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INTRODUCTION 
 
 
For solving the problems of study, analysis and quality management of the environment 

there is necessary operatively to treat great amount of measuring information on physical, 
chemical and biological parameters characteristic for them. To do it in a proper way, in 
conformity to the modern requirements, is possible only by wide use of modern mathematical 
methods and computers. For this purpose it is necessary to develop automated systems and 
universal program packages with developed mathematical methods consisting of self-learning 
algorithms requiring whenever it is possible minimum a prior information and having 
capability of adaptation to the most unexpected changes of the character of the investigated 
objects [1]. 

Among the most topical problems of monitoring of a natural water environment it is 
necessary to single out the following issues: simulation of pollutants transferring in water 
objects; methods of making decisions about condition of controlled objects and processes 
taking place in them; identification of sources of emergency pollution to take measures for 
their elimination. These problems are especially urgent in urban conditions because there 
exist great number of sources of pollution. Their solution is of great ecological and 
economical significance which makes possible to investigate the effect of different sources of 
pollution on ecological object separately from each other, as well as jointly, to predict out-
comes of such an impact and consequences of the nature protection measures against the 
sources of pollution. With their help, the minimization of technical means, in particular, those 
of measurements, indispensable for the control and management of each source of pollution is 
reached. They are also actual for large plants and factories having biochemical clearing of 
sewages, on their design and ecological safe operation, as well as for detection of sites and 
shops producing the excess of sewages pollution. 

Theoretical analysis of water pollution consequences, economic assessment of losses and 
creation of methodical principles on the basis of these investigations for the definition of effi-
ciency of capital investments in nature protection measures are impossible without knowledge 
of the processes of pollutants diffusion. Development of scientifically reasonable programs of 
long-term planning of measures, directed to the reduction of discharges of different sources, 
evaluation of ecological perfection of various technologies, development of methods and 
tools for monitoring, prediction and management of environmental quality are inextricably 
connected with mathematical modeling of processes of transfer and diffusion of harmful 
impurities. On the other hand, availability of modern automated environmental management 
and monitoring systems open wide possibilities for using mathematical methods during study 
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and rational utilization of natural resources. Success of application of mathematical methods 
in the solution of separate problems, in many respects depends on adequacy of models used 
for description of real processes, taking place in the studied environment. Mathematical 
models describing formation and development in time of a state of environmental objects, are 
used as at pre-design stage of design development for monitoring systems (selection of a 
system structure, site-installation of stations – auto-analyzers, time-space decidability of 
measurement tools, etc.), so during their exploitation (algorithms for the evaluation of a state, 
forecasting, identification of emergency discharge sources, etc [1]). 

A number of scientific works is dedicated to the development and application of 
mathematical models of water environment pollution (see chapters 1, 3). In general case 
depending on the studied problems through mathematical models, their structures, detailed 
study of the phenomenon, the volume of the used experimental information, mathematical 
models of the environmental pollution can be united in three large classes [1]: numerical 
(diffusive), statistical and imitative. Each of them has the advantages and disadvantages and 
in many respects depends on the rate of adequacy of conditions of studied process of 
pollution. 

Numerical models based on the solution of relevant differential equations of diffusion 
and transfer of pollutants are most widely spread (see chapter 1). However, due to the fact 
that environmental objects are rather complex systems with a huge number of interrelated 
parameters, the operating evaluation of which as a rule, is not easy, the accuracy of the 
deterministic models is limited. They are constructed on the basis of analysis of physical-
chemical and biological processes in the environment and reflect the development of these 
processes in time. Their advantage is the clearness of cause-effect relationship in these 
processes. The application is efficient at solving of particular, local in a space and time scale 
problems. The problem of application limits for these models has not been studied in detail 
till now, although in the work [2] is shown that of weather forecast-time interval by 
differential equations in principle cannot exceed 15 days. At appropriate selection of a 
structure and methods of identification, statistical models allow to predict with satisfactory 
accuracy during practically interesting time period at correct use of experimental data.  

Statistical models, or so-called models “of a black box”, differ by that their structure and 
the parameters are determined on the basis of the measurement information by minimization 
of given criterion (see chapter 3). Two basic groups of such models can be distinguished: the 
absence of a prior knowledge about structure of a model is characterized for the first one 
(researcher works it out in result of successive checking of several probable structures); for 
the second one - structure of a model can be partially or completely determined from the ratio 
of the material balance or on the basis of pre known descriptions of processes and 
phenomena. The advantage of the models of the given class is a simplicity and rather low 
sensitivity to random fluctuations of the researched objects. These models have been fast 
developed in connection with development of informational - measuring systems with real-
time data processing. 

In recent years imitative models have been widely applied in solving of many 
environmental protection problems (see paragraph 3.6). Their advantage implies capabilities 
of joint application of the first two types of models as interrelated units in general process of 
imitation. The ability to systematic development and perfection of imitative models in the 
process of accumulation of new knowledge through advancement separate units or adding 
new ones makes these models the most perspective ones among all other models of formation 
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of a state of environmental objects. Besides contrary to the models of the first two classes, 
imitative models allow to predict multi-version consequences of the future work-loads and 
strategies of control for the most different environmental objects. 

Depending on the available a prior information it is possible to consider different pro-
cedures of making decisions (see chapter 4). In the present work, the solution of a certain 
problem of making decisions is considered. In particular, a problem of testing statistical 
hypotheses on the condition of environmental object on the basis of results of measurement is 
considered. With an increase of a prior information it becomes possible to use more complex 
procedures of testing hypotheses ensuring higher reliability. Therefore in the present work 
there are brought the different procedures of testing hypotheses depending on the available a 
prior information and purposes for which they are used. 

There are brought mathematical bases of the solution (chapters 1, 2, 3, 4 and 5) and 
software implementation (chapters 6 and 7) of most important problems of environmental 
monitoring: mathematical models of pollutants transfer in rivers and identification of sources 
of emergency pollution of the rivers. The results of investigation of developed software 
packages are given (see chapters 8). 

In the given work the authors aim to systematize the obtained results in the indicated 
directions during the last years and to set forth them compactly in the most accessible form 
for a wide range of possible users of the most different specialties and education levels. We 
would be glad if we managed to reach an objective even partially. All models, methods and 
algorithms described in the book are realized as software packages for IBM-compatible 
computers and have the complete off-the shelf packaging for practical application. There are 
two independent software packages attached to the present book envisaged for the modeling 
of diffusion of multi-sources water pollutants discharged to rivers and identification of 
sources of emergency pollutions. These packages are developed in accordance with the world 
standards of the similar products. Their abilities, user guides, i.e. instructions for input of 
initial information, making computations and perception of output results, are described in the 
book (see chapters 6 and 7). We hope that these packages will be the available for 
researchers, specialists and interested persons for solving problems started before them in 
respective fields. In case of interest they can address to authors of this book about conditions 
of acquisition of these packages on the address: kartlos5@yahoo.com. 

In conclusion the authors would like to express deep gratitude to the International 
Science and Technology Center (ISTC) and the U.S. Civilian Research and Development 
Foundation and its Georgian Branch (CRDF - GRDF), as the majority of results given in this 
book would not be obtained without financial assistance rendered by these funds within the 
framework of the project G-047 “Identification of River Water Pollution Sources by Means of 
Automated Control Systems” and the project GP2-3302 “Development and research of 
deterministic and stochastic mathematical models for control and management of pollution 
level of fluvial waters and their realization by application package”. 

 





 
 
 
 
 
 

Chapter 1 
 
 
 

DETERMINISTIC MATHEMATICAL MODELS OF 

POLLUTANTS TRANSFER IN RIVERS 
 
 

1.1. MATHEMATICAL MODELING OF  
POLLUTANTS TRANSFER IN RIVERS 

 
Modeling water quality in freshwater ecosystems is considered to be a complex problem 

due to a high number of factors taking part on the process and the different forms in which 
pollution can be observed. In this chapter we will focus on water quality models aiming at 
describing processes of transfer, dilution and self-purification of harmful substances in 
freshwater ecosystems for rather small interval of time. 

Transfer of pollutants is a well know process in general described by the equation of 3D-
turbulent diffusion of non-conservative substances [1, 3-5, 25-27, 35]: 
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  (1.1) 

 
where   is the concentration of the non-conservative dissolved substance averaged over 
time; t  is time; x , y , z  are the spatial co-ordinates (the axis x  is horizontal and its 

direction coincides with the direction of averaged current of all stream, the axis y  is 

perpendicular to the free surface and it is directed downwards, the axis z  is directed across to 

the stream); xK , yK , zK  are the coefficients of the turbulent diffusion in the direction of 

axes x , y , z ; xV , yV  and zV  are components of speeds on axes x , y , z  averaged over 

time; u  represents the largest hydraulic particles; )(K  is the a parameter characterizing 

the non-conservativeness of pollutant (one often uses simple approximation of this 

dependence  KK )( , where K  is the coefficient of non-conservativeness); 
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),,,( tzyxf  is the total intensity of external sources of pollution. In general, the coefficients 

xK , yK , zK , xV , yV , zV  and )(K  are the functions of a point of space and time [3, 5].  

The solution of equation (1.1) concerning the concentration ),,,( tzyx  requires is 

complex as it depends on sewage discharge conditions, the characteristics of the watercourse, 
the objective for which the model was developed and the model assumptions made. The 
combination of the above factors results in different kinds of the equation of three, two or 
one-dimensional turbulent diffusion equations . The solution of the latest is realized by 
numerical methods or analytically.  

For continuous coastal pollution sources the concentration of the pollutant is known to 
disseminate non-uniformly on the watercourse. If the non-uniformity of distribution of 
concentrations of pollutants on the depth of the watercourse is not taken into account, then it 
is possible to obtain the two-dimensional turbulent diffusion equation [1, 5-7, 12, 28-31] 
using equation (1.1) as reference: 

 

.fK
y

V
x

V
y

K
yx

K
xt yxyx 








































  (1.2) 

 
Equation (1.2) defines the distribution of concentration of pollutant along and across of 

the stream taking into account non-uniformity of this distribution. The equation is solved 
using the method of grids with the transition to the corresponding difference scheme [6-8].  

The equation of one-dimensional turbulent diffusion is applied when the distribution of 
the concentration of the pollutant across the stream is homogeneous. It is also used when 
average indicators are used to represent pollution across the river. The one-dimensional 
equation is as follows [5, 9] 
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where ),( txf  is a function of a set of pollutants in the watercourse. The one-dimensional 

equation works under the assumptions that: the concentration of the pollutant is constant 

across the river, i.e. 0//  zy  and the coefficient of longitudinal turbulent 

diffusion xK , the flow and the coefficient of non-conservativeness are constants. 

The equation (1.3) is solved for specific initial and boundary conditions, selected in 
accordance with the type of watercourse. For instantaneous point source of unit mass of 

pollutant  /)()(),( txtxf   is considered an adequate approximation, where   is the 

area of living cut. For initial conditions 0)0,(  x equation (1.3) resolves as follows [10] 
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which justice for the small rivers and channels is proved experimentally [11].  
 
At initial and boundary conditions 
 

),0[),,0[),(),0(),()0,(  txtftxx  . 

 
Solution of the equation (1.3) looks like [4] 
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In the work [4], special cases of the solution (1.4) are given, when boundary function 

)(tf  is approximated by piecewise linear function or the initial condition is accepted zero. 

Solution of the equation (1.3) at initial and boundary conditions  
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],[ 0  xX , 0tt  , i.e. when on water object influence k  independent pollution sources, 

located in spatial points ix  of the considered section of water  object xJ  with intensities 

)(tai  ),...,1( ki  , looks like [9] 
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Let us make the comparative analysis of the solutions one- and two-dimensional 
equations of turbulent  diffusion of non-conservative pollutants at constant values of 
parameters of the stream, coefficients of turbulent diffusion and non-conservativeness [13]. 

As is shown [4], at piecewise constant approximation of the function )(tf , 0X  and at 

the condition of limitation of the function ),( tX  for sufficiently great values X , the 

equation (1.3) can be solved as follows: 
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where )( ii tff  , titi  , mi ,...,1 , t  is the step of splitting of time axis: 
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.       (1.7) 

 
For more simple case of constant unit dropping, the expression (1.5) becomes simpler 

and taking into account (1.6), (1.7), it becomes 
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0V  is defined by the ratio (1.7). 

In works [4, 5] it is specified that the one-dimensional model of turbulent diffusion of 
non conservative pollutants satisfactorily describes processes of self-purification and 
transferring pollutants in small streams with small speeds of flow, and solutions obtained on 
the basis of this model are applicable on the sections located below of some cross-section, 
called the cross-section of full intermixing. However for solving the majority of considered 
problems for qualitative estimation of waters, the accuracy of one-dimensional model appears 
 insufficient. In this connection there is a necessity of developing the quantitative estimations 
which  would allow to define borders of action of one-dimensional model of turbulent 
diffusion  depending on the values of the parameters of the stream, characteristics of pollutant 
and the kind of its dropping. For solving this problem we shall consider the more in detail the 
equation of two-dimensional turbulent diffusion (1.2).  

Let us accept zero initial conditions, i.e. 0)0,,(  yx , at following boundary -

conditions: 
 

0
,0





 Hyy
y

;        (1.10) 

 

0



xx ,        (1.11) 
 

where H  is the width of a stream. Let us suppose that the pollution source is placed in the 

beginning of co-ordinates, and the intensity of the drop varies by the law )(tf  and weakens 

on the width of the stream by exponential law, i.e. 
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Hyetfty y   0,0,)(),,0( 
.    (1.12) 

 

If to introduce dimensionless co-ordinate y
H

   and new desired function 

  txU ,,   Ktetx  ,, , then the system (1.2), (1.10), (1.11) will be transformed to the 

form  
 

0,0)0,,(,
2

2
2

2

2
2 




















xx

U
xU

x

U
V

U
b

x

U
a

t

U 
 ;  (1.13) 

 

0,)(),,0(
,0















 U

etftU Kt ,     (1.14) 

 

where .;;
2

2
22 


 H

K
H

bKa yx    

For simplification of the further mathematical calculations, we shall be limited to a case 
of constant drop of unit intensity, i.e. we shall consider the solution of the system (1.13) at 

1)( tf . As a result of consecutive application to this system of finite cosine-transformation 

of  Fourier [13] by the variable    

 

  



0

 cos ),,(),,(),,( dptXUtXUFtpXF c

,   (1.15) 
 

of the substitution 

 ,exp tXFF    
 

where  22/ aV ;  2222 4/ aVpb  , and of the Laplace’s transformation [14] by 

the variable t   
 

      



0

,,,,,,
~

dtetpXFtpXFLpXF t , 

 
we obtain the following system: 
 

;0
~

;0
~

2

2
2 

















xF
x

F
F

x

F
a 
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   
  .

11
,,0

22

2


















Kp

e
pF

p

 

 
The solution of this system is possible to present in the form 
 

   
 

.
11

,,
~

22

x
p

e
p

e

K
pxF 














  

 
Applying to this expression consistently inverse transformation of Laplace,  the ration -

(1.15), inverse transformation of Fourier, and also considering that    tx ,,
   KttxU exp,, , and taking into consideration (1.14), the solution (1.2), (1.10), (1.11) 

is possible to present in the form 
 








 






1
220 )()(

)1(1
 ),( 

1
),,(

p

HpH

pH

e
Htx

H

e
tyx








 

 

     





 py

H
VtxGVtxG pp


cos ,,,, ,     (1.16) 

 



















 KKp

H
KVV yxp

2
2 4


;     (1.17) 

),(0 tx  and ),,( txG  are defined by the formula (1.8). 

From the condition (1.12) follows that a case when the parameter of dropping 0 , 

corresponds to the uniform  on width of a stream drop of pollutant. In this connection, the 
solution (1.16) of the equation of two-dimensional turbulent diffusion coincides with the 

solution of one-dimensional problem, as ),(),,( 00 txtyx   , where ),(0 tx  is the 

solution of one-dimensional equation of turbulent diffusion, defined by the formula (1.8).  

The analysis of (1.16) shows that at fixed value of the ratio Hy /  the increase of the 

width of a stream H  in n  time is equivalent to the reduction of the coefficient jK  in 
2n  

time. 

The characteristic form of the function ),,( tyx  in general case, obtained by the 

formula (1.16) at fixed value of x , is reduced in Fig. 1.1, a. 
Detailed analysis of the formula (1.16), realized by means of the computer, has allowed 

to make following conclusions [12]: 1) the increase of   leads to the increase of 

heterogeneity of ),,( tyx  in width of a stream, i.e. the value 

 



Karlos J. Kachiashvili and D. Y. Melikdzhanian 8 

 

  ),0,(/),,(),0,( txtHxtx       (1.18) 
 

increases with increasing the value  ; 2) the increase of the co-ordinate x , on the contrary, 

leads to the reduction of  ; starting from some value 
x , the value becomes practically 

equal to 0 , i.e. the cross-section, being distant from the place of dropping by the distance 
x

, is the cross-section of full mixing; 3) the value 
x , which is the boundary of action of two-

dimensional model, depends on the value of the parameter of dropping  , speed V , width 

H , coefficient xK  and practically  does not depend on the coefficient of non-

conservativeness q .  

For more precise definition of the dependence of 
x  on the parameters  , V , H  and 

xK , the stationary mode of process of distribution of pollutant is considered at unit function 

of drop, i.e. a case, when t . At this time expressions 0  and  , defined by formulas 

(1.8) and (1.16), become simpler and accept, accordingly, the form 
 

 00 ,
2

1
)( VxEx 

;       (1.19) 
 

     











1
0 cos,,

p
pp p

H

y
VxECHxyx

 ,   (1.20) 

 
where 

 

   HH  /exp1  ;       (1.21) 
 

   







 


x

p
p K

xVV
VxE

2
exp, ;      (1.22) 

 

         22/exp11 pHHC p
p   ;    (1.23) 

 

pV  is defined by the ratio (1.17), ,...3,2,1,0p  The Characteristic form of the function 

 yx, , defined by the formula (1.20), is presented in Fig. 1.1, b. 

The value  was defined as minimum value of the co-ordinate , starting from which  

the relative error  (1.18) will not exceed 5 %: 
 

x x

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,     (1.24) 
 

where  and  were defined according to (1.20) by ratios 

 

; 

; 

 

 – by the formula (1.19), and, and ,  and – by (1.21) – (1.23). 

 

 
a                                                                              b 

Figure 1.1. Graphic representation of the concentration ),,( tyx  at fixed value of longitudinal 

co-ordinate x  (a) and in stabilized mode 0t  (b). 

The condition (1.24), used for finding 
x , is possible to present in the form 

 

021   39  
,        (1.25) 

 

where 





1
12121 ),(   

l
ll VxECH ; 






1

222 ),(   
l

ll VxECH . 

The analysis of values 
x  (km), obtained by means of the computer from the condition 

(1.25) at  various  values of parameters V  (km/h), xK  (km2/h), H  (km) and  , has 

allowed to establish  the following dependence: 
 

 H
x eHVKx    1 

~
  )( 2

,      (1.26) 
 

       05,00,/,0,  xHxx

 0,x  Hx,







1

0 ),(    )0,(
p

pp VxECHx 







1

0 ),(  )1(   ),(
p

pp
p VxECHHx 

0  E pC
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where )( xK  represents the function, close to linear concerning the variable xK ; H
~

 is the 

resulted value of the width of the stream, defined by the ratio H
K

H
y

06,0~  . 

Linearization of the function  xK  has allowed to present the formula (1.26) for 

finding the border of action of two-dimensional model in the form [12] 
 


























 H

HK
VHKx

yy
x

06,0
exp1

1
 )44,0 55,1( 2 

.   (1.27) 
 

In cases when drop of pollutant is sharply concentrated on width, i.e.   is great enough, 

for finding 
x , the use of more simple formula is possible: 

 

2 
1

  45,0 H
K

Vx
y



.       (1.28) 
 

This formula can be used for obtaining the upper estimation of the value 
x  in cases 

when the value   is not known. In cases when sewage cause essential  increase in the 

discharge of water in the stream of water, for taking into account of unsteady movement of 
the stream by  calculation  of its hydraulic characteristics the equation of Saint-Venant is used 
[7, 15]: 

 

 
,

 
 ;

2 





























K

QQ

x

z

x

VQ

t

Q

x

Q

t

z
W 

   (1.29) 
 

where W  is the width of the surface of the water; z  is a mark of free surface; Q  is the 

discharge of the water; V  is the speed of the flow;   is intensity of lateral inflow of the 
water;   is the area  of live section of the river-bed; K  is the module of the expense, 

RCK ˆ  ; C  is the coefficient of Shezy; R  is hydraulic radius. The problem (1.29), as 
well as (1.1), (1.2), solves by numerical methods, in particular, by the method of grids [8, 16]. 

In works [15, 17, 18], the multi-component models, considering transformation of one 
pollutant in another (for example, consecutive transformation of compounds of nitrogen), are 
considered; they are based on the equations of balance of pollutant and the equations of 
hydraulics of flows with corresponding initial and boundary conditions. Diffusion 
coefficients, speed of the flow of a stream, the characteristic of streams were supposed known 
in these models, which in a real situation are defined from hydraulic calculations on the basis 
of natural observations. Besides, in models the errors of measurement, essentially influencing 
results of calculations, were not considered. If the size of the measuring information is 
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significant (in the sense of mathematical statistics), then instead of similar enough difficult 
models much more effectively is to pass to more simple statistical models which, at the same 
time, are steadier against errors of measurements [1, 3, 19, 20]. Such models are considered in 
Chapter 3  of the present monograph. 

In work [21], models of eftrofication for modeling of seasonal change of concentration of 
sea seaweed depending on the use of fertilizers are given. These models were used for 
computer realization of the methodology developed in works [23, 24], and also for carrying 
out of numerical experiment. In work [22], the further development of these models in the 
form of three-dimensional eftroficating numerical model is given. The last, along with the 
quality of the water, describes also hydrodynamics and simultaneously unites requirement of 
oxygen and isolation of nutrients from sediments. 

In work [25], questions of hydrochemistry, hydrodynamics and hydrobiology, connected 
with so-called intra-reservoir processes are considered. The analysis of modern methods of 
studying the basic intra-reservoir processes is given and the necessity of the development of 
the methodology, methods and means of natural modeling of hydrodynamic  and chemical-
biological processes  is shown. 

In work [32], many processes proceeding in the environment which are solved by means 
of modeling, including processes of pollution and processing of sewage are described. Both in 
the book and on enclosed diskette many examples of modeling are resulted. They are realized 
in the language of modeling ISIM and are ready to use for  carrying out of calculations on the 
computer in operational system DOS. This possibility will allow  the reader to penetrate into 
the essence of mathematical models and modeling process more deeply. 

In the collective monograph [32], the problem of quality of water is considered from the 
uniform  system point of view. In the first part of the book, the technique of the system 
analysis which includes not only the use of this or that mathematical apparatus, but also  the 
basic concepts of their application is studied. The second part of the book contains examples 
of application of the offered methods  to the solution of concrete tasks of different level. 
Those  are: models of primary production in fresh-water reservoirs, models of nitrification 
process in real river system, models of transferring pollutants in the estuaries and open sea. 
The set of practical examples is given in the book. 

In the monograph [34], the deterministic-probability approach to the description and 
forecasting of polluting processes of superficial waters by using hardware-software means of 
mathematical modeling is offered; it includes: the method of electro-convective-diffusion 
analogy and its realization on analogue computers and on the hybrid computer complex; 
complex factor-cluster-taxonomy method and its realization on the computer; package of 
applied programs for the forecast of the field of concentration and computation of maximum 
permissible drop on the computer. 

In [41] are considered one-dimensional Saint-Venant classical equations and numerical 
algorithms for describing the processes of heat and mass transfer in river flows, the 
sedimentation and stirring-up of pollutants taken into account. Some results of numerical 
experiments are given. 

In [228] is presented a simple mathematical model for river pollution and is investigated 
the effect of aeration on the degradation of pollutant. The model consists of a pair of coupled 
reaction-diffusion-advection equations for the pollutant and dissolved oxygen concentrations, 
respectively. The coupling of these equations occurs because of reactions between oxygen 
and pollutant to produce harmless compound. There is considered the steady-state case in one 
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spatial dimension. For simplified cases the model is solved analytically. Also is presented a 
numerical approach to the solution in the general case. There is shown that for the Tha Chin 
River in Thailand simple models can provide decision support for planning restrictions to be 
imposed on farming and urban practices. 

 
 

1.2. MATHEMATICAL MODELS OF TRANSFER  
AND TURBULENT DIFFUSION 

 
Dynamics of transfer of pollutants in river water is described by the diffusion equations. 

Usually these equations should be solved numerically, with the help of difference schemes. 
Here are some questions, related to the choice of methods of solving various problems from 
which the practical realizability, the accuracy and the duration of obtaining the solution on the 
computer depend on. In particular: a) the analytical description of flat or spatial area for 
which the equations of diffusion and boundary conditions are investigated, i.e. the analytical -
description of coastal lines and a river bed; b) the analytical description of the dependence of 
coefficients of the equation from spatial co-ordinates; c) the analytical description of 
dependence on spatial co-ordinates and from time of non-uniform parts of the solved 
equations of diffusion, i.e. powers of pollution sources; d) the correct choice in difference 
scheme ratios between spatial steps of the grid, and also between them and the step of 
digitization of time.  

The listed questions are considered by authors of the presented work in [36–40]. The 
basic results are given below after formulation of the problem of dissemination of pollutants 
in the form of equation of transfer and diffusion with additional conditions, and review of 
known numerical methods of solving these equations. 

For clearness we shall introduce the following designations, used in future. 
Parameters defining geometry and dynamics of the considered section of the river: 

yx,  – horizontal Descartes co-ordinates (m);   – longitudinal co-ordinate (m);   – 

transverse co-ordinate (m); z  – vertical Descartes co-ordinate (m); t  – parameter of time 

(sec); )(xW  – the width of the river (m); )(xE  – the area of cross-section of the river (m2); 

),( yxH  – the depth of the river (m); )(rv  – the velocity of the flow (m/sec). 

Parametres of river water: s , S ,   – the concentration of the pollutant (mg/m3); 

),( rtf  – power of pollution sources (mg/m3); )(tFj  – integrated power of j th pollution 

source (mg/sec); )(tp j  – the discharge of water by j th source of pollution (m3/sec); )(rK  

– tensore of turbulent diffusion (m2/sec); )(r  – coefficient of non conservativeness (sec-1); 

q  – coefficient of self-purification; l  – the length of self-purification (m).  

Each of water parameters corresponds to some pollutant from the list of polluting 
components by which modeling is realized. By M  we shall designate the number of 
pollutants from the available list, common for all sections, and by R  – the number of sources 
of pollution from the list, corresponding to the considered section. The index j  is the number 

of the source of pollution operating on the considered –section of the river. 
For calculation of the power of sources of pollution we shall use the following formula: 
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),()()(;)()(),(
1

tStptFrrtFrtf jjj

R

j
jj 




 

 

where )(tS j  is the concentration of the pollutant dropped by j th source of pollution in the 

water; jr  is the radius-vector of the action of this source. 

 
1. Possible types of models. The concentration of the pollutant transferred in river water 

is defined by the formula 
 

,/),( 0 PPrts 
        (1.30) 

 

where ),( rt  is the solution of one of brought below diffusion equations; P  is the 

discharge of water in a current point; 0P  is the discharge of water in upper section of 

considered section, i.e. at 0x . 
Investigated equation is m -dimensional equation of diffusion. We shall consider 

following models: 1) one-dimensional model ( 1m ); 2) two-dimensional model ( 2m ); 

3) three-dimensional model ( 3m ). Three-dimensional model is the most exact among 
considered. Other models should be considered as special cases of three-dimensional model. 
Concerning their practical use depending on characteristics of the rivers and solved problems 
see paragraph 8.4.  

In one-dimensional model instead of tensor of turbulent diffusion )(rK , one of its 

component – the coefficient of turbulent diffusion )()( rKxK xx , is used only. In two-

dimensional and three-dimensional models tensor )(rK  is supposed diagonal. 

In given below two-dimensional and three-dimensional equations of diffusion 
independent variables are t , x , y , z . Here the given equations have the traditional form 

of record in which it is supposed that the considered section of the river lasts along the axis of 
abscess, not deviating aside. If the river on the considered section is twisting then in the 
equations horizontal Cartesian co-ordinates x  and y  should be replaced by appropriate -

curvilinear – longitudinal and transverse co-ordinates   and  . Definition of these co-

ordinates and their relation to the Cartesian co-ordinates are described in paragraph 1.4.1. 
 
2. The equation of diffusion for one-dimensional model. The equation looks like 
 

),,( )(),()( )(),()( )(

),()( )(),()(

xtfxExtxxExt
x

xvxE

xt
x

xKxE
x

xt
t

xE













 















   (1.31) 

 
where 
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



R

j
jj xxtFxtfxE

1

)()(),( )( 
.     (1.32) 

 
3. The equation of diffusion for two-dimensional model. The equation looks like 
 

       
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
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  
 

or in vectorial form 

  

     ),,( ),()( )(),(

),()( )(),()(

rtfrtrrHrtrvrH

rtrKrHrt
t

rH









    (1.33) 
 

where ],[ yxr  ; 

 

 j

R

j
jj yyxxtFrtfrH  




1

)()(),( )( .    (1.34) 

 
4. The equation of diffusion for three-dimensional model. The equation looks like 
 

  ),,( ),()( ),(
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





















 

 
or in vectorial form 
 

     ),,( ),()( ),(),()(),( rtfrtrrtrvrtrKrt
t



 

 (1.35) 
 

where ],,[],,[ 321 zyxrrrr  ; 

 

   jj

R

j
jj zzyyxxtFrtf  




1

)()(),(
.    (1.36) 
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5. Domain of definition of the equation of diffusion. The function ),( rt  is 

considered defined at 0t  and Gr , where G  is one-dimensional interval, flat or spatial 
area, for which the diffusion equation is solved. This area is set by means of inequalities: 

 x0 ; 

);2()()(  mxyx lr   

);3(),(0  myxHz  

 

where )(xr , )(xl  and ),( yxH  are given functions. At use of classical boundary 

conditions L2 ; otherwise lL   ( L  is the length of considered section of the 

river). Functions )(xr  and )(xl  define position on horizontal plane, accordingly, the right 

and left coast of the river. The function ),( yxH  defines the position of river bed in space, 

i.e. defines values of the depth of the river in various points. 

Thus, the border of the area G , which we shall designate by G , is possible to divide -
into some parts. Among them – the upper and the lower cross-sections of the river, in which, 

0x  and x , respectively; in one-dimensional model this is simply points which are 

the ends of the interval G . At 2m  the border G  contains also river coasts, and at 

3m  – lateral walls (if they are available), river bed and upper free surface. 
 
6. Initial and boundary conditions of solving the equation of diffusion. Additional 

conditions are set in the form 

     00 ,;,0 xrtSr
 

 
( constS ,0 ). Boundary conditions in the lower end of the section can be classical or 

non-classical. Classical condition looks like 
 

  0, 



xrt
x

; (condition of full mixing)     (1.37) 

 
non-classical condition – 

 

    lxx rtqrt   ,, . (not local boundary condition)   (1.38) 

 
where q  is the coefficient of self-purification of the river on the considered section;   is the 

concentration of the pollutant dropped by pollution source in the point x  [30, 42, 224]. 

At 2m , boundary conditions on the other part of the line or on the surface G  – 
Neumann’s conditions, are set also 
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0),( )( 
 Gr

rt
,       (1.39) 

 
 

where   is unit vector of external normal to the border G . In particular, at 3m , it 
should be 
 

0),(
0





z

rt
z .         (1.40) 

 
 

1.3. SOME ANALYTICAL METHODS USING AT SOLVING 

MULTIDIMENSIONAL PROBLEMS 
 
At modeling, before and after numerical solution of the equations of diffusion, often  

there is expedient to apply, to these equations and their solutions, some  analytical  methods 
for simplification of algorithms of solution, for evidence and clearness of obtained results. 
Some of these methods are considered in the present paragraph. 

 
1. Replacement of variables in the diffusion equation. Let us consider m -dimensional 

( 1m ) equation of diffusion 
 

     ),,( ),()()()(),(),( xtfxtxCxxxt
t

xtD 



 BA
 

 

which is required to be solved for some area G  of m -dimensional space taking into account 
the set of initial and boundary conditions. 

For using the algorithm described in  paragraph  2.1 at solving the given equation, it is 
necessary, first of all, by replacement of independent spatial co-ordinates, to transform the 

area G  in the hyper-parallelepiped which co-ordinates of points satisfy inequalities 
 

 mkbxa kkk ,...,1
. 

 
Let the replacement of variables by formulae 
 

   mkxxx mkk ,...,1,...,~
1  

 
 

leads to the required transformation of the area G . At such replacement the considered 
differential equation will be transformed to the similar equation 
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     ),~,(
~

 )~,(
~

)~(
~~

)~(
~~

)~(
~~

)~,(
~

)~,(
~

xtfxtxCxxxt
t

xtD 


 BA

 
 
where 
 

),...,1(~/
~

mkxkk 
; 

),()~,(
~

);,()~,(
~

xtfxtfxtxt  ; 

),()~,(
~

);,()~,(
~

xtCxtCxtDxtD  ; 

 

In the new equation coefficients  xAjk  and  xBk  are replaced, accordingly, by 

coefficients  xAjk
~~

 and  xBk
~~

, expressions of which, in general case, are very bulky; at 

this time, if the matrix )(xA , appearing in the initial equation, is diagonal, the matrix )~(
~

xA , 

appearing in the transformed equation, generally speaking, is not diagonal. 
However at calculation of the concentration of pollutants we will consider a case when 

the surface, limiting the area G , is enough smooth (in particular, river coast should be cut 

poorly up). At this time, functions )(xk  ),...,1( mk   can be chosen so that in obtained, 

after replacement of variables, diffusion equation it was possible to neglect coefficients at 
mixed derivatives. In other words, at a suitable choice of new variables, it is possible to 

consider the matrix )~(
~

xA  diagonal. 

 
2. Replacement of variables in two-dimensional equation of diffusion. Let us consider 

the equation of diffusion given in the previous Item, at 2m ; the vector composed by 

spatial co-ordinates, here we will designate by ],[ yxr  . If, according to conditions of Item 

5 of the paragraph 1.2, the domain of change of the variables x  and y  is defined by 

conditions 
 

 x0 ;   )()( xyx lr   , 

 
then replacement of variables by formulae 
 

;~ xx    
 

)()(

)(~ 0

xx

xyW
y

rl

r







 ; 

 

where constW 0 , leads to the required transformation of the domain G : the domain of 

change of the variables x~  and y~  is the rectangle 
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 x~0 ;   0
~0 Wy  . 

 

The constant 0W  can be any, but is expedient to accept it equal to the average width of 

the river on the considered section. 

If the tensor )(xA  is diagonal and if in the expressions, defining coefficients of the 

transformed equation of diffusion, to neglect the first and second derivatives of the functions 

)(xl , )(xr  by x , then we shall obtain the following expressions for new coefficients: 

 

  0~~
rAxy ; 

  )(~~
rArA xxxx  ;    

 2
2

0

)()(

)( ~~

xx

rAW
rA

rl

yy
yy  

 ; 

  )(~~
rBrB xx  ;    

)()(

)( ~~
2

0

xx

rBW
rB

rl

y
y  

 . 

 
3. Replacement of variables in three-dimensional equation of diffusion. Let us 

consider the equation of diffusion given in Item 1, at 3m . The vector composed by  spatial 

 co-ordinates, here we shall designate by ],,[ zyxr  . If, according to conditions of Item 5 

of the paragraph 1.2, the domain of change of variables x , y , z , is defined by conditions 

 

 x~0 ;   )()( xyx lr   ;   ),(0 yxHz  , 

 
then replacement of variables by formulae 

 

;~ xx    
 

)()(

)(~ 0

xx

xyW
y

rl

r







 ;  
),(

~ 0

yxH

zH
z


 , 

 

where constHW 00 , , leads to required transformation of the domain G : the domain of 

change of variables x~ , y~ , z~ , is the parallelepiped 

 

 x~0 ; 

0
~0 Wy  ;   0

~0 Hz  . 

 

Constants 0W  and 0H  can be any, but it is expedient to accept them equal to the 

average width and the average depth of the river on the considered section. 

If the tensor )(xA  is diagonal and if in the expressions, defining coefficients of the 

transformed equation of diffusion, to neglect the first and second derivatives of functions 
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)(xl , )(xr  by x  and functions by x  and y , then we shall obtain the following 

expressions for new coefficients: 
 

      0~~~~~~
 rArArA zxyzxy ; 

   rArA xxxx ~~
;    

 2
2

0

)()(

)( ~~

xx

rAW
rA

rl

yy
yy  

 ;    
 2

2
0

),(

)( ~~

yxH

rAH
rA zz

zz  ; 

   rBrB xx ~~
;    

)()(

)( ~~
2

0

xx

rBW
rB

rl

y
y  

 ;    
),(

)( ~~ 2
0

yxH

rBH
rB z

z  . 

 
4. Using of the principle of super-position. Let for definition of the concentration of the 

considered pollutant, the model is used in which this concentration ),( rts   is the 

solution of one of the equations of diffusion given in the paragraph 1.2 with non-uniform part 
 





R

j
jj rrFrtfrtD

1

)(),( ),( 
, 

 

( constFj  ) with initial and boundary conditions 

  0),(;),0( xrtr
 

 
( const ) and 
 

  0),(  rt  
 

on other part of the border of considered spatial area for which   is unit vector of 

external normal. In this model on the considered section of the river function R  dot sources 

of pollution; power of j th source jjj SpF 
 ( Rj ,...,1 ), where the discharge of water 

jp
 and the concentration of the pollutant in this water jS

 are considered not to be 
dependent on time. 

Sometimes (for example, at detection of emergency pollution sources of the river (see 
Chapters 5, 7)), in order to economy of time and memory of the computer, it is required to 
make preliminary calculation of the concentration of pollutants in the rivers for different 
modes of drops from pollution sources, acting on the given section of the river. The results of 
the calculation will be repeatedly used further. In such cases, it is convenient to present 
required concentration in the form 
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



R

j
jj uFus

1
0

, 
 

where 0u  is the solution of the considered diffusion equation in which the non-uniform part 

is rejected, with initial and boundary conditions 
 

1),(,1),0( 0  xrtr
; 

 

For each value of j , ju  is the solution of the considered equation of diffusion with zero 

initial and boundary (at 0x ) conditions in which the non-uniform part is replaced by 

function )( jrr  . 

 
5. Rough estimate of the result. Let for definition of the concentration of considered 

pollutant the same model serves about which it was spoken in the previous Item. At jtt   

for all values j , where jt  is time during which the pollutant is transferred by the flow from 

j th source to the point of supervision, as a rough estimate of desired concentration can serve 

the number 
 














R

j
j

R

j
jj

pP

SpP

s

1
0

1
0

0



, 
 

where 0P  is the water discharge in the upper end of the section. Such approach means that 

the concentration of considered pollutant is considered homogeneous, i.e. uniformly 
distributed on all cross-section and on all length from sources up to the place of supervision. 

If to use the given approach and if to consider that the discharges of the water which are 
poured in the river by each pollution source, is much less than water discharge in the river, 

i.e. 0Pp j  , then auxiliary solutions of the considered equation of diffusion, about which 

was spoken in the previous Item, can be defined as follows: 
 

00 /1;1 Puu j 
. 

 

In future the value 0s  we shall call the average concentration. Results of the numerical 

solution of the equation of diffusion can be compared to it. 
In following two Items the generalization of known, often used method of linear -

interpolation of the function of one real variable for the case, when the function of two or 
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three variables is considered, is given. The given formulae are used in  the computer -
packages, described in Chapters 6 and 7, for visual representation of solutions of the two- and 
three-dimensional equations of diffusion, obtained by numerical methods. 

 

6. Linear interpolation of the function of two variables. Let the function ),( yxfu   

is given in the rectangular area defined by inequalities xx BxA  ; yy ByA  , in the 

form of the table, where jx , ky , jku  ( xNj ,...,0 ; yNk ,...,0 ) are elements of given 

numerical sequences. Let us designate for fixed j  and k  

 

11 ;;;   kbkajbja yyyyxxxx
; 

1,1,11, ;;;   kjbbkjbakjabjkaa uuuuuuuu
. 

 

Linear interpolation is consisted in the following that in the rectangle ba xxx  ; 

ba yyy  , the function ),( yxf  is approximated by the function ),( yxS jk , which is 

linear in relation to any of variables x , y  at fixed value of other variable: 

 

    abab
jk yyxx

xypypxpp
yxS




 12210,
, 

 
where 
 

bbaababaababaabb uyxuyxuyxuyxp 0 ; 

bbabababaaab uyuyuyuyp 1 ; 

bbabaaabbaab uxuxuxuxp 2 ; 

bbbaabaa
uuuup 

12 . 
 
7. Linear interpolation of the function of three variables. Let the function 

),,( zyxfu   is given in the parallelepiped, defined by inequalities xx BxA 
; 

yy ByA 
; zz BzA  , in the form of the table 

),,( lkjjkl zyxfu 
, where jx

, ky
, 

lz
, jklu

 ( xNj ,...,0
; yNk ,...,0

; zNl ,...,0 ) are elements of the given numerical 

sequences. Let us designate for fixed j , k  and l  

111 ;;;;;   lblakbkajbja zzzzyyyyxxxx
; 
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;; 1,,  lkjaabjklaaa uuuu
 

1,1,,1, ;   lkjabblkjaba uuuu
; 

1,,1,,1 ;   lkjbablkjbaa uuuu
; 

1,1,1,1,1 ;   lkjbbblkjbba uuuu
. 

Linear interpolation is consisted in the following that in the parallelepiped ba xxx  ; 

ba yyy  ; ba zzz  , the function ),,( zyxf  is approximated by the function 

),,( zyxS jkl , which is linear in relation to any of variables x , y , z  at fixed values of other 

variables: 
 

     ababab
jkl zzyyxx

xyzpzxpyzpxypzpypxpp
zyxS




 1233123123210,,
, 

 
where 
 

 abbaababababaababbaaabbb uzyxuzyxuzyxuzyxp0  

bbbaaabbabaababababaabba uzyxuzyxuzyxuzyx 
; 

)()()()(1 abbbbbaabbaababababaababaaabaabb uuzyuuzyuuzyuuzyp 
; 

)()()()(2 babbbbaabbabaabaabbaababaaaababb uuzxuuzxuuzxuuzxp 
; 

)()()()(3 bbabbbaababbaabaabbabaabaaaaabbb uuyxuuyxuuyxuuyxp 
; 

)()(12 bbbaabbababbabaaababbaaaab uuuuzuuuuzp 
; 

)()(23 bbbbaabbababaabaaababbaaab uuuuxuuuuxp 
; 

)()(31 bbbababbaabbabaaaabbabaaab uuuuyuuuuyp 
; 

)123 bbabbbbaabababaabbaaaaab uuuuuuuup 
. 

 
 

1.4. DESCRIPTION OF RIVER  
BANKS BY SPLINES 

 
The question of analytical setting plane or spatial areas, for which the diffusion equation 

and boundary conditions are investigated, is considered [37]. This area is the part of the bed 
of the river on the considered section, filled by water.  

There is introduced the system of orthogonal curvilinear coordinates which serve for 
simplification analytical description of plane area, restricted by coastal lines of the river. Such 
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description is necessary for numerical solution of diffusion equation, describing the change of 
concentrations of pollutants in river water.  

For analytical description of plane curve, given in the form of the sequence of not 
coinciding points with certain Cartesian coordinates, which, in particular, can be one of the 
coastal lines of the river, the interpolation by splines is used. Algorithms of construction of 
two splines, having explicit forms and provided continuous dependence of tangential vector 
of the curve from its parameter, are described.  

 
 

1.4.1. The Contour of the River  
 

       For analytical setting of the bank lines, in order to simplify the calculations, it is 
expedient to use curvilinear coordinates instead of Cartesian coordinates, which are connected 
with some conditional curve, which stretches along the river between its banks. Hereinafter 
this curve we shall call contour of the river. This expediency is conditioned by two facts 
given below: the first is the relation of one of the Cartesian coordinates of points of the bank 
lines from other coordinate can be multiple valuted in connection with a veering of the river, 
while the lines can be specified in the explicit form in curvilinear coordinates if the river 
contour is selected properly and its banks are not hardly indented. Secondly, under certain 
conditions [5] the diffusion equations in curvilinear coordinates do not contain mixed 
derivative and, therefore, the problem of their numerical solution is essentially simplified. 

Suppose some curve is given in the parametric form 
 

),();( 21   yx  
 

where  is the length of the curve beginning from some point; i.e. 
 

,1))(())(( 2
2

2
1           (1.41) 

 
takes place, where the dots over the functions mean their derivatives. 

It is possible to specify orthogonal curvilinear coordinates  ,  , by which Cartesian 

coordinates x , y  can be expressed by the following formulas: 

 

.)()(

;)()(

12

21










y

x

       (1.42) 
 

The coordinates   and   have a simple geometrical sense: the point P  with given 

coordinates lies on the normal to the curve passing through its point 0P , corresponding to 

the value of the parameter equal to  , and apart from the point 0P  on the distance  , and 



Karlos J. Kachiashvili and D. Y. Melikdzhanian 24

P  is to the left of tangent vector to the curve in the point 0P  at 0  and on the right - at 

0  (see Fig.1.2). 

If we search the relation between Cartesian and curvilinear coordinates in form of 
 

,)()(

;)()(

2

1






by

ax

 

 

Figure 1.2. Curvilinear coordinates connected with the line. 

then functions )(a  and )(b  can be determined from the condition of orthogonality of the 

curvilinear coordinate system taking into account that in this case nondiagonal components of 
the covariant metric tensor are equal to 
 

    .)()(
2

)()()()(

)())()(()())()((

22

21

2112








ba
d

d
ba

bbaag









 
 
The condition of orthogonality, apparently, will be executed if we suppose 

)()( 2  a  and )()( 1  b . 

 

The components of the covariant metric tensor of the coordinate system },{   are equal 

to 
 

    .)()()()(

;1;0
2

12
2

2111

222112

 



g

ggg

 
 

Practically sometimes it is required to determine ],[   the curvilinear coordinates of the 

point with given ],[ yx  Cartesian coordinates. In particular, when inputting data for a 

computer program, which executes calculation of pollutants concentrations in fluvial water, it 
is more convenient for the user to operate with Cartesian coordinates of analyzers, the 
polluting objects and points of bank lines, while during implementation of the algorithm of 
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numerical solution of a diffusion equation it is more convenient to deal with curvilinear 
coordinates of these points and objects. 

From (1.41) and (1.42), the set of equations follows: 
 

   
    .)()()()(

;0)()()()(

1221

2211











yx

yxx

 
 

The parameter   is determined by solution of the first from these equations. The 

parameter   is determined from the second equation. If it is required to determine only 

module of parameter   (but not its sign), it is possible to use simpler expression which 

doesn’t include derivatives 
 

    .)()( 2
2

2
1

2   yx  
 
 

1.4.2. Using Spline-Interpolation for Giving a Curve 
 
The easiest way is to set a contour of the river and its bank lines by means of a sequence 

of points with given coordinates. The elementary way of approximation of the plane curve, 

given by means of the sequence of )1( N  distinct points with Cartesian coordinates 

],[ jj yx  ),...,0( Nj  , is its approximation by the polygonal line connecting the given 

points. Parametric equations of this polygon are as follows: 
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where s  is natural parameter of the curve; 
N

js 0][  is the sequence of values of this parameter 

determined by ratios 
 

    .;0 22
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Suppose, the curve is given in the form of a sequence of )1( N  distinct nodes with 

Cartesian coordinates ],[ jj yx  ),...,0( Nj  . It is required to approximate this curve by a 

curve, which we shall call interpolating spline-curve, given in the parametric form  
 

),();( 21   yx  
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where   means natural parameter of this spline-curve. The following conditions similar to 

the conforming conditions for interpolating spline-functions [16] are superimposed on the 
functions 1() and 2(), except for the requirement (1.41): 

a) condition of interpolating: the interpolating curve passes through all given points, i.e. 

there is some sequence of values of a curve parameter 
N

j 0][ , for which the following takes 

place 
 

),...,0()(;)( 21 Njyx jjjj  
 

 

(hereinafter the sequence ][ j  everywhere is supposed increasing); 

b) smoothness of the curve: the functions )(1   and )(2   are continuously 

differentiable on ],[ 0 N ; 

c) explicit form of functions: in each of intervals )1,...,0(],[ 1  Njjj   values of 

the functions )(1   and ),(2   coincide with the corresponding values of the functions 

from the given class dependent on three additional parameters; 
d) boundary conditions: the unit vector tangent to the curve has the given value in the 

point ],[ 00 yx . 

 
 

1.4.3. Trigonometrical Spline-Interpolation  
 

It is expedient to set the explicit form of functions )(1   and ),(2   on each of the 

intervals ],[ 1jj   so that the condition (1.41) will be executed automatically. One of the 

elementary types of these functions can be obtained from the condition that at 1 jj   

the components of a unit vector   tangent to the contour are equal to 
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where j , j , j  ),...,0( Nj   are constant coefficients. 

 

Parametric equations of the curve in the interval ],[ 1jj   are as follows: at 0j  

);)(sin()/1();)(cos()/1( jjjjjjjjjj yyxx   
 

at 0j  
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where 
j

x


 ),...,0( Nj   are additional constant coefficients, and the symbol   marks the 

ascending differences. 

The values j , jx


, j , j  are determined by the condition of smoothness of the curve 

in nodes and the boundary conditions for tangent vector to the curve in the point ],[ 00 yx . 

However, instead of equating values in the points j  of the functions and their derivatives, 

given on intervals ],[ 1 jj    and ],[ 1jj   and to derive thus equations for required 

parameters, we shall act as follows: we shall determine each of these parameters by means of 
the formulae of analytical geometry and elementary planimetry taking into account its 
geometrical sense (see Fig.1.3). 

 

 

Figure 1.3. Trigonometrical Spline-Interpolation. 

As a result for determination of values jjjj x  ,,,


 we have the following scheme: 

 

),arg(;0 0000 xy i 
 

 

where 0  is the value of unit vector tangent to the curve in the point ],[ 00 yx ; the remaining 

parameters sequentially are determined for all 1,...,0  Nj  by means of the following 

formulae: 
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;sin;cos jxjy  
 

 

  is unit vector tangent to the curve in the point ],[ jj yx ; 4/2 j  represents slope of 

this vector to a positive direction of the abscissa axis; 

;;2/)(;2/)( 22
11 yxjjyjjx aaayyaxxa    

a2  is a position vector conducted from the point ],[ jj yx  to the point ],[ 11  jj yx ; 
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  is the angle, on which the vector   should be turned to make it parallel to vector a ; 

 

;/sin aj  
 

 

jR /1  is the radius of the arc of the circumference coincided with a part of the curve 

between its points ],[ jj yx  and ];,[ 11  jj yx  at 0j  this arc degenerates into a straight 

line segment; at 0j  the center of this arc ] ,[ jj yx


 is to the left of the curve, and at 

0j - on the right; therefore, at 0j the arc is drawn from the point ],[ jj yx  in 

],[
11  jj

yx  counter-clockwise, and at 0j - clockwise; 
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At 0j  there are determined also 

;/;/  tgahtgah xyyx 
 

 

h  is the position vector drawn from the bisecting point of the segment between points 

],[ jj yx  and ],[ 11  jj yx  into the center of the arc; 

 

yjjjxjjj hyyyhxxx   2/)(;2/)( 11


 

 
are coordinates of the center of the arc. 
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The spline-curve, apparently, has no inflection points for values   belonging to internal 

points of each of intervals ),( 1jj  , i.e. nodes can be the only inflection points of the given 

curve.  
 
 

1.4.4. Spline-Interpolation by Integrals of Fractional-Rational Functions 
 
The offered below type of the functions specifying a spline-curve, is determined so that at 

1 jj   the components of a unit vector   tangent to the curve were be equal to 
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where 
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jj u, and ),...,0( Njbj   are constants. The auxiliary function u  represents tangent of 

half slope of tangent vector to the curve in the appropriate point to the positive direction of 
the abscissa axis. 

The parametric equation of the curve in the interval ],[ 1jj  is as follows: at 0jb
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at bj=0 
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The values jj u, and jb  are determined by the condition of smoothness of the curve in 

the nodes and boundary conditions for tangent vector to the curve in the point ],[ 00 yx . As a 

result for determination of these coefficients we have the following scheme: 
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where 0  is the value of a unit vector tangent to the curve in the point ],[ 00 yx ; the 

remaining parameters are determined sequentially for all 1,...,0  Nj by the formulae 
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It is possible to show that the considered spline-curve, as well as in the previous example, 

has no inflection points for values  , belonging to internal points of each of intervals 

),( 1jj  , i.e. nodes can be the only inflection points of the given curve. 

For determination of each of parameters 1ju  it is necessary to solve a nonlinear 

equation. Therefore it is necessary correctly select the search interval of this parameter. If we 

write this equation in the following form 0)( uf , the function )(uf  will have two 

extremums 
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where a  is position vector conducted from the point ],[ jj yx  to the point ],[ 11  jj yx . The 

parameters ju , u~  and u ~  are determined by directions of vectors aj ,  and a , 

respectively: each of this parameters represents tangent of half slope of the appropriate vector 
to the positive direction of the abscissa axis; here j  is unit vector tangent to the curve in the 

point j . If the direction of tangent vector to the curve doesn’t vary too hardly on the interval 

],[ 1jj  , the desired value 1ju  is approximately equal to u~ . At the same time the 

parameter u ~  corresponds to the opposite direction of the vector a  and, therefore, there is no 

practical significance for determination of 1ju . 

