Alexey L. Gorodentsev

## Algebra II

Textbook for Students of Mathematics

Springer

Algebra II

Alexey L. Gorodentsev

## Algebra II

Textbook for Students of Mathematics

Springer

Alexey L. Gorodentsev<br>Faculty of Mathematics<br>National Research University<br>"Higher School of Economics"<br>Moscow, Russia

Originally published in Russian as "Algebra. Uchebnik dlya studentov-matematikov. Chast' 2", © MCCME 2015

Library of Congress Control Number: 2017930683
Mathematics Subject Classification (2010): 11.01, 12.01, 13.01, 14.01, 15.01, 16.01, 18.01, 20.01
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

## Preface

This is the second part of a 2-year course of abstract algebra for students beginning a professional study of higher mathematics. ${ }^{1}$ This textbook is based on courses given at the Independent University of Moscow and at the Faculty of Mathematics at the National Research University Higher School of Economics. In particular, it contains a large number of exercises that were discussed in class, some of which are provided with commentary and hints, as well as problems for independent solution that were assigned as homework. Working out the exercises is of crucial importance in understanding the subject matter of this book.

Moscow, Russia
Alexey L. Gorodentsev

[^0]
## Contents

1 Tensor Products ..... 1
1.1 Multilinear Maps ..... 1
1.1.1 Multilinear Maps Between Free Modules ..... 1
1.1.2 Universal Multilinear Map ..... 3
1.2 Tensor Product of Modules ..... 4
1.2.1 Existence of Tensor Product ..... 5
1.2.2 Linear Maps as Tensors ..... 7
1.2.3 Tensor Products of Abelian Groups ..... 9
1.3 Commutativity, Associativity, and Distributivity Isomorphisms ..... 10
1.4 Tensor Product of Linear Maps ..... 13
1.5 Tensor Product of Modules Presented by Generators and Relations ..... 15
Problems for Independent Solution to Chapter 1 ..... 17
2 Tensor Algebras ..... 21
2.1 Free Associative Algebra of a Vector Space ..... 21
2.2 Contractions ..... 22
2.2.1 Complete Contraction ..... 22
2.2.2 Partial Contractions ..... 23
2.2.3 Linear Support and Rank of a Tensor ..... 25
2.3 Quotient Algebras of a Tensor Algebra ..... 26
2.3.1 Symmetric Algebra of a Vector Space ..... 26
2.3.2 Symmetric Multilinear Maps ..... 27
2.3.3 The Exterior Algebra of a Vector Space ..... 29
2.3.4 Alternating Multilinear Maps ..... 30
2.4 Symmetric and Alternating Tensors ..... 31
2.4.1 Symmetrization and Alternation ..... 32
2.4.2 Standard Bases ..... 33
2.5 Polarization of Polynomials ..... 35
2.5.1 Evaluation of Polynomials on Vectors ..... 36
2.5.2 Combinatorial Formula for Complete Polarization ..... 37
2.5.3 Duality ..... 38
2.5.4 Derivative of a Polynomial Along a Vector ..... 38
2.5.5 Polars and Tangents of Projective Hypersurfaces ..... 40
2.5.6 Linear Support of a Homogeneous Polynomial ..... 43
2.6 Polarization of Grassmannian Polynomials ..... 45
2.6.1 Duality ..... 45
2.6.2 Partial Derivatives in an Exterior Algebra ..... 46
2.6.3 Linear Support of a Homogeneous Grassmannian Polynomial ..... 47
2.6.4 Grassmannian Varieties and the Plücker Embedding ..... 49
2.6.5 The Grassmannian as an Orbit Space ..... 49
Problems for Independent Solution to Chapter 2 ..... 51
3 Symmetric Functions ..... 57
3.1 Symmetric and Sign Alternating Polynomials ..... 57
3.2 Elementary Symmetric Polynomials ..... 60
3.3 Complete Symmetric Polynomials ..... 61
3.4 Newton's Sums of Powers ..... 62
3.4.1 Generating Function for the $p_{k}$ ..... 62
3.4.2 Transition from $e_{k}$ and $h_{k}$ to $p_{k}$ ..... 63
3.5 Giambelli's Formula ..... 65
3.6 Pieri's Formula ..... 67
3.7 The Ring of Symmetric Functions ..... 69
Problems for Independent Solution to Chapter 3 ..... 71
4 Calculus of Arrays, Tableaux, and Diagrams ..... 75
4.1 Arrays ..... 75
4.1.1 Notation and Terminology ..... 75
4.1.2 Vertical Operations ..... 76
4.1.3 Commutation Lemma ..... 77
4.2 Condensing ..... 79
4.2.1 Condensed Arrays ..... 79
4.2.2 Bidense Arrays and Young Diagrams ..... 80
4.2.3 Young Tableaux ..... 81
4.2.4 Yamanouchi Words ..... 82
4.2.5 Fiber Product Theorem ..... 83
4.3 Action of the Symmetric Group on DU-Sets ..... 86
4.3.1 DU-Sets and DU-Orbits ..... 86
4.3.2 Action of $S_{m}=\operatorname{Aut}(J)$ ..... 86
4.4 Combinatorial Schur Polynomials ..... 88
4.5 The Littlewood-Richardson Rule ..... 91
4.5.1 The Jacobi-Trudi Identity ..... 93
4.5.2 Transition from $e_{\lambda}$ and $h_{\lambda}$ to $s_{\lambda}$ ..... 93
4.6 The Inner Product on $\Lambda$ ..... 95
Problems for Independent Solution to Chapter 4 ..... 96
5 Basic Notions of Representation Theory ..... 99
5.1 Representations of a Set of Operators ..... 99
5.1.1 Associative Envelope ..... 99
5.1.2 Decomposability and (Semi)/Simplicity ..... 100
5.1.3 Homomorphisms of Representations ..... 103
5.2 Representations of Associative Algebras ..... 104
5.2.1 Double Centralizer Theorem ..... 104
5.2.2 Digression: Modules Over Noncommutative Rings ..... 106
5.3 Isotypic Components ..... 107
5.4 Representations of Groups ..... 109
5.4.1 Direct Sums and Tensor Constructions ..... 109
5.4.2 Representations of Finite Abelian Groups ..... 111
5.4.3 Reynolds Operator ..... 113
5.5 Group Algebras ..... 114
5.5.1 Center of a Group Algebra ..... 115
5.5.2 Isotypic Decomposition of a Finite Group Algebra ..... 115
5.6 Schur Representations of General Linear Groups ..... 121
5.6.1 Action of GL $(V) \times S_{n}$ on $V^{\otimes n}$ ..... 122
5.6.2 The Schur-Weyl Correspondence ..... 124
Problems for Independent Solution to Chapter 5 ..... 124
6 Representations of Finite Groups in Greater Detail ..... 131
6.1 Orthogonal Decomposition of a Group Algebra ..... 131
6.1.1 Invariant Scalar Product and Plancherel's Formula ..... 131
6.1.2 Irreducible Idempotents ..... 133
6.2 Characters ..... 134
6.2.1 Definition, Properties, and Examples of Computation ..... 134
6.2.2 The Fourier Transform ..... 137
6.2.3 Ring of Representations ..... 140
6.3 Induced and Coinduced Representations ..... 141
6.3.1 Restricted and Induced Modules Over Associative Algebras ..... 141
6.3.2 Induced Representations of Groups ..... 142
6.3.3 The Structure of Induced Representations ..... 143
6.3.4 Coinduced Representations ..... 146
Problems for Independent Solution to Chapter 6 ..... 148
7 Representations of Symmetric Groups ..... 151
7.1 Action of $S_{n}$ on Filled Young Diagrams ..... 151
7.1.1 Row and Column Subgroups Associated with a Filling ..... 151
7.1.2 Young Symmetrizers $s_{T}=r_{T} \cdot c_{T}$ ..... 153
7.1.3 Young Symmetrizers $s_{T}^{\prime}=c_{T} \cdot r_{T}$ ..... 155
7.2 Modules of Tabloids ..... 157
7.3 Specht Modules ..... 159
7.3.1 Description and Irreducibility ..... 159
7.3.2 Standard Basis Numbered by Young Tableaux ..... 160
7.4 Representation Ring of Symmetric Groups ..... 161
7.4.1 Littlewood-Richardson Product ..... 162
7.4.2 Scalar Product on $\mathfrak{R}$ ..... 163
7.4.3 The Isometric Isomorphism $\Re \sim \Lambda$ ..... 164
7.4.4 Dimensions of Irreducible Representations ..... 168
Problems for Independent Solution to Chapter 7 ..... 170
$8 \quad \mathfrak{s l}_{2}$-Modules ..... 173
8.1 Lie Algebras ..... 173
8.1.1 Universal Enveloping Algebra ..... 173
8.1.2 Representations of Lie Algebras ..... 174
8.2 Finite-Dimensional Simple $\mathfrak{s l}_{2}$-Modules ..... 176
8.3 Semisimplicity of Finite-Dimensional $\mathfrak{s l}_{2}$-Modules ..... 179
Problems for Independent Solution to Chapter 8 ..... 183
9 Categories and Functors ..... 187
9.1 Categories ..... 187
9.1.1 Objects and Morphisms ..... 187
9.1.2 Mono-, Epi-, and Isomorphisms ..... 189
9.1.3 Reversing of Arrows ..... 190
9.2 Functors ..... 191
9.2.1 Covariant Functors ..... 191
9.2.2 Presheaves ..... 192
9.2.3 The Functors Hom ..... 195
9.3 Natural Transformations ..... 197
9.3.1 Equivalence of Categories ..... 198
9.4 Representable Functors ..... 200
9.4.1 Definitions via Universal Properties ..... 203
9.5 Adjoint Functors ..... 205
9.5.1 Tensor Products Versus Hom Functors ..... 206
9.6 Limits of Diagrams ..... 213
9.6.1 (Co) completeness ..... 217
9.6.2 Filtered Diagrams ..... 218
9.6.3 Functorial Properties of (Co) limits ..... 219
Problems for Independent Solution to Chapter 9 ..... 222
10 Extensions of Commutative Rings ..... 227
10.1 Integral Elements ..... 227
10.1.1 Definition and Properties of Integral Elements ..... 227
10.1.2 Algebraic Integers ..... 230
10.1.3 Normal Rings ..... 231
10.2 Applications to Representation Theory ..... 232
10.3 Algebraic Elements in Algebras ..... 234
10.4 Transcendence Generators ..... 236
Problems for Independent Solution to Chapter 10 ..... 239
11 Affine Algebraic Geometry ..... 241
11.1 Systems of Polynomial Equations ..... 241
11.2 Affine Algebraic-Geometric Dictionary ..... 243
11.2.1 Coordinate Algebra ..... 243
11.2.2 Maximal Spectrum ..... 244
11.2.3 Pullback Homomorphisms ..... 246
11.3 Zariski Topology ..... 250
11.3.1 Irreducible Components ..... 251
11.4 Rational Functions ..... 253
11.4.1 The Structure Sheaf ..... 254
11.4.2 Principal Open Sets as Affine Algebraic Varieties ..... 255
11.5 Geometric Properties of Algebra Homomorphisms ..... 256
11.5.1 Closed Immersions ..... 257
11.5.2 Dominant Morphisms ..... 257
11.5.3 Finite Morphisms ..... 258
11.5.4 Normal Varieties ..... 259
Problems for Independent Solution to Chapter 11 ..... 261
12 Algebraic Manifolds ..... 265
12.1 Definitions and Examples ..... 265
12.1.1 Structure Sheaf and Regular Morphisms ..... 268
12.1.2 Closed Submanifolds ..... 268
12.1.3 Families of Manifolds ..... 269
12.1.4 Separated Manifolds ..... 269
12.1.5 Rational Maps ..... 271
12.2 Projective Varieties ..... 272
12.3 Resultant Systems ..... 274
12.3.1 Resultant of Two Binary Forms ..... 276
12.4 Closeness of Projective Morphisms ..... 278
12.4.1 Finite Projections ..... 279
12.5 Dimension of an Algebraic Manifold ..... 281
12.5.1 Dimensions of Subvarieties ..... 283
12.5.2 Dimensions of Fibers of Regular Maps ..... 285
12.6 Dimensions of Projective Varieties ..... 286
Problems for Independent Solution to Chapter 12 ..... 290
13 Algebraic Field Extensions ..... 295
13.1 Finite Extensions ..... 295
13.1.1 Primitive Extensions ..... 296
13.1.2 Separability ..... 297
13.2 Extensions of Homomorphisms ..... 300
13.3 Splitting Fields and Algebraic Closures ..... 302
13.4 Normal Extensions ..... 304
13.5 Compositum ..... 306
13.6 Automorphisms of Fields and the Galois Correspondence ..... 307
Problems for Independent Solution to Chapter 13 ..... 311
14 Examples of Galois Groups ..... 315
14.1 Straightedge and Compass Constructions ..... 315
14.1.1 Effect of Accessory Irrationalities ..... 318
14.2 Galois Groups of Polynomials ..... 319
14.2.1 Galois Resolution ..... 321
14.2.2 Reduction of Coefficients ..... 322
14.3 Galois Groups of Cyclotomic Fields ..... 323
14.3.1 Frobenius Elements ..... 324
14.4 Cyclic Extensions ..... 326
14.5 Solvable Extensions ..... 328
14.5.1 Generic Polynomial of Degree $n$ ..... 331
14.5.2 Solvability of Particular Polynomials ..... 332
Problems for Independent Solution to Chapter 14 ..... 333
Hints to Some Exercises ..... 335
References ..... 355
Index ..... 357

## Notation and Abbreviations

| $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ | The integer, positive integer, rational, real, and <br> complex numbers |
| :--- | :--- |
| $\mathbb{F}_{q}$ | The finite field of $q$ elements |
| $\|M\|$ | The cardinality of a finite set $M$ |
| $I_{X}$ | The identity map $X \leadsto X$ |
| $n \mid m$ | $n$ divides $m$ |
| $\mathbb{F}^{*}, K^{*}$ | The multiplicative groups of the nonzero elements |
|  | in a field $\mathbb{F}$ and the invertible elements in a ring $K$ |
| $[a],[a]_{U},[a]_{p}$ | The equivalence class of an element $a$ modulo |
|  | some equivalence relation, e.g., modulo a subgroup |
|  | $U$ or a prime number $p$ |


| $\lambda^{t}, a^{t}, A^{t}$ | The transposed Young diagram, array, and matrix for a given Young diagram $\lambda$, array $a$, and matrix $A$ |
| :---: | :---: |
| $V, V^{*}$ | Dual vector spaces |
| $\langle\xi, v\rangle=\xi(v)=\mathrm{ev}_{v}(\xi)$ | The contraction between a vector $v \in V$ and a covector $\xi \in V^{*}$ |
| $f^{*}: W^{*} \rightarrow U^{*}$ | The dual map to a linear map $f: U \rightarrow W$ |
| $\mathbb{A}(V), \mathbb{P}(V)$ | The affine and projective spaces associated with a vector space $V$ |
| $\mathbb{A}^{n}=\mathbb{A}\left(\mathbb{k}^{n}\right), \mathbb{P}_{n}=\mathbb{P}\left(\mathbb{k}^{n+1}\right)$ | The coordinate affine and projective spaces of dimension $n$ |
| $\mathrm{GL}(V), \mathrm{O}(V), \mathrm{U}(V)$ | The groups of linear, orthogonal, and unitary transformations of a vector space $V$ |
| PGL(V) | The group of linear projective transformations of a projective space $\mathbb{P}(V)$ |
| $\mathrm{SL}(V), \mathrm{SO}(V)$, etc. | The subgroups of the previous groups formed by the linear transformations of determinant 1 |
| $\mathrm{GL}_{n}(\mathbb{k}), \mathrm{SL}_{n}(\mathbb{k})$, etc. | The groups of $n \times n$ matrices obtained from the previous groups for $V=\mathbb{k}^{n}$ |
| $V^{\otimes n}, S^{n} V, \Lambda^{n} V$ | The $n$th tensor, symmetric, and exterior powers of a vector space $V$ |
| $\mathrm{T}(V), S V, \Lambda V$ | The tensor, symmetric, and exterior (Grassmannian) algebras of a vector space $V$ |
| $\operatorname{Sym}^{n} V, \operatorname{Alt}^{n} V \subset V^{\otimes n}$ | The subspaces of symmetric and skew-symmetric tensors |
| $\mathbb{S}^{\lambda} V$ | The irreducible Schur's representation of GL( $V$ ) associated with a Young diagram $\lambda$ |
| $\Lambda, \omega: \Lambda \xrightarrow{\sim} \Lambda$ | The $\mathbb{Z}$-algebra of symmetric functions and its canonical involution |
| $e_{i}, h_{i}, p_{i} \in \Lambda$ | The elementary, complete, and Newton's symmetric polynomials numbered by their degrees $i$ |
| $m_{\lambda}, e_{\lambda}, h_{\lambda}, s_{\lambda} \in \Lambda$ | Numbered by the Young diagrams $\lambda$, the monomial, elementary, complete, and Schur's bases of $\Lambda$ over $\mathbb{Z}$ |
| $p_{\lambda} \in \mathbb{Q} \otimes \Lambda$ | The Newton basis of $\mathbb{Q} \otimes \Lambda$ over $\mathbb{Q}$ numbered by the Young diagrams $\lambda$ |
| $\operatorname{res}_{H}^{G} W, \operatorname{ind}_{H}^{G} V, \operatorname{coind}_{H}^{G} V$ | Restricted, induced, and coinduced representations |
| $M_{\lambda}, S_{\lambda}$ | The tabloid and Specht's $S_{n}$-modules indexed by a Young diagram $\lambda$ of weight $\|\lambda\|=n$ |
| Set, $\mathcal{T}$ op, $\mathcal{C r}_{\text {r }}, \mathcal{A} b, \mathcal{C m r}$ | The categories of sets, topological spaces, groups, abelian groups, and commutative rings with units |
| $R-\mathcal{M o d}, \mathcal{M o d}-R, \mathcal{V} e c_{\mathrm{k}}$ | The categories of left and right modules over a ring $R$ and vector spaces over a field $\mathbb{k}$ |
| $\mathcal{F u n}(\mathcal{C}, \mathcal{D})$ | The category of functors $\mathcal{C} \rightarrow \mathcal{D}$ |
| $\operatorname{PreSh}(\mathcal{C}, \mathcal{D})=\mathcal{F u n}\left(\mathcal{C}^{\text {opp }}, \mathcal{D}\right)$ | The category of presheaves $\mathcal{C} \rightarrow \mathcal{D}$ |


| $\varphi^{*}: K^{Y} \rightarrow K^{X}$ | The pullback homomorphism $f \mapsto f \circ \varphi$ associated with a map of sets $\varphi: X \rightarrow Y$ |
| :---: | :---: |
| $Z(f), Z(I) \subset \mathbb{P}(V)$ | The zero sets of a homogeneous polynomial $f \in S V^{*}$ and a homogeneous ideal $I \subset S V^{*}$ |
| $V(f), V(I) \subset \mathbb{A}[V]$ | The affine hypersurface $f(v)=0, f \in S V^{*}$ and the zero set of an ideal $I \subset S V^{*}$ |
| $X \subset \mathbb{A}^{n}, I(X), \mathbb{k}[X]$ | An affine algebraic variety, its ideal, and the coordinate algebra |
| $\mathcal{D}(f) \subset X$ | The principal open set $f(x) \neq 0$ provided by a regular function $f \in \mathbb{k}[X]$ on an affine algebraic variety $X$ |
| $\operatorname{Dom}(f), \operatorname{Dom}(\varphi) \subset X$ | The domains of regularity for a rational function $f$ and a rational map $\varphi$ on algebraic manifold $X$ |
| $\underline{D}(\underline{)}$ | The discriminant of a polynomial $f \in \mathbb{K}[x]$ |
| $\overline{\mathrm{k}}, \bar{A}_{B}$ | An algebraic closure of a field $\mathbb{k}$ and the integral closure of a commutative ring $A$ in a commutative ring $B \supset A$ |
| $\mu_{\zeta} \in \mathbb{k}[x], \operatorname{deg}_{k} \zeta \in \mathbb{N}$ | The minimal polynomial and degree over a field $\mathbb{k}$ of an element $\zeta$, algebraic over $\mathbb{k}$, of some $\mathbb{k}$-algebra |
| $\mu_{n}, \Phi_{n}$ | The multiplicative group of $n$th roots of unity and the $n$th cyclotomic polynomial |
| $F_{p}$ | The Frobenius endomorphism and the corresponding Frobenius element in the Galois group of a cyclotomic field |
| $\operatorname{deg} \mathbb{K} / \mathbb{k}=\operatorname{dim}_{k} \mathbb{K}$ | The degree of a finite extension of fields $\mathbb{K} \supset \mathbb{K}$ |
| $\operatorname{Aut}_{\text {k }}(\mathbb{F})$ | The group of automorphisms of a field $\mathbb{F}$ over a subfield $\mathbb{k} \subset \mathbb{F}$ |
| $\mathrm{Gal} \mathbb{K} / \mathbb{k}, \mathrm{Gal} f / \mathbb{k}$ | The Galois groups of a Galois extension of fields $\mathbb{K} \supset \mathbb{k}$ and of a separable polynomial $f \in \mathbb{k}[x]$ |

## Chapter 1 <br> Tensor Products

### 1.1 Multilinear Maps

Let $K$ be a commutative ring, and let $V_{1}, V_{2}, \ldots, V_{n}$ and $W$ be $K$-modules. A map

$$
\begin{equation*}
\varphi: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W \tag{1.1}
\end{equation*}
$$

is called multilinear or $n$-linear if $\varphi$ is linear in each argument while all the other arguments are fixed, i.e.,

$$
\varphi\left(\ldots, \lambda v^{\prime}+\mu v^{\prime \prime}, \ldots\right)=\lambda \varphi\left(\ldots, v^{\prime}, \ldots\right)+\mu \varphi\left(\ldots, v^{\prime \prime}, \ldots\right)
$$

for all $\lambda, \mu \in K, v^{\prime}, v^{\prime \prime} \in V_{i}, 1 \leqslant i \leqslant n$. For example, the 1-linear maps $V \rightarrow V$ are the ordinary linear endomorphisms of $V$, and the 2-linear maps $V \times V \rightarrow K$ are the bilinear forms on $V$. The multilinear maps (1.1) form a $K$-module with the usual addition and multiplication by constants defined for maps taking values in a $K$-module. We denote the $K$-module of multilinear maps (1.1) by $\operatorname{Hom}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right)$, or by $\operatorname{Hom}_{K}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right)$ when explicit reference to the ground ring is required.

### 1.1.1 Multilinear Maps Between Free Modules

Let $V_{1}, V_{2}, \ldots, V_{n}$ and $W$ be free modules of finite ranks $d_{1}, d_{2}, \ldots, d_{n}$ and $d$ respectively. Then the module of multilinear maps (1.1) is also free of rank $d \cdot d_{1} \cdot d_{2} \cdots d_{n}$. To see this, choose a basis $e_{1}^{(\nu)}, e_{2}^{(\nu)}, \ldots, e_{d_{v}}^{(\nu)}$ in every $V_{v}$ and a basis $e_{1}, e_{2}, \ldots, e_{d}$ in $W$. Every map (1.1) is uniquely determined by its values on
all collections of the basis vectors

$$
\begin{equation*}
\varphi\left(e_{j_{1}}^{(1)}, e_{j_{2}}^{(2)}, \ldots, e_{j_{n}}^{(n)}\right) \in W \tag{1.2}
\end{equation*}
$$

because for an arbitrary collection of vectors $v_{1}, v_{2}, \ldots, v_{n}$, where each $v_{v} \in V_{\nu}$ is linearly expressed through the basis as

$$
\begin{equation*}
v_{\nu}=\sum_{j_{v}=1}^{d_{v}} x_{j_{v}}^{(\nu)} e_{j_{v}}^{(\nu)} \tag{1.3}
\end{equation*}
$$

it follows from the multilinearity of $\varphi$ that

$$
\begin{equation*}
\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\sum_{j_{1} j_{2} \ldots j_{n}} x_{j_{1}}^{(1)} \cdot x_{j_{2}}^{(2)} \cdots x_{j_{n}}^{(n)} \cdot \varphi\left(e_{j_{1}}^{(1)}, e_{j_{2}}^{(2)}, \ldots, e_{j_{n}}^{(n)}\right) . \tag{1.4}
\end{equation*}
$$

Every vector (1.2) is uniquely expanded as

$$
\varphi\left(e_{j_{1}}^{(1)}, e_{j_{2}}^{(2)}, \ldots, e_{j_{n}}^{(n)}\right)=\sum_{i=1}^{d} a_{i j_{1} j_{2} \ldots j_{n}} \cdot e_{i} .
$$

Thus, the multilinear maps (1.1) are in bijection with the $(n+1)$-dimensional matrices

$$
A=\left(a_{i j_{1} j_{2} \ldots j_{n}}\right)
$$

of size $d \times d_{1} \times d_{2} \times \cdots \times d_{n}$ with elements $a_{i j_{1} j_{2} \ldots j_{n}} \in K$. For $n=1$, such a matrix is the usual 2-dimensional $d \times d_{1}$ matrix $\left(a_{i j}\right)$ of a linear map $V \rightarrow W$, where $d_{1}=\operatorname{dim} V, d=\operatorname{dim} W$. For $n=2$, a bilinear map $V_{1} \times V_{2} \rightarrow W$ is encoded by the three-dimensional matrix of size $d \times d_{1} \times d_{2}$ formed by the constants $\left(a_{i j, j_{2}}\right)$, etc. A map $\varphi$ is recovered from its matrix by the formula

$$
\begin{equation*}
\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\sum_{i, j_{1}, \ldots, j_{n}} a_{i j_{1} j_{2} \ldots j_{n}} \cdot x_{j_{1}}^{(1)} \cdot x_{j_{2}}^{(2)} \cdots x_{j_{n}}^{(n)} \cdot e_{i} . \tag{1.5}
\end{equation*}
$$

The addition and multiplication by constants in $\operatorname{Hom}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right)$ has the effect on matrices $\left(a_{i j_{1} j_{2} \ldots j_{n}}\right)$ of componentwise addition and multiplication by constants. Therefore, $\operatorname{Hom}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right)$ is isomorphic to the $K$-module of $(n+1)$-dimensional matrices of size $d \times d_{1} \times d_{2} \times \cdots \times d_{n}$ with elements from $K$. The latter module is free with a basis formed by the matrices $E_{i_{1} j_{2} \ldots j_{n}}$ having 1 in the position $\left(i_{1} j_{2} \ldots j_{n}\right)$ and 0 everywhere else. The corresponding basis of $\operatorname{Hom}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right)$ consists of the multilinear maps

$$
\begin{align*}
& \delta_{j_{1} j_{2}, \ldots, j_{n}}^{i}: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W, \\
&\left(e_{k_{1}}^{(1)}, e_{k_{2}}^{(2)}, \ldots, e_{k_{n}}^{(n)}\right) \mapsto \begin{cases}e_{i} & \text { if } k_{v}=j_{v} \text { for all } v, \\
0 & \text { otherwise. }\end{cases} \tag{1.6}
\end{align*}
$$

An arbitrary collection of vectors (1.3) is mapped to

$$
\begin{equation*}
\delta_{j_{1}, j_{2}, \ldots j_{n}}^{i}:\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mapsto x_{j_{1}}^{(1)} \cdot x_{j_{2}}^{(2)} \cdots x_{j_{n}}^{(n)} \cdot e_{i} . \tag{1.7}
\end{equation*}
$$

In particular, if $K=\mathbb{k}$ is a field and $V_{1}, V_{2}, \ldots, V_{n}, W$ are finite-dimensional vector spaces over $\mathbb{k}$, then $\operatorname{dim} \operatorname{Hom}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right)=\operatorname{dim} W \cdot \prod_{\nu} \operatorname{dim} V_{\nu}$.

### 1.1.2 Universal Multilinear Map

Given a multilinear map of $K$-modules

$$
\begin{equation*}
\tau: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow U \tag{1.8}
\end{equation*}
$$

and an arbitrary $K$-module $W$, composing $\tau$ with the linear maps $F: U \rightarrow W$ assigns the map

$$
\begin{equation*}
\operatorname{Hom}(U, W) \rightarrow \operatorname{Hom}\left(V_{1}, V_{2}, \ldots, V_{n} ; W\right), \quad F \mapsto F \circ \tau, \tag{1.9}
\end{equation*}
$$

which is obviously linear in $F$.
Definition 1.1 A multilinear map (1.8) is called universal if for every $K$-module $W$, the linear map (1.9) is an isomorphism of $K$-modules. In the expanded form, this means that for every $K$-module $W$ and multilinear map $\varphi: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W$, there exists a unique $K$-linear map $F: U \rightarrow W$ such that $\varphi=F \circ \tau$, i.e., the two solid multilinear arrows in the diagram

are uniquely completed to a commutative triangle by the dashed linear arrow.
Lemma 1.1 For every two universal multilinear maps

$$
\tau_{1}: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow U_{1}, \tau_{2}: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow U_{2}
$$

there exists a unique linear isomorphism $\iota: U_{1} \xrightarrow{\sim} U_{2}$ such that $\tau_{2}=\iota \tau_{1}$.

Proof By the universal properties of $\tau_{1}, \tau_{2}$, there exists a unique pair of linear maps

$$
F_{21}: U_{1} \rightarrow U_{2} \quad \text { and } \quad F_{12}: U_{2} \rightarrow U_{1}
$$

that fit in the commutative diagram


Since the factorizations $\tau_{1}=\varphi \circ \tau_{1}$ and $\tau_{2}=\psi \circ \tau_{2}$ are unique and hold for $\varphi=\operatorname{Id}_{U_{1}}, \psi=\operatorname{Id}_{U_{2}}$, we conclude that $F_{21} F_{12}=\operatorname{Id}_{U_{2}}$ and $F_{12} F_{21}=\operatorname{Id}_{U_{1}}$.

### 1.2 Tensor Product of Modules

The universal multilinear map (1.8) is denoted by

$$
\begin{align*}
\tau: V_{1} \times V_{2} \times \cdots \times V_{n} & \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}, \\
\left(v_{1}, v_{2}, \ldots, v_{n}\right) & \mapsto v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, \tag{1.10}
\end{align*}
$$

and called tensor multiplication. The target module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ is called the tensor product of $K$-modules $V_{1}, V_{2}, \ldots, V_{n}$, and its elements are called tensors. The image of tensor multiplication consists of the tensor products $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$, called tensor monomials or decomposable tensors. The decomposable tensors do not form a vector space, because the map (1.10) is not linear but multilinear. ${ }^{1}$ We will see soon that the decomposable tensors form a quite thin set within $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$. Over an infinite ground ring $K$, a random tensor is most likely an indecomposable linear combination of monomials $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$.
Exercise 1.1 Deduce from the universal property of the tensor product that $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ is linearly generated by the tensor monomials.

[^1]
### 1.2.1 Existence of Tensor Product

Although Lemma 1.1 states that the tensor product is unique up to a unique isomorphism commuting with the tensor multiplication, Definition 1.1 does not vouch for the existence of the tensor product. In this section we construct $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ in terms of generators and relations. Then this description will be clarified in Theorems 1.1 and 1.2.

Given a collection of $K$-modules $V_{1}, V_{2}, \ldots, V_{n}$, write $\mathcal{V}$ for the free $K$-module with a basis formed by all $n$-literal words $\left[v_{1} v_{2} \ldots v_{n}\right]$, where the $i$ th letter is an arbitrary vector $v_{i} \in V_{i}$. Let $\mathcal{R} \subset \mathcal{V}$ be the submodule generated by all linear combinations

$$
\begin{equation*}
[\cdots(\lambda u+\mu w) \cdots]-\lambda[\cdots u \cdots]-\mu[\cdots w \cdots] \tag{1.11}
\end{equation*}
$$

where the left and right dotted fragments remain unchanged in all three words. We put

$$
\begin{align*}
& V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \stackrel{\text { def }}{=} \mathcal{V} / \mathcal{R}, \\
& v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \stackrel{\text { def }}{=}\left[v_{1} v_{2} \ldots v_{n}\right](\bmod \mathcal{R}) . \tag{1.12}
\end{align*}
$$

Thus, the $K$-module $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ consists of all finite $K$-linear combinations of tensor monomials $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$, where $v_{i} \in V_{i}$, satisfying the distributivity relations

$$
\begin{equation*}
\cdots \otimes(\lambda u+\mu w) \otimes \cdots=\lambda \cdot(\cdots \otimes u \otimes \cdots)-\mu \cdot(\cdots \otimes w \otimes \cdots) \tag{1.13}
\end{equation*}
$$

## Lemma 1.2 The map

$$
\tau: V_{1} \times \cdots \times V_{n} \rightarrow \mathcal{V} / \mathcal{R},\left(v_{1}, \ldots, v_{n}\right) \mapsto\left[v_{1} \ldots v_{n}\right](\bmod \mathcal{R})
$$

is the universal multilinear map.
Proof The multilinearity of $\tau$ is expressed exactly by the relations (1.13), which hold by definition. Let us check the universal property. For every map of sets

$$
\varphi: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W
$$

there exists a unique linear map $F: \mathcal{V} \rightarrow W$ acting on the basis by the rule

$$
\left[v_{1} v_{2} \ldots v_{n}\right] \mapsto \varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right) .
$$

This map is correctly factorized through the quotient map $\mathcal{V} \rightarrow \mathcal{V} / \mathcal{R}$ if and only if $\mathcal{R} \subset \operatorname{ker} F$. Since $F$ is linear and $\varphi$ is multilinear, for every linear generator (1.11)
of $\mathcal{R}$, the equalities

$$
\begin{aligned}
& F([\ldots(\lambda u+\mu w) \ldots]-\lambda[\ldots u \ldots]-\mu[\ldots w \ldots]) \\
& \quad=F([\ldots(\lambda u+\mu w) \ldots])-\lambda F([\ldots u \ldots])-\mu F([\ldots w \ldots]) \\
& \quad=\varphi(\ldots,(\lambda u+\mu w), \ldots)-\lambda \varphi(\ldots, u, \ldots)-\mu \varphi(\ldots, w, \ldots)=0
\end{aligned}
$$

hold. Therefore, the prescription $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto \varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ actually assigns a well-defined linear map $\mathcal{V} / \mathcal{R} \rightarrow W$.

Theorem 1.1 (Tensor Product of Free Modules) Let modules $V_{i}$ be free with a (not necessarily finite) basis $E_{i}$. Then the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ is free with a basis formed by the tensor products of basis vectors

$$
\begin{equation*}
e_{1} \otimes e_{2} \otimes \cdots \otimes e_{n}, \text { where } e_{i} \in E_{i} . \tag{1.14}
\end{equation*}
$$

In particular, if all $V_{i}$ are of finite rank, then $\mathrm{rk} V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}=\prod \mathrm{rk} V_{i}$.
Proof Let us temporarily consider the symbols (1.14) just as formal records, and write $\mathcal{W}$ for the free module with a basis formed by all these records. By Sect. 1.1.1, there exists a unique multilinear map $\tau: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow \mathcal{W}$ such that $\tau\left(e_{1}, e_{2}, \ldots, e_{n}\right)=e_{1} \otimes e_{2} \otimes \cdots \otimes e_{n}$. It is universal, because for every multilinear $\operatorname{map} \varphi: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W$, the condition $\varphi=F \circ \tau$ on a linear map $F: \mathcal{W} \rightarrow W$ forces $F$ to act on the basis of $\mathcal{W}$ by the rule

$$
F\left(e_{1} \otimes e_{2} \otimes \cdots \otimes e_{n}\right)=\varphi\left(e_{1}, e_{2}, \ldots, e_{n}\right),
$$

and this prescription actually assigns the well-defined linear map $F: \mathcal{W} \rightarrow W$. By Lemma 1.1, there exists a unique $K$-linear isomorphism $\mathcal{W} \xrightarrow{\leadsto} V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ that maps the formal records (1.14) to the actual tensor products of the basis vectors $e_{1} \otimes e_{2} \otimes \cdots \otimes e_{n} \in V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$. Therefore, these tensor products also form a basis.

Example 1.1 (Polynomial Rings) The tensor product of $n$ copies of the $K$-module of polynomials $K[x]$, i.e., the $n$th tensor power $K[x]^{\otimes n}=K[x] \otimes K[x] \otimes \cdots \otimes K[x]$, is isomorphic to the module of polynomials in $n$ variables $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ via the $\operatorname{map} x^{m_{1}} \otimes x^{m_{2}} \otimes \cdots \otimes x^{m_{n}} \mapsto x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}}$.
Example 1.2 (Segre Varieties) Let $V_{1}, V_{2}, \ldots, V_{n}$ be finite-dimensional vector spaces over an arbitrary field $\mathbb{k}$. It follows from Theorem 1.1 that the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ is linearly generated by the decomposable tensors $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$. Considered up to proportionality, ${ }^{2}$ the collection of decomposable tensors in the projective space $\mathbb{P}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)$ is called a Segre variety.

[^2]We will see in Example 2.8 on p. 50 that this Segre variety actually is algebraic and can be described by a system of homogeneous quadratic equations, necessary and sufficient for the complete decomposability of a tensor $t \in V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ in a tensor product of $n$ vectors. On the other hand, the Segre variety can be described parametrically as the image of the Segre embedding $s: \mathbb{P}_{m_{1}} \times \cdots \times \mathbb{P}_{m_{n}} \rightarrow \mathbb{P}_{m}$, mapping the product of projective spaces $\mathbb{P}_{m_{i}}=\mathbb{P}\left(V_{i}\right)$ to the projectivization of the tensor product of the underlying vector spaces $\mathbb{P}_{m}=\mathbb{P}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)$. It sends a collection of 1-dimensional subspaces spanned by nonzero vectors $v_{i} \in V_{i}$ to the 1-dimensional subspace spanned by the decomposable tensor

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \in V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} .
$$

Exercise 1.2 Verify that the map $s$ is well defined and injective.
Note that the expected dimension of the Segre variety equals $\sum m_{i}=-n+\sum \operatorname{dim} V_{i}$ and is much less than $\operatorname{dim} \mathbb{P}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)=\prod \operatorname{dim} V_{i}-1$. However, the Segre variety does not lie in a hyperplane and linearly spans the whole ambient space. Also note that by construction, the Segre variety is ruled by $n$ families of projective spaces of dimensions $m_{1}, m_{2}, \ldots, m_{n}$.

### 1.2.2 Linear Maps as Tensors

For two vector spaces $U, W$ there exists a bilinear map

$$
\begin{equation*}
W \times U^{*} \rightarrow \operatorname{Hom}(U, V) \tag{1.15}
\end{equation*}
$$

that sends a pair $(w, \xi) \in W \times U^{*}$ to the linear map

$$
\begin{equation*}
w \otimes \xi: U \rightarrow W, \quad u \mapsto w \cdot \xi(u) . \tag{1.16}
\end{equation*}
$$

If the vector $w$ and covector $\xi$ are both nonzero, then $\mathrm{rk} w \otimes \xi=1$. In this case, the image of the linear map (1.16) has dimension 1 and is spanned by the vector $w \in W$, and the kernel $\operatorname{ker}(w \otimes \xi)=\operatorname{Ann}(\xi) \subset U$ has codimension 1 .
Exercise 1.3 Convince yourself that every linear operator $F: U \rightarrow W$ of rank 1 is of the form (1.16) for appropriate nonzero covector $\xi \in U^{*}$ and vector $w \in W$ uniquely up to proportionality determined by $F$.
By the universal property of tensor product, the bilinear map (1.15) produces the unique linear map

$$
\begin{equation*}
W \otimes U^{*} \rightarrow \operatorname{Hom}(U, W) \tag{1.17}
\end{equation*}
$$

sending a decomposable tensor $\xi \otimes w \in W \otimes U^{*}$ to the linear map (1.16). If both vector spaces $U, W$ are finite-dimensional, then the map (1.17) is an isomorphism of vector spaces. To check this, we fix some bases $\boldsymbol{w}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in $U$ and $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ in $W$, and write $\boldsymbol{u}^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{n}^{*}\right)$ for the basis in $U^{*}$
dual to $\boldsymbol{u}$. Then the $m n$ tensors $w_{i} \otimes u_{j}^{*}$ form a basis in $W \otimes U^{*}$ by Lemma 1.2. The corresponding linear maps (1.16) act on the basis of $U$ as

$$
w_{i} \otimes u_{j}^{*}: u_{k} \mapsto\left\{\begin{array}{lr}
w_{i} & \text { for } k=j \\
0 & \text { otherwise }
\end{array}\right.
$$

Thus, the matrix of the operator $w_{i} \otimes u_{j}^{*}$ in the bases $\boldsymbol{u}, \boldsymbol{w}$ is exactly the standard basis matrix $E_{i j} \in \operatorname{Mat}_{m \times n}(\mathbb{k})$. So the basis of $U^{*} \otimes V$ built from the bases $\boldsymbol{u}, \boldsymbol{w}$ via Theorem 1.1 goes to the standard basis of $\operatorname{Hom}(U, W)$ associated with the bases $\boldsymbol{u}, \boldsymbol{w}$.

In the language of projective geometry, the rank-one operators $U \rightarrow W$, considered up to proportionality, form the Segre variety $S \subset \mathbb{P}(\operatorname{Hom}(U, W))$, the image of the Segre embedding

$$
s: \mathbb{P}_{m-1} \times \mathbb{P}_{n-1}=\mathbb{P}(W) \times \mathbb{P}\left(U^{*}\right) \hookrightarrow \mathbb{P}(\operatorname{Hom}(U, W))=\mathbb{P}_{m n-1}
$$

For points $w \in \mathbb{P}_{m-1}=\mathbb{P}(W), \xi \in \mathbb{P}_{n-1}=\mathbb{P}\left(U^{*}\right)$ with the homogeneous coordinates

$$
\boldsymbol{x}=\left(x_{1}: x_{2}: \cdots: x_{n}\right) \quad \text { and } \quad \boldsymbol{y}=\left(y_{1}: y_{2}: \cdots: y_{n}\right)
$$

in the bases $\boldsymbol{w}$ and $\boldsymbol{u}^{*}$ respectively, the map $s$ takes the pair $(w, \xi)$ to the linear operator whose matrix in the bases $\boldsymbol{u}, \boldsymbol{w}$ is $\boldsymbol{x}^{t} \cdot \boldsymbol{y}=\left(x_{i} y_{j}\right)$. The set of all rank-1 matrices $A=\left(a_{i j}\right) \in \operatorname{Mat}_{m \times n}(\mathbb{k})$ considered up to proportionality is described in $\mathbb{P}_{m n-1}=\mathbb{P}\left(\operatorname{Mat}_{m \times n}(\mathbb{k})\right)$ by a system of homogeneous quadratic equations

$$
\operatorname{det}\left(\begin{array}{cc}
a_{i j} & a_{i k} \\
a_{\ell j} & a_{\ell k}
\end{array}\right)=a_{i j} a_{\ell k}-a_{i k} a_{\ell j}=0
$$

for all $1 \leqslant i<\ell \leqslant m, 1 \leqslant j<k \leqslant n$. These equations certify the vanishing of all $2 \times 2$ minors in $A$. Their solution set, the Segre variety $S \subset \mathbb{P}_{m n-1}$, is bijectively parameterized by $\mathbb{P}_{m-1} \times \mathbb{P}_{n-1}$ as $a_{i j}=x_{i} y_{j}$. This parameterization takes two families of "coordinate planes" $\left\{\boldsymbol{x} \times \mathbb{P}_{n-1}\right\}_{\boldsymbol{x} \in \mathbb{P}_{m-1}}$ and $\left\{\mathbb{P}_{m-1} \times \boldsymbol{y}\right\}_{\boldsymbol{y} \in \mathbb{P}_{n-1}}$ on $\mathbb{P}_{m-1} \times \mathbb{P}_{n-1}$ to two families of projective spaces ruling the Segre variety $S$. They consist of all rank-1 matrices with prescribed ratios either between the rows or between the columns. Note that $\operatorname{dim} S=\operatorname{dim}\left(\mathbb{P}_{m-1} \times \mathbb{P}_{n-1}\right)=m+n-2$ is much less than $\operatorname{dim} \mathbb{P}_{m n-1}=m n-1$ for $m, n \gg 0$. However, $S$ does not lie in any hyperplane of $\mathbb{P}_{m n-1}$.

Example 1.3 (The Segre Quadric in $\mathbb{P}_{3}$ ) For $\operatorname{dim} U=\operatorname{dim} W=2$, the Segre embedding $\mathbb{P}_{1} \times \mathbb{P}_{1} \hookrightarrow \mathbb{P}_{3}=\mathbb{P}\left(\operatorname{Mat}_{2}(\mathbb{k})\right)$ assigns the bijection between $\mathbb{P}_{1} \times \mathbb{P}_{1}$ and the determinantal Segre quadric

$$
S=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{2}(\mathbb{k}): a d-b c=0\right\}
$$

considered in Example 17.6 of Algebra I. A pair of points

$$
w=\left(x_{0}: x_{1}\right) \in W, \xi=\left(y_{0}: y_{1}\right) \in \mathbb{P}\left(U^{*}\right)
$$

is mapped to the matrix

$$
\binom{x_{0}}{x_{1}} \cdot\left(\begin{array}{ll}
y_{0} & y_{1}
\end{array}\right)=\left(\begin{array}{ll}
x_{0} y_{0} & x_{0} y_{1}  \tag{1.18}\\
x_{1} y_{0} & x_{1} y_{1}
\end{array}\right) .
$$

The two families of "coordinate lines" $\left\{w \times \mathbb{P}_{1}\right\}_{w \in \mathbb{P}(W)},\left\{\mathbb{P}_{1} \times \xi\right\}_{\xi \in \mathbb{P}\left(U^{*}\right)}$ go to the two families of lines ruling the Segre quadric and formed by the rank-one matrices with prescribed ratios

$$
\begin{aligned}
([\text { top row }]:[\text { bottom row }]) & =\left(x_{0}: x_{1}\right), \\
([\text { left column }]:[\text { right column }]) & =\left(y_{0}: y_{1}\right)
\end{aligned}
$$

Every line lying on the Segre quadric belongs to exactly one of these two ruling families. All the lines in each family have no intersections, whereas every two lines from different families intersect, and every point on $S$ is the intersection point of two lines from different families.

Exercise 1.4 Prove all these claims.

### 1.2.3 Tensor Products of Abelian Groups

The description of the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ given in Sect. 1.2 is not so explicit as one could want. For nonfree modules $V_{i}$, it may not be easy to understand from that description even whether the tensor product is zero.

As an example, let us describe the tensor products of finitely generated $\mathbb{Z}$-modules, i.e., the abelian groups. First, we claim that $\mathbb{Z} /(m) \otimes \mathbb{Z} /(n)=0$ for all coprime $m, n \in \mathbb{Z}$. Indeed, the class $[n]=n(\bmod m)$ is invertible in the residue ring $\mathbb{Z} /(m)$ in this case, and therefore, every element $a \in \mathbb{Z} /(m)$ can be written as $a=n \cdot a^{\prime}$ with $a^{\prime}=[n]^{-1} a \in \mathbb{Z} /(m)$. On the other hand, $n b=0$ in $\mathbb{Z} /(n)$ for all $b \in \mathbb{Z} /(n)$. Hence, for all decomposable tensors $a \otimes b \in \mathbb{Z} /(m) \otimes \mathbb{Z} /(n)$,
$a \otimes b=\left(n \cdot a^{\prime}\right) \otimes b=n \cdot\left(a^{\prime} \otimes b\right)=a^{\prime} \otimes(n \cdot b)=\alpha^{\prime} \otimes 0=\alpha^{\prime} \otimes(0 \cdot 0)=0 \cdot\left(\alpha^{\prime} \otimes 0\right)=0$.
Since the decomposable tensors span $\mathbb{Z} /(m) \otimes \mathbb{Z} /(n)$ over $\mathbb{Z}$, this is the zero module. Now we compute $\mathbb{Z} /\left(p^{n}\right) \otimes \mathbb{Z} /\left(p^{m}\right)$ for a prime $p$ and all $n \leqslant m$. Consider the multiplication map

$$
\begin{equation*}
\mu: \mathbb{Z} /\left(p^{n}\right) \times \mathbb{Z} /\left(p^{m}\right) \rightarrow \mathbb{Z} /\left(p^{n}\right), \quad\left([a]_{p^{n}},[b]_{p^{m}}\right) \mapsto[a b]_{p^{n}}=a b \cdot[1]_{p^{n}} \tag{1.19}
\end{equation*}
$$

It is certainly well defined and $\mathbb{Z}$-bilinear. Let us verify that it is universal. Since for every bilinear map $\varphi: \mathbb{Z} /\left(p^{n}\right) \times \mathbb{Z} /\left(p^{m}\right) \rightarrow W$, the equality $\varphi\left([a]_{p^{n}},[b]_{p^{m}}\right)=a b \cdot \varphi\left([1]_{p^{n}},[1]_{p^{m}}\right)$ holds, a linear map $F: \mathbb{Z} /\left(p^{n}\right) \rightarrow W$ such that $\varphi=F \circ \mu$ has to send the generator $[1]_{p^{n}}$ of the module $\mathbb{Z} /\left(p^{n}\right)$ to the vector $\varphi\left([1]_{p^{n}},[1]_{p^{m}}\right)$. Therefore, such a linear map $F$ is unique if it exists. It indeed exists by Proposition 14.1 of Algebra I, because the basis linear relation $p^{n} \cdot[1]_{p^{n}}=0$ on the generator $[1]_{p^{n}}$ of $\mathbb{Z} /\left(p^{n}\right)$ holds for the vector $\varphi\left([1]_{p^{n}},[1]_{p^{m}}\right)$ in $W$ as well:

$$
\begin{aligned}
p^{n} \cdot \varphi\left([1]_{p^{n}},[1]_{p^{m}}\right) & =\varphi\left(p^{n} \cdot[1]_{p^{n}},[1]_{p^{m}}\right)=\varphi\left(0,[1]_{p^{m}}\right)=\varphi\left(0 \cdot 0,[1]_{p^{m}}\right) \\
& =0 \cdot \varphi\left(0,[1]_{p^{m}}\right)=0 .
\end{aligned}
$$

Since the multiplication map (1.19) is the universal bilinear map, then

$$
\mathbb{Z} /\left(p^{n}\right) \otimes \mathbb{Z} /\left(p^{m}\right) \simeq \mathbb{Z} /\left(p^{\min (n, m)}\right)
$$

Finally, $\mathbb{Z} \otimes A \simeq A$ for every $\mathbb{Z}$-module $A$, because the multiplication map $\mu: \mathbb{Z} \times A \rightarrow A,(n, a) \mapsto n a$, is obviously the universal bilinear map too, because for every bilinear map $\varphi: \mathbb{Z} \times A \rightarrow W$, a linear map $F: A \rightarrow W$ such that $F \mu=\varphi$ should be and actually is defined by the prescription $a \mapsto \varphi(1, a)$. Computation of the tensor product of two arbitrary abelian groups

$$
A=\mathbb{Z}^{r} \oplus \frac{\mathbb{Z}}{\left(p_{1}^{n_{1}}\right)} \oplus \cdots \oplus \frac{\mathbb{Z}}{\left(p_{\alpha}^{n_{\alpha}}\right)} \quad \text { and } \quad B=\mathbb{Z}^{s} \oplus \frac{\mathbb{Z}}{\left(q_{1}^{m_{1}}\right)} \oplus \cdots \oplus \frac{\mathbb{Z}}{\left(q_{\beta}^{m_{\beta}}\right)}
$$

is reduced to the three particular cases considered above by means of the canonical isomorphisms stating the distributivity of the tensor product with respect to direct sums, and the commutativity and associativity of the tensor product. We establish these isomorphisms in the next section.
Exercise 1.5 Prove that for every module $V$ over an arbitrary commutative ring $K$, the multiplication $K \otimes V \rightarrow V, \lambda \otimes v \mapsto \lambda v$, is a well-defined linear isomorphism of $K$-modules.

### 1.3 Commutativity, Associativity, and Distributivity Isomorphisms

In this section we consider arbitrary modules over a commutative ring $K$. It is often convenient to define linear maps

$$
\begin{equation*}
f: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow W \tag{1.20}
\end{equation*}
$$

by indicating the values of $f$ on the decomposable tensors, that is, by the prescription

$$
\begin{equation*}
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto f\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tag{1.21}
\end{equation*}
$$

Since the decomposable tensors linearly generate $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ over $K$, we know from Proposition 14.1 of Algebra I that there exists at most one linear map (1.20) acting on the decomposable tensors by the rule (1.21), and it exists if and only if all the linear relations between the decomposable tensors in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ hold between the vectors $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in $W$ as well. Since the linear relations between the decomposable tensors are linearly generated by the multilinearity relations from formula (1.13) on p. 5, we get the following useful criterion.

Lemma 1.3 If the vectors $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in (1.21) depend multilinearly ${ }^{3}$ on the vectors $v_{1}, v_{2}, \ldots, v_{n}$, then there exists a unique linear map (1.20) acting on the decomposable tensors by the rule (1.21).

Proposition 1.1 (Commutativity Isomorphism) The map

$$
U \otimes W \xrightarrow{\leadsto} W \otimes U, u \otimes w \mapsto w \otimes u,
$$

is a well-defined linear isomorphism.
Proof Since the prescription $u \otimes w \mapsto w \otimes u$ is bilinear in $u, w$, it assigns the welldefined homomorphism of $K$-modules $U \otimes W \rightarrow W \otimes U$. For the same reason, there exists the well-defined $K$-linear map $W \otimes U \rightarrow U \otimes W, w \otimes u \mapsto u \otimes w$. These two maps are inverse to each other, because both of their compositions act identically on the decomposable tensors spanning $U \otimes W$ and $W \otimes U$ over $K$.

Proposition 1.2 (Associativity Isomorphism) The maps

$$
V \otimes(U \otimes W) \leftarrow V \otimes U \otimes W \leadsto(V \otimes U) \otimes W
$$

taking $v \otimes u \otimes w$, respectively, to $v \otimes(u \otimes w)$ and $(v \otimes u) \otimes w$ are well-defined linear isomorphisms.

Proof The tensor $v \otimes(u \otimes w) \in V \otimes(U \otimes W)$ depends 3-linearly on $(v, u, w)$. Hence, by Lemma 1.3, there exists the well-defined linear map $V \otimes U \otimes W \rightarrow V \otimes(U \otimes W)$, $v \otimes u \otimes w \mapsto v \otimes(u \otimes w)$. The inverse map is constructed in two steps as follows. For all $v \in V$, the tensor $v \otimes u \otimes w$ depends bilinearly on $u, w$. Therefore, there exists the linear map $\tau_{v}: U \otimes W \rightarrow V \otimes U \otimes W, u \otimes w \mapsto v \otimes u \otimes w$. Since this map depends linearly on $v$, the tensor $\tau_{v}(t)=v \otimes t$ is bilinear in $v \in V$ and $t \in U \otimes W$. By Lemma 1.3, there exists the linear map $V \otimes(U \otimes W) \rightarrow V \otimes U \otimes W$, $v \otimes(u \otimes w) \mapsto v \otimes u \otimes w$, which is certainly inverse to the map

$$
V \otimes U \otimes W \rightarrow V \otimes(U \otimes W), \quad v \otimes u \otimes w \mapsto v \otimes(u \otimes w) .
$$

The arguments establishing the isomorphism $V \otimes U \otimes W \leadsto(V \otimes U) \otimes W$ are similar.

[^3]Proposition 1.3 (Distributivity Isomorphisms) For every $K$-module $V$ and family of $K$-modules $U_{x}, x \in X$, the maps

$$
\begin{align*}
& V \otimes\left(\bigoplus_{x \in X} U_{x}\right) \xrightarrow{\rightarrow} \bigoplus_{x \in X}\left(V \otimes U_{x}\right), \quad v \otimes\left(u_{x}\right)_{x \in X} \mapsto\left(v \otimes u_{x}\right)_{x \in X},  \tag{1.22}\\
& \left(\bigoplus_{x \in X} U_{x}\right) \otimes V \stackrel{\sim}{\rightarrow} \bigoplus_{x \in X}\left(U_{x} \otimes V\right), \quad\left(u_{x}\right)_{x \in X} \otimes v \mapsto\left(u_{x} \otimes v\right)_{x \in X}, \tag{1.23}
\end{align*}
$$

are well-defined isomorphisms of $K$-modules.
Proof It is enough to prove only (1.22). Then (1.23) follows by the commutativity isomorphism from Proposition 1.1. The map (1.22) is well defined, because the family $\left(v \otimes u_{x}\right)_{x \in X}$ depends bilinearly on the vector $v \in V$ and the family

$$
\left(u_{x}\right)_{x \in X} \in \bigoplus_{x \in X} U_{x} .
$$

The inverse map is constructed as follows. For every $x \in X$ there exists a welldefined linear map $\varphi_{x}: V \otimes U_{x} \rightarrow V \otimes \bigoplus_{x \in X} U_{x}$ sending $v \otimes u \in V \otimes U_{x}$ to $v \otimes\left(w_{v}\right)_{v \in X}$, where the family $\left(w_{v}\right)_{v \in X} \in \bigoplus_{x \in X} U_{x}$ has $w_{x}=u$ and $w_{v}=0$ for all other $v \neq x$. The sum of the maps $\varphi_{x}$ over all $x \in X$ gives the map

$$
\begin{equation*}
\varphi: \bigoplus_{x \in X}\left(V \otimes U_{x}\right) \rightarrow V \otimes \bigoplus_{x \in X} U_{x}, \quad\left(v_{x} \otimes u_{x}\right)_{x \in X} \mapsto \sum_{x \in X} \varphi_{x}\left(v_{x} \otimes u_{x}\right) . \tag{1.24}
\end{equation*}
$$

It is well defined, because $v_{x} \otimes u_{x}=0$ for all but finitely many $x \in X$ by the definition of direct sum $\bigoplus_{x \in X}\left(V \otimes U_{x}\right)$, and therefore, the rightmost sum in (1.24) is finite.
Exercise 1.6 Show that for every set of $K$-module homomorphisms $\varphi_{x}: U_{x} \rightarrow W$, a well-defined linear map $\sum \varphi_{x}: \bigoplus_{x \in X} U_{x} \rightarrow W$ is given by the rule

$$
\left(u_{x}\right)_{x \in X} \mapsto \sum_{x \in X} \varphi_{x}\left(u_{x}\right) .
$$

Write $v \otimes u_{x} \in \bigoplus_{x \in X}\left(V \otimes U_{x}\right)$ for the family $\left(w_{v}\right)_{v \in X}$ in which

$$
w_{x}=v \otimes u_{x} \in V \otimes U_{x}
$$

and $w_{v}=0$ for all other $v \neq x$. The vectors $v \otimes u_{x}$ for $v \in V, u_{x} \in U_{x}, x \in X$ span $\bigoplus_{x \in X}\left(V \otimes U_{x}\right)$. Since $\psi \varphi\left(v \otimes u_{x}\right)=v \otimes u_{x}$, we conclude that $\psi \varphi=$ Id. Now write $u_{x} \in \bigoplus_{x \in X} U_{x}$ for the family $\left(w_{v}\right)_{v \in X}$ in which $w_{x}=u_{x}$ and $w_{v}=0$ for all other $v \neq x$. The tensors $v \otimes u_{x}$ with $v \in V, u_{x} \in U_{x}, x \in X$ span the tensor product $V \otimes\left(\bigoplus_{x \in X} U_{x}\right)$. Since $\varphi \psi\left(v \otimes u_{x}\right)=v \otimes u_{x}$, we conclude that $\varphi \psi=$ Id.

### 1.4 Tensor Product of Linear Maps

For a finite collection of $K$-linear maps $f_{i}: U_{i} \rightarrow W_{i}$ between modules over a commutative ring $K$, the tensor

$$
f_{1}\left(u_{1}\right) \otimes f_{2}\left(u_{2}\right) \otimes \cdots \otimes f_{n}\left(u_{n}\right) \in W_{1} \otimes W_{2} \otimes \cdots \otimes W_{n}
$$

depends multilinearly on the vectors $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in U_{1} \times U_{2} \times \cdots \times U_{n}$. Hence, there exists the linear map

$$
f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}: U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n} \rightarrow W_{1} \otimes W_{2} \otimes \cdots \otimes W_{n}
$$

such that $u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n} \mapsto f_{1}\left(u_{1}\right) \otimes f_{2}\left(u_{2}\right) \otimes \cdots \otimes f_{n}\left(u_{n}\right)$.
It is called the tensor product of maps $f_{i}: U_{i} \rightarrow W_{i}$.
Example 1.4 (Kronecker Matrix Product) Consider two vector spaces $U, W$ with bases $u_{1}, u_{2}, \ldots, u_{n}$ and $w_{1}, w_{2}, \ldots, w_{m}$ respectively, and let the linear operators $f: U \rightarrow U, g: W \rightarrow W$ have matrices $F=\left(\varphi_{i j}\right)$ and $G=\left(\gamma_{k \ell}\right)$ in these bases. By Theorem 1.1 on p. 6, the tensors $u_{j} \otimes w_{\ell}$ form a basis in $U \otimes W$. The matrix of the operator $f \otimes g$ in this basis has size $(m n) \times(m n)$, and its entry at the intersection of the $(i, k)$ th row with the $(j, \ell)$ th column equals $\varphi_{i j} \gamma_{k \ell}$, because

$$
f \otimes g\left(u_{j} \otimes w_{\ell}\right)=\left(\sum_{i} u_{i} \varphi_{i j}\right) \otimes\left(\sum_{k} w_{k} \gamma_{k \ell}\right)=\sum_{i, k} \varphi_{i j} \gamma_{k \ell} \cdot u_{i} \otimes w_{k} .
$$

This matrix is called the Kronecker product of matrices $F$, $G$. If the basis in $U \otimes W$ is ordered lexicographically,

$$
u_{1} \otimes w_{1}, \ldots, u_{1} \otimes w_{m}, u_{2} \otimes w_{1}, \ldots, u_{2} \otimes w_{m}, \ldots, u_{n} \otimes w_{1}, \ldots, u_{n} \otimes w_{m},
$$

then the Kronecker product turns into the block matrix

$$
F \otimes G=\left(\varphi_{i j}\right) \otimes\left(\gamma_{k \ell}\right)=\left(\begin{array}{cccc}
\varphi_{11} G & \varphi_{12} G & \cdots & \varphi_{1 n} G \\
\varphi_{21} G & \varphi_{22} G & \cdots & \varphi_{2 n} G \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{n 1} G & \varphi_{n 2} G & \cdots & \varphi_{n n} G
\end{array}\right),
$$

which consists of $n^{2}$ blocks of size $m \times m$, each proportional to the matrix $G$.
Lemma 1.4 For every epimorphism of $K$-modules $f: U \rightarrow W$ and every $K$-module $V$, the map $\operatorname{Id}_{V} \otimes f: V \otimes U \rightarrow V \otimes W$ is surjective.

Proof All decomposable tensors $v \otimes w \in V \otimes W$ certainly lie in the image of $f \otimes \operatorname{Id}_{V}$.

Lemma 1.5 For every monomorphism of $K$-modules $f: U \hookrightarrow W$ and every free $K$-module $F$, the map $\operatorname{Id}_{F} \otimes f: F \otimes U \rightarrow F \otimes W$ is injective.

Proof If $F \simeq K$ has rank one, then the multiplication maps

$$
\begin{aligned}
& K \otimes U \xrightarrow{\leadsto} U, \quad \lambda \otimes u \mapsto \lambda u \\
& K \otimes W \leadsto H
\end{aligned}
$$

are bijective by Exercise 1.5 , and they transform the map $\operatorname{Id}_{F} \otimes f: K \otimes U \rightarrow K \otimes W$ into the map $f: U \rightarrow W$. Thus, $\operatorname{Id}_{F} \otimes f$ is injective as soon as $f$ is injective. An arbitrary free module $F$ with a basis $E$ is the direct sum $F \simeq \bigoplus_{e \in E} K e$ of rankone modules $K e$, numbered by the basis vectors $e \in E$. By Proposition 1.3 and Exercise 1.5,

$$
\begin{align*}
& F \otimes U \simeq \bigoplus_{e \in E}(K e \otimes U) \simeq \bigoplus_{e \in E} U_{e},  \tag{1.25}\\
& F \otimes W \simeq \bigoplus_{e \in E}(K e \otimes W) \simeq \bigoplus_{e \in E} W_{e},
\end{align*}
$$

where $U_{e}=U, W_{e}=W$ are just the copies of $U, W$ marked by $e \in E$ to indicate the summands $K e \otimes U \simeq U, K e \otimes W \simeq W$ from which these copies come. The isomorphisms (1.25) identify the map $\operatorname{Id}_{F} \otimes f$ with the map

$$
\bigoplus_{e \in E} U_{e} \rightarrow \bigoplus_{e \in E} U_{e}, \quad\left(u_{e}\right)_{e \in E} \mapsto\left(f\left(u_{e}\right)\right)_{e \in E}
$$

which is injective as soon as the map $f$ is injective.
Caution 1.1 For a nonfree module $F$, the map $\operatorname{Id}_{F} \otimes f: F \otimes U \rightarrow F \otimes W$ may be noninjective even if the both the modules $U, W$ in the monomorphism $f: U \hookrightarrow W$ are free. For example, the tensor product of the $\mathbb{Z}$-module monomorphism

$$
f: \mathbb{Z} \hookrightarrow \mathbb{Z}, \quad z \mapsto 2 z
$$

with the identity endomorphism of $\mathbb{Z} /(2)$ is the zero map

$$
f \otimes \operatorname{Id}_{\mathbb{Z} /(2)}: \mathbb{Z} /(2) \rightarrow \mathbb{Z} /(2), \quad[1]_{2} \mapsto[0]_{2}
$$

### 1.5 Tensor Product of Modules Presented by Generators and Relations

Recall ${ }^{4}$ that a $K$-module $V$ generated by some vectors $v_{1}, v_{2}, \ldots, v_{n}$ can be presented as the quotient module $V=K^{n} / R_{v}$, where $R_{v} \subset K^{n}$ consists of all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}$ such that $x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=0$ in $V$. Let $V_{1} \simeq F_{1} / R_{1}$, $V_{2} \simeq F_{2} / R_{2}$ be two $K$-modules presented in this way. We are going to describe the tensor product $V_{1} \otimes V_{2}$ as the quotient of the free module $F_{1} \otimes F_{2}$ by some relation submodule. To describe the generating relations, write $\iota_{1}: R_{1} \hookrightarrow F_{1}, \iota_{2}: R_{2} \hookrightarrow F_{2}$ for the inclusions of the relation submodules $R_{1}, R_{2}$ for $V_{1}, V_{2}$ in the corresponding free modules. By Lemma 1.5, the monomorphisms $\iota_{1} \otimes \operatorname{Id}_{F_{1}}: R_{1} \otimes F_{2} \hookrightarrow F_{1} \otimes F_{2}$, $\operatorname{Id}_{F_{1}} \otimes \iota_{2}: F_{1} \otimes R_{2} \hookrightarrow F_{1} \otimes F_{2}$ allow us to consider the tensor products $R_{1} \otimes F_{2}$, $F_{1} \otimes R_{2}$ as the submodules of the free module $F \otimes G$. Write

$$
R_{1} \otimes F_{2}+F_{1} \otimes R_{2} \subset F_{1} \otimes F_{2}
$$

for their linear span.
Theorem 1.2 For every commutative ring $K$, free $K$-modules $F_{1}, F_{2}$, and relation submodules $R_{1} \subset F_{1}, R_{2} \subset F_{2}$, one has

$$
\left(F_{1} / R_{1}\right) \otimes\left(F_{1} / R_{1}\right) \simeq\left(F_{1} \otimes F_{2}\right) /\left(R_{1} \otimes F_{2}+F_{1} \otimes R_{2}\right)
$$

Proof Let $V_{1}=F_{1} / R_{1}, V_{2}=F_{2} / R_{2}, S=R_{1} \otimes F_{2}+F_{1} \otimes R_{2} \subset F_{1} \otimes F_{2}$. For all $f_{1} \in F_{1}, f_{2} \in F_{2}$, the class $\left[f_{1} \otimes f_{2}\right]_{S}=f_{1} \otimes f_{2}(\bmod S) \in\left(F_{1} \otimes F_{2}\right) / S$ depends only on the classes

$$
\left[f_{1}\right]_{R_{1}}=f_{1}\left(\bmod R_{1}\right) \in V_{1} \quad \text { and } \quad\left[f_{2}\right]_{R_{2}}=f_{2}\left(\bmod R_{2}\right) \in V_{2},
$$

because

$$
\left(f_{1}+r_{1}\right) \otimes\left(f_{2}+r_{2}\right)=f_{1} \otimes f_{2}+\left(r_{1} \otimes f_{2}+f_{1} \otimes r_{2}+r_{1} \otimes r_{2}\right) \equiv f_{1} \otimes f_{2}(\bmod S)
$$

for all $r_{1} \in R_{1}, r_{2} \in R_{2}$. Hence, there exists the well-defined bilinear map

$$
\begin{equation*}
\bar{\tau}: V_{1} \times V_{2} \rightarrow\left(F_{1} \otimes F_{2}\right) / S, \quad\left(\left[f_{1}\right]_{R_{1}},\left[f_{2}\right]_{R_{2}}\right) \mapsto\left[f_{1} \otimes f_{2}\right]_{S} \tag{1.26}
\end{equation*}
$$

[^4]that fits in the commutative diagram

where $\pi_{1}: F_{1} \rightarrow V_{1}, \pi_{2}: F_{2} \rightarrow V_{2}, \pi: F_{1} \otimes F_{2} \rightarrow\left(F_{1} \otimes F_{2}\right) / S$ are the quotient maps and $\tau: F_{1} \times F_{2} \rightarrow F_{1} \otimes F_{2}$ is the universal bilinear map. We have to show that the bilinear map (1.26) is universal. For every bilinear map $\varphi: V_{1} \times V_{2} \rightarrow W$, the composition
$$
\varphi \circ\left(\pi_{1} \times \pi_{2}\right): F_{1} \times F_{2} \rightarrow W, \quad\left(f_{1}, f_{2}\right) \mapsto \varphi\left(\left[f_{1}\right]_{R_{1}},\left[f_{2}\right]_{R_{2}}\right),
$$
is bilinear. Hence, there exists a unique linear map $\psi: F_{1} \otimes F_{2} \rightarrow W$ such that $\psi \circ \tau=\varphi \circ\left(\pi_{1} \times \pi_{2}\right)$, i.e., $\psi\left(f_{1} \otimes f_{2}\right)=\varphi\left(\left[f_{1}\right]_{R_{1}},\left[f_{2}\right]_{R_{2}}\right)$ for all $f_{1} \in F_{1}, f_{2} \in F_{2}$. Therefore, $\psi$ annihilates both submodules $R_{1} \otimes F_{2}, F_{1} \otimes R_{2} \subset F_{1} \otimes F_{2}$ spanning $S$, and is factorized through the linear map
$$
\bar{\psi}:\left(F_{1} \otimes F_{2}\right) / S \rightarrow W
$$
such that $\bar{\psi} \circ \pi \circ \tau=\varphi \circ\left(\pi_{1} \times \pi_{2}\right)$. Hence,
$$
\bar{\psi} \circ \bar{\tau} \circ\left(\pi_{1} \times \pi_{2}\right)=\bar{\psi} \circ \pi \circ \tau=\varphi \circ\left(\pi_{1} \times \pi_{2}\right) .
$$

Since $\pi_{1} \times \pi_{2}$ is surjective, we conclude that $\varphi=\bar{\psi} \circ \bar{\tau}$. It remains to show that such a factorization of $\varphi$ through $\bar{\tau}$ is unique. Let a linear map $\eta:\left(F_{1} \otimes F_{2}\right) / S \rightarrow W$ also satisfy $\eta \circ \bar{\tau}=\varphi$. Then

$$
\eta \circ \pi \circ \tau=\eta \circ \bar{\tau} \circ\left(\pi_{1} \times \pi_{2}\right)=\varphi \circ\left(\pi_{1} \times \pi_{2}\right)=\bar{\psi} \circ \pi \circ \tau .
$$

Therefore $\eta \circ \pi=\bar{\psi} \circ \pi$ by the universal property of $\tau$. Since $\pi$ is surjective, $\eta=\bar{\psi}$.

Example 1.5 (Tensor Products of Abelian Groups Revisited) Theorem 1.2 brings all the computations made in Sect. 1.2.3 into one line:

$$
\forall m, n \in \mathbb{Z} \quad \mathbb{Z} /(m) \otimes \mathbb{Z} /(n) \simeq \mathbb{Z} /(m, n) \simeq \mathbb{Z} /(\operatorname{GCD}(m, n))
$$

## Problems for Independent Solution to Chapter 1

Problem 1.1 For arbitrary modules $L, M, N$ over a commutative ring $K$ with unit, construct the canonical isomorphisms (a) $\operatorname{Hom}(L \oplus M, N) \simeq \operatorname{Hom}(L, M) \oplus$ $\operatorname{Hom}(M, N)$, (b) $\operatorname{Hom}(L, M \oplus N) \simeq \operatorname{Hom}(L, M) \oplus \operatorname{Hom}(L, N)$, (c) $\operatorname{Hom}(L \otimes$ $M, N) \simeq \operatorname{Hom}(L, \operatorname{Hom}(M, N))$.
Problem 1.2 Write the canonical decomposition of the $\mathbb{Z}$-module $\mathbb{Z} /(270) \otimes \mathbb{Z} /(360)$ as the direct sum of indecomposable modules $\mathbb{Z} /\left(p^{m}\right)$.
Problem 1.3 Write the canonical decompositions as the direct sum of indecomposable modules for the following $\mathbb{Z}$-modules: (a) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} /(270), \mathbb{Z} /(360))$,
(b) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} /(360), \mathbb{Z} /(270))$, (c) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} /(m), \mathbb{Z} /(n))$ for coprime $m, n \in \mathbb{Z}$, (d) $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z} /\left(p^{m}\right), \mathbb{Z} /\left(p^{n}\right)\right)$ for prime $p \in \mathbb{N}$.

Problem 1.4 Describe the following groups ${ }^{5}$ of $\mathbb{Z}$-linear automorphisms of $\mathbb{Z}$-modules: (a) $\operatorname{Aut}\left(\mathbb{Z} /\left(p^{n}\right)\right)$ for prime $p \in \mathbb{N}$, (b) $\operatorname{Aut}(\mathbb{Z} /(30))$, (c) $\operatorname{Aut}(\mathbb{Z} /(2) \oplus \mathbb{Z})$.
Problem 1.5 Describe the tensor product of $\mathbb{k}[x]$-modules

$$
\mathbb{k}[x] /(f) \otimes \mathbb{k}[x] /(g)
$$

for an arbitrary field $\mathbb{k}$ and $f, g \in \mathbb{k}[x]$.
All the remaining problems are about finite-dimensional vector spaces over an arbitrary field $\mathbb{k}$.
Problem 1.6 Show that a collection of vectors $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V_{1} \times V_{2} \times \cdots \times V_{n}$ is annihilated by all multilinear maps $\varphi: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W$ if and only if some $v_{i}$ is equal to 0 .
Problem 1.7 Use the isomorphism $V \otimes U^{*} \simeq \operatorname{Hom}(U, V)$ to write linear maps $A: U \rightarrow V$ and $B: V \rightarrow W$ as $A=\sum a_{\nu} \otimes \alpha_{\nu}, B=\sum b_{\mu} \otimes \beta_{\mu}$ with $a_{v} \in V$, $\alpha_{\nu} \in U^{*}, b_{\mu} \in W$, and $\beta_{\mu} \in V^{*}$. Using only these vectors and covectors, write in the same way the composition $B A \in \operatorname{Hom}(U, W) \simeq U^{*} \otimes W$.
Problem 1.8 Let vectors $e_{i} \in V$ and covectors $x_{i} \in V^{*}$ form a pair of dual bases. Describe the linear endomorphism of $V$ corresponding to the Casimir tensor $\sum e_{i} \otimes x_{i} \in V \otimes V^{*}$ under the isomorphism $V \otimes V^{*} \xrightarrow{\sim}$ End $V$. Does the Casimir tensor depend on the choice of dual bases?
Problem 1.9 Check that there is a well-defined linear map

$$
\widehat{\tau}: \operatorname{End}(V) \simeq V \otimes V^{*} \rightarrow\left(V \otimes V^{*}\right)^{*} \simeq \operatorname{End}(V)^{*}
$$

[^5]sending a decomposable tensor $v \otimes \xi$ to the linear form $v^{\prime} \otimes \xi^{\prime} \mapsto \xi\left(v^{\prime}\right) \cdot \xi^{\prime}(v)$. It provides the vector space $\operatorname{End}(V)$ with a correlation. ${ }^{6}$ Describe the bilinear form on $\operatorname{End}(V)$ corresponding to this correlation. Is it symmetric? Is it degenerate? Write an explicit formula for the quadratic form $\tau(f)=\langle f, \widehat{\tau} f\rangle$ in terms of the matrix $F$ of an endomorphism $f$ in an arbitrary basis of $V$.
Problem 1.10 Construct the canonical ${ }^{7}$ isomorphisms
\[

$$
\begin{aligned}
\operatorname{End}(\operatorname{Hom}(U, W)) & \simeq \operatorname{Hom}(U \otimes \operatorname{Hom}(U, W), W) \\
& \simeq \operatorname{Hom}\left(U, \operatorname{Hom}(U, W)^{*} \otimes W\right)
\end{aligned}
$$
\]

Describe the endomorphism of the vector space $\operatorname{Hom}(U, W)$ corresponding to the linear map $c: U \otimes \operatorname{Hom}(U, W) \rightarrow W, u \otimes f \mapsto f(u)$. Prove that the linear map $\widetilde{c}: U \rightarrow \operatorname{Hom}(U, W)^{*} \otimes W$ corresponding to $c$ is injective for $W \neq 0$.
Problem 1.11 Construct the canonical isomorphism

$$
\operatorname{End}(U \otimes V \otimes W) \xrightarrow{\rightarrow} \operatorname{Hom}(\operatorname{Hom}(U, V) \otimes \operatorname{Hom}(V, W), \operatorname{Hom}(U, W))
$$

and describe the linear map $\operatorname{Hom}(U, V) \otimes \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(U, W)$ corresponding to the identity endomorphism of $U \otimes V \otimes W$.
Problem 1.12 Let $f: \mathbb{k}^{n} \rightarrow \mathbb{k}^{n}$ and $g: \mathbb{k}^{m} \rightarrow \mathbb{k}^{m}$ be two diagonalizable linear operators with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$. Describe the eigenvalues of $f \otimes g$.
Problem 1.13 For a nilpotent operator $\eta \in \operatorname{End} V$ of cyclic type $\lambda(\eta)$, describe the cyclic type of the operator $\eta \otimes \eta \in \operatorname{End}\left(V^{\otimes 2}\right)$. To begin with, let the diagram $\lambda$ be
(a) $(4,2)=$
 (b) $(n)=\square \square \cdots \square$, (c) $(n, n)=$
 (d) $(m, n)$ with $m>n$.
Problem 1.14 Construct the canonical isomorphisms between the vector space of $n$-linear forms $V \times V \times \cdots \times V \rightarrow \mathbb{k}$ and
(a) $\left(V^{*}\right)^{\otimes n}=V^{*} \otimes V^{*} \otimes \cdots \otimes V^{*}$,
(b) $\left(V^{\otimes n}\right)^{*}=(V \otimes V \otimes \cdots \otimes V)^{*}$.

Which of them remain valid for infinite-dimensional $V$ ?
Problem 1.15 Find the dimension of the space of all bilinear forms $\varphi: V \times V \rightarrow \mathbb{k}$ such that (a) $\varphi(v, v)=0$ for all $v \in V$, (b) $\varphi(u, w)=\varphi(w, u)$ for all $u, w \in V$.

[^6]Problem 1.16 Find the dimension of the space of 3-linear forms $\varphi: V \times V \times V \rightarrow \mathbb{k}$ such that for all $u, v, w \in V$ :
(a) $\varphi(u, u, u)=0$,
(b) $\varphi(u, v, w)=\varphi(v, u, w)$,
(c) $\varphi(u, v, w)=\varphi(v, w, u)$,
(d) $\varphi(u, v, w)=\varphi(v, u, w)=\varphi(u, w, v)$,
(e) $\varphi(u, v, v)=\varphi(u, u, v)=0$,
(f) $\varphi(u, v, w)+\varphi(v, w, u)+\varphi(w, u, v)=0$,
(g) $\varphi(u, v, w)=\varphi(v, u, w)=\varphi(u, w, w)$.

## Chapter 2 <br> Tensor Algebras

### 2.1 Free Associative Algebra of a Vector Space

Let $V$ be a vector space over an arbitrary field $\mathbb{k}$. We write $V^{\otimes n} \stackrel{\text { def }}{=} V \otimes V \otimes \cdots \otimes V$ for the tensor product of $n$ copies of $V$ and call it the nth tensor power of $V$. We also put $V^{\otimes 0} \stackrel{\text { def }}{=} \mathbb{k}$ and $V^{\otimes 1} \stackrel{\text { def }}{=} V$. The infinite direct sum

$$
\mathrm{T} V \stackrel{\text { def }}{=} \underset{n \geqslant 0}{\oplus} V^{\otimes n}
$$

is called the tensor algebra of $V$. The multiplication in $\mathrm{T} V$ is provided by the tensor multiplication of vectors $V^{\otimes k} \times V^{\otimes m} \rightarrow V^{\otimes(k+m)},\left(t_{k}, t_{m}\right) \mapsto t_{k} \otimes t_{m}$. For every basis $E$ of $V$ over $\mathbb{k}$, all the tensor monomials $e_{1} \otimes e_{2} \otimes \cdots \otimes e_{d}$ with $e_{i} \in E$ form a basis of $V^{\otimes d}$. These monomials are multiplied just by writing them sequentially with the sign $\otimes$ between them:

$$
\begin{aligned}
& \left(e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}\right) \cdot\left(e_{j_{1}} \otimes e_{j_{2}} \otimes \cdots \otimes e_{j_{m}}\right) \\
& \quad=e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \otimes e_{j_{1}} \otimes e_{j_{2}} \otimes \cdots \otimes e_{j_{m}} .
\end{aligned}
$$

Thus, $T V$ is an associative but not commutative $\mathbb{k}$-algebra. It can be thought of as the algebra of polynomials in noncommuting variables $e \in E$ with coefficients in $\mathbb{k}$. From this point of view, the subspace $V^{\otimes d} \subset \mathrm{~T} V$ consists of all homogeneous polynomials of degree $d$.

Another name for TV is the free associative $\mathbb{k}$-algebra with unit spanned by the vector space $V$. This name emphasizes the following universal property of the $\mathbb{k}$-linear map $\iota: V \hookrightarrow \mathrm{~T} V$ embedding $V$ into $\mathrm{T} V$ as the subspace $V^{\otimes 1}$ of linear homogeneous polynomials.

Proposition 2.1 (Universal Property of Free Associative Algebras) For every associative $\mathbb{k}$-algebra $A$ with unit and $\mathbb{k}$-linear map $f: V \rightarrow A$, there exists a unique homomorphism of $\mathbb{k}$-algebras $\widetilde{f}: \mathrm{TV} \rightarrow$ A such that $f=\widetilde{f} \circ \iota$. Thus, for every
$\mathbb{k}$-algebra $A$, the homomorphisms of $\mathbb{k}$-algebras $\mathrm{TV} \rightarrow A$ are in bijection with the linear maps $V \rightarrow A$.

Exercise 2.1 Let $\iota^{\prime}: V \rightarrow T^{\prime}$, where $T^{\prime}$ is an associative $\mathbb{k}$-algebra with unit, be another linear map satisfying the universal property from Proposition 2.1. Show that there exists a unique isomorphism of $\mathbb{k}$-algebras $\psi: \mathrm{TV} \leadsto \rightarrow T^{\prime}$ such that $\psi \iota=\iota^{\prime}$.

Proof (of Proposition 2.1) A homomorphism of $\mathbb{k}$-algebras $\widetilde{f}: \mathrm{TV} \rightarrow A$ such that $f=\widetilde{f} \circ \iota$ maps every decomposable tensor $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ to the product $f\left(v_{1}\right) \cdot f\left(v_{2}\right) \cdots f\left(v_{n}\right)$ in $A$, and therefore $\widetilde{f}$ is unique, because the decomposable tensors span $\mathrm{T} V$. Since the product $f\left(v_{1}\right) \cdot f\left(v_{2}\right) \cdots f\left(v_{n}\right)$ is multilinear in $v_{i}$, for each $n \in \mathbb{N}$ there exists the linear map

$$
f_{n}: V \otimes V \otimes \cdots \otimes V \rightarrow A, \quad v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto f\left(v_{1}\right) \cdot f\left(v_{2}\right) \cdots f\left(v_{n}\right) .
$$

We put $f_{0}: \mathbb{k} \rightarrow A, 1 \mapsto 1$, and define $\widetilde{f}: \mathrm{T} V \rightarrow A$ to be the sum of all the $f_{n}$ :

$$
\widetilde{f}: \bigoplus_{n \geqslant 0} V^{\otimes n} \rightarrow A, \quad \sum_{n \geqslant 0} t_{n} \mapsto \sum_{n \geqslant 0} \varphi_{n}\left(t_{n}\right) \in A .
$$

Since every tensor polynomial $t=\sum t_{n} \in \mathrm{~T} V$ has a finite number of nonzero homogeneous components $t_{n} \in V^{\otimes n}$, the map $\widetilde{f}$ is a well-defined algebra homomorphism.

### 2.2 Contractions

### 2.2.1 Complete Contraction

For dual vector spaces $V, V^{*}$ and two decomposable tensors of equal degree $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \in V^{\otimes n}, \vartheta=\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{n} \in V^{* \otimes n}$, the product

$$
\begin{equation*}
\langle t, \vartheta\rangle \stackrel{\text { def }}{=} \prod_{i=1}^{n} \xi_{i}\left(v_{i}\right)=\prod_{i=1}^{n}\left\langle v_{i}, \xi_{i}\right\rangle \in \mathbb{k} \tag{2.1}
\end{equation*}
$$

is called the complete contraction of $t$ with $\xi$. For a fixed

$$
\vartheta=\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{n} \in V^{* \otimes n}
$$

the constant $\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, \vartheta\right\rangle \in \mathbb{k}$ depends multilinearly on the vectors $v_{1}, v_{2}, \ldots, v_{n} \in V$. Hence, there exists a unique linear form

$$
c_{\vartheta}: V^{\otimes n} \rightarrow \mathbb{k}, \quad v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, \vartheta\right\rangle .
$$

Since the covector $c_{\vartheta} \in V^{\otimes n^{*}}$ depends multilinearly on $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$, there exists a unique linear map

$$
\begin{equation*}
V^{* \otimes n} \rightarrow V^{\otimes n^{*}}, \quad \vartheta \mapsto c_{\vartheta} . \tag{2.2}
\end{equation*}
$$

In other words, the complete contraction assigns a well-defined pairing ${ }^{1}$ between the vector spaces $V^{\otimes n}$ and $V^{* \otimes n}$,

$$
\begin{equation*}
V^{\otimes n} \times V^{* \otimes n} \rightarrow \mathbb{k}, \quad(t, \vartheta) \mapsto\langle t, \vartheta\rangle . \tag{2.3}
\end{equation*}
$$

Proposition 2.2 For a finite-dimensional vector space $V$, the pairing (2.3) is perfect, i.e., the linear map (2.2) is an isomorphism.

Proof Choose dual bases $e_{1}, e_{2}, \ldots, e_{n} \in V$ and $x_{1}, x_{2}, \ldots, x_{n} \in V^{*}$. Then the tensor monomials $e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{r}}$ and $x_{j_{1}} \otimes x_{j_{2}} \otimes \cdots \otimes x_{j_{s}}$ form bases in $V^{\otimes n^{*}}$ and $V^{* \otimes n}$ dual to each other with respect to the full contraction pairing (2.1).

Corollary 2.1 For every finite-dimensional vector space $V$, there is a canonical isomorphism

$$
\begin{equation*}
\left(V^{*}\right)^{\otimes n} \leadsto \operatorname{Hom}(V, \ldots, V ; k) \tag{2.4}
\end{equation*}
$$

mapping the decomposable tensor $\vartheta=\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{n} \in V^{* \otimes n}$ to the $n$-linear form

$$
V \times V \times \cdots \times V \rightarrow \mathbb{k}, \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mapsto \prod_{i=1}^{n} \xi_{i}\left(v_{i}\right)
$$

Proof The universal property of tensor product $V^{\otimes n}$ asserts that the dual space $\left(V^{\otimes n}\right)^{*}$, that is, the space of linear maps $V^{\otimes n} \rightarrow \mathbb{k}$, is isomorphic to the space of $n$-linear forms $V \times V \times \cdots \times V \rightarrow \mathbb{k}$. It remains to compose this isomorphism with the isomorphism (2.2).

### 2.2.2 Partial Contractions

Given a pair of injective but not necessarily order-preserving maps

$$
\{1,2, \ldots, p\} \stackrel{I}{\longleftrightarrow}\{1,2, \ldots, m\} \stackrel{J}{\hookrightarrow}\{1,2, \ldots, q\},
$$

[^7]we write $I=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ for the sequences of their values $i_{v}=I(v), j_{v}=J(v)$. The partial contraction in the indices $I, J$ is the linear map
\[

$$
\begin{equation*}
c_{J}^{I}: V^{* \otimes p} \otimes V^{\otimes q} \rightarrow V^{* \otimes(p-m)} \otimes V^{\otimes(q-m)} \tag{2.5}
\end{equation*}
$$

\]

sending a decomposable tensor $\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{p} \otimes v_{1} \otimes v_{2} \otimes \cdots \otimes v_{q}$ to the product

$$
\begin{equation*}
\prod_{v=1}^{m}\left\langle v_{j_{v}}, \xi_{i_{v}}\right\rangle \cdot\left(\bigotimes_{i \notin I} \xi_{i}\right) \otimes\left(\bigotimes_{j \notin J} v_{j}\right) \tag{2.6}
\end{equation*}
$$

obtained by contracting the $i_{\nu}$ th tensor factor of $V^{*} \otimes p$ with the $j_{\nu}$ th tensor factor of $V^{\otimes q}$ for $v=1,2, \ldots, m$ and leaving all the other tensor factors in their initial order. Note that the different choices of injective maps $I, J$ lead to different partial contraction maps (2.5) even if the maps have equal images and differ only in the order of sequences $i_{1}, i_{2}, \ldots, i_{m}$ and $j_{1}, j_{2}, \ldots, j_{m}$.
Exercise 2.2 Verify that the linear map (2.5) is well defined by its values (2.6) on the decomposable tensors.

Example 2.1 (Inner Product of Vector and Multilinear Form) Consider an $n$-linear form $\varphi: V \times V \times \cdots \times V \rightarrow \mathbb{k}$ as a tensor from $V^{* \otimes n}$ by means of the isomorphism from Corollary 2.1, and contract this tensor with a vector $v \in V$ at the first tensor factor. The result of such a contraction is called the inner product of the $n$-linear form $\varphi$ with the vector $v$, and is denoted by $v\left\llcorner\varphi \in V^{* \otimes(n-1)}\right.$. This tensor can be viewed as the $(n-1)$-linear form on $V$ obtained from the form $\varphi$ by setting the first argument equal to $v$. In other words,

$$
v\left\llcorner\varphi\left(u_{1}, u_{2}, \ldots, u_{n-1}\right)=\varphi\left(v, u_{1}, u_{2}, \ldots, u_{n-1}\right)\right.
$$

for all $u_{1}, u_{2}, \ldots, u_{n-1} \in V$. Indeed, since both sides of the equality are linear in $\varphi$, it is enough to verify it only for the $n$-linear forms $\varphi$ coming from the decomposable tensors

$$
\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{n} \in V^{* \otimes n}
$$

because the latter span $V^{* \otimes n}$. For such $\varphi$, we have

$$
\begin{aligned}
\varphi\left(v, u_{1}, u_{2}, \ldots, u_{n-1}\right) & =\left\langle v \otimes u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n-1}, \xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{n}\right\rangle \\
& =\left\langle v, \xi_{1}\right\rangle \cdot\left\langle u_{1}, \xi_{2}\right\rangle \cdot\left\langle u_{2}, \xi_{3}\right\rangle \cdots\left\langle u_{n-1}, \xi_{n}\right\rangle \\
& =\left\langle u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n-1},\left\langle v, \xi_{1}\right\rangle \cdot \xi_{2} \otimes \cdots \otimes \xi_{n}\right\rangle \\
& =\left\langle u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n-1}, c_{1}^{1}\left(v \otimes \xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{n}\right)\right\rangle \\
& =v\left\llcorner\varphi\left(u_{1}, u_{2}, \ldots, u_{n-1}\right) .\right.
\end{aligned}
$$

Exercise 2.3 Verify that for every pair of vector subspaces $U, W \subset V$, one has $U^{\otimes n} \cap W^{\otimes n}=(U \cap W)^{\otimes n}$ in $V^{\otimes n}$.

### 2.2.3 Linear Support and Rank of a Tensor

It follows from Exercise 2.3 that for every tensor $t \in V^{\otimes n}$, the intersection of all vector subspaces $U \subset V$ such that $t \in U^{\otimes n}$ is the minimal subspace of $V$ with respect to inclusions whose $n$th tensor power contains $t$. It is called the linear support of $t$ and denoted by $\operatorname{Supp}(t) \subset V$. Its dimension is denoted by $\operatorname{rk} t \stackrel{\text { def }}{=} \operatorname{dim} \operatorname{Supp}(t)$ and called the rank of the tensor $t$. Tensors $t$ with $\operatorname{rk} t<\operatorname{dim} V$ are called degenerate. If we think of tensors as polynomials in noncommutative variables, then the degeneracy of a tensor $t$ means that $t$ depends on fewer than $\operatorname{dim} V$ variables for an appropriate choice of basis in $V$. For example, every tensor $t \in V^{\otimes n}$ of rank 1 can be written as $\lambda \cdot e^{\otimes n}=\lambda \cdot e \otimes e \otimes \cdots \otimes e$ for some nonzero vector $e \in \operatorname{Supp}(t)$ and $\lambda \in \mathbb{k}$. For a practical choice of such special coordinates and the computation of $\mathrm{rk} t$, we need a more effective description of $\operatorname{Supp}(t)$.

Let $t \in V^{\otimes n}$ be an arbitrary tensor. For every sequence $J=j_{1} j_{2} \ldots j_{n-1}$ of $n-1$ distinct but not necessarily increasing indices $1 \leqslant j_{v} \leqslant n$, write

$$
\begin{equation*}
c_{t}^{J}: V^{* \otimes(n-1)} \rightarrow V, \quad \xi \mapsto c_{j_{1}, j_{2}, \ldots, j_{n-1}}^{1,2, \ldots,(n-1)}(\xi \otimes t) \tag{2.7}
\end{equation*}
$$

for the contraction map that pairs all $(n-1)$ factors of $V^{* \otimes(n-1)}$ with the $(n-1)$ factors of $t$ chosen in the order determined by $J$, that is, the $\nu$ th factor of $V^{* \otimes(n-1)}$ is contracted with the $j_{\nu}$ th factor of $t$ for each $v=1,2, \ldots, n-1$. The result of such a contraction is a linear combination of vectors that appear in monomials of $t$ at the position not represented in $J$. This linear combination certainly belongs to $\operatorname{Supp}(t)$.
Theorem 2.1 For every $t \in V^{\otimes n}$, the subspace $\operatorname{Supp}(t) \subset V$ is spanned by the images of the $n!$ contraction maps (2.7) corresponding to all possible choices of $J$.

Proof Let $\operatorname{Supp}(t)=W \subset V$. We have to show that every linear form $\xi \in V^{*}$ annihilating all the subspaces $\operatorname{im}\left(c_{t}^{l}\right) \subset W$ has to annihilate all of $W$ as well. Assume the contrary. Let $\xi \in V^{*}$ be a linear form having nonzero restriction on the subspace $W$ and annihilating all the subspaces $c_{t}^{J}\left(V^{* \otimes(n-1)}\right)$. Write $\xi_{1}, \xi_{2}, \ldots, \xi_{d}$ for a basis in $V^{*}$ such that $\xi_{1}=\xi$ and the restrictions of $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$ to $W$ form a basis in $W^{*}$. Let $w_{1}, w_{2}, \ldots, w_{k}$ be the dual basis of $W$. Expand $t$ as a linear combination of tensor monomials built out of the $w_{i}$. Then

$$
\xi\left(c_{t}^{J}\left(\xi_{\nu_{1}} \otimes \xi_{\nu_{2}} \otimes \cdots \otimes \xi_{\nu_{n-1}}\right)\right)
$$

is equal to the complete contraction of $t$ with the monomial $\xi_{\mu_{1}} \otimes \xi_{\mu_{2}} \otimes \cdots \otimes \xi_{\mu_{n}}$ whose indices $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ form the permutation of the indices $1, v_{1}, \nu_{2}, \ldots, v_{n-1}$ uniquely determined by $J$. The result of this contraction equals the coefficient of the
monomial $w_{\mu_{1}} \otimes w_{\mu_{2}} \otimes \cdots \otimes w_{\mu_{n}}$ in the expansion of $t$. Varying $J$ and $\nu_{1}, v_{2}, \ldots, v_{n-1}$ allows us to obtain every monomial $w_{\mu_{1}} \otimes w_{\mu_{2}} \otimes \cdots \otimes w_{\mu_{n}}$ containing $w_{1}$. Our assumption on $\xi=\xi_{1}$ forces the coefficients of all these monomials in $t$ to vanish. Therefore, $w_{1} \notin \operatorname{Supp}(t)$. Contradiction.

### 2.3 Quotient Algebras of a Tensor Algebra

There are three kinds of ideals in a noncommutative ring $R$. A subring $I \subset R$ is called a left ideal if $x a \in I$ for all $a \in I, x \in R$. Symmetrically, $I$ is called a right ideal if $a x \in I$ for all $a \in I, x \in R$. If $I \subset R$ is both a left and right ideal, then $I$ is called a two-sided ideal or simply an ideal of $R$. The two-sided ideals are exactly the kernels of ring homomorphisms, because for a homomorphism of rings $\varphi: R \rightarrow S$ and $a \in R$ such that $\varphi(a)=0$, the equality $\varphi(x a y)=\varphi(x) \varphi(a) \varphi(y)=0$ holds for all $x, y \in R$. Conversely, if an additive abelian subgroup $I \subset R$ is a two-sided ideal, then the quotient group ${ }^{2} R / I$ inherits the well-defined multiplication by the usual rule $[a][b] \stackrel{\text { def }}{=}[a b]$.
Exercise 2.4 Check this.
Therefore, the quotient map $R \rightarrow R / I$ is a homomorphism of rings with kernel $I$. It follows from the factorization theorem for a homomorphism of abelian groups ${ }^{3}$ that an arbitrary homomorphism of rings $\varphi: R \rightarrow S$ is factorized into a composition of the surjective quotient map $R \rightarrow R / \operatorname{ker} \varphi \simeq \operatorname{im} \varphi$ followed by the monomorphism $R / \operatorname{ker} \varphi \simeq \operatorname{im} \varphi \hookrightarrow S$.

The algebra of polynomials on a vector space $V$ introduced in Sect. 11.2.1 of Algebra I and the algebra of Grassmannian polynomials from Sect. 9.4 of Algebra I can be described uniformly as the quotient algebras of the free associative algebra by appropriate two-sided ideals spanned by the commutativity and skew-commutativity relations. The details follow in the next four sections.

### 2.3.1 Symmetric Algebra of a Vector Space

Let $V$ be a vector space over an arbitrary field $\mathbb{k}$. Write $\mathcal{I}_{\text {sym }} \subset \mathrm{T} V$ for the two-sided ideal generated by the $\mathbb{k}$-linear span of all the differences

$$
\begin{equation*}
u \otimes w-w \otimes u \in V \otimes V \tag{2.8}
\end{equation*}
$$

The ideal $\mathcal{I}_{\text {sym }}$ consists of finite linear combinations of the tensors obtained from the differences (2.8) by taking left and right products with arbitrary elements of $\mathrm{T} V$.

[^8]Therefore, the intersection $\mathcal{I}_{\text {sym }} \cap V^{\otimes n}$ is linearly spanned by the differences

$$
\begin{equation*}
(\cdots \otimes v \otimes w \otimes \cdots)-(\cdots \otimes w \otimes v \otimes \cdots) \tag{2.9}
\end{equation*}
$$

where the right dotted fragments in both decomposable tensors are the same, as are the left dotted fragments as well. The whole ideal $\mathcal{I}_{\text {sym }}$ is the direct sum of these homogeneous components:

$$
\mathcal{I}_{\text {sym }}=\underset{n \geqslant 0}{\oplus}\left(\mathcal{I}_{\mathrm{sym}} \cap V^{\otimes n}\right) .
$$

The quotient algebra $S V \stackrel{\text { def }}{=} \mathrm{T} V / \mathcal{I}_{\text {sym }}$ is called the symmetric algebra of the vector space $V$. The multiplication in $S V$ is induced by the tensor multiplication in $\mathrm{T} V$ and denoted by the dot sign $\cdot$, which is, however, usually omitted. The relations (2.8) force all vectors $u, w \in V$ to commute in $S V$. As a vector space, the symmetric algebra splits into the direct sum of homogeneous components

$$
S V=\bigoplus_{n \geqslant 0} S^{n} V, \text { where } S^{n} V \stackrel{\text { def }}{=} V^{\otimes n} /\left(\mathcal{I}_{\text {sym }} \cap V^{\otimes n}\right) .
$$

The space $S^{n} V$ is called the nth symmetric power of $V$. Note that $S^{0} V=\mathbb{k}$ and $S^{1} V=V$. The inclusion $\iota: V \hookrightarrow S V$, which maps $V$ to $S^{1} V$, has the following universal property.
Exercise 2.5 (Universal Property of Free Commutative Algebras) Show that for every commutative $\mathbb{k}_{k}$-algebra $A$ and linear map $f: V \rightarrow A$, there exists a unique homomorphism of $\mathbb{k}$-algebras $\widetilde{f}: S V \rightarrow A$ such that $f=\widetilde{\varphi} \circ \iota$. Also show that for every linear map $\iota^{\prime}: V \rightarrow S^{\prime}$ to a commutative algebra $S^{\prime}$ that possesses the same universal property, there exists a unique isomorphism of algebras $\psi: S^{\prime} \xrightarrow{\sim} S V$ such that $\psi \iota^{\prime}=\iota$.

For this reason, the symmetric algebra $S V$ is also called the free commutative $\mathbb{k}$ algebra with unit spanned by $V$. For every basis $e_{1}, e_{2}, \ldots, e_{d}$ of $V$, the commutative monomials $e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{d}^{m_{d}}$ of total degree $\sum_{i} m_{i}=n$ form a basis in $S^{n} V$, as we have seen in Proposition 11.2 of Algebra I. Thus, the choice of basis in $V$ assigns the isomorphism of $\mathbb{k}$-algebras $S V \simeq \mathbb{k}\left[e_{1}, e_{2}, \ldots, e_{d}\right]$.

Exercise 2.6 Calculate $\operatorname{dim} S^{n} V$ for $\operatorname{dim} V=d$.

### 2.3.2 Symmetric Multilinear Maps

An $n$-linear map $\varphi: V \times V \times \cdots \times V \rightarrow U$ is called symmetric if $\varphi\left(v_{g_{1}}, v_{g_{2}}, \ldots, v_{g_{n}}\right)=$ $\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ for all permutations $g \in S_{n}$. The symmetric multilinear maps form a subspace of the vector space $\operatorname{Hom}(V, \ldots, V ; U)$ of all $n$-linear maps. We denote this subspace by $\operatorname{Sym}^{n}(V, U) \subset \operatorname{Hom}(V, \ldots, V ; U)$.

Given a symmetric $n$-linear map $\varphi: V \times V \times \cdots \times V \rightarrow U$, then for every vector space $W$, the right composition of linear maps $F: U \rightarrow W$ with $\varphi$ assigns the linear map

$$
\varrho_{\varphi}: \operatorname{Hom}(U, W) \rightarrow \operatorname{Sym}^{n}(V, W), \quad F \mapsto F \circ \varphi
$$

A symmetric multilinear map $\varphi$ is called universal if $\varrho_{\varphi}$ is an isomorphism for all $W$. The universal symmetric $n$-linear map is also called the $n$-ary commutative multiplication of vectors.
Exercise 2.7 Verify that the target spaces of any two universal symmetric $n$ linear maps are isomorphic by means of the unique linear map commuting with the commutative multiplication.

Proposition 2.3 The universal symmetric n-linear map

$$
\sigma_{n}: V \times V \times \cdots \times V \rightarrow U
$$

is provided by tensor multiplication followed by factorization through the coттиtativity relations, i.e.,

$$
\sigma_{n}: V \times V \times \cdots \times V-\stackrel{\tau}{-}>V^{\otimes n} \xrightarrow{\pi} S^{n}(V) .
$$

Proof By the universal property of tensor multiplication $\tau: V \times V \times \cdots \times V \rightarrow{\underset{\sim}{V}}^{\otimes n}$, every $n$-linear map $\varphi: V \times V \times \cdots \times V \rightarrow W$ is uniquely factorized as $\varphi=\widetilde{F} \circ \tau$ for some linear map $\widetilde{F}: V^{\otimes n} \rightarrow W$. If the multilinear $\operatorname{map} \varphi$ is symmetric, then the linear map $\widetilde{F}$ annihilates the commutativity relations (2.8):

$$
\begin{aligned}
\widetilde{F} & ((\cdots \otimes v \otimes w \otimes \cdots)-(\cdots \otimes w \otimes v \otimes \cdots)) \\
& =\widetilde{F}(\cdots \otimes v \otimes w \otimes \cdots)-\widetilde{F}(\cdots \otimes w \otimes v \otimes \cdots) \\
& =\varphi(\ldots, v, w, \ldots)-\varphi(\ldots, w, v, \ldots)=0
\end{aligned}
$$

Hence, there exists a linear map $F: S^{n} V \rightarrow W$ such that

$$
F\left(v_{1} v_{2} \ldots v_{n}\right)=\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

and $\widetilde{F}=F \pi$, where $\pi: V^{\otimes n} \rightarrow S^{n} V$ is the factorization by the symmetry relation. Therefore, $\varphi=\widetilde{F} \circ \tau=F \pi \tau=F \sigma$. Given another linear map $F^{\prime}: S^{n} V \rightarrow W$ such that $\varphi=F^{\prime} \sigma=F^{\prime} \pi \tau$, the universal property of $\tau$ forces $F^{\prime} \pi=F \pi$. Since $\pi$ is surjective, this leads to $F^{\prime}=F$.

Corollary 2.2 For an arbitrary (not necessarily finite-dimensional) vector space $V$, the nth symmetric power $S^{n} V$ and the space $\operatorname{Sym}^{n}(V, \mathbb{k})$ of symmetric $n$-linear forms $V \times V \times \cdots \times V \rightarrow \mathbb{k}$ are canonically dual to each other.

Proof Right composition with the commutative multiplication

$$
\sigma_{n}: V \times V \times \cdots \times V \rightarrow S^{n} V,
$$

which takes a covector $\xi: S^{n} V \rightarrow \mathbb{k}$ to the symmetric $n$-linear form

$$
\xi \circ \sigma_{n}: V \times V \times \cdots \times V \rightarrow \mathbb{k},
$$

establishes an isomorphism $\left(S^{n} V\right)^{*} \xrightarrow{\sim} \operatorname{Sym}^{n}(V, \mathbb{k})$ by the universal property of $\sigma_{n}$.

### 2.3.3 The Exterior Algebra of a Vector Space

Write $\mathcal{I}_{\text {skew }} \subset \mathrm{T} V$ for the two-sided ideal generated by the $\mathbb{k}$-linear span of all proper squares $v \otimes v \in V \otimes V, v \in V$.
Exercise 2.8 Convince yourself that the $\mathbb{k}$-linear span of all proper squares $v \otimes v \in V \otimes V$ contains all the sums $u \otimes w+w \otimes u$ with $u, w \in V$ and is linearly generated by these sums if char $k \neq 2$.

As in the commutative case, the ideal $\mathcal{I}_{\text {skew }}$ splits into the direct sum of homogeneous components

$$
\mathcal{I}_{\text {skew }}=\bigoplus_{n \geqslant 0}\left(\mathcal{I}_{\text {skew }} \cap V^{\otimes n}\right) \text {, }
$$

where the degree- $n$ component $\mathcal{I}_{\text {skew }} \cap V^{\otimes n}$ is linearly generated over $\mathbb{k}$ by the decomposable tensors $\cdots \otimes v \otimes v \otimes \cdots$, containing a pair of equal sequential factors. By Exercise 2.8, all the sums

$$
\begin{equation*}
(\cdots \otimes v \otimes w \otimes \cdots)+(\cdots \otimes w \otimes v \otimes \cdots) . \tag{2.10}
\end{equation*}
$$

also belong to $\mathcal{I}_{\text {skew }} \cap V^{\otimes n}$. The quotient algebra $\Lambda V \stackrel{\text { def }}{=} \mathrm{T} V / \mathcal{I}_{\text {skew }}$ is called the exterior or Grassmannian algebra of the vector space $V$. The multiplication in $\Lambda V$ is induced by the tensor multiplication in TV . It is called the exterior or Grassmannian multiplication and is denoted by the wedge sign $\wedge$. The skew-symmetry relations imply that all the vectors from $V$ anticommute and have zero squares in $\Lambda V$, i.e., $u \wedge w=-w \wedge u$ and $u \wedge u=0$ for all $u, w \in V$. A permutation of factors in any monomial multiplies the monomial by the sign of the permutation,

$$
v_{g_{1}} \wedge v_{g_{2}} \wedge \cdots \wedge v_{g_{k}}=\operatorname{sgn}(g) \cdot v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k} \quad \forall g \in S_{k}
$$

The algebras possessing this property are commonly called skew commutative in mathematics and supercommutative in physics. We will shorten both names to $s$-commutativity.

As a vector space over $\mathbb{k}$, the Grassmannian algebra splits into the direct sum of homogeneous components

$$
\Lambda V=\bigoplus_{n \geqslant 0} \Lambda^{n} V, \text { where } \Lambda^{n} V=V^{\otimes n} /\left(\mathcal{I}_{\text {skew }} \cap V^{\otimes n}\right)
$$

The vector space $\Lambda^{n} V$ is called the $n$th exterior power of $V$. Note that $\Lambda^{0} V=\mathbb{k}$ and $\Lambda^{1} V=V$. As in the symmetric case, the inclusion $\iota: V \hookrightarrow \Lambda V$, mapping $V$ to $\Lambda^{1} V$, has a universal property.
Exercise 2.9 (Universal Property of Free s-Commutative Algebras) Show that for every s-commutative $\mathbb{k}$-algebra $L$ and linear map $f: V \rightarrow L$, there exists a unique homomorphism of $\mathbb{k}$-algebras $\widetilde{f}: \Lambda V \rightarrow L$ such that $f=\widetilde{f} \circ \iota$. Also show that for every linear map $\iota^{\prime}: V \rightarrow \Lambda^{\prime}$ to an s-commutative algebra $\Lambda^{\prime}$ possessing the same universal property, there exists a unique isomorphism of algebras $\psi: \Lambda^{\prime} \xrightarrow{\sim} \Lambda V$ such that $\psi \iota^{\prime}=\iota$.
For this reason, the algebra $\Lambda V$ is also called the free s-commutative $\mathbb{k}$-algebra spanned by $V$.

### 2.3.4 Alternating Multilinear Maps

An $n$-linear map $\varphi: V \times V \times \cdots \times V \rightarrow U$ is called alternating if

$$
\varphi\left(v_{g_{1}}, v_{g_{2}}, \ldots, v_{g_{n}}\right)=\operatorname{sgn}(g) \cdot \varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

for all permutations $g \in S_{n}$. We write $\operatorname{Alt}^{n}(V, U) \subset \operatorname{Hom}(V, \ldots, V ; U)$ for the subspace of alternating $n$-linear maps.

Associated with every alternating $n$-linear map $\varphi: V \times V \times \cdots \times V \rightarrow U$ and vector space $W$ is the linear map

$$
\begin{equation*}
\operatorname{Hom}(U, W) \rightarrow \operatorname{Alt}^{n}(V, W), \quad F \mapsto F \circ \varphi \tag{2.11}
\end{equation*}
$$

The map $\varphi$ is called the universal alternating $n$-linear map or the $n$-ary $s$-commutative multiplication of vectors if the linear map (2.11) is an isomorphism for all vector spaces $W$.
Exercise 2.10 Prove that the universal alternating $n$-linear map

$$
\alpha_{n}: V \times V \times \cdots \times V \rightarrow U
$$

is provided by tensor multiplication followed by factorization by the skew-commutativity relations, i.e., $\alpha_{n}: V \times \ldots \times V-^{\tau}->V^{\otimes n} \xrightarrow{\pi} \Lambda^{n}(V)$, and verify that the target spaces of every two universal symmetric $n$-linear maps are isomorphic by means of the unique linear map commuting with the s-commutative multiplication.

Corollary 2.3 For an arbitrary (not necessarily finite-dimensional) vector space $V$, the nth exterior power $\Lambda^{n} V$ and the space $\operatorname{Alt}^{n}(V, \mathbb{k})$ of alternating $n$-linear forms $V \times V \times \cdots \times V \rightarrow \mathbb{k}$ are canonically dual to each other.

Proof The same as for Corollary 2.2 on p. 28.
Proposition 2.4 For every basis $e_{1}, e_{2}, \ldots, e_{d}$ of $V$, a basis in $\Lambda^{d} V$ is formed by the Grassmannian monomials

$$
\begin{equation*}
e_{I} \stackrel{\text { def }}{=} e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{n}} \tag{2.12}
\end{equation*}
$$

numbered by all $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ with $1 \leqslant i_{1}<i_{2}<\cdots<i_{n} \leqslant d$. In particular, $\operatorname{dim} \Lambda^{n} V=\binom{d}{n}$ and $\operatorname{dim} \Lambda V=2^{d}$.
Proof Write $U$ for the vector space of dimension $\binom{d}{n}$ with the basis $\left\{u_{I}\right\}$ numbered by the same multi-indices $I$ as the Grassmannian monomials (2.12). We know from Sect. 1.1.1 on p. 1 that every $n$-linear map $\alpha: V \times V \times \cdots \times V \rightarrow U$ is uniquely determined by its values on all the collections of basis vectors $\alpha\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{n}}\right)$, and these values may be arbitrary. Let us put $\alpha\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{n}}\right)=0$ if some arguments coincide, and $\alpha\left(e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{n}}\right)=\operatorname{sgn}(g) \cdot u_{I}$, where $I=\left(j_{g_{1}}, j_{g_{2}}, \ldots, j_{g_{n}}\right)$ is the strictly increasing permutation of the indices $j_{1}, j_{2}, \ldots, j_{n}$ if all the indices are distinct. The resulting $n$-linear map $\alpha: V \times V \times \cdots \times V \rightarrow U$ is alternating and universal, because for every $n$-linear alternating map $\varphi: V \times V \times \cdots \times V \rightarrow W$, there exists a unique linear operator $F: U \rightarrow W$ such that $\varphi=F \circ \alpha$, namely, the operator acting on the basis of $U$ as $F\left(u_{I}\right)=\varphi\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}\right)$. By Exercise 2.10, there exists a linear isomorphism $U \leadsto \Lambda^{n} V$ sending the basis vectors $u_{I}$ to the s-symmetric products $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{n}}=e_{I}$. This forces the latter to form a basis in $\Lambda^{n} V$.

Corollary 2.4 For every basis $e_{1}, e_{2}, \ldots, e_{d}$ of $V$, the exterior algebra $\Lambda V$ is isomorphic to the Grassmannian polynomial algebra $\mathbb{k}_{k}\left\langle e_{1}, e_{2}, \ldots, e_{d}\right\rangle$ defined in Sect. 9.4 of Algebra I.

### 2.4 Symmetric and Alternating Tensors

Starting from this point, we will always assume by default that char $\mathbb{k}=0$. For every $n \in \mathbb{N}$, the symmetric group $S_{n}$ acts on $V^{\otimes n}$ by permutations of factors in the decomposable tensors:

$$
\begin{equation*}
g\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=v_{g_{1}} \otimes v_{g_{2}} \otimes \cdots \otimes v_{g_{n}} \quad \forall g \in S_{n} \tag{2.13}
\end{equation*}
$$

Since $v_{g_{1}} \otimes v_{g_{2}} \otimes \cdots \otimes v_{g_{n}}$ is multilinear in $v_{1}, v_{2}, \ldots, v_{n}$, there exists a well-defined linear operator $g: V^{\otimes n} \rightarrow V^{\otimes n}$ acting on decomposable tensors by formula (2.13). The subspaces of $S_{n}$-invariant and sign-alternating tensors are denoted by

$$
\begin{align*}
& \operatorname{Sym}^{n} V \stackrel{\text { def }}{=}\left\{t \in V^{\otimes n} \mid \forall g \in S_{n}, g(t)=t\right\},  \tag{2.14}\\
& \operatorname{Alt}^{n} V \stackrel{\text { def }}{=}\left\{t \in V^{\otimes n} \mid \forall g \in S_{n}, g(t)=\operatorname{sgn}(g) \cdot t\right\}, \tag{2.15}
\end{align*}
$$

and called, respectively, the spaces of symmetric and alternating tensors of degree $n$ on $V$.

### 2.4.1 Symmetrization and Alternation

If char $k=0$, then for all $n \geqslant 2$, the tensor power $V^{\otimes n}$ is projected onto the subspaces of symmetric and alternating tensors, respectively, by means of the symmetrization and alternation maps

$$
\begin{align*}
\operatorname{sym}_{n}: V^{\otimes n} & \rightarrow \operatorname{Sym}^{n} V, \quad t \mapsto \frac{1}{n!} \sum_{g \in S_{n}} g(t)  \tag{2.16}\\
\operatorname{alt}_{n}: V^{\otimes n} & \rightarrow \operatorname{Alt}^{n} V, \quad t \mapsto \frac{1}{n!} \sum_{g \in S_{n}} \operatorname{sgn}(g) \cdot g(t) \tag{2.17}
\end{align*}
$$

Exercise 2.11 For all $t \in V^{\otimes n}, s \in \operatorname{Sym}^{n} V, a \in \operatorname{Alt}^{n} V$, and $n \geqslant 2$, prove that (a) $\operatorname{sym}_{n}(s)=s$, (b) $\operatorname{alt}_{n}(a)=a$, (c) $\operatorname{sym}_{n}(a)=\operatorname{alt}_{n}(s)=0$, (d) $\operatorname{sym}_{n}(t) \in \operatorname{Sym}^{n} V$, (e) $\operatorname{alt}_{n}(t) \in \operatorname{Alt}^{n} V$.

Therefore, the symmetrization and alternation maps satisfy the relations

$$
\begin{equation*}
\operatorname{sym}_{n}^{2}=\operatorname{sym}_{n}, \quad \operatorname{alt}_{n}^{2}=\operatorname{alt}_{n}, \quad \operatorname{sym}_{n} \circ \operatorname{alt}_{n}=\operatorname{alt}_{n} \circ \operatorname{sym}_{n}=0 . \tag{2.18}
\end{equation*}
$$

Example 2.2 (Tensor Square Decomposition) For $n=2$, the symmetrization and alternation maps form a pair of complementary projectors, ${ }^{4}$ that is,

$$
\operatorname{sym}_{2}+\operatorname{alt}_{2}=\left(\operatorname{Id}+s_{12}\right) / 2+\left(\operatorname{Id}-s_{12}\right) / 2=\mathrm{Id}
$$

where $s_{12} \in S_{2}$ is a transposition. Therefore, there exists the direct sum decomposition

$$
\begin{equation*}
V^{\otimes 2}=\operatorname{Sym}^{2} V \oplus \operatorname{Alt}^{2} V . \tag{2.19}
\end{equation*}
$$

[^9]If we interpret $V^{\otimes 2}$ as the space of bilinear forms on $V^{*}$, then the decomposition (2.19) turns out to be the decomposition of the space of bilinear forms into the direct sum of subspaces of symmetric and alternating forms considered in Sect. 16.1.6 of Algebra I.

Example 2.3 (Tensor Cube Decomposition) For $n=3$, the direct sum $\mathrm{Sym}^{3} V \oplus \mathrm{Alt}^{3} V$ does not exhaust all of $V^{\otimes 3}$.
Exercise 2.12 Find codim $\left(\operatorname{Sym}^{3} V \oplus \operatorname{Alt}^{3} V\right)$ in $V^{\otimes 3}$.
To find the complement to $\mathrm{Sym}^{3} V \oplus \mathrm{Alt}^{3} V$ in $V^{\otimes 3}$, write $T=|123\rangle \in S_{3}$ for the cyclic permutation and consider the difference

$$
\begin{equation*}
p=\mathrm{Id}-\mathrm{sym}_{3}-\mathrm{alt}_{3}=\mathrm{Id}-\left(\mathrm{Id}+T+T^{2}\right) / 3 . \tag{2.20}
\end{equation*}
$$

Exercise 2.13 Verify that $p^{2}=p$ and $p \circ \operatorname{alt}_{3}=\operatorname{alt}_{3} \circ p=p \circ \operatorname{sym}_{3}=\operatorname{sym}_{3} \circ p=0$.

Since $\operatorname{sym}_{3}+\operatorname{alt}_{3}+p=\operatorname{Id}_{V \otimes 3}$, there exists the direct sum decomposition

$$
V^{\otimes 3}=\operatorname{Sym}^{3} V \oplus \operatorname{Alt}^{3} V \oplus \operatorname{im}(p),
$$

where $\operatorname{im}(p)=\left\{t \in V^{\otimes 3} \mid t+T t+T^{2} t=0\right\}$ consists of all cubic tensors annihilated by averaging over the action of a 3-cycle. An example of such a tensor is provided by $[u,[v, w]]$, where $[a, b] \stackrel{\text { def }}{=} a \otimes b-b \otimes a$ means the commutator in the tensor algebra.

Exercise 2.14 (Jacobi Identity) Verify that $[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0$ in $V^{\otimes 3}$ for all $u, v, w \in V$.

If we think of $V^{\otimes 3}$ as the space of 3-linear forms on $V^{*}$, then $\operatorname{im}(p)$ consists of all 3-linear forms $t: V^{*} \times V^{*} \times V^{*} \rightarrow \mathbb{k}$ satisfying the Jacobi identity:

$$
t(\xi, \eta, \zeta)+t(\eta, \zeta, \xi)+t(\zeta, \xi, \eta)=0
$$

for all $\xi, \eta, \zeta \in V^{*}$.
For larger $n$, the decomposition of $V^{\otimes n}$ by the "symmetry types" of tensors becomes more complicated. It is the subject of the representation theory of the symmetric group, which will be discussed in Chap. 7 below.

### 2.4.2 Standard Bases

Let us fix a basis $e_{1}, e_{2}, \ldots, e_{d}$ in $V$ and break the basis monomials

$$
e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{n}} \in V^{\otimes n}
$$

into a disjoint union of $S_{n}$-orbits. Since the monomials of every $S_{n}$-orbit appear in the expansion of every symmetric tensor $t \in \operatorname{Sym}^{n} V$ with equal coefficients, a basis in $\operatorname{Sym}^{n} V$ is formed by the monomial symmetric tensors

$$
\begin{equation*}
e_{\left[m_{1}, m_{2}, \ldots, m_{d}\right]} \stackrel{\text { def }}{=}\binom{\text { sum of all tensor monomials formed by }}{m_{1} \text { factors } e_{1}, m_{2} \text { factors } e_{2}, \ldots, m_{d} \text { factors } e_{d}} \tag{2.21}
\end{equation*}
$$

numbered by the sequences ( $m_{1}, m_{2}, \ldots, m_{d}$ ) of nonnegative integers satisfying the condition

$$
m_{1}+m_{2}+\cdots+m_{d}=n .
$$

It follows from the orbit length formula ${ }^{5}$ that the sum on the right-hand side of (2.21) consists of $n!/\left(m_{1}!m_{2}!\cdots m_{d}!\right)$ summands, because the stabilizer of each summand is formed by $m_{1}!m_{2}!\cdots m_{d}!$ independent permutations of equal tensor factors.

Similarly, a basis in $\mathrm{Alt}^{n} V$ is formed by the monomial alternating tensors

$$
\begin{equation*}
e_{I}=e_{\left\langle i_{1}, i_{2}, \ldots, i_{n}\right\rangle} \stackrel{\text { def }}{=} \sum_{g \in S_{n}} \operatorname{sgn}(g) \cdot e_{i_{g(1)}} \otimes e_{i_{g(2)}} \otimes \cdots \otimes e_{i_{g(n)}} \tag{2.22}
\end{equation*}
$$

numbered by strictly increasing sequences of positive integers

$$
I=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{n} \leqslant d .
$$

Remark 2.1 (Bases (2.21) and (2.22) for Infinite-Dimensional V) We do not actually need to assume that $d=\operatorname{dim} V<\infty$ in both formulas (2.21), (2.22). They make sense for an arbitrary, not necessarily finite, basis $E$ in $V$ under the following agreement on notation. Let us fix some total ordering on the set $E$ and number once and for all the elements of every finite subset $X \subset E$ in increasing order by integer indices $1,2, \ldots,|X|$. Then a basis in $S^{n} V$ is formed by the monomial tensors (2.21), where $d, m_{1}, m_{2}, \ldots, m_{d} \in \mathbb{N}$ are any positive integers such that $m_{1}+m_{2}+\cdots+m_{d}=n$, and $e_{1}, e_{2}, \ldots, e_{d}$ run through the (numbered) subsets of cardinality $d$ in $E$. Similarly, a basis in $\mathrm{Alt}^{n} V$ is formed by the monomials (2.22), where $e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}$ run through the (numbered) subsets of cardinality $n$ in $E$.

Proposition 2.5 If $\operatorname{char}(\mathbb{k})=0$, then the restriction of the quotient map

$$
V^{\otimes n} \rightarrow S^{n} V
$$

to the subspace $\operatorname{Sym}^{n} \subset V^{\otimes n}$ and the restriction of the quotient map

$$
V^{\otimes n} \rightarrow \Lambda^{n} V
$$

[^10]to the subspace $\mathrm{Alt}^{n} \subset V^{\otimes n}$ establish the isomorphisms of vector spaces
$$
\pi_{\mathrm{sym}}: \operatorname{Sym}^{n} V \xrightarrow{\leftrightharpoons} S^{n} V \quad \text { and } \quad \pi_{\mathrm{sk}}: \operatorname{Alt}^{n} V \xrightarrow{\leadsto} \Lambda^{n} V .
$$

These isomorphisms act on the basis monomial tensors (2.21) and (2.22) by the rules

$$
\begin{align*}
e_{\left[m_{1}, m_{2}, \ldots, m_{d}\right]} & \mapsto \frac{n!}{m_{1}!\cdot m_{2}!\cdots m_{d}!} \cdot e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{d}^{m_{d}},  \tag{2.23}\\
e_{\left\langle i_{1}, i_{2}, \ldots, i_{d}\right\rangle} & \mapsto n!\cdot e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{d}} . \tag{2.24}
\end{align*}
$$

Proof The projection $\pi_{\text {sym }}$ maps each of the $n!/\left(m_{1}!m_{2}!\cdots m_{d}!\right)$ summands in (2.21) to the commutative monomial $e_{1}^{m_{1}} e_{2}^{m_{2}} \ldots e_{d}^{m_{d}}$. Similarly, the projection $\pi_{\text {sk }}$ sends each of the $n$ ! summands in (2.22) to the Grassmannian monomial $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{n}}$.

Caution 2.1 In spite of Proposition 2.5, the subspaces $\operatorname{Sym}^{n} V$, $\operatorname{Alt}^{n} V \subset V^{\otimes n}$ should not be confused with the quotient spaces $S^{n} V$ and $\Lambda^{n} V$ of the tensor power $V^{\otimes n}$. If chark $=p>0$, then many symmetric tensors and all the alternating tensors of degree larger than $p$ are annihilated by projections $V^{\otimes n} \rightarrow S^{n} V$ and $V^{\otimes n} \rightarrow \Lambda^{n} V$. Even if char $\mathbb{k}=0$, the isomorphisms from Proposition 2.5 do not identify the monomial bases of tensor spaces directly with the standard monomials in the polynomial rings. Both isomorphisms contain some combinatorial factors, which should be taken into account whenever we need either to pull back the multiplication from the polynomial (respectively exterior) algebra to the space of symmetric (respectively alternating) tensors or push forward the contractions of tensors into the polynomial algebras.

### 2.5 Polarization of Polynomials

It follows from Proposition 2.5 that for every homogeneous polynomial $f \in S^{n} V^{*}$, there exists a unique symmetric tensor $\widetilde{f} \in \operatorname{Sym}^{n} V^{*}$ mapped to $f$ under the factorization by the commutativity relations $\left(V^{*}\right)^{\otimes n} \rightarrow S^{n} V^{*}$ on p. 23 allows us to treat $\widetilde{f}$ as the symmetric $n$-linear form

$$
\widetilde{f}: V \times V \times \ldots \times V \rightarrow \mathbb{k}, \quad \widetilde{f}\left(v_{1}, v_{2}, \ldots, v_{n}\right) \stackrel{\text { def }}{=}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, \widetilde{f}\right\rangle
$$

This form is called the complete polarization of the polynomial $f$. For $n=2$, the polarization $\widetilde{f}$ of a quadratic form $f \in S^{2} V^{*}$ coincides with that defined in Chap. 17 of Algebra I by the equality

$$
2 \widetilde{f}(u, w)=f(u+w)-f(u)-f(w) .
$$

For arbitrary $n$, the complete polarization of every monomial $x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}$ of degree $n=m_{1}+m_{2}+\cdots+m_{d}$ is given by the first formula from Proposition 2.5 and equals

$$
\begin{equation*}
\frac{m_{1}!m_{2}!\cdots m_{d}!}{n!} \cdot x_{\left[m_{1}, m_{2}, \ldots, m_{d}\right]} . \tag{2.25}
\end{equation*}
$$

The complete polarization of an arbitrary polynomial can be computed using (2.25) and the linearity of the polarization map $\pi_{\text {sym }}^{-1}: S^{n} V^{*} \xrightarrow{\rightarrow} \operatorname{Sym}^{n} V^{*}, f \mapsto \widetilde{f}$. By Remark 2.1 on p.34, this works for every (not necessarily finite) basis in $V^{*}$ as well.

### 2.5.1 Evaluation of Polynomials on Vectors

Associated with every polynomial $f \in S^{n} V^{*}$ is the polynomial function

$$
\begin{equation*}
f: V \rightarrow \mathbb{k}, \quad v \mapsto f(v) \stackrel{\text { def }}{=} \widetilde{f}(v, v, \ldots, v) . \tag{2.26}
\end{equation*}
$$

Note that the value of $f$ on $v$ is well defined even for infinite-dimensional vector spaces and does not depend on any extra data on $V$, such as the choice of basis. Now assume that $\operatorname{dim} V<\infty$, fix dual bases $e_{1}, e_{2}, \ldots, e_{d} \in V, x_{1}, x_{2}, \ldots, x_{d} \in V^{*}$, and identify the symmetric algebra $S V^{*}$ with the polynomial algebra $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$. Then the value of a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ at a vector $v=\sum \alpha_{i} e_{i} \in V$ coincides with the result of the substitution $x_{i}=\alpha_{i}$ in $f$ :

$$
\begin{equation*}
f(v)=f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \tag{2.27}
\end{equation*}
$$

Indeed, for every monomial $f=x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}$, the complete contraction of $v^{\otimes n}$ with

$$
\widetilde{f}=\frac{m_{1}!\cdot m_{2}!\cdots m_{d}!}{n!} x_{\left[m_{1}, m_{2}, \ldots, m_{d}\right]}
$$

is the sum of $n!/\left(m_{1}!\cdot m_{2}!\cdots m_{d}!\right)$ equal products

$$
\begin{aligned}
& \frac{m_{1}!\cdot m_{2}!\cdots m_{d}!}{n!} \cdot x_{1}(v)^{m_{1}} \cdot x_{2}(v)^{m_{2}} \cdots x_{d}(v)^{m_{d}} \\
& \quad=\frac{m_{1}!\cdot m_{2}!\cdots m_{d}!}{n!} \cdot \alpha_{1}^{m_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{d}^{m_{d}} .
\end{aligned}
$$

It coincides with the result of the substitution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in the monomial

$$
\frac{n!}{m_{1}!m_{2}!\cdots m_{d}!} x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}} .
$$

We conclude that the evaluation of a polynomial $f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ at the coordinates of a vector $v \in V$ depends only on $f \in S^{n} V^{*}$ and $v \in V$ but not on the choice of dual bases in $V, V^{*}$.

### 2.5.2 Combinatorial Formula for Complete Polarization

Since the value of a symmetric $n$-linear form does not depend on the order of arguments, let us write

$$
\widetilde{f}\left(v_{1}^{m_{1}}, v_{2}^{m_{2}}, \ldots, v_{n}^{m_{k}}\right)
$$

for the value of $\tilde{f}$ at $m_{1}$ vectors $v_{1}, m_{2}$ vectors $v_{2}, \ldots, m_{k}$ vectors $v_{k}$ with $\sum_{v}$ $m_{v}=n$.
Exercise 2.15 Show that for every polynomial $f \in S^{n} V^{*}$ and all vectors $v_{1}, v_{2}, \ldots, v_{k} \in V$, one has

$$
\begin{align*}
f\left(v_{1}+v_{2}+\cdots+v_{k}\right) & =\widetilde{f}\left(\left(v_{1}+v_{2}+\cdots+v_{k}\right)^{n}\right) \\
& =\sum_{m_{1} m_{2} \ldots m_{k}} \frac{n!}{m_{1}!m_{2}!\cdots m_{k}!} \cdot \widetilde{f}\left(v_{1}^{m_{1}}, v_{2}^{m_{2}}, \ldots, v_{k}^{m_{k}}\right), \tag{2.28}
\end{align*}
$$

where the summation is over all integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
m_{1}+m_{2}+\cdots+m_{k}=n
$$

and $0 \leqslant m_{\nu} \leqslant n$ for all $\nu$.
Proposition 2.6 Let $V$ be a vector space, not necessarily finite-dimensional, over a field $k$ of characteristic zero. Then for every homogeneous polynomial $f \in S^{n} V^{*}$,

$$
\begin{equation*}
n!\cdot \widetilde{f}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\sum_{I \subsetneq\{1, \ldots, n\}}(-1)^{|I|} f\left(\sum_{i \notin I} v_{i}\right), \tag{2.29}
\end{equation*}
$$

where the left summation is over all subsets $I \subsetneq\{1,2, \ldots, n\}$ including $I=\varnothing$, for which $|\varnothing|=0$. For example, for $f \in S^{3} V^{*}$, one has
$6 \widetilde{f}(u, v, w)=f(u+v+w)-f(u+v)-f(u+w)-f(v+w)+f(u)+f(v)+f(w)$.

Proof Consider the expansion (2.28) from Exercise 2.15 for $k=n=\operatorname{deg} f$. Its right-hand side contains the unique term depending on all the vectors $v_{1}, v_{2}, \ldots, v_{n}$, namely $n!\cdot \widetilde{f}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. For every proper subset $I \subsetneq\{1,2, \ldots, n\}$, the summands of (2.28) that do not contain vectors $v_{i}$ with $i \in I$ appear in (2.28) with the same coefficients as they do in the expansion of $f\left(\sum_{i \notin I} v_{i}\right)$, because the latter is
obtained from $f\left(v_{1}+v_{2}+\cdots+v_{n}\right)$ by setting $v_{i}=0$ for all $i \in I$. Therefore, all terms that do not depend on some of the $v_{i}$ can be removed from (2.28) by the standard combinatorial inclusion-exclusion procedure. This leads to the required formula

$$
\begin{aligned}
& n!\cdot \widetilde{f}\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& \quad=f\left(\sum_{\nu} v_{\nu}\right)-\sum_{\{i\}} f\left(\sum_{\nu \neq i} v_{\nu}\right)+\sum_{\{i, j\}} f\left(\sum_{v \neq i, j} v_{\nu}\right)-\sum_{\{i, j, k\}} f\left(\sum_{\nu \neq i, j, k} v_{\nu}\right)+\cdots .
\end{aligned}
$$

### 2.5.3 Duality

Assume that char $k=0$ and $\operatorname{dim} V<\infty$. The complete contraction between $V^{\otimes m}$ and $V^{* \otimes m}$ provides the spaces $S^{m} V$ and $S^{m} V^{*}$ with the perfect pairing ${ }^{6}$ that couples polynomials $f \underset{\sim}{\mathcal{F}} \in S^{n} V$ and $g \in S^{n} V^{*}$ to a complete contraction of their complete polarizations $\widetilde{f} \in V^{\otimes m}$ and $\widetilde{g} \in V^{* \otimes m}$.
Exercise 2.16 Verify that for every pair of dual bases

$$
e_{1}, e_{2}, \ldots, e_{d} \in V, \quad x_{1}, x_{2}, \ldots, x_{d} \in V^{*}
$$

all the nonzero couplings between the basis monomials are exhausted by

$$
\begin{equation*}
\left\langle e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{d}^{m_{d}}, x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}\right\rangle=\frac{m_{1}!m_{2}!\cdots m_{d}!}{n!} \tag{2.30}
\end{equation*}
$$

Note that the monomials constructed from the dual basis vectors become the dual bases of the polynomial rings only after rescaling by the same combinatorial factors as in Proposition 2.5.

### 2.5.4 Derivative of a Polynomial Along a Vector

Associated with every vector $v \in V$ is the linear map

$$
\begin{equation*}
i_{v}: V^{* \otimes n} \rightarrow V^{* \otimes(n-1)}, \quad \varphi \mapsto v\llcorner\varphi, \tag{2.31}
\end{equation*}
$$

provided by the inner multiplication ${ }^{7}$ of $n$-linear forms on $V$ by $v$, which takes an $n$-linear form $\varphi \in V^{* \otimes n}$ to the $(n-1)$-linear form

$$
v\left\llcorner\varphi\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)=\varphi\left(v, v_{1}, v_{2}, \ldots, v_{n-1}\right) .\right.
$$

[^11]The map (2.31) preceded by the complete polarization map

$$
S^{n} V^{*} \xrightarrow{\sim} \operatorname{Sym}^{n} V^{*} \subset V^{* \otimes n}
$$

and followed by the quotient map $V^{* \otimes(n-1)} \rightarrow S^{n-1} V^{*}$ gives the linear map

$$
\begin{equation*}
\mathrm{pl}_{v}: S^{n} V^{*} \rightarrow S^{n-1} V^{*}, \quad f(x) \mapsto \operatorname{pl}_{v} f(x) \stackrel{\text { def }}{=} \widetilde{f}(v, x, x, \ldots, x) \tag{2.32}
\end{equation*}
$$

which depends linearly on $v \in V$. This map fits in the commutative diagram


The polynomial $\operatorname{pl}_{v} f(x) \widetilde{f}(v, x, \ldots x) \in S^{n-1}\left(V^{*}\right)$ is called the polar of $v$ with respect to $f$. For $n=2$, the polar of a vector $v$ with respect to a quadratic form $f \in S^{2} V^{*}$ is the linear form $w \mapsto \widetilde{f}(v, w)$ considered $^{8}$ in Sect. 17.4.3 of Algebra I.

In terms of dual bases $e_{1}, e_{2}, \ldots, e_{d} \in V, x_{1}, x_{2}, \ldots, x_{d} \in V^{*}$, the contraction of the first tensor factor in $V^{* \otimes n}$ with the basis vector $e_{i} \in V$ maps the complete symmetric tensor $x_{\left[m_{1}, m_{2}, \ldots, m_{n}\right]}$ either to the complete symmetric tensor containing the $\left(m_{i}-1\right)$ factors $x_{i}$ or to zero for $m_{i}=0$. By formula (2.23) from Proposition 2.5,

$$
\operatorname{pl}_{e_{i}}{ }_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}=\frac{m_{i}}{n} x_{1}^{m_{1}} \cdots x_{i-1}^{m_{i}-1} x_{i}^{m_{i}-1} x_{i+1}^{m_{i+1}} \cdots x_{d}^{m_{d}}=\frac{1}{n} \frac{\partial}{\partial x_{i}} x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}} .
$$

Since $\mathrm{pl}_{v} f$ is linear in both $v$ and $f$, we conclude that for every $v=\sum \alpha_{i} e_{i}$, the polar polynomial of $v$ with respect to $f$ is nothing but the derivative of the polynomial $f$ along the vector $v$ divided by $\operatorname{deg} f$, i.e.,

$$
\operatorname{pl}_{u} f=\frac{1}{\operatorname{deg}(f)} \partial_{v} f=\frac{1}{\operatorname{deg}(f)} \sum_{i=1}^{d} \alpha_{i} \frac{\partial f}{\partial x_{i}}
$$

Note that this forces the right-hand side of the formula to be independent of the choice of dual bases in $V$ and $V^{*}$. It follows from the definition of polar map that the derivatives along vectors commute, $\partial_{u} \partial_{w}=\partial_{w} \partial_{u}$, and satisfy the following

[^12]remarkable relation:
\[

$$
\begin{equation*}
m!\frac{\partial^{m} f}{\partial u^{m}}(w)=n!\widetilde{f}(\underbrace{u, u, \ldots, u}_{m}, \underbrace{w, w, \ldots, w}_{n})=(n-m)!\frac{\partial^{n-m} f}{\partial w^{n-m}}(u), \tag{2.34}
\end{equation*}
$$

\]

which holds for all $u, w \in V, f \in S^{n} V^{*}$, and $0 \leqslant m \leqslant n$.
Exercise 2.17 Prove the Leibniz rule $\partial_{v}(f \cdot g)=\partial_{v}(f) \cdot g+f \cdot \partial_{v}(g)$.
Exercise 2.18 Show that

$$
\widetilde{f}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\frac{1}{n!} \partial_{v_{1}} \partial_{v_{2}} \cdots \partial_{v_{n}} f
$$

for every polynomial $f \in S^{n} V^{*}$ and all vectors $v_{1}, v_{2}, \ldots, v_{n} \in V$.
Example 2.4 (Taylor Expansion) For $k=2$, the expansion (2.28) from Exercise 2.15 turns into the identity

$$
f(u+w)=\widetilde{f}(u+w, u+w, \ldots, u+w)=\sum_{m=0}^{n}\binom{n}{m} \cdot \widetilde{f}\left(u^{m}, w^{n-m}\right)
$$

where $n=\operatorname{deg} f$, which holds for every polynomial $f \in S^{n} V^{*}$ and all vectors $u, w \in V$. The relations (2.34) allow us to rewrite this identity as the Taylor expansion for $f$ at $u$ :

$$
\begin{equation*}
f(u+w)=\sum_{m=0}^{\operatorname{deg} f} \frac{1}{m!} \partial_{w}^{m} f(u) . \tag{2.35}
\end{equation*}
$$

Note that this is an exact equality in the polynomial ring $S V^{*}$, and its right-hand side actually is completely symmetric in $u, w$, because of the same relations in (2.34).

### 2.5.5 Polars and Tangents of Projective Hypersurfaces

Let $S=Z(F) \subset \mathbb{P}(V)$ be a projective hypersurface defined by a homogeneous polynomial equation $F(x)=0$ of degree $n$. For every line $\ell=(p q) \subset \mathbb{P}(V)$, the intersection $\ell \cap S$ consists of all points $\lambda p+\mu q \in \ell$ such that $(\lambda: \mu)$ satisfies the homogeneous equation $f(\lambda, \mu)=0$ obtained from the equation $F(x)=0$ via the substitution $x \leftrightarrow \lambda p+\mu q$. Over an algebraically closed field $\mathbb{k}$, the binary form $f(\lambda, \mu) \in \mathbb{k}[\lambda, \mu]$ either is zero or is completely factorized into a product of $n$ forms linear in $\lambda, \mu$ :

$$
f(\lambda, \mu)=\prod_{i}\left(\alpha_{i}^{\prime \prime} \lambda-\alpha_{i}^{\prime} \mu\right)^{s_{i}}=\prod_{i} \operatorname{det}^{s_{i}}\left(\begin{array}{cc}
\lambda & \alpha_{i}^{\prime}  \tag{2.36}\\
\mu & \alpha_{i}^{\prime \prime}
\end{array}\right),
$$

where $a_{i}=\left(\alpha_{i}^{\prime}: \alpha_{i}^{\prime \prime}\right)$ are distinct points on $\mathbb{P}_{1}=\mathbb{P}\left(\mathbb{k}^{2}\right)$ and $\sum_{i} s_{i}=n$. In the first case, the line $\ell$ lies on $S$. In the second case, the intersection $\ell \cap S$ consists of points $a_{i}=\alpha_{i}^{\prime} p+\alpha_{i}^{\prime \prime} q$. The exponent $s_{i}$ of the linear form $\alpha_{i}^{\prime \prime} \mu-\alpha_{i}^{\prime} \lambda$ in the factorization (2.36) is called the intersection multiplicity of the hypersurface $S$ and the line $\ell$ at the point $a_{i}$, and is denoted by $(S, \ell)_{a_{i}}$. If $(S, \ell)_{a_{i}}=1$, then $a_{i}$ is called a simple (or transversal) intersection point. Otherwise, the intersection of $\ell$ and $S$ at $a_{i}$ is called multiple. Note that the total number of intersections counted with their multiplicities equals the degree of $S$.

Let $p \in S$. Then a line $\ell=(p, q)$ is called tangent to the hypersurface $S=Z(F)$ at $p$ if either $\ell \subset S$ or $(S, \ell)_{a} \geqslant 2$. In other words, the line $\ell$ is tangent to $S$ at $p$ if the polynomial $F(p+t q) \in \mathbb{k}[t]$ either is the zero polynomial or has a multiple root at zero. It follows from formulas (2.35), (2.34) that the Taylor expansion of $F(p+t q)$ at $p$ starts with

$$
F(p+t q)=t\binom{d}{1} \widetilde{F}\left(p^{n-1}, q\right)+t^{2}\binom{d}{2} \widetilde{F}\left(p^{n-2}, q^{2}\right)+\cdots
$$

Therefore, $\ell=(p, q)$ is tangent to $S$ at $p$ if and only if $\widetilde{F}\left(p^{n-1}, q\right)=0$. This is a straightforward generalization of Lemma 17.4 from Algebra I.

If $F\left(p^{n-1}, x\right)$ does not vanish identically as a linear form in $x$, then the linear equation $F\left(p^{n-1}, x\right)=0$ on $x \in V$ defines a hyperplane in $\mathbb{P}(V)$ filled by the lines ( $p q$ ) tangent to $S$ at $p$. This hyperplane is called the tangent space to $S$ at $p$ and is denoted by

$$
T_{p}=\left\{x \in \mathbb{P}(V) \mid \widetilde{F}\left(p^{n-1}, x\right)=0\right\} .
$$

In this case, the point $p$ is called a smooth point of $S$. The hypersurface $S \subset \mathbb{P}(V)$ is called smooth if every point $p \in S$ is smooth.

If $F\left(p^{n-1}, x\right)$ is the zero linear form in $x$, the hypersurface $S$ is called singular at $p$, and the point $p$ is called a singular point of $S$.

By formulas (2.34), the coefficients of the polynomial $F\left(p^{n-1}, x\right)=\partial_{x} F(p)$, considered as a linear form in $x$, are equal to the partial derivatives of $F$ evaluated at the point $p$. Therefore, the singularity of a point $p \in S=Z(F)$ is expressed by the equations

$$
\frac{\partial F}{\partial x_{i}}(p)=0 \quad \text { for all } i
$$

in which case every line $\ell$ passing through $p$ has $(S, \ell)_{p} \geqslant 2$, i.e., is tangent to $S$ at $p$. Thus, the tangent lines to $S$ at $p$ fill the whole ambient space $\mathbb{P}(V)$ in this case.

If $q$ is either a smooth point on $S$ or a point outside $S$, then the polar polynomial

$$
\operatorname{pl}_{q} F(x)=\widetilde{F}\left(q, x^{n-1}\right)
$$

does not vanish identically as a homogeneous polynomial of degree $n-1$ in $x$, because otherwise, all partial derivatives of $\operatorname{pl}_{q} F(x)=\widetilde{F}\left(q, x^{n-1}\right)$ in $x$ would also vanish, and in particular,

$$
\widetilde{F}\left(q^{n-1}, x\right)=\frac{\partial^{n-2}}{\partial q^{n-2}} \mathrm{pl}_{q} F(x)=0
$$

identically in $x$, meaning that $q$ would be a singular point of $S$, in contradiction to our choice of $q$. The zero set of the polar polynomial $\mathrm{pl}_{q} F \in S^{n-1} V^{*}$ is denoted by

$$
\begin{equation*}
\mathrm{pl}_{q} S \stackrel{\text { def }}{=} Z\left(\mathrm{pl}_{q} F\right)=\left\{x \in \mathbb{P}(V) \mid \widetilde{F}\left(q, x^{n-1}\right)=0\right\} \tag{2.37}
\end{equation*}
$$

and called the polar hypersurface of the point $q$ with respect to $S$. If $S$ is a quadric, then $\mathrm{pl}_{q} S$ is exactly the polar hyperplane of $q$ considered in Sect. 17.4.3 of Algebra I. As in that case, for a hypersurface $S$ of arbitrary degree, the intersection $S \cap \mathrm{pl}_{q} S$ coincides with the apparent contour of $S$ viewed from the point $q$, that is, with the locus of all points $p \in S$ such that the line $(p q)$ is tangent to $S$ at $p$.

More generally, for an arbitrary point $q \in \mathbb{P}(V)$, the locus of points

$$
\mathrm{pl}_{q}^{n-r} S \stackrel{\text { def }}{=}\left\{x \in \mathbb{P}(V) \mid \widetilde{F}\left(q^{n-r}, x^{r}\right)=0\right\}
$$

is called the rth-degree polar of the point $q$ with respect to $S$ or the rth-degree polar of $S$ at $q$ for $q \in S$. If the polynomial $\widetilde{F}\left(q^{n-r}, x^{r}\right)$ vanishes identically in $x$, we say that the $r$ th-degree polar is degenerate. Otherwise, the $r$ th-degree polar is a projective hypersurface of degree $r$. The linear ${ }^{9}$ polar of $S$ at a smooth point $q \in S$ is simply the tangent hyperplane to $S$ at $q$,

$$
T_{q} S=\mathrm{pl}_{q}^{n-1} S
$$

The quadratic polar $\mathrm{pl}_{q}^{n-2} S$ is the quadric passing through $q$ and having the same tangent hyperplane at $q$ as $S$. The cubic polar $\mathrm{pl}_{q}^{n-3} S$ is the cubic hypersurface passing through $q$ and having the same quadratic polar at $q$ as $S$, etc. The $r$ th-degree polar $\mathrm{pl}_{q}^{n-2} S$ at a smooth point $q \in S$ passes through $q$ and has $\mathrm{pl}_{q}^{r-k} \mathrm{pl}_{q}^{n-r} S=\mathrm{pl}_{q}^{n-k} S$ for all $1 \leqslant k \leqslant r-1$, because

$$
\begin{aligned}
\mathrm{pl}_{q}^{r-k} \mathrm{pl}_{q}^{n-r} F(x) & =\mathrm{pl}_{q}^{n-r} F\left(q^{r-k}, x^{k}\right)=\widetilde{F}\left(q^{n-r}, q^{r-k}, x^{k}\right)=\widetilde{F}\left(q^{n-k}, x^{k}\right) \\
& =\mathrm{pl}_{q}^{n-k} F(x)
\end{aligned}
$$

[^13]
### 2.5.6 Linear Support of a Homogeneous Polynomial

Let $V$ be a finite-dimensional vector space and $f \in S^{n} V^{*}$ a polynomial. We write $\operatorname{Supp} f$ for the minimal ${ }^{10}$ vector subspace $W \subset V^{*}$ such that $f \in S^{n} W$, and call this subspace the linear support of $f$. For char $\mathbb{k}=0$, the linear support of a polynomial $f$ coincides with the linear support of the symmetric tensor ${ }^{11} \widetilde{f} \in \operatorname{Sym}^{n} V^{*}$, the complete polarization of $f$. By Theorem 2.1, it is linearly generated by the images of the ( $n-1$ )-tuple contraction maps

$$
c_{t}^{J}: V^{\otimes(n-1)} \rightarrow V^{*}, \quad t \mapsto c_{j_{1} j_{2}, \ldots, j_{n-1}}^{1,2, \ldots,(n-1)}(t \otimes \widetilde{f}),
$$

coupling all the $(n-1)$ factors of $V^{\otimes(n-1)}$ with some $n-1$ factors of $\widetilde{t} \in V^{* \otimes n}$ in the order indicated by the sequence $J=\left(j_{1}, j_{2}, \ldots, j_{n-1}\right)$. For the symmetric tensor $\widetilde{f}$, such a contraction does not depend on $J$ and maps every decomposable tensor $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n-1}$ to the linear form on $V$ proportional to the $(n-1)$-tuple derivative $\partial_{v_{1}} \partial_{v_{2}} \cdots \partial_{v_{n-1}} f \in V^{*}$.

