of MZZF and how to add it to displacement components.

The MZZF F; = Z(z) = (—1)*¢; is the (N + 1)th thickness function in
order to write the vectorial form of Equation (7.6):

u(e, B, z) = Fe(2)u(a, B), Su(e, B, z) = Fy(2)éus(a, B),
with 7,5 =1,...,(N+1) (7.8)

EDZI1 EDZ3

Figure 7.3 Displacements models in the EDZ1 and EDZ3 theories. Inclusion
of MZZF in an ESL model.
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Displacements Transverse stresses

Figure 7.4 EDZI: displacements and transverse shear stresses through the
thickness direction z.

Some typical displacements and transverse shear stresses along the thickness
z are shown in Figure 7.4 for an EDZ1 model: the inclusion of MZZF allows
one to recover the typical ZZ form of the displacement vector in the case of
multilayered transverse-anisotropic shells. Like the EDN models, it is possi-
ble to impose constant transverse displacements w. Such models are denoted
as EDZNd models. It is necessary in EDZNd models to correct the Poisson
locking phenomena, as indicated in Carrera and Brischetto (2008a,b) for pure
mechanical problems.

7.1.3 LW theories

When each layer of a multilayered structure is described as an independent shell,
a LW approach is considered (Reddy 2004). The displacement u* = (u, v, w)*
is described for each k layer, and in this way, the ZZ form of the displacements
in multilayered transverse-anisotropy shells is easily obtained (Hsu and Wang
1970, 1971; Srinivas 1973; Robbins and Reddy 1993). The recovery of the ZZ
effect via LW models is dealt with in detail in Carrera and Brischetto (2009a,b)
and is shown in Figure 7.5. The z expansion for the displacement components
is made for each k layer:

ub = Foul + Fyub + -+ Fy uk, = Fy u*
V= Fovf+ Fy vk 4+ 4 Fy ok = F, o (79)

wk=F0wl(§+F1 w]f—i—uo—i—FN wl,i,=F, wf
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LD1 EDI1

uvw uvw

Figure 7.5 Linear expansion in the z direction for displacement components:
LW approach vs. ESL approach.

with 7 =0,1,..., N, and N the order of expansion, which ranges from 1
(linear) to 4; k = 1, ..., N; where N, indicates the number of layers. Equation
(7.9), written in vectorial form, is:

(o, B,2) = F.(2)ub(a, B),  suf(a, B, 2) = Fy(2)sul(a, p),
with 7,s =¢,b,r and k=1,..., N (7.10)

where ¢ and b indicate the top and bottom of each k layer, respectively, N;
is the number of total layers, and r indicates the higher orders of expansion
in the thickness direction: » = 2, ..., N. The thickness functions F;(¢;) and
F(&r) have now been defined at the k-layer level, and are a linear combination
of the Legendre polynomials P; = P;(¢) of the j™ order defined in the ¢
domain (¢ = 2z /h; where z; is the local coordinate and 7, is the thickness,
both referring to the k™ layer, therefore —1 < ¢; < 1). The first five Legendre
polynomials are:

Bar—1) 50° 3G
P = 1’ P fred s P = P = ——
0 1= Gk p) 3 3 > >
35t 1502 3
P, = — — 7.11
4 A 1 + g (7.11)

and their combinations for the thickness functions are:
Py + P, Py — P,
== 9 Fh = l == 9
2 2
with r=2,...,N (7.12)

Fl :F(]

Fr:Pr_Pr—Zv
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LD2

Figure 7.6 1LD2: u, v, and w displacements through the thickness direction z.

The chosen functions have the following interesting properties:

G =1:F = 1;F, = 0;F, = 0 at the top (7.13)
& = —1:F, = 0;F, = 1;F, = 0 at the bottom (7.14)

In other words, interface values of the variables are considered as the variable
unknowns. This fact permits one to easily impose the compatibility conditions
for the displacements at each layer interface. The acronym to indicate such
theories is LDN, where L stands for the LW approach, D indicates the dis-
placement formulation, and N is the order of expansion in each & layer. Typical
displacement behavior for a three-layered shell is given in Figure 7.6 for LD2
model. Figure 7.7 indicates the displacements and transverse shear stresses
for a LD3 model. The transverse shear/normal stresses are obtained via the

LD3

Displacements Transverse stresses

Figure 7.7 LD3: displacements and transverse shear stresses through the
thickness direction z.
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constitutive equations but this does not ensure interlaminar continuity (IC).
IC could be enforced by “a priori” modeling of the transverse shear/normal
stresses. In LW models, even though a linear expansion in z is considered for
transverse displacement w, the Poisson locking phenomenon does not appear
for a pure mechanical problem: the transverse normal strain €, is piece-wise
constant in the thickness direction (Carrera and Brischetto 2008a,b).

7.1.4 Refined models for the electromechanical case

The primary variables in electromechanical problems are the displacement
vector u = (u, v, w) and the scalar electric potential ®. Considering the higher
spatial gradient of the electric potential, the variable ®* is always modelled as
LW (Carrera and Brischetto 2007a,b; Brischetto and Carrera 2009):

e, B, 2) = Fo ()@, B), 8" (e, B, 2) = Fy(2)5P (e, B),
with 7,5 =1t,b,r and k=1,..., N (7.15)

where ¢ and b indicate the top and bottom of each k layer, respectively; N,
indicates the number of total layers, and r indicates the higher orders of ex-
pansion in the thickness direction: = 2, ..., N. The thickness functions are
a combination of Legendre polynomials, as indicated in the previous section.
A 2D model for electromechanical problems is defined as ESL, ESL+MZZF,
or LW depending on the choice made concerning the displacement vector: the
electric potential is always considered LW (Ballhause et al. 2005; Carrera and
Boscolo 2007).

7.2 Unified formulation: advanced mixed models

In the case of electromechanical analysis of multilayered shells, advanced
mixed models are defined as those 2D models that are obtained by employ-
ing the Reissner mixed variational theorem (RMVT) (Reissner 1984) and its
extensions to electromechanical coupling (Carrera et al. 2008). These exten-
sions allow one to “a priori” model some transverse quantities that are only
obtained via post-processing in PVD applications. Transverse shear/normal
stresses 0, = (0y:, 0g;, 0;-) and/or transverse normal electric displacement
D, = (D.) are a priori modeled and considered in LW form. The main ad-
vantage of obtaining these variables directly from the governing equations is
the fulfillment of Interlaminar Continuity (IC) (Brischetto 2009; Brischetto
and Carrera 2010). These advanced models are obtained by means of the CUF
(Carrera 2002) as explained in detail in previous sections.
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7.2.1 Transverse shear/normal stress modeling

In the case of a pure mechanical problem, an advanced mixed model con-
siders both displacements # = (u, v, w) and transverse shear/normal stresses
0,m = (0yz, Op:, 0:;) as the primary variables (Brischetto and Carrera 2010).
The displacements can be modeled as ESL (Section 7.1.1), ESL+MZZF (Sec-
tion 7.1.2), and LW (Section 7.1.3), and this choice allows one to define the
considered advanced model as ESL, ESL+MZZF, or LW, respectively; the
transverse shear/normal stresses o,y are always LW (the subscript M means
that the stresses are modelled and not obtained from the constitutive equations).
The LW model for stresses is:

k k k k k
Oaz=F06a20+F1 o-azl+"'+FNO‘azN=FTUazr

zT

U§Z=F0 o§20+F1 0§21+~~+FN ngN=F, ok (7.16)

k k k k k
022=F00220+F1 Uzzl+"'+FNGzzN:FTUzzr

witht =0,1,..., N, and N the order of expansion ranging from 1 (linear) to
4;k=1,..., N;, where N, indicates the number of layers. Equation (7.16) is
written in vectorial form as:

oy, B, 2) = F.(2)ak (o, B),  8a%,,(a, B,2) = Fi(2)80%,,,(, B),
with 7,5 =1, b,r and k=1,..., N (7.17)

where ¢ and b indicate the top and bottom of each layer &, respectively;  indi-
cates the higher orders of expansion in the thickness direction: »r =2, ..., N.
The thickness functions F; () and F;(&;) have now been defined at the k-layer
level, and are a linear combination of Legendre polynomials. The use of such
thickness functions, based on the property pointed out in Equations (7.13) and
(7.14), permits one to easily write the IC for the transverse stresses:

ot =abM with k=1,....,(N,—1) (7.18)
which means: the top value of the k layer in each interface is equal to the bottom

value of the layer (k 4 1). The same property can be used for displacements in
LW form, in order to impose the compatibility conditions:

b =uth with k=1,...,(N—1) (7.19)
We define EMN models as those models which have displacements in the

ESL form (E) and transverse stresses in the LW form, where M means mixed
formulation (use of RMVT), and N is the order of expansion, which is the same
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EM2

Displacements Transverse stresses

Figure 7.8 EM2: displacements and transverse shear stresses through the
thickness direction z.

for both variables. EMZN models consider the displacements modelled in ESL
form with the inclusion of MZZF. LMN models consider both displacements
and transverse stresses in LW form. Figure 7.8 shows the displacements and
transverse stresses for an EM2 model. The displacements are considered ESL,
and the transverse stresses are a priori modelled and obtained directly from
the governing equations: they are considered in LW form, and this allows
one to satisfy both the ZZ form and IC. If transverse stresses are obtained
from the constitutive equations via post-processing, IC might be not ensured.
Figure 7.9 shows the displacements and stresses for LM2 model. In this case,
the displacements are also LW, and the ZZ form and IC are ensured for both
the displacement and transverse stress components. The transverse stresses
obtained from the constitutive equations might not satisfy IC (Brischetto 2009).

LM2

constitutive eqgs.

............ B

Displacements Transverse stresses

Figure 7.9 LM2: displacements and transverse shear stresses through the
thickness direction z.
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7.2.2 Advanced mixed models for the
electromechanical case

For the case of electromechanical problems for shells, several extensions of
RMVT can be considered (Reissner 1984; Carrera et al. 2008). In such models,
the displacements u and electrical potential ® are always considered in the
governing equations, the electric potential ® is always modelled in LW form,
as discussed for the PVD case in the previous sections, the displacement com-
ponents u are modelled as ESL, ESL+MZZF, or LW, and this choice defines
the considered advanced model as ESL, ESL+MZZF, or LW.

Three different extensions of RMVT to electromechanical problems can be
considered. In addition to displacements u and electric potential ®, the other
modelled variables are:

1. Using only one Lagrange multiplier (Reissner 1984), the transverse
stresses 0,y are a priori modelled (LW form as described in the previous
sections) (Carrera and Brischetto 2007b).

2. Using only one Lagrange multiplier, the transverse normal electric
displacement D,y = D, is a priori obtained in LW form (Carrera
et al. 2010a).

3. Considering two Lagrange multipliers, both the transverse stresses and
the transverse normal electric displacement are a priori modelled in LW
form (Carrera and Brischetto 2007a).

The LW expansion for the transverse normal electric displacement
D,y =D, is:
Di(a, B, 2) = F.(2)D!(a, B), 8D, B, 2) = Fi(2)8D (e, B),
with 7,5 =¢,b,r and k=1,..., N (7.20)

where ¢ and b indicate the top and bottom of each k layer, respectively; r indi-
cates the higher orders of expansion in the thickness direction: r =2, ..., N.
The modelled variables of these three advanced models are:

1. displacements u, transverse stresses o ,, and electric potential ® for
case 1;

2. displacements u, electric potential ®, and transverse normal electric
displacement D,,y; = D, for case 2;

3. displacements u, electric potential ®, transverse stresses 0,3, and trans-
verse normal electric displacement D,,; = D, for case 3.

The acronyms for such advanced mixed models are explained in detail at
the end of this chapter, after a discussion of the variational statements.
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7.3 PVD(u, ®) for the electromechanical shell case

The PVD has been obtained for the case of electromechanical problems as in
Equations (2.53) and (6.21) in Chapters 2 and 6, respectively:

/ (5e§Ga,,c +8e! o — 5£gvc)dv — 6L, — 8Ls, (7.21)
Vv

It is not necessary to split the electric displacement for the PVD case. Consid-
ering a laminated shell of N, layers and the integral on the volume V; of each
layer as an integral on the in-plane curved domain €2, plus the integral in the
thickness-direction domain Ay, it is possible to write:

N N N

T . T T
3 // [sets" obe + e ohe — 88" DY duaz = o1t = a1,
k=1 & A k=1 k=1

(7.22)

where §L¥ and S are the external and inertial virtual work at the -layer level,
respectively. The relative constitutive equations are those obtained in Equations
(2.21)—(2.24), with the components in a curvilinear reference system (¢, 8, z)
for the stress, strain, electric displacement, and electric field vectors given
in Equations (2.19) and (2.20); if splitting of the electric displacement and
electric field in the in-plane and out-of-plane components is not considered, the

relations are the same as those already discussed in Equations (6.23)—(6.25):

. . A T
ohe = Q)€+ Q. €h; — € EG (7.23)
. T
ore = Q)€+ Qhnc — e E (7.24)
D = e el +elel + €4 EL (7.25)

By substituting Equations (7.23)—(7.25), and the geometrical relations
(2.31)—(2.37) in Chapter 2 for the shells in the variational statement in Equation
(7.22), and considering a generic k layer (Carrera et al. 2007):

T
/Qk /;,k [((D]; + AI;)‘S"k) ((Qﬁp(D'; + A+ 08, (DL + DY, — AN ut

T
+ e (Db, + D50 ) + (D, + Db, —abysut ) ((04,(D% + Ab)

np

+ @, (D"

np

T
+ D}, —Ab)ut + e’ (D5, +D%,)9%) + ((D,+DF,)50")
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x((€h(Dh + Ab) + ek (D), + D —Ab)u* — & (D%, + D!, )o") |

x dQ dz = 8L* —sLY (7.26)

The CUF (Carrera 1995) can be introduced into Equation (7.26) for the 2D
approximation, as presented in Sections 7.1 and 7.2:

T
/Q fA (D4 + Ay Fsut) ((@4,(D% + 4%)+ @4, Dk, + Dk, —Ab) Fout
k k
T
+ e (Db, + D5 F 0 ) + ((Dh,+ D, —AbFsut) ((Q4,(D% + Ab)

T
. - . - T A
+ 04Dl + D~ AD) P+l (D!, + DL F,04) (D4 + DL P50

nn
x ((€h(Dh + AL) + eh (D, + Db, — AL) Fodk — (DS, + Db F. 0t ) |

xdQy dz = 8L* —sL* (7.27)

m

In Equation (7.27), in order to obtain a strong form of the differential equations
on domain €2; and the relative boundary conditions on edge I'y, integration
by parts is used, which allows one to move the differential operator from
the infinitesimal variation of the generic variable §a* to the finite quantity a*
(Carrera 1995). For a generic variable a*, the integration by parts is:

/ (D5sa")" dtdy = — / sat" (D a*)dey + f sat" (1 d*) dry
Qe Q

Iy

(7.28)

where Q2 = p, np, ep, and the matrices of the differential operators depend
on the k layer in the case of a shell geometry; the matrices to perform the
integration by parts have the following form, in analogy with the matrices of
the geometrical relations of the shells in Equations (2.33) and (2.37):

- -
— 0 0 1
HE 00 —
=0 - 0. =), L. 15,=|/ (7.29)
B HEk —_
11 / Hy
HE HE 000
il o
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where the metric coefficients Hf = (1 + z*/RY) and Hj = (1 4 2*/Rj) (with
radii of curvature RY and Rj in the o and B in-plane directions of the shell,
respectively) were introduced in Section 2.3 and will be dealt with at the end
of this chapter.

The governing equations and the boundary conditions have the same form
as the plate case discussed in Section 6.3, though the meaning of the involved
fundamental nuclei changes. As discussed in Brischetto and Carrera (2009),
the governing equations are:

k. kts _,k kts ;mk ko kts k
8143 . Kuu ur+KuCI>q)r_ Pus Muu uz

8®y: Koy ui + Ky @ =0 (7.30)

where M*™ is the inertial contribution in the form of the fundamental nucleus,

ut is the vector of the degrees of freedom for the displacements, ®* is the

T
vector of the degrees of freedom for the electric potential, u’; is the second
temporal derivative of uf. The array p’;S indicates the variationally consistent
mechanical loading for the case of a sensor configuration; the electric potential
is imposed directly in vector ®* in the actuator application. Along with these
governing equations, the following boundary conditions on edge I'; of the

in-plane integration domain €2; hold:
M+ I @) = a4 i 8
I, uf + Mg &F = Ny @) + Mgy o (7.31)
By comparing Equation (7.27), after the integration by parts (see Equation
(7.28)), to Equations (7.30) and (7.31), the fundamental nuclei can be obtained:
T
kes k k k¢ pk k ko pk k k
Kuu = / [( - Dp + Ap) ( pp(Dp + Ap) + Qpn(an + Dnz - An))
Ak

T
+( = D, + Db, — 4b) (Q4,(Dh +A%) + 04D, + D, — 4b)]

X FyFHy Hydz (7.32)
T T
K5 = / [( ~- D+ A;) (e’;T(Dﬁp + D’;n)) + (— Df, + Dt - Af;)
A
x(es! (D, + D)) | FFeHEH (7.33)
T

KL = / [(—= DL, +DL,) (e Dk + Ab) + el (Dh, + D, — ab))|
Ak

X FyF Hy Hydz (7.34)
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T
Kk = / [(= D, + D) (=" 0b, + D) |FoFetiHdz (7.35)
Ak
kts __ k k kd 36
M = [ DFF H H dz (7.36)
Ak

p* is the mass density of the kth layer and I is the (3 x 3) identity ma-
trix. The nuclei for the boundary conditions on edge I'; are (Carrera and
Brischetto 2007b):

iy = [ [147(Q4, )+ 43) + 04,0, + Dl — 4))
Ax
+ 147 (@4, (DY + AL + @4, (DY, + D, — AD)) |FyFo i Hfdz
(1.37)

s = f [ 187 (&7 (DL, + D) + 1ip (&7 (DL, + D)) |FoFc HE Hbd:

Ak
(7.38)
i = [ [1 (7 + 4%) + &7 D, + DL - 4))]
Ay
x FyF HyH}d:z (7.39)
i [ (1 (et ) e
Ak

The geometrical matrices and those necessary to perform integration by parts
depend on the k layer for the case of a shell geometry, since they con-
tain the parametric coefficients. They do not depend on the layer k£ for the
plate geometry.

In order to write the explicit form of the nuclei in Equations (7.32)—(7.36),
the following integrals in the z thickness-direction are defined:

c k
Jkr.v Jkrs Jkrs Jkrs Jer kax _ F.F lHk Hk ié ﬂ Hka dz
sda oI s daypr Jgras Yap = b s gy ﬁsH C gk e B
Ag B “
: IF HY Hj
Jkr;.v7 Jkr:x’ Jkr;x’ Jkr:s’ Jk'[:s,]kr:s) :/ TF (1’ Hk, Hk, 7(1’ i’ Hka>dZ
( o I s g Jap Pyl w0 gk g e

Ax
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dF,  HY Hj
kts. gkts. gkts: krs kts. kts-\ __ S k k o B k gk
(RN AN N )_/ 52 (l,Ha,Hﬁ,H—g,ﬁ,HaHﬁ>dz
Ay

(Jkr;.\';’ JCI:T:X:’ Jgf;ss’ ‘]01171; , Jé;;&’ ]akézsz)

oF; 0F, HE HE
_ ‘(I,H;‘,H" A, Ty H)dz (7.41)

0z 0z H"’H"’
Ak

By developing the matrix products in Equations (7.32)—(7.36) and employ-
ing a Navier-type closed-form solution (Carrera and Brischetto 2007b), the
explicit algebraic form of the nuclei can be obtained.

The fundamental nucleus K*** of dimension (3 x 3) is:

3 5 1 1
KLt = Obsaly + g O = I3 = I+ g i) + Ol e + O
o
Ky, = 17 B(Q1 + Q)

1
k k kt.s = k k 7k — k kts = k rkts -
Kl = QSS(Jﬂ” - —Jﬁ/’; ) ofs 5™ a — 2 Qh/fea - 0/ e
o

w‘_
™

K& = T aB(0h, + 0f) (7.42)
Y S- < (T:5 TSs: 1 Ts Ts s
KLI:;;Z = Qfmjo]:f;“ + TQfM - JaA T Jo]: T+ 7";{/;3 + szjolf/ﬁ/3 + Q()()J;;{/ra ’
Ry Ry
_ | B =
R O cf;,;ﬁ) — QL™ B o Qb Il — e Oh
/5 B o
1 1
k kes: - ks = k ke s b kg k ks 5
Koy = QSS‘[ﬁ” — 0% =7 % Jﬁ/roi 13 a — = 0 Jg/e@ — — 01, " a
RY RY R}

_ 1 1 _
K, = Ol (1"” B - *ch/’éﬂ) = 05/ B - ﬁQan;;ﬂ — 2 0/ B,
o

1 ;
s Ts Ts k S- kts k ykts.
Kzl:m = stfé‘/a & + Q44J¢f/ﬁ/3 + Q33 aé + *( Qll‘lﬂ/ta + Qlaj,ﬂr

1 1 .
+04 J;”) T 04, + R" (Fszjo]f/T/; + 051, + Qlﬁ3~/cf”:)
B

RERY,
The fundamental nucleus K ﬁfﬁ is of (3 x 1) dimension because ®* is scalar:
k k kt.s k kts k
Ko, = ( Jg s+, 5 els — Jﬁ;oi 15)

kts
Ku<1>2]

B(J’” sek, — Jof;,;e24 e’;zjof’”:) (7.43)
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1 1
Klljfbil = a’e; é;; +B ‘324]1”5 + 33Jk,§s + 75 %1]§U + R—enjk”

Ry B
The fundamental nucleus K "” is of (1 x 3) dimension:
kes = k[ ks k k
Kk = —aels(.]ﬂ” Jﬂ;;R ) + aek, Jhv
[0
K, = =B (4™ = Il ) + Beky i (7.44)
/3
kts aZe kts ﬁZe —e JkTY JItTY 1 ek JkI:—V_
Dupy — 1578 /a 24 a/,s 33 e31/p RE ~ “2la Rk
B
The fundamental nucleus K73 is of (1 x 1) dimension:
Kétqin = g;cia €11 + Ot/ﬂﬂ €22 + €33 Ik/‘;zsz (745)

The fundamental nucleus M"* is of (3 x 3) dimension with only the diagonal
elements being different from zero:

Mkts Mkts Mkrs _ pkjoltcés (746)

uuyy Uuuoo Uuuszz

& = mm /a and B = nm /b, where m and n are the wave numbers in the
in-plane directions, and a and b are the shell dimensions in the o and B
directions, respectively. A Navier-type closed-form solution is obtained via
substitution of the harmonic expressions for the displacements and electric po-
tential and by considering the following material coefficients to be equal to zero:
Q16 = 026 = 036 = Qus = 0 and exs = e14 = e36 = ¢12 = 0. The harmonic
assumptions used for the displacements and the electric potential are:

uli = ZlAfﬁ cos (mrr(x> sin (#) , k=1,N, (7.47)
a

k=3 vk sin(mZ“) cos <¢) t=t,br (748

m,n

#) . r=2N (749

m,n

@’; = Z dsf sin (mzot> sin (?) (7.50)

m,n
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where U, V¥, Wk are the displacement amplitudes and ®* is the electric
potential amplitude; k indicates the layer and V, is the total number of layers. T
is the index for the order of expansion, where ¢ and b indicate the top and bottom
of the layer, respectively, while r indicates the higher orders of expansion until
N = 4. Details on the assembly procedure of the fundamental nuclei and on
the acronyms are given in Sections 7.7 and 7.8, respectively, in analogy with
the plate case dealt with in Sections 6.7 and 6.8.

7.4 RMVT(u, ¥, g,) for the electromechanical
shell case

A first possible extension of the RMVT (Reissner 1984) to electromechanical
problems is that indicated in Equations (2.60) and (6.51) in Chapters 2 and 6,
respectively. In this case, the internal electric work is simply added, as shown
in D’Ottavio and Kroplin (2006), Carrera and Boscolo (2007), and Carrera and
Brischetto (2007b):

/<8€£Gapc + 5€:G(T,1M + 50’:M(6,,G - e,,c)—cSSIT,G’Dpc - 88,{G’Dnc)
%

xdV = 8L, — 8Ly (7.51)

The electrical work is split into in-plane and out-of-plane contributions. This
splitting will be useful for those RMVT extensions in which the transverse
normal electric displacement is a primary variable of the problem. By consid-
ering a laminated shell of N, layers, and the integral on the volume V; of each
k layer as an integral on the in-plane curved domain €2, plus the integral in the
thickness-direction domain Ay, it is possible to write Equation (7.51) as:

N
Z kT k& kT _k k T, k k
//{SepG UpC+8€nG GnM+80nM (enG_enC)

k=1 QA
T T al al
884" Dhe — 088, DicJdudz = 8Lt =y sk, (7.52)
k=1 k=1

where SL’E‘ and 5Lf?n are the external and inertial virtual work at the k-layer level,
respectively. The relative constitutive equations are those obtained in Equa-
tions (2.61)—(2.64), with the components as in the curvilinear reference system
(a, B, z) for the stress, strain, electric displacement, and electric field vectors
given in Equations (2.19) and (2.20); the same constitutive equations have
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already been proposed for the plate case in Equations (6.53)—(6.56), where the
transverse stresses a ,, are a priori modelled “M” and the meaning of coefficients
C was given in Equations (2.65) and (6.87)—(6.102):

ohe=C, o+ € oty +CLECL Y (153)
ehe =CL o+ C oby +Clo 8+ C el (59
Dye = éDpepef;G + éDpa,,aﬁM + éD,,e,,gl;;G + égp&, € (155
Dic = Cp e+ Cp, ahy +Cpe E8q+Cp o Ehg (1.56)

By substituting Equations (7.53)—(7.56), and the geometrical relations
(2.31)—(2.37) in Chapter 2 for shells in the variational statement of Equa-
tion (7.52), and considering a generic k layer (Carrera and Brischetto
2007a,b):

T
k k k A~k k k ‘ Ak .
~/;2 -//; |:((Dp * AP)FY(S”S) (C‘TPGN(D!’ + Ap)Frur + Capg”F'[O'nM,[
k k

T
D}, F, ®} — é ¢ D\ F. q>k> + ((Dﬁp + Df — Aﬁ)Fﬁuf) (F,a’,jMT>

op€p en
r k
+(Foaky,) (04 + D - AbF — €L 0 + ApFa

T
. ~k .
C F anMr + Cs &p Dl;pFTch'; + CE,,EanmFTCD,;) + (D];pFVsq)l;)

€n0n

Ak Ak
x (chEP(D; + A Foul + €, Froyy, — CD ¢, D, Fe @ CD & DL, cbk)
k k k k k k
+<Denﬂsq>s> (Cm (DY + AY)F.ut -|—CD0 FanMr—CDE D!, F. @}

—CD o L o CDk)}ko dz =8L* —§L!

m

(7.57)

The CUF (Carrera 1995) for the 2D approximation of shells, as presented
in the previous sections, has already been introduced. In Equation (7.57),
in order to obtain a strong form of the differential equations on domain €2
and the relative boundary conditions on edge [';, integration by parts is used
(see Equation (7.28) and the matrices in Equation (7.29)), which allows one to
move the differential operator from the infinitesimal variation of the generic
variable 8a* to the finite quantity a* (Carrera 1995). The governing equations
and the boundary conditions have the same form as the plate case discussed
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in Section 6.4, though the meaning of the fundamental nuclei changes. As
discussed in Carrera and Boscolo (2007) and Carrera and Brischetto (2007b),
the governing equations state:

dul KU KT o, KL O = gl M
sof i KN w4+ K\rol, +KES@i=0 (7.58)

ns

SCDI; KIEDTI: ‘E+K]g(; nMr+K]<}>T<i\> CI)k =0

where METS is the inertial contribution in the form of the fundamental nucleus,

u® is the vector of the degrees of freedom for the displacements, ®* is the
vector of the degrees of freedom for the electric potential, ‘71;, w7 1s the vector
of the degrees of freedom for the transverse stresses, and ui is the second
temporal derivative of u*. The array p*_ indicates the variationally consistent
mechanical loading for the case of the sensor configuration; in the case of the
actuator configuration, the electric potential is applied directly to vector CI>’§.
Along with these governing equations, the following boundary conditions on
edge I'; of the in-plane integration domain €2; hold:

Hkrs u 4 Hkrs r;Mr 4 Hf{g q)k Hkrs —k + Hkrs _5\1Mr 4 Hkrs (Dk

nguv ut + Hkﬂ nMr + ngqi (Dk H/(cbruv —k + l-[krr _ﬁMT + l-[krr ch
(7.59)

By comparing Equation (7.57), after the integration by parts (see Equation
(7.28)), to Equations (7.58) and (7.59), the fundamental nuclei can be obtained:

T Ak 5
Ak
T/ k N4
ity = [[(= 2+ 1) (€h) + (= 2l + 21 - 1) JrFent e
Ax
(7.61)

T
kts k k a k kprk
Kiy = / [<_ Dp-l—Ap) ( C, e Db, — € ”Dm)]FSFTHaHﬁdz (7.62)
Ag
os ! Ak ! !
Kk = / (D, + Db = al) = (€0, ) (D + L) |FoFeHEHEdz — (7.63)
Ay
Kk = / |- .. [Pt (7.64)

Ag
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Kkt = / €2, DY, + € g, DY |FoF b (7.65)

A

Kb = / [( -pien .+ Dﬁ,,Té';”fp) (Df, + Af,)]FXFTH(ngdz (7.66)

A
. A~k ~ k
K = / [ o A D];nTCDno,,] FyF.H,H}d: (7.67)
A
KL —/[—D" T(—é" Dt — ¢t D")+Dk T(—ék Dt
P — ep D,&, T ep D,&, “en en D&, ep
Ay
e D) | FeHEHdz (7.68)

The fundamental nucleus for the inertial matrix M™* is the same one that
was given for the PVD case in Equation (7.36). The nuclei for the boundary
conditions on edge I'; are (Carrera and Brischetto 2007b):

kt kT 2 k k kprk
e = f [187¢; . (D4 + Ab) | PPt fa (7.69)
Ax
kes [ qxT pok kT kprk
ne = | (18 C, , + 18, |FF H Hfdz (7.70)
A

(TI,

. T A~k . A~k
= [0t Jrtie om

Ay

g, = / —prr(é;pgp(Dﬁ +A§',))]FYFTH§H,§dz (1.72)
Ax )

Mg, = f _I’ZPT@’EPU/,]FSFTHL‘H};dz (7.73)
Ag

i = [ [17 (= €56,y = Coe DY) [Ptttz 0120
A

The geometrical matrices and those for the integration by parts depend on
the k layer, in the case of shells, because of the parametric coefficients and radii
of curvature.

