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Preface

The work described in this dissertation was performed under the supervision of
Prof. Dr. Christiane Schmullius and Dr. Sören Hese at the Institute of Geography,
Department of Remote Sensing at the University of Jena in Germany (Friedrich-
Schiller-Universität Jena) from 2007 to 2011.

This thesis deals spatially and regionally with the natural boundaries of the
Euphrates River Basin (ERB) in Syria. Scientifically, the research covers
the application of remote sensing science (optical remote sensing: LANDSAT-
MSS, TM, and ETM? ; and TERRA: ASTER); and methodologically, in Land
Use/Land Cover (LULC) classification and mapping, automatically and/or
semi-automatically; in LULC-change detection; and finally in the mapping of
historical irrigation and agricultural projects for the extraction of differing crop
types and the estimation of their areas. With regard to time, the work is based on
the years 1975, 1987, 2005, and 2007.

The remote sensing-based available data used are: LANDSAT-MSS data (eight
scenes) acquired in June 1975; LANDSAT-TM data (16 scenes) acquired in May
1987, and in August 1987 (eight scenes for the extraction of the winter crops and
eight scenes for extraction of the summer crops); LANDSAT-TM data (16 scenes)
acquired in May 2007 and in August 2007 (eight scenes for extraction of the winter
crops and eight scenes for extraction of the summer crops); and finally TERRA-
ASTER data acquired in May and August 2005 (for extraction of the winter and
summer crops). These have been combined with LANDSAT-ETM? data
(14 scenes) for two reasons; first to obtain complete spatial coverage of the study
area, and second, to increase the spectral resolution of the ASTER-data.
The LANDSAT-data was received from NASA-GLCF, while the TERRA-
ASTER-data was obtained from the General Organization of Remote Sensing
(GORS) in Syria.

Initially, preprocessing of the satellite data (geometric- and radiometric-
processing, image enhancement, best bands composite selection, transformation,
mosaicing and finally subsetting) was carried out. Then, the Land Use/Land Cover
Classification System (LCCS) of the Food and Agriculture Organization (FAO)
was chosen. The following steps were followed in LULC-classification and change
detection mapping: visual interpretation in addition to digital image processing
techniques; pixel-based classification methods; unsupervised classification:
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ISODATA-method; and supervised classification and multistage supervised
approaches using the algorithms: Maximum Likelihood Classifier (MLC), Neural
Network classifier (NN), and Support Vector Machines (SVM). These were trialed
on a test area to determine the optimized classification approach/algorithm
for application on the whole study area (ERB) based on the available imagery.
Pre- and post-classification change detection methods (comparison approaches)
were used to detect changes in land use/land cover-classes (for the years 1975,
1987, and 2007) in the study area.

Classification accuracy has been improved by adopting historical statistical and
ancillary data for the year 1975. For the 1987 coverages, the ground truth points
from the International Center for Agriculture Research in Dry Areas (ICARDA) in
Aleppo were adopted. For the other coverage years, 2005 and 2007, ground truth
points were used that had been collected through two campaigns in Syria and
through the GORS project in the Euphrates River Basin in Syria, which was
completed between 2005 and 2010. Therefore, the accuracy of the results pre-
sented in this study is only as true as the quality and accuracy of the data used.

The remote sensing methods show a high potential in mapping historical and
present land use/land cover classes and its changes over time. Significant results
are also possible for agricultural crop classification in relatively large regional
areas (the ERB in Syria is almost 50,335 km2).

LULC-maps have been obtained automatically depending upon the satellite
remotely sensed imagery and digital image processing available. Interpretation for
the years 1975, 1987, 2005 and 2007 has been achieved by using digital image
interpretation software (ERDAS v. 9.1, ENVI v. 4.3 and later 4.6, and ArcGIS 9.3).

The results of the different applied classification methods and algorithms were
obtained keeping in mind the accuracies dependent on historical, statistical,
ancillary, and ground truth data using the kappa coefficient and error matrix.
Based on these accuracy measurements, the most successful approaches were the
multistage classification and algorithm (Maximum Likelihood-MLC).

Change trends in the study area and period was characterized by land-intensive
agricultural expansion. The rapid, more labor- and capital-intensive growth in the
agricultural sector was enabled by the introduction of fertilizer, improved access to
rural roads and markets, and the expansion of the government irrigation projects.
Results from land cover change analysis, carried out from the post-classification
approach, show that the cultivated land increased from 1,123,268 ha in 1975 to
1,783,286 ha in 2007 on account of a decrease in the natural vegetation area and an
increase in bare areas. This approach shows obvious and detailed results. Pre-
classification approach results were generalized but very effective in relation to the
estimation of the occurred change on the cultivated areas, especially when these
areas were vegetated and not fallow. The total change in the whole study area
(5,062,082 ha, 100 %) between 1975 and 2007 was about 600,967 ha (11.93 %), in
which 238,646 ha (4.74 %) was changed from natural vegetated areas to bare areas
and 362,321 ha (7.19 %) changed from bare areas to cultivated areas (especially to
irrigated agriculture). Areas recording no change equaled about 4,461,115 ha
(88.62 %).
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Irrigated areas increased 148 % in the past 32 years from 249,681 ha in 1975 to
596,612 ha in 2007.

These statistics were taken from the maps of the general LULC- classes based
on LANDSAT-MSS-data acquired in June 1975, LANDSAT-TM-data in
May 1987 and 2007, and ASTER-data, May 2005. The products of the post-
classification change detection method were also used. The data mentioned above
were also used to map the historical development of the irrigation projects in the
ERB. Winter crops maps (especially wheat, barley, and sugar beet) were mapped
based on LANDSAT-TM-data acquired in May 1987 and 2007, in addition to the
ASTER data acquired in May 2005. The summer crops (especially cotton, maize,
and watermelon) were mapped based on LANDSAT-TM-data from August 1987
and 2007, in addition to ASTER data from August 2005.
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Chapter 1
Introduction

1.1 Problem Statement and Research Questions

Syria, with a total area of 185,180,000 km2, has arable land estimated at 6.22
million hectares, or 33 % of the total area of the country. The cultivated land is
estimated at 5.66 million ha, which is 94.07 % of the cultivable area. Of this area,
4.27 million ha consists of annual crops and 0.67 million ha consists of permanent
crops. About 62.41 % of the cultivated area is located in the three northern
governorates (Aleppo, Arraqqa and Al-Hasakah), representing only 33 % of the
total area of the country. The area of steppe and pastures is about 8.23 million ha,
or 44 %; non arable land about 3.68 million ha, or 20 %; and forests quasi 0.57
million ha, or 3 % of the total area of Syria (Central Bureau of Statistics: CBS
2009). The total populations were 23.02 million in 2009 (as registered by the
Department of Civil Status), while the number of permanent residents, excluding
those who live outside Syria, were 19.88 million. Some 46.48 % of the population
lives in rural areas. Actual population growth was 2.5 % for the period 2000–2005.
Agriculture employs around 16.79 % of the total labor force, accounting for nearly
20 % of Gross Domestic Product (GDP), compared to 39 % in 1963. In 2004, the
average population density was about 96 inhabitants/km2 (CBS 2009). Almost
55 % of Syria is dry steppe or quasi-desert, suitable only for grazing sheep and
goats. Rain-based farming of cereals, food and feed legumes is the backbone of
agriculture in Syria. Irrigated land makes up about 23.91 % of cultivated land,
which is about 7 % of the total area of the country (Kangarani 2006; CBS 2008).

Agriculture has traditionally been the foundation of the economy (46.48 % of the
population was described as rural in 2009, with 16.79 % of the population employed
in the agricultural sector and 20 % of Syria’s GDP attributed to this industry). The
agricultural sector has been influenced over the past 40 years by several factors.
First, a growing population (4.565 million in 1960, compared to 19.88 million in
2009) with a slight increase in acreage. Secondly, the natural climactic conditions in
Syria are not conducive to agricultural stability, due to heavy precipitation. Since the
output of agriculture (both plant and animal) is heavily dependent on precipitation
(only about 23.91 % of the cropped area is irrigated), the large variation in the
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quantities and timing of precipitation can be a reason for a large changes in areas
planted, yields and production. Thirdly, over 90 % of the total Syrian territory
(arable lands) needs sustainable irrigation, even in areas which receive large
quantities of precipitation, since most of the rain falls during the winter rather than in
the growing season. In addition, the discharge periods of Syria’s rivers in March and
May are late for winter crops and early for summer crops. The stream of the rivers
varies significantly every year. Years of low stream make irrigation and agriculture
difficult. These factors have led to a focus on large scale irrigation projects such as
dam construction as a basis for economic and social development. The irrigable
arable lands estimated in the ERB are 1,040,000 ha (ACSAD 2001). Syria has its
own plans for irrigation development within the Euphrates basin. These involve
using water from the Euphrates to irrigate six major regions: the Maskana-Aleppo-
Basin (155,000 ha), the Arrasafa-Basin (25,000 ha), the Al-Balikh-Basin
(185,000 ha), the Euphrates-Floodplain (170,000 ha), the Al-Mayadin-Plain
(40,000 ha), and the lower Al-Khabour-Basin (70,000 ha) (see Fig. 3.2). This is a
total of 645,000 ha (Beaumont 1996). Until now, only ca. 225,000 ha has been
irrigated. Some 63 % of the irrigated areas in Syria are located in the Euphrates
River Basin, according to the World Bank (CBS 2009).

Syria has limited water resources. There are 16 main rivers and tributaries in the
country, of which six are main international rivers. The most important is the
Euphrates, which is Syria’s largest river, originating in Turkey and flowing to Iraq.
Its total length is 2,880 km, of which 610 km are in Syria. The Euphrates River
Basin has a surface area of 444,000 km2 (17 %, or 75,480 km2 in Syria) and its
actual annual volume is 35.9 million cubic kilometers (ACSAD 2001; Kangarani
2006). Total actual renewable water resources in Syria are estimated at 16.797
million ck/year. The natural average surface runoff to the Syrian Arab Republic
from international rivers is estimated at 28.515 million ck/year. The actual external
renewable surface water resources are at 17.335 million ck/year, which includes
15.750 million ck of water entering the Euphrates, as unilaterally proposed by
Turkey. The Euphrates River provides more than 80 % of the total Syrian water
resource (Kangarani 2006; FAO 2009) and is the country’s biggest source of irri-
gation water. Early in the 1960s, Syria, due to the need to expand the agricultural
areas and to reduce the rain fed based agriculture areas, and the need for electricity,
started utilizing the Euphrates water in irrigation and hydropower, with construc-
tion beginning on the Attabqa Dam in 1973 (it was completed in 1978) (FAO 2009).

Most regional crop estimate frameworks in Syria are based on knowledge from
local experts (e.g., extension officers, farmers, grain traders etc.). These frame-
works have developed depending heavily on the expertise of the various officials.
Estimates were often based on historical regional, state and national level statis-
tics, which were, and still are, collated by the Central Bureau of Statistics (CBS)
via an agricultural census/survey at the province-/Muhafazah (statistical local area)
scale. Lack of detailed province scale information further emphasizes the need for
alternative accurate and objective crop area estimates to assist agro-industry
decision-making at the regional scale.
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Earth Remote Sensing can be defined as the detection, measurement and
analysis of electromagnetic energy reflected, emitted or diffracted by an Earth
surface feature without being in physical contact with it (Lillesand et al. 2008).
This broad definition includes aerial imaging in the ultraviolet, visible and infrared
(near, mid and far) reflective part of the spectrum, as well as thermal imaging and
active technologies like radar, and moreover, geo-electric and geo-magnetic
measurements. The use of remote sensing is essential in recording a variety of
information about the Earth’s surface and the atmosphere. This form of data
gathering is an important tool in numerous sciences such as meteorology, envi-
ronmental research and cartography. To make full use of the information potential
of remote sensing, data must be processed, interpreted and evaluated
systematically.

The used techniques for interpretation of remotely sensed data are based on
many compatible disciplines including: remote sensing; pattern recognition; arti-
ficial intelligence; computer vision; image processing; and statistical analysis. The
progress in automated analysis of remotely sensed data is optimistic by the
growing volumes of data, the great developments in computer science (software
and hardware) that processes these data, as well as the high cost and effort
involved in ground surveying. The new generation of remote sensing sensors
provides superior spatial and spectral resolution data, leading to the use of
remotely sensed products and further underlining the need for more automated and
simplified forms of processing, interpretation, and analysis. Earth Observation
Remote Sensing has led to the development of human perspectives and increased
greatly our understanding of the planet (Steffen and Tyson 2001). Beginning with
data from the successful CORONA missions in 1960 and the start of the
LANDSAT-program in the early 1970s, remotely sensed data are now globally
available and deliver an exceptional amount of information about the Earth surface
and the biosphere, thereby offering an enormous potential of information for
monitoring (Campbell 2002; Jensen 2007).

A mainly central application of remote sensing is the production of LULC-
maps from satellite imagery. Compared to more conventional mapping approaches
such as terrestrial survey and basic aerial photo interpretation, LULC-mapping
using remote sensing imagery has the competitive advantages of low cost, repet-
itive large area coverage. Earth Observation Systems (EOS) have the potential to
offer spatially-distributed and multi-temporal information on LULC and its envi-
ronmental state over extended areas. Furthermore, satellite systems offer near-real
time information, which is particularly important for natural hazards and disaster
management, as one example. Overall the conduction of LULC-information from
remote sensing imagery is a significant application, concerning the support of
multilateral environmental agreements, decision-making and monitoring systems.
Its future use promises to be rewarding, judging by recent and rapid developments
in sensor technology. Mainly remarkable in this view aspect is the superior spatial
and spectral resolution of the imagery captured by new satellite sensors. As well as
existing sensors such as LANDSAT-TM and SPOT-HRV, a number of new remote
sensing sensors with up to 1 m spatial resolution are already in operation.
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The quality of the agricultural information systems in Syria and the cropped
areas estimate range from timely and reliable to virtually non-existent. Estimates
are based on past trends (e.g., ground survey or census), and are sometimes
adjusted by subjective judgment, rather than on objective information. There exists
an established need for the nations of the world to better manage the planet’s
agricultural production, with improved seasonal information on crop prospects for
important producing regions. This need, coupled with the state of technical
development and the conceptual processing of remote sensing, has brought into
focus the possibility of applying remote sensing and related technology, to the task
of developing a technical concept for agricultural monitoring (Erb 1980). The
reliance on remote sensing techniques and using its data in Earth Observing
Studies has many important advantages for these studies in comparison to other
old and classical approaches. These remotely sensed data are objective, well-
timed, and recurrent and thus they could be able to present results (e.g., classifi-
cation results) with a higher accuracy. During the last four decades, satellite-
obtained information in the agriculture sector, using low spatial resolution images
to high spatial resolution images, was helpful in the decision-making processes of
governments. Agricultural production is highly dynamic and depends on compli-
cated interactions of prices, weather, soils and technology all over the world. This
production has an influence on the global food market. For the purposes of agri-
cultural studies, there is the need for accurate data at a specific time. Here, because
the meaningful forces (e.g., economic, food, policy and environmental impacts) of
major strategic crops, it is significant to know the local distribution and the acreage
of these types of crops. For these reasons, remote sensing, either alone or in
combination with ground surveys (important for training samples gathering,
classification use and ground truth points used for accuracing the classification
results), has been used in crop acreage assessment (Erb 1980; Allen 1990;
Wardlow and Stephen 2008).

The use of remote sensing data and its applications for distinguishing between
types of agricultural crop and interior crop characteristics was widely researched
during the last four decades (Cloutis et al. 1996; Blaes et al. 2005; Ozdogan 2010).
The well improved tendencies involving particular types of crop, maturity, levels
of the nutrient, and their reflectance values within the spectral bands and in cor-
relation to the vegetation indices (VIs), are becoming more accurate and are
helpful when the availability of ground truth data is limited (Senay et al. 2000).

Techniques of satellite remote sensing have a fundamental role in irrigation
management. Some applications of satellite remote sensing techniques for irri-
gation management are: crop acreage; crop condition; crop yield; and performance
of irrigation canal system. These techniques were applied effectively in monitoring
irrigated lands in many areas around the world under a variety of climatic con-
ditions. It offers a synoptic and a suitable temporal coverage of agricultural lands
in several spectral regions. Its archived data offers comparison of imagery among
dates, and yielding change over time. Up to now, there are many studies that have
used remotely sensed imagery, mainly at high spatial resolutions such as
LANDSAT, to observe and classify irrigated agriculture. The early studies focused
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on determining the ability of remotely sensed data to classify, map and update
irrigated land acreage. This was mainly used in the US and India (Draeger 1976;
Rundquist et al. 1989). Some new studies have improved and tested new classi-
fication methods particularly appropriated for mapping irrigated lands (Eckhardt
et al. 1990; Pax-Lenney et al. 1996; Abuzar et al. 2001; Dheeravath et al. 2010).

To monitor the changes in our surrounding Earth environment and to manage
the natural resources of the Earth, researchers have presented many models and
strategies, especially during the last few decades. The major element in structuring
these models is how LULC-features change over the time dimension. Land use and
land cover change has become a central component in current strategies for
managing natural resources and monitoring environmental changes. Remote
sensing satellite images have proven their ability in change detection studies.
So-called Change Detection Methods have been applied to multi-temporal images,
in order that variations and changes in the state (especially spectral) and spatial
distribution of features and phenomena can be recognized, mapped and interpreted
(Singh 1989; Coppin et al. 2004). This method includes procedures, which can
identify and evaluate changes without past or present detailed knowledge of the
land surface (Rogan et al. 2002). This information should offer land managers a
better understanding of relations and interactions between the anthropogenic and
natural phenomena. This should be able to offer an efficient distribution and
management of available natural resources. The deep understanding and consid-
eration of all other issues on the reflected EMR-signal, within and between multi
temporal remotely sensed data, will offer the basis for successful change detection
studies (Lu et al. 2004).

The research problem is that Syria, in general, and the Euphrates River Basin in
particular, like other developing countries, rely very heavily on traditional statis-
tical methods to monitor and study changes in the natural cover and land use over
time. This is in order to obtain and compare statistical data and figures, and allows
these data to act as a basis and reference to the decision makers in the development
of national plans, including agricultural policy. Based on this collected data, with
regard to the agriculture sector for example, decisions must be made on the
abolition of creative projects, the development of new irrigation schemes, asset-
sufficiency, and whether food should be imported or if local production covers the
needs of the population. Many other procedures and policies rely on the accuracy
of statistical information and data for their success. The statistical methods used in
Syria give unreliable results, because of their complete dependence on the human
element. There is a need for the application of other methods that produce more
accurate data, and which may be less expensive and require less effort. The
inability to represent the distribution and prevalence of various agricultural crops
spatially increases the size of the problem and is a negative factor in statistical data
collection in Syria.

One challenge for researchers lies in the need to find scientific tools and
methods with a suitable methodology, which can be applied to the study area.
Remote sensing can contribute a greater role to the understanding of this problem
by providing accurate mapping data about land uses, including crop utilization
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over multiple time periods. Remote sensing also results in a realistic depiction of
land use, by providing a spatial dimension.

Many kinds of data supply, especially spatial data on the dynamics of LULC,
are poor and thus insufficient. Nevertheless, extended knowledge on the state and
changes of LULC is needed in order to support the implementation of sustainable
strategies of regional development. Spatial information is the basis for various
planning tasks. This information could be obtained by application of the remote
sensing techniques.

This monograph discusses four basic themes in the study area: the mapping of
land use and natural cover; development mapping of irrigated areas; the mapping
of the distribution of irrigated agricultural crops, especially strategic crops; and
mapping, monitoring and study of the changes in land use and natural landscape
during the last 30 years. The questions this research poses and answers are:

Which automatic classification technique or approach is the best for the study
area?

How can land use/land cover be mapped using different data from remote
sensing instruments in arid and semi-arid regions?

How can remote sensing be applied to the mapping and monitoring of the
spatial expand in the irrigated projects constructed in the Euphrates River Basin in
Syria?

How can remote sensing be applied to the mapping of irrigated agricultural
crops in arid and semi-arid regions?

Can mapping and monitoring aid understanding of land use/land cover changes
over time by using the remote sensing concept in arid and semi-arid regions?

1.2 Significance of the Study

The importance of this research stems from the location of the study, the Euphrates
River Basin. This basin is one of the most important areas and territories in Syria,
containing the important elements of life: stability, food and water. The basin
contains more than 80 % of the total water resources of the country. It is the food
basket of Syria, and is made up of three provinces: Aleppo, Arraqqa and Deir
Azzour. These agricultural provinces contain 34 % of the total population of Syria,
38.4 % of the total area of Syria and 37.4 % of the total arable land. Some 40.2 %
of the country’s total irrigated areas are found in these three provinces and almost
half of the population that live there work in the agriculture sector. The equivalent
of 37.67 % of the total acreage is planted with wheat, 51.27 % of the area in
barley, 92.50 % in yellow corn (maize), 58.79 % cotton, 49.63 % sugar beet and
49.92 % watermelon.
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1.3 Research Objectives

The major component in the development of LCLU-maps is satellite imagery. The
objective of this work is the use of high resolution remote sensing data (LAND-
SAT: MSS, TM and ETM+; TERRA: ASTER) for the mapping of land use/land
cover, land use/land cover change, and irrigated agricultural crops. The research
objectives for this study are:

– Understanding the spatial and temporal distribution of the interested study area
surface features;

– Determination of the major dominant LULC in the area using LANDSAT: MSS,
TM and ETM+-, and TERRA: ASTER satellite imagery from 1975, 1987,
2005 and 2007;

– The temporal development mapping of irrigated areas;
– The creation of one classification method to provide a sufficiently accurate

discrimination of the main irrigated crops types in the study area; and
– To determine and analyze the dynamics of change of LULC-classes (trend,

nature, rate, location and magnitude of land use land cover change).

1.4 Research Hypotheses

The rural environments have unique spectral characteristics and the application of
remote sensing provides a unique opportunity to study these requirements. The
process of integration between remote sensing data (in the case studies: LANDSAT
and ASTER), and developments in Computer Science (hardware and software) and
mathematics (algorithms) allows for the mapping of the historical and current land
use and natural land cover, thus ensuring access to the true spatial dimension of
each type of land use. These technologies also allow the study and analysis of the
changes in land use and natural cover over time, and the comparison of the current
status of the region with how it was 30 years ago.

1.5 Organization of the Thesis

This study is organized into seven chapters including this Introductory Chapter,
which provides a statement of intent and sets out research questions, study
objectives and study hypotheses. Chapter 2 covers the necessary basics for
understanding remote sensing in accordance to the current state of the art appli-
cations in use in Syria. Here, the classification process and various classification
algorithms used, including unsupervised and supervised, parametric and
non-parametric, pixel and object classification techniques, are discussed in detail
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in addition to the application of remote sensing in land use/land cover classifi-
cation. This Chap. 2 also reviews the literature on the current state of knowledge
on regional scale crop area estimate approaches. This includes crop area estimates
using remotely sensed data, the importance of temporal and spatial resolution, and
the ability of satellite imagery to discriminate among crops.

The Chap. 3 describes the study area of the Euphrates River Basin, Syria. In
this chapter the location, irrigation projects, climate, morphology, soil, hydrology,
land use/land cover and human impacts are discussed. Chapter 4 describes the
common resources that were available for this study, including satellite data, maps,
field reference data, statistics and another ancillary data. Chapter 5 discusses the
pre-processing techniques applied to the satellite images in order to obtain data
with low calibration errors as a prerequisite for interpretation and comparison.
Emphasis was placed on the geometric and radiometric accuracy of the processed
data. In addition, research methodology, image processing, image classification
and accuracy assessment are outlined in this chapter. In Chap. 6, results, analysis
and thematic interpretations are discussed. The overall summary, general con-
clusions and recommendations of the research study are provided in Chap. 7.
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Chapter 2
Theoretical Background and State
of the Art

This chapter provides a short overview of the principles of remote sensing outlines
current studies focused on the Euphrates River Basin (ERB) and presents a survey
of the literature available on the topics that the thesis covers. Within the confines
of this study, remote sensing is defined as the measurement of emitted or reflected
electromagnetic radiation, or spectral behaviors, from a target object by a multi-
spectral satellite sensor. This thesis contains four main sections: land use/land
cover classification, the mapping of irrigated areas, irrigated agriculture mapping
(especially crops classification), and land use/land cover change detection map-
ping. A great number of papers have been published on the above four topics. In
this section a small range is given, based on significance and likeness to this thesis,
with the goal of providing no wide-ranging survey, but of giving an experience of
the techniques, applications and performances found in the literature.

2.1 Remote Sensing Concept

For purposes of this text, discussion has been limited to Earth observation from
space. ‘‘Remote sensing is the science and art of obtaining information about an
object, area or phenomenon through the analysis of data acquired by a device that
is not in contact with the object, area or phenomenon under investigation. Using
various sensors, we remotely collect data that may be analyzed to obtain infor-
mation about the objects, areas or phenomena being investigated. The remotely
collected data can be of many forms, including variations in force distributions, or
electromagnetic energy distributions’’ (Lillesand et al. 2008). Figure 2.1 illustrates
the generalized processes and elements involved in the electromagnetic remote
sensing of Earth resources.

Key to the consideration of remotely sensed imagery is the coverage, resolution
and density of its spectral, spatial and temporal characteristics. Spectral coverage
describes which part of the EMS (Fig. 2.2) is being used (e.g., visible, infra-red,
thermal, etc.). Spectral resolution indicates to the spectral bandwidths in which the
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sensor collects information. Spectral density indicates to the number of spectral
bands in an exacting part of the EMS (e.g., the LANDSAT-MSS has only four bands,
while the TERRA-ASTER has 14 bands, etc.). Spatial coverage is the area enclosed
by the image, while spatial resolution indicates to the smallest pixel or picture
element recorded. Temporal coverage is the acquiring period over which the data is
obtainable (e.g., LANDSAT-Sensors have a temporal coverage of 41 years). Tem-
poral resolution relates to the time that the data is obtainable over. It is generally low
by most remote sensing systems. Temporal density refers to the repeat properties of
the satellite. A good repeating in gathering the data would, for some applications,
offer more availability of cloud free data (McVicar and Jupp 1998). Radiometric
resolution indicates to the active range or number of potential data file values in each
spectral band (the number of bits into which the recorded energy/data is divided).
For example, the total intensity of the energy for 8-bit data is measured from 0 to the
maximum amount of 256 brightness values. Where 0 stands for no energy return,
255 is the maximum return of each pixel (ERDAS 1999).

A multispectral sensor (e.g., MSS) acquires multiple images of the same target
Earth surface feature (e.g., water, soil, etc.) at different wavelengths (spectral
bands). Each band measures single spectral characteristics about the target (e.g.,
the fourth near infra-red band of MSS is responsible for detection and recoding the
spectral response of the natural vegetation). A spectral band is a data set recorded
by the sensor with information from separate parts of the electromagnetic spec-
trum. One foundation of remote sensing is that LULC-features have different
spectral properties and responses (McVicar and Jupp 1998). Analysts generate
spectral signatures based upon the detected electromagnetic energy’s measurement
and place in the electromagnetic spectrum. A spectral signature contains statistics
that define the spectral characteristic of a target feature or training samples. Image

Fig. 2.1 Electromagnetic remote sensing of Earth resources (Source modified from Lillesand
et al. 2008)
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interpreters detect the value of these statistics by quantitatively comparing the
relation between studied class signatures and the used spectral bands. Spectral
signatures are made more sophisticated by superior ground-truth points/measure-
ments and accuracy assessment analysis. By utilizing the sophisticated spectral
signatures in multispectral classification and thematic mapping, the interpreter
generates new data for analysis (ERDAS 1999). Figure 2.3 shows idealized
spectral reflectance plots for two types of vegetation, soils and water types,
respectively.

2.2 Remote Sensing Application in Syria

The application of remote sensing in Syria is similar to the situation which exists
in other developing countries. Remote sensing technology has been in place for
more than two decades but has lacked the expected effectiveness of such tech-
nology as used in the countries of the developed world. The General Organization
for Remote Sensing (GORS) was established by the Syrian Arab Republic (SAR)
in 1986 and is today the most important and highest scientific body in the country
competent to conduct remote sensing. It carries out many scientific projects and
studies based on the application of remote sensing in Syria, and has utilized these
skills even outside the country’s borders (e.g., in Sudan). All of these studies have
been addressed to the government’s institutions and ministries, and thus the basics
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Fig. 2.2 The primary spectral regions of the electromagnetic spectrum that are of interest in
Earth remote sensing applications (Source modified from Tso and Mather 2009)
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and the details of remote sensing techniques has remained almost entirely within
the confines of GORS and the researchers who work within this organization.

Plus GORS, there are two other scientific authorities who have published
studies based on the use of remote sensing: the Arab Centre for the Studies of Arid
Zones and Dry Lands (ACSAD) and the International Centre for Agriculture
Research in Dry Areas (ICARDA). Unfortunately, these have refused to cooperate
with university and graduate students, requiring several levels of approvals before
any research is distributed for academic purposes. The other related international
institutions in Syria are the Food and Agriculture Organization (FAO) and the
United Nations Development Program (UNDP), which work in co-operation with
national institutions mentioned above.

A vital component of the research required for this thesis was a project
undertaken by GORS in the provinces of Arraqqa, Deir Azzour and Al-Hasakah.
‘‘The Survey of Natural Resources in the Eastern Regions of Syria in Cooperation
with the Ministry of Agriculture and Agrarian Reform’’ was initiated in 2004 and
was undertaken over a period of five years. Data was remotely collected from
ASTER, IRES, SPOT and an Algerian satellite. The project included:

• A tour of the provinces in question to choose the appropriate areas from which
to take spectrometry readings on a variety of crops for the purpose of spectral
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Fig. 2.3 Idealized reflectance plots for different land cover types (Source modified from
Harrison and Jupp 1989)
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profile/characterization, during which different stages of growth were to be
distinguished spectrally using satellite images;

• Field testing of the devices to be used in the study (Spectrometer/FieldSpecPro
and GPSs);

• The characterization of agricultural crops and land use during May 2005,
consistent with the presence of winter crops, and during August 2005, consistent
with the presence of summer crops. Some 1,050 sites were identified for the
purposes of the study;

• Spectrometry readings on strategic crops (wheat, barley, lentils, sugar beet,
cotton, watermelon and maize). These readings were conducted on average once
every two weeks through the stages of crop growth;

• Input of field survey data and spectrometry readings to databases through
electronic forms prepared for this purpose; and

• The creation of spectral signatures for each crop under study. Analysis of these
spectral signatures led to the identification of the optimal time to request satellite
images to be used in the estimation of the areas of winter and summer crops.

The project’s objectives were: a study and cost estimate on crop area and yield
for various strategic crops in Syria compared with traditional methods, and the
production of maps of winter and summer crops, allowing the calculation of the
level of agriculture in the regions. Many other studies focused on the ERB have
proved essential during the development of this thesis.

Other studies were based on remotely sensed data, such (Beaumont 1996; Hi-
rata et al. 2001; Zaitchik et al. 2002; De Pauw et al. 2004; De Pauw 2005; Celis
et al. 2007a, b; Udelhoven and Hill 2009).

2.3 Land Use-Land Cover Mapping

2.3.1 The Classification Process

In general, classification of LULC-features using remote sensing data consists of
numerous phases (Robinove 1981; Mather 2004; Schowengerdt 2007), as shown in
Fig. 2.4:

• Identifying: the number and the name of classes that represents the real-world
features which have defining priority;

• Feature extraction: data are frequently highly correlated between spectral
bands. This high correlation might be inappropriate for classification of LULC-
features and may reduce classification accuracy. Optionally, one can apply the
spatial (e.g., smoothing filter) or spectral (e.g., bands subset) transformation of
the multispectral data with the aim to: (1) differentiate between valuable
information and noise or non-information; and (2) reducing the dimensionality
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of the data to shorten the computing time needed by the classifier, and thus to
raise the effectiveness of statistical estimators in a statistical classifier;

• Training: the term ‘‘training’’ is the choosing of the pixels to train the classifier
to identify the preferred themes, or classes, and the selection of decision
boundaries. Here, the drawing of boundaries around geographically located
pixels has to be homogeneous, or suitably heterogeneous. This phase can be
carried out either supervised or unsupervised; and

• Labeling: it is the process of allocating diverse pixels to their most likely class
based on the use of the feature space decision boundaries. This process can be
supervised or unsupervised. If a pixel is not spectrally alike to any of the
available classes, then it can be assigned to an unknown class. There are two
kinds of relationships between the object and the class label: one-to-one (pro-
ducing a hard classification); or one-to-many (producing a fuzzy classification).
The object may be a single pixel or a group of neighboring pixels forming a
geographical unit. As a result, a thematic map is produced, presentating every
pixel with a class label. The end result is a transformation of the digital image
data into descriptive labels that classify unlike Earth surface objects or
conditions.

Sensor at aireal- or space- platform

Multi-spectral, multi-temporal and multi-source images; plus ancillary GIS or contextual information

Pre-processing: One or more of these steps (Geometric-, atmospheric- and radiometric- correction; 
enhancement: Color, spatial, radiometric and spectral; plus mosaic and subset)

The pre-processed
multi-spectral image

Feature 
extraction

K-D feature
image

Select training pixels

Auxiliary data (Maps, field
work: GPS-Points, …etc.)

Classes to be
classified

Discriminant Function based
on training statistics + Choise

the classification algorithm

Categorical lables

Accuracy assessment Post-processing: (Filtering … etc.) 
to refine LULC-Classes

K-D feature space

Final thematic map

Classifier

Fig. 2.4 The classification process (Source modified from Townshend and Justice 1986, Tutz
2000, Wilkinson 2005 and Schowengerdt 2007)
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2.3.2 The General Classification Techniques

Researchers have presented various approaches for image classification, which can
be divided into three general groups (Fig. 2.5) (Pal and Pal 1993).

Statistical classifiers: these are ideally suitable for data that have information
with an assumed theoretical model based distribution within each of the classes.
The representative algorithms for this group are: MLC; PPC; k-NNC and MDC.
Corresponding literature for these algorithms can be found in Swain and Davis
(1978) and Hastie et al. (2001). Fuzzy mathematical approaches: Zadeh (1965)
presented the concept of fuzzy sets in which unclear knowledge can be used to
delineate a result. Artificial intelligence (AI): here, supervised classification
approaches were developed from the starting of the 1970s, with the well-known
‘‘Arch Concept Learning’’ problem presented by Winston (1975). These methods
based on the learning from descriptions of a constructive pattern, and therefore
gave up the value-attribute based model that was used in other methods. AI-type
models were constructed based on semantic networks and on predicate logic.

Liu and Mason (2009) summarized the classification approaches in seven cat-
egories: unsupervised classification; supervised classification; hybrid classifica-
tion; single pass classification; iterative classification; image scanning
classification; and feature space partition. In most cases, image classification
approaches included: supervised and unsupervised; parametric and nonparametric;
hard and soft (fuzzy) classification; per-pixel, sub-pixel, object-oriented and per-
field; spectral classifiers, contextual classifiers and spectral-contextual classifiers;
or combinative approaches of multiple classifiers (Lu and Weng 2007). This article
presents: present practices; remotely sensed data classification troubles and sce-
narios. It highlighted the main advanced classification approaches, in addition to
those techniques that can improve the at-end classification accuracy.

Unsupervised classification: when insufficient ground reference information is
available (e.g., field work measurements) about the characteristics of specific
classes for classification processes, an unsupervised classification is used to
identify natural homogeneous groups (clusters) within the remotely sensed data.
Unsupervised classification approaches are based on non-parametric statistical
approaches, such as Iterative Self-Organizing Data Analysis Technique (ISO-
DATA) (Tou and Gonzalez 1974), K-means-clustering (Johnson and Wichern
1988) algorithms, and the advanced unsupervised neural classification method
Self-Organizing feature Mapping (SOM) (Kohonen 1989). In this approach, the

Image segmentation/ classification approaches

Statistical 
classifier

Fuzzy mathematical
approaches

Artificial
intelligence

Fig. 2.5 Major approaches
for image segmentation/
classification (Source
modified after Pal and Pal
1993)
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image processing software groups pixels that have similar properties (in feature
space and in adequate representative spectrally-separable clusters for the ground
surface features), based on the statistics of the radiometric value/digital number of
each pixel. Then the analyst evaluates the classified map with field survey data,
aerial photographs and other reference data, and labels these clusters (spectral
classes) with its equivalent in the real world to information classes, without having
a prior knowledge of the classes. Generally, some clusters must be subdivided or
combined to make this equivalence. Results of an unsupervised classification can
be used to define the training samples, which are a main input in the supervised
classification, or the labeled cluster map can be just accepted as the final map
(Schowengerdt 2007).

Supervised classification: supervised approaches, as seen in Fig. 2.6, are based
upon training sites, and can assure the former but not the latter; unsupervised
approaches can assure the latter but not the former (Tso and Mather 2009). Each
image is characterized by n-observations (the values in n-data bands). Supervised
image classification is an approach in which the analyst delineates the training
samples (vectors in an n-dimensional feature space) on the image which are
representative of each interested LULC-class (Mather 2004). A basic step in
supervised classification and mapping is the design of a realistic classification
scheme, which satisfies a clear definition of separable discrete informational
LULC-categories within the available data (Cingolani et al. 2004). Training sites/
samples can be created from fieldwork, aerial photography and other existing maps
based on analyst knowledge (e.g., Google Earth), and are then used as reference
information (Lillesand et al. 2008). Visual interpretation is used to locate the
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training samples position on the image (Mather 2004). These training samples
have to be homogeneous spectrally to represent specific LULC-classes. A super-
vised algorithm, after the training samples stage, uses the distribution of the
training samples for each class to assess density functions in the feature space
statistically and to divide the space into class regions (Fukunaga 1990). In other
words, the used image’s processing software recognizes the spectral signature of
each training site based on its statistics, and then classifies the images in different
LULC-classes according to the applied classification algorithm (Jensen 2005).
Here, the information required from the training data differs from one algorithm to
another. The most general and used supervised approaches are: The Maximum
Likelihood Classifier (MLC) and the Minimum Distance Classifier (MDC). The
advanced supervised classification algorithms are: The Artificial Neural Network
(ANN), the Decision Tree Classifier (DTC), the Nearest Neighbor Classifier
(NNC) and the Support Vector Machines classifier (SVM).

The supervised approach is more popular but requires more detailed a priori
knowledge of the study area and analyst expertise, to identify suitable training sites
and the resultant spectra for classification (ERDAS 1999). The characteristics of
the training sites selected by the analyst have a great impact on the dependability
and the functioning of a supervised classification process. This approach has a
more subjective impact on the analyst during the defining of the LULC-categories
characteristics and its representative training samples. Supervised classification
approaches need more user-data-software interaction, especially in the collection
of training data.

A general introduction to pattern recognition and classification is given in the
textbooks by Duda et al. (2000) and Bishop (1995, 2006), and in the review paper
by Jain et al. (2000). A detailed introduction in the context of remote sensing is
given by Richards and Jia (2003).

2.3.3 Remote Sensing Applications in Land Use/Land Cover
Mapping

The broad utilization of remote sensing is to extract and represent LULC-infor-
mation from multispectral imagery as thematic maps, data and GIS-layers (Donnay
et al. 2001). Research proves that remote sensing can be considered as a useful tool
for studying arid and semi-arid ecosystems (Tucker et al. 1983; Justice and
Hiernaux 1986; Townshend and Justice 1986; Maselli et al. 1993; Bastin et al.
1995; Hobbs 1995; Schmidt and Karnieli 2000; Kheiry 2003; Suliman 2003).

In comparison to the more classical classification methodologies such as basic
aerial photo interpretation, LULC-mapping using satellite imagery has four dis-
tinct advantages: (1) LULC-classes can be mapped faster and often with lower
costs; (2) fast and inexpensive updating of LULC-map products is possible, where
the satellite imagery are captured for the same geographic area at a high repeat
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ratio; (3) remotely sensed data are captured in digital forms and can thus be easily
jointed with other types of ground feature information through such techniques as
GIS; and (4) the large economies of scale offered by digital satellite image pro-
cessing make it fairly low-cost to map large areas, meaning it is easier and more
cost effective to produce large amounts of map products.