Taking into account the absence of inflection points for the curve at 1 jj  , as 

well as the execution of the equation 0)( uf  at juu   (that is clear from explicit form of 

the function )(uf ), it is possible to show that u~  belongs to the interval with boundaries ju  

and 1ju . Geometrically it means that the vector a  lies inside the angle formed by vectors 

j  and 1j  (see Fig.1.3). Consequently, the desired value 1ju  belongs to the interval with 

boundaries u~  and )~(~
juucu  , where c  is some positive number.  
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1.4.5. Final Remarks  
 
The approximation of the given contour by means of interpolating spline-curve from the 

reviewed above classes is good in such cases, when the number of available nodes of the 

contour is great enough, otherwise for large values of the parameter   the approximated 

curve can essentially differ from the given one. For example, if trigonometrical spline-
interpolation is being used for approximating the sinusoid, given for equidistant values of 
abscissa with the interval 0.8, the interpolating curve, introduced in Fig.1.4 will be obtained. 
In this figure the initial sinusoid is shown by the dotted line; the nodes are distinguished by 
their sizes. The similar picture is given by approximating this sinusoid using the interpolation 
by integrals of fractional rational functions. 

If the number of known coordinates of the contour points is not great enough, it is 
possible to solve the above mentioned problem in the following way. 

Let us represent the initial curve in the parametric form 
 

 
 

where  is the length of the polygon line connecting the current point of the curve with all 

previous nodes. The functions and can be approximated by cubical splines [16]. 

In this case  does not serve as a natural parameter of the curve and, therefore, assignment of 
the approximating curve by means of cubical splines does not give the capability to work with 
curvilinear coordinates, introduced in the section1.4.1. However such way of assignment of 
the approximating curve allows to compute approximate values of coordinates of initial curve 
in some additional points, thereby having increased number of available nodes, then 
approximating of an available contour by spline-curve by methods described in sections1.4.3 
and 1.4.4 is already possible. 

For example, if we increase the number of nodes of the reviewed above sinusoid using 
above described method, inserting three additional nodes between each adjacent points, the 
approximating curve practically will merge with the given sinusoid. 

The use of splines while approximating a plane curve has all advantages which are 
typical for splines used for approximating of ordinary numeric functions, namely: 
convergence, stability and relative simplicity of the mathematical expressions. In order to 
meet the requirement of the curve parameter’s being natural, we had to refuse conventional 
ways of determination of splines by means polynomials. 

 

 
Figure. 1.4. Interpolating spline-curve for the sinusoid in case of infrequent nodes. 
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After we compare two offered methods of construction of splines: one - by means of 
trigonometrical functions and another - by means of integrals of fractional rational functions, 
it is possible to say, that advantage of the first method is the relative simplicity and reliability 
of calculations, its imperfection – more sensitivity to “rarefaction” of nodes. 

The description of offered algorithms contains everything required for their 
implementation in form of computer programs. Such programs are drawn up by the authors of 
this work and are tested on many control examples and are used in computer packages 
“Application package of realization of mathematical models of pollutants transfer in rivers 
(MMPT)” (Version 2.0) [227] and “Automatic Detection of River Water Excessive Pollution 
Sources (ADrweps)” (Version 2.0) [210] described in Chapters 6 and 7. 

 
 

1.5. ABOUT APPROXIMATION OF RIVER CURRENT SPEED 
 
The problem of correct determination of river current speed is very important for the 

problem of modeling the transfer of pollutants in rivers. Despite this, in general case, it is not 
solved till now because of complexity and variety of variants depending on features of the 
rivers. We reduce one of practical ways of its solution below. 

Geometrical characteristics of a channel of the river, on which the speed of a current 
depends, can strongly vary on a considered section, especially if the mountain river is 
investigated. From components of the vector of the current speed and their derivatives on 
spatial co-ordinates, in one’s turn, coefficients of turbulent diffusion depend on. It is clear, 
that, generally, for speed of the current it is impossible to use simple linear interpolation in 
which values of the speed only on the section ends are considered, except any special cases 
when, for example, water flows on the rectangular channel. Practical obtaining values of the 
speed of the current in many points of the section, in general case, are very difficult and 
expensive problem. Therefore it is necessary to solve this problem analytically especially as 
the geometry of the section of the river unequivocally defines the speed of the current in any 
point of this section.  

One of possible approaches to the solution of this problem consists in the following: to 

use linear interpolation for the dependence of the expense of water )(rP  on longitudinal co-

ordinate, and by )(rP  to express values of the speed of the current )(/)()( rErPrv  , 

where )(rE  is the area of cross-section of the river in point r . Namely such method is 

realized in packages of applied programs described in Chapters 6 and 7. This method is 
simple, but, unfortunately, rough since it allows to determine only average value of the speed 
on all cross-section of the river. 

For exact solution of this problem, apparently, it is impossible to go around solution of 
difficult equations of hydrodynamics – equations of Navier-Stokes or any simplified variant -
of this equation, but necessarily considering viscosity of the water. The problem considerably 
will become simpler, if it succeeds to be reduced to the solution of some linear differential 
equation which can be solved, for example, by numerical methods. 



 
 
 
 
 
 

Chapter 2 
 
 
 

CALCULATION SCHEMATA OF  
MATHEMATICAL MODELS 

 
 

2.1. NUMERICAL METHODS OF SOLVING DIFFUSION EQUATIONS 
 

2.1.1. Boundary Problem 
 
At solution of the diffusion equation, a boundary problem is considered as auxiliary [38, 

40, 222, 223]. In this problem, unknown function  x  is defined at Xx , where X  is 

the interval (in a one-dimensional problem) or the region (in a multivariable problem). The 
problem contains the differential equation  

 

)()( ˆ xx f  

 
and boundary conditions on the border of the region X  

 

)()( ˆ xx   , 

 

where  xf  and  x  are the given numerical functions; ̂  is the linear elliptic differential 

operator; ̂  is the first-order linear differential operator.     

At the solution of the boundary problem, the differential equation for internal points of 
the region X  is replaced with the difference equation 

 

)()( ˆ xx fh  , 

 

where h̂  is the difference operator depending on additional parameter h , which is the 

maximum spatial step of the grid. The function  xf h  is equal to  xf  - for internal points 

of the region X  and some combination of the functions  x  and  xf  for boundary 

points. 
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In the future, for the simplicity, in difference equations the index h  is omitted so far as it 
does not complicate understanding of the essence of the presented material.   

The accuracy of approximation of the differential operator ̂  by difference operator h̂  

is characterized by misclosure  hx, : 
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. 

 

In the difference schemes considered below this approximation has the order 
2h , i.e. at 

0h  
 

   2, hOhx  . 
 
1. Review of difference schemes for one-dimensional boundary problem.  

In the one-dimensional case, when ],[ baX   is the interval, the operator ̂  is 

represented in the form of 
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Here ,,,,,, constqpqp babbaa        xCxBxA ,,  - the given numerical 

functions. 

The difference operator h̂  is represented in the form of 
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,  are any four-time continuous-differentiable functions. 

Different functions upVU ,  and dnV  correspond to different difference schemes; in 

particular we may set: 
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The difference operator with such coefficients is used in practice most often. 

Difference equation for the layers has the form: at bxa   
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Coefficients of this difference equation for the bounds of the interval ],[ ba  are 

determined by the ratios: at 0aq  
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at 0bq
 

 

,      ; )(      ;0)( )()()(
b

b
b

b
md

b
dn fhphGhG      (2.4) 

 

at 0bq  

 

);,(),()();,( 
 2

),()( )()( hbGhbGhGhbG
q

ph
hbGhG updn

b
dnup

b

b
md

b
md 

 
 

bup
b

b hbG
qh

bff  ),( 
 

2
)()(

.      (2.5) 
 

The given difference equations are equivalent to the system of 1N  linear equations for 

values of the function  x  in equidistance nodal points jha   ( Nj ,...,0 ), where 

  Nabh / . The matrix of this system is three diagonal and, accordingly, the system of 

equations can be solved by the method of direct scrolling. 

The substitution of the classical boundary conditions in the point b  by non classical 
conditions is equivalent to the substitution of the latest equation in the given system by linear 

ratio between the values of the function  x  in the point b  and some internal point of the 

interval X . Such system of equations is solved by the special scrolling method [43]. 
 
2. Multidimensional boundary problem. Let us consider the m-dimensional boundary 

problem in the case when the region X  is m -dimensional hyper parallelepiped, the 
coordinates of the points of which satisfy the inequalities: 

 

 mkbxa kkk ,...,1, 
. 

 

The operator ̂  is represented in the form of 
 

  )()()(ˆ xxBx C A ,       (2.6) 
 

where  xC ,  xB  and  xA  are the second-rank scalar, vector and tensor depending on x; 

the tensor  xA  is considered as diagonal, which essentially simplifies the difference 

schemes.  
The boundary conditions are set in the form of  
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 
  ),,...,,,...,()( )( 

);,...,,,...,()( )( 

111

)()()(

111

)()()(

mkk

b

kkbkxk

b

k

b

k

mkk

a

kkakxk

a

k

a

k

xxxxqp

xxxxqp













xx

xx

 
 

 mk ,...,1 . Here  a
kp ,  a

kq , )(b
kp ,   constq b

k  ,  a
k ,  b

k  are the given 

numerical functions.  
The m-dimensional rectangular grid with equidistant nodes along the coordinate axes is 

used in the considered difference scheme. Thus the difference equation is equivalent to the set 

of N  linear equations for the values of function (x) at nodal points with coordinates 

kkkk hjax    kk Njmk ,...,1,0;,...,1  , where   kkkk nabh /  are the spatial 

steps of the grid;  1kn  is the number of nodal points along the k -th coordinate axis; 

   111  mnnN  is the total number of nodal points which coincides with the order 

of the matrix corresponding to the difference operator h̂ . 

Diagonality of the tensor  xA  means that ̂  is equal to the sum of m  operators, each 

of which contains the derivatives only by one variable. The difference operator h̂ , 

approximating ̂ , also can be presented in the form of the sum of one-dimensional difference 
operators, the expressions for which can be derived from the corresponding formulae of the 
previous item. 

 
 

2.1.2. Diffusion Equation 
 
In the so-called mixed problem containing the diffusion equation, unknown function 

 x,t  is considered defined at 0t  and Xx , where X  is the interval (in the one-

dimensional problem) or the region (in the multivariable problem). The problem contains 
differential equation 

 

),(),( )(ˆ),(),( xxxx tfttt
t

tD 

 

,     (4) 
 

zero condition    xx 0,0   and boundary conditions on the border of the region X  

 

),(),( )(ˆ xx ttt   , 

 

where D(t,x), f(t,x), (t,x) and 0(x) are the given numerical functions; )(ˆ t  is the linear 

elliptic differential operator depending on t ; )(ˆ t  is the first-order linear differential 

operator depending on t . 
1. Review of classical difference methods. At the use of the classical algorithm, rather 

small step of digitization of time   is chosen, and the considered diffusion equation is 
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replaced with the following difference equation: 
 

 

), ,(

) ,(
~

 )(ˆ)1() ,(
~

 )(ˆ

),(
~

) ,(
~

) ,( 
1

x

xx

xxx












tf

tttt

tttD

    (2.7) 
 

where   and   are any real parameters; 10  ; ~  is grid function.  
Different values of the given parameters correspond to different schemes; in particular we 

may put: 
 

a) 0 ; 0  (the explicit scheme); 

b) 1 ; 0  (the cleanly implicit scheme); 

c) 2/1 ; 2/1  (the symmetric scheme).  
 

The symmetric scheme provides the accuracy of order 
2 ; for all other schemes the 

accuracy of order   is reached. At 2/1 , the stability of the scheme is guaranteed at any 

  and h values (see[16]). 

If exact or approximate values of function (t,x) are known for some value t  the 
problem of determination of the values of this function at the moment t  is reduced to 
solution of the boundary problem. Let us designate (for given value t ): 

 

). ,(        );(ˆˆ

);( )'(ˆ)1()() ,( 
1

) ,()(

;ˆ) ,( 
1

)'(ˆˆ

;'

); ,()(        ); ,()(

x

xxxxx

x

xxxx





















tt

ttDtff

ItDt

tt

tt

laulau

lastlastlau

lau

lastlau

  (2.8) 
 
The function lau(x) satisfies the so-called equation for layers 
 

)()( ˆ xx laulaulau f
,       (2.9)  

 
(this is an approximate equation which represents other form of writing equation (2.7)) and 
the boundary conditions 

 

)()( ˆ xx laulaulau  
. 
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Thus, equation (2.7) allows us to determine in succession the values of function (t,x) 

for kt    ,...2,1k . 

 
2. Reduction of the multi-dimensional diffusion equation to the one-dimensional. 

Described below algorithm of solution of diffusion equation is used in multi-dimensional 
problems and is an alternative to the considered above algorithms. In this algorithm solution 
of the multi-dimensional diffusion equation is presented as linear combination of solutions of 
some one-dimensional diffusion equations [30, 43]. This method is often called the method of 
splitting of operator or the method of decomposition of the multi-dimensional operator. 

Analogously of the above considered algorithm, the region X  transforms into the hyper 

parallelepiped and is accepted that after such transformation the operator )(ˆ t , appearing in 

diffusion equation, is equal to the sum of m  operators )(ˆ )( tk  each of which contains the 

derivatives only by one spatial co-ordinate. If for some value of t  the exact or approximate 

values of the function ) ,(
~

)( xtx
last

  are known, then the function ) ,(
~

xt  for next 

layer is presented in the form  
 

,)(
1

) ,(
~

1

)(



m

k

k

m
t xx

 
 

where each of functions )()( xk  is the solution of one-dimensional boundary problem   

 

);()( ˆ )()()( xx k
lau

kk
lau f  

)()( ˆ )()( xx lau
kk

lau  
 at kk ax 

 or kk bx 
; 

 
the value appearing in these equations are determined by the ratios, analogous of (2.8):   
 

). ,()(      );(ˆˆ

);( )2/(ˆ
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





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ttD
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k
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This scheme is steady and provides the accuracy )( 2hO   at approximation of the 

operator lau̂  by ratios (2.2) – (2.5). 
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2.2. FINITE-DIFFERENCE AND ANALYTICAL METHODS OF SOLUTION 

OF ONE-DIMENSIONAL IN SPACE MODELS OF  
POLLUTANTS TRANSFER 

 
Finite-difference approximation 
 
Below are given difference schemes for models (1.31) and (1.32), at classical and non 

classical zero and boundary conditions.  
 

Grid: 
h ,h   

  







max,,...,1,0,,

T
NNnnttt ttnn ; 

 Nibxaxx Nih ,...,1,0,,, 0 
; 

  1,...,1,2/,0, 11  


 Nihhhhhxx iiiiiii ; 

xN K 


.
 

 
K is a natural number denoting the number of nodes from the inner cross-section to the end 
of the controlled section. 

 
The finite-difference analog of the equation is: 

 

  n
j

n
j

n
j

n
j

n
j

n
j

j ffYY
YY

E 





 


11
1

,    (2.10) 
 

where ,1,...,1,0,1,...,1,10  tNnNj
 

 

       ,
2

1
,ˆ,,ˆ jjjxjxjxxj YKbYbYaYY 

 

         jjjjjjjjjj xEExxvxEbxKxEa   ,),(,2/12/1  . 

 
Approximation of the initial data: 
 

  ,,...,1,0,10
0 NjxY jj 

      (2.11) 
 
Approximation of the boundary condition at the entrance of the section: 
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  ,,...,1,0,0 tna
n NntY 

       (2.12) 
 
The finite-difference analog at the boundary condition of full mixing: 

 

         .0ˆ'ˆˆˆ
11   NNxNNNNNNNN YYvEYYYYYYxK 

  (2.13) 
 
Approximation of the nonlocal condition; 
 

  .nn
KN

n
N qYY             (2.14) 

 
The following notation was used above: 
 

Y Y Y h Y Y Y h Y
Y Y

hx j j j x j j j x
j j

j

    


  
( ) / , ( ) / , . *1 1 1

1      
    (2.15) 

 
The difference scheme for model (1.31), (1.32), (1.37) is described by formulae (2.10), 

(2.11), (2.12), (2.13), and for model (1.31), (1.32), (1.38) - by formulae (2.10), (2.11), (2.12), 
(2.14). 

 
 

2.3. ALGORITHMIC PRESENTATION OF THE  
FINITE-DIFFERENCE METHOD 

 
Realization of the finite-difference scheme is reduced to the solution of the following 

system of linear algebraic equations: 
 

,1,...,2,1,11   NiSYBYCYA iiiiiii     (2.16)  

00 EY 
,          (2.17) 

  NKNN EqYY    .        (2.18) 

 
where 
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


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


         (2.21) 
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


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






  (2.22) 

  iii EExKD  ,         (2.23)  

 
q = q(S) and N =  in case of non-local boundary condition, 

 

    
 

,~/1

,11~
,~/11

11

111

qDq

EEEEDq

qEEEEDDS

N

NNNNN

NNNNNNNNN

















   (2.24) 
 

in case of the condition of full mixing. 
For solving the system of linear algebraic equations (2.17)-(2.24) the method of scrolling 

is used in case of boundary condition of full mixing, and the modified run method - in case of 
non-local boundary condition. The algorithm is given below:  

 
a) Calculation of scrolling coefficients: 
 

      ;1,...,2,1;/;/ 11   NiACSAACB iiiiiiiiiiii 
 

.,0 011 S 
 

 

b) Calculation of NY : 

 

   ,1/ NNNN qSqY   when   1K , 
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l
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q

S

Y  when   1K , 

 
c) Calculation of solution: 
 

1,...,2,1,111   NNiYY iiii  . 

 
In addition, were considered one-dimensional problems of river water pollutants transfer 

and diffusion on straight line  x  and half-line 0x , on the assumption that the 
river flow velocity and coefficients of turbulent diffusion are constant, and the pollutants are 
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non-conservative, in conditions when the water object is under the action of R independent 

pollution sources located at rxx   points of the section under consideration. Their solutions 

are represented in terms of one-dimensional integrals of the functions, which describe 
distributions of pollution sources and initial concentrations of pollutants, as well as (in case of 

half-line 0x ) pollution modes at boundary 0x  [1]. These solutions are supposed to be 
used in investigations of qualitative peculiarities of pollutants transfer and of efficiency and 
accuracy of calculation methods on the base of one-dimensional as well as two- and three-
dimensional models. 

Separately were considered pollution problems: on the half-line with a stationary point-

source and in stationary pollution mode at boundary 0x . Solution of the latter, in the 
absence of initial pollutions, is reduced to the known error probability integral and is 
calculated particularly simply. 

 
 

2.4. ALGORITHMS FOR SOLVING TWO-DIMENSIONAL 

MATHEMATICAL MODELS 
 
For approximate solution of the problem (1.33), (1.34), the suitable numerical methods 

were developed on the basis of finite-difference method. In particular, for numerical solution 
of the stated problems there were developed the explicit scheme, the method of splitting the 
operator and the method of approximate factorization. Each of these methods has its 
advantages and lacks which the most fully appear on the stage of algorithmization.   

Let us consider that the water course occupies region G  in space of points 

);,,( zyxM   x y z, ,  are coordinates of point M  in the orthogonal system of coordinates; 

axis x  is directed along the averaged water flow velocity, y  is directed from the surface 

level of water course downward, z  is directed transverse to water course, orthogonally to 

plane )(xOy . 

The most general two-dimensional equation with the initial and boundary conditions is 
given in the previous paragraph. If pollutant concentration along transverse axis z  is assumed 

to be unchangeable, then, in equation (1.33), it must be stated that x x x y1 2 , ; if pollutant 

concentration remains unchangeable along y , then, in (1.33) it must be stated that 

x x x z1 2 , ;; allowing for the above-stated, the boundary and initial conditions will assume 

the corresponding forms. 

Let us assume that )},0(),,0(),,{(
221121
  xxxxG  where 1

  - is the 

averaged length of water course, 2
  - either averaged width or depth. In this case we’ll have: 

 

},0,0),,{(
221211
 xxxx  

},0,),,{(
1122212
  xxxx  

},0,),,{(
2211213
  xxxx  
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},0,0),,{(
112214
 xxxx  

}}.0,0,),,{(
2211210
  xxxx   

 
Taking into account above mentioned, the zero and boundary conditions for equation 

(1.33), (1.34) have the suitable form: 
 

      ,,,,,,0 2121021 Gxxxxxx ii     (2.25) 

      ,0,,,,,,, 1212121  txxxxtxxt ii       (2.26) 

  ,0,,, 42212
2

21
1

1 







txxxn
x

Kn
x

K iii
i

i
i

i    (2.27) 

  321 ,,0 



xx
n

i  (classical statement),  (2.28) 

 
or 
 

     21201021 ,,,,,, xxtxxtqxxt iii   (non-local statement), (2.29)  

 

  ,, 321 xx    ,, 02010 xx  

     






  3201020100 ,,:, xxIxxxx , 

 

where I  is diffeomorfizm, 0  is the curve in G  having unique points of intersection with 

2  and 4 , and these points do not coincide with the points of intersection of i , 

.4,3,2,1i  

iiii  ,,,0  are given functions,  21 ,;10, nnnqconstq   is external 

normal.       
The algorithm for solving problem (1.33), (1.34), (2.25)-(2.28) or (1.33), (1.34), (2.25)-

(2.27), (2.29) is based on the method of operator decomposition. Time grid  
 







  Kj

K

T
jttt j ,...,1,0,,,  . 

 
is introduced. The split problem of decomposition method for (1.33), (1.34), (2.25)-(2.28) or 
(1.33), (1.34), (2.25)-(2.27), (2.29) may be stated in the following way: to find the solution of 
equations 
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which satisfies initial conditions 
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and boundary conditions 
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where .0,0, 02201121  constconstEff iiiiiii   

We’ll consider ),,(
~

21

)1( xxtS j

i

  to be the solution of problem (2.30)-(2.34). It is proved 

[214-217], that ),,(
~

21
)1( xxtj

i
  is the approximate solution of initial two-dimensional 

problem (1.33), (1.34), (2.25)-(2.27), (2.29). 
Thus, the scheme of splitting (2.30)-(2.34) approximates non-classical-non-local problem 

(1.33), (1.34), (2.25)-(2.27), (2.29).  
If condition (2.33) is changed by condition  



Karlos J. Kachiashvili and D. Y. Melikdzhanian 46

0
1

)1(






x

j
i




 at 
2211

0,   xx , t t tj j  1,   (2.35) 

 
then the problem (2.30)-(2.32), (2.34), (2.35) will approximate classical problem (1.33), 
(1.34), (2.25)-(2.28). Theoretical substantiation of such splitting exists [216]. 

Problems (2.30)-(2.34) and (2.30)-(2.32), (2.34), (2.35) may be solved by different 
methods. We have constructed effective finite-difference schemes for their solution [217, 
218]. 

In case of classical boundary conditions, the method of scrolling is used for solving the 
received tree-point equations [219]. In case of non-classical boundary conditions, the 
scrolling formulae of special type are derived [30, 221]. 

 
 

2.5. ALGORITHMS FOR REALIZATION OF  
THREE-DIMENSIONAL DIFFUSION MODELS 

 

Transport equation for the 1i th pollutant discharged by the 2i th pollution source, in 

natural coordinate system, for a prismoidal river-bed with a rectangular cross-section, has the 
following form: 
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where  ),,,(,, 11
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tzyxKK yiyi  ,  ),,,(,, 11

tzyxKK zizi  , 

),,,( tzyxvV  , ),,,( tzyxkK  , 
21 ,iif ),,,(

21 , tzyxf ii  are known functions; x  is a 

coordinate along the averaged watercourse velocity; y  is a transverse coordinate; z  is a 

coordinate along the watercourse depth; 
21 , iiS ),,,(

21 , tzyxS ii  is the concentration of the 

1i th pollutant discharged from the 2i th pollution source - the function to be found. 

For equation (2.42), initial and boundary conditions must be specified: 
initial condition 
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boundary conditions 
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Here  
21 ,

0
ii  and  

210 ii  are prescribed functions. 

Instead of condition (2.39), the following non-local condition may be taken: 
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where q  is a coefficient of self-purification and  10  q . 

Thus, we have two models: model (2.36)-(2.41) and model (2.36)-(2.38), (2.40), (2.41), 
(2.42) with non-local condition. 

Let us consider space and time grids: 
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where 321  , , hhh  are grid spacings;   is grid time interval; KNNN   ,  ,  , 321  are natural 

numbers. 
For construction of a difference scheme, the method of decomposition of a 

multidimensional operator into one-dimensional ones is used. 
The efficient algorithm given below is a difference scheme of parallel calculation with 

averaging.  

Henceforth, values of some function, e.g. ),,,,( tzyx  in grid nodes will be denoted in 

the following way: 
 

),,,(),,,( jmkitzyx jmki  .   

 
The scheme of parallel calculation with averaging is of the following form: 
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Additive finite-difference scheme of parallel calculation (2.41), (2.43)-(2.46), (2.47)-

(2.50), (2.51)-(2.54) is absolutely stable and provides accuracy      .  , 3

1

222 
i i

hhhO   

For solution of the scheme the method of scrolling (a modified factorization method) is 
used. 

Obtained in that way ),1,,,()1(
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jmkis ii and ),1,,,()3(
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allow to construct the approximate value in grid nodes zyxh    at moment 1jt  

in the following way: 
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As it may be seen from the above, the obtained values )1,,,(21 , 


jmkiii  are taken as 

the initial  condition for the 2j th layer and so on. 

Time T , i.e. the number of layers K , depends on the time grid interval and is chosen  
according to user requirements. 

Note 1. In case of non-local boundary condition, instead of condition (2.46), is taken:  
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Of practical interest is the value of  
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controlled range. To find it, the following procedures are used: 
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that has accuracy )( 1hO ,   ii
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 are the nearest grid nodes for  . 

 
Note 2. In case of replacement of (2.46) with (2.55), a modification of the method of 

scrolling or of the factorization method is used. 
 
 

2.6. OPTIMIZATION PROBLEMS OF THE ALGORITHMS CONNECTED 

WITH DIFFERENCE SCHEMES 
 
Let us consider problems of optimum choice of the parameters of the algorithm at 

practical realization of difference schemes [38, 40]. As criterion of optimality, there is 
considered the necessity of maximum decreasing the computation time and error. Offered 
below algorithm is suitable for the case when the function describing the transfer of pollutants 
in water has derivatives including fourth order.  

 
 

2.6.1. Optimization, Used in Boundary Problem 
 
Let us consider the problem formulated in Item 2.1.1. Further are used designations 

introduced in appointed item.  
1. Estimation of the misclosure in one-dimensional difference schemes. In one 

dimensional case, the misclosure of approximation of the equation, corresponding to the 

difference operator h̂  can be determined as follows:    hxhhx h ,, 2   , where 
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h  is some number from the interval  h,0 . 
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If coefficients of the difference operator are determined by relation (2.1), then 
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At   constAxA   
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d
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2. Estimation of the misclosure in multi-dimensional difference schemes. Let us 

consider m -dimensional boundary problem at the same conditions which were considered in 

Item 2 of Paragraph 1.3.1. In particular, tensor  xA  is supposed to be diagonal. The latter 

condition means that the misclosure of the equation in this case can be presented in the form 
of the sum of m  misclosures corresponding to different coordinate axes: 

 





m

k
kkk hhh

1

2 ),(),( xx  , 

 

and, correct to the terms of order 
3h , it is possible in the equation above to replace functions 

),( kk hx  with their values )0,(xk . Expressions for ),( kk hx  and )0,(xk  for each 

value mk ,...,1  are similar to the corresponding expressions for the misclosures in the one-

dimensional problem (in these expressions it is necessary to replace the scalar functions 

 xA  and  xB  with corresponding components  xkkA  and  xkB ). In particular, at 

  constAA x , 
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)()( 
6

1
)( 

12

1
)0,( 34 xxxx  kkkkkk BA . 

 
 

3. Optimization of the choice of numbers mnn ,...,1 . The total number of nodal points 

N  determines the time necessary for realization of the algorithm; the accuracy of the 
obtained result depends on it. Naturally, there arises the question: how it is necessary to pick 

up the numbers mnn ,...,1  at the given value N  so that the algorithm should be somewhat 

optimum. 
In conformity with the stated above, the upper bound of the module of the misclosure 

 h,x  of the considered equation can be presented in the form of 

 




m

k
kk h

1

2  , 

 

where constm  ,...,1 . 

 
Let us introduce an auxiliary parameter 
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where 





m

k
kk abV

1

)(  

is the volume of the hyper parallelepiped limiting the region X . 

The optimization consists in that, at the given value N  (i.e. at the given value H ), there 

are defined such values mhh ,...,1  for which the upper bound of the module of the misclosure 

assumes the minimum value: 
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The solution of this optimization problem is determined by formulae: 
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Thus, at the optimum choice of spatial steps of the grid along different coordinate axes, 
the upper bound of the misclosure proves to be the sum of m  equal components, each of 

which is proportional to the square of the corresponding step kh . In other words, each of 

parameters kh  brings identical “contribution” to the error of the result. 

The main difficulty for practical realization of the described scheme of optimization is 

the necessity of estimation of the upper bound of partial derivatives of function  x  with 

respect to the spatial coordinates in terms of which parameters k  are expressed (see Section 

2.6.3) without solving the differential equation. 
 
 

2.6.2. Optimization, Used at Solving Diffusion Equation 
 
Let us consider the problem formulated in Item 2.1.2. Further are used designations 

introduced in appointed item.   
 

1. Estimation of the misclosure. Let the difference operator )(ˆ th  approximating )(ˆ t  

be known: 
 

),,( ),( )(ˆ),( )(ˆ hthtttt h
M

h xxx   . 

 
The accuracy of approximation of the diffusion equation by the difference equation is 

characterized by misclosure  ht ,,,  x : 
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The last equation is exact. It transforms into the difference equation which can be used 

for the approximate solution of the initial diffusion equation if we neglect the function (...) 
in its right part. 

The last equation can also be rewritten in the form of the equation for layers: 
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For the symmetric scheme: 
 
(t,x,,h)hMh(t,x,h)2 (t,x,h), 
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   and    are some numbers from the interval  ,0 ; ),()/(),()( xx ttt kk  . 

 

The misclosure has the order 
Mh2 . 

Correct to the terms of order   
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For all other schemes, except the symmetric one, 
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   and    are some numbers from the interval  ,0 ; ),()/(),()( xx ttt kk  . 

The misclosure has the order 
Mh . 

Correct to the terms of order   
 

) ,( )(ˆ)() ,( ),( )2/1(),,,( )1()2( xxxx ttttDht h   . 

 

2. Optimization of the choice of parameter   for the scheme of the 
2  order. 

Similarly to the solution of boundary problems, at realization of difference schemes for the 
diffusion equation, the question arises: how to pick up the parameters of the algorithm in the 
optimum way. In this case, it is the question of the optimum choice of the parameter   at the 
given spatial steps of the grid. 



Calculation Schemata of Mathematical Models 55

We shall consider that the mean time it takes the computer to solve the set of N  linear 

equations at big values of N  is proportional to 
kN , where k  is some positive constant.  

If the method of scrolling is used at solution of the set of equations, then 1k . 
If the Seidel method is used at solution of the set of equations and the number of nonzero 

elements in each row of the matrix of the considered set is fixed and does not depend on N , 

then 1k . 

Let the operator ̂  be determined by relation (2.6), where functions  xC ,  xB  and 

 xA  satisfy the same conditions as in the previous Section; in particular, the tensor  xA  

should be diagonal. 
In conformity with the stated above in the present and previous Sections, when the 

symmetric difference scheme is used, the upper bound of the module of the misclosure 

 ht ,,,  x  of the considered diffusion equation can be presented in the form of 
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k
kk h
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22    , 

 

where constm  ,...,, 1 . Here we use the same designations as in Item 3 of the 

previous Section; in particular, kh  is the step of the grid along the k -th coordinate axis. The 

values of parameters kh  we shall determine by formulae (2.56): 
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where   mm
m VmP /2/1

1...   . 

The time necessary for calculation of the layers of function  x,t  with numbers 

K,...,1,0  at fixed value Kt   is proportional to /kN . 

The optimization consists in that, at the given value of upper bound of the module of the 

misclosure of the equation which is equal to  , there are defined such values   and N  for 
which the time of calculation assumes the minimum value: 
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The solution of this optimization problem is determined by formulae: 
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m
hh mm 
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1
   ... 222

11 . 

 

In the case when 1k , at the optimum choice of spatial steps of the grid and the step of 

digitization of the time, the upper bound of the misclosure proves to be the sum of m1 

equal components, each of which depends only on one of the parameters: mhh ,...,, 1 . This 

result is similar to the one obtained in Item 3 of the previous Section. 
The main difficulty in practical realization of the described scheme of optimization, as 

well as in realization of the similar scheme at solution of the boundary problem, is the 

necessity in estimation of the upper bound of partial derivatives of the function  x,t  by 

time and spatial coordinates in terms of which parameters   and k  are expressed (see 

Section 2.6.3) without solving the diffusion equation. 
 
3. Optimization of the choice of parameter   for the scheme of the   order. Let us 

consider the same problem as in the previous Item provided that the used difference scheme is 
not symmetric. In this case, the upper bound of the module of the misclosure |(t,x,,h)| of 
the considered diffusion equation can be presented in the form of 

 





m

k
kk h

1

2   , 

 

where constm  ,...,, 1 . 

We can repeat all the stated in the previous Item with minor amendments. The condition 
of optimization is written in the form of 
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The solution of this optimization problem is determined by formulae: 
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2.6.3. Estimation of Unknown Function Derivatives 
 
As already mentioned in the previous two sections, for practical realization the described 

optimization schemes, it is necessary to estimate somehow the upper bounds of the modules 
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of partial derivatives of the unknown function with respect to independent variables without 
solving the boundary or the mixed problem.   

It should be borne in mind that the derivatives of these functions can be estimated up to 
the common constant multiplier. 

One of the ways of the solution of this problem consists in the following: for some values 

of the parameters kh  and   (at solution of diffusion equation), the values of the function   

are determined as a first approximation, then, by means of the numerical differentiation 
operations the required derivatives are determined and the values of the sought for the 
parameters are calculated. After that, using these values there are determined new values of 
the function   and so on until the difference between the neighbouring calculated values of 
the function are less than the given value. At the solution of the diffusion equation it is 
possible to use the explicit scheme at the first stage. Further it is necessary to determine the 
values of the sought function with higher accuracy.  

In this case, for calculation of the unknown function values, there is applied the iteration 
method similar to the one used in work [1, 44, 45] at calculation of the multidimensional 
integral by the Monte-Carlo method, at calculation of estimations of the polynomial 
regression on the basis of active experiment and at calculation of the covariance function with 
given accuracy.  

It is known that the operations of numerical differentiation are not steady, but this should 
not prevent the realization of the offered method which is effected in the package of 
realization of mathematical models of pollutants transfer in rivers (see Chapter 6) since it 
requires only the rough estimates of unknown derivatives. 

The obvious draw-back of the given method is necessity of performance of a plenty of 
additional actions. 

 
 

2.6.4. Examples of Using of the Offered Optimization 
 
Let us bring the control examples with the use of the described optimization of choosing 

the parameters [38, 40]. 
 
1. Boundary problem. Let us consider the function of two variables: 
 

  22221111
221121 ),( xxxxex eveueveuxx   , 

 

where constvuvu 22221111 ,,,,,,,  . This function satisfies the homogeneous 

equation with constant coefficients: 
 

0),(    212211
2
22

2
11 )(  xxCBBAA ex , 

 

where 1A  and 2A  are the arbitrary constants; 

 

 ;1111   AB       ;2222   AB  
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222111  AAC  . 

 

In the considered control examples, the function  21 , xxex  is considered as the 

solution of the boundary problem for the rectangular region which is assigned by conditions: 

;111 bxa     222 bxa  , 

 
with boundary conditions:  
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xx  

 

where 


22221111 ,,,,,,, qpqpqpqp  are the arbitrary constants; 

       12122121 ,,, xxxx    are functions, the expressions for which can be 

obtained by means of the substitution of the expression for  21, xxex  into the boundary 

conditions. 

The function  21, xxex  values are compared to the numerical calculation results. The 

initial data in the considered problem are the following. 
The parameters which determine the boundaries of the region are: 
 

;11 a  ;51 b  ;5.02 a  .5.32 b  

 
The parameters which determine the boundary conditions (Dirichlet condition) are:  
 

0      ;1 22112211  qqqqpppp . 

 

The equation coefficients and the function  21, xxex  parameters are:  

 
A11.0; A21.0 ; 
B10.0 ; B20.30 ; C6.08 ; 
u10.00045 ; v13.11270 ; 12.0 ; 12.0 ; 
u20.02562 ; v26.78059 ; 2.6 ; 21.3 . 
 
The minimum and maximum values of the required function in the considered region are: 
 
ymin0.083 ;  ymax299.0 . 
 
The numerical calculations are performed in two ways: without optimization and with 

optimization of the choice of numbers 1n  and 2n , described in Item 3 of Section 2.6.1. In 
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both cases, the total number of nodal points is accepted equal to 1000N . 

At carrying out the calculations without optimization, the numbers 1n  and 2n  are 

selected so that spatial steps of the grid 1h  and 2h  were approximately equal. As a result we 

have: 

1 0.162h   ; 2 0.167h   ; 1 37n  ;     2 24n  . 

 
In this case, the maximum deviation of the calculated values of the desired function from 

its exact values is equal to 
 

 max 3.24iy  . 

 

At carrying out the calculations with optimization, at first we put 1521  nn , 

determine the initial estimate of the values of the desired function, then we determine the 

optimum values of parameters 1  and 2  and carry out more exact calculations 

corresponding to the obtained values 1  and 2  and N1000. As a result, we have: 

 

1 44.6549  ;  2 9.21596  ; 

1 0.107h  ; 2 0.250h  ;  1 56n  ; 2 16n  . 

 
In this case, the maximum deviation of the calculated values of the desired function from 

its exact values is equal to 
 

 max 1.018iy  . 

 
The calculation time slightly increases at optimization. For the considered case – 

approximately 1.2 times (for example at using Pentium-IV, the calculation time of the given 
example without optimization is equal to 0.13 s, and with optimization – to 0.16 s). 

Thus, the use of optimization leads to a significant increase in the accuracy of the results 
at a slight increase in the time of calculation.  

 
2. Diffusion equation. Let us consider the function of three variables: 
 

   stxxxxex eeveueveuxxt  22221111
221121 ), ,(  , 

 

where constsvuvu ,,,,,,,, 22221111  . This function satisfies the homogeneous 

diffusion equation with constant coefficients: 
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where D , 1A  и 2A  are the arbitrary constants; 

 

 ;1111   AB       ;2222   AB  

222111  AADsC  . 

 

In the considered control examples, the function  21 ,, xxtex  defined at 0t  and  

 

;111 bxa     222 bxa  , 

 
is considered as the solution of the mixed problem, which includes the diffusion equation, the 
initial condition 

 

  22221111
22110 )() ,0( xxxx eveueveu   xx  

 
and the boundary conditions: 
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where 


22221111 ,,,,,,, qpqpqpqp  are the arbitrary constants; 

     ,,,,,, 122121 xtxtxt     12 , xt  are the functions, the expressions for which 

can be obtained by means of substitution of the expression for  21 ,, xxtex  into the 

boundary conditions.  

The function  21 ,, xxtex  values are compared to the numerical calculation results. 

The initial data in the considered problem are the following. 
The parameters which determine the boundaries of the region are: 
 

;11 a  ;51 b  ;5.02 a  .5.32 b  
 
The parameters which determine the boundary conditions (Dirichlet condition) are:  
 

0      ;1 22112211  qqqqpppp . 

The equation coefficients and the function  21 ,, xxtex  parameters are: 

 

1 1.50A  ; 2 3.50A  ; 
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1 0.75B  ; 2 1.05B  ; 16.28C  ; 0.75D  ; 

1 0.000045u  ; 1 3.11271  ; 1 2.5  ;  1 2.0   ; 

2 0.02562u  ; 2 6.78059  ; 2 1.6  ; 2 1.3   . 

2.0s  . 

Minimum and maximum values of the function  x0  in the considered region are:  

 

min 0.0446y 
;  max 299.0y 

. 
 
The number 
 

2
22

2
11

0 //

2/

hAhA

D




, 
 
which is approximately equal to the upper bound of the parameter  , at which the 

explicit scheme of the diffusion equation solution is stable, is considered as a “standard” of 
the step of digitization of the time; concrete values of the parameter   may be compared with 

0 . The choice of a smaller value of the “standard” accomplishes nothing except for a 

senseless increase in the calculation time. Especially, as it is evident from the further 

discussion the optimum value of the parameter   is much bigger than 0 .  

The numerical calculations are performed in two ways: without optimization and with 
optimization of choosing the parameter  , described in Section 2.6.2. In both cases, the total 

number of nodal points is accepted equal to 1000N . In this case, 
 

1 0.12766h  ; 2 0.21053h  ;  1 47n  ; 2 19n  .    

 

The specified values 1h  and 2h  are obtained by means of the algorithm of optimization 

of the choice of spatial and time steps of digitization in the difference scheme of the diffusion 
equation solution. The algorithm is given below. Thus, in both cases, in the difference 
schemes the values of spatial steps of the grid are identical, and the corresponding algorithms 
are compared with each other only by the effect of the choice of the step of the time 
digitization.  

At carrying out of calculations without optimization, we put ; the given 

parameter proves to be equal to . The corresponding results of calculations for 
different values of  are given in Table 2.1-a. 

At carrying out the calculations with optimization, at first we adopt  and 

, determine the initial estimate of the values of the desired function for the 

layers with numbers , by means of the explicit scheme, then we determine the 

optimum values of the parameters  and  and carry out more exact calculations 

0 
00219.0

t

0 

1521  nn

8,...,0k

1,  2
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corresponding to the obtained values  and  and . As a result, the step 

of the time digitization proves to be equal to ; the corresponding results of 
calculations for different values of  are given in Table 2.1-b.  

As is evident from the tables, the use of optimization leads to that the accuracy of 
calculations remains practically the same, and the time of calculations is reduced 
significantly. 

Undoubtedly, there are also other methods of estimation of the parameters  and . 

This is the subject of further research, especially, as it is evident from the example, this 
considerably improves the calculation results of different schemes. 

 
Table 2.1. The results of the numerical solution of the diffusion equation: a) without 

optimization; b) with optimization of the choice of the parameter  
 
a) 
k tk max{yj} max{yj/yj} T 

322 0.71 0.40472 0.04063 16.69 s 
644 1.41 0.09859 0.04028 15.38 s 
966 2.12 0.02402 0.03910 14.11 s 
1288 2.82 0.00585 0.03890 12.52 s 

 
b) 

k tk max{��yj} max{��yj/yj} T 
52 0.71 0.39964 0.03965 6.16 s  
104 1.42 0.09613 0.03840 5.49 s 
156 2.14 0.02312 0.03635 4.78 s 
208 2.85 0.00556 0.03134 4.17 s 

The following values are given: k  - the number of the layer (takes values K , K2 , K3  and K4 , 

where K  is some natural number); kt  - the corresponding value of the variable t ;  jymax  

and  jj yy /max   - the maximum absolute and relative deviations of the calculated values of 

the desired function from its exact values; T  – the calculation time for the last K  layers. 
 
 

2.7. THE EFFECT OF SMOOTHNESS OF THE  
INHOMOGENEOUS PART OF THE DIFFUSION  

EQUATION ON THE ACCURACY OF THE RESULTS 
 
Let the dynamics of propagation of the concentration of polluting substances in some 

section of the river be investigated by means of models described in Paragraph 1.2. The 
considered section of the river contains the point sources of pollution functioning 
continuously or for the limited time interval. It means that inhomogeneous parts of the solved 
diffusion equations contain the impulse functions, which are linear combinations of Dirac’s 
delta-functions. These functions and their derivatives are not bounded. Therefore the 
difference schemes of the solution of diffusion equations are not correct in the vicinities of 
pollution source localization points.  

1,  2 1000N

01370.0
t

k 
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Let us consider the problem of optimum choice of kinds of functions representing a non-
uniform parts of diffusion equation at practical realization of difference schemes [40]. In 
addition as  criteria of optimality, as well as in the previous paragraph, the necessity of 
maximum decrease in the error of calculation is considered. Furthermore chosen  functions 
should be simple enough for realization, and they should  correspond to real physical 
conditions as much as possible. 

For elimination of this drawback, it is necessary to consider a model, in which the delta 

function  ax   is replaced by the bounded numerical function  axuD , , where u  is 

the additional parameter. It means that the point sources are replaced by extended ones the 
capacity of each of which has the maximum corresponding to the capacity of the source at the 
point of its localization. Such sources can be named quasi-point sources. 

The function  xuD ,  must satisfy the following requirements: it reaches the maximum 

value proportional to u/1  at the point 0x ; it tends to zero at x ; its integral 
between the limits   and   is equal to unit; its plot represents a bell-shaped curve. The 
width of such a curve is naturally defined as the width of the rectangle which height is equal 
to the ordinate of the peak of the curve, and its area is equal to the area of the figure limited 
by the curve and the axis of abscissas. Thus, the parameter u  characterizes the width of the 

plot of the function  xuD , , i.e. the sizes of the source. At 0u , the function  xuD ,  

tends to  x . 

One of the elementary functional dependences satisfying the listed requirements is the 
rectangular dependence: 

 

1/       at  | | / 2,
( , )

0      at  | | / 2.

u x u
D u x

x u


  

 

 
However, the use of such dependence in practice is inexpedient, because the result of 

calculation of the values of such a function in the vicinity of the discontinuity point may be 
any of two numbers differing much from each other; this results from inevitable round-off 
errors of the values of the argument of the function. As shows the operational experience, this 

can lead to a curious situation when, for example, the function  xuD ,  is distinct from zero 

only in one of the cells into which nodal points divide the area X , but the computer program 
also determines nonzero values of this function for the neighbouring cell. Therefore, the same 
source of pollution will be counted twice, and the obtained result will be twice as much as the 
value which it should have. 

It is possible to avoid the similar difficulty by means of using the continuous functional 

dependence for setting of  xuD , , for example, it may be the trapezoid dependence: 

 

1/               at  1 ,

( , ) (1 ) /(2 )      at  1 1 ,

0                  at  1 ,

u t s

D u x s t us s t s

t s

 
      
  
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where uxt /2 ; s  is any real parameter from the interval  1,0 . The plot of this function 

together with the axis of abscissas forms an isosceles trapezium, the top and bottom bases of 

which have the lengths equal to  su 1  and  su 1 , respectively, and the height of which 

is equal to u/1 . The less is value s , the less differs this trapezium from a rectangle. 
In the developed software package, besides the trapezoid dependence, the following 

dependences are offered to the user’s choice: 
 

1) Gaussian 
2)/(

2

1

 
2 

1
),(

ux
e

u
xuD





; 

2) Lorenzian   2)/(1  2

2
),(

uxu
xuD





. 

 

In fact, the function  xuD ,  defined by one of the two latter relations plays the part of a 

smoothing function, which allows us to transform any function from 2L  into an infinitely 
differentiable function by means of the operation of convolution [46].  

If pollution sources do not operate continuous, but for a limited interval of time ],0[ T , 

then the capacity of each source should be smoothed not only by spatial coordinates, but also 

by time. It means that this function should be proportional to  TtvA , , where v  is the 

additional parameter, and  tvA ,  is the function satisfying the following conditions: at 

t  it tends to unit, and at t  - to zero. Its plot represents a quasi-stepped curve, 

which steepness is maximum at 0t , and this maximum value of the steepness is 

proportional to v/1 . The parameter v  characterizes the time of diminution of the function of 

discharge. At 0v , the function  xvA ,  tends to  x , where  x  is Heaviside’s 

stepped function. In the developed software package (see Chapter 6), there is possible the 

choice of an explicit form of the function  xvA ,  from the following types: 

 

1) 
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dexvA
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2
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
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As shown the results of calculations (see below), the more smooth are the functions of 

discharge, the more exact are the results of solution of the equations in the vicinities of the 

points of discharge. For given types of function  xuD ,  and  xvA , , the accuracy of the 

results increases at increasing of the values of parameters u  and v . 
The plots of the dependence of the calculated values of concentration s  of the polluting 

substance from the x -coordinate at different moments of time t  to which there correspond 

different numbers of steps k  are presented in Figures 2.1-2.5. The function s  is determined 
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as a numerical solution of the one-dimensional diffusion equation under given zero, initial 
and boundary conditions for a rectangular section of the river in which a quasi-point source of 
pollution functions; there is supposed that the velocity of the flow is directed along the axis of 
abscissas. 

 

a) t20 min 44.98 s (k31); 

 

b) t41 min 29.96 s (k62); 

 

c) t1 h 22 min 59.92 s (k124); 
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d) t2 h 04 min 29.88 s (k186). 

Figure 2.1. Plots of the polluting substance concentration in the rectangular section of the river in 

relation to the longitudinal coordinate x  at 250n ; 1606.40 ; .2.1u  

 

a) t20 min 44.98 s (k31); 
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b) t = 41 min 29.96 s (k62); 

 
 
 

 

c) t1 h 22 min 59.92 s (k124); 

 

d) t2 h 04 min 29.88 s (k186). 

Figure 2.2. Plots of the polluting substance concentration in the rectangular section of the river in 

relation to the longitudinal coordinate x  at 250n ; 1606.40 ; 2/ hu . 
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a) t20 min 51.25 s (k125); 

 
 
 

 

b) t41 min 42.50 s (k250); 

 

c) t1 h 23 min 25.00 s (k500); 

 

d) t2 h 05 min 7.51 s (k750). 

Figure 2.3. Plots of the polluting substance concentration in the rectangular section of the river in 

relation to the longitudinal coordinate x  at 1000n ; 0100.10 ; 2.1/ hu . 
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a) t20 min 51.25 s (k125); 

 

b) t41 min 42.50 s (k250); 

 

c) t1 h 23 min 25.00 s (k500); 
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d) t2 h 05 min 7.51 s (k750). 

Figure 2.4. Plots of the polluting substance concentration in the rectangular section of the river in 

relation to the longitudinal coordinate x  at 1000n ; 0100.10 ; 2/ hu . 

 

a) t20 min 44.98 s (k31); 

 

b) t41 min 29.96 s (k62); 
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c) t1 h 22 min 59.92 s (k124); 

 

 

d) t2 h 04 min 29.88 s (k186). 

Figure 2.5. Plots of the polluting substance concentration in the rectangular section of the river in 

relation to the longitudinal coordinate x  at 250n ; 1606.40 ; 2.1/ hu  and the 

Gaussian form of the function  xuD , . 

The initial data of the task are the following. The length of the section: 5000L m; the 

area of the cross-section: 150E m2; the velocity of the flow: 5.0v m/s; the coordinate 

of the source of pollution: 500qx m; the capacity of the source: 40F g/s; the 

diffusion factor: 18.0K m2/s; the non-conservatism factor: 0k . 
Besides, different values of the following parameters correspond to different plots: the 

total number of nodal points n , the step of time digitization  , and the quotient of the sizes 

of the source u  and the spatial step of the grid h . 
The oscillations of the obtained solutions, which are caused by their inaccuracy, are 

visible in the figures. Such oscillations, in particular, lead to that, at some points in the 
vicinities of the points of discharge, the obtained values of concentration proved to be 
negative, which is absurdity from the physical point of view. 

The Gaussian form of the function  xuD ,  corresponds to the plots in Figure 2.5; the 
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rectangular form of this function  xuD ,  corresponds to the other plots. As shown in the 

figures, at 250n  and 2.1/ hu , the plots corresponding to the rectangular and Gaussian 

forms of the function  xuD , , differ essentially from each other. At 1000n  and/or 

2/ hu , practically identical plots correspond to rectangular and Gaussian forms of the 

function  xuD , . 

Considering this fact and comparing the corresponding plots in different figures, it is 
possible to draw the following conclusions: 

 
- the accuracy of calculations considerably increases as the values of the source sizes 

divided by the spatial step of the grid increase;  
- in the case of relatively small values n , the accuracy also increases at replacement of 

piece-smooth function  xuD ,  with the continuous-differentiable function;  

- the increase in the accuracy of solutions, in particular, leads to smoothing of their 
oscillations. 

 
For the two-dimensional model, the corresponding calculations give a similar results. 
Up to this point we have considered the case when the section of the river has the 

rectangular form, and the diffusion factor, the non-conservatism factor and the velocity of the 
flow are constant in all sections. As a result, the coefficients of the diffusion equation prove to 
be constants. If the river banks are indented, then the coefficients of the equation prove to be 
oscillating piece-smooth functions of spatial coordinates. In the plots, analogous to the ones 
shown in Figure 2.1-2.5, constructed for a section of the river with “saw-tooth” banks, the 
oscillations of the obtained solutions are more considerable, especially in the case of 
relatively small values n . 

The dependence of the accuracy of the solutions of the diffusion equation on the degree 
of smoothness of the coefficients of this equation and its inhomogeneous part can be 
explained as follows. It is known [47] that, if these functions are continuous (even if they are 
not continuous-differentiable), the solution of the equation is a two-time continuous-
differentiable function. However, as shown in Section 2.1.1, the misclosure of the difference 
scheme on which the accuracy of the obtained solution depends, is proportional to the 4-th 
derivative of the unknown function with respect to spatial coordinates for which, under the 
considered conditions, the continuity is not guaranteed at all. If the coefficients of the 
equation are constant, its solution is an infinitely differentiable function, and, hence, the 
accuracy of the calculated values proves to be higher. 