Therefore, $\operatorname{Supp}(f)$ is linearly generated by all $(n-1)$-tuple partial derivatives

$$
\begin{equation*}
\frac{\partial^{m_{1}}}{\partial x_{1}^{m_{1}}} \frac{\partial^{m_{2}}}{\partial x_{2}^{m_{2}}} \cdots \frac{\partial^{m_{d}}}{\partial x_{d}^{m_{d}}} f(x), \text { where } \sum m_{v}=n-1 \tag{2.38}
\end{equation*}
$$

The coefficient of $x_{i}$ in the linear form (2.38) depends only on the coefficients of the monomial

$$
x_{1}^{m_{1}} \cdots x_{i-1}^{m_{i-1}} x_{i}^{m_{i}+1} x_{i+1}^{m_{i+1}} \cdots x_{d}^{m_{d}}
$$

in $f$. Writing the polynomial $f$ in the form

$$
\begin{equation*}
f=\sum_{v_{1}+\cdots+v_{d}=n} \frac{n!}{v_{1}!v_{2}!\cdots v_{d}!} a_{v_{1} v_{2} \ldots v_{d}} x_{1}^{v_{1}} x_{2}^{v_{2}} \cdots x_{d}^{v_{d}} \tag{2.39}
\end{equation*}
$$

turns the linear form (2.38) into

$$
\begin{equation*}
n!\cdot \sum_{i=1}^{d} a_{m_{1} \ldots m_{i-1}\left(m_{i}+1\right) m_{i+1} \ldots m_{d}} x_{i} \tag{2.40}
\end{equation*}
$$

Altogether, we get $\binom{n+d-2}{d-1}$ such linear forms, which are in bijection with the nonnegative integer solutions $m_{1}, m_{2}, \ldots, m_{d}$ of the equation $m_{1}+m_{2}+\cdots+m_{d}=n-1$.

[^14]Proposition 2.7 Let $k$ be a field of characteristic zero, $V$ a finite-dimensional vector space over $\mathbb{k}$, and $f \in S^{n} V^{*}$ a polynomial written in the form (2.39) in some basis of $V^{*}$. If $f=\varphi^{n}$ is the proper nth power of some linear form $\varphi \in V^{*}$, then the $d \times\binom{ n+d-2}{d-1}$ matrix built from the coefficients of linear forms (2.40) has rank 1. In this case, there are at most $n$ linear forms $\varphi \in V^{*}$ such that $\varphi^{n}=f$, and they differ from one another by multiplication by the nth roots of unity lying in $\mathbb{k}$. Over an algebraically closed field $k$, the converse is true as well: if all the linear forms (2.40) are proportional, then $f=\varphi^{n}$ for some linear form $\varphi$, which is also proportional to the forms (2.40).

Proof The equality $f=\varphi^{n}$ means that $\operatorname{Supp}(f) \subset V^{*}$ is the 1-dimensional subspace spanned by $\varphi$. In this case, all linear forms (2.40) are proportional to $\varphi$. Such a form $\psi=\lambda \varphi$ has $\psi^{n}=f$ if and only if $\lambda^{n}=1$ in $\mathbb{k}$. Conversely, let all the linear forms (2.40) be proportional, and let $\psi \neq 0$ be one of them. Then $\operatorname{Supp}(f)=\mathbb{k} \cdot \psi$ is the 1 -dimensional subspace spanned by $\psi$. Hence $f=\lambda \psi^{n}$ for some $\lambda \in \mathbb{K}$, and therefore, $f=\varphi^{n}$ for $^{12} \varphi=\sqrt[n]{\lambda} \cdot \psi$.

Example 2.5 (Binary Forms of Rank 1) We know from Example 11.6 of Algebra I that a homogeneous binary form of degree $n$,

$$
f\left(x_{0}, x_{1}\right)=\sum_{k} a_{k} \cdot\binom{n}{k} \cdot x_{0}^{n-k} x_{1}^{k},
$$

is the proper $n$th power of some linear form $\alpha_{0} x_{0}+\alpha_{1} x_{1}$ if and only if the ratio of sequential coefficients $a_{i}: a_{i+1}=\alpha_{0}: \alpha_{1}$ does not depend on $i$. This is equivalent to the condition

$$
\operatorname{rk}\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)=1
$$

which is expanded to a system of homogeneous quadratic equations $a_{i} a_{j+1}=a_{i+1} a_{j}$ in the coefficients of $f$. Proposition 2.7 leads to the same result, because the columns of the above matrix are exactly the coefficients of linear forms (2.40) divided by $n!$.
Corollary 2.5 The proper nth powers of linear forms $\varphi \in V^{*}$ form the projective algebraic variety

$$
\begin{equation*}
\mathcal{V}_{n} \stackrel{\text { def }}{=}\left\{\varphi^{n} \mid \varphi \in V^{*}\right\} \subset \mathbb{P}\left(S^{n} V^{*}\right) \tag{2.41}
\end{equation*}
$$

in the space of all degree-n hypersurfaces ${ }^{13}$ in $\mathbb{P}(V)$. This variety is described by the system of quadratic equations representing the vanishing of all $2 \times 2$ minors in the $d \times\binom{ n+d-2}{d-1}$ matrix built from the coefficients of linear forms (2.40).

[^15]Definition 2.1 (Veronese Variety) The projective algebraic variety (2.41) is called the Veronese variety.

Exercise 2.19 (Veronese Embedding) Verify that the prescription $\varphi \mapsto \varphi^{n}$ gives the well-defined injective map $\mathbb{P}\left(V^{*}\right) \hookrightarrow \mathbb{P}\left(S^{n} V^{*}\right)$ whose image coincides with the Veronese variety (2.41).

### 2.6 Polarization of Grassmannian Polynomials

It follows from Proposition 2.5 on p. 34 that for every Grassmannian polynomial $\omega \in \Lambda^{n} V^{*}$ over a field of characteristic zero, there exists a unique alternating tensor $\widetilde{\omega} \in \operatorname{Alt}^{n} V^{*} \subset V^{* \otimes n}$ mapped to $\omega$ under the factorization by the skewcommutativity relations $\pi_{\mathrm{sk}}: V^{* \otimes n} \rightarrow \Lambda^{n} V^{*}$. It can be viewed as the alternating $n$-linear form

$$
\widetilde{\omega}: V \times V \times \cdots \times V \rightarrow \mathbb{k}, \quad \widetilde{\omega}\left(v_{1}, v_{2}, \ldots, v_{n}\right) \stackrel{\text { def }}{=}\left\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}, \widetilde{\omega}\right\rangle
$$

called the complete polarization of the Grassmannian polynomial $\omega \in \Lambda^{n} V^{*}$. If the covectors $x_{i}$ form a basis of $V^{*}$, then by formula (2.24) on p. 35, the complete polarization of the Grassmannian monomial $x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{n}}$ equals

$$
\begin{equation*}
\frac{1}{n!} x_{\left\langle i_{1}, i_{2}, \ldots, i_{n}\right\rangle}=\operatorname{alt}_{n}\left(x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{n}}\right) \tag{2.42}
\end{equation*}
$$

The polarization of an arbitrary Grassmannian polynomial can be computed using this formula and the linearity of the polarization map

$$
\begin{equation*}
\pi_{\mathrm{sk}}^{-1}: \Lambda^{n} V^{*} \xrightarrow{\sim} \operatorname{Alt}^{n} V^{*}, \quad \omega \mapsto \widetilde{\omega} \tag{2.43}
\end{equation*}
$$

By Remark 2.1 on p. 34, this procedure is also well defined for infinite-dimensional vector spaces.

### 2.6.1 Duality

Similarly to the symmetric case, for a finite-dimensional vector space $V$ over a field of characteristic zero, there exists a perfect pairing between the spaces $\Lambda^{n} V$ and $\Lambda^{n} V^{*}$ coupling polynomials $\tau \in \Lambda^{n} V$ and $\omega \in \Lambda^{n} V^{*}$ to the complete contraction of their complete polarizations $\widetilde{\tau} \in V^{\otimes n}$ and $\widetilde{\omega} \in V^{* \otimes n}$.
Exercise 2.20 Convince yourself that the nonzero couplings between the basis monomials $e_{I} \in \Lambda^{n} V$ and $x_{J} \in \Lambda^{n} V^{*}$ are exhausted by

$$
\begin{equation*}
\left\langle e_{I}, x_{I}\right\rangle=1 / n! \tag{2.44}
\end{equation*}
$$

### 2.6.2 Partial Derivatives in an Exterior Algebra

By analogy with Sect. 2.5.4, the derivative of a Grassmannian polynomial $\omega \in \Lambda^{n} V^{*}$ along a vector $v \in V$ is defined by the formula

$$
\partial_{v} \omega \stackrel{\text { def }}{=} \operatorname{deg} \omega \cdot \mathrm{pl}_{v} \omega,
$$

where the polarization map $\mathrm{pl}_{v}: \Lambda^{n} V^{*} \rightarrow \Lambda^{n-1} V^{*}, \omega \mapsto \pi_{\mathrm{sk}}(v\llcorner\widetilde{\omega})$, is composed of the inner multiplication (2.31) preceded by the complete polarization (2.43) and followed by the quotient map $\pi_{\mathrm{sk}}: V^{* \otimes(n-1)} \rightarrow \Lambda^{n-1} V^{*}$. Thus, $\mathrm{pl}_{v}$ fits in the commutative diagram

which is similar to the diagram from formula (2.33) on p . 39 . Since $\mathrm{pl}_{v} \omega$ is linear in $v$, it follows that

$$
\partial_{v}=\sum \alpha_{i} \partial_{e_{i}} \quad \text { for } \quad v=\sum \alpha_{i} e_{i} .
$$

If $\omega$ does not depend on $x_{i}$, then certainly $\partial_{e_{i}} \omega=0$. Therefore, a nonzero contribution to $\partial_{v} x_{I}$ is given only by the derivations $\partial_{e_{i}}$ with $i \in I$. Formula (2.42) implies that

$$
\partial_{e_{i_{1}}} x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{n}}=x_{i_{2}} \wedge x_{i_{3}} \wedge \cdots \wedge x_{i_{n}}
$$

for every collection of indices $i_{1}, i_{2}, \ldots, i_{n}$, not necessarily increasing. Hence,

$$
\begin{aligned}
\partial_{e_{i_{k}}} x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{n}} & =\partial_{e_{i_{k}}}(-1)^{k-1} x_{i_{k}} \wedge x_{i_{1}} \wedge \cdots \wedge x_{i_{k-1}} \wedge x_{i_{k+1}} \cdots x_{i_{n}} \\
& =(-1)^{k-1} \partial_{e_{i_{k}}} x_{i_{k}} \wedge x_{i_{1}} \wedge \cdots \wedge x_{i_{k-1}} \wedge x_{i_{k+1}} \cdots x_{i_{n}} \\
& =(-1)^{k-1} x_{i_{1}} \wedge \cdots \wedge x_{i_{k-1}} \wedge x_{i_{k+1}} \cdots x_{i_{n}} .
\end{aligned}
$$

In other words, the derivation along the basis vector that is dual to the $k$ th variable from the left in the monomial behaves as $(-1)^{k-1} \frac{\partial}{\partial x_{i k}}$, where the Grassmannian partial derivative $\frac{\partial}{\partial x_{i}}$ takes $x_{i}$ to 1 and annihilates all $x_{j}$ with $j \neq i$, exactly as in the symmetric case. However, the sign $(-1)^{k}$ in the previous formula forces the Grassmannian partial derivatives to satisfy the Grassmannian Leibniz rule, which differs from the usual one by an extra sign.

Exercise 2.21 (Grassmannian Leibniz Rule) Prove that for every homogeneous Grassmannian polynomial $\omega, \tau \in \Lambda V^{*}$ and vector $v \in V$, one has

$$
\begin{equation*}
\partial_{v}(\omega \wedge \tau)=\partial_{v}(\omega) \wedge \tau+(-1)^{\operatorname{deg} \omega} \omega \wedge \partial_{v}(\tau) \tag{2.46}
\end{equation*}
$$

Since the Grassmannian polynomials are linear in each variable, it follows that $\partial_{v}^{2} \omega=0$ for all $v \in V, \omega \in \Lambda V$. The relation $\partial_{v}^{2}=0$ forces the Grassmannian derivatives to be skew commutative, i.e.,

$$
\partial_{u} \partial_{w}=-\partial_{w} \partial_{u} \quad \forall u, w \in V
$$

### 2.6.3 Linear Support of a Homogeneous Grassmannian Polynomial

Let $V$ be a finite-dimensional vector space over a field $\mathbb{k}$ of characteristic zero. For the needs of further applications, in this section we switch between $V^{*}$ and $V$ and consider $\omega \in \Lambda^{n} V$. The linear support $\operatorname{Supp} \omega$ is defined to be the minimal (with respect to inclusions) vector subspace $W \subset V$ such that $\omega \in \Lambda^{n} W$. It coincides with the linear support of the complete polarization $\widetilde{\omega} \in \operatorname{Alt}^{n} V$, and is linearly generated by all $(n-1)$-tuple partial derivatives ${ }^{14}$

$$
\partial_{J} \omega \stackrel{\text { def }}{=} \partial_{x_{j_{1}}} \partial_{x_{j_{2}}} \cdots \partial_{x_{j_{n-1}}} \omega=\frac{\partial}{\partial_{e_{j_{1}}}} \frac{\partial}{\partial_{e_{j_{2}}}} \cdots \frac{\partial}{\partial_{e_{j_{n}-1}}} \omega
$$

where $J=j_{1} j_{2} \ldots j_{n-1}$ runs through all sequences of $n-1$ distinct indices from the set $\{1,2, \ldots, d\}, d=\operatorname{dim} V$. Up to a sign, the order of indices in $J$ is not essential, and we will not assume the indices to be increasing, because this simplifies the notation in what follows. Let us expand $\omega$ as a sum of basis monomials

$$
\begin{equation*}
\omega=\sum_{I} a_{I} e_{I}=\sum_{i_{1} i_{2} \ldots i_{n}} \alpha_{i_{1} i_{2} \ldots i_{n}} e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{n}}, \tag{2.47}
\end{equation*}
$$

where $I=i_{1} i_{2} \ldots i_{n}$ also runs through the $n$-tuples of distinct but not necessarily increasing indices, and the coefficients $\alpha_{i_{1} i_{2} \ldots i_{n}} \in \mathbb{k}$ are alternating in $i_{1} i_{2} \ldots i_{n}$. Nonzero contributions to $\partial_{J} \omega$ are given only by the monomials $a_{I} e_{I}$ with $I \supset J$. Therefore, up to a common sign,

$$
\begin{equation*}
\partial_{J} \omega= \pm \sum_{i \notin J} \alpha_{j_{1} j_{2} \ldots j_{n-1}} e_{i} \tag{2.48}
\end{equation*}
$$

[^16]Proposition 2.8 The following conditions on a Grassmannian polynomial $\omega \in \Lambda^{n} V$ written in the form (2.47) are equivalent:

1. $\omega=u_{1} \wedge u_{2} \wedge \cdots \wedge u_{n}$ for some $u_{1}, u_{2}, \ldots, u_{n} \in V$.
2. $u \wedge \omega=0$ for all $u \in \operatorname{Supp}(\omega)$.
3. for any two collections $i_{1} i_{2} \ldots i_{m+1}$ and $j_{1} j_{2} \ldots j_{m-1}$ consisting of $n+1$ and $n-1$ distinct indices, the following Plücker relation holds:

$$
\begin{equation*}
\sum_{\nu=1}^{m+1}(-1)^{\nu-1} a_{j_{1} \ldots j_{m-1} i_{\nu}} a_{i_{1} \ldots i_{\nu} \ldots i_{m+1}}=0 \tag{2.49}
\end{equation*}
$$

where the hat in $a_{i_{1} \ldots \hat{i}_{v} \ldots i_{m+1}}$ means that the index $i_{v}$ should be omitted.
Proof Condition 1 holds if and only if $\omega$ belongs to the top homogeneous component of its linear span, $\omega \in \Lambda^{\operatorname{dim} \operatorname{Supp}(\omega)} \operatorname{Supp}(\omega)$. Condition 2 means the same because of the following exercise.
Exercise 2.22 Show that $\omega \in \Lambda U$ is homogeneous of degree $\operatorname{dim} U$ if and only if $u \wedge \omega=0$ for $u \in U$.
The Plücker relation (2.49) asserts the vanishing of the coefficient of

$$
e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{m+1}}
$$

in the product $\left(\partial_{j_{1} \ldots j_{m-1}} \omega\right) \wedge \omega$. In other words, (2.49) is the coordinate form of condition 2 written for the vector $u=\partial_{j_{1} . . . j_{m-1}} \omega$ from the formula (2.48). Since these vectors linearly generate the subspace $\operatorname{Supp}(\omega)$, the whole set of Plücker relations is equivalent to condition 2.

Example 2.6 (The Plücker Quadric) Let $n=2, \operatorname{dim} V=4$, and let $e_{1}, e_{2}, e_{3}, e_{4}$ be a basis of $V$. Then the expansion (2.47) for $\omega \in \Lambda^{2} V$ looks like $\omega=\sum_{i, j} a_{i j} e_{i} \wedge e_{j}$, where the coefficients $a_{i j}$ form a skew-symmetric $4 \times 4$ matrix. The Plücker relation corresponding to $\left(i_{1}, i_{2}, i_{3}\right)=(2,3,4)$ and $j_{1}=1$ is

$$
\begin{equation*}
a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}=0 \tag{2.50}
\end{equation*}
$$

All other choices of $\left(i_{1}, i_{2}, i_{3}\right)$ and $j_{1} \notin\left\{i_{1}, i_{2}, i_{3}\right\}$ lead to exactly the same relation.
Exercise 2.23 Check this.
For $j_{1} \in\left\{i_{1}, i_{2}, i_{3}\right\}$, we get the trivial equality $0=0$. Thus for $\operatorname{dim} V=4$, the set of decomposable Grassmannian quadratic forms $\omega \in \Lambda^{2} V$ is described by just one quadratic equation, (2.50).

Exercise 2.24 Convince yourself that the Eq. (2.50) in $\omega=\sum_{i, j} a_{i j} e_{i} \wedge e_{j}$ is equivalent to the condition ${ }^{15} \omega \wedge \omega=0$.

[^17]
### 2.6.4 Grassmannian Varieties and the Plücker Embedding

Given a vector space $V$ of dimension $d$, the set of all vector subspaces $U \subset V$ of dimension $m$ is denoted by $\operatorname{Gr}(m, V)$ and called the Grassmannian. When the origin of $V$ is not essential or $V=\mathbb{k}^{d}$, we write $\operatorname{Gr}(m, d)$ instead of $\operatorname{Gr}(m, V)$. Thus, $\operatorname{Gr}(1, V)=\mathbb{P}(V), \operatorname{Gr}(\operatorname{dim} V-1, V)=\mathbb{P}\left(V^{*}\right)$. The Grassmannian $\operatorname{Gr}(m, V)$ is embedded into the projective space $\mathbb{P}\left(\Lambda^{m} V\right)$ by means of the Plücker map

$$
\begin{equation*}
p_{m}: \operatorname{Gr}(m, V) \rightarrow \mathbb{P}\left(\Lambda^{m} V\right), \quad U \mapsto \Lambda^{m} U \subset \Lambda^{m} V, \tag{2.51}
\end{equation*}
$$

sending every $m$-dimensional subspace $U \subset V$ to its highest exterior power $\Lambda^{m} U$, which is a 1 -dimensional vector subspace in $\Lambda^{m} V$. If $U$ is spanned by vectors $u_{1}, u_{2}, \ldots, u_{m}$, then $p_{m}(U)=u_{1} \wedge u_{2} \wedge \cdots \wedge u_{m}$ up to proportionality.
Exercise 2.25 Check that the Plücker map is injective.
The image of the map (2.51) consists of all Grassmannian polynomials $\omega \in \Lambda^{m} V$ completely factorizable into a product of $m$ vectors. Such polynomials are called decomposable. By Proposition 2.8, they form a projective algebraic variety given by the system of quadratic Eq. (2.49) in the coefficients of the expansion (2.47).

Example 2.7 (The Plücker Quadric, Geometric Continuation of Example 2.6) For $\operatorname{dim} V=4$, the Grassmannian $\operatorname{Gr}(2,4)=\operatorname{Gr}(2, V)$ can be viewed as the set of lines $\ell=\mathbb{P}(U)$ in $\mathbb{P}_{3}=\mathbb{P}(V)$. The Plücker embedding (2.51) maps a line $(a b) \subset \mathbb{P}_{3}$ to the point $a \wedge b \in \mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ and establishes a bijection between the lines in $\mathbb{P}_{3}$ and the points of the smooth quadric

$$
P=\left\{\omega \in \Lambda^{2} V \mid \omega \wedge \omega=0\right\}
$$

in $\mathbb{P}_{5}$, called the Plücker quadric.

### 2.6.5 The Grassmannian as an Orbit Space

The Grassmannian $\operatorname{Gr}(m, d)$ admits the following matrix description. Fix some basis $\left(e_{1}, e_{2}, \ldots, e_{d}\right)$ in $V$. Given a vector subspace $U \subset V$ with a basis $\left(u_{1}, u_{2}, \ldots, u_{m}\right)$, consider the $m \times d$ matrix $A_{u}$ whose $i$ th row is formed by the coordinates of the vector $u_{i}$ in the chosen basis of $V$. Every other basis of $U$,

$$
\left(w_{1}, w_{2}, \ldots, w_{m}\right)=\left(u_{1}, u_{2}, \ldots, u_{m}\right) \cdot C_{u w}
$$

where $C_{w u} \in \mathrm{GL}_{m}(\mathbb{k})$ is an invertible transition matrix, leads to the matrix $A_{w}$ expressed through $A_{u}$ by the formula

$$
A_{w}=C_{u w}^{t} A_{u} .
$$

## Exercise 2.26 Check this.

Therefore, the bases in $U$ are in bijection with the $m \times d$ matrices of rank $m$ forming one orbit of the action of $\mathrm{GL}_{m}(\mathbb{k})$ on $\mathrm{Mat}_{m \times d}(\mathbb{k})$ by left multiplication, $G: A \mapsto G A$ for $G \in \mathrm{GL}_{m}, A \in \mathrm{Mat}_{m \times d}$. Hence the $\operatorname{Grassmannian} \operatorname{Gr}(m, d)$ can be viewed as the set of all $m \times d$ matrices of rank $m$ considered up to left multiplication by nondegenerate $m \times m$ matrices. Note that for $m=1$, this agrees with the description of projective space $\mathbb{P}_{d-1}=\operatorname{Gr}(1, d)$ as the set of nonzero rows $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{k}^{d}=\mathrm{Mat}_{1 \times d}$ considered up to multiplication by nonzero constants $\lambda \in \mathbb{k}^{*}=\mathrm{GL}_{1}(\mathbb{k})$. Thus, the matrix $A_{u}$ formed by the coordinate rows of some basis vectors $u_{1}, u_{2}, \ldots, u_{m}$ in $U$ is the direct analogue of the homogeneous coordinates in projective space.
Exercise 2.27 (Plücker Coordinates) Verify that the coefficients $\alpha_{i_{1} i_{2} \ldots i_{n}}$ in the expansion (2.47) written for $\omega=u_{1} \wedge u_{2} \wedge \cdots \wedge u_{m}$ are equal to the $m \times m$ minors of the matrix $A_{u}$.

These minors are called the Plücker coordinates of the subspace $U \subset V$ spanned by the vectors $u_{i}$.

Example 2.8 (Segre Varieties Revisited, Continuation of Example 1.2) Let $W=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ be a direct sum of finite-dimensional vector spaces $V_{i}$. For $k \in \mathbb{N}$ and nonnegative integers $m_{1}, m_{2}, \ldots, m_{n}$ such that $\sum_{v} m_{v}=k$ and

$$
0 \leqslant m_{i} \leqslant \operatorname{dim} V_{i},
$$

denote by $W_{m_{1}, m_{2}, \ldots, m_{n}} \subset \Lambda^{k} W$ the linear span of all products $w_{1} \wedge w_{2} \wedge \cdots \wedge w_{k}$ formed by $m_{1}$ vectors from $V_{1}, m_{2}$ vectors from $V_{2}$, etc.
Exercise 2.28 Show that the well-defined isomorphism of vector spaces

$$
\Lambda^{m_{1}} V_{1} \otimes \Lambda^{m_{2}} V_{2} \otimes \cdots \otimes \Lambda^{m_{n}} V_{n} \xrightarrow{\rightarrow} W_{m_{1}, m_{2}, \ldots, m_{n}}
$$

is given by the prescription $\omega_{1} \otimes \omega_{2} \otimes \cdots \otimes \omega_{n} \mapsto \omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{n}$, and verify that

$$
\Lambda^{k} W=\bigoplus_{m_{1}, m_{2}, \ldots, m_{n}} W_{m_{1}, m_{2}, \ldots, m_{n}} \simeq \bigoplus_{m_{1}, m_{2}, \ldots, m_{n}} \Lambda^{m_{1}} V_{1} \otimes \Lambda^{m_{2}} V_{2} \otimes \cdots \otimes \Lambda^{m_{n}} V_{n}
$$

Thus, the tensor product $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ can be identified with the component $W_{1,1, \ldots, 1} \subset \Lambda^{n} W$. Under this identification, the decomposable tensors

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}
$$

go to the decomposable Grassmannian monomials $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n}$. Therefore, the Segre variety from Example 1.2 on p. 6 is the intersection of the Grassmannian variety $\operatorname{Gr}(n, W) \subset \mathbb{P}\left(\Lambda^{n} W\right)$ with the projective subspace $\mathbb{P}\left(W_{1,1, \ldots, 1}\right) \subset \mathbb{P}\left(\Lambda^{n} W\right)$. In particular, the Segre variety is actually an algebraic variety described by the
system of quadratic equations from Proposition 2.8 on p. 48 restricted to the linear subspace $W_{1,1, \ldots, 1} \subset \Lambda^{n} W$.

## Problems for Independent Solution to Chapter 2

Problem 2.1 Let $V$ be a finite-dimensional vector space of over a field $\mathbb{k}$ of characteristic zero. Show that the following vector spaces are canonically isomorphic:
(a) $\operatorname{Sym}^{n}\left(V^{*}\right)$,
(b) $\operatorname{Sym}^{n}(V)^{*}$,
(c) $\left(S^{n} V\right)^{*}$,
(d) $S^{n}\left(V^{*}\right)$,
(e) symmetric $n$ - linear forms $V \times V \times \cdots \times V \rightarrow \mathbb{k}$, (f) functions $V \rightarrow \mathbb{k}, v \mapsto f(v)$, where $f$ is a homogeneous polynomial of degree $n$ in the coordinates of $v$ with respect to some basis in $V$.

Problem 2.2 For the same $V$ and $\mathbb{k}_{k}$ as in the previous problem, show that the following vector spaces are canonically isomorphic: (a) $\operatorname{Alt}^{n}\left(V^{*}\right)$, (b) $\operatorname{Alt}^{n}(V)^{*}$, (d) $\left(\Lambda^{n} V\right)^{*}$, (d) $\Lambda^{n}\left(V^{*}\right)$, (e) alternating $n$-linear forms $V \times V \times \cdots \times V \rightarrow \mathbb{k}$.

Problem 2.3 Which of the isomorphisms from the previous two problems hold
(a) over a field $\mathbb{k}$ of any positive characteristic?
(b) for an infinite-dimensional vector space $V$ ?

Problem 2.4 (Aronhold's Principle) Let $V$ be a finite-dimensional vector space over a field $\mathbb{k}$ of zero characteristic. Prove that the subspace of symmetric tensors $\operatorname{Sym}^{n}(V) \subset V^{\otimes n}$ is linearly generated by the proper $n$th tensor powers $v^{\otimes n}=v \otimes v \otimes \cdots \otimes v$ of vectors $v \in V$. Write the symmetric tensor

$$
u \otimes w \otimes w+w \otimes u \otimes w+w \otimes w \otimes u \in \operatorname{Sym}^{3}(V)
$$

as a linear combination of proper tensor cubes.
Problem 2.5 Is there a linear change of coordinates that makes the polynomial

$$
9 x^{3}-15 y x^{2}-6 z x^{2}+9 x y^{2}+18 z^{2} x-2 y^{3}+3 z y^{2}-15 z^{2} y+7 z^{3}
$$

depend on at most two variables?
Problem 2.6 Ascertain whether the cubic Grassmannian polynomial

$$
-\xi_{1} \wedge \xi_{2} \wedge \xi_{3}+2 \xi_{1} \wedge \xi_{2} \wedge \xi_{4}+4 \xi_{1} \wedge \xi_{3} \wedge \xi_{4}+3 \xi_{2} \wedge \xi_{3} \wedge \xi_{4}
$$

is decomposable. If it is, write down an explicit factorization. If not, explain why.
Problem 2.7 Let $V$ be a vector space of dimension $n$. Fix some nonzero element $\eta \in \Lambda^{n} V$. Check that for all $k, m$ with $k+m=n$, the perfect pairing between $\Lambda^{k} V$ and $\Lambda^{m} V$ is well defined by the formula $\omega_{1} \wedge \omega_{2}=\left\langle\omega_{1}, \omega_{2}\right\rangle \cdot \eta$. Given a
vector $v \in V$, describe the linear operator $\Lambda^{m-1} V \rightarrow \Lambda^{m} V$ dual with respect to this pairing to the left multiplication by $v: \Lambda^{k} V \rightarrow \Lambda^{k+1} V, \omega \mapsto v \wedge \omega$.
Problem 2.8 Verify that the Taylor expansion for the polynomial $\operatorname{det}(A)$ in the space of linear operators $A: V \rightarrow V$ has the following form:

$$
\operatorname{det}(\lambda A+\mu B)=\sum_{p+q=n} \lambda^{p} \mu^{q} \cdot \operatorname{tr}\left(\Lambda^{p} A \cdot \Lambda^{q} B^{*}\right)
$$

where $\Lambda^{p} A: \Lambda^{p} V \rightarrow \Lambda^{p} V, v_{1} \wedge v_{2} \wedge \cdots \wedge v_{p} \mapsto A\left(v_{1}\right) \wedge A\left(v_{2}\right) \wedge \ldots \wedge A\left(v_{p}\right)$ is the $p$ th exterior power of $A$ and $\Lambda^{q} B^{*}: \Lambda^{p} V \rightarrow \Lambda^{p} V$ is dual to $\Lambda^{q} B: \Lambda^{q} V \rightarrow \Lambda^{q} V$ with respect to the perfect pairing from Problem 2.7.
Problem 2.9 Write $\mathbb{P}_{N}=\mathbb{P}\left(S^{2} V^{*}\right)$ for the space of quadrics in $\mathbb{P}_{n}=\mathbb{P}(V)$, and $S \subset \mathbb{P}_{N}$ for the locus of all singular quadrics. Show that:
(a) $S$ is an algebraic hypersurface of degree $n+1$,
(b) a point $Q \in S$ is a smooth point of $S$ if and only if the corresponding quadric $Q \subset \mathbb{P}_{n}$ has just one singular point,
(c) the tangent hyperplane $T_{Q} S \subset \mathbb{P}_{N}$ to $S$ at such a smooth point $Q \in S$ is formed by all quadrics in $\mathbb{P}_{n}$ passing through the singular point of the quadric $Q \subset \mathbb{P}_{n}$.

Problem 2.10 Find all singular points of the following plane projective curves ${ }^{16}$ in $\mathbb{P}_{2}=\mathbb{P}\left(\mathbb{C}^{3}\right):$ (a) $\left(x_{0}+x_{1}+x_{2}\right)^{3}=27 x_{0} x_{1} x_{2}, \quad$ (b) $x^{2} y+x y^{2}=x^{4}+y^{4}$, (c) $\left(x^{2}-y+1\right)^{2}=y^{2}\left(x^{2}+1\right)$.

Problem 2.11 Write an explicit rational parameterization ${ }^{17}$ for the plane projective quartic

$$
\left(x_{0}^{2}+x_{1}^{2}\right)^{2}+3 x_{0}^{2} x_{1} x_{2}+x_{1}^{3} x_{2}=0
$$

using the projection of the curve from its singular point to some line. ${ }^{18}$
Problem 2.12 For a diagonalizable linear operator $F: V \rightarrow V$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, find the eigenvalues of $F^{\otimes n}$ for all $n \in \mathbb{N}$.
Problem 2.13 Prove that for every collection of linear operators

$$
F_{1}, F_{2}, \ldots, F_{m}: V \rightarrow V
$$

[^18]and constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{k}$, one has $\lambda_{1} F_{1}^{\otimes n}+\lambda_{2} F_{2}^{\otimes n}+\cdots+\lambda_{m} F_{m}^{\otimes n}=0$ for all $n \in \mathbb{N}$ only if $\lambda_{i}=0$ for all $i$.
Problem 2.14 Express the following quantities in terms of the coefficients of the characteristic polynomial of $F$ for an arbitrary linear operator $F: V \rightarrow V$ : (a) $\operatorname{tr} F^{\otimes 2}$, (b) $\operatorname{tr} F^{\otimes 3}$, (c) $\operatorname{det} F^{\otimes 2}$, (d) $\operatorname{det} F^{\otimes 3}$, (e) the trace and determinant of the map $\operatorname{Ad}_{F}: \operatorname{End}(V) \rightarrow \operatorname{End}(V), G \mapsto F G F^{-1}$, assuming that $F$ is invertible, $(f)$ the trace and determinant of the map $S^{2} F: S^{2} V^{*} \rightarrow S^{2} V^{*}$ that sends a quadratic form $q: V \rightarrow \mathbb{k}$ to the composition $q \circ F: V \rightarrow \mathbb{k}$.
Problem 2.15 Let $F$ be a diagonalizable linear operator on an $n$-dimensional vector space over a field $\mathbb{k}$ of characteristic zero. Express the eigenvalues of the operators
\[

$$
\begin{gathered}
S^{n} F: v_{1} v_{2} \cdots v_{n} \mapsto F\left(v_{1}\right) F\left(v_{2}\right) \cdots F\left(v_{n}\right), \\
\Lambda^{n} F: v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n} \mapsto F\left(v_{1}\right) \wedge F\left(v_{2}\right) \wedge \cdots \wedge F\left(v_{n}\right),
\end{gathered}
$$
\]

through the eigenvalues of $F$, and prove the following two identities in $\mathbb{k} \llbracket t \rrbracket$ : (a) $\operatorname{det}(E-t F)^{-1}=\sum_{k \geqslant 0} \operatorname{tr}\left(S^{k} F\right) \cdot t^{k}$, (b) $\operatorname{det}(E+t F)=\sum_{k \geqslant 0} \operatorname{tr}\left(\Lambda^{k} F\right) \cdot t^{k}$.

Problem 2.16 (Splitting Principle) Prove that the answers you got in the previous two problems hold for nondiagonalizable linear operators $F$ as well. Use the following arguments, known as a splitting principle. Interpret the relation on $F$ you are going to prove as the identical vanishing of some polynomial with rational coefficients in the matrix elements $f_{i j}$ of $F$ considered as independent variables. Then prove the following claims:
(a) If a polynomial $f \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ evaluates to zero at all points of some dense subset of $\mathbb{C}^{n}$, then $f$ is the zero polynomial. (Thus, it is enough to check that the relation being proved holds for some set of complex matrices dense in $\mathrm{Mat}_{n}(\mathbb{C})$. )
(b) The diagonalizable matrices are dense in $\operatorname{Mat}_{n}(\mathbb{C})$. Hint: every Jordan block ${ }^{19}$ can be made diagonalizable by a small perturbation of the diagonal elements of the cell.
(c) The polynomial identity being proved is not changed under conjugation ${ }^{20}$ $F \mapsto g F g^{-1}$ of the matrix $F=\left(f_{i j}\right)$ by any invertible matrix $g \in \mathrm{GL}_{n}(\mathbb{C})$. (Thus, it is enough to check the required identity only for the diagonal matrices.) ${ }^{21}$

[^19]Problem 2.17 Use the splitting principle to prove the Cayley-Hamilton identity $\chi_{F}(F)=0$ by reducing the general case to the diagonal $F$.
Problem 2.18 Prove that for every $F \in \operatorname{Mat}_{n^{2}}(\mathbb{C})$, one has $e^{F \otimes E+E \otimes F}=e^{F} \otimes e^{F}$ in $\operatorname{Mat}_{n^{2}}(\mathbb{C})$, where $E$ is the identity matrix.
Problem 2.19* Prove the identity $\log \operatorname{det}(E-A)=\operatorname{tr} \log (E-A)$ in the ring of formal power series with rational coefficients in the matrix elements $a_{i j}$ of the $n \times n$ matrix $A$. Show that for all small enough complex matrices $A \in \operatorname{Mat}_{n}(\mathbb{C})$, this identity becomes a true numerical identity in $\mathbb{C}$.
Problem 2.20 Let $V$ be a vector space of dimension 4 over $\mathbb{C}$ and $g \in S^{2} V^{*}$ a nondegenerate quadratic form with the polarization $\widetilde{g} \in \operatorname{Sym}^{2} V^{*}$. Write $G \subset \mathbb{P}_{3}=\mathbb{P}(V)$ for the projective quadric defined by the equation $g(x)=0$.
(a) Prove that there exists a unique symmetric bilinear form $\Lambda^{2} \widetilde{g}$ on the space $\Lambda^{2} V$ such that

$$
\Lambda^{2} \widetilde{g}\left(v_{1} \wedge v_{2}, w_{1} \wedge w_{2}\right) \stackrel{\text { def }}{=} \operatorname{det}\binom{\widetilde{g}\left(v_{1}, w_{1}\right) \widetilde{g}\left(v_{1}, w_{2}\right)}{\widetilde{g}\left(v_{2}, w_{1}\right) \widetilde{g}\left(v_{2}, w_{2}\right)}
$$

for all decomposable bivectors.
(b) Check that this form is symmetric and nondegenerate, and write its Gram matrix in the monomial basis $e_{i} \wedge e_{j}$ constructed from a $g$-orthonormal basis $e_{1}, e_{2}, e_{3}, e_{4}$ of $V$.
(c) Show that the Plücker embedding $\operatorname{Gr}(2, V) \hookrightarrow \mathbb{P}_{3}=\mathbb{P}(V)$ from Example 2.7 on p.49, which establishes a one-to-one correspondence between the lines in $\mathbb{P}_{3}=\mathbb{P}(V)$ and the points of the Plücker quadric $P=\left\{\omega \in \Lambda^{2} V \mid \omega \wedge \omega=0\right\}$ in $\mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$, maps the tangent lines to $G$ bijectively to the intersection $P \cap \Lambda^{2} G$, where $L^{2} G \subset \mathbb{P}_{5}$ is the quadric given by the symmetric bilinear form $\Lambda^{2} \widetilde{g}$.

Problem 2.21 (Plücker-Segre-Veronese Interaction) Let $U$ be a vector space of dimension 2 over $\mathbb{C}$. Consider the previous problem for the vector space $V=$ End $U$ and the quadratic form $g=$ det, whose value on an endomorphism $f: U \rightarrow U$ is $\operatorname{det} f \in \mathbb{C}$ and the zero set is the Segre quadric ${ }^{22} G \subset \mathbb{P}_{3}=\mathbb{P}(V)$ consisting of endomorphisms of rank one.
(a) Construct canonical isomorphisms

$$
\begin{aligned}
S^{2} V & \simeq \operatorname{Sym}^{2} V \simeq\left(S^{2} U^{*} \otimes S^{2} U\right) \oplus\left(\Lambda^{2} U^{*} \otimes \Lambda^{2} U\right) \\
\Lambda^{2} V & \simeq \operatorname{Alt}^{2} V \simeq\left(S^{2} U^{*} \otimes \Lambda^{2} U\right) \oplus\left(\Lambda^{2} U^{*} \otimes S^{2} U\right)
\end{aligned}
$$

(b) Show that the Plücker embedding sends two families of lines on the Segre quadric to the pair of smooth conics $P \cap \Lambda_{+}, P \cap \Lambda_{-}$cut out of the Plücker

[^20]quadric $P \subset \mathbb{P}\left(\Lambda^{2} \operatorname{End}(U)\right)$ by the complementary planes
$$
\Lambda_{-}=\mathbb{P}\left(S^{2} U^{*} \otimes \Lambda^{2} U\right) \quad \text { and } \quad \Lambda_{+}=\mathbb{P}\left(\Lambda^{2} U^{*} \otimes S^{2} U\right)
$$
the collectivizations of components of the second decomposition in (a).
(c) Check that the two conics $P \cap \Lambda_{-}$and $P \cap \Lambda_{+}$in (b) are the images of the quadratic Veronese embeddings
\[

$$
\begin{aligned}
& \mathbb{P}\left(U^{*}\right) \hookrightarrow \mathbb{P}\left(S^{2} U^{*}\right)=\mathbb{P}\left(S^{2} U^{*} \otimes \Lambda^{2} U\right), \quad \xi \mapsto \xi^{2}, \\
& \mathbb{P}(U) \hookrightarrow \mathbb{P}\left(S^{2} U\right)=\mathbb{P}\left(\Lambda^{2} U^{*} \otimes S^{2} U\right), \quad v \mapsto v^{2}
\end{aligned}
$$
\]

In other words, there is the following commutative diagram:

where the Plücker embedding is dashed, because it takes lines to points.
Problem 2.22 (Hodge Star) Under the conditions of Problem 2.20, verify that for every nondegenerate quadratic form $g$ on $V$, the linear operator $*: \Lambda^{2} V \rightarrow \Lambda^{2} V$, $\omega \mapsto \omega^{*}$, is well defined by the formula

$$
\omega_{1} \wedge \omega_{2}^{*}=\Lambda^{2} \widetilde{g}\left(\omega_{1}, \omega_{2}\right) \cdot e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4} \quad \forall \omega_{1}, \omega_{2} \in \Lambda^{2} V
$$

where $e_{1}, e_{2}, e_{3}, e_{4}$ is a $g$-orthonormal basis of $V$. Check that, up to a scalar complex factor of modulus one, the star operator does not depend on the choice of orthonormal basis. Describe the eigenspaces of the star operator and indicate their place in the diagram from Problem 2.21.
Problem 2.23 (Grassmannian Exponential) Let $V$ be a vector space over a field $\mathbb{k}$ of arbitrary characteristic. The Grassmannian exponential is defined for decomposable $\omega \in \Lambda^{2 m}$ by the assignment $e^{\omega} \stackrel{\text { def }}{=} 1+\omega$. For an arbitrary evendegree homogeneous Grassmannian polynomial $\zeta \in \Lambda^{2 m} V$, we write $\zeta=\sum \omega_{i}$, where all $\omega_{i}$ are decomposable, and put $e^{f} \stackrel{\text { def }}{=} \prod e^{\omega_{i}}$. Verify that this product
depends neither on an ordering of factors nor on the choice of expression ${ }^{23}$ $\zeta=\sum \omega_{i}$. Prove that the exponential map $\Lambda^{\text {even }} V \hookrightarrow \Lambda^{\text {even }} V, \zeta \mapsto e^{\zeta}$, is an injective homomorphism of the additive group of even-degree Grassmannian polynomials to the multiplicative group of even-degree Grassmannian polynomials with unit constant term. Show that over a field of characteristic zero, $\partial_{\alpha} e^{\zeta}=e^{\zeta} \wedge \partial_{\alpha} \zeta$ for all $\alpha \in V^{*}$, and $e^{\zeta}=\sum_{k \geqslant 0} \frac{1}{k!} \zeta^{\wedge k}$.
Problem 2.24 Let $V$ be a finite-dimensional vector space. Show that the subspaces

$$
\mathcal{I}_{\text {sym }} \cap(V \otimes V) \subset V \otimes V \quad \text { and } \quad \mathcal{I}_{\text {skew }} \cap\left(V^{*} \otimes V^{*}\right) \subset V^{*} \otimes V^{*}
$$

which generate the ideals of the commutativity and skew-commutativity relations ${ }^{24} \mathcal{I}_{\text {sym }} \subset \mathrm{T} V, \mathcal{I}_{\text {skew }} \subset \mathrm{T} V^{*}$, are the annihilators of each other under the perfect pairing between $V \otimes V$ and $V^{*} \otimes V^{*}$ provided by the complete contraction.
Problem 2.25 (Koszul and de Rham Complexes) Let $e_{1}, e_{2}, \ldots, e_{n}$ be a basis of a vector space $V$ over a field $\mathbb{k}$ of characteristic zero. Write $x_{i}$ and $\xi_{i}$ for the images of the basis vector $e_{i}$ in the symmetric algebra $S V$ and the exterior algebra $\Lambda V$ respectively. Convince yourself that there are well-defined linear operators

$$
\begin{aligned}
& d \stackrel{\text { def }}{=} \sum_{v} \xi_{v} \otimes \frac{\partial}{\partial x_{v}}: \Lambda^{k} V \otimes S^{m} V \rightarrow \Lambda^{k+1} V \otimes S^{m-1} V, \\
& \partial \stackrel{\text { def }}{=} \sum_{v} \frac{\partial}{\partial \xi_{v}} \otimes x_{v}: \Lambda^{k} V \otimes S^{m} V \rightarrow \Lambda^{k-1} V \otimes S^{m+1} V,
\end{aligned}
$$

acting on decomposable tensors by the rules

$$
\begin{aligned}
& d: \omega \otimes f \mapsto \sum_{v} \frac{\partial \omega}{\partial \xi_{v}} \otimes x_{v} \cdot f \\
& \partial: \omega \otimes f \mapsto \sum_{v} \xi_{v} \wedge \omega \otimes \frac{\partial f}{\partial x_{v}} .
\end{aligned}
$$

Prove that neither operator depends on the choice of basis in $V$ and that both operators have zero squares, $d^{2}=0=\partial^{2}$. Verify that their $s$-commutator $d \partial+\partial d$ acts on $\Lambda^{k} V \otimes S^{m} V$ as a homothety $(k+m) \cdot$ Id. Describe the homology spaces $\operatorname{ker} d / \operatorname{im} d$ and $\operatorname{ker} \partial / \operatorname{im} \partial$.

[^21]
## Chapter 3 <br> Symmetric Functions

### 3.1 Symmetric and Sign Alternating Polynomials

The symmetric group $S_{n}$ acts on the polynomial ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by permutations of variables:

$$
\begin{equation*}
g f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{g^{-1}(1)}, x_{g^{-1}(2)}, \ldots, x_{g^{-1}(n)}\right) \quad \forall g \in S_{n} . \tag{3.1}
\end{equation*}
$$

A polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is called symmetric if $g f=f$ for all $g \in S^{n}$, and alternating if $g f=\operatorname{sgn}(g) \cdot f$ for all $g \in S^{n}$. The symmetric polynomials clearly form a subring of $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, whereas the alternating polynomials form a module over this subring, since the product of symmetric and alternating polynomials is alternating.

In Example 1.1 on p .6 we have seen that the polynomial ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, considered as a $\mathbb{Z}$-module, is isomorphic to the $n$th tensor power $\mathbb{Z}[t]^{\otimes n}$ of the polynomial ring in one variable. The isomorphism

$$
\begin{equation*}
\varkappa: \mathbb{Z}[t]^{\otimes n} \xrightarrow{\sim} \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right], \quad t^{m_{1}} \otimes t^{m_{2}} \otimes \cdots \otimes t^{m_{n}} \mapsto x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}}, \tag{3.2}
\end{equation*}
$$

takes the multiplication of polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ to the componentwise multiplication

$$
\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}\right) \cdot\left(g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n}\right)=\left(f_{1} g_{1}\right) \otimes\left(f_{2} g_{2}\right) \otimes \cdots \otimes\left(f_{n} g_{n}\right)
$$

Exercise 3.1 Verify that this multiplication equips $\mathbb{Z}[t]^{\otimes n}$ with the structure of a commutative ring with unit $1 \otimes 1 \otimes \cdots \otimes 1$.
The action of the symmetric group on $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ agrees with the action on $\mathbb{Z}[t]^{\otimes n}$ by permutations of tensor factors considered in Sect. 2.4 on p.31. Therefore, the symmetric and alternating polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ correspond to the symmetric and alternating tensors in $\mathbb{Z}[t]^{\otimes n}$. In particular, the standard monomial
bases of $\mathbb{Z}$-modules $\operatorname{Sym}^{n}(\mathbb{Z}[t])$ and $\operatorname{Alt}^{n}(\mathbb{Z}[t])$, defined in formulas (2.21) and (2.22) on p .34 , provide the $\mathbb{Z}$-modules of symmetric and alternating polynomials with some obvious bases over $\mathbb{Z}$, called the monomial basis of symmetric polynomials and the determinantal basis of alternating polynomials.

The first is formed by sums of monomials sharing the same $S_{n}$-orbit

$$
\begin{equation*}
m_{\lambda} \stackrel{\text { def }}{=}\left(\text { the sum of all monomials in the } S_{n} \text {-orbit of } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{n}^{\lambda_{n}}\right) \tag{3.3}
\end{equation*}
$$

and is numbered by the Young diagrams $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of length ${ }^{1}$ at most $n$. The monomial $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{n}^{\lambda_{n}}$ is the lexicographically highest ${ }^{2}$ monomial in the orbit, because of the inequalities

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} .
$$

The polynomial $m_{\lambda}$ is homogeneous of degree $\operatorname{deg} m_{\lambda}=|\lambda|$, the total number of cells in $\lambda$.
Exercise 3.2 Convince yourself that every symmetric polynomial can be uniquely written as a finite $\mathbb{Z}$-linear combination of the polynomials $m_{\lambda}$.

The determinantal basis of the alternating polynomials consists of the alternating sums of monomials forming one $S_{n}$-orbit:

$$
\begin{equation*}
\Delta_{v}=\sum_{g \in S_{n}} \operatorname{sgn}(g) x_{g(1)}^{\nu_{1}} x_{g(2)}^{\nu_{2}} \cdots x_{g(n)}^{\nu_{n}} \tag{3.4}
\end{equation*}
$$

It is numbered by the Young diagrams $v$ with strictly decreasing length of rows,

$$
v_{1}>v_{2}>\cdots>v_{n},
$$

because the alternating property forces the exponents of all variables in every monomial to be distinct. ${ }^{3}$ Note that all such Young diagrams $v$ contain the diagram

$$
\delta \stackrel{\text { def }}{=}((n-1),(n-2), \ldots, 1,0)
$$

the smallest Young diagram with $n$ rows of nonnegative strictly decreasing lengths. The difference

$$
\lambda=v-\delta=\left(\left(v_{1}-n+1\right),\left(v_{2}-n+2\right), \ldots,\left(v_{n-1}-1\right), v_{n}\right)
$$

[^22]has $\lambda_{i}=\nu_{i}-n+i$ and constitutes a Young diagram of length at most $n$ with unconstrained lengths of rows. Sometimes it is convenient to number the determinantal alternating polynomials (3.4) by such unconstrained Young diagrams $\lambda$, and we will write $\Delta_{\lambda+\delta}$ instead of $\Delta_{v}$ in such cases. The polynomial $\Delta_{v}$ is called determinantal, because the right-hand side of (3.4) expands the determinant ${ }^{4}$
\[

\Delta_{\nu}=\operatorname{det}\left(x_{j}^{\nu_{i}}\right)=\operatorname{det}\left($$
\begin{array}{cccc}
x_{1}^{\nu_{1}} & x_{2}^{\nu_{1}} & \cdots & x_{n}^{\nu_{1}}  \tag{3.5}\\
x_{1}^{\nu_{2}} & x_{2}^{\nu_{2}} & \cdots & x_{n}^{\nu_{2}} \\
\vdots & \vdots & \cdots & \vdots \\
x_{1}^{\nu_{n}} & x_{2}^{\nu_{n}} & \cdots & x_{n}^{\nu_{n}}
\end{array}
$$\right) .
\]

For $v=\delta$, it becomes the Vandermonde determinant

$$
\Delta_{\delta}=\operatorname{det}\left(x_{j}^{n-i}\right)=\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}  \tag{3.6}\\
x_{1}^{n-2} & x_{2}^{n-2} & \cdots & x_{n}^{n-2} \\
\vdots & \vdots & \cdots & \vdots \\
x_{1} & x_{2} & \cdots & x_{n} \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Since every alternating polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ vanishes for $x_{i}=x_{j}$, all the differences $\left(x_{i}-x_{j}\right)$ divide $f$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. This forces $f$ to be divisible by the product $\prod_{i<j}\left(x_{i}-x_{j}\right)$, because all the differences $x_{i}-x_{j}$ are mutually nonassociated irreducible polynomials, and the ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is factorial.

Exercise 3.3 Verify that $\Delta_{\delta}=\prod_{i<j}\left(x_{i}-x_{j}\right)$.
We conclude that multiplication by the Vandermonde determinant $f \mapsto f \cdot \Delta_{\delta}$ establishes a bijection between the symmetric and alternating polynomials. Note that this bijection is an isomorphism of modules over the ring of symmetric polynomials, and in particular, an isomorphism of $\mathbb{Z}$-modules. The preimage of the determinantal basis (3.5) under this isomorphism is called the Schur basis of the $\mathbb{Z}$-module of symmetric polynomials. We have the following proposition.

## Proposition 3.1 (Schur Basis) The determinantal Schur polynomials

$$
s_{\lambda} \stackrel{\text { def }}{=} \Delta_{\delta+\lambda} / \Delta_{\delta},
$$

where $\lambda$ runs through the Young diagrams of length at most $n$, form a basis in the $\mathbb{Z}$-module of symmetric polynomials in $n$ variables.

[^23]
### 3.2 Elementary Symmetric Polynomials

The elementary symmetric polynomials $e_{0}, e_{1}, \ldots, e_{n} \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ are defined by the following equality in the ring of polynomials in $t$ with coefficients in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]:$

$$
\begin{equation*}
E(t)=\prod_{i}\left(1+x_{i} t\right)=\sum_{k=0}^{n} e_{k}(x) \cdot t^{k} . \tag{3.7}
\end{equation*}
$$

Explicitly, $e_{0}=1$ and $e_{k}(x)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ is the sum of all $k$-linear monomials of degree $k$. These polynomials also appear in the Viète formulas expressing the coefficients of a monic polynomial

$$
t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+a_{n}=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

through the roots: $a_{i}=(-1)^{i} e_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.
For every Young diagram $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$, we set

$$
e_{\lambda} \stackrel{\text { def }}{=} e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{k}}=\prod_{i=1}^{k} e_{\lambda_{i}}
$$

and call these polynomials elementary symmetric as well. Note that

$$
e_{\lambda}=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n}^{m_{n}},
$$

where $m_{i}=m_{i}(\lambda)$ is the number of rows of length $i$ in the diagram $\lambda$. Thus, the polynomials $e_{\lambda}$ are in bijection with the monomials in $e_{1}, e_{2}, \ldots, e_{n}$.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)=\lambda^{t}$ be a pair of transposed ${ }^{5}$ Young diagrams. Then the lexicographically highest monomial of $e_{\lambda}$ appears as the product of monomials $x_{1} \cdots x_{\lambda_{1}}$ from $e_{\lambda_{1}}, x_{1} \cdots x_{\lambda_{2}}$ from $e_{\lambda_{2}}$, etc., up to $x_{1} \ldots x_{\lambda_{m}}$ from $e_{\lambda_{m}}$. Let us put $x_{1}$ in all cells of the first column of the Young diagram $\lambda, x_{2}$ in all cells of the second column, etc. Then the previous monomials appear in the rows of the filled diagram $\lambda$, and the product of these monomials equals $x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots x_{n}^{\mu_{n}}$. Therefore, the elementary symmetric polynomial $e_{\lambda}$ is expanded through the monomial basis (3.3) as

$$
\begin{equation*}
e_{\lambda}=m_{\lambda^{t}}+\text { (lexicographically lower terms) } \tag{3.8}
\end{equation*}
$$

[^24]Proposition 3.2 The polynomials $e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{m}}$, where $\lambda$ runs through the Young diagrams with at most $n$ columns, form a basis of the $\mathbb{Z}$-module of symmetric polynomials in $n$ variables.

Proof Write the basis vectors $m_{\mu}$ in the lexicographically increasing order of their indices $\mu$, and the polynomials $e_{\lambda}$ in the lexicographically increasing order of the transposed diagrams $\lambda^{t}$. Then the transition matrix from $e_{\lambda}$ to $m_{\mu}$ is upper unitriangular by (3.8). We know from Example 8.17 of Algebra I that every such matrix is invertible. ${ }^{6}$ Therefore, the polynomials $e_{\lambda}$ also form a basis.
Corollary 3.1 The polynomials $e_{1}, e_{2}, \ldots, e_{n}$ are algebraically independent, ${ }^{7}$ and the assignment $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto f\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ establishes an isomorphism of the polynomial ring $\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ with the ring of symmetric polynomials in $n$ variables. In other words, every symmetric polynomial in $n$ variables is uniquely expressed as a polynomial in $e_{1}, e_{2}, \ldots, e_{n}$.

Corollary 3.2 Every symmetric polynomial in the roots of a monic polynomial $f$ can be rewritten as a polynomial in the coefficients off.

### 3.3 Complete Symmetric Polynomials

The sum of all monomials of total degree $k$ in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is denoted by $h_{k}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and called the complete symmetric polynomial of degree $k$. Equivalently, the polynomial $h_{k}$ can be described as the coefficient of $t^{k}$ in the following formal power series in $t$ over the ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ :

$$
\begin{equation*}
H(t)=\prod_{i} \frac{1}{1-x_{i} t}=\prod_{i}\left(1+x_{i} t+x_{i}^{2} t^{2}+x_{i}^{3} t^{3}+\cdots\right)=\sum_{k \geqslant 0} h_{k}(x) \cdot t^{k} \tag{3.9}
\end{equation*}
$$

Indeed, when we choose $m_{i}$ th term in the $i$ th geometric progression and multiply the chosen terms together, we get $x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}} \cdot t^{m_{1}+\cdots+m_{n}}$. Thus, the coefficient of $t^{k}$ equals the sum of all monomials $x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}}$ with

$$
m_{1}+m_{2}+\cdots+m_{n}=k .
$$

Since the generating series for the elementary and complete symmetric polynomials are related by the equality $H(t) E(-t)=1$, comparison of the coefficients of $t^{k}$ on both sides leads to the following recurrence formulas:

$$
\begin{align*}
& (-1)^{k} h_{k}=e_{k}-e_{k-1} h_{1}+e_{k-2} h_{2}-\cdots+(-1)^{k-1} e_{1} h_{k-1},  \tag{3.10}\\
& (-1)^{k} e_{k}=h_{k}-h_{k-1} e_{1}+h_{k-2} e_{2}-\cdots+(-1)^{k-1} h_{1} e_{k-1} . \tag{3.11}
\end{align*}
$$

[^25]Proposition 3.3 There exists a unique involutive automorphism $\omega$ of the ring of symmetric polynomials in $n$ variables such that $\omega\left(e_{k}\right)=h_{k}$ and $\omega\left(h_{k}\right)=e_{k}$ for every $k=1,2, \ldots, n$.

Proof Since the ring of symmetric polynomials is $\mathbb{Z}\left[e_{1}, e_{2}, \ldots, e_{n}\right]$, the assignment $\omega: e_{k} \mapsto h_{k}$ is uniquely extended to a ring endomorphism of the ring of symmetric polynomials. The recurrence formulas (3.10), (3.11) show that $\omega$ maps every $h_{k}$ back to $e_{k}$ for $1 \leqslant k \leqslant n$. Therefore, $\omega$ is an involutive automorphism.

Corollary 3.3 The polynomials $h_{1}, h_{2}, \ldots, h_{n}$ are algebraically independent. Every symmetric polynomial in $n$ variables can be uniquely written as a polynomial in $h_{1}, h_{2}, \ldots, h_{n}$. In other words, the assignment $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto f\left(h_{1}, h_{2}, \ldots, h_{n}\right)$ establishes an isomorphism between the polynomial ring $\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ and the ring of symmetric polynomials in $n$ variables.

### 3.4 Newton's Sums of Powers

### 3.4.1 Generating Function for the $\boldsymbol{p}_{\boldsymbol{k}}$

The sum of $k$ th powers of all the variables

$$
\begin{equation*}
p_{k}(x) \stackrel{\text { def }}{=} x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}, \text { where } k \geqslant 1, \tag{3.12}
\end{equation*}
$$

is called the Newton symmetric polynomial of degree $k$. These polynomials appear as the coefficients of the logarithmic derivative

$$
\begin{aligned}
\frac{d}{d t} \log H(t) & =\frac{d}{d t} \log \prod_{i} \frac{1}{1-x_{i} t}=-\sum_{i} \frac{d}{d t} \log \left(1-x_{i} t\right) \\
& =\sum_{i} \frac{x_{i}}{1-x_{i} t}=\sum_{i} \sum_{\alpha \geqslant 0} x_{i}^{\alpha+1} \cdot t^{\alpha}=\sum_{k \geqslant 1} p_{k}(x) \cdot t^{k-1} .
\end{aligned}
$$

The latter power series is denoted by $P(t)$. Since $H(t)=1 / E(-t)$, it follows that

$$
P(t)=\frac{H^{\prime}(t)}{H(t)}=\frac{E^{\prime}(-t)}{E(-t)}
$$

Comparison of the coefficients of $t^{k-1}$ on both sides of the equalities

$$
H(t) P(t)=H^{\prime}(t) \quad \text { and } \quad E(-t) P(t)=E^{\prime}(-t)
$$

leads to the recurrent Newton formulas expressing $p_{k}$ in terms of $h_{k}$ and $e_{k}$ :

$$
\begin{align*}
p_{k} & =k h_{k}-h_{k-1} p_{1}-h_{k-2} p_{2}-\cdots-h_{1} p_{k-1},  \tag{3.13}\\
(-1)^{k-1} p_{k} & =k e_{k}-e_{k-1} p_{1}+e_{k-2} p_{2}-\cdots+(-1)^{k-1} e_{1} p_{k-1} \tag{3.14}
\end{align*}
$$

It follows from these formulas by induction on $k$ that every polynomial $p_{k}$ is an eigenvector of the involution $\omega$ from Proposition 3.3 with the eigenvalue $(-1)^{k-1}$,

$$
\begin{equation*}
\omega\left(p_{k}\right)=(-1)^{k-1} p_{k} \tag{3.15}
\end{equation*}
$$

Proposition 3.4 The symmetric Newton polynomials $p_{1}, p_{2}, \ldots, p_{n}$ are algebraically independent. Every symmetric polynomial in $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ can be uniquely written as a polynomial with rational coefficients in $p_{1}, p_{2}, \ldots, p_{n}$. In other words, the assignment $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto f\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ establishes an isomorphism between the polynomial ring $\mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ and the ring of symmetric polynomials in $n$ variables with coefficients in $\mathbb{Q}$.

Proof The formula (3.14) implies that for every $N \in \mathbb{N}$, the $\mathbb{Q}$-linear span of products $p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{n}^{m_{n}}$ in the vector space $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\leqslant N}$ of polynomials of total degree at most $N$ coincides with the $\mathbb{Q}$-linear span of products $e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n}^{m_{n}}$. Since the polynomials $e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n}^{m_{n}}$ are linearly independent and the total number of them coincides with the total number of polynomials $p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{n}^{m_{n}}$, the latter are linearly independent as well and form a basis of the vector space of symmetric polynomials with rational coefficients.

### 3.4.2 Transition from $e_{k}$ and $h_{\boldsymbol{k}}$ to $\boldsymbol{p}_{\boldsymbol{k}}$

For convenience in writing formulas, we associate with every Young diagram $\lambda$ an infinite sequence of nonincreasing nonnegative integers $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ that continues the sequence of actual row lengths to the right with zeros. For each $i \in \mathbb{N}$, we write $m_{i}=m_{i}(\lambda)$ for the number of rows of length $i$ in $\lambda$. Recall that the length $\ell(\lambda)$ means the total number of nonzero elements in $\lambda$, and the weight $|\lambda|=\sum_{i} \lambda_{i}$ means the total number of cells in the corresponding Young diagram. We denote by $\varepsilon_{\lambda}= \pm 1$ the sign of the permutation of cyclic type ${ }^{8} \lambda$. Recall that the parity of such a permutation coincides with the parity of sums

$$
\sum_{k \geqslant 1}(k-1) m_{k} \equiv|\lambda|+\sum_{k \geqslant 1} m_{k} \equiv \sum_{i=1}^{\ell(\lambda)}\left(\lambda_{i}-1\right) \quad(\bmod 2) .
$$

[^26]We write $z_{\lambda} \stackrel{\text { def }}{=} \prod_{k}\left(m_{k}!\cdot k^{m_{k}}\right)$ for the total number of permutations commuting with a fixed permutation ${ }^{9}$ of cyclic type $\lambda$. Thus, the total number of permutations of cyclic type $\lambda$ is equal to $n!/ z_{\lambda}$, where $n=|\lambda|$. Finally, we put

$$
p_{\lambda} \stackrel{\text { def }}{=} p_{\lambda_{1}} p_{\lambda_{2}} p_{\lambda_{3}} \cdots=p_{1}^{m_{1}} p_{2}^{m_{2}} p_{3}^{m_{3}} \cdots
$$

and call these polynomials Newton symmetric polynomials as well. Note that the set of polynomials $p_{\lambda}$ indexed by Young diagrams of length at most $n$ coincides with the set of all monomials $p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{n}^{m_{n}}$. Each polynomial $p_{\lambda}$ is an eigenvector of the involution $\omega$ with eigenvalue $\varepsilon_{\lambda}$ :

$$
\begin{equation*}
\omega\left(p_{\lambda}\right)=\varepsilon_{\lambda} \cdot p_{\lambda} . \tag{3.16}
\end{equation*}
$$

Proposition 3.5 The elementary and complete symmetric polynomials $e_{k}, h_{k}$ are expanded as rational linear combinations of monomials $p_{\lambda}$ by the formulas

$$
\begin{align*}
& h_{k}=\sum_{|\lambda|=k} z_{\lambda}^{-1} p_{\lambda},  \tag{3.17}\\
& e_{k}=\sum_{|\lambda|=k} \varepsilon_{\lambda} z_{\lambda}^{-1} p_{\lambda}, \tag{3.18}
\end{align*}
$$

where both summations run over all Young diagrams consisting of $k$ cells.
Proof Formulas (3.17) and (3.18) are transferred one to the other by the involution $\omega$. Thus, it is enough to prove only the first of them. Recall that

$$
P(t)=\sum_{k \geqslant 1} p_{k}(x) \cdot t^{k-1}=\frac{d}{d t} \log H(t) .
$$

Therefore,

$$
H(t)=e^{\int P(t) d t}=e^{\sum_{i \geqslant 1} p_{i} i^{i} / i}=\prod_{i \geqslant 1} e^{p_{i} t^{i} / i}=\prod_{i \geqslant 1} \sum_{m \geqslant 0} \frac{p_{i}^{m}}{i^{m} m!} t^{i m} .
$$

If we choose the $m_{i}$ th summand within the $i$ th factor in order to multiply the chosen terms together, then the monomial $t^{k}$ appears if and only if $\sum_{i} i \cdot m_{i}=k$. Such sequences $\left(m_{i}\right)$ are in bijection with the Young diagrams $\lambda$ of weight $k$ with $m_{i}$ rows of length $i$ for all $1 \leqslant i \leqslant k$. The product of summands corresponding to the Young diagram $\lambda$ contributes $p_{\lambda} / z_{\lambda}$ to the coefficient of $t^{k}$.

[^27]Example 3.1 For $k=3$, we get the expression $e_{3}=p_{3}-\frac{1}{2} p_{1} p_{2}+\frac{1}{6} p_{1}^{3}$, which agrees with the multinomial formula

$$
\left(x_{1}+\cdots+x_{n}\right)^{3}=\sum x_{i}^{3}+3 \sum_{i \neq j} x_{i} x_{j}^{2}+6 \sum_{i<j<k} x_{i} x_{j} x_{k} .
$$

### 3.5 Giambelli's Formula

Giambelli's formula expresses the determinantal Schur polynomials $s_{\lambda}$ from Proposition 3.1 on p .59 in terms of the complete symmetric polynomials $h_{k}$. Write $e_{k}^{(p)}$ for the polynomial in $x_{1}, \ldots, x_{p-1}, x_{p+1}, \ldots, x_{n}$ obtained from the elementary symmetric polynomial $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by the substitution $x_{p}=0$. We also put $e_{k}^{(p)}=0$ for all $k>n-1$. For a fixed $p$, the generating function of the sequence of polynomials $e_{k}^{(p)}, k \geqslant 0$, is $E^{(p)}(t)=\sum_{k} e_{k}^{(p)}(x) \cdot t^{k}=\prod_{i \neq p}\left(1+x_{i} t\right)$. Therefore, $H(t) E^{(p)}(-t)=\left(1-x_{p} t\right)^{-1}$. Comparison of the coefficients of $t^{k}$ on both sides leads to the relation $h_{0} \cdot(-1)^{k} e_{k}^{(p)}+h_{1} \cdot(-1)^{k-1} e_{k-1}^{(p)}+\cdots+h_{k} \cdot e_{0}^{(p)}=x_{p}^{k}$. Under our convention that $e_{j}^{(p)}=0$ for all $j>n-1$, it can be written as

$$
\begin{align*}
x_{p}^{k} & =h_{k-n+1} \cdot(-1)^{n-1} e_{n-1}^{(p)}+h_{k-n+2} \cdot(-1)^{n-2} e_{n-2}^{(p)}+\cdots+h_{k} \cdot e_{0}^{(p)} \\
& =\sum_{j=1}^{n} h_{k-n+j} \cdot(-1)^{n-j} e_{j}^{(p)} . \tag{3.19}
\end{align*}
$$

Let us think of the right-hand side as the product of the row matrix of width $n$,

$$
\begin{equation*}
\left(h_{k-n+1}, h_{k-n+2}, \ldots, h_{k}\right), \tag{3.20}
\end{equation*}
$$

and the column matrix of height $n$ transposed to the row

$$
\begin{equation*}
\left((-1)^{n-1} e_{n-1}^{(p)}, \ldots, e_{2}^{(p)},-e_{1}^{(p)}, 1\right) \tag{3.21}
\end{equation*}
$$

Fix an increasing sequence $\nu_{1}>\nu_{2}>\cdots>\nu_{n}$ of values for $k$ and write the corresponding rows (3.20) as the $n \times n$ matrix

$$
H_{v}=\left(h_{\nu_{i}-n+j}\right)=\left(\begin{array}{cccc}
h_{\nu_{1}-n+1} & h_{\nu_{1}-n+2} & \cdots & h_{\nu_{1}} \\
h_{\nu_{2}-n+1} & h_{\nu_{2}-n+2} & \cdots & h_{\nu_{2}} \\
\vdots & \vdots & \cdots & \vdots \\
h_{v_{n}-n+1} & h_{v_{n}-n+2} & \cdots & h_{v_{n}}
\end{array}\right),
$$

assuming that $h_{0}=1$ and $h_{j}=0$ for $j<0$. Similarly, write the columns (3.21) for $p=1,2, \ldots, n$ as the $n \times n$ matrix

$$
M=\left((-1)^{n-i} e_{n-i}^{(j)}\right)=\left(\begin{array}{cccc}
(-1)^{n-1} e_{n-1}^{(1)} & (-1)^{n-1} e_{n-1}^{(2)} \cdots & \cdots(-1)^{n-1} e_{n-1}^{(n)} \\
(-1)^{n-2} e_{n-2}^{(1)} & (-1)^{n-2} e_{n-2}^{(2)} & \cdots & (-1)^{n-2} e_{n-2}^{(n)} \\
\vdots & \vdots & \cdots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Formula (3.19) implies the matrix equality $D_{v}=H_{v} \cdot M$, where

$$
D_{v}=\left(x_{j}^{\nu_{i}}\right)=\left(\begin{array}{cccc}
x_{1}^{\nu_{1}} & x_{2}^{\nu_{1}} & \cdots & x_{n}^{\nu_{1}} \\
x_{1}^{\nu_{2}} & x_{2}^{\nu_{2}} & \cdots & x_{n}^{\nu_{2}} \\
\vdots & \vdots & \cdots & \vdots \\
x_{1}^{\nu_{n}} & x_{2}^{v_{n}} & \cdots & x_{n}^{v_{n}}
\end{array}\right)
$$

is the same matrix as in formula (3.5) on p. 59. Therefore,

$$
\Delta_{v}=\operatorname{det} D_{v}=\operatorname{det} H_{v} \cdot \operatorname{det} M
$$

for every Young diagram $v$ of length $n$ with strictly decreasing lengths of rows. For $v=\delta=(n-1, \ldots, 1,0)$, the matrix $H_{\delta}$ becomes upper unitriangular, with $\operatorname{det} H_{\delta}=1$. Hence, $\operatorname{det} M=\operatorname{det} D_{\delta}=\Delta_{\delta}$. This leads to the required expression for the Schur polynomials:

$$
\begin{equation*}
s_{\lambda}=\Delta_{\delta+\lambda} / \Delta_{\delta}=\operatorname{det} D_{\delta+\lambda} / \operatorname{det} M=\operatorname{det} H_{\delta+\lambda}=\operatorname{det}\left(h_{\lambda_{i}+j-i}\right) \tag{3.22}
\end{equation*}
$$

In expanded form, this formula appears as follows:

$$
s_{\lambda}=\operatorname{det}\left(\begin{array}{cccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & \ddots & h_{\lambda_{1}+n-1}  \tag{3.23}\\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & \ddots & \ddots \\
\ddots & \ddots & \ddots & h_{\lambda_{n-1}+1} \\
h_{\lambda_{n}-n+1} & \ddots & h_{\lambda_{n}-1} & h_{\lambda_{n}}
\end{array}\right),
$$

where $h_{\lambda_{1}}, h_{\lambda_{2}}, \ldots, h_{\lambda_{n}}$ are on the main diagonal, and the indices of $h$ are incremented sequentially by 1 from left to right in every row. Formula (3.23) is known as the first Giambelli formula. The second Giambelli formula expresses the Schur polynomials in terms of the elementary symmetric functions $e_{\lambda}$. However, we postpone its deduction until we know how the involution $\omega$ acts on the Schur polynomials. ${ }^{10}$

[^28]Example 3.2 For $n=2$, the Giambelli formula gives the following expression for $s_{(2,1)}$ in $\mathbb{Z}\left[x_{1}, x_{2}\right]$ :

$$
s_{(2,1)}=\operatorname{det}\left(\begin{array}{cc}
h_{2} & h_{3} \\
1 & h_{1}
\end{array}\right)=h_{1} h_{2}-h_{3}=e_{1} e_{2}-e_{3} .
$$

For $n=3$, the expression of $s_{(2,1)}$ in $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$ is given by the formula

$$
s_{(2,1)}=s_{(2,1,0)}=\operatorname{det}\left(\begin{array}{ccc}
h_{2} & h_{3} & h_{4} \\
1 & h_{1} & h_{2} \\
0 & 0 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
h_{2} & h_{3} \\
1 & h_{1}
\end{array}\right)
$$

which leads to the same result $s_{(2,1)}=h_{1} h_{2}-h_{3}$ as for $n=2$.
Exercise 3.4 Convince yourself that the expansion of $s_{\lambda}$ as a polynomial in $h_{k}$ obtained for ${ }^{11} n=\ell(\lambda)$ remains unchanged for all $n>\ell(\lambda)$.
For the diagram $\lambda=(k)$, which consists of one row of length $k$, we get the equality $s_{(k)}=h_{k}$. It is obvious for $n=1$ and holds for all $n$ by Exercise 3.4. Can you deduce the identity $\Delta_{\delta+(n)}=h_{k} \cdot \Delta_{\delta}$ by the straightforward evaluation of the order- $n$ Vandermonde-type determinant $\Delta_{\delta+(n)}$ ?

### 3.6 Pieri's Formula

Pieri's formula expands the product $s_{\lambda} \cdot h_{k}=s_{\lambda} \cdot s_{(k)}$ as a linear combination of polynomials $s_{\mu}$. It requires a slight generalization of what was said in Sect. 3.1. Consider the ring of formal power series $\mathbb{Z} \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket \simeq \mathbb{Z} \llbracket t \rrbracket^{\otimes n}$ and $\mathbb{Z}$-submodules of the symmetric and alternating power series ${ }^{12}$ within this ring. Collecting the monomials sharing the same $S_{n}$-orbit allows us to expand every alternating power series $A \in \mathbb{Z} \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket$ as

$$
\begin{equation*}
A=\sum_{v_{1}>v_{2}>\cdots>v_{n}} c_{v} \cdot \Delta_{v}, \tag{3.24}
\end{equation*}
$$

where all the coefficients $c_{v}$ are integers, the summation is over all length- $n$ Young diagrams $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ with strictly decreasing lengths of rows, and the determinantal polynomials

$$
\Delta_{v}=\sum_{g \in S_{n}} \operatorname{sgn}(g) x_{g(1)}^{\nu_{1}} x_{g(2)}^{\nu_{2}} \cdots x_{g(n)}^{\nu_{n}}
$$

[^29]are exactly the same as in formula (3.5) on p.59. The expansion (3.24) for the product of the alternating polynomial $\Delta_{\nu}$ and the symmetric power series
$$
H(x)=\prod_{i=1}^{n}\left(1-x_{i}\right)^{-1}=\prod_{i=1}^{n}\left(1+x_{i}+x_{i}^{2}+x_{i}^{3}+\cdots\right)=\sum_{k \geqslant 0} h_{k}(x),
$$
which generates the polynomials $h_{k}$, is described in the next lemma.
Lemma 3.1 We have $\Delta_{v} \cdot H=\sum_{\eta} \Delta_{\eta}$, where $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ runs through the Young diagrams of length $n$ with
$$
\eta_{1} \geqslant \nu_{1}>\eta_{2} \geqslant \nu_{2}>\cdots>\eta_{n} \geqslant v_{n} .
$$

Proof Given $n$ power series in one variable $f_{1}(t), f_{2}(t), \ldots, f_{n}(t) \in \mathbb{Z} \llbracket t \rrbracket$, write

$$
f_{1} \wedge f_{2} \wedge \cdots \wedge f_{n} \stackrel{\text { def }}{=} \sum_{g \in S_{n}} \operatorname{sgn}(g) \cdot f_{1}\left(x_{g(1)}\right) f_{2}\left(x_{g(2)}\right) \cdots f_{n}\left(x_{g(n)}\right)
$$

for the alternating power series mapped by the isomorphism

$$
\mathbb{Z} \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket \stackrel{Z}{\rightarrow} \llbracket t \rrbracket^{\otimes n}
$$

to the complete polarization of the Grassmannian polynomial

$$
n!\cdot f_{1} \wedge f_{2} \wedge \cdots \wedge f_{n} \in \Lambda^{n} \mathbb{Z} \llbracket \llbracket \rrbracket .
$$

The series $f_{1} \wedge f_{2} \wedge \cdots \wedge f_{n} \in \mathbb{Z} \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket$ is an $n$-linear sign-alternating function of $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{Z} \llbracket t \rrbracket$. In particular, $f_{1} \wedge f_{2} \wedge \cdots \wedge f_{n}$ is not changed under the replacement of any of the $f_{i}$ by its sum with an arbitrary linear combination of the other $f_{v}$.
Exercise 3.5 Convince yourself that $t^{\nu_{1}} \wedge t^{\nu_{2}} \wedge \cdots \wedge t^{\nu_{n}}=\Delta_{v}$.
Now we can write the product $\Delta_{v} \cdot H$ as

$$
\Delta_{v} \cdot H=\sum_{g \in S_{n}} \operatorname{sgn}(g) \prod_{i=1}^{n} x_{g(i)}^{\nu_{i}} /\left(1-x_{g(i)}\right)=f_{1} \wedge f_{2} \wedge \cdots \wedge f_{n}
$$

for $f_{i}(t)=t^{\nu_{i}} /(1-t)=t^{\nu_{i}}+t^{\nu_{i}+1}+t^{\nu_{i}+2}+\cdots$. Subtraction of $f_{1}$ from all the $f_{i}$ with $i>1$ truncates the latter series to the polynomials of degree $\nu_{1}-1$, which we will denote by the same letters $f_{i}$. Subtraction of $f_{2}$ from all the $f_{i}$ with $i>2$ truncates them up to degree $\nu_{2}-1$. Then subtraction of $f_{3}$ truncates all $f_{i}$ with $i>3$ up to degree $\nu_{3}-1$, etc. Therefore, $\Delta_{v} \cdot H=f_{1} \wedge f_{2} \wedge \cdots \wedge f_{n}$, where $f_{1}=\sum_{j \geqslant \nu_{1}} t^{j}$ and $f_{i}=t^{\nu_{i}}+t^{\nu_{i}+1}+\cdots+t^{\nu_{i-1}-1}$ for $2 \leqslant i \leqslant n$. This product is expanded into the sum of Grassmannian monomials $\sum_{\eta} t^{\eta_{1}} \wedge t^{\eta_{2}} \wedge \cdots \wedge t^{\eta_{n}}=\sum_{\eta} \Delta_{\eta}$, where the summation is over all $\eta_{1} \geqslant \nu_{1}>\eta_{2} \geqslant \nu_{2}>\eta_{3} \geqslant \nu_{3}>\cdots>\eta_{n} \geqslant \nu_{n}$.

Corollary 3.4 (Pieri's Formula) We have $s_{\lambda} \cdot h_{k}=\sum_{\mu} s_{\mu}$, where $\mu$ runs through the Young diagrams of length at most $n$ obtained from $\lambda$ by adding $k$ cells in $k$ different columns.

Proof Let $v=\lambda+\delta, \eta=\mu+\delta$, where $\delta=(n-1, n-2, \ldots, 1,0)$ and $\lambda, \mu$ are Young diagrams with lengths of rows $\lambda_{i}=v_{i}-n+i, \mu_{i}=\eta_{i}-n+i$. In terms of $\lambda, \mu$, the inequalities $\eta_{i} \geqslant v_{i}>\eta_{i+1}$ from Lemma 3.1 mean that $\mu_{i} \geqslant \lambda_{i} \geqslant \mu_{i+1}$. Thus, the equality of Lemma 3.1 can be written as $\Delta_{\delta+\lambda} \sum_{k \geqslant 0} h_{k}=\sum_{\mu} \Delta_{\delta+\mu}$, where the summation is over all Young diagrams $\mu$ such that $\mu_{1} \geqslant \lambda_{1} \geqslant \mu_{2} \geqslant \lambda_{2} \geqslant \cdots$. Dividing both sides by $\Delta_{\delta}$ and looking at the homogeneous component of degree $|\lambda|+k$ in $x$ gives Pieri's formula.

Remark 3.1 If the diagram $\lambda$ in Pieri's formula consists of $k<n$ rows, i.e., has $\lambda_{m}=0$ for all $m>k$, where $k<n$, then some diagrams $\mu$ on the right-hand side have length $k+1$, i.e., are one row higher than $\lambda$. For example, for $n=2$, we get $s_{(2)} \cdot h_{1}=s_{(2,1)}+s_{(3)}$, which gives another demonstration of the equality $s_{(2,1)}=h_{2} h_{1}-h_{3}$ from Example 3.2 on p. 67.

### 3.7 The Ring of Symmetric Functions

Many relations among symmetric polynomials do not depend on the number of variables as soon as the latter is large enough that all the polynomials involved in the relation are defined. For example, the relation $s_{(2,1)}=h_{2} h_{1}-h_{3}$ holds in all rings $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with $n \geqslant 2$; the relation $6 e_{3}=6 p_{3}-3 p_{1} p_{2}+p_{1}^{3}$ holds for $n \geqslant 3$; and so on. So it would be convenient to consider symmetric polynomials $m_{\lambda}(x), s_{\lambda}(x), e_{\lambda}(x), h_{\lambda}(x)$, and $p_{\lambda}(x)$ without fixing the precise number of variables but assuming instead simply that this number is sufficiently large. This is formalized as follows. For all pairs of nonnegative integers $r>s$, write

$$
\begin{align*}
\zeta_{s r}: \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{r}\right] & \rightarrow \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{s}\right],  \tag{3.25}\\
f\left(x_{1}, x_{2}, \ldots, x_{r}\right) & \mapsto f\left(x_{1}, x_{2}, \ldots, x_{s}, 0, \ldots, 0\right),
\end{align*}
$$

for a surjective ring homomorphism ${ }^{13}$ assigned by the substitution

$$
\begin{equation*}
x_{s+1}=x_{s+2}=\cdots=x_{r}=0 . \tag{3.26}
\end{equation*}
$$

This substitution clearly preserves the symmetry and alternating properties of polynomials. Moreover, it takes the polynomials $m_{\lambda}(x), s_{\lambda}(x), e_{\lambda}(x), h_{\lambda}(x)$, and $p_{\lambda}(x)$ either to zero or to the polynomial with exactly the same name.

[^30]A sequence of polynomials $f^{(n)}=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right], n \geqslant 0$, $f^{(0)} \in \mathbb{Z}$, is called a symmetric function of degree $d$ if for every $n$, the polynomial $f^{(n)}=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is symmetric and homogeneous of degree $d$, and

$$
\zeta_{r s}\left(f^{(r)}\right)=f^{(s)}
$$

for all $r>s$. We denote such a symmetric polynomial simply by $f$. When the number of variables on which $f$ depends is specialized to some explicit value $n \in \mathbb{N}$, we will write either $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $f^{(n)}$. Note that every $f^{(n)}$ uniquely determines all $f^{(k)}$ with $k<n$.

Fix a Young diagram $\lambda$ of weight $|\lambda|=d$. The sequence of monomial symmetric polynomials $m_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right), n \geqslant 0$, is a symmetric function of degree $d$, denoted by $m_{\lambda}$. It has $m_{\lambda}^{(k)}=0$ for $k<\ell(\lambda)$ and becomes nonzero starting from $m_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{\ell(\lambda)}\right)$. For example, $m_{(2,1)}$ has $m_{\lambda}^{(0)}=m_{(2,1)}\left(x_{1}\right)=0$, and then

$$
\begin{aligned}
m_{(2,1)}\left(x_{1}, x_{2}\right) & =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}, \\
m_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2},
\end{aligned}
$$

The other symmetric functions we met before, $s_{\lambda}, e_{\lambda}, h_{\lambda}$, and $p_{\lambda}$, are defined similarly. Note that $m_{\lambda}^{(k)}=s_{\lambda}^{(k)}=0$ for all $k<\ell(\lambda)$, and $e_{\lambda}^{(k)}=0$ for all $k<\ell\left(\lambda^{t}\right)$. Concerning these functions, we always follow the notation from Sect. 3.4.2 on p. 63, i.e., for a sequence $q_{i}$ of symmetric functions $q_{i}=\left(q_{i}^{(n)}\right)$ numbered by positive integers $i \in \mathbb{N}$, we write

$$
q_{\lambda}=q_{\lambda_{1}} q_{\lambda_{2}} q_{\lambda_{3}} \cdots=q_{1}^{m_{1}} q_{2}^{m_{2}} q_{1}^{m_{3}} \cdots=q^{m}
$$

for the monomials constructed from the $q_{i}$ and arranged either in nonincreasing order of $i$ or in the standard collected form. The first are naturally numbered by the Young diagrams $\lambda$, thought of as infinite nonincreasing sequences $\lambda_{k}$ such that $\lambda_{k}=0$ for $k \gg 0$. The second are numbered by the sequences $m=\left(m_{k}\right)_{k \in \mathbb{N}}$ of nonnegative integers $m_{k}$ with a finite number of nonzero elements. Each of the two presentations of a monomial uniquely determines the other: $m_{k}=m_{k}(\lambda)$ is the number of rows of length $k$ in $\lambda$.

The symmetric functions of degree $d$ form a free $\mathbb{Z}$-module, traditionally denoted by $\Lambda_{d}$. It should not be confused with the exterior power notation $\Lambda^{d}$. The four bases of $\Lambda_{d}$ over $\mathbb{Z}$ are formed by the four systems of symmetric functions $m_{\lambda}, s_{\lambda}, e_{\lambda}, h_{\lambda}$, each numbered by all Young diagrams of weight $|\lambda|=d$, because those polynomials $m_{\lambda}^{(n)}, s_{\lambda}^{(n)}, e_{\lambda}^{(n)}, h_{\lambda}^{(n)}$ that are nonzero form a basis in $\Lambda_{k} \cap \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for every $n$. For the same reason, the Newton symmetric functions $p_{\lambda}$ form a basis over $\mathbb{Q}$ for the vector space $\mathbb{Q} \otimes \Lambda_{d}$ of symmetric functions with rational coefficients. Therefore, $\mathrm{rk}_{\mathbb{Z}} \Lambda_{d}=\operatorname{dim}_{\mathbb{Q}} \mathbb{Q} \otimes \Lambda_{d}$ is equal to the total
number of Young diagrams of weight $d$. This number is denoted by $p(d)$ and called the partition number of $d \in \mathbb{N}$.

The product of two symmetric functions $f_{1}, f_{2}$ of degrees $d_{1}, d_{2}$ is the symmetric function $f_{1} f_{2}$ formed by the series of symmetric polynomials $f_{1}^{(n)} f_{2}^{(n)}$ of degree $d_{1}+d_{2}$. Therefore, the direct sum of $\mathbb{Z}$-modules

$$
\Lambda \stackrel{\text { def }}{=} \underset{d \geqslant 0}{\oplus} \Lambda_{d}
$$

is a graded commutative ring. It is called the ring of symmetric functions. All the polynomial relations among $m_{\lambda}, s_{\lambda}, e_{\lambda}, h_{\lambda}$ proved above are valid in the ring of symmetric functions $\Lambda$, and moreover, the relations involving $p_{\lambda}$ are true in the ring $\mathbb{Q} \otimes \Lambda$ of symmetric functions with rational coefficients.

## Problems for Independent Solution to Chapter 3

Problem 3.1 The sum of the two complex roots of the polynomial

$$
2 x^{3}-x^{2}-7 x+\lambda
$$

equals 1. Find $\lambda$.
Problem 3.2 Find all complex solutions of the system of polynomial equations

$$
x_{1}+x_{2}+x_{3}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, \quad x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=24 .
$$

Problem 3.3 Express the following symmetric functions as polynomials in the elementary symmetric functions $e_{i}$ :
(a) $\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\left(x_{3}+x_{4}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{4}\right)\left(x_{1}+x_{4}\right)$,
(b) $\left(x_{1}+x_{2}-x_{3}-x_{4}\right)\left(x_{1}-x_{2}+x_{3}-x_{4}\right)\left(x_{1}-x_{2}-x_{3}+x_{4}\right)$,
(c) $\sum_{i \neq j} x_{i}^{2} x_{j}$, (d) $\sum_{i \neq j \neq k \neq i} x_{i}\left(x_{j}+x_{k}\right)$.

Problem 3.4 (Discriminant) Let $f(x)=\prod\left(x-x_{i}\right)$ be a monic polynomial of degree $n$ in the variable $x$ with coefficients in the ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The product

$$
D_{f}=\Delta_{\delta}^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2}
$$

written as a polynomial in the coefficients $a_{1}, a_{2}, \ldots, a_{n}$ of the polynomial $f$ is called the discriminant of $f$ and denoted by $D(f)$. Show that $D(f)$ actually admits a unique expression as a polynomial in the coefficients of $f$, and write this expression for the trinomials (a) $f(x)=x^{2}+p x+q$, (b) $f(x)=x^{3}+p x+q$.
Problem 3.5 For a cubic trinomial $f(x)=x^{3}+p x+q \in \mathbb{R}[x]$, check that for $D_{f}<0, f$ has exactly one real root, and it is simple, whereas for $D_{f}>0$, there
are three distinct real roots. Show that in the latter case, the equation $f(x)=0$ can be transformed by an appropriate substitution $x=\lambda t, \lambda \in \mathbb{R}$, into the form $4 t^{3}-3 t=a$ with $a \in \mathbb{R},|a| \leqslant 1$, and solve the resulting equation in trigonometric functions of $a$.
Problem 3.6 Find all $\lambda \in \mathbb{C}$ such that the polynomial $x^{4}-4 x+\lambda$ has a multiple root.
Problem 3.7 (Circulant) All the rows of a matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$ are the sequential cyclic permutations of the first row $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ in the rightward direction. For example, for $n=4$, this means that

$$
A=\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{4} & a_{1} & a_{2} & a_{3} \\
a_{3} & a_{4} & a_{1} & a_{2} \\
a_{2} & a_{3} & a_{4} & a_{1}
\end{array}\right) .
$$

Express $\operatorname{det} A$ in terms of the values of the polynomial

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
$$

in the complex roots of unity of degree $n$.
Problem 3.8* Evaluate the discriminant of the $n$th cyclotomic polynomial ${ }^{14} \Phi_{n}(x)$. To begin with, consider $n=3,4,5,6,7$.
Problem 3.9 Let $x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be a monic polynomial with roots $x_{1}, x_{2}, \ldots, x_{n}$. Prove that every symmetric polynomial in $x_{2}, \ldots, x_{n}$ can be expressed as a polynomial in $x_{1}$ and the coefficients $a_{1}, a_{2}, \ldots, a_{n}$ of $f$.
Problem 3.10 Let $\zeta \in \mathbb{C}$ be a primitive $m$ th root of unity. For $a \in \mathbb{C}$, multiply $\prod_{\nu=1}^{m}\left(a-\zeta^{\nu-1} x\right)$ out and collect like monomials. Show that for every $f \in \mathbb{C}[x]$, there exists $h \in \mathbb{C}[x]$ such that $\prod_{\nu=1}^{m} f\left(\zeta^{\nu-1} x\right)=h\left(x^{m}\right)$. Express the roots of $h$ in terms of the roots of $f$.
Problem 3.11 Find the fourth-degree polynomial in $\mathbb{C}[x]$ whose roots are
(a) the squares of all roots of the polynomial $x^{4}+2 x^{3}-x+3$,
(b) the cubes of all roots of the polynomial $x^{4}-x-1$.

[^31]Problem 3.12 Express $s_{\left(1^{n}\right)}$, where $\left(1^{n}\right)$ means one column of $n$ cells, as a polynomial in $e_{v}$.
Problem 3.13 Express $s_{(n)}$, where ( $n$ ) means one row of $n$ cells, as a polynomial in $h_{\nu}$.
Problem 3.14 Express the products $s_{(1)}^{2}$ and $s_{(1,1)} \cdot s_{(2)}$ as integer linear combinations of polynomials $s_{\lambda}$.
Problem 3.15 Let us set $h_{0}=e_{0}=1$ and $h_{k}=e_{k}=0$ for $k<0$. Show that the matrices $\left(h_{i-j}\right)$ and $\left((-1)^{i-j} e_{i-j}\right)$ are inverse to each other, and deduce from this the relation $\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)=\operatorname{det}\left(e_{\lambda_{i}^{t}+j-i}\right)$ in the complementary minors of these matrices.

Problem 3.16 Use Cramer's rule ${ }^{15}$ and the recurrence formulas (3.10), (3.11) on p. 61 and (3.13), (3.14) on p. 63 to prove the equalities:
(a) $e_{n}=\operatorname{det}\left(h_{j-i+1}\right), h_{n}=\operatorname{det}\left(e_{j-i+1}\right)$, where $1 \leqslant i, j \leqslant n$,
(b) $p_{n}=\operatorname{det}\left(\begin{array}{ccccc}e_{1} & 1 & 0 & \cdots & 0 \\ 2 e_{2} & e_{1} & 1 & \ddots & \vdots \\ 3 e_{3} & e_{2} & e_{1} & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ n e_{n} & e_{n-1} & e_{n-2} & \cdots & e_{1}\end{array}\right)$, (c) n!e $e_{n}=\operatorname{det}\left(\begin{array}{ccccc}p_{1} & 1 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 2 & \ddots & \vdots \\ p_{3} & p_{2} & p_{1} & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & n-1 \\ p_{n} & p_{n-1} & p_{n-2} & \cdots & p_{1}\end{array}\right)$.

Problem 3.17 (The Second Giambelli Formula) Prove that

$$
s_{\lambda^{t}}=\operatorname{det}\left(\begin{array}{cccc}
e_{\lambda_{1}} & e_{\lambda_{1}+1} & \ldots & e_{\lambda_{1}+n-1} \\
e_{\lambda_{2}-1} & e_{\lambda_{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & e_{\lambda_{n-1}+1} \\
& & & \\
e_{\lambda_{n}-n+1} & \ldots & e_{\lambda_{n}-1} & e_{\lambda_{n}}
\end{array}\right)
$$

where the main diagonal is filled by $e_{\lambda_{1}}, e_{\lambda_{2}}, \ldots, e_{\lambda_{n}}$ and the indices of $e$ are incremented sequentially by 1 from left to right in each row.

[^32]
## Chapter 4 <br> Calculus of Arrays, Tableaux, and Diagrams

### 4.1 Arrays

### 4.1.1 Notation and Terminology

Fix two finite sets $I=\{1,2, \ldots, n\}, J=\{1,2, \ldots, m\}$ and consider a rectangular table with $n$ columns and $m$ rows numbered by the elements of $I$ and $J$ respectively in such a way that indices $I$ increase horizontally from left to right, and indices $j$ increase vertically from bottom to top. A collection of nonnegative integers $a(i, j)$ placed in the cells of such a table is called an $I \times J$ array, which we shall denote by $a$. We write $\mathcal{A}=\mathcal{A}_{I J}$ for the set of all $I \times J$ arrays. The numbers $a_{i, j}$ should be thought of as numbers of small identical balls placed in the cells of the table. We will not use them in any computations similar to those made with matrix elements. Instead, we will deal with maps $\mathcal{A} \rightarrow \mathcal{A}$ acting on the arrays by moving balls among cells. In most applications, the balls will be equipped with pairs of properties numbered by the elements of the sets $I, J$. A collection of such balls is naturally organized in the array in accordance with the properties of the balls forming the collection. From this viewpoint, the operations acting on $\mathcal{A}$ are interpreted as changing some properties of some balls. The distribution of the balls between the properties provided by a given array $a$ is coarsely described by two integer vectors,

$$
\begin{align*}
& w_{I}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{Z}_{\geqslant 0}^{n} \quad \text { with } \quad c_{i}=\sum_{j} a(i, j),  \tag{4.1}\\
& w_{J}=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \in \mathbb{Z}_{\geqslant 0}^{m} \quad \text { with } \quad r_{j}=\sum_{i} a(i, j), \tag{4.2}
\end{align*}
$$

called the column weight (or I-weight) and row weight (or J-weight) of $a$. The coordinates of these vectors are equal to the total numbers of balls in the columns and rows of $a$ respectively.

We consider four collections of maps $\mathcal{A} \rightarrow \mathcal{A}$ denoted by $D_{j}, U_{j}$ with

$$
1 \leqslant j \leqslant m-1
$$

and $L_{i}, R_{i}$ with $1 \leqslant i \leqslant n-1$. Applied to a given array $a \in \mathcal{A}$, such a map either leaves $a$ fixed or moves exactly one ball of $a$ to a neighboring cell in the down, up, left, or right direction in accordance with the notation of the operation. Operations $D_{j}, U_{j}$, which move balls within columns, are called vertical. Operations $L_{i}, R_{i}$ are called horizontal.

### 4.1.2 Vertical Operations

For an array $a \in \mathcal{A}$ and fixed $j$ in the range $1 \leqslant j \leqslant m-1$, the operation $D_{j}$ either does nothing with $a$ or moves exactly one ball from the $(j+1)$ th row down to the $j$ th row. To detect this ball or its absence, we should separate the balls of both rows into free and coupled balls by means of the following procedure. At the outset, all the balls of the $j$ th row are considered free. We then look through the balls $\beta$ of the $(j+1)$ th row going from left to right. If there is a free ball lying in the $j$ th row at a column strictly to the left of $\beta$, then $\beta$ is declared to be coupled with the rightmost such ball $\gamma$, which also changes its status from free to coupled. If there are no free balls strictly to the left of $\beta$ in the $j$ th row, the ball $\beta$ is declared to be free. When all the balls $\beta$ in the $(j+1)$ th row have been exhausted, all the remaining free balls of the $j$ th row are said to be free. The resulting matching of the coupled balls is called a stable matching between the $j$ th and $(j+1)$ th rows. Here is an example of stable matching (included in parentheses are the numbers of remaining free balls):


Note that for every stable matching, the rightmost free balls of the $(j+1)$ th row lie either strictly to the left or in the same column where the leftmost free balls of the $j$ th row lie.

By definition, the operation $D_{j}$ moves one of the rightmost free balls of the $(j+1)$ th row downward, or else does nothing if the $(j+1)$ th row has no free balls. Conversely, the operation $U_{j}$ moves one of the leftmost free balls of the $j$ th row upward, or does nothing if there are no free balls in the $j$ th row. Note that all the vertical operations preserve the column weight $w_{I}$.

When an operation actually moves some ball in $a$, we say that this operation acts on $a$ effectively. If $D_{j}$ acts effectively on $a$, then the ball lowered by $D_{j}$ becomes one of the leftmost free balls in the $j$ th row of array $D_{j} a$. Therefore, $U_{j} D_{j}=a$ in this
case. For the same reason, $D_{j} U_{j} a=a$ as soon as $U_{j} a \neq a$. We see that the set of vertical operations $U_{j}, D_{j}: \mathcal{A} \rightarrow \mathcal{A}$ possesses some properties of a transformation group. For example, if $b=D_{j_{k}} \cdots D_{j_{2}} D_{j_{1}} a$, where every $D_{v}$ acts effectively, then $a$ is uniquely recovered from $b$ as $a=U_{j_{1}} U_{j_{2}} \cdots U_{j_{k}} b$, and each $U_{v}$ in this chain acts effectively. In this situation, we say that the word $D_{j_{k}} \cdots D_{j_{2}} D_{j_{1}}$ is an effective word ${ }^{1}$ of $a$.

### 4.1.3 Commutation Lemma

The horizontal operations $L_{i}, R_{i}$ are defined in a completely symmetric way. Namely, write $a^{t}$ for the array obtained from $a$ by the reflection swapping $I$ with $J$. The array $a^{t}$ has $a^{t}(i, j)=a(j, i)$ and is called the transpose of $a$. We put

$$
L_{i}(a) \stackrel{\text { def }}{=}\left(D_{i}\left(a^{t}\right)\right)^{t} \quad \text { and } \quad R_{i}(a)=\left(U_{i}\left(a^{t}\right)\right)^{t} .
$$

Exercise 4.1 Give a direct explicit description of the horizontal operations, that is, explain how a stable matching between the $i$ th and $(i+1)$ th columns should be established, and what balls are moved by the operations $R_{i}$ and $L_{i}$.
All the horizontal operations clearly preserve the row weight $w_{J}$.
Lemma 4.1 Every horizontal operation preserves stable matchings between rows, meaning that all free balls remain free and all coupled pairs of balls remain coupled in the same pairs after the operation is applied. Similarly, every vertical operation preserves stable matchings between columns.

Proof Let us fix a stable matching between the $(j+1)$ th and $j$ th rows in an array $a$, and verify that all operations $L_{i}$ preserve this matching. It is clear when $L_{i}$ does nothing with $a$. Let $L_{i}$ move a ball $\beta$. If $\beta$ lies neither in the $(j+1)$ th nor in the $j$ th row, then again there is nothing to prove.

Let $\beta$ lie in the $(j+1)$ th row, that is, in the cell $(i+1, j+1)$, as shown in Fig.4.1. Then all balls in the cell $(i, j)$ are coupled with some balls in the cell $(i+1, j+1)$, because otherwise, the ball $\beta$ would be coupled with some free ball in the cell $(i, j)$ under the stable matching between the $i$ th and $(i+1)$ th columns, and therefore could not be moved by $L_{i}$. Hence, if $\beta$ is coupled with a ball $\gamma$ in the row matching, then $\gamma$ lies in a cell that is strictly to the left of $(i, j)$. So $\beta$ and $\gamma$ remain coupled after $\beta$ is moved to the cell $(i, j+1)$. If $\beta$ is free, it certainly remains free after this movement. Thus, $L_{i}$ has no effect on the row matching in this case.

Now let $\beta$ lie in the $j$ th row, that is, in the cell $(i+1, j)$, as shown in Fig. 4.2. Since $\beta$ is among the topmost free balls of the column matching, all balls in the cell $(i+1, j+1)$ are coupled with some balls in the cell $(i, j)$ in the column matching.

[^33]Fig. 4.1 $L_{i}$ acts on the $(j+1)$ th row


Fig. 4.2 $L_{i}$ acts on the $j$ th row


Therefore, in the row matching, all balls in the cell $(i+1, j+1)$ are coupled with some balls in the cell $(i, j)$ as well. Hence, the ball $\beta$ does not change its status under the movement into the left neighboring cell in this case as well.
Exercise 4.2 Use similar arguments to prove that all operations $R_{i}$ also preserve the stable matching between the $(j+1)$ th and $j$ th rows.

The second statement of the lemma follows from the first by means of the transposition of $a$.

Corollary 4.1 Every horizontal operation $L_{i}, R_{i}$ commutes with every vertical operation $D_{j}, U_{j}$.

Proof Let us show, for example, that $D_{j} L_{i}=L_{i} D_{j}$ (all other cases are completely similar). Given an array $a$, it follows from Lemma 4.1 that the operation $L_{i}$ either leaves both arrays $a, D_{j} a$ unchanged or moves the same ball in $a$ and in $D_{j} a$ to the left. Similarly, the operation $D_{j}$ either leaves both arrays $a, L_{i} a$ unchanged or moves the same ball down in $a$ and in $L_{i} a$. In all cases, the equality $D_{j} L_{i} a=L_{i} D_{j} a$ holds. $^{2}$

Corollary 4.2 Let $H$ be a word built from horizontal operations $L_{i}, R_{i}$. Then $H$ acts effectively on an array a if and only if $H$ acts effectively on all arrays obtained from a by means of vertical operations. Similarly, a word V built from vertical operations acts effectively on $a$ if and only if $V$ acts effectively on all arrays obtained from a by means of horizontal operations.

Proof The second statement is obtained from the first by means of transposition. To verify the first, it is enough to check that for every array $a$ and all $i, j$, the operation $L_{i}$ acts effectively on $a$ if and only if it acts effectively on $D_{j} a$ and $U_{j} a$. This holds, because neither $D_{j}$ nor $U_{j}$ changes the stable matching between the ( $i-1$ )th and $i$ th rows, by Lemma 4.1.

### 4.2 Condensing

### 4.2.1 Condensed Arrays

An array $a$ is called $D$-dense ${ }^{3}$ if $D_{j} a=a$ for all $j$. The $U$-dense, $L$-dense, and $R$-dense arrays are defined similarly. Every array $a$ can be condensed in any prescribed direction $\mathrm{D}, \mathrm{U}, \mathrm{L}, \mathrm{R}$ by applying the respective operations $\mathrm{D}, \mathrm{U}, \mathrm{L}$, R sufficiently many times. Usually, such a condensation of an array $a$ can be realized in many different ways. For example, shown in Fig. 4.3 are two downward condensations of a random $3 \times 2$ array. Note that the both condensing words $D_{2} D_{1}^{4} D_{2}^{3}$ and $D_{1}^{3} D_{2} D_{1}$ lead to the same D-dense result:

[^34]Fig. 4.3 Two downward condensations lead to the same result


We will prove this key property of condensing in Proposition 4.1 below, and now let us discuss an interaction between dense arrays and Young diagrams.

### 4.2.2 Bidense Arrays and Young Diagrams

Corollary 4.2 implies that both L- and R-density are preserved by the vertical operations. Similarly, the horizontal operations preserve D- and U-density. Therefore, every array can be made dense in two perpendicular directions simultaneously. We call such arrays $D L$-dense, $D R$-dense, etc. In what follows, we deal mostly with DL-dense arrays and call them bidense. All balls in a bidense array $b$ are situated within cells of the main diagonal $i=j$, and the numbers of balls $b(i, i)$ decrease nonstrictly as $i$ grows. Thus, the $I$ - and $J$-weights of $b$ coincide and form a Young diagram $\lambda=w_{I}(b)=w_{J}(b)$. We conclude that the bidense arrays are in bijection with the Young diagrams. ${ }^{4}$ We write $\lambda(a)$ for the Young diagram corresponding to the bidense array obtained from an array $a$ by means of DL-condensing, and call this Young diagram the shape of $a$.

[^35]Proposition 4.1 For every array a, the result of downward condensation of a does not depend on the choice of condensing word. The same holds for left, right, and upward condensing as well.

Proof If $a$ is L-dense, then every D-condensing of $a$ preserves the column weight $w_{I}(a)$ and therefore leads to the bidense array corresponding to the Young diagram $\lambda=w_{I}(a)$. For an arbitrary array $a$, let $L=L_{i_{1}} L_{i_{2}} \ldots L_{i_{k}}$ be an effective word for $a$ such that $a^{\prime}=L a$ is L-dense, and let $D=D_{j_{1}} D_{j_{2}} \ldots D_{j_{k}}$ be any word such that $D a$ is D-dense. Since the action of $L$ preserves D-density and the action of $D$ preserves L-density, the array $L D a=D L a$ is bidense. As we have just seen, the downward condensation $D L a$ of an L-dense array $L a$ does not depend on the choice of $D$. By Corollary 4.2, the action of $L$ on $D a$ is effective. Hence $D a=L^{-1} L D a=L^{-1} D L a$ does not depend on the choice of $D$. The left, right, and upward condensations are handled similarly.

### 4.2.3 Young Tableaux

Let $a$ be an arrow of height $m$ and width $n$. Then the line scanning of $a$ is the text consisting of $m$ words over the alphabet $\{1,2, \ldots, n\}$ written by the following rule. Interpret every ball of $a$ as the letter of $I$ marking the column in which the ball is placed; read the rows of $a$ from left to right, row by row, from the bottom up; and record the words read in the column top down, aligning to the left. Thus, the bottom row of $a$ gives the upper word of the column, the second row of $a$ gives the next word, etc. For example,

| 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 4 | 0 | 0 | 0 |
| 3 | 1 | 0 | 0 | 1 |

For every $j \in J$, the $j$ th row of $a$ is swept to the word

$$
\underbrace{11 \ldots 1}_{a(1, j)} \underbrace{22 \ldots 2}_{a(2, j)} \ldots \ldots \underbrace{n n \ldots n}_{a(n, j)}
$$

where the letters increase nonstrictly from left to right. The D-density of an array $a$ means that every letter " $i$ " of the $j$ th row has a matching letter, which is strictly less than " $i$ " and remains in the $(j-1)$ th row, as happens in the lefthand example above. We conclude that $a$ is D-dense if and only if the line scanning of $a$ is a Young diagram filled by the numbers $1,2, \ldots, n$ in such a way that they increase nonstrictly from left to right along the rows and increase strictly from top to bottom along the columns. Such a filled Young diagram $\lambda$ is called a Young tableau of shape $\lambda$ in the alphabet $I=\{1,2, \ldots, n\}$. Note that an element of the alphabet may appear in a Young tableau several times or may not appear at all. To outline this
circumstance, we say that this is a semistandard Young tableau. The name standard Young tableau is used for a Young tableau in which each number of $I$ appears exactly once. This forces $n=|\lambda|$ and leads to strictly increasing numbers along the rows as well. Let us summarize this discussion by the following claim.

Proposition 4.2 Line scanning assigns a bijection between the D-dense $m \times n$ arrays and the (semistandard) Young tableaux with at most $m$ rows in the alphabet $I=\{1,2, \ldots, n\}$.

### 4.2.4 Yamanouchi Words

The L-density of an arrow $a$ can be treated as the D-density of the transposed arrow $a^{t}$. The transposed version of line scanning is called column scanning. It establishes a bijection between the L-dense $m \times n$ arrays and the Young tableaux with at most $n$ columns over the alphabet $J=\{1,2, \ldots, m\}$.

However, L-density can also be characterized in terms of line scanning. Namely, let us read the line scanning of an array $a$ from right to left, word by word from top to bottom, and record the letters read in one line from left to right. Then the L-density of $a$ means that every starting segment of the resulting long word contains no more twos than ones, no more threes than twos, no more fours than threes, etc. A word $w$ over the alphabet $I$ is called a Yamanouchi word if for every $i \in I$, the letter $i$ appears in every starting segment of $w$ at least as many times as the letter $i+1$ does. For example, in the pair of line scans

the first produces the Yamanouchi word 12121133 , whereas the second produces the non-Yamanouchi word 111122233221.

Exercise 4.3 Recover the arrays producing the above line scans and verify that the first of them is L-dense and the second is not.

Note that the rows of a line scanning are uniquely recovered from a Yamanouchi word: the leftmost nonstrictly increasing segment of the Yamanouchi word is the first word of the line scanning written from right to left; the next nonstrictly increasing segment of the Yamanouchi word is the second word of the line scanning; and so on.

Proposition 4.3 Line scanning assigns a bijection between the set of L-dense $m \times n$ arrays and the set of Yamanouchi words over the alphabet $I=\{1,2, \ldots, n\}$ and consisting of at most $m$ nonstrictly increasing segments.

### 4.2.5 Fiber Product Theorem

Given two maps of sets $\varphi: X \rightarrow Z$ and $\psi: Y \rightarrow Z$, the disjoint union of the products of their fibers over all $z \in Z$ is denoted by

$$
X \times{ }_{Z} Y \stackrel{\text { def }}{=} \bigsqcup_{z \in Z} \varphi^{-1}(z) \times \psi^{-1}(z)
$$

and is called the fibered product of $X$ and $Y$ over $Z$. The fiberwise projections $\pi_{X}:(x, y) \mapsto x$ and $\pi_{Y}:(x, y) \mapsto y$ fit into the commutative diagram

called the pullback diagram or Cartesian square. It has the following universal property: for every commutative square

there exists a unique map $\alpha: M \rightarrow X \times_{Z} Y$ such that $\xi=\pi_{X} \circ \alpha$ and $\eta=\pi_{Y} \circ \alpha$.
Exercise 4.4 Verify this universal property and show that it uniquely determines the upper corner of the diagram (4.4) up to a unique isomorphism commuting with all the arrows of the pullback diagram.

Theorem 4.1 Let $\mathcal{A}, \mathcal{L}, \mathcal{D}, \mathcal{B}$ denote the sets of all $m \times n$ arrays and all L-dense, $D$-dense, and bidense arrays respectively. The diagram

in which the maps $L, D$ send an array to its left and down condensations, is a Cartesian square.

Proof The maps $L, D$ are well defined by Proposition 4.1 and commute by Corollary 4.1. We have to show that for every $b \in \mathcal{B}$, the map

$$
\mathcal{A} \rightarrow \underset{\mathcal{B}}{\mathcal{L}} \mathcal{D}, \quad a \mapsto(L a, D a),
$$

establishes a bijection between the arrays $a$ of shape $b=D L a=L D a$ and the pairs of arrays $\left(a_{\ell}, a_{d}\right) \in \mathcal{L} \times \mathcal{D}$ with the same shape $b=D a_{\ell}=L a_{b}$. We begin with injectivity. Let two arrays $a, a^{\prime}$ have $L a=L a^{\prime}, D a=D a^{\prime}$. Write $\Lambda$ for an effective word condensing the array $D a=D a^{\prime}$ to the left. By Corollary 4.2 , the word $\Lambda$ effectively acts on both arrays $a$ and $a^{\prime}$, and we have $\Lambda a=L a=L a^{\prime}=\Lambda a^{\prime}$. Hence, $a=\Lambda^{-1} L a=\Lambda^{-1} L a^{\prime}=a^{\prime}$. Now let us verify surjectivity. Given a pair $\left(a_{\ell}, a_{d}\right) \in \mathcal{L} \times \mathcal{D}$ with the same shape $b=D a_{\ell}=L a_{b}$, consider a word $\Lambda$ that effectively condenses $a_{d}$ to $L a_{d}$. The inverse word $\Lambda^{-1}$ effectively acts on the array $L a_{d}=D a_{\ell}$ and therefore on the array $a_{\ell}$ as well. Then the array $a=\Lambda^{-1} a_{\ell}$ has $L a=a_{\ell}$ and $D a=D \Lambda^{-1} a_{\ell}=\Lambda^{-1} D a_{\ell}=\Lambda^{-1} L a_{d}=a_{d}$, as required.

Example 4.1 (Graphs of Maps and the Standard Young Tableaux) The graph of a map $a: I \rightarrow J$ can be viewed as an array with exactly one ball in every column. Theorem 4.1 bijectively parameterizes such arrays by the pairs $\left(a_{\ell}, a_{d}\right)$, where $a_{\ell}$ is L-dense, $a_{d}$ is D-dense, $D a_{\ell}=L a_{d}$, and $w_{I}\left(a_{d}\right)=(1,1, \ldots, 1)$. By Sect.4.2.3, every such a pair determines and is uniquely determined by the following data:

- the shape $\lambda(a)=\lambda\left(a_{\ell}\right)=\lambda\left(a_{d}\right)=D L a \in \mathcal{B}$, which is an arbitrary Young diagram $\lambda$ of weight $|\lambda|=n$;
- the line scanning of $a_{d}$, which is an arbitrary standard ${ }^{5}$ Young tableau of shape $\lambda$ over the horizontal alphabet $I$;
- the column scanning of $a_{\ell}$, which is an arbitrary semistandard Young tableau of shape $\lambda$ over the vertical alphabet $J$.

[^36]The total number of all (semistandard) Young tableaux of shape $\lambda$ over an $m$-literal alphabet is denoted by $d_{\lambda}(m)$. The total number of all standard Young tableaux of shape $\lambda$ over an alphabet of cardinality $|\lambda|$ is denoted just by $d_{\lambda}$. Since there are altogether $m^{n}$ maps $I \rightarrow J$, we get the remarkable equality

$$
\begin{equation*}
\sum_{\lambda} d_{\lambda} \cdot d_{\lambda}(m)=m^{n} \tag{4.5}
\end{equation*}
$$

where the summation is over all Young diagrams of weight $n$, and we put $d_{\lambda}(m)=0$ for all diagrams of length $\ell(\lambda)>m$.

Example 4.2 (RSK-Type Correspondence) For $J=I$, the construction from the previous example establishes a one-to-one correspondence between the symmetric group $S_{n}$, formed by the $n$ ! bijections $I \xrightarrow{\leadsto} I$, and the pairs of standard Young tableaux of weight $n$. Hence,

$$
\begin{equation*}
\sum_{\lambda} d_{\lambda}^{2}=n!, \tag{4.6}
\end{equation*}
$$

where the summation is over all Young diagrams of weight $n$. Since the graphs of involutive permutations ${ }^{6}$ are the self-conjugate arrays $a=a^{t}$, they correspond to the pairs of equal standard tableaux. Therefore,

$$
\begin{equation*}
\sum_{\lambda} d_{\lambda}=\left|\left\{\sigma \in S_{n} \mid \sigma^{2}=1\right\}\right| . \tag{4.7}
\end{equation*}
$$

Remark 4.1 The standard version of the Robinson-Schensted-Knuth correspondence is described, e.g., in the textbook [Fu]. ${ }^{7}$ It also encodes the permutations $g \in S_{n}$ by the pairs of Young tableaux $P(g), Q(g)$, the first of which, $P(g)$, coincides with that used in Example 4.2, i.e., with the row scan of the D-condensation of the graph $a$ of $g$. The second tableau, $Q(g)$, in the standard RSK correspondence is the column scan of the L-condensation $D\left(a^{*}\right)$ of the array $a^{*}$ obtained from $a$ by central symmetry, ${ }^{8}$ i.e., having $a^{*}(i, j)=a(n+1-i, n+1-j)$. A detailed comparison of Example 4.2 with the classical Robinson-Schensted-Knuth construction can be found in the remarkable paper [DK, §13]. ${ }^{9}$

[^37]
### 4.3 Action of the Symmetric Group on DU-Sets

### 4.3.1 DU-Sets and DU-Orbits

A set of arrays $M \subset \mathcal{A}$ sent to itself by all vertical operations $D, U$, is called a $D U$-set. A map between DU-sets is called a $D U$-homomorphism if it commutes with all vertical operations $D, U$. A DU-set $M$ is called a $D U$-orbit if the vertical operations act on $M$ transitively. Every DU-set clearly splits into a disjoint union of DU-orbits, because of the next exercise.
Exercise 4.5 Show that unions, intersections, and differences of DU-sets are DU-sets as well.

Downward condensing establishes a bijection between DU-orbits and D-dense arrays. The DU-orbit $O_{a_{d}}$ corresponding to an array $a_{d} \in \mathcal{D}$ is formed by all arrays obtained from $a_{d}$ by means of effective $U$-words $U_{j_{1}} U_{j_{2}} \ldots U_{j_{k}}$. We refer to $a_{d}$ as the lower end of the orbit $O_{a_{d}}$. The DU-orbits $O_{\lambda}$ of the bidense arrays $\lambda$ are called standard. Theorem 4.1 implies that left condensation establishes a DU-isomorphism between an arbitrary DU-orbit $O$ and the standard DU -orbit $O_{\lambda}$ whose lower end is the bicondensation of the lower end of $O$. The diagram $\lambda$ is called the type of the DU-orbit $O$. Note that the total number of DU-orbits of type $\lambda$ in a given DU-set $M$ is equal to the total number of D-dense arrays $a_{d} \in M$ with column weight $w_{I}\left(a_{d}\right)=\lambda$.

As an example, Fig. 4.4 shows the standard DU-orbit $O_{(2,1)}$ for $m=3$. It consists
 shape $\square$.

### 4.3.2 Action of $S_{m}=\operatorname{Aut}(J)$

Write $\sigma_{j} \in S_{n}, 1 \leqslant j \leqslant n-1$, for the standard generators swapping $j$ with $j+1$, and let them act on an array $a$ by the following rule. Assume that a stable matching between the $j$ th and $(j+1)$ th rows of $a$ leaves $s_{j}$ and $s_{j+1}$ free balls respectively in those rows. If $s_{j}=s_{j+1}$, then $\sigma_{j}$ does nothing with $a$. Otherwise,

$$
\begin{equation*}
\sigma_{j} a=D_{j}^{s_{j+1}-s_{j}} a=U_{j}^{s_{j}-s_{j+1}} a . \tag{4.8}
\end{equation*}
$$

Equivalently, this action can be described as follows. Let us roll up the array $a$ into a cylinder by gluing the right border of the $n$th column to the left border of the first, and proceed with the stable matching cyclically around the cylinder by coupling the rightmost free ball of the $j$ th row with the leftmost free ball of the $(j+1)$ th row, etc. The resulting cyclic matching leaves exactly $\left|s_{j+1}-s_{j}\right|$ free balls, all in the row that initially had more free balls. The action of $\sigma_{j}$ moves all these balls vertically to the


Fig. 4.4 Standard DU-orbit $O_{(2,1)}$
other row. In particular, the effect of $\sigma_{j}$ on the row weight $w_{J}$ consists in swapping the $j$ th and $(j+1)$ th coordinates.

By this construction, $\sigma_{j}^{2}=\mathrm{Id}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for $|i-j| \geqslant 2$, and all $\sigma_{j}$ commute with the cyclic permutations of columns and all the horizontal operations $L_{i}, R_{i}$. Let us verify that the triangle relation $\sigma_{j} \sigma_{j+1} \sigma_{j}=\sigma_{j+1} \sigma_{j} \sigma_{j+1}$ holds as well for all $j$. We may assume that $a$ consists of just three rows. Then the left condensation $L$ and the cyclic permutation of columns $C$ reduce $a$ to just one column:

Since $\sigma_{1}, \sigma_{2}$ act on this column by the transpositions of elements, the required identity $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$ clearly holds. Thus, the operations $a \mapsto \sigma_{j} a$ satisfy all the relations on the generators ${ }^{10} \sigma_{i}$ in $S_{n}$. We conclude ${ }^{11}$ that the action of the $\sigma_{j}$ is correctly extended to the action of the whole symmetric group $S_{m}$ on the set of arrays

[^38]with $m$ rows. This action takes every DU-set to itself and permutes the coordinates of the row weights $w_{I}$.

### 4.4 Combinatorial Schur Polynomials

Let us interpret every ball in the $j$ th row of an array $a$ as the variable $x_{j}$ and write

$$
x^{a} \stackrel{\text { def }}{=} x_{1}^{w_{1}(a)} x_{2}^{w_{2}(a)} \cdots x_{m}^{w_{m}(a)}
$$

for the product of all balls in $a$, where $\left(w_{1}(a), w_{2}(a), \ldots, w_{m}(a)\right)=w_{J}(a)$ means the $J$-weight of $a$. The sum of all monomials $x^{a}$ taken over all arrays $a$ from a given DU-set $M$ is called the (combinatorial) Schur polynomial of the DU-set $M$ and is denoted by

$$
s_{M}(x) \stackrel{\text { def }}{=} \sum_{a \in M} x^{a} \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{m}\right] .
$$

Since the symmetric group $S_{m}$ acts on the monomials $x^{a}$ by permutation of variables and this action takes $M$ to itself, all the Schur polynomials are symmetric. In decomposing a DU-set $M$ into a disjoint union of DU-orbits and combining all orbits isomorphic to a given standard orbit $O_{\lambda}$, we expand every Schur polynomial $s_{M}$ as a nonnegative integer linear combination of the standard Schur polynomials $s_{\lambda}(x)$, which have bidense lower ends and are numbered by the Young diagrams $\lambda$ of length at most $m$. We will write this expansion as

$$
\begin{equation*}
s_{M}(x)=\sum_{\lambda \in \lambda(M)} c_{M}^{\lambda} \cdot s_{\lambda}(x), \tag{4.9}
\end{equation*}
$$

where the summation runs over all shapes $\lambda$ of arrays appearing in $M$, and the coefficient $c_{M}^{\lambda}$ equals the total number of DU-orbits isomorphic to $O_{\lambda}$ in $M$, i.e., to the number of D-dense arrays of $J$-weight $\lambda$ in $M$. By Sect.4.2.3, every standard DU-orbit $O_{\lambda}$ is formed by the L-dense arrays of $I$-weight $\lambda$. Column scanning assigns a bijection between such the arrays and the (semistandard) Young tableaux of shape $\lambda$ over the alphabet $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Therefore, every standard Schur polynomial can be written as

$$
\begin{equation*}
s_{\lambda}(x)=\sum_{\eta} K_{\lambda, \eta} \cdot x^{\eta}=\sum_{\eta} K_{\lambda, \eta} \cdot x_{1}^{\eta_{1}} x_{2}^{\eta_{2}} \cdots x_{m}^{\eta_{m}} \tag{4.10}
\end{equation*}
$$

where $\eta \in \mathbb{Z}_{\geqslant 0}^{m}$ runs over vectors of dimension $m$ with nonnegative integer coordinates, and the coefficient $K_{\lambda, \eta}$ equals the total number of (semistandard) Young tableaux of shape $\lambda$ filled by $\eta_{1}$ ones, $\eta_{2}$ twos, $\eta_{3}$ threes, etc. We will say that such a Young tableau has content $\eta$. The sum $|\eta| \stackrel{\text { def }}{=} \sum \eta_{i}$ is called the weight of the content vector $\eta$.

For example, the standard DU-orbit shown in Fig. 4.4 on p. 87 produces the following standard Schur polynomial in $m=3$ variables:

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

Exercise 4.6 Verify that for every Young diagram $\lambda$, the sequence of Schur polynomials

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{m}\right), \quad m \geqslant \ell(\lambda),
$$

is a symmetric function in the sense of Sect. 3.7 on p. 69.
The numbers $K_{\lambda, \eta}$ of the (semistandard) Young tableaux of shape $\lambda$ and content $\eta$ are called Kostka numbers. Note that $K_{\lambda,\left(1^{|\lambda|}\right)}=d_{\lambda}$ is the number of standard Young tableaux of shape $\lambda$. It follows from the definition that $K_{\lambda, \lambda}=1$ for all $\lambda$, and $K_{\lambda, \eta} \neq 0$ only if the inequality

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} \geqslant \eta_{1}+\eta_{2}+\cdots+\eta_{j} \tag{4.11}
\end{equation*}
$$

holds for every $j=1,2,3, \ldots$ In this case, we say that the diagram $\lambda$ dominates the vector $\eta$ and write $\lambda \unrhd \eta$.
Exercise 4.7 Show that the domination relation provides the set all Young diagrams ${ }^{12}$ of weight ${ }^{13} n$ with a partial order. Verify that this order is total for $n \leqslant 5$, and find a pair of incompatible Young diagrams of weight 6.
It follows from (4.10) that the transition matrix from the standard Schur polynomials $s_{\lambda}$ to the monomial basis $m_{\mu}$ of the $\mathbb{Z}$-module of symmetric polynomials in $x_{1}, x_{2}, \ldots, x_{m}$ is upper unitriangular, i.e.,

$$
\begin{equation*}
s_{\lambda}=\sum_{\mu \unlhd \lambda} K_{\lambda, \mu} \cdot m_{\mu} . \tag{4.12}
\end{equation*}
$$

Since such a matrix is invertible over $\mathbb{Z}$, we conclude that the combinatorial Schur polynomials $s_{\lambda}$ also form a basis of the $\mathbb{Z}$-module of symmetric polynomials.

Example 4.3 (Complete and Elementary Symmetric Polynomials) The standard Schur polynomial $s_{(k)}(x)$, indexed by the one-row Young diagram

$$
\begin{equation*}
\lambda=(k, 0, \ldots, 0)=\underbrace{\square \square \cdots \square}_{k}, \tag{4.13}
\end{equation*}
$$

[^39]is obtained from the DU-orbit of the array

and coincides with the complete symmetric polynomial ${ }^{14} h_{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, the sum of all monomials of total degree $k$ in the $x_{i}$. Indeed, for every content vector $\eta \in$ $\mathbb{Z}_{\geqslant 0}^{m}$ of weight $|\eta|=\sum \eta_{i}=k$, there exists exactly one Young tableau of shape (4.13) and weight $\eta$. Equivalently, the DU-orbit of the array (4.14) is formed by all distributions of $k$ balls between $m$ cells.

Symmetrically, the standard Schur polynomial $s_{\left(1^{k}\right)}$, indexed by the one-column Young diagram

is obtained from the DU-orbit of the array

and equals the elementary symmetric polynomial ${ }^{15} e_{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, the sum of all multilinear monomials of total degree $k$ in the $x_{i}$. The reasons are similar, but now the fillings of the Young tableau must strictly increase. Equivalently, at most one ball is allowed in each row of every array in the DU-orbit of the array (4.15).

Example 4.4 (Cauchy and Schur Identities) Fix two collections of independent variables $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}$ and interpret all the balls in the $(i, j)$ cell of every $I \times J$ array $a$ as the monomials $x_{i} y_{j}$. Then in the notation of Sect.4.4, the

[^40]product of the balls in $a$ equals $x^{a^{t}} y^{a}$. By Theorem 4.1 on p .83 , the sum of such monomials taken over all arrays $a$ of a given shape $\lambda=\lambda(a)$ is equal to the product of Schur polynomials $s_{\lambda}(x) \cdot s_{\lambda}(y)$. Therefore, the sum of the monomials $x^{a^{t}} y^{a}$ taken over all $I \times J$ arrays $a$ is equal to the sum $\sum_{\lambda} s_{\lambda}(x) \cdot s_{\lambda}(y)$ taken over all Young diagrams $\lambda$. At the same time, the same sum of monomials $x^{a^{t}} y^{a}$ appears on multiplying out the product of geometric progressions $\prod_{I \times J}\left(1+x_{i} y_{j}+\left(x_{i} y_{j}\right)^{2}+\left(x_{i} y_{j}\right)^{3}+\cdots\right)$, because the choice of the summand $\left(x_{i} y_{j}\right)^{a(i, j)}$ in the $(i, j)$ th factor contributes exactly the monomial $x^{a^{t}} y^{a}$ to the product. Thus, we get the Cauchy's identity
\[

$$
\begin{equation*}
\sum_{\lambda} s_{\lambda}(x) \cdot s_{\lambda}(y)=\prod_{i, j} \frac{1}{1-x_{i} y_{j}} \tag{4.16}
\end{equation*}
$$

\]

Now let us take $I=J$, put $x_{i}=y_{i}$, and restrict ourselves to the symmetric arrays $a=a^{t}$. Write $\xi_{i}$ instead of $x_{i}=y_{i}$ and replace every product $x^{a^{t}} y^{a}$ by its square root $\sqrt{x^{a^{t} y^{a}}}=\xi^{a}$. The sum of these $\xi^{a}$ over all symmetric arrays $a=a^{t}$ of a given shape $\lambda$ equals $s_{\lambda}(\xi)$. Therefore, $\sum_{a=a^{t}} \xi^{a}=\sum_{\lambda} s_{\lambda}(\xi)$. The same sum appears on multiplying out the product

$$
\prod_{k}\left(1+\xi_{k}+\left(\xi_{k}\right)^{2}+\left(\xi_{k}\right)^{3}+\cdots\right) \cdot \prod_{i<j}\left(1+\xi_{i} \xi_{j}+\left(\xi_{i} \xi_{j}\right)^{2}+\left(\xi_{i} \xi_{j}\right)^{3}+\cdots\right) .
$$

Summing up the geometric progressions, we get the Schur identity

$$
\begin{equation*}
\sum_{\lambda} s_{\lambda}(\xi)=\prod_{i} \frac{1}{1-\xi_{i}} \cdot \prod_{i<j} \frac{1}{1-\xi_{i} \xi_{j}} \tag{4.17}
\end{equation*}
$$

### 4.5 The Littlewood-Richardson Rule

Given two DU-sets $M, N$, the product of their Schur polynomials $s_{M}(x) \cdot s_{N}(x)$ is the Schur polynomial of the DU-set consisting of all arrays $a b, a \in M, b \in N$, of size $(2 n) \times m$, with the same vertical alphabet $J$ but the doubled horizontal alphabet $I \sqcup I$. We write $M \otimes N$ for the set of all such arrays $a b$, obtained by writing the array $b \in N$ to the right of the array $a \in M$ for all possible choices of $a \in M, b \in N$, and call the set $M \otimes N$ the tensor product of DU-sets $M, N$. Thus,

$$
s_{M}(x) \cdot s_{N}(x)=\left(\sum_{a \in M} x^{a}\right) \cdot\left(\sum_{b \in N} x^{b}\right)=\sum_{\substack{a \in M \\ b \in N}} x^{a b}=\sum_{c \in M \otimes N} x^{c}
$$

Since the standard Schur polynomials $s_{\lambda}$ form a basis of the $\mathbb{Z}$-module of symmetric functions, the product $s_{\lambda} s_{\mu}$ can be expanded as

$$
\begin{equation*}
s_{\lambda} \cdot s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \cdot s_{\nu} \tag{4.18}
\end{equation*}
$$

Theorem 4.2 (The Littlewood-Richardson Rule) In formula (4.18), the summation is over all Young diagrams $v$ obtained by adding $|\mu|$ extra cells to the diagram $\lambda$. The coefficient $c_{\lambda \mu}^{\nu}$ in (4.18) equals the total number of fillings of the skew diagram $\nu \backslash \lambda$ by $\mu_{1}$ ones, $\mu_{2}$ twos, $\mu_{3}$ threes, etc., such that these numbers increase nonstrictly from left to right along the rows of $v \backslash \lambda$, strictly increase from top to bottom along the columns of $v \backslash \lambda$ (as in a Young tableau), and the word obtained by reading the skew tableau $v \backslash \lambda$ from right to left row by row and top to bottom is a Yamanouchi word, i.e., in every starting segment of this word, the number of ones is not less than the number of twos, the number of twos is not less than the number of threes, etc.

Exercise 4.8 Use the Littlewood-Richardson rule to compute the products $s_{(1)} \cdot s_{(1,1)}$ and $s_{(1,1)} \cdot s_{(1)}$ independently of each other. Also compute $s_{2,1}^{2}$.

Proof (of Theorem 4.2) For every $\nu$, we have to compute a number of those DUorbits in $O_{\lambda} \otimes O_{\mu}$ whose left condensation is the standard orbit $O_{v}$. Let an array $a b$ belong to such an orbit. Then both arrays $a, b$ are L-dense and have $w_{I}(a)=\lambda$, $w_{I}(b)=\mu$, because they are obtained from the bidense arrays $\lambda, \mu$ by means of some vertical operations. We claim that an action of every vertical condensing operation $D_{j}$ on the "fat" array $a b$ is reduced to the action of $D_{j}$ either separately on $a$ or separately on $b$. Indeed, if the rightmost free ball of a stable matching in the fat array $a b$ lies in $b$, then this ball is certainly the rightmost free ball of a stable matching within $b$ only, and $D_{j}(a b)=a\left(D_{j} b\right)$. If all the balls of $b$ are coupled under the stable matching in the fat array $a b$, then $D_{j}(a b)=\left(D_{j} a\right) b$. Thus, in the D-condensation $a^{\prime} b^{\prime}$ of $a b$, the arrays $a^{\prime}, b^{\prime}$ are L-dense with $w_{I}\left(a^{\prime}\right)=\lambda, w_{I}\left(b^{\prime}\right)=\mu$, and the array $a^{\prime}$ is D-dense. Therefore, $a^{\prime}$ is bidense of shape $\lambda$. If the shape of the array $a^{\prime} b^{\prime}=\lambda b^{\prime}$ is $v$, the rows of the horizontal scan of $b^{\prime}$ coincide with the rows of the skew tableau $v>\lambda$, filled in accordance with the Littlewood-Richardson rule, because the Young tableau constraints assert that the fat array $a^{\prime} b^{\prime}$ is D-dense, whereas the Yamanouchi word constraint claims that $b^{\prime}$ is L-dense. ${ }^{16}$

Exercise 4.9 (Pieri's Formulas) Use the Littlewood-Richardson rule to prove the Pieri's formulas:

$$
\begin{align*}
& s_{\lambda} \cdot e_{k}=s_{\lambda} \cdot s_{\left(1^{k}\right)}=\sum_{\mu} s_{\mu},  \tag{4.19}\\
& s_{\lambda} \cdot h_{k}=s_{\lambda} \cdot s_{(k)}=\sum_{\nu} s_{\nu}, \tag{4.20}
\end{align*}
$$

where $\mu, v$ run through all the Young diagrams obtained by adding $k$ extra cells to the diagram $\lambda$ in such a way that all the new cells are in $k$ different rows of $\mu$ and in $k$ different columns of $v$.

[^41]
### 4.5.1 The Jacobi-Trudi Identity

Pieri's formula (4.20) and Corollary 3.4 on p. 69 imply that the determinantal Schur polynomials $\Delta_{\delta+\lambda} / \Delta_{\delta}$ introduced in Proposition 3.1 on p. 59 and the combinatorial Schur polynomials $s_{\lambda}$ of the standard DU-orbits are actually the same symmetric polynomials. Indeed, Pieri's formulas allow us to express all the Schur polynomials in terms of the complete symmetric polynomials $h_{k}=s_{(k)}$. For example, it follows from (4.20) that

$$
\begin{aligned}
s_{(2,2,1)} & =s_{(2,2)} h_{1}-s_{(3,2)}, \\
s_{(3,2)} & =s_{(3)} h_{2}-s_{(5)}-s_{(4,1)}=h_{3} h_{2}-h_{5}-s_{(4,1)}, \\
s_{(2,2)} & =s_{(2)} h_{2}-s_{(3,1)}-s_{(4)}=h_{2}^{2}-h_{4}-s_{(3,1)}, \\
s_{(4,1)} & =s_{(4)} h_{1}-s_{(5)}=h_{4} h_{1}-h_{5}, \\
s_{(3,1)} & =s_{(3)} h_{1}-s_{(4)}=h_{3} h_{1}-h_{4} .
\end{aligned}
$$

Therefore, $s_{(2,2,1)}=-h_{3} h_{2}+h_{4} h_{1}+h_{1}\left(h_{2}^{2}-h_{1} h_{3}\right)$.
Exercise 4.10 Check this by means of the Giambelli formula (3.23) on p. 66.
In the general case, let us leave on the right-hand side of (4.20) only the diagram $v$ of maximal length with the longest bottom row among such diagrams. Then $s_{\nu}$ turns out to be expressed in terms of $h_{k}$ and $s_{\eta}$ with either $\ell(\eta)<\ell(\nu)$ or $\ell(\eta)=\ell(\nu)=m$ but $\eta_{m}<\nu_{m}$. Induction on $\ell(\nu)$ and on the length of the bottom row in $v$ leads to the required expression for $s_{v}$ in terms of $h_{i}$.

Equivalence between the combinatorial and determinantal descriptions of the Schur polynomials is known as the Jacobi-Trudi formula.

### 4.5.2 Transition from $e_{\lambda}$ and $h_{\lambda}$ to $s_{\lambda}$

Recall that we write $m_{i}=m_{i}(\mu)$ for the number of length- $i$ rows in the Young diagram $\mu$ and put

$$
\begin{align*}
& e_{\mu}=e_{\mu_{1}} e_{\mu_{2}} \cdots e_{\mu_{r}}=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n}^{m_{n}}  \tag{4.21}\\
& h_{\mu}=h_{\mu_{1}} h_{\mu_{2}} \cdots h_{\mu_{r}}=h_{1}^{m_{1}} h_{2}^{m_{2}} \cdots h_{n}^{m_{n}}, \tag{4.22}
\end{align*}
$$

where $e_{k}(x)=s_{\left(1^{k}\right)}\left(x_{1}, x_{2}, \ldots, x_{m}\right), h_{k}(x)=s_{(k)}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ for $k \in \mathbb{N}$ are the elementary ${ }^{17}$ and complete ${ }^{18}$ symmetric polynomials respectively. For an arbitrary

[^42]Young diagram $\eta$, the complete polynomial $h_{\eta}=s_{\left(\eta_{1}\right)} s_{\left(\eta_{2}\right)} \cdots s_{\left(\eta_{r}\right)}$ is the Schur polynomial of the DU-set $O_{\left(\eta_{1}\right)} \otimes O_{\left(\eta_{2}\right)} \otimes \cdots \otimes O_{\left(\eta_{r}\right)}$. The DU-orbits of shape $v$ in this DU-set are numbered by their lower ends, which are in bijection with the Young tableaux of shape $v$ and content $\eta$. Therefore,

$$
\begin{equation*}
h_{\eta}=\sum_{\nu} K_{\nu, \eta} \cdot s_{\nu} . \tag{4.23}
\end{equation*}
$$

Similarly, $e_{\eta}=s_{\left(1^{\eta_{1}}\right)} s_{\left(1^{\eta_{2}}\right)} \cdots s_{\left(1^{\eta} r\right)}$ is the Schur polynomial of the DU-set

$$
O_{\left(1^{\eta_{1}}\right)} \otimes O_{\left(1^{\eta_{2}}\right)} \otimes \cdots \otimes O_{\left(1^{\eta_{r}}\right)} .
$$

Every array $a$ in this set has $|\eta|$ columns and can be considered a concatenation of subarrays $a_{1} a_{2} \ldots a_{r}$ of widths $\eta_{1}, \eta_{2}, \ldots, \eta_{r}$ and the same height as $a$. Every column of $a$ contains exactly one ball, and the $J$-coordinates of these balls strictly increase within every subarray $a_{i}$. The D-condensation of $a$ preserves the latter property and leads to a D-dense array $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{r}^{\prime}$ such that the balls of every subarray $a_{i}^{\prime}$ are in different rows whose numbers increase from left to right. Therefore, every subarray $a_{i}^{\prime}$ contributes at most one ball to every component of the row weight $w_{J}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{r}^{\prime}\right)$. Let $w_{J}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{r}^{\prime}\right)=v$. If we fill every row $v_{j}$ in $v$ from left to right by the sequential indices $i$ of those subarrays $a_{i}^{\prime}$ that contribute a ball to the $j$ th coordinate of $w_{J}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{r}^{\prime}\right)$, then we get a Young tableau of content $\eta$ and shape $\nu^{t}$. The latter is the transpose of $v$, because the D-density of the array $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{r}^{\prime}$ forces the numbers $i$ to increase strictly along the rows and nonstrictly along the columns of $v$. The construction also implies that every index $i$ appears in exactly $\eta_{i}$ different rows. We conclude that

$$
\begin{equation*}
e_{\eta}=\sum_{\nu} K_{\nu^{t}, \eta} \cdot s_{v} \tag{4.24}
\end{equation*}
$$

Proposition 4.4 The involution $\omega: \Lambda \underset{\rightarrow}{\sim} \Lambda$ introduced in Proposition 3.3 on p. 62 acts on the Schur basis by the rule $\omega\left(s_{\lambda}\right)=s_{\lambda^{t}}$, i.e., transposes Young diagrams indexing the Schur polynomials.

Proof Since the Schur polynomials $s_{\lambda}$ form a basis of the $\mathbb{Z}$-module of symmetric functions $\Lambda$, the assignment $s_{\lambda} \mapsto s_{\lambda^{t}}$ provides $\Lambda$ with a $\mathbb{Z}$-linear involution. It follows from formulas (4.23), (4.24) that this involution swaps $e_{k}$ with $h_{k}$ and therefore coincides with $\omega$, which also swaps $e_{k}$ with $h_{k}$.

## Corollary 4.3 (Second Giambelli Formula)

$$
s_{\lambda^{t}}=\operatorname{det}\left(\begin{array}{cccc}
e_{\lambda_{1}} & e_{\lambda_{1}+1} & \ddots & e_{\lambda_{1}+n-1}  \tag{4.25}\\
e_{\lambda_{2}-1} & e_{\lambda_{2}} & \ddots & \ddots \\
\ddots & \ddots & \ddots & e_{\lambda_{n-1}+1} \\
e_{\lambda_{n}-n+1} & \ddots & e_{\lambda_{n}-1} & e_{\lambda_{n}}
\end{array}\right)
$$

where $e_{\lambda_{1}}, e_{\lambda_{2}}, \ldots, e_{\lambda_{n}}$ are on the main diagonal and the indices of $e$ are incremented by one from left to right along the rows.

Proof Apply the involution $\omega$ to the first Giambelli formula (3.23) on p. 66.

### 4.6 The Inner Product on $\Lambda$

Let us equip the $\mathbb{Z}$-module of symmetric functions $\Lambda$ with the Euclidean inner product $\langle *, *\rangle$ by declaring the Schur basis $s_{\lambda}$ to be orthonormal,

$$
\left\langle s_{\lambda}, s_{\mu}\right\rangle= \begin{cases}1 & \text { for } \lambda=\mu \\ 0 & \text { otherwise }\end{cases}
$$

Then Proposition 4.4 forces the involution $\omega$ to be orthogonal, and the formulas ${ }^{19}$

$$
h_{\lambda}=\sum_{\mu \unrhd \lambda} K_{\mu, \lambda} \cdot s_{\mu}, \quad s_{\mu}=\sum_{\lambda \unrhd \mu} K_{\mu, \lambda} \cdot m_{\lambda}
$$

show that $\left\langle h_{\lambda}, s_{\mu}\right\rangle=K_{\mu, \lambda}=\left\langle m_{\lambda}^{\vee}, s_{\mu}\right\rangle$, where $m_{\lambda}^{\vee}$ means the Euclidean dual ${ }^{20}$ basis to the monomial basis $m_{\lambda}$. Therefore, $m_{\lambda}^{\vee}=h_{\lambda}$, i.e., the bases $h_{\lambda}$ and $m_{\lambda}$ are dual to each other,

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle= \begin{cases}1 & \text { for } \lambda=\mu  \tag{4.26}\\ 0 & \text { otherwise }\end{cases}
$$

Proposition 4.5 The Newton polynomials $p_{\lambda}$ form an orthogonal basis of the vector space of symmetric functions with rational coefficients $\mathbb{Q} \otimes \Lambda$, and ${ }^{21}$

$$
\left\langle p_{\lambda}, p_{\lambda}\right\rangle=z_{\lambda}=\prod_{k}\left(m_{k}!\cdot k^{m_{k}}\right) .
$$

Proof Let us expand the geometric progressions on the right-hand side of Cauchy's identity ${ }^{22}$ in terms of Newton power sums in the variables $x$ and $y$ :

$$
\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)=\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\prod_{j} H\left(y_{j}\right)=\prod_{j} \exp \left(\int_{0}^{y_{j}} P(t) d t\right)
$$

[^43]\[

$$
\begin{aligned}
& =\exp \left(\sum_{j} \sum_{k} \frac{1}{k} p_{k}(x) y_{j}^{k}\right)=\exp \left(\sum_{k} \frac{p_{k}(x) p_{k}(y)}{k}\right) \\
& =\prod_{k} \exp \left(\frac{p_{k}(x) p_{k}(y)}{k}\right)=\prod_{k} \sum_{\ell \geqslant 0} \frac{1}{\ell!\cdot k^{\ell}}\left(p_{k}(x) p_{k}(y)\right)^{\ell} \\
& =\sum_{\lambda} \frac{1}{z_{\lambda}} p_{\lambda}(x) p_{\lambda}(y)
\end{aligned}
$$
\]

(the last equality holds for the same reason as in formula (3.17) on p. 64). Write

$$
c_{\lambda \mu}=\left\langle s_{\lambda}, p_{\mu}\right\rangle
$$

for the elements of the transition matrix $C=C_{s p}$ from the Newton polynomials to the Schur basis. Then $p_{\mu}=\sum_{\lambda} s_{\lambda} \cdot c_{\lambda \mu}$. Substituting these expansions into the right-hand side of the above equality and comparing the coefficients in $s_{\lambda}(x) s_{\eta}(y)$ on both sides leads to the relations

$$
\sum_{\nu} c_{\nu \lambda} c_{\nu \eta}= \begin{cases}z_{\lambda} & \text { for } \eta=\lambda \\ 0 & \text { otherwise }\end{cases}
$$

i.e., the Gram matrix $\left(\left\langle p_{\lambda}, p_{\mu}\right\rangle\right)=C^{t} \cdot C$ is diagonal with $z_{\lambda}$ on the diagonal.

## Problems for Independent Solution to Chapter 4

Problem 4.1 Verify that an array $a$ is D-dense if and only if

$$
\begin{aligned}
& a(1, j+1)+a(2, j+1)+\cdots+a(i, j+1) \\
& \quad \leqslant a(1, j)+a(2, j)+\cdots+a(i-1, j),
\end{aligned}
$$

for all $i \in I, j \in J$, and write similar inequalities expressing the L-, R-, and U-density of $a$.
Problem 4.2 Write the D-dense array with row scan

$$
\begin{array}{|l|l|l|}
\hline 1 & 4 & 6 \\
\hline 2 & 5 & 7 \\
\hline 3 & 8 & 9 \\
\hline
\end{array}
$$

and the L-dense array with column scan

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 8 |
| 6 | 7 | 9 |

Compute the permutation $g \in S_{9}$ encoded by this pair of arrays under the RSKtype correspondence from Example 4.2 on p. 85.
Problem 4.3 Compute the permutation $g \in S_{9}$ mapped by the RSK-type correspondence from Example 4.2 on p. 85 to the following pairs of Young tableaux ${ }^{23}$ :
(a)
a) $1 / 2|3| 6171819$

Problem 4.4 Show that for every DU-homomorphism of DU-orbits ${ }^{24} \varphi: O_{1} \rightarrow O_{2}$, either $\varphi$ is bijective or $O_{2}$ consists of just one point.
Problem 4.5 Write explicitly the Schur polynomials
(a) $s_{2,1}\left(x_{1}, x_{2}, x_{3}\right)$,
(b) $s_{3,1}\left(x_{1}, x_{2}, x_{3}\right)$,
(c) $s_{2,1,1}\left(x_{1}, x_{2}, x_{3}\right)$.

Problem 4.6 How many monomials are there in $s_{(2,1,1)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ ?
Problem 4.7 Express the determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{6} & x_{2}^{6} & x_{3}^{6} & x_{4}^{6} \\
x_{1}^{3} & x_{2}^{3} & x_{3}^{3} & x_{4}^{3} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
1 & 1 & 1 & 1
\end{array}\right)
$$

in terms of the elementary symmetric polynomials in $x$ and the Vandermonde determinant $\Delta_{\delta}=\prod_{i<j}\left(x_{i}-x_{j}\right)$.
Problem 4.8 (Domination) Given two Young diagrams $\lambda, \mu$ of the same weight $|\lambda|=|\mu|=n$, we write $\lambda \unrhd \mu$ and say that $\lambda$ dominates $\mu$ if

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} \geqslant \mu_{1}+\mu_{2}+\cdots+\mu_{j} \quad \text { for all } j .
$$

Let $\lambda \triangleright \mu$ be a minimal dominating diagram ${ }^{25}$ for $\mu$. Show that $\mu$ is obtained from $\lambda$ by moving one cell the minimal possible distance in the southwesterly direction and that $\mu^{t} \triangleright \lambda^{t}$. Use this to prove the equivalence $\lambda \unrhd \mu \Longleftrightarrow \lambda^{t} \unlhd \mu^{t}$ for every two $\unrhd$-compatible Young diagrams.
Problem 4.9 Let us cut a Young diagram $\lambda$ whose main diagonal consists of $k$ cells into $k \Gamma$-shaped hooks ${ }^{26} \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ with corners on the main diagonal of $\lambda$.

[^44]For example,


Compute the coefficient of $s_{\lambda}$ in the expansion of the product $s_{\gamma_{1}} s_{\gamma_{2}} \cdots s_{\gamma_{k}}$ as a $\mathbb{Z}$-linear combination of the standard Schur polynomials $s_{\lambda}$.
Problem 4.10* (Schützenberger Involution) Show that rotation by $180^{\circ}$ about the center of an $n \times m$ array does not change the shape ${ }^{27}$ of the array, i.e., $\lambda(a)=\lambda\left(a^{*}\right)$, where $a^{*}(i, j)=a(n+1-i, m+1-j)$.
Problem 4.11* (Untangling Antichains) Given a poset ${ }^{28} P$, every totally ordered subset $C \subset P$ is called a chain, whereas every subset $A \subset P$ all of whose elements are mutually incompatible is called an antichain. A subset $K \subset M$ is called a $k$-antichain if $K$ can be covered by $k$ antichains. Write $\alpha_{k}(P)$ for the maximal cardinality among $k$-antichains in $P$. The sequence of differences

$$
\delta_{k}(P)=\alpha_{k}(P)-\alpha_{k-1}(P)
$$

is called the shape of the poset $P$. Given an array $a$, write $P(a)$ for the set of all balls in $a$ equipped with the partial order $\beta>\gamma$, meaning that both the horizontal and vertical coordinates of $\beta$ are greater than those of $\gamma$. Prove that for every array $a$, the shape of the poset $P(a)$ coincides with the shape of the array ${ }^{29} \lambda(a)$. Hint: prove that the vertical operations $D_{j}, U_{j}$ do not decrease the differences $\delta_{k}$ (first prove this for $\delta_{1}$, the cardinality of a maximal antichain, and then untangle every $k$-antichain into a disjoint union of $k$ ordinary antichains).

