

Intelligent
Agent-based
Operations

Management

This page intentionally left blank

I N N O V A T I V E T E C H N O L O G Y S E R I E S

I N F O R M A T I O N S Y S T E M S A N D N E T W O R K S

Intelligent
Agent-based
Operations

Management

edited by

Sophie d'Amours & Alain Guinet

KOGAN
PAGE

SCIENCE

London and Sterling, VA

First published in Great Britain and the United States in 2003 by Kogan Page Science, an
imprint of Kogan Page Limited

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may
only be reproduced, stored or transmitted, in any form or by any means, with the prior
permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms and licences issued by the CLA. Enquiries concerning reproduction
outside these terms should be sent to the publishers at the undermentioned addresses:

120 Pentonville Road 22883 Quicksilver Drive
London N1 9JN Sterling VA 20166-2012
UK USA
www.koganpagescience.com

© Hermes Science Publishing Limited, 2003
© Kogan Page Limited, 2003

The right of Sophie d'Amours and Alain Guinet to be identified as the editors of this work has
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

ISBN 1 9039 9643 0

British Library Cataloguing-in-Publicarion Data

A CIP record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Intelligent agent-based operations management / edited by Sophie
d'Amours and Alain Guinet.

p. cm. — (Innovative technology series)
ISBN 1-903996-43-0
1. Production management. 2. Intelligent agents (Computer software)

I. d'Amours, Sophie. II. Guinet, Alain. III. Innovative technology
series: information systems and networks
TS155.I5773 2003
658.5--dc21

2003003757

Typeset by Kogan Page
Printed and bound in Great Britain by Biddies Ltd, Guildford and King's Lynn
www. biddles.co.uk

Contents

Foreword
Sophie d'Amours and Alain Guinet vii

1. A Procedure for Building Product Models
Lars Hvam, Jesper Riis, Martin Malis and Benjamin Hansen 1

2. Identification of Scheduling Problems: The DeSAP Interface
within the e-OCEA Environment
Claudine Tacquard and Franck Thibaut 27

3. Product Generic Modelling for Configuration: Requirement
Analysis and Modelling Elements
Michel Aldanondo, Khaled Hadj-Hamou, Guillaume Moynard and
Jacques Lamothe 49

4. Production Management Systems
Farid Ameziane and Stéphane Lasserre 71

5. Agent-based Agile Manufacturing System Scheduling
David He and Astghik Babayan 87

6. New Product Development within a Concurrent Engineering
Environment: Knowledge and Software Tools
Jean-Louis Selves, Eric Sanchis and Zhaoyang Pan 109

7. An IEC 61499-based Model for Reconfiguration of Real-time
Distributed Control Systems
R.W. Brennan, M. Fletcher and D.H. Norrie 127

8. Intelligent Agents for Production Systems
Pierre Massotte, Jihad Reaidy, Yingjiu Liu and Daniel Diep 147

Index 165

This page intentionally left blank

Foreword

The publication is dedicated to multi-agent systems for product, process and
organisation modelling. Eight papers dealing with these topics are included.

Regarding product modelling, the paper "New product development within a
concurrent engineering environment: knowledge and software tools" by Jean-Louis
Selves, Eric Sanchis and Zhaoyang Pan, proposes a concurrent engineering approach
instead of the traditional sequential approach in the framework of new products
development. Their approach allows the project team to respond more quickly to
changing market conditions and is supported by software tools based on software
agents. Lars Hvam, Jesper Riis, Martin Malis and Benjamin Hansen emphasise the
need to propose new approaches. Their article "A procedure for building product
models" focuses on the opportunities for supporting the product specification
process with new tools. Their idea is to formalise knowledge, information of the
products and their life cycle properties, and to express the knowledge in intelligent
systems. In "Product generic modelling for configuration: requirement analysis and
modelling elements", Michel Aldanondo, Khaled Hadj-Hamou, Guillaume Moynard
and Jacques Lamothe identify and classify configuration modelling requirements for
customisable industrial products. It analyses how generic modelling and
configuration assistance can fulfil the requirements. Regarding process modelling, in
"Production management systems" by Farid Ameziane and Stéphane Lasserre, the
authors analyse the contribution of Concurrent Engineering and Knowledge
capitalisation in the process modelling of building construction industry. Their work
focuses on information and knowledge management.

Regarding organisation modelling, four papers emphasise the contribution of
multi-agent approaches. First, the paper "Intelligent agents for production systems"
by Pierre Massotte, Jihad Reaidy, Yingjiu Liu and Daniel Diep, describes a new
approach devoted to the management and control of distributed manufacturing
systems and based on interactions between intelligent agents. These agents are able
to perform automatic reconfigurations of a supply chain. In the same field, R.W.
Brennan, M. Fletcher and D.H. Norrie describe a general approach for dynamic and
intelligent reconfiguration of real-time distributed control systems, in their paper
"An IEC 61499-based model for reconfiguration of real-time distributed control
systems". Their approach takes advantage of multi-agent systems. Next, the paper
"Identification of scheduling problems" by Claudine Tacquard and Franck Thibaut,

viii Intelligent Agent-based Operations Management

proposes a decision support system to model flexible manufacturing systems and
identify the associated scheduling problems. Appropriate techniques and tools are
proposed to the user. Finally, in "Agent-based agile manufacturing system
scheduling" by David He and Astghik Babayan, the contribution of agent based
approaches to improve scheduling flexibility and robustness is studied. The authors
propose a methodology for the development of negotiation mechanism between
agents.

Sophie d'Amours
Alain Guinet

Chapter 1

A Procedure for Building Product
Models

Lars Hvam, Jesper Riis, Martin Malis and Benjamin Hansen
Department of Manufacturing Engineering and Management, Technical University
of Denmark, Denmark

2 Intelligent Agent-based Operations Management

1. Introduction

A product model supports the the specification process for products in sales,
design and methods engineering. The specification process denotes the part of the
engineering system in which the specifications for the customised product variants
are created, as illustrated in Figure 1.

Figure 1. The engineering system

The activities in the specification process includes an analysis of the customer's
needs, design and specification of a product which fulfill the customer's needs and
specification of e.g. product manufacture, transportation, erection on site and service
(specification of the product's life cycle properties). The activities in the
specification process are characterised by having a relatively well-defined space of
(maybe complex) solutions as a contrast to product development, which is a more
creative process.

Typical goals for the specification process are the ability to find an optimal
solution according to the customer's needs, high quality of the specifications, short
lead time and a high productivity of the work carried out. Typical critical goals for
the development process are to derive new original concepts of product design with
improved functionality and life cycle properties, and to reduce time to market for the
new product designs. The diversification of tasks and goals in the specification and
development processes leads to a separation of the two processes as suggested in
Figure 1 above.

This article focuses on the opportunities provided in supporting the specification
process with IT. The idea is to formalise knowledge and information of the products

A Procedure for Building Product Models 3

and their life cycle properties and to express the knowledge in IT-systems - so-
called product models.

Knowledge integrated product- and product related models are defined as:

"A knowledge base which contains part of or all of the knowledge and information
associated with the product in different phases of the product's life cycle, e.g. sales,
design, production, assembly, service and reuse", Hvam (2000b).

"Product related models contain knowledge and information about the systems
related to the product's life cycle, while the product model contains knowledge and
information about the product's structure and functional properties", Krause
(1988).

Knowledge integrated or intelligent product models mean that the models
contain knowledge and information about the products, and based on this are able to
derive new specifications for product instances and their life cycle properties. The
principle of using product models to support the specification process is to make the
product knowledge of the engineer explicit to the rest of the organisation.

Product models implemented in IT-systems, such as sales configuration systems,
have been applied in industry during the last 10 to 15 years for relatively simple
products such as the configuration of computers and other electronic equipment.

There are today a number of examples of product and product related models
which, for instance, are used to support sales, design of product variants and
production preparation. Experiences from a considerable number of Danish
companies shows that these models are often constructed without the use of a strict
procedure or modelling techniques. The result is often that the systems are
unstructured and undocumented, and they are therefore difficult or impossible to
maintain or further develop. Consequently there is a need to develop a procedure
and associated modelling techniques which can ensure that the constructed product
and product related models are properly structured and documented.

Furthermore, experience shows that the product and product related models are
not always designed to fit the business processes that they are meant to support.
Finally, an important precondition for building product models is that the products
are designed and structured in a way that makes it possible to define a general
master of the product, from which the customer-specific products can be derived.

In order to cope with these challenges, a procedure for building product models
should include: An analysis and redesign of the specification processes in focus, an
analysis and eventually redesign/ restructuring of the products to be modelled, and
finally, a structured "language" - or modelling technique - which makes it possible
to document the product and product related models in a structured way.

4 Intelligent Agent-based Operations Management

2. A procedure for building product models

Figure 2 shows a procedure for building product and product related models. The
procedure contains 7 phases. The starting point for the work is an analysis and
redesign of the business processes, which will be affected by the product and
product related models (phase 1). In phase 2 the products are analysed and described
in a so-called product master. Phase 3 includes the final design of the product and
product related models using object oriented modelling techniques. Phases 4 to 7
deals with design, programming, implementation and maintenance of the product
models. Phases 3 to 7 follow by and large the general object oriented project life
cycle.

There may be some overlap and iterations between the individual phases.

A Procedure for Building Product Models 5

Phase

1

2

3

4

5

6

7

Description

Process Analysis
Analysis of the existing specification process (AS-IS), statement of the functional
requirements of the process. Design of the future specification process (TO BE).
Overall definition of the product - and product related models to support the
process.
Tools: IDEF0, flow charts, Activity Chain, Model, key numbers, problem matrix,
list of functional describing characteristics and gap analysis.

Product Analysis
Analysing products and eventually life cycle systems. Redesigning/ restructuring
of products. Structuring and formalising knowledge about the products and related
life cycle systems in a product master.
Tools: List of features and product master.

Object Oriented Analysis (OOA)
Creation of object classes and structures. Description of object classes on CRC-
cards. Definition of user interface. Other requirements to the IT solution.
Tools: Use cases, screen layouts, class diagrams and CRC-cards.

Object Oriented Design
Defining and further developing the OOA-model for a specific programming tool.

Programming
Programming the system. Own development or use of a standard software.

Implementation
Implementation of the product- and product related models in the organisation.
Training users of the system, and further training of the people responsible for
maintaining the product- and product related models

Maintenance
Maintenance and further development of the product and product related models.

Figure 2. A procedure for building product models. The contents of the phases are
described in the following sections

6 Intelligent Agent-based Operations Management

2.1. Phase 1 — Process Analysis

Initially an AS-IS description of the current processes is made. This description
should expose the structure relating activities, people, IT systems, shifts of
responsibility etc. Key figures for characterising quality, resource consumption and
throughput times may support the description. Analysis tools to be used may be
IDEFO [ICAM, 1981], The Activity Chain Model [Barfod, 1997], or different kinds
of flow charts.

In the other part of the process analysis of future requirements set by the
surroundings are analysed and determined making it possible to evaluate the gap
between the current process performance and the performance required. To support
the requirement analysis a list consisting of functional characteristics is used. These
are among others:

• Kinds of input and output specifications

• Throughput time

• Resource consumption

• Quality of specifications

• Insight into consequences

• Flexibility of the process

• Frequency of similar specification activities

• Accessibility of knowledge

• etc.

The functional characteristics are further outlined in [Hvam and Hansen, 1999
and Hvam et al 2000]. Based upon the functional requirements of the specification
process and the characteristics of the existing specification process, a gap analysis is
made in order to identify the major gap between the current performance of the
business process and the requirements to the process. This leads to identify the
potential improvements to realise using product- and product related models.

Based on the process analysis a concept for a future ideal business process is
designed. This ideal concept is made in order to be more creative and not so
restricted by "historic" procedures in the company, similar to the BPR approach
[Hammer, 1990]. With the ideal concept in mind a more realistic process design
(TO-BE) is made. This TO-BE description will consist of structural elements such
as:

• Process structure

• Humans

A Procedure for Building Product Models 7

• Organisation

• IT-systems

In relation to the definition of the future specification process, the product- and
product related models to support the specification process are defined overall.
Finally the purpose, view and context of the models to be build are defined.

2.2. Phase 2 - Product Analysis

In this phase the product to be modelled is analysed in order to gain an overview
of the product families and their structure. The analysis covers the product's
function and structure, the properties of the product, the variations of the product
and the related systems in the product's life cycle. Figure 3 shows a general
architecture for describing products including the above mentioned.

Figure 3. An architecture for describing products [Hubka, 1988], [Mortensen,
2000]

Normally, product and product related models contain only a minor part of the
proposed views in the architecture. The specific views to include in the models are
defined based on the overall content of the product and product related models
outlined in phase 1.

8 Intelligent Agent-based Operations Management

Before the object-oriented analysis (OOA) is carried out, an overview over the
product assortment and other views is set up by use of a so-called product master.
Figure 4 below shows a part of a product master for a bookcase.

Figure 4. Product master for a bookcase

The product master is build up from part-of structures (corresponding to
aggregation in OOA) and kind-of structures (corresponding to generalisation in
OOA). A circle indicates a part in the bookcase, while a cross indicates a
characteristic ('attribute' in object oriented modelling language). Relations/
constraints between the parts, or the characteristics of the parts, are indicated by a
line between the two parts/ characteristics, and the relation is described.

A Procedure for Building Product Models 9

2.3. Phase 3 - Object Oriented Analysis (OOA)

OOA is a method used for analysing a given problem domain and the field of
application in which the IT system will be used. The purpose of OOA is to analyse
the problem domain and the field of application in such a way that relevant
knowledge can be modelled in an IT system. The problem domain is the part of
reality outside the system that needs to be administrated, surveyed or controlled. The
field of application is the organisation (person, department) that is going to use the
system to administer, survey or control the problem domain.

2.3.1. Modelling the problem domain

The OOA model can be created through the activities described in Figure 5,
which describes the OOA as consisting of five phases or layers. These layers can be
seen as different viewpoints, which together make up the OOA model. Normally,
the five activities are carried out through a top down approach, but there are no
restrictions in that sense. Typically, the OOA model will be the result of a number of
iterations of the analysis process.

The subject layer contains a sub-division of the complete domain which is to be
modelled in different subject areas. In relation to the use of product models, a
subject area can for example be a product model or a factory model [Krause, 1988].

Figure 5. The five layers of OOA modelling [Coad, 1991]

The class and object layer contains a list of the classes and objects which have
been identified in the individual subject areas.

10 Intelligent Agent-based Operations Management

The structure layer contains the relationships between the objects, i.e. a
specification of generalisation and aggregation.

The attribute layer contains a specification of the information associated with the
individual objects, i.e what the objects know about themselves.

The method layer contains a description of the individual objects methods
(procedures), i.e. what the objects can perform.

Classes and structures are identified based on the product master from phase 2.
The static structure is mirrored in the layers of theme, classes and objects, structure
and attributes, while the more dynamic aspects in the model are mainly related to the
method layer. The result of the OOA can be illustrated in a class diagram [Booch et
al, 1999; Bennett et al., 1999] and on CRC cards as shown in Figure 6 below. A
CRC card describes the details of the classes and contain a description of the
mission of the class, the attributes and methods (constraints), the relations to other
classes and often also a sketch of the product/ part in focus [Bellin et al., 1997;
Hvam and Riis, 1999].

A Procedure for Building Product Models 11

Figure 6. CRC card for product modelling

The notation used in the class diagram is illustrated in Figure 7, which shows a
class diagram for the bookcase based on the product master shown in Figure 4. The
notation is a part of the unified modelling language (UML), which has been chosen
since it is the preferred standard world wide and is used in many development tools.

12 Intelligent Agent-based Operations Management

Figure 7. Class diagram for a bookcase (UML)

2.3.2. Modelling the field of application

The second part of the OOA consists of an analysis of the field of application.
Here the interaction between man and machine is analysed in order to determine the
functionality of the system, the user interface, software integration to other IT-
systems etc. Other elements that need to be determined are also requirements for
response time, flexibility and so on. The result of this is a description of the user
interface and a requirement specification for the product and product related models.

2.4. Phase 4 - Object-Oriented Design

When a system is being built up, the perspective changes from being domain
oriented (what and which task?) to being implementation oriented (how?).

A Procedure for Building Product Models 13

According to [Coad, 1991] four perspectives are used during development of the
OOD model:

• User interface, which determines the user's communication with the system.

• Problem domain, in which the OOA model is corrected in accordance with
design-specific criteria.

• Data management, where the structure of the stored data and methods for
control of data are modelled.

• Task management, which is used in cases where the system has to perform
several tasks simultaneously (multitasking).

Object-oriented design contributes, like the other phases of the object-oriented
project life cycle, to a structured procedure, and thus makes it possible to control the
entire project more closely.

If a standard configuration tool is used (Baan Configurator, Oracle SellingPoint,
etc.) most of the design parameters are frozen.

2.5. Phase 5 — Programming

The selection between a standard software system or own development depends
on the company's resources such as economy, programming skills, current IT
systems etc. If the company decides to develop its own system, object oriented
programming languages such as C++, Java, or Smalltalk can be used.

In the last few years a large amount of work has been done to create various
standard configuration solutions. The major suppliers of ERP and front office
systems are now joining the market. The list below illustrates the more famous
actors in the market:

Front Office/ERP:

Baan (now Invensys CRM), Oracle,
Cincom, Sap, Intentia, i2
Technologies, J. D. Edwards,
Peoplesoft etc.

Front Office:

Siebel, Trilogy, Calico, Firepond,
Selectia, BT Squared, Clarify,
SalesLogix etc.

A standard system makes the domain experts more independent of software
programmers since the actual programming is relatively simple and can be done
without extensive programming skills. However the integration of a standard system
with other systems would normally necessitate the work from programmers.

14 Intelligent Agent-based Operations Management

Use of a standard system could provide advantages such as: easier development
and maintenance, supplier support, safe IT costs, higher system- and education
quality and the possibility of a test period before purchasing. On the other hand a
standard system can be quite expensive and may lead to some disadvantages such as
supplier dependence, integration/fitting difficulties, and changed work terms.

2.6. Phase 6 — Implementation

Implementation, user acceptance, maintenance and follow-up are very critical
factors. The system must stand trial here. User acceptance is completely crucial if
the system is to be a success; if the users are not satisfied, the system will not
survive long. One way of getting the users' acceptance of the system is to involve
the users already in the analysis phase. This can be done by developing an early
prototype of the system, which the users can comment on. Also training and current
information of the users will facilitate the users' acceptance of the system.

2.7. Phase 7 — Maintenance

Product and product related models can be viewed as "living organisms". The
models will soon lose their value if they are not further developed and maintained.
The object oriented structure and documentation (class diagrams, CRC cards etc.) of
the product and product related models makes it considerably easier to maintain and
develop the models further.

The application of product modelling introduces a new way of doing business.
New tasks are introduced in the organisation. E.g. a salesman will have to use the
product and product related models in order to configure a product, and a product
designer will have to build up and maintain the information and rules describing the
products. This calls for commitment and ongoing motivation from top management.
Besides this both users and model managers need education and training in using
and maintaining the product and product related models.

3. Empirical study

The proposed procedure has been tested at a Danish wind turbine manufacturing
company, NEG Micon A/S, from August 1999 to March 2000 [Mertz and Vølund,
2000]. The aim of the project at NEG-Micon was to construct a product model (sales
configurator) for the sales process. The work is described in the following.

A Procedure for Building Product Models 15

3.1. Case Study Phase 1 - Process Analysis

A model of the sales- and specification process is shown in Figure 8. It illustrates
the main activities from customer request to final documentation.

Figure 8. IDEFO diagram of the sales and specification process

The analysis showed several weaknesses. It was for example found that approx.
55% of the specifications lacked quality. Based on the AS-IS description and the
functional requirements gaps have been found in several areas:

• Quality of the specifications

• Resources spent for making the specifications

• Knowledge sharing between Product Design and Sales/ Manufacturing

• Lead-time for making the specifications

Furthermore the process should be able to:

• Handle a larger number of variants

16 Intelligent Agent-based Operations Management

• Handle continuous product changes in a better way

• Include approvals and regulatory requirements

Based on the above analysis of the requirements of the business process a future
business process was set up. Based on this a simple diagram of an ideal
configuration system was sketched and discussed with the representatives of the
company. Three limitations (functionality, price of the system and time of
development) led to the adjusted model. Business processes, which were difficult to
support with product and product related models were sorted out. The product model
(The Wind Turbine Conguration System) and related systems are illustrated in
Figure 9.

Figure 9. The Wind Turbine Configuration System and its relation to other systems

A Procedure for Building Product Models 17

As a description tool for defining the interaction between the individual parts of
the product and product related models and the people working in the specification
process a Use Case has been made. The Use Case (Figure 10) shows the interactions
between the employees at NEG-Micon involved in the specification process and the
proposed product and product related models.

Figure 10. Use Case at NEG Micon

Based on the above listed analysis the purpose, view and context of the product
and product related models have been defined as:

Purpose: The purpose is to set up a system, which is able to specify bills of
materials at an overall level for 80% of the windmills sold.

View: The view is primarily the view of the sales personnel, secondary the view of
the product designers who will be responsible for maintaining the rules in the
system.

Context: The context of the models is specification of bills of materials at an overall
level for windmills based on the 20 tons platform.

Standard software (Baan Configuration version 98.2) was chosen for the
programming.

18 Intelligent Agent-based Operations Management

3.2. Case Study Phase 2 - Product Analysis

Figure 11 shows a part of the windmill (Nacelle and rotor).

Figure 11. Nacelle and rotor

In order to get an overview of the windmill the product was analysed and a
product master was built up. The overall content and the details to include in the
product master is decided, based on the analysis of the business processes in phase
1. Figure 12 illustrates a part of the product master for windmills, where different
parts of the wind turbine are described.

A Procedure for Building Product Models 19

Figure 12. A part of the product master for a windmill

20 Intelligent Agent-based Operations Management

3.3. Case Study Phase 3 - Object-Oriented Analysis model

The OOA model is divided into five themes (generating documents, project
information, configuration of the wind turbine, wind data and calculations). Each
theme has classes connected. They are divided into attributes and methods. Figure
13 shows the contents of theme 3: Configuration of the wind turbine.

Figure 13. Theme 3: Configuration of the turbine. Rational Rose

Miscellaneous(MIS)
CertificateAndExControl
PackingCost
Freight
Crane
Duty
Insurance
FinancialCosts
Payment
ProjectManagement

WindTurbine(WIT)

WindTurbineBOM
NacelleBOM
ControllerBOM
TowerBOM
AccessoriesList
FoundationList
RotorBOM
TurbineCostPrice
WindturbineBOMTemplate

ReadNacelleBOM_NAC()
ReadTowerBOM_TOW()
ReadControllerBOM_CON()
ReadAccessoriesList_ACC()
ReadFoundationList_FOU()
ReadRotorBOM_ROT()
GenerateWindturbineBOM()
GenerateTurbineCostprice()

A Procedure for Building Product Models 21

3.4. Case Study Phase 4 - Object-Oriented Design

In this case a standard configuration system (Baan Configurator) was used. As
with most standard systems, the design is frozen by the supplier.

3.5. Case Study Phase 5 - Programming

When programming a standard system the concepts for programming are set by
the supplier. The Baan Configurator is logic and constraint based. The product
attributes and constraints are programmed based on the attributes and methods listed
on the CRC-cards from the OOA-model.

The constraints are constructed with Boolean constraints, arithmetic constraints
and warning constraints. Boolean constraints use logical operators like AND, OR,
NOT, TRUE, FALSE etc. For example:

Rotor_diameter[a44]OR Rotor_diameter[a48] < >Power_effekt[a750_kW].

The main part of the constraints in the system is of this type.

Arithmetic constraints use operators like +, -, *, /, <, > etc. The last type is
warning constraints that give a message if some criteria are broken.

Figure 14 shows an example of the system's user interface. Choices made by the
user are marked by a check mark. If the selection is against the rules, then the
configurator will give an automatic warning and a note that indicates where the
selections must be corrected/changed. The user is able to start the configuration at a
random place and it is possible to optimise according to different resources (price,
output etc.).

22 Intelligent Agent-based Operations Management

Figure 14. Screen shot of the configurator

3.6. Case Study Phase 6 - Implementation

The final implementation of the product model is yet to be carried out. The
prototype described in phase 6 shows a huge potential for implementing the product
model. Several considerations must be encountered before a full-scale
implementation is possible. A cost-benefit analysis of a full-scale implementation
has been made. It is based on quantitative advantages, qualitative advantages,
expenses for IT and internal activities. It is found that the payback period will be
less than one year. Based on the prototype described in this paper, the company has
decided to continue the work and implement a product configuration system.

3.7. Phase 7 - Maintenance

The product master and the object oriented model guides the set up of a structure
in the software and serve as documentation of the system.

A Procedure for Building Product Models 23

4. Conclusion

The proposed procedure is based on well known and proved theory elements.
The aim of the procedure is to serve as guidance for engineers working with product
modelling. The procedure has been tested at several manufacturing companies in
Denmark and abroad with positive results.

The proposed procedure includes several fields of expertise:

• Business process reengineering, and business strategy

• Product design and manufacturing technology

• Theory for structuring mechanical systems, and structuring product and product
related models

• Object oriented modelling

• IT, artificial intelligence and knowledge representation

• Organisational aspects of application of product modelling

The wide range of theory is included in the procedure in order to cope with the
questions raised in the introduction of the paper. I.e. how to deal with the business
processes affected by the models, how to analyse and structure products and how to
implement the models in IT-systems.

Only few of us will claim to be an expert in all the fields mentioned. However,
engineers working with product modelling will need to obtain some insight into the
fields listed. Therefore many engineers working with product modelling could
benefit from qualifying themselves within themes of relevance for product
modelling, where they have little insight.

Based on the proposed procedure a 4 days intensive course in product modelling
has been developed. The aim of the course is to introduce the modelling techniques
and analysis methods in the proposed procedure. The experiences from the course
have been positive. The procedure also form the basis for a course at DTU for
engineering students at graduate level.

The challenge in the future is to rework and further integrate the steps in the
procedure in order to make the procedure more operational. Also the development af
a tool for documentation of the product models is needed in order to secure a smooth
handling of the product master, the class diagram and the CRC-cards. Finally, the
principles of the product master will have to further developed in order to include
the life cycle properties of the products.

24 Intelligent Agent-based Operations Management

5. References

Andreasen, M.M. et al.: On structure and structuring Workshop - Fertigungsgerechtes
Konstruieren, 1995.

Barfod, A & Hvolby H.: Ordrestyring - tidens indsatsområde, Industriens Forlag, 1997.

[Bellin et al., 1997]: David Bellin, Susan Suchman Simone; The CRC Card Book; Addison-
Wesley Longman, inc., 1997.

[Bennett et al., 1999]: Simon Bennett, Steve McRobb, Ray Farmer; Object oriented systems
analysis and design, University Press, Cambridge, Britan, 1999.

Booch G., Rumbaugh J. & Jacobson I.: The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

Coad, P. & Yourdon E.: Object-oriented analysis, second edition: Prentice Hall, New Jersey,
1991.

Hammer, M.: Reengineering Work: Don't Automate, Obliterate, Harvard Business Review,
July-August, 1990.

[Hammer et al., 1993]: Michael Hammer, James Champy; Reengineering the Corporation,
Harper Collins Publishers, 1993.

Harlou U.: A product family master plan as basis for product modeling and engineering
design, 1999.

Hubka, V. & Eder, W.E.: Theory of Technical Systems, Springer-Verlag. Berlin, 1988.

Hvam, L.: Application of product modelling - seen from a work preparation viewpoint, Ph.D.
thesis, Department of Industrial Management and Engineering, Technical University of
Denmark, 1994.

Hvam, L. & Riis, J.: CRC Cards for Product Modelling, Department of Manufacturing
Engineering, Technical University of Denmark, 1999.

Hvam L., Hansen B.L.: Strategic guidelines for application of product models; The 4th Annual
International Conference on Industrial Engineering Theory, Applications and Practice,
San Antonio, Texas, November 17-20 1999.

Hvam L., Mortensen N. H., Riis J. and Hansen B.L.: Produktmodellering - procesanalyse,
produktanalyse, objektorienteret analyse, Department of Industrial Management and
Engineering, Technical University of Denmark, 2000, 180 pages (In Danish).

ICAM project group: Integrated Computer-Aided Manufacturing (ICAM) Architecture part II,
Vol. IV-Function Modelling Manual (IDEF-0); Soft Tech Inc, MA USA, Junil981.

Johnson, G. & Scholes K.: Exploring Corporate Strategy, Prentice Hall 1993.

Krause, F.: Knowledge integrated product modelling for design and Manufacture, The
Decond Toyota Conference, Aichi Japan, 1988.

Mertz, J. & Vø1und, L.: Master thesis: Product Configuration at NEG Micon A/S, Technical
University of Denmark, 2000.

A Procedure for Building Product Models 25

Mortensen, N. H., Yu, B., Skovgaard, H. and Harlou, U.: Conceptual modeling of product
families in configuration projects, 2000.

[Tiihonen et. al., 1996]: Tiihonen, J., Soininen, T., Männistö, T., Sulonen, R.; State-of-the
Practice in Product Configuration - a Survey of 10 Cases in the Finnish Industry, Helsinki
University of Technology, 1996.

[Weigel et. al., 1994]: Rainer Weigel, Boi Faltings; Constraint-based knowledge
representation for configuration systems, Technical Report No. TR-94/54, Ecole
Polytechnique Federale de Lausanne, Department d'Informatique, 1994.