Although the optical remote sensing systems such as LANDSAT-MSS/TM/
ETM+, ASTER, and SPOT have limitations in obtaining cloud-free imagery and
the resulted difficulties in performing spectral classification for specific categories
of LULC (Ulaby et al. 1982), they have proven an efficient device for LULC-
mapping (Ji 2000). Kanellopoulos et al. 1992 conducted a 20 class classification
test on SPOT High-Resolution Visible (HRV) images, and the end-result was
proven to be satisfactory. De Colstoun et al. (2003) applied a decision tree on
multi-temporal images from the ETM+ to distinguish between 11 features of land
cover. The overall accuracy was clearly enhanced by using classifier ensemble
techniques, as boosting. The paper from Berberoglu et al. (2007) aimed to evaluate
the usefulness of integrating texture measures into MLC and ANN classifications
in a Mediterranean environment, using LANDSAT-TM-imagery. The best clas-
sification accuracies were reached by using the ANN classifier. The dealing with
the measures of texture characteristics were most effectively with the ANN rather
than the MLC classifier. Yuan et al. (2009) explained and applying an automated
two-module ANN classification system, i.e. an unsupervised SOM network
module and a supervised MLP neural network module, using LANDSAT-TM.
After an evaluation of the performance of MLC, DA, and ANN in image classi-
fication, ANN classifications have the advantages in image accuracy overall and
for single land cover classes.

LULC-Classification using the three VNIR- and six SWIR- bands of ASTER-
data has been discussed in the past 10 years. The most commonly used approach is
separating the ASTER into two sets of images, i.e. 15 and 30 m resolution, where
each have three and six spectral bands, respectively. For each set, support vector
machine (SVM)-based algorithms (Zhu and Blumberg 2002) or segmentation
algorithms (Marcal et al. 2005) were applied for processing of classification. An
approach based on wavelet fusion was proposed by Bagan et al. (2004). Other
studies based on the Principal Component Analysis (PCA) were used to the nine
VNIR and SWIR. From the earlier obtained principal components, a supervised
MLC was implemented (Gomez et al. 2005). But, most of the approaches referred
to have not adopted thermal band data (TIR) in classification processing. Jianwen
and Bagan (2005) used ASTER and the Kohonen’s Self-Organized neural network
feature Map (KSOM) to LULC-classification. It classified 7 % more accurately
than MLC. Also, the study showed that the quality of ASTER was good for LULC
classification. Yüksel et al. (2008) used ASTER and converted it into Top Of
Atmosphere reflectance data (TOA) to generate LULC-maps according to the
CORINE-Land cover project, using supervised and the knowledge-based expert
classification systems to get a superior accuracy of the classified image.

These optical remotely sensed data can be integrated with recordings from
remote sensing active systems such as the microwave sensors (e.g., Synthetic
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Aperture Radar SAR), which has the ability to acquire remotely sensed imagery
under various weather condition during both day and night. Studies (Solberg et al.
1994; Huang et al. 2007) using SAR and optical sensor data have confirmed clear
enhancement in classification accuracies contrary to an optical sensor alone.

Xu and Gong (2007) evaluated the potential of the Earth Observing-1 (EO-1)
Hyperion hyper-spectral (HS) data with that of the EO-1 Advanced Land Imager
(ALI) multispectral (MS) data for distinguishing various LULC-classes in Fre-
mont, California.

In addition to the progress achieved by the referenced studies, the use of object-
or segment-based classification techniques is another new development in the
environment of remote sensing image classification. This approach has achieved
generally better success with the narrow bands and high spatial resolution data
such as IKONOS, SPOT-5, or QUICKBIRD (Willhauck 2000). In several of the
followed studies (e.g., Fuller et al. 2002; Marcal et al. 2005; Platt and Rapoza
2008) segment-based classifications were more accurate than conventional pixel-
based classifications.

2.4 Land Use/Land Cover Change Detection Mapping

Change detection analysis is important in monitoring and managing the natural
resources of the Earth. It gives statistical analysis of the occurred spatial distri-
bution of the LULC-changes of interest (Singh 1989). Some of its applications are:
Monitoring shifting agriculture, estimation of deforestation, estimation of desert-
ification, and other environmental changes (Jingan et al. 2005). Natural change can
have a wide impact on natural resources. So, in relation to LULC and natural
resource and ecosystem management, there is an important need for timely, per-
manent, and truthful monitoring of changes occurring. But, the problems chal-
lenging the change detection process are: where is the change?, how much?, when
did it occur?, and how great is its impact on the ecosystem? (Lambin and Lin-
derman 2006). Changes can occur either suddenly or gradually (Bontemps et al.
2008). Here, the remote sensing techniques take on an increasing importance in
natural resource monitoring programs and in answering the above questions
(Wiens et al. 2009). In the case of LULC-changes, two kinds of change can be
classified from previously published literature: conversion and modification
(Lambin et al. 2003). LULC-conversion is the change from one cover category to
another (e.g., the complete replacement of an agricultural parcel by man-made
buildings), while LULC-modification is the modifications of structure or function
without a complete change from one category to another (e.g., changes in pro-
ductivity, biomass, or phenology).
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2.4.1 Change Detection Techniques

There are numerous change detection approaches applied on remotely sensed data,
as a result of increasing versatility in processing digital data and increasing
computing power (Pacifici et al. 2007). Generally applied approaches are: image
differencing; and image rationing (Singh 1989). Some of the proposed supervised
and unsupervised approaches in the literature are: write function memory inser-
tion; image algebra; multiple-date composite; post-classification comparison;
image differencing; image rationing; change vector analysis; etc. (Nelson 1983;
Singh 1989; Sohl et al. 2004). Expert systems and neural networks were too used
in change detection (Seto and Liu 2003). These approaches use multi-date imagery
from multi- and hyper-spectral sensors, so that alterations, in feature or phe-
nomena, be accurately recognized, measured and if needed observed (Jensen
2007), each of which could be spatially, spectrally, or temporally controlled (Lu
et al. 2003a). Figure 2.7 illustrates how the various frequently used techniques are
located in this framework.

Returning to Fig. 2.7, change detection techniques can be separated into two
general groups, depending on whether the technique needs classification before or
after change detection process.

1. Techniques which first detect change and then assign classes (e.g., image dif-
ferencing or PCA)-Unsupervised Approach- Pre-classification method.
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Fig. 2.7 A framework for classifying change detection methods (Source modified from Lam
2008)
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Many unsupervised change detection approaches deal with the multispectral
images to produce an additional image. The most essential basis for these algorithms
is the determining of the finest global threshold in the histogram of the so-called
generated difference image, where the classifying of change and unchange classes is
made on the importance of the resulting spectral change vectors by applying of
empirical or theoretical well-founded global threshold strategies. The best global
threshold depends on the statistical irregularity of the two images, which are often
unknown. Pacifici et al. (2007) reviewed the published techniques in the past decade:
the Image Differencing (ID), Normalized Difference Vegetation Index (NDVI),
Change Vector Analysis (CVA), Principal Component Analysis (PCA), Image
Rationing (IR), Expectation Maximization (EM) (Bruzzone and Fernàndez-Prieto
2000), Markov Random Field (MRF) (Bruzzone and Fernàndez-Prieto 2000),
Object-Level Change Detection (OLCD) (Hazel 2001), Reduced Parzen Estimation
(RPE) (Bruzzone and Fernàndez-Prieto 2002), Maximum a Posteriori Probability
(MPP) decision criterion (Kasetkasem and Varshney 2002), Multivariate Alteration
Detection (MAD also called Iteratively Reweighted MAD (IR-MAD)) (Nielsen
2007), MAD and the combined MAF/MAD (Maximum Autocorrelation Factor)
transformations, and Genetic Algorithm (GA) (Celik 2010).

The above techniques generally do not aim to identify clearly what types of
LULC-changes have taken place in an area (e.g., which vegetated areas have been
urbanized). They are suitable for applications such as detection of burned areas, or
detection of deforestation. However, they are not useful when it is necessary to
define the types of changes that have occurred in the studied area, for example, in:
observing the shifting in cultivation; urban growth; or where it is required to know
all the types of changes that occurred in investigated area.

Advantages: (1) pre-classification is not necessary, so, avoiding the tiring in
classification process at the starting; (2) it is regarded as simple and rapid, and can
be applied on a great number of images; and (3) the ease in fine-tuning to detect
the specific interested changes, and they are, in general, likely to have a higher
ability to find slight changes (Yuan et al. 2005). Disadvantages: (1) the detection of
image changes, especially if focused on agricultural areas, may be affected by
troubles with phenology and cropping. Such troubles could be worsened by
inadequate image accessibility and poor quality in moderate zones, and the
problems in adjusting poor images (Blaschke 2005); (2) also, these techniques are
corrupted by: changes in illumination at two times, changes in atmospheric con-
ditions, and in technical sensor calibration. These make complex a direct evalu-
ation between raw imagery obtained at different times where additional processing
steps are required (e.g., radiometric calibration) (Pacifici et al. 2007); and (3) there
remains the problem of defining the threshold value at which the change between
the two images is measured. Also, it is clear that using unsupervised methods is
obligatory in many remote-sensing applications, when appropriate ground truth
information is not always available (Bruzzone and Fernàndez-Prieto 2002).

2. Techniques which first assign classes and then detect change (post-classifica-
tion comparison) Supervised Approach Post classification methods.
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In order to overcome the limitations of the first technique, one can use tech-
niques based on a supervised classification of multi-temporal images: Direct
Multi-data Classification (DMC), Neural networks (NNs) (Bishop 1995),
Knowledge-Based Systems (KBS), Support Vector Machines (SVMs) (Vapnik
1998), Post-Classification Comparison (PCC) (Del Frate et al. 2005).

The fame of the above techniques may be because they can be freely applied on
available created single date classifications, where they are based on separate
single-date classifications whose results are later compared with the result of the
second independently classified image (Weismiller et al. 1977). This simple
technique includes: (1) producing the classified image based on the classification
process; and (2) assessment the occurred changes based on the principle of
identifying the areas of change as pixel per pixel differences in class membership
(Castelli et al. 1999).

Advantages: (1) the ability to clearly identify the kinds of occurred LULC-con-
versions; (2) the robustness to the various atmospheric and light conditions at the two
recording times (Bruzzone and Fernàndez-Prieto 2000); (3) where the two datasets/
imagery are separately classified, so it is not needed to normalize these data (Singh
1989); (4) it is more flexible than those used the comparison of multi-temporal raw
data; (5) it allows one to make change detection also by using different sensors and/or
multi-source data at two times; and (6) the possibility in entering several modifica-
tions on the used classifier in classification process (e.g., contextual information as
using the texture of an image) would increase the change detection mapping accuracy
(Pacifici et al. 2007). Also, the new image classification algorithms, other than the
traditional MLC, can be used to increase both accuracy and effectiveness. Disad-
vantages: (1) requires more human supervision for classifying the images; (2) despite
its potential, this category is not relevant to quick change detection, because user
supervision is required to pre-classify the images; (3) limitations also include cost in
terms of money and implementation time, and generated errors from classification of
imagery, where the generation of a suitable training set has the two drawbacks, i.e.
the difficulty and the high cost (Bruzzone and Fernàndez-Prieto 2000); and (4)
finally, the accuracy of the change thematic map will be equal to the accuracies of
each individual classification for each date.

2.4.2 Change Detection in Arid- and Semi-Arid-
Environments

Approximately 50 % of the total surface areas of the world are arid and/or semi-
arid regions (Meadows and Hoffman 2002). Arid and semi-arid areas feature
irregular, low precipitation, dry ecosystems, and have a limited sustained eco-
nomical potential (Adam et al. 1978). Because of the sensitive nature of these
areas, it may only require a small amount of turbulence to cause clear changes
within the environment (Okin et al. 2001). As a result, remote sensing is quickly
becoming an essential tool to use in the study of these areas (Zhou et al. 1998).
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There is a variety of problems that confuse the detection of variations in the
reflected EMR: (1) low irregular precipitation and high potential ETP allows only
spatially-limited low vegetation cover by the available moisture. As a result, the
greater part of the area-averaged reflectance of a pixel is for the soil substrate
(Smith et al. 1990a). Associated problems in these regions include the low organic
components of the soils, which therefore tend to be bright. These issues join to
negate, or reduce, the vegetation signal present within an individual pixel (Huete
et al. 1985); (2) the variability of soils (light, dark, etc.), and their spectral
responses, over the ecosystem of the study area and over the resulting image also
cause problems to the detection of vegetation.

Existing remote sensing algorithms allow the application of LULC-change
detection in moderate areas of the world (Berberoglu and Akin 2009). However
these algorithms are less able to be applied in the Mediterranean environment
because: (1) the high temporal variability of the spectral responses of major LC
causes large inter-class spectral variability; (2) the complex mixed spatial fre-
quency of the landscape; and (3) the similar reflectance responses of major LC
makes spectral separation hard (e.g., the bright toned, often calcareous soil can
have alike reflectance responses to urban areas and alike near-infrared reflectance
to a crop canopy) (Berberoglu et al. 2000). Therefore, the observation of land
cover change is complicated in Mediterranean environments.

Before mapping LULC-change detection using optical sensors data in arid and/
or semi-arid areas, we have to answer this question: at which scale is green
vegetation detectable and how can we best distinguish it? Siegel and Goetz (1977)
demonstrated that major changes in the reflectance characteristics need a vege-
tation cover of more than 10 %, and that a vegetation signal has a tendency to be
more significant than the soil signal when vegetation coverage is more than 30 %.
Hill (2000) argued that this does not mean that vegetation coverage of less than
30 % is not detectable by remote sensing, but affirms that ratio based vegetation
indices do not offer the best approximation. Vegetation approximation under the
spectral un-mixing concept offers better approximation of the true vegetation
coverage (Hurcom and Harrison 1998).

A number of change detection studies, such as (Ray 1995; Kwarteng and
Chavez 1998; Ram and Chauhan 2009) rely on the clear difference between
agricultural fields or urban areas, and the neighboring arid environment, in order to
detect LULC-change. However, for example, the detection of vegetative change
(within the same LULC-category) within arid areas is significantly more difficult.
Image differencing, especially the vegetation index differencing, is one of the most
familiar vegetation change detection approaches, because of its simplicity (Singh
1989; Lu et al. 2003a). Pilon et al. (1988) favored the use of the visible red spectral
band information to detect changes for their semi-arid study area. Chavez and
Mackinnon (1994) established that the red band differencing process presented
improved information about vegetation change rather than NDVI in an arid
environment. Lyon et al. (1998) accomplished that the NDVI-vegetation index
differencing technique achieved the best when comparing several vegetation
indices for change detection.

2.4 Land Use/Land Cover Change Detection Mapping 25



Serrano et al. (2000) compared different techniques developed to create a
homogeneous time series of LANDSAT images from 1984 to 2007 for the Middle
Ebro Valley in Spain. Mahmood and Easson (2006) explored the capability of
using ASTER imagery integrated with LANDSAT-7-ETM+ imagery of south-
western Bangladesh to detect equivalent measurements for change detection
studies. The used methods were regression with Discrete Fourier Transform (DFT)
and the cross-calibration method using digital number ratios. French et al. (2008)
demonstrated and confirmed a method using ASTER-imagery obtained between
2001 and 2003 over the Jornada Experimental Range, to map the LULC-changes
in a semi-arid area in southern New Mexico, USA. The results emphasize the
importance of multispectral thermal infrared data that contains observations at
wavelengths within 8–9.5 lm. Alberga (2009) proposed a technique for probable
change detectors in multi-sensor configurations, based on similarity measures that
did not rely totally on radiometric values. A chain of such measures was used for
automatic change detection of optical and SAR-images and an evaluation of their
functioning were carried out to detect the limits of their applicability and their
understanding to the occurred changes.

2.5 Remote Sensing for Irrigated Agriculture

Exact information on irrigation spatial coverage is the foundation of many sides of
the knowledge of the Earth’s systems and global change research. Ozdogan and
Gutman (2008) defined irrigation as ‘‘agricultural area that receives full or partial
application of water to the soil to offset periods of precipitation shortfalls under dry
land conditions’’. The remote sensing techniques offer a unique approach to the
gathering of various data across place and time, facilitating the application of
various methods to obtain irrigated area statistics. In addition, time-series remotely
sensed data allow the dynamics of irrigated agriculture to be clearly researched, as
differing from other land uses (mapping). To date, a number of researchers have
used remote sensing to observe irrigated agriculture (Ozdogan 2010). Initial efforts
focused on applying remote sensing in mapping and to update irrigated land areas
mostly in the US and India (Draeger 1976; Rundquist et al. 1989). More recently,
studies on classification irrigated areas were carried out based on advanced clas-
sification algorithms (Abuzar et al. 2001). These researchers concluded that irri-
gation monitoring and mapping using remote sensing were at an advanced phase of
improvement (Ozdogan et al. 2006) and that multi-temporal data were more
effective rather than single-date data in determining individual irrigated crop
classes (Thiruvengadachari 1981). Spatial resolution of used remotely sensed data
for irrigation mapping was seen as vital to obtaining sufficient spatial details about
the irrigated fields (Pax-Lenney and Woodcock 1997), as was the potential of
vegetation indices in classification irrigated fields, if suitable time-series are
obtainable. This latter fact was proved in several studies (Martinez-Beltran and
Calera-Belmonte 2001).
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2.5.1 Remote Sensing Approaches for Vegetation Studies

The optical characteristics of vegetation and different leaves were explained in
detail by (Kumar et al. 2001). In general the reflectance of vegetation in the visible
wavelengths (0.43–0.66 lm) is small and reflection in near infrared (0.7–1.1 lm)
is large (Fig. 2.2). The life cycle in crop plants includes the three major phases: a
vegetative stage, reproductive phase and a grain-filling stage. Three features of
leaves have an important impact on their reflectance characteristics: pigmentation
(e.g., chlorophyll a and b), physiological structure and water content. Pigments
absorb the energy of the visible wavelengths, where the highest level of absorption
from chlorophyll a is located at 430 and 480 nm, while for chlorophyll b it is at
450 and 650 nm. As, the bandwidth of the TM is too wide to detect these thin
absorption bands (Bidwell 1974). The reflectance response of vegetation canopy is
affected by: the vegetated and non-vegetated areas spatial distribution, vegetation
classes, leaf area index, distribution of the leaf angle, and bio-chemical and
physical vegetation conditions. The water content of the leaves and water in the
atmosphere decrease overall leaf reflectance and causes some thin absorption
features (Irons et al. 1989).

The spectral response of vegetation changes permanently during the growing
season and with alterations in moisture content. Appropriate information about
these changes assists in the determining of the best time period for field work and
in determining biophysical features to be measured. Figure 2.8 illustrates a sim-
plified spectral reaction curve for vegetation from 400 to 2.500 nm. The rela-
tionship between the irradiation absorption and the irradiation reflection illustrated
in this figure changes with wavelength. The biophysical controls (pigment, cell
structure and water) of the irradiation to plant interaction are also affected by
differing wavelengths (McCoy 2005).
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Fig. 2.8 The typical spectral response curve for vegetation showing the characteristic bands that
differentiate vegetation spectrally (Source modified from Hoffer and Johannsen 1969)
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Factors controlling the spectral responses of the vegetation and its reflectance
measurements include many natural and technical parameters, such as: atmosphere
conditions (e.g., the quantity of occurring sunrays and the proportion of water
vapor, change reflectance from plant canopies) (Gao and Goetz 1992); soil
background (Mickelson et al. 1998); wind (Lord et al. 1985); viewing angle
(Galvao et al. 2004); the altitude of the sensor from plant canopies; and the amount
of light.

There is an important relationship between the available images for an individual
study area and the plant growth stages, where the growth stage determines which
images are suitable for separation between the crops spectrally. So, learning the
phenological details about the crops of interest to an individual study area may be
required. These phenological details refer to the natural vegetation calendar or a crop
calendar. Data for these calendars can be obtained from: literature of previous
ecological studies; meeting with qualified field-oriented ecologists; in state or
regional bureaus engaged with natural resource management in the region; or from
field-work based observation and measurements (e.g., Spectrometer measurements).

Single-date captured remotely sensed data would be inadequate for primarily
vegetated areas described by large temporal changeability and typical spatial
patterns of highly frequent land cover changes between vegetation canopies.
Multi-date remote sensing would be able to cover this problem: when specific data
might not be suitable to separate individual LULC-classes, the use of another
acquisition date might prove more appropriate for classification. Therefore, the use
of the total multi-temporal information gives us a better separation between sev-
eral classes, and consequently, more classification accuracy (see Fig. 5.23). Crop
phenology understanding is very important in crop monitoring and classification
(Chen et al. 2008).

2.5.2 Crop Discrimination from Satellite-Based Images

The most frequently practiced utilization of remote sensing for agriculture is the
identification of crop types and then classification (Van Niel and McVicar 2000),
where crop discrimination is a critical and difficult first step for most agricultural
observing activities. The capability of remotely sensed data to identify crop class
makes it promising to classify and estimate each crop area, and so calculate the
relevant statistics automatically that can used as inputs to crop production fore-
casting models (Blaes et al. 2005). The application of remote sensing for dis-
crimination between agricultural crop classes and internal crop characteristics has
been widely studied throughout the past decade (Senay et al. 2000; Blaes et al.
2005; Satalino et al. 2009). Most of these researchers have focused on increasing
classification accuracy through the development of several techniques and meth-
ods. In contrast, only small studies have been presented on determining the best
time(s) to obtain images in order to distinguish different crops (Van Niel and
McVicar 2004).
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The temporal information dimension in used remotely sensed data is the most
useful factor in natural vegetation and agricultural applications for identifying crop
types (Wardlow et al. 2007). This is because agricultural features have great
(within-class and within-season) spectral flexibility, that is based on several
complex natural and biophysical factors (e.g., crop type/s, soil, water and geo-
graphical location). The observation and understanding of these various spectral
responses of crops, and comparison with the physical characteristics of remotely
sensed data recorded in various dates in the year (building a crop-specific temporal
record), would give us the appropriate date(s) during the growing stages in which
the crops of interest are spectrally separable. Also, by observing the physical
derived spectral indices from remotely sensed data that are sensitive to natural
vegetation cover over time, it is possible to discriminate crops (Ozdogan 2010).

Discrimination of crops using remote sensing imagery is generally achieved
with supervised or unsupervised classification algorithms (Jensen 2007). Recently,
nonparametric algorithms, expert knowledge and ancillary data have been used in
the process of cropland classification, improving the overall classification accu-
racy. One example of this is the establishment of neural networks for crop type
identification, which is the most important development in information extraction
from remotely sensed data in the last 15 years (Del Frate et al. 2003). Multi-sensor
data fusion and classification of time series data are being applied in cropland
classification more and more (Chen et al. 2008). The most simple method of
distinguishing crops is the classification of images into large-scale classification
categories including all agricultural features (Level 1 in LULC-classification)
(Campbell 2002). From this level of classification, agricultural features can be
classified into cropping and non-cropping regions.

The interaction between crop field scale and pixel size is a significant factor,
especially in heterogeneous cropping areas. For instance, large pixel dimensions
allow an increasing chance of recording mixed reflectance values. This resulted
mixed spectral response is confused by traditional local agricultural management
practices, such as found in most areas of the Euphrates River Basin, where crops
are sometimes planted in almost 30 m strips (see Fig. 5.29). This is alternated with
un-cropped areas (bare soil, stubble, dirt roads, etc.) of similar size to the cropped
strips. So, pixels that are not entirely homogeneous (e.g., solely forest, vegetation,
wheat crop, etc.), have mean reflectance values (composite spectral response that
might match neither feature’s spectral response) as a result of more than one
feature within the pixel area. Such pixels are known as mixels and are an ever-
present problem in cropland classification, reducing their discriminating power
(Chen et al. 2008). Spectral Mixture Analysis techniques (SMA) have been
developed and used to solve the mixel-problem in remotely sensed data (Fitzgerald
et al. 2005). Confusion between natural vegetation and cropland is also another
major source of error in crop classification using low spatial and/or spectral res-
olution remotely sensed data. Sometimes this is also true of high-resolution
imagery. This type of confusion is especially common in areas with very com-
plicated traditional local agricultural management practices, which are controlled
by natural topography or from land ownership (Loveland et al. 1999). An
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additional factor to the quantity of this confusion type is the seasonal variation in
the NDVI signals caused by seasonal difference in illumination geometry, which
imitates a phenological cycle (McIver and Friedl 2002).

In order to support the capability of remotely sensed data to discriminate
between the various crops, researchers have investigated many alternatives which
have to do with: The sensor-type (e.g., optical or microwave); number of images
(e.g., single-date or multi-date); timing of the imagery; digital processing tech-
niques; or ancillary and spatial data integrating in the classification process (Van
Niel and McVicar 2000).

2.5.3 Crop Area Estimation from Satellite-Based Images

Crop area measurement and survey are very common practices in agriculture.
Photo-interpretation of images can give better information than statistical analysis
to evaluate an amount, or area, for a thematic category (Ozdogan and Woodcock
2006). Usually, crop area estimation has been achieved with very costly and hard
statistically-based ground surveys that do not determine either the area or the
geographical distribution of individual crops. To overcome or decrease these
drawbacks, remote sensing, either alone or in combination with ground surveys,
were used in crop area estimation (Wardlow and Stephen 2008). Obtaining full
efficiency of remote sensing for crop area estimation depends on the landscape
characteristics, especially field size compared with the image resolution, where a
suitable resolution for a specific landscape is realized when the most image pixels
are pure. But, when this relationship is not realized, for example when using
MODIS- or MERIS images especially for landscapes with small fields, then sub-
pixel classification techniques (e.g., pixel un-mixing) can be used (GEO 2010).
Remote sensing has not been widely used for crop area estimation, due to the
tradeoff between spatial detail (the scale of the remote sensing data) and area
coverage for each image. In addition, there is the relationship between the spatial
resolution of the remotely sensed data and the agricultural field sizes. Agricultural
fields in most countries in the world are rather small, requiring medium to high
spatial resolution data. However, increases in spatial resolution provide a decrease
in the temporal availability which in turn lowers the chance of clouds-free cov-
erage. Even if the clouds-free suitable spatial resolution data were obtainable, the
increased number of datasets makes the cost high, and the high spatial resolution
sensor covers only small geographical areas at a time. This leads to an additional
problem, the need for atmospheric corrections in automated image digital pro-
cessing and classification, as the required images are often gained at diverse times
during the growing cycle of a crop. Medium spatial resolution data (e.g.,
LANDSAT) may be too coarse in countries with very small cultivated fields (e.g.,
China), but high spatial resolution is more appropriate for use in countries with
large cultivated fields, such as the U.S. (Ozdogan and Woodcock 2006). In con-
trast, lower spatial resolution data (e.g., MODIS) offer wide temporal and
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geographical coverage at continental and global scales, but need detailed spatial
information. The fact that not each pixel in an image represents only single crop
type can introduce uncertainty into area estimates because of the mixture
(Ozdogan and Woodcock 2006). Where cultivated areas are smaller than the
spatial resolution of the image, here, both cultivated and uncultivated areas (e.g.,
roads, houses, irrigation channels) are integrated in a pixel classified as agriculture
or cropland. In agricultural situations, the amount of uncultivated area has been
reported to vary from 10 to 40 % (Crapper 1980; Frolking et al. 1999). To rela-
tively solve this mixed pixel problem which occurs especially in high temporal
resolution data at low spatial resolution, some contributors have developed tech-
niques that use the concept of temporal un-mixing (Adams et al. 1986). It is similar
to the traditional spectral un-mixing technique, where pure end-members are
distinguished by their spectral response. Temporal un-mixing uses end-members
defined by their single temporal response to improve the fractional area of each
end-member based on its part to the mixed temporal reaction observed by the
sensor (Ozdogan 2010).

There are two generally used area estimation methods with remote sensing
(Ozdogan and Woodcock 2006). The first method calculates portions/fractions of a
thematic category of interest for each pixel (Hansen et al. 2002). The essential
drawback here is the accuracy assessment of fractions of the thematic field.
However, area estimation by this method is becoming more common (Liu and Wu
2005). A second method is based on generating the thematic map through image
classification and then multiplying the area of the pixels with their number in a
specific class. The drawback here is the classification accuracy of the thematic map
(Ozdogan and Woodcock 2006).
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Chapter 3
Overview of Study Area

3.1 Syria

Present-day Syria (Fig. 3.1) forms only a small part of antique geographical Syria.
Until the twentieth century, when western forces started to form the irregular
outlines of the modern countries of Syria, Lebanon, Jordan, and Palestine, the entire
settled land at the eastern ending part of the Mediterranean Sea was named Syria, a
name came from the ancient Greeks to the land connection that links the three
continents of Asia, Africa, and Europe. Historians and political scientists mostly
use the expression ‘‘Greater Syria’’ to indicate this region in the pro-state time.
Historically, Greater Syria rarely ruled itself, mainly because of its susceptible
location between the Mediterranean Sea and the desert. As a district between
commonly powerful empires on the north, east, and south, Syria was frequently an
arena for the political fates of dynasties and empires (Kangarani 2006).

3.2 The Euphrates River Basin

The name of this river comes from Old Persian and means ‘‘good to cross over’’.
The geographical coordinates of the ERB are 36�490N, 38�020E at the Turkish
border and 34�290N, 40�560E at the Iraqi border. The ERB (Fig. 3.1) includes the
majority of the three governorates of Aleppo, Arraqqa and Deir Azzour. The
variation in altitude is from ca. 520 m at the Turkish border to ca. 185 m at the
Iraqi border. The Euphrates goes up in the mountains of eastern Turkey, and the
sink has high mountains to the north and west and wide plains to the south and
east. Two-thirds of river’s course flows throughout the highlands of eastern
Anatolia in Turkey and the valleys of the Syrian and Iraqi flat terrain before down-
warding into the arid plain of Mesopotamia. The Euphrates has its sources in the
eastern highlands of eastern Turkey, between Lake Van and the Black Sea, and is
created by two major tributaries, the Murat and the Karasu. It enters the Syrian
territory at Karkamish, down-tributary from the Turkish town of Birecik. It is then
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joined by its major tributaries, the Al-Balikh and Al-Khabour, which too begin in
Turkey, and streams southeast across the Syrian flat terrain before inflowing Iraqi
terrain near Qusaybah. The Euphrates watershed includes five counties
(Table 3.1): Turkey, Iraq, Syria, Saudi Arabia and Jordan. Its real annual volume
is 35.9 billion cubic meters (Kibaroglu 2002; FAO 2009). For almost its total
length, the river streams in a valley changeable in width from 2 to 12 km, and with
the valley base some 80–250 m less than the neighboring plains. In several places,
the river splits into two or more canals, constructing several atolls/islands, several
of which support dense thickets. There are also meanders, oxbow lakes, gravel pits
and silted old water courses covered in reed-beds. Much of the river bank contains
low alluvial cliffs. The water level was previously some 3–4 m higher in spring
than in autumn due to the snow-melt in the Turkish highlands, but with the
production of several large dams in Turkey during the previous decade, this yearly
flood is now greatly decreased.

The Euphrates River has a number of main tributaries where the Syrian gov-
ernment has carried out numerous projects. These flows are: (1) The Al-Khabour
River (460 km), which rises in the Raas Al-ain region in Syria and flows into the
Euphrates; (2) The Assajour River, which originates in Turkey and flows through
Syria for a length of 48 km; its annual runoff is 100 million m3; and (3) The Al-
Balikh River, which rises near the Syrian villages of Aain Al-Arous and Tal-Abiad
and flows through 105 km within Syria before joining the Euphrates. Its annual
runoff is 150 million m3.

Fig. 3.1 Present-day Syrian borders, the 14-governorates administrative divisions, Agro-climatic
Zones, and the Euphrates River Basin study area
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3.3 Irrigation Projects in the ERB

Table 3.2 explains the water requirements in the three major ERB countries. The
available level of irrigated agricultural projects in Syria on the Euphrates is
194,000 ha (although according to other sources, it is about 250,000 ha). Over the
coming decade, some further 542,275 ha will be irrigated, thus in the future, some
636, 275 ha will be irrigated in Syria with water from the Euphrates. The future
water demand, including steam water, equals 13.263 billion m3. If we deduct from
the returning water 2,463 billion m3, one obtains net 10.8 billion m3, representing
the water needs of Syria from the Euphrates. This amount represents 34 % of
current flow. In 1987, Syria and Turkey signed a water agreement over the
Euphrates River, determining the water flows on the Syrian-Turkish border at
500 m3/s. In 1990 a similar deal was agreed to between Syria and Iraq, dividing
the Euphrates into the proportions of 42 % for Syria and 58 % for Iraq, thus
allowing the current water situation for Syria of not more than
15.7 9 0.42 = 6.627 billion m3/pa Euphrates water. The 15.7 billion m3/pa cor-
responds to the amount of water that flows from Turkey towards Syria, as a result
of the temporary agreement of 1987. Research sources expect that the 6.627
billion m3/pa Euphrates water are sufficient only for the irrigation of 308,000 ha
instead of the planned 640,000 ha. According to others, a deficit of one billion m3

in Syria will give a proportion of withering from 26,000 ha of agricultural land and
transform it into unusable land. This would lead to at least a total of 110,000 ha
from 640,000 ha, that could be converted to unusable lands (Al-Fares 2007).

Syria too has its individual strategies for irrigation expansion within the
Euphrates Basin (Table 3.3, Fig. 3.2). The water need for such land, assuming a
water application rate of about 10,000 m3 ha-1 yr-1), would be
6,450 9 l0,000 = 64,500,000 m3, or about 16 % of the unregulated stream of the
Euphrates where it enters Syria from Turkey (Beaumont 1996).

Table 3.1 General statistical information on the ERB

Country-name Basin-area (km2) Length (km) Catchment-area (%)

Turkey 98,000 1,230 62
Syria 59,500 710 38
Iraq 140,000 1,060 0
Saudi Arabia 52,500 0 0
Jordan 105 0 0
Total 350,000 3,000 100

Source modified from Kattan 2008 and FAO 2009
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3.4 Climate

The yearly precipitation in the Mesopotamian plain is seldom above 200 mm,
while it attains 1,045 mm in other parts in the basin. The summer season is very
hot and dry with midday temperatures reach 50 �C and daytime relative humidity
about 15 %. These climatic conditions demonstrate that the Euphrates streams
within arid and semi-arid areas inside Syria with increasing aridity downstream

Table 3.2 The water needs in the countries located on the Euphrates River

Turkey Syria Iraq Total

The executed agricultural facilities (ha) 300,000 194,000 1,200,000 1,694,000
The futuristic facilities (ha) 1,146,300 542,275 752,400 2,840,975
The total agricultural land (ha) 1,446,300 636,275 1,952,400 4,024,975
The total amount of the waters’ needs in future

(irrigation ? evaporation) (billion m3/pa)
17.40 13.26 25.10 55.76

The returning water (billion m3/pa) 1.70 2.47 5.10 9.26
Net consumption (average) (billion m3/pa) 15.70 10.80 20.00 46.50
Ratio of the net consumption to amount of the river

flow (%)
50 34 64 148

Source Al-Samman 1991

Table 3.3 Reclamation and irrigation projects on the Euphrates River

Project name The area, which have to irrigated/
1000 ha

The current investment
status

The Al-Balikh Basin 141
The pioneering project (Arraed) 19.9 Under investment
Beer Al-Hishm project 10 Under investment
Reclamation project of the part

(1-B)
10 Under investment

Remaining sections of the
Al-Balikh Basin

101.1 Under construction

The Euphrates Basin 152
The Middle Euphrates project 27 Under investment
The Lower Euphrates project 125 Under construction
The Lower Al-Balikh Basin 70 Under construction
The Arrusafa Basin 25 Under construction
The Al-Mayadin Basin 40 Under construction
The Maskana Basin 166
The 17,000 ha project and the

state farm
21 Under investment

The Maskana-west project 20 Under investment
The Maskana-east project 17.8 Under investment
The rest of the Maskana Basin 107.2 Under construction
The total 594 –

Source The Syrian Ministry of Irrigation 2005
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(Hillel 1994 cited in Kibaroglu 2002). The yearly standard temperature of the
whole ERB is 18 �C. It is about 5 �C in January, although it can decline to -11 �C
in the coldest areas in the basin. This yearly standard temperature in July reaches
31 �C, although it can raise to 37 �C in the hottest areas (Hillel 1994 cited in
Kibaroglu 2002 and FAO 2009). In the Syrian part of ERB, the winter season is
usually cool (5–10 �C) and rainy, and the summer is warm (30–45 �C) and almost
totally devoid of precipitation. The average annual air temperature increases from
north to south, and differs between 18 �C in Jarablous and 20 �C in Al-Bou-
Kamal, where the dryness becomes more emphasized. The average monthly pre-
cipitation increases—from October to May—from south at Al-Bou-Kamal with
5–30 mm to north at Jarablous with 20–60 mm. The average annual precipitation
increases over the year from south at Al-Bou-Kamal with about 130 mm, over Dir
Azzour with about 160 mm, to the north at Jarablous with about 350 mm. The
average yearly precipitation value over the whole ERB in Syria is around 240 mm.
The average yearly value of the relative air humidity differs between 56 %
(Jarablous) and 47 % (Dir Azzour), and declines to less than 44 % (Al-Bou-
Kamal), the lowest recorded value in Syria. The highest values of average monthly
relative humidity (60–70) % are commonly observed during the coolest time
period (i.e., December to January), while the lowest 25–30 % happen in the

Fig. 3.2 Study area and the irrigation projects in Syria (Source MAAR 2008)
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warmest months (i.e., July and August). The potential evapo-transpiration value
commonly goes above the precipitation and varies from 1,300 to 2,600 mm, with
an average yearly value about 2,100 mm (Kattan 2008).

3.5 Morphological Structure

The major topographical characteristic of ERB territories is the simplicity. There
are some of little height hills, essentially areas surrounds the Lake Al-Asad. The
average height of ERB territories is 350 m in the north at Jarablous and 180 m in
the south at Al-Bou-Kamal. Euphrates’s ‘‘base valley’’ located downstream below
200 m. Its path-slope is about (0.25 m/km-1) (Kattan 2008).

Euphrates has a length of about 675 km in Syria. It across Syria within a low
geological formation. The major geological components return to the three geo-
logical times: Paleogene (argillaceous limestone); Neogene (gypsum, silty clays,
sandstone, siltstone, clays, and pebbles); and Quaternary (pebbles, gravels, loams,
and sandy loams) (Ponikarov 1967). The alluvial aquifer, composed mainly of
gravels and boulders at the base and bigger alluvial sediments (i.e., loams and
sandy loams) at the top, is the mainly significant water bearing system in the basin
(Kattan 2008).

3.6 Soils

Soil is found on either side of the Euphrates in Syria which despite having copious
irrigation, offers bad growing conditions, and thus reduce crop yield. The humus is
low in the arid east, where mostly raw soils are found on soft, low resistive source
rock. The soil debris, the plaster floors, and dust and loose soils of the Syrian
desert steppe and desert are heavily climate conditioned. This may represent an
almost insurmountable obstacle for agricultural use in the northeast of Aleppo,
especially for trees and vines. Soils with a high salt or gypsum content are not
suitable for agricultural use. Fortunately, the Miocene gypsum and anhydrite of the
lower Fars in Syria is found only in a large area in the desert steppe. The salt or salt
surfaces of Sabchat Al-Jabboul, which today is the dry-end lake Syria, are also not
so significant (Wirth 1971). Gypsiferous crust soils covers a wide parts of ERB
territories. The breakdown of irrigation water canals because flowing of the water
within canals material due to soil salinization. The second major reason for sali-
nization is over-pumping. After salinization due to the aforementioned reasons, the
soil will be exposed. As a result, ERB soils have to be carefully irrigated.
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3.7 Hydrology

The Euphrates River has a relatively regular watery regime/system, described by
two months of very high rate stream in April and May, and a phase of eight dry
months from July to February (Fig. 3.3). The yearly stream differs significantly
from year to year (Fig. 3.4), as well as very low stream records between July 1957
and January 1963, during which time the average flow decreased to only 83 % of
the long-term average. Euphrates’s discharge rate is from 200 to 300 m3/s. It
begins to increase during early spring, i.e. in February. Then, becomes it more
abundant in March during the melting of snow in the high mountains in Turkey.
The peak of discharge is in April and May with 2,000 m3/s and sometimes more.
Because snow melts on peaks of mountains and because the high rates of rain in
April and May, the most flooding will be happening from mid-April to early May.
Starting from July, the discharge begins to decrease. The bottom of discharge is
either in September or in October. In April and May, discharge during the two
months records for 42 % of the yearly full amount. Minimum streams happen from
August through October and add only 8.5 % of the whole discharge (Beaumont
et al. 1988; Shahin 1989) (Figs. 3.3 and 3.4).