[^45]
# Chapter 5 <br> Basic Notions of Representation Theory 

### 5.1 Representations of a Set of Operators

### 5.1.1 Associative Envelope

Given a set $R$ and a field $\mathbb{k}$, let us write $R \otimes \mathbb{k}$ for the vector space with basis $R$ over $\mathbb{k}$. It is formed by the formal linear combinations $\sum x_{r} \cdot r$ of elements $r \in R$ with coefficients $x_{r} \in \mathbb{K}$, all but a finite number of which vanish. By definition, the free associative $\mathbb{k}$-algebra spanned by the set $R$ is the tensor algebra $A_{R} \xlongequal{\text { def }} \mathrm{T}(R \otimes \mathbb{k})$ of the vector space $R \otimes \mathbb{k}$.

Exercise 5.1 Verify that the tautological inclusion $\iota: R \hookrightarrow A_{R}$, mapping $R$ to the distinguished basis of $R \otimes \mathbb{k} \subset \mathrm{~T}(R \otimes \mathbb{k})$, possesses the following universal property: for every associative $\mathbb{k}$-algebra $B$ and map of sets $\varphi: A \rightarrow B$, there exists a unique homomorphism of $\mathbb{k}$-algebras $\widetilde{\varphi}: A_{R} \rightarrow B$ such that $\widetilde{\varphi} \iota=\varphi$. Prove that the algebra $A_{R}$ together with the inclusion $\iota: R \hookrightarrow A_{R}$ is uniquely determined by this universal property up to a unique isomorphism commuting with $\iota$.
For example, if $R=\{t\}$ consists of one element $t$, then the vector space

$$
t \otimes \mathbb{k}=\mathbb{k} \cdot t
$$

has dimension 1, and the free associative $\mathbb{k}$-algebra $A_{t}$ is isomorphic to the polynomial algebra $\mathbb{k}[t]$ by mapping $t \otimes t \otimes \cdots \otimes t \in A_{t}$ to $t^{n} \in \mathbb{k}[t]$.

Given a vector space $W$ over $\mathbb{k}$, a map of sets $\varrho: R \rightarrow \operatorname{End}_{\mathfrak{k}}(W)$ is called a linear representation of the set $R$ by endomorphisms of $W$. By Exercise 5.1, the linear representations of $R$ in $\operatorname{End}_{k}(W)$ are in bijection with the $\mathbb{k}$-algebra homomorphisms

$$
\begin{equation*}
\widetilde{\varrho}: A_{R} \rightarrow \operatorname{End}(W), \tag{5.1}
\end{equation*}
$$

also called linear representations of $A_{R}$ by endomorphisms of $W$. A vector space $W$ equipped with a linear representation $\varrho: R \rightarrow \operatorname{End}_{\mathrm{k}}(W)$ or $\widetilde{\varrho}: A_{R} \rightarrow \operatorname{End}(W)$ is
called an $R$-module or $A_{R}$-module. This means that for every $f \in R$, the linear map $\varrho(f): W \rightarrow W$ is given. Then an arbitrary tensor

$$
f=\sum x_{f_{1} f_{2} \ldots f_{m}} f_{1} \otimes f_{2} \otimes \cdots \otimes f_{m} \in A_{R}
$$

with $f_{v} \in R, x_{f_{1} f_{2} \ldots f_{m}} \in \mathbb{k}$, is represented by the linear operator

$$
\widetilde{\varrho}(f)=\sum x_{f_{1} f_{2} \ldots f_{m}} \varrho\left(f_{1}\right) \circ \varrho\left(f_{2}\right) \circ \cdots \circ \varrho\left(f_{m}\right): W \rightarrow W .
$$

In particular, the image of the algebra homomorphism (5.1) consists of all linear maps $W \rightarrow W$ obtained from the operators $\varrho(f), f \in R$, by compositions and finite linear combinations. All these maps form a $\mathbb{k}$-subalgebra in $\operatorname{End}_{k}(W)$ called the associative envelope of the set of operators $\varrho(R) \subset \operatorname{End}(W)$. We write Ass $X$ for the associative envelope of an arbitrary set of linear endomorphisms $X \subset$ End $W$. Thus, $\operatorname{Ass}(\varrho(R))=\widetilde{\varrho}\left(A_{R}\right)$.

When the representation $\varrho: R \rightarrow$ End $W$ is clear from the context or inessential, we will write $f w$ for the image of a vector $w \in W$ under the map $\widetilde{\varrho}(f): W \rightarrow W$. Given a vector subspace $U \subset W$ and a set of tensors $F \subset A_{R}$, we put

$$
F U \stackrel{\text { def }}{=}\{f u \mid f \in F, u \in U\} .
$$

### 5.1.2 Decomposability and (Semi)/Simplicity

Let $W$ be an $R$-module. A vector subspace $U \subset W$ is called $R$-invariant (or an $R$-submodule) if $R U \subset U$.
Exercise 5.2 (Factor Modules) Given an $R$-submodule $U$ of an $R$-module $W$, verify that the quotient space $V=W / U$ inherits the $R$-module structure well defined by the assignment $f[w] \stackrel{\text { def }}{=}[f w]$ for all $f \in R, w \in W$, where $[w]=w+U$ means the congruence class of $w$ modulo $U$.
A nonzero $R$-module $W$ is called simple if it has no proper $R$-submodules except for the zero module. A representation $\varrho: R \rightarrow \operatorname{End}(W)$ producing a simple $R$-module $W$ is called irreducible. An $R$-module is called semisimple if it is a direct sum of simple $R$-submodules. A representation producing such a module is called completely reducible. Note that direct sums of semisimple modules are semisimple. An $R$-module $W$ and the corresponding representation $\varrho: R \rightarrow \operatorname{End}(W)$ are called decomposable if $W$ splits into a direct sum of two nonzero $R$-submodules. Otherwise, $W$ is called indecomposable. Note that every irreducible representation is completely reducible and indecomposable.
Exercise 5.3 Convince yourself that for every set of linear operators $X \subset$ End $W$ and vector subspaces $U_{1}, U_{2} \subset W$, the conditions $X U_{1} \subset U_{2}$ and $\operatorname{Ass}(X) U_{1} \subset U_{2}$ are equivalent. Use this to show that (semi)simplicity or (in)decomposability of
$W$ considered as an $R$-module implies the corresponding property of $W$ as an $A_{R}$-module.

Example 5.1 (Representations of One Operator) Let the set $R$ consist of a single element $t$. Then $A_{R} \simeq \mathbb{k}[t]$. To assign a representation

$$
\varrho: R \rightarrow \text { End } W
$$

means to pick a linear operator $f=\varrho(t): W \rightarrow W$. This provides $W$ with the structure of a $\mathbb{k}[t]$-module. The corresponding homomorphism

$$
\begin{equation*}
\widetilde{\varrho}=\operatorname{ev}_{f}: \mathbb{k}[t] \rightarrow \operatorname{End}(W), \quad t \mapsto f \tag{5.2}
\end{equation*}
$$

takes a polynomial $F \in \mathbb{k}[t]$ to the linear map $F(f): W \rightarrow W$ obtained by the substitution $t=f$ in the polynomial $F(t)$. If $\operatorname{dim}_{k} W<\infty$, then the homomorphism (5.2) must have nonzero kernel $\operatorname{ker}^{\operatorname{ev}}{ }_{f}=\left(\mu_{f}\right)$, where $\mu_{f}$ is the monic polynomial of minimal degree such that $\mu_{f}(f)=0$. Recall ${ }^{1}$ that $\mu_{f}$ is called the minimal polynomial of $f$. The subalgebra $\operatorname{Ass}(f)=\operatorname{im} \widetilde{\varrho} \subset$ End $W$ consists of all linear operators on $W$ represented as polynomials in $f$. It is isomorphic to the quotient algebra $\mathbb{k}[t] /\left(\mu_{f}\right)$. The elementary divisor theorem ${ }^{2}$ implies that every $\mathbb{k}[t]$-module $W$ of finite dimension over $\mathbb{k}$ is isomorphic to a direct sum of quotient modules

$$
\begin{equation*}
\frac{\mathbb{k}[t]}{\left(p_{1}^{m_{1}}\right)} \oplus \frac{\mathbb{k}[t]}{\left(p_{2}^{m_{2}}\right)} \oplus \cdots \oplus \frac{\mathbb{K}[t]}{\left(p_{s}^{m_{s}}\right)}, \tag{5.3}
\end{equation*}
$$

where all $p_{i} \in \mathbb{k}[t]$ are monic irreducible, and the operator $f$ acts as multiplication by $t$. Two direct sums (5.3) are isomorphic if and only if they differ by a permutation of the summands. In particular, the quotient modules $\mathbb{k}[t] /\left(p^{m}\right)$ give a complete list of mutually nonisomorphic indecomposable $\mathbb{k}[t]$-modules. We have seen in Sect. 15.1.3 of Algebra I that the indecomposable module $\mathbb{k}[t] /\left(p^{m}\right)$ is simple if and only if $m=1$. Thus the semisimple $\mathbb{k}[t]$-modules are exhausted by the sums (5.3) with all $m_{i}$ equal to 1 .

Example 5.2 (Commuting Operators) In Sect. 15.3.3 of Algebra I, we have seen that for every set $R \subset \operatorname{End}_{\mathrm{k}} W$ of pairwise commuting operators over an algebraically closed field $\mathbb{k}$ there exists an $R$-invariant subspace of dimension one in $W$. This means that every irreducible representation of every set of commuting operators over an algebraically closed field has to be of dimension one. Also, we have seen that every set of commuting diagonalizable linear operators (over an arbitrary field) can be simultaneously diagonalized in a common basis. Hence, every vector space $W$ equipped with an action of a set $R$ of commuting diagonalizable

[^46]operators splits into a direct sum of $R$-submodules of dimension one. In particular, $W$ is completely reducible in this case.

Lemma 5.1 Let $W$ be an $R$-module (not necessarily of finite dimension over $\mathbb{k}$ ) linearly generated over $k$ by a set $S$ of simple $R$-submodules. Then for every proper $R$-submodule $U \varsubsetneqq W$, there exists a complementary $R$-submodule $V \subset W$ such that $W=U \oplus V$ and $V$ splits into a direct sum of submodules from $S$. For $U=0$, this means that $W$ itself is such a direct sum. In particular, $W$ is semisimple.

Proof Since $U \neq W$ and $W$ is spanned by submodules $S \in S$, there exists $S \not \subset U$ in $S$. Then the sum $U+S$ is a direct sum, because $S$ is simple, and therefore $S \cap U \varsubsetneqq S$ is zero. Write $S^{\prime}$ for the set of semisimple submodules $M \subset W$ decomposable into a direct sum of simple modules from $S$ and such that the sum $U+M$ is a direct sum. Then $S^{\prime}$ is nonempty and partially ordered by the relation $M_{1}<M_{2}$, meaning that $M_{2}=M_{1} \oplus M$ for some $M \in S^{\prime}$.
Exercise 5.4 Verify that the poset $S^{\prime}$ is complete. ${ }^{3}$
By Zorn's lemma, ${ }^{4}$ there exists a maximal element $V$ in $S^{\prime}$. We claim that $U \oplus V=W$. Indeed, otherwise, we could repeat the previous arguments for $U \oplus V$ in the role of $U$ and find a simple submodule $S \subset W$ such that the sum $(U \oplus V)+S$ was a direct sum. Then $V \oplus S \in S^{\prime}$ would be strictly bigger than $V$. Everything just said works for $U=0$ as well.

Lemma 5.2 Let $W$ be an $R$-module such that every nonzero proper submodule of $W$ contains a simple $R$-submodule. ${ }^{5}$ Then $W$ is semisimple if and only if every nonzero proper $R$-submodule $U \varsubsetneqq W$ admits a complementary $R$-submodule $V \subset W$ such that $W=U \oplus V$.

Proof Let every nonzero proper submodule $M \subset W$ have a complementary submodule. Write $S$ for the set of all semisimple submodules $S \subseteq W$ partially ordered by the relation $S_{1}<S_{2}$, meaning that $S_{2}=S_{1} \oplus S$ for some $S \in S$. The poset $S$ is nonempty and complete. We claim that (every) maximal element $M \in S$ coincides with $W$. Indeed, otherwise, there would exist a nonzero submodule $V \subset W$ such that $W=M \oplus V$ and a simple submodule $S \subset V$. This would force $M \oplus S \in S$ to be bigger than $M$. The converse implication follows from Theorem 5.1 applied to the set $S$ of all simple submodules in $W$.

Theorem 5.1 (Semisimplicity Criteria) Let $W$ be an $R$-module such that every $R$-submodule of $W$ contains a finite-dimensional $R$-submodule. Then the following properties of $W$ are equivalent:

1. $W$ is semisimple.
2. $W$ is linearly generated over $\mathbb{k}$ by simple $R$-submodules.

[^47]3. For every nonzero proper $R$-submodule $U \varsubsetneqq W$, there exists an $R$-submodule $V \subset W$ such that $W=U \oplus V$.

Proof For a finite-dimensional $R$-module $U$, every $R$-submodule $S \subset U$ of minimal nonzero dimension has to be simple. Thus, the assumption of Lemma 5.2 holds. Therefore, (3) $\Rightarrow$ (1). Certainly, (1) $\Rightarrow$ (2). Implication (2) $\Rightarrow$ (3) follows from Lemma 5.1.

### 5.1.3 Homomorphisms of Representations

Given two representations $\varrho_{1}: R \rightarrow \operatorname{End}\left(W_{1}\right), \varrho_{2}: R \rightarrow \operatorname{End}\left(W_{2}\right)$ of a set $R$, a linear map $\varphi: W_{1} \rightarrow W_{2}$ is called $R$-linear or a homomorphism of $R$-modules ${ }^{6}$ if it commutes with all operators from $R$, that is, the diagram

is commutative for all $f \in R$. The set of all $R$-linear maps $\varphi: W_{1} \rightarrow W_{2}$ is denoted by

$$
\operatorname{Hom}_{R}\left(W_{1}, W_{2}\right) \stackrel{\text { def }}{=}\left\{\varphi: W_{1} \rightarrow W_{2} \mid \forall w \in W_{1}, \forall f \in R \varphi(f w)=f \varphi(w)\right\} .
$$

Exercise 5.5 Check that (a) $\operatorname{Hom}_{R}\left(W_{1}, W_{2}\right)=\operatorname{Hom}_{A_{R}}\left(W_{1}, W_{2}\right)$ is a vector subspace in $\operatorname{Hom}_{k}\left(W_{1}, W_{2}\right)$, (b) the composition of $R$-linear maps is $R$-linear, (d) the kernel and image of every $R$-linear map are $R$-submodules.

Lemma 5.3 (Schur's Lemma) Every nonzero homomorphism of simple $R$ modules $\varphi: U \rightarrow W$ is an isomorphism. If the ground field $\mathbb{k}$ is algebraically closed, then the $R$-linear endomorphisms of a simple $R$-module $U$ are exhausted by the scalar operators $\lambda \cdot \operatorname{Id}_{U}$ with $\lambda \in \mathbb{K}$.

Proof Since $\operatorname{ker} \varphi \subset U$ is $R$-invariant, either $\operatorname{ker} \varphi=U$ or $\operatorname{ker} \varphi=0$. In the first case, $\varphi=0$. In the second, $\operatorname{im} \varphi \subset W$ is a nonzero $R$-submodule, and therefore $\operatorname{im} \varphi=W$. Hence, $\varphi$ is bijective. If $\mathbb{k}$ is algebraically closed, then an $R$-linear endomorphism $\varphi: U \rightarrow U$ possesses an eigenvector, i.e., $\operatorname{ker}\left(\lambda \cdot \operatorname{Id}_{U}-\varphi\right) \neq 0$ for some $\lambda \in \mathbb{k}$. Since the map $\lambda \cdot \operatorname{Id}_{U}-\varphi$ also is $R$-linear, its kernel is a nonzero $R$-submodule in $U$. This forces $\operatorname{ker}\left(\lambda \cdot \operatorname{Id}_{U}-\varphi\right)=U$, i.e., $\varphi=\lambda \operatorname{Id}_{U}$.

[^48]Corollary 5.1 Let $U, W$ be irreducible $R$-modules over an algebraically closed field. Then

$$
\operatorname{dim} \operatorname{Hom}_{R}(U, W)= \begin{cases}0 & \text { if } U \nsucceq W, \\ 1 & \text { if } U \simeq W\end{cases}
$$

Proof If there is an $R$-linear isomorphism $\psi: U \xrightarrow{\sim} W$, then for every $\varphi \in \operatorname{Hom}(U, W)$, the equality $\psi^{-1} \varphi=\lambda \cdot \operatorname{Id}_{U}$ holds for some $\lambda \in \mathbb{k}$ by Schur's lemma. Hence $\varphi=\lambda \psi$.

Corollary 5.2 A quotient module of a semisimple $R$-module is semisimple.
Proof Let $\pi: W \rightarrow U$ be an $R$-linear surjection. Then for every simple $R$ submodule $S \subset W$, its image $\pi(S) \subset U$ is either zero or simple. Thus if $W$ is spanned by simple submodules, then so is $U$.

Proposition 5.1 Under the assumptions of Theorem 5.1 on $p$. 102, an $R$-module $W$ is semisimple if and only if for every submodule $U \subset W$, there exists an $R$-linear endomorphism $\pi_{U} \in \operatorname{End}_{R}(W)$ such that $\pi_{U}^{2}=\pi_{U}$ and $\operatorname{im} \pi_{U}=U$.

Proof We have seen in Example 15.3 of Algebra I that every linear endomorphism $\pi: V \rightarrow V$ satisfying the relation $\pi^{2}=\pi$ projects $V$ onto im $\pi$ along ker $\pi$, i.e., $V=\operatorname{ker} \pi \oplus \operatorname{im} \pi$ and $\pi(u)=u$ for all $u \in \operatorname{im} \pi$. Since $\pi_{U}$ is $R$-linear, both ker $\pi_{U}$ and im $\pi_{U}$ are $R$-submodules in $W$ by Exercise 5.5. Thus, the existence of $\pi_{U}$ is equivalent to condition (3) of Theorem 5.1.

Corollary 5.3 A submodule of a semisimple $R$-module is semisimple.
Proof Let $W$ be a semisimple $R$-module, and $L \subsetneq W$ an $R$-submodule. Then for every $R$-submodule $U \subset L$, there exists an $R$-linear projector $W \rightarrow U$. Its restriction to $L$ gives the required projector $L \rightarrow U$.

### 5.2 Representations of Associative Algebras

### 5.2.1 Double Centralizer Theorem

Let $A$ be an associative algebra over an arbitrary field $\mathbb{k}$, and let $V$ be a vector space over $\mathbb{k}$. A homomorphism of $\mathbb{k}$-algebras $\varrho: A \rightarrow$ End $V$ is called a linear representation of the algebra $A$ by endomorphisms of $V$. In this case, the vector space $V$ is called an $A$-module. All notions related to linear representations of sets make sense for $A$-modules as well. In particular, given two $A$-modules $U, W$, we write

$$
\operatorname{Hom}_{A}(U, W) \stackrel{\text { def }}{=}\{\varphi: U \rightarrow W \mid \forall f \in A, \forall u \in U \varphi(f u)=f \varphi(u)\}
$$

for the space of $A$-linear maps $\varphi: U \rightarrow W$. For $U=W$, the $A$-linear endomorphisms of $W$ form an associative $\mathbb{k}$-subalgebra $\operatorname{End}_{A}(W) \subset \operatorname{End}_{k}(W)$ in the algebra of all linear endomorphisms of $W$. The subalgebra $\operatorname{End}_{A}(W)$ is often called the centralizer of $A$ in $\operatorname{End}_{k}(W)$.

If $W$ splits into a direct sum of $A$-modules $W=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$, we write $\iota_{\nu}: V_{\nu} \hookrightarrow W$ for the inclusion of the $\nu$ th summand in $W$ and $\pi_{\mu}: W \rightarrow V_{\mu}$ for the projections of $W$ onto the $\mu$ th summand.
Exercise 5.6 Verify the relations $\sum_{\nu} \iota_{\nu} \pi_{\nu}=\operatorname{Id}_{W}, \pi_{\nu} \iota_{\nu}=\operatorname{Id}_{V_{\nu}}$ for all $\nu, \pi_{\nu} \iota_{\mu}=0$ and $\iota_{\mu} \pi_{\nu}=0$ for all $\mu \neq v$.
For every $\varphi \in \operatorname{End}(W)$, we put $\varphi_{\mu \nu} \stackrel{\text { def }}{=} \pi_{\mu} \circ \varphi \circ \iota_{\nu}$ and arrange the maps

$$
\varphi_{\mu \nu}: V_{\nu} \rightarrow V_{\mu}
$$

into the square matrix $\left(\varphi_{\mu \nu}\right)$. Note that $\varphi$ is uniquely recovered from this matrix by the formula

$$
\varphi=\operatorname{Id}_{W} \circ \varphi \circ \operatorname{Id}_{W}=\left(\sum_{\mu} \iota_{\mu} \pi_{\mu}\right) \circ \varphi \circ\left(\sum_{\nu} \iota_{\nu} \pi_{\nu}\right)=\sum_{\mu, \nu} \iota_{\mu} \varphi_{\mu \nu} \pi_{\nu},
$$

and $\varphi \in \operatorname{End}_{A}(W)$ if and only if all $\varphi_{\mu \nu}$ are in $\operatorname{Hom}_{A}\left(V_{\nu}, V_{\mu}\right)$. Therefore, there is an isomorphism of vector spaces

$$
\begin{equation*}
\operatorname{End}_{A}(W) \xrightarrow{\sim} \bigoplus_{\mu, \nu} \operatorname{Hom}_{A}\left(V_{\nu}, V_{\mu}\right), \quad \varphi \mapsto\left(\varphi_{\mu \nu}\right) . \tag{5.4}
\end{equation*}
$$

Exercise 5.7 Verify that isomorphism (5.4) takes the composition of endomorphisms to the multiplication of matrices.
In particular, if all $V_{v}=V$ are copies of the same $A$-module $V$, then the isomorphism (5.4) becomes an isomorphism of $\mathbb{k}$-algebras

$$
\begin{equation*}
\operatorname{End}_{A}\left(V^{\oplus n}\right) \simeq \operatorname{Mat}_{n}\left(\operatorname{End}_{A}(V)\right) \tag{5.5}
\end{equation*}
$$

Theorem 5.2 (Double Centralizer Theorem) Let $V$ be a finite-dimensional vector space over $\mathbb{k}$, let $A \subset \operatorname{End}(V)$ be an associative $\mathbb{k}$-subalgebra, and let $B=\operatorname{End}_{A}(V)$. If $V$ is a semisimple $A$-module, then $\operatorname{End}_{B}(V)=A$.

Proof The inclusion $A \subset \operatorname{End}_{B}(V)$ follows from the definition of centralizer. To establish the opposite inclusion, we fix some basis $e_{1}, e_{2}, \ldots, e_{n}$ of $V$ over k and for every $\varphi \in \operatorname{End}_{B}(V)$, indicate an element $a \in A$ such that $\varphi e_{i}=a e_{i}$ for all $i$. This forces $\varphi=a$. Write $W=V^{\oplus n}$ for the direct sum of $n$ copies of $V$ and consider the diagonal representation of $\operatorname{End}_{k}(V)$ in $W$, which takes $f \in \operatorname{End}_{k}(V)$ to the linear map

$$
\widetilde{f}: W \rightarrow W, \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mapsto\left(f v_{1}, f v_{2}, \ldots, f v_{n}\right)
$$

In terms of the isomorphism (5.5), the endomorphism $\widetilde{f}$ is represented by the constant diagonal matrix $f E$. Restricting the diagonal representation to the subalgebras $A, B, \operatorname{End}_{B}(V) \subset \operatorname{End}_{k}(V)$ provides $W$ with module structures over these three subalgebras. Consider the vector $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in W$. We have to show that $\widetilde{\varphi} e \in A e$ for every $\varphi \in \operatorname{End}_{B}(V)$. Since $W$ is a semisimple $A$-module, there exists an $A$-linear projector $\pi: W \rightarrow A e$ that acts identically on the $A$-submodule $A e \subset W$. If $\pi$ commutes with $\widetilde{\varphi}$, then $\widetilde{\varphi}(e)=\widetilde{\varphi}(\pi e)=\pi(\widetilde{\varphi} e) \in A e$, as required. Thus, it is enough to verify that $\pi \widetilde{\varphi}=\widetilde{\varphi} \pi$. Let $\left(\pi_{\mu \nu}\right) \in \operatorname{Mat}_{n}\left(\operatorname{End}_{k}(V)\right)$ be the matrix of $\pi$. This is an $n \times n$ matrix with elements $\pi_{i j} \in \operatorname{End}_{A}(V)=B$. The endomorphism $\widetilde{\varphi}$ has the constant diagonal matrix $\varphi E$, whose diagonal element $\varphi \in \operatorname{End}_{B}(V)$ commutes with all $\pi_{\mu \nu}$. Hence, the matrices of $\pi$ and $\widetilde{\varphi}$ commute.
Corollary 5.4 (Burnside's Theorem) Let $V$ be a finite-dimensional vector space over an algebraically closed field $\mathbb{k}$, and $R \subset \operatorname{End}_{k}(V)$ a set of operators. If $V$ is simple as an $R$-module, then the associative envelope $\operatorname{Ass}(R)$ is equal to $\operatorname{End}_{k}(V)$. In particular, every finite-dimensional irreducible representation $A \rightarrow \operatorname{End}_{k}(V)$ of an associative $\mathbb{k}$-algebra $A$ is surjective.

Proof By Schur's lemma, ${ }^{7} \operatorname{End}_{\text {Ass }(R)}(V)=\mathbb{k}$. Therefore, $\operatorname{End}_{k}(V)=\operatorname{Ass}(R)$ by Theorem 5.2.

Exercise 5.8 Prove that over every field $\mathbb{k}$, the equality $\operatorname{Ass}(R)=\operatorname{End}_{\mathfrak{k}}(V)$ forces $V$ to be a simple $R$-module.

### 5.2.2 Digression: Modules Over Noncommutative Rings

Modules over associative algebras are particular examples of modules over rings. Let $R$ be a ring, not necessarily commutative. An abelian group $M$ is called a left $R$-module if $M$ is equipped with a left action of $R$, that is, with a map

$$
R \times M \rightarrow M, \quad(\lambda, a) \mapsto \lambda a,
$$

such that

$$
\begin{align*}
\lambda(\mu a) & =(\lambda \mu) a \quad \forall a \in M, \forall \lambda, \mu \in K,  \tag{5.6}\\
(\lambda+\mu) a & =\lambda a+\mu a \quad \forall a \in M, \forall \lambda, \mu \in K,  \tag{5.7}\\
\lambda(a+b) & =\lambda a+\lambda b \quad \forall \lambda \in K, \forall a, b \in K . \tag{5.8}
\end{align*}
$$

Symmetrically, a right action of $R$ on $M$ is a map

$$
M \times R \rightarrow M, \quad(a, \lambda) \mapsto a \lambda,
$$

[^49]such that
\[

$$
\begin{align*}
(a \mu) \lambda & =a(\mu \lambda) \quad \forall a \in M, \forall \lambda, \mu \in K,  \tag{5.6'}\\
a(\lambda+\mu) & =a \lambda+a \mu \quad \forall a \in M, \forall \lambda, \mu \in K,  \tag{5.7'}\\
(a+b) \lambda & =a \lambda+b \lambda \quad \forall \lambda \in K, \forall a, b \in K,
\end{align*}
$$
\]

and an abelian group equipped with a right action of $R$ is called a right $R$-module. The last two properties (5.7), (5.8) and (5.7 ), (5.8 ) of left and right actions mean the same, namely, that the action of $R$ on $M$ is distributive with respect to the additions in both $R$ and $M$. The left action differs from the right only in the first property, which says that the multiplication of a vector $a \in M$ by $\mu \in R$ followed by the multiplication of the result by $\lambda \in R$ coincides with the multiplication of $a$ by $\lambda \mu$ in the left action, and by $\mu \lambda$ in the right. In other words, the right action of $R$ is the same as the left action of the opposite ring $R^{\mathrm{opp}}$, which coincides with $R$ as a set but has the reversed order of operands in the products, i.e., the product $\lambda \mu$ in $R^{\mathrm{opp}}$ is defined to be the product $\mu \lambda$ in $R$. Thus, for a commutative ring $R$, there is no difference between the left and right $R$-module structures.

If a ring $R$ has a unit element $1 \in R$ and a left (respectively, right) action of $R$ on $M$ satisfies the extra property $1 \cdot a=a$ (respectively, $a \cdot 1=a$ ) for all $a \in M$, then the $R$-module $M$ is called a unital module. For example, the unital modules over a field $\mathbb{k}$ are exactly the vector spaces over $\mathbb{k}$. A linear representation of an associative $\mathbb{k}$-algebra $A$ with unit $\varrho: A \rightarrow \operatorname{End}_{k_{k}}(W)$ provides $W$ with the structure of a left unital module over $A$ with the action $a w \stackrel{\text { def }}{=} \varrho(a) w$. Conversely, every left unital $A$-module $W$ is a vector space over $\mathbb{k}=\mathbb{k}_{k} \cdot 1 \subset A$, and the map $A \rightarrow \operatorname{End}_{\mathfrak{k}}(W)$ sending an element $a \in A$ to the linear endomorphism $w \mapsto a w$ assigns a linear representation of $A$ in $W$. Thus, the abstract algebraic notion of (left unital) module over a ring agrees with that used above. In what follows, a module over an associative $\mathbb{k}$-algebra $A$ always means a left unital $A$-module by default.

### 5.3 Isotypic Components

Let us fix an associative $\mathbb{k}$-algebra $A$ and a simple $A$-module $U$. For every $A$-module $W$, the tensor product of vector spaces $\operatorname{Hom}_{A}(U, W) \otimes U$ admits the natural action of $A$ by the rule $a(\varphi \otimes u) \stackrel{\text { def }}{=} \varphi \otimes(a u)$ for all $a \in A, \varphi \in \operatorname{Hom}_{A}(U, W), u \in U$. There is also the canonical $A$-linear contraction map

$$
\begin{equation*}
c_{U W}: \operatorname{Hom}_{A}(U, W) \otimes U \rightarrow W, \quad \varphi \otimes u \mapsto \varphi(u) . \tag{5.9}
\end{equation*}
$$

The image of this map is denoted by $W_{U} \subset W$ and called the $U$-isotypic component of $W$. It coincides with the $\mathbb{k}$-linear span of all simple submodules of $W$ isomorphic to $U$. Indeed, since all nonzero $A$-linear maps $\psi: U \rightarrow W$ map $U$ isomorphically onto some simple submodule $\psi(U) \subset W$, every vector of the form $\sum \psi_{i}\left(u_{i}\right) \in W$,
$u_{i} \in U, \psi_{i} \in \operatorname{Hom}_{A}(U, W)$, lies in the linear span of such simple submodules. Conversely, if vectors $v_{i} \in \operatorname{im} \psi_{i}$ belong to the images of some $A$-liner inclusions $\psi_{i}: U \hookrightarrow W$, then $\sum v_{i}=c_{U W}\left(\sum \psi_{i} \otimes \psi_{i}^{-1} v_{i}\right)$.
Proposition 5.2 For every A-linear map $\varphi: V \rightarrow W$, the image of the $U$-isotypic component $V_{U} \subset V$ belongs to the $U$-isotypic component $W_{U} \subset W$. In particular, $V_{U}=V \cap W_{U}$ for every $A$ submodule $V \subset W$.
Proof Every vector of the form $\sum \psi_{i}\left(u_{i}\right), \psi_{i} \in \operatorname{Hom}_{A}(U, V), u_{i} \in U$, is mapped to $\sum \varphi \psi_{i}(v)$, where $\varphi \psi_{i} \in \operatorname{Hom}_{A}(U, W), u_{i} \in U$.

Proposition 5.3 Over an algebraically closed ground field $\mathbb{k}$, the contraction map (5.9) is injective and therefore establishes the canonical isomorphism

$$
c_{U W}: \operatorname{Hom}_{A}(U, W) \otimes U \xrightarrow{\rightarrow} W_{U} .
$$

Proof Since $W_{U}$ is linearly spanned by simple submodules isomorphic to $U$, it follows from Lemma 5.1 applied to the set $S$ of these submodules that $W_{U}$ splits into a direct sum

$$
\begin{equation*}
W_{U}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}, \text { where } V_{i} \simeq U \text { for all } i \tag{5.10}
\end{equation*}
$$

Fix some $A$-linear inclusions $\psi_{i}: U \hookrightarrow W$ with $\psi_{i}(U)=V_{i}$. Then

$$
\operatorname{Hom}_{A}(U, W) \simeq \operatorname{Hom}_{A}\left(U, W_{U}\right) \simeq \bigoplus_{i} \operatorname{Hom}_{A}\left(U, V_{i}\right)
$$

By Corollary 5.1, the space $\operatorname{Hom}_{A}\left(U, V_{i}\right) \simeq \mathbb{k} \cdot \psi_{i}$ has dimension 1 and basis $\psi_{i}$. Therefore, every element of $\operatorname{Hom}_{A}(U, W) \otimes U$ is uniquely represented as $\sum \psi_{i} \otimes u_{i}$ with $u_{i} \in U$. If $c_{U W}\left(\sum \psi_{i} \otimes u_{i}\right)=\sum \psi_{i}\left(u_{i}\right)=0$, then every vector $\psi_{i}\left(u_{i}\right)$ vanishes, because all these vectors lie in different components of the direct sum (5.10). Since all $\psi_{i}$ are injective, all $u_{i}$ are equal to 0 .

Proposition 5.4 (Isotypic Decomposition) Let $W=\bigoplus_{i} V_{i}$, where all $V_{i}$ are simple A-modules. Then the sum of all the $V_{i}$ that are isomorphic to $U$ coincides with the $U$-isotypic component $W_{U} \subset W$. In particular, this sum does not depend on the choice of decomposition $W=\bigoplus_{i} V_{i}$, and therefore, every semisimple A-module $W$ admits the unique direct sum decomposition

$$
\begin{equation*}
W=\bigoplus_{[U]} W_{U}, \tag{5.11}
\end{equation*}
$$

where the summation is over all isomorphism classes $[U]$ of simple $A$-modules $U$ such that $\operatorname{Hom}_{A}(U, W) \neq 0$.

Proof Since $\operatorname{Hom}_{A}(U, W)=\bigoplus_{i} \operatorname{Hom}_{A}\left(U, V_{i}\right)$ and $\operatorname{Hom}_{A}\left(U, V_{j}\right)=0$ for all $V_{j} \nsimeq U$, the image of the canonical contraction (5.9) is contained in the sum of the $V_{i}$ that are isomorphic to $U$.

Definition 5.1 Let $W$ be a semisimple module over an associative algebra $A$. The decomposition (5.11) is called the isotypic decomposition. For every class [ $U$ ] of isomorphic simple $A$-modules, the projection $W \rightarrow W_{U}$ along all the other isotypic components is called the $U$-isotypic projection, and the number

$$
\begin{equation*}
m_{U} \xlongequal{\text { def }} \frac{\operatorname{dim} W_{U}}{\operatorname{dim} U} \tag{5.12}
\end{equation*}
$$

is called the multiplicity of $U$ in $W$. By Proposition 5.4, for every decomposition $W=\bigoplus_{i} V_{i}$ into a direct sum of simple $A$-submodules $V_{i} \subset W$, the multiplicity $m_{U}$ equals the number of summands $V_{i}$ isomorphic to $U$.

Corollary 5.5 For every pair of finite-dimensional semisimple A-modules $V$, $W$ over an algebraically closed field $\mathbb{k}$, one has

$$
\operatorname{dim} \operatorname{Hom}_{A}(V, W)=\sum_{[U]} m_{U}(U) \cdot m_{U}(W)=\operatorname{dim} \operatorname{Hom}_{A}(W, V),
$$

where the summation is over all isomorphism classes $[U]$ of simple A-modules $U$.
Proof Let $V=\oplus V_{i}, W=\oplus W_{j}$, where all $V_{i}, W_{j}$ are simple. By Schur's lemma, the space $\operatorname{Hom}_{A}\left(V_{i}, W_{j}\right)$ is zero for $V_{i} \nsim W_{j}$ and has dimension 1 for $V_{i} \simeq W_{j}$. Therefore, the space $\operatorname{Hom}_{A}(V, W)=\oplus_{i j} \operatorname{Hom}_{A}\left(V_{i}, W_{j}\right)$ has dimension $\sum_{U} m_{U}(U) \cdot m_{U}(W)$. The same holds for the space $\operatorname{Hom}_{A}(W, V)$ as well.

### 5.4 Representations of Groups

### 5.4.1 Direct Sums and Tensor Constructions

An action of a group $G$ on a vector space $V$ by linear automorphisms of $V$, that is, a group homomorphism $\varrho: G \rightarrow \mathrm{GL}(V)$, is called a linear representation of $G$ in $V$. We say in this case that $V$ is a $G$-module. For $G$-modules $U, W$, the direct sum $U \oplus W$, tensor product $U \otimes W$, symmetric powers $S^{n} U$, and exterior powers $\Lambda^{n} U$ inherit natural structures of $G$-modules with the action of $g \in G$ by the rules

$$
\begin{aligned}
& g(u+w) \stackrel{\text { def }}{=} g u+g w, \quad g(u \otimes w) \stackrel{\text { def }}{=}(g u) \otimes(g w), \\
& g\left(u_{1} \cdot u_{2}\right) \stackrel{\text { def }}{=}\left(g u_{1}\right) \cdot\left(g u_{2}\right), \quad g\left(u_{1} \wedge u_{2}\right) \stackrel{\text { def }}{=}\left(g u_{1}\right) \wedge\left(g u_{2}\right) .
\end{aligned}
$$

For every $G$-submodule $V \subset W$, the quotient space $W / V$ is a $G$-module with the action $g[v] \stackrel{\text { def }}{=}[g v]$.
Exercise 5.9 Verify that the above formulas give well-defined group homomorphisms from $G$ to $\mathrm{GL}(U \oplus W), \mathrm{GL}(U \otimes W), \mathrm{GL}(\Lambda U), \mathrm{GL}(S U)$, and $\mathrm{GL}(W / V)$ respectively.
Given a linear representation $\varrho: G \rightarrow \mathrm{GL}(V)$ of a group $G$, the dual representation

$$
\varrho^{*}: G \rightarrow \mathrm{GL}\left(V^{*}\right)
$$

is defined by the requirement that the action of $G$ leave invariant the contraction between vectors and covectors, i.e., that the equality $\left\langle\varrho^{*}(g) \xi, \varrho(g) v\right\rangle=\langle\xi, v\rangle$ holds for all $g \in G, \xi \in V^{*}, v \in V$. Since all the operators $\varrho(g)$ are invertible, this condition means that

$$
\left\langle\varrho^{*}(g) \xi, v\right\rangle=\left\langle\xi, \varrho\left(g^{-1}\right) v\right\rangle
$$

Therefore, the operator $\varrho^{*}(g)=\varrho\left(g^{-1}\right)^{*}$ is dual ${ }^{8}$ to the operator $\varrho(g)^{-1}$ for every $g \in G$. In particular, the matrices of operators $\varrho^{*}(g), \varrho(g)$ in every pair of dual bases of $V$ and $V^{*}$ are inverse transposes of each other.
Exercise 5.10 Verify that $\varrho^{*}: G \rightarrow \operatorname{GL}\left(V^{*}\right), g \mapsto \varrho\left(g^{-1}\right)^{*}$, is a group homomorphism.
For every pair of representations $\varrho: G \rightarrow \mathrm{GL}(U), \lambda: G \rightarrow \mathrm{GL}(W)$, the representation $\varrho^{*} \otimes \lambda$ provides the space $U^{*} \otimes V \simeq \operatorname{Hom}(U, V)$ of linear maps $\varphi: U \rightarrow V$ with the action $G$ by the conjugations

$$
\begin{equation*}
g: \varphi \mapsto g \varphi g^{-1} \tag{5.13}
\end{equation*}
$$

Exercise 5.11 Check this.
Thus, the space of $G$-linear maps

$$
\operatorname{Hom}_{G}(U, V)=\{\varphi: U \rightarrow V \mid \forall g \in G g \varphi=\varphi g\}
$$

is exactly the space of $G$-invariant vectors in the representation (5.13).
Lemma 5.4 Let $G$ be a finite group of order $|G|=n$. Assume that char $k \nmid n$, and that the polynomial $t^{n}-1$ completely splits over $k$ into a product of $n$ linear factors. Then in every (not necessarily finite-dimensional) $G$-module $V$, all elements of $G$ are represented by operators that are diagonalizable over $\mathbb{k}$.
Proof Since $g^{|G|}=e$ for all $g \in G$, every operator $g \in G$ in a linear representation of $G$ is annihilated by the polynomial $f(t)=t^{n}-1$. By our assumption, $f$ is a product

[^50]of $n$ linear factors, which are all distinct, because $f^{\prime}=n t^{n-1} \neq 0$ is coprime to $f$. We know from Sect. 15.2.6 of Algebra I that this forces $g$ to be diagonalizable on every finite-dimensional $g$-invariant subspace. Since the $G$-orbit of every vector $v$ spans a finite-dimensional $g$-invariant subspace containing $v$, the whole space is linearly generated by the eigenvectors of $g$. Hence, $g$ is diagonalizable.

Exercise 5.12 Convince yourself that a linear operator $g$ on a vector space $V$ (not necessarily finite-dimensional) is diagonalizable if and only if $V$ is linearly spanned by the eigenvectors of $g$.

### 5.4.2 Representations of Finite Abelian Groups

Everywhere in this section we assume that $G$ is a finite abelian group and that a ground field $\mathbb{k}$ is algebraically closed with $\operatorname{char}(\mathbb{k}) \nmid|G|$.

It follows from Lemma 5.4 and Example 5.2 on p. 101 that every linear representation of $G$ is a direct sum of simple $G$-modules of dimension one. Since every linear operator on a one-dimensional space is a scalar homothety $v \mapsto$ $\lambda v$, every simple $G$-module $V$ provides $G$ with a multiplicative homomorphism $\chi_{V}: G \rightarrow \mathbb{K}^{*}$ mapping $g \in G$ to the coefficient of the homothety by which $g$ acts on $V$, i.e.,

$$
g v=\chi_{V}(g) \cdot v
$$

for all $g \in G, v \in V$. Conversely, every multiplicative homomorphism $\chi: G \rightarrow \mathbb{k}^{*}$ allows us to construct a simple $G$-module $V_{\chi}$ of dimension one on which every $g \in G$ acts as $g: v \mapsto \chi(g) \cdot v$.
Exercise 5.13 Verify that $V_{\chi} \simeq V_{\psi}$ as $G$-modules if and only if $\chi=\psi$ as maps $G \rightarrow \mathbb{k}^{*}$. Multiplicative homomorphisms $G \rightarrow \mathbb{k}^{*}$ are called multiplicative characters of $G$. Therefore, the isomorphism classes of irreducible representations of $G$ are bijectively numbered by the multiplicative characters of $G$.

Since $\chi^{|G|}(g)=\chi\left(g^{|G|}\right)=\chi(e)=1$ for every $g \in G$, every multiplicative character of $G$ takes values in the finite group $\mu_{|G|}(\mathbb{k}) \subset \mathbb{k}^{*}$ of $|G|$ th roots of unity in $\mathbb{k}$. All the multiplicative characters form an abelian multiplicative subgroup in the $\mathbb{k}$-algebra $\mathbb{k}^{G}$ of all functions $G \rightarrow \mathbb{k}$. This group is denoted by $G^{\wedge}$ and called the Pontryagin dual to $G$. The identity element of $G^{\wedge}$ is the trivial character $\chi=1$, corresponding to the trivial representation in which every $g \in G$ acts by the identity map.
Exercise 5.14 Verify that $\chi_{U \otimes W}=\chi_{U} \chi_{W}$ and $\chi_{U^{*}}=\chi_{U}^{-1}$ for every pair of simple $G$-modules $U, W$.
Consider the action of $G$ on the space $\mathbb{k}^{G}$ of all functions $f: G \rightarrow \mathbb{k}$ by the rule $g: f(x) \mapsto f(g x)$. The $\chi$-isotypic component of this representation consists of all functions $f: G \rightarrow \mathbb{k}$ such that $f(g x)=\chi(g) f(x)$ for all $x, g \in G$. For $x=e$,
this forces $f(g)=\chi(g) \cdot f(e)$ for all $g \in G$. Therefore, every function $f$ lying in the isotypic component $\mathbb{k}_{\chi}^{G}$ is proportional to the character $\chi$. We conclude that $\operatorname{dim} \mathbb{k}_{\chi}^{G}=1$ for every $\chi \in G^{\wedge}$, and the isotypic decomposition of $\mathbb{k}^{G}$ looks like

$$
\mathbb{k}^{G}=\underset{\chi \in G^{\wedge}}{\oplus} \mathbb{k} \cdot \chi .
$$

In particular, $\left|G^{\wedge}\right|=|G|$, and the multiplicative characters form a basis of the space $\mathbb{K}^{G}$.
Exercise 5.15 Prove that for every (not necessarily algebraically closed) field $\mathbb{k}$ and (not necessarily abelian) group $G$, an arbitrary set of distinct multiplicative homomorphisms $G \rightarrow \mathbb{k}^{*}$ is linearly independent in $\mathbb{k}^{G}$.

Theorem 5.3 (Pontryagin Duality) For every finite abelian group $G$ and $g \in G$, the evaluation map

$$
\mathrm{ev}_{g}: G^{\wedge} \rightarrow \mathbb{k}, \quad \chi \mapsto \chi(g),
$$

is a multiplicative character of the Pontryagin dual group $G^{\wedge}$. The map

$$
\begin{equation*}
G \rightarrow G^{\wedge \wedge}, \quad g \mapsto \mathrm{ev}_{g}, \tag{5.14}
\end{equation*}
$$

is a group isomorphism.
Proof The first statement holds because

$$
\operatorname{ev}_{g}\left(\chi_{1} \chi_{2}\right)=\chi_{1}(g) \cdot \chi_{2}(g)=\mathrm{ev}_{g}\left(\chi_{1}\right) \cdot \mathrm{ev}_{g}\left(\chi_{2}\right)
$$

Since $\mathrm{ev}_{g_{1} g_{2}}(\chi)=\chi\left(g_{1} g_{2}\right)=\chi\left(g_{1}\right) \cdot \chi\left(g_{2}\right)=\mathrm{ev}_{g_{1}}(\chi) \mathrm{ev}_{g_{2}}(\chi)$, the map (5.14) is a group homomorphism. If $g \in G$ lies in the kernel of (5.14), then $\chi(g)=1$ for all $\chi \in G^{\wedge}$. Hence, $g$ acts trivially in every representation of $G$. In particular, $f(g x)=f(x)$ for all functions $f: G \rightarrow \mathbb{k}$. This forces $x g=x$ for every $x \in G$, and therefore $g=e$. Since $\left|G^{\wedge \wedge}\right|=|G|$, the monomorphism (5.14) is bijective.

Remark 5.1 Pontryagin duality actually holds in all locally compact topological abelian groups $G$, such as $\mathbb{Z}, \mathrm{SU}_{1}=S^{1}, \mathbb{R}$. Finite abelian groups are just the simplest examples of such groups. A good presentation of the general theory can be found in $[\mathrm{Mo}] .{ }^{9}$

[^51]
### 5.4.3 Reynolds Operator

Let $G$ be an arbitrary group, not necessarily abelian, and $V$ a linear representation of $G$. The vectors $v \in V$ left fixed by all linear transformations from $G$ form a $G$-submodule in $V$, called the submodule of $G$-invariants and denoted by

$$
V^{G} \stackrel{\text { def }}{=}\{v \in V \mid \forall g \in G g v=v\} .
$$

If $G$ is finite and char $\mathbb{k} \nmid|G|$, then for every linear representation $V$ of $G$, there exists a $G$-linear projector

$$
V \rightarrow V^{G}, \quad v \mapsto v^{\natural},
$$

called the Reynolds operator. It sends a vector $v \in V$ to the barycenter ${ }^{10}$ of the $G$-orbit of $v$ in the affine space $\mathbb{A}(V)$,

$$
\begin{equation*}
v^{\natural} \stackrel{\text { def }}{=} \frac{1}{|G|} \sum_{g \in G} g v . \tag{5.15}
\end{equation*}
$$

Exercise 5.16 Check by a direct computation that the Reynolds operator commutes with all $g \in G$ and projects $V$ onto $V^{G}$ for char $\mathbb{k} \nmid|G|$.

Exercise 5.17 Give an example of an indecomposable representation $V$ of a finite group $G$ over a finite field $\mathbb{k}$ with a proper nonzero $G$-invariant submodule $V^{G}$.

Theorem 5.4 Every linear representation $V$ of a finite group $G$ over a field $k$ with char $\mathbb{k} \nmid|G|$ is completely reducible. ${ }^{11}$

Proof By Proposition 5.1 on p. 104, it is enough to show that every $G$-submodule $U \subset V$ admits a $G$-linear projector $\pi_{U}: V \rightarrow U$. Recall ${ }^{12}$ that $G$ acts on $\operatorname{Hom}_{k}(V, U)$ as $g: \varphi \mapsto g \varphi g^{-1}$ and that $G$-linear maps $V \rightarrow U$ are exactly the invariants of this action. Take an arbitrary $\mathbb{k}$-linear projector $\pi: V \rightarrow U$ and put

$$
\pi_{U} \stackrel{\text { def }}{=} \pi^{\natural}=|G|^{-1} \sum_{g} g \pi g^{-1} \in \operatorname{Hom}_{G}(V, U) .
$$

Then im $\pi^{\natural} \subset U$, since $g \pi g^{-1} U \subset U$ for all $g \in G$, and every vector $u \in U$ is fixed by $\pi^{\natural}$, because $g^{-1} U \subset U$ and $\left.\pi\right|_{U}=\operatorname{Id}_{U}$ force $g \pi g^{-1} u=g g^{-1} u=u$ for all $g \in G$. Thus, $\pi_{U}$ projects $V$ onto $U$.

[^52]
### 5.5 Group Algebras

Associated with every group $G$ and commutative ring $K$ is an associative $K$ algebra $K[G]$ called the group algebra of $G$ with coefficients in $K$. As a $K-$ module, $K[G] \stackrel{\text { def }}{=} K \otimes G$ is free with basis $G$, i.e., it consists of linear combinations $\sum_{g \in G} c_{g} g$ with coefficients $c_{g} \in K$, all but a finite number of which vanish. These linear combinations are multiplied by the standard distributivity rules under the assumption that the constants from $K$ commute with the group elements and are multiplied within $K$, whereas the group elements are composed within $G$, i.e.,

$$
\begin{equation*}
\left(\sum_{g} a_{g} g\right)\left(\sum_{h} b_{h} h\right)=\sum_{g, h} a_{g} b_{h} g h=\sum_{f} c_{f} f \tag{5.16}
\end{equation*}
$$

where

$$
c_{f}=\sum_{g h=f} a_{g} b_{h}=\sum_{t} a_{f t^{-1}} b_{t}=\sum_{s} a_{s} b_{s^{-1} f} .
$$

The group $G$ is embedded into $K[G]$ as a multiplicative subgroup. Every linear representation $\varrho: G \rightarrow \mathrm{GL}(V)$ over a field $\mathbb{k}$ can be uniquely extended by linearity to a representation of the group algebra $\varrho: \mathbb{k}[G] \rightarrow \operatorname{End}(V)$ whose image is simultaneously the linear span and associative envelope of $\varrho(G) \subset \operatorname{End}(V)$.
Exercise 5.18 Verify that the assignment $m \mapsto t^{m}$ establishes the isomorphisms

$$
\mathbb{k}[\mathbb{Z}] \leadsto \mathbb{} \mathbb{k}\left[t, t^{-1}\right] \quad \text { and } \quad \mathbb{k}[\mathbb{Z} /(n)] \leadsto \mathbb{k}[t] /\left(t^{n}-1\right) .
$$

Example 5.3 (Reynolds Operator) The Reynolds operator from Sect. 5.4.3 can be treated as an element of the group algebra $\mathbb{Q}[G]$,

$$
\begin{equation*}
\pi_{\mathbb{1}} \stackrel{\text { def }}{=} \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{Q}[G] . \tag{5.17}
\end{equation*}
$$

Every linear representation of $G$ extended to the representation $\varrho: \mathbb{Q}[G] \rightarrow \operatorname{End}(V)$ maps $\pi_{\mathbb{1}}$ to a $G$-linear projector on the submodule of $G$-invariants

$$
\varrho\left(\pi_{\mathbb{1}}\right): V \rightarrow V^{G}, \quad v \mapsto v^{\natural} .
$$

Note that it lies in the $\mathbb{Q}$-linear span of $\varrho(G)$ but not in $\varrho(G)$.
Exercise 5.19 Verify that $\pi_{\mathbb{\Perp}} \in Z(\mathbb{Q}[G])$ lies in the center ${ }^{13}$ of the group algebra.

[^53]
### 5.5.1 Center of a Group Algebra

Recall that the conjugacy classes of a group $G$ are the orbits of the adjoint action ${ }^{14}$ of $G$ on itself. Thus, the conjugacy class of an element $h \in G$ consists of all elements $g h g^{-1}, g \in G$, conjugate to $h$. We write $\mathrm{Cl}(G)$ for the set of conjugacy classes. The center of the group algebra

$$
Z(\mathbb{k}[G]) \stackrel{\text { def }}{=}\{z \in \mathbb{k}[G] \mid \forall x \in \mathbb{k}[G] z x=x z\}=\left\{z \in \mathbb{k}[G] \mid \forall g \in G g z g^{-1}=z\right\}
$$

consists of the linear combinations $z=\sum_{h} z_{h} h \in \mathbb{k}[G]$ whose coefficients $z_{h}$ are constant on every conjugacy class, i.e., $z_{g h g-1}=z_{h}$ for all $g \in G$. In particular, for a finite group $G$, the sums

$$
\begin{equation*}
z_{C}=\sum_{h \in C} h, \tag{5.18}
\end{equation*}
$$

numbered by the conjugacy classes $C \in \mathrm{Cl}(G)$, form a basis of the vector space $Z(\mathbb{k}[G])$ over $\mathbb{k}$. Thus,

$$
\operatorname{dim}_{\mathbb{k}} Z(\mathbb{k}[G])=|\mathrm{Cl}(G)| .
$$

We call this quantity the class number of $G$.
Every linear representation $\mathbb{k}[G] \rightarrow \operatorname{End}(V)$ maps the center $Z(\mathbb{k}[G])$ inside the subalgebra $\operatorname{End}_{G}(V)$ of $G$-linear endomorphisms of $V$. In particular, over an algebraically closed field $\mathbb{k}$, every central element of $\mathbb{k}[G]$ acts by a scalar homothety in every linear representation of $G$.

### 5.5.2 Isotypic Decomposition of a Finite Group Algebra

Everywhere in this section we assume that $G$ is a finite group and that char ${ }^{\mathrm{k}} \nmid|G|$. Let us fix some set $\operatorname{Irr}(G)$ of irreducible representations of $G$ over $\mathbb{k}$ such that every simple $G$-module is isomorphic to exactly one element of $\operatorname{Irr}(G)$. Representations from $\operatorname{Irr}(G)$ will be denoted by $\lambda: G \rightarrow \operatorname{GL}\left(U_{\lambda}\right)$, and we will write $\lambda \in \operatorname{Irr}(G)$ to outline that the representation $\lambda$ is irreducible. It follows from Theorem 5.4 and Proposition 5.4 on p. 108 that every finite-dimensional $G$-module $V$ has the unique isotypic decomposition

$$
\begin{equation*}
V=\bigoplus_{\lambda \in \operatorname{Irr}(G)} V_{\lambda}, \tag{5.19}
\end{equation*}
$$

[^54]where $V_{\lambda} \in V$ is the linear span of all simple $G$-submodules of $V$ isomorphic to $U_{\lambda} \in \operatorname{Irr}(G)$, or equivalently, the image of the contraction map
\[

$$
\begin{equation*}
c: \operatorname{Hom}_{G}\left(U_{\lambda}, V\right) \otimes U_{\lambda} \rightarrow V, \quad \varphi \otimes u \mapsto \varphi(u) \tag{5.20}
\end{equation*}
$$

\]

Recall ${ }^{15}$ that we write $m_{\lambda}(V)=\operatorname{dim} V_{\lambda} / \operatorname{dim} U_{\lambda}$ for the multiplicity of $\lambda \in \operatorname{Irr}(G)$ in $V$, which equals the number of summands isomorphic to $U_{\lambda}$ in any decomposition of $V$ into a direct sum of simple $G$-modules.

There is the left regular representation of $G$ in $\mathbb{k}[G]$ defined by the prescription

$$
g: x \mapsto g x \quad \text { for } \quad g \in G, x \in \mathbb{K}[G] .
$$

This is the $\mathbb{k}$-linear extension of the left regular action ${ }^{16}$ of $G$ on the basis $G$ of $\mathbb{k}[G]$. For $\lambda \in \operatorname{Irr}(G)$, let $I_{\lambda} \subset \mathbb{k}_{k}[G]$ be the $\lambda$-isotypic component of the left regular representation. Thus,

$$
\begin{equation*}
\mathbb{k}[G]=\underset{\substack{\lambda \in \operatorname{Irr}(G) \\ m_{\lambda}(\mathbb{k}[G]) \neq 0}}{\oplus} I_{\lambda} \tag{5.21}
\end{equation*}
$$

as a left $\mathbb{k}[G]$-module. We will see in Corollary 5.6 that $I_{\lambda} \neq 0$ for every irreducible representation $\lambda$ of $G$, i.e., the summation in (5.21) actually goes over all $\lambda \in \operatorname{Irr}(G)$. But now let us analyze the decomposition (5.21) without this assumption.

Since every $I_{\lambda}$ in (5.21) is a $G$-submodule, it follows that $g I_{\lambda} \subset I_{\lambda}$ for all $g \in G$. This forces every $I_{\lambda}$ to be a left ideal of the algebra $\mathbb{k}[G]$. For every $h \in G$, the right multiplication by $h, x \mapsto x h$, obviously commutes with the left multiplication by an element $g \in G$, i.e., it assigns a $G$-linear endomorphism of the left regular representation. Thus by Proposition 5.2 on p. 108, the right multiplication by an element $h \in G$ takes every isotypic component $I_{\lambda}$ to itself. Therefore, every $I_{\lambda}$ is a two-sided ideal in $\mathbb{k}[G]$. Since $I_{\lambda} \cap I_{\varrho}=0$ for $\lambda \neq \varrho$, and both $I_{\lambda}$ and $I_{\varrho}$ are twosided ideals,

$$
\begin{equation*}
I_{\lambda} \cdot I_{\varrho} \subset I_{\lambda} \cap I_{\varrho}=0 \quad \text { for } \quad \lambda \neq \varrho . \tag{5.22}
\end{equation*}
$$

Let $\pi_{\lambda}: \mathbb{k}[G] \rightarrow I_{\lambda}$ be the $\lambda$-isotypic projection. Since for all $x \in \mathbb{k}[G]$, we have $\pi_{\lambda}(x)=\pi_{\lambda}(x \cdot e)=x \cdot \pi_{\lambda}(e)$, this projection coincides with the right multiplication by the element $e_{\lambda}=\pi_{\lambda}(e) \in I_{\lambda}$. Therefore, $I_{\lambda}=\mathbb{k}[G] \cdot e_{\lambda}$ is the principal left ideal generated by $e_{\lambda}$, and $e_{\lambda} \cdot e_{\lambda}=\pi_{\lambda}\left(e_{\lambda}\right)=e_{\lambda}$, whereas $e_{\lambda} \cdot e_{\varrho}=0$ for $\lambda \neq \varrho$.

Definition 5.2 The elements $e_{\lambda}$ are called irreducible idempotents, and the equality $e=\sum_{\lambda \in \operatorname{Irr}(G)} e_{\lambda}$ will be referred to as the decomposition of the identity into a sum of irreducible idempotents.

[^55]Lemma 5.5 Let $\varrho: \mathbb{k}[G] \rightarrow \operatorname{End}(V)$ be a linear representation. If $m_{\lambda}(V)=0$, then $\rho\left(I_{\lambda}\right)=0$.

Proof For every $v \in V$, the assignment $x e_{\lambda} \mapsto \varrho\left(x e_{\lambda}\right) v$ gives a well-defined $G$-linear map $I_{\lambda} \rightarrow V$. By Proposition 5.2, the image of this map is contained in the $\lambda$-isotypic component of $V$, which is zero by the assumption of the lemma.
Corollary 5.6 The multiplicity $m_{\lambda}(\mathbb{K}[G]) \neq 0$ for every irreducible $G$-module $\lambda$, that is, $\mathbb{K}[G]=\oplus_{\lambda \in \operatorname{Irr}(G)} I_{\lambda}$.

Proof If there exists an irreducible $G$-module $W$ that does not appear in (5.22), then $m_{\lambda}(W)=0$ for all $\lambda$ from (5.22). It follows from Lemma 5.5 that $\mathbb{k}[G]$ acts by zero on $W$, i.e., $W=0$.

Proposition 5.5 Every linear representation $\varrho: \mathbb{k}[G] \rightarrow \operatorname{End}(V)$ maps every irreducible idempotent $e_{\lambda}, \lambda \in \operatorname{Irr}(G)$, to the $\lambda$-isotypic projector $\pi_{\lambda}: V \rightarrow V_{\lambda}$.

Proof By Lemma 5.5, the left multiplication by $e_{\lambda}$ annihilates all ideals $I_{\varrho}$ with $\varrho \neq \lambda$. This forces $e_{\lambda}$ to act by zero in every irreducible representation $\varrho \neq \lambda$. By Schur's lemma, the action of $e_{\lambda}$ in the irreducible representation $U_{\lambda}$ is either zero or invertible. In the first case, $e_{\lambda}$ annihilates the whole of $\mathbb{k}_{[ }[G]$, which is impossible, because $e_{\lambda} \cdot e=e_{\lambda} \neq 0$. Hence, $e_{\lambda}$ acts by the invertible automorphism in the irreducible representation $\lambda: \mathbb{k}[G] \rightarrow \operatorname{End}\left(U_{\lambda}\right)$. Since $\lambda\left(e_{\lambda}\right)$ is a projector and $\operatorname{ker} \lambda\left(e_{\lambda}\right)=0$, we conclude that $\lambda\left(e_{\lambda}\right)=\operatorname{Id}_{U_{\lambda}}$. Now we decompose $V$ into a sum of irreducible $G$-modules and see that $e_{\lambda}$ acts identically on each summand $U_{\lambda}$ and annihilates all other summands.

Corollary 5.7 The irreducible idempotents $e_{\lambda}$ belong to $Z(\mathbb{K}[G])$ and are linearly independent over $k$. In particular, $|\operatorname{Irr}(G)| \leqslant|\mathrm{Cl}(G)|$.

Proof Applying Proposition 5.5 to the left regular representation shows that left multiplication by $e_{\lambda}$ acts identically on $I_{\lambda}$ and annihilates all $I_{\varrho}$ with $\varrho \neq \lambda$. Thus,

$$
e_{\lambda} \sum_{\varrho} x_{\varrho} e_{\varrho}=x_{\lambda} e_{\lambda}=\left(\sum_{\varrho} x_{\varrho} e_{\varrho}\right) e_{\lambda}
$$

for every $x=\sum x_{\varrho} e_{\varrho} \in \mathbb{k}[G]$. Hence, all $e_{\lambda}$ are in $Z(\mathbb{k}[G])$. Since all $e_{\lambda}$ belong to different components of the isotypic decomposition (5.21), they are linearly independent.

Theorem 5.5 (Maschke's Theorem) Let $G$ be a finite group and $\mathbb{k}$ an algebraically closed field with char $\mathbb{k} \nmid|G|$. Then an isomorphism of $\mathbb{k}$-algebras is given by the map

$$
\begin{equation*}
\mathfrak{r}: \mathbb{K}[G] \rightarrow \bigoplus_{\lambda \in \operatorname{Irr}(G)} \operatorname{End}_{k}\left(U_{\lambda}\right) \tag{5.23}
\end{equation*}
$$

that takes an element $f \in \mathbb{K}[G]$ to the family of linear endomorphisms representing $f$ in all simple $G$-modules from $\operatorname{Irr}(G)$. The restriction of (5.23) to the isotypic ideal $I_{\lambda} \subset \mathbb{k}[G]$ establishes an isomorphism $\left.\mathfrak{r}\right|_{I_{\lambda}}: I_{\lambda} \xrightarrow{\Longrightarrow} \operatorname{End}_{k}\left(U_{\lambda}\right)$.

Proof Let us first show that $\mathfrak{r}$ is injective. If $h \in \mathbb{k}[G]$ acts by the zero operator in all irreducible representations, then $h$ is zero in every finite-dimensional representation, because every such representation splits into a direct sum of irreducible representations. In particular, left multiplication by $h$ in $\mathbb{k}[G]$ is the zero map. Therefore, $h=h \cdot e=0$. Now let us prove the last statement of the proposition. By Lemma 5.5, every irreducible representation $\lambda: \mathbb{k}[G] \rightarrow \operatorname{End}\left(U_{\lambda}\right)$ annihilates all the direct summands of the isotypic decomposition (5.21) except for $I_{\lambda}$. Therefore,

$$
\mathfrak{r}\left(I_{\lambda}\right)=\lambda\left(I_{\lambda}\right)=\lambda(\mathbb{k}[G]) \subset \operatorname{End}_{k}\left(U_{\lambda}\right)
$$

By Burnside's theorem, ${ }^{17} \lambda(\mathbb{k}[G])=\operatorname{End}_{k}\left(U_{\lambda}\right)$. Hence, $\mathfrak{r}\left(I_{\lambda}\right)=\operatorname{End}\left(U_{\lambda}\right)$. Since $\mathfrak{r}$ is injective, it maps $I_{\lambda}$ to $\operatorname{End}_{k}\left(U_{\lambda}\right)$ isomorphically. In particular,

$$
m_{\lambda}(\mathbb{k}[G])=\frac{\operatorname{dim}\left(I_{\lambda}\right)}{\operatorname{dim}\left(U_{\lambda}\right)}=\frac{\operatorname{dim} \operatorname{End}\left(U_{\lambda}\right)}{\operatorname{dim} U_{\lambda}}=\operatorname{dim} U_{\lambda}
$$

for all $\lambda \in \operatorname{Irr}(G)$. Finally, let us check that $\mathfrak{r}$ is surjective. By the last statement of the proposition, for every element

$$
\varphi=\sum_{\lambda} \varphi_{\lambda} \in \bigoplus_{\lambda \in \operatorname{Irr}(G)} \operatorname{End}_{\mathfrak{k}}\left(U_{\lambda}\right), \text { where } \varphi_{\lambda} \in \operatorname{End}_{\mathfrak{k}}\left(U_{\lambda}\right)
$$

there exists some $f_{\lambda} \in I_{\lambda}$ such that $\lambda\left(f_{\lambda}\right)=\varphi_{\lambda}$ for every $\lambda$. Then for every $\varrho \in \operatorname{Irr}(G)$, we have

$$
\varrho\left(\sum_{\lambda} f_{\lambda}\right)=\sum_{\lambda} \varrho\left(f_{\lambda}\right)=\varphi_{\varrho},
$$

because $\varrho\left(f_{\lambda}\right)=0$ for $\lambda \neq \varrho$. Thus, $\mathfrak{r}\left(\sum f_{\lambda}\right)=\varphi$.
Corollary 5.8 Under the assumptions of Theorem 5.5, $m_{\lambda}(\mathbb{K}[G])=\operatorname{dim} U_{\lambda}$ for every $\lambda \in \operatorname{Irr}(G)$, and

$$
\begin{equation*}
\sum_{\lambda \in \operatorname{Irr}(G)} \operatorname{dim}^{2} U_{\lambda}=|G| \tag{5.24}
\end{equation*}
$$

Moreover, $|\operatorname{Irr}(G)|=|\operatorname{Cl}(G)|$, and the irreducible idempotents $e_{\lambda}$ form a basis of $Z(\mathbb{K}[G])$.

[^56]Proof The equality $m_{\lambda}(\mathbb{k}[G])=\operatorname{dim} U_{\lambda}$ was established in the proof of (5.23). Comparing the dimensions of both sides in (5.23) gives (5.24):

$$
|G|=\operatorname{dim} \mathbb{R}_{k}[G]=\sum_{\lambda \in \operatorname{Irr}(G)} \operatorname{dim} \operatorname{End}\left(U_{\lambda}\right)=\sum_{\lambda \in \operatorname{Irr}(G)} \operatorname{dim}^{2} U_{\lambda} .
$$

Since the center $Z\left(\operatorname{End}_{k}(V)\right)=\mathbb{k} \cdot \operatorname{Id}_{V}$ is formed by the one-dimensional space of scalar matrices, it follows that

$$
\begin{aligned}
\operatorname{dim} Z\left(\prod_{\lambda \in \operatorname{Irr}(G)} \operatorname{End}\left(U_{\lambda}\right)\right) & =\operatorname{dim} \prod_{\lambda \in \operatorname{Irr}(G)} Z\left(\operatorname{End}\left(U_{\lambda}\right)\right) \\
& =\operatorname{dim} \bigoplus_{\lambda \in \operatorname{Irr}(G)} \mathbb{k} \cdot \operatorname{Id}_{U_{\lambda}}=|\operatorname{Irr}(G)| .
\end{aligned}
$$

At the same time, $\operatorname{dim} Z(\mathbb{k}[G])=|\operatorname{Cl}(G)|$ by Sect. 5.5.1 on p. 115. Thus,

$$
|\operatorname{Irr}(G)|=|\mathrm{Cl}(G)| .
$$

It follows from Proposition 5.5 that

$$
\mathfrak{r}\left(e_{\lambda}\right)=\left(0, \ldots, 0, \operatorname{Id}_{U_{\lambda}},, 0, \ldots, 0\right) \in \bigoplus_{\varrho \in \operatorname{Irr}(G)} \operatorname{End}_{\mathfrak{k}}\left(U_{\varrho}\right)
$$

Since the right-hand-side elements form a basis of $Z\left(\bigoplus_{\varrho \in \operatorname{Irr}(G)} \operatorname{End}\left(U_{\varrho}\right)\right)$, the irreducible idempotents form a basis in $Z(\mathbb{k}[G])$.

Example 5.4 In accordance with Sect. 5.4.2, the abelian group $G=\mathbb{Z} /(3)$ has three irreducible representations of dimension 1 over $\mathbb{k}=\mathbb{C}$. The generator $g=$ [1] acts in these representations as multiplication by $1, \omega$, and $\omega^{2}$ respectively, where $\omega=(-1+i \sqrt{3}) / 2 \in \mathbb{C}$ is a primitive cube root of unity. This agrees with Corollary 5.8 and the isotypic decomposition

$$
\mathbb{C}[G] \simeq \frac{\mathbb{C}[g]}{\left(g^{3}-1\right)} \simeq \frac{\mathbb{C}[g]}{(g-1)} \oplus \frac{\mathbb{C}[g]}{(g-\omega)} \oplus \frac{\mathbb{C}[g]}{\left(g-\omega^{2}\right)} \simeq \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}
$$

For $\mathbb{k}=\mathbb{R}$, there exists just one irreducible representation in dimension 1 , the trivial representation, because there is only one multiplicative character $G \rightarrow \mathbb{R}^{*}$. However, there is a 2 -dimensional irreducible representation, in which $g$ acts as rotation by $120^{\circ}$. Since

$$
\mathbb{R}[G] \simeq \frac{\mathbb{R}[g]}{\left(g^{3}-1\right)} \simeq \frac{\mathbb{C}[g]}{(g-1)} \oplus \frac{\mathbb{R}[g]}{\left(g^{2}+g+1\right)} \simeq \mathbb{R} \oplus \mathbb{R}^{2}
$$

where the summands are exactly the two irreducible $G$-modules just described, the group $G$ has no other irreducible representations over $\mathbb{R}$. Thus, the inequality $|\operatorname{Irr}(G)| \leqslant|Z(G)|$ from Corollary 5.7 is strict in this case.

Example 5.5 (Toy Representations of Symmetric Groups) Every symmetric group $S_{n}$ has two nonisomorphic representations of dimension one: the trivial representation, in which all $g \in S_{n}$ act identically, and the sign representation, in which each $g \in S_{n}$ acts as multiplication by the sign $\operatorname{sgn}(g)$. The isotypic projections onto the symmetric and sign components of an arbitrary $S_{n}$-module are given by the symmetrization and alternation operators

$$
\operatorname{sym}_{n}=\frac{1}{n!} \sum_{g \in S_{n}} g \quad \text { and } \quad \text { alt }_{n}=\frac{1}{n!} \sum_{g \in S_{n}} \operatorname{sgn}(g) g .
$$

Exercise 5.20 Verify this.
The representation of $S_{n}$ in $\mathbb{k}^{n}$ by the permutations of the standard basis vectors $e_{i}$ is called the tautological representation. It contains the trivial $S_{n}$-submodule of dimension 1 spanned by the sum $e=\sum e_{i}$. The induced ( $n-1$ )-dimensional representation of $S_{n}$ in the quotient space $\mathbb{k}^{n} / \mathbb{k} \cdot e$ is called simplicial, ${ }^{18}$ because for $\mathbb{k}=\mathbb{R}$, its image coincides with the complete group of the regular simplex of dimension $(n-1)$, the convex hull of the classes $e_{i}(\bmod e)$ in the affine space $\mathbb{A}\left(\mathbb{R}^{n} / \mathbb{R} \cdot e\right)$.
Exercise 5.21 Show that the $S_{n}$-orbit of every nonzero vector $v \in \mathbb{k}^{n} / \mathbb{k} \cdot e$ linearly spans the whole space and that therefore, the simplicial representation is irreducible.

The simplest nonabelian symmetric group, $S_{3}$, has three conjugacy classes. ${ }^{19}$ Hence, the irreducible representations of $S_{3}$ are exhausted by the trivial and sign representations of dimension one and the two-dimensional simplicial representation $U_{\Delta}$ by the group of the triangle. This agrees with the second equality of Corollary 5.8, $1^{2}+1^{2}+2^{2}=6$. The $\Delta$-isotypic projector equals ${ }^{20}$

$$
e_{\Delta} \stackrel{\text { def }}{=} 1-\operatorname{sym}_{3}-\operatorname{alt}_{3}=1-\frac{1}{6} \sum_{g \in S_{3}}(1+\operatorname{sgn}(g)) g=1-\frac{1}{3}\left(1+\tau+\tau^{2}\right),
$$

where $\tau=|123\rangle \in S_{3}$ means a cycle of length 3 .
Exercise 5.22 By the direct computations in the group algebra $\mathbb{Q}\left[S_{3}\right]$, verify that $e_{\Delta}$ lies in the center $Z\left(\mathbb{Q}\left[S_{3}\right]\right)$, is idempotent, annihilates both the trivial and sign isotypic components, and acts identically on $U_{\Delta}$.

[^57]The next symmetric group, $S_{4}$, has five conjugacy classes. Besides the trivial and sign representations of dimension 1 and the simplicial representation of dimension 3, the group $S_{4}$ has one more 3-dimensional representation, by the proper group of the cube. ${ }^{21}$
Exercise 5.23 Show that the 3-dimensional representations of $S_{4}$ by the complete group of the regular tetrahedron and the proper group of the cube are nonisomorphic and obtained from each other by taking the tensor product with the sign representation. Deduce from this that the representation by the proper group of the cube is irreducible.
Also, there is the two-dimensional irreducible representation of $S_{4}$ by the group of the triangle obtained by composing the quotient map ${ }^{22} S_{4} \rightarrow S_{3} \simeq S_{4} / V_{4}$ with the triangle representation of $S_{3}$. The equality $2 \cdot 1^{2}+2 \cdot 3^{2}+2^{2}=24$ confirms once more that we have enumerated all the irreducible representations of $S_{4}$.

### 5.6 Schur Representations of General Linear Groups

Everywhere in this section we consider a fixed vector space $V$ of dimension $d<\infty$ over an arbitrary field $\mathbb{k}$ of characteristic zero. For every $n \in \mathbb{N}$, the symmetric group $S_{n}$ acts on $V^{\otimes n}$ by the permutations of factors in the decomposable tensors. The isotypic decomposition

$$
\begin{equation*}
V^{\otimes n}=\bigoplus_{\lambda \in \operatorname{Irr}\left(S_{n}\right)} W_{\lambda} \tag{5.25}
\end{equation*}
$$

of this representation is called the decomposition by symmetry types of tensors, and the tensors lying in $W_{\lambda}$ are referred to as having symmetry type $\lambda$.

Example 5.6 (Quadratic and Cubic Tensors Revisited) The decomposition

$$
V^{\otimes 2}=\operatorname{Sym}^{2}(V) \oplus \operatorname{Alt}^{2}(V)
$$

from Example 2.2 on p. 32 is the isotypic decomposition with respect to the action of $S_{2} \simeq \mathbb{Z} /(2)$. This action is trivial in the first summand and sign alternating in the second. The decomposition from Example 2.3 on p. 33,

$$
\begin{equation*}
V^{\otimes 3}=\operatorname{Sym}^{3}(V) \oplus \operatorname{Alt}^{3}(V) \oplus W_{\Delta}, \tag{5.26}
\end{equation*}
$$

is the isotypic decomposition with respect to the action of $S_{3}$. The three symmetry types appearing here are called symmetric, sign alternating, and Lie. The $S_{3}$-linear

[^58]projectors on the components are provided by the operators $\operatorname{sym}_{3}$, alt ${ }_{3}$, and $\pi_{\Delta}$ from Example 5.5. Thus, a tensor $t \in V^{\otimes 3}$ is of Lie type if and only if it is annihilated by averaging over the action of a 3-cycle: $t+\tau t+\tau^{2} t=0, \tau=|123\rangle \in S_{3}$.

### 5.6.1 Action of $\mathbf{G L}(V) \times S_{n}$ on $V^{\otimes n}$

For every $n \in \mathbb{N}$, the linear representation of the general linear group $\operatorname{GL}(V)$ in the space $V^{\otimes n}$ is given by the group homomorphism

$$
\tau_{n}: \mathrm{GL}(V) \rightarrow \mathrm{GL}\left(V^{\otimes n}\right), \quad f \mapsto f^{\otimes n},
$$

where the operator $f \in \operatorname{GL}(V)$ acts on decomposable tensors by the rule

$$
\begin{equation*}
f^{\otimes n}: v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto f v_{1} \otimes f v_{2} \otimes \cdots \otimes f v_{n} \tag{5.27}
\end{equation*}
$$

In the sense of Sect. 5.4 on p. 109, $\tau_{n}$ is the $n$th tensor power of the tautological representation of GL(V) in $V$ provided by the identity homomorphism

$$
\tau_{1}=\mathrm{Id}_{\mathrm{GL}(V)}: \mathrm{GL}(V) \xrightarrow{\sim} \mathrm{GL}(V) .
$$

Since the action (5.27) certainly commutes with the action of the symmetric group $S_{n}$, the space $V^{\otimes n}$ is a $\mathrm{GL}(V) \times S_{n}$-module. An element $f \times g \in \mathrm{GL}(V) \times S_{n}$ acts on decomposable tensors as

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto f\left(v_{g(1)}\right) \otimes f\left(v_{g(2)}\right) \otimes \cdots \otimes f\left(v_{g(n)}\right)
$$

Since the operator $f^{\otimes n}$ is $S_{n}$-linear for every $g \in \operatorname{GL}(V)$, the action of GL( $V$ ) maps every component of the $S_{n}$-isotypic decomposition $V^{\otimes n}=\bigoplus_{\lambda \in \operatorname{Irr}\left(S_{n}\right)} W_{\lambda}$ to itself, i.e., it preserves the symmetry type of tensors. Thus, every $S_{n}$-isotypic component $W_{\lambda}$ is a GL $(V) \times S_{n}$-module as well.

Let $U_{\lambda}$ be an irreducible $S_{n}$-module. The tensor product $\operatorname{Hom}_{S_{n}}\left(U_{\lambda}, V^{\otimes n}\right) \otimes U_{\lambda}$ possesses a GL $(V) \times S_{n}$-module structure provided by the action

$$
f \times g: \varphi \otimes u \mapsto\left(f^{\otimes n} \circ \varphi\right) \otimes(g u)
$$

By Proposition 5.3 on p. 108, the contraction map $\varphi \otimes u \mapsto \varphi(u)$ establishes an isomorphism ${ }^{23}$

$$
\begin{equation*}
c: \operatorname{Hom}_{S_{n}}\left(U_{\lambda}, V^{\otimes n}\right) \otimes U_{\lambda} \xrightarrow{\sim} W_{\lambda}, \tag{5.28}
\end{equation*}
$$

[^59]which is certainly both GL(V)- and $S_{n}$-linear. The space
\[

$$
\begin{equation*}
\mathbb{S}^{\lambda} V \stackrel{\text { def }}{=} \operatorname{Hom}_{S_{n}}\left(U_{\lambda}, V^{\otimes n}\right) \tag{5.29}
\end{equation*}
$$

\]

provided with the action of $\operatorname{GL}(V)$ by the rule $f: \varphi \mapsto f^{\otimes n} \circ \varphi$ is called the Schur representation of GL( $V$ ).
Lemma 5.6 The linear span of the operators $f^{\otimes n}, f \in \operatorname{GL}(V)$, coincides with the centralizer $\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)$ of the action of $S_{n}$ on $V^{\otimes n}$.

Proof The chain of canonical isomorphisms

$$
\operatorname{End}\left(V^{\otimes n}\right) \simeq V^{\otimes n^{*}} \otimes V^{\otimes n} \simeq V^{* \otimes n} \otimes V^{\otimes n} \simeq\left(V^{*} \otimes V\right)^{\otimes n} \simeq \operatorname{End}(V)^{\otimes n}
$$

identifies the centralizer $\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right) \subset \operatorname{End}\left(V^{\otimes n}\right)$ with the space of symmetric tensors

$$
\operatorname{Sym}^{n}(\operatorname{End}(V)) \subset \operatorname{End}(V)^{\otimes n}
$$

The latter space is linearly generated over $\mathbb{k}$ by the proper $n$th powers $f^{\otimes n}$ of $f \in \mathrm{GL}(V)$, because of the following general claims.
Exercise 5.24 (Aronhold's Principle) Let $W$ be a finite-dimensional vector space over a field of zero characteristic. Prove that the subspace of symmetric tensors

$$
\operatorname{Sym}^{n}(W) \subset W^{\otimes n}
$$

is linearly generated by the proper $n$th tensor powers $w^{\otimes n}=w \otimes w \otimes \cdots \otimes w$.
Exercise 5.25 (Enhanced Aronhold's Principle) Under the assumption of Exercise 5.24 , let $F \in S W^{*}$ be a nonzero polynomial on $W$. Show that $\operatorname{Sym}^{n}(W)$ is linearly spanned by the $w^{\otimes n}$ with $F(w) \neq 0$.

The enhanced Aronhold's principle applied to $W=\operatorname{End}(V)$ and $F=\operatorname{det}$ proves the lemma.

## Proposition 5.6 All the Schur representations

$$
\mathbb{S}^{\lambda} V=\operatorname{Hom}_{S_{n}}\left(U_{\lambda}, V^{\otimes n}\right)
$$

of $\mathrm{GL}(V)$ are irreducible.
Proof The isomorphism $\mathbb{S}^{\lambda} V \otimes U_{\lambda} \leadsto W_{\lambda}$ from (5.28) transfers the action of $S_{n}$ on $W_{\lambda}$ to the action $g: \varphi \otimes u \mapsto \varphi \otimes(g u)$. Every linear operator $F \in \operatorname{End}\left(\mathbb{S}^{\lambda} V\right)$ acts on the space $W_{\lambda}=\mathbb{S}^{\lambda} V \otimes U_{\lambda}$ by the rule $F: \varphi \otimes u \mapsto F(\varphi) \otimes u$, and this action clearly commutes with the action of $S_{n}$. By Lemma 5.6, all linear operators $F \in \operatorname{End}\left(\mathbb{S}^{\lambda} V\right)$ belong to the linear span of the operators $\varphi \otimes u \mapsto\left(f^{\otimes n} \circ \varphi\right) \otimes u$ with $f \in \operatorname{GL}(V)$. Therefore, the image of the Schur representation GL $(V) \rightarrow \mathrm{GL}\left(\mathbb{S}^{\lambda} V\right)$ linearly generates the whole algebra End $\left(\mathbb{S}^{\lambda} V\right)$. By Exercise 5.8 on p. 106, this forces the Schur representation to be irreducible.

### 5.6.2 The Schur-Weyl Correspondence

The correspondence $U_{\lambda} \leftrightarrow \mathbb{S}^{\lambda} V$, between the irreducible representations $U_{\lambda}$ of the symmetric groups $S_{n}$ and the Schur representations $\mathbb{S}^{\lambda} V$ of the general linear group ${ }^{24} \mathrm{GL}(V)$, is known as the Schur-Weyl correspondence. For example, the trivial representation of $S_{n}$ corresponds to the irreducible representation of GL( $V$ ) in the space $\operatorname{Sym}^{n} V \simeq S^{n} V$ of symmetric tensors, whereas the sign representation corresponds to the irreducible representation of GL(V) in the space Alt ${ }^{n} V \simeq \Lambda^{n} V$. One can show that all nonzero GL( $V$ )-modules $\mathbb{S}^{\lambda} V$ are nonisomorphic for different $\lambda$, and every finite-dimensional irreducible representation $\varrho: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W)$ such that all matrix elements of $\varrho(f)$ are rational functions of the matrix elements of $f$ is isomorphic to some Schur module $\mathbb{S}^{\lambda} V$ tensored by an appropriate onedimensional representation $\operatorname{det}^{m}: \mathrm{GL}(V) \rightarrow \mathrm{GL}_{1}(\mathbb{k})$, in which every $f \in \operatorname{GL}(V)$ acts by multiplication by $\operatorname{det}^{m}(f)$. For the proofs and generalizations to other linear groups, see [Fu, FH]. ${ }^{25}$

## Problems for Independent Solution to Chapter 5

Problem 5.1 Construct a reducible indecomposable representation of dimension two for the additive group $\mathbb{Z}$.
Problem 5.2 Show that every finite-dimensional associative algebra with unit and without zero divisors is a division algebra. ${ }^{26}$
Problem 5.3 Let $A$ be an associative $\mathbb{k}$-algebra with unit and $\varphi: A \rightarrow A$ an endomorphism of $A$ considered as a left $A$-module. ${ }^{27}$ Show that there exists $a_{\varphi} \in A$ such that $\varphi(x)=x a_{\varphi}$ for all $x \in A$.
Problem 5.4 Describe all associative $\mathbb{R}$-subalgebras with unit of dimension at least 32 in the matrix algebra $\operatorname{Mat}_{6 \times 6}(\mathbb{R})$.
Problem 5.5 (Artinian Algebras) An associative algebra $A$ is called left Artinian if for every descending chain of left ideals $L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \cdots$, there exists $n \in \mathbb{N}$ such that $L_{i}=L_{n}$ for all $i \geqslant n$. Prove that: (a) Every finite-dimensional algebra is left Artinian. (b) Every nonzero left ideal in $A$ contains a minimal

[^60](with respect to inclusions) nonzero left ideal, which automatically is a simple $A$-submodule of the left regular representation $a: x \mapsto a x$ of $A$ in $A$.

Problem 5.6 (Semisimple Algebras) An associative algebra $A$ with unit is called semisimple if the left regular representation $A \mapsto \operatorname{End}_{\mathrm{k}} A$, which takes $a \in A$ to the left multiplication map $x \mapsto a x$, is completely reducible. Let $A$ be a semisimple $\mathbb{k}$-algebra of finite dimension as a vector space over $\mathbb{k}$. Show that:
(a) All $A$-modules are semisimple.
(b) $A=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{s}$ as a left $A$-module, where every $L_{i} \subset A$ is a minimal nonzero left ideal in $A$, and $L_{i} L_{j}=0$ if $L_{i}$ and $L_{j}$ are not isomorphic as left $A$-modules.
(c) Every simple $A$-module is isomorphic to some ideal $L_{i}$ from the previous decomposition.
(d) For every simple $A$-module $\lambda: A \rightarrow$ End $U_{\lambda}$, the $\lambda$-isotypic component in the left regular representation of $A$ is nonzero, forms a two-sided ideal $I_{\lambda} \subset A$, and coincides with the direct sum of those ideals $L_{i}$ in (b) that are isomorphic to $U_{\lambda}$ as $A$-modules.
(e) Every $I_{\lambda} \subset A$ is a semisimple $\mathbb{k}_{k}$-algebra with unit. ${ }^{28}$
(f) The unit elements $e_{\lambda} \in I_{\lambda}$ satisfy the following relations: $\sum_{\lambda} e_{\lambda}=1$ is the unit of $A$, and

$$
e_{\lambda} e_{\mu}= \begin{cases}e_{\lambda} & \text { for } \lambda=\mu \\ 0 & \text { otherwise }\end{cases}
$$

(g) The isotypic decomposition of the left regular representation $A \simeq \prod_{\lambda \in \operatorname{Irr}(A)} I_{\lambda}$ is an isomorphism of $k$-algebras with unit.
(h) Every $I_{\lambda}$ possesses a unique, up to isomorphism, simple $I_{\lambda}$-module, i.e.,

$$
\left|\operatorname{Irr}\left(I_{\lambda}\right)\right|=1
$$

Problem 5.7 (Simple Algebras) An associative semisimple $\mathbb{k}_{k}$-algebra $A$ is called simple if $|\operatorname{Irr}(A)|=1$. Deduce from the previous problem that every finitedimensional semisimple algebra is a direct sum of simple algebras. For every finite-dimensional simple $\mathbb{k}$-algebra $A$, prove that:
(a) All minimal nonzero left ideals in $A$ are isomorphic as $A$-modules, and for every two such ideals $L^{\prime}, L^{\prime \prime} \subset A$, there exists an element $a \in A$ such that $L^{\prime} a=L^{\prime \prime}$.
(b) $L A=A$ for every nonzero minimal left ideal $L \subset A$.
(c) There are no nonzero proper two-sided ideals in $A$.
(d) For the simple $A$-module $U$, the algebra $D=\operatorname{End}_{A}(U)$ is a division algebra.
(e) $A \simeq \operatorname{End}_{D}(U)$.

[^61]Problem 5.8 Prove that following conditions on a finite-dimensional $\mathbb{k}$-algebra $A$ with unit are equivalent: (a) $A$ is simple, (b) $A$ has no proper nonzero twosided ideals, (c) $A=\operatorname{End}_{D}(U)$, where $D \supset \mathbb{k}$ is a division algebra and $U$ a finitedimensional vector space over $D$.
Problem 5.9 Prove that every finite-dimensional simple algebra $A$ over an algebraically closed field $\mathbb{k}$ is isomorphic to $\operatorname{End}_{k}(V)$ for an appropriate finitedimensional vector space $V$ over $\mathbb{k}$, and every nonzero irreducible representation of $A$ is isomorphic to the tautological linear representation of $A$ in $V$.
Problem 5.10 (Nilpotent Algebras and Radicals) An associative $\mathbb{k}$-algebra $A$ is called nilpotent if for every $a \in A$, there exists $n \in \mathbb{N}$ such that $a^{n}=0$. Prove that:
(a) All subalgebras and quotient algebras of a nilpotent algebra are nilpotent.
(b) If $I \subset A$ is a nilpotent two-sided ideal such that the quotient algebra $A / I$ is nilpotent, then $A$ is nilpotent.
(c) For every nilpotent algebra $A$, there exists $m \in \mathbb{N}$ such that $a^{m}=0$ simultaneously for all $a \in A$.
(d) For every associative algebra $A$, the sum $I+J=\{x+y \mid x \in I, y \in J\}$ of two nilpotent two-sided ideals $I, J \subset A$ is a nilpotent two-sided ideal, and therefore, there exists a unique maximal proper nilpotent two-sided ideal containing all nilpotent two-sided ideals of $A$. (This ideal is called the radical of $A$ and denoted by $\operatorname{rad}(A)$.)

Problem 5.11 (Trace Form) Let $A$ be a finite-dimensional associative $\mathbb{k}$-algebra. For $a, b \in A$ write

$$
\begin{equation*}
(a, b) \xlongequal{\text { def }} \operatorname{tr}(a b) \in \mathbb{k} \tag{5.30}
\end{equation*}
$$

for the trace of the multiplication map $A \rightarrow A, x \mapsto a b x$. Prove that:
(a) $(x, y)$ is a symmetric bilinear form $A \times A \rightarrow \mathbb{k}$, and $(a x, y)=(x, y a)$ for all $a, x, y \in A$.
(b) For every left ideal $L \subset A$, the orthogonal complement $L^{\perp} \subset A$ is a right ideal, and the orthogonal $R^{\perp}$ of every right ideal $R \subset A$ is a left ideal in $A$.
(c) If char $\mathbb{k}=0$, then $a \in A$ is nilpotent if and only if ( $a, a^{n}$ ) $=0$ for all $n \in \mathbb{N}$.

Problem 5.12 Let $A$ be a finite-dimensional associative algebra with unit over a field $\mathbb{k}$ of characteristic zero. Prove that the following conditions are equivalent: (a) $A$ is semisimple, (b) $\operatorname{rad}(A)=0$, (c) the trace form (5.30) is nondegenerate.

Problem 5.13 Let char $\mathbb{k} \nmid|G|$. Under the notations of Sect. 5.5.2, prove that:
(a) Every $I_{\lambda}$ is a minimal two-sided ideal in $\mathbb{k}[G]$ with respect to inclusions.
(b) Every two-sided ideal in $\mathbb{k}[G]$ is a direct sum of some ideals $I_{\lambda}$.
(c) Every linear representation $\mathbb{k}[G] \rightarrow \operatorname{End}(V)$ sends each irreducible idempotent $e_{\lambda}$ to a $G$-linear projector onto the $\lambda$-isotypic component of $V$.

Problem 5.14 (Characters of Linear Representations) Let $\varrho: G \rightarrow \operatorname{End}(V)$ be a finite-dimensional linear representation of a finite group $G$ over an arbitrary field k. The function

$$
\chi_{V}: G \rightarrow \mathbb{k}, \quad g \mapsto \operatorname{tr} \varrho(g),
$$

is called the character of this representation. Prove that:
(a) The character of a representation takes a constant value on every conjugacy class of $G$, i.e., assigns a well-defined function $\chi_{V}: \mathrm{Cl}(G) \rightarrow \mathbb{k}$.
(b) If $G$ acts on the coordinate vector space $V=\mathbb{k}^{n}$ by some permutations of the standard basis vectors, then $\chi_{V}(g)$ equals the number of fixed points of the permutation $g$.
(c) The characters of the symmetric and exterior squares of a representation $V$ are expressed in terms of $\chi_{V}$ as

$$
\begin{aligned}
& \chi_{S^{2} V} \\
& \\
& \chi_{\Lambda^{2} V}(g)=\left(\chi_{V}^{2}(g)+\chi_{V}\left(g^{2}\right)\right) / 2, \\
&\left.\chi_{V}^{2}(g)-\chi_{V}\left(g^{2}\right)\right) / 2 .
\end{aligned}
$$

Problem 5.15 Compute the characters of the five irreducible representations of $S_{4}$ described in Example 5.5.
Problem 5.16 Let $\varrho: G \rightarrow \mathrm{SL}(V)$ be a linear representation of a group $G$ by volume-preserving linear automorphisms of a $d$-dimensional vector space $V$. For all $0 \leqslant k \leqslant d$, construct an isomorphism of the representations $\Lambda^{k} \varrho \simeq \Lambda^{d-k} \varrho$.
Problem 5.17 (Molin's Formula) Given a finite-dimensional linear representation of a finite group $\varrho: G \rightarrow \operatorname{GL}(V)$ over an algebraically closed field $\mathbb{k}$ of characteristic zero, write

$$
d_{m}=\operatorname{dim}_{k}\left\{f \in S^{m} V^{*} \mid \forall g \in G, \forall v \in V, f(\varrho(g) v)=f(v)\right\}
$$

for the dimension of the space of $G$-invariant homogeneous polynomials of degree $m$ on $V$. Prove that

$$
\sum_{m \geqslant 0} d_{m} t^{m}=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}(1-t \varrho(g))}
$$

Problem 5.18 (Representations of $\boldsymbol{D}_{\mathbf{3}}$ ) Use the presentation of $D_{3}$ by generators $\sigma$, $\tau$ and relations $\sigma^{2}=\tau^{3}=e, \sigma \tau \sigma=\tau^{-1}$ to show that the eigenvalues of $s$ and $\tau$
in every linear representation are exhausted, respectively, by the square and cube roots of unity, and that $\sigma$ sends every eigenvector of $\tau$ to an eigenvector with the inverse eigenvalue. Deduce from this ${ }^{29}$ that the irreducible representations of $D_{3}=S_{3}$ over $\mathbb{C}$ are exhausted by the trivial and sign representations of dimension 1 and by the triangle representation $U_{\Delta}$ of dimension 2. Show that $S^{n+6} U_{\Delta} \simeq S^{n} U_{\Delta} \oplus \mathbb{k}\left[D_{3}\right]$, where $\mathbb{k}\left[D_{3}\right]$ means the left regular representation. Find the multiplicity of every simple $D_{3}$-module in $S^{n} U_{\Delta}$ for all $n \in \mathbb{N}$.
Problem 5.19* (Schur Reciprocity) Under the notation of the previous problem, prove that for all $k, m \in \mathbb{N}$, there is an isomorphism of $D_{3}$-modules

$$
S^{k}\left(S^{m} U_{\Delta}\right) \simeq S^{m}\left(S^{k} U_{\Delta}\right)
$$

Problem 5.20 Enumerate all irreducible representations of the dihedral group $D_{n}$ and compute their characters.
Problem 5.21 Let $G \simeq S_{4}$ be the proper group of the cube in $\mathbb{R}^{3}$. Write $\mathbb{C}^{V}, \mathbb{C}^{E}$, $\mathbb{C}^{F}$ for the spaces of complex-valued functions on the respective sets of vertices, edges, and faces of the cube.
(a) Find the multiplicity of every simple $S_{4}$-module in the natural representations of $G$ in $\mathbb{C}^{V}, \mathbb{C}^{E}, \mathbb{C}^{F}$ by the rule $g: f \mapsto f \circ g^{-1}$.
(b) Let the map $s: \mathbb{C}^{V} \rightarrow \mathbb{C}^{F}$ send a function $f$ to the function $s f$ whose value on a face equals the sum of the values of $f$ on the edges bounding the face. Find the dimensions ${ }^{30}$ of ker $s$ and im $s$ and indicate some bases in these two spaces.

Problem 5.22 The faces of the cube are marked by $1,2,3,4,5,6$, as on a die. Once per second, every mark is changed to the arithmetic mean of the marks on the four neighboring faces. To an accuracy within $\pm 10^{-2}$, evaluate the marking numbers after 2017 s . Does the answer change if the initial marks 1, 2, 3, 4, 5, 6 are placed differently?
Problem 5.23 Solve Problem 5.21 for the proper group of the dodecahedron.
Problem 5.24* Describe all finite subgroups of $\mathrm{SO}_{3}(\mathbb{R})$ up to conjugation.
Problem 5.25 (Invariant Inner Product) Show that every finite-dimensional representation of a finite group $G$ over $\mathbb{R}$ (respectively over $\mathbb{C}$ ) admits a $G$ invariant Euclidean (respectively Hermitian) inner product ( $v, w$ ), meaning that $(g v, g w)=(v, w)$ for all $g \in G$.
Problem 5.26 Assume that a $G$-invariant Hermitian structure and orthonormal basis are fixed in every finite-dimensional complex $G$-module. Write all operators $g \in G$ in terms of unitary matrices in these bases. Consider the matrix elements of

[^62]these matrices as functions $G \rightarrow \mathbb{C}$. Prove that every two matrix elements from different irreducible representations are orthogonal with respect to the standard Hermitian structure on $\mathbb{C}^{G}$ provided by the inner product
$$
\left(f_{1}, f_{2}\right)=|G|^{-1} \sum_{g \in G} f_{1}(g) \cdot \overline{f_{2}(g)}
$$
and compute the inner products of matrix elements of the same irreducible representation. ${ }^{31}$

[^63]is $G$-linear, and therefore, either zero (for $\lambda \neq \varrho$ ) or a scalar homothety (for $\lambda=\varrho$ ); apply this to $\varphi=E_{i j}$ and use the trace to evaluate the coefficient of the homothety.

## Chapter 6 <br> Representations of Finite Groups in Greater Detail

Everywhere in this section, we write by default $G$ for an arbitrary finite group and $\mathbb{k}$ for an algebraically closed field such that $\operatorname{char}(\mathbb{k}) \nmid|G|$.

### 6.1 Orthogonal Decomposition of a Group Algebra

### 6.1.1 Invariant Scalar Product and Plancherel's Formula

For a vector space $V$ of finite dimension over $\mathbb{k}$, the algebra $\operatorname{End}_{k}(V)$ possesses the canonical inner product

$$
\begin{equation*}
\operatorname{End}(V) \times \operatorname{End}(V) \rightarrow \mathbb{k}, \quad(A, B) \stackrel{\text { def }}{=} \operatorname{tr}(A B) \tag{6.1}
\end{equation*}
$$

provided by complete contraction.
Exercise 6.1 Check that for every pair of decomposable operators $A=a \otimes \alpha$, $B=b \otimes \beta$ from $\operatorname{End}(V) \simeq V \otimes V^{*}$, one has $\operatorname{tr}(A B)=\alpha(b) \cdot \beta(a)$. Deduce from this that $\operatorname{tr}(A B)$ is symmetric and nondegenerate.

Write $L: \mathbb{k}[G] \hookrightarrow \operatorname{End}(\mathbb{k}[G]), x \mapsto L_{x}$, for the left regular representation, which sends $x \in \mathbb{k}[G]$ to the left multiplication $L_{x}: z \mapsto x z$. Note that it is injective, because $L_{x}(e)=x \neq 0$ for $x \neq 0$. The restriction of the inner product (6.1) written for $V=\mathbb{k}[G]$ to the subspace $L(\mathbb{k}[G]) \subset \operatorname{End}_{\mathbb{k}}(\mathbb{k}[G])$ provides the group algebra $\mathbb{k}[G]$ with the symmetric bilinear form

$$
\begin{equation*}
(f, g) \stackrel{\text { def }}{=} \operatorname{tr}\left(L_{f} L_{g}\right)=\operatorname{tr}\left(L_{f g}\right) . \tag{6.2}
\end{equation*}
$$

Since multiplication by the identity element $e$ has trace $|G|$, and multiplication by every nonidentity element $g \in G$ is traceless, the Gram matrix of (6.2) in the
standard basis formed by group elements is

$$
(g, h)= \begin{cases}|G| & \text { for } h=g^{-1}  \tag{6.3}\\ 0 & \text { for } h \neq g^{-1}\end{cases}
$$

Therefore, the symmetric form (6.2) is nondegenerate. ${ }^{1}$ For the standard basis consisting of all $g \in G$, the dual basis is formed by the normalized inverse group elements

$$
\begin{equation*}
g^{\vee} \stackrel{\text { def }}{=} g^{-1} /|G| \tag{6.4}
\end{equation*}
$$

Therefore, every element of the group algebra $x \in \mathbb{k}_{k}[G]$ is expanded through the standard basis $G \subset \mathbb{k}[G]$ as

$$
\begin{equation*}
x=\frac{1}{|G|} \sum_{g \in G}\left(g^{-1}, x\right) \cdot g \tag{6.5}
\end{equation*}
$$

Exercise 6.2 For every $g \in G$, verify that the left and right multiplications by $g$, which map $x \mapsto g x$ and $x \mapsto x g$ respectively, are adjoint linear endomorphisms of $\mathbb{K}_{\mathbb{K}}[G]$ with respect to the inner product (6.2). Use this to prove that the orthogonal complement to every left ideal in $\mathbb{k}[G]$ is a right ideal, and conversely, the orthogonal complement of every right ideal is a left ideal.
It follows from the exercise that the orthogonal complement of every two-sided ideal $I \subset \mathbb{k}[G]$ is a two-sided ideal as well. Therefore, the isotypic decomposition of the left regular representation

$$
\begin{equation*}
\mathbb{k}[G]=\underset{\lambda \in \operatorname{Irr}(G)}{\oplus} I_{\lambda} \tag{6.6}
\end{equation*}
$$

is an orthogonal decomposition. The isomorphism provided by Maschke's theorem, ${ }^{2}$

$$
\mathfrak{r}: \mathbb{k}[G] \xrightarrow{\rightarrow} \prod_{\lambda \in \operatorname{Irr}(G)} \operatorname{End}\left(U_{\lambda}\right),
$$

allows us to evaluate the inner product (6.2) in terms of the traces of group elements taken in the irreducible representations.

[^64]Proposition 6.1 (Plancherel's Formula) For all $f, g \in \mathbb{K}[G]$,

$$
(f, g)=\sum_{\lambda \in \operatorname{Irr}(G)} \operatorname{dim}\left(U_{\lambda}\right) \cdot \operatorname{tr}(\lambda(f g)) .
$$

Proof The trace of left multiplication by $f g$ in the algebra $\oplus_{\lambda \in \operatorname{Irr}(G)} \operatorname{End}\left(U_{\lambda}\right)$ equals the sum of the traces of left multiplications by $\lambda(f g)$ in the algebras $\operatorname{End}\left(U_{\lambda}\right)$ for all irreducible representations $\lambda \in \operatorname{Irr}(G)$. It remains to note that the trace of left multiplication by a matrix $M: X \mapsto M X$ in $\operatorname{Mat}_{n}(\mathbb{k})$ equals $n \cdot \operatorname{tr}(M)$, because every standard basis matrix $E_{i j}$ appears in the expansion of $M E_{i j}$ with the coefficient $m_{i i}$.

### 6.1.2 Irreducible Idempotents

It follows from Sect. 5.5.2 on p. 115 that the irreducible idempotents

$$
\begin{equation*}
e_{\lambda}=\pi_{\lambda}(e)=\mathfrak{r}^{-1}\left(0 \ldots, 0, \operatorname{Id}_{U_{\lambda}}, 0, \ldots 0\right) \in I_{\lambda} \subset \mathbb{k}[G] \tag{6.7}
\end{equation*}
$$

form an orthogonal basis of the center $Z(\mathbb{k}[G])$ and satisfy the relations

$$
e_{\lambda} e_{\varrho}= \begin{cases}e_{\lambda} & \text { for } \varrho=\lambda  \tag{6.8}\\ 0 & \text { for } \varrho \neq \lambda\end{cases}
$$

Since the trace of multiplication by the identity in the algebra $\operatorname{End}_{k}\left(U_{\lambda}\right)$ equals $\operatorname{dim}^{2} U_{\lambda}$, the following orthogonality relations hold:

$$
\left(e_{\lambda}, e_{\varrho}\right)= \begin{cases}\operatorname{dim}^{2} U_{\lambda} & \text { for } \varrho=\lambda  \tag{6.9}\\ 0 & \text { for } \varrho \neq \lambda\end{cases}
$$

Note that the basic idempotents $e_{\lambda}$ are uniquely characterized as the orthogonal projections of unity $e \in \mathbb{k}[G]$ on the isotypic ideals $I_{\lambda}$.

Proposition 6.2 For every $\lambda \in \operatorname{Irr}(G)$, the linear expansion of $e_{\lambda}$ through the group elements is

$$
\begin{equation*}
e_{\lambda}=\frac{\operatorname{dim} U_{\lambda}}{|G|} \sum_{g \in G} \operatorname{tr}\left(\lambda\left(g^{-1}\right)\right) \cdot g \tag{6.10}
\end{equation*}
$$

In particular, every linear representation $\mathbb{k}[G] \rightarrow \operatorname{End}(V)$ maps the right-hand side of this equality to the $\lambda$-isotypic projector $\pi_{\lambda}: V \rightarrow V_{\lambda}$.

Proof By formula (6.5), $e_{\lambda}=|G|^{-1} \sum_{\mu \in \operatorname{Irr}(G)}\left(g^{-1}, e_{\lambda}\right) \cdot g$. By the Plancherel formula, ${ }^{3}$

$$
\left(g^{-1}, e_{\lambda}\right)=\sum_{\mu \in \operatorname{Irr}(G)} \operatorname{dim}\left(U_{\mu}\right) \cdot \operatorname{tr}\left(\mu\left(g^{-1} e_{\lambda}\right)\right)=\operatorname{dim}\left(U_{\lambda}\right) \cdot \operatorname{tr}\left(\lambda\left(g^{-1}\right)\right)
$$

The sum is reduced to one summand, because left multiplication by $e_{\lambda}$ annihilates all simple $G$-modules $U_{\mu}$ with $\mu \neq \lambda$, and acts on $U_{\lambda}$ as the identity endomorphism.

### 6.2 Characters

### 6.2.1 Definition, Properties, and Examples of Computation

Associated with every finite-dimensional linear representation $\varrho: \mathbb{k}[G] \rightarrow \operatorname{End}(V)$ is the $\mathbb{k}_{k}$-linear form

$$
\begin{equation*}
\chi_{\varrho}: \mathbb{k}[G] \rightarrow \mathbb{k}, \quad x \mapsto \operatorname{tr} \varrho(x), \tag{6.11}
\end{equation*}
$$

called the character ${ }^{4}$ of $\varrho$. When $\varrho$ is clear from the reference to $V$, we will also write $\chi_{V}$ instead of $\chi_{\varrho}$. Since the trace of a linear map is unchanged under conjugations of the map, the character of every linear representation takes a constant value on every conjugacy class of $G$. For the same reason, the characters of isomorphic $G$-modules coincide. In terms of characters, formula (6.10) for the $\lambda$-isotypic projector can be rewritten as

$$
\begin{equation*}
e_{\lambda}=\frac{\operatorname{dim} U_{\lambda}}{|G|} \sum_{g \in G} \chi_{\lambda}\left(g^{-1}\right) \cdot g . \tag{6.12}
\end{equation*}
$$

Example 6.1 (Characters of Permutation Representations) Let a group $G$ act on $\mathbb{k}^{n}$ by permutations of the standard basis vectors. Then the character of this action takes an element $g \in G$ to the number of fixed points of the permutation provided by $g$. In particular, the values of the character of the left regular representation are

$$
\chi_{L}(g)= \begin{cases}|G| & \text { for } g=e \\ 0 & \text { for } g \neq e\end{cases}
$$

[^65]For a Young diagram $\lambda$, write $C_{\lambda} \subset S_{n}$ for the conjugacy class consisting of all permutations of the cyclic type $\lambda$. Then the character of the tautological representation of $S_{n}$ in $\mathbb{k}^{n}$ equals $m_{1}(\lambda)$, the number of length-one rows in $\lambda$. Since the tautological representation is a direct sum of the simplicial and trivial representations, and the latter has the constant character equal to 1 for all $g$, the value of the simplicial character on the class $C_{\lambda} \subset S_{n}$ is $\chi_{\Delta}\left(C_{\lambda}\right)=m_{1}(\lambda)-1$.

Exercise 6.3 Verify the following table of irreducible characters of $S_{3}$,

and convince yourself that the isotypic projectors $e_{\lambda}$ obtained from this table by formula (6.12) agree with those described in Example 5.5 on p. 120.

Example 6.2 (Irreducible Characters of $S_{4}$ ) If a representation admits an explicit geometric description, its character usually can be computed by straightforward summation of the eigenvalues of rotations and reflections representing the group elements. For example, the five irreducible representations of $S_{4}$ from Example 5.5 on p. 120 take the following values on the conjugacy classes in $S_{4}$ :


The fourth row of this table was computed as follows. The trace of the identity equals the dimension of the representation. Since a lone transposition and a pair of disjoint transpositions act as rotations by $180^{\circ}$ about some lines, their eigenvalues are $1,-1,-1$, and the trace equals -1 . A 3 -cycle and 4 -cycle act as rotations by $120^{\circ}$ and $90^{\circ}$ respectively, and their eigenvalues are $1, \omega, \omega^{2}$ and $1, i,-i$, where $\omega, i \in \mathbb{k}$ are respectively a third and a fourth root of unity. The traces are 0 and 1 .

Exercise 6.4 Verify the third and fifth rows of the table.
Lemma 6.1 For every linear representations $V$, $W$ of a finite group $G$ with characters $\chi_{U}, \chi_{V}$, one has

$$
\begin{align*}
\chi_{V \oplus W}(g) & =\chi_{V}(g)+\chi_{W}(g),  \tag{6.15}\\
\chi_{V \otimes W}(g) & =\chi_{V}(g) \chi_{W}(g),  \tag{6.16}\\
\chi_{V^{*}}(g) & =\chi_{V}\left(g^{-1}\right),  \tag{6.17}\\
\chi_{H o m(V, W)}(g) & =\chi_{V}\left(g^{-1}\right) \chi_{W}(g) . \tag{6.18}
\end{align*}
$$

Proof Since every operator $g$ in a finite group of linear operators is diagonalizable over an algebraically closed field of characteristic zero, there exist bases

$$
v_{1}, v_{2}, \ldots, v_{n} \in V \quad \text { and } \quad w_{1}, w_{2}, \ldots, w_{m} \in W
$$

consisting of eigenvectors of $g$. Write $\alpha_{i}$ and $\beta_{j}$ for the eigenvalues of $v_{i}$ and $w_{j}$. The disjoint union of these eigenvalues is the set of eigenvalues for the representation $g$ in $V \oplus W$. This proves the first formula (6.15). The $m n$ eigenvalues of $g$ in the representation $V \otimes W$ are $\alpha_{i} \beta_{j}$. This leads to (6.16). Formula (6.17) holds, because the diagonal matrices of $g$ in the dual eigenbases of the dual representations are inverse to each other. ${ }^{5}$ The last formula follows from (6.16) and (6.17).

Exercise 6.5 Verify that the generating power series for the characters of symmetric and exterior powers of a linear representation $\varrho: G \rightarrow \mathrm{GL}(V)$ are

$$
\sum_{\nu \geqslant 0} \chi_{\Lambda^{v} V}(g) t^{\nu}=\operatorname{det}(1+t \varrho(g)) \quad \text { and } \quad \sum_{v \geqslant 0} \chi_{S^{\nu} V}(g) t^{\nu}=\frac{1}{\operatorname{det}(1-t \varrho(g))}
$$

Corollary 6.1 The character of an arbitrary linear representation $V$ is a linear combination of the irreducible characters $\chi_{\lambda}, \lambda \in \operatorname{Irr}(G)$ with nonnegative integer coefficients:

$$
\begin{equation*}
\chi_{V}=\sum_{\lambda \in \operatorname{Irr}(G)} m_{\lambda}(V) \cdot \chi_{\lambda}, \tag{6.19}
\end{equation*}
$$

where $m_{\lambda}(V)=\operatorname{dim} V_{\lambda} / \operatorname{dim} U_{\lambda}$ is the multiplicity ${ }^{6}$ of the simple $G$-module $U_{\lambda}$ in $V$.

[^66]
### 6.2.2 The Fourier Transform

Since every covector is uniquely determined by its values on a basis, the vector space $\mathbb{k}[G]^{*}$ dual to the group algebra $\mathbb{k}[G]$ is naturally isomorphic ${ }^{7}$ to the space $\mathbb{k}^{G}$ of all functions $G \rightarrow \mathbb{k}$ on the basis $G$ of $\mathbb{k}[G]$. The isomorphism maps a function $\varphi: G \rightarrow \mathbb{k}$ to the linear form evaluated as $\varphi\left(\sum x_{g} \cdot g\right)=\sum x_{g} \varphi(g)$. At the same time, associated with the inner product on $\mathbb{k}[G]$ is the isomorphism ${ }^{8}$

$$
\begin{equation*}
\mathbb{k}[G] \leadsto \mathbb{k}[G]^{*}, \quad f \mapsto(f, *), \tag{6.20}
\end{equation*}
$$

which maps a vector to the inner multiplication by this vector. The inverse map sends the basis of $\mathbb{k}[G]^{*}$ dual to the basis $G$ of $\mathbb{k}[G]$ to the basis consisting of elements ${ }^{9}$ $g^{\vee}=g^{-1} /|G|$ for all $g \in G$. The composition of $\mathbb{k}$-linear isomorphisms

$$
\mathbb{K}^{G} \leadsto \mathbb{A}[G]^{*} \leadsto \mathbb{A}[G]
$$

is called the Fourier transform. We denote it by

$$
\begin{equation*}
\Phi: \mathbb{k}^{G} \leadsto \mathbb{K}[G], \quad \varphi \mapsto \widehat{\varphi} \stackrel{\text { def }}{=} \frac{1}{|G|} \sum_{g \in G} \varphi\left(g^{-1}\right) \cdot g . \tag{6.21}
\end{equation*}
$$

It maps the irreducible characters $\chi_{\lambda} \in \mathbb{K}^{G}, \lambda \in \operatorname{Irr}(G)$, to rational multiplies of the irreducible idempotents

$$
\begin{equation*}
\widehat{\chi}_{\lambda}=\frac{1}{\operatorname{dim} U_{\lambda}} \cdot e_{\lambda} \tag{6.22}
\end{equation*}
$$

Exercise 6.6 Describe the binary operation on $\mathbb{k}[G]$ corresponding to the (commutative) multiplication of functions in $\mathbb{k}^{G}$, and the binary operation on $\mathbb{k}^{G}$ corresponding to the (noncommutative) multiplication in $\mathbb{k}[G]$ under the Fourier transform.
Let us transfer the inner product (6.2) from the group algebra $\mathbb{k}[G]$ to the space of functions $\mathbb{k}^{G}$ by means of the isomorphism (6.21), that is, put

$$
\begin{equation*}
(\varphi, \psi) \stackrel{\text { def }}{=}(\widehat{\varphi}, \widehat{\psi})=\frac{1}{|G|^{2}} \sum_{g, h \in G} \varphi\left(g^{-1}\right) \psi\left(h^{-1}\right)(g, h)=\frac{1}{|G|} \sum_{g \in G} \varphi\left(g^{-1}\right) \psi(g) \tag{6.23}
\end{equation*}
$$

for every two functions $\varphi, \psi: G \rightarrow \mathbb{k}$. The next claims follow immediately from the formulas (6.22), (6.9), and they completely reduce the structural analysis of linear representations to formal algebraic manipulations with their characters.

[^67]Corollary 6.2 The irreducible characters form an orthonormal basis in the subspace $\mathbb{k}^{\mathrm{Cl}(G)} \subset \mathbb{k}^{G}$ of functions $G \rightarrow \mathbb{k}$ taking constant values on the conjugacy classes.

Corollary $6.3 \operatorname{dim} \operatorname{Hom}_{G}(V, W)=\left(\chi_{V}, \chi_{W}\right)$ for every pair of finite-dimensional $G$-modules $V$, $W$.

Proof Both sides are equal to $\sum_{\lambda \in \operatorname{Irr}(G)} m_{\lambda}(V) m_{\lambda}(W)$, where $m_{\lambda}(M)$ means the multiplicity of the irreducible representation $\lambda$ in a given $G$-module $M$. For the lefthand side, this follows from Corollary 5.5 on p. 109, and for the right-hand side, from Corollary 6.1 on p. 136 and the previous corollary.

Corollary 6.4 The multiplicity of a simple $G$-module $U_{\lambda}$ in an arbitrary $G$-module $V$ can be computed by the formula $m_{\lambda}(V)=\left(\chi_{\lambda}, \chi_{V}\right)$.

Proof Take the inner product of the character $\chi_{\lambda}$ with both sides of formula (6.19) on p. 136, and use the orthonormality of irreducible characters.

Corollary 6.5 A linear representation $V$ is irreducible if and only if $\left(\chi_{V}, \chi_{V}\right)=1$.
Proof It follows from Corollary 6.1 and the orthonormality of irreducible characters that

$$
\left(\chi_{V}, \chi_{V}\right)=\sum_{\lambda \in \operatorname{Irr}(G)} m_{\lambda}^{2}(V),
$$

where all the multiplicities $m_{\lambda}(V)$ are nonnegative integers. This sum equals one if and only if it is exhausted by exactly one summand equal to one.

Exercise 6.7 Enumerate all irreducible representations and compute their characters for the following groups: (a) $D_{n}$, (b) $A_{4}$, (c) $A_{5}$, (d) $S_{5}$.

Remark 6.1 (Inner Product of Complex Characters) Since the eigenvalues of all operators from a finite group $G$ of order $|G|=n$ are $n$th roots of unity, for $\mathbb{k}=\mathbb{C}$, they all lie on the unit circle $\mathrm{U}_{1} \subset \mathbb{C}$. This forces the inverse eigenvalues of the inverse operators $g, g^{-1} \in G$ to be complex conjugate to each other, because $\lambda^{-1}=\bar{\lambda}$ for all $\lambda \in \mathrm{U}_{1}$. Therefore, $\chi\left(g^{-1}\right)=\overline{\chi(g)}$ for all characters $\chi$ of $G$. Hence, the inner product of complex characters is proportional to the standard Hermitian inner product of functions ${ }^{10} G \rightarrow \mathbb{C}$,

$$
\left(\chi_{1}, \chi_{2}\right)=\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{1}(g)} \cdot \chi_{2}(g) .
$$

Remark 6.2 (Inner Product of Characters of the Symmetric Group) Since every two inverse permutations $g, g^{-1} \in S_{n}$ are of the same cyclic type, they are conjugate

[^68]in $S_{n}$. Therefore, $\chi\left(g^{-1}\right)=\chi(g)$ for all characters $\chi$ of the symmetric group $S_{n}$. Hence, the inner product of characters of $S_{n}$ is proportional to the standard Euclidean inner product of functions ${ }^{11}$ :
$$
\left(\chi_{1}, \chi_{2}\right)=\frac{1}{n!} \sum_{g \in S_{n}} \chi_{1}(g) \cdot \chi_{2}(g)
$$

In particular, it is positive anisotropic over $\mathbb{Q}$ and $\mathbb{R}$.
Example 6.3 (Exterior Powers of the Simplicial Representation) Write $\mathbb{1}, \Delta$, and $\tau$ for the trivial, simplicial, and tautological representations of $S_{n}$ over $\mathbb{Q}$. Since $\tau=\Delta \oplus \mathbb{1}$, the $m$ th exterior power is given by

$$
\Lambda^{m} \tau=\Lambda^{m} \Delta \oplus \Lambda^{m-1} \Delta
$$

Exercise 6.8 Check that $\Lambda^{k}(U \oplus W) \simeq \bigoplus_{\alpha+\beta=k} \Lambda^{\alpha} U \otimes \Lambda^{\beta} W$.
We are going to show that $\left(\chi_{\Lambda^{m} \tau}, \chi_{\Lambda^{m} \tau}\right)=2$ for all $1 \leqslant m \leqslant(n-1)$. This forces the representations $\Lambda^{m} \Delta$ to be irreducible for all $0 \leqslant m \leqslant n$. The trace of a permutation $\sigma \in S_{n}$ computed in the standard basis $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{m}}$ of $\Lambda^{m}\left(\mathbb{k}^{n}\right)$ equals the sum of signs $\left.\operatorname{sgn} \sigma\right|_{I}$ of the permutations induced by $\sigma$ on all cardinality- $m$ subsets $I \subset\{1,2, \ldots, n\}$ such that $\sigma(I) \subset I$. Therefore,

$$
\begin{aligned}
&\left(\chi_{\Lambda^{k} \tau}, \chi_{\Lambda^{k} \tau}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}}\left(\sum_{I: \sigma(I) \subset I} \operatorname{sgn}\left(\left.\sigma\right|_{I}\right)\right) \cdot\left(\sum_{J: \sigma(J) \subset J} \operatorname{sgn}\left(\left.\sigma\right|_{J}\right)\right) \\
&=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sum_{I, J: \sigma(I) \subset I}^{\sigma(J) \subset J} \\
& \operatorname{sgn}\left(\left.\sigma\right|_{I}\right) \cdot \operatorname{sgn}\left(\left.\sigma\right|_{J}\right) \\
&=\frac{1}{n!} \sum_{I, J} \sum_{\substack{\sigma(I) \subset I \\
\sigma(J) \subset J}} \operatorname{sgn}\left(\left.\sigma\right|_{I}\right) \cdot \operatorname{sgn}\left(\left.\sigma\right|_{J}\right)
\end{aligned}
$$

The permutations $\sigma$ such that $\sigma(I) \subset I$ and $\sigma(J) \subset J$ form a direct product of four symmetric groups $S_{k} \times S_{m-k} \times S_{m-k} \times S_{n-2 m+k}$, where $k=k(I, J)=|I \cap J|$ and the factors independently permute the elements within the sets

$$
I \cap J, I \backslash(I \cap J), J \backslash(I \cap J),\{1,2, \ldots, n\} \backslash(I \cup J) .
$$

Since

$$
\begin{aligned}
\operatorname{sgn}\left(\left.\sigma\right|_{I}\right) \cdot \operatorname{sgn}\left(\left.s\right|_{J}\right) & =\operatorname{sgn}\left(\left.\sigma\right|_{I \cap J}\right)^{2} \cdot \operatorname{sgn}\left(\left.\sigma\right|_{I \backslash(I \cap J)}\right) \cdot \operatorname{sgn}\left(\left.\sigma\right|_{J \backslash(I \cap J)}\right) \\
& =\operatorname{sgn}\left(\left.\sigma\right|_{I \backslash(I \cap J)}\right) \cdot \operatorname{sgn}\left(\left.\sigma\right|_{J \backslash(I \cap J)}\right)
\end{aligned}
$$

[^69]the previous sum can be written as
\[

$$
\begin{equation*}
\frac{1}{n!} \sum_{I, J} k!\cdot(n-2 m+k)!\cdot\left(\sum_{g \in S_{m-k}} \operatorname{sgn}(g)\right) \cdot\left(\sum_{h \in S_{m-k}} \operatorname{sgn}(h)\right) \tag{6.24}
\end{equation*}
$$

\]

The last two sums are equal to 1 for $k=m, m-1$ and vanish for all other values of $k, m$. If $k=m$, then $I=J$, and the corresponding part of (6.24) looks like

$$
\frac{1}{n!} \sum_{I} m!\cdot(n-m)!.
$$

It consists of $\binom{n}{m}$ coinciding summands $\binom{m}{n}^{-1}$ and equals 1 . If $k=m-1$, then we have $|I \cap J|=(m-1)$, and the corresponding part of (6.24) looks like

$$
\frac{1}{n!} \sum_{\substack{I \cap J}} \sum_{\substack{i \neq j \\ i, j \notin I \cap J}}(m-1)!\cdot(n-m-1)!.
$$

It consists of $\binom{n}{m-1} \cdot(n-m+1)(n-m)$ coinciding summands of the form

$$
\frac{(m-1)!\cdot(n-m-1)!}{n!}=\binom{n}{m-1}^{-1} \cdot \frac{1}{(n-m+1)(n-m)},
$$

i.e., it equals 1 as well.

### 6.2.3 Ring of Representations

The $\mathbb{Z}$-linear combinations of complex irreducible characters of a finite group $G$ form a commutative subring with unit in the algebra $\mathbb{C}^{G}$ of all functions $G \rightarrow \mathbb{C}$. It is called the representation ring of the group $G$ and is denoted by

$$
\operatorname{Rep}(G) \stackrel{\operatorname{def}}{=} \bigoplus_{\lambda \in \operatorname{Irr}(G)} \mathbb{Z} \cdot \chi_{\lambda} \subset \mathbb{C}^{G}
$$

The terminology is justified by the fact that the linear combinations of irreducible characters with nonnegative integer coefficients are in bijection with the finitedimensional linear representations of $G$ over $\mathbb{C}$. Under this bijection, addition and multiplication of characters in $\mathbb{C}^{G}$ correspond to direct sums and tensor products of the representations. Integer linear combinations containing some irreducible characters with negative coefficients are called virtual representations.

### 6.3 Induced and Coinduced Representations

### 6.3.1 Restricted and Induced Modules Over Associative Algebras

Let $A \subset B$ be associative $\mathbb{k}$-algebras with a common unit element. Every linear representation of $B$ in a vector space $W$ can be considered a representation of the subalgebra $A \subset B$. The space $W$ considered as an $A$-module is called the restriction of the $B$-module $W$ on $A$, and is denoted by res $W$, or $\operatorname{res}_{A}^{B} W$ when the precise reference to $A, B$ is essential. We already met this construction in Sect. 18.1 of Algebra I, when we considered the realification of a complex vector space. In this case, $\mathbb{k}=A=\mathbb{R}, B=\mathbb{C}$, and every vector space $W$ of dimension $n$ over $\mathbb{C}$ produces the vector space $W_{\mathbb{R}}=\operatorname{res}_{\mathbb{R}}^{\mathbb{C}} W$ of dimension $2 n$ over $\mathbb{R}$.

Conversely, associated with every $A$-module $V$ is the induced $B$-module, denoted by $\operatorname{ind}_{A}^{B} V=B \otimes_{A} V$ and defined as the quotient space of the tensor product of vector spaces $B \otimes V$ by the subspace spanned by the differences $b a \otimes v-b \otimes a v$ for all $b \in B, a \in A, v \in V$. Thus, $b a \otimes_{A} v=b \otimes_{A} a v$ in $B \otimes_{A} V$. For this reason, the space $B \otimes_{A} V$ is also called the tensor product over $A$. Elements $b \in B$ act on $B \otimes_{A} V$ by the rule

$$
b\left(b^{\prime} \otimes v\right) \stackrel{\text { def }}{=}\left(b b^{\prime}\right) \otimes v .
$$

We met this construction as well in Sect. 18.2 of Algebra I, when we studied the complexification of a real vector space. Indeed, for $\mathbb{k}=A=\mathbb{R}, B=\mathbb{C}$, and a vector space $V$ of dimension $n$ over $\mathbb{R}$, the induced complex vector space $\mathbb{C} \otimes V$ is exactly the complexification of $V$.

Proposition 6.3 The map $\tau_{A}^{B}: V \rightarrow B \otimes_{A} V, v \mapsto 1 \otimes_{A} v$, is $A$-linear and possesses the following universal property: for every $B$-module $W$ and $A$-linear map $\varphi: V \rightarrow W$, there exists a unique $B$-linear homomorphism $\psi: B \otimes_{A} V \rightarrow W$ such that $\psi \circ \tau_{A}^{B}=\varphi$. In other words, for every $A$-module $V$ and $B$-module $W$, there exists the canonical isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{B}(\operatorname{ind} V, W) \xrightarrow{\sim} \operatorname{Hom}_{A}(V, \operatorname{res} W), \quad \psi \mapsto \psi \circ \tau_{A}^{B} \tag{6.25}
\end{equation*}
$$

Proof Let $\psi: B \otimes_{A} U \rightarrow V$ be a $B$-linear map. Then the composition

$$
\varphi=\psi \circ \tau_{A}^{B}: V \rightarrow W, \quad v \mapsto \psi\left(1 \otimes_{A} u\right)
$$

is $A$-linear, because $\varphi(a v)=\psi\left(1 \otimes_{A} a v\right)=\psi\left(a \otimes_{A} v\right)=a \psi\left(1 \otimes_{A} v\right)=a \varphi(v)$. Thus, the map (6.25) is well defined. For every $A$-linear map $\varphi: V \rightarrow W$, there exists at most one $B$-linear map $\psi: B \otimes_{A} V \rightarrow W$ such that $\varphi=\psi \circ \tau_{A}^{B}$, because it must act on the decomposable tensors by the rule $b \otimes v \mapsto b \varphi(v)$. Since $b \varphi(v)$ is bilinear in $b, v$, this rule actually assigns a well-defined map $B \otimes V \rightarrow W$, which
is obviously $B$-linear and annihilates all differences $b a \otimes v-b \otimes a v$, because $\varphi$ is $A$-linear and $b a \varphi(v)-b \varphi(a v)=0$. Hence, $\psi$ is factorized through the map $B \otimes_{A} V \rightarrow W$.

Exercise 6.9 Check that the universal property from Proposition 6.3 determines the $B$-module $B \otimes_{A} V$ and the $A$-linear map $\tau_{A}^{B}$ uniquely up to a unique isomorphism of $B$-modules commuting with $\tau_{A}^{B}$.
Exercise 6.10 Verify that both restriction and induction commute with direct sums.

### 6.3.2 Induced Representations of Groups

Let $B=\mathbb{k}[G], A=\mathbb{k}[H]$ be the group algebras of a finite group $G$ and subgroup $H \subset G$. Then every linear representation $\varrho: G \rightarrow \mathrm{GL}(W)$ can be restricted to the representation

$$
\left.\operatorname{res} \varrho \stackrel{\text { def }}{=} \varrho\right|_{H}: H \rightarrow \operatorname{GL}(W)
$$

of $H$, and this agrees with the restriction of $\mathbb{k}[G]$-modules to $\mathbb{k}[H]$-modules. Conversely, every linear representation $\lambda: H \rightarrow \mathrm{GL}(V)$ provides $G$ with the induced representation

$$
\begin{equation*}
\text { ind } \lambda: G \rightarrow \operatorname{GL}\left(\mathbb{k}[G] \otimes_{k[H]} V\right) \tag{6.26}
\end{equation*}
$$

such that $\operatorname{Hom}_{G}(\operatorname{ind} V, W) \simeq \operatorname{Hom}_{H}(V$, res $W)$. We write $\operatorname{res}_{H}^{G}$ and $\operatorname{ind}_{H}^{G}$ for the restriction and induction if the precise reference to $H \subset G$ is required. In terms of characters, restriction and induction assign the homomorphisms of the representation rings

$$
\operatorname{Rep}(H) \underset{\text { res }}{\stackrel{\text { ind }}{\rightleftarrows}} \operatorname{Rep}(G)
$$

which are adjoint to each other with respect to the scalar product of characters, ${ }^{12}$ i.e.,

$$
\left(\chi_{\mathrm{ind} V}, \chi_{W}\right)_{\mathbf{k}^{G}}=\left(\chi_{V}, \chi_{\mathrm{res} W}\right)_{\mathbf{k}^{H}},
$$

where the left- and right-hand-side scalar products are taken within the spaces of functions $G \rightarrow \mathbb{k}$ and $H \rightarrow \mathbb{k}$ respectively. It follows from this formula that for every two irreducible representations

$$
\mu: G \rightarrow \operatorname{GL}\left(U_{\mu}\right) \quad \text { and } \quad v: H \rightarrow \operatorname{GL}\left(U_{\nu}\right),
$$

[^70]the multiplicity of $\mu$ in the representation induced by $v$ equals the multiplicity of $v$ in the restricted representation $\mu$,
\[

$$
\begin{equation*}
m_{\mu}(\text { ind } v)=m_{v}(\operatorname{res} \mu) . \tag{6.27}
\end{equation*}
$$

\]

This equality is known as Frobenius reciprocity.
Proposition 6.4 (Transitivity of Induction) For every tower of subgroups $K \subset H \subset G$ and every linear representation $\varrho: K \rightarrow \mathrm{GL}(U)$, there is the canonical isomorphism of $G$-modules $\operatorname{ind}_{H}^{G} \operatorname{ind}_{K}^{H} U \xrightarrow{\rightarrow} \operatorname{ind}_{H}^{G} U$.

Proof Since for every $G$-module $W$ there are the canonical isomorphisms

\[

\]

the map $\tau_{K}^{H} \circ \tau_{H}^{G}: U \rightarrow \operatorname{ind}_{H}^{G} \operatorname{ind}_{K}^{H} U$ possesses the universal property from Proposition 6.3. By Exercise 6.9, there exists a unique isomorphism

$$
\operatorname{ind}_{H}^{G} \operatorname{ind}_{K}^{H} U \leadsto \operatorname{ind}_{H}^{G} U
$$

whose composition with $\tau_{K}^{H} \circ \tau_{H}^{G}$ is the universal map $\tau_{K}^{G}: U \rightarrow \operatorname{ind}_{K}^{G} U$.

### 6.3.3 The Structure of Induced Representations

The tensor product of vector spaces

$$
\mathbb{k}[G] \otimes V=\bigoplus_{g \in G}(\mathbb{k} \cdot g) \otimes V
$$

is a direct sum of $|G|$ copies of the vector space $V$ indexed by the elements $g \in G$. Factorization by the relations $(g h) \otimes v=g \otimes(v u)$ identifies all the direct summands whose indices belong to the same coset $g H$ by gluing together the elements $g h \otimes v$ and $g \otimes h v$. Hence, as a vector space over $\mathbb{k}$, the tensor product $\mathbb{k}[G] \otimes_{k[H]} V$ is a direct sum of $r=[G: H]$ copies of $V$ indexed by some fixed representatives $g_{1}, g_{2}, \ldots, g_{r}$ of all the left cosets of the subgroup $H$ in $G$,

$$
\begin{equation*}
\mathbb{k}[G] \underset{\mathbb{k}[H]}{\oplus} V \simeq g_{1} V \oplus g_{2} V \oplus g_{3} V \oplus \cdots \oplus g_{r} V \tag{6.28}
\end{equation*}
$$

Every summand $g_{\nu} V$ in this sum is a copy of $V$, and the element $g_{v}$ tells that this copy corresponds to the left coset $g_{v} H$. For a vector $v \in V$, we write $g_{v} v$ for the copy of $v$ belonging to the summand $g_{\nu} V$. Every vector $w \in \mathbb{k}[G] \otimes_{k[H]} V$ has a
unique expansion of the form

$$
w=\sum_{v=1}^{r} g_{\nu} v_{v}, \text { where } v_{v} \in V
$$

An element $g \in G$ acts on the sum (6.28) as follows. For every $v=1,2, \ldots, r$, there exist unique $h=h(g, v) \in H$ and $\mu=\mu(g, v) \in\{1,2, \ldots, r\}$ such that $g g_{\nu}=g_{\mu} h$. Then for every $\nu$, the element $g$ maps the summand $g_{\nu} V$ isomorphically onto the summand $g_{\mu} V$ by the rule $g: g_{\nu} v \mapsto g_{\mu} h v$ for all $v \in V$, where $h v \in V$ means the action of the automorphism $h=h(g, v) \in H$ on the vector $v \in V$ provided by the initial representation $H \rightarrow \operatorname{GL}(V)$.

Example 6.4 Let $G=S_{3}$, and let $H \subset S_{3}$ be the subgroup of order 2 generated by the transposition $\sigma=|12\rangle$. Then the elements of $G / H$ can be represented by $e, \tau, \tau^{2}$, where $\tau=|123\rangle$ is a 3-cycle. The representation $W=$ ind $\mathbb{1}$ induced by the trivial $H$-module of dimension one has dimension 3 and basis $e, \tau, \tau^{2}$. The generators $\sigma, \tau \in S_{3}$ are represented by the linear operators with matrices

$$
\sigma=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

in this basis. Therefore, $W$ is isomorphic to the tautological $S_{3}$-module, which is the direct sum of trivial and triangular irreducible representations of $S_{3}$. The representation $W^{\prime}=$ ind sgn induced by the 1 -dimensional sign representation of $H$ has the same basis $e, \tau, \tau^{2}$, but now $\sigma, \tau$ are represented by the linear operators with matrices

$$
\sigma=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

This representation is a direct sum of the sign representation in the linear span of the vector $e+\tau+\tau^{2}$ and the triangle representation in the orthogonal 2-plane. The representation of $S_{3}$ induced by the 2-dimensional regular representation of $H$ in $\mathbb{k}[H] \simeq \mathbb{k}[\sigma] /\left(\sigma^{2}-1\right)$ is the 6 -dimensional regular representation of $S_{3}$ in $\mathbb{k}\left[S_{3}\right]=e \cdot \mathbb{k}[H] \oplus \tau \cdot \mathbb{k}[H] \oplus \tau^{2} \cdot \mathbb{k}[H]$.

Exercise 6.11 Verify that the regular representation of a subgroup always induces the regular representation of the ambient group.

Proposition 6.5 If a group $G$ has an abelian subgroup $H \subset G$, then every simple $G$-module has dimension at most ${ }^{13}[G: H]$.

Proof Let $U$ be an irreducible representation of $G$, and $L \subset \operatorname{res} U$ an $H$-submodule of dimension 1. By Frobenius reciprocity, $U$ has positive multiplicity in ind $L$. Hence, $\operatorname{dim} U \leqslant \operatorname{dim} \operatorname{ind} L=[G: H]$.

Proposition 6.6 Assume that the intersection of a conjugacy class $C \subset G$ with a subgroup $H \subset G$ splits into $m$ distinct classes with respect to conjugation by the elements of $H$ :

$$
C \cap H=D_{1} \sqcup D_{2} \sqcup \cdots \sqcup D_{m} .
$$

Then for every representation $H \rightarrow \mathrm{GL}(V)$, the character of the induced representation of $G$ takes on the class $C$, the value

$$
\chi_{\mathrm{ind} V}(C)=[G: H] \cdot \sum_{i=1}^{m} \chi_{V}\left(D_{i}\right) \cdot \frac{\left|D_{i}\right|}{|C|} .
$$

In particular, for the trivial 1-dimensional representation $\mathbb{1}$ of $H$,

$$
\begin{equation*}
\chi_{\mathrm{ind} \mathbb{1}}(C)=[G: H] \cdot \frac{|C \cap H|}{|C|} . \tag{6.29}
\end{equation*}
$$

Proof For every $g \in C$, the summands $g_{\nu} V$ in the decomposition (6.28) are permuted under the action of $g$, and a nonzero contribution to the value $\chi_{\text {ind } V}(g)$ is made only by those summands $g_{\nu} V$ that are mapped to itself by $g$. The inclusion $g\left(g_{\nu} V\right) \subset g_{\nu} V$ means that $g g_{v}=g_{\nu} h$ for some $h=g_{v}^{-1} g g_{\nu} \in H$. In this case, $g$ acts on $g_{\nu} V$ by the linear operator representing $h$ in GL( $V$ ) whose trace equals $\chi_{V}(h)=\chi_{V}\left(g_{v}^{-1} g g_{v}\right)$. Therefore,

$$
\chi_{\text {ind } V}(g)=\sum_{\substack{v: \\ g_{v}^{-1} g g_{v} \in H}} \chi_{V}\left(g_{v}^{-1} g g_{v}\right)=\frac{1}{|H|} \sum_{\substack{s \in G: \\ s^{-1} g s \in H}} \chi_{V}\left(s^{-1} g s\right)=\frac{1}{|H|} \sum_{i=1}^{m} \sum_{\substack{s \in G: \\ s^{-1} g s \in D_{i}}} \chi_{V}\left(D_{i}\right) .
$$

(In the second equality, we replace every summand by $|H|$ coinciding summands obtained by writing arbitrary elements $s \in g_{v} H$ instead of $g_{v}$. In the third equality, we collect all the summands with $s^{-1} g s$ lying in the same class $D_{i}$.) By the orbit length formula, ${ }^{14}$ every product $s^{-1} g s \in D_{i}$ is obtained from $|G| /|C|$ distinct

[^71]elements $s \in G$, and altogether, there are $\left|D_{i}\right|$ such distinct products. Therefore,
$$
\chi_{\text {ind } V}(g)=\frac{1}{|H|} \sum_{i=1}^{m} \chi_{V}\left(D_{i}\right) \cdot\left|D_{i}\right| \cdot|G| /|C|,
$$
as required.
Exercise 6.12 (Projection Formula) For every $G$-module $W$ and $H$-module $V$, construct the canonical isomorphism of $G$-modules ind $(($ res $W) \otimes V) \simeq W \otimes$ ind $V$, where both tensor products mean the tensor products of the group representations. ${ }^{15}$

### 6.3.4 Coinduced Representations

In the representation theory of associative $\mathbb{k}_{k}$-algebras, besides the induced module $B \otimes_{A} V$, there is another $B$-module naturally associated with a representation of a subalgebra $A \subset B$ in a vector space $V$, namely, the coinduced module

$$
\begin{equation*}
\text { coind } V \stackrel{\text { def }}{=} \operatorname{Hom}_{A}(B, V) . \tag{6.30}
\end{equation*}
$$

The algebra $B$ acts on $\operatorname{Hom}_{A}(B, V)$ from the left by means of the right regular action on itself, that is, given a map $\psi: B \rightarrow V$, the map $b \psi: B \rightarrow V$ is defined by $b \psi(x) \stackrel{\text { def }}{=} \psi(x b)$ for all $x \in B$.
Exercise 6.13 Check that $b \psi$ is $A$-linear for $A$-linear $\psi$, and that

$$
\left(b_{1} b_{2}\right) \psi=b_{1}\left(b_{2} \psi\right)
$$

The coinduced module has the universal property dual to that from Proposition 6.3. Namely, there exists the canonical $A$-linear map

$$
\tau_{B}^{A}: \operatorname{Hom}_{A}(B, V) \rightarrow V, \quad \varphi \mapsto \varphi(1),
$$

and for every $B$-module $W$ and $A$-linear map $\varphi: W \rightarrow V$, there exists a unique homomorphism of $B$-modules $\psi: W \rightarrow \operatorname{Hom}_{A}(B, V)$ such that $\tau_{B}^{A} \circ \psi=\varphi$. Equivalently, for every $A$-module $V$ and $B$-module $W$, an isomorphism of vector spaces

\[

\]

[^72]is given by sending a $B$-linear map $\psi: W \rightarrow \operatorname{Hom}_{A}(B, V), w \mapsto \psi_{w}$, to the $A$-linear map $\tau_{B}^{A} \circ \psi: W \rightarrow V, \quad w \mapsto \psi_{w}(1)$. The inverse isomorphism takes an $A$-linear map $\varphi: W \rightarrow V$ to the $B$-linear map
$$
\psi: W \rightarrow \operatorname{Hom}_{A}(B, V), \quad w \mapsto \psi_{w},
$$
where $\psi_{w}: B \rightarrow V, \quad b \mapsto \varphi(b w)$.
Exercise 6.14 Verify that both maps are well defined and inverse to each other.
When $A=\mathbb{k}[H], B=\mathbb{k}[G]$ are the group algebras of a finite group $G$ and a subgroup $H \subset G$, the Fourier transform ${ }^{16}$ leads to the isomorphism of vector spaces
\[

$$
\begin{equation*}
\Phi \otimes \operatorname{Id}_{V}: \operatorname{Hom}(\mathbb{k}[G], V) \xrightarrow{\sim} \mathbb{k}[G] \otimes V, \tag{6.32}
\end{equation*}
$$

\]

mapping a rank-one operator $\xi \otimes v \in \mathbb{k}[G]^{*} \otimes V$ to the tensor

$$
\widehat{\xi} \otimes v=\frac{1}{|G|} \sum_{g \in G} \xi\left(g^{-1}\right) \cdot g \otimes v=\frac{1}{|G|} \sum_{h \in G} h^{-1} \otimes(\xi(h) \cdot v)
$$

where in the second equality we change the summation index by $h=g^{-1}$. Since $\xi(h) \cdot v$ is nothing but the value of the operator $\xi \otimes v: \mathbb{k}[G] \rightarrow V$ at $h \in \mathbb{k}[G]$, the transformation (6.32) sends an arbitrary linear map $\varphi: \mathbb{k}[G] \rightarrow V$ to the tensor

$$
\widehat{\varphi} \stackrel{\text { def }}{=} \frac{1}{|G|} \sum_{g \in G} g^{-1} \otimes \varphi(g)
$$

called the Fourier transform of the operator $\varphi$. The Fourier transform is $G$-linear, because for every $s \in G$,

$$
\begin{aligned}
\widehat{s \varphi} & =\frac{1}{|G|} \sum_{g \in G} g^{-1} \otimes s \varphi(g)=\frac{1}{|G|} \sum_{g \in G} g^{-1} \otimes \varphi(g s) \\
& =\frac{1}{|G|} \sum_{g \in G} s g^{-1} \otimes \varphi(g)=s \widehat{\varphi} .
\end{aligned}
$$

The Fourier transform (6.32) followed by the quotient map

$$
\mathbb{k}[G] \otimes V \rightarrow \mathbb{k}[G] \otimes_{\mathbb{k}[H]} V
$$

establishes a $G$-linear isomorphism between the subspace

$$
\operatorname{Hom}_{H}(\mathbb{k}[G], V) \subset \operatorname{Hom}(\mathbb{k}[G], V)
$$

and $\mathbb{k}[G] \otimes_{\mathbb{k}[H]} V$.

[^73]
## Exercise 6.15 Verify the last statement.

Thus, the induced and coinduced representations of a finite group are canonically isomorphic by means of the Fourier transform.
Exercise 6.16 Convince yourself that everything said in this section makes sense and remains true for finite-dimensional representations of every (not necessarily finite) group $G$ and subgroup $H \subset G$ such that $[G: H]<\infty$.

## Problems for Independent Solution to Chapter 6

Problem 6.1 Let $U, U^{\prime}$, and $V$ be the trivial, sign, and simplicial representations of $S_{5}$ respectively. Use the isomorphism ${ }^{17} \mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right) \xrightarrow{\sim} S_{5}$ to construct a representation of $S_{5}$ in the space $W$ of all functions $\mathbb{P}_{1}\left(\mathbb{F}_{5}\right) \rightarrow \mathbb{C}$ with a zero sum of values. Compute the characters of the representations $U, U^{\prime}, V, V \otimes U^{\prime}, \Lambda^{2} V$, $S^{2} V, W, W \otimes U^{\prime}, W \otimes V, S^{2} W$, and $\Lambda^{2} W$. Indicate which of these representations are irreducible.
Problem 6.2 Describe the isotypic decompositions of the restrictions of all irreducible representations of $S_{4}$ on the subgroups (a) $S_{3}=\operatorname{Stab}_{S_{4}}(4)$, (b) $A_{4}$.
Problem 6.3 The same question for the restrictions of simple $S_{5}$-modules to the subgroups (a) $S_{4}=\operatorname{Stab}_{S_{5}}$ (5), (b) $A_{5}$.
Problem 6.4 Let $G$ be a finite group, and $\varrho: \mathbb{C}[G] \rightarrow \mathrm{GL}(V)$ an injective complex representation of dimension $\operatorname{dim} V \geqslant 2$. Prove that the character $\chi_{\varrho}$ takes the value $\operatorname{dim} V$ on exactly one conjugacy class of $G$.
Problem 6.5 Let the character of an irreducible complex representation $V$ of a finite group take a nonzero value on a conjugacy class $K$ such that $|K|$ and $\operatorname{dim} V$ are coprime. Prove that all elements of $K$ act on $V$ by scalar homotheties.
Problem 6.6 Describe the isotypic decomposition of the complex representation of $S_{4}$ induced by (a) the 1-dimensional representation of a 4 -cycle by multiplication by $i \in \mathbb{C}$, (b) the 1-dimensional representation of a 3-cycle by multiplication by $e^{2 \pi i / 3} \in \mathbb{C}$, (c) the triangular representation of $S_{3}=\operatorname{Stab}_{S_{4}}(4) \subset S_{4}$.
Problem 6.7 Describe the isotypic decomposition of the complex representation of $S_{5}$ induced by (a) the 1 -dimensional representation of a 5 -cycle by multiplication by $e^{2 \pi i / 5} \in \mathbb{C}$, (b) both 3-dimensional representations of $A_{5} \subset S_{5}$ by the rotations of the dodecahedron. ${ }^{18}$

[^74]Problem 6.8 Write $R(G) \subset \mathbb{C}^{G}$ for the representation ring ${ }^{19}$ of a finite group $G$. Establish an isomorphism of additive abelian groups

$$
R\left(G_{1} \times G_{2}\right) \simeq R\left(G_{1}\right) \otimes R\left(G_{2}\right)
$$

Problem 6.9 Are the representation rings $R\left(Q_{8}\right)$ and $R\left(D_{4}\right)$ isomorphic? ${ }^{20}$
Problem 6.10 (Affine Group of a Line) Write $A$ for the group of affine automorphisms $x \mapsto a x+b$ of the line $\mathbb{A}^{1}=\mathbb{A}\left(\mathbb{F}_{p}\right)$ over the field $\mathbb{F}_{p}=\mathbb{Z} /(p)$.
(a) Show that $A=\mathbb{F}_{p} \rtimes \mathbb{F}_{p}^{*}$, where $\mathbb{F}_{p} \subset A$ is the additive group of parallel displacements, and is $\mathbb{F}_{p}^{*} \subset A$ the multiplicative group of dilatations with respect to the origin $0 \in \mathbb{A}^{1}$. Enumerate the conjugacy classes of $A$.
(b) Calculate the character of the representation of $A$ in the space $V$ of functions $\mathbb{A}^{1} \rightarrow \mathbb{C}$ with zero sum of values, and show that $V$ is irreducible.
(c) Check that the previous representation $V$ is induced by the 1-dimensional representation $\mathbb{F}_{p} \rightarrow \mathrm{U}(1), t \mapsto e^{2 \pi i t / p}$, of the subgroup of parallel displacements.
(d) Prove that all the other irreducible representations of $A$ have dimension one.