In order to write the nuclei in Equations (7.60)—(7.68) in explicit form,
the integrals in the z thickness direction are defined as in Equations (7.41); by
developing the matrix products in Equations (7.60)—(7.68) and employing a
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Navier-type closed-form solution (Carrera and Brischetto 2007b), the explicit
algebraic form of the nuclei can be obtained.
The fundamental nucleus KX of (3 x 3) dimension is:

kts __ —2 kts Ak krv k
Ky, =aJg,Cp e,,11+:3 0/Coc,33

kts __ gkts ~
KUM[g =J (C(r,,sp]2 + C(r,,e,,33)a13

A 1 A
k k k kts = Ak
Kul:f; = Jﬂ;oxt Capepll - F‘] ”acapepn
B
k k Ak Ak ~a
KMIZ; =J ”(Ca €p21 + Capep33)a13
k kts Ak
Ko, = BRIGTECY o + & T55CH s (1.75)
1 1
k k k k
Kuzii = R —J UIBCJ,,G,,ZI Rk —J macope,,
o B
Kkts _ 1 ]krs— Ak _ L]krs— Ak
uuzr Rk Bla%Co,e,11 Rg op€p21
Kkﬂ _ 1 ]krslg 1 ]krsﬂ
uuz Ra Ul’éﬂlz Rﬂ /B a,,e,,22
Kk'm _ 1 Jkrvék Jkﬂ C C 1 Jker
uuzz sz Bla~ope,ll + RkRk ( opepl 2t a,,e,,2])+ a/B~o,€,22
« /3
Nucleus KX of (3 x 3) dimension is:
1
kts k kts, k k k
KM(‘L;IYI = Rk Jﬂﬂ + Jaﬁ? ’ Ku;fa = O’ Ku(Tn: = a‘lﬁﬂcapzr,,w
1
Kllf;;] =0 Kli{;; = _R_Jk'” _'_J/»'L's , Kf;; — ﬂjktvcﬁ/’”ﬂ
B
(7.76)
Ky =al™, Kz = BJ5
KL];(IT:; Jk” + ﬁ‘]gméc{i 0,13 + _Jk”CUPUnZS
o 13
Nucleus KX of (3 x 1) dimension is:
kts = 7k k k
Ko, =0l C e Ky, = BI™Coen
1 A A
k kt-s Ak k k
Ko, = =g ds Coenn — R—Ja”C%g,m (7.77)
o B
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Nucleus K™ of (3 x 3) dimension is:

1
kts _ _ _~  gkts kt.s kts kts __ = ykts
Kau” - Rk B +Jaﬁ ’ Ko’ulz - 0’ Ko’u13 - a‘]ﬂ
o
Kkrs _0 Kkts _ _LJkTS_’_JkT:S Kkl’s — BJ]{'L’S
ouy ouxn T Rk o af uoy o
B
(7.78)
kts __ = ykts Ak
Ko, = 0‘]5 Censpm
Kkt — B]krsék Kkts — kt.s L kzs Ak _ L]krsék
ouy o €,€p32° ouszz — Yap Rk B €,€,31 Rk o €,€,32
o B
Nucleus KX of (3 x 3) dimension is:
kts __ kts Ak kts __ kts
Kao” — " Yap Cenanll Kamz =0, KO'G|3 =0
kts __ kts kts Ak kts
Kthl =0 Kfmzz — “Yap Ce,,anzz Kozm =0 (7.79)
kts __ kts kts kts Ak
Ka(m =0 K(T(732 =0 KUO‘}g — " Yap Ce,la,,33
Nucleus K% of (3 x 1) dimension is:
kts __ - rkts Ak kts __ g rkts Ak kts kt.s Ak
K¢7<I>|] —“Jﬁ Ce,,é',,ll K¢7<I>2] = BJ, Ceng,,zz Ka<1>3, = Jaﬂ Ce,,:‘:ﬂfil
(7.80)
Nucleus K4 of (1 x 3) dimension is:
kts _ = rkts. Ak kts A rkts. Ak
K@un = -« B CD,,e,,ll Kﬂbulz - _IB‘Ia CD,,E,,IZ
kts iJk”zék + L‘]k”:ék (7.81)
duy;; — Rk B Dpepll kYo Dpepl2 .
o Rﬂ

Nucleus K4 of (1 x 3) dimension is:

kts __ = ykts Ak
KCI)O'“ - aJ,B CD/:”/; 11

kts __ g rkts Ak kts kts. Ak
KCDO'IZ - ﬂ‘[a CD,I(T,122 KCI>(713 - szﬂ C'D,,(T,,l3

(7.82)
Nucleus K47 of (1 x 1) dimension is:
kts kt.s: Ak =2 rkts Ak 32 rkts Ak
Koo, = —Jog Cpen — @ J3aCp,e,11 = P JajpCp,e,m  (7:83)

The fundamental nucleus MX%* is of (3 x 3) dimension with the diagonal
elements as already given in Equation (7.46).
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@ = mm/a and B = nm /b, where m and n are the wave numbers in the in-
plane directions and a and b are the shell dimensions in the & and j directions,
respectively. The explicit form of coefficients C and their components are given
in Equations (2.65) and (6.87)—(6.102), respectively.

A Navier-type closed-form solution is obtained via substitution of the har-
monic expressions for the displacements, electric potential, and transverse
stresses and by considering the following material coefficients to be equal to
Z€10: Q]6 = Q26 = Q36 = Q45 =0 and €)5 = €14 = €36 = €12 = 0. The har-
monic assumptions used for the displacements, the electric potential, and the
transverse stresses are:

W*, ok )= Z(ﬁf 6% )cos (mna) sin (#) , k=1,N,

m,n a
(7.84)
(vf, a;,‘n) = mzn: (Vf, 6§”)sin <m;1a> cos (?) , Tt=t,b,r
(7.85)
NP s . /mmaN . [(nmp
(wf, ozsz, <I>II‘) = ; (Wf, ozsz, CDII‘)sm( P ) sin (T) , r=2N
(7.86)

where U, V¥, W¥ are the displacement amplitudes, ®* is the electric potential
amplitude, and 6% _, 6;,‘”, 6L _ are the transverse stress amplitudes; k indicates
the layer and N, is the total number of layers. 7 is the index for the order of
expansion, where ¢ and b indicate the top and bottom of the layer, respectively,
while r indicates the higher orders of expansion until N = 4. Details on the
assembling procedure of the fundamental nuclei and on the acronyms are given
in Sections 7.7 and 7.8, respectively, as already mentioned for the plate case in
Sections 6.7 and 6.8.

7.5 RMVT(u, ®, D,) for the electromechanical
shell case
The second possible extension of the RMVT (Reissner 1984) to electrome-

chanical problems is that indicated in Equations (2.74) and (6.103) of Chapters
2 and 6, respectively. In this case, the internal electrical work is simply added
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and the transverse normal electric displacement is modeled via the Lagrange
multiplier (see Carrera et al. 2010a,b; 2008):

/ (3€h60 ¢ + 8€l601c — 8E6D e — 8€1 D — 5Dl (Eni — E40))dV
Vv

=6L,— 8L, (7.87)

where the subscript M means a priori modeled variable. Considering a laminate
of N; layers, and the integral on the volume V;, of each layer £ as an integral on
the in-plane domain €2, plus the integral in the thickness-direction domain Ay,
it is possible to write Equation (7.87) as:

Ny

k T _k kT _k k Tk k Tk
Z //!86176 o'[7C_|_6€nG UnC_(SSpG DpC_(sgnG DnM
=l A

T
— 8Dy (Eng — 5ﬁc)} (7.88)
N] N[
dQdz =Y " SLE - " SLY,
k=1 k=1

where 8L and §L% are the external and inertial virtual work at the k-layer
level, respectively. The relative constitutive equations are those obtained in
Equations (2.75)—(2.78) with components in the curvilinear reference system
(e, B,z) for the stress, strain, electric displacement, and electric field vectors
given in Equations (2.19) and (2.20); the same constitutive equations were
proposed for the plate case in Equations (6.105)—(6.108) where the transverse
normal electric displacement D, is a priori modeled “M” and the meaning
of coefficients C was given in Equations (2.79) and (6.139)—(6.154) (Carrera
et al. 2010a,b):

kK _ @k k Ak k Ak k Ak k

apC - CO',,GI,G[JG + Co*penenG + Capé',,ng + CJ,,D,,DnM (789)
kK _ @k k Ak k Ak k Ak k

Oypc = Ca,lepepG + Ccr,,e,,enG + Ca,,gpng + CG,ID,,DnM (7.90)

, =k Y =k =k
Dy =Cp,. €h6+Cp . €n6+Cp ¢ Erg +Cp p, Dyy (191
=k =~k =k =k
Ec=Cee €6+ Ce €16+ Ces, €6+ Cep Dy (192)
By substituting Equations (7.89)—(7.92), and the geometrical relations

(2.31)—(2.37) of Chapter 2 for shells, in the variational statement of Equa-
tion (7.88), and considering a generic k layer (Carrera et al. 2010a,b):
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T
k k k ~k k k k ~k k k
/Q k L k [((Dp + Ap)FstSux> (C%(DP +ANDFui +C, (D), + D,

T
. ~ k . — k .
~ Ao = e DRk 4 Clp Dl ) + (0, + DL — Aot

oy ep

X (Ck e,,(D/;: + A,;;)Fru,; + C];,G,, (Dlr(lp + D/;z - Afl)F‘[ u/; - C];ngp Dk F (DI;
—% T k
+C,.p, FT'D£MT) + <D];pF55q)f) <CD1)G,J(D/;' + AI;)F,u/; + CD/IEH(D{(’P (7.93)

k
+ Dnz ep

T
— AYF uk — C’;pg" Dt F. @k + egppu FT'DﬁMT> + (D’;nFSM)f)
! Ak Ak
x (FfD/ncMr) - (FY8D2MS> <_ Dc]anf(D]'; - CE,,e,](D];) + AI;I)Ffu]'; - CS,,e,I(Dﬁp

+ Dt — AYF suk + Cﬁngp D! F.®! - Chp, FmﬁM,ﬂko dz =8L* —sLY,
The CUF (Carrera 1995), as presented in the previous sections for the 2D
approximation of shells, has already been introduced. In order to obtain a
strong form of the differential equations on domain £2; and the relative bound-
ary conditions on edge I'; in Equation (7.93), integration by parts is used
(see Equation (7.28) and the matrices in Equation (7.29)), and this allows
one to move the differential operator from the infinitesimal variation of the
generic variable §a* to the finite quantity a* (Carrera 1995). The govern-
ing equations and the boundary conditions have the same form as the plate
case discussed in Section 6.5, though, the meaning of the fundamental nu-
clei changes. As discussed in Carrera et al. (2010a,b; 2008), the governing
equations state:

k. kts k kts k kts sk __ k kts -k
5”3“ Kuu ur+KuD Dth+Ku¢ (I)r_ pus_M u;

uu
8Dy, : K ut+ K Dy, + K @8 = 0 (7.94)
b0k KU w4 K Dl + KU 0= 0

where M is the inertial contribution in the form of the fundamental nucleus,
u* is the vector of the degrees of freedom for the displacements, ®* is the vector
of the degrees of freedom for the electric potential, D, is the vector of the
degrees of freedom for the transverse normal electric displacement, and it* is
the second temporal derivative of u*. The array p*_ indicates the variationally
consistent mechanical loading for the case of a sensor application; for the
actuator case, the electric voltage is applied directly to the vector <I>’§. Along
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with these governing equations, the following boundary conditions on edge I'x
of the in-plane integration domain €2; hold:

kts _ k kts k kts ;wk __ kts =k kts A8k kts Fk

Huu u; + HuD DnMr + HuCD q)r - Huu u; + HuD DnMr + Hu<1> cbr

kts  k kts k kts qk _ yrkts Sk kts Ak kts Rk

My, ur + Mop Dy + Mo O = M, o7 + Mgp D,y + Mgy 7
(7.95)

By comparing Equation (7.93), after the integration by parts (see Equation
(7.28)), to Equations (7.94) and (7.95), the fundamental nuclei can be obtained:

K, = fA (D% + 47 (€5, (DL + A4 + € (DL, + Db, — Ab)
k

k

ouep

k k Ak k
(DP + Al’) + Canfn (Dﬂ[)

+ (D), — Dl — AL (C + D}, — Ab)]
x FFyHyHj; dz (7.96)
Ki = [ D)+ arelp + 0l - bl - a7 CL |
k
x F.F;HyH} dz (7.97)
KL = /A (D% + A (€5 ¢, D)+ (DY, = DI, — AL (€, ¢ DY)
k
x FFyH,H} dz (7.98)

Kgus = / I:C];,'ne,, (DIIC? + A];J) + C];,',,e,, (Dﬁp + Dl;:: - Aﬁ)]
Ax

x FrF.HyHj dz (7.99)
Kk —/ [C"’ ]F FyHAHE dz (7.100)
DD — Dy TEsHattp .
Ag
Kk = / [D’;n — C’;’gp D’;p]F,FSHng dz (7.101)
Ax

_k — k 2
KX = /A [ —( Dﬁp)T(CDI,e,, (D), + AL + Co,., (D), + D,. — A,ﬁ))]
k

x F.F,HyHj dz (7.102)

Kk = /A [(_D’;p)Tc'ng” +(Dfn)T]FTFSH‘fH§ dz (7.103)
k

KL =/A [(_Dgp)r(_c";pgp D’;p)]F,FvH(ng dz (7.104)
k
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The fundamental nucleus for the inertial matrix M™* is the one that was given
for the PVD case in Equation (7.36). The nuclei for the boundary conditions
on edge I'; are (Carrera et al. 2010a,b; 2008):

np

= [ 7@, )+ A+ 0l Dl - A+ 1
Ax

x(Ch,., (Dh+Ab)+C, . (Dh, + Db, — AL |FoFoH Y dz

(7.105)
n = /; 117 C, p, + 1 C‘I;nD"]F,FsHlng dz (7.106)
L
s [k ~k ~k
mey — /A 147 (=C} ., DL+ I (=€ D’;p)]F,FSHo’ng dz
k
(7.107)
i = [ [ €., 0+ 4+ €5, Dl + D~ ab))]
L
X F.FyHyHj dz (7.108)
mkes — /A 17 C'kDpDn]FTFYH(ng dz (7.109)
ng; = fA 1] (=€l e, DY) |FeF i) dz (7.110)
i

In order to write the explicit form of the nuclei in Equations (7.96)—(7.104),
the integrals in the z thickness direction are defined, as in Equations (7.41). The
explicit algebraic form of the nuclei can be obtained by developing the matrix
products in Equations (7.96)—(7.104) and employing a Navier-type closed form
solution (Carrera et al. 2010a,b; 2008). The fundamental nucleus K ’,jff of
(3 x 3) dimension is:

Kiv =Gt GRS+ CE G BRI+ CE T+ CE

787881 U,)e,,lla Op€p o,€,11 o,€,11

1 kts 1 kt.s 1 kts.
X <W Bla ~ R_g‘]ﬁ - R_Z;Jﬁ )

kts __ .~k ~k — n 7kTs
K - (C(r,)e,,ll + Ca,,e,,33)a13‘l

uuyy

kts __ ~k _ rkts. ~k — rkt.s ~k _ 1 kts
Ky = =Cope130/p "+ Co11@/g ™ = Co o n@ o Jpja
o
_ 1 _ 1
k = kts k = kts
- a,,epllaﬁ‘]ﬂ/a - CO'FGPIZQ_J
o

k
Ry
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K = (Cﬁpe,,n + Cﬁpep%)aﬁjk”

1227531

B 1 1 1
k _ Ak k k k kt.s.
Kl = Ungnzz(—REQJa;g - R )
+Cy o B Iafs + CU 3@ JIg (7.111)

kts __ A~ kt.s kn kts. kts
Kmlzs - Cﬂnén22 ('B‘I - ﬁ a/ﬁ) o,,e,,%lBJ o,,e,,lZlB J
kﬂ
61,2213 ot/ﬂ

kts k kt.s k ~ 1 kﬂ k 1 kts
Koy = ~C, e 1305 Ca,,epnO‘Rk Bla C(r,,s,,12a Rk J

k — 7k k
+Cd”€n”(0l./ﬂw —ot—./ﬂ/roj)
~ 1
k k kTs. Jk k
K“’LYZ - p€n 23ﬂ‘] = +Cae 22<ﬂ‘/ot”_ _'BRﬂ a;é) C op€p22

k k
ﬂ 01/1;3v (TFGFIZﬂ_‘] "

Jkrs

k k k k k
Ky _C0533J i+ G, S ot/ﬂ Uella J,s/r()i"'c

uusz opepl2 R kRk

_ 1 -
k k k k
+Co i =380t Ca,,e,,ZZR 5 Jajp o

kts. kt.s
sz AT I
B

0,€p31 Rk

On€p

1 ‘ s
+Coenra™ + 10
B
Nucleus K*%$ of (3 x 1) dimension is:

1
k kt.s k
Kugn Ca & 11(0[],3 - Rk Jﬁ;;)
Kig,, = C_ﬁnspzl[ B + o R ;;,;] (7.112)

krs

kts __ ~k s
Ku<1>31 = _Cangpn“ Jﬂ/a a,,€ 21ﬁ
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Nucleus K75 of (3 x 1) dimension is:

kes Ak = ke ks Ak gk
K.p, = _Csnepllafﬂ” K,p, = _C&,e,,IZIB‘]a”
(7.113)
k Ak kes _ Ak k Ak k
ugﬂ = _Co,,D,,Sl‘]a/; F - Csnepuﬁfﬂw - CE,,eplzﬁJam
o B
Nucleus K4 of (1 x 3) dimension is:
Kkm _ Cvk O_[Jk”: _ &ijm
Quyp T Y Dyeyll B Rk B/
o
- _ _ 1
kes k ks ke
K, = Ch | BIE™ — ﬁR—EJJ,;] (7.114)
K, = Cp,e1@ s + Cp,e 2B Iy
Nucleus K73 of (1 x 1) dimension is:
ks Ak =2 rkvs _ Ak 52 ks
Kq;q;“ = _CD,,g,)n“ ‘Iﬂ/Toi - Cngpzzﬂ Ja/r,; (7.115)
Nucleus K& of (1 x 1) dimension is:
K&s, =i (7.116)
Nucleus K% of (1 x 3) dimension is:
kes Ak o ke kes Ak 3k
Kpu, = _C&,e,,lla‘,,f}”’ Kp,), = _Cg,,e,,uﬂja”
- - 1 - 1
k k kes. k k k k
Kpn,==Ch o i3us™ + Ch o nimrIp7 4 Ch o o Ja™ (1117
RE RY
Nucleus K43 of (1 x 1) dimension is:
K5, = Ji* (7.118)
Nucleus K55 of (1 x 1) dimension is:
K53, =Cépndas’ (7.119)

The fundamental nucleus MXZ* is of (3 x 3) dimension with the diagonal
elements as already given in Equation (7.46).
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@ = mm/a and B = nm /b, where m and n are the wave numbers in the in-
plane directions and a and b are the shell dimensions in the & and f directions,
respectively. The explicit form of coefficients C and their components are given
in Equations (2.79) and (6.139)—(6.154), respectively.

A Navier-type closed-form solution is obtained via substitution of
the harmonic expressions for the displacements, electric potential, and
transverse normal electric displacement and by considering the follow-
ing material coefficients to be equal to zero: Q16 = Q2 = Q36 = Q45 =0
and eps = ej4 = e3¢ = €12 = 0. The harmonic assumptions used for the
displacements, the electric potential, and the transverse normal electric dis-
placement are:

k Ak mna) . (nnp
= U —, k=1,N 7.120
u;y Z 7 cos ( P sin < b > i ( )

m,n

vf = Z Vf sin (m;roe) cos (#) , T=t,b,r (7.121)
m,n

N A A . mimwo
(wh, @4, Dhy = 3 (WE, &%, ijr)sm<
m,n

(7.122)

where U¥, V¥, W are the displacement amplitudes; ®* indicates potential
amplitude and ﬁft is the transverse normal electric displacement amplitude;
k indicates the layer and N; is the total number of layers. 7 is the index for
the order of expansion, where ¢ and b indicate the top and bottom of the layer,
respectively, while r indicates the higher orders of expansion until N = 4.
Details on the assembling procedure of the fundamental nuclei and on the
acronyms are given in Sections 7.7 and 7.8, respectively, as already discussed
for the plate case in Sections 6.7 and 6.8.

7.6 RMVT(u, ®,0,, D,) for the
electromechanical shell case

The third possible extension of the RMVT (Reissner 1984) to electrome-
chanical problems is that indicated in Equations (2.83) and (6.155) of
Chapters 2 and 6, respectively. In this last case, the internal electrical work
has been considered and two Lagrange multipliers have been added for the
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transverse stress components and the transverse normal electric displacement
(Carrera and Brischetto 2007a; Carrera et al. 2008):

/v ((SGIT,GG,,C + 8€! oo + 0] (€06 — €4c) — 88§G’Dpc —S8E! D,y
8Dy (EnG — £))dV = 6L, — 8Ly, (7.123)

where the subscript M indicates the two a priori modeled variables. By con-
sidering a laminated shell of N, layers, and the integral on the volume V; of
each layer k as an integral on the in-plane domain €2, plus the integral in the
thickness-direction domain Ay, it is possible to write Equation (7.123) as:

Zf/ (SepG o C+8€nG ohy 80ty (enG ko) — 88 D];;c

k=1 U A
N, N;
—s&t Dk, — oDk, (& - 5’;C)}dszkdz = sLk -3 5L,
(7.124)

where §L¥ and §L¥, are the external and inertial virtual work at the k-layer level,
respectively. The relative constitutive equations are those obtained in Equations
(2.84)—(2.87) with the components in the curvilinear reference system («,f3,2)
for the stress, strain, electric displacement, and electric field vectors given in
Equations (2.19) and (2.20); the same constitutive equations were proposed
for the plate case in Equations (6.157)—(6.160), where the transverse normal
electric displacement D,, and the transverse stresses o, were a priori modeled
“M” and the meaning of the coefficients C was given in Equations (2.88) and
(6.207)—(6.222) (Carrera and Brischetto 2007a; Carrera et al. 2008):

P Upfp

= Cenep b+ Coohy +Cop £+ CénDnDﬁM (7.126)

oy Tmmt ch &€ D”D,ﬁM (7.125)
Dje = CD e €hi + CD on Tt + CD g, Ehg + CkD,,Dn’D];M (7.127)

- ~ ~ ~ k :
Enc = C:E',,e,,el;G + CS,,anaf;M + C£n£pg/;G + C&,DHDI;IM (7.128)

By substituting Equations (7.125)—(7.128), and the geometrical relations
(2.31)—(2.37) in Chapter 2 for shells in the variational statement of
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Equation (7.124), and considering a generic layer k (Carrera and Brischetto
2007a; Carrera et al. 2008):

T
~k c . ~k c
/Q k /A ‘ [((D’; + Aﬁ)FYBuf) (CGPEP(D’; +ADFu +C, , Feoyy,

T
~C, ¢ D, F.0f +C, p F. D) ) <(Dk + Dk — A’,‘;)Fséuf) (F,a,ﬁM,)
. k -
+ (Fsaaf,M ) ((Df;,, +D,, — ADFul —C, (D}, + A})Fu}

T
~¢* F, ok + CE” Dk F ok — Ce,, F. Df,MT> + (Dﬁpﬂé(Dﬁ)

€p0p
( D, (DY + AFout 1+ €, Feoty, — Cp o DY, F 0F + C%,,D,,FTD’;MT)
T T i
+(turoet) (FDly, ) - (FoDhy ) (- DhFet - C, @)+ AFad
_ C‘s’,,a” Foky, + éﬁngp D}, F.®; — Cg o, F DHMT>]ko dz =8LF —§LF,

(7.129)

The CUF (Carrera 1995), as presented in previous sections for the 2D approxi-
mation of shells, has already been introduced. In order to obtain a strong form
of differential equations on the domain €2; and the relative boundary conditions
on edge I'; in Equation (7.129), integration by parts is used (see Equation (7.28)
and the matrices in Equation (7.29)), which allows one to move the differential
operator from the infinitesimal variation of the generic variable 8a* to the finite
quantity a* (Carrera 1995). The governing equations and the boundary con-
ditions have the same form as the plate case discussed in Section 6.6, though
the meaning of the fundamental nuclei changes. As discussed in Carrera and
Brischetto (2007a) and Carrera et al. (2008), the governing equations state:
oul s KL w4 KL ol KU 04 KU Dy = - LT i
S SO O DD S

ns

k. kts kts _k kts k kts k _ (7130)
SCDS‘KCDuu + Koy ohy. + Koy ©; + Kgp Dy, =0
SD];S . K/\'L’.s u + Kkl’_s n’MT + Kk'm cbk km DﬁMT — 0

where M*™ is the inertial contribution in the form of the fundamental nucleus,
u! is the vector of the degrees of freedom for the displacements, ®* is the vector
of the degrees of freedom for the electric potential, D%, is the vector of the
degrees of freedom for the transverse normal electric displacement, 0%, is the

vector of the degrees of freedom for the transverse stress components, and #* is
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the second temporal derivative of u*. The array p*_ indicates the variationally
consistent mechanical loading used for the case of sensor applications; the
electric potential is directly applied in vector ®* for the actuator case. Along
with these governing equations, the following boundary conditions on edge I'x
of the in-plane integration domain €2; hold:

ML a4 Y by L @) 4 5 D,
= 7 &} + 7 6L, + G & + I D,
(7.131)
G, uf + Mgy o)y, + Mg OF + G D)y,
= TG, i} + 0 6, + IG5 ®F + T3 Dy,
By comparing Equation (7.129), after the integration by parts (see Equa-
tion (7.28)), to Equations (7.130) and (7.131), the fundamental nuclei can
be obtained:

kts k kT 7ok k k kprk
K:ts :/[(—Dp—i—Ap) (CJPGP(DP+Ap))]FSF,HaHﬂdz (7.132)

A

krs k kT ~k k k kT
Kua - / [(_Dﬁ + Aﬁ) (Capd,,) + (_DHP + D”Z o A") ]

Ax
x FyFHyHjdz (7.133)
TS [ . ~ k A
Kb = / (D, +A’;)T(—CapgpD’;p)]FsFtHa’fH;,‘dz (7.134)
Ar
¢ [ ~k )
K5 = / (=D}, + A’;)T(CGFD”)]FSFTH;‘Hgdz (7.135)
Ax
Ky = / (D!, + DL, — A) - (€L (DY + A];,)]FyFerHgdz
A
(7.136)
K = / _—Cf,lg”]FvaHjH,é'dz (7.137)
A
K3 =/:Cigp0§,,]FsFrH§H§dz (7.138)
Ax
Kip = / _—Cf”p,,]FnyHﬁHgdz (7.139)
Ax
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Kk = / [ p'¢ pep(Dk + A} )]F FH{H}dz (7.140)
Ay i
TS [ c T #k
KL =/_—D’;p Co, | Fi FeHEHdz (7.141)
Ak
ki = / D, € e, D, | FoFe i (7.142)
Ay
s T ~ T
K'Y = / - D, c p, + D%, ]FSFTH(ngdz (7.143)
Ak
KL = / [Ce (DL + AT [Pt i)z (7.144)
Ap
Ak
K& = /[ s = Che DL, | FoF HEHYdz (7.146)
Ag
KL = / (€50, [ PPttt Hjaz (7.147)

A

The fundamental nucleus for the inertial matrix M™* is the one that was given
for the PVD case in Equation (7.36). The nuclei for the boundary conditions
on edge I'; are (Carrera and Brischetto 2007a; Carrera et al. 2008):

e = / [IkT ., (D) + A )]F F.HyHjdz (7.148)
Ay

mées = / (187 es,., + 1, | FopcHEpba (7.149)
Ar

nts :/[ r'c, e DY, ]FSF,Hgﬂgdz (7.150)
Ak

s - f (17 €% o, | FoFeH b (7.151)

A
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kts
H<I>u

kts
HCD(T

kts
H<I><1>

kts
HdD’D

Ak

g,

Ay

-1’2 ¢ ,,e,,(D" + A‘)]F F.H!Hjd: (7.152)
[k T 2k k ok

r, CDPG”]FSFTHaHﬂdz (7.153)
B - T ~k

—151¢h . D’;I,]FYFIHO’[‘Hgdz (7.154)
If,;TC'épp/,]FstHﬁH};dz (7.155)

In order to write the nuclei in Equations (7.132)—(7.147) in explicit form,
the integrals in the z thickness direction are defined as in Equations (7.41); by
developing the matrix products in Equations (7.132)—(7.147) and employing
a Navier-type closed-form solution (Carrera and Brischetto 2007a; Carrera
et al. 2008), the explicit algebraic form of the nuclei can be obtained. The
fundamental nucleus K*** of (3 x 3) dimension is:

Kk‘rs — —ZJ/»tsclx

uiy Bla™~ ope,

k k
11 + ,3 a;éca,,epﬁ

Kk‘EY — Jk‘L'V(Ck o +Ca . 33)05'3

uurn
1 ~
k kts = A~k
Ku;f% = R J/S/TOj acC

o

opepll

LJkrv =~k
op€pl2
ﬁ

Kkts — Jkrs(ck r et C(7 ¢ 33)@B

127531

k k =2 1k k
Km::z = ,3 Ja/r;;ca €22 +a Jﬁ;a:Capep%

Ko = — kaSBCU,,E,,zl J;‘/’éaCﬁpEp (7.156)
o /3
k kts 5 Ak kts 5 Ak
Ku;jl = ‘]ﬁ/ToAz a,,e,,ll _k'] “a Co,,e,,
"‘ /3
k k kts g~k
KMIE? = R ‘] UIBCU,,EFIZ k Ja/rélgcape,,ZZ
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Kuu33 - sz‘]ﬁ/txca,,e,,
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1
T (Cy ep12 T C, e21) T 2J§/Tgca,,e,,22
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Nucleus KX of (3 x 3) dimension is:

1 ~
k k kts. kts kts = 7k X
K”;fl = _ﬁ ,BU + Jﬂfﬂ ’ Ku;fz =0 ’ Ku;fs - _a]ﬁrscapa,,w
o
1 _ -
k k k kts, k _ k k
K”ff'zsl = O’ Kuézsz = _FJO‘U + Jotﬂ ’ Ku;; - _IB‘]atSCGpa,zB
B
Ko =alg™, Koo = BJ", (7.157)

1 ~ 1 ~
kts __ gkts: kts Ak k k
Kisi =Jop" + 20757 Coous + 7 Ja™C
o

uo33 af 0,0,13 00,23
B

Nucleus K’;Eg of (3 x 1) dimension is:
k k k
Ko, = K, = Ky, =0 (7.158)

Nucleus K75 of (3 x 1) dimension is:

kes = rkrs Ak kes 7 rkes ~k
K., = =aJg"Cop s Kip, = =BJ"Copn (7.159)
1 ~ 1 ~
k ks Sk ks Sk
u;)Szl = ﬁ ﬂmcapDnll + F‘Ia”CJFD,,Zl
o B

Nucleus K*™ of (3 x 3) dimension is:

1
kts __ kts kt.s kts __ kts __ = rkts kts __
KUun - _ﬁ B + ‘]Otﬂ ’ Ktmlz =0, Ktrulz - a‘]ﬂ ’ K(Tuzl =0
o
(7.160)
1 _ ~
k k kt.s k _ k k _ =7k k
KoZiz = _F‘Ia” + Jotﬁ ’ Ku;; - ﬂJa” ’ Ka;;vl = ,Brscéné,ﬁl
B
_ ~ ! 1 ~ 1 ~
k. kts A~k kts kt.s kts A~k kts A~k
KA, = AU Chon KA, = I = e df7 0 = i Cl
o B
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Nucleus KX of (3 x 3) dimension is:

k Jk k k
Kafnvl = ”Ce o, 11 Ka;:z = 0’ Ka;?; =0
Ky =0, KJ» =—J3°CL ) KM =0 (7.161)
ks k k k
Ko, =0, K35t =0, Kiot = —J2Cl s
Nucleus K (k,g of (3 x 1) dimension is:
ks kts Sk k k ks
KUEDY“ = ”Ce,gpll’ K(r.gz[ ﬂ‘] ”CE 5 22 Kafl:;, = O
(7.162)
Nucleus K’m of (3 x 1) dimension is:
Kip, = K33, =0, Kb, = —Jig'Clo s, (7.163)
Nucleus Ky k” of (1 x 3) dimension is:
Koo, = Ka, = Ko, =0 (7.164)

Nucleus K4 of (1 x 3) dimension is:

kts __ = rkts Ak kts __ p rkts Ak kts __
Ko, =aJyg CD,,a,,ll’ Koo, =BJy CD,,GHZZ’ Koy, =0

(7.165)

Nucleus K47 of (1 x 1) dimension is:
Ké,}f“ = __zj,émcp £l - P olf/rgcéps,,zz (7.166)

Nucleus K75 of (1 x 1) dimension is:
KES =00 (7.167)

Nucleus K7y m of (1 x 3) dimension is:

Kgus., = —&J,é‘”éé eplls Kﬁslz = _Bjo]zmégeplz

Kyl = Jk“anepll + — Jk“cgnep12 (7.168)

ﬂ
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Nucleus Kk” of (1 x 3) dimension is:
Kb, = Kpo, = 0. Ky, = i’ Ci 013 (7.169)
Nucleus K453 of (1 x 1) dimension is:
Kb, =1 (7.170)
Nucleus K55 of (1 x 1) dimension is:
K, = Jus Céponi (7.171)

The fundamental nucleus Mﬁff is of (3 x 3) dimension with the diagonal
elements as already given in Equation (7.46).