3.8 Vegetation and Land Use—Land Cover

Figure 3.5 provide general information about the LULC-activities in the ERB and
Syria.

The natural vegetation of the Euphrates River Basin includes riverine thickets
of Populus euphratica, Tamarix articulata, Salix sp., Glyzyriza glabra, Lycium
barbarum, and reed-beds of Phragmites sp. and Typha sp. The river banks are
intensively cultivated: There are vast areas of irrigated cotton and cereals, as well
as orchards and plantations of Populus and Pinus halepensis. The heavily culti-
vated steppe of the Al-Jazirah region lies to the east and the Syrian Desert to the
southwest (Murdoch et al. 2005). For instance, an old and random Pistacia
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atlantica trees found in Jabal Abd Al-Aziz region. For decades, no young growth
has been recorded because the destruction of the undergrowth has significantly
deteriorated the micro-climate and the soil surface is now largely eroded. It is
predicted that it will take only a few more decades in many parts of Syria before
all of the few remaining tree ruins die and the last remnants of former high forests
will disappear. This is due in the main because of thousands of years of human
cultural activity. The desert steppe in the ERB was originally densely vegetated
featuring tall grasses over 50 cm in height, with species such as Stipa, Agropyrum,
and Festucaspecies dominating. This grassland likely contained sparse groves or
woods of pistachios. In addition, it is thought the steppe was home to junipers such
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Fig. 3.4 Mean annual discharge of the Euphrates River (m3/s) for the period 1975–2005 (Source
adapted from DIWU 2009)

Fig. 3.5 Approximate spatial LULC-distribution in the ERB and Syria (Source http://images.
nationmaster.com/images/motw/middle_east_and_asia/syria_land_1979.jpg)
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as Juniperus excelsa, Kreuzdorn Rhamnus Palaestinae, Prunus, Pirus, Crataegus
and Amygdalus. Occasional old pistachio trees of up to 5 m in height can still be
found on many desert heights (e.g., Jabal Al-Bilaas, 500 m above sea level, near
Deir Azzour). They have been however, decimated at alarming rates by the fire-
wood needs of the camping nomads in winter. This wood steppe is traditionally the
habitat of sheep and camel nomads. The nomads have largely destroyed the ori-
ginal vegetation over the centuries. The establishment of additional water supplies
from deep wells and the transport of water by truck have also had disastrous
consequences on this fragile ecosystem. The steppe is also home to a variation of
groundwater and riparian natural vegetation, on the floodplains and low terraces of
the rivers which are not in use for agricultural purposes. In this region, this veg-
etation consists mainly of Euphratpappeln (Populus euphratica) and pastures
(Salix acmophyll), with an understory of tamarisk (Tamarix tigrensis) (after
German to English translation and modification from Wirth 1971).

For the human activities of land use in the ERB, we different between two
geographical-historical regions: (1) the Young-settled (Arraqqa- and Deir Azzour-
provinces) dominant winter cereals (wheat and barley) on dryland and cotton on
irrigated ground almost to the level of monoculture. These represent the major
growing crops in Syria. Much of the harvesting of these relative sparsely populated
areas goes to market or is readied for export. Tillage and harvest are increasingly
mechanized; and (2) the Old-settled (Aleppo Province) shows, in contrast a much
larger variety of crops. Wheat and cotton are also cultivated in large parts of the
fields in this region but not to the point of monoculture, as there are competitors
with many other crops. Less demanding summer plants can grow well here, even
without extra irrigation. Permanent crops, such as tree groves, as well as intensive,
irrigated vegetable crops are found almost solely in these old-settled areas. Only a
relatively small portion of the harvest is exported. Here, too, is find a juxtaposition
of rain- and irrigated- crops; both are cultivated at a much greater extent with more
traditional tools than in the Young-settled areas (after German to English trans-
lation and modification from Wirth 1971).

Cultivation of olive trees, which has a long tradition in Syria (oil presses such
as Ugarit were already in use around 2000 BC), is located almost exclusively in the
Old-settlement. Vineyards are located throughout this region, either on pure dry
land or at the edge of the irrigation areas. All other fruit trees are found only small
areas. The cultivation of pistachios is focused primarily on the perimeter of Aleppo
(after German to English translation and modification from Wirth 1971).

Field-irrigation is used in almost all of the agricultural areas of the ERB. In the
areas with more than 400–500 mm, only intensive crops which need a high water
demand are irrigated, e.g. vegetables, sugar beets, and peanuts. The irrigated land
here is embedded with little natural contrast to a rain-floor, and both winter and
summer crops flourish. In the areas with about 200–400 mm average annual
precipitation only winter crops can be grown without additional irrigation. During
the summer months, the irrigation fields are lush green islands, raised above the
dry yellow and brown rain-fed land. Between the two there is a clear division of
function: in analogy, the drying fields of wheat and barley were appointed/ordered,
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while the irrigated areas in the old-settled areas had intensive cultivation of veg-
etables, a variety of summer fruits and fruit trees. The focus of irrigation in the dry
steppe areas of northern Syria has been the use of groundwater pump wells (after
German to English translation and modification from Wirth 1971).
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Chapter 4
Data

One decides what information and data is needed to achieve the purpose of a study.
The data collection is, however, often controlled by what is obtainable or what the
financial map will allow, rather than what is actually needed. During the searching
process, one may find other undecided data sources or types that are useful to the
achievement of the research. Data and information for the LULC-component is
available from administrative divisions, libraries, universities and private com-
panies can offer data. Processing time and resources require attention, depending
on the amount of data collected and organized. Enough data is essential to guar-
antee accuracy and answerability. At sensor type choosing stage, in relation to
rapid sensor development and various sensor configuration, one has to consider the
broad range of application sectors in an attempt to give potentials that meet actual
obligations, as it is impossible to find a specific sensor type to satisfy the all
specific needs of all cases. Here, to optimize the choice of the remotely sensed
data, we have to determine the purpose of the research and which dataset can
realize the two criterions of being cost effective and providing the relevant
information in relation to the research purpose. Finally, at these basic stages of
choosing and preparing the dataset, it is also significant to consider the relationship
between the used dataset and the required mapping scale (Liu and Mason 2009).
The purpose of the current study is to set maps of land uses and the natural
coverage of the ERB. The satellite images suggest basic inputs for a compre-
hensive study of this area, which is also reliant on other data and information to
achieve targets, such as topographic maps and statistical records. Lastly, the study
cannot be fulfilled without reliance on field observations.

4.1 Satellite Data

LANDSAT and ASTER general characteristics (Fig. 4.1, Tables 4.1, 4.2) are:
medium spatial resolution, medium area coverage, moderate revisit capability and
multispectral bands characteristic. The scale of the area coverage of the LANDSAT
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and ASTER makes them mainly suitable for LULC-studies for extended areas, such
as countries and continents. The largest part of Earth observation satellites that have
a medium resolution are in a sun-synchronous orbit. The LANDSAT data archive at
the USGS/EROS Center-holds an unequaled 36-year record of the Earth’s surface
and is available at no cost to users via the Internet (Woodcock et al. 2008). The
Earth Science Data Interface (ESDI) has a data archive with a global coverage, free
for download or for very low managing and delivery costs to large numbers of
countries around the world. The data-archive includes: ortho-rectified LANDSAT-
imagery from the three Sensors (MSS, TM, and ETM+); composite MODIS-
imagery; and remotely sensed data based derived products (e.g., NDVI). The owner
of this archive is NASA and it hosted at the University of Maryland in the USA. The
Earth Observing System Data Gateway (EOS) provides a big archive of land, water
and atmosphere data products. Also, the source of these data comes from NASA in
USA. There are also a valuable and gratis remotely sensed data or with an inex-
pensive shipping costs.

4.1.1 LANDSAT (MSS, TM and ETM+) Sensors

Lauer et al. (1997) provides a short history of the LANDSAT-program and its
noted successes. The development of the LANDSAT-program originated from
global efforts to improve our knowledge of Earth, and it is perhaps the most
successful satellite remote sensing program devoted to land monitoring. The first
Earth Resources Technology Satellite (ERTS-1) was launched to space on 23 July
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1972 in cooperation between the National Aeronautics and Space Administration
(NASA) and other USA-federal agencies. It was later renamed LANDSAT-1. This
launch is seen as the birth of the present age of Earthly satellite remote sensing.
LANDSAT-1 was a Nimbus-type platform which held a sensor box and data-relay
tools. ERTS-2 was launched to the space on 22 January 1975. It was too renamed
to LANDSAT-2. Other four LANDSATs (3, 4, 5 and 7) were launched in 1978,
1982, 1984 and 1999 respectively. Each successive launch has included improved
sensor and communication capabilities. This has had a huge influence in several
application fields (Lauer et al. 1997). In comparison to the military satellite sys-
tems, the civilian LANDSAT-family of satellites has supplied civilization with
over 34 years of consistent, medium spatial resolution, multispectral images of the
world. Due to the long historical record of the LANDSAT-program, no other
remotely sensed data sets allow us to study the nature of the Earth and the human
activities and impacts so effectively (Williams et al. 2006). This continuous record
was realized because of good luck and superb engineering rather than careful
management oversight (Williams et al. 2006). The LANDSAT World Wide
Reference (WWR) system catalogs the Earth’s landmasses into 57,784 scenes,
each 185 km wide and 170 km long (USGS 2009).

The famous family of LANDSAT-satellites (LANDSAT-1, 2, 3, 4, 5, 6 and 7)
and sensors (MSS, TM, ETM and ETM+) can be divided to three common types
based on the characteristics of their sensors and platforms: (1) LANDSAT (1, 2
and 3), that have the sensor type of MSS and the camera type of Return Beam
Vidicon (RBV). The platform was like a Nimbus (cloud). MSS has the spatial

Table 4.1 General information about the two satellites LANDSAT and TERRA-ASTER

Satellite Launch
dates

Decommission Altitude
(km)

Indination
(degrees 8)

Period
(min)

Temporal
resolution
(days)

Crossing
time
(a.m.)

LANDSAT-
1

23.07.1972 07.01.1978 920 99.20 103.34 18 9:30

LANDSAT-
2

22.01.1975 25.02.1982 920 99.20 103.34 18 9:30

LANDSAT-
3

05.03.1978 31.03.1983 920 99.20 103.34 18 9:30

LANDSAT-
4

16.07.1982 30.06.2001 705 98.20 98.20 16 9:45

LANDSAT-
5

01.03.1984 Operational 705 98.20 98.20 16 9:45

LANDSAT-
6

05.10.1993 Did not
achieve
orbit

LANDSAT-
7

15.04.1999 Operational 705 98.20 98.20 16 10:00

TERRA-
ASTER

18.12.1999 Operational 705 16 10:30

Source Adapted from Schowengerdt (2007), Chander et al. (2009)
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resolution of 79 m (frequently, prepared to be 60 m as pixel size). Its spectral
resolution is not large enough for some studies (e.g., crops classification), where it
has four spectral bands only. These bands located within the four spectral portions
(wavelengths) with a four typical band-naming: blue (MSS-4), green (MSS-5), red
(MSS-6) (the visible spectral portion); and the Near-Infra-Red (NIR) (MSS-7).
Only the third LANDSAT hold a MSS sensor that has five spectral bands, were the
fifth one was a thermal infrared (10.4–12.6) lm. This standard is no longer used;
instead the MSS-bands are referred to the bands 1, 2, 3 and 4 respectively, con-
sistent with the TM and ETM+ sensors; (2) LANDSAT (4 and 5), which carried
the TM sensor, in addition to the MSS. This second generation offered a clear
enhancement in remote sensing through the supplement of a more advanced
sensor, enhanced gaining and transmission of data, and more rapid data processing
at a highly automated processing capability. The MSS-sensor was kept to provide
continuity with the previous LANDSAT-missions, but TM-data rapidly became
the main source of information used from these satellites because of its enhanced
spatial, spectral, radiometric and geometric characteristics in comparison to MSS-
data. Finally, the gaining was limited to real-time download only, since there were
no onboard recorders on these sensors (Chander et al. 2009); and (3) LANDSAT (6
and 7), consisting of LANDSAT-6 which carried the Enhanced Thematic Mapper

Fig. 4.2 The used imagery spatial coverage of the sensors: MSS (June, 1975), TM (May and
August, 1987 and 2007), and ETM+/SLC-Off/corrected (May and August, 2005)
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(ETM) sensor and failed on launch, and LANDSAT-7, with its Enhanced The-
matic Mapper Plus (ETM+) sensor. LANDSAT-7 also had a 378 gigabit Solid
State Recorder (SSR) that could store 42 min (about 100 scenes) of sensor data
and 29 h of housekeeping telemetry concurrently (L-7 Science Data User’s
Handbook). No MSS-sensors were included on either satellite (Fig. 4.2).

4.1.2 TERRA-ASTER

In 1999, after the cooperation between NASA and the Japan’s Ministry of
Economy Trade and Industry (METI), the Advanced Space-borne Thermal
Emission and reflection Radiometer (ASTER) was launched into the space. It was
held on board the NASA-TERRA satellite. The ASTER-sensor represents the next
generation in remote sensing, following the older LANDSAT-TM. It acquires high
spatial resolution data in 14 spectral bands, ranging from visible to thermal
infrared portions. This sensor contains three separate instrument subsystems that
operate in different spectral portions and have their own telescope(s). The sub-
systems are: (1) the Visible and Near Infra-Red (VNIR): operates within three
spectral bands at visible and NIR wavelengths of 0.52–0.86 lm, with a spatial
resolution of 15 m. It is especially useful for topographic interpretation because of
its along-track stereo coverage with 15 m spatial resolution. Also, it is useful in
assessing vegetation and iron-oxide minerals in surface soils and rocks; (2) the
Short-Wave Infra-Red (SWIR): operates within six spectral bands in the NIR
region of 1.600–2.430 lm, through a single-nadir pointing telescope that offers a
spatial resolution of 30 m. These six bands were selected mainly for the purpose of
surface soil and mineral mapping; and (3) the Thermal Infra-Red (TIR): operates
within five bands inside the thermal infrared region of 8.125–11.65 lm, using a
single, fixed-position, and nadir looking telescope with a spatial resolution of
90 m. This subsystem allows for a more accurate determination of the variable
spectral emissivity of the land surface, and hence a more accurate determination of
the land surface temperature. The spatial coverage of the ASTER-sensor is at
60 9 60 km (Fujisada 1995; Yamaguchi et al. 1998).

The relatively high spatial (Fig. 4.1) and spectral (Fig. 4.3) resolution of the
ASTER-data in comparison to LANDSAT-data can increase the ability of sepa-
ration between the various ground surface features and decrease the problems of
mixed pixels (Yamaguchi et al. 1998). Therefore, ASTER-data are more suitable
for LULC-classification (Bagan et al. 2008).

The ASTER-sensor, because it is the only high spatial resolution sensor, is the
‘‘zoom lens’’ for the other carried sensors onboard the TERRA-satellite. TERRA is
in a sun-synchronous orbit, 30 min behind LANDSAT-ETM+, and it crosses the
equator at about 10:30 am local solar time. ASTER can obtain data over the whole
globe with an average obligation cycle of 8 % for each track. This offers a gaining
of about 650 scenes per day (subject to on-board storage limitations), that are
processed to the two products types (Level-1A; of these, about 150 are processed

54 4 Data



to Level-1B). ASTER-L1A data are officially classified as reconstructed, unpro-
cessed data at full resolution. They contain the image data, the radiometric
coefficients, the geometric coefficients and other supplementary data without
applying the coefficients to the image data, thus keeping the original data values.
The L1B-data are produced by applying the coefficients for radiometric calibration
and geometric resampling. All gained 1A and 1B scenes are transferred to the
EOSDIS archive at the EROS Earth Data Center’s EDC Land Processes Distrib-
uted Active Archive Center (LP-DAAC), for storage, distribution and processing
to higher-level data products. All ASTER-data products are stored in a specific
implementation of Hierarchical Data Format called HDF-EOS.

ASTER’s geometric system correction mainly contains the rotation and the
coordinate transformation of the line of sight vectors of the detectors to the
coordinate system of the Earth. This is done as part of ASTER-Level-1 processing
at GDS using extra engineering data from the sensor and similar auxiliary data
from the spacecraft platform. The geometric correction of ASTER has developed
in two complex processes of both pre-flight and post-launch calibration. Tests have
proven that ASTER has superb radiometric, geometric and spectral functioning
(Ono et al. 1996) (Fig. 4.4).

The main scientific purpose of the ASTER-mission is to gain better knowledge
of the local and regional scale processes happening on or near the Earth’s surface
and lower atmosphere, as well as the relations between the Earth surface and the
atmosphere. Special applications are: (1) earth surface climatology; (2) vegetation
and ecosystem dynamics; (3) volcano observing; (4) hazard observing; (5) aerosols
and clouds; (6) carbon cycling in the marine ecosystem; (7) hydrology; (8) geology
and soil; and 9) LULC-change (Yamaguchi et al. 1999).

Fig. 4.3 Comparison of the
spectral coverage between
LANDSAT-sensors (MSS,
TM, and ETM+) and the
ASTER-sensor
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4.1.3 SRTM

The Shuttle Radar Topography Mission (SRTM) was started in February 2000.
This mission took eleven days and named as STS-99-mission. The mission was
ended successfully after an international cooperation. The goal of this mission was
to offer a new source for deriving of topographical data digitally, especially the
height element/z, where the traditional methods were based on digitizing the
contours lines from the topographic maps. After achieving the goal of the mission,
we had become the Digital Elevation Models (DEM). This product was until 2009
the most complete archive of digital topographical data, which covers a near-
global scale from 56� S to 60� N with a high spatial resolution. To realize the
above mentioned goal, the mission included a specially modified RADAR-system,
which was based basically on the model used in the 1994 Shuttle, the older Space-
borne Imaging Radar (C and X) bands Synthetic Aperture Radar (SIR-C/X-SAR).
The system was carried on board of the Endeavour Space Shuttle. The technique
used to generate topographic data digitally from the space with representation of
the elevation element (z), is the Interferometric Synthetic Aperture Radar (ISAR).
The SRTM mission was supplied with two radar antennas. ‘‘One antenna was
placed in the Shuttle’s payload bay, the other, a critical change from the SIR-C/X-
SAR allowing single-pass interferometry, on the end of a 60 m mast that extended

Fig. 4.4 The used imagery spatial coverage of the sensors ASTER (May and August, 2005), and
ETM+/SLC-Off/corrected (May and August, 2005)
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from the payload bay as soon as the Shuttle was in space’’ (Farr et al. 2007). ‘‘The
elevation models were set into tiles, each covering one degree of latitude and one
degree of longitude, named according to their south western corners. It follows that
‘‘n45e006’’ stretches from 45� N 6� E to 46� N 7� E and ‘‘s45w006’’ from 45� S 6�
W to 44� S 5� W. The resolution of the cells of the source data is one arc second.
The one arc second 30 m data have only been released over United States territory;
for the rest of the world, only three arc second 90 m data are available’’ (Farr et al.
2007). The second realized DEM-product was presented from ASTER-sensor in
2009. Thus, it can charge the digital topographic database with new and different
source. It named as Global Digital Elevation Model (GDEM) (Fig. 4.5).

4.2 Reference- and Complementary-Data

Reference and complementary data can be obtained from information sources
other than the imagery data itself, such as field observations and measurements,
aerial photograph interpretation, thematic maps and other archival materials. The
expression ‘‘ground truth’’ can be substituted by the more appropriate expression
‘‘reference information’’, which is seen to be ‘‘more inclusive than ‘‘ground’’ and

Fig. 4.5 The used imagery spatial coverage of the sensor SRTM
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less absolute than ‘‘truth’’’’. Generally, no study should be carried out without
study area visits, but it is often possible to select training and testing samples for
accuracy assessment from high resolution aerial photographs or from a suitable
thematic maps showing LULC-categories, in addition to topographic maps and
Google Earth data. On the other hand, social science can help to confirm and
analyze remotely sensed observations (e.g., validating remote observations versus
data gathered on the ground). As, it is possible to determine a number of land use
activities (classes) during classification remote sensing imagery based on a few
social behaviors (McCoy 2005). One of the interesting example presented by
Lesschen et al. (2005) presents other data sources such as questionnaires. It is
particularly helpful to obtain management-related data (e.g., agricultural crop
cycles) and can also give insight into the main factors of LULC-change.

4.2.1 Field Reference Data

One of the mainly steps in any remotely sensed based study is gathering the
thematic data (attribute data, such as qualitative breaks by vegetation cover den-
sity: low, medium, high), and measurements (e.g., a quantitative differentiation of
vegetation cover density by break points: \10, 11–40, [40 %), or observations
(e.g., determination which category of the legend is more suitable to a surface
feature) of the phenomenon of interest in the field. This is also the most difficult
step, because it is a very time-consuming, often boring task which entails diffi-
culties such as what want the researcher measuring and observing, where it is
important to determine that before the field work, and then it is important to
choose the method to be applied in the field to gather the required data. Ground
truthing is important for remote sensing to properly identify objects, provide
precise image registration and verify results. Before beginning to gather reference
data in the field, two steps must have been completed: (1) study goals must be
obviously determined; and (2) a classification scheme for all LULC-classes must
have been selected (McCoy 2005).

Spectro-radiometry is a frequently used ground-based reference data source in
remote sensing techniques. It can measuring the values of radiance, irradiance,
reflectance or transmission of individual targets or objects, by locating the radi-
ometer above the targets of interest, and records these values as digital spectral
quantitative records. It used mostly as hand-held cameras (or mounted on a tripod,
tower, tractor etc.). After finishing the measuring process, the user compares them
to the biological, chemical and physical characteristics of the object. For agri-
culture, red and NIR portions of the EMS profile utilized particularly to calculate
and generate the Vegetation Indices (VI) that are correlated with parameters of
canopy structure (e.g., LAI). Spectro-radiometers named also radiometers or
InfraRed Thermometers (IRT) (Schowengerdt 2007).
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For this study, the major related field-work/s was: the 1987-GPS points
(ICARDA); the 2005-GPS points (GORS); the 2007 and 2009 GPS-points
obtained from two excursions; Spectrometer-measurements (GORS); and the
NDVI-measurements (GORS). (see Chap. 5.4).

4.2.2 Maps

Thematic maps of LULC-types should be a part (especially in the visual inter-
pretation) of the selection of training samples and the gathering of testing sites for
accuracy assessment when there is no alternative. They are generalized informa-
tion with two drawbacks, in that they are probably based on unlike designations for
classes, plus an unlike minimum unit (cell or pixel) size than that which is being
used in a specific study. So, most maps are considered unreliable and unacceptable
for use as reference data, other than for a general understanding of the area
(McCoy 2005).

Soils and thematic maps are reproduced from previous studies (from ICARDA-
Aleppo), as well as topographic maps with various scales from 1/25,000 to 1/
100,000, which cover the whole study area. These were purchased from the
General Organization for Military Survey in Damascus. Some aerial photos for
small areas in the Aleppo were also obtained from the military survey.

4.2.3 Statistics

The analysis of spatial distribution of agricultural features were based on: statis-
tical data taken at both village and the administrative district level for the years of
1975, 1987, 2005, and 2007; on previously achieved studies relating to the study
area; and on the field observations. They were checked and proven. They are the
basic foundation of Syrian agricultural statistics. These data are collected by
agrarian engineers working in counselling units centred in the administrative
sectors.

Also, there are general information and agricultural statistical records for the
period 1970–2010. These are useful to understand the geographical history of the
study area in relation to nature and human activities, and especially the historical
development of the irrigation projects in the ERB. Each of these information and
statistical records has a periodical annual publication, issued by the CBC in
Damascus. The agricultural statistical records are collected on various levels,
including village, administrative region, governorate, agricultural stable zones and
the whole area of Syria.

Detailed information and statistics for the period 1970–2010 about the agri-
cultural irrigation projects were obtained from IGDEP in the city of Arraqqa.
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4.2.4 Ancillary Data

Ancillary data is used to facilitate a better understanding of LULC-dynamics and
the reasons behind them. There are a various obtainable types of ancillary data:
digital elevation models; soil map; housing and population density; road network;
temperature; and precipitation. These can be integrated, as external inputs to
remotely sensed data into a classification process in various concepts (Lu and
Weng 2007). This integration has the benefit of improving the overall accuracy of
produced thematic maps based on classification of remote sensing imagery. The
percentage of this improvement based essentially on the used classifier (Heinl et al.
2009).

Climatic data (e.g., precipitation) was gathered for the climatic stations that
existed in the major governorates within the ERB: Aleppo, Arraqqa, and Deir
Azzour, during the temporal period of the study. These were obtained from the
General Organization for Meteorology in Damascus. These data were useful for
radiometric normalization using (iMAD) (see Chap. 5.2.3). Ancillary data for the
entire water basin of the Euphrates is also included, as well as the agricultural
calendar.
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Chapter 5
Research Methodology

This chapter gives a review about techniques and methodologies that were applied
to answer the presented research questions and to confirm the hypothesis of this
thesis. The conceptual workflow chart of the thesis is illustrated with an overview
provided in Fig. 5.1.

Tone or color is the basis factor for most methods of digital image analysis. It is
represented as a digital number in each cell of the recorded remote sensing image.
The first step is applying a various procedures of preprocessing on the raw digital
image. To carry out image classification, many steps have to be considered:
choosing of a fit classification system; choosing of training samples; preprocessing
of image(s); drawing out the feature; choosing of fit classification approaches;
processing the resulted products of classification; and accuracy assessment.

Utilization of several variables during the classification process can make the
classification accuracy worse because of unlike capabilities in separation between
classes of interest (Price 2003). Therefore, many potential variables were used in
image classification for the study case of this thesis, including spectral signatures,
vegetation indices and transformed images (NDVI), multi-temporal images (1975,
1987, 2005 and 2007; April, May, July and August), multi-sensor images and
ancillary data (GPS measurements, spectral information, statistical records,
Google Earth etc.).

In this thesis, I will try to propose the methodological means which contribute
to analysis of various data and information, and to integrate some of these data
between each other, if necessary, to extract the information/results from the
satellite images, to be presented in the final thematic maps.

Setting three local levels with multi-temporal levels to process sensory data
available for obtaining thematic maps.

The first local-level: this level was embodied in the four administrative areas’
borders (Menbij, Al-Jurnia, Ain Eisa and Athawra), and was accredited to test and
compare several algorithms and automated classification methods in order to best
determine the optimized algorithm and method of classification. Algorithms such
as MLC, NN and SVM were tested in two ways. The first approach relied on a
hierarchical shape and involved the extraction of classification outcomes through

W. Al-Fares, Historical Land Use/Land Cover Classification
Using Remote Sensing, SpringerBriefs in Geography,
DOI: 10.1007/978-3-319-00624-6_5, � The Author(s) 2013
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multiple stages, starting from the wide general level with little details and ending
up at low levels subdivided from the previous general one, yet, advantaged with
more detailed classes. The second approach classified sensory data through one
stage. The used data were: LANDSAT-MSS-June-1975-60 m; LANDSAT-ETM+/
SLC-Off/corrected and fused with ASTER-May-2005-15 m; and LANDSAT-TM-
May-2007-30 m.

Fig. 5.1 The general conceptual workflow chart of the thesis
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The second local-level: represented in the entire natural borders of the ERB.
This level’s outcomes were represented in three products. The first product
involved setting thematic maps to represent the natural coverage and the wide
general land uses distribution (LULC). Five classes counting on classification
system were accredited in this study. The used data and dates were: LANDSAT-
MSS-June-1975-60 m; LANDSAT-TM-April-1987-30 m; LANDSAT-ETM+/
SLC-Off/corrected-April-2005-15 m; and LANDSAT-TM-April-2007-30 m).
Here, for the automated classification process, one product (map) was obtained for
each year (coverage), which represented and illustrated the quality and quantity of
the spatial and temporal distribution of the natural coverage and uses of the lands.
A quantitative analysis of produced maps was set (statistical data and tables) to
compare, explain and analyze these numbers. Comparison was made between
recordings extracted from various sensory data, regarding spatial and spectral
resolution) positives, negatives, advantages and disadvantages).

The third product involved setting map/s representing the temporal and spatial
change of the natural coverage distribution as well as land uses, utilizing the pre-
classification change detection approach. For this, the LANDSAT-MSS-June-1975
and the LANDSAT-TM-August-2007 coverages were used.

Regarding the last two products, temporal and spatial changes were studied and
analyzed.

The third local-level: represented in distribution of the irrigated agricultural
projects within the natural limits of the ERB. The first product involved setting
maps of distribution and change of agrarian irrigated areas, temporally and spa-
tially, for the following data and years: LANDSAT-MSS-June-1975-60 m;
LANDSAT-TM-May-1987-30 m; LANDSAT-ETM+/SLC-Off/corrected and
fused with ASTER-May-2005-15 m; and LANDSAT-TM-May-2007-30 m.

As for the second product, this was manifested by setting thematic maps to
represent the distribution of winter and summer basic crops in irrigated plantation
projects, the types of cultivations and their area. The used data for this purpose was
as follows: For the winter crops: LANDSAT-TM-May-1987-30 m; LANDSAT-
ETM+/SLC-Off/corrected and fused with ASTER-May-2005-15 m; and LAND-
SAT-TM-May-2007-30 m. For the summer crops: LANDSAT-TM-August-1987-
30 m; LANDSAT-ETM+/SLC-Off/corrected and fused with ASTER-August-
2005-15 m; and LANDSAT-TM-August-2007-30 m).

The development of irrigated agricultural areas was calculated for the past
40 years.

5.1 Extraction of the Study Area

Extraction of the natural aquatic borders of the ERB in Syrian lands through the
use of the digital elevation model DEM available from the sensor data SRTM in
90 m spatial resolution, in addition to the DEM-data from ASTER in 30 m. Data
was imported to the ArcGIS 9.3 program using the following steps: Export raster
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data (raw-data) to GRID-format; ArcToolBox/Spatial Analyst Tools/Hydrology:
(Fill/Flow direction/Flow accumulation/Conditional-Con/Stream to feature/Add
one point—.shp file-/Watershed); Conversation Tools: (from raster—Watershed-/
Raster to polygon); and Analysis Tools: (Extract/Clip). Throughout the proposed
results, the spatial distribution layer of the natural borders of river-basin was
obtained from the SRTM-data. Concerning ASTER-data, there has been an
unwillingness to depict the river basin edges because of their higher spatial res-
olution rather than the SRTM-data. Unfortunately, dealing with this data proved to
be exhausting and full of errors. Therefore, a return to the SRTM-data ensued.
There has been no accredited map issued by the Ministry of Irrigation that draws
the borders of the ERB. The majority of Syria’s irrigation projects lie within the
natural boundaries of the ERB, except for some projects in the north and the south
of the city of Aleppo, where waters have been extracted from the Euphrates River
for the past five years. This means that many of these projects are not introduced in
this study, as they occurred after the date of the last remote sensing data used (i.e.,
2007).

5.2 Pre-Processing of the Satellite Data

‘‘A good player never makes more effort than he needs to win’’—old Arabic
wisdom.

Remote sensing data may have two common types of distortions (systematic
and non-systematic). This is because the method act of the Earth observation
system and the characteristics of Earth’s surface (Richards and Jia 2003). There
are a variety of preprocessing procedures that could be applied on satellite data:
finding and replacement of damaging lines of pixels; geographical registration of
image and geometric rectification; radiometric calibration and atmospheric cor-
rection; and correction the topographical effects. According to Mather (2004), pre-
processing procedures used to correct the generated deficiencies of geometric and
radiometric formation of a remotely sensed image, and then it used to remove the
errors of data. These deficiencies and errors have to be removed or at least
manipulated, if it is achievable, before the starting with imagery classification.
Which method would be applied, is dependent upon the goal of study. The most
availability of preprocessing procedures or programs—automatic, is for coarse and
medium spatial resolution data (e.g., LANDSAT-TM) and for high temporal
resolution data (e.g., NOAA-AVHRR).

A good optimization in presentation of an individual object in the dataset of
remote sensing data, is a result of a suitable selection of digital image prepro-
cessing procedures. This goodness can be confirmed using a visual interpretation
(Liu and Mason 2009). There are many digital methods to better enhancement of
an image. These methods have the benefit of increasing the visual interpretability
of used data and thus the thematic information of interest could be easily derived.
The common three methods of image-enhancement are: (1) enhancement of
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contrast (‘‘more of the available range of digital values is used, and the contrast
between targets and their backgrounds is increased’’ (Jensen 2005)); (2) spatial
enhancement (spatial filtering, edge enhancement, and Fourier analysis etc.); and
(3) spectral transformation (generating more valuable data or products—e.g.,
NDVI—based on manipulation—e.g., division of several spectral bands of data).

Despite the LANDSAT-images being level 1G corrected (Level-1G was cor-
rected from USGS, and this modification consists of the basic corrections of
radiometric and geometric distortions. But these corrections are not suitable for
each application and thus user have to make additional corrections if the from
USGS corrections are not sufficient), they are not good enough accurately regis-
tered in form pixel-to-pixel. USGS had pointed to a possible error of up to 250 m,
and had not atmospherically corrected the data, thus all findings were subsequently
re-corrected geometrically for this work (see Sect. 5.2.1). Atmospheric effects on
the spectral signal were also minimized with a correction method (see Sect. 5.2.2).
In addition to radiometric normalization (see Sect. 5.2.3), the ASTER data were
delivered in Level 1A without any corrections.

ETM+-bands 6 and 8, plus TM-band 6, were eliminated from the entire pro-
cessing and classification. The panchromatic information of band 8 was only used
for pan sharpening. The sixth thermal spectral band—with its thermal informa-
tion—was not used because the two reasons: it has a coarse spatial resolution; and
it can recording only the transmitted radiation from objects in contrast to other
spectral bands that measure the reflected radiation.

All image processing, classification and preparing the final results were carried
out using two programs: ENVI, Version 4.6 and ArcGIS, Version 9.3.

5.2.1 Geometric Data Processing

‘‘The more time steps involved for a change analysis, the more effort should be
spent on image registration and radiometric adjustment’’ (Wulder and Franklin
2003 cited in Schultz 2011). So, the goodness or badness of method used in the
registration of remote sensing data (image/s) will determine the quality/accuracy
of the resulting change detection product (Schultz 2011). Townshend et al. (1992)
assumes that the ‘‘problems created by misregistration are likely to be greater in
the sensing of land surfaces compared with the atmosphere or many ocean
properties’’.

There are several common expressions used to explain geometric correction
process (registration, rectification, geo-coding and ortho-rectification) (Scho-
wengerdt 2007). This process corrects the two different errors types (systemic and
nonsystematic) resulting from the two different sources (within the remote sensing
system itself, and during the recording of images) (Lo and Yeung 2002). The
various applications of geometric correction on remotely sensed data are: co-
registration of images that cover the same area on the Earth but they were obtained
from two or more different sensors, or they were obtained at two or more different
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periods of times, or they were obtained from two or more different sites; and
rectifying an image to be accurate to an individual coordinate system (geo-coding)
(Liu and Mason 2009). ‘‘Spatial distortion arises from scanner characteristics and
their interaction with the airborne platform or satellite orbital geometry and figure
of the Earth’’ (Schowengerdt 2007). Geometric correction can maximize the
usefulness of the remotely sensed data for information extraction (e.g., thematic
maps).

The geometric correction is the first image processing step (pre-classification
approach) carried out when the remotely sensed data are not geo-rectified (Liu and
Mason 2009). However, geo-rectification can be carried out as a post-classification
approach to reduce the errors and distortions resulting from the geometric cor-
rection process. Generally, it is more competent to begin with geo-rectifying the
still unprocessed data. Therefore, all products that will result from the raw data
will be automatically geo-rectified (Liu and Mason 2009).

The problems that can occur in pixels of an image that will be rectified to other
one (source image) are: the pixels have a different position; different orientation;
and different size (Fig. 5.2). With this in mind, resampling methods have been
developed to cope with these problems. The methods are based on choosing well-
known and matching sites in both images of the selected cartographic projection.
Based on these sites, a resampling technique will calculate the relation between
their positions in the two images. These positions can be located exactly on an
image using the so-called Ground Control Points (GCPs). These points are
potential to define a suitable transfer function to be applied between the both
images, i.e. rectify and master scenes (McCloy 1995). There are three components
to the process: (1) selection of suitable mathematical distortion model(s); (2)
coordinate transformation; and (3) resampling (interpolation). These are also
known as warping (Wolberg 1990).

‘‘Resampling is the process of calculating the data file values for the pixels in
the rectified image by the use of data file values in the source image data’’
(McCloy 1995). There are three resampling schemes: nearest neighbor (sometimes
called zero-order interpolation); bilinear interpolation; and cubic convolution. In
the nearest neighbor approach, ‘‘the data file value of the nearest pixel to the
retransformed pixel in the source image is adopted as the data file value for the
output rectified pixel’’ (Liu and Mason 2009). By comparison with the other two
schemes, it has the advantages: that it does not change the digital number value in

Fig. 5.2 Reposition pixels
from their original locations
(input matrix) in the data
array into a specified
reference grid (output matrix)
(Source modified from
Lillesand et al. 2008)
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the data file; it is simple and rapid; and the main drawback is the stair stepped
effect (Liu and Mason 2009).

Ground control points (GCPs) are pixels with well-defined positions in an
image for which the output map coordinates are previously definite. They must
have the following conditions and characteristics: (1) they have to be recognizable
with a site both on the image and the real world surface; (2) they are accessible in
the field; (3) they are consistently located within the study area of interest; (4)
there are sufficient of them; (5) they have a small feature size; and (6) they have to
be fixed over time. The most frequently used method to select these GCPs is the
visual method (Liu and Mason 2009). If the point features to be GCPs are difficult
to be exactly located on an image, it is better to select the ground object features to
be a GCP (e.g., intersections of linear features). In an image-to-image registration
model, intersections of highways or main roads are frequently used as GCPs. The
next mathematical statement determines the minimum number of GCPs to be used:

Minimum number of GCPs = ((n1)(n2))/2, where (n) is the order of
polynomial.

To obtain superior classification results, additional GCPs to the minimum
number are commonly used. There is an error measurement technique that can
compute the correctness of selected GCPs. It named the Root Mean Square (RMS)
error, which is the distance between the input (source) position of a GCP in the
input-matrix and the re-transformed position for the same GCP in the output-
matrix. RMS-error is computed using the next mathematical statement:

RMS�Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xr � xið Þ2þðyr � yiÞ2
q

where: xi; yi : The input source coordinates; xr, yr: The retransformed coordinates.
The RMS error will be determined for each GCP. Then, the total RMS error

will be computed by calculation the all RMS error of all GCPs. In the third step,
the RMS error will then be tested for accuracy. If the overall RMS error is not
good enough, then those GCPs with high RMS errors must be removed. This
previous step will be repeated until the RMS error is good enough.