This page intentionally left blank

Chapter 2

Identification of Scheduling Problems:
The DeSAP Interface within the e-OCEA
Environment

Claudine Tacquard and Franck Thibaut
University of Tours, France

28 Intelligent Agent-based Operations Management

1. Introduction

The study of scheduling problems involves the identification of the problem, its
modelization and finally its solution using appropriate techniques and tools. Within
the scope of these researches, the work presented in this paper focuses on the
identification of scheduling problems. Our purpose is to provide the modeliser with
a decision support system to first describe the very problem to be dealt with and then
to determine the theoretical problem to be solved. This work is part of a more
ambitious project named e-OCEA that is currently under development at the
Laboratoire d'Informatique de Tours. e-OCEA software1 offers a platform to
develop tailored algorithms to solve specific scheduling problems. The e-OCEA
environment includes several interconnected modules, sharing common data
standards. Among those modules, DeSAP enables definition of the physical
structure of a flexible manufacturing system (FMS), then the definition of the
product to be manufactured and finally the identification of the scheduling problem
that has to be solved in order to find the best way to optimise production.

The next section gives a global presentation of the DeSAP module and points out
its specificities within the e-OCEA environment. The third section recalls some
principles of the underlying notation. Section four presents an enhancement of this
initial description to integrate the products to be manufactured within the workshop
previously described. The last section gives an example and presents the whole
analysis that DeSAP software can provide. In conclusion future prospects are
discussed.

2. Global view of the DeSAP module

e-OCEA is a decision support system offering schedules generating tools and
following their implementation into the workshop [T'KI 01]. Its architecture is built
as a logical bus on which modules can be plugged. The master part of this bus is a
database. This database contains information on existing scheduling algorithms
(classified by problem and method), previously generated data and schedule sets and
problem notations. Other modules are dedicated to the conception of algorithms, to
data generation, to the comparison of algorithms etc. A major step before beginning
the design of a scheduling algorithm is to identify the scheduling problem and
search for information on pre-existing results. DeSAP2 is one of the two graphical
tools that helps the decision maker in this initial phase [TAC 01].

The DeSAP module is composed of three distinct parts:
— A graphical interface that enables the user to describe a FMS and displays

the notation results.

1 The web site e-OCEA is available at the address http://www.ocea.univ-tonrs.fr
2 DeSAP is a module of e-OCEA that is also available at the address http://www.li.univ-tours.fr/DeSAP

Identification of Scheduling Problems 29

- The analyser that enables analysis of the initial FMS description, to carry
out a consistency check, to identify complex structures and to generate the notation
of the FMS.

- The scheduling identification that is connected to the e-OCEA database.
Based on the definition of product routings, this part identifies the associated
scheduling problems, provides bibliographical references and eventually
appropriated algorithms to solve the scheduling problem.

Figure 1. Main window of the DeSAP module

The DeSAP interface (Figure 1) contains the following elements:
: A graphical display of the FMS elements,
: The lists of resources involved in the FMS, be they processing resources or

handling resources,
© : The links between resources,

: When known, the routings of the products to be manufactured,
© : A recall of the analysed elements

The DeSAP software is developed with Visual Cafe WDE 2.0, running under the
Windows NT environment [THI 00]. It is connected to the e-OCEA database by an
ODBC driver and uses the JDBC technology. The structure of DeSAP allows two
different modes of execution: an Applet mode that is a distant utilization via HTML
pages and an autonomous mode that enables local execution on the user's computer.

30 Intelligent Agent-based Operations Management

The Applet mode is controlled by the Security Manager in the client's navigator;
consequently restrictive conditions are applied (currently, the user's personal
examples cannot be saved on the remote server). This applet mode uses the
connection to the e-OCEA database and it is then possible to obtain information and
references on the related scheduling problems. The autonomous mode can also be
retrieved from the same web site. It requires a virtual machine (JVM) to interpret the
compiled code. This virtual machine can either be JDK (Java Development Kit) or
JRE (Java Runtime Environment). When using this last mode, all the DeSAP
functionalities are available, except for the connection to the e-OCEA database that
is not available.

The applet module is available at the address http://www.ocea.univ-tours.fr.

The autonomous module can be downloaded from the address http://www.li.
univ-tours.fr/DeSAP.

3. Brief presentation of the notation

Our objective is to define a generic notation that can be applied to any FMS
configuration. In most of the notations presented in the literature, only processing
resources are considered [GRA 79, BLA 96, HAL 97, VIG 99]. The transport
resources are seldom specified. Only the notation proposed in [LIU 96] presents a
more realistic approach. It offers "standard configurations" involving transport
resources, but with no regard to the resources number or the inter-resources
connection.

The DeSAP analyser relies on a notation that is generated from an initial
definition of three categories of basic elements: processing resources, handling
resources and arcs associating processing resources with handling resources
[MAR 99]. A basic principle in the notation is that any of the FMS resources is
modelled as a generic storage means made up of three stocks (i.e. input, internal,
output) respectively modelling the input capacity, the processing/handling capacity
and the output capacity of the resource (Figure 2).

Figure 2. Basic diagram for any resource in an FMS

Identification of Scheduling Problems 31

For example, an AGV with transport capacity reduced to only one part is
modelled by the triplet (0, 1, 0); a CNC lathe machine able to simultaneously
process n parts is modelled by the triplet (number of places in the input stock, n,
number of places in the output stock).

A stage of machines as encountered in hybrid flow shop problems or in job shop
with duplicated machines is also modelled by a unique processing resource labelled
"stage". This "stage" resource contains several processing resources; thus, the
capacity of its internal stock is equal to the number of resources it includes. These
resources included can have their own processing characteristics (i.e. identical,
proportional or unrelated). In this configuration a stage of machines containing N
processing resources with common input and output stocks is modelled by the triplet
(number of places in the input stock, N, number of places in the output stock).

3.1. Basic elements of the notation

Relying on the previous principle, the description of the FMS structure consists
of the definition of the different resources it includes. This is done using the
following elements only. The DeSAP software offers appropriate menus to facilitate
the description of each of those three types of basic elements. After their definition,
the user can graphically display them on the left part of the screen to reproduce the
FMS under study (Figure 1).

Processing resources gathered:
— Real processing resources (CNC machines, balances, warehouse etc),
- Virtual processing resources that do not realize physical transformations in

the product, but refer to decisional treatments related to the manufacturing process:
(switching node on an AGV path, exchange zone that permits the transfer of product
between two manipulators),

- Meta-resources that are fictitious processing resources including several
resources. They can be described as FMS. This type of resources allows a recursive
modelling of the FMS by authorizing the insertion of already partially modelled
FMS.

A list of characteristics describes any processing resource:
- identification,
- nature (Real: TR, Virtual: EN or SN, Meta: MM),
— number of elements (a processing resource modelling a stage of several

resources can specify if they have identical P, proportional Q or unrelated R
operational characteristics, otherwise 1),

- list of tools available on this resource,
- characteristic of an exchange resource: this field is instantiated by the

analyser (E: Exchange, N: None ; see § 2.3).
- functioning mode (series S/derivation D: all parts in the input stock will or

not be processed on the resource),

32 Intelligent Agent-based Operations Management

- interaction with the outside (to specify if a product can enter or leave the
workshop: I, O, IO),

- number of places in the stocks and their time boundaries.

During the analysis phase, the definition of each processing resource is
transcribed using a standardised notation (see §3.3). For example, in the notation
given in Figure 5, the string:

machinel TR 1 (Tooll_Ml) NDIO(0:-,l:-,0:-)

models the real processing "machine1" using the tool1_Ml. This resource is in
derivation (D). The products can enter or leave the FMS on this resource (I/O). The
capacities of its stocks are (0, 1, 0) with no time bound. The character N is generated
during the analysis phase (see § 3.2). It represents the interaction of this resource
with other complex structures in the FMS. In this case the machine considered has
no direct contact with other analysed complex structures (N stands for None,
otherwise E for Exchange).

Handling resources are elements ensuring the transfer of the parts between
processing resources: AGV, conveyor, belt, robot, arm manipulator, palletiser, and
crane etc. They are gathered in a pool if they obey the two following conditions: to
have identical characteristics, to be able to ensure the same transport.

A pool is characterised by the following characteristics:
- identification,
- number of identical resources in the pool,
- physical limits of the part to be handled (weight, shape, size etc),
- number of places in the stocks.

The FMS notation also recalls those characteristics. For example, in Figure 5, the
string:

"conveyor (1)[] (0,1,0)"

models a pool of 1 unit of the handling resource "conveyor", with no physical limit
and with the stock capacities (0,1,0).

Arcs model the transportation of parts between processing resources. An arc
models a physical unit when it represents the connection between two processing
resources using a conveyor belt. But an arc can be more abstract when it models the
transportation of an AGV or a robot between several processing resources.

An arc is described by:
- the name of the handling pool ensuring the part transfer,
— the identification of the resources situated at the origin and destination,
- the orientation of the transport,

Identification of Scheduling Problems 33

- the transportation time (loaded or not),
- the number of tracks (when several tracks exist, more than one handling

resource belonging to the pool can simultaneously use the arc without collision risk).

In the notation (Figure 5), the string:

(machine 1 ,machine2)R(10-15,1)

models an arc between the two processing resources machine1 and machine2.
Transportation times are specified by the user (10-15) and only one track is
available. Transportation can occur in both directions (R for return).

From those three basic elements, it then becomes possible to represent the whole
FMS using a directed graph, in which nodes are processing resources, arcs are the
directed transportation of handling resources between nodes and the valuation of the
arcs indicates the pool of handling resources in charge of the product handling.

The next step in the DeSAP modelization process is to analyse this graph in
order to extract an organization. An objective of the notation is then to provide the
modeliser with a synthetic view of the FMS that presents more structured and
controllable elements. The generated notation also becomes an entry to another
software that automatically generates the control software of the studied FMS
[MAR 99].

3.2. The complex structures analysed

In order to provide a notation in which more structured items appear, the DeSAP
analyser identifies two types of complex structures.

A cell structure is made up of at least two processing resources served by a
single handling pool that operates on a set of arcs. For example, this structure can
refer to a cell of the flexible ring type (Figure 3).

34 Intelligent Agent-based Operations Management

Figure 3. A cell structure

A line structure is made up of at least two processing resources and several
handling resources assigned to subsets of disjoined arcs (Figure 4). When several
processing resources operate on a line, each determines an elementary line and the
common processing resource is labelled "exchange resource". For example, this line
structure can refer to a flow-shop or a hybrid flow-shop. It contains two elementary
lines and machine 2 is labelled "exchange".

Figure 4. A line structure

Identification of Scheduling Problems 3 5

Any combination of lines or cell structures can be identified. In any of those
configurations, the processing resources ensuring the connection between two
complex structures are also recognised as exchange resources and the string
corresponding to their definition also receives an additional "E".

3.3. The notation generated

The DeSAP analyser uses a grammar that identifies the basic elements involved
in the FMS and generates a notation according to five levels of description. The full
description of the grammar can be found in [TAC 01].

Each level of the notation gives details on the elements of the FMS. The first
levels present a raw identification of the complex structures analysed while the last
recalls the definition of all the basic elements and gathers them in complex
structures.

When several complex structures are identified, they appear successively in the
notation. Each cell is specified between the characters {} and each line between []
(see also §5, Figure 13). Within those characters, the description of the complex
structure is as follows: notation of each processing resource involved in the complex
structure {/ notation of one handling resource // notation of the arcs shared by this
handling resource }*.

Considering the previous cell example (Figure 3), the five levels of its notation
are given in Figure 5. In the detailed notation (level 5) the different characteristics of
the resources (i.e. identification, nature, interaction) are recalled along with the
definition of the path followed by the handling resource.

36 Intelligent Agent-based Operations Management

Level
1.
2.

Analysis
1 c
1 C ; 4 M ; 1T

** This FMS contains 1 cell.. .
** , . . including 4 processing

3.

4.

-~
resources and 1 handling resource

**All the processing resource!
are of the derivation type

** If several complex structures

1 C ; 4 D ; 1T

l C { 4 D / l T }

Figure 5. Notations generated by the DeSAP analyser for a cell structure (Figure 3)

5.

The next figure (Figure 6) only presents the level 5 of the notation corresponding
to the line structure. It models a 3 stages hybrid flow shop. The first stage contains
two identical processing resources. The two last stages contain one processing
resource. Two different pools of a single handling resource respectively ensure the
transportation of parts between the first two stages and the last two stages.

exist, each is summed up in notation 4
1 c
(machine1 TR 1 (Tooll-M1) NDIO(0:-,l:-,O:-),
machine2 TR 1 (Too12-M2) NDN(0:-,1 :- ,O:-),
machine3 TR 1 (Too13-M3) NDN(0:-,1 :- ,O:-),
machine4 TR 1 (Too14-M4) NDN(0:-,1 : - ,O:-)
/ conveyorl(1) [I (0,1,0)
// (machinel,machine2)R(10-15,l) ; (machine2,machine3)(5-10,1) ;
(machine3,machine4)(5-10,1) ; (machine4,machine 1)(10- 15,1)}

Level
5.

Figure 6. Level 5 of the notation generated for a line structure (Figure 4)

Analysis
1L
[machinel TR P (Tooll-M1) NSI(0:-,2:-,O:-),
machine2 TR 1 (TooUM2) ESN(0:-,1 :- ,O:-),
machine3 TR 1 (Too13-M3) NSO(0:-,1 :- ,O:-)
/ robot2(1) [I (0,1,0)
// (machine2,rnachine3)(3-3,1)
/ conveyor 1 (1) [I (0, 1 ,0)
// (machinel,machine2)(5-10,1)]

Within those different levels of notation, only the most detailed one is used to
automatically generate the control software of the FMS [MAR 991.

Identification of Scheduling Problems 37

4. Identification of scheduling problems

The third function ensured by DeSAP is the identification of scheduling
problems associated with a specific production on the FMS under study. The
analysis is based on both the FMS configuration given by level 5 of the notation and
the description of the products to be manufactured. For that purpose, each
processing resource is associated with one or several tools (Figure 7).

Name

Figure 7. Tools definition (example in §5)

We consider that a tool is situated only on one resource. Then, a routing is
defined by a sequence of operations where each operation requires a single tool
(Figure 8). It is possible to specify different routings to manufacture different types
of products. A set of operations without precedence constraints between them (the
case in an open shop) is defined by a routing with the characteristic "not fixed"
meaning that the operations are unordered. For the time being, DeSAP do not permit
the definition of alternative routings with optional operations.

38 Intelligent Agent-based Operations Management

Figure 8. Routing definition (example in §5)

First the DeSAP analyser examines the routing definition to check whether it
corresponds to the FMS configuration. Some consistency tests are conducted to
verify if the first operation of the product routing is done on an "input processing
resource" and the last one on an "output" one. Then a second test focuses on the
sequence of operations that must be realistic, i.e. when two consecutive operations
are not processed on contiguous resources, these must belong to a complex structure
in which the resources that are not involved in the routing are either defined in a
"derivation" mode or are a "Virtual processing resource". It enables the product to
go through the resource without undergoing any processing operation.

For example, considering the previous cell example where all the processing
resources are defined in a "derivation" mode, the next routing R1 is valid. This
routing does not reference any tool situated on machine M4.

Rl = Tool1_Ml->Tool3_M3->Tool2_M2->Tool1_Ml

But, considering the line example where all the processing resources are defined
in a "series" mode, the next routing R2 cannot be validated because M2 must be
included in the routing.

R2 = Tool1 M1->Tool3 M3

Identification of Scheduling Problems 39

4.1. Classification of scheduling problems

In the first step, the identification process situates the scheduling problem in the
classification proposed by [MAC 93]. Depending on the number of valid routings,
the number of operations on the resources and the possible presence of stages,
DeSAP identifies an element among the following classification [T'K 00]:

- Single machine (1): the products require only one operation performed on
a unique machine.

- Parallel machines (P, Q, R): the products need only one machine that is
present for a single stage of identical, uniform or unrelated machines.

- Flow shop (Fn): each product type follows an identical flow pattern in the
FMS. Thus, only one routing is defined.

- Job shop (Jn): each product type follows its own individual flow in the
FMS. Thus several routings must be considered.

- Open shop (On): there is no specific flow pattern for any product type.
The operations on the products can be done in any order.

- Hybrid flow shop (FHn): flow shop in which there are ki machines in each
stage (i= l,...,m).

- Job shop with duplicated machines (JDn): job shop in which there are ki
machines in each stage. For the FH and JD classes, any product requiring a stage
needs to be processed on only one of those machines.

This first analysis references only one of the previous classes with no details
about the real configuration of the FMS. The skeleton of the identification algorithm
is described below.

if (number of unordered routing == 0) then
if (number of routings = = 1) then

if(number of operation == 1) then
if (internal place == 1) then Class <— 1
else Class P, Q or R

else [number of operation > 1]
// (all the internal places = =1) then Class F
else (there is at least one resource with internal place > 1)

Class FH
else [number of routings > 1]

if (all the internal place ==1) then Class J
else [there is at least one resource with internal place > 1]

Class JD
else [number of unordered routing > 0] Class O

Then, for the classes F, FH, J, JD and O, the number of distinct resources
referenced in the routings permits specification of n, (i.e. FH3 for an hybrid flow
shop with 3 stages).

40 Intelligent Agent-based Operations Management

4.2. Definition of the notation used to retrieve references from the
database

The next phase consists in refining the previous description using a more
detailed notation in the α/β\γ format. It provides more precise information on
the type of resources visited by the product routings. This step is essential to retrieve
problems and bibliographical references from the e-OCEA database. This database
uses a notation commonly used by researchers in the scheduling community. The
objective is then to find the best match between a problem identification provided by
DeSAP and the description of more specific problems, as stored in the e-OCEA
database.

Most of the different notations proposed in the literature [GRA 79] [BRU 95]
[PIN 95] [BLA 96] do not specify all the characteristics or the handling resources in
charge of the product transportation. Only the notation proposed by [VIG 99] gives
some details of stages in the hybrid flow shop case. The (X notation we retain in the
DeSAP identification enhances the latter to take the specificities of the handling
resources into account. It is as a mix between the very detailed notation (level 5) and
those proposed in the literature. The fields β and γ depend on constraints relative
to the jobs and to criteria that are not included in level 5 of the generated notation,
thus they are not automatically deduced.

The field a = a 1a 2, ((a3 a4

(/))a 2

l=1)(a 5

(m)) describes the resources
environment.

α1 : Class of scheduling problem (ø, 1, m, F, FH, J, JD, O)
where me {P, Q, R}

α2 : Number of stages (, øN).
α3 : Type of the resource at stage 1 (ø, P, Q, R), where:

- P (identical processing resources)
— Q (uniform processing resources)
- R (unrelated processing resources)

α4: Number of processing resources at stage 1 (ø, N).
The couple α3α4 is repeated for each stage.
α5 : Number of sample of the handling resource in charge of the transport

between two consecutive resources (be they a stage or not).

An advantage to the DeSAP modelization process is to help users in the
definition of their scheduling problem. Thus, without being an expert in scheduling
identification, specialists can easily describe their real FMS configuration and the
routings of their products. It often appears that very different FMS configurations
can produce the same α notation and lead to identification of identical theoretical
scheduling problems. The following example illustrates this possibility.

Identification of Scheduling Problems 41

Let us consider the (X field:

a = FH3(P2,Q4,R8)((1:1-2,2-3))

It describes an hybrid flow shop (FH) with three stages where there are two
identical processing resources at the first stage, four uniform processing resources at
the second stage and eight unrelated processing resources at the third stage. One
pool of handling resources is present in this hybrid flow shop, that ensures the
transportation of parts between the three stages.

This α field can be generated for different physical configurations of FMS.
Figures 9 and 10 respectively present FMS with a line structure and a cell structure.
The definitions of the routings R1 and R2 of the products to be manufactured allow
an identical analyse of the associated scheduling problem.

Figure 9. FMS with a line configuration

42 Intelligent Agent-based Operations Management

Figure 10. FMS with a cell configuration

For the time being, the fields β and γ are not used to find references in the
database. However, the user can specify them via menus to obtain a full notation
(Figure 11).

Figure 11. Definition of fields β and γ

At the end, the identification process generates a more standardised notation
using the three fields a / β /γ :

Identification of Scheduling Problems 43

FH3(P2,Q4,R8)((1:1-2,2-3)) / pmtn, min(p)<=pj<=max(p), snsd / Cmax

This complete notation is stored in a file named "desap.not" and allows querying
of the database. Some researches are under development to automatically identify
some characteristics of the field [SOU 01]. They are based on a more precise
definition of the resources. For example, the presence or absence of input or output
stocks in the resource, the possibility to have several handling resources
simultaneously delivering a part to a processing machine.

5. Example of analysis

Let us consider an example of FMS (Figure 12). It includes eight processing
resources: M1..M8; the products can enter the FMS on Ml, M5 or M8 and can leave
it on M5 or M8; The processing resources M1, M2 and M3 are in "series" and all
the others are in "derivation".

The handling system is composed of three resources: one endless belt (Tapis 1),
one robot (Robotl) and one AGV (Chariotl).

Figure 1 also illustrates the graphical representation of this FMS using DeSAP.

Figure 12. FMS example

A first analysis of the FMS, independent of any routing definition, generates the
notation with five levels of details. It identifies several complex structures: one cell
and one line. Figure 13 presents the most detailed notation. In this example, resource

44 Intelligent Agent-based Operations Management

M4 is an exchange resource that appears in the two complex structures. Resource
M3 is also an exchange resource between two elementary lines involved in the line
structure (the first elementary line involves resources M1, M2 and M3 and uses
“tapisl” and the second involves M3 and M4 and uses “Robotl”).

Each processing resource is associated with tools (i.e. M1 has the tools tool-la,
tool-lb; M 2 has the tool-2 etc). Only one routing is defined in this example: it
contains five operations, each one requiring a specific tool that is available in only
one processing resource.

Routing 1: tool-la (MI) -> tool-2 (M2) -> tool-3 (M3) -> t0014 (M4) -> tool-5
(M5)

When a product follows this routing, all the resources of the line structure are
used, but only a reduced part of the cell structure is involved (i.e. resources M4 and
M5). The handling resource “chariot 1” ensures the product transfer from M4 to M5.
Then, unloaded, it continues its way through the cell structure to perform the next
product transfer.

The same FMS configuration can be used with any other routing specification,
with no need to re-analyse its physical characteristics and generate a new notation.

Level
5.

Analysis
l C , 1L
(M4 TR R (tool-4) EDN(7:2-2,4:2-2,7:2-2),
M5 TR P (tool-5) NDIO(2: 1-9,2:2-5,2:4-4),
M6 TR 1 (tool~6a,tool~6b,tool~6c) NDN(4:7-8,1:4-5,8: 1-2),

M8 TR 1 (tool-8) NDIO(5:5-5,1:4-5,5:4-5)
M7 TR R (tool-7) NDN(2: 1-1,2: 1-1,2: 1 -l),

AGV(1) [I (0,1,0)
(M4,M5)(-,) ; (M5,M6)(-,) ; (M67M7N-d ; (M 7 m X - J ; (M8,M4)(-,))

[Ml TR Q (tool-la,tool-1 b) NSI(6:l-13: 1-1,6: 1-1),
M2 TR 1 (tool-2) NSN(5:4-8,1:2-2,5:7-9),
M3 TR 1 (tool-3) ESN(2:1-7,1:7-8,6:6-6),
M4 TR R (tool-4) EDN(7:2-2,4:2-2,7:2-2)
1 Robot(1) [I (0, 1 ,0)

W3,M4)(-,)
Endless belt(1) [v<2ms-l] (0,3,0)

7 (M 1 ,M2)(2-3,1) ; (M2,M3)(-,)]

Figure 13. The notation of level 5 of the FMS

Identification of Scheduling Problems 45

DeSAP identifies if the scheduling problem defined by routing 1 belongs to the
Hybrid Flow Shop class and can be roughly noted as FH5. Actually, the routing
defines a sequence of five operations that are processed on contiguous resources. In
addition, three of those resources have internal capacities greater than one (i.e. Ml,
M4 and M5 have an internal stock respectively equal to 5, 4 and 2), which indicates
the presence of stages of resources.

After the user has specified further characteristics of β and 7 (given here as an
example), the a / β / γ notation generated in "desap.not" is the following:

FH5(Q5,l,l,R4,P2)((l:l-2,2-3)(l:3-4)(l:4-5)) /pmtn, prec, ri, Snsd/Cmax

When DeSAP is run in the e-OCEA environment, it can retrieve information on
this type of scheduling problem from the e-OCEA database. The result is displayed
in the following format (Figure 14): first the database records matching exactly to
the problem under study (here FH5), then the records where field (X begins with the
same scheduling class (here FH).

1.

2.

3.

Notation
FHk/Ssd/Cmax

FHk/no-
wait/Cmax

FHk//C-

Reference
[AGH 95]

[GUI 96]

[VIG 96]

Title
Hybrid flow
shop . . .

A
computational

Resolution of
some 2 stages
hybrid . . .

Year

1995

1996

1996

Book

IEPM'95

IJPR

SMC'96

Authors
Aghezzaf,
Artiba,
Moursly. . .
Guinet,
Solomon,
Kedia...
Vignier,
Billaut,
Proust. . .

Figure 14. Examples of references in relation with the FH5 scheduling problem

The DeSAP module also provides a report on the whole analysis in a HTML file.
This last one details the different phases of the analysis (notation, classification,
bibliographical references etc).

6. Conclusion and prospects

In this paper, a decision support system for describing flexible manufacturing
systems and identifying associated scheduling problem was presented. A function of
the DeSAP module is to offer a platform permitting an easier communication
between the various FMS designers and users. Industrialists and scheduling
researchers can use it with different objectives. The first can find an assisted support

46 Intelligent Agent-based Operations Management

system to describe their production workshop and the last ones can use it an
interface to the other e-OCEA modules. The FMS notation is automatically
generated by an analysis of basic elements such as processing and handling
resources. Then, from this notation and thanks to the DeSAP/e-OCEA interaction
via a database, it becomes possible to identify scheduling problems and to propose
information for their solution.

7. References

[AGH 95] AGHEZZAF E.H., ARTIBA A., MOURSLI O., TAHON, C., "Hybrid flow-shop
problems, a decomposition based heuristic approach", Proceeding of international
Conference on Industrial Engineering and Production Management (IEPM'95),
Marrakech, 1995, pp 43-56.

[BLA 96] BLAZEWICZ J., ECKER K.H., SCHMIDT G., WEGLARZ J., Scheduling in computer and
manufacturing systems, Springer-Verlag, 1996.

[BRU95] BRUCKERP., Scheduling Algorithms, Springer-Verlag, 1995.

[GRA 79] GRAHAM R., LAWLER E., LENSTRA J., RINNOOY KAN A., "Optimization and
approximation in deterministic sequencing and scheduling theory: a survey", Annals of
Discrete Mathematics, vol.5, p. 287-326, 1979.

[GUI 96] GUINET A., SOLOMON M.M., KEDIA P. K., DUSSAUCHOY A., "A computational
study of heuristics for two stages flexible flowshop", International Journal of Production
Research, vol. 34, n° 5, 1996, p. 1399-1415.

[HAL 97] HALL N., KAMOUN H., SRISKANDARAJAH C., "Scheduling in robotic cells:
classification, two and three machine cells", Operations Research, vol. 45, n° 3, 1997,
421-439.

[LIU 96] LIU, J and MACCARTHY B., "The classification of FMS scheduling problems",
InternationalJournal of. Production Research, vol. 34, n° 3, 1996, 647-656.

[MAC 93] MACCARTHY B., and LIU J., "Addressing the gap in scheduling research: a review
of optimization and heuristic methods in production scheduling", InternationalJournal of
Production Research, vol. 31, n° 1, 1993, p. 59-79.

[MAR 99] MARTINEAU P., TACQUARD C., ROUILLON A., "Generation automatique de la
conduite d'un système flexible de production", Journal Européen des Systèmes
Automatisés, vol. 33, n° 7, 1999, p. 815-853.

[PIN 95] PINEDO M., Scheduling Theory, Algorithms and Systems, Englewood Cliffs, NJ:
Prentice Hall, 1995.

[SOU 01] SOUKHAL A., Ordonnancement simultané des moyens de transformation et de
transport, PHD dissertation, Université de Tours, 2001.

[T'K 00] T'KINDT V., BILLAUT J-C., L'ordonnancement multicritère, Presses Universitaires
de Tours, 2000.

Identification of Scheduling Problems 47

[T'K 01] T''KINDT V., BILLAUT J-C., MARTINEAU P,. TACQUARD C., PROUST C., "The OCEA
Project: Towards a decision Support System for Solving Scheduling Problems", Internal
report, November 2001, LI/E3i/Universite de Tours.

[TAC 01] TACQUARD C., and MARTINEAU P., "Automatic notation of the physical structure of
A flexible manufacturing system", International Journal of Production Economics, vol.
74, n°l-3, 2001, p. 279-292.

[THI 00] THIBAUT F., TACQUARD C., "Specification et notation d'un Système Flexible de
Production: Problémes d'ordonnancement associés et interface avec OCEA", End of
course project, E3i/ Université de Tours, 2000.

[VIG 96] VIGNIER A., BILLAUT J-C., PROUST C., T'KINDT V., "Resolution of some 2-stage
hybrid flowshop scheduling problems", IEEE Conference on Systems, Man and
Cybernetics (SMC'96), Pekin (China), vol. 4, 1996, pp. 2934-2941.

[VIG 99] VIGNIER, A., BILLAUT J-C., PROUST C., "Les problèmes d'ordonnancement de type
flow-shop hybride - Etat de Fart", RAIRO / Recherche Opérationnelle, vol. 33, n° 2,
1999,p.117-183.