@ = mm/a and B = nm /b, where m and n are the wave numbers in the in-
plane directions and a and b are the shell dimensions in the & and j directions,
respectively. The explicit form of coefficients C and their components are given
in Equations (2.88) and (6.207)—(6.222), respectively.

A Navier-type closed-form solution is obtained via substitution of the har-
monic expressions for the displacements, transverse stresses, electric potential,
and transverse normal electric displacement and by considering the follow-
ing material coefficients to be equal to zero: Q6 = Q2 = Q36 = Q45 =0
and eps = €14 = e3¢ = €12 = 0. The harmonic assumptions used for the dis-
placements, the electric potential, and the transverse normal electric displace-

ment are:
“) sin<%), k=1,N,

Wk, ok )= Z U*, A@,)cos(

(7.172)
g mmo nmp

W o) =y (V) Gﬁ,,)sm( P )COS< p ) T=1,br

(7.173)

(wh, @4, D ok ) = 3 (WE, &, DE L 6L, )sm(

myroe) ) (nnﬁ)

sin [ — |,

m,n a h
F=2,N (7.174)

where U, V¥, W¥ are the displacement amplitudes, &, are the

&k og 6
ozt T’ zztT
transverse stress amplitudes, ® is the electric potential amplitude, and D¥,

is the transverse normal electric displacement amplitude; k indicates the layer
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and N, is the total number of layers. t is the index for the order of expansion,
where ¢ and b indicate the top and bottom of the layer, respectively, while r
indicates the higher orders of expansion until N = 4. Details on the assembly
procedure of the fundamental nuclei and on the acronyms are given in Sections
7.7 and 7.8, respectively, as already discussed for the plate case in Sections 6.7
and 6.8.

7.7 Assembly procedure for fundamental nuclei

The models proposed in Sections 7.3-7.6 are the same ones that were given
in the previous chapters for the plate case. The PVD for electromechanical
problems, PVD(u, @), given in Section 6.3 for a plate geometry, is extended
in Section 7.3 to shells. It has two primary variables in the governing equa-
tions: the displacement vector u* = (u*, v*, w*) and the electric potential ®*.
Three extensions of the RMVT to electro-mechanical problems are possi-
ble. RMVT(u, @, g,), shown in Section 6.4 for plates, is extended to a shell
geometry in Section 7.4, and three primary variables are considered in the
governing equations: the displacement vector u* = (u*, v*, w*), the electric
potential ®*, and the transverse stress components vector 6, = (0., o4, oL.).
RMVT(u, ®, D,), developed in Section 6.5 for a plate geometry, is extended
to shells in Section 7.5 and has three primary variables: the displacement vector
ut = (uk, vk, w*), the electric potential ®* and the transverse normal electric
displacement ’Dﬁ = (Df). Finally, RMVT(u, ®, 0, D,), shown in Section 6.6
for plates, is given in Section 7.6 for a shell geometry; the four primary vari-
ables are the displacement vector, the electric potential, the transverse normal
electric displacement, and the transverse stress components.

In analogy with the plate case, the choice made in this chapter for a shell
geometry is that the displacement u* = (u*, v*, w*) can be modeled in both
ESL and LW form; the other three variables are always modeled in LW form,
which means that an electromechanical model is defined as ESL or LW, ac-
cording to the choice made for the displacement unknowns. Each modeled
variable, regardless of which multilayer assembly procedure is considered
(ESL or LW), has the same order of expansion in the thickness direction
(from linear N = 1 to fourth order N = 4). A typical Taylor expansion is used
in the case of an ESL assembly procedure, while a combination of Legendre
polynomials is used as thickness functions in the case of an LW assembly
procedure. In the ESL approach, the multilayered shell is considered as one
equivalent shell and the stiffnesses of each embedded layer are simply summed,
while in the LW approach, each embedded layer is considered as an inde-
pendent shell and in the global stiffness matrix each contribution is partially
summed considering the compatibility and/or equilibrium conditions at each
layer interface.
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(PVD)

(zig-zag function,
optional)

(order 1-4)

(PVD)

. Dh__
L (RMVT)
M

Figure 7.10 Acronym scheme for refined and advanced shell models.

N (order 1—4)

Fundamental nuclei K™ can be assembled in ESL or LW form for an
example of a three-layered shell, as indicated in Figure 6.10 for the plate
case: the introduction of the curvature does not add any other effects. The
stiffness is first obtained for each layer by expansion via the indexes v and
s, which consider the order of expansion in the thickness direction, then
the three obtained stiffnesses of each layer can be assembled at a multi-
layer level in ESL form (on the left) by means of a simple summation,
or assembled at a multilayer level in LW form (on the right) by consid-
ering the compatibility conditions for the displacement components at each
layer interface.

Fundamental nuclei KX7, K*% KA7s) K575 KA, KATs ) KA5S, K55S and
K*75 are always assembled in LW form, as indicated on the right of Figure
6.10 for the plate case; in these cases, the partial summation of the stiffness
matrices of each layer, for the multilayer assembly procedure, is done by
imposing continuity of the electric potential and/or the transverse stresses
and/or the transverse normal electric displacement at each layer interface. The
introduction of curvatures in the shell geometry does not involve any other dif-
ficulties in imposing the compatibility and equilibrium conditions at each shell
layer interface.

Fundamental nuclei K*7°, K*% and K*% can be assembled in LW
form, as indicated on the right of Figure 6.10, by imposing the continuity of
the displacements and/or transverse stresses and/or electric potential and/or
transverse normal electric displacement at each layer interface, as already
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o = constant
(B curve)

B = constant
(o curve)

Figure 7.11 Middle surface coordinates.

seen for the plate case. They can also be assembled in a partial ESL form, as
indicated on the left of Figure 6.11 for the plate, where the global stiffness
matrix at a multilayer level is obtained by assembling the displacements in
ESL form (see the rows) and the other variables in LW form (see the columns).
This assembly procedure by rows and columns is the same as that of the plate
case, since the curvature effect is already considered inside the fundamen-
tal nuclei.

Fundamental nuclei K*™*, K5 and KI5 can be assembled in LW form,
as indicated on the right of Figure 6.10 for plates, by imposing the continuity
of the displacements and/or transverse stresses and/or electric potential and/or
transverse normal electric displacement at each layer interface. They can also
be assembled in partial ESL form, as indicated on the right of Figure 6.11
for plates, where the global stiffness matrix at a multilayer level is obtained by
assembling the other variables in LW form (see the rows) and the displacements
in ESL form (see the columns). As for the other cases, the assembly procedure
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by rows and columns is the same as that of the plate case, since the curvature
effect is already considered inside the fundamental nuclei.

Independently of the curvature effect, the general fundamental nucleus K***
has index & for the kth layer, which permits the multilayer assembly procedure
(both ESL and LW approaches), while the indexes t and s permit expansion in
the thickness direction until the considered order N.

7.8 Acronyms for refined and advanced models

The system of acronyms employed for the shell geometry is the same as that
mentioned in Section 6.8 for the plate case, and it is summarized in Figure 7.10.
The refined and advanced electromechanical models obtained in this chapter,
by means of the PVD, and the three extensions of the RMVT can be defined by
means of a system of acronyms that explains the multilayer approach (ESL or
LW) for the displacements (the other variables are always LW), the employed
variational statement (PVD or one of the three possible extensions of RMVT),
and the order of expansion in the thickness direction, which is the same for all
the variables (from linear to fourth order).

The modeled a priori variables are given in parentheses at the end of the
acronym. We have (u, ®) for the PVD in Section 7.3, while the variables are
(u, @, 0,) for the RMVT in Section 7.4. We add (u, ®, D,,) for the RMVT
in Section 7.5 and, finally, the modeled variables are (u, ®, o, D,,) for the
RMVT in Section 7.6.

For example, an ESL model based on the PVD in Section 7.3 with a second
order of expansion in the thickness direction for the modeled variables has the
acronym ED2(u, ®). A LW model, based on the RMVT in Section 7.5, with
a third order of expansion in the thickness direction for the modeled variables
has the acronym LM3(u, ®, D,,).

7.9 Pure mechanical problems as particular cases,
PVD(u) and RMVT(u, 0 ,)

Pure mechanical models for shells can be considered as particular cases of the
electro-mechanical models proposed in this chapter. Pure mechanical refined
models are obtained from the variational statement PVD(u), which is a par-
ticular case of the electromechanical PVD(u, ®) given in Section 7.3 (Carrera
2002; Carrera et al. 2008). Pure mechanical advanced mixed models are ob-
tained from the variational statement RMVT(u, 0 ,), which is a particular case
of the electromechanical RMVT(u, ®, 6,,) shown in Section 7.4 (Brischetto
and Carrera 2010; Carrera and Boscolo 2007; Carrera et al. 2008).
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PVD(u) is obtained from Equation (7.22) simply by discarding the in-
ternal electrical work SEIéT’D’é and has the same form already given in
Equation (6.223). The relative constitutive equations are obtained from Equa-
tions (7.23)—(7.25) simply by discarding the electrical contributions and the
electromechanical coupling, and they have the same form as those given in
Equations (6.224) and (6.225). The only difference with respect to the plate
case described in Section 6.9 are the geometrical relations, which, in the case
of shells, are given in Equations (2.31)—(2.37). As already illustrated in Sec-
tion 7.3, by substituting Equations (6.224)—(6.225) in the variational statement
of Equation (6.223) and referring to the CUF for the 2D approximation
(Carrera 1995), the governing equations and the relative fundamental nuclei
can be obtained after integration by parts. However, the governing equations
can be obtained in a simpler way from Equations (7.58) simply by discarding
the second row and column:

s K= gl - M (.175)

The fundamental nuclei KX and M*™* are the ones that were given in Equations
(7.32) and (7.36), respectively.
RMVT(u, 0,) is obtained from Equation (7.52) simply by discarding the

internal electrical work SSIE;T’DIE and has the same form as that given in
Equation (6.227). The relative constitutive equations are obtained from Equa-
tions (7.53)—(7.56) simply by discarding the electrical contributions and the
electromechanical coupling, and they have the same form as those given in
Equations (6.228) and (6.229). The only difference, with respect to the plate
case described in Section 6.9, are the geometrical relations, which, in the case
of shells, are given in Equations (2.31)—(2.37). As already illustrated in Section
7.5, by substituting Equations (6.228)—(6.229) in the variational statement of
Equation (6.227) and referring to the CUF for the 2D approximation (Carrera
1995), the governing equations and the relative fundamental nuclei can be
obtained after integration by parts. However, the governing equations can be
obtained in a simpler way from Equations (7.58) simply by discarding the third
row and column:

k. kts .k kts _k _ ko kts sk
8”3 * KMLl u'L' + KMO' o.nMr - leS Muu u'[

(7.176)

k. kts  k kts _k _
Sans . Kau u; + Kaa Onpmr = 0

The fundamental nuclei K*7°, KX™, K*7s K**5 and M™ are those already

given in Equations (7.60), (7.61), (7.63), (7.64), and (7.36), respectively.
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7.10 Classical shell theories as particular cases of
unified formulation

Classical shell theories, such as CLT and FSDT, can be obtained as particular
cases of CUF theory, by means of typical penalty techniques, without the
complications shown in Section 3.5.

The starting point is the ED1(u) theory, which is an ESL model where
the three displacement components are linear through the thickness direction
z. The FSDT (see Equations (3.58)—(3.66)) can be obtained by means of a
typical penalty technique, applied to the global stiffness matrix, which allows
one to discard the linear term in the displacement component w. FSDT has
the curvature information inside the relative stiffness matrix. Both ED1(u)
and FSDT(u) have Poisson locking phenomena which can be overcome by
means of reduced elastic coefficients in the constitutive equations, imposing
the condition o, = 0. Further details about these phenomena can be found in
Carrera and Brischetto (2008a,b).

CLT (see Equations (3.58)—(3.68)) can be considered a particular case of
the above FSDT(u) model. In CLT(u) the transverse shear strains y,. and yg.
are zero, therefore in the FSDT(u) model, we can penalize the coefficients
QOss and Q44 in Equations (2.22) and (2.26) in order to impose y,. = yg. = 0.
Poisson locking also appears in CLT(u) as for the FSDT(u) and ED1(u) cases,
and it can be corrected in the same way (Carrera and Brischetto, 2008a,b).

CLT and FSDT, in the case of electromechanical problems for shells, ex-
tended to smart structures, have been discussed in this book in Section 3.5.
Kinematic models have been introduced by considering a LW linear through-
the-thickness electric potential. CLT(u#, ®) and FSDT(u, ®) can also be
obtained from the CUF by considering the variational statement PVD(u, ®) in
Equation (7.22) and the relative governing relations in Equation (7.30). They
can be considered as particular cases of the ED1(u, ®) model, in which the
mechanical part is penalized in the same way as described for the pure me-
chanical case and the electric potential remains LW and linearly expanded
through the thickness-layer direction. The curvatures are introduced directly
into the stiffness matrices by considering the geometrical relations for shells
(see Equations (2.31)—(2.37)). No Poisson locking corrections are considered
for the CLT(u, ®) or FSDT(u, ®) employed in this book.

7.11 Geometry of shells

The main features of the shell geometry are explained in this section in order
to gain a better understanding of the meaning of the metric coefficients H o’f and
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H g, and to justify the degeneration of shell models into plate models as will be
described in Section 7.12.

A thin shell is defined as a 3D body bounded by two closely spaced curved
surfaces, where the distance between the two surfaces must be small in com-
parison to the other dimensions. The middle surface of the shell is the locus of
the points which lie midway between these surfaces. The distance between the
surfaces measured along the normal to the middle surface is the thickness of
the shell at that point (Leissa 1973). Shells may be seen as generalizations of a
flat plate (Leissa 1969); conversely, a flat plate is a special case of a shell with
no curvature. The fundamental equations of the thin shell theory are presented
in this section in order to obtain geometrical relations for multifield prob-
lems. Geometrical relations for plates can be seen as particular cases of those
for shells.

The material is assumed to be linearly elastic and homogeneous, displace-
ments are assumed to be small, and thereby yield linear equations; shear
deformation and rotary inertia effects are neglected, and the thickness is taken
to be small.

The deformation of a thin shell is determined completely by the displace-
ments of its middle surface (Leissa 1973). The equation of the undeformed
middle surface is given, in terms of two independent parameters, « and g, by
the radius vector:

P =7, B) (7.177)

Equation (7.177) determines a space curve on the surface. Such curves are called
B curves and « curves, see Figure 7.11. We can assume that the parameters « and
B always vary within a definite region, and that a one-to-one correspondence
exists between the points in this region and the points on the portion of the
surface of interest:

A T
Fo=—-, Tp=— (7.178)
b op

The vectors 7, and 7 g are tangent to the o and B curves, respectively. Their
length is:

|Fal=A, |Fgl=B (7.179)

Consequently, 7 , /A and 7 5 /B are unit vectors that are tangent to the coordinate
curves.
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The angle between the coordinate curves is x:

Fa T8 _ o (7.180)
A BT '
where
F,a 2 7,,3 2 o 20( X ?ﬂ
— =iy, —=lg, Ip=—]—"- 7.181
A ! B A sin x ( )

I, is the unit vector of the normal to the surface and it is orthogonal to the
vectors i, and ig. The unit vectors iy, ig, and i, are usually called the basic
vectors of the surface (Leissa 1973).

7.11.1 First quadratic form

If we consider two points («, B8) and (¢ + do, B + dp) arbitrarily near to each
other and both lying on the surface, the increment in the vector 7, when moving
from the first point to the second one, is:

dF =7 ydo + 7 gdp (7.182)

By considering Equations (7.179), (7.180), (7.181), and (7.182), we can obtain
the square of the differential of the arc length on the surface:

dr -di = ds®> = A’da”® + 2AB cos x da df + B*dp* (7.183)

The right-hand side of Equation (7.183) is the first quadratic form of the surface.
This form determines the infinitesimal lengths, the angle between the curves,
and the area on the surface: the intrinsic geometry of the surface. However,
it does not determine a surface by itself. The terms A2, AB cos x, and B? are
called first fundamental quantities.

7.11.2 Second quadratic form

The problem of finding the curvature of a curve which lies on the surface can
be solved by considering the second quadratic form of the surface. ¥ = F(s)
is the vectorial equation of a curve on the surface (s is the arc length from a
certain origin). T is the unit vector along the tangent to the curve:

di . da _ dp

_ r

— =7, - 7.184
ds g ds + ’ﬁds ( )

7T =
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According to the Frenet formula (Kreyszig 1966), the derivative of this
vector is:

(7.185)

where 1/p is the curvature of the curve, and N is the unit vector of the principal
normal to the curve.

By omitting the middle passages, described in detail in Leissa (1973), it is
possible to obtain the expression for the second quadratic form:

Ldo* +2Mdadp + NdB* (7.186)

where L, M, and N are the coefficients of the form. The second quadratic form is
thus related to the curvatures of the curves on the surface. The curvatures of the
« curves and the B curves take § = constant and & = constant, respectively:

—=—, —=__ (7.187)

When A, B, R,, and Ry are given, they uniquely determine a surface, except
for the position and orientation in space (Leissa 1973). R, and Ry are the radii
of curvature.

7.11.3 Strain—displacement equations

In order to describe the location of an arbitrary point in the space occupied by
a thin shell, the position vector is defined as:

R(a, B, 2) = Flar, p) + 2, (7.188)
where z measures the distance of the point from the corresponding point on
the middle surface along i, and varies over the thickness —4/ 2q§ z <h/2.
The magnitude of an arbitrary infinitesimal change in the vector R(«, 8, z) is
determined by:

(ds)? =dR -dR = (dr + zdi, + 1,dz)(dr + zdi, + 1,dz) (7.189)

Recalling the orthogonality of the coordinate system, and the chain rule:

di, = —da + —dp (7.190)
o
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one obtains:
(ds)* = gida’ + g2dB* + g3dz* (7.191)
where
g1 =[A(0+z/R). g =[B(+z/RpP, g =1 (7.192)

The quantities g, g2, g3, A, B, Ry, Ry are connected by the Lamb equations
(Vlasov 1951), since the 3D space (the space in which the three independent
variables «, B, z vary) is a Euclidean space.

The fundamental shell element is a differential element bounded by two
surfaces dz apart by a distance z from the middle surface, and four ruled surfaces
whose generators are the normals to the middle surface along the parametric
curves @ = ag, @ = &g +da, B = By, and B = By + dpf (Leissa 1973). The
lengths of the edges of this fundamental element are (see Figure 7.12):

ds®?) = A(1 4 z/Ry)da
(7.193)
ds§’ = B(1+z/Rp)dp

The differential areas of the edge faces of the fundamental element are (see
Figure 7.12):

dAY = A(1 + z/R,)dad:

(7.194)
dA} = B(1+z/Rp)dpd:
while the volume of the fundamental element is:
dv® =[A( + z/RHIB( + z/Rp)ldadpBdz (7.195)

The well-known strain—displacement equations of the 3D theory of elastic-
ity in orthogonal curvilinear coordinates were obtained by Sokolnikoff (1956):

i=1,2,3 (7.196)
V&

€

8(U,~> 1 < 0g Us
Zgi P 80(1(\/5

o 30!,'

sl () o ()]
Yij = 8i 8j ;
R LAV AWV
i, j=1,2,3, i#j (7.197)
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Figure 7.12 Notation and positive directions in shell coordinates.

where the e;, y;;, and U, are the normal strains, shear strains, and displacement
components, respectively, at an arbitrary point. In the shell coordinates, the
indexes 1, 2, and 3 are replaced by «, B, and z, respectively, while the displace-
ments U, U,, and Uj are replaced by u, v, and w, respectively. The coefficients
of the metric tensor are given by Equation (7.192), and thus yield:

1 (13u+ v8A+w) (7.198)
y= ———+ —— + — .
T (14z/R)\Adx  AB 3B R,

1 <u83+18v w) (7.199)
g = —m———| —— _— J— .
P 7 (1+z/Ry)\ABda ' BB ' Ry
o= W (7.200)

9z
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. A(1+z/Ra)i[ u ] B(1+Z/Rﬁ)i|: v ]

Vep = B(1+:z/Rp) LA +2/R)) "~ A +2/R,) daLB(1 +z/Rp)
(7.201)
1 ow 9 u
ve = TR 5e HAGH z/Ra)E[m] (7.202)
1 Jw 0 v
O Tt Rl z/Rﬂ)E[m] (7.203)

The parametric coefficients are given as H, =./gi =1+2z/R,,
Hg = ./g2 =1+z/Rgand H. = ,/g3 = 1 (see Equation (7.192)). Equations
(7.191)—(7.195) explain the meaning of d2; in Equations (7.27), (7.57), (7.93),
and (7.129). The geometrical relations in Equations (2.31)—(2.42) for plates
and shells, in the case of multifield problems, are a consequence of Equations
(7.198)—(7.203).

7.12 Plate models as particular cases of shell
models

The electro-mechanical models proposed in Chapter 6 for the plate case can
also be seen as particular cases of the electro-mechanical shell models given
in the present chapter. The decision to split the plate and shell models into two
different chapters was only taken to facilitate the understanding of the book for
those readers who may be interested in one of the two geometries. However,
it is important to explain that the governing equations are very general, and
the models obtained for the shell geometries contain the plate geometry as a
particular case. PVD(u, ®) for shells in Section 7.3 degenerates into PVD(u, ®)
for plates in Section 6.3, simply by considering the infinite radii of curvature
R, and Rg and the parametric coefficients H, and Hg equal to one. The
same thing happens for the other three RMVT applications. RMVT(u, ®, 0,)
shown in Section 7.4 for shells degenerates into that for plates in Section 6.4.
RMVT(u, ®, D,) in Section 7.5, written for a shell geometry, degenerates
into that of Section 6.5 for the plate case, and, finally, RMVT(u, ®,0,, D,)
in Section 7.6 for a shell degenerates into that written in Section 6.6 for a
plate case.

An example is given here in order to clarify this aspect. Let us consider
the fundamental nucleus K ﬁ;v of the PVD(u, ®) case, although the concept
is valid for each fundamental nucleus and each variational statement (PVD
and RMVT).



PLATE MODELS AS PARTICULAR CASES OF SHELL MODELS 209

The first three components of the fundamental nucleus K*** in Equation
(7.42) written for a spherical shell in the case of PVD(u, ®) are:

1
kt.s, kt.s km:
uu” QSSJ af + FQISCS (_Jﬁ - Jﬁ Jg;é)
+ Q Jkrv =2 + Q rsﬁ
11 ﬂ/a 66Y /B
K, = T aB(Q, + Of) (7.204)
Kum} = Qés (Jém_ Jg}:oi_) - Qlf3‘]§”:&

1
k ~ k
Q11 Tgaa — 01, " a aor
B

If we consider a cylindrical shell panel with radius of curvature RX = oo
(which means 1/ R(’; = 0), the components in Equation (7.204) are simplified
because some terms disappear and some integrals in the thickness direction z
contain the parametric coefficient H* = 1:

Kyu, = lecsjgtzsz + ank” 2+ Q66J1k/33s/§2
K, = T aB(QY, + Qt) (7.205)

1
Kuun Q55 kr v— Q krv = Q zjkrs&_k
Ry

In the case of a plate geometry, the radius of curvature Rg is also infinite
(which also means 1/ R§ = 0), and both the parametric coefficients HD’j and

H é are equal to one. In this way, the components in Equation (7.205) are
further simplified:

Koy = Q550" + 05,77 @ + Qg1 B
Koy, = T aB(Q1, + Qte) (7.206)
Kuu13 — Q/g’sjkf;s& _ Q];3JkrS:(i

The components in Equations (7.206) (obtained from the degeneration of
the shell case in Equations (7.204)) coincide with those obtained in Equations
(6.42) for the plate case procedure.



210 REFINED AND ADVANCED THEORIES FOR SHELLS

References

Ballhause D, D’Ottavio M, Kroplin B, and Carrera E 2005 A unified formulation
to assess multilayered theories for piezoelectric plates. Comput. Struct. 83, 1217—
1235.

Brischetto S 2009 Classical and mixed advanced models for sandwich plates embedding
functionally graded cores. J. Mech. Mater. Struct. 4, 13-33.

Brischetto S and Carrera E 2009 Refined 2D models for the analysis of functionally
graded piezoelectric plates. J. Intell. Mater. Syst. Struct. 20, 1783-1797.

Brischetto S and Carrera E 2010 Advanced mixed theories for bending analysis of
functionally graded plates. Comp. Struct. 88, 1474-1483.

Brischetto S, Carrera E, and Demasi L 2009a Improved bending analysis of sandwich
plates using a zig-zag function. Comp. Struct. 89, 408-415.

Brischetto S, Carrera E, and Demasi L 2009b Free vibration of sandwich plates and
shells by using zig-zag function. Shock Vib. 16, 495-503.

Brischetto S, Carrera E, and Demasi L 2009c Improved response of unsymmetrically
laminated sandwich plates by using zig-zag functions. J. Sandwich Struct. Mater. 11,
257-267.

Carrera E 1995 A class of two-dimensional theories for anisotropic multilayered plates
analysis. Accad Sci. Torino, Mem. Sci. Fis. 19-20, 1-39.

Carrera E 1999a Multilayered shell theories that account for a layer-wise mixed de-
scription. Part I. Governing equations. AIAA J. 37, 1107-1116.

Carrera E 1999b Multilayered shell theories that account for a layer-wise mixed de-
scription. Part II. Numerical evaluations. AIAA J. 37, 1117-1124.

Carrera E 2002 Theories and finite elements for multilayered anisotropic, composite
plates and shells. Arch. Comput. Methods. Eng. 9, 87-140.

Carrera E 2003 Historical review of zig-zag theories for multilayered plates and shells.
Appl. Mech. Rev. 56, 287-309.

Carrera E and Boscolo M 2007 Classical and mixed finite elements for static and dynamic
analysis of piezoelectric plates. Int. J. Numer. Methods Eng. 70, 1135-1181.

Carrera E, Boscolo M, and Robaldo A 2007 Hierarchic multilayered plate elements
for coupled multifield problems of piezoelectric adaptive structures: formulation and
numerical assessment. Arch. Comput. Methods. Eng. 14, 383—430.

Carrera E, Brischetto S, and Cinefra M 2010a Variable kinematics and advanced vari-
ational statements for free vibrations analysis of piezoelectric plates and shells.
Comput. Model. Eng. Sc. 65, 259-341.

Carrera E, Brischetto S, and Nali P 2008 Variational statements and computational
models for multifield problems and multilayered structures. Mech. Adv. Mater. Struct.
15, 182-198.

Carrera E and Brischetto S 2007a Piezoelectric shell theories with “a priori” continuous
transverse electro-mechanical variables. J. Mech. Mater. Struct. 2, 377-398.

Carrera E and Brischetto S 2007b Reissner mixed theorem applied to static analysis of
piezoelectric shells. J. Int. Mater. Syst. Struct. 18, 1083-1107.



REFERENCES 211

Carrera E and Brischetto S 2008a Analysis of thickness locking in classical, refined and
mixed multilayered plate theories. Comp. Struct. 82, 549-562.

Carrera E and Brischetto S 2008b Analysis of thickness locking in classical, refined and
mixed theories for layered shells. Comp. Struct. 85, 83-90.

Carrera E and Brischetto S 2009a A survey with numerical assessment of classical and
refined theories for the analysis of sandwich plates. Appl. Mech. Rev. 62, 1-17.

Carrera E and Brischetto S 2009b A comparison of various kinematic models for
sandwich shell panels with soft core. J. Compos. Mater. 43, 2201-2221.

Carrera E, Nali P, Brischetto S, and Cinefra M 2010b Hierarchic plate and shell theories
with direct evaluation of transverse electric displacement. In Proceedings of 17th
AIAA/ASME/IAHS Adaptive Strutctures Conference.

D’Ottavio M and Kroplin B 2006 An extension of Reissner mixed variational theorem
to piezoelectric laminates. Mech. Adv. Mater. Struct. 13, 139-150.

Hsu T and Wang JT 1970 A theory of laminated cylindrical shells consisting of layers
of orthotropic laminae. AIAA J. 8, 2141-2146.

Hsu T and Wang JT 1971 Rotationally symmetric vibrations of orthotropic layered
cylindrical shells. J. Sound Vib. 16, 473—487.

Ikeda T 1996 Fundamentals of Piezoelectricity. Oxford University Press.

Kreyszig E 1966 Advanced Engineering Mathematics. John Wiley & Sons, Inc., USA.

Leissa AW 1969 Vibration of Plates. NASA SP-160.

Leissa AW 1973 Vibration of Shells. NASA SP-288.

Librescu L and Schmidt R 1988 Refined theories of elastic anisotropic shells accounting
for small strains and moderate rotations. Int. J. Non-linear Mech. 23, 217-229.

Librescu L and Wu EM 1977 A higher-order theory of plate deformation. Part 2:
laminated plates. J. Appl. Mech. 44, 669-676.

Murakami H 1985 Laminated composite plate theory with improved in-plane responses.
In ASME Proceedings of Pressure Vessels & Piping Conference.

Murakami H 1986 Laminated composite plate theory with improved in-plane responses.
J. Appl. Mech. 53, 661-666.

Reddy JN 2004 Mechanics of Laminated Composite Plates and Shells: Theory and
Analysis. CRC Press.

Reissner E 1984 On a certain mixed variational theory and a proposed application. /nz.
J. Numer. Methods Eng. 20, 1366-1368.

Robbins DH Jr. and Reddy JN 1993 Modeling of thick composites using a layer-wise
theory. Int. J. Numer. Methods Eng. 36, 655-677.

Sokolnikoft IS 1956 Mathematical Theory of Elasticity. McGraw-Hill.

Srinivas S 1973 A refined analysis of composite laminates. J. Sound Vib. 30, 495-507.

Vlasov VZ Osnovnye Differentsialnye Uravnemia Obshche Teorii Uprugikh Obolochek
(1951) Pinkl. Mat. Mekh. (English Translation NACA TM-1241, Basic Differential
Equations in General Theory of Elastic Shells, 1951).



Refined and advanced finite
elements for plates

Refined and advanced kinematic descriptions for plate modeling were discussed
in Chapter 6, which was devoted to analytical solutions. In this chapter, which
pertains to refined and advanced plate finite elements, some of those concepts
are presented again in order to avoid dependence on Chapter 6.

In refined and advanced plate models, the electromechanical quantities
along the thickness direction of the plate are assumed according to higher order
expansions. These axiomatic 2D models can have an ESL or a LW kinematic
description. All these kinematic descriptions are included in the framework of
the CUF. According to the CUF, the obtained theories can have an order of
expansion which goes from first- to higher order values, and, depending on
the thickness functions used, a model can be ESL or LW. A FE version of
the MUL?2 in-house academic code has also been developed for the static and
dynamic analysis of smart structures.

8.1 Unified formulation: refined models

We define refined models as those displacement models where higher orders of
expansion in the thickness direction z are assumed for the three displacement
components. These axiomatic 2D models can be seen in ESL form when the lay-
ers included in the multilayer are considered as one equivalent structure, and in

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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LW form when each layer embedded in the multilayer is separately considered
in order to write the expansions in z for each layer k. In the case of electrome-
chanical problems, refined models are those where the extension is made by
considering the electric potential in addition to the displacement vector as the
primary variables. These models are obtained by using the PVD (Carrera 2002)
and its extensions to multifield problems (Carrera et al. 2007; Ikeda 1996).