For comparison and combination based studies that use diverse sources of data
and information, like remote sensing imagers obtained from diverse sensors (e.g.,
MSS, TM, etc.), field reference points (e.g., GPS-points), topographical data (e.g.,
DEM) and other available data for a study area, it is important to transfer all these
data into a reference cartographic projection system; the result of which is a
generally suitable data basis. The ERB projection parameters are: (Projection:
UTM, Ellipsoid/spheroid: WGS84, Datum: WGS84, Units: Meters, Zone:
37 North). The study area is in one UTM-zone (37 N), which was an advantage for
this work, since no geometric problems occurred due to changes between two
UTM-zones.

All LANDSAT-data with their different sensors have no spatial deformations
among them. However, during the connection and use of mosaic scenes, which
result from gathering individual sensor images together, it was necessary to reg-
ister the mosaic scenes to each other by accrediting one scene as the master-scene
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and linking the other scene/s. Regarding the ASTER-data, the majority of images
were not geometrically corrected, particularly between close paths. Therefore, a
geometric correction was needed, in addition to a spatial registration with ETM+-
data which was considered to be the geographical reference. Here, the problem
was that ASTER-data had a geographical reference different from the geographical
projection system of the ETM+-data, and with a 16 9 16 m pixel dimensions. For
the purposes of this study, they were re-projected from: Geographic Lat/Lon,
Datum: WGS-84, 16 9 16 m Pixel Dimensions to UTM, Datum: WGS-84, Zone:
37 North, Units: Meters, 15 9 15 m pixel dimensions using Rigorous
Transformation.

Although the program ENVI can automatically correct the ASTER-data geo-
metrically, these data were geo-referenced using the ‘‘Image to Image’’ concept,
and then analyzed on the basis of LANDSAT-data, prior to fusing the two sensors-
data. Figure 5.3 illustrates the results of the geometric correction for two ASTER-
images.

The registration of the multispectral images was carried out using ENVI 4.6
software. The three general steps were: (1) locate GCPs in the two image to be
corrected using the GCP-editor. The GCPs were interactively selected manually;

Fig. 5.3 The geometric correction (including the radiometric corrections) results of two ASTER-
scenes a Before corrections b After corrections
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(2) compute the transformation matrix using the GCP editor and the transformation
editor until the RMS error is small enough. A first-order polynomial was sufficient
for the transformation; and (3) resample the image data. The nearest neighbor
resampling technique was applied for rectifying the multispectral imagery.

For example, the geo-registration for the two remotely sensed data coverages
LANDSAT-MSS-June-1975 and LANDSAT-TM-August-2007, was carried out
using 14 GCPs (Fig. 5.4) which distributed across the image, especially on the
margins (the number was dependent on the size and image spatial resolution of the
used remote sensing data set). Table 5.1 lists the GCPs coordinates. It was simple
to gather and present good results. The nearest neighbor 1st order polynomial
correction was also used. According to the criteria presented in the literature of
remote sensing, the RMS error per image must be always less than the half of
spatial resolution of the image pixels, namely, \15 m (0.36) (Townshend et al.
1992; Mather 2004; Jensen 2007).

5.2.2 Atmospheric Correction

Electromagnetic energy detected and recorded above the atmosphere by remote
sensing sensors (here, those that work in the optical section of the EM spectrum/
especially in the visible and near-infrared regions) includes two sources of energy:
reflected and/or emitted from the ground surface; and energy scattered within and/
or emitted from the atmosphere. The quantity of this electromagnetic energy is
dependent on the quantity of exhaustive solar energy (irradiance), which is
reduced due to many factors: atmospheric absorption; the reflectance character-
istics of the various ground surface features; the differences in path length; the

Fig. 5.4 The distribution of
the 14-GCPs, used for
registration of the tow data
set (MSS-June-1975
and TM-August-2007),
image-to-image concept
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atmospheric conditions; and the wavelengths. Hence, energy recorded by the
sensor is a constructed process of: (1) incident energy (irradiance); (2) target
reflectance; (3) atmospherically scattered energy (path radiance); and (4) atmo-
spheric absorption (ERDAS 1999; Liang 2004). Figure 5.5 illustrates this process.

A large amount of optical remote sensing data is affected by the impact of the
atmosphere. This impact is called atmosphere effects (Liang 2004). It includes
‘‘molecular and aerosol scattering and absorption by gases, such as water vapor,
ozone, oxygen and aerosols’’ (Liang 2004). These effects are note measured as
‘‘error’’, because they are a component of the entire recorded signal by a receiver
or sensor (Bernstein 1983). To deal with these effects in optical remote sensing,
there is a procedure known as Atmospheric Correction. It corrects for surface
reflectance from remotely sensed images. However, it is not always simple to
remove or enhance these effects. The procedure of atmospheric correction
includes: assessment of the parameter of the atmosphere; and regain of the surface
reflectance. To correctly regain the surface reflectance based on converting of
sensor measurements to actual reflectance values on the ground using radio
transfer codes, may be need a well knowledge about the atmospheric conditions at
the time of image acquisition by a remote sensing sensor (e.g., humidity and
temperature).

The assumptions that the reflectance values recorded on the remotely sensed
data (optical remote sensing) are equal to the real reflectance of the different
features on the ground surface, and that there is representative relation between the
recorded values on the images and between the three properties of the ground
surface (physical, chemical and biological), is not acceptable unless atmospheric
corrections are applied (Liang 2004). Smith and Milton (1999) had presented the
next more radical principle: ‘‘to collect remotely sensed data of lasting quantitative
value then data must be calibrated to physical units such as reflectance’’.

Earth Surface
A

Satellite

Sunlight

Sunlight

Atmosphere

Schematic of the atmospheric influence on the recorded radiation at the sensor. The 
Sunlight is broken into three compenents:

: Air light.

: Diffuse lighting. Distracted Radiation and Reflection/Emission.

: Direct Reflection/Emission + Reflection/Emission by neighborhood effects.

A: Target

Fig. 5.5 A simplified model
of the atmospheric effects on
the reflection on a target
object (Source modified from
Kaufman 1985)
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It is not always necessary to apply an atmospheric correction technique for each
remotely sensed study, since the necessity for that depends on the goals of the
analysis and the expected results or products. For clarification, it is very important
to be applied when a remotely sensed data of a certain region are to be evaluated
over a time period—e.g., over a period of a crop growing—(Liang 2004).
Atmospheric correction is necessary for classifying a multi-sensor (especially
when integrated for an image classification) or multi-date imagery. It is moreover,
essential for mapping of change detection over a time, since it used to guarantee
that gray values of pixels are comparable in both images in a temporal sequence
(Liang 2004), since atmospheric effects are one of the error sources in change
detection studies (e.g., Chavez and Mackinnon 1994; Coppin et al. 2004).

In general, if a single-date image is used in LULC-classification, it may not
require atmospheric correction as long as the atmospheric effects are consistent
over the whole scene, since their impacts are similarly on the spectral vectors of
training and unknown pixel, and their relative positions in spectral space are
unaffected. However, if the atmospheric conditions varies largely within the study
area (e.g., due to haze, smoke or dust storm), then spatially-dependent correction is
needed (Song et al. 2001; Schowengerdt 2007).

A lot of techniques were founded to normalize and, if possible, to correct the
radiometric distortions of the data and the atmospheric effect related to atmosphere
conditions. These include, for example: the simple relative calibration approaches
(e.g., the dark-object subtraction); and the complex approaches (e.g., 6S) (Mark-
ham and Barker 1987; Canty et al. 2004). These methods include: (1) Invariant-
Object Methods (Moran et al. 1992; Chavez 1996) (2) Histogram Matching
Methods (Richter 1996a, b); (3) Dark-Object Methods (Chavez 1988; Kaufman
et al. 2000), which is frequently used; (4) Contrast Reduction Methods (Tanre
et al. 1988); (5) Cluster Matching Method (Liang et al. 2001); (6) The MODTRAN-
code (Berk et al. 1998); and (7) The Second Simulation of the Satellite Signal in
the Solar Spectrum 6S-code (Vermote et al. 1997).

In the study presented here, the simplified and fast correction approach using
the software program ATCOR-2 (Richter 2011) was used to atmospherically cor-
rect the images when needed.

The ATCOR-2/ATmospheric CORrection program was developed by the Ger-
man Center for Aerospace (DLR/Deutschen Zentrum für Luft- und Raumfahrt)
(see: Richter 1996b, 2011). It provides spatially adaptive and fast algorithm. It
supports the remote sensing sensors LANDSAT-MSS/TM and SPOT from SPOT-
4. It works with a set of functions for atmospheric correction. This set was
developed based on MODTRAN-2 and SENSAT-5 code. ATCOR-2 assumes that
the target objects have an isotropic reflection behavior, where the error effect is
taken in account by the blooming effect. The program uses the comparative
analysis of the measured reflectance of a target object on the sensor with the back-
calculated reflection of the same target, which it derived from models. It is also
implemented in ERDAS IMAGINE (http://www.geosystems.de; http://
www.atcor.de). The software has been available since 1996/2002, and is a part
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of other digital image processing software such as ENVI and PCI-Geomatica, or as
an independent program.

Some of its advantages are: (1) short times required for computing process; (2)
adequate results in comparison to other simple approaches or models; (3) it is easy
to get the required parameters to be input to the program; and (4) it is uncom-
plicated to set and modify these parameters separately across the study area,
especially if this area is large enough to have different radiation effects (Leica
Geosystems 2005). Figure 5.6 subdivides the module ATCOR-2 into many sub-
modules.

The parameters that have to be entered in the ATCOR-2/main menu are: (1) the
image has to be corrected, the input-file source location, and the output-file des-
tination after finishing the process of correction; (2) selection of spectral bands to
be corrected; (3) determining the sensor specifications (calibration file); (4)
determining the atmospheric model (based on meteorological information and the
parameters of the applied model); (5) the size of the study area; (6) size of the used
filter (to minimize the blooming effect), reflection- and emission- correction fac-
tors using the maximal dynamic range of the output-file by rescaling 8 bit; (7)
some secondary information (e.g., location coordinates, recording date/time, mean
elevation, air pressure, air temperature, absolute and relative humidity, and visi-
bility); and (8) selection of the suitable atmospheric conditions from constant and
spatially varying by comparison with secondary sources (Leica Geosystems 2005).
The Spectra-module can be used optionally after point 7 as parameter number 8 in
the module (main menu), checks whether the selected atmospheric model and the
visibility are adequate (and if necessary adjusts the parameters iteratively).

ATCOR-2/Main Menu:
-Determining the input parameters.
- First definition (assumption) of the
atmospheric model, the calibration file, and the
visibility.

Spectra:
-Interactive process to selest (adequate
atmosphere models, calibration file, and ground
visibility).
- Control the above selection by selecting typical
test object in the image.

Constant atmosphere:
-Elimination of haze.
- Calculation of the reflection.

Spatially varying atmosphere:
-Elimination tof haze.
- Calculation of spatially varying
visibility.
- Calculation of the reflection.

Spatially varying atmosphere
(ext. Visibility file):
-Elimination of haze.
- Calculation of the reflection
using external visibility files.

Sun-position calculator:
- Calculate the (zenith and azimuth) of the sun at 
the recording time for the given location. 

Fig. 5.6 ATCOR-2 and its central sub-modules (Source modified from Leica Geosystems 2005)
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Figure 5.7 illustrates the major followed steps in atmospheric correction of the
data set in this study. The solar zenith/sun elevation (61.07 8) and the solar azi-
muth/sun angle (126.22 8) were calculated using the sun position calculators based
on the recoding date of the image (e.g., p172r035)/(07.8.2007), scene-center-scan-
time (07:50:59 clock), and the Longitude (039 45 10 E) and Latitude (35 10 05 N)
of the scene center. The necessary information can be found in the header file of
the image data. The used atmospheric type was midlat-summer-rural, where:
midlat = radiation region of the mid-latitudes, summer = season, and
rural = aerosol type. Table 5.2 provides the used weather information. If the
meteorological data are not always obtainable, then the standard atmosphere (dry
desert) have to be used, which took into account the atmospheric effects in a good
approximation (Richter, ATCOR-2/3 User Guide, 2011).

The sensor calibration file represents another important input. This file includes
the calibration data (correction factors: Bias [c0] and Gain [c1]) of each channel.
Bias: Describes the spectral radiation on the sensor for a gray value of zero. Gain:
Represents the gradient calibration. The data takes place in the unit of electro-
magnetic radiation [mW cm-2 sr-1 lm-1] (Lillesand et al. 2008). ATCOR-2
calculates the reflection on the sensor using these factors in the linear equation:

Input image
(Gray-value

image)
Radiance image

Photographing
(recording) 

parameters, senso
r calibration data

Atmospheric
correction

Type of
atmosphere based
on the collected

weather data

Output image
(corrected
reflectance

image)

Fig. 5.7 The general concept of atmospheric correction using ATCOR-2

Table 5.2 Weather data
from the Arraqah climatic
station (Longitude: 039 59 00
E; Latitude: 35 54 00 N;
Elevation: 250 m),
07.08.2007, 8.20 clock

Temperature 30.4 �C
Relative humidity 44 %
Visibility 35 km
Air pressure 870.3 hPa
Sun elevation 61.07

Source The General Authority for Meteorology, Damascus, 2008
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L = c0 + c1 9 DN, where: L = calculated radiance on the sensor;
DN = digital numbers.

The new atmospheric corrected image (LANDSAT-TM-p172r035-070807) has
new gray-values (e.g., DNs-before: 50, 65, 83; DNs-after: 41, 45, 65). The cor-
rected histogram band 1 has, in comparison to the raw data, the same trends. It is
darker, the individual object-groups are more evident through peak formation in
the corrected data (DN-values), and they are, therefore, better to delimit than in the
raw data (uncorrected) (Fig. 5.8).

5.2.3 Radiometric Processing/Calibration

The application of the information-extraction algorithms for LULC-classification,
change detection and other remotely sensed Earth observation studies can be
generally useful when the data are radio-metrically processed. On the other hand,
if the user select an approach, that is based on products resulting after classifi-
cation, for mapping the change detection, then radiometric correction is avoidable
(Jensen 2007). It is true when only one image at each compared time (no mosaic)
is used in classification, and when each image has the same irradiance conditions
(e.g., no haze or dust). However, the using of some change detection approaches
(image differencing), would requires a radiometric normalization. Also, radio-
metric correction is necessary for some applications (e.g., image mosaicing) (Yang
and Lo 2000).

The radiometric correction set can correct radiometric distortion, which occurs
because of sensor noises and atmospheric effects. Radiometric correction of
remotely sensed data is a process of converting the recorded pixels’ brightness
values (where they are simply numbers, without physical units) to an absolute

Fig. 5.8 Histogram comparison of the (LANDSAT-TM-Band-1) before and after the atmo-
spheric correction
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independent scale of radiance that serves as a more direct link between image and
biophysical phenomena, then addressing the errors in pixel values. It is then
possible to manipulate these values to maximize their information for studies that
are based on the digital processing of remote sensing data (Wulder and Franklin
2003; Liang 2004; Lillesand et al. 2008).

Schowengerdt (2007) has listed three levels of radiometric calibration. The first
converts the sensor DNs to at-sensor radiances. The second transforms the at-
sensor radiances to radiances at the Earth’s surface. The third transforms it to
surface reflectance.

The radiometric correction/adjustment set includes the three mechanisms: (1)
calibration of the sensor: it is the process of converting the DNs to at-sensor
radiance for inter-sensor data comparison. Gains and offsets are well-known for
each remote sensing sensor, and these used to the recorded signals to generate the
DNs. This first mechanism is frequently calculated at the satellite ground stations;
(2) atmospheric correction (see Sect. 5.2.2); and (3) radiometric normalization
(absolute and relative). (A) Absolute radiometric normalization: ‘‘for a linear
sensor, is performed by ratioing the digital numbers (DNs) from the sensor, with
the value of an accurately known, uniform radiance field at its entrance pupil’’
(Liang 2004). In this case, user has to carry out atmospheric corrections, which
require atmospheric information at the time of the image acquisition (see
Sect. 5.2.2). However, when it is difficult to obtain these atmospheric parameters
and/or the absolute surface radiance is not necessary, one can change to (B)
relative radiometric normalization: it is an in-image technique which uses the
information contained within the image itself, and used when the full radiometric
calibration for remote sensing data is complex. The concept is based on the sup-
position that it is possible, by application of linear functions, to estimate the at-
sensor radiances recorded at two different times and for the same area but under
different conditions (Yang and Lo 2000). This technique has the disadvantages of
difficulty and time-consuming, where it has to determine the suitable time-
invariant features upon which the normalization is based (Teillet and Fedosejevs
1995; Schowengerdt 2007). This method is applied especially in applications
based on LULC-classification and post classification change detection (Song et al.
2001).

Several methods (Schott et al. 1988; Moran et al. 1992; Du et al. 2002) were
developed and proposed to be applied as techniques for the relative radiometric
normalization in remote sensing applications. Canty et al. (2004) proposed a
method based on MAD, which use the advantage of the invariance properties of
MADs. Canty and Nielsen (2008) further improved this approach by introducing
an iteratively re-weighting method of the MADs, which executed superior in
isolating no-change pixels fit to use for the relative radiometric normalization. The
MAD method, after the modifications by Canty et al. (2004) and Schroeder et al.
(2006) provides better radiometric normalization than those achieved with manual
selected invariant features.
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MAD can be used for bi-temporal change detection and for automatic relative
radiometric normalization (Nielsen 2007; Canty and Nielsen 2008; Canty 2010).
Canty (2010) explained the mathematical background of MADs.

To create a MAD-image, it is necessary to select two multi-spectral images that
have alike spatial dimensions (size of the pixels). The two images will be modeled
as a casual variable G1 and G2. When each image has, for example, 123 pixels,
then these 123 pixels have a 123 times repetition of a mathematical random
experiment, where,—here, the accurate value of pixels are not defined or descri-
bed. If G1, G2 represent only a specific pixel or an entire image, then it will be
illogical for them. What is important here is the properties of the causal variables
G1, G2. Some suppositions about G1, G2 can be made by using the metrics of
histogram (e.g., empirical variance, mean-based assessment of predictable value).
Each image includes an N spectral bands, with G1 (also G2) as a random vector
(Schultz 2011).

The X2 image expresses the representative pixels which may be suitable for the
radiometric normalization (Canty 2009). The X2 distributions are only the pixels
that satisfy the formula: /Pr (no change) [ t, where (t) is a decision threshold that
is typically 95 %/. The radiometric normalization based on these satisfying pixels
will be used to perform an orthogonal regression.

The iMADs, X2-values can only be calculated for overlapping areas, since the
iMAD is designed for applying the automated radiometric normalization of multi-
temporal remotely sensed data sets.

Adjacent scenes can be normalized by selecting their overlapping area (subsets)
and followed by using the created transfer function of the orthogonal regression
expressed on an entire image. It is important to cover all LULC-properties in the
overlapping region of the two images (master and target), while pixels with an
alike spectral behavior from overlapping and non-overlapping regions will be
treated according to the regression function (Canty and Nielsen 2008).

Large water bodies affect the iMAD negatively (Canty 2009). Clouds and their
shadows do not affect the normalization superiority, while they are detected as
change (Canty and Nielsen 2008).

Summarized after Canty and Nielsen (2008) and Schultz (2011), the performed
radiometric normalization was achieved in the five phases: (1) insert the dual-
temporal data set; (2) compute CVs, build MADs and reweighing the spectral
information accordingly; (3) repeating until no significantly improvement in cor-
respondence of the CVs; (4) select pixels that have a no-change chance greater
than a threshold value (t); and (5) determine the two radiometric normalization
coefficients, i.e. slope and intercept, based on the orthogonal regression on selected
pixels that have to be performed previously. The iMAD was applied to the imagery
using ENVI 4.6 and IDL 7.06. The source code used was provided by Morton
Canty and can be downloaded at ‘‘http://mcanty.homepage.t-online.de/
software.html’’. In Canty (2009) the implementation and installation of the soft-
ware to ENVI 4.6 is presented and explained.

To normalize the radiometry of all the used remote sensing sensor (e.g.,
LANDSAT-MSS-June-1975 and LANDSAT-TM-August-2007) data sets, a
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master scene has been selected in each data set to which all other scenes have been
adjusted. LANDSAT-MSS scene (p185r035) and LANDSAT-TM scene
(p172r035) were selected as master scenes for each data set, as each was in the
center of the study area and covered the greater part of it. Atmospheric conditions/
illumination were the same overall in each scene (e.g., no dust, no haze, etc.), and
they had no cloud cover. All other scenes in each data set were radio-metrically
adjusted based on the two master scenes. Regions in the image overlap areas of the
bordering scenes were used to calculate regression coefficients, which were
applied in a second phase to the complete sub-scene. The overlapping areas were
selected to represent the variability of surface across the scenes. Finally, after
mosaicking the images of each data set, the TM-Mosaic-Image was chosen as a
master scene to normalize the MSS-Mosaic-Image radio-metrically (Fig. 5.9).

Figure 5.10 provides the results of the radiometric normalization using iMAD.
MSS-1975-Mosaic/before (iMAD) MSS-1975-Mosaic/after (iMAD) TM-2007-

Mosaic/Master scene.

P185- r036

P186-r035

P171- r035
P173-r035

P171-r036
P172-r037

LANDSAT-MSS-June-1975
LANDSAT-TM- August-

2007

P186-r034
P184- r035

P173-r034
P172 -

r035/Master 
scene

P184- r036

P185-
r035/Master 

scene

Atmospheric correction/ATCOR -2 + 
Relative radiometric normalization /iMAD

No atmospheric correction/no atmospheric parameters
Only relative radiometric normalization /iMAD

Mosaic
Mosaic /Ma

ster scene
iMAD

Fig. 5.9 Radiometric normalization between the two data-sets, which were used for change
detection

Basic Stats     Stdev     Stdev     Stdev
     Band 1 24.345611 53.79413 66.910881
     Band 2 39.756239 38.173823 42.59285
     Band 3 41.205301 63.594957 62.193548
     Band 4 31.961721 60.645272 59.189952

Fig. 5.10 iMAD results for the two data sets MSS-1975 and TM-2007. We can notice that the
basic statistics (e.g., Stdev) of the radiometric normalized image are more similar to the master
scene than the unnormalized image
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A radiometric correction process was fulfilled on the mosaic scenes which
carefully covered the study area. This was achieved by accrediting one of the
scenes as a radiometric-reference (master-scene). Then, the other image/s were
matched with it radio-metrically, i.e., a transformation process of the radiometric
characteristics of the source-scene was conducted on the other images (targets).
This resulted in obtaining close and similar radiometric characteristics for all
scenes that covered the study area, because all had the same reference/source (i.e.,
the master-scene). Consequently, the Earth features (e.g., wheat fields) that existed
in an individual scene, appeared spectrally (reflectance values/gray values) and
radio-metrically, similar to those wheat fields located in each of the other scenes.
This degree of similarity was based on the applied radiometric correction method/s
and on the nature of the ground surface features that existed in the satellite image.

After finishing the atmospheric correction using ATCOR-2, a radiometric
correction process was conducted of the scenes covering the study area (MSS-
June-1975 and TM-August-2007) using iMAD. A radiometric correction was
applied upon the two mosaic-scenes, since the TM-data was too basic for use with
iMAD. As to the scenes that could not pass the radiometric correction process (for
instance, TM-May-2007-data), it was enough to make atmospheric correction
using ATCOR-2, followed by an automated classification applied for each image.
Finally, the mosaicing-process was applied for the produced thematic maps that
resulted from classifying each image. This mosaicing-process was helpful, in that
it made it easier to find the final statistical results for the whole study area, and to
compare the area with other results from separate data and dates.

5.2.4 Data Fusion

Image fusion is the process of fusing the lower multi-spectral spatial resolution
with the higher panchromatic spatial resolution, to generate a higher multi-spectral
resolution data set, which has the advantages of both: the high spatial resolution of
the panchromatic image; and the higher spectral resolution of the multi-spectral
image. It is one of the spatial enhancement techniques which are able to use the
corresponding information that obtained from different imagery about the same
terrain features in an effective way (Liu and Mason 2009).

Fusing panchromatic- and multispectral- data includes two general steps: (1)
the geometrically registration the low-resolution multispectral imagery to the high-
resolution panchromatic imagery (see Sect. 5.2.1); and (2) merging the informa-
tion contents, spatial and spectral, to produce one data set that have the best
characteristics of the two input data sets. Examples of image fusion techniques are:
IHS (Intensity-Hue-Saturation); PCS (Principal Component Substitution); HPF
(High-Pass Filter); RVS (Regression Variable Substitution); and SVR (Synthetic
Variable Ratio). In this study, the Gram Schmidt Spectral Sharpening Algorithm
was used.
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The merged data were fit for further digital classifications, since the spectral
separability for LULC- and crops- classes/six spectral bands of the merged data
was better than the spectral separability of the original data. This was because
there were only three spectral bands. Therefore, merged images were used for
visual interpretation and for features extraction (classification).

Figure 5.11 explains the concepts followed to generate the final fused and
mosaiced data set of the ERB-borders based on TERRA-ASTER & LANDSAT-
ETM+ images.

The ASTER data did not cover the entire study area, only the first three bands
with a resolution of 15 m. This data was before tested on the separability among
the extracted classes of interest from the study area and compared to the same
ASTER data after they were merged with the three spectral bands (1, 5 and 7) of
LANDSAT-ETM+. However, these three bands were useless in the classification
process due to their low separability when compared with the results of spectral
separability that resulted after fusing with the other three bands of ETM+ (see
Tables 5.4, 5.5). Therefore, ETM+-scenes which were corrected SLC-off data
were used. This data had similar temporal coverage to the ASTER data. The idea
was to increase the spectral resolution which in turn, increased the spectral sep-
arability between classes. These offered classification results with higher accuracy
rather than using only the three spectral bands of ASTER data.

Because the ASTER data had a spatial resolution of 15 m, and in order to
benefit from this to compare results with the results of MSS-60 m, and TM-30 m,

LANDSAT-ETM+/SLC-Off_Corrected/ data
(the bands: 1,5, and 7_30m)

TERRA-ASTER data (the bands: 1,2, and
3_15m)

Geometric correction/GCPs

Radiometric adjustment (atmospheric
correction/ATCOR-2 + radiometric

normalization/iMAD

Radiometric adjustment (atmospheric
correction/ATCOR-2 + radiometric

normalization/iMAD

Fusion (sharpening) using the panchromatic
band (8)_15m

Subset all images (to remove the distortion
on the margins)

Mosaic image (3 bands with 15m)
Mosaic image (3 bands with 15m)

ETM+_p173r035-scene_(1,2,3,4,5, and 7 
bands)_15m (cover the west area, that

ASTER-data not covers it)

Layer stacking

Fused data set (mosaic)

Mosaic
The final fused data set (cover the all study

area)

Subset (ERB-
borders)

Gram Schmidt 
Spectral

Sharpening-
Algorithm

Geometric
regestration

(image to image)

Radiometric
normalization

(iMAD)

Fig. 5.11 Fusion- and mosaic-concept for LANDSAT-ETM+ and TERRA-ASTER data set,
acquired in May and August 2005
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a spatial enhancement of the ETM+-scenes with the spatial resolution of 30 m was
required. This was conducted by transforming the data into a 15 m spatial reso-
lution using the ENVI-program and selecting the Schmidt Spectral Sharpening
Algorithm. Figure 4.4 shows the spatial distribution of the two remotely sensed
data which were used in the fusion and mosaicing process.

5.2.5 Mosaicing, Subsetting and Masking

The mosaic-process was applied to data which had similar atmospheric conditions
and no radiometric distortion overall, or to those data whose atmospheric and/or
radiometric distortions were corrected or normalized using ATCOR-2 and/or
iMAD (see Sects. 5.2.2 and 5.2.3). For the data which were impossible to correct,
a LULC-classification was carried out for each scene and then mosaiced to the
results, to determine statistics. These results were in turn compared with those of
the other data set (e.g., post-classification change detection) (see Sect. 5.12.2). The
advantages of the mosaic process were found to be their ease and the speed in
digital image processing.

Section 5.2.4 and the figures (Figs. 5.9 and 5.11) explain the followed process
for two data sets. Figure 5.12 explains the difference between two generated
mosaics and the importance of the pre-processing steps, mainly color balancing,
radiometric normalization and atmospheric correction.

Fig. 5.12 Two mosaic-results of the data set (LANDSAT-TM-August-2007). Left without any
digital pre-processing steps/techniques or corrections; right after applying corrections
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The masking operation enables researchers to use an image file to choose
(mask) definite areas and/or values from a matching raster file, and use those areas
and/or values to generate one or more new files. The input mask file and input file
must be the same as masking will be performed on the image area that both files
have in general through the intersection process. This operation was used too often
in the Multi Stage Classification Approach (see Sect. 5.7.1.2), especially in crops
classification (see Sect. 5.11). The masking areas were selected by generated class
values or were based on NDVI transformation (the masking operation was a
processing and not a pre-processing step). All the class values of classes to be
masked were set to zero or recoded to zero, then all unwanted zero signed features
will be ignored when masking was executed.

The sub-setting operation was used broadly in this study to cut and remove the
distorted margins of the LANDSAT-data; to subset only the study area (ERB
borders) from each image or from the whole data set mosaic scene; to reduce
processing time; and to reduce the geographical local extent that increased the
spectral differences of the existing ground surface features. The final subset of the
study area was about 50,335 km2.

Mosaics for the ASTER-May and August-Data in 2005 were produced, eight
paths from left to right (path-1: 4 rows, path-2: 4 rows, path-3: 3 rows, path-4: 3
rows, path-5: 3 rows, path-6: 4 rows, path-7: 5 rows, and path-8: 4 rows).

After the enhancement of the three bands of the ETM+-data (six bands for the
scene (p173r035), i.e., the bands (1, 2, 3, 4, 5 and 7) which covered a part of the
study area that the ASTER data did not cover), scenes were collected in one
mosaic-scene. Here, before mosaicing, subsets were completed for each scene to
remove margin deformations. After that, a geographic registration was applied for
the ASTER-mosaic-scene with the ETM+-mosaic-scene as master-scene, using the
image to image method. Before the last step, the three bands of ASTER data were
composited with the three bands of ETM+-data (one layer-stack). The last step
created a mosaic for the last scene which resulted from fusing ASTER-bands with
ETM+-bands, and for the p173r035-scene of ETM+-data that covered the rest of
the study area. The final result was the creation of one compound mosaic scene
from both the ASTER- and ETM+-data that was homogeneous: Radiometrically
(i.e., no or acceptable spectral appearance of the same features overall in the
mosaic-scene); spatially (15 m); and spectrally (six bands).

In order to reduce temporal and effort processing series on the remote sensing
scenes which covered more than the spatial distribution of the study area, these
scenes were subsetted to include only the spatial distribution of the ERB borders.

5.3 Design of the LULC-Classification System

A LULC-classification starts with defining a classification system. A successful
LULC-classification requires a suitable classification system and an adequate
number of training sites. Its design is related to: the needs of the user; the spatial
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resolution of used remote sensing data; the capability with the prior studies; the
used algorithms for image-processing and classification; and the time limitations.
A system of LULC classification categorizes the all definable LULC-features into
classes in the system. A good system should have three characteristics (informa-
tively, exhaustively and separability) (Jensen 2007). Also, a good system structure
can be located at any point on the map/ground into one and only one LULC-
category.

An a priori hierarchical structure system for the LULC-classification for the
study area was build. This system was adopted to increase the flexibility of
classification procedures and to take different conditions into account. Further-
more, the LULC-classification system used the ‘‘diagnostic criteria and their
hierarchical arrangement to form a class (map-ability function), that had the ability
to define a clear boundary between two classes. Hence, diagnostic criteria should
be hierarchically arranged in order to assure a high degree of geographical
accuracy at the highest levels of the classification. These prerequisites can only be
accomplished if the classification has the possibility of generating a high number
of classes with clear boundary definitions’’ (Di Gregorio 2005).

The Land Cover Classification System (LCCS) was designed with two main
phases (see Fig. 5.13): (A) an initial Dichotomous Phase, in which eight major
land cover types were defined: (1) Cultivated and Managed Terrestrial Areas; (2)
Natural and Semi-Natural Terrestrial Vegetation; (3) Cultivated Aquatic or Reg-
ularly Flooded Areas; (4) Natural and Semi-Natural Aquatic or Regularly Flooded
Vegetation; (5) Artificial Surfaces and Associated Areas; (6) Bare Areas; (7)

Fig. 5.13 Overview of the land cover classification system (LCCS), its two major phases and the
classifiers (Source adapted from Di Gregorio 2005)
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Artificial Water bodies, Snow and Ice; and (8) Natural Water-bodies, Snow and Ice
(Di Gregorio 2005).

Five major classes were classified: 1, 2, 5, 6 and 8, since the classes 3, 4 and 7
did not exist in the study area ERB. A dichotomous key was applied at the major
level of classification to identify the major land cover classes (see Fig. 5.13).
Three classifiers were used in the dichotomous phase, i.e.: Presence of Vegetation;
Edaphic Condition; and Artificiality of Cover. ‘‘These three classifiers were
hierarchically arranged, although independent of this arrangement, the same eight
major land cover types would be keyed out. The hierarchical arrangement is thus
not important in this phase, but was a guiding principle in the subsequent Modular-
Hierarchical Phase’’ (Di Gregorio 2005).

This was followed by a subsequent so-called: ‘‘(B) Modular-Hierarchical
Phase, in which land cover classes were created by the combination of sets of pre-
defined classifiers. These classifiers were tailored to each of the eight major land
cover types. The tailoring of classifiers in the second phase allowed the use of the
most appropriate classifiers to define land cover classes derived from the major
land cover types and at the same time, reduced the likelihood of impractical
combinations of classifiers’’ (Di Gregorio 2005).

The classifiers of the pure land cover can be jointed with so-called attributes for
additional description. There are two kinds of these attributes, which form separate
levels in the classification: (Di Gregorio 2005): ‘‘(1) Environmental Attributes:
these attributes (e.g., climate, landform, altitude, soils, lithology and erosion)
influence land cover but are not inherent features of it and should not be confused
with ‘‘pure’’ land cover classifiers. These attributes can be combined in any user-
defined order; and (2) Specific Technical Attributes: these attributes refer to the
technical discipline. For Semi- Natural Vegetation, the Floristic Aspect can be
added (the method on how this information was collected as well as a list of
species); for Cultivated Areas, the Crop Type can be added either according to
broad categories commonly used in statistics or by crop species; and for bare soil,
the Soil Type according to the FAO/UNESCO Revised Soil Legend can be added.
These attributes can be added freely to the pure land cover class without any
conditions’’.

The LCCS is a wide-ranging, standardized a priori classification system,
designed to meet specific user requirements, and formed for mapping exercises,
free from scale factor or means used to map. Any LULC-feature well-known
overall around the world can be readily contained. The classification uses a set of
diagnostic standards that are independent and that able to allowing a correlation
with presented classifications and legends. The advantages of the classifier or
parametric approach are manifold. The system created is a highly flexible a priori
land cover classification in which each land cover class is clearly and systemati-
cally defined, thus providing internal consistency. The system is truly hierarchical
and applicable at a variety of scales. Re-arrangement of the classes based on re-
grouping of the classifiers used facilitates extensive use of the outputs by a wide
variety of end-users. Accuracy assessment of the end product can be generated by
class or by the individual classifiers forming the class. All land covers can be
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accommodated in this highly flexible system; the classification could therefore
serve as a universally applicable reference base for land cover, thus contributing
towards data harmonization and standardization (Di Gregorio 2005).

Included here is the general legend which generated from the LCCS-Software,
because it is difficult to read the description of the resulted classes once the legend
is integrated with the resulting thematic maps (Fig. 5.14).

5.4 Field Work

The identification of the potential LULC-classes and the thematic content that a
classification can or should be included is crucial, where a classification process is
a thematic analysis of the landscape (Jensen 2007). Such interpretation to be
founded, it is necessary to identify and understand factors that control and
determine the form of features or phenomena. So, field work and observations are
essential if a supervised based classification method will be used (Richards and Jia
2003).

Interviewing local farmers provides important understanding of the general
characteristics of the LULC in the study area during the past decades. So, inter-
views were conducted with village leaders and farmers. The main reason for
interviewing these people was to find the relationship between the satellite data
and the qualitative LULC-history in the surroundings of the villages.

Field work was carried out in June, 2007 (Fig. 5.15), since measurements can
be taken (GPS-points) for either winter and/or summer crops. Annually in June in
Syria, the wheat and barley are harvested (N.B., most irrigated wheat in east Syria
will not be harvested yet), the sugar beet will still be green, cotton and corn will

FAO_LCCS_14- Class

Dichotomous Phase

B15: Artificial Surfaces And Associated Area(s)

B16: Bare Area(s)

Cultivated And Managed Terrestrial Area(s)

Natural Water-bodies, Snow, And Ice 

Natural And Semi -Natural Primarily Terrestrial Vegetation
A1-D1: Tree Crops – Rain-fed Cultivation

A1-D3: Tree Crops – Irrigated Generally

A3-D1-S1-S0311: Herbaceous Crops – Rain-fed Cultivation – Wheat (Triticum spp.)

A3-D1-S1-S0302: Herbaceous Crops – Rain-fed Cultivation – Barley (Hordeum Vulgare L.)

A3-D3-S1-S0311: Herbaceous Crops – Irrigated Generally – Wheat (Triticum spp.)

A3-D3-S1-S0302: Herbaceous Crops – Irrigated Generally – Barley (Hordeum Vulgare L.)

A3-D3-S1-S0702: Herbaceous Crops – Irrigated Generally – Fodder Pulses

A3-D8: Herbaceous Crops – Fallow System

A1-A5-V4: Inland Water – Standing – Very Saline

A1-A4-V1: Inland Water – Flowing – Fresh

A1-A14: Woody Vegetation – Sparse (20-10) %

A2-A24: Herbaceous Vegetation – Sparse (20-10) %

Fig. 5.14 Description of the resulting 14-class for the four 4-regions sub-study-area (Source
adapted from LCCS-Software/Version 2.0)

5.3 Design of the LULC-Classification System 87



grow without problems. A second campaign was conducted in July 2009 for
complementary information and some GPS-measurements based on the knowledge
of the farmers. These two field work periods were held to increase the under-
standing of the patterns of LULC in the study area. Preliminary image classifi-
cation (unsupervised) and RGB-composite imagery of the study area were printed
to show target areas to be surveyed depending on the accessibility of each site. The
data were gathered from different sites depending on the differing soil types and
irrigation systems in the study area. Random sampling methods were used. Each
plot was registered by using GPS-technology (using a GARMIN-Colorado-300
global positioning receiver) to allow for further integration with the spatial data in
a geographic information system (GIS) and image classification programs.

Information was gathered based on specific procedures such as: identification of
the dominating species of trees, shrubs and herbs; detection of the physical aspects
of the soil; conduction of interviews and group discussions with local farmers to
extract historical information about the LULC in the study area; and gathering of
information about prior LULC activities regarding to types, densities, distribu-
tions, and species.

Figure 5.16 illustrates one example from the study area as explanation of the
steps followed during the excursion in 2007 to collect ground truth data (especially
for agriculture). The outputs of this first experimental stage were the gathering of
the training samples and the testing of sites for automated supervised classification

Fig. 5.15 Excursion-GPS-points-2007 and other GPS-measurements from ICARDA and GORS
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algorithm/s and accuracy. Figure 5.17 presents the complementary stages of the
field-work, which could perhaps be described as ‘‘office work’’. This was essen-
tially based on the gained output-results of the previous stage and their use as
inputs in the automated supervised classification processes chain. The classifica-
tion process in this work included two types (see Sect. 5.13; Chap. 6.2); the first

Fig. 5.16 The followed methodology for collecting the ground truth data during the field-work
in 2007
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using the automated accuracy assessment based on trusted data (e.g., aerial pho-
tographs, GPS-measurements, etc.); and the second manually comparing the
resulted readings from remote sensing data with the state statistical records. One
cannot separate between these two stages, especially when the desired classifica-
tion result reaches a very detailed level of information about the LULC-features
(e.g., crops mapping). Thus, these stages have been linked and described in the
same place here.