 
 
 
 
 
 

Chapter 3 
 
 
 

STOCHASTIC MATHEMATICAL MODELS DESCRIBING 

POLLUTION OF THE RIVERS 
 
 
The developed by authors methods of identification of statistical models, used at solving 

problems of studying and analysis of the quality of river’s water and different problems of 
many areas of knowledge, are considered in this chapter.   

 
 

3.1. STATISTICAL MODELS OF POLLUTANTS TRANSPORT 
IN THE RIVERS  

 
The identification of statistical models as regression dependences is actual problem of 

mathematical statistics, arising at experimental data processing for quantitative description of 
unknown dependences among observed variables. It has numerous applications in many 
different areas of the science and practice, being irreplaceable means for quantitative 
description of cause and effect relations. Many activities are dedicated to the solution of this 
problem. Among them we shall note the following [1, 44, 45, 48-75, 131]. The problems of 
identification for different regression models are reviewed in these works: classical 
regression, regression at active and passive experiments. The algorithms with taking into 
account the stationarity or nostationarity of random components, presence or absence of 
correlation between them, the robustness of estimations are designed. The methods used in 
each of them are adapted to the features of a concrete problem and, despite of the optimality 
in a considered particular case, are poorly suitable in other conditions. 

 
 

3.1.1. Statistical Models of Propagation of Pollutants in the Rivers 
 
The essence of development of statistical models for description of transport of pollution 

substances in the rivers can be illustrated by such example [1, 76]. Let's split controled water 
object on 1J  sections by J  controled cross-sections. Let’s consider one of these sections. 

Let controled j th section of the water object is exposed of influence of jp  concentrated 

controled sources of pollution. In discrete moments of time Nn ,...,1 , in controled cross-



Karlos J. Kachiashvili and D. Y. Melikdzhanian 74

sections and areas of effect of pollution sources, the concentrations )(nCip  of i th ingredients 

and expenses of water masses jp ppnQ ,...,1),(   are measured. The influence of other 

pollution factors on water quality is taken into account by some discrete function )(nvij . 

Let’s designate by jpipip ppQCq ,...,1,  , the expenses of the mass of i th addition on the 

considered section of water object. In these designations the generalized model of 
transformation of i th addition on j th section of water object can be written down as follows:  
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where 1( ,..., )ij ij ijd    is d -dimension vector of unknown parameters; ,ij ijF   are 

unknown functions. 
The problem of statistical simulation consists in the selection of the structure of a model 

(form of functions ijF  and ij ) and its unknown parameters by minimization of the chosen 

criterion: 
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where   is residual function; )(nh  is weight function, determining importance of 

information in n th moment of time; CR  is C -dimensional Euclidean space. 

Depending on the selected form of functions ijF , ij  and residual function in works [1, 

76-83] are offered statistical models of pollutants transport in the river. Some particular cases 
of functions ijF , ij  and critera of their identification are considered in the algorithms, given 

below in this chapter. Statistical models are widely applied in the problems of simulation of 
the state of water objects due to simplicity, stability to random fluctuations, absence of the 
requirements of deep analysis of passing physico-chemical processes. 

For estimation of the quality of mathematical models, also their comparioson among 
themselves, there are necessary objective criteria of the effectiveness of these models. Such 
criteria are: accuracy of simulation, simplicity and visualization of developed models, 
requirements to the size and quality of necessary measurement information and so on. The 
most essential among them is the accuracy of simulation. The objective estimation of the 
accuracy of the developed models it is necessary to calculate of their quality by independent 
data which do not participate in the identification of models. In [76], as such criterion of 

effectiveness of models, is recommended the value 
2/SRR , where S  is root-mean-

square deviation of simulated process from the observed one; 
2  is the variance of real 
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process. The value RR  is the relative measure of the quality of mathematical model to the 
characteristic of dispersion of real process. It is proportional to the information quantity, 
obtained by model about real process. When the variance of real process is unknown and also 
its estimation is connected to certain difficulties, for comparison of qualities of two models, it 

is possible to use the criterion 21 / SSRR 


, indicated the ratio between root-mean-square 

deviations of considered models [77]. 
Let us concider some, from huge number of existed works, devoted to the development of 

regression models.  
In [51] are given the results of experimental comparison of accuracy of estimations of 

unknown parameters of the model by different methods. There are considered different 
regression models: classical regression, active regression experiments, passive observations. 
These methods are developed at fulfilment of the following suppositions: all variables have 
zero mean, the errors of independent variables do not correlate one another at different 
observations and have identical covariance matrix (in all observation points, errors of 
independent variables do not correlate with the error of dependent variable, errors of 

dependent variable do not correlate among themselves and their variance is equal to 
2 ). 

The problems of restoration of polynomial regression with exact values of independent 
variables at varying variance of dependent variable and with random values of independent 
variables at varying variance of dependent variable are considered in [52]. 

The robust algorithm for construction of point and interval estimations of the parameters 
of non-linear models, belonging to the class of internally linear models, i.e. non-linear 
models, which one by the help of transformation of the variables are reduced to the linear 
model, is given in [53]. The case of classic regression with constant variance of the dependent 
variable is considered. 

The problem of obtaining robust estimations of coefficients of regression models is quite 
completely considered in [54, 55, 57]; the problem of restoration of linear regression at 
varying variance of dependent variable by the help of the method of weighed least squares is 
considered in [55]. In [57] is given a very wide range of statistical analysis methods - from 
exploratory analysis to causal inference to multi-level analysis. In particular, there also are 
described hierarchical models with a binary dependent variable. 

In [56] is proposed an intelligent regression analysis methodology which is suitable for 
modeling massive datasets. The basic idea there is to split the entire dataset into several 
blocks, applying the classical regression techniques for data in each block, and finally 
combaining these regression results via weighted averages. Theoretical justification of the 
goodness of the proposed method and empirical performance based on extensive simulation 
study are given.   

Steady autoregression models which are used for imitation of nonstationary, 
monotonically incrasing component in longitudinal data are given in [58]. 

General autoregression model has the following generalized form: 
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where 

TT
ppm

T
iipiiiit NN )...(),,(~)...(),,0(~ 111

2    , 

,)...(,)...(,)...(

,)...(,)...1(

.1,,1,,1,

,1,,1,

T
nipii

T
nipii

T
piii

T
nipii

TT
itptitiit

ii

i

XXXyyYyy

XXXXyyX
















 

QXZ ii
 , 

 

}{ it  and }{ i  
are mutually independent and independent from }{ itX  variables. 

Formulae for calculation of the estimations of the parameters of the model in standard form 
and qualities of these estimations are given in [70].  

In [59] is considered the following model 
 

 Y , 

),,1(~),,1(~),(  NNX qrq    

 
where ),( qX  and   are conditionally independent values with given covariance matrices 

qr  and   of the sizes )()( qrqr   and rr   respectively, i.e. )1( rY   is the sum of 

non observed value   and component of error   which are independent among themselves. 

Joint distribution   and independent variable )1( qqX   is normal;   has independent normal 

distribution.    
In the work is calculated  

 

( | , ) (1 ) ,
q q q q q

E X Y Y X B           

 
where q  is some scalar value, 

 
1

0
{ ( ) } { ( ) }

q qq q q q q q q
B Q X X Q X Y        

, 
 

where 0, qqq QQ  are obtained by partition of positively defined matrix qrQ   with sizes 

)()( qrqr  . 

Bayes analysis for factor experiment is offered in [60]. There are given estimations of 
parameters and testing of hypothesis in a posterior analysis, using simple a priory conditions. 
Detailed formalization is realized for two factor models with replicae. Two illustrative 
applications on the basis of which author discuss realizability and representability of a 
posterior distributions, sensitivity and applicability of the methods of Monte Carlo for 
Markov chains are given. 
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Author of the work [61] uses Monte Carlo methods for discontinuous Markov chains [66] 
with the purpose of calculation of aposeriory distributions of hierarchical, graphical or 
decomposable log-linear models by high-dimensional tables of possible values. The choice of 
suitable prior distributions for the parameters of the model is also discussed in detail, and two 
examples are presented. The authors identify a lot of possible hierarchical, graphical and 
decomposable models and compare the obtained results with alternative approximations. 

In [62] are given answers on the questions: does a regression model correspond to the 
true outlines? Do two regression models have the same outlines? How it is possible to group 
regression functions, based on outlines? These questions appear at investigating 
monotonicity, at calculation of local maximum or at studying variations in the family of 
curves. One can solve these questions by considering the rank correlation coefficient between 
two functions. This correlation is the generalisation of the rank correlation between two finite 
sets of numbers and is equal to one if and only if the two functions have the same outlines. 
The rank correlation based on smoothed estimates of regression functions in reality estimates 
true correlation. This rank correlation can be used as a measure of similarity of functions in 
cluster analysis and as a measure of monotonicity or modality. 

The paper [63] propose a semiparametrical extension of the score method, offered in 
[67], for elimination of the shortage of the parameters. The procedure is developed for the 
cases when there are known the mean and the variance of the dependent variable and when 
average function contains both parameters: of benefity and of disparity. Important 
applications of semiparametric models include quasilikelihood models and models of error of 
the measurement [68]. The second important application is acceptance of the estimations for 
auxiliary functions [69] at solving simple linear systems which correspond to the true 
projection for the family canonical exponential distributions. Asymptotic properties and 
results of simulation show that the influance of peculiarities of the parameters is significantly 
reduced at using offered approach. 

In [64] is realized theoretical research of two estimations of the parameters of partially 
linear model for grouped longitudinal data 

 

  ,ijij
T
ijij TXY    

 

where in i th group are contained im  results of observation,   is vector with dimension 

1p  and    is unknown smooth function. Here ij  is the random error and, for different 

groups, they are independent. It is shown that for correlated data so called “basis proper” 
method [84] more often gives larger assimptotical divergence than “kernel profilated” method 
[85], i.e. estimations obtained by the second method are asymptotically more effective than 
the estimations obtained by the first method. The investigation of these methods is realized by 
imitative modeling of numerical experiments. 

In [65] is considered the problem of obtaining, with the help of simple and generalized 
methods of least squares, estimations of the parameters of linear regression model  

 

tt tX   , 
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when errors  
t

  have zero means and are stationary in time with autocorrelations 

   htth   ,cov  with the lag h . Correct expressions for estimating parameters of the 

regression are obtained for some time series with autocorrelation structure, including 
autoregression of the first order and generalized moving average. Application of the obtained 
results includes confidence intervals and example, in which the variance of estimation of the 
slope of the trend do not increase by increasing autocorrelation. 

In [86] is considered self-renewing threshold autoregression model with changeable 
variance  

 

          
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

 

 

, 

 

where   ,...,2,1, tt  are independent identically distributed random variables with zero 

mean and unit variance, 0  and 1r . It is accepted that p p


 for 

1,2,..., 1r  , where p  is known integral and pd  , also ba r   ...21 , 

where a  and b  are two known constants.  
Threshold autoregression models which are non linear models of time series, describing 

sudden changes in time, were considered in [87]. The most important parameters of these 
models are thresholds as they determine their nonlinear structures. Thresholds transform the 
models in different mode of operation, in each of which the structure of the model is linear. 
Hence, if thresholds are known, estimating other parameters, so as coefficients of regression, 
is relatively simple. However estimating thresholds is not simple task because, usualy, their 
number is not known and they are self-changeable points of the structure of the function. In 
[86] are considered the questions of estimating and testing of the thresholds in self-
stimulating threshold autoregression models with unknown number of thresholds. There is 
offered statistical test, based on the empirical small wavy coefficients. There is given 
asymptotical distribution of statistical test and estimation of values of thresholds and their 
quantities. The Monte-Carlo method and real example, for teating realizability of the offered 
method, are used. 

In the work [88] is considered partially linear model   
 

  iiii RhXT  ln
, 

 
which contains non parametrical variable R  - the period of diagnosis, for which is not 
defined more exactly the form of functional dependence for one or several compopnents. The 
mothod of identification of the regression, when dependent variable is censored, is offered in 
the work.    
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3.2. METHODS OF IDENTIFICATION OF NON-LINEAR REGRETIONS BY 

MODIFIED LEAST SQUARES CRITERION 
 
General procedures of identification of non-linear regression relations is offered below, 

which one is developed with the purpose of overcoming two basic difficulties not only 
regression analysis but also all modern mathematics: non-linearity and multidimensionality of 
a problem [73-75]. The universal algorithm of optimum definition of regions of finding of 
unknown values of parameters of regression models, in which these unknown parameters 
with probability close to unit are contained, is developed.  The quality of working and 
obtained results of iteration algorithms of search of extremum of criterion of identification 
depend on successful finding of these regions. Given methods is suitable for the rather wide 
class of non-linear regression models at classical regression and passive experiment and at its 
qualified application, in despite of usual non-linear estimation of parameters, considerably 
reduces the time necessary for solving identification problem and provides the given 
reliability. At some hardening of imposed restrictions on the nature of noises, the obtained 
results are also correct at active experiment. 

The problem of identification of regression dependence is contained in the following. It is 

supposed that between observed variables x  and y  unknown functional dependence exists, 

which is approximated by the function of given class  xaaf m ,,...,1  on the basis of 

experimental data ii yx , , Ni ,..,1 , i.e. the truth of the following relation is supposed 

 

iimi uxaafy  ),,...,( 1 , Ni ,..,1 ,  (3.1) 

 

where maa ,...,1  are unknowns coefficients, the values of which are estimated on the basis of 

observation results ix , iy , Ni ,..,1 ; iu  are random fluctuations with the following 

characteristics ( ) 0iE u  , 2( )i iV u  , ijji Ruu ),cov( , ji  , Nji ,...,1,  . 

The values of the parameters maa ,...,1  seek so that the weighed sum of the squared 

residuals 
 





N

i
iimi yxaafS

1

2

1 ),,...,(   (3.2) 

 

would obtain minimum value; here i  are given weighted coefficients. The solution of this 

optimization problem determines statistical estimations maa ˆ,...,ˆ1  of the suitable parameters 

(estimation of the method of least squares). 
In case when restored relation is linear with respect to the parameters, searching their 

statistical estimations is not difficult: the problem is reduced to the solution of the system of 
m  linear equations [89]. If the dependence of approximating function on the parameters is 
not linear, then for the solution of the considered problem there are used different iteration 

methods, including, when approximating function ),,...,(
1

xaaf
m

 is unsufficiently smooth 
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and its derivatives take large values in the domain of definition of parameters 
m

aa ,...,
1

, 

there are used iteration algorithms without using derivatives, including algorithm of Huk and 
Jivce [1, 90]. At application of these algorithms there are some difficulties, related to 
necessisity bound up with necessity of correct selection of the regions of seeking the 
parameters, since from it essentially depends the time of computation and reliability of 
obtained results. 

The noted complexities of using iteration algorithms, at definition of a minimum of the 
functional (3.2), appear the more essential, than more is the number of parameters from which 

f  function depends on non-linearly. A method is offered below, which one often allows to 

reduce the number of parameters, in relation to which the approximating function is non-
linear. 

Let us suppose that the sequence of unknown parameters of f  function can be divided 

into two groups 
 

],...,,,...,[],...,[ 111 nrm CCAAaa   

 
( nrm  ) so that the approximating function was linear with respect to the parameters 

rAA ,...,1 , i.e. the following representation is possible  
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Then minimal value of (3.2), the sum of the squared residuals, at fixed values of 

nCC ,...,1  is reached in a case, when the parameters rAA ,...,1  satisfy the system of linear 

equations 
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are the coefficients dependent from nCC ,...,1 . 

Estimations of the method of least squares of the parameters nCC ,...,1  can be 

determined by different iteration methods, including the method of Huk and Jivce, in which 

the function ),...,( 1 nCCS  minimizes, and the estimations of the parameters rAA ,...,1  find 

by solving the system of linear equations, and this system is necessary to solve at each next 

calculation of the function ),...,( 1 nCCS . The iteration process is stoped when the 

difference between neighbouring computed values of S  becomes less than a given value. 

At rather general conditions, the least squares criterion, in which the functional (3.2) is 
minimized, can be changed by modified least squares criterion, in which is minimized the 
following quantity 

 

  

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N

i
iimi ygxaafgS

1

2
1 ; )(),,...,(   (3.3) 

 

here g(y) is some suitable twice differentiable function;   ;)(/ 2
ii yg   

).()/()( ygdydyg   

 
Considering (3.1), it is possible to rewrite (3.2) so 
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Using the formula of expansion of the function g (y) in the Taylor’s series in the 

neighborhood of the points iy  and limiting by items of the order ui
2, we shall obtain 
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where i  are the parameters, satisfying the conditions ii u 0 . Consequently, at 
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there takes place 
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 22/1  SS ,  (3.4) 

 

where   is the parameter satisfying the condition G . 

The better the value S   approximates to S , the less is the value G , which one, from its 

side, depends on the character of the function g  and the values of random components iu . 

At given g  and characteristics iu  always is possible to estimate maximum error of 

approximation (3.4) with given probability. The condition 1G  is satisfyed, if the function 

)(yg  is quite smooth and if residuals iu  are rather small. In many practical problems the 

latest condition happens executed. 

The dependence of SS /  from standard deviations of residuals iu , for different 

restoring dependences, is shown in Table 3.1; in each of four cases a)-d), the values of 

independent variable jx  are N  equidistant points from the interval  maxmin , xx ; the 

residuals iu  are independent normally distributed random variables with zero mathematical 

expectations and variances 
2 ; tables are composed for different values of 

 minmax/ yy  , where maxy  and miny  are maximum and minimum values of the function 

)( jxf , respectively. In the case d) we have   yyg /1 , in other cases -   yyg ln . 

In each concrete case the function  g  is selected depending on approximating function 

 f  so that as small as possible number of parameters, by which the functional S   is 

minimized, was non-linearly contained in it. 

Finding estimations of the parameters, non-linearly contained in  g , realizes by 

minimization of the functional S   by different iteration methods. For this methods is 
necessary to determine intervals, from domains of their definition, in which with unit 
probability are contained true values of the parameters. 

Let us designate defined vector of non-linearly entering parameters by , 

and search regions of given parameter - by . It is supposed that the given region is 

the hyperparallelepiped, bounded by coordinates of vectors . For convergence of the 

algorithm, and also for minimization of necessary search time of estimations, the search 
region should be as small as possible; at this time, the probability of including true value of 

 in it should be close to unit. 
One of universal, not dependent from a concrete kind of restored functional dependence, 

methods of definition of intervals of search of estimations of approximation parameters is 
offered below method, which is called method of trials. This method is universal and is 
applicable even when all parameters of the model are non-linearly included in it, i.e. when the 
estimations of the parameters are searched by direct minimization of the criterion (3.2). 

The set of all points , , of the plane (x,y), corresponding to the 

measured values, is divided into  groups, about  points in each group; here  is integer 

 nccc ,...,1

 ВН CC ,

ВН CC ,

c

),( jj yx Nj ,...,1

L n L
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part of the number . For each of these groups, if it is possible, the interpolation of the 

function  realizes, i.e. such values of the parameters  are determined, 

for which the graph of the function  passes through all  of points of the 

considered group. Let us call the sequence of trial values  obtained by this 

way the sequence of the values of the parameter ; each trial value  corresponds to one 

of groups of points , for which the interpolation of the function  is 

possible, i.e. the corresponding syatem of equations has the solution. The length of this 

sequence, evidently satisfy to the ratio . As bounds of search region  and  

are taken vectors, the components of which are equal to minimum and maximum values of 

suitable components of the sequence of vectors , . 

 
Table 3.1. 

 
a)  f(a,b,c,d,x)=axbecx b)  f(a,b,c,d,x)=axbecx 
a=6.240; b=1.500; c=1.300; a=6.580; b=5.000; c=2.000. 
N=100; xmin=3.45; xmax=4.0; N=100; xmin=1.15; xmax=5.20; 

ymin=3500; ymax=9000. ymin=10.000; ymax=56.87. 
 

/(ymaxymin) S0 S/S0  /(ymaxymin) S0 S/S0 

0.10000 9.2036 1.07102  0.10000 667.514 1.21663 

0.01000 92030.7 1.00715  0.01000 6.67514 1.02213 

0.00100 920.307 1.00072  0.00100 0.06675 1.00222 

0.00010 9.20307 1.00007  0.00010 0.00067 1.00022 

 
c)  f(a,b,c,d,x)=axc (1bx)d d)  f(a,b,c,d,x)=1/(aecx+bedx) 
a=4.500; b=0.500; c=2.300; d=1.800. a=6.500; b=2.300;  
c=1.000; d=1.400. 
N=100; xmin=0.620; xmax=1.90; N=100; xmin=0.75; xmax=2.70; 

ymin=0.090; ymax=1.332. ymin=0.010; ymax=0.120. 
 

/(ymaxymin) S0 S/S0  /(ymaxymin) S0 S/S0 

0.10000 0.46931 1.14703  0.10000 0.00370 1.50605 

0.01000 0.00469 1.01511  0.01000 0.00004 1.04229 

0.00100 0.00005 1.00151  0.00100 3.707 1.00415 

0.00010 4.697 1.00015  0.00010 3.709 1.00041 

 

nN /
),,...,( 1 xccf n ncc ,...,1

),,...,( 1 xccf n n
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c  kc
),( jj yx ),,...,( 1 xccf n
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 kc ,...,1k
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Described method of determination of the region  ВН CC , , to which should belong the 

parameter of approximation c , gives satisfactory result if the number of elements of the 

sequence of trial values of considered parameter       ccc ,...,, 21  is quite big; otherwise, 

the given method requires some corrections. Let us call modified trial method described 

further method of definition of the region  ВН CC , . 

Let us consider one dimensional case, i.e. when the function  f  non-linearly contains 

only one parameter. 

Let minC  and maxC  are minimum and maximum trial values of the parameter c , 

respectively. The bounds of search interval are determined by the way 
 

 minmaxmin )( CChCCН   ; 

 

 minmaxmax )( CCHCCВ   ,  (3.5) 

 

where parameters  hh   and  HH   are determined as solutions of equations 

 

   ;2/)1/()()(
0

1   


 duhuhuup  

   ; 2/)()1()(
0

1   


 duuHuHup   

(3.6)

 

 c  and  cp  are the function and the density of distribution of corresponding to c  

normalized random variable /)( 0cc  ; )1(   is probability that the true value of the 

parameter is contained in the interval  ВН CC , . 

 

Theorem 3.1. Let us suppose that the sequence of trial values       ccc ,...,, 21  can be 

considered as sample corresponding to the determined on the interval ),(   random 

variable c  with mathematical expectation 0c . Then determined by ratios (3.5), (3.6) interval 

is the confidence interval, to which belongs c  with probability 1 . 
 
The proof of the theorem is given in paragraph 3.5, where is considered the problem of 

finding consistent interval estimations for mathematical expectations of random variables 
with given probability distribution density. These results are used at determination of the 
initial interval of searching values of unknown parameters in the considered method of 
identification of non-linear regression. 

In case when the distribution density of the random variable c  is symmetrical, the 

equations (3.6) are equivalent, so that )()(   Hh  . The values of coefficients 
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)()(   Hh   for different  and   at normal probability distribution with arbitrary 

variance are viven in Table 3.2.  
 

Table 3.2. The values of the coefficients hN() 
 

 
N 

0.1 0.05 0.02 0.01 0.005 0.002 0.001 

2  2.6569  5.8531 15.410 31.328 63.161 158.65  317.81 
3  0.3968  0.8133 1.6172 2.5129 3.7739 6.2700  9.0800 
4  0.0538  0.2385 0.5409 0.8313 1.1926 1.8128  2.4225 
5 0.0784  0.0388  0.2133  0.3675  0.5467  0.8321  1.0934 
6 0.1485 0.0612  0.0609  0.1627  0.2758  0.4473  0.5974 
7 0.1922 0.1213 0.0265  0.0493  0.1307  0.2498  0.3506 
8 0.2224 0.1616 0.0830 0.0222  0.0413  0.1316  0.2061 
9 0.2445 0.1906 0.1227 0.0715 0.0191  0.0536  0.1122 
10 0.2616 0.2126 0.1521 0.1075 0.0626 0.0016  0.0467 
11 0.2752 0.2300 0.1749 0.1350 0.0955 0.0426 0.0014 
12 0.2863 0.2441 0.1932 0.1568 0.1212 0.0743 0.0383 
13 0.2956 0.2557 0.2082 0.1745 0.1419 0.0996 0.0674 
14 0.3035 0.2656 0.2207 0.1892 0.1590 0.1202 0.0910 
15 0.3104 0.2741 0.2314 0.2017 0.1734 0.1373 0.1105 
16 0.3164 0.2815 0.2406 0.2124 0.1856 0.1518 0.1269 
17 0.3217 0.2880 0.2487 0.2216 0.1962 0.1643 0.1409 
18 0.3264 0.2937 0.2558 0.2298 0.2055 0.1751 0.1531 
19 0.3306 0.2989 0.2621 0.2371 0.2137 0.1846 0.1637 
20 0.3345 0.3035 0.2678 0.2436 0.2210 0.1931 0.1730 
21 0.3380 0.3078 0.2730 0.2494 0.2276 0.2006 0.1814 
22 0.3412 0.3116 0.2777 0.2547 0.2335 0.2074 0.1888 
23 0.3441 0.3152 0.2820 0.2596 0.2389 0.2136 0.1956 
24 0.3468 0.3184 0.2859 0.2640 0.2438 0.2192 0.2017 
25 0.3493 0.3214 0.2895 0.2681 0.2483 0.2243 0.2073 
26 0.3516 0.3242 0.2929 0.2718 0.2525 0.2290 0.2125 
27 0.3538 0.3268 0.2960 0.2753 0.2564 0.2334 0.2172 
28 0.3559 0.3293 0.2989 0.2786 0.2600 0.2374 0.2216 
29 0.3578 0.3316 0.3017 0.2817 0.2633 0.2412 0.2256 
30 0.3596 0.3337 0.3042 0.2845 0.2665 0.2447 0.2294 
40 0.3732 0.3499 0.3234 0.3057 0.2897 0.2704 0.2570 
50 0.3821 0.3603 0.3356 0.3192 0.3043 0.2864 0.2740 
60 0.3884 0.3678 0.3444 0.3288 0.3146 0.2976 0.2859 
70 0.3933 0.3735 0.3510 0.3360 0.3224 0.3061 0.2948 
80 0.3971 0.3781 0.3563 0.3418 0.3286 0.3127 0.3018 
90 0.4003 0.3818 0.3606 0.3465 0.3336 0.3182 0.3075 
100 0.4030 0.3849 0.3643 0.3504 0.3379 0.3228 0.3123 
200 0.4176 0.4020 0.3839 0.3718 0.3607 0.3473 0.3379 
300 0.4243 0.4097 0.3929 0.3815 0.3710 0.3584 0.3495 

 

At fixed  with increase of sample size  the function )(h  decreases and, as from 

some value of  , namely - at )/2(log
2

  , it becomes negative. This means that the 

interval ],[
BH

CC , determined by modified trial method, does not extend the interval 
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],[
maxmin

CC  but narrows down it. At   2/1)( h . This means that the interval 

],[
BH

CC  at   degenerates in point, located in the middle of the interval ],[
maxmin

CC .  

From Table 3.2 it is evident that to determine search region of the parameters, non-

linearly included in approximating function, is possible even at 2 , but increasing  
narrows down search region and, by that, reduces the time necessary for working iteration 
algorithms of search of estimations of the parameters and increases reliability of obtained 
reasults. It is obvious that, the less is the search region, the less is the probability that except 

of a global minimum in it is contained local minima of the functional S . 
Let us consider the problem of distribution of trial values of parameters of the 

identification. Let values of regression variable are equal to 
iii

uYy   ( Ni ,...,1 ), where 

i
Y  are the exact values of restored function in the points 

i
x ; 

i
u  are independent normally 

distributed residuals with mathematical expectations equal to zero and variances 2

i
 . 

Each set of trial values )()(

1
,..., j

n

j cc , is the solution of the system of equations 

 

  , ...    ,,...,1    ),,...,1(    ; ,,..., 21
)()(

1 nrJJJ
j

n
j JJJnrNJuYxccf

rrr
  

 
which in general form can be written down as 
 

  .,...,1    ; ,...,,,...,
11

1)( nrxxyyfc JnJJnJr
j

r  

   
(3.7) 

 

If in right sides of these ratios to substitute ,0...
1

 JnJ uu  trial values )()(

1
,..., j

n

j cc  

will coincide with exact values 00

1
,...,

n
cc  of the suitable parameters. Let us decompose the 

functions 
1

r
f , nr ,...,1 , in neighborhoods of ,

rJY  nr ,...,1 , in the Taylor’s series and 

satisfy by items of the first order. We shall obtain 
 

,,...,1    ;...
11

)( nruucc JnrnJr
o
r

j
r  

   
(3.8) 

 
where 

pr
  are elements of the matrix, inverse to ][

pr
T , and 

 

.,...,1    );,,...,( )()(
1)(

np,rxccf
c

T
pJ

j
n

j
j

r
pr 




  

 

If ),(
rr JJ yx  select so that they are on quasilinear parts of the function 

1

r
f , nr ,...,1

, then the errors of approximation (3.8) is so minimal that in practical computations they can 
be neglected. The following fact is obvious, the rule of selection of points ),(

rr JJ yx , 

nr ,...,1 , depends on concrete kinds of the function (3.7) and varys from a problem to 

other problem. 
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Hence, if the linear approximation of the dependence of 
)( j

r
c  from residuals is 

permissible, then c  is normally distributed random vector with mathematical expectation 0c
and covariance matrix ][

jk
W , where 

 

.,...,1      ,
1

2 nj,rW
n

L
JkLjLjk L




  

 
The statistical distributions of parameters c  differ from normal when their dependences 

(3.7) from interpolation points essentially differ from linear. The degree of non-linearity of 
these dependences is determined by non-linear items in the Taylor series, where the basic 
contribution in non-linearity bring in quadratic items  

 

,
1 1
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n
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r
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1 1 1
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  
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
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 
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1

2
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j

q
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p

J
j
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j

s
pq

s 





 
 

Hence, for maximum approaching the distribution of the parameter r
c  to normal, it is 

necessary to select the points ),(
rr JJ yx , nr ,...,1 , so that the norm of the matrix ][ )( r

jk
  

was minimal. 
At correctness of the approximation (3.8), the probabilities of falling the vector c  in the 

hyperparallelepiped with borders ],[ i

B

i

H
CC , ni ,...,1 , is equal to 

 

.)
2

1
exp(|det|)2( 12/12/ dXXWXWI T

C

C

n
B

H

        (3.9) 

 
 If for each component of the vector c  we take the confidence probability close to unit, 

then, naturally, the probability (3.9), of falling the vector c  in the confidence 
hyperparallelepiped, is close to unit too. At construction of the confidence 
hyperparallelepiped, with guaranteed value of the confidence probability, it is necessary to act 
as follows: to expand independently computed borders of confidence intervals for each 

component of the vector c  so that there take place 1I  For computation of 
multidimensional integral (3.9) it is possible to use the modified method of Monte-Carlo [1, 
91]. 
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Some examples, illustrated the essence described modified method of trials are given 
below. The algorithms of identification of some noon-linear functional dependences and the 
results of investigation of their basic properties are given in Appendix 4 [106]. These 
algorithms are developed on the basis of offered in this paragraph modified method of trials. 

In summary we will consider one more modification of described above methods of 
determination of boundaries of parametres of approximation based on use of splines.  

In the trial method and the modified trial method the auxiliary problem of interpolation of 
the restored dependence is used. While, as it is shown below (see Section 3.4), this problem 
often is considerably simplified in the case of equidistant values of argument; it takes place 
for many concrete types of restored dependence containing limited quantity of parameters.  

In such cases it is possible to offer the following method of determination of boundaries: 
if there are given N  values of the investigated function jy  in points jx , not being 

equidistant from each other ( 1,..,j N ), then  

 
 for determination of approximate values of the investigated function in additional 

points the cubic spline ( )s x  corresponding to available pairs of points [ , ]j jx y    

( 1,..,j N ), is used;  

 in the least interval containing all points jx , N  equidistant from each other values of 

the argument 1x , 2x , ..., Nx  are determined and approximate values of the 

investigated function in these points 1y , 2y , ..., Ny ; ( )j jy s x   are considered  

( 1,..,j N );  

 boundaries of search of approximation parameters are determined by the the modified 

trial method for N  pairs of points [ , ]j jx y   ( 1,..,j N ).  

 
Examples 
For illustration of modified trial method, as examples, we shall consider the following 

functional dependences: a) ( , , , ) c xf a b c x a b e    ; b) ( , , , , ) c x d xf a b c d x a e b e    

; c) ( , , , , , ) c x d xf h a b c d x h a e b e      . The values of the number  and borders of the 

intervals of searching of the parameters of approximation are given in Table 3.3. They are 
obtained by unmodified and modified trial methods. The restored function depends on non-
linearly from these parameters. In each of three cases a)-c), the values of independent variable 

jx  are N  equidistant points from the interval min max[ , ]x x ; residuals ju  are independent 

normally distributed random variables with mathematical expectations equal to zero and 

variances 
2 . The tables are composed for different values of max min/( )y y  , where 

maxy  and miny  are maximum and minimum values of the function ( )jf x , respectively. 

From obtained results is evident that in determined intervals of the search of true values 
of the parameters of the regression in reality are contained these values and the intervals are 
narrowed down at decreasing the mean square deviation of observation results of dependent 
variable of the regression. 
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Table 3.3. 
 
a)  f(a,b,c,x)=a+becx 
N=100; xmin=0.050; xmax=2.500; ymin=7.516; ymax=238.5; 

a=6.500; b=2.500; c=1.800. 
 

/(ymaxymin)  [cmin,cmax] [cH,cB] 
0.10000 29  [0.249;4.479]  [ 1.244;2.987] 
0.01000 33  [ 1.541;2.029]  [ 1.699;1.871] 
0.00100 33  [ 1.772;1.821]  [ 1.788;1.805] 
0.00010 33  [ 1.797;1.802]  [ 1.799;1.800] 

 
b)  f(a,b,c,d,x) = aecx+bedx 
N=100; xmin=2.000; xmax=2.000; ymin=.75; ymax=40.05; 

a=5.400; b=2.480; c=1.000; d=1.400. 
 




    

     
     
     
     
 
c)  f(h,a,b,c,d,x) = h+aecx+bedx 
N=100; xmin=2.000; xmax=2.000; ymin=.75; ymax=61.05; 

h=21.00; a=5.400; b=2.480; c=1.000; d=1.400. 
 




    

     
     

     
     

 
At restoration of considered functional dependences, the sampl, composed by trial values 

of searching parameters, is possible to use for testing the hypothesis of normality of 
distribution of these values. Let, analogously of the above, the values of independent variable 

are given in equidistant points from the interval min max[ , ]x x . In Figure 3.1 a) and b) are 

given the graphs of trial values cj (on the axis of abscissa is arranged the number j ) for 

restored dependences 
c xa b e    and 

c x d xa e b e     respectively. In the first case are used 

the following initial data: 6.5a  ; 2.5b  ; 1.8c  ; min 0.5x   ; max 2.5x  ; 

760N  ; max min/( ) 0.1y y   ; at the same time, the number of trial values is equal to 

154  ; in the second case, the initial datas are the following: 6.5a  ; 2.3b  ; 1c  
; 1.4d  ; min 2.5x   ; max 2.5x  ; 760N  ; max min/( ) 0.1y y   ; at the same 

time, the number of trial values is equal to 92  . 
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a    b 

Figure 3.1. The graphs of trial values of the parameter c . 

In Figure 3.2 a) and b) are presented the histograms corresponding to given sampls. In 
both cases, testing normality of the distribution of trial values of c , by criterions of the chi-
square, the Kolmogorov-Smirnov and the Omega-square, gives positive results. In particular, 

in the criterion of chi-square, for the first sampl, the value of statistics 2 17.487  , and 

percentage points, determining acceptance region of the hypothesis with significance level 

0.95 , are equal to 2
/ 2 3.2227   and 2

1 / 2 20.481   , respectively; for the second sampl 

these values are equal to 2 13.343  , 2
/ 2 1.6899   and 2

1 / 2 16.013   , 

respectively. 
 

 

a)  b) 

Figure 3.2. Probability distribution densities of trial values of the parameter c . 
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The offered above methodology of identification of nonlinear regressions are widely used 
in developed by authors application package of processing experimental information for 
IBM-compatible computers [92-94, 101, 226], in section “Identification of functional 
dependences”. The application of this package at solving many practical problems from 
different domains of knowledge, including modeling pollution of rivers, was demonstrated 
the universality, the regularity and the reliability of the methodology [1, 74, 95-100]. 

 
 

3.3. RESTORATION OF POLYNOMIAL  
REGRESSION ON THE BASIS OF ACTIVE EXPERIMENT  

 
The algorithm of restoration of polynomial regression at varying variances both 

dependent and independent variables is offered below [1, 44]. Optimum properties of the 
offered algorithm are demonstrated experimentally. The polynomial regression finds broad 
application at restoration of functional dependences between observed quantities. Moreover, 
in considerable part of measurement devices, the restoration of calibration curves are realized 
on the basis of active experiment (for example, graduation of spectrometers of the energy of 
gamma-quantums, graduation of the spectrometer for the measurement of nuclear emission 
with inductively related plasma etc. [53]). 

 
Development of the algorithm. Polynomial regression at activ experiment looks like 
 

,,...,1,,
1

1
0

1 Nixxxay
m

j
iiii

j
iji  





    (3.10) 

 

where ix0  is true value of independent variable, at which the researcher observs dependent 

variable iy , but because of random noises i , imposed on ix0  to the value iy  corresponds 

random variable ix ; i  and i  are random fluctuations, for which there take place 

 
2 2( ) ( ) 0,     ( ) ,     ( ) ,

cov( , ) cov( , ) cov( , ) 0,     ;
i ii i i x i

i j i j i j

E E V V

i j

     

     

   

   
  (3.11) 

 

1 1,..., ma a   are unknowns coefficients of the regression, the values of which is necessary to 

estimate on the basis of iy  and ix0 , Ni ,...,1 . 
 

Let us rewrite (3.10) as follows: 
11 1 1

1 1 1 1
0 0 0

1 1 2 1

( ) ,
jm m m

j j j j
j i i i j i j i i i

j j j

y a x a x a C x   
  

    

   

 
      

 
     




 

 

where 1jC 
  is the number of combinations   from 1j . Let us designate 
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11
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  

 

 
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
  

 
Then (3.10) will take the form 
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1

1

1
0 Nixay

m

j
i

j
iji  


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    (3.12) 

 
Accordingly 
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1 1

0
2 1

( ) ( ) ;
jm

j j
i j i i

j

E a C x E 


  

 

 
  

 
   


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  (3.13) 

 
1 11 1

2 1 1 2 2
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2 2 1 1

( )    ( ) ;

cov( , ) 0,     ;

i
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j p j p t t
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i k

E a a C C x E
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      
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
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  (3.15) 

 

The form of the formula for calculation of ( )iE    depends on probability distribution 

function of the random variable i . In accordance with [102], at ),0;(~ 2

ixi N   , there 

takes place 
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0 ,
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E
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Thus, the active experiment (3.19) can be presented as passive experiment (3.12), where 

( )iE   and ( )iV   are determined by formulae (3.13) and (3.15), respectively, and 

0),cov( ji   at ji  . 

For finding unknown coefficients 11,..., maa , let us use the method of weighed least 

squares  
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(3.16) 

 
Let us designate 
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In those designations, the system of normal equations, obtained from (3.16), will be 

written down as 
 

.000 AXXYX T
   

 
from here 
 

  .0100
 YXXXA T 

   (3.17) 

 
Let us calculate mathematical expectation and variance of the estimation (3.17). Let us 

designate ).,...,( 11 NN
T     Then   00 AXY T , where 0A  is the vector of 

true values of desired coefficients. From the ratio (3.17), we obtain 
 

0 0 0 1( ) ( ) ( );TE A A X X X E   
    

 (3.18) 

 
0 0 1 0 0 0 0 1( ) ( ) ( ) ( )T T T TV A X X X E X X X          . 

 

Let us calculate elements of the matrix ( )TE    . Let us designate ,TV    i.e. 

jijiijv   . Then 
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    (3.19) 
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where ( )iE   and 2( )iE   are determined in accordance with formulae (3.13) and (3.14). 

Estimations of the coefficients 11,..., maa , calculated by the ratio (3.17), are biased. It is 

not difficult to obtain unbiased estimations 
 

   
10 0 0T

несмA A X X X E   


  .   (3.20) 

 

Let us choose weight coefficients i , Ni ,...,1 , so that the variance of the estimation 

of the coefficients A , calculated by formulae (3.18), (3.19), was minimum. For this purpose, 

let us determine i  as follows:   1
2

i iE 


    . In that case, it is not difficult to be 

convinced that   1ijE v   at ji   and   1iiE v   at ji  . 

The calibration points Nix i ,...,1,0  , are chosen so that the variance of the estimation 

of unknown coefficients ( )V A  was minimum. On the other hand, for simplification of 

identification problem, it is necessary to strive to the decrease of the number of calibration 
points. In accordance with [102], for determination of the polynomial of m  order, no more 

than 1m  of different values of x  is necessary, from which no more than 1m  of the 

values should be inside the interval. Thus, it is possible to suppose that 1 mN . Then, it 
is possible to rewrite (3.18) as: 

 

   10 0 1( ) .T TV A X E X    
     (3.21) 

 
Let us consider the problem of choice of 1m  internal points from the interval of 

definition of the regression  ''0'
0 , xx  for minimization of spread matrix (3.21) of estimations 

of the parameters. With regard to (3.19), the minimum of the variance (3.21) is reached by 

maximization of elements of the matrix 0
X . By direct maximization of elements of the 

matrix 0
X  on the interval  1;1x , we are convinced that optimal values of calibration 

points mxx 002 ,..., , for the interval  1;1 , are: 

 

 
 
At 1 mN , formulae (3.17), (3.20) take the forms 

Degree of the polynomial    Values  of calibration points from ]1;1[ 
 
1                                                  1; 

2                                                 1; 0 
3                                                 1;  0,4472 
4                                                 1;  0,6547; 0 

5                                                 1;  0,7651;  0,2852 
6                                                 1;  0,8302;  0,4689; 0 



Stochastic Mathematical Models Describing Pollution of the Rivers 95

  ;
10

 YXA T 
   (3.22) 

    10 .T
несмA X Y E  


     (3.23) 

 
Estimations, calculated by ratio (3.20) or (3.23), are unbiased and inconsistent. For 

obtaining consistent estimations, instead of the model of observation (3.10), it is necessary to 
use the following model: 
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Let us rewrite (3.24) as follows: 
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Let us average the results of observation for each value of independent variable 
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Let us designate  
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At this time 
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In introduced designations, the model (3.26) transforms to the model (3.10). All obtained 

results remain valid. Estimations of unknown coefficients, in this case, will be consistents, as 

at ,in 
 

1,...,i N , the variance of the vector of estimations of unknown coefficients 
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(3.21) tends to zero. Really, at in , there takes place  2 0,iE     TE   
 
does not 

change, and elements of the matrix 0
X  tend to the infinity. 

In accordance with [44, 103],   percentage joint confidence interval, for true values of 
coefficients of considered regression, looks like 

 

    0 1 0 1
.
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несм несм

m
P A A V A A A 


       

 

 
Unfortunately, direct use of the algorithm (3.23), for calculation of estimations of 

coefficients of polynomial regression, is impossible, as the same coefficients are included in 
it. Therefore, the search of the coefficients is realized in two steps. On the first step, 

estimations of the coefficients are calculated by the formula (3.22), at supposition that ix  are 

nonrandom values. Weigh coefficients are determined as follows   12 


ii  . On the second 

step, by the help of estimations of unknown coefficients, obtained on the first step by the 
formula (3.23), in which the suitable weights are determined by the ratio (3.21), 
approximations of unknown coefficients are iteratively calculated until the norm of the 
difference between vectors of coefficients of neighboring approachs will not be less than a 
given value. 

For illustration of properties of the algorithm (3.23) and its advantages by comparison 
with the algorithm (3.22), below are given the results of experimental investigation of these 

algorithms for concrete regression dependence 225.11 xxy  . In Figure 3.3-3.6 are 

shown dependences of variances 1D  and 2D  of restored regressions, calculated by formulae 

(3.22) and (3.23). The following characteristics of the regression are accepted: ;2m  

;3N   ;5;1x  ;101 x  ;302 x  ;503 x  ;10321  nnn  ;1.02

1
x  

;2.02

2
x  ;3.02

3
x  ;12

1
  ;5.12

2
  22

3
 . Reduced in Figure 3.3-3.6 

dependences confirm the fact that the varience of restored regression decreases at increasing 
the number of observations in calibration points and it increases at increasing the variances 
both dependent and independent variables. 

Non monotonicity of the suitable dependences from the number of repeated observations 
for dependent variable (see Figure 3.3) are determined by randomness of obtained 
estimations. From Figure 3.6, it is seen that for each concrete regression there is optimum 
length of the region of its definition. Curves in Figure 3.5 confirm reduced above results 
about optimum choice of values of independent variable. From dependences, the fact of 
advantage of the algorithm (3.23) by comparison with the algorithm (3.22), is obvious. The 

results of operation of the algorithm (3.22) are designated by 1D  and 1A , and the algorithm 

(3.23) - by 2D  and 2A . 
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Figure 3.3. Dependence of the variance of restored regression from the number of repeated 
observations) of dependent variable. 

 

 

Figure 3.4. Dependence of the variance of restored regression from the variance of defendent (a) and 
independent (b) variables. 

 

 

Position of the midpoint of the  interval of definition of regression. 

Figure 3.5. Dependence of the variance of restored regression from the choice of the values of 
independent variable in the interval of definition of the regression. 
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Length of the interval of definition of the regression. 

Figure 3.6. Dependence of the norm of deviation of estimations of parameters from the length of the 
interval of definition of the parameters. 

 

3.4. INTERPOLATION OF NONLINEAR  
FUNCTIONS OF CERTAIN CLASS 

 
The problem of interpolation of nonlinear functions arises at solving many different 

problems of sciences and practice. For example, at restoration of nonlinear functional 
dependences by the data, do not cantaned random errors; at solving approximation problems 
by methods of spline-analysis (see paragraph 1.4); at determination of initial intervals of 
domain of parameters in problems of identification of nonlinear regressions (see paragraph 
3.2) [1, 108] etc. Therefore, the development of optimum algorithms of interpolation of 
nonlinear functional dependences and their investigation are actual problems, having wide 
practical application. 

Algorithms of interpolation of one-parameter families of functions from polynomials and 
some nonlinear functions are given below. These functions are very often used at restoration 
of functional dependnces in many practical applications. These algorithms are used by 
authors in developed by them universal program package of processing experimental 
information for PC-compatible personal computers in section of restoration of functional 
dependences for finding optimum initial intervals of definition of unknown parameters of 
these dependences [1, 93, 94, 110] and at solving many practical problems concerning to the 
identification of regression models of pollutants transport in the rivers. 

 
 

3.4.1. One-parametrical Families of Functions of Polynomials 
 

Let  Nzzz ,...,, 10  and  Nwww ,...,, 10  be sequences of complex numbers; kj zz   at 

kj  , Nkj ,...,1,0,  ; ),,( wz  is complex function of three variables. It is required to 

determine the polynomial of the power 1N  
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and numeric parameter  , for which the values of the function   zz  ,,  in given nodal 

points Nzzz ,...,, 10  coincide with numbers Nwww ,...,, 10 , respectively. 

Let us introduce auxiliary functions 
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( jm ,...,2,1 ; mk ,...,2,1 ), determined for the sequence m  complex numbers 

m ,...,, 21  as follows: values 
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m
jk  ,...,, 21  are elements of the matrix, inverse to 

quadratic matrix 
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of m  order, and 
 

     1

1 2
2 1

( , ,..., ) det ( )
m km m

m k j
k j
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

 
     

is the determinant of the Vandermonde for numbers m ,...,, 21  [109]. 

 

Theorem 3.2. If at any fixed values   and z the function    wz,,   has inverse 

function     ,, z , then parameters 110 ,...,, N  can be determined by the 

parameter   and initial data of the problem by the ratios 
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N

j
N

N
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
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and the parameter   is the solution of the equation  
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
N

k
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0),,( ,  (3.28) 

 
where 
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  ),...,,,...,()1( 110 Nkk
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In particular, at 2N  
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Proof. Let's consider the system of equations  
 

( ) ( , , )    ( 0,1, 2,..., ),k k kz z w k N    ,  (3.29) 

 
At the fixed value .  
 
For justification of Formula (3.27) it is enough to notice that the system of equations 

(3.29) at 1,...,k N  represents conditions of interpolation for the polynomial assuming 

given values in given points. According to conditions of the problem determinant of the given 
system of equations is nonzero, whence univalentity of its solution follows.  

For derivation of formulas (3.28) let's remark that system (3.29) represents the system of 

1N   linear equations with N  unknowns 0 , ..., 1N  ; in order to this system have 

solution it is necessary that determinant of the matrix  
 

2 1
0 0 0 0 0

2 1
1 1 1 1 1

2 1

1, , , ..., ( , , )

1, , , ..., ( , , )

... ... ... ... ... ...

1, , , ..., ( , , )

N

N

N
N N N N N

z z z z w

z z z z w

z z z z w

 
 

 







 
 
 
 
 
  

 

 
is equal to zero. Expanding this determinant by elements of the last column we will obtain 
necessary result.  

 
Examples:  
 
a) At interpolation of logarithmic-polynomial dependence 
 

  







 



N

k

k
k zzz

0

 ln)(,,  , 
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the parameter   can be determined as solution of the equation 

 

,0. /

0




 kw
N

k
k e  

 
and coefficients of the polynomial are equal to 

 




 
N

j

w
N

N
kjk Nkezzz j

1

/
21

)(
1 ,...,1      ,),...,,(  . 

 
b) At interpolation of geometric-polynomial dependence 
 

  



N

k

k
k zzzz

0

 )(,,  

 
 
also exponential-polynomial dependence 
 

  



N

k

k
k

z zezz
0

  )(,,   , 

 
the parameter   and coefficients of the polynomial are determined by ratios 

 

0 
0





N

k
kkk zw  ; 

 

Nkzwzzz
N

j
jjN

N
kjk ,...,1      ,),...,,(

1
21

)(
1 






 , 

 
or, accordingly, 

 

0 
0

 



N

k

z
kk

kew  ; 

 

Nkewzzz
N

j

z
jN

N
kjk

j ,...,1      ,),...,,(
1

 
21

)(
1 






 . 
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3.4.2. Nonlinear Functions of the Certain  
Class of Limited Quantity of Parameters 

 

1. Function 
cxeba   

Let be necessary to interpolate the function 
cxeba   using three paired numbers 

},{ 11 yx , },{ 22 yx , },{ 33 yx ; otherwise, it is required to solve the system of equations 

 

;1
1 yeba cx   ;2

2 yeba cx   3
3 yeba cx   

 

with respect to parameters cba ,, . The conditions 321 xxx   and 321 yyy   are 

supposed executed. Let us introduce auxiliary quantity  
 

12

23

yy

yy
s




 ; then 
12

131
yy

yy
s




 . 

 
The parameter c  is a nonzero solution of the equation 
 

.0)()()( 321
211332  cxcxcx eyyeyyeyy  

 
The parameters a  and b  are determined by ratios 
 

;
32

32

21

21
2312
cxcx

cxcx

cxcx

cxcx

ee

eyey

ee

eyey
a








  

.
3221

3221
cxcxcxcx ee

yy

ee

yy
b








  

 

If values of the argument are equidistant from each other, i.e. xxxxx  2312 , 

then the initial system of equations has the solution in and only in the following case, if 
0s ; at this case ./ln xSc   

Let 321 xxx  . The initial system of equations has the solution in and only in the case, 

if 0s . The equation, which must be satisfied by the parameter c , is convenient be 

presented as 0)( cf , where 

 

.)1()( )()( 1312 cxxcxx eesscf    

 

The graph of the function )(cf  to within parallel carry looks like introduced in Figure 

3.7. The number 
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










 

13

121
230 )1(ln)(

xx

xx
sxxc  

 

is the point of minimum of the function )(cf ; the number 

 

























 

2

13

121
231 )1(ln)(

xx

xx
sxxc  

 

is the abscissa of the point of inflection of the graph of the function )(cf ; the number 

 

)1ln()( 1
232   sxxc  

 
is the upper bound of c . 

As an initial approach for c  at solving the equation 0)( cf  by iterative method of 

Newton, there can be taken the number 1c  (at 00 c ) or 2c  (at 00 c ). 

Let us note also that 1/ 0 cc . 

 

 

Figure 3.7.  

 

2. Function cxebxa  )(  

Let be necessary to interpolate the function cxebxa  )(  using three paired numbers 

},{ 11 yx , },{ 22 yx , },{ 33 yx , i.e. to solve the system of equations 

322211
321 ) (    ;) (    ;) ( yexbayexbayexba cxcxcx   

 

with respect to parameters cba ,, . 
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The parameter c  is the root of the equation 
 

.0)()()( 321
321213132   cxcxcx eyxxeyxxeyxx  

 
The parameters a  and b  are determined by ratios 
 

);(
1

21
2112

12

cxcx eyxeyx
xx

a  


  

).(
1

21
21

12

cxcx eyey
xx

b  


  

 

If values of the argument are equidistant from each other, i.e. xxxxx  2312 , 

then the value )exp( xcu   satisfy to the quadratic equation 

.02 32
2

1  yuyuy  

 

Let 321 xxx  . The equation, which must be satisfied by the parameter c , is 

convenient to be presented as 0)( cf , where 

 

;)( 3
)(

2
)(

1
2313 HeHeHcf cxxcxx    

)(    );(    );( 213313223211 xxyHxxyHxxyH  . 