This page intentionally left blank

Chapter 3

Product Generic Modelling for
Configuration: Requirement
Analysis and Modelling Elements

Michel Aldanondo, Khaled Hadj-Hamou and Jacques Lamothe
Centre de Génie Industriel, Ecole des Mines d'Albi-Carmaux, France

Guillaume Moynard
Centre de Génie Industriel, Ecole des Mines d'Albi-Carmaux, France, and
Lapeyre-GME, Aubervilliers, France

50 Intelligent Agent-based Operations Management

1. Introduction

To improve competitiveness, companies try to launch products with
customisation capabilities. They therefore include configuration software
(configurator) in their information systems. In consequence, most of the ERP
providers include in their software packages configuration modules (see the surveys
of (Sabin et al 1998)). In order to function, these configuration modules require a
generic model of the product, which is not normally defined by a computer science
specialist. Therefore, there is a strong need for friendly generic modelling
approaches and relevant tools in order to set up configurators in industry.

Many papers dealing with configuration are more concerned with a solutions
approach and the relevant generic modelling problem is normally not addressed. As
Wielinga explains in (Wielinga et al 1997)

"Many authors prefer a parsimonious set of knowledge structures that suit their
favourite problem solving method or their domain ".

Oriented towards configuration requirements and modelling, our contribution
targets two goals. The first, dealing mainly with product generic modelling
requirements, is to identify and to classify the product customisation possibilities that
should be fulfilled by configurators. The second, dealing with modelling, is to
analyse how the constraint satisfaction problem (CSP) framework can handle these
modelling requirements and to comment how existing algorithms can assist the
configuration process.

We first recall configuration basic definitions, discuss the people involved in the
configuration process, point out two kinds of configurators, underline general
modelling needs and justify our CSP-based modelling choice. We then identify a
first set of modelling requirements corresponding to what we call the "central
problem" and provide modelling elements. Then, in order to match other
particularities of industrial problems, we sequentially add modelling requirements to
this "central problem" and analyse how CSP based generic modelling elements can
fulfill them. These complementary elements gather: a product descriptive approach,
tailored or parametric components, layout definition and hierarchical bill-of-
materials.

Our intention is therefore to propose and discuss generic modelling elements
without focusing on problem solving. We are clearly interested in showing how CSP
can be used to represent various aspects of product generic modelling for the
configuration problem. A custom storage system provided by the Lapeyre Company
will be used as an example to illustrate our ideas throughout this paper.

Product Generic Modelling for Configuration 51

2. Configuration, configurators and generic modelling

This section recalls general aspects of configuration, introduce the product
generic modelling need and justify our CSP-based approach.

2.1. Configuration definition and configurator presentation

In previously published works concerning configuration, (Mittal et al 1989),
(Soininen 1998), (Kühn 1999), (Friedrich et al 1999) and (Aldanondo et al 2000),
common features defining configuring are:

hypothesis: a product is a set of components,

given: (i) a generic model of a configurable product able to represent a family of
products with all possible variants and options, in which a generic model is a set of
components plus a set of various constraints; and (ii) a set of customer requirements,
in which each requirement can be expressed by a constraint,

configuring can be defined as "finding at least one component set that satisfies
all the constraints".

It is important to note that, according to these common features, the configuration
result is a set of components (a single level bill-of-materials).

A configurator is a software package that assists the person in charge of the
configuration task. It is composed of a knowledge base that stores the generic model
of the product and a set of assistance tools that helps the user to find a solution or
select components. In any case, the fundamental assistance requirement is to
guarantee the consistency of the configured product with both generic model and
customer requirements.

2.2. Configuration situations

According to the previous definition, configuration can exist in any
customer/supplier relation when defining the product object of a deal. It is
nevertheless possible to identify two main classes of configuration problems and
relevant configurators.

The first class deals with the selling side and is conducted by the sales teams of
companies. In that case, the cycle time order of magnitude for setting a solution is
less than an hour and sometimes less than a minute when configuring on line on a
web site for example. This is the target of the ERP configuration modules that assist
the business to customer (B2C) customer/supplier relation and needs to be able to
support mass configuration or a great number of configuration tasks (for example: 1
to 100 configuration tasks per day).

52 Intelligent Agent-based Operations Management

The second class is close to a product design activity and is mainly achieved by
the research and development teams of companies. An order of magnitude of the
cycle time to provide a solution could be between a week and a month. In most of
these cases, previous ERP configuration modules cannot be used and specific
configurators are necessary. For that class of problems, the customer/supplier
relation is more on the business to business side (B2B) and the number of
configuration tasks that needs to be achieved is comparatively small (no mass
configuration, for example: from 1 to 10 configuration tasks per month).

As the configurators of the second class are specific, each of them (including its
generic model) needs to be designed and maintained by computer science specialists.
On the other hand, the configuration modules provided by software companies
should propose (and provide most of the time) a generic modelling environment
enabling a non-computer science specialist to describe the generic model of the
product. Our contribution is clearly positioned on the generic modelling side of the
first configurator class, frequently called commercial configurator or sales
configurator.

2.3. Main suitable characteristics of generic product model

In this section we list and briefly explain the main characteristics that should
fulfil the generic model of the product. They will be used in the next section for
justification of our a priori choice of modelling formalism. They deal with:

Easy modelling by a non-computer science specialist

The product model and the modelling task should rely on "natural" or easy
understanding concepts. The configurable product model should be clearly separated
from the configuration process. A graphical representation of the model is a
necessity for easy comprehension and a smaller maintenance effort. Pieces of
"visible" written code or pseudo-code (whatever the language is) and source of
errors during modelling, should be avoided as much as possible.

Generic model expressivity and ability to be used efficiently

The generic model can be different according to the configurator user's level of
knowledge of the product. For a product expert, a generic model gathering detailed
components plus constraints is suitable, whereas a clearer product representation in
terms of product characteristics is necessary for a non expert. In the work of
(Mannisto et al 1996) this is addressed as an explicit model (component oriented)
versus an implicit model (description oriented).

Generic model testability

As generic models mainly rely on components plus constraints, it is necessary to
have confidence in the model consistency. This is a difficult point and the

Product Generic Modelling for Configuration 53

configuration technique operating on the model should be open to debugging and
inconsistency detection techniques.

Structured generic model and reusability of generic model parts

In order to avoid redundancy of parts of generic model, a structured generic
model is of interest and permits re-use of these generic model parts in generic
models of different products.

2.4. Model characteristics, configuration techniques and CSP approach

Most of the work recently published on configuration relies on propositional
logic, first order logic and constraint satisfaction problem (CSP) frameworks.
Generic modelling with propositional logic requires a large number of Boolean
variables and Boolean rules (and, or, not), resulting models are therefore
complicated, with low expressivity. First order logic is a good generic modelling tool
but is not easy to handle by non computer science specialists; some work (Felfering
et al 1999) has been done to provide a high level of graphical formalism avoiding
coding.

The utilisation of "pure" CSP, introduced by (Mackworth 1977), presents
interesting concepts for configuration, but we will see, in section 3.1.2, why its
dynamic extension, the DCSP, proposed by (Mittal et al 1990), and discussed by
(Soininen et al 1999) is much better for configuration problem handling.

The clear separation between the model and the propagation or resolution
techniques, the concepts of variables/domains/constraints natural for non computer
specialist and good graphical representation possibilities make CSP a good candidate
for configuration modelling.

The CSP concepts, variables and constraints fit two possible configurable
product descriptions: set of components and/or set of characteristics. Furthermore,
the work of (Schiex et al 1995) exploiting the notion of preference in CSP allows
CSP based configurator to take into account the preference of the user during the
configuration process.

In terms of model testability, some works (Keirouz et al 1995) and (M. Sabin et
al 1999) have presented some possibilities about CSP model debugging and
inconsistency detection, but the proof of a full consistence model still relies in the
complete analysis of the solution space. In order to avoid this last drawback,
consistency restoration and explanation during configuration can be supported by
CSP techniques as explained in (Amilhastre et al 2000).

CSP approaches do not deal easily with structural aspects. Very little work has
been done in this field; composite CSP has been proposed by (D. Sabin et al 1996)
and some extensions of Dynamic CSP trying to match this aspect have been

54 Intelligent Agent-based Operations Management

discussed in (Véron et al 2000). As far as we know, this is clearly not a good
argument for CSP utilisation in configuration.

The kinds of product where various aspect of CSP-based configuration have been
studied are diverse. A car configuration problem introduced in (Mittal et al 1990)
and discussed by (M. Sabin et al 1999), (D. Sabin et al 1996) and (Véron et al
2000), an industrial mixer (Soininen et al 1999), a machining operation (Geneste et
al 2000), and an automotive wiring system (Aldanondo et al 2001) are typical
examples of product where a CSP based configuration has been used. For this work,
it must be noted that: the car and industrial mixer product model examples have been
used to illustrate theoretical points of CSP based processing, while the goal of the
work dealing with machining operation and automotive wiring system examples was
to have a product-specific operating configurator without providing any new
theoretical points. An interesting survey of product customisation variety has been
reported (Soininen 1998) but without CSP based support. Our contribution, therefore
aims to study how the diversity of product customisation, or product modelling
requirements, can be handled with CSP based elements. This is the aim of the rest of
the paper.

3. Product modelling requirements and generic modelling elements

In this chapter, we first present what we call the central problem, then each
following section will describe some additional modelling requirements for the
central problem. For each section, the configuration problem hypotheses are defined
or refined, an example is given for clarification and a CSP based model is provided
and discussed.

3.1. From basic to central configuration problem

3.1.1. Basic configuration problem and CSP approach

The simplest configuration problem can be defined as follows:

- h1: all the components are "standard" or completely defined; it is not possible
to create a new component during the configuration task,

- h2: the components are gathered in groups; each component must belong to
only one group, the purpose of the group notion being to gather components that
support the same functionalities,

- h3: each group is present in any configured product,

- h4: the constraints represent the allowed combinations of components,

- h5: the customer or configurator user requirement corresponds to the selection
of one component in each group,

Product Generic Modelling for Configuration 55

- h6: a configured product is a component set, satisfying both constraints and
requirements, where one and only one component must be selected in each group.

The example in Figure 1, a "custom storage
system", illustrates this problem. The generic
product gathers 3 components: a Bookcase (BC), a
High Cabinet (HC) and a Low Cabinet (LC), where:

- any component of each group exists in two
finishes: Painted (P) or Wood (W),

- the BC height can be 72 cm or 216 cm, LC
height is 12 and HC height is 144,

- 3 groups exist (i) BC: {BC72P, BC72W,
BC216P, BC216W}, (ii) LC: {LC72P, LC72W}and
(iii)HC: {HC144P, HC144W}

- a single constraint states that any configured product must be of the same
colour.

Figure 1. basic problem

CSP, defined (Mackworth 1977) as
a triplet {X, D, C} where X is a set of
variables, D a set of finite domains (one
for each variable) and C a set of
constraints (defining the possible
combinations of variables value),
matches this basic problem. Each group
of components is associated with a
variable. Each component corresponds
to one value of the variable. The
constraint (solid lines of Figure 2)
represents the allowed combinations of
components. A generic model of the
product of example 1 could be as the
one shown in Figure 2.

Figure 2. Basic problem CSP model

3.1.2. Central configuration problem and DCSP approach

This previous problem is extremely rare. Very frequently, the existence of a
group of components is optional or restricted for product feasibility reasons or
customer wishes. Therefore, two kinds of groups must be defined: the groups which
always exist in any configured product and the ones that may exist according to the
customer requirements or product feasibility reasons. The central configuration
problem can therefore be described as follows:

- h1, h2, h6: unchanged,

56 Intelligent Agent-based Operations Management

- h3 - a group is either always present in any configured product or its existence
depends on: (i) the existence of other groups and/or (ii) the selection of other
components,

- h4 - the constraints represent the allowed combinations of (i) components
and/or (ii) group existences,

- h5 - the customer or configurator user requirement corresponds to the selection
of (i) one component in each group and/or (ii) decision of a component group
existence.

The example of 3.1.1 is modified with the addition of the following constraints:

- The Bookcase must be present in all configured Storage Systems.

- The High Cabinet can exist if and only if a Low Cabinet exists and the
Bookcase is 216 cm high.

This "central problem" is supported by most of the configurator packages
provided by software companies (for example: Siebel, Oracle, Cincom, Baan or
Trilogy) and is frequently associated with what is called "pick to order" or "assemble
to order" industrial situations.

DSCP, proposed by (Mittal et al 1990), adds to "pure CSP" the notions of:

- Initial variables: variables that exist in any configured product.

- Compatibility constraints: equivalent to the constraints defined in section 3.1.1.

- Activity constraints: allowing of control the variable existence in the following
ways:

- Require: a specified value of a variable "x" implies the existence of the variable
"y",

- Always Require: any value of a variable "x" (or "x" exists) implies the existence
of the variable "y",

- Not Require: a specified value of a variable "x" implies the non existence of the
variable "y",

- Always Not Require: any value of a variable "x" (or "x" exists) implies the non
existence of the variable "y".

A generic model of the central problem example could be as the one shown in
Figure 3. It is clear that DCSP matches exactly the "central problem" requirements.
In the following sections we are going to show that the requirements presented are
not sufficient to take into account various industrial situation needs and provide
complementary requirements and analyse how DCSP can fulfil them.

Product Generic Modelling for Configuration 57

Figure 3. Central problem DCSP model

3.2. Extending the central problem and adding modelling elements

3.2.1. Physical versus descriptive model

The previous model in Figure 3 is a "physical" model because each variable
corresponds to a group of components. But very often, for a non product expert, it is
necessary to define "descriptive" attributes that do not correspond to a component
group. In that modelling approach, the values of the descriptive attributes permit one
to identify a component (for example the height and the colour allow identification
of a component). The advantages are, on the one hand, that descriptive attributes
(defined by the person in charge of modelling) can be much more expressive for the
user than a list of components (that does not interest the user most of the time) and,
on the other hand, that configuration models can involve much fewer configuration
variables and constraints. But the second approach needs to maintain identification
tables or functional constraints allowing one to derive the component list from the
values of the descriptive attributes.

The example of Figure 3 is presented in Figure 4 with this second modelling
approach with the same DCSP formalism. The four descriptive attributes, necessary
to represent exactly the same set of solutions, correspond with the colour (wood /
painted) the book case height (72 /216) the existence of the lower cabinet and higher
cabinet (yes / no). The component identification tables permit derivation, from the
four previous variables, of the final result of configuration as a set of BC, LC and
HC components.

58 Intelligent Agent-based Operations Management

Figure 4. Central problem descriptive model

Extended definition of the central problem

In the first definition, components were gathered in groups. With the descriptive
approach we added descriptive attributes and values. We therefore introduce the
notion of configuration variables that gathers these two elements and can propose the
following definition:

- H1 - All the components, "standard" or completely defined, are gathered in
groups; each component must belong to only one group. Each group is associated
with a configuration variable whose definition domain is a list of values equal to the
component list.

- H2 - A product can be characterised by descriptive attributes. Each descriptive
attribute is associated with a configuration variable whose definition domain is a list
of values, where a value cannot be a component.

- H3 - A configuration variable is either always present in any configured product
or its existence depends on: (i) the existence of other configuration variables and/or
(ii) the selection of other configuration variable values.

- H4 - The constraints represent the allowed combinations of (i) configuration
variable values and/or (ii) configuration variable existences.

- H5 - The customer or configurator user requirement corresponds to the
selection of (i) one value for each configuration variable and/or (ii) decision of a
configuration variable existence.

- H6 - A configured product is a set of configuration variable values, satisfying
both constraints and requirements, where (i) one and only one component is selected
in each group and (ii) one and only one value is selected for each existing descriptive
attribute.

Product Generic Modelling for Configuration 59

Discussion

Globally, the descriptive model aims to displace the configuration from a
component plus constraint problem to a descriptive attribute plus constraint problem
plus component identification tables. This permits a kind of disconnection between
the product configuration process and the bill-of-materials generation. The interest
of this disconnection lies in a kind of delinking of selling and manufacturing
concerns allowing remote configuration possibilities for sale without handling all the
product technical data. Therefore this approach is of interest for commercial
configurators.

When there is no descriptive attribute (i.e. all configuration variables represent
component groups), this definition corresponds to the physical problem of section
3.1.2. When all the configuration variables associated with the component groups are
only present in component identification tables or functional constraints, this
definition corresponds to a "pure" descriptive problem. Most of the time, it is
unfortunately necessary to express the requirements of the configurator user in terms
of both component selection and product characteristic valuation. The two modelling
approaches are therefore mixed in a same configuration problem. DCSP handles this
problem, relying on configuration variables gathering group/component and
descriptive attribute/value. The next sections will identify other kinds of attribute
that will be associated with configuration variables allowing representation of other
configuration modelling requirements.

3.2.2. Tailored components, component quantity and numerical constraints

Standard and tailored components

Until now, all the components are completely defined with entirely frozen
characteristics (hypothesis H1). Very frequently, industrial cases need to tailor
components. For example, when a door needs to be replaced in an old house, it
rarely corresponds to a standard offer. In order to capture this market, many
companies propose customisation possibilities that are not restricted to standard
component assembling.

We therefore propose to characterise each tailored component by numerical
tailoring attributes with a continuous definition domain defining the range of
possible values. Therefore, modelling requires association of each tailoring attribute
with a configuration variable defined in a continuous definition domain (Figure 5).

In the example of Figure 5, the Bookcase and the High Cabinet are now tailored
components with tailoring attributes BC_height (chosen in a range between 72 cms
and 216 cms) and HC_height (chosen in a range between 50 cms and 144 cms).

60 Intelligent Agent-based Operations Management

Component quantity

In the central problem, hypothesis H6 assumes that a configuration solution
contains only one component in a group. Very often, it is necessary to model that the
quantity of a selected component might be different from 1.

In that case, a quantity attribute is necessary to characterise the quantity selected
for a component chosen in a group. This attribute can be defined either on a discrete
or continuous domain. This quantity attribute must also be associated with a
configuration variable.

In our example of Figure 5, the High cabinet can contain drawers and roll-out-
shelves. For each of them, it is possible to select a quantity between 0 and 3 thanks
to the quantity attributes for drawers (Qtt_Draw) and roll-out-shelves (Qtt_Ros).

Numerical constraints on discrete variable

Until now, compatibility and activity constraints were discrete. The activity and
compatibility constraints represented allowed the combinations of configuration
variable values. Very frequently during modelling, it is simpler to define constraints
through the expression of a mathematical formula that avoids a huge combinatory
even when dealing with discrete variable domains.

Therefore a strong modelling requirement is to handle constraints expressed with
formulae. These kinds of formula allow one to take into account among other things
that some component selections or attribute valuations are restricted by some kind of
resource (space, power, length, etc) provided by other components or attribute
values. This behaviour is similar to the resource/provide/consume elements
introduced by (Heinrich et al 1991) and discussed in (Sabin et al 1999).

In our example in Figure 5, let us consider that up to four elements among
Drawers and Roll-Out-Shelves can be chosen for the High Cabinet. It is much
simpler to express this modelling requirement with a numerical constraint stating that
Qtt_Draw.+ Qtt_Ros. 4 by than describing in extension the possible combinations
of quantity.

Numerical constraints on discrete and continuous variable

Before the identification of tailored and quantity attributes, configuration
variables were discrete. With these two continuous attributes, it is necessary to
express constraints on continuous variables.

A first modelling solution that avoids mathematical formulae is to discretise the
variable domains and to use discrete constraints. This is shown in our example of
Figure 5 with the compatibility constraint between BC_height and HC existence,
where BC_height is discretised in two intervals [72,122] and [122,216], the first
interval forbids the HC existence while the second leaves the two possibilities.

When discretisation is not suitable or requires a too large combinatory
description, it is necessary to use a mathematical formula. This is shown in the

Product Generic Modelling for Configuration 61

example of Figure 5 where a constraint, between BC_height and HC_height
expresses that the top of Bookcase and High Cabinet must be at the same height:
BC_height = HC_height + 72.

Tailored attribute, quantity attribute and numerical constraint example

In the example of Figure 5, the Bookcase and the High Cabinet are tailored
components with tailoring attributes BC_height and HC_height, with the following
constraints:

- the top of Bookcase and High Cabinet must be at the same height: BC_height =
HC_height + 72,

- the High Cabinet can exist if: BC_height 72 + 50 = 122.

Two new component groups, Drawers and Roll-Out Shelves, are added to the
High Cabinet. A constraint states that a maximum of four elements among these
groups can be chosen. This is modelled with:

- quantity attribute for drawers (Qtt_Draw) and Roll-Out Shelves (Qtt_Ros),

- a numerical constraint expressing that: Qtt_Draw. + Qtt_Ros. 4.

Figure 5. Tailoring and quantity attributes with constraints

Discussion

So far as modelling is concerned, configuration variables corresponding with
tailoring attributes and quantity attributes, numerical constraints, continuous
variables and constraints can be added to the model of the central problem. The
problem raised in this section is on the side of configuration processing, DCSP
solving and constraint propagation require discrete variables and discrete constraints.

62 Intelligent Agent-based Operations Management

Therefore, other processing techniques must be investigated for assisting the
configuration process, which should deal with cooperation of constraint solvers
dealing with discrete and numeric variables as proposed in (Tinelli et al 1996). As
far as we know, very few commercial configurator software programs support
discrete and continuous variables, discrete and continuous constraints, and
constraints expressed with formulae in a proper way.

3.2.3. Layout

In the previous cases, the configuration result is always a set of components plus
attribute values. As explained in (Brown 1998), a same set of components can
correspond with two different products according to two different layouts. It is
therefore sometimes necessary to geometrically locate each selected component
among others. This is close to a design activity whose aims are either to locate a
component in an absolute referential or to locate the position of one component in
relation to another component.

Layout with component absolute locations

Layout requirements using absolute position can be handled thanks to the
association of each component with location attributes. Each attribute is a coordinate
of a referential and corresponds to a configuration variable. The values of the
location attribute can be either discrete or continuous. Discrete and continuous
layout constraints can link location attributes of different components. These
modelling elements are similar to quantity and tailored attributes modelling.
Consequently, they lead to the same configuration process drawbacks.

Without layout configuration, the four layouts in the upper left part of Figure 6
are possible. But let us consider that only the first and second are valid: the LC must
be under the HC and the BC near the LC. Then, absolute position layout modelling
requires us to define different possible component locations. The space is therefore
mapped in 6 possible locations identified by a number: 1/lower left, 2/upper left,
3/upper right, 4/lower right, 12/left, 34/right, as described in the upper right of
Figure 6. The model in the lower part of Figure 6 shows that each component is
characterised by a location attribute and compatibility constraints define the
acceptable layout solutions (1) and (2).

Product Generic Modelling for Configuration 63

Figure 6. Layout modelling with location attributes

Layout with component relative locations

Layout requirements using relative location of component couple have been
introduced with the notion of "port and connection" by (Mittal et al 1989), defining
that two components can be connected through component ports (port_m of
component_i can be connected to port_n of component_j). Each port is a
characteristic of a component and can be associated with a component port attribute.

In our example, this approach requires location of each component with respect
to each other at a certain place (on, under, lined up, etc.) in a way very close to the
CAD system. Therefore each component must be characterised by some ports, each
port corresponds to a particular side (or piece of side) where a port of another
component can be "in contact" as shown in the upper part of Figure 7. Constraints
should explain how components could be relatively located.

Layout modelling with relative location or ports is much harder to handle with a
CSP based approach but we propose some ideas dealing with this modelisation
problem, such as: (i) define a configuration variable for each component port

64 Intelligent Agent-based Operations Management

attribute, (ii) define allowed values of the component port configuration variable as
the list of component ports that can be connected to it plus the value "0" specifying
that the port is not used, (iii) define possible connections between component
couples with compatibility constraints.

The model in the lower part of Figure 7 illustrates the proposed solution. The BC
has four ports (P_BC-1, P_BC-2, P_BC-3, P_BC-4), the HC three (P_HC-1, P_HC-
2, P_HC-3) and LC three (P_LC-1, P_LC-2, P_LC-3). The definition domains of
these variables are the component ports that can be connected. The constraints show
how three couples of components plus ports can be connected (BC,HC), (BC,LC)
and (HC,LC) allowing the solutions of sub-section Figure 6.

Figure 7. Layout modelling with ports and connections

Discussion

Configuration with layout requirements is not easy to handle with our CSP based
elements. When the location problem is not too complicated, for example when
locating less than 20 pieces of furniture on a single axis with a unique coordinate,
absolute position location is fine. Layout requirements taking advantage of the port
and connection approach are typical of electronic product configuration. When
components and possible connections are numerous, the CSP based model presented
becomes quickly complicated and modelling and maintenance not possible.

It is clear that layout configuration is close to a design activity. Simple cases,
close to schematic drawings, can be handled with commercial configurators as
shown for example in the configuration problem of a train car layout addressed with

Product Generic Modelling for Configuration 65

the Baan configurator in (Heiderscheilt et al 1999). But as explained in (Aldanondo
et al 2001) configuration including hard layout problems are better solved thanks to
the cooperation of configurator and CAD system.

3.2.4. Hierarchical bill-of-materials

Many industrial situations require, mainly for production management reasons, to
have the configuration result (the component set) presented as a hierarchical bill-of-
materials instead of a single level bill-of-materials.

For the example of Figure 5 gathering up to five of the components, Bookcase
(BC), High Cabinet (HC), Low Cabinet (LC), Drawers (Draw) and Roll-Out Shelves
(Ros); the single level bill-of-material is as shown in left part of Figure 8. The
hierarchical bill-of-material presentation need may correspond, for example, with the
identification of the following sub-assemblies:

- High Cabinet plus Accessories (HCA) gathering: High Cabinet, Drawers and
Roll-Out Shelves,

- High and Low Cabinet (HLC) gathering: Low Cabinet and High Cabinet plus
Accessories,

and the resulting hierarchical bill-of-materials would be as shown in the right part
Figure 8.

Figure 8. Single level and hierarchical bill-of-materials

As this is mainly a presentation requirement, we propose to keep the previous
modelling elements (CSP based generic model plus component identification tables
representing single level bill-of-materials) and to add a piece of generic model
allowing to derive a hierarchical bill-of-materials. The added pieces of model gather
a generic hierarchical bill-of-materials plus existence conditions of the generic sub-
assembly. The leaves of the generic hierarchical bill-of-materials are the component
groups and the intermediate elements are the generic sub-assemblies of the product.
The sub-assembly existence conditions correspond with functional activity
constraints that modulate the sub-assembly existence as a function of the variables of
the CSP based generic model.

66 Intelligent Agent-based Operations Management

With these elements, the configuration can be as follows: (i) configuration of the
product (ii) identification of the component (iii) existence validation of the generic
sub-assemblies (iv) hierarchical bill-of-material generation. The last step is achieved
with a substitution in the generic hierarchical bill-of-materials of each component
group by relevant identified component at step (ii). When a sub-assembly does not
exist, direct bill-of-material links, between lower level sub-assemblies or
components and upper sub-assembly of top level product, replace the generic
hierarchical bill-of-materials upstream and downstream links. Lastly, in order to
differentiate each sub-assembly, each of them should be codified according to the
lower level components and/or sub-assemblies.

For the example in Figure 8, these elements both presented in a table form would
be as shown in Figure 9, the hierarchical bill-of-materials in the left part and sub-
assembly conditions in the right part.

Father
Storage device
Storage device
HLC
HLC
HCA
HCA
HCA

Son
BC
HLC
LC
HCA
HC
Ros
Draw

Sub-assembly
HLC
HCA

Existence condition
Value(HC) = "Yes"
Value(Qtt_Draw) + Value(Qtt_Ros) > 0

generic sub-assembly existence condition

generic
lierarchal
bill-of-materials

Figure 9. Added pieces of generic model

According to these elements, the whole configuration process would go as follows:

(i) configuration process with user requirements as: Colour = "Wood",
BC_Height = 216, LC = "Yes", HC = "yes", HC_Height = 144, Qtt_Draw =
0, Qtt_Ros = 0.

(ii) component identification: BC216W (BC group), LC72W (LC group),
HC144W (HC group).

(iii) sub-assembly existence validation: HLC.

(iv) hierarchical bill-of-material generation: as shown in Figure 10.

Product Generic Modelling for Configuration 67

Figure 10. Hierarchical bill-of-material generation

Discussion

The added pieces of the model show how a hierarchical bill-of-materials can be
generated as a configuration result with our CSP based approach. Some
complementary work is necessary to model a product where a same component
group is present in different generic sub-assemblies or when the hierarchical bill-of-
materials does not have a tree shape.

A main drawback of our entire CSP based approach, which clearly appears in
this section, is that it is not easy to configure in a generative way. Generative
configuration should be understood as the ability to configure a product with more
than one instance of a same generic sub-assembly or with a number of instances
unknown at the beginning of the configuration task. Very little work has been done
in "generative configuration", an application specific configurator has been designed
for telecommunication system (Fleischandel et al 1998) and very recently some
ideas about duplicating variable groups in CSP model in order to permit generative
configuration have been proposed (Veron 2001).

4. Conclusions

Our goal was to identify and classify configuration modelling requirements and
analyse how the CSP framework could be a good support for generic modelling and
if relevant propagation and solving techniques were adequate.

In terms of identification of requirements and generic modelling, we started with
the central problem and a DCSP physical model composed of (i) variables, defined
in a discrete domain, associated with component groups, and (ii) compatibility and
activity discrete constraints.

68 Intelligent Agent-based Operations Management

We extended the previous central problem, in order to take into account the
following generic modelling requirements, and proposed: descriptive approach,
parametric or tailored component, multi-presence of a same component, layout
configuration and expression of the solution as a hierarchical bill-of-materials. We
proposed, for modelling, (i) to associate configuration variables, defined in a discrete
or continuous domain, with: component groups, descriptive attributes, tailoring
attributes, quantity attributes, location attributes, component ports attributes and
generic sub-assemblies; and (ii) constraints, combining the previous variables, that
can be compatibility constraints or activity constraints, expressed with allowed
combination of values or numerical formulae.