5.5 The Possibility of Spectral Separation Between Crops/
Spectral Considerations

Satellite data was procured based on agricultural crop calendars and separability
(dependant on crop cover, density, leaf area, crops growth stage, etc.) of the main
crops cultivated in the region. By application of remote sensing data in agriculture,
the observing of spectral of the crops at one exact stage is more common than
those over the entire growing season. Thus, the spectral behavior of plants and the
effects of the background surface (soil or water) should be well understood.

Fig. 5.17 The followed methodology for collecting the results during the ‘‘office-work’’
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The questions related to the spectral characteristics of the used data are: what
are the agricultural features that have to be classified? Are they spectrally sepa-
rated from the other associated agricultural features and land cover types (espe-
cially the natural plants)? Which EMS portion, wavelength, or spectral band are
most helpful for spectrally distinguishing and classifying the agricultural features?
and what time period of the year is more suitable, in which remote sensing data
would be acquired? This based on the fact that the spectral behavior of these
agricultural features is unique or more unique during certain times of the year
(Hoffer 1980).

The conceptual method and the final results carried out from the GORS-project
(see Chap. 2.2) using the spectrometer measurements were used to determine the
appropriate date/s, in which is it was possible to separate between the agricultural
crops spectrally and then to classify the individual winter and summer crops. This
presentation was to confirm the temporal choice of the various remotely sensed
data that are used in this study.

A FieldSpecPro spectrometer by GORS was used to collect the radiometric
measurements of the major crops. It had a spectral range of 350–2,500 nm, with a
spectral interval of 1 nm. It offered very sensitive and accurate measurements in
the spectral ranges of visible, near infra-red, far infra-red, and thermal, and was
equipped with two software-programs. The first, RS3, recorded target reflectance
and saved the measurement records. The second, ViewSpecPro, processed the
recorded data and transformed them to digital-format, for ease of analysis
(Fig. 5.18).

Fig. 5.18 The followed concept in spectral measurements using (FieldSpecPro) by (GORS)
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The total radiometric readings numbered 2,669 measurements that represented
103 training-fields of different crops (Fig. 5.19).

These displayed the values of the spectral reflectance as spectral signature for
each crop, within the wave-lengths from 35 to 2,500 nm and with a spectral
interval of 1 nm for the crops in the study area through their growth stages,
allowing for a temporal succession of 15 days between the various readings, from
planting and germination until harvest. The spectral results that represented the
winter crops included wheat, barley and sugar beet. For example, the training
fields of wheat in Arraqqah Province were made up of 35 fields (Fig. 5.20).

Figure 5.21 illustrates the bond between the spectral responses of the irrigated
wheat during 10 different growth stages and the characteristics of the eight bands
of ASTER. It is clear that the reflectance potential is greatest at the third band
among the whole growth stages, with the exception of the time period from 04.12
to 23.01 in the study year, where the reflectance of the soils prevailed.

Figure 5.22 illustrates the change in the spectral response of the irrigated wheat
in relation to the eight spectral ASTER-bands among the 10 various growth stages.

After analyzing the various spectral responses of the different winter crops in
the study area, the appropriate date for separation between the three irrigated major
strategic crops (wheat, barley and sugar beet) was determined in the first days of
May. In addition, sugar beet was found to have another separation date in mid-
June, when the other two crops (wheat and barley) were harvested or had a dry and
yellowish appearance (Fig. 5.23).

Secondly, the spectral results that represent the major summer crops included
cotton, corn and watermelon. Figure 5.24 illustrate the spectral response of each
crop. The third spectral band of the ASTER-sensor had the greatest sensitivity and

Fig. 5.19 The distribution of the training fields used in the spectral measurements
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potential to detect the spectral characteristics of the three crops of interest, among
the various growth stages, using the first three ASTER-bands.

Figure 5.25 represents the effect of the vegetation growth stages on the spectral
response of cotton at the third ASTER-band.

Fig. 5.20 Spectral reflectance measurements for wheat at different growth stages

Fig. 5.21 Spectral reflectance values of irrigated wheat during its growth stages in Arraqqah
using the ASTER-bands
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The suggested date of separation and classification of the three summer crops is
between 20 July and 20 August (Fig. 5.26). Figure 5.27 illustrates the different
spectral responses of these major crops.

These results are compatible with both ASTER-data and LANDSAT-data, and
it is possible to generalize them with other remotely sensed data that operates
especially in the visible and the near infra-red spectral ranges.

Fig. 5.22 Spectral reflectance values of ASTER-bands during the different growth stages of the
irrigated wheat

Fig. 5.23 NDVI-values of major winter crops during growth stages in Arraqqah Province in
Syria
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5.5.1 The Phenological Case of the Different Crops/the
Agricultural Calendar

With the use of remote sensing to separate the crops, the spatial dimension of LU
were obtained but the problem remained of identifying of the crops spectrally,
particularly those whose spectral behavior was similar in the date of access to the

Fig. 5.24 The relationship between the spectral reflectance and the different growth stages of the
three essential summer crops by the first three spectral bands of ASTER

Fig. 5.25 The relationship between the spectral reflectance and the different growth stages of
cotton by the third spectral band of ASTER
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remotely sensed data (e.g., wheat and barley). To overcome this latter problem,
good knowledge of the study area was required in terms of types of crops that were
cultivated, growth stages, the dates of propagation and harvest (agricultural cal-
endar), and the type of farming prevailing, whether irrigated crops/plantations,
rain-fed, or mixed.

‘‘Agricultural crops have rapid changes in spectral characteristics at various
times in the growing season. As, at the beginning of May, wheat planted in the
ERB presents a green canopy of vegetation to the remote sensor, but by late May,
the same wheat will be golden brown and nearing maturity. Two weeks later
between mid and late June, the crop will have been harvested and one will see only
the highly reflective yellow straw. Sometimes, when there has been no tillage or
another crop has been planted, many weeds and green vegetation will be mixed in
with the straw, which could be observed as grazed pasture or perhaps hay. So, it is

Fig. 5.26 Temporal- and spectral-separability of cotton, corn and watermelon by the third
spectral band of ASTER

Fig. 5.27 The spectral response of cotton, corn and watermelon during the suggested dates to
recognize these summer crops in the spectral range (350–2,500) nanometer
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important to understand the rapid seasonal changes of the crops or other Earth
surface features of interest (mainly natural vegetation). To this end, crop calendars
can be developed for any particular geographic area. Crop calendars describe the
general characteristics of the different crops types as a function of the time of year
and the geographic location. They can vary from one year to the next, depending
on the various conditions such as extreme weather events of that particular year.
Finally, crop calendars should be developed more well in areas of the world where
seasonal changes are distinct’’ (Hoffer 1980).

Crop phenology (regular information on the growth cycle of crops) is important
in the monitoring and classification of LU, where it can have a significant effect on
the accuracies of crop yield and acreage change. It controls the temporal changes
observed from remotely sensed data. The integration of space and time represent
crop growth in remote sensing. So, crop phenology contributes to the under-
standing and monitoring (e.g., spectral measurements) of crop type reorganization
and area measurement. Different crops (wheat, barley, cotton, corn, etc.) have a
clear and unmistakable spectral response exhibit and period of maximum green-
ness. This information or phenology can be used in the classification process to
accurately discriminate vegetation classes (Hoffer 1980).

Phenological knowledge (beside the spectral measurements) plays a critical role
in determining optimal acquisition dates for the selection of the remotely sensed
data for agricultural monitoring and classification. As, wheat can be easily
recognized from other crops and vegetation because of its greater Greenup,
that occurs earlier than for other crops. Crop phenology is generally divided into:
‘‘(1) vegetative stage: is largely defined by the part of the growth cycle where the
crop develops and grows, starting emergence to tasseling; and (2) reproductive
stage: starts at anthesis and ends after maturity. For dry-land crops, several tran-
sitions are important in terms of management: emergence, tasseling and initiation
of senescence’’ (Chen et al. 2008).

5.5.2 The Size of the Agriculture Holdings and Methods
of Water Supply/Spatial Considerations/Spatial Aspects
of Spectral Response Patterns

The questions related to spatial characteristics of the used data are: how much is
the size area concerned? Is it sufficient to classify only a sample of all the data, or
is it necessary to classify the all data for the whole coverage of the study area?
What format of results is needed (maps and/or tables)? If the needed format is a
map as a final product, then what scale and level of accuracy is needed? What are
the spatial characteristics of the agricultural features in comparison to the char-
acteristics of the used remotely sensed data (Hoffer 1980)? And finally, what are
the spatial aspects of the spectral response patterns?
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Geographic variability of various categories or crop species of interest is
another aspect of spatial variability of spectral signatures. I.e., the same crop
species does not have the same spectral response in all geographic locations on any
one date. As, barley may be harvested in east Syria at the beginning of May when
it has reached maturity, but has not yet been harvested in west Syria, and perhaps
is still immature and green in southern east Syria. Based on the spectral (signature)
concept, it is impossible to define a single spectral response pattern that will be
applicable for the same crop species in all geographic areas at any one time.
Geographic variability of agricultural crops includes another related aspect, since
not all crop species are found in all geographic locations. So, knowledge of the
location from which remote sensor data was obtained can prove useful in
attempting to identify a particular crop species, even if the spectral response of that
crop may not be well known at that time of the year because of lack of ground truth
data. As, when data from east Syria is analyzed, it could be concluded that the
particular spectral response patterns would be essentially wheat, barley, cotton and
corn, and not, as, tobacco, which does not grow in the area to a large extent.
Instead, it is planted widely in the west near the Mediterranean Sea.

Three methods of water withdrawal at present dominated for irrigation the
agriculture features in the Euphrates Basin: (A) floodplain irrigation (small
holdings, not organized geometrically); (B) canal irrigation/farmers (small up to
big holdings, semi-organized geometrically); and (C) canal irrigation/state (med-
ium up to very big holdings, full organized geometrically) (Fig. 5.28).

Fig. 5.28 Schematic diagrams of the spatial characteristics of the irrigated agricultural areas in
the study area, ERB. A, floodplain; B, canal irrigation (farmers); and C, canal irrigation (state)
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5.5.3 The Choice of the most Appropriate Time to Obtain
Satellite Images/Temporal Considerations/Spatial
Aspects of Spectral Response Patterns

The questions related to temporal characteristics of the used data are: how much of
the remotely sensed data has to be obtained at a certain time? What time or times
of the year are more suitable (or required) for obtaining these remotely sensed
data? Are there particular daytime considerations that have to be involved during
the obtaining of data (Hoffer 1980)? and, what are the spatial aspects of the
spectral response patterns?

Image acquisition date selection is essential for successful classification of
many vegetation covers, especially agricultural crops.

The study of LULC using remotely sensed data faces the problem of the
selection of the date in which the image was captured, i.e., the year and the month.
This selection is decisive with regard to the information which researchers receive.
Most of the irrigation projects discussed in this study were located within the five
agriculturally stable zones in Syria, which receive insufficient precipitation to
establish a rain-fed agriculture. Therefore, the majority of cultivated areas are
irrigated either in winter or in summer. The agricultural cycle of both winter and
summer crops ends in May and August, respectively. This means the spectral
differences reach their maximum point of clarity at this time, despite different
patterns of land use. For remote sensing based studies, the time of year of the
image capture is an important factor, because of the density of vegetation, both
natural and cultivated. This depends on many factors, notably the amount of
precipitation that changes from year to year; and human factors, such as the use of
fertilizers, which lead to changes in the characteristics of spectral reflectance/
response of a specific crop. For example, the spectral response of fertilized wheat
will differ from a field of the same crop which is unfertilized. The use of fertilizers
where insufficient water exists will lead to early yellowing of the crops.

World-wide, the best date range for identifying winter wheat is late March
through to early May, when the crop is at peak greenness. To identify corn and
other summer crops, the best date range is late July to mid-August. The most
important and best way to choose a proper time for remotely sensed data is to
study the growth stages of each type of vegetation and the spectral change in its
behavior during the months of growth, through field work and the use of spectral
reflectance measurement devices (Spectrometer) (see Sect. 5.5). As a result of
these measurements, the growth periods of a variety of crops and the differences in
their spectral reflections can be determined.

The results of the spectrometry readings taken for the purposes of this study are
outlined in Sect. 5.5. When comparing the spectral reflectance curves of the
studied summer crops (cotton, and corn), it was found that the best spectral region
for the separation of crops was the near infrared domain. Under the conditions of
the project area, the best period to distinguish these differences was found to be the
period between July 20 and August 20. Based on previous results, it was
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recommended that the satellite imagery for the study area was brought with the
same referred date to use in estimating crop area of summer crops. The best
spectral range for the separation of winter crops (wheat, barley and sugar beet) was
also found to be the near infrared domain. The best period to distinguish these
crops was found to be during the month of May.

‘‘There are more short-term temporal variations in the spectral responses of crops
and other ground surface features, such as differences in spectral behavior at different
times of the day or night. Differences in the angle of the sun cause variations in
atmospheric damping. Sometimes, vegetation that is not under moisture stress early
in the morning will show severe symptoms of this later in the day’’ (Hoffer 1980).
‘‘Researchers have also found the problem of temporal definition of a particular cover
type of interest, for example, the use of remotely sensed data to classify corn. At what
stage of growth do you define a particular agricultural field as being corn?; do you call
field (X) a field of corn after it has been planted or after emergence, or when the corn-
stems are 15 cm high?; or is it not until the corn covers 25 % of the ground surface?;
or indeed 50 %?’’ (Hoffer 1980).

5.5.4 Choice of the most Appropriate Bands Composite
of the Satellite Images

The optimal selection of spectral bands for classification was broadly discussed in
a variety of literature (Jensen 2007). There are two general kinds of techniques: (1)
graphic analysis (e.g., bar graph spectral plots, two-dimensional feature space plot,
and ellipse plots); and (2) statistical methods (e.g., average divergence, trans-
formed divergence, Bhattacharyya distance, Jeffreys–Matusita distance). They
were both applied to find an optimal subset of spectral bands (Jensen 2007).

Generally, it may appear that three spectral bands may be more suitable than
two, as more information is offered. Also, data that have a broader radiometry field
may provide improved results, since some of the problems related to parametric
models are avoided, whose support significantly falls outside of the data domain.
Yet, by using three spectral bands instead of two with broader data domain instead
of the standard one, classification and estimation may in fact be much slower.

‘‘Classification accuracy does not increase linearly, or even increase at all, as
the number of spectral bands used is increased’’ (Hoffer 1980). However, this is
not true for the spectral separability of crops or other Earth surface features, which
increases steadily as the spectral bands increased.

5.6 Training Samples: Selection, Analysis and Evaluation

The main factor in selecting training sites for supervised classification is that all
the variability within classes is representative. Only a few sites will be required in
some homogeneous classes, and more sites in classes with high variability.
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A general concept offered by Jensen (2007), is that in developing training statis-
tics, it is necessary to select a number of pixels in each class that is at least 10
times greater than the number of bands used during the classification process. This
is enough to allow good computations of variance–covariance matrices, which are
usually carried out with classification software. Related to size of sample sites, it is
noted that ‘‘as sites grow larger than 10 pixels, there may be no new information
added. So, it would be better to have six sites of 10 pixels in each class rather than
one training site of 60 pixels’’ (Schowengerdt 2007).

To classify the remotely sensed data, the classification algorithm needs to be
trained to distinguish one class from another. Representative identical class sites are
known as prototypes, exemplars or training samples. After the classifier is trained to
statistically analyze to ‘‘distinguish’’ the unlike classes represented by the training
sites, the ‘‘rules’’ that were developed during the phase of training are used to label all
pixels in the image to their ‘‘in real world’’ classes (Schowengerdt 2007).

A large enough number of training samples and their ability of representa-
tiveness are significant for image classifications (Mather 2004). When the bio-
physical structure of the study area is complex and heterogeneous, selecting
enough training samples will be difficult. This problem would be greater if med-
ium or coarse spatial resolution data were used for classification, because a large
number of mixed pixels may occur. So, the choice of training samples must
consider the three standards: (1) the spatial resolution of the available remote
sensing imagery; (2) availability of ground truth data; and (3) the complexity of
the biophysical structure (Lu and Weng 2007).

Training samples are usually collected from fieldwork/in situ, fine spatial res-
olution aerial photographs and satellite images/in-image, recently from Google
Earth, etc. Different gathering strategies, such as single pixel, seed and polygon,
can be used (Chen and Stow 2002).

Care must be taken to collect representative and non-auto-correlated training
samples. The problem in spatial autocorrelation occurring in remote sensing data is
that pixels in the image should not be considered as fully discrete features inde-
pendent of their juxtaposition, but rather a set of continuous features influenced by
their neighbors (Campbell 1981). This exists among pixels that are neighboring
(e.g., neighboring pixels have a high chance to have alike brightness values),
which can cause a decrease in variance between neighboring pixels (Campbell
1981). This decrease in variance can make large masses of neighboring training
pixels less representative of a particular LULC-class in the entire image; in con-
trast, the use of several single-pixel training samples that are situated spatially
separately from each other can result in better classifications than large masses
(polygons) of neighboring training pixels (Medhavy et al. 1993). Therefore, if such
care is taken, classification results for LULC-types (especially for crop recogni-
tion, since they have, generally speaking, a relatively small spatial distributions/
fields) can be more effective.

Google Earth (http://earth.google.com/) contains ever more wide-ranging
coverage of the globe at very high spatial resolution 0.61–4 m, allowing the user to
zoom into particular areas to get great detail. Google Earth data were used in this
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study for: (1) identification and labeling the broadly general classes (e.g., water
surfaces) and some sub-classes (e.g., trees, since they change slowly over the
time); (2) help in drawing the out-borders of the irrigated projects; and (3)
assistance in assessing the classification accuracy (especially for general classes).
Ground-reference data were compiled from ICARDA for the remotely sensed data
obtained in the year 1987, from GORS for the remotely sensed data coverage for
2005, and from the two excursions carried out in the years 2007 and 2009. Parts of
these ground truth data were used in the generation of training samples and others
were used for accuracy assessment at the end of the classification.

Several measures of class separability have been suggested as way to isolate
optimal or near-optimal subsets of features for use with classification algorithms.
Swain (1978) found three approaches: divergence; Jeffries–Matusita distance; and
transformed divergence. The general concept is that the used approach can make a
quality measure of the discrimination ratio of a group of spectral features, when
achieved over all classes. By comparing between all the achievable combinations
of subsets of the spectral features (e.g., which three out of nine available spectral
bands), the one that presents the highest quality metric can be used. Only the
reduced subset of spectral bands is then used in the overall image classification
process. A potential problem is that if one combination of spectral bands creates
classes with a large divergence values for some classes and small values for other
classes, and a second creates a small divergence values for all classes, which
represents a better overall pair-wise selection of features. This suggests that
increasing the pair-wise divergence has a decreasing return (Schott 2007). Swain
(1978) invented the Jeffries–Matusita distance to overcome this problem, but it had
the disadvantage of time-consuming computing. A more commonly used heuristic
approach is the transformed divergence that has the mathematical statement:

DivT
ij ¼ 2 1� eðDivij=8Þ

� �

‘‘This has the characteristic of exponential saturation of the divergence measure
and scales the transformed divergence over the range 0–200 (Schott 2007). Mausel
et al. (1990), in assessing separability measures, used the scaling factor of 2000
rather than 2 that gave larger additions for differences between small divergence
values (Schott 2007).

For example, when classifying crops, it is important to train not only the crop
classes of interest but also the other classes of no interest such as urban, water, etc.
if they occur in the region. Alike, when we focus on a few existing crops (e.g.,
wheat, barley, etc.), we also have to classify all other crops (e.g., lentil, cumin,
etc.) and list them under ‘‘other crops’’, for example. Failure in the training phase
generally results in cases of the untrained classes being commissioned. This means
that the analyst must spend considerable time and effort in training the classes of
no interest.

Training samples selection also depends on many factors which affect classi-
fication results and their accuracy. They are, according to Foody et al. (2006): (1)
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number of training sites for each category; (2) method of sampling (random or
systematic sampling); (3) source of the used data for labeling training sites (ground
data, air photographs, etc.); and (4) timing of data collection.

Several authors have proven that good separability values between the LULC-
features to be classified will improve classification accuracy, because there is no
narrow relation between the average transformed divergence for a feature set and
the accuracy reached during classification (Chen et al. 2004). The reason is
because the separability measures are usually calculated only from the training
sites. So, these measures cannot predict the exact classification accuracy for
classified LULC-features in the whole image, if the training sites are not fully
representative for all spectral ground surface feature variations in the remotely
sensed image, including areas of potential edge effects. In general, a specified
value of an obtained separability measure can estimate a certain range of possible
classification accuracies for the examined training sites (Landgrebe 2003).

The training sites were chosen in a way to give the broadest possible range that
can represent all, or almost all, existing LULC-categories (especially crops) spa-
tially and spectrally. Crop fields with various planted and fallow areas (on light
soil, on dark soil, etc.) were visited. The size of the training areas was chosen to be
at least 50 9 50 m, since some studies have concluded that this is a suitable size
for training sites in semi-arid areas (Olsson 1985). Larger training sites were
selected, when it was possible, to reduce the effect of possible technical geo-
metrical noise in satellite data and GPS-data. Homogeneous agricultural fields
smaller than about 100 9 100 m were excluded, while they were too small in
contrast to LANDSAT-pixels of 30 9 30 m. The training site plots were taken in
the centre of the homogeneous area. The GPS-measurements were taken twice in
the middle of the field to obtain a mean value and reduce possible noise related to
the GPS-type (Fig. 5.29).

The size of samples also has a great importance, together with distribution, for
providing representative training sites. Justice et al. (1981) recommended that the
using of a model that takes advantage of using the characteristics of the spatial
image to define the size of a training site. The suggested model can approximate
the size of any sample quadrant as a function of the pixel size and the predicted
geometric accuracy of the images.

L = P(1 ? 2 G), Or: A = P(1 ? 2G)2; where: (L: length of any side, A: area
to be sampled, P: pixel size, and G: geometric accuracy of the image). So, using
TM images with 1-pixel geometric accuracy, the size of the training site will be
0.81 hectare, the equivalent to a 3 9 3 pixel kernel area.

Generally, two procedures were used: (1) ground truth data based approach:
here, the crops to be classified were defined in addition to some of their attributes
(e.g., statistical records, agricultural calendar, etc.). Of key interest were the
strategic crops, such as the winter crops of wheat, barley, and sugar beet, and the
summer crops of cotton and corn. Random GPS-measurements were then taken at
the study area and other historical agricultural information was obtained from local
farmers in Aleppo in the Upper-Euphrates and in Deir Azzour in the Lower
Euphrates Basin. The training sites were analyzed statistically using the two
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spectral separability measurements (Jeffries–Matusita and Transformed Diver-
gence) to determine how the used remotely sensed data would be able to distin-
guish the interested classes (spectrally) on average. According to PCI (2001) and
Richards and Jia, (2003), measurements \1,000 = very bad spectral separability;
1,000 \ measurements \ 1,900 = limited separability; and measurements
[1,900 = very good spectral separability. The majority of the training sites sat-
isfied the last consideration; and (2) satellite image based approach: this approach
in gathering the training sites was based on visual interpretation, using the back-
ground of the interpreter about the study area. This approach was used only for
gathering the representative training sites for the five general LULC-classes. It was
also possible to select the training samples for the agricultural class (trees, espe-
cially Poplar) from Google Earth visually by shadows that appear clearly. This
method was used to confirm the measurements/or choice based on the statistical
records for the year 1987, (see Sect. 5.10) for the training sites of some crops.
Other remotely sensed images were only used visually without processing. For this
purpose, if some fields appear black/burned on an image recorded in August for
example, this would indicate it was a wheat field. Sugar beet appeared on the July
images as green in contrast to wheat, which once harvested, appeared as burned/
black, straw/yellow, or tillaged/light- or dark- brown. Table 5.3 gives an overview
about the used training samples in the supervised classification.

5,5 m
15 m

2,5

6 m

Fig. 5.29 The small and very small crops fields on the Euphrates River banks near Deir Azzour
in July 2009
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It was impossible to get training samples for the study area based on accurate
remotely sensed data for 1975 and partially for 1987, as no remote sensing based
research had been carried out in this area. This is one drawback of using the
historical data, where one cannot make any field-work and gather ground truth
data. But, there is the essential advantage in the provision of initial information
about the study area, with which to compare to the present. It was not necessary to
obtain ground truth for the remotely sensed data of LANDSAT-MSS-1975,
because classification can only be done in the broad general classes in the study
area, as they have poor spectral and spatial resolution. Therefore, it was easy to
collect the represented training samples and the accuracy data, from the remotely
sensed data itself using visual interpretation. The ground truth data for LAND-
SAT-TM-1987 were found by ICARDA, but were scarce. Attempts were made to
increase the potential of these truth data by taking advantage of integrating the
remotely sensed data, the historical statistical records and the detailed spatial
schemes of the various irrigation projects (see Sect. 5.10).

Twenty GPS points were collected for each class of LULC. These points were
collected along the study area in fields with almost 300 9 300 m dimensions to
ensure the survival of location points in case technology related errors occurred
which would affect the accuracy of the measurements. Photographic images were
taken for several GPS-points to provide extra descriptive information about LU, in
which reference points exist, such as plants’ density, length and phenological cases
(when the LULC is agriculture or natural vegetation). As regards to some LULC
such as airports, constructions areas, rivers and lakes, it was easy to find reference
points using the satellite images themselves, topographic maps or Google Earth.
Hence, the majority of reference points represent the more detailed crops types
falling under the more general class of cultivated areas.

Spectral signature generation, analyses and evaluation were processed itera-
tively. As a result, many signature files were produced due to the two classification
approaches (One- and Multi-stage classification), and multi-temporal remotely
sensed data (over many months and years) used in the study. Some results of
spectral separability based on transformed divergence were presented. The pre-
sented training sites here were those used mainly in the training study area (see
Sect. 5.7), and for which the optimized classification algorithms MLC, NN, SVM
were chosen. Tables 5.4, 5.5, Figs. 5.30, 5.31 illustrate the increase of spectral
separability in relation to the bands used, and give an illustrated example of how
spectral separability was calculated quantitatively.

The resulting training samples for all classes were checked for normal distribution
of their digital numbers in the remotely sensed data multispectral bands. Where the
training samples’ statistical characteristics differed from normal distributions, var-
ious classification algorithms and approaches were experimented with to improve the
relation of the classes and the characteristics of the study area (geographical, location
and its related effects on other sub-characteristics such as climate).

The incapability of actual representation of the studied area regarding the
accuracy ratio of automated classification and the ROIs-separability ratio among
various classes of interest to be classified, can be put down to several reasons,
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including: the interaction among classes of land uses and the natural coverage
distribution; and the lack of concrete borders to separate them. There were two
factors affecting and complicating this: The geographical location of the study
area; and nature and type of classes of LULC, which was affected generally by the
geographical location.

Another main reason is that the selection of the training sites is not completely
an objective process, affected by the person who selects and trains the sites. When
a researcher selects the training samples, they do so because they consider them fit,
appropriate and representative to the LULC in the study area. The training process
may not include all areas and classes in a study area (especially within the same
class); as, there are several kinds of wheat (hard and soft), some are rain-fed and
some irrigated, some are located on dark humid soils, while others are on light and
less moisture-rich soils, some have organic and chemical fertilizers added, while
others grow in different quantities; some wheat-fields may be peppered with
natural herbs and plants that grow within the wheat plants, while other fields have
homogeneous growth of only wheat plants; and finally, some wheat-fields may be
infected with disease. Where these differences are related to one class (i.e., wheat)
this will make spectral and spatial bias between wheat and other crops hard. Each
difference (or more collected differences) leads to diverse spectral appearances on
the image. So, the analyst has to gather training samples that satisfy the entire
different spectral responses of the crop especially if there are natural or agricultural
crops in the area with a similar spectral response.
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Fig. 5.30 Spectral class signatures (band means) related to ASTER data (3 spectral bands, 15 m)
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Fig. 5.31 Spectral class signatures (band means) related to fused ASTER data with LANDSAT-
ETM+ data (6 spectral bands, 15 m)
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5.7 The Choice and Evaluation of the Optimized Method
of Automated Classification

A comparative study of different remotely sensed data classification algorithms is
often conducted to find the optimized classification result for a specific study (Lu
and Weng 2007). Many considerations, such as: spatial resolution of the remotely
sensed data (how many meters?); spectral resolution (how many bands?); different
sources of data (which sensors?); a classification system (which scheme?); and
training samples (which statistical distribution?), must be taken into account when
selecting a classification algorithm for use. Each algorithm has its merits and
deficits. So, the issue of which classification algorithm is more fit for a specific
study in a specific area is not easy to answer. And, diverse classification results
could be obtained depending on the classifier(s) chosen.

Experiments were conducted on the testing study area to determine the suitable
algorithm to use on the entire ERB study area. The supervised classification
algorithms tested were: MLC: Maximum Likelihood Classifier, NN: Neural Net-
work, and SVM: Support Vector Machine (Fig. 5.32). Two classification proce-
dures were also applied: (1) one stage classification approach; and (2) multi stage
classification approach, to produce land cover maps.

Fig. 5.32 The spatial extent of the four administrative regions (Athawra, Al-Jurnia, Ain Eysa
and Menbij)
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To compare and judge the different classification algorithms results, we have to,
as far as possible, exclude the influence of interfering factors. So, while this is a
comparative study, a wider choice in the same training samples (size, number,
location, etc.) in each studied year and for all remotely sensed data, and for all
compared classification algorithms, would be useful. This would not be applicable
when using the masking operation used in the multi stage classification approach.

5.7.1 The Test Area

The four administrative areas of Menbij, Ein Eisa, Al-Journia and Athawra were
selected as testing areas (sub-study-area) for applying various automated super-
vised classification approaches and algorithms. These sites were adopted as they
contained the majority of natural coverage forms and land uses which exist among
the entire ERB area. These areas were also sited within range of the agricultural
stabilization zones in the basin and contained a number of irrigated projects.
Finally, the sites were distributed in only one scene of the LANDSAT-data, which
satisfied the homogeneity in spectral and radiometric characteristics. The result:
this testing area was considered as representative to the whole basin area from the
perspective of natural and climatic characteristics, distribution of natural coverage
and land uses. Therefore, any outcomes resulting from the sub-study-area could be
adopted, generalized and applied to the whole Basin.

5.7.1.1 Unsupervised Classification

Methods of unsupervised classification have the ability to define the different
classes that could be presented in the study area before the going to the field. Then,
the natural objects that are presented in the remotely sensed data can be identified
and linked to the resulting spectral classes of classes of interest (crops, land cover
classes, etc.) (Hoffer 1980). For this research, the initial thematic map generated
from this approach helped to identify the features and provide the feel of the study
area, although the images could not be directly used for other analysis without
field-work.

The migrating means (or ISODATA, or nearest mean) algorithm (Ball and Hall
1965), is the most commonly used algorithm in unsupervised classification
approaches. It frequently executes a complete classification process; recalculates
statistics; uses lowest spectral distance method (reducing the value of the function
is the average Euclidean distance between each sample point and the matching
cluster mean) repeatedly to classify the pixels; and re-specifies the rules of each
LULC-class or candidate pixel (iterative processes). Naturally, the calculated
minimized value of the average Euclidean distance is equal to creating sphere-
shaped clusters with little difference or dispersity. There is no logical technique for
creating clusters that minimize the value of the average Euclidean distance. So, the
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data will be continuously classified until either a maximum number of iterations
have been executed or a maximum percentage of unchanged pixels have been
achieved between two iterations (Jensen 2005). The process starts with an iden-
tified number of random cluster means or the means of existing signatures, and
then it processes iteratively, so that those means move to the means of the clusters
in the data. ‘‘The ISODATA-classifier filters cluster by splitting (if the cluster
standard deviation exceeds a predefined value and the number of pixels is twice
the threshold for the minimum number of members) and merging (if either the
number of members (pixel) in a cluster is less than a certain threshold or if the
centers of two clusters are closer than a certain threshold)’’ (Jensen 2007). There
are various forms of this technique, but in all of them at least two factors have to
be defined by the analyst: clusters number; and the iterations maximum number
(this ensures the method will stop if convergence is not achieved).

It has some drawbacks. A few of the generated clusters are not important in
regard to reality as they represent a mix of unlike LULC-features or ‘‘on the
ground’’ classes. It is also not unusual that some spectral classes build one func-
tional class, and it has to be remerged. And, there is a causal bond between the
functionality of this algorithm and the ability of the user to identify the number of
present spectral classes (Hoffer 1980). Many of the data characteristics that a photo
interpreter would use to identify an individual LULC-feature (such as: shape, size,
texture, shadow, etc.) are not used in classification of the data that operated based
on the computer digitally (Hoffer 1980).

The ISODATA-algorithm has proved useful as an indicator and guide as it
provides an idea of the relative stability of each category (McCoy 2005). The
individual data are processed using the unsupervised ISODATA-algorithm to
generate a large number of class assortments. These so-called clusters are then
supposed to represent classes in the image and are utilized to compute statistics of
the class signatures. It is helpful to define relatively homogeneous features to be
used as training sites in the potential supervised classification approach (Scho-
wengerdt 2007), where pixels that always arise jointly in the same cluster are
strong and are a very homogeneous category.

It was found that the hybrid-procedure integrating ISODATA-clustering with
the supervised classification algorithms such as MLC seemed to be the most
satisfactory and effective procedure to follow as it simplified the work and pro-
duced better results. This was the case mainly in land areas with wild habitat where
the fields were small, or where the LULC-categories and spectral classes were
complex (Hoffer 1980). The classification approach is illustrated in Fig. 5.33.

The parameters for the performance of ISODATA-algorithm were given as
follows: Number of classes = 25; Maximum iterations = 20; Convergence
threshold = 0.98. A thematic raster layer and a signature file (identifiable) were
created from the ISODATA-clustering. As, it was found that water bodies, bare
areas, artificial surfaces and fallow ground could be clearly identified using the
ISODATA-clustering. It gave general information about the spectral mixture
between the various LULC-features. Mixtures were between built-up areas and
dark color-tones bare areas; dark color-tones bare areas and fallow on dark soils;
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light color-tones bare areas and fallow on light soils; very dense irrigated trees
(especially Poplar) and dark water; and between vine and sugar beet.

5.7.1.2 Supervised Classification

The Multi Stage Classification Approach

The decision tree classifier is a hierarchically based classification method which
compares data with a variety of well-chosen features. The selection of these
features is controlled by an estimation of the spectral distributions or separability
of the classes. There is no commonly confirmed formula and each decision tree or
set of rules must be constructed by a specialist. If a decision tree presents just two
outputs at each stage, then it will be named a Binary Decision Tree Classifier
(BDTC). This procedure was applied in many cases due to its flexible character-
istics. In agriculture applications, the rules of a decision tree are acquired via
analyzing the specific attributes (understanding the various spectral responses, the
agricultural calendar, etc.) of different crop types (Chen et al. 2008). Figures 5.34,
5.35 illustrate the steps applied in the multi stage classification approach to gen-
erating the classification results of the four region study area.

Training sites and testing areas are fulfilled separately and compared to satellite
images for each classification algorithm after applying the masking-process. This
is done because, for example, the mask that represents the distribution of the
irrigated agriculture (separation and classification of the irrigated agriculture areas
and the rain-fed agriculture areas) using the MLC-algorithm covers areas differing

Training sites 
selection from 

ISODATA -clustering

Training sites selection 
from field-work

Signature generation

Signature evaluation

Chosoing the supervised classification 
algorithm

Thematic map/s

Fig. 5.33 Integrating the
ISODATA-clustering with
the supervised classification
algorithms in a so-called
hybrid-procedure
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from those areas covered by the same mask. This results from using the SVM-
algorithm in the classification process. After finishing the multi stage hierarchal
classification, various classes resulting from each stage are collected and fused in
one scene that represents the LULC in the study area using ENVI-program (band-
math), or the ArcGIS-software (Fig. 5.36).

Obtaining 100, 90 % or other percentages reflecting accuracy and quality of
automated classification, does not necessarily mean that the percentage completely
represents LU distribution or the prevalence of LC on real ground. The accuracy
percentage of 100 % obtained from the classification of primarily vegetated areas
and non-primarily vegetated areas does not mean that the total area contains the
same percentage of classification. Of the primarily vegetated areas (e.g.,
100,000 ha) perhaps 1,000 ha are primarily non-vegetated areas. This error/s in
classification would then be repeated in each step or stage of the multi stage
classification approach. This means that the primarily vegetated areas class might
appear under classification of the components of the second level (i.e., the second
terrestrial and aquatic level underlying under the first primarily non-vegetated
areas level) within the used classification scheme (i.e., LCCS), although it should
have been classified and separated into the first level. So, the LCCS-principle of
classification should be strictly adhered to, that is separation between classes in
every level and every stage in classification system. Here the primarily vegetated
areas, (for example the 1,000 ha that had been classified incorrectly under the

Cultivated and Managed
Terrestrial Area (s)

The 4-region studyarea

LANDSAT-TM-May-07

PrimarilyVegetatedArea (s) PrimarilyNon-VegetatedArea (s)

Natural and Semi-Natural 
TerrestrialVegetation

Fig. 5.34 Illustration the application of multi stage classification approach (chain-steps), using
MLC-algorithm, on the LANDSAT-TM-data of May 2007 with spatial resolution of 30 m
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primarily non-vegetated areas class) will during the automated classification
process, be automatically fused with classes within the second general level (i.e.,
primarily non-vegetated areas), thus creating accumulated error/s in the classifi-
cation process. Part of the resolution of this problem is to re-classify the wrongly-
classified areas when moving to the next stage or level of classification, as long as
there are lands representing the wrong classified class within the various levels of
the multi stage hierarchical classification approach. When we return to the
example of the 1,000 ha, which were classified as non-vegetated areas and con-
sider this at the second level of classification, instead of training sites that represent
only the two classes of this level (i.e., terrestrial and aquatic), extra training sites
will be selected that represent the 1,000 ha area/s. If this 1,000 ha were completely
separated and classified within the second level, it will be appropriate. Otherwise,
if a further part of this area, such as 100 ha would appear within the next level,
again extra training sites would be trained to represent this class in the classifi-
cation process.

Fig. 5.35 The flow-chart of
the applied multi stage
classification approach in this
study
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MLC

The Maximum Likelihood Classifier (MLC) has been employed since the late
1940 s. It found increasing investment in the two fields of: pattern recognition; and
remote sensing techniques (Nilsson 1965). It is offered in about all remote sensing
and image processing software packages, and it is usually applied as the typical
supervised classification approach. It is a widely robust supervised algorithm, and
it is the primary approach for most multi-spectral remote sensing interpretations at
present (Lillesand et al. 2008). Its general concept defines the maximum likelihood
decision rule, which is the probability that a pixel belongs to an individual class.
This classifier is derived from the Bayes-rule in which classes have equivalent
priorities. It uses the training data gathered during field-work or on image itself to
calculate the mean vector and variance–covariance matrix for each required class.
Both means and variances are then employed to assess the probabilities (Jensen
2005). This algorithm is based on the supposition that the likelihood degree
function for each class is multivariate, and often a Gaussian distribution is
assumed. A pixel is lastly classified to that class, for which it has the highest
probability (Lillesand et al. 2008).