The CUF is a technique which handles a large variety of plate models in a
unified manner (Carrera 1995). According to the CUF, the governing equations
are written in terms of a few fundamental nuclei which do not formally depend
on the order of expansion N used in the z direction, and on the description of
the variables (LW or ESL) (Demasi 2008a,b). The application of a 2D method
for plates allows one to express the unknown variables as a set of thickness
functions that depend only on the thickness coordinate z, and the corresponding
variable that depends on the in-plane coordinates x and y. The generic variable
f(x, v, z), for instance a displacement, and its variation § f(x, y, z) are written
according to the following general expansion:

Sy, 2)=F @) f(x,y), 8f(x,y,2)=Fy(2)d fo(x,y),
with 7,s =1,...,N (8.1)

where the bold letters denote arrays, (x,y) are the in-plane coordinates, and z the
thickness one. The summing convention is assumed with repeated indexes T and
s. The order of expansion N goes from first- to higher order values. Depending
on the employed thickness functions, a model can be: ESL, when the variable is
assumed for the whole laminate, and a Taylor expansion is employed as thick-
ness functions F(z); LW, when the variable is considered independent in each
layer and a combination of Legendre polynomials is used as thickness functions
F(z). The maximum order of expansion N along the z direction is the fourth.

According to the FE approximation, by employing shape functions N; (&, 1)
(see Section 4.2), which are defined in the natural reference system, the primary
unknowns f_ and the corresponding variations § f; can be expressed in terms
of nodal values @.; and nodal virtual variations § Q ;:

ft(x’ y):Nl(%_’ n)Qri (82)
8f(x,y) =N;(E msQy; (8.3)

Consequently, variables f(x, y, z) and their variations § f(x, y, z) can be ex-
pressed as follows:

f(x,y,2) = Fe(2)Ni(§, ) Q; (8.4)
6fl(-xv ) Z) = Fs(Z)N](S, 77)8 Qy (85)
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wherer,s =1,...,Nandi, j =1,..., N,, with N, indicating the number of
nodes of the element. The employed elements can have four nodes (Q4), eight
nodes (Q8), and nine nodes (Q9) (see Zienkiewicz et al. (2005) and Section
4.2 for further details). The unknowns in the FE are expressed in terms of their
nodal values via the shape functions N; and N;. The latter functions assume unit
value in the nodes and allow one to express the unknowns in the points that are
different from the nodes as linear combinations of the 4, 8, or 9 node values.
The Q4, Q8, and Q9 elements are clearly indicated in Zienkiewicz et al. (2005)
and a natural coordinate system (&, n) is defined in Section 4.2, which goes
from —1 to +1.

8.1.1 ESL theories

The displacement u = (u, v, w) is described according to the ESL description
if the unknowns are the same for the whole plate (Librescu and Wu 1977;
Librescu and Schmidt 1988). The z expansion is obtained via Taylor polyno-
mials, that is:

u= Fouo+ Fiu; +---+ Fyuy = Fru,

v = Fovg+ Fiv; + -+ Fyvy = Fru, (8.6)

w = Fowo + Fiw; + -+ Fywy = Frw;

with 7 =0,1,..., N, and N is the order of expansion that ranges from 1
(linear) to 4:

Fo=2"=1, Fi=z'=z ... Fy=:" (8.7)
Equation (8.6) can be written in vectorial form:

u(x,y,z)=F:(2Du.(x,y), dulx,y,z)= Fy(z)dus(x,y),
with 7,s=1,...,N (8.8)

Considering the FE discretization and introducing the nodal values, Equations
(8.8) become:

u(x, y’Z) = FT(Z)Ni(Sv n)QuTi (89)
Su(x, y,z) = Fs(z)N;(§, ms Q (8.10)
where the nodal displacements are considered in vector Q,; t,s =1,..., N

andi, j=1,...,N,.
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X,y

Figure 8.1 ED4: displacements u, v, and w through the thickness direction z.

The 2D models obtained from Equations (8.6)—(8.10) are denoted by the
acronym EDN, where E indicates that an ESL approach has been employed,
D indicates that the theory is a displacement formulation, and N indicates the
order of expansion in the thickness direction. For example, an ED2 model
has a quadratic expansion in z, an ED4 has a fourth order of expansion in
z, and so on. A typical displacement field is indicated in Figure 8.1 for a
three-layered structure for the case of an ED4 model. Figure 8.2 considers
the displacement and the transverse stresses along the z direction for an ED2
model: the displacements are quadratic in z, therefore the transverse stresses
are linear (no longer constant as in classical theories) but discontinuous at each
interface. Simpler theories can be obtained from EDN models, such as those

Displacements Transverse stresses

Figure 8.2 ED2: displacements and transverse shear stresses through the
thickness direction z.
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which discard the €,. effect; in this case, it is sufficient to impose that the
transverse displacement w is constant in z. Such theories are denoted as EDNd.
The ED1d model coincides with FSDT. CLT is obtained from FSDT via an
opportune penalty technique which imposes an infinite shear correction factor.
It is important to remember that all the EDNd theories which have constant
transverse displacement and zero transverse normal strain €,., and the ED1
model, show the Poisson locking phenomenon in the case of pure mechanical
problems; this can be overcome via plane stress conditions in the constitutive
equations (Carrera and Brischetto 2008a,b).

8.1.2 Murakami zigzag function

The ESL models proposed in the previous section do not consider the typical
zigzag (ZZ) form of displacements in the z direction, which is typical of
multilayered structures with transverse anisotropy (Carrera 2003). A remedy
for this limitation is to introduce an opportune zigzag function in the ESL
displacement model, in order to recover the ZZ form of displacements without
the use of LW models. The latter models have intrinsic ZZ behavior, but are
more computationally expansive than ESL models (Carrera and Brischetto
2009a,b). A possible choice for the zigzag function is the so-called Murakami
zigzag function (MZZF) (Murakami 1985, 1986). MZZF can simply be
added to the displacement model and leads to remarkable improvements in
the solution as it satisfies the typical ZZ form of displacements in multi-
layered structures.
The MZZF Z(z) is defined according to:

Fz=272() = (D¢ (8.11)

with the non-dimensioned layer coordinate ¢ = (2z;)/hi, where z; is the
transverse thickness coordinate and /; is the thickness of the k layer, there-
fore —1 < & < 1. Z(z) has the following properties: it is a piecewise linear
function of the layer coordinates z;; Z(z) has unit amplitude for the whole
layer; and the slope Z'(z) = dZ/dz assumes an opposite sign between two
adjacent layers. Its amplitude is layer thickness independent (Murakami 1986).
The displacement model including MZZF is:

u= Fouop+ Fiuy +---+ Fyuy + Fzuzy = Fou,
v=Fovg+ Fivy + -+ Fyuy + Fzvz = FLu, (8.12)
w = Fowog+ Fiwy +---+ Fywy + Fzwz = Frw,
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Xy

Figure 8.3 Displacement model in the EDZ1 and EDZ3 theories. Inclusion
of MZZF in an ESL model.

witht =0,1,..., (N + 1), and N the order of expansion, which ranges from
1 (linear) to 4:

F():ZOZI, F]:ZIZZ,...,FNZZN, FN_H:FZ:(—I)I{{](
(8.13)

The acronym to indicate such models is EDZN, where E stands for the ESL ap-
proach, D for displacements formulation, and N is the order of expansion in the
z direction. Z indicates that MZZF has been added (Brischetto et al. 2009a,b).
The following remarks can be made: the additional degree of freedom u; has a
displacement meaning; the amplitude u 7 is layer independent since uz has an
intrinsic ESL description; and MZZF can be used for both in-plane and out-of-
plane displacement components (Brischetto et al. 2009b,c). Figure 8.3 clearly
shows the meaning of MZZF and how to add it to displacement components.
The vectorial form in Equation (8.12) can be written by considering the MZZF
F; = Z(z) = (—1)*¢; as the (N + D)th thickness function and by expressing
the displacements through the nodal values:

u(x,y,z) = Fe(2)Ni(§, 1) Qi (8.14)
3u(xv y’Z) = FS(Z)NJ(S’ n)Qus] (815)

where the nodal displacements are considered in vector Q,; t,s =1,...,
(N+Dandi, j=1,...,N,.

Some typical displacements and transverse shear stresses along thickness
z are shown in Figure 8.4 for an EDZ1 model: the inclusion of MZZF allows
one to recover the typical ZZ form of the displacement vector for the case of
multilayered transverse-anisotropy structures. In analogy with the EDN models,
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z z

Displacements Transverse stresses

Figure 8.4 EDZI: displacements and transverse shear stresses through the
thickness direction z.

it is possible to impose constant transverse displacements w. Such models are
denoted as EDZNd models. It is necessary to correct the Poisson locking
phenomenon in EDZNd models, in the case of pure mechanical problems, as
indicated in Carrera and Brischetto (2008a,b).

8.1.3 LW theories

When each layer of a multilayered structure is described as an indepen-
dent plate, a LW approach is considered (Reddy 2004). The displacement
uf = (u, v, w)* is described for each k layer. In this way, the ZZ form of
the displacement in multilayered transverse-anisotropy structures is easily ob-
tained (Hsu and Wang 1970, 1971; Robbins and Reddy 1993; Srinivas 1973).
The recovering of the ZZ effect via LW models is explained in detail in Carrera
and Brischetto (2009a,b) and shown in Figure 8.5. The z expansion for the
displacement components is made for each k layer:

uk = Foulé + Flu]f + -4 FNMIZ‘V = Fru/;
vk=Fovg+F1v’1‘~|—---—i—F1\/v5‘\,=Frv’,< (8.16)

wh = Fowf + Fiwt + -« 4+ Fywk, = Fout

with t =0,1,..., N, and N the order of expansion, which ranges from
1 (linear) to 4; k=1,...,N; where N, indicates the number of layers.
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Xy

Figure 8.5 Linear expansion in the z direction for displacement components:
LW approach vs. ESL approach.

Equation (8.16) is written in vectorial form as:

u'(x,y, 2) = F:2Ni(€. ) @l (8.17)
sul(x,y, z) = Fy(z)N;(§, 18 Qyy; (8.18)

where the nodal displacements are considered in vector Qﬁ; T,s=t,b,r,
k=1,...,N,and i, j=1,...,N,. Moreover, ¢ and b indicate the top and
bottom of each layer £, respectively, N, is the number of total layers, and r indi-
cates the higher orders of expansion in the thickness direction: r =2, ..., N.
The thickness functions F; (&) and F (¢ ) have now been defined at the k-layer
level, and are a linear combination of the Legendre polynomials P; = P;({;)
of the jth order defined in the ¢, domain ({; = 2z;/hy where z; is the local
coordinate and 7, the thickness, both of which refer to the kth layer, there-
fore —1 < ¢ < 1). The first five Legendre polynomials are:

Bg>—1) 50° 3¢
Po=1, Pi=¢, P2=kT’ P3:Tk_7k’
(8.19)

35t 157 N 3
YT 4 '3

Their combinations for the thickness functions are:

Py+ P Py— P

F=F=""0" R=R=""C" F=P-P,

with r=2,...,N (8.20)
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x,y

Figure 8.6 LD2: displacements u, v, and w through the thickness direction z.

The chosen functions have the following interesting properties:

G=1:F =1, F,=0; F,=0 atthetop (8.21)
Gr=—-1:F,=0;, F,=1, F,=0 atthebottom (8.22)

In other words, the interface values of the variables are considered as variable
unknowns. This fact allows one to easily impose the compatibility conditions
for the displacements at each layer interface. The acronym to indicate such
theories is LDN, where L stands for the LW approach, D indicates the dis-
placement formulation, and N is the order of expansion in each & layer. Typical
displacement behavior for a three-layered structure is shown in Figure 8.6
for a LD2 model. Figure 8.7 indicates the displacements and transverse shear

-
[3°)

Displacements Transverse stresses

Figure 8.7 LD3: displacements and transverse shear stresses through the
thickness direction z.
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stresses of a LD3 model. The transverse shear/normal stresses are obtained
via the constitutive equations but this does not ensure interlaminar continuity
(IC). IC could be enforced by a priori modeling of the transverse shear/normal
stresses. In LW models, even though a linear expansion in z is considered for
transverse displacement w, the Poisson locking phenomenon does not appear
for a pure mechanical problem: the transverse normal strain €., is piecewise
constant in the thickness direction (Carrera and Brischetto 2008a,b).

8.1.4 Refined models for the electromechanical case

The primary variables, in the case of electromechanical problems, are the
displacement vector u = (u, v, w) and the scalar electric potential ®. By
considering the higher spatial gradient of the electric potential, the variable
dF s always modeled as LW (Brischetto and Carrera 2009; Carrera and
Brischetto 2007a,b):

DF(x, y,2) = F(2)@4(x, y), 8D (x,y,2) = Fy(2)8®4(x, y),
with 7,s=¢,b,r and k=1,..., N, (8.23)

where ¢ and b indicate the top and bottom of each k layer, respectively. N; is
the total number of layers; r indicates the higher orders of expansion in the
thickness direction: » = 2, ..., N. The thickness functions are a combination
of Legendre polynomials, as indicated in the previous section. A 2D model for
electromechanical problems is defined as ESL, ESL+MZZF, or LW, depending
on the choice made for the displacement vector: the electric potential is always
considered LW (Ballhause et al. 2005; Carrera and Boscolo 2007).

By considering shape functions and defining Q% . and 8 Qﬁ,s ;» the electric
potential nodal values and the corresponding virtual variations, Equations (8.23)
are rewritten as:

Dk (x, y,2) = Fr(D)Ni(E, 1) Q% (8.24)
8O (x, y,2) = F(z)N,(§, )8 Q'&)s,- (8.25)
witht,s =¢,b,r;k=1,...,N;andi, j =1,..., N,. N, is the total number

of nodes of the FE considered.

8.2 Unified formulation: advanced mixed models

In the case of electromechanical problems, we define advanced mixed models
as those 2D models that are obtained by employing the RMVT (Reissner 1984)
and its extensions to electromechanical coupling (Carrera et al. 2008). These
extensions allow one to a priori model some transverse quantities that, in PVD
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applications, are obtained via post-processing. Transverse shear/normal stresses
0, = (0y:, 0y:, 0.;) and/or transverse normal electric displacement D,, = (D-)
are a priori modeled and considered in LW form. The main advantage of
obtaining these variables directly from the governing equations is the fulfillment
of IC (Brischetto 2009; Brischetto and Carrera 2010). These advanced models
are obtained by means of the CUF (Carrera 2002), which has been dealt with
in previous sections.

8.2.1 Transverse shear/normal stress modeling

An advanced mixed model for a pure mechanical problem considers both
the displacements u = (u, v, w) and the transverse shear/normal stresses
0, = (0y:, 0y;,0:;) as the primary variables (Brischetto and Carrera 2010).
The displacements can be modeled as ESL (Section 8.1.1), ESL+MZZF (Sec-
tion 8.1.2), or LW (Section 8.1.3), and this choice allows one to define the
considered advanced model as ESL, ESL+MZZF, or LW, respectively: the
transverse shear/normal stresses o, are always LW (the subscript M means
that the stresses are modeled and not obtained from the constitutive equations).
The LW model for stresses is:

k k k k k
Oy, = FOOXZO + Flale +ot FNO’sz = FTzer

o). = Fooyg+ Fio),, + -+ Fyoy.y = Fro)_, (8.26)

a_fz = Foazl‘_,o + Flazkz1 + -+ FNO'_,k_,N = Frozkn
with t =0,1,..., N, and N the order of expansion, which ranges from

1 (linear) to 4; k=1,..., N; where N, indicates the number of layers.
Equation (8.26), written in vectorial form, is:

ok, y,2) = Fo(2)ak, (x,y), 86k, (x, y,2) = Fy(2)86% . (x, y),

with 7,s =¢,b,r and k=1,...,N; (8.27)

where ¢ and b indicate the top and bottom of each k layer, respectively; r indi-
cates the higher orders of expansion in the thickness direction: r =2, ..., N.
The thickness functions F;(¢;) and F;(¢;) have now been defined at the k-layer
level, and are a linear combination of the Legendre polynomials. If the nodal
transverse stresses and the corresponding virtual variations are collected in

vectors Q’;m and § Q(k,nsj, respectively, Equations (8.27) become:

oly(x.y.2) = F.(2N:i(6. ) QF ., (8.28)
8k (x, y,2) = Fy(2)N;(E,m8 Q5 (8.29)
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witht,s =¢,b,r;k=1,...,Njiyandi, j =1, ..., N,. The use of such thick-
ness functions allows one to easily write the IC for the transverse stresses:

of, =k with k=1,....,(N, = 1) (8.30)

which means the top value of the & layer in each interface is equal to the bottom
value of the (k + 1) layer. The same property can be used for the displacements
in LW form, in order to impose the compatibility conditions:

b =ui™ with k=1,...,(N,— 1) (8.31)

We define EMN as those models which have the displacements in ESL form
(E) and the transverse stresses in LW form, where M means mixed formulation
(use of RMVT), and N is the order of expansion, which is the same for both
variables. EMZN models consider the displacements modeled in ESL form
with the inclusion of MZZF. LMN models consider both the displacements
and the transverse stresses in LW form. Figure 8.8 gives the displacements
and transverse stresses for an EM2 model. The displacements are considered
ESL, while the transverse stresses are a priori modeled and obtained directly
from the governing equations: they are considered in LW form, and this allows
one to satisfy both the ZZ form and IC. If transverse stresses are obtained
from the constitutive equations via post-processing, IC might not be ensured.
Figure 8.9 shows the displacements and stresses for a LM2 model; in this
case, the displacements are also LW, and the ZZ form and IC are ensured for
both the displacement and transverse stress components. The transverse stresses
obtained from the constitutive equations might not satisfy IC (Brischetto 2009).

m
N

constitutive egs.

Displacements Transverse stresses

Figure 8.8 EM?2: displacements and transverse shear stresses through the
thickness direction z.
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LM2

constitutive eqgs.

Displacements Transverse stresses

Figure 8.9 LM2: displacements and transverse shear stresses through the
thickness direction z.

8.2.2 Advanced mixed models for the electromechanical
case

In the case of electromechanical problems, several extensions of RMVT can be
considered (Reissner 1984; Carrera et al. 2008). In such models, displacements
u and electric potential ® are always considered in the governing equations, the
electric potential @ is always modeled in LW form, as discussed for the PVD
case in the previous sections, the displacement components u# are modeled as
ESL, ESL+MZZF, or LW, and this choice defines the considered advanced
models as ESL, ESL4+MZZF, or LW.

Three different extensions of RMVT to electromechanical problems can be
considered. In addition to displacements u and electric potential ®, the other
modeled variables are:

1. Using only one Lagrange multiplier (Reissner 1984), the transverse
stresses 0,3 are a priori modeled (LW form as described in the previous
sections) (Carrera and Brischetto 2007b).

2. Using only one Lagrange multiplier, the transverse normal electric dis-
placement D,,;; = D, is a priori obtained in LW form (Carrera and
Brischetto 2007a).

3. Considering two Lagrange multipliers, both the transverse stresses and
the transverse normal electric displacement are a priori modeled in LW
form (Carrera and Brischetto 2007a).

The LW expansion for the transverse normal electric displacement
D,y =D:. is:

Dix,y.2) = Fe(2)Dh(x,y),  8DL(x, y,2) = Fy(2)8Di(x, y),

with t,s =¢t,b,r and k=1,...,N; (8.32)
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where ¢ and b indicate the top and bottom of each k layer, respectively; r indi-
cates the higher orders of expansion in the thickness direction: » =2, ..., N.

By introducing nodal values of the transverse normal electric displacement
Q%, ., and the corresponding virtual variations & kaqu, Equations (8.32) can
be rewritten as: “

Di(x, y,2) = F.2)N; (€. 1) Q5% (8.33)
8D(x, y. 2) = Fy(2)N;(§, m8 Q% (8.34)

witht,s =¢t,b,r;k=1,...,Npyandi, j=1,...,N,.
The modeled variables for these three advanced models are:

1. displacements u, transverse stresses o ,, and electric potential @ for
case 1;

2. displacements u, electric potential ®, and transverse normal electric
displacement D,,); = D, for case 2;

3. displacements u, electric potential ®, transverse stresses 0,3, and trans-
verse normal electric displacement D,,; = D, for case 3.

The acronyms for such advanced mixed models were explained in previous
chapters.

8.3 PVD(u, ®) for the electromechanical
plate case

The PVD extended to smart structures, as in Equations (2.53) and (6.21), is:
/V (5€}60 pc + 8€,60,c —SEGDc)dV = 8L, — 5L, (8.35)

The variational statement in Equation (8.35) was applied in the previous

chapters for plate and shell geometries in the case of analytical closed-form

solutions. In the present chapter, an alternative procedure, with a more compact

notation, will be used to obtain the governing equations for the FE analysis.
Equation (8.35) can be rewritten as:

/ (8e;6¢)dV =8L. — 8Ly, (8.36)
Vv

where the overbar indicates that the same array could contain both mechanical
and electrical variables. Generalized electromechanical intensive and extensive
arrays are introduced into Equation (8.36). Their explicit form is:
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€ = {Exx €yy  Vxy Ex gy €2 Vxz  Vyz gz} (837)
6 = {oxx oy 0y —D¢ =Dy o0.. 0. 0p — DZ} (8.38)
where the subscripts G and C mean substitution of the geometrical and con-

stitutive equations, respectively. The electromechanical physical constitutive
coefficients can be grouped in the matrix H (see Equations (2.12)—(2.18)):

B4 i o 0 0 | 0 0 =5
0y, 0% 0% 0 0 0% 0 0 —e

6 % Q6 O 0 % 0 0 —e5

0 0 0 —&f —&f, 0 e b, 0

H=| 0 0 0 —&f, —&, 0 —es —, 0

of 05 0% 0 0 0% 0 0 —ef
0 0 0 —efs —¢55 0 5 Qs 0
0 0 0 —efy —ey 0 is Qu 0

| —ef; —ey —e5 0 0 —ef; 0 0 —ei ]

(8.39)

The constitutive equations, already discussed in Equations (6.23)—(6.25), are
written in compact form as:

oc = Hég (8.40)

If the electromechanical primary unknowns are collected in the vector

v = {u v w ®}, the geometrical relations, as in Equations (2.38)—(2.42),
can be written in compact form:

&G = DU (8.41)

where D is the following differential operator:

% 0 0 0
0 a 0 0
3 9 0 0
0 0 0 —d
D=|0 0 0 -d (8.42)
0 0 3 0
% 0 9 0
0 3 a9, 0
(0 0 0 —d.
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In the framework of the CUF (Carrera 1995), U can be expressed through the
thickness functions, according to a generic kinematic description:

Ux,y,2) = F:(2) Ur(x, y) (8.43)
Similarly for the virtual variations:
sU(x,y,z) = Fy(z) 8Uy(x, y) (8.44)

If the FE approach is addressed, U, and 8U can be expressed in terms of the
nodal values (array QT ={0, Qq,}T) through the shape functions, which are
defined in the natural coordinate system of the element (see Chapter 4):

090, y) =N n QY (8.45)
50 (x, y) = N, m 50 (8.46)

where the superscript (e) indicates the FE.

Substituting Equations (8.40)—(8.46) in the variational statement of Equa-
tion (8.36) and considering a multilayered plate composed of N, layers, a set of
equilibrium equations is obtained, which can be given formally in the following
compact form:

(e)k

80,

(e)k

M(e)kﬂtj Q + K(E)/x‘rslj Q I_?Ev_ej)k (8.47)

where F is the vector of the nodal loads, while the boundary conditions
are Q.

In Equation (8.47), t and s vary from O to N (order of expansion), i and j
vary from 1 to the element node number N,,, and k ranges from 1 to N;.

Matrix K """/ is the fundamental stiffness nucleus of the FE (e) and can be
calculated through numerical integration of the shape and thickness functions,
according to the following product:

K(e)krsij _ / ((NjIFs)DTHD (FTIN,‘)) av© (8.48)
4G

where 1 is the 4 x 4 identity matrix and V(@ is the finite volume element.
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The following symbols are introduced in order to simplify the nota-
tion, which indicates the in-plane integration and the through-the-thickness
integration at the element level:

<1--->Q=/ (--)dQ@ (8.49)
QY

<1--->A=/ (--)d:z (8.50)
Alek

where Q) is the midsurface element. The explicit form of K‘”™*" for
PVD(u, ®) is given below and has a (4 x 4) dimension because there are four
variables in the PVD(u, ®) (three displacement components and the scalar
electric potential):

ktsij

Ky K2 Ki3 Ku
ROkTsii _ Ky Ky Ky Koy
K31 Kz K3z Ky
Ky Kip K43 Ky

(8.51)

where each component is:
ktsij k k
Kll = Q55<]NiNj[>Q<1Fr,zFx,z[>A + Q11<]Ni,xNj,xl>Q<]FrFsl>A
k k
+ Qlﬁqu,yNj,xDQQFrFSDA =+ Q]@qu,XN_]'.yDQQF‘[FSDA
k
+ Q66<Ni,yNj,yl>Q<]Fro[>A
ktsij k k
K5 = Q4s<aN: N jpo<aF, . Fy ;>4 + Q16N (N 1 >o<F, Fi> s
k k
+ Q12<Ni,yNj,x[>Q<]FrFs[>A + Q66<]Ni,xNj,yl>Q<FrFsl>A
k
+ Q26<]Ni,yNj,y[>Q<]FrFs[>A
ktsij k k
K31 = Q55<]Ni,xNjDQ<]F1:Fs,zl>A + Q45<]Ni,yle>Q<]FrFs,zl>A
k k
+ Q13<]NiNj,xDQ<]Fr,st[>A + Q36<1NiNj,y[>Q<]Fr,stl>A
krsii
Ky* = 4 1aN; N \>o<F, . Fyb g + 5NN y>q<F; . Fyby
+ €}saN; N jpo<aF, Fy . g + e5saN; yN j>oaF Fy b4
ktsij k k
K12 = Q45<1N,‘N‘,‘[>Q<1Ff,ZFX7xl>A =+ Q16<N,"XNJ"X[>Q<1FTFSI>A
k k
+ Qeﬁqu,yNj,xDQQFrFSDA + Q]2<]Ni,xNj.yl>S2<]Fthl>A
k
+ Q26<Ni,yNj,y[>Q<]FrFx[>A
ktsij k k
K22 = Q44<]NiNj[>Q<1Fr,zFx,z[>A + Q66<]Ni,xNj,xl>Q<]FrFsl>A
k k
+ Q26<]Ni,yNj,xl>S'z<]FrFsl>A + Q26<1Ni’XNj'yl>Q<]FfFSI>A
k
+ Q22<]Ni,yNj,y[>Q<]FrFs[>A
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K =
Kl =
K =
K™ =

ktsij _
K33 -

ktsij
K43 -

ktsij
K14 -

krsij
Ky ' =

ktsij
K34 -

kTsij _
K44 -

Q45aN; N bo<F, Fy .>a + QX <aN; (N boaF, Fy >4
+ Q4NN \>oaF, . Fb g + Q5NN y>o<F, . Fyba
42NN \>oaF,  Fiby + eAeaNi N boaF,  Fiba

+ €I]€4<1Ni’xNj[>Q<IFTFS’ZI>A + €§4<1N[,yNj[>Q<1FTF5yZDA
O43aN; N jbo<F, Fy .>a + O8N, (N boaF, Fy >4
+ Q4%<AN;N; >oaF: . Fy>p + Q4s<aNiN; y>o<aF; . Fyb,
Q%N N j>oaF Fy ;>4 + 053N, ;N j>o<aF Fy >4
+ Q§5<]NiNj,xDQ<]Fr,st[>A + Q§4<1N,'Nj’yl>g<1FnzFSl>A
Q%N N bo<F, . Fy >4 + Q%<aN; N >oF, Fi>4
+ Q4s<aN; yN; \boaF Fib g + Q4s<N; (N bo<F, Fiba
+ Q§4<]Ni,yNj,yl>Q<]FrFsl>A

e43aN N jbo<F,  Fy >4 + e aN; (N bo<F, Fyba

+ €5, aN; N j y>o<F Fiby + e5aN; (N bo<aF, Fyba
+ 55N N >o<F, Fiby

e{’;]qu,xNjDQQFrFs,zDA + e§6<]Ni,yNjDQ<]FrF‘,z[>A

+ efsaN; N >q<F,  Fi>a + ehsaNi N y>o<aF,  Fyba
45 aN; N jpo<F Fy ;b a + ehgaN; N j>o<aF, Fy b a

+ e\ AN;Nj >q<aF,  Fib s + €5, aNiN; \>oaF, . Fiba
el§3<1NiNjDQ<1Fr,st,zl>A + ellc4<lNinyjYx[>Q<lFrFsl>A

+ eh,aN; N y>oaF Fb g + e¥saN; (N ,bo<aF, Fyba
+ ehsaN; N j y>o<F, Fiby

— 5 AN N j>@aF,  Fy .>p — &f AN N j >odF Fyby

— SIFZQNi,XN_j,yDQQFthbA — Slfszinyj,XDQQFrFsbA

k
— 822<1N,',yNj,y>Q<]FIFSDA

(8.52)

Matrix M©*'/ is the fundamental mass nucleus of the element and
is representative of inertial effects. M‘“**5/ can be calculated through the
numerical integration of the shape and thickness functions, according to the
following product:

M(e)krsij — /() ((NJIFv)pk(FTINl)) dV(é’)
Ve

(8.53)
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where pf is the mass density of each layer. The non-zero elements of the
fundamental mass nucleus are:

ktsij ktsij ktsij
MY = My = My = p*aN;N j>o<aF, Fyb 4 (8.54)

The pure mechanical problem corresponding to PVD(u) can be obtained
as a particular case of PVD(u, ®), coherently with what has already been
explained in Section 6.9 for the analytical solution. The assembly procedure
for the FE method has two additional indexes (i, j) for the nodes (with respect
to the analytical closed-form solutions). Details on the FE assembly procedure
are given at the end of this chapter.

84 RMVT(u, ®, o,) for the electromechanical
plate case

A possible extension of the RMVT (Reissner 1984) has been indicated in
Equations (2.60) and (6.51), where the internal electrical work has been added
and the Lagrange multiplier is employed in order to increase the accuracy of the
computed transverse stress components (Carrera and Brischetto 2007a; Carrera
et al. 2008):

/ (86£Ga,,c + 8¢l — SET;D e — 8T Duc + 807 (en6 — e,,c)>dV
Vv
— L, — 5L, (8.55)

According to the condensed notation, Equation (8.55) can be rewritten as:
/ (8€l; Gac + 8€,; 6 + 86, (€pg — €pc))dV =8L, — SL;,  (8.56)
14

where the adopted arrays mean:

¢l.={o.x oy, o, —Dy, —D, —D,]c isthe vector of the ex-
tensive non-modeled variables, which are calculated by means of the
constitutive relations (subscript C);

"Z ={0.. 0y 0,:}1is the vector of the extensive modeled variables;

- =lew €y vy & & &l is the vector of the intensive vari-
ables associated to &,, which is calculated by means of the geometrical
relations (subscript G);

EZG ={e.: Vi: Vy:Jg is the vector of the intensive variables associ-
ated to 5, which is calculated by means of the geometrical relations
(subscript G);
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?ZC ={e::  Vi:  ¥y:)c isthe vector of intensive variables associated to 6,
which is calculated by means of the constitutive relations (subscript C).