Problem 6.11 (The Heisenberg Group Over $\mathbb{F}_{p}$ for $p>2$ ) Let $L$ be a vector space of dimension $n$ over the residue field $\mathbb{F}_{p}=\mathbb{Z} /(p)$ with $p>2$. The Heisenberg group $H_{p}^{n}$ consists of all triples $\left(x, u, u^{*}\right) \in \mathbb{F}_{p} \times L \times L^{*}$ with the composition law

$$
\begin{aligned}
& \left(x_{1}, u_{1}, u_{1}^{*}\right) \circ\left(x_{2}, u_{2}, u_{2}^{*}\right) \\
& \quad \stackrel{\text { def }}{=}\left(x_{1}+x_{2}+\left(\left\langle u_{2}^{*}, u_{1}\right\rangle-\left\langle u_{1}^{*}, u_{2}\right\rangle\right) / 2, u_{1}+u_{2}, u_{1}^{*}+u_{2}^{*}\right) .
\end{aligned}
$$

Write $H^{\prime} \simeq \mathbb{F}_{p} \times L \subset H_{p}^{n}$ for the subgroup formed by all triples $(x, u, 0)$.
(a) Show that $H_{p}^{n}$ actually is a group, and enumerate the conjugacy classes of $H_{p}^{n}$.
(b) Check that $H_{p}^{1}$ is isomorphic to the group of upper unitriangular $3 \times 3$ matrices over $\mathbb{F}_{p}$.
(c) For $a \in \mathbb{F}_{p}^{*}$, write $W_{a}$ for the representation of $H_{p}^{n}$ induced by the 1-dimensional $H^{\prime}$-module with the character $\psi_{a}(x, u, 0)=e^{2 \pi i a x / p}$. Show that all $W_{a}$ are irreducible, and calculate their characters.
(d) Verify that all the representations $W_{a}$ are nonisomorphic, and all the other irreducible representations of $H_{p}^{n}$ have dimension one.

Problem 6.12 (The Heisenberg Group Over $\mathbb{F}_{2}$ ) Write $H$ for the group generated by $4 n+4$ elements $\pm 1, \pm u_{1}, \ldots, \pm u_{2 n+1}$ constrained by the relations

$$
u_{i}^{2}=-1, \quad u_{i} u_{j}=-u_{j} u_{i},
$$

[^75]and "a minus times a minus is equal to a plus." Verify that $H$ consists of $2^{2 n+2}$ distinct elements $\pm u_{I}= \pm u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}}$, where $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ runs through the increasing subsets in $\{1,2, \ldots,(n+1)\}$ and $u_{\varnothing}=1$. Check that elements $\pm u_{I}$ labeled by all the $I$ 's of even cardinality form a subgroup ${ }^{21} H_{2}^{n} \subset H$, and $H_{2}^{1} \simeq Q_{8}$ is the group of quaternionic units. Describe the center $Z\left(H_{2}^{n}\right)$. Enumerate the conjugacy classes and all complex irreducible representations of $H_{2}^{n}$.
Problem 6.13* Let $\varrho: G \rightarrow \mathrm{GL}(V)$ be an effective ${ }^{22}$ representation of a finite group $G$. Prove that every irreducible representation of $G$ appears with nonzero multiplicity in the isotypic decomposition of some tensor power $V^{\otimes m}$.

[^76]
## Chapter 7 <br> Representations of Symmetric Groups

### 7.1 Action of $\boldsymbol{S}_{\boldsymbol{n}}$ on Filled Young Diagrams

### 7.1.1 Row and Column Subgroups Associated with a Filling

A Young diagram $\lambda$ of weight $|\lambda|=n$ filled by nonrepeating numbers $1,2, \ldots, n$ is called a standard filling of shape $\lambda$. Given a filling $T$, we write $\lambda(T)$ for its shape. Associated with every standard filling $T$ of shape $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right), \sum \lambda_{i}=n$, are the row subgroup $R_{T} \subset S_{n}$ and the column subgroup $C_{T} \subset S_{n}$ permuting the elements $1,2, \ldots, n$ only within the rows and within the columns of $T$ respectively. Thus, $R_{T} \simeq S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots \times S_{\lambda_{k}}$ and $C_{T} \simeq S_{\lambda_{1}^{t}} \times S_{\lambda_{2}^{t}} \times \cdots \times S_{\lambda_{m}^{t}}$, where $\lambda^{t}=\left(\lambda_{1}^{t}, \lambda_{2}^{t}, \ldots, \lambda_{m}^{t}\right)$ is the transposed Young diagram. For example, the standard filling

$$
T=\begin{array}{c|c|c|c}
7 & 1 & 3 & 3 \\
\hline 2 & 4.8 \\
\hline 6
\end{array}
$$

picks out the following row and column subgroups in $S_{8}=\operatorname{Aut}(\{1,2, \ldots, 8\})$ :

$$
\begin{aligned}
& R_{T}=\operatorname{Aut}(\{1,3,5,7\}) \times \operatorname{Aut}(\{2,4,8\}) \times \operatorname{Aut}(\{6\}) \simeq S_{4} \times S_{3}, \\
& C_{T}=\operatorname{Aut}(\{2,6,7\}) \times \operatorname{Aut}(\{1,4\}) \times \operatorname{Aut}(\{3,8\}) \times \operatorname{Aut}(\{5\}) \simeq S_{3} \times S_{2} \times S_{2} .
\end{aligned}
$$

Exercise 7.1 Convince yourself that $S_{n}$ acts transitively by the permutations of filling numbers on the set of all standard fillings of shape $\lambda$, and $R_{g T}=g R_{T} g^{-1}$, $C_{g T}=g C_{T} g^{-1}$ for every $g \in S_{n}$ and standard filling $T$.

Recall that we say that a Young diagram $\lambda$ dominates ${ }^{1}$ a Young diagram $\mu$, and write $\lambda \unrhd \mu$, if $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k} \geqslant \mu_{1}+\mu_{2}+\cdots+\mu_{k}$ for all $k \in \mathbb{N}$. Also, we write $\lambda>\mu$ for the total lexicographic order ${ }^{2}$ on the set of all Young diagrams. Note that $\mu$ cannot dominate $\lambda$ if $\lambda>\mu$.

Lemma 7.1 Let $U, T$ be standard fillings of shapes $\mu, \lambda$ with the same weight $|\lambda|=|\mu|$. If $\mu$ does not strictly dominate $\lambda$, then either there are two numbers in the same row of $T$ and in the same column of $U$, or $\lambda=\mu$ and $p T=q U$ for some $p \in R_{T}, q \in C_{U}$.

Proof Suppose that the elements of every row in $T$ are in different columns of $U$. Since the elements from the top row of $T$ are distributed among different columns of $U$, the inequality $\lambda_{1} \leqslant \mu_{1}$ holds, and there exists $q_{1} \in C_{U}$ moving all the elements from the top row of $T$ to the top row of $q_{1} U$. Since the elements from the second row of $T$ are still distributed among different columns of $q_{1} U$, there exists $q_{2} \in C_{q_{1} U}=C_{U}$ that leaves all the elements from the first row of $T$ fixed and moves all the elements from the second row of $T$ to the top two rows of $q_{2} q_{1} U$. Here we have the inequality $\lambda_{1}+\lambda_{2} \leqslant \mu_{1}+\mu_{2}$. Repeating this argument, we get a sequence of permutations $q_{1}, q_{2}, \ldots, q_{k} \in C_{U}$, where $k$ is the number or rows in the diagram $\lambda$, such that every $q_{i}$ leaves fixed all the elements lying simultaneously within the top $i$ rows of $T$ and $i-1$ rows of $q_{i-1} \cdots q_{1} U$, and lifts all the remaining elements from the $i$ th row of $T$ to the top $i$ rows of $q_{i} q_{i-1} \cdots q_{1} U$. In particular, $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \leqslant \mu_{1}+\mu_{2}+\cdots+\mu_{i}$ for all $i$. By the assumption of the lemma, $\lambda \unlhd \mu$ forces $\lambda=\mu$, and therefore, each $q_{i}$ sends the elements from the $i$ th row of $T$ to the $i$ th row of $q_{i} q_{i-1} \cdots q_{1} U$. Thus, $q_{k} \cdots q_{1} U=p T$ with $p \in R_{T}$.

Corollary 7.1 A permutation $g \in S_{n}$ is factorized as $g=p q$ with $p \in R_{T}, q \in C_{T}$ if and only if the elements of every row in $T$ appear in different columns of $g T$. Such a factorization is unique if it exists.

Proof If $U=p q T$, where $p \in R_{T}, q \in C_{T}$, then all elements of every row in $T$ are in different columns of $U$, because $q$ shifts these elements along the columns and $p$ permutes the resulting set of shifted elements within itself. Conversely, if every row of $T$ is distributed between different columns of $U=g T$, then by Lemma 7.1, there exist $p \in R_{T}$ and $q \in C_{U}$ such that $p T=q U=q g T$. Hence, $p=q g$. Since $q \in C_{g T}=g C_{T} g^{-1}$ can be written as $g q_{1} g^{-1}$ with $q_{1} \in C_{T}$, we conclude that $g=p q_{1}^{-1}$, as required. The factorization $g=p q$ is unique, because of $R_{T} \cap C_{T}=\{e\}$.

[^77]
### 7.1.2 Young Symmetrizers $s_{T}=r_{T} \cdot c_{T}$

Given a standard filling $T$ of shape $\lambda$ with $|\lambda|=n$, the elements

$$
\begin{align*}
& r_{T}=\sum_{\sigma \in R_{T}} \sigma, \quad c_{T}=\sum_{\sigma \in C_{T}} \operatorname{sgn}(\sigma) \cdot \sigma,  \tag{7.1}\\
& s_{T}=r_{T} \cdot c_{T}=\sum_{p \in R_{T}} \sum_{q \in C_{T}} \operatorname{sgn}(q) \cdot p q \tag{7.2}
\end{align*}
$$

of the group algebra $\mathbb{C}\left[S_{n}\right]$ are called, respectively, the row, column, and total Young symmetrizers. They have the following obvious properties:

$$
\begin{align*}
& \forall g \in S_{n}, \quad r_{g T}=g r_{T} g^{-1}, \quad c_{g T}=g c_{T} g^{-1}, \quad s_{g T}=g s_{T} g^{-1},  \tag{7.3}\\
& \forall p \in R_{T}, p r_{T}=r_{T} p=r_{T} \quad \text { and } \quad \forall q \in C_{T}, q c_{T}=c_{T} q=\operatorname{sgn}(q) \cdot c_{T},  \tag{7.4}\\
& \forall p \in R_{T}, \quad \forall q \in C_{T}, p s_{T} q=\operatorname{sgn}(q) \cdot s_{T} . \tag{7.5}
\end{align*}
$$

Moreover, the total Young symmetrizer $s_{T} \in \mathbb{C}\left[S_{n}\right]$ is uniquely determined up to proportionality by the property (7.5), because of the following claim.

Lemma 7.2 The vector space

$$
E_{T} \stackrel{\text { def }}{=}\left\{\sigma \in \mathbb{C}\left[S_{n}\right] \mid \forall p \in R_{T}, \forall q \in C_{T}, p \sigma q=\operatorname{sgn}(q) \cdot \sigma\right\}
$$

has dimension 1 and is spanned by the Young symmetrizer $s_{T}$.
Proof Let us show that every element $\sigma=\sum_{g \in S_{n}} x_{g} g \in E_{T}$ is equal to $x_{e} \cdot s_{T}$. The equality $p \sigma q=\operatorname{sgn}(q) \cdot \sigma$ means that $x_{p g q}=\operatorname{sgn}(q) \cdot x_{g}$ for all $g \in S_{n}$. In particular, for $g=e$, we get $x_{p q}=\operatorname{sgn}(q) \cdot x_{e}$, and therefore $\sigma=x_{e} \cdot s_{T}+\sum_{g \notin R_{T} C_{T}} x_{g} g$. It remains to verify that every coefficient $x_{g}$ in the latter sum is zero. By Corollary 7.1, for every $g \notin R_{T} C_{T}$, there are two elements of the alphabet $\{1,2, \ldots, n\}$ situated in the same row of $T$ and the same column of $U=g T$. The transposition $\tau \in S_{n}$ of these elements belongs to both subgroups $R_{T}$ and $C_{U}=g C_{T} g^{-1}$, the latter of which means that $g^{-1} \tau g \in C_{T}$. The equality $x_{p g q}=\operatorname{sgn}(q) \cdot x_{g}$ written for $p=\tau$, $q=g^{-1} \tau g$ becomes $x_{g}=-x_{g}$. Hence, $x_{g}=0$.
Lemma 7.3 For every filling $T$, the equalities $s_{T} \cdot \mathbb{C}\left[S_{n}\right] \cdot s_{T}=\mathbb{C} \cdot s_{T}$ and $s_{T}^{2}=n_{\lambda} \cdot s_{T}$ hold, where

$$
n_{\lambda}=\frac{n!}{\operatorname{dim}\left(\mathbb{C}\left[S_{n}\right] \cdot s_{T}\right)}
$$

is a positive rational number depending only on the shape $\lambda$ of the filling $T$.
Proof It follows from (7.4) and (7.5) that for every $x \in \mathbb{C}\left[S_{n}\right]$, the element $s_{T} \cdot x \cdot s_{T}$ possesses the property (7.5) and therefore lies in the dimension-one subspace
$E_{T}=\mathbb{C} \cdot s_{T}$ from Lemma 7.2. In particular, $s_{T}^{2}=n_{T} \cdot s_{T}$ for some $n_{T} \in \mathbb{C}$, which can be evaluated by computing the trace of the endomorphism

$$
\varphi: \mathbb{C}\left[S_{n}\right] \rightarrow \mathbb{C}\left[S_{n}\right], \quad x \mapsto x \cdot s_{T},
$$

in two different ways, as follows. Formula (7.2) implies that the coefficient of $g$ in the expansion of the product $g \cdot s_{T}$ equals 1 for all $g \in S_{n}$. Hence,

$$
\operatorname{tr}(\varphi)=\left|S_{n}\right|=n!.
$$

On the other hand, the left regular $S_{n}$-module $\mathbb{C}\left[S_{n}\right]$ is completely reducible, and there exists an $S_{n}$-submodule $W \subset \mathbb{C}\left[S_{n}\right]$ such that $\mathbb{C}\left[S_{n}\right]=W \oplus \mathbb{C}\left[S_{n}\right] \cdot s_{T}$. Right multiplication by $s_{T}$ maps $W$ to $\mathbb{C}\left[S_{n}\right] \cdot s_{T}$ and acts on $\mathbb{C}\left[S_{n}\right] \cdot s_{T}$ as scalar multiplication by $n_{T}$. Thus, $\operatorname{tr}(\varphi)=n_{T} \cdot \operatorname{dim}\left(\mathbb{C}\left[S_{n}\right] \cdot s_{T}\right)$. This forces $n_{T}=n!/ \operatorname{dim}\left(\mathbb{C}\left[S_{n}\right] \cdot s_{T}\right)$ to be positive and rational. Since $s_{g T}=g s_{T} g^{-1}$, and therefore

$$
s_{g T}^{2}=g s_{T}^{2} g^{-1}=n_{T} g s_{T} g^{-1}=n_{T} s_{g T},
$$

the number $n_{T}=n_{\lambda(T)}$ depends only on the shape $\lambda=\lambda(T)$ of the filling $T$.
Lemma 7.4 If the shape of a filling $T$ is lexicographically bigger than the shape of a filling $U$, then

$$
r_{T} \cdot \mathbb{C}\left[S_{n}\right] \cdot c_{U}=c_{U} \cdot \mathbb{C}\left[S_{n}\right] \cdot r_{T}=s_{T} \cdot \mathbb{C}\left[S_{n}\right] \cdot s_{U}=0 .
$$

Proof It is enough to check that $r_{T} \cdot g \cdot c_{U}=c_{U} \cdot g \cdot r_{T}=0$ for all $g \in S_{n}$. To begin with, let $g=e$. Then by Lemma 7.1, there are two elements lying in the same row of $T$ and column of $U$. The transposition $\tau$ of these elements belongs to $R_{T} \cap C_{U}$. Hence,

$$
r_{T} \cdot c_{U}=\left(r_{T} \cdot \tau\right) \cdot c_{U}=r_{T} \cdot\left(\tau \cdot c_{U}\right)=-r_{T} \cdot c_{U}
$$

and

$$
c_{U} \cdot r_{T}=-\left(c_{U} \cdot \tau\right) \cdot r_{T}=-c_{U} \cdot\left(\tau \cdot r_{T}\right)=-c_{U} \cdot r_{T} .
$$

This forces $r_{T} \cdot c_{U}=c_{U} \cdot r_{T}=0$. Now, for every $g \in S_{n}$, we have

$$
r_{T} \cdot g \cdot c_{U}=r_{T} \cdot g c_{U} g^{-1} \cdot g=\left(r_{T} \cdot c_{g U}\right) \cdot g=0
$$

and

$$
c_{U} \cdot g \cdot r_{T}=c_{U} \cdot g r_{T} g^{-1} \cdot g=\left(c_{U} \cdot r_{g T}\right) \cdot g=0 .
$$

Theorem 7.1 For every standard filling $T$, the representation of $S_{n}$ by left multiplication in the left ideal

$$
V_{T} \stackrel{\text { def }}{=} \mathbb{C}\left[S_{n}\right] \cdot s_{T} \subset \mathbb{C}\left[S_{n}\right]
$$

is irreducible. Two such representations $V_{T}, V_{U}$ are isomorphic if and only if the fillings $T, U$ have the same shape, $\lambda=\lambda(T)=\lambda(U)$. Every simple $S_{n}$-module is isomorphic to some $V_{T}$ with $|\lambda(T)|=n$.

Proof Let $W \subset V_{T}$ be an $S_{n}$-submodule. Write $\pi: \mathbb{C}\left[S_{n}\right] \rightarrow W$ for an $S_{n}$-linear projection, and let $w=\pi(1) \in W$. Then $\pi(x)=\pi(x \cdot 1)=x \cdot \pi(1)=x \cdot w$ for all $x \in \mathbb{C}\left[S_{n}\right]$. This forces $W=\mathbb{C}\left[S_{n}\right] \cdot w$ and $w \cdot w=\pi(w)=w$. Since

$$
s_{T} \cdot W \subset s_{T} \cdot V_{T}=s_{T} \cdot \mathbb{C}\left[S_{n}\right] \cdot s_{T}=\mathbb{C} \cdot s_{T},
$$

the image of the map $s_{T}: W \rightarrow W, x \mapsto s_{T} x$, is either 0 or $E_{T}=\mathbb{C} \cdot s_{T}$. In the first case, $W \cdot W \subset V_{T} \cdot W=\mathbb{C}\left[S_{n}\right] \cdot s_{T} \cdot W=0$. Hence, $w=w \cdot w=0$ and $W=0$. In the second case, $s_{T} \in s_{T} \cdot W \subset W$. Hence, $V_{T}=\mathbb{C}\left[S_{n}\right] \cdot s_{T} \subset W$ and $W=V_{T}$. We conclude that $V_{T}$ is a simple $S_{n}$-module.

Let two fillings $T, U$ have different shapes, say $\lambda(T)>\lambda(S)$ lexicographically. By Lemma 7.4 on p. 154, left multiplication by $s_{T}$ annihilates the $S_{n}$-module $V_{U}$ and acts nontrivially on $V_{T}$, because $s_{T} \in V_{T}$ is an eigenvector of $s_{T}$ with the nonzero eigenvalue $n_{\lambda(T)}$. Therefore, the representations $V_{T}$ and $V_{U}$ are not isomorphic.

Let us fix some filling $T_{\lambda}$ for every Young diagram $\lambda$ of weight $n$. Then all the irreducible representations $V_{T_{\lambda}}$ are distinct and are in bijection with the conjugacy classes of $S_{n}$. Therefore, every irreducible $S_{n}$-module is isomorphic to one and only one module $V_{T_{\lambda}}$. In particular, for every filling $S$ of a given shape $\lambda$, the irreducible $S_{n}$-module $V_{S}$ is isomorphic to $V_{T_{\lambda}}$, because $V_{T_{\mu}} \not \not 二 V_{S}$ for $\mu \neq \lambda(S)$, as we have just seen.

Notation 7.1 We write $V_{\lambda}$ for the isomorphism class of the irreducible representation $\mathbb{C}\left[S_{n}\right] \cdot s_{T_{\lambda}}$ from Theorem 7.1, where $T_{\lambda}$ is some standard filling of the shape $\lambda$. As $\lambda$ runs through the Young diagrams of weight $n$, the classes $V_{\lambda}$ form the complete list $\operatorname{Irr}\left(S_{n}\right)$ of simple $S_{n}$-modules up to isomorphism.

### 7.1.3 Young Symmetrizers $s_{T}^{\prime}=c_{T} \cdot r_{T}$

In general, the subsets $R_{T} C_{T}$ and $C_{T} R_{T}$ in $S_{n}$ are distinct. For example, the standard filling

$$
T=\left[\begin{array}{l}
\frac{1}{3} \\
3
\end{array}\right]^{2}
$$

leads to the set $R_{T} C_{T}$ containing exactly one 3 -cycle $|12\rangle \circ|13\rangle=|132\rangle$, whereas the only 3-cycle in $C_{T} R_{T}$ is $|13\rangle \circ|12\rangle=|123\rangle$. Thus, swapping the factors in (7.2) leads to the symmetrizer

$$
\begin{equation*}
s_{T}^{\prime}=c_{T} \cdot r_{T}=\sum_{p \in R_{T}} \sum_{q \in C_{T}} \operatorname{sgn}(q) \cdot q p \tag{7.6}
\end{equation*}
$$

which is different from the symmetrizer $s_{T}=r_{T} \cdot c_{T}$ in general. The symmetrizers $s_{T}^{\prime}$ and $s_{T}$ go to each other under the antipodal antiautomorphism $\alpha: \mathbb{C}\left[S_{n}\right] \leadsto \mathbb{C}\left[S_{n}\right]$, $g \mapsto g^{-1}$, which leaves the factors $r_{T}, c_{T}$ unchanged but reverses their order in the product.
Exercise 7.2 For the Young symmetrizer $s_{T}^{\prime}$, formulate and prove the analogues of the relations (7.5), Lemma 7.4, Lemma 7.3, and Theorem 7.1.

Lemma 7.5 The representations of $S_{n}$ by left multiplication in the ideals $V_{T}=\mathbb{C}\left[S_{n}\right] \cdot s_{T}$ and $V_{T}^{\prime}=\mathbb{C}\left[S_{n}\right] \cdot s_{T}^{\prime}$ are isomorphic.

Proof Right multiplication by $c_{T}$ and $r_{T}$ assigns homomorphisms of the left $S_{n}$-modules

$$
V_{T}^{\prime}=\mathbb{C}\left[S_{n}\right] \cdot c_{T} r_{T} \underset{x \cdot r_{T} \leftrightarrow x}{\stackrel{x \mapsto x \cdot c_{T}}{\rightleftarrows}} \mathbb{C}\left[S_{n}\right] \cdot r_{T} c_{T}=V_{T} .
$$

The composition $x \mapsto x \cdot r_{T} c_{T}=x \cdot s_{T}$ acts on $V_{T}=\mathbb{C}\left[S_{n}\right] \cdot s_{T}$ as scalar multiplication by $n_{\lambda(T)}$. Therefore, right multiplication by $c_{T}$ and right multiplication by $n_{\lambda}^{-1} r_{T}$ are isomorphisms of $S_{n}$-modules that are inverse to each other.

Theorem 7.2 The classes of the irreducible representations $V_{\lambda}$ and $V_{\lambda^{t}}$ corresponding to the transposed Young diagrams $\lambda$ and $\lambda^{t}$ are obtained from each other by taking the tensor product with the sign representation.

Proof Let us fix some standard filling $T$ of shape $\lambda$ and the transposed filling $T^{t}$ of shape $\lambda^{t}$. Then $R_{T^{t}}=C_{T}, C_{T^{t}}=R_{T}$, and

$$
s_{T^{t}}=\sum_{p \in R_{T}} \sum_{q \in C_{T}} \operatorname{sgn}(p) \cdot q p=\sum_{p \in R_{T}} \sum_{q \in C_{T}} \operatorname{sgn}(q) \cdot \operatorname{sgn}(p q) \cdot q p=\sigma\left(s_{T}^{\prime}\right)
$$

where $\sigma: \mathbb{C}\left[S_{n}\right] \rightarrow \mathbb{C}\left[S_{n}\right], g \mapsto \operatorname{sgn}(g) \cdot g$, is the sign automorphism of the group algebra. For every representation $\varrho: \mathbb{C}\left[S_{n}\right] \rightarrow \operatorname{End}(W)$, the tensor product with the sign representation $W \otimes \operatorname{sgn}$ is isomorphic to the representation

$$
\varrho \circ \sigma: \mathbb{C}\left[S_{n}\right] \rightarrow \operatorname{End}(W)
$$

In particular, $V_{T} \otimes \operatorname{sgn} \simeq V_{T}^{\prime} \otimes \operatorname{sgn}$ is isomorphic to the representation of $S_{n}$ in the space $V_{T}^{\prime}=\mathbb{C}\left[S_{n}\right] \cdot s_{T}^{\prime}$ by the rule

$$
\begin{equation*}
g: x \cdot s_{T}^{\prime} \mapsto \operatorname{sgn}(g) \cdot g x \cdot s_{T}^{\prime} \tag{7.7}
\end{equation*}
$$

The sign automorphism maps the space $V_{T}^{\prime}$ isomorphically onto the space

$$
V_{\lambda^{t}}=\mathbb{C}\left[S_{n}\right] \cdot s_{T^{t}}=\mathbb{C}\left[S_{n}\right] \cdot \sigma\left(s_{T}^{\prime}\right)
$$

and transforms the action (7.7) to the left regular action $g: \sigma(x) \cdot s_{T^{t}} \mapsto g \sigma(x) \cdot s_{T^{t}}$.

### 7.2 Modules of Tabloids

The $R_{T}$-orbit of a standard filling $T$ is called a tabloid of shape $\lambda=\lambda(T)$ and is denoted by $\{T\}$. The tautological action of $S_{n}$ on the standard fillings $g: T \mapsto g T$ induces the well-defined action $g:\{T\} \mapsto\{g T\}$ on the tabloids, because

$$
g R_{T} T=g R_{T} g^{-1} g T=R_{g T} g T .
$$

Write $M_{\lambda}$ for the complex vector space with a basis formed by the tabloids of shape $\lambda$. The permutation representation of $S_{n}$ in $M_{\lambda}$ by the rule $g:\{T\} \mapsto\{g T\}$ is called the tabloid representation. Equivalently, the tabloid module $M_{\lambda} \simeq \operatorname{ind}_{R_{T}}^{S_{n}} \mathbb{1}$ is described as the representation of $S_{n}$ induced from the trivial 1-dimensional representation of the subgroup $R_{T} \subset S_{n}$. Indeed, the tabloids of shape $\lambda$ are in bijection with the left cosets $g R_{T} \in S_{n} / R_{T}$, and the action of $S_{n}$ on the tabloids coincides with the left action on these cosets.
Exercise 7.3 Show that the tabloid representation $M_{\lambda}$ is isomorphic to the representation of $S_{n}$ by left multiplication in the ideal $\mathbb{C}\left[S_{n}\right] \cdot r_{T}$.
We write $\psi_{\lambda}$ for the character of the tabloid representation $M_{\lambda}$. Recall that $C_{\eta} \in \mathrm{Cl}\left(S_{n}\right)$ means the conjugacy class formed by all permutations of cyclic type $\eta$.
Proposition 7.1 Let $m_{\lambda}=m_{\lambda_{1}} m_{\lambda_{2}} \cdots m_{\lambda_{n}}$ be the standard monomial basis ${ }^{3}$ of the $\mathbb{Z}$-module of symmetric polynomials in $x_{1}, x_{2}, \ldots, x_{n}$, and

$$
p_{\eta}(x)=p_{\eta_{1}} p_{\eta_{2}} \cdots p_{\eta_{n}}=p_{1}(x)^{n_{1}} p_{2}(x)^{n_{2}} \cdots p_{n}(x)^{n_{n}}
$$

the Newton symmetric polynomial. ${ }^{4}$ The value $\psi_{\lambda}\left(C_{\eta}\right)$ equals the coefficient of $m_{\lambda}$ in the expansion of $p_{\eta}$ through the monomial basis.

Proof The $n_{i}$ th power of the $i$ th Newton polynomial is expanded as

$$
p_{i}(x)^{n_{i}}=\left(x_{1}^{i}+x_{2}^{i}+\cdots+x_{n}^{i}\right)^{n_{i}}=\sum_{\sum_{j} \varrho_{i j}=n_{i}} \frac{n_{i}!}{\varrho_{i 1}!\varrho_{i 2}!\cdots \varrho_{i n}!} x_{1}^{i \cdot e_{i 1}} x_{2}^{i \cdot \varrho_{i 2}} \cdots x_{n}^{i \cdot e_{i n}} .
$$

[^78]Therefore, the coefficient of $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{n}^{\lambda_{n}}$ in the expansion of

$$
p_{\eta}(x)=p_{1}(x)^{n_{1}} p_{2}(x)^{n_{2}} \cdots p_{n}(x)^{n_{n}}
$$

is equal to the sum

$$
\begin{equation*}
\sum_{e_{i j}} \frac{n_{1}!\cdot n_{2}!\cdots n_{n}!}{\prod_{i j} \varrho_{i j}!} \tag{7.8}
\end{equation*}
$$

running over all collections of nonnegative integers $\varrho_{i j}$ such that

$$
\begin{equation*}
\sum_{j} \varrho_{i j}=n_{i} \quad \text { and } \quad \sum_{i} i \cdot \varrho_{i j}=\lambda_{j} \tag{7.9}
\end{equation*}
$$

On the other hand, it follows from formula (6.29) on p. 145 for the character of an induced representation that

$$
\begin{equation*}
\psi_{\lambda}\left(C_{\eta}\right)=\left[S_{n}: R_{T}\right] \cdot \frac{\left|C_{\eta} \cap R_{T}\right|}{\left|C_{\eta}\right|} \tag{7.10}
\end{equation*}
$$

where

$$
\left[S_{n}: R_{T}\right]=\frac{n!}{\prod_{j} \lambda_{j}!}, \quad\left|C_{\eta}\right|=\frac{n!}{\prod_{i} i^{n_{i}} n_{i}!},
$$

and $C_{\eta} \cap R_{T}$ splits into a disjoint union of $R_{T}$-conjugacy classes of permutations of cyclic type $\eta$ lying in $R_{T}$. The elements of every independent cycle of a permutation $\sigma \in C_{\eta} \cap R_{T}$ belong to the same row of the filling $T$. Two such permutations are conjugate within $R_{T}$ if and only if both permutations have the same number $\varrho_{i j}$ of length $i$ cycles formed by elements from the $j$ th row of $T$ for all $1 \leqslant i, j \leqslant n$. Since every collection $\varrho$ of numbers $\varrho_{i j}$ is obviously constrained by the conditions (7.9), the $R_{T}$-conjugacy classes $D_{\varrho} \subset C_{\eta} \cap R_{T}$ are in bijection with the summands of (7.8). The stabilizer of a permutation $\sigma \in \Delta_{\varrho}$ under conjugation by the elements of $R_{T}$ consists of $\prod \varrho_{i j}$ ! independent permutations of cycles having equal lengths, and $\prod i^{n_{i}}$ independent cyclic permutations of elements within the cycles. Hence,

$$
\left|C_{\eta} \cap R_{T}\right|=\sum_{\varrho}\left|D_{\varrho}\right|=\sum_{\varrho} \frac{\prod_{j} \lambda_{j}!}{\prod_{i j} n^{n_{i}} \varrho_{i j}!} .
$$

Substituting these values in (7.10) leads to (7.8) after obvious cancellations.

### 7.3 Specht Modules

### 7.3.1 Description and Irreducibility

Associated with a filling $T$ of shape $\lambda$ is the vector

$$
\begin{equation*}
v_{T}=c_{T}\{T\}=\sum_{q \in C_{T}} \operatorname{sgn}(q) \cdot\{q T\} \in M_{\lambda} \tag{7.11}
\end{equation*}
$$

By Lemma 7.1 on $p .152$, the equality $p q_{1} T=q_{2} T$ never holds for

$$
q_{1}, q_{2} \in C_{T}=C_{q_{1} T}, p \in R_{q_{1} T}
$$

because every two elements sharing the same column in $T$ are certainly in different rows of $q_{1} T$. Therefore, the summands on the right-hand side of (7.11) are distinct basis vectors of $M_{\lambda}$ taken with coefficients $\pm 1$. In particular, each vector $v_{T}$ is nonzero. Since

$$
g v_{T}=g c_{T}\{T\}=g c_{T} g^{-1}\{g T\}=c_{g T}\{g T\}=v_{g T}
$$

for all $g \in S_{n}$, the linear span of all vectors $v_{T}$, where $T$ is a standard filling of shape $\lambda$, is an $S_{n}$-submodule in $M_{\lambda}$. It is called the Specht module and denoted by $S_{\lambda}$.

Lemma 7.6 If the shape $\lambda$ of a filling $T$ does not strictly dominate a Young diagram $\mu$, then

$$
c_{T} M_{\mu}= \begin{cases}0 & \text { for } \mu \neq \lambda \\ \mathbb{C} \cdot v_{T} & \text { for } \mu=\lambda\end{cases}
$$

Proof Let $U$ be a standard filling of shape $\mu$. If there is a transposition $\tau \in R_{U} \cap C_{T}$, then

$$
\begin{equation*}
c_{T}\{U\}=c_{T}\{\tau U\}=c_{T} \cdot \tau\{U\}=-c_{T}\{U\} \tag{7.12}
\end{equation*}
$$

Hence, $c_{T}\{U\}=0$. If there are no transpositions in $R_{U} \cap C_{T}$, then $\lambda=\mu$ and $p U=q T$ for some $p \in R_{U}, q \in C_{T}$ by Lemma 7.1. In this case,

$$
c_{T}\{U\}=c_{T}\{p U\}=c_{T}\{q T\}=\operatorname{sgn}(q) \cdot c_{T}\{T\}= \pm v_{T}
$$

Theorem 7.3 The Specht module $S_{\lambda}$ is simple and belongs to the class $V_{\lambda}$, i.e., is isomorphic to the left ideal $\mathbb{C}\left[S_{n}\right] \cdot s_{T}$, where $T$ is a standard filling of shape $\lambda$.

Proof Let $T$ be a standard filling of shape $\lambda$. Assume that $S_{\lambda}=V \oplus W$ is a direct sum of $S_{n}$-modules. Since $c_{T} S_{\lambda} \subset c_{T} \cdot M_{\lambda}=\mathbb{C} \cdot v_{T}$ by Lemma 7.6, and $c_{T}$ maps
each of the submodules $V, W$ to itself, $v_{T}$ belongs to one of them, say $v_{T} \in V$. Then $V$ contains all vectors $v_{g T}=g v_{T}, g \in S_{n}$, and therefore coincides with $S_{\lambda}$. Hence, $S_{\lambda}$ is an irreducible representation of $S_{n}$. Moreover, $S_{\lambda} \not \approx S_{\mu}$ for $\mu \neq \lambda$. Indeed, let $\lambda<\mu$ lexicographically. By Lemma 7.6, the action of $c_{T}$ annihilates $S_{\mu} \subset M_{\mu}$ and is nontrivial on $S_{\lambda}$, because $c_{T} v_{T}=c_{T} c_{T}\{T\}=\left|C_{T}\right| \cdot c_{T}\{T\}=\left|C_{T}\right| \cdot v_{T}$. Thus, the Specht modules $S_{\lambda}$ form a complete list of distinct simple $S_{n}$-modules up to isomorphism. Since $c_{T}$ annihilates all irreducible representations $V_{\mu}$ with $\mu<\lambda$ by Lemma 7.4 on p. 154, we conclude that $S_{\lambda}$ belongs to the class $V_{\lambda}$.

Corollary 7.2 The multiplicity of the simple submodule $S_{\mu}$ in the tabloid module $M_{\lambda}$ may be nonzero only if $\mu \unrhd \lambda$. For all $\lambda$, the multiplicity of $S_{\lambda}$ in $M_{\lambda}$ equals 1 .

Proof Since $c_{T}$ sends the whole of $M_{\lambda}$ inside $S_{\lambda} \subset M_{\lambda}$ and acts nontrivially on $S_{\lambda}$, there is exactly one simple submodule isomorphic to $S_{\lambda}$ in $M_{\lambda}$. If there exists an $S_{n}$-linear injection $S_{\mu} \hookrightarrow M_{\lambda}$ for $\mu \neq \lambda$, then the operator $c_{U}$, constructed from every filling $U$ of shape $\mu$, does not annihilate $M_{\lambda}$. Thus, Lemma 7.6 forces $\mu \triangleright \lambda$.

### 7.3.2 Standard Basis Numbered by Young Tableaux

Let us define the column scanning of a filling $T$ of shape $\lambda$ to be the word obtained by reading the columns of $T$ from the bottom upward one by one from left to right. For example, the column scan of the standard tableau

$$
T=\begin{array}{|l|l|}
1 & 3 \\
2 & 4 \\
2 & 5 \\
\hline
\end{array}
$$

is the word 21534. We write $T \succ U$ if the maximal element in different cells of $T$, $U$ appears in the column scan of $T$ in a position to the left of that in the scan of $U$.
Exercise 7.4 For every Young diagram $\lambda$, verify that the relation $T \succ U$ provides the set of all standard fillings of shape $\lambda$ with a total order.
For example, the 120 standard fillings of the Young diagram $\boxplus$ are ordered as

The main feature of the order $\succ$ is that for every standard tableau ${ }^{5} T$, the inequalities $p T \succ T \succ q T$ hold for all $p \in R_{T}, q \in C_{T}$, because the maximal element of every independent cycle of $p$ is shifted by $p$ to the left, and the maximal element of every independent cycle of $q$ is raised by $q$. This forces every standard tableau $T$ to be

[^79]the minimal element of its $R_{T}$-orbit $R_{T} T$. In particular, for every filling $U \prec T$, the tabloids $\{U\}$ and $\{T\}$ are distinct in the module $M_{\lambda}$.

Exercise 7.5 Prove that $c_{T}\{U\}=0$ for every pair of standard tableaux $U \succ T$.
Theorem 7.4 The vectors $v_{T}$, where $T$ runs through the standard tableaux of shape $\lambda$, form a basis of the Specht module $S_{\lambda}$. In particular, $\operatorname{dim} S_{\lambda}=d_{\lambda}$ equals the number of standard Young tableaux ${ }^{6}$ of shape $\lambda$.

Proof Let us first check that the $d_{\lambda}$ vectors $v_{T}$ are linearly independent. The linear expression of the vector $v_{T}=\sum_{q \in C_{T}} \operatorname{sgn}(q) \cdot\{q T\}$ through the basis vectors $\{U\}$ of $M_{\lambda}$ has the form

$$
v_{T}=\{T\}+\sum_{U<T} \varepsilon_{U} \cdot\{U\}, \text { where } \varepsilon_{U}=-1,0,1
$$

Every nontrivial linear relation between such vectors also can be written ${ }^{7}$ as $v_{T}=\sum_{U<T} x_{U} \cdot v_{U}$. Expanding $v_{T}$ and $v_{U}$ as linear combinations of tabloids leads to an equality of the form

$$
\{T\}=\sum_{U<T} y_{U} \cdot\{U\}
$$

which never holds, because $\{T\} \neq\{U\}$ in $M_{\lambda}$ for $U \prec T$. The linear independence of the vectors $v_{T}$ implies the inequality $\operatorname{dim} S_{\lambda} \geqslant d_{\lambda}$. At the same time, it follows from formula (4.6) on p. 85 and the relation on the sum of squares of dimensions of irreducible representations from Corollary 5.8 on p. 118 that

$$
\sum d_{\lambda}^{2}=n!=\sum \operatorname{dim}^{2} S_{\lambda}
$$

Therefore, $\operatorname{dim} S_{\lambda}=d_{\lambda}$.

### 7.4 Representation Ring of Symmetric Groups

Write $\Re_{n}$ for the additive abelian group of the representation ring ${ }^{8}$ of $S_{n}$, i.e., for the $\mathbb{Z}$-linear span of the irreducible characters in the space of all functions $S_{n} \rightarrow \mathbb{C}$. We also put $\Re_{0} \stackrel{\text { def }}{=} \mathbb{Z}$. We are going to equip the direct sum of abelian groups

$$
\mathfrak{R} \stackrel{\operatorname{def}}{=} \bigoplus_{n \geqslant 0} \Re_{n}
$$

[^80]with the structure of a graded commutative ring with unit, that is, with a commutative multiplication such that $\Re_{k} \cdot \Re_{m} \subset \Re_{k+m}$ for all $k$, $n$. Do not confuse this new multiplication with that discussed in Sect. 6.2 .3 on p.140, corresponding to the tensor product of representations $[U],[W] \mapsto[U \otimes W]$ and existing separately within each $\Re_{n}$. To prevent confusion with tensor multiplication, the multiplication $\Re_{k} \times \Re_{m} \rightarrow \Re_{k+m}$ that we are going to define will be called the LittlewoodRichardson product.

### 7.4.1 Littlewood-Richardson Product

Associated with a pair of linear representations $\varphi: S_{k} \rightarrow \mathrm{GL}(U), \psi: S_{m} \rightarrow \mathrm{GL}(W)$ is the linear representation

$$
\begin{equation*}
\varphi \times \psi: S_{k} \times S_{m} \rightarrow \mathrm{GL}(U \otimes W), \quad(g, h): u \otimes w \mapsto g u \otimes h w . \tag{7.13}
\end{equation*}
$$

Let us embed $S_{k} \times S_{m}$ into $S_{k+m}$ as the subgroup of permutations mapping both parts of the partition

$$
\begin{equation*}
\{1,2, \ldots, k+m\}=\{1,2, \ldots, k\} \sqcup\{k+1, k+2, \ldots, k+m\} \tag{7.14}
\end{equation*}
$$

to itself. Write $\operatorname{ind}(\varphi \times \psi)$ for the representation of $S_{k+m}$ induced from the representation (7.13) of this subgroup, and put $[\varphi] \cdot[\psi] \stackrel{\text { def }}{=}[\operatorname{ind}(\varphi \times \psi)]$, where $[f],[\psi]$, and $[\operatorname{ind}(\varphi \times \psi)]$ mean the isomorphism classes of corresponding representations ${ }^{9}$ in $\Re_{k}, \Re_{n}$, and $\Re_{k+m}$ respectively. The Littlewood-Richardson product $\mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is the $\mathbb{Z}$-bilinear extension of this product to the finite $\mathbb{Z}$-linear combinations of irreducible characters.

A different embedding $S_{k} \times S_{m} \hookrightarrow S_{k+m}$ provided by another disjoint union decomposition

$$
\{1, \ldots, k+m\}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \sqcup\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}
$$

leads to the subgroup of $S_{k+m}$ conjugate to that obtained from the decomposition (7.14), and therefore, to the isomorphic induced representation $\operatorname{ind}(\varphi \times \psi)$ of $S_{k+m}$.
Exercise 7.6 Let $\varphi, \psi: H \hookrightarrow G$ be two injective homomorphisms of groups such that $\varphi(H)=g \psi(H) g^{-1}$ for some $g \in G$, and $\varrho: H \rightarrow \operatorname{GL}(V)$ a linear representation. Construct an isomorphism of the $G$-modules induced by the representations $\varrho \varphi^{-1}, \varrho \psi^{-1}$ of the subgroups $\varphi(H), \psi(H) \subset G$ respectively.
Hence, the Littlewood-Richardson product is commutative and does not depend on the splitting $\{1, \ldots, k+m\}=I \sqcup J$ used to embed $S_{k} \times S_{m}$ into $S_{k+m}$. Since for every

[^81]three representations $\xi: S_{k} \rightarrow \mathrm{GL}(U), \eta: S_{\ell} \rightarrow \mathrm{GL}(V), \zeta: S_{m} \rightarrow \mathrm{GL}(W)$, the classes $([\xi] \cdot[\eta]) \cdot[\zeta]$ and $[\xi] \cdot([\eta] \cdot[\zeta])$ coincide with the class of the $S_{m+n+k}$-module induced from the representation
$$
S_{k} \times S_{\ell} \times S_{m} \rightarrow \mathrm{GL}(U \otimes V \otimes W), \quad\left(g_{1}, g_{2}, g_{3}\right) \mapsto \xi\left(g_{1}\right) \otimes \eta\left(g_{2}\right) \otimes \zeta\left(g_{3}\right),
$$
the Littlewood-Richardson product is associative as well.
Exercise 7.7 Check this carefully, and use the distributivity isomorphisms from Proposition 1.3 on p. 12 to verify that the Littlewood-Richardson product is distributive with respect to addition ${ }^{10}$ in $\Re$.

Lemma 7.7 The graded commutative ring $\mathfrak{R}$ is the ring of polynomials with integer coefficients in the countable set of variables $\left[\mathbb{1}_{k}\right], k \in \mathbb{N}$, the classes of trivial $S_{k}$-modules of dimension one. The isomorphism classes of tabloid representations

$$
\begin{equation*}
\left[M_{\lambda}\right]=\left[\mathbb{1}_{\lambda_{1}}\right] \cdot\left[\mathbb{1}_{\lambda_{2}}\right] \cdots\left[\mathbb{1}_{\lambda_{n}}\right]=\left[\mathbb{1}_{1}\right]^{m_{1}}\left[\mathbb{1}_{2}\right]^{m_{2}} \cdots\left[\mathbb{1}_{n}\right]^{m_{n}}, \tag{7.15}
\end{equation*}
$$

where $\lambda$ runs through all Young diagrams, and $m_{i}=m_{i}(\lambda)$ means the number of length-i rows in $\lambda$, form a basis of $\Re$ as a $\mathbb{Z}$-module.

Proof It follows from Corollary 7.2 that the transition matrix from the isomorphism classes $\left[M_{\lambda}\right]$ to the classes of irreducible representations $\left[S_{\lambda}\right]$ is integer upper unitriangular. Therefore, the classes $\left[M_{\lambda}\right]$ also form a basis of $\Re$ over $\mathbb{Z}$. Since the tabloid module $M_{\lambda}$ is induced from the trivial representation of the row subgroup $S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots S_{\lambda_{n}} \subset S_{|\lambda|}$, the equality (7.15) holds in $\mathfrak{R}$ by the definition of the Littlewood-Richardson product. The set of all formal monomials in the variables $\left[\mathbb{1}_{k}\right]$ coincides with the set of classes $\left[M_{\lambda}\right]$, because $\left[\mathbb{1}_{\lambda_{i}}\right]=\left[M_{\left(\lambda_{i}\right)}\right]$ is a particular tabloid representation corresponding to the Young diagram formed by one row of length $\lambda_{i}$, and these representations are multiplied in $\Re$ exactly as the formal variables $\left[\mathbb{1}_{k}\right]$ are multiplied within the polynomial ring.

### 7.4.2 Scalar Product on $\mathfrak{\Re}$

Write ( $[U],[W]$ ) for the Euclidean inner product in $\mathfrak{R}$ such that the irreducible classes $\left[V_{\lambda}\right]$ form an orthonormal basis. Then the direct sum $\Re=\oplus \Re_{k}$ becomes orthogonal, and the inner product of every two classes

$$
[U]=\sum_{|\lambda|=n} k_{\lambda} \cdot\left[V_{\lambda}\right] \quad \text { and } \quad[W]=\sum_{|\lambda|=n} m_{\lambda} \cdot\left[V_{\lambda}\right]
$$

[^82]belonging to the same component $\Re_{n}$ can be interpreted as
\[

$$
\begin{equation*}
([U],[W])=\sum_{|\lambda|=n} k_{\lambda} m_{\lambda}=\operatorname{dim} \operatorname{Hom}_{S_{n}}(U, W)=\left(\chi_{U}, \chi_{W}\right)_{n} \tag{7.16}
\end{equation*}
$$

\]

where $\left(\chi_{U}, \chi_{W}\right)_{n}$ means the inner product of characters in the algebra ${ }^{11} \mathbb{C}^{S_{n}}$, that is,

$$
\frac{1}{n!} \sum_{g \in S_{n}} \chi_{U}(g) \chi_{W}(g)=\frac{1}{n!} \sum_{\mu}\left|C_{\mu}\right| \cdot \chi_{U}\left(C_{\mu}\right) \chi_{W}\left(C_{\mu}\right)=\sum_{\mu} z_{\mu}^{-1} \cdot \chi_{U}\left(C_{\mu}\right) \chi_{W}\left(C_{\mu}\right)
$$

where the summation is over all Young diagrams of weight $n, C_{\mu} \subset S_{n}$ denotes the conjugacy class formed by permutations of cyclic type $\mu$, and the combinatorial factor ${ }^{12}$

$$
\begin{equation*}
z_{\mu}=\prod_{i} m_{i}!\cdot i^{m_{i}} \tag{7.17}
\end{equation*}
$$

is related to the cardinality of $C_{\mu}$ by the equality $\left|C_{\mu}\right|=n!/ z_{\mu}$. Therefore,

$$
\begin{equation*}
([U],[W])=\sum_{\mu} z_{\mu}^{-1} \cdot \chi_{U}\left(C_{\mu}\right) \chi_{W}\left(C_{\mu}\right) \tag{7.18}
\end{equation*}
$$

### 7.4.3 The Isometric Isomorphism $\Re \xrightarrow{\sim} \Lambda$

Recall ${ }^{13}$ that the ring of symmetric functions $\Lambda$ has the Euclidean inner product $\langle *, *\rangle$ such that the Schur polynomials $s_{\lambda}$ form an orthonormal basis, that the basis consisting of complete symmetric functions $h_{\lambda}$ is dual to the monomial basis $m_{\lambda}$, and that the Newton polynomials $p_{\lambda}$ are orthogonal, with $\left\langle p_{\lambda}, p_{\lambda}\right\rangle=z_{\lambda}$. By Proposition 7.1 on p. 157, the value $\psi_{\lambda}\left(C_{\mu}\right)$, of the tabloid character $\psi_{\lambda}$ on the conjugacy class $C_{\mu}$ coincides with the coefficient of $m_{\lambda}$ in the linear expression of the Newton polynomial $p_{\mu}$ through the monomial basis:

$$
p_{\mu}=\sum_{\lambda} \psi_{\lambda}\left(C_{\mu}\right) \cdot m_{\lambda}
$$

This forces $\psi_{\lambda}\left(C_{\mu}\right)=\left\langle p_{\mu}, h_{\lambda}\right\rangle$, because the complete symmetric functions $h_{\lambda}$ form the Euclidean dual basis to $m_{\lambda}$. The same inner product $\left\langle p_{\mu}, h_{\lambda}\right\rangle$ equals the

[^83]coefficient of $z_{\mu}^{-1} \cdot p_{\mu}$ in the linear expression of $h_{\lambda}$ through the Newton basis $p_{\lambda}$,
\[

$$
\begin{equation*}
h_{\lambda}=\sum_{\mu} z_{\mu}^{-1}\left\langle p_{\mu}, h_{\lambda}\right\rangle p_{\mu}=\sum_{\mu} z_{\mu}^{-1} \cdot \chi_{M_{\lambda}}\left(C_{\mu}\right) \cdot p_{\mu} \tag{7.19}
\end{equation*}
$$

\]

Comparison of (7.19) with (7.18) leads to the following claim.
Theorem 7.5 The map

$$
\begin{equation*}
\operatorname{ch}: \mathfrak{R} \leadsto \Lambda, \quad[U] \mapsto \sum_{\mu} z_{\mu}^{-1} \cdot \chi_{U}\left(C_{\mu}\right) \cdot p_{\mu} \tag{7.20}
\end{equation*}
$$

is simultaneously a (well-defined ${ }^{14}$ over $\mathbb{Z}$ ) isomorphism of graded commutative rings and a Euclidean isometry. It sends the classes of tabloid representations $\left[M_{\lambda}\right]$ to the complete symmetric functions $h_{\lambda}$, and the classes of irreducible representations $\left[S_{\lambda}\right]$ to the Schur polynomials $s_{\lambda}$. It transfers the tensor multiplication by sign representation to the involution ${ }^{15} \omega$ on $\Lambda$, which swaps $s_{\lambda}$ with $s_{\lambda^{t}}$ and $h_{\lambda}$ with $e_{\lambda^{\prime}}$.
Proof The map (7.20) is linear in [U]:

$$
\begin{aligned}
\operatorname{ch}([U]+[W]) & =\operatorname{ch}([U \oplus W])=\sum_{\mu} z_{\mu}^{-1} \cdot \chi_{U \oplus W}\left(C_{\mu}\right) \cdot p_{\mu} \\
& =\sum_{\mu} z_{\mu}^{-1} \cdot\left(\chi_{U}\left(C_{\mu}\right)+\chi_{W}\left(C_{\mu}\right)\right) \cdot p_{\mu}=\operatorname{ch}([U])+\operatorname{ch}([W]) .
\end{aligned}
$$

By Lemma 7.7 on p. 163 and Corollary 3.3 on p. 62, the rings $\Re, \Lambda$ are polynomial rings in the countable sets of variables $\left[\mathbb{1}_{k}\right]$ and $h_{k}$ respectively. It follows from (7.19) that the map (7.20) sends every basis monomial

$$
\left[M_{\lambda}\right]=\left[\mathbb{1}_{\lambda_{1}}\right] \cdot\left[\mathbb{1}_{\lambda_{2}}\right] \cdots\left[\mathbb{1}_{\lambda_{n}}\right]=\left[\mathbb{1}_{1}\right]^{m_{1}}\left[\mathbb{1}_{2}\right]^{m_{2}} \cdots\left[\mathbb{1}_{n}\right]^{m_{n}}
$$

(where $m_{i}$ is the number of length- $i$ rows in the diagram $\lambda$ ) to the basis monomial

$$
h_{\lambda}=h_{\lambda_{1}} \cdot h_{\lambda_{2}} \cdots h_{\lambda_{n}}=h_{1}^{m_{1}} h_{2}^{m_{2}} \cdots h_{n}^{m_{n}},
$$

and respects the multiplication of the variables, because $\operatorname{ch}\left(\left[\mathbb{1}_{k}\right]\right)=h_{k}$. Therefore, the assignment $[U] \mapsto \operatorname{ch}([U])$ establishes a well-defined isomorphism of graded rings $\Re \xrightarrow{\leadsto} \Lambda$. Since the Newton polynomials form an orthogonal basis of $\mathbb{Q} \otimes \Lambda$

[^84]and have $\left\langle p_{\lambda}, p_{\lambda}\right\rangle=z_{\lambda}$, formula (7.18) implies that $\chi$ preserves the inner product:
\[

$$
\begin{aligned}
\langle\operatorname{ch}([U]), \operatorname{ch}([W])\rangle & =\sum_{\lambda, \mu} z_{\lambda}^{-1} z_{\mu}^{-1} \cdot \chi_{U}\left(C_{\lambda}\right) \chi_{W}\left(C_{\mu}\right) \cdot\left\langle p_{\mu}, p_{\lambda}\right\rangle \\
& =\sum_{\mu} z_{\mu}^{-1} \cdot \chi_{U}(g) \chi_{W}(g)=([U],[W]) .
\end{aligned}
$$
\]

It follows from Corollary 7.2 on p. 160 that the transition matrix from the orthonormal basis $\left[S_{\lambda}\right]$ to the basis $\left[M_{\lambda}\right]$ is lower unitriangular:

$$
\left[S_{\lambda}\right]=\left[M_{\lambda}\right]+\sum_{\mu \triangleright \lambda} x_{\mu \lambda}\left[M_{\mu}\right]
$$

By formula (4.23) on p.94, the transition matrix from the complete symmetric functions $h_{\lambda}$ to the Schur polynomials $s_{\lambda}$ is lower unitriangular as well ${ }^{16}$ :

$$
h_{\lambda}=\sum_{\mu} K_{\mu, \lambda} \cdot s_{\mu}=s_{\lambda}+\sum_{\mu \triangleright \lambda} K_{\mu, \lambda} \cdot s_{\mu} .
$$

Therefore, the transition matrix from the polynomials ch $\left(\left[S_{\lambda}\right]\right)$ to the Schur polynomials is also lower unitriangular:

$$
\operatorname{ch}\left(\left[S_{\lambda}\right]\right)=\operatorname{ch}\left(\left[M_{\lambda}\right]+\sum_{\mu \triangleright \lambda} x_{\mu \lambda}\left[M_{\mu}\right]\right)=h_{\lambda}+\sum_{\mu \triangleright \lambda} x_{\mu \lambda} h_{\mu}=s_{\lambda}+\sum_{\mu \triangleright \lambda} y_{\mu \lambda} s_{\mu} .
$$

Since

$$
\begin{aligned}
1 & =\left(\left[S_{\lambda}\right],\left[S_{\lambda}\right]\right)=\left\langle\operatorname{ch}\left(\left[S_{\lambda}\right]\right), \operatorname{ch}\left(\left[S_{\lambda}\right]\right)\right\rangle=\left\langle s_{\lambda}, s_{\lambda}\right\rangle+\sum_{\mu \triangleright \lambda} y_{\mu \lambda}^{2}\left\langle s_{\mu}, s_{\mu}\right\rangle \\
& =1+\sum_{\mu \triangleright \lambda} y_{\mu \lambda}^{2}
\end{aligned}
$$

we conclude that all $y_{\mu \lambda}$ are equal to 0 , that is, $\operatorname{ch}\left(\left[S_{\lambda}\right]\right)=s_{\lambda}$. The tensor multiplication by the sign representation is transformed by the isomorphism (7.20) to the involution $\omega$ by Theorem 7.2 on p. 156 and Proposition 4.4 on p. 94.

Corollary 7.3 (Young's Rule) The multiplicity of the Specht module $S_{\mu}$ in the tabloid representation $M_{\lambda}$ equals the Kostka number $K_{\mu, \lambda}$.

[^85]Corollary 7.4 (Littlewood-Richardson Rule) The multiplicity of $\left[S_{v}\right]$ in the product $\left[S_{\lambda}\right] \cdot\left[S_{\mu}\right]$ is equal to the Littlewood-Richardson coefficient ${ }^{17} c_{\lambda \mu}^{\nu}$ from the expansion $s_{\lambda} \cdot s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \cdot s_{\nu}$ in $\Lambda$.

Corollary 7.5 (Ramification Rules) Let $S_{n} \subset S_{n+1}$ be embedded as the stabilizer of some element. Then the representation of $S_{n+1}$ induced by an irreducible representation $S_{\lambda}$ of $S_{n}$ is a direct sum of simple modules $S_{\mu}$, each taken with multiplicity one, for all Young diagrams $\mu$ obtained by adding one cell to the diagram $\lambda$. Conversely, the restriction of a simple $S_{n+1}$-module $S_{\mu}$ on $S_{n-1}$ splits into a direct sum of simple modules $S_{\lambda}$, each taken with multiplicity one, for all Young diagrams $\lambda$ obtained by removing one cell from the diagram $\mu$.

Proof Since $\left[\operatorname{ind}\left(S_{\lambda}\right)\right]=\left[S_{\lambda}\right] \cdot\left[\mathbb{1}_{1}\right]$, the first statement follows from the LittlewoodRichardson rule and Pieri's formula, ${ }^{18}$ which expands $s_{\lambda} \cdot h_{1}$ as a linear combination of Schur polynomials. The second formula follows from the first by Frobenius reciprocity: the multiplicity of $S_{\lambda}$ in res $S_{\mu}$ equals the multiplicity of $S_{\mu}$ in ind $S_{\lambda}$.

Corollary 7.6 (Frobenius Formula for Characters of $S_{n}$ ) The value of an irreducible character $\chi_{\lambda}$ of a symmetric group $S_{n}$ on a conjugacy class $C_{\mu} \subset S_{n}$ equals each of the following three coinciding integers:

- the coefficient of $z_{\mu}^{-1} \cdot p_{\mu}(x)$ in the expansion of the Schur polynomial $s_{\lambda}(x)$ through the basis $z_{\mu}^{-1} \cdot p_{\mu}(x)$ of the vector space $\mathbb{Q} \otimes \Lambda$;
- the coefficient of $s_{\lambda}(x)$ in the expansion of the Newton polynomial $p_{\mu}(x)$ through the Schur basis $s_{\lambda}(x)$ of the $\mathbb{Z}$-module $\Lambda$;
- the coefficient of the monomial $x^{\lambda+\delta}=x_{1}^{\lambda_{1}+n-1} x_{2}^{\lambda_{2}+n-2} \cdots x_{n}^{\lambda_{n}}$ in the alternating polynomial

$$
p_{\mu}(x) \cdot \Delta_{\delta}(x)=p_{1}(x)^{m_{1}} p_{2}(x)^{m_{2}} \cdots p_{n}(x)^{m_{n}} \cdot \prod_{i<j}\left(x_{i}-x_{j}\right) ;
$$

where $p_{k}(x)=\sum_{i} x_{i}^{k}$ is the Newton sum of powers, $m_{i}$ means the number of length-i rows in the Young diagram $\mu$, and $\Delta_{\delta}(x)=\operatorname{det}\left(x_{j}^{n-i}\right)$ is the Vandermonde determinant.

Proof The first item follows directly from Theorem 7.5. To prove the second, recall that the Newton polynomials $p_{\mu}$ form an orthogonal basis of $\mathbb{Q} \otimes \Lambda$ with $\left\langle p_{\mu}, p_{\mu}\right\rangle=z_{\mu}$. Therefore, the coefficient of $z_{\mu}^{-1} \cdot p_{\mu}(x)$ in the linear expression of $s_{\lambda}$ through the basis $z_{\mu}^{-1} \cdot p_{\mu}(x)$ equals the inner product $\left\langle s_{\lambda}, p_{\mu}\right\rangle$, which is simultaneously the coefficient of $s_{\lambda}$ in the expansion of $p_{\mu}$ through the Schur orthonormal basis $s_{\lambda}$. The third follows from the Jacobi-Trudi formula ${ }^{19}$

[^86]$s_{\lambda}(x)=\Delta_{\lambda+\delta}(x) / \Delta_{\delta}(x)$. Namely, multiplying both sides of the expansion
$$
p_{\mu}(x)=\sum_{\lambda} \chi_{\lambda}\left(C_{\mu}\right) \cdot \frac{\Delta_{\lambda+\delta}(x)}{\Delta_{\delta}(x)}
$$
by $\Delta_{\delta}$ leads to the equality $p_{\mu}(x) \cdot \Delta_{\delta}(x)=\sum_{\lambda} \chi_{\lambda}\left(C_{\mu}\right) \cdot \Delta_{\lambda+\delta}(x)$, which states that $\chi_{\lambda}\left(C_{\mu}\right)$ is the coefficient of $\Delta_{\lambda+\delta}(x)$ in the linear expression of the alternating polynomial $p_{\mu}(x) \cdot \Delta_{\delta}(x)$ through the determinantal basis. ${ }^{20}$

### 7.4.4 Dimensions of Irreducible Representations

By the Frobenius formula, $\operatorname{dim} S_{\lambda}=\chi_{\lambda}(1)$ is equal to the coefficient of

$$
x^{\lambda+\delta}=x_{1}^{\lambda_{1}+n-1} x_{2}^{\lambda_{2}+n-2} \cdots x_{n}^{\lambda_{n}}
$$

in the polynomial

$$
\begin{aligned}
& p_{1}^{n} \cdot \Delta_{\delta}=\left(\sum x_{i}\right)^{n} \cdot \operatorname{det}\left(x_{j}^{n-i}\right) \\
& =\sum_{m_{1} m_{2} \ldots m_{n}} \frac{n!}{m_{1}!\cdot m_{2}!\cdots m_{n}!} x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}} \cdot \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \cdot x_{1}^{n-\sigma(1)} x_{2}^{n-\sigma(2)} \cdots x_{n}^{n-\sigma(n)} .
\end{aligned}
$$

Write $\eta_{i}=\lambda_{i}+n-i$ for the strictly decreasing row lengths of the diagram $\eta=\lambda+\delta$. Then the coefficient of the monomial $x^{\eta}=x_{1}^{\eta_{1}} x_{2}^{\eta_{2}} \cdots x_{n}^{\eta_{n}}$ in the previous product equals

$$
\begin{aligned}
& \sum_{\sigma} \frac{\operatorname{sgn}(\sigma) \cdot n!}{\prod_{j}\left(\eta_{j}-n+\sigma(j)\right)!} \\
& \quad=\frac{n!}{\eta_{1}!\cdot \eta_{2}!\cdots \eta_{n}!} \cdot \sum_{\sigma} \operatorname{sgn}(\sigma) \cdot \prod_{j} \eta_{j} \cdot\left(\eta_{j}-1\right) \cdots\left(\eta_{j}-n+\sigma(j)+1\right),
\end{aligned}
$$

where the summation is over all permutations $\sigma \in S_{n}$ such that all $n$ of the numbers $\eta_{j}-n+\sigma(j)$ are nonnegative. Every product $\eta_{j} \cdot\left(\eta_{j}-1\right) \cdots\left(\eta_{j}-n+\sigma(j)+1\right)$ in this sum consists of $n-\sigma(j)$ positive integers decreasing sequentially by one, and

[^87]the whole sum is equal to the standard expansion of the determinant
\[

\operatorname{det}\left($$
\begin{array}{cccc}
\eta_{1} \cdots\left(\eta_{1}-n+1\right) & \eta_{2} \cdots\left(\eta_{2}-n+1\right) & \cdots \eta_{n} \cdots\left(\eta_{n}-n+1\right) \\
\vdots & \vdots & \vdots & \vdots \\
\eta_{1}\left(\eta_{1}-1\right) & \eta_{2}\left(\eta_{2}-1\right) & \cdots & \eta_{n}\left(\eta_{n}-1\right) \\
\eta_{1} & \eta_{2} & \cdots & \eta_{n} \\
1 & 1 & \cdots & 1
\end{array}
$$\right) .
\]

Exercise 7.8 Convince yourself that this determinant equals $\prod_{i<j}\left(\eta_{i}-\eta_{j}\right)$.
We have proved the following claim.

## Corollary 7.7 (Frobenius Formula for Dimensions of Irreducible $S_{n}$-Modules)

Let $\eta=\lambda+\delta$, that is, $\eta_{i}=\lambda_{i}+n-i$. Then

$$
\operatorname{dim} S_{\lambda}=\frac{n!}{\eta_{1}!\cdot \eta_{2}!\cdots \eta_{n}!} \cdot \prod_{i<j}\left(\eta_{i}-\eta_{j}\right)
$$

Exercise 7.9 (Hook Length Formula) Given a Young diagram $\lambda$ and a cell $a \in \lambda$, the hook of $a$ is the $\Gamma$-shaped subdiagram $\Gamma(a) \subset \lambda$ formed by the cell $a$ and all the cells below $a$ in the column of $a$ and to the right of $a$ in the row of $a$. The number of cells in the hook of $a$ is called the hook length of $a$. Prove that

$$
\operatorname{dim} S_{\lambda}=\frac{n!}{\prod_{a \in \lambda}|\Gamma(a)|}
$$

For example, the hook lengths of the cells in the Young diagram $\lambda=(4,2,1)$ are

and therefore, the Specht representation $S_{(4,2,1)}$ of the symmetric group $S_{7}$ has dimension

$$
\frac{7!}{6 \cdot 4 \cdot 3 \cdot 2}=7 \cdot 5=35
$$

A highly nontrivial combinatorial consequence of Exercise 7.9 and Theorem 7.4 on p. 161 is that the number $d_{\lambda}$ of standard Young tableaux of shape $\lambda$ can be calculated by the hook-length formula. For example, the previous computation shows that there are 35 standard Young tableaux of shape

## Problems for Independent Solution to Chapter 7

Problem 7.1 For every standard filling $T$, show that the representations of $S_{n}$ by left multiplication in the ideals $\mathbb{C}\left[S_{n}\right] \cdot r_{T}$ and $\mathbb{C}\left[S_{n}\right] \cdot c_{T}$ are induced, respectively, by the trivial representation of the row subgroup $R_{T} \subset S_{n}$ and by the sign representation of the column subgroup $C_{T} \subset S_{n}$.
Problem 7.2 Show that in general, the left ideal $\mathbb{C}\left[S_{n}\right] \cdot s_{T}$ is not contained in the left ideal $\mathbb{C}\left[S_{n}\right] \cdot r_{T}$.
Problem 7.3 For all irreducible representations of groups $S_{3}, S_{4}$, and $S_{5}$ constructed by hand in Example 5.5 on p. 120, Example 6.2 on p. 135, Exercise 6.7 on p. 138, and Example 6.3 on p. 139, indicate explicitly the Young diagram $\lambda$ such that the Specht module $S_{\lambda}$ is isomorphic to the handmade representation in question.
Problem 7.4 For the ( $n-1$ )-dimensional simplicial representation $V_{\Delta}$ of the group $S_{n}$, establish the following isomorphisms:
(a) $\Lambda^{k} V_{\Delta} \simeq V_{\left((n-k), 1^{k}\right)}$,
(b) $V_{\Delta}^{\otimes 2} \simeq \mathbb{C}$

Problem 7.5 Prove the following equalities: (a) $\chi_{((n-2), 1,1)}\left(C_{\mu}\right)=\binom{m_{1}-1}{2}-m_{2}$, (b) $\chi_{((n-2), 2)}\left(C_{\mu}\right)=\binom{m_{1}-1}{2}+m_{2}-1$.

Problem 7.6 Find the multiplicities of the sign and simplicial representations of $S_{n}$ in the representation induced from the 1-dimensional complex representation of an $n$-cycle by multiplication by $e^{2 \pi i / n}$.
Problem 7.7 Show that the value of an irreducible character $\chi_{\lambda}$ of the symmetric group $S_{n}$ on the $n$-cycle equals $(-1)^{k}$ for $\lambda=\left((n-k), 1^{k}\right)$ and vanishes for all other $\lambda$.

Problem 7.8 Let a self-conjugate diagram $\lambda=\lambda^{t}$ be constructed from $k$ disjoint symmetric hooks of lengths $\gamma_{i}=2\left(\lambda_{i}-i+1\right)-1,1 \leqslant i \leqslant k$, with vertices on the main diagonal of $\lambda$. Show that $\chi_{\lambda}\left(C_{\gamma}\right)=(-1)^{(n-k) / 2}$.
Problem 7.9 Prove that the simple $S_{m}$-module $S_{\mu}$ has nonzero multiplicity in the representation of $S_{m}$ induced from an irreducible representation $S_{v}$ of a subgroup ${ }^{21} S_{n} \subset S_{m}$ if and only if $\mu \supset v$, and this multiplicity equals the number of standard skew tableaux of shape ${ }^{22} \mu>\nu$.
Problem 7.10 Formulate and prove the dual version of Problem 7.9 about the restricted representations.
Problem 7.11 Prove that the Specht module $S_{\lambda}$ is the only common irreducible component of the representations $M_{\lambda}$ and $M_{\lambda} \otimes \operatorname{sgn}$.
Problem 7.12 Prove that $\left[S_{v}\right] \cdot\left[S_{\left(1^{n}\right)}\right]=\sum\left[S_{\mu}\right]$, where the summation is over all Young diagrams $\mu$ obtained from $v$ by adding $n$ cells in $n$ distinct rows.

[^88]Problem 7.13 Prove that the multiplicity of $S_{\lambda}$ in $S_{\mu} \otimes S_{\nu}$ is equal to

$$
\sum_{\eta} z_{\eta}^{-1} \chi_{\lambda}\left(C_{\eta}\right) \chi_{\mu}\left(C_{\eta}\right) \chi_{\nu}\left(C_{\eta}\right)
$$

Verify that it becomes $\delta_{\mu, \nu}$ for $\lambda=(n)$, one row of length $n$, and $\delta_{\mu, \nu^{t}}$ for $\lambda=\left(1^{n}\right)$, one column of height $n$, where the Kronecker symbol $\delta_{\alpha, \beta}$ equals 1 for $\alpha=\beta$ and 0 otherwise.
Problem 7.14 Verify that $\operatorname{dim} S_{\lambda}<|\lambda|$ only in the following cases: the trivial, simplicial, sign, and tensor products of simplicial and sign representations of $S_{n}$ for all $n ; S_{(2,2)}$ for $S_{4} ; S_{(2,2,2)}$ and $S_{(3,3)}$ for $S_{6}$.

## Chapter 8 <br> $\mathfrak{s l}_{2}$-Modules

Everywhere in this section we assume by default that $\mathbb{k}$ is a field of characteristic zero.

### 8.1 Lie Algebras

A vector space $\mathfrak{g}$ over $\mathbb{k}$ is called a Lie algebra if it is equipped with a skewsymmetric bilinear operation $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}, X, Y \mapsto[X, Y]=-[Y, X]$, called a Lie bracket, such that the Jacobi identity $[X,[Y, Z]]=[[X, Y], Z]+[Y,[X, Z]]$ holds for all $X, Y, Z \in \mathfrak{g}$.
Example 8.1 (Commutator Algebra of an Associative Algebra) Associated with every associative $\mathbb{k}$-algebra $A$ is the commutator Lie algebra of $A$ with the Lie bracket provided by the commutator in $A$,

$$
[a, b] \stackrel{\text { def }}{=} a b-b a
$$

Exercise 8.1 Verify the Jacobi identity for the commutator bracket.

### 8.1.1 Universal Enveloping Algebra

For every Lie algebra $\mathfrak{g}$ over $\mathbb{k}$, there exist an associative $\mathbb{k}$-algebra $\mathfrak{U}(\mathfrak{g})$ and a linear map $v: \mathfrak{g} \rightarrow \mathfrak{U}(\mathfrak{g})$ such that

$$
\forall X, Y \in \mathfrak{g}, \quad v([X, Y])=[v(X), v(Y)]=v(X) v(Y)-v(Y) v(X),
$$

and the following universal property holds: given an associative $\mathbb{k}$-algebra $A$ and a linear map $\psi: \mathfrak{g} \rightarrow A$ with $\psi([X, Y])=[\psi(X), \psi(Y)]$ for all $X, Y \in \mathfrak{g}$, there exists a unique homomorphism of associative algebras $\widetilde{\psi}: \mathfrak{U}(\mathfrak{g}) \rightarrow A$ such that $\psi=\widetilde{\psi} \circ v$.
Exercise 8.2 Verify that this universal property determines both an algebra $\mathfrak{U}(\mathfrak{g})$ and a linear map $v$ uniquely up to a unique isomorphism of associative $\mathbb{k}$-algebras commuting with $\nu$.
The algebra $\mathfrak{U}(\mathfrak{g})$ is called the universal enveloping algebra of the Lie algebra $\mathfrak{g}$. It can be constructed as the quotient algebra of the tensor algebra $T(\mathfrak{g})$ by the (inhomogeneous) two-sided ideal generated by all the differences

$$
[X, Y]-X \otimes Y-Y \otimes X \in \mathfrak{g} \oplus \mathfrak{g}^{\otimes 2}
$$

with $X, Y \in \mathfrak{g}$.
Exercise 8.3 Verify that this quotient algebra possesses the above universal property.

### 8.1.2 Representations of Lie Algebras

A linear map $\varrho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ is called a linear representation of the Lie algebra $\mathfrak{g}$ if it sends the Lie bracket to the commutator of linear endomorphisms, i.e.,

$$
\varrho([A, B])=[\varrho(A), \varrho(B)]
$$

for all $A, B \in \mathfrak{g}$. In this case, the vector space $V$ is called a $\mathfrak{g}$-module. It follows from the universal property of $\mathfrak{U}(\mathfrak{g})$ that the linear representations $\varrho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ of a Lie algebra $\mathfrak{g}$ are in canonical bijection with the linear representations

$$
\widetilde{\varrho}: \mathfrak{U}(\mathfrak{g}) \rightarrow \operatorname{End}(V)
$$

of the universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$. The representation $\widetilde{\varrho}$ sends a class of the tensor

$$
A_{1} \otimes A_{2} \otimes \cdots \otimes A_{m} \in \mathrm{~T}(\mathfrak{g})
$$

to the composition of endomorphisms $\varrho\left(A_{1}\right) \circ \varrho\left(A_{2}\right) \circ \ldots \circ \varrho\left(A_{m}\right) \in \operatorname{End}(V)$. Note that $\operatorname{im} \widetilde{\varrho}$ coincides with the associative envelope $\operatorname{Ass}(\varrho(\mathfrak{g})) \subset \operatorname{End}(V)$.

The direct sum $U \oplus W$ of $\mathfrak{g}$-modules $U, W$ has a natural $\mathfrak{g}$-module structure with action $F(u+w) \stackrel{\text { def }}{=}(F u)+(F w)$ for all $u \in U, w \in W$. The tensor products and tensor, symmetric, and exterior powers of $\mathfrak{g}$-modules also inherit the natural structures of $\mathfrak{g}$-modules. However, in contrast to the representations of groups, the action of an element $F \in \mathfrak{g}$ is extended to products not as a multiplicative homomorphism but as a derivation, that is, by the Leibniz rules:

$$
\begin{gather*}
F(u \otimes w) \stackrel{\text { def }}{=}(F u) \otimes w+u \otimes(F w), \\
F(u \wedge w) \stackrel{\operatorname{def}}{=}(F u) \wedge w+u \wedge(F w)  \tag{8.1}\\
F(u \cdot w) \stackrel{\text { def }}{=}(F u) \cdot w+u \cdot(F w)
\end{gather*}
$$

For every $\mathfrak{g}$-module $W$ and $\mathfrak{g}$-submodule $U \subset W$, the quotient space $V=W / U$ possesses a well-defined $\mathfrak{g}$-module structure with the action $F[v] \stackrel{\text { def }}{=}[F v]$.
Exercise 8.4 Verify that all the actions of $F \in \mathfrak{g}$ on the products and residue classes introduced above are well defined and map Lie brackets to commutators.
Given a linear representation $\varrho: \mathfrak{g} \rightarrow \operatorname{End}(V)$, its dual representation

$$
\varrho^{*}: \mathfrak{g} \rightarrow \operatorname{End}\left(V^{*}\right)
$$

is defined by the assignment $\varrho^{*}(F) \stackrel{\text { def }}{=}-\varrho(F)^{*}$. It interacts with the contraction between vectors and covectors by the formula

$$
\begin{equation*}
\left\langle\varrho^{*}(F) \xi, w\right\rangle+\langle\xi, \varrho(F) w\rangle=0 \tag{8.2}
\end{equation*}
$$

For every two $\mathfrak{g}$-modules $U, W$, the algebra $\mathfrak{g}$ acts on the space of $\mathfrak{k}$-linear maps $\operatorname{Hom}(U, W)$ by the rule

$$
\begin{equation*}
F: \varphi \mapsto[F, \varphi] \stackrel{\text { def }}{=} F \varphi-\varphi F . \tag{8.3}
\end{equation*}
$$

Exercise 8.5 Verify that the action (8.3) agrees with (8.2) and the first formula in (8.1) under the canonical isomorphism $U^{*} \otimes V \simeq \operatorname{Hom}(U, V)$. Check by a direct computation that the action (8.3) maps the Lie bracket to the commutator of linear endomorphisms of the vector space $\operatorname{Hom}(U, W)$.
The fixed vectors of the action (8.3) form an associative algebra denoted by

$$
\operatorname{Hom}_{\mathfrak{g}}(U, V) \stackrel{\text { def }}{=}\{\varphi: U \rightarrow V \mid \forall F \in \mathfrak{g} F \varphi=\varphi F\}
$$

and called the algebra of $\mathfrak{g}$-invariant operators. ${ }^{1}$

[^89]
### 8.2 Finite-Dimensional Simple $\mathfrak{s l}_{2}$-Modules

The traceless $2 \times 2$ matrices form a Lie algebra denoted by

$$
\mathfrak{s l}_{2}(\mathbb{k}) \stackrel{\text { def }}{=}\left\{A \in \operatorname{Mat}_{2}(\mathbb{k}) \mid \operatorname{tr} A=0\right\} .
$$

The notation is justified by the fact that the vector subspace $\mathfrak{s l}_{2}(\mathbb{k}) \subset \operatorname{Mat}_{2}(\mathbb{k})$ consists of all tangent vectors to the quadric

$$
\operatorname{SL}_{2}(\mathbb{k})=\left\{g \in \operatorname{Mat}_{2}(\mathbb{k}) \mid \operatorname{det} g=1\right\}
$$

at the point $E \in \mathrm{SL}_{2}$, in the sense that a line $E+t A, t \in \mathbb{k}$, touches the affine quadric $\mathrm{SL}_{2}(\mathbb{k}) \subset \operatorname{Mat}_{2}(\mathbb{k})$ at $E$ if and only if $A \in \mathfrak{s l}_{2}(\mathbb{k}) \backslash\{0\}$.
Exercise 8.6 Verify this claim.
We will use the matrices

$$
X=\left(\begin{array}{ll}
0 & 1  \tag{8.4}\\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

as the standard basis of the vector space $\mathfrak{s l}_{2}(\mathbb{k})$ over $\mathbb{k}$. They commute by the rules

$$
\begin{equation*}
[X, Y]=H, \quad[H, X]=2 X, \quad[H, Y]=-2 Y . \tag{8.5}
\end{equation*}
$$

The linear representations of the Lie algebra $\mathfrak{s l}_{2}$ appear under different names in many branches of mathematics and mathematical physics. Thus, their complete description is a good working example of general concepts discussed in Chap. 5. We restrict ourselves to the finite-dimensional $\mathfrak{s l}_{2}$-modules. Such a module $V$ is a finitedimensional vector space over $\mathbb{k}$ equipped with a triple of linear endomorphisms $X, Y, H: V \rightarrow V$ satisfying the commutation relations (8.5).

Example 8.2 (Standard $\mathfrak{s l}_{2}$-Modules) The differential operators

$$
\begin{equation*}
X=x \frac{\partial}{\partial y}, \quad Y=y \frac{\partial}{\partial x}, \quad H=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} \tag{8.6}
\end{equation*}
$$

act on the space of polynomials $\mathbb{k}[x, y]$ and preserve the degree. Write $V_{n} \subset \mathbb{k}[x, y]$ for the subspace of homogeneous polynomials of degree $n$. Certainly, $X, Y, H$ annihilate the 1-dimensional space of constants $V_{0} \simeq \mathbb{k}$. For this reason, $V_{0}$ is called the trivial $\mathfrak{s l}_{2}$-module. The action of $X, Y, H$ on the basis $x, y$ of the space of linear forms $V_{1}$ is described exactly by the matrices (8.4), which satisfy the relations (8.5) and therefore provide $V_{1}$ with an $\mathfrak{s l}_{2}$-module structure isomorphic to the tautological representation of $\mathfrak{s l}_{2} \subset \operatorname{Mat}_{2}(\mathbb{k})$ on the coordinate space $\mathbb{K}^{2}$. For this reason, $V_{1}$ is called the tautological $\mathfrak{s l}_{2}$-module. The action of the operators (8.6) on the space
$V_{n}=S^{n} V_{1}$ is nothing but the extension of the tautological representation onto its symmetric power by the Leibniz rule (8.1).
Exercise 8.7 Verify that every linear differential operator

$$
F=a(x, y) \frac{\partial}{\partial x}+b(x, y) \frac{\partial}{\partial y}
$$

of first order satisfies the Leibniz rule $F(g h)=F(g) \cdot h+g \cdot F(h)$, and the commutator of such operators is again a linear differential operator of first order.
The $\mathfrak{s l}_{2}$-modules $V_{n}$ are called standard. The action of $X, Y, H$ on the basis $e_{k}=x^{k} y^{n-k}, 0 \leqslant k \leqslant n$, of $V_{n}$ is described by the formulas

$$
\begin{equation*}
X\left(e_{k}\right)=(n-k) e_{k+1}, \quad Y\left(e_{k}\right)=k e_{k-1}, \quad H\left(e_{k}\right)=(2 k-n) e_{k} \tag{8.7}
\end{equation*}
$$

Proposition 8.1 All the standard $\mathfrak{s l}_{2}$-modules $V_{n}$ are simple.
Proof Write an arbitrary vector $v \in V_{n}$ as a linear combination of basis vectors $e_{k}=x^{k} y^{n-k}$, and let $m$ be the maximal index such that the coefficient of $e_{m}$ in the expansion of $v$ is not zero. It follows from formula (8.7) that $X^{k} Y^{m} v$ is a nonzero multiple of $e_{k}$ for all $0 \leqslant k \leqslant n$. We conclude that the $\mathfrak{s l}_{2}$-orbit of every nonzero vector contains all the basis vectors $e_{k}$ and therefore coincides with $V_{n}$.

Lemma 8.1 Let $W$ be an $\mathfrak{s l}_{2}$-module, and let $W_{\lambda} \stackrel{\text { def }}{=}\{w \in W \mid H w=\lambda w\}, \lambda \in \mathbb{k}$, be an eigensubspace (possibly zero) of $H$. Then $X\left(W_{\lambda}\right) \subset W_{\lambda+2}$ and $Y\left(W_{\lambda}\right) \subset W_{\lambda-2}$ for all $\lambda \in \mathbb{K}$.

Proof If $H w=\lambda w$, then it follows from the commutation relations $H X-X H=2 X$ and $H Y-Y H=-2 Y$ that $H X w=X H w+2 X w=(\lambda+2) X w$ and

$$
H Y w=Y H w-2 Y w=(\lambda-2) Y w .
$$

Definition 8.1 Let $V$ be a linear representation of the Lie algebra $\mathfrak{s l}_{2}$. The eigenvalues $\lambda \in \operatorname{Spec} H$ of the operator $H \in \operatorname{End} V$ are called weights of the $\mathfrak{s l}_{2}$-module $V$. An eigenvector of $H$ with an eigenvalue $\lambda \in \operatorname{Spec} H$ is called a weight vector of weight $\lambda$. A nonzero $\lambda$-eigenspace is called the weight space of weight $\lambda$, and its dimension is called the multiplicity of the weight $\lambda$. The weight vectors lying in the kernel of $X$ are called primitive vectors.

Lemma 8.2 Every finite-dimensional $\mathfrak{s l}_{2}$-module over an algebraically closed field k possesses a primitive vector.

Proof Since $\mathbb{k}$ is algebraically closed, we have $\operatorname{Spec} H \neq \varnothing$, and there exists a weight vector $v \neq 0$. The nonzero vectors in the chain $v, X v, X^{2} v, \ldots$ are the eigenvectors of $H$ with strictly increasing eigenvalues. Since they are linearly independent, there is only a finite number of such vectors. Thus, the last nonzero vector of the chain is primitive.

Lemma 8.3 Let $W$ be a finite-dimensional $\mathfrak{s l}_{2}$-module over a field of characteristic zero. Then every primitive vector in $W$ has nonnegative integer weight, and the $\mathfrak{s l}_{2}$-orbit of every primitive vector of weight $m$ is isomorphic to the standard $\mathfrak{s l}_{2}$-module $V_{m}$.

Proof Let $H v=\lambda v$ and $X v=0$ for a nonzero vector $v \in W$. By Lemma 8.1, nonzero vectors of the chain $v, Y v, Y^{2} v, \ldots$ are the eigenvectors of $H$ with eigenvalues $\lambda,(\lambda-2),(\lambda-4), \ldots$. Hence, there exists $m \in \mathbb{N}$ such that $Y^{m+1} v=0$ and $Y^{m} v \neq 0$. Let us put

$$
v_{0}=Y^{m} v, v_{1}=Y^{m-1} v, v_{2}=Y^{m-1} v, \ldots, v_{m}=v
$$

and rewrite the chain of vectors $v, Y v, Y^{2} v, \ldots$ in the reverse order as

$$
0 \stackrel{Y}{\leftarrow} v_{0} \stackrel{Y}{\leftarrow} v_{1} \stackrel{Y}{\leftarrow} v_{2} \stackrel{Y}{\leftarrow} \cdots \stackrel{Y}{\leftarrow} v_{m-1} \stackrel{Y}{\leftarrow} v_{m} \stackrel{X}{\rightarrow} 0 .
$$

Then $H v_{i}=(\lambda-2(m-i)) v_{i}$ for all $i$. The action of $X$ on $v_{i}$ is recovered from the relations $X v_{m}=0$ and $X Y=Y X+H$ as follows:

$$
\begin{aligned}
X v_{m} & =0 \\
X v_{m-1} & =X Y v_{m}=Y X v_{m}+H v_{m}=\lambda v_{m} \\
X v_{m-2} & =X Y v_{m-1}=Y X v_{m-1}+H v_{m-1}=(2 \lambda-2) v_{m-1} \\
X v_{m-3} & =X Y v_{m-2}=Y X v_{m-2}+H v_{m-2}=(3 \lambda-(2+4)) v_{m-2}, \\
& \ldots \\
X v_{m-k} & =X Y v_{m-k+1}=Y X v_{m-k+1}+H v_{m-k+1} \\
& =(k \lambda-(2+4+\cdots+2(k-1))) v_{m-k+1}=k(\lambda-k+1) v_{m-k+1} \\
& \cdots \\
X v_{0} & =m(\lambda-m+1) v_{1}
\end{aligned}
$$

The next step leads to the zero vector

$$
0=X Y v_{0}=Y X v_{0}+H v_{0}=(m+1)(\lambda-m) v_{0}
$$

and forces $\lambda=m$. Therefore, the operators $X, Y, H$ act on the vectors $v_{i}$ by the rules

$$
X\left(v_{k}\right)=(m-k)(k+1) v_{k+1}, \quad Y\left(v_{k}\right)=v_{k-1}, \quad H\left(v_{k}\right)=(2 k-m) v_{k}
$$

Formula (8.7) shows that the map $v_{k} \mapsto e_{k} / k!=x^{k} y^{n-k} / k!$ identifies the linear span of vectors $v_{k}$ with the standard module $V_{m}$ from Example 8.2.

Theorem 8.1 The simple finite-dimensional $\mathfrak{s l}_{2}$-modules over a field $\mathbb{k}$ of characteristic zero are exhausted (up to isomorphism) by the standard modules $V_{n}$ from Example 8.2.
Proof Let $\overline{\mathbb{k}} \subset \mathbb{k}$ be the algebraic closure ${ }^{2}$ of the field $\mathbb{k}$. The tensor product of vector spaces $\bar{V}=\overline{\mathbb{k}} \otimes V$ over $\mathbb{k}$ is a vector over $\overline{\mathbb{k}}$ with the action of $\overline{\mathbb{k}}$ by the rule ${ }^{3}$ $\lambda \cdot(\mu \otimes v) \stackrel{\text { def }}{=}(\lambda \mu) \otimes v$. Every $\mathbb{k}$-linear map $F: V \rightarrow V$ can be extended to a $\bar{k}$-linear $\operatorname{map} \bar{F} \stackrel{\text { def }}{=} \mathrm{Id} \otimes F: \bar{V} \rightarrow \bar{V}$.
Exercise 8.8 For every basis $e_{1}, e_{2}, \ldots, e_{n}$ of $V$ over $\mathbb{k}$, verify that the vectors $\bar{e}_{p}=1 \otimes e_{p}$ form a basis of $\bar{V}$ over $\overline{\mathbb{k}}$, and the matrix of $\bar{F}$ in this basis coincides with the matrix of $F$ in the basis $e_{1}, e_{2}, \ldots, e_{n}$.
If a vector space $V$ is an $\mathfrak{s l}_{2}$-module, then the operators $\bar{X}, \bar{Y}, \bar{H}$ provide $\bar{V}$ with an $\mathfrak{s l}_{2}$-module structure extending that on $V$. By the previous two lemmas, the operator $\bar{H}$ has an integer eigenvalue $m \in \operatorname{Spec} \bar{H}$. By Exercise 8.8 , Spec $H=\operatorname{Spec} \bar{H} \cap \mathbb{k}$. Hence, there exists a nonzero eigenvector of $H$ in $V$ as well. The arguments from the proof of Lemma 8.2 show that $V$ possesses a primitive vector. By Lemma 8.3, it spans a standard simple $\mathfrak{s l}_{2}$-submodule of $V$, which must coincide with $V$, because $V$ is simple.
Example 8.3 (Isomorphism $V_{n}^{*} \xrightarrow{\sim} V_{n}$ ) Let $V_{n}^{*}$ be the dual $\mathfrak{s l}_{2}$-module to the standard irreducible $\mathfrak{s l}_{2}$-module $V_{n}$, and suppose that the vectors $e_{k}^{*} \in V_{n}^{*}$ form the dual basis to the standard basis $e_{k}=x^{k} y^{n-k}$ in $V_{n}$. In accordance with formula (8.2) on p .175 and formula (8.7) on p.177, the operators $X, Y, Z$ act in $V_{n}^{*}$ by the rules

$$
X\left(e_{k}^{*}\right)=-(n-k+1) e_{k-1}^{*}, \quad Y\left(e_{k}^{*}\right)=-(k+1) e_{k+1}^{*}, \quad H\left(e_{k}^{*}\right)=-(2 k-n) e_{k}^{*}
$$

Hence, the $\mathfrak{s l}_{2}$-module $V_{n}^{*}$ has the same weights $-n,-n-2, \ldots, n-2, n$ as $V_{n}$. Therefore, $V_{n}^{*} \simeq V_{n}$, and by Schur's lemma, such an isomorphism is unique up to proportionality.

### 8.3 Semisimplicity of Finite-Dimensional $\mathfrak{s l}_{\mathbf{2}}$-Modules

Associated with every element $F$ of a Lie algebra $\mathfrak{g}$ is the linear endomorphism

$$
\operatorname{ad}_{F}: \mathfrak{g} \rightarrow \mathfrak{g}, \quad X \mapsto[F, X] .
$$

Sending every $F \in \mathfrak{g}$ to $\operatorname{ad}_{F} \in \operatorname{End}_{\mathfrak{k}}(\mathfrak{g})$ leads to the adjoint representation

$$
\mathrm{ad}: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})
$$

[^90]Exercise 8.9 Verify that $\operatorname{ad}_{[X, Y]}=\left[\operatorname{ad}_{X}\right.$, ad $\left._{Y}\right]$ for all $X, Y \in \mathfrak{g}$.
The adjoint representation of $\mathfrak{g}$ allows us to equip the vector space $\operatorname{End}_{\mathfrak{k}}(\mathfrak{g})$ with the structure of a $\mathfrak{g}$-module in which the action of an element $F \in \mathfrak{g}$ on an endomorphism $\varphi: \mathfrak{g} \rightarrow \mathfrak{g}$ is given by the formula

$$
\begin{equation*}
F \varphi \stackrel{\text { def }}{=}\left[\mathrm{ad}_{F}, \varphi\right] \tag{8.8}
\end{equation*}
$$

where the bracket means the commutator of endomorphisms of $\mathfrak{g}$, i.e., the commutator in the associative algebra $\operatorname{End}_{\mathfrak{k}}(\mathfrak{g})$.
Exercise 8.10 Verify that $[X, Y] \varphi=X Y \varphi-Y X \varphi$ for all $X, Y \in \mathfrak{g}$ and all $\varphi \in \operatorname{End}(\mathfrak{g})$, where the bracket on the left-hand side means the Lie bracket in $\mathfrak{g}$.
Recall that the endomorphism algebra $\operatorname{End}(\mathfrak{g})$ is equipped with the inner product $(\varphi, \psi)=\operatorname{tr}(\varphi \psi)$. The restriction of this product to the image of the adjoint representation provides every Lie algebra $\mathfrak{g}$ with a symmetric bilinear form

$$
\begin{equation*}
(X, Y) \stackrel{\text { def }}{=} \operatorname{tr}\left(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}\right) \tag{8.9}
\end{equation*}
$$

called the Killing form on $\mathfrak{g}$.
Exercise 8.11 Verify that the Gram matrix of the Killing form on $\mathfrak{s l}_{2}$ in the standard basis ${ }^{4} X, Y, H$ is

$$
\left(\begin{array}{lll}
0 & 4 & 0 \\
4 & 0 & 0 \\
0 & 0 & 8
\end{array}\right)
$$

We conclude that the Killing form of the Lie algebra $\mathfrak{s l}_{2}$ is nondegenerate, and the basis of $\mathfrak{s l}_{2}$ dual to $X, Y, H$ with respect to the Killing form is formed by the elements

$$
X^{*}=\frac{1}{4} Y, \quad Y^{*}=\frac{1}{4} X, \quad H^{*}=\frac{1}{8} H
$$

The correlation map $\mathfrak{s l}_{2} \underset{\rightarrow}{ } \mathfrak{s l}_{2}^{*}$ provided by the Killing form takes an element $F \in \mathfrak{s l}_{2}$ to the linear form $Z \mapsto(F, Z)$. Write $\gamma: \mathfrak{s l}_{2}^{*} \xrightarrow{\sim} \mathfrak{s l}_{2}$ for the inverse isomorphism and extend it to the isomorphism

$$
\begin{equation*}
\gamma \otimes \mathrm{Id}: \mathfrak{s l}_{2}^{*} \otimes \mathfrak{s l}_{2} \simeq \operatorname{End}\left(\mathfrak{s l}_{2}\right) \leadsto \mathfrak{s l}_{2} \otimes \mathfrak{s l}_{2} \tag{8.10}
\end{equation*}
$$

which sends the identity endomorphism $\operatorname{Id}_{\mathfrak{S I}_{2}} \in \operatorname{End}\left(\mathfrak{s l}_{2}\right)$ to the Casimir tensor

$$
X^{*} \otimes X+Y^{*} \otimes Y+H^{*} \otimes H=\frac{1}{4}(X \otimes Y+Y \otimes X)+\frac{1}{8} H \otimes H
$$

[^91]We write $K \in \mathfrak{U}\left(\mathfrak{s l}_{2}\right)$ for the class of the Casimir tensor in the universal enveloping algebra of $\mathfrak{s l}_{2}$ and call it the Casimir element.

By the universal property of $\mathfrak{U}\left(\mathfrak{s l}_{2}\right)$, every linear representation $\varrho: \mathfrak{s l}_{2} \rightarrow \operatorname{End}(V)$ can be uniquely extended to a linear representation $\widetilde{\varrho}: \mathfrak{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}(V)$, which takes a class of the tensor $A \otimes B \in \mathfrak{s l}_{2} \otimes \mathfrak{s l}_{2}$ to the linear endomorphism $\varrho(A) \varrho(B) \in$ $\operatorname{End}(V)$. To simplify the notation, we omit the precise reference to the representation and denote the images of $X, Y, Z, K$ in $\operatorname{End}(V)$ by the same letters $X, Y, Z, K$, as we were doing before. Then the Casimir endomorphism of $V$ can be written as

$$
K=\frac{1}{4}(X Y+Y X)+\frac{1}{8} H^{2} .
$$

Exercise 8.12 Verify by direct computation that $K$ commutes with $X, Y, H$ and acts on the simple $\mathfrak{s l}_{2}$-module $V_{m}$ as multiplication by the rational scalar $\left(m^{2}+2 m\right) / 8$.

Exercise 8.13 Verify that for every linear representation $\varrho: \mathfrak{s l}_{2} \rightarrow \operatorname{End}(V)$, a homomorphism of $\mathfrak{S l}_{2}$-modules is provided by the composition of maps

$$
\operatorname{End}\left(\mathfrak{s l}_{2}\right) \xrightarrow{\gamma \otimes \mathrm{Id}} \mathfrak{s l}_{2} \otimes \mathfrak{s l}_{2} \rightarrow \mathfrak{U}\left(\mathfrak{s l}_{2}\right) \xrightarrow{\widetilde{\varrho}} \operatorname{End}(V),
$$

where the middle arrow is the restriction of the quotient map $T\left(\mathfrak{s l}_{2}\right) \rightarrow \mathfrak{U}\left(\mathfrak{s l}_{2}\right)$, and the $\mathfrak{s l}_{2}$-module structures on the left and right spaces are such that an element $F \in \mathfrak{s l}_{2}$ acts on $\varphi \in \operatorname{End}\left(\mathfrak{s l}_{2}\right)$ and $\psi \in \operatorname{End}(V)$ by the rules ${ }^{5} F \varphi \stackrel{\text { def }}{=}\left[\operatorname{ad}_{F}, \varphi\right]$ and $F \psi \stackrel{\text { def }}{=}[\varrho(F), \psi]$.
Note that Exercise 8.13 implies the first statement of Exercise 8.12 without any computation: since the identity $\operatorname{Id} \in \operatorname{End}\left(\mathfrak{s l}_{2}\right)$ commutes with all endomorphisms of $\mathfrak{s l}_{2}$, in particular with all elements $\operatorname{ad}_{F}$ for $F \in \mathfrak{s l}_{2}$, its image $K \in \operatorname{End}(V)$ commutes with all operators $\varrho(F)$, in particular with $X, Y, H$.

Lemma 8.4 Let $V$ be an $\mathfrak{s l}_{2}$-module and $U \subset V$ an $\mathfrak{s l}_{2}$-submodule of codimension 1 . Then there exists a trivial $\mathfrak{s l}_{2}$-submodule $L \simeq V_{0}$ in $V$ such that $V=U \oplus L$.

Proof Note that every 1 -dimensional $\mathfrak{s l}_{2}$-module $L$ is trivial, because the algebra $\operatorname{End}_{\mathfrak{k}}(L) \simeq \mathbb{k}$ is commutative and therefore $H=[X, Y]=0,2 X=[H, X]=0$, $2 Y=[Y, H]=0$ in $\operatorname{End}_{k}(L)$. In particular, the quotient module $V / U$ is trivial, i.e., the images of the operators $X, Y, H$ lie inside $U$. We construct a submodule $L \subset V$ complementary to $U$ by induction on $\operatorname{dim} U$.

If $\mathfrak{s l}_{2}$ annihilates $U$ (e.g., if $\operatorname{dim} U=1$ ), then the operators $H=X Y-Y X$, $X=(H X-X H) / 2, Y=(Y H-H Y) / 2$ annihilate the whole of $V$ by the previous remark, and therefore, we can take any subspace $L$ complementary to $U$.

[^92]If $U \simeq V_{m}$ is a nontrivial simple $\mathfrak{s l}_{2}$-module, then the operator

$$
\frac{8}{m^{2}+2 m} K: V \rightarrow U
$$

is $\mathfrak{s l}_{2}$-linear and acts on $U$ as the identity by Exercise 8.12. Thus, it provides $V$ with an $\mathfrak{s l}_{2}$-linear projector onto $U$, and therefore, $L=\operatorname{ker} K$ is the required submodule.

If $U$ is not simple and $W \subsetneq U$ is a nontrivial $\mathfrak{s l}_{2}$-submodule, then by the inductive hypothesis, the quotient module $V / W$ splits into a direct sum of $\mathfrak{s l}_{2}$-submodules $(V / W)=(U / W) \oplus L^{\prime}$, where $\operatorname{dim} L^{\prime}=1$. Then

$$
\widetilde{L}=\left\{v \in V \mid v(\bmod W) \in L^{\prime}\right\}
$$

is a proper $\mathfrak{s l}_{2}$-submodule of $V$ such that $\widetilde{L} \cap U=W$ and $\operatorname{dim}(\widetilde{L} / W)=1$. Thus, by the inductive hypothesis applied to the pair $W \subset \widetilde{L}$, there is a direct sum decomposition $\widetilde{L}=W \oplus L$, where $L \subset \widetilde{L}$ is a trivial 1-dimensional $\mathfrak{s l}_{2}$-submodule transversal to $U$.

Theorem 8.2 Every finite-dimensional $\mathfrak{s l}_{2}$-module $V$ is semisimple, i.e., splits into a direct sum of standard simple $\mathfrak{s l}_{2}$-modules $V_{m}$ from Example 8.2 on p. 176.

Proof Let $U \subset V$ be a proper nonzero $\mathfrak{s l}_{2}$-submodule. It is enough to show that there exists an $\mathfrak{s l}_{2}$-linear projector $\pi: V \rightarrow U$. The vector spaces

$$
\begin{aligned}
W & =\left\{\varphi: V \rightarrow U|\varphi|_{U}=\lambda \operatorname{Id}_{U} \text { for some } \lambda \in \mathbb{k}\right\}, \\
W^{\prime} & =\left\{\varphi \in W|\varphi|_{U}=0\right\},
\end{aligned}
$$

form a pair of $\mathfrak{s l}_{2}$-submodules $W^{\prime} \subset W$ in the $\mathfrak{s l}_{2}$-module $\operatorname{Hom}_{\mathfrak{k}}(V, U)$, and $\operatorname{codim}_{W} W^{\prime}=1$.
Exercise 8.14 Check this.
It follows from Lemma 8.4 applied to the pair $W^{\prime} \subset W$ that $W=W^{\prime} \oplus L$ for some trivial 1-dimensional $\mathfrak{s l}_{2}$-submodule $L \subset W$. Since every nonzero operator $\varphi \in L$ is $\mathfrak{s l}_{2}$-linear and acts on $U$ as scalar multiplication, there exists $\pi \in L$ acting identically on $U$.

Example 8.4 (Exterior Squares of Standard Simple Modules) Since the standard basis vector $e_{k}=x^{k} y^{n-k}$ in $V_{n}$ is an eigenvector of $H$ with eigenvalue $2 k-n$ for all $0 \leqslant k \leqslant n$, the products $e_{i j} \stackrel{\text { def }}{=} e_{i} \wedge e_{j}, 0 \leqslant i<j \leqslant n$, are weight vectors of the $\mathfrak{s l}_{2}$-module $\Lambda^{2} V_{n}$ with weights $2 i-n+2 j-n=2(i+j-n)$. Thus, the weights of $\Lambda^{2} V_{n}$ are $-2(n-1),-2(n-2), \ldots,-2,02, \ldots, 2(n-2), 2(n-1)$. For every $v=1,2, \ldots, n$, the multiplicity of each of the weights $\pm 2|n-v|$ is $[(v+1) / 2]$, the number of nonnegative integer solutions $(i, j), i<j$, of the equation $i+j=v$.

We conclude that the $\mathfrak{s l}_{2}$-isotypic decomposition of $\Lambda^{2} V_{n}$ is

$$
\begin{equation*}
\Lambda^{2} V_{n} \simeq V_{2 n-2} \oplus V_{2 n-6} \oplus V_{2 n-10} \oplus \cdots=\bigoplus_{s=0}^{[(n-1) / 2]} V_{2(n-2 s-1)} \tag{8.11}
\end{equation*}
$$

For example, $\Lambda^{2} V_{3} \simeq V_{4} \oplus V_{0}$. This means that there exists a skew-symmetric form $\omega$ on $V_{3}^{*}$, unique up to proportionality, such that $\omega(Z \varphi, \psi)+\omega(\varphi, Z \psi)=0$ for all $Z \in \mathfrak{s l}_{2}$ and $\varphi, \psi \in V_{3}^{*}$.
Exercise 8.15 Verify that every nonzero element of the second summand provides $\Lambda^{2} V_{3}$ with such a form, and conversely.
The right correlation map ${ }^{6} \omega: V_{3} \xrightarrow{\sim} V_{3}^{*}$ of $\omega$ is a skew-symmetric isomorphism ${ }^{7}$ of $\mathfrak{s l}_{2}$-modules. Its inverse map $\omega^{-1}: V_{3}^{*} \leadsto V_{3}$ coincides (up to proportionality) with the isomorphism from Example 8.3 on p. 179 for $n=3$.

## Problems for Independent Solution to Chapter 8

Problem 8.1 Show that in every finite-dimensional $\mathfrak{s l}_{2}$-module over a field of characteristic zero, $X, Y \in \mathfrak{s l}_{2}$ are represented by nilpotent operators and $H \in \mathfrak{s l}_{2}$ by a diagonalizable operator.
Problem 8.2 Show that on every Lie algebra $\mathfrak{g}$, the Killing form ${ }^{8}$

$$
(A, B)=\operatorname{tr}\left(\operatorname{ad}_{A} \circ \operatorname{ad}_{B}\right)
$$

satisfies the relation $([A, B], C)+(B,[A, C])=0$ for all $A, B, C \in \mathfrak{g}$.
Problem 8.3 Convince yourself that the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

[^93]form a basis of $\mathfrak{s l}_{2}(\mathbb{C})$ over $\mathbb{C}$, and compute: (a) their commutators, (b) the Gram matrix of the Killing form in this basis, (c) the dual basis $\sigma_{1}^{*}, \sigma_{2}^{*}, \sigma_{3}^{*}$ with respect to the Killing form, (d) the Casimir element $K$ in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
Problem 8.4 (Clebsch-Gordan Decomposition) Decompose $V_{m} \otimes V_{n}$ into a direct sum of standard simple $\mathfrak{s l}_{2}$-modules and indicate all $m, n$ such that this decomposition contains (a) $V_{0}$, (b) $V_{1}$.
Problem 8.5 Show that the $\mathfrak{s l}_{2}$-invariant isomorphism $V_{1} \xrightarrow{\sim} V_{1}^{*}$ is provided by the right correlation map ${ }^{9}$ of the skew-symmetric bilinear form det on $V_{1}$, which sends a degree-one polynomial $\beta(x, y)=b_{1} x+b_{2} y \in V_{1}$ to the linear functional
\[

\operatorname{det}(*, \beta): V_{1} \rightarrow \mathbb{k}, \quad \alpha(x, y)=a_{1} x+a_{2} y \mapsto \operatorname{det}(\alpha, \beta)=\operatorname{det}\left($$
\begin{array}{c}
a_{1} \\
b_{1} \\
a_{2}
\end{array}
$$ b_{2}\right) .
\]

Problem 8.6 Find the dimension of the space of all bilinear forms $\beta: V_{n} \times V_{n} \rightarrow \mathbb{k}$ such that $\beta(Z u, w)+\beta(u, Z w)=0$ for all $v, w \in V_{n}, Z \in \mathfrak{s l}_{2}$. Is there a nondegenerate (a) symmetric, (b) skew-symmetric, form in this space? Verify that the correlation map of every such form establishes an $\mathfrak{s l}_{2}$-invariant isomorphism ${ }^{10} V_{n} \xrightarrow{\leadsto} V_{n}^{*}$. How does it interact with the $n$th symmetric power of the isomorphism $V_{1} \xrightarrow{\sim} V_{1}^{*}$ from the previous problem?
Problem 8.7 Find all nonnegative integers $m, n, k$ such that there exists an $\mathfrak{s l}_{2}$-invariant linear map $\varepsilon_{m n}^{k}: V_{m} \otimes V_{n} \rightarrow V_{k}$. For all these $m, n, k$, find the dimension of the space of such maps.
Problem 8.8 Let the elements $F \in \mathfrak{s l}_{2}$ act on $W=\operatorname{End}_{\mathfrak{k}}\left(V_{1}\right)$ by the rule

$$
F: \varphi \mapsto[F, \varphi] .
$$

Find the isotypic decompositions of $W, W^{\otimes 2}, S^{2} W$, and $\Lambda^{2} W$.
Problem 8.9 Show that $S^{n} V_{2}=\bigoplus_{i=0}^{[n / 2]} V_{2 n-4 i}$.
Problem 8.10 Let $\mathbb{P}_{1}=\mathbb{P}\left(V_{1}\right), \mathbb{P}_{2}=\mathbb{P}\left(V_{2}\right)=\mathbb{P}\left(S^{2} V_{1}\right)$, and let $C_{2} \subset \mathbb{P}_{2}$ be the Veronese conic, ${ }^{11}$ that is, the image of the quadratic Veronese embedding

$$
\mathbb{P}_{1} \hookrightarrow \mathbb{P}_{2}, \alpha(x, y) \mapsto \alpha^{2}(x, y) .
$$

Use the $\mathfrak{s l}_{2}$-invariant isomorphism $V_{2} \xrightarrow{\rightarrow} V_{2}^{*}$ provided by Problem 8.6 and the induced isomorphisms $S^{n} V_{2} \xrightarrow{\rightarrow} S^{n} V_{2}^{*}$ to establish the following geometric interpretations of $\mathfrak{s l}_{2}$-isotypic decomposition from Problem 8.9 for $n=2,3$.

[^94](a) Show that the action of $\mathfrak{s l}_{2}$ on $S^{2} V_{2} \simeq S^{2} V_{2}^{*}$ annihilates the equation of the Veronese conic. Verify that the first summand in the decomposition
$$
S^{2} V_{2}^{*} \simeq S^{0} V_{1}^{*} \oplus S^{4} V_{1}^{*}
$$
is spanned by the equation of $C_{2}$ and that the second summand is linearly generated by the squares of linear forms determining the tangent lines to $C_{2}$.
(b) Show that the first summand in the decomposition $S^{3} V_{2}^{*} \simeq S^{2} V_{1}^{*} \oplus S^{6} V_{1}^{*}$ consists of the cubic curves on $\mathbb{P}_{2}=\mathbb{P}\left(V_{2}\right)$ splitting into a union of $C_{2}$ and some line, and the isomorphism between the space of such cubics and $S^{2} V_{1}^{*}$ maps the equation of such a cubic to the quotient formed by dividing it by the equation of $C_{2}$, i.e., to the equation of the corresponding line. Also, show that the $\mathfrak{s l}_{2}$-invariant projection onto the second summand is provided by the evaluation map that sends a cubic polynomial $f$ on $S^{2} V_{1}$ to the degree-six polynomial on $V_{1}$ whose value on a vector $v \in V_{1}$ is $f\left(v^{2}\right)$.

Problem 8.11 Under the notation of the previous problem, let

$$
\mathbb{P}_{3}=\mathbb{P}\left(V_{3}\right)=\mathbb{P}\left(S^{3} V_{1}\right)
$$

and let $C_{3} \subset \mathbb{P}_{3}$ be the Veronese cubic, ${ }^{12}$ that is, the image of the cubic Veronese embedding $\mathbb{P}_{1} \hookrightarrow \mathbb{P}_{3}, \alpha(x, y) \mapsto \alpha^{3}(x, y)$. Establish the $\mathfrak{s l}_{2}$-isotypic decomposition $S^{2} V_{3}^{*} \simeq S^{2} V_{1}^{*} \oplus S^{6} V_{1}^{*}$ and verify that:
(a) The first summand $S^{2} V_{1}^{*} \subset S^{2} V_{3}^{*}$ consists of all quadrics on $\mathbb{P}_{3}$ containing the Veronese cubic.
(b) The second summand $S^{6} V_{1}^{*} \subset S^{2} V_{3}^{*}$ is spanned by the squares of linear forms determining the osculating planes ${ }^{13}$ of the Veronese cubic.
(c) The $\mathfrak{s l}_{2}$-invariant projection $S^{2} V_{3}^{*} \rightarrow S^{6} V_{1}^{*}$ is provided by the evaluation map sending a quadratic form $q$ on $S^{3} V_{1}$ to the degree-six polynomial on $V_{1}$ whose value on a vector $v \in V_{1}$ is $q\left(v^{3}\right)$.
(d) The $\mathfrak{s l}_{2}$-invariant projection $S^{2} V_{3}^{*} \rightarrow S^{2} V_{1}^{*}$, considered as a quadratic map $V_{3} \rightarrow V_{2}$, sends a cubic polynomial $f(x, y) \in V_{2}$ to its Hessian

$$
\operatorname{Hes}_{f}(x, y) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right) .
$$

Problem 8.12 In the notation of the previous problem, show that the map $\mathbb{P}_{3} \xrightarrow{\rightarrow} \mathbb{P}_{3}^{\times}$ provided by the projectivization of the skew-symmetric isomorphism $V_{3} \xrightarrow{\sim} V_{3}^{*}$

[^95]from Example 8.4 sends each point of the Veronese cubic $C_{3} \subset \mathbb{P}_{3}$ to the osculating plane ${ }^{14}$ of $C_{3}$ at this point.
Problem 8.13 Show that $S^{3} V_{3}^{*} \simeq S^{3} V^{*} \oplus S^{5} V^{*} \oplus S^{9} V^{*}$, where the first summand is spanned by the equations of cones over the Veronese cubic with vertices at arbitrary points of $\mathbb{P}_{3}$, the sum of the first two factors consists of all cubic surfaces containing the Veronese cubic, and the projection onto the third summand is given by the evaluation map sending a cubic form $f$ on $S^{3} V_{1}$ to the degree-nine polynomial on $V_{1}$ whose value on a vector $v \in V_{1}$ is $f\left(v^{3}\right)$. Try to give an explicit description of the $\mathfrak{s l}_{2}$-invariant projection $S^{3} V_{3}^{*} \rightarrow S^{5} V^{*}$.
Problem 8.14 Describe the $\mathfrak{s l}_{2}$-isotypic decomposition for $S^{4} V_{3}^{*}$. In particular, show that the surface formed by tangent lines to the Veronese cubic has degree 4 and spans the trivial component of $S^{4} V_{3}^{*}$.
Problem 8.15 Show that $S^{2} V_{4} \simeq S^{0} V_{1} \oplus S^{4} V_{1} \oplus S^{8} V_{1}$, where the first summand is spanned by the unique quadric containing all tangent lines to the Veronese quartic curve $C_{4} \subset \mathbb{P}_{4}=\mathbb{P}\left(V_{4}\right)$, and the first two summands form the space of all quadrics containing the Veronese quartic. Describe explicitly the $\mathfrak{s l}_{2}$-invariant projections of $S^{2} V_{4}^{*}$ onto the last two summands.
Problem 8.16 Show that ${ }^{15} S^{2} V_{n}=\bigoplus_{i=0}^{[n / 2]} V_{2 n-4 i}$, where for every $k \geqslant 0$, the subsum $\bigoplus_{i>k} V_{2 n-4 i}$ is formed by the quadrics containing all osculating subspaces of dimension $k$ to the $n$ th-degree Veronese curve $C_{n} \subset \mathbb{P}_{n}=\mathbb{P}\left(V_{n}\right)$.
Problem 8.17 Describe explicitly the $\mathfrak{s l}_{2}$-invariant projection $\Lambda^{2} V_{n} \rightarrow V_{2 n-2}$ in the isotypic decomposition from formula (8.11) on p. 183.
Problem 8.18* (Hermite Reciprocity) Prove that for all $m, n \in \mathbb{N}$, one has $S^{m} V_{n} \simeq S^{n} V_{m}$ as $\mathfrak{s l}_{2}$-modules.
Problem 8.19* Prove that $\Lambda^{m} V_{n} \simeq S^{m} V_{n+1-m}$ as $\mathfrak{s l}_{2}$-modules.

[^96]
## Chapter 9 <br> Categories and Functors

### 9.1 Categories

### 9.1.1 Objects and Morphisms

A category $\mathcal{C}$ is formed by a class ${ }^{1}$ of objects $\mathrm{Ob} \mathcal{C}$ and a class of disjoint sets $\operatorname{Hom}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(X, Y)$, one set for each ordered pair of objects $X, Y \in \mathrm{Ob} \mathcal{C}$. Elements of the set $\operatorname{Hom}_{C}(X, Y)$ are called morphisms from $X$ to $Y$ in the category $C$. We will depict them by arrows $\varphi: X \rightarrow Y$ and refer to the objects $X, Y$ as the source (or domain) and target (or codomain) of $\varphi$ respectively. Morphisms $\varphi, \psi \in \operatorname{Mor} C$ are called composable if the source of $\varphi$ coincides with the target of $\psi$. For every ordered triple of objects $X, Y, Z \in \mathrm{Ob} \mathcal{C}$, the composition map

$$
\begin{equation*}
\operatorname{Hom}(Y, Z) \times \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(X, Z), \quad(\varphi, \psi) \mapsto \varphi \circ \psi, \tag{9.1}
\end{equation*}
$$

is defined. It is associative, meaning that $(\eta \circ \varphi) \circ \psi=\eta \circ(\varphi \circ \psi)$ for all composable pairs $\eta, \varphi$ and $\varphi, \psi$. Finally, for every $X \in \mathrm{Ob} \mathcal{C}$, there exists an identity endomorphism

$$
\operatorname{Id}_{X} \in \operatorname{End}_{C}(X) \stackrel{\operatorname{def}}{=} \operatorname{Hom}_{\mathcal{C}}(X, X)
$$

[^97]such that $\varphi \circ \operatorname{Id}_{X}=\varphi$ and $\operatorname{Id}_{X} \circ \psi=\psi$ for all morphisms $\varphi: X \rightarrow Y, \psi: Z \rightarrow X$ in $\mathcal{C}$. It is actually unique for every $X \in \mathrm{Ob} \mathcal{C}$, because $\mathrm{Id}_{X}^{\prime}=\mathrm{Id}_{X}^{\prime} \circ \mathrm{Id}_{X}^{\prime \prime}=\mathrm{Id}_{X}^{\prime \prime}$ for every two such endomorphisms $\mathrm{Id}_{X}^{\prime}, \mathrm{Id}_{X}^{\prime \prime} \in \operatorname{Hom}(X, X)$.

A subcategory $\mathcal{D} \subset \mathcal{C}$ is a category with $\mathrm{Ob} \mathcal{D} \subset \mathrm{Ob} \mathcal{C}$ and

$$
\operatorname{Hom}_{\mathcal{D}}(X, Y) \subset \operatorname{Hom}_{\mathcal{C}}(X, Y) \text { for all } X, Y \in \operatorname{Ob} \mathcal{D}
$$

such that the compositions and identity endomorphisms of $\mathcal{D}$ coincide with those in $\mathcal{C}$. A subcategory $\mathcal{D} \subset \mathcal{C}$ is called full if

$$
\operatorname{Hom}_{\mathcal{D}}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(X, Y) \text { for all } X, Y \in \operatorname{Ob} \mathcal{D}
$$

The disjoint union $\operatorname{Mor} C \stackrel{\text { def }}{=} \bigsqcup_{X, Y} \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is called the class of morphisms of the category $\mathcal{C}$. We will often say an "arrow of $\mathcal{C}$ " instead of an "element of Mor $\mathcal{C}$," and write $\varphi \psi$ instead of $\varphi \circ \psi$ for the composition of arrows.

A category $\mathcal{C}$ is called small if $\mathrm{Ob} \mathcal{C}$ is a set, not a larger class. In this case, Mor $\mathcal{C}$ is a set as well.

Example 9.1 (Nonsmall Categories) The following nonsmall categories are commonly used in practice: the category of all sets Set and all maps between them; the category of topological spaces $\mathcal{T}_{o p}$ and continuous maps between them; the category $\mathcal{V} e c_{k}$ of all vector spaces over a field $\mathbb{k}$ and $\mathbb{k}$-linear maps between them, and its full subcategory $v e c_{\mathrm{k}}$ formed by the finite-dimensional vector spaces; the categories $R-\mathcal{M o d}$ and $\mathcal{M o d}$ - $R$ of the left and right modules over a ring $R$ and $R$-linear maps between them; the full subcategories $R$-mod $\subset R$ - $\mathcal{M o d}$, and $\bmod -R \subset \mathcal{M o d}-R$ of finitely presented ${ }^{2}$ modules. The category of abelian groups $\mathcal{A} b=\mathbb{Z}-\mathcal{M o d}$ and their homomorphisms. The category $\mathcal{C} r p$ of all groups and group homomorphisms. The category of commutative rings with unit Cmr and the ring homomorphisms sending the unit to the unit. All these categories are subcategories of Set, and all but Set are not full in Set.
Example 9.2 (Posets and Topologies) Every poset ${ }^{3} M$ can be considered a small category whose objects are the elements $m \in M$ and whose arrows are the inequalities in $M$, i.e.,

$$
\operatorname{Hom}_{M}(n, m)=\left\{\begin{array}{l}
\text { one element for } n \leqslant m \\
\varnothing \text { otherwise }
\end{array}\right.
$$

The composition of arrows $k \leqslant \ell$ and $\ell \leqslant n$ is the arrow $k \leqslant n$. The associativity and existence of the identity endomorphisms can be rephrased as the transitivity and reflexivity of the partial order.

[^98]An important example of such a category is the category $\mathcal{V}(X)$ of all open sets of a topological space ${ }^{4} X$. The arrows in $\mathcal{V}(X)$ are the inclusions of open sets

$$
\operatorname{Hom}_{\mathcal{U}(X)}(U, W)= \begin{cases}\text { the inclusion } U \hookrightarrow W & \text { for } U \subseteq W \\ \varnothing & \text { for } U \nsubseteq W\end{cases}
$$

Example 9.3 (Small Categories Versus Associative Algebras) Every associative algebra $A$ with unit $e \in A$ over a commutative ring $K$ can be viewed as a small category with just one object $e$ and the set of morphisms $\operatorname{Hom}(e, e)=A$, where the composition is the multiplication in $A$. Conversely, associated with every small category $\mathcal{C}$ and commutative ring $K$ is the associative $K$-algebra of arrows ${ }^{5} K[\mathcal{C}]$, the free $K$-module with basis Mor $\mathcal{C}$ and the $K$-bilinear multiplication defined on the basis vectors by the assignment

$$
\varphi \psi \stackrel{\text { def }}{=} \begin{cases}\varphi \circ \psi & \text { for composable } \varphi, \psi, \\ 0 & \text { otherwise }\end{cases}
$$

For example, if $\mathcal{C}$ consists of just one object whose endomorphisms form a group $G$, then $K[G]$ becomes the group algebra of $G$ with coefficients in $K$. In the general case, the algebra $K[C]$ can be thought of as the algebra of finitely supported matrices whose rows and columns are numbered by the objects of $\mathcal{C}$. The only elements allowed in the $(Y, X)$-entry of such a matrix are the finite formal linear combinations of arrows $\varphi: X \rightarrow Y$ with coefficients in $K$, and all but a finite number of entries in every matrix vanish. In general, this algebra is noncommutative. If $\mathrm{Ob} \mathcal{C}$ is infinite, there is no unit element in $K[C]$; however, for every $f \in K[C]$, there exists an idempotent element $e_{f}=e_{f}^{2}$ in $K[\mathcal{C}]$ such that $e_{f} \circ f=f \circ e_{f}=f$. For example, one can define $e_{f}$ to be the sum of the identity endomorphisms $\mathrm{Id}_{X}$ taken over all $X \in \mathrm{Ob} \mathcal{C}$ appearing as sources or targets of the $\varphi \in \operatorname{Mor} \mathcal{C}$ that appear in $f$ with nonzero coefficients.

### 9.1.2 Mono-, Epi-, and Isomorphisms

An arrow $\varphi$ in a category $\mathcal{C}$ is called injective or a monomorphism if it is left cancellable, that is, if $\varphi \alpha=\varphi \beta \Rightarrow \alpha=\beta$ for all $\alpha, \beta \in \operatorname{Mor} \mathcal{C}$ composable with $\varphi$ from the right. Symmetrically, $\varphi$ is called surjective or an epimorphism if it

[^99]is right cancellable, i.e., if $\alpha \varphi=\beta \varphi \Rightarrow \alpha=\beta$. A morphism $\varphi: X \rightarrow Y$ is called invertible or an isomorphism if there exists an arrow $\psi: Y \rightarrow X$ such that $\varphi \psi=\mathrm{Id}_{Y}$ and $\psi \varphi=\mathrm{Id}_{X}$. In this case, the objects $X, Y$ are called isomorphic, and morphisms $\varphi, \psi$ are called inverses of each other.

Example 9.4 (Combinatorial Simplices) Write $\Delta_{\text {big }}$ for the category of finite totally ordered sets with the order-preserving maps ${ }^{6}$ between them, and $\Delta \subset \Delta_{\text {big }}$ for its small full subcategory, called the simplicial category, formed by the sets

$$
\begin{equation*}
[n] \stackrel{\text { def }}{=}\{0,1, \ldots, n\}, \quad n \geqslant 0 \tag{9.2}
\end{equation*}
$$

equipped with the standard orderings. The set $[n]$ is called the combinatorial $n$-simplex. Though the whole category $\Delta_{\text {big }}$ is not small, every object $X \in \mathrm{Ob} \Delta_{\text {big }}$ admits a unique isomorphism $\eta_{X}: X \xrightarrow{\sim}\left[n_{X}\right]$ with the unique combinatorial simplex $\left[n_{X}\right] \in \mathrm{Ob} \Delta$, namely, the numbering of elements in $X$ by $0,1, \ldots, n_{X}$, where $n_{X}=|X|-1$, in the increasing order.

Exercise 9.1 Find the cardinality of the set $\operatorname{Hom}_{\Delta}([n],[m])$ for all $n, m$. How many injective and surjective maps, expressed as a function of $n$ and $m$, are there in $\operatorname{Hom}_{\Delta}([n],[m])$ ?

Exercise 9.2 Prove that the algebra $\mathbb{Z}[\Delta]$ is generated by the arrows

$$
\begin{array}{rlrl}
e_{n} & =\operatorname{Id}_{[n]}, & & \text { the identity map }, \\
\partial_{n}^{(i)}:[n-1] \hookrightarrow[n], & & \text { the injection such that } i \notin \operatorname{im} \partial_{n}^{(i)}, \\
s_{n}^{(i)}:[n+1] & \longrightarrow[n], & & \text { the surjection such that } s_{n}^{(i)}(i)=s_{n}^{(i)}(i+1), \tag{9.5}
\end{array}
$$

and indicate some generators for the ideal of relations between these arrows.

### 9.1.3 Reversing of Arrows

Associated with every category $\mathcal{C}$ is its opposite category $\mathcal{C}^{\mathrm{opp}}$ with the same class of objects and reversed arrows:

$$
\mathrm{Ob} \mathcal{C}^{\mathrm{opp}}=\mathrm{Ob} \mathcal{C}, \quad \operatorname{Hom}_{\mathcal{C}}^{\mathrm{opp}}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(Y, X), \quad \varphi^{\mathrm{opp}} \circ \psi^{\mathrm{opp}}=(\psi \circ \varphi)^{\mathrm{opp}}
$$

In the language of associative algebras, the reversing of arrows means the replacement of the algebra of arrows $C=K[C]$ by its opposite algebra $C^{\text {opp }}$, which consists of the same elements multiplied in the reverse order: the product $\varphi_{1} \varphi_{2} \cdots \varphi_{s}$ in $C^{\mathrm{opp}}$ means the product $\varphi_{s} \varphi_{s-1} \cdots \varphi_{1}$ in $C$.

[^100]
### 9.2 Functors

### 9.2.1 Covariant Functors

A functor ${ }^{7} F: \mathcal{C} \rightarrow \mathcal{D}$ from a category $\mathcal{C}$ to a category $\mathcal{D}$ is a map of classes $\mathrm{Ob} \mathcal{C} \rightarrow \mathrm{Ob} \mathcal{D}, X \mapsto F(X)$, together with a class of maps ${ }^{8}$ of sets

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)), \quad \varphi \mapsto F(\varphi), \tag{9.6}
\end{equation*}
$$

such that $F\left(\operatorname{Id}_{X}\right)=\operatorname{Id}_{F(X)}$ for all $X \in \mathrm{Ob} \mathcal{C}$ and $F(\varphi \circ \psi)=F(\varphi) \circ F(\psi)$ for all composable arrows $\varphi, \psi \in \operatorname{Mor} \mathcal{C}$. In the language of associative algebras, the functors are the homomorphisms between the algebras of arrows. A functor $F$ is called full if all the maps (9.6) are surjective. The image of a full functor is a full subcategory in $\mathcal{D}$. If all the maps (9.6) are injective, the functor $F$ is called faithful. In terms of algebras, the faithful functors give the injective homomorphisms between the algebras of arrows. A functor is called fully faithful if it is simultaneously full and faithful.

The simplest examples of functors are provided by the identity endofunctor ${ }^{9}$ $\operatorname{Id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$, which acts as the identity map on both the objects and arrows, and by the forgetful functors acting from categories of sets equipped with some extra structures ${ }^{10}$ and morphisms respecting the structure to the category Set. A forgetful functor just forgets the extra structure: it sends every object to its underlaying set and acts identically on the arrows. Such a functor is not full as soon there are some maps between underlying sets that do not respect the structure, and it is not faithful if there exist distinct morphisms of structures with identical action on the underlaying sets.

Example 9.5 (Geometric Realization of Combinatorial Simplices) The geometric realization functor from the simplicial category to the category of topological spaces $\Delta \rightarrow \mathcal{T}$ op, $[n] \mapsto \Delta^{n}$, sends every combinatorial $n$-simplex to the regular $n$-simplex

$$
\begin{equation*}
\Delta^{n}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum x_{v}=1, x_{v} \geqslant 0\right\} \tag{9.7}
\end{equation*}
$$

the convex hull of heads of the standard basis vectors $e_{0}, e_{1}, \ldots, e_{n}$ in $\mathbb{R}^{n+1}$. Under the geometric realization, an order-preserving $\operatorname{map} \varphi:[n] \rightarrow[m]$ goes to the unique affine map $\varphi_{*}: \Delta^{n} \rightarrow \Delta^{m}$ acting on the basis vectors by the rule $e_{\nu} \mapsto e_{\varphi(\nu)}$. The geometric realization is faithful but not full. Under the geometric realization, the generating elements (9.4), (9.5) of the algebra $\mathbb{Z}[\Delta]$ go respectively to the inclusion of the ith hyperface $\Delta^{(n-1)} \hookrightarrow \Delta^{n}$, which identifies $\Delta^{(n-1)}$ with the convex hull

[^101]of all but the $i$ th vertices of $\Delta^{n}$, and to the degeneration along the ith edge, which projects $\Delta^{n}$ onto $\Delta^{(n-1)}$ by contracting the edge $[i, i+1]$ to the $i$ th vertex of $\Delta^{(n-1)}$.

### 9.2.2 Presheaves

A functor $F: \mathcal{C}^{\mathrm{opp}} \rightarrow \mathcal{D}$ is called a contravariant functor from $\mathcal{C}$ to $\mathcal{D}$ or a presheaf of objects of the category $\mathcal{D}$ on the category $\mathcal{C}$. Such a functor inverts the order of arrows in compositions, $F(\varphi \circ \psi)=F(\psi) \circ F(\varphi)$ for all composable $\varphi, \psi \in \operatorname{Mor} \mathcal{C}$. In the language of associative algebras, the presheaves are the antihomomorphisms between the path algebras.

Example 9.6 (Triangulated Spaces) Write $\Delta_{\mathrm{s}} \subset \Delta$ for the nonfull subcategory formed by the same objects $[n], n \in \mathbb{N}$, like the simplicial category $\Delta$ but with only the strictly increasing ${ }^{11}$ maps $\varphi:[n] \rightarrow[m]$ allowed as morphisms. The category $\Delta_{\mathrm{s}}$ is called the semisimplicial category.
Exercise 9.3 Verify that the algebra $\mathbb{Z}\left[\Delta_{\mathrm{s}}\right]$ is generated by the identity endomorphisms $e_{n}=\operatorname{Id}_{[n]}$ and the inclusions of hyperfaces $\partial_{n}^{(i)}$ from (9.4).
A presheaf of sets $X: \Delta_{\mathrm{s}}^{\mathrm{opp}} \rightarrow$ Set on the semisimplicial category $\Delta_{\mathrm{s}}$ is called a semisimplicial set. Such a presheaf is nothing but the explicit combinatorial description for some triangulated topological space denoted by $|X|$ and called the geometric realization of the semisimplicial set $X$. Namely, for every nonnegative integer $n$, the functor $X$ assigns the set $X_{n}=X([n])$, whose points can be viewed as disjoint $n$-dimensional regular simplices $\Delta_{x}^{n}, x \in X_{n}$, from which the space $|X|$ will be glued. The arrows $\varphi:[n] \rightarrow[m]$ of the category $\Delta_{\mathrm{s}}$ are in bijection with the $n$-dimensional faces of the $m$-dimensional regular simplex $\Delta^{m}$. For every such face $\varphi$, the functor $X$ assigns the map $\varphi^{*}=X(\varphi): X_{m} \rightarrow X_{n}$, which provides $X$ with the following gluing rule: for every $m$-simplex $\Delta_{x}^{m}, x \in X_{m}$, the $n$-simplex $\Delta_{y}^{m}$ with $y=\varphi^{*}(x) \in X_{n}$ is glued to $\Delta_{x}^{m}$ as the $\varphi$ th $n$-dimensional face.

For example, shown in Fig. 9.1 is the triangulation of 2-dimensional torus by one 0 -simplex, three 1 -simplices, and two 2 -simplices, where the arrows show inequalities between the vertices as in Example 9.2 on p. 188. The vertical edges $e_{2}$ in Fig. 9.2 are glued together into the meridian circle of the torus in Fig. 9.1; the horizontal edges $e_{1}$ are glued into the exterior equator of the torus. The corresponding semisimplicial set has $X_{0}=\{v\}, X_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}, X_{2}=\left\{f_{1}, f_{2}\right\}$, and $X_{i}=\varnothing$ for all $i \geqslant 3$. The maps $X(\varphi)$ act as follows:

$$
\begin{aligned}
& X\left(\partial_{1}^{0}\right)=X\left(\partial_{1}^{1}\right): X_{1} \rightarrow X_{0}, \quad e_{i} \mapsto v \text { for all } i=1,2,3, \\
& X\left(\partial_{2}^{0}\right): X_{2} \rightarrow X_{1}, \quad f_{1} \mapsto e_{1}, f_{2} \mapsto e_{2}, \\
& X\left(\partial_{2}^{1}\right): X_{2} \rightarrow X_{1}, \quad f_{1} \mapsto e_{3}, f_{2} \mapsto e_{3}, \\
& X\left(\partial_{2}^{2}\right): X_{2} \rightarrow X_{1}, \quad f_{1} \mapsto e_{2}, f_{2} \mapsto e_{1} .
\end{aligned}
$$

[^102]

Fig. 9.1 Triangulated torus


Fig. 9.2 The simplices of the triangulation

Exercise 9.4 Is there a triangulation of the circle $S^{1}$ by (a) three 0 -simplices and three 1 -simplices? ${ }^{12}$ (b) one 0 -simplex and one 1 -simplex? Is there a triangulation of 2 -sphere $S^{2}$ by (c) four 0 -simplices, six 1 -simplices, and four 2 -simplices? (d) two 0 -simplices, one 1 -simplex, and one 2 -simplex? If such a triangulation exists, explicitly describe all its maps $X(\varphi)$; if not, explain why.

Example 9.7 (Simplicial Sets) A presheaf of sets $X: \Delta^{\mathrm{opp}} \rightarrow$ Set on the whole simplicial category is called a simplicial set. Every simplicial set $X$ also possesses the geometric realization $|X|$ glued from regular simplices $\Delta_{x}^{n}, x \in X_{n}$, in accordance with the maps $\varphi^{*}=X(\varphi): X_{m} \rightarrow X_{n}$ attached by the functor $X$ to all the orderpreserving maps $\varphi \in \operatorname{Hom}_{\Delta}([n],[m])$. Namely, for every $x \in X_{m}$ and every

$$
\varphi:[n] \rightarrow[m],
$$

every point $s \in \Delta_{\varphi^{*}(x)}^{n}$ is glued to the point $\varphi_{*}(s) \in \Delta_{x}^{m}$, where $\varphi_{*}: \Delta^{n} \rightarrow \Delta^{m}$ is the affine map of simplices acting on the vertices by means of $\varphi$. Formally, the result of this gluing procedure is described in topology as the quotient space of the

[^103]topological direct product ${ }^{13} \prod_{n \geqslant 0} X_{n} \times \Delta^{n}$ by the equivalence relation generated by all the identifications
$$
\left(x, \varphi_{*} s\right) \sim\left(\varphi^{*} x, s\right), \quad \varphi:[n] \rightarrow[m], \quad x \in X_{m}, \quad s \in \Delta^{n} .
$$

Note that an arrow $\varphi=\delta \sigma:[n] \rightarrow[m]$ composed from a surjection $\sigma:[n] \rightarrow[k]$ and an injection $\delta:[k] \hookrightarrow[m]$ forces every $n$-simplex $\Delta_{z}^{n}$ with

$$
z=\sigma^{*} y=\sigma^{*} \delta^{*} x \in \operatorname{im} \varphi^{*}
$$

to appear in $|X|$ as a $k$-simplex $\Delta_{y}^{k}$, the image of the linear projection $\sigma_{*}: \Delta^{n} \rightarrow \Delta^{k}$, and this $k$-simplex is situated in $|X|$ as the $\delta$ th face of the $m$-simplex $\Delta_{x}^{m}$. For this reason, a simplex $\Delta_{z}^{n}, z \in X_{n}$, is called degenerate if $z \in \operatorname{im} \sigma^{*}$ for some $\sigma:[k] \rightarrow[n]$ with $k>n$. All degenerate simplices are visible within $|X|$ as simplices of strictly smaller dimension.

The use of degenerate simplices allows us to give a precise combinatorial description for cellular decompositions more general than triangulations. For example, the $n$-sphere $S^{n}$ can be viewed as the quotient space of the regular $n$-simplex by its boundary ${ }^{14} S^{n}=\Delta^{n} / \partial \Delta^{n}$. This leads to the cellular decomposition of $S^{n}$ into one 0 -cell $p \in S^{n}$ and one $n$-cell, the images of $\partial \Delta^{n}$ and $\Delta^{n}$ under the quotient map, such that the interior of the $n$-cell covers $S^{n} \backslash p$. This decomposition is the geometric realization $|X|$ of the simplicial set $X: \Delta^{\mathrm{opp}} \rightarrow$ Set described as follows. Every set $X_{k}=X(k)$ is the quotient of the set $\operatorname{Hom}_{\Delta}([k],[n])$ obtained by collapsing all nonsurjective maps into one element. The gluing rule $\varphi^{*}: X_{m} \rightarrow X_{k}$ corresponding to an order-preserving map $\varphi:[k] \rightarrow[m]$ sends the class of an arrow $\zeta:[k] \rightarrow[n]$ to the class of the composition $\varphi \zeta:[k] \rightarrow[n]$.

Exercise 9.5 Verify that this is a well-defined presheaf and find the cardinalities of sets $X_{k}$ for all $k \in \mathbb{Z}_{\geqslant 0}$.

Example 9.8 (Presheaves and Sheaves of Sections) Historically, the term "presheaf" first appeared in the context of the category $\mathcal{C}=\mathcal{V}(X)$ of all open sets $U \subset X$ of a given topological space $X$. Such a presheaf $F: \mathcal{V}(X)^{\mathrm{opp}} \rightarrow \mathcal{D}$ attaches an object $F(U) \in \operatorname{Ob} \mathcal{D}$, called sections, to every open $U \subset X$. Depending on the target category $\mathcal{D}$, the sections can form a set, vector space, algebra, topological space, etc. Associated with every inclusion of open sets $U \subset W$ is the morphism $F(W) \rightarrow F(U)$ called the restriction of sections from $W$ to $U$. The restriction of a section $s \in F(W)$ to $U \subset W$ is commonly denoted by $\left.s\right|_{U}$. Below are some typical examples of such presheaves:

[^104](1) The presheaf $\Gamma_{E}$ of local sections of a continuous map $p: E \rightarrow X$. Its sections $\Gamma_{E}(U)$ are continuous maps $s: U \rightarrow E$ such that ${ }^{15} p \circ s=\mathrm{Id}_{U}$. The restrictions are the usual restrictions of maps onto smaller subsets.
(2) The presheaf of local sections of the projection $p: X \times Y \rightarrow X$ is denoted by $\mathcal{C}^{0}(X, Y)$ and called the presheaf of local continuous maps from $X$ to $Y$. Its sections over open sets $U \subset X$ are continuous maps $s: U \rightarrow Y$.
(3) Further specialization of (2) leads to so-called structure presheaves $\mathcal{O}_{X}$. These are the local differentiable functions $X \rightarrow \mathbb{R}$ on a real smooth manifold $X$, local analytic functions $X \rightarrow \mathbb{C}$ on a complex analytic manifold $X$, local rational functions $X \rightarrow \mathbb{k}$ on an algebraic manifold ${ }^{16} X$ over a field $\mathbb{k}$, etc. All of them are presheaves of algebras over the corresponding ground fields $\mathbb{R}, \mathbb{C}$, and $\mathbb{k}$.
(4) The constant presheaf $S$, where $S \in \mathrm{Ob} \mathcal{D}$ is a fixed object, has $S(U)=S$ for all $U$ and all the restriction morphisms equal to $\mathrm{Id}_{S}$. For example, the constant presheaf of sets $S$ has the same set of sections $S$ over all open sets $U \subset X$.

Presheaves $F: \mathcal{V}(X)^{\mathrm{opp}} \rightarrow$ Set are usually called just presheaves on $X$. Such a presheaf $F$ is called a sheaf if for every set of open subsets $U_{i}$ and local sections $s_{i} \in F\left(U_{i}\right)$ such that $\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}$ for all $i, j$, there exists a unique section $s \in F\left(\bigcup_{i} U_{i}\right)$ such that $\left.s\right|_{U_{i}}=s_{i}$ for all $i$. A presheaf $F$ is called separated if only the uniqueness of such a section $s$ holds but the section may not exist as well. All the presheaves (1)-(4) above are separated, and only the last of them, the constant presheaf, is usually not a sheaf, because for disjoint nonempty open sets $U_{1}, U_{2}$ and two different constants $s_{1}, s_{2} \in S$ considered as the sections $s_{i} \in S\left(U_{i}\right)$, there is no constant $s \in S\left(U_{1} \sqcup U_{2}\right)$ simultaneously restricted to $s_{1}$ and $s_{2}$. However, there exists also
(5) the constant sheaf $S^{\sim}$, whose sets of sections $S^{\sim}(U)$ consist of the continuous ${ }^{17}$ functions $U \rightarrow S$, where the set $S$ is considered with the discrete ${ }^{18}$ topology.

Exercise 9.6 Describe all antiderivatives of the real function $y=1 / x$.

### 9.2.3 The Functors Hom

Associated with an object $X \in \mathrm{Ob} \mathcal{C}$ of an arbitrary category $\mathcal{C}$ are the functor $h^{X}: \mathcal{C} \rightarrow$ Set and presheaf $h_{X}: \mathcal{C}^{\mathrm{opp}} \rightarrow$ Set sending an object $Y \in \mathrm{Ob} \mathcal{C}$ to the sets

$$
h^{X}(Y) \stackrel{\text { def }}{=} \operatorname{Hom}(X, Y) \text { and } h_{X}(Y) \stackrel{\text { def }}{=} \operatorname{Hom}(Y, X),
$$

[^105]and an arrow $\varphi: Y_{1} \rightarrow Y_{2}$ to the maps $h^{X}(\varphi) \stackrel{\text { def }}{=} \varphi_{*}$ and $h_{X}(\varphi) \stackrel{\text { def }}{=} \varphi^{*}$ provided, respectively, by left and right multiplication by $\varphi$ in $\operatorname{Mor} \mathcal{C}$,
\[

$$
\begin{array}{ll}
\varphi_{*}: \operatorname{Hom}\left(X, Y_{1}\right) \rightarrow \operatorname{Hom}\left(X, Y_{2}\right), & \psi \mapsto \varphi \circ \psi, \\
\varphi^{*}: \operatorname{Hom}\left(Y_{2}, X\right) \rightarrow \operatorname{Hom}\left(Y_{1}, X\right), & \psi \mapsto \psi \circ \varphi
\end{array}
$$
\]

For example, the presheaf of sets $h_{U}: \mathcal{V}(X) \rightarrow$ Set on a topological space $X$ has exactly one section over every open $W \subset U$ and the empty sets of sections over all $W \not \subset U$.

Example 9.9 (Standard Triangulation of a Simplex) The presheaf $h_{[n]}: \Delta_{s} \rightarrow$ Set on the semisimplicial category $\Delta_{s}$ describes the standard triangulation of the $n$-simplex $\Delta^{n}$. Indeed, every set $h_{[n]}([k])=\operatorname{Hom}([k],[n])$ coincides with the set of $k$-dimensional faces of $\Delta^{n}$. The gluing rule $\varphi^{*}: \operatorname{Hom}([k],[n]) \rightarrow \operatorname{Hom}([m],[n])$ provided by an arrow $\varphi:[k] \hookrightarrow[m]$ identifies a $k$-dimensional face $\Delta_{\xi}^{k} \subset \Delta^{n}$ corresponding to the map $\xi:[k] \hookrightarrow[m]$ from $h_{[n]}([k])$, with the $\varphi$ th face of the $m$-dimensional face $\Delta_{\xi \varphi}^{m} \subset \Delta^{n}$, corresponding to the map $\xi \circ \varphi:[k] \hookrightarrow[n]$ from $h_{[n]}([m])$.
Example 9.10 (Duality of Vector Spaces) The presheaf $h_{\mathrm{k}}: \mathcal{V} e c_{\mathrm{k}}^{\mathrm{opp}} \rightarrow \mathcal{V} e c_{\mathrm{k}}$ maps a vector space $V$ to the dual space

$$
h_{\mathfrak{k}}(V)=\operatorname{Hom}(V, \mathbb{k})=V^{*},
$$

and a linear map $\varphi: V \rightarrow W$ to the dual map $\varphi^{*}: W^{*} \rightarrow V^{*}$ sending a linear form $\xi: W \rightarrow \mathbb{k}$ to the linear form $\xi \circ \varphi: V \rightarrow \mathbb{k}$.

Example 9.11 (Duality of Ordered Sets) This is the combinatorial version of the previous example. Write $\nabla_{\text {big }}$ for the category of finite ordered sets consisting of at least two elements with $\operatorname{Hom}_{\nabla_{\text {big }}}(X, Y)$ formed by all order-preserving maps $X \rightarrow Y$ sending the minimal and maximal elements ${ }^{19}$ of $X$ to the minimal and maximal elements of $Y$ respectively. The tautological inclusion of categories $\nabla_{\text {big }} \hookrightarrow \Delta_{\text {big }}$ is faithful but not full. The presheaves $h_{[1]}$ on the categories $\Delta_{\text {big }}, \nabla_{\text {big }}$ send an ordered set $X$ to the set $X^{*}$ consisting of maps $X \rightarrow\{0,1\}$ ordered by the relation $\varphi \leqslant \psi$, meaning that $\varphi(x) \leqslant \psi(x)$ for all $x$.
Exercise 9.7 Convince yourself that this ordering is total and that

$$
\operatorname{Hom}_{\Delta_{\text {big }}}(X,[1]) \in \mathrm{Ob} \nabla_{\text {big }}
$$

whereas $\operatorname{Hom}_{\nabla_{\text {big }}}(X,[1]) \in \mathrm{Ob} \Delta_{\text {big }}$ for all $X$. In other words, the presheaves $h_{[1]}$ on the categories $\Delta_{\text {big }}$ and $\nabla_{\text {big }}$ can be viewed as functors $\Delta_{\text {big }}^{\mathrm{opp}} \rightarrow \nabla_{\text {big }}$ and $\nabla_{\text {big }}^{\mathrm{opp}} \rightarrow \Delta_{\text {big }}$ respectively.

[^106]Equivalently, one could say that the presheaves $h_{[1]}$ map a finite ordered set $X$ to the set $X^{*}$ of the Dedekind cuts of $X$, i.e., decompositions $X=X_{0} \sqcup X_{1}$ such that $x_{0}<x_{1}$ for all $x_{0} \in X_{0}, x_{1} \in X_{1}$, where for $X \in \mathrm{Ob} \Delta_{\text {big }}$, the empty parts $X_{0}, X_{1}$ are allowed, whereas for $Y \in \mathrm{Ob} \nabla_{\mathrm{big}}$, both parts $X_{0}, X_{1}$ must be nonempty. The Dedekind cuts behave contravariantly with respect to the morphisms. Given an order-preserving map $Z_{1} \rightarrow Z_{2}$, a Dedekind cut of $Z_{2}$ induces a Dedekind cut of $Z_{1}$ but not conversely.

### 9.3 Natural Transformations

Given two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$, a natura ${ }^{20}$ transformation $f: F \rightarrow G$ is a class of arrows $f_{X}: F(X) \rightarrow G(X)$ in the category $\mathcal{D}$, one arrow for each object $X \in \mathrm{Ob} \mathcal{C}$, such that for every morphism $\varphi: X \rightarrow Y$ in $\mathcal{C}$, the diagram in $\mathcal{D}$

is commutative. In the language of associative algebras, a homomorphism

$$
F: K[\mathcal{C}] \rightarrow K[\mathcal{D}]
$$

provides $K[\mathcal{D}]$ with the structure of a left $K[C]$-module, where $a \cdot b \stackrel{\text { def }}{=} F(a) \cdot b$ for $a \in K[\mathcal{C}], b \in K[\mathcal{D}]$. Two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ equip $K[\mathcal{D}]$ with two $K[C]$-module structures. A natural transformation $f: F \rightarrow G$ is nothing but a $K[C]$-linear map between these two modules, because for every $\varphi \in K[\mathcal{C}]$, the actions of operators $F(\varphi), G(\varphi)$ on $K[D]$ are related as $f \circ F(\varphi)=G(\varphi) \circ f$.

A natural transformation $f: F \rightarrow G$ is called an isomorphism of functors or a canonical isomorphism ${ }^{21}$ if the maps $f_{X}: F(X) \leadsto G(X)$ are isomorphisms in $\mathcal{D}$ for all $X \in \mathrm{Ob} C$. We write $F \simeq G$ if there is an isomorphism between the functors $F, G$.