 

Depending on signs of numbers 21, yy  and 3y , several cases are possible: 

 

a) 021  yy  and 032  yy . The function )(cf  has no zeros. 

 

b) 021  yy  and 032  yy . The function )(cf  has unique zero, as an initial 

approach for which, at solving the equation 0)( cf  by iterative method of Newton, 

can be taken the number 



































 21

3

1321

3

23

ln
1

  ,ln
1

max
HH

H

xxHH

H

xx
 

 
(being upper bound of c ). 
 

c) 021  yy  and 032  yy . The function )(cf  has unique zero, as an initial 

approach for which, at solving the equation 0)( cf  by iterative method of Newton, 

can be taken the number 
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
































 1

32

131

32

12

ln
1

  ,ln
1

max
H

HH

xxH

HH

xx
 

 
(being upper bound of c ). 
 

d) 021  yy  and 032  yy . Let us introduce supplementary designations:  

 












 

13

231
1212

1
120 ln)(      );/ln()(

xx

xx
xxcyyxxc ; 

2312123123

12

)/()/(
)( 2123321

30

3
0

xxxxxxxxxx

xx

yyyyyyy
Hcf

H
v 














 . 

( 0c  is the point of extremum of the function )(cf ; cc 0  is the abscissa of the point 

of inflection of the given function). 
 

At 00   the function )(cf  has two zeros c  and c  . Let us suppose for definiteness 

cc  ; then ccccc  00 . The numbers cc 0  and cc 0  can be used as 

initial approachs for c  and c  , respectively, at solving the equation 0)( cf  by iterative 

method of Newton. 

At 10  , the function )(cf  has one zero, coinciding with 0c . 

At 10  , the function )(cf  have no zeros. 

 

3. Function cxebxah  )(  

Let be necessary to interpolate the function cxebxah  )(  using four paired numbers 

},{ 11 yx , },{ 22 yx , },{ 33 yx , },{ 44 yx , i.e. to solve the system of equations 

 

;)( 11
1 yebxah cx   ;)( 22

2 yebxah cx   ;)( 33
3 yebxah cx   

44
4)( yebxah cx   

 

with respect to parameters cbah ,,, . 

Parameter c  is a nonzero solution of the equation 0)( cf , where 

 

.)()()()(

)()()()(

)()()()()(

)(
3421

)(
4231

)(
2341

)(
1432

)(
3142

)(
1243

4342

3241

3121

xxcxxc

xxcxxc

xxcxxc

exxyyexxyy

exxyyexxyy

exxyyexxyycf












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The number 0  always is zero point of functions )(cf  and )(cf  . 

Parameters ah,  and b  are determined by ratios 

 

 ;)()()(
1

211332
213132321

cxcxcxcxcxcx exexyexexyexexy
D

a 

 ;)()()(
1

211332
321

cxcxcxcxcxcx eeyeeyeey
D

b 


  

 ,)()()(
1 )(

123
)(

312
)(

231
211332 xxcxxcxxc exxyexxyexxy

D
h  

 
 

where 
 

).)()()( )(
12

)(
31

)(
23

211332 xxcxxcxxc exxexxexxD    

If values of the argument are equidistant from each other, i.e. 

xxxxxxx  342312 , then the value )exp( xcu   satisfys to the quadratic 

equation 
 

.0)()(2)( 3432
2

12  yyuyyuyy  

 
Let us suppose that the quotients of differences between any set values of the argument 

are equal to some rational numbers. Then values of the argument can be presenteded as 

,xrXx kck   where )3,2,1( krk  are some integers; constxX c , . In this case, 

the value )exp( xcu   is the root of algebraic equation 

 

,0)()()(

)()()(

)()(2)(

3421423221

234332211432

314332
2

1243

32

43323221

433221433221










yyruyyrr

uyyrrruyyr

uyyrruyyr

r

rrrr

rrrrrr

 

 

where kjjk rrr  ; 3,2,1, kj . 

 

4. Function dc bxxa )1(   

Let be necessary to interpolate the function dc bxxa )1(   using four paired numbers 

},{ 11 yx , },{ 22 yx , },{ 33 yx , },{ 44 yx , i.e. to solve the system of equations 

 

444333222111 )1(     ;)1(     ;)1(     ;)1( ybxxaybxxaybxxaybxxa dcdcdcdc   

with respect to parameters dcba ,,, . Let us designate 
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.4,3,2,1    ,ln    ,ln  kyWxZ kkkk  

 

The parameter b  is a nonzero solution of the equation 0)( bf , where 

 

);1ln()1ln()1ln()1ln()( 44332211 xbHxbHxbHxbHbf   

);()()( 2344233421 ZZWZZWZZWH   

);()()( 3141434312 ZZWZZWZZWH   

);()()( 1244122413 ZZWZZWZZWH   

).()()( 2131323214 ZZWZZWZZWH   

 

The number 0  always is zero point of the function )(bf . 

 

Let's assume that 1 2 3 4x x x x   , and we will consider the equation ( ) 0f b  . This 

equation can have only unique real nonzero solution.  
For existence of such solution, it is necessary that the quadratic equation  
 

2
2 1 0  0p u p u p   , 

 
where  

 

0 1 1 2 2 3 3 4 4(     )p H x H x H x H x     ; 

1 1 2 1 2 1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4 3 4 3 4

( ) ( ) ( ) 

( ) ( ) ( ) ;

p H H x x H H x x H H x x

H H x x H H x x H H x x

     
     

 




2 1 2 3 1 2 3 1 2 4 1 2 4

1 3 4 1 3 4 2 3 4 2 3 4

( ) ( ) 

( ) ( ) ,

p H H H x x x H H H x x x

H H H x x x H H H x x x

      

     
 

 
had two real roots.  

Let 1u  and 2u  are the real roots of this equation, and 1 2u u . Then if 1 0u   2 0u   

and 4 2 ( ) 0H f u   then the equation ( ) 0f b   has a positive root contained in the interval 

2 4( ,1/ )u x ;  

if 1 0u  , 2 0u   and 1 2( ) ( ) 0f u f u   then the equation ( ) 0f b   has a negative root 

contained in the interval 1 2( , )u u ;  

in other cases the equation ( ) 0f b   has no nonzero real roots.  

 

Proof:  
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The coefficients appearing in the expression for ( )f b  satisfy to the relations  
4

1

0k
k

H


  and 
4

1

ln 0k k
k

H H


 . 

 
It follows from here that this function at 0b   can be presented in the form  
 

 
4 4

1 1

( ) ln(1  ) ln 1 1/ (  )k k k k
k k

f b H b x H b x
 

       . 

 

Natural domain of definition of the function ( )f b  is the open interval 4( ,1/ )x ; at 

approach to boundaries of this interval it takes place  
 

lim ( ) 0
b

f b


  and 
4

4
1/

lim ( ) ( sign )
b x

f b H


   . 

 

Points of extremum of the function ( )f b  if they are available coincide with roots of the 

quadratic equation 2
2 1 0  0p u p u p   . If this equation has no real roots then the 

function ( )f b  everywhere is monotone and, hence, its unique zero is the point 0b  .  

If 1u  and 2u  ( 1 2u u ) are points of extremum of the function ( )f b  then each of the 

intervals 1( , )u , 1 2( , )u u , 2( , )u   can contain no more than one zero of the function 

( )f b  since in these intervals the function ( )f b  is monotone. But in the interval 1( , )u  

the function ( )f b  does not become zero owing to that it monotonically tends to zero at 

b  . There remain two intervals 1 2( , )u u  and 2( , )u  , one of which contains solution 

of the equation ( ) 0f b   equal to zero, and the second one can contain nonzero solution of 

this equation if only on the boundaries of this interval the function ( )f b  has different signs.  

Further all is obvious.  
After that the parameter b  is determined, the parameters a , c  and d  are determined by 

relations  
 

);1ln()(

)1ln()()1ln()(ln

31221
1

23113
1

12332
1

bxZWZWT

bxZWZWTbxZWZWTa








 

);1ln()(

)1ln()()1ln()(

312
1

231
1

123
1

bxWWT

bxWWTbxWWTc








 

)),()()(( 123312231
1 ZZWZZWZZWTd    

 
where 
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).1ln()()1ln()()1ln()( 312231123 bxZZbxZZbxZZT   

5. Function 
dxcx ebea   

Let be necessary to interpolate the function 
dxcx ebea   using four paired numbers 

},{ 11 yx , },{ 22 yx , },{ 33 yx , },{ 44 yx , i.e. to solve the system of equations 

 

4321
44332211       ;      ;      ;  yebeayebeayebeayebea dxcxdxcxdxcxdxcx   

with respect to parameters dcba ,,, .  

The pair of numbers ],[ dc  can be determined as the solution of any pair of the following 

four equations 
 

;0)()()( 122131132332
321   dxcxdxcxdxcxdxcxdxcxdxcx eeyeeyeey  

;0)()()( 233242243443
432   dxcxdxcxdxcxdxcxdxcxdxcx eeyeeyeey  

;0)()()( 122141142442
421   dxcxdxcxdxcxdxcxdxcxdxcx eeyeeyeey  

0)()()( 133141143443
431   dxcxdxcxdxcxdxcxdxcxdxcx eeyeeyeey  

 
at additional condition dc  . 

Parameters a  and b  are determined by ratios 
4 1 4 1

1 4 4 1 1 4 4 1

1 4 1 4;       
dx dx cx cx

cx dx cx dx cx dx cx dx

y e y e y e y e
a b

e e e e   

      
 

 
, 

 

and in these formulae two pairs of variables ],[ 11 yx  and ],[ 44 yx  can be changed by any 

other pairs ],[ jj yx  and ],[ kk yx  provided that kj  . 

If values of the argument are equidistant from each other, i.e. 

xxxxxxx  342312 , then values )exp( xcu   and )exp( xd   are 

roots of the quadratic equation 

.0)()()( 42
2
33241

2
31

2
2  yyyyyyyyyy   

The initial system of equations has the solution in and only in a case, if the given 
quadratic equation has two real, positive and not coinciding to each other roots. 

 

6. Function 
dxcx ebeah   

Let be necessary to interpolate the function 
dxcx ebeah   using five paired 

numbers },{ kk yx , 5,...,1k , i.e. to solve the system of equations 

 

5,...,1      ,   kyebeah k
dxcx kk  

 

with respect to parameters dcbah ,,,, .  
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The pair of numbers ],[ dc  can be determined as the root of the system of equations at 

additional conditions 0,  cddc . One of equations of the given system looks like 

 

  )( 433424423223
1

dxcxdxcxdxcxdxcxdxcxdxcx eeeeeey  

  )( 411434431331
2

dxcxdxcxdxcxdxcxdxcxdxcx eeeeeey  

  )( 422414412112
3

dxcxdxcxdxcxdxcxdxcxdxcx eeeeeey  

,0)( 311323321221
4   dxcxdxcxdxcxdxcxdxcxdxcx eeeeeey  

 
and the second equation can be obtained from the first by replacement in the latest of arbitrary 

pair of numbers ],[ jj yx  )4,...,1( j  by ],[ 55 yx . 

Parameters bah ,,  are determined by ratios 

 

 ;)()()(
1

211332
321

dxdxdxdxdxdx eeyeeyeey
D

a   

 ;)()()(
1

123123
321

cxcxcxcxcxcx eeyeeyeey
D

b   

 ,)()()(
1

122131132332
321

dxcxdxcxdxcxdxcxdxcxdxcx eeyeeyeey
D

h    

 
where 

 

,312312133221 dxcxdxcxdxcxdxcxdxcxdxcx eeeeeeD    
 

and in these formulae three pair of variables ],[ 11 yx , ],[ 22 yx  and ],[ 33 yx  can be 

changed by any other pairs ],[ jj yx , ],[ kk yx  and ],[ LL yx  provided that Lkj  . 

If values of the argument are equidistant from each other, i.e. 

xxxxxxxxx  45342312 , then values )exp( xcu   and 

)exp( xd   are roots of the quadratic equation 

 

0 2  qp  , 
 

where 
 

;
))(()(

))(())((

3421
2

23

54214323

yyyyyy

yyyyyyyy
p






.
))(()(

))(()(

3421
2

23

5423
2

43

yyyyyy

yyyyyy
q




  (3.30) 
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The initial system of equations has the solution in and only in a case, if the given 
quadratic equation has two real, positive and not coinciding to each other roots. 

 

7. Function ))sin()cos(( xBxAesx     

Let be necessary to interpolate the considered function using four paired numbers 

},{ 11 yx , },{ 22 yx , },{ 33 yx , },{ 44 yx , i.e. to solve the system of equations 

 

  4,...,1      ,)sin( )cos(  kyxBxAe kkk
sxk   

 

with respect to parameters ,,, sBA .  

 
The given interpolation is equivalent to the interpolation of the function 

xx ee      , 
 

where 

 isiBAisiBA      );(
2

1
      ;    );(

2

1
; (3.31) 

 
at the same time can be used formulae which are given in Item 6 of the given paragraph. 

The pair of numbers ],[ s  can be determined as the solution of any pair from the 
following four equations 

 

;0)sin()sin()sin( 213132321
321   xxeyxxeyxxey sxsxsx   

;0)sin()sin()sin( 324243432
432   xxeyxxeyxxey sxsxsx   

;0)sin()sin()sin( 214142421
421   xxeyxxeyxxey sxsxsx   

0)sin()sin()sin( 314143431
431   xxeyxxeyxxey sxsxsx   

 
at additional condition 0 . 
 
Parameters A  and B  are determined by ratios 
 

,
)sin(

)cos()cos(
    ;

)sin(

)sin()sin(

14

1441

14

1441
4141

xx

xeyxey
B

xx

xeyxey
A

sxsxsxsx

















 

 

and, in these formulae, two pairs of variables ],[ 11 yx  and ],[ 44 yx  can be changed by any 

other pairs ],[ jj yx  and ],[ kk yx  provided that kj  . 
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If values of the argument are equidistant from each other, i.e. 

xxxxxxx  342312 , then values ))exp((1 xis    and 

))exp((2 xis    are roots of the quadratic equation 

 

0 2  qp  ,  (3.32) 

where 
 

;
31

2
2

3241

yyy

yyyy
p




      .

31
2

2

42
2

3

yyy

yyy
q




  

 
The initial system of equations has the solution in and only in a case, if the given 

quadratic equation has two complex conjugate roots (with nonzero imaginary parts). At the 
same time  

 

,ln
 2

1
ln

1
1 q

xx
s 





 

      (3.33) 
 

and the set of possible values of   can be presented as the union of elements of two 

sequences ][ k  and ][ k  , where 

 

;/2    ;)1(    ; 00 xkk kk    

 2/121
0 )4(arctan

1

4

)arg( 








 pqp
xx

 .  (3.34) 

 

8. Function ))sin()cos(( xBxAeh sx    

Let be necessary to interpolate the considered function using five paired numbers 

, 5,...,1k , i.e. to solve the system of equations 

 

  5,...,1      ,)sin( )cos(  kyxBxAeh kkk
sxk   

 

with respect to parameters ,,,, sBAh .  

 
The given interpolation is equivalent to the interpolation of the function 
 

xx eeh      , 
 

where   and   are determined by ratios (3.31), at the same time can be used formulae, 

brought in Item 7 of the given paragraph. 

},{ kk yx
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The pair of numbers ],[ s  can be determined as the root of the system of equations at 

additional condition 0 . One of equations of the given system looks like 
 

  ))sin()sin()sin(( 34
)(

42
)(

23
)(

1
344223 xxexxexxey xxsxxsxxs   

  ))sin()sin()sin(( 14
)(

43
)(

31
)(

2
144331 xxexxexxey xxsxxsxxs   

  ))sin()sin()sin(( 24
)(

41
)(

12
)(

3
244112 xxexxexxey xxsxxsxxs   

,0))sin()sin()sin(( 13
)(

32
)(

21
)(

4
133221   xxexxexxey xxsxxsxxs   

 
and the second can be obtained from the first by replacement in the latest of arbitrary pair of 

numbers ],[ jj yx , 4,...,1j , by ],[ 55 yx . 

Parameters Ah,  and B  are determined by ratios 

 

 ;)sin()()sin()()sin()(
1

213132321
213 xeyyxeyyxeyy

D
A sxsxsx    

 ;)cos()()cos()()cos()(
1

231123312
213 xeyyxeyyxeyy

D
B sxsxsx    

 ,)sin()sin()sin(
1

21
)(

313
)(

232
)(

1
211332 xxeyxxeyxxey

D
h xxsxxsxxs     

 
where 

 

),sin()sin()sin( 13
)(

32
)(

21
)( 133221 xxexxexxeD xxsxxsxxs     

 

and, in these formulae, three pairs of variables ],[ 11 yx , ],[ 22 yx  and ],[ 33 yx  can be 

changed by any other pairs ],[ jj yx , ],[ kk yx  and ],[ LL yx  provided that Lkj  . 

If values of the argument are equidistant from each other, i.e. 

xxxxxxxxx  45342312 , then values ))exp((1 xis    and 

))exp((2 xis    are roots of the quadratic equation (3.32), where p  and q  are 

determined by ratios (3.30). 
The initial system of equations has the solution in and only in a case, if the given 

quadratic equation has two complex conjugate roots (with nonzero imaginary parts). At the 
same time s  is calculated by (3.33), and the set of every possible values of   can be 

presented as union of elements of two sequences ][ k  and ][ k  , where k , k  , 0  and 

  are determined by ratios (3.34). 
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3.4.3. Solution of Transcendental Equations of Special Types 
 
The considered below methods of solving of different transcendental equations can be 

used in many applications. In particular, these methods are used in the problems of 
interpolation of nonlinear functions of different types considered in the present section.  

 
1. Equation containing sum two exponents. 

Let's consider the equation ( )f x h , where  

( ) cx dxf x a e b e    , 

 
at 0abcd  .  
 
Below different methods of determination of boundaries and initial estimates for roots of 

this equation are considered depending on signs of parameters a , b , c , d . When any 

number which can be used as initial approach at solving of the equation ( ) 0f x h   by 

iterative Newton method is pointed, monotonous convergence of the corresponding iterative 
sequences to the required root is guaranteed.  

 
a) 0ab   and 0cd  .  
 

At 0ha   the function ( )f x h  has unique zero zx  belonging to the open interval with 

boundaries  
 

1
 ln

h

c a b
 
  

 and 
1

 ln
h

d a b
 
  

. 

 
In the case 0c   and 0d   the right boundary of this interval, and in the case 0c   

and 0d   – its left boundary, can be used as the initial approach at solving of the equation 

( ) 0f x h   by Newton iterative method.  

At 0ha   the function ( )f x h  has no zeros.  

 
b) 0ab   and 0cd  .  
 

Let 0x  is the point of extremum of the function and 0 0( )y f x ; in the considered case 

0sign sign sign y a b  .  

At 0/ 1h y   the function ( )f x h  has two zeros 1zx  and 2zx , between which there is 

the number 0x . Both zeros belong to the open interval with boundaries  

 

(1/ ) ln( / )c h a  and (1/ ) ln( / )d h b . 
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Each of these boundaries can be used as initial estimate to the nearest root of the equation 

( ) 0f x h   at solving of this equation by Newton iterative method.  

At 0/ 1h y   the function ( )f x h  has one zero coinciding with 0x .  

At 0/ 1h y   the function ( )f x h  has no zeros.  

 
c) 0ab   and 0cd  .  

Let 0x  is the point of extremum of the function; 0 0( )y f x  and infx  is an abscissa of 

point of inflection of plot of the function;  
 

ln( / )
H

a b
x

d c





 

is the point in which ( )f x  reduces to zero. In the considered case 

0sign sign (  ( )) sign (  ( ))y a d c b c d    .  

At 0/ 0h y   the function ( )f x h  has one zero zx  belonging to the open interval 

which boundaries are numbers  
 

1
 ln

b

d h a
    

 and 
1

 ln
b

c d h a
 
   

 (at  )c d  

 
or  
 

1
 ln

a

c h b
    

  and 
1

 ln
a

d c h b
 
   

 (at  )c d . 

 

Besides the number Hx  is the lower bound for zx  (at 0c   and 0d  ) or the upper 

bound for zx  (at 0c   and 0d  ). Any upper bound for zx  (at 0c   and 0d  ) or any 

lower bound for zx  (at 0c   and 0d  ) can be taken as an initial estimate to zx  at solving 

of the equation ( ) 0f x h   by Newton iterative method.  

At 00 / 1h y   the function ( )f x h  has two zeros 1zx  and 2zx , between which it is 

the number 0x . The point 0 0{ , }x y  divides the plot of the function ( )y f x  on two 

branches, one of which at x   asymptoticly approachs to the abscissa axis, and another 
leaves in infinity. Let's consider for definiteness that the first of these branches contains the 

point 1{ , }zx h , and the second – the point 2{ , }zx h . Then 2zx  belongs to the open interval 

which boundaries are the numbers 0x  and Hx . The numbers infx  and Hx  can be used as 
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initial estimates, respectively, to 1zx  and 2zx  at solving the equation ( ) 0f x h   by 

Newton iterative method.  

At 0/ 1h y   the function ( )f x h  has one zero coinciding with 0x .  

At 0/ 1h y   the function ( )f x h  has no zeros.  

 

d) 0ab   and 0cd  .  
 

The function ( )f x h  for any h  has one zero zx  belonging to the open interval which 

boundaries are numbers  
 

1
 ln

b

d h a
    

 and 
1

 ln
b

c d h a
 
   

 (at  0)hb  

 
or  

1
 ln

a

c h b
    

 and 
1

 ln
a

d c h b
 
   

 (at  0)ha  . 

 
2. Equation containing sum of several exponents. 

Let it is required to determine real solutions of the equation ( ) 0f x  , where  

 

0

( )  k

n
c x

k
k

f x a e


  ; 

0ka  ; 0 1 ... nc c c   .  

 
a) Boundaries of zeros. Taking into account that considered function can be presented as 

follows  
 

0 0

1
( ) ( )

0
0 1 0

( )   1   1n n k k

n n
c x c c x c x c c xk k

n
k kn

a a
f x a e e a e e

a a


  

 

   
      

   
  , 

 
We will obtain the following rules of determination of boundaries of zeros of these 

function:  
If for some number 0s   it takes place  
 

1
( )

0

 1n k

n
c c sk

k n

a
e

a


 



 , 
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then s  is an upper bound of all real zeros of the function ( )f x ; at x s  it takes place 

sign ( ) sign nf x a .  

If for some number 0s   it takes place  

0( )

1 0

 1k

n
c c sk

k

a
e

a
 



 , 

 

then  s  is a lower bound of all real zeros of the function ( )f x ; at x s   it takes place 

0sign ( ) sign f x a .  

In both cases it is possible to appropriate to the parameter s  the initial value equal to 
zero and then increase this parameter by some constant (for example, by 1) until the required 
inequality will be executed.  

 
b) Algorithm of determination of zeros. The offered below algorithm of determination of 

zeros of the function ( )f x  is based on the following relation for the derivative of this 

function:  
 

   ( )  ( )       ( 0,..., )m m kc x c x c x
k k m

k m

d
e e f x a c c e m n

dx




   . 

 
The right side of the latter equality contains the number of exponents by one less than the 

function ( )f x  and hence, the problem of determination of its zeros appears easier than one 

for the function ( )f x .  

Real roots of the equation ( ) 0f x   can be determined by means the following 

algorithm:  
 
Elements of the triangular matrix  
 

(0)
0
(1) (1)
0 1

( ) ( ) ( )
0 1

, 0, ..., 0

, , ..., 0

... ... ... ...

, , ...,n n n
n

a

a a

a a a

 
 
 
 
 
  

 

 
are determined by means of relations:  
 

( )

( 1)

      ( 0,..., );

( )      ( 1,..., ;  0,..., 1).

n
k k

j j
k k k j

a a k n

a a c c j n k j

 

       
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Then successively for various values 1,..,j n  real zeros ( )
1

jx , ..., ( )

j

j
nx  of the functions  

 

( ) ( )

0

( )  k

j
c xj j

k
k

f x a e


  

are determined. Each sequence of such zeros is supposed arranging in increasing order.  

At 1j   two cases are possible: at (1) (1)
0 1 0a a   the function (1) ( )f x  has unique zero  

 

 (1) (1) (1)
1 0 1

1 0

1
 ln /x a a

c c
 

 ; 

 

otherwise the function (1) ( )f x  has no zeros.  

At 1j   for determination of zeros of the function ( ) ( )jf x  there are used determined 

earlier zeros of the function ( 1) ( )jf x  and also determined by rules of Item a) lower lox  and 

upper hix  bounds of required zeros. Each of intervals ( 1)
1[ , ]j

lox x  , ( 1) ( 1)
1 2[ , ]j jx x  , ..., 

( 1) ( 1)
2 1[ , ]j j

j jx x 
  , ( 1)

1[ , ]j
j hix x
  may contain no more than one zero of the function ( ) ( )jf x . If 

this zero exists then it can be determined by the bisection method or the chord method.  

Determination of zeros of the function ( ) ( )nf x  solves the task in view.  

 
 

3.5. CONSTRUCTION OF CONFIDENCE INTERVALS FOR 

MATHEMATICAL EXPECTATIONS OF RANDOM VARIABLES 
 
At solving many theoretical and applied problems, the broad applications have 

confidence intervals for parameters of probability distribution laws of the investigated 
phenomena. The quality of the confidence interval is determined by its width for the given 
coefficient of confidence. There are three basic methods of finding confidence intervals [102] 
which are based: 1) on the frequency theory of probability; 2) on fiducial distributions; 3) on 
the theorem of Bayes. The first method uses the asymptotic normality of the first derivative of 
the logarithm of likelyhood function. According to the theorem of Wilks, for large sampls, 
this method gives shortest on the average intervals for the certain class of distributions [102] 
(hereinafter we shall call this method classical). The second method uses fiducial 
distributions, corresponding to the considered distribution. In the third method, the bounds of 
the confidence interval are established on the basis of a posteriori distribution of probability 
of the considered parameter. 

  One of methods of determination of a confidence interval for mathematical expectation 
of a random variable below is offered, founded on utilization of serial statisticses [1, 111, 
112]. As against above described, this method does not demand the knowledge of other 
parameters of distribution laws (for example, variance at a normal probability distribution 
law) at construction of a confidence interval of mathematical expectation [113].  
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Let x  is the random variable, definite in the interval ),(   with mathematical 

expectation m  and variance 
2 ; )(x  and )(xp   are distribution function and distribution 

density of the suitable normalized random variable ;/)( mxx   ],...,,[
21 N

xxx  is N -

dimentional sample; 
 

}.{max    };{min
1

max
1

min j
Nj

j
Nj

xxxx


  

 

Theorem 3.3. A confidence interval for the parameter m with the confidence level 1  
is 

 

)],()();()([ minmaxmaxminmaxmin xxHxxxhx NN    

 

where the functions )(Nhh   and )(NHH   are determined by solving equations 

 

 2/)(  h  and 2/)(  H   

 
in domain 1h  and 1H , at  

   ; )1/()()()(
0

1


 duhuhuupNh N    (3.35) 

   . )()1()()(
0

1


 duuHuHupNH N  

 
Proof: Let us consider random variables  
 

/)( min mxu   and ./)( max  mx    

 
In accordance with [89, 111], their joint distribution density is equal to  
 

2))()(()()()1(),(  N
w upupNNvup   at .u  

 
The bounds of the confidence interval are determined from the conditions  
 

  
   2/)(

;2/)(

minmaxmax

minmaxmin






mxxHx

mxxhx

N

N

P

P
 

(the symbol P means the probability of the event). Inequalities  
 

mxxhx  )( minmaxmin  and mxxHx  )( minmaxmax  
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are equivalent of inequalities 
 

uhh  )1/(  and )1/( HHuv  ; 

 

to them there correspond domains 1D  and 2D  on the plane (uv), showed in Figure 3.8. 

Let us designate by )(h  and )(H  the probabilities of these inequalities; then 
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and 
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0 )1/(



 
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
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N
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what was necessary to prove.  

The coordinate axises are designated by u  and  ; the region D0 is bounded by straight 

lines hhu /)1(   and )1/( HHu  ; the region D1 is in upper half-plane 

between straight lines u  and hhu /)1(  , and region D2 is in lower half-plane 

between straight lines u  and )1/( HHu  . 

 

 

a) h > 0, H > 0;  b) h < 0, H < 0. 

 Figure 3.8. Critical resgions D1, D2 and region of acceptance of hypothesis D0; tg1=h/(1+h); 
tg2=H/(1+H). 
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Let us note that the equations (3.35) do not contain the parameter  . It takes place 
because the change of  corresponds to the change of the scale in Figure 3.8, at which each 

of domains 0D , 1D  and 2D  does not change its position with regard to the coordinate 

axises. 

For positive values of the argument of functions )(h  and )(H  they can also be 

determined by formulae 

  



0

1)(/)1()()( duuhhuupNh N   (3.36) 
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0

1


 duHHuuupNH N
 

 

The given ratios can be obtained as follows: let us designate by )(' h  the function, 

equal to the right part of the first equation (3.36), then  
 

 
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h
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If the function )(up  is even, i.e. symmetrical concerning mathematical expectation, then 

)(h = )(H  and, accordingly, ).()(  NN Hh   

The mentioned below results are valid for symmetrical probability distribution densities. 

Let us bring the values of )(Nh  for limiting values of the confidence probability at 

fixed N : at 0 , )(
N

h , and at 1 , 2/1)( 
N

h . 

It is possible to demonstrate the latest ratio as follows: at 2/1h  
 

    .
2

1
1)(2

2

1
1)(2)()2/1(

0
0

1 


 NN uduuupN  

 

The values of coefficients )()(  NN Hh   for different N  and   at normal and 

uniform probability distributions with arbitrary variance are presented in Tables 3.2 and 3.4. 

As it is seen from the tables, at fixed   by increase of the sample size N  the function 

)(Nh  decreases and, since some value of N  becomes negative. 

The value of N , at transition through which one )(Nh  changes the sign, is possible to 

calculate as follows: at 0h   
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    .
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0
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1
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NN uduuupN 
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
  

 
 
 

It is obvious that )(h  is increasing function. Therefore, at ,22/ N  0)( 
N

h , 

and at N 22/ , 0)( 
N

h , i.e. the function )(Nh  is negative at )/2(log2 N . 

Let us consider the limit )(Nh  at N  for fixed  . 

 

Theorem 3.4. If the density function )(up  is continuum and there is such positive 

number Bu  that at Buu   the function )(/)( bupup  decreases and  

 

,10  ,    ,0)(/)(lim 


bbbupup
u  

 
then 

 

  .
2

1
lim 


N

N
h

        (3.37) 
 
It is obvious that the condition of the theorem is valid for normal distribution. 
 

Proof. In accordance with the condition of the theorem the function )(up  is strictly 

monotonic at Buu  . Let us designate  

 

),1(    and     
)(1

)(
1 2/11 

 


 Nu
h

h
s N

N

N




 

 

where )(1   is the function, inverse of )( . Let 2))(1(  BuN  and, therefore, 

Buu  , and also 0)( Nh  and, consequently, 10  Ns . Let us divide the integration 

interval into two subinterval in the expression determining )(h ; we shall obtain  
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The first term in the right part of the given equality  
 

0)21()1)(2( 2/1   NN
N Nu   at  N . 

 

Let us consider the second term. It is obvious that at N  the limit of the second 

term should tend to 01  . In this case, it should take place 0NS . Otherwise, let 

0NS , i.e. 10  NS . Then, in accordance with the condition of the theorem, at 

N  there will take place  )(/))1(( NNN uPuSP , i.e. the second term tends to 

0 , which contradicts the above-stated inequality. Consequently 
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what was necessary to prove. 

Let us note that the condition of the theorem is sufficient, but it is not necessary, since for 
some widespread distributions, such as, for example, uniform distribution, the condition of 
the theorem is not fulfilled, but (3.37) takes place. 

For the uniform distribution, simple, evident expressions for functions )(hN  and 

)(Nh  can be obtained: 
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If the variable x  is distributed normally, then at calculation of the function 

)()( hh  , it is expedient to use the quadrature formula of Laguerre  
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where  
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)(xnorm is the distribution function of the standardized normal variable; 

nkk ,...,1,   are zeros of the polynomial of Laguerre   )(0 xLn  of power n ; 

  20 )(

1

knk

k
L

w
 

  are weigh coefficients of the quadrature formula. 

 

If the number of nodal points N  take equal to 16, then it provides the accuracy of 

calculation of negative values of the function )(Nh , by which they are presented in Tables 

3.2 and 3.4. 

If, at calculation of functions )(hN  and )(hN , the quadrature formula of Gauss or 

any other formula of approximate calculation of the integral, for the bounded interval, uses, 
then, it is obvious that the upper bound of integration must be replaced by finit number. Let 

us designate by )(v  and )(v   the errors of calculation of functions )(hN  and 

)(HN , respectively, caused by replacement of the upper bound of integration by number 

v . Then      
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; 

, 

 
 
 

where ; . These formulae allow to determine functions 

 and  with required accuracy.   Let us note that if for normal distribution the 

value of the parameter , provided the condition , is equal to , then 

for the lognormal distribution, at the same accuracy, it is necessary to take . 
 

Table 3.4. Values of the coefficients )(Nh  

 
 Uniform distribution 

N\ 0.10 0.05 0.02 
2 4.0000 9.0000 24.000 
3 0.5811 1.2361 2.5355 
4 0.0772 0.3572 0.8420 
5 0.1109 0.0574 0.3296 
6 0.2076 0.0897 0.0934 
7 0.2661 0.1762 0.0403 
8 0.3053 0.2329 0.1257 
9 0.3332 0.2729 0.1847 

10 0.3542 0.3025 0.2278 
11 0.3705 0.3254 0.2606 
12 0.3836 0.3435 0.2865 
13 0.3942 0.3582 0.3073 
14 0.4031 0.3704 0.3244 
15 0.4106 0.3807 0.3388 
16 0.4170 0.3895 0.3510 
17 0.4226 0.3970 0.3615 
18 0.4275 0.4037 0.3706 
19 0.4318 0.4095 0.3786 
20 0.4356 0.4146 0.3857 
21 0.4390 0.4192 0.3920 
22 0.4421 0.4233 0.3976 
23 0.4448 0.4271 0.4027 
24 0.4474 0.4304 0.4073 
25 0.4497 0.4335 0.4115 
26 0.4518 0.4363 0.4153 
27 0.4537 0.4389 0.4188 
28 0.4555 0.4413 0.4220 
29 0.4571 0.4435 0.4250 
30 0.4587 0.4456 0.4278 
40 0.4696 0.4601 0.4472 
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50 0.4759 0.4685 0.4584 
60 0.4801 0.4740 0.4657 
70 0.4830 0.4778 0.4708 
80 0.4852 0.4807 0.4746 
90 0.4869 0.4829 0.4775 
100 0.4882 0.4846 0.4798 
200 0.4942 0.4924 0.4901 
300 0.4961 0.4950 0.4934 

 
 

Let us consider the case when the graph of the distribution density of the variable x  
forms the trapezoid with the axis of abscissa, the divisionof the lengthes of upper and lower 

bases of which is equal to  . Such kind of distribution we shall call generalized trapezoidal. 

The parameter  , it is clear, satisfys the inequality 10   . In particular, at 1 , x  has 

the uniform distribution, at 0  - triangle, and at 3/1  - trapezoidal.  

For obtaining explicit expressions for the function 
)(hN

 at 1  can be used formula 
[225]  
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( 0s ; 0 ; ,...2,1,0/ s ), by which can be obtained  
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In general case, for arbitrary value of  , the expression for the function 
)(hN

 is 
cumbersome and, therefore, they are not brought here. However they are significantely 

simplified at 0 , i.e. when x  has triangualar distribution, and it takes the kind:    
 

at 0h  
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It is preferable to compute the values of the hypergeometric polynomial 

) ; ; ,(12 zNFBN   with the help of recurrent formula 
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If it computs by summation of the hypergeometric series then at big N  the error of 
computation could be big, as neighbouring items of this series have different signs and their 
absolute values are considerably big than the sum.  

In Figure 3.9 and 3.10 are given the dependences of the length of the confidence interval, 
computed by classical and above brougth methods, respectively, on the sample size at fixed 
variance of observation results and on standard deviation at fixed size of sample for normal 
distribution. In Figure 3.11 and 3.12, 3.13 and 3.14, also 3.15 and 3.16 are given the 
analogous dependences, for lognormal, triangular and uniform laws of probability 
distribution, respectively.  

The computation of the length of one value of the confidence interval is realized by 
averaging triple computation of its value on the basis of three independent sampls of 
necessary sizes for given parameters. 

From these dependences it is seen that for normal, lognormal and triangular distributions 
the classical method gives the best result. For the normal distribution this must true in 
accordance with the theorem of Wilks [102], since in this case the likelyhood function is 
distributed normally. For the uniform distribution, the offered method, in which the 
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coefficient )(Nh  is calculated by probability distribution laws of the random variables, 

gives much best result, than classical method. If draw the graphs, similar to the shown in 
Figure 3.9 -3.16 for generalized trapezoidal distributions at different values of the parameters 

 , it is possible to reveal that at 4.0 , the offered method gives the best result than 
classical. 

 
 
 
 
 

 

Figure 3.9. Dependence of the length of the confidence interval on the sample size for normal 

probability distribution law at ; 1 - classic method; 2 - new method. 

 

 

Figure 3.10. Dependence of the length of the confidential interval on standard deviation for normal 

probability distribution law of at sample size 50N ; 1 - classic method; 2 - new method. 

 

1,0  m
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Figure 3.11. Dependence of the length of the Confidential interval on the sample size for lognormal 

probability distribution law at 5.0,3  a ; 1 - classic method; 2-new method. 

 

Figure 3.12. Dependence of the length of the confidential interval on the parameter 
ae , proportional to 

the standard deviation, for lognormal probability distribution law at 5.0  and sample size 

50N ; 1- classic method; 2-  new method. 
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Figure 3.13. Dependence of the length of the  confidential interval on the size of sample for triangular 
probability distribution law at a=0, b=5; 1-classic method;  2-new method. 

 

 

Figure 3.14. Dependence of the length of the confidential interval on the length of domain interval of 

the random variable for triangular probability distribution law at sample size 50N ; 1 - classic 
method; 2-new method. 

 

Figure 3.15. Dependence of the length of the confidential interval on sample size for uniform 
probability distribution law   at a=0, b=5; 1 - classic method; 2 – new method. 
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Figure 3.16. Dependence of the length of the confidence interval on the length of domain interval of 

random variable for uniform probability distribution law at sampl size 50N ; 1 - classic method; 2-
new method. 

Thus, the offered method, except of simplicity of computation, gives the best result than 
the classical method for the construction of the confidence interval of mathematical 
expectation of the random variable, if probability distribution of the latest considerably differs 
from normal. 

 
 

3.6. IMITATIVE MODELING OF FORMATION  
OF THE QUALITY OF SEWAGES 

 
The formation of quality of natural waters is rather complex problem. Among the 

numerous factors, stipulating their condition, it is necessary to single out industrial flows. In 
order to protect natural waters from the pollution by industrial lfows, they build expensive 
refining facilities and systems of monitoring of sewages. The efficiency of capital investment 
depends on the optimality of the accepted designing solutions, in particular, from the 
calculation of powers of refining facilities, from the rational selection of the equipment of 
monitoring and, also, from the quality of made decisions in the process of exploitation of 
refining facilities, from maximum application of their capabilities. For the successful solution 
of these problems, the large value has the knowledge of the process of formation of the 
quality of sewages, the ability to predict its development in time with taking into account all 
possible critical situations, arising in the process of operation of the enterprise [114]. 
Imitative models of formation of the quality of sewages enable to predict the quality of 
sewages in dynamics, depending on the given operational mode of the enterprise, not 
breaking a normal mode of its operation. The following initial information is necessary for 
their making [1]: the detailed scheme of inter disposition of pollution sources, connected by 
sewer system of the given enterprise; water expense for each pollution source and the 
concentration of dropping ingredients in all possible technological modes of operation; 
working models of transportation of polluting ingredients on considered section of sewer 
system; the kind and the character of the random component of the pollution process for 
sources of droppings. 
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Imitative models of formation  of quality of sewages, except of indicated, enable us [1]: 
to control indirectly the activity of autoanalyzers of the water quality by comparison of 
simulation results and measured values of the same parameters; at temporary disabling any of 
measurement channel to fill the gaps in measurements of the given parameter, to calculate 
concentrations of controled ingredients in an uncotroled point of water object in accordance 
with the conditions of dropping of sewages by pollution sources (it allows to reduce up to the 
minimum the necessary number of measurement facilities, necessary for the control of water 
object with the given reliability); to calculate Maximum Allowable Discharge (MAD) for 
objects of pollution with the purpose of the maintenance of concentrations of controled 
ingredients in bounds of maximum allowable concentration (MAC); to predict concentrations 
of controled ingredients in a given point of water object depending on the conditions of 
discharge of sewages by dropping sources; to find out sources of emergency pollution; to test, 
to coordinate and to optimize of technical, informational-program and mathematical supports 
of the developed automated quality monitoring system of the natural water, which 
considerably increases the efficiency of such developments and reduces up to minimum the 
time for their introduction in real object. 

In order to unify algorithms and programs, imitative models should be developed by 
modular-modulus principle with optimum separation of functions among the blocks, 
permitting to imitate different processes of pollution by the rearrangement of the order of the 
fulfilment and minimum replacement of developed blocks. 

The existence in imitative models of the following basic blocks seems to be expedient 
[1]: generation of the technological operational modes of pollution sources, i.e. generation of 
the block of control; realization of mathematical models of the transport of pollutants in the 
water; generation of multidimensional stochastic processes, having the given nature; 
generation of random numbers by the given probability distribution law. 

Developed by the author of the present book imitative model of the pollution process of 
the sewage of Odessa Nitrogen Factory is given below [1, 115]. The simulation of pollution 
process is considered on the example of the most typical segment of the factory, for simplicity 
of presentation. In Figure 3.17 is given schematic view of the modeled segment of Odessa 
Nitrogen Factory. Here directions of arrows, connecting pollution sources (S1, ...,S5) and an 
autoanalyzer of water quality, correspond to the direction of the stream of water; 

4321 ,,, TTTT  are nodal points of the system of drains; S1, S2 drop Ammonia; SЗ, S4 drop 

Ammonia and Carbamidum and S5 drops Ammonia, Carbamidum, Nitrogennitrite, 
Nitrogennitrate, Natrii phosphases. The program structure of imitative model of the pollution 
process of water is given in Figure 3.18. By arrow is shown the direction of circulation among 
program blocks.   
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Figure 3.17. Schematic view of modeling segment of Odessa Nitrogen Factory. 

 

 

Figure 3.18. Program structure of imitative model of water pollution process. 

As almost any real process, the formation of the quality of sewages is a dynamic and 
stochastic system. As dynamic mathematical models of transportation of pollutants in water 
there are used the models which are taking into account only processes of the dilution and a 
self-purification [116]: 
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where )(1 tyk  is the volume of water in k th knot; mptyk
p ,...,2),(   is the concentration 

of p th ingredient in k th knot; kq  is the number of dropsources, participating in the 

formation of water quality in k th knot; )(, ty jp  is the concentration of p th ingredient, 

droping by j th object of drop; j  is the time of runing of the water from j th object of 

dropings up to k th knot; )(tx p  is the stochastic component of the concentration of p th 

ingredient. 
It is known [117] that the Markov’s model is the best for hydrological data. It is supposed 

that it is also suitable for the data of the pollution of water. Realized by us investigation by 
natural data of Odessa Nitrogen Factory and the river Kura has confirmed this supposition. 

Therefore in offered below models, the stochastic component of concentration of 
pollutants ))(),...,(()( 1 txtxtx m  is modelled by the method of group simulation of 

multivariate normal Markov processes with given depth of connectivity (see paragraph 3.7).
 

In the block of generation of technological modes of operation of pollution sources, the 
set of weight coefficients of concentration of dpopping ingredients from pollution sources 

),...,( 51 kkK 
 
are formed. Elements of the vector K  satisfies to the ratio 10  ik . The 

case 0ik  corresponds to waying out of a situation, i.e. to switching-off of the suitable 

pollution source; 1ik  corresponds to the maximum pollution by i th pollution source. 

From Figure 3.19, it is seen that as input data for both the given block and the full program of 

imitative model of the pollution process are: M - the number of modelled ingredients; 1M  - 

the number of pollution sources; 1N  - the number of modelled modes of operational of 

pollution sources;  - the number of analyzers of the quality of controlled water;  - the 

depth of connectivity of the modelled Markov process;  - the concentration of 

Ammonia for th pollution source;  -the number of pollution sources, dropping the 

Ammonia;  - the concentration of Carbamidum for th pollution source;  

the number of pollution sources, dropping the Carbamidum;  the concentration of 

Phosphate;  the concentration of Nitrogennitrite;  the concentration of  Nitrogennitrate; 

, , - water expense for -th pollution source; , - the time, for 

which water runs from th pollution source up to analyzer   

, - the matrix of giving of modes of operational of pollution sources;  - the 

step of discreted simulation of pollution process;  - the time of the first change of the 

condition of pollution process;  - the step of change of condition of the pollution process; 

 - maximum time of generation of pollution process; , , 
, 

, intercovariation matrix of stochastic components of concentration of the 

pollutants; 
, , 

 
dispersion matrix of stochastic components of 
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concentrations of the pollutants; ,  elements of the set, obtaining values 0 

or 1. As a result of the work of this block is the set 
, 

, - current values of 

weight coefficients for concentrations of pollutants, determining technological modes of 
operation of the suitable pollution sources.  

 

 

Figure 3.19. The bookkeeping scheme of the algorithm of simulation of modes of operation of pollution 
sources. 

 

iIND NKi ,...,1

iK1
1,...,1 Mi 
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Figure 3.20. Time diagram of formation of values of weight coefficients. 

For clearness of the work of the considered block in Figure 3.20 is given the time 

diagram of formation of values of weight coefficients ik  for a simple example when pollution 

sources are two, and both either drop given quantities of pollutants or do not drop. The drop 

of pollutants they begin at once at start up the manufacture. After certain time 
t , the second 

pollution source damages, i.e. it stops dropping pollutants, and over 
t

ht , the first 

pollution source damages, at the same time the second pollution source begins operation, i.e. 

it drops the pollutants. The intervals 1  and 2  are times of water running from the first and 

the second pollution sources up to controled point, respectively. 
In a case, showed in Figure 3.21, the mathematical models of recalculation of pollutants 

concentrations look like  
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where  
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Figure 3.21 (Continued). 
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Figure 3.21. The bookkeeping scheme of the algorithm of simulation of pollutants concentrations. 

 

 

Figure 3.22. The bookkeeping scheme of the algorithm of simulation of multi-dimensional normal 
Markov process with given depth of connectivity. 
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The result of the work of the block, reduced in Figure 3.22, for one unit of time pass, are 
elements of -dimentional random vector  For their definition, the 

coefficients  
   

, with the 

help of auto- and intercovariation functions, are calculated. Because of the stochastic 
component of the concentration of pollutants is quasi-stationary, the values of auto- and 
intercovariation functions are necessary to re-calculate periodically. Accordingly, it is 
necessary to re-calculate unknown coefficients, and during stationarity of the process, it is 
necessary to use their earlier calculated values. With this purpose the elements of the set IND 
are used, which take on two values (0 or 1) depending on the necessity of recalculation of 
unknown coefficients. Normally distributed random numbers are used in simulation, which 
are calculated by simple transformation of standard, uniformly distributed random numbers 
generated by standard generator of pseudo-random numbers (see Appendix 1, 2, 3). 

The developed simulation models were used for generating measured values of controled 
parameters of sewages of the factory. On the basis of this information, the software of the 
automated quality monitoring system of these waters was tested and optimized [1, 118, 119]. 

 
 

3.7. SIMULATION OF REAL MULTIDIMENSIONAL STATIONARY 

GAUSS-MARKOV SERIES WITH GIVEN DEPTH OF CONNECTIVITY 
 
As a rule, the stochastic component of the process of formation of the condition of the 

environment approximates by Gauss-Markov series due to its limiting properties [83, 117, 
120]. The exhausting information about Markov processes are adduced in the works [121-
123]. As the objects of the environment are multydimensional with statistically inter-related 
parameters, we shall bound by consideration of the simulation of multidimensional Markov 
series. One-dimensional Markov series are their particular case. 

The simulation of multidimensional random series by computers is widely used at solving 
many applied problems. The methods of group simulation of inter-correlated time series are 
considered in the works [122, 124-125]. The methods of simulation of multidimensional 
Gauss-Markov series with single depth of connectivity is offered in [125, 126]. The problem 
of not equidistantness of the simulated results is automatically solved in it; the problem of 
selection of initial conditions becomes almost trivial, it excludes the transition process and the 
possibility of using of all elements of the simulated sequence. The method of the 
autoregression with integrated moving average (MAIMA) is described in the work [124]. The 
limitedness of the method is the following: it supposes the identity of conditional and 
unconditional distributions of the random series. Except for the described methods, in [122] is 
adduced the more general linear regression method at simulation of equidistant realization of 
multidimensional Gauss-Markov series. Its advantage is also in sufficient simplicity and 
convenience of realization of this method by comparison with other methods. 

All these methods of simulation of random series imply the availability of certain a prior 
information: multidimensional distribution function or spectral density, the vector of 
mathematical expectations and covariance function and so on, which one, as a rule, is given 
as observation results, by which the unknown characteristics of random series estimate. The 
errors made in estimations influence the accuracy of simulation results. 
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Let us consider the dependence of the accuracy of simulation on the errors of estimation 
of characteristics of modelled series [127]. The stationary Gauss-Markov series is completely 
determined by giving of the covariance matrix. Therefore m -dimensional Gauss-Markov 

series ))(),...,(),(()( 21 txtxtxtX m  with depth of connectivity equal to N  can be 

presented as [122, 126] 
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is standard normally distributed random variable. 

The unknown coefficients and the residual variance in (3.39) are determined by the 
method of least squares. Using the designations  
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where  jhR ik ,  are the suitable covariations, the expression for unknown coefficients 

becomes 
 

,ppp CBA     (3.40) 

 

where 
pB  is the pseudoinverse matrix [128, 129]; the expression for the residual variance is 
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where )0(pR  is the variance of p th stochastic process. 

Let us estimate the error of simulation. First of all, it depends on the accuracy of 
estimations of the values of covariance functions of the natural data and, also, from the 
accuracy of the solution of the system of linear equations (3.40). Let us designate 
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.,...,1 mp   

 

The sizes of the column vector )1( tX p  are equal to   .1)1(  pNm  Let us 

rewrite (3.39) as follows: 
 

,,...,1),()1()( mpttXAtx ppp
T
pp      (3.42) 

 
where pA  is determined by the expression (3.40). 

Elements of the matrices pB  and pC  are the values of the auto- and inter covariation 

functions computed by experimental data. Therefore, in a real case, not exact values of 

matrices pB  and pC , but their estimations pB


 and pC


 are known. Let us designate 

,ppp BB 


 
,ppp CC 


 where p  and p  are the matrices of calculation errors of 

the matrices pB  and pC , respectively. 

Thus, in a real case, for the determination of pA  we have the system of equations 
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Let us designate by 0pA


 the normal pseudo-solution of the system (3.43). Then 
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 where 0pA  is the absolute 

error of calculation of the matrix 0pA . Let us introduce the following designations also 
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where   is the Euclidean norm of the suitable matrix. Let us suppose that pB  and pC  are 

quite small values. Then, in accordance with [129] the following estimation is valid 
 

 ,0 pppp CBBcondA       (3.44) 

 

where  
ppp

BBBcond  is the condition number of the matrix pB . 

The use of the estimation 0pA


 in (3.42) results in errors of simulation, i.e. in reality the 

following random series is modeled 
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                        (3.45) 

 
where ppp  

, p  is the absolute error of calculation of the residual of the 

standard deviation p . 

Let us suppose that the exact values of the initial vectors ),(),...,1( 11 NtXtX   

)(),...,1(2 NtXtX m   are known, and also the residual standard deviations 

,,...,1, mp
p


 
of the modelled process are known. We shall rewrite (3.45) by the way 

 

,,...,1    ),( )1( )()( 00 mpttXAAtx ppp
T
p

T
pp     (3.46) 

 
The recurrent formula of definition of the generated random series on k th step looks like 
 

  
),( 

)1()1()( 00

kt

ktXktXAAktx

pp

pp
T
p

T
pp









 

where )1(  ktX p  is the vector of exact values of generated series on )1( kt th step; 

)1(  ktX p  is the vector of absolute errors on )1( k th step computed values of the 

generated series 
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The absolute error of computed value of the generated series (3.46) is 
 

,)1( )1( )( 00  ktXAktXAktx p
T
pp

T
pp


            (3.47) 

 

where )1(  ktX p


 is computed values of the generated series on )1(  kt th step.   