The complexity of the modelling task, with the previous elements, comes from:
(i) the mix of all kinds of attributes and the various constraints that can exist in a
single problem and (ii) the customisation complexity and size of the product itself.
Nevertheless, the descriptive approach, allowing some kind of disconnection
between product configuration process and bill-of-materials generation, tends to
reduce the modelling task difficulty.

The main drawback of this approach, at present, lies in the fact that the model is
not structured. This forbids easy re-use of model parts without "cut and paste", and
makes generative configuration very difficult or impossible when the number of
model instances is not known before configuring. This important aspect needs
further work with probably some object-oriented approach.

In terms of propagation and solving techniques, continuous domain variables and
constraints expressed with mathematical formulae are not compatible with the DCSP
solving algorithms and most of the work done in consistency checking, inconsistency
explanation proposition, constraint propagation and CSP resolution have been
achieved with discrete domain variable and discrete constraints. As far as we know,
there is no proper way to overcome the problem at present without a delicate
combination of: discretisation of continuous variable domains, algorithms reasoning
on intervals, or delicate cooperation of different solvers.

Setting an easy to use modelling tool in order to "put on paper" a generic model
of a configuration situation is a big issue for configurator deployment in industry.
Friendly-user modelling is a necessity, especially for "commercial configurator".
The proposed elements present the important interests of being "visible" on a
schema and easy to understand by non-specialists thanks to CSP formalism. The
model expressivity mixing component groups, various attributes allows one to build
configuration model that can be used during configuration by product experts
(component oriented) and by non product experts (characteristics oriented).

Many of the proposed modelling elements and a specific model structure
approach have been included in a commercial configurator software package called
"Cameleon Visual Expert" and in a generic modelling method "Cameleon Model
Designer" designed and distributed by Access-Commerce (web site:

Product Generic Modelling for Configuration 69

http://www.access-commerce.com). This configurator is also the configuration
module of the two ERP Mfgpro and Mapics and has been integrated with many ERP.

Thanks to the elements proposed and the "Cameleon Model Designer" modelling
method, a great variety of industrial customisable products that did not require a
specific configurator have been successfully modelled. Initially defined for
manufacturing products, as the example running all through this paper; the proposed
modelling elements can be used for service and software configuration.

5. References

Aldanondo M., Lamothe J., Hadj Hamou K., "Configuration and CAD modeler: gathering the
best of two worlds", IJCAI Workshop on Configuration, Seattle, USA, 2001, p. 1-7.

Aldanondo M., Moynard G., Hadj Hamou K., "General configurator requirements and
modeling elements", ECAI Workshop on Configuration, Berlin, Germany, 2000, p. 1-6.

Amilhastre J., Fargier H., Marquis P., "Consistency restorations and explanations in dynamic
CSP - Application to configuration", ECAI Workshop on Modeling and Solving
Problems with Constraints, Berlin, Germany, 2000.

Brown D. C., "Defining Configuring", AI EDAM (Artificial Intelligence for Engineering
Design, Analysis and Manufacturing), vol. 12, n°4, 1998, p. 301-306.

Felischandel G., Friedrich G., Haselblock A., Stumptner, "Configuring Large Systems Using
Generative Constraint Satisfaction", IEEE Intelligent Systems & their applications, vol.
13, n°4, July/August 1998, p. 59-68.

Felfering A., Friedrich G., Jannach D., "UML as domain specific language for the
construction of knowledge base configuration system", 11th Int Software Engineering
and Knowledge Engineering conference, Kaserlautern, Germany, 1999, p. 337-345.

Freidrich G., Stumptner M., "Consistency-Based Configuration", AAAI Workshop on
Configuration, Orlando, Florida, 1999, p. 35-40.

Geneste L., Ruet M., Monteiro T., "Configuration of a machining operation", ECAI
Workshop on Configuration, Berlin, Germany, 2000, p. 44-49.

Heiderscheilt, D., Skovgaard, HJ., "Visualization of configurations: simplifying configuration
user interfaces", AAAI Workshop on Configuration, Orlando, Florida, 1999, p. 114-118,
Orlando, USA.

Heinrich M., Jungst E., "The resource-based paradigm: Configuring technical systems from
modular components", IEEE Conf on Artificial Intelligence Applications, 1991, p. 257-
264.

Keirouz W., Kramer G., Pabon J. "Principles and Practice of constraint programming",
Chapter: Exploiting Constraint Dependency Information for Debugging and Explanation,
MIT press, 1995, p 183-196.

Kühn C., "Requirements for Configuring Complex Software-Based Systems", AAAI
Workshop on Configuration, Orlando, Florida, 1999, p. 11-16.

70 Intelligent Agent-based Operations Management

Mackworth A. K., "Consistency in networks of relations", Artificial Intelligence, vol. n°8,
1977, p. 99-118.

Mannisto T., Peltonen H., Sulonen R., "View to Product Configuration Knowledge Modeling
and Evolution", Technical Report FS-96-03, Workshop on configuration, AAAI Press,
1996, p. 111-118.

Mittal S., Frayman F., "Towards a generic model of configuration tasks", InternationalJoint
Conference on Artificial Intelligence IJCAI, Detroit, USA, 1989, vol. n°2, p. 1395-1401.

Mittal S., Falkenhainer B., "Dynamic Constraint Satisfaction Problems", 9th National
Conference on Artificial Intelligence AAAI, Boston, USA, 1990, p. 25-32.

Sabin D., Freuder E., "Configuration as Composite Constraint Satisfaction", Technical
Report FS-96-03, Workshop on configuration, AAAI Press, 1996, p. 28-36.

Sabin D., Weigel R., "Product Configuration Frameworks - A Survey", IEEE Intelligent
Systems & their applications, vol. 13, n°4, July/August 1998, p. 42-49.

Sabin D., Freuder E., "Optimization Methods for Constraint Resource Problems", AAAI
Workshop on Configuration, Orlando, Florida, 1999, p. 83-89.

Sabin M., Freuder E., "Detecting and Resolving Inconsistency and Redundancy in
Conditional Constraint Satisfaction Problems", AAAI Workshop on Configuration,
Orlando, Florida, 1999, p. 90-94.

Schiex T., Fargier H., Verfaillie G., "Valued Constraint Satisfaction Problems: Hard and Easy
Problems", International Joint Conference on Artificial Intelligence IJCAI, Montreal,
Canada, 1995, p. 631-637.

Soininen T., Tiihonen J., Männistö T., Sulonen R., "Towards a General Ontology of
Configuration", AI EDAM (Artificial Intelligence for Engineering Design, Analysis and
Manufacturing), vol. 12, n°4, 1998, p. 357-372.

Soininen T., Gelle E., "Dynamic Constraint Satisfaction in Configuration", AAAI Workshop
on Configuration, Orlando, Florida, 1999, p. 95-100.

Tinelli C., Harandi M., "Constraint logic programming over unions of constraint theories",
Proceedings of the 2nd International Conference on Principles and Practice of
Constraint Programming, vol. 1118, 1996, p 436-450.

Véron M., Aldanondo M., "Yet another approach to CCSP for configuration problem", ECAI
Workshop on Configuration, Berlin, Germany, 2000, p. 59-62.

Véron M., "Modélisation et resolution du probleme de configuration industrielle: utilisation
des techniques de satisfaction de contraintes", Phd Thesis INP Toulouse, 2001.

Wielinga B., Schreiber G., "Configuration design problem solving", IEEE Intelligent Systems
& their applications, vol. 12, n°2, March/April 1997, p.49-56.

Chapter 4

Production Management Systems

Farid Ameziane and Stéphane Lasserre
Ecole d'Architecture de Marseille, France

72 Intelligent Agent-based Operations Management

1. Introduction

Building construction faces problems in information management and
communication throughout all the designing, engineering, realisation and
maintenance stages.

Figure 1. Schematic representation of partners, activities and objectives in the
building construction field

The architectural project tends to be complex because it must integrate a growing
number of regulation requirements and constraints:

- user conveniences (accessibility, acoustic and thermic conveniences, etc.),

- construction (paraseismic properties, complex cost management, etc.),

- realisation (product selection, technical regulations, quality management,
reduced construction project duration),

- management of the dynamic information generated by a growing number of
partners with distinct skills and viewpoints.

Thanks to the new technologies, which enable a better information exchange
between all the partners involved, productivity in the building production activity
can be improved. Starting from practice observation, the goal of our research
program is to share and extract data from the building description and to keep track
of all the information changes and updates throughout the building's lifecycle.

To reach these objectives, it is necessary to build an agile information system
framework that would be able to support this data processing. In addition, it means
that there must be a normative approach to the description of the building elements
in order to ease access to and re-use of technical solutions. Many research programs
around the world are focused on these normalisation topics in the building field and
more in industrial fields. We will also talk about re-engineering and knowledge
capitalisation which were first used in industry.

Production Management Systems 73

2. Data exchange in the building context

Building production is a non-linear and complex activity. It is sequenced by
distinct stages in which many actors enrich the project description with their own
vocabulary and competence. All the actors involved are working towards the same
goal: the completion of the construction project. Each one helps the others by
sharing the graphical and textual data he produces. These representation and
communication tools represent the most efficient way to reach an accurate
information flow.

Many research programs focus on building information management through
their lifecycle. The goal is to provide the actors with the tools towards concurrent
engineering (Chen & Wu, 1993) (Darses, 1997) and more generally towards co-
operation among the partners in the building production processes (Chan, and Gu,
1993). The problem of data exchange between heterogeneous CAD systems (Belhi,
Erard & Bouras, 1999) produced small or no successfully file exchange formats:
DXF, IGES, SET, VDA, CALS, STEP and more recently Industry Foundation
Classes (IFC) ftom the IAI (International Alliance for Interoperability). It is
probably the most spectacular one, because it links the major CAD system firms,
many CAD users and institutional partners. French research projects (SUC, MOB,
GSD, SIGMA, etc.) and international projects (COMBINE, ATLAS, RATAS, IAI,
etc.) consider that there is a strong analogy between the architectural and the
industrial fields (Ameziane, 1998).

Figure 2. Building research programs worldwide from 1980 to 2000

74 Intelligent Agent-based Operations Management

The various research works feature two major trends in the way to describe a
building:

- Some research programs focus on the building construction work, and

- Other research programs focus on the process description that leads the
construction of the building.

The results of those research works (Ghodous and Vandorpe, 2000) have been
used to develop the 'Communication and CAD Tools' research program (Figure 3)
in our laboratory.

3. The 'Communication and CAD Tools' research project

Our work originates from the results of previous projects we have dealt with, that
are part of the 'product/process model' research programs.

It aims at easing the setting up of a collaborative management information system in
the building sector (Ameziane, 1998). It is to be initiated during the engineering
stage, enriched through the execution stage, and updated by the owner when the
building is in use. Each actor is then able to get the building representation needed.
This is represented by Figure 3.

Figure 3. Overview of the 'Communication and CAD Tools' objectives

Production Management Systems 75

This project offers a conceptual schema of structured data matching the
knowledge fields of architectural design. This schema allows us to build a consistent
group of entities in a data base management system in order to give particular
representations of these complex assemblies, and to manipulate them by remote
control. Our work was led by the following hypotheses:

- the knowledge environment of the building construction area is distributed but
it can be accessed through a network,

- a building may be described by a series of construction works and the spaces it
contains. This is from the construction economist's stand point,

- this description may grow step by step, and every partner can access it,

- we consider that a 3D CAD model was elaborated just before the engineering
stage. It seems to be the best media to support the finalisation of the building project
description.

To answer these hypotheses, we produced a conceptual data diagram that
describes the building with the construction works it is composed of.

Under a generic class of 'entity_pf_building' we organise all the objects that are
part of the construction of a building in a hierarchic set of sub-classes. Each of them
is composed of attributes (product specifications) and methods (knowledge relative
to a specific product - for example, a HVAC calculation depends on the volume and
the capacity of a room).

Figure 4. The information organisation - overview of main classes

In that prospect, we represent the set of objects manipulated in the description in
a computerised environment by coupling any ODBC data source (which

76 Intelligent Agent-based Operations Management

specifications map our building data schema) with a solid and parametric CAD
system (Mechanical Desktop by Autodesk Inc.) and the Internet. This environment
enables the users to maintain the building description through its data diagram which
needs to be frequently updated because no real normative project has been
elaborated yet.

Figure 5. The 'Communication and CAD tools' information organisation extract
with IFC building object descriptions (Industry Foundation Classes from IAI). View
of an Oracle database schema sample using the UML formalism

A database is attached to each architectural project in order to complement its
morphologic description with textual data that usually characterises a construction
work.

3.1. Help interface for decision support system

Very often, data manipulated by partners who collaborate in raising the building
are compiled into professional systems and cannot be re-used by the other users.
Data are transformed through these systems and the added information cannot be
understood.

Furthermore, once the building has been built, its owner may legally request all
the information compiled through the stages. So, through the operating stage of the
building (the longest one), searching information is harder when we have to maintain
or to find responsibilities for specific problems.

Production Management Systems 77

Our project aims at finding an answer to this problem by sharing a unique data
model with all the partners involved in the building construction processes.

The following figure describes what factors lead a decision regarding a
construction work choice during the engineering stage in France (Armand and
Raffestin, 1993). We also illustrate the role of each actor in this process and the
knowledge fields shared between one another.

Figure 6. Distributed knowledge for construction works decisions

Each actor may want to make a proposal for a construction work according to his
own knowledge and viewpoint on the building. We found that they all have common
legal constraints and need to respect the products' functional features.

As for the building lifecycle, legal aspects may be considered as the leading
decision-making factor:

- during the engineering stage in order to comply with the product specifications
and use,

- during the realisation as it is necessary to check the compliance of the works to
improve the quality process,

- when the building is in use, in order to improve its maintenance and find
responsibilities for bad implementations by tracking back the design history of the
building.

Consequently, by taking information continuity problems into consideration at
every stage, we are refining our building description schema with detailed legal

78 Intelligent Agent-based Operations Management

specifications of construction works. We consider that the latter are part of the most
important points that lead decision-making and building completion processes.

The following picture represents a framework using 'radio buttons' that enables
the end user to configure the system according to his own needs. At this stage, we
need to stress the fact that we do not really want to avoid final confrontation between
partners, but only to get rid of unnecessary exchanges.

-Figure 7. Three viewpoints to ease decision-making

Furthermore, we also ease these confrontations by first filtering specific
expectations corresponding to the discipline or field of the end user:

- Functional expectations or features (mass, acoustic specifications, etc.),

- Cost constraints,

- Design (geometry, colour, etc.),

- Construction (specific legal requirements).

Each viewpoint allows the amount of data picked up to be reduced.

3.2. Professional approaches

We have seen that it is necessary to take partner choices and decisions into
account by integrating their knowledge during elaboration processes. They also need

Production Management Systems 79

to be able to make specific queries into the building database and to get a personal
and updated representation of the building.

Professional representation of data

In France, with the statutory files related to construction specifications ('Cahier
des Clauses Techniques Particulières', 'Cahier des Clauses Administratives
Particulières', 'Dossier des Ouvrages Executes', etc.) a set of simple representations
of the building is issued for each partner. The contents of these documents depend
on the partner's needs.

So, we must be able to filter the entire pieces of information in order to deliver a
specific answer to a particular partner request.

By anticipating the product descriptions we can access today through the
network, the objective is to demonstrate that the specifications of a construction
work may be extracted from an exhaustive set of information which use depends on
professional needs (Celnik, Coste and Vincent, 1997).

This goal is very important, because answering to the multiple-expertise issues in
a building context means that we must be able to give a 'real time' representation of
the building to each partner. This representation is strictly made up from the
information he needs to achieve his expert's report.

Professional profiles

The lack of normative data classification and the speed of their progression
during the production process give a dynamic aspect to the building information.
Consequently, sequenced representations of these data are soon out of date.

80 Intelligent Agent-based Operations Management

Figure 8. The multi-actors aspect: specific information for each actor (Ameziane,
1998)

The architect being the actual database owner, he is responsible for coordinating
the inputs from all the actors and updating the database, in order to provide the users
with the latest and most accurate view of the building.

Figure 8 shows the construction works description multiple viewpoints based on
existing databases and the various professional profiles associated to it.

Furthermore, these pieces of information are not really confidential for other
partners. Our professional approach is only focused on the possibility of making
them more understandable.

In that way, we are sure to improve the quality and the efficiency of the actor's
expertise with the help of refined search.

We have worked on electronic representation of the files created during the
design and engineering stages (Figure 9). It comes with personal information
associated to a professional profile. Each actor is able to customise his default
profile. He can select the data he wants to screen on the next request, as well as
graphic representations. Each space comes as a dynamic 3D file that depends on the
selected graphical entities. This interactive 3D representation uses the virtual reality
modelling language (VRML).

Production Management Systems 81

Figure 9. Customise your profile

3.3. Queries and user guide

At this stage, we suggest the development of an open request system for a set of
experts whose search sequences are based on different viewpoints. We are focused
on actors' experiences during the engineering stage because this project step
provides most graphical and textual medias, exchanges and communications between
partners.

Figure 10 shows that the structure of our query system may be seen as an
incremental information research. It is sequenced by the following steps:

- query database identification,

- partner login,

- space choice,

- selection of a construction work associated to the space,

- information filtering mechanisms.

82 Intelligent Agent-based Operations Management

Figure 10. Incremental query scenario

3.4. Technology and tools

To answer a collaborative context, we have based this sub-system on a web
environment that allows one to manage good concurrent access. We chose the
Oriented Object Language JAVA (Harold, 1997) that offers good opportunities in:

- Network mechanism implementation for client/server applications,

- Good security management,

- Cross platform applications,

- Database access through Java Data Base Connectivity and a three-party
architecture that is independent from specific DBMS.

To easily maintain and update our information system, we found a good response
in the powerful Lotus Notes client from Lotus Inc. The graphic files we use are:

- DWF (Drawing Web Format) from AutoDesk Inc. in order to publish vector
drawings, and

- VRML (Virtual Reality Modelling Language) as a 3D graphic interface
support.

3.5. Graphical interface of the experimental system

Each query sequence is stepped by 2D or 3D interactive graphics. In the building
communication process, graphic drawings are the most used media because they are

0Production Management Systems 83

the only one building partners have in common. We want to increase interactivity by
using them as interfaces to point out the right spaces or construction works.

The following figure shows the system status at the end of a query. Once the end
user (e.g. the architect) has logged in, he gets his personal profile with an interactive
3D space representation. He may use it to select a specific construction work for
which he gets a detailed description with all the corresponding attributes on a
separate frame.

Figure 11. System status at the end of a query Main user displaying construction
works, geometry and textual descriptions

4. Conclusions and prospects

Our work aims to:

- Ensure data circulation between distant partners,

- Be able to share a common description diagram in a DBMS environment,

- Manipulate heterogeneous documents (texts, drawings, multimedia files, etc.) in
an efficient manner,

- Ensure professional approaches on a specific industrial product,

84 Intelligent Agent-based Operations Management

- Help the users by developing decision support systems.

Those results are important for our research centre because this project has been
part of a CAD software leader research since January 2000 at Nemetscheck A.G.
(Allplan, Allfa, palladio X, etc.). This firm wants to improve the links between the
building CAD systems and the DBMS using the Internet for distributed partners to
share graphical and non-graphical building information data.

Our work has been focused on the building product model. Our next objective is
now to extend this system to the stages that follow the design and engineering steps,
namely realisation and operating phases, also integrating the building processes
models. In addition, we are working on a data repository for electronic building
documentation. This kind of data warehouse could fill a gap between spread
information among the network and their accessibility.

5. References

Ameziane, F., Structuration et representation d'informations dans un contexte coopératif de
production du bâtiment, These de 1'Université d'Aix-Marseille III, Faculté des Sciences
et Techniques de Saint-Jerome, N° 98AIX30012, Mars 1998.

Armand, J. and Raffestin, Y., Guide de la construction, Editions Le Moniteur, 1993.

Celnik, O., Coste E. and Vincent P., Internet, BTP et architecture, Editions Eyrolles, 1997.

Chan, K. and Gu, P., A STEP-based generic product model for concurrent engineering, in P.
Gu and A. Kusiak: Concurrent Engineering: methodology and applications, 1993.

Chen, C. S. and Wu, J., Product modeling and data exchange, in P. Gu and A. Kusiak:
Concurrent Engineering: methodology and applications, 1993.

Darses, F., L 'ingénierie concourante: un modèle en meilleure adequation avec les processus
cognitifs de conception, in P. Bossard, C. Chanchevrier and P. Leclair (eds. Economica):
Ingénierie concourante, de la technique au social, 1997.

Ghodous P. & Vandorpe D., Advances in CONCURRENT ENGINEERING - CE 2000.
Technomic Publishing Company., Inc. Lancaster, Pennsylvania (USA), 2000.

Harold, E. R., Programmation réseau avec JAVA, Editions O'Reilly, 2000.

Belhi A., Erard P-J. & Bouras A., Swiss Conference of CAD/CAM'99 - Proceedings
Neuchâtel University, Switzerland, 1999.

Acknowledgements

The authors acknowledge M. Gunther Wildermuth Civil Engineering Manager of
the Nemetschek Company, M. Bernard Giry Director of Nemetschek France and M.
Michel Florenzano, Director of the UMR CNRS/MCC 694 MAP research laboratory
for their support to the research program discussed in this paper. Special thanks for

Production Management Systems 85

proof reading to Miss Carole Koch, English Teacher in the Building Production
Engineering Master's Degree (DESS IPB) of the Architectural School of Marseilles.

This page intentionally left blank

Chapter 5

Agent-based Agile Manufacturing
System Scheduling

David He and Astghik Babayan
Dept of Mechanical and Industrial Engineering, The University of Illinois at
Chicago, USA

88 Intelligent Agent-based Operations Management

1. Introduction

Producing customised products in a short time at low cost is one of the goals of
agile manufacturing. To achieve this goal in a manufacturing system, products are
differentiated either by a machining-driven or an assembly-driven differentiation
strategy [HE 96]. The successful implementation of these two strategies lies in
efficient scheduling of the system. To react fast to changes in the market, agile
manufacturing demands its manufacturing operations be distributed, its
manufacturing system be modular, interactive, and robust, and the scheduling
problems be solved fast. Yet, most existing scheduling systems are developed based
on centralised structures, which makes manufacturing systems scheduling
complicated. The purpose of applying agent-based approach to solve scheduling
problems is to make the scheduling system easier to design and implement, more
robust and less prone to errors, easier to use, faster, cheaper, and so on.

In this paper, agent-based approaches are applied to solve a complex scheduling
problem in an agile manufacturing system. The structure of the manufacturing
system that implements the product differentiation strategy in agile manufacturing is
shown in Figure 1. It consists of two stages: machining and assembly, where there
are m number of identical machines at the machining stage and q number of
identical assembly machines at the assembly stage. The manufacturing system with
this configuration is referred as {m, q} manufacturing system.

To solve the scheduling problem, the representation of assembly sequence of a
product produced in the system follows the digraph representation in [KUS 89]. In a
digraph G, each node represents a part or a subassembly/assembly, and an arc
represents a precedence relationship between two nodes. The level of assembly in a
digraph is assigned as follows: value of 1 is assigned to the root node (assembly)
and working backward from the root node, values of increment 1 are assigned to
each subassembly node. Part nodes have the same assembly level as the
corresponding subassembly or assembly nodes. Two products and the corresponding
digraph representations of their assembly sequences are illustrated in Figure 2. The
digraphs representing the assembly sequences of products can be classified into two
types: simple digraph and complex digraph. A simple digraph is a digraph in which
at most one subassembly node can be found at every assembly level (see Figure
2(a)). A simple digraph represents a linear assembly sequence of a product design.
In a complex digraph, more than one subassembly node can be found on at least one
assembly level (see Figure 2(b)). Throughout the paper, an assembly sequence of a
product represented by a simple digraph is referred to as a simple assembly sequence
and an assembly sequence of a product represented by a complex digraph is referred
to as a complex assembly sequence.

Agent-based Agile Manufacturing System 89

Figure 1. General structure of {m, q} manufacturing system

The scheduling problem to be solved in this paper is defined in the following:
there are m number of identical machines at the machining stage and q number of
identical assembly equipment at the assembly stage (see Figure 1). The objective of
the scheduling problem is to assign parts and subassemblies/assemblies to the
machines at the machining and assembly stages and determine the processing
sequences on the machines so that the makespan (Cmax), i.e., the maximum

completion time, is minimised.

Figure 2. Example of (a) a product and its simple digraph and (b) a product and its
complex digraph

90 Intelligent Agent-based Operations Management

2. Agent-based scheduling literature

The scheduling problem to be solved in this paper is considered as a combination
of two classical scheduling problems with complex assembly sequence: two-
machine flow shop scheduling problem and parallel machine scheduling problem.
The two-machine flow shop scheduling problem can be solved by Johnson's
algorithm [JOH 54]. Parallel machine scheduling problem (P\\Cmax) has been
proved by [GAR 78] as NP-hard in the strong sense when the number of machines
is unlimited. However, the problem is solvable in pseudo-polynomial time when the
number of machines is fixed and thus NP-hard only in the ordinary sense. Most of
the algorithms developed for solving p\\ Cmax are heuristics (e.g., [GRA 69], [COF
78], [FRI 86]). There are some problem characteristics that complicate solving
scheduling problem: (i) precedence constraints between operations
(machining/assembly); (if) assignment of operations to machines; and (Hi) sequence
of unrelated (independent) operations (machining/assembly).

Scheduling problems have attracted various efforts in multi agent approaches
(see for example [SOU 97], [RAB 94], etc.). The notion of agent was found in the
wide range of research in computer science (CS), distributed artificial intelligence
(DAI), etc. The multi agent systems paradigm represents one of the most promising
approaches to the development of agile scheduling systems in manufacturing [RAB
99]. In fact, distributed systems have the following advantages [DEC 87]: (i) can
simplify problem solving by splitting the problem into simple tasks; (ii) can tolerate
uncertain data and knowledge; (iii) offer conceptual clarity and simplicity of design;
(iv) present graceful degradation in computational complexity; (v) allow incremental
modification of the system boundary; and (vi) suit well to distributed problems.

The application of agent-based approach to manufacturing scheduling is based
on the idea that scheduling agility can be improved because of distributed
autonomous systems and negotiation based decision-making in a multi-agent
environment. [MIN 86] suggests the use of multi-agent system where there is a
wide-range of reasonably self-contained pieces of functionality that are
independently distributed in terms of timing and resources.

A survey by [SEN 99] reports 30 projects using agent technology for
manufacturing planning, scheduling and execution control where agents represent
physical entities, processes, operations, parts, etc. Real world examples of multi-
agent application include: power systems management (see for [JEN 95]; [VAR
94]), particle accelerator control [JEN 93], telecommunications network
management [WEI 94], spacecraft control [SCH 93], computer integrated
manufacturing [PAR 95], job shop scheduling [MOR 93], etc. Assembly line design
problem with agent application was studied by [SPR 95]. The design problem was
solved by distributing overall systems among agents responsible for tasks,

Agent-based Agile Manufacturing System 91

workstations, resource cells, etc. The coordination among distributed subsystems
was achieved by negotiation and self organisation of agents. The objective of the
design was minimisation of technological cost of the equipment that was achieved
by applying simulated annealing.

A common definition for agent or "processor" was not found in the literature. In
spite of this, [SIC 92] consider a "processor" as an agent when it possesses at least
the following three properties: (i) has a certain degree of autonomy to reason about
and to make decisions by itself; (ii) has the capability to interact with other agents;
and (iii) has the knowledge to independently solve a part of the global problem.

An agent can possess various properties depending on the nature of the problem
under consideration and the environment. The agents involved in the decision
making process are not necessarily with same functionality. The level of
functionality is defined in the problem decomposition process. Some of the agent
properties found in the literature (i.e. [GEN 94], [GAL 88], [ROS 85]) are
appropriate for the type of the agents used in our system. Here are the properties we
believe our agents possess: autonomy, sociability, reactivity, pro-activity, veracity,
benevolence, and rationality.

3. Agent-based scheduling framework

In this section, the general framework of the agent-based approach for
scheduling in an agile manufacturing environment is presented. The successful
implementation of agent-based approach strongly depends on how the system is
decomposed into interrelated subsystems so that the integrity of the system is not
violated. The digraph representation of product assembly sequence allows successful
decomposition of large size scheduling problems into sub-problems, so that the
integrity of original problem is not violated.

The digraph decomposition procedure described by [KUS 89] is used for
decomposing the overall scheduling problem into sub-problems. The decomposition
procedure consists in the following; a complex digraph is decomposed into simple
sub-digraphs by removing root node Ai (A3 in example presented by Figure 2(b))
from it. Then, moving forward we remove all the assembly nodes until the digraph is
decomposed to the level where all resulting sub-digraphs have simple structure.
Products with simple digraph representation have linear assembly structure and their
optimal scheduling can be achieved by polynomial algorithms (see [HE 02]). As a
result of decomposition, a set of sub-digraphs and single nodes (machining and
assembly operations) is generated. Each decomposed sub-digraph, generated during
the decomposition process, is an individual job that needs to be scheduled according
to its precedence relationships with other jobs. For each sub-digraph an agent is

92 Intelligent Agent-based Operations Management

assigned as an entity of the system that is responsible and authorised only for
scheduling his job in the system. If a single assembly node generated during the
decomposition process has immediate preceding part nodes all the part nodes
immediately preceding to that assembly node are combined with that assembly node
and assigned to an agent. As a result each agent will have at least one assembly
operation to schedule. If designers make some changes in the product assembly
structure, the sub-digraph corresponding to the redesigned component will be
changed, hence the agent responsible for that component will take care of
rescheduling. In this way the decomposition method, and the schedule obtained
using agent-based approach is robust.

The autonomous nature of system agents also offers flexibility of decision
making under different circumstances. However, like many other agent-based
systems our system requires a significant monitoring overhead which is described
next.