It is convenient to specify that the primary unknown variables are collected in
the vector:

0'={u v w ® 0. o. o) (8.57)

The geometrical relations can be written, as in Equations (2.38)—(2.42), as:

€.c =D,U (8.58)
€ = D,U (8.59)
Gy =6 =DyU (8.60)

where the differential matrices in explicit form read:

3% 0 0 0 0 0 0
P oo poaooos
D,=|7 = , D,=19. 0 9 0 0 0 0O
000 -3 000 0 9 a9 0 0 0 0
0 0 0 -3 000 = D
(0 0 0 —3. 000
00001 00
D,=10 000010 (8.61)
(0000001

The constitutive relations for RMVT(u, ®, 6 ,), as in Equations (2.61)—(2.64),
can be summarized as:

6c=Céeg (8.62)

where 6 ¢ is composed of the vector of the extensive non-modeled variables
& ,c and the vector of the intensive variables €, (which is associated to );
€ is composed of the vector of the intensive variables €, (which is associated
to 6 ,) and the vector of the extensive modeled variables & ,:

_T _T _T
c= {“acfhc}

T o7 (8.63)

€ = {eaGGbG}
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The physical constitutive matrix H can be partitioned by dividing cells into
modeled and not modeled quantities:

_ H,, H,
H=1": - 8.64
{H va H ,,,,} ( )

where H,, = H,,.
In explicit form (see also Equation (8.39)) for each k layer:

On QOun Qi 0 0 —e3
On 0O»n 0O 0 0 —exn
i — Ois Q% O 0 0 —es
ad 0 0 0 —&11 —&1n 0
0 0 0 —&12 —&n 0
| —es1 —en —ex 0 0 —&3
O13 0 0
023 0 0
- 036 0 0
Ho=| 5% o e (8.65)
0 —exs —exy
_—633 0 0
) Qi3 O3 03 0 0 —ex3 ) O 0 0
Hy,=|10 0 0 —es —exs 0 |, Hp=| 0 QOss5 Qs
L 0 0 0 —eyy —eq O 0 Qs Ou

The physical constitutive relations can be arranged according to the above
partitioning (see also Equations (8.40) and (2.61)—(2.64)):

Gac = Hus€uc + Huppg,  6pc = Hpi€ui + Hppéng (8.66)

From Equations (8.66), considering vectors ¢ and € in Equations (8.63), it
is possible to write:

Guc = Contuc + CarGii, € = Cpa€uc + CppG (8.67)
with:

Qaa = Ha(z - gaiz(be)i\l Hb(l? _éab = I_iab(be)71 (8 68)

Cpo=—(Hpp) "Hpy, Cpp = (Hpy)™!
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Matrix € in Equation (8.62) can be written as:

~ é"aa éab}
C =1~ ~ 8.69
{Cba Cpp (8.69)

The explicit form of matrices C‘aa, C bas C ab» and C »p 1s given below for each
k layer:

2
A 13 A 0130% A 013036
Cuwtnn=0u——=, Cun=0n——F7—, Cunz=Q01s———
0 0 0
33 33 33
A A A Q13633
Caal4 - 0» CaalS - 0, Caal6 = —e3] + —
033
A Qzen A 03, A 023036
Ca21 = Q12 — v Can =00 — ==, Cun3=0056———
033 033 033
A A A On3e33
Ca2sa =0, Cups=0, Cuns=—e3+
033
A 013036 A 023036 A %
Cazt = Q16— ——, Cuarz =020~ ——, Cu3zz=0¢— —
033 033 033
A A A 036€33 A
Caza =0, Cuzs =0, Couuze= 0n e, Caaa1 =0
33
A A A Osset, — 2Qusersers + Quael
Caar2 =0, Coarz =0, Cuus= B 2 5 &11
Q45 - Q44Q55
A Osseraenq + Qugersers — Quslersens + e1aes) A
Caats = 02— 0u0 — €12, Caate =0
45 = L4455
CaaSl = 0, Caa52 = 07 Caa53 =0
o Osseiqens + Quaersers — Qus(ersers + eiqes)
aa54 = 7 €12
Qis — 044055
A Osse3, — 20use24625 + Quaeds A
Caass = 5 — &2, Case =0
Qis — 044055
A 01333 A 0e33 A 036€33
Caas1 = —e31 + , Cuae2 = —e3x + v Caas3 -
033 033 033
2
A A A €33
Caasr =0, Cues =0, Coue6 = ——=— — €33
033

(8.70)
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(@

ab =

033
@ 0 0
033
@3 0 0
033
0 —Quses — Quers  —0sseis — Qasers
03s — 0u0ss 035 — 0450ss
0 —Quse — Qusers  —0ss5e4 — Qysens
03s — 0u0Oss Q35 — Ou0ss
e33
- 0 0
L QO3 i
Qi O O3 0 0
033 033 033
—Quse1y — Quaers —Qasers — Qugers
R — :
Qis — 0440ss Qiy — 044055
—Q0ssers — Qusers —0sserq — Qasens
0 0 0 —= :
L 015 — 044055 Qis — 044055
- 1 _
— 0 0
033
1 1
0 P p
—04055 +0ss  Ois — 044055
1 1
Q%5 — Qu0ss 0is
44— ==
L Oss

235

(8.71)

€33 ]

0n
0

0

(8.72)

(8.73)

In analogy with PVD(u,®) in Equation (8.36), by substituting the constitu-
tive and geometrical relations in the RMVT(u,®,0,) variational statement
in Equation (8.56), and referring to a multilayered structure by employ-
ing thickness functions for the kinematic description and shape functions
for FE discretization, we obtain the following fundamental stiffness nucleus
at the element level. The FE approximation for the primary unknowns
v’ = {uvw ® o 0y 0y.} and their virtual variation 8U is:

I—{(e)ktsij

U090, y) = N¢&, n 0

30 (x, y) = N(&, ms

7@
sJ

(8.74)
(8.75)
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where the nodal values are QT ={0Q, Qs @, }. The explicit form of the
fundamental stiffness nucleus at the element level is:

- — ktsij

— k K 7 N : ’ )
K(E) i Ky Ky K43 K K45 K46 K47 (876)

with:

ktsij A A
K“ = <]FYFI[>ACaa11<]Ni,xNj,x[>Q + <]FSFI[>ACaa31<]Ni,yNj,x[>Q
+ AF F> g Cuq13<N; N j Do + <Fs Fi> g Cu33<N; yNj Do
ktsij A A
K21 = <]FsFr[>ACaa31<]Ni,xNj,x[>Q + <]FsFr[>ACaa21<]Ni,yNj,x[>Q

+ qFxF1:[>AC111133<]]VI,):Ivj,y‘>§2 + qF.vFtI>ACaaZ3<]Z\]i,y]\71',yl>£2

ktsij _

K377 =0
ktsij A A

Ky = —<F Fy ;>4 Cua1<N;Nj (>q — <FFp ;> aCuue3<N; N ;Do
ktsij A A

Ks, "' = —<F FebpaCpa119N; N (Do — SF FibaCpa13<IN; N yq

K = aF, . Fibp<aN;N b, KA =0

Kfzmij = <]FsF1:[>AC\‘aall3<][Vi,)cIVj,xDQ + <]FsF1:'>AC,\‘z/1a33><]]\/i,yIVj.x[>Q
+ <F;F1>Aéaa12<1Ni,xNj,yl>Q + QFSF1:1>Aéaa32<]Ni,yNj,y[>Q

Kg:ﬂj = <]FsFIDAéaa33<Ni,xNj,x[>Q + <]FSFT[>A60023<Ni,yNj,X>Q

+ <]FsFr[>ACaa32<]Ni,xNj,y[>Q + QFSFIDACaazqui,yNj_yDQ

ktsij

K = 0
ktsij A A

K42 = _<]FsFr,zl>ACaa63<]NiNj,x[>Q - <]FSFI,2[>ACaa62<]NiNj,y>Q
ktsij A A

K52 = _<]FsFr[>ACba13<NiNj,x>Q - <1FsF‘r[>ACbalZ<]]\]i]\]j,yl>52

ktsij ktsij ktsij
K62 =0, K72 =<]Fx,zFr[>A<]Nile>Qv K13 =0

ktsij ktsij krsij ktsij AT
K5PU =0, Kg'=0, Ky =0, K =daF, F>saN;N;pg

ktsij ktsij
K63 = <1FSF-[I>A<1N1‘N_,',XI>Q, K73 =<1FSF,;I>A<1N,'NJ‘,yI>Q
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ktsij
K14

ktsij
K24

ktsij
K34

ktsij
Ky

Kip
Ky
iy
K{cstsij
iz
Kl
Kécsrsij
Kéc;sij
Kl
Kl
i

ktsij
K76

ktsij
K27

ktsij
K47

ktsij
K57

ktsij
K77

_QFS,ZFZDAéaGIGQN[,XNjDQ - <]Fs,zFr[>Aéaa36<Ni,yNj>Q
_<]FY,ZFT[>ACAaa36<]Ni,XNj[>Q - qu,zFrDACA'aa%QNi,yNjDQ
0 (8.77)
QFS,ZFIVZDACA'M%QN,‘ N>q + <F FTDAéaa44<1Ni,xNj,x[>Q

=+ <1FSFfI>Aéaa54<1Ni’yNj,xl>Q + <1FsFr'>Aéaa45<]Ni,xNj,y|>Q
+ 9FyF>4Cuus59N; yN; o

AF;  F>4Cha169N; N g

AF F 4 Cpaoa<Ni N 1 + <F FoaChaos<Ni N g
AFF 4 Cpa3a<Ni N g + <9F F>aChazs<Ni N g
AFyF 54 C 11N N g + F Fob s Cap31<aN; y N g
AFFop 4 Cap31<N; N g + <F F>aCapo1 AN; N g

QF F, >a<NiNjbg,  Kii* = —<aF,Fy b4Cae1<N; N g
—<1F5Fr>Aébb11<1NiNj'>Q

0, K%Si" =0, ng”j = AF F; .>p<aAN; N j>g

0, Ki" = aFF>4<aN; (N b

—<F FTDAéab42<Ni,xNjDQ — <F FTDAéabsszi,yNjDQ

0, Keg' = —aF,F>4CopnaN;Njbg
—<aFF;>4Cop3aN; N >, Kf7mj =0

QF Fy > a<NiN b, Ksr' = QF F>4<N; N g
—QFSFTDAéab43<1N,',xNjI>Q — QFXFTDAéab53<1N,‘,yNjI>Q

0, Ké;”j = —<aFF54Cop23<N; N jbg

—<AF  F> 4 Cyp33<N; N j>g

The subscripts after the commas indicate derivatives. The following integrals
are also defined in the in-plane and thickness directions, respectively:

(o)k

q(---)>9=/ (--)dQ® and <1(-.-)>A=/ (--)dz (8.78)
Qy A
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where fo) is the midsurface element. The non-zero elements of the fundamental
mass nucleus M ¥/ are (in analogy with the previous sections):

fosii Kesii Kesii
Mllrw — Mzzrw _ M33rvzj — kaNl‘NjDQqFTFSDA (8.79)

The obtained fundamental nuclei are used in the governing equations, which
do not formally change with respect to the PVD(u,®) case (see Equation
(8.47)). The pure mechanical problem, corresponding to RMVT(u, ¢,), can
be obtained as a particular case of RMVT(u, ®, g,), coherently with what has
already been explained in Section 6.9 for the analytical solution.

8.5 RMVT(u, ®, D,) for the electromechanical
plate case

Another possible extension of the RMVT (Reissner 1984) has been indicated in
Equations (2.74) and (6.103), where the internal electrical work has been added
and the Lagrange multiplier is employed in order to increase the accuracy of
the computed transverse normal electric displacement (Carrera and Brischetto
2007a; Carrera et al. 2008):

/V (Se,fgapc +8€h;0uc — €D pc — €, Dum
8D}y (Eng — £10))dV = 5L, —bLiy (8.80)

On the basis of a condensed notation, Equation (8.80) can be rewritten as:
/ (€15 Gac + 8€,; 6, + 86, (€p — €pc))dV =8L, —SL;  (8.81)
14

Equation (8.81) is formally identical to Equation (8.56), but the meaning
of the arrays changes, therefore the following arrays can be introduced:

6ZC ={on oy, 0 =Dy =D, o0.. 0. 0y:}cisthevectorof
the extensive non-modeled variables, which are calculated by means of
the constitutive relations (subscript C);

65 = {—D.} is the vector of extensive modeled variables;

e.=ler €y Yoy & & € Vi Vy:)o is the vector of the in-
tensive variables associated to @ ,, which is calculated by means of the
geometrical relations (subscript G);

EZG = {&.} is the vector of the intensive variables associated to &, which
is calculated by means of the geometrical relations (subscript G);
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EZC = {&.}¢ is the vector of the intensive variables associated to &, which
is calculated by means of the constitutive relations (subscript C).

It is convenient to specify that the primary unknown variables are collected in
the vector:

U= v w & D} (8.82)

The geometrical relations, can be written, as in Equations (2.38)—(2.42), as:

€.,c =D, U (8.83)
€ = D,U (8.84)
Gy =06y =DyU (8.85)

which are formally identical to Equations (8.58)—(8.60), while the differential
matrices in explicit form read:

3, 0 0 0 0]
% 0 0 0
3 9 0 0 0
1o 0o 0 -3 o0 B B
Di=|y o o _y of D=0 00 -2 0
0 0 3 0 0
0 3 0 0
(0 8 8 0 0]
Dy=0 0 0 0 —1) (8.86)

The constitutive relations for RMVT(u, ®, D,,) can be summarized, as in Equa-
tions (2.75)—(2.78), as:

Gc =Cég (8.87)

where ¢ is composed of the vector of extensive non-modeled variables & ,¢
and the vector of the intensive variables €, (which is associated to 65); €5 is
composed of the vector of the intensive variables €,; (which is associated to
6 ,) and the vector of the modeled extensive variables & :

(8.88)
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The physical constitutive matrix H can be partitioned by dividing the cells into
modeled and non-modeled quantities:

- H,, H
H={2% 2@ 8.89
{ Hy,, Hy, } (8:89)
= =T
where H,, = H,,,.
In explicit form (see also Equation (8.39)):

01, 0 0% O 0 0 0 0
L 0n 0% 0O 0 05 0 0
s Q% Q6 O 0 0% 0 0

- 0 0 0 —&f —&f 0 —ef. —ef
H,, = 21 22 is 11<4
0 0 0 —£, -&, 0 —ey5  —eyy,

hook o 0 0 o 00 0
0 0 0 —e5 —ers 0 055 Oy
L0 0 0 —&, -, 0 0 04

Hy,=1| 0 (8.90)

Hy, = (—¢f —¢f —¢f 0 0 —e 0 0), Hpy=(—¢})

The physical constitutive relations can be arranged according to the above
partitioning (see also Equations (8.40) and (2.75)—(2.78)):

Gac = Huu€uc + Huppg, e = Hpi€u + Hppéng (8.91)

From Equations (8.91), considering vectors ¢ ¢ and € of Equations (8.88), it
is possible to write:

Gac = Cuu€ac + CaropG, € = Cha€ai + Crpb e (8.92)

with:

Caa = Haa - Hab(ﬁbb)_lgbav Cab = Flub(be)_l

_ _ _ _ _ (8.93)
Cro = —(Hpy) "Hpy, Cpp = (Hpp)™
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Matrix C in Equation (8.87) can be written as:

~ Caa C’ab
C =1 = 8.94
{ Coa Cpp } (854

The explicit form of matrices C .4, Cpa, Cap, and Cyy, is given below for each
k layer:

[ Qu+e3 /a5 Quntesen/ess Qio+eses/es 0
On+esen/ess  QOn+el/es  Qxp+ene/ess 0
Q16+ es1ex6/e33 Qa6+ emers/ess Qoo + €3/€33 0
o — 0 0 0 —€11
aa = 0 0 0 —€12
O3 +esziess/es 0 +exneszfezs Qs +exzess/ezs 0
0 0 0 —€15
L 0 0 0 —E€14
0  Qiz+eses/ess 0 0 ]
0  Oxn+epess/esz 0 0
0  QOssteszess/es 0O 0
—€12 0 —ej5  —e4
8.95
—&2 0 —ey5  —ey (8.95)
0 033+ €3 /¢33 0 0
—eas 0 Oss  Qus
—e 0 Qa5 Qua |
CZ;, = [es1/e33 e3n/e33 e3x/e33 0 0 essfesz 0 O] (8.96)
Cro =[—e31/e33 —en/ess —exe/ess 0 0 —esz/es 0 0] (897)
Cpp = [—1/e3] (8.98)

In analogy with PVD(u, @) in Equation (8.36), by substituting the consti-
tutive and geometrical relations in the RMVT(u, ®, D,,) variational statement
of Equation (8.81), and referring to a multilayered structure by employing
thickness functions for the kinematic description and shape functions for FE
discretization, we obtain the following stiffness fundamental nucleus K(Oksii
at the element level; its form does not change with respect to the previous
section. The FE approximation for the primary unknowns U T = {uvw®D.}
and their virtual variation §U is:

09, y) = NE n 0 (8.99)
50 (x, y) = N(&, 50 (8.100)

sj
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where the nodal values are QT ={0, Qs Qp.}. The explicit form of the
fundamental stiffness nucleus at the element level is:

resii
Kii Kpn Kiz K Kis |
N Ky Kx»n K Ky Ko
= (e)kTsij
K = | Kz K K3z K Kss (8.101)
Ky Kip K4z Ky Kys
K51 K52 K53 K54 KSS

with:

K{7Y = CaarraNi N jpgaFs - F o a + Caat1 WN; o N (B F: Fyb g
+ Caa3l<]Nf,yNj»«v>Q<]FrEv>A + CaalBQN[,xNj,yDQQFTFYDA
+ Caa33N; yN; y>oaF Fyb> 4
Ké{l”ij = CaaS7<]NiNj'>Q<‘Fr,st,z>A + Caa3l<]Ni_xNjyX[>QQFrFsl>A
+ Caa21N; yNj i 2@F: Fi> 4 + Cag33Nj 1« N j ypaaF Fyb o
+ Cua23N; yNj y>oUF Fyb 4
KA = Cour7<N; (N > <Fy Fy >4 4 CoagraNi y N jbo<aFy Fy b4
+ Caa61<9N; N >0 <F;  Fyb> s + Coaas3<Ni N, bo<Fy  Fyba
K!flfs,'j = —C_‘aa47qu,xNj[>Q<]FrFs’zl>A — C‘aa57QNi,)’Nj>Q<]FrFs,z[>A
K;(l”ij = C_bGIIQNiNj,xDQQFrFsDA + Cbal3<NiNj,y>QQFTFYDA
[(fzt”/ = Cua18<N; N j>o<F;  Fy >4 + Coq139N; N j x>o<F Fy> 4
+ Caa33INiyNji>oF: Fib g + Coa12aN o N j y>@aF Fyb g
+ Cua2N; yN; y>oUF Fyb 4
K33"" = CaassNi N jpoaFy - Fy -4 + Caqs3aNi o N 1>@<F Fyo g
+ Caa23N; y N (>o<F: Fip g 4 Coa329N; (N > <aF: Fi o
+ Caa2N; yN; y>oF Fyb 4
Kgsjj = C““7S<]Ni~xNj‘>Q<]Fro,z>A + CaaSSQNi,yNjDQQFTFV’ZDA
+ C_w”"63<]NiNJ}J&">Q<IFT,ZFs‘>A + C‘aa62<]NiNj,y[>Q<]Fr’ZFsl>A
Kfzmij = _Caa48<1N,‘,xN.,‘I>Q<FTFS,ZI>A - CHQSSQNinyJ‘DQQFTFs,ZDA

ktsij = =
Ks,™ = Cpa13<aN; N j ;Do Fi> g + Cpa12ANi N \DoF Fi>y
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K3 = Caat6aN;x N> aF, Fy >4 + CaazedNi y N jpoaF Fyba (8.102)
+ Caa77<]NiNj,xl>Q<FT’ZFA-[>A + Cau78<NiNj,y>QQFT,ZF;>A
K53 = CagzN; o N o F Fy -2 + CaaneaNi y N oo aF  Fy .o
+ Caa87<]NiNj,xl>Q<Ftystl>A + C‘aaSSQNiNj,yDQQFT,ZFSDA
Kgﬂj = C““66<]Nile>Q<]Fr,sz,2‘>A + C‘aa77<1Ni,xNj,x>Q<lF,FYl>A
+ 6“087<]N1',>’NJ'JDQFIFS + Caa78<]Ni,xNj,y>Q<]Fl—FSDA
+ Cua78<IN; yNj yDo<F Fi> 4
K43 = —Cag79N; N > <F; Fyip — Caas79N; N > <F; Fyb
— CaatgIN; kN y>oaF: Fip g — Caass<Ni y N y>oaF: Fib g
K5k3mj = Cpa16<N; N jpo<iF, Fy >4

K{j”j = _Caa74<]NiNj,xDS'ZQFr,stDA — Caa75<]NiNj,yDQ<]Fr,stDA
Kﬁw = —Clg84<N; N 1 >@<F; . F;>p — Cuags<Ni N y>o<F; - Fy>a
Kéjﬂj = _C‘aa74<Ni,xNj,xl>Q<]FrFxl>A - C_'d084<Ni,_)'Nj,XDQ<F‘E F.v[>A

— C‘aa75<lNi,xNj!yDQ<]Fthl>A — Caa85<lN,',yNj,yl>Q<1FrFsl>A
Kf;”‘j = Caa44<1N,"XNjV\-DQ<1FT F>a+ C_‘aa54<lN,*’yNj’xl>Q<1Fr Fi>a

+ Caa45<]Ni.xNj,yDQ<]FrFsDA + C‘aaSSQNi,yNj.yDQQFtFSDA
KiY = aNiN jboaF, Fy b s
Kgﬂj = —Cub11<1N,',xNjD9<]FTFSDA — C‘ab31<1N,',yNjDQ<]FTFSl>A
K;;Yij = _Cah3l<]Ni,xNjDQ<]FTFJDA — CabZIQNi,yNjDQQFrFsDA
K§‘5”” = —Cup61<IN; N j>@<F, , Fy> 4
K2 = aNiNjpoaFy  Fba, K = —Cpp(1, DAN; N jbo<F, Fyb 4

The in-plane and through-the-thickness integrals are defined as in the previ-

ous sections. The non-zero elements of the fundamental mass nucleus M ©*7s/
are (in analogy with the previous sections):

M7 = M5 = MG = pFaN;N jpqaF, Fyoa (8.103)

The obtained fundamental nuclei are used in the governing equations,
which formally do not change with respect to the PVD(u,®) case (see
Equation (8.47)).
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8.6 RMVT(u, ®,o0,,D,) for the
electromechanical plate case

Another possible extension of the RMVT (Reissner 1984) has been indicated in
Equations (2.83) and (6.155), where the internal electrical work has been added
and two Lagrange multipliers are employed in order to increase the accuracy of
the computed transverse stress components and the transverse normal electric
displacement (Carrera and Brischetto 2007a; Carrera et al. 2008):

/ <5egGa,,c + 8l 50 + 86y (€06 — €xc) — 5ET;D e — SE1; Dy
V
— 0D} (E — Enc))dV =L, — 5L, (8.104)

On the basis of the condensed notation, Equation (8.104) can be rewritten as:
f (3€l; 6uc + 8, G + 86 ] (€46 — €pc)) dV = 8L, — SL;,  (8.105)
1%

Equation (8.105) is formally identical to Equation (8.56), but the meaning of
the arrays changes, therefore the following arrays can be introduced:

6l ={o oy, or, —D, —Dylc is the vector of the extensive
non-modeled variables, which are calculated by means of the constitutive
relations (subscript C);

6£ ={o0.. o0 o,. —D.}is the vector of the extensive modeled vari-

ables;

EZG ={exr €y Vxy & &) isthevectorof theintensive variables as-

sociated to & ,, which is calculated by means of the geometrical relations
(subscript G);

EZG ={e:: Y vy &:Jg is the vector of the intensive variables asso-
ciated to 6, which is calculated by means of the geometrical relations
(subscript G);

EZC ={e:: ¥ vy E:Jc is the vector of the intensive variables asso-
ciated to &, which is calculated by means of the constitutive relations
(subscript C).

It is important to specify that the primary unknown variables are collected in
the vector:

U ={u v w @ o

oy oy D} (8.106)
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The geometrical relations can be written, as in Equations (2.38)—(2.42), as:

€, =D, U (8.107)
&6 = DU (8.108)
G, =0y = DyU (8.109)

which are formally identical to Equations (8.58)—(8.60), but the differential
matrices in explicit form read as:

% 00 0 0000
09,0 0 0000
D,=|3, 30 0 0000
000 -3 0000
[0 00 -3,0000
[0 08 0 0000 0000100 0
p |08 0 0000 10000010 0
71049 8, 0 0000 Zlo0o00001 0
(00 0 -3.0000 0000000 —I
(8.110)

The constitutive relations for RMVT(u, ®, 6 ,,, D,)) can be summarized, as in
Equations (2.84)—(2.87), as:

6c =Cég (8.111)

where o ¢ is composed of the vector of the extensive non-modeled variables
6 ,c and the vector of the intensive variables €, (which is associated to );
€ is composed of the vector of the intensive variables €, (which is associated
to 6,) and the vector of the extensive modeled variables & :

_T T _T

c= {“acfbc}
(T 7T (8.112)
€c = {‘aG"bG}

The physical constitutive matrix H can be partitioned by dividing the cells into
modeled and non-modeled quantities:

I Haa Hah
H=1_- - 8.113
{Hba be} ( )

where H

I
W‘ml
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In explicit form (see also Equation (8.39)) for each k layer:

011 Q12 Q15 O 0 Oi 0 0 —e3
) On 0n 0x 0 0 ) O3 0 0 -—exn
H,,= |0 Qx Qs O 0 |, Hy=|03% 0 0 —e3
0 0 0 —€11 —€12 0 —e€15 —€l14 0
L 0 0 0 —E12 —€&2 0 —€25 —€24 0 i
[ 013 0 Q3% O 0 O0yx 0 0 —es
— 0 0 0 —e€15 —e€75 T 0 QSS Q45 0
H,, = . H, =
b 0 0 0 —ey —exy b 0 Q45 Qus O
| —e3 —exn —e3s 0 0 —e;3 0 0 —e33
(8.114)

The physical constitutive relations can be arranged according to the above
partitioning (see also Equations (8.40) and (2.84)—(2.87)):

6ac = Hu€uc + Hup€pg.  Gpc = Hpo€oi + Hppép (8.115)

From Equation (8.115), considering vectors ¢ ¢ and € in Equation (8.112), it
is possible to write:

Guc = Couuc + CarGp, €c = Cpi€uc + Crp&ic (8.116)
with:

Caa = Haa - Hab(th)ill_{ha» Cab = Hab(Hhh)il

B _ _ B B (8.117)
Cro =—(Hpy) "Hpy, Cpp = (Hpp)™!
Matrix C in Equation (8.111) can be written as:
- Cw Cu
c=1{-% Z¢ 8.118
{Cba Chb} ¢ )

The explicit form of matrices Cuas Cras Cup, and Cpp is given below for each
k layer:

Coi= O+ 03363, — 013 (2e3133 + 013633)
aall — 11
el + 033633
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Caat2 =

247

e33 (—03e3 + Qze33) + 033 (ezrexn + O 12€33) — O3 (e31e33 + Q13633)

2
e33 + 033833

(O33e31 — O13€33) €36 — O36 (31633 + O13€33)

Cuarz = Q16 +

“ €33 + O3
CN‘aal4 = 0’ C~‘a(/115 =0
éaaZl =

e33 (—03e3 + Qze33) + 033 (ezrexn + Q1€33) — O3 (e31e33 + Q13633)

7
e33 + 033833

033¢3, — 023 (2ene3s + 023633)

Cua2 = On +
€35 + O
o (O33e3 — On3e33) €36 — U136 (e32€33 + 023€33)
aa23 = Q2 + 5
e33 + 033833
Caa24 = 07 Caa25 =0
G (O33e31 — Q13e33) €36 — Q36 (€31€33 + 013€33)
aa31 = Q16 + 5
e33 + 033633
¢ (O33e3 — On3e33) €36 — Q36 (€32033 + 023€33)
aa32 — Q26 + 5
e33 + 033633
o —2Q36e33€36 + 03363 — 036633
aa33 = Qo6 + 5
e33 + 033833
Caa34 = 07 Caa35 = 09 Caa41 = 0, Caa42 = O, Caa43 =0
~ Osset, — 2Qusesers + Quaels
Coass = 5 — €1
Qis — 044055
~ Ossersens + Quiersers — Qus (€154 + e14e25)
Caass = 5 —&n
Ois — Q44 0ss
CaaSl = 0» CaaSZ = 0’ Caa53 =0
~ Osseraenq + Quqersers — Qus (e15e24 + €14€25)
Cuass = B — €1
Q45 - Q44Q55
¢ Osse3, — 2Quse24625 + Qaseds
aa55 — -

035 — 0u0ss

(8.119)
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éah =

P
e33 + 033833

2
e33 + 033633
e33¢36 + 036633
2
e33 + 033633

[esress + 013633

exne3s + 023633

0

—Quse1s + Quers

REFINED AND ADVANCED FINITE ELEMENTS FOR PLATES

0 Os3e3r — Qzes; |
€3y + Osen

0 Os3e3n — O3
€33 + O3en

0 —036e33 + O33€36
€33 + O3

Ossers — Qasers

0 5 5 0
Qis — 044055 Qis — 044055
0 —Qusex + Quers  Ossexs — Qusens 0
L 035 — Qu0ss 0% — 0u0ss |
(8.120)
C’ba =
[ esien+Qi3es _ emenn+0i3ezz  exzess+036€33 0 0 7]
e, +03363 e, +03363 e, +03363
QOusera—Qaaeis Qusers—Qasers
0 0 0 03— 044055 03— 044055
—0sseiat0aseis  —OsseutQasers
0 0 0 03— 044055 03— 044055
—0se31+0i3e33  —0Ozen+0ness QO36¢33—033€36 0 0
€3;+033633 €33+ 033633 e, +033633 _
(8.121)
Cbb =
r 1 0 0 €33 7]
Q—2 2 Lo
33 +e33/633 e33 + 033633
1
0 i i Qs 0
—Qis/Qas+ 0ss Qis — QuaOss
45 1
0 ¢ . 0
Ois — Qu0ss  Qus — 045/ 0ss
e 1
_ZL 0 0 2
L e35+ Om3éns €33/ 033 + €33
(8.122)

In analogy with PVD(u, ®) in Equation (8.36), by substituting the
constitutive and geometrical relations in the RMVT(u, ®,0,,D,) vari-
ational statement in Equation (8.105), and referring to a multilayered
structure by employing thickness functions for the kinematic description and
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shape functions for FE discretization, we obtain the following stiffness fun-
damental nucleus K™ at the element level, which has the same form as
in the previous sections. The FE approximation for the primary unknowns
U' =(uvwdD, o, 0r, oy.} and their virtual variation §U is:

09, y) =N & n 0 (8.123)

Tl

50 (x.y) = N )50 (8.124)

sj

where the nodal values are QT ={0, Q¢ Op, Q,,}- The explicit form of the
fundamental stiffness nucleus at the element level is:

B tesii
Ky Kin Ki Ku Kis Kis Kin Kig|
Ky K»n Kz Ky Ky Ky Ky Ky
K31 K3z Kiz K3y K35 Kz K3z Ksg

ROkTsii _ Ky Kg Ka3 Ka Kis Kis Kir Kgg (8.125)

Ks1 Ksp Ksi Ksi Kss Kso Ks7 Ksg
Ke1 Ke» Koz Koo Kes Koo Ko7 Kes
K71 K72 K73 K Kis Kie K77 Kig
Kgi Kgo Ks3 Ksa Kgs Kgo Kg7  Kss |

with:

K11 = F Fe>4Caq119N; wNj g + < F>4Cug319N; y N (g

+ 9FF>4Caa139N; N g + 9F Fo>aCa3<iNi yNj g
Kai = 9FFi>5C 31N o Nj g + AFs Feb4C a1 <N; yNj g

+ AF Fo4Coq33<N; x Ny + 9F Fo 4 Coan3<Ni yN iy
K31 =0, K4 =0
Ksi = —<F Fi>4<Ni N >oChart — AFsFi> 4NN 5o Crats
Kg1 = <F Fs .>4<N;N>q, K71 =0
Kg1 = 9F,F;>4<N; N j >oCrast + 9F5 Fo>pg<Ni N j > Cpass
K1z = 9F F:>pCaa139N; xNj g + <FFi>4Caa33<dNi y N >g

+ SF Fr>pCaaa<Ni o Nj ypo + <SF FropCauza<Niy N b
K2 = AF Fi>4Ca33<IN; v Nj > + < F> 4 Cuan3aNi y N (g

+ AFF>ACaq32dN; N yo + 9Fs Fe>sCan<N; yNj 4o
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K3 =0, Kgp=0
Ksy = —<FFy>4<NiNj >oCha1z — AFsF> 4NN 2o Crato
Key =0, K7y =<AF Fy:>4<N;N;>g
Kgy = <9FFy>p<dN;i N >0 Chasz + AFyFr>a<aN; N 5o Chas
Ki3=0, Kpn=0 Ky3=0 Kiu=0
Ks3 = aF; ;Fi>s<N;Nj>q, Kg = <F F>p<dN;N;j Do
K73 = <F Fi>y<N;N;j \bo, Kg3=0, Ki=0, Kyu=0 K3u=0
Ky = 9FFy>5C 1qa4dN; N g + AF Fo> 4 Cugsa<Ni yNj g

+ AFF>ACaassN; (N g + 9Fs Fo>aCauss<Ni yNj g
Kss =0, Ke4 = <9FF>p<aNiN;j >0Chaa + Ay Fr> 4NN 2o Chans
K74 = <9FFy>p<N; N >oChuss + AFsFr54<aN; N 5o Crass
Ky = <F . F:>4<N; N g
K5 = QFF;>4<N i N; (>qCapi1 + <FsFr>4<N;N; y>oCabsi
Kos = QF Fe>4<N N >oCap3t + <9Fs Fe>p<N ;N y>oCapi
K35 = <FF; .b4<N;Nj>o, Ki5=0
Kss = —<F Fi>4<NiNj>oCrpi1, Kes =0, K5 =0
Kss = 9F Fo>4<N;iN j>oChpa1, K16 = <FsFy.>a<N;Njbg, Ky =0
K36 = QF F>4<N;N; :>q
Kis = —<FFi>4<aNjN; (>0 Capar — UFyFi>4<N ;N y2oCubs2,  Ksg =0
Koo = —<AFsFi>4<NiNpoCri, K76 = —<FFo> <N N j>oCrpi
Kgs =0, Ki7=0
Ko7 = QFF; ;> p<aAN;Nj>q, K37 = AF F>s<N;N; Do
K47 = —<AFFi>4<N ;N >@Capas — <FsFi> <N N; y>oCabss,  Ks7 =0
K7 = —AF F>4<N; N poChos, K77 = —<FFo>4<N;i N j>oCrpss
Kg7 =0, Ki3=—<FF>2<aN;N; >oCupia — <FF> 4N N; ,>oCobsa
Koy = —<FFi>4<NjN; (>0 Capss — UFFi>a<N;N; 2o Capa
K3y =0, Kug=<FF;,>4<N;Njbq, Ksg = <FF>4<N;Nj>oChpia
Kes =0, Kz3=0, Kgg=—<FF>2aN;N;>oCubss

(8.126)



RMVT(u, ®, 0,, D,) FOR THE ELECTROMECHANICAL PLATE CASE 251

The in-plane and through-the-thickness integrals are defined as in the
previous sections. The non-zero elements of the mass fundamental nucleus
M©kesij (in analogy with the previous sections) are:

st fest Cest ,
MY = My = My = pFaN; N j>o<aF, Fyba (8.127)

The obtained fundamental nuclei are used in the governing equations, which do
not formally change with respect to the PVD(u,®) case (see Equation (8.47)).