MLC operates (see Fig. 5.37) by using the training-samples-based means and
standard deviations of individual spectral bands in order to scheme LULC classes
as centroids in feature space. These centroids are circumscribed by likelihood

Fig. 5.36 Combine the 14-class illustrated in the previous figure in one thematic map, using
ArcGIS-software to sum the individual thematic results, and LCCS-software to prepare the
legend
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curves. The likelihood degree function supposes that the representative sample
values for each presented class are normally distributed (Bastin 1997). The so
called Gaussian threshold can border the class space in feature space, which is the
radius (in standard deviation units) of a hyper-ellipsoid around the mean of the
class in feature space. Here, observations which do not locate inside the hyper-
ellipsoid of any class are allocated to a null class (Strahler 1980). The necessary
number of training samples needed to calculate the statistics of a class for a
Gaussian (quadratic) classifier is in addition linked to the square of features
number (Fukunaga 1990). This presents increase in the Hughes effect: for a limited
number of training samples, the classification accuracy increases in the beginning
with the number of features (or difficulty in measurement), but then it attains a
maximum and begins to decrease when more features are added. It is generally
agreed that the class spectral separability is constantly higher for data with a
superior dimensionality, but this superior or higher dimensionality impacts and
decreases the accuracy of the statistics estimation when the dimensionality
becomes too high, and in some cases, this has the result of producing a lower
classification accuracy despite the presented and improved theoretical class sep-
arability (Landgrebe 2003). Enough training samples for each spectral class of
interest must be presented to offer logical approximations of the elements of the
mean vector and the covariance matrix to be determined. For an (N) dimensional
multi-spectral space, at least (N ? 1) samples are needed, to avoid the covariance
matrix being singular.

Spectral band A
data file values

Spectral band B
data file values

Distina µ

Class-1
Class-3

Class-2

Overlap region

Probability Contours

Fig. 5.37 Maximum likelihood classifier (MLC) concept (Source modified from ERDAS
IMAGINE

�
, 1999)
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The strong benefit of the MLC algorithm is its applying for well-developed
probability theory. If it is true that the class likelihood degree functions are
Gaussian, then MLC is the best classifier which reduces the overall chance of error
(Liu et al. 2002). Benediktsson et al. (1990) noticed that even for data which have
not got a normal distribution, the MLC produced a better classification result,
although it has also serious known faults under specific situations. Firstly, if the
histogram/frequency distribution of the image data does not ensure the normal
distribution, the essential idea of this classifier is violated and presents poor or
confusing results. Secondly, the computational cost needed to classify each pixel
(data with a large number of spectral bands, or data containing many spectral
classes to be distinguished) is at issue. The computing cost increases in con-
junction to the square of the applied features channels (Benediktsson et al. 1990).
Thirdly, the algorithm works acceptably for relatively low spatial resolution data
with a limited number of bands, but it may not be acceptable for the high reso-
lution and/or high dimensionality data sets, which tend to increase the within-class
variability. This means that the volume of feature space occupied by each class is
extended and increases the risk of class overlap in feature space (Qiu and Jensen
2004). Fourthly, the relationship between sample size and the number of features
impacts the assessments of mean vector and variance–covariance matrix. Also,
inadequate ground truth data may present a false assessment of the mean vector
and the variance–covariance matrix of population (poor classification results).
Fifthly, in case of high correlation between two spectral bands (LANDSAT-data),
or when the training samples used for signature generation are not adequately
homogeneous, the covariance matrix becomes unstable. This can be overcome
through the use of other robust statistical method (e.g., PCA) before proceeding to
classification (Albertz 2009). Sixthly, an inherent weakness of MLC is that the
subset of features applied in classification is not necessarily to be the optimal
selection for all classes (Swain and Hauska 1977). Finally, when auxiliary data is
integrated into a classification process, the assumptions of MLC cannot be
confirmed.

There have been a number of researchers who have MLC, such as (Brisco and
Brown 1995; Huang et al. 2007). MLC can be used with multi-source data with
separate scales of measurement (Arora and Mathur 2001), while a parametric
MLC, which is commonly used for pixel-based hard classifications, can be used to
segment imagery (e.g., Geneletti and Gorte 2003) or expand to a fuzzy classifi-
cation idea (e.g., Schowengerdt 1996).

ANN

Humans are good pattern recognizers. This tenet has given researchers in the field
of pattern recognition the basic concept to examine whether computer systems
based on a simplified model of the human mind can simulate the real world, and
whether better overall accuracies can be given compared to traditional statistical
approaches. The Artificial Neural Networks (ANN) algorithm is an example of
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these recently advanced methods. It is designed to simulate human learning pro-
cesses through organization and strengthening of passage ways between input data
and output data. Because of the nonparametric structure of the NN-classifiers and
while networks are general-purpose calculating tools that can overcome the
complex non-linear problems, the use of NNs for classifying remotely sensed data
has developed quickly over the past decade Researchers have noted that NNs do
better than standard statistical classifiers such as MLC (Tso and Mather 2009).
NNs have been increasingly used since the 1990 s (Franklin 1995; Sugumaran
2001) in field of pattern recognition in general, and in the field of remote sensing
analysis and classification in particular. It covers: supervised classification (Foody
and Arora 1997); and unsupervised classification (Tso 1997). A broad-spectrum
introduction to neural networks was given by Bishop (1995), while a very good
presentation of applying neural network in classification and its relationship to
conventional statistical classification was provided by Schurmann (1996). An
overview in the context of remote sensing has been described by Benediktsson
et al. (1990), and Kavzoglu (2001).

The user-selected factors affecting the NN-classifier are, according to Kavzoglu
(2001): (1) learning factors: the back-propagation learning algorithm needs from
the analyst to offer values of the learning rate and momentum; (2) initial weights:
these random settings to the pre-trained network affect the network implementa-
tion; (3) number of training iterations: this defines the level of generalization as
contrasting to specialization of the solution. If a network is trained using very large
number of iterations, it might not work well on the test data. Equally, if it is not
trained well enough, it will not be able to separate the classes; (4) number of
hidden layers and units: this controls the ability of the network to learn and
generalize; and (5) number of input patterns: some researchers have suggested that
accuracy is influenced by the number of training patterns.

NNs are based poorly on the data distribution assumptions of examples and on
the character of the relationship between inputs and outputs (Paola and Scho-
wengerdt 1995). This is an advantage that makes these algorithms smarter than
statistical classifiers, mainly in the case when the size of training data is incom-
plete and sufficient assessment of statistical parameters is hard to achieve (Tso and
Mather 2009). Also, different sources of data can be applied as inputs which are
then scaled to a general range (typically values between 0 and 1 like the node
output values) before training and classification. According to Paola and Scho-
wengerdt (1995), and Qiu and Jensen (2004), ANN-classifiers are strong to noise
in the training data and has the ability to generalize. They are error-tolerant and
relatively insensitive to background noise. The drawback of neural networks lies in
that they work as a ‘‘black box’’ (Qiu and Jensen 2004), whilst lacking the ability
to give details to further the understanding of the relationship between input and
output. Because of their indicative structure and the element of random variations
in the results (due to the randomization of the weights of the connection links
before training), functioning prediction and the interpretation of results are not
easy. Another drawback is that iterative training needs much more computation
time than parametric methods (Paola and Schowengerdt 1995; Landgrebe 2003).
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However, when the network is trained, the classification process in this way is
rapid (Pal and Pal 1993). Despite the high cost of training expenses (Lillesand
et al. 2008), neural networks have no stable rules for the network design and their
functionality is influenced by some issues (e.g., the network architecture) (Foody
and Arora 1997), which is dependent on the analyst.

Classification is improved by using hierarchical NN-classifiers and combining
the classification results of multiple classifiers by a compromise rule (Lee and
Ersoy 2007). It is established that the use of a collection of neural networks for
LULC-classification of multispectral remotely sensed data can give a significant
increase in classification accuracy (Canty 2009).

A successful method of classifying remotely sensed data based on different
approaches in choosing the networks of ANNs has been referred in many studies
(Bagan et al. 2008). E.g., Multi-Layer Perception MLP (Benediktsson et al. 1990;
Arora and Mathur 2001); ARTMAP (Carpenter et al. 1997; Alilat et al. 2006);
radial basis function (Bruzzone and Fernandez-Prieto 1999); and the SOM-algo-
rithm with Learning Vector Quantization (LVQ) (Ito and Omatu 1999; Ji 2000).
ARTMAP-systems, particularly ART2 and fuzzy-ART, can be practical in exe-
cuting unsupervised classification on remotely sensed imagery (Tso and Mather
2009). An example of applying fuzzy-ARTMAP was presented by Carpenter et al.
(1997), where the results are compared to those created by the MLC, nearest
neighbor and multilayer perceptron approaches. It confirms that it is faster and
more constant. The same conclusion is also confirmed by Mannan et al. (1998).
Liu et al. (2004) presented an ARTMAP-based model called ART Mixture MAP
(ART-MMAP) for approximation LULC-fractions within a pixel. Finally, in order
to obtain fine results, one might have to try a variety of ART model-based
parameters (Tso and Mather 2009). The most common NN-classifier in remote
sensing is the MLP (the multi-layered feed-forward network) (Tso and Mather
2009). Excellent reviews about experiments using MLP are presented by Paola and
Schowengerdt (1995), Atkinson and Tatnall (1997), and Kanellopoulos and Wil-
kinson (1997). MLP employs the ‘‘generalized delta rule’’. ‘‘At the first stage of
training a back-propagation network, the training sample vectors (with known
classes/target outputs) are used as input for the network and propagated forward to
calculate the output values for each output node. The error between the real and
preferred output is calculated. In the case where each output node represents one
class, the preferred output is a high value (e.g., 0.9) for the node of the correct
class, and a low value (e.g., 0.1) for the other nodes. The second training stage
features a backward pass from the output nodes through the network, during which
the weights are changed according to the learning rate and the error signal passed
backwards to each node’’ (Benediktsson et al. 1990). This process of inputting the
training data (Fig. 5.38), estimating the output error and modifying the weights of
the connection links is repeated many times (Foody 2004), until some condition is
satisfied, and if possible until the network has stabilized in order that the changes
in error and weight per cycle have become very small (iterative training). When
the network is trained, i.e. suitable weights are found and, all the pixel vectors are
fed into the network and classified.
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A review and analysis of papers published about ANNs before 1994 can be
found in Paola and Schowengerdt (1995). Example applications of ANNs in
remote sensing image classification for the period between 1994 and 2007 are
given in Schowengerdt (2007).

The produced back-propagation neural network utilizes the ‘‘generalized delta
rule’’ during the learning stage. The network was trained using the same class
training samples which were also used in MLC and SVM. The activation type was
Logistic; the training threshold contribution was 0.90; the training rate was set to
0.10; the momentum rate to 0.90; the training RMS-exit-criteria was 0.10; the
number of hidden layers was 1; and the training cycle (adjustment of weights after
forward and backward propagation of values through the network) was repeated
for a maximum of 1,000 iterations, or until the maximum normalized total error
was less than 0.01, or the maximum individual error was less than 0.001. The last
two situations did not occur, so the training was always performed for 1,000
iterations. (‘‘the individual error is the sum of errors in the output values for one
sample, meaning the difference between target value and output value of each
output node. The normalized total error is calculated as half the sum of the squares
of the individual errors, divided by the number of samples’’) (PCI 2001). The error
plot was then observed to see whether the value for the normalized total error had
stabilized before the 1,000th iteration. This was the case for all classifications
performed here, although the total error was still between 0.45 and 0.52. In a
second step, the training and momentum rates were lowered to 0.05 and 0.20
respectively, for a slower, more stable training with smaller step increases for an
enhancement of the network weights (PCI 2001). 1,000 additional iterations were
improved with these parameters, resulting in final maximum total errors between
0.39 and 0.46.

Fig. 5.38 The neural network classification model (Source adapted from www.ndt.net/article/
v05n07/spanner2/spanner2.htm)
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SVM

The Support Vector Machine (SVM) classification algorithm is based on statistical
learning theory as proposed by Vapnik and Chervonenkis (1971). It is discussed in
detail by Vapnik (1995) and Schölkopf and Smola (2002). The SVM is a newly
developed method to train polynomial, radial basis function, or multilayer per-
ceptron classifiers. Bennet and Campbell (2000) gave a geometric clarification of
how the support vector machines functioned (Fig. 5.39). An overview on the
application in remote sensing is given by Gualtieri and Cromp (1998), Huang et al.
(2002), Melgani and Bruzzone (2004), Pal and Mather (2005, 2006), and Wat-
anachaturaporn et al. (2006).

SVMs were at first presented as a binary classifier (Vapnik 1998). The idea is
based on fixing an Optimal Separating Hyper-plane (OSH) to the training samples
of two classes, so the pixels from each tested class are at last on the right side of
the hyper-plane. The optimization problem that has to be removed is based on the
minimization of structural risk. Its goal is to maximize the borders between the
OSH and the nearest neighboring training samples, the so-called support vectors
(Vapnik 1998). So, the model just considers samples nearly from the class
boundary and operates well with small training samples, even when high dimen-
sional data sets are used in classification (Pal and Mather 2006). Foody and Mathur
(2004b) indicated that a complete description of each class is not necessary for an
accurate classification. While only samples close to the hyper-plane are measured,
other training data has no influence on the interpretation. However, a larger
number of training samples guarantees the employment of sufficient samples
(Foody and Mathur 2004b).

In contrast to other classification algorithms (e.g., decision tree), the initial
output of a SVM does not have the final class label. The outputs include the
distances of each pixel to the OSH-plane (rule images). These rule images can then
be utilized to verify the final class membership that is based on the multiclass
strategy. This principle is furthermore known as ‘‘winner takes all’’, where only
one value (the maximum) is used for choosing the membership. Contrary to these

Feature (n)

Feature (n+1)

Hyperplan

γ
γ

Support Vectors

Support Vectors

A+

A-

Input Space Feature Space

Separation may be easier in higher dimensions

Complex in low dimensions Simple in higher dimensions

Feature map

Separating hyperplane

Fig. 5.39 Geometric explanation for the linear classification of SVM (Source modified from
Vapnik 1998)
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two multi-case-methods, other approaches directly identify the SVM as one
multiclass problem (Sebald Hsu and Lin 2002). A simultaneous separation of more
than two classes presents a more complex optimization problem (Sebald and
Bucklew 2001). Thus, such approaches may be less professional in comparison to
conventional multiclass approaches. In Melgani and Bruzzone (2004) a compu-
tationally promising hierarchical tree-based SVM was presented as an alternative
concept.

SVMs work very well with high dimensional data. Their computational cost
does not depend on data dimensionality and they need no feature selection. So,
classification results for multisource data classification from a non-parametric
classifier in particular, is maybe better than that received from a parametric
classifier, since a non-parametric classifier can solve some of the problems of a
stacked vector approach (Watanachaturaporn et al. 2008). SVM learning generally
requires large memory, a great deal of computation time and small training sets
(Su 2009). Some of the issues that influence the classification accuracy of SVM-
classifiers (Huang et al. 2002) are: choice of kernel used (linear, polynomial, radial
basis function, and sigmoid); and choice of the parameters related to a particular
kernel (degree of kernel polynomial, bias in kernel function, gamma in kernel
function, penalty parameter, pyramid levels, and classification probability
threshold).

Recent studies have shown that the use of SVMs in remotely sensed data
classification might present results with higher accuracy than other classifiers (Tso
and Mather 2009). SVMs have been used for classification of RADAR-data
(Shimoni et al. 2009), ASTER-data (Zhu and Blumberg 2002; Marcal et al. 2005),
LANDSAT-TM-data (Keuchel et al. 2003) and hyper-spectral-data (Melgani and
Bruzzone 2004). Only a few studies are known which have used SVMs for clas-
sifying multisource or multi-temporal data (Camps-Valls et al. 2006). Foody and
Mathur (2004a, b, 2006) have examined both the characteristics and the size of
training samples in SVMs. The paper from Hernandez et al. (2007) confirmed that
applying a classification approach based on SVMs such as the SVDD could be
used to provide more accuracy (97.5 %) than a MLC (90.0 %). Other significant
papers on this topic include: Bruzzone and Marconcini (2009), and Su (2009).

The SVM-options that were used in the study were: Kernel type (polynomial);
degree of kernel polynomial (2); bias in kernel function (1,000); gamma in kernel
function (0.111); penalty parameter (100,000); pyramid levels (0); and classifi-
cation probability threshold (0).

5.7.2 Results and Evaluation

This section present the results (thematic maps) of the comparison study which
used the remotely sensed data obtained from LANDSAT: MSS-June-1975 with
60 m spatial resolution and four spectral bands (Fig. 5.41); TM-May-2007/30 m
and six bands (Fig. 5.42); and TERRA: ASTER-May-2005/15 m and three bands
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(Fig. 5.43) fused with additional three spectral bands of LANDSAT: ETM+/SLC-
Off-corrected/-May-2005/15 m (Fig. 5.44). Two supervised classification
approaches (Multi Stage Classification Approach and One Stage Classification
Approach) were adopted, using the three supervised classification algorithms
MLC, ANN and SVM. This comparison study was carried out for the selected sub-
study-area of the four administrative regions. The LULC-classes generated in
relation to the selected testing area based on the LCCS-classification scheme, are
described in Fig. 5.40.

An evaluation of the presented results was performed to define and confirm
which classification approach and/or classification algorithm was optimized for the
sub-study area and for the greater study area of the ERB. Two methods were used
in the evaluation. The first (Fig. 5.45) was qualitative rather than quantitative,
more manual, and used non-remotely sensed data (human-based data) as truth-
reference for measurement of the accuracy of the produced thematic maps results.

Fig. 5.40 LULC-classes that generated from the LCCS-software (version-2) for the four regions
study area
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Fig. 5.41 The produced thematic maps from LANDSAT-MSS-data using various supervised
classification approaches and algorithms for the testing area

Fig. 5.42 The produced thematic maps from LANDSAT-TM-data using various supervised
classification approaches and algorithms for the testing area
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Fig. 5.43 The produced thematic maps from ASTER-data and LANDSAT-ETM+-data using
various supervised classification approaches and algorithms for the testing area

Fig. 5.44 The produced thematic map from ASTER-data with only the first three spectral bands
(right), and the resulted map after fusing the previous three bands with the 4, 5, and 7 spectral
bands of LANDSAT-ETM+-data (left) using various supervised classification approaches (here,
one stage classification approach) and algorithms (here, MLC) for the testing area
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The second method (Table 5.6, Fig. 5.46) is quantitative, more automated, and
used either non-remotely sensed data (e.g., GPS-measurements) or remotely
sensed data as truth-reference/s, based on suitable founded mathematical equations
(see Sect. 5.13).

This evaluation showed that: (1) the accuracy values range from 49.56 to
99.02 %; (2) after comparison of each of the three used algorithms (MLC, NN, and
SVM) with the three different spatial resolutions of remotely sensed data (ASTER-
15 m, LANDSAT-TM-30 m, and LANDSAT-MSS-60 m) and various spectral
resolution (ASTER-3-bands, TM-6-bands, and MSS-4-bands), for the 12 indi-
vidual classification levels, it can be concluded that the MLC-algorithm had the
highest accuracies in general, followed by SVM and finally, NN. Generally, the
accuracy decreased horizontally with the reduction of the spatial resolution at
almost each classification level, with the exception of ASTER-data at the more
detailed levels. Although these data had the best spatial resolution, there was no
corresponding increase in accuracy. Therefore, the higher spectral resolution by
LANDSAT-data with coarser spatial resolution was more important than the
higher spatial resolution by ASTER-data with coarser spectral resolution. In
addition, accuracy decreased vertically with the increase in the information
extracted at individual level; (3) after comparison of the final overall accuracy of
classification using the multi stage classification approach and the MLC, NN and
SVM algorithms (with accuracy values resulting from using one classification
approach and the same three algorithms), it was evident that the first approach
always showed a higher accuracy among the three classification algorithms. Also
here, MLC harvested the higher accuracy in both approaches. The higher accuracy
was found by using LANDSAT-MSS-data, while the offered classified classes
were too little and wide than those generated from other used remote sensing data;
and (4) therefore, the optimized results for the used remote sensing data, the
classification approach and classification algorithm were found to be LANDSAT-
TM-data (ASTER-data had insufficient spectral resolution, while LANDSAT-
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MSS-data had insufficient spatial resolution), the multi stage classification
approach and the MLC-classification algorithm.

5.8 General Classes Classification

Drought is one of the main characteristics of large areas of the ERB, since vari-
ation in lands and natural coverage is partially measured by average precipitation.
Geological and geomorphologic characteristics and soil types change depending
on the availability of water or the climatic risks affecting the area. One of the more
satisfying results of setting general classification controls representing the natural
coverage and land uses of basin areas falling outside the borders of water agrarian
projects, is the appearance of planted lands with trees in bare, uncultivated lands as
shown in satellite images, particularly, in relatively dry areas with dominated light
color soils. This may occur because of the ratio between dimensions of pixel in
TM-30 m data, and the distance between planted trees within one field. In the
region of Aleppo, pertaining to the widely spread Aleppo-pistachio and olive trees,
the distance between every two trees is estimated with 8–10 m (Fig. 5.47), i.e.,
there will be an approximately 16 trees in each pixel of the TM-data. Because the
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Fig. 5.46 Illustrate the accuracy assessment values presented in Table 5.6 visually
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greater portion of this plantation lies on light soil, and since remotely sensed data
are insufficient and unqualified in spatial resolution, it is difficult to detect the
distribution of these plantations. It is also complex to represent them through
automated classification.

However, where there is water availability (prevalence of irrigation projects),
all types of cultivations and even gardens appear clearly on the satellite images
used in current study. Time differentiation of termination of the agricultural crop
rotation of rain-fed crops existed away from irrigation projects, compared to their
counterparts included in irrigation projects. Consequently, it was necessary to have
satellite image coverage to be compatible with the precise dates of the agrarian
crop rotation of rain-fed crops in April.

The satellite images did not allow discrimination between barley and wheat
fields, which were similar in relation to their spatial discrimination (the field areas
of each crop) and spectral discrimination (there were no clear differences in
spectral reflectance). These two major and strategic crops were planted widely in
rain-fed areas based outside the borders of irrigation projects. Yet, the situation
was different within the irrigation projects, as barley occupied few of the limited
irrigated areas, but was commonly planted. This led to change in the agrarian crop
rotation and its spectral behaviour, differentiating it from rain-fed wheat. This in
turn led to the possibility of spectral separation between irrigated wheat and barley
at the beginning of May, regarding the radiometric field measurements that proved
the possibility of separation (see Sect. 5.5.1).

The study area was divided into two almost equal sectors corresponding in the
western part with the second, third and fourth agricultural stabilization zones. The
eastern part matched the fifth agricultural stabilization zone, which included the
pasture Al-Badiaand the Syrian Desert. Each of these two general sectors corre-
sponded with distinct areas concerning land use and natural coverage. Applied
agrarian legislation was a factor, especially the total prevention of cultivation in
the fifth agricultural stabilization zone. These two sectors were almost homoge-
neous in relation to spectral reflectance on this scale.

Fig. 5.47 The distances between the rain-fed olive trees in the study area (photo)
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The general extracted and classified LULC-classes based on LCCS-scheme (see
Sect. 5.3) were: Cultivated and managed terrestrial area(s); Natural and semi-
natural terrestrial vegetation; Artificial surfaces and associated area(s); Bare
area(s); and Natural water-bodies, snow, and ice.

The three period LANDSAT-imageries (MSS-June-1975, TM-May-1987 and
TM-May-2007) and the one period ASTER-imagery (ASTER-May-2005 fused
with the LANDSAT-ETM+/SLC-Off corrected/-May-2005-data) (see Chap. 4.1)
were classified using the supervised classification technique MLC to generate the
general LULC-classes of the first LCCS-classification scheme.

The concept used to produce the thematic maps of the general classes was
divided into two ways: preprocessing steps and the mosaic-process (see Sect. 5.2).
The classification process was carried out for all defined classes on the one mosaic-
image that covered the whole spatial distribution of the study area. This mosaic-
image was generated from more than one remote sensing image, in which the
temporal, spatial, spectral and radio-metrical characteristics of each image were
deemed to be compatible with each other, or when it was possible to enhance and/
or correct the distortion in these characteristics. The second method was performed
when it was impossible to generate a correct and suitable mosaic-image with no, or
an acceptable level of, distortion in the above referred characteristics, or when it
was possible to generate a more suitable mosaic-image which gave more accuracy
in classification. For example, the second method was performed on the LAND-
SAT-MSS-June-1975 data, where subsetting of each of the seven images using the
ERB-borders-vector-file extracted from the SRTM-data was conducted (see
Sect. 5.1) (Fig. 5.48). The classification procedures were performed for each
subsetted image after which mosaicing was carried out on all the individual

Fig. 5.48 LANDSAT-MSS-June-1975 imagery subsetting based on the spatial extent of the
ERB in Syria

132 5 Research Methodology

http://dx.doi.org/10.1007/978-3-319-00624-6_4
http://dx.doi.org/10.1007/978-3-319-00624-6_4


classification results to produce one final thematic map (Fig. 5.49). The procedures
that were performed in the classification were: (1) Creation of the legend including
the LULC-classes to be classified based on LCCS-scheme (see Sect. 5.3); (2)
Selection of the training samples visually from the MSS-data itself; (3) Calculation
of the separability values for the selected training samples (see Sect. 5.6); (4)
Application of the MLC-algorithm that offered the best accuracies (see
Sect. 5.7.2); and (5) Validation of the classification accuracy using the accuracy
assessment methods (see Sect. 5.13).

5.9 Irrigated Areas Mapping

As shown in the information obtained from the Syrian Irrigation Ministry, the total
reclaimed lands in the Euphrates River Basin in the period 1970–2007 comprised
some 201,372 ha, distributed in the governorates of Aleppo(72,492 ha), Arraqqa
(102,512 ha) and Deir Azzour (26,367 ha). However, the variation in the radio-
metric characteristics over the various imagery that were used to construct the final
mosaic-images and the variation in the spectral, spatial and radiometric charac-
teristics over the various multi-sensor datasets, added their own uncertainties to
irrigated area estimates.

This section describes the methodology used to locate irrigated areas within the
national administrative units in the Euphrates River Basin. Irrigation maps were
derived from remotely sensed data (LANDSAT-MSS-June-1975, LANDSAT-TM-
May-1987 and 2007, and TERRA-ASTER-May-2005), and from the very detailed

Fig. 5.49 LANDSAT-MSS-data-June-1975 classification results for each subsetted image and
the mosaicing of all results in one thematic map
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schemes of each irrigation project that were obtained from the Syrian Ministry of
Irrigation and IGDEP. These schemes represent clearly each project’s formative
spatial distribution, but with no geographical reference. These schemes were
linked with the remotely sensed data available using a hard visual interpretation.
The information was also digitized to locate the detailed schemes on the various
existed remote sensing data in order to extract the boundaries of the irrigation
projects. After the maps were on-screen digitized, the borders of the irrigated areas
were evaluated using satellite imagery in many areas. The both shape and size of
the digitized areas were followed by an adjusting process where necessary. Finally,
it was helpful to use publications such as project reports and the frequently pub-
lished statistics about the development in the irrigation areas and the agricultural
plan over the time.

In general, the following steps were adopted: (1) generation of a vector-file that
defined the spatial distribution of the ERB-borders; (2) the register of national
irrigation statistics for the ERB in Syria; (3) geospatial information (detailed
schemes and various remotely sensed data) used to locate irrigated project areas
within the ERB; (4) the production of a detailed vector-based digital map of
irrigated project areas in the ERB (Fig. 5.50), to be used as a spatial indicator in
combination with the remote sensing data during the agricultural classification
within these projects; and (5) fusion of the digital maps of the irrigated areas in the
ERB for the years 1975, 1987, 2005 and 2007.

Fig. 5.50 The spatial distribution of the 16-projects in ERB (about 230,000 ha) that generated
from the detailed irrigation projects-schemes and the remotely sensed data (as vector-file)
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Three methods in mapping the irrigated areas were followed. The first
(Fig. 5.51) was based on the previous general classes classification results (see
Sect. 5.8), where the class (cultivated areas) represented the irrigated areas, which
were actually the agricultural areas (planted and fallow). Then, the irrigated areas
vector-file was used to subset and extracts the actual irrigated agriculture within
the projects from the ERB-borders. Here, the classification accuracy was equal to
the gaining general classes accuracy, which was generally high for wide categories
classification. The second method combined the transformed NDVI-values to
vector-file (as mask). The drawback here was that NDVI can only detect the
planted areas and not the fallow-fields. To overcome this problem, the two major
agricultural seasons of winter and summer needed to be classified, where, as, the
non-planted fields during winter would be almost completed planted in summer,
especially in areas with an abundance of water. Then, the two winter and summer
classification results were added into one thematic map that represented the actual
irrigated areas over an individual year. The third method involved the analysis of
each of the 16-projects alone. This was more major for crop classification within
the irrigated areas, mainly when scarce truth-references existed. To this end, the
use of statistical information was helpful. This method is presented in the next
section.

The next task was to define the spatial distribution areas of irrigated agricultural
projects within the natural borders of the ERB in the study’s reference time period
of 1975, 1987, 2005 and 2007 by calculating the values of NDVI and making a
mask that covered the spatial prevalence of the projects’ areas. This mask was the

Fig. 5.51 Irrigation mapping in the ERB based on the traditional supervised classification
approach (the first method)
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study area for classification of the irrigated winter and summer crops during the
previously mentioned time durations except for in 1975. The remotely sensed data
(LANDSAT-MSS) available in that year had a low spatial resolution of 60 m, and
for this reason, it was impossible to produce detailed maps of land uses, specifi-
cally in those areas included under wide classes (e.g., both wheat and barley are
detailed classes that lie under the heading ‘‘wide general class’’, namely, the
agrarian lands).

The total cultivated area of the Arraed project was c. 21,000 ha. However, due
to bad land reclamation procedures, salinization had resulted in large areas of the
project lands. In 2005, the arable land mass was only 2,433 ha.

5.10 Crops Classification

Classification of agricultural crops using remote sensing data requires in general,
knowledge about crop phenology, climate of the exacting growing season and
ground reference information about specific agricultural practices in the drainage
basin. ‘‘The development of a regional-scale crop mapping methodology is chal-
lenging because it requires remotely sensed data that have large geographic cov-
erage, high temporal resolution, adequate spatial resolution relative to the typical
field size, and minimal cost’’. Remotely sensed data from customary sources such
as the LANDSAT (TM and ETM+) and (AVHRR) proved the usefulness for the
classification of LULC-features. Supervised classification is the most frequently
used classification method in agricultural areas (Van Niel and McVicar 2000).

MSS data are used to set maps concerning the expansion of the agricultural
lands and to distinguish them from constructional lands, for example. However,
one drawback is that these data are unable to set thematic maps which view the
more detailed crops’ expansion. Of course, there are always exceptions; for
instance, the agricultural cultivated fields planted with different crops are to some
extent considered wide spaces, which enables the MSS-data to distinguish them.
Yet, this condition was not verified in the ERB, which was characterized by having
small agricultural fields, especially those located outside of the borders of the
governmental irrigated agrarian projects. These areas were also organized fol-
lowing the agricultural crop rotation policy.

In the third part of this study, carefully timed remotely sensed data were used to
map the location and extent of irrigated winter and summer crops for the years
1987, 2005 and 2007.

The commonly implemented crop classification approaches included: unsu-
pervised classification; supervised classification; and decision tree classifier. In the
cases where there was less information for a study area, only the characteristics of
the image (also, statistical records and the detailed schemes, especially for 1987)
were used.
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The adopted concept (Fig. 5.52) in agriculture classification was based on the
results of the previous two sections (Sects. 5.8 and 5.9). The first step was to define
the classes to be classified, based on the statistical records for the study year/s with
no/or insufficient truth-data (e.g., 1987-data). This was followed by selection of the
winter related data (Fig. 5.53), and subsetting to remove margin distortions, and to
extract only the ERB spatial related areas. The time series of remotely sensed data
were first used to generate a LULC-map of the whole ERB-area based on the
LCCS-scheme (see Sect. 5.8). This process involved the use of one mosaic-image
or each individual image, which was then mosaicked into one thematic-mosaic-
map. The classification method was based on a MLC algorithm. The resulting
classification had five general classes. The important general class which was used
as the basis in irrigated agriculture classification was: cultivated areas: cropped
and fallow. Using the derived vector-file which located the detailed spatial dis-
tribution of each project, sub-setting was conducted and the cultivated areas which
existed only within the irrigation-projects and not within the whole ERB were
extracted. Finally, using the unsupervised approach as an indicator for additional
information about the spectral characteristics of the area, training samples were
collected for some general classes (e.g., water), followed with the tested MLC
approach (see Sect. 5.7) to generate the final thematic map of the major winter

P172R035_080507/for winter crops classification

Subset on ERB-borders and for removal the 
margins distortion

Supervised classification/MLC

Five general classes

Subset on the irrigated areas borders

Masking the cultivated areas class 
(cropped+fallow)

Unsupervised classification (ISODATA)/9 classes

Supervised classification/MLC

Training set design: 
ROIs 

gathering, drawing, an
d separability 

evaluation

Choose the classes to 
be classified based on 

the statistic records

Classes: Fallow, Trees and shrubs, crops 
(Wheat, Barley, Sugar beet, and another crops)

Accuracy assessment
Combine and masking 

(Fallow, Wheat, Barley, and another crops)

Applying on (P172R035_070807)/for summer 
crops classification

Unsupervised classification

Supervised classification/MLC

Classes: Fallow, crops (Cotton, Corn, another 
crops)

Fig. 5.52 The general concept-steps adapted to classify the various agricultural classes,
especially the major strategic winter and summer crops
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crops of interest (wheat, barley, and sugar beet), in addition to fallow, which is
classified in both seasons.

Trees and shrubs could be classified from either winter remotely sensed data or
from data acquired in summer. This information was then combined and a mask
constructed that included all the winter-data-based classified LULC-areas which
could be planted during the summer (fallow, wheat, barley, and other crops). The
other classified areas which were almost impossible to be changed during the
summer of the same year (e.g., trees, permanent crops, etc.) were excluded.
Finally, the before built mask was applied to the summer-related remote sensing
data (Fig. 5.54) for classification of the summer crops of interest (cotton, and
corn), plus fallow. Before the completion of this task, it was necessary to perform
an accuracy assessment for all the produced classification results.

The other method that was adopted to classify the irrigation areas (especially
the state projects) and the various permanent, winter, and summer agriculture-
categories, was to integrate the remotely sensed data with the non-remotely sensed
data (e.g., statistical records and detailed schemes), especially for the TM-May and
August-1987 data. This is explained in the next section.

The most important point involved in these projects was the engineering
organization and division of each project into several farms with names and known
geographical sites. The cultivated fields were large enough to be easily distin-
guished by available remotely sensed data. In addition, the geographical distri-
bution of those fields had well known coordinates and detailed charts, and

Fig. 5.53 The followed concept to classify the major winter crops based on both the previous
general classes classification and the generated spatial distribution of the irrigated areas
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schematics were available for each project with large drawing scales. Because of
this, I was able to become familiar with every irrigation project included in the
basin and its spatial prevalence on the satellite images. So, I was able to integrate
the spatial distribution with the available statistic numbers of each project in
several time-durations. This was also compatible with the remotely sensed data
about the study area in my possession. These links enabled me to select the
training samples used in the supervised classification and to use them in assess-
ment of the accuracy of the classification. This was, of course, in addition to the
remaining referential data previously mentioned.

As for the other basin areas located outside the borders of the irrigation projects,
since the required classification level is general and not detailed, it was decided it
would be sufficient to count on the remotely sensed data in addition to the the-
matic, topographic and Google Earth maps and during the selecting process of the
training-samples.

Here the problem is that full statistics concerning agrarian activities and types/
classes of plantations were available, but only at a governmental and governorates
level. This meant that the data did not provide information about what had been
previously cultivated. The other problem was that many fields were not planted
every year with the same crop. Detailed information about which specific crops
had been planted in the training-samples was required. This level of detail was

Fig. 5.54 The followed concept to classify the major summer crops based on both the previous
winter crops classification and the generated spatial distribution of the irrigated areas
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possible for the State-run irrigation projects in the ‘‘Organization of Development
of the Euphrates Basin’’, which has three branches—the Upper-Euphrates in A-
leppo, the Mid-Euphrates in Arraqqah and the Lower-Euphrates in Deir Azzour.
These areas were well managed, and a detailed agricultural statistics procedure
was developed for every project.

One example of a training sample is a 17,000 ha project, which is integrated
with a state farm (4,000 ha). Thus, the total area is 21,000 ha located within the
Upper-Euphrates Basin in Aleppo, the reclamation began in 1979. The land is
irrigated by pumping water from Lake Al-Asad. The temporal developments in the
extension of this project were as followed: In 1979 (3,031 ha), 1980 (4,762 ha),
1981 (9,634 ha), 1982 (15,103 ha), 1990 (16,703 ha), 1991 (17,513 ha), 1992
(19,703 ha), 1993 (20,903 ha), and in 2005 (21,325 ha) with 100 % of the irri-
gation plan.

The first step was to integrate the construction scheme with the remotely sensed
data to extract the spatial distribution of the project of interest (Fig. 5.55). This
was complicated by the fact the area had no ground truth reference.

The second step was to define what ratio of agricultural crops existed. This was
generated from non-remotely sensed/human-based collected data (Table 5.7).

Fig. 5.55 The integration of the remotely sensed data with the construction scheme of the
21,000 ha project
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The third step (Fig. 5.56) was to extract the smallest unit/farm in the 21,000 ha
project to make the reorganization process of various agricultural features easier.
Then, the various record-times/coverages were used in a visual interpretation to
recognize various agricultural features and to define the training samples that
represent these features in a supervised classification. For example, it was possible
to recognize trees, alfalfa and sugar beet using multi-date remote sensing data and
visual interpretation. Based on the agricultural calendar, trees fields appeared as
planted areas over the three datasets (May, June and August); alfalfa appeared as
green areas over the four datasets (April, May, June and August); and sugar beet
fields appeared in April data as diverse planted areas in comparison to wheat and
barley fields. The June data showed the area was still planted in comparison to
other winter crops, especially those that had similar spectral response, such as
wheat and barley. These three various appearances of the wheat at first degree and
the barley in the June data, confirmed the selection for the training samples from
the May data. The region also contained many dairy farms nestled among the
irrigation projects with known geographical locations. These farms were planted
only with barley, and provided a useful basis for training sites. Circular-irrigation
fields also provided a useful source of reference, as the fields appear in a circle-
shape. These fields were planted almost fully in wheat. To this end, the visual
interpretation and unsupervised classification results were able to be compared
with the statistical numbers, which provided a background about each farm’s

Fig. 5.56 The followed concept to collect training samples for the area/s with no truth-data or
with insufficient reference data (the state farm)
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planted crop. After all the representative training samples for each agriculture-
category (permanent, winter, and summer) were collected, the supervised classi-
fication was conducted under the vegetation-mask generated from NDVI-values.

This resulted in the collection of several training samples within the irrigation
agricultural land projects, which represented the majority of variations in the
LULC-categories, especially the agriculture class. Some of training-samples were
used in the automated classification process, whereas others were used to evaluate
the accuracy of these classifications.

At this point, a query arose over what requirement was needed to link statistical
records with spatial records concerning the irrigation projects. This was needed for
the training-samples representing the LUs which would be used later in automated
classification, despite the availability of other referential GPS-points. There were
three reasons for this. Firstly, the GPS-points did not totally cover all the study
sites. Points of ICARDA-1987 were all located within Aleppo governorate, but no
points existed in the Arraqqa and Deir Azzour. The GORS-points for 2005 were all
located within Deir Azzour. The only points distributed over the three govern-
orates were those taken in 2007. Secondly, because of the relatively large exten-
sion of the study area which lies within various natural regions (climatic: rains,
temperature, humidity and soil), there was too much variation in the cultivations
and plants along the basin. As, points of ICARDA-1987 did not represent poplar
tree farms which existed only within the irrigation agriculture projects area in the
Arraqqa (Al-Asad institution project). Thirdly, the variation in the method of
collecting the GPS-points and the training-samples proved of issue, as well as the
potential error in measurements of the GPS, relating to technical reasons. It is
hypothesized that if one of the points measured a wheat field which neighbored a
field of barley, then if the GPS-device was inaccurate enough or the satellite image
that received the point was not correctly referenced, then the point may be shown
as lying within the closely bordered barley field. So, mistakes could occur in the
classification process.