Besides the agents owning individual jobs, another type of agent, or so called
monitoring overhead or scheduling manager (SM) is added to the decision making
process in the system. Unlike the other agents in the system, scheduling manager is
not responsible for scheduling activities. He/she is the decision-maker at a higher
level and is responsible for choosing the winner among other agents during bidding
process.

Before presenting agent-based scheduling algorithm, the following notations and
definitions are introduced:

Define:

J=(J1, J2, J3, ..., Jk) the set of the jobs to be scheduled;

SAJ=set of schedulable jobs, i.e., set of the jobs that can be scheduled because all
their preceding jobs are scheduled, or they have no preceding job;

NSJ=set of non-schedulable jobs, i.e., set of the jobs that cannot be scheduled
because some of their preceding jobs have not been scheduled yet;

SJ=set of scheduled jobs.

Let stage be a step of the scheduling process, when a change in the set of
schedulable/scheduled jobs occurs.

If we define t as the index of a stage, accordingly, the sets SAJ, NSJ, SJ will be
defined for stage t as: SAJt, NSJt, and SJt.

At any stage t the following equation holds: J-SAJt u NSJt u SJt. Next, the
agent-based scheduling algorithm is presented.

Agent-based Agile Manufacturing System 93

3.1. Agent-based scheduling algorithm

Step 1. Decompose the digraph into a set of simple digraphs and assign an agent
to each subdigraph according to the decomposition order.

Step 2. Initialise the system by setting t=0 and defining sets SAJt, NSJt, and SJt.

Step 3. Schedule manager gives a signal to all scheduling agents, having job in
the set of schedulable jobs (SAJt), to schedule their jobs in the system.

Step 4. The agent with the minimum makespan is the winner, and schedules his
job.

Step 5. Set t=t+1 and update the sets SAJt, NSJ t and SJt.

Step 6. I fSJ t=J then GoTo Step 7 else GoTo Step 3.

Step 7. End.

The individual jobs are scheduled by corresponding agents using appropriate
scheduling algorithms developed in the literature. [HE 02] showed that products
with simple/linear assembly structure can be scheduled with the same makespan on
{m, q=l} and (m, q>1} systems. Since each agent possesses a job with simple
assembly structure, mixed integer programming can be used to achieve optimal
scheduling of individual jobs (see [HE 01] for formulation).

4. The negotiation model for agent-based scheduling

In this section, the model of negotiation among scheduling agents is presented.
The purpose of negotiation is to reach an agreement about the assignment of
operations to machining and assembly equipment and to improve the overall
schedule. The model defines a range of strategies and tactics that an agent can
deploy to generate new scheduling offers. The model is based on computationally
tractable algorithms.

The following assumptions are valid for the model: (/') there is no deadline for
the scheduling decisions to be reported to schedule manager; (ii) each agent starts
decision-making process, as soon as he receives the necessary information from the
schedule manager; (iii) agents report about their decisions to the schedule manager
as soon as their decision is made; (iv) schedule manager announces his decision to
the agents as soon as his decision is made.

Before describing the negotiation mechanism the following definitions and
notations are introduced:

aj agent j,j=1..., k;

94 Intelligent Agent-based Operations Management

t,;
obtained by agent aJ (j=I, ..., k) at stage t;

q; ..., q) obtained by agent a, G=1, ..., k) at stage t;

SU: = (t;, ,t;, , ..., ti,, T,;, T;, , ..., T;)
by agent uJ G=1, ..., k) at stage t;

C , (j , t) = max{tiJ , r ; J , ..., tk, , T,; ,Ti,, ..., T i
schedule obtained by agent uJ G=1, ..., k) at stage t;

completion time of the last machining operation on machine i (i=l, ..., m)

completion time of the last assembly operation on assembly machine i, (i=l,

completion time-vector of schedule so; obtained

maximum completion time of the

At stage t, each agent schedules his job in the {m, q } system and obtains (m+q)
completion time-vector su;. This (m+q) vector is being reported by each agent in
SAJ, to SM. Based on this information, SM makes decision and identifies who
schedules his job on the system at the current stage. The value of the following
expression is evaluated:

Agent aj is the winner at stage t if the following is true:

Once an agent becomes the winner at one stage, he enters the negotiation process
with certain input. The players in the negotiation process are all the agents already
having scheduled their jobs in the system. Basically the input brought by an agent to
the negotiation process is the values of the decision variables that uniquely define
the total schedule obtained that far. Once the winner is identified (or new player
entering the negotiation process is identified) the set of scheduluble jobs (SAJ), the
set of scheduled jobs (SJ), and the set of non-schedulable jobs (NSJ) are updated.
The current stage index is incremented by one. The winner, the agent who is
scheduling his job at the current stage, observes his schedule, and decides if he is
going to request for negotiation fi-om the agents in the negotiation process. Listed
below are some conditions that indicate the need of negotiation.

- The makespan obtained exceeds the estimated upper bound on makespan. In
this case the agent last entered the negotiation process initiates a negotiation with
others.

- Even if the makespan does not exceed the estimated upper bound it is close
enough to that.

- If for any assembly operation scheduled by an agent starting time is greater
than the completion time of its preceding operations (machining and assembly).

Agent-based Agile Manufacturing System 95

Basically this fact indicates that the agent is delaying his job because of other
agents. Hence, he may consider a negotiation with others.

Suppose agent a1 was the winner at stage t=1, and agent a2 becomes the winner
at stage t=2. The overall schedule obtained so far is the combination schedule of the
jobs owned by agent a\ and agent a2. Let's assume that for some reason agent a2

initiates a negotiation process in order to improve the schedule. As a result of
negotiation, a series of feasible schedules is generated by combined efforts of agent
a1 and agent a2. The result is represented in the matrix presented below:

The elements of the matrix are maximum completion time of the combination
schedule (job 1 and job 2). Agent a2 enters the negotiation process, where agent a1 is
a player with some schedule (defined as schedule 1 of agent a1), with some initial
schedule (defined as schedule 1 of agent a2).

When agent a2 enters the negotiation process, the schedule offered by him is the
best that he is able to find with consideration of decision variables defined at stage 1
by agent a1.

The first element Cmax (1,1) of the matrix is the maximum completion time that
agent a2 obtained when he entered the negotiation process. The cup sign above
number 1 (which indicates the schedule 1 by agent a1) indicates that agent a2

obtained schedule 1 without changing the values of decision variables defined by
agent 1 in schedule 1. From this point on, a series of feasible schedules is obtained
as described. Consider the element c (2,1) • This is the maximum completion time
that was obtained by agent a\ (at this point it is considered as schedule 2 by agent
a2), where the cup above 1 indicates that agent a\ obtained schedule 2 without
changing the values of decision variables defined by agent a2 in schedule 1. The rest
of the matrix is constructed similarly.

At some point, the negotiation process should be terminated. The following
conditions are recommended to be checked for termination:

96 Intelligent Agent-based Operations Management

- the current maximum completion time is equal to the estimated lower bound
on makespan, which means the solution obtained is optimal;

— agents involved in the negotiation process are satisfied by the results
obtained;

Once the negotiation process is terminated, the schedule obtained is passed to SM
and SM announces about it to the agents in the SAJ list.

The best schedule obtained is the one corresponding to the element of the matrix
that satisfies the following condition:

This schedule is reported to the schedule manager. The output schedule at stage t
represents the input for stage t+1. This means that agent a1 and agent a2 will
participate in the scheduling process at stage t=3 with the corresponding schedules,
obtained as a result of negotiation process carried out at stage t=2, numbered as 1.

The scenario will change once agent a3 enters the negotiation process. Now
agent a3 negotiates with agent a1 and agent a2 together, since they both have separate
units to control in the schedule. And each one is responsible and authorised for
changes concerning to the job's schedule owned by him. However, starting from
stage t=3 the negotiation process keeps same tactics as at stage t=3 which is
described below.

As the process continues, agent a\ becomes the winner at stage t=1, agent a2

becomes the winner at stage t=2, and agent a3 becomes the winner at stage t=3. The
overall schedule obtained so far is the combination schedule of the jobs owned by
agent a1, agent a2, and agent a3. In order to improve the schedule after entering the
scheduling process, agent a3 initiates a negotiation process with agent a1 and agent
a2. Each of them tries to improve the schedule by rescheduling the corresponding
schedules they obtained as an output of stage t=2. The matrixes corresponding to
negotiation processes are:

By comparing Cmax (2,1,1) and Cmax (1,2,1) one can find out who generated better
schedule. The following three cases are possible:

and In this case agent a2

becomes the winner and he gets the right to initiate the next negotiation process.

Agent-based Agile Manufacturing System 97

- Cmax (1,2,1) >Cmax (2,1,1) and Cmax (1,2,1) > Cmax (1,1,1). In this case agent a2

becomes the winner and he gets the right to initiate the next negotiation process.

- Cmax (2,1,1) < Cmax (1,1,1) and Cmax (1 2 1) Cmax (1,1,1) • None of them is a
winner and the negotiation process is over at the current stage. The stage index is
incremented by one.

Suppose agent a1 is the winner. He initiates a negotiation with agent a2 and agent
a3. Each of them tries to improve the current overall schedule. At the current
moment the overall makespan obtained is Cmax (1,1,1) •

Considering three corresponding possible cases discussed at the previous
iteration the winner is identified and the next iteration is started, or the stage counter
t is incremented by one. Eventually the last agent will enter the scheduling process
and after necessary negotiations the final schedule will be obtained.

Next, the formal agent-based scheduling algorithm with negotiation mechanism
is presented. In addition to the notations and definitions prior introduced the counter
of iteration is defined by c.

4.1. Agent-based scheduling algorithm with negotiation

Step 1. Decompose digraph into a set of simple digraphs and assign an agent to
each job according to the decomposition order.

Step 2. Initialise the system by setting t=0 and defining sets SAJt, NSJt, and SJt.

Step 3. Schedule manager gives a signal to all scheduling agents, having job in
the set of schedulable jobs (SAJ t), to schedule their jobs in the system.

Step 4. The agent who generates the shortest combined makespan with the
scheduled jobs is the winner and schedules his job in the system.

Step 5. Set t=t+1, c=0 and update the sets SAJt, NSJt, and SJt.

Step 6. The last agent entering the scheduling process checks if negotiation is
necessary. If so, he initiates a negotiation with the other agents in the
scheduling process. The counter of iteration is set c=c+l. A series of
feasible schedules is generated with each agent in the scheduling process,
and makespan matrixes are constructed.

If no negotiation is conducted then GoTo Step 3.

98 Intelligent Agent-based Operations Management

Step 7. The agent generating the minimum makespan with the agent last entering
the scheduling process is the winner in that iteration.

Set last agent entering the scheduling process = winner at iteration c.

Step 8. Check for termination of negotiation.

If negotiation is terminated GoTo Step 9 else GoTo Step 6.

Step 9. IfSJt=J then GoTo Step 10 else GoTo Step 3.

Step 10. End.

Note that the decomposition in Step 1 is performed by the digraph
decomposition algorithm described in [KUS 89].

An illustrative example of agent-based scheduling algorithm with negotiation is
presented in Appendix I.

5. Objective measures of effectiveness

In assessing the benefits of agent-based scheduling in terms of solution quality
one should notice that solution quality strongly depends on the scheduling
techniques used by individual agents for scheduling their tasks. Also note that each
subsequent sub-stage in a negotiation process gives a better output than its previous
sub-stage. Thus, the longer the negotiation process lasts the better solutions will be
obtained. Next, lower and upper bound estimates on makespan are developed.

Suppose a product with corresponding digraph is going to be scheduled on a {m,
q} manufacturing system.

Let P1, p2, ..., pn be all part nodes in the digraph, and A1, A2, ..., AN be all
assembly nodes in the digraph (see example in Figure 2). The following notations
are introduced:

k = number of agents or decomposed sub-digraphs.

ni = number of part nodes in the sub-digraph corresponding to the sub-problem
handled by agent ai.

Ni = number of assembly nodes in the sub-digraph corresponding to the sub-problem
handled by agent ai.

P1
t ,P2

t,...,pt
ni are part nodes in sub-digraph corresponding to the sub-problem

handled by agent ai.

A'1,A'2,..., A'Ni are assembly nodes in sub-digraph corresponding to the sub-problem
handled by agent ai.

Agent-based Agile Manufacturing System 99

are ordered processing times corresponding to part nodes

are ordered processing times corresponding to assembly nodes

Then lower bound on makespan is calculated using the above defined terminology

by equation [1]. Basically, what it represents is the best-case performance of the

scheduling, when assembly starts right after the shortest machining time in the

digraph and after that there is no idle time on assembly line.

For developing upper bound on makespan the following notations are

introduced. Let | (•) | be the smallest greater or equal integer of evaluated

expression (•), then define ki= as average number of parts per machine for

agent ai and r=[(average number of agents/individual jobs per assembly line.

The maximum completion time for the schedule by agent ai can be computed

using the following formula Ti= The expressione

represents total assembly time corresponding to the job possessed by agent ai. The

expression represents the machining time, when first ki largest machiningng

operations in the job possessed by agent ai are assigned to the same machine, which

corresponds to the worst possible performance. Then, Ti is the completion time,

when assembly operations start right after all machining is completed.

The ordered total assembly time corresponding to each agent is

Using these notations and formulations the upper limit of total completion time

is calculated by equation [2].

100 Intelligent Agent-based Operations Management

5.1. Computational experiments

To show the effectiveness of the proposed agent-based scheduling methodology
in terms of solution quality computational experiments were conducted. We chose
the system of consisting of one machine and one assembly station because optimal
algorithms for scheduling on these systems were developed by [KUS 89] and we
were able to compare the results obtained by applying agent-based approach with
the optimal scheduling solutions.

The developed agent-based approach was coded in C++ and used for testing
problems. A total of 4 types of problem with different assembly sequences were
tested. For each testing problem, 5 instances were generated, and for each instance,
assembly sequence, number of part nodes, number of subassembly nodes, maximum
level of assembly, machining times, and assembly times were randomly generated.
The data was generated based on the real assembly application information from
industrial assembly handbooks ([NOF 96]; [BOO 92]; and [LOT 89]). The average
size of the problems corresponds to 37 part nodes, 26 assembly nodes, and 7
assembly levels. The machining and assembly times were randomly generated that
follow uniform distribution U(7, 25) and U(10, 30) respectively for the first type of
the problems. For the second 5 instances of the problems the generated machining
and assembly times follow uniform distribution U(6, 14) and U(6, 19) respectively.
The third sample followed U(3, 12) and U(4,12). And finally, for the fourth sample
we had U(5,16) and U(6,20) correspondingly. The results of the computations are
provided in Table 1.

Agent-based Agile Manufacturing System 101

Table 1. Results of the computational experiment

Problem instance

Machining times:
U(7, 25)

Assembly Times:
U(10, 30)

Machining times:
U(6, 14)

Assembly Times:
U(6, 19)

Machining times:
U(3, 12)

Assembly Times:
U(4, 12)

Machining times:
U(5, 16)

Assembly Times:
U(6, 20)

No.

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

crnax

683
638
631
582
585
404
399
392
391
405
320
335
329
301
315
487
435
443
432
464

CAB

704
641
714
640
619
434
440
417
437
443
335
345
342
317
326
504
442
452
453
492

CAB-N

683
638
631
598
605
422
399
407
391
408
321
337
330
310
323
502
434
448
443
478

CAB/Cmax

1.031
1.005
1.132
1.100
1.058
1.074
1.103
1.064
1.118
1.094
1.047
1.030
1.040
1.053
1.035
1.035
1.016
1.020
1.049
1.060

CAB-N/Cmax

1.000
1.000
1.000
1.027
1.034
1.045
1.000
1.038
1.000
1.007
1.003
1.006
1.003
1.030
1.025
1.031
1.000
1.011
1.025
1.030

To evaluate the effect of negotiation in agent-based scheduling, for each problem
we tested, the completion time of product was obtained without applying
negotiation. The results are presented in Table 1. The notations in Table 1 are as
follows:

Cmax — completion time corresponding to optimal schedule;

CAB - completion time obtained by applying agent-based approach without
negotiation;

CAB-N - completion time obtained by applying agent-based approach with
negotiation;

The ratios in Table 1, i.e., CAB/Cmax,
the tested agent-based approaches.

x, represent the effectiveness of

Comparing the results in ratio columns corresponding to agent-based approach
with and without application of negotiation, one can see that application of
negotiation dramatically improves the solution quality. Agent-based scheduling
without applying negotiation provided 0.5%-13.2% deviation in completion time
from the optimal schedule when agent-based scheduling with application of

102 Intelligent Agent-based Operations Management

negotiation provided 0.0%-4.5% deviation in completion time from the optimal
schedule.

Concluding the experimental results, we can say that agent-based scheduling
approach presented in this paper provides optimal and near optimal solutions.

6. Conclusions

In this paper, an agent-based approach was designed for manufacturing system
scheduling in an agile manufacturing environment. The general framework of the
agent-based approach was presented. The successful implementation of agent-based
approach strongly depends on how the system is decomposed into interrelated
subsystems and the negotiation among the agents so that the integrity of the system
is not violated. A decomposition method was proposed for successful decomposition
of large size scheduling problems into sub-problems. Then negotiation mechanism
was developed and incorporated into decision-making process in a multi agent
environment. A lower and upper bound on maximum completion time were.

The decomposition method and agent-based tool were designed in a way that
each agent is assigned a separate individual job to be scheduled in the system
according to the precedence relationships of other agents' jobs. If any changes are
made by users in component designs, or assembly structures the product designs,
rescheduling can be done easily by corresponding agents in the scheduling system.
In this sense, the schedule obtained by agent-based approach is robust. The
developed approach integrates data and decisions associated with several entities
within a scheduling system. This approach can be used to model and solve large-
scale scheduling problems in an agile manufacturing environment. To demonstrate
the effectiveness of proposed methodology, computational experiments were
conducted. The results of tested problems show that the scheduling method obtains
optimal or near optimal solutions.

7. References

[BOO 92] BOOTHROYD, G., Assembly Automation and Product Design, Marcel Dekker, New
York, 1992.

[COF 78] COFFMAN E. G., GAREY M. R. AND JOHNSON D. S. "An application of bin-packing
to multiprocessor scheduling", SIAMJournal of Computing, vol. 7, 1978, p. 1-17.

[DEC 87] DECKER K. S., "Distributed problem solving techniques: a survey", IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-17, no. 5, 1987, p. 729-740.

[FRI 86] FRIESEN D. K., LANGSTON M. A., "Evaluation of a multifit-based scheduling
algorithm", Journal of Algorithms, vol. 7, 1986, p. 35-59.

Agent-based Agile Manufacturing System 103

[GAL 88] GALLIERS J. R., (1988). "A theoretical framework for computer models of
cooperative dialogue. Acknowledging multi-agent conflict", PhD thesis, Open University,
UK.

[GAR 78] GAREY M. R., JOHNSON D. S., "Strong NP-completeness results: motivations,
examples and implications", Journal of Association of Computing and Mathematics, vol.
25, 1978, p. 499-508.

[GEN 94] GENESERETH M. R., KETCHPEL S. P., "Software agents", Communications of the
ACM, vol. 37, no. 7, 1994, p. 48-53.

[GRA 69] GRAHAM R. L., "Bounds on multiprocessing timing anomalies", SIAM Journal of
Applied Mathematics, vol. 17, 1969, p. 416-429.

[HE 02] HE D., BABAYAN A., "Scheduling manufacturing systems for implementation of
delayed product differentiation strategy for agile manufacturing", International Journal of
Production Research, 2002 (to appear).

[HE 01] HE D., BABAYAN A., KUSIAK A., "Scheduling manufacturing systems in an agile
manufacturing environment", Robotics and Computer Integrated Manufacturing, vol. 17,
2001, p. 87-97.

[HE 96] HE D., KUSIAK A., "Performance analysis of modular products", International
Journal of Production Research, vol. 34, no. 1, 1996, p. 253-272.

[JEN 95] JENNINGS N. R., CORERA J., LARESGOITI I., MAMDANI E. H., PERRIOLAT F., SKAREK
P., VARGA L. Z., "Using ARCHON to develop real word DAI applications for electricity
transportation management and particle accelerator control", IEEE Expert - Special Issue
on Real World Applications of DAI, 1995.

[JEN 93] JENNINGS N. R., VARGA L. Z., AARNTS R. P., FUCHS J, SKAREK P., "Transforming
standalone expert systems into a community of cooperating agents", International Journal
of Engineering Applications of Artificial Intelligence, vol. 6, no. 4, 1993, p. 317-331.

[JOH 54] JOHNSON S. M., "Optimal two and three-stage production schedule with setup times
included", Naval Research Logistics Quarterly, vol. 1, no. 1, 1954, p. 61-68.

[KUS 89] KUSIAK A., "Aggregate scheduling of a flexible machining and assembly system",
IEEE Transactions on Robotics and Automation, vol. 5, no. 4, 1989, p. 451—459.

[LOT 89] LOTTER B., Manufacturing Assembly Handbook, Butterworth, London, 1989.

[MIN 86] MINSKY M., The Society of Mind, Simon and Schuster, New York, NY, 1986.

[NOF 96] NOF S.Y. WILHELM W. E., WARNECKE H.-J., Industrial Assembly, Chapman Hall,
New York, NY, 1996.

[PAR 95] PARUNAK H.V.D., "Applications of distributed artificial intelligence in industry", In
Foundations of Distributed Artificial Intelligence, editors G.M.P. O'HARE and N.R.
JENNINGS, Wiley, 1995.

[RAB 94] RABELO R.J., CAMARINHA-MATOS L.M., "Negotiation in multi-agent based
dynamic scheduling", Journal on Robotics and Computer Integrated Manufacturing, vol.
11, no. 4, 1994, p. 303-310.

104 Intelligent Agent-based Operations Management

[RAB 99] RABELO R.J., CAMARINHA-MATOS L.M. AND AFSARMANESH H., "Multi-agent-based
agile scheduling", Robotics and Autonomous Systems, vol. 27, 1999, p. 15-28.

[ROS 85] ROSENSCHEIN J.S., GENESERETH M.R., "Deals among rational agents", Proceedings
of the Ninth InternationalJoint Conference on Artificial Intelligence (IJCAI-85), 1985, p.
91-99, Los Angeles, CA.

[SCH 96] SCHWUTTKE U.M., QUAN A.G., "Enhancing performance of cooperating agents in
real time diagnosis systems", Proceedings of. 13th International Joint Conference on
Artificial Intelligence, Chamberry, France, 1993, pp 332-337.

[SEN 99] SHEN W., NORRIE D.H., "Agent-based systems for intelligent manufacturing: A
state of the art survey", Knowledge and Information Systems, an International Journal,
vol. 1, no. 2, 1999, pp. 129-156.

[SIC 92] SICHMAN J., DEMAZEAU Y., "When can knowledge-based systems be called
agents?", Proceedings IX Brazilian Symposium on Artificial Intelligence, Rio de Janeiro,
Brazil, 5-8 October, 1992.

[SOU 97] SOUSA P., RAMOS A., "A dynamic scheduling Holos for manufacturing systems"
Proceedings of the Second World Congress on Intelligent Manufacturing Processes and
Systems, Budapest, Hungary, 10-13 June, 1997.

[SPR 95] SPRUMONT F., GHEDIRA K, MULLER J.-P., "AMACOIA: a multi agent approach to
the design of flexible lines: Preliminary report", Proceedings of IJCAI Workshop on
Intelligent Manufacturing Systems, Montreal, Canada, 1995.

[WEI 94] WEIHMAYER R., VELTHUIJSEN H., "Application of distributed AI and cooperative
problem solving to telecommunications", In AI Approaches to Telecommunications and
Network Management, editors J. Liebowitz and D. Prereau, IOS Press, 1994.

Agent-based Agile Manufacturing System 105

Appendix I: Illustrative example of agent-based scheduling algorithm

Consider a product to be produced in {m=2, q=1} manufacturing system. The
assembly sequences of the product is shown in Figure 3. The machining and
assembly times are provided in Table 2.

Figure 3. Assembly structure of a product

Table 2. Machining and assembly times

Part
Machining Time
Assembly
Assembly Time

P1
6

A1

3

P2
4

A2

4

P3
6

A3
3

P4

1

A4

5

P5
6
—
-

P6
9
—
-

To decompose the digraph, we remove the root node A4. All the resulted sub-
digraphs have simple assembly structure. After decomposition, an agent is assigned
to each job. The set of following jobs is defined: J={J1, J2, J3}.

Initialise the system:

SJ0={Ø}

At this stage the schedule manager gives a signal to the agents of all the
schedulable jobs to find the best possible schedule (shortest makespan) with the
consideration of scheduled jobs (the set of scheduled jobs is empty at t=0). The
Gantt charts of schedules obtained by individual agents having job in SAJ0 are
provided below.

106 Intelligent Agent-based Operations Management

Agent a2 is the winner, since his schedule has the shortest makespan.

The system is updated as follows:

The Gantt chart of schedule obtained by the only agent having job in SAJ1 is
provided below.

Agent a2 realises that some changes happened to his schedule; the completion
times of operations were changed. He reschedules his schedule without changing
any assignment made by agent a3. The final schedule is shown below.

Agent-based Agile Manufacturing System 107

Here it is reasonable to terminate negotiation process, since the total machining
time was broken evenly between 2 machines.

Update the system as follows:

The schedule manager gives a signal to all of the schedulable jobs' agents to find
the best possible schedule with the consideration that the jobs in SJ2 are scheduled.
The last scheduling agent a1 schedules his job and obtains the schedule presented
below.

Scheduling agents a2 and a3 do not find any change in their scheduled operations
completion times, hence there is no need for rescheduling.

Update the system as follows:

Since SJ3=J={Jl, J2, J3}, the scheduling process is over.

This page intentionally left blank

Chapter 6

New Product Development within a
Concurrent Engineering Environment:
Knowledge and Software Tools

Jean-Louis Selves, Eric Sanchis and Zhaoyang Pan
IUT Ponsan, Paul Sabatier University, Toulouse, France

110 Intelligent Agent-based Operations Management

1. Introduction

New product development processes has led us to consider the design project
management which is associated with two goals: on one hand the organisational and
technical search for solutions, on the other hand the clarification of procedures and
necessary means of setting up the project. These goals are to reached within the
framework of a process, which can be characterised by two approaches: the
traditional sequential approach and the concurrent engineering approach [MID 97].
The traditional approach, in which the project proceeded sequentially from phase to
phase [TAK 86] (concept development, feasibility testing, product design,
development process, pilot production and final production) and from functional
team to functional team, was largely used in manufacturing industry but may
conflict with today's competitive requirements: speed and flexibility. The latter
approach, where the overlaps extend over several phases, is characterised by a
project team that tries to develop new products using co-operative work and can
respond more quickly to changing market conditions [CHA 97, TAK 86, CAR 91,
SAR 97].

This processes can be described in two ways:
- modelling the whole process using the perspectives offered by the domain of
problem solving and knowledge needs [SIM 91, NEW 72],
- concentrating on the identification and the analysis of the tracks and the evolution
of the intermediate design objects (IDO) following A. Jeantet and J.F. Boutut [JEA
98]. They noticed that "the designers spend most of their time to create, to
manipulate, to discuss, to interpret, to estimate, to transform, ... texts, graphs,
calculations, computer models, drawings, physical mock-up ... so much that, to
understand the design process, it seemed to us necessary to give to these objects, in
our approach of analysis, a place as central as the one that they occupy in the activity
of the designers. That is why, we decided to create a generic category: intermediate
design objects. It is about objects produced or used during the action of designing,
getting in touch tools, procedures and actors. We make the hypothesis that these
objects are tracks of the design hypothesis, the realised compromises and the
decisions made during the design process".

Following these two descriptions, the performance of the team project to develop
new products in the CE environment will depend essentially on the speed with
which its members are going to acquire, to look for or to share knowledge needed in
design problem solving, taking into account the strategy of the company. It will be
objective to favour the quick emergence of collective solutions by the means of the
traffic of the intermediate design objects (IDO) related to the explicit knowledge of
the team. Consequently, the goal of our research will be, first, to examine a company
using CE to define knowledge needed in design problem-solving and the methods
used. Then we will classify problems and describe the different collective
approaches to solving them. Finally, taking into account the nature of problems and
mechanisms to solve them, we will propose software tools based on software agents

New Product Development 111

[FER 95] and a model of document linked to the IDO to help in designing in a
context of a team working within the CE environment. This is qualified by Darse
[DAR 97] vis a vis co-design process and distributed design process.

2. Design problems within CE environment

Within a CE environment a multidisciplinary project team works to reach goals
like quality, low price and maximum speed [GAU 97]. This working framework is
particularly associated with the car industry. Thus, to understand a CE development
process it seems natural to consider the TOYOTA company because it is considered
to be a model for the concurrent engineering [WAR 95].

The vehicle development cycle is organised around key milestones [WAR 95].
The architecture is modular and each module corresponds to a subsystem studied by
a functional group. That allows the members of the team project to work under a
matrix organisation. For each module, the designers make their search for several
solutions, which are explored and experimented first at subsystem level, and if
needed, at the system level. The coherence of interfaces is ensured with a checklist
of the constraints, which indicates limits not to be exceeded.

In this process we find the five phases defined by I. Nonaka and H. Takeuchi
[NON 97]: the sharing of tacit knowledge, the creation of concepts, the justification
of concepts, the construction of an archetype, the extension of the knowledge in the
various levels of the organisation and we can distinguish four types of knowledge,
which move during the project (targets which become technical specifications,
constraints, graphical representations or solutions, results of tests or solution
evaluations).

A schema which summarises the process of industrial problem solving [SEL 00,
SEL 97, BUR 97, BUR 95] is shown in Figure 1. This schema takes into account
knowledge used and dynamics of problem solving; difference between objectives
and results producing a new cycle. It agrees with the classical modelling of problem
solving [NEW 72, DAR 97] and the four types of knowledge that we have identified
previously.