For a small category $\mathcal{C}$, the functors from $\mathcal{C}$ to an arbitrary category $\mathcal{D}$ form the category $\mathcal{F u n}(\mathcal{C}, \mathcal{D})$, whose objects are the functors $\mathcal{C} \rightarrow \mathcal{D}$, and the sets

$$
\operatorname{Hom}_{F u n(\mathcal{C}, \mathcal{D})}(F, G)
$$

[^107]consist of the natural transformations $f: F \rightarrow G$. We write
$$
\operatorname{PreSh}(\mathcal{C}, \mathcal{D}) \stackrel{\text { def }}{=} \mathcal{F u n}\left(\mathcal{C}^{\mathrm{opp}}, \mathcal{D}\right)
$$
for the category of presheaves on $\mathcal{C}$ with values in $\mathcal{D}$. By default, if the letter $\mathcal{D}$ is omitted in this notation, it means that $\mathcal{D}=$ Set, i.e.,
$$
\operatorname{PreSh}(\mathcal{C}) \stackrel{\text { def }}{=} \mathcal{F u n}\left(C^{\mathrm{opp}}, S e t\right)
$$

Exercise 9.8 Convince yourself that for every small category $\mathcal{C}$, the assignments ${ }^{22}$

$$
X \mapsto h_{X} \quad \text { and } \quad X \mapsto h^{X}
$$

can be canonically extended to the functors

$$
\mathcal{C} \rightarrow \operatorname{PreSh}(\mathcal{C}) \quad \text { and } \quad \mathcal{C}^{\mathrm{opp}} \rightarrow \mathcal{F u n}(\mathcal{C}, \operatorname{Set}) .
$$

### 9.3.1 Equivalence of Categories

Two categories $\mathcal{C}, \mathcal{D}$ are called equivalent if there exist functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$, said to be quasi-inverse to each other, such that $G F \simeq \operatorname{Id}_{\mathcal{C}}$ and $F G \simeq \operatorname{Id}_{\mathcal{D}}$. This means the existence of transformations

$$
\begin{equation*}
G F(X) \leadsto X \quad \text { and } \quad F G(Y) \leadsto Y, \tag{9.9}
\end{equation*}
$$

functorial in $X \in \mathrm{Ob} \mathcal{C}$ and $Y \in \mathrm{Ob} \mathcal{D}$, which are isomorphisms of objects in the categories $\mathcal{C}$ and $\mathcal{D}$ for all $X, Y$. Note that the existence of canonical isomorphisms (9.9) means neither the equality $F G=\operatorname{Id}_{\mathcal{D}}$ nor $G F=\mathrm{Id}_{C}$. The objects $G F(X)$ and $X$, as well as the objects $F G(Y)$ and $Y$, may differ for all $X, Y$.

Example 9.12 (A Choice of Basis) Write $v e c=v e c_{k}$ for the category of all finitedimensional vector spaces over a field $\mathbb{k}$ and $\mathbb{k}$-linear maps between them. Write $\mathcal{C} \subset$ vec for the small full subcategory formed by coordinate vector spaces $\mathbb{k}^{n}$ for all $n \in \mathbb{Z}_{\geqslant 0}$, including $\mathbb{k}^{0} \stackrel{\text { def }}{=}\{0\}$. Fixing a basis in a vector space $V \in \mathrm{Ob}(v e c)$ means fixing an isomorphism ${ }^{23}$

$$
\begin{equation*}
f_{V}: V \leadsto \mathbb{k}^{\operatorname{dim}(V)} . \tag{9.10}
\end{equation*}
$$

Let us choose such an isomorphism for every finite-dimensional vector space $V$, and for each coordinate space $\mathbb{k}^{n}$, put $f_{\mathrm{k}^{n}}=\operatorname{Id}_{\mathfrak{k}^{n}}$. Write $F:$ vec $\rightarrow \mathcal{C}$ for the functor that

[^108]sends a vector space $V$ to the coordinate space $\mathbb{k}^{\operatorname{dim} V}$ and a linear map $\varphi: V \rightarrow W$ to the composition
$$
F(\varphi)=f_{W} \circ \varphi \circ f_{V}^{-1}: \mathbb{k}^{\operatorname{dim} V} \rightarrow \mathbb{k}^{\operatorname{dim} W},
$$
which can be treated as the matrix of $\varphi$ in the chosen bases of $V$ and $W$. Then $F$ is an equivalence of categories quasi-inverse to the tautological inclusion $G: \mathcal{C} \hookrightarrow v e c$. Indeed, by the construction, $F G=\mathrm{Id}_{\mathcal{C}}$ (this the explicit coincidence of functors, not just a canonical isomorphism). The reverse composition GF: vec $\rightarrow$ vec takes values in the small subcategory $\mathcal{C} \subset v e c$, whose cardinality is incompatible with the cardinality of the class vec. However, isomorphisms (9.10) determine the natural transformation $f: \mathrm{Id}_{v e c} \xrightarrow{\sim} G F$, because all the diagrams (9.8)

are commutative by the definition of the action of $F$ on the morphisms. Thus, the identity endofunctor $\mathrm{Id}_{v e c}$ is canonically isomorphic to $G F$.

Exercise 9.9 Prove that the category $\Delta_{\text {big }}$ from Example 9.4 on p. 190 is canonically ${ }^{24}$ equivalent to the simplicial subcategory $\Delta \subset \Delta_{\text {big }}$.

Proposition 9.1 A functor $G: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories if and only if $G$ is fully faithful ${ }^{25}$ and essentially surjective, meaning that for every $Y \in \mathrm{Ob} \mathcal{D}$, there exist $X \in \mathrm{Ob} \mathcal{C}$, depending on $Y$, and an isomorphism $Y \simeq G(X)$.

Proof We will prove the "if" part and leave the converse statement as an exercise for the reader. For every $Y \in \mathrm{Ob} \mathcal{D}$, we fix an object $X=X(Y) \in \mathrm{Ob} \mathcal{C}$ and isomorphism $f_{Y}: Y \xrightarrow{\leadsto} G(X)$. Moreover, if $Y=G(X)$ for some $X \in \mathrm{Ob}(\mathcal{C})$, then we put $X(Y)=X$ for one of those $X$ and $f_{Y}=\operatorname{Id}_{Y}$. Write $F: \mathcal{D} \rightarrow \mathcal{C}$ for the functor that sends an object $Y \in \operatorname{Ob} \mathcal{D}$ to the object $X(Y)$ and an arrow $\varphi: Y_{1} \rightarrow Y_{2}$ to the unique arrow $\psi: X_{1}=X\left(Y_{1}\right) \rightarrow X\left(Y_{2}\right)=X_{2}$ such that $G(\psi)=f_{Y_{2}} \circ \varphi \circ f_{Y_{1}}^{-1}$ fits in the commutative diagram


[^109]The arrow $\psi=F(\varphi)$ is well defined, because

$$
G: \operatorname{Hom}\left(X_{1}, X_{2}\right) \xrightarrow{\sim} \operatorname{Hom}\left(G\left(X_{1}\right), G\left(X_{2}\right)\right)
$$

is bijective for all $X_{1}, X_{2}$. By construction, the exact equality $F G=\operatorname{Id}_{C}$ holds, and for every morphism $\varphi: Y_{1} \rightarrow Y_{2}$, the diagram

is commutative, which means that the maps $f_{Y}: Y \xrightarrow{\leadsto} G(X)=G F(Y)$ give the canonical isomorphism of functors $\operatorname{Id}_{\mathcal{D}} \xrightarrow{\sim} G F$.

Exercise 9.10 Prove the "only if" part.
Exercise 9.11 Show that the dualization functors $h_{\mathrm{k}}: v e c^{\mathrm{opp}} \rightarrow$ vec and $h_{[1]}: \Delta_{\text {big }}^{\mathrm{opp}} \rightarrow \nabla_{\text {big }}$ from Example 9.10 and Example 9.11 are equivalences of categories.

### 9.4 Representable Functors

A presheaf $F: \mathcal{C}^{\mathrm{opp}} \rightarrow$ Set is called representable if it is naturally isomorphic to the presheaf $h_{X}$ for some $X \in \mathrm{Ob} C$, called the representing object of the presheaf $F$. Dually, a functor $F: \mathcal{C} \rightarrow$ Set is called corepresentable if it is naturally isomorphic to the functor $h^{X}$ for some $X \in \mathrm{Ob} \mathcal{C}$, called the corepresenting object of the functor $F$. In Corollary 9.2 below, we will see that the (co)representing objects naturally depend on the functors they represent. This forces the (co)representing objects to be uniquely determined by the functors up to the canonical isomorphism.
Exercise 9.12 Convince yourself that for given vector spaces $U$, $W$, their tensor product $U \otimes W$ corepresents the functor vec $\rightarrow$ Set mapping a vector space $V$ to the set of all bilinear maps $U \times W \rightarrow V$.
For a semisimplicial set $X: \Delta_{\mathrm{s}}^{\mathrm{opp}} \rightarrow$ Set, the set $X_{n}=X([n])$ of all $n$-simplices of the triangulated topological space ${ }^{26}|X|$ can be described as the set of all simplicial maps $\Delta^{n} \rightarrow X$, where the standard $n$-simplex $\Delta^{n}$ is considered a triangulated space with $^{27} \Delta^{n}([k])=\operatorname{Hom}_{\Delta_{\mathrm{s}}}([k],[n])$, and the term "simplicial map" means a natural

[^110]transformation of presheaves. ${ }^{28}$ In other words, $X([n])=\operatorname{Hom}_{\mathcal{P r e S h}^{\left(\Delta_{\mathrm{s}}\right)}}\left(h_{[n]}, X\right)$ for every presheaf of sets $X$ on the semisimplicial category $\Delta_{\mathrm{s}}$. The same equality holds for all presheaves of sets on an arbitrary category.

Lemma 9.1 (Yoneda Lemma for Presheaves) Let $F: C^{\mathrm{opp}} \rightarrow$ Set be a presheaf of sets on a category $C$. There is a bijection

$$
\begin{equation*}
F(A) \xrightarrow{\leadsto} \operatorname{Hom}_{\mathcal{P r e S h}(\mathcal{C})}\left(h_{A}, F\right) \tag{9.11}
\end{equation*}
$$

functorial in $F$ and $A$. It maps an element $a \in F(A)$ to the natural transformation

$$
\begin{equation*}
f_{X}: \operatorname{Hom}(X, A) \rightarrow F(X) \tag{9.12}
\end{equation*}
$$

sending an arrow $\varphi: X \rightarrow A$ to the value of the map $F(\varphi): F(A) \rightarrow F(X)$ at $a$. The inverse to the map (9.11) sends a natural transformation (9.12) to the value of the map $f_{A}: h_{A}(A) \rightarrow F(A)$ at the identity endomorphism $\operatorname{Id}_{A} \in h_{A}(A)$.

Proof For every natural transformation (9.12), object $X \in \mathrm{Ob} \mathcal{C}$, and arrow

$$
\varphi: X \rightarrow A,
$$

one has the commutative diagram (9.8),

whose upper map takes $\operatorname{Id}_{A}$ to $\varphi$. Therefore, $f_{X}(\varphi)=F(\varphi)\left(f_{A}\left(\operatorname{Id}_{A}\right)\right)$. This equality uniquely recovers the action of all maps (9.12) on all elements $\varphi \in h_{A}(X)$ from just one element $a=f_{A}\left(\mathrm{Id}_{A}\right) \in F(A)$. Given such an element $a \in F(A)$, the corresponding transformation (9.12) maps $\varphi \in \operatorname{Hom}(X, A)$ to $f_{X}(\varphi)=F(\varphi)(a) \in F(X)$. It is natural, because for every arrow $\psi: Y \rightarrow X$ and all $\varphi \in h_{A}(X)$, the equalities $f_{Y}\left(h_{A}(\psi) \varphi\right)=f_{Y}(\varphi \psi)=F(\varphi \psi) a=F(\psi) F(\varphi) a=F(\psi)\left(f_{X}(\varphi)\right)$ hold, and therefore $f_{Y} \circ h_{A}(\psi)=F(\psi) \circ f_{X}$ as maps $h_{A}(X) \rightarrow F(Y)$.

[^111]Exercise 9.13 (Yoneda Lemma for Covariant Functors) For every category $\mathcal{C}$ and functor $F: \mathcal{C} \rightarrow$ Set, construct a bijection

$$
F(A) \leadsto \operatorname{Hom}_{\mathcal{F u n}\left(\mathcal{C}, S_{e t}\right)}\left(h^{A}, F\right)
$$

functorial in $F, A$.
Corollary 9.1 The prescriptions $X \mapsto h_{X}$ and $X \mapsto h^{X}$ assign fully faithful functors $\mathcal{C} \hookrightarrow \operatorname{PreSh}(\mathcal{C})$ and $\mathcal{C}^{\mathrm{opp}} \hookrightarrow \operatorname{Fun}(\mathcal{C}$, Set) respectively. In particular, one has the bijections

$$
\operatorname{Hom}_{\mathcal{P r e S h}^{(\mathcal{C})}}\left(h_{A}, h_{B}\right) \simeq \operatorname{Hom}_{\mathcal{C}}(A, B) \quad \text { and } \quad \operatorname{Hom}_{\mathcal{F u n}(\mathcal{C})}\left(h^{A}, h^{B}\right) \simeq \operatorname{Hom}_{\mathcal{C}}(B, A),
$$

functorial in $A, B \in \mathrm{Ob} C$.
Proof Apply the Yoneda lemmas to the functors $F=h_{B}$ and $F=h^{B}$.
Corollary 9.2 If a functor $F^{\prime}: \mathcal{C} \rightarrow$ Set (respectively a presheaf $F: \mathcal{C}^{\mathrm{opp}} \rightarrow$ Set) is corepresented (respectively represented), then its corepresenting (respectively representing) object $A \in \mathrm{Ob} C$ is unique up to canonical isomorphism. More precisely, given two natural isomorphisms $\alpha: F \leadsto h^{A}$ and $\beta: F \leadsto h^{B}$ (respectively $\alpha: F \xrightarrow{\leftrightharpoons} h_{A}$ and $\beta: F \leadsto h_{B}$ ), there exists a unique pair of inverse isomorphisms $\varphi: A \leadsto B, \psi: B \xrightarrow{\rightarrow} A$ such that for every $X \in \mathrm{Ob} C$, the diagram

where $\psi^{*}: \operatorname{Hom}(A, X) \rightarrow \operatorname{Hom}(B, X), \varphi^{*}: \operatorname{Hom}(B, X) \rightarrow \operatorname{Hom}(A, X)$ are the right multiplications by $\psi, \varphi$, is commutative (respectively the diagram

where $\varphi_{*}: \operatorname{Hom}(X, A) \rightarrow \operatorname{Hom}(X, B), \psi_{*}: \operatorname{Hom}(X, B) \rightarrow \operatorname{Hom}(X, A)$ are left multiplication by $\varphi, \psi$, is commutative).

Proof Given natural isomorphisms $\beta \alpha^{-1}: h^{A} \leadsto h^{B}$ and $\beta^{-1} \alpha: h^{B} \xrightarrow{\sim} h^{A}$, then by Corollary 9.1, there exist unique isomorphisms $\psi: B \xrightarrow{\leadsto} A, \varphi: A \xrightarrow{\leadsto} B$ such that $\beta \alpha^{-1}=\psi^{*}$ and $\beta^{-1} \alpha=\varphi^{*}$. Since $\beta \alpha^{-1}$ and $\beta^{-1} \alpha$ are inverse to each other, $\psi$ and $\varphi$ are too. The case of presheaves is completely symmetric.

### 9.4.1 Definitions via Universal Properties

Corollary 9.2 allows us to transfer many set-theoretic constructions from the category Set to an arbitrary category $\mathcal{C}$. Namely, let us say that an object $X \in \operatorname{Ob} \mathcal{C}$ is the result of some set-theoretic operation applied to a collection of objects $X_{i} \in \mathrm{Ob} \mathcal{C}$ if $X$ represents the presheaf $\mathcal{C}^{\mathrm{opp}} \rightarrow$ Set mapping $Y \in \mathrm{Ob} \mathcal{C}$ to the result of this operation applied to the sets $\operatorname{Hom}\left(Y, X_{i}\right)$ in Set. Such an implicit definition gives no guarantee that the object $X$ exists, because the presheaf in question may not be representable. However, if it is representable, then the representing object $X$ possesses some universal properties provided by the construction, and it is unique up to a unique isomorphism respecting those properties. Moreover, every definition of this sort has a dual version, obtained by applying the set-theoretic operation to the sets $\operatorname{Hom}\left(X_{i}, Y\right)$ covariant in $Y$ and taking the corepresenting object of the resulting functor $\mathcal{C} \rightarrow$ Set.

Example 9.13 (Direct Product $A \times B$ ) The direct product $A \times B$ of objects $A, B \in \mathrm{Ob} \mathcal{C}$ in an arbitrary category $\mathcal{C}$ is defined as the representing object for the presheaf $\mathcal{C}^{\mathrm{opp}} \rightarrow$ Set, $Y \mapsto \operatorname{Hom}(Y, A) \times \operatorname{Hom}(Y, B)$. If the object $A \times B$ exists, then there is an isomorphism

$$
\beta_{Y}: \operatorname{Hom}(Y, A \times B) \xrightarrow{\sim} \operatorname{Hom}(Y, A) \times \operatorname{Hom}(Y, B)
$$

functorial in $Y \in \mathrm{Ob} C$. For $Y=A \times B$, it produces the pair of arrows

representing the element

$$
\beta_{A \times B}\left(\operatorname{Id}_{A \times B}\right) \in \operatorname{Hom}(A \times B, A) \times \operatorname{Hom}(A \times B, B) .
$$

These arrows are universal in the following sense. For every pair of arrows

there exists a unique morphism $\varphi \times \psi: Y \rightarrow A \times B$ such that $\varphi=\pi_{A} \circ(\varphi \times \psi)$ and $\psi=\pi_{B} \circ(\varphi \times \psi)$.

Exercise 9.14 Convince yourself that for every diagram $A<{ }_{\leftarrow}^{\pi_{A}^{\prime}} C \xrightarrow{\pi_{B}^{\prime}} B$ possessing this universal property, there exists a unique isomorphism $\gamma: C \xrightarrow{\leadsto} A \times B$ such that $\pi_{A} \circ \gamma=\pi_{A}^{\prime}$ and $\pi_{B} \circ \gamma=\pi_{B}^{\prime}$.
In the category $\mathcal{T}_{o p}$, the direct product of topological spaces $X \times Y$ coincides with their direct product in Set. The topology on $X \times Y$ is the product topology, whose base of open sets is formed by the products of open sets in $X, Y$. In the categories of groups, rings, and modules over a fixed ring, the direct products also coincide with those in Set. The algebraic operations are defined componentwise.

Example 9.14 (Direct Coproduct $A \otimes B$ ) The dual version of the direct product is the direct coproduct $A \otimes B$ of objects $A, B \in \mathrm{Ob} C$ in a category $C$. It is defined as the corepresenting object for the covariant functor

$$
\mathcal{C} \rightarrow \text { Set, } Y \mapsto \operatorname{Hom}(A, Y) \times \operatorname{Hom}(B, Y) .
$$

Reversing arrows in Example 9.13 shows that the coproduct fits in the diagram $A \xrightarrow{i_{A}} A \otimes B \stackrel{{ }^{i_{B}}}{\longleftrightarrow} B$, universal in the following sense. For every pair of arrows $A \xrightarrow{\varphi} Y<{ }^{\psi} B$, there exists a unique morphism $\varphi \otimes \psi: A \otimes B \rightarrow Y$ such that $\varphi=(\varphi \otimes \psi) \circ i_{A}$ and $\psi=(\varphi \otimes \psi) \circ i_{B}$.
Exercise 9.15 Verify that if the universal diagram $A \xrightarrow{i_{A}} A \otimes B \stackrel{i_{B}}{\longleftrightarrow} B$ exists, then it is unique up to a unique isomorphism of the middle objects commuting with $i_{A, B}$.

Exercise 9.16 Verify that in the categories Set and $\mathcal{T}$ op, the coproduct is the disjoint union.
In the category $\mathcal{M}_{\operatorname{~od}}^{K}$ of modules over a commutative $\operatorname{ring}^{29} K$, the coproduct coincides with the product and equals the direct sum of modules.
Exercise 9.17 Verify that the diagram

$$
A \xrightarrow{i_{A}} A \oplus B \stackrel{i_{B}}{\longleftrightarrow} B, \quad i_{A}: a \mapsto(a, 0), i_{B}: b \mapsto(0, b),
$$

is the universal coproduct diagram in the category $\mathcal{M o d}_{K}$.
In the category $\mathcal{C m r}$ of commutative rings with unit and homomorphisms respecting units, the coproduct $A \otimes B$ coincides with the tensor product of additive abelian groups. The multiplication is defined on decomposable tensors by the prescription

$$
\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right) \stackrel{\text { def }}{=}\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)
$$

[^112]Exercise 9.18 Verify that it is correctly extended by the distributivity law to all of $A \otimes B$, and provides $A \otimes B$ with the structure of a commutative ring with the unit $1 \otimes 1$. Check that the diagram

$$
A \xrightarrow{i_{A}} A \otimes B \stackrel{i_{B}}{\longleftrightarrow} B, \quad i_{A}: a \mapsto a \otimes 1, i_{B}: b \mapsto 1 \otimes b,
$$

is the universal diagram of the coproduct.
In the category $\mathcal{G r}$, the coproduct of groups $G, H$ is called the free product and denoted by $G * H$. It can be constructed as the quotient of the free group ${ }^{30}$ on the alphabet $G \sqcup H$ by the relations that remove the identity elements $e_{G}, e_{H}$ from the words and replace every pair of sequential letters from the same group by their product in that group. For example, $F_{k} * F_{m} \simeq F_{k+m}$ for the free groups $F_{k}, F_{m}$, in particular $\mathbb{Z} * \mathbb{Z} \simeq F_{2}$. More generally, if $G, H$ are presented, respectively, by generators $\Gamma_{G}, \Gamma_{H}$ and relators $R_{G}, R_{H}$, then $G * H$ is presented by generators $\Gamma_{G} \sqcup \Gamma_{H}$ and relators $R_{G} \sqcup R_{H}$.

Exercise 9.19 Verify that the universal property of the coproduct holds for the free product of groups.

### 9.5 Adjoint Functors

Let $\mathcal{C} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathcal{D}$ be two functors between arbitrary categories $\mathcal{C}, \mathcal{D}$. If there exists an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \tag{9.14}
\end{equation*}
$$

functorial in $X \in \operatorname{Ob} \mathcal{C}, Y \in \mathrm{Ob} \mathcal{D}$, then we say that $F$ is left adjoint to $G$, whereas $G$ is right adjoint to $F$, and we write $F 乙 G$. Associated with every pair of adjoint functors $F 乙 G$ are the natural transformations

$$
\begin{equation*}
\lambda: F \circ G \rightarrow \operatorname{Id}_{\mathcal{D}} \quad \text { and } \quad \varrho: \operatorname{Id}_{\mathcal{C}} \rightarrow G \circ F \tag{9.15}
\end{equation*}
$$

such that the morphism $\lambda_{Y}: F G(Y) \rightarrow Y$, which describes the action of $\lambda$ over $Y \in \mathrm{Ob} \mathcal{D}$, corresponds to the identity endomorphism $\operatorname{Id}_{G(Y)}$ under the bijection (9.14), written for $X=G(Y)$,

$$
\operatorname{Hom}_{\mathcal{D}}(F G(Y), Y) \simeq \operatorname{Hom}_{\mathcal{C}}(G(Y), G(Y)) \ni \operatorname{Id}_{G(Y)}
$$

[^113]and symmetrically, the morphism $\varrho_{X}: X \rightarrow G F(X) Y$ corresponds to $\operatorname{Id}_{F(X)}$ under the bijection (9.14), written for $Y=F(X)$,
$$
\operatorname{Id}_{F(X)} \in \operatorname{Hom}_{\mathcal{D}}(F(X), F(X)) \simeq \operatorname{Hom}_{\mathcal{C}}(X, G F(X)) .
$$

Example 9.15 (Free Modules) Write $R$ - $\mathcal{M}$ od for the category of left modules over a fixed ring $R$ (not necessarily commutative), and $G: R$ - $\mathcal{M o d} \rightarrow$ Set for the forgetful functor taking a module to the set of its elements. For every set $E \in \mathrm{Ob}$ Set, the functor

$$
R-\mathcal{M o d} \rightarrow \text { Set }, \quad M \mapsto \operatorname{Hom}_{S e t}(E, G(M))
$$

is corepresentable by the free $R$-module with basis $E$. Let us write $R \otimes E$ for this free module. By definition, $R \otimes E$ consists of formal linear combinations $\sum_{e \in E} x_{e} e$ with the coefficients $x_{e} \in R$, all but a finite number of which vanish.
Exercise 9.20 Establish the isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{R-\mathcal{M o d}}(R \otimes E, M) \simeq \operatorname{Hom}_{S e t}(E, G(M)) \tag{9.16}
\end{equation*}
$$

functorial in $M \in \mathrm{Ob} R-\mathcal{M} o d, E \in \mathrm{Ob}$ Set.
The isomorphism (9.16) means that the functor Set $\rightarrow R-\mathcal{M o d}, E \mapsto R \otimes E$, is the left adjoint to the forgetful functor $G: R$ - Mod $\rightarrow$ Set. The natural transformation

$$
\varrho_{E}: E \hookrightarrow G(A \otimes E)
$$

embeds $E$ as a subset of the standard basis vectors in the set of all vectors in $R \otimes E$. The natural transformation

$$
\lambda_{M}: R \otimes G(M) \rightarrow M
$$

is the map of the huge free $R$-module $R \otimes G(M)$, whose basis is formed by the set of all nonzero vectors in $M$, onto the module $M$. It sends every basis vector $m \in R \otimes G(M)$ to the element $m \in M$. This map is surjective and sends a formal linear combination $\sum_{m \in M} x_{m} m$ to the result of its evaluation within $M$. For example, for $M=R=\mathbb{R}$, the vector space $\mathbb{R} \otimes G(\mathbb{R})$ is isomorphic to the space of all functions $\mathbb{R} \rightarrow \mathbb{R}$ with finite support, and the transformation $\lambda_{\mathbb{R}}$ sends such a function to the sum of its (nonzero) values.

### 9.5.1 Tensor Products Versus Hom Functors

Let $R$ be an arbitrary ring. For every right $R$-module $M$ and left $R$-module $N$, the tensor product $M \otimes_{R} N$ is defined as the quotient of the tensor product of abelian
groups ${ }^{31} M \otimes N$ by the subgroup generated by all the differences

$$
(m r) \otimes n-m \otimes(r n), \text { where } m \in M, r \in R, n \in N
$$

Note that by definition, $M \otimes_{R} N$ is just an abelian group without any action of $R$ from either the left or right side. Instead of such an action, the relations

$$
(m r) \otimes_{R} n=m \otimes_{R}(r n)
$$

hold in $M \otimes_{R} N$ for all $m \in M, r \in R, n \in N$, i.e., the elements of $R$ can be moved through the tensor product sign. Thus, associated with every left $R$-module $N$ is the functor

$$
\begin{equation*}
\mathcal{M o d - R} \rightarrow \mathcal{A} b, \quad X \mapsto X \otimes_{R} N \tag{9.17}
\end{equation*}
$$

provided by the right tensor multiplication of objects by $N$ and sending a homomorphism of right $R$-modules $\varphi: X_{1} \rightarrow X_{2}$ to the homomorphism of abelian groups $\varphi \otimes_{R} 1: m \otimes_{R} n \mapsto \varphi(m) \otimes_{R} n$. Symmetrically, every right $R$-module $M$ assigns the functor

$$
\begin{equation*}
R-\mathcal{M o d} \rightarrow \mathcal{A} b, \quad X \mapsto M \otimes_{R} X, \quad \varphi \mapsto 1 \otimes_{R} \varphi, \tag{9.18}
\end{equation*}
$$

on the category $R$ - $\mathcal{M o d}$ of left $R$-modules. Let $S$ be another ring, and let $M$ possess simultaneously right $R$-module and left $S$-module structures such that the right action of $R$ on $M$ commutes with the left action of $S$. In this case, $M$ is called an $S$-R-bimodule. For such a bimodule $M$, the functor (9.18) actually takes values in the subcategory $S$ - $\mathcal{M o d} \subset \mathcal{A} b$ of left $S$-modules, because $M \otimes X$ has the left $S$-module structure functorial in $X$ defined by the prescription $s(m \otimes x)=(s m) \otimes x$. At the same time, the covariant Hom-functor

$$
\begin{equation*}
h^{M}: S-\mathcal{M o d} \rightarrow \mathcal{A} b, \quad Y \mapsto \operatorname{Hom}_{S}(M, Y), \tag{9.19}
\end{equation*}
$$

actually takes values in the subcategory $R$ - $\mathcal{M o d} \subset \mathcal{A} b$ : the left action of an element $r \in R$ on $\operatorname{Hom}_{S}(M, Y)$ functorial in $Y$ is provided by the right $R$-module structure on $M$ and sends an $S$-linear map $\varphi: M \rightarrow Y$ to the map $r \varphi: m \mapsto \varphi(m r)$. In particular, the identity $(\varphi r) n=\varphi(r n)$ holds for all $r \in R, n \in N$.
Exercise 9.21 Verify that this is in fact a left action of $R$ on $h^{M}(Y)$.
Proposition 9.2 For every two rings $R, S$ and $S$-R-bimodule $M$, the functor

$$
R \text {-Mod } \rightarrow S \text {-Mod, } \quad X \mapsto M \otimes_{R} X
$$

is left adjoint to the functor

$$
h^{M}: S \text {-Mod } \rightarrow R \text {-Mod }, \quad Y \mapsto \operatorname{Hom}_{S}(M, Y) .
$$

[^114]In other words, there exists an isomorphism, functorial in the $R$-module $X$ and $S$-module $Y$, of abelian groups

$$
\begin{equation*}
\operatorname{Hom}_{S}\left(M \otimes_{R} X, Y\right) \simeq \operatorname{Hom}_{R}\left(X, \operatorname{Hom}_{S}(M, Y)\right) \tag{9.20}
\end{equation*}
$$

Proof The map from the left- to the right-hand side of (9.20) is constructed as follows. An $S$-linear homomorphism $\varphi: M \otimes_{R} X \rightarrow Y$ produces the family of maps

$$
\psi_{x}: M \rightarrow Y, \quad m \mapsto \varphi(m \otimes x)
$$

depending on $x \in X$. Every map $\psi_{x}$ is $S$-linear:

$$
\psi_{x}(s m)=\psi\left(s m \otimes_{R} x\right)=\psi\left(s\left(m \otimes_{R} x\right)\right)=s \psi\left(m \otimes_{R} x\right)=s \psi_{x}(m)
$$

Let us send $\varphi$ to the map $\psi: X \rightarrow \operatorname{Hom}_{S}(M, Y), x \mapsto \psi_{x}$, which is $R$-linear, because $\varphi_{r x} m=\varphi\left(m \otimes_{R} r x\right)=\varphi\left(m r \otimes_{R} x\right)=\varphi_{x}(m r)=\left(r \varphi_{x}\right) m$ for all $m \in M$. The inverse map from the right- to the left-hand side of (9.20) sends a homomorphism

$$
\psi: X \rightarrow \operatorname{Hom}_{S}(M, Y),
$$

which can be thought of as a family of $S$-linear maps $\psi_{x}: M \rightarrow Y$ depending $R$-linearly on $x \in X$, to the $S$-linear homomorphism

$$
\varphi: M \otimes_{R} X \rightarrow Y, \quad m \otimes_{R} x \mapsto \psi_{x}(m) .
$$

Exercise 9.22 Verify that both maps between the two sides of (9.20) are well defined and inverse to each other.

Example 9.16 (Induced and Coinduced Modules) Let $B$ be an arbitrary ring with unit and $A \subset B$ a subring with the same unit. Every left $B$-module $X$ can be viewed as a left $A$-module. This leads to the restriction functor ${ }^{32}$

$$
\begin{equation*}
\text { res : B-Mod } \rightarrow A-\mathcal{M} o d \tag{9.21}
\end{equation*}
$$

Consider $B$ an $A$ - $B$-bimodule and put $S=A, M=R=B$ in Proposition 9.2. Then for every left $B$-module $X$, the left $A$-module $B \otimes_{B} X \simeq X$ is isomorphic to the restriction res $X$ of $X$ to $A$, and the isomorphism (9.20) functorial in the $B$-module $X$ and $A$-module $Y$ takes the form

$$
\operatorname{Hom}_{A}(\operatorname{res} X, Y) \simeq \operatorname{Hom}_{B}\left(X, \operatorname{Hom}_{A}(B, Y)\right) .
$$

[^115]The left $B$-module coind $Y \stackrel{\text { def }}{=} \operatorname{Hom}_{A}(B, Y)$ is called coinduced by the left $A$-module $Y$. Thus, the coinduction functor coind : $A-\mathcal{M o d} \rightarrow B-\mathcal{M o d}, Y \mapsto \operatorname{coind} Y$, is right adjoint to the restriction functor (9.21).

Now consider $B$ as a $B$ - $A$-bimodule and put $S=M=B, R=A$ in Proposition 9.2. For every left $B$-module $Y$, the left $A$-module $\operatorname{Hom}_{B}(B, Y) \simeq Y$ is isomorphic to the restriction res $Y$ of $Y$ on $A$. The isomorphism (9.20) functorial in the $A$-module $X$ and $B$-module $Y$ takes the form

$$
\operatorname{Hom}_{B}\left(B \otimes_{A} X, Y\right) \simeq \operatorname{Hom}_{A}(X, \operatorname{res} Y) .
$$

The left $B$-module ind $X \stackrel{\text { def }}{=} B \otimes_{A} X$ is called induced by the left $A$-module $X$. The induction functor ind : $A$ - Mod $\rightarrow B$ - Mod, $X \mapsto$ ind $X$, is left adjoint to the restriction functor.

For the group algebras $A=\mathbb{k}[H], B=\mathbb{k}[G]$ of a finite group $G$ and subgroup $H \subset G$, the induction and coinduction functors become the induction and coinduction of linear representations considered in Sect. 6.3 on p. 141 and Sect. 6.3.4 on p. 146.

Exercise 9.23 (Right Module Version of Proposition 9.2) For every two rings $R, S$ and $R$ - $S$-bimodule $N$, introduce a structure of a right $S$-module functorial in $X \in \mathcal{M o d}-R$ on the abelian group $X \otimes_{R} N$, and the structure of a right $R$-module functorial in $Y \in \mathcal{M o d}-S$ on the abelian group $h^{N}(Y)=\operatorname{Hom}_{\mathcal{M o d}-S}(N, Y)$. Prove that the functor $\operatorname{Mod}-R \rightarrow \mathcal{M o d}-S, X \mapsto X \otimes_{R} N$, is left adjoint to the functor $h^{N}: \mathcal{M o d}-S \rightarrow \mathcal{M o d}-R, Y \mapsto \operatorname{Hom}_{\mathcal{M o d}-S}(N, Y)$, i.e., that there exists an isomorphism of abelian groups

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{M o d}-S}\left(X \otimes_{R} N, Y\right) \simeq \operatorname{Hom}_{\mathcal{M o d}-R}\left(X, \operatorname{Hom}_{\mathcal{M o d}-S}(N, Y)\right) \tag{9.22}
\end{equation*}
$$

functorial in $X \in \mathrm{Ob} \operatorname{Mod}-R, Y \in \mathrm{Ob} \operatorname{Mod}-S$.
Example 9.17 (Singular Simplices) Associated with every topological space $Y$ is the simplicial set ${ }^{33} S(Y): \Delta^{\mathrm{opp}} \rightarrow$ Set, called the set of singular simplices. It maps $[n] \in \mathrm{Ob} \Delta$ to the set $S_{n}(Y) \stackrel{\text { def }}{=} \operatorname{Hom}_{\tau \operatorname{cop}}\left(\Delta^{n}, Y\right)=h_{Y}\left(\Delta^{n}\right)$ of all continuous maps ${ }^{34}$ $f: \Delta^{n} \rightarrow Y$, where $\Delta^{n} \subset \mathbb{R}^{n+1}$ is the standard regular $n$-simplex considered with the topology induced from $\mathbb{R}^{n+1}$. An order-preserving map $\varphi:[n] \rightarrow[m]$ is sent by $S(Y)$ to the $\operatorname{map} \varphi^{*}: \operatorname{Hom}_{\tau}{ }_{\text {op }}\left(\Delta^{m}, Y\right) \rightarrow \operatorname{Hom}_{\mathcal{T}_{o p}}\left(\Delta^{n}, Y\right), f \mapsto f \circ \varphi_{*}$, provided by right composition with the affine map $\varphi_{*}: \Delta^{n} \rightarrow \Delta^{m}$ acting on the vertices of $\Delta^{n}$ in accordance with $\varphi$.
Exercise 9.24 Verify that these prescriptions define a functor

$$
S: \mathcal{T} o p \rightarrow \operatorname{PreSh}(\Delta), Y \mapsto S(Y)
$$

[^116]Let us show that this functor is right adjoint to the geometric realization functor

$$
\operatorname{PreSh}(\Delta) \rightarrow \mathcal{T} o p, \quad X \mapsto|X|,
$$

described in Example 9.7 on p. 193, i.e., that there is a bijection

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{T} \text { op }}(|X|, Y) \simeq \operatorname{Hom}_{\mathcal{P}_{\text {resh }}}(X, S(Y)) \tag{9.23}
\end{equation*}
$$

functorial in the simplicial set $X$ and topological space $Y$. In fact, this isomorphism is a version of the isomorphism (9.22) reformulated in terms of functors on categories instead of modules over rings. Namely, the geometric realization functor embeds the simplicial category $\Delta$ into the category $\mathcal{T} o p$ as a set of disjoint regular simplices $D=\bigsqcup_{n \geqslant 0} \Delta^{n}$. The arrows $\varphi \in \operatorname{Mor} \Delta$ act on $D$ from both sides via composition with the affine maps $\varphi_{*}$. The right action of Mor $\Delta$ commutes with the left action of Mor $\mathcal{T}$ op, which maps $D$ to other topological spaces $Y$. The category $\operatorname{Pre} \operatorname{Sh}\left(\Delta^{\mathrm{opp}}, \operatorname{Set}\right)$, of simplicial sets $X: \Delta^{\mathrm{opp}} \rightarrow$ Set, is completely analogous to the category of right modules over $\Delta$ : the arrows of $\Delta$ act from the right on every simplicial set via $x \mapsto x \varphi \stackrel{\text { def }}{=} X(\varphi) x$. In particular, the geometric realization of every simplicial set $X$ can be thought of as the tensor product $|X|=X \otimes_{\Delta} D$, that is, the quotient of the disjoint union $\bigsqcup_{n \geqslant 0} X_{n} \times \Delta^{n}$ by the relations $(x \varphi, s)=(x, \varphi s)$. Thus, the right $\Delta$-modules $S(Y)=\operatorname{Hom}_{\mathcal{T}_{o p}}(D, Y)$ and $|X|=X \otimes_{\Delta} D$ fit into the isomorphism (9.22) as

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{T} o p}\left(X \otimes_{\Delta} D, Y\right) \simeq \operatorname{Hom}_{\mathcal{M o d - \Delta}}\left(X, \operatorname{Hom}_{\mathcal{T} o p}(D, Y)\right) \tag{9.24}
\end{equation*}
$$

This is exactly the same as (9.23).
Exercise 9.25 Use Exercise 9.23 to give explicit descriptions of the inverse isomorphisms between the left and right sides of (9.24).

Proposition 9.3 A functor $G: \mathcal{D} \rightarrow \mathcal{C}$ admits the left adjoint functor $F: \mathcal{C} \rightarrow \mathcal{D}$ if and only if for every $X \in \mathrm{Ob} \mathcal{C}$, the functor

$$
\begin{equation*}
h_{G}^{X}: \mathcal{D} \rightarrow \text { Set }, \quad Y \mapsto \operatorname{Hom}_{\mathcal{C}}(X, G(Y)), \tag{9.25}
\end{equation*}
$$

is corepresentable. In this case, $F(X)$ corepresents the functor (9.25) for all $X \in \mathrm{Ob} \mathcal{C}$.

Proof The "only if" part follows directly from the definitions of adjoint functors and corepresenting objects. Let us prove the opposite implication. Assume that for every $X \in \operatorname{Ob} \mathcal{C}$, there exist an object $F(X) \in \mathrm{Ob} \mathcal{D}$ and a natural isomorphism of functors $f^{X}: h^{F(X)} \leadsto h_{G}^{X}$. The action of $F$ on the arrows of $\mathcal{C}$ is defined as follows. Every arrow $\varphi: X_{1} \rightarrow X_{2}$ produces the natural transformation $\varphi^{*}: h_{G}^{X_{2}} \rightarrow h_{G}^{X_{1}}$, the right multiplication by $\varphi$, which sends an arrow $\gamma: X_{2} \rightarrow G(Y)$ to the arrow $\gamma \varphi: X_{1} \rightarrow G(Y)$. By Corollary 9.1 on p .202 , the composition of natural
transformations $\left(f^{X_{1}}\right)^{-1} \circ \varphi^{*} \circ f^{X_{2}}: h^{F\left(X_{2}\right)} \rightarrow h^{F\left(X_{1}\right)}$ is realized as the right multiplication by an appropriate arrow $\psi: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$, uniquely determined by this property. We put $F(\varphi)=\psi$. It remains to show that the isomorphism $f^{X}: \operatorname{Hom}_{\mathcal{D}}(F(X), Y) \simeq \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$ functorial in $Y \in \mathrm{Ob} \mathcal{D}$ is functorial in $X \in \operatorname{Ob} C$ as well, i.e., for every arrow $\varphi: X_{1} \rightarrow X_{2}$ and $Y \in \mathrm{Ob} \mathcal{D}$, the diagram

is commutative. This follows directly from the construction of $F(\varphi)$.
Exercise 9.26 Prove the dual version of Proposition 9.3: a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ admits the right adjoint functor $G: \mathcal{D} \rightarrow \mathcal{C}$ if and only if for every $Y \in \operatorname{Ob} \mathcal{D}$, the presheaf

$$
h_{Y}^{F}: \mathcal{C} \rightarrow \text { Set }, \quad X \mapsto \operatorname{Hom}_{\mathcal{D}}(F(X), Y),
$$

is representable, and in this case, $G(Y)$ represents it for all $Y \in \mathrm{Ob} \mathcal{D}$.
Proposition 9.4 A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is left adjoint to a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ if and only if there exist natural transformations $t: F \circ G \rightarrow \operatorname{Id}_{\mathcal{D}}$ and $s: \operatorname{Id}_{C} \rightarrow G \circ F$ such that the compositions $F \xrightarrow{F \circ s} F G F \xrightarrow{t \circ F} F$ and $G \xrightarrow{s \circ G} G F G \xrightarrow{G \circ t} G$ are the identity transformations of the functors $F, G$ to themselves.

Proof If there exist bijections

functorial in $X \in \mathrm{Ob} \mathcal{C}, Y \in \mathrm{Ob} \mathcal{D}$ and inverse to each other, then for every arrow $\varphi: X_{1} \rightarrow X_{2}$ in $\mathcal{C}$ and every $Y \in \mathrm{Ob} \mathcal{D}$, we have the commutative diagram

whose vertical maps are the right multiplications by $F(\varphi)$ and $\varphi$ respectively. For the arrow

$$
\varphi=s_{X}: X \rightarrow G F(X)
$$

which realizes the natural transformation ${ }^{35} s: \mathrm{Id}_{C} \rightarrow G F$ over $X$, and the object $Y=F(X)$, the commutative diagram (9.27) takes the form

where the top arrow $\lambda$ sends $s_{X}$ to $\operatorname{Id}_{F(X)}$, and the bottom arrow $\lambda$ sends $\operatorname{Id}_{G F(X)}$ to the morphism $t_{F(X)}: F G F(X) \rightarrow F(X)$ realizing the second natural transformation ${ }^{36}$ $t: F G \rightarrow \operatorname{Id}_{\mathcal{D}}$ over $F(X)$. Therefore,

$$
\begin{aligned}
\operatorname{Id}_{F(X)} & =\lambda\left(s_{X}\right)=\lambda s_{X}^{*}\left(\operatorname{Id}_{G F(X)}\right)=F\left(s_{X}\right)^{*} \lambda\left(\operatorname{Id}_{G F(X)}\right)=F\left(s_{X}\right)^{*}\left(t_{F(X)}\right) \\
& =t_{F(X)} \circ F\left(s_{X}\right)
\end{aligned}
$$

that is, the composition $F \xrightarrow{F \circ s} F G F \xrightarrow{t \circ F} F$ gives the identity transformation from $F$ to itself. A symmetric argument, using $\varrho$ instead of $\lambda$, shows that the composition $G \xrightarrow{s \circ G} G F G \xrightarrow{G \circ t} G$ is the identity transformation of $G$ to itself.

Conversely, let $s: \mathrm{Id}_{\mathcal{C}} \rightarrow G F$ and $t: F G \rightarrow \mathrm{Id}_{\mathcal{D}}$ be natural transformations satisfying the conditions of the proposition. Define the values of the maps $\lambda, \varrho$ in (9.26) on arrows $\varphi: F(X) \rightarrow Y$ and $\psi: X \rightarrow G(Y)$ by the formulas

$$
\varrho(\varphi)=G(\varphi) \circ s_{X} \quad \text { and } \quad \lambda(\psi)=t_{Y} \circ F(\psi),
$$

whose right-hand sides mean the compositions of morphisms

$$
X \xrightarrow{s_{X}} G F(X) \xrightarrow{G(\varphi)} G(Y) \quad \text { and } \quad F(X) \xrightarrow{F(\psi)} F G(Y) \xrightarrow{t_{Y}} Y .
$$

[^117]Thus, the composition $\lambda \varrho(\varphi)=t_{Y} \circ F G(\varphi) \circ F\left(s_{X}\right): F(X) \rightarrow Y$ is taken along the path from the lower left corner to the upper right corner in the diagram

where the right parallelogram is commutative because $t$ is a natural transformation, and the left triangle is commutative because $F \xrightarrow{F \circ s} F G F \xrightarrow{t \circ F} F$ is the identity transformation of the functor $F$ to itself. Therefore,

$$
\lambda \varrho(\varphi)=\varphi \text { for all } \varphi \in \operatorname{Hom}(F(X), Y) .
$$

For $\varphi \in \operatorname{Hom}(X, G(Y))$, the equality $\varrho \lambda(\psi)=\psi$ is checked by a symmetric argument.

### 9.6 Limits of Diagrams

Every small category $\mathcal{N}$ can be thought of as a diagram formed by the arrows $\varphi \in \operatorname{Mor} \mathcal{N}$ drawn between the vertices $v \in \operatorname{Ob} \mathcal{N}$. A diagram of shape $\mathcal{N}$ in an arbitrary category $\mathcal{C}$ is a functor $X: \mathcal{N} \rightarrow \mathcal{C}$. Such a diagram is formed by the objects $X_{\nu}=X(\nu) \in \operatorname{Ob} \mathcal{C}$ labeled by $\nu \in \operatorname{Ob} \mathcal{N}$, and morphisms $\varphi_{X}: X_{\alpha} \rightarrow X_{\beta}$ labeled by arrows $\varphi: \alpha \rightarrow \beta$ of the category $\mathcal{N}$ such that $\varphi_{X} \psi_{X}=\zeta_{X}$ if $\zeta=\varphi \psi$ in $\operatorname{Mor} \mathcal{N}$. The category $\mathcal{N}$ is also referred to as the index category of the diagram $X$. For example, associated with every object $Y \in \mathrm{Ob} \mathcal{C}$ is the constant diagram $\bar{Y}$ formed by the objects $\bar{Y}_{v}=Y$ for all $v \in \operatorname{Ob} \mathcal{N}$ and the arrows $\varphi_{\bar{Y}}=\operatorname{Id}_{Y}$ for all $\varphi \in \operatorname{Mor} \mathcal{N}$.

All the diagrams of a given shape $\mathcal{N}$ in a given category $\mathcal{C}$ form the category ${ }^{37}$ $\mathcal{F u n}(\mathcal{N}, \mathcal{C})$, whose morphisms are natural transformations of diagrams $f: X \rightarrow Y$, i.e., collections of arrows $f_{v}: X_{v} \rightarrow Y_{v}, v \in \operatorname{Ob} \mathcal{N}$, such that $f_{\beta} \varphi_{X}=\varphi_{Y} f_{\alpha}$ for every arrow $\varphi: \alpha \rightarrow \beta$ in $\mathcal{N}$. Every diagram $X \in \mathcal{F u n}(\mathcal{N}, \mathcal{C})$ produces the presheaf

$$
\mathcal{C}^{\mathrm{opp}} \rightarrow \text { Set }, \quad Y \mapsto \operatorname{Hom}_{\mathcal{F u n}(\mathcal{N}, \mathcal{C})}(\bar{Y}, X) .
$$

If it is representable, the representing object is denoted by $\lim X \in \mathrm{Ob} \mathcal{C}$ and called the limit ${ }^{38}$ of the diagram $X$. It comes together with a bijection

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}}(Y, \lim X) \xrightarrow{\rightarrow} \operatorname{Hom}_{\mathcal{F u n}(\mathcal{N}, \mathcal{C})}(\bar{Y}, X) \tag{9.28}
\end{equation*}
$$

[^118]natural in $Y \in \operatorname{Ob} C$. For $Y=\lim X$, this map sends the identity endomorphism of $\lim X$ to the natural transformation $\pi: \overline{\lim X} \rightarrow X$, that is, the collection of arrows $\pi_{\nu}: \lim X_{v} \rightarrow X_{v}$ commuting with the arrows of the diagram $X$. The arrows $\pi_{v}$ possess the following universal property. For every object $Y \in \mathrm{Ob} C$ equipped with a collection of arrows $\psi_{v}: Y \rightarrow X_{\nu}$ commuting with the arrows of $X$, there exists a unique morphism $\alpha: Y \rightarrow \lim X$ such that $\psi_{\nu}=\pi_{\nu} \circ \alpha$ for all $\nu$.

Symmetrically, associated with every diagram $X \in \mathcal{F u n}(\mathcal{N}, \mathcal{C})$ is a functor

$$
\mathcal{C} \rightarrow \text { Set }, \quad Y \mapsto \operatorname{Hom}_{\mathcal{F u n}(\mathcal{N}, \mathcal{C})}(X, \bar{Y}) .
$$

Its corepresenting object (assuming that it exists) is called the colimit ${ }^{39}$ of the diagram $X$ and denoted by colim $X$. It comes together with a bijection

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} X, Y) \leadsto \operatorname{Hom}_{\mathcal{F u n}(\mathcal{N}, \mathcal{C})}(X, \bar{Y}) \tag{9.29}
\end{equation*}
$$

functorial in $Y \in \mathrm{Ob} \mathcal{C}$. For $Y=\operatorname{colim} X$, the identity endomorphism of $\operatorname{colim} X$ is mapped by (9.29) to the collection of arrows $\iota_{v}: X_{v} \rightarrow \operatorname{colim} X$, commuting with the arrows of $X$ and having the following universal property. For every object $Y \in \mathrm{Ob} \mathcal{C}$ equipped with a collection of arrows $\psi_{v}: X_{v} \rightarrow Y$ commuting with the arrows of $X$, there exists a unique morphism $\beta: \operatorname{colim} X_{v} \rightarrow Y$ such that $\psi_{v}=\beta \circ \iota_{v}$ for all $\nu$.

Exercise 9.27 Check that $\lim X$ and colim $X$, if they exist, are unique up to a unique isomorphism commuting with the canonical arrows $\pi_{\nu}$ and $\iota_{\nu}$ respectively.

Example 9.18 (Initial, Terminal, and Zero Objects) The simplest index category is the empty category $\varnothing$. It produces empty diagrams without any objects and arrows at all. The limit of the empty diagram in a category $\mathcal{C}$ (assuming that it exists) is denoted by $\mathbb{T}$ and called the terminal object of $\mathcal{C}$, because for every $C \in \mathrm{Ob} \mathcal{C}$, there exists a unique morphism $C \rightarrow \mathbb{T}$. Certainly, $\mathbb{T}$ is uniquely determined by this property up to the unique isomorphism. Dually, the colimit of the empty diagram (assuming that it exists) is denoted by $\mathbb{I}$ and called the initial or coterminal object of $\mathcal{C}$. For every object $C \in \mathcal{C}$, there is exactly one arrow $\mathbb{I} \rightarrow C$. If a category $\mathcal{C}$ has both initial and terminal objects and they coincide, then the object $\mathbb{I}=\mathbb{T}$ is called the zero object and denoted by 0 .

Exercise 9.28 Indicate the initial and terminal objects in the categories Set, $\mathcal{T}$ op, $\mathcal{A} b, \mathcal{M o d}_{K}, R-\mathcal{M o d}, \mathcal{G r p}, \mathcal{C m r}$, and in the categories of presheaves of sets and abelian groups on a topological space ${ }^{40} X$. Which of these categories have the zero object?

Example 9.19 (Direct (Co)products) A small category $\mathcal{N}$ is called discrete if Mor $\mathcal{N}$ is exhausted by the identity endomorphisms of the objects of $\mathcal{N}$. A discrete

[^119]diagram $X: \mathcal{N} \rightarrow \mathcal{C}$ is just a family of objects $X_{v}$ in $\mathcal{C}$ without arrows between them. The (co) limit of such a diagram is called the direct (co) product of objects $X_{\nu}$. They are denoted by
$$
\prod_{v} X_{\nu} \stackrel{\text { def }}{=} \lim X \quad \text { and } \coprod_{v} X_{v} \stackrel{\text { def }}{=} \operatorname{colim} X .
$$

If $\mathcal{N}$ consists of two objects, these definitions agree with those given in Example 9.13 and Example 9.14 on p. 204. An obvious induction shows that the existence of the direct (co) product of two objects implies the existence of (co) products of a finite number of sets of objects.

Exercise 9.29 Describe the infinite (co) products in $\mathcal{T}$ op.
Example 9.20 ((Co) equalizers) The (co) limit of a diagram of shape $\bullet \Longrightarrow \bullet$ is called the (co) equalizer of two arrows of the diagram. In the category of sets, the equalizer of maps

is the set of solutions of the equation $\varphi(x)=\psi(x)$ on $x \in X$, or equivalently, the preimage of the diagonal ${ }^{41} \Delta_{Y} \subset Y \times Y$ under the canonical map $\varphi \times \psi: X \rightarrow Y \times Y$. The coequalizer is the quotient set of $Y$ by the equivalence relation generated by the image of the $\operatorname{map}^{42} \varphi \times \psi$, i.e., by the equalities $\varphi(x)=\psi(x)$ for all $x \in X$.
Exercise 9.30 Check this, and explicitly describe the (co) equalizers in the categories Set, $\mathcal{T}$ op, $\mathcal{A}$ b, $\mathcal{M o d}_{K}$, R-Mod, $\mathcal{M o d}$-R, Grp, Cmr.

Intuitively, the existence of equalizers allows one to define "subobjects" by means of equations, whereas the coequalizers allow one to define "quotient objects" by imposing relations. For example, the (co) kernel of a homomorphism of abelian groups $f: A \rightarrow B$ can be described as the (co) equalizer of $f$ and the zero homomorphism in the category $\mathcal{A} b$.

Exercise 9.31 Prove this last statement.
Example 9.21 (Pullback, or Fibered Product) The limit of a diagram of shape
is called the pullback of the arrows of the diagram or the fibered product of the side objects of the diagram over the middle object. For a concrete realization of this

[^120]diagram in a category $\mathcal{C}$,

the fibered product is denoted by $X \times_{B} Y$. It fits in the commutative diagram

called the Cartesian square or pullback diagram, which has the following universal property. For every commutative square

there exists a unique morphism $\varphi^{\prime} \times \psi^{\prime}: Z \rightarrow X \times_{B} Y$ such that
$$
\varphi^{\prime}=\varphi \circ\left(\varphi^{\prime} \times \psi^{\prime}\right) \quad \text { and } \quad \psi^{\prime}=\psi \circ\left(\varphi^{\prime} \times \psi^{\prime}\right)
$$

Exercise 9.32 Check that this universal property determines the upper angle of the diagram (9.30) uniquely up to a unique isomorphism commuting with $\varphi$ and $\psi$.
In the category of sets, the fiber of the map $X \times_{B} Y \rightarrow B$ over a point $b \in B$ is the direct product of fibers $\varphi^{-1}(b) \times \psi^{-1}(b)$. This justifies the term "fibered product." We have already met an example of the Cartesian square in Theorem 4.1 on p. 83. In the category $\mathcal{V}(X)$ of open subsets in a topological space $X$, the fibered product over $X$ coincides with the intersection: $U \times_{X} V=U \cap V$.

Example 9.22 (Pushforward, or Fibered Coproduct) Reversing all the arrows in the previous example leads to the notion of the pushforward of two arrows with a common source. It is defined as the colimit of the diagram $\bullet \longleftarrow \_\bullet \longrightarrow \bullet$, and is also called the fibered coproduct of the side objects over the middle one. For a particular realization

the fibered coproduct is denoted by $X \otimes_{B} Y$. It fits in the commutative cocartesian square

also known as the pushforward diagram, and has the following universal property. For every commutative square

there exists a unique morphism $\varphi^{\prime} \otimes \psi^{\prime}: X \otimes_{B} Y \rightarrow Z$ such that

$$
\varphi^{\prime}=\left(\varphi^{\prime} \otimes \psi^{\prime}\right) \circ \varphi \quad \text { and } \quad \psi^{\prime}=\left(\varphi^{\prime} \otimes \psi^{\prime}\right) \circ \psi .
$$

Exercise 9.33 Describe explicitly the pullbacks and pushforwards ${ }^{43}$ in the categories Set, $\mathcal{T}$ op, $\mathcal{A} b$, Mod $_{K}$, $\mathcal{G r p}$, Cmr.

### 9.6.1 (Co) completeness

A category $\mathcal{C}$ is called (co) complete if all diagrams $\mathcal{N} \rightarrow \mathcal{C}$, for all small categories $\mathcal{N}$, have (co) limits in $\mathcal{C}$.

Proposition 9.5 If a category $\mathcal{C}$ possesses a terminal object, direct products of all sets of objects, and equalizers of all pairs of arrows with common source and target, then $\mathcal{C}$ is complete. Dually, $\mathcal{C}$ is cocomplete if it has an initial object, direct coproducts of all sets of objects, and coequalizers of all pairs of arrows with common source and target.

Proof We will prove the first statement; the second follows from it by reversing the arrows. Given a diagram $X: \mathcal{N} \rightarrow \mathcal{C}$, we have to find the universal set of arrows $\varphi_{v}$ with a common source and targets at $X_{\nu}$ satisfying the equations $\varphi_{\mu}=\varkappa_{\mu \nu} \varphi_{\nu}$, where

[^121]$\chi_{\mu \nu}=X(\nu \rightarrow \mu): X(v) \rightarrow X(\mu)$ runs through the arrows of the diagram $X$. Write $A=\prod_{\mu} X_{\mu}$ for the direct product of all objects in the diagram, and $B=\prod_{\nu \rightarrow \mu} F_{\nu \mu}$ for the direct product of the objects $F_{\nu \mu} \xlongequal{\text { def }} X_{\mu}$. Thus, for every $\mu \in \operatorname{Ob} \mathcal{N}$, the factors $X_{\mu}$ in $B$ are in bijection with the arrows ending at the $\mu$ th node of the diagram. For every arrow $v \rightarrow \mu$ in $\mathcal{N}$, consider the morphisms
\[

$$
\begin{aligned}
& f_{v \mu}=\operatorname{Id}_{X_{\mu}} \circ \pi_{\mu}: A \rightarrow F_{\nu \mu} \\
& g_{\nu \mu}=\varkappa_{\mu \nu} \circ \pi_{v}: A \rightarrow F_{\nu \mu}
\end{aligned}
$$
\]

where $\pi_{\alpha}: A \rightarrow X_{\alpha}$ is the canonical arrow from the direct product to a factor. By the universal property of the product $B$, there exist two morphisms $f, g: A \rightarrow B$ lifting the arrows $f_{\nu \mu}, g_{\nu \mu}$ along the canonical morphisms $\pi_{\mu \nu}: B \rightarrow F_{\mu \nu}$. Let $L$ be the equalizer of $f, g$. It joins the arrow $\varphi: L \rightarrow A$ such that the arrows $\varphi_{\mu}=\pi_{\mu} \circ \varphi: L \rightarrow X_{\nu}$ solve the equations $\varphi_{\mu}=\chi_{\mu \nu} \varphi_{\nu}$ and satisfy the universal property of the limit. Thus, $L=\lim X$.

Remark 9.1 In order to have the (co) limits of all finite diagrams in a category $\mathcal{C}$, it is enough to require the existence of products $X \times Y$ for all $X, Y \in \mathrm{Ob} \mathcal{C}$ in Proposition 9.5. This forces all finite direct products to exist in $\mathcal{C}$, and the above proof will work for every finite diagram.

Corollary 9.3 The categories Set, $\mathcal{T}$ op, $\mathcal{A} b, \mathcal{M o d}_{K}$, R-Mod, $\mathcal{M o d}-R, \mathcal{C}_{r p}, C_{m r}$ are bicomplete, meaning that they are both complete and cocomplete.

Proof This follows from Exercises 9.28-9.30.

### 9.6.2 Filtered Diagrams

A nonempty category $\mathcal{F}$ is called filtered if for every two objects in $\mathcal{F}$, there are two arrows with common target sourced at these objects, and for every two arrows $\varphi, \psi$ with common source and common target, there exists an arrow $\zeta$ such that $\zeta \varphi=\zeta \psi$. For example, a poset every two elements of which have a common upper bound is a filtered category. ${ }^{44}$ Given a small filtered category $\mathcal{F}$, diagrams $\mathcal{F} \rightarrow \mathcal{C}$ and $\mathcal{F}^{\text {opp }} \rightarrow \mathcal{C}$ are respectively called filtered and cofiltered. ${ }^{45}$ The colimit of a filtered diagram $X: \mathcal{F} \rightarrow$ Set is the quotient of the disjoint union $\coprod_{v} X_{v}$ by the equivalence relation identifying elements $x_{\alpha} \in X_{\alpha}$ and $x_{\beta} \in X_{\beta}$ if and only if $\varphi_{X}\left(x_{\alpha}\right)=\psi_{X}\left(x_{\beta}\right)$ for some arrows

in $\mathcal{F}$, where $\varphi_{X}, \psi_{X}$ denote the images $X(\varphi), X(\psi)$ of those arrows in $\operatorname{Mor}(\operatorname{Set})$.

[^122]Exercise 9.34 Verify that this is an equivalence relation and check that the quotient by this equivalence is colim $X$.

Example 9.23 (Open Neighborhoods and Stalks of Presheaves) In the category $\mathcal{V}(X)$ of open subsets of a topological space $X$, every family of open sets closed with respect to intersections forms a cofiltered diagram. For example, all open sets containing a given subset $Z \subset X$ form such a cofiltered diagram. In general, it has no limit in $\mathcal{V}(X)$, whereas in $\operatorname{Set}$, the limit coincides with the intersection $\bigcap_{U \supset Z} U$. For every presheaf $F: \mathcal{V}(X)^{\text {opp }} \rightarrow$ Set, the sets of sections $F(U)$ over all $U \supset Z$ form a filtered diagram in Set. Its colimit $F_{Z} \stackrel{\text { def }}{=} \operatorname{colim}_{U \supset Z} F(U)$ is called the stalk of $F$ over $Z$. By the above construction, it is formed by the equivalence classes of pairs $s_{U}$, where $U \supset Z$ is an open neighborhood of $Z$ and $s_{U} \in F(U)$ is a section of $F$ over $U$ modulo the relation $s_{U} \sim s_{W}$, meaning that $\left.s_{U}\right|_{V}=\left.s_{W}\right|_{V}$ for some open $V$ such that $Z \subset V \subset U \cap W$. These equivalence classes are called germs of sections of $F$ near $Z$.

Example 9.24 (Localization) Let $K$ be a commutative ring with unit and $S \subset K$ a multiplicative system. ${ }^{46}$ Then $S$ can be viewed as a small category whose objects are the elements of $S$, and

$$
\operatorname{Hom}_{S}(s, t) \stackrel{\text { def }}{=}\{a \in K \mid a s=t\} .
$$

Exercise 9.35 Verify that this category is filtered.
Consider the diagram $F: S \rightarrow \operatorname{Mod}_{K}$ whose objects $F_{s}=K \cdot\left[\frac{1}{s}\right]$ are the free $K$-modules of rank 1 with the basis vectors denoted by $\left[\frac{1}{s}\right]$, and the linear map $F_{s} \rightarrow F_{a s}$, corresponding to the arrow $a: s \rightarrow a s$ in $S$, acts on the basis by the rule $\left[\frac{1}{s}\right] \mapsto a \cdot\left[\frac{1}{a s}\right]$. By the above construction, the colimit colim $F$ consists of the equivalence classes of elements $a / s \stackrel{\text { def }}{=} a \cdot\left[\frac{1}{s}\right]$ modulo the relation $a / s \sim b / t$, meaning that $a f=b g$ for some $f, g \in K$ such that $s f$ equals $t g$ and lies in $S$.
Exercise 9.36 Check that this happens if and only if $(a t-b s) \cdot r=0$ for some $r \in S$.

This means that colim $F=K S^{-1}$ is the localization ${ }^{47}$ of $K$ in $S$.

### 9.6.3 Functorial Properties of (Co) limits

Recall that a natural transformation of a diagram $X: \mathcal{N} \rightarrow \mathcal{C}$ to a diagram $Y: \mathcal{N} \rightarrow \mathcal{C}$ is a collection of arrows $f_{v}: X_{v} \rightarrow Y_{v}$, one arrow for each $v \in \operatorname{Ob} \mathcal{N}$, commuting with the arrows of the diagrams. Let the diagrams $X: \mathcal{N} \rightarrow \mathcal{C}$ and $Y: \mathcal{M} \rightarrow \mathcal{C}$ have limits $L_{X}=\lim X_{v}$ and $L_{Y}=\lim Y_{\mu}$ in the category $\mathcal{C}$. Then for

[^123]every functor $\tau: \mathcal{M} \rightarrow \mathcal{N}$ and every natural transformation $f: X \circ \tau \rightarrow Y$, there exists a unique morphism $\lim f: L_{X} \rightarrow L_{Y}$ such that the diagram ${ }^{48}$

is commutative for every $\mu \in \operatorname{Ob} \mathcal{M}$. Indeed, the compositions
$$
f_{\mu} \circ \pi_{\tau(\mu)}: L_{X} \rightarrow Y_{\mu}
$$
commute with all arrows within $Y$, and therefore, by the universal property of $L_{Y}=\lim Y$, there exists a unique morphism $L_{X} \rightarrow L_{Y}$ such that all diagrams (9.32) are commutative.

Dually, if there exist the colimits $C_{X}=\operatorname{colim} X_{\nu}, C_{Y}=\operatorname{colim} Y_{\mu}$, then for every functor $\tau: \mathcal{N} \rightarrow \mathcal{M}$ and every natural transformation $f: X \rightarrow Y \circ \tau$, there exists a unique morphism colim $f: C_{X} \rightarrow C_{Y}$ such that the diagrams ${ }^{49}$

are commutative for all $v \in \operatorname{Ob} \mathcal{N}$. In particular, for $\mathcal{M}=\mathcal{N}$ and $\tau=\mathrm{Id}$, we conclude that the limit and colimit are the functors from the category of the diagrams $\operatorname{Fun}(\mathcal{N}, \mathcal{C})$ to the category $\mathcal{C}$. In fact, even more follows immediately from Proposition 9.3 on p. 210 and the equalities (9.28), (9.29) on p. 214.

Proposition 9.6 For every small category $\mathcal{N}$ and (co) complete category $\mathcal{C}$, the functors colim : $\operatorname{Fun}(\mathcal{N}, \mathcal{C}) \rightarrow \mathcal{C}$ and $\lim : \mathcal{F u n}(\mathcal{N}, \mathcal{C}) \rightarrow \mathcal{C}$ are respectively left and right adjoints to the functor $\mathcal{C} \rightarrow \operatorname{Fun}(\mathcal{N}, \mathcal{C}), C \mapsto \bar{C}$, which maps an object to the associated constant diagram.

Remark 9.2 If the category $\mathcal{C}$ is not (co) complete, then the (co)limit remains functorial on those diagrams that have a (co)limit.

[^124]Definition 9.1 (Commutativity with (Co) limits) A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is said to commute with (co) limits if for every object $L \in \operatorname{Ob} \mathcal{C}$ and every diagram

$$
X: \mathcal{N} \rightarrow \mathcal{C}
$$

the equality $L=($ co $) \lim X$ in $\mathcal{C}$ implies the equality $F(L)=(\mathrm{co}) \lim F \circ X$ in $\mathcal{D}$.
Proposition 9.7 If a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is left adjoint to a functor $G: \mathcal{D} \rightarrow \mathcal{C}$, then $F$ commutes with limits and $G$ commutes with colimits.

Proof Since $F \gtrless G$, we have the following chain of isomorphisms functorial in $D \in \mathrm{Ob} \mathcal{D}$ :

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{D}}(F(\operatorname{colim} X), D) & \simeq \operatorname{Hom}_{\mathcal{C}}(\operatorname{colim} X, G(D)) \simeq \operatorname{Hom}_{\mathcal{F u n}(\mathcal{N}, \mathcal{C})}(X, \overline{G(D)}) \\
& \simeq \operatorname{Hom}_{\mathcal{F u n}(\mathcal{N}, \mathcal{D})}(F \circ X, \bar{D}) .
\end{aligned}
$$

Therefore, $F(\operatorname{colim} X) \simeq \operatorname{colim}(F \circ X)$. The case of limits is similar (and even easier).

Corollary 9.4 Limits commute with limits and colimits commute with colimits if they exist. More precisely, let $F: \mathcal{M} \rightarrow \mathcal{F u n}(\mathcal{N}, \mathcal{C})$ be a diagram of the natural transformations of the diagrams $F_{\mu}: \mathcal{N} \rightarrow \mathcal{C}$ formed by objects $F_{\mu \nu}=F_{\mu}(\nu)$. Write $F(\nu): \mathcal{M} \rightarrow \mathcal{C}$ for the diagram formed by the arrows realizing the natural transformations $F(\operatorname{Mor}(\mathcal{M})$ ) over the object $v \in \operatorname{Ob} \mathcal{N}$. If for all $\mu \in \mathrm{Ob} \mathcal{M}, \nu \in \mathrm{Ob} \mathcal{N}$ there exist $\lim _{\mu} F_{\mu \nu} \stackrel{\text { def }}{=} \lim F_{\mu}$ and $\lim _{\nu} F_{\mu \nu}$ def $\lim F(\nu)$ (respectively $\operatorname{colim}_{\mu} F_{\mu \nu} \stackrel{\text { def }}{=} \operatorname{colim} F_{\mu}$ and $\operatorname{colim}_{\nu} F_{\mu \nu} \stackrel{\text { def }}{=} \operatorname{colim} F(\nu)$ ), then there exist $\lim _{\mu} \lim _{v} F_{\mu \nu} \simeq \quad \lim _{\nu} \lim _{\mu} F_{\mu \nu} \quad$ (respectively $\operatorname{colim}_{\mu} \operatorname{colim}_{\nu} F_{\mu \nu}$ $\left.\simeq \operatorname{colim}_{\nu} \operatorname{colim}_{\mu} F_{\mu \nu}\right)$.

Corollary 9.5 Let $X, Y: \mathcal{N} \rightarrow \mathcal{A} b$ be two diagrams of abelian groups, and

$$
f: X \rightarrow Y
$$

a natural transformation provided by the homomorphisms

$$
f_{v}: X_{v} \rightarrow Y_{v}, \quad v \in \operatorname{Ob} \mathcal{N} .
$$

Write $K=\operatorname{ker} f$ and $C=\operatorname{coker} f$ for the diagrams $\mathcal{N} \rightarrow \mathcal{A}$ bformed by the kernels and cokernels of the homomorphisms $f_{v}$. Then $\lim K=\operatorname{ker}(\lim f: \lim X \rightarrow \lim Y)$ and $\operatorname{colim} K=$ coker $(\operatorname{colim} f: \operatorname{colim} X \rightarrow \operatorname{colim} Y)$.

Proof Since a (co) kernel is the (co) limit of a diagram, ${ }^{50}$ it commutes with (co) limits.

[^125]Corollary 9.6 Let $N$ be a right module over an arbitrary ring $S$. Then the functor $S$-Mod $\rightarrow \mathcal{A} b, X \mapsto N \otimes_{S} X$ commutes with the colimits of the diagrams of left $S$-modules. In particular,

$$
\operatorname{coker}\left(\operatorname{Id}_{N} \otimes_{S} \varphi: N \otimes_{S} K \rightarrow N \otimes_{S} L\right) \simeq N \otimes_{S} \operatorname{coker}(\varphi)
$$

for every S-linear map $\varphi: K \rightarrow L$.
Proof Proposition 9.2 on p. 207 applied to the rings $S$ and $R=\mathbb{Z}$ shows that the functor

$$
S-\mathcal{M o d} \rightarrow \mathcal{A} b, \quad X \mapsto N \otimes_{S} X,
$$

is left adjoint to the functor $\mathcal{A} b \rightarrow S-\mathcal{M} o d, Y \mapsto \operatorname{Hom}_{\mathcal{A} b}(N, Y)$. Therefore, it commutes with colimits.

## Problems for Independent Solution to Chapter 9

Problem 9.1 (Cyclic category) For every nonnegative integer $m$, consider the set of complex $(m+1)$ th roots of unity $[m]_{\mathrm{cyc}} \stackrel{\text { def }}{=}\left\{e^{2 \pi i k /(m+1)} \in S^{1} \subset \mathbb{C} \mid 0 \leqslant k \leqslant m\right\}$ as the category in which $\operatorname{Hom}_{[m] \text { cyc }}(x, y)$ consists of the path from $x \in[m]_{\text {cyc }}$ to $y \in[m]_{\text {cyc }}$ provided by the counterclockwise oriented arc of the unit circle $S^{1} \subset \mathbb{C}$, and all paths obtained from it by adding every positive number of full counterclockwise turns. Thus, the arrows $x \rightarrow y$ are in bijection with nonnegative integers measuring the number of full turns contained in the arrow. For every $x \in \mathrm{Ob}[m]_{\text {cyc }}$, write $T_{x} \in \operatorname{End}(x)$ for one full turn. The cyclic category Cyc is formed by the objects $[m]_{\mathrm{cyc}}, m \in \mathbb{Z}_{\geqslant 0}$, and sets $\operatorname{Hom}_{\text {cyc }}\left([n]_{\mathrm{cyc}},[m]_{\mathrm{cyc}}\right)$ consisting of all functors $\varphi:[n]_{\text {cyc }} \rightarrow[m]_{\text {cyc }}$ such that $\varphi\left(T_{x}\right)=T_{\varphi(x)}$ for all $x \in \mathrm{Ob}[n]_{\text {cyc }}$. Show that the representable presheaf $h_{[0]_{\mathrm{cyc}}}:[m]_{\mathrm{cyc}} \mapsto \operatorname{Hom}_{\text {cyc }}\left([m]_{\mathrm{cyc}},[0]_{\mathrm{cyc}}\right)$ can be viewed as a functor $\mathcal{C y} c^{\mathrm{opp}} \rightarrow \mathcal{C y}$, and prove that it establishes an equivalence between $\mathcal{C y c}$ and Cyc ${ }^{\text {opp }}$.
Problem 9.2 Construct the left adjoint functor to the forgetful functor $\mathcal{C} \rightarrow$ Set for the following categories $\mathcal{C}$ : (a) $\mathcal{V} e c_{\mathrm{k}}$, (b) $\mathrm{Ass}_{\mathrm{k}}$, (c) $\mathcal{C m r}$, (d) $\mathcal{C}_{\text {rp }}$. In each case, describe explicitly both natural transformations between the composition of adjoint functors and the identity endofunctor.
Problem 9.3 Prove that the pullback of the diagram $X \xrightarrow{\xi} B \stackrel{\eta}{\longleftrightarrow} Y$ is canonically isomorphic to the equalizer of maps $\xi \circ \pi_{X}, \eta \circ \pi_{Y}: X \times Y \rightarrow B$, where

$$
\pi_{X}: X \times Y \rightarrow X, \quad \pi_{Y}: X \times Y \rightarrow Y
$$

are the canonical projections. For a category with terminal object $\mathbb{T}$, check that

$$
X \times_{\mathbb{T}} Y \simeq X \times Y
$$

for all $X, Y$.
Problem 9.4 Formulate and prove the dual statements to the previous problem.
Problem 9.5 Show that in Proposition 9.5 on p. 217, the existence of all equalizers and coequalizers can be replaced by the existence of all pullbacks and pushforwards respectively.
Problem 9.6 Fix some prime $p \in \mathbb{N}$. For all $m>n$, let $\psi_{n m}: \mathbb{Z} /\left(p^{m}\right) \rightarrow \mathbb{Z} /\left(p^{n}\right)$ be the quotient homomorphism of additive groups, and $\varphi_{m n}: \mathbb{Z} /\left(p^{n}\right) \hookrightarrow \mathbb{Z} /\left(p^{m}\right)$ the embedding of additive groups mapping [1] $\mapsto\left[p^{m-n}\right]$. In the category of abelian groups, show that:
(a) The limit of the diagram formed by the arrows $\psi_{n m}$ is the additive group $\mathbb{Z}_{p}$ of $p$-adic integers. ${ }^{51}$
(b) The colimit of the diagram formed by the arrows $\varphi_{m n}$ is isomorphic to the multiplicative group of all $p^{n}$ th roots of unity for all $n \in \mathbb{N}$, or equivalently, the additive group of classes of fractions $z / p^{\ell}, z \in \mathbb{Z}, \ell \in \mathbb{N}$, in the quotient group $\mathbb{Q} / \mathbb{Z}$.

Problem 9.7 For all $n \mid m$, let $\psi_{n m}: \mathbb{Z} /(m) \rightarrow \mathbb{Z} /(n)$ be the quotient homomorphism of additive groups, and $\varphi_{m n}: \mathbb{Z} /(n) \hookrightarrow \mathbb{Z} /(m)$ the embedding of additive groups such that $[1] \mapsto[m / n]$. In the category of abelian groups, show that:
(a) The limit of the diagram formed by the arrows $\psi_{n m}$ is isomorphic to the product of additive groups $\prod_{p} \mathbb{Z}_{p}$, where $\mathbb{Z}_{p}$ is the group of $p$-adic integers.
(b) The colimit of the diagram formed by the arrows $\varphi_{m n}$ is isomorphic to $\mathbb{Q} / \mathbb{Z}$.

Problem 9.8 For an arbitrary poset $\mathcal{N}$, give an explicit construction of the limit and colimit of a diagram $X: \mathcal{N} \rightarrow$ Set.
Problem 9.9 (Adjoint Presheaves) Presheaves

$$
F: \mathcal{C}^{\mathrm{opp}} \rightarrow \mathcal{D} \quad \text { and } \quad G: \mathcal{D}^{\mathrm{opp}} \rightarrow \mathcal{C}
$$

are called respectively left adjoint and right adjoint if there exist respective bijections $\operatorname{Hom}_{\mathcal{C}}(G(D), C) \simeq \operatorname{Hom}_{\mathcal{D}}(F(C), D)$ and $\operatorname{Hom}_{C}(C, G(D))$ $\simeq \operatorname{Hom}_{\mathcal{D}}(D, F(C))$ functorial in $C \in \mathrm{Ob} \mathcal{C}, D \in \mathrm{Ob} \mathcal{D}$. Prove that left adjoint

[^126]presheaves send colimits to limits, whereas right adjoint presheaves send limits to colimits.

Problem 9.10 (Noncommutative Fractions) Let $R$ be an arbitrary ring with unit and $S \subset R$ a multiplicative system ${ }^{52}$ satisfying the following two Ore conditions: (1) for all $\lambda \in R, s \in S$, there exist $\varrho \in R, t \in S$ such that $\lambda s=t \varrho$; (2) for all $\lambda_{1}, \lambda_{2} \in R$, the existence of $s \in S$ with $\lambda_{1} s=\lambda_{2} s$ implies the existence of $t \in S$ with $t \lambda_{1}=t \lambda_{2}$. Consider $S$ the category whose objects are the elements of $S$, and $\operatorname{Hom}_{S}(s, t) \xlongequal{\text { def }}\{\lambda \in R \mid \lambda s=t\}$. Define the functor $F: S \rightarrow R$ - $\mathcal{M o d}$ by sending an object $s \in S$ to the free left $R$-module of rank 1 whose basis vector we denote by $\left[\frac{1}{s}\right]$, and sending an arrow $\lambda: s \rightarrow \lambda s$ to the $R$-linear (from the right) homomorphism acting on the basis vector by the rule $\left[\frac{1}{s}\right] \mapsto \lambda \cdot\left[\frac{1}{\lambda s}\right]$. Prove that $F$ is a filtered diagram and $\operatorname{colim} F=S^{-1} R$ is formed by the classes of formal records $s^{-1} r$, where $s \in S, r \in R$, modulo the equivalence $s_{1}^{-1} r_{1} \sim s_{2}^{-1} r_{2}$, meaning the existence of $x_{1}, x_{2} \in R$ such that $x_{1} s_{1}=x_{2} s_{2} \in S$ and $x_{1} r_{1}=x_{2} r_{2}$. Further, provide $S^{-1} R$ with a ring structure with unit.
Problem 9.11 (Exact Functors) Recall ${ }^{53}$ that two composable arrows

$$
* \xrightarrow{\varphi} * \xrightarrow{\psi} *
$$

in the category of abelian groups are called exact if $\operatorname{ker} \psi=\operatorname{im} \varphi$. A longer sequence of arrows is exact if every pair of sequential arrows is exact. Exact sequences of the form

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

are called short exact sequences or exact triples. A functor $F: \mathcal{A} b \rightarrow \mathcal{A} b$ (respectively a presheaf $F: \mathcal{A} b^{\mathrm{opp}} \rightarrow \mathcal{A} b$ ) is called left exact if it maps kernels (respectively cokernels) to kernels, or equivalently, exact sequences of the form $0 \rightarrow A \rightarrow B \rightarrow C$ (respectively $A \rightarrow B \rightarrow C \rightarrow 0$ ) to exact sequences $0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C)$ (respectively $0 \rightarrow F(C) \rightarrow F(B) \rightarrow F(A)$ ). Dually, $F$ is called right exact if it maps cokernels (respectively kernels) to cokernels, that is, sends exact sequences of the form $A \rightarrow B \rightarrow C \rightarrow 0$ (respectively $0 \rightarrow A \rightarrow B \rightarrow C$ ) to exact sequences $F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow 0$ (respectively $F(C) \rightarrow F(B) \rightarrow F(A) \rightarrow 0)$. A functor is called exact if it is both left exact and right exact. Prove that:
(a) A functor is exact if and only if it sends short exact sequences to short exact sequences, and in that case, it preserves the exactness of arbitrary exact sequences of arrows.
(b) Functors $h^{A}: X \mapsto \operatorname{Hom}(A, X)$ and $h_{A}: X \mapsto \operatorname{Hom}(X, A)$ are left exact for all $A \in \operatorname{Ob} \mathcal{A} b$.

[^127](c) All right adjoint functors are left exact, and left adjoint functors are right exact.
(d) Colimits of filtered diagrams are exact functors. ${ }^{54}$

Problem 9.12 Give explicit examples of $A, B, N \in \operatorname{Ob} \mathcal{A}$ such that the endofunctors $\mathcal{A} b \rightarrow \mathcal{A} b$ sending $X \in \operatorname{Ob} \mathcal{A} b$ respectively to $\operatorname{Hom}(A, X), \operatorname{Hom}(X, B)$, and $N \otimes X$ are not exact. ${ }^{55}$
Problem 9.13 Prove that a sequence of maps $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ in $\mathcal{A} b$ is exact if for every $X \in \operatorname{Ob} \mathcal{A} b$, the sequence of natural transformations

$$
\begin{equation*}
0 \rightarrow h_{A}(X) \xrightarrow{\alpha_{*}} h_{B}(X) \xrightarrow{\beta_{*}} h_{C}(X) \rightarrow 0 \tag{9.33}
\end{equation*}
$$

is exact. Give an example of ashort exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ for which the sequence (9.33) is not exact.
Problem 9.14 (Projective Modules) Prove that the following three conditions on a left module $P$ over a ring $R$ are equivalent ${ }^{56}$ in the category $R$ - $\mathcal{M o d}$ :

1. The functor $h^{P}: R$ - $\operatorname{Mod} \rightarrow \mathcal{A} b, X \mapsto \operatorname{Hom}(P, X)$, is exact.
2. For every morphism $\varphi: P \rightarrow X$ and every epimorphism $\psi: Y \rightarrow X$, there exists a morphism $\eta: P \rightarrow Y$ such that $\varphi=\psi \eta$.
3. For every epimorphism $\psi: Z \rightarrow P$, there exists an isomorphism

$$
\gamma: Z \xrightarrow{\rightarrow} \operatorname{ker} \pi \oplus P
$$

such that $\psi=\pi_{P} \gamma$, where $\pi_{P}:$ ker $\pi \oplus P \rightarrow P$ is the canonical projection.
Problem 9.15 (Injective Modules) Prove that the following three conditions on a left module $I$ over a ring $R$ are equivalent ${ }^{57}$ in the category $R$ - $\mathcal{M o d}$ :

1. The presheaf $h_{I}: R$ - $\mathcal{M o d} \rightarrow \mathcal{A} b, X \mapsto \operatorname{Hom}(X, I)$, is exact.
2. For every monomorphism $\psi: X \hookrightarrow Y$ and every morphism $\varphi: X \rightarrow I$, there exists a morphism $\eta: Y \rightarrow I$ such that $\eta \psi=\varphi$.
3. For every monomorphism $\psi: I \hookrightarrow Z$, there exists an isomorphism

$$
\gamma: I \oplus \operatorname{coker} \iota \leadsto Z
$$

such that $\psi=\gamma \iota_{I}$, where $\iota_{I}: I \hookrightarrow I \oplus$ coker $\iota$ is the canonical inclusion.

[^128]Problem 9.16 Prove that the abelian groups $\mathbb{Q}$ and $\mathbb{Q} / \mathbb{Z}$ are injective $\mathbb{Z}$-modules. For every $A \in \mathrm{Ob} \mathcal{A} b$ and $a \in A$, prove that there exists a homomorphism of abelian groups $\psi: A \rightarrow \mathbb{Q} / \mathbb{Z}$ such that $\psi(a) \neq 0$.
Problem 9.17 For every ring $R$, equip the abelian group $I_{R}=\operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q} / \mathbb{Z})$ with the left $R$-module structure provided by the right action of $R$ on itself. ${ }^{58}$ Prove that (a) $I_{R}$ is an injective $R$-module, (b) the functor $h_{I_{R}}$ is faithful. ${ }^{59}$
Problem 9.18 For every ring $R$ with unit and all $m, n \in \mathbb{N}$, prove that the categories of left modules over the matrix rings $\operatorname{Mat}_{n}(R)$ and $\operatorname{Mat}_{m}(R)$ are exactly equivalent. ${ }^{60}$

[^129]
## Chapter 10 <br> Extensions of Commutative Rings

Everywhere in this section, the term "ring" means by default a commutative ring with unit. All ring homomorphisms are assumed to map the unit to the unit.

### 10.1 Integral Elements

### 10.1.1 Definition and Properties of Integral Elements

An extension of rings is a pair $A \subset B$, where $A$ is a subring of a ring $B$ and both rings have a common unit. Given such a ring extension, an element $b \in B$ is called integral over $A$ if it satisfies the conditions of the following lemma.

Lemma 10.1 (Characterization of Integral Elements) The following properties of an element $b \in B$ in a ring extension $A \subset B$ are equivalent:
(1) $b^{m}=a_{1} b^{m-1}+\cdots+a_{m-1} b+a_{m}$ for some $m \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{m} \in A$.
(2) The $A$-linear span of all nonnegative integer powers $b^{m}$ is a finitely generated A-module.
(3) There exists a finitely generated $A$-module $M \subset B$ such that $b M \subset M$ and $b^{\prime} M \neq 0$ for all nonzero $b^{\prime} \in B$.

Proof The implications (1) $\Rightarrow(2) \Rightarrow(3)$ are obvious. We will show that (3) implies (1). Fix some $e_{1}, e_{2}, \ldots, e_{m}$ spanning $M$ over $A$ and write $Y \in \operatorname{Mat}_{m}(A)$ for the matrix of the $A$-linear map $b: M \rightarrow M, m \mapsto b m$, in this system of generators. Then

$$
\begin{equation*}
\left(b e_{1}, b e_{2}, \ldots, b e_{m}\right)=\left(e_{1}, e_{2}, \ldots, e_{m}\right) \cdot Y \tag{10.1}
\end{equation*}
$$

The matrix identity ${ }^{1} \operatorname{det} X \cdot E=X \cdot X^{\vee}$, where $X$ is a square matrix, $E$ the identity matrix of the same size, and $X^{\vee}$ the adjunct matrix of $X$, shows that the image of multiplication by $\operatorname{det} X$ lies in the linear span of the columns of the matrix $X$. For $X=(b E-Y) \in \operatorname{Mat}_{m}(B)$, this means that $\operatorname{det}(b E-Y) \cdot M$ is contained in the $B$-linear span of vectors $\left(e_{1}, e_{2}, \ldots, e_{m}\right) \cdot(b E-Y)$, which is zero because of (10.1). The last property in (3) forces $\operatorname{det}(b E-Y)=0$. Since all elements of $Y$ lie in $A$, the latter equality can be rewritten in the form appearing in (1).

Definition 10.1 Let $A \subset B$ be an extension of rings. The set of all elements $b \in B$ integral over $A$ is called the integral closure of $A$ in $B$. If it coincides with $A$, then $A$ is said to be integrally closed in $B$. If all elements of $B$ are integral over $A$, then the extension $A \subset B$ is called an integral ring extension, and we say that $B$ is integral over $A$.

Example 10.1 ( $\mathbb{Z}$ is Integrally Closed in $\mathbb{Q}$ ) Let $A=\mathbb{Z}, B=\mathbb{Q}$. If a fraction $p / q \in \mathbb{Q}$ with coprime $p, q \in \mathbb{Z}$ satisfies a monic polynomial equation

$$
\frac{p^{m}}{q^{m}}=a_{1} \frac{p^{m-1}}{q^{m-1}}+\cdots+a_{m-1} \frac{p}{q}+a_{m}
$$

with $a_{i} \in \mathbb{Z}$, then $p^{m}=a_{1} q p^{m-1}+\cdots+a_{m-1} q^{m-1} p+a_{m} q^{m}$ is divisible by $q$. Since $p, q$ are coprime, we conclude that $q= \pm 1$. Hence, $\mathbb{Z}$ is integrally closed in $\mathbb{Q}$.
Example 10.2 (Invariants of a Finite Group) Let a finite group $G$ act on a ring $B$ by ring automorphisms, and let $B^{G} \stackrel{\text { def }}{=}\{a \in B \mid \forall g \in G g a=a\}$ be the subring of $G$-invariants. Then $B$ is integral over $B^{G}$. Indeed, write $b_{1}, b_{2}, \ldots, b_{n}$ for the $G$-orbit of an arbitrary element $b=b_{1} \in B$. Then $b$ is a root of the monic polynomial

$$
f(t)=\prod\left(t-b_{i}\right) \in B^{G}[t]
$$

as required in the first property of Lemma 10.1.
Proposition 10.1 Let $A \subset B$ be an extension of rings, and $\bar{A}_{B} \subset B$ the integral closure of $A$ in $B$. Then $\bar{A}_{B}$ is a subring of $B$, and for every ring extension $B \subset C$, every element $c \in C$ integral over $\bar{A}_{B}$ is integral over $A$ as well.

Proof If elements $p, q \in B$ satisfy the monic polynomial equations

$$
\begin{aligned}
p^{m} & =x_{1} p^{m-1}+\cdots+x_{m-1} p+x_{m} \\
q^{n} & =y_{1} q^{n-1}+\cdots+y_{n-1} q+y_{n}
\end{aligned}
$$

for some $x_{v}, y_{\mu} \in A$, then the products $p^{i} q^{j}$, where

$$
0 \leqslant i<m-1,0 \leqslant j<n-1,
$$

[^130]span a finitely generated $A$-module containing the unit and mapped to itself by multiplication by $p$ and by $q$. Therefore, it satisfies condition (3) from Lemma 10.1 for both $b=p+q$ and $b=p q$. Similarly, if the monic polynomial equations
\[

$$
\begin{aligned}
c^{r} & =z_{1} c^{r-1}+\cdots+z_{r-1} c+z_{r} \\
z_{k}^{m_{k}} & =a_{k, 1} z^{m_{k}-1}+\cdots+a_{k, m_{k}-1} z_{k}+a_{k, m_{k}} \quad 1 \leqslant k \leqslant r
\end{aligned}
$$
\]

hold for some $c \in C, z_{1}, z_{2}, \ldots, z_{r} \in \bar{A}_{B}$, and $a_{k, \ell} \in A$, then the $A$-linear span of products

$$
c^{i} z_{1}^{j_{1}} z_{2}^{j_{2}} \cdots z_{r}^{j_{r}}, \quad 0 \leqslant i<r-1,0 \leqslant j_{k}<m_{k}-1,
$$

contains the unit and goes to itself under multiplication by $c$. Therefore, $c$ is integral over $A$.

Proposition 10.2 (Gauss-Kronecker-Dedekind lemma) Let $A \subset B$ be an extension of rings, and $f, g \in B[x]$ monic polynomials of positive degree. Then all coefficients of the product fg are integral over $A$ if and only if all coefficients of the polynomials $f, g$ are integral $A$.

Proof Let $C \supset B$ be an extension of rings such that the polynomials $f, g$ are completely factorizable in $C[x]$ as $f(x)=\prod\left(x-\alpha_{v}\right)$ and $g(x)=\prod\left(x-\beta_{\mu}\right)$ for some $\alpha_{\nu}, \beta_{\mu} \in C$. Then $h(x)=\Pi\left(x-\alpha_{\nu}\right) \prod\left(x-\beta_{\mu}\right)$ is also completely factorizable.
Exercise 10.1 Given a finite set of monic polynomials of positive degree in $B[x]$, prove that there is an extension of rings $B \subset C$ such that all polynomials become completely factorizable in $C[x]$.

If all coefficients of $h$ are integral over $A$, then all the roots $\alpha_{\nu}, \beta_{\mu} \in C$ are integral over $\bar{A}_{B}$ and therefore integral over $A$ by Proposition 10.1. Since integral elements form a ring, all coefficients of $f, g$, that are the symmetric functions of $\alpha_{\nu}, \beta_{\mu}$ are also integral over $A$. The same arguments work in the opposite direction as well.

Proposition 10.3 Let $A \subset B$ be an integral extension of rings. If $B$ is a field, then $A$ is a field too. Conversely, if $A$ is a field and $B$ has no zero divisors, then $B$ is a field.

Proof Let $B$ be an integral field over $A$. Then for every nonzero $a \in A$, the inverse element $a^{-1} \in B$ satisfies a monic polynomial equation

$$
a^{-m}=\alpha_{1} a^{1-m}+\cdots+\alpha_{m-1} a^{-1}+\alpha_{0}
$$

for some $\alpha_{v} \in A$. Multiplication of both sides by $a^{m-1}$ shows that

$$
a^{-1}=\alpha_{1}+\cdots+\alpha_{m-1} a^{m-2}+\alpha_{0} a^{m-1} \in A .
$$

Conversely, if $B$ is an integral algebra over a field $A$, then for every $b \in B$, the nonnegative integer powers $b^{m}$ span a finite-dimensional vector space $V$ over $A$. For $b \neq 0$, the linear endomorphism $b: V \rightarrow V, x \mapsto b x$, is injective if $B$ has no zero divisors. This forces it to be bijective. The preimage of the unit $1 \in V$ is $b^{-1}$.

### 10.1.2 Algebraic Integers

Let $K \supset \mathbb{Q}$ be a field of finite dimension $d=\operatorname{dim}_{\mathbb{Q}} K$ as a vector space over $\mathbb{Q}$. In this case, the elements of $K$ are called algebraic numbers, because they all are integral over $\mathbb{Q}$, and therefore algebraic. ${ }^{2}$ The dimension $d=\operatorname{dim}_{\mathbb{Q}} K$ is usually referred to as the degree of $K$ over $\mathbb{Q}$. The integral closure of $\mathbb{Z}$ in $K$ is called the ring of algebraic integers in $K$ and traditionally denoted by $O_{K} \subset K$.
Exercise 10.2 Show that for every $\xi \in K$, there exists $n \in \mathbb{N}$ such that $n \xi \in O_{K}$.
It follows from the exercise that the quotient field of the ring of integers $O_{K}$ coincides with $K$. Moreover, for every basis $e_{1}, e_{2}, \ldots, e_{d}$ of $K$ over $\mathbb{Q}$, there exists $n \in \mathbb{N}$ such that $n e_{i} \in O_{K}$ for all $i$. In particular, every field of finite degree over $\mathbb{Q}$ admits an integer basis over $\mathbb{Q}$. As a $\mathbb{Z}$-module, $O_{K}$ has no torsion, and every set of $d+1$ elements of $O_{K}$ are linearly related over $\mathbb{Z}$, because they are linearly related over $\mathbb{Q}$ within $K$. We conclude that $O_{K}$ is a free $\mathbb{Z}$-module of $\operatorname{rank} d=\operatorname{dim}_{\mathbb{Q}} K$.
Exercise 10.3 Show that $z \in K$ is an integer if and only if there exists a basis of $K$ over $\mathbb{Q}$ such that the multiplication operator $z: K \rightarrow K, x \mapsto z x$, has an integer matrix. ${ }^{3}$

Definition 10.2 For every algebraic number $z \in K$, the trace and determinant of the $\mathbb{Q}$-linear endomorphism $z: K \rightarrow K, x \mapsto z x$, are called the trace and the norm of $z$ and denoted by $\operatorname{tr}(z)$ and $N(z)$ respectively. Note that both $\operatorname{tr}(z)$ and $N(z)$ lie in $\mathbb{Q}$. The $\mathbb{Q}$-bilinear form $\operatorname{Sp}: K \times K \rightarrow \mathbb{Q}, \operatorname{Sp}(a, b) \stackrel{\text { def }}{=} \operatorname{tr}(a b)$, is called the trace form. Its Gram determinant in an arbitrary basis of $O_{K}$ over $\mathbb{Z}$ is called the discriminant of the field $K$.

Exercise 10.4 Verify that the trace map $\operatorname{tr}: K \rightarrow \mathbb{Q}$ is $\mathbb{Q}$-linear, the norm map $N: K \rightarrow \mathbb{Q}$ is a multiplicative (but not additive) homomorphism, the trace form Sp is symmetric and nondegenerate, and the discriminant does not depend on the choice of basis of $O_{K}$ over $\mathbb{Z}$.

Example 10.3 (Quadratic Algebraic Integers) Every field $K \supset \mathbb{Q}$ of degree 2 has a form $K=\mathbb{Q}[\sqrt{d}]=\mathbb{Q}[x] /\left(x^{2}-d\right)$, where $d \in \mathbb{Z}$ is square-free and differs from 0 , 1. Indeed, let $\zeta \in K \backslash \mathbb{Q}$. Then $1, \zeta$ form a basis of $K$ over $\mathbb{Q}$, and $\zeta^{2}=b \zeta+c$ for some $b, c \in \mathbb{Q}$. Hence, $\zeta=a+b \sqrt{d}$ for some $a, b \in \mathbb{Q}$ and $d \in \mathbb{Z}$ such that $b \neq 0$ and $d$ is square-free. Therefore $1, \sqrt{d}$ also form a basis of $K$ over $\mathbb{Q}$, i.e., $K=\mathbb{Q}[\sqrt{d}]$.
Exercise 10.5 Prove that $\mathbb{Q}\left[\sqrt{d_{1}}\right] \not \not \mathbb{Q}\left[\sqrt{d_{2}}\right]$ for $d_{1} \neq d_{2}$ (both square-free).
Now assume that $\xi=a+b \sqrt{d}, a, b \in \mathbb{Q}$, is an integer of $K$. Let $t=\operatorname{tr}(\xi)$, $n=N(\xi)$. Since multiplication by $\xi$ has an integer matrix in some basis of $K$ over

[^131]$\mathbb{Q}$, we have $t, n \in \mathbb{Z}$. In the basis $1, \sqrt{d}$, multiplication by $\xi$ has the matrix
\[

\left($$
\begin{array}{ll}
a & d \\
b & a
\end{array}
$$\right) .
\]

Thus, $t=2 a$ and $n=a^{2}-d b^{2}=t^{2} / 4-d b^{2}$. This forces $b=s / 2$ for some $s \in \mathbb{Z}$ such that $t^{2}-d s^{2} \equiv 0(\bmod 4)$.

If $d \equiv 1(\bmod 4)$, then $t^{2} \equiv s^{2}(\bmod 4)$, that is, $t \equiv s(\bmod 2)$, or equivalently, $s=t+2 r$ for some $r \in \mathbb{Z}$. Hence,

$$
\xi=\frac{t}{2}+\frac{s}{2} \sqrt{d}=t+r \frac{1+\sqrt{d}}{2} .
$$

Exercise 10.6 Verify that $(1+\sqrt{d}) / 2 \in O_{K}$ for $d \equiv 1(\bmod 4)$.
Hence, 1 and $(1+\sqrt{d}) / 2$ form a basis of $O_{K}$ for $d \equiv 1(\bmod 4)$.
For $d \equiv 2(\bmod 4)$ and $d \equiv-1(\bmod 4)$, the corresponding congruences $t^{2} \equiv 2 s^{2}(\bmod 4)$ and $t^{2}+s^{2} \equiv 0(\bmod 4)$ force $t, s$ to be even. Hence, $\xi=a+b \sqrt{d}$ has $a, b \in \mathbb{Z}$. Since $\sqrt{d} \in O_{K}$, we conclude that 1 and $\sqrt{d}$ form a basis of $O_{K}$ for $d \equiv 2,3(\bmod 4)$. In particular, the Gaussian and Kronecker integers, that is, elements of the quadratic fields $\mathbb{Q}[i]$ integral over $\mathbb{Z}$ with $i^{2}=-1$ and $\mathbb{Q}[\omega]$ with $\omega^{2}+\omega+1=0$, are exhausted by the integer linear combinations $a+b i$ and $a+b \omega$, $a, b \in \mathbb{Z}$, respectively.

Exercise 10.7 Evaluate the discriminant of $\mathbb{Q}[\sqrt{d}]$ depending on $d$.

### 10.1.3 Normal Rings

A commutative ring $A$ without zero divisors is called normal if $A$ is integrally closed in its field of fractions ${ }^{4} Q_{A}$. In particular, every field is normal. The same arguments as in Example 10.1 show that every unique factorization domain ${ }^{5} A$ is normal. Indeed, a polynomial $a_{0} t^{m}+a_{1} t^{m-1}+\cdots+a_{m-1} t+a_{m} \in A[t]$ annihilates a fraction $p / q \in Q_{A}$ with $\operatorname{GCD}(p, q)=1$ only if $q \mid a_{0}$ and $p \mid a_{m}$. Therefore, $a_{0}=1$ forces $q=1$. As a consequence, all polynomial rings over a unique factorization domain are normal. For normal rings, Proposition 10.2 leads to the following classical claim going back to Gauss.

Corollary 10.1 (Gauss's Lemma II) Let A be a normal ring, $Q_{A}$ its field of fractions, and $f \in A[x]$ a monic polynomial. If $f=g h$ in $Q_{A}[x]$ for some monic polynomials $g$, $h$, then $f, g \in A[x]$.

[^132]Corollary 10.2 Under the conditions of Corollary 10.1, let $B \supset Q_{A}$ be a ring extending $Q_{A}$. If an element $b \in B$ is integral over $A$, then the minimal polynomial ${ }^{6}$ of $b$ over $Q_{A}$ lies in $A[x]$.

Proof Since $b$ is integral over $A$, there exists a monic polynomial $f \in A[x]$ such that $f(b)=0$. Then the minimal polynomial of $b$ over $Q_{A}$ divides $f$ in $Q_{A}[x]$, and the quotient is also monic. It remains to apply Corollary 10.1.

### 10.2 Applications to Representation Theory

Let $\varrho: \mathbb{C}[G] \rightarrow$ End $V$ be a complex linear representation of a finite group $G$. For every element $g \in G$, all the eigenvalues of $\varrho(g)$ are among the roots of the monic polynomial ${ }^{7} t^{|G|}-1$, and therefore are integral over $\mathbb{Z}$. Since $\chi_{\varrho}(g)=\operatorname{tr} \varrho(g)$ is a linear combination of eigenvalues with positive integer coefficients, we conclude that all values of the character of every complex representation of $G$ are integral over $\mathbb{Z}$.

Theorem 10.1 The dimension of every complex irreducible representation

$$
\varrho: \mathbb{C}[G] \rightarrow \text { End } V
$$

of a finite group $G$ divides the index $[G: Z(G)]$ of the center of $G$.
Proof As our first step, we will show that $\operatorname{dim} V$ divides $|G|$. More precisely, we will prove that the rational number $|G| / \operatorname{dim} V$ is integral over $\mathbb{Z}$; then Example 10.1 forces it to be an integer. Since $V$ is irreducible, the inner product of its character with itself equals 1 . Thus,

$$
\begin{equation*}
\left(\chi_{V}, \chi_{V}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \varrho\left(g^{-1}\right) \cdot \operatorname{tr} \varrho(g)=1 . \tag{10.2}
\end{equation*}
$$

The function $g \mapsto \operatorname{tr} \varrho\left(g^{-1}\right)$ is constant on every conjugacy class. Write $\tau(K) \in \mathbb{C}$ for its value on the class $K \in \mathrm{Cl}(G)$. As we said before the theorem, $\tau(K)$ is integral over $\mathbb{Z}$ for all $K$. The latter equality in (10.2) can be written as

$$
\begin{equation*}
\frac{|G|}{\operatorname{dim} V}=\frac{1}{\operatorname{dim} V} \sum_{g \in G} \operatorname{tr} \varrho\left(g^{-1}\right) \cdot \operatorname{tr} \varrho(g)=\sum_{K \in \mathrm{Cl} G} \tau(K) \cdot \frac{1}{\operatorname{dim} V} \cdot \operatorname{tr} \sum_{g \in K} \varrho(g) \tag{10.3}
\end{equation*}
$$

[^133]It remains to check that for every $K \in \mathrm{Cl}(G)$, the complex number

$$
\frac{1}{\operatorname{dim} V} \cdot \operatorname{tr} \sum_{g \in K} \varrho(g)=\frac{1}{\operatorname{dim} V} \cdot \operatorname{tr} \varrho\left(\sum_{g \in K} g\right)
$$

is integral over $\mathbb{Z}$. The element $g_{K}=\sum_{g \in K} g$ belongs to both the center of $\mathbb{C}[G]$ and the $\mathbb{Z}$-linear span of the group elements. The intersection $R=Z(\mathbb{C}[G]) \cap \mathbb{Z}[G]$ is a central commutative subring of $\mathbb{C}[G]$, finitely generated as a $\mathbb{Z}$-module. Since $V$ is irreducible, it follows from Schur's lemma ${ }^{8}$ that every central element of $\mathbb{C}[G]$ acts on $V$ via multiplication by a scalar. The scalars corresponding to the elements of $R$ form a subring of $\mathbb{C}$, also finitely generated as a $\mathbb{Z}$-module, and therefore integral over $\mathbb{Z}$. The scalar that represents $g_{K}$ equals $\operatorname{tr} \varrho\left(g_{K}\right) / \operatorname{dim} V$. Thus, this number is integral over $\mathbb{Z}$, and therefore $|G| / \operatorname{dim} V \in \mathbb{Z}$.

Now let us check that the rational number $q=[G: Z(G)] / \operatorname{dim} V$ is integral over $\mathbb{Z}$ as well. It is enough to show that all nonnegative integer powers $q^{n}$ belong to some finitely generated $\mathbb{Z}$-submodule of $\mathbb{Q}$.

Exercise 10.8 Explain why it is enough.
Consider the representation of the group $G^{n}=G \times G \times \cdots \times G$ in the space $W=V^{\otimes n}$ by the rule

$$
\begin{equation*}
\left(g_{1}, g_{2}, \ldots, g_{n}\right): v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \mapsto \varrho\left(g_{1}\right) v_{1} \otimes \varrho\left(g_{2}\right) v_{2} \otimes \cdots \otimes \varrho\left(g_{n}\right) v_{n} \tag{10.4}
\end{equation*}
$$

Exercise 10.9 Verify that this representation is irreducible.
Since every central element $c \in Z(G)$ acts on $V$ via multiplication by a constant, the subgroup $C \subset G^{n}$ formed by the collections of central elements $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ with the product $c_{1} c_{2} \cdots c_{n}=e$ lies in the kernel of the representation (10.4), that is, it acts identically. The group $C$ has order $|Z(G)|^{n-1}$, because every collection $\left(c_{1}, c_{2}, \ldots, c_{n-1}\right) \in Z(G)^{n-1}$ has the unique completion $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C$. Since $C$ is a central subgroup, it is normal in $G^{n}$, and the formula (10.4) assigns the well-defined irreducible representation of the quotient group $G^{n} / C$, of order $|G|^{n} /|Z(G)|^{n-1}$, in the space of dimension $\operatorname{dim}^{n} V$. By the first step,

$$
\frac{|G|^{n}}{(\operatorname{dim} V)^{n}|Z(G)|^{n-1}}=|Z(G)| \cdot q^{n} \in \mathbb{Z}
$$

Therefore, all powers $q^{n}$ belong to the finitely generated $\mathbb{Z}$-submodule $|Z(G)|^{-1}$. $\mathbb{Z} \subset \mathbb{Q}$, as desired.

Theorem 10.2 Let $G$ be a finite group, $A \triangleleft G$ an abelian normal subgroup, and $\varrho: \mathbb{C}[G] \rightarrow$ End $W$ a complex irreducible representation. Then $\operatorname{dim} W$ divides the index $[G: A]$.

[^134]Proof Consider the isotypic decomposition of the restriction of $\varrho$ on $A$,

$$
\operatorname{res} W=\bigoplus_{\chi \in A^{\wedge}} W_{\chi},
$$

where $W_{\chi}$ is a direct sum of 1-dimensional representations in which the abelian group $A$ acts by means of the same multiplicative character ${ }^{9} \chi: A \rightarrow \mathbb{C}^{*}$, that is, $a w=\chi(a) w$ for all $a \in A, w \in W_{\chi}$. Since $A \triangleleft G$ is normal, the group $G$ acts on the characters of $A$ by the rule

$$
g: A^{\wedge} \rightarrow A^{\wedge}, \quad \chi \mapsto \chi^{g} \stackrel{\text { def }}{=} \chi \circ \operatorname{Ad}_{g^{-1}}
$$

where $\chi^{g}(a)=\chi\left(g^{-1} a g\right)$ for all $a \in A$. Moreover, every element $g \in G$ maps an isotypic component $W_{\chi}$ isomorphically onto the isotypic component $W_{\chi^{g}}$, because

$$
a g w=g g^{-1} a g w=g \chi^{g}(a) w=\chi^{g}(a) g w
$$

for all $w \in W_{\chi}, a \in A, g \in G$. Since $W$ is irreducible, the action of $G$ on the components $W_{\chi}$ is transitive. Therefore, all the components have the same dimension, which divides $\operatorname{dim} W$. If there is just one component, i.e., res $W=W_{\chi}$ for some $\chi \in A^{\wedge}$, then $\varrho(A)$ lies in the center $Z(\varrho(G))$, because all elements of $A$ act by scalar homotheties. By Theorem 10.1, $\operatorname{dim} W$ divides the index

$$
[\varrho(G): Z(\varrho(G))]
$$

which divides the index $[\varrho(G): \varrho(A)]$. The latter, in turn, divides $[G: A]$, because there is the epimorphism of quotient groups $G / A \rightarrow \varrho(G) / \varrho(A)$ provided by the homomorphism $\varrho$. If there are several different isotypic components in res $W$, write $W_{\eta}$ for one of them, and $H=\left\{g \in G \mid g\left(W_{\eta}\right)=W_{\eta}\right\}$ for its stabilizer in $G$. Then the total number of components equals $[G: H$ ], and $H \subset G$ is a proper subgroup containing $A$ and equipped with a linear representation in $W_{\eta}$. By induction on the order of $G$, we can assume that $\operatorname{dim} W_{\eta}$ divides the index $[H: A]$. Therefore, $\operatorname{dim} W=[G: H] \cdot \operatorname{dim} W_{\eta}$ divides $[G: A]=[G: H] \cdot[H: A]$.

### 10.3 Algebraic Elements in Algebras

Let $B$ be a commutative algebra with unit over an arbitrary field $\mathbb{k}$. Given an element $b \in B$, we write $\mathbb{k}[b] \subset B$ for the smallest $\mathbb{k}$-subalgebra containing 1 and $b$. In other words, $\mathbb{k}[b]=\operatorname{im}\left(\mathrm{ev}_{b}\right)$ is the image of the evaluation homomorphism

$$
\begin{equation*}
\mathrm{ev}_{b}: \mathbb{k}[x] \rightarrow B, \quad f \mapsto f(b) \tag{10.5}
\end{equation*}
$$

[^135]Recall ${ }^{10}$ that $b$ is said to be transcendental over $\mathbb{k}$ if $\operatorname{kerev}_{b}=0$. In this case, $\mathbb{k}[b] \simeq \mathbb{k}[x]$ is infinite-dimensional as a vector space over $\mathbb{k}$ and is not a field. If $\operatorname{ker}^{\operatorname{ev}} \mathrm{v}_{b} \neq 0$, i.e., $f(b)=0$ for some nonzero polynomial $f \in \mathbb{k}[x]$, the element $b$ is algebraic. In this case, $\operatorname{ker}\left(\mathrm{ev}_{b}\right)=\left(\mu_{b}\right)$ is the principal ideal in $\mathbb{k}[x]$ generated by the minimal polynomial of $b$ over $\mathbb{k}$, and $\mathbb{k}[b]=\mathbb{k}[x] /\left(\mu_{b}\right)$ has dimension $\operatorname{deg} \mu_{b}$ as a vector space over $\mathbb{k}$. This dimension is called the degree of $b$ over $\mathbb{k}$ and denoted by $\operatorname{deg}_{k}(b)$. Note that algebraicity of $b$ over $\mathbb{k}$ means the same as integrality. In particular, for algebraic $b$, the algebra $\mathbb{k}[b]$ is a field if and only if it has no zero divisors, ${ }^{11}$ that is, if and only if the minimal polynomial $\mu_{b}$ is irreducible. This certainly holds if there are no zero divisors in $B$.

Recall ${ }^{12}$ that a commutative $\mathbb{V}_{k}$-algebra $B$ with unit is said to be finitely generated if there exist elements $b_{1}, b_{2}, \ldots, b_{m} \in B$ such that the evaluation homomorphism

$$
\mathrm{ev}_{b_{1}, b_{2}, \ldots, b_{m}}: \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right] \rightarrow B, \quad x_{i} \mapsto b_{i} \quad \text { for all } i=1,2, \ldots, m
$$

is surjective. In this case,

$$
B=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right] / I,
$$

where the ideal $I=\operatorname{kerev}_{b_{1}, b_{2}, \ldots, b_{m}}$ consists of all polynomial relations between the generators ${ }^{13} b_{1}, b_{2}, \ldots, b_{m}$ of the algebra $B$.

Theorem 10.3 If a finitely generated commutative $\mathbb{k}$-algebra $B$ is a field, then every element of $B$ is algebraic over $\mathbb{k}$.

Proof Let elements $b_{1}, b_{2}, \ldots, b_{m}$ generate $B$ as an algebra over $\mathbb{k}$. We proceed by induction on $m$. The case $m=1, B=\mathbb{k}[b]$, was discussed above. ${ }^{14}$ Consider $m>1$. If $b_{m}$ is algebraic over $\mathbb{k}$, then $\mathbb{k}\left[b_{m}\right]$ is a field. By induction, $B$ is algebraic over $\mathbb{k}\left[b_{m}\right]$, and Proposition 10.1 forces $B$ to be algebraic over $\mathbb{k}$ as well. Thus, it is enough to check that $b_{m}$ actually is algebraic over $\mathbb{K}$.

Assume the contrary. Then the evaluation map (10.5) is injective for $b=b_{m}$, and is uniquely extended to an embedding of fields $\mathbb{k}(x) \hookrightarrow B$ by the universal property of the quotient field. ${ }^{15}$ Write $\mathbb{k}\left(b_{m}\right) \subset B$ for the image of this embedding. This is the smallest subfield in $B$ containing $b_{m}$. By induction, $B$ is algebraic over $\mathbb{k}\left(b_{m}\right)$. Therefore, every generator $b_{i}, 1 \leqslant i \leqslant m-1$, is a root of some polynomial with

[^136]coefficients in $\mathbb{k}\left(b_{m}\right)$. Multiplying this polynomial by an appropriate polynomial in $b_{m}$ allows us to assume that all $m-1$ polynomials annihilating the generators $b_{1}, b_{2}, \ldots, b_{m-1}$ have coefficients in $\mathbb{k}\left[b_{m}\right]$ and share the same leading coefficient, which we denote by $p\left(b_{m}\right) \in \mathbb{k}\left[b_{m}\right]$. Thus, the field $B$ is integral over the subalgebra $F=\mathbb{k}\left[b_{m}, 1 / p\left(b_{m}\right)\right] \subset B$ spanned over $\mathbb{k}$ by the elements $b_{m}$ and $1 / p\left(b_{m}\right)$. By Proposition 10.3, $F$ is a field. However, the element $1+p\left(b_{m}\right)$ has no inverse in $F$. Indeed, if there exists a polynomial $g \in \mathbb{K}\left[x_{1}, x_{2}\right]$ such that
\[

$$
\begin{equation*}
g\left(b_{m}, 1 / p\left(b_{m}\right)\right) \cdot\left(1+p\left(b_{m}\right)\right)=1 \tag{10.6}
\end{equation*}
$$

\]

then we write the rational function $g(x, 1 / p(x))$ as $h(x) / p^{k}(x)$, where $h \in \mathbb{k}[x]$ is not divisible by $p$ in $\mathbb{k}[x]$, and multiply both sides of (10.6) by $p^{k}\left(b_{m}\right)$, obtaining the polynomial relation

$$
h\left(b_{m}\right) \cdot\left(p\left(b_{m}\right)+1\right)=p^{k+1}\left(b_{m}\right)
$$

in $b_{m}$. It is nontrivial, because $p(x)$ does not divide $h(x)(1+p(x))$ in $\mathbb{k}[x]$. Contradiction.

Corollary 10.3 Let a field $\mathbb{F}$ be finitely generated as an algebra over a subfield $\mathbb{k} \subset \mathbb{F}$. Then $\mathbb{F}$ has finite dimension as a vector space over $\mathbb{k}$.

Proof If $\mathbb{F}$ is generated as a $\mathbb{k}$-algebra by algebraic elements $b_{1}, b_{2}, \ldots, b_{m}$, then the monomials $b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{m}^{s_{m}}$ with $0 \leqslant s_{i}<\operatorname{deg}_{k} b_{i}$ span $\mathbb{F}$ linearly over $\mathbb{k}$.

### 10.4 Transcendence Generators

Everywhere in this section, $A$ means a finitely generated $\mathbb{k}$-algebra without zero divisors. We write $Q_{A}$ for the field of fractions of $A$, and $\mathbb{k}\left(a_{1}, a_{2}, \ldots, a_{m}\right) \subset Q_{A}$ for the smallest subfield containing given elements $a_{1}, a_{2}, \ldots, a_{m} \in A$. Elements $a_{1}, a_{2}, \ldots, a_{m} \in A$ are called algebraically independent if the evaluation homomorphism

$$
\begin{equation*}
\mathrm{ev}_{\left(a_{1}, a_{2}, \ldots, a_{m}\right)}: \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right] \rightarrow A, x_{i} \mapsto a_{i}, 1 \leqslant i \leqslant m \tag{10.7}
\end{equation*}
$$

is injective, i.e., if there are no polynomial relations among $a_{1}, a_{2}, \ldots, a_{m}$. In this case, the evaluation map (10.7) can be uniquely extended to a field isomorphism

$$
\mathbb{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right) \xrightarrow{\sim} \mathbb{k}\left(a_{1}, a_{2}, \ldots, a_{m}\right) \subset Q_{A}
$$

which maps a rational function of $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ to its value at $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$.
Elements $a_{1}, a_{2}, \ldots, a_{m} \in A$ are called transcendence generators of $A$ over $\mathbb{k}$ if every element of $A$ is algebraic over $\mathbb{k}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. In this case, the whole field $Q_{A}$ is also algebraic over $\mathbb{k}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, because the integral closure of
$\mathbb{R}_{k}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ in $Q_{A}$ is a field by Proposition 10.3, and $Q_{A}$ is contained in every field containing $A$ by the universal property of the field of fractions.

An algebraically independent collection $a_{1}, a_{2}, \ldots, a_{m}$ of transcendence generators of $A$ over $\mathbb{k}$ is called a transcendence basis of $A$ over $\mathbb{k}$. Since every proper subset of a transcendence basis is algebraically independent, a transcendence basis can be equivalently characterized as a collection of transcendence generators minimal with respect to inclusions, or as a maximal algebraically independent collection.

Similarly to the bases of vector spaces, all transcendence bases of $A$ have the same cardinality. The proof uses the same key lemma as the similar theorem for bases of vector spaces. ${ }^{16}$

Lemma 10.2 (Exchange Lemma) Let elements $a_{1}, a_{2}, \ldots, a_{m}$ be transcendence generators of A over $\mathbb{k}$, and let $b_{1}, b_{2}, \ldots, b_{n} \in A$ be algebraically independent over $\mathbb{k}$. Then $n \leqslant m$, and after appropriate renumbering of the $a_{i}$ and replacing the first $n$ of them by $b_{1}, b_{2}, \ldots, b_{n}$, the resulting elements $b_{1}, b_{2}, \ldots, b_{n}, a_{n+1}, \ldots, a_{m}$ are transcendence generators of $A$ as well.

Proof Since $b_{1}$ is algebraic over $\mathbb{k}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, there is a polynomial relation

$$
f\left(b_{1}, a_{1}, a_{2}, \ldots, a_{m}\right)=0, \quad f \in \mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{m+1}\right] .
$$

Since $b_{1}$ is transcendental over $\mathbb{k}$, this relation contains some $a_{i}$. After appropriate renumbering, we can assume that $i=1$. Then $a_{1}$, and therefore all of $Q_{A}$, is algebraic over $\mathbb{k}\left(b_{1}, a_{2}, \ldots, a_{m}\right)$. Assume by induction that

$$
b_{1}, \ldots, b_{k}, a_{k+1}, \ldots, a_{m}
$$

are transcendence generators of $A$ over $\mathbb{k}$ for $k<n$. Since $b_{k+1}$ is algebraic over $\mathbb{k}_{k}\left(b_{1}, \ldots, b_{k}, a_{k+1}, \ldots, a_{m}\right)$, there is a polynomial relation

$$
f\left(b_{1}, \ldots, b_{k}, b_{k+1}, a_{k+1}, \ldots, a_{m}\right)=0, \quad f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{m+1}\right] .
$$

It must contain some $a_{k+i}$, because of the algebraic independence of $b_{1}, b_{2}, \ldots, b_{n}$ over $\mathbb{k}$. Hence $m>k$, and after renumbering of the remaining elements $a_{i}$, we can assume that $a_{k+1}$ is algebraic over $\mathbb{k}\left(b_{1}, \ldots, b_{k+1}, a_{k+2}, \ldots, a_{m}\right)$. Therefore, all of $Q_{A}$ is algebraic over this field too. This completes the induction step.

Corollary 10.4 Let A be a finitely generated commutative $\mathbb{k}$-algebra without zero divisors. Then all transcendence bases of $A$ over $k$ have the same cardinality, every system of transcendence generators of A over $\mathbb{k}$ contains some transcendence basis, and every algebraically independent collection of elements in $A$ can be included in a transcendence basis.

[^137]Definition 10.3 The cardinality of a transcendence basis of a finitely generated commutative $\mathbb{k}$-algebra $A$ without zero divisors is called the transcendence degree of $A$ and denoted by $\operatorname{tr} \operatorname{deg}_{\mathrm{k}} A$.
 Indeed, for every

$$
\psi=f(t) / g(t) \in A \backslash \mathbb{k},
$$

the element $t$ satisfies the algebraic equation $\psi \cdot g(x)-f(x)=0$ with coefficients in $\mathbb{k}(\psi)$. This forces the whole of $\mathbb{k}(t)$ to be algebraic over $\mathbb{k}(\psi) \subset \mathbb{Q}_{A}$ and $\psi$ to be transcendental over $\mathbb{k}$, because otherwise, $t$ would be algebraic over $\mathbb{k}$. Thus every $\psi \in A \backslash \mathbb{k}$ is a transcendence basis for both $A$ and $\mathbb{k}(t)$.

Theorem 10.4 (Lüroth's Theorem) Every subfield $\mathbb{F} \subset \mathbb{k}(t)$ containing $\mathbb{k}$ but different from $\mathbb{k}$ is a simple transcendental extension of $\mathbb{k}$, that is, $\mathbb{F}=\mathbb{k}(\psi)$ for some $\psi \in \mathbb{k}(t) \backslash \mathbb{k}$.

Proof By the previous example, $t$ is algebraic over $\mathbb{F}$. Let

$$
f(x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+a_{m} \in \mathbb{F}[x]
$$

be the minimal polynomial of $t$ over $\mathbb{F}$. The coefficients of $f$ are rational functions in $t$, and at least one of them, say $a_{i}$, must be nonconstant, because $t$ is transcendental over $\mathbb{k}$. We put $\psi=a_{i}$ and write it as $g / h$ with $g, h \in \mathbb{k}[t], \operatorname{GCD}(g, h)=1$. Since $t$ is annihilated by the nonzero polynomial $\psi h(x)-g(x) \in \mathbb{F}[x]$, this polynomial is divisible by $f$ in $\mathbb{F}[x]$, that is, $\psi h(x)-g(x)=f(x) q(x)$ for some $q(x) \in \mathbb{F}[x]$. Consider both sides to be polynomials in $x$ with the coefficients in the field of fractions of the unique factorization domain $\mathbb{k}[x]$, and write them in the simplified form ${ }^{17} \frac{a}{b} C(x)$, where $a, b \in \mathbb{k}[t]$ are coprime and $C \in \mathbb{k}[t][x]$ has content ${ }^{18}$ one. Then, by the uniqueness of the simplified form, the following equality in the polynomial ring $\mathbb{k}[t, x]$ holds, up to a constant factor:

$$
\begin{equation*}
g(t) h(x)-h(t) g(x)=F(x, t) Q(x, t) \tag{10.8}
\end{equation*}
$$

where the left-hand side comes from the simplified form of

$$
\psi h(x)-g(x)=\frac{1}{h(t)}(g(t) h(x)-h(t) g(x)),
$$

[^138]and the polynomials $F, Q \in \mathbb{k}[t][x]$ come from the simplified forms of $f, q$. Note that the degrees of $g(t)$ and $h(t)$ in $t$ are not greater than that of $F$, because $a_{i}(t)=g(t) / h(t)$ is the coefficient of $f$. Hence, the polynomial $Q(x, t)$ in (10.8) does not depend on $t$. Since $\operatorname{GCD}(g(t), h(t))=1$, the left-hand side of (10.8) cannot be divisible by a nonconstant element of $\mathbb{k}[t]$. This forces $Q(x, t)$ to be a constant. Thus, $F(x, t)=g(t) h(x)-h(t) g(x)$. The symmetry in $t, x$ forces $F$ to be of degree $m$ in $t$. Therefore, at least one of $f, g$ has degree $m$, that is, $t$ has degree $m$ over $\mathbb{k}(\psi)$. Since $\mathbb{k}_{\mathfrak{k}}(\psi) \subset \mathbb{F}$ and $\operatorname{dim}_{\mathbb{k}(\psi)} \mathbb{k}_{\mathbb{k}}(t)=m=\operatorname{dim}_{\mathbb{F}} \mathbb{k}_{\mathfrak{k}}(t)$, we conclude that $\mathbb{k}(\psi)=\mathbb{F}$.

## Problems for Independent Solution to Chapter 10

Problem 10.1 (Noetherian Modules) Recall ${ }^{19}$ that a module $M$ over a commutative ring $K$ is called Noetherian if every submodule of $M$ is finitely generated. Prove that:
(a) Every surjective endomorphism of $M$ is an isomorphism.
(b) If $M$ is Noetherian, then the quotient ring $K / \operatorname{Ann}(M)$ by the ideal

$$
\operatorname{Ann}(M) \stackrel{\text { def }}{=}\{x \in K \mid x M=0\}
$$

is Noetherian. ${ }^{20}$
Problem 10.2 Let an $A$-module $M$ be linearly generated by the elements

$$
m_{1}, m_{2}, \ldots, m_{r} \in M
$$

and suppose the $A$-linear endomorphism $\varphi: M \rightarrow M$ maps these generators as

$$
\left(m_{1}, m_{2}, \ldots, m_{r}\right) \mapsto\left(m_{1}, m_{2}, \ldots, m_{r}\right) \cdot F,
$$

where $F \in \operatorname{Mat}_{r \times r}(A)$. Verify that $\operatorname{det}(F) \cdot M \subset \varphi(M)$. Use this to prove that if $M$ is faithful, meaning that $a M \neq 0$ for all nonzero $a \in A$, then $I \cdot M \neq M$ for every proper ideal $I \subsetneq A$.
Problem 10.3 Let $\mathbb{F} \supset \mathbb{k}$ be a field extension of finite degree. Prove that every finitely generated $\mathbb{k}$-subalgebra $A \subset \mathbb{F}$ is a field, and $\operatorname{deg}_{k} A \mid \operatorname{deg}_{k} \mathbb{F}$.

[^139]Problem 10.4 Describe the ring of integers of the field

$$
\mathbb{Q}[\sqrt[7]{1}]=\mathbb{Q}[x] /\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)
$$

and compute the discriminant.
Problem 10.5 Determine whether the ring $\mathbb{k}[x, y]$ is integral over the subring of polynomials $f$ with $\frac{\partial f}{\partial x} f(0,0)=0$.
Problem 10.6 Is the ring of all continuous functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ integral over the subring of all $f$ with $f(1,0)=f(0,1)$ ?
Problem 10.7 Let $\mathbb{k}$ be a field, $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{k}$, and $f \in \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Consider the homomorphism

$$
\psi: \mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right] \hookrightarrow \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right], \quad t_{i} \mapsto x_{i}+a_{i} x_{0} .
$$

For which $f$ and $a_{1}, a_{2}, \ldots, a_{n}$ is the quotient ring $\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right] /(f)$ integral over im $(\psi)(\bmod f)$ ?
Problem 10.8 Let $\mathbb{k}$ be an infinite field and $f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a nonconstant polynomial. Find $\operatorname{tr} \operatorname{deg}_{k} \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /(f)$.
Problem 10.9 Let $B \supset A$ be an integral extension of rings and $\mathbb{k}$ an algebraically closed field. Show that every homomorphism $A \rightarrow \mathbb{k}$ can be extended to a homomorphism $B \rightarrow \mathbb{k}$.
Problem 10.10 Prove that every irreducible character of a finite group of dimension greater than 1 takes the zero value at some conjugacy class.
Problem 10.11 Let the quotient ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$ be a field. Prove that it is finite.
Problem 10.12 Let $\mathbb{k}$ be an arbitrary field and

$$
\psi=f / g \in \mathbb{k}(t), f, g \in \mathbb{k}[t], \operatorname{GCD}(f, g)=1,
$$

a nonconstant rational function. Prove that:
(a) $\mathbb{k}(t)$ has dimension $\max (\operatorname{deg} f, \operatorname{deg} g)$ as a vector space over $\mathbb{k}(\psi)$.
(b) $\mathbb{k}(\psi)=\mathbb{k}(t)$ if and only if $\psi=(a t+b) /(c t+d)$ is a linear fractional function.
(c) The group $\operatorname{Aut}_{\mathbb{k}} \mathbb{k}(t)=\left\{\varphi: \mathbb{k}(t) \xrightarrow{\sim} \mathbb{k}(t)|\varphi|_{\mathfrak{k}}=\operatorname{Id}_{\mathfrak{k}}\right\}$, of automorphisms of the field $\mathbb{k}(t)$ acting identically on the field $\mathbb{k}$, is isomorphic to $\mathrm{PGL}_{2}(\mathbb{k})$.

Problem 10.13 Let $\mathbb{F} \supset \mathbb{C}$ be a field linearly generated over $\mathbb{C}$ by at most a countable set of elements. Prove that $\mathbb{F}=\mathbb{C}$.
Problem 10.14* Let $A$ be a normal ring. Prove that the polynomial ring $A[x]$ is normal too.

## Chapter 11 <br> Affine Algebraic Geometry

In this chapter we assume by default that $\mathbb{k}_{\mathbb{k}}$ is an algebraically closed field.

### 11.1 Systems of Polynomial Equations

Every system of polynomial equations

$$
\begin{equation*}
f_{v}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0, \quad f_{v} \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \tag{11.1}
\end{equation*}
$$

can be extended to a system whose left-hand sides form the ideal

$$
J \subset \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

spanned by the polynomials $f_{v}$ appearing in (11.1). The extended infinite system has the same set of solutions in the affine space $\mathbb{A}^{n}=\mathbb{A}\left(\mathbb{k}^{n}\right)$ as the original system, because the equalities $f_{v}=0$ imply the equalities $\sum_{v} g_{v} f_{v}=0$ for all $g_{v} \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Since the polynomial ring is Noetherian, ${ }^{1}$ the system $f=0, f \in J$, is equivalent to a finite subsystem consisting of equations whose left-hand sides generate $J$. Moreover, this finite set of generators can be chosen among the original polynomials ${ }^{2} f_{v}$ from (11.1). Thus, every (even infinite) system of polynomial equations is always equivalent, on the one hand, to some finite subsystem, and on the other hand, to a system of equations $f=0$, where $f$ runs through some ideal in $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Given an ideal $J \subset \mathbb{k}_{\mathbb{k}}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, its zero set

$$
V(J) \stackrel{\text { def }}{=}\left\{a \in \mathbb{A}^{n} \mid \forall, f \in J f(a)=0\right\}
$$

[^140]is called the affine algebraic variety ${ }^{3}$ determined by $J$. Note that $V(J)$ may be empty. This happens, for example, if $J=(1)=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ contains the equation $1=0$.

Associated with an arbitrary subset $\Phi \subset \mathbb{A}^{n}$ is the ideal

$$
I(\Phi) \stackrel{\text { def }}{=}\left\{f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mid f(p)=0 \text { for all } p \in \Phi\right\}
$$

called the ideal of $\Phi$. Its zero set $V(I(\Phi))$ is the smallest affine algebraic variety containing $\Phi$. For every ideal $J \subset \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, there is the tautological inclusion

$$
J \subset I(V(J))
$$

In general, it is proper. Say for $n=1$, the ideal $J=\left(x^{2}\right) \subset \mathbb{k}[x]$ determines the variety $V\left(x^{2}\right)=\{0\} \subset \mathbb{A}^{1}$, whose ideal $I\left(V\left(x^{2}\right)\right)$ is equal to $(x) \nexists\left(x^{2}\right)$.

Theorem 11.1 (Hilbert's Nullstellensatz) Let $\mathbb{k}$ be an algebraically closed field, $J \subset \mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ an ideal, $\sqrt{J} \stackrel{\text { def }}{=}\left\{f \mid \exists m \in \mathbb{N}: f^{m} \in J\right\}$ the radical ${ }^{4}$ of $J$. Then $I(V(J))=\sqrt{J}$ (the strong Nullstellensatz). In particular, $V(J)=\varnothing$ if and only if $1 \in J$ (the weak Nullstellensatz).

Proof Let us prove the weak Nullstellensatz first. It is enough to show that for every proper ideal $J \subset \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, there exists a point $p \in \mathbb{A}^{n}$ such that $f(p)=0$ for all $f \in J$. Without loss of generality, the ideal $J$ can replaced by a maximal ${ }^{5}$ proper ideal $\mathfrak{m} \supset J$. Then the quotient ring $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathfrak{m}$ is a field, finitely generated as a $\mathbb{k}$-algebra. By Theorem 10.3 , every element $\vartheta \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathfrak{m}$ is algebraic over $\mathbb{k}$, i.e., satisfies an equation $\mu(\vartheta)=0$ for a monic irreducible polynomial $\mu \in \mathbb{k}[t]$. Since $\mathbb{k}$ is algebraically closed, the polynomial $\mu$ has to be linear, that is, $\vartheta \in \mathbb{k}$. Therefore, every polynomial is congruent modulo $\mathfrak{m}$ to a constant. Write $p_{i} \in \mathbb{k}$ for the constant congruent to $x_{i}$. Then the factorization homomorphism $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathfrak{m} \simeq \mathbb{k}$ maps every polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to the class of constant $f\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{K}$. Since all $f \in \mathfrak{m}$ are mapped to zero, they all vanish at $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{A}^{n}$, as desired.

The strong Nullstellensatz is trivial for $V(J)=\varnothing$. Assume that $V(J) \neq \varnothing$, that is, $J \neq(1)$. Consider $\mathbb{A}^{n}$ to be the hyperplane $t=0$ in the affine space $\mathbb{A}^{n+1}$ with coordinates

$$
\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
$$

[^141]If a polynomial $f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \subset \mathbb{k}\left[t, x_{1}, x_{2}, \ldots, x_{n}\right]$ vanishes everywhere on the cylinder $V(J) \subset \mathbb{A}^{n+1}$, then the polynomial $g(t, x)=1-t f(x)$ equals 1 at every point of $V(J)$. Therefore, the ideal spanned in $\mathbb{k}\left[t, x_{1}, x_{2}, \ldots, x_{n}\right]$ by $J$ and $g(t, x)$ has empty zero set in $\mathbb{A}^{n+1}$. By the weak Nullstellensatz, this ideal contains 1, i.e., there exist $q_{0}, q_{1}, \ldots, q_{s} \in \mathbb{k}\left[t, x_{1}, x_{2}, \ldots, x_{n}\right]$ and $f_{1}, f_{2}, \ldots, f_{s} \in J$ such that

$$
\begin{equation*}
q_{0}(x, t) \cdot(1-t f(x))+q_{1}(t, x) \cdot f_{1}(x)+\cdots+q_{s}(x, t) \cdot f_{s}(x)=1 . \tag{11.2}
\end{equation*}
$$

The homomorphism $\mathbb{k}\left[t, x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ acting on the variables by the rules

$$
t \mapsto 1 / f(x), \quad x_{v} \mapsto x_{v}, \quad \text { for } 1 \leqslant v \leqslant n,
$$

maps the equality (11.2) to the following equality in the field $\mathbb{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ :

$$
\begin{equation*}
q_{1}(1 / f(x), x) \cdot f_{1}(x)+\cdots+q_{s}(1 / f(x), x) \cdot f_{s}(x)=1 . \tag{11.3}
\end{equation*}
$$

Since $1 \notin J$, some $q_{v}(1 / f(x), x)$ have nontrivial denominators. All these denominators are canceled via multiplication by $f^{m}$ for some $m \in \mathbb{N}$. Multiplying both sides by this $f^{m}$ leads to the required equality

$$
f^{m}(x)=\widetilde{q}_{1}(x) \cdot f_{1}(x)+\cdots+\widetilde{q}_{s}(x) \cdot f_{s}(x)
$$

with $\widetilde{q}_{v} \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

### 11.2 Affine Algebraic-Geometric Dictionary

A map $\varphi: X \rightarrow Y$ between affine algebraic varieties $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ is called regular or polynomial if its action is described in coordinates by the rule $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{m}(x)\right)$, where $\varphi_{i}(x) \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. We write $\mathcal{A} f f_{k}$ for the category of affine algebraic varieties and regular maps between them.

### 11.2.1 Coordinate Algebra

A function $f: X \rightarrow \mathbb{k}$ on an affine algebraic variety $X \subset \mathbb{A}^{n}$ is called regular if it provides $X$ with a regular map $f: X \rightarrow \mathbb{A}^{1}$, that is, if there exists some polynomial in the coordinates $x_{1}, x_{2}, \ldots, x_{n}$ on $\mathbb{A}^{n}$ whose restriction to $X$ coincides with $f$. Two polynomials determine the same regular function if and only if they are congruent modulo the ideal $I(X)=\left\{f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]|f|_{X} \equiv 0\right\}$. The regular functions
$X \rightarrow \mathbb{k}$ form a $\mathbb{k}$-algebra with respect to the usual addition and multiplication of functions taking values in a field. This algebra is denoted by

$$
\begin{equation*}
\mathbb{k}[X] \stackrel{\operatorname{def}}{=} \operatorname{Hom}_{\mathcal{A f f}}^{k}\left(X, \mathbb{A}^{1}\right) \simeq \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I(X) \tag{11.4}
\end{equation*}
$$

and called the coordinate algebra of $X$. Note that $\mathbb{k}[X]$ is reduced, ${ }^{6}$ because $f^{n}=0$ only for the zero function $f: X \rightarrow \mathbb{k}$. This forces the ideal $I(X)$ to be radical, i.e., to have $\sqrt{I(X)}=I(X)$, which agrees with the strong Nullstellensatz.
Lemma 11.1 Every reduced finitely generated algebra A over an algebraically closed field $\mathbb{k}$ is isomorphic to the coordinate algebra $\mathbb{k}[X]$ of some affine algebraic variety $X$ over $\mathbb{k}$.

Proof Write $A$ as a quotient $A=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / J$. Since $A$ is reduced, $\sqrt{J}=J$. By the strong Nullstellensatz, this forces $J$ to coincide with the ideal $I(V(J))$ of the affine algebraic variety $V(J) \subset \mathbb{A}^{n}$. Therefore, $A=\mathbb{k}[X]$ for $X=V(J)$.

### 11.2.2 Maximal Spectrum

Associated with every point $p \in X$ of an affine algebraic variety $X$ is the evaluation homomorphism $\mathrm{ev}_{p}: \mathbb{k}[X] \rightarrow \mathbb{k}, f \mapsto f(p)$. It is obviously surjective, and therefore, its kernel

$$
\mathfrak{m}_{p} \stackrel{\text { def }}{=} \operatorname{kerev}_{p}=\{f \in \mathbb{k}[X] \mid f(p)=0\}
$$

is a maximal ideal in $\mathbb{k}[X]$. It is called the maximal ideal of the point $p \in X$. Note that for every $g \in \mathbb{k}[X]$, the residue class $g\left(\bmod \mathfrak{m}_{p}\right)$ coincides in $\mathbb{k}[X] / \mathfrak{m}_{p} \simeq \mathbb{k}$ with the class of constant $g(p)$, i.e., the evaluation at $p$ can be thought of as the factorization modulo the ideal $\mathfrak{m}_{p} \subset \mathbb{k}[X]$.

Given an arbitrary commutative $\mathbb{k}$-algebra $A$, the set of all maximal ideals $\mathfrak{m} \subset A$ is called the maximal spectrum of $A$ and denoted by $\operatorname{Spec}_{\mathrm{m}}(A)$. If $A$ is finitely generated, then for every $\mathfrak{m} \in \operatorname{Spec}_{\mathfrak{m}} A$, the quotient $A / \mathfrak{m} \supset \mathbb{k}$ is a field, finitely generated as a $\mathbb{k}$-algebra. By Theorem 10.3, it must be an algebraic extension of $\mathbb{k}$. For algebraically closed $\mathbb{k}$, this forces $A / \mathfrak{m}=\mathbb{k}$ and allows one to interpret every element $a \in A$ as a function $a: \operatorname{Spec}_{\mathfrak{m}} A \rightarrow \mathbb{k}, \mathfrak{m} \mapsto a(\bmod \mathfrak{m}) \in A / \mathfrak{m}=\mathbb{k}$.

Lemma 11.2 For every affine algebraic variety $X$ over an algebraically closed field $k$, the maps

$$
p \mapsto \mathrm{ev}_{p} \mapsto \mathfrak{m}_{p}=\operatorname{ker}\left(\mathrm{ev}_{p}\right)
$$

[^142]establish canonical bijections between the points of $X$, $\mathbb{k}$-algebra homomorphisms $\mathbb{k}[X] \rightarrow \mathbb{k}$, and maximal ideals $\mathfrak{m} \subset \mathbb{k}[X]$.

Proof For every finitely generated algebra $A$ over an algebraically closed field $\mathbb{k}$, the maximal ideals $\mathfrak{m} \in \operatorname{Spec}_{\mathrm{m}} A$ are in bijection with the $\mathbb{k}$-algebra homomorphisms $\varphi: A \rightarrow \mathbb{k}$. Namely, since ${ }^{7} \varphi(1)=1$, every homomorphism $\varphi: A \rightarrow \mathbb{k}$ is surjective, and therefore, its kernel $\operatorname{ker} \varphi$ is a maximal ideal in $A$. Conversely, for every maximal ideal $\mathfrak{m} \subset A$, the quotient map $\varphi: A \rightarrow A / \mathfrak{m}$ takes values in the field $A / \mathfrak{m} \supset \mathbb{k}$, which is algebraic over $\mathbb{k}$ and therefore coincides with $\mathbb{k}$ if $\mathbb{k}$ is algebraically closed. ${ }^{8}$ This proves the bijectivity of the second map from the lemma.

The first map $X \rightarrow \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X], p \mapsto \mathfrak{m}_{p}=\operatorname{kerev}_{p}$, is injective regardless of whether $\mathbb{k}$ is algebraically closed, because for $p \neq q$, there exists, for example, an affine linear function $f: \mathbb{A}^{n} \rightarrow \mathbb{k}$ vanishing at $p$ and equal to 1 at $q$. It remains to show that over an algebraically closed field $\mathbb{k}$, every maximal ideal $\mathfrak{m} \subset \mathbb{k}^{k}[X]$ coincides with $\mathfrak{m}_{p}=\operatorname{kerev}_{p}$ for some $p \in X$. Write $\widetilde{\mathfrak{m}} \subset \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for the full preimage of $\mathfrak{m}$ under the factorization homomorphism

$$
\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[X]=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I(X) .
$$

Since $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \widetilde{\mathfrak{m}}=\mathbb{k}[X] / \mathfrak{m}=\mathbb{k}$, the ideal $\widetilde{\mathfrak{m}}$ is proper (in fact, maximal), and by construction, it contains $I(X)$. By the weak Nullstellensatz, $V(\widetilde{\mathfrak{m}}) \neq \varnothing$. Let $p \in V(\widetilde{\mathfrak{m}})$. Then $p \in X$, because $I(X) \subset \widetilde{\mathfrak{m}}$. Since $\mathfrak{m}$ is maximal, the inclusion $\mathfrak{m} \subset \mathfrak{m}_{p}$ implies the equality $\mathfrak{m}=\mathfrak{m}_{p}$.

Agreement 11.1 In what follows, we will identify the morphisms $A \rightarrow \mathbb{k}$ with their kernels and write $\operatorname{Spec}_{\mathfrak{m}} A$ for both the sets of maximal ideals $\mathfrak{m} \subset A$ and $\mathbb{k}$-algebra homomorphisms $A \rightarrow \mathbb{k}$.

Exercise 11.1 Establish a natural bijection between $\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\mathbb{A}^{n}=\mathbb{A}\left(\mathbb{k}^{n}\right)$.

Definition 11.1 (Nilradical and Jacobson Radical) Let $A$ be a commutative ring. The radical of the zero ideal in $A$, that is, the set of all nilpotent elements ${ }^{9}$ of $A$ together with the zero element, is called the nilradical of $A$ and denoted by

$$
\mathfrak{n}(A) \stackrel{\text { def }}{=} \sqrt{0}=\left\{a \in A \mid a^{n}=0 \text { for some } n \in \mathbb{N}\right\} .
$$

[^143]The intersection of all maximal ideals in $A$ is called the Jacobson radical of $A$ and denoted by $\mathfrak{r}(A)$.

Exercise 11.2 Check that $\mathfrak{n}(A)$ is an ideal in $A$.
Corollary 11.1 Let A be a finitely generated algebra over an algebraically closed field $\mathbb{k}$. Then $\mathfrak{n}(A)=\mathfrak{r}(A)$. In other words, the nilradical of A coincides with the kernel of the homomorphism $A \rightarrow \mathbb{k}^{\operatorname{Spec}_{\mathrm{m}} A}$ sending every element $a \in A$ to the function $a: \operatorname{Spec}_{\mathfrak{m}} A \rightarrow \mathbb{k}, \mathfrak{m} \mapsto a(\bmod \mathfrak{m}) \in A / \mathfrak{m}=\mathbb{k}$.

Proof Since $A / \mathfrak{m}$ is a field for all $\mathfrak{m} \in \operatorname{Spec}_{\mathfrak{m}} A$, all nilpotent elements of $A$ are annihilated by every quotient map $A \rightarrow A / \mathfrak{m}$ with $\mathfrak{m} \in \operatorname{Spec}_{\mathrm{m}} A$. Therefore, $\mathfrak{n}(A) \subset \mathfrak{r}(A)$. To prove the converse inclusion, let $A_{\text {red }} \stackrel{\text { def }}{=} A / \mathfrak{n}(A)$. Since $A_{\text {red }}$ is finitely generated and reduced, there exists an affine algebraic variety $X \subset \mathbb{A}^{n}$ with the coordinate algebra $\mathbb{k}[X]=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I(X) \simeq A_{\text {red }}$. If $a \in \mathfrak{r}(A)$, then the class of $a$ in $A_{\text {red }}$ belongs to $\mathfrak{r}\left(A_{\text {red }}\right)$. This means that $a(p)=0$ for all $p \in X$, and forces $a=0$ in $A_{\text {red }}$. Hence, $a \in \mathfrak{n}(A)$.

Exercise 11.3 For every commutative ring $A$ with unit, show that $\mathfrak{n}(A)$ coincides with the intersection of all prime ${ }^{10}$ ideals in $A$.

### 11.2.3 Pullback Homomorphisms

Associated with every map of sets $\varphi: X \rightarrow Y$ is the pullback homomorphism $\varphi^{*}: \mathbb{k}^{Y} \rightarrow \mathbb{k}^{X}$, which maps a function $f: Y \rightarrow \mathbb{k}$ to the composition

$$
f \circ \varphi: X \rightarrow \mathbb{k} .
$$

Let $X \subset \mathbb{A}^{n}, Y \subset \mathbb{A}^{m}$ be affine algebraic varieties with the coordinate algebras

$$
\mathbb{k}[X]=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I(X), \quad \mathbb{k}[Y]=\mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{m}\right] / I(Y),
$$

and let the map $\varphi: X \rightarrow Y$ be given in coordinates by the assignment

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{m}(x)\right)
$$

Then the pullbacks of the coordinate functions $y_{i}: Y \rightarrow \mathbb{k}$ are $\varphi^{*}\left(y_{i}\right)=\varphi_{i}$. Since the $y_{i}$ generate the coordinate algebra $\mathbb{k}[Y]$, the regularity of $\varphi$, meaning that

[^144]$\varphi_{i}(x) \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, is equivalent to the inclusion $\varphi^{*}(\mathbb{k}[Y]) \subset \mathbb{k}[X]$, meaning that the pullback of every regular function is regular.
Exercise 11.4 Verify that a set-theoretic map of topological spaces (respectively smooth or analytic manifolds) $X \rightarrow Y$ is continuous (respectively smooth or analytic) if and only if the pullback of every continuous (respectively smooth or analytic) function on $Y$ is a continuous (respectively smooth or analytic) function on $X$.

Note that the inclusion of sets $\varphi(X) \subset Y$ implies the inclusion of ideals

$$
\varphi^{*}(I(Y)) \subset I(X)
$$

which forces the map $\mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{m}\right] \rightarrow \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right], y_{i} \mapsto \varphi_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, to be correctly factorized through the map

$$
\mathbb{k}[Y]=\mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{m}\right] / I(Y) \rightarrow \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I(X)=\mathbb{k}[X] .
$$

Theorem 11.2 Let $\mathbb{k}$ be an algebraically closed field. Write $\mathcal{A l g}_{k}$ for the category of finitely generated reduced $\mathbb{k}^{k}$-algebras with unit and $\mathbb{k}$-algebra homomorphisms respecting the units. Then the representable presheaf

$$
\begin{equation*}
h_{\mathbb{A}^{1}}: \mathcal{A} f f_{k}^{\mathrm{opp}} \rightarrow \mathcal{A l g _ { k }}, \quad X \mapsto \operatorname{Hom}_{\mathcal{A} f f_{k}}\left(X, \mathbb{A}^{1}\right)=\mathbb{k}[X], \tag{11.5}
\end{equation*}
$$

which sends a regular map of affine algebraic varieties $\varphi: X \rightarrow Y$ to the pullback homomorphism of their coordinate algebras $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$, is an equivalence of categories.