After the collection of enough training samples for the existing various LULC-
features from the state farm, the whole 21,000 ha project was generalized via the
supervised classification (Fig. 5.57). Here, the multi stage classification was fol-
lowed with various created masks. Initially, both the unsupervised and supervised
classification were used to classify the five general classes (see Sect. 5.8). Then,
the approaches were combined into two more general classes, i.e., uncultivated and
cultivated areas. The subset ‘‘cultivated areas’’ represented the actual planted fields
and the fallow and/or drilled lands, and displayed the irrigated area in project-
scale. A mask was then created to represent the spatial distribution of this culti-
vated areas class, and to eliminate the uncultivated areas and their negative
spectral influence on the other features. It also reduced the computer processing-
time of the data (though the user-data-interaction time was increased due to the
greater number of processing-steps). After applying the masking-process and the
supervised classification, the three classes were obtained (trees, herbaceous and
fallow). The tree class was extracted from the next classification steps. Two masks
were then built; the first for the herbaceous and the second for herbaceous and
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fallow areas. Under the first mask, a supervised classification was carried out to
obtain the permanent and winter crops classification results (alfalfa, wheat, barley,
sugar beet and other crops). The second mask for herbaceous and fallow areas,
where some of herbaceous areas would be replanted in summer (e.g., corn after
barley), produced the thematic map of summer crops (cotton, corn and other crops)
using summer remote sensing data for August.

The concept in classification adopted above was applied for other study years
(Fig. 5.58) to obtain historical remote sensing based statistical numbers
(Table 5.8).

Finally, all the previously adapted steps and methods were applied and data was
added for the other 15 projects to the thematic map/s for the 21,000 ha project
(Fig. 5.59).

5.11 Post-Classification Processing

Many researchers have argued that post-classification is a vital step to improve the
results of classification (Lu and Weng 2004). Ancillary data are often used to
enhance the classification result based on performed expert rules. As, dense forests

Fig. 5.57 The general classes classification, irrigation mapping, and agriculture classification
methods that were performed based on the spatial extent of each irrigation project
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are often found in mountain areas in Syria, but food-trees (cultivated plantations)
are essentially located in plain areas, with sparse houses and a low population
density. So, expert knowledge can be performed based on the relationships
between the high factor and the agricultural conditions to separate food trees from
forested areas. Classical pixel-based classification methods often lead to ‘‘salt and
pepper’’ effects in final classification results maps, caused by the isolated pixels of
some classes within another dominant class. That is due to the complexity of
biophysical environments, which potentially decrease the classification accuracy.
It is more logical to join these isolated pixels to the dominant class that they are
first assigned to. A suitable enhancing filter applied after the classification process
on the produced thematic map will not only ‘‘clean up’’ the map and make it
visually less noisy, but also increase the classification accuracy.

To improve the classification results, the majority/mode filter in ENVI, v. 4.6
was used as a post-classification procedure. This procedure is a low-pass filter that
reduces the created effects and noises from the classification process, where it
replaces the isolated pixels by whatever value constitutes the majority in their
neighborhood. It could be regarded as a kind of post-classification spatial inte-
gration. This filter is simple, where it smoothes a thematic map without any
numerical operations (Liu and Mason 2009). The classification results (the the-
matic maps) were filtered using a 3 9 3 majority filter window, followed by a

Fig. 5.58 The general classes classification, irrigation mapping, and agriculture classification
results that were produced based on the spatial extent of each irrigation project
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sieve filter. This caused a smoothing of the class boundaries. A small pixels-cluster
of an individual class was added to the surrounding area of a larger class, and the
boundaries of the LULC-classes were generalized and clearly identified. The sieve
filter was used in addition to the majority filter to clean the classification result of
further small pixel-clusters that were not eliminated from the majority filter.
Clusters with less than 10 pixels were removed by merging them with their largest
neighbor.

5.12 Automated Change Detection Mapping

5.12.1 Pre-Classification Approach

This approach was essential in mapping the increasing changes in the agricultural
irrigated areas in the ERB. Data from the LANDSAT-program, MSS and TM
spanning the period between 1975 and 2007 were chosen from a similar time of
the year in order to allow each LULC-class of interest a similar spectral response
and similar illumination conditions. The MSS-data set of six images (Fig. 5.60)
were pre-processed (see Sect. 5.2) for radiometric normalization using iMAD. The
master-scene was p185r035. It was impossible to correct the atmospheric effects
because it was difficult to obtain weather parameters for such relatively old dates.
However, it was possible to carry out radiometry and atmosphere corrections for
the TM-data set of six images. The master-scene for this was p172r035. Each data

Table 5.8 The remotely sensed data classification based statistical results for the 21,000 ha
irrigation project for 1975, 1987, 2005 and 2007

The 21,000 ha-project_all classes 1975 1987 2005 2007

Cultivated areas 23,834 25,806 34,792
Trees ? shrubs 648 872 58
Herbaceous (winter crops) 12,561 22,377 23,366
Alfalfa 275 459 198
Wheat 3,669 11,693 10,560
Barley 5,305 4,150 1,211
Sugar beet 3,454 6,075 2,359
Other crops 62 200 9,038
Fallow 10,927 2,796 11,970
Herbaceous (summer crops) 50,499 24,272 13,303
Cotton 2,950 8,412 2,284
Corn 2,099 463 650
Other crops 8,143 127 10,369
Fallow 10,063 15,270 22,277
Water 0 0 0 0
Uncultivated areas 46,324 22,494 20,501 11,489
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set was then mosaiced to produce only two mosaic-images, each representing one
date. Again, iMAD was applied to the two resulting mosaic-images. The master-
scene was chosen as the mosaic-scene produced from the TM-data in 2007, as it
was possible to get weather data for the dates, and radiometric normalizations and
atmospheric corrections were able to be performed. Finally, the two mosaic-scenes
were geometrically registered using the image to image method. The MSS-scene
was also resampled to the same spatial resolution of 30 m as TM-scene. Finally,
the two remote sensing data-scenes were added to the change detection mapping
process using the image differencing method. The three major mapped changes
over the last 32 years were: natural areas to bare areas, bare areas to cultivated
areas, and no change (see Chap. 6.3.1).

5.12.2 Post-Classification Approach

The post-classification change detection approach concerned the analysis of the
differences between two more or less independently classified images. A com-
parison of the categorizations was performed using raster-based analysis (ENVI, v.
4.6). The major merit of this approach was that data normalization was not needed
because the remote sensing data recorded at two dates were classified separately

Fig. 5.59 Illustration of the individual 16-project-based classification results (permanent and
winter crops classification results for 1987)
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(Singh 1989). Disadvantages that reduce the implementation of this approach are:
cost; consistency; and error propagation (Lunetta 1999).

The post-classification change detection approach for the ERB (Fig. 5.61) was
based on the two previously supervised classified remote sensing data sets (TM-
May-1987 and TM-May-2007) using the MLC-algorithm (see Sect. 5.7.1.2). The
resulted five general classes that provided input in the change detection were:
cultivated and managed terrestrial areas; natural and semi-natural terrestrial veg-
etation; artificial surfaces and associated areas; bare areas; and natural water-
bodies (see Sect. 5.8). The resulting 1987 and 2007 classification results were used
as inputs for classification, then post classification, followed with change detection
statistics under the ENVI-program with the version 4.6. This yielded a change
image (change matrix), in which 20-types of change between the two dates were
potentially possible (see Chap. 6.3.2).

Change detection products

Thematic map/s of three possible change-
types

Bare areas to cultivated areasNatural areas to bare areas No change

Fig. 5.60 The pre-classification change detection mapping concept that was performed for the
two remotely sensed data sets (MSS-June-1975 and TM-August-2007)
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5.13 Accuracy Assessment

The execution estimation of an applied classification approach is a complex pro-
cess, involving various criteria. Cihlar et al. (1998) suggested six criteria. These
are: ‘‘accuracy; reproducibility; robustness; ability to fully use the information
content of the data; uniform applicability; and objectiveness’’. These requirements
are difficult to satisfy using only one classification approach. The reason for this
relates to the different environmental settings and datasets used. The acceptable
accuracy values are relative, determined generally by the users themselves
depending on the type of application. Accuracy values that are acceptable for
specific application may be unacceptable for others.

Generally, there are no dependable rules for determining the testing samples
that are required to evaluate the classification accuracy. However, there are some
useful suggestions, including those made by Fitzpatrick-Lins (1981). Another idea,
put forward by Congalton and Green (1999), is to use 50 testing samples as
minimum for each classified LULC-category. If the study area is larger than
1,000,000 ha, or if there are more than 12 classified categories, then there should

Atmospheric correction/ATCOR-2 + 
Relative radiometric normalization/iMAD

P185-r036

P186-r035

P172-r037

LANDSAT -MSS-June-1975 LANDSAT -TM-August-2007

P184-r035

P173-r034

P184-r036

P185-r035

Mosaicing the six images after 
classification/pixel size (60m)

Mosaic

P171-r035

P171-r036

P173-r035

P186-r034

Image by image processing

Subset each image on ERB-borders

No atmospheric correction/no atmospheric 
parameters
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normalization/iMAD

Subset on ERB-borders

Training samples/
Spectral characteristics

Five general supervised classification/MLC

Five general supervised classification/MLC
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(30m)

Resempling to (30m)

Geometric registration/image to image

Change detection statistics/change matrix

Change detection products

Thematic map/s of 20 possible change-types

P172-r035/Master 
scene

Fig. 5.61 Flow chart of the post-classification change detection mapping approach that was
performed for the two remotely sensed datasets (TM-May-1987 and TM-May-2007)
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be 75–100 samples for each LULC-category. This suggested approach samples
small areas thoroughly, while large areas might be under-sampled. Thus, it is
suggested that testing sample numbers could be set for variations in size and
within-class variability.

Accuracy assessment is a post-classification step. It was accomplished for the
purposes of this study using ENVI, v. 4.6, which was used to evaluate the cor-
respondence of the classified LULC-maps to the true and/or assumed true geo-
graphical reference data (Congalton 1991). The reference data were: Part of the
collected field-data for the years 1987, 2005 and 2007(see Sect. 5.4), where the
first part was used as training samples; assumed truth data based on the integration
of the remotely sensed data; irrigation projects statistical records and the detailed
construction schemes of these projects, which were used locate the spatial distri-
bution of the various agricultural features in the irrigation projects area for 1987
(see Sect. 5.10); thematic maps; visual interpretation based on the remote sensing
data itself; and Google Earth. Figure 5.62 illustrate the major steps that were
followed in assessing the various thematic maps that resulted from the classifi-
cation process.

Results of classification were presented in form of thematic maps. Using the
various truth reference data, accuracy assessments were carried out for all clas-
sification results. The reference data/classes were compared with the predicted
classes by the adopted classifier/s (and probably enhanced using the post-classi-
fication processing). The final evaluation results were reported in the form of error
matrices. The overall classification accuracy (percentage correct) was calculated
for all classifications, as well as the accuracies of the class-specific user and
producer.

Two accuracy assessment methods were performed in this thesis. The first
method is based on the pixel scale to derive the accuracy of classification in the
remotely sensed data, which resulted from the calculation of the error/confusion
matrix.

Classification 
results/Thematic maps 

to be assessed

Accuracy evaluation 
(error/confusion matrix)

Classification accuracy 
evaluation (producer 

accuracy, user 
accuracy, and overall 

accuracy)

Reference truth data sets
(GPS-points, aerial photographs, etc.) Create random points 

Fig. 5.62 The general accuracy assessment steps that were applied on the resulted thematic map/s
from the classification process
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Let, for a (l-class) classification problem, (N) be the total number of reference
samples. The corresponding confusion matrix is illustrated in Fig. 5.63. The
number of samples that are classified as class/xi (i = 1,2,…,l)/and belong to land
cover class/xj (j = 1,2, …,l)/are described by ( nij), for example, (n11) denotes the
number of samples that belongs to class (1) and correctly assigned to class (1),
whereas (n21) defines the samples belonging to class (1), but incorrectly classified
to class (2). The diagonal cells (ncc) (the highlighted elements in Fig. 5.63) of the
error matrix contain the number of correctly classified samples (Congalton and
Green 1999), while the off-diagonal cells represent the disagreement between the
classified image and the ground truth data. The overall accuracy is calculated by
their sum (the diagonal observations) divided by the total number of samples (N)
(all observations included in the error matrix):

Overall accuracy ¼
PL

c¼1 ncc

N

Generally, the individual LULC-class that accounts for a large rate of the study/
testing area, might be classified with a high accuracy using an individual classi-
fication algorithm, which creates an alignment in overall accuracy. Therefore, it is
necessary to consider the individual class accuracies to avoid the alignment. Class-
specific accuracies can be created based on the confusion matrix (i.e., producer and
user accuracy). It can be also used to create the corresponding error rates. ‘‘An
error of omission is to exclude a sample from a class in which it originally belongs
(a misclassification error is an omission from the correct class). A commission
error on the other hand assigns a sample to a wrong class (a misclassification error
is a commission into another class). Consequently, each error is an omission from
the correct class and a commission to a wrong class. The producer accuracy, that is
a measure of error of omission’’ (Story and Congalton 1986), for class (c) is
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Fig. 5.63 Explanation of the error matrix approach (Source modified from Congalton and Green
1999)
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calculated by dividing the number of correct samples of (c) by the total number of
reference samples of class (c). The resulting percentage producer accuracy indi-
cates the probability that a reference pixel will be correctly classified.

Producer accuracy ¼ ncc

nþc

The user accuracy, that is a measure of error of commission (Story and
Congalton 1986), describes how many samples that were classified as (c) in fact
belong to class (c). The measurement is resulted from:

User accuracy ¼ ncc

ncþ

Finally, multiplying the results of each the previous three accuracies by 100
forms the percent correctly classified (PCC) metric.

The second statistic used is the kappa coefficient (kc). It is generally known as a
precision measure since it is considered as a measure of agreement in the absence
of chance (Cohen 1960; Lillesand et al. 2008). Conceptually it can be defined as:

KC ¼ Observed Accuracy� Chance Agreement

1� Chance Agreement

The kappa statistic is calculated from the confusion matrix by using the fol-
lowing mathematical statement:

KC ¼ n
Pp

i¼1 xii �
Pp

i¼1 xioxoi

n2 �
Pp

i¼1 xioxoi

where:
n total number of pixels used for testing the accuracy of a classifier,
p number of classes,
P

xii sum of diagonal elements of confusion matrix,
P

xio sum of row i,
P

xoi sum of column i

An example is presented to explain the derived classification accuracies for the
21,000 ha project for the year 2007 (Table 5.9).

The second method is based on the state administrative divisions (e.g., Menbij
see Sects. 5.4 and 5.7.2) and/or on the state irrigation projects divisions (e.g., the
21,000 ha project see Sect. 5.10), to derive the accuracy of the correspondence
between the derived statistical numbers from the automated classification of
remote sensing data and those human-based statistical records.

The correspondence degree for a specific season at an administrative-scale was
measured by calculating the Percent Error (PE):

PE ¼ Observedi � Predictedi

Observedi
� 100:
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PE is calculated as: the percent proportion of the variation between the remotely
sensed area estimate (predicted) and the surveyed area estimate (observed) to that
of the surveyed area estimate (observed) for each method for each year within a
state administration’s boundaries.

After finishing the automated classification process, and obtaining the results
and evaluations, results were compared with statistical records on the level of the
three governorates (Aleppo, Arraqqa, and Deir Azzour), on the administrative
region level (e.g., Al-Bab) in each governorate, and on the level of the natural
borders of agricultural stabilization zones within the borders of the three gov-
ernorates and their administrative regions. Finally, these statistical records were
reported on the level of the irrigation agricultural projects’ borders.
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Chapter 6
Results, Analysis and Discussion

This chapter deals essentially with the results of this thesis, that are then followed
with analysis and discussions. This chapter presents the various LULC-features
classification results (the wide major classes, the irrigated areas development
mapping, and the small detailed agricultural classes), and their accuracies. Factors
which influence the classification results are also discussed. This chapter illustrates
the various LULC-change detection mapping results (pre-classification approach
results and post-classification approach results), and discusses the successes and
the limitations of applying the various remotely sensed data used in this study, to
satisfy investigation into the objectives of the thesis. Statistical records do not
contain all elements of the irrigation projects. The second step in this research
involves employing remotely sensed data to obtain statistical numbers which
represent the areas in over past periods. Here, again, emerges the integration
between statistical data and remote sensing data in study land uses, distribution of
natural coverage and its change across time. In the first step (see Chap. 5.10),
statistical numbers have been useful in the spatial determination of the spread of
the targeted needed classes, and are represented in the automated classification
process in order to represent the spectral characteristics of all classes. Plus the use
of the total statistical records in evaluation, the accuracy of the classification needs
to be determined through comparison of the final results of the automated clas-
sification with the results of the traditional human-based survey. The second step,
after obtaining the training-samples from the irrigation projects which have sta-
tistical records or by using the available GPS-points as training-samples, is to
determine the statistics of the regions which have no governmental statistical data.

6.1 LULC-Classification

The spatial resolution of LANDSAT 30 m makes LULC-mapping in some situ-
ations difficult as compared to other platforms such as IKONOS (4 m), SPOT-5
(2.4 m), and QUICKBIRD (less than 2 m) (Jensen 2005). Some parts of the ERB
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have strips of cultivation areas (planted: various crops, non-planted: fallow or
drilled), and natural vegetation, that are less than 30 m in width and/or length (see
Fig. 5.29), which were not mapped explicitly using the LANDSAT-sensor. This
highlights a need to adopt more high-resolution images for this purpose, but unlike
other remote sensing platforms (e.g., IKONOS, and ASTER), the LANDSAT-
sensor can allow long term monitoring using data from the 1970s up until to
present day (Jensen 2005).

6.1.1 The Broad Major LULC-Features

An ERB-map has been created which represents the state of five major LULC-
features for the years 1975, 1987, 2005 and 2007. Table 6.1 and Fig. 6.1 provide a
statistical overview of the LULC-distributions. The majority is occupied by bare
lands, followed by cultivated areas, natural vegetation areas, natural water-bodies,
and finally, artificial surfaces. The total area of these major classes is 5,033,537 ha.

Irrigated Aleppo’s eastern plains. These plains are irrigated from the Euphrates
River by pumping water from Lake Al-Asad. They extend from the south of
Aleppo (near the Tall Addaman town) to the township of Maskana. The southern
and southeast borders of the plains are formed by Al-Badia. The marsh of Al-
Jabboul that lies east of the city of Assafira separates those irrigated plains from
the southern Al-Hass mountain plains which extend to the beginning of the Syrian
Desert (Al-Badia). Agriculture in the Al-Hass mountain plains often relies on rain-
fed cultivation such as wheat, barley, lentil and cumin, with the omission of cotton.
The Al-Badia lands that lie on the borders of the projects of east and west Maskana
are protected pastoral lands, and cultivation within them is restricted to secure
pastures for animals. The irrigated lands are bordered from north by a large major
irrigation canal that transports water from Lake Al-Asad. North of this canal are
rain-fed plantations, and in some places, artisan wells upon which the cultivation
of vegetables, summer, and winter crops rely in small rates. Here, only one winter
crop is planted—either wheat or barley—as ground water is rare and does not
cover the need for irrigation of both crops. Recently, cumin has begun to be grown
in the area and many farmers have started to cultivate olive trees, which require
little water. These rain-fed cultivations extend from the irrigation canal in the
south to the Turkish borders in the north.

Table 6.1 Overview of the LULC-occupations rate in several years

1975 1987 2005 2007

Cultivated areas 1,123,268 1,316,117 1,670,625 1,783,286
Natural vegetation 562,890 710,093 686,718 403,113
Artificial surfaces 413,204 255,140 18,312 89,772
Bare areas 2,843,452 2,635,830 2,497,157 2,641,953
Natural waterbodies 90,723 102,730 160,725 109,580
Total 5,033,537 5,033,537 5,033,537 5,033,537
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A new project, begun in 2007 aims to redirect part of the Euphrates from the
basic canal in Arbid Kabeer toward the north, to the Tadif and Al-Bab plains and
ending at the village of Bershaia. This project will irrigate 5 km width of agri-
cultural lands, using the modern technique of irrigation. In this area, wheat and
cotton are largely cultivated, while peanuts and sugar beet are farmed in small
spaces. Before the irrigation project, these areas featured bare land, void of
planting coverage because of the scarcity of water in summer. The East Aleppo
plains end at the city of Maskana and at the pumping station of Babiri. The plains
of Maskana-west follow Aleppo administratively. In the winter, wheat, peanuts
and sugar beet are cultivated and irrigated barley in low rates. The major cultivated
summer crops are cotton, yellow corn, and low rates of vegetables and
watermelon.

Therefore, these lands are all agricultural lands depending on rain-fed irrigation
systems, with the exception of the recently irrigated plains of Tadif and Al-Bab,
which amount to about 6,700 ha. Near Menbij City, there are individual dragging
operations by pumps extending about one kilometre or more, which are detectable
on the remote sensing data used.

Al-Badia/the pasture (the fifth agricultural stabilization zone) is largely clas-
sified under the general class of natural vegetation and a lesser part of bare areas.
The Syrian Ministry of Agriculture defines this area as one in which precipitation
is less than 200 mm per year. Al-Badia is characterized by natural plants, which
are either seasonal or permanent, with different densities due to natural factors
such as soil type, water recharge, and the local topography. Human factors, such as
the density of the grazing, modern plantations and projects to improve pastures
also have an impact.

Most of the wetlands and the water surfaces distributed in the study area were
characterized by their short-term duration (except the Euphrates River). As, the
large salty Al-Jabboul lake/marsh, and the marshes of Al-Haraik, Al-Adamy and
Maraga are all exposed to seasonal or yearly floods, depending on precipitation
amounts. The borders of these areas were represented on the thematic maps
according to their expansion in spring season and in a rainy and wet year (TM-
May-1987). This was done to show that the areas may sink underneath waters. As
for temporal valley streams, they can be drawn digitally using topographic maps
with 1/50,000 scale, for example.

In general, the detection, separation, classification and mapping of the roads
(especially, the secondary roads) and the small villages, which underlie the general

Cultivated Areas Natural Vegetation Artificial Surfaces Bare Areas Natural Waterbodies

1975 1123268 562890 413204 2843452 90723

1987 1316117 710093 255140 2635830 102730

2005 1670625 686718 18312 2497157 160725

2007 1783286 403113 89772 2641953 109580

0

5000000
h

a
General Classes Statistics

Fig. 6.1 Illustrated overview of the LULC-occupations rate in several years
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class of artificial surfaces, were classified with low accuracy, using the available
remote sensing data. If this is insufficient for other studies about the ERB, topo-
graphic maps offer the possibility of digitalization, from which the data can be
extracted with very high accuracy. The use of other remotely sensed data with very
high spatial resolution (e.g., IKONOS) is also recommended.

The problem in the separation and classification of the Earth features in the
study area is the classification of the marginal land. The ability to classify these
lands is linked to several factors.

The temporal factor: some lands were covered with temporary natural vegetation
that grew during spring and at the beginning of summer (from March to early May).
There were also very small areas covered with seasonal and permanent vegetation.
Some of these areas could not be spectrally separated or classified from the sur-
rounding bare areas because their spectral and spatial resolutions were insufficient.
Another reason was the dispersion of vegetation that dominated the spectral reflec-
tance of dry soils, particularly those that had light colours. Also, because of the
presence of the natural vegetation during the synchronism season with cultivation of
winter crops, there emerges the problem of spectral integration/mixing of these
vegetation with one or more types of the agricultural crops classes. The presence of
these marginal lands in the sensory data of August, led to the disappearance (or semi-
disappearance) of the spectral correlation problem between the marginal lands that
were covered with the temporarily natural coverage of vegetation during the spring
months. Between the lands with agricultural crops this natural coverage almost
vanished in August because of the absence of precipitation and domination of
drought. But, in contrast, the remotely sensed data taken in August had the problem of
spectral correlation of the marginal lands with the spectral characteristics of the
fallow lands, especially if they were covered with light soil.

The spatial factor: the presence of these lands within the irrigated agricultural
projects increased the problem size since more details were required concerning
the credited classification system levels, where green areas were classified into
several classes/agrarian crops. The presence of marginal land outside the borders
of the irrigated areas was a secondary problem with only slight effects (here, a
general degree of classification was required, i.e., 5 classes, where green areas
were classified into two agricultural lands with all of their crops and classes, and
natural vegetation).

The climatic factor: the rain-element determined prevalence, location and density
of the natural vegetation, and as a result, it controlled the spectral behaviours which
changed permanently according to time, place, kind of soil and amount of precipi-
tation. Consequently, the spectral behaviour of these natural plants might look
similar and correlate with a spectral behaviour of a crop (barley for example). This
behaviour is likely to change across time from one year to another, and perhaps even
in the same season and location/field, since, the natural plants may correlate with
other spectral response of crops other than barley (e.g., wheat).

LANDSAT-MSS-June-1975 data. By classifying the study area using several
scenes included in one mosaic-scene, it was possible to make classifications for
only three classes (i.e., the cultivated areas, uncultivated areas and water areas).
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There was a mixing between cultivated and uncultivated areas, particularly, in the
inactive volcano cones area, which is found to the east of the city of Arraqqa,
where dark colour soils are interrelated with fallow lands. Also, there were mixing
and misclassification concerning water and cultivated areas, particularly in river
areas with narrow width and shallow depth. It was possible to integrate the volcano
area into the uncultivated areas by manually drawing the borders of the area in the
form of vector-shapes. There was also significant mixing between fallow and bare
areas, meaning the separation and classification between artificial surfaces and
bare areas was impossible.

Each scene was classified separately after sub-setting based on the borders of
study area. After that, classification results scenes were collected in one mosaic-
scene (Fig. 6.2). Thus, the classification results were better rather than the above
mentioned situation, as it was possible to obtain the five needed general classes.
These results were improved for several reasons: technically, returning to the used
remotely sensed data itself, where, whatever the quality of the present algorithms
to correct satellite scenes that contain differences in their radiometric character-
istics, they were not accurate 100 % of the time. Hence, using every scene sep-
arately ensured the spectral behaviour towards all Earth surfaces features (and the
probable variations within each feature alone). The natural reasons for this
included: The large size and extension of the study area and its relation with the
geographical location that controlled the natural climatic characteristics (espe-
cially the precipitation-factor), led to variation in Earth surface features and
consequently in their spectral behaviour on satellite images. This is turn provided

Fig. 6.2 The spatial distributions classification of the five major LULC-categories in the ERB
for the data of LANDSAT-MSS acquired in June-1975
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more details and information within the image but with the decreased possibility of
spectral separation between the features of interest (indicating that, spectral sep-
aration increases or decreases according to the used sensor and its techniques).

One of the negatives reflected by the classifying of each scene alone was the
emergence of separating borders between two neighbouring scenes after the mo-
saicing-process, which meant there was no continuity in representing the preva-
lence of features and classes naturally and spatially. This problem was limited by
use of a ‘‘majority-filter’’.

LANDSAT-TM-May-1987 data. This coverage was one of two coverages (in
addition to the LANDSAT-TM-May-2007 coverage) which were used to produce
a map of the change detection which has occurred in the past 20 years, through the
application of the post-classification change detection approach. During the clas-
sification of both coverages into the five basic classes (Fig. 6.3), there was a
mistake in classifying some areas of rain-fed cultivations as natural plant lands,
because the most rain-fed plantations have a low density vegetal biomass, making
them close to that which characterizes natural plants.

There was an increase in ratio of classification (over-classification) of the
artificial surfaces specifically in volcano areas and Lake Al-Asad’s banks, and also
in some bare areas. The reason for this is that as is the case with the MSS, the
negation or the lack of success ratio of radiometric correction imbued the radio-
metric properties of the same land features distributed in the several satellite
scenes (i.e., those that construct the mosaic-scene), with similar or at least enough
approximate compatible value/s. So, to overcome this problem, it was necessary to
classify each image alone and then create mosaic-processes of scenes of the
automated classification results.

Fig. 6.3 The spatial distributions classification of the five major LULC-categories in the ERB
for the data of LANDSAT-TM acquired in May-1987
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The mixing between the natural vegetation class and the rain-fed based crops
areas was lesser than it was in the LANDSAT-TM-May-2007 coverage. Also, the
total water area was lesser than it was in the 2007-coverage, because of the
recently constructed dams. There were areas located in the five agricultural sta-
bilization zones, that classified in 1987-coverage as cultivated, but were reclas-
sified in 2007-coverage as natural vegetation and/or bare areas. This was related to
the prevention of agriculture after 1990 in the fifth agricultural stabilization zone.

There was also (using the all available remote sensing data for this study) a
problem in separation and misclassification between fallow and bare areas with
dark soils colours.

The ability to separate the inactive volcanoes area from the dark colored fallow
fields and classify them, is better rather than with the MSS, because the higher
spatial and spectral resolution of TM.

Another problem detected while using TM-data was correlation between the
Euphrates River waters in the shallow and less wide areas because of the number
of the training samples concentrating on cultivated lands at the expense of the
water areas. However, this problem was overcome by increasing the number of the
representative training samples of the water, which were distributed suitably over
the whole borders of Euphrates River.

TERRA-ASTER-May-2005 data fused with LANDSAT-ETM+-May-2005 data.
These data were found to be optimal in classifying the ERB to the 5 general LULC-
classes (Fig. 6.4), especially for classifying the artificial surfaces which had been
classified with poor accuracy using the 3 other data-coverages. So, their outcomes of
classification can be considered as a base when more accurate statistical information
is required about the distribution of the general classes within the ERB.

LANDSAT-TM-May-2007 data. There was a problem in spectral separation
between the inactive volcanoes area with dark colour and the fallow lands. Yet,
after drawing a large ROI in the volcano area, the spectral separability increased
from 1.61 to 1.78. This accentuated the high significance of the process in
selecting the training-samples and the bases it included (number of the experi-
mental areas that represented each class, area or total areas of the samples for each
class, the shape of the samples whether pixel or polygon, and the geographical
spatial distribution of these training samples within the study area).

There was a limited spectral correlation between natural vegetation and the
cultivated areas, particularly those lands of rain-fed plantations, because of their
similarity in the green vegetation bio-mass (Fig. 6.5).

6.1.2 The Temporal Development Mapping of the Irrigated
Areas

In Syria, the majority of irrigation projects were devised for two main crops, wheat
in winter and cotton in summer. However, since the 1990s other crops have
emerged, such as yellow corn, sunflower, peanuts and watermelon. These new
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species have started to compete with the two main crops, because of their better
financial outcomes and the possibility of farming fields for three seasons instead of
two. Figure 6.6 presents the temporal development of the irrigated areas for the
years 1975, 1987, 2005, and 2007 using different remotely sensed data. Table 6.2
presents the statistics of the extension of the irrigated areas over different times. It
presents also the areas rates of the other two general classes, i.e., uncultivated
areas and water.

Cultivation of sugar beet within the irrigation areas has clearly decreased
(Table 6.3), because the high salinity of soil and irrigation water, which make the
crop less sweet. At present, this crop is mainly used as animal feed.

The agrarian plains directly on the banks of the Euphrates River, specifically,
those extending from Arraqqa to Deir Azzour, are relatively small extended plains
in a north–south direction. They are mainly limited between high rocky cliffs (old
river terrace) in the south and the Al-Badia/pasture in the north. After passing the
pasture Al-Badia, the agrarian lands emerge again in the second, third and fourth
agrarian settlement areas. The river plains are characterized by their very small
fields and variation of crops even in the one field. Many farmers divide their fields
into parts—a section for economic income, one for providing animals with food,
and another for vegetables and fruit for domestic use. These plains are crossed by
lots of trees and scattered houses. These factors decrease the ability of the used

Fig. 6.4 The spatial distributions classification of the five major LULC-categories in the ERB
for the data of TERRA-ASTER fused with LANDSAT-ETM+/SLC-Off/corrected acquired in
May-2005
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satellite data to discriminate various interrelated land uses, to classify them and
map their borders and spatial prevalence.

There are some small areas within the project of west Maskana which were
classified as cultivated irrigated lands in 1987, although investment in this project
began after this date. These irrigated areas are centred in valleys and seasonal
small rivers (e.g., Quieck and Azzahab), while others depend on artisan wells for
irrigation.

6.1.3 Distinguishing, Classification and Areas Measurement
of the Strategic Crops

LANDSAT-TM-May-1987 data. The separability and classification of alfalfa
during its presence with the winter crops is higher than when it is included with
summer crops, since alfalfa mixes spectrally with corn. Hence, the cultivated lands
with alfalfa are gathered to the created mask for trees (i.e., fruit, poplar trees,
grapevines, and other trees and shrubs located in cities, residence areas, and on the
Euphrates River banks).

Fig. 6.5 The spatial distributions classification of the five major LULC-categories in the ERB
for the data of LANDSAT-TM acquired in May-2007

6.1 LULC-Classification 169



Some areas which are considered as agriculturally uncultivated, such as the
mask created from sensory data taken in May for uncultivated areas, were shown
as cultivated lands on satellite images taken in August. Hence, an error in auto-
mated classification results due to the masking-process has been made.

The majority of winter and summer cultivation is centred in Deir Azzour
governorate (Fig. 6.7); winter vegetable areas are remarkably rare in Arraqqa;
instead while cultivation increases in summer. Sugar beet propagation is focused
in Deir Azzour, while in Arraqqa there is comparatively little. Corn, cotton and
sesame are equally distributed throughout the three governorates. Barley is the
major crop among rain-fed crops, followed by wheat, lentils, cumin and chickpeas.

The spectral separability between vetch and barley is fair but not good (1.70)
because of the interrelation of their planting in some areas, where vetch plant
(Thamilip/charged) and barley are both considered forage crops. The separability

Fig. 6.6 The final irrigation mapping thematic maps, which explain the temporal development of
the spatial distribution expansion of the irrigated areas during the last three decades using various
remotely sensed data

Table 6.2 The areas rates of the three wide existing general classes based on the irrigated areas
level

1975 1987 2005 2007

Cultivated areas 249,681 301,517 458,288 596,612
Uncultivated areas 673,992 607,925 430,129 294,633
Water 52,030 65,980 87,284 84,347
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between irrigated barely and the rest of the rain-fed crops is good to some extent
(1.83).

There was difficulty in the separation between the light fallow lands (as the
training samples were selecting on purely fallow areas) and the uncultivated areas,
including the artificial surfaces within the irrigation areas, to build the mask that
represents the cultivated areas, under which the classification was carried out for
agriculture features. To overcome this, the merging of training samples of both
fallow and cropped areas offered better results in separation.

The differentiation in the spectral response of the winter crops (and the varia-
tion within each type) was limited by the early periods of vegetative germination
of crops (March), which increased continuously until they reached their peak/s
during April and early May, and then began to decline and disappear.

LANDSAT-TM-August-1987 data (Fig. 6.7). The problem of spectral corre-
lation and separation between the uncultivated areas and the fallow was raised
whether using remotely sensed data of May or August. It was, in general, less
effective in August-data, where the separability reached 1.85, and where the most
correlation was seen within the artificial surfaces. Here the question was raised

Table 6.3 The areas rates of the three wide existing general classes and the various agriculture
features based on the irrigated areas level

1975 1987 2005 2007

Cultivated
areas

249,681 301,517 458,288 596,612

Trees ? shrubs 2,137 26,148 27,206
Herbaceous

(permanent- and
winter-crops)

163,402 162,211 262,294

Alfalfa 23,608
Vetch 2,328
Wheat 53,013 131,881 188,688
Barley 4,902 19,423 16,299
Sugar beet 2,349 7,683 1,803
Rain-fed crops 37,707
Other crops 39,495 3,224 55,504

Fallow 135,978 269,929 307,112
Herbaceous

(summer-crops)
111,968 183,334 126,207

Cotton 67,881 136,392 37,475
Corn 33,519 31,198 25,481
Other crops 10,568 15,744 63,251

Fallow 189,549 274,954 470,405
Cropped_total 301,517 371,693 415,707

Uncultivated
areas

673,992 607,925 430,129 294,633

Water 52,030 65,980 87,284 84,347
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‘‘Why are the uncultivated areas again classified since the classification method
relies on the hierarchical approach using the mask-process, which separated the
uncultivated areas from the cultivated areas (including the fallow) in the previous
classification level?’’

The answer, previously mentioned (see Chap. 5.7.1.2.1), is that the hierarchical
approach of classification has its drawbacks that lead to mistakes in the results just
like any other approach. Accumulative errors result in those negatives brought by
production/extraction of the mask’s layer either counting on results of supervised
or unsupervised classification, NDVI or others; or where, these credited approa-
ches cannot reach a degree of perfection in spectral separating of the Earth surface
features or the other classes of interest. This can also occur if these traditional
approaches of classification have the ability to reach a suitable rate in spectral
separation and classification. The hierarchical approach was not used in the
classification process or in the creation of the masks at each classification level as
it costs effort and time. As suggested in Fig. 5.35, the classification process was
repeated on the classes which were not classified and completely extracted during
the last classification process. The use of this approach was to increase the clas-
sification accuracy (the final product that resulted from collecting outcomes of
each level and stage of the hierarchal classification), through a decreasing number
of features and classes which exist in the study area, either by eliminating some

Fig. 6.7 The classification of the major permanent, winter and summer irrigated crops within the
irrigation projects in the ERB for the data of LANDSAT-TM acquired in May and August 1987
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features out of classification process (i.e., insignificant classes in irrigated agri-
cultural projects such as bare areas), or postponing classification to the next stage
if spectrally possible. Here, the significance of the accredited methodological
approach in building up the used classification system emerged, in the reduction of
the number of classes in each stage of classification and the securing of some
reduction in the spectral mixture.

One of the positives of the hierarchal principle is to reduce the effect of the
geographical location and the natural and climatic properties that affect the
spectral behaviour of the studied Earth surface features, specifically, if the study
area is within a wide geographic distribution, peppered with large diversion in
natural and climatic characteristics. For example, making a mask of the distribu-
tion of irrigated plantations gives a natural harmonious area, since all the culti-
vations here are irrigated and the majority of soils have close colours and close
content of humidity, etc. The greater the study area with a geographic and spatial
distribution featuring the same or similar natural and climatic characteristics, the
more likely homogeneity will be achieved in the spectral response of the Earth
surface features contained in the study area. This trait does not exist in the geo-
graphical and spatial distribution of the Euphrates River Basin, since, for example,
the spectral behaviour of bare areas will be in the dozens.

One of the more significant positives of the masking process was the reduction
in the problem of spatial correlation which produces classification errors, as well
as separating borders areas and/or the mutual areas between two classes or more
(the negative impact increases wherever the spatial resolution decreases and the
spectral variation rises). This was most effective when the areas of the class (other
crops) were over-classified. Taking into consideration that the mask layer resulted
in application of the NDVI has meant a few of the agricultural areas were
neglected.

Making automated classification on sensory data after applying the mask
(through use of the option: apply mask in ENVI-program) and integrating the mask
layer with/or on the satellite scene with spectral bands (layer stacked), will
decrease the separability between the spectral signatures created from the training
samples. Consequently, automated classification was conducted directly on sen-
sory data through selecting the option of using mask in the ENVI-program.

The classification of water was more effective when using the remotely sensed
data acquired during the summer season (e.g., August).

The reason that the corn was over-classified in some cases, was probably to do
with the mixture between the lands that were cultivated previously with wheat
during the winter season. This occurred when the wheat residues were not burnt or
tilled, and the fields remained covered in yellowish dry residues (straw). In
addition, some plants grew naturally after the harvesting of the wheat.

TERRA-ASTER-May-2005 data fused with LANDSAT-ETM+-May-2005
data. There was no negative or positive impact for using thermal spectral and
panchromatic bands on the spectral discrimination and the separation between
various crops, trees and other surface features in the study area. Therefore, they
were dispensed in the automated classification, especially, the panchromatic
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bands, to decrease the time of classification. Hence, participation of these bands
became a negative factor regarding to the time taken required for classification.

An error was also detected in classifying some constructional areas as well as
some limited areas from the bare areas considered as fallow lands (Fig. 6.8).

Sugar beet was perfectly classified. Other crops classes were broken in form of
lines among fields, either in the shape of trees, shrubs, bushes and fences, or as
natural plants and crop residues.