112 Intelligent Agent-based Operations Management

Figure 1. Industrial problem solving

Usually one expresses objectives in a static way; these are references from which
knowledge making in industrial problems solving progresses. In design problems,
objectives are not known exactly at the beginning [DAR 97] and are going to evolve
throughout the design process. Thus, when it is a question of modifying the initial
data or state, i.e. functional or structural specifications, it obviously involves
considerable disorders.

In CE environment all the phases of specifications can be discussed at any
moment. Search for a problem solution can proceed forward from functional
specifications to physical specifications or backward from physical specifications to
functional specifications. This leads us to propose a schema (Figure 2) with a spiral
development to take into account two main factors:
- The permanent contribution of four types of knowledge: objectives, results,
solutions and constraints.
- The development of the project around the initial purpose (which is described
usually by basic concepts) by applying both the following operators: specification
(translation of needs in technology) and evaluation (check of the translation).
Specifications becoming globally more and more precise to end as the realisation of
prototypes and then the object.

New Product Development 113

Figure 2. Design problem solving in CE environment

Let us now examine different procedures used in design problem solving.
Although numerous industrial problem solving methods are associated with planned
and progressive "paths" towards solutions [SEL 97], design problems cannot be
treated like this because objectives are ill-defined and the number of alternative
solutions is enormous. Darse [DAR 97] speaks about opportunist solution-making
which explains itself by proceeding in two directions: forwards (objectives to
solutions) or backwards (modifying objectives according to solutions). Indeed,
human beings often perform heuristic search [SMI 95]. Instead of solving problems
by exhaustive search of all possible paths, people consider only a small number of
alternatives which correspond to known and practicable solutions. Expertise consists
in acquiring knowledge which limit in this way the space of search. This approach is
largely used and used to understand how human beings usually solve problems.
However, these methods do not explain all the procedures for finding a solution and
particularly the solutions that may be achieved suddenly [SMI 95, HOL 89, HOLY
96a]. In that case restructuring and parallelism, comparison with sub-structures, are
more important than the classical sequential processing or an analytical method.
These solutions of emergent type are very important in the current industrial context
because they are present in most scientific innovations [HOLY 96a]. Thus, it will be
necessary to favour them with procedures or suited methods. For that reason, we are
going now to study methods at group level to propose software tools and an
organisation of knowledge to help members of the team to find solutions and
particularly emerging solutions.

114 Intelligent Agent-based Operations Management

3. The collective aspect and intermediate design objects (IDO)

In a CE environment, solutions can be achieved by creating and manipulating
ODI with methods which favour teamwork. But it is very difficult to describe these
methods and it is for that reason that we had, in a previous article [SEL 00],
identified some domains as the rugby game [JEA 98] and the social insects
behaviour builder [THE 97a, THE 97b] to explain some mechanisms used to solve
problems collectively. However, there is a fundamental difference between animals
and humans. Holyoak and Thagard [HOLY 96b] state that "The ability to form
concepts and think about them, which is present in human and to a lesser degree in
other mammalian species, marked a fundamental evolutionary advance in
intelligence. The advance is closely related to the difference between two types of
knowledge, implicit and explicit, that is, between the ability to react to something
and the ability to think about it". Thus, knowledge used to solve problems can be
implicit and involve a reaction explicit; thinking then provides representations and
modelling, and produces a great number of solutions.

At this level and for design activities we might take into account the notion of
coherence [THA 00]. Actions coming from tacit knowledge or reactions, will lead to
a coherent pattern if they are activated by a "stigmergic" logic [SEL 00]. That is, the
actors will have common basic principles or long training. Social insects constitute a
borderline case because they have all in a given context the same type of reaction.
For actions coming from explicit knowledge, a coherent pattern will occur if they
are related to object databases [ALK 00] or if constraints (spatial etc) are very severe
and thus restrict strongly the search space [WAR 95].This last procedure can be
associated with the mechanism called "gabarit" [SEL 00]. Thus a coherent pattern is
obtained by reproducing behaviour, actions, objects, but it is necessary to propose
new solutions. Social insects find them "at random", that is [SEL 00] they attempt to
investigate all possible paths. It is an impossible task for human beings and we have
to notice that many advances in scientists' thinking involve mechanisms like
analogy, parallel constraint satisfaction, restructuring etc [SMI 95, HOLY 96a].
Solutions are achieved suddenly at an individual level and then might be accepted
by the other members of the team. In that case also social insects supply us with an
example of the "autocatalytic" process [SEL 00] which can be considered a
borderline case.

In the working context of the team project in CE environment, Darse [DAR 97]
distinguishes 2 types of design process: co-design and distributed design, and states:
"In the situations of distributed design, the actors of the process are simultaneously
but not collectively engaged to collaborate; they carry out tasks in advance assigned
and try to attempt goals (or at least sub-goals) which they are own. Although,
obviously, they had to work for a collective solution of the problem".

In the situations of co-design, "the team members develop solution collectively:
they share an identical goal and contribute to the final solution in accord with their

New Product Development 115

specific competence, this with very strong constraints of direct co-operation to
guarantee the success of problem solving".

Both types of approach can coexist. In the initial state of the project, it seems
better to work with a co-design approach to define the architecture of the system,
modules and interfaces. Then these modules and interfaces, so defined, can be
studied using distributed conception.

Indeed, taking into account the collective aspect previously developed, both
approaches may be used following the nature of the problem and the state of the
project:
- Problems mainly related to the specifications (spatial configuration, perceptive
aspect etc): it will be necessary to design a structure, an interface, a combination of
objects or person, ... and the solution will be a reasonable solution that achieves the
goal and not the best solution. Objectives are ill defined and the team members work
with "a stigmertgic logic", follow a "gabarit" or use mechanisms like parallelism,
restructuring and analogy; it is the co-design approach that seems the most efficient
to find solutions and favour emergent solutions.
- Problems mainly related to evaluations (or quantitative characteristics): these are
often problems of optimisation usually solved in using deductive reasoning
(equations), instruments or simulators. It is rather the distributed design approach
which will be used because results will depend on individual competence, software
packages or experiments.

Consequently, the I DO used within the framework of design problem-solving
should be either distributed (distributed design), either visible (or available) by all
the members of the team (co-design). It is to facilitate these two working approaches
which should be available during the whole project for all the team members that we
are going now to study a system based on software agents. We shall deal with
coherence and associated mechanisms in a future paper.

4. A tool to help in the organisation and the production of knowledge

Thus, in the aim to facilitate the availability of intermediate design objects and to
manage the organisation and the production of multilevel knowledge we propose a
support suited system which is built around:
- a generic modelling of the I DO or document,
- the sites to store them or resource centres,
- the software entities capable of handling them or mobile software agents [SAN 99,
CHE 00, HAR 00, WHI 00].

116 Intelligent Agent-based Operations Management

4.1. Modelling of an element of knowledge: the document

We chose to use a uniform model of representation of a knowledge element: the
document. This one represents and models in an abstracted way knowledge
concerning goals, constraints, solutions and evaluations. An initial document is
generated in the first phase with corresponding knowledge. Then from this
document a first generation of documents will be made by inheriting knowledge of
the first document and so until the generation n, which will correspond to the most
specialised knowledge. Every document will keep links with the document father
and the documents children to be able to control the three and regroup documents by
function, by component or other characteristics. The knowledge elements so defined
will be able to be enriched by the members of the team, the specialists or the
subcontractors. For this, in the modelling that we are going to develop, two parts
will be considered:
- The element of knowledge such as it appeared during its creation or definition, that
is, the original element of knowledge and we shall note it IKE (INITIAL
KNOWLEDGE ELEMENT),
- The set of the enrichments which were brought to it, the history of the copies of the
document, its movements, that is, in a global way, the tracks of the interactions of
the document within the project. We shall call history this set of information
(History).Thus, we shall consider a document as being composed of two elements:
the IKE and H (Figure 3).

Figure 3. A document

4.2. The resource centres

Knowledge elements are available in resource centres and the members of the
project can use them according to their cognitive gaps or their specific needs to build
solutions. Interactions between the first three constituents of the support system are
illustrated in the following paragraph and the use of the software agents will be
clarified in the following section.

A resource centre RC keeps for the project actors one or several documents. If
these documents have been created locally (or in a more precise way the IKE of the
document) in a RC, we qualify this RC as document manager (DM). In the example
chosen, the IKE of the document D was created on RCa and consequently, this last
one is DM for D. One supposes that this document was enriched locally and
therefore contains a history H. A request is engaged in the following way: a user U

New Product Development 117

dependent on another RC (RCb) asks for a copy of the document D (get request).
Having transferred the wanted document, RCa updates the historic H' of D.
According to the policy of a RC for a document, it can send the document in its
entirety, that is, the IKE provided with a complete H part, either for reasons of
confidentiality, the IKE and part of H. The duplicated document on RCb can also
receive requests: the H part of this copy grows then in an independent way of the
document D present on RCa. It has the main consequence that a DM cannot know
the location of all the copies of the document that it administers. To be able to
collect the various H parts of D, scattered within the organisation, the DM which is
associated with it (in our example, it is RCa), uses software agents.

4.3. Mobile software agents

4.3.1. Software agents

Software agents have constituted an active research field since the middle of the
90s. Although one is not capable of defining in a precise way what is an agent, a
rather wide consensus exists for the main characteristics that have to possess such
software entities. Among aspects usually used to classify the agents, two are used
particularly: the properties which owns or should possess an agent and the field of
activity.

Firstly, the main properties usually considered to qualify an agent as a computer
entity are: autonomy, mobility, proactivity, adaptivity, cooperation, continuous
execution [ETZ 95, JEN 98b]. We can also add: sensing its environment (a tacit
property for each agent), replication and learning. This last property plays an
important role in building intelligent software agents [NWA 96]. We consider that
these properties are not of the same type: autonomy, proactivity and intelligence are
qualities or aspects of an agent which cannot be described easily, whereas mobility,
continuous execution, replication are properties which can be reduced to a
mechanism. We call these properties attributes. The distinction between quality and
attribute is a very important factor in building software agents.

Secondly, an agent is built to perform specialised tasks in several fields [JEN
98a]. and the main themes studied until now in building software agents are:
electronic commerce, intelligent user interface, information retrieval, information
filtering, entertainment systems, dynamic network routing and concurrent
engineering.

The two aspects, properties and fields of activity, were often analysed and
combined, leading simultaneously to several definitions of an agent and to several
typologies [BRA 97], [NWA 96].

118 Intelligent Agent-based Operations Management

4.3.2. Mobility

Mobility is a property which was particularly studied and used since the middle
of the 90s [WHI 00, CHE 00, HAR 00]. It was very early associated with software
agents to build new applications using internet because models of communication
were not appropriate. Indeed, applications were structured on model client/server
and generated lots of traffic (Figure 4). In this model, the client part of the
application has a dialogue in a synchronous way with the distant service, requiring a
permanent connection between both hosts A and B during the whole
communication.

Figure 4. Client/server model

To decrease the number of messages and to improve performance and dynamics
of applications, White [WHI 00] showed that it was preferable that the software
agent moves from the client to the server. The agent or deported client has a local
dialogue with the server, and then, when the process is finished, goes back to its site
of origin. The traffic now is only due to the transfer of the agent's software, the
response delay and the security of the system are seriously improved. Moreover, the
user (client) can perform another task during this process (Figure 5).

The working steps of a mobile agent are:
- At time t, the client system based on the Host A create a mobile agent (Ag).

After its creation, the agent moves automatically towards the Host B.
- At time t+1, Host B system receives the mobile agent (Ag), restores its state of

execution and executes it. The agent opens then a local dialogue with the server. At
the end of the dialogue, the agent comes back to the site A or moves towards another
host.

New Product Development 119

Figure 5. Modelling mobile agent

4.3.3. Modelling systemion software agent

Our modelling of agent is called systemion [SAN 99]. It possesses the two
classes of properties which were previously described, that is qualities and
attributes. Thus, software agents built to collect the history part possess a dual
structure (Figure 6):

- A sub-system which implants what concerns the fulfilment of the function
assigned to the agent. In our application, it is a question of discovering the presence
of a document copy, of analysing the historic part and of transporting a copy of this
last one towards the DM of the document. The figure below indicates the analysis
made by the agent.

- A sub-system (or attributes) that implants properties independent of the
function allocated to the agent, the mobility and the faculty to communicate.

Figure 6. A software agent

120 Intelligent Agent-based Operations Management

We can now clear up the work of the software agents (Figure 7). According to a
policy previously defined and determined by: events, a regular interval of time or
key milestones, the DM of the document D, that is RCa, creates a software agent A1
to analyse the history of the local document D. This contains, in the historic part, the
set of the RC having requested a copy of D. In our example, RCa emitted an unique
copy of D to RCb. Thus, the software agent duplicates and goes towards the
requester RC. When the clone reaches the RC, it analyses the history of the copy
(H3) and determines if it has to duplicate itself. Two RC (RCc and RCd) acquired a
copy of D, thus two clones A2 and A3 are created and go respectively to RCc and
RCd. The agent Al carries with it a copy of the historic part H3 and goes to RCa,
DM of the document D. When the agent A2 reaches the RCc, the document D does
not exist any more (for example, the document not having been considered
interesting and was erased), it dies, having no historic part to be returned to RCa.
The agent A3 discovers on RCd that no new copy was made, it then returns towards
RCa with the historic part H4. The processing and the registration of the various
histories are made on the site which is DM of the document.

Figure 7. Support system and software agents

4.4. Distributed design process and co-design process

The registration of the traffic of a document, without or with modifications,
inside and (if needed) outside the project team will be associated with:

New Product Development 121

- distributed design process - the traffic of a document (without modification) is
registered. The main interest to register the traffic of a document is to understand
how it is delivered to the members of the team project. Registration is started by the
document manager. This can, after analysis of the historic part, know the location of
the document and distribute in a suitable way several copies of the document if
needed.
- the backward delivery of the modified document will be associated with a co-
design process. Now modified copies go back to their owner (backward delivery);
that is software agents are going to look for and collect the modified documents. The
aim of such an operation is to estimate the state of the project and also, for each
member of the team, to favor at the same time its own cognitive improvement and to
participate in the "cognitive synchronisation " [DAR 97].

4.5. Control of the design process and concurrent engineering

According to the structure and the contents of the historic part of a document,
numerous applications could be made. Indeed, this support system can be used
following two dimensions that allow at any time to establish knowledge mapping
and to control the state of the project:
- The vertical dimension from links between the documents, which allows control of
the three and to regroup documents by function or by component. The way of
handling documents and the links between documents authorises the simultaneous
study of several solutions, the overlapping phases and the possibility of studying a
function completely or a module or a component independently.
- The horizontal dimension which corresponds to the recording of the interactions
between the members of the project, the specialists or the subcontractors in the part
"H" of the document. This dimension should allow decrease in the risk of error and
to confirm an innovative idea by favouring its emergence. It can lead to a better
control of mechanisms ("gabarit", "stigmergy", emergence and "auto-organisation")
related to collective working and authorises the creation of project maps composed
of chosen elements that have been requested. They will be associated with
information concerning the number of requests, the tracks of the interactions, the
degree of enrichment and the existence of similar elements.

5. Implementation of software agents based modelling

The first phase of our development was to implement a small prototype to
confirm the global architecture of our application. We are going now to describe the
main technical characteristics of this prototype by clarifying the various choices
which were made.

122 Intelligent Agent-based Operations Management

5.1. Architecture of the application

Our support system includes three parts:
- mobile software agents,
- the server of mobile software agents: this receives the agents' new-comers and
then starts their execution,
- the user interface which allows the document manager to run a mobile agent.

It is this first software agent that analyses the historic part of the initial
document, processes the registered requests GET and begins migration. To do this
task, the software agent runs the information which is attached to each request GET,
mainly the user's name and the IP address of the machine.

5.2. Language

The prototype was written in Perl language. Let us clarify this choice. Two
classes of languages are mainly used to implant platforms to use mobile software
agents: java and script languages like Unix shell, Perl, Tcl, Python. Perl was chosen
because it allows one to write portable and fast programs. It also facilitates the
implementation of the actual mobility.

5.3. Mobility

Two paradigms structure the architecture of an agent application: actual mobility
and virtual mobility. In actual mobility, all parts of the mobile agent (code, data and
perhaps the context of execution) are sent to the target host and then destroyed in the
broadcasting host. In virtual mobility, all parts of the agent are also sent but not
completely destroyed in the broadcasting host; applets implement the paradigm of
the virtual mobility. The advantage of actual mobility, our choice, is that no specific
agent components stay on a visited host. But what are the parts of the agent which
are included in the migration package?

Usually two possibilities are examined, they are called weak mobility and strong
mobility. Our mobile agents are structured according to the model of the weak
mobility. It means that only the code and data of the agent are transferred on the
target host. A part of these data is used to restart the execution of the agent at a
particular point of its code.

In strong mobility, the context to run an agent, that is mainly the stack and the
program counter, must be captured and then sent to the target host. The latter then
uses this context of execution to restart the execution of the agent at the point where
it had stopped on the broadcasting host. The implementation of strong mobility
requires the use of non standard computers (i.e. equipped with modified JVM,
modified Tcl interpreter etc). Contrary to strong mobility, weak mobility does not

New Product Development 123

require any particular modification of the target host. Thus, in our application, we
use a standard Perl interpreter.

5.4. Evaluation and perspectives

The proposed methodology must be applied to real cases concerning design and
the making of scientific instruments [ROM 95, ROM 98]. It should allow a CE
development type much needed by this highly innovative industrial domain. Indeed,
the development of instruments is usually carried out by teams composed of
members with various competencies, scattered geographically and coming from
various entities (enterprise, research centre, universities).

As a first step we were able to verify by means of this prototype the feasibility of
such a system and particularly the migration of the agents by means of the historic
part of documents. A second step will consist of implanting it on a widely used
internet platform accessible with classic browsers. Thus, any user (client) could
reach the resource centres if it is authorised.

6. Conclusion

Knowledge-making for design problem solving in CE is not carried out in a
linear way but rather under a spiral development which takes place around the initial
purpose by using objects which one calls IDO (intermediate design object) [JEA
98]. Solutions are obtained by various types of individual and collective mechanisms
according to the nature of the problem to be solved and/or the capacity of the human
beings. Among these mechanisms we will mention the behaviour of the social
insects which allows us to propose three mechanisms to explain the coherence in
builder activity: "Gabarit", "stigmergic " logic and actions or solutions of emergent
and "auto-organised" type.

Thus, in the framework of design problem-solving a process to organise use and
produce multilevel knowledge is defined and revised using software tools and a
suitable support system. Knowledge is partitioned into modules or elements. Each of
them is composed of a document associated with multilevel knowledge and a
software agent that accomplishes tasks like to go from machine to machine, sense
the environment, control birth with duplication and death. These elements are
available in resource centres or web sites and project members could ask them to
build solutions for problem solving. Each request produces a duplicate element. The
software agents attached to this element carries the document, gives resource centre
information about the requester environment and take into account a supplement of
information from the requester if needed.

All these operations and resources constitute a knowledge management system.
It can provide project maps composed of the requested elements associated with
parameters related to the number of request, the identity of the requesters, the

124 Intelligent Agent-based Operations Management

quantity of information added etc. The purpose is not only to estimate the state of
the project but also, for every member, to participate in the construction of
a common working repository. Joint presence in the same local space of several
concurrent or complementary IDO favours at the same moment the cognitive
enrichment of the actor [DAR 97] and the use of collective mechanisms, facilitating
the emergence of new solutions and the development of new products. Although this
system seems well suited for CE design projects, it needs to be integrated in the
"virtual enterprise". This includes organisational problems that will be discussed in a
future paper.

7. References

[ALK 00] A. Al-Khuder, W.A. Gray, J.C. Miles, Issues in Management of Distributed
Concurrent Engineering Design in Object-Oriented Databases, Proceedings of CE2000,
Advances In Concurrent Engineering, 2000, p. 586-595.

[BRA 97] Bradshaw J. M., An Introduction to Software Agents, in Software Agents,
Bradshaw, J.M. (ed.), Cambridge, MA: MIT Press, 1997.

[BUR 94] Ph. Burg, J.L.Selves, J.P. Colin, Procédés de determination des caractéristiques
d'unpetrole brut, Brevet N° 9403188 (1994).

[BUR 95] Ph. Burg, J.L.Selves, J.P. Colin, Numerical simulation of crude oil behaviour from
chromatographic data, Analytica Chemica Acta, 317(1995) 107-125.

[CAR 91] Donad E. Carter, Barbara Stilwell Baker, Concurrent Engineering, The Product
Develpment Environment for the 1990s, Addison-Wesley Publishing Company, 1991.

[CHA 97] Florence Charue-Duboc, Maitrise d'æuvre, maitrise d'ouvrage et direction de
projet, Annales des Mines, September 1997, p 41-48.

[CHE 00] Chess D., Grosof B., Harrison C., Levine D., Parris C., Tsudik G., Itinerant Agents
for Mobile Computing, IBM Research Report, http://www.research.ibm.com/massive/
rc20010.ps

[DAR 97] F. Darses, 'Ingénierie concourante, de la technique au social', P. Bossard et al.,
ECONOMICA, 1997, Chapter III.

[ETZ 95] Etzioni O., Weld D. S., Intelligent agents on the Internet: Fact, Fiction, and
Forecast, IEEE Expert 10(4): pp 44-49, 1995, http://ftp.cs.washington.edu/pub/ai/ieee-
expert.ps.Z

[FER 95] J. Ferber, Les Systémes multi-agents. Vers une intelligence collective, 1995,
InterEditions, Paris, p. 361-419.

[GAU 97] Frederic Gautier, Evaluation économique des activités de conception et de
développement des produits nouveaux, Cahier de Recherche du Gregor, 1997.12
(http://www.univ-paris1.fr/GREGOR/).

[HAR 00] Harrison C., Chess D., Kershenbaum A., 'Mobile Agents: Are they a good idea?',
IBM Research Report, http://www.research.ibm.com/xw-d953-mobag-ps

[HOL 89] JH Holland, KH Holyoak, RE Nisbett, P.R. Thagard, Induction - Processes of
inference, learning and discovery, MIT Press, 1989, p.336-342.

[HOLY 96a] KH Holyoak, P.R. Thagard., Mental leaps. Analogy in creative thought, MIT
Press. 1996, p. 101-137.

New Product Development 125

[HOLY 96b] KH Holyoak, P.R. Thagard., Mental leaps. Analogy in creative thought, MIT
Press. 1996, p. 21.

[JEA 98] A. Jeantet et J.F. Boujut, 'Conception de produits mécaniques', M. Tollenaeree,
HERMES, 1998, Chapter 5.

[JEN 98a] Jennings N., Wooldridge M., Applications of Intelligent Agents, in 'Agent
Technology: Foundations, Applications, and Markets' (Edited by N. R. Jennings and M.
Wooldridge) Springer Computer Science, 1998, http://www.springer.de/comp/special/
jennings.pdf

[JEN 98b] Jennings N., Sycara K., Wooldridge M., A Roadmap of Agent Research and
Development, Autonomous Agents and Multi-Agent Systems, 1, pp 275-306 (1998),
Kluwer Academic Publishers, Boston, ftp://ftp.elec.qmw.ac.uk/pub/isag/distributed-
ai/publications/ aa-mas.ps.gz

[MID 97] Christophe Midler, Evolution des modéles d'organisation et regulations
économiques de la conception, Annales des Mines, February 1997, p 35-40.

[NEW 72] A. Newel and H.A. Simon, Human Problem Solving, Englewood Cliffs, NJ,
Prentice Hall, 1972,p.787-868.

[NON 97] I. Nonaka et H. Takeuchi, La connaissance créatrice, la dynamique de l'entreprise
apprenante, DeBoeck University, 1997, p. 108-114.

[NWA 96] Nwana H. S., Software Agents: An Overview, Knowledge Engineering Review,
Vol 11, No 3, p. 1-40, September 96, Cambridge University Press,
http://www.cs.umbc.edu/agents/introduction/ao.ps

[ROM 95] Romier J., Selves J.-L., Béteille J.-P., Gastellu-Etchegory J.P., Marty G.,
Realisation et etalonnage d'un spectromètre de terrain visible et Infrarouge pour I'étude
de la réflectance de la vegetation, Analusis, 23(1995) p.403-411.

[ROM 98] Romier J., Selves J.-L., Gastellu-Etchegory J.P., Imaging spectrometer based on
an opto acoustic tunable filter, Review of Scientific Instruments, Vol 6, N°8 (1998) p.
2859-2867.

[SAN 99] E. Sanchis, Modular Autonomy for Simple Agents, Third International Conference
on Autonomous Agents - Workshop on Autonomy Control Software - May 1-5, 1999,
Seattle (WA).

[SAR 97] Jean-Claude Sardas, Ingénierie Intégrée et mutation des metiers de la conception,
Annales des Mines, February 1997, p 41-48.

[SEL 00] JL Selves, Z.Y. Pan, E. Sanchis, Knowledge needs and new products development
wthin a Concurrent Engineering Environment, Proceedings of CE2000, Advances In
Concurrent Engineering, 2000, p 635-643.

[SEL 97] J.-L. Selves, Ph. Burg, Decisions techniques et méthodes numériques dans un
processus industriel appartenant à I 'Industrie pétrolière, Proceedings of CNRIUT'97,
Blagnac, 14-16 May 1997.

[SIM 91] H.A.Simon, 'Sciences des systèmes, sciences de l'artificiel', Dunod, Paris, 1991.
[SMI 95] EE Smith & D.N. Osherson, Thinking - An Invitation to Cognitive Science, Second

Edition, Vol 3, MIT Press, 1995, p. 267-296.
[TAK 86] H. Takeuchi and I. Nonaka, The new new product development game, Harvard

Business Review, January-February 1986, p. 137-146.
[THA 00] P. Thagard, Coherence in Thought and action, MIT Press, 2000, p. 223-245.

126 Intelligent Agent-based Operations Management

[THE 97 a] G. Theraulaz, F. Spitz, Auto-organisation et comportement, Hermes, Paris, 1997, p
80-83.

[THE 97b] G. Theraulaz, E. Bonabeau, La modelisation du comportement bâtisseur des
insectes sociaux, paper in book reference [21], p 210-234.

[WAR 95] Allen Ward, Jeffrey K. Liker, John J. Cristiano, Duward K. Sobek, II, The Second
Toyota Paradox: How Delaying Decision Can Make Better Car Faster, Sloan
Management Review, Spring 1995, p 43-41.

[WHI 00] White J. E., Telescript Technology: The Foundation for the Electronic
Marketplace, General Magic White Paper, General Magic, Inc., Sunnyvale, CA 94088.

Chapter 7

An IEC 61499-based Model for
Reconfiguration of Real-time
Distributed Control Systems

R.W. Brennan and D.H. Norrie
Dept of Mechanical and Manufacturing Engineering, University of Calgary,
Canada

M. Fletcher
Agent Oriented Software, Cambridge, UK

128 Intelligent Agent-based Operations Management

1. Introduction

Today's manufacturing systems must be capable of quickly responding to
change while maintaining stable and efficient operation. Although manufacturing
technology has become increasingly sophisticated to deal with this (e.g., through
advanced robotics and computer numerical control), without adequate control the
result is often a collection of "islands of automation" that lack the necessary
integration for truly responsive behaviour [UPT 95]. As a result, new control
software and hardware approaches are required to realise a system that is flexible
(i.e., capable of reconfiguration) and responsive (i.e., capable of recovering from
disturbances).

In this contribution, we report on the development of a distributed intelligent
control solution that is inherently adaptable and dynamically re-configurable, that
takes advantage of distributed artificial intelligence at the planning and control
levels to achieve significantly shorter up-front commissioning times as well as
significantly more responsiveness to change. These potential benefits, in
combination with the current trend towards low-cost, distributed computing
platforms will result in a much more attractive, low-cost automation solution for
future manufacturers than current centralised solutions.

We begin with some background on holonic and agent-based approaches in
manufacturing as well as recent work on real-time distributed control. Then, in
Section 4, we describe two approaches that can be used to achieve dynamic and
intelligent reconfiguration in this environment. In Section 4 we describe a simple
prototype system that is used to support function block configuration and
reconfiguration. Finally, we provide a brief summary and discussion of our current
work in Section 5.

2. Background

Distributed intelligent control involves matching the control model more closely
with the physical system. This is particularly relevant to manufacturing control
systems that are required to control widely distributed devices in an environment
that is prone to disruption. With this model, control is achieved by the emergent
behaviour of many simple, autonomous and co-operative entities (i.e., agents) that
"decide locally not only how to act (as subroutines do), and what actions to take (as
objects do), but also when to initiate their own activity" [PAR 93]. In the following
sub-sections we look at how this distributed approach has been applied in the
manufacturing domain and in particular, to the problem of manufacturing systems
control.

Reconfiguration of Real-time Distributed Control Systems 129

2.1. Agent-based manufacturing

The natural fit of multi-agent systems technology to manufacturing problems has
resulted in many applications in this domain. In particular, autonomous agents or
multi-agent systems (MAS) are an attractive software engineering tool for the
development of systems in which "data, control, expertise, or resources are
distributed; agents provide a natural metaphor for delivering system functionality; or
a number of legacy systems must be made to interwork," [WOO 99]. Manufacturing
applications are characteristically "modular, decentralised, changeable, ill-
structured, and complex" [PAR 99], and as a result supply a host of problems that
are well-suited to agent technology.