Let us determine the condition to which should to satisfy the error of calculation of 
estimations of the elements of inter-covariation matrix of the generated series, so that for any 

1k  there was fulfilled  
 

  ),...,1(  :    ,1)( mppktxP pp   .  (3.48) 
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To take into account (3.43), (3.46), we have 
 

 

).))1()(

)1((())1(

)1(()(
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0













 ktXCBBcond

ktXAPktXA

ktXAPktxP

pppp

ppp
T
p

p
T
pp




 

 
Therefore, if   is determined from the condition 

 

,1)))1()()1((( 0    ktXCBBcondktXAP pppppp


  (3.49) 

 
then (3.48) takes place. 

Let us consider the case, when in the model (3.39) are left out the current values of 

modelled series, i.e. when mppbp ,...,1,1,...,1,0  


. At this time, the matrix pB  

is quadratic. 

The random variable )( jiX p 


 is obeyed the normal distribution law with mathematical 

expectation equal to 0 , and variance )0(pR . Therefore it is always possible to find the value 

p  for which there takes place 

 

    1)( pp jtxP


. 

 

Taking into account the property of reproducibility of 2 -probability distributions, we 

write 
 

  ,1)()1(
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1 1
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

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
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j
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  (3.50) 

 

where 

2/1

1

22/1 







 



m

i
iND  . For estimation of the norm of the vector of errors we 

analogously obtain 
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where 
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By taking into account (3.50), (3.51), the ratio (3.49) can be rewritten as follows: 
 

  ,1})(

))1()()1(({

0
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
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
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ktXCBBcondktXAP

pppp

pppppp



 

Thus, if p  satisfys the condition 

 

  ppppp DCBBconddA    )(0 ,  (3.52) 

 
then the ratio (3.48) will take place. 
Let us designate the maximum absolute error of calculation of a value of the covariance 

function by R . Then 

 

  RpRp mNpmNNm  2/12/122 )(,)1(   

 
and the ratio (3.52) will be rewritten in such a way: 
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  (3.53) 

 

Thus, if the condition (3.53) is fulfilled for all mp ,...,1 , then the multidimensional 

Gauss-Markov series is generated with given accuracy by probability greater than or equal to 
1 . The sample size n , ensuring the calculation of values of the covariance function with 

absolute error which do not surpass R , is determined by the ratio (3.48). 

Let us consider now the general case, when in the model (3.39), the current values of the 
modelled series are allowed. At such case, the expressions (3.50), (3.51) take the forms, 
respectively: 
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where 
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  (3.55) 

 
where     
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Thus, we have the recurrent ratio (3.55), permitting to estimate from above the random 

variable )1(  ktX p  with given probability for the general case of the model (3.39). It 

is necessary to note that the estimations (3.50), (3.51), (3.54) do not depend on the time 
parameter, i.e. the error of simulation of multidimensional time series is determined by the 
error of calculation of the matrices pB  and pC , the elements of which are the values of 

covariance functions, and also by conditionality of the matrices pB , by the norms of the 

vectors 0pA , by the residual variance 2
p

 
of the modelled series, by its dimensionality and 

the depth of connectivity. Therefore, before of beginning the simulation of the 

multidimensional series it is necessary, by the ratio (3.54), to estimate R  - the error of 

calculation of values of covariance functions, ensuring the given error of simulation. 
By taking into account the error of calculation of the residual variance of the modelled 

series, the absolute error of simulation (3.47) takes the form: 

).()1()1()( 00 ktktXAktXAktx ppp
T
pp

T
pp  


 

 
Let us write the expression (3.41) in matrix form 
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where 
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By taking into account the errors, the expression (3.56) can be rewritten as follows: 
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From here, for the error of calculation of the residual variance, we obtain the ratio 
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  (3.57) 

 

At fulfilling the condition (3.53), the error of calculation of the variance (3.57) will be 
insignificant. If in (3.57) to neglect the additives of higher order, then for estimation of the 
error of the residual variance of modelled process, it is fair 
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The error of calculation of the residual variance of the modelled series is taken into 
account by adding the estimation from above of p  in the left-hand part of the expression 

(3.52), calculated by the ratio (3.58). 
The reduced results are obtained in the supposition that the system of linear equations 
 

ppp CAB    (3.59) 
 

is compatible. The compatibility of the system (3.59) means that 

,0 EBB pp   (3.60) 
 

where E  is the unit matrix. 
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The algorithm of calculation of 
pB  has an error, therefore the condition (3.60) will be 

fulfilled with certain error. Let us designate by  pB  the error of calculation of 
pB , i.e. 

  ppp BBB


. The system (3.58) is compatible, if 

 

.0   pppp BBEBB


 

 

The noncompatibility of (3.59) means that ))1(())((  tXMAtxM p
T
pp , i.e. even at 

0))1(( tXM p  there takes place 0))(( txM p . Because of this reason, the value 

)0())((  kktxM p   
moreover will not be equal to zero. The mathematical expectation of 

)(tx p  will incrase the faster, the biger the elements of the vector pA
 
are, i.e. the biger the 

modulus of the vector pA  is. If all the elements of the vector pA  are less than unit, then by 

increasing k , ))(( ktxM p   will tend to zero, i.e. the modelled random series in time will 

be stable. Otherwise the series will be divergent. The variance of the series will behave 
analogously. The modelled series will be divergent, if given covariance functions are also 
divergent. The negativity of the calculated value of the variance by the ratio (3.41) means that 
Gauss-Markov series with given characteristics can not be modelled by the model (3.39). 

 

Example. For checking the condition (3.53) there were simulated 2100 realizations of 
onedimensional Gauss-Markov series by (3.39) with the following auto-correlation function: 

;1)0( R  1)0( R ; 2457.0)1( R ; 3235.0)2( R ; 138.0)3( R ; 0516.0)4( R ; 

0488.0)5( R ; 00157.0)6( R ; ,00233.0)7( R  i.e. 7,1  Nm . In this case: 
410153105.0   EBB ; 434875.0C ; 99145.2B ; 0519399.0A ; 603693.4B  

and 77171.13Bcond . The ratio (3.53) takes the form  0183825.0R . By the 

simulated values of the series there were computed the estimations of the auto-correlation 
function: ;965998.0)0( R


 ;256597.0)1( R


 ;322361.0)2( R


 ;108244.0)3( R


 

;0585888.0)4( R


 ;573747.0)5( R


 ;00858013.0)6( R


 .0053352.0)7( R


 In accordance 

with (3.48), the error of computed estimations does not exceed 039.0R  with given 

probability, in which we are convinced by direct comparison of the given and computed 
estimations of values of the auto-correlation function. By the model (3.39) were modelled 
2100 realizations of onedimensional Markov series with estimated values of the auto-
correlation function. At simulation were used the same independent, normally distributed 
pseudo-random values, which were used at simulation with given values of auto-correlation 
function. The comparison of the suitable values of the simulated series, obtained in both 
cases, has shown the justice of the ratio (3.48), which takes the form 

471346.0)()(  txtx


 with probability greater than 0.95. 





 
 
 
 
 
 

Chapter 4 
 
 
 

METHODS OF MAKING DECISIONS IN MONITORING 

OF RIVER POLLUTION 
 
 
One of the basic sections of stochastic mathematics is the theory of decision making 

[132]. The given chapter is dedicated to problems of elaboration of new methods of making 
decisions in the systems of monitoring and control of pollution of objects of the environment. 
In particular, it is dedicated to the problem of acceptance of statistical hypothesis by results of 
experiment, founded on one of the classical approaches - the Bayesian approach [133]. 

Mathematical base of making decisions in recognition problems is the theory of games 
and, particularly, one of its concrete branch – the theory of statistical decisions, which one 
can be interpreted as the theory of acceptance of the optimum decisions on the basis of trials. 

The basic results of the theory of the statistical decisions were obtained by Wald [134, 
135]. Detailed study of the fundamentals of this theory is contained in the monography of 
Blackwell and Girshick [136], in the work of Lehmann [137]. The special attention is given to 
Bayesian criterion in the works of Wald, Blackwell and Girshick. Complete theory of 
statistical decisions is factual contained in these monographies. Fundamental aspects of 
classical theory are set forth in monographies of Wilks [138], Rao [139], Kendall and Stuart 
[102], De Groot [140], Cramer [141], Zacks [142], Aivazjan, Yenyukov and Meshalkin [143] 
etc. 

There are different classical criterions of testing hypotheses depending on selected 
criterion [102, 136-142, 144-149]: the Fisher’s criterion, the criterion of Neyman-Pearson, 
sequential criterion of Wald, Bayesian criterion, maximum of posterior probabilities, 
maximum likelihood criterion, mini-max test etc. A lot of works in theoretical and applied 
statistics are dedicated to the synthesis of optimum rules of making the decisions [146, 148–
165, 166–175 etc.]. However, in despite of variety of the works dedicated to the problem of 
statistical hypotheses test and, in particular, to Bayesian test, no one of these works do not 
consider Bayesian problem of many hypotheses testing from such point of view as in the 
works of the authors [1, 133, 176-182]. Some results of the author from these works are 
generalized in this chapter and a number of more perfect algorithms of their solution are 
designed. For the first time there are entered two loss functions allowing to pass from an 
unconditional optimization problem to a conditional problem which one allows by imposing 
of restrictions on probabilities of errors of the first and second kind to introduce a loss 
function indirectly when a priori it is difficultly to make [133, 183]. 



Karlos J. Kachiashvili and D. Y. Melikdzhanian 150 

4.1. GENERALIZATION OF BAYESIAN RULE OF  
MANY HYPOTHESES TESTING 

 
The essence of the problem of statistical hypotheses testing may be formalized in the 

following way [133]. Let us consider n  independent identically distributed random quantities 

nxx ,...,1 , which have joint probability distribution density 

),...,;,...,(),( 11 kn aaxxpaxp  , given on  -algebra of Borellian sets of space 

)( nn RxR   which is called a sample space, while ( )k ka  -a parameter space. Assume 

that form of function ),( axp  is known, and parameters a  must be estimated on the basis of 

experiment x  results. The assumption that parameter a  belongs to set , 1,...,k
iA i S   is 

called “a statistical hypothesis” and is denoted by letter iH . If set iA  consists of only one 

point, the hypothesis is simple, otherwise iH  is a composite hypothesis. Hypothesis testing 

problem consists in accepting of one hypothesis out of the given set of hypotheses 

 1 2, ,..., SH H H  on the basis of experimental results, so as to minimize the criterion 

defining the error probability. 
There are different methods of statistical hypotheses testing [102, 133, 137, 142]. Among 

them, the Bayesian approach has a special place. A generalization of Bayesian rule of many 
hypotheses testing is given below. It consists in increasing of decision rule dimensionality 
with respect to the number of tested hypotheses, which allows one to make decisions more 
differentially than in the classical case and to state, instead of unconditional optimization 
problem, conditional one that enables to make guaranteed decisions concerning errors of true 
decisions rejection, which is the key point when solving a number of practical problems. 
These generalizations are given both for a set of simple hypotheses, each containing one 
space point, and hypotheses containing a finite set of separated space points. 

Generally, when the hypotheses contain some spatial points and thus one and those points 
can enter into different hypotheses, the task of testing multiple hypotheses on a basis of the 
Bayesian approach looks as follows.  

Let  1,..., nx x x    be independent identically distributed random quantities that have 

joint probability distribution function ( | )F x a   given on  -algebra of Borellian sets of 

space ,nR a , where   is n -dimensional parametric space1. Let  1,..., Na a   be the 

finite number of given values of parameter a . It is known, that )( NMM   parameters out 

of set  1,..., Na a   are true. It is necessary to separate values of these true parameters. 

                                                           
1
 The assumption of independence at normal probability distribution is not a rigid restriction, as by linear 

transformation of the vector of correlated normal random quantities, it is not difficult to obtain the vector of 
non-correlated random quantities. Performing of preliminary decorrelation does not affect hypotheses testing 
results, so called “information discrepancy of hypotheses” does not change in case of non-degenerate 
transformation [184]. 
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Let 1,..., SH H , M
NS C , be a set of hypotheses concerning truth of parameters a . 

Hypothesis iH  supposes that i th combination of M  parameters a ,  
Miii aaH  ,...,

1
 is 

true. In general case, hypotheses iH , 1,...,i S , intersect, i.e. contain common parameters. 

Let us denote:    1 1,..., ,..., ,M mx x x x x      
1 1,..., ,...,

M

i i i
i i ma a a a a   , where 

Mnm  ; )( iHp -a priori probability of hypothesis iH ; ( | )ip x H -probability 

distribution density of x  at truth of hypothesis iH ;  dD  -a set of solutions, where 

 Nddd ,...,1 , it being so that 

 

1,  if the decision that parameter   is true is made,

0,  otherwise;

j

j

a
d


 


 

 

 )(),...,()( 1 xxx N  -the decision function that associates each measurement 

vector x  with a  certain decision 
 

 
;Ddx 


 

 

 1)(:  xx jj  , i.e. j  is the set of those x , for which the decision on truth of 

parameter ja  is made, j X  , where mX  -dimensional measurement space. It is 

obvious that )(x  is completely determined by the j  regions, i.e.  Nx  ,...,,)( 21 . 

Let hypothesis iH  be true. Let us introduce loss function ))(,( xHL i  . Then the risk 

corresponding to hypothesis iH  has the following form [133, 142]: 

 

   , , ( ) ( | ) .i i i

X

H L H x p x H dx     

 

For each decision rule )(x , risk function  

 

     
1 1

, ( ) ( ) , ( ) ( | ) .
S S

i i i i i
i i X

R H p H p H L H x p x H dx   
 

     (4.1) 

 

The problem consists in finding of such decision rule )(x , i.e. in finding of such 

Njj ,...,1,  , regions of parameters ja  acceptance, for which the following will hold 
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 
 

 min .R R


     (4.2) 

 
 

4.2. GENERAL SOLUTIONS OF UNCONDITIONAL  
AND CONDITIONAL BAYESIAN TASKS 

 
The presented statement is generalization of the classical Bayesian problem of many 

simple hypotheses testing, as the latter is obtained from the above-described statement, when 

the number of points in hypothesis iH , 1M . Besides, unlike the classical statement, 

where dimensionality of decision function is equal to the number of tested hypotheses, in this 
statement the decision is made more differentially regarding not the hypotheses as a whole, 

but parameters that form these hypotheses. Therefore, decision rule dimensionality N  

exceeds the number of hypotheses S . This enables to impose restrictions on probabilities of 
falsely made decisions in more flexible way. 

Let us consider the case, when none of the hypotheses pairs contain common points. The 

set of hypotheses in this case is:    1 1 1,.., ,..., , ...,M S N M NH a a H a a      . It is obvious, 

that N M S  . 
Risk function (4.1) assumes the following form [133]: 
 

 
1 1,

( , ) ( ) ( | )
j

S S

i j i i
j i i j E

R L H H p H p x H dx
  

   ,  (4.3) 

 

where jE -hypothesis jH  acceptance region. It is clear that ,... 11 EM    

,... 221 EMM   …, 1 ...N M N SE      .  

At 1M  problem (4.3) comes to the classical Bayesian problem of many simple 
hypotheses testing. 

In general case, loss function ))(,( xHL i   consists of two components  

 

 
: :

, ( ) ( , ( ) 1) ( , ( ) 0),
j i j i

i i j i j
j a H j a H

L H x L H x L H x  
 

            (4.4) 

 

i.e. loss function  )(, xHL i  -is the total loss due to erroneously accepted or rejected 

parameters ja , at truth of hypothesis iH . 

Subject to (4.4), loss function (4.1) may be rewritten as 
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   

   

1
1 :

: :

{ [ , ( ) 1  ( ) ( | )

, ( ) 0  ( ) ( | )] , ( ) 0 ( )}.

i jj

i j i j

N

j i i
j i H a

i j i i i j i
i H a i H a

R L H x p H p x H

L H x p H p x H dx L H x p H

 

 

 

 

  

    

 

 
  (4.5) 

 
It is obvious, that minimum in (4.5) is reached in the following regions of parameters ja  

acceptance  
 

 

 
:

:

{ : , ( ) 1  ( ) ( | )

, ( ) 0  ( ) ( | )}, 1,..., .

i j

i j

j i j i i
i H a

i j i i
i H a

x L H x p H p x H

L H x p H p x H j N









   

  




  (4.6) 

 
The hypothesis jH  acceptance optimal region jE , that minimizes the risk function 

(4.3), is of the following form [133, 144]: 
 

1 1

{ : ( , ) ( ) ( | ) ( , ) ( ) ( | );

: (1,..., 1, 1,..., )}, 1,..., .

S S

j i j i i i k i i
i i

E x L H H p H p x H L H H p H p x H

k k j j S j S

 

 

    

 
  (4.7) 

 
When solving diverse practical problems, either correct definition of loss function 

 )(, xHL i   is difficult or, according to special character of a problem, a guaranteed 

decision with respect to errors of the first or the second kinds is required, e.g. a guarantee is 
required that the probability of true decision omitting error would not exceed a prescribed 
level. The classical Bayesian statement does not allow do that, as in it, by solution of 
unconditional optimization problem the total of errors of the first and the second kinds is 
minimized. Let us turn to the conditional optimization problem. 

Let ),( if Hn  and ),( itr Hn  denote mathematical expectations of losses due to, 

correspondingly, falsely accepted parameters and falsely rejected parameters. Then   
 

: :

( , ) ( ) ( | )
j i j i j

f i x j i
j a H j a H

n H E x p x H dx 
  

 
  

  
   , 

: :

( , ) (1 ( )) ( | )
j i j i j

tr i x j i
j a H j a H

n H E x M p x H dx 
  

 
    

  
   . 

 

The mean number of false point r  given by rule   is found in the following way  
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1 1 :

( ) ( , ) ( ) ( | )
j i j

S S

i f i i i
i i j a H

r p H n H p H p x H dx 
   

     .  (4.8) 

 
When considering hypotheses containing one point each, expression (4.8), i.e. the mean 

number of false decisions, assumes the following form  
 

1 1,

( ) ( | )
j

S S

i i
i j j i E

r p H p x H dx
  

   .  (4.9) 

 

In order to minimize r  by the choice of  , we shall require that the probability of 

omitting true points would not exceed a prescribed level. Let us consider possible restrictions 
imposed on this probability. 

 
 

4.2.1. Restrictions on Conditional Probabilities of  
Omitting True Parameters 

 
It is required to minimize (4.8) so that the mean share of omitted true points will not 

exceed prescribed level  , at truth of any of hypotheses 1,..., SH H
, i.e.  

 

:

1
( , ) ( , )/ 1 ( | ) , 1,...,

j i j

tr i tr i i
j a H

p H n H M p x H dx i S
M

  
 

     
,  (4.10) 

 
 

M  is the number of points corresponding of hypothesis iH . When hypotheses iH  are 

simple, i.e. each of them contains one point restrictions (4.10) assume the following form  
 

( | ) 1 , 1,...,
i

i

E

p x H dx i S  
.  (4.11) 

 
The solution of problem (4.8), (4.10) is  
 

: :

: ( ) ( | ) ( | )
i j i j

j i i i i
i H a i H a

x p H p x H p x H
 

      
  

  , 

 

where , 1,...,i i S  , are defined so as to hold equality in (4.10). 

The solution of problem (4.9), (4.11) is 
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1,

: ( | ) ( ) ( | )i i i j j
j j i

E x p x H p H p x H
 

 
   
 

 ,  (4.12) 

where , 1,...,i i S  , are defined so as to hold equality in (4.11). 

 
 

4.2.2. Restrictions on Averaged Probability of  
Omitted True Parameters 

 

Let us define decision rule )(x  so as to reach the minimum in (4.8), s.t.  

 

1

( ) ( , )
S

i tr i
i

p H p H  


 , 

 
i.e. 
 

1 :

[ ( )  ( | )] 1
i jj

N

i i
j i H a

p H p x H dx 
 

    ,  (4.13) 

where  -the prescribed level. 
For simple hypotheses, restrictions have the following form  
 

1

( ) ( | ) 1
i

S

i i
i E

p H p x H dx 


    .  (4.14) 

 
The solution of problem (4.8), (4.13) is  
 

: :

{ : ( ) ( | ) ( ) ( | )}
i j i j

j i i i i
i H a i H a

x p H p x H p H p x H
 

     , 

 

where   is defined so as to hold equality in (4.13). 
 

The solution of problem (4.9), (4.14) is  
 

1,

{ : ( ) ( | ) ( ) ( | )}
S

j i i j j
i i j

E x p H p x H p H p x H
 

   ,  (4.15) 

 

where  , for all jE , 1,...,j S , is one and the same scalar quantity and is defined so as to 

hold equality in (4.14). 
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4.2.3. Restrictions on Conditional Probabilities of  
Omitting Each True Parameter 

 

It is required to find such decision rule )(x  that (4.8) will be minimized, s.t.  

 

( | ) 1 , : , 1,...,
j

i j ip x H dx j a H i S


     .  (4.16) 

 
For simple hypotheses, restrictions assume the following form  
 

( | ) 1 , 1,...,
i

i

E

p x H dx i S   .  (4.17) 

 
The solution of problem (4.8), (4.15) is  
 

1 1

{ : ( ) ( | ) ( | )}
j

j

k S

j i i i i
i i k

x p H p x H p x H
  

      , 

 

where jk  is the number of hypotheses that don’t include parameter ja ; i , 1, ...,ji k S   

are defined so as to hold equality in (4.16). 
The solution of problem (4.9), (4.17) corresponds with (4.12). 
 
 

4.2.4. Restrictions on Unconditional Probabilities of  
Omitting Each True Parameter 

 
We minimize (4.8) so as to hold  
 

:

( | ) ( , )
i j

i j tr i j
i H a

p H a tr p H  


   ,   (4.18) 

 
where 

 

  
  

1

( | ) ( )
( | ) ,

( | ) ( )

: : ;   ( | ) 0 ,

: : ;   ( | ) 1 .

j i i
i j S

j i i
i

i j j i

i j j i

p a tr H p H
p H a tr

p a tr H p H

i i i H a tr p a tr H

i i i H a tr p a tr H



 
 



     

     


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When hypotheses are simple, restrictions are analogous to (4.16), and solution of the 
problem corresponds with (4.12). 

The solution of problem (4.8), (4.18) is of the following form  
 

1 1

{ : ( ) ( | ) ( | )}
j

j

k S

j i i j i
i i k

x p H p x H p x H
  

     , 

 
where j  is defined so as to hold equality in (4.18). 

 
 

4.3. ALGORITHMS OF SOLVING UNCONDITIONAL BAYESIAN 

PROBLEMS OF MANY SIMPLE HYPOTHESES TESTING 
 
Let us introduce algorithms of implementation of hypotheses testing rules (4.6) of 

unconditional Bayesian problem. For simplicity of representation, let us consider the case 
when none hypotheses pairs has common points, i.e. the case when function of risk looks like 
(4.3). 

Let us consider different cases of loss function ),( ji HHL  definition. 

 
 

4.3.1. Step Loss Function 
 
Let the losses due to falsely accepted hypotheses be identical, while these due to correctly 

made decisions be equal to zero, i.e.  
 












. at 0

, at 
),(

ji

jiC
HHL ji  

 
In this case risk function (4.3) assumes the following form [137] 
 

 
1

1 ( ) ( | ) 
i

S

i i
i E

R C p H p x H dx


 
    

 
  .  (4.19) 

 
The solution of the problem (4.19) can be written in the following way:  
 

 : ( ) ( | ) ( ) ( | );  : (1,..., 1, 1,..., ) .i i i j jE x p H p x H p H p x H j j i i S        (4.20) 

 
Let us denote 
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 : ( ) ( | ) ( ) ( | ) .ij i i j jE x p H p x H p H p x H   

 
Then  
 

1,

.
S

i ij
j j i

E E
 

   

 

Let us consider the case when measurement results mxx ,...,1  are distributed normally, 

i.e. miaNx iii ,...,1),,;(~ 2   . In this case, conditional distribution density of the vector 

of measured values is  
 

 

 2

2
/ 2 1

1

1 1
( | )  exp  .

2
2

im

i m
m

x a
p x H

  



    
  




 

 




  (4.21) 

 
A little manipulation yields:  
 

 
2

1

:
i jm

ij ij

a a
E x x 



    
  
  


 

  (4.22) 

 
where  

 

   2 2

2
1

( ) 1
ln  .

( ) 2

j im
j

ij
i

a ap H

p H





    

 

  (4.23) 

 

Region of hypothesis iH  acceptance  

 

   2
1

: ;   : 1,..., 1, 1,..., .
i jm

i ij

a a
E x x j j i i S



        
  
  


 

  (4.24) 

 
For calculation of risk function (4.19) value, it is necessary to compute the value of 

multidimensional integral ( | )
i

iE
p x H dx . Algorithms for computation of this integral are 

given below. 
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4.3.2. Non-Step Loss Function 
 
The solution of problem (4.3) is of the following form [133]:  
 

1 1

{ : ( , ) ( ) ( | ) ( , ) ( ) ( | );

: (1,..., 1, 1,..., )},    1,..., .

S S

j i j i i i k i i
i i

E x L H H p H p x H L H H p H p x H

k k j j S j S
 

 

    

 
  (4.25) 

 
Let us denote  
 

1 1

{ : ( , ) ( ) ( | ) ( , ) ( ) ( | )}.
S S

jk i j i i i k i i
i i

E x L H H p H p x H L H H p H p x H
 

    

 
Then  
 

1,

.
S

j jk
k k j

E E
 

   

 

Let us consider normally distributed measurement results, i.e. ( | )ip x H  has form (4.21). 

In this case, it is not difficult to obtain  
 

 1

, 2
1 1

: exp ( , ) ( , ) ,
i sS m

i
jk j k s k s j

i

a a
E x x L H H L H H k j





 

                
   


 

, 

 
where  

   2 2

, 2
1

( ) 1
( , ) ( , ) exp .

( ) 2

s im
i i
j k i j i k

S

a ap H
L H H L H H

p H




         
  
  

 

 

 

Finally, for hypothesis iH  acceptance region, we have  

 

 

 

1

, 2
1 1

{ : exp ( , ) ( , ) ;

: 1,..., 1, 1,..., }.

i sS m
i

j j k S k S j
i

a a
E x x L H H L H H

k k j j S






 

 
        
 

   

   


    (4.26) 

 
For calculation of risk function (4.3) values, it is necessary to compute the value of 

multidimensional integral  
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( | ) ( | )
j

i j iE
p x H dx P x E H  .   (4.27) 

 
For its computation let us use Monte-Carlo method. Calculating time needed for this 

method depends on dimensionality of the integral. In hypotheses testing problem, as a rule, 

the number of tested hypotheses S  is considerably smaller than dimensionality of the vector 
of measured values m , as only a small number of most likely hypotheses is left for 
hypotheses testing after initial processing. Therefore, to reduce the time needed for 
computation of integrals (4.27), we do the following. 

Let us denote  
 

 
2

1

, 1,..., 1.
i sm

i

a a
x y i S




    


 

 

 
Let us rewrite region (4.26) of acceptance of a hypothesis in the following way  
 

   
1

'
,

1

: exp ( , ) ( , ) ; : 1,..., 1, 1,..., .
S

i
j j k i S k S j

i

E x y LH H LH H k k j j S




            
    (4.28) 

 

It is not difficult to make sure that  1 1,..., Sy y y   is a normally distributed random 

vector with the following mathematical expectation vector and covariant matrix, 
correspondingly:  

 

 1 1,...,i i i
SB b b  ,   (4.29) 

 

1,1 1,2 1, 1

2,1 2,2 2, 1

1,1 1,2 1, 1

...

...

..................................

...

i i i
S

i i i
S

i i i
S S S S

v v v

v v v
V

v v v





   


,       (4.30) 

 
where 

 

 

  
2

1

, 2
1

,

,       , 1,..., 1.
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The following equality takes place  
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'

( | ) ( | ) 
j j

i i

E E

p x H dx p y H dy  ,      (4.31) 

 

where on the left side is m -dimensional integral, while on the right side - ( 1)S  - 

dimensional one. 

The ( 1)S  -dimensionality integral in (4.31) is computed by Monte-Carlo method in the 

following way [133, 183]. If we simulate ( 1)S  -dimensional random vector 

 1 1,..., S    , where  1,0;~ Ni  and   0,cov ji   at ji  , and transform it 

according to expression  
 

1
1 B K      ,       (4.32) 

 

where B -vector of mathematical expectations,   and 1K -matrices of eigenvectors and 

eigenvalues of matrix 
1V , correspondingly, then  1 1,..., S     will be a normally 

distributed random vector with mathematical expectation B  and covariant matrix V . 
Assume that n  values of random vector   were computed according to relation (4.32), 

and   of them belong to region (4.30). Then  
 

n
p




 
 

is an estimate of integral (4.31) value, computed by Monte-Carlo method. 

The size of played random vectors, that provides  -accuracy of integral computation 

with likelihood  1 , is defined by the following relation  

 

2

1

4
n


    

, 

 

where 
2

1

4
 
  

 is the minimum integer number 
24

1


 . 

To minimize the number of generated random vectors that are necessary for computation 
values of integral (4.31) with specified accuracy, we do the following. We deliberately 

specify a rough accuracy of integral (4.31) computation  1 , and for sample size  

 

1 2
1 1

1

4
n

 
 

  
 

, 



Karlos J. Kachiashvili and D. Y. Melikdzhanian 162 

where  1 , compute estimate 
1np


. The final sample size is calculated according to 

relation  

  .
)1(

max
2; 1111





 


 

pp
n

nn ppp
   (4.33) 

 
This enables to reduce substantially the time needed for the probability integral 

computation, when it considerably differs from 0.5. 

For calculation of eigenvalues and eigenvectors of matrix 
1V , matrix V  is required to 

be positively definite. A correlation matrix is always positively definite. Therefore, it is 

necessary to go over from covariant matrix V  to the correlation one by normalizing the 

elements of matrix V . Let us show the changes entailed by going over to the correlation 
matrix, when calculating integrals (4.31) by Monte-Carlo method. 

Let us introduce the following denotation: 
 

  ,
,

i
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p

p

p
p

v

y

yD

y
z     (4.34) 

 
i.e. 
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,
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p k i i i
p i k i p p k k

b
E z H

v

E y y H v
E z z H

V y H V y H v v



 
 

   (4.35) 

 
In these denotations, (4.31) may be rewritten in the following way . 
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   (4.36) 

 
where  
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S
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i
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
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Let us rewrite (4.36) in the following form:  
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  (4.38) 

 

Let us denote 1 1 1, T
i iD B B D V D W    . Then (4.38) may be rewritten as  
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( | ) 2  exp    .

2
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     (4.39) 

 
Thus, for computation of integrals (4.31), it is necessary to simulate normally distributed 

( 1)S  -dimensional random vector z  with mathematical expectation iB  and correlation 

matrix W , and if this vector satisfies (4.37), to consider that we are in the domain of 
integration and to increase the value of   by one. 

Let us give another more reliable from computational point of view, way of computation 
of integrals (4.27). By ''reliable'' we mean that, in this case, no inversion of covariant matrices 
and finding of their eigenvalues and eigenvectors is required. 

Let us rewrite hypotheses testing regions (4.25) in the following way  
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  (4.40) 
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For normal probability distribution density (4.21), expression (4.40) assumes the 
following form  

 

 2
2

1 1

1
{ : [ ( , ) ( , )]  ( ) exp  0;

2

: (1,..., 1, 1,..., )},

pS m
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 

         
  

   

   

    (4.41) 

where   / 2

1

1/ 2
m

m
C  



 
  

 
 


.  

Random quantity  

 2

2
1

, 1,...,
pm

p

x a
y p S
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
   

 

,  (4.42) 

 

is distributed according to 2 -probability distribution law with variance m  and non-

centrality parameter  
 

 2

2
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, 1,...,
i pm

p

a a
p S




   

 

,  (4.43) 

 

at hypotheses iH  truth. Therefore, for computation of probability integral (4.27), we n  

times generate S  random quantities (4.42) with non-centrality parameters (4.43) and assign 
to   the value which is equal to the number of times these vectors will satisfy condition 
(4.41). Probability integral (4.27) value is defined according to formula (4.33). 

It should be also noted, that, when using the above algorithms for many hypotheses 

testing, mathematical expectations ia , Ni ,...,1 , of measured parameters and the 

parameters themselves may take arbitrary values, depending on special features of practical 
problems solved. To avoid undesired aferrunnings in calculation process, caused by computer 
registers overflow or appearance of computer zeros, it is reasonable to normalize initial data. 

Let jc  and jd , mj ,...,1 , denote, correspondingly, the minimum and the maximum 

values of the j th coordinate of all the points of mathematical expectations of measurement 

results, i.e.  
 

 
 

 
  .,...,1,min,min mjadac ij

i
jij

i
j   

 

Instead of points ia , 1,...,i S , let us consider points ib , 1,...,i S , with coordinates 

),...,,(
21 miiii bbbb , where  
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   / , 1,..., ; 1,..., .ij ij j j jb a c d c j m i S      

 
Measurement results and their variances will be accordingly recalculated  
 

      .,...,1,/,/ 222'' mjcdcdcxx jjjjjjjjj    

 
 

4.4. ALGORITHMS OF SOLVING CONDITIONAL BAYESIAN  
PROBLEM OF MANY SIMPLE HYPOTHESES TESTING 

 
One of generalizations of the classical statement of Bayesian problem of many 

hypotheses testing given in paragraph 4.1 consists in the solution of conditional optimization 
problem instead of unconditional one, which enables to make guaranteed decisions with 
respect to errors of true decision rejections. Below, the general solution of conditional 
Bayesian problem at restrictions on the averaged probability of omitted true parameters is 
brought up to the computational algorithms for the most common in practice, normal 
distribution of probabilities of measurement results. 

As an example of elaboration of algorithms of the decision of conditional Bayesian task 
of test of many hypotheses let us consider the task (4.9), (4.14). The solution of this problem 

is (4.15). Let us consider the case when measurement results mxx ,...,1  are distributed 

normally, i.e. looks like (4.21). Subject to (4.21), hypothesis iH  acceptance region (4.15) 

may be rewritten in the following way  
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where  

   2 2

2
1

( ) 1
exp .

( ) 2

i jm
j

ij
i

a ap H

p H




     
  
  

 

 

 

To find values of unknown coefficient   so as to hold equality in (4.14), computation of 
the following integrals  
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  (4.49) 
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is required with high accuracy, since otherwise it will be impossible to hold equality in 
condition (4.14) with required accuracy, i.e. to ensure the required quality of decision rule 
(4.15). 

Let us denote  
 

2
1, 1

exp
j iS m

i ij
j j i

a a
x 

  

 
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, 

 

and by ( | )i ip z H -its conditional probability distribution density  

 

0

( | ) ( | ) .
i

i i i

E

p x H dx p z H dz


   

 

The range of integration is taken from 0  to  , since ,1)(0  iHp  ,10    

0ij . 

Random quantity i  is the weighted sum of log-normally distributed random quantities. 

Therefore, it is impossible, to find analytical expression of its density [133, 183]. Let us 
consider the possibility of this density approximation by series. 

Random vector  1 1,..., Sy y y  , components of which  
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are dependent, normally distributed random quantities, at hypothesis iH  truth, has  1S  -

dimensional conditional normal probability distribution density with mathematical 

expectation vector  1 1,...,T i i
i SB b b   and dispersion matrix  
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where  
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Let us calculate the r th initial moment of random quantity i , on condition that 

hypothesis iH  is true  
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Let us denote: 

rr jjjj yyu  ...
11 ,..., . Mathematical expectation of log-normally 

distributed random quantity  
rj

ju ,...,1
exp , at truth of iH  is [102, 133, 142, 183]  
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It is not difficult to find  
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Finally 
 

   
1 1 1

1 1

, , ,..., ,...,
1, 1,

1
... ... exp | | .

2r r r

r r

s s
i
r i j i j j j i j j i

j j i j j i

V u H E u H  
   

     
 

 
 

 

Since j
 is a positively definite random quantity, we shall use Laguerre polynomials for 

its density approximation [130, 141, 144]. Probability distribution density 
( | )i ip z H

 may be 
formally expanded into a series [130, 141]  
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,  (4.50) 

 
where: 
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is a sequence of orthogonal polynomials connected with the distribution defined by Pearson 
density function of the III-rd kind [130]; 
 

 
11

, when  z 0,
( , )

0,                  when z 0;

zz e
f z




   


  

  dzez z



0

1 - gamma function, 0  [142, 184]; )()( zLn
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polynomials that are defined by the following relation [109, 130, 185]:  
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The orthogonality condition for coefficients i
nC  gives [130, 141]:  
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Using relation (4.51) for Laguerre polynomials, we’ll obtain:  
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According to relation (4.52) for coefficients i
nC , we’ll obtain:  
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Subject to (4.53), (4.54), expansion (4.50) assumes the following form: 
 

1

1
( | ) ( , ) ( )( ) ( , )i

i ip z H f z z f z    


      

2
2 1

1
( 2( 1) ( 1) )( 2( 1) ( 1) ) ( , )

2 ( 1)
i i z z f z        

 
         


 

3 2 1

1
( 3( 2) 3( 2)( 1) ( 2)( 1) )

6 ( 1)( 2)
i i i        

  
         

 
 

3 2( 3( 2) 3( 2)( 1) ( 2)( 1) ) ( , )z z z f z                 

4 3 2

1
( 4( 3) 6( 3)( 2) 4( 3)( 2)

24 ( 1)( 2)( 3)
i i i       

   
         

  
 

4 3 2
1( 1) ( 3)( 2)( 1) ) ( 4( 3) 6( 3)( 2) 4( 3)i z z z                         



Karlos J. Kachiashvili and D. Y. Melikdzhanian 170 
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( 1) ) ( , ) ...f z       (4.55) 

 

Let ( | )i iG z H  denote conditional function of random quantity i  distribution, and let 

),( zF  denote the probability distribution function corresponding to density ),( zf , i.e.  

  .
1

),(
0

1 dxexzF x
z


 


  

 
Then, taking into account (4.51) and (4.55), we’ll obtain  
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    (4.56) 

 
Concerning of convergence of expansion (4.56), there is a theorem that states [184]: if 

( | )i iG z H  is a continuous function on semi-axis 0z  and ( | ) 0( )m
i iG z H z  at 

z , where m  is an arbitrary fixed positive number, and 

( | ) ( | )i i i iG z H p z H A   , where A  is constant, then, at 0 , expansion (4.56) 

converges to ( | )i iG z H  on the interval  z0 . Since ( | )i iG z H  is a probability 

distribution function, the theorem conditions are satisfied. Therefore, series (4.56) converges. 
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To find unknown   value in solution (4.48), the algorithm of dividing in half is used. 

The essence of the problem consists in the following. Initial approximations B  and H  are 

taken so as to hold ( ( )) 1BF E   


 and ( ( )) 1HF E   


, were the following 

designation is introduced  
 

1

( ( )) ( ) ( | )
i

S

i i
i E

F E p H p x H dx


    

 
and the sign over F  shows that it is an estimation of the corresponding true value. 

The desired value of   is calculated in the following way  
 

  / 2B H    .  (4.57) 

 
The following condition is tested  
 









))((

)1())((

EF

EF




,  (4.58) 

 

where  -the accuracy of Eq. (4.14) solution. 

If (4.58) holds, then the value of   is considered found with the specified accuracy, a 
decision is made on conditions (4.48), and the corresponding value of risk function is 
calculated according to formula (4.9) in which the integral values are computed by means of 
expansion (4.56). 

If (4.58) doesn’t hold, condition   1))((EF


 is tested. If it is satisfied, then 

assignment :B  , otherwise :H  , is carried out. A new approximation is calculated 

by formula (4.57) and so on until condition (4.58) is fulfilled. 
 

 
(a) 
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(b) 

Figure 4.1. Diagrammatic representation of decision-making ambiguity. 

The integral values entering into  are computed by expansion (4.56). 

When solving practical problems, the following non-trivial situations are possible. When 
hypotheses are near to each other, the situation shown in Figure 4.1(a) may take place. This 
means that it is impossible to make decision in this situation with the specified power of 

. And when the measurement result falls into the interval between  and , it is 

impossible to make one decision. In that case, it is necessary to decrease power of criterion 

 until hypothesis acceptance regions are separated. The criterion power will be equal 

to the value to which correspond non-intersectional regions. 
On the other hand, when hypotheses are separated from each other, the situation shown in 

Figure 4.1(b) may take place. This means that, when the measurement result falls between 1  

and 2 , it is impossible to make a decision. In this case, it is necessary to increase power of 

criterion )1(   until the measured value is found in one of the regions of hypothesis 

acceptance. The criterion power will be equal to the corresponding value. 
 
 

4.5. SOLUTION OF UNCONDITIONAL BAYESIAN PROBLEM AT 

NUMBER OF HYPOTHESES EQUAL TO TWO 
 
The finding of optimum regions of hypotheses testing in unconditional and conditional 

Bayesian problems of testing many hypotheses and computation of suitable values of risk 
function is connected with complex problem of repeated computation of multidimensional 
probability integrals on the regions of complex configuration in iterative process of finding 
unknown Lagrange coefficients. The problem is considerably simplified if number of 

hypotheses 2S  . In this case, the finding of optimum regions of acceptance of hypotheses 
and computation of risk function is possible analytically. Therefore for those cases, when as a 
result of working of an algorithm of formation of hypotheses, the number of formed 
hypotheses is equal to two, below is offered simple algorithm.  

In this case, risk function (4.3) is of the following form: 
 

1 2
2 1

1 2 1 1 2 1 2 2
{ , }

( 2) ( , ). ( ) ( | ) ( , ). ( ) ( | ) min.
E E

E E

R S L H H P H P x H dx L H H P H P x H dx    
  (4.58) 

))(( EF

)1(  2 1

)1( 
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It is obvious that condition 1 2 2 1( , ) ( , )L H H L H H C   hold, i.e. at 2S  , only a 

step loss function may take place. Let us rewrite (4.58 in the following way 
 

1 2
2 1

1 1 2 2
{ , }

( 2) . ( ) ( | ) ( ) ( | ) min
E E

E E

R S C P H P x H dx P H P x H dx
 

    
  

  .   (4.59) 

 
The minimum in (4.59) is reached in the following hypotheses-acceptance regions 
 

1 1 1 2 2{ : ( ) ( | ) ( ) ( | )}E x P H P x H P H P x H    , 

2 2 2 1 1{ : ( ) ( | ) ( ) ( | )}E x P H P x H P H P x H    . 

 
Subject to (4.21), for hypotheses-acceptance regions, we finally obtain 
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where 
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The risk function value is calculated analytically 
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where  is standard normal function of probabilities distribution. 
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4.6. Solution of Conditional Bayesian Problem at Number of Hypotheses 
Equal to Two 

 
In this case conditional Bayesian problem becomes  
 

1 2
2 1

1 1 2 2 { , }
( 2) ( ) ( | ) ( ) ( | ) min

E E
E E

r s p H p x H dx p H p x H dx      ,   (4.60) 

 
under condition of 

 

1

1( | ) (1 ),
E

p x H dx    

2

2( | ) (1 ).
E

p x H dx      (4.61) 

 
The optimization problem (4.60), (4.61) is divided into two independent problems 

{ }
( | ) min,

i
i

j E
E

p x H dx 
  

 (4.62) 

 
under condition of 

 

( | ) (1 ),
i

i

E

p x H dx    .;2,1, jiji     (4.63) 

 
The optimum solutions of these problems are given by the rule of Neumann-Pearson 
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where 21,  are determined so that in conditions (4.63) the equality took place. 

For a normal probability distribution law the optimum regions of acceptance of 
hypotheses become 
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1( )   is inverse of the standard normal probability distribution function. 
The value of the average risk is calculated under the formula 
 

1( 2) ( (1 ) ),r S G        
 

where 
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4.7. QUASI-OPTIMAL METHOD OF  
MANY-HYPOTHESES TESTING 

 
Finding of regions of acceptance of hypotheses in conditional Bayesian problem of 

hypotheses testing and calculation of the corresponding values of a risk function is the 
difficult task requiring of iterative calculation of multidimensional normal integrals on the 
integrating areas of the complex configuration [133, 183]. At the solution of practical 
problems often it is necessary to have the simple, not optimum decision rules no requiring of 
large computer and computing resources for their calculation.  

Such quasi-optimal algorithms for solution of problems (4.8), (4.10), for intersectional 
and for non-intersectional hypotheses are given in [133]. Let us consider solution of problem 
(4.9), (4.14). 

For solution of problem (4.9), (4.14), let us consider 1S  particular problems of the 

following type: we must test the null hypothesis that supposes the truth of iH  against that 

supposes the truth of j , Sj ,...,1 , ij  . Let ijE  denote the region of hypothesis iH  

acceptance when testing two hypotheses iH  and jH , then the problem will have the 

following analytical form: 
 

( | ) min,
ij

ij

j
E

E

p x H dx 
  (4.59) 

 
on condition that 
 

( | ) , 1,..., , ,
ij

i

E

p x H dx j S j i  
  (4.60) 

 

where   is chosen so as to hold equality in (4.14), i.e. the probability of hypothesis iH  

acceptance at its truth will be not less than the specified level.  
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The solution of problem (4.59), (4.60) is given by Neumann-Pearson criterion, according 
to which the critical region has the following form:   

 

( | )
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( | )
j

ij ij
i

p x H
E x

p x H

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where ij  is defined so as to hold equality in (4.60).    

Hypotheses iH  acceptance region is of the following form 
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As mentioned above, the condition of determination of threshold ij  is so as in (4.60) the 

equality took place. Let us define   so as to satisfy the condition (4.14). Really  
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It is obvious that, if we take 
 

1
1




S


, 

 
condition (4.14) will always hold. 

It is not difficult to obtain for probability distribution density (4.21) 
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where )(1 
 - the inverse standard normal function of probability distribution. 

Taking into consideration the statement of quasi-optimal problem, the corresponding 
expression for risk function will be of the following form: 
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In reality, at validity of hypothesis jH  decision is accepted  1S  times when 

hypotheses jH  and iH , Si ,...,1 , ji  , are compared two by two. Every time the 

probability of acceptance of the wrong decision at validity of hypothesis jH , i.e. the 

probability of passing of the correct decision is equal to ).|( jij HExP   Therefore total 

probability of acceptance of other hypotheses at  validity jH , i.e. the risk is equal to  

 

1,
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S

ij j
i i j

P x E H
 


 

 
It is not difficult to calculate  
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  
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where   is standard normal function of probability distribution. 

If we shall designate 
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Karlos J. Kachiashvili and D. Y. Melikdzhanian 178 

then, finally, for average risk we have 
 

   1

1 1,

( ) ( ) .
S S

j ij
j i i j

r P H G 

  

       

 

When the number of hypotheses is equal to two, i.e. 2S , the quasi-optimal algorithm 
turns to the optimum. Thus, for two hypotheses the optimum decision is accepted 
analytically. 

 
 

4.8. RATIO OF VALUES OF THE RISK-FUNCTIONS  
IN PUT PROBLEMS AND THEIR 

NUMERICAL RESEARCHES 
 
Analysis of relations of mean risk values corresponding to the stated conditional 

Bayesian problems is given in [133]. It is shown there that the mean risk value calculated for 
problem with restrictions (4.16) is always greater than the mean risk value calculated at 
restrictions (4.13), and the mean risk value at restrictions (4.10) is between the previous two 
values. The mean risk value calculated at restrictions (4.18) is always not greater than the 
mean risk values at restrictions (4.16). 

It is a fact that the mean risk value in unconstrained problem of many hypotheses testing 
is always lesser than the mean risk value calculated in conditional problems, and the mean 
risk value corresponding to quasi-optimal rule of hypotheses testing is always not less than 
the mean risk values corresponding to conditional Bayesian problems. This fact is a 

consequence of rigidity of restrictions corresponding to these problems. Really,  1  at 

number of hypotheses 2S  , and for unconditional problems there are no restrictions at all. 
To demonstrate this fact, relations of mean risk values calculated for unconditional, 
conditional and quasi-optimal problems of hypotheses testing, depending on information 
distance between tested hypotheses, are shown in Figure 4.2. The problem with restrictions 
(4.13) is taken as unconditional Bayesian problem, since the minimum mean risk value 
among all the conditional Bayesian problems corresponds to it. 

To illustrate the above-stated, the following simple example is taken: the number of 

hypotheses 5S  ; dimensionality of parametric space 2m  ; coordinates of hypothetical 

points in initial state - 1a (1;1), 2a (2;1), 3a (3;2), 4a (4;1), 5a (3;3); variances of measured 

parameters 2
1 =0.5, 2

2 =0.5; coordinates of the measurement result x(2.7; 2.3); a priori 

probabilities ( ) 0.2ip H  , 1,...,5i  . 

In all the cases, by all decision rules, hypothesis 3H  was accepted, which corresponds to 

reality. In Figure 4.2, cunc rr ,  and qr  denote mean risk values in unconditional, conditional 

and quasi-optimal problems of hypotheses testing, correspondingly. The first point on axis of 
abscissas corresponds to initial values of hypothetical points, the second point corresponds to 

the changed coordinates of the fifth hypothetical point 5a (5; 4); to the third point, correspond 
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the changed second and fifth hypothetical points 2a (2; 4), 5a  (5; 4); to the fourth point - 

changed hypothetical points 2a (2; 4), 4a (6; 1), 5a (5; 4); to the fifth point - changed 

hypothetical points 2a (2; 4), 4a (6; 1), 5a (5; 6). 

Figures 4.3 and 4.4 show the mean risk of unconditional tasks plotted against the variance 
of measured parameters and the information distance between hypotheses, correspondingly. 
Calculations were made for the above given example. The figures illustrate the logical 
dependence of mean risk of variance of parameters and the information distance between 
hypotheses and confirm the fact of dependence of mean risk values, i.e. of quality of made 
decisions, on valid choice of penalty function. At differential choice of penalty function, 
mean risk value considerably diminishes as compared with the step loss function, when the 
price of any error is one and the same and doesn’t depend on the extent of its roughness.  

Let us give some results of the developed algorithms testing for conditional Bayesian 
rules. Calculations were made for the above given example. Figures 4.5-4.7 show 
dependencies of the risk function on: variance of measured parameters; information distance 
between tested hypotheses and probability of correct expecting of hypotheses, 
correspondingly. The figures illustrate the logical dependencies of the risk function on these 
parameters, i.e. the risk function increases with increasing of the variance of measured para-
meters, the risk function decreases with increasing of the information distance between tested 
hypotheses and the risk function, i.e. averaged probability of true decisions rejection, 
increases with increasing of the probability of making true decisions. 

 

 

Figure 4.2. Mean risk values versus information distance between hypotheses: (1) 100 uncr ; 2) cr ; (3) 

qr . 
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Figure 4.3. Risk function versus the variance of measured parameters (1) str ; (2) nstr10 . 

 

Figure 4.4. Risk function versus the information distance between hypotheses (1) str ; 2) nstr100
.
 

 

Figure 4.5. Risk function r  versus the variance of measured parameters. 
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Should be noted the following fact:  and 2; it is not available that the power of 

criterion  because of effect shown on the Figure 4.1. In these cases 

 at  and  at  (see Figure 4.5). 

 

 

Figure 4.6. Risk function r versus information distance between tested hypotheses. 

 

Figure 4.7. Risk function r  versus probability of making true decisions. 

 

4.9. CONCLUSIVE REMARKS 
 
This chapter is dedicated to a problem of acceptance of the statistical decisions by results 

of experiment, founded on one of the classic approaches - the Bayesian approach. In it is used 
as the classical Bayesian formulation of a test of hypothesis encompassing by definition of the 
decision rule with the help of unconditional minimization of a risk function, so the new 
approach encompassing by definition of the decision rule by the solution of a problem of 
constrained optimization of a risk function at miscellaneous limitations on probability of 
acceptance of the incorrect solutions concerning the verity of hypothetical values of 
distribution parameters. The generalization of classical Bayesian formulation of test of many 

12 
95.0)1( 

92.0)1(  12  98.0)1(  22 
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hypotheses encompassing that the dimension of the decision rule and quantity of tested 
hypotheses do not coincide is made. In the given statement the solutions are born more 
differentiated, concerning not of hypotheses as a whole, but of each tested parameter. The 
classical Bayesian statement is a particular case of such statement, as at not intersected hypo-
theses, i.e. in a case, then they do not contain common parameters, the above-mentioned 
statement coincides with classical statement. Besides in the chapter are given the quasi-
optimum rule of test of many hypotheses. Are determined the optimum decision rules in all 
put problems of test of many hypotheses for a density of distribution of probability of a 
general view. These decision rules are rendered concrete up to working formulas and 
algorithms for such relevant distribution from the application of probability theory and 
mathematical statistics, what the normal distribution of probabilities is. At development of 
these algorithms some problems having independent concern are resolved. Such, as calculus 
of a multidimensional normal integral on area of the composite configuration by 
approximating these areas or by decomposing integrand density by the way of series, 
decreasing of dimension of a multidimensional normal integral without a loss of information. 
The outcomes of an experimental research of designed algorithms are adduced. 

The solution of many practical problems from miscellaneous areas of science and 
engineering under the contents and the object in views demand the approach, the essence 
which one is encompass in usage of the above-stated decision rules of test of many statistical 
hypotheses. For illustration we shall bring below some examples of technical problems at the 
solution which one will be used in the given chapter obtained outcomes.  