Layered structure modeled: Stiffness matrix at the layer level:
T:; B : 5:1].:215:3 S S
T=2e = nucleus:
=3 3 x 3 matrices =O|0|O] =3 [ XXX
T=4e k=2 nucleus: [:20 O O =4 | XX | X
=5 =5 O|D|OF <=5 | XX | X
Stiffness matrix at the multi-layer level:
ESL LW
s=1s=2s=3 s=1s=2s5s=3 g=4 s=5
s=3s=4s=35 o1 O O Q
r:]r:3®®®
e =2/0|G|O
r72174®®®
_; 75®®® I:SOO(§§><><
o t=4 X | x| x
©=5 X | X | X
EsL Stiffness matrix of the FE: W
i=1 j=2 i=3 j=4 i=1 i=2 ji=3 j=4
RR[RIXX[RIR|R[RR|RX[& O|0|O O|0|O [e)[e)[e) [e)[e)[)
i-1 QR XXX XXX RNR XK O|0|0 O[O0 O[0[O Ol0[O
RRRNRVINRRVIVR(R] =1 [OO[Q|X|X|O|O[Q|X|X|O|O[®|X[X|O|O|®|X|X
RRRNR R RNR R RNR R R X|X|X X |X|X X | X|X X|X|X
N HEREEEEEEEREE X T IXIXIX T I XXX
R R IR R R R R R R [e)[e)[®) [e][e][®) [e)[e][e} O[0]O
RV IRV R® O|0|O Q|00 O|0|O O|0|O
i-3|8|Q®IRRRIVRRIV®R] -2 |CIORXIXJO|OI®IX[X]|O|O|®IX| X]|O|O|®|X|X
RRRNRRINI IR R R XXX XXX X[ X[ X XXX
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Figure 8.10 Assembly procedure for the FE stiffness matrix by using funda-
mental nucleus. Example of a two-layered plate: ED2(u) and LD2(u) for Q4
element.
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8.7 FE assembly procedure and
concluding remarks

The basic concepts related to the assembly of fundamental nuclei have al-
ready been given in Section 6.7, for the case of plate geometries for analytical
closed-form solutions. When dealing with FE, shape functions are included in
the procedure and two further indexes, 7, j, are considered for the nodes. The
assembly procedure followed to obtain the stiffness matrix of a generic FE in
the CUF is then summarized in the scheme in Figure 8.10, where both ED2 and
LD2 kinematic descriptions were chosen for the Q4 plate FE (see Section 6.8
for the acronyms). The procedure is the same as that of the multifield/mixed
formulation, the only difference being the dimension of the considered funda-
mental nucleus. Once the FE stiffness matrix has been obtained, the standard
assembly procedure leads to the stiffness matrix of the structure. The same
procedure can be applied to obtain the mass matrix.

The system of acronyms for FE refined and advanced 2D models has already
been described in Section 6.8 and Figure 6.12.

The electromechanical FE models (both refined and mixed models) degen-
erate into pure mechanical FE models in the same way as that described in
Section 6.9 for the analytical closed-form plate solution. CLT and FSDT (for
both pure mechanical and electromechanical problems) can be obtained as par-
ticular cases of an ESL model with linear expansion in the thickness direction
whose details have already been discussed in Section 6.10.
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Numerical evaluation and
assessment of classical and

advanced theories using
MUL?2 software

MUL2 is the acronym of MULtifield problems for MULtilayered structures.
It is academic software developed in-house for the thermo/electro/magneto/
mechanical analysis of multilayered plates, shells, and beams. It has been
implemented with the CUF, which has been extensively discussed in this
book. Additional information about the MUL2 software can be found at
http://www.mul2.com. In this chapter, the electromechanical MUL2 code for
analytical closed-form solutions of plates and shells and the FE version of
MUL2 for plate geometries are described with emphasis on the input and out-
put files and the computing architecture. Simple examples are given for plate,
shell, and beam geometries in order to point out the importance of refined mod-
els for the static and dynamic analysis of smart structures. Smart structures are
multilayered configurations that embed piezoelectric and orthotropic layers.
Since the use of classical theories could be inappropriate for these structures,
both analytical closed-form and FE solutions are compared.

Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, First Edition.
Erasmo Carrera, Salvatore Brischetto and Pietro Nali.
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9.1 The MUL2 software for plates and shells:
analytical closed-form solutions

The MUL2 software for the analytical solution of plates and shells considers
only simply supported multilayered structures subjected to harmonic mechan-
ical and electrical loads. The elastic coefficients Q1¢, Q26, Q36, and Qys, the
piezoelectric coefficients eys, €14, and esq, and the dielectric constant €, are
set to zero in order to obtain a closed form of the governing equations (Reddy,
2004). Two main input files must be compiled in the code. The first file con-
cerns embedded layers in multilayered structures (their thickness, the stacking
sequence, and their elastic and piezoelectric properties) while the second one
indicates the number, type, and magnitude of the considered electrical and me-
chanical loads, the geometry of the investigated plates and shells, the boundary
conditions, the type of analysis, and the chosen 2D model. The output files give
the amplitudes through the thickness direction of the displacements, stresses,
strains, electric potential, electric field components, and electric displacements;
these quantities can be obtained directly from the model if they are primary vari-
ables in the proposed 2D theory, otherwise they are obtained from opportune
constitutive equations, after a dedicated post-processing.

The two main input files can also be compiled by means of opportune
graphical interfaces, as described at http://www.mul2.com. The structures of
these two files are given in Figures 9.1 and 9.2 for the material data and for the
loading, the geometry, and the 2D theory data, respectively. In the first file, we
indicate the total number of embedded layers in the multilayered piezoelectric
plate or shell (N;), and a number of blocks equal to N, is obtained which de-
scribe the elastic and piezoelectric properties of each embedded layer. In the
first line of each block, k indicates the layer, /4 is the thickness of the kth layer,
and 6, indicates the in-plane orthotropic angle of each k layer with respect to
the global reference system (x,y,z) (Reddy 2004). The second line contains the
three Young’s moduli in the material reference system (1, 2, and 3 direction
components), while the third and fourth lines contain the shear moduli and the
Poisson ratio components, respectively. The fifth line indicates the mass density
of the material and the sixth line contains the dielectric coefficients. Finally,
the last line has the five piezoelectric coefficients that are different from zero in
the case of the analytical closed-form solution (a schematic description of this
file is given in Figure 9.1). The second file, which is briefly described in Figure
9.2, contains further information for correct functioning of the MUL?2 software.
The first line contains the number that indicates the chosen order of expansion
in the thickness direction for the modeled mechanical and electrical variables
(N from 1 to 4). The next line contains the index, which specifies whether the
displacement components are modeled in ESL, LW, or ESL+ZZ form; all the
other electromechanical variables are always modeled in LW form. The third
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Material data

@ |Tota| number of layers, a number of blocks equals Nifollows

—
Index for the layer, thickness of the layer k, angle for the in-plane
orthotropy
—
|Young’s moduli in the 1,2,3 directions |
—
|Shear moduli components |
—
|Poisson ratio components |
—
@ |Mass density |
—
|Die|ectric coefficients |

€15,624,€31,€32,€33 |Piezoe|ectric coefficients |

Figure 9.1 Analytical closed-form solution MUL2 software: description of
the input file containing the material data of the embedded layers.

line permits one to choose the opportune variational statement, PVD (where
the displacement and electric potential are primary variables), or one of the
three possible extensions of RMVT (where the additional primary variables
are the transverse stresses and/or the transverse normal electric displacement).
In the fourth line, it is possible to specify whether the structure has a plate or
shell geometry, and in the next line one chooses the type of analysis, which
can be either static or dynamic (typical free-vibration problem). The MUL2
software also allows one to obtain classical theories, if an ESL theory with
linear expansion in the thickness direction based on the PVD(u,®) variational
statement is considered. The sixth line permits the CLT or FSDT analysis to
be set by means of a typical penalty technique. The next line pertains to the
geometry: @ and b are the plate or shell in-plane dimensions, and 1/R, and
1/Rg are curvatures where R, and Ry indicate the mean value of the radii of
curvature in the o and B directions, respectively (1/R, and 1/Rg are zero for
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Other data

—

@ Order of expansion in the thickness direction for the electro-
mechanical variables

—

Multilayer approach for the displacement (ESL, ESL+ZZ, LW), the
other variables are LW

Employed variational statement which can be PVD(u,$), RMVT(u,$,on)

RMVT(u,$,Dn), RMVT(u,$,Gn,Dn)

—

@ Index to specify plate or shell geometry

Index to specify static or dynamic (free vibration) analysis

Index to specify CLT or FSDT theory when N=2, APP=ESL and VAR-
STAT=PVD(u,$)
a, b, 1/Ra, 1/Rp a and b are the in-plane dimensions, 1/Raand1/Rp are the curvatures

which are zero for the plate geometry

—

@ Imposed wave numbers in the in-plane directions for harmonic loads
and response variables

Transverse mechanical loads in x, y and z directions applied at the

top of the structure

Transverse mechanical loads in x, y and z directions applied at the
bottom of the structure

—

Electric boundary conditions which can be ¢=¢»=0, or ¢+=1 and

$hb=0, or free electric potential at the top and bottom surfaces

Figure 9.2 Analytical closed form solution MUL2 software: description of
the input file containing the data for geometry, 2D approaches, and loading
conditions.
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a plate geometry). The eighth line indicates the wave numbers m and »n in
the in-plane directions for the harmonic form of the mechanical and electrical
loads and for the response variables. The ninth and tenth lines contain the
transverse mechanical loads in the x, y, and z directions which are applied at
the top (t) and bottom (b) of the multilayered structure, respectively. The last
line is for the electrical boundary and loading conditions, and it is here that one
indicates whether the multilayered structure is an open-circuit configuration
(free electric potential at the external surfaces) or a closed-circuit configura-
tion (zero electric potential applied at the top and bottom surfaces). It is also
possible to apply an electric potential at the top, while the bottom surface is set
to zero.

Some examples of the output files are given in Figures 9.3 and 9.4. In
the first figure, the three displacement components (i, v, and w) are given in
the second, third, and fourth columns; the first column indicates the thick-
ness coordinate z, which goes from —h/2 to +h/2, where h is the total
thickness of the multilayered structure; u, v, and w are given in terms of
maximum amplitudes in the plane. Figure 9.4 is an example of an output
file for the three transverse stresses obtained from the governing equations,
if a RMVT application is employed. In the case of a shell geometry, oy,
0p., and o.. are given in the second, third, and fourth columns, respec-
tively, in terms of maximum amplitudes. The first column is for the thickness
coordinate z.

Output file for displacement components

& O O

-0.50000000E+00
-0.40000000E+00
-0.30000000E+00
-0.20000000E+00
-0.10000000E+00
0.00000000E+00
0.10000000E+00
0.20000000E+00
0.30000000E+00
0.40000000E+00
0.50000000E+00

0.31159921E-06
0.29415142E-06
0.27670364E-06
0.25925585E-06
0.24180806E-06
0.22436028E-06
0.20691249E-06
0.18946470E-06
0.17201691E-06
0.15456913E-06
0.13712134E-06

0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00

0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06
0.67308084E-06

Figure 9.3 Analytical closed-form solution MUL2 software: description of
the output file containing the three displacement amplitudes in the thickness
direction z.
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Output file for transverse stress components
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O,

-0.50000E-01
-0.40000E-01
-0.30000E-01
-0.20000E-01
-0.10000E-01

0.27992E-03
0.85946E+01
0.15279E+02
0.20053E+02
0.22918E+02

0.00000E+00 0.23873E+02

0.10000E-01
0.20000E-01
0.30000E-01
0.40000E-01

0.22918E+02
0.20053E+02
0.15279E+02
0.85946E+01

0.27992E-03
0.85946E+01
0.15279E+02
0.20053E+02
0.22918E+02
0.23873E+02
0.22918E+02
0.20053E+02
0.15279E+02
0.85946E+01

0.00000E+00
0.28002E-01

0.10400E+00
0.21600E+00
0.35200E+00
0.50000E+00
0.64800E+00
0.78400E+00
0.89600E+00
0.97200E+00

0.50000E-01 0.27850E-03 0.27850E-03 0.10000E+01

Figure 9.4 Analytical closed-form solution MUL2 software: description of
the output file containing the transverse stress amplitudes in the thickness
direction z.

The computing architecture of the MUL?2 software can be divided into eight
main parts, which are summarized in Figure 9.5. The first part of the code reads
the input data given in the two files shown in Figures 9.1 and 9.2, and in this
way, MUL2 obtains all the information about the material properties of the
embedded layers, the geometry of the structure and its stacking layer config-
uration, the loadings and boundary conditions, the chosen 2D theory, and the
type of analysis, which can be either static or dynamic (free-vibration problem).
In the second part of the code, the material coefficients (elastic, piezoelectric,
and dielectric ones) are positioned in the matrices of the constitutive equations
(see Equations (2.25)—(2.30)) (Ikeda, 1996). These matrices are transformed
from the material reference system (1,2,3) to the problem reference system
(x,y,z) by means of the rotation matrix which considers the orthotropic angle
0r (Reddy, 2004). These matrices are ready for the PVD application; when one
of the three possible extensions of the RMVT application is considered, the
new coefficients are calculated (see € in Equations (2.65) and (6.87)-(6.102),
C in Equations (2.79) and (6.139)—(6.154), and C in Equations (2.88) and
(6.207)—(6.222)). The code calculates the in-plane dimensions and radii of cur-
vature at each thickness coordinate z;, the total thickness of the multilayered
structure, and the reference system positioned at the middle surface of each
layer from the geometrical data (in-plane dimensions, radii of curvature at the
reference middle surface in the case of shells, and the thickness of each layer
k). These first two parts constitute the pre-processing of the MUL?2 software.

The MUL2 software contains all the fundamental nuclei in explicit al-
gebraic form, as already shown in Equations (7.42)—(7.46) for PVD(u, @),



MUL2 FOR PLATES AND SHELLS: ANALYTICAL SOLUTIONS 261

Computing architecture of the MUL2 software

- Material coefficients in the

problem reference system;
- Reading of input files. | ———3J» | - definition of the plate or PRE-PROCESSING

shell geometry.

- Substitution of material and
geometrical data in fundamental

nuclei; - Multilayer assembling

- expansion of fundamental » | procedure in ESL or LW ASSEMBLING
nuclei according to N; form

- computing of integrals in z )

direction for the thickness

functions.

- Definition of the vector - Solving of the static problem

containing the electrical and Kx=F;

mechanical loads; Ik solving of the free vibration SOLVER

- application of penalties for problem K*-c;M=0.

boundary conditions.

- Reconstruction of the primary - Reconstruction of the other

variables in the thickness electrical and mechanical POST-PROCESSING
direction from the vector of — | variables by using the

unknowns X. constitutive equations.

Figure 9.5 Computing architecture of the analytical MUL2 software.

Equations (7.75)—(7.83) for RMVT(u, ®, a,), Equations (7.111)—(7.119) for
RMVT(u, ®, D,), and Equations (7.156)—(7.171) for RMVT(u, ®,0,, D,)
(Carrera et al., 2008; 2010). These nuclei are only introduced for the shell
geometry because they simply degenerate into those for cylindrical shell or
plate geometries when one of the radii of curvature or both are infinite. The
third part of the code substitutes the geometrical and material data in the oppor-
tune fundamental nuclei, depending on the chosen variational statement, then
it expands the fundamental nuclei in the t and s directions (see Figures 6.10
and 6.11) according to the chosen order of expansion in the thickness direction
for the considered plate/shell theory. These expanded nuclei are given for each
k layer embedded in the multilayered structure. Finally, the integrals in the z
direction inside the fundamental nuclei (see Equations (6.41) for plates and
(7.41) for shells) are numerically computed. The thickness functions F, and
F, included in these integrals, can be seen in ESL (use of Taylor expansion)
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or LW (use of combinations of Legendre polynomials) form. The integrals
in the z direction are computed by means of Gauss points and weights; six
Gauss points are sufficient for an excellent approximation. These expanded
fundamental nuclei are calculated for each k layer. The fourth part of the code
permits the multilayer assembly procedure, as already shown in Figures 6.10
and 6.11, to be conducted. The obtained fundamental nuclei can be of type K ,,,,
K,,, K,,, or K;, (Carrera et al., 2008; 2010). The first type is assembled as
ESL in row and column directions, as in the case of the ESL theory, and as
LW in row and column directions, as in the case of the LW theory. The second
type is assembled as ESL in the row direction and LW in the column direction,
as in the case of the ESL theory, and as LW in row and column directions, as
in the case of the LW theory. The third type is assembled as LW in the row
direction and ESL in the column direction, as in the case of the ESL theory,
and as LW in row and column directions, as in the case of the LW theory. The
last type is always assembled as LW in row and column directions for both the
ESL and LW theories. The multilayer assembly procedure is accomplished by
means of an opportune connectivity matrix, through the thickness direction,
which permits one to understand when the matrices are simply summed or
when the compatibility and/or equilibrium conditions at each layer interface
must be enforced. These two blocks constitute the assembly procedure of the
MUL2 software.

The algebraic governing equations, in closed form, have the structure that
has already been described in Equations (6.30) and (7.30) for PVD(u, ®),
in Equations (6.58) and (7.58) for RMVT(u, ®, 0,), in Equations (6.110)
and (7.94) for RMVT(u, ®, D,), and in Equations (6.162) and (7.130) for
RMVT(u, ®,0,, D,). In the fifth part of the code, the mechanical loads at the
top and bottom surfaces of the structure are introduced into the pfw vector,
according to the direction and position of the transverse mechanical load.
The electrical loads are given directly, in terms of electric potential, which is
introduced into the ®* vector; no variationally consistent electric loads p’
are considered. In the case of closed- and open-circuit configurations, the
boundary conditions for the electric potential are directly imposed in the ®*
vector (Carrera and Brischetto, 2007a,b). In the sixth part of the code, the system
of governing equations is solved; for a static problem, the code solves a general
system of the type Kx = F, where x are the unknowns and F is the load
vector. In the case of free-vibration analysis, a typical eigenvalue problem is
solved for a general system of the type K* — w>M = 0; the eigenvalues are the
frequencies and the relative eigenvector is computed for each value. This makes
it possible to obtain the vibration modes of the structure in terms of primary
variables. The matrix K* is obtained after an opportune static condensation of
the electromechanical matrices. The fifth and sixth parts constitute the solver
of the MUL2 software.
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The post-processing is divided into two parts: first the vector of unknowns x
is employed to recover the values of the primary variables through the thickness
direction. For example, the displacement components through the thickness di-
rection (see Figure 9.3) in the case of an ESL approach are obtained using
Equations (6.2) where the thickness functions are the Taylor polynomials of
Equations (6.3); the unknowns in the vector x are u,, v;, and, w, and they
permit one to obtain #, v, and w through an opportune substitution of the thick-
ness coordinate in the thickness functions of Equations (6.3). In the case of a
LW approach, Equations (6.9) are used, in which the thickness functions are a
combination of Legendre polynomials, as given in Equations (6.11) and (6.12),
the unknowns in the vector x are u’é, v’;, and, wlg', and they permit u, v, and w
to be obtained through an opportune substitution of the thickness coordinate in
the thickness functions of Equations (6.11) and (6.12). The displacement is a
primary variable in the PVD variational statement and in each extension of the
RMVT approach. The transverse stresses shown in Figure 9.4 are given through
the thickness, in such a form, when they are primary variables in the chosen
governing equations (the RMVT(u, ®, 6,,) and RMVT(u, ®, 0, D,) cases).
Transverse stresses are always recovered in LW form; as shown in Equations
(6.16), the vector x contains the unknowns o, o} ., and o, for the plate
case and ok, o/;f”, and oX _ for the shell case. The thickness functions, in
terms of combinations of Legendre polynomials, are those in Equations (6.11)
and (6.12) and the opportune value of z; is substituted in these equations. In
the case of RMVT(u,®,0,,D,) and RMVT(u,®,D,), the primary variable
fo is obtained by means of Equation (6.20), where the vector of unknowns
x also contains DX ; this variable is always in LW form. ®* is a primary
variable in each electromechanical problem and it is always considered in
LW form by means of Equation (6.15), where the unknown ®* is considered
inside the vector x. The second part of the post-processing permits one to
recover the other quantities, which are not primary variables in the proposed
governing equations through the thickness direction of the structure. In this
case, we use the constitutive equations given in Equations (6.23)—(6.25) for the
PVD(u, ®) case, and in Equations (6.53)—(6.56) for RMVT(u, ®, 6 ,), in Equa-
tions (6.105)—(6.108) for RMVT(u, ®, D,), and in Equations (6.157)—(6.160)
for RMVT(u, ®, 0,, D,) cases. In order to use such constitutive equations, it
is necessary to calculate some derivatives to obtain the mechanical strains and
the electric field (see Equations (2.31), (2.32), (2.35), and (2.36) for shells, and
Equations (2.38)—(2.41) for plates). The derivatives are calculated exactly, by
means of the harmonic forms, for the analytical code. Another advantage of the
closed form of the MUL2 software is that it does not need any post-processing
in the plane because it only works on the amplitudes of the variables. If a
value is needed in a different point in the xy-plane, it is sufficient to use the
harmonic forms.
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9.1.1 Classical plate/shell theories as particular cases in the
MUL2 software

Classical plate/shell theories can be considered as particular cases of refined
2D theories on the basis of the CUF. Classical theories were obtained in
Sections 6.10 and 7.10 as particular cases of the ESL theory with a lin-
ear order of expansion in the thickness direction (ED1) for plate and shell
geometries, respectively. CLT and FSDT, employed for the analysis per-
formed in this chapter, have been proposed in the framework of the MUL?2
code and include the displacement kinematics, as hypothesized by Kirchhoff
(Kirchhoff, 1850) and Reissner and Mindlin (Reissner 1945; Mindlin 1951),
respectively, and the electric potential in LW form with linear expansion in the
thickness direction.

MUL2 obtains CLT(u, ®) and FSDT(u, ®) from the ED1(u, ®) theory.
In the input files, the data are set for the ED1(u, ®) model, which means
a PVD(u, ®) variational statement with linear displacement components in
the thickness direction (N = 2 terms of expansion for each component) in
ESL form and linear electric potential expanded in the z direction in LW
form. When CLT or FSDT is set in CLASSICAL data (see Figure 9.2),
the MUL?2 software obtains these theories from the ED1(u, ®) model, via
typical penalty techniques, which will be discussed in the second part of
this section.

By referring to Equation (6.231), it is possible to directly write the
EDI1(u, ®) kinematic model for a spherical shell geometry (the MUL2 code
analyzes cylindrical shells and plates as particular cases by setting one of the
radii of curvature (R, Rg), or both, to infinity, in the fundamental nuclei):

ua, B.z) = uolet, B) + zuy (e, p)
v(a, B, 2) = vo(a, B) + zvi(a, B)
w(e, B, 2) = wolet, B) + zwi(a, B) 9.1)
(e, B, 2) = Fi®f (e, B) + Fy®y(a, B)

The three displacement components in Equation (9.1) show a typical linear
Taylor expansion (N =2 terms for each component through the thickness)
and the electric potential is linearly expanded for each k layer in LW form
(where the subscripts ¢ and b indicate the top and bottom of each layer £,
respectively, and F, and F), are the thickness functions obtained as combi-
nations of Legendre polynomials). The CLT(u, ®) and FSDT(u, ®) theories
have the same expansion as the electric potential discussed in Equation (9.1),
while the displacement kinematics are those already given in Equation (3.3)
of Section 3.3.1 and in Equation (3.4) of Section 3.3.2 for CLT(u, ®) and
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Application of penalty technique in
order to obtain w1=0.

Figure 9.6 Penalty applied to the stiffness matrix of ED1(u, ®) theory to
impose zero w; component.

FSDT(u, ®), respectively (see Kirchhoff 1850, Mindlin 1951, and Reissner
1945 for further details).

FSDT(u, ®) is obtained from an EDI(u, @) model by simply imposing
a constant transverse displacement through the thickness direction z, which
means a zero wy component is obtained. In this way, the components u; and v,
are the typical rotations of the FSDT model around the in-plane axes. Figure 9.6
shows the fundamental nucleus for the mechanical part that is expanded in the t
and s directions, according to the kinematic model of Equation (9.1). By means
of a penalty application to the term K 1,1, we obtain the model for FSDT(u, ®),
where w(w, B, z) = wo(e, B) = constant and the electric potential is linear in
LW form.

CLT(u, @) is obtained from the FSDT(u, ®) theory by simply considering
an infinite shear rigidity which permits one to obtain the zero transverse shear
strains y,. and y,.. In this way, on the basis of the FSDT(u, ®) kinematic
displacement model, the two terms u; and v; can be written as the partial
derivatives of the middle transverse displacement dw,/dx and dwy/dy (for
the plate case). The MUL?2 software obtains such a result by acting on the
constitutive equations and penalizing the elastic coefficients Q44 and Qss; in
the constitutive equations of the MUL2 software, such coefficients are mul-
tiplied by the shear correction factor y, which can also be used to improve
the FSDT results. If this shear correction factor is set to infinity, we obtain
¥yz = ¥x: = 0 by means of a typical penalty technique (see Figure 9.7 for fur-
ther details). The coefficients Q 6, Q26, Q36, and Qus in Figure 9.7 are set to
zero in order to obtain analytical closed-form solutions (see Equation (2.16) for
comparison purposes).
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Figure 9.7 Penalty applied to the elastic coefficients matrix to impose zero
¥y- and . transverse shear strains.

The thickness locking (TL) mechanism, also known as the Poisson locking
phenomenon, appears in each ESL theory with constant or linear expansion
of the transverse displacement through the thickness (which means zero or
constant transverse normal strain, respectively). This is caused by the use
of simplified kinematic assumptions in the plate/shell analysis (Carrera and
Brischetto 2008a,b). Two-dimensional plate/shell structures can be analyzed
as particular cases of a three-dimensional (3D) continuum by eliminating, via
a priori integration, the thickness coordinate z. Such an integration can be
made according to two different methods: asymptotic expansion methods or
axiomatic methods. The introduction of axiomatic and/or asymptotic approx-
imations could introduce some undesirable mechanisms which are not found
in the 3D solution. One of these is Poisson locking, which is related to the
use of the plane strain/plane stress hypothesis in thin plate/shell theories. The
analysis of thin plate/shell problems is in fact often associated to plane stress
assumptions (thin surface problem), while a plane strain hypothesis usually
refers to a beam theory. Discussions on plane strain, plane stress, and/or plane
elastostatic problems can also be found in Carrera and Brischetto (2008a,b)
and Sokolnikoff (1956). However, in most ESL theories, the assumptions on
strain fields are conflicting. The plane strain assumptions are:

Vyz = Vxz = €2z = 0 9.2)
and they are used in place of the more natural plane stress assumptions:

Oy; = Ox; = 07z = 0 (93)
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This contradiction introduces a “locking mechanism” that makes the plate/shell
model no longer applicable in some cases. Thickness locking (also known as
Poisson locking) is the name that has been given to this mechanism: TL does
not permit that ESL analyses with constant or linear transverse displacement w
through the thickness lead to 3D solutions in thin plate problems. One technique
that can contrast TL consists of modifying the elastic stiffness coefficients by
forcing the “contradictory” condition known as the transverse normal stress
zero condition:

0. =0 94

This method is used in the MUL2 software to contrast the Poisson locking
that appears in CLT, FSDT, EDI1 theories for pure mechanical problems, while
Poisson locking is not corrected in the MUL2 code for electromechanical
analysis. Poisson locking appears if, and only if, a plate theory shows a con-
stant distribution of transverse normal strain €.,; in other words, to avoid TL,
the plate/shell theories would require at least a parabolic distribution of the
transverse displacement component w. Hooke’s law presented in Chapter 2 is
suitable for such theories. For these reasons, all the MUL?2 theories that are
different from CLT, FSDT, and ED1 models do not have Poisson locking phe-
nomena and do not need any correction of the elastic coefficients. For further
details, see the complete discussion reported in the books by Librescu (1975),
Reddy (2004), Washizu (1968) as well as the discussion quoted in Carrera and
Brischetto (2008a,b).