Research into the application of multi-agent systems and distributed artificial
intelligence in the manufacturing domain has been steadily growing over the last ten
years and has focused on all areas of the manufacturing enterprise ranging from
product design to real time control. One of the first applications of agent-technology
in the manufacturing domain was Parunak's YAMS ("Yet Another Manufacturing
System") factory control system [PAR 87]. This system took advantage of the
contract net protocol [SMI 82] for inter-agent negotiation to flexibly assign
resources to production tasks in a changing environment (i.e., machine failures).
Various other applications of agent technology followed in this domain that include
product design, enterprise integration and supply chain management, planning and
scheduling, and real-time control. For a comprehensive overview of agent-based
systems in manufacturing, see Shen and Norrie [SHE 99] and for multi-agent
systems in concurrent design and manufacturing Shen, Norrie and Barthes [SHE 00]
can be consulted.

2.2. Holonic manufacturing systems

Holonic manufacturing systems are manufacturing-specific applications of the
broader multi-agent systems approach and are one of the intelligent manufacturing
systems (IMS) program's six major projects resulting from a feasibility study
conducted in the beginning of the 1990s [HMS 01]. The objective of the work of the
HMS consortium is to "attain in manufacturing the benefits that holonic organisation
provides to living organisms and societies, e.g., stability in the face of disturbances,
adaptability and flexibility in the face of change, and efficient use of available
resources" [HMS 01]. The term "holon" was coined by Arthur Koestler [KOE 67]
who observed a dichotomy of wholeness and partness in living organisms and social
organisations and stated "wholes and parts in the absolute sense do not exist
anywhere."

Like an HMS, a multi-agent manufacturing system also consists of co-operative
and autonomous manufacturing units, but unlike an HMS, a MAS can be considered
as embedding a "general software technology that was motivated by fundamental

130 Intelligent Agent-based Operations Management

research questions" [BUS 98]. Research in MAS, however, has played a key role in
the development of holonic manufacturing systems. For example, Figure 1 illustrates
how holons can be thought of as physical agents that consist of a software
component and a hardware component. Because of the close relationship between
holonic systems and MAS concepts, object-oriented and agent-based techniques
have played an important role in holonic systems research in areas such as material
handling, production planning and scheduling, real-time control and holonic systems
architectures. An extensive overview of the holonic systems approach to production
planning and control is provided by McFarlane and Bussmann [MCF 00]. As well,
the proceedings of IMS'99 provide numerous papers on various aspects of holonic
manufacturing systems research [VAN 99].

Figure 1. Agents and holons [BUS 98]

2.3. Real-time distributed control

Although there has been a considerable amount of work on agent-based
approaches to the upper, planning and scheduling level of control very little work
has been done on applying these techniques to the lower, real-time control level. The
main barriers at the real-time control level result from the difficulty of implementing
MAS concepts in a stochastic environment where hard real-time constraints must be
met to achieve safe system operation.

The primary distinction between non-real time and real time systems is that real
time systems tightly link correctness with timeliness. In other words, deadlines must
be met under hard real time (i.e., tasks must finish by a specified time) and soft real
time (i.e., tasks must meet deadlines on average) constraints [DOU 99]. As well, real
time systems are typically safety-critical systems (i.e., the system should not incur
too much risk to persons or equipment), and as a result, characteristics such as
timeliness, responsiveness, predictability, correctness and robustness are of
fundamental importance. In summary, the step from the non-real time or soft real
time domain is a large one that requires new models and methodologies for
distributed control.

Reconfiguration of Real-time Distributed Control Systems 131

2.4. The function block architecture

Recently, there have been a number of advances in real-time distributed control
that provide the tools to move away from the traditional centralised, scan-based
programmable logic controller (PLC) architecture towards a new architecture for
real time distributed intelligent control. In particular, there have been a number of
advances recently in programming languages [LEW 96], models for distributed
control [IEC 00] and software methodologies [LYO 98].

The International Electro-technical Commission (IEC) 61499 standard is one
example of this new trend [IEC 00]. This standard addresses the need for modular
software that can be used for distributed industrial process control. In particular, this
standard builds on the function block portion of the IEC 61131-3 standard for PLC
languages [LEW 96] and extends the function block (FB) language to more
adequately meet the requirements of distributed control in a format that is
independent of implementation.

In developing control applications with this model, the IEC 61499 function block
can be thought of in terms of an "enhanced" object. Like recent object-oriented and
agent-based models for manufacturing system control, the IEC 61499 function block
shares many of the characteristics of the traditional objects and agents used to
develop these applications (e.g., a traditional object focuses on data abstraction,
encapsulation, modularity, and inheritance) [BRE 01].

An example of an IEC 61499 basic function block is shown on the left side of
Figure 2(a). The function block is enhanced through its recognition of two very
specific kinds of messages: data messages (which one would expect of a traditional
object) and event messages (which are used to schedule the execution of an
algorithm). The resulting focus on process abstraction and synchronisation makes
this approach particularly suitable for control of an environment that is concurrent,
asynchronous and distributed. Figure 2(b) shows how function blocks can be
represented recursively; the composite function block shown here consists of
multiple basic function blocks and/or composite function blocks.

132 Intelligent Agent-based Operations Management

Figure 2. The IEC 61499 function block model [IEC 00]

Figure 3 illustrates the IEC 61499 system model. The "devices" shown in this
figure are, for example, machine controllers with I/O interfaces to the physical
environment. As can be seen in this figure, applications (modelled by IEC 61499
function blocks) can reside on a single device, or be distributed across multiple
devices.

The device is shown in more detail in Figure 4. As can be seen in this figure, the
device is a container for resources, where the resource provides the execution
environment for the application's function blocks [IEC 00]. As well, both the
communications and processing interfaces are shown explicitly in this model,
allowing physical devices to be mapped to the resources and the various resources to
communicate with each other respectively.

The resource is responsible for scheduling and executing function block
algorithms and can be thought of as a logical subdivision within the software (or
hardware) of a device, which has independent control of its execution [IEC 00].

Reconfiguration of Real-time Distributed Control Systems 133

Factory Corn m unica tion Network
I

Figure 3. The IEC 61499 system model [IEC 001

Figure 4. The IEC 61499 device model [IEC 001

The applications illustrated in Figures 3 and 4 consist of a network where nodes
are hnction blocks and branches are data and event connections [IEC 001. It should
be noted that an important characteristic of this model is that the application can be
distributed among several resources in the same or different devices.

Reconfiguration of Real-time Distributed Control Systems 133

Factory Corn m unica tion Network
I

Figure 3. The IEC 61499 system model [IEC 001

Figure 4. The IEC 61499 device model [IEC 001

The applications illustrated in Figures 3 and 4 consist of a network where nodes
are hnction blocks and branches are data and event connections [IEC 001. It should
be noted that an important characteristic of this model is that the application can be
distributed among several resources in the same or different devices.

134 Intelligent Agent-based Operations Management

Figure 5 extends Figure 1 to show how each of the models discussed in this
section fit into a holonic manufacturing system. Fundamentally, all are the same
kind of model, though each is specialised for a given need: it is the stance that is
taken toward the problem that will influence the model that is used. For example,
general agent-based approaches are suited for non-real time environments whereas
the IEC 61499 model is suited for real time, event-based environments. In particular,
IEC 61499 allows events to be modelled explicitly (via the application and function
block models) and also provides a clear distinction between the software model and
the hardware model of the distributed system. Arguably, this places IEC 61499
function blocks at the real time level of the manufacturing organisation as is
illustrated in Figure 5. IEC 61499 does not provide any guidance on how to
implement real time constraints however (e.g., task duration, allowance, and
deadline) however, and as a result, this is left as an implementation issue (e.g., using
a real time operating system as with our prototype system described in Section 4).

Figure 5. The relationship between the models

3. Reconfiguration of real-time distributed control systems

The primary objective of the research reported in this paper is to develop
techniques to achieve automatic reconfiguration that results in predictable and stable
system behaviour in a real-time environment. In conventional PLC systems,
reconfiguration involves a process of first editing the control software omine while
the system is running, then committing the change to the running control program.
When the change is committed, severe disruptions and instability can occur as a
result of high coupling between elements of the control software and inconsistent
real time synchronisation. For example, a change to an output statement can cause a
chain of unanticipated events to occur throughout a ladder logic program as a result
of high coupling between various rungs in the program; a change to a PID function

Reconfiguration of Real-time Distributed Control Systems 135

block can result in instability when process or control values are not properly
synchronised.

In order to develop appropriate methodologies, reconfiguration can be viewed in
three levels of sophistication: simple, dynamic and intelligent reconfiguration. These
three types of reconfiguration can be summarised as follows: (i) simple
configuration utilises the IEC 61499 model to avoid software coupling issues during
reconfiguration, (ii) dynamic reconfiguration uses techniques to properly
synchronise software during reconfiguration, and (iii) intelligent reconfiguration
exploits multi-agent techniques to allow the system to reconfigure automatically in
response to change.

Figure 6 provides a high-level overview of the general model for reconfiguration
that we are currently developing. With this model, function block ports (i.e., event
and data connections) are objects that register with the resource manager (RM)
associated with the function block. The resource manager looks after the
interconnection of function block ports (i.e., as is specified by the application) and
maintains a record of all function block ports in a FB Port table.

Figure 6. The reconfiguration model7

As is illustrated in Figure 4, a device consists of one or more resources.
Consequently, the relationship between resources and devices can be thought of in
similar terms to the relationship between function blocks and resources: i.e., the

136 Intelligent Agent-based Operations Management

device manager (DM) looks after the interconnection of the RMs function block
ports and stores this information in an RM Port table. Similarly, the application
manager (AM) looks after the interconnection of the DM's function block ports and
stores this information in a DM Port table.

Using this model, a device manager, for example, may reconfigure the ports of
its RMs to whatever new configuration is desired. The advantage of this approach is
that reconfiguration can be managed at various levels (i.e., function block, resource,
device, application). For example, at the most basic level all that is required is a
"map" of the new configuration (i.e., based on the FB, RM, and DM Port tables).
This approach will be discussed further in Section 3.1.

The approach described thus far allows for the "simple reconfiguration"
discussed previously, but does not yet address how dynamic and intelligent
reconfiguration is performed. The fundamental difference between basic and
dynamic reconfiguration is the latter's recognition of timeliness as a critical aspect
of correctness. The goal is to develop techniques to allow the user to change a
portion of the program (e.g., basic FB, composite FB, or sub-application), while
maintaining the timeliness requirements of the application. This will require freezing
the state of the current FB when the change is committed, saving this state
information, automatically initialising the new FB to the correct state, replacing the
current FB with the new FB, and then starting the new FB. The main difference here
is that matching of state information is performed automatically (rather than by the
user). This is intended to result in a transparent change to the application (i.e., other
FB's should see no change at the FB interface) which is intended to result in much
more stable system operation than can be realised by current systems.

Intelligent reconfiguration builds on dynamic reconfiguration (i.e., timeliness
constraints) by focusing on multi-agent techniques to allow the system to
reconfigure automatically in response to change. For example, as part of a fault
recovery strategy, higher-level agents will manage the reconfiguration process using
diverse or homogeneous redundancy. In the following sub-sections, we describe two
approaches to achieve these more advanced forms of reconfiguration: (1) a pre-
programmed or "contingencies" approach, and (2) a soft-wiring approach.

3.1. Contingencies approach to reconfiguration

With this form of reconfiguration control, contingencies are made for all possible
changes that may occur. In other words, alternate configurations are pre-
programmed based on the system designer's understanding of the current
configuration, possible faults that may occur, and possible means of recovery.

This approach uses pre-defined reconfiguration tables that make use of the FB,
RM and DM Port tables described above. For example, in the event of a device
failure, the affected portions of an application could be moved to different devices

Reconfiguration of Real-time Distributed Control Systems -------

by selecting an appropriate reconfiguration table. As well, this detailed
representation of the function block interconnections would allow higher-level
agents to access the information required to make a smooth transition from one
configuration to another, thus enabling dynamic reconfiguration.

The main disadvantage of this approach is that it is inflexible, particularly with
respect to the handling of unanticipated changes. As well, this approach would
require constant maintenance in order to keep the reconfiguration tables current: i.e.,
each change would require a change to the reconfiguration tables.

3.2. Soft-wiring approach to reconfiguration

The basic idea behind this approach to reconfiguration is to enable higher layers
(e.g., RM, DM, AM) to use higher-level reasoning to analyse the current
configuration and plan for reconfiguration when required. Ideally, we are striving
for an "integrated circuit" approach where fine grain components can be "plugged-
in". Similar to Sun's Jini approach, this approach uses the directory services of the
FB, RM, and DM Port tables as well as underlying configuration agents (CA) that
handle the "wiring" between components. For example, function blocks will have
information on how they can be connected (i.e., their interfaces) that is stored by
CAs. The CAs will use this information, for example, to connect a new function
block with an existing function block or to replace an existing function block with a
new one.

The primary advantage of this approach is its potential to overcome the
inflexibility of the contingencies approach as well as its potential to realise
intelligent reconfiguration. For example, configuration agents will be primarily
reactive in nature, responding quickly to changes in the physical environment. These
agents however, through emergent behaviour and interaction with higher-level
cognitive agents, will allow sophisticated decision-making to occur in the real-time
system. An example of this of this type of multi-level behaviour is safety
management. The agents involved in achieving this functionality will vary from very
simple physical agents that are limited to changing to a fail-safe state and reporting a
fault, to higher-reasoning functional agents capable of collaborating to achieve a
sophisticated recovery plan.

4. Prototype implementation

In order to develop real-time distributed control systems that are capable of
dynamic, and eventually, intelligent reconfiguration, an appropriate software
infrastructure is required that supports approaches such as the contingencies
approach or the soft-wiring approach. In this section we describe the implementation
of a simple prototype system that is implemented in real-time Java and is based on

138 Intelligent Agent-based Operations Management

IEC 61499. For this implementation we focus on function block reconfiguration
(i.e., the top part of Figure 6), which relies on a FB Port Table.

We start with a brief description of the general architecture that has been
developed to support control application configuration and reconfiguration then
describe our recent work on an approach to achieve dynamic "plug-and-play" (or, in
the manufacturing context, "plug-and-produce") capabilities. In the sub-sections that
follow, we use the term "configuration" to imply both initial control application
development (i.e., configuration) as well as control application modification (i.e.,
reconfiguration).

4.1. Configuration control services and support architecture

The architecture for configuration control, shown in Figure 7, consists of three
basic modules to enable control application configuration and reconfiguration: (i) a
configuration management application, (ii) a configurations services module, and
(iii) a configuration control application. As well, Figure 7 shows the local control
application and a remote device, where parts of the control application may be
distributed or other control applications may be running (i.e., as illustrated in
Figures 3 and 4). In the remainder of this sub-section, we will look at each of these
aspects of the configuration control architecture.

The local control application, shown in the lower right of Figure 7 is intended to
represent an IEC 61499 function block application. IEC 61499 function blocks (e.g.,
Figure 2) are modelled by configuration agents (CA) and execution agents (EA).
First, the function block's control functionality (i.e., how it is expected to behave in
the control application) is encapsulated in execution agents (EA), which have a
direct correspondence with the basic function block model shown in Figure 2(a). For
example, the IEC 61499 ECC (execution control chart), algorithms and internal data
are encapsulated in EA task agents. One form of representation for the execution
agent that has been suggested by the authors [FLE-01] is to use the real-time unified
modelling language (RT-UML) "capsule" stereotype [SEL 98]. This model allows
state machines to be modelled explicitly and also supports a recursive structure.

As noted previously, configuration agents manage function block configuration.
Figure 7 illustrates this graphically by the function block configuration agents (CA).
In order to manage which agent (EA or CA) is executing, or in other words, whether
the function block is in the execution or configuration flow path, an additional state
machine is used in our function block model: the basic function block configuration
control chart (not shown in Figure 7). This state machine can be in one of three
states: configuration ("C"), execution ("E"), or stopped ("S"). In the "configuration"
state, the function block CA is running and performing configuration commands that
are based on messages received from the CCEE (described below). In the
"execution" state, the function block EAs run, allowing the function block to

Reconfiguration of Real-time Distributed Control Systems 139

perform its control application functionality. Finally, the function block can be
placed in a stopped state if required (e.g., prior to a configuration change).

Figure 7. Configuration control services and support architecture

Similar to local control applications, the configuration control application
(CCA) is also modelled by function blocks in our model. The main difference here
is that the CCA is a special type of control application that executes a pre-
determined configuration that is provided by the configuration execution engine
(described next). Just as a control application controls the behaviour of physical
devices (e.g., robots, CNC machines), the CCA control the behaviour of the control
application. In other words, the CCA can be thought of as a meta-control application
that is responsible, for example, for how function blocks in the local control
application are interconnected.

The configuration services module shown in Figure 7 acts as an interface
between this meta-control application and the higher-level configuration
management application, where configuration and reconfiguration plans are
developed. As well, since control applications exist in a distributed environment, it
also serves as an interface to other devices.

140 Intelligent Agent-based Operations Management

The key elements of the configuration services module are the configuration
control execution engine (CCEE) and the FB Port Table. The CCEE basically
completes the configuration control loop: i.e., it monitors the status of execution
agents (and reports this information to the configuration management application)
and relays the configuration commands (from the configuration management
application) to the configuration agents. To enable the CCEE to convert higher-level
configuration commands from the configuration management application (e.g.,
"connect function block ADC1 to function block PID3 on RESOURCE2"), the
CCEE relies on two sets of tables that describe the connections within function
blocks (intra-function block connection tables (intra-FBCT)) and the connections
between function blocks (inter-function block connection tables (inter-FBCT)).

The key to achieving intelligent reconfiguration (i.e., multi-agent techniques that
enable the system to reconfigure automatically in response to change) with this
model lies in the configuration management application. Currently, we are in the
process of developing agent-based approaches to implement the two basic
approaches described in the previous section. Our preliminary architecture to
support intelligent reconfiguration is described in [ZHA 00].

Finally, configuration and reconfiguration can be managed across distributed
devices either automatically (i.e., invoked by a remote device's CCA) or manually
through a remote function block (FB) manager interface. The configuration services
provided to support these two modes of configuration are remote method invocation
(RMI) and web services respectively.

4.2. Implementing "plug-and-produce" capabilities

A key requirement of this research is the development of systems that can
dynamically form coordination domains, or teams of holons in real-time. This
requirement is tightly linked with the central HMS ideal of developing
manufacturing systems that can automatically and dynamically adapt to change. In
this sub-section, we describe one approach to achieving this basic requirement that
builds on the idea of "plug-and-play" introduced in Section 3.2. First, we will look
at a simple example (Figure 8) of dynamic team formation.

In this figure, robot RI is initially responsible for unloading parts from machines
M1 and M2 (i.e., shown at the top of Figure 8). At some point a second robot, R2, is
made available and is added to the work cell. Given the current state of cell
controller technology, the following steps would typically be required to put this
second robot on-line: (i) manually reconfigure the cell controller software off-line,
(ii) shut down the work cell, (iii) download the new cell controller software, (iv)
bring the work cell back on-line, and (v) debug the cell controller software (this may
require several iterations of steps (i) to (v)). This approach is not only time
consuming and error-prone, but also results in considerable added costs to
manufacturers (both in terms of system down time and programming costs). As a

Reconfiguration of Real-time Distributed Control Systems 141

result, there is often a reluctance to reconfigure systems when the opportunity arises
(e.g., the reconfiguration costs may outweigh the savings resulting from increased
productivity).

Figure 8. A simple work cell

In order to achieve the dynamically reconfigurable environment envisioned by
the HMS community, we have been investigating extending the "plug and play"
capabilities of Jini [NEW 01] to the manufacturing domain to achieve a "plug and
produce" environment. For example, as is illustrated in Figure 9(a), Jini allows a
federation of clients and services to be established that is facilitated by one or more
look up services [NEW 01]. The basic idea is that services can be dynamically
registered in a look up service; the look up service then acts as a
broker/trader/locator between services and clients. An example of this is shown in
Figure 9(b). In this case, robot R2 registers its services (e.g., robot control) when it is
plugged into the work cell. Clients (e.g., the cell controller) can then discover these
services and use them to implement their plans. As is shown in this figure, the
service object is really a proxy that communicates back to the service provider using
remote method invocation (RMI) or some other equivalent protocol.

Unfortunately, the limitations of Jini in the real-time control domain are its
memory requirements (typically > 1 Mbyte) and requirement of support for dynamic
class loading and deserialisation (which some Java-based microcontrollers do not
support). For our research, we have been investigating a small-footprint (i.e., < 100
Kbyte) version of Jini that has been developed by PsiNaptic Inc. [PSI 02] for use on
real-time Java platforms such as Jbed [ESM 01] and TINI [LOO 01] that addresses
both of these issues.

An example of the system described in this section is provided in Figure 10. In
this case, we show the terminal interface to a PowerPC 823 e (running RPX Lite) and

142 Intelligent Agent-based Operations Management

our function block manager interface implemented on a web browser. The interface
allows function blocks to be manually configured (i.e., both intra- and inter-
function block connections) and the event and data connections to be tested. The
focus of our current work is on extending this manual configuration capability to
dynamic configuration using the RMI-based services described above. Our tests
have shown that this approach allows small function block applications like the one
described in this section to be quickly and easily configured and reconfigured at run
time. Of course, to achieve a truly holonic system, as described in Section 1,
integration with a configuration management application is the next step in this
research.

Figure 9. Using Jini to enable dynamic coordination domains

5. Summary and current work

In this paper we described two general approaches for dynamic and intelligent
reconfiguration that are based on the IEC 61499 model for distributed intelligent
control and report on our progress with an experimental prototype system. An
important feature of these approaches is that they take advantage of the holonic
characteristics (i.e., modular, recursive nature) of the IEC 61499 model to allow
reconfiguration to be managed at the most appropriate level. As well, the general

Reconfiguration of Real-time Distributed Control Systems 143

reconfiguration model proposed here can be applied using a layered, agent-based
approach to allow fault detection and recovery to occur dynamically and
automatically.

Our current work in this area is focused on the development of a conceptual
architecture for configuration management. In particular, we are looking at how
basic system functionality such as control application management and safety
management (i.e., fault detection and recovery) is decomposed in a multi-layered,
multi-agent environment as well as determining the nature of the agents used in this
system. Work in this area will eventually lead to the development of a "holonic
controller" that will take advantage of distributed artificial intelligence at the
planning and control levels to achieve significantly shorter up-front commissioning
times as well as significantly more responsiveness to change than current industrial
control solutions.

i

Figure 10. The function block manager interface

144 Intelligent Agent-based Operations Management

6. References

[BRE 01] BRENNAN R., NORRIE D., "Agents, holons and function blocks: distributed
intelligent control in manufacturing", Journal of Applied Systems Studies Special Issue on
Industrial Applications of Multi-Agent andHolonic Systems, vol. 2 no. 1, 2001, p. 1-19.

[BUS 98] BUSSMANN, S., "An Agent-Oriented Architecture for Holonic Manufacturing
Control", the First Open Workshop on Intelligent Manufacturing Systems Europe, 1998,
p. 1-12.

[DOU 99] DOUGLASS, B., Doing Hard Time: Developing Real-time Systems with UML,
Objects, Frameworks, and Patterns, Addison-Wesley, 1999.

[ESM 01] ESMERTEC, "Jbed product line 'the only real choice for Java technology - small,
fast and hard real-time'", Technical report, http://www.esmertec.com/, 2001.

[FLE 01] FLETCHER, M., BRENNAN, R.W., NORRIE, D.H., "Design and evaluation of real-time
distributed manufacturing control systems using UML Capsules", 7th International
Conference on Object-oriented Information Systems, 2001, p. 382-386.

[HMS 01] HMS, Holonic Manufacturing Systems Overview. http://hms.ifw.uni-hannover.de/
public/overview.html, 2001.

[IEC 00] IEC TC65/WG6, Voting Draft: Function Blocks for Industrial Process-
Measurement and Control Systems, Part 1 Architecture. International Electrotechnical
Commission, 2000.

[KOE 67] KOESTLER, A., The Ghost in the Machine. Arkana, 1967.

[LEW 96] LEWIS, R., Programming Industrial Control Systems Using IEC 1131-3, IEE, 1996.

[LOO 01] LOOMIS, D., The TINI Specification and Developer's Guide, Addison-Wesley,
2001.

[LYO 98] LYONS, A., "UML for real-time overview", Technical Report of ObjecTime Ltd,
1998.

[MCF 00] McFARLANE, D., BUSSMANN, S., "Developments in holonic production planning
and control", Production Planning and Control, vol. 11 no. 6, 2000, p. 522-536.

[NEW 01] NEWMARCH, J., A Programmer's Guide to Jini Technology, Apress, 2001.

[PAR 87] PARUNAK, H., "Manufacturing experience with the contract net", Distributed
Artificial Intelligence, (M.N. Huhns, ed.), Pittman, 1987, p. 285-310.

[PAR 93] PARUNAK, H., "Autonomous agent architectures: a non-technical introduction".
Industrial Technology Institute Report, 1993.

[PAR 99] PARUNAK, H., "Industrial and Practical Applications of DAI", Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence, (G. Weiss, ed.), The MIT Press,
1999, p. 377-424.

[PSI 02] PSINAPTic INC., Jmatos Software User Manual for TINI 1.02d,
http://www.psinaptic.com/, 2002.

Reconfiguration of Real-time Distributed Control Systems 145

[SEL 98] SELIC, B., RUMBAUGH, J., "Using UML for modeling complex real-time systems",
Technical Report of ObjectTime Ltd and Rational Software Corporation, 1998.

[SHE 99] SHEN, W., NORRIE, D., "Agent-based systems for intelligent manufacturing: a state-
of-the-art survey", Knowledge and Information Systems, vol. 1, 1999, p. 129-156.

[SHE 00] SHEN, W., NORRIE, D., BARTHES, J., MultiAgent Systems for Concurrent Design and
Manufacturing. Taylor and Francis, 2000.

[SMI 82] SMITH, R., "The contract net protocol: high-level communication and control in a
distributed problem solver", Defence Research Establishment Atlantic D.R.E.A. Report
80/1, 1982.

[UPT 95] UPTON, D., "What really makes factories flexible?", Harvard Business Review, vol.
73, no. 4, 1995, p. 74-84.

[VAN 99] VAN BRUSSEL, H., VALCKENAERS, P., Proceedings of the 2nd International
Workshop on Intelligent Manufacturing Systems. K.U. Leuven, 1999.

[WOO 99] WOOLDRIDGE, M., JENNINGS, N., "Software engineering with agents: pitfalls and
pratfalls", IEEE Internet Computing, 1999, p. 20-27.

[ZHA 00] ZHANG, X., BALASUBRAMANIAN, S., BRENNAN, R., NORRIE, D., "Design and
implementation of a real-time holonic control system", Information Science Special Issue
on Computational Intelligence for Manufacturing, vol. 27 no. 1-2, 2000, p. 23-44.

This page intentionally left blank

Chapter 8

Intelligent Agents for Production
Systems

Jihad Reaidy, Yingjiu Liu and Daniel Diep
Research Centre, Ecole des Mines d’Ali.s, Nimes, France

Pierre Massotte
Research Centre, Ecole des Mines d’Al& Nimes, France, and IBM Academy of
Technology

148 Intelligent Agent-based Operations Management

1. Introduction - main challenges in future production systems

This part details some trends and characteristics required for future and advanced
manufacturing systems. They briefly lead manufacturing organisations to be more
flexible in management and labor practices as well as to be able to develop, produce
and re-manufacture virtually defect-free products and services quickly in response to
opportunities and needs of customers. They can be identified as follows:

Engineering. With the advent of computing and information technologies and
telecommunications, design, manufacturing process and the use of products and
services have evolved. Also, in the recent years, the impact of computer-integrated
manufacturing (CIM) has shifted from the traditional factory integration philosophy
to a virtual factory management philosophy (Lee, 1996). These technological
advances enable one to achieve a fast and highly collaborative environment based on
i) multi-media software engineering tools and highly reliable communication systems
for facilitation of distributed procedures of concurrent design and development of
products and services, and ii) operations indistributed production systems.

Environment and ecology. Recycling involves the settling and reusing of
materials. They can be provided from returned products (new, repaired, restored or
rebuilt, etc) This implies introduction of a fashionable concept around
environmentally conscious design. Compared with the well known approach called
design for manufacturing it covers many more constraints since it means design for
re-use of assemblies and parts, for maintenance, for easy dismantling and/or
disassembly, and for longevity (with new concepts such as self-maintenance, self
reparability, error recovery, etc.). These items are all included in the GNOSIS
program (GNOSIS-VF, 1998).

Process and supply chain management. Industry is now faced with a global
and distributed economy. Worldwide competition and mergers reduce margins. As
might be expected this has had a great impact, not only on the design of product and
processes but also on social and logistic systems:

- how to improve the procurement and the circulation of materials and parts and
how to share the manufacturing of complex end products;

- how to organise the scrap, reclaims, wasting and recycling of products and
goods;

- how to develop new opportunities of jobs and enhanced conditions of working;
- how to take into account economical added value of this new logistic and to

find the most economical balance to control and manage the resulting disturbances in
terms of flow of products.

Evolution of the production requirements. Reduction of manufacturing costs
and improvement in customer satisfaction led to a paradigm shift from a focus on
"quality of product design and manufacturing" to a focus on "quality of service" with
decreasing delivery time. As a result, reactivity and flexibility of production systems
become of key importance. Thus, research focus on "service" issue is better

Intelligent Agents for Production Systems 149

addressed in the design and manufacturing enterprise. This approach is tightly
related to "lean production" which is the minimisation of costs resulting from
product variability, in particular the times required to change dies and the size of
inventories (just-in-time (1 9 9 5)) . Companies adopting lean production
approaches (more suited than the 7-zero's approaches) have achieved substantial
reduction in costs resulting from product variability or specific demand changes. In
most cases, it was demonstrated that lot sizes or batches had to be reduced as much
as possible, i.e., to increase the number of product variants to be able to meet the
customer requirements in every segment of the market. Now, the trend to one-of-a-
kind-production (OKP) has been termed "agile manufacturing"; it is much more
constraining than "lean manufacturing" and requires the implementation of new
paradigms in terms of reactivity and flexibility.