Proof By Proposition 9.1 on p. 199, we have to show that the functor (11.5) is essentially surjective and fully faithful. The first statement was established in Lemma 11.1 on p.244. To prove the second, consider the representable presheaf

$$
\begin{equation*}
h_{\mathfrak{k}}: \mathcal{A l} g_{\mathrm{k}} \rightarrow \text { Set }, \quad A \mapsto \operatorname{Hom}_{\mathcal{A l}_{g_{\mathrm{k}}}}(A, \mathbb{k}) \simeq \operatorname{Spec}_{\mathrm{m}} A . \tag{11.6}
\end{equation*}
$$

It sends a homomorphism of $\mathbb{k}_{k}$-algebras $\psi: A \rightarrow B$ to the pullback map

$$
\psi^{*}: \operatorname{Spec}_{\mathrm{m}} B \rightarrow \operatorname{Spec}_{\mathrm{m}} A,
$$

which takes the $\mathbb{k}$-algebra epimorphism ev : $B \rightarrow \mathbb{k}$ with kernel $\mathfrak{m} \in \operatorname{Spec}_{\mathrm{m}} B$ to the $\mathbb{k}_{\mathrm{k}}$-algebra epimorphism $\psi^{*}(\mathrm{ev})=\mathrm{ev} \circ \psi$ with kernel $\psi^{-1}(\mathfrak{m}) \in \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X]$. We claim that the maps

$$
\operatorname{Hom}_{\mathcal{A} f f_{k}}(X, Y) \underset{\psi^{*} \leftrightarrow \psi}{\rightleftarrows \stackrel{\varphi \mapsto \varphi^{*}}{\rightleftarrows}} \operatorname{Hom}_{\mathcal{A l g}_{k}}(\mathbb{k}[Y], \mathbb{k}[X])
$$

are bijections that are inverse to each other. Indeed, let a regular morphism from $X \subset \mathbb{A}^{n}$ to $Y \subset \mathbb{A}^{m}$ act by the rule $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{m}(x)\right)$ for some $\varphi_{i}(x) \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then its pullback $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$ maps $y_{i} \mapsto \varphi_{i}(\bmod I(X))$. The pullback of $\varphi^{*}$, that is, the map

$$
\varphi^{* *}: \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X] \rightarrow \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[Y],
$$

sends the evaluation at a point $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in X$,

$$
\mathrm{ev}_{p}: \mathbb{k}[X] \rightarrow \mathbb{k}, \quad f(x) \mapsto f(p),
$$

to its composition with $\varphi^{*}$. This composition takes every generator $y_{i} \in \mathbb{k}[Y]$ to $\varphi_{i}(p)$, and therefore coincides with the evaluation map at the point $\varphi(p)$. Thus, we have $\varphi^{* *}=\varphi$. The equality $\psi^{* *}=\psi$ for every homomorphism $\psi: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$ is checked similarly, and we leave its verification to the reader as an exercise.

Remark 11.1 It follows from Lemma 11.2 that the functor (11.6) is almost quasiinverse to the functor (11.5). Namely, it maps every coordinate algebra $A=\mathbb{k}[X]$ to the set $\operatorname{Spec}_{\mathrm{m}} A$, in bijection with the set of points of the variety $X$. In fact, the set $\operatorname{Spec}_{\mathrm{m}} A$ admits many different but isomorphic structures of an affine algebraic variety, where such a structure is understood as an injective map of sets $\varphi: \operatorname{Spec}_{\mathrm{m}} A \hookrightarrow \mathbb{A}^{n}$ whose pullback homomorphism establishes a well-defined surjection $\varphi^{*}: \mathbb{k}\left[\mathbb{A}^{n}\right] \rightarrow A$ such that $V\left(\operatorname{ker} \varphi^{*}\right)=\varphi\left(\operatorname{Spec}_{\mathrm{m}} A\right)$. The choice of such a structure is equivalent to the choice of a presentation of $A$ by means of generators and relations, that is, to the choice of an isomorphism $A \simeq \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$.

Example 11.1 (Line and Hyperbola) The points of $\mathrm{Spec}_{\mathrm{m}} \mathbb{k}[t]$ are in bijection with the points of the affine line $\mathbb{A}^{1}=\mathbb{k}$. Indeed, every homomorphism ev : $\mathbb{k}[t] \rightarrow \mathbb{k}$ is uniquely determined by its value at the generator $t$, that is, uniquely determined by the point $\operatorname{ev}(t)=p \in \mathbb{k}$. In other words, every maximal ideal $\mathfrak{m} \subset \mathbb{k}[t]$ is a principal ideal of the form $(t-p)$ for a point $p \in \mathbb{K}$, uniquely determined by $\mathfrak{m}$. Similarly, for the algebra of Laurent polynomials, the points of $\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[t, t^{-1}\right]$ are in bijection with the points of the punctured line $\mathbb{A}^{1} \backslash\{0\}=\mathbb{k}^{*}$, because the value $p=\operatorname{ev}(t)=1 / \mathrm{ev}\left(t^{-1}\right)$ can be equal to any invertible element of $\mathbb{k}$. If we present the algebra of Laurent polynomials by generators and relations, that is, write it as $\mathbb{k}_{\mathbb{K}}[x, y] /(x y-1)$ using the isomorphism

$$
\begin{equation*}
\varphi^{*}: \mathbb{k}\left[t, t^{-1}\right] \leadsto \mathbb{k}[x, y] /(x y-1), \quad t \mapsto x, \quad t^{-1} \mapsto y, \tag{11.7}
\end{equation*}
$$

then we get the coordinate algebra of the hyperbola $x y=1$ in the affine plane $\mathbb{A}^{2}$ with coordinates $(x, y)$, i.e., we realize the same spectrum as the variety $V(x y-1) \subset \mathbb{A}^{2}$. The pullback of the algebra homomorphism (11.7) maps $V(x y-1) \xrightarrow{\rightarrow} \mathbb{A}^{1} \backslash\{0\}$ via the projection of $\mathbb{A}^{2}$ onto the $x$-axis along the $y$-axis.

Example 11.2 (Coproduct of Affine Algebraic Varieties) Since the direct product of $\mathbb{k}$-algebras $\mathbb{k}[X] \times \mathbb{k}[Y]$ certainly is reduced and finitely generated, it yields the
categorical direct product ${ }^{11}$ in $\mathcal{A l g} g_{k}$. Therefore, the equivalence of Theorem 11.2 forces $\operatorname{Spec}_{\mathrm{m}}(\mathbb{k}[X] \times \mathbb{k}[Y])$ to be the categorical direct coproduct ${ }^{12}$ in $\mathcal{A} f f_{k}$. We conclude that for all affine algebraic varieties $X \subset \mathbb{A}^{n}, Y \subset \mathbb{A}^{m}$, their disjoint union $X \sqcup Y$ admits a structure of an affine algebraic variety whose coordinate algebra is isomorphic to $\mathbb{k}[X] \times \mathbb{k}[Y]$.

Exercise 11.5 Prove directly that $\operatorname{Spec}_{\mathrm{m}}(\mathbb{k}[X] \times \mathbb{k}[Y]) \simeq \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X] \sqcup \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[Y]$ and try to describe $X \sqcup Y$ by explicit polynomial equations in some affine space $\mathbb{A}^{k}$ under the assumption that the equations for $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ are known.

Example 11.3 (Product of Affine Algebraic Varieties) Given two $\mathbb{k}$-algebras $A, B$, let us equip the tensor product of vector spaces $A \otimes B$ with the multiplication defined by $\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} \otimes b_{2}\right) \stackrel{\text { def }}{=}\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)$.
Exercise 11.6 Verify that $A \otimes B$ becomes a commutative $\mathbb{k}$-algebra with unit $1 \otimes 1$, and the $\mathbb{k}$-algebra homomorphisms $A \hookrightarrow A \otimes B \hookleftarrow B, a \mapsto a \otimes 1, b \mapsto 1 \otimes b$, give the direct coproduct in the category of commutative $\mathbb{k}$-algebras with unit.
It follows from the universal property of the coproduct that there exists a bijection

$$
\operatorname{Spec}_{\mathrm{m}}(A) \times \operatorname{Spec}_{\mathrm{m}}(B) \xrightarrow{\rightarrow} \operatorname{Spec}_{\mathrm{m}}(A \otimes B)
$$

sending a pair of homomorphisms $\mathrm{ev}_{p}: A \rightarrow \mathbb{k}, a \mapsto a(p)$ and $\mathrm{ev}_{q}: B \rightarrow \mathbb{k}$, $b \mapsto b(q)$, to the homomorphism $A \otimes B \rightarrow \mathbb{k}, a \otimes b \mapsto a(p) b(q)$. If the algebras $A, B$ are finitely generated, say by some elements $a_{1}, a_{2}, \ldots, a_{n} \in A, b_{1}, b_{2}, \ldots, b_{m} \in B$, then $A \otimes B$ is certainly generated by the elements $a_{i} \otimes b_{j}$. Let us show that the tensor product of reduced algebras $A, B$ is reduced. Assume that an element $h \in A \otimes B$ evaluates to zero at every point of $\operatorname{Spec}_{\mathrm{m}}(A \otimes B)$. It is enough to check that $h=0$. To this end, write $h$ as $\sum f_{v} \otimes g_{v}$, where $g_{v} \in B$ are linearly independent over $\mathbb{k}$. Since $\left(\mathrm{ev}_{p} \otimes \mathrm{ev}_{q}\right) h=0$ for all $(p, q) \in \operatorname{Spec}_{\mathrm{m}}(A \otimes B)$, a linear combination $\sum f_{v}(p) \cdot g_{v} \in B$ is the zero function on $\operatorname{Spec}_{\mathrm{m}} B$ for every fixed $p \in \operatorname{Spec}_{\mathrm{m}} A$. Since $B$ is reduced, this linear combination is the zero element of $B$. Therefore, all its coefficients $f_{v}(p)$ are zero, because of the linear independence of $g_{v}$. Since this holds for all $p \in \operatorname{Spec} A$, every element $f_{v} \in A$ is the zero function on $\operatorname{Spec}_{\mathrm{m}} A$. This forces $f_{v}=0$, because $A$ is reduced. Hence, $h=0$.

We conclude that the tensor product $\mathbb{k}[X] \otimes \mathbb{k}[Y]$ gives the direct coproduct in $\mathcal{A l g} g_{k}$. Therefore, $\operatorname{Spec}_{\mathrm{m}}(\mathbb{k}[X] \otimes \mathbb{k}[Y])$ equipped with the structure of an affine algebraic variety via Remark 11.1 plays the role of the direct product $X \times Y$ in the category $\mathcal{A} f f_{\mathfrak{k}}$. Note that the previous arguments show that the set

$$
\operatorname{Spec}_{\mathrm{m}}(\mathbb{k}[X] \otimes \mathbb{k}[Y])
$$

gives the direct product of sets $X \times Y$ in $\operatorname{Set}$ as well. For example,

$$
\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \otimes \mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{m}\right] \simeq \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right]
$$

[^145]via the mapping $x_{1}^{s_{1}} x_{2}^{s_{2}} \cdots x_{n}^{s_{n}} \otimes y_{1}^{r_{1}} y_{2}^{r_{2}} \cdots y_{m}^{r_{m}} \mapsto x_{1}^{s_{1}} x_{2}^{s_{2}} \cdots x_{n}^{s_{n}} y_{1}^{r_{1}} y_{2}^{r_{2}} \cdots y_{m}^{r_{m}}$. This agrees with the intuitively expected isomorphism $\mathbb{A}^{n} \times \mathbb{A}^{m} \simeq \mathbb{A}^{n+m}$ in $\mathcal{A} f f_{\mathrm{k}}$.

Exercise 11.7 Given polynomial equations $f_{\nu}(x)=0, g_{\mu}(y)=0$ describing affine algebraic varieties $X \subset \mathbb{A}^{n}, Y \subset \mathbb{A}^{m}$, write down an explicit system of polynomial equations whose solution set is $X \times Y \subset \mathbb{A}^{n} \times \mathbb{A}^{m}$.

### 11.3 Zariski Topology

The set $X=\operatorname{Spec}_{\mathrm{m}} A$ possesses the natural topology, called the Zariski topology, whose closed sets are the subsets of $X$ that can be described by polynomial equations, i.e., the sets

$$
\begin{aligned}
V(I) & =\{x \in X \mid f(x)=0 \text { for all } f \in I\}=\left\{\mathfrak{m} \in \operatorname{Spec}_{\mathfrak{m}} A \mid I \subset \mathfrak{m}\right\} \\
& =\{\varphi: A \rightarrow \mathbb{k} \mid \varphi(I)=0\}
\end{aligned}
$$

taken for all ideals $I \subset A$.
Exercise 11.8 Verify that (a) $\varnothing=V((1))$, (b) $X=V((0))$, (c) $\bigcap_{v} V\left(I_{v}\right)=$ $V\left(\sum_{v} I_{v}\right)$, where the ideal $\sum_{v} I_{v}$ consists of finite sums of elements $f_{v} \in I_{v}$, (d) $V(I) \cup V(J)=V(I \cap J)=V(I J)$, where the ideal $I J \subset I \cap J$ consists of finite sums of products $a b$ with $a \in I, b \in J$.
The Zariski topology has a purely algebraic nature. It reflects divisibility relations rather than closeness or remoteness. For this reason, some properties of the Zariski topology are discordant with intuition based on the metric topology. For example, the Zariski topology on the product $X \times Y$ is strictly finer that the product of Zariski topologies on the factors $X, Y$, i.e., the closed subsets $Z \subset X \times Y$ are not exhausted by the products of closed subsets in $X, Y$. For example, for $X=Y=\mathbb{A}^{1}$, every plane algebraic curve, e.g., the hyperbola $V(x y-1)$, is Zariski closed in $\mathbb{A}^{1} \times \mathbb{A}^{1}=\mathbb{A}^{2}$, whereas the products of closed subsets in $\mathbb{A}^{1}$ are exhausted by $\varnothing, \mathbb{A}^{2}$, and finite unions of points and lines parallel to the coordinate axes.

Proposition 11.1 (Base for Open Sets and Compactness) Every Zariski open subset $U$ of an affine algebraic variety $X$ is a finite union of principal open sets

$$
\mathcal{D}(f) \stackrel{\text { def }}{=} X \backslash V(f)=\{x \in X \mid f(x) \neq 0\}
$$

for some $f \in \mathbb{K}[X]$, and is compact in the induced topology, meaning that every open cover of $U$ contains a finite subcover.

Proof Let $U=X \backslash V(I)$. Since $\mathbb{k}[X]$ is Noetherian, $I=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ for some $f_{i} \in \mathbb{k}[X]$. Therefore $V(I)=\bigcap V\left(f_{i}\right)$ and $U=\bigcup\left(X \backslash V\left(f_{i}\right)\right)=\bigcup \mathcal{D}\left(f_{i}\right)$. Further, let $U$ be covered by a family of principal open sets $\mathcal{D}\left(f_{v}\right)$, and $I$ the ideal spanned by the functions $f_{v}$. Then $V(I) \subset X \backslash U$ and $I=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ for some
finite collection $f_{1}, f_{2}, \ldots, f_{m}$ of the functions $f_{v}$. Therefore, the open sets $\mathcal{D}\left(f_{i}\right)$, $1 \leqslant i \leqslant m$, cover $U$ as well.

Proposition 11.2 (Continuity of Regular Maps) Every regular map of affine algebraic varieties $\varphi: X \rightarrow Y$ is continuous in the Zariski topology.

Proof For every closed set $V(I) \subset Y$, the preimage $\varphi^{-1}(V(I))$ consists of the points $x \in X$ such that $0=f(\varphi(x))=\varphi^{*} f(x)$ for all $f \in I$. Therefore, it coincides with $V(J)$ for the ideal $J \subset \mathbb{k}_{k}[X]$ generated by the image of $I$ under the pullback homomorphism $\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]$.

### 11.3.1 Irreducible Components

A topological space $X$ is called reducible if $X=X_{1} \cup X_{2}$ for some proper closed subsets $X_{1}, X_{2} \nsubseteq X$. Otherwise, $X$ is called irreducible. In the usual metric topology, almost all spaces are reducible. In the Zariski topology, the irreducible affine algebraic varieties play the same role as the powers of prime numbers in arithmetic.

Proposition 11.3 An affine algebraic variety $X$ is irreducible if and only if its coordinate algebra $\mathbb{k}[X]$ has no zero divisors.

Proof If $X=X_{1} \cup X_{2}$ with proper closed $X_{1}, X_{2}$, then there exist nonzero regular functions $f_{1}, f_{2} \in \mathbb{k}[X]$ such that $f_{1} \in I\left(X_{1}\right), f_{2} \in I\left(X_{2}\right)$. Since $f_{1} f_{2}$ vanishes at every point of $X$, it equals zero in $\mathbb{k}[X]$. Conversely, if $f_{1} f_{2}=0$ for some nonzero $f_{1}, f_{2} \in \mathbb{k}[X]$, then $X=V\left(f_{1}\right) \cup V\left(f_{2}\right)$, where the closed sets $V\left(f_{1}\right), V\left(f_{2}\right)$ are proper.

Exercise 11.9 Verify that $V(f) \subset X$ is nonempty and proper for every nonzero noninvertible element $f \in \mathbb{k}[X]$.

Corollary 11.2 Given a polynomial $g \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, the affine hypersurface $V(g) \subset \mathbb{A}^{n}$ is irreducible if and only if $g=q^{n}$ for some irreducible $q \in \mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $n \in \mathbb{N}$.
Proof Since the polynomial ring $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a unique factorization domain, ${ }^{13}$ a polynomial $f \in \mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is irreducible if and only if the quotient ring $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /(f)$ has no zero divisors, ${ }^{14}$ and for every $f$, the radical $\sqrt{(f)}$ is the principal ideal generated by the product of all pairwise nonassociated irreducible divisors of $f$. Therefore, $\mathbb{k}[V(f)]=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \sqrt{(f)}$ has no zero divisors if and only if $f$ has a unique (up to a constant factor) irreducible divisor.

Example 11.4 (Big Open Sets) If $X$ is irreducible, then every two nonempty open sets $U_{1}, U_{2} \subset X$ have nonempty intersection, because otherwise, $X$ could be

[^146]decomposed as $X=\left(X \backslash U_{1}\right) \cup\left(X \backslash U_{2}\right)$. In other words, every nonempty open subset of an irreducible variety $X$ is dense in $X$. Thus, the Zariski topology is quite far from being Hausdorff.

Exercise 11.10 Let $X$ be an irreducible algebraic variety and $f, g \in \mathbb{k}[X]$. Prove that if $f(p)=g(p)$ for all points $p$ from a nonempty open subset $U \subset X$, then $f=g$ in $\mathbb{k}[X]$.

Theorem 11.3 Every affine algebraic variety $X$ admits a decomposition

$$
X=X_{1} \cup X_{2} \cup \cdots \cup X_{k}
$$

that is unique up to renumbering of components, where all $X_{i} \subset X$ are closed and irreducible, and $X_{i} \not \subset X_{j}$ for all $i \neq j$.
Proof The existence of the decomposition is proved similarly to the existence of irreducible factorization in a Noetherian ring. ${ }^{15}$ If $X$ is reducible, write $X$ as a union $X=Z_{1} \cup Z_{2}$ of proper closed subsets $Z_{1}, Z_{2} \subset X$ and repeat the procedure recursively for every component until it stops on some finite decomposition $X=\bigcup Z_{v}$, where all $Z_{v}$ are irreducible. If the procedure never stopped, we could choose an infinite strictly decreasing chain of closed sets

$$
X \supsetneq Y_{1} \supsetneq Y_{2} \supsetneq \cdots,
$$

whose ideals form a strictly increasing chain $(0) \subsetneq I\left(Y_{1}\right) \subsetneq I\left(Y_{2}\right) \subsetneq \cdots$ in $\mathbb{k}[X]$, which is impossible, because $\mathbb{k}[X]$ is Noetherian. Now let

$$
X_{1} \cup X_{2} \cup \cdots \cup X_{k}=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{m}
$$

be two decompositions satisfying the conditions of the theorem. Since $Y_{1}=\bigcup_{i}\left(Y_{1} \cap\right.$ $X_{i}$ ) is irreducible, $Y_{1} \cap X_{i}=Y_{1}$ for some $i$, that is, $Y_{1} \subset X_{i}$. For the same reason, $X_{i} \subset Y_{j}$ for some $j$. Since $Y_{1} \not \subset Y_{j}$ for $j \neq 1$, we conclude that $Y_{1}=X_{i}$. Renumber the $X_{i}$ in order to have $Y_{1}=X_{1}$.
Exercise 11.11 Let $Z \subsetneq Y \subset X$ be closed, and $Y$ irreducible. Prove that $Y=\overline{Y \backslash Z}$ (the closure within $X$ ). Convince yourself that this may fail for reducible $Y$.
Now we can remove $X_{1}$ and $Y_{1}$, and proceed by induction on the number of components.

Definition 11.2 The decomposition $X=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ from Theorem 11.3 is called the irreducible decomposition of the algebraic variety $X$, and its components $X_{i} \subset X$ are called the irreducible components of $X$.

Remark 11.2 (Noetherian Spaces) Theorem 11.3 and its proof hold for every topological space $X$ that does not allow strictly decreasing infinite chains of closed subsets $X \supsetneq Z_{1} \supsetneq Z_{2} \supsetneq \cdots$. Every such topological space is called Noetherian.

[^147]Proposition 11.4 A nonzero element $f \in \mathbb{K}[X]$ is a zero divisor if and only iff has the zero restriction on some irreducible component of $X$.

Proof Let $f g=0$ for some $g \neq 0$. Write $f_{i}, g_{i} \in \mathbb{k}\left[X_{i}\right]$ for the restrictions of $f, g$ to the irreducible component $X_{i} \subset X$. Since $\mathbb{k}\left[X_{i}\right]$ has no zero divisors, at least one of $f_{i}, g_{i}$ vanishes for every $i$. Since $g_{i} \neq 0$ for some $i$ (otherwise, $g=0$ in $\mathbb{k}[X]$ ), we conclude that $f_{i}=0$. Conversely, if $f_{i}=0$, then $f g=0$ for every nonzero function $g \in I\left(\bigcup_{v \neq i} X_{\nu}\right)$.

### 11.4 Rational Functions

Given a commutative ring $A$, we write

$$
A^{\circ} \stackrel{\text { def }}{=}\{a \in A \mid a b \neq 0 \text { for all } b \in A \backslash 0\}
$$

for the multiplicative system of all nonzero elements that are not zero divisors. ${ }^{16}$ Let $X$ be an affine algebraic variety. The algebra of fractions ${ }^{17}$ of the coordinate algebra $\mathbb{K}_{k}[X]$ is called the algebra of rational functions on $X$ and is denoted by

$$
\mathbb{k}(X) \stackrel{\text { def }}{=} Q_{\mathbb{k}[X]}=\mathbb{k}_{\mathbb{k}}[X]\left(\mathbb{k}[X]^{\circ}\right)^{-1}
$$

For irreducible $X$, the algebra $\mathbb{k}(X)$ becomes the field of fractions of the integral domain $\mathbb{k}[X]$. The elements of $\mathbb{k}(X)$ are called rational functions on $X$. A rational function $f \in \mathbb{k}(X)$ is said to be regular at a point $x \in X$ if there exists a fraction $g / h=f$ such that $g \in \mathbb{k}[X], h \in \mathbb{k}[X]^{\circ}$, and $h(x) \neq 0$. In this case, the number $f(x) \stackrel{\text { def }}{=} g(x) / h(x) \in \mathbb{k}$ is referred to as the value of $f$ at the point $x \in X$.
Exercise 11.12 Verify that the value $f(x)$ does not depend on the choice of admissible representation $f=g / h$.
If a rational function $f=g / h$ has $h(x) \neq 0$ at some point $x \in X$, then $f$ is regular at every point in the principal open neighborhood $\mathcal{D}(h)$ of the point $x$. Moreover, by Proposition 11.4, this neighborhood has nonempty intersection with every irreducible component of $X$, because $h$ is not a zero divisor in $\mathbb{k}[X]$. Therefore, all points $x \in X$ at which $f$ is regular form an open dense subset in $X$. It is called the domain of $f$ and denoted by $\operatorname{Dom}(f)$.
Exercise 11.13 Verify that $f_{1}=f_{2}$ in $\mathbb{k}(X)$ if and only if $f_{1}(x)=f_{2}(x)$ for all $x$ in some open dense subset of $X$.

[^148]Proposition 11.5 Let $X$ be an affine algebraic variety over an infinite field, and $f \in \mathbb{k}(X)$ a rational function. Then $(1 / f) \stackrel{\text { def }}{=}\{g \in \mathbb{K}[X] \mid g f \in \mathbb{K}[X]\}$ is an ideal in $\mathbb{k}[X]$ with the zero set $V((1 / f))=X \backslash \operatorname{Dom}(f)$.

Proof The intersection $(1 / f) \cap \mathbb{k}[X]^{\circ}$ is exactly the set of all denominators $q$ appearing in various fractional representations $f=p / q$. Thus, the closed set $X \backslash \operatorname{Dom}(f)$ is determined by the system of equations $q(x)=0$ for all $q \in(1 / f) \cap \mathbb{k}[X]^{\circ}$. It remains to show that the intersection $(1 / f) \cap \mathbb{k}[X]^{\circ}$ generates the ideal $(1 / f)$. We will prove that it spans $(1 / f)$ even as a vector space over $\mathbb{k}$. By Proposition 11.4 , the complement $(1 / f) \backslash \mathbb{k}[X]^{\circ}$, that is, the set of all zero divisors in $(1 / f)$, splits into a finite union of vector subspaces $(1 / f) \cap I\left(X_{i}\right)$. Since $(1 / f) \cap \mathbb{k}[X]^{\circ} \neq \varnothing$, every subspace $(1 / f) \cap I\left(X_{i}\right)$ is proper. If the $\mathbb{k}$-linear span of $(1 / f) \cap \mathbb{k}[X]^{\circ}$ is proper too, the vector space $(1 / f)$ becomes a finite union of proper subspaces. The next exercise makes this impossible.

Exercise 11.14 Prove that a vector space over an infinite field cannot be decomposed into a finite union of proper vector subspaces.

### 11.4.1 The Structure Sheaf

Given an affine algebraic variety $X$, for every open $U \subset X$, we put

$$
\mathcal{O}_{X}(U) \stackrel{\text { def }}{=}\{f \in \mathbb{k}(X) \mid \operatorname{Dom}(f) \supset U\}
$$

The assignment $\mathcal{O}_{X}: U \mapsto \mathcal{O}_{X}(U)$ provides the topological space $X$ with a presheaf of $\mathbb{k}$-algebras whose restriction maps are the usual restrictions of functions, or more scientifically, the tautological inclusions $\mathcal{O}_{X}(W) \hookrightarrow \mathcal{O}_{X}(U)$ for every pair of embedded open sets $U \subset W$.
Exercise 11.15 Verify that $\mathcal{O}_{X}$ is a sheaf.
The sheaf $\mathcal{O}_{X}$ is called the structure sheaf of the affine algebraic variety $X$ or the sheaf of regular rational functions on $X$. For an open $U \subset X$, the algebra $\mathcal{O}_{X}(U)$ is often denoted by $\mathbb{k}[U]$ and referred to as the algebra of rational functions regular in $U$.

Proposition 11.6 Let $X$ be an affine algebraic variety over an algebraically closed field and $h \in \mathbb{K}[X]^{\circ}$. Then $\mathcal{O}_{X}(\mathcal{D}(h))=\mathbb{E}[X]\left[h^{-1}\right]$ is the ring of fractions with numerators in $\mathbb{K}[X]$ and denominators in the multiplicative system ${ }^{18}$ formed by nonnegative integer powers of $h$.
Proof By Proposition 11.5, a rational function $f \in \mathbb{k}(X)$ is regular in $\mathcal{D}(h)$ if and only if $h$ vanishes identically on the closed subset $V((1 / f))=X \backslash \operatorname{Dom}(f)$. By the strong Nullstellensatz, $h^{d} \in(1 / f)$ for some $d \in \mathbb{N}$. Thus, $f=p / h^{d}$ for $p=h^{d} \cdot f \in$ $\mathbb{k}[X]$, as required.

[^149]
### 11.4.2 Principal Open Sets as Affine Algebraic Varieties

For every affine algebraic variety $X$ and $h \in \mathbb{k}[X]^{\circ}$, the principal open set

$$
\mathcal{D}(h)=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X]\left[h^{-1}\right]=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X][t] /(1-h t)
$$

is dense in $X$ and is itself an affine algebraic variety, which can be realized as the hypersurface $V(1-h t) \subset X \times \mathbb{A}^{1}$. The tautological inclusion $i: \mathcal{D} \hookrightarrow X$ is a regular morphism of affine algebraic varieties. Its pullback homomorphism $i^{*}: \mathbb{k}[X] \hookrightarrow \mathbb{k}[X]\left[h^{-1}\right] \simeq \mathbb{k}[\mathcal{D}(h)]$ is the universal map $f \mapsto f / 1$ from the ring to the localization. By the universal properties of rings of fractions, this inclusion can be uniquely extended to an isomorphism of the algebras of fractions

$$
\begin{equation*}
i^{*}: \mathbb{k}(X) \xrightarrow{\rightarrow} \mathbb{k}(\mathcal{D}(h)) . \tag{11.8}
\end{equation*}
$$

Exercise 11.16 Verify that the canonical homomorphism (11.8) is actually an isomorphism.

Remark 11.3 The notation $\mathbb{k}[\mathcal{D}(h)]$ can be treated either as the coordinate algebra of the affine algebraic variety $\mathcal{D}(h)=\operatorname{Spec}_{\mathrm{m}}\left(\mathbb{k}[X]\left[h^{-1}\right]\right)$ or as the subring of $\mathbb{k}(X)$ formed by the rational functions regular in $\mathcal{D}(h) \subset X$. These two interpretations agree by Proposition 11.6. In particular, for $h=1$, the coordinate algebra of $X$ coincides with the algebra of rational functions regular everywhere on $X$, i.e., $\mathbb{k}[X]=\{f \in \mathbb{k}(X) \mid \operatorname{Dom}(f)=X\}$.

Caution 11.1 A nonprincipal open set $U \subset X$ might not be an affine algebraic variety, and the canonical inclusion $U \hookrightarrow \operatorname{Spec}_{\mathrm{m}} \mathcal{O}_{X}(U)$, sending a point $u \in U$ to its maximal ideal $\mathfrak{m}_{u}=\operatorname{kerev}_{u} \subset \mathcal{O}_{X}(U)$, may be nonsurjective.

Exercise 11.17 Let $n \geqslant 2$, and $U=\mathbb{A}^{n} \backslash O$ the complement of the origin. Verify that $\mathcal{O}_{\mathbb{A}^{n}}[U]=\mathbb{k}\left[\mathbb{A}^{n}\right]$ and therefore $\operatorname{Spec}_{\mathrm{m}} \mathcal{O}_{\mathbb{A}^{n}}[U]=\mathbb{A}^{n} \neq U$.

Proposition 11.7 Let $X=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ be the irreducible decomposition of an affine algebraic variety $X$. Then $\mathbb{k}(X)=\mathbb{k}\left(X_{1}\right) \times \mathbb{k}\left(X_{2}\right) \times \cdots \times \mathbb{k}\left(X_{k}\right)$.

Proof Write $I=I\left(\bigcup_{i \neq j}\left(X_{i} \cap X_{j}\right)\right) \subset \mathbb{k}[X]$ for the ideal of all regular functions on $X$ vanishing on every intersection $X_{i} \cap X_{j}, i \neq j$.
Exercise 11.18 Prove that $I$ is linearly spanned over $\mathbb{k}$ by $I \cap \mathbb{k}[X]^{\circ}$.
Let us choose some regular function $f \in I \cap \mathbb{k}[X]^{\circ}$ and write

$$
f_{i}=f\left(\bmod I\left(X_{i}\right)\right) \in \mathbb{k}\left[X_{i}\right]
$$

for its restriction to the irreducible component $X_{i} \subset X$. Then the affine algebraic variety

$$
W=\mathcal{D}(f)=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[X]\left[f^{-1}\right]
$$

splits into a disjoint union of affine algebraic varieties

$$
W_{i}=W \cap X_{i}=\mathcal{D}\left(f_{i}\right)=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[X_{i}\right]\left[f_{i}^{-1}\right] .
$$

By Example 11.2, $\mathbb{k}[W] \simeq \mathbb{k}\left[W_{1}\right] \times \mathbb{k}\left[W_{2}\right] \times \cdots \times \mathbb{k}\left[W_{k}\right]$.
Exercise 11.19 For every family of commutative rings $A_{\nu}$, prove that $\left(\prod A_{v}\right)^{\circ}=$ $\prod A_{v}^{\circ}$ as sets, and deduce from this the isomorphism $Q_{\prod A_{v}} \simeq \prod Q_{A_{v}}$ for the rings of fractions.
Therefore, $\mathbb{k}(X) \simeq \mathbb{k}(W) \simeq \prod \mathbb{k}\left(W_{i}\right) \simeq \prod \mathbb{k}\left(X_{i}\right)$ by formula (11.8).

### 11.5 Geometric Properties of Algebra Homomorphisms

Every homomorphism of finitely generated reduced $\mathbb{k}$-algebras

$$
\varphi^{*}: \mathbb{k}[Y] \rightarrow \mathbb{k}[X]
$$

can be canonically factorized into a composition of a quotient epimorphism followed by a monomorphism:

$$
\begin{equation*}
\mathbb{k}[Y] \xrightarrow{\varphi_{1}^{*}} \mathbb{k}[Y] / \operatorname{ker}\left(\varphi^{*}\right)=\operatorname{im}\left(\varphi^{*}\right) \xrightarrow{\varphi_{2}^{*}} \mathbb{k}[X] . \tag{11.9}
\end{equation*}
$$

Since $\mathbb{k}[Y]$ is finitely generated and $\mathbb{k}[X]$ is reduced, the $\mathbb{k}$-algebra $\mathbb{k}[Y] / \operatorname{ker}\left(\varphi^{*}\right)=$ $\operatorname{im}\left(\varphi^{*}\right) \subset \mathbb{K}_{\mathbb{K}}[X]$ is both finitely generated and reduced. Thus, it is the coordinate algebra of the affine algebraic variety

$$
Z=\operatorname{Spec}_{\mathrm{m}}\left(\operatorname{im}\left(\varphi^{*}\right)\right) \simeq V\left(\operatorname{ker}\left(\varphi^{*}\right)\right) \subset Y
$$

The injectivity of the homomorphism $\varphi_{1}^{*}: \mathbb{k}[Z] \rightarrow \mathbb{k}[X]$ means that there are no nonzero functions $f \in \mathbb{k}[Z]$ vanishing on $\varphi_{1}(X) \subset Z$. Therefore, $\varphi_{1}(X)$ is Zariski dense in $Z$. In other words, $Z=\overline{\varphi(X)} \subset Y$ is the closure of $\varphi(X)$ in $Y$, situated within $Y$ as the zero set $V\left(\operatorname{ker} \varphi^{*}\right)$ of the ideal $\operatorname{ker} \varphi^{*} \subset \mathbb{k}[Y]$. Thus, the algebraic factorization (11.9) geometrically corresponds to the factorization of a regular map of algebraic varieties $\varphi: X \rightarrow Y$ into the composition

$$
X \xrightarrow{\varphi_{2}} Z=\overline{\varphi(X)} \stackrel{\varphi_{1}}{\longrightarrow} Y
$$

of the closed immersion $Z \hookrightarrow Y$ preceded by the regular morphism $X \rightarrow Z$ with dense image.

### 11.5.1 Closed Immersions

A regular morphism of affine algebraic varieties $\varphi: X \rightarrow Y$ is called a closed immersion if its pullback homomorphism $\varphi^{*}: \mathbb{k}[Y] \rightarrow k[X]$ is surjective. In this case, $\varphi$ establishes a regular isomorphism between $X$ and the closed subset $V\left(\operatorname{ker} \varphi^{*}\right) \subset Y$. The pullback of this isomorphism of algebraic varieties is the canonical isomorphism of $\mathbb{k}$-algebras $\mathbb{k}[Y] / \operatorname{ker} \varphi^{*} \simeq \mathbb{k}[X]$.

For an irreducible closed subset $Z \subset X$, the pullback homomorphism

$$
i^{*}: \mathbb{k}[X] \rightarrow \mathbb{k}[Z]
$$

of the closed immersion $i: Z \hookrightarrow X$ takes values in the integral domain $\mathbb{k}[Z]$, canonically embedded into its field of fractions $\mathbb{k}(Z)$. By the universal property of $\mathbb{k}(X)$, the epimorphism $i^{*}$ can be uniquely extended to an epimorphism

$$
\begin{equation*}
\mathrm{ev}_{Z}: \mathbb{k}(X) \rightarrow \mathbb{k}(Z), \tag{11.10}
\end{equation*}
$$

which restricts the rational functions from $X$ onto $Z$. Intuitively, the homomorphism (11.10) can be thought of as the evaluation of rational functions at a "generic point" of $Z$. The result of such an evaluation is an element of $\mathfrak{k}(Z)$, which may be further evaluated at particular points of $Z$. It follows from the surjectivity of the homomorphism (11.10) that every rational function on $Z$ is a restriction of some rational function on $X$, i.e., can be written as a fraction $p / q$ whose denominator $q \in \mathbb{k}[X]^{\circ}$ is not a zero divisor in $\mathbb{k}[X]$. Note that such a presentation may not be obvious when $Z \subset X$ is an irreducible component of $X$.
Exercise 11.20 Let $X=V(x y)=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x, y] /(x y)$ be the union of the coordinate axes in the affine plane $\mathbb{A}^{2}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x, y]$, and let $Z=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x]=V(y)$ be its horizontal component. Write the rational function $1 / x \in \mathbb{k}(Z)$ as a fraction $p / q \in \mathbb{k}(X)$, where $q \in \mathbb{k}[X]^{\circ}$.

### 11.5.2 Dominant Morphisms

For an irreducible variety $X$, a regular morphism of algebraic varieties $\varphi: X \rightarrow Y$ is said to be dominant if its pullback homomorphism $\varphi^{*}: \mathbb{k}[Y] \rightarrow k[X]$ is injective. As we have seen above, this means that $\overline{\varphi(X)}=Y$. For reducible $X$, a regular map $\varphi: X \rightarrow Y$ is dominant if its restriction $\varphi_{i}=\left.\varphi\right|_{X_{i}}$ to every irreducible component $X_{i} \subset X$ assigns the dominant map $\varphi_{i}: X_{i} \rightarrow Y$. In this case, the pullback

$$
\varphi_{i}^{*}: \mathbb{k}[Y] \hookrightarrow \mathbb{k}\left[X_{i}\right] \subset \mathbb{k}\left(X_{i}\right)
$$

embeds $\mathbb{k}[Y]$ in the field $\mathbb{k}\left(X_{i}\right)$. In particular, this forces $Y$ to be irreducible. By the universal property of $\mathbb{k}(Y)$, the previous inclusion can be uniquely extended to the inclusion of fields $\mathbb{k}(Y) \hookrightarrow \mathbb{k}\left(X_{i}\right)$. Thus, every dominant morphism $X=\bigcup X_{i} \rightarrow Y$ leads to the inclusion

$$
\mathbb{k}(Y) \hookrightarrow \prod \mathbb{k}\left(X_{i}\right)=\mathbb{k}(X) .
$$

Exercise 11.21 Prove that every dominant morphism of irreducible affine algebraic varieties $\varphi: X \rightarrow Y$ can be factorized as

$$
\begin{equation*}
X \stackrel{\psi}{\longrightarrow} Y \times \mathbb{A}^{m} \xrightarrow{\pi} Y \tag{11.11}
\end{equation*}
$$

where $\psi$ is a closed immersion, and $\pi$ is the projection along $\mathbb{A}^{m}$.

### 11.5.3 Finite Morphisms

Every regular map of affine algebraic varieties $\varphi: X \rightarrow Y$ equips $\mathbb{k}[X]$ with the structure of a finitely generated algebra over the subring

$$
\varphi^{*}(\mathbb{k}[Y])=\mathbb{k}[\overline{\varphi(X)}] \subset \mathbb{k}[X] .
$$

The map $\varphi$ is called finite if $\mathbb{k}[X]$ is finitely generated as a module ${ }^{19}$ over $\varphi^{*}(k[Y])$, or equivalently, if the extension of rings $\varphi^{*}(\mathbb{k}[Y]) \subset \mathbb{k}[X]$ is an integral extension.

Proposition 11.8 (Closeness of Finite Morphisms) Let $\varphi: X \rightarrow Y$ be a finite morphism of affine algebraic varieties, and $Z \subset X$ a closed subset. Then $\varphi(Z) \subset Y$ is also closed, and the restriction $\left.\varphi\right|_{Z}: Z \rightarrow \varphi(Z)$ is a finite morphism. For irreducible $X$ and proper $Z \subsetneq X$, the image $\varphi(Z) \subsetneq Y$ is also proper.
Proof Write $I=I(Z) \subset \mathbb{k}[X]$ for the ideal of $Z$. The pullback homomorphism of the restricted map $\left.\varphi\right|_{Z}: Z \rightarrow Y$ can be factorized as

$$
\left.\varphi\right|_{Z} ^{*}: k[Y] \xrightarrow{\varphi^{*}} \mathbb{k}[X] \rightarrow \mathbb{k}[X] / I,
$$

where the second arrow is the quotient homomorphism. Since $\mathbb{k}[X]$ is finitely generated as a $\varphi^{*}(\mathbb{k}[Y])$-module, the quotient $\mathbb{k}[Z]=\mathbb{k}[X] / I$ is finitely generated as a module over

$$
\mathbb{k}[\overline{\varphi(Z)}]=\left.\varphi\right|_{Z} ^{*}(\mathbb{k}[Y])=\varphi^{*}(\mathbb{k}[Y]) /\left(I \cap \varphi^{*}(\mathbb{k}[Y])\right)
$$

Therefore, the restricted map $\left.\varphi\right|_{Z}: Z \rightarrow \overline{\varphi(Z)}$ is a finite morphism. The equality $\varphi(Z)=\overline{\varphi(Z)}$ can be proved separately for each irreducible component of $Z$, and in this proof, we can assume that $X=Z, Y=\bar{Z}$. Thus, the first statement of the proposition is equivalent to the following claim: for an irreducible affine algebraic variety $Z$, every finite dominant morphism $\varphi: Z \rightarrow Y$ is surjective. This claim can be translated into algebraic language as follows: given an extension of commutative

[^150]rings $A \subset B$ such that $B$ has no zero divisors and is finitely generated as an $A$-module, every maximal ideal $\mathfrak{m} \subset A$ equals $\widetilde{\mathfrak{m}} \cap A$ for some maximal ideal $\widetilde{\mathfrak{m}} \subset B$.
Exercise 11.22 Convince yourself that the latter algebraic statement implies the previous geometric statement.
If the ideal $\mathfrak{m} \cdot B$, spanned by $\mathfrak{m}$ in $B$, is proper, then every maximal ideal $\widetilde{\mathfrak{m}} \supset \mathfrak{m} \cdot B$ solves the problem. It remains to check that $\mathfrak{m} \cdot B \neq B$ for every maximal ideal $\mathfrak{m} \subset A$. Assume the contrary. Let $\mathfrak{m} \cdot B=B$ for some maximal ideal $\mathfrak{m} \subset A$, and suppose that $b_{1}, b_{2}, \ldots, b_{m} \in B$ span $B$ as an $A$-module. Then each $b_{j}$ can be written as $b_{j}=\sum_{i} f_{i} \mu_{i j}$ for some $\mu_{i j} \in \mathfrak{m}$. This leads to the matrix equality
$$
\left(f_{1}, f_{2}, \ldots, f_{m}\right) \cdot(E-M)=0,
$$
where $M=\left(\mu_{i j}\right) \in \operatorname{Mat}_{m}(\mathfrak{m})$, and $E$ is the $m \times m$ identity matrix. Thus, the zero endomorphism of the $A$-module $B$ acts on the generators via multiplication by the matrix $E-M$. The matrix identity ${ }^{20}$
$$
\operatorname{det}(E-M) \cdot E=(E-M) \cdot(E-M)^{\vee}
$$
forces multiplication by $\operatorname{det}(E-M)$ to annihilate $B$. Therefore, $\operatorname{det}(E-M)=0$. Expanding the determinant shows that $1 \in \mathfrak{m}$, i.e., $\mathfrak{m}$ is not proper. This completes the proof of the first statement of the proposition.

To prove the second statement, consider a nonzero function $f \in \mathbb{k}[X]$ that has zero restriction onto $Z \subsetneq X$. It satisfies some polynomial equation with coefficients in $\varphi^{*}(k[Y])$. Let

$$
\varphi^{*}\left(g_{0}\right) f^{m}+\varphi^{*}\left(g_{1}\right) f^{m-1}+\cdots+\varphi^{*}\left(g_{m-1}\right) f+\varphi^{*}\left(g_{m}\right)=0
$$

be such an equation of minimal degree. Then $g_{m} \neq 0$, because otherwise, the degree could be decremented by canceling ${ }^{21}$ one $f$. Evaluation of the left-hand side at all points $z \in Z$ shows that $\left.\varphi^{*}\left(g_{m}\right)\right|_{Z}=\left.g_{m}\right|_{\varphi(Z)}=0$. Hence, $\varphi(Z) \subset V\left(g_{m}\right) \varsubsetneqq Y$ is proper.

### 11.5.4 Normal Varieties

An irreducible affine algebraic variety $Y$ is called normal if its coordinate algebra $\mathbb{k}[Y]$ is integrally closed in the field of rational functions $\mathbb{k}(Y)=Q_{\mathbb{k}[Y]}$, i.e., $\mathbb{k}[Y]$ is a normal ring in the sense of Sect. 10.1.3. In particular, $Y$ is normal if $\mathbb{k}[Y]$ is a unique factorization domain. For example, the affine spaces $\mathbb{A}^{n}$ are normal for all $n$.

[^151]
## Proposition 11.9 (Openness of Finite Surjections onto Normal Varieties) Let $Y$

 be a normal affine algebraic variety. Then every finite regular surjection $\varphi: X \rightarrow Y$ is open ${ }^{22}$ and maps every irreducible component of $X$ surjectively onto $Y$.Proof Since $\varphi^{*}: \mathbb{k}[Y] \hookrightarrow \mathbb{k}[X]$ is injective, we can consider $\mathbb{k}[Y]$ a subalgebra of $\mathbb{K}_{\mathbb{k}}[X]$. It is enough to show that $\varphi$ maps every principal open set $\mathcal{D}(f) \subset X$ to an open subset of $Y$. This means that for every point $p \in \mathcal{D}(f)$, there exists a regular function $a \in \mathbb{k}[Y]$ such that $\varphi(p) \in \mathcal{D}(a) \subset \varphi(\mathcal{D}(f))$ in $Y$. To construct such a function, consider the map

$$
\psi=\varphi \times f: X \rightarrow Y \times \mathbb{A}^{1}, \quad p \mapsto(\varphi(p), f(p)) .
$$

Its pullback homomorphism $\psi^{*}: \mathbb{k}\left[Y \times \mathbb{A}^{1}\right]=\mathbb{k}[Y][t] \rightarrow k[X]$ evaluates polynomials in $t$ with coefficients in $\mathbb{k}[Y]$ at the element $f \in \mathbb{k}[X]$. Write $\mu_{f}$ for the minimal polynomial of $f$ over $\mathbb{k}(Y)$. By Corollary 10.2, the coefficients of $\mu_{f}$ lie in $\mathbb{k}[Y]$. This forces $\psi^{*}$ to be the factorization homomorphism modulo the principal ideal $\left(\mu_{f}\right)=\operatorname{ker} \psi^{*} \subset \mathbb{k}\left[Y \times \mathbb{A}^{1}\right]$. Thus, $\psi$ is the finite surjection of $X$ onto the hypersurface in $Y \times \mathbb{A}^{1}$ defined by the equation $\mu_{f}=0$. Let us write the minimal polynomial $\mu_{f}=\mu_{f}(y ; t)$ as a polynomial in the coordinate $t$ on $\mathbb{A}^{1}$ with coefficients in $a_{i}(y) \in \mathbb{k}[Y]$ :

$$
\mu_{f}=t^{m}+a_{1}(y) t^{m-1}+\cdots+a_{m}(y) \in \mathbb{k}[Y][t]=\mathbb{k}\left[Y \times \mathbb{A}^{1}\right] .
$$

The restriction of $\mu_{f}$ to the line $y \times \mathbb{A}^{1}$ over a point $y \in Y$ is the polynomial in $t$ whose roots are equal to the values of $f$ at all points of $X$ mapped to $y$ by $\varphi$. In particular, $\varphi(\mathcal{D}(f))$ consists of those $y \in Y$ over which the polynomial $\mu(y ; t)$ has a nonzero root. Since the polynomial $\mu_{f}(\varphi(p) ; t)$ that appears for $y=\varphi(p)$ has the $\operatorname{root} f(p) \neq 0$, at least one of the coefficients of $\mu_{f}$, say $a_{k}(y)$, does not vanish at $y=\varphi(p)$. This forces the polynomial $\mu_{f}(q ; t)$ to have a nonzero root for all $q \in \mathcal{D}\left(a_{k}\right)$. Hence, $\mathcal{D}\left(a_{k}\right) \subset \varphi(\mathcal{D}(f))$, as required. To prove the second statement of the proposition, note that for every irreducible component $X_{i} \subset X$, the set

$$
U_{i}=X \backslash \bigcup_{\nu \neq i} X_{v}=X_{i} \backslash \bigcup_{v \neq i}\left(X_{i} \cap X_{\nu}\right)
$$

is open in $X$ and dense in $X_{i}$. Since $\varphi\left(U_{i}\right)$ is open and $Y$ is irreducible, $\varphi\left(U_{i}\right)$ is dense in $Y$. Therefore, $\varphi\left(X_{i}\right)=\overline{\varphi\left(U_{i}\right)}=Y$.

[^152]
## Problems for Independent Solution to Chapter 11

Problem 11.1 Let $\mathbb{k}$ be an algebraically closed field, $q \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ an irreducible polynomial, and suppose that the polynomial $f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ vanishes at every point of the hypersurface $V(q) \subset \mathbb{A}^{n}$. Prove that $q$ divides $f$.
Problem 11.2 Under the conditions of the previous problem, show that the image of the central projection of $V(f)$ from every point $p \notin V(f)$ onto every hyperplane $H \nexists p$ contains an open dense subset of $H$.
Problem 11.3 Describe $\sqrt{J} \subset \mathbb{k}[x, y]$ for (a) $J=\left(x^{2}+y^{2}-1, y-1\right)$, (b) $J=\left(x^{2} y, x y^{3}\right)$, and indicate some $f \in I(V(J)) \backslash J$.

Problem 11.4 Describe the variety $V(J) \subset \mathbb{A}^{3}$ and its ideal $I(V(J)) \subset \mathbb{k}[x, y, z]$ for (a) $J=(x y,(x-y) z)$, (b) $J=\left(x y+y z+z x, x^{2}+y^{2}+z^{2}\right)$.

Problem 11.5 Prove that the curve $V\left(x^{2}-y^{3}\right) \subset \mathbb{A}^{2}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x, y]$ is irreducible but not normal.
Problem 11.6 Is the cone $V\left(x^{2}-y^{2}-z^{2}\right) \subset \mathbb{A}^{3}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x, y, z]$ a normal variety?
Problem 11.7 Prove that the direct product of irreducible affine algebraic varieties is irreducible.
Problem 11.8 For every $\mathbb{k}$-algebra $A$ of finite dimension as a vector space over $\mathbb{k}$, prove that $\operatorname{Spec}_{\mathrm{m}} A$ is finite. Deduce from this that every nonempty fiber of a finite morphism is finite.
Problem 11.9 Give an example of a regular nonfinite morphism all of whose nonempty fibers are finite.
Problem 11.10 Give an example of a map that is continuous in the Zariski topology but not regular.
Problem 11.11 Let $\mathbb{k}$ be an algebraically closed field, and $f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a nonconstant polynomial. Describe (in terms of $f$ ) all vectors

$$
v=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, 1\right)
$$

such that the parallel projection of the hypersurface $V(f) \subset \mathbb{A}^{n}$ onto the hyperplane $x_{n}=0$ along the vector $v$ is (a) surjective, (b) dominant, (c) finite . To begin with, consider the following toy examples in $\mathbb{A}^{2}$ over $\mathbb{C}: V(x y-1)$, $V\left(x^{2}-y\right), V\left(x^{2}+2 x y+y^{2}\right)$.
Problem 11.12 Under the conditions of the previous problem, show that the image of the central projection of $V(f)$ from every point $p \notin V(f)$ onto every hyperplane $H \nexists p$ contains an open dense subset of $H$.
Problem 11.13 Prove that the image of a dominant morphism contains an open dense set.

Problem 11.14 Let $U$ be an open subset of an affine algebraic variety $X$. Let us say that $U$ is affine if there exist an affine algebraic variety $Y$ and injective regular $\operatorname{morphism} \varphi: Y \hookrightarrow X$ such that $\varphi(Y)=U$ and the pullback map

$$
\mathcal{O}_{X}(U) \xrightarrow{\sim} \mathbb{k}[Y], \quad f \mapsto f \varphi,
$$

is a well-defined isomorphism of $\mathbb{k}$-algebras. Assume that some elements

$$
f_{1}, f_{2}, \ldots, f_{m} \in \mathcal{O}_{X}(U)
$$

span a nonproper ideal in $\mathcal{O}_{X}(U)$, and every principal open subset

$$
U_{i}=\mathcal{D}\left(f_{i}\right) \cap U
$$

is affine. Prove that $U$ is also affine.
Problem 11.15 For every rational function $f \in \mathbb{k}(X)$ on an affine algebraic variety $X$, prove that the $\operatorname{map} f: \operatorname{Dom}(f) \rightarrow \mathbb{k}, x \mapsto f(x)$, is continuous in the Zariski topology.
Problem 11.16 Describe $\operatorname{Dom}(f)$ for the rational functions $f=(1-y) / x$, $f=y / x$, and $f=x_{1} / x_{3}$ on the affine hypersurfaces $V\left(x^{2}+y^{2}-1\right)$, $V\left(x^{3}+x^{2}-y^{2}\right) \subset \mathbb{A}^{2}$, and $X=V\left(x_{1} x_{2}-x_{3} x_{4}\right) \subset \mathbb{A}^{4}$ respectively.
Problem 11.17 (Quotient by a Finite Group Action) Let $\mathbb{k}$ be an algebraically closed field of characteristic zero, $X$ an affine algebraic variety over $\mathbb{k}$, and $G$ a finite group acting on $X$ by regular automorphisms. Then $G$ acts on $\mathbb{k}[X]$ by pullback automorphisms. Write $R=\mathbb{k}[X]^{G} \subset \mathbb{k}[X]$ for the subalgebra of $G$-invariants. Verify that the Reynolds operator

$$
\mathbb{k}[X] \rightarrow R, \quad f \mapsto f^{\natural} \stackrel{\text { def }}{=} \frac{1}{|G|} \sum_{\sigma \in G} \sigma^{*} f,
$$

is $\mathbb{k}$-linear and possesses the following properties, holding for all $f \in \mathbb{k}[X]$ and $h \in R$ :

Use them to prove that $R$ is a finitely generated reduced $\mathbb{k}$-algebra, and $\operatorname{Spec}_{\mathrm{m}} R$ can be identified with the set of $G$-orbits $X / G$ in such a way that the quotient map $\pi: X \rightarrow X / G$ becomes a finite regular surjection of affine algebraic varieties and possesses the following universal property: for every regular morphism of affine algebraic varieties $\varphi: X \rightarrow Y$ satisfying the condition

$$
\forall \sigma \in G \forall x \in X, \quad \varphi(\sigma x)=\varphi(x),
$$

there exists a unique regular morphism of affine algebraic varieties

$$
\psi: X / G \rightarrow Y
$$

such that $\psi \circ \pi=\varphi$. (Hint: prove that this universal property determines the arrow $X \rightarrow X / G$ in the category $\mathcal{A} f f_{k}$ uniquely up to a unique isomorphism, and then show that the arrow $X \rightarrow \operatorname{Spec}_{\mathrm{m}} R$ provided by the inclusion $R \hookrightarrow \mathbb{k}[X]$ is universal.)
Problem 11.18 For $X=\mathbb{C}^{2}$ and $G=\mathbb{Z} /(n)$ acting on $\mathbb{C}^{2}$ by the rule

$$
[k]_{n}:(x, y) \mapsto\left(e^{2 \pi i k / n} x, e^{2 \pi i k / n} y\right)
$$

describe the quotient variety $X / G$ (defined in Problem 11.17) by explicit polynomial equations in an appropriate affine space.
Problem 11.19 Describe the closure of the unit sphere

$$
S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

in the Zariski topology on the affine plane $\mathbb{A}\left(\mathbb{C}^{2}\right)$.
Problem 11.20 For the ring $C^{0}(X)$ of continuous (real- or complex-valued) functions on a compact Hausdorff topological space $X$, prove that the canonical map $X \rightarrow \operatorname{Spec}_{\mathrm{m}} C^{0}(X), x \mapsto \operatorname{kerev}_{x}$, is bijective and identifies the Zariski topology ${ }^{23}$ on $\operatorname{Spec}_{\mathrm{m}} C^{0}(X)$ with the original topology on $X$. If the general case seems too abstract, consider $X=[0,1] \subset \mathbb{R}$ and the algebra of real-valued continuous functions $[0,1] \rightarrow \mathbb{R}$.
Problem 11.21 Is there a nonmaximal prime ideal in the ring of continuous real valued functions on a segment?

[^153]
## Chapter 12 <br> Algebraic Manifolds

Everywhere in this chapter we assume by default that the ground field $\mathbb{k}$ is algebraically closed.

### 12.1 Definitions and Examples

The definition of an algebraic manifold follows the same template as the definitions of manifold in topology and differential geometry. It can be outlined as follows: a manifold is a topological space $X$ such that every point $x \in X$ possesses an open neighborhood $U \ni x$, called a local chart, which is equipped with a homeomorphism $\varphi_{U}: X_{U} \xrightarrow{\sim} U$ identifying some standard local model $X_{U}$ with $U$, and every pair of local charts $\varphi_{U}: X_{U} \xrightarrow{\sim} U, \varphi_{W}: X_{W} \xrightarrow{\sim} W$ are compatible, meaning that the homeomorphism between open subsets $\varphi_{U}^{-1}(U \cap W) \subset X_{U}$ and $\varphi_{W}^{-1}(U \cap W) \subset X_{W}$ provided by the composition $\varphi_{W}^{-1} \circ \varphi_{U}$ is a regular isomorphism. In topology and differential geometry, the local model $X_{U}=\mathbb{R}^{n}$ does not depend on $U$, and the regularity of the transition homeomorphism

$$
\begin{equation*}
\left.\varphi_{W U} \stackrel{\text { def }}{=} \varphi_{W}^{-1} \circ \varphi_{U}\right|_{\varphi_{U}^{-1}(U \cap W)}: \varphi_{U}^{-1}(U \cap W) \xrightarrow{\leadsto} \varphi_{W}^{-1}(U \cap W), \tag{12.1}
\end{equation*}
$$

means that it will be a diffeomorphism of open subsets in $\mathbb{R}^{n}$ in differential geometry, and means simply a homeomorphism in topology. In algebraic geometry, the local model $X_{U}$ is an arbitrary algebraic variety that may depend on $U \subset X$. Thus, an algebraic manifold may look locally, for example, like a union of a line and a plane in $\mathbb{A}^{3}$, intersecting or parallel, and this picture may vary from chart to chart. The regularity of the homeomorphism (12.1), in algebraic geometry, means that the maps $\varphi_{W U}, \varphi_{U W}=\varphi_{W U}^{-1}$ are described in affine coordinates by some rational functions, which are regular within both open sets $f_{U}^{-1}(U \cap W), \varphi_{W}^{-1}(U \cap W)$. This provides every algebraic manifold $X$ with a well-defined sheaf $\mathcal{O}_{X}$ of regular
rational functions with values in the ground field $\mathbb{k}$, in the same manner as the smooth functions on a manifold are introduced in differential geometry.

Let us now give precise definitions. Given a topological space $X$, an affine chart on $X$ is a homeomorphism $\varphi_{U}: X_{U} \xrightarrow{\rightarrow} U$ between an affine algebraic variety $X_{U}$ over $\mathbb{k}$, considered with the Zariski topology, and an open subset $U \subset X$, considered with the topology induced from $X$. Two affine charts $\varphi_{U}: X_{U} \xrightarrow{\leadsto} U, \varphi_{W}: X_{W} \xrightarrow{\leadsto} W$ on $X$ are called compatible if the pullback map $\varphi_{W U}^{*}: f \mapsto f \circ \varphi_{W U}$, provided by the transition homeomorphism (12.1), establishes a well-defined isomorphism of $\mathbb{k}_{k}$-algebras ${ }^{1} \quad \mathcal{O}_{X_{W}}\left(\varphi_{W}^{-1}(U \cap W)\right) \xrightarrow{\rightarrow} \mathcal{O}_{X_{U}}\left(\varphi_{U}^{-1}(U \cap W)\right)$. An open covering $X=\bigcup U_{\nu}$ by mutually compatible affine charts $U_{v} \subset X$ is called an algebraic atlas on $X$. Two algebraic atlases are declared to be equivalent if their union is an algebraic atlas as well. A topological space $X$ equipped with an equivalence class of algebraic atlases is called an algebraic manifold or algebraic variety. ${ }^{2}$ An algebraic manifold is said to be of finite type if it allows a finite algebraic atlas.
Exercise 12.1 Verify that every algebraic manifold of finite type is a Noetherian topological space in the sense of Remark 11.2 on p. 252.

Example 12.1 (Projective Spaces) The projective space ${ }^{3} \mathbb{P}_{n}=\mathbb{P}\left(\mathbb{k}^{n+1}\right)$ with homogeneous coordinates $x=\left(x_{0}: x_{1}: \cdots: x_{n}\right)$ is covered by the $(n+1)$ standard affine charts ${ }^{4} U_{i}=\left\{\left(x_{0}: x_{1}: \cdots: x_{n}\right) \mid x_{i} \neq 0\right\}, 0 \leqslant i \leqslant n$. Write $X_{i}=\mathbb{A}\left(\mathbb{k}^{n}\right)$ for the affine space with coordinates ${ }^{5} t_{i}=\left(t_{i, 0}, \ldots, t_{i, i-1}, t_{i, i+1}, \ldots, t_{i, n}\right)$. For each $i$, there exists a bijection

$$
\begin{equation*}
\varphi_{i}: X_{i} \xrightarrow{\leadsto} U_{i}, \quad t_{i} \mapsto\left(t_{i, 0}: \cdots: t_{i, i-1}: 1: t_{i, i+1}: \cdots: t_{i, n}\right) . \tag{12.2}
\end{equation*}
$$

The preimage of the intersection $U_{i} \cap U_{j}$ under this bijection is the principal open set $\mathcal{D}\left(t_{i, j}\right) \subset X_{i}$.
Exercise 12.2 Verify that the transition map

$$
\varphi_{j i}=\varphi_{j}^{-1} \varphi_{i}: \mathcal{D}\left(t_{i, j}\right) \xrightarrow{\sim} \mathcal{D}\left(t_{j, i}\right), t_{i} \mapsto t_{i, j}^{-1} \cdot t_{j},
$$

establishes a regular isomorphism between affine algebraic varieties

$$
\begin{aligned}
& \mathcal{D}\left(t_{i, j}\right)=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[t_{i, j}^{-1}, t_{i, 0}, \ldots, t_{i, i-1}, t_{i, i+1}, \ldots, t_{i, n}\right], \\
& \mathcal{D}\left(t_{j, i}\right)=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[t_{j, i}^{-1}, t_{j, 0}, \ldots, t_{j, j-1}, t_{j, j+1}, \ldots, t_{j, n}\right] .
\end{aligned}
$$

[^154]Therefore, transferring the Zariski topology from $X_{i} \simeq \mathbb{A}^{n}$ to $U_{i}$ by means of the bijection (12.2) provides $\mathbb{P}_{n}$ with a well-defined topology whose restriction to $U_{i} \cap U_{j}$ does not depend on what source, $X_{i}$ or $X_{j}$, it comes from. In this topology, all bijections (12.2) certainly are homeomorphisms. Thus, $\mathbb{P}_{n}$ is an algebraic manifold of finite type locally isomorphic to the affine space $\mathbb{A}^{n}$.

Example 12.2 (Grassmannians) Recall ${ }^{6}$ that the set of all $k$-dimensional vector subspaces in a given vector space $V$ over $\mathbb{k}$ is called the Grassmannian $\operatorname{Gr}(k, V)$, and for the coordinate space $V=\mathbb{k}^{m}$ we write $\operatorname{Gr}(k, m)$ instead of $\operatorname{Gr}\left(k, \mathbb{k}^{m}\right)$. We have seen in Sect. 2.6.5 that the points of $\operatorname{Gr}(k, m)$ can be viewed as the orbits of $k \times m$ matrices of rank $k$ under the natural action of $\mathrm{GL}_{k}(\mathbb{k})$ by left multiplication. The orbit of the matrix $x$ corresponds to the subspace $U_{x} \subset \mathbb{k}^{m}$ spanned by the rows of $x$, and $x$ is recovered from $U_{x}$ up to the action $\mathrm{GL}_{k}(\mathbb{k})$ as the matrix whose rows are the coordinates of some linearly independent vectors $u_{1}, u_{2}, \ldots, u_{k} \in U_{x}$ in the standard basis of $\mathbb{k}^{m}$. This leads to the following covering of $\operatorname{Gr}(k, m)$ by $\binom{m}{k}$ affine charts $U_{I} \simeq \mathbb{A}^{k(m-k)}$, called standard and numbered by increasing collections of indices $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right), 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m$. Write $s_{I}(x)$ for the $k \times k$ submatrix of the $k \times m$ matrix $x$ formed by the columns with numbers $i_{1}, i_{2}, \ldots, i_{k}$, and $U_{I}$ for the set of $\mathrm{GL}_{k}(\mathbb{k})$-orbits of all matrices $x$ with $\operatorname{det} s_{I}(x) \neq 0$. Every such orbit contains a unique matrix $z$ with $s_{I}(z)=E$, namely, $z=s_{I}(x)^{-1} \cdot x$.
Exercise 12.3 Convince yourself that $U_{I}$ consists of the $k$-dimensional subspaces $W \subset \mathbb{k}^{m}$ that are isomorphically projected onto the coordinate $k$-plane spanned by the standard basis vectors $e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}$ along the transversal coordinate ( $m-k$ )plane spanned by the remaining standard basis vectors.
Write $X_{I}=\operatorname{Mat}_{k \times(m-k)}(\mathbb{k}) \simeq \mathbb{A}^{k(m-k)}$ for the affine space of $k \times(m-k)$ matrices whose columns are numbered in order by the collection of indices $\bar{I}=\{1,2, \ldots, m\} \backslash I$, complementary to $I$. There is a bijection $\varphi_{I}: X_{I} \xrightarrow{\sim} U_{I}$, $t \mapsto \mathrm{GL}_{k}(\mathbb{k}) \cdot \varphi_{I}(t)$, where the $k \times m$ matrix $\varphi_{I}(t)$ has $s_{I}\left(\varphi_{I}(t)\right)=E$, and $s_{\bar{I}}\left(\varphi_{I}(t)\right)=t$, i.e., it is obtained from $t$ by the order-preserving insertion of the columns of $E$ between the columns of $t$ in such the way that the columns of $E$ are assigned the numbers $i_{1}, i_{2}, \ldots, i_{k}$ in the resulting $k \times m$ matrix.
Exercise 12.4 Verify that the inverse bijection maps $x \mapsto s_{\bar{I}}\left(s_{I}(x)^{-1} \cdot x\right)$, and the result does not depend on the choice of $x$ in the orbit $\mathrm{GL}_{k}(\mathbb{k}) \cdot x$.
Therefore, $\varphi_{I}^{-1}\left(U_{I} \cap U_{J}\right)$ is the principal open set $\mathcal{D}\left(\operatorname{det} s_{J}\left(\varphi_{I}(t)\right)\right)$ in $X_{I}$. The transition map

$$
\varphi_{J I}=\varphi_{J}^{-1} \varphi_{I}
$$

sends $\mathcal{D}\left(\operatorname{det} s_{J}\left(\varphi_{I}(t)\right)\right) \subset X_{I}$ to $\mathcal{D}\left(\operatorname{det} s_{I}\left(\varphi_{J}(t)\right)\right) \subset X_{J}$ by the rule

$$
t \mapsto s_{\bar{J}}\left(s_{J}^{-1}\left(\varphi_{I}(t)\right) \cdot \varphi_{I}(t)\right)
$$

[^155]and gives a regular isomorphism of affine algebraic varieties. The inverse isomorphism maps $t \mapsto s_{\bar{I}}\left(s_{I}^{-1}\left(\varphi_{J}(t)\right) \cdot \varphi_{J}(t)\right)$.
Exercise 12.5 Check this.
The same arguments as in the previous example show that $\operatorname{Gr}(k, n)$ is an algebraic variety of finite type locally isomorphic to the affine space
$$
\mathbb{A}^{k(m-k)}=\mathbb{A}\left(\operatorname{Mat}_{k \times(m-k)}(\mathbb{k})\right) .
$$

Note that for $k=1, m=n+1$, the standard algebraic atlas $\left\{U_{I}\right\}$ on $\operatorname{Gr}(k, m)$ is precisely the standard atlas $\left\{U_{i}\right\}$ on $\mathbb{P}_{n}$ described in Example 12.1.

Example 12.3 (Direct Product of Algebraic Manifolds) The set-theoretic direct product of algebraic manifolds $X, Y$ is canonically equipped with the algebraic atlas formed by the mutual direct products $U \times W$ of affine charts $U \subset X, W \subset X$. Thus, $X \times Y$ is an algebraic manifold.

### 12.1.1 Structure Sheaf and Regular Morphisms

Given an algebraic manifold $X$, a function $f: X \rightarrow \mathbb{k}$ is called regular at a point $x \in X$ if there exist an affine chart $\varphi_{W}: X_{W} \xrightarrow{\rightarrow} W$ with $x \in W$ and a rational function $\widetilde{f} \in \mathbb{k}\left(X_{W}\right)$ such that $\left.\varphi_{W}^{-1}(x) \in \operatorname{Dom} \widetilde{f}\right)$ and $\varphi_{W}^{*} f(z)=\widetilde{f}(z)$ for all $z \in \operatorname{Dom} \widetilde{f}$. For an open subset $U \subset X$, the functions $U \rightarrow \mathbb{k}$ regular everywhere in $U$ form a $\mathbb{k}$-algebra denoted by $\mathcal{O}_{X}(U)$ and called the algebra of regular functions on $U$. The assignment $U \mapsto \mathcal{O}_{X}(U)$ provides the topological space $X$ with a sheaf of $\mathbb{k}$-algebras, ${ }^{7}$ called the structure sheaf or the sheaf of regular functions on $X$.
Exercise 12.6 For every affine chart $\varphi_{U}: X_{U} \xrightarrow{\rightarrow} U$ on $X$, verify that the pullback of the regular functions along $\varphi_{U}$ assigns the isomorphism $\varphi_{U}^{*}: \mathcal{O}_{X}(U) \xrightarrow{\sim} \mathbb{k}\left[X_{U}\right]$.
A map of algebraic manifolds $f: X \rightarrow Y$ is called a regular morphism if $f$ is continuous and for every open $U \subset Y$, the pullback of regular functions along $\left.f\right|_{U}$ gives a well-defined homomorphism of $\mathbb{k}$-algebras $\left.f\right|_{U} ^{*}: \mathcal{O}_{Y}(U) \rightarrow \mathcal{O}_{X}\left(\varphi^{-1}(U)\right)$, $h \mapsto h \circ f$.
Exercise 12.7 Identify $\mathcal{O}_{X}(X)$ with the set of regular morphisms $X \rightarrow \mathbb{A}^{1}$.

### 12.1.2 Closed Submanifolds

Let $X$ be an algebraic manifold. Every closed subset $Z \subset X$ possesses a natural structure of an algebraic manifold. Namely, for every affine chart $\varphi_{U}: X_{U} \xrightarrow{\sim} U$,

[^156]the set $\varphi_{U}^{-1}(Z \cap U)$ is closed in the affine algebraic variety $X_{U}$ and therefore has a natural structure of an affine algebraic variety with the coordinate algebra
$$
\mathbb{k}\left[X_{U}\right] / \varphi_{U}^{*} I(Z \cap U) \simeq \mathcal{O}_{X}(U) / I(Z \cap U),
$$
where $I(Z \cap U)=\left\{f \in \mathcal{O}_{X}(U) \mid f(z)=0\right.$ for all $\left.z \in Z \cap U\right\}$. The affine charts
$$
\varphi_{U}^{-1}(Z \cap U) \xrightarrow{\sim} Z \cap U \subset Z
$$
certainly form an algebraic atlas on $Z$. The assignment $U \mapsto I(Z \cap U)$ defines the sheaf of ideals on $X$, denoted by $\mathcal{I}_{Z} \subset \mathcal{O}_{X}$ and called the ideal sheaf of the closed submanifold $Z \subset X$.

Every sheaf of ideals $\mathcal{J} \subset \mathcal{O}_{X}$ determines a closed submanifold $V(\mathcal{J}) \subset X$ whose intersection with every affine chart $U \subset X$ is the zero set of the ideal $\mathcal{J}(U) \subset \mathcal{O}_{X}(U) \simeq \mathbb{k}\left[X_{U}\right]$ in the affine algebraic variety $X_{U}$. Note that the ideal sheaf $\mathcal{I}(V(\mathcal{J}))=\sqrt{\mathcal{J}}$ does not necessarily coincide with the sheaf $\mathcal{J}$ of equations describing the submanifold $V(\mathcal{J})$.

A regular morphism $f: X \rightarrow Y$ is called a closed immersion if $f(X) \subset Y$ is a closed submanifold of $Y$ and $f$ establishes an isomorphism between $X$ and $f(X)$.
Exercise 12.8 Convince yourself that an algebraic manifold $X$ admits a closed immersion in an affine space if and only if $X$ is an affine algebraic variety in the sense of Sect. 11.1 on p. 241.

### 12.1.3 Families of Manifolds

Every regular morphism $\pi: X \rightarrow Y$ can be viewed as a family of closed submanifolds $X_{y}=\pi^{-1}(y) \subset X$ parametrized by the points $y \in Y$. In this case, $Y$ is referred to as the base of the family $\pi$. Given two families $\pi: X \rightarrow Y, \pi^{\prime}: X^{\prime} \rightarrow Y$ over the same base $Y$, a regular morphism $\varphi: X \rightarrow X^{\prime}$ is called a morphism of families or morphism over $Y$ if $\pi=\pi^{\prime} \circ \varphi$, i.e., if $\varphi$ maps $X_{y}$ to $X_{y}^{\prime}$ for all $y \in Y$. A family $\pi: X \rightarrow Y$ is called constant or trivial if it is isomorphic over $Y$ to the canonical projection $\pi_{Y}: X_{0} \times Y \rightarrow Y$ from the direct product of the base and some fixed manifold $X_{0}$.

### 12.1.4 Separated Manifolds

The standard atlas on $\mathbb{P}_{1}$ consists of two charts:

$$
\varphi_{i}: \mathbb{A}^{1} \xrightarrow{\sim} U_{i} \subset \mathbb{P}_{1}, \quad i=0,1 .
$$

Their intersection is visible within each chart as the complement to the origin,

$$
\varphi_{0}^{-1}\left(U_{0} \cap U_{1}\right)=\varphi_{1}^{-1}\left(U_{0} \cap U_{1}\right)=\mathbb{A}^{1} \backslash\{O\}=\left\{t \in \mathbb{A}^{1} \mid t \neq 0\right\}
$$

The charts are glued together along this intersection by means of the transition map

$$
\begin{equation*}
\varphi_{01}: t \mapsto 1 / t \tag{12.3}
\end{equation*}
$$

If instead of the rational map (12.3), we use the much simpler gluing rule

$$
\begin{equation*}
\tilde{\varphi}_{01}: t \mapsto t, \tag{12.4}
\end{equation*}
$$

we get another manifold that looks like an affine line with a double origin:

Such pathology is called nonseparateness. It has appeared because the gluing rule (12.4) considered as a binary relation on $\mathbb{A}^{1}$, i.e., as a subset of $\mathbb{A}^{1} \times \mathbb{A}^{1}=\mathbb{A}^{2}$, is not closed. Namely, it is provided by the line $x=y$ without the point $x=y=0$. This gluing rule can be completed by continuity up to the whole line $x=y$, whereupon the double point disappears.

In the general situation, the separateness phenomenon is formalized as follows. By the universal property of the direct product, for every two affine charts $U_{0}, U_{1}$ on an algebraic manifold $X$, the inclusions $U_{0} \hookleftarrow U_{0} \cap U_{1} \hookrightarrow U_{1}$ produce the inclusion

$$
U_{0} \cap U_{1} \hookrightarrow U_{0} \times U_{1}
$$

whose image is the intersection of the affine chart $U_{0} \cap U_{1}$ on the manifold $X \times X$ with the diagonal $\Delta_{X}=\{(x, x) \in X \times X \mid x \in X\}$. In other words, the gluing rule for charts $U_{0}, U_{1}$, considered as a subset of $U_{0} \times U_{1}$, is $\Delta \cap U_{0} \times U_{1}$. For example, the gluing rule (12.3) corresponds to the immersion $\left(\mathbb{A}^{1} \backslash O\right) \hookrightarrow \mathbb{A}^{2}$, $t \mapsto\left(t, t^{-1}\right)$, whose image $\Delta_{\mathbb{P}_{1}} \cap U_{0} \times U_{1}$ is a closed subset of $U_{0} \times U_{1} \simeq \mathbb{A}^{2}$, namely, the hyperbola $x y=1$. In contrast, the trivial transition map (12.4) produces the immersion $\left(\mathbb{A}^{1} \backslash O\right) \hookrightarrow \mathbb{A}^{2}, t \mapsto(t, t)$, whose image is not closed in $\mathbb{A}^{2}$. An algebraic manifold $X$ is called separated if the diagonal $\Delta_{X} \subset X \times X$ is closed in $X \times X$. In more expanded form, this means that for every pair of affine charts $U, W \subset X$, the canonical map $U \cap W \hookrightarrow U \times W$ is a closed immersion.

For example, both $\mathbb{A}^{n}$ and $\mathbb{P}_{n}$ are separated, because the diagonals in $\mathbb{A}^{n} \times \mathbb{A}^{n}$ and $\mathbb{P}_{n} \times \mathbb{P}_{n}$ are described by the polynomial equations $x_{i}=y_{i}$ and $x_{i} y_{j}=x_{j} y_{i}$ respectively. ${ }^{8}$ Every closed submanifold $X \subset Y$ in a separated manifold $Y$ is

[^157]separated as well, because the diagonal of $X \times X$ is the preimage of the diagonal $\Delta_{Y} \subset Y \times Y$ under the regular map $X \times X \hookrightarrow Y \times Y$ provided by the inclusion $X \hookrightarrow Y$. In particular, all affine and projective varieties are separated and have finite type.

Example 12.4 (Graph of a Regular Map) Let $\varphi: X \rightarrow Y$ be a regular morphism of algebraic manifolds. The preimage of the diagonal $\Delta_{Y} \subset Y \times Y$ under the map $\varphi \times \operatorname{Id}_{Y}: X \times Y \rightarrow Y \times Y$ is called the graph of $\varphi$ and denoted by $\Gamma_{\varphi}$. Set-theoretically, $\Gamma_{\varphi}=\{(x, f(x)) \in X \times Y \mid x \in X\}$. If $Y$ is separated, the graph of every regular morphism $\varphi: X \rightarrow Y$ is closed. For example, the graph of a regular morphism of affine algebraic varieties $\varphi: \operatorname{Spec}_{\mathrm{m}}(A) \rightarrow \operatorname{Spec}_{\mathrm{m}}(B)$ is described by a system of equations $1 \otimes f=\varphi^{*}(f) \otimes 1$ in $A \otimes B$, where $f$ runs through $B$.

### 12.1.5 Rational Maps

Let $X$ be an algebraic manifold and $U \subset X$ an open subset. A regular morphism $\varphi: U \rightarrow Y$ is called a rational map from $X$ to $Y$. Given such a map, we write $\varphi: X \rightarrow Y$, although this discards the information about $U$. A regular morphism $\psi: W \rightarrow Y$ is called an extension of $\varphi$ if $W \supset U$ and $\left.\psi\right|_{U}=\varphi$. The union of all open sets $W \supset U$ on which $\varphi$ can be extended is called the domain of the rational map $\varphi: X \rightarrow Y$ and denoted by $\operatorname{Dom}(\varphi)$.
Exercise 12.9 (Cremona's Quadratic Involution) Verify that the prescription

$$
\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{0}^{-1}: x_{1}^{-1}: x_{2}^{-1}\right)
$$

determines a rational map $\varkappa: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ whose domain is the whole of $\mathbb{P}_{2}$ except three points. Find these points and describe the image of $\varkappa$.
Despite its name, a rational map $\varphi: X \rightarrow Y$ is not a map "from $X$ " in the set-theoretic sense, because $\varphi$ may be undefined at some points. In particular, the composition of rational maps may be undefined, e.g., if the image of the first map falls outside the domain of the second. However, rational maps often appear in various applications and play an important role within algebraic geometry itself. For example, the tautological projection $\mathbb{A}(V) \rightarrow \mathbb{P}(V)$, which sends a point of $\mathbb{A}(V)$ provided by a vector $v \in V$ to the point of $\mathbb{P}(V)$ provided by the same vector, is a surjective rational map that is regular everywhere outside the origin.

[^158]
### 12.2 Projective Varieties

An algebraic manifold $X$ is called projective if it admits a closed immersion into projective space, i.e., is isomorphic to a closed submanifold of $\mathbb{P}_{n}$ for some $n \in \mathbb{N}$.
Exercise 12.10 Verify that the solution set of every system of homogeneous polynomial equations in the homogeneous coordinates in $\mathbb{P}_{n}$ is a closed submanifold of $\mathbb{P}_{n}$.

Example 12.5 (Plücker Coordinates) The Plücker embedding

$$
\begin{equation*}
p_{k, V}: \operatorname{Gr}(k, V) \hookrightarrow \mathbb{P}\left(\Lambda^{k} V\right), \quad U \mapsto \Lambda^{k} U, \tag{12.5}
\end{equation*}
$$

from Sect. 2.6.4 on p. 49 , maps the Grassmannian $\operatorname{Gr}(k, V)$ isomorphically onto the projective algebraic variety determined in $\mathbb{P}\left(\Lambda^{k} V\right)$ by the quadratic Plücker relations from formula (2.49) on p. 48. In the matrix notation from Example 12.2 on p. 267, the Plücker embedding maps the $k \times m$ matrix $x_{U}$ formed by the coordinate rows of some basis vectors in $U \subset \mathbb{k}^{n}$ expanded through the standard basis vectors $e_{i} \in \mathbb{K}^{n}$ to the point of $\mathbb{P}\left(\Lambda^{k} \mathbb{k}^{m}\right)$ whose Ith homogeneous coordinate in the basis

$$
e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}
$$

equals det $s_{I}\left(x_{U}\right)$, the degree- $k$ minor of $x_{U}$ situated in the columns with numbers from $I$.
Exercise 12.11 Check this and convince yourself that the Plücker embedding is regular.
The collection of $\binom{k}{n}$ minors det $s_{I}\left(x_{U}\right)$ is called the set of Plücker coordinates of the subspace $U \subset \mathbb{k}^{n}$. Since the pullbacks of the coordinate functions on $\mathbb{P}\left(\Lambda^{k} \mathbb{k}^{n}\right)$ are polynomials in affine coordinates on the Grassmannian, the map (12.5) is a regular closed immersion of the Grassmannian into projective space. Therefore, the Grassmannians, as well as all their closed submanifolds, are projective algebraic varieties.

Exercise 12.12 Show that the direct product of projective manifolds is projective, and use this to prove that every subset of $\mathbb{P}_{n_{1}} \times \mathbb{P}_{n_{2}} \times \cdots \times \mathbb{P}_{n_{m}}$ defined by a system of polynomial equations in homogeneous coordinates such that every equation is homogeneous in every set of coordinates is a projective algebraic variety.

Example 12.6 (Blowup of a Point on $\mathbb{P}_{n}$ ) All the lines passing through a given point $p \in \mathbb{P}_{n}$ form the projective space $E \simeq \mathbb{P}_{n-1}$. The incidence graph

$$
\mathcal{B}_{p}=\left\{(q, \ell) \in \mathbb{P}_{n} \times E \mid q \in \ell\right\}
$$

is called the blowup of the point $p \in \mathbb{P}_{n}$. The projection $\sigma_{p}: \mathcal{B}_{p} \rightarrow \mathbb{P}_{n}$ is one-toone over $\mathbb{P}_{n} \backslash\{p\}$, whereas the preimage of $p$ coincides with the whole space $E$,

$$
\sigma_{p}^{-1}(p)=\{p\} \times E \subset \mathbb{P}_{n} \times E
$$

This fiber is called the exceptional divisor ${ }^{9}$ of the blowup. The second projection $\varrho_{E}: \mathcal{B}_{p} \rightarrow E$ represents $\mathcal{B}_{p}$ as a line bundle over $E$, i.e., the family of projective lines $(p q) \subset \mathbb{P}_{n}$ parametrized by the points $q \in E$. This line bundle is called the tautological line bundle over the projective space $E$. It follows from Exercise 12.12 that $\mathcal{B}_{p}$ is a projective algebraic manifold. Indeed, choose homogeneous coordinates in $\mathbb{P}_{n}$ such that $p=(1: 0: \cdots: 0)$, and identify $E$ with the projective hyperplane $Z\left(x_{0}\right)=\left\{\left(0: \lambda_{1}: \cdots: \lambda_{n}\right)\right\} \subset \mathbb{P}_{n}$ by mapping a line $\ell \ni p$ to the point $\lambda=\ell \cap Z\left(x_{0}\right)$. Then the collinearity of points $p, q, \lambda$ is equivalent to the following system of homogeneous quadratic equations in the pair $(q, \lambda) \in \mathbb{P}_{n} \times E$ :

$$
\operatorname{rk}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
q_{0} & q_{1} & \cdots & q_{n} \\
0 & \lambda_{1} & \cdots & \lambda_{n}
\end{array}\right)=2 \quad \text { or } \quad q_{i} t_{j}=q_{j} t_{i}, 1 \leqslant i<j \leqslant n .
$$

Geometrically, the blowup of $p \in \mathbb{P}_{n}$ can be imagined as the replacement of the point $p$ by the projective space $E$ glued to the space $\mathbb{P}_{n}$, punctured at $p$, in such a way that every line $\ell \subset \mathbb{P}_{n}$ approaching $p$ passes through the point $\ell \in E$.

Lemma 12.1 Every closed submanifold $X \subset \mathbb{P}_{n}$ can be described as a set of solutions to some system of homogeneous polynomial equations in homogeneous coordinates in $\mathbb{P}_{n}$.

Proof We write ( $x_{0}: x_{1}: \cdots: x_{n}$ ) for the homogeneous coordinates in $\mathbb{P}_{n}$ and use the notation from Example 12.1 on p. 266 for the standard affine charts $U_{i} \subset \mathbb{P}_{n}$ and the standard affine coordinates $t_{i, j}$ therein. For each $i$, the intersection $X \cap U_{i}$ is the zero set $V\left(I_{i}\right)$ of some ideal $I_{i}$ in the polynomial ring in $n$ variables $t_{i, v}=x_{v} / x_{i}, 0 \leqslant v \leqslant$ $n, v \neq i$. Every polynomial $f$ in this ring can be rewritten as ${ }^{10} \bar{f}\left(x_{0}, x_{1}, \ldots, x_{n}\right) / x_{i}^{d}$, where $d=\operatorname{deg} f$ and $\bar{f} \in \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is the unique homogeneous polynomial of degree $d$ such that

$$
\bar{f}\left(t_{i, 0}, \ldots, t_{i, i-1}, 1, t_{i, i+1}, \ldots, t_{i, n}\right)=f\left(t_{i, 0}, \ldots, t_{i, i-1}, t_{i, i+1}, \ldots, t_{i, n}\right) .
$$

Let us fix generators $f_{i, \alpha}$ of the ideal $I_{i}$ and write $\bar{f}_{i, \alpha} \in \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ for their homogenizations just described. Then $X$ coincides with the solution set $Z$ of the system of polynomial equations $x_{i} \cdot \bar{f}_{i, \alpha}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0$, where $0 \leqslant i \leqslant n$ and for each $i, \alpha$ numbers the chosen generators $f_{i, \alpha}$ of the ideal $I_{i}$. To check

[^159]this, it is enough to establish the coincidence $Z \cap U_{i}=X \cap U_{i}$ for every $i$. In terms of the affine coordinates $t_{i, j}$ on $U_{i}$, the intersection of $U_{i}$ with the zero set $Z\left(x_{i} \cdot \bar{f}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) \subset \mathbb{P}_{n}$ of a homogeneous polynomial $x_{i} \bar{f}$ is described by the equation
$$
\bar{f}\left(t_{i, 0}, \ldots, t_{i, i-1}, 1, t_{i, i+1}, \ldots, t_{i, n}\right)=f\left(t_{i, 0}, \ldots, t_{i, i-1}, t_{i, i+1}, \ldots, t_{i, n}\right)=0
$$

Hence, $U_{i}$ intersects the set of common zeros of the polynomials $x_{i} \cdot \bar{f}_{i, \alpha}$, whose $i$ coincides with $i$ of the chart, exactly along the set $X \cap U_{i}$. Therefore, $Z \cap U_{i} \subset X \cap U_{i}$. It remains to check that every homogeneous polynomial $x_{j} \cdot \bar{f}_{j, \beta}$ with $j \neq i$ vanishes on $X \cap U_{i}$ as well. The first factor $x_{j}$ vanishes along the hyperplane $V\left(t_{i, j}\right) \subset U_{i}$. The principal open set in $X \cap U_{i}$ complementary to this hyperplane lies within

$$
X \cap U_{i} \cap U_{j} \subset X \cap U_{j} .
$$

As we have already seen, the second factor $\bar{f}_{j, \beta}$ vanishes on $\bar{f}_{j, \beta}$.
Example 12.7 (Illustration to the Proof of Lemma 12.1) The zero set of the homogeneous polynomial $x_{0} x_{1} x_{2}$ on $\mathbb{P}_{2}$ is the union of three lines complementary to the standard affine charts. The affine equations of this set in the charts $U_{0}, U_{1}$, $U_{2}$ are, respectively, $t_{0,1} t_{0,2}=0, t_{1,0} t_{1,2}=0, t_{2,0} t_{2,1}=0$. Let $X \subset \mathbb{P}_{2}$ be the closed submanifold locally described by these equations. Applied to this $X$, the previous proof transforms the left-hand sides of the local affine equations to the homogeneous polynomials $\bar{f}_{0,1}=x_{1} x_{2}, \bar{f}_{1,1}=x_{0} x_{2}, \bar{f}_{2,1}=x_{0} x_{1}$, and then gives $x_{0} \cdot \bar{f}_{0,1}=0, x_{1} \cdot \bar{f}_{1,1}=0, x_{2} \cdot \bar{f}_{2,1}=0$ as the global homogeneous equations for $X$. They all coincide with the initial equation $x_{0} x_{1} x_{2}=0$ in our case.

### 12.3 Resultant Systems

Given a system of homogeneous polynomial equations

$$
\left\{\begin{array}{l}
f_{1}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0  \tag{12.6}\\
f_{2}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

where every $f_{i} \in \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous of degree $d_{i}$, the set of its solutions, considered up to proportionality, is the intersection of $m$ projective hypersurfaces $S_{i}=Z\left(f_{i}\right) \subset \mathbb{P}(V)$, where $V=\mathbb{k}^{n+1}$. The projective hypersurfaces of degree $d$ in $\mathbb{P}(V)$ can be viewed as points of the projective space $\mathbb{P}\left(S^{d} V^{*}\right)$. All collections of hypersurfaces $\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ of given degrees $d_{1}, d_{2}, \ldots, d_{m}$ with nonempty intersection $\bigcap_{i} S_{i} \neq \varnothing$ form the figure

$$
\begin{equation*}
\mathcal{R}\left(n+1 ; d_{1}, d_{2}, \ldots, d_{m}\right) \subset \mathbb{P}\left(S^{d_{1}} V^{*}\right) \times \mathbb{P}\left(S^{d_{2}} V^{*}\right) \times \cdots \times \mathbb{P}\left(S^{d_{m}} V^{*}\right), \tag{12.7}
\end{equation*}
$$

called the resultant variety of the homogeneous system (12.6). When $m=n+1$ and all $d_{i}=1$, the system (12.6) becomes a system of linear equations $A x=0$ with square matrix $A=\left(a_{i j}\right)$. It has a nonzero solution if and only if $\operatorname{det}\left(a_{i j}\right)=0$. Thus, in this simplest case, the resultant variety is a projective variety determined by one multilinear equation of total degree $n+1$ in the coefficients $a_{i, j}$. We are going to check that the resultant variety (12.7) can always be described by a system of polynomial equations in the coefficients of the polynomials $f_{i}$. This system is called a resultant system. It depends only on the number of variables and degrees $d_{i}$, and every equation of the system is homogeneous in the coefficients of each polynomial.

Write $J=\left(f_{1}, f_{2}, \ldots, f_{m}\right) \subset \mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ for the ideal spanned by the polynomials. If $V(J)$ is exhausted by the origin, then every coordinate linear form $x_{i}$ vanishes on $V(J)$, and therefore, all $x_{i}^{m}$ belong to $J$ for some $m \in \mathbb{N}$ by the strong Nullstellensatz. This forces $J$ to contain all homogeneous polynomials of degree $d>(m-1)(n+1)$. Conversely, if $J \supset S^{d} V^{*}$ for all $d \gg 0$, then the system (12.6) implies the equations $x_{0}^{d}=x_{1}^{d}=\cdots=x_{n}^{d}=0$ and therefore has only the zero solution. For every $d \in \mathbb{N}$, the intersection $J \cap S^{d} V^{*}$ coincides with the image of the $\mathbb{k}$-linear map

$$
\begin{equation*}
\mu_{d}: S^{d-d_{1}} V^{*} \oplus S^{d-d_{2}} V^{*} \oplus \cdots \oplus S^{d-d_{m}} V^{*} \xrightarrow{\left(g_{0}, g_{1}, \ldots, g_{n}\right) \mapsto \sum g_{v} f_{v}} S^{d} . \tag{12.8}
\end{equation*}
$$

The matrix of this map in the standard monomial basis consists of zeros and the coefficients of the polynomials $f_{v}$. For $d \gg 0$, the dimension of the left-hand side in (12.8) grows as

$$
\sum_{v=1}^{m}\binom{n+d-d_{v}}{n} \sim \frac{m}{n!} d^{n}
$$

and becomes greater than the dimension of the right-hand side, which grows as

$$
\binom{n+d}{n} \sim \frac{1}{n!} d^{n}
$$

Thus, for every $d \gg 0$, the condition $S^{d} V^{*} \not \subset J$, that is, the nonsurjectivity of the map (12.8), means that the rank of the matrix of $\mu_{d}$ is not maximal. This is equivalent to the vanishing of all minors of the matrix of maximal degree. Thus, the resultant variety is the zero set of all these equations written for all $d$ such that the dimension of the left-hand side of (12.8) is not less than that of the right-hand side. Since the polynomial ring is Noetherian, this huge system of equations is equivalent to some finite subsystem. If the ideal of the resultant variety (12.7) is not principal, such a system of resultants is not unique in general.

### 12.3.1 Resultant of Two Binary Forms

If a ground field $\mathbb{k}$ is algebraically closed, every homogeneous binary form $A\left(t_{0}, t_{1}\right)=a_{0} t_{1}^{d}+a_{1} t_{0} t_{1}^{d-1}+a_{2} t_{0}^{2} t_{1}^{d-2}+\cdots+a_{d-1} t_{0}^{d-1} t_{1}+a_{d} t_{0}^{d}$ splits into a product of linear forms ${ }^{11}$

$$
A\left(t_{0}, t_{1}\right)=\prod_{i=0}^{d}\left(\alpha_{i}^{\prime \prime} t_{0}-\alpha_{i}^{\prime} t_{1}\right)=\prod_{i=0}^{d} \operatorname{det}\left(\begin{array}{cc}
t_{0} & t_{1} \\
\alpha_{i}^{\prime} & \alpha_{i}^{\prime \prime}
\end{array}\right)
$$

corresponding to the roots ${ }^{12} \alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in \mathbb{P}_{1}, \alpha_{i}=\left(\alpha_{i}^{\prime}: \alpha_{i}^{\prime \prime}\right)$, of the polynomial $A$. The coefficients of $A$ are expressed as homogeneous polynomials in the roots by means of the homogeneous Viète formulas

$$
a_{k}=(-1)^{d-k} \sigma_{k}\left(\alpha^{\prime}, \alpha^{\prime \prime}\right), \text { where } \sigma_{k}\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)=\sum_{\# I=k}\left(\prod_{i \in I} \alpha_{i}^{\prime} \cdot \prod_{j \notin I} \alpha_{j}^{\prime \prime}\right)
$$

where $I$ runs through the strictly increasing sequences of $k$ indices. In particular, $a_{k}$ is bihomogeneous of bidegree $(k, d-k)$ in $\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)$. Let us fix two degrees $r, s \in \mathbb{N}$ and consider the polynomial ring $\mathbb{k}\left[\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime}, \beta^{\prime \prime}\right]$ in four collections of variables

$$
\begin{array}{ll}
\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{s}^{\prime}\right), & \alpha^{\prime \prime}=\left(\alpha_{1}^{\prime \prime}, \alpha_{2}^{\prime \prime}, \ldots, \alpha_{s}^{\prime \prime}\right) \\
\beta^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{r}^{\prime}\right), & \beta^{\prime \prime}=\left(\beta_{1}^{\prime \prime}, \beta_{2}^{\prime \prime}, \ldots, \beta_{r}^{\prime \prime}\right)
\end{array}
$$

Within this ring, consider the product

$$
R_{A B} \stackrel{\text { def }}{=} \prod_{i, j}\left(\alpha_{i}^{\prime} \beta_{j}^{\prime \prime}-\alpha_{i}^{\prime \prime} \beta_{j}^{\prime}\right)=\prod_{j=1}^{s} A\left(\beta_{j}\right)=(-1)^{r s} \prod_{i=1}^{r} B\left(\alpha_{i}\right) .
$$

It evaluates to zero if and only if two binary forms

$$
A\left(t_{0}, t_{1}\right)=\sum_{i=0}^{s} a_{i} t_{0}^{i} t_{1}^{n-i} \quad \text { and } \quad B\left(t_{0}, t_{1}\right)=\sum_{j=0}^{r} b_{j} t_{0}^{j} t_{1}^{m-j}
$$

with coefficients $a_{i}=(-1)^{n-i} \sigma_{i}\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)$ and $b_{j}=(-1)^{m-j} \sigma_{j}\left(\beta^{\prime}, \beta^{\prime \prime}\right)$ have a common root in $\mathbb{P}_{1}$. The polynomial $R_{A, B}$ is bihomogeneous of bidegree ( $r s, r s$ ) in $(\alpha, \beta)$. Let us show that it can be expressed as a polynomial in the coefficients of

[^160]the forms $A, B$ by Sylvester's formula

For $n=1, m=2$, the linear map (12.8) becomes $\mu_{d}: S^{d-s} V^{*} \oplus S^{d-r} V^{*} \rightarrow S^{d} V^{*}$, where

$$
\operatorname{dim} V^{*}=2 \quad \text { and } \quad h_{1}(t), h_{2}(t) \mapsto A(t) h_{1}(t)+B(t) h_{2}(t) .
$$

For $d=s+r-1$, the dimensions of the source and target spaces become equal to $r+s$, and the map $\mu_{r+s-1}: S^{r-1} V^{*} \oplus S^{s-1} V^{*} \rightarrow S^{r+s-1} V^{*}$ is represented in the standard monomial basis $t_{0}^{\mu} t_{1}^{v}$ with $\mu+v=r-1, s-1, r+s-1$ by the square matrix that is the transpose of that from (12.9).
Exercise 12.13 Check this.
Write $S=S\left(\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime}, \beta^{\prime \prime}\right)$ for the Sylvester determinant (12.8) considered as a polynomial in $\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime}, \beta^{\prime \prime}$, and let $D_{i j}=\alpha_{i}^{\prime} \beta_{j}^{\prime \prime}-\alpha_{i}^{\prime \prime} \beta_{j}^{\prime}$. For every point $(\alpha, \beta) \in Z\left(D_{i j}\right)$, we have $\left(\alpha_{i}^{\prime \prime} t_{0}-\alpha_{i}^{\prime} t_{1}\right)=\left(\beta_{i}^{\prime \prime} t_{0}-\beta_{i}^{\prime} t_{1}\right)$ up to a constant factor, and this linear form divides $A(t), B(t)$, and all polynomials $A(t) h_{1}(t)+B(t) h_{2}(t)$. Thus we have im $\mu_{m+n-1} \neq S^{m+n-1} V^{*}$, and $S$ vanishes. This forces some power of $S$ to be divisible by $D_{i j}$. Since this quadratic form is irreducible and the polynomial ring is factorial, $D_{i j}$ divides $S$. Since all quadratic forms $D_{i j}$ are nonproportional, $S$ is divisible by their product $R_{A B}$. Comparison of the degrees and coefficients of the lexicographically maximal monomials in $S$ and $R_{A B}=\prod_{i, j}\left(\alpha_{i}^{\prime} \beta_{j}^{\prime \prime}-\alpha_{i}^{\prime \prime} \beta_{j}^{\prime}\right)$ shows that these two polynomials are equal.

Thus, the resultant variety (12.7) for a pair of binary forms $A, B$ of degrees $s$, $r$ is the hypersurface ${ }^{13}$ in $\mathbb{P}_{s} \times \mathbb{P}_{r}$ determined by one equation $R_{A B}=0$ in $A$, $B$. The polynomial $R_{A, B}$ is called the resultant of $A, B$. For $t_{0}=1, t_{1}=x$, it is specialized to the resultant $R_{f, g}$ of two inhomogeneous polynomials $f(x)=A(1, x)$, $g(x)=B(1, x)$. Under the assumption that ${ }^{14} a_{0} b_{0} \neq 0$, the resultant $R_{f, g}$ vanishes if and only if the polynomials $f, g$ have a common root in $\mathbb{k}=\mathbb{A}^{1}=\mathbb{P}^{1} \backslash\{(0: 1)\}$.

[^161]
### 12.4 Closeness of Projective Morphisms

The algebraicity of the resultant variety forces every regular morphism from a projective manifold to an arbitrary separated algebraic manifold to be closed, i.e., to map every closed subset of the source manifold to a closed subset of the target manifold. Informally, this means that projective varieties are similar, in some sense, to compact manifolds in differential geometry.

Lemma 12.2 The projection $\pi: \mathbb{P}_{m} \times \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is closed, i.e., $\pi(Z) \subset \mathbb{A}^{n}$ is closed for every closed $Z \subset \mathbb{P}_{m} \times \mathbb{A}^{n}$.

Proof Write $x=\left(x_{0}: x_{1}: \cdots: x_{m}\right)$ and $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ for the homogeneous and affine coordinates on $\mathbb{P}_{m}$ and $\mathbb{A}^{n}$ respectively. Let a closed subset $Z \subset \mathbb{P}_{m} \times \mathbb{A}^{n}$ be described by a system of polynomial equations $f_{v}(x, t)=0$, homogeneous in $x$. Then $\pi(Z) \subset \mathbb{A}^{n}$ consists of all $p \in \mathbb{A}^{n}$ such that the system of homogeneous equations $f_{v}(x, p)=0$ in $x$ has a nonzero solution. The latter holds if and only if the coefficients of the homogeneous forms $f_{v}(x, p)$ satisfy the system of resultant polynomial equations. Since the coefficients of the forms $f_{v}(x, p)$ are polynomials in $p$, we conclude that $\pi(Z)$ is described by polynomial equations.

Corollary 12.1 Let X be a projective algebraic variety. Then the projection

$$
X \times Y \rightarrow Y
$$

is closed for every algebraic manifold $Y$.
Proof It is enough to prove this statement separately for every affine chart of $Y$ instead of the whole of $Y$. Thus, we may assume that $Y$ is affine. In this case, $X \times Y$ is a closed subset in $\mathbb{P}_{m} \times \mathbb{A}^{n}$, and the projection in question is the restriction of the projection $\mathbb{P}_{m} \times \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$, which is closed, to this closed subset. Therefore, it is closed as well.

Theorem 12.1 For every projective variety $X$ and separated manifold $Y$, every regular morphism $\varphi: X \rightarrow Y$ is closed.

Proof Let $\Gamma_{\varphi} \subset X \times Y$ be the graph ${ }^{15}$ of the morphism $\varphi: X \rightarrow Y$. The image $\varphi(Z) \subset Y$ of every subset $Z \subset X$ can be described as the image of the intersection $\Gamma_{\varphi} \cap(Z \times Y) \subset X \times Y$ under the projection $X \times Y \rightarrow Y$. If $Z$ is closed in $X$, then the product $Z \times Y$ is closed in $X \times Y$. We have seen in Example 12.4 on p. 271 that for separated $Y$, the graph $\Gamma_{\varphi}$ is closed too. Therefore, if $X$ is projective, the closed projection $X \times Y \rightarrow Y$ maps the closed subset $\Gamma_{\varphi} \cap(Z \times Y) \subset X \times Y$ to the closed subset $\varphi(Z) \subset Y$.

[^162]Corollary 12.2 Let $X$ be a connected ${ }^{16}$ projective variety. Then every regular map from $X$ to an arbitrary affine algebraic variety $Y$ contracts $X$ to one point of $Y$. In particular, $\mathcal{O}_{X}(X)=\mathbb{k}$ is exhausted by constants.

Proof Let $\varphi: X \rightarrow Y$ be a regular map to an affine variety $Y \subset \mathbb{A}^{n}$. Composing it with the projections of $Y$ onto the $n$ coordinate axes of $\mathbb{A}^{n}$ reduces the statement to the case $Y=\mathbb{A}^{1}$. Composing a regular map $X \rightarrow \mathbb{A}^{1}$ with the inclusion $\mathbb{A}^{1} \hookrightarrow \mathbb{P}_{1}$, which puts $\mathbb{A}^{1}$ into $\mathbb{P}_{1}$ as the standard affine chart $U_{0}$, gives the nonsurjective regular $\operatorname{map} X \rightarrow \mathbb{P}_{1}$, whose image must be a proper connected Zariski closed subset, that is, one point.

### 12.4.1 Finite Projections

A regular morphism of algebraic manifolds $\varphi: X \rightarrow Y$ is called finite if for every affine chart $U \subset Y$, the preimage $W=\varphi^{-1}(U)$ is an affine chart on $X$ and the restricted map $\varphi_{W}: W \rightarrow U$ is a finite morphism of affine algebraic varieties in the sense of Sect. 11.5.3. It follows from Proposition 11.8 on p. 258 that every finite morphism is closed, and the restriction of a finite morphism to a closed submanifold remains a finite morphism. Moreover, if $X$ is irreducible and $Z \subsetneq X$ is a proper closed subset, then $\varphi(Z) \subsetneq Y$ is proper (and closed) in $Y$ for every finite morphism $\varphi: X \rightarrow Y$.
Exercise 12.14 Prove that the composition of finite morphisms is finite.
Proposition 12.1 Let $X \varsubsetneqq \mathbb{P}_{n}$ be an algebraic projective variety, and $p \notin X$ an arbitrary point outside $X$. Then the projection $\pi_{p}: X \rightarrow H$ from the point $p$ to every hyperplane $H \nexists p$ is a finite morphism.

Proof Let $U \subset H$ be an affine chart. Fix some homogeneous coordinates

$$
\left(x_{0}: x_{1}: \cdots: x_{n}\right)
$$

on $\mathbb{P}_{n}$ such that $p=(1: 0: \cdots: 0), H=Z\left(x_{0}\right)$ consists of points $q$ defined by $q=\left(0: q_{1}: \cdots: q_{n}\right)$, and the chart $U \subset H$ consists of points $u$ defined by $u=\left(0: u_{1}: \cdots: u_{n-1}: 1\right)$. Let $X$ be described by homogeneous equations $f_{v}(x)=0$ in these coordinates. Since $p \notin X$, the preimage $\pi_{p}^{-1}(U)$ is cut out of $X$ by the punctured cone $C$ ruled by the lines $(p u), u \in U$, with the punctured point $p$. Every such line is described by a parametric equation $u+p t, t \in \mathbb{k}$, and the cone $C$ is an affine algebraic variety isomorphic to $\mathbb{A}^{n}=U \times \mathbb{A}^{1}$. The isomorphism maps the point $(u, t) \in U \times \mathbb{A}^{1}$ to the point $x=u+t p \in \mathbb{P}_{n}$ lying on the cone. The intersection $C \cap X=\pi_{p}^{-1}(U)$ is described in the coordinates ( $\left.u, t\right)$ on $C$ by the equations

$$
\begin{equation*}
f_{v}(t p+u)=\alpha_{0}^{(\nu)}(u) t^{m}+\alpha_{1}^{(\nu)}(u) t^{m-1}+\cdots+\alpha_{m}^{(\nu)}(u)=0 \tag{12.10}
\end{equation*}
$$

[^163]and therefore is an affine algebraic variety, i.e., an affine chart on $X$. It remains to show that its coordinate algebra $\mathbb{k}[C \cap X]$ is integral over $\mathbb{k}[U]=\mathbb{k}\left[u_{1}, u_{2}, \ldots, u_{n-1}\right]$. By construction, $\mathbb{k}[C \cap X]=\mathbb{k}\left[t, u_{1}, u_{2}, \ldots, u_{n-1}\right] / I$, where $I$ is generated by the polynomials (12.10). This algebra is generated over $\mathbb{k}[U]$ by one element $t$. It is enough to check that $t$ is integral over $\mathbb{k}[U]$, i.e., that there exists a monic polynomial in $t$ in the ideal $I$. Such a polynomial exists if and only if the ideal generated in $\mathbb{k}[U]$ by the leading coefficients $\alpha_{0}^{(\nu)}(u)$ of Eq. (12.10) is nonproper. By the weak Nullstellensatz, this means that the coefficients $\alpha_{0}^{(\nu)}(u)$ have no common zeros in $U$. But this is guaranteed by the condition $p \notin X$. Indeed, if all the coefficients $\alpha_{0}^{(\nu)}(u)$ simultaneously vanish at some point $u_{0}$, then the homogenizations of Eq. (12.10),
$$
f_{v}\left(\vartheta_{0} p+\vartheta_{1} u_{0}\right)=\alpha_{0}^{(\nu)}\left(u_{0}\right) \vartheta_{0}^{m}+\alpha_{1}^{(\nu)}\left(u_{0}\right) \vartheta_{0}^{m-1} \vartheta_{1}+\cdots+\alpha_{m}^{(\nu)}\left(u_{0}\right) \vartheta_{1}^{m}=0,
$$
which describe the intersection of $X$ with the whole unpunctured projective line $\left(p, u_{0}\right)$, have the common root $\left(\vartheta_{0}: \vartheta_{1}\right)=(1: 0)$ on this line. This means that $p \in X$. Contradiction.

Corollary 12.3 Every projective variety admits a regular finite surjection onto projective space.

Proof Let $X \subset \mathbb{P}_{n}$ be a projective variety. Make a finite projection $\pi_{1}: X \rightarrow H_{1}$ from some point $p_{1} \in \mathbb{P}_{n} \backslash X$ to some hyperplane $H_{1} \subset \mathbb{P}_{n}$. If $\pi_{1}(X) \neq H_{1}$, make a second finite projection $\pi_{2}: \pi_{1}(X) \rightarrow H_{2}$ from some point $p_{2} \in H_{1} \backslash \pi_{1}(X)$ to some hyperplane $H_{2} \subset H_{1}$, etc.

Corollary 12.4 Every affine algebraic variety $X$ admits a regular finite surjection onto affine space.

Proof Let $X \varsubsetneqq \mathbb{A}^{n}$, where $\mathbb{A}^{n}$ is placed in $\mathbb{P}_{n}$ as the standard affine chart $U_{0}$. Put $H_{\infty} \stackrel{\text { def }}{=} \mathbb{P}_{n} \backslash U_{0}$ and write $\bar{X} \subset \mathbb{P}_{n}$ for the projective closure of $X$. The projection of $\bar{X}$ from every point $p \in H_{\infty} \backslash \bar{X}$ to every projective hyperplane $L \nexists p$ looks within the chart $U_{0}$ like the parallel projection of $X=\bar{X} \backslash H_{\infty}$ to the affine hyperplane $U_{0} \cap L=L \backslash H_{\infty}$ in the direction of the vector $p$. By Proposition 12.1, this parallel projection is a finite morphism of affine algebraic varieties. If it is not surjective, we repeat the procedure within the target hyperplane, as in the proof of Corollary 12.3.

Exercise 12.15 Check that $\bar{X} \cap H_{\infty} \neq H_{\infty}$ for $X \neq \mathbb{A}^{n}$.
Example 12.8 (Noether's Normalization) Given an arbitrary polynomial

$$
f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right],
$$

write it as $f=f_{0}+f_{1}+\cdots+f_{d}$, where each $f_{k}$ is homogeneous of degree $k$. Let $\mathbb{A}^{n} \subset \mathbb{P}_{n}$ be the standard chart $U_{0}$ in projective space $\mathbb{P}_{n}$ with homogeneous coordinates $\left(x_{0}: x_{1}: \cdots: x_{n}\right)$, and $\bar{X} \subset \mathbb{P}_{n}$ the closure of the affine hypersurface $X=V(f) \subset \mathbb{A}^{n}$. Then $\bar{X}=V(\bar{f})$ is the zero set of the homogeneous polynomial

$$
\bar{f}=f_{0} x_{0}^{d}+f_{1} x_{0}^{d-1}+\cdots+f_{d-1} x_{0}+f_{d} .
$$

A point $p=\left(0: p_{1}: p_{2}: \ldots: p_{n}\right)$ at infinity with respect to the chart $U_{0}$ does not belong to $\bar{X}$ if and only if $f_{d}\left(p_{1}, p_{2}, \ldots, p_{n}\right) \neq 0$. Since $f_{d} \neq 0$, such a point $p \notin \bar{X}$ exists and can be chosen ${ }^{17}$ in the form $p=\left(0, p_{1}, \ldots, p_{n-1},-1\right)$. The projection from this point to the affine hyperplane $x_{n}=0$ looks within $\mathbb{A}^{n}$ like the parallel projection $\pi_{p}: X \rightarrow \mathbb{A}^{n-1}$ along the vector $p=\left(p_{1}, \ldots, p_{n-1},-1\right)$. It maps

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}+p_{1} x_{n}, x_{2}+p_{2} x_{n}, \ldots, x_{n-1}+p_{n-1} x_{n}, 0\right) .
$$

Therefore, its pullback homomorphism

$$
\pi_{p}^{*}: \mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n-1}\right] \rightarrow \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /(f)
$$

takes $t_{i}$ to $x_{i}+p_{i} x_{n}$. By Proposition 12.1, the algebra $\mathbb{k}[X]=\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /(f)$ is integral ${ }^{18}$ over $\mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]$. Indeed, the substitution $x_{i}=t_{i}-p_{i} x_{n}$ transforms the equation $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ into a polynomial equation in $x_{n}$ with coefficients in $\mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]$ and leading term $(-1)^{d} f_{d}\left(p_{1}, \ldots, p_{n-1},-1\right) \cdot x_{n}^{d}$, whose coefficient is a nonzero constant. Thus, $x_{n}$ is integral over $\mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n-1}\right]$, and therefore, all $x_{i}=t_{i}-p_{i} x_{n}$ are integral as well. In particular, we see that if $\mathbb{k}$ is algebraically closed, then for every $t$, there exists a point $x \in V(f)$ projected to $t$. Thus, every algebraic affine hypersurface $V(f), f \neq$ const, over an algebraically closed field admits a finite surjective parallel projection onto a hyperplane. This claim is known as Noether's ${ }^{19}$ normalization lemma.

### 12.5 Dimension of an Algebraic Manifold

Given an algebraic manifold $X$ and a point $x \in X$, the maximal $n \in \mathbb{N}$ such that there exists a strictly increasing chain

$$
\begin{equation*}
\{x\}=X_{0} \varsubsetneqq X_{1} \varsubsetneqq \cdots \nsubseteq X_{n-1} \varsubsetneqq X_{n} \subset X, \tag{12.11}
\end{equation*}
$$

where all $X_{i}, 0 \leqslant i \leqslant n$, are closed irreducible submanifolds, is called the dimension of $X$ at the point $x$, and denoted by $\operatorname{dim}_{x} X$. Note that for an irreducible $X$, the maximality of a chain (12.11) forces $X_{n}=X$. Therefore, if the point $x$ belongs to several irreducible components of $X$, then $\operatorname{dim}_{x} X$ equals the maximal dimension among the dimensions of those components.
Exercise 12.16 Check that $\operatorname{dim}_{x} X=\operatorname{dim}_{x} U$ for every affine chart $U \ni x$.

[^164]Proposition 12.2 For every regular surjection of irreducible manifolds $\varphi: Y \rightarrow X$, the inequality $\operatorname{dim}_{y} Y \geqslant \operatorname{dim}_{\varphi(y)} X$ holds at every point $y \in Y$.
Proof Given a chain (12.11) with $x=\varphi(y)$, for every $i$ the closed submanifold $\varphi^{-1}\left(X_{i}\right) \subset Y$ has an irreducible component $Y_{i}$ such that the restricted map

$$
\left.\varphi\right|_{Y_{i}}: Y_{i} \rightarrow X_{i}
$$

is dominant. These components form the strictly increasing chain

$$
y \in Y_{0} \varsubsetneqq Y_{1} \varsubsetneqq \cdots \varsubsetneqq Y_{n-1} \varsubsetneqq Y_{n}
$$

in $Y$.

## Proposition 12.3 Given a finite morphism of irreducible algebraic varieties

$$
\varphi: X \rightarrow Y
$$

then $\operatorname{dim}_{x} X \leqslant \operatorname{dim}_{\varphi(x)} Y$ for all $x \in X$, and equality holds for some $x \in X$ if and only if $\varphi(X)=Y$.
Proof Replacing $Y$ by an affine neighborhood of $\varphi(x)$ and $X$ by the preimage of this neighborhood allows us to assume, by Exercise 12.16, that both $X$ and $Y$ are affine. It follows from Proposition 11.8 on p. 258 that every chain (12.11) in $X$ is mapped to a strictly increasing chain of closed irreducible subvarieties $\varphi\left(X_{i}\right)$ in $Y$. This leads to the required inequality. Moreover, if $\varphi(X) \neq Y$, then the last subvariety of the chain is proper in $Y$, and therefore the chain can be enlarged at least by $Y$. Thus, the inequality is strict in this case. For $\varphi(X)=Y$, the opposite inequality is provided by Proposition 12.2.

Proposition $12.4 \operatorname{dim}_{x} \mathbb{A}^{n}=n$ for all $x \in \mathbb{A}^{n}$.
Proof Since for every $x \in \mathbb{A}^{n}$ there is a chain (12.11) of strictly increasing affine subspaces $X_{i}=\mathbb{A}^{i}$ passing through $x$, the inequality $\operatorname{dim}_{x} \mathbb{A}^{n} \geqslant n$ holds. The opposite inequality is established by induction on $n$. It is obvious for $\mathbb{A}^{0}=x$. Let $\operatorname{dim} \mathbb{A}^{k}=k$ for all $k<n$. Consider a maximal chain (12.11) for $X=\mathbb{A}^{n}$ and take a finite surjection of the last element $X_{m}, m=\operatorname{dim} \mathbb{A}^{n}-1$, of this chain different from $\mathbb{A}^{n}$ onto some affine space $\mathbb{A}^{k} \subsetneq \mathbb{A}^{n}$. Then $k=m$ by Proposition 12.3, and hence $\operatorname{dim} \mathbb{A}^{n}=m+1=k+1 \leqslant n$.

Corollary 12.5 Let $X$ be an irreducible affine algebraic variety, and $\varphi: X \rightarrow \mathbb{A}^{m}$ a finite surjection. Then $\operatorname{dim}_{x} X=m$ for all $x \in X$. As a byproduct, the number $m$ does not depend on the choice of $\varphi$, and $\operatorname{dim}_{x} X$ does not depend on $x \in X$.
Corollary 12.6 For every irreducible affine algebraic variety $X$, the equality

$$
\operatorname{dim}_{x} X=\operatorname{tr} \operatorname{deg}_{k} \mathbb{k}[X]
$$

holds for all $x \in X$, where $\operatorname{tr} \operatorname{deg}_{k} \mathbb{k}[X]$ means the transcendence degree ${ }^{20}$ of the coordinate algebra of $X$ over the ground field $\mathfrak{k}$.

Proof A finite surjection $\pi: X \rightarrow \mathbb{A}^{m}$ forces $\mathbb{k}[X]$ to be an integral extension of the subalgebra $\pi^{*}\left(\mathbb{k}\left[\mathbb{A}^{m}\right]\right) \simeq \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$. In particular, the pullbacks $\pi^{*}\left(x_{i}\right)$ of the coordinates on $\mathbb{A}^{m}$ form a transcendence basis of $\mathbb{k}[X]$ over $\mathbb{k}$.

Exercise 12.17 Verify that $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$ for all irreducible varieties $X$ and $Y$.

### 12.5.1 Dimensions of Subvarieties

Let $X$ be a reducible algebraic manifold, suppose a point $x \in X$ belongs to several irreducible components of $X$, and let a regular nonconstant function $f \in \mathbb{k}[X]$ vanish identically along one of those components containing $x$ and having maximal dimension equal to $\operatorname{dim}_{x} X$. Then the hypersurface $V(f) \subsetneq X$ has at $x$ the same dimension as $X$. Fortunately, such a counterintuitive phenomenon can appear only if $f$ is a zero divisor in $\mathbb{k}[X]$.
Proposition 12.5 Let $X$ be an irreducible algebraic manifold and $f \in \mathcal{O}_{X}(X)$ a nonconstant global regular function on $X$. Then $V(f) \neq \varnothing$ and

$$
\operatorname{dim}_{p} V(f)=\operatorname{dim}_{p}(X)-1 \text { for all } p \in V(f)
$$

Proof Exercise 12.16 allows us to assume that $X$ is affine. For $X=\mathbb{A}^{n}$, the statement follows from Example 12.8. The general case is reduced to affine spaces by the same geometric construction as in the proof of Proposition 11.9 on p. 260. Namely, fix a finite surjection $\pi: X \rightarrow \mathbb{A}^{m}$ and consider the map

$$
\varphi=\pi \times f: X \rightarrow \mathbb{A}^{m} \times \mathbb{A}^{1}, \quad x \mapsto(\pi(x), f(x)) .
$$

As we have seen in the proof of Proposition 11.9, the map $\varphi$ provides $X$ with a finite surjection onto the hypersurface $V\left(\mu_{f}\right) \subset \mathbb{A}^{m} \times \mathbb{A}^{1}$, the zero set of the minimal polynomial

$$
\mu_{f}(u, t)=t^{n}+\alpha_{1}(u) t^{n-1}+\cdots+\alpha_{n}(u) \in \mathbb{k}\left[u_{1}, u_{2}, \ldots, u_{m}\right][t]
$$

of $f$ over $\mathbb{k}\left(\mathbb{A}^{m}\right)$. This finite surjection maps the hypersurface $V(f) \subset X$ onto the intersection of $V\left(\mu_{f}\right)$ with the affine space $t=0$. Within the latter affine space, the intersection in question is nothing but the affine hypersurface $V\left(a_{n}\right) \subset \mathbb{A}^{m}$, having dimension $m-1$ at every point by Example 12.8. Thus,

$$
\operatorname{dim} V(f)=\operatorname{dim} V\left(a_{n}\right)=m-1=\operatorname{dim} X-1 .
$$

[^165]Corollary 12.7 Let $X$ be an affine algebraic variety and $f_{1}, f_{2}, \ldots, f_{m} \in \mathbb{K}[X]$. Then

$$
\begin{equation*}
\operatorname{dim}_{p} V\left(f_{1}, f_{2}, \ldots, f_{m}\right) \geqslant \operatorname{dim}_{p}(X)-m \tag{12.12}
\end{equation*}
$$

for all $p \in V\left(f_{1}, f_{2}, \ldots, f_{m}\right)$. If the class of $f_{i}$ in the quotient $\mathbb{K}[X] /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right)$ does not divide zero for every ${ }^{21} i=1,2, \ldots, m$, then the inequality (12.12) becomes an equality.

Caution 12.1 Note that Corollary 12.7 does not assert that $V\left(f_{1}, f_{2}, \ldots, f_{m}\right) \neq \varnothing$. Since the empty set contains no points $p$, it follows that for $V\left(f_{1}, f_{2}, \ldots, f_{m}\right)=\varnothing$, Corollary 12.7 remains formally true but becomes empty. The weak Nullstellensatz implies that $V\left(f_{1}, f_{2}, \ldots, f_{m}\right)=\varnothing$ if and only if the class of $f_{i}$ in

$$
\mathbb{k}[X] /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right)
$$

is invertible for some $i$, and this may routinely happen. For example, for $X=\mathbb{A}^{3}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x, y, z], f_{1}=x, f_{2}=x+1$, we get $V(x, x+1)=\varnothing$. The same warning applies to the next corollary as well.

Corollary 12.8 For affine algebraic varieties $X_{1}, X_{2} \subset \mathbb{A}^{n}$ and every point $x \in X_{1} \cap X_{2}$, the inequality $\operatorname{dim}_{x}\left(X_{1} \cap X_{2}\right) \geqslant \operatorname{dim}_{x}\left(X_{1}\right)+\operatorname{dim}_{x}\left(X_{2}\right)-n$ holds.

Proof Let $\varphi_{i}: X_{i} \hookrightarrow \mathbb{A}^{n}, i=1,2$, be the closed immersions corresponding to the quotient maps $\mathbb{k}\left[X_{1}\right] \leftarrow \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[X_{2}\right]$. Then $X_{1} \cap X_{2}$ is isomorphic to the preimage of the diagonal $\Delta_{\mathbb{A}^{n}} \subset \mathbb{A}^{n} \times \mathbb{A}^{n}$ under the map

$$
\varphi_{1} \times \varphi_{2}: X_{1} \times X_{2} \hookrightarrow \mathbb{A}^{n} \times \mathbb{A}^{n} .
$$

Within $X_{1} \times X_{2}$, it is determined by the $n$ equations $\left(\varphi_{1} \times \varphi_{2}\right)^{*}\left(x_{i}\right)=\left(\varphi_{1} \times \varphi_{2}\right)^{*}\left(y_{i}\right)$, the pullbacks of equations $x_{i}=y_{i}$ for $\Delta_{\mathbb{A}^{n}}$ in $\mathbb{A}^{n} \times \mathbb{A}^{n}$. It remains to apply Corollary 12.7.

Proposition 12.6 For irreducible projective varieties $X_{1}, X_{2} \subset \mathbb{P}_{n}$, the inequality $\operatorname{dim}\left(X_{1}\right)+\operatorname{dim}\left(X_{2}\right) \geqslant n$ forces $X_{1} \cap X_{2} \neq \varnothing$.

Proof Let $\mathbb{P}_{n}=\mathbb{P}(V)$ and $\mathbb{A}^{n+1}=\mathbb{A}(V)$. Given a nonempty irreducible projective variety $Z \subset \mathbb{P}_{n}$, write $Z^{\prime} \subset \mathbb{A}^{n+1}$ for the affine cone over $Z$ provided by the same homogeneous equations in the coordinates. Then the origin $O \in \mathbb{A}^{n+1}$ belongs to $Z^{\prime}$ and $\operatorname{dim}_{O} Z^{\prime} \geqslant \operatorname{dim} Z+1$, because every chain $\{z\} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{m}=Z$ produces the chain of cones $\{O\} \subsetneq(O, z) \subsetneq Z_{1}^{\prime} \subsetneq \cdots \subsetneq Z_{m}^{\prime}=Z^{\prime}$ starting with the point $O$ and the line $(O, z)$. Therefore, by Corollary 12.8,

$$
\operatorname{dim}_{O}\left(X_{1}^{\prime} \cap X_{2}^{\prime \prime}\right) \geqslant \operatorname{dim}_{O}\left(X_{1}\right)+1+\operatorname{dim}_{O}\left(X_{2}\right)+1-n-1 \geqslant 1 .
$$

Thus, $X_{1}^{\prime} \cap X_{2}^{\prime \prime}$ is not exhausted by $O$.

[^166]
### 12.5.2 Dimensions of Fibers of Regular Maps

In a contrast to differential geometry and topology, the dimensions of nonempty fibers of regular maps are controlled in algebraic geometry almost as strictly as in linear algebra.

Theorem 12.2 Let $\varphi: X \rightarrow Y$ be a dominant regular map of irreducible algebraic varieties. Then

$$
\begin{equation*}
\operatorname{dim}_{x} \varphi^{-1}(\varphi(x)) \geqslant \operatorname{dim} X-\operatorname{dim} Y \tag{12.13}
\end{equation*}
$$

for all $x \in X$, and there exists a dense Zariski open set $U \subset Y$ such that

$$
\begin{equation*}
\operatorname{dim}_{x} \varphi^{-1}(y)=\operatorname{dim}_{x} X-\operatorname{dim}_{y} Y \tag{12.14}
\end{equation*}
$$

for all $y \in U$ and all $x \in \varphi^{-1}(y)$.
Proof We can replace $Y$ by an affine chart $U \ni \varphi(x)$ and $X$ by $\varphi^{-1}(U)$. Taking the composition of $\varphi$ with a finite surjection $U \rightarrow \mathbb{A}^{m}$ allows us to assume that $Y=\mathbb{A}^{m}=\operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[u_{1}, u_{2}, \ldots, u_{m}\right]$ and $\varphi(x)=0$. Replacing $X$ by an affine neighborhood of $x$, we may assume that $X$ is affine too. Then $\varphi^{-1}(0)$ is given by the $m$ equations $\varphi^{*}\left(x_{i}\right)=0$, the pullbacks of the equations $x_{i}=0$, which describe the origin within $\mathbb{A}^{m}$. Thus, Corollary 12.7 implies inequality (12.13). In the second statement of the theorem, we also can assume that $X, Y$ are affine. Let us factorize $\varphi$ into the composition of a closed immersion $X \subset Y \times \mathbb{A}^{m}$ followed by the projection $\pi: Y \times \mathbb{A}^{m} \rightarrow Y$, as in formula (11.11) on p. 258.

We are going to apply Corollary 12.4 to the fibers of $\pi$. Consider the projective closure $\bar{X} \subset Y \times \mathbb{P}_{m}$, and fix a projective hyperplane $H \subset \mathbb{P}_{m}$ and a point $p \in \mathbb{P}_{m} \backslash H$ such that the section $Y \times\{p\} \subset Y \times \mathbb{P}_{m}$ is not contained in $\bar{X}$. Then the fiberwise projection from $p$ to $H$ satisfies the conditions of Proposition 12.1 in the fibers over all $y \in Y \backslash \bar{\pi}((Y \times\{p\}) \cap \bar{X})$, where $\bar{\pi}: Y \times \mathbb{P}_{m} \rightarrow Y$ is the projection along $\mathbb{P}_{m}$. Since the latter is a closed map, the inadmissible $y$ form a proper Zariski closed subset in $Y$. Therefore, there exists a nonempty principal open set $U \subset Y$ such that Proposition 12.1 can be applied fiberwise over all points $y \in U$. Since $U$ is an affine algebraic variety as well, we can replace $Y$ by $U$ and $X$ by $X \cap \pi^{-1}(U)$. After that, Corollary 12.4 gives a finite parallel fiberwise projection of $X$ in the direction $p$ to the affine hyperplane $Y \times \mathbb{A}^{m-1}=(Y \times H) \cap\left(Y \times \mathbb{A}^{n}\right)$. If it is not surjective, we repeat the procedure until we get a finite surjection $\psi: X \rightarrow Y \times \mathbb{A}^{n}$ whose composition with the projection to $Y$ equals $\varphi$. This forces $\operatorname{dim} X=n+\operatorname{dim} Y$. Since the fiber $\varphi^{-1}(y)$ is surjectively and finitely mapped onto $\{y\} \times \mathbb{A}^{n}$ for all $y \in Y$, we conclude from Proposition 12.3 that $\operatorname{dim}_{x} \varphi^{-1}(y)=n=\operatorname{dim} X-\operatorname{dim} Y$ for all $x \in \varphi^{-1}(y)$.

Corollary $\mathbf{1 2 . 9}$ (Semicontinuity Theorem) For every regular map of algebraic manifolds $\varphi: X \rightarrow Y$, the sets

$$
X_{k} \stackrel{\text { def }}{=}\left\{x \in X \mid \operatorname{dim}_{x} \varphi^{-1}(\varphi(x)) \geqslant k\right\}
$$

are closed in $X$ for all $k \in \mathbb{Z}$.
Proof If $\operatorname{dim} Y=0$, then this is trivially true for all $X$ and $k$. For $\operatorname{dim} Y=m>0$, we may assume by induction that the statement holds for all $X, k$, and all $Y$ with $\operatorname{dim} Y<m$. Replacing $Y$ and $X$ by irreducible components of maximal dimension passing through $\varphi(x)$ and $x$ respectively allows us to assume that both $X$ and $Y$ are irreducible. Since $X_{k}=X$ for $k \leqslant \operatorname{dim}(X)-\operatorname{dim}(Y)$ by Theorem 12.2, the statement holds for all such $k$. For $k>\operatorname{dim}(X)-\operatorname{dim}(Y)$, we can replace $Y$ and $X$ by $Y^{\prime}=Y \backslash U$ and $X^{\prime}=\varphi^{-1}\left(Y^{\prime}\right)$, where $U \subset Y$ is from Theorem 12.2, and apply the inductive hypothesis, because $X_{k} \subset X^{\prime}$ and $\operatorname{dim} Y^{\prime}<\operatorname{dim} Y$.

Corollary 12.10 Let $\varphi: X \rightarrow Y$ be a closed regular morphism of algebraic manifolds. Then the sets

$$
Y_{k} \stackrel{\text { def }}{=}\left\{y \in Y \mid \operatorname{dim} \varphi^{-1}(y) \geqslant k\right\}
$$

are closed in $Y$ for all $k \in \mathbb{Z}$.
Theorem 12.3 (Dimension Criterion of Irreducibility) Assume that a closed regular surjection of algebraic manifolds $\varphi: X \rightarrow Y$ has irreducible fibers of the same constant dimension. Then $X$ is irreducible if $Y$ is.

Proof Let $X=X_{1} \cup X_{2}$ be reducible. Since every fiber of $\varphi$ is irreducible, it is entirely contained in $X_{1}$ or in $X_{2}$. Put $Y_{i} \stackrel{\text { def }}{=}\left\{y \in Y \mid \varphi^{-1}(y) \subset X_{i}\right\}$ for $i=1,2$. Then $Y=Y_{1} \cup Y_{2}$, and the subsets $Y_{1}, Y_{2} \subsetneq Y$ are proper if $X_{1}, X_{2} \subsetneq X$ are proper. Since $Y_{i}$ coincides with the locus of points in $Y$ over which the fibers of the restricted map $\left.\varphi\right|_{X_{i}}: X_{i} \rightarrow Y$ achieve their maximal value, we conclude from Corollary 12.10 that $Y_{i}$ is closed in $Y$ for $i=1,2$. Thus reducibility of $X$ forces $Y$ to be reducible.

### 12.6 Dimensions of Projective Varieties

It follows from Proposition 12.6 on p. 284 that every irreducible projective manifold $X \subset \mathbb{P}_{n}=\mathbb{P}(V)$ of dimension $\operatorname{dim} X=d$ intersects all projective subspaces $H \subset \mathbb{P}_{n}$ of dimension $\operatorname{dim} H \geqslant n-d$. We are going to show that a generic projective subspace $H$ of dimension $\operatorname{dim} H<n-d$ does not intersect $X$, and therefore, the dimension $\operatorname{dim} X$ is characterized as the maximal $d$ such that $X$ intersects all projective subspaces of codimension $d$. We know from Sect. 2.6.4 on p. 49 that all projective subspaces of codimension $d+1$ in $\mathbb{P}_{n}=\mathbb{P}(V)$ form the Grassmannian $\operatorname{Gr}(n-d, n+1)=\operatorname{Gr}(n-d, V)$, which is an irreducible projective manifold.

Consider the incidence variety

$$
\begin{equation*}
\Gamma \stackrel{\text { def }}{=}\{(x, H) \in X \times \operatorname{Gr}(n-d, V) \mid x \in H\} \tag{12.15}
\end{equation*}
$$

and write $\pi_{1}: \Gamma \rightarrow X$ and $\pi_{2}: \Gamma \rightarrow \operatorname{Gr}(n-d, V)$ for the canonical projections.
Exercise 12.18 Convince yourself that $\Gamma$ is a projective algebraic variety.
The fiber of the first projection $\pi_{1}: \Gamma \rightarrow X$ over an arbitrary point $x \in X$ consists of all projective subspaces passing through $x$. It is naturally identified with the $\operatorname{Grassmannian} \operatorname{Gr}(n-d-1, n)=\operatorname{Gr}(n-d-1, V / \mathbb{k} \cdot x)$ of all $(n-d-1)$-dimensional vector subspaces in the quotient space $V / \mathbb{k} \cdot x$. Thus, $\pi_{1}$ is a closed surjective morphism with irreducible fibers of the same constant dimension $(n-d-1)(d+1)$. By Theorem 12.3, the incidence variety $\Gamma$ is irreducible, and

$$
\operatorname{dim} \Gamma=d+(n-d-1)(d+1)=(n-d)(d+1)-1
$$

This forces the image of the second projection $\pi_{2}(\Gamma) \subset \operatorname{Gr}(n-d, V)$, which consists of all ( $n-d-1$ )-dimensional projective subspaces intersecting $X$, to be a closed irreducible subvariety of dimension at most $\operatorname{dim} \Gamma$ in the Grassmannian $\operatorname{Gr}(n-d, V)$ of dimension $(n-d)(d+1)>\operatorname{dim} \Gamma$. Therefore, the codimension$(d+1)$ projective subspaces $H$ not intersecting $X$ form a dense Zariski open subset in the Grassmannian $\operatorname{Gr}(n-d, V)$.

In fact, dimensional arguments allow us to say much more about the interaction of $X$ with the projective subspaces in $\mathbb{P}_{n}$. If we repeat the previous construction for the Grassmannian $\operatorname{Gr}(n-d+1, V)$ of codimension- $d$ subspaces $H^{\prime} \subset \mathbb{P}(V)$ and the incidence variety

$$
\Gamma^{\prime} \stackrel{\text { def }}{=}\left\{\left(x, H^{\prime}\right) \in X \times \operatorname{Gr}(n-d+1, V) \mid x \in H\right\},
$$

which is an irreducible projective manifold of dimension

$$
\operatorname{dim} X+\operatorname{dim} \operatorname{Gr}(n-d, n)=d+d(n-d)=d(n-d+1)
$$

for the same reasons as above, we get a surjective projection

$$
\pi_{2}: \Gamma^{\prime} \rightarrow \operatorname{Gr}(n-d+1, V),
$$

because $X \cap H^{\prime} \neq \varnothing$ for all $H^{\prime} \subset \mathbb{P}(V)$. Theorem 12.2 forces the fibers of $\pi_{2}$ to achieve their minimal possible dimension

$$
\operatorname{dim} \Gamma-\operatorname{dim} \operatorname{Gr}(n-d+1, n+1)=d(n-d+1)-(n-d+1) d=0
$$

over all points of some open dense subset in the Grassmannian. This means that a generic projective space of codimension $d$ intersects $X$ in a finite number of points. Let us fix such a subspace $H^{\prime}$ and draw an $(n-d-1)$-dimensional subspace $H \subset H^{\prime}$
through some intersection point $p \in X \cap H^{\prime}$. Then $H \cap X$ is a nonempty finite set. Therefore, the second projection of the incidence variety (12.15),

$$
\pi_{2}: \Gamma \rightarrow \operatorname{Gr}(n-d, V),
$$

has a zero-dimensional fiber. This forces the minimal dimension of nonempty fibers to be zero. It follows from Theorem 12.2 that

$$
\operatorname{dim} \pi_{2}(\Gamma)=\operatorname{dim} \Gamma=\operatorname{dim} \operatorname{Gr}(n-d, V)-1 .
$$

In other words, the codimension- $(d+1)$ projective subspaces $H \subset \mathbb{P}(V)$ intersecting an irreducible variety $X \subset \mathbb{P}(V)$ of dimension $d$ form an irreducible hypersurface in the Grassmannian $\operatorname{Gr}(n-d, V)$ of all codimension- $(d+1)$ projective subspaces in $\mathbb{P}_{n}=\mathbb{P}(V)$.
Exercise 12.19 Deduce from this that for every irreducible projective variety $X \subset \mathbb{P}_{n}$ of dimension $d$, there exists a unique, up to a scalar factor, irreducible homogeneous polynomial in the Plücker coordinates of a codimension- $d$ subspace $H \subset \mathbb{P}_{n}$ that vanishes at a given $H$ if and only if $H \cap X \neq \varnothing$.
The above analysis illustrates a method commonly used in geometry for calculating the dimensions of projective manifolds by means of auxiliary incidence varieties. Below are two more examples.

Example 12.9 (Resultant) Given a collection of positive integers $d_{0}, d_{1}, \ldots, d_{n}$, write $\mathbb{P}_{N_{i}}=\mathbb{P}\left(S^{d_{i}} V^{*}\right)$ for the space of degree- $d_{i}$ hypersurfaces in $\mathbb{P}_{n}=\mathbb{P}(V)$. We are going to show that the resultant variety ${ }^{22}$

$$
\mathcal{R}=\left\{\left(S_{0}, S_{1}, \ldots, S_{n}\right) \in \mathbb{P}_{N_{0}} \times \mathbb{P}_{N_{1}} \times \cdots \times \mathbb{P}_{N_{n}} \mid \bigcap_{i} S_{i} \neq \varnothing\right\}
$$

of a system of $(n+1)$ homogeneous polynomial equations of given degrees in $n+1$ unknowns is an irreducible hypersurface, i.e., there exists a unique, up to proportionality, irreducible polynomial $R$ in the coefficients of the equations, homogeneous in the coefficients of each equation, such that $R$ vanishes at a given collection of polynomials $f_{0}, f_{1}, \ldots, f_{n}$ if and only if the equations $f_{i}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0$, $0 \leqslant i \leqslant n$, have a nonzero solution. The polynomial $R$ is called the resultant of the $n+1$ homogeneous polynomials of degrees $d_{1}, d_{2}, \ldots, d_{n}$. Consider the incidence variety

$$
\Gamma \stackrel{\text { def }}{=}\left\{\left(S_{1}, S_{2}, \ldots, S_{n}, p\right) \in \mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}} \times \mathbb{P}_{n} \mid p \in \cap S_{i}\right\}
$$

Exercise 12.20 Convince yourself that $\Gamma$ is an algebraic projective variety.

[^167]Since the equation $f(p)=0$ is linear in $f$, all degree- $d_{i}$ hypersurfaces in $\mathbb{P}_{n}$ passing through a given point $p \in \mathbb{P}_{n}$ form a hyperplane in $\mathbb{P}_{N_{i}}$. Therefore, the projection $\pi_{2}: \Gamma \rightarrow \mathbb{P}_{n}$ is surjective, and all its fibers, which are the products of projective hyperplanes in the spaces $\mathbb{P}_{N_{i}}$, are irreducible and have the same constant dimension

$$
\sum\left(N_{i}-1\right)=\left(\sum N_{i}\right)-n-1
$$

Thus, $\Gamma$ is an irreducible projective variety of dimension $\left(\sum N_{i}\right)-1$.
Exercise 12.21 Choose a collection of $n+1$ hypersurfaces of the prescribed degrees $d_{i}$ in $\mathbb{P}_{n}$ intersecting in exactly one point.
The exercise shows that the projection $\pi_{1}: \Gamma \rightarrow \mathbb{P}_{N_{0}} \times \mathbb{P}_{N_{1}} \times \cdots \times \mathbb{P}_{N_{n}}$ has a zero-dimensional nonempty fiber. This forces a generic nonempty fiber to be zerodimensional and implies the equality $\operatorname{dim} \pi_{1}(\Gamma)=\operatorname{dim} \Gamma$. Therefore, $\pi_{1}(\Gamma)$ is an irreducible submanifold of codimension 1 in $\mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}}$.

Exercise 12.22 Show that every irreducible submanifold of codimension 1 in a product of projective spaces is the zero set of an irreducible polynomial in homogeneous coordinates on the spaces, homogeneous in the coordinates of each space.

Example 12.10 (Lines on Surfaces) Algebraic surfaces of degree $d$ in $\mathbb{P}_{3}=\mathbb{P}(V)$ form the projective space $\mathbb{P}_{N}=\mathbb{P}\left(S^{d} V^{*}\right)$ of dimension

$$
N=\frac{1}{6}(d+1)(d+2)(d+3)-1
$$

The lines in $\mathbb{P}_{3}$ form the Grassmannian $\operatorname{Gr}(2,4)=\operatorname{Gr}(2, V)$, which is isomorphic to the smooth 4-dimensional projective Plücker quadric ${ }^{23}$

$$
P=\left\{\omega \in \Lambda^{2} V \mid \omega \wedge \omega=0\right\}
$$

in $\mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ by means of the Plücker embedding, which maps a line $(a, b) \subset$ $\mathbb{P}_{3}$ to the decomposable Grassmannian quadratic form $a \wedge b \in \mathbb{P}_{5}$. Consider the incidence variety

$$
\Gamma \stackrel{\text { def }}{=}\left\{(S, \ell) \in \mathbb{P}_{N} \times \operatorname{Gr}(2,4) \mid \ell \subset S\right\} .
$$

Exercise 12.23 Convince yourself that $\Gamma \subset \mathbb{P}_{N} \times \operatorname{Gr}(2,4)$ is a projective algebraic variety.
The projection $\pi_{2}: \Gamma \rightarrow Q_{P}$ is surjective, and all its fibers are projective spaces of the same constant dimension. Indeed, the line $\ell$ given by the equations $x_{0}=x_{1}=0$

[^168]lies on a surface $Z(f)$ if and only if $f=x_{2} \cdot g+x_{3} \cdot h$ belongs to the image of the $\mathfrak{k}$-linear map
$$
\psi: S^{d-1} V^{*} \oplus S^{d-1} V^{*} \rightarrow S^{d} V^{*},(g, h) \mapsto x_{2} g+x_{3} h .
$$

This image is isomorphic to the quotient of the space $S^{d-1} V^{*} \oplus S^{d-1} V^{*}$ by the subspace

$$
\operatorname{ker} \psi=\left\{(g, h)=\left(x_{3} q,-x_{2} q\right) \mid q \in S^{d-2} V^{*}\right\}
$$

Since $\operatorname{dim} S^{d-1} V^{*}=\frac{1}{6} d(d+1)(d+2)$ and dim $\operatorname{ker} \psi=\frac{1}{6}(d-1) d(d+1)$, the degree- $d$ surfaces containing $\ell$ form a projective space of dimension

$$
\frac{1}{6}(2 d(d+1)(d+2)-(d-1) d(d+1))-1=\frac{1}{6} d(d+1)(d+5)-1
$$

We conclude that $\Gamma$ is an irreducible projective variety of dimension

$$
\operatorname{dim} \Gamma=\frac{1}{6} d(d+1)(d+5)+3
$$

The image of the projection $\pi_{1}: \Gamma \rightarrow \mathbb{P}_{N}$ consists of all surfaces containing at least one line. It follows from the above analysis that $\pi_{1}(\Gamma)$ is an irreducible closed submanifold of $\mathbb{P}_{N}$.
Exercise 12.24 For every integer $d \geqslant 3$, choose a degree- $d$ surface $S \subset \mathbb{P}_{3}$ containing just a finite number of lines.
The exercise shows that for $d \geqslant 3$, the projection $\pi_{1}$ has a nonempty fiber of dimension zero. Therefore, a generic nonempty fiber of $\pi_{1}$ is finite, and $\operatorname{dim} \pi_{1}(\Gamma)=\operatorname{dim} \Gamma$ for $d \geqslant 3$. Since we have

$$
N-\operatorname{dim} \Gamma=\frac{1}{6}((d+1)(d+2)(d+3)-d(d+1)(d+5))-4=d-3,
$$

we conclude that every cubic surface in $\mathbb{P}_{3}$ contains a line, and the set of cubic surfaces with a finite number of lines lying on them contains a dense Zariski open subset of $\mathbb{P}_{N}$. At the same time, there are no lines on a generic surface of degree $d \geqslant 4$.

## Problems for Independent Solution to Chapter 12

Problem 12.1 Compute the resultants of the following pairs of polynomials:
(a) $x^{3}-3 x^{2}+2 x+1$ and $2 x^{2}-x-1$;
(b) $2 x^{4}-x^{3}+3$ and $3 x^{3}-x^{2}+4$;
(c) $2 x^{3}-3 x^{2}-x+2$ and $x^{4}-2 x^{2}-3 x+4$;
(d*) the cyclotomic polynomials ${ }^{24} \Phi_{n}$ and $\Phi_{m}$.
Problem 12.2 Eliminate $x$ from each of the following the equations:
(a) $x^{2}-x y+y^{2}-3=x^{2} y-x y^{2}-6=0$;
(b) $4 x^{2}-7 x y+y^{2}+13 x-2 y-3=9 x^{2}-14 x y+y^{2}+28 x-4 y-5=0$;
(c) $5 x^{2}-6 x y+5 y^{2}-16=2 x^{2}-x y+y^{2}-x-y-4=0$.

Problem 12.3 (Discriminant) Given a polynomial $f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$, the product

$$
D(f)=a_{n}^{2 n-2} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

expanded as a polynomial in the coefficients of $f$ is called the discriminant of $f$. Express the discriminant $D(f)$ in terms of the resultant of $f$ and its derivative $f^{\prime}$, and prove that $D(f g)=D(f) D(g) R_{f, g}^{2}$.
Problem 12.4 Compute the discriminants of the following polynomials:
(a) $\sum_{k=0}^{n} x^{k}$, (b) $\sum_{k=0}^{n} x^{k} / k!$, (c) $x^{n}+a$, (d) the cyclotomic polynomial $\Phi_{k}(x)$.

Problem 12.5 Describe the action of quadratic Cremona involution ${ }^{25}$

$$
\begin{equation*}
\left(t_{0}: t_{1}: t_{2}\right) \mapsto\left(t_{0}^{-1}: t_{1}^{-1}: t_{2}^{-1}\right) \tag{12.16}
\end{equation*}
$$

on the triple of lines joining the points at which the involution is indefinite.
Problem 12.6 (Graph of a Rational Map) Given a rational map $\psi: X-->Y$ of algebraic manifolds defined on an open dense subset $U \subset X$, the closure of the set of corresponding points

$$
\{(x, \psi(x)) \in X \times Y \mid x \in U\}
$$

is called the graph of the rational map $\varphi$ and denoted by $\Gamma_{\psi} \subset X \times Y$. Describe the graph of the quadratic Cremona involution (12.16) and all the fibers of the projections of this graph to both the source and destination projective planes $\mathbb{P}_{2}$.
Problem 12.7 For every regular map of algebraic manifolds $\varphi: X \rightarrow Y$, show that the isolated points of the fibers of $\varphi$ form a (possibly empty) Zariski open subset in $X$.

Problem 12.8 (Chevalley's Constructibility Theorem) Prove that the image of every regular morphism of algebraic varieties is constructible, i.e., is obtained

[^169]from a finite number of open and closed subsets by means of a finite number of intersections, unions, and taking the difference of sets.
Problem 12.9 For every irreducible projective variety $X \subset \mathbb{P}_{n}=\mathbb{P}(V)$ of dimension $d$, show that the codimension- $d$ projective subspaces $H \subset \mathbb{P}(V)$ intersecting $X$ in a finite number of points form an open dense subset $W \subset \operatorname{Gr}(n+1-d, V)$, and the subspaces $H^{\prime} \in W$ intersecting $X$ in the maximal number of points form an open dense subset $W^{\prime} \subset W$.
Problem 12.10 Write $\mathcal{D}_{k}(m, n) \subset \mathbb{P}\left(\operatorname{Mat}_{m \times n}(\mathbb{k})\right)$ for the set of all $m \times n$ matrices of rank $\leqslant k$ considered up to proportionality. Use the appropriate incidence variety
$$
\Gamma=\{(L, M) \mid L \subset \operatorname{ker} M\}
$$
where $L$ is a vector subspace and $M$ a matrix, to show that $\mathcal{D}_{k}(m, n)$ is an irreducible algebraic variety and to find its dimension.
Problem 12.11 Show that the quartic surfaces in $\mathbb{P}_{3}$ containing at least one line form an irreducible hypersurface in the projective space of all quartics in $\mathbb{P}_{3}$.
Problem 12.12 Assume that some six points $p_{1}, p_{2}, \ldots, p_{6} \in \mathbb{P}_{2}=\mathbb{P}(V)$ do not lie on a conic and no three of them are collinear. Write
$$
W=\left\{f \in S^{3} V^{*} \mid \forall i f\left(p_{i}\right)=0\right\}
$$
for the vector space of cubic forms vanishing at $p_{1}, p_{2}, \ldots, p_{6}$, and
$$
\psi: \mathbb{P}_{2} \backslash\left\{p_{1}, p_{2}, \ldots, p_{6}\right\} \rightarrow \mathbb{P}\left(W^{*}\right)
$$
for the map sending a point $p \neq p_{1}, p_{2}, \ldots, p_{6}$ to the subspace
$$
\operatorname{Ann} p=\{f \in W \mid f(p)=0\}
$$

Show that $\operatorname{dim} W=4$, the subspace $\operatorname{Ann} p \subset W$ really has codimension 1, and the closure $\overline{\operatorname{im} \psi}$ is a smooth ${ }^{26}$ cubic surface $S \subset \mathbb{P}_{3}=\mathbb{P}\left(W^{*}\right)$.
Problem 12.13 Show that the $n$-dimensional projective subspaces lying on a smooth $(2 n+1)$-dimensional quadric in $\mathbb{P}_{2 n+2}$ (respectively on a smooth $2 n$-dimensional quadric in $\mathbb{P}_{2 n+1}$ ) form an irreducible projective variety (respectively the disjoint union of two irreducible projective varieties) and find the dimensions of these varieties.