The spectral mixture between wheat and barley was found mostly in the higher
areas of the ERB (fortunately, the cultivation of irrigated barley is rare here), while
further down the basin in the Deir Azzour governorate, the spectral separation ratio
was reported as good because the majority of irrigated barley is a pastoral barley.

There was no large difference in the spectral separability and discrimination
between the various agrarian crops in areas featuring irrigation projects and large,
organized fields, either using the TM-data with spectral resolution of six bands and
spatial resolution of 30 m, or the ASTER/ETM+-data with the same spectral
resolution and a higher spatial resolution of 15 m. There was also no significance
in obtaining or using sensory data of larger spatial resolution than 30 m; conse-
quently, the negatives of this were the increases in time, cost and effort. The
ASTER-data with the spectral resolution of three bands and a spatial resolution of

Fig. 6.8 The classification of the major permanent, winter and summer irrigated crops within the
irrigation projects in the ERB for the data of TERRA-ASTER and LANDSAT-ETM+ acquired in
May and August (2005)
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15 m were tried on large area fields, and the outcomes of spectral separability and
classification were compared with data outcomes of the TM/6-bands/30 m. The
result was that the high spatial resolution 15 m could be dispensed with, without
lowering the spectral separability among crops.

But, a high spatial resolution data, such as ASTER/ETM+-15 m, was found to
be useful when studying ancient and tiny agrarian areas, such as those centred
along the banks of the Euphrates (from the Euphrates Dam to the border with Iraq).
For this kind of research, it may even be preferable to use even higher spatial
resolution while preserving the six spectral bands.

TERRA-ASTER-August-2005 data fused with LANDSAT-ETM+2August-
2005 data. The appearance of fruit, poplar and other trees within dwelling areas
and their margins were seen in a better and clearer way on satellite images
acquired during summer (August) (Fig. 6.8) in contrast to those images acquired in
April and May. There was a severe decline in the spectral properties of forest trees
that previously existed in multiple places along the banks of Lake Al-Asad and the
Euphrates River, in favour of the power and superiority of the spectral reflectance
of light soil. This is due to the lowering of moisture and the dryness of the green
mass of the forest trees (some are even crusty), in addition to an increase in
sunshine levels.

The appearance of fields within the irrigated agriculture projects in very light
colours made them look as if they were bare areas, while they were in fact wheat
and barley fields seen after harvest (covered by the green mass of ex-crops that
remains a very light yellow colour). These fields had been left for grazing purposes
or the residue would be collected for use as hay during winter. In summer, these
fields appeared after harvesting as a black colour as if they were water surfaces
because of the residue left after burning. Here, the importance of the analyst’s role
in knowing his or her study area is important.

The third appearance the wheat and barley fields after harvesting was in a form
in which the dry yellow remains of green mass (straw) of the 2 crops interacted
with several kinds of natural plants that grew in these fields, benefitting from the
remaining soil moisture. This occurred when the fields were not tilled. This field
shape had a negative impact on summer crops classification, as the growing natural
plants have a high vegetarian intensity, high vital mass and similar spectral
behaviour as the some of the summer crops’ spectral response. These fields were
classified as fallow.

The cultivation of trees for agriculture purposes was centred in particular within
the irrigation projects (especially poplar trees), in addition to their distribution
along the main streets, between the agrarian fields (as separators between the fields
or as wind barriers), and along some irrigation canals that were largely within the
irrigation projects or reclaimed lands. This also related to the agriculture of forest
trees (pine and cypress) in particular on Lake Al-Asad’s banks.

Aquatic plants appeared clearly and were distributed more evidently within the
August coverage in contrast to May, either in the Euphrates River waters (mosses
were seen in shallower locations) or within prevailing swamps stretching out along
the river, where the deserted river elbowed. These were seen along the river’s bank
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in an almost continuous linear way. Climatic factors played a basic role in this by
providing moisture and temperature elements, with the ratio of aquatic plants
rising in August due to the high number of sun accelerating the growth and density
of the plants.

The increase of variation and differentiation in reflectance and in the spectral
behaviour of plants (crops and trees) within the coverage of August was greater
than that found in the May data.

Grapevine lands were classified under the orchard class. This was a new type of
agriculture cultivation in the study area, which started at the beginning of this
present decade in limited areas.

The appearance of some tree-lands (especially, the orchards) on satellite images
is unclear, although these areas were irrigated and took on a regular and organized
engineering shape. This was because of the disproportion among adapted distances
in the cultivation of trees and their spacing from each other, and the available
spatial resolution of the used remotely sensed data. They were in most cases
classified as fallow or sometimes as a type of crop, although not to tree class.

The problem of classifying poplar trees was represented in that a land plot may
be planted with trees of differing ages. Additionally, permanent cutting of part of
these trees to be used in the paper, pulp and wood industry led to a mixture in
classification from poplar trees to fallow. The problem lay not in how to separate
these areas spectrally but in spatial separation resulted in continuous alternation
between the two classes within small spatial areas, which allowed some errors to
occur in evaluation and the calculation of distribution area. The spatial resolution
of the available remotely sensed data did not have the ability to represent this
alternation and introduce the spatial boundaries to separate the two classes. This
coverage was found to be the best for separation between the uncultivated areas
and the fallow areas.

LANDSAT-TM-August-2007 data. Sand storms emerged on the August data,
which caused great changes in the spectral characteristics of the elements that
needed to be classified. This impact was on p172r035 acquired in 07.08.07 along
the extended area between Arraqqa and Deir Azzour.

It was noticed that in the past years within the irrigation projects (for instance,
the previously referenced project of 21,000 ha), the cultivated areas with specific
crops were significantly smaller (Fig. 6.9) in contrast to the beginning of these
projects’ establishment and for long periods, where regular agricultural policies
were followed. The reason for this is likely to be that the governmental founda-
tions who established the projects have since transferred management of the
projects in favour of the farmers, who are not, in turn, committed to any agrarian
policy and rotations accredited by the Ministry of Agriculture. This matter had a
critically negative impact on the crops’ classification using available data. The
spatial resolution became less effective because of the limited area specified for the
various crops’ cultivation. This was the same negative impact in consideration to
the spectral factor, because of the increase in the types of crops seen in this area
(possibility of setting two comparative scenes of 1987 and 2007).
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Table 6.4 presents the areas rates of the three broad existing classes (cultivated
areas, uncultivated areas, and water) and the various agricultural features (per-
manent-, winter-, and summer-crops) within each adapted irrigation project bor-
ders for the time periods 1975, 1987, 2005, and 2007. Finally, this table presents
the total area of each above mentioned class within the whole adapted borders of
the different irrigation projects for the same four time periods (see too Tables 6.2
and 6.3).

6.2 Accuracy Assessment Comparisons

Table 6.5 shows the final comparison between the various accuracies of classifi-
cation results. There was no classification achieved for the class/es with no
accuracy value/s (e.g., alfalfa was included in the coverage of 1987 under broadly
cultivated, but later the cultivated alfalfa areas were very small, thus it was
included under the class of other crops). In general, the lower accuracies were
made using MSS-data, while the higher were found by using ASTER-data fused

Fig. 6.9 The classification of the major permanent, winter, and summer irrigated crops within
the irrigation projects in the ERB for the data of LANDSAT-TM acquired in May and August
2007
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with ETM+-data. Using TM-data, the accuracies were close. The greatest prob-
lems were found while classifying the artificial surfaces, especially by using MSS-
and TM-2007-data. The classification accuracy of barley and corn was relatively
slight. The details of these classification problems were discussed for each LULC-
class and for each used remotely sensed data in Sects. 6.1.1, 6.1.2, and 6.1.3.

For evaluation of the change detection products, for instance, Macleod and
Congalton (1998) proposed an adjusted change detection mapping products
method for evaluating their accuracy. This process is based on Congalton (1991)
and requires the regular confusion matrices to be applied on bi-temporal resulted
change maps. These matrices can represent all combination classes of occurred
change. A simplified no-change change matrix was also proposed.

The essential problem for assessing the accuracy of change detection products
is the gathering of truth reference data, where the conditions of the initial time
period (i.e., 1975) cannot be revisited as the land use has been significantly
changed. Therefore, accuracy assessment depended on the remotely sensed data of
the final time (i.e., 2007), in addition to ancillary data.

6.3 LULC-Change Detection Mapping

This section gives a historical view of the different LULC-features in the study
area. It describes the rate of their changes over the last 32 years, in particular the
irrigated agricultural lands. The results are essentially presented by maps, statis-
tics/tables and graphs.

6.3.1 Pre-Classification Results

Each change detection process analysis/result, whether a pre-classification
approach is used or a post-classification approach (see Sect. 6.3.2), consisted of
four major components, which were: Measure of changes/quantity. This provided
the quantity of the occurred change and measured the area/s of change/s to provide
statistical numbers, i.e., how much was/were the change/s?

Pre-classification approach results (Fig. 6.10) were generalized but very
effective in relation to estimating the occurred change on the cultivated areas,
especially when these areas were vegetated and not fallow. The total change in the
study area (5,062,082 ha, 100 %) between 1975 and 2007 was about 600,967 ha
(11.93 %), in which 238,646 ha (4.74 %) was changed from natural vegetated
areas to bare areas, and 362,321 ha (7.19 %) changed from bare areas to cultivated
areas (especially to irrigated). Areas recording no change were about
4,461,115 ha, 88.62 %. In comparison, the results of the three previously-men-
tioned approaches generally changed classes with those that resulted from
applying the post-classification approach (see Sect. 6.3.2), but for the duration

186 6 Results, Analysis and Discussion



1987–2007 the total change in the whole study area was about 5,027,722 ha,
99.32 % in which 170,454 ha, 3.36 % changed from natural vegetated areas to
bare areas; 263,863 ha, 5.21 % changed from bare areas to cultivated areas; and
areas recording no change were about 34,360 ha (0.68 %).

Nature of changes/quality. This explained the quantity of the occurred change
and whether it was positive/gain or negative/loss. In addition, the nature of change
determined what LULC-feature/s was/were changing and to what (Braimoh 2004).

Based on the visual interpretation of the change map for the period 1975–2007,
in addition to information obtained during field-work, secondary data and related
previous literature, it can be shown that the land use which changed the most was
agriculture, which increased largely because of the construction of irrigation
projects among the Euphrates River and on account of a reduction in areas clas-
sified as bare. The most new agricultural lands were seen in the region near the
Euphrates. This was obvious especially in the area of land which extends from the
city of Arraqqa and the Euphrates Dam in the south toward the Turkish border
(including the Al-Balikh tributary) in the north. In addition, the area located along
the south bank of Lake Al-Asad and the lands located along the southern side of
the major irrigation canal, which runs from Lake Al-Asad towards the city of
Aleppo, also experienced significant agricultural growth.

There were also changes in vegetation cover within the lands of the five agri-
cultural stabilization zone (the pastures). Figure 6.10 describes the nature of
changes in LULC from 1975 to 2007. The result can be determined through three
categories: LULC-no change, which remained unchanged, i.e., no loss and no gain
(neutral/zero); LULC-Natural Vegetation to Bare Area change, where the natural
vegetation class area decreased to bare area in 2007, i.e., loss and no gain; and the
LULC-Bare Areas to Cultivated Areas category, where the cultivated class area
increased in 2007 on account of changes to the bare area, i.e., gain and no loss.

Spatial distribution of changes/mapping. This provided the clear location and
extension of occurred change by mapping and visualizing the area/s of change/s to
produce the thematic map/s, i.e., where was/were the change/s?

By differencing the raw data mosaic-image/LANDSAT-MSS-June-1975 (pixel
gray values) of the initial comparison date from those of mosaic-image/LAND-
SAT-TM-August-2007, the distribution of the three general levels of LULC-
changes of interest could be detected, calculated and mapped. ArcGIS 9.3 and
ENVI 4.6 packages were used for this purpose. Figure 6.11 visualizes the result of
the changes.

88,62%

4,74% 7,19%

4461115 ha 238646 ha 362321 ha

No Change Natural Vegetation to Bare Areas Bare Areas to Cultivated Areas

Pre-classification change detection statistics

Fig. 6.10 Statistics of occurred changes in percentage and hectare, that resulted from applying
the pre-classification approach using the data of LANDSAT-MSS from June-1975 and the data of
LANDSAT-TM from August-2007
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Evaluation of changes/accuracy. This showed the accuracy of the produced
change detection results by assessing the occurred errors which resulted from the
adopted approach in change detection process and by using the general principle of
the error matrix, i.e., How effective was the applied approach to detect the changes?

As the change classes are relatively general, it was possible to perform the
accuracy visually using the remotely sensed data itself. Some 250, 200 and 150
testing points were automatically distributed (random-points) for the three resulted
change classes respectively (i.e., no change, natural vegetation to bare areas, and
bare areas to cultivated areas) over the resulted thematic map (Fig. 6.11). Then,
the initial remotely sensed image, the final remotely sensed image and the resulted
thematic map from the differencing process were geographically linked with each
other. This was, of course, after the geographic registration (see Chap. 5.2.1).
After that, came the manual step, where each point on the thematic map was
compared to its land use/land cover in 1975 and again in 2007, using the visual
interpretation of LANDSAT-MSS-June data and the LANDSAT-TM-August data.
The point resulted change class (e.g., bare areas to cultivated) was found to be
correct only when its use/s in both comparison dates (1975 and 2007) were
compatible with the defined and resulted description of the change class. For
example, it’s the point resulted change class use in 1975 had to be as a bare area
and then as a cultivated area in the year 2007. However, the thematic map that
represented the change classes did not include all the possibilities of LULC-

Fig. 6.11 The three wide major LULC-changes that resulted from applying the pre-classification
change detection approach for the period (1975–2007)
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changes (e.g., cultivated areas to bare areas, etc.). Therefore, the class ‘‘other’’ was
added for purposes of accuracy (i.e., the initial data), could be used to can rep-
resent the rest of the possibilities of the LULC-alternations between the two
compared dates. The overall accuracy was 86 %.

This method would be useful for assessment of the accuracy of change
detection mapping, where it is almost impossible to gather ground and/or reference
data for the relatively old dates (Table 6.6).

6.3.2 Post-Classification Results

Measure of changes/quantity. Post-classification approach results (Figs. 6.12 and
6.13, Tables 6.7 and 6.8) were more obvious and detailed rather than those
resulting from a pre-classification approach (see Sect. 6.3.1). The total change in
the whole study area (5,062,082 ha, 100 %) between 1987 and 2007 was about
5,027,722 ha (99.32 %). Areas recording no changes were about 34,360 ha
(0.68 %). The greatest changes (Table 6.7, Fig. 6.12) were in the artificial surfaces
classification with a total change of 83.16 %, in which 38.77 % was changed to
cultivated areas and 35.08 % transformed to the bare areas class; natural vegeta-
tion with 68.33 %, where 42.95 % changed to cultivated areas and 24.00 % to bare
areas; natural water-bodies with 21.45 %, where 13.34 % changed to cultivated
areas; followed by cultivated areas with 17.86 %, of which about 6 % was
changed to each of the other two classes, i.e., natural vegetation and bare areas.
The bare areas class showed the most stability over time with 13.89 % change.
Three general trends in LULC-changes were found: negative values/loss, in which
the represented classes were artificial surfaces (-64.81 %) and natural vegetation
(-43.22 %); neutral value/stable, in which the represented class was bare areas
(0.23 %); and positive values/gain, which included cultivated areas (+35.49 %)
and natural water-bodies (+6.66).

Each LULC-class has three general trends (Table 6.8): (1) The stable trend, that
represents the unchanged part of an individual class (e.g., cultivated areas:
1,080,987 ha) over the time period; (2) The positive trend (the horizontal direction

Table 6.6 Accuracy assessment of pre-classification change detection approach results

Initial LANDSAT-MSS-data (1975) Final LANDSAT-TM-data (2007) Total/possible

(1) (2) (3)

No change (1) 230 21 7 258
Natural vegetation to bare areas (2) 13 155 4 172
Bare areas to cultivated areas (3) 3 8 132 143
Other (4) 4 16 7 27
Total 250 200 150 600
Overall pre-classification change detection accuracy = 230 ? 155 ? 132/

600 = 86 %
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Fig. 6.13 Statistics of occurred changes in ha, that resulted from applying the post-classification
approach using the data of LANDSAT-TM from May-1987 and the data of LANDSAT-TM from
May-2007

Fig. 6.12 Statistics of occurred changes in percentage which resulted from applying the post-
classification approach using the data of LANDSAT-TM from May-1987 and the data of
LANDSAT-TM from May-2007
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in the change matrix), which represents the transform or gain from the other four
LULC-classes (i.e., natural vegetation: 304,983 ha, artificial surfaces: 98,939 ha,
bare areas: 263,863 ha, and the natural water-bodies: 13,703 ha) into an individual
class such as cultivated lands. Therefore, the total areas of cultivation were
1,783,286 ha in 2007; and (3) The negative trend (the vertical direction in the
change matrix), that represents the transformation or loss from an individual class
(e.g., cultivated areas) into one or more of the other four LULC-classes (i.e.,
natural vegetation: 86,738 ha, artificial surfaces: 25,600 ha, bare areas: 90,864 ha,
and natural water-bodies: 19,001 ha). Therefore, the total area of cultivation was
1,303,190 ha. The greatest difference was for the class of cultivated areas—
480,096 ha or +35.49 %.

The state of the land use/land cover in 2007 was expressed in the following
areas: cultivated (1,783,286 ha), natural vegetation (403,131 ha), artificial surfaces
(89,772 ha), bare lands (2,641,953 ha), and natural water-bodies (109,580 ha).

Nature of changes/quality. For this purpose, the change matrix was generated
(Tables 6.7 and 6.8) based on classified images from 1987 and 2007. It presented
the nature of changes of the LULC-categories for the period 1987–2007. The
results were defined by twentieth detailed combinations of the five general classes.
Figures 6.12, 6.13 show the statistics describing the nature of LULC-changes for
the period 1987–2007.

Results from the land cover change analysis, carried out from the post-classi-
fication approach, show that cultivated land increased from 1,080,987 ha in 1987
to 1,783,286 ha in 2007 on account of the transformed areas from natural vege-
tation, bare areas, artificial surfaces and natural water-bodies lands into managed
terrestrial areas. The greatest mistake was in accounting the change value in
artificial surfaces, especially based on the remotely sensed data obtained in 1987
(TM), since this approach was based on the classification results. These results
were not efficient in classifying the artificial surfaces because the low spectral
separability within the bare areas. However, what is important is that the artificial
surfaces (especially the built-up areas) had little spectral mixture with the culti-
vated areas (especially fallow), since the greatest interest of this study is related to
it. Also, it was possible to estimate the real artificial surfaces areas from the other
two remotely sensed data gathered in 2005/ASTER-images fused with ETM+-
images and 2007 (TM).

The change from cultivated to natural water-bodies can be explained, in
addition to the errors in classification process that exist almost in every classified
class. This was due to the changes in the water capacity (flooding) of the Euphrates
in relation to the water allowed to enter to Syria from Turkey, and the natural
conditions, such as the actual planted areas and the impacts of the climatic ele-
ments. It distributes nearly from the river-bed, especially in the upper-Euphrates
(Fig. 6.14). The change from natural vegetation to cultivated areas can be
explained because of the construction of the irrigation projects (e.g., the lands of
Maskana-east and the 21,000 ha-project). This change-class was also found in the
marginal lands northeast from Lake Al-Asad to the Al-Balikh surrounded areas,
where some of these lands had been cultivated or sometimes left as uncultivated
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according to the availability of rains. The change into bare areas can interpreted as
being due to the climatic factors (precipitation in particular), as most of these lands
exist in the five agricultural stabilization zones (Al-Badia), i.e., to the east of the
Al-Balikh River. The change from artificial surfaces to cultivated areas can be seen
almost as a misclassification between the artificial surfaces (especially the dark
appeared civilization areas) and the cultivated areas (the fallow on dark soils).The
change into bare areas can be analyzed because of the misclassification between
the dark appeared civilization areas (e.g., the cities) and the dark colored bare
areas (e.g., the inactive volcanoes area in the east of Arraqqa City), and the
misclassification between the light appearing areas of artificial surfaces category
(e.g., waste dumps and extraction sites) and the bare areas with light parent rocks
or those that covered with shifting sands (e.g., dunes). The shift from bare areas to
cultivated lands was because of the expansion in agriculture. Finally, the change of
part of the water-bodies area into cultivated areas was because the misclassifi-
cation of the TM-2007 final-data, where a dust-storm appeared over some river
parts between the two cities of Arraqqa and Deir Azzour, in addition to the drying
of the swamps, which has left the river without some of its elbows (the abandoned
elbows).

Spatial distribution of changes/mapping. This is illustrated by the thematic
change map (Fig. 6.14) for the period 1987–2007. This thematic map was pro-
duced by overlaying the two LULC-classification results of the two dates, to

Fig. 6.14 The 21-detailed LULC-changes that resulted from applying the post-classification
change detection approach for the period 1987–2007
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locate, compute and map the spatial distribution of each change-type. The results
were defined by twentieth detailed combinations of the five classified general
classes, in addition to the class of (no change), i.e., it presents 21-classes of
changes. Figure 6.14 visualizes the results of the changes.

Evaluation of changes/accuracy. Some 15–99 testing points for each change
combination were distributed, i.e., 1,163 in total (Table 6.9), automatically, for the
twentieth resulted change combinations classes, over the resulted thematic map
(Fig. 6.14). The overall accuracy was 83 %, i.e., lesser than those resulted using
the pre-classification approach (86 %) (see Sect. 6.3.1). There were two major
reasons. The first was because of the misclassification of the five general LULC-
classes of interest, especially between the artificial surfaces and the bare areas, and
the second was due to the pre-classification approach being limited to only three
wide general change possibilities in contrast to the post-classification approach,
that had twentieth one change possibilities to be tested.
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Chapter 7
Summary, Concluding Remarks
and Recommendations

7.1 Summary

The overall and general objective of this thesis is as a contribution to the use of
remotely sensed data of LANDSAT: MSS, TM, and ETM+; and ASTER for
agricultural purposes in the arid and semi-arid areas of the Euphrates River Basin
(ERB) in Syria. The study area is located in the northeast of Syria. The geo-
graphical coordinates of the ERB are 36�490N, 38�020E at the Turkish border, and
34�290N, 40�560E at the Iraqi border. Its total area is about 50,335 km2. Starting in
the 1970s, Syria began to utilize the water of Euphrates River in agriculture,
reclaiming a large amount of uncultivated areas from the river. The main objective
of this program was to increase the amount of cultivated areas in the basin, as Syria
basically is an agricultural country. These irrigation projects during the past four
decades produced a great deal of change in land use/land cover (LULC).

This thesis deals with four major emphases LULC-classification, LULC-change
detection, irrigation mapping and irrigated agriculture classification of the
Euphrates River Basin area in Syria. Four general LULC-classification products
(see Chap. 6.1.1) have been generated for the years 1975, 1987, 2005 and 2007;
also, two LULC-change detection maps (see Chap. 6.3) have been produced for
the periods between 1975–2007 and 1987–2007. In addition, four thematic maps
representing the development of the irrigation areas (see Chap. 5.1.2) in the last
37 years with the intervals 1975, 1987, 2005 and 2007 have also been produced.
Finally, six detailed agricultural classes classification products (see Chap. 5.1.3)
have been generated for the two major agricultural seasons in Syria, i.e., the
winters (May data) and summers (August data) of 1987, 2005 and 2007.

To realize the objective of this study, eight scenes of LANDSAT-MSS obtained
in June 1975 were chosen; 32 scenes of LANDSAT-TM obtained in May and
August of the years 1987 and 2007; and 16 scenes of corrected LANDSAT-ETM+/
SLC-OFF/obtained in May and August 2005 which were fused with scenes of
TERRA-ASTER obtained in May and August of 2005 in a bid to increase spectral
resolution from three to six spectral bands.

W. Al-Fares, Historical Land Use/Land Cover Classification
Using Remote Sensing, SpringerBriefs in Geography,
DOI: 10.1007/978-3-319-00624-6_7, � The Author(s) 2013
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Remote sensing techniques were approved and applied on the remotely sensed
data (see Chap. 4.1) of 1975, 1987, 2005 and 2007 for the four major emphases
(LULC-classification, LULC-change detection, irrigation mapping, and irrigated
agriculture classification). There were no known determined adopted techniques
that could be directly applied for the emphases. Therefore, it was necessary to set
suitable methods that would be compatible with the used data, the thesis questions
and the privacy of the study area environment. Most of the applied methods in this
work were already recognized, some were modified and some were combined.

It is true that a lot of remotely sensed data and some processing programs are
becoming more and more accessible to researchers at little or no cost, but remotely
sensed data processing and interpretation techniques are still time consuming and
not suitable for all regions of the Earth at the same level of accuracy. It has been
shown in this study that the geometric, atmospheric and radiometric correction
processes (see Chap. 5.2) are not always necessary for each image, each sensor
data and each date. Geometric correction processes, especially for the geometric
registration, were not difficult and were achieved at very high accuracies. How-
ever, atmospheric correction was impossible for the relatively old data (MSS-
1975), where the weather parameters were difficult to obtain. Radiometric cor-
rection was applicable for all data, but this did not mean that it produced suitable
results for the whole dataset. Therefore, when neither the raw data or the enhanced
data after applying the atmospheric and/or the radiometric corrections gave good
results (especially for use in mosaicing), then the data were processed and clas-
sified separately, i.e., each image alone. ATCOR-2 was used for atmospheric
correction, while iMAD was used for radiometric correction. Both applications
were relatively easy to use and required no additional external information. These
programs were found to give better results than those methods that are time
consuming and needed more external data such as MFF and 6S (Chavez 1996).

Where the results of the classifications were cartographic products, all spatial
data were standardized, and were transformed and geometrically corrected to a
general reference system: a UTM-projection of Zone 37 N with the international
general ellipsoid/spheroid WGS84 and datum WGS84.

Geometric correction, geo-referencing and geometric registration formed the
basis for mosaicing more than one image (see Chap. 5.2.5) for fusion of different
remotely sensed data, i.e., the ASTER-data were fused with LANDSAT-ETM+-
data (see Chap. 5.2.4) for detection of changes (see Chap. 5.12).

Precise mosaicing was very important for further remotely sensed data pro-
cessing and interpretation (e.g., classification, change detection, etc.). The general
algorithms of imagery mosaicing were not always able to produce a one mosaic-
image with a consistent appearance in which the values of the histograms of each
image were combined together in one mosaic-image. This gave an unsuitable
presentation of the various LULC-features on the mosaic-image. In these situa-
tions, the MAD-technique was applied to satisfy a radiometric consistent mosaic.
This was a comfortable relative radiometric calibration technique that built a data
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calibration with linear values as gain and offset coefficients as unnecessary. This
technique had the robust advantage of the ability to create a scene comparison
even though values were not available or wrong.

The international hierarchical classification scheme (LCCS) of FAO was fol-
lowed as guide in the classification processes. This approach defined and deter-
mined the LULC-classes to be included in the classification/s. These classes were
defined before starting each automated supervised classification procedure.

The classification of the remotely sensed data was based on the traditional
pixel-based classification method. The results of classifications were always pre-
sented as thematic maps. The results of the various tested approaches and algo-
rithms of classification on the various obtained remote sensing data were
interpreted based on the accuracy assessment method.

In this study, several automated classification approaches (i.e., one-step, and
multi-stage classification) and several algorithms (i.e., MLC, NN, and SVM) were
tested on several remote sensing data (LANDSAT: MSS, and TM; TERRA:
ASTER fused with corrected LANDSAT-ETM+/SLC-OFF/), to find the optimized
approach and algorithm. The multi stage classification approach and the MLC-
algorithm harvested the best results (see Chap. 5.7).

The classification of coarse resolution (spatial and spectral) data like LAND-
SAT-MSS in relation to its geographical location of ERB, was suitable to produce
thematic maps of the five wide general classes for the whole large area of the ERB
and to represent the spatial distribution of the one irrigated areas class. These data
had not the ability to classify any more detailed classification level (e.g., agri-
culture). LANDSAT-TM data were more suitable for classifying the general
classes and the irrigated areas. However, it was less suitable for classifying the
detailed agricultural classes. Finally, the low spectral resolution ASTER-data of
only three bands was less suitable in comparison to TM-data, although they had a
higher spatial resolution, i.e., 15 m. However, after fusing them with the
LANDSAT-ETM+/SLC-OFF/corrected data to increase the spectral bands to six
bands, these data harvested the best results. In general, the classification of the
agricultural features using TM and ASTER- ETM+ data was very good over the
State achieved irrigation projects (e.g., the 21,000 ha project, Maskana-East, etc.),
where the individual planted fields were relatively large and thus classifiable in
regard to the used remote sensing data, and the diversity in LULC-features was
small. These were changed starting from the TM-data of 2007, where the fields
became smaller and the diversity of planted agricultural types became more
widespread. The diversity was acceptable over the State and farmer-cultivated
irrigation areas (e.g., Maskana-West), where the private holdings were varied from
small fields to very large fields. However, the classification results were unac-
ceptable over the very old cultivated areas located on the Euphrates River banks,
where the holdings were very small with great diversity in cultivated agricultural
features. Therefore, this area requires remote sensing data with higher spatial and
spectral resolution (e.g., IKONOS).
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The classification of natural vegetation outside the irrigation areas in arid and
semi-arid regions in Syria, especially in the fifth agricultural stabilization zone,
was made difficult because of the dominant and variable soil signal (spectral
response) (Huete et al. 1994). This was also true for the agricultural crops and trees
(because of the relatively wide dimensions between the trees in relation to the
spatial and spectral resolution of the used remotely sensed data), that were culti-
vated particularly in the third and fourth agricultural stabilization zones.

In this study, two approaches of change detection techniques were applied to
almost all agricultural areas in the arid and semi-arid ERB-environment in Syria,
to test the effectiveness of the two techniques in mapping the changes. The pre-
classification change detection approach that was based on image differencing was
very effective in mapping the change from bare areas to cultivated areas (the new
irrigation projects) over the time period 1975–2007. The post-classification
approach detected, mapped and defined 21 type of change. However, it offered a
lower accuracy (83 %) rather than the first method (86 %), because it depended on
the quality of already achieved classification and dealt with more types of change
(21) rather than the first method (3). Therefore, it contradicted the assumption that
this was the most accurate change detection approach (Mas 1999). The two
approaches were easy to interpret.

Based on the pre-classification change detection approach (see Chap. 6.3.1),
there were three major trends of activities of land use/land cover: The first trend
(no change) was stable and the most dominant with about 88.62 %. The second
was negative, where as in most arid and semi-arid regions, the major cause of
natural vegetation change to bare areas (4.74 %) was related to the climatic factor
of precipitation, which is unstable and changes from one year to another. In
addition the human factor of overgrazing must be taken into consideration. The
largest area of natural vegetation exists in the fifth Agricultural Stable Zone (ASZ)
which is made up of natural pastures. The third major driving force was positive
because it accounted to a decrease in bare areas (7.19 %), where as in most
developed countries, it was related to the activities of cultivation agriculture.
These results were confirmed by applying the post-classification change detection
approach (see Chap. 6.3.2), where the change value of natural vegetation was
68.33 %, in which 42.95 % was transformed to cultivated areas and 24 % trans-
formed to bare areas, and the loss was at 43.22 %; the change value of cultivated
areas was 17.86 %, and the gain was at 35.49 %. This was on account of the
natural vegetation with 304,983 ha and bare areas with 263,863 ha. The change in
bare areas was about 13.89 %, where 10.01 % transformed into cultivated areas,
and the gain was only 0.23 %.

The major limitations of this study were the MSS-data of 1975 that were
characterized by low spatial resolution of 60 9 60 m and low spectral resolution
of four bands. The corrected LANDSAT-ETM+/SLC-OFF/data of 2005 that were
fused with ASTER-data to increase their spectral resolution from three bands to six
bands, were obtained after the applying a correction method from USGS. The time
period lag between the remotely sensed data of the years 1975 and 1987, and the
field-work in 2007 and 2009 limited the full usefulness of using the remotely
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sensed data, because it was very difficult to obtain the additional non-remotely
sensed data (the ground reference data in particular), and the gathered ground
reference data would only be partly suitable for some purposes. The study area was
large with some locations inaccessible during field-work.

7.2 Concluding Remarks

The kernel of this study was whether, how and to what extent applying the various
remotely sensed data that were used here, would be an effective approach to
classify the historical and current land use/land cover, to monitor the dynamics of
land use/land cover during the last four decades, to map the development of the
irrigation areas, and to classify the major strategic winter- and summer-irrigated
agricultural crops in the study area of the ERB.

It is true that the development of remote sensing techniques focuses greatly on
construction of new sensors with higher spatial and spectral resolution, but it is not
possible to ignore the data of the older sensors (especially, the LANDSAT-mis-
sion) when the historical mapping of land use/land cover and monitoring of their
dynamics are needed, although their low spatial and spectral resolution in com-
parison to the new sensors launched in the last decade (e.g., IKONOS) needs to be
taken into consideration. These older sensors are still precious. To maintain the
advantages of these sensors, researchers during the last five decades have devel-
oped new and more effective digital image processing and interpretation methods,
to harvest more accurate results. Therefore, it is important to focus on the
development of new and enhanced techniques that can translate the relationship
between the general characteristics of the old acquired data and the specific
characteristics of each individual environment such as the arid and semi-arid lands.

Regarding to field-work, this remains very important as a basis in most remote
sensing applications, offering the training samples for supervised classification. It
provides for evaluation the results of classification using accuracy assessment
techniques. It is also useful to understand the specific characteristics of the envi-
ronment of the study area.

The application of the various remote sensing techniques, which were adopted
in this study, was not only related to the location of the study area, but also to
various types of remotely sensed data (see Chap. 4.1).

These techniques were: extraction of the borders of the study area using the
SRTM-data and ArcGIS-extensions (see Chap. 5.1); geometric correction based
on GCPs, and/or geometric registration based on image to image method (see
Chap. 5.2.1); atmospheric correction using the ATCOR-2 program (see
Chap. 5.2.2); relative radiometric normalization using the MAD-concept (see
Chap. 5.2.3); enhancing the spatial resolution of LANDSAT-ETM+ data from 30
to 15 m using the Gram Schmidt Sharpening Technique to increase the spectral
resolution of ASTER-data using the fusion-technique (see Chap. 5.2.4); mosaic-
ing, subsetting and masking (see Chap. 5.2.5); training samples selection and
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evaluation (see Chap. 5.6); unsupervised classification (see Chap. 5.7.1.1);
supervised classification using the three algorithms of classification (i.e., MLC,
NN and SVM) with the two approaches of classification, i.e., the one stage and the
multi stage classification approaches (see Chap. 5.7.1.2.1); post-classification
processing (see Chap. 5.11); automated change detection mapping using the pre-
classification approach (see Chap. 5.12.1) and the post-classification approach (see
Chap. 5.12.2); and finally, the accuracy assessment techniques (see Chap. 5.13).

The new relative radiometric normalization method that was used in this study,
was, after Canty et al. (2003), favored, where it can be applied automatically. It is
consistent, constant, rapid, parameter free and sensor independent, and is enhanced
by an orthogonal regression.

The aforementioned and used techniques in this study have various alternatives
of sub-technique (e.g., radiometric normalization can be performed using more
than one method, such as 6S, dark object method, histogram matching, etc.) and/or
various parameters (e.g., SVM-algorithm of supervised classification can be used
with various of parameters combinations). Thus, some of these alternatives were
mentioned, discussed and compared to justify the final choice of each alternative
technique and/or parameters that were used in this study.

This study proved that the use of multi-sensor (MSS-1975 and TM-2007) and
multi-scale 60 and 30 m data for change detection mapping is possible. Also, it is
possible to use the multi-sensor ASTER-2005 and LANDSAT-ETM+ data for
LULC-classification.

The available remotely sensed data of ASTER-sensor with low spectral reso-
lution (three bands) and high spatial resolution (15 m) had given worse results
with lower classification accuracy than those obtained after fusing with the data of
LANDSAT-ETM+ to increase the spectral resolution.

New sensors (e.g., ASTER) offer higher accuracy rather than the old sensors
(e.g., LANDSAT-MSS), but also bring new problems, such as the increasing time
of processing because of the higher spatial resolution and the lower local coverage
of each scene, and the increase of geometric errors because of the higher spatial
resolution/pixel size.

Remotely sensed data spatial resolution/scale affects the level of useful infor-
mation that can be extracted from the satellite imagery.

7.3 Recommendations/Outlook

Remote sensing techniques and data (LANDSAT and ASTER) were found to be
very effective in the classification of land use/land cover and in the mapping of
irrigation areas, and to detect and map changes that occurred over a number of years
in the arid and semi-arid area of the Euphrates River Basin in Syria. However, these
approaches were uneven for classification of agricultural crops, where their effec-
tiveness were based on many factors, such as the used remotely sensed data type
and its characteristics (e.g., spatial and spectral resolution, etc.), the agricultural
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holdings area and construction (e.g., the classification accuracy is very good where
the large fields exist), and the crop type to be classified (e.g., the existing of wheat
and barley together would make the spectral separation difficult that will impact the
accuracy of classification). Here, more positive results may be realized by obtaining
images at more times during the annual agricultural growing cycle.

The use of remote sensing techniques and data periodically to monitor and
evaluate above ground surface natural resources can save time, effort and capital
which are needed for traditional human-based ground surveys.

It is important to integrate the gathered human-based statistical records (agri-
cultural statistics in particular) with the remote sensing techniques to interpret the
relative old data of remote sensing that have no or insufficient compatible refer-
ence data. It is useful too, when a part of the study area is inaccessible.

The adoption of remote sensing techniques is an essential cartographical tool to
map the general wide land use/land cover classes.

Some demands include: The construction of user-friendly data archives with
united data-formats as far as possible; the direction of more attention to the
developed countries where there are many interesting topics to study using the
remote sensing techniques. For instance, it is very difficult and time consuming to
obtain remotely sensed data even if they are free of cost, and one requires a large
amount of time to download one image because the slow Internet speed, in
addition to a lack of digital image processing software.

For further research: This study, like all studies, is an unfinished work because
of the limitations of time, resources and finance. Therefore, the results included in
this study are the best they can be, considering these limitations.

It would be interesting if the results of this study which are based on medium-
to high- resolution optical remotely sensed data, were compared with those from
resulting from the application of a very high resolution optical data (e.g., IKO-
NOS), especially for agricultural purposes; the use of remotely sensed hyper-
spectral data (e.g., Hyperion); and the application of remotely sensed RADAR-
data (e.g., TerraSAR-X). In these cases, it would be necessary to apply new
advanced digital analysis techniques, such as spectral un-mixing analysis.

Also, I am interested to link the results of this study and remote sensing
techniques with GIS, for hydrologic study and regional water resources manage-
ment of the Euphrates River Basin in Syria, and for agricultural water usage. I
have collected a great deal of water data about the Euphrates, especially the water
measurements at many measurement-stations along the river from the Syrian–
Turkey borders to the Syrian–Iraqi borders over many decades.

This integration would be effective, because the classical applied approaches
for estimating the hydraulic parameters are expensive and time consuming.
Remote sensing can overcome these problems, by presenting a rapid and complete
overview of the study area of interest. Here, weather satellites such as the NOAA-
TIROS (National Oceanic and Atmospheric Administration-Television Infrared
Observation Satellite), can provide us with some needed parameters (climatic
parameters) which are essential for input in the hydraulic model. Evaporation or
evapo-transpiration (ET) is the most important and difficult to estimate in the
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hydraulic studies. Remote sensing techniques cannot measure it directly, but they
suggest approaches based on LULC-features classification and climatic factors
(e.g., solar radiation, temperature, humidity, surface albedo, etc.).

Also, for runoff measurement, techniques of remote sensing provide a source of
input-data (watershed geometry, drainage networks, empirical flood peak, LULC-
classes, etc.), and help to estimate equation coefficients and other model
parameters.
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