The modified stiffness coefficients (also known as reduced stiffness
coefficients) can be obtained by imposing the condition 0., = 0 in the equations
in Figure 9.7. These reduced elastic coefficients are indicated as Q; ;> and they
are used in ESL theories, with constant or linear transverse displacement w in
the thickness direction, in order to avoid the Poisson locking phenomena:

Oxx = Qi€ + O12€yy + Q 136z 9.5)
Oy = Q€ + 006y, + On€;; 9.6)
0z: = Q13€xc + 0236y, + 0336, 9.7
0y: = Qa4Yy: (9.8)
Oy: = O55Va: 9.9)
Oxy = Q66Yxy (9.10)

A new form of the transverse normal strain €,,, coherent with the phys-
ical strain of the problem, is obtained by imposing the condition 0., = 0 in
Equation (9.7). This form is used in the constitutive equations in place of the
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geometrical relation of €., which is incoherent with the physical strain and
causes the Poisson locking phenomena. This substitution leads to the modified
elastic coefficients ;; which correct the Poisson locking phenomena:

013 0x
———€xx

— ==
X vy
033 033

€z =

©.11)

By substituting Equation (9.11) in Equations (9.5)—(9.10), we obtain:

2
o = <Q11 - @}M + <Q12 - Q”Q23>eyy ©.12)

033 033

020 03
Oyy = (le - 2Q33313>6X.x’ + (sz - Q—jz)ew (9.13)
Oy; = Q44yy2 (9.14)
Ox; = QSSVXZ (915)
Oxy = Q66Vxy (9.16)

In this way, the new reduced elastic coefficients used to avoid the Poisson
locking phenomena in the MUL2 software, in the case of pure mechanical
problems, are:

033
5 %
On = (sz — @)
9.17)
OQu = Qu
Oss = Oss
066 = Qoo

LW theories, with a linear expansion in the thickness direction for w, do
not show TL because the transverse normal strain has a piecewise constant
distribution along the thickness direction z.
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9.2 The MUL2 software for plates: FE solutions

The MUL?2 software has also been implemented in FE form in order to over-
come the main limitations given by the analytical closed-form solution (e.g.,
simply supported multilayered structures subjected to harmonic mechanical
and electrical loads, the elastic coefficients Q 4, O26, O3, and Q4s, the piezo-
electric coefficients e»s, €14, and e3¢, and the dielectric constant £, are set to
zero in order to obtain a closed form for governing equations). The computing
architecture of the FE version is very similar to that already proposed for the
analytical closed-form version. In the FE code, the fundamental nuclei are those
that were dealt with in Chapter 8 where the assembly procedure considers the
indexes T and s for the order of expansion, i and j for nodes, and k for the
multilayer level. In the analytical closed-form version, the fundamental nuclei
are those of Chapter 7 for shells (plates are considered as particular cases),
where the indexes i and j for nodes are not considered because they work on
amplitudes. The FE code has two main input files: the first file concerns the
embedded layers in the multilayered structures (their thickness, the stacking
sequence, and their elastic and piezoelectric properties) and the second one
indicates the number, type, and magnitude of the considered electrical and
mechanical loads, the geometry of the investigated plates, the boundary con-
ditions, the type of analysis, the chosen 2D model, and the information for
the post-processing. The output files give the values through the thickness di-
rection of the displacements, stresses, strains, electric potential, electric field
components, and electric displacements; these quantities can be obtained di-
rectly from the model if they are primary variables in the proposed 2D theory,
otherwise they are obtained from the opportune constitutive equations after a
dedicated post-processing. They are not the amplitude values, as in the analyt-
ical closed-form version, but they are generic values in particular points in the
xy-plane.

The two main input files can also be compiled by means of opportune
graphical interfaces, as described at http://www.mul2.com. The structures of
these two files are briefly explained here. The material data file is the same
one that was explained in Figure 9.1 and in the previous section. Its structure
is identical to that of the analytical code: the total number of embedded layers
in the multilayered piezoelectric plate (V;) is indicated, therefore a number of
blocks equal to N; are obtained which describe the elastic and piezoelectric
properties of each embedded layer. In the first line of each block, & indicates
the layer, 4 is the thickness of the kth layer, and 6; indicates the in-plane or-
thotropic angle of each layer £ with respect to the global reference system (x,y,z)
(Reddy 2004). The second line contains the three Young’s moduli in a material
reference system (1, 2, and 3 direction components), the third and fourth lines
contain the shear moduli and Poisson ratio components, respectively. The fifth
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line indicates the mass density of the material and the sixth line contains the
dielectric coefficients. Finally, the last line has the five piezoelectric coefficients
(a schematic description of this file has already been given in Figure 9.1). The
second file contains further information for a correct functioning of the FE
MUL2 software. Some differences can be noted with respect to the analytical
code. This input file for the FE code is briefly described in Figure 9.8 and the
main differences, with respect to the analytical code file (see Figure 9.2), are
pointed out. The missing data, compared to the analytical case, are ISHL (see
Figure 9.2) and (1/R,, 1/Rp) since the shell geometry is not implemented,
(m,n) and loadings at the top and bottom, because there are many possibilities
of load applications. The first line contains the number that indicates the chosen
order of expansion in the thickness direction for the modeled mechanical and
electrical variables (N from 1 to 4). The next line shows the index that specifies
whether the displacement components are modeled in ESL, LW, or ESL+ZZ
form. All the other electromechanical variables are always modeled in LW
form. The third line permits one to choose the opportune variational statement,
PVD, where displacement and electric potential are primary variables, or one of
the three possible extensions of RMVT, where the additional primary variables
are the transverse stresses and/or the transverse normal electric displacement.
In the fourth line, it is possible to choose the type of analysis, which can either
be static or dynamic (typical free-vibration problem). The MUL?2 software also
allows one to obtain classical theories, if an ESL theory with linear expansion
in the thickness direction based on a PVD(u,®) variational statement is con-
sidered. The fifth line permits one to set the CLT or FSDT analysis by means
of a typical penalty technique (for details see Sections 9.1 and 9.1.1 for the
analytical closed-form case). The next line concerns the geometry, where a and
b are the in-plane dimensions of the plate, and it is possible to specify the type
of boundary conditions for each plate side (simply supported, clamped, and so
on). The seventh line gives indications on the mesh, in other words, the number
of elements in the x and y directions and the number of nodes for each element
(Q4, Q8, and Q9 types of elements). The eighth line gives information about the
loading conditions, which are more detailed compared to the analytical closed-
form version. It is necessary to indicate whether the load is harmonic (and
the imposed wave numbers), concentrated, uniform, or distributed, together
with its position, magnitude, and direction. The ninth line is for the electrical
boundary and loading conditions; here it is necessary to indicate whether the
multilayer structure is an open-circuit configuration (free electric potential at
the external surfaces) or a closed-circuit configuration (zero electric potential
applied at the top and bottom surfaces). It is also possible to apply an electric
potential at the top, with the bottom surface set to zero. The tenth line permits
one to choose between several types of integrations in the xy-plane in order
to prevent the numerical locking phenomena (normal, reduced, or selective



MUL2 FOR PLATES: FE SOLUTIONS 271

Other data

—

@ Order of expansion in the thickness direction for the electro-
mechanical variables

—

Multilayer approach for the displacement (ESL, ESL+ZZ, LW), the
other variables are LW

Employed variational statement which can be PVD(u,$), RMVT(u,$,0n),
RMVT(u,$,Dn), RMVT(u,$,cn,Dn)
Index to specify static or dynamic (free vibration) analysis

Index to specify CLT or FSDT theory when N=2, APP=ESL and VAR-
STAT=PVD(u,¢)

a and b are the in-plane dimensions. In vinc-sides the type of
boundary conditions for each plate side is chosen

NEx and NEy are the number of elements in x and y directions,

NNE are the number of nodes for each element (Q4,Q8,Q9)

OAD COND Type of loading (uniform, harmonic, concentrated), position in the

plane and through z, magnitude, direction

—

Electric boundary conditions which can be ¢=¢»=0, or ¢+=1 and

hb=0, or free electric potential at the top and bottom surfaces

In the in-plane directions the integration can be normal, reduced
or selective in order to avoid numerical locking phenomena
Post-processing can be considered through the thickness direction

(fixed position in the plane) or in the plane (fixed z coordinate)

Figure 9.8 FE MUL2 software: description of the input file containing the
data for geometry, 2D approaches, loading and boundary conditions, mesh, and
post-processing.
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integration). The last line gives information on the post-processing, which
is more complete than in the analytical case, where only the amplitudes
were plotted through the thickness direction; the position can be fixed in the
xy-plane and the variables can be evaluated through the thickness direction, or
the variables can be evaluated in the xy-plane for a fixed value of the z coordi-
nate. When a point in the xy-plane is fixed, the output files have the same format
as those already given for the amplitudes in the analytical case (see Figures 9.3
and 9.4).

The computing architecture of the FE version of the MUL2 software is
quite similar to that already proposed for the analytical closed-form version.
This architecture can be divided into eight main parts, which are summarized
in Figure 9.9. The first part of the code reads the input data given in the

Computing architecture of the MUL2 software

- Material coefficients in the
problem reference system;

- Reading of input files. | ———3» | - definition of the geometry; PRE-PROCESSING
- definition of mesh and dof.

- Substitution of material and - Multilayer assembling

geometrical data in fundamental procedure in ESL or LW

nuclei; form at node level;

- expansion of fundamental > |- assembling node- ASSEMBLING
nuclei according to N at node element at multilayer level;

level; - definition of in-plane

- computing of integrals in z integrals by Gauss points

direction for the thickness and elements assembling.

functions.

- Definition of the vector - Solving of the static problem

containing the electrical and Kx=F;

mechanical loads; e JH solving of the free vibration SOLVER
- application of penalties for problem K*-¢iM=0.

boundary conditions.

- The unknowns x are - Reconstruction of the other

calculated in the nodes; electrical and mechanical

- the unknowns in a generic variables by using the

point are obtained from x in the constitutive equations;

nodes via shape functions; ———p | - the useful derivatives are POST-PROCESSING
- variables evaluated through numerically calculated via

the thickness via thickness derivation of shape functions.

functions.

Figure 9.9 Computing architecture of the FE MUL2 software.
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two files shown in Figures 9.1 and 9.8. In this way, MUL2 obtains all the
information about the material properties of the embedded layers, the geometry
of the structure and its stacking layer configuration, the loadings and boundary
conditions, the chosen 2D theory, the type of analysis which can be either static
or dynamic (free vibration problem), the mesh, and type of post-processing
(Carrera 2002). In the second part of the code, the material coefficients (elastic,
piezoelectric, and dielectric) are positioned in the matrices of the constitutive
equations (for the FE approach, the constitutive equations are grouped in only
one Equation (8.40) with the matrix of coefficients, as in Equation (8.39), and
vectors containing all the electromechanical variables, as in Equations (8.37)
and (8.38)) (Ikeda 1996). This matrix is transformed from the material reference
system (1,2,3) to the problem reference system (x,y,z) by means of the rotation
matrix which considers the orthotropic angle 6; (Reddy 2004). This matrix is
ready for the PVD application; when one of the three possible extensions of
the RMVT application is considered, the new coefficients are calculated (see
Sections 8.4, 8.5, and 8.6). From the geometrical data (in-plane dimensions
and the thickness of each k layer) and the information concerning the mesh
(number and type of elements employed), the code approximates the structure
by means of the FE method. These first two parts constitute the pre-processing
of the MUL2 software.

The FE MUL?2 software contains all the fundamental nuclei, in explicit
form, as one large equivalent fundamental nucleus containing all the informa-
tion about the problem. For further details, see the variational statement and the
fundamental nucleus for PVD(u, @) in Equations (8.47), (8.51), and (8.52), for
RMVT(u, ®, ,) in Equations (8.47), (8.76), and (8.77), for RMVT(u, ®, D,
in Equations (8.47), (8.101), and (8.102), and in Equations (8.47), (8.125), and
(8.126) for RMVT(u, ®,0,, D,) (Carrera and Boscolo 2007; Carrera et al.,
2007; 2008). The third part of the code substitutes the geometrical and ma-
terial data in the opportune fundamental nucleus, on the basis of the chosen
variational statement, and then expands the fundamental nucleus in the T and
s directions at the node level (see Figure 8.10) according to the chosen order
of expansion in the thickness direction for the considered plate theory. This
expanded nucleus is given for each k layer embedded in the multilayered struc-
ture for a generic node; the integrals in the z direction inside the fundamental
nuclei (see Sections 8.4, 8.5, and 8.6) are numerically computed. The thickness
functions F; and F, included in these integrals, can be considered in ESL (use
of Taylor polynomials) or LW (use of combinations of Legendre polynomials)
form. The integrals in the z direction are computed by means of Gauss points
and weights. These expanded fundamental nuclei are calculated for each k layer
at the node level, and, remaining at the node level, the fourth part of the code
conducts the multilayer assembly procedure which can be either ESL or LW.
The multilayer assembly procedure is accomplished by means of an oppor-
tune connectivity matrix, through the thickness direction, which permits one to
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understand whether the matrices are simply summed or whether the compatibil-
ity and/or equilibrium conditions at each layer interface must be enforced. The
other steps concern the nodes—element and the elements—structure assembly
procedures; these two steps are new, if compared to the analytical MUL2 soft-
ware application (Carrera 2002). In the FE version, numerical evaluation of the
integrals of the shape functions in the xy-plane by means of opportune Gauss
points and weights is fundamental. These two blocks constitute the assembly
procedure of the MUL?2 software.

The governing equations in FE form have the structure that has al-
ready been described in Equation (8.47) for PVD(u, ®), RMVT(u, ¢, 0,),
RMVT(u, ®, D,), and RMVT(u, ®,0,, D,). Only the meanings and forms

of matrix K““"*/_ and vectors 0" and F gj-)k, are different. In the FE ver-
sion, the use of a single fundamental nucleus for each variational statement
permits one to have the same compact form of the governing equation for each
variational statement; the differences only concern the components that are
included in each matrix and vector. In the fifth part of the code, the mechanical
loads at the top and bottom surfaces of the structure and the electrical loads are
introduced into the single vectors Fij.)k and 0" depending on their direction
and position. Several forms of these loads can be considered, compared to the
analytical case (harmonic, concentrated, distributed, and uniform loads in the
xy-plane). In the case of closed- and open-circuit configurations, the boundary
conditions for the electric potential are imposed directly in the ®* vector (Car-
rera and Brischetto 2007a,b). In the FE code, penalty techniques are applied for
both boundary loading conditions and boundary conditions on the plate sides.
In the sixth part of the code, the system of governing equations is solved; for
a static problem, the code solves a general system of the typeK x = F where
x are the unknowns at the nodes of the elements and F is the vector of the
loads. In the case of free-vibration analysis, a typical eigenvalue problem is
solved for a general system of the type K* — w>M = 0; the eigenvalues are
the frequencies, and the relative eigenvector is computed for each value. This
permits one to obtain the vibration modes of the structure in terms of primary
variables. The number of vibration modes obtained in a FE model depends
on the total number of degrees of freedom, which means both the degrees of
freedom of the employed 2D theory in the thickness direction and the degrees
of freedom in the xy-plane, depending on the mesh size. The fifth and sixth
parts constitute the solver of the MUL2 software.

The post-processing of the FE version of the MUL2 software is more com-
plicated than that discussed for the analytical version in the previous section (in
the analytical closed-form solution we only work on the amplitudes). However,
the post-processing can be divided into two parts. First, the vector of unknowns
x is employed to recover the values of the primary variables through the thick-
ness direction (the thickness-direction evaluation is obtained by means of the
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thickness functions). In the FE version, the unknowns x are given in the nodes,
therefore the code obtains the values at given generic points in the xy-plane
by means of the shape functions. The evaluation of the variables through the
thickness is given for a chosen point in the xy-plane. For example, the dis-
placement components through the thickness direction are given in a file, as
shown in Figure 9.3. The values for the analytical codes were the amplitudes,
whereas in the FE version, the file is proposed for a given point in the xy-plane.
In the case of the ESL approach, the evaluation in the thickness direction, for a
given point in the xy-plane, is obtained using Equations (8.6) and (8.9), where
the nodal values are multiplied by the thickness functions and by the shape
functions. In the ESL approach, the thickness functions are Taylor polynomi-
als, while the shape functions are the same for each multilayer approach. In
the case of the LW procedure, Equations (8.16) and (8.17) are used, where
the thickness functions are a combination of Legendre polynomials, and the
shape functions do not change with respect to the ESL case. The displacement
is a primary variable in the PVD variational statement and in each extension
of the RMVT approach. The transverse stresses shown in Figure 9.4 are given
through the thickness in such a form when they are primary variables in the
chosen governing equations (the RMVT(u, ®, 0,,) and RMVT(u, ®,0,, D,)
cases); transverse stresses are always recovered in LW form, as shown in
Equations (8.26) and (8.28). The x vector contains the nodal unknowns, and,
from these, we obtain the values through the thickness and in the xy-plane
by means of the thickness functions and the shape functions, respectively.
The electric potential is always a primary variable, whereas the transverse
normal electric displacement is a primary variable in RMVT(u, ®, D,) and
in RMVT(u, ®,0,, D,). In these cases, both variables are calculated in LW
form, as described in Equations (8.23) and (8.24) and in (8.32) and (8.33),
respectively. The second part of the post-processing permits one to recover
the other quantities through the thickness direction of the structure. These
are not primary variables in the proposed governing equations. In this case,
the constitutive equations are used as given in Equations (8.37)—(8.40) for the
PVD(u, ®) case, and in Equations (8.62)—(8.73) for RMVT(u, ®, 0 ,), in Equa-
tions (8.87)—(8.98) for RMVT(u, ®, D,), and in Equations (8.111)—(8.122)
for RMVT(u, ®, 0, D,) cases. In order to use such constitutive equations,
some derivatives must be calculated to obtain the mechanical strains and
the electric field (see Equations (8.41)—(8.42), (8.58)—(8.61), (8.83)—(8.86),
and (8.107)—(8.110) for PVD(u, ®), RMVT(u, ®, 6,), RMVT(u, ®, D,), and
RMVT(u, ®,0,, D,), respectively). The derivatives for the analytical code are
calculated precisely by means of the harmonic forms. Another advantage of
the analytical closed form of the MUL?2 software is that it does not need a
post-processing in the plane, as it only works on the amplitudes of the vari-
ables. The derivatives for the FE version are numerically calculated using the



276 MUL2 NUMERICAL EVALUATION AND ASSESSMENT OF THEORIES

derivation of the shape functions. In the FE MUL2 software, a post-processing
in the xy-plane is also considered, since it works on the nodal values.

The FE procedures for the degeneration of the refined theories into classical
theories (CLT and FSDT) and the correction of the Poisson locking phenomena
(in the case of pure mechanical problems) are the same as those already shown
for the analytical code in Section 9.1.1.

9.3 Analytical closed-form solution for the
electromechanical analysis of plates

This section discusses the main results of the electromechanical analysis of
multilayered piezoelectric plates for an analytical closed-form solution obtained
via the MUL2 code. Both actuator (applied electric voltage) and sensor (applied
mechanical load) cases are investigated for the static analysis, while the free
vibrations are evaluated, in the case of dynamic analysis, when the plate is
in a closed-circuit configuration (which means zero imposed electric voltage
at the top and bottom surfaces). In order to obtain an analytical closed-form
solution, each plate is considered as simply supported with harmonic loads.
The plates are square with in-plane dimensions @ = b = 0.04 m, and total
thickness 4,,; = 0.01 m and 4,,, = 0.0008 m for thickness ratios a/h = 4 and
a/h = 50, respectively. Each plate can have two different stacking sequences:

® a three-layered configuration, where the internal layer is in isotropic
aluminum alloy A12024 (h, = 0.84,,,) and the two external layers are in
piezoelectric material PZT-4 (hy = h3 = 0.1h;4,);

¢ a four-layered configuration, with two external layers in piezoelectric
material PZT-4 (h; = hy = 0.1h,,,) and two internal layers in carbon
fiber-reinforced material (Gr/Ep) (h, = h3 = 0.4h,,,) with lamination
sequence 0°/90°.

The elastic and electrical properties of the embedded materials are given in
Table 9.1. The actuator and sensor cases are described in Figure 9.10 where the
bisinusoidal form of the electric voltage and mechanical load is clearly shown:

e bisinusoidal (m = n = 1) electric voltage with amplitude = 1V at the
top with the bottom surface set to ® = 0 V (actuator case);

® bisinusoidal transverse (m = n = 1) pressure with amplitude p, = 1 Pa
applied at the top of the closed-circuit configuration plate with electric
potential ® = 0 V at the top and bottom (sensor case).

For the free-vibration analysis, the analytical code gives frequency values
that correspond to the degrees of freedom, through the thickness direction of
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Table 9.1 Electromechanical properties of the embedded
materials in the proposed structures.

PZT-4 Al2024 Gr/Ep
E, [GPa] 81.3 73.0 132.38
E, [GPa] 81.3 73.0 10.756
E; [GPa] 64.5 73.0 10.756
o [kg/m?] 7600 2800 1578
vi2[—] 0.329 0.3 0.24
vi3[—] 0.432 0.3 0.24
vo3[—] 0.432 0.3 0.49
Go3 [GPa] 25.6 28.0769 3.606
G 3 [GPa] 25.6 28.0769 5.6537
G2 [GPa] 30.6 28.0769 5.6537
e1s [C/m?] 12.72 — —
€24 [C/mz] 12.72 — —
€31 [C/mz] —5.20 — —
€32 [C/mz] —5.20 — —
e33 [C/m?] 15.08 — —
€11 [pc/V m] 13060 101.8 30.9897
&2 [pc/V m] 13060 101.8 26.563
&33 [pc/V m] 11510 101.8 26.563

the 2D model employed, for imposed wave numbers m =n =1, m =n = 2,
andm = n = 10. The investigated plate is in a closed-circuit configuration with
electric voltage ® = 0 V at the top and bottom surfaces, as described in Figure
9.11. Only the cases of composite layers are illustrated in Figures 9.10 and 9.11
for the sake of brevity.

s (mx ). (=
@, (x,y) =, sm(TJsm(Ty) p(x,y) = p, sin[ﬂ) sin["—y]
a b

444444444

Figure 9.10 Multilayered piezoelectric plate: actuator configuration (left) and
sensor configuration (right). Bisinusoidal distribution analyzed via analytical
closed-form solution.
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Figure 9.11 Closed-circuit configuration (electric potential ® is zero at the
external surfaces) for the free-vibration analysis of a plate.

The analytical solutions for the actuator case are given in Tables 9.2 and 9.3
for the isotropic and composite plates, respectively. Both thick and thin plates
are compared by means of classical theories (CLT(u,®) and FSDT(z,®)) and
an advanced mixed model. The advanced mixed model (here called MUL2
for the sake of brevity) is a LM4(u, ®, 0,, D,) model, which means a LW
theory where the four a priori modeled variables indicated in parentheses have
a fourth-order expansion in the thickness plate direction. The electric poten-
tial is given in Table 9.2 at the interface between the piezoelectric and the
isotropic layers; both values at the top of the isotropic layer and at the bot-
tom of the piezoelectric one are given in order to evaluate the interlaminar

Table 9.2 Actuator case: thick and thin isotropic plate (bisinusoidal electric
voltage ® = 1V applied at the top with m = 1 and n = 1). Analytical
closed-form solution.

a/h=4 a/h =50

MUL2  FSDT CLT MUL2  FSDT CLT

®Q2h/5) VI 09926 09914 09917 0.9990 0.9988  0.9989
®QAh/5P[V] 09926 09914 09917 0.9990 0.9988  0.9989
oyy(—h/2)[Pa]  15.531 —8.7290 —9.5384 —141.72 —57.176 —57.242
0..(2h/5) [Pa] —1.0191 138.62 133.53 0.0046 226775 22634
0..(2h/5)" [Pa] —1.0191 5.0840 4.8369 0.0046 6.0227  6.0027
D.(2h/5)

[1078C/m?] —1.5782 —9.9583 —9.6000 —15.904 —16.570 —16.541
D.(2h/5)"

[10-8C/m?] —1.5782 —1.2607 —1.2607 —15.904 —15.871 —15.871
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Table 9.3 Actuator case: thick and thin composite plate (bisinusoidal
electric voltage ® = 1V applied at the top with m = 1 and n = 1). Analytical
closed-form solution.

a/h=4 a/h =50

MUL2  FSDT CLT MUL2  FSDT CLT

d(0) [V] 0.4477 0.4461 0.4469 0.4996 0.4996 0.4996
®(0)” [V] 0.4477 0.4461 0.4469 0.4996 0.4996  0.4996
oy(=h/2)[Pa]  27.783 —6.7320 —8.6435 —29.573 —12.836 —12.938
0..(0)" [Pa] —1.4650 0.4307 0.4074 0.0045 0.3872 0.3864
0..(0)" [Pa] —1.4650 0.3459 0.3409 0.0045 0.3804 0.3810
D.(0y

[1073C/m*] —0.3182 —0.3624 —0.3624 —4.1474 —4.1507 —4.1507
D.(0)

[1078C/m*] —0.3182 —0.2967 —0.2966 —4.1474 —4.1450 —4.1450

continuity of such a variable. However, interlaminar continuity is assured by
each proposed theory because the electric potential is a primary variable in each
considered model, and it is always considered in LW form. FSDT(u,®) and
CLT(u,®) give a result for the thin plate which is very close to the quasi-3D
description, while, for the thick case, the error given by classical theories is
larger. The normal in-plane stress is evaluated at the bottom of the multilay-
ered plate, and it is only calculated correctly by the MUL?2 theory because the
introduction of correct values of the derivatives of the main electromechanical
variables is mandatory in the constitutive equations (employed to obtain this
variable); the values given by CLT(u,®) and FSDT(u,®) for the thick plate
are completely wrong. Both transverse normal stress and transverse normal
electric displacement are given at the interface between the piezoelectric and
the isotropic layers ((24/5)" is the top of the isotropic layer and (24/5)" is
the bottom of the piezoelectric layer which is positioned at the top of the
multilayered plate) in order to also evaluate their interlaminar continuity. The
transverse normal stress is a primary variable in the MUL2 theory, in which
it is obtained directly from the solution of the governing equations. CLT(u,®)
and FSDT(u,®) obtain this stress via post-processing, using the constitutive
equations in a contradictory manner because the mechanical part of the trans-
verse stress should, by definition, be zero. For this reason, the correct values
of 0., are only obtained using the MUL2 theory, which also guarantees their
interlaminar continuity, CLT(u,®) and FSDT(u,®) do not give either correct
values or interlaminar continuity of o,, (for both thick and thin plates). The
transverse normal electric displacement is a primary variable in the governing
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equations of the MUL2 theory, and for this reason this model gives their correct
values and ensures its interlaminar continuity. In CLT(z,®) and FSDT(u,®),
the transverse normal electric displacement is obtained via post-processing
(use of the constitutive equations), therefore its interlaminar continuity is not
obtained, even though the values can be considered acceptable for the thin
case. Table 9.3 proposes the same results, already discussed for the isotropic
multilayered piezoelectric plate in Table 9.2, for the multilayered composite
piezoelectric case. The values calculated at the interface are now considered at
(0)" and (0)”, which means at the interface between the two composite layers
(top of the first fiber-reinforced layer and bottom of the second fiber-reinforced
layer). All the considerations already made for the case in Table 9.2 are con-
firmed here for the composite plate. The interlaminar continuity of the variables
is only ensured using 2D models, in which they are primary variables that are
obtained directly from the governing equations. In the cases proposed in Ta-
ble 9.3, CLT(u,®) and FSDT(u,®) appear to work better because the interface
considered is between two layers made of the same material in which only the
fiber orientation has been changed. For this reason, the anisotropy is smaller
and even though the interlaminar discontinuity is confirmed through CLT(u,®)
and FSDT(u,®) analysis, the values for transverse normal electric displace-
ment and electric potential are calculated better than in the previous case (in
particular for the thin plate). All the considerations made concerning Tables
9.2 and 9.3 are confirmed in Figure 9.12, where the electric potential through
thickness z is evaluated for the thick isotropic piezoelectric multilayered plate
and the transverse normal stress is shown through thickness z of the thin com-
posite piezoelectric multilayered plate. A comparison is given for CLT(u,®),
FSDT(u,®), and MUL?2 theories; interlaminar continuity of the electric po-
tential is obtained for each theory and the results are very close for each
proposed 2D model (the small differences are due to the thick configuration).

0.0004 ".
0004 MUL2 —— 0.0003 I Vi3
FSDT - e FSDT
0.002 CLT --e-- /"v,,-" 0.0002 CLT e
- . 0.0001
g - E
N 0 . - N 0
~ o -0.0001
-0.002 e -0.0002
0.004{ -0.0003
-0.0004
0 02 04 06 08 1 0 10 20 30 40 50 60 70
¢ [V] G,,[Pa]

Figure 9.12 Actuator case: plate with bisinusoidal electric voltage ® = 1V
applied at the top withm = 1 and n = 1. Analytical closed-form solution. ® vs.
z on the left (isotropic plate with a/h = 4) and o, vs. z on the right (composite
plate with a/ h = 50).



ANALYTICAL CLOSED-FORM SOLUTION FOR ANALY SIS OF PLATES 281

Table 9.4 Sensor case: thick and thin isotropic plate in bending (bisinusoidal
mechanical load p, = 1 Pa applied at the top withm = 1 and n = 1).
Analytical closed-form solution.

ajh=4 a/h =50

MUL2 FSDT CLT MUL2 FSDT CLT

w(h/2)[10712 m] 1.1272  0.9532 0.6609 1647.9 12944 1290.7
®(2h/5)'[1073 V] 0.0386 0.0185 0.0165  0.6453 0.2073 0.2072
®(2h/5)P[1072 V] 0.0386 0.0185 0.0165  0.6453 0.2073 0.2072

oyy(h/2) [Pa] 43414 45114 45063  625.89 704.15 704.14
0..(2h/5)' [Pa] 0.9673 2.1429 2.1754  0.9678 339.66 339.69
0..(2h/5)b [Pa] 0.9673 13719 1.3735 09678 214.60 214.60
D.(2h/5)

[10~13 C/m?] —0.2120 430.82 202.30 —0.6383 33341 33112
D.(2h/5)

[10~13 C/m?] —0.2120  0.0000 0.0000 —0.6383 0.0000 0.0000

Interlaminar continuity of the transverse normal stress is only ensured for the
MUL2 theory (CLT(u,®) and FSDT(u,®) give very large errors).

Tables 9.4 and 9.5 propose the same plates that have already been analyzed
in Tables 9.2 and 9.3, but in a sensor configuration. The electric potential, the
transverse normal stress, and the transverse normal electric displacement are

Table 9.5 Sensor case: thick and thin composite plate in bending
(bisinusoidal mechanical load p, = 1 Pa applied at the top with m = 1
and n = 1). Analytical closed-form solution.

a/h =4 a/h =50

MUL2 FSDT CLT MUL2 FSDT CLT

w(h/2)[1072m] 3.1525 1.8488 0.9378 2354.0 18429 18315
®0)'[1073 V] 0.0611 0.0266  0.0211 0.9153 0.2943  0.2938
®(0)’[1073 V] 0.0611 0.0266  0.0211 09153 0.2943  0.2938
oyy(h/2)[Pa] 6.5642 59023 5.8912 786.52 920.54  920.53

0..(0)' [Pa] 0.4984 0.0162 0.0163 0.5000  2.5403  2.5404
a..(0)" [Pa] 0.4984 —-0.0162 —0.0163 0.5000 —2.5403 —2.5404
D.(0y

[10-BC/m?] 05053 —0.1957 —0.1551 0.6116 —0.1672 —0.1669
D.(0)"

[10-3C/m?’] 05053  0.1957  0.1551 0.6116 0.1672  0.1669
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evaluated at the same interfaces already seen for the actuator case, while the
transverse displacement and the in-plane stress are calculated at the top of the
plate (in-plane stress was considered at the bottom of the multilayer in the
case of the actuator configuration). All the considerations already discussed for
the actuator case are confirmed here for the sensor case, but some differences
can be noted. FSDT(u,®) and CLT(u,®) work better for the sensor case than
the actuator case, for the evaluation of the transverse displacement, while they
work worse for the analysis of the electric potential. In fact, CLT(u,®) and
FSDT(u,®) ensure interlaminar continuity of the electric voltage, but the val-
ues are far from the quasi-3D description given by the MUL?2 theory; the values
given by CLT(u,®) and FSDT(u,®) are not correct for the transverse displace-
ment but they are reasonable and these considerations also lead to a better
evaluation of the in-plane normal stress in the case of the sensor configuration.
However, the main conclusion remains that, in order to obtain a quasi-3D de-
scription of the electromechanical variables in a sensor configuration plate, the
use of the MUL2 theory is mandatory. This conclusion is confirmed from the
results shown in Figure 9.13, in which the transverse displacement is evaluated
through the thickness direction in the case of a thick plate and the electric po-
tential is shown through the thickness direction for a thin plate. The transverse
displacement cannot be considered constant for the thick plate as suggested in
CLT(u,®) and FSDT(u,®), and for this reason the correct evaluation is given
by MUL2, which considers it LW with a fourth-order expansion in the z direc-
tion. The quasi-3D description of the electric potential, through the thickness
direction, is very difficult to obtain in the sensor configuration case, as clearly
shown by the comparison between MUL2 and classical theories.