For control of condition of environmental objects, there are created the automated 
controlling systems, consisting from analyzers automatically measuring controlled parameters 
of an environment and transmitting their values to the Control Station by communication 
channels, where on the basis of processing of this information on the computer, the solutions 
on a condition of controlled object are born [1]. The problem of control of condition of an 
environment includes a problem of identification of emergency pollution sources for taking a 
step on their elimination. For the solution of this problem in question of making the decision 
there is used the above-stated algorithms which are realized in software “Identification of 
River Water Pollution Sources by  Means  of  Automated Control Systems” developed for 
IBM-compatible computers in the project G-047 of ISTC (International Science and 
Technology Center) (1998-2000) (see Chapters 5 and 7). The conditional approach of test of 
many hypotheses was utilized with the purpose of restriction of probability incorrectly 
accused in pollution of pollution sources, at minimization of probability of non-detection of 
the true initiators of pollution. 

Designed rules of test of many hypotheses also can be successfully applied at problem 
solving of detection and tracking of objects, driving in space, on the basis of the radar 
measuring information [133, 186]. At detection it is required to minimize a probability of 
incorrectly detected objects at restrictions on probability of the failed true objects.    

Above offered algorithms also can be used in seismology for solution of a problem of 
detection of geomagnetic surges stimulus source by results of measurement of several seismo-
logical stations. Also can be successfully used in pharmacology at manufacturing of poison 
keeping drugs for minimization of probability of no dosage at limitations of an over dosage 
especially dangerous for health of the people of components. 

 
 



 
 
 
 
 
 

Chapter 5 
 
 
 

MATHEMATICAL BASES FOR SOLVING  
PROBLEM OF IDENTIFICATION OF THE  

SOURCES OF EXCESSIVE RIVER POLLUTION 
 
 

5.1. ESSENCE OF IDENTIFICATION PROBLEM 
 
One of the actual tasks of environmental condition monitoring problem is that of 

identification of the emergency release sources to take measures on their elimination. This 
task is especially actual for city conditions, because the large number of pollution sources 
doesn’t allow to control each of them. The solution of this task has not only an ecological, but 
a significant economical effect as well, which is reached by means of minimization of 
technical faculities, in particular, the measurement facilities needed for the stand-alone 
control of each pollution source. This task is also actual for large factories and plants with 
biochemical purification of waste water in order to identify those sections of shops which are 
guilty of waste water pollution over the norm (see section 3.6) [1, 179, 187]. 

In spite of such actuality this task is not solved in general form till present and previous 
works of the authors, though a lot of authors note its great importance for solving the problem 
of monitoring of the pollution of environmental water objects [189, 192-197]. In this chapter 
are described algorithms, developed by authors, for identification of emergency pollution 
sources in rivers between two controlled ranges by means of automated systems [180, 182, 
188, 180]. In chapter 7 is described the software of realization of these algorithms for IBM-
compatible computers [93, 94]. 

The developed program package for identification of emergency release sources may be 
included into any available or newly developed automated system for control of water object 
pollution level. The system is shown on Figure 5.1 as an illustration diagram. Some of 
developed under the guidance of one of the authors of this work the automated systems are 
described in [1]. The number and the types of water objects, for which the developed program 
package may be used, are limited by the mathematical models of pollutants transfer, included 
into the library of the developed package. The library is of open type, i.e. newly developed 
models may be included into it and thus the list of water objects for which this package is 
suitable can be expanded.  
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5.2. FORMALIZATION OF THE PROBLEM 
 
Let’s consider the problem of identification of the river water pollution sources located 

between two controlled ranges by means of automated systems [1, 187]. The proposed 
algorithms are built with the assumption that the pollution sources have either different 
composition of waste water or (at the same composition) different ratios of ingredients. 

Let the river water condition be controlled by M  automated stations on the section 
under consideration. Each of the stations controls m  physicalchemical parameters. Let’s 
denote the water quality index at the j -th station, i.e. in the j -th controlled range of the 

river at Nt  moment, by  )(ˆ)(ˆ
NjpNj txtX  , ;,...,1 Mj   mp ,...,1 . 

The symbol over X  indicates that not exact values of the controlled parameters but their 
estimations are known in the j -th range. 

Let pollution have place at Nt  moment in the j -th range, i.e. 

 

      NjpNj txtX ˆˆ , 

 

where jj X  ; X   m -dimensional parametric space; j   m -dimensional region 

of the unpolluted water in the j -th range, 

 

      1 2ˆ ˆ: ; : 1,...,j jp jp jp jpx t x t p p m       ; 

 

],( 21
jpjp    region of the unpolluted by parameter p  water in the j -th range. 

 

 

Figure 5.1. Conventional scheme of the automated system for control of river pollution level. 
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In formation of water quality in the j -th range  Nj tX̂  are the following participants: 

the  1j -th range,  11
ˆ

  jNj tX  , where 1j  is the time for water to run from the 

 1j -th range to the j -th one; K   controlled objects with the known concentrations of 

the substances being released  kNkj tZ  ,1 , Kk ,...,1 , where k  is the time for water 

to run from the k -th controlled object to the j -th range; R   uncontrolled objects, which in 

the normal mode of operation release concentrations  rNrj tY  ,1 , Rr ,...,1 , and in the 

emergency mode may have additional releases  rNrj tY   ,1 , Rr ,...,1 , where r  is 

the time for water to run from the r -th uncontrolled object to the j -th range. Other 

uncontrolled factors are called "noise". Let’s denote their influence on the quality of water in 

the j -th range by     txtX j
p

j
00  , mp ,...,1 . 

After introducing of denotations the model of water quality formation in the j -th range 

assumes the following form 
 

       ;,...,1,;,ˆ[ˆ
,1,1111 KktZtXFtX kjkNkjjjNjjNj   

 

     N
j

rjrNrj tXRrtY 0,1,1 ],...,1,    ,  (5.1) 

 
where jF  is the known operator corresponding to the process of formation of water quality in 

the j -th range;  ,  ,   and   are parameters characterizing the time of running to the j
-th range and the peculiarities of formation of water quality in it. 

If there is a pollution, i.e. when   Nj tX̂ , the model of water quality formation takes 

on the following form 
 

       ;,...,1,;,ˆ[ˆ
,1,1111 KktZtXFtX kjkNkjjjNjjNj     

   ;, 1,1,1 111
RrtY rjrNrj      (5.2) 

   N
j

rjrjrj tXRrYY 02,1,1,1 ],
222

    

 
where RRR  , 0 RR  , and the division of set R  into subsets R   and R   

being unknown. 
The task consists in dividing of set R  into subsets R   and R   at the moment of 

pollution detection. Upon detection of pollution in the j -th range by means of operator jF  

from (5.2), the concentrations in the j -th range are determined with the assumption that the 

emergency release was made by one or two, etc., or r  uncontrolled objects, i.e. there are 

calculated m -dimensional points  N
ii

j tX r,...,1 , where  Ri j ,...,1 ; 
21 jj ii  ; r  indicates 
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the number of uncontrolled objects, which are suspected in the simultaneous emergency 

release. The number of points  N
ii

j tX r,...,1  for each population r  out of R  objects is equal 

to r
RC ,and the total number of all the points is 




R

r

Rr
RC

1

12 . It is necessary to decide 

which population r  of uncontrolled objects made the emergency release, i.e. it is necessary to 
test hypotheses 

 

     12,...,2,1,ˆ: ,...,1  R
N

ii
jNji itXtXMH r .  (5.3) 

 
 

5.3. GENERALIZED BLOCK-DIAGRAM FOR  
SOLVING IDENTIFICATION PROBLEM 

 
For visualization of inter-consistency and sequence of fulfillment of separate problems in 

Fig. 5.2 is given the generalized block diagram of solving the problem of identification of 
emergency release sources. The arrows indicate the execution sequence of programs for the 
marked problems and the directions of information flows. To realize the problem of 
identification of emergency release sources it is necessary to solve, in accordance with the 
sequence indicated by the arrows in Figure 5.2, the following tasks: decorrelation of the 
vector of measured values (DVMV); formation of different combinations of pollution sources 
(FDCPS); calculation of hypothetical concentrations of pollutants in the lower controlled 
range according to mathematical models (CHCP); formation of hypotheses concerning 
emergency pollution sources (FH); calculation of a prior probabilities of the formed 
hypotheses (CPP); making a decision on the guiltiness of sources in the emergency pollution 
(MD). 

 

 
LMM - library of mathematical models of pollutants transfer in rivers; 
LDMM - library of methods of making decision;  
    - direction of information flow; 
  - direction of execution sequence of problems. 

Figure 5.2. Generalized block-diagram for solving the problem of identification of emergency release 
sources. 
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In the library of mathematical models described the processes of the transport of 
pollution substances in rivers there are realized mathematical models and algorithms of their 
calculation described in Chapters 1 and 2, and in the library of the methods of making a 
decision concerning guilty in emergency dropping there are realized Bayesian methods and 
algorithms of testing many hypotheses described in Chapter 4. For simplification of the 
procedure of making decision there are described algorithms of cluster-analysis in section 5.6.  

 
 

5.4. ALGORITHM OF HYPOTHESES FORMATION 
 
The total number of m-dimensional points, which suppose different 

combinations of uncontrolled objects to be emergency release sources, at exhaustive 

search of all possible variants, is 12 R , where m is the number of parameters 
being measured, R  – the number of uncontrolled objects. For real values of m 
and R , to perform necessary computations for such a number of variants within 
practically acceptable period of time is impossible, even on modern powerful 
personal computers. It is necessary to develop an algorithm, allowing a significant 
reduction in the amount of searching of different combinations of uncontrolled 
objects, but still providing that the remained combinations would include the true 
combinations of uncontrolled objects. The algorithm given below allows to reduce 
significantly the exhaustive search of necessary variants and to solve the problem 
of identification of the sources of excessive pollution within practically acceptable period 
of time. 

Let the i -th uncontrolled object release some im  parameters out of m 

parameters controlled by the analyzer in the j –th range. Let pollution by some 

mn   parameters be registered in the j –th range at Nt  moment. Then, from the 

total number of uncontrolled objects R , are chosen only those objects RR 1 , 

which release n parameters. 

Let  
inii xx ,...,

1
 denote the set of parameters released by the i -th uncontrolled 

object, mni  , Ri ,...,1 ;  
inii xx ,...,

1
 – the parameters exceeding the allowable 

limit of concentration (ALC) in the j –th range. Then, only those objects, for 

which    
1 1
,..., ,...,

n ni
i i j jx x x x   will remain as suspected in the emergency 

release. Let’s denote the number of such objects by RR 1 . 

Only n parameters exceeding the allowable limit of concentration will be used 
for making decision on pollution sources, as the other parameters will be non-
informative for the problem under consideration. 

Thus, the number of parameters is reduced to 1n , and the number of the 

objects suspected in emergency release – to 1R . 
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Only concentrations of 1n  parameters are calculated according to the developed 

models. The parameters are calculated independently. 

Let’s consider one parameter x x xj i in1 1
( ,..., ). Let 12 RR   uncontrolled 

objects take part in formation of x j1  parameter. We are modeling the value of 

x j1  parameter in the j –th range on the assumption that the release was made by 

some one uncontrolled object out of 2R  uncontrolled objects, by some two, three 

and so on uncontrolled objects, and the corresponding distances d d x xi i j jr1 1 1,..., (  , )  

are being calculated. For each r  value, i.e. for each population of uncontrolled 

objects, the minimum value d di i i ir r1 1,...,
*

,...,min  is being calculated. The confidence 

interval around x j1  point, i.e. 
1 11 1

ˆ ˆˆ ˆ[ , ]
j jj x j xx t x t       is being formed. If 

some successive value from sequence d d di i i i ir1 1 2 1

*
,

*
,...,

*, ,..., ,... falls outside the 

confidence interval and the preceding value is within the confidence interval, the 

calculation is stopped, and those objects out of 2R , for which the corresponding 

distances 
*d  have fallen within the confidence interval, are included into the 

suspected set of emergency pollution sources. Let’s denote their set by 2R . 
(Concentrations x j1  for objects from 2R are already calculated and will be used 

later when forming multidimensional points). These objects subtract from the set 1R . 

We’ll receive 212,1 RRR   – the set of uncontrolled objects for further 

consideration. 

Let’s consider the second parameter x x xj j j n2 1
 ( , ... , ) . Let 13 RR   

uncontrolled objects take part in formation of x j2  parameter. We are modeling the 

value of x j2  parameter in the j –th range on the assumption that the release was 

made by some one uncontrolled object out of 3R  uncontrolled objects, by some 

two, three and so on uncontrolled objects, and distances d d x xi i j ir1 2 2,..., (  , ) are 

being calculated. For each r  value, i.e. for each population of uncontrolled objects, 

the minimum value d di i i ir r1 1,...,
*

,...,min  is being calculated. The confidence interval 

2 22 2
ˆ ˆˆ ˆ[ , ]

j jj x j xx t x t       is being formed. If some successive value from 

sequence d d di i i i ir1 1 2 1

*
,

*
,...,

*, ,..., ,... , falls outside the confidence interval and the 

preceding value is within the confidence interval, the calculation is stopped, and 

those objects out of 3R , for which the corresponding distances 
*d  have fallen 

within the confidence interval, are included into the suspected set of emergency 

pollution sources. Let’s denote their set by 3R . They are subtracted from 2,1R . 
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We’ll receive 32,13,1 RRR   -the set of uncontrolled objects for further 

consideration. 

Then the third parameter x j3  is taken into consideration and so on, until set 

kR ,1 ,  nk ,...,1  is an empty set. 

Those S  populations of uncontrolled objects, which fell into this set while 
considering separate parameters, will remain being suspected in pollution. 
Concentrations of those parameters out of m , which were not calculated when 
considering separate parameters, must be calculated for each population. The 
received m -dimensional points will constitute S  hypotheses, which must be tested 
for making the final decision. 

 
 

5.5. CALCULATION OF A PRIOR PROBABILITIES 
 
A certain a prior probability, depending of its hypothetical participation in emergency 

pollution, is assigned to each uncontrolled object so as to hold 
 





R

i
iobP

1

1)(
. 

 
If the objects have several emergency modes, each emergency mode will be recognized 

as a new object. Thus, the total number of uncontrolled objects R  will be equal to the 
number of all emergency modes of the uncontrolled pollution sources. 

After formation of hypotheses concerning guiltiness of sources of the emergency 
pollution, i.e. after defining the set of points of mathematical expectation of measurement 
vector, the a prior probabilities of hypotheses, corresponding to the chosen points of 
mathematical expectation, are found in the following way. 

Let’s assume that mathematical expectation ia , Si ,...,1 , was calculated with the 

assumption that objects 
iKjjj obobob ,...,,

21
, are guilty. Then 

 





i

l

K

l
j

i
i obP

K
aQ

1

)(
1
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and 
 

1
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( ) ( ) , 1,...,
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
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5.6. DECORRELATION OF THE MEASURED VALUES VECTOR 
 
According to the note made in paragraph 4.1, preliminary decorrelation of a vector of the 

measured values does not influence results of testing hypotheses. As components of a vector 
of the measured values of controllable components of river water, generally, are correlated, 
for direct use in Chapter 4 given algorithms in the process of making decisions concerning 
guilt in emergency pollution, there is preliminary carried out decorrelation of a vector of 
measurements [126, 133, 191]. 

Let ),...,( 1 nxxx   be m -dimensional normally distributed random vector with 

mathematical expectation ),...,( 1 m   and covariant matrix ,mmW  i.e. 

 

1/ 2/ 2 11
( ) (2 )  exp ( )   ( )

2
m T

xp x W x W x        
 

.  (5.4) 

 

For convenience of representation, let’s denote  xY , 
mmijVVW



 1 . Then 

 
1( )   ( )   ( ; )T Tx W x Y V Y A Y Y     .  (5.5) 

 

Let’s introduce such orthogonal matrix 
mmij 

  , the columns of which are 

eigenvectors of matrix V . Then 
 

11 0

0

T

mm

K

V K

K

    


  



, 

 

where iiK , mi ,...,1  is the i -th eigenvalue of matrix V . 

Let’s denote 
 

1
1( )  x K Z      , 

 
where 
 

mmK

K

K







0

011

1  . 
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Then 
 

1
1 1  ( )   ( )TZ K x K x       .  (5.6) 

 
With the new notations, quadratic form (5.5) may be rewritten as: 
 

1 1 1 1
1 1 1 1( ; ) ( )T T T T TA Y Y Z K V K Z Z K KK Z Z Z       . 

 

Since   and 1K  are, correspondingly, matrices of eigenvectors and eigenvalues of 

matrix V , Jacobian of such transformation is equal to 1/ 2(det )W . With the new notations, 

probability density (5.4) may be rewritten as  
 

22

1

1
( ) (2 ) exp

2

m m

z i
i

p Z Z




 
  

 
 . 

 
Thus, we have received that vector  
 

1   TY K x ,  (5.7) 

 
is normally distributed random vector with mathematical expectation   and covariance 

matrix W . 
 
 

5.7. ALGORITHMS OF CLUSTER-ANALYSIS FOR IDENTIFICATION OF 

EMERGENCY RELEASE SOURCES 
 
Depending on the available a priori information it is possible to consider different 

procedures of testing hypotheses (5.3). In process of increase of a priori information there is 
possible to use more complex procedures of making decision providing higher reliability (see 
Chapter 4). In those cases when a priori information is unknown or the probability 

distribution law of the vector of measured parameters ( )x tN  is unknown or when operative 

obtaining the decision even lower reliability is necessary, the procedure of making the 

decision is based on the distance between points  ( )x tj N  and  N
ii

j tx r,...,1ˆ  (see section 5.2): 

 

    1

1

,...,
,..., ˆ , r

r

i i
i i j N j Nd d x t x t . 

 
That uncontrolled objects or populations of uncontrolled objects to which corresponds the 

minimum distance d , is considered to be the pollution source. Algorithms making decision 

based on the distance d  refer to the algorithms of cluster analysis. In case, when, during the 
emergency release, one and the same object may release different concentrations, they should 
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be considered as releases from different uncontrolled objects, and the algorithms making 
decisions should be used. 

Depending on the chosen measure of the distance d  there is a large number of the 
algorithms of cluster analysis [see, for example, 198 – 200, 201 – 209].   

Two simple algorithms of cluster analysis are given below based on the distances of 
Euclid and Makhalanobis. They are realized by authors in the package of identification of 
emergency pollution sources of rivers (see Chapter 7) side by side with Bayesian algorithms 
described in Chapter 4 [182, 187, 188].  

Veracity of the decision made in this algorithm depends on the noise level )(0 tx  (see 

section 5.2). With increasing of ratio      txDtxM j
Nj 0/ˆ , where M  and D  are signs 

of mathematical expectation and variance correspondingly, the probability of incorrect 
identification of pollution sources decreases. 

In the absence of covariant matrix of the measurement vector ( )x tN , the Euclidean 

distance is used as a distance measure 
 

         1 1

1

,..., ,...,
,..., ˆ ˆ .r r

r

Ti i i i
i i j N j N j N j Nd x t x t x t x t    

 
If water condition in the j –th range is controlled by the automated station, by means of 

which covariant matrix jW  is estimated on the base of accumulated measurement 

information )(ˆ Nj tx , ,...,2,1N  then the Makhalanobis distance is used as a distance 

measure: 
 

         1 1

1

,..., ,...,1
,..., ˆ ˆ .r r

r

Ti i i i
i i j N j N j j N j Nd x t x t W x t x t    

 
The advantages of this method are: simplicity of its realization and minimum of a priori 

information needed. However, even if a priori information is available, it is impossible to use 
it in this case. All pollution sources in this procedure are equally dangerous. That is why it is 
preferable to use Bayesian algorithms of making decision, described in chapter 4, free of 
these disadvantages. 

The described algorithms of the cluster analysis were used in the realized problem of 
identification of the shops guilty of emergency pollution of sewage of Odessa nitrogen 
factory in the computer-aided monitoring system of quality of sewage of this factory which 
has been developed and introduced at factory in 1985 – 1988 under the guidance of the 
authors of the given book. In the problem of identification as mathematical models (see 
paragraph 5.2) simulation models of formation of quality of sewage of this factory, described 
in paragraph 3.6, were used. 

 
 



 
 
 
 
 
 

Chapter 6 
 
 
 

SOFTWARE OF MATHEMATICAL MODELS OF 

POLLUTANTS TRANSPORT IN RIVERS 
 
 

6.1. ASSIGNMENT AND POSSIBILITY  
OF THE PACKAGE 

 
The description of the applied program package created by the authors for realization of 

mathematical models of pollutants transport in rivers is given in this Chapter [226]. It is 
designed an up-to-date as convenient reliable tool for experts in different fields of knowledge 
(biology, ichthyology, ecology, hydrology, building, agriculture etc.), allowing them to 
calculate the polluting substance concentrations at any point of the river depending on the 
quantity and the conditions of discharging from several pollution sources. As the 
mathematical models of water quality formation in the river under the influence of several 
pollution sources, spatially one-, two- and three-dimensional advective-diffusion models at 
different initial and boundary conditions (see Chapter 1) are realized in the package: a) an 
advectivediffusion equation with non-local boundary condition at the end of the controlled 
section with account for the coefficient of natural selfpurification of the river; b) an advec-
tivediffusion equation with boundary condition of full mixing at the end of the controlled 
section; c) an advectivediffusion equation ignoring the vertical advection with non-local 
boundary condition at the end of the controlled section with account for the coefficient of 
natural self purification of the river; d) an advectivediffusion equation ignoring the vertical 
advection with boundary condition of full mixing at the end of the controlled section; e) a 
diffusion equation with non-local boundary condition at the end of the controlled section with 
account for the coefficient of natural selfpurification of the river; f) a diffusion equation with 
boundary condition of full mixing at the end of the river controlled section. For the 
abovementioned mathematical models, there are use computation schemes described in 
Chapter 2.  

In the package there are the options of inputting and editing the initial data describing the 
geographical, geometrical and hydrological features of the simulated section of the river, the 
condition and the specific features of pollution of the river, the quantity and the name of the 
pollutant of interest, the types of used models and restrictions, the ways of assignment of 
these data etc. There are the options of choosing the language of dialogue with the package, 
the conditions of computation realization, the desirable accuracy of computation, the type and 
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format of output of the results. At any stage of working with the package, there is an option of 
help concerning the methods which are realized in the package, the capabilities and specific 
features of the package, the parameters of tasks and obtained results. 

 

 

Figure 6.1. Sections of main menu of the package. 

The choice of these possibilities is carried out by means of appropriate options from the 
commands of the main menu of the package. The main menu includes the following 
commands and options (see Figure 6.1): File (Page setup, Printer setup, Exit), Tools 
(Language, Model, Save options, Autosave), Coordinates (Type of coordinates, Banks and 
bottom, Flow velocity, List of objects, Objects, Convert files), Water parameters (List of 
substances, Upper cross-section, Capacities of sources, Coefficients of diffusion, Coefficient 
of non-conservatism, Coefficient of decreasing), Run (Accuracy, Calculations) and Help 
(Contents, Algorithms). The desirable language of dialogue with the package and the type of 
diffusion equation are selected directly from two pull-down lists. The description of purposes 
and capabilities of these options is given below.  

 
 

6.2. INPUT AND EDITING OF THE INITIAL DATA  
 
The input of information necessary for operation of the package is performed in the form 

of separate constants, tables or the choice of the appropriate line from the pull-down. Let’s 
adduce the substantial description of this information.  

The data, which are not represented as tables. In the list given below, some 
parameters are common for all sections of the river, and some are specific for the chosen 
section; the latter are marked by the sign “d” in square brackets. The parameters marked by 
the sign “n” in square brackets are not saved in files. 
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 Type of model – one-dimensional, two-dimensional or three-dimensional. It is 
selected from the drop-down list displayed directly on the main toolbar or by 
selection of the option “Model” from the command “Tools” (see Figure 6.2).  

 The indicator determining the method of the numerical solution of two-dimensional 
and three-dimensional diffusion equations – by means of iteration algorithm (see 
Item 1 of paragraph 2.1.2) or by representation of the sought-for solution as a linear 
combination of the solutions of one-dimensional equations (see Item 2 of the same 
paragraph) (see Figure 6.2).  

 The number of sections of the river which can be considered in the package (see 
Figure 6.2). 

 The number of polluting substances in the available list (see Figure 6.2).  
 The indicator determining the type of coordinates (Cartesian or curvilinear), which 

are listed in the tables “Banks and bottom” and “Objects”. It is switched by means of 
the option “Type of coordinates” (see Figure 6.3). 

 

 
 

 

Figure 6.2. 
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 The parameters determining the accuracy of calculations at solving the diffusion 

equations. They include the total number of nodal points n , the number of nodal 

points 2n  along the axis Y  (for the two-dimensional and three-dimensional models), 

the number of nodal points 3n
 along the axis Z  (for the three-dimensional model) 

and the factor tc
, determining the step of time discretization  , i.e. the factor, which 

the value   accepted by default is multiplied by. These parameters are entered by 
means of execution of the option “Accuracy” from the command “Run” of the menu 
of the main form (see Figure 6.4). 

 

 

Figure 6.3. 

 

 

Figure 6.4. 
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Figure 6.5. 

 The number of the considered section. It is entered by execution of the option 
“Calculations” from the command “Run” of the menu of the main form (see Figure 
6.4). 

 The number of polluting sources within the considered section [d]. It is entered by 
means of the option “List of objects” from the command “Coordinates” of the menu 
of the main form (see Figure 6.3). The format of input is of the form shown in Figure 
6.5. 

 The indicator determining whether the diffusion equations for the considered section 
will be solved under non-classical boundary conditions (see Item 6 of paragraph 1.2) 
[d]. It is switched by means of the option “Calculations” from the command “Run” 
of menu of the main form (see Figure 6.4). The format of input is of the form shown 
in Figure 6.6. 
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Figure 6.6. 

 The indicator determining whether the given boundary conditions in the upper cross-
section of the section will be taken into account at solving the diffusion equations or 
these boundary conditions will be taken equal to zero [d, n] (see Figure 6.6). 

 The indicator determining whether the given initial conditions will be taken into 
account at solving of the diffusion equations or these initial conditions will be taken 
equal to zero [d, n] (see Figure 6.6). 

 The polluting substance from the available list the concentration of which will be 
determined [d, n] (see Figure 6.6). 

 The list of polluting sources which are considered to be operating at solving the 
diffusion equations. At solving of these equations, the capacities of other sources are 
considered equal to zero [d, n] (see Figure 6.6).  

 The type of functions of spatial distribution of sources ),( xuD . This function can 
be trapezoidal, Gaussian or Loretzian (see paragraph 2.7).  

 The type of function of discharge ),( xvA , determining the character of attenuation 
of capacities of the sources. This function can be stepwise, equal to the function of 
normal distribution or equal to the function of Cauchy distribution (see paragraph 
2.7). 
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 Relative sizes of sources, i.e. the ratio between the parameter u  and the spatial step 
used in the difference scheme grid along the corresponding coordinate axis (see 
paragraph 2.7). 

 Relative duration of recession of the function of discharge, i.e. the ratio between the 

parameter v  and the duration of operation of the source (see paragraph 2.7).  
 
Below the number of polluting substances from the available list common for all sections 

is designated by M , and the number of polluting sources from the list corresponding to the 
considered section is designated by R .  

The data given in the table “Banks and bottom” (Figure 6.3). Each of these parameters 

corresponds to some cross-section of the river with number j  ),...,1( hNj  : 

 
 j  – the longitudinal coordinate; 

 j  – the cross coordinate of the point of the left bank; 

 j   – the cross coordinate of the point of the right bank; 

 jx , jy  – the horizontal Cartesian coordinates of the point of the left bank; 

 jx  , jy   – the horizontal Cartesian coordinates of the point of the right bank; 

 kjh  ),...,1( hmk   – the depth of the river at the point with cross coordinate 

   1/  hjjjkj mk . 

 

Here hN  is the number of cross-sections; hm  is the number of equidistant points of the 

bottom in the cross-section. For each cross-section the value jjjw    represents the 

width of the river. 

We have used the spline-interpolation for the functions )(l  and )(r , determining 

the cross coordinates of the points of bank lines of the river for the given  -coordinate, and 

the polynomial interpolation for the function ),( H , determining the depth of the river at 

the point with the given horizontal coordinates at the specified value of  .   

Depending on the type of coordinates chosen by the user for data input – Cartesian or 
curvilinear, either the parameters jx , jy , jx  , jy  , jh1 , jh2 , … or the parameters j , j , 

j  , jh1 , jh2 , … are consistently entered in the columns of this table. The format of input of 

the latter is shown in Figure 6.7. 

The data given in the table “Flow velocity” (Figure 6.3). The quantity  is the speed 

of the water flow in the cross-section with number  . The format of input is 

similar to the format of input of curvilinear coordinates.  
The linear interpolation is used in the package to describe the dependence of the water 

rate  on the -coordinate.  

 

jv

j ),...,1( Nj 

)( )()( rvrErP  
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Figure 6.7. 

 

 

Figure 6.8. 

The data given in the table “Objects” (Figure 6.3). Each of the following parameters 

corresponds to one of the pollution sources with number j  ),...,1( Rj  . 

 
 jT  is the duration of operation;  

 j , j  are the longitudinal and cross curvilinear coordinates; 

 jx , jy  are the horizontal Cartesian coordinates; 

 jz  is the depth. 
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Depending on the type of coordinates chosen by the user for data input – Cartesian or 
curvilinear, the following parameters are consistently entered in columns of this table: jT , jx  

or j , jy  or j  (for the two-dimensional and three-dimensional models), jz  (for the three-

dimensional model). The format of input is similar to the format of input of curvilinear 
coordinates. 

The data given in the table “The upper cross-section”.  The values j  are the 

boundary values of the polluting substance concentration with number j  in the upper section 

),...,1( Mj  .  

They are entered by means of execution of the option “Upper range” from the command 
“Water parameters” of the menu of the main form (see Figure 6.8). The format of input is 
similar to the format of input of curvilinear coordinates. 

The data given in the table “Capacity of sources” (Figure 6.8). The first column of the 
table contains the number of the source and its name; the second column contains water flow 
rate jp  of the j -th source of pollution; other columns contain concentration jks  of 

polluting substances discharged into the river water by the j -th source; Rj ,...,1 ; 

Mk ,...,1 . The format of input is similar to the format of input of curvilinear coordinates. 

The data given in the tables “Coefficients of diffusion”, “Coefficients of non-
conservatism”, “Coefficient of decreasing” (Figure 6.8). Each of the following parameters 

corresponds to one of the polluting substances with number j  ),...,1( Mj  . 

 

 xK , yK , zK  are the coefficients of turbulent diffusion in the upper cross-section; 

 xK  , yK  , zK   are the coefficients of turbulent diffusion in the lower cross-section; 

 j  is the coefficient of non-conservatism in the upper cross-section; 

 j   is the coefficient of non-conservatism in the lower cross-section; 

 jl  is the length of self-cleaning; 

 jq  is the coefficient of self-cleaning. 

 
The format of input is similar to the format of input of curvilinear coordinates. 

The linear interpolation for dependence of parameters )(rK x , )(rK y , )(rKz , )(r  

on coordinate   is used in the package. 

 
 

6.3. MANAGEMENT OF WORK OF THE SOFTWARE 
 

6.3.1. Description of the Files used in the Software 
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Purpose of the basic files of the software. The enumerate below files are necessary for 
run and work of the software. Either these files or the folders specified before their names 
should be placed in one main directory (folder).  

 mdinare.exe is the file running the software;  
 mdinare.num and mdinare.str are the binary and text files containing parameters of 

work of the software which are read out at its running; both of this files change at 
performance of the command Save options or (in the case of switched on the option 
Autosave) at exit from the software (see 6.3.4); if these files are absent they are 
created automatically, thus values of parameters by default are established;  

 mdinare.dir is the text file containing full names of data files which are 
automatically loaded into tables of data editing for each task at opening of 
corresponding forms (initial loading); in the case of switched on the option Autosave 
it changes at exit from the software; if this file is absent it is created;  

 *.dic are the files-dictionaries serving for translation of text messages from English 
(see 6.3.2);  

 *.add are the auxiliary files necessary for use of dictionaries; if they are absent they 
can be created at performance of the command Language from the main menu (see 
6.3.2);  

 *.hlp and *.pdf are the files containing the help information in different languages; 
the files sample.hlp and sample.pdf contain the help information in English;  

 mdinare.bmp is the graphic file used by the software;     
 \Fonts\ *.ttf are fonts used by the software; they are loaded into system at running of 

the software and unloaded at end of work of the software.  
 
Syntax of used text files. The files mdinare.str, mdinare.dir and *.dic may be created 

or changed by means of any text editor. Thus these files delivered together with the software 
may be used as samples for their creation.  

The file mdinare.str contains the following 3 lines (in view of the order of their 
arrangement in the file): 1) name of the chosen language (for example English, Russian, 
Georgian, etc.); 2) full name of working directory (for example C:\MSG\River\Data); 3) full 
name of the file running the program Acrobat Reader (for example C:\Program 
Files\Adobe\Acrobat5.0\Reader\Acro Rd32.exe).   

Syntax of the file mdinare.dir is determined by the following rules:  
 
 each line of this file contains names of the files concerning a specific target of input 

of initial data used in the software; it is necessary to watch not mixing numbers of 
lines in this file;  

 if any line of this file contains a blank the part of this line following this blank is 
considered as a comment and is not used by the software;  

 each line of this file or (at presence of a blank in it) the part of this line before the 
comment should contain one name of a file or several names of files separated by a 
semicolon ”;”, in the latter case different files concern to different editing windows 
on one form.  
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The files mdinare.str and mdinare.dir may be created or changed also during work of 
the software. Unlike them files-dictionaries *.dic may be created or changed only by means 
of a text editor.  

Syntax of files-dictionaries is determined by the following rules: if M  is the number of 

translated words and sentences then for each value 1,...,0  Mk :  

 

 the line of this file with number 1k  contains a word or sentence in English which 
is necessary for translating;  

 the line of this file with number 2k  contains the same word or sentence which 
was translated into chosen language;  

 the line of this file with number 3k  is not used and may contain any comments.  
 
Data files. Structure of a data file is determined by its extension in conformity with the 

following rules:  
 
 First symbol of the extension always is ’$’; 
 Second symbol of the extension is the first letter of name of type of the data which is 

written in the file; the letters ’b’, ’i’, ’w’, ’l’, ’s’, ’d’ correspond to the types byte, 
integer, word, longint, single, double;     
 

 Next symbols of extension determine the number N  of columns of the table 
reserved for entered values; thus the real number of columns of the table which is 

visible on the screen at editing of data can be less N .  

 If extension consists of three symbols then third symbol of extension is the letter of 
the Latin alphabet which serial number (beginning from ‘a’) is equal to the number 

N . 

 If extension consists of four symbols then last two symbols of extension should form 

hexadecimal representation of the number N ; in this representation the letters ’z’, 
’a’, ’b’,..., ’o’ carry out a role of the digits having values accordingly 0, 1, 2... 15.  

 
A text file or RTF–file containing a note (see 6.3.3) may correspond to each data file. 
 
 

6.3.2. Working Language 
 
The working language of the package is the language in which all text messages will be 

displayed. A list of languages is determined by the existence of files-dictionaries, serving for 
translation of the messages from English, in the main directory. The user can add new or to 
remove the existing files-dictionaries (their total number should not exceed 16). 

For translation of text messages by the program, in the main directory, there should be a 
file with the name coinciding with the name of chosen language (Russian, Georgian etc.) and 
having the extension .dic (for example georgian.dic), containing a dictionary of translated 
lines, and also a file with the same name and with extension .add (for example 
georgian.add). For representation of the help information in the chosen language, in the main 
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directory there should also be a file with the same name and with extension .hlp (for example 
georgian.hlp) or a file with the same name and with extension .pdf (for example 
georgian.pdf), containing this information. 

The working language can be chosen from the list on the ToolBar or by means of the 
option of the main menu Language (see Figure 6.2). In the first case, accessible languages 
are those for which there are both files – with extensions .dic and .add. In the second case, 
the presence only of the file with extension .dic is enough; thus the auxiliary file with 
extension .add is created by pressing the button Create. 

The file-dictionary with extension .dic can be created or changed as it is described in 
6.3.1 and is given in Help of the package. At each change in this file, it is also necessary to 
create the corresponding file with extension .add in the way described above. 

 
 

6.3.3. Help Service and Notes 
 
In the software help information of following types are used:  
 
 help in a status line: in the moment of moving of the cursor of a mouse above some 

visual components (sections of menu, buttons, editing windows, etc.) a short 
information about these components appears in the Status Bar and in emerging 
label;  

 display text from help files: it is carried out by means of commands of traditional 
section of menu Help;  

 call of the context-dependent information: in the software as well as in all Windows-
programs pressing of the key F1 causes information for that mode in which is the 
program in that moment.  

 
The general form of the initial format Help is shown in Figure 6.9. 
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Figure 6.9. 

The reference to “help” is not recommended during performance of the program i.e. 
when calculations are being done in the program.  

In all tasks in which initial data are read out from files or any data files are created (in 
particular they are tasks of data input in tables) the possibility of viewing and editing of notes 
that is any text corresponding to the used data file or, if there are several such files, to first of 
them is realized. The file containing a note has the same name and the same directory as 
corresponding data file and one of the following extensions – .tex, .txt, .rtf depending on its 
type.  

Call of the editor of notes is carried out by the command Help|Notes. During editing of 
the file containing a note its type can be changed. 

 
 

6.3.4. Parameters of the Package  
 
The change in the value of each parameter is carried out with the help of standard 

Windows components which allow editing the text, choosing the line from the list, setting the 
indicator etc. 

At working with each form containing the main menu, the assignment of parameters is 
carried out with the help of commands of the main menu from the groups File, Tools and 
Parameters. Most important parameters could also be determined with the help of the 
components located on the ToolBar. 

It is possible to split the parameters used in the package into several groups, which are 
considered below. 

The main parameters of the package which are not used in calculations: 
 
 Sizes of pages for printing out; they are changed with the help of the option 

File|Page setup (see Figure 6.10); 
 Working language (see Item 6.3.2); 
 Working directory is the directory where data files are looked up at choosing them; it 

changes at each change of a folder in standard dialogue windows for opening and 
saving the files. 

 
These parameters are read from the files mdinare.num and mdinare.str at running of 

the package (see Item 6.3.1). The option of the menu Save options records the values of 
parameters changed during the operation of the package in this file. The item of the menu 
Autosave contains the indicator which, in the switched-on state, provides the record of 
changed values of parameters in the files mdinare.num and mdinare.str at exiting the 
package. 

The parameters of the package which are used in calculations and are not 
represented as tables: they are the parameters listed in paragraph 6.2. The parameters which 
are not marked by the sign ‘n’ in this list, as well as some parameters of the previous group, 
are read from the file mdinare.num and can be saved in this file. 
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The type of the model, the type of the algorithm, the number of sections of the river and 
the number of polluting substances are changed by means of the option of the menu 
Tools|Model in the main form of the program. 

The type of coordinates is changed by means of the option of the menu 
Coordinates|Type of coordinates in the main form of the program. 

The number of polluting sources in each section is changed at editing the tables “List of 
objects”.  

The parameters determining the accuracy of calculations are changed by means of the 
option of the menu Parameters|Accuracy in the form of the task “Calculations”; the 
parameter n  also is changed by means of the option of the menu Run|Accuracy in the main 
form of the program. 

Other parameters are changed by means of the option of the menu Parameters|Task 
parameters and Parameters|Additional parameters in the form of the task “Calculations”, 
and also in the dialogue windows which appear on the screen before running of this task. 

The parameters of the package which are used in calculations and are represented 
as tables: they are sequences of the same elements, which are entered in tables and are saved 
in separate files (see Item 6.3.5). The data of the considered type which have been saved in 
files are used in calculations. The concrete tables of initial data used in the package are 
described in paragraph 6.2. 

The parameters of setting of the printer are parameters of Windows, which, in 
particular, are used by the package; they are changed by means of the option File|Printer 
setup (see Figure 6.10).  

The parameters determining the type of the diagram at representation of 
computation results (see paragraph 6.4). 

 
 

6.3.5. Data Input and Editing  
 
The entered data which form sequences of elements of the same type are represented in 

the form of tables. When there are several editing windows with tables on the screen, 
different windows correspond to different sections of the river. 

There are the possibilities of entering the data which have not been recorded anywhere, 
reading data from files and saving them in files by means of commands File|New, File|Open, 
File|Save, File|Save as, File|Save all standard for the text and graphic Windows editors (see 
Figure 6.11). 

The option File|Send records the data in a text file. The option File|Print performs 
printing of the table. 

The data files have quite a simple structure (see 6.3.1) and can be created outside of this 
package. 

The data of the package presented in the form of a table can be entered and edited by 
means of a mouse and a keyboard. There are the possibilities changing, deleting or adding the 
symbols into the record of the element; deleting or adding new elements in the necessary 
place; selecting a block of data; moving or copying the selected block to a new place; 
removing, writing down in a file or reading the block of the data from the file; printing out 
both the selected block and all contents of the data file. 
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There are two operating modes with a table of data – the mode of editing of cells and the 
operating mode with blocks. In the first mode, it is possible to edit the text in each cell of the 
table, but it is impossible to select a block from several cells. In the second mode, on the 
contrary, it is possible to select the block from several cells (for copying, removal, insertion 
etc.), but it is impossible to edit the text. 

The switching between these modes is carried out by the button Edit on the ToolBar. 
 

 

Figure 6.10. 

 

 

Figure 6.11. 
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6.4. REALIZATION OF COMPUTATION AND  
REPRESENTATION OF THE RESULTS 

 
The package uses curvilinear coordinates of the points of the river banks and polluting 

sources at solving the diffusion equations. Therefore, if the user has chosen Cartesian 
coordinates for data input, all these Cartesian coordinates should be transformed into 
curvilinear ones. Such transformation is carried out by the command of the main menu of the 
main form Convert files (see Figure 6.3). 

The algorithms and analytical methods are used at solving the diffusion equation. They 
are described in Chapters 1 and 2. For realization of two-dimensional and three-dimensional 
models, one of the two algorithms may be used depending on user’s choice:  

1) The classical algorithm in which the difference equation for layers is equivalent to a 

system of N  linear equations for N  values of unknown function at nodal points; this system 
is solved by the iteration method; 

2) The algorithm in which the solution of two-dimensional or three-dimensional diffusion 
equation is represented in the form of a linear combination of solutions of some one-
dimensional diffusion equations. 

As the experience shows, the second algorithm can be realized by computer much more 
quickly then the first one. 

The method of calculations is also determined by some other parameters listed in 
paragraph 6.2. 

The results of calculations are displayed in the form of text messages, tables, graphs, etc. 
For example, the formats of display of computation results as diagrams and tables are shown 
in Figure 6.12 and 6.13, respectively. 
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Figure 6.12. 

The option Print carries out printing of the text and/or the diagram. 
The option Send text carries out writing of the text in the file name of which is 

determined by default or indicated by the user. The user can choose one of the following 
types of files: file LaTeX (tex-file), a simple text file, text file MS DOS. If the saved file 
already exists on the disk, the user can also set the way of writing of the text by means of the 
indicator “Preserve existing text”: to add a new text to the available one or to remove the 
available text from the file. 

It is also possible to single out the text represented on the screen and, by means of 
combinations of keys Ctrl-C, Ctrl-V, to move it to the edited document Word or to the 
document of any other editor allowing to work with the text in the RTF format. 

The option Send graph carries out writing of the diagram into the file the name of which 
is determined by default or indicated by the user. The user can choose one of the following 
types of files: Metafile (wmf-file), Enhanced Metafile (emf-file), Windows Bitmap (bmp-
file) or JPEG (jpg-file). The user can also set the type of figure which will be drawn in a file 
– black-and-white or coloured, by means of the indicator. 

 

 

Figure 6.13. 

The listed options are called from the main menu or by means of fast buttons of the 
ToolBar, duplicating the corresponding items of the main menu. 

The results of calculations together with some initial data are split into groups, which are 
represented on the screen in various windows. By calling the options Print and Send text, the 
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user can select which of the existing groups of data he wants to print or to write down in a 
file. 

In the task “Calculations”, it is possible to choose the mode of representation of the 
graph or the table: to represent the graph with a coordinate grid or without it, to increase or to 
decrease the thickness of lines of a graph, to increase or to decrease the scale of data 
presentation in the graph, to set the standard or maximum size of the window containing the 
graph and the table. The parameters determining the view of the screen are changed by means 
of the command of the menu Parameters|Graph view or by means of some components on 
the ToolBar. 

See also 6.3.4, 6.3.2, 6.3.3.  
 



 
 
 
 
 
 

Chapter 7 
 
 
 

SOFTWARE OF IDENTIFICATION OF THE SOURCES OF 

EXCESSIVE RIVER POLLUTION 
 
 

7.1. APPOINTMENT OF THE PACKAGE 
 
The package of applied programs of identification of emergency pollution sources of 

surface or sewage water created by authors is described in the offered chapter. Despite the 
urgency the considered problem, as far as we know, is solved by authors of the present work 
for the first time. They possess publications in which the given problem is theoretically 
proved and solved [1, 182, 187, 188, 210, 221]. The urgency of the given problem is noted in 
publications [192-197]. For detection of initiators of emergency pollution of sewage of 
Odessa nitrogen factory among possible five shops, the simple algorithms based on a method 
of the cluster analysis and using the elementary model, considering only transfer and dilution 
of polluting substances in sewage (see paragraph 5.2), have been developed and introduced in 
the automated monitoring system of sewage of factory under the guidance of author of the 
given work. 

The developed package is intended for automatic identification of sources of emergency 
dumping in the rivers between two controllable ranges. It is realized for IBM- compatible 
personal computers in operational systems MS DOS and WINDOWS. The description only 
WINDOWS-version is given below. 

Presence of such package is rather actual for solving the problem of objective control and 
acceptance of optimum decisions for the purpose of management of processes of formation of 
quality of river water and water use. For demonstration of its urgency it is enough to notice 
that work on creation of the given package is executed within the project G-047 ISTC 
(International Science and Technology Center), based by USA, Japan and the countries of 
EU. The basic result of the work is the solution of principle of most important task of the 
problem of monitoring of river water and working out of original working algorithms and the 
unified computer software for certain set of types of water objects and pollution processes. 

The technique realized in the package, methods of the solution of problems, algorithms 
and programs of their realization are original, belong to authors and have not analogues. In 
particular, the algorithms of identification based on methods of the cluster-analysis and the 
theory of acceptance decisions, used depending on the volume of the available a priori 
information, by increasing of which it is possible to apply more complex procedures of 
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acceptance decisions, providing higher reliability, are developed. For latest case, i.e. in the 
presence of the sufficient a priori information, there are developed optimum (iterative) and 
quasi-optimum (analytical) algorithms of identification of emergency pollution sources of 
river water (see Chapter 4). Mathematical models of transferring polluting substances in the 
rivers taking into account their features and specificity of sources and pollution processes are 
created. In particular, one-, two- and three-dimensional diffusion models of transferring 
pollutants at different initial and boundary conditions depending on specificity of formation 
of quality of water stream (see Chapters 1, 2, 3). The quantitative estimations are obtained, 
allowing to define borders of action of the developed models depending on features of the 
water stream, the characteristic of polluting substances and the form of their dump (see 
Chapter 8). 

 
 

7.2. POSSIBILITY OF THE PACKAGE AND ITS APPLICATION 
 
The necessary initial information characterizing geographical and hydrological features 

of the considered section of water object, form and pollution process of this section from 
natural and artificial pollution sources is introduced in the package; methods of solution on 
the basis of afore-named features of water object and final goals for which achievement the 
given problem is considered are chosen and at occurrence of a situation of emergency 
pollution, by starting of the given package, the set of the most probable sources of this not 
authorized pollution is automatically found out. 

The input information for the developed package are: quantity of pollution sources and 
their spatial co-ordinates, spatial co-ordinates and the list of measured parameters on which 
the river control is carried out, the name and concentration of dumped substances by pollution 
sources in normal and possible emergency operation of functioning, the characteristic of 
features of the river and conditions of descent of sewage. Besides the aforesaid, service 
functions of input-output, editing, graphic representation of output data are realized in the 
package. There is a standard access to each program of the package (the detailed description 
is given in the instruction of the user in Help). All these functions are realized in the given 
package similarly to corresponding functions of the package of mathematical models of 
transportation of pollutants in the rivers, described in Chapter 6. Therefore here it is not 
resulted their detailed description. The names of the options realized in the package for 
introduction of input information and calculations are shown on Figure 7.1. They basically 
are similar to corresponding options of the previous package, except the options “Prelim. 
calculations” and “Decision making” of the section “Run” of the basic menu. The form of the 
format of the option “Decision making” is shown on Figure 7.2. The choice of a method of 
making the decision from described in Chapter 4 and in paragraph 5.7 is carried out in this 
mode. 

The graphic form of output information of the package on which on the scheme of the 
considered section of the river by red points are specified pollution sources of the given 
section by considered parameter is resulted on Figure 7.3. Among all pollution sources 
brightly red colour allocates the sources, guilty of emergency pollution. The list of all 
pollution sources with indication of the made decision about its guilt is given in the bottom 
right corner: Non guilty (it is not guilty), Guilty (it is guilty) and Controlled (supervised). 
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Along to each object two figures are specified: the first – number of the considered section of 
the river, the second – the serial number of object of pollution within the considered section. 
It is not guilty means that the given pollution source is not emergency polluter in the 
considered situation, it is guilty means that the given pollution source is emergency polluter 
in the considered situation and controllable means that sewage of the given source of 
pollution are supervised directly ahead of dump in considered water object and there is not 
any uncertainty concerning its role in the process of pollution. The table of the generated 
hypotheses concerning guilt in emergency pollution of sources of dumps with indication of 
corresponding concentrations of the considered component of pollution is given in the bottom 
left corner. 

Capacity of work of the software was tested in the diverse modes of operation; the 
received results confirm stability and reliability of algorithms and also high accuracy of 
computed values (see Chapter 8 (paragraph 8.2)). 

 

 

 

Figure 7.1. The modes of operation of input information and computations realized in the package.  
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Figure 7.2. 

 

Figure 7.3. Graphic view of output information of the package. 

There is the possibility of the choice of a language of dialogue with the package from the 
set of the languages realized in it. Besides for WINDOWS version, the user can, without 
special efforts, independently to add any, him interesting language to languages of dialogue 
with the package. For this purpose extremely simple instruction is given in Help. Concerning 
these possibilities see description of the previous package in Chapter 6. 

It is necessary to underline especially that the offered package (as well as previous) is 
completely original as all algorithms, programs, texts, graphs, drawings, tables, designs etc. 
realized in this package, are original, belong to authors, and have not analogues. 

 



 
 
 
 
 
 

Chapter 8 
 
 
 

INVESTIGATION OF DEVELOPED  
ALGORITHMS AND PROGRAMS 

 
 
The results of experimental research, developed in Chapters 1 and 2 algorithms and 

appropriate programs, included in computer packages and described in Chapters 6 and 7, are 
given below. The results of research of algorithms of calculation  of concentration  of 
polluting  substances in the rivers with the help of diffusion equations and also  sensitivity  of 
models  of different dimensions to the geometrical sizes of a section of the river and  
dependence  of quality  of identification of emergency pollution sources on the level of the 
noise, deforming  results of measurement, are considered. The results of calculation of 
distribution of concentration of polluting substances in some rivers of the Western Georgia 
are reduced. By means of  computer modelling mid-annual  quantities of some polluting  
substances which have got on certain sections of the rivers of r. Khobistskali’s (Western 
Georgia) basin, between control sections  from  sources of pollution operating  on these 
sections, and  the mid-annual quantity of these  substances brought by them to Black sea are 
calculated. 

The results of research of algorithms of making decisions, developed in Chapter 4, are 
brought in the end of the same chapter in paragraph 4.6. They show truth and reliability both  
the created algorithms and programs of their realization. The results  of research of 
dependence of quality of algorithms of identification of emergency pollution sources from the 
level of the noise, imposed on the results of measurement, are reduced in the present chapter.  

 
 

8.1. STUDY OF ALGORITHMS FOR CALCULATION OF POLLUTANT 

CONCENTRATIONS IN RIVERS BY MEANS  
OF DIFFUSION EQUATIONS 

 
The program system for numerical realization of the problems of pollutants transport in 

water flows consist of three main parts: 1) the programs realizing one-dimensional problems; 
2) the programs realizing two-dimensional problems; 3) the programs realizing three-
dimensional problems. 
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The programs were mainly developed on the base of finite-difference algorithms 
described in Chapter 2. For some problems of a specific character, the analytical method was 
used. 

The main program modules used in all the parts are: 1) the program realizing the run 
method – the factorization method; 2) the program for solution of two- and three- dimensional 
implicit finite difference equation; this program is based on the Gaussian-Zeidel iterative 
method. 

Testing of the program system was carried out for specially selected test problems. 
Numerical experiments were carried out in order to detect mechanical errors made during 
algorithmic presentation or programming; to test the robustness against the initial data, the 
accuracy of the results obtained, and the calculation time; to compare different algorithms, 
etc. 

Particular attention was given to carrying-out of computational experiments in the case of 
pollution sources of a special type (an instantaneous point or stretched source), oscillations in 
solutions of equations at peculiarities in the initial data, etc. 

The numerical experiments gave the following results: 
 
1) In the case of classical one-dimensional problems, certain computational capabilities 

were shown by the purely implicit scheme and the Crank-Nicolson scheme; in the 
case of special loads, it is preferable to use the purely implicit scheme, but in the case 
of smooth initial data – the Crank-Nicolson scheme. 

2) In the case of non-classical boundary conditions (non-local conditions), the used 
finite difference algorithms showed the same capabilities as in the classical case. 