Problem 12.14 (Fano Variety) Show that the lines lying on a smooth quadric in $\mathbb{P}_{4}$ form a projective variety. Determine whether it is reducible, and find its dimension.

[^170]Problem 12.15 (Secant Variety) Let $X \subset \mathbb{P}(V)$ be an irreducible projective variety, $S(X) \subset \operatorname{Gr}(2, V)$ the closure of the set of lines $(p, q) \subset \mathbb{P}(V)$ with $p, q \in X, p \neq q$, and $S(X) \subset \mathbb{P}(V)$ the union of all lines $\ell \subset \mathbb{P}(V)$ belonging to $S(X)$. Prove that:
(a) $S(X)$ is irreducible and $\operatorname{dim} S(X)=2 \operatorname{dim} X$.
(b) $S(X)$ is irreducible and $\operatorname{dim} S(X) \leqslant 2 \operatorname{dim} X+1$.
(c) $\operatorname{dim} S(C)=3$ for a twisted curve ${ }^{27} C \subset \mathbb{P}_{n}, n \geqslant 3$.

[^171]
## Chapter 13 <br> Algebraic Field Extensions

### 13.1 Finite Extensions

Recall that a field extension $\mathbb{k} \subset \mathbb{F}$ is said to be finite of degree $d$ if $\mathbb{F}$ has dimension $d<\infty$ as a vector space over $\mathbb{k}$. We write $\operatorname{deg} \mathbb{F} / \mathbb{k}=d$ in this case.
Exercise 13.1 Let $k \subset \mathbb{K} \subset \mathbb{F}$ be a tower of nested finite extensions, and let

$$
f_{1}, f_{2}, \ldots, f_{m} \in \mathbb{F} \quad \text { and } \quad t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{K}
$$

be bases of $\mathbb{F}$ and $\mathbb{K}$ as vector spaces over $\mathbb{K}$ and $\mathbb{k}$ respectively. Verify that the $m n$ products $f_{i} t_{j}$ form a basis of $\mathbb{F}$ over $\mathbb{k}$; in particular,

$$
\begin{equation*}
\operatorname{deg} \mathbb{F} / \mathbb{k}=\operatorname{deg} \mathbb{F} / \mathbb{K} \cdot \operatorname{deg} \mathbb{K} / \mathbb{k} \tag{13.1}
\end{equation*}
$$

Since algebraicity over a field means the same as integrality, it follows from the properties of integral elements proved in Sect. 10.1 that every commutative $\mathbb{k}_{k}$-algebra $A$ of finite dimension as a vector space over $\mathbb{k}$ is algebraic over $\mathbb{k}$. Such an algebra $A$ is a field if and only if $A$ has no zero divisors. Conversely, every field $\mathbb{K} \supset \mathbb{k}$ finitely generated as a $\mathbb{k}$-algebra is a finite algebraic extension of $\mathbb{k}$. In particular, every finitely generated $\mathbb{k}$-subalgebra $\mathbb{k}\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ in a field $\mathbb{F} \supset \mathbb{k}$ of finite degree over $\mathbb{k}$ has to be a field of finite degree over $\mathbb{k}$, and $\operatorname{deg} \mathbb{k}\left[a_{1}, a_{2}, \ldots, a_{m}\right] / \mathbb{k}$ divides $\operatorname{deg} \mathbb{F} / \mathbb{k}$ by Exercise 13.1.

In particular, every finite field $\mathbb{F}$ of characteristic $p$ is a finite algebraic extension of the prime subfield $\mathbb{F}_{p} \subset \mathbb{F}$ and has cardinality $|\mathbb{F}|=p^{\operatorname{deg} \mathbb{F} / \mathbb{F}_{p}}$.

### 13.1.1 Primitive Extensions

Let $f \in \mathbb{k}[x]$ be an irreducible polynomial of degree $n>1$. Then the quotient algebra $\mathbb{k}_{k}[x] /(f)$ is of dimension $n$ over $\mathbb{k}$ and has no zero divisors. Therefore, $\mathbb{k}[x] /(f)$ is a field of degree $n$ over $\mathbb{k}$. Every element of this field admits a unique representation of the form $b_{0}+b_{1} \vartheta+\cdots+b_{n-1} \vartheta^{n-1}$, where $b_{i} \in \mathbb{k}$ and $\vartheta=x(\bmod f)$ is a root of $f$. The field $\mathbb{k}[x] /(f)$ is called a simple extension of $\mathbb{k}$ by the adjunction of a root $\vartheta$ of the irreducible polynomial $f$. The element $\vartheta$ is referred to as a primitive element of the extension $\mathbb{k} \subset \mathbb{k}[x] /(f)$. If the polynomial $f$ is clear from the context or unimportant, we abbreviate the notation $\mathbb{k}[x] /(f)$ to $\mathbb{k}[\vartheta]$ or $\mathbb{k}(\vartheta)$. For example, the notation $\mathbb{k}[\sqrt[m]{a}]$, where $a \in \mathbb{k}$ is such that the polynomial $x^{m}-a$ is irreducible in $\mathbb{k}[x]$, will always mean the simple extension $\mathbb{K}[x] /\left(x^{m}-a\right)$.

Example 13.1 (Cubic Extensions) Let $\mathbb{k}$ be an arbitrary field, and let

$$
f=x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \in \mathbb{k}[x]
$$

be an irreducible polynomial over $\mathbb{k}$. The simple extension $\mathbb{K}=\mathbb{k}[x] /(f)$ has degree 3 over $\mathbb{k}$ and consists of elements $b_{0}+b_{1} \vartheta+b_{2} \vartheta^{2}$, where $b_{i} \in \mathbb{k}$ and $\vartheta=x(\bmod f) \in \mathbb{K}$. These elements are added and multiplied by the usual distributivity rules under the relation ${ }^{1} f(\vartheta)=0$.
Exercise 13.2 For $\mathbb{k}=\mathbb{Q}$ and $f(x)=x^{3}+x+1$, write $(1+2 \vartheta)^{-1}$ and $\left(1+\vartheta+\vartheta^{2}\right)^{-1}$ in the form $b_{0}+b_{1} \vartheta+b_{2} \vartheta^{2}$.
Since $f(\vartheta)=0$, the polynomial $f(x)$ can be factorized in $\mathbb{K}[x]$ as

$$
f(x)=(x-\vartheta) \cdot q(x)
$$

where the quadratic trinomial $q(x)=x^{2}+c_{1} x+c_{2} \in \mathbb{K}[x]$ either is irreducible over $\mathbb{K}$ or admits the further factorization

$$
\begin{equation*}
q(x)=\left(x-\vartheta_{1}\right)\left(x-\vartheta_{2}\right) \tag{13.2}
\end{equation*}
$$

for some $\vartheta_{1}, \vartheta_{2} \in \mathbb{K}$. For irreducible $q$, the factorization (13.2) can be written only over the simple quadratic extension $\mathbb{L}=\mathbb{K}[x] /(q) \supset \mathbb{K}$, which has degree 6 over $\mathbb{k}$. These two cases are distinguished by means of the discriminant ${ }^{2}$

$$
\begin{equation*}
D(f)=\left(\vartheta-\vartheta_{1}\right)^{2}\left(\vartheta-\vartheta_{2}\right)^{2}\left(\vartheta_{1}-\vartheta_{2}\right)^{2}=q^{2}(\vartheta) \cdot D(q), \tag{13.3}
\end{equation*}
$$

which is a symmetric polynomial in the roots, and therefore can be expressed as a polynomial in the coefficients of $f$. In particular, $D(f) \in \mathbb{k}$.

[^172]
## Exercise 13.3 Check that

$$
D\left(x^{2}+p x+q\right)=p^{2}-4 q, D\left(x^{3}+p x+q\right)=-4 p^{3}-27 q^{2} .
$$

The polynomial $q$ is reducible in $\mathbb{K}[x]$ if and only if $D(q)=\left(\vartheta_{1}-\vartheta_{2}\right)^{2}$ is a perfect square in $\mathbb{K}$. By (13.3), this happens if and only if $D(f)$ is a perfect square in $\mathbb{K}$. However, if $D(f)$ is a perfect square in $\mathbb{K}$, then it has to be a perfect square in $\mathbb{k}$ as well, because otherwise, the polynomial $x^{2}-D(f)$ would be irreducible over $\mathbb{k}$, the field $\mathbb{L}=\mathbb{k}[x] /\left(x^{2}-D(f)\right)$ would be a simple quadratic extension of $\mathbb{k}$, and the map

$$
\mathbb{L} \hookrightarrow \mathbb{K}, \quad x \bmod \left(x^{2}-D(f)\right) \mapsto \sqrt{D(f)} \in \mathbb{K}
$$

would embed $\mathbb{L}$ into $\mathbb{K}$ over $\mathbb{k}$, which is impossible by Exercises 13.1 on p .295 , since $2 \nmid 3$. We conclude that an irreducible cubic polynomial $f \in \mathbb{k}[x]$ is completely factorizable as a product of three linear factors over the simple cubic extension $\mathbb{k}[x] /(f)$ if and only if the discriminant $D(f)$ is a perfect square in $\mathbb{k}$.

Exercise 13.4 Prove that the following three conditions on a real cubic trinomial $f(x)=x^{3}+p x+q \in \mathbb{R}[x]$ are equivalent: (a) $D(f)>0$, (b) all the roots of $f$ in $\mathbb{C}$ lie in $\mathbb{R} \subset \mathbb{C}$, (c) for appropriate $\lambda \in \mathbb{R}$, the substitution $x=\lambda t$ transforms the equation $f(x)=0$ to the equation $4 t^{3}-3 t=c$ with $|c| \leqslant 1$, which has the roots $t_{k}=\cos \left(\frac{1}{3} \arccos (c)+\frac{2 \pi k}{3}\right), k=0,1,2$.

### 13.1.2 Separability

If char $\mathbb{k}=3$ in Example 13.1, then the polynomial $f$ may have a multiple root in $\mathbb{K}$, even though $f$ is irreducible over $\mathbb{k}$. For example, let $\mathbb{k}=\mathbb{F}_{3}(t)$ be the field of rational functions in $t$ over the field $\mathbb{F}_{3}=\mathbb{Z} /(3)$, and $f(x)=x^{3}-t \in \mathbb{k}[x]$. Since $f$ has no roots in $\mathbb{k}$, it is irreducible. However, $f$ is a perfect cube over the simple cubic extension $\mathbb{K}=\mathbb{k}[\sqrt[3]{t}]=\mathbb{k}[x] /(f)$, because of the identity $(a+b)^{3}=a^{3}+b^{3}$, which holds in every field of characteristic 3 and forces $x^{3}-t=(x-\sqrt[3]{t})^{3}$.

Recall ${ }^{3}$ that a polynomial $f \in \mathbb{k}[x]$ is called separable if it has no multiple roots in every extension $\mathbb{K} \supset \mathbb{k}$. As we have seen in Example 3.4 of Algebra I, every irreducible polynomial over a field of characteristic zero is separable. The same holds for irreducible polynomials over finite prime fields $\mathbb{F}_{p}=\mathbb{Z} /(p)$.
Exercise 13.5 Let $\mathbb{k}=\mathbb{F}_{p}(t)$. Show that $f(x)=x^{p}-t \in \mathbb{k}[x]$ is irreducible and inseparable over $\mathbb{k}$.

[^173]An algebraic field extension $\mathbb{F} \supset \mathbb{k}$, not necessarily finite, is called separable if the minimal polynomial $\mu_{\vartheta}$ of every element $\vartheta \in \mathbb{F}$ is separable over $\mathbb{k}$. It follows from Example 3.4 of Algebra I that every finite field is separable over its prime subfield, and all field extension of characteristic zero are separable.

Example 13.2 (Roots of Unity) The roots of equation $x^{n}=1$ in an arbitrary field $\mathbb{k}$ form a finite multiplicative group, denoted by $\mu_{n}(\mathbb{k})$ and called the group of nth roots of unity in $\mathbb{k}$. This group is cyclic, because every finite multiplicative subgroup in a field is cyclic by Theorem 3.2 of Algebra I. We say that the field $\mathbb{k}$ contains all the nth roots of unity if $\left|\boldsymbol{\mu}_{n}(\mathbb{k})\right|=n$. In this case, the generators of the group $\boldsymbol{\mu}_{n}(\mathbb{k}) \simeq \mathbb{Z} /(n)$ are called the primitive $n$th roots of unity. In all, there are $\varphi(n)$ primitive roots in $\boldsymbol{\mu}_{n}(\mathbb{k})$, where $\varphi(n)$ denotes Euler's function. ${ }^{4}$ Note that an $n$th root of unity $\zeta \in \mathbb{k}$ is primitive if and only if all the powers $\zeta^{m}$ with $0 \leqslant m \leqslant n-1$ are distinct. Thus, the following three conditions are equivalent:

- A field $\mathbb{k}$ admits an extension containing all $n$th roots of unity.
- The polynomial $x^{n}-1$ is separable over $\mathbb{k}$.
- char( $(\mathbb{k})$ does not divide $n$.

If these conditions hold, then every polynomial $f(x)=x^{n}-a$ with a nonzero $a \in \mathbb{k}$ is separable, because $f^{\prime}(x)=n x^{n-1} \neq 0$ has no common roots with $f$.

Theorem 13.1 For every finite field extension $\mathbb{F} \supset \mathbb{k}$, there exists a tower of simple field extensions

$$
\begin{equation*}
\mathbb{k}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{k-1} \subset \mathbb{L}_{k}=\mathbb{F} \tag{13.4}
\end{equation*}
$$

such that $\mathbb{L}_{i}=\mathbb{L}_{i-1}\left[\vartheta_{i}\right] \simeq \mathbb{L}_{i-1}[x] /\left(f_{i}\right)$ for some polynomial $f_{i} \in \mathbb{L}_{i-1}[x]$ irreducible over $\mathbb{L}_{i-1}$.

Proof Assume by induction that the field $\mathbb{L}_{i} \subset \mathbb{F}$ of level $i$ has been constructed. If $\mathbb{L}_{i} \neq \mathbb{F}$, let $\vartheta \in \mathbb{F} \backslash \mathbb{L}_{i}$, and let $f_{i+1} \in \mathbb{L}_{i}[x]$ be the minimal polynomial of $\vartheta$ over $\mathbb{L}_{i}$. Then the simple extension $\mathbb{L}_{i}[x] /(f)$ admits an injective homomorphism into $\mathbb{F}$ by the rule $x(\bmod f) \mapsto \vartheta$. Let $\mathbb{L}_{i+1} \nsupseteq \mathbb{L}_{i}$ denote the image of this inclusion. Since the degree of $\mathbb{F}$ over $\mathbb{L}_{i+1}$ is strictly less than that over $\mathbb{L}_{i}$, after a finite number of steps, the whole of $\mathbb{F}$ will be exhausted.

Theorem 13.2 (Primitive Element Theorem) Every finite separable extension $\mathbb{K} \supset \mathbb{k}$ is simple, i.e., $\mathbb{K} \simeq \mathbb{k}[x] /(f)$ for an appropriate irreducible polynomial $f \in \mathbb{K}[x]$ of degree $\operatorname{deg} \mathbb{K} / \mathbb{k}$.

Proof $\operatorname{If} \mathbb{k}$ is a finite field, then $\mathbb{K}$ is also finite, and nonzero elements of $\mathbb{K}$ form a cyclic multiplicative group $\mathbb{K}^{*}$. Therefore, $\mathbb{K}=\mathbb{k}[\vartheta]$ for every generator ${ }^{5} \vartheta$ of the group $\mathbb{K}^{*}$. Now assume that $\mathbb{k}$ is infinite. Induction on the length of the tower

[^174](13.4) allows us to assume that $\mathbb{K}=\mathbb{k}[\alpha, \beta] \supset \mathbb{k}[\alpha] \supset \mathbb{k}$ is obtained from $\mathbb{k}$ by two successive simple extensions, i.e., that it is generated as a $\mathbb{k}$-algebra by two separable algebraic elements $\alpha, \beta$. We are going to find $t \in \mathbb{k}^{*}$ such that the $\mathbb{K}_{k}$ subalgebra generated by the element $\vartheta=\alpha+t \beta$ exhausts the whole of $\mathbb{K}$. Since every $\vartheta \in \mathbb{k}$ is algebraic over $\mathbb{k}$, the algebra $\mathbb{k}[\vartheta]$ is a field. It coincides with $\mathbb{K}$ if and only if it contains $\beta$, because in that case, $\alpha=\vartheta-t \beta$ also lies in $\mathbb{k}[\vartheta]$. Let $f_{\alpha}(x), f_{\beta}(x)$ be the minimal polynomials of $\alpha, \beta$ over $\mathbb{k}$. Then $\beta$ is a common root of the polynomials $f_{\beta}(x) \in \mathbb{k}[x]$ and $g(x)=f_{\alpha}(\vartheta-t x)$, the latter of which has coefficients in the field $\mathbb{k}[\vartheta]$, which depends on $t$. By Theorem 3.1 from Algebra I, there exists a field $\mathbb{F} \supset \mathbb{K}$ such that the minimal polynomials $f_{\alpha}, f_{\beta}$ become the products of linear factors over $\mathbb{F}$. Then $g$ is completely factorizable over $\mathbb{F}$ as well. If we choose $t \in \mathbb{k}^{*}$ such that $\beta$ is the only common root of $f_{\beta}, g$ in $\mathbb{F}$, then the Euclidean algorithm allows us to express $(x-\beta)=\operatorname{GCD}\left(f_{\beta}(x), g(x)\right)$ in terms of the polynomials $f_{\beta}, g$ within $\mathbb{k}[\vartheta][x]$, and this forces $\beta \in \mathbb{k}[\vartheta]$. To find such $t$, write $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ for the roots of the polynomials $f_{\alpha}$ and $f_{\beta}$ in $\mathbb{F}$, where $m=\operatorname{deg} f_{\alpha}, k=\operatorname{deg} f_{\beta}=\operatorname{deg} g$. Let $\alpha=\alpha_{1}$ and $\beta=\beta_{1}$. Then the roots of $g$ are $\left(\vartheta-\alpha_{i}\right) / t=\beta_{1}+\left(\alpha_{1}-\alpha_{i}\right) / t$ for $1 \leqslant i \leqslant m$. We need
\[

$$
\begin{equation*}
\beta_{1}+\left(\alpha_{1}-\alpha_{i}\right) / t \neq \beta_{j} \tag{13.5}
\end{equation*}
$$

\]

for all $i, j$, but $i=j=1$. Since $\alpha$ is separable, $\alpha_{1}-\alpha_{i} \neq 0$ for all $i \neq 1$. Therefore, every inequality (13.5) with $i \neq 1$ forbids exactly one value of $t$. For $i=1$, the inequalities (13.5) say that $\beta_{1} \neq \beta_{j}$ for all $j \neq 1$, and they hold automatically, because $\beta$ is separable. Thus, only a finite set of values for $t$ is inadmissible, and we can find a required $t$ in the infinite field $\mathbb{k}$.

Corollary 13.1 If $\mathbb{K} \supset \mathbb{k}$ is a separable algebraic extension and the degrees of elements ${ }^{6}$ of $\mathbb{K}$ over $\mathbb{k}$ are bounded above, then $\mathbb{K}$ is finite over $\mathbb{k}$ and

$$
\operatorname{deg} \mathbb{K} / \mathbb{K}=\max _{\vartheta \in \mathbb{K}} \operatorname{deg}_{\mathbb{k}} \vartheta
$$

Proof Let $\alpha \in \mathbb{K}$ be an element of maximal degree over $\mathbb{k}$. If there exists some $\beta \in \mathbb{K} \backslash \mathbb{k}[\alpha]$, then $\operatorname{deg} \mathbb{k}[a, \beta] / \mathbb{k}>\operatorname{deg} \mathbb{k}[a] / \mathbb{k}=\operatorname{deg}_{\mathfrak{k}} \alpha$. This forces the primitive element of the field $\mathbb{k}[\alpha, \beta]$ over $\mathbb{k}$ to be of strictly greater degree than $\alpha$. Hence, $\mathbb{K}=\mathbb{k}[\alpha]$ and $\operatorname{deg} \mathbb{K} / \mathbb{k}=\operatorname{deg}_{\mathbb{k}} \alpha$.

[^175]
### 13.2 Extensions of Homomorphisms

Recall that every nonzero homomorphism of a field to a ring is injective, because the only ideals in the field are (0) and (1). Associated with every inclusion of fields $\varphi: \mathbb{k} \hookrightarrow \mathbb{F}$ is an injective homomorphism of polynomial rings $\mathbb{k}[x] \hookrightarrow \mathbb{F}[x]$ that maps a polynomial $f \in \mathbb{k}[x]$ to the polynomial $f^{\varphi} \in \mathbb{F}[x]$ whose coefficients are the images of the coefficients of $f$ under the homomorphism $\varphi: \mathbb{k} \hookrightarrow \mathbb{F}$.

Lemma 13.1 Let $\mathbb{K}=\mathbb{k}[x] /(f)$ be a simple extension of a field $\mathbb{k}$, and $\varphi: \mathbb{k} \hookrightarrow \mathbb{F}$ an embedding of $\mathbb{k}$ into an arbitrary field $\mathbb{F}$. The embeddings $\widetilde{\varphi}: \mathbb{K} \hookrightarrow \mathbb{F}$ coinciding with $\varphi$ on $\mathbb{k} \subset \mathbb{K}$ are in canonical bijection with the roots of the polynomial $f^{\varphi}$ in $\mathbb{F}$. In particular, there are at most $\operatorname{deg} \mathbb{K} / \mathbb{k}$ such embeddings, and the number of embeddings equals deg $\mathbb{K} / \mathbb{k}$ if and only if the polynomial $f^{\varphi}$ splits over $\mathbb{F}$ into a product of $\operatorname{deg} f$ distinct linear factors.

Proof Associated with every element $\alpha \in \mathbb{F}$ is the map

$$
\varphi_{\alpha}: \mathbb{k}[x] \rightarrow \mathbb{F}, \quad g(x) \mapsto g^{\varphi}(\alpha) .
$$

If $\alpha$ is a root of the polynomial $f^{\varphi} \in \mathbb{F}[x]$, then $f \in \operatorname{ker} \varphi_{\alpha}$ and $\varphi_{\alpha}$ can be factorized through the embedding $\widetilde{\varphi}_{\alpha}: \mathbb{k}[x] /(f) \hookrightarrow \mathbb{F}$, which maps the primitive element $\vartheta=x(\bmod f)$ of $\mathbb{K}$ to $\alpha \in \mathbb{F}$. Two distinct roots $\alpha \neq \beta$ of $f^{\varphi}$ certainly produce distinct maps $\widetilde{\varphi}_{\alpha} \neq \widetilde{\varphi}_{\beta}$. Conversely, every embedding $\widetilde{\varphi}: \mathbb{K} \hookrightarrow \mathbb{F}$ coinciding with $\varphi$ on the subfield $\mathbb{k} \subset \mathbb{K}$ maps $\vartheta$ to some root of the polynomial $f^{\varphi}$, because $f^{\varphi}(\widetilde{\varphi}(\vartheta))=\widetilde{\varphi}(f(\vartheta))=\varphi(0)=0$. Therefore, $\widetilde{\varphi}$ coincides with the map $\widetilde{\varphi}_{\alpha}$ provided by some root $\alpha$ of $f^{\varphi}$.

Lemma 13.2 Let $\mathbb{K} \supset \mathbb{k}$ be an algebraic field extension, not necessarily finite, and $\varphi: \mathbb{k} \hookrightarrow \mathbb{F}$ an embedding of fields such that for every $\vartheta \in \mathbb{K}$ with minimal polynomial $\mu_{\vartheta}$ over $\mathbb{k}$, the polynomial $\mu_{\vartheta}^{\varphi} \in \mathbb{F}[x]$ splits completely into a product of linear factors in $\mathbb{F}[x]$. Then for every $\vartheta \in \mathbb{K}$ and every root $\xi \in \mathbb{F}$ of the polynomial $\mu_{\vartheta}^{\varphi}$, there exists an embedding of fields $\widetilde{\varphi}: \mathbb{K} \hookrightarrow \mathbb{F}$ that coincides with $\varphi$ on the subfield $\mathbb{k}$ and takes $\widetilde{\varphi}(\vartheta)$ to $\xi$.

Proof By Lemma 13.1, the embedding $\varphi: \mathbb{k} \hookrightarrow \mathbb{F}$ can be extended to an embedding $\varphi_{\xi}: \mathbb{k}[\vartheta] \hookrightarrow \mathbb{F}, \quad \vartheta \mapsto \xi$. Consider the set $S$ of all embeddings $\psi: \mathbb{L} \hookrightarrow \mathbb{F}$ extending $\varphi_{\xi}$ to subfields $\mathbb{L} \subseteq \mathbb{K}$ containing $\mathbb{k}[\vartheta]$. The set $S$ is nonempty, because it contains $\varphi_{\xi}$, and it is partially ordered by the relation $\left(\mathbb{L}^{\prime \prime}, \psi^{\prime \prime}\right) \geqslant\left(\mathbb{L}^{\prime}, \psi^{\prime}\right)$, meaning that $\mathbb{L}^{\prime \prime} \supseteq \mathbb{L}^{\prime}$ and $\left.\psi^{\prime \prime}\right|_{\mathbb{L}^{\prime}}=\psi^{\prime}$.
Exercise 13.6 Verify that $S$ is a complete poset in the sense of Definition 1.2 of Algebra I.
By Zorn's lemma, ${ }^{7}$ there exists a maximal element $\psi: \mathbb{L} \hookrightarrow \mathbb{F}$ in $S$. Let us show that its domain $\mathbb{L}$ is equal to $\mathbb{K}$. Assume the contrary and let $\vartheta \in \mathbb{K} \backslash \mathbb{L}$. Then

[^176]the minimal polynomial $\mu_{\vartheta} \in \mathbb{k}[x]$ of $\vartheta$ over $\mathbb{k}$ is divisible in $\mathbb{L}[x]$ by the minimal polynomial $\mu_{\vartheta, \mathbb{L}}$ of $\vartheta$ over $\mathbb{L}$. Since $\mu_{\vartheta}^{\varphi}$ is a product of linear factors in $\mathbb{F}[x]$, its divisor $\mu_{\vartheta, \mathbb{L}}^{\varphi}$ is also the product of some of those factors. Therefore, the simple field extension $\mathbb{L} \subset \mathbb{L}[\vartheta]$ satisfies the condition of Lemma 13.1, which allows us to extend $\psi$ to the field $\mathbb{L}[\vartheta]=\mathbb{L}[x] /\left(\mu_{\vartheta, \mathbb{L}}\right)$, which is strictly larger than $\mathbb{L}$.

Proposition 13.1 Let $\varphi: \mathbb{k} \hookrightarrow \mathbb{F}$ be an arbitrary embedding of fields, and $\mathbb{K} \supset k a$ finite extension. Then there exist at most deg $\mathbb{K} / \mathbb{k}$ distinct embeddings $\psi: \mathbb{K} \hookrightarrow \mathbb{F}$ extending $\varphi$. The number of such embeddings equals $\operatorname{deg} \mathbb{K} / \mathbb{k}$ if and only if the extension $\mathbb{K} \supset \mathbb{k}$ is separable and for every $\vartheta \in \mathbb{K}$, the image $\mu_{\vartheta}^{\varphi} \in \mathbb{F}[x]$ of the minimal polynomial $\mu_{\vartheta} \in \mathbb{k}[x]$ of $\vartheta$ over $\mathbb{k}$ splits completely over $\mathbb{F}$ into a product of linear factors.

Proof Consider a finite tower of simple field extensions (13.4),

$$
\begin{equation*}
\mathbb{k}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{k-1} \subset \mathbb{L}_{k}=\mathbb{K} \tag{13.6}
\end{equation*}
$$

where $\mathbb{L}_{i}=\mathbb{L}_{i-1}\left[\vartheta_{i}\right] \simeq \mathbb{L}_{i-1}[x] /\left(f_{i}\right)$ and $f_{i} \in \mathbb{L}_{i-1}[x]$ is the minimal polynomial of some element $\vartheta_{i} \in \mathbb{L}_{i} \backslash \mathbb{L}_{i-1}$ over $\mathbb{L}_{i-1}$. If an embedding $\psi: \mathbb{K} \hookrightarrow \mathbb{F}$ extends $\varphi$, then the restrictions of $\psi$ to the subfields $\mathbb{L}_{i} \subset \mathbb{K}$ form a sequence of embeddings $\psi_{i}: \mathbb{L}_{i} \hookrightarrow \mathbb{F}$, each of which extends the previous one. By Lemma 13.1, there are at most $\operatorname{deg} f_{i}=\operatorname{deg} \mathbb{L}_{i} / \mathbb{L}_{i-1}$ such extensions for each $i$. Therefore, there are at $\operatorname{most} \prod_{i} \operatorname{deg} \mathbb{L}_{i} / \mathbb{L}_{i-1}=\operatorname{deg} \mathbb{K} / \mathbb{k}$ embeddings $\psi$ extending $\varphi$. This upper bound is achieved if and only if every polynomial $f_{i}^{\varphi}$ has exactly $\operatorname{deg} f_{i}$ distinct roots in $\mathbb{F}$. For every element $\vartheta \in \mathbb{K}$, there exists a tower (13.6) beginning with the adjunction of $\vartheta_{1}=\vartheta$ at the bottom level. Thus, the existence of exactly deg $\mathbb{K} / \mathbb{k}$ extensions of $\varphi$ forces $\mu_{\vartheta}^{\varphi}$ to be completely factorizable over $\mathbb{F}$ into a product of $\operatorname{deg} \mu_{\vartheta}$ distinct linear factors for all $\vartheta \in \mathbb{K}$. In particular, all $\mu_{\vartheta}$ are separable. Conversely, if all elements $\vartheta \in \mathbb{K}$ are separable and the images $\mu_{\vartheta}^{\varphi}$ of their minimal polynomials are the products of $\operatorname{deg} \mu_{\vartheta}$ linear factors, ${ }^{8}$ then every polynomial $f_{i}$ in every tower (13.6) is mapped by the embedding $\psi_{i-1}: \mathbb{L}_{i-1} \hookrightarrow \mathbb{F}$ to a completely factorizable separable polynomial in $\mathbb{F}[x]$, because $f_{i}$ divides $\mu_{\vartheta_{i}}$ in $\mathbb{L}_{i-1}[x]$. Therefore,

$$
\varphi: \mathbb{k} \hookrightarrow \mathbb{F}
$$

can be continued along such a tower in exactly $\operatorname{deg} \mathbb{K} / \mathbb{k}$ different ways.
Exercise 13.7 Under the conditions of Proposition 13.1, let elements

$$
\xi_{1}, \xi_{2}, \ldots, \xi_{m} \in \mathbb{K}
$$

generate the field $\mathbb{K}$ as a $\mathbb{k}_{\text {-algebra. Show that } \varphi: \mathbb{k} \hookrightarrow \mathbb{F} \text { admits exactly } \operatorname{deg} \mathbb{K} / \mathbb{k}, ~(1)}$ extensions $\psi: \mathbb{K} \hookrightarrow \mathbb{F}$ if and only if every $\xi_{\nu}$ is separable and $\mu_{\xi_{i}}^{\varphi}$ splits completely in $\mathbb{F}[x]$ into a product of linear factors.

[^177]Proposition 13.2 Let $\mathbb{K} \supset \mathbb{k}$ be an algebraic field extension, not necessarily finite. Then every embedding $\varphi: \mathbb{K} \hookrightarrow \mathbb{K}$ that acts identically on the subfield $\mathbb{k}$ is an automorphism of $\mathbb{K}$.

Proof It is enough to check that $\varphi(\mathbb{K})=\mathbb{K}$. Let $\vartheta \in \mathbb{K}$ have minimal polynomial $f \in \mathbb{K}[x]$ over $\mathbb{k}$. Since $\varphi$ maps every root of $f$ to a root of $f$, the equality $\varphi^{m} \vartheta=\varphi^{n} \vartheta$ holds for some $m>n$, where $\varphi^{k}=\varphi \circ \cdots \circ \varphi$ means the $k$ th iteration of the map $\varphi: \mathbb{K} \hookrightarrow \mathbb{K}$. Then the injectivity of $\varphi$ forces $^{9} \vartheta=\varphi^{m-n} \vartheta \in \operatorname{im} \varphi$.

### 13.3 Splitting Fields and Algebraic Closures

In this section we construct some special universal algebraic extensions of an arbitrary field $\mathbb{k}$. These universal extensions will be unique up to a nonunique (noncanonical) isomorphism that acts identically on $\mathbb{k}$.

Definition 13.1 (Splitting Field) Given a polynomial $f \in \mathbb{k}[x]$, a field $\mathbb{L}_{f} \supset \mathbb{k}$ is called a splitting field of $f$ if $f$ is a product of $\operatorname{deg} f$ linear factors in $\mathbb{L}_{f}[x]$ and for every field $\mathbb{F} \supset \mathbb{k}$ such that $f$ is a product of $\operatorname{deg} f$ linear factors over $\mathbb{F}$, there exists an embedding $\mathbb{L}_{f} \hookrightarrow \mathbb{F}$ that is the identity over $\mathbb{k}$.

Example 13.3 (Splitting Field of a Cubic Polynomial) Let $f \in \mathbb{k}[x]$ be an irreducible cubic polynomial. We have seen in Example 13.1 on p. 296 that if the discriminant $D(f)$ is a square in $\mathbb{k}$, then the simple cubic extension $\mathbb{K}=\mathbb{k}[x] /(f)$ is a splitting field of $f$. If $D(f)$ is not a square in $\mathbb{k}$, then $D(f)$ is not a square even in $\mathbb{K}$, and a splitting field of $f$ is provided by the simple quadratic extension of $\mathbb{K}$ by $\sqrt{D(f)}$. Note that the latter has degree 6 over $\mathbb{k}$.

Theorem 13.3 Every polynomial $f \in \mathbb{K}[x]$ has a splitting field $\mathbb{L}_{f}$, and every two splitting fields are (noncanonically) isomorphic over ${ }^{10} \mathbb{k}$.
Remark 13.1 Since all splitting fields of a given polynomial are isomorphic, we shall frequently refer to the splitting field of a polynomial. However, the reader should always keep in mind that given two splitting fields $\mathbb{L}^{\prime} \supset \mathbb{k} \subset \mathbb{L}^{\prime \prime}$, there are in general many different isomorphisms $\mathbb{L}^{\prime} \xrightarrow{\sim} \mathbb{L}^{\prime \prime}$ acting identically on $\mathbb{k}$.

Proof (of Theorem 13.3) Let $\mathbb{F} \supset \mathbb{k}$ be a finite extension such that $f$ splits into a product of $\operatorname{deg} f$ linear factors ${ }^{11}$ in $\mathbb{F}[x]$. Write $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{F}$ for the roots of $f$, and $\mathbb{L}_{f} \subset \mathbb{F}$ for the smallest ${ }^{12}$ subfield containing $\mathbb{k}$ and all these roots. Then $\mathbb{L}_{f}$ is

[^178]generated by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ as a $\mathbb{k}$-algebra, and there exists a tower of simple field extensions
\[

$$
\begin{equation*}
\mathbb{k}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{k-1} \subset \mathbb{L}_{k}=\mathbb{F} \tag{13.7}
\end{equation*}
$$

\]

whereby some element $\vartheta \in\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is adjoined at each level. ${ }^{13}$ If $f$ splits into a product of $\operatorname{deg} f$ linear factors over $\mathbb{F} \subset \mathbb{k}$, then by Lemma 13.2, the inclusion $\mathbb{k} \subset \mathbb{F}$ can be extended along the tower (13.7) to an embedding $\mathbb{L}_{f} \hookrightarrow \mathbb{F}$ that acts identically on $\mathbb{k}$, because the irreducible polynomials whose roots are adjoined on the levels of the tower divide $\vartheta$ and therefore are completely factorizable over $\mathbb{F}$ into linear factors. Hence, $\mathbb{L}_{f}$ is a splitting field of $f$. Given another splitting field $\mathbb{L}_{f}^{\prime}$ of $f$, there exist embeddings $\varphi: \mathbb{L}_{f} \hookrightarrow \mathbb{L}_{f}^{\prime}$ and $\varphi^{\prime}: \mathbb{L}_{f}^{\prime} \hookrightarrow \mathbb{L}_{f}$ provided by the definition of a splitting field. Since the compositions $\varphi \circ \varphi^{\prime}, \varphi^{\prime} \circ \varphi$ are bijective by Proposition 13.2, both embeddings have to be surjective.

Example 13.4 (The Classification of Finite Fields Revisited) Every finite field $\mathbb{F}$ of characteristic $p$ is a finite extension of the prime subfield $\mathbb{F}_{p}=\mathbb{Z} /(p) \subset \mathbb{F}$ and consists of $q=p^{n}$ elements for $n=\operatorname{deg} \mathbb{F} / \mathbb{F}_{p}=\operatorname{dim}_{\mathbb{F}_{p}} \mathbb{F}$. Since the nonzero elements of $\mathbb{F}$ form a multiplicative group of order $q-1$, they are exactly the roots of the polynomial $x^{q-1}-1 \in \mathbb{F}_{p}[x]$ in the field $\mathbb{F}$. Therefore, $\mathbb{F}$ is a splitting field of the polynomial $f(x)=x^{q}-x \in \mathbb{F}_{p}[x]$. This forces $\mathbb{F}$ to be the unique field of $q$ elements up to a (noncanonical) isomorphism.

Definition 13.2 (Algebraic Closure) An algebraically closed algebraic extension $\overline{\mathbb{k}} \supset \mathbb{k}$ is called an algebraic closure of $\mathbb{k}$.

Theorem 13.4 Every field k has an algebraic closure, unique up to a (noncanonical) isomorphism that acts identically on $\mathbb{k}$.

Proof Given two algebraic closures $\mathbb{L}^{\prime}$, $\mathbb{L}^{\prime \prime}$ of the field $\mathbb{k}$, then by Lemma 13.2 on p. 300, the embedding $\mathbb{k} \subset \mathbb{L}^{\prime}$ can be extended to an embedding $\varphi^{\prime}: \mathbb{L}^{\prime} \hookrightarrow \mathbb{L}^{\prime \prime}$ that acts identically on $\mathbb{k}$. Symmetrically, there is an embedding $\varphi^{\prime \prime}: \mathbb{L}^{\prime \prime} \hookrightarrow \mathbb{L}^{\prime}$ that acts identically on $\mathbb{k}$. Proposition 13.2 forces the compositions $\varphi^{\prime} \circ \varphi^{\prime \prime}, \varphi^{\prime \prime} \circ \varphi^{\prime}$ to be bijective. Therefore, the embeddings $\varphi^{\prime}, \varphi^{\prime \prime}$ have to be surjective, and $\mathbb{L}^{\prime} \simeq \mathbb{L}^{\prime \prime}$.

The proof of existence consists of two steps. Assume first that there exists an algebraically closed field $\mathbb{F} \supset \mathbb{k}$. Then we can put $\overline{\mathbb{k}}$ as the integral ${ }^{14}$ closure of $\mathbb{k}$ in $\mathbb{F}$, which is a field by Proposition 10.3 on p . 229 . Every polynomial $f \in \overline{\mathbb{k}}[x] \subset \mathbb{F}[x]$ has a root $\vartheta \in \mathbb{F}$, which is algebraic over $\overline{\mathbb{k}}$ and therefore algebraic over $\mathbb{k}$. This forces $\vartheta \in \overline{\mathbb{k}}$. Hence, $\overline{\mathbb{k}}$ is algebraically closed, i.e., is an algebraic closure of $\mathbb{k}$. It remains to show that an algebraically closed field $\mathbb{F} \supset \mathbb{k}$ exists. To begin with, let us construct a field $\mathbb{F}_{1} \supset \mathbb{k}$ such that every polynomial $f \in \mathbb{k}[x]$ is a product of $\operatorname{deg} f$

[^179]linear factors in $\mathbb{F}_{1}[x]$. By Zermelo's theorem, ${ }^{15}$ the set $\mathbb{k}[x]$ can be well ordered ${ }^{16}$ by some order relation $f<g$.
Exercise 13.8 Use the transfinite induction principle ${ }^{17}$ to show that for every $f \in \mathbb{k}[x]$, there exists a field $\mathbb{K}_{f} \supset \mathbb{k}$ such that $f$ splits completely into a product of linear factors over $\mathbb{K}_{f}$, and $\mathbb{K}_{f} \subset \mathbb{K}_{g}$ for all $f<g$.
We put $\mathbb{F}_{1}=\bigcup_{f \in \mathbb{k}[x]} \mathbb{K}_{f}$. Repeating the procedure leads to an infinite tower of fields
$$
\mathbb{k} \subset \mathbb{F}_{1} \subset \mathbb{F}_{2} \subset \mathbb{F}_{3} \subset \cdots
$$
such that every polynomial $f \in \mathbb{F}_{i}[x]$ is a product of $\operatorname{deg} f$ linear factors in $\mathbb{F}_{i+1}[x]$. This forces the union $\mathbb{F}=\bigcup_{i \in \mathbb{N}} \mathbb{F}_{i}$ to be an algebraically closed field containing $\mathbb{k}$.

Corollary 13.2 For every tower of finite field extensions $\mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \mathbb{L}_{3}$, the extension $\mathbb{L}_{1} \subset \mathbb{L}_{3}$ is separable if and only if the extensions $\mathbb{L}_{1} \subset \mathbb{L}_{2}, \mathbb{L}_{2} \subset \mathbb{L}_{3}$ are separable.

Proof If $\mathbb{L}_{3}$ is separable over $\mathbb{L}_{1}$, then in particular, the subfield $\mathbb{L}_{2}$ is separable, and $\mathbb{L}_{3}$ is separable over $\mathbb{L}_{2}$, because the minimal polynomial of every element $\vartheta \in \mathbb{L}_{3}$ over $\mathbb{L}_{2}$ is a divisor of the separable minimal polynomial of $\vartheta$ over $\mathbb{L}_{1}$. Conversely, if the extensions $\mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \mathbb{L}_{3}$ are separable, then by Proposition 13.1, the identical embedding of $\mathbb{L}_{1}$ into the algebraic closure $\mathbb{L}_{1} \hookrightarrow \overline{\mathbb{L}}_{1}$ admits exactly $\operatorname{deg} \mathbb{L}_{2} / \mathbb{L}_{1}$ continuations $\mathbb{L}_{2} \hookrightarrow \overline{\mathbb{L}}_{1}$, each of which has exactly deg $\mathbb{L}_{3} / \mathbb{L}_{2}$ continuations

$$
\mathbb{L}_{3} \hookrightarrow \overline{\mathbb{L}}_{1} .
$$

Since there are $\operatorname{deg} \mathbb{L}_{2} / \mathbb{L}_{1} \cdot \operatorname{deg} \mathbb{L}_{3} / \mathbb{L}_{2}=\operatorname{deg} \mathbb{L}_{3} / \mathbb{L}_{1}$ embeddings $\mathbb{L}_{3} \hookrightarrow \overline{\mathbb{L}}_{1}$ extending the identical inclusion $\mathbb{L}_{1} \hookrightarrow \overline{\mathbb{L}}_{1}$, Proposition 13.1 forces the extension $\mathbb{L}_{1} \subset \mathbb{L}_{3}$ to be separable.

### 13.4 Normal Extensions

An algebraic field extension $\mathbb{k} \subset \mathbb{K}$ is called normal if every irreducible polynomial $f \in \mathbb{K}[x]$ possessing a root in $\mathbb{K}$ splits completely over $\mathbb{K}$ into a product of linear factors.
Exercise 13.9 Convince yourself that every monic irreducible polynomial $f \in \mathbb{k}[x]$ possessing a root $\vartheta$ in an extension $\mathbb{K} \supset \mathbb{k}$ is the minimal polynomial of that $\vartheta$ over $\mathbb{k}$.

[^180]Thus, an algebraic extension $\mathbb{k} \subset \mathbb{K}$ is normal if and only if the minimal polynomials of all elements $\vartheta \in \mathbb{K}$ over $\mathbb{k}$ split completely in $\mathbb{K}[x]$ into products of linear factors.
Exercise 13.10 Check that every simple quadratic field extension is normal.
Lemma 13.3 Let $\overline{\mathbb{k}} \supset \mathbb{k}$ be an algebraic closure of a field $\mathbb{k}$. An algebraic field extension $\mathbb{k} \subset \mathbb{K}$ is normal if and only if all embeddings $\mathbb{K} \hookrightarrow \overline{\mathbb{k}}$ extending the inclusion $\mathbb{k} \subset \overline{\mathbb{k}}$ have the same image.

Proof Fix one such an embedding $\varphi: \mathbb{K} \hookrightarrow \overline{\mathbb{k}}$, which exists by Lemma 13.2 on p. 300, and identify $\mathbb{K}$ with the subfield $\varphi(\mathbb{K}) \subset \overline{\mathbb{k}}$ by means of this embedding. Thus, we have a tower $\mathbb{k} \subset \mathbb{K} \subset \overline{\mathbb{k}}$. Every other embedding $\psi: \mathbb{K} \hookrightarrow \overline{\mathbb{k}}$ extending the inclusion $\mathbb{k} \subset \overline{\mathbb{K}}$ maps every element $\vartheta \in \mathbb{K}$ to a root of the minimal polynomial $\mu_{\vartheta}$ of $\vartheta$ over $\mathbb{k}$. If all the roots of $\mu_{\vartheta}$ in $\overline{\mathbb{K}}$ belong to $\mathbb{K}$ for every $\vartheta \in \mathbb{K}$, then we certainly have $\psi(\mathbb{K}) \subset \mathbb{K}$. Conversely, it follows from Lemma 13.2 that for every $\vartheta \in \mathbb{K}$ and every root $\xi$ of the minimal polynomial $\mu_{\vartheta} \in \mathbb{k}[x]$, there exists an embedding of fields $\psi_{\vartheta, \xi}: \mathbb{K} \hookrightarrow \overline{\mathbb{K}}$ such that $\psi_{\vartheta, \xi}(\vartheta)=\xi$. If the images of all $\psi_{\vartheta, \xi}$ coincide with $\mathbb{K}$, all roots of $\mu_{\vartheta}$ belong to $\mathbb{K} \subset \overline{\mathbb{k}}$ for all $\vartheta \in \mathbb{K}$.

Lemma 13.4 Let $\mathbb{k} \subset \mathbb{L} \subset \mathbb{K}$ be a tower of algebraic extensions of fields such that $\mathbb{K}$ is normal over $\mathbb{k}$. Then $\mathbb{K}$ is normal over $\mathbb{L}$ as well, whereas $\mathbb{L}$ is normal over $\mathbb{k}$ if and only if the image of every embedding $\mathbb{L} \hookrightarrow \mathbb{K}$ that acts identically on $\mathbb{k}$ coincides with $\mathbb{L}$

Proof For every element $\vartheta \in \mathbb{K}$, the minimal polynomial of $\vartheta$ over $\mathbb{L}$ divides in $\mathbb{L}[x]$ the minimal polynomial of $\vartheta$ over $\mathbb{k}$. Thus, if the minimal polynomial of $\vartheta$ over $\mathbb{k}$ is completely factorizable in $\mathbb{K}[x]$ into linear factors, then the minimal polynomial of $\vartheta$ over $\mathbb{L}$ is, too. Therefore, $\mathbb{K}$ is normal over $\mathbb{L}$. The second statement of the lemma holds because of Lemma 13.3 and the following observation. Let

$$
\overline{\mathbb{k}} \supset \mathbb{K} \supset \mathbb{L} \supset \mathbb{k}
$$

be an algebraic closure of $\mathbb{k}$. Then the images of all embeddings $\mathbb{L} \hookrightarrow \overline{\mathbb{K}}$ that act identically on $\mathbb{k}$ lie in $\mathbb{K}$, since every such embedding can be extended to an embedding $\mathbb{K} \hookrightarrow \overline{\mathbb{k}}$, whose image is $\mathbb{K}$ if $\mathbb{K}$ is normal over $\mathbb{k}$.

Caution 13.1 Given two normal field extensions $\mathbb{L} \supset \mathbb{k}$ and $\mathbb{F} \supset \mathbb{L}$, the resulting extension $\mathbb{F} \supset \mathbb{k}$ is not necessarily normal. For example, the simple quartic extension $\mathbb{Q}[\sqrt[4]{2}]=\mathbb{Q}[x] /\left(x^{4}-2\right) \supset \mathbb{Q}$ can obviously be decomposed into a tower of two quadratic extensions $\mathbb{Q} \subset \mathbb{Q}[\sqrt{2}] \subset \mathbb{Q}[\sqrt{\sqrt{2}}]$, each of which is normal by Exercise 13.10 . However, the quartic field $\mathbb{Q}[\sqrt[4]{2}]$ is not normal over $\mathbb{Q}$, because its four embeddings into $\overline{\mathbb{Q}} \subset \mathbb{C}$ send the primitive element $x\left(\bmod x^{4}-2\right)$ to the fourth roots of 2 in $\mathbb{C}$, i.e., to $\pm \sqrt[4]{2}$ and $\pm i \sqrt[4]{2}$, where $\sqrt[4]{2}$ denotes the real positive root. The images of these embeddings form two different subfields of $\mathbb{C}$ linearly generated over $\mathbb{Q}$ by $1, \sqrt[4]{2}$ and by $1, i \sqrt[4]{2}$ respectively.

Proposition 13.3 A finite field extension $\mathbb{K} \supset \mathbb{k}$ is normal if and only if $\mathbb{K}$ is a splitting field of some not necessarily irreducible polynomial $f \in \mathbb{k}[x]$.

Proof Let $\mathbb{K}$ be normal over $\mathbb{k}$, and suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{K}$ generate $\mathbb{K}$ as a $\mathbb{k}$-algebra. Write $f_{i} \in \mathbb{k}[x]$ for the minimal polynomial of $\alpha_{i}$ over $\mathbb{k}$. Then the product $f=\prod f_{i}$ is completely factorizable over $\mathbb{K}$ into linear factors, and it follows from Exercise 13.7 that $\mathbb{K}$ can be embedded into every field $\mathbb{L}$ over which $f$ is a product of $\operatorname{deg} f$ linear factors. This forces $\mathbb{K}$ to be a splitting field of $f$. Conversely, if $\mathbb{K} \supset \mathbb{k}$ is a splitting field of a polynomial $f \in \mathbb{k}[x]$ and $\overline{\mathbb{k}} \supset \mathbb{k}$ is an algebraic closure of $\mathbb{k}$, then every embedding $\mathbb{K} \hookrightarrow \overline{\mathbb{k}}$ that acts identically on $\mathbb{k}$ maps $\mathbb{K}$ isomorphically onto the subfield $\mathbb{k}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right] \subset \overline{\mathbb{k}}$ spanned as a $\mathbb{k}$-algebra by all the roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ of $f$ in $\overline{\mathbb{k}}$. Thus, $\mathbb{K}$ is normal by Lemma 13.3.

### 13.5 Compositum

Let us fix an algebraic closure $\overline{\mathbb{k}}$ of a field $\mathbb{k}$. For every collection of subfields

$$
\mathbb{K}_{1}, \mathbb{K}_{2}, \ldots, \mathbb{K}_{m} \subset \overline{\mathbb{k}}
$$

containing $\mathbb{k}$, the smallest subfield of $\overline{\mathbb{k}}$ containing all the fields $\mathbb{K}_{v}$ is called the compositum of the fields $\mathbb{K}_{v}$ and is denoted by $\mathbb{K}_{1} \mathbb{K}_{2} \cdots \mathbb{K}_{m}$. It is linearly generated over $\mathbb{k}$ by the products $\vartheta_{1} \vartheta_{2} \cdots \vartheta_{m}$, where $\vartheta_{i} \in \mathbb{K}_{i}$ for all $i$.
Exercise 13.11 Prove this last statement.
Proposition 13.4 Let $\mathbb{F}, \mathbb{K} \subset \overline{\mathbb{K}}$ be two fields containing $\mathbb{k}$. If $\mathbb{K}$ is normal (respectively separable) over $\mathbb{k}$, then the compositum $\mathbb{K} \mathbb{F}$ is normal (respectively separable) over $\mathbb{F}$.
Proof The embeddings $\mathbb{K} \mathbb{F} \hookrightarrow \overline{\mathbb{F}}=\overline{\mathbb{K}}$ that act identically on $\mathbb{F} \subset \mathbb{K} \mathbb{F}$ are in bijection with the embeddings $\mathbb{K} \hookrightarrow \overline{\mathbb{k}}$ that act identically on $\mathbb{k} \subset \mathbb{K}$, because every embedding $\mathbb{K} \hookrightarrow \overline{\mathbb{k}}$ admits a unique $\mathbb{F}$-linear continuation $\mathbb{K} \mathbb{F} \hookrightarrow \overline{\mathbb{k}}$, and conversely, the restriction of every $\mathbb{F}$-linear embedding $\mathbb{K} \mathbb{F} \hookrightarrow \overline{\mathbb{k}}$ to $\mathbb{K}$ gives an embedding $\mathbb{K} \subset \mathbb{K} \mathbb{F}$. Thus, the statements follow from Lemma 13.3 and Proposition 13.1.

Theorem 13.5 (Normal Closure) Let $\mathbb{F} \supset \mathbb{k}$ be a finite separable field extension. There is a field $\mathbb{K} \supset \mathbb{F}$ normal and separable over $\mathbb{k}$ such that for every field $\mathbb{L} \supset \mathbb{F}$ normal and separable over $\mathbb{k}$, there is an embedding $\mathbb{K} \hookrightarrow \mathbb{L}$ that acts identically on $\mathbb{F}$. For every two such fields $\mathbb{K}$, $\mathbb{K}^{\prime}$, there exists a noncanonical isomorphism $\mathbb{K} \xrightarrow{\rightarrow} \mathbb{K}^{\prime}$ that acts identically on $\mathbb{F}$.
Proof Let $\overline{\mathbb{k}} \supset \mathbb{k}$ be an algebraic closure of $\mathbb{k}$, and $n=\operatorname{deg} \mathbb{F} / \mathbb{k}$. Put $\mathbb{K}$ as the compositum of all $n$ distinct embeddings $\mathbb{F} \hookrightarrow \overline{\mathbb{k}}$ that act identically on $\mathbb{k}$. Then $\operatorname{deg} \mathbb{K} / \mathbb{F} \leqslant n$, and $\mathbb{K}$ is normal and separable over the fields $\mathbb{F}$, $\mathbb{k}$. For every normal separable extension $\mathbb{L} \supset \mathbb{k}$, every embedding $\mathbb{F} \hookrightarrow \mathbb{L}$ that acts identically on $\mathbb{k}$ certainly can be extended to an embedding $\mathbb{K} \hookrightarrow \mathbb{L}$. The last statement is established by the same argument as in Theorems 13.3 and 13.4.

Definition 13.3 A field $\mathbb{K}$ satisfying the conditions of Theorem 13.5 is called a normal closure of the separable extension $\mathbb{F} \supset \mathbb{k}$.

### 13.6 Automorphisms of Fields and the Galois Correspondence

Given an field extension $\mathbb{k} \subset \mathbb{K}$, automorphisms of $\mathbb{K}$ acting identically on $\mathbb{k}$ are called automorphisms over $\mathbb{k}$ or automorphisms of the extension $\mathbb{k} \subset \mathbb{K}$. They form a group, denoted by

$$
\operatorname{Aut}_{\mathbb{k}} \mathbb{K} \stackrel{\text { def }}{=}\{\varphi: \mathbb{K} \xrightarrow{\rightarrow} \mathbb{K} \mid \forall t \in \mathbb{k} \varphi(t)=t\} .
$$

For a finite extension $\mathbb{K} \supset \mathbb{k}$, Proposition 13.1 on p. 301 implies the inequality

$$
\begin{equation*}
\mid \text { Aut }_{k} \mathbb{K} \mid \leqslant \operatorname{deg} \mathbb{K} / \mathbb{k} . \tag{13.8}
\end{equation*}
$$

A finite extension $\mathbb{K} \supset \mathbb{k}$ is called a Galois extension if this inequality is in fact an equality. It follows from Proposition 13.1 that a finite field extension is a Galois extension if and only if it is normal and separable. The automorphism group of a Galois extension $\mathbb{K} \supset \mathbb{k}_{\mathbb{k}}$ is called the Galois group and denoted by $\mathrm{Gal} \mathbb{K} / \mathbb{k} \stackrel{\text { def }}{=}$ Aut $_{\mathbb{k}} \mathbb{K}$. Let me stress that this notation always assumes that $\mathbb{k} \subset \mathbb{K}$ is a Galois extension.

Given an arbitrary group $G$ of automorphisms $\mathbb{K} \xrightarrow{\rightarrow} \mathbb{K}$ of a field $\mathbb{K}$, the $G$-invariant elements $t \in \mathbb{K}$ form a subfield of $\mathbb{K}$, denoted by

$$
\mathbb{K}^{G} \stackrel{\text { def }}{=}\{t \in \mathbb{K} \mid \forall \varphi \in G \varphi(t)=t\}
$$

and called the field of $G$-invariants. Note that $\mathbb{K}^{G}$ contains the prime subfield ${ }^{18}$ of $\mathbb{K}$.

Theorem 13.6 Let $\mathbb{K}$ be an arbitrary field, and $G$ a finite group of automorphisms $\mathbb{K} \leadsto \mathbb{K}$. Then the extension $\mathbb{K} \supset \mathbb{K}^{G}$ is a Galois extension of degree $|G|$, and $\mathrm{Gal} \mathbb{K} / \mathbb{k}=G$.

Proof Given an element $\vartheta \in \mathbb{K}$, write $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{m} \in \mathbb{K}$ for all the distinct elements of the $G$-orbit of $\vartheta=\vartheta_{1}$. Then the polynomial

$$
\begin{equation*}
f_{\vartheta}(x)=\left(x-\vartheta_{1}\right)\left(x-\vartheta_{2}\right) \cdots\left(x-\vartheta_{m}\right) \tag{13.9}
\end{equation*}
$$

[^181]has its coefficients in $\mathbb{K}^{G}$. For every polynomial $h \in \mathbb{K}^{G}[x]$, the group $G$ maps the roots of $h$ to the roots of $h$. Therefore, $G$ cannot act transitively on the roots of a product $h_{1} h_{2}$, where $h_{i} \in \mathbb{K}^{G}[x]$ and $\operatorname{deg} h_{i}>0$ for $i=1,2$. This forces the polynomial (13.9) to be irreducible in $\mathbb{K}^{G}[x]$. Hence, $f_{\vartheta}$ is the minimal polynomial of $\vartheta$ over $\mathbb{K}^{G}$. Since $f_{\vartheta}$ splits in $\mathbb{K}[x]$ into a product of $\operatorname{deg} f_{\vartheta}$ distinct linear factors, the extension $\mathbb{K}^{G} \subset \mathbb{K}$ is algebraic, normal, and separable. Moreover, $\operatorname{deg}_{\mathbb{K}^{G}} \vartheta \leqslant|G|$ for all $\vartheta \in \mathbb{K}$. By Corollary 13.1 , the extension $\mathbb{K}^{G} \subset \mathbb{K}$ is finite with $\operatorname{deg} \mathbb{K} / \mathbb{K}^{G} \leqslant|G|$. At the same time, $|G| \leqslant \mid$ Aut $_{\mathbb{K}^{G}} \mathbb{K} \mid \leqslant \operatorname{deg} \mathbb{K} / \mathbb{K}^{G}$, because $G \subset \mathrm{Aut}_{\mathbb{K}^{G}} \mathbb{K}$. This forces all the inequalities to be equalities, and $G=\mathrm{Aut}_{\mathbb{K}^{G}} \mathbb{K}$.

Corollary 13.3 For every finite field extension $\mathbb{k} \subset \mathbb{K}$ and subgroup $G \subset$ Aut $_{k} \mathbb{K}$, the equalities $\mathbb{K}^{G}=\mathbb{k}$ and $|G|=\operatorname{deg} \mathbb{K} / \mathbb{k}$ are equivalent. If they hold, then $G=\operatorname{Aut}_{k} \mathbb{K}$.

Proof Applying Theorem 13.6 to the tower $\mathbb{k} \subset \mathbb{K}^{G} \subset \mathbb{K}$ leads to the equality $\operatorname{deg} \mathbb{K} / \mathbb{K}^{G}=|G|$, which immediately implies all the statements.

However, it is quite instructive to give a direct proof of Corollary 13.3 without using the primitive element theorem, Theorem 13.2 on p. 298, hidden within ${ }^{19}$ Theorem 13.6. Such a proof follows below.

Let $|G|=\operatorname{deg} \mathbb{K} / \mathbb{k}$. The inequalities $|G| \leqslant \operatorname{deg} \mathbb{K} / \mathbb{K}^{G} \leqslant \operatorname{deg} \mathbb{K} / \mathbb{k}$ force

$$
\operatorname{deg} \mathbb{K} / \mathbb{K}^{G}=\operatorname{deg} \mathbb{K} / \mathbb{k}=\operatorname{deg} \mathbb{K} / \mathbb{K}^{G} \cdot \operatorname{deg} \mathbb{K}^{G} / \mathbb{k}
$$

Therefore, $\operatorname{deg} \mathbb{K}^{G} / \mathbb{k}=1$ and $\mathbb{K}^{G}=\mathbb{k}$. Conversely, let $\mathbb{K}^{G}=\mathbb{k}$. The same arguments as in the proof of Theorem 13.6 show that the extension $\mathbb{K} \supset \mathbb{k}$ is normal and separable. Therefore, the inclusion $\mathbb{k} \hookrightarrow \mathbb{K}$ allows exactly $\operatorname{deg} \mathbb{K} / \mathbb{k}$ extensions to automorphisms $\mathbb{K} \xrightarrow{\rightarrow} \mathbb{K}$ over $\mathbb{k}$, i.e., $\left|\mathrm{Aut}_{\mathbb{k}} \mathbb{K}\right|=\operatorname{deg} \mathbb{K} / \mathbb{k}$. It remains to verify that $\mathrm{Aut}_{\mathrm{k}} \mathbb{K}=G$. For every $\vartheta \in \mathbb{K}$, the coefficients of the minimal polynomial $f_{\vartheta}$ of $\vartheta$ over $\mathbb{k}$ are Aut $_{\mathbb{k}} \mathbb{K}$-invariant. This forces every automorphism $\varphi: \mathbb{K} \leadsto \mathbb{K}$ over $\mathbb{k}$ to map $\vartheta$ to a root of $f_{\vartheta}$. Moreover, as we have seen before formula (13.9), these roots form one orbit of $G$. We conclude that for every $\varphi \in$ Aut $_{k} \mathbb{K}$ and every $\vartheta \in \mathbb{K}$, there exists $g \in G$ such that $g(\vartheta)=\varphi(\vartheta)$. Thus, for each $\varphi \in \operatorname{Aut}_{\mathrm{k}} \mathbb{K}$, the field $\mathbb{K}$, considered as a vector space over $\mathbb{k}$, splits into a finite union of vector subspaces $V_{g}=\{\vartheta \in \mathbb{K} \mid g(\vartheta)=\psi(\vartheta)\}$ taken for all $g \in G$. For an infinite field $\mathbb{K}$, this forces ${ }^{20} \mathbb{K}$ to coincide with some $V_{g}$, and therefore, $\varphi=g$. For a finite field $\mathbb{k}$, the field $\mathbb{K}$ is also finite and spanned as a $\mathbb{k}$-algebra by a generator $\vartheta$ of the cyclic multiplicative group $\mathbb{K}^{*}$. In this case, $\varphi=g$ for that $g \in G$ with $\varphi(\vartheta)=g(\vartheta)$.

Example 13.5 (Field of Invariants for the Group of a Triangle) Consider the coordinate projective line $\mathbb{P}_{1}=\mathbb{P}\left(\mathbb{k}^{2}\right)$ over an arbitrary field $\mathbb{k}$, on which the group

[^182]of a triangle ${ }^{21} G=S_{3}$ acts by linear fractional automorphisms permuting the points $0=(0: 1), 1=(1: 1), \infty=(1: 0)$. Namely, the identity map, the two cycles
$$
\tau: 0 \mapsto 1 \mapsto \infty \mapsto 0, \quad \tau^{-1}: \infty \mapsto 1 \mapsto 0 \mapsto \infty,
$$
and the three reflections $\sigma_{0}, \sigma_{1}, \sigma_{\infty}$ marked by their fixed points $0,1, \infty$, act on the affine coordinate $t=t_{0} / t_{1}$ by the rules
\[

$$
\begin{array}{lrl}
\text { Id }: t \mapsto t, & \tau: t \mapsto 1 /(1-t), & \tau^{-1}: t \mapsto(t-1) / t,  \tag{13.10}\\
\sigma_{0}: t \mapsto t /(t-1), & \sigma_{1}: t \mapsto 1 / t, & \\
\sigma_{\infty}: t \mapsto 1-t .
\end{array}
$$
\]

The pullback of this action provides the field of rational functions $\mathbb{K}=\mathbb{k}(t)$ with the action of $G$ by the rule $g: \varphi(t) \mapsto \varphi\left(g^{-1}(t)\right)$ for all $g \in G, \varphi \in \mathbb{K}$. The field of $G$-invariants $\mathbb{K}^{G} \subset \mathbb{K}$ consists of all rational functions $\varphi(t) \in \mathbb{k}(t)$ mapped to themselves under all six substitutions (13.10). By Theorem 13.6, the extension $\mathbb{K}^{G} \subset \mathbb{K}$ is a Galois extension of degree 6 . We are going to write an explicit transcendence generator ${ }^{22}$ for $\mathbb{K}^{G}$. If a function $\psi(t)=p(t) / q(t)$ is $G$-invariant, then every rational function of $\psi$ is certainly $G$-invariant as well. Such functions form a subfield $\mathbb{k}(\psi) \subset \mathbb{K}^{G}$. The transcendence generator $t$ of $\mathbb{K}$ over $\mathbb{k}$ is a root of the polynomial equation $\psi \cdot q(x)-p(x)$ with coefficients in $\mathbb{k}(\psi)$. Therefore, $\mathbb{K} \supset \mathbb{k}(\psi)$ is a finite extension of degree $\operatorname{deg} \mathbb{K} / \mathbb{k}(\psi) \leqslant \max (\operatorname{deg} p, \operatorname{deg} q)$.

Since the left-hand side of this inequality is divisible by $\operatorname{deg} \mathbb{K} / \mathbb{K}^{G}=6$, we conclude that $\max (\operatorname{deg} p, \operatorname{deg} q) \geqslant 6$, and equality holds if and only if $\mathbb{K}^{G}=\mathbb{k}(\psi)$. A particular $G$-invariant function $\psi$ with $\operatorname{deg} p, \operatorname{deg} q \leqslant 6$ is easily obtained from projective geometry. Choose a $G$-orbit $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ in $\mathbb{P}_{1}(\overline{\mathbb{k}})$ and write

$$
f\left(t_{0}, t_{1}\right)=\prod_{i} \operatorname{det}\left(t, \alpha_{i}\right) \in \mathbb{k}\left[t_{0}, t_{1}\right]
$$

for the homogeneous polynomial with simple zeros at the points $\alpha_{i}$. Then the substitutions (13.10) transform $f$ into polynomials with the same zeros. Since all these polynomials are proportional, $f\left(g^{-1} t\right)=\lambda(g) \cdot f(t)$ for all $g \in G$, where $\lambda: G \rightarrow \mathbb{K}^{*}, g \mapsto \lambda(g)$, is a multiplicative homomorphism, i.e., a 1-dimensional character of $G$. The group $S_{3}$ has exactly two such characters, coming from the trivial and sign representations. Hence, $f$ either is completely $G$-invariant or is invariant under rotations and alternates sign under reflections. The three-point orbit $0,1, \infty$ provides us with the sign-alternating polynomial $p=t_{0} t_{1}\left(t_{0}-t_{1}\right)$, whose square $p^{2}$ is completely $G$-invariant. The two-point orbit formed by the eigenvectors of the rotations ${ }^{23}$ produces the $G$-invariant polynomial $q=t_{0}^{2}-t_{0} t_{1}+t_{1}^{2}$. The minimal

[^183]Laurent monomial in $p^{2}, q$, having total degree zero ${ }^{24}$ in $\left(t_{0}: t_{1}\right)$, is

$$
\psi(t)=\frac{p^{2}}{q^{3}}=\frac{t_{0}^{2} t_{1}^{2}\left(t_{0}-t_{1}\right)^{2}}{\left(t_{0}^{2}-t_{0} t_{1}+t_{1}^{2}\right)^{3}}=\frac{t^{2}(t-1)^{2}}{\left(t^{2}-t+1\right)^{3}} .
$$

Since both numerator and denominator have degree at most 6 , the equality $\mathbb{K}^{G}=\mathbb{k}(\psi)$ holds.

Exercise 13.12 Verify by direct computation that $\psi(t)$ goes to itself under all six substitutions (13.10).

Example 13.6 (Automorphisms and Embeddings of Finite Fields) Let $q=p^{n}$ for a prime $p \in \mathbb{N}$. Since the extension $\mathbb{F}_{p} \subset \mathbb{F}_{q}$ is finite, normal, and separable, we have $\mid$ Aut $_{\mathbb{F}_{p}} \mathbb{F}_{q} \mid=\operatorname{deg} \mathbb{F}_{q} / \mathbb{F}_{p}=n$. Write $F_{p}^{0}=\mathrm{Id}, F_{p}, F_{p}^{2}, \ldots, F_{p}^{n-1}$ for iterations of the Frobenius automorphism $F_{p}: \vartheta \mapsto \vartheta^{p}$. They all are distinct, because an equality $F_{p}^{k}=F_{p}^{m}$ would force all the $p^{n}$ elements of $\mathbb{F}_{q}$ to be roots of the polynomial $x^{p^{k}}-x^{p^{m}}$, which is impossible for $k, m<n$. We conclude that Aut $\mathbb{F}_{p} \mathbb{F}_{q}$ is the cyclic group of order $n$ generated by $F_{p}$. For every $k \mid n$, the cyclic subgroup $G_{k} \subset$ Aut $\mathbb{F}_{p} \mathbb{F}_{q}$ generated by $F_{p}^{k}$ has order $n / k$, and the $G_{k}$-invariants are exactly the roots of the polynomial $x^{p^{k}}-x$. Therefore, $\mathbb{F}_{q}^{G_{k}}=\mathbb{F}_{p^{k}} \subset \mathbb{F}_{p^{n}}$ is a splitting field of the polynomial $x^{p^{k}}-x$, and $G_{k} \simeq \operatorname{Aut}_{\mathbb{F}_{p^{k}}} \mathbb{F}_{p^{n}}$. Every embedding $\mathbb{F}_{p^{k}} \hookrightarrow \mathbb{F}_{p^{n}}$ maps $\mathbb{F}_{p^{k}}$ isomorphically onto the subfield $\mathbb{F}_{q}^{G_{k}}$, because every element of $\mathbb{F}_{p^{k}}$ has to go to a root of the polynomial $x^{p^{k}}-x$. Altogether, there are exactly $k$ such embeddings, and they form one orbit of the group $\operatorname{Aut}_{\mathbb{F}_{p}} \mathbb{F}_{p^{k}}$ acting on the embeddings by right multiplication.

Exercise 13.13 Check that the polynomial $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ equals the product of all monic polynomials irreducible over $\mathbb{F}_{p}$ whose degrees divide $n$.

Theorem 13.7 (Galois Correspondence) Let $\mathbb{k} \subset \mathbb{K}$ be a finite Galois extension with Galois group $G=\mathrm{Aut}_{k} \mathbb{K}$. Then there is a canonical bijection between the subgroups $H \subset G$ and the subfields $\mathbb{L} \subset \mathbb{K}$ such that $\mathbb{k} \subset \mathbb{L}$. It takes a subgroup $H \subset G$ to the subfield of $H$-invariants $\mathbb{K}^{H} \subset \mathbb{K}$. The inverse map sends a field $\mathbb{L}$ such that $\mathbb{k} \subset \mathbb{L} \subset \mathbb{K}$ to the subgroup Aut $_{\mathbb{L}} \mathbb{K} \subset G$. Under this correspondence, the normal subgroups $H \triangleleft G$ are in bijection with the Galois extensions $\mathbb{L} \supset \mathbb{k}$ contained in $\mathbb{K}$, and $\mathrm{Gal} \mathbb{L} / \mathbb{k} \simeq G / H$ for every such Galois extension $\mathbb{L} \supset \mathbb{k}$.

Proof Given a tower of fields $\mathbb{k} \subset \mathbb{L} \subset \mathbb{K}$, the extension $\mathbb{L} \subset \mathbb{K}$ is normal by Lemma 13.4 and separable by Corollary 13.2. Thus, $\mathbb{L} \subset \mathbb{K}$ is a Galois extension with Galois group $H=\operatorname{Aut}_{\mathbb{L}} \mathbb{K}$, and $|H|=\operatorname{deg} \mathbb{K} / \mathbb{L}$. Certainly, the group $H$ is a

[^184]subgroup of $G=\operatorname{Aut}_{\mathbb{k}} \mathbb{K}$, and by Corollary $13.3, K^{H}=\mathbb{L}$. This proves ${ }^{25}$ the first statement, concerning the one-to-one correspondence between subgroups $H \subset G$ and subfields $\mathbb{L} \subset \mathbb{K}$ such that $\mathbb{k} \subset \mathbb{L}$. To prove the second statement, consider the action of $G=\mathrm{Gal} \mathbb{K} / \mathbb{k}$ on the subfields $\mathbb{L} \subset \mathbb{K}$ such that $\mathbb{k} \subset \mathbb{L}$. We have proved already that the centralizer $C_{\mathbb{L}} \stackrel{\text { def }}{=}\left\{g \in G|g|_{\mathbb{L}}=\mathrm{Id}_{\mathbb{L}}\right\}=$ Aut $_{\mathbb{L}} \mathbb{K}$ of every such $\mathbb{L}$ is the subgroup $H \subset G$ corresponding to $\mathbb{L}$. Since the extension $\mathbb{K} \supset \mathbb{k}$ is normal and separable, every embedding
\[

$$
\begin{equation*}
\varphi: \mathbb{L} \hookrightarrow \mathbb{K} \tag{13.11}
\end{equation*}
$$

\]

over $\mathbb{k}$ can be extended to an automorphism $g: \mathbb{K} \leadsto \mathbb{} \rightarrow \mathbb{K}$ over $\mathbb{k}$. Therefore, $\varphi(\mathbb{L})=g(\mathbb{L})$ for some $g \in G$, and the centralizer of $\varphi(\mathbb{L})$ in $G$ is conjugate to $H$ :

$$
\operatorname{Aut}_{\varphi(\mathbb{L})} \mathbb{K}=C_{\varphi(\mathbb{L})}=C_{g(\mathbb{L})}=g C_{\mathbb{L}} g^{-1}=g H g^{-1}
$$

It follows from Lemma 13.4 and Corollary 13.2 that an extension $\mathbb{L} \supset \mathbb{k}$ is always separable. It is normal if and only if $\varphi(\mathbb{L})=\mathbb{L}$ for all embeddings (13.11), which means that all subgroups conjugate to $H$ coincide with $H$, i.e., that $H \triangleleft G$ is normal. In this case, the Galois group Gal $\mathbb{K} / \mathbb{k}$ maps $\mathbb{L}$ to itself. This leads to a surjective homomorphism of groups $\mathrm{Gal} \mathbb{K} / \mathbb{k} \rightarrow \mathrm{Gal} \mathbb{L} / \mathbb{k}$ with kernel $\mathrm{Gal} \mathbb{K} / \mathbb{L}$. Therefore, $\mathrm{Gal} \mathbb{L} / \mathbb{k}=(\mathrm{Gal} \mathbb{K} / \mathbb{k}) /(\mathrm{Gal} \mathbb{K} / \mathbb{L})$.

Exercise 13.14 Convince yourself that the Galois correspondence reverses inclusions,

$$
H \subset K \subset \mathrm{Gal} \mathbb{K} / \mathbb{k} \Longleftrightarrow \mathbb{K}^{H} \supset \mathbb{K}^{K} \supset \mathbb{k},
$$

and takes the intersection of subgroups $H_{1} \cap H_{2}$ to the compositum $\mathbb{L}_{1} \mathbb{L}_{2}$ of corresponding fields $\mathbb{L}_{1}=\mathbb{K}^{H_{1}}, \mathbb{L}_{2}=\mathbb{K}^{H_{2}}$, and the intersection of fields $\mathbb{L}_{1} \cap \mathbb{L}_{2}$ to the smallest subgroup of $G$ containing the corresponding subgroups $H_{1}=\operatorname{Aut}_{\mathbb{L}_{1}} \mathbb{K}$, $H_{2}=$ Aut $_{\mathbb{L}_{2}} \mathbb{K}$.

## Problems for Independent Solution to Chapter 13

Problem 13.1 Find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over $\mathbb{Q}$.
Problem 13.2 Is it true that (a) $\cos 36^{\circ} \in \mathbb{Q}\left(\sin 36^{\circ}\right)$ ? (b) $\sin 36^{\circ} \in \mathbb{Q}\left(\cos 36^{\circ}\right)$ ?

[^185]Problem 13.3 Does the field $\mathbb{Q}(\sqrt{2}, \sqrt{-1})$ coincide with
(a) $\mathbb{Q}(\sqrt{-2})$ ?
(b) $\mathbb{Q}(\sqrt{-1}+\sqrt{2})$ ?

Problem 13.4 Ascertain whether any of the following extensions $\mathbb{K} \supset \mathbb{Q}$ are Galois, and for those that are, compute Gal $\mathbb{k} / \mathbb{Q}$ :
(a) $\mathbb{K}=\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subset \mathbb{R}, \sqrt{2}, \sqrt{3} \in \mathbb{R}$,
(b) $\mathbb{K}=\mathbb{Q}(\sqrt[3]{1}+\sqrt[3]{2}) \subset \mathbb{C}, \sqrt[3]{1} \in \mathbb{C} \backslash \mathbb{R}, \sqrt[3]{2} \in \mathbb{R}$,
(c) $\mathbb{K} \subset \overline{\mathbb{Q}} \subset \mathbb{C}$ is the splitting field of $x^{7}-5$.

Problem 13.5 For every field $\mathbb{K}$ from the previous problem, enumerate all the subfields $\mathbb{L} \subset \mathbb{K}$, determine which of the $\mathbb{L}$ are isomorphic, indicate which $\mathbb{L}$ are Galois extensions of $\mathbb{Q}$, and compute their Galois groups over $\mathbb{Q}$.
Problem 13.6 Find the dimension over $\mathbb{Q}$ of the $\mathbb{Q}$-linear span of the positive real numbers $1, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{10}, \sqrt{15}, \sqrt{30}$.
Problem 13.7 Find the degree over $\mathbb{Q}$ of the splitting fields of the polynomials $x^{4}-2$ and $x^{p}-a$, where $p \in \mathbb{N}$ is prime and $a \in \mathbb{Q}$ has $\sqrt[p]{a} \notin \mathbb{Q}$.
Problem 13.8 Let $\mathbb{F} \supset \mathbb{k}$ be a finite Galois extension, and $G=\mathrm{Gal} \mathbb{F} / \mathbb{k}$. Prove that there exists an element $\vartheta \in \mathbb{F}$ whose $G$-orbit is a basis of $\mathbb{F}$ as a vector space over $\mathbb{k}$.

Problem 13.9 For every nonconstant polynomial $f \in \mathbb{Z}[x]$, prove that there exist infinitely many primes $p \in \mathbb{N}$ such that the reduction of $f$ modulo $p$ has a root in $\mathbb{F}_{p}$.
Problem 13.10 Prove that an algebraic closure $\overline{\mathbb{F}}_{p} \supset \mathbb{F}_{p}$ is achieved by the adjunction to $\mathbb{F}_{p}$ of all primitive roots of unity of all prime degrees different from $p$.
Problem 13.11 Let $p \in \mathbb{N}$ be prime, $q=p^{n}$ for some $n \in \mathbb{N}$, and $a \in \mathbb{F}_{p}^{*}$. Prove that the polynomial $x^{p}-x-a$ is irreducible in $\mathbb{F}_{q}[x]$ if and only if $p \nmid n$.
Problem 13.12 Find all $n \in \mathbb{N}$ such that the polynomial $x^{2 n}+x^{n}+1$ is irreducible in $\mathbb{F}_{2}[x]$.
Problem 13.13 For every positive integer $n \not \equiv 2(\bmod 3)$, ascertain whether the polynomial (a) $x^{n}-x+1$, (b) $x^{n}+x+1$, is irreducible over $\mathbb{Q}$.
Problem 13.14 (Invariants of the Dihedral Group) The dihedral group ${ }^{26} D_{n}$ acts on the complex projective line $\mathbb{P}_{1}(\mathbb{C})$ with affine coordinate $t$, and on the field of rational functions $\mathbb{C}(t)$ by the rule $\tau: t \mapsto e^{2 \pi i / n} t, \sigma: t \mapsto 1 / t$, where $\tau$ and $\sigma$ are the rotation and reflection generating $D_{n}$. Describe the field of invariants $\mathbb{C}(t)^{D_{n}}$.
Problem 13.15 (Klein Forms) Let us identify the complex projective line $\mathbb{P}_{1}(\mathbb{C})$ with the unit sphere $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ in such a way

[^186]that the standard affine charts $U_{0}, U_{1}$ on $\mathbb{P}_{1}$ are provided by the projections of the sphere from its north and south poles $(0,0, \pm 1)$ onto the equatorial plane ${ }^{27}$ $z=0$, which is identified with the complex plane $\mathbb{C}=\{x+i y\}$ in the usual way. Let $M$ be a tetrahedron, cube, or dodecahedron inscribed in $S^{2}$, and let $G$ denote the proper group ${ }^{28}$ of $M$. Then $G$ acts on $\mathbb{P}_{1}(\mathbb{C})$ by means of the rotations of the unit sphere provided by the rotations of $M$. Write ( $t_{0}: t_{1}$ ) for the homogeneous coordinate on $\mathbb{P}_{1}(\mathbb{C})$ compatible with the standard charts just described. Then the linear fractional changes of coordinates provided by the projective transformations from $G$ equip the polynomial ring $\mathbb{C}\left[t_{0}, t_{1}\right]$ and the field of rational functions $\mathbb{C}(t), t=t_{0} / t_{1}$, with the action of $G$. Write $\varphi, \psi, \chi \in \mathbb{C}\left[t_{0}: t_{1}\right]$ for the homogeneous polynomials with only simple roots, which are situated, respectively, at the vertices of $M$, at the projections to $S^{2}$ of the midpoints of edges of $M$, and at the projections to $S^{2}$ of the centers of faces of $M$. For every $M$, consider the following products constructed from $\varphi, \psi$, $\chi$, where the lower indices of polynomials indicate their degrees in $t_{0}, t_{1}$ :
\[

$$
\begin{array}{llll}
\alpha_{6} \stackrel{\text { def }}{=} \psi_{6}, & \beta_{8} \stackrel{\text { def }}{=} \varphi_{4} \chi_{4}, & \gamma_{12} \stackrel{\text { def }}{=} \varphi_{4}^{3}, & \text { for } M \text { the tetrahedron; } \\
\alpha_{8} \stackrel{\text { def }}{=} \varphi_{8}, & \beta_{12} \stackrel{\text { def }}{=} \chi_{6}^{2}, & \gamma_{18} \stackrel{\text { def }}{=} \chi_{6} \psi_{12}, & \text { for } M \text { the cube } \\
\alpha_{12} \stackrel{\text { def }}{=} \chi_{12}, & \beta_{20} \stackrel{\text { def }}{=} \varphi_{20}, & \gamma_{30} \stackrel{\text { def }}{=} \psi_{30}, & \text { for } M \text { the dodecahedron. }
\end{array}
$$
\]

In each case, verify that the polynomials $\alpha, \beta, \gamma \in \mathbb{C}\left[t_{0}, t_{1}\right]$ are $G$-invariant, and describe the field of invariants $\mathbb{C}(x)^{G}$. Try to prove that the ring of invariants $\mathbb{C}\left[t_{0}, t_{1}\right]^{G} \subset \mathbb{C}\left[t_{0}, t_{1}\right]$ is isomorphic to $\mathbb{C}[\alpha, \beta, \gamma] /(f)$, where

$$
\begin{array}{ll}
f=\alpha_{6}^{4}+\beta_{8}^{3}+\gamma_{12}^{2} & \text { for the tetrahedron } \\
f=\alpha_{8}^{3} \beta_{12}+\beta_{12}^{3}+\gamma_{18}^{2} & \text { for the cube } \\
f=\alpha_{12}^{5}+\beta_{20}^{3}+\gamma_{30}^{2} & \text { for the dodecahedron } .
\end{array}
$$

Problem 13.16 Describe the field of invariants $\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{G}$ for
(a) $G=S_{n}$ acting by permutations of variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,
(b) the cyclic subgroup $G \subset S_{n}$ generated by the long cycle $|1,2, \ldots, n\rangle$,
(c) the cyclic group $G$ generated by the homothety $x_{v} \mapsto e^{2 \pi i / n} x_{v}, 1 \leqslant v \leqslant n$.

Problem 13.17 Let $G=\operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right)$ and suppose the subgroups $P \subset G, N \subset P$ consist, respectively, of the transformations $t \mapsto a t+b, a \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}$, and

[^187]$t \mapsto t+b, b \in \mathbb{F}_{q}$. Show that (a) $\mathbb{F}_{q}(t)^{N}=\mathbb{F}_{q}\left(t^{q}-t\right)$,
(b) $\mathbb{F}_{q}(t)^{P}=\mathbb{F}_{q}\left(\left(t^{q}-t\right)^{q-1}\right)$, (c) $\mathbb{F}_{q}(t)^{G}=\mathbb{F}_{q}\left(\frac{\left(t^{q^{2}}-t\right)^{q+1}}{\left(t^{q}-t\right)^{q^{2}+1}}\right)$.

Problem 13.18 Let char $\mathrm{k}=p$, and let $x, y$ be variables algebraically independent over $\mathbb{k}$. Compute $\operatorname{deg} \mathbb{k}(x, y) / \mathbb{k}\left(x^{p}, y^{p}\right)$ and show that there are infinitely many subfields $\mathbb{F} \subset \mathbb{k}(x, y)$ containing $\mathbb{k}$.
Problem 13.19 Let $A$ be a Noetherian normal ring with field of fractions $K=Q_{A}$, and let $L \supset K$ be a finite separable field extension of $K$. Prove that the integral closure of $A$ in $L$ is a finitely generated $A$-module.
Problem 13.20 (Norm and Trace) Given a finite field extension $\mathbb{K} \supset \mathbb{k}$ and an element $\vartheta \in \mathbb{K}$, write $\chi_{\vartheta}(x) \in \mathbb{k}[x], \operatorname{Sp}(\vartheta) \in \mathbb{k}$, and $N(\vartheta) \in \mathbb{k}$, respectively, for the characteristic polynomial, trace, and determinant of the $\mathfrak{k}$-linear map

$$
\vartheta: \mathbb{K} \rightarrow \mathbb{K}, \quad x \mapsto \vartheta x,
$$

and call them the characteristic polynomial, trace, and norm of $\vartheta$ over $\mathbb{k}$. For a finite Galois extension $\mathbb{k} \subset \mathbb{K}$ with Galois group $G=$ Aut $_{k} \mathbb{K}$, prove the following equalities: (a) $\chi_{\vartheta}(x)=\prod_{g \in G}(x-g \vartheta)$, (b) $\operatorname{Sp}(\vartheta)=\sum_{g \in G} g \vartheta$, (c) $N(\vartheta)=\prod_{g \in G} g \vartheta$.

Problem 13.21 Under the notation from the previous problem, show that:
(a) The linear trace form $\mathbb{K} \rightarrow \mathbb{k}, \vartheta \mapsto \operatorname{Sp}(\vartheta)$, vanishes identically in $\vartheta \in \mathbb{K}$ if and only if every element $\vartheta \in \mathbb{K} \backslash \mathbb{k}$ is inseparable ${ }^{29}$ over $\mathbb{k}$.
(b) The bilinear trace form $\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{k},\left(\vartheta_{1}, \vartheta_{2}\right)=\operatorname{Sp}\left(\vartheta_{1} \vartheta_{2}\right)$, is nondegenerate if and only if the extension $\mathbb{K} \supset \mathbb{k}$ is separable.

[^188]
## Chapter 14 <br> Examples of Galois Groups

### 14.1 Straightedge and Compass Constructions

Let us identify the Euclidean coordinate plane $\mathbb{R}^{2}$ with the field $\mathbb{C}$ in the standard way. ${ }^{1}$

Exercise 14.1 Given the points $0,1, a, b \in \mathbb{C}$, construct the points $a \pm b, a / b, a b$, and $\sqrt{a}$ using straightedge and compass.
It follows from Exercise 14.1 that for every tower of quadratic extensions

$$
\begin{equation*}
\mathbb{Q}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{m-1} \subset \mathbb{L}_{m}=\mathbb{L} \tag{14.1}
\end{equation*}
$$

where $\mathbb{L} \subset \mathbb{C}$ and $\mathbb{L}_{i+1}=\mathbb{L}_{i}\left[\sqrt{a_{i}}\right]$ for some $a_{i} \in \mathbb{L}_{i} \backslash \mathbb{L}_{i}^{2}$, every point $\zeta \in \mathbb{L}$ can be constructed by straightedge and compass if the points $0,1 \in \mathbb{C}$ are given. The converse is also true. More precisely, given the points $0,1 \in \mathbb{C}$, a point $\zeta \in \mathbb{C}$ can be constructed by straightedge and compass only if $\zeta$ lies in some subfield $\mathbb{L} \subset \mathbb{C}$ arrived at by a tower of quadratic extensions (14.1) such that every intermediate field $\mathbb{L}_{i}$ of the tower goes to itself under complex conjugation $z \mapsto \bar{z}$. This is verified by induction as follows.

For two distinct points $a, b \in \mathbb{C}$, write $\ell_{a, b}$ for the line joining them and $C_{a, b}$ for the circle centered at $a$ with radius $|b-a|$. The construction of $\zeta$ by straightedge and compass splits into several steps, each of which produces a new point, namely $p=\ell_{a, b} \cap \ell_{c, d}, p=\ell_{a, b} \cap C_{c, d}$, or $p=C_{a, b} \cap C_{c, d}$, from some already constructed points $a, b, c, d$. We put $\mathbb{L}_{1}=\mathbb{Q}[\sqrt{-1}]$ and assume inductively that $a, b, c, d$ belong to a field $\mathbb{L} \subset \mathbb{C}$ achieved by a tower (14.1) and mapped to itself by complex conjugation. Then $p=\ell_{a, b} \cap \ell_{c, d}$ is a rational function of $a, b, c, d$, and therefore lies in $\mathbb{L}$. The intersections $\ell_{a, b} \cap C_{c, d}$ and $C_{a, b} \cap C_{c, d}$ can be found by solving the

[^189]quadratic equation $f(t)=0$ obtained by substituting ${ }^{2} z=a+(b-a) \cdot t$ in the equation for $C_{c, d}$,
$$
(z-c)(\bar{z}-\bar{c})=(d-c)(\bar{d}-\bar{c}),
$$
and moving all terms to the left-hand side. In the case of the intersection $\ell_{a, b} \cap C_{c, d}$, the quadratic trinomial $f$ has two real roots, whereas for the intersection $C_{a, b} \cap C_{c, d}$, it has two roots lying on the unit circle $\mathrm{U}_{1} \subset \mathbb{C}$. Substitution of these roots into the parametric equation $z=a+(b-a) \cdot t$ gives the required intersection points and shows that $p$ belongs to the splitting field of $f$. Since complex conjugation maps $\mathbb{L}$ to itself, the coefficients of $f$ are real and belong to $\mathbb{L}$. Therefore, the roots of $f$ lie either in $\mathbb{L}$ or in the quadratic extension $\mathbb{L}^{\prime} \supset \mathbb{L}$ whose basis over $\mathbb{L}$ is formed by the roots of $f$. Since the roots are either both real or complex conjugate to each other, the field $\mathbb{L}^{\prime}$ is mapped to itself under complex conjugation. This completes the inductive step.

The Galois correspondence from Theorem 13.7 on p. 310 gives an easy and effective characterization of the fields $\mathbb{L} \subset \mathbb{C}$ appearing as the top levels of the towers (14.1), as well as of those elements $\vartheta \in \mathbb{C}$ that can be constructed with straightedge and compass.

Proposition 14.1 A finite Galois extension $\mathbb{K} \supset \mathbb{k}$ is contained in a field $\mathbb{L} \supset \mathbb{k}$ obtained by a tower of quadratic extensions

$$
\begin{equation*}
\mathfrak{k}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{m-1} \subset \mathbb{L}_{m}=\mathbb{L} \tag{14.2}
\end{equation*}
$$

with $\mathbb{L}_{i+1}=\mathbb{L}_{i}\left[\sqrt{a_{i}}\right]$, $a_{i} \in \mathbb{L}_{i} \backslash \mathbb{L}_{i}^{2}$, if and only if $\operatorname{deg} \mathbb{K} / \mathbb{k}=2^{n}$ for some $n \in \mathbb{N}$.
Proof If $\mathbb{K} \subset \mathbb{L}$ for $\mathbb{L}$ from (14.2), then $\operatorname{deg} \mathbb{K} / \mathbb{k}$ divides $\operatorname{deg} \mathbb{L} / \mathbb{k}=2^{m}$, and therefore, $\operatorname{deg} \mathbb{K} / \mathbb{k}=2^{n}$ for some $n \leqslant m$. Conversely, let $\operatorname{deg} \mathbb{K} / \mathbb{k}=|\mathrm{Gal} \mathbb{K} / \mathbb{k}|=2^{n}$. Hence, $G=G a l \mathbb{K} / \mathbb{k}$ is a finite 2 -group. Every composition factor ${ }^{3}$ of a 2 -group has to be a 2-group. By Proposition 13.6 from Algebra I, the only simple 2-group is $\mathbb{Z} /(2)$. Therefore, the Jordan-Hölder series of $G$ looks like

$$
\begin{equation*}
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n-1} \supset G_{n}=\{e\}, \tag{14.3}
\end{equation*}
$$

where $G_{i+1} \triangleleft G_{i}$ and $G_{i} / G_{i+1} \simeq \mathbb{Z} /(2)$ for all $i$. Under the Galois correspondence, ${ }^{4}$ this series of subgroups produces a tower of quadratic extensions leading directly to the field $\mathbb{K}$ :

$$
\mathbb{k}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{n-1} \subset \mathbb{L}_{n}=\mathbb{K}
$$

where $\mathbb{L}_{i}=\mathbb{K}^{G_{i}}$.

[^190]Exercise 14.2 Give a straightforward construction of the subgroups (14.3) without reference to the Jordan-Hölder theorem.

Theorem 14.1 A complex root of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ can be constructed by straightedge and compass starting from the points $0,1 \in \mathbb{C}$ if and only if the degree of the splitting field of $f$ over $\mathbb{Q}$ is a power of two. In this case, every root of $f$ can be constructed by straightedge and compass.

Proof Write $\mathbb{K} \subset \mathbb{C}$ for the splitting field of $f$. Then $\mathbb{K} \supset \mathbb{Q}$ is a finite Galois extension by Proposition 13.3. For $\operatorname{deg} \mathbb{K} / \mathbb{Q}=2^{m}$, we have seen in the proof of Proposition 14.1 that $\mathbb{K}$ can be achieved by quadratic extensions (14.1), and therefore, every element of $\mathbb{K}$ can be constructed by straightedge and compass. Conversely, let a root $\vartheta$ of $f$ be constructible by straightedge and compass. Then the simple extension $\mathbb{Q}[\vartheta] \subset \mathbb{C}$ is contained in some field $\mathbb{L} \subset \mathbb{C}$ from (14.1). Let $\vartheta^{\prime} \in \mathbb{K}$ be another root of $f$, and $\varphi: \mathbb{K} \leadsto \mathbb{K}$ an automorphism sending $\vartheta$ to $\vartheta^{\prime}$. Then $\varphi$ maps the subfield $\mathbb{Q}[\vartheta] \subset \mathbb{C}$ to the subfield $\mathbb{Q}\left[\vartheta^{\prime}\right] \subset \mathbb{C}$. The embedding

$$
\left.\varphi\right|_{\mathbb{Q}[\vartheta]}: \mathbb{Q}[\vartheta] \hookrightarrow \mathbb{C}, \quad \vartheta \mapsto \vartheta^{\prime},
$$

can be extended to an embedding $\bar{\varphi}: \mathbb{L} \hookrightarrow \mathbb{C}$ that coincides with $\varphi$ on the subfield $\mathbb{Q}[\vartheta] \subset \mathbb{L}$ and maps the tower (14.1) to the tower

$$
\begin{equation*}
\mathbb{Q}=\mathbb{L}_{0} \subset \mathbb{L}_{1}^{\prime} \subset \mathbb{L}_{2}^{\prime} \subset \cdots \subset \mathbb{L}_{m-1}^{\prime} \subset \mathbb{L}_{m}^{\prime}=\mathbb{L}^{\prime} \tag{14.4}
\end{equation*}
$$

where $\mathbb{L}_{i+1}^{\prime}=\mathbb{L}_{i}^{\prime}\left[\sqrt{a_{i}^{\prime}}\right]$ with $a_{i}^{\prime}=\bar{\varphi}\left(a_{i}\right) \in \mathbb{L}_{i}^{\prime} \backslash\left(\mathbb{L}_{i}^{\prime}\right)^{2}$. Since $\vartheta^{\prime} \in \mathbb{L}^{\prime}$, the root $\vartheta^{\prime}$ is also constructible by straightedge and compass. The compositum $\mathbb{L} \mathbb{L}^{\prime}$ contains the roots $\vartheta, \vartheta^{\prime}$ and can be achieved by a tower of quadratic extensions, because it is obtained from $\mathbb{L}$ by the successive adjunction of elements $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}$ whose degrees over the corresponding subfields $\mathbb{L}, \mathbb{L} \mathbb{L}_{1}^{\prime}, \ldots, \mathbb{L L}_{m-1}^{\prime}$ are at most two. Proceeding by induction, we construct a tower of quadratic extensions containing all the roots of $f$, and therefore $\mathbb{K}$. By Proposition 14.1, $\operatorname{deg} \mathbb{K} / \mathbb{Q}$ is a power of two.

Corollary 14.1 A number $\zeta \in \mathbb{C}$ can be constructed by straightedge and compass starting from the points $0,1 \in \mathbb{C}$ only if $\zeta$ is algebraic over $\mathbb{Q}$ and $\operatorname{deg}_{\mathbb{Q}} \zeta=2^{n}$ for some $n \in \mathbb{N}$.

Proof Since the simple extension $\mathbb{Q}[\zeta]$ is contained in the splitting field of the minimal polynomial for $\zeta$, the degree of $\zeta$ over $\mathbb{Q}$ divides the degree of that splitting field.

Example 14.1 (Trisection of an Angle) The angle $\pi / 3$ cannot be subdivided into three equal angles $\pi / 9$ by straightedge and compass. Indeed, such a possibility would allow the construction of the number $\zeta=\cos (\pi / 9)$, which is a root of
the polynomial ${ }^{5} 4 x^{3}-3 x-1 / 2$. Since this polynomial has no rational roots, it is irreducible over $\mathbb{Q}$, and therefore proportional to the minimal polynomial of $\zeta$. Thus, $\operatorname{deg}_{\mathbb{Q}} \zeta=3$, in contradiction to Corollary 14.1.

Example 14.2 (Doubling of the Cube) The edge of a cube whose volume is twice the volume of a given cube cannot be constructed by straightedge and compass, because such a construction would allow the construction of a root of the polynomial $x^{3}-2$, which is irreducible over $\mathbb{Q}$.

Example 14.3 (Regular 7-gon) The regular 7-gone also cannot be constructed by straightedge and compass, because otherwise, one could construct the seventh root of unity $\zeta=e^{2 \pi i / 7}$, whose minimal polynomial ${ }^{6} \Phi_{7}(x)=\left(x^{7}-1\right) /(x-1)$ has degree 6.

### 14.1.1 Effect of Accessory Irrationalities

The problem of straightedge and compass construction can be modified by assuming that some other points $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n} \in \mathbb{C}$ are initially given besides the points 0,1 . In this case, every point of the field $\mathbb{F}=\mathbb{Q}\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right) \subset \mathbb{C}$ is constructible, and we can assume that the given points form a subfield $\mathbb{F} \subset \mathbb{C}$, not necessarily algebraic over $\mathbb{Q}$. The elements of $\mathbb{F}$ are called accessory irrationalities. Everything said above remains valid after replacement of $\mathbb{Q}$ by an arbitrary accessory subfield $\mathbb{F} \subset \mathbb{C}$. Namely, given all the elements of $\mathbb{F}$, a number $\zeta \in \mathbb{C}$ is constructible by straightedge and compass if and only if $\zeta$ is absorbed by a finite tower of quadratic extensions of the field $\mathbb{F}$. The latter is equivalent to the fact that $\zeta$ is algebraic over $\mathbb{F}$ and the splitting field of the minimal polynomial of $\zeta$ over $\mathbb{F}$ has degree $2^{m}$ for some $m \in \mathbb{N}$. This may happen only if $\operatorname{deg}_{\mathbb{F}} \zeta$ is a power of two.
Exercise 14.3 Prove all these statements.
In the most general setup, the effect of accessory irrationalities on Galois extensions is described by the next claim.

Proposition 14.2 (Accessory Irrationalities Theorem) Let $\mathbb{F}, \mathbb{K} \supset \mathbb{k}$ be fields contained in a common algebraically closed field $\mathbb{L}$. If the extension $\mathbb{K} \supset \mathbb{k}$ is a finite Galois extension, then the extension $\mathbb{F} \mathbb{K} \supset \mathbb{F}$ is a finite Galois extension as well, and the Galois group $\mathrm{Gal} \mathbb{F} \mathbb{K} / \mathbb{F}$ is isomorphic to the subgroup $H_{\mathbb{F} \cap \mathbb{K}} \subset \mathrm{Gal} \mathbb{K} / \mathbb{k}$ associated with the intermediate subfield $\mathbb{k} \subset \mathbb{F} \cap \mathbb{K} \subset \mathbb{K}$ under the Galois correspondence for the extension $\mathbb{k} \subset \mathbb{K}$.

Proof By Proposition 13.3, $\mathbb{K} \subset \mathbb{L}$ is the splitting field of some separable polynomial $f \in \mathbb{k}[x]$. As a $\mathbb{k}$-algebra, $\mathbb{K}$ is generated by the roots $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n} \in \mathbb{L}$

[^191]of $f$. The same roots generate the compositum $\mathbb{F} \mathbb{K}$ as an algebra over $\mathbb{F}$. By Proposition 13.4, the extension $\mathbb{F} \mathbb{K} \supset \mathbb{F}$ is normal and separable, i.e., a finite Galois extension. This forces $\mathbb{F} \mathbb{K}$ to be the splitting field for $f$ over $\mathbb{F}$. Automorphisms of $\mathbb{K}$ over $\mathbb{k}$ and automorphisms of $\mathbb{F} \mathbb{K}$ over $\mathbb{F}$ preserve the polynomial $f$ and map the set of roots $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}$ to itself. Since this set generates both $\mathbb{K}$ over $\mathbb{k}$ and $\mathbb{F} \mathbb{K}$ over $\mathbb{F}$, every automorphism is uniquely determined by its action on the roots of $f$. Thus, the Galois groups Gal $\mathbb{K} / \mathbb{k}, \mathrm{Gal} \mathbb{F} \mathbb{K} / \mathbb{F}$ are naturally embedded in the permutation group $\operatorname{Aut}\left\{\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right\} \simeq S_{n}$. The group $\mathrm{Gal} \mathbb{K} / \mathbb{k}$ consists of the permutations of $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}$ that can be extended to $\mathbb{k}$-algebra endomorphisms of $\mathbb{K}=\mathbb{k}\left[\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right]$. The group $\operatorname{Gal} \mathbb{F} \mathbb{K} / \mathbb{F}$ consists of the permutations that can be extended to $\mathbb{F}$-algebra endomorphisms. Since $\mathbb{k} \subset \mathbb{F}$, every $\mathbb{F}$-linear endomorphism is automatically $\mathbb{k}$-linear. Therefore, the second group is a subgroup of the first. It is formed by all transformations $g: \mathbb{k}\left[\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right] \rightarrow \mathbb{k}\left[\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right]$ from $\mathrm{Gal} \mathbb{K} / \mathbb{k}$ that are $\mathbb{F}$-linear. The latter means that $g$ acts identically on $\mathbb{F} \cap \mathbb{K}$.

### 14.2 Galois Groups of Polynomials

Given a separable polynomial $f \in \mathbb{k}[x]$, its splitting field $\mathbb{L}_{f}$ is a finite Galois extension of $\mathbb{k}$ by Proposition 13.3. The Galois group $\mathrm{Gal} \mathbb{L}_{f} / \mathbb{k}$ is called the Galois group of $f$ over $\mathbb{k}$ and denoted by Gal $f / \mathbb{k}$. Since all the coefficients of $f$ are Galois invariant, every automorphism $\psi \in \operatorname{Gal} f / k$ acts on the roots $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}$ of $f$ as a permutation, and this permutation uniquely determines $\psi$, because $\mathbb{L}_{f}$ is generated by $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}$ as a $\mathbb{k}$-algebra. Therefore, the Galois group Gal $f / \mathbb{k}$ can be canonically embedded into the group $\operatorname{Aut}\left\{\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right\}$. A permutation of the roots belongs to $\operatorname{Gal} f / \mathbb{k}$ if and only if it respects all the algebraic relations among the roots. This can be formalized as follows.

Let $\overline{\mathbb{k}} \supset \mathbb{k}$ be an algebraic closure of $\mathbb{k}$. Then the splitting field $\mathbb{L}_{f} \subset \overline{\mathbb{k}}$ coincides with the image of the evaluation homomorphism

$$
\begin{equation*}
\operatorname{ev}_{\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}}: \mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right] \rightarrow \overline{\mathbb{k}}, \quad \psi \mapsto \psi\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right) . \tag{14.5}
\end{equation*}
$$

Its kernel $I_{\mathbb{k}}(\vartheta) \stackrel{\text { def }}{=} \operatorname{kerev}_{\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}}$ consists of all polynomial relations among the roots of $f$, i.e., of those $\psi \in \mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ that vanish at the point $\vartheta=\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right) \in \mathbb{A}^{n}(\overline{\mathbb{k}})$. A permutation of variables $g: t_{i} \mapsto t_{g(i)}$ can be factorized through the endomorphism of the quotient algebra $\mathbb{L}_{f}=\mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right] / I_{\mathbb{k}}(\vartheta)$ if and only if $g$ maps the relation ideal $I_{\mathbb{k}}(\vartheta)$ to itself. Thus,

$$
\begin{equation*}
\operatorname{Gal} f / \mathbb{k} \simeq\left\{g \in S_{n} \mid \forall \psi \in I_{\mathbb{k}}(\vartheta) \psi^{g} \in I_{\mathbb{k}}(\vartheta)\right\}, \tag{14.6}
\end{equation*}
$$

where $\psi^{g}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \stackrel{\text { def }}{=} \psi\left(t_{g(1)}, t_{g(2)}, \ldots, t_{g(n)}\right)$. Formula (14.6) was originally introduced by Évariste Galois as the definition of the group of a polynomial.

Caution 14.1 The inclusion of the Galois group $\mathrm{Gal} f / \mathbb{k}$ into the standard symmetric group $S_{n}=\operatorname{Aut}\{1,2, \ldots, n\}$ provided by the formula (14.6) is not canonical and depends on the choice of bijection between the roots $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}$ and the independent variables $x_{1}, x_{2}, \ldots, x_{n}$ in the evaluation map (14.5).

Proposition 14.3 The affine algebraic variety $V\left(I_{k}(\vartheta)\right) \subset \mathbb{A}^{n}(\overline{\mathbb{k}})$ consists of

$$
m=\operatorname{deg} \mathbb{L}_{f} / \mathbb{k}=|\operatorname{Gal} f / \mathbb{k}|
$$

distinct points $\left(\vartheta_{g(1)}, \vartheta_{g(2)}, \ldots, \vartheta_{g(n)}\right)$, in bijection with the elements $g \in \operatorname{Gal} f / k$ and forming one orbit of the action of $\operatorname{Gal} f / \mathbb{k} \subset S_{n}$ on $\mathbb{A}^{n}$ by permutations of coordinates.

Proof Let $f=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$. Write $e_{i}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ for the elementary symmetric polynomials. Note that $e_{i}\left(t_{1}, t_{2}, \ldots, t_{n}\right)-(-1)^{i} a_{i} \in I_{\mathrm{k}}(\vartheta)$, because

$$
e_{i}\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right)=(-1)^{i} a_{i}
$$

by the Viète formulas. For every point $a=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in V\left(I_{\mathrm{k}}(\vartheta)\right)$, the equalities

$$
e_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=(-1)^{i} a_{i}
$$

force $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)=f(x)=\left(x-\vartheta_{1}\right)\left(x-\vartheta_{2}\right) \cdots\left(x-\vartheta_{n}\right)$. Hence,

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\left(\vartheta_{g(1)}, \vartheta_{g(2)}, \ldots, \vartheta_{g(n)}\right)
$$

for some $g \in S_{n}$. If $g \notin \operatorname{Gal} f / \mathbb{k}$, then there exists some $\psi \in I_{\mathbb{k}}(\vartheta)$ such that $\psi^{g} \notin I_{\mathrm{k}}(\vartheta)$, and $\psi\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\psi\left(\vartheta_{g(1)}, \ldots, \vartheta_{g(n)}\right)=\psi^{g}\left(\vartheta_{1}, \ldots, \vartheta_{n}\right) \neq 0$, in contradiction to the assumption that $a \in V\left(I_{\mathrm{k}}(\vartheta)\right)$. Therefore, $V\left(I_{\mathrm{k}}(\vartheta)\right)$ is contained in the Galois orbit of $\vartheta$. Conversely,

$$
\psi\left(\vartheta_{g(1)}, \vartheta_{g(2)}, \ldots, \vartheta_{g(n)}\right)=\psi^{g}\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right)=0
$$

for all $g \in \operatorname{Gal} f / \mathbb{k}, \psi \in I_{\mathbb{k}}(\vartheta)$, because $\psi^{g} \in I_{\mathfrak{k}}(\vartheta)$ in this case. Thus, the Galois orbit of $\vartheta$ is contained in $V\left(I_{\mathrm{k}}(\vartheta)\right)$.

Exercise 14.4 Show that a separable polynomial $f \in \mathbb{k}[x]$ is irreducible if and only if the Galois group Gal $f / \mathbb{k}$ acts transitively on the roots of $f$.

### 14.2.1 Galois Resolution

Let $\mathbb{L}_{f} \supset \mathbb{k}$ be a splitting field of a separable polynomial

$$
f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n} \in \mathbb{k}[x] .
$$

Write $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n} \in \mathbb{L}_{f}$ for the roots of $f$ and consider the linear homogeneous form

$$
\begin{equation*}
\psi=\vartheta_{1} t_{1}+\vartheta_{2} t_{2}+\cdots+\vartheta_{n} t_{n} \in \mathbb{L}_{f}\left[t_{1}, t_{2}, \ldots, t_{n}\right] . \tag{14.7}
\end{equation*}
$$

The polynomial

$$
\begin{equation*}
F\left(t_{1}, \ldots, t_{n}\right)=\prod_{\sigma \in S_{n}} \psi^{\sigma}\left(t_{1}, \ldots, t_{n}\right)=\prod_{\sigma \in S_{n}}\left(\vartheta_{1} t_{\sigma(1)}+\cdots+\vartheta_{n} t_{\sigma(n)}\right), \tag{14.8}
\end{equation*}
$$

of degree $n$ !, is called the Galois resolution of $f$. Combining the factors obtained by means of the permutations $\sigma$ lying in the same coset $h G$ of the Galois group $G=\operatorname{Gal} f / k \subset S_{n}$ allows us to rewrite (14.8) as

$$
\begin{equation*}
F\left(t_{1}, \ldots, t_{n}\right)=\prod_{h \in S_{n} / G} F_{h}\left(t_{1}, \ldots, t_{n}\right), \tag{14.9}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{h}\left(t_{1}, \ldots, t_{n}\right)=\prod_{g \in G}\left(\vartheta_{1} t_{h g(1)}+\cdots+\vartheta_{n} t_{h g(n)}\right)  \tag{14.10}\\
& \quad=\prod_{g \in G}\left(\vartheta_{g^{-1}(1)} t_{h(1)}+\cdots+\vartheta_{g^{-1}(n)} t_{h(n)}\right)=\prod_{g \in G} g\left(\psi^{h}\right) .
\end{align*}
$$

Here the linear form $\psi^{h} \in \mathbb{L}_{f}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ is obtained from $\psi$ by the permutation $h$ of variables $t_{1}, \ldots, t_{n}$, and $g\left(\psi^{h}\right)$ is obtained from $\psi^{h}$ by applying the automorphism $g: \mathbb{L}_{f} \xrightarrow{\rightarrow} \mathbb{L}_{f}$ to the coefficients of $\psi^{h}$. Since all the linear forms $g\left(\psi^{h}\right)$ in the product (14.10) are distinct and form one orbit of the Galois group, every polynomial $F_{h}$ has coefficients in $\mathbb{k}$ and is irreducible over $\mathbb{k}$. Therefore, $F \in \mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$, and formula (14.9) gives the irreducible factorization of $F$ in $\mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. Since the irreducible factors of $F$ form one orbit of the $S_{n}$-action on $\mathbb{k}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ by permutations of variables, the Galois group $G=\operatorname{Gal} f \subset S_{n}$ coincides with the stabilizer of the factor $F_{e}$ and is conjugate to the stabilizer of every other irreducible factor $F_{h}$.

Proposition 14.4 The Galois group $\mathrm{Gal} f / \mathbb{k}$ of a separable polynomial $f \in \mathbb{k}[x]$ is isomorphic to the group of all permutations of $t_{1}, t_{2}, \ldots, t_{n}$ preserving some factor $F_{h}$ in the irreducible factorization of the Galois resolution off in $\mathbb{K}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$.

### 14.2.2 Reduction of Coefficients

Let $\mathbb{k}=\mathbb{Q}$ and let

$$
f=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n} \in \mathbb{Z}[x]
$$

be a monic polynomial with integer coefficients. We fix a prime $p \in \mathbb{N}$ and write

$$
\bar{f}=x^{n}+\bar{a}_{1} x^{n-1}+\cdots+\bar{a}_{n-1} x+\bar{a}_{n} \in \mathbb{F}_{p}[x]
$$

for the polynomial with the reduced, modulo $p$, coefficients $\bar{a}_{i}=a_{i}(\bmod p) \in \mathbb{F}_{p}$.
Theorem 14.2 If the polynomial $\bar{f} \in \mathbb{F}_{p}[x]$ is separable, then there exists an injective group homomorphism

$$
\operatorname{Gal} \bar{f} / \mathbb{F}_{p} \hookrightarrow \operatorname{Gal} f / \mathbb{Q}
$$

Proof Since the roots $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}$ of $f$ are integral over $\mathbb{Z}$, all the coefficients of every polynomial $F_{h}$ in the irreducible decomposition (14.9) belong to the ring of integers $O \subset \mathbb{L}_{f}$. This forces the coefficients of each polynomial $F_{h} \in \mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ to be integers. Thus, the irreducible factorization (14.9) occurs in $\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. Reducing all the coefficients modulo $p$ leads to the factorization

$$
\begin{equation*}
\bar{F}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\prod_{h \in S_{n} / G} \bar{F}_{h}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \tag{14.11}
\end{equation*}
$$

in $\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$.
Exercise 14.5 Verify that the quotient ring $A \stackrel{\text { def }}{=} O /(p)$ is an $\mathbb{F}_{p}$-algebra.
Write $\bar{\vartheta}_{i}=\vartheta_{i}(\bmod p)$ for the class of the root $\vartheta_{i}$ in the $\mathbb{F}_{p}$-algebra $A=O /(p)$.
Since $\bar{f}$ is separable over $\mathbb{F}_{p}$, it splits in $A[t]$ into a product $\bar{f}(x)=\prod\left(x-\bar{\vartheta}_{i}\right)$ of $\operatorname{deg} f$ distinct linear factors.
Exercise 14.6 Check that the $\mathbb{F}_{p}$-subalgebra of $A$ generated by the roots of $\bar{f}$ is a splitting field of $\bar{f}$ over $\mathbb{F}_{p}$.
This forces the polynomial $\bar{F} \in \mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ to be the Galois resolution (14.8) for the polynomial $\bar{f} \in \mathbb{F}_{p}[x]$ over $\mathbb{F}_{p}$. By Proposition 14.4 , the Galois group $\operatorname{Gal} \bar{f} / \mathbb{F}_{p}$ can be identified with the group of permutations of the variables $t_{i}$ that preserve some factor $P$ from the irreducible factorization of $\bar{F}$ in $\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. The polynomial $P$ divides the modulo $p$ reduction $\bar{F}_{h}$ of some factor $F_{h}$ from the irreducible decomposition of $F$ in $\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. Let us identify the Galois group $\operatorname{Gal} f / \mathbb{Q}$ with the group of permutations of the $t_{i}$ that preserve $F_{h}$. Since every permutation $\sigma \in S_{n} \backslash \operatorname{Gal} f / \mathbb{Q}$ transforms $F_{h}$ to another factor $F_{h^{\prime}} \neq F_{h}$, it cannot, in particular, transform the irreducible factor $P$ of $\bar{F}_{h}$ in $\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$ to itself. Therefore, $\operatorname{Gal} f / \mathbb{Q} \supset \operatorname{Gal} \bar{f} / \mathbb{F}_{p}$.

Corollary 14.2 Let $f \in \mathbb{Z}[x]$ be an irreducible monic polynomial, and $\bar{f} \in \mathbb{F}_{p}[x]$ its reduction modulo $p$. If

$$
\bar{f}=q_{1} q_{2} \cdots q_{m}
$$

for irreducible polynomials $q_{1}, q_{2}, \ldots, q_{m} \in \mathbb{F}_{p}[x]$ of degrees $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{m}$, then the Galois group $\operatorname{Gal} f / \mathbb{Q}$, considered as a subgroup of the permutation group of the roots off, contains a permutation of cyclic type $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
Proof The splitting field of $\bar{f}$ over $\mathbb{F}_{p}$ is a finite field with a cyclic ${ }^{7}$ Galois group $G$ over $\mathbb{F}_{p}$. Since $G$ acts transitively on the roots of each irreducible polynomial $q_{i}$, the generator of $G$ acts on the roots of $\bar{f}$ by a permutation of cyclic type $\lambda$. By Theorem 14.2, this permutation belongs to $\operatorname{Gal} f / \mathbb{Q}$ as well.

Example 14.4 (Quintic Polynomial with Galois Group $S_{5}$ ) Let us compute the Galois group of the polynomial $f(x)=x^{5}-x-1$ over $\mathbb{Q}$. Consider the irreducible factorizations of $\bar{f}$ in $\mathbb{F}_{2}[x]$ and in $\mathbb{F}_{3}[x]$. Every nontrivial factorization of $f$ contains a factor of degree at most 2. By Exercise 13.13, the product of all monic irreducible polynomials of degree at most 2 in $\mathbb{F}_{p}[x]$ equals $x^{p^{2}}-x$. The Euclidean algorithm shows that $\operatorname{GCD}\left(x^{5}-x-1, x^{4}-x\right)=x^{2}+x+1$ over $\mathbb{F}_{2}$ and $\operatorname{GCD}\left(x^{5}-x-1, x^{9}-x\right)=1$ over $\mathbb{F}_{3}$. Thus, $\bar{f}$ is irreducible in $\mathbb{F}_{3}[x]$, whereas $\bar{f}=\left(x^{2}+x+1\right) \cdot\left(x^{3}+x^{2}+1\right)$ in $\mathbb{F}_{2}[x]$. By Corollary 14.2 , the Galois group $\operatorname{Gal} f / \mathbb{Q}$ contains a cycle of length 5 and a permutation of cyclic type $(3,2)$, the cube of which is a transposition. Since a cycle of length 5 and a transposition generate the whole symmetric group $S_{5}$, we conclude that $\operatorname{Gal} f / \mathbb{Q} \simeq S_{5}$. It will follow from Theorem 14.5 on p. 330 that the roots of $x^{5}-x-1$ cannot be expressed through the rational numbers by means of the four arithmetic operations and radicals of positive integer degree.

### 14.3 Galois Groups of Cyclotomic Fields

The field $\mathbb{Q}\left[\zeta_{n}\right] \supset \mathbb{Q}$, which is generated as a $\mathbb{Q}$-algebra by the primitive $n$th root of unity

$$
\begin{equation*}
\zeta_{n} \stackrel{\text { def }}{=} e^{2 \pi i / n} \in \mathbb{C}, \tag{14.12}
\end{equation*}
$$

is called the $n$th cyclotomic field. This is the smallest subfield in $\mathbb{C}$ containing the multiplicative group of all $n$th roots of unity $\mu_{n} \subset \mathbb{C}$. Equivalently, it can be described as the splitting field of the separable polynomial $x^{n}-1 \in \mathbb{Q}[x]$ within $\mathbb{C}$. Hence, the $n$th cyclotomic field is the Galois extension of $\mathbb{Q}$. Every automorphism

[^192]$\sigma \in \mathrm{Gal} \mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ maps the generator $\zeta_{n}$ of $\mu_{n}$ to some other generator of $\boldsymbol{\mu}_{n}$, that is, acts by the rule $\sigma: \zeta_{n} \mapsto \zeta_{n}^{m(\sigma)}$ for some invertible element $m(\sigma) \in(\mathbb{Z} /(n))^{*}$ of the residue class ring $\mathbb{Z} /(n)$. This leads to the homomorphic embedding of the Galois group of the $n$th cyclotomic field into the multiplicative group of invertible residue classes in $\mathbb{Z} /(n)$,
\[

$$
\begin{equation*}
\operatorname{Gal} \mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q} \hookrightarrow(\mathbb{Z} /(n))^{*}, \quad \sigma \mapsto m(\sigma) \tag{14.13}
\end{equation*}
$$

\]

Write $R_{n} \stackrel{\text { def }}{=}\left\{\zeta_{n}^{m} \mid \operatorname{GCD}(n, m)=1\right\} \subset \mu_{n}$ for the set of all primitive $n$th roots of unity. Since the Galois group $\operatorname{Gal} \mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ maps $R_{n}$ to itself, the coefficients of the nth cyclotomic polynomial

$$
\Phi_{n}(x) \stackrel{\text { def }}{=} \prod_{\xi \in R_{n}}(x-\xi)
$$

are Galois invariant, that is, rational and therefore integers, because all the complex roots of unity are integral over $\mathbb{Z}$. Thus, $\Phi_{n} \in \mathbb{Z}[x]$. For example,

$$
\begin{aligned}
& \Phi_{2}(x)=x+1 \\
& \Phi_{3}(x)=(x-\omega)\left(x-\omega^{2}\right)=x^{2}+x+1 \\
& \Phi_{4}(x)=(x-i)(x+i)=x^{2}+1 \\
& \Phi_{5}(x)=\left(x^{5}-1\right) /(x-1)=x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{6}(x)=\left(z-\zeta_{6}\right)\left(x-\zeta_{6}^{-1}\right)=x^{2}-x+1
\end{aligned}
$$

In particular, the $n$th cyclotomic field $\mathbb{Q}\left[\zeta_{n}\right] \subset \mathbb{C}$ can be characterized as the splitting field of the $n$th cyclotomic polynomial $\Phi_{n} \in \mathbb{Z}[x]$, and

$$
\operatorname{Gal} \mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}=\operatorname{Gal} \Phi_{n} .
$$

### 14.3.1 Frobenius Elements

For every prime $p \nmid n$, the polynomial $x^{n}-1$ is separable over $\mathbb{F}_{p}$. The reduction $\bar{\Phi}_{n}$ of $\Phi_{n}$ modulo $p$ is also separable over $\mathbb{F}_{p}$, because $\bar{\Phi}_{n}$ divides $x^{n}-1$ in $\mathbb{F}_{p}[x]$. Therefore, the mapping $\xi \mapsto \bar{\xi}=\xi(\bmod p)$ establishes a bijection between the set of complex primitive roots of unity $R_{n} \subset O \subset \mathbb{Q}\left[\zeta_{n}\right] \subset \mathbb{C}$ and the set of roots of the reduced cyclotomic polynomial in the splitting field of $\bar{\Phi}_{n}$ over $\mathbb{F}_{p}$, which is generated as an $\mathbb{F}_{p}$-algebra by the residue classes $\bar{\xi} \in O /(p)$ of the complex roots of unity $\xi$ in the quotient algebra of the ring of integers $O \subset \mathbb{Q}\left[\zeta_{n}\right]$ by the principal
ideal $(p) \subset O$. Since this splitting field is finite, it is a finite Galois extension of $\mathbb{F}_{p}$ with cyclic Galois group generated by the Frobenius endomorphism ${ }^{8}$

$$
F_{p}: \bar{\xi} \mapsto \bar{\xi}^{p}
$$

By Theorem 14.2, the Galois group Gal $\Phi_{n} / \mathbb{Q}$ contains a permutation $\sigma \in$ Aut $R_{n}$ of the complex primitive roots such that $\overline{\sigma(\xi)}=\bar{\xi}^{p}$. Therefore, the multiplicative group automorphism

$$
\begin{equation*}
F_{p}: \mu_{n} \xrightarrow{\rightarrow} \mu_{n}, \quad \xi \mapsto \xi^{p} \tag{14.14}
\end{equation*}
$$

can be extended to an automorphism of the cyclotomic field $\mathbb{Q}\left[\zeta_{n}\right]$ over $\mathbb{Q}$. This extension is called the p-Frobenius element in the Galois group of the cyclotomic field. Thus, for all prime integers $p \nmid n$, the Frobenius automorphisms $F_{p} \in \operatorname{Gal} \bar{\Phi}_{n} / \mathbb{F}_{p}$ are canonically included in the Galois group $\operatorname{Gal} \Phi_{n} / \mathbb{Q}$. Moreover, every complex primitive root $\zeta_{n}^{m} \in R_{n}, \operatorname{GCD}(m, n)=1$, can be obtained by applying the Frobenius elements to the initial root $\zeta_{n}=e^{2 \pi i / n}$. Namely, if $m=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$, then $\zeta_{n}^{m}=F_{p_{1}}^{m_{1}} F_{p_{2}}^{m_{2}} \cdots F_{p_{k}}^{m_{k}} \zeta_{n}$. In particular, the Galois group Gal $\Phi_{n} / \mathbb{Q}$ acts transitively on the roots of $\Phi_{n}$. Hence, $\Phi_{n}$ is irreducible over $\mathbb{Q}$. Thus, $\Phi_{n}$ is the minimal polynomial of $\zeta_{n}$ over $\mathbb{Q}$.

Proposition 14.5 The embedding (14.13) is a group isomorphism, i.e.,

$$
\mathrm{Gal} \Phi_{n} \simeq(\mathbb{Z} /(n))^{*}
$$

In particular, $\operatorname{deg} \mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}=\varphi(n)$ is Euler's function.
Proof Since the Galois group Gal $\Phi_{n}$ acts transitively on the roots of $\Phi_{n}$, the inequality $\left|\operatorname{Gal} \Phi_{n}\right| \geqslant \operatorname{deg} \Phi_{n}=\varphi(n)=\left|(\mathbb{Z} /(n))^{*}\right|$ holds.

Example 14.5 (Gaussian Sum) Let $p>2$ be a rational prime. If a subgroup $H \subset \mathbb{F}_{p}^{*}$ has index two, then $H$ contains all nonzero squares in $\mathbb{F}_{p}$, because

$$
\xi^{2} H=\xi H \cdot \xi H=H
$$

in the quotient group $\mathbb{F}_{p}^{*} / H \simeq \mathbb{Z} /(2)$. This forces $H$ to coincide with the multiplicative group of quadratic residues ${ }^{9}$ modulo $p$. Therefore, the Galois group of the cyclotomic field contains a unique subgroup of index two, and the isomorphism $m$ : $\mathrm{Gal} \Phi_{n} \xrightarrow{\sim} \mathbb{F}_{p}^{*}$ from formula (14.13) on p .324 maps this subgroup isomorphically onto the multiplicative group of quadratic residues. By the Galois correspondence,

[^193]there exists a unique quadratic extension $\mathbb{Q} \subset \mathbb{K}$ contained in the cyclotomic field $\mathbb{Q}\left[\zeta_{p}\right]$. The field $\mathbb{K}$ is spanned over $\mathbb{Q}$ by the complex number
\[

$$
\begin{equation*}
\vartheta=\sum_{\substack{\sigma \in \operatorname{Gal} \Phi_{n}: \\ m(\sigma) \in \mathbb{F}_{p}^{* 2}}} \sigma\left(\zeta_{p}\right)-\sum_{\substack{\sigma \in \operatorname{Gal} \Phi_{n}: \\ m(\sigma) \notin \mathbb{F}_{p}^{* 2}}} \sigma\left(\zeta_{p}\right)=\sum_{m=1}^{p-1}\left[\frac{m}{p}\right] \cdot \zeta_{p}^{m}, \tag{14.15}
\end{equation*}
$$

\]

where

$$
\left[\frac{m}{p}\right] \stackrel{\text { def }}{=} \begin{cases}0 & \text { for } m(\bmod p)=0 \\ 1 & \text { for } m(\bmod p) \in \mathbb{F}_{p}^{2} \backslash 0, \\ -1 & \text { for } m(\bmod p) \notin \mathbb{F}_{p}^{2}\end{cases}
$$

is the Legendre-Jacobi symbol. ${ }^{10}$ Indeed, the sum (14.15) is invariant under the action of the subgroup $\mathbb{F}_{p}^{* 2} \subset \operatorname{Gal} \Phi_{n}$, and it alternates sign under the action of all other automorphisms of the cyclotomic field. The sum (14.15) is known as a Gaussian sum.

Exercise 14.7 Verify that $\sqrt{(-1)^{(p-1) / 2} p} \in \mathbb{Q}[\vartheta]$ for all rational primes $p>2$, and write an explicit expression for this square root in terms of the complex $p$ th roots of unity.

### 14.4 Cyclic Extensions

Let $\mathbb{k}$ be an arbitrary field. An element $\zeta \in \mathbb{k}$ is called a primitive mth root of unity if $\zeta^{m}=1$ and $\zeta^{i} \neq 1$ for $0<i<m$. If the field $\mathbb{k}$ contains such a primitive root $\zeta$, then the multiplicative group of roots of the binomial $x^{m}-1$ in $\mathbb{k}$ has order $m$ and is generated by $\zeta$. Hence, the polynomial $x^{m}-1$ is separable and completely factorizable over $\mathbb{k}$ in this case. Therefore, $m \nmid \operatorname{char}(\mathbb{k})$, and every polynomial

$$
x^{d}-a \in \mathbb{k}[x]
$$

of degree $d \mid m$ is separable over $\mathbb{k}$ as well. We write $\mu_{m} \subset \mathbb{k}^{*}$ for the cyclic multiplicative group of $m$ th roots of unity in $\mathbb{k}$. The generators of $\boldsymbol{\mu}_{m}$ are exactly the primitive $m$ th roots. We also write

$$
\mathbb{k}^{* s}=\left\{\alpha^{s} \mid \alpha \in \mathbb{k}^{*}\right\}
$$

for the multiplicative group of all the proper nonzero $s$ th powers in $\mathbb{k}$.
Theorem 14.3 Let $k$ be an arbitrary field containing a primitive mth root of unity, and $a \in \mathbb{k}^{*}$. Then the binomial $f(x)=x^{m}-a$ has cyclic Galois group over $\mathbb{k}$,

[^194]and the irreducible factorization of $f$ in $\mathbb{k}[x]$ has the form $f=g_{1} g_{2} \cdots g_{k}$, where $g_{i}(x)=x^{n}-b_{i}$. The numbers $k, n \in \mathbb{N}$ satisfy the conditions
$$
k n=m, a \in \mathbb{k}^{* k},|\operatorname{Gal} f / \mathbb{k}|=n .
$$

In particular, $f$ is irreducible if and only if $n=m$, and this means that the quotient algebra $\mathbb{k}[x] /(f)$ is a splitting field off.

Proof Let $\overline{\mathbb{k}} \supset \mathbb{k}$ be an algebraic closure, and $\alpha \in \overline{\mathbb{k}}$ a root of $f$. Then the roots of $f$ in $\overline{\mathbb{k}}$ are in bijection with the group $\boldsymbol{\mu}_{m} \subset \mathbb{k}$ and are equal to $\xi \alpha, \xi \in \boldsymbol{\mu}_{m}$. If a permutation $g \in \operatorname{Gal} f / \mathbb{k}$ maps $\alpha$ to $g(\alpha)=\vartheta_{g} \cdot \alpha$ for some $\vartheta_{g} \in \mu_{m}$, then $g$ acts on every root of $f$ as multiplication by $\vartheta_{g}$, because $g(\xi \alpha)=\xi g(\alpha)=\xi \vartheta_{g} \alpha=\vartheta_{g} \xi \alpha$. This leads to a monomorphism of groups

$$
\begin{equation*}
\operatorname{Gal} f / \mathbb{k} \hookrightarrow \mu_{m}, \quad g \mapsto \vartheta_{g}=g(\alpha) / \alpha . \tag{14.16}
\end{equation*}
$$

Since $\mu_{m}$ is a cyclic group, the image $G \subset \mu_{m}$ of the homomorphism (14.16) is a cyclic subgroup generated by a primitive $n$th root of unity $\zeta$ for some $n \mid m$. Therefore, $G=\mu_{n} \subset \mu_{m}$. The cosets $\mu_{n} \xi \subset \mu_{m}$ are in bijection with the orbits of the Galois group action on the roots of $f$. Hence, the cosets $\boldsymbol{\mu}_{n} \xi$ are in bijection with the irreducible factors $f_{\xi}(x) \stackrel{\text { def }}{=} \prod_{\nu=0}^{n-1}\left(x-\zeta^{\nu} \xi \alpha\right)$ of the binomial $f$ in $\mathbb{k}[x]$.
Exercise 14.8 Verify that $f_{\xi}(x)=x^{n}-\xi^{n} \alpha^{n}$.
Since $f_{\xi} \in \mathbb{k}[x]$, its constant term $b_{\xi}$ is equal to $\xi^{n} \alpha^{n} \in \mathbb{k}$. Therefore, the element

$$
c=b_{\xi} / \xi^{n}=\alpha^{n}
$$

lies in $\mathbb{k}$ and does not depend on $\xi$. Thus, the irreducible factorization of $f$ in $\mathbb{k}[x]$ has the form $x^{m}-a=\prod_{\xi \in \mu_{m} / \mu_{n}}\left(x^{n}-b_{\xi}\right)$, and the constant term of $f$ can be written as $a=\alpha^{m}=c^{k} \in \mathbb{k}^{* k}$ for $k=m / n$. As a byproduct, we conclude that $f$ is irreducible if and only if $n=m$. In this case, the embedding (14.16) becomes an isomorphism, and the quotient algebra $\mathbb{k}[x] /(f)$ becomes a field containing all the roots $\xi \cdot x(\bmod f)$ of the binomial $f$.

Exercise 14.9 Under the assumptions of Theorem 14.3, show that the splitting fields of two binomials $x^{m}-a, x^{m}-b$ coincide within $\overline{\mathbb{K}}$ if and only if $a=b^{r} c^{m}$ for some $c \in \mathbb{k}$ and $r \in \mathbb{N}$ coprime to $m$.

Definition 14.1 (Cyclic Extensions) A finite Galois extension $\mathbb{K} \supset \mathbb{k}$ is called cyclic of order $m$ if the Galois group $G a l \mathbb{K} / \mathbb{k}$ is cyclic of order $m$.

Theorem 14.4 Let $\mathbb{k}$ be an arbitrary field containing a primitive mth root of unity. Then the cyclic extensions of $k$ of degree $m$ are exhausted by the splitting fields of irreducible binomials $x^{m}-a \in \mathbb{K}[x]$, i.e., by the simple extensions $\mathbb{K}[\sqrt[m]{a}]$.
Proof Let $\mathbb{K} \subset \mathbb{k}$ be a cyclic extension of degree $m$ with Galois group $G=\mathrm{Gal} \mathbb{K} / \mathbb{k}$ generated by an automorphism $\sigma \in$ Aut $_{k} \mathbb{K}$ of order $m$, and let $\zeta \in \mathbb{k}$ be a primitive
$m$ th root of unity. Consider the following $\mathbb{k}$-linear endomorphism of the field $\mathbb{K}$ :

$$
L_{\zeta, \sigma} \stackrel{\text { def }}{=} \sum_{i=0}^{m-1} \zeta^{i} \sigma^{i}: \vartheta \mapsto \sum_{i=0}^{m-1} \zeta^{i} \sigma^{i}(\vartheta) .
$$

Since the automorphisms $\sigma^{0}=\mathrm{Id}, \sigma, \sigma^{2}, \ldots, \sigma^{m-1}$ constitute distinct multiplicative characters of the abelian group ${ }^{11} \mathbb{K}^{*}$ over the field $\mathbb{K}$, they are linearly independent ${ }^{12}$ over $\mathbb{K}$ in the vector space of all functions $\mathbb{K}^{*} \rightarrow \mathbb{K}$. Therefore, the endomorphism $L_{\zeta, \sigma}$ is nonzero.
Exercise 14.10 Check that $\sigma L_{\zeta, \sigma}=\zeta^{-1} L_{\zeta, \sigma}$.
The equality $\left(\sigma-\zeta^{-1}\right) L_{\zeta, \sigma}=0$ forces the image of $L_{\zeta, \sigma}$ to be in the $\zeta^{-1}$-eigenspace of the automorphism $\sigma$. Hence, there exists a nonzero element $\alpha \in \mathbb{K}$ such that $\sigma(\alpha)=\zeta^{-1} \alpha$. The Galois orbit of $\alpha$ consists of $m$ distinct elements $\sigma^{i}(\alpha)=\zeta^{-i} \alpha$, $0 \leqslant i \leqslant m-1$, the roots of the binomial $f(x)=x^{m}-\alpha^{m}$. This forces $f$ to be irreducible with coefficients in $\mathbb{k}$.
Exercise 14.11 Check by direct computation that the constant term of $f$ is Galois invariant.
We conclude that the simple extension $\mathbb{k}[\alpha] \simeq \mathbb{k}[x] /(f)$ is the splitting field of $f$ contained in $\mathbb{K}$. Since the fields $\mathbb{k}[\alpha]$ and $\mathbb{K}$ have the same degree $m$ over $\mathbb{k}$, they coincide.

Exercise 14.12* (Kummer Isomorphism) Let $\mathbb{k}$ be an arbitrary field, and $\overline{\mathbb{K}} \supset \mathbb{k}$ an algebraic closure of $\mathbb{k}$. Show that there exists a well-defined isomorphism of abelian groups

$$
\mathbb{k}^{*} / \mathbb{k}^{* m} \leadsto \operatorname{Hom}_{\mathcal{A} b}\left(\operatorname{Gal} \overline{\mathbb{k}} / \mathbb{k}, \mu_{m}\right)
$$

mapping a class $a\left(\bmod \mathbb{k}^{* m}\right)$ to the homomorphism of abelian groups

$$
\mathrm{Gal} \overline{\mathbb{k}} / \mathbb{k} \rightarrow \boldsymbol{\mu}_{m}, \quad \sigma \mapsto \sigma(\sqrt[m]{a}) / \sqrt[m]{a} .
$$

### 14.5 Solvable Extensions

A finite group $G$ is called solvable if all the composition factors ${ }^{13}$ of $G$ are exhausted by the cyclic simple groups $\mathbb{Z} /(p)$ for some prime $p \in \mathbb{N}$. Given a field $\mathbb{k}$ of characteristic zero, a finite Galois extension $\mathbb{K} \supset \mathbb{k}$ is called solvable if the Galois group $\mathrm{Gal} \mathbb{K} / \mathbb{k}$ is solvable.

[^195]Lemma 14.1 A finite group $G$ is solvable if and only if there exists a decreasing series of subgroups

$$
\begin{equation*}
G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots \supset G_{m-1} \supset G_{m}=\{e\} \tag{14.17}
\end{equation*}
$$

such that $G_{i+1} \triangleleft G_{i}$ and the quotient $G_{i} / G_{i+1}$ is abelian for all $0 \leqslant i<m$.
Proof By definition, a composition series of a solvable group satisfies the condition of the lemma. Conversely, given a series (14.17), a composition series for $G$ can be constructed by taking a composition series of every quotient $G_{i} / G_{i+1}$,

$$
\begin{equation*}
G_{i} / G_{i+1}=H_{i, 0} \supset H_{i, 1} \supset H_{i, 2} \supset \cdots \supset H_{i, m_{i-1}} \supset H_{i, m_{i}}=\{e\}, \tag{14.18}
\end{equation*}
$$

and replacing the fragment $G_{i} \supset G_{i+1}$ in (14.17) by the preimage of the chain (14.18) under the factorization map $G_{i} \rightarrow G_{i} / G_{i+1}$, that is, by

$$
G_{i} \supset H_{i, 1} G_{i+1} \supset H_{i, 2} G_{i+1} \supset \cdots \supset H_{i, m_{i-1}} G_{i+1} \supset G_{i+1} .
$$

Since the composition factors of every abelian group $G_{i+1} \triangleleft G_{i}$ are exhausted by the simple abelian groups $\mathbb{Z} /(p)$, the resulting composition factors of $G$ are also exhausted by the groups $\mathbb{Z} /(p)$.

Lemma 14.2 All the subgroups and quotient groups of a solvable group are solvable. Conversely, if a group $G$ has a solvable normal subgroup $N \triangleleft G$ with solvable quotient $G / N$, then $G$ is solvable.

Proof Let $G$ possess a decreasing series of subgroups

$$
\begin{equation*}
G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots \supset G_{m-1} \supset G_{m}=\{e\} \tag{14.19}
\end{equation*}
$$

satisfying the conditions of Lemma 14.1. Intersecting this series with an arbitrary subgroup $H \subset G$ leads to a chain

$$
H=G_{0} \cap H \supset G_{1} \cap H \supset G_{2} \cap H \supset \cdots \supset G_{m-1} \cap H \supset G_{m} \cap H=H
$$

of subgroups in $H$ with quotients $\left(G_{i} \cap H\right) /\left(G_{i+1} \cap H\right) \simeq\left(\left(G_{i} \cap H\right) \cdot G_{i+1}\right) / G_{i+1}$, which are subgroups of the abelian groups $G_{i} / G_{i+1}$, and therefore are abelian as well. Symmetrically, for every quotient group $G / H$, applying the factorization homomorphism $\pi: G \rightarrow G / H$ to the chain (14.19) leads to the chain

$$
\frac{G}{H}=\frac{G_{0}}{H} \supset \frac{G_{1}}{G_{1} \cap H} \supset \frac{G_{2}}{G_{2} \cap H} \supset \cdots \supset \frac{G_{m-1}}{G_{m-1} \cap H} \supset \frac{G_{m}}{G_{m} \cap H}=\{e\}
$$

in $G / H$ with factors

$$
\frac{G_{i} /\left(G_{i} \cap H\right)}{G_{i+1} /\left(G_{i+1} \cap H\right)} \simeq \frac{G_{i}}{G_{i+1}\left(G_{i} \cap H\right)} \simeq \frac{G_{i} / G_{i+1}}{\left(G_{i} \cap H\right) /\left(G_{i+1} \cap H\right)},
$$

which are the quotient groups of the abelian groups $G_{i} / G_{i+1}$, and therefore are abelian too.

Conversely, given a solvable normal subgroup $N \triangleleft G$ with solvable quotient $G / N$, a chain (14.19) for the quotient group $G / N$ is lifted to $G$ along the factorization map $G \rightarrow G / N$ to the chain

$$
G=G_{0} N \supset G_{1} N \supset G_{2} N \supset \cdots \supset G_{m-1} N \supset G_{m} N=N
$$

with quotients

$$
\frac{G_{i} N}{G_{i+1} N} \simeq \frac{G_{i} N / N}{G_{i+1} N / N} \simeq \frac{G_{i}}{G_{i+1}\left(N \cap G_{i}\right)} \simeq \frac{G_{i} / G_{i+1}}{\left(G_{i} \cap N\right) /\left(G_{i+1} \cap N\right)},
$$

which are abelian for the same reason as above. Extending this chain by the chain (14.19) for the subgroup $N$,

$$
N=N_{0} \supset N_{1} \supset N_{2} \supset \cdots \supset N_{m-1} \supset N_{n}=\{e\}
$$

we get the required chain (14.19) for $G$.
Theorem 14.5 Let $\mathbb{k}$ be a field of characteristic zero, and $f \in \mathbb{k}[x]$ an irreducible polynomial. If some root of $f$ admits an expression through the elements of $\mathbb{k}$ by means of addition, subtraction, multiplication, division, and extraction of nth roots for arbitrary $n \in \mathbb{N}$, then the Galois group $\operatorname{Gal} f / k$ is solvable. In this case, all the roots off can be expressed in radicals through the elements of $\mathfrak{k}$.
Proof Let $\overline{\mathbb{k}} \supset \mathbb{k}$ be an algebraic closure of $\mathbb{k}$, and $\mathbb{K} \subset \overline{\mathbb{k}}$ the splitting field of $f$. A root $\alpha \in \overline{\mathbb{k}}$ of the polynomial $f$ can be expressed in radicals if and only if $\alpha$ belongs to some field $\mathbb{L} \subset \overline{\mathbb{k}}$ achieved by a finite tower of simple extensions

$$
\begin{equation*}
\mathbb{k}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \mathbb{L}_{2} \subset \cdots \subset \mathbb{L}_{m}=\mathbb{L} \tag{14.20}
\end{equation*}
$$

where $\mathbb{L}_{i+1}=\mathbb{L}_{i}[x] /\left(x^{k_{i}}-a_{i}\right)$ for some $a_{i} \in \mathbb{L}_{i}$ such that the polynomial $x^{k_{i}}-a_{i}$ is irreducible over $\mathbb{L}_{i}$. We will prove the theorem by constructing a Galois extension $\mathbb{L}^{\prime} \supset \mathbb{k}$ with solvable Galois group $G a l \mathbb{L}^{\prime} / \mathbb{k}$ such that $\mathbb{L} \subset \mathbb{L}^{\prime}$. This forces the splitting field $\mathbb{K}$ to be a subfield of $\mathbb{L}^{\prime}$ normal over $\mathbb{K}$, and in accordance with the Galois correspondence, the Galois group

$$
\mathrm{Gal} \mathbb{K} / \mathbb{k}=\frac{\mathrm{Gal} \mathbb{L}^{\prime} / \mathbb{k}}{\mathrm{Gal} \mathbb{L}^{\prime} / \mathbb{K}}
$$

is solvable by Lemma 14.2, as the quotient group of a solvable group. We will construct $\mathbb{L}^{\prime}$ by a step-by-step extension of the tower (14.20) to the tower

$$
\begin{equation*}
\mathbb{k} \subset \mathbb{L}_{0}^{\prime} \subset \mathbb{L}_{1}^{\prime} \subset \mathbb{L}_{2}^{\prime} \subset \cdots \subset \mathbb{L}_{m}^{\prime}=\mathbb{L}^{\prime} \tag{14.21}
\end{equation*}
$$

such that $\mathbb{L}_{i} \subset \mathbb{L}_{i}^{\prime}$ and every $\mathbb{L}_{i}^{\prime}$ is a Galois extension of $\mathbb{k}$. At the first step, we put

$$
\mathbb{L}_{0}^{\prime} \subset \bar{\kappa}
$$

as the splitting field of the polynomial $x^{N}-1$ with $N$ sufficiently large that $\mathbb{L}_{0}^{\prime}$ contains a primitive $k$ th root of unity for all $k$ appearing as the degrees of radicals in the expression of $\alpha$. It follows from Proposition 14.5 and Proposition 13.4 that the extension $\mathbb{k} \subset \mathbb{L}_{0}^{\prime}$ is a Galois extension with abelian Galois group. Assume that the field $\mathbb{L}_{i}^{\prime}$ is already constructed, and put $\mathbb{L}_{i+1}^{\prime} \subset \overline{\mathbb{k}}$ as the splitting field of the polynomial

$$
\prod_{=\text {Gal } \mathbb{L}_{i}^{\prime} / k}\left(x^{k_{i}}-\sigma\left(a_{i}\right)\right) \in \mathbb{L}_{i}^{\prime}[x] .
$$

Since the coefficients of this polynomial are invariant under the action of the Galois group $\mathrm{Gal} \mathbb{L}_{i}^{\prime} / \mathbb{k}$, they actually belong to $\mathbb{k}$, and therefore, $\mathbb{L}_{i+1}^{\prime} \supset \mathbb{k}$ is a finite Galois extension containing the field $\mathbb{L}_{i+1}=\mathbb{L}_{i}[x] /\left(x^{k_{i}}-a_{i}\right)$. Note that the field $\mathbb{L}_{i+1}^{\prime}$ can be obtained from the previous field $\mathbb{L}_{i}^{\prime}$ by the sequential adjunction of roots of irreducible binomials $x^{n}-a$ with $a \in \mathbb{L}_{i}^{\prime}$. By Theorem 14.3, every such adjunction leads to a cyclic Galois extension.

After $m$ steps, we get a normal separable field $\mathbb{L}^{\prime} \supset \mathbb{k}$, obtained from $\mathbb{k}$ by sequential Galois extensions each with an abelian Galois group. The Galois correspondence provides the Galois group $\mathrm{Gal} \mathbb{L}^{\prime} / \mathbb{k}$ with a decreasing series of subgroups satisfying the conditions of Lemma 14.1. Hence, the Galois group $\mathrm{Gal} \mathbb{L}^{\prime} / \mathbb{k}$ is solvable.

Remark 14.1 The assumption char $(\mathbb{k})=0$ can be weakened to the requirement that $\operatorname{char}(\mathbb{k})$ divide the degree of no radical appearing in the expression for the root. The above proof works in this case as well.

### 14.5.1 Generic Polynomial of Degree $n$

Let $\mathbb{F}$ be an arbitrary field, and $\mathbb{k}=\mathbb{F}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the field of rational functions in $n$ variables $a_{1}, a_{2}, \ldots, a_{n}$ algebraically independent over $\mathbb{F}$. The polynomial

$$
\begin{equation*}
F(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n} \in \mathbb{k}[x] \tag{14.22}
\end{equation*}
$$

is called the generic polynomial of degree $n$ over $\mathbb{F}$, because specializing the coefficients of $F$ to concrete values in $\mathbb{F}$ allows one to produce every polynomial $f \in \mathbb{F}[x]$. In particular, every formula expressing the roots of $F$ through the elements of $\mathbb{k}$ expresses the roots of a particular polynomial $f \in \mathbb{F}[x]$ in terms of the elements
of $\mathbb{F}$, as does the well-known formula

$$
x_{ \pm}=\frac{p \pm \sqrt{p^{2}-4 q}}{2}
$$

for the roots of the generic quadratic polynomial $x^{2}+p x+q \in \mathbb{F}(p, q)[x]$. It follows from Example 14.4 on p .323 that for $\mathbb{F}=\mathbb{Q}$, there is no formula expressing the roots of the generic fifth-degree polynomial in terms of the coefficients by means of the four arithmetic operations and radicals of arbitrary degree.

Let us describe the Galois group $\operatorname{Gal} F / \mathbb{k}$ for an arbitrary $n$ over a field $\mathbb{F}$. Write $t_{1}, t_{2}, \ldots, t_{n}$ for the roots of $F$ in its splitting field $\mathbb{K} \supset \mathbb{k}$. Since $\mathbb{K}$ is algebraic over $\mathbb{k}$, it follows from Corollary 10.4 on p .237 that a transcendence basis of $\mathbb{K}$ over $\mathbb{F}$ can be chosen among the roots $t_{1}, t_{2}, \ldots, t_{n}$, which generate $\mathbb{K}$ as an $\mathbb{F}$-algebra. ${ }^{14}$ The inequality $\operatorname{tr} \operatorname{deg}_{\mathbb{F}} \mathbb{K} \geqslant \operatorname{tr} \operatorname{deg}_{\mathbb{F}} \mathbb{k}=n$ forces this transcendence basis to be the whole collection $t_{1}, t_{2}, \ldots, t_{n}$. Thus, the roots $t_{1}, t_{2}, \ldots, t_{n}$ are algebraically independent over $\mathbb{F}$. In particular, they are all distinct. Hence, the generic polynomial $F$ is separable, and $\mathbb{K} \simeq \mathbb{F}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a finite Galois extension of $\mathbb{k}=\mathbb{F}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Since every permutation of the independent variables $t_{1}, t_{2}, \ldots, t_{n}$ can be extended to a unique automorphism of the field $\mathbb{F}\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ over $\mathbb{F}$, we conclude that Gal $\mathbb{K} / \mathbb{k}=S_{n}, \operatorname{deg} \mathbb{K} / \mathbb{k}=n!$, and $\mathbb{F}\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{S_{n}}=\mathbb{F}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
Exercise 14.13 Verify that the subfield of $A_{n}$-invariants $\mathbb{K}^{A_{n}} \subset \mathbb{K}$ is the quadratic extension of $\mathbb{k}$ by the element $\sqrt{D(f)}=\prod_{1 \leqslant i<j \leqslant n}\left(t_{i}-t_{j}\right)$.
For $n \geqslant 5$, the composition factors of $S_{n}$ are the simple normal subgroup $A_{n} \triangleleft S_{n}$ and the group $\mathbb{Z} /(2)=S_{n} / A_{n}$ of order two. Therefore, $S_{n}$ is not solvable for $n \geqslant 5$. By Theorem 14.5, the generic polynomial equation of degree $n \geqslant 5$ cannot be solved in radicals over a field $\mathbb{F}$ of characteristic zero. This fact is known as the Abel-Ruffini theorem.