The free-vibration analysis in a closed-circuit configuration is proposed in
Table 9.6. The first three vibration modes, through the thickness, are proposed
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Figure 9.13 Sensor case: plate with bisinusoidal mechanical load p. = 1 Pa
applied at the top withm = 1 and n = 1. Analytical closed-form solution. w vs.
z on the left (isotropic plate with a/h = 4) and ® vs. z on the right (composite
plate with a/h = 50).



ANALYTICAL CLOSED-FORM SOLUTION FOR ANALYSIS OF SHELLS 283

Table 9.6 Closed-circuit plate configuration, first three modes for different
wave number values. Circular frequency o* = @ /1000 = 27 f /1000. Thick
isotropic plate (a/h = 4) and thin composite plate (a/h = 50).

a/h =4 alh =50

MUL2  FSDT CLT MUL2  FSDT CLT

m=1n=1
First mode 146.48 161.53 187.83 13.803 15.604  15.652
Second mode  305.63  306.22 306.22 386.83 387.59 387.71
Third mode 523.81 592.21 59221 49723 535,53 535.62
m=2,n=2
First mode 429.85 463.53 61244 54326 61.737 62494
Second mode  607.67 61244 64190 77048 774.66  775.60
Third mode 936.43  961.67 11844 991.86 1070.5 1071.2
m=10,n =10
First mode 24946  2770.1 30622 969.40 1201.0 1476.3
Second mode  2500.1 2996.7 51609 3484.0 3804.4  3909.3
Third mode 2657.0 3062.2 5918.0 4298.8 5184.7 5356.2

for each 2D model. For imposed wave numbers m =n =1, m =n = 2, and
m = n = 10, the thick plate is the isotropic one (a/h = 4) and the thin case
(a/h = 50) is the composite piezoelectric plate. Three effects can be noted in
free-vibration analysis: the vibration mode related to the degrees of freedom
through the thickness of the considered 2D theory; the imposed wave numbers
in the plane, which permit one to investigate the higher order modes; and the
plate configuration (thickness ratio and stacking sequence). In Table 9.6, it is
clear how classical theories only work well for thin plates, in-plane modes,
and m = n = 1; for other modes that are different from the in-plane ones, and
for high values of wave numbers, the use of the MUL2 theory is fundamental.
When wave numbers increase, the MUL?2 theory is mandatory for a correct
dynamic description of the multilayered plate; the error given by classical
theories (CLT(u,®) and FSDT(u,®)) increases with the thickness, the wave
numbers, and for frequency values that are different from the in-plane ones.

9.4 Analytical closed-form solution for the
electromechanical analysis of shells

This section discusses the main results of the electromechanical analysis of
multilayered piezoelectric shells, as already conducted for the relative plate
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cases, in order to note the possible curvature effects. The case of an analytical
closed-form solution is obtained via the MUL2 code. Both actuator (applied
electric voltage) and sensor (applied mechanical load) cases are investigated
for the static analysis while, in the case of dynamic analysis, the free vibra-
tions are evaluated when the shell is in a closed-circuit configuration (which
means zero imposed electric voltage at the top and bottom surfaces). In order
to obtain an analytical closed-form solution, each shell is considered as simply
supported with harmonic loads; the shell geometry considers a radius of curva-
ture R, = 10m in the « direction and infinite radius of curvature Rg in the
direction. The two in-plane dimensions are a = 7w /3R, in the « direction and
b = 1 min the 8 direction. The total thickness is /;,, = 2.5 m and /;,, = 0.2m
for thickness ratios R,/h =4 and R,/h = 50, respectively. Each shell can
have two different stacking sequences, as already seen in the previous section
for the plate geometry. The elastic and electrical properties of the embedded
materials are given in Table 9.1. The actuator and sensor cases are described in
Figure 9.14, where the sinusoidal form of electric voltage and mechanical load
is clearly shown:

e sinusoidal (m =1 and n =0, cylindrical bending) electric voltage
with amplitude ® =1V at the top; bottom surface set to d=0V
(actuator case);

e sinusoidal transverse (m = 1 and n = 0, cylindrical bending) pressure
with amplitude p. = 1Pa applied at the top of the closed-circuit con-
figuration shell with electric potential & = 0V at the top and bottom
(sensor case).
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Figure 9.14 Multilayered piezoelectric shells: actuator configuration (left)
and sensor configuration (right). Cylindrical distribution analyzed via analytical
closed-form solution.
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Figure 9.15 Closed circuit configuration (electric potential & zero at the
external surfaces) for the free vibration analysis of shell.

For the free-vibration analysis, the analytical code gives frequency values
that correspond to the degrees of freedom through the thickness direction
of the employed 2D model, for imposed wave numbers (m = 1,n = 0),
(m=2,n=0), and (m = 10, n = 0). The investigated shell is in a closed-
circuit configuration with electric voltage ® = 0V at the top and bottom
surfaces, as described in Figure 9.15. Layer interfaces are not drawn in Figures
9.14 and 9.15 for graphical reasons.

The analytical results for the actuator case are given in Tables 9.7 and
9.8 for isotropic and composite shells, respectively. Both thick and thin shells
are compared by means of classical theories (CLT(u,®) and FSDT(u,®)) and

Table 9.7 Actuator case: thick and thin isotropic shell (sinusoidal electric
voltage ® = 1V applied at the top with m = 1 and n = 0). Analytical
closed-form solution.

Ry/h=4 Ry/h =50

MUL2  FSDT CLT MUL2  FSDT CLT

®(2h/5)" [V] 0.9968 0.9962 0.9963 0.9991 0.9989 0.9989
¢>(2h/5)b [V] 0.9968 0.9962 0.9963 0.9991 0.9989 0.9989
ogg(—h/2)[Pa] 0.0229 0.2913 —0.0345 —0.5238  0.1483 —0.2476
0,,(2h/5)" [Pa] —0.0034 0.5423 0.2267 0.0010 1.2544 0.8759
GZZ(Zh/S)h [Pa] —0.0034 0.1786 0.0033 0.0010 0.2365 0.0224
D.(2h/5Y

[10*10C/m2] —0.5135 —1.9538 —1.6901 —6.3052 —6.6808 —6.4114
D.Qh/5)

[IO_IOC/mz] —0.5135 —0.5066 —0.5065 —6.3052 —6.3484 —6.3484
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Table 9.8 Actuator case: thick and thin composite shell (sinusoidal electric
voltage ® = 1V applied at the top with m = 1 and n = 0). Analytical
closed-form solution.

Ro/h =4 Ry/h =50

MUL2  FSDT CLT MUL2  FSDT CLT

d(0) [V] 0.4980 0.4975 0.4979 05018 0.5018  0.5018
®(0)” [V] 0.4980 0.4975 0.4979 05018 0.5018 0.5018
ogg(—h/2)[Pa] 0.1005 0.9829 —0.0262 —0.3860 1.0517 —0.1842
0..(0)" [Pa] —0.0018 0.0914 —0.0004 0.0001  0.1041 —0.0091
0..(0)" [Pa] —0.0018  0.0660 —0.0003  0.0001  0.0752 —0.0066
D.(0y

[1071°C/m?] —0.1304 —0.1326 —0.1326 —1.6591 —1.6531 —1.6531
D.(0)

[107'°C/m?*] —0.1304 —0.1322 —0.1322 —1.6591 —1.6653 —1.6653

an advanced mixed model. The proposed advanced mixed model is called
the MUL2 theory for the sake of brevity, but it is, in fact, the well-known
LM4(u, ®,0,, D,) theory, where the primary variables in parentheses are
LW modeled with fourth-order expansion in the thickness direction. The in-
troduction of the curvature for a shell geometry and the loading conditions
in cylindrical bending in Tables 9.7 and 9.8 do not introduce any further ef-
fects, compared to the plate cases already discussed in Tables 9.2 and 9.3.
The variables are investigated for the same thickness coordinates and interface
positions already discussed for the relative plate case. Classical theories show
remarkable difficulties in obtaining the correct values of the in-plane stresses
for both stacking sequences and thickness ratios. The electric potential is well
described by each 2D theory proposed, even though the use of the MUL2
theory is suitable for thick shells. Transverse normal stresses and transverse
normal electric displacement are only primary variables in the MUL?2 theory,
and this permits a quasi-3D description of such variables for each thickness ra-
tio and stacking sequence proposed. Classical theories obtain erroneous values
for transverse normal stresses (they evaluate them in a contradictory way) and
transverse normal electric displacements, and they do not satisfy their inter-
laminar continuity, because they are obtained from the constitutive equations
via post-processing. However, the transverse normal electric displacement via
CLT(u,®) and FSDT(u,®) theories, in the case of thin shells, does not appear
to be very far from the correct values, even though interlaminar continuity is
not ensured. Some of these results are summarized in Figure 9.16 where the
in-plane normal stress is shown through the thickness direction for the case
of a thick isotropic shell, and the electric potential is evaluated through the z
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Figure 9.16 Actuator case: shell with sinusoidal electric voltage ® = 1V
applied at the top with m =1 and n = 0. Analytical closed-form solution.
opgp vs. z on the left (isotropic shell with R,/ h = 4) and ® vs. z on the right
(composite shell with R, /h = 50).

direction for the case of a thin composite shell. The stress is described well
by the MUL2 theory, as it is able to correctly calculate the variables and their
derivatives employed in the constitutive equations (post-processing). It is im-
portant to remember that interlaminar continuity is not requested for in-plane
stresses. For actuator cases, the electric potential is described well by each
theory, in particular for the case in Figure 9.16 which considers a thin shell.

The relative sensor configurations for shell geometries described in this
chapter are investigated in Tables 9.9 and 9.10 for isotropic multilayered
piezoelectric and composite multilayered piezoelectric shells, respectively.
Compared to the actuator case, classical theories appear to work better for
the analysis of transverse displacements, even though the quasi-3D description
is only given by the MUL2 theory. The difficulties in recovering the quasi-3D
description of the electric potential by means of classical theories (CLT(u,®)
and FSDT(u,®)) are greater than for the relative actuator case; CLT(u,®) and
FSDT(u,®) obtain the interlaminar continuity of the electric potential, but the
values are not as correct as the values given by the MUL2 theory. For transverse
normal stresses and transverse normal electric displacement, it is clear how the
use of the MUL2 theory is mandatory in order to achieve the quasi-3D descrip-
tion and interlaminar continuity. The transverse normal electric displacement
through the z direction for the thick isotropic multilayered piezoelectric shell
is correctly described in Figure 9.17 by the MUL2 theory, which also ensures
interlaminar continuity. The MUL?2 theory also gives a quasi-3D description of
the transverse normal stress along the thickness direction that is continuous and
which satisfies the loading boundary conditions for the sensor configuration
(0,; = 1 Paat the top and o,, = 0Pa at the bottom).

The free vibration analysis, in a closed-circuit configuration, is proposed
in Table 9.11 for the shell geometry. The first three vibration modes, through
the thickness, are proposed for each 2D model for imposed wave numbers
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Table 9.9 Sensor case: thick and thin isotropic shell in bending (sinusoidal
mechanical load p, = 1 Pa applied at the top withm = 1 and n = 0).
Analytical closed-form solution.

w(h/2)
[10~1%m]
OQ2h/5)
[10~'v]
®(2h/5)"
[10-'Vv]
opp(h/2) [Pa]
0..(2h/5)" [Pa]
0.:(2h/5)" [Pa]
D.(2h/5)
[10~'2 C/m?]
D.(2h/5)
[10~'2 C/m?]

Ry/h =4 Ry/h =50
MUL2 FSDT CLT MUL2 FESDT  CLT
16277 13.663 11361 25309 19869 19843
02919 0.1090 0.1040 3.9949 12799  1.2790
0.2919 0.1090 0.1040 3.9949 12799  1.2790

—4.9730 —17.793 —16.170 —18593 —14071 —14052
0.6900 —3.7152 —2.1432 —2.8898 —13797 —13778
0.6900 —1.7334 —0.8602 —2.8898 —7763.1 —7752.4
02156 714.69 58334 3.6718 1032200 1030800
02156 0.1472 0.1328 3.6718 14763 14752

Table 9.10 Sensor case: thick and thin composite shell in bending
(sinusoidal mechanical load p. = 1 Pa applied at the top with m = 1 and
n = 0). Analytical closed-form solution.

w(h/2)

[1071%m]
®(0) 1071 V]
®(0)’[1071 V]
opp(h/2) [Pa]
0.:(0)" [Pa]
0:-(0)" [Pa]
D.(0)

[10-13 C/m?]
D.(0)’

[10~13 C/m?] —0.6599 —0.1965 —0.3482

Re/h =4 Ry/h =50
MUL2 FSDT CLT MUL2 FSDT  CLT
31.597  21.152  14.026 31812 25088 25008
04158 0.1567 0.1377 0.5039 1.6294  1.6280
04158 0.1567 0.1377 0.5039  1.6294  1.6280
—12.298 —2.1443 2.8287 —23086 —17418 —17356
~0.0179 —1.1538 —0.6966 —7.1456 —1742.4 —1736.8
~0.0179 —0.8340 —0.5036 —7.1456 —1259.6 —1255.5
~0.6599 —0.6007 —0.6863 —445.67 —126.59 —126.60
—445.67 —127.24 —127.25
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Figure 9.17 Sensor case: shell with sinusoidal mechanical load p, = 1Pa
applied at the top with m = 1 and n = 0. Analytical solution in closed form.
D, vs. z on the left (isotropic shell with R, /h = 4) and o, vs. z on the right
(composite shell with R, /h = 50).

Table 9.11 Closed-circuit shell configuration, first three modes for different
wave number values. Circular frequency w = 2z f. Thick isotropic shell
(Ry/h = 4) and thin composite shell (R,/h = 50).

Ry/h =4 Ry/h =50

MUL2  FSDT CLT MUL2  FSDT CLT

m=1,n=0

First mode 25095 279.31 30446 22.697 25559 25.600

Second mode 828.00 828.73 829.35 586.75 586.75 586.75

Third mode 1461.8 16412 1648.5 1679.8 17722 1772.6
m=2,n=0

First mode 929.24 1013.7 12750 102.39 115.66 116.40

Second mode 1647.7 16535 1658.7 1173.5 11735 11735

Third mode 2727.5 31263 3176.0 3218.8 3405.5 3408.8
m=10,n=0

First mode 6705.3 7467.2 82935 2153.5 2598.7 2954.5

Second mode 7073.0 7931.8 13199 58673 5867.5 5867.5
Third mode 7799.2  8763.0 16355 14216 16418 16858
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m=1,n=0), im=2,n=0), and (m = 10, n = 0); the thick shell is the
isotropic one (R,/h = 4) and the thin shell (R,/h = 50) is the composite
piezoelectric shell. Three effects can be noted in the free vibration analysis: the
vibration mode related to the degrees of freedom of the 2D theory considered
through the thickness; the imposed wave numbers in the plane, which permit
one to investigate the higher order modes; and the shell configuration (thickness
ratio and stacking sequence). In Table 9.11, it is clear how classical theories
only give acceptable results for thin shells, in-plane modes, and m = 1; for
other modes that are different from in-plane ones, the use of the MUL?2 theory
is fundamental. When wave numbers increase, the MUL?2 theory is mandatory
for a correct dynamic description of the multilayered shell; the error given by
classical theories (CLT(u,®) and FSDT(u,®)) increases with the thickness,
wave numbers, and for frequency values that are different from the in-plane
ones. The introduction of curvature does not modify the main conclusions
already given for the relative plate case.

9.5 FE solution for the electromechanical analysis
of beams

This section gives the main results of the electromechanical analysis of multi-
layered piezoelectric beams. A FE analysis via the MUL?2 code permits one to
investigate boundary and loading conditions that are different from those seen
for the analytical solution (which were simply supported structures and har-
monic mechanical and electric loads). Both actuator (applied electric voltage)
and sensor (applied mechanical load) cases have been investigated for the static
analysis, while in the case of dynamic analysis, the free vibrations have been
evaluated when the beam is in an open-circuit configuration (which means free
electric voltage at the top and bottom surfaces). The investigated beam has an
in-plane dimensional ratio a/b equal to 4 and the same total thickness values
hy already considered for the plate case; the clamped side is the shortest one.
Each beam can have two different stacking sequences, as already seen in the
previous section for the plate geometry. The elastic and electrical properties of
the embedded materials are given in Table 9.1. The actuator and sensor cases
are described in Figure 9.18, where the uniform electric voltage and mechanical
load are clearly observable:

¢ uniform distribution of electric voltage with value ® = 1V at the top;
bottom surface set to ® = 0V (actuator case);

¢ uniform distribution of pressure with value p, = 1 Pa applied at the top
of the closed-circuit configuration beam with electric potential ® =0V
at the top and bottom (sensor case).



FE SOLUTION FOR ANALYSIS OF BEAMS 291

Figure 9.18 Multilayered cantilever beams: actuator configuration (left) and
sensor configuration (right). FE solution.

The FE free-vibration analysis of the proposed beams gives a number of
frequencies that are equal to the total degrees of freedom of the employed
2D theory. This number depends on both the degrees of freedom through the
thickness for the 2D approximation and the degrees of freedom in relation to
the mesh in the in-plane direction (number of elements and nodes for each
element). For this reason, the first six modes are given in the tables without
specifying the wave numbers which are typical of the analytical form solution.
The investigated cantilever beam is an open-circuit configuration with free
electric voltage at the top and bottom surfaces, as described in Figure 9.19.

The beam in an actuator configuration is analyzed in Tables 9.12 and 9.13 for
an isotropic multilayered piezoelectric beam and for a composite multilayered
piezoelectric beam, respectively. A comparison has already been made between
classical and advanced 2D theories in the previous sections concerning closed-
form solutions, while for the FE analysis, we propose a complete study of
the mesh using a LM4(u, @, 0,,, D,) model as the MUL?2 theory where the
primary variables in parentheses are a priori LW modeled with a fourth-order
expansion in the thickness direction. The electromechanical variables given
through the thickness are all considered at the mid-point of the tip edge of the
beam (the amplitude was considered for the case of the analytical solutions).

zA

Figure 9.19 Open-circuit configuration (free electric potential ® at the exter-
nal surfaces) for the free-vibration analysis of beam.
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Table 9.12 Actuator case: thick and thin isotropic beam (uniform electric
voltage ® = 1 V). FE solution provided at the mid-point of the tip edge of the

beam.
a/h =4 a/h =50
MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
7x3 15x3 21x3 7x3 15x3 21x3
w(—h/2)

[10~3 m] 2.2584 29628 3.1733 2.0928 2.1207 2.1534
®(2h/5)" [V] 0.9992  0.9992 0.9992 0.9991 0.9991 0.9991
®(2h/5)" [V] 0.9992 09992 0.9992 0.9991 0.9991 0.9991
oyy(—h/2)[Pa] —6.0397 —4.6370 —4.0853 —139.28 —138.35 —137.30
0,,(2h/5)" [Pa]  0.4864 —0.8960 —1.9236 0.0049 —0.2578 —0.5583
0..(2h/5)" [Pa]  0.4864 —0.8960 —1.9236  0.0049 —0.2578 —0.5583
D.(2h/5)

[10-8C/m?] —1.2704 —1.2706 —1.2707 —15.878 —15.878 —15.878
D.(2h/5)

[1078C/m?] —1.2704 —1.2706 —1.2707 —15.878 —15.878 —15.878

Table 9.13 Actuator case: thick and thin composite beam (uniform electric
voltage ® = 1 V). FE solution provided at the mid-point of the tip edge of the

beam.
a/h =4 a/h =50
MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
7x3 15x3 21x3 7x3 15x3 21x3
w(—=h/2)

[10~3 m] —8.3831 —8.3414 —8.3482 —1926.4 —2010.1 —2028.7
®(0) [V] 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
d(0)’ [V] 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
oyy(—h/2)[Pa] —0.0808 0.2155 0.3217 —21.948 —21.199 —20.595
0..(0) [Pa] —0.1924 —0.3490 —0.3734 0.0151 —0.2979 —0.6234
0..(0)? [Pa] —0.1924 —0.3490 —0.3734 0.0151 —0.2979 —0.6234
D.(0)

[107°C/m?*] —3.3190 —3.3190 —3.3190 —41.486 —41.486 —41.486
D.(0)’

[107°C/m?] —3.3190 —3.3190 —3.3190 —41.486 —41.486 —41.486
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Figure 9.20 Actuator case: beam with uniform electric voltage ® = 1V ap-
plied at the top. FE solution provided at the mid-point of the tip edge of the
beam. o, vs. z on the left (isotropic beam with a/h = 4) and D, vs. z on the
right (composite beam with a/h = 50). Mesh 21 x 3.

For each considered stacking sequence, thickness ratio, and electromechanical
variables, it is clear how a 21 x 3 mesh is sufficient to obtain a convergence
value; the beam has a dimension in the plane which is predominant with respect
to the other in-plane dimensions and for this reason there are a larger number
of elements in the largest dimension. The proposed advanced mixed model
ensures interlaminar continuity of each electromechanical variable. This fact
can be confirmed in Figure 9.20 where the MUL2 theory (using the 21 x 3
convergence mesh) gives a quasi-3D description of the transverse normal stress
through the thickness (thick isotropic piezoelectric multilayered beam) and
of the transverse normal electric displacement through the thickness (thin
composite piezoelectric multilayered beam). MUL?2 ensures interlaminar con-
tinuity of these two variables and the boundary loading conditions for the
transverse normal stress (o, = 0 at the top and bottom of the beam in the
actuator configuration).

The sensor configuration of the beam is analyzed in Tables 9.14 and 9.15 for
the isotropic multilayered piezoelectric beam and for the composite multilay-
ered piezoelectric beam, respectively. A convergence study has been proposed
using a LM4(u, ®, 0,,, D,) model as the MUL2 theory. All the variables given
through the thickness are calculated at the mid-point of the tip edge of the beam.
The same 21 x 3 mesh used for the actuator case is sufficient to recover a quasi-
3D description of all the mechanical and electrical variables; 7 x 3 and 15 x 3
meshes are also given for comparison purposes. The MUL2 theory (using the
21 x 3 convergence mesh) in Figure 9.21 gives a quasi-3D description of the
transverse displacement through the thickness (thick isotropic piezoelectric
multilayered beam) and the transverse normal electric displacement through
the thickness (thin composite piezoelectric multilayered beam). MUL?2 ensures
interlaminar continuity of each electromechanical variable and their quasi-3D
description through the thickness direction z.
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Table 9.14 Sensor case: thick and thin isotropic beam in bending (uniform
mechanical load p, = 1 Pa applied at the top). FE solution provided the
mid-point of the tip edge of the beam.

ajh=4 a/h =50

MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
7x3 I5x3 21x3 7x3 I5x3 21x3

w(h/2)
(10712 m] 41.669 42.848 43.083 70899 73795 74383
d(2h/5)
[1073 V] —0.0118 —0.0160 —0.0166 0.4604 0.1927  0.1201
d(2h/5)
[1073 V] —0.0118 —0.0160 —0.0166 0.4604 0.1927  0.1201

oyy(h/2)[Pa] —0.1397 0.0303 0.0291 —50.707 52.140 56.941
0..(2h/5)" [Pa] 0.9822 1.0175 1.0394 1.4247 09722 0.9862
ozz(Zh/S)” [Pa] 0.9822 1.0175 1.0394 1.4247 09722 0.9862
D.(2h/5)

[ro-1 C/mz] —0.6963 1.2824 1.8192 —27.738 —47.931 —-52.117
D.21/5)

[10_13C/m2] —0.6963 1.2824 1.8192 —27.738 —47.931 —-52.117

Table 9.15 Sensor case: thick and thin composite beam in bending (uniform
mechanical load p, = 1 Pa applied at the top). FE solution provided at the
mid-point of the tip edge of the beam.

a/h=4 a/h =50

MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
7x3 I5x3 21 x3 7x3 I5x3 21x3

w(h/2)

[10~!2 m] 67.004 68719 69.077 89630 92750 93373
®0) [1073V] —0.0094 —0.0134 —0.0115 0.4849  0.1341 0.0698
®(0)’ [1073V] —0.0094 —0.0134 —0.0115 0.4849  0.1341 0.0698
0,y (h/2) [Pa] 0.1229 04405 0.4156 25780 25.904 25.430

0..(0)" [Pa] 0.3427 02609  0.2595 0.4026  0.4524 0.4398
0..(0)" [Pa] 0.3427 0.2609  0.2595 0.4026  0.4524 0.4398
D.(0y

[10-BC/m?]  0.8361 0.7350  0.7208 —116.67 —10.247 2.8072
D.(0)"

[10-3C/m?]  0.8361 0.7350  0.7208 —116.67 —10.247 2.8072
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Figure 9.21 Sensor case: beam with uniform mechanical load p, = 1Pa ap-
plied at the top. FE solution provided at the mid-point of the tip edge of the
beam. w vs. z on the left (isotropic beam with a/h = 4) and D, vs. z on the
right (composite beam with a/h = 50). Mesh 21 x 3.

Table 9.16 gives the first six vibration modes for the cantilever beam in
an open-circuit configuration. The thick beam (a/h = 4) is an isotropic mul-
tilayered piezoelectric one, while the thin beam (a/h = 50) is a composite
multilayered piezoelectric structure. Convergence depends on the considered
vibration mode; for low values of frequency, the 21 x 3 mesh is sufficient, but

Table 9.16 Open-circuit beam configuration, first six modes for FE analysis.
Circular frequency w = 27 f. Thick isotropic beam (a/h = 4) and thin
composite beam (a/h = 50).

a/h =4 a/h =50

MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
7x3 15x3 21 x 3 7x3 15x3 21 x 3

First

mode 29961.59 29113.34 28915.68 2544.353 2533.182 2531.100
Second

mode 3045528 29839.71 29820.49 16194.42 15972.12 15877.41
Third

mode 9413820 93903.63 93868.45 16658.37 16096.10 16081.36
Fourth

mode 1546382 148628.9 145936.7 33849.93 33298.46 33209.36
Fifth

mode 156433.1 150042.3 149518.2 51118.17 45433.86 44708.65
Sixth

mode 182947.8 178356.2 181469.0 52123.36 50619.43 50414.25
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isotropic composite

Figure 9.22 First three modes of isotropic (left) and composite (right) beam
in open-circuit configuration. Mesh 15 x 3.

this mesh could be inappropriate for higher frequencies. However, the oppor-
tune choice of the 2D theory (the LM4(u, ®, o,, D,) model in this case) and
the mesh size strongly depend on the considered thickness ratio, stacking layer
sequence and vibration modes (low- or high-frequency values). Figure 9.22
proposes the first three vibration modes of the cantilever beam with isotropic or
composite internal layers. The MUL2 model is able to capture the 3D behavior
exactly in terms of displacements.

9.6 FE solution for the electromechanical analysis

of plates

The last analysis proposed in this chapter considers a FE analysis of the same
simply supported plates already seen in Section 9.3 for the case of an analytical
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Figure 9.23 Multilayered piezoelectric plates: actuator configuration (left)
and sensor configuration (right). Uniform in-plane distribution analyzed via FE
solution.

closed-form solution when bisinusoidal electrical and mechanical loads were
considered. The stacking layer sequences, the geometry, the boundary condi-
tions, and the embedded materials are the same as those already discussed in
Section 9.3. Both actuator (applied electric voltage) and sensor (applied me-
chanical load) cases are investigated for the static analysis, while in the case
of dynamic analysis, the free vibrations are evaluated when the plate is in an
open-circuit configuration (which means free electric voltage at the top and
bottom surfaces). The actuator and sensor cases are described in Figure 9.23,
where the uniform electric voltage and mechanical load are clearly shown:

¢ uniform distribution of electric voltage with the value ® = 1V at the
top, and the bottom surface set to & = 0V (actuator case);

e uniform distribution of pressure with the value p, = 1Pa applied at
the top of the closed-circuit configuration plate with electric potential
® = 0V at the top and bottom (sensor case).

The proposed FE free-vibration analysis of the plates is quite similar to
the one that was proposed for a beam geometry in the previous section. The
FE model gives a number of frequencies that are equal to the total degrees of
freedom of the employed 2D theory. This number depends on both the degrees
of freedom through the thickness for the 2D approximation and the degrees of
freedom in relation to the mesh in the in-plane direction (number of elements
and nodes for each element). For this reason the first six modes have been given
in the proposed tables without specifying the wave numbers which are typical
of an analytical closed-form solution. The plates investigated in an open-circuit
configuration with free electric voltage at the top and bottom surfaces have
already been described in Figure 9.11 for the closed-circuit case.

Tables 9.17 and 9.18 propose the static analysis of the actuator configuration
of the isotropic multilayered piezoelectric plate and composite multilayered
piezoelectric structure, respectively. The MUL2 theory is a LM4(u, ®, 0, D,)
model which calculates the electromechanical variables through the thickness
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Table 9.17 Actuator case: thick and thin isotropic plate (uniform electric
voltage ® = 1V). FE solution provided in the middle of the plate.

a/h =4 a/h =50

MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
Tx7 15x15 21 x21 7x7 15x15 21x21

w(—h/2)

[10~2 m] —8.2748 —8.3591 —8.3618 —8.1258 —8.3203 —8.3765
®(2h/5) [V] 1.0126  0.9990 0.9991 1.0269 0.9992  0.9991
d>(2h/5)” [V] 1.0126  0.9990 0.9991 1.0269 0.9992 0.9991
oyy(—h/2)[Pa] 0.6428 —8.1936 —12.585 —145.87 —147.52 —147.94
0,,(2h/5)" [Pa] —11.639 3.5889 —0.5818 —0.0487 0.0585 —0.0106
O'ZZ(Zh/S)h [Pa] —11.639 3.5889 —0.5818 —0.0487 0.0585 —0.0106
D.(2h/5)

[IO_SC/mZ] —1.4524 —1.2725 —1.2739 —16.370 —15.882 —15.877
D.Q2h/5)

[IO*SC/mZ] —1.4524 —1.2725 —1.2739 —16.370 —15.882 —15.877

Table 9.18 Actuator case: thick and thin composite plate (uniform electric
voltage ® = 1V). FE solution provided in the middle of the plate.

a/h =4 a/h =50

MUL2 MUL2 MUL2 MUL2 MUL2 MUL2
Tx7 15x15 21 x21 7x7 15x15 21x21

w(—h/2)

[1072m]  —12.923 —12.772 —12.772 —12.839 —13.218 —13.311
®(0Y [V] 0.4983 04986 0.4986 0.5113 05000  0.5000
d(0)’ [V] 0.4983 04986 0.4986 0.5113  0.5000  0.5000
o, (—h/2)[Pa]  39.762 7.8803 7.8804 —29.761 —35.216 —35.576
0..(0) [Pa] —0.0298 1.9433 0.7708 —0.0264 —0.0444 —0.0077
0,0’ [Pa]  —0.0298 19433  0.7708 —0.0264 —0.0444 —0.0077
D.(0)

[108C/m?] —0.3287 —0.3320 —0.3319 —4.2624 —4.1490 —4.1485
D.(0)

[1073C/m*] —0.3287 —0.3320 —0.3319 —4.2624 —4.1490 —4.1485
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Figure 9.24 Actuator case: plate with uniform electric voltage ® = 1V ap-
plied at the top. FE solution provided in the middle of the plate. w vs. z on the
left (isotropic plate with a/h = 4) and D, vs. z on the right (composite plate
with a/h = 50). Mesh 21 x 21.

in the middle of the plate. The proposed meshes are square, because of the
square geometry of the plate (7 x 7, 15 x 15, and 21 x 21); the 21 x 21 mesh
applied in the LM4(u, ®, 0,,, D,) theory gives a quasi-3D description of each
variable, regardless of the stacking layer sequence, embedded materials, and
thickness ratio. The interlaminar continuity of the electric potential, transverse
normal stress, and transverse normal electric displacement are ensured by the
proposed model because they are primary variables. Figure 9.24 proposes
the transverse displacement through the thickness direction z for the thick
isotropic plate and the transverse normal electric displacement along z for the
thin composite plate. The MUL2 theory is employed using a 21 x 21 mesh.
The zigzag form of the displacement is clearly displayed because a LW theory
has been employed and interlaminar continuity of the transverse normal electric
displacement has been o