3) In the two-dimensional case, the experiments were carried out on the base of the 
parallel calculating decomposition schemes and the two-dimensional implicit scheme 
as well as the two-dimensional Crank-Nicolson scheme; in terms of the calculation 
time, the decomposition scheme is more preferable; it should be noted that the 
paralleling feature of decomposition schemes was not used in the calculation; in 
terms of the accuracy, in the case of smooth initial data, the best capabilities were 
shown by the Crank-Nicolson algorithm with the use of the Gaussian-Zeidel iterative 
process, which quite agrees with the theoretical studies. 

4) In the case of non-classical two-dimensional problems, the experiments were only 
carried out by means of the decomposition schemes; in this case, all the theoretical 
predictions concerning the used algorithms were confirmed. 

5) When compared with each other, the used three-dimensional algorithms showed the 
same features and capabilities as the corresponding two-dimensional algorithms. 
Certainly the increase in the dimensionality of the problem affected the possibility of 
increasing the accuracy of calculations; the same holds true for the case of non-
classical (non-local) initial-boundary problems. 

 
To verify the above mentioned in Appendix 5 are given the graphs of realization of some 

specially selected tests. These tests are based on the exact solutions of the corresponding one-, 
two- and three- dimensional equations. By their character, the tests represent two types of 
solution classes: smooth non-oscillating functions and oscillating functions. Comparison of 
the presented graphs shows the influence of these features on the accuracy of calculations. 
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It should be noted that the exact solutions are shown on the graphs by points, while the 
approximate solutions – by full curves. For multidimensional cases, the graphs for different z 
and y are given in one and the same figure. For calculation, were used the tests described 
below. 

 
 

Designations  
 
T – the time of calculation;  
L – the number of layers;  

t L    - the current time;  

, ,x y zn n n
 - the numbers of steps along axes , ,x y z ;  

N – the total number of points;  

max j - maximum absolute deviation;  

max /j j  – the maximum relative deviation. 

 
 

Bounds 
 

1 5x   ;     0.5 3.5y   ;  0.3 2.7z   . 
 
 

One-dimensional Model. Function I 
 

Considered Function 
 

1 ( , , , ; ) ,ex x xA B x A e B e        

 
Considered Equation 

 
2 2 2( , ) ( , ) ( ) ( , ) ( ) ( , ) ( ) exp( / ),t x xD x t x t x t k x t f x tk D                 

 
Function 

 
2

1( , ) ( , , , ; ) exp( / ),exx t A B x tk D       

 
where , , ,A B    - the selected model parameters (arbitrary constants), is the solution of the 

equation at ( ) 0f x  . 
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Function 
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One-dimensional Model. Function II 
 
Considered Function 

 

1 ( , , , ; ) ( cos( ) sin( )).si sxA B s x e A x B x         

 
Considered Equation 

 
2 2 2 2 2( , ) ( , ) 2 ( , ) ( ) ( , ) ( ) exp( / ).t x xD x t x t s x t k s x t f x tk D              

 
Function 

 
2

1( , ) ( , , , ; ) exp( / ),six t A B s x tk D      

 
where , , ,A B s  – the selected model parameters (arbitrary constants), is the solution of the 

equation at ( ) 0f x  . 

 
Function 
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Two-dimensional model. Function I 
 

Considered Equation 
 

2 2
1 1

2 2
2 2 1 1 2 2

( , , ) ( , , ) ( , , ) ( ) ( , , )

( ) ( , , ) ( ) ( , , ) ( , ) exp( / ),

t x y x

y

D x y t x y t x y t x y t

x y t k x y t f x y tk D

 

    

         

          
 

 
Function 

 
2

1 1 1 1 1 1 2 2 2 2( , , ) ( , , , ; ) ( , , , ; ) exp( / ),ex exx y t A B x A B y tk D          

 
where 

1 1 1 1 2 2 2 2, , , , , , ,A B A B     – the selected model parameters (arbitrary constants), is 

the solution of the equation at ( , ) 0f x y  . 
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Two-dimensional Model. Function II 
 

Considered Equation 
 

2 2
1 2

2 2 2 2 2 2
1 1 2 2

( , , ) ( , , ) ( , , ) 2 ( , , ) 2 ( , , )

( ) ( , , ) ( , ) exp( / ).

t x y x yD x y t x y t x y t s x y t s x y t

k s s x y t f x y tk D 
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Function 
 

2
1 1 1 1 1 1 2 2 2 2( , , ) ( , , , ; ) ( , , , ; ) exp( / ),si six y t A B s x A B s y tk D        

 

where 1 1 1 1 2 2 2 2, , , , , , ,A B s A B s   – the selected model parameters (arbitrary constants), is 

the solution of the equation at ( , ) 0f x y  . 

 
Function 
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where 22221111
~,~,

~
,

~
,~,~,

~
,

~
sBAsBA   - the additional selected model parameters (arbitrary 

constants), is the solution of the non-homogeneous equation at 
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~
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~

()(),( 111112222211 xsBAyfysBAxfyxf sisi   
 

where 
 

 
  ).;~,~,

~
,

~
( )(2)(

);;~,~,
~

,
~

( )(2)(

22221
2
2

2
2

2
2

2
2

11111
2
1

2
1

2
1

2
1

xsBAssxf

xsBAssxf
si

xx

si
xx










 
 

Three-Dimensional Model 
 
In the case of the three-dimensional model, the equations similar to those of the two-

dimensional model are considered. The solutions of these equations are formed by functions 

1
ex  and 1

si  in analogous to the two-dimensional model way. 

 
 

8.2. COMPLEX TESTING OF THE DEVELOPED PACKAGE 
 

8.2.1. Sensitivity of the Models of Different Dimensionality to Geometric 
Sizes of the River Cross-Section 

 
It is known from the hydrology of rivers that, if one of the geometric sizes of the 

considered river section exceeds the other more than ten times, the latter may be neglected in 
computations as it does not affect the calculation results [5]. For checking this fact by means 
of the developed models, we calculated the transport of pollutant concentrations for different 
geometric sizes of the considered river section. There are seven pollution sources located 
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along the river section. The discharge points of these sources are located uniformly on the 
diagonal of the river section. The resultant concentration was calculated for the middle point 
of the lower cross-section of the controlled river section for different pollution sources 
separately. The diffusion coefficients are 2.0 zyx KKK , non-conservative 

coefficient is 0K . The cross-section area and the average river flow velocity in the lower 
cross-section were changed in accordance with the river width and depth at equal flow rates. 

At the river geometric sizes: length – 1000 m, width – 90 m, depth – 3 m, the one-, two- 
and three-dimensional models gave absolutely similar results. 

At the river geometric sizes: length – 1000 m, width – 150 m, depth – 3 m, two- and 
three-dimensional models gave similar results, different from those of the one-dimensional 
model. 

At the river geometric sizes: length – 1000 m, width – 150 m, depth – 50 m, all the three 
models gave different results. 

From these calculations, the following practical recommendation concerning the use of 
the developed models may be given. If geometric sizes, locations of pollution sources, 
hydrologic characteristics and pollution conditions of the river are such that full mixing of 
water takes place upstream of the lower controlled section, then it is enough to use the one-
dimensional river models, which are considerably faster and require less computer memory 
than the models of greater dimensionality. Otherwise it is necessary to use the models of 
greater dimensionality. 

When choosing a working model for a concrete section of a certain river, it is necessary 
to perform preliminary studies with due regard for the above factors. The proper choice of the 
model and its parameters ensures the qualitative modeling and identification of excessive 
discharge sources. 

 
 

8.2.2. Dependence of the Identification Quality on the Noise Level 
 
To illustrate the proper functioning of the developed program package for identification 

of river water pollution sources (see Chapter 7), let’s consider the following example [210]. 

There are five uncontrolled and two controlled pollution sources between the )1( j -th 

and the j -th controlled sections. River water quality indices in these ranges, noise variance 

)()(
0 tX j  and discharged concentrations in normal iry  and excessive maxiry  modes are given 

in Table 8.1. It is taken: 2
0 0( ( )) 0, ( ( )) ;j j

i i io ijE x t V x t    - the maximum allowable 

concentration (MAC) of the i -th ingredient in the j -th section. The concentrations of 

chlorides, sulphates and ammonia nitrogen exceed the corresponding MACs, which shows 
that the pollution exists in the j -th section. The following characteristics of the river and 

pollution processes are taken: length, width and depth of the river – 1000 m, 50 m, and 3 m, 
respectively, i.e. the river within the considered section is one-dimensional by its nature. 
Therefore, the identification is carried out by means of the one-dimensional models. The 

diffusion and non-conservativity coefficients for pollutants are 2.0xK  and 0K , 

respectively. The cross-section area and average river flow velocity in the lower cross-section 
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are 150 
2m  and 1/3 /m s , respectively. The pollution sources are located along the 

considered river section at equal intervals, i.e. the interval between them is ~125 m . The 
duration of discharge from each source is an hour.  

For the lower cross-section measurement vector given in Table 8.1, hypothetical 
combinations of excessive pollution sources given in Table 8.2 were chosen. Of course, the 
change in the measurement vector involved the change in the hypothetical combinations of 
excessive pollution sources. 

Table 8.3 gives the identification results obtained by means of different algorithms of 
making decision at generation of five measurement results with identical variances according 

to the following formula , 0( | 0; ), 0,1,...,4;imes i j ix x k N x k     where 0( | 0; )iN x   – 

the normally distributed random variable with mathematical expectation equal to zero and 

variance 2
0i . For testing of the conditional and un conditional algorithms of testing 

hypotheses when the number of hypotheses is equal to two, the number of hypotheses was 
artificially reduced to two by choosing those two hypotheses that are the closest to the 
measurement point. The results of computations show that, at noise variances given in Table 

8.1, all the algorithms give true decisions (the 1H  hypothesis in the considered case) in 

100% of the cases. As the noise variance increases, the number of falsely made decisions 
increases. The conditional Bayesian algorithm of many-hypotheses testing works best of all, 
next is the unconditional Bayesian algorithm. 

The power of the hypotheses testing rule in the conditional and quasi-optimal Bayesian 

algorithms is 95.01  . As the noise variances increased, the mean risk values calculated 
in the Bayesian problems of many-hypotheses testing, naturally, increased.  

The same example was repeated for two- and three-dimensional cases of the river section 
(see section 8.1). The results of the package operation do not practically differ from those of 
the one-dimensional case.  

Multiple recurrence for different generated groups of normally distributed noise vectors 
did not change the qualitative relationship in the results of algorithms for identification of the 
excessive discharge sources. For the considered example, at using the algorithms based on 
Euclidean, Makhalanobis distances, quasi-optimal, unconditional and conditional Bayesian 
algorithms when the number of hypotheses is two, the time needed for identification of the 
sources guilty of the excessive discharges makes up several sec, while at using the 
unconditional and conditional optimal Bayesian algorithms, it makes up greater than 3 and 
10 times, respectively. 

When choosing hypotheses testing algorithm for a concrete section of a certain river, it is 
necessary to study the noise level preliminarily, because, at low noise level, simple algorithms 
requiring minimum calculation time and inconsiderable computer memory can be used. 

 



Table 8.1.  
 

 
# 

Water quality 
index 

Upper 
range 

1, jix  

Uncontrolled objects  Controlled 
objects  

0i  Lower 
range 

jix ,  

MAC 

ij  

OB1 

max1

1

r

r

y

y  OB2 

max2

2

r

r

y

y  OB3 

max3

3

r

r

y

y  OB4 

max4

4

r

r

y

y  OB5 

max5

5

r

r

y

y  OB6 OB7 

1 Flow rate. 

sm /3
 

50 

5

1
  

 
0.1

5.0
 

2.1

7.0
 

4.1

8.0
 

7.0

3.0
 

0.4 0.3 6 59 - 

2 Chlorides. 
mg/l 

300 

10500

400
 

8000

300
 

9000

500
 

- 

7000

200
 

100 90 20 1519 350 

3 Sulphates. mg/l 350 

2300

700
 

- 

2100

600
 

- - 300 250 10 592 500 

4 Ammonia 
nitrogen. mg/l 

1.4 

800

5
 

- - 

1000

8
 

500

3
 

1.6 1.5 0.2 81 2.00 

5 Petroleum 
products. mg/l 

0.027 - 

20.0

04.0
 

25.0

05.0
 

3.0

07.0
 

- 0.03 0.02 0.002 0.03 0.05 

6 Iron. mg/l 0.17 - 

10

1
 

- 

15

2
 

13

5.1
 

0.2 0.15 0.01 0.41 0.50 

  



 

Table 8.2. 
 

Hypothesis number Objects (enterprises) 
suspected in pollution 

Values of parameters measured in the lower controlled range 

Chlorides, 
mg/l 

Sulphates, 
mg/l 

Ammonia 
nitrogen, 
mg/l 

Petroleum 
products, 
mg/l 

Iron, mg/l 

*
1H  OB1, OB2 1519.53 592.28 81.56 0.03 0.41 

2H  OB1, OB2, OB4 1519.53 592.28 109.44 0.04 0.80 

 3H  OB1, OB3 1616.33 592.28 88.54 0.03 0.59 

4H  OB1, OB2, OB5 1616.33 592.28 116.42 0.04 0.97 

5H  OB1 1362.53 592.28 81.56 0.03 0.22 

6H  OB1, OB2, OB4, 
OB5 

1728.53 634.28 109.44 0.04 0.80 

* - show true hypotheses for measurement results from table 8.1 
OB1,...,OB5 – the first, the second,…, fifth objects accordingly.   
  



 

Table 8.3. 
 

# Method of decision making  Accepted hypotheses at five different experiments 
 

ijimes xx   
);0/( 0i

ijimes

xN

xx




 

);0/(2 0i

ijimes

xN

xx




 

);0/(3 0i

ijimes

xN

xx




 

);0/(4 0i

ijimes

xN

xx




 

1. Euclidean distance 
1H  1H , 1H , 1H , 

1H , 1H  

1H , 2H , 1H , 

1H , 2H  

1H , 2H , 3H , 

3H , 2H  

1H , 2H , 3H , 

6H , 2H  

2. Makhalanobis distance 
1H  5H , 1H , 5H , 

1H , 1H  

1H , 1H , 5H , 

5H , 1H  

1H , 2H , 5H , 

5H , 2H  

3H , 2H , 5H , 

5H , 2H  

3. Unconstrained at 2S  
1H  1H , 1H , 1H , 

1H , 1H  

1H , 1H , 1H , 

1H , 1H  

1H , 2H , 1H , 

1H , 2H  

1H , 2H , 3H , 

3H , 2H  

4. Constrained at 2S  
1H  1H , 1H , 1H , 

1H , 1H  

1H , 1H , 1H , 

1H , 1H  

1H , 2H , 1H , 

1H , 2H  

1H , 2H , 3H , 

3H , 2H  

5. Quasi-optimal 
1H  1H , 1H , 1H , 

1H , 1H  

1H , 1H , 1H , 

1H , 1H  

1H , 2H , 1H , 

1H , 2H  

1H , 2H , 3H , 

1H , 2H  

6. Unconstrained 
1H  1H , 1H , 1H , 

1H , 1H  

1H , 1H , 1H , 

1H , 1H  

1H , 1H , 3H , 

1H , 1H  

1H , 1H , 3H , 

3H , 1H  

7. Constrained 
1H  1H , 1H , 1H , 

1H , 1H  

1H , 1H , 1H , 

1H , 1H  

1H , 1H , 1H , 

3H , 1H  

1H , 1H , 1H , 

1H , 1H  
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8.3. MODELING OF POLLUTANTS  
TRANSPORT IN RIVERS 

 
The initial data and computation results for two rivers – the Chogha and the Khobistskali 

from the basin of the River Khobistskali flowing in Georgia located in the Caucasus are 
submitted below. The basin of the River Khobistskali is located in Western Georgia and 
includes four main rivers: the Chogha, the Ochkhomuri, the Chanistskali and the 
Khobistskali. The main of them is the River Khobistskali, an upstream tributary of which is 
the Ochkhomuri, and a downstream tributary is the Chanistskali. The Chogha flows into the 
Ochkhomuri. The Khobistskali is a river of a medium size, about 75 km in length and one 
meter in mean depth. The River Chogha is a small river: about 12 km in length and 20 
centimeters in mean depth. The map of the region of Western Georgia, on which the rivers of 
the Khobistskali basin and the sections, in where the monitoring in 2002 – 2004 years was 
executed are marked, is shown in Figure 8.1. On the map, those sections are marked only the 
observation results of which were used for modeling. As is obvious from the map, the 
Khobistskali flows into the Black Sea. Simulation of the spread of pollutants in the 
considered rivers was executed by pollution parameters NO3 and PO4. It should be borne in 
mind that the observation results for the considered rivers can vary considerably within a 
year. 

 
 

8.3.1. The Initial Data for Modeling 
 
Spread of pollution in the rivers is modeled for the Chogha between points 1 and 2 and 

for the Khobistskali between points 3 and 4 (see Figure 8.1). 
 

8.3.1.1. The River Chogha 
This river along its full length is fed by unpolluted underground waters. The model in 

which 10 point sources are evenly distributed lengthwise of the section is considered. Let’s 
cite the data according to which the spread of the above pollutants in the river was modeled. 

 
8.3.1.2. The River Khobistskali 

The section of the river between points 3 and 4 (see Figure 8.1) is considered. The 
pollution sources of the Khobistskali are the Ochkhomuri and the Chanistskali. 

 
Table 8.4. The initial data for the river Chogha:  

Banks and the bottom; m = 7, N = 2 
 

    
1 0.0 3.0 -3.0 0.16361 0.18883 0.19190 0.14569 

 
2 11 000.0 4.0 -4.0 0.07641 0.15791 0.15812 0.17667 

 
 
 

j
j j '

j jh1 jh2 jh3 jh4
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Figure 8.1. The map of region of the western Georgia with the simulated rivers.  

 
Table 8.5. The initial data of flow velocity for the river Chogha: N = 2 

 
j  jv

1 0.535710 
2 0.836240 

 
Table 8.6. The initial data of NO3 and PO4 in the upper cross-section of the river 

Chogha: N = 2 
 

j  
Name 

j
1 NO3 3.780000 
2 PO4 0.049000 

 
Table 8.7. The initial data of pollution objects  

of the river Chogha: N = 10 
 

j  
Name 

jT
 j j jz

 
1 Source1   1000.000 1.000000 0.100000 
2 Source2   2000.000 -1.000000 0.100000 
3 Source3   3000.000 1.000000 0.100000 
4 Source4   4000.000 -1.000000 0.100000 
5 Source5   5000.000 1.000000 0.100000 
6 Source6   6000.000 -1.000000 0.100000 
7 Source7   7000.000 1.000000 0.100000 
8 Source8   8000.000 -1.000000 0.100000 
9 Source9   9000.000 1.000000 0.100000 
10 Source10   10000.000 -1.000000 0.100000 
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Table 8.8. The initial data of capacities of  
pollution sources of the river Chogha: N = 10 

 

kj \
 

1: Expense 2: NO3 3: PO4 

1: Source1 0.015000 0.756000 0.009800 
2: Source2 0.015000 0.756000 0.009800 
3: Source3 0.015000 0.756000 0.009800 
4: Source4 0.015000 0.756000 0.009800 
5: Source5 0.015000 0.756000 0.009800 
6: Source6 0.015000 0.756000 0.009800 
7: Source7 0.015000 0.756000 0.009800 
8: Source8 0.015000 0.756000 0.009800 
9: Source9 0.015000 0.756000 0.009800 
10: Source10 0.015000 0.756000 0.009800 

 
Table 8.9. The initial data of diffusion factors in the  

upper cross-section of the river Chogha: N = 2 
 
j  

Parameter 
xK

 
'
xK yK '

yK zK
 

'
zK  

1 NO3 0.181 0.186 0.111 0.116 0.111 0.116 
2 PO4 0.551 0.556 0.521 0.526 0.521 0.526 

 
Table 8.10. The initial data of non-conservativity factors (on the upper) and self-

clarification factors (on the lower) in the upper cross-section of the river Chogha: N = 2 
 

j  
Parameter 

jl
jq

1 NO3 1000.000 0.991000 
2 PO4 1000.000 0.992000 

 
j  

Parameter 
j '

j
1 NO3 0 0 
2 PO4 0 0 

 

Table 8.11. Initial data for the river Khobistskali. Banks and the bottom; 7m , 
7N  

 
j  j

 j
 

'
j jh1 jh2 jh3 jh4  

1 0.0 29.50000 -29.50000 0.404140 0.666970 0.866140 0.593750 
2 12000.00 27.75000 -27.75000 0.483765 0.795620 1.127590 0.605275 
3 24000.00 26.00000 -26.00000 0.563390 0.924270 1.389040 0.616800 
4 28000.00 29.50000 -29.50000 0.562940 0.632900 0.799310 0.804690 
5 35500.00 30.00000 -30.00000 1.051675 0.789570 0.801300 0.754485 
6 43000.00 30.50000 -30.50000 1.540410 0.946240 0.803290 0.704280 
7 44800.00 47.50000 -47.50000 1.540410 0.946240 0.803290 0.704280 
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Table 8.12. Initial data for flow velocity  

of the river Khobistskali: 2N  
 

j  jv

1 0.534930 
2 0.796240 

 
Note: In the given Table are given the values of the velocity in two sections of the River 

Khobistskali – at the beginning and at the end of the section. Below, in the item “Geometry 
and dynamics of the section”, for the same river (item 4.2.2.) is given the average flow 
velocity for the whole section. In the models is used the linear interpolation for the water flow 
rate equal to the product of the flow velocity by the cross-cross-section area (see paragraph 
1.5). The flow velocity is calculated for each point of the section with account of the river 
width and depth, which can vary over a wide range within the section. Thus, if the cross-
section area in the middle of the section is smaller, than at its ends, the flow velocity in the 
middle of the section, i.e. the average velocity on the whole section, will be higher than the 
flow velocity at the ends of the section. 

 
Table 8.13. Initial data for pollution objects  

of the river Khobistskali: 2N  
 

j  
Name 

jT j j jz
 

1 r. Ochkhomuri   26500.000 100.0000 0.100000 

2 r. Chznistskali   44000.000 -100.0000 0.100000 

 
Table 8.14. Initial data for upper section  

of the river Khobistskali: 2N  
 

j  
Name 

j
1 NO3 1.100000 

2 PO4 0.018000 

 
Table 8.15. Initial data for capacities  

of pollution sources of the river Khobistskali: 2N  
 

kj \
 

1: Expense 2: NO3 3: PO4 

1: r. Ochkhomuri 1.000000 1.200000 0.010000 

2: r. Chznistskali 8.000000 3.360000 0.051000 
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Table 8.16. Initial data for diffusion factors  
in the upper cross-section of  

the river Khobistskali: 2N  
 

j
 

Parameter 
xK

 
'
xK

 yK
 

'
yK

 zK
 

'
zK

 

1 NO3 0.180000 0.185000 0.110000 0.115000 0.110000 0.115000 

2 PO4 0.550000 0.555000 0.520000 0.525000 0.520000 0.525000 

 
Table 8.17. Initial data for non-conservativity factors (in the upper) and  

self-clarification factors (in the lower) in the upper cross-section  

of the river Khobistskali: 2N  
 

 
Parameter 

2 PO4 1000.000 0.992000 
 PO4 1000.000 0.992000 

 
Parameter 

2 NO3 0 0 
 PO4 0 0 

 
 

8.3.2. Calculation Results 
 

8.3.2.1. The River Choga;  
One- and Two-Dimensional Models 

Let’s consider the transport of pollutants in the section of the river Choga between points 
1 and 2 by one and two dimensional models. The river’s characteristic data used for 
simulation of water pollution are the following. 

 
Basic initial data 
Type of the model: One- or two-dimensional; 
Polluting substance: NO3; 
Boundary conditions on the lower section: Classical. 
 
Accuracy of calculations 
The total number of nodal points: 1000n  ( 1m ); 19992n  ( 2m ); 

The number of nodal points along the Y-axis: 202 n  ( 2m ); 

The coefficient determining the step of time discretization: 00000.1tc ; 

The step of time discretization: 0220.22  ( 1m ); 891.109 ( 2m ). 

 
Geometry and dynamics of the section 
Length of the section: 0.11000L ; 

j
jl

jq

j
j '

j
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Mean width of the river: 00000.7w  ( 2m ); 

Mean flow velocity: 68429.0v ;  

Mean water flow rate: 63966.0vE ; 

Time of water renovation: shT 75.0min274 . 

 
Water parameters 

Mean diffusion factor: 11350.0;18350.0  yx KK ; 

Mean non-conservativity factor: 0 ; 

Boundary conditions in the upper section: 78000.3 ; 

Zero value of concentration: 0S ; 

Mean concentration: 02058.40 s . 

 

Calculation results: at 1m . 
 

Table 8.18. Concentrations for moment sht 02.36min132 ;  

the number of steps 108k  

 
j  1 2 3 4 5 6 7 8 9 10 

jx  343.75 687.50 1031.3 1375.0 1718.8 2062.5 2406.3 2750.0 3093.8 3437.5 

js  3.6980 3.6257 3.5667 3.4929 3.4160 3.3715 3.3032 3.2439 3.1953 3.1008 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

3781.3 4125.0 4468.8 4812.5 5156.3 5500.0 5843.8 6187.5 6531.3 6875.0 

js
 

3.1575 3.2481 3.5244 0.9122 0.0923 0.0749 0.0705 0.0679 0.0677 0.0717 

 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

7218.8 7562.5 7906.3 8250.0 8593.8 8937.5 9281.3 9625.0 9968.8 1.03e4 

js
 

0.0691 0.0621 0.0687 0.0727 0.0557 0.0500 0.0625 0.0573 0.0486 0.0589 

 
j  31 32 

jx  1.06e4 1.10e4 

js  0.0602 0.0499 
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Table 8.19. Concentrations for moment sht 03.12min274 ;  

the number of steps 216k  
 
j  1 2 3 4 5 6 7 8 9 10 

jx  343.75 687.50 1031.3 1375.0 1718.8 2062.5 2406.3 2750.0 3093.8 3437.5 

js  3.6981 3.6256 3.5665 3.4921 3.4148 3.3744 3.3067 3.2383 3.2025 3.1470 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

3781.3 4125.0 4468.8 4812.5 5156.3 5500.0 5843.8 6187.5 6531.3 6875.0 

js
 

3.0912 3.0491 2.9989 2.9453 2.9104 2.8633 2.8125 2.7825 2.7377 2.6996 

 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

7218.8 7562.5 7906.3 8250.0 8593.8 8937.5 9281.3 9625.0 9968.8 1.03e4 

js
 

2.6687 2.6268 2.5867 2.5733 2.5541 2.5327 2.5399 2.4587 2.1681 2.7883 

 
j

 
31 32 

jx
 

1.06e4 1.10e4 

js
 

1.3126 0.2572 

 

Table 8.20. Concentrations for moment sht 05.48min406 ;  

the number of steps: 324k  

 
j  1 2 3 4 5 6 7 8 9 10 

jx  343.75 687.50 1031.3 1375.0 1718.8 2062.5 2406.3 2750.0 3093.8 3437.5 

js  3.6981 3.6256 3.5665 3.4921 3.4148 3.3744 3.3067 3.2383 3.2025 3.1470 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

3781.3 4125.0 4468.8 4812.5 5156.3 5500.0 5843.8 6187.5 6531.3 6875.0 

js
 

3.0912 3.0490 2.9988 2.9454 2.9107 2.8637 2.8124 2.7808 2.7383 2.7013 

 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

7218.8 7562.5 7906.3 8250.0 8593.8 8937.5 9281.3 9625.0 9968.8 1.03e4 

js
 

2.6655 2.6278 2.5977 2.5615 2.5224 2.4837 2.4632 2.4258 2.3937 2.3734 

 
j  31 32 

jx
 

1.06e4 1.10e4 

js
 

2.3422 2.3117 
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Table 8.21. Concentrations for moment ;  

the number of steps:  
 
j  1 2 3 4 5 6 7 8 9 10 

jx  343.75 687.50 1031.3 1375.0 1718.8 2062.5 2406.3 2750.0 3093.8 3437.5 

js  3.6981  3.6256 3.5665 3.4921 3.4148 3.3744 3.3067 3.2383 3.2025 3.1470 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

3781.3 4125.0 4468.8 4812.5 5156.3 5500.0 5843.8 6187.5 6531.3 6875.0 

js
 

3.0912 3.0490 2.9988 2.9454 2.9107 2.8637 2.8124 2.7808 2.7383 2.7013 

 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

7218.8 7562.5 7906.3 8250.0 8593.8 8937.5 9281.3 9625.0 9968.8 1.03e4 

js
 

2.6655 2.6278 2.5977 2.5615 2.5224 2.4836 2.4633 2.4258 2.3937 2.3734 

 
j

 
31 32 

jx
 

1.06e4 1.10e4 

js
 

2.3421 2.3116 

 
 

Calculation results: at 2m . 
 

Table 8.22. Concentrations for moment shT 17.52min112 ;  

the number of steps: 72k  

 
j  

jx  js1  js 2  js3  js 4  js5  js6  js 7  js8  

1 343.75 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 

2 687.50 3.6164 3.6164 3.6164 3.6163 3.6163 3.6153 3.6163 3.6163 

3 1031.3 3.5582 3.5583 3.5586 3.5590 3.5595 3.5957 3.5598 3.5596 

4 1375.0 3.4891 3.4892 3.4892 3.4893 3.4893 3.4917 3.4894 3.4894 

5 1718.8 3.4237 3.4237 3.4246 3.4237 3.4237 3.4238 3.4236 3.4236 

6 2062.5 3.3665 3.3666 3.3922 3.3664 3.3659 3.3656 3.3654 3.3653 

7 2406.3 3.3082 3.3082 3.3101 3.3082 3.3081 3.3082 3.3080 3.3080 

8 2750.0 3.2358 3.2358 3.2359 3.2357 3.2356 3.2328 3.2356 3.2356 

9 3093.8 3.1870 3.1871 3.1873 3.1876 3.1879 3.2096 3.1881 3.1880 

10 3437.5 3.0894 3.0894 3.0895 3.0895 3.0895 3.0913 3.0896 3.0895 

11 3781.3 2.8677 2.8677 2.8676 2.8677 2.8677 2.8679 2.8677 2.8677 

12 4125.0 2.4469 2.4470 2.4631 2.4467 2.4464 2.4462 2.4460 2.4459 

13 4468.8 1.8186 1.8186 1.8201 1.8185 1.8185 1.8182 1.8184 1.8184 

14 4812.5 1.1698 1.1699 1.1701 1.1700 1.1702 1.1766 1.1702 1.1702 

sht 06.24min548

432k
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Table 8.22. (Continued) 
 

     
15 5156.3 0.6554 0.6555 0.6557 0.6558 0.6561 0.6679 0.6562 0.6561 

16 5500.0 0.3264 0.3264 0.3261 0.3265 0.3265 0.3278 0.3266 0.3266 

17 5843.8 0.1658 0.1658 0.1689 0.1658 0.1657 0.1658 0.1657 0.1656 

18 6187.5 0.1033 0.1034 0.1127 0.1032 0.1029 0.1027 0.1026 0.1025 

19 6531.3 0.0734 0.0734 0.0744 0.0734 0.0733 0.0731 0.0732 0.0732 

20 6875.0 0.0666 0.0666 0.0668 0.0667 0.0668 0.0726 0.0669 0.0668 

21 7218.8 0.0684 0.0685 0.0686 0.0687 0.0689 0.0770 0.0690 0.0689 

22 7562.5 0.0587 0.0587 0.0580 0.0588 0.0589 0.0599 0.0590 0.0590 

23 7906.3 0.0618 0.0619 0.0700 0.0618 0.0616 0.0615 0.0613 0.0613 

24 8250.0 0.0650 0.0650 0.0718 0.0649 0.0646 0.0645 0.0643 0.0642 

25 8593.8 0.0604 0.0604 0.0613 0.0604 0.0603 0.0602 0.0603 0.0602 

26 8937.5 0.0545 0.0545 0.0546 0.0544 0.0543 0.0504 0.0543 0.0543 

27 9281.3 0.0601 0.0601 0.0601 0.0603 0.0604 0.0657 0.0605 0.0604 

28 9625.0 0.0630 0.0630 0.0645 0.0630 0.0629 0.0636 0.0628 0.0628 

29 9968.8 0.0477 0.0476 0.0286 0.0480 0.0484 0.0489 0.0490 0.0491 

30 1.03e4 0.0605 0.0605 0.0650 0.0604 0.0602 0.0600 0.0599 0.0599 

31 1.06e4 0.0569 0.0569 0.0575 0.0568 0.0568 0.0567 0.0567 0.0567 

32 1.10e4 0.0532 0.0532 0.0533 0.0532 0.0532 0.0532 0.0531 0.0531 

 

Table 8.23. Concentrations for moment shT 34.44min234 ;  

the number of steps: 144k  

 
j  

jx  js1  js 2  js3  js 4  js5  js 6  js 7  js8  

1 343.75 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 
5 1718.8 3.4237 3.4237 3.4246 3.4237 3.4236 3.4238 3.4236 3.4236 
10 3437.5 3.1396 3.1397 3.1397 3.1397 3.1398 3.1416 3.1398 3.1398 
15 5156.3 2.9044 2.9044 2.9046 2.9047 2.9050 2.9169 2.9051 2.9050 
20 6875.0 2.6959 2.6959 2.6961 2.6961 2.6962 2.7019 2.6962 2.6962 
25 8593.8 2.4449 2.4449 2.4458 2.4448 2.4448 2.4447 2.4447 2.4447 
30 1.03e4 1.3551 1.3551 1.3595 1.3549 1.3547 1.3546 1.3545 1.3544 
32 1.10e4 0.7895 0.7895 0.7896 0.7895 0.7895 0.7894 0.7894 0.7894 

 

Table 8.24. Concentrations for moment shT 52.36min356 ;  

the number of steps: 216k  
 
j

 jx
 js1  js 2  js3 js 4 js5 js 6 js 7  js8  

1 343.75 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 
5 1718.8 3.4237 3.4237 3.4246 3.4237 3.4236 3.4238 3.4236 3.4236 
10 3437.5 3.1396 3.1397 3.1397 3.1397 3.1398 3.1416 3.1398 3.1398 
15 5156.3 2.9044 2.9044 2.9046 2.9047 2.9050 2.9169 2.9051 2.9050 
20 6875.0 2.6960 2.6960 2.6962 2.6961 2.6963 2.7020 2.6963 2.6962 
25 8593.8 2.5210 2.5210 2.5218 2.5209 2.5209 2.5208 2.5208 2.5208 
30 1.03e4 2.3719 2.3720 2.3764 2.3718 2.3716 2.3715 2.3713 2.3713 
32 1.10e4 2.3103 2.3103 2.3104 2.3103 2.3102 2.3102 2.3102 2.3102 

 

j
jx js1 js2 js3 js4 js5 js6 js7 js8



Investigation of Developed Algorithms and Programs 235

Table 8.25. Concentrations for moment shT 69.28min478 ;  

the number of steps: 288k  
 

j  
jx  js1  js 2  js3  js 4  js5  js 6  js 7  js8  

1 343.75 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 3.7016 
5 1718.8 3.4237 3.4237 3.4246 3.4237 3.4236 3.4238 3.4236 3.4236 
10 3437.5 3.1396 3.1397 3.1397 3.1397 3.1398 3.1416 3.1398 3.1398 

j  
jx  js1  js 2  js3  js 4  js5  js 6  js 7  js8  

15 5156.3 2.9044 2.9044 2.9046 2.9047 2.9050 2.9169 2.9051 2.9050 
20 6875.0 2.6960 2.6960 2.6962 2.6961 2.6963 2.7020 2.6963 2.6962 
25 8593.8 2.5210 2.5210 2.5218 2.5209 2.5209 2.5208 2.5208 2.5208 
30 1.03e4 2.3719 2.3720 2.3764 2.3718 2.3716 2.3715 2.3713 2.3713 
32 1.10e4 2.3103 2.3103 2.3104 2.3103 2.3102 2.3102 2.3102 2.3102 

 
8.3.22. The River Khobistskali; One- and Two-Dimensional Models  

In this paragraph is offered the results of simulation of pollutants transport in the section 
of the Khobistskali between points 3 and 4 by one- and two-dimensional models. The 
characteristic data of the river used for simulation of water pollution are the following. 

 
Basic initial data 
Type of the model: One- or two-dimensional; 
Polluting substance: PO4; 
Boundary conditions on the lower section: Classical. 
 
Accuracy of calculations 
The total number of nodal points: 1000n  ( 1m ); 19992n  ( 2m ); 

The number of nodal points along the Y -axis: )2(202  mn ;  

The coefficient determining the step of time discretization: 00000.1tc ; 

The step of time discretization: 6897.89  ( 1m ); 44.1471  ( 2m ). 

 
Geometry and dynamics of the section 
Length of the section: 0.44800L ; 

Mean width of the river: 8268.57w  ( 2m ); 

Mean flow velocity: 08368.1v ; (see note in the item 4.1.2) 

Mean water flow rate: 8975.41vE ; 

Time of water renovation: shT 16.41min2211 . 

 
Water parameters 

Mean diffusion factor: 52250.0;55250.0  yx KK ; 
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Mean non-conservativity factor: 0 ; 

Boundary conditions in the upper section: 01800.0 ; 

Zero value of concentration: 0S ; 

Mean concentration: 04318.00 s . 

Calculation results: at 1m . 

Table 8.26. Concentrations for moment sht 25.49min405 ;  

the number of steps: 228k  
 

j  1 2 3 4 5 6 7 8 9 10 

jx  1400.0 2800.0 4200.0 5600.0 7000.0 8400.0 9800.0 1.12e4 1.26e4 1.40e4 

js  0.0164 0.0151 0.0140 0.0131 0.0123 0.0113 0.0111 0.0100 0.0091 0.0109 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

1.54e4 1.68e4 1.82e4 1.96e4 2.10e4 2.24e4 2.38e4 2.52e4 2.66e4 2.80e4 

js
 

0.0018 4.2e-5 1.5e-5 1.7e-6 -3.1e-5 -3.1e-5 2.4e-5 0.0001 8.7e-5 2.5e-5 

 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

2.94e4 3.08e4 3.22e4 3.36e4 3.50e4 3.64e4 3.78e4 3.92e4 4.06e4 4.20e4 

js
 

1.1e-5 9.7e-5 0.0002 0.0001 -0.0001 -0.0002 0.0001 0.0006 0.0003 -0.0004 

 
j

 
31 32 

jx
 

4.34e4 4.48e4 

js
 

-0.0010 0.0016 

 
Table 8.27. Concentrations for moment 

 sht 50.38min2111 ;  the number of steps: 456k  
 
j

 
1 2 3 4 5 6 7 8 9 10 

jx
 

1400.0 2800.0 4200.0 5600.0 7000.0 8400.0 9800.0 1.12e4 1.26e4 1.40e4 

js  0.0164 0.0151 0.0140 0.0130 0.0122 0.0115 0.0108 0.0102 0.0097 0.0092 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

1.54e4 1.68e4 1.82e4 1.96e4 2.10e4 2.24e4 2.38e4 2.52e4 2.66e4 2.80e4 

js
 

0.0088 0.0084 0.0081 0.0077 0.0073 0.0071 0.0069 0.0068 0.0065 0.0061 
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Table 8.27. (Continued) 
 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

2.94e4 3.08e4 3.22e4 3.36e4 3.50e4 3.64e4 3.78e4 3.92e4 4.06e4 4.20e4 

js
 

0.0059 0.0060 0.0061 0.0053 0.0052 0.0050 0.0059 0.0035 0.0012 -0.0002 

 
j

 
31 32 

jx
 

4.34e4 -0.0010 

js
 

4.48e4 0.0016 

 

Table 8.28. Concentrations for moment sht 75.27min0217 ;  

the number of steps: 684k ; 
 
j

 
1 2 3 4 5 6 7 8 9 10 

jx
 

1400.0 2800.0 4200.0 5600.0 7000.0 8400.0 9800.0 1.12e4 1.26e4 1.40e4 

js
 

0.0164 0.0151 0.0140 0.0130 0.0122 0.0115 0.0108 0.0102 0.0097 0.0092 

 
j

 
11 12 13 14 15 16 17 18 19 20 

jx
 

1.54e4 1.68e4 1.82e4 1.96e4 2.10e4 2.24e4 2.38e4 2.52e4 2.66e4 2.80e4 

js
 

0.0088 0.0084 0.0081 0.0077 0.0074 0.0071 0.0069 0.0067 0.0065 0.0062 

 
j

 
21 22 23 24 25 26 27 28 29 30 

jx
 

2.94e4 3.08e4 3.22e4 3.36e4 3.50e4 3.64e4 3.78e4 3.92e4 4.06e4 4.20e4 

js
 

0.0060 0.0059 0.0059 0.0056 0.0052 0.0050 0.0051 0.0055 0.0051 0.0043 

 
j

 
31 32 

jx
 

4.34e4 4.48e4 

js
 

0.0036 0.0060 

 

Table 8.29. Concentrations for moment sht 00.17min4322 ; the number of steps: 
912k  

 
j

 
1 2 3 4 5 6 7 8 9 10 

jx
 

1400.0 2800.0 4200.0 5600.0 7000.0 8400.0 9800.0 1.12e4 1.26e4 1.40e4 
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js
 

0.0164 0.0151 0.0140 0.0130 0.0122 0.0115 0.0108 0.0102 0.0097 0.0092 

 
Table 8.29. (Continued) 

 

j
 

11 12 13 14 15 16 17 18 19 20 

jx
 

1.54e4 1.68e4 1.82e4 1.96e4 2.10e4 2.24e4 2.38e4 2.52e4 2.66e4 2.80e4 

js
 

0.0088 0.0084 0.0081 0.0077 0.0074 0.0071 0.0069 0.0067 0.0065 0.0062 

 

j
 

21 22 23 24 25 26 27 28 29 30 

jx
 

2.94e4 3.08e4 3.22e4 3.36e4 3.50e4 3.64e4 3.78e4 3.92e4 4.06e4 4.20e4 

js
 

0.0060 0.0059 0.0059 0.0056 0.0052 0.0050 0.0051 0.0055 0.0051 0.0043 

 

j
 

31 32 

jx
 

4.34e4 4.48e4 

js
 

0.0036 0.0060 

 

Calculation results: at 2m . 
 

Table 8.30. Concentrations for moment sht 97.58min055 ;  

the number of steps: 16k  
 

j  
jx  js1  js 2  js3  js 4  js5  js 6  js 7  js8  

1 1400.0 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 
5 7000.0 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 
10 1.40e4 0.0029  0.0029  0.0029  0.0029  0.0029  0.0029  0.0029  0.0029 
15 2.10e4 0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  0.0003 
20 2.80e4 0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002 
25 3.50e4 0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001 
30 4.20e4 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 
32 4.48e4 0.0027 0.0021 0.0018 0.0016 0.0015 0.0013 0.0013 0.0012 

 

Table 8.31. Concentrations for moment sht 94.57min1110 ;  

the number of steps: 32k  
 

j  jx
 js1  js 2  js3 js 4 js5 js 6 js7  js8  

1 1400.0 0.0164 0.0164 0.0164 0.0164  0.0164  0.0164  0.0164  0.0164 
5 7000.0 0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  0.0122 
6 8400.0 0.0115  0.0115  0.0115  0.0115  0.0115  0.0115  0.0115  0.0115 
7 9800.0 0.0108  0.0108  0.0108  0.0108  0.0108  0.0108  0.0108  0.0108 
8 1.12e4 0.0102  0.0102  0.0102  0.0102  0.0102  0.0102  0.0102  0.0102 
9 1.26e4 0.0097  0.0097  0.0097  0.0097  0.0097  0.0097  0.0097  0.0097 
10 1.40e4 0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  0.0092 
15 2.10e4 0.0069  0.0069  0.0069  0.0069  0.0069  0.0069  0.0069  0.0069 
20 2.80e4 0.0044  0.0044  0.0044  0.0044  0.0044  0.0045  0.0045  0.0045 
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25 3.50e4 0.0020  0.0020  0.0020  0.0020  0.0020  0.0020  0.0021  0.0021 
30 4.20e4 0.0000 0.0000 0.0000 0.0001 0.0002  0.0002  0.0002  0.0002 
32 4.48e4 0.0025 0.0025 0.0023 0.0021 0.0019 0.0017 0.0017 0.0016 

Table 8.32. Concentrations for moment sht 91.56min1715 ;  

the number of steps: 48k  

 
j  

jx  js1  js 2  js3  js 4  js5  js 6  js7  js8  

1 1400.0 0.0164  0.0164  0.0164  0.0164  0.0164  0.0164  0.0164  0.0164  
5 7000.0 0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  
10 1.40e4 0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  
15 2.10e4 0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  
20 2.80e4 0.0064  0.0064  0.0064  0.0064  0.0064  0.0064  0.0064  0.0064  
25 3.50e4 0.0054  0.0054  0.0054  0.0054  0.0054  0.0054  0.0054  0.0054  
30 4.20e4 0.0037  0.0037  0.0037  0.0038  0.0038  0.0038  0.0039  0.0039  
32 4.48e4 0.0064 0.0060 0.0058 0.0056 0.0054 0.0053 0.0052 0.0051 

 

Table 8.33. Concentrations for moment sht 88.55min2320 ; the number of steps: 

64k  

 
j  

jx  js1  js 2  js3  js 4  js5  js 6  js 7  js8  

1 1400.0 0.0164  0.0164  0.0164  0.0164  0.0164  0.0164  0.0164  0.0164  
5 7000.0 0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  0.0122  
10 1.40e4 0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  0.0092  
15 2.10e4 0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  
20 2.80e4 0.0064  0.0064  0.0064  0.0064  0.0064  0.0064  0.0064  0.0064  
25 3.50e4 0.0054  0.0054  0.0054  0.0054  0.0054  0.0054  0.0054  0.0054  
30 4.20e4 0.0039 0.0040 0.0040 0.0041  0.0041  0.0041  0.0041  0.0042 
32 4.48e4 0.0067 0.0065 0.0063 0.0061 0.0059 0.0058 0.0057 0.0057 

 
 

8.3.3. Results of Modeling and Discussion 
 
The above computations were carried out on the needs of the Ministry of Agriculture of 

Georgia, which was interested in the estimation of the effect of agricultural fields on the 
pollution level of the considered rivers. As the River Choga becomes polluted only by these 
pollution sources, at modeling actually all pollution sources were taken into account. Whereas 
at modeling the pollution of the River Khobistskali was taken into account the pollution 
brought in the river only the Ochkhomuri and the Chanistskali, because it is rather difficult to 
take into account all the pollution sources of the given river. By the difference between the 
measured and the simulated values of controlled components in the sections of the river, was 
estimated the effect of agricultural fields located along the banks of the river in the interval 
between two sections on the pollution degree of the Khobistskali (see below). In this sense, 
the example is schematic, as the number, the arrangement and the capacities of pollution 
sources of the River Khobistskali partially correspond to the real situation. Though, the 
geometry of the rivers, the arrangement of control sections, the concentrations of polluting 
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substances in the rivers completely correspond to the real data. The constantly operating 
pollution sources on the River Choga are considered.   

The results of modeling of the pollution of the River Choga for the NO3 component, and 
the River Khobistskali – for the PO4 component, are given above. The modeling was carried 
out with the help of one-, two- and three-dimensional models. Due to the river dimensions, 
the results of two- and three-dimensional models practically coincide. Therefore, below are 
discussed only the results of one- and two-dimensional models. The results of modeling allow 
the following conclusions. 

 
One-dimensional model. The River Choga (Figure 8.2). Because of the effect of 

unpolluted underground waters on the River Choga, which is taken into account in the model 
as a water source evenly distributed along its full length of the river, the concentration of NO3 

component in the upper section of the River Choga decreases to 3.698 from 3.78 /mg l  

through 343.75 m , and through 687.5 m  it decreases to 3.6257 /mg l . At the distance of 

1000 m  from the upper cross-section, the first pollution source operates. Under the effect of 
this source, the rate of reduction of the pollutant concentration decreases at the cost of 
dilution and at the distance 1031.3 m  from the upper cross-section, the concentration 

becomes equal to 3.5667 /mg l . Really, along the first 343.75 m , the concentration of NO3 

in the river water decreases by 0,082 /mg l , along the following 343.75 m  it decreases by 

0.0723 /mg l , and along the following 343.75 m  it decreases by 0.059 /mg l , because on 

this section the pollution source operates. This pollution source could not affect more 
considerably the river water, as the volume of water from each source is less by a factor of 

6.42  than the volume of water in the river, and the concentration of the polluting 
substance is also less than the pollution of the river by a factor of 5. A similar effect of nine 

other equidistant sources of pollution is observed along the full length of the river. In  2 h  
and 13 minutes, the pollution from the upper section of the river spreads at the distance of 4 
500 - 4 800 m . Then the level of pollution in the river sharply falls because of their 
insignificant capacity the sources of pollution located below, do not render appreciable 

influence on the river. In  4 h  and 27 minutes the pollution from the upper section reaches 
the points located at the distance of 10 000 m , though the concentration appears, reduced by 
a factor of 1.359 due to the effect of unpolluted underground waters and at the expense of 

total increase in the water flow rate in the river. In 6 h h  and 40 minutes, at the distance of 
11 000 m  the pollution is less by a factor of 1.635 than in the upper section (at the expense 
of the noted factor), and further the distribution of the pollution in the river remains 
practically at the same level, i.e. the process of pollution reaches the steady state (see the 

results of computation in 8 h  and 54 minutes). 
Because the pollution sources are spaced widely (at 1000 m ) and their influence on the 

river is weak enough (the volume of waste waters and the pollution level are small in 
comparison with the river). On the other hand, the increase in the water flow rate of the river 
is significant enough, the effect of these sources on the river is not accumulated (i.e. the total 
effect is not tangible), since at the distance of 1000 m , at the expense of the above 
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mentioned, in the river the pollution level brought in not only by a pollution source, but also 
from the upper section, decreases to the minimum level. 

The computation results for the two-dimensional model (Figure 8.3) practically 
coincide with the results for the one-dimensional model. Though the reduction of the 
concentration of the polluting substance in the lower section of the river, due to not reaching 

of the pollution from the upper section to the lower part of the river 2 h  and 11 minutes 
occurs more smoothly than in the case of the one-dimensional model (see the results of 

computations for the two-dimensional model at ). On the basis of the analysis of 

the computation results for the two-dimensional model we can conclude that, for the river 
with the geometry similar to that of the Choga, the use of the two-dimensional model is 
unnecessary (concentrations calculated across the width of the river are practically identical). 
The computing results for the three-dimensional model practically do not differ from the 
two-dimensional model. Therefore, here we do not dwell on it. 

The measured values of the concentration of NO3 in the first and the second control 

sections of the River Choga (see Figure 8.2) are equal to 3.7 /mg l  and 2.44 /mg l , 

respectively, and the values calculated by the model in the same sections are equal to: by the 

one-dimensional model – 3.698 /mg l  and 2.342 /mg l ; by the two- dimensional model – 

3.7 /mg l  and 2.31 /mg l . By simple comparison of the measured values and the values 

obtained by modeling, we are easily convinced in high quality of the modeling results as the 
relative error of the worst result (the two-dimensional model in the second section) is less 
than 5.6 %. 

 
One-dimensional model. The River Khobistskali (Figure 8.4). A similar law is 

observed for the River Khobistskali by PO4 parameter. In 5 h  and 40 minutes the effect of 

the upper section is distributed downstream at the distance of 15 400 m  ( ), in 11 h  

and 21 minutes the effect is distributed at the distance of 40 000 m  ( ). The 

influence of the Ochkhomuri on the Khobistskali is not tangible because of small quantity of 
water in the Ochkhomuri (less than in the Khobistskali by a factor of 42), the pollution 

level also is less than in the Khobistskali (0.01 /mg l  – the Ochkhomuri; 0.018 /mg l  – the 

Khobistskali). The influence of the Chanistskali is appreciable until the pollution from the 

upper section of the Khobistskali reaches the place of their confluence (see 11 h  and 21 
minutes). After the pollution from the upper section of the Khobistskali reaches the place of 
confluence of the Chanistskali, the influence of the latter is not tangible any more, because of 
the insignificant volume of water in it (less by a factor of 5,2) and a rather low level of 

pollution (0.051 /mg l  – the Chanistskali; 0.018 mg/l – the Khobistskali). See calculation 

results at 17 h  and 02 minutes and 22 h  and 43 minutes. 
The application of two- and three-dimensional models (Figure 8.5) for such a river, as 

the Khobistskali is, at consideration of the section of the length at 45 km  and two 
pollution sources, located at the places of confluence of the Rivers Ochkhomuri and 
Chaniststkali, makes no sense since the calculation results of two- and three-dimensional 
models practically coincide with the one-dimensional model and are identical across the 
width and in the depth of the river. As was mentioned above, by the difference between the 
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measured and simulated values of the controlled components in the sections of the river of 
our interest, there was estimated the degree of the influence of the agricultural fields located 
along of the river banks in the interval between two sections on the pollution of the River 
Khobistskali. The results of calculations showed that in 2002 from agricultural fields 566.4 

kg  NO3 and 4.18 kg  PO4, act in the River Choga whereas in 2003 the amounts of the same 

pollutants were 276.4 kg  and 3.17 kg , respectively. In 2002 the River Khobistskali got 

62.8 tons NO3 and 673.5 kg  PO4, and in 2003 got 43.6 tons NO3 and 562.7 kg  PO4 

respectively. Such reduction of the pollution level in 2003 in comparison with 2002 was 
basically caused by large-scale introduction of new environment friendly technologies in the 
agriculture in the Khobistskali basin with the financial support of the World Bank.  