### 14.5.2 Solvability of Particular Polynomials

The absence of a formula for expressing the roots of a generic polynomial $F$ in terms of the coefficients of $F$ in radicals certainly does not forbid the existence of such an expression for particular polynomials $f \in \mathbb{F}[x]$.

Theorem 14.6 Let $\mathbb{k}$ be an arbitrary field of characteristic zero, and $f \in \mathbb{k}[x]$ a monic irreducible polynomial. If the Galois group $\mathrm{Gal} / \mathrm{lk}$ is solvable, then every root off can be expressed in radicals in terms of the elements of $\mathbb{k}$.

[^196]Proof Fix an algebraic closure $\overline{\mathbb{k}} \supset \mathbb{k}$, and write $\mathbb{K} \subset \overline{\mathbb{k}}$ for the splitting field of $f$, and $\mathbb{L} \subset \overline{\mathbb{k}}$ for the extension of $\mathbb{k}$ by a primitive root of unity of degree $n=|\mathrm{Gal} \mathbb{K} / \mathbb{k}|$. Then all elements of $\mathbb{L}$ can be expressed in radicals through the elements of $\mathbb{k}$. Since $\mathbb{K} \supset \mathbb{k}$ is a solvable Galois extension, it follows from Proposition 13.4 on p. 306 and Theorem 13.5 on p. 306 that the extension $\mathbb{L} \mathbb{K} \supset \mathbb{L}$ is a solvable Galois extension as well, because the Galois group Gal $\mathbb{L} \mathbb{K} / \mathbb{L}$ is a subgroup of the solvable group $\mathrm{Gal} \mathbb{K} / \mathbb{k}$. A composition series

$$
\text { Gal } \mathbb{L} \mathbb{K} / \mathbb{L}=G_{0} \supset G_{1} \supset G_{2} \supset \cdots \supset G_{m-1} \supset G_{m}=\{e\}
$$

with simple factors $G_{i} / G_{i+1} \simeq \mathbb{Z} /\left(p_{i}\right)$ forces the compositum $\mathbb{L} \mathbb{K}$ to be obtained from $\mathbb{L}$ by a sequence of cyclic simple extensions. By Theorem 14.4, every such extension is obtained by the adjunction of a radical. Therefore, all elements of $\mathbb{L} \mathbb{K} \supset \mathbb{K}$ can be expressed in radicals through the elements of $\mathbb{k}$.

Remark 14.2 The assumption $\operatorname{char}(\mathbb{k})=0$ can be weakened to the requirement that char $(\mathbb{k})$ differ from the prime orders of the Jordan-Hölder factors of the Galois group Gal $f / k$. The previous proof works in this case as well.

## Problems for Independent Solution to Chapter 14

Problem 14.1 Let $\mathbb{k}$ be a field with char $\mathbb{k} \neq 2$, and $f \in \mathbb{k}[x]$ an irreducible polynomial. Show that the discriminant ${ }^{15} D(f)$ is in $\mathbb{k}^{2}$ if and only if the Galois group Gal $f / \mathbb{k}$ contains only even permutations of the roots of $f$.
Problem 14.2 Find the Galois groups over $\mathbb{Q}$ for the following polynomials:
(a) $x^{3}-3 x+1$,
, (b) $x^{3}+2 x+1$, (c) $x^{4}+1$,
(d) $x^{4}+x^{2}+1$, (e) $x^{4}-5 x^{2}+6$, (f) $x^{4}+2 x^{2}+x+3$, (g) $x^{4}+x^{2}+x+1$.

Problem 14.3 Find the Galois group of the polynomial $x^{3}-x-1$ over the field $\mathbb{Q}[\sqrt{-23}]$.
Problem 14.4 Give an explicit example of an irreducible polynomial $f \in \mathbb{Z}[x]$ of degree six with Galois group $\operatorname{Gal} f / \mathbb{Q} \simeq S_{6}$.
Problem 14.5 Is there a finite extension of $\mathbb{Q}$ containing infinitely many roots of unity?
Problem 14.6 Find all $n \in \mathbb{N}$ for which there exists a complex primitive $n$th root of unity with quadratic minimal polynomial over $\mathbb{Q}$.
Problem 14.7 Enumerate all the roots of unity in the field $\mathbb{Q}[\sqrt{-5}]$.
Problem 14.8 Express $\sqrt[5]{1}$ in quadratic radicals.

[^197]Problem 14.9 Express $\sqrt{13}$ in terms of $e^{2 \pi i / 13} \in \mathbb{C}$.
Problem 14.10 (Gaussian Construction) Construct a regular 17-gon with straightedge and compass.
Problem 14.11 For every prime $p \in \mathbb{N}$ and $a \in \mathbb{Q}^{*} \backslash \mathbb{Q}^{* p}$, show that the Galois group of the polynomial $x^{p}-a$ over $\mathbb{Q}$ is isomorphic to the group of affine automorphisms of the line $\mathbb{A}^{1}$ over $\mathbb{F}_{p}$.
Problem 14.12 Show that $\mathbb{Q}[\sqrt{p}] \subset \mathbb{Q}\left[e^{2 \pi i / 4 p}\right]$ for every prime $p \equiv 3(\bmod 4)$.
Problem 14.13 Show that every quadratic extension of $\mathbb{Q}$ can be embedded into some cyclotomic field.
Problem 14.14 (Quadratic Reciprocity Revisited) ${ }^{16}$ Let $p, q>2$ be rational primes, $q^{*}=(-1)^{(q-1) / 2} q, \mathbb{K}=\mathbb{Q}[x] /\left(x^{2}-q^{*}\right)$. Write $O \subset \mathbb{K}$ for the ring of integers, ${ }^{17}$ and $[z]_{p}$ for the residue class $z(\bmod p)$ of an element $z \in O$ in the quotient ring $O /(p)$.
(a) Show that the following three statements are equivalent:
(1) $\left[q^{*}\right]_{p}$ is a proper square in $\mathbb{F}_{p}^{2}$.
(2) $O /(p) \simeq \mathbb{F}_{p} \oplus \mathbb{F}_{p}$.
(3) The Frobenius endomorphism $F_{p}: \vartheta \mapsto \vartheta^{p}$ acts identically on $O /(p)$.
(b) If the above three conditions fail, describe the $\mathbb{F}_{p}$-algebra $O /(p)$ and the Frobenius endomorphism $F_{p}: O /(p) \rightarrow O /(p), \vartheta \mapsto \vartheta^{p}$.
(c) Construct an embedding of $\mathbb{K}$ into the $q$ th cyclotomic field ${ }^{18} \varphi: \mathbb{K} \hookrightarrow \mathbb{Q}[\sqrt[q]{1}]$ such that the multiplicative endomorphism $F_{p, \mathbb{C}}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}, z \mapsto z^{p}$, maps $\varphi(O)$ to itself and admits a well-defined reduction modulo $(p)$, which coincides with the Frobenius endomorphism $F_{p}: O /(p) \rightarrow O /(p), \vartheta \mapsto \vartheta^{p}$.
(d) Write an explicit expression for $\sqrt{q^{*}}$ in terms of the complex $q$ th roots of unity and clarify the effect of the endomorphism $F_{p, \mathbb{C}}$ on both sides of this expression.
(e) Prove the quadratic reciprocity law

$$
\left[\frac{p}{q}\right] \cdot\left[\frac{q}{p}\right]=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}
$$

where $\left[\frac{q}{p}\right]$ means the Legendre-Jacobi symbol from Example 14.5 on p. 325.
Problem 14.15 Let $\mathbb{k} \subset \overline{\mathbb{Q}} \subset \mathbb{C}$ be a maximal field with respect to inclusions such that $\sqrt[3]{5} \notin \mathbb{k}$. Does $\mathbb{k}$ admit a noncyclic finite Galois extension?

[^198]
## Hints to Some Exercises

Exercise 1.1 Let $U \subset V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ be the $K$-linear span of tensor monomials. Check that the universal multilinear map $\tau: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ takes values within $U$, and the resulting map $\tau: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow U$ is universal too. Then use 1.1.
Exercise 1.2 One should check that $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} \neq 0$ as soon as all $v_{i} \neq 0$, and that the replacement $v_{i} \mapsto \lambda_{i} v_{i}$ with $\lambda_{i} \in \mathbb{k}$ changes $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ by a proportional tensor. The second follows immediately from the multilinearity of the tensor product: $\left(\lambda_{1} v_{1}\right) \otimes\left(\lambda_{2} v_{2}\right) \otimes \cdots \otimes\left(\lambda_{n} v_{n}\right)=\prod \lambda_{i} \cdot v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$. То see the first, include every vector $v_{i}$ in some basis of $V_{i}$. Then $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ is a basis vector in the basis of $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$ described in Theorem 1.1 on p. 6. A similar argument proves the injectivity of the Segre map. Namely, given two collections of vectors

$$
u_{1}, u_{2}, \ldots, u_{n} \quad \text { and } \quad w_{1}, w_{2}, \ldots, w_{n}, \quad u_{i}, w_{i} \in V_{i},
$$

such that $u_{j}$ and $w_{j}$ are not proportional in $V_{j}$ for some $j$, then $u_{j}, w_{j}$ can be included as two different basis vectors in some basis of $V_{j}$. Therefore, $u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n}$ and $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}$ are two different basis vectors in some basis of $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$.
Exercise 1.3 If $\operatorname{rk} F=1$, then $\operatorname{im} F \subset W$ has dimension 1 and is spanned by some nonzero vector $w \in W$ uniquely up to proportionality determined by $F$. Hence, $F$ acts on every vector $u \in U$ by the rule $F(u)=\xi(u) \cdot w$ for some $\xi \in U^{*}$ uniquely determined by $F$ and $w$. Note that $\xi \in$ Ann $\operatorname{ker} F$ spans the 1 -dimensional subspace Ann $\operatorname{ker} F \subset U^{*}$.
Exercise 1.4 Since the Segre map $\mathbb{P}_{1} \times \mathbb{P}_{1} \xrightarrow{\sim} S$ is bijective and takes the coordinate lines on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ to the lines on $S$, all incidence relations among the latter lines are the same as between the first on $\mathbb{P}_{1} \times \mathbb{P}_{1}$. Every line $\ell \subset S$ lies within $S \cap T_{p} S$, where $T_{p} S$ is the tangent plane to $S$ at an arbitrary point $p \in \ell$. Since the conic $S \cap T_{p} S$ is exhausted by the pair of lines from different families crossing at $p$, the line $\ell$ has to be one of those two lines.

Exercise 1.5 Verify that the map $K \times V \rightarrow V,(\lambda, v) \mapsto \lambda v$, is the universal bilinear map.
Exercise 1.6 The linearity is checked as follows:

$$
\begin{gathered}
\varphi\left(\lambda\left(u_{x}\right)_{x \in X}+\mu\left(w_{x}\right)_{x \in X}\right)=\varphi\left(\left(\lambda u_{x}+\mu w_{x}\right)_{x \in X}\right)=\sum_{x \in X} \varphi_{x}\left(\lambda u_{x}+\mu w_{x}\right) \\
=\sum_{x \in X}\left(\lambda \varphi_{x}\left(u_{x}\right)+\mu \varphi_{x}\left(w_{x}\right)\right)=\lambda \varphi\left(\left(u_{x}\right)_{x \in X}\right)+\mu \varphi\left(\left(w_{x}\right)_{x \in X}\right)
\end{gathered}
$$

where all the sums are well defined, because all but finitely many summands vanish.
Exercise 2.1 Use the same arguments as in 1.1 on p.3.
Exercise 2.3 Let $E \sqcup R \sqcup S \sqcup T$ be a basis in $V$ such that $E$ is a basis in $U \cap W$, $E \sqcup R$ is a basis in $U, E \sqcup S$ is a basis in $W$. Identify $V^{\otimes n}$ with the noncommutative polynomial ring in the basis vectors. Then $U^{\otimes n}$ is the linear span of the monomials constructed from the basis vectors from $E \sqcup R$, whereas $W^{\otimes n}$ is the linear span of the monomials constructed out of the basis vectors from $E \sqcup S$. Their intersection is the linear span of the monomials constructed from the basis vectors from $E$.
Exercise 2.4 For every $x, y \in I$, the product $(a+x)(b+y)$ is equal to

$$
a b+(a y+x b+x y) \equiv a b(\bmod I)
$$

Note that for just left or right ideals, this may fail.
Exercise 2.5 By the universal property of tensor algebras, for every $\mathbb{k}_{\mathbb{k}}$-algebra $A$ and linear map $f: V \rightarrow A$, there exists a unique algebra homomorphism $\widetilde{f}: \mathrm{T} V \rightarrow A$ such that

$$
\widetilde{f}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=f\left(v_{1}\right) \cdot f\left(v_{2}\right) \cdots f\left(v_{n}\right)
$$

It is factorized through the quotient map $\mathrm{T} V \rightarrow \mathrm{~T} / \mathcal{I}_{\text {sym }} \simeq S V$ if and only if $\widetilde{f}$ annihilates all the differences $u \otimes w-w \otimes u$, which means that $f(u) f(w)=f(w) f(u)$ for all $u, w \in V$, and this certainly holds in the commutative algebra $A$. The last statement of the exercise is verified exactly as in the proof of 1.1 on p .3 .
Exercise 2.6 $\operatorname{dim} S^{n} V=\binom{n+d-1}{d-1}$. This is the number of nonnegative integer solutions ( $m_{1}, m_{2}, \ldots, m_{d}$ ) of the linear equation $m_{1}+m_{2}+\cdots+m_{d}=n$, i.e., the number of sequences formed by $n$ ones placed in a row with $d-1$ barriers separating the ones into $d$ groups (some of which may be empty).
Exercise 2.7 The same argument as in 1.1 on p. 3 .
Exercise 2.8 Over every field $\mathbb{k}$, the sums are expressed through the proper squares as $u \otimes w+w \otimes u=(u+w) \otimes(u+w)-u \otimes u-w \otimes w$. If char $\mathbb{k} \neq 2$, then the converse expression $v \otimes v=(v \otimes v+v \otimes v) / 2$ is also possible.
Exercise 2.9 Modify the arguments used in 2.5 on p. 27.
Exercise 2.10 For the first statement, modify the proof of 2.3 on p. 28. For the second, use the argument from 1.1 on p. 3 .

Exercise 2.11 Relations (a), (b) are obvious (both sums consist of $n$ ! equal summands). In (c), each of the two sums can be separated into two disjoint parts: the sum over all even permutations and the sum over all odd permutations, both of which consist of the same summands but taken with opposite signs. To prove (d) and (e), note that for all $h \in S_{n}$, left multiplication by $h: S_{n} \rightarrow S_{n}, g \mapsto g^{\prime}=h g$, is bijective, and therefore,

$$
\begin{aligned}
h\left(\sum_{g \in S_{n}} g(t)\right) & =\sum_{g \in S_{n}} h g(t)=\sum_{g^{\prime} \in S_{n}} g^{\prime}(t), \\
h\left(\sum_{g \in S_{n}} \operatorname{sgn}(g) \cdot g(t)\right) & =\operatorname{sgn}(h) \cdot \sum_{g \in S_{n}} \operatorname{sgn}(h g) \cdot h g(t)=\operatorname{sgn}(h) \cdot \sum_{g^{\prime} \in S_{n}} \operatorname{sgn}(g) \cdot g^{\prime}(t) .
\end{aligned}
$$

Hence, $h\left(\operatorname{sym}_{n}(t)\right)=\operatorname{sym}_{n}(t)$ and $h\left(\operatorname{alt}_{n}(t)\right)=\operatorname{sgn}(h) \cdot \operatorname{alt}_{n}(t)$.
Exercise $2.12 n^{3}-\binom{n+2}{3}-\binom{n}{3}=\frac{2}{3}\left(n^{3}-n\right)$.
Exercise 2.13 Direct computations using formula (2.18) on p. 32.
Exercise 2.15 The same arguments as in the proof of the multinomial expansion formula from Example 1.2 of Algebra I.
Exercise 2.17 Since the rule is linear in $v, f, g$, it is enough to check it for $v=e_{i}$, $f=x_{1}^{m_{1}} \cdots x_{d}^{m_{d}}, g=x_{1}^{k_{1}} \cdots x_{d}^{k_{d}}$. In this case, it follows directly from the definition of polar map.
Exercise 2.18 Use induction on $n=\operatorname{deg} f$ and the equality

$$
\widetilde{f}\left(v_{1}, x, \ldots, x\right)=\frac{1}{n} \cdot \partial_{v_{1}} f(x) .
$$

Exercise 2.21 Similar to 2.17.
Exercise 2.22 Let $e_{1}, e_{2}, \ldots, e_{m}$ be a basis in $U$. If $\omega \notin \Lambda^{m} U$, then the expansion of $\omega$ as a linear combination of basis monomials $e_{I}$ contains a monomial whose index $I$ differs from the whole of $1,2, \ldots, m$. Let $k \notin I$. Then $e_{k} \wedge \omega \neq 0$, because the basis monomial $e_{\{k\} \cup I}$ appears in $e_{k} \wedge \omega$ with a nonzero coefficient. Conversely, if $\omega \in \Lambda^{m} U$, then $\omega=\lambda \cdot e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}$ and $e_{i} \wedge \omega=0$ for all $i$.
Exercise 2.25 Let $U_{1} \neq U_{2}$. Choose a basis of $V$ consisting of the basis in $U_{1} \cap U_{2}$, its complements to the bases in $U_{1}, U_{2}$, and some other vectors. Then $\Lambda^{k} U_{1}$ and $\Lambda^{k} U_{2}$ are represented by distinct basis monomials of $\Lambda^{k} V$.
Exercise 2.26 The relations $w=e \cdot A_{w}^{t}, u=e \cdot A_{u}^{t}, w=u \cdot C_{u w}$, where $e, u$, $w$ are the row matrices whose elements are the corresponding basis vectors, force $A_{w}^{t}=A_{u}^{t} C_{u w}$.
Exercise 3.3 In both polynomials $\Delta_{\delta}$ and $\prod_{i<j}\left(x_{i}-x_{j}\right)$, the lexicographically highest monomial is $x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}$, and it appears with the coefficient 1 .
Exercise 3.4 For $n>\ell(\lambda)$, the matrix $\left(h_{\lambda_{i}+j-i}\right)$ has the block form $\left(\begin{array}{c}* \\ 0\end{array} *\right)$ with a square upper unitriangular matrix of size $\ell(\lambda)+1$ in the right bottom corner.

Exercise 4.1 The stable matching between the $i$ th and $(i+1)$ th columns is established as follows. All balls of the $i$ th column are initially considered free. Looking bottom up through the balls $\beta$ of the $(i+1)$ th column, we match $\beta$ with the topmost free ball situated strictly lower than $b$ in the $i$ th column; if there are no such balls, $b$ is declared to be free. The operation $L_{i}$ either moves one of the topmost free balls of the $(i+1)$ th column to the left neighbor cell, or does nothing if there are no free balls in the $(i+1)$ th column. The operation $R_{i}$ moves one of the lowest free balls of the $i$ th column to the right, or does nothing if the $i$ th column has no free balls.

Exercise 4.3 The arrays are


Exercise 4.5 To establish the DU-invariance of the difference $M^{\prime} \backslash M^{\prime \prime}$ of DU-sets $M^{\prime}, M^{\prime \prime}$, consider an array $a^{\prime} \in M^{\prime} \backslash M^{\prime \prime}$. If $D_{j} a^{\prime} \in M^{\prime \prime}$, then $D_{j}$ effectively acts on $a^{\prime}$, and therefore $a^{\prime}=U_{j} D_{j} a^{\prime}$ must be in $M^{\prime \prime}$.
Exercise 4.7 The diagrams $\frac{\square \square \square}{\square}$ and $\square \square$ are $\unrhd$-incompatible.
Exercise 4.8 Answers: $s_{(1)} \cdot s_{(1,1)}=s_{(2,1)}+s_{(1,1,1)}$,

$$
s_{2,1}^{2}=s_{4,2}+s_{2,2,1,1}+s_{4,1,1}+s_{3,1,1,1}+s_{3,3}+s_{2,2,2}+2 s_{3,2,1}
$$

In the latter computations, there are nine ways to add three cells to $\lambda=(2,1)$ :


The two outermost diagrams do not allow an admissible filling by $1,1,2$. The symmetric diagram allows two admissible fillings


Every remaining diagram admits the unique filling


Exercise 4.9 When we calculate $s_{\lambda} \cdot e_{k}$, we add $k$ new cells to $\lambda$ and fill them with the distinct numbers $1,2, \ldots, k$. If two added cells fall in the same row, then the

Young tableau and the Yamanouchi word constraints contradict each other. In the computation of $s_{\lambda} \cdot h_{k}$, we fill the $k$ added cells with $k$ units. No two of them can appear in the same column because of the Young tableau constraint.
Exercise 5.1 By the universal property of basis, ${ }^{1}$ the maps of sets $R \rightarrow B$ are in bijection with the linear maps $\mathbb{R} \otimes \mathbb{k} \rightarrow B$. By the universal property of tensor algebras, ${ }^{2}$ the latter linear maps are in one-to-one correspondence with the algebra homomorphisms $A_{R} \rightarrow B$. Uniqueness is established by the same standard arguments as in Lemma 1.1 on p.3.
Exercise 5.2 For all $w \in W$ and $u \in U$, the congruence

$$
f(w+u)=f w+f u \equiv f w(\bmod U)
$$

holds if $f u \in U$ for all $u \in U$.
Exercise 5.4 An upper bound of a chain in $S^{\prime}$ is provided by the union of all modules in the chain.
Exercise 5.5 Statements (a) and (b) are obvious. In (c), the inclusions

$$
R \operatorname{ker} f \subset \operatorname{ker} f
$$

and $R \operatorname{im} f \subset \operatorname{im} f$ for $f \in \operatorname{Hom}_{R}\left(W_{1}, W_{2}\right)$ are verified as follows. If $\varphi(v)=0$, then $\varphi(f v)=f \varphi(v)=f(0)=0$ for all $f \in R$. If $v=\varphi(u)$, then $f v=f \varphi(u)=\varphi(f u)$ for all $g \in R$.
Exercise 5.7 $\varphi \psi=\sum_{\alpha, \beta} \iota_{\alpha} \varphi_{\alpha \beta} \pi_{\beta} \circ \sum_{\mu, \nu} \iota_{\mu} \varphi_{\mu \nu} \pi_{\nu}=\sum_{\alpha, \nu} \iota_{\alpha} p_{\alpha \nu} \pi_{\nu}$, where

$$
p_{\alpha \nu}=\sum_{\eta} \varphi_{\alpha \eta} \psi_{\eta \nu}
$$

because

$$
\pi_{\beta} \iota_{\mu}= \begin{cases}\operatorname{Id}_{V_{\eta}} & \text { for } \beta=\mu=\eta \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 5.8 Since for two vectors $v, w \in V$ there exists a linear map $\varphi: V \rightarrow V$ sending $v$ to $w$, the algebra $\operatorname{Ass}(R)=\operatorname{End}_{k}(V)$ acts transitively on $V$. However, if $U \varsubsetneqq W$ is a proper nonzero $R$-invariant subspace, then $\operatorname{Ass}(R) U \subset U$. This contradicts the transitivity.
Exercise 5.11 Since the assignment $g: \varphi \mapsto g \varphi g^{-1}$ is linear in $\varphi$, its coincidence with $\varrho^{*} \otimes \lambda$ can be checked only on the decomposable tensors $\varphi=\xi \otimes w$, where

[^199]$\xi \in U^{*}, w \in W$. By definition, $\varrho^{*} \otimes \lambda(g)$ takes such a $\varphi$ to
$$
\varrho\left(g^{-1}\right)^{*} \xi \otimes \lambda(g) w=\left(\xi \circ g^{-1}\right) \otimes(g w)
$$

This linear operator sends each vector $u \in U$ to

$$
\xi\left(g^{-1} u\right) \cdot g w=g\left(\xi\left(g^{-1} u\right) \cdot w\right)=g \circ(\xi \otimes w) \circ g^{-1}(u)
$$

Exercise 5.12 Take $R=\{g\}$; note that every eigenvector spans a simple $R$-module of dimension one; and use Theorem 5.1 on p. 102.
Exercise 5.15 Let $\lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}+\cdots+\lambda_{n} \psi_{n}=0$ with $\lambda_{v} \in \mathbb{K}_{\mathbb{k}}$ a shortest nontrivial linear relation between homomorphisms $\psi_{v}: G \rightarrow \mathbb{k}^{*}$. This forces all $\lambda_{i} \neq 0$. Fix an element $h \in G$ such that $\psi_{1}(h) \neq \psi_{2}(h)$. Since

$$
\sum_{i} \lambda_{i} \psi_{i}(h) \psi_{i}(g)=\sum_{i} \lambda_{i} \psi_{i}(h g)=0
$$

for all $g \in G$, we get another linear relation on $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ with coefficients $\lambda_{i} \cdot \psi_{i}(h)$. Subtracting this relation from the first multiplied by $\psi_{1}(h)$ leads to a shorter relation on $\psi_{2}, \psi_{3}, \ldots, \psi_{n}$ in which $\psi_{2}$ appears with the coefficient $\lambda_{2}\left(\psi_{1}(h)-\psi_{2}(h)\right) \neq 0$.
Exercise 5.17 Take $\mathbb{k}=\mathbb{F}_{2}, G=\mathbb{Z} /(2), V=\mathbb{k}^{2}$, and let the elements [0], $[1] \in G$ act by the linear operators with matrices

$$
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Check that $U^{2}=E, V^{G}=\mathbb{k} e_{1}$, and $V$ is indecomposable, because $U$ has just one eigenvector.

Exercise 5.21 If $v=\sum x_{i} e_{i}$ is nonzero modulo $e$, then $x_{i} \neq x_{j}$ for some $i \neq j$, and therefore $v-\sigma_{i j} v=\left(x_{i}-x_{j}\right)\left(e_{i}-e_{j}\right)$, where $\sigma_{i j} \in S_{n}$ is the transposition of $i, j$. This forces all the differences $e_{i}-e_{j}, i \neq j$, to lie within the linear span of the orbit $S_{n} v$.
Exercise 5.22 Compare with Exercise 2.13 on p. 33 .
Exercise 5.23 Split the eight vertices of the cube into two quadruples forming a pair of centrally symmetric regular tetrahedra $T_{1}, T_{2}$ whose edges are the diagonals of the faces of the cube. Let $U_{\text {cube }}$ and $U_{\text {tet }}$ be the representations of $S_{4}$ in $\mathbb{R}^{3}$ by means of the proper group of the cube and the complete group of the tetrahedron $T_{1}$. Then the subgroup of even permutations $A_{4} \subset S_{4}$ is represented in $U_{\text {cube }}$ by the rotations of the cube that map $T_{1}$ to itself, that is, by the proper subgroup in the complete group of $T_{1}$. Every odd permutation $g \in S_{n}$ is represented in $U_{\text {cube }}$ by a rotation of the cube mapping $T_{1}$ to $T_{2}$. Followed by the central symmetry, that is, multiplied by $\operatorname{sgn}(g)$, it takes $T_{1}$ to itself by a nonproper transformation from the complete group of the regular tetrahedron. Thus, $U_{\text {cube }} \otimes \operatorname{sgn} \simeq U_{\text {tet }}$. If $U_{\text {cube }}=V_{1} \oplus V_{2}$, then
$U_{\text {tet }}=\left(V_{1} \otimes \mathrm{sgn}\right) \oplus\left(V_{2} \otimes \mathrm{sgn}\right)$. However, $U_{\text {tet }}$ is irreducible by Exercise 5.21 on p. 120 .

Exercise 5.24 Show that every nonzero linear form $\varphi \in \operatorname{Sym}^{n}(W)^{*}$ does not vanish identically on all of $w^{\otimes n}$. To this end, choose a basis $e_{1}, e_{2}, \ldots, e_{d}$ in $W$, and let $w=\sum x_{i} e_{i}$ and $\varphi\left(e_{\left[m_{1} m_{2} \ldots m_{d}\right]}\right)=a_{m_{1} m_{2} \ldots m_{d}} \in \mathbb{K}$. Then

$$
\varphi\left(w^{\otimes n}\right)=\sum_{m_{1} m_{2} \ldots m_{d}} a_{m_{1} m_{2} \ldots m_{d}} x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}
$$

Since $\mathbb{k}$ is infinite, this polynomial vanishes identically if and only if all its coefficients $a_{m_{1} m_{2} \ldots m_{d}}$ are equal to 0 .
Exercise 5.25 Let $\psi$ be a linear form on $\operatorname{Sym}^{n}(W)$ such that all $w^{\otimes n}$ with $F(w) \neq 0$ lie in the hyperplane Ann $\psi$. The function $G(w)=\psi\left(w^{\otimes}\right)$ is a homogeneous polynomial of degree $n$ on $W$. Since the product $F \cdot G$ is the zero function on $W$, it is the zero polynomial. This forces $G$ to be the zero polynomial, because the polynomial $F$ is not zero. Hence, $\psi\left(w^{\otimes}\right) \equiv 0$ for all $w \in W$. This contradicts Aronhold's principle.
Exercise 6.1 Since $\operatorname{im} A B \subset \operatorname{im} A=\operatorname{im}(a \otimes \alpha)=\mathbb{k} \cdot a$, the $\operatorname{trace} \operatorname{tr}(A B)$ is equal to $A B(a)=a \cdot \alpha(b \cdot \beta(a))=\alpha(b) \cdot \beta(a)$.

## Exercise 6.2

$$
(g a, b)=\operatorname{tr}\left(L_{g a b}\right)=\operatorname{tr}\left(L_{g} \circ\left(L_{a} \circ L_{b}\right)\right)=\operatorname{tr}\left(\left(L_{a} \circ L_{b}\right) \circ L_{g}\right)=\operatorname{tr}\left(L_{a b g}\right)=(a, b g)
$$

because $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. If $I \subset \mathbb{k}[G]$ is a left ideal, then $I^{\perp} \subset \mathbb{k}[G]$ is an abelian subgroup, and for every $u \in I^{\perp}, x \in \mathbb{k}[G], b \in I$, the equalities $(b, u x)=(x b, u)=0$ hold, because $x b \in I$. Thus, $b x \in I^{\perp}$.
Exercise 6.3 In the bottom row are the traces of the identity map, axial symmetry, and rotation by $120^{\circ}$. The eigenvalues of these maps are, respectively, $(1,1),(1,-1)$, and $\left(\omega, \omega^{2}\right.$ ), where $\omega^{2}+\omega+1=0$.
Exercise 6.4 Use the eigenvalues to compute the traces.
Exercise 6.5 Fix a basis of $V$ consisting of eigenvectors of $\varrho(g)$ and write $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ for their eigenvalues. Then $\operatorname{tr}\left(\Lambda^{k} \varrho(g)\right)=e_{k}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $\operatorname{tr}\left(S^{k} \varrho(g)\right)=h_{k}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, where $e_{k}$ and $h_{k}$ are the elementary and complete symmetric polynomials. At the same time,

$$
\begin{aligned}
\operatorname{det}(1+t \varrho(g)) & =\prod\left(1+\lambda_{i} t\right)=E(t), \\
\operatorname{det}^{-1}(1-t \varrho(g)) & =\prod\left(1-\lambda_{i} t\right)^{-1}=H(t),
\end{aligned}
$$

are the generating functions for these polynomials.

Exercise 6.6 In terms of $\mathbb{k}[G]$, the (commutative) multiplication of functions in $\mathbb{k}^{G}$ gives

$$
\left(\sum_{g \in G} x_{g} g\right) \cdot\left(\sum_{g \in G} y_{g} g\right)=\sum_{g \in G}\left(x_{g} y_{g}\right) g,
$$

whereas the (noncommutative) multiplication in $\mathbb{k}[G]$ takes a pair of functions $\varphi, \psi: G \rightarrow \mathbb{k}$ to their convolution $\varphi * \psi: G \rightarrow \mathbb{k}, g \mapsto \sum_{p q=g} \varphi(p) \psi(q)$.
Exercise 6.7 The group $A_{5}$ has one trivial irreducible representation of dimension 1, two irreducible representations of dimension 3 by the proper dodecahedral group, ${ }^{3}$ and one 4 -dimensional representation by the proper group of the regular simplex. Since $\left|\mathrm{Cl}\left(A_{5}\right)\right|=5$ and $\left|A_{5}\right|=60$, there should be one more irreducible representation, of dimension 5, in addition to those already listed, and its character should be orthogonal to all the other irreducible characters:


Try to describe the 5-dimensional irreducible representation explicitly by means of the isomorphism $A_{5} \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{5}\right)$ from Problem 12.33 of Algebra I. Besides the trivial and sign representations in dimension 1 and the simplicial representation $\Delta$ in dimension 4 , the symmetric group $S_{5}$ has irreducible representations $\operatorname{sgn} \otimes \Delta$ and $\Lambda^{2} \Delta$ of dimensions 4 and 6 . The symmetric square of the simplicial representation splits as $S^{2} \Delta=\operatorname{sgn} \oplus \Delta \oplus \zeta$, where $\zeta$ is an irreducible representation of dimension 5 provided by the action of $\mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right) \simeq S_{5}$ on the harmonic quadruples of points ${ }^{4}$

[^200]in $\mathbb{P}_{1}\left(\mathbb{F}_{5}\right)$. Thus, the complete table of irreducible characters of $S_{5}$ looks like this:


Exercise 6.8 Fix some bases $u_{1}, u_{2}, \ldots, u_{n}$ in $U$ and $w_{1}, w_{2}, \ldots, w_{m}$ in $W$. The component $\Lambda^{\alpha} U \otimes \Lambda^{\beta} W \subset \Lambda^{k}(U \oplus W)$ is spanned by the basis monomials $u_{i_{1}} \wedge u_{i_{2}} \wedge \cdots \wedge u_{i_{\alpha}} \wedge w_{j_{1}} \wedge w_{j_{2}} \wedge \cdots \wedge w_{j_{\beta}}$.
Exercise 6.11 For every extension $A \subset B$ of associative $\mathbb{k}_{k}$-algebras with unit, the canonical $B$-linear map $B \otimes_{A} A \rightarrow B$, which corresponds to the $A$-linear inclusion $A \hookrightarrow B$, is an algebra isomorphism.
Exercise 6.12 For every $G$-module $M$, there are canonical isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}_{G}(W \otimes \operatorname{ind} V, M) \simeq \operatorname{Hom}_{G}\left(\operatorname{ind} V, W^{*} \otimes M\right) \simeq \operatorname{Hom}_{H}\left(V, \operatorname{res}\left(W^{*} \otimes M\right)\right) \\
& \quad \simeq \operatorname{Hom}_{H}\left(V, \operatorname{res}(W)^{*} \otimes \operatorname{res}(M)\right) \simeq \operatorname{Hom}_{H}(\operatorname{res}(W) \otimes V, \operatorname{res}(M))
\end{aligned}
$$

Therefore, the module $W \otimes$ ind $V$ has the universal property from Proposition 6.3 on p. 141 written for $\operatorname{res}(W) \otimes V, M$ in the roles of $V, W$. By Exercise 6.9 on p. 142, this forces $W \otimes \operatorname{ind} V \simeq \operatorname{ind}(($ res $W) \otimes V)$.
Exercise 6.15 Fix representatives $\left\{g_{1}, g_{2}, \ldots, g_{r}\right\}$ for the cosets of $G / H$. Then

$$
G=g_{1} H \sqcup c \ldots \sqcup g_{r} H=H g_{1}^{-1} \sqcup \cdots \sqcup H g_{r}^{-1}
$$

and every $H$-linear operator $\varphi: \mathbb{k}[G] \rightarrow V$ is uniquely determined by the $s$ vectors $v_{v}=\varphi\left(g_{v}^{-1}\right) \in V$, because $\varphi\left(h g_{v}^{-1}\right)=h v_{v}$ for all $h \in H$. Hence,

$$
\operatorname{dim} \operatorname{Hom}_{H}(\mathbb{k}[G], V)=[G: H] \cdot \operatorname{dim} V=\operatorname{dim} \mathbb{k}[G] \otimes_{\mathbb{k}[H]} V .
$$

The Fourier transform maps an $H$-linear operator $\varphi: g_{v}^{-1} \mapsto v_{\nu}$ to the tensor

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G} g^{-1} \otimes_{k[H]} \varphi(g) & =\frac{1}{|G|} \sum_{v} \sum_{h \in H} g_{v} h^{-1} \otimes_{\mathbb{k}[H]} \varphi\left(h g_{v}^{-1}\right) \\
& =\frac{|H|}{|G|} \sum_{v} g_{v} v_{v} \in \bigoplus_{v} g_{v} V
\end{aligned}
$$

This tensor equals zero if and only if all $v_{v}$ are equal to 0 . Thus, the Fourier transform is injective on $\operatorname{Hom}_{H}(\mathbb{K}[G], V)$ and therefore bijective for dimensional reasons.
Exercise 7.4 To prove transitivity, write $T \succ_{a} U$ if $T \succ U$ and the maximal element in different cells of $T, U$ equals $a$. Let $T \succ_{a} U$ and $U \succ_{b} W$. Then $T \succ_{a} W$ for $a \geqslant b$, and $T \succ_{b} W$ for $a \leqslant b$.
Exercise 7.5 For all $q \in R_{T}, p \in C_{U}$, the strict inequality $p U \succ q T$ holds. By Lemma 7.1, there exists a transposition $\tau \in R_{U} \cap C_{T}$. The computation from formula (7.12) on p. 159 shows that $c_{T}\{U\}=0$.
Exercise 7.6 Let $H^{\prime}=\psi(H), H^{\prime \prime}=\varphi(H)$, and $g_{i}^{\prime} H^{\prime}, 1 \leqslant i \leqslant r$, be the distinct left cosets of $H^{\prime}$. Then $g_{i}^{\prime \prime} H^{\prime \prime}, 1 \leqslant i \leqslant r$, with $g_{i}^{\prime \prime}=g g_{i}^{\prime} g^{-1}$ are the distinct left cosets of $H^{\prime \prime}$, and the conjugation map $\mathrm{Ad}_{g}: x \mapsto g x g^{-1}$ takes $g_{i}^{\prime} H^{\prime}$ to $g_{i}^{\prime \prime} H_{i}^{\prime \prime}$ bijectively and transfers the right multiplication by $h^{\prime} \in H^{\prime}$ in $g_{i}^{\prime} H^{\prime}$ to the right multiplication by $g h g^{-1} \in H^{\prime \prime}$ in $g_{i}^{\prime \prime} H_{i}^{\prime \prime}$. Therefore, the $G$-linear isomorphism between $\mathbb{k}[G] \otimes_{\mathbb{k}\left[H^{\prime}\right]} V=\sum_{i} g_{i}^{\prime} V$ and $\mathbb{k}[G] \otimes_{k\left[H^{\prime \prime}\right]} V=\sum_{i} g_{i}^{\prime} V$ is well defined by the assignment $g^{\prime} \otimes v \mapsto \operatorname{Ad}_{g}\left(g^{\prime}\right) \otimes v$.
Exercise 7.8 Every difference $\eta_{i}-\eta_{j}$ divides the determinant in the polynomial ring $\mathbb{Z}\left[\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right]$, because the determinant vanishes for $\eta_{i}=\eta_{j}$. Thus, $\prod_{i<j}\left(\eta_{i}-\eta_{j}\right)$ divides the determinant as well. Comparison of the lexicographically leading terms shows that the result of division equals 1 .
Exercise 7.9 Use induction on $\lambda_{1}$ to show that the product of the hook lengths for all cells in a Young diagram $\lambda$ is equal to $\prod_{i} \eta_{i}!/ \prod_{i<j}\left(\eta_{i}-\eta_{j}\right)$, where $\eta=\lambda+\delta$. During the induction step, remove the first column and take into account that the hook lengths of the cells in the first column are $\eta_{i}-n+\ell$, where $\ell=\ell(\lambda)$ is the length of $\lambda$ (the total number of rows). Then use the Frobenius formula from Corollary 7.7 on p. 169.
Exercise 8.5 The first statement obviously holds for the decomposable (that is, of rank one) operators $U \rightarrow W$; the second follows from the Jacobi identity.
Exercise 8.6 The line $E+t A$ touches the quadric $\operatorname{det} X=1$ at the point $E$ if and only if the quadratic trinomial $\operatorname{det}(E+t A)-1=\operatorname{det}(A) \cdot t^{2}+\operatorname{tr}(A) \cdot t$ has a double root at zero.
Exercise 8.8 If $V=\mathbb{k} \cdot e_{1} \oplus \mathbb{k} \cdot e_{2} \oplus \cdots \oplus \mathbb{k} \cdot e_{n}$, then $\overline{\mathbb{k}} \otimes V \simeq \overline{\mathbb{k}} \cdot e_{1} \oplus \overline{\mathbb{k}} \cdot e_{2} \oplus \cdots \oplus \overline{\mathbb{k}} \cdot e_{n}$ by the distributivity isomorphism from Proposition 1.3 on p. 12.

Exercise 8.9 This is a version of the Jacobi identity:

$$
\begin{aligned}
\operatorname{ad}_{[X, Y]}(Z) & =[[X, Y], Z]-[Z,[X, Y]]=[X,[Y, Z]]+[Y,[Z, X]] \\
& =\operatorname{ad}_{X} \operatorname{ad}_{Y}(Z)-\operatorname{ad}_{Y} \operatorname{ad}_{X}(Z)
\end{aligned}
$$

Exercise 8.10 This follows from the previous exercise and the Jacobi identity for the commutators in an associative algebra.
Exercise 8.15 Let $W$ be an $\mathfrak{s l}_{2}$-module. The identification of $\Lambda^{2} W$ with the space of skew-symmetric bilinear forms on $W^{*}$ maps a decomposable bivector $u \wedge v \in \Lambda^{2} W$ to the form ${ }^{5}$

$$
W^{*} \times W^{*} \rightarrow \mathbb{k}, \quad \varphi, \psi \mapsto \frac{1}{2}(\langle u, \varphi\rangle\langle w, \psi\rangle-\langle u, \psi\rangle\langle w, \varphi\rangle),
$$

where $\langle *, *\rangle$ means the contraction between vectors and covectors. Check that this identification transfers the action of an element $Z \in \mathfrak{s l}_{2}$ on $\Lambda^{2} W$ by the Leibniz rule

$$
u \wedge v \mapsto(Z u) \wedge v+u \wedge(Z v)
$$

to the action of $Z$ on the space of bilinear forms on $W^{*}$ by the rule

$$
\omega(\varphi, \psi) \mapsto Z \omega(\varphi, \psi)=\omega(Z \varphi, \psi)+\omega(\varphi, Z \psi)
$$

where $Z \varphi, Z \psi$ mean the actions of $Z$ on $W^{*}$ in accordance with formula (8.2) on p. 175.

Exercise 9.2 Let an order-preserving map $\varphi:[n] \rightarrow[m]$ be factorized as

$$
\begin{equation*}
\varphi=\partial_{m}^{m-\alpha} \partial_{m-1}^{m-\alpha-1} \cdots \partial_{\alpha+1}^{j_{1}} s_{\alpha}^{i_{n}-\alpha} \cdots s_{n-2}^{i_{2}} s_{n-1}^{i_{1}}, \tag{14.1}
\end{equation*}
$$

with $i_{1}<i_{2}<\cdots<i_{n-\alpha}$ and $j_{1}<j_{2}<\cdots<j_{m-\alpha}$, and let the collections $k_{1}, k_{2}, \ldots, k_{\alpha}$ and $\ell_{0}, \ell_{1}, \ldots, \ell_{\alpha}$ be complementary to $i_{1}, i_{2}, \ldots, i_{n-\alpha}$ and $j_{1}, j_{2}, \ldots, j_{m-\alpha}$ respectively. Then $\varphi$ maps the elements $0, \ldots, k_{1}$ to $\ell_{0}, k_{1}+1, \ldots, k_{2}$ to $\ell_{1}, \ldots, k_{\alpha}+1, \ldots, n$ to $\ell_{\alpha}$, and this assignment completely determines the map $\varphi$. Thus, every $\varphi \in \operatorname{Hom}_{\Delta}([n],[m])$ has the unique factorization (14.1), and therefore, the arrows (9.3)-(9.5) generate the algebra $\mathbb{Z}[\Delta]$. Verify the relations

$$
\begin{aligned}
& \partial_{n+1}^{j} \partial_{n}^{i}=\partial_{n+1}^{i} \partial_{n}^{j-1} \quad \text { for } i<j, \quad s_{n}^{j} s_{n+1}^{i}=s_{n}^{i} s_{n+1}^{j+1} \quad \text { for } i \leqslant j, \\
& s_{n-1}^{j} \partial_{n}^{i}= \begin{cases}\partial_{n-1}^{i} s_{n-2}^{j-1} & \text { for } i<j, \\
e_{n-1} & \text { for } i=j, j+1, \\
\partial_{n-1}^{i-1} s_{n-2}^{j} & \text { for } i>j+1,\end{cases}
\end{aligned}
$$

[^201]and prove that they allow us to rewrite every word consisting of the letters $\partial_{n}^{i}, s_{m}^{j}$ in the form given on the right-hand side of (14.1). This forces every polynomial relation on the letters $\partial_{n}^{i}, s_{m}^{j}$ in $\mathbb{Z}[\Delta]$ to fall in the two-sided ideal generated by the above relations.

Exercise 9.6 The typical answer "ln $|x|+C$, where $C$ is an arbitrary constant" is incorrect. Actually, $C$ is a section of the constant sheaf $\mathbb{R}^{\sim}$ over the open set $\mathbb{R} \backslash\{0\}$.
Exercise 9.10 Expand the definitions of equivalence of categories and isomorphism of functors.

Exercise 9.11 The functor $h_{k}$ is quasi-inverse to itself, because of the canonical isomorphism $V^{* *} \leadsto V$. A quasi-inverse to the functor $h_{[1]}: \Delta_{\text {big }}^{\mathrm{opp}} \rightarrow \nabla_{\text {big }}$ is the functor $h_{[1]}: \nabla_{\text {big }}^{\text {opp }} \rightarrow \Delta_{\text {big }}$ from Example 9.11 on p. 196.
Exercise 9.13 An element $a \in F(A)$ corresponds to the natural transformation $f_{X}: \operatorname{Hom}(A, X) \rightarrow F(X)$ that sends an arrow $\varphi: A \rightarrow X$ to the value of the map $F(\varphi): F(A) \rightarrow F(X)$ at the element $a$. The inverse correspondence takes a natural transformation $f$ to the value of the $\operatorname{map} f_{A}: h^{A}(A) \rightarrow F(A)$ at the identity endomorphism $\operatorname{Id}_{A} \in h^{A}(A)$. This is verified by means of the following commutative diagram provided by every arrow $\varphi: A \rightarrow X$ :


Its upper horizontal map sends $\operatorname{Id}_{A}$ to $\varphi$, and therefore $f_{X}(\varphi)=F(\varphi)\left(f_{A}\left(\operatorname{Id}_{A}\right)\right)$.
Exercise 9.18 Use the universal property of the tensor product of $\mathbb{Z}$-modules and the fact that for every pair of ring homomorphisms $\varphi: A \rightarrow C, \psi: B \rightarrow C$, the map $A \times B \rightarrow C,(a, b) \mapsto \varphi(a) \psi(b)$, is $\mathbb{Z}$-bilinear.
Exercise 9.19 Use the universal property of free groups and Proposition 13.2 from Algebra I.
Exercise 9.20 See Lemma 14.1 from Algebra I.
Exercise 9.28 In Set and $\mathcal{T}$ op, $\mathbb{I}=\varnothing$, whereas $\mathbb{T}$ is the one-point set. The categories $\mathcal{A} b, \mathcal{M o d}_{K}, R$ - $\mathcal{M o d}$, $\mathcal{G r p}, \mathcal{C} m r$ have the zero objects, whose underlaying group is exhausted by the identity element, i.e., the zero abelian group, the zero module, the trivial group, and the zero ring. In the category $\operatorname{Pre} \operatorname{Sh}(X)$ of presheaves of sets on a topological space $X$, the initial object $\mathbb{I}$ is the empty presheaf with the empty sets of sections over all open sets, whereas $\mathbb{T}$ is the constant presheaf provided by the one-point set. The category of presheaves of abelian groups has the zero element, the constant presheaf provided by the zero group.
Exercise 9.29 The coproduct of an arbitrary family of spaces $X_{v}$ is still their disjoint union, where every $X_{v}$ appears with its original topology. The topology on the product $P=\prod X_{v}$ should be the coarsest one for which all the canonical maps
$P \rightarrow X_{v}$ are continuous. It is called the Tikhonov topology or the product topology, and its base of open sets consists of products $\prod U_{v}$, where $U_{v} \subset X_{v}$ and $U_{v} \neq X_{v}$ for only finitely many $\nu$.
Exercise 9.30 In dealing with coequalizers, use the fact that every map $\xi: Y \rightarrow Z$ provides $Y$ with the equivalence relation $R_{\xi}=\left\{\left(y_{1}, y_{2}\right) \mid \xi\left(y_{1}\right)=\xi\left(y_{2}\right)\right\}$, and a map $\xi^{\prime}: Y \rightarrow Z^{\prime}$ is factorized as $\xi^{\prime}=\eta \circ \xi$ for some $\eta: Z \rightarrow Z^{\prime}$ if and only if $R_{\xi} \subset R_{\xi^{\prime}}$.

Exercise 9.33 Given a diagram of groups $G \stackrel{\xi}{\longleftrightarrow} K \xrightarrow{\eta} H$, the amalgamated product $G *_{K} H=G * H / N$ is the quotient of the free product ${ }^{6} G * H$ by the smallest normal subgroup $N$ containing all the products $\xi(k) \eta^{-1}(k), k \in K$. A diagram of commutative rings $A \stackrel{\xi}{\longleftrightarrow} K \xrightarrow{\eta} B$ equips $A, B$ with $K$-algebra structures. The pushforward $A \otimes_{K} B$ is the tensor product over $K$ from Sect. 9.5.1 on p.206, that is, the quotient of the tensor product of abelian groups $A \otimes B$ by the subgroup generated by all the differences $(k a) \otimes b-a \otimes(k b)$ with $a \in A, b \in B, k \in K$. The multiplication in $A \otimes_{K} B$ is defined by the rule $\left(a_{1} \otimes_{K} b_{1}\right) \cdot\left(a_{2} \otimes_{K} b_{2}\right) \stackrel{\text { def }}{=}\left(a_{1} a_{2}\right) \otimes_{K}\left(b_{1} b_{2}\right)$.
Exercise 9.34 Reflexivity and symmetry are obvious. To prove transitivity, let $x_{\alpha} \sim x_{\beta} \sim x-\gamma$. Then there exists a (not necessarily commutative) diagram in $\mathcal{F}$,

such that $x_{\eta}=X\left(\varphi_{\eta \alpha}\right) x_{\alpha}=X\left(\varphi_{\eta \beta}\right) x_{\beta}=x_{\eta}$ and $x_{\zeta}=X\left(\varphi_{\zeta \beta}\right) x_{\beta}=X\left(\varphi_{\zeta \gamma}\right) x_{\gamma}=x_{\zeta}$ in Set, whereas $\xi \psi_{\delta \eta} \varphi_{\eta \beta}=\xi \psi_{\delta \zeta} \varphi_{\zeta \beta}$ in $\operatorname{Hom}_{\mathcal{F}}(\beta, \varepsilon)$. Write $\chi$ for the arrow on the both sides of the latter equality. Then $X\left(\varepsilon \psi_{\delta \eta} \varphi_{\eta \alpha}\right) x_{\alpha}=X(\varkappa) x_{\beta}=X\left(\varepsilon \psi_{\delta \zeta} \varphi_{\zeta \gamma}\right) x_{\gamma}$, which means that $x_{\alpha} \sim x_{\gamma}$. Checking the universal property is straightforward.
Exercise 9.35 For every $s, t \in S$, the arrows $s: t \rightarrow t s$ and $t: s \rightarrow s t$ have the common target $t s=s t$. If $a s=b s$, then the arrows $a s: s \mapsto a s^{2}$ and $b s: s \mapsto a s^{2}$ are equal.
Exercise 10.1 It is enough to construct such a ring $C \supset B$ for one monic polynomial $f \in B[x]$ of positive degree. Under these assumptions, the quotient ring

[^202]$D=B[x] /(f)$ contains $B$ as the subring formed by the residue classes of constant polynomials. Write $\vartheta \in D$ for the residue class $x(\bmod f)$. Then $f(\vartheta)=0$, and therefore $f$ is divisible by $(x-\vartheta)$ in $D[x]$. The quotient of this division is a monic polynomial of degree $\operatorname{deg} f-1$. Induction on $\operatorname{deg} f$ allows one to construct a ring $C \supset D$ over which the quotient becomes completely factorizable. (Compare with the proof of Theorem 3.1 from Algebra I.)
Exercise 10.2 Since $\xi$ is algebraic over $\mathbb{Q}$, it satisfies a polynomial equation $a_{0} \xi^{n}+a_{1} \xi^{n-1}+\cdots+a_{n-1} \xi+a_{n}=0$ with integer coefficients $a_{i} \in \mathbb{Z}$. Then $\zeta=a_{0} \xi$ is integral over $\mathbb{Z}$, because $\zeta^{n}=-a_{1} \cdot \zeta^{n-1}-a_{0} a_{2} \cdot \zeta^{n-2}-\cdots-a_{0}^{n-1} a_{n}$.
Exercise 10.3 If $z$ is integral over $\mathbb{Z}$, then in every basis of $O_{K}$ over $\mathbb{Z}$, which simultaneously is a basis of $K$ over $\mathbb{Q}$, multiplication by $\mathbb{Z}$ has an integer matrix. Conversely, if multiplication by $z$ has an integer matrix $Z \in \operatorname{Mat}_{d}(\mathbb{Z})$, then $z$ is a root of the monic polynomial $\operatorname{det}(t E-Z) \in \mathbb{Z}[t]$ by the Cayley-Hamilton theorem.
Exercise 10.5 If $\mathbb{Q}\left[\sqrt{d_{1}}\right] \nsim \mathbb{Q}\left[\sqrt{d_{2}}\right]$, then
$$
d_{2}=\left(a+b \sqrt{d_{1}}\right)^{2}=a^{2}+d_{1} b^{2}+2 a b \sqrt{d_{1}}
$$
for some $a, b \in \mathbb{Q}$, and therefore, $a b=0$ and $a^{2}+d_{1} b^{2}=d_{2}$. This forces $a=0$, $b=1, d_{1}=d_{2}$.
Exercise 10.8 Since this submodule of $\mathbb{Q}$ has no torsion, it is free of finite rank, and its submodule spanned by $q^{n}$ inherits this property.
Exercise 10.9 Show that $\left(\chi_{W}, \chi_{W}\right)_{G^{n}}=\left(\chi_{V}, \chi_{V}\right)_{G}^{n}$.
Exercise 11.1 An algebra homomorphism $\varphi: \operatorname{Spec}_{\mathrm{m}} \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow \mathbb{k}$ is uniquely determined by the images of generators $p_{i}=\varphi\left(x_{i}\right) \in \mathbb{k}$. Mapping
$$
\varphi \mapsto\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$
establishes the required bijection. Note that this means that every maximal ideal in $\mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is generated by some $n$ linear forms $x_{i}-p_{i}, p_{i} \in \mathbb{k}, 1 \leqslant i \leqslant n$, and the equality of ideals $\left(x_{1}-p_{1}, \ldots, x_{n}-p_{n}\right)=\left(x_{1}-q_{1}, \ldots, x_{n}-q_{n}\right)$ is equivalent to the equality of points $\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ in the affine space $\mathbb{k}^{n}$.
Exercise 11.2 If $a^{n}=0$ and $b^{m}=0$, then $(a+b)^{m+n-1}=0$ and $(c a)^{n}=0$ for all $c$.
Exercise 11.3 Since $A / \mathfrak{p}$ has no zero divisors for all prime $\mathfrak{p} \subset A$, every factorization map $A \rightarrow A \mathfrak{p}$ by a prime $\mathfrak{p}$ annihilates all the nilpotents. Thus, $\mathfrak{n}(A) \subset \bigcap \mathfrak{p}$. Conversely, let $a \in A$ be nonnilpotent. Then all nonnegative integer powers $a^{m}$ form the multiplicative system $A$. Write $A\left[a^{-1}\right]$ for the localization ${ }^{7}$ by this system. This is a nonzero ring. ${ }^{8}$ The full preimage of every prime ideal ${ }^{9}$

[^203]$\mathfrak{m} \subset A\left[a^{-1}\right]$ under the canonical homomorphism $A \rightarrow A\left[a^{-1}\right]$ is a prime ideal of $A$ that does not contain $a$.

Exercise 11.5 The homomorphisms $\mathbb{k}[X] \times \mathbb{k}[Y] \rightarrow \mathbb{k}$ are in bijection with the pairs of homomorphisms $\mathbb{k}[X] \rightarrow \mathbb{k}, \mathbb{k}[Y] \rightarrow \mathbb{k}$. One of many ways of thinking about the second question is to assume that $n \leqslant m$ and realize $X, Y$ by explicit equations within two different hyperplanes $\mathbb{A}^{m} \times\{a\}, \mathbb{A}^{m} \times\{b\}, a \neq b$, in the affine space $\mathbb{A}^{m+1}=\mathbb{A}^{m} \times \mathbb{A}^{1}$. Then take all pairwise products of these equations (including those linear equations that cut the hyperplanes $\mathbb{A}^{m} \times\{a\}, \mathbb{A}^{m} \times\{b\}$ out of $\left.\mathbb{A}^{m+1}\right)$.
Exercise 11.6 Since $\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)$ is linear in each of four elements, the prescription $\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} \otimes b_{2}\right) \stackrel{\text { def }}{=}\left(a_{1} a_{2}\right) \otimes\left(b_{1} b_{2}\right)$ can be extended to a $\mathbb{k}$-bilinear map $(A \otimes B) \times(A \otimes B) \rightarrow A \otimes B$ that provides $A \otimes B$ with a commutative associative binary operation (it is enough to verify both properties on decomposable tensors).
The required universal properties of maps $A \xrightarrow{\alpha} A \otimes B \stackrel{\beta}{\leftarrow} B$ follow from the universal properties of the tensor product of vector spaces. Namely, for every two homomorphisms $\varphi: A \rightarrow C, \psi: B \rightarrow C$ of $\mathbb{k}$-algebras with unit, the bilinear map $A \times B \rightarrow C,(a, b) \mapsto \varphi(a) \cdot \psi(b)$, can be uniquely passed through the tensor product $A \otimes B$.
Exercise 11.7 Take the union of the equations $f_{v}(x)=0, g_{\mu}(y)=0$, each considered as an equation on the whole set of coordinates $(x, y)$ in $\mathbb{A}^{n} \times \mathbb{A}^{m}$.
Exercise 11.8 The equalities (a), (b), (c), and the inclusions

$$
V(I) \cup V(J) \subset V(I \cap J) \subset V(I J) \subset V(I) \cup V(J)
$$

in (d) follow immediately from the definitions. Note that the coincidence $V(I \cap J)=V(I J)$ is equivalent to the equality of radicals $\sqrt{I \cap J}=\sqrt{I J}$, which can be easily verified independently.
Exercise 11.9 Let $X \subset \mathbb{A}^{n}, f \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. If $V(f)=X$, then $f \in I(X)$, and therefore, the class of $f$ in $\mathbb{k}[X]$ equals zero. If $V(f)=\varnothing$, then the ideal spanned in $\mathbb{k} x n$ by $f$ and $I(X)$ has empty zero set and therefore contains the unit. Hence, $1 \equiv f g(\bmod I(X))$ for some $g \in \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Thus, the classes of $f$ and $g$ are inverse to each other in $\mathbb{k}[X]$.
Exercise 11.10 Otherwise, we would have $X=(X \backslash U) \cup V(f-g)$. More scientifically, this holds because $f$ and $g$ are continuous and $U$ is dense.
Exercise 11.11 $Y=(Y \cap Z) \cup \overline{Y \backslash Z}$, where the first subset of $Y$ is proper by the assumption.
Exercise 11.14 Let $V=U_{1} \cup U_{2} \cup \cdots \cup U_{m}$. For every $i$, choose a nonzero linear form $\xi_{i} \in V^{*}$ annihilating $U_{i}$. Then $f=\prod_{i=1}^{m} \xi_{i} \in S^{m} V^{*}$ is the nonzero polynomial on $V$ that evaluates to zero at every point of $\mathbb{A}(V)$. This is impossible over an infinite ground field.

Exercise 11.16 Both rings consist of the same fractions considered modulo the same equivalences of fractions.
Exercise 11.17 Use the open covering $U=\bigcup \mathcal{D}\left(x_{i}\right)$ and Proposition 11.6.

Exercise 11.18 Every intersection $I \cap I\left(X_{i}\right)$ is a proper vector subspace of $I$, because if $I \subset I\left(X_{v}\right)$, then $X_{v} \subset \bigcup_{i \neq j}\left(X_{i} \cap X_{j}\right)$, and therefore $X_{v} \subset X_{i} \cap X_{j}$ for some $i \neq j$, although such inclusions are forbidden. If the $\mathbb{k}$-linear span of $I \cap \mathbb{k}[X]^{\circ}$ is proper too, then $I$ splits into a finite union of proper vector subspaces.
Exercise 11.21 Let $A=\mathbb{k}[X], B=\mathbb{k}[Y]$. The inclusion $\varphi^{*}: B \hookrightarrow A$ provides $A$ with the structure of a finitely generated $B$-algebra. This allows us to rewrite $A$ as $A \simeq B\left[x_{1}, x_{2}, \ldots, x_{m}\right] / J$. Then $\psi^{*}: B\left[x_{1}, x_{2}, \ldots, x_{m}\right] \rightarrow A$ is the quotient homomorphism, and $\pi^{*}: B \hookrightarrow B\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ is the inclusion of constants into the polynomial ring.
Exercise 11.22 Put $B=\mathbb{k}[Z], A=\varphi^{*}(\mathbb{k}[Y]) \simeq \mathbb{k}[Y]$ (recall that $\varphi^{*}: \mathbb{k}[Y] \hookrightarrow \mathbb{k}[Z]$ is injective, because $\varphi$ is dominant).
Exercise 12.2 If $x_{i} x_{j} \neq 0$, then $t_{j, v}=x_{v} / x_{j}=\left(x_{v}: x_{i}\right) /\left(x_{j}: x_{i}\right)=t_{i, v} / t_{i, j}$ (for $v=i$, we put $t_{i, i}=1$ ). Therefore, $\varphi_{j i}^{*}: t_{j, v} \mapsto t_{i, v} / t_{i, j}$. The homomorphism

$$
\mathbb{k}\left[\mathcal{D}\left(t_{i, j}\right)\right] \rightarrow \mathbb{k}\left[\mathcal{D}\left(t_{j, i}\right)\right]
$$

inverse to $\varphi_{j i}^{*}$ acts by the same rule $t_{j}^{(i)} \mapsto 1 / t_{i}^{(j)}, t_{i, v} \mapsto t_{j, v} / t_{j, i}$.
Exercise 12.3 Every such $W$ has a unique basis $w_{1}, w_{2}, \ldots, w_{k}$ projected onto

$$
e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}
$$

Write $x_{W}$ for the matrix formed by the coordinates of vectors $w_{1}, w_{2}, \ldots, w_{k}$ written in rows. Then $s_{I}\left(x_{W}\right)=E$.
Exercise 12.5 Note that the elements of the $k \times m$ matrix $s_{J}^{-1}\left(\varphi_{I}(t)\right) \cdot \varphi_{I}(t)$ are rational functions of the elements of the matrix $t$ with denominators equal to $\operatorname{det} s_{J}\left(\varphi_{I}(t)\right)$. In particular, they are all regular in $\mathcal{D}\left(\operatorname{det} s_{J}\left(\varphi_{I}(t)\right)\right)$.
Exercise 12.6 This follows from the definition of regular function and Remark 11.3 on p. 255.
Exercise 12.9 The definition of $\varkappa$ can be rewritten as

$$
\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)
$$

This makes clear that $\varkappa$ is undefined only at the points $(1: 0: 0),(0: 1: 0)$, ( $0: 0: 1$ ) and takes all values except for these points.
Exercise 12.10 Given a homogeneous polynomial $\bar{f}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, write

$$
Z(f) \subset \mathbb{P}_{n}
$$

for the set of its zeros. In the notation of Example 12.1 on p. 266, the intersection $Z(f) \cap U_{i}$ is described in terms of the affine coordinates $t_{i}$ within the chart $U_{i}$ by the polynomial equation $\bar{f}\left(t_{i, 0}, \ldots, t_{i, i-1}, 1, t_{i, i+1}, \ldots, t_{i, n}\right)=0$.
Exercise 12.12 Use the Segre embedding $\mathbb{P}_{n_{1}} \times \mathbb{P}_{n_{2}} \times \cdots \times \mathbb{P}_{n_{m}} \hookrightarrow \mathbb{P}_{N}$ described in Example 2.8 on p. 50 and analyzed in more detail in Example 2.8 on p. 50.

Exercise 12.14 If $A \subset B$ and $B \supset C$ are two integral extensions of commutative rings, then the extension $A \subset C$ is integral as well by Proposition 10.1 on p. 228.
Exercise 12.16 Let $X_{1}, X_{2} \subset X$ be two closed irreducible subsets, and $U \subset X$ an open set such that both intersections $X_{1} \cap U, X_{2} \cap U$ are nonempty. Then $X_{1}=X_{2}$ if and only if $X_{1} \cap U=X_{2} \cap U$, because $X_{i}=\overline{X_{i} \cap U}$.
Exercise 12.17 Check that the product of finite surjections $X \rightarrow \mathbb{A}^{n}, Y \rightarrow \mathbb{A}^{m}$ gives the finite surjection $X \times Y \rightarrow \mathbb{A}^{n} \times \mathbb{A}^{m}$.
Exercise 12.18 Chose some basis in $H$ and write the coordinates of the basis vectors together with the coordinates of a variable point $p \in \mathbb{P}_{n}$ as the rows of an $(n-d+1) \times(n+1)$-matrix. Then the condition $p \in H$ is equivalent to the vanishing of all the minors of maximal degree $n-d+1$ in this matrix, which are quadratic bilinear polynomials in the homogeneous coordinates of $p$ and the Plücker coordinates. ${ }^{10}$
Exercise 12.20 The set $\Gamma \subset \mathbb{P}_{N_{0}} \times \cdots \times \mathbb{P}_{N_{n}} \times \mathbb{P}_{n}$ is given by the equations

$$
f_{0}(p)=f_{1}(p)=\cdots=f_{n}(p)=0
$$

in $f_{i} \in \mathbb{P}_{N_{i}}$ and $p \in \mathbb{P}_{n}$, linear and homogeneous in each $f_{i}$ and homogeneous of degrees $d_{i}$ in $p$.
Exercise 12.21 Take $n+1$ hyperplanes having one common point and exponentiate their (linear) equations in the prescribed degrees.
Exercise 12.22 Consider the product $\mathbb{P}_{n_{1}} \times \mathbb{P}_{n_{2}} \times \cdots \times \mathbb{P}_{n_{m}}$ and write

$$
x^{(i)}=\left(x_{0}^{(i)}: x_{1}^{(i)}: \cdots: x_{n_{i}}^{(i)}\right)
$$

for the set of homogeneous coordinates in the $i$ th factor $\mathbb{P}_{n_{i}}$. Modify the proof of Lemma 12.1 on p. 273 to show that every closed submanifold

$$
Z \subset \mathbb{P}_{1} \times \mathbb{P}_{2} \times \cdots \times \mathbb{P}_{m}
$$

can be described by an appropriate system of global polynomial equations

$$
f_{v}\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)=0
$$

homogeneous in every group of variables $x^{(i)}$. Then assume that $Z$ is irreducible of codimension 1, show that there exists an irreducible polynomial

$$
q\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)
$$

vanishing on $Z$, and use a dimensional argument to check that $Z=Z(q)$ is the zero set of $q$. Finally, use the strong Nullstellensatz to show that for irreducible polynomials $q_{1}, q_{2}$, the equality $Z\left(q_{1}\right)=Z\left(q_{2}\right)$ forces $q_{1}, q_{2}$ to be proportional.

[^204]Exercise 12.23 Identify $\operatorname{Gr}(2,4)$ with the Plücker quadric $P \subset \mathbb{P}_{5}=\mathbb{P}\left(\Lambda^{2} V\right)$ by sending a line $(a, b) \subset \mathbb{P}_{3}$ to the point $a \wedge b \in \mathbb{P}_{5}$. The line $(a, b)$ lies on the surface $V(f) \subset \mathbb{P}_{3}$ if and only if the polynomial $f$ vanishes identically on the linear span of vectors $a, b$, which is the linear support of the Grassmannian polynomial $a \wedge b$ and coincides with the image of the map $V^{*} \rightarrow V, \xi \mapsto \xi\llcorner(a \wedge b)$, contracting a covector $\xi \in V^{*}$ with the first tensor factor of $(a \otimes b-b \otimes a) / 2 \in \mathrm{Alt}^{2} V$. Verify that the identical vanishing of the function $\xi \mapsto f(\xi\llcorner(a \wedge b))$ can be expressed by a system of bihomogeneous equations in the coefficients of $f$ and the Plücker coordinates $x_{i j}$ of the bivector $a \wedge b=\sum_{0 \leqslant i<j \leqslant 3} x_{i j} e_{i} \wedge e_{j}$.
Exercise 13.5 By Gauss's lemma, it is enough to check that $f$ is irreducible in the ring $\mathbb{F}_{p}[t][x]$. Apply the Eisenstein criterion modulo the prime element $t \in \mathbb{F}_{p}[t]$.
Exercise 13.6 Every chain $\mathbb{L}_{v}$ in $S$ is bounded above by the union $\bigcup_{v} \mathbb{L}_{v}$.
Exercise 13.8 For the minimal $f_{*} \in \mathbb{k}[x]$, put $\mathbb{K}_{f}$ as the splitting field of $f$ over $\mathbb{k}$. Assume that $\mathbb{K}_{g}$ exists for all $g<f$, and put $\mathbb{K}_{f}$ as the splitting field of $f$ over the field $\bigcup_{g<f} \mathbb{K}_{g}$.
Exercise 13.11 The linear span of the products $\vartheta_{1} \vartheta_{2} \cdots \vartheta_{m}$ is a $\mathbb{k}$-algebra without zero divisors algebraic over $\mathbb{k}$. Therefore, it is a field by Proposition 10.3 on p. 229.
Exercise 13.13 The roots of the polynomial $x^{p^{n}}-x$ in the field $\mathbb{F}_{p^{n}}$ split into a disjoint union of orbits of the Galois group $G=$ Aut $\mathbb{F}_{p^{n}} \simeq \mathbb{Z} /(n)$. The length $m$ of every such orbit $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ divides $n$ by the orbit length formula, ${ }^{11}$ and the product $\prod\left(x-\alpha_{i}\right)$ is a monic irreducible polynomial with coefficients in $\mathbb{F}_{p^{n}}^{G}=\mathbb{F}_{p}$. Since the polynomial $x^{p^{n}}-x$ is separable, we conclude that its irreducible decomposition in $\mathbb{F}_{p}[x]$ consists of distinct monic irreducible factors whose degrees divide $n$. On the other hand, a monic irreducible polynomial $g \in \mathbb{F}_{p}[x]$ of degree $m$ divides $x^{p^{n}}-x$ if and only if $g$ has a root in the splitting field $\mathbb{F}_{p^{n}}$ of the polynomial $x^{p^{n}}-x$. The latter is equivalent to the existence of an embedding $\mathbb{F}_{p}[x] /(g) \simeq \mathbb{F}_{p^{m}} \hookrightarrow \mathbb{F}_{p^{n}}$. Such an embedding exists if and only if $m \mid n$.
Exercise 14.1 Since addition, multiplication, subtraction, division, and taking square roots in $\mathbb{C}$ is completely reduced to the same operations applied separately to the real and imaginary parts, which can be constructed by straightedge and compass, and since a complex number can be recovered from its real and imaginary parts with straightedge and compass, the numbers $a, b$ can be assumed to be real. Then $a \pm b$ are constructed straightforwardly, while the constructions of $a / b, a b$, and $\sqrt{a}=\sqrt{1 \cdot a}$ require a segment of length 1 and are shown in Figs. 14.1, 14.2, and 14.3.

[^205]Fig. 14.1 Construction of $a b$


Fig. 14.2 Construction of $a / b$


Fig. 14.3 Construction of $\sqrt{a}$


Exercise 14.2 Let $|G|=2^{n}$. Use induction on $n$. By Proposition 13.6 from Algebra I, $G$ has a nontrivial center $C \triangleleft G$, which is a normal abelian 2-subgroup. Use the description of abelian groups from Theorem 14.5 of Algebra I to construct a series of abelian groups

$$
C=C_{0} \supset C_{1} \supset \cdots \supset C_{k-1} \supset C_{k}=\{e\}
$$

with $C_{i} / C_{i+1} \simeq \mathbb{Z} /(2)$. By induction, the quotient group $G / C$ admits a filtration

$$
G / C=Q_{0} \supset Q_{1} \supset \cdots \supset Q_{\ell-1} \supset Q_{\ell}=\{e\}
$$

with $Q_{i+1} \triangleleft Q_{i}$ and $Q_{i} / Q_{i+1} \simeq \mathbb{Z} /(2)$. Combining the filtrations on $C$ and $G / C$ leads to the filtration

$$
G=C Q_{0} \supset C Q_{1} \supset \cdots \supset C Q_{\ell-1} \supset C \supset C_{1} \supset \cdots \supset C_{k-1} \supset C_{k}=\{e\}
$$

where $C Q_{i} \subset G$ are the preimages of the subgroups $Q_{i} \subset G / C$ under the factorization epimorphism $G \rightarrow G / C$. Then

$$
C Q_{i} / C Q_{i+1} \simeq\left(C Q_{i} / C\right) /\left(C Q_{i+1} / C\right) \simeq Q_{i+1} / Q_{i} \simeq \mathbb{Z} /(2)
$$

Exercise 14.3 Just repeat all the previous proofs word for word, replacing $\mathbb{Q}$ by $\mathbb{F}$, or use Proposition 14.2 on p. 318.
Exercise 14.4 Let the roots $\left\{\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{k}\right\} \subset\left\{\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}\right\}$ form a Galois orbit. Then the coefficients of the polynomial $g(x)=\left(x-\vartheta_{1}\right)\left(x-\vartheta_{2}\right) \cdots\left(x-\vartheta_{k}\right)$ are Galois invariant, and therefore $g \in \mathbb{k}[x]$. This forces $f$ to be the product of polynomials $g$ constructed from all the Galois orbits. Conversely, if $f$ is nontrivially factorizable in $\mathbb{k}[x]$, then the Galois group sends the roots of every factor to the roots of the same factor, and therefore, its action on the roots of $f$ is not transitive.
Exercise 14.6 A splitting field $\mathbb{L}_{\bar{f}}$ for $\bar{f}$ over $\mathbb{F}_{p}$ can be constructed as a tower of simple extensions,

$$
\mathbb{F}_{p}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \cdots \subset \mathbb{L}_{m-1} \subset \mathbb{L}_{m}=\mathbb{L}_{\bar{f}}
$$

every level of which is obtained from the previous one by adjunction of a root $\vartheta$ of the polynomial $\bar{f}$. Since $\bar{f}$ splits in $A[t]$ into a product of distinct linear factors, the tautological inclusion $\mathbb{F}_{p} \hookrightarrow A$ can be extended along the tower to an $\mathbb{F}_{p}$-algebra homomorphism $\mathbb{L}_{\bar{f}} \rightarrow A$. It is injective, because $\mathbb{L}_{\bar{f}}$ is a field, and its image coincides with the $\mathbb{F}_{p}$-subalgebra of $A$ generated by the roots of $\bar{f}$.
Exercise 14.8 Since $x^{n}-1=\prod_{\nu=0}^{n-1}\left(x-\zeta^{\nu}\right)$, all the elementary symmetric polynomials $e_{i}$ with $1 \leqslant i \leqslant n-1$ vanish on the successive powers of $\zeta$, i.e., $e_{i}\left(\zeta^{0}, \zeta^{1}, \ldots, \zeta^{n-1}\right)=0$. This forces all the coefficients of $f_{\xi}$ except for the leading coefficient and constant term ${ }^{12}$ to vanish as well:

$$
e_{i}\left(\zeta^{0} \xi \alpha, \zeta^{1} \xi \alpha, \ldots, \zeta^{n-1} \xi \alpha\right)=\xi^{i} \alpha^{i} e_{i}\left(\zeta^{0}, \zeta^{1}, \ldots, \zeta^{n-1}\right)=0
$$

Exercise $14.11 \sigma\left(\alpha^{m}\right)=\sigma(\alpha)^{m}=\zeta^{-m} \alpha^{m}=\alpha^{m}$.

[^206]
## References

[DK] Danilov, V.I., Koshevoy, G.A.: Arrays and the Combinatorics of Young Tableaux, Russian Math. Surveys 60:2 (2005), 269-334.
[Fu] Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, 1997.
[FH] Fulton, W., Harris, J.: Representation Theory: A First Course, Graduate Texts in Mathematics. Cambridge University Press, 1997.
[Mo] Morris, S. A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society LNS 29. Cambridge University Press, 1977.

## Index

Abel-Ruffini theorem, 332
accessory irrationality, 318
action of a ring
left, 106
right, 106
adjoint
functors, 205
presheafs, 223
representation, 179
adjunction of a root, 296
affine
algebraic variety, 242, 259
irreducible, 251
normal, 259
chart, 266
standard on $\operatorname{Gr}(k, m), 267$
standard on $\mathbb{P}_{n}, 266$
open set, 262
algebra
associative, 21
nilpotent, 126
commutative, 27, 30
coordinate, 244
exterior, 29
finitely generated, 235
free
associative, 21
commutative, 27, 30
Grassmannian, 29
Lie, 173
of arrows, 189
of rational functions, 253
of regular functions, 268
reduced, 244
s-commutative, 30
semisimple, 125
simple, 125
skew commutative, 30
supercommutative, 30
symmetric, 27
tensor, 21
universal enveloping, 174
with division, 124
algebraic
atlas, 266
closure, 303
element of algebra, 235
field extension
cyclic, 327
Galois, 307
normal, 304
purely inseparable, 314
separable, 298
solvable, 328
manifold, 266
of finite type, 266
projective, 272
separated, 270
number, 230
variety, 266
affine, 242
incidence, 287
irreducible, 251
normal, 259
projective, 272
algebraic integer, 230
alternating
multilinear map, 30
universal, 30
polynomial, 57
tensor, 32
alternation, 32, 120
amalgamated product, 217
antichain, 98
antihomomorphism, 192
antipodal antiautomorphism, 156
apparent contour of a hypersurface, 42
Aronhold's principle, 51, 123
array, 75
bidense, 80
dense, 79
transpose, 77
associative envelope, 100
atlas, algebraic, 266
automorphism
Frobenius, 310
of a field over a subfield, 307
sign automorphism, 156
ball
coupled, 76
free, 76
basis
determinantal, 58
monomial, 58
Schur, 59, 89
transcendence, 237
bicomplete category, 218
bidense array, 80
bimodule, 207
blowup, 273

Cartesian square, 83, 216
Casimir
element, 181
tensor, 17, 180
categories, equivalent, 198
category, 187
bicomplete, 218
cocomplete, 217
complete, 217
cyclic, 222
discrete, 214
filtered, 218
opposite, 190
semisimplicial, 192
simplicial, 190
small, 188
Cauchy's identity, 91, 95
Cayley-Hamilton identity, 54
center
of a group algebra, 115
of a ring, 114
centralizer, 105
double, 105
chain in a poset, 98
character
multiplicative, 111
trivial, 111
of a linear representation, 127, 134
characteristic polynomial, 314
chart, 265
affine, 266
standard on $\operatorname{Gr}(k, m), 267$
standard on $\mathbb{P}_{n}, 266$
Chevalley's constructibility theorem, 291
circulant, 72
class, 187
of morphisms in a category, 188
of objects in a category, 187
class number, 115
closed
immersion, 257, 269
morphism, 278
submanifold, 269
closure
algebraic, of a field, 303
integral, 228
normal, 307
cocartesian square, 217
cocomplete category, 217
codomain of a morphism, 187
coequalizer, 215
cofiltered diagram, 218
coinduced
module, 146, 209
representation, 148
coinduction, 209
colimit of a diagram, 214
column
scanning
of a filling, 160
of an array, 82
subgroup, 151
weight, 75
combinatorial simplex, 190
commutative multiplication, 28
commutativity relations, 26
commutator
in tensor algebra, 33
Lie algebra, 173
compatibility of local charts, 265, 266
complete
category, 217
intersection, 284
polarization, 35
of a Grassmannian polynomial, 45
poset, 102
symmetric polynomial, 61, 90, 93
completely reducible representation, 100
complex
de Rham, 56
Koszul, 56
component
irreducible, 252
isotypic, 107
composable morphisms, 187
composition
map, 187
of morphisms, 187
compositum, 306
condensing operation
horizontal, 77
on arrays, 76
vertical, 76
conjugacy class, 115
constant
family of manifolds, 269
presheaf, 195
sheaf, 195
constructibility theorem of Chevalley, 291
constructible set, 291
content of Young tableaux, 88
contraction
complete, 22
map, 107
of a vector and multilinear form, 24
partial, 24
contravariant functor, 192
convolution of functions, 342
coordinate algebra, 244
coproduct
direct, 204, 215
fibered, 216
corepresentable functor, 200
corepresenting object, 200
coterminal object, 214
covariant functor, 191
Cremona involution, 291
cubic field extension, 296
cyclic
category, 222
field extension, 327
cyclotomic
field, 323
polynomial, 72, 324
de Rham complex, 56
decomposable
Grassmannian polynomial, 49
module, 100
representation, 100
tensor, 4
decomposition
irreducible, 252
isotypic, 109, 115
of the identity, 116
tensor cube, 33
tensor square, 32
Dedekind cut, 197
degenerate
polar, 42
simplex, 194
tensor, 25
degree
of a field extension, 230, 295
of an algebraic element, 235, 299
transcendence, of an algebra, 238
dense
array, 79
image, 256
open sets, 251
derivative
along a vector, 39
Grassmannian, 46
partial, 39
determinant
Sylvester, 277
Vandermonde, 59, 167
determinantal basis, 58
diagram, 213
cofiltered, 218
constant, 213
filtered, 218
pullback, 83, 216
pushforward, 217
dimension, 281
criterion or irreducibility, 286
of a fiber, 285
of a projective variety, 286
of a subvariety, 283
of an intersection, 284
direct
coproduct, 204, 215
product, 203, 215
system, 218
discrete
category, 214
topology, 194, 195
discriminant, 71, 291, 333
of a polynomial, 291, 296, 333
of an algebraic number field, 230
division algebra, 124
divisor
exceptional, 273
Weil, 273
domain
of a morphism, 187
of a rational function, 253
of a rational map, 271
dominant morphism, 257
domination, 89, 97, 152
double centralizer theorem, 105
DU, 76
operations, 76
orbit, 86
standard, 86
set, 86
dual representation
of a group, 110
of a Lie algebra, 175
duality
of finite ordered sets, 196
of vector spaces, 196
Pontryagin, 112
effective
operation, 76
word, 77
element
algebraic, 235
Casimir, 181
Frobenius, 325
integral, 227
primitive, of a field extension, 296
transcendental, 235
elementary symmetric polynomial, 60, 90, 93
embedding
Plücker, 272
Segre, 7
Veronese, 45, 54, 55, 184, 185
endofunctor, 191
endomorphism
Frobenius, 334
identical, 187
equalizer, 215
equivalence
of algebraic atlases, 266
of categories, 198
essentially surjective functor, 199
Euler's function $\varphi(n), 325$
evaluation
homomorphism, 112, 234-236, 244, 319
map, 112, 185, 186, 248
of a polynomial on a vector, 36
of a rational function, 253
at a generic point, 257
exact
sequence, 224
short, 224
triple, 224
exceptional divisor, 273
extension
of a homomorphism, 300, 301
of a rational map, 271
of commutative rings, 227
integral, 228
of fields
cubic, 296
cyclic, 327
finite, 295
Galois, 307
normal, 304
purely inseparable, 314
quadratic, 315
separable, 298
simple, 296
solvable, 328
exterior
algebra, 29
multiplication, 29
power of a vector space, 30
faithful
functor, 191
module, 239
family of manifolds, 269
constant, 269
trivial, 269
Fano variety, 292
fibered
coproduct, 216
product, 83, 215
field
cyclotomic, 323
of $G$-invariants, 307
splitting, 302
field extension
cubic, 296
cyclic, 327
finite, 295
Galois, 307
normal, 304
purely inseparable, 314
quadratic, 315
separable, 298
simple, 296
solvable, 328
filling, 151
standard, 151
filtered
category, 218
diagram, 218
finite morphism
of affine varieties, 258
of algebraic manifolds, 279
finitely generated algebra, 235
finitely presented module, 188
forgetful functor, 191, 206
formula
Frobenius for characters, 167
Frobenius for dimensions, 169
Giambelli, first, 66, 94
Giambelli, second, 73
hook length, 169
Jacobi-Trudi, 93
Littlewood-Richardson, 92
Molin, 127
Pieri, 69, 92
projection, 146
Sylvester's, 277
Viète, 60
homogeneous, 276
Fourier transform, 137, 147
of an operator, 147
free
associative algebra, 21
commutative algebra, 27, 30
product of groups, 205
Frobenius
automorphism, 310
element, 325
formula
for characters, 167
for dimensions, 169
reciprocity, 143
full
functor, 191
subcategory, 188
fully faithful functor, 191, 199
function
Euler's, 325
locally constant, 195
polynomial, 36
rational, 253
regular at a point, 253
regular, 243, 268
symmetric, 70
functor, 191
adjoint
left, 205
right, 205
coinduction, 209
commuting with (co) limits, 221
contravariant, 192
corepresentable, 200
covariant, 191
essentially surjective, 199
faithful, 191
forgetful, 191, 206
full, 191
fully faithful, 191, 199
Hom, 195
induction, 209
restriction, 208
functorial transformation, 197
functors
adjoint, 205
quasi-inverse, 198

Galois
correspondence, 310
extension, 307
group, 307
of a cyclotomic field, 323
of a polynomial, 319
resolution, 321
Gauss's lemma, 231
Gauss-Kronecker-Dedekind
lemma, 229
Gaussian
construction, 334
integers, 231
sum, 326
generators
of an algebra, 235
transcendence, 236
generic polynomial, 331
geometric realization, 191
of a semisimplicial set, 192
of a simplicial set, 193
germ of section, 219
Giambelli formula
first, 66, 94
second, 73
graph
of a rational map, 291
of a regular map, 271
Grassmannian, 49, 267
algebra, 29
derivative
along a vector, 46
partial, 46
exponential, 55
multiplication, 29
polynomial
decomposable, 49
group
Galois, 307
of a cyclotomic field, 323
of a polynomial, 319
Heisenberg, 149, 150
of roots of unity, 298, 323
Pontryagin dual, 111
solvable, 328
group algebra, 114
harmonic points, 342
Heisenberg group, 149, 150
Hermite reciprocity, 186
Hessian, 185
Hilbert's Nullstellensatz, 242
strong, 242
weak, 242
Hodge star, 55
Hom functor, 195
homogeneous
coordinates, 273
Plücker, on Grassmannian, 272
Viète formulas, 276
homology spaces, 56
homomorphism
of $R$-modules, 103
of $\mathfrak{g}$-modules, 175
of representations, 103
pullback, 246
hook, 97, 169, 170
hook length formula, 169
horizontal operations on arrays, 76
hypersurface
polar, 42
singular, 41
smooth, 41
ideal
maximal, 242
of a point, 244
of a noncommutative ring, 26
left, 26
right, 26
two-sided, 26
of a subset in $\mathbb{A}^{n}, 242$
prime, 246
radical, 244
sheaf, 269
idempotent
irreducible, 116, 125, 133
identity
Cauchy's, 91, 95
endofunctor, 191
endomorphism, 187
Jacobi, 33, 173
Schur, 91
immersion, closed, 257, 269
incidence variety, 287
indecomposable
module, 100
representation, 100
index category of a diagram, 213
induced
linear representation, 142
module, 141, 209
induction, 209
initial object, 214
injective
limit, 214
module, 225
system, 218
injective morphism, 189
inner product
of a vector and multilinear form, 24
of symmetric functions, 95
on a group algebra, 131
integers
algebraic, 230
Gaussian, 231
Kronecker, 231
integral
closure, 228
element, 227
ring extension, 228
integrally closed ring, 228
intersection
complete, 284
multiplicity, 41
with a hyperplane
multiple, 41
simple, 41
transversal, 41
intertwining map, 103
invariant
of a group action, 228
scalar product, 128
subspace, 100
invariants
of a group action, 113
of binary groups of Platonic solids, 312
of the dihedral group, 312
of the group of a triangle, 308
inverse system, 218
invertible morphism, 190
involution
Cremona, 291
$\omega$ on $\Lambda, 62,63,94$
Schützenberger, 98
irrationality, accessory, 318
irreducible
algebraic variety, 251
component, 252
decomposition, 252
idempotent, 116, 125, 133
representation, 100
topological space, 251
isomorphism, 190
canonical, 197
Kummer, 328
of functors, 197
of objects in a category, 190
isotypic
component, 107
decomposition, 109, 115

Jacobi identity, 33, 173
Jacobi-Trudi formula, 93

Killing form, 180
Kostka numbers, 89, 166
Koszul complex, 56
Kronecker
integers, 231
product of matrices, 13
symbol, 171
Kummer isomorphism, 328

Lüroth's theorem, 238
left
action of a ring, 106
adjoint
functor, 205
presheaf, 223
ideal, 26
module, 106
regular representation, 116
Legendre-Jacobi symbol, 326, 334
Leibniz rule, 40, 175
Grassmannian, 46
lemma
Emmy Noether's on normalization, 281
Gauss's, 231
Gauss-Kronecker-Dedekind, 229
Schur's, 103
length
of a hook, 169
of a Young diagram, 58, 63, 67
lexicographic order, 58
Lie
algebra, 173
of commutators, 173
$\mathfrak{s l}_{2}, 176$
bracket, 173
limit
injective, 214
of a diagram, 213
projective, 213
line
bundle, 273
tautological, 273
scanning, 81
tangent, 41
linear
representation
induced, 142
of a group, 109
of a Lie algebra, 174
of a set, 99
of an associative algebra, 99, 104
support
of a polynomial, 43, 47
of a tensor, 25
trace form, 314
Littlewood-Richardson rule, 167
Littlewood-Richardson rule, 92
local
chart, 265
coordinates
on $\operatorname{Gr}(k, m), 267$
on $\mathbb{P}_{n}, 266$
localization, 219
manifold, 265
algebraic, 266
of finite type, 266
projective, 272
separated, 270
map
intertwining, 103
linear, 103, 105
multilinear, 1
alternating, 30
symmetric, 27
universal, 3
universal alternating, 30
universal symmetric, 28
$n$-linear, 1
polynomial, 243
rational, 271
regular, 243
closed immersion, 257
dominant, 257
finite, 258,279
of algebraic manifolds, 268
Maschke's theorem, 117
maximal
ideal, 242
of a point, 244
spectrum, 244
minimal
polynomial, 232, 235, 238, 260, 300, 304
of a linear operator, 101
module
coinduced, 146, 209
decomposable, 100
faithful, 239
finitely presented, 188
indecomposable, 100
induced, 141, 209
injective, 225
left, 106
Noetherian, 239
of invariants, 113
of multilinear maps, 1
over a Lie algebra, 174
projective, 225
right, 107
semisimple, 100
simple, 100
Specht, 159
tabloid, 157
unital, 107
Molin's formula, 127
monomial
basis of symmetric polynomials, 58
tensor, 4
alternating, 34
symmetric, 34
monomorphism, 189
morphism
finite
of affine varieties, 258
of algebraic manifolds, 279
injective, 189
invertible, 190
of a category, 187
composable, 187
of algebraic varieties, 243
closed, 278
dominant, 257
finite, 258,279
of families, 269
over a base, 269
regular
of affine varieties, 243
of algebraic manifolds, 268
surjective, 189
multilinear map, 1
alternating, 30
symmetric, 27
universal, 3
alternating, 30
symmetric, 28
multiplication
commutative, 28
exterior, 29
Grassmannian, 29
s-commutative, 30
tensor, 4
multiplicative character, 111
trivial, 111
multiplicity
of a simple module, 109
of an irreducible representation, 116
of the intersection with a hyperplane, 41
natural transformation, 197
Newton
formulas, 63
symmetric polynomial, 62, 64
nilpotent
associative algebra, 126
element, 244
Noether's normalization lemma, 281
Noetherian topological space, 252
nonseparateness, 270
norm
of an algebraic element, 314
of an algebraic number, 230
normal
algebraic variety, 259
closure, 307
field extension, 304
ring, 231
Nullstellensatz, 242
strong, 242
weak, 242
numbers
Kostka, 89, 166
of partitions, 71
object
corepresenting, 200
coterminal, 214
initial, 214
representing, 200
terminal, 214
zero, 214
objects of a category, 187
isomorphic, 190
open sets, $189,194,219$
affine, 262
operation on arrays, 76
horizontal, 77
vertical, 76
operator, 101
$\mathfrak{g}$-invariant, 175
$\mathfrak{g}$-linear, 175
intertwining, 103
Reynolds, 113, 262
opposite
algebra, 190
category, 190
ring, 107
order
lexicographic, 58
Ore conditions, 224
orthogonality relations
for irreducible idempotents, 133
osculating plane, 185
$p$-adic
distance, 223
integers, 223
norm, 223
partial
contraction, 24
derivative, 39
Grassmannian, 46
partition number, 71
path algebra of a category, 189
Pauli matrices, 183
Pieri's formula, 69, 92
Plücker
coordinates, 50, 272
embedding, 49, 54, 272
quadric, $48,49,54$
relations, 48
plane, osculating, 185
point
singular, 41
smooth, 41
points
harmonic, 342
polar, 39, 42
degenerate, 42
hypersurface, 42
of degree $r, 42$
polarization
complete, 35, 37
of a Grassmannian polynomial, 45
map, 39, 46
partial, 40
polynomial
alternating, 57
characteristic, 314
cyclotomic, 72, 324
function, 36
generic, 331
minimal, 232, 235, 238, 300, 304
of a linear operator, 101
separable, 297
symmetric, 57
complete, 61, 90, 93
elementary, 60, 90, 93
Newton, 62, 64
Schur, combinatorial, 88
Schur, combinatorial, standard, 88
Schur, determinantal, 59
Pontryagin
dual group, 111
duality, 112
poset, 98
complete, 102
power
exterior, 30
symmetric, 27
tensor, 21
presheaf, 192
constant, 195
left adjoint, 223
on a topological space, 195
representable, 200
right adjoint, 223
separated, 195
primitive
element of a field extension, 296
root of unity, 298, 326
principal open set, 250
principle
splitting, 53
Aronhold's, 51, 123
product
amalgamated, 217
direct, 203, 215
fibered, 83, 215
free, of groups, 205
Kronecker, of matrices, 13
tensor
of commutative rings, 217
of DU-sets, 91
of modules, 141, 206
topology, 204, 347
projection
closed, 278
finite, 279, 280
fiberwise, 285
parallel, 281
formula, 146
projective
algebraic manifold, 272
algebraic variety, 272
limit, 213
module, 225
system, 218
pullback, 215
diagram, 83, 216
homomorphism, 246
purely inseparable extension, 314
pushforward, 216
diagram, 217
quadratic
field extension, 315
reciprocity, 334
quasi-inverse functors, 198
radical
of an associative algebra, 126
radical ideal, 244
radical of an ideal, 242
ramification rules, 167
rank of a tensor, 25
rational
function, 253
regular at a point, 253
map, 271
reciprocity
Frobenius, 143
Hermite, 186
quadratic, 334
Schur, 128
reduced algebra, 244
reducible topological space, 251
regular
function, 243, 268
map, 243, 247, 251
closed, 278
dominant, 257, 258
finite, 258, 279
representation, 116
sequence, 284
relations
commutativity, 26
Plücker, 48
skew-commutativity, 29
representable presheaf, 200
representation
adjoint, of a Lie algebra, 179
completely reducible, 100
decomposable, 100
dual
of a group, 110
of a Lie algebra, 175
effective, 150
indecomposable, 100
induced, 142
irreducible, 100
left regular, 116
linear
of a group, 109
of a Lie algebra, 174
of a set, 99
of an associative algebra, 99, 104
of $S_{n}$
sign, 120
simplicial, 120
tautological, 120
trivial, 120
ring, 140
Schur, 123
trivial, 111, 120
virtual, 140
representing object, 200
resolution, Galois, 321
restriction
functor, 208
of a linear representation, 142
of modules, 141
of sections, 194
resultant, 277, 288
of $n$ equations in $n$ variables, 288
of two binary forms, 277
system, 275
variety, 275, 288
reversing of arrows, 190
Reynolds operator, 113, 262
right
action of a ring, 106
adjoint
functor, 205
presheaf, 223
ideal, 26
module, 107
ring
extension, 227
integral, 228
integrally closed, 228
normal, 231
of algebraic integers, 230
of fractions, 219
of invariants, 228
of representations, 140
of symmetric functions, 71
opposite, 107
root
adjunction, 296
of unity, 298
primitive, 298, 326
row
subgroup, 151
weight, 75
RSK-type correspondence, 85
rule
Leibniz, 40, 175
Grassmannian, 46
Littlewood-Richardson, 167
Littlewood-Richardson, 92
ramification, 167
Young's, 166
s-commutativity, 30
s-commutator, 56
s-commutative multiplication, 30
scalar product
invariant, 128
scanning
column, 82
horizontal, 81
Schützenberger involution, 98
Schur
basis of symmetric polynomials, 59, 89
identity, 91
polynomials, 59, 88
combinatorial, 88
determinantal, 59
standard, 88
reciprocity, 128
representation of $\mathrm{GL}(V), 123$
Schur's lemma, 103
Schur-Weyl correspondence, 124
sections of a presheaf, 194
Segre
embedding, 7, 54
quadric in $\mathbb{P}_{3}, 8$
variety, 6,8
semicontinuity theorem, 286
semisimple
algebra, 125
module, 100
semisimplicial
category, 192
set, 192
separable
field extension, 298
polynomial, 297
separated
algebraic manifold, 270
presheaf, 195
sequence
exact, 224
short, 224
regular, 284
set
constructible, 291
open, 189, 194, 219
affine, 262
semisimplicial, 192
simplicial, 193
Zariski closed, 250
Zariski open, 250
shape
of a diagram, 213
of a poset, 98
of an array, 80
sheaf, 195
constant sheaf, 195
of ideals, 269
of local continuous maps, 195
of regular functions, 268
of regular rational functions, 254
of sections of a continuous map, 195
structure
of an algebraic manifold, 268
of an algebraic variety, 254
structure sheaf, 195
short exact sequence, 224
sign
automorphism, 156
representation of $S_{n}, 120$
simple
algebra, 125
field extension, 296
module, 100
simplex
combinatorial, 190
degenerate, 194
singular, 209
simplicial
category, 190
representation of $S_{n}, 120$
set, 193
of singular simplices, 209
singular
hypersurface, 41
point, 41
simplex, 209
skew commutative algebra, 30
skew-commutativity relations, 29
small category, 188
smooth
hypersurface, 41
point, 41
surface, 292
solvable
field extension, 328
group, 328
source of a morphism, 187
space
tangent, 41
triangulated, 192
Specht module, 159
spectrum, maximal, 244
splitting
field, 302
principle, 53
square
Cartesian, 83, 216
cocartesian, 217
stable matching, 76
stalk of a presheaf, 219
standard
affine chart
on $\mathbb{P}_{n}, 266$
on $\operatorname{Gr}(k, m), 267$
DU-orbit, 86
Schur polynomials, 88
$\mathfrak{s l}_{2}$-modules, 177
tableau, 160
structure sheaf, 195
of an algebraic manifold, 268
of an algebraic variety, 254
subcategory, 188
full, 188
submanifold, 269
submodule, 100
subspace, invariant, 100
sum, Gaussian, 326
supercommutative algebra, 30
support, linear
of a polynomial, 43, 47
of a tensor, 25
surface, $251,255,261,274,280,283,288,289$
smooth, 292
surjective morphism, 189

Sylvester
determinant, 277
formula, 277
symbol
Kronecker, 171
Legendre-Jacobi, 326, 334
symmetric
algebra, 27
function, 70
multilinear map, 27
universal, 28
polynomials, 57
complete, 61, 90, 93
elementary, 60, 90, 93
Newton, 62, 64
Schur, combinatorial, 88
Schur, determinantal, 59
Schur, standard combinatorial, 88
power of a vector space, 27
tensor, 32
symmetrization, 32,120
symmetry type of tensor, 121
system
direct, 218
injective, 218
inverse, 218
of resultants, 275
projective, 218
tableau, standard, 160
tabloid, 157
module, 157
representation, 157
tangent
line, 41
space, 41
target of a morphism, 187
tautological
line bundle, 273
representation of $S_{n}, 120$
Taylor's formula, 40
tensor, 4
algebra, 21
alternating, 32
Casimir, 17, 180
cube, 33
decomposable, 4
degenerate, 25
Lie, 121
monomial, 4
alternating, 34
symmetric, 34
multiplication, 4
power of a vector space, 21
product
of abelian groups, 9
of commutative rings, 217
of DU-sets, 91
of free modules, 6
of linear maps, 13
of modules, $4,15,141,206$
sign alternating, 121
square, 32
symmetric, 32, 121
terminal object, 214
theorem
Abel-Ruffini, 332
Chevalley's on constructibility, 291
Lüroth's, 238
Maschke's, 117
on double centralizer, 105
semicontinuity, 286
Tikhonov topology, 347
topological space
irreducible, 251
Noetherian, 252
reducible, 251
triangulated, 192
topology
discrete, 194, 195
product, 204, 347
Tikhonov, 347
Zariski, 250
total contraction, 22
trace
form, 230
bilinear, 314
linear, 314
of an algebraic element, 314
of an algebraic number, 230
transcendence
basis, 237
degree, 238
generators, 236
transcendental element, 235
transformation
functorial, 197
natural, 197
transition homeomorphism, 265
transpose array, 77
triangle relation, 87
triangulated topological space, 192
trivial
representation, 111
trivial family, 269
two-sided ideal, 26
type of DU-orbit, 86
unital module, 107
universal
enveloping algebra, 174
multilinear map, 3
alternating, 30
symmetric, 28
property
of a universal enveloping algebra, 174
of free associative algebras, 21
of the Cartesian square, 216
of the cocartesian square, 217
of the colimit, 214
of the direct coproduct, 204
of the direct product, 203
of the fiber product, 83
of the fibered coproduct, 217
of the fibered product, 216
of the limit, 214
of the pullback, 83,216
of the pushforward, 217

Vandermonde determinant, 59, 167
variety
algebraic, 266
affine, 242
projective, 272
Fano, 292
Grassmannian, 267
resultant, 275, 288
Segre, 6, 8
vector, weight, 177
primitive, 177
Veronese
conic, 184
cubic, 185
embedding, 45, 54, 55, 184, 185
vertical operations on arrays, 76
Viète formulas, 60
homogeneous, 276
virtual representation, 140
weight
of a content vector, 88
of a Young diagram, 89
of an $\mathfrak{s l}_{2}$-module, 177
of an array
column weight, 75
row weight, 75
vector, 177
primitive, 177
Weil divisor, 273

Yamanouchi word, 82, 92
Young
column symmetrizer, 153
diagram, 151
filled, 151
skew, 92
row symmetrizer, 153
symmetrizer, 153
tableau, 81
semistandard, 82
standard, 82
Young's rule, 166

Zariski
closed set, 250
open set, 250
principal, 250
topology, 250
zero object, 214


[^0]:    ${ }^{1}$ Throughout this book, the first volume will be referred to as Algebra I.

[^1]:    ${ }^{1}$ The formula (1.5) shows that an $n$-linear map is described in coordinates by means of $n$ th-degree polynomials.

[^2]:    ${ }^{2}$ Note that all the tensors proportional to a given decomposable tensor are decomposable, because $\lambda \cdot v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}=\left(\lambda v_{1}\right) \otimes v_{2} \otimes \cdots \otimes v_{n}$.

[^3]:    ${ }^{3}$ That is, are linear in each $v_{i}$ while all the other $v_{j}$ are fixed.

[^4]:    ${ }^{4}$ See Sect. 14.1.2 of Algebra I.

[^5]:    ${ }^{5}$ Where the group operation is the composition of automorphisms.

[^6]:    ${ }^{6}$ Recall that a correlation on a vector space $W$ is a linear map $\widehat{\beta}: W \rightarrow W^{*}$. The correlations are in bijection with the bilinear forms $\beta: W \times W \rightarrow \mathbb{k}, \beta(u, w)=\langle u, \widehat{\beta} w\rangle$ (see Sect. 16.1 of Algebra I).
    ${ }^{7}$ That is, independent of any extra data on $U$ and $W$, such as the choice of bases.

[^7]:    ${ }^{1}$ See Sect. 7.2 of Algebra I.

[^8]:    ${ }^{2}$ See Sect. 6.6.1 of Algebra I.
    ${ }^{3}$ See Proposition 2.1 of Algebra I.

[^9]:    ${ }^{4}$ See Example 15.3 in Algebra I.

[^10]:    ${ }^{5}$ See Proposition 12.2 of Algebra I.

[^11]:    ${ }^{6}$ See Sect. 7.1.4 of Algebra I.
    ${ }^{7}$ See Example 2.1 on p. 24.

[^12]:    ${ }^{8}$ Recall that the zero set of this form in $\mathbb{P}(V)$ is the hyperplane intersecting the quadric $Z(f) \subset \mathbb{P}(V)$ along its apparent contour viewed from $v$.

[^13]:    ${ }^{9}$ That is, of first degree.

[^14]:    ${ }^{10}$ With respect to inclusions.
    ${ }^{11}$ See Sect. 2.2.3 on p. 25.

[^15]:    ${ }^{12}$ Here we use that $\mathbb{k}$ is algebraically closed.
    ${ }^{13}$ See Sect. 11.3.3 of Algebra I.

[^16]:    ${ }^{14}$ Compare with Sect. 2.5 .6 on p. 43 .

[^17]:    ${ }^{15}$ Compare with Problem 17.20 of Algebra I.

[^18]:    ${ }^{16}$ Though the last two curves are given by their affine equations within the standard chart $U_{0} \subset \mathbb{P}_{2}$, the points at infinity should also be taken into account.
    ${ }^{17}$ That is, a triple of rational functions $x_{0}(t), x_{1}(t), x_{2}(t) \in \mathbb{k}(t)$ such that $f\left(x_{0}(t), x_{1}(t), x_{2}(t)\right)=0$ in $\mathbb{k}(t)$, where $f \in \mathbb{k}\left[x_{0}, x_{1}, x_{2}\right]$ is the equation of the curve.
    ${ }^{18}$ Compare with Example 11.7 and the proof of Proposition 17.6 in Algebra I.

[^19]:    ${ }^{19}$ See Sect. 15.3.1 of Algebra I.
    ${ }^{20}$ This is clear if the identity in question expresses some basis-independent properties of the linear operator but not its matrix in some specific basis.
    ${ }^{21}$ Even for the diagonal matrices with distinct eigenvalues, because the conjugation classes of these matrices are dense in $\operatorname{Mat}_{n}(\mathbb{C})$ as well.

[^20]:    ${ }^{22}$ See Example 1.3 on p. 8 and Example 17.6 from Algebra I.

[^21]:    ${ }^{23}$ Note that the decomposition of a Grassmannian polynomial into a sum of decomposable monomials is highly nonunique.
    ${ }^{24}$ See Sect. 2.3.1 on p. 26 and Sect. 2.3.3 on p. 29.

[^22]:    ${ }^{1}$ That is, consisting of at most $n$ rows; see Example 1.3 in Algebra I for the terminology related to Young diagrams.
    ${ }^{2}$ Recall that the lexicographic order on $\mathbb{Z}^{k}$ assigns $\left(m_{1}, m_{2}, \ldots, m_{k}\right)>\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if the leftmost $m_{i}$ such that $m_{i} \neq n_{i}$ is greater than $n_{i}$.
    ${ }^{3}$ The coefficient of every monomial changes sign under the transposition of any two variables.

[^23]:    ${ }^{4}$ Recall that we use the notation $(f(i, j))$, where $f(i, j)$ is some function of $i, j$, for the matrix having $f(i, j)$ at the intersection of the $i$ th row and $j$ th column.

[^24]:    ${ }^{5}$ That is, obtained from one another by reflection in the main diagonal.

[^25]:    ${ }^{6}$ Over an arbitrary (even noncommutative) ring with unit.
    ${ }^{7}$ That is, $f\left(e_{1}, e_{2}, \ldots, e_{n}\right) \neq 0$ in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for every $f \in \mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$.

[^26]:    ${ }^{8}$ See Sect. 12.2.3 of Algebra I.

[^27]:    ${ }^{9}$ That is, the cardinality of the stabilizer of the permutation of cyclic type $\lambda$ under the adjoint action of the symmetric group; see Example 12.16 of Algebra I.

[^28]:    ${ }^{10}$ See Corollary 4.3 on p. 94 .

[^29]:    ${ }^{11}$ Recall that we write $\ell(\lambda)$ for the number of rows in a Young diagram $\lambda$ and call it the length of $\lambda$.
    ${ }^{12}$ The first form a ring, and the second form a module over this ring.

[^30]:    ${ }^{13}$ For $n=0$, we put $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ equal to $\mathbb{Z}$.

[^31]:    ${ }^{14}$ Recall that the $n$th cyclotomic polynomial $\Phi_{n}(x)=\prod(x-\zeta)$ is the monic polynomial of degree $\varphi(n)$ whose roots are the primitive $n$th roots of unity $\zeta \in \mathbb{C}$. (See Sect. 3.5.4 of Algebra I.)

[^32]:    ${ }^{15}$ See Proposition 9.4 from Algebra I.

[^33]:    ${ }^{1}$ Or just an effective word if $a$ is clear from the context or inessential to the discussion.

[^34]:    ${ }^{2}$ Note that if $i=j$ and both $L_{i}, D_{i}$ act effectively, then $L_{i} D_{i}$ and $D_{i} L_{i}$ move one ball from the $(i, i)$ cell to the $(i-1, i-1)$ cell in two different ways.
    ${ }^{3}$ Or dense downward.

[^35]:    ${ }^{4}$ We follow Sect. 3.4.2 on p. 63 and think of a Young diagram as an infinite sequence of nonincreasing nonnegative integers tending to zero.

[^36]:    ${ }^{5}$ Recall that this means that every element of $I$ appears in the tableau exactly once; see Sect.4.2.3 on p. 81.

[^37]:    ${ }^{6}$ That is, $\sigma \in S_{n}$ satisfying $\sigma^{2}=1$.
    ${ }^{7}$ W. Fulton. Young Tableaux with Applications to Representation Theory and Geometry. LMS Student Texts 35, CUP (1997).
    ${ }^{8}$ In combinatorics, the central symmetry $a \mapsto a^{*}$ is called the Schützenberger involution; see Problem 4.10 on p. 98.
    ${ }^{9}$ V. I. Danilov, G. A. Koshevoy. "Arrays and the Combinatorics of Young Tableaux." Russian Math. Surveys 60:2 (2005), 269-334.

[^38]:    ${ }^{10}$ See Sect. 13.2 of Algebra I.
    ${ }^{11}$ See Sect. 13.1 of Algebra I.

[^39]:    ${ }^{12}$ Since every Young diagram $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ can be viewed as a vector in $\mathbb{Z}_{\geqslant 0}^{m}$, the domination relation $\lambda^{\prime} \unrhd \lambda^{\prime \prime}$ is well defined.
    ${ }^{13}$ Recall that the weight of a Young diagram $\lambda$ is the total number of cells in $\lambda$.

[^40]:    ${ }^{14}$ See Sect. 3.3 on p. 61.
    ${ }^{15}$ See Sect. 3.2 on p. 60.

[^41]:    ${ }^{16}$ See Sect. 4.2.4 on p. 82.

[^42]:    ${ }^{17}$ See Sect. 3.2 on p. 60.
    ${ }^{18}$ See Sect. 3.3 on p. 61.

[^43]:    ${ }^{19}$ See formula (4.23) and formula (4.12) on p. 89.
    ${ }^{20}$ See Sect. 10.3.1 of Algebra I.
    ${ }^{21}$ Compare with formulas (3.17)-(3.18) from Proposition 3.5 on p. 64.
    ${ }^{22}$ See formula (4.16) on p. 91.

[^44]:    ${ }^{23}$ Recall that the first tableau is the row scan of the D-condensation of the graph of $g: I \simeq J$, whereas the second is the column scan of the L-condensation of the same graph.
    ${ }^{24}$ That is, a map commuting with all the vertical operations $D_{j}, U_{j}$.
    ${ }^{25}$ That is, $\lambda \neq \mu$ and for every $\eta, \lambda \unrhd \eta \unrhd \mu$ forces either $\lambda=\eta$ or $\eta=\mu$.
    ${ }^{26}$ Formally, $\gamma_{i}=\left(\lambda_{i}-i+1, \lambda^{\lambda_{i}^{t}-i}\right)$ for every $i=1,2, \ldots, k$.

[^45]:    ${ }^{27}$ That is, the Young diagram encoding the DL-condensation of the array; see Sect. 4.2.2 on p. 80.
    ${ }^{28}$ See Sect. 1.4 of Algebra I.
    ${ }^{29}$ Note that this forces the shape of $P(a)$ to be a Young diagram, which is completely nonobvious from the definition of a poset's shape.

[^46]:    ${ }^{1}$ See Sect. 15.1.5 of Algebra I.
    ${ }^{2}$ See Algebra I, Theorem 14.4 in Sect. 14.3.1 and the discussion in Sect. 15.1.3.

[^47]:    ${ }^{3}$ That is, every totally ordered subset of $S^{\prime}$ has an upper bound; see Sect. 1.4.3 of Algebra I.
    ${ }^{4}$ See Sect. 1.4.3 of Algebra I.
    ${ }^{5}$ This holds, for example, if the $A_{R}$-orbit of every vector $w \in W$ is finite-dimensional over $\mathbb{k}$. In this case, an $A_{R}$-invariant subspace of minimal dimension contained in the orbit has to be a simple $A_{R}$-module.

[^48]:    ${ }^{6}$ Also called an intertwining map or a homomorphism of representations.

[^49]:    ${ }^{7}$ See Lemma 5.3 on p. 103.

[^50]:    ${ }^{8}$ That is, it takes every $\xi: V \rightarrow \mathbb{k}$ to the composition $\xi \circ g^{-1}: v \mapsto \xi\left(g^{-1} v\right)$; see Sect. 7.3 of Algebra I.

[^51]:    ${ }^{9}$ S.A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Math. Society Lecture Notes 29, Cambridge University Press (1977).

[^52]:    ${ }^{10}$ See Sect. 6.5.3 of Algebra I. Note that for $\operatorname{char}(\mathbb{k})||G|$, the sum of unit masses vanishes and the barycenter is not well defined.
    ${ }^{11}$ That is, splits as a direct sum of irreducible representations; see Sect. 5.1.2 on p. 100 .
    ${ }^{12}$ See formula (5.13) on p. 110.

[^53]:    ${ }^{13}$ Recall that the center of a ring $R$ consists of the elements of $R$ commuting with every element of $R, Z(R) \xlongequal{\text { def }}\{c \in R \mid \forall r \in R c r=r c\}$.

[^54]:    ${ }^{14}$ See Example 12.14 in Algebra I.

[^55]:    ${ }^{15}$ See Definition 5.1 on p. 109.
    ${ }^{16}$ See Example 12.13 of Algebra I.

[^56]:    ${ }^{17}$ See Corollary 5.4 on p. 106.

[^57]:    ${ }^{18}$ For $n=2$, the simplicial and sign representations coincide.
    ${ }^{19}$ Recall that the conjugacy classes in $S_{n}$ are in bijection with the cyclic types of permutations, i.e., are numbered by the Young diagrams of weight $n$; see Sect. 12.2.3 of Algebra I.
    ${ }^{20}$ Compare with Example 2.3 on p. 33 .

[^58]:    ${ }^{21}$ See Example 12.11 of Algebra I.
    ${ }^{22}$ See Example 12.10 of Algebra I.

[^59]:    ${ }^{23}$ Although Proposition 5.3 was proved under the assumption that the ground field $\mathbb{k}$ is algebraically closed, for $S_{n}$-modules it holds over the field $\mathbb{Q}$ as well, because every complex irreducible representation of $S_{n}$ is actually defined over $\mathbb{Q}$, as we will see in Chap. 7.

[^60]:    ${ }^{24}$ Note that the weight $n$ of the Young diagram $\lambda$ knows nothing about the dimension $d$ of $V$. However, some $\mathbb{S}^{\lambda} V$ may turn out to be zero, as happens, say, with the exterior powers $\Lambda^{n} V$ for $n>\operatorname{dim} V$.
    ${ }^{25} \mathrm{~W}$. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, Cambridge University Press (1997). W. Fulton and J. Harris. Representation Theory. A First Course. Graduate Texts in Mathematics, Springer (1997).
    ${ }^{26}$ That is, for every $a \neq 0$, there exists $a^{-1}$ such that $a a^{-1}=a^{-1} a=1$. Equivalently, $A$ satisfies all the axioms of a field except for the commutativity of multiplication (see Definition 2.1 from Algebra I).
    ${ }^{27}$ That is, $\varphi(a x)=a \varphi(x)$ for all $a, x \in A$.

[^61]:    ${ }^{28}$ The unit elements $e_{\lambda} \in I_{\lambda}$ are called irreducible idempotents of $A$.

[^62]:    ${ }^{29}$ Without any reference to Corollary 5.8 and Example 5.5.
    ${ }^{30}$ Hint: use the $G$-linearity of $s$, isotypic decompositions from (a), and Schur's lemma.

[^63]:    ${ }^{31}$ Hint: for every $\mathbb{k}$-linear map between irreducible representations $\varphi: U_{\lambda} \rightarrow U_{\varrho}$, the average

    $$
    |G|^{-1} \sum_{g \in G} g \varphi g^{-1}=|G|^{-1} \sum_{g \in G} g \varphi \bar{g}^{t}
    $$

[^64]:    ${ }^{1}$ Note that this fails if char $\mathrm{k}||G|$.
    ${ }^{2}$ See Theorem 5.5 on p. 117.

[^65]:    ${ }^{3}$ See Proposition 6.1 on p. 133.
    ${ }^{4}$ Do not confuse these additive characters of arbitrary groups with the multiplicative characters of abelian groups considered in Sect. 5.4.2 on p. 111.

[^66]:    ${ }^{5}$ See Sect. 5.4 on p. 109.
    ${ }^{6}$ See Definition 5.1 on p. 109.

[^67]:    ${ }^{7}$ See Lemma 7.1 in Sect. 7.1.1 of Algebra I.
    ${ }^{8}$ See Sects. 10.3.1 and 16.1.1 of Algebra I.
    ${ }^{9}$ See formula (6.4) on p. 132.

[^68]:    ${ }^{10}$ See Examples 18.3, 18.4 of Algebra I.

[^69]:    ${ }^{11}$ See Examples 10.1, 10.2 of Algebra I.

[^70]:    ${ }^{12}$ See formula (6.23) on p. 137.

[^71]:    ${ }^{13}$ In Theorem 10.2 on p. 233 we will see that for every normal abelian subgroup $H \triangleleft G$, the dimension of every irreducible $G$-module divides the index $[G: H$ ].
    ${ }^{14}$ See Proposition 12.2 in Sect. 12.5.2 of Algebra I.

[^72]:    ${ }^{15}$ See Sect. 5.4 on p. 109.

[^73]:    ${ }^{16}$ See formula (6.21) on p. 137.

[^74]:    ${ }^{17}$ See the comments to Exercise 6.7.
    ${ }^{18}$ See Exercise 6.7 on p. 138 about the dodecahedral representations, and Example 12.12 in Sect. 12.4 of Algebra I for more details about the isomorphism between $A_{5}$ and the proper dodecahedral group.

[^75]:    ${ }^{19}$ See Sect. 6.2.3 on p. 140.
    ${ }^{20}$ Recall that $Q_{8}=\{ \pm \mathbf{1}, \pm \boldsymbol{i}, \pm \boldsymbol{j}, \pm \boldsymbol{k}\} \subset \mathbb{H}$ is the group of quaternionic units, and $D_{4}$ the group of the square.

[^76]:    ${ }^{21}$ Called the Heisenberg group over $\mathbb{F}_{2}$.
    ${ }^{22}$ That is, with trivial kernel $\operatorname{ker} \varrho=e$.

[^77]:    ${ }^{1}$ See formula (4.11) on p. 89.
    ${ }^{2}$ This means that $\lambda_{i}>\mu_{i}$ for the minimal $i \in \mathbb{N}$ such that $\lambda_{i} \neq \mu_{i}$.

[^78]:    ${ }^{3}$ Recall that it is numbered by the Young diagrams of length at most $n$; see formula (3.3) on p. 58.
    ${ }^{4}$ See formula (3.12) on p. 62. Note that $n_{j}=n_{j}(\eta)$ equals the number of length- $j$ rows in the diagram $\eta$.

[^79]:    ${ }^{5}$ See Sect. 7.1 on p. 151.

[^80]:    ${ }^{6}$ See Example 4.2 on p. 85.
    ${ }^{7}$ By moving all terms but $v_{T}$ with the maximal $T$ to the right-hand side.
    ${ }^{8}$ See Sect. 6.2.3 on p. 140.

[^81]:    ${ }^{9}$ Or equivalently, their characters.

[^82]:    ${ }^{10}$ Recall that it corresponds to the direct sum of representations; see Sect. 6.2.3.

[^83]:    ${ }^{11}$ See Remark 6.2 on p. 138.
    ${ }^{12}$ Here $m_{i}=m_{i}(\mu)$ is the number of rows of length $i$ in $\mu$.
    ${ }^{13}$ See Sect. 4.6 on p. 95.

[^84]:    ${ }^{14}$ Although the right-hand side of (7.20) contains denominators.
    ${ }^{15}$ See Proposition 4.4 on p. 94.

[^85]:    ${ }^{16}$ Recall that the Kostka number $K_{\mu, \lambda}$ is the number of Young tableaux of shape $\mu$ filled by $\lambda_{1}$ ones, $\lambda_{2}$ twos, etc. It is nonzero only for $\mu \unrhd \lambda$. All $K_{\lambda, \lambda}=1$. (See formulas (4.10) and (4.11) on p. 88.)

[^86]:    ${ }^{17}$ See Theorem 4.2 on p. 92.
    ${ }^{18}$ See Exercise 4.9 on p. 92.
    ${ }^{19}$ See Sect. 4.5.1 on p. 93.

[^87]:    ${ }^{20}$ See formula (3.4) on p. 58.

[^88]:    ${ }^{21}$ Embedded as a pointwise stabilizer of some $m-n$ elements.
    ${ }^{22}$ That is, the fillings of the complement $\mu \backslash v$ by nonrepeated numbers $1,2, \ldots, m-n$ such that the numbers strictly increase from top to bottom in the columns and from left to right in the rows.

[^89]:    ${ }^{1}$ Also known as $\mathfrak{g}$-linear operators and homomorphisms of $\mathfrak{g}$-modules (or just $\mathfrak{g}$-homomorphisms for short).

[^90]:    ${ }^{2}$ See Theorem 13.4 on p. 303.
    ${ }^{3}$ Compare with Sect. 6.3 on p. 141.

[^91]:    ${ }^{4}$ See formula (8.4) on p. 176.

[^92]:    ${ }^{5}$ Compare with Exercise 8.10 and the preceding paragraph.

[^93]:    ${ }^{6}$ See formula (16.1) in Sect. 16.1.1 of Algebra I.
    ${ }^{7}$ Meaning that $\omega^{*}=-\omega$, where $\omega^{*}: V_{3}^{* *} \simeq V_{3} \leadsto V_{3}^{*}$ is the dual correlation.
    ${ }^{8}$ See formula (8.9) on p. 180.

[^94]:    ${ }^{9}$ See Sect. 16.1.1 of Algebra I, especially formula (16.1), and also Example 7.7.
    ${ }^{10}$ Compare with Example 8.3 on p. 179.
    ${ }^{11}$ See Example 11.6 of Algebra I.

[^95]:    ${ }^{12}$ See Example 11.6 of Algebra I.
    ${ }^{13}$ By definition, the osculating plane to a parametrically given projective curve $t \mapsto \varphi(t)$ at a point $\varphi(a)$ is spanned by $\varphi(a), \varphi^{\prime}(a)$ (the velocity), and $\varphi^{\prime \prime}(a)$ (the acceleration) considered as points of the projective space in which the curve lives.

[^96]:    ${ }^{14}$ Considered as a point of the dual space $\mathbb{P}_{3}^{\times}=\mathbb{P}\left(V_{3}^{*}\right)$.
    ${ }^{15}$ Compare with Problem 8.9.

[^97]:    ${ }^{1}$ For formal logical reasons, the collection of all sets (even all finite sets) is not itself a set. Similarly, the collections of all rings, groups, topological spaces, etc., are not sets, but something larger, namely classes. The notion of class enlarges the notion of set and makes it possible to formulate correct statements about the classes of all sets, groups, rings, vector spaces, etc. To the extent that we have omitted a discussion of rigorous set theory, we shall refer the reader to a basic course in mathematical logic for the rigorous theory of classes and their interaction with sets. For our purposes, it is enough to know that such a theory exists and that it allows us to deal with the categories of sets, algebras, topological spaces, etc.

[^98]:    ${ }^{2}$ An $R$-module is called finitely presented if it is isomorphic to the quotient module of a free $R$-module of finite rank by a finitely generated $R$-submodule of relations.
    ${ }^{3}$ That is, a partially ordered set; see Sect. 1.4.1 of Algebra I.

[^99]:    ${ }^{4} \mathrm{~A}$ set $X$ is called a topological space if a set $\mathcal{V}(X)$ of subsets in $X$ is chosen such that $\varnothing, X \in \mathcal{V}(X), U \cap W \in \mathcal{V}(X)$ for all $U, W \in \mathcal{V}(X)$, and $\bigcup_{v} U_{v} \in \mathcal{V}(X)$ for every set of $U_{v} \in \mathcal{V}(X)$. The elements $U \in \mathcal{V}(X)$ and their complements $X \backslash U$ are called, respectively, the open and closed subsets of $X$.
    ${ }^{5}$ Also known as the path algebra of $\mathcal{C}$.

[^100]:    ${ }^{6}$ That is, $\varphi: X \rightarrow Y$ such that $x_{1} \leqslant x_{2} \Rightarrow \varphi\left(x_{1}\right) \leqslant \varphi\left(x_{2}\right)$.

[^101]:    ${ }^{7}$ Or more precisely, a covariant functor.
    ${ }^{8}$ One map per each ordered pair of objects $X, Y \in \mathrm{Ob} C$.
    ${ }^{9}$ In the same way as an endomorphism means a map of a set to itself, an endofunctor means a functor from a category to itself.
    ${ }^{10}$ Such as $\mathcal{T}_{o p}, \mathcal{G} r p, \mathcal{C}_{r} r$.

[^102]:    ${ }^{11}$ That is, injective and order-preserving.

[^103]:    ${ }^{12}$ In other words, can $S^{1}$ be homeomorphic to the geometric realization of a semisimplicial set $X$ such that both sets $X_{0}, X_{1}$ consist of three elements and all the other $X_{i}$ equal to $\varnothing$ ?

[^104]:    ${ }^{13}$ Where all the sets $X_{n}$ are considered with the discrete topology and all the simplices $\Delta^{n} \subset \mathbb{R}^{n+1}$ with the standard topology induced from the ambient spaces $\mathbb{R}^{n+1}$.
    ${ }^{14}$ That is, the space obtained from $\Delta^{n}$ by collapsing its boundary to one point. For example, the 2sphere $S^{2}$ is obtained in this way from the triangle.

[^105]:    ${ }^{15}$ This means that every point $x \in U$ is mapped to the fiber $p^{-1}(x)$ over $x$.
    ${ }^{16}$ Algebraic manifolds will be defined and studied in Chap. 12.
    ${ }^{17}$ Equivalently, the locally constant functions.
    ${ }^{18}$ In which every subset $U \subset X$ is declared to be open.

[^106]:    ${ }^{19}$ Note that they are distinct, because $|X| \geqslant 2$.

[^107]:    ${ }^{20} \mathrm{Or}$ functorial.
    ${ }^{21}$ Whenever the words "canonical isomorphism" have been used previously in this course, it was precisely in this explicit sense.

[^108]:    ${ }^{22}$ See Sect. 9.2.3 on p. 195.
    ${ }^{23}$ Sending a vector to the sequence of its coordinates in the chosen basis.

[^109]:    ${ }^{24}$ Meaning that there is a unique pair of quasi-inverse equivalences between them.
    ${ }^{25}$ That is, all maps $G: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{D}}(G(X), G(Y))$ are bijective.

[^110]:    ${ }^{26}$ See Example 9.6 on p. 192.
    ${ }^{27}$ See Example 9.9 on p. 196.

[^111]:    ${ }^{28}$ Intuitively, a simplicial map of triangulated spaces $|X| \rightarrow|Y|$ is a continuous map respecting the triangulations. The latter property is formalized as a natural transformation of presheaves $X \rightarrow Y$. In particular, this forces a simplicial map to send every $k$-simplex of the triangulation on $|X|$ to a $k$-simplex of the triangulation on $|Y|$ via an affine map, and to respect the incidences between the simplices.

[^112]:    ${ }^{29}$ In particular, in the category $\mathcal{A} b=\mathcal{M o d}_{\mathbb{Z}}$.

[^113]:    ${ }^{30}$ See Sect. 13.1.1 of Algebra I.

[^114]:    ${ }^{31}$ That is, $\mathbb{Z}$-modules.

[^115]:    ${ }^{32}$ Compare with Sect. 6.3 on p. 141 and Sect. 6.3 .4 on p. 146.

[^116]:    ${ }^{33}$ See Example 9.7 on p. 193.
    ${ }^{34}$ Every such continuous map is called a singular simplex of $Y$.

[^117]:    ${ }^{35}$ See formula (9.15) on p. 205.
    ${ }^{36}$ See the same formula (9.15).

[^118]:    ${ }^{37}$ See Sect. 9.3 on p. 197.
    ${ }^{38}$ Or the projective limit.

[^119]:    ${ }^{39}$ Or the injective limit.
    ${ }^{40}$ See Example 9.8 on p. 194.

[^120]:    ${ }^{41}$ Recall that $\Delta_{Y}=\{(y, y) \in Y \times Y \mid y \in Y\}$; compare with Sect. 1.2.2 of Algebra I.
    ${ }^{42}$ That is, the intersection of all equivalences $R \subset Y \times Y$ containing $\operatorname{im}(\varphi \times \psi)$; see Sect. 1.2.2 of Algebra I.

[^121]:    ${ }^{43}$ In the categories of groups and commutative rings, the pushforwards are traditionally called the amalgamated and tensor products respectively.

[^122]:    ${ }^{44}$ Compare with Example 9.2 on p. 188.
    ${ }^{45}$ Filtered diagrams are also called direct or inductive systems of morphisms. Cofiltered diagrams are also called inverse or projective systems of morphisms.

[^123]:    ${ }^{46}$ This means that $1 \in S$ and $s t \in S$ for all $s, t \in S$; see Sect.4.1.1 of Algebra I.
    ${ }^{47}$ Or ring of fractions with numerators in $K$ and denominators in $S$; see Sect. 4.1.1 of Algebra I.

[^124]:    ${ }^{48}$ The horizontal arrows in (9.32) are the canonical morphisms from the limit to the nodes of the diagram.
    ${ }^{49}$ Whose horizontal arrows are the canonical morphisms from the nodes of the diagram to the colimit.

[^125]:    ${ }^{50}$ Namely, the (co) kernel of a homomorphism is the (co)equalizer of this homomorphism and the zero homomorphism.

[^126]:    ${ }^{51}$ That is, the completion of $\mathbb{Z}$ with respect to the $p$-adic distance $|x, y|_{p}=\|x-y\|_{p}$, where the $p$ adic norm $\|z\|_{p}$ of an integer $z=p^{s} m, \operatorname{GCD}(m, p)=1$, equals $p^{-s}$.

[^127]:    ${ }^{52}$ That is, $1 \in S$ and $s t \in S$ for all $s, t \in S$.
    ${ }^{53}$ See Problem 7.8 of Algebra I.

[^128]:    ${ }^{54}$ By Corollary 9.5 on p. 221, it is enough to show that filtered colimits commute with kernels.
    ${ }^{55}$ This means that the first two functors are not right exact, and the third is not left exact.
    ${ }^{56} \mathrm{~A}$ module $P$ with these properties is called projective.
    ${ }^{57}$ A module I possessing these properties is called injective.

[^129]:    ${ }^{58}$ That is, $r \varphi(x) \stackrel{\text { def }}{=} \varphi(x r)$ for all $r, x \in R, \varphi: R \rightarrow \mathbb{Q} / \mathbb{Z}$.
    ${ }^{59}$ See Sect. 9.2 on p. 191.
    ${ }^{60} \mathrm{That}$ is, an equivalence can be established by means of exact quasi-inverse functors.

[^130]:    ${ }^{1}$ See Sect. 9.6.1 of Algebra I, especially formula (9.29).

[^131]:    ${ }^{2}$ See Sect. 3.4.2 of Algebra I.
    ${ }^{3}$ That is, lying in $\operatorname{Mat}_{d}(\mathbb{Z}) \subset \operatorname{Mat}_{d}(\mathbb{Q})$. Indeed, this is the original definition of algebraic integers, introduced in the nineteenth century by Dedekind.

[^132]:    ${ }^{4}$ See Sect. 4.1.2 of Algebra I.
    ${ }^{5}$ See Sect. 5.4 of Algebra I.

[^133]:    ${ }^{6}$ That is, the monic polynomial $\mu_{b} \in Q_{A}[x]$ of minimal positive degree such that $\mu_{b}(b)=0$; see Sect. 8.1.3 of Algebra I.
    ${ }^{7}$ Recall that the eigenvalues of an operator are among the roots of every polynomial annihilating the operator; see Exercise 15.13 of Algebra I.

[^134]:    ${ }^{8}$ See Lemma 5.3 on p. 103.

[^135]:    ${ }^{9}$ See Sect. 5.4.2 on p. 111.

[^136]:    ${ }^{10}$ See Sect. 8.1.3 of Algebra I.
    ${ }^{11}$ See Proposition 10.3 on p. 229.
    ${ }^{12}$ See Sect. 5.2.4 of Algebra I.
    ${ }^{13}$ Generators of an algebra should be not confused with generators of a module. If elements $e_{1}, e_{2}, \ldots, e_{m}$ span a ring $B$ over a subring $A \subset B$ as a module, this means that $B$ consists of finite $A$-linear combinations of these elements $e_{i}$, whereas if $b_{1}, b_{2}, \ldots, b_{m}$ span $B$ as an $A$-algebra, then $B$ is formed by finite linear combinations of various monomials $b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{m}^{s_{m}}$.
    ${ }^{14}$ If $b$ is not algebraic, then $\mathbb{k}[b] \simeq \mathbb{k}[x]$ is not a field.
    ${ }^{15}$ See Sect. 4.1.2 of Algebra I.

[^137]:    ${ }^{16}$ Compare with the exchange lemma, Lemma 6.2, from Algebra I.

[^138]:    ${ }^{17}$ See Lemma 5.3 of Algebra I.
    ${ }^{18}$ Recall that the content of a polynomial with coefficients in a unique factorization domain is the greatest common divisor of all the coefficients; see Sect. 5.4.4 of Algebra I.

[^139]:    ${ }^{19}$ Compare with Problem 14.1 from Algebra I.
    ${ }^{20}$ See Sect. 5.1.2 of Algebra I.

[^140]:    ${ }^{1}$ See Sect. 5.1.2 of Algebra I.
    ${ }^{2}$ See Lemma 5.1 of Algebra I.

[^141]:    ${ }^{3}$ Compare with Sect. 11.2.4 of Algebra I.
    ${ }^{4}$ See Problem 5.6 of Algebra I.
    ${ }^{5}$ See Sect. 5.2.2 of Algebra I.

[^142]:    ${ }^{6}$ That is, has no nilpotent elements; see Sect. 2.4.2 of Algebra I.

[^143]:    ${ }^{7}$ See Lemma 2.5 of Algebra I.
    ${ }^{8}$ If $\mathbb{k}$ is not algebraically closed, then the $\operatorname{map} \varphi \mapsto \operatorname{ker} \varphi$ still embeds the set of homomorphisms $\mathbb{k}[X] \rightarrow \mathbb{k}$ into $\operatorname{Spec}_{\mathrm{m}} A$. However, some maximal ideals $\mathfrak{m} \subset A$ may not be represented as the kernels of homomorphisms $A \rightarrow \mathbb{k}$. For example, the kernel of the evaluation $\mathrm{ev}_{i}: \mathbb{R}[x] \rightarrow \mathbb{C}$, $f \mapsto f(i)$, where $i \in \mathbb{C}, i^{2}=-1$, certainly is a maximal ideal in $\mathbb{R}[x]$, but it cannot be realized as the kernel of a homomorphism $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}$, because for the latter, $\mathbb{R}[x] / \operatorname{ker} \varphi=\mathbb{R}$, whereas $\mathbb{R}[x] / \operatorname{kerev}{ }_{i}=\mathbb{R}[x] /\left(x^{2}+1\right) \simeq \mathbb{C}$.
    ${ }^{9}$ See Sect. 2.4.2 of Algebra I.

[^144]:    ${ }^{10}$ Recall that an ideal $\mathfrak{p} \subset A$ is called prime if the quotient ring $A / \mathfrak{p}$ has no zero divisors; see Sect. 5.2.3 of Algebra I.

[^145]:    ${ }^{11}$ In the sense of Example 9.13 on p. 203.
    ${ }^{12}$ In the sense of Example 9.14 on p. 204.

[^146]:    ${ }^{13}$ See Sect. 5.4 of Algebra I.
    ${ }^{14}$ See Proposition 5.4 of Algebra I.

[^147]:    ${ }^{15}$ Compare with Proposition 5.3 of Algebra I.

[^148]:    ${ }^{16}$ This is the same notation as in Sect. 4.1 of Algebra I.
    ${ }^{17}$ Recall that it consists of all fractions $f / g$ with $f \in \mathbb{k}[X], g \in \mathbb{K}[X]^{\circ}$, and $f_{1} / g_{1}=f_{2} / g_{2}$ if and only if $f_{1} g_{2}=f_{2} g_{1}$. (See Sect. 4.1 of Algebra I and compare it with Problem 9.10 on p.224.)

[^149]:    ${ }^{18}$ See Sect. 4.1.1 of Algebra I.

[^150]:    ${ }^{19}$ That is, there exist $f_{1}, f_{2}, \ldots, f_{m} \in \mathbb{k}[X]$ such that every $h \in \mathbb{k}[X]$ can be written as $h=\sum \varphi^{*}\left(g_{i}\right) f_{i}$ for appropriate $g_{i} \in \mathbb{K}[Y]$.

[^151]:    ${ }^{20}$ Here $(E-M)^{\vee}$ means the adjunct matrix of $(E-M)$; see Sect. 9.6.1 of Algebra I and the proof of Lemma 10.1 on p. 227.
    ${ }^{21}$ Recall that in the second statement, we assume $\mathbb{k}[X]$ to be an integral domain.

[^152]:    ${ }^{22}$ That is, $\varphi(U)$ is open in $Y$ for every open $U \subset X$.

[^153]:    ${ }^{23}$ Whose closed sets are $V(I)=\left\{\mathfrak{m} \in \operatorname{Spec}_{\mathrm{m}} C^{0}(X) \mid I \subset \mathfrak{m}\right\}$ for all ideals $I \subset C^{0}(X)$.

[^154]:    ${ }^{1}$ Recall that $\mathcal{O}_{Z}(V)=\{f \in \mathbb{k}(Z) \mid V \subset \operatorname{Dom}(f)\}$ denotes the algebra of rational functions, regular in $V \subset Z$, on an affine algebraic variety $Z$ (see Sect. 11.4.1 on p. 254 for details).
    ${ }^{2}$ Without the epithet "affine."
    ${ }^{3}$ See Chap. 11 of Algebra I.
    ${ }^{4}$ See Example 11.2 of Algebra I.
    ${ }^{5}$ The first index $i$ is the order number of the chart, while the second index numbers the coordinates within the $i$ th chart and takes $n$ values $0 \leqslant v \leqslant n, v \neq i$.

[^155]:    ${ }^{6}$ See Sect. 2.6.4 on p. 49.

[^156]:    ${ }^{7}$ See Example 9.8 on p. 194.

[^157]:    ${ }^{8}$ The first formula relates $2 n$ affine coordinates $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ in $\mathbb{A}^{n} \times \mathbb{A}^{n}=\mathbb{A}^{2 n}$, whereas the second deals with two collections of homogeneous coordinates $\left(x_{0}: x_{1}: \cdots: x_{n}\right)$, $\left(y_{0}: y_{1}: \cdots: y_{n}\right)$ on $\mathbb{P}_{n} \times \mathbb{P}_{n}$ (note that they cannot be combined into one collection). We will

[^158]:    see in Exercise 12.12 that the latter equations actually determine a closed submanifold of $\mathbb{P}_{n} \times \mathbb{P}_{n}$ in the sense of Sect. 12.1.2.

[^159]:    ${ }^{9}$ Given an irreducible algebraic manifold $X$, a (Weil) divisor on $X$ is an element of the free abelian group generated by all closed irreducible submanifolds of codimension 1 in $X$ (the dimensions of algebraic varieties will be discussed in Sect. 12.5 on p. 281).
    ${ }^{10}$ Compare with Sect. 11.3.2 of Algebra I.

[^160]:    ${ }^{11}$ See Example 11.6 of Algebra I, especially formula (11.14) there.
    ${ }^{12}$ That is, to the points of the "hypersurface" $Z(A) \subset \mathbb{P}_{1}$, some of which may be multiple.

[^161]:    ${ }^{13}$ In Example 12.9 on p. 288, we will see that the same holds for every system of homogeneous polynomial equations such that the number of equations equals the number of unknowns.
    ${ }^{14}$ This means that both binary forms $A, B$ do not vanish at the point $(0: 1)$.

[^162]:    ${ }^{15}$ See Example 12.4 on p. 271.

[^163]:    ${ }^{16}$ That is, indecomposable into a disjoint union of two nonempty closed subsets.

[^164]:    ${ }^{17}$ Possibly after appropriate renumbering of the coordinates $x_{1}, x_{2}, \ldots, x_{n}$. Note that this holds over every infinite field $\mathbb{k}$, not necessarily algebraically closed.
    ${ }^{18}$ In particular, this implies that $\operatorname{tr} \operatorname{deg} \mathbb{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /(f)=n-1$.
    ${ }^{19}$ In honor of Emmy Noether, who proved a version of this claim in 1926.

[^165]:    ${ }^{20}$ See Sect. 10.4 on p. 236.

[^166]:    ${ }^{21}$ For $i=1$, this means that $f_{1}$ is not a zero divisor in $\mathbb{k}[X]$. A sequence of functions possessing this property is called a regular sequence, and the corresponding subvariety $V\left(f_{1}, f_{2}, \ldots, f_{m}\right) \subset X$ is called a complete intersection.

[^167]:    ${ }^{22}$ See Sect. 12.3 on p. 274.

[^168]:    ${ }^{23}$ Compare with Problem 17.20 of Algebra I.

[^169]:    ${ }^{24}$ See Sect. 3.5.4 of Algebra I.
    ${ }^{25}$ See Exercise 12.9 on p. 271.

[^170]:    ${ }^{26}$ That is, without singular points; see Sect. 2.5 .5 on p. 40 .

[^171]:    ${ }^{27}$ That is, an irreducible variety of dimension one not contained in a hyperplane.

[^172]:    ${ }^{1}$ Compare with Sect. 3.4 of Algebra I.
    ${ }^{2}$ Recall that the discriminant of a monic polynomial $f(x)=\Pi\left(x-\vartheta_{i}\right)$ is the product $D(f) \stackrel{\text { def }}{=} \prod_{i<j}\left(\vartheta_{i}-\vartheta_{j}\right)^{2}$ expressed as a polynomial in the coefficients of $f$.

[^173]:    ${ }^{3}$ See Sect. 3.3.3 of Algebra I.

[^174]:    ${ }^{4}$ See Sect. 2.4.3 of Algebra I.
    ${ }^{5}$ The same argument shows that every finite field, considered as an algebra over a subfield, is generated by one element. Although the separability assumption is not used explicitly in this

[^175]:    case, we know from Example 3.4 of Algebra I that all finite fields are separable over their prime subfields.
    ${ }^{6}$ Recall that the degree $\operatorname{deg}_{k} a$ of an algebraic element $a$ over a field $\mathbb{k}$ is the degree of the minimal polynomial $\mu_{a}$ of $a$ over $\mathbb{k}$.

[^176]:    ${ }^{7}$ See Lemma 1.3 of Algebra I.

[^177]:    ${ }^{8}$ Automatically distinct.

[^178]:    ${ }^{9}$ See Lemma 1.1 of Algebra I.
    ${ }^{10}$ That is, there exists an isomorphism between them acting on $\mathbb{k}$ identically.
    ${ }^{11}$ Such an extension exists by Theorem 3.1 of Algebra I.
    ${ }^{12}$ With respect to inclusions.

[^179]:    ${ }^{13}$ Note that $k$ may be less than $m$, because the adjunction of a root may cause the appearance of several more roots.
    ${ }^{14}$ Or equivalently, algebraic.

[^180]:    ${ }^{15}$ See Problem 1.20 of Algebra I.
    ${ }^{16}$ See Sect. 1.4.2 of Algebra I.
    ${ }^{17}$ See Exercise 1.16 in Sect. 1.4.2 of Algebra I.

[^181]:    ${ }^{18}$ It is isomorphic to $\mathbb{Q}$ for $\operatorname{char}(\mathbb{k})=0$, and to $\mathbb{F}_{p}=\mathbb{Z} /(p)$ for $\operatorname{char}(\mathbb{k})=p>0$; see Sect. 2.8.1 of Algebra I.

[^182]:    ${ }^{19}$ The proof of Theorem 13.6 is based on Corollary 13.1 on p.299, a direct corollary of Theorem 13.2.
    ${ }^{20}$ See Exercise 11.14 on p. 254.

[^183]:    ${ }^{21}$ See Example 12.4 of Algebra I.
    ${ }^{22}$ Recall that every subfield $\mathbb{F} \subset \mathbb{k}(t)$ strictly larger than $\mathbb{k}$ is isomorphic to $\mathbb{k}(f)$ for some $f \in \mathbb{k}(t)$ by Lüroth's theorem; see Theorem 10.4 on p. 238.
    ${ }^{23}$ Note that even if these eigenvectors are not defined over $\mathbb{k}$, the $G$-invariant polynomial with roots at these points has to lie in $\mathbb{k}\left[t_{0}, t_{1}\right]$.

[^184]:    ${ }^{24}$ The rational functions of $t=t_{0} / t_{1}$ are exactly those polynomials.

[^185]:    ${ }^{25}$ Instead of Corollary 13.3, we could have used Theorem 13.6 , which says that the extension $\mathbb{K}^{H} \subset \mathbb{K}$ is a Galois extension with Galois group $H$ for every subgroup $H \subset G$.

[^186]:    ${ }^{26}$ Recall that we write $D_{n}$ for the group of the regular $n$-gon, which has order $2 n$; see Example 12.4 of Algebra I.

[^187]:    ${ }^{27}$ Note that this model of $\mathbb{P}_{1}(\mathbb{C})$ differs slightly from that used in Example 11.1 of Algebra $I$, where the sphere of diameter 1 was projected from the north and south poles onto the tangent planes drawn through the opposite poles.
    ${ }^{28}$ That is, bijections $M \xrightarrow{\sim} M$ induced by the orientation-preserving linear isometries $\mathbb{R}^{3} \leadsto \mathbb{R}^{3}$; see Sect. 12.3 of Algebra I.

[^188]:    ${ }^{29}$ In this case, the extension $\mathbb{K} \supset \mathbb{k}$ is called purely inseparable.

[^189]:    ${ }^{1}$ See Section 3.5.1 of Algebra I.

[^190]:    ${ }^{2}$ The parametric equation $z=a+(b-a) \cdot t$ defines the line $\ell_{a, b}$ as $t$ runs through $\mathbb{R}$, and defines the circle $C_{a, b}$ as $t$ runs through the unit circle $\mathrm{U}_{1} \subset \mathbb{C}$.
    ${ }^{3}$ See Section 13.3 of Algebra I.
    ${ }^{4}$ See Theorem 13.7 on p. 310.

[^191]:    ${ }^{5}$ Obtained from the relation $\cos (3 \varphi)=4 \cos \varphi-3 \cos ^{2} \varphi$ for $\varphi=\pi / 9$.
    ${ }^{6}$ Recall that the cyclotomic polynomial $\Phi_{p}(x)$ is irreducible for prime $p \in \mathbb{N}$ by Eisenstein's criterion; see Example 5.9 of Algebra I.

[^192]:    ${ }^{7}$ See Example 13.6 on p. 310.

[^193]:    ${ }^{8}$ See Example 13.6 on p. 310 and the proof of Corollary 14.2 on p. 323.
    ${ }^{9}$ Compare with Section 3.6.3 of Algebra I.

[^194]:    ${ }^{10}$ See the discussion after formula (3.22) of Algebra I.

[^195]:    ${ }^{11}$ See Sect. 5.4.2 on p. 111.
    ${ }^{12}$ In addition to the already cited Sect. 5.4.2, see Exercise 5.15 on p. 112.
    ${ }^{13}$ See Section 13.3.1 of Algebra I.

[^196]:    ${ }^{14}$ Note that $a_{1}, a_{2}, \ldots, a_{n}$ are polynomials in $t_{1}, t_{2}, \ldots, t_{n}$ by Viète's theorem.

[^197]:    ${ }^{15}$ See Problem 12.3 on p. 291 and Example 13.1 on p. 296.

[^198]:    ${ }^{16}$ See Section 3.6.3 of Algebra I and compare this problem with Problems 3.38 and 9.7 from Algebra I.
    ${ }^{17}$ That is, the integral closure of $\mathbb{Z}$ in $\mathbb{K}$.
    ${ }^{18}$ See Sect. 14.3 on p. 323.

[^199]:    ${ }^{1}$ See Sect. 14.1.1 of Algebra I.
    ${ }^{2}$ See Proposition 2.1 on p. 21.

[^200]:    ${ }^{3}$ Different from each other by the composition with the outer automorphism of $A_{5}$ provided by conjugation by a transposition.
    ${ }^{4}$ Recall that an ordered quadruple of distinct points $a, b, c, d \in \mathbb{P}_{1}$ is called harmonic if the cross ratio $[a, b, c, d]$ equals -1 , i.e., $b$ is the midpoint of $c d$ in the affine chart with $a=\infty$ (see Sect. 11.6 of Algebra I). Since every ordered triple of points is uniquely completed by the fourth point to the harmonic quadruple, and the same quadruple arises in this way from four different triples, there are altogether $\binom{6}{2} / 4=5$ harmonic quadruples of points in $\mathbb{P}_{1}\left(\mathbb{F}_{5}\right)$. The tautological action of $\mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right)$ on these quadruples gives an isomorphism $\mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right) \xrightarrow{\rightarrow} S_{5}$.

[^201]:    ${ }^{5}$ See Sect. 2.6 on p. 45.

[^202]:    ${ }^{6}$ See Example 9.14 on p. 204.

[^203]:    ${ }^{7}$ See Sect. 4.1.1 of Algebra I.
    ${ }^{8}$ Which may be a field.
    ${ }^{9}$ Which is zero if $A\left[a^{-1}\right]$ is a field.

[^204]:    ${ }^{10}$ Recall that they equal the highest-degree minors of the transition matrix from some basis in $H$ to the standard basis in $V$; see Example 12.5 on p. 272.

[^205]:    ${ }^{11}$ See Proposition 12.2 of Algebra I.

[^206]:    ${ }^{12}$ Which are obviously equal to 1 and $-\xi^{n} \alpha^{n}$ respectively.