E-Business. E-business, irrespective of disturbances presently observed at stock
exchanges, is evolving towards more activity. The net-economy is characterised by
"speed". Each time demand occurs, it is necessary to quickly specify when, at what
cost, in which quantity the order will be delivered. Here, response time is the key.
Moreover, considering the high volume of individual and specific demands, with
many product variations, mass customisation is required for such production
systems. These characteristics combined imply a great reactivity. At last, because of
logistics reasons associated with these above constraints, the role of the customer is
becoming pervasive. He is progressively involved in any decision-making along the
manufacturing value added chain.

In this paper we focus on the development of new approaches devoted to the
monitoring and control of complex production systems submitted to these
constraints. They are based on interactions between intelligent agents operating at
product and process level in the distributed production system. We will try to define
the right coupling, adequate task assignments and the best fitted adjustment of
product and process parameters to perform the dynamic reconfiguration of the
production system.

2. Inverse solutioning approaches

2.1. Main concept

As a consequence of the aforementioned, and taking into account the actual
difficulties encountered in managing such distributed production system (DPS), a
new approach has been studied. The behaviour of a production system evolves from
its structure with knowledge, or functional mechanisms, embedded in the interactions
between resources (modelled by so-called "agents"), rather than as the direct result
of a predefined and complex given function; thus, the way to manage a production
system is totally different of what we usually consider in industry. As seen in Figure

150 Intelligent Agent-based Operations Management

1, we can compare the two functional approaches, based on the example of the
PABADIS model, which is detailed in section 5.

On the left hand side of Figure 1: we can observe a deterministic and
conventional organisation of the work; the knowledge /know-how and associated
processing are hierarchically structured in specific modules and layers. Here, we
notice enterprise resource planning (ERP), manufacturing execution system (MES),
supervisory control and data acquisition (SCADA), man-machine interface (MMI)
and programmable logic controllers (PLC's). The demand and/or customer orders
have a single entry point at the top of the graph and the production is organised in a
top-down way.

At the right hand side of Figure 1: there is a de-coupling between ERP and the
operational level including the same SCADA and PLC modules. The links between
the modules are suppressed since they are much more autonomous; each one is
communicating with each other. However, for practical purposes we can define a
neighbor local exchange. Here, the operating model is different; cooperation,
competition and/or collaborative works are the basic principles.

Figure 1. Basic approaches involved in production systems

If we now address some basic logic mechanisms, as required by the previous
approaches, we may consider the two situations (see Figure 2), where the
interactions between the different items play a very specific role. Again, as per a
logic point of view, the way of reasoning is quite different:

Intelligent Agents for Production Systems 151

- The conventional approach is based on static functions: it consists of analyzing
the complete system, to detail its main tasks (decomposition principle), to simplify
the process and to automate it with the help of computers, and to execute these
functions in parallel if possible to gain some performance. The chaining of the
functions is organised in a top-down way.

— Dynamic approach; autonomous and communicating multi-agents are
considered. This concept consists of generating global functions from interactions
existing in interconnected networks. Such a concept is totally different and can be
expressed in a bottom-up way. This is why a different graph has been designed.
Because, for example, auctions and negotiations between agents directly generate the
detailed scheduling, a scheduler is no more necessary. Also, in terms of resources
assignment, a production configurator as usually designed is no longer required,
except for presizing of the production system; moreover the intelligence in any
conventional approach is quite localised at process level. Now, with this extension
the intelligence can be distributed at product and process level or distributed at
process and logistic/interaction level.

Figure 2. Mechanisms involved in production systems management

2.2. What is the scheduling problem?: capacities optimisation or configuration/
reconfiguration ?

In the area of monitoring and management of complex and distributed production
systems, the specialists often address one problem: "How to perform a detailed
scheduling with limited capacities?". Within this context, we will focus our attention
and skills on the scheduling problem and we will develop complex solutions, which

152 Intelligent Agent-based Operations Management

will give obsolete results when it will become necessary to implement them. Another
reasoning way consists of focusing on the capacities: "if we are able to reconfigure
permanently the resources and to adapt them to the demand, there is no scheduling
problem!" Thus, we have decided to address this second problem since the
scheduling problem is in fact a configuration/reconfiguration problem.

Configuration and reconfiguration are now considered as a major improvement to
be implemented in the area of organisation and setting-up of a production system.
Some approaches have been proposed in the framework of plant automation based
on distributed systems (PABADIS). PABADIS is an European 1ST- 60016 project, it
is intended to implement innovative techniques in distributed manufacturing systems,
as with flexible manufacturing systems (FMS) (PABADIS, 2001). The approach
consists of dynamically assigning resources and organises production in order to
have the "best" flow of parts/products (physical flow).

This approach is interesting since it is aimed at focusing and finding dynamically
the best configuration, structure and environment to face up to the problems related
to distributed manufacturing, scheduling and production on demand. A well-known
technique used for that kind of problem solving is based on simulation. PABADIS is
still in progress and will include these above concepts, based on intelligent agents.

3. Design and development of the new approach

3.1. Problem assessment

Traditional production systems models are strongly centralised, which results in
large and complex software, difficult to upgrade and maintain. Often, a detailed
schedule is generated over a long time horizon. Also, planning, scheduling and
execution are carried out sequentially. Such systems are not able to adapt to
changing circumstances over time (such as machine breakdown, rush-orders etc.).
The model to be used today must be able to support a flexible, reactive and
economic manufacturing process. Indeed, in a facility, the flexibility is the result of
several readjustments and reassignments of manufacturing resources, which vary in
time. Thus, the corresponding production systems require adaptable and autonomous
control systems, which can support, in a dynamic way, a reconfiguration or a
readjustment of operational parameters.

Using multi-agents system (MAS) is a solution for the problems as expressed
above. Such systems aid working closer to reality while using mechanisms of
artificial life (co-operation, bidding, game theory, etc.); this gives more autonomy to
the agent (decentralisation of the decision system, etc). The objective of our works is
to design and develop such MAS, to define operating modes and adapted algorithms
(as defined in the previous section), finally to implement "intelligent agents" (Liu
and Zhong, 1999) to take up the challenges of the industrial world of tomorrow.

Intelligent Agents for Production Systems 153

3.2. Generalities on multi-agents system

An agent is a software entity that represents one or more (functional or physical)
components within a production system (such as a machine or customer order). An
agent is authorised to carry out local activities and to make plans for the components
that it represents. Agents have the ability to observe their environment and to
communicate with other agents in order to resolve conflicts and make agreements.
An agent should be seen as an autonomous intelligent controller/planner for a unit
within a dynamic system with the ability to coordinate its actions with those of other
agents. A system that consists of more than one agent is called a multi-agents system.

In contrast to traditional software systems, MAS are distributed, parallel and
autonomous. The basic approach behind MAS is to decompose a complex problem
into a number of (less complex) sub-problem. Each sub-problem falls under the
responsibility of an agent. Since sub-problems are interrelated, a co-ordination
mechanism is applied to ensure that the local decisions lead to a globally desirable
result. This approach leads to a modular and flexible software solution that is
capable of reacting to disturbances while keeping a view of longer-term goals.
According to agent characteristics required in the area under study, we have to
consider cognitive or reactive agents and, therefore, cognitive or reactive systems;
often, a reactive system includes a great number of agents of low granularity
(moreover low level) which have a protocol and a reduced communication language;
their capacities respond to the stimulus/action law.

Generally speaking a cognitive system is composed of a small number of
"intelligent" agents having a base of knowledge or experiments, including
understanding the whole of information and know-how necessary to the realisation
of its task; it will also cover the management of the interactions between the agents
and their environment (Ferber, 1999).

Such an agent can be considered as a "situated" agent. It is means that it is able,
starting from its own experiment, to determine what is significant for it while
interacting with the current situation. It does not require elaborated internal models
of its world to plan its actions, since the real world is a part of the agent knowledge.
From this point of view, the agent and its world are specified mutually ("its" and not
"the", because the world of an agent is the world of its experiment) (Drogoul and
Meyer, 1999).

3.3. Example of a distributed manufacturing management system

Here, we briefly address the design and the development of a prototype that is
able to integrate some of the above detailed concepts. This tool called the virtual
factory dynamics configuration system has been developed by the LGI2P to
anticipate and to solve some predefined problems in supply chain management. (See
GNOSIS project (GNOSIS-VF, 1998). In this tool, intelligence is distributed at

154 Intelligent Agent-based Operations Management

product and process level. Its implementation only concerns software tools for
improving the management and the monitoring of a DPS (see Figure 3).

This approach, based on agents, enables one to improve the configuration and
reconfiguration of a production system, and the product flow-accordingly, in
assigning the resources through self-organisation mechanisms.

Figure 3. Configuration of a virtual factory with VFDCS

3.3.1. Characteristics and specificity of VFDCS

The design and architecture of VFDCS (Liu and Massotte, 1999) will not be
described in this paper since the focus is brought on to upgrading VFDCS though the
implementation of "intelligent agents". The VFDCS model is an innovative
workbench, derived from HIVE (Minar et al., 1999) and JAFMAS (Deepika, 1997),
integrating several promising design techniques: supply chain management, pull
production control technology, internet-based e-commerce, auction based on
reasoning with rules and coordination based on contact net protocol.

The entities (components) of a virtual factory are usually working with pre-
qualified suppliers and do not rely on auctions to get the commodities or services
they need. So, at the same time, we adopt auction and coordination techniques.
Auction mechanism is a promising method to resolve distributed resource allocation
problems characterised by self-interested agents and scarce resources. Many
different types of auctions are in common use: English open-outcry auction to sell art
and other collectibles, Dutch auction to sell perishables, first-price sealed bid

Intelligent Agents for Production Systems 155

(FPSB) and Vickrey auction for procurement situations and continuous double
auctions (CADs) for trading securities and financial instruments (Friedman and Rust,
1993; McAfee and McMillan, 1987; Milgrom, 1987).

One of the most difficult problems an agent faces in dealing with negotiation
auction over complex plans, is the problem of evaluating bids. The agent must solve
both bid-allocation and temporal feasibility constraints, while attempting to minimise
cost and risk. Here, we have implemented a pair of buyer-seller agent that uses both
forward-chaining and backward-chaining algorithms, based on if-then rules, to
process the auction. It is key to find an appropriate tradeoff between systematic
optimisation and random exploratory behaviour. No individual agent has sufficient
competence, expertise, resources, or information to solve the entire problem in a
multi-agents universe (Jennings, 1995).

The contract net protocol is a negotiation protocol proposed by Smith (Smith,
1980). This protocol facilitates distributing subtasks among various agents. The
agent which wants to solve a problem broadcasts a request for bids, waits for an
answer for a certain length of time, and then awards a contract to the best offer(s)
according to its selection criteria. VFDCS can provide decision support, from simple
buying and selling of goods and services to complex multi-agents contract
negotiations. VFDCS is designed to negotiate contracts based on temporal, quantity,
price and precedence constraints, and includes facilities for dealing time-based
contingencies.

3.3.2. Features included within VFDCS

The VFDCS workbench has the following advantages:

- VFDCS is associated with high flexibility and scalability concerning the
configuration and organisation.

- VFDCS is easy to be maintained because of its modular scaleable architecture
and design patterns programming mechanism.

- Integration of electronic commerce and internet-based technology because of
implementing Java's connect remote service (RMI) and multi-threads application.

- VFDCS is suited for customer-oriented and market-driven new organisation
paradigm because of integrating "PULL" control technique just in time.

- VFDCS is easy to integrate existing software and hardware to resolve the
legacy problem because of a separate user-friendship interface package layer with
debugging capabilities.

Several aspects of our workbench warrant further investigation. Our current work
directions include:

- Implementation of a real VFDCS integrating e-commerce and web-based
internet standard in a real manufacturing factory.

- Development of process to simulate continuous manufacturing and trading.

156 Intelligent Agent-based Operations Management

Incorporation of more adaptive factory agents that are capable of modifying their
control policies during simulation based on evolving circumstances. Generally
speaking, this conducts to in-depth study the implementation of "intelligent agents".

4. Proposed hybrid architecture for this new approach

In this section we describe improvements under implementation in VFDCS for
PABADIS. We focus on the design and architecture of the so-called "intelligent
agents".

4.1. Main concepts at agent level

Information to be processed in a distributed dynamic environment such as supply
chain management is often heterogeneous (quantitative /qualitative); it requires some
co-operative, differentiated and complex data processing. Suitable agents become
more intelligent and require the implementation of hybrid technologies to integrate
enhanced capabilities. For that, a new distributed architecture is developed in our
study and will integrate several concepts (like case based reasoning, self organisation
algorithms, neuronal/ genetic classifiers), it is aimed at designing more evolutionary,
adaptive, flexible and reactive agents with the use of a very simple and more rapid
algorithms.

Indeed, the main objective of our architecture is to demonstrate the interests of
new paradigms and the efficiency of self-organisation mechanisms as well. These
agents will evolve overtime to ensure more autonomy and to cover more
functionality. Several schemes, and architectures, can be proposed to design an
intelligent agent (see Figure 4). Three different and independent cases have been
considered:

Case (C): Here, the agent is mainly a cognitive one and treats qualitative
information using mechanisms such as case based reasoning (CBR), knowledge base
system (KBS), game theory (GT), etc. with qualitative reasoning. Considering the
nature of knowledge to be processed and the time required to collect and formalise
the expertise relevant to the decision making process, a CBR seems to be more
suited to model the IADSS than a KBS. During the operational activity of the CBR,
different cases will be experienced and the "prototypes base" will be enriched and
validated progressively. Very quickly, genetic/neuronal classifiers tools (GC/NC on
top of the CBR) will be able to be correctly trained (Shaw and Whinston, 1989); our
past experience showed that learning by reinforcement is possible (reward/penalty
mode). Moreover we can include some negotiation strategies like game theory (GT)
for revolving problems of negotiation and communication between agents
(buyer/seller). These different concepts can be modelled by genetic/neuronal
classifiers (GC/NC).

Intelligent Agents for Production Systems 157

Case (A) and Case (B) address a reactive agent, specially built with some basic
artificial neural networks (ANN) or genetic algorithm / swarm algorithm (GA/
swarm) to model the functioning of a given entity (Bonabeau et al., 1999).
Generally, reactive agents treat quantitative information using mechanisms such as
stimulus-response, self-reinforcement, etc., with computational heuristics and
optimisation algorithms. So, depending on the problem to be solved, one of these
three architectures will be selected to set up the agent. As a result, this intelligent
agent will be more reactive and able to process hybrid information.

Figure 4. Logic structure of three kinds of intelligent agents decision support system
(IADSS)

4.2. Implementation approach of intelligent agents

In a MAS environment, different types of cognitive and reactive agents, as
described above, can be used separately or at the same time and many communicate
with each other. This depends both on the application and the problem to be solved.
In applications where problems seem uncomplicated such as travelling sales-man
problems or others, the use of reactive agents alone using a self-organisation
algorithm can solve the problem, quickly and easily. On the other hand, resolving
complex problems which imply some intelligence represented by knowledge about
the functioning of a particular application acquired during some time or existence of
constraints during the process between the different entities require the use of a
cognitive agent. In this case, for instance, the use of the two types of reactive and
cognitive agents at the same time seems to be useful and could represent a good
solution.

Such agents are differentiated by their identity and the task to be achieved; they
distribute tasks between them according to their capacity and the complexity of the
action to be carried out. For example, in a production system we can represent the

158 Intelligent Agent-based Operations Management

requests from the customers, and the product, by reactive agents; the resources may
be cognitive agents. Then reactive agents can communicate with cognitive agents
and other reactive agents for simple tasks (to accept / refuse) manufactured by one of
these resources or for exchanging information between them (see Figure 4). The
resources take in charge all problems related to communication with another one to
comply with the various constraints of manufacturing of the product and with the
generation of the number of reactive agent for the achievement of certain aims, and
then using reinforcement algorithms and classifier systems for learning (Shen et al.,
1998) and game theory or local rules (CBR, KBS) for strategy determination for
communication between the agents.

Figure 5 details the solution we are implementing in the European project called
PABADIS. The graph represents the overall architecture and functioning mode of
the MAS (e.g. VFDCS), used for reconfiguring and assigning tasks in the distributed
production system. Each product and/or resources is an agent. The relationships
between the agents are communication links devoted to messages and information
exchanges. They are already defined and implemented in VFDCS. The agents
included in this workbench are now simple ones. The more sophisticated ones to be
embedded are those described in this paper.

Figure 5. Dynamic approach based on interactions between reactive/cognitive
agents

Intelligent Agents for Production Systems 159

5. Industrial application: the PABADIS model

5.1. Main concepts

The aim of the PABADIS IST- 60016 project is to overcome the problems of
centralisation by distributing as many functions as possible within the plant
automation system at the operation level. Two principles are combined for achieving
this goal:

- decentralisation with agents,

- dynamic reconfiguration.

In the following, we will not describe the rationale behind the implementation of
the multi-agents system in PABADIS. We will only focus our attention on the
architecture of the kernel to be implemented in order to get agents working properly
together. More details can be found in (PABADIS, 2001), (Sauter and Massotte,
2001).

Several industrial partners are involved in this European project, which started at
the end of year 2000. Some parts of concepts and tools developed in this paper are
planned to be implemented in PABADIS in 2002.

5.1.1. Decentralisation with agents

Figure 6 shows how MES (manufacturing execution system) and SCADA
(supervisory control and data acquisition) are linked to the ERP (enterprise resource
planning) and the controls layers in the conventional and in the PABADIS model.
Decentralised and autonomous MES and SCADA functions will be realised by a
population of agents, the synchronisation of processes like allocation, routing and
scheduling being performed by means of communication acts between agents.

Figure 6. CIM pyramid of automation

160 Intelligent Agent-based Operations Management

5.1.2. Dynamic reconfiguration

Within the PABADIS terminology, the actual production plant is an abstract set
of so-called CMUs (cooperative manufacturing units) that are linked by a
communication network and that offer certain services and resources (Figure 7).
CMUs could be anything from a single tooling machine to a complete production
line, but also a simple computer offering special computational services. At any time
a new CMU may join or leave the community without any change for others,
according to a plug-and-participate mechanism.

Figure 7. Community of CMUs

5.2. Operations

The general operational scenario of the PABADIS plant is roughly as follows
(see Figure 8): The ERP system creates a production order with information about
the product to be made. This order is converted into a product agent, which contains
a technical description of the product with processing recipe data, current processing
state data, done processing data, further schedule data, processing-dependent
machine data and a task description.

The product agent then operates in the CMU community to get the product done.
It is a collaborative work: the product agents will be able to conduct auctions and
negotiations with the CMU's in order to find the best fit product-CMU. As we can
be seen, the conventional MES part of the process, which operates the distributed
production system, is replaced by a network of autonomous and communicating
agents which are able to organise the flow of products and services. Here, the
resources and the products as well are involved in the self-organisation mechanisms.
A similar reverse scheme will be used to collect data and send feed-back information
to the ERP function.

Intelligent Agents for Production Systems 161

Figure 8. Production process in PABADIS

5.3. Agents in PABADIS

Two types of agents are present in the PABADIS system:

A product agent (PA) is a mobile agent created by the agent source and based on
a production order issued from the centralised ERP system. Each product agent is a
piece of code consisting of an execution program (tasks calculation, negotiation
mechanism, safety, security, etc.) and the specific product data, operating
procedures, bill of materials, etc. It migrates in the network independently to solve
its task (this is, to "create" the product, and to add some value to it). The task for
each product agent may be drawn from several subtasks with all possible mutual
dependencies (time dependence, sequence, priority, etc.).

Figure 9. Structure of a CMU

A residential agent (RA) is a part of every CMU. The main function of the
immobile residential agent is to provide the connection between the plant network
(including other agents) and the particular resources offered by the CMU (such as a
PLC - programmable logic controller, CNC - computer numerical control, or an
automation controller of any kind). The residential agent acts as a gateway between
the agent community on one hand and a large variety of concrete production

162 Intelligent Agent-based Operations Management

facilities on the other. Figure 9 shows how a CMU is structured to host mobile and
residential agents.

This architecture which is based on multi-agents system was subject to the
development of several prototypes which have been applied to the improvement of
the demonstrator available at the LGI2P Research Center. This demonstrator is
representative of the real industrial application as stated in the PABADIS project.
The feasibility of our approach has been proved and we are going to test and
evaluate them deeply on a real production system. In our point of view,
implementation of these concepts must be associated with a methodology and
reorganisation of operating procedure; this work is in progress. This aspect is very
important since we implement advanced technology without considering their
organisational and social impact in the enterprise.

6. Conclusions

In this paper we have described a new approach devoted to the management and
control of distributed manufacturing systems, and based on self-configuration
mechanisms (VFDCS). To improve this approach we carried out some work in
designing and developing an hybrid architecture for implementing "intelligent
agents" as a smart solution for the reconfiguration problem raised in a supply chain
management. This architecture is composed of reactive and cognitive agents
modelled through self-organisation algorithms and classifier systems. This structure
is implemented in a workbench, called VFDCS, to improve its capabilities and
performance, and, to enhance the autonomy and the ability (intelligence) itself of the
agent. Development and tests are in progress to validate our concepts; the focus is
specifically put on:

- the optimum level of autonomy and connectivity in programmable graphs and
therefore the determination of the adequate dispatch of the tasks in multi-products/
multi-processes production systems,

- the control, cooperation and/or competition between agents,

- the role of some centralised control mechanisms to consolidate the overall
performance of the new MES.

Finally, we have to mention that fundamental changes have to be introduced into
our industry, into our culture and way of working to integrate these paradigms into
our management and decision making processes. Some of these concepts are being
introduced in the PABADIS project which is intended to cover such new functional
needs, and can be considered as a heart of a logistics composite modelling system.

Intelligent Agents for Production Systems 163

7. References

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From Natural to
artificial Systems. Oxford University Press.

Deepika, C. (1997). JAFMAS: A Java-based Agent Framework for Multiagent Systems
Development and Implementation. ECECS Department Thesis, University of Cincinnati,
Cincinnati, OH.

Drogoul, A. and Meyer, J. (1999). Intelligence artificielle située. Hermes Paris Science
Publications.

Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-Wesley Pub Co.

Flik, M. I. (1995). Optimization of Products Variants - Lean Standardization at a Radiator
Supplier. Internal Report, Behr Automotive.

Friedman, D. and Rust, J. (1993). The Double Auction Market: Institutions, Theories, and
Evidence. Addison-Wesley Publishing, Reading, MA.

GNOSIS-VF, (1998). Virtual Factory, http://www.cordis.lu/esprit/src/28448.htm
Jennings, N. R. (1995). Chapter 6: Coordination Techniques for Distributed AI, Foundations

of Distributed Artificial Intelligence. G.M.P.O'Hare and N. R. Jennings (Eds), John
Wiley & Sons, pages 187-210.

Lee, j. (1996). Overview of Manufacturing Strategy, Production Practices, Emerging
Technologies, and Education System in Japan. NSF/STA Study Report.

Liu, J. and Zhong, N. (1999). intelligent agent Technology: Systems, Methodologies, and
Tool, World Scientific Publishing.

Liu, Y. J. and Massotte, P. (1999). Self-adaptation and Reconfiguration of an Agent-Based
Production System: Virtual Factory. IAT'99: Asia Pacific Conference on intelligent agent
Technology, Honk-Hong, Chine.

Massotte, P. (1997a). Analysis and Approaches for the Management of Complex Production
Systems. The Planning and Scheduling of Production Systems, Edit by Artiba A. and
Elmaghraby S.E., Chapman & Hall.

Massotte, P. (1997b). Application of Self-Organization Principles to System Control. IF ACS
Conference, Grenoble, France.

McAfee, R. P. and McMillan, J. (1987). Auctions and bidding. Journal of Economic
Literature, 25: pages 699-738.

Milgrom, P. (1987). Auction theory. In Dewley, T. F., editor, Advances in Economic Theory:
Fifth World Congress, Cambridge University Press.

Minar, N., Gray, M., Roup, O., Krikorian, R. and Maes, P. (1999). Hive: Distributed Agents
for Networking Things, Proceedings of. ASA/MA '99.

PABADIS, (2001). Plant Automation BAsed on Distributed Systems,
http://www.pabadis.org/.

Sauter T., Massotte P., Enhancement of distributed production systems through the
Attachment of Agents to Fieldbus Networks, IEEE Int. Conf. on Emerging Technologies
and Factory Automation, Nice, France.

164 Intelligent Agent-based Operations Management

Shaw, M. and Whinston, A. (1989). learning and adaptation in DAI systems. Distributed
Artificial Intelligence, volume 2, pages 413-429, Pittman Publishing/Morgan Kauffmann
Publishers.

Shen, W., Maturana, F. and Norrie, D. (1998). Learning in Agent-based Manufacturing
Systems. AAAI Press, pp. 177-183.

Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers, C-29 (12), pages 1104-
1113.

Index

agent-based
manufacturing 129
scheduling

agile system 87 et seq
algorithm 93, 105

negotiation 97
framework 91
literature 90
negotiation model 93

agents based modelling, software
121

assembly 88
sequence, complex 88
simple 88

attribute layer 10
attributes 117

basic configuration problem 54
building

context, data exchange 73
product models 1 et seq

procedure 4

CAD tools, communication and 74
cell structure 34
central configuration problem 55
class and object layer 9
co-design process, distributed design

process and 120
communication, CAD tools and 74
complex assembly sequence 88
component

locations, layout with
absolute 62
relative 63

quantity 60
relative locations, layout with 63

concurrent engineering environment
new product development 109 et

seq
configuration

control
application 139
services 138

definition 51
problem

basic 54
central 55

product generic modelling for
requirement analysis,

modelling elements and
49 et seq

configurator 50, 51
presentation 51

constraint satisfaction problem (CSP)
50,53

approach 53
contingencies approach,

reconfiguration to 136
continuous variable, discrete and 60

numerical constraints 60
customised products 88
custom storage system 50

data exchange, building context 73
decision support system, help

interface 76
DeSAP

interface, e-OCEA environment

166 Intelligent Agent-based Operations Management

scheduling problems 27 et
seq

module, global view 28
design for manufacturing 148
digraph 88,89
discrete variable 60

continuous and
numerical constraints 60

distributed
artificial intelligence (DAI) 90
design process and

co-design process 120
manufacturing management 153

e-business 149
ecology, environment and 148
element of knowledge, modelling of

116
environment, ecology and 148
e-OCEA 28

environment, DeSAP interface
scheduling problems 27 et

seq

function block architecture 131
future production systems 148

generic 49 et seq, 52, 54
model

expressivity 52
testability 52

modelling
elements, product modelling

requirements and 54
product, configuration for

requirement analysis,
modelling elements
and 49 et seq

help interface, decision support
system 76

hierarchical bill-of-materials 65
holonic manufacturing systems 129
holons 130

IEC 61499-based model 127 et seq

real-time distributed control
systems, reconfiguration of 127
et seq

implementation approach, intelligent
agents of 157

intelligent agents
implementation approach 157
manufacturing systems (IMS) 129
production systems for 147 et seq

inverse solutioning approaches 149

knowledge integrated product 3

layer
attribute 10
class and object 9
method 10
structure 10
subject 9

layout 62
component locations

absolute 62
relative 63

line structure 34

manufacturing
agent-based 129
management, distributed 153
system, {m,q} 88
systems

holonic 129
intelligent (IMS) 129

method layer 10
mobile software agents 117
mobility 118
model

expressivity, generic 52
IEC 61499-based

real-time distributed control
systems model,
reconfiguration of 127 et
seq

negotiation, agent-based
scheduling 93

PABADIS 159
testability, generic 52

Index 167

modelling
element of knowledge 116
elements

generic, product modelling,
requirements and 54

requirement analysis and 49
et seq

language, virtual reality (VRML)
80

product generic, configuration for
requirement analysis,

modelling elements and
49 et seq

requirements, product
generic modelling elements

54
software agents based 121

models
building product 1 et seq

procedure 4
product related 3

{m,q} manufacturing system 88

negotiation
agent-based scheduling algorithm

97
model, agent-based scheduling 93

new product development
concurrent engineering

environment 109 et seq,
numerical constraints

discrete variable
continuous and 60

object
layer, class and 9
oriented

analysis (OOOA) 9
design 12

PABADIS model 159
"plug-and-produce" capabilities 140
problem assessment 152
process

analysis 6

distributed design and co-design
120

supply chain management 148
product

analysis 7
development, new

concurrent engineering
environment 109 et seq

generic modelling, configuration
for
requirement analysis, modelling

elements and 49 et seq
knowledge integrated 3
master 8
modelling requirements

generic modelling elements
54

models
building 1 et seq
related 3

production
systems

future 148
intelligent agents for 147 et

seq
management 71 et seq

products, producing customised 88
programmable logic controller (PLC)

131
prototype implementation 137

qualities 17

real-time distributed control
systems, reconfiguration of 134

IEC 61499-based model 127
et seq

reconfiguration
approach

contingencies 136
soft-wiring 137

real-time distributed control
systems of 134

IEC 61499-based model 127
et seq

168 Intelligent Agent-based Operations Management

remote function block (FB) manager
interface 140

requirement analysis, modelling
elements and 49 et seq

product generic modelling,
configuration for 49 et seq

resource centres 116

scheduling
agent-based

agile system 87 et seq
algorithm 93, 105

negotiation 97
framework 91
literature 90
negotiation model 93

problems
classification of 39
DeSAP interface

e-OCEA environment
27

identification of 37
security manager 30
simple assembly 88
software agents

based modelling 121
mobile 117

soft-wiring approach, reconfiguration
to 137

specification process 2
structure layer 10
subject layer 9
supply chain management, process

and 148
systemion 119

VFDCS 154
virtual reality modelling language

(VRML) 80