 
On the peculiarities of taking into account of pollution sources. In the considered 

models it was supposed that the considered section of the river contains constantly operating 
point sources of pollution. It means that the non-uniform parts of the diffusion equation under 
consideration contain impulse functions being linear combinations of Dirac deltas – functions. 
These functions and their derivatives are not limited therefore, in the vicinities of points of 
action of pollution sources, the difference schemes of the solution of the diffusion equations 
are not correct, which causes sharp oscillations of the obtained solutions, which are visible in 
Figure 8.2 – 8.5. 

For elimination of this drawback, in the package is realized an approach described in 

paragraph 2.7, in which delta-function  ax   is replaced by continuously-differentiated 

function  axD , . It means that the point sources are replaced by extended sources, the 

capacity of each of which has the maximum corresponding to the capacity of the source at the 
point of its location. It is possible to name such sources as quasi- pointwise. 

In the diagrams, similar to the ones shown in Figure 8.2 – 8.2, constructed for the given 
models of discharge of polluting components, oscillations of the obtained solutions are 
smoothed, as more considerably as the larger are the specified values of parameters   and  , 
i.e. the smoother are the functions of discharge, the more accurate are the results of the 
solution of the equations in the vicinities of the points of discharge. 

 
About the accuracy of calculations. At computation of the concentration of polluting 

substances by the one-dimensional model, the accuracy of calculation was determined by 
setting number of central points along the full length of the river (11 000 m  of the Choga) 
equal to 1 000, and at calculation by the two-dimensional model the total number of central 
points was equal to 20 000 (1 000 along the length of the river and 20 across the width of the 
river). Let’s compare some concentrations of polluting substances calculated in these 
conditions from the Tables presented above for the river Choga. For example, compare the 
computed concentrations obtained with the help of the one- and two-dimensional models at 
the distance from the upper section equal to 343.75 m  ( ), 3781.3 m  ( ) and 10 

600 m  ( ). The corresponding concentrations obtained with the help of the one-

dimensional model are equal to 3.6980 /mg l , 3.1575 /mg l  and 0.0602 /mg l ; and with 

the help of the two-dimensional model – to 3.7016 /mg l , 2.8677 /mg l , 0.0569 /mg l . 

1j 11j
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The relative differences among these values are equal to 0,00097, 0,09178 and 0,0548, 
respectively. Thus, for the first point we obtained the relative difference between the 
calculation results by the one- and the two-dimensional models – 0,097 %, for the second 
point – 9,178 % and for the third point – 5,48 %. In our opinion, there is good agreement 
between the results for chosen accuracies of computation, as the step of time sampling was 
chosen so that the accuracy of the algorithm by the temporal coordinate approximately 
coincided with the accuracy of the algorithm by the spatial coordinates. The accuracy of 
concurrence of the models of different dimensionality is improved at increasing accuracy of 
the computation both by the spatial and temporal coordinates.   

The hatched zones on the first line (here and below on the other figures) show the river 
bed with pollution sources (the black dots with numbers). The first zone (between two 
vertical lines) corresponds to the modeling cross-section of the river. The second zone 
corresponds to the classical boundary condition.   

 

 

 

a) t 2 h 13 min 36.02 s. 
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Figure 8.2. (Continued).  

 

b) t 4 h 27 min 12.03 s. 
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c) t 6 h 40 min 48.05 s. 

Figure 8.2. (Continued).  

 
 
 
 

 

d) t 8 h 54 min 24.06 s. 

Figure 8.2. Plots of concentration of polluting substance in the river Choga depending from longitudinal 
coordinate   at 1D model. 
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a) t 2 h 11 min 52.17 s. 

Figure 8.3. (Continued).  
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b) t 4 h 23 min 44.34 s. 

 

c) t 6 h 35 min 36.52 s. 

Figure 8.3. (Continued).  
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d) t 8 h 47 min 28.69 s. 

Figure 8.3. Plots of concentration of polluting substance in the river Choga depending from longitudinal 

  at 2D model. 

 

 

a) t 5 h 40 min 49.25 s. 

Figure 8.4. (Continued).  
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b) t 11 h 21 min 38.50 s. 

 

 

c) t 17 h 02 min 27.75 s. 

Figure 8.4. (Continued).  



Karlos J. Kachiashvili and D.Y. Melikdzhanian 250 

 

d) t 22 h 43 min 17.00 s. 

Figure 8.4. Plots of concentration of polluting substance in the river Khobi depending from longitudinal 
coordinate   at 1D model. 

 
 

 

a) t 5 h 05 min 58.97 s. 

Figure 8.5. (Continued).  
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b) t 10 h 11 min 57.94 s. 

 

  

c) t 15 h 17 min 56.91 s. 

Figure 8.5. (Continued).  
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d) t 20 h 23 min 55.88 s. 

Figure 8.5. Plots of concentration of polluting substance in the river Khobistskali depending from 
longitudinal coordinate   at 2D model. 

 

8.4. RIVER POLLUTION COMPONENTS MEAN ANNUAL VALUES 

ESTIMATION BY COMPUTER MODELING 
 
With the help of described in Chapter 6 software of mathematical models of transport of 

pollution substances in the rivers we have carried out computation of quantities of polluting 
components dropped for 2002 and 2003 from pollution sources on separate sections of rivers 
the Choga, The Ochlhomuri, the Chanistskali and the Khobistskali, among cross-sections, 
included in the monitoring. On Figure 8.6 by red triangles are marked the monitoring cross-
sections dividing the rivers as sections. By the help of these meanings we can: 1) to estimate a 
share working on each of section of the river of pollution sources in total amount of pollution 
of the river; 2) to estimate a change dropped for 2002, 2003 of quantities of polluting 
components on separate sections of the river, i.e. the efficiency of those measures which were 
carried out in these years on the marked pollution sources; 3) within the framework of those 
opportunities which are given by division of the rivers into sections by existing control cross-
sections of monitoring, from each other to divide working on the river agricultural and others 
(for example, cities, located on the rivers; run other rivers) pollution sources; 4) to estimate 
the ecological load on the river from agricultural fields and cattle-breeding farms.  

 



 

 

Figure 8.6. The river Khobistskali’s basin with control sections. 
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Let us bring the brief description of the obtained results.   
Modelling have carried out by basic biological parameters, nitrates (NO3) and phosphates 

(PO4), outgoing from agricultural fields and cattle-breeding farms. The results of monitoring 
of 2002 and 2003 were used for modelling. The idea of modelling consists in the following. 
On the basis of the monitoring results are known the mean annual concentrations of the 
marked components in each control cross-sections of the rivers. If we admit that on the given 
section of the river the pollution sources do not work, then existing in the top cross-section of 
the river the pollution level should decrease in the bottom cross-section at the expense of 
proceeding in the river of natural processes and ability of self purification. In reality for the 
Khobistskali’s basin rivers this fact does not take place, as on each section of the river the 
appropriate pollution sources work. Therefore, if with the help of the developed mathematical 
models, we shall compute the concentration of polluting components in the bottom cross-
section of the river by existing concentration in the top cross-section and after a condition that 
on this section of the river does not work any pollution source except of other river (if such 
runs in it on this section), then with a difference between measured and computed 
concentrations we shall easily compute the quantity of polluting components dropped in the 
river from pollution sources worked on this section.  

In considered concrete case for modelling was used one-dimensional mathematical model 
of diffusion and transfer of pollution (see paragraph 1.2) [1, 5, 42]. It is caused by the 
following circumstances: in first, on the geometrical sizes of the considered rivers (in a case, 
when length of that section of the river, which modelling is carried out, 10 times and more 
surpass its width, to provide width is not meaningful because of  full mixing of water of the 
river on a considered section of the river; also, if width of the river 10 and more time 
surpasses its depth, for the same reason, the account of depth loses of sense [5]), and in 
second because the average year data are used and the accuracy of model more high rank, in 
this case, loses of sense. The modelling results obtained by us for the Khobistskali’s basin 
rivers with the help of one, two and three dimensional models, precisely have confirmed the 
marked reason. I.e. two and three dimensional models on all width and depth were given 
identical results with one-dimensional model that completely corresponds to the above – 
mentioned.  

The concentrations of NO3 and PO4 on all the lengths of the rivers Choga, Ochkhomuri, 
Chanistskali and Khobistskali are calculated through the identical spatial steps. In case of the 
river Choga the length of the step is equal to 343,75 meters, in case of the r. Ochkhomuri the 
length of the step is equal to 1334,4 meters, in case of the r. Chanistskali the length of the step 
is equal to 1165,6 meters, and in case of the r. Khobistskali the length of the step is equal to 
2337,5 meters. For the r. Choga the time of full updating of water, i.e. that time, which is 
necessary for run of water from a source of the river up to its confluence in other river, is 
equal to 15 h 36 min. For the rivers Ochkhomuri, Chanistskali and Khobistskali this time 
are accordingly equalled to 39 h 12 min, 20 h 25 min, 9 h 27 min. Therefore, at 
modelling on time parameter of the river through the appropriate interval of time it is possible 
taking of computed meaning of concentration in any point of the river on all length, as it 
corresponds to the counted by the appropriate model meaning of concentration in initial 
section.  

In the tables 8.34, 8.35, 8.36, 8.37 are given the results of calculation of mean annual 
meanings of pollutants got from the appropriate sources in separate sections of the rivers 
during 2002, 2003. 


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The computation of mean annual meanings of pollutants dropped in the given section 
from above located pollution sources carried out as follows  

 

  )(365)(24(sec)60sec)(sec)/()/( 3
mod dayhourmvEmgSSyearkgS mesyear  ,  (8.1) 

 

where  is mean annual quantity of a polluting component dropped in the given section of 

the river from sources working on this section;  

  is measured mean annual meaning of concentration of a polluting component on the 

appropriate section; 

  is mean annual meaning of concentration of a polluting component computed by the 

model on the appropriate section; 
   is the charge of water in the appropriate section of the river.  

 
The results of computation by formulae (8.1) are given in the tables 8.34, 8.35, 8.36 and 

8.37. In the two last column of the tables are given by the considered rivers brought mean 
annual volumes of polluting components in places of them confluence, calculated as by di-
rectly results of measurement, and by direct summation of the computed by model the 
appropriate meanings in separate sections of the rivers. On the basis of these results is 
concluded:  

 
 In 2002, 2003 r. Choga basically was polluted at sources by parameter NO3, up to 

first section. In 2002 the river was polluted in more to bottom part by parameter PO4, 
i.e. between the first and second sections. In 2003 the situation has changed and the 
river was polluted more up to the first section by parameter PO4. The pollution of the 
river by both considered parameters in 2003 is significant decrease after comparison 
with 2002: by parameter NO3 from 566,4 ton/years till 276,4 ton/years ( 2 times), 
and by parameter PO4 from 4,18 kg/years till 3,17 kg/years ( 1,32 times). A 
difference between measured and computed meanings defined by mean annual vo-
lumes of the polluting components brought by the river Choga in the r. Ochkhomuri, 
on our sight, specifies high quality of modelling, if we take into account that 
circumstance that the modelling was carried out on the basis of the defective initial 
data (because of absence of the better). For example, expenses of the river (as well as 
for other rivers of the Khobistskali’s basin) completely was measured only in 2003 
(in 2002 only three times were measured the water expenses); exactly are not known 
the coefficients of diffusion and non conservative etc. Despite of told the modelling 
and measurement results with acceptable accuracy coincide with each other that 
specifies accuracy of the used technique. 

 The pollution of the river Ochkhomuri by parameter NO3 in 2002 in all control 
sections was carried out practically equally, except of last section, where the 
pollution 1,9 times is surpassed of the pollution of other sections. In 2003 the river 
is most of all polluted with marked parameter on initial and final sections. In 2002 
the third section of the river is most of all polluted by parameter PO4, and in 2003 
namely this section is polluted less of all. The r. Choga runs in the r. Ochkhomuri in 

yearS

mesS

modS
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this section. As we already have noted in 2002 the pollution of the r. Choga by 
parameter NO3 2 times are surpassed the pollution of 2003, and by parameter PO4 
- 1,32 times. The pollution of the r. Ochkhomuri on the last section (where the r. 
Choga runs in it) in 2002 2,7 times are surpassed the pollution of 2003 by 
parameter NO3 and 2,8 times - by parameter PO4. The mean annual volumes, 
computed by model and directly by measured meanings, brought in of polluting com-
ponents by the river Ochkhomuri in the river Khobistsksli practically are equal 
among themselves. Brought by the river Ochkhomuri in the river Khobistsksli the 
mean annual meanings of polluting components on both considered components 
considerably has decreased after comparison with 2002: by parameter NO3 from 
7,119 ton/years till 3,685 ton/years ( 2 times), and by parameter PO4 from 36,212 
kg/years till 33,661 kg/years ( 1,08 times).  

 The r. Chanistskali by parameters NO3 and PO4 both in 2002, and in 2003 is more 
polluted in the second section than in the first. In this section the river pollute not 
only by agricultural fields and cattle-breeding farms, but by waste water of the city 
Tsalendjikha too. The pollution of the river by parameter NO3 in 2002 surpasses the 
pollution of 2003 and by parameter PO4 the pollution of 2002 lags from the pollution 
of 2003. In particular, at 2002 the mean annual volume of the component NO3 drop-
ped by r. Chanistskali in the river Khobistskali is equal to 18,026 ton/year, which on 
the volume of 2003, 11,197 ton/year, surpass 1,6 times, and mean annual volume 
of the component PO4 in 2002 is equal to 88,515 kg / year, which lags from mean 
annual volume of 2003, 123,018 kg/years, 1,4 times. Computed by mathematical 
models and directly by measured meanings brought by the river Chanistskali in the 
river Khobistskali volumes of polluting components coincide with each other by very 
high accuracy. In our opinion, one of the reasons of such good result consists that 
calculation of self purification coefficient of the river for considered components was 
possible for data of the river Chanistskali, which have taken advantage for other 
rivers too. 

 The river Khobistskali in 2002 is most of all polluted in the first and in the last 
sections. On these sections, except of agricultural fields and cattle-breeding farms the 
river accordingly becomes polluted by waste water of the cities Chkhorotsku and 
Khobi. On the next place by pollution there is the fourth section of the river, where 
the river Chanistskali runs into it. In 2003 the river is almost equally polluted in the 
first and fourth sections, i.e. the sections on which work the city Chkhorotsku and the 
r. Chanistskali. The last section, where on the river work the city Khobi, is one of 
least polluted. This fact is very much interesting, which one more time confirms the 
reason that by the considered components the basic pollution sources of the rivers are 
agricultural fields and cattle -breeding farms. The pollution of the r. Khobistskali by 
the parameter NO3 in 2002 surpasses the pollution of 2003 and by parameter PO4 the 
pollution of 2002 lags behind pollution of 2003. In particular, by the river 
Khobistskali in the Black sea introduced the mean annual volume of the component 
NO3 is equal to 62,772 ton/year, which surpasses the volume of 2003 43,605 
ton/years 1,4 times, and the mean annual volume of the component PO4 for 2002 
is equal 562,695 kg / year, which lag from the mean annual volume of 2003 673,473 
kg/year 1,2 times. The computed by the mathematical model and in direct by 
measured meanings brought by the river Khobistskali in the Black Sea volumes of 
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polluting components coincide with each other with acceptable accuracy, especially 
if we lake into account the above mentioned (in case of the river Choga). 

 
Table 8.34. The computation results of pollutants mean 

annual meanings got from the appropriate sources in separate  
sections of the r. Choga  

during 2002, 2003 
 

R. Choga 

Year The pollutant 
ingredient 

Until the 
first cross-
section   

Between  
the control 
section  

Flow into the 
 r. Ochkhomuri 
 (by measuring)  

Flow into the r. 
Ochkhomuri  
 (by modeling)  
 

2002 NO3 

kg/year 
381.2 185.2 503.6 566.4 

PO4 
kg/year 

1.68 2.5 3.8 4.18 

2003 NO3 
kg/year 

252.8 23.6 234.73 276.4 

PO4 
kg/year 

2.2 0.972 2.814 3.172 

 
Table 8.35. The computation results of pollutants mean  
annual meanings got from the appropriate sources in  

separate sections of the  
r. Ochkhomuri during 2002, 2003 

 
R. Ochkhomuri  

Year The pollutant 
ingredient 

Until the first 
cross-section 

The first 
section  
 

The second 
section   
 

The third 
section  
 

Flow into the 
r. Khobistskali 
(by measu-
ring)  

Flow into the 
r. Kho-
bistskali  
(by mode-
ling) 
 

2002 NO3 
ton/year 

1.494 1.392 1.459 2.774 7.390 7.119 

PO4 
kg/year 

9.170 8.316 15.663 3.063 36.375 36.212 

2003 NO3 
ton/year 

1.125 0.8844 0.537 1.140 3.894 3.685 

PO4 
kg/year 

8.292 7.477 5.523 12.369 40.800 33.661 
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Table 8.36. The calculation results of pollutants mean annual meanings  
got from the appropriate sources in separate sites of the  

r. Chanistskali during 2002, 2003 
 

R. Chanistskali 
Year The pollu-tant 

ingre-dient 
Until the 
first 
section   
 

Between  
the control 
section  

Flow into the r. Kho-
bistskali  
(by measuring)  

Flow into the r.  
Khobistskali  
(by modeling) 

2002 NO3 
ton/year 

1.326 16.7 18.03 18.026 

PO4 
kg/year 

9.5 79.012 88.683 88.515 

2003 NO3 
ton/year 

1.5 9.7 11.198 11.197 

PO4 
kg/year 

20.749 102.269 122.872 123.018 

 

Table 8.37. The computation results of pollutants mean annual meanings  
got from the appropriate sources in separate sections of the  

r. Khobistskali during 2002, 2003 
 

R. Khobistskali 
Year The 

pollutant 
ingredient

Until 
the first 
section  

In the 
first 
section 
 

In the 
second 
section 

In the  
third 
section 

In the  
fourth  
section 
 

In the fifth 
section  

Flow into the 
black sea  (by 
measuring)  

Flow into 
the black 
sea  

(by mode-
ling) 

2002 NO3 
ton/year 

11.754 16.337 4.949 2.31 14.669 12.753 52.710 62.772 

PO4 
kg/year 

121.027 106.85 32.949 61.527 79.386 160.956 457.278 562.695 

2003 NO3 
ton/year 

8.488 11.38 6.553 0.879 12.68 3.625 36.809 43.605 

PO4 
kg/year 

128.274 200.946 25.784 81.384 198.189 39.496 560.809 673.473 

 
 

CONCLUSION 
 
In the monograph from the single methodical point of view there are developed the 

mathematical models of diffusion of pollutants in the rivers and methods for marking 
decision. The problem of identification of emergency pollution sources in the rivers is 
formalized. The algorithms for the solution of stated problems are designed. Optimum and 
quasi-optimum algorithms of hypotheses testing are also developed. The one-, two- and three- 
dimensional mathematical models of pollutants transport and diffusion in the rivers are built 
under different initial and boundary conditions. The computation schemes of these models are 
optimized. The universal method of identification of nonlinear statistical models for the 
description of pollutants changes in the rivers is developed and the algorithms of its 
realization for the set of nonlinear functional dependences are given. The program packages 
of identification of excessive pollution sources and realization of mathematical models of 
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pollutants transport in the rivers are also developed. The designed methods and algorithms are 
incorporated into those packages, which are realized as the application software packages for 
IBM – compatible personal computers in accordance with generally accepted standards 
applicable to similar products through the world. They are loaded to the CD-ROM and are 
attached to this book. Users can exploit them as modern, convenient and reliable instruments 
at solution of the problems from the considered areas. Comprehensive experimental 
researches of designed software packages and algorithms realized in them have proved their 
high computing, operational and service qualities. 

We believe the results given in this work are interesting and useful for a wide range of 
specialists and scientists working as in the field of applied mathematics, as in modeling and 
monitoring of pollution of natural waters, ecology, hydrology, power engineering, building of 
different structures on water objects etc. Their importance and practical value is the applied 
nature of the obtained theoretical results, which are submitted in the friendly form for 
comprehension and are ready (appended software packages) for direct application for the 
solution of practical tasks. Advantages of the elaborated methods and algorithms are shown 
not only through theoretical judgements and calculations, but also through the demonstration 
of results of particular calculus and modeling. 

We believe the offered book will be of interest and useful not only for the experienced 
specialists and scientists, working in the relevant areas, but also for young, starting persons. It 
also will be useful for students and post-graduate students specializing in the respective areas. 

Interested persons can obtain working copies of the developed packages for their 
practical use addressing to authors to the address: kartlos5@yahoo.com. 

 





 

 
 
 
 
 
 
 
 
 

APPENDIX 1.  
GENERATOR OF RANDOM VARIABLES OBEYING THE 

GIVEN PROBABILITY DISTRIBUTION LAWS 
 
 
Modeling of random variables is made according to the following principle [1, 126, 191]. 
Let’s assume that it is necessary to simulate random variable   with probability 

distribution density  y . Let  y  is its probability distribution function. Let   be a 

uniformly distributed random variable with probability distribution density  xf , 10  x . 

Random variable   is determined from the following condition 

 







dyy  )( , 

 

i.e.  1 .    Really 

 

      ).()()(1 yyPyPyP     

 
Standard uniformly distributed random variables are generated by means of standard 

procedure RANDOM. 
 





 

 
 
 
 
 
 
 
 
 

APPENDIX 2.  
GENERATOR OF NORMALLY DISTRIBUTED RANDOM 

VECTORS [212] 
 
 

If m -dimensional random vector  ,,...,1 m   where  ;0,1i N � , 1,...,i m , 

and   0,cov ji   at ji  , is simulated and transformed according to expression  

 
1

1  ,K        
 

then  m ,...,1  will be normally distributed random vector with mathematical 

expectation   and covariant matrix mmW  . 

Matrices  , 1K  are defined in the paragraph 4.2. 

 





 

 
 
 
 
 
 
 
 
 

APPENDIX 3.  
GENERATOR OF MULTIDIMENSIONAL NORMAL 

MARKOVIAN SERIES WITH A GIVEN CONNECTIVITY 

DEPTH [1, 213] 
 
 
Below is shortly described the results of the paragraph 3.7 which are used for direct 

generation of considered process.   
A stationary Gaussian series is fully defined by giving the covariant matrix. Therefore, 

m -dimensional Gaussian Markovian series ))(),...,(),(()( 21 txtxtxtX m , with 

connectivity depth N , may be represented in the following form: 
 

1

1 1 1

( ) ( ) ( ),
p m N

p p
p ij i p p

i j

x b x t a x t j t 


  

     


   (A.3.1) 

 

where ,p p
ijb a  are the coefficients that depend on auto- and inter-covariant functions of  m -

dimensional random series ))(),...,(),(()( 21 txtxtxtX m ; 2
p  is residual variance of 

random series )(tx p ; )(tp  is standard, normally distributed random variable. 

The unknown coefficients and the residual variance in (A.3.1) are found by means of 
least-squares technique. With the following designations: 
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where )(, jhR ik  are the corresponding covariances, the expression for the unknown 

coefficients assumes the following form: 
 

,ppp CBA    

 

where 
pB  is pseudoinverse matrix; expression for the residual variance is  

 
1 1 1

2 '
, , ,

1 1 1 1 1 1 1 1 1

(0) (0) ( ) 2 ( ),
p p pm N m N N m

p p p p p p
p p k k k ij i k ij i

k i j k j i

R b b R a a R j b a R j
  

        

          
  


 

 
where )0(pR  is variance of the p -th random process.  

 
Let’s introduce the following designations: p required accuracy of Markovian series 

generation; R - maximum absolute error of calculation of covariant function one value.  

If 
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)()]1([

;
}])([{)(
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 
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



 

 

holds for all ,,...,1 mp  the multidimensional Gaussian Markovian series is generated to the 

given accuracy with probability equal to or greater than )1(  . Here:   is Euclidean norm 

of the corresponding matrix;   ppp BBBcond  is conditionality number of matrix 

pB ; i  is the value for which   1))(ˆ( ii jtxP  holds.  

Sample size n , that ensures computation of covariant function values with absolute error 

not exceeding R , is determined from the following relation: 

 

2 2 2

{ } 1

1/2

1

1
{ [( 1) (0) ( 1 ) ( ) 2 ( 1 ) ( )max

2 ( 1 ) ( ) ( )] }, 0,1,...,max{ , }.

n

i j
i

n i

j

n i n R n i R i n j R j

n i j R j i R j i i n n

 





  




 



          

       

 

Input information for this program is: , ( ), , 1,..., ;i kR j i k m
 

1,..., ;j N
 

; ; .p R   



 

 
 
 
 
 
 
 
 
 

APPENDIX 4.  
THE RESULTS OF REALIZATION OF DESCRIBED IN 

SECTION 3.2 GENERAL METHODOLOGY FOR 

IDENTIFICATION OF NONLINEAR REGRESSIONS FOR 

CERTAIN CLASS OF FUNCTIONAL DEPENDENCES AND 

PROPERTIES OF RESTORED DEPENDENCES 
 
 
The considered set of functional dependences  is defined on the basis of expert -

estimations of leading experts of some institutes as most often  meeting  in researches. 
 
 

1. GEOMETRICAL REGRESSION 
 
The regression model is 
 

 
 

where  and  are unknown coefficients determined by experimental data:
 ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

For definition of coefficients  and  the modified criterion of the least squares is used 
[1]:  

 

 
 ba

ii

N

i
i yxbAS

,

2

1

minlnln  


 ,  (A.4.1) 

 

where  By solving the optimization task (A.4.1) for 

unknown coefficients, we obtain  
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,

 
 

where 
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ii xz ln . 

 

If 2
i  are unknown, it is possible to use their estimations 

 

2

1

1 im

i ik
ki

S y
m 

  , 

 

where iky , imk ,...,1  - are repeated observations of  for given . 

 
 

2. EXPONENTIAL REGRESSION 
 
The regression model is 
 

 
 

where  and  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  .  

The modified criterion of the least squares has the following form  
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where 2
iii y  ; 2/1 ii   ; aA ln . Minimizing (A.4.2), we obtain 
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3. LOGARITHMIC REGRESSION  
 
The regression model is 
 

 
 

where  and  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

The minimum of the weighing sum of discrepancies squares with weight factors 

 is achieved in a case, when the parameters  and  are determined by ratio: 

aBeb / ; 
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4. GEOMETRIC- EXPONENTIAL REGRESSION 
 
The regression model is 
 

 
 

where , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 
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The modified criterion of the least squares takes notes like this:  

  minlnln 2
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where . Minimum in (A.4.3) is obtained at 
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5. EXPONENTIAL REGRESSION WITH THE FREE MEMBER 
 
The regression model is 
 

 

 

where , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

The criterion of the least squares has the following view: 
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where . The minimal value of quantity  at fixed value of  is obtained at 
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where 
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The value of the parameter , for which the function  is minimal, is determined by 

the iterative method of Hooke–Jeeves [4, 9]. Borders of search of the given parameter 
(hereinafter, where for minimization of the modified criterion of the least squares is used an 
iterative method) are determined by ratio (3.5), (3.6), i.e. by modified method of trials [73]. 

 
 

6. GEOMETRICAL REGRESSION WITH THE FREE MEMBER 
 
The regression model is  
 

 

 

where , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

This task is equivalent to the restoration of dependence  (considered in the 

previous Item) at the designation . 
 
 

7. INVERSE EXPONENTIAL REGRESSION 
 
The regression model  is 
 

 

 

where  and  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 
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Minimal value of the weighed sum of squared discrepancies with weight factors 

, at fixed value of  is obtained at 

 

 

 
and is equal to 
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The value of parameter , for which the function  is minimal, is determined by an 

iterative method of Hooke–Jeeves. The borders of search of given parameter undertake 

similarly to borders for parameter  at restoration of dependence  

(see point 5).  
 
 

8. LINEAR – EXPONENTIAL REGRESSION 
 
The regression model is 
 

 
 

where , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Minimal value of the weighed sum of squared discrepancies with weight factors 

, for fixed value of , is obtained at 
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The value of the parameter , for which the function  is minimal, is determined by 

an iterative method of Hooke–Jeeves. The borders of search of given parameter are 
determined by the modified method of trials (3.5), (3,6). 

 
 

9. LINEAR – EXPONENTIAL DEPENDENCE 
WITH THE FREE MEMBER 

 
The regression model is 
 

 
 

where , , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Minimal value of the weighed sum of squared discrepancies with weight factors 

, for fixed value of  is obtained at 
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The value of the parameter , for which the function  is minimal, is determined by 

an iterative method of Hooke–Jeeves. The borders of search of this parameter are determined 
by the modified method of trials (3.5), (3.6). 

 
 

10. PRODUCT OF GEOMETRICAL DEPENDENCES 
 
The regression model is 
 

 

 

where , , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

The modified criterion of the least squares can be written down as follows 
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The value of the parameter , for which the function  is minimal, is determined by 

an iterative method of Hooke–Jeeves. The borders of search of this parameter are determined 
by the modified method of trials (3.5), (3.6). 

 
 

11. SUM OF EXPONENTIAL DEPENDENCES 
 
The regression model is 
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Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Minimal value of the weighed sum of squared discrepancies  with weight factors 

, for fixed values of  and  is obtained at 
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The values of the parameters  and , for which the function  is minimal, are 

determined by an iterative method of Hooke–Jeeves. The borders of search of these 
parameters are determined by the modified method of trials (3.5), (3.6).  
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12. SUM OF GEOMETRICAL DEPENDENCES 
 
The regression model is 
 

 

 

where , , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

The given task is equal to the restoration of the dependence  (considered 

in previous Item) at the designation . 
 
 

13. SUM OF EXPONENTIAL DEPENDENCES  
WITH THE FREE MEMBER 

 
The regression model is 
 

 

 

where , , , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Minimal value of the weighed sum of squared discrepancies  with weight factors 

, at fixed values of  and  is obtained at 
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and is equal to 
 

 

The values of the parameters  and , for which the function  is minimal, is 

determined by an iterative method of Hooke–Jeeves. The borders of search of these 
parameters are determined by the modified method of trials (3.5), (3.6). 

 
 

14. SUM OF GEOMETRICAL DEPENDENCES  
WITH THE FREE MEMBER 

 
The regression model is  
 

 
 

where , , , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Considered task is equal to the restoration of the dependence  

(considered in previous Item) at the designation . 
 
 

15. EXPONENTIAL – SINE WAVE REGRESSION 
 
The regression model is 
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Minimal value of the weighed sum of squared discrepancies  with weight factors 
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The values of parameters  and , for which the function  is minimal, is 

determined by an iterative method of Hooke–Jeeves. The borders of search of these 
parameters are determined by the modified method of trials (3.5), (3.6). 

At definition of the borders for the parameter , the fact that the difference among 

neighbouring zeros of the function  is equal to  is also taken into 

account.  
 
 

16. EXPONENTIAL – SINE WAVE REGRESSION  
WITH THE FREE MEMBER 

 
The regression model is  
 

 
 

where , , , ,  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Minimal value of the weighed sum of squared discrepancies  with weight factors 

, for fixed values of  and  is obtained at  
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The values of parameters  and , for which the function  is minimal, is 

determined by an iterative method of Hooke–Jeeves. The borders of search of these 
parameters are determined by the modified method of trials (3.5), (3.6). 

At definition of borders for parameter , the fact that the difference among 

neighbouring points of a maximum (and points of a minimum) of the function 

 is equal to  is also taken into account. 

 
 

17. POLYNOMIAL REGRESSION 
 
The regression model is 
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where  is matrix of the size  with elements 
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In the program is realized the possibility of an automatic choice of the model’s power, i.e. 

identification not only the coefficients, but also a power of the polyinomial by the following 
algorithm. 

Let minimal variance corresponds to the model of power ; , where  is 

possible greatest power of the model. Let's designate this variance by . Let's 

construct a confidence interval 
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where  is unknown true value of the variance;  and  are the quantiles of 

the orders  and , respectively, of the 
2  distribution law with  

degree of freedom;  is the confidence probability. 
As a restored dependence we shall accept the model with the minimal power from the set 

of identified models, the variances of which falled in the constructed confidentce interval. 
The choice of model’s power is similarly carried out at identification of other 

dependences for which it is necessary. 
 
 

18. GEOMETRICAL – POLYNOMIAL REGRESSION 
 
The regression model is 
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where  are unknown coefficients determined by experimental data: ix , iy , 

Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  . 

Minimal value of the weighed sum of squared discrepancies with weight factors 

, at fixed value of , we obtain for 
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The value of the parameter , for which the function  is minimal, is determined by 

the iterative method of Hooke–Jeeves. The borders of search of this parameter are determined 
by the modified method of trials (3.5), (3.6).  

 
 

19. EXPONENTIAL – POLYNOMIAL REGRESSION 
 
The regression model has the following form  
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Minimal value of the weighed sum of squared discrepancies with weight factors 

, for fixed value of , we obtain for 
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where  is the matrix of the size  with elements 
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The value of the parameter , for which the function  is minimal, is determined by 

the iterative method of Hooke–Jeeves. The borders of search of this parameter are determined 
by the modified method of trials (3.5), (3.6). 

 
 

20. LOGARITHMIC – POLYNOMIAL REGRESSION  
 
The regression model has the following form  
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,

 

 

where . Minimal value of the variable S  , for fixed value of , we 
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and is equal to 
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The value of the parameter , for which the function  is minimal, is determined by 

the iterative method of Hooke–Jeeves. The borders of search of this parameter are determined 
by the modified method of trials (3.5), (3.6). 

 
 

21. PERIODIC REGRESSION 
 
Let us consider model 
 

Njtfy jjj ,...,1,)(   , 

 

where ( ) 0iE   ; 2( )i iV   ; 0),cov( ki  , ki  ;  is a periodic function with 

the period  [1,104]. 
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The consecutive values  of the independent variable should be equidistanced from each 

other with the step , where  - the number of the measured values in a period – is 

integer, greater than or equal to 3; the general number of measured values  should be 

greater than or equal to ; moreover, the number  should be divided by  without a 
remainder. If the latest condition is broken, then for determition of the unknown parameters 

are only considered the first  values of
 

 and , and other values are not taken into 

account; here  is integer component of the number . 

The considered dependence satisfies the condition . Hence, the 

following representation is possible  
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if  is odd number and 
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if  is even number. 

Thus, the restored dependence looks like 
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where  is integer component of the number ( 1) / 2;r 
 0 1,..., ,mA A   1,..., mB B  are the 

parameters of approximation, and, in case of odd , , and, in case of even , 

. 

The estimations by the method of least squares of the parameters of approximation are 
calculated so: 
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at even . 

Variances of  and  are equal to , and variances of  and  are equal 

to . The unbiased estimation of the variance  is calculated by the 

formula 
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After calculation of the coefficients  and , for every , is tested zero 

hypothesis : . If this hypothesis is true then the statistics  
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where , and  is calculated by (A.4.4), is distributed by the Fisher’s  

distribution law with 2 and  degrees of freedom. Thus, zero hypothesis is accepted if 
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where  is the given significance level,  is the quantile of  order of the 

Fisher distribution with  degrees of freedom. 

Automatic choosing the model’s order is realized similarly to Item 17. 
 
 

22. REGRESSION ANALYSIS  
 
At identification of the above-stated functional dependences, in developed by authors of 

this book software package SDpro is an opportunity of switching on of the mode of operation 
for testing of regression model on the adequacy [93, 94, 101, 226]. In this mode of operation, 
the hypothesis about conformity of restored dependence to experimental data is tested by the 

following algorithm. The interval of representation of independent variable  is 

divided into  groups and there is calculated  
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where  is the size of sample;  is the number of estimated parameters of the restored 

functional dependence ;  is the number of the measurements which fall into th 

interval;  is an average point of th interval of groupping of data; iy  -is the arithmetic 

mean of the dependent variable falled into th interval;  is the value of the restored 

regression in the point ,  are the estimations of unknown parameters;  is th by the 

order value of the dependent variable falled into th interval. 
If there takes place 
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where  and  are the quantiles of the orders  and , respectively, of 

the Fisher’s distribution with  degrees of freedom, then there is made 

decision that the restored regression does not contradict to the experimental data with 
probability . Here  is confidence probability. 

If  then on the display is brought out the message “simplify regression”, i.e. for 

restoration of functional dependence it is necessary to choose more simple dependence among 

offered in the menu. If  then on the display is brought out the message 

“complicate regress” and we choose more complex regression dependence among offered in 
the menu. 

In the program of realization of this algorithm is an opportunity to set any allowable 
value of  - number of groups (interval of allowable values is indicated in the bottom line of 
the display) and  - the significance level of criterion. 

 
 

23. MULTIPLE LINEAR REGRESSION 
 
In the present task, in contradistinction to all the tasks considered above, a dependent 

variable is represented as a function of  independent variables . The regression 

model looks like [105] 
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where it is necessary to determine unknown coefficients 
 

on the basis of 

experimental data: iy , kix , 1,...,k m , Ni ,...,1 ; ( ) 0iE   ; 2( )i iV   ; 

0),cov( ki  , ki  . 

The criterion of the least squares can be written down as: 
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where . The minimum is obtained for  
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where  is the matrix of the size  with elements 
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24. THE BASIC PROPERTIES OF  
RESTORED DEPENDENCES 

 

Geometrical Dependence 
 

.
 

 

The graphs of the function  are given in Figure A.4.1 a) and b) at  and 

different, accordingly, positive and negative values of the parameter . At , the 
appropriate graphs can be obtained from the presented in Figure A.4.1 by looking-glass 
reflection concerning the axis . At , the axes of coordinates serve as asymptotes of 
the graphs. 
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Figure A.4.1. The graph of the function y=xb at different  meanings of b: 

a) (positive values of b) b) (negative values of b) 
b=1/8(1),b=2(4), b1/8(1),b2 (5), 
b=1/3(2),b=3(5), b1/3(2),b3 (6), 
b=1/2(3),b=8(6). b1/2(3),b8 (7). 
 b1  (4). 

 
 

Exponential Dependence 
 

bxeaxf )( . 

 

The graphs of the function  xf  are given in Figure A.4.2 at 1a  and different values 

of the parameter . The graphs pass through the point {0,1} and have the common 
asymptote, coinciding with the axis . 

 

     

Figure A.4.2. The graph of the function 
y=ebx at different  values of b: 

a2 (1), a1/2 (4), 
a1  (2), a1 (5), 
a1/2(3), a2 (6). 

Figure A.4.3. The graph of the function 
y=a·lnx at different  values of a: 

b2 (1), b1/2 (4), 
b1 (2), b1 (5), 
b1/2(3), b2 (6). 

 
 

b
x
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Logarithmic Dependence 
 

 bxaxf ln)(  . 

 

The graphs of the function  are given in Figure A.4.3 at  and different values 

of the parameter . The graphs pass through the point {1,0} and have common asymptote, 

coinciding with the axis . At  the graphs of the function  can be obtained from 

the presented in Figure A.4.3 by shifting the latest one along the axis of ordinates on the 
distance . 

 
 

Geometric-exponential Dependence  
 

cxb exaxf )( , at . 

 

If the number  belongs to the domain of definition of the function  (i.e. 

if ), then the considered function has unique extreme point in , otherwise it 

has not extreme points. If the graph of the present function has a point of inflection, then the 
abscess of this point is equal to  
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The graphs of the function  are submitted in Figure A.4.4 at ; at  the 

appropriate graphs can be obtained from the presented in Figure A.4.4 by looking-glass 
reflection concerning the axis . Depending on the values of the parameters  and , eight 
cases are possible: 

 
a) at  and , the function increases monotonically; the graph touchs the axis 

 in the point {0,0}; 

b) at  and  the function increases monotonically; the graph passes through 
the point {0,0} and touchs the straight line  in this point;  

c) at  and  the function increases monotonically; the graph touchs the 

axis  in the point {0,0} and has a point of inflection with the abscess ;  

d) at  and  the function has a minimum in the point ; the axis  is the 

asymptote of the graph; 

e) at  and  the function has a maximum in the point ; the graph touchs 

the axis  in the point {0,0} and has two points of inflection; the axis  is the 
asymptote; 
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f) at  and  the function has a maximum in the point ; the graph 

passes through the point {0,0} and touchs the straight line  in this point; has 

one point of inflection with the  abscess ; 

g) at  and  the function has a maximum in the point ; the graph 

touchs the axis  in the point {0,0} and has one point of inflection with the  abscess 

;  

h) at  and  the function decreases monotonically; the axes of ordinates are 
the asymptotes of the graph. 

 
 A: c > 0 B: c < 0 

b 
>

 1
 

 

b 
=

 1
 

 

0 
<

 b
 <

 1
 

 

b 
<

 0
 

 

Figure A.4.4. The graph of the function ya·xb·ecx at a0 and different ranges of values of the 
parameters b and c. 

 

Inverse-exponential Dependence  
 

 bxeaxf  1)( . 
 

The graphs of function  are presented in Figure A.4.5 at  and different 

positive values of the parameter . The graphs pass through starting point of the co-ordinates 
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and have common horizontal asymptote, set by the equation . At , the 

appropriate graphs can be obtained from presented in Figure A.4.5 by looking-glass reflection 
concerning the axis . 

 

 

Figure A.4.5. The graph of the function ya·(1ebx) at different values of b: b0.5 (1); b0.75 (2); 
b1 (3); b1.25 (4). 

 

Geometrical Dependence with the Free Member 
 

. 

 
The graphs of the presented function can be obtained from the considered above graphs 

of geometrical dependence  by shifting the latest one along the axis of ordinate 

on the distance . 
 
 

Exponential Dependence with the Free Member 
 

cxebaxf )( . 
 
The graphs of this function can be obtained from the considered above graphs of 

exponential dependence  by shifting the latest one along the axis of ordinate 
on the distance . 

 
 

Linear-Exponential Dependence 
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This function has a unique point of extreme  
 

bacx //10  , 

 
being the point of minimum at  and point of maximum at . 

The graph of this function has a unique point of inflection with the abscess 
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The function  become equal to zero at . 

At ; at .  
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The graphs of the dependence  from  are presented in Figure A.4.6 at 

different signs of  and . 
 

 A: c > 0 B: c < 0 

b 
>

 0
 

 

b 
<

 0
 

 

Figure A.4.6. The graph of the dependence y(abx)·ecx from txa/b at different signs of the 
parameters b and c. 

 

Linear-exponential Dependence with the Free Member  
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The graphs of this function can be obtained from the considered above graphs of the 
linear-exponential dependences 

 
 

by shifting the latest one along the axis of ordinates on the distance . 
 
 

Product of Geometrical Dependences 
 

 dc bxxaxf  1)( . 
 

The conditions are assumed executed:  at  or 

 at . Let us designate 
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then . 

If the number  belongs to the domain of definition of the function , then the 

considered function has unique extremum in the point ; otherwise it has not 

extremums. If the graph of this function has a point of inflection, then the abscess of this 

point is equal to  or , where  and  are the roots of the quadratic equation 
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The graphs of the function  are presented in Figure A.4.7 at ; at , the 
appropriate graphs can be obtained from given in Figure A.4.7  by looking-glass reflection 

concerning concerning the axis . Depending on the signs of the parameters  and , 
the different cases are possible. 

 

a)  and . The function  has a maximum in the point ; at 

 and at ;  

b)  and . The function increases everywhere; at 

; at , ; the straight line  is the 

asymptote of the graph of the considered function. 
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c)  and . The function decreases everywhere; at 

; at , ; the axis  is the asymptote of 

the graph of the considered function. 

d)  and . The function has a minimum in the point ; at  

and at , ; the graph of the function has two vertical 

asymptote:  and . 

e)  and . The function increases monotonically; at 

; at .  

f)  and . The function has a maximum in the point ; at 

 and at x , 0)( xf . 

g)  and . The function has a minimum in the point ; at 

 and at x , 0)( xf .  

h)  and . The function decreases monotonically; at 

; at x , 0)( xf ; the axes of ordinates are the 

asymptotes of the graph of the considered function. 
i) At , . From here follows that at  and any  the 

graph of the function , in the point {0,0}, concerns either to the axis of abscess 

(at ), or to straight line  (at ), or to axis of ordinates (at 

). At  the graphs of the function  behave similarly to the 

appropriate graphs of the function  (see Figure A.4.4).  
j) At  and any  and , the graph of the function , in the point 

, concerns either to the axis of abscess (at ), or to straight line 

 (at ), or to axis of ordinates (at ). 
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II: b0 

 

Figure A.4.7. The graph of the function ya·xc· (1b x)d at a0 and different  regions of change of 
the parameters b, c, d. 

 

The Sum of Exponential Dependences  
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is a unique point of extremum of the function , otherwise the considered function 

has not the extremums; 
 

b) at  and , the function  increases everywhere; 

c) at  and , the function  decreases everywhere; 

d) at  and , the function  has a maximum at ; 

e) at  and , the function  has a minimum at ; 

f) at , the point 
 
 
 

g)  g) is a unique point of inflection of the graph of the function , otherwise the graph 

of the considered function has not the points of inflection. 
 

The graphs of the function  at  and different signs of the parameters 

 are presented in Figure A.4.8. 
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Figure A.4.8. The graph of the function ya·ecx + b·edx at different signs of the parameters a, b, c, d. 

Depending on the signs of the parameters , it is possible to choose the 

following four types.  
 
a)  and  (the squares A-1, C-1, A-4, C-4 in Figure A.4.8): the function 

is monotonicall everywhere; there are not extremums and zeros; the graph has not 
points of inflection; the axis  is the asymptote. 

b)  and  (the squares B-1 and B-4 in Figure A.4.8): the function has one 

extremum (minimum at  and maximum at ); it has not zeros; the graph 
has not points of inflection and the asymptotes; 

c)  and  (the squares A-2, C-2, A-3, C-3 in Figure A.4.8): the function 

has one extremum (maximum at  and minimum at ) 

and one zero; the graph has one point of inflection; the axis  is the asymptote; 
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d)  and  (the squares B-2 and B-3 in Figure A.4.8): the function has not 
extremums, it is monotonicall everywhere; it has one zero; the graph has one point of 
inflection; it has not the asymptotes. 

 
 

The Sum of Geometrical Dependences  
 

dc xbxaxf )( . 
 

 

Figure A.4.9. The graph of the function ya·xc + b·xd at different signs of the parameters a, b, c, d. 

The function  will be transformed to the considered above function 
 

 
 

at replacement of the independent variable . In Figure A.4.9 are presented the graphs 

of the function  at  and different signs of the parameters . 
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The Sum of Exponential Dependences with the Free Member 
 

dxcx ebeahxf )( . 
 
The graphs of this function can be obtained from the considered above graphs of the sum 

of exponential dependences 
 

 
 

by shifting the latest one along the axis of ordinates on the distance . 
 
 

The Sum of Geometrical Dependences with the Free Member   
 

dc xbxahxf )( . 
 
The graphs of this function can be obtained from the considered above graphs of the sum 

of geometrical dependences 
 

dc xbxaxF )( , 
 

by shifting the latest one along the axis of ordinates on the distance . 
 
 

Exponential-sine Wave Dependence 
 

    tbtaetf ct  sincos)(  , 0,0  ct . 
 
The given function can also be represented as 

     teateaxf ctct sincos)( , 

 
 

where 
 

222 BAa  ;   AB /tan  ;   BA /tan  ; 4/2  . 

Let's introduce also auxiliary parameters 
 

; ; , 

 

dxcx ebeaxF )(

h
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where  is the imaginary unit. 

The function  is continuous everywhere; it turns into zero in the points 

, it has the maxima in the points  and the minima 

in the points ; 

   kk psapf  exp/)(  ;    kk psapf  exp/)(   

 ,...1,0 k . 

The function  is not periodic, however it turns into zero, and also achieves of the 

maximal and minimal values over intervals of identical length, equal to . 
The graph of the function  (see Figure A.4.10) is located in the area bounded by 

graphs of the functions  and  and has an asymptote, coincided with 

the axis of abscess. The abscess of the points of a contact of the considered curve with the 

graph of the function  are equal to ; the abscess of the points of 

its contact with the graph of the function  are equal to 

. The abscess of the points of inflection are
 

. 

 

 

Figure A.4.10. The graph of the functions yect·(a·cos(t)b·sin(t)) (unbroken curve), yect и 
yect (curves of dots). 
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The graphs of this function can be obtained from the considered above graphs of the 

exponential-sine wave dependence 
 

,
 

 
by shifting the latest one along the axis of ordinates on the distance . 
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Polynominal Dependence 
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


m

k

k
k xpxf

0

)( . 

 
If on the number  there are not imposed restrictions, the function  can have any 

number of maxima and minima in any points and to accept any values in these points. 
Therefore to specify any general regularities for the given function is not obviously possible. 

The same is possible to say concerning all following functional dependences: 
 
 

Geometrical-polynominal Dependence 
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Periodic Dependence 
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APPENDIX 5.  
GRAPHS OF EXPERIMENTAL INVESTIGATION OF 

DETERMINISTIC MATHEMATICAL MODELS 
 

 

  

Figure A.5.1. Function I; homogeneous equation; 1D model; classical boundary conditions. 
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Figure A.5.2. Function I; nonhomogeneous equation; 1D model; classical boundary conditions. 
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Figure A.5.3. Function I; homogeneous equation 1D model; classical boundary conditions. 
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Figure A.5.4. Function I; nonhomogeneous equation 1D model; classical boundary conditions. 
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Figure A.5.5. Function II; homogeneous equation 1D model; classical boundary conditions. 
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Figure A.5.6. Function II; nonhomogeneous equation; 1D model; classical boundary conditions. 
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Figure A.5.7. Function II; homogeneous equation 1D model; classical boundary conditions. 
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Figure A.5.8. Function II; nonhomogeneous equation; 1D model; classical boundary conditions. 
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Figure A.5.9. Function I; homogeneous equation; 2D model; classical boundary conditions; method of 
decomposition of operator.  
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Figure A.5.10. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.11. Function I; homogeneous equation; 2D model; classical boundary conditions; method of 
decomposition of operator. 
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Figure A.5.12. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.13. Function I; homogeneous equation; 2D model; classical boundary conditions; method of 
decomposition of operator.  
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Figure A.5.14. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; 
method of decomposition of operator. 

.688.87}/max{;7264.1}max{

;3748.0
~

;1270.0
~

;2.0~;1.3~
;8314.0

~
;4306.2

~
;3.0~;5.3~

;0.2;31.0;12

;23;64

sec;6.1;1560

2222

1111











jjj

yx

BAs

BAs

ktL

nn

TN





  

 

  

Figure A.5.15. Function I; homogeneous equation; 2D model; classical boundary conditions; method of 
decomposition of operator. 
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Figure A.5.16. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; 
method of decomposition of operator.  
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Figure A.5.17. Function I; homogeneous equation; 2D model; classical boundary conditions; Zeidel 
method.  
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Figure A.5.18. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; Zeidel 
method.  
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Figure A.5.19. Function I; homogeneous equation; 2D model; classical boundary conditions; Zeidel 
method. 
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Figure A.5.20. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; Zeidel 
method.  
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Figure A.5.21. Function I; homogeneous equation; 2D model; classical boundary conditions; Zeidel 
method. 
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Figure A.5.22. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; Zeidel 
method. 
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Figure A.5.23. Function I; homogeneous equation; 2D model; classical boundary conditions; Zeidel 
method. 
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Figure A.5.24. Function I; nonhomogeneous equation; 2D model; classical boundary conditions; Zeidel 
method. 
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Figure A.5.25. Function I; homogeneous equation; 3D model; classical boundary conditions; method of 
decomposition of operator. 
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Figure A.5.26. Function I; nonhomogeneous equation; 3D model; classical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.27. Function I; homogeneous equation; 3D model; classical boundary conditions; method of 
decomposition of operator. 
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Figure A.5.28. Function I; nonhomogeneous equation; 3D model; classical boundary conditions; 
method of decomposition of operator.  
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Figure A.5.29. Function I; homogeneous equation; 1D model; nonclassical boundary conditions. 
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Figure A.5.30. Function I; nonhomogeneous equation; 1D model; nonclassical boundary conditions. 1D 
model; nonclassical boundary conditions. 
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Figure A.5.31. Function I; homogeneous equation; 1D model; nonclassical boundary conditions. 
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Figure A.5.32. Function I; nonhomogeneous equation; 1D model; nonclassical boundary conditions.  
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Figure A.5.33. Function II; homogeneous equation; 1D model; nonclassical boundary conditions.  
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Figure A.5.34. Function II; nonhomogeneous equation; 1D model; nonclassical boundary conditions. 
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Figure A.5.35. Function II; nonhomogeneous equation; 1D model; nonclassical boundary conditions. 
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Figure A.5.36. Function II; nonhomogeneous equation; 1D model; nonclassical boundary conditions. 
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Figure A.5.37. Function I; homogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.38. Function I; nonhomogeneous equation;2D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.39. Function I; homogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.40. Function I; nonhomogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.41. Function I; homogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator.  
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Figure A.5.42. Function I; nonhomogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator.  
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Figure A.5.43. Function I; homogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.44. Function I; nonhomogeneous equation; 2D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.45. Function I; homogeneous equation; 3D model; nonclassical boundary conditions; 
nonclassical boundary conditions; method of decomposition of operator. 
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Figure A.5.46. Function I; nonhomogeneous equation; 3D model; nonclassical boundary conditions; 
method of decomposition of operator. 
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Figure A.5.47. Function I; homogeneous equation; 3D model; nonclassical boundary conditions; 
method of decomposition of operator.  
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Figure A.5.48. Function I; nonhomogeneous equation; 3D model; nonclassical boundary conditions; 
method of decomposition of operator.  